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Foreword

Proximal Soil Sensing: Looking, Touching, Feeling

Proximal sensing is the oldest activity in soil science and forms the very core of
our professional existence as soil scientists. The first soil scientists looked at what
everybody called just soil and – even though others had seen before what they were
seeing – they, for the first time, became really excited and recognised the unique
character of what their eyes revealed. The soil as a natural body was born.

To better understand and interpret what they were seeing, they used looking
glasses to magnify the soil image and smelled, tasted, and squeezed the soil mate-
rial to get a better idea about its features. They also learned the hard way that soil
features could be exposed only by digging pits. This elementary proximal sensing
resulted in flowery analogies – such as the assertion I recall from my field training
as a student that ‘the feel of a loess soil was supposed to be comparable to that of
the skin of an 18-year-old girl’.

Thus, at least four elementary forms of proximal sensing have been with us since
the 19th century. This book convincingly illustrates that by now, thanks to mod-
ern technology, our sensing abilities reach way beyond what our human senses can
accomplish. Some of these techniques have already been applied for decades in
remote sensing from aeroplanes or satellites and have made significant contribu-
tions to soil and landscape science. But proximal sensing, as covered in this book,
represents a special ‘niche’ as it defines tools that are available for field scientists
who follow their own intuition and game plan as they move around in the field try-
ing to unravel the secrets of Mother Earth, independent of a rigid flight plan or a
satellite passover.

Fascinating new opportunities arise and are covered in this book: for instance,
soil spectroscopy and hyperspectral sensing allow direct estimates of nitrogen, car-
bon, and the micronutrient contents of soil materials – in contrast to cumbersome
and costly treatments associated with traditional wet chemistry. Electromagnetic
induction and resistivity measurements allow a complete characterisation of soil lay-
ering, in stark contrast with traditional approaches where separate, isolated borings
had to be somehow interpolated to form meaningful patterns.

At least two major advantages of proximal sensing stand out, while there are
also some potential pitfalls. A major advantage is the fact that, finally, there can be
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vi Foreword

enough soil data to allow meaningful (geo)statistical analyses to ascertain spatial
soil patterns. So far, major advances have been made in the theory of spatial analy-
sis (as reported in this book), but practical application has often stalled because of
lack of data as research projects did not provide funds to allow adequate sampling.
A second advantage is the fact that soil scientists, using these techniques, increase
their scientific fecundity, which make them more effective and interesting as part-
ners in interdisciplinary land use programs. With easily accessible soil databases,
user-friendly simulation models, and flashy geographical information systems, non-
soil scientists can produce many soil-related products that may look attractive at
first sight but often lack depth and scope. As is true in any science, soil scien-
tists must stay ahead in their game, and the proximal sensing toolkit is of major
assistance here.

There may be a potential problem, however, if techniques start to have a life of
their own and when they become a goal in themselves rather than a means towards
a broader purpose, which is the dynamic characterisation of soils for the benefit of
all. That is why it would be wise for modern soil scientists with their sophisticated
toolkits to recall and be inspired by the initial excitement of the first soil scientists,
because even though we know a lot more about our soils now, its complexity and
beauty are still way beyond our understanding.

The Netherlands Johan Bouma



Preface

Our scientific understanding of soil – its unique qualities and functions – has been
gained through long and arduous soil surveys complemented by careful chemi-
cal, physical, mineralogical, and biological laboratory analysis. These conventional
methodologies continue to serve us well, but they can be expensive, complex, and
time consuming and often only qualitative. The growing demand for good quality,
inexpensive soil information underlines these shortcomings.

We need better information to solve pressing problems such as how to moni-
tor the effects of climate change on soil, how to populate models of key processes,
how to use precision agriculture for improving the sustainability and efficiency of
food production, and how to assess and remediate contaminated land. These appli-
cations have prompted the development of more time- and cost-efficient quantitative
approaches to soil analysis that complement, or replace, the more conventional
laboratory techniques.

Sensors are becoming smaller, faster, more accurate, more energy efficient, wire-
less, and more intelligent. Many such devices can be used for proximal soil sensing
(PSS), for example using ion-sensitive field effect transistors to measure soil pH
and soil nutrients or using portable near-infrared spectrometers to measure soil
properties like organic carbon content and mineral composition.

In this book, PSS is defined as the use of field-based sensors to collect soil infor-
mation from close by (say within 2 m), or within, the soil body. Proximal soil sensors
may be active or passive; they may be invasive, where there is direct sensor-to-soil
contact, or non-invasive, measuring properties of the soil from above the surface.
They may either measure the soil property directly or indirectly – by finding a
proxy that is easier and cheaper to measure and developing a pedotransfer function.
Frequently, the sensors are mounted on vehicles for on-the-go measurements. The
rationale for PSS is that although it may produce results that are not as accurate –
per individual measurement – as conventional laboratory analysis, it facilitates the
generation of larger amounts of (spatial) data using cheaper, simpler, and less labo-
rious techniques which, as an ensemble, may be highly informative. Moreover, the
information is produced in a timely manner (that is, almost instantaneously).

This book reports on developments in PSS and high-resolution digital soil map-
ping presented at the First Global Workshop on High Resolution Digital Soil
Sensing and Mapping held in Sydney in 2008. The workshop was held under the
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auspices of the International Union of Soil Sciences (IUSS) and was hosted by the
University of Sydney Faculty of Agriculture, Food and Natural Resources, with sup-
port from the Commonwealth Scientific Industrial Research Organisation (CSIRO)
and Environmental Earth Sciences International (EESI Pty Ltd). The workshop
attracted 90 soil scientists, agronomists, agricultural engineers, spectroscopists,
statisticians, geostatisticians, and proximal and remote sensing specialists from 18
countries.

We have selected 36 chapters, arranged in sections, which represent the range of
presentations made on various aspects of PSS. The book comprises an introductory
section that sets the scene; a section on soil sensing and soil sampling; a section on
soil (UV), visible, and infrared spectral sensing; one on soil electromagnetic induc-
tion and electrical resistivity sensing; one on radar and gamma radiometric sensing;
one on multisensor systems and other sensors; and a final section on applications
of PSS.

Australia Raphael A. Viscarra Rossel
Alex B. McBratney
Budiman Minasny
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Chapter 1
Sampling for High-Resolution Soil Mapping

J.J. de Gruijter, A.B. McBratney, and J. Taylor

Abstract When doing sensing for high-resolution soil mapping, one has to decide
on the disposition of the sensor, which is a special case of spatial sampling. To
optimise the pattern of measurements, a cost model and a quality model are pro-
posed. The quality model reflects the coverage of the geographic space, and this
is illustrated with some practical experiments. Optimisation of sensing patterns is
worked out for two different types of sensing equipment. If the sensor variable dif-
fers from the target (management or decision) variable, then a model is needed to
predict the target variable from the ancillary data. So in that case, one also has to
decide how and where to sample for calibration data. This ‘calibration sampling’
differs from ‘sensor sampling’, as now coverage of the predictor space rather than
the geographic space is important. In addition, the handling of extremes is an issue
here. Existing methods for calibration sampling are reviewed and a suggestion is
made for a new approach, based on fuzzy cluster analysis, which might avoid some
of the shortcomings of existing methods.

Keywords Soil sampling · Calibration · Proximal sensing · Latin hypercube
sampling · Fuzzy k-means · Cost modeling

1.1 Introduction

High-resolution soil mapping often needs some form of proximal sensing, and it
should be realised that this is not complete enumeration. Proximal sensing enables
measurement at high densities, but practical and financial constraints usually prevent
sensing at sufficiently high resolution. Thus empty spaces will remain between the
sensing locations, and proximal sensing can be seen as a form of soil sampling.

J.J. de Gruijter (B)
Alterra, Wageningen University & Research Centre, P.O. Box 47, 6700 AA
Wageningen, The Netherlands
e-mail: jaap.degruijter@wur.nl

3R.A. Viscarra Rossel et al. (eds.), Proximal Soil Sensing, Progress in Soil Science 1,
DOI 10.1007/978-90-481-8859-8_1, C© Springer Science+Business Media B.V. 2010
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Sampling for high-resolution soil mapping therefore will often be twofold: sensor
sampling and calibration sampling. Sensor sampling is in order if

• the available prior information (detailed soil maps, soil sample data, remote sens-
ing images, previous proximal sensing data, yield data, DEMs) is insufficient for
the required mapping and

• sensing can produce data about the target variable, either directly (e.g. pH
sensing) or indirectly via a model (e.g. lime requirement sensing).

Calibration sampling should be done if

• a model is needed for prediction of the target variable from the prior information
and/or newly acquired sensing data and

• such a model is not yet available.

The flow diagram of Fig. 1.1 shows the various possibilities of data needs and
their consequences for data acquisition.

Usually one has to decide on two different spatial sampling patterns: one for
the sensing locations and one for the locations from which calibration data are to
be collected. It should be realised that entirely different aims are involved, leading
to different methods. The aim of sensor sampling is to enable mapping so that the
pattern should have sufficient coverage of the geographic space. The aim of calibra-
tion sampling is to identify a useful model so that the pattern should have sufficient
coverage of the predictor space.

Like the sampling itself, the aim of this chapter is twofold. Firstly, a recon-
naissance of the problems of sensor sampling is aimed at, with a first attempt to
optimise sensing patterns theoretically, supplemented with some field experiments.
Secondly, we shall consider some existing and possible methods for calibration sam-
pling, which will have mostly the character of a review on the basis of a priori
considerations.

Fig. 1.1 Flow diagram of
high-resolution digital soil
sensing and mapping
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1.2 Materials and Methods

1.2.1 Sensor Sampling: Some Theory

Sensor sampling will normally be done with a vehicle taking measurements at fixed
intervals while driving along straight parallel lines, thus forming a regular grid of
sample points. The size and the shape of this grid should be chosen such that the
resulting sensing data will form the best starting point for interpolation onto the
final grid at which the target variable is to be predicted, subject to a cost constraint.
This needs a cost model and a quality model (see below). In cases where there is
more than one sensor mounted on the vehicle, the measurements are generally not
collocated, but we assume that the data will be transformed into collocated ones by
post-processing.

For cost modelling and optimisation, we distinguish two types of equipments:
sensors mounted on a vehicle that stops to take a measurement (type A) and sen-
sors mounted on a vehicle that does not stop for measuring (type B). With type A
we assume that the operator can choose the swathe width and the interval between
measurements along the driving lines. With type B we assume that the measure-
ment frequency is fixed and that the operator can choose the swathe width and
the speed.

1.2.1.1 Optimisation for Equipment Type A

Assuming that we drive a sensing instrument along parallel lines through the field,
with equal distance w between the lines and equal distance between sensing points
h at the lines, a simple model of the variable costs is

C = cd

w
+ cm

wh
, (1.1)

where C is the variable sensing cost per hectare (C ha−1), cd is the cost of driving per
hectometre (C hm−1) and cm is the cost of measuring per sensing point (w and h both
given in hectometre). This model neglects boundary effects and driving between
lines, which seems reasonable for large fields.

The patterns of sensing points that are best for spatial prediction, regardless of
costs, are square grids, i.e. w = h. (Theoretically, triangular grids would be slightly
more efficient, but these are not practical for routine application.) When we take
costs into account, the optimal grid shape may be rectangular instead of square. To
maximise the quality of the pattern, given a budget, we need a quality measure.
Ideally we would define this in terms of prediction error variance, but that assumes
that we have an explicit model of the spatial variation and knowledge of the relation
between the sensor variable(s) and the target variable. In the absence of these, we
can take recourse to a geometric measure that penalises large distances from predic-
tion points to nearest sensing points. One such measure is the mean of the squared
shortest distances (MSSD) of the prediction points to the sensing points (Brus et al.,
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2003; de Gruijter et al., 2006, p. 153). If we take this as the quality measure, Q (ha),
then the model is, by double integration of the squared distance between points over
a rectangle

Q = w2 + h2

12
. (1.2)

Using Eqs. (1.1) and (1.2) one can minimise the costs under the constraint of a
given quality requirement Qr. It can be shown by the Lagrange multiplier technique
that the optimal value of h equals [for non-negative D and (R − √

D)]

h = 3
√

R + √
D + 3

√
R − √

D − 2

3
r, (1.3)

where r = cm
cd

, R = 6Qrr −
(

2
3 r
)3

and D = R2 −
(

2
3 r
)6

.

The optimal value of w follows by substitution in Eq. (1.2). Given the cost ratio r,
the optimised spacing between driving lines is a function of the quality requirement.
Graphs of this function are given in Fig. 1.2 for r = 0.05, 0.25 and 0.5 hm.

Note that for a given cost ratio r, the ratio of the two optimal spacings h/w
is a function of the quality requirement Qr. This function is given in Fig. 1.3 for
r = 0.05, 0.25 and 0.5 hm. The graphs show that the stronger the quality require-
ment, the more the optimised grid shape approaches h /w = 1, i.e. the ideal of the
square. As expected, the rectangles of the optimised grids become more elongated
as the ratio of measuring cost and driving cost is smaller.

Two extremes in terms of the cost ratio r deserve special attention. One extreme
occurs when the cost of measuring is negligible; then r ≈ 0, and according to
Eq. (1.3), also h ≈ 0. This would mean that sensing is done at the smallest pos-
sible spacing along the driving lines, the latter being w = √

12Qr hm apart. One
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Fig. 1.3 Ratio of optimised spacings h and w as a function of the required grid quality (MSSD),
for cost ratios r = 0.05, 0.25 and 0.5 hm

may ask if in such cases more efficient patterns can be formed by two perpendicular
sets of equidistant parallel lines. The answer is negative because, to keep the invest-
ment at the same level, the spacing between the lines should be doubled and it can
be shown that Q would then equal approximately w2/9 instead of w2/12.

The other extreme is when the cost of driving is negligible compared with mea-
suring. The only concern is then to keep the sensing density as low as possible,
under the constraint Qr. The optimal grid shape is now square for any density so
that [from Eq. (1.2)] h = w = √

6Qr.
The spacing between the lines cannot always be chosen freely because there may

be controlled driving lines in the field, say wm apart. In that case w is allowed to take
only the values wm or multiples of it. Given Qr and a series of permissible values of
w, optimisation can be done by calculating h from Eq. (1.2) and C from Eq. (1.1)
for each value of w and selecting the (w, h) combination with the smallest C.

1.2.1.2 Optimisation for Equipment Type B

Assume that we drive the vehicle at speed v (m min−1) while the sensor is measuring
at frequency f (min−1). A cost model in terms of time T (min ha−1) needed for
optimisation is now as follows:

T = 1

w · v
. (1.4)

The measuring interval along the lines h is determined by speed and frequency:
h = v/f .

Minimising T, again under quality constraint Qr, results in w = h = √
6Qr. So

with this type of equipment one should always strive for a square grid, regardless of
the quality requirement and the measuring frequency, as with type A when driving
costs are negligible.
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1.2.2 Sensor Sampling: Some Experiments

Three surveys were done in a 9.4-ha field located at ‘The Lagoon’ near Bathurst,
New South Wales, on the flood plain of the Campbell River. Soil ranged from sandy,
crusting, coarse textured profiles (Arenosols) with rock fragments on the higher
elevations to heavy alluvial clays (Fluvisols) on the flats adjoining the river. The
surveys were done with equipment of type B (non-stop driving) with an EM38 (hor-
izontal): (1) fast driving in north–south direction; (2) slowly driving in north–south
direction, half the speed but double swathe width of (1); and (3) same as (2) but
in east–west direction. The driving lines were approximately straight, parallel and
equidistant, two times farther apart with the slow surveys than with the fast one
(13.3, 26.6 and 26.8 m on average). Figure 1.4 shows the swathe patterns for the
three surveys.

The difference in speed caused differences in spacing between the measurements
along the lines. The variable costs of the three surveys were approximately equal.
See Table 1.1 for the key parameter values of the surveys. The numbers in brackets
in this table are the expected parameter values after optimisation of the sampling
design, given the same measuring frequencies and quality requirements as realised
in the surveys.

The ECa was mapped by ordinary kriging with the three datasets separately,
and the mean kriging standard deviation was calculated. Figure 1.5 shows that, as
expected, both the geographic pattern quality and the geostatistical pattern quality
are better for the fast survey than for the slow survey, because the grid pattern is less
elongated. This better quality was achieved with no extra costs.

Fig. 1.4 Swathe patterns as applied in three sensing experiments
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Table 1.1 Key parameter values of the three surveys

Survey parameter Fast N–S Slow N–S Slow E–W

Swathe width, w (m) 13.3 (11.0) 26.6 (19.0) 26.8 (19.0)
Sample size, n 870 965 1035
Total line length (m) 7,080 3,540 3,520
Interval, h (m) 8.14 (11.0) 3.67 (19.0) 3.40 (19.0)
Frequency, f (min−1) 24.2 24.7 28.8
Speed, v (m min−1) 197 (267) 90.8 (469) 97.8 (547)
Time, T (min ha−1) 3.82 (3.40) 4.13 (1.12) 3.82 (0.96)
Quality, Q (m2) 20.3 60.1 60.8

Values for the optimised pattern are represented in brackets, given the
same frequency and quality requirement as realised in the survey
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Fig. 1.5 Geometric pattern
quality Q (Eq. 1.2) versus
geostatistical pattern quality
(mean kriging standard
deviation) for the surveys fast
N−S, slow N−S and slow
E−W (from left to right)

Table 1.1 shows that optimising the sensing pattern at the low-quality level of the
slow speed surveys would decrease the survey time by about 75%. However, this
could be achieved only with a more than four times higher speed of driving, which
is clearly impracticable. Optimising the sensing pattern at the higher quality level
of the fast survey decreases the survey time much less than with the slow surveys
(11%), and this would require a 36% higher driving speed. However, as the speed of
the fast survey was already high from the point of view of sensing precision, such a
speed-up might be at the cost of too much loss of data quality.

1.2.3 Calibration Sampling

As opposed to sensor sampling, in calibration sampling, aliquots are taken to the
laboratory for measurements, and the total costs are therefore dominated by the
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costs per aliquot, rather than the costs of going from one location to the other. Also,
the sample size will be much smaller: some tens instead of hundreds or thousands.

From an optimisation point of view it seems practical to start from an afford-
able budget for calibration sampling, to derive the sample size from this, and to
try to optimise the quality of the sample by choosing a pattern in the predictor
space. Existing approaches to calibration sampling are the following: Latin hyper-
cube sampling, response surface design, and model-based sampling for universal
kriging. These are briefly reviewed below.

1.2.3.1 Latin Hypercube Sampling

Latin hypercube sampling (LHS) was developed by McKay et al. (1979) for ran-
dom selection of a set of input values for a model, to generate outputs from which
unbiased estimates of distribution parameters of the output can be made. It can also
be used for sensitivity analysis. It has been shown that, under assumptions of mono-
tonicity, this technique is more efficient for this purpose than are simple random
sampling and stratified random sampling. See Fig. 1.6 for an example of LHS with
two predictors and sample size 8.

Minasny and McBratney (2006) suggested the use of the technique for model
calibration in the context of digital soil mapping (see also Chapter 9). Although
LHS is suitable and widely used for the analysis of model output, i.e. when the
model is already there, it is not clear whether it is also a suitable sampling method
for model building and calibration. There are in fact reasons to expect otherwise.

Firstly, LHS is a random sampling technique, but for calibration, there is no need
for random selection of predictor values, because inference on population parame-
ters of the distribution of predictors is not the aim. Apart from being unnecessary,
randomness is undesirable in this case because, even if a random design could
be constructed that tends to produce sample configurations similar or close to the

y2

y1

Fig. 1.6 Example of Latin
hypercube sampling with two
predictors and n = 8
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configuration that is optimal for a given model structure, the randomness would
generally cause deviations from this optimum.

Secondly, efficient calibration requires that values of predictors are taken at
or near the extremes. Although LHS warrants that samples are taken near both
extremes of each predictor individually, it can be expected that combinations of
extremes of different variables (i.e. the corners of the hypercube) will rarely be
selected. However, it is desirable to have such combinations in the calibration sam-
ple, especially when interaction effects are expected. For example, in the case of
Fig. 1.4, none of the corner cells was selected, and it can be calculated that the prob-
ability of selecting two opposite corner cells is only 3.6%. This probability soon
becomes negligible when the sample size or the number of predictors is increased.
Note that any configuration that includes the four corners, favourable for calibration,
is excluded by the Latin hypersquare constraint. Thus albeit LHS excludes samples
that are really bad for calibration (all points concentrated around the centre of the
sample space), there is a suspicion that the really good ones are avoided as well.

1.2.3.2 Sampling by Response Surface Methodology

Response surface methodology (Myers and Montgomery, 2002) was developed for
designing efficient experiments in the context of optimising industrial processes
and products. Fitzgerald et al. (2006) used this approach for spatial soil sampling,
their aim being calibration of regression models. When used for sampling, response
surface methodology tries to optimise sample configurations in predictor space,
assuming a small number of predictors and a known, low-order model structure.
Its applicability for high-resolution soil mapping seems therefore rather limited (see
also Chapter 10).

1.2.3.3 Model-Based Sampling for Universal Kriging

Brus and Heuvelink (2007) used simulated annealing to optimise sample patterns for
universal kriging of environmental variables. This method assumes that the predic-
tors are linearly related to the target variable and that the variogram of the residuals
is known. Little is known about the robustness of this approach against deviations
from the model assumptions. An advantage is that the sample pattern is, in one
step, optimised in both predictor space and geographic space. However, the assumed
linearity and knowledge of the residual variogram will limit its applicability in prac-
tice. Furthermore, the sampling density will often be so low that optimisation of the
sample pattern in predictor and geographic space would not much improve the pre-
cision of the spatial predictions over that gained by optimisation in predictor space
alone.

1.2.3.4 Sampling by Fuzzy Cluster Analysis

Generally speaking, fuzzy cluster analyses create fuzzy subsets of objects, in which
the objects have memberships varying between 0 and 1. In pedometric applications
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of these techniques (McBratney and de Gruijter, 1992), soil profiles have been taken
as the objects and their memberships in fuzzy classes were mapped to produce soil
maps with gradual transitions between those classes. However, one can also use
these memberships for sampling purposes. If we take the data vectors in the pre-
dictor space as objects and apply fuzzy cluster analysis to them, then we can use
their memberships in the fuzzy subsets to search for a sample pattern with suitable
properties for calibration.

The method of fuzzy k-means (Bezdek, 1981) results in a user-selected num-
ber (k) of centroids in predictor space, which are optimised with a least squares
criterion and can be seen as centres of gravity attracted by sub-regions with
relatively high densities. If for each centroid we choose the predictor vector
with the largest membership in the corresponding subset and allocate a sample
point at the geographic location of that vector, then we have a sample of size
k which is (in a least squares sense) representative of the distribution in predic-
tor space. The sample points will tend to be located in high-density sub-regions.
See Fig. 1.7 for an example of fuzzy k-means sampling with two predictors and
sample size 8. Clearly, although the FKM samples will represent the multivari-
ate distribution well, the corners with the extremes will remain systematically
undersampled.

A remedy for this might be found with a modification of FKM (called fuzzy
k-means with extragrades, FKME), developed by McBratney and de Gruijter (1992)
in order to enhance the predictive power of fuzzy class memberships. The core of
this method is that, apart from the k regular subsets represented by a centroid, an
extra fuzzy subset with multivariate extremes or outliers is created. The relative
volume of this latter subset, i.e. the average membership in it, is chosen by the
user. Thus a sampling method based on FKME could be first to choose the total
sample size (say n) and then to decide on the number of extreme sample points

y1

y2

y1

y2

Fig. 1.7 Left: FKM sample with two predictors and with n = k = 8 (all sample points located at
centroids). Right: FKME sample with n = 8, k = 4 and e = 4
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(say e). FKME is then applied with k = n − e. Finally, the k locations with the
largest membership in the respective regular subsets are selected and completed
by the e locations with the largest memberships in the extra subset. See Fig. 1.7
for an example of FKME sampling with two predictors, n = 8, k = 4, e = 4,
and average membership in the extra subset equal to 1/5. As expected, the four
sample points near the centroids represent the central sub-region, while the four
points with the largest membership in the outlier subset occupy the corners. A
50/50 division of the total sample size might be a reasonable choice in practical
applications.

1.3 Results and Discussion

The models as proposed for the variable costs and for the quality of sensing grids
seem to yield plausible results when used for optimisation. Two factors influence
the size and the shape of optimised sensing grids: the ratio of costs of measuring
and driving and the required grid quality in terms of spatial coverage. The costs
ratio affects mostly the shape: the smaller the measuring costs relative to the driving
costs, the more elongated the rectangles of the sensing grid (Fig. 1.3). The required
quality level affects mostly the size. For instance, relaxing the quality requirement
as root MSSD from 0.1 to 0.2 hm doubles the optimal swathe width from 0.3 to
about 0.6 hm (Fig. 1.2).

Our review of existing approaches to calibration sampling revealed some short-
comings and limitations. The proposed alternative, FKME sampling, attempts to
address these. It does not assume any specific knowledge of the model structure, but
its coverage of the predictor space may work well in cases where there are several
predictors, non-linearities and interaction effects. As a heuristic proposed on a priori
grounds, FKME sampling needs proper testing before any final conclusions on its
usefulness can be drawn.

1.4 Conclusions

1. As the fixed costs of sensing are typically (much) higher than the variable costs,
the decision on whether or not to do it seems more important than how to do it,
as long as the sensing grid is not too coarse.

2. The circumstances under which sensing is reasonable should be investigated in
detail and quantitatively. Qualitatively, the principle underlying sensing seems
to be that the measurement error is smaller than the short-range variation.
Apart from experiments, quantitative analysis requires cost models and accuracy
models that cover sensing, calibration and spatial prediction together.

3. There is ample room for improvement of calibration sampling, and as long as no
sensor is available for direct measurement of the target variable, and calibration
sampling is relatively expensive, more research on how to do it is warranted.
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Chapter 2
Development of On-the-Go Proximal Soil
Sensor Systems

V.I. Adamchuk and R.A. Viscarra Rossel

Abstract To implement sustainable agricultural and environmental management, a
better understanding of the soil at increasingly finer scales is needed. Conventional
soil sampling and laboratory analyses cannot provide this information because they
are slow and expensive. Proximal soil sensing (PSS) can overcome these shortcom-
ings. PSS refers to field-based techniques that can measure soil properties from 2
m or less above the soil surface. The sensors may be invasive, or not, and may or
may not be mounted on vehicles for on-the-go operation. Much research is being
conducted worldwide to develop sensors and techniques that may be used for prox-
imal soil sensing. These are based on electrical and electromagnetic, optical and
radiometric, mechanical, acoustic, pneumatic, and electrochemical measurement
concepts. This chapter reviews the latest of these technologies and discuss their
applications.

Keywords Proximal soil sensing · Soil mapping · Sensor fusion · Electrical and
electromagnetic sensors

2.1 Introduction

The implementation of sustainable agricultural and environmental management
requires a better understanding of the soil at increasingly finer scales, e.g. for preci-
sion agriculture. Conventional soil sampling and laboratory analyses cannot provide
this information because they are time consuming and expensive (Viscarra Rossel
and McBratney, 1998). Proximal soil sensing can overcome these shortcomings
because the techniques facilitate the collection of larger amounts of spatial data
using cheaper, simpler, and less laborious techniques. PSS refers to field-based
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techniques that can be used to measure soil properties from a distance of 2 m or
less above the soil surface. The sensors may be invasive, or not, and may or may not
be mounted on vehicles for on-the-go operation.

Research is being conducted worldwide to develop sensors and techniques that
may be used for proximal soil sensing (Hummel et al., 1996; Sudduth et al., 1997;
Adamchuk et al., 2004a). For example, the use of electromagnetic induction (EMI)
and electrical resistivity for measurements of soil electrical conductivity (Chapters
19, 20, 21, 22, 23, and 24); ground-penetrating radar (GPR) for measurements of soil
water content (Chapter 25), proximal passive gamma ray spectrometry for measur-
ing K, U, and Th (Chapters 27, 28, and 29); optical systems to estimate soil organic
carbon and iron contents (Viscarra Rossel et al., 2008); diffuse reflectance spec-
troscopy using visible–near-infrared (vis–NIR) and mid-infrared (mid-IR) energies
to estimate soil organic carbon (OC), clay content, mineral composition, and other
soil properties (Chapters 3, 11, 12, 13, 14, 15, 16, 17, and 18); ion-sensitive field
effect transistors (ISFETs) and ion-selective electrodes (ISEs) to measure soil pH,
lime requirement, and soil nutrients (Chapter 6, Adamchuk et al., 2005; Viscarra
Rossel et al., 2005) and mechanical draft systems for measuring soil strength
(Hemmat and Adamchuk, 2008).

The aim of this chapter is to review the current development of proximal soil
sensors and to discuss the applicability of on-the-go soil sensing to improve soil
management.

2.2 Sensor Development Review

Global navigation satellite system (GNSS) receivers, used to locate and navigate
agricultural vehicles within a field, have become the most common sensors in pre-
cision agriculture. In addition to determining geographic coordinates (latitude and
longitude), high-accuracy GNSS receivers can measure altitude (elevation) and the
data can be used to calculate slope, aspect, and other parameters relevant to the
terrain. Maps of field terrain have been also used to determine landscape position-
ing in terms of the potential for water accumulation, runoff, soil erosion, and other
soil-related processes.

When a GNSS receiver and a data logger are used to record the position of each
soil sample or measurement, a map can be generated and processed along with
other layers of spatially variable information. This method is frequently called a
‘map-based’ approach. Previously, several prototype on-the-go soil-sensing systems
were developed for ‘real-time’ applications in which the generated sensor signal
was used to control variable application rates without data recording. Although
appealing, the real-time approach has limited applicability due to poorly understood
relationships between sensor signal output and agro-economically optimised local
needs. Furthermore, many management strategies (e.g. nitrogen fertiliser appli-
cation) require multiple layers of georeferenced data and expert assistance for
successful development of ‘prescription’ maps. Soil maps generated using on-the-go
measurements can only serve as a part of this relatively complex decision-making
process.
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Fig. 2.1 General classification of on-the-go soil-sensing systems. Underlined soil properties are
probably the easiest to distinguish

Although there is a large variety of design concepts, most on-the-go soil sensors
being developed involve one of the following measurement methods: (1) elec-
trical and electromagnetic sensors that measure electrical resistivity/conductivity
or capacitance affected by the composition of the soil tested; (2) optical and
radiometric sensors that use electromagnetic waves to detect the level of energy
absorbed/reflected by soil particles; (3) mechanical sensors that measure forces
resulting from a tool engaged with the soil; (4) acoustic sensors that quantify the
sound produced by a tool interacting with the soil; (5) pneumatic sensors that assess
the ability to inject air into the soil; and (6) electrochemical sensors that use ion-
selective elements producing a voltage output in response to the activity of selected
ions (e.g. hydrogen, potassium, nitrate).

An ideal soil sensor responds to the variability of a single soil attribute and
is highly correlated with a corresponding conventional analytical measurement
method. However, in reality, every sensor developed responds to more than one
soil property and separation of their effects is difficult, or even not feasible.
Figure 2.1 classifies types of on-the-go soil sensors according to corresponding
agronomic soil properties affecting the signal. In many instances, an acceptable cor-
relation between the sensor output and a particular agronomic soil property was
found for a specific soil type, or when the variation of interfering properties was
negligible.

2.2.1 Electrical and Electromagnetic Sensors

Electrical and electromagnetic sensors use electric circuits to measure the capa-
bility of soil particles to conduct and/or accumulate electrical charge. When using
these sensors, the soil becomes part of an electromagnetic circuit and the changing
local conditions immediately affect the signal recorded by a data logger. Several
such sensors have become commercially available, e.g. sensors produced by Veris
Technologies, Inc. (Salina, KS), Geonics Limited (Mississauga, Ontario, Canada),
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Geocarta (Paris, France), Geometrics, Inc. (San Jose, CA), Dualem, Inc. (Milton,
Ontario, Canada), and Crop Technology, Inc. (Bandera, TX).1

One way to estimate soil electrical conductivity (ECa) is by electromagnetic
induction using, for example, a Geonics Limited EM38 meter. The transmitting coil
induces a magnetic field that varies in strength with soil depth. The magnetic field
strength can be altered to measure different soil depths to a maximum of 1.5 m. A
receiving coil measures the primary and secondary induced currents in the soil and
relates them to the soil electrical conductivity. Another instrument for mapping soil
ECa, the Veris 3100 mapping system, makes a more direct measurement (i.e. gal-
vanic contact resistivity method). A set of coulter electrodes sends out an electrical
signal through the soil. The signal is received by another set of coulter electrodes
that measure the voltage drop due to the resistivity of the soil. Different spacing
between coulters enables determination of ECa for several depths, always starting
at the surface. The capacitively coupled method has also been used to interface
between an electrical conductivity sensor and soil. In each case, measured ECa is
called ‘apparent’ since it is different from the conventional solution-based test and
the measurements relate to a bulk medium of soil containing different layers and
inclusions of soil components with non-uniform conductive characteristics.

In addition to electrical resistivity/conductivity, some sensors based on electro-
magnetic induction can be used to measure magnetic susceptibility, which relates to
variability of the gradient of the Earth’s magnetic field near the surface. These mag-
netic susceptibility sensors can be used to map locations of artificial objects and/or
iron-containing materials buried within the soil profile.

Alternatively, several researchers have used capacitor-type sensors to study soil
dielectric properties. These sensors have been useful in mapping spatial variation
in soil moisture (frequently in combination with the mechanical sensors described
later). It appears that both conductive and capacitive soil characteristics, which
can be measured on the go, are simultaneously affected by several agronomic
soil attributes. For example, soil type (texture composition) significantly affects
the output of most commercially available electrical resistivity/conductivity sen-
sors. However, field variability of soil salinity, moisture, and some other parameters
frequently interfere with this relationship.

2.2.2 Optical and Radiometric Sensors

Optical and radiometric sensors use electromagnetic energy to characterise soil.
Optical sensors that use visible (vis: 400–700 nm) (Viscarra Rossel et al., 2008),
near-infrared (NIR: 700–2,500 nm) (e.g. Chapters 3, 13, 15, 16, and 17), and/or

1 The names of commercial entities are for illustration only, and additional suitable products may
be offered by other companies.
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mid-infrared (mid-IR: 2500–25,000 nm) (Chapters 3, 11 and 12) are being used
as surrogates to enhance or replace conventional methods of soil analysis. These
sensors measure the amount of light that is diffusely reflected from the soil after
radiation containing all the pertaining frequencies illuminates it. Chapter 3 provides
an overview of diffuse reflectance spectroscopy in the vis-NIR and mid-IR. Optical
proximal soil-sensing systems, using either single or multiple wavelengths, have
been developed by various researchers. For example, Shonk et al. (1991) developed
an on-the-go sensor that used reflectance at 660 nm to predict soil organic matter
(OM). Sudduth and Hummel (1993) used a full spectrum NIR sensor for predictions
of soil OM, texture, and moisture. Shibusawa et al. (2001) developed a tine-mounted
NIR sensor for taking measurements at a depth of 15 cm. Mouazen et al. (2005) also
developed a tine-mounted NIR sensor, and more recently Christy (2008) developed
an on-the-go spectrometer for in situ measurement and prediction of various soil
properties, including soil OM, total carbon, total nitrogen, calcium, and magnesium.
Calibration of all of these sensors appears to depend on geographic position (that is,
prediction of soil properties varies from one region to another), and for some soil
properties it relies on secondary correlations that may exist under certain conditions
(e.g. coarse-textured soils at higher elevations of a field may have lower pH and
residual nitrate compared to finely textured soils in lower areas).

Rather than using optical reflectance, some researchers are utilising ground-
penetrating radar (GPR) to investigate wave propagation through the soil (e.g.
Chapter 25). Changes in wave reflectance may indicate changes in soil den-
sity or existence of restricting soil layers. GPR has great potential for geo-
physics (in general) and agriculture (in particular), especially to support water
management.

At the very short-wavelength (high frequency) end of the electromagnetic spec-
trum, there is potential for using γ-radiometric methods. All soils contain naturally
occurring radioisotopes that can disintegrate and produce γ-rays. Gamma rays are
suited to spectroscopic identification because the energy of each photon is charac-
teristic of the isotope that produced it. Attenuation of γ-rays through the soil varies
with bulk density and water content. The half thickness, i.e. the thickness of absorb-
ing material that will reduce the radiation to half its value, is 10 cm for dry soil with
a bulk density of 1.6 Mg m−3 so that 95% of measurable γ-radiation is emitted from
the upper 50 cm of the soil.

Thallium-activated sodium iodide crystals, NaI(Tl), are mainly used as detectors
in these systems, although thallium-activated caesium iodide crystals, CsI(Tl), are
also available. Proximal γ-ray spectrometers typically use crystal detector packs of
between 3 and 8 L and measure either 256 or 512 channels covering an energy
spectrum from 0 to 3 MeV (Fig. 2.2).

The conventional approach to the acquisition and processing of proximal γ-ray
data is to monitor three broad spectral windows or regions of interest (ROI) cor-
responding to potassium, uranium, thallium; a fourth measure is the total count
over all channels. See Chapters 27, 28, 29, and 33. Recently, Viscarra Rossel et al.
(2007) showed that the entire γ-ray spectrum (256 energy bands) could be used for
prediction of various soil properties using multivariate calibration techniques.
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Fig. 2.2 Typical gamma ray spectrum and position of potassium, thorium, uranium, and total
count regions of interest

2.2.3 Mechanical Sensors

Mechanical sensors can be used to estimate soil mechanical impedance (resistance),
which is related to the spatially variable level of compaction. By nature, soil strength
sensors measure resistance to soil failure. As such a sensor is dragged or pushed
through the soil, it registers resistance forces arising from cutting, breaking, and
displacing soil, as well as the parasitic (frictional and adhesive) forces that develop
at the interface between the sensor and its surrounding soil. Normally, soil mechan-
ical resistance is expressed in units of pressure and represents the ratio of the force
required to penetrate the soil medium to the frontal area of the tool (normal to the
direction of penetration) engaged with the soil.

Mapping total horizontal force (draft), and sometimes vertical force, applied to
a traditional fixed-depth implement engaged with the soil can be viewed as the first
step towards soil mechanical resistance sensing. Recorded measurements represent
surrogate values affected by a variety of factors, including the type and shape of
the tool working the soil, speed and depth of the operation, and surface conditions.
Constructing a bulk soil strength sensor based on soil mechanics allows for better
control of the type of soil failure it creates, and therefore produces more consistent
measurements in diverse soil conditions. In any instance, bulk measurements reveal
only spatial patterns of the underlying soil strength.

If a bulk soil strength sensor is actuated vertically (i.e. moved up and down) while
mapping the field, the effective depth of engagement with soil will change from
location to location. Assuming a relatively strong spatial structure, this approach
allows assessment of soil variability associated with depth as well as location.
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However, interpretation of variable-depth bulk soil strength measurements is not
trivial and may include some subjective assumptions.

A vertically actuated cone penetrometer (which has been adopted as a standard
tool; ASABE, 2006) is the most conventional method to detect change in soil pene-
tration resistance with depth at a given location. Traditionally, this tip-based sensor
has been used manually; automated versions increased the number of simultaneous
point measurements and/or labour efficiency. However, for determining spatial vari-
ability across large agricultural fields, automated cone penetrometer sensors fail to
provide economically justifiable mapping densities.

Single-tip horizontal sensors have been designed to generate high-resolution
maps of horizontal soil penetration resistance obtained at a specific depth. Similar
to the vertically actuated cone penetrometers, this method involves continuous log-
ging of direct load measurements, which are frequently made using a load cell.
Simultaneous deployment of multiple tips, each operated at a different depth, allows
determination of spatial variability of soil mechanical resistance at any available
depth as well as vertical variability in each part of a field. To avoid the expense
of adding direct load-sensing tips, a single-tip horizontal sensor can be actuated
vertically in a similar way as a bulk soil strength sensor.

In addition to a tip-based method, vertical distribution of soil mechanical resis-
tance can be measured using an instrumented tine. This is done by measuring direct
load applied to the tine at discrete depths and/or by measuring the degree of bending
using strain gauge technology (i.e. a cantilever beam approach). The latter has also
been used to map parameters of a (modelled) relationship between soil mechanical
resistance and depth, rather than using discrete, measured values of this relationship.

In most field-mapping exercises, on-the-go sensing of soil strength under rela-
tively constant travel speed has proven to be an economically viable alternative to
the traditional point measurements. Sensor data frequently reveal strong spatial pat-
terns with a relatively high degree of repeatability. However, published results from
which an assessment of the benefits of variable tillage can be made are still lim-
ited. A number of investigators have searched for a depth where a local maximum
in soil mechanical resistance occurs (indicating, for example, clay or a hard pan).
Adjusting tillage depth according to the depth of a hard pan is potentially important
economically.

As an example, Fig. 2.3 illustrates an instrumented system, developed at the
University of Nebraska–Lincoln, which carries mechanical, electrical, and optical
sensing components. The vertical blade, instrumented with an array of strain gauges,
was designed to detect spatial and depth (5–30 cm) variability of soil mechani-
cal resistance within a soil profile. Simultaneously, a capacitor-type sensor detects
spatial variability in soil water. Finally, two sets of photodiodes and light-emitting
diodes, protected with a sapphire window, are used to determine soil reflectance in
the blue and red portions of the spectrum. This system is expected to help delineate
field areas with potential compaction, excessive moisture, and/or low organic matter
level. Potentially, several different soil treatment practices could be altered based on
the data obtained.
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Fig. 2.3 Prototype system comprised of mechanical, electrical, and optical sensing components
(University of Nebraska–Lincoln, Lincoln, Nebraska, USA)

2.2.4 Acoustic and Pneumatic Sensors

Alternatives to mechanical sensors are acoustic and pneumatic sensors, which can
also serve to study the interaction between an implement and the soil. Acoustic
sensors determine soil texture and/or bulk density by measuring the change in the
level of noise caused by a tool’s interaction with soil particles. Pneumatic sensors
have been used, on the go, to measure soil–air permeability: the pressure required
to force a given volume of air into the soil, at a certain depth, is compared to several
soil properties, such as soil structure and compaction. At the present time, the rela-
tionship between sensor output and the physical state of soil is poorly understood,
and additional research is needed. Because principles of acoustic and pneumatic
sensors are conceptually different from the earlier described measurement princi-
ples, they may be good candidates for sensor fusion, in which multiple data streams
are merged to improve the accuracy with which targeted soil attributes are predicted.

2.2.5 Electrochemical Sensors

Electrochemical sensors can provide crucial pieces of information needed for preci-
sion agriculture – soil nutrient availability and pH (Chapter 6). When soil samples
are sent to a testing laboratory, a set of recommended laboratory procedures is
performed. These procedures involve a sample preparation routine and then the
measurement itself. Some measurements (especially of pH) are conducted using an
ion-selective electrode (ISE), or an ion-selective field effect transistor (ISFET). Such
electrodes detect the activity of specific ions (e.g. nitrate, potassium, or hydrogen in
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case of pH). Several investigators have been trying to adopt existing soil preparation
and measurement procedures to conduct laboratory-style tests on the go.

Adsett et al. (1999) developed a tractor-mounted, automated field-monitoring
station for soil nitrate. The sensing system consisted of a soil sampler, a nitrate
extractor unit, a flow cell, a controller, and a nitrate ISE. Loreto and Morgan (1996)
also developed an automated system for on-the-go measurement of soil nitrate using
a nitrate ISFET as the detector. Birrell and Hummel (2001) investigated the use of
ISFETs and flow injection analysis (FIA) systems for real-time soil nitrate sens-
ing. Viscarra Rossel and McBratney (1997) looked at the possibility of using a pH
ISFET for the sensing component of an on-the-go soil pH and lime requirement
measurement system. Viscarra Rossel et al. (2005) reported the development of a
prototype soil pH and lime requirement measurement system made up of a soil sam-
pling and sieving mechanism, a soil analyser using a pH ISFET, and data collection
and measurement algorithms. Field testing of the prototype showed that the accura-
cies of soil pH measurements in 0.01 M CaCl2 and in deionised H2O were 0.37 and
0.60 pH units, respectively, and the accuracy of estimated lime requirements was
0.6 Mg ha−1.

A commercial, automated soil pH-mapping system (Veris Soil pH Manager) uses
two ISEs to directly determine the pH of naturally moist soil (Adamchuk et al.,
1999). While travelling across a field, a soil sampling mechanism located on a
mobile frame obtains a horizontal core sample of soil from a depth of about 10 cm
and brings it into firm contact with the sensitive membranes and reference junc-
tions of two combination ISEs. As soon as the output stabilises (approximately
10 s), the electrode surfaces are rinsed with water and a new sample is obtained.
Each data point recorded using this method has a greater error than the labora-
tory analysis of a composite soil sample. However, increasing the sample density
by more than 10 times means that a higher quality soil pH map can be gener-
ated for the same cost. An agro-economic analysis by Adamchuk et al. (2004b)
showed that higher resolution maps can significantly decrease pH estimation errors
and increase potential profitability of variable rate liming. Taking the cost of lime
into account, a simulation of liming using 1 ha (2.5 acre) grid point sampling and
automated mapping resulted in $6.13 ha−1 higher net return than with no lime
over a 4-year growing cycle in a corn–soybean rotation (based on 2004 commodity
prices).

There is an ongoing effort to integrate additional ISEs to map soluble potas-
sium and residual nitrate-nitrogen along with soil pH (Adamchuk et al., 2005;
Sethuramasamyraja et al., 2008). The drawback of this approach is that it does
not provide real-time ion extraction. The measurements therefore represent actual
‘snapshots’ of ion activity, which cannot be used to instantly calculate lime and
fertiliser application doses based on current recommendations. Such prescription
routines could be developed if the ion activity measurements are interpreted along
with soil-buffering estimates (such as cation exchange capacity, or CEC) that can
be derived from electrical conductivity and/or soil reflectance measurements. That
reasoning is behind the development of the Veris Mobile Sensor Platform, which
combines pH- and ECa-mapping systems (Fig. 2.4).
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Apparent electrical conductivity
mapping unit comprised of
6 coulters that provide two

depths of investigation
(0–30 cm and 0–90 cm) A soil pH mapping unit that includes a soil sampling

mechanism with two ion-selective electrodes and a
rinse water supply system

Fig. 2.4 The Veris Mobile Sensor Platform integrates soil electrical conductivity and pH-mapping
units (Veris Technologies, Inc., Salina, Kansas, USA)

2.3 Sensor Applications

Producers would prefer a sensor that gave a reading in terms of existing prescription
algorithms. Instead, commercially available sensors read out field topography, elec-
trical conductivity, optical reflectance, or gamma radiation count – quantities that
cannot be used directly since the final desired value depends on a number of physi-
cal and chemical soil properties – texture, organic matter, salinity, moisture content,
temperature, and so on. Even so, these sensors do give valuable information about
soil differences and similarities that makes it possible to divide a field into smaller
and relatively homogeneous areas, often referred to as ‘management zones’.

These management zones could, for example, be defined according to the various
soil types found within a field. In fact, ECa maps usually reveal boundaries of cer-
tain soil series better than do conventional soil survey maps. Various anomalies such
as eroded hillsides or ponding can also be easily identified on an ECa map. Different
levels of productivity observed in yield maps frequently correspond to different lev-
els of ECa, and often such similarities can be explained through differences in soil.
In general, the ECa maps indicate areas where further investigation to explain yield
differences caused by soil is needed (Corwin and Lesch, 2003; Heiniger et al., 2003).

Current technology can delineate areas in a field that occupy specific landscape
positions or have certain soil physical states, factors which typically result in similar
growing environments (unless extra dissimilarities have been artificially added, such
as through merged fields or non-uniform application of fertiliser).

2.3.1 Multisensor Data Fusion

Here, we define multisensor data fusion as the process of acquiring, filtering, cor-
relating, and integrating relevant information from various sources, like sensors,
databases, knowledge bases, and humans, into one representational format that
is suited to agronomic and environmental decision making. When dealing with
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multisensor data, their fusion can provide a number of advantages: (1) multiple sen-
sors, revealing redundant information, can increase the robustness of the system; (2)
the fusion of complementary information results in an information gain compared
to that from a single source; (3) fusion from multiple sensors may provide more
timely information, either because of the actual speed of operation of each sensor
or because of the processing parallelism that may be achieved as part of the integra-
tion process; (4) operational performance is improved because any one sensor has
the potential to contribute information when others are unavailable; (5) the attribute
coverage is extended because one sensor can ‘look’ where another sensor cannot;
(6) increased confidence in the measurements is acquired when multiple indepen-
dent measurements are made on the same soil; and (7) increased dimensionality of
the measurement space (i.e. different sensors measure different portions of the elec-
tromagnetic spectrum) reduces vulnerability to denial of any single portion of the
measurement space.

Integrating different measurements from various sensors into a single map-
ping system is a current topic of investigation. The degree of association
between different soil properties and conceptually different sensor outputs is
not the same. Therefore, maps generated by different sensors can be integrated
to improve their applicability. The best combination of sensors (whose outputs
will be integrated) for mapping a field, and the corresponding optimum data-
processing algorithm, will depend on the specific climatic and crop-growing
conditions.

For example, in recent research (Sethuramasamyraja et al., 2008), the soil pH
measurement equipment shown in Fig. 2.4 was expanded to simultaneously deter-
mine soluble potassium and residual nitrate (Fig. 2.5). Tested under laboratory
conditions, the concept involved integration of different ISEs to measure the activ-
ity of hydrogen, potassium, and nitrate ions in aqueous solution. Although both
pH and soluble potassium can be mapped on the go, such measurements are not
sufficient by themselves to prescribe a dose of lime and potassium fertilisers: in
many regions, measures of buffer pH and exchangeable potassium are required.
Although some on-the-go mapping work has attempted to implement a solution-
based method involving ion extraction (Viscarra Rossel et al., 2005), chemical
extraction of ions while on the move presents technical difficulties. Knowledge
of soil-buffering characteristics, determined using ECa or other on-the-go method
based on direct measurement of ion activities, can aid in developing these spatially
variable soil treatment prescriptions.

For example, Fig. 2.6 illustrates, for 15 diverse Nebraska soils, relationships
between measured and predicted buffer pH and exchangeable K values. In both
cases, CEC was used to represent soil buffering through a multivariate regres-
sion analysis. The CEC itself was estimated using measured percentages of clay
and organic matter content. Based on this example, it appears that, under certain
conditions, a predictor of soil texture (most likely ECa) and perhaps of organic
matter content (optical reflectance) should be sufficient to determine site-specific
soil-buffering characteristics; simultaneous measurements of soil pH and soluble K,
obtained on-the-go, could then be used to determine needs for lime and potassium
fertilisers based on existing recommendations.
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Fig. 2.5 Relationships between measured and reference soil pH (a), soluble potassium (b), and
residual nitrate-nitrogen content (c). The measured estimates were obtained using the method cited
and the reference measurements were conducted in a commercial soil laboratory
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2.3.2 Sensor Deployment

From a practical viewpoint, successful deployment of an on-the-go soil sensor
requires follow-up measurements of agronomic soil attributes in multiple field loca-
tions. These measurements are necessary to validate or define a new (field-specific)
relationship between sensor outputs and soil parameters that guide decision-making
processes. For example, ECa and/or optical reflectance maps have been used to
prescribe adaptive soil fertility sampling that would account for the spatial incon-
sistency of soil types, or to make point estimates of soil texture and organic matter
content that would be used to calibrate these sensors to a given environment. If a
high degree of association between sensor output and a given point estimate is dis-
covered, an improved thematic soil map of an agronomic attribute may be produced.
Currently, the process of prescribing guided sampling/point measurement locations
includes a subjective component, which partially limits adoption by a lower level
user of on-the-go sensing technology.
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In our recent study (Adamchuk et al., 2008), it was discussed that a suitable set of
guided samples should (1) be collected from relatively homogeneous field areas (i.e.
away from the field boundary and away from locations where sensor outputs change
significantly over short-distance intervals); (2) uniformly cover the entire range
of sensor-based measurements; and (3) be spread across the entire field to assure
representation of different soil conditions unaccounted for by sensor measurements.

Once multiple sensor logs and guided point measurements are obtained, spatial
analysis is pursued to delineate field areas that may benefit from a differentiated
treatment. This is typically done using a spatial clustering approach (supervised
or unsupervised classification), which also relies on substantial subjective input
from an expert. Development of automated routines to efficiently manage data
obtained using on-the-go soil-sensing technology is another potential area for future
investigations.

2.4 Conclusions

There is a need for thematic soil data layers to be used in soil assessment and
management, e.g. for precision agriculture. Conventional soil survey cannot effi-
ciently provide these data because the techniques are time consuming and expensive.
Proximal soil sensing can be used to acquire spatial and temporal data cheaply and
with less effort. This chapter reviewed the technologies, which are based on electri-
cal and electromagnetic, optical and radiometric, mechanical, acoustic, pneumatic,
and electrochemical methodologies, and discussed their applications.
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Chapter 3
Diffuse Reflectance Spectroscopy
for High-Resolution Soil Sensing

B. Stenberg and R.A. Viscarra Rossel

Abstract Diffuse reflectance spectroscopy in the visible–near-infrared (vis–NIR)
and mid-infrared (mid-IR) is a practical analytical technique that can be used for
both laboratory and in situ soil analysis. The techniques are sensitive to both organic
and mineral soil composition. They are particularly well suited to situations where
the primary (conventional) analytical method is laborious and costly or where a
large number of analyses and samples are required, e.g. for high-resolution digital
soil mapping or precision agriculture. This chapter will describe diffuse reflectance
spectroscopy of soil in the vis–NIR (400–700–2,500 nm) and mid-IR (2,500–
25,000 nm) portions of the electromagnetic spectrum. The theory of the mechanisms
of absorbance in soil will be explained briefly, followed by aspects of data pretreat-
ments, chemometrics, and multivariate calibrations. Finally, both laboratory and in
situ applications are discussed and the focus of future research suggested.

Keywords Visible–near-infrared · Vis–NIR · Mid-infrared · Mid-IR · Diffuse
reflectance spectroscopy · Diffuse reflectance spectrophotometers · FT-IR DRIFT

3.1 Introduction

Diffuse reflectance spectroscopy in the visible–near-infrared (vis–NIR) and mid-
infrared (mid-IR) is gaining increasing interest for various soil applications, both
for laboratory and in situ field analyses, including measurements made on the go.
The reason for this is most certainly the potential to simplify procedures in the
soil laboratory as the only sample preparation is drying and grinding. The sample
is not affected by the analysis in any other way and no (hazardous) chemicals are
required. In addition, scanning takes a matter of seconds, and several parameters can
be measured from a single scan. This multi-parameter feature of diffuse reflectance
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spectroscopy implies that one spectrum holds information about various soil con-
stituents. Visible–NIR instruments can be robustly built and equipped with fibre
optics for flexible sample presentation. Robust, portable mid-IR instruments are
also starting to emerge. Thus, the hardware prerequisites for field measurements
are basically fulfilled.

If all these were as simple and straightforward as it sounds, one may wonder
why diffuse reflectance spectroscopy is not widely used in soil analysis – like it
is for analysing grain and forage – or why the traditional soil auger has not yet
been replaced by a portable spectrometer with a fibre optic attachment. The primary
reason is that parameter values cannot be directly deciphered from the vis–NIR or
mid-IR spectra. To be useful quantitatively, spectra have to be exactly related to a
set of known reference samples through the calibration of a prediction model, and
these reference samples have to be representative of the range of soils the model is
intended for. In addition, environmental factors (e.g. soil water) influence spectra,
which may, especially for in situ field measurements, cause problems.

In this chapter we intend to give an overview of diffuse reflectance spectroscopy
in both the vis–NIR and the mid-IR, paying particular attention to what influences
the spectra and what is, supposedly, measured in soil. The most common data treat-
ment procedures and calibration techniques will also be presented. Examples of soil
applications from both laboratory and field studies will be given and discussed and
the focus of future research suggested.

3.2 Fundamentals of Diffuse Reflectance Spectroscopy

When mid-IR radiation is directed onto a soil sample, it interacts with it and, if it
has the right amount of energy, will induce fundamental vibrations of the organic
and inorganic molecules in the soil. These molecular (fundamental) vibrations can
be either stretching or bending vibrations and occur due to periodic displacement
of the atoms with respect to one another. Stretching vibrations will usually occur
at higher frequencies than bending vibrations as the restoring force acting on them
will be greater than those in bending. In Fig. 3.1a, these stretching vibrations occur
at wavelengths below 4,000 nm.

When NIR radiation interacts with a soil sample, it is only the overtones and
combinations of the fundamental vibrations in the mid-IR that are detected. (Note
that these also do occur in the mid-IR.) Molecular functional groups may absorb
in the mid-IR with a range of overtones detected in both the mid-IR and NIR
regions, getting weaker for each overtone order. Generally, the NIR region is char-
acterised by broad, superimposed, and weak vibrational modes, giving soil NIR
spectra fewer and broader absorption features than mid-IR spectra (Fig. 3.1b). In
the visible region, electronic excitations are the main processes as the energy of the
radiation is high.

To generate a soil spectrum, radiation containing all frequencies in a particular
range is directed onto the sample. The principle is that a molecular bond will only
absorb light with an energy quantum that corresponds to the difference between the
two energy levels of a specific bond. As the energy quantum is directly related to
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wavelength, or frequency, the effect on spectra is selective and can be used for ana-
lytical purposes. Those frequencies which are absorbed appear as a reduced signal
of reflected radiation (R) and are displayed in percentage of the reflected radia-
tion of a standardised white reference, which may then be transformed to apparent
absorbance (A) through the relation A = log(1/R) (Fig. 3.1). The precise location
of the absorption bands depends on the chemical matrix and environmental fac-
tors such as neighbouring functional groups and temperature, making it possible to
detect a range of molecules that may contain the same type of bonds.

3.3 Soil Diffuse Reflectance Spectra

3.3.1 Vis–NIR

Due to broad and overlapping bands, vis–NIR spectra are visually much less
resolved and difficult to interpret than the mid-IR (Fig. 3.1). Nevertheless, the
vis–NIR region does contain useful information on organic and inorganic materials
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in the soil. Absorptions in the visible region (400–780 nm) occur mostly due to
electronic excitations and are primarily associated with minerals containing iron
(e.g. haematite, goethite) (e.g. Sherman and Waite, 1985; Mortimore et al., 2004).
Soil organic matter can also have broad absorptions in the visible region, dominated
by humic acid (which is typically dark). Absorptions in the NIR (780–2,500 nm)
result from the overtones of OH, SO4, and CO3 groups as well as combinations of
fundamental features of H2O and CO2 (e.g. Clark, 1999). Absorption bands due to
SOM in the NIR result from the stretching and bending fundamentals of N–H, C–H,
and C–O groups in the mid-IR.

In the combination region of Fig. 3.1b, the weak absorption bands near 2,300 nm
can, without any prior information on the sample, be rather difficult to interpret. For
example, clay minerals like illite and smectite can show absorption in this region due
to a combination of metal–OH bend plus O–H stretch, as can minerals containing
Mg2+ like brucite (Viscarra Rossel et al., 2006b; Chapter 18). Carbonates have weak
absorption peaks near 2,160 nm and also in the region between 2,300 and 2,500 nm,
depending on the composition (Hunt and Salisbury, 1970). Soil organic matter can
also have a weak combination band near 2,300 nm, which can sometimes be con-
fused with hydroxyl and carbonate absorptions in minerals (Clark et al., 1990). The
absorption doublet around 2,200 nm (Fig. 3.1b) is characteristic of kaolinite and
is due to a combination of Al–OH bend plus O–H stretch. Other aluminosilicates,
like illite and smectite, can also show absorption bands near 2,200 nm due to their
Al–OH features. Other minerals, such as gibbsite, also show the typical Al–OH
bend plus O–H stretch combination near 2,200 nm. These combination bands near
2,200 and 2,300 nm are useful diagnostic absorption features for clay mineral iden-
tification (Clark et al., 1990). The band near 1,920 nm represents the unique H–O–H
bend and O–H stretch combination of molecular free water, vibrations of which are
evident in structures of 2:1 minerals like smectite.

In the first overtone (OT) region (Fig. 3.1b), the only prominent absorption band
is that near 1,400 nm, which can also be attributed to molecular water contained in
various minerals, water attached to cellulose in organic materials, and to the first
overtone of the O–H stretching vibration of kaolinite. Although not often visible,
soil organic matter has a weak absorption band near 1,700 nm, which is due to
the first overtone of the alkyl–CH2 stretch fundamental at 3,413 nm. Carbonates
also have a weak absorption band in the first OT region near 1,850 nm (Hunt and
Salisbury, 1970).

In the third OT and visible regions, iron oxides show strong absorption features
near 950 and 450 nm. The small absorbance peaks near 680 and 550 nm may
be due to the iron chromophores found in haematite (red) and goethite (yellow),
respectively (Mortimore et al., 2004).

3.3.2 Mid-IR

Soil mid-IR spectroscopy is particularly well suited for the analysis of soil organic
matter (SOM) and mineral composition. Absorption features associated with both
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organic functional groups and soil minerals can be readily identified in soil mid-IR
spectra. In the fingerprint region (Fig. 3.1a), the dominant bands at 9,259, 12,500,
and 14,286 nm are due to the fundamental SiO2 stretching and bending vibrations of
quartz (Russell, 1987). Bands near 8,621 and 10,000 nm may be attributed to min-
eral impurities and quartz, respectively. The Al–OH vibration at 10,870 nm and the
aluminosilicate lattice vibration at 9,804 nm are characteristic of kaolinite (Nguyen
et al., 1991). The absorption band near 9,524 nm may be attributed to C–O stretch
of polysaccharides in SOM (Skjemstad and Dalal, 1987).

Many of the absorption bands in the double-bond (DB) region (Fig. 3.1a) are due
to the fundamental vibrations of functional groups in SOM. The band near 7,843 nm
may be attributed to a C–OH stretch in phenols, that near 7,407 nm to a stretch–bend
combination of aliphatic groups, and the band near 6,826 nm to an aliphatic–CH
stretch (Baes and Bloom, 1989). Bands near 6,536 and 6,098 nm are characteristic
of humic acids rich in protein (Skjemstad and Dalal, 1987) and correspond, respec-
tively, to an N–H deformation plus C=N stretch and a C=O stretch of amide groups
(Stevenson, 1994). The absorption band near 6,897 nm (Fig. 3.1a) is most likely due
to the bending vibration of the carbonate ion.

The double- and triple-bond regions (Fig. 3.1a) will also convey the overtones
and combination vibration modes of quartz and other silicates in soil. The most char-
acteristic of these are the combination bands of quartz and kaolinite in the region
5,000–5,880 nm. However, the absorption bands of kaolinite are often masked by
the more intense group of three bands belonging to quartz, at 5,000, 5,348, and
5,587 nm (Nguyen et al., 1991). In the X–H stretch region (Fig. 3.1a), absorption
bands at 3,861 and 3,976 nm may be assigned to combination vibrations of car-
bonate. The absorption bands at 3,413 and 3,508 nm are particularly useful for the
detection of organic matter in soils, as this region is free of overlaps from other
more intense vibrations. They may be attributed to alkyl–CH2 symmetric and asym-
metric stretches, respectively. The broad band near 2,941 nm may be attributed to
O–H stretching vibrations of water molecules in the structure of 2:1 minerals. The
absorption bands in the region between 2,631 and 2,778 nm may be attributed to
O–H stretching vibrations of kaolinite and 2:1 layer aluminosilicates like smec-
tite and illite. However, the latter only show poorly defined bands in this region,
which are often masked by kaolinite and other clay minerals (van der Marel and
Beutelspacher, 1976).

3.4 Mathematical Preprocessing of Spectra

Spectral preprocessing using mathematical functions are commonly used to cor-
rect for non-linearities, measurement and sample variations, and noisy spectra. In
addition to chemical composition, spectra are also highly influenced by structural
properties of the sample, which cause non-linear light scattering effects – hence the
term diffuse reflectance spectroscopy. The key property of this phenomenon is that
energy not reflected by the sample is not directly related to absorbance (Fig. 3.2).
Most commonly, to attempt linearisation between absorbance and concentration,
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Fig. 3.2 Illustration of
diffuse reflectance. Incoming
light from the left is scattered.
Only a fraction of the
reflected light reaches the
receiving probe to the right.
The rest is absorbed or lost

the measured reflectance (R) of the spectrum is transformed to log 1/R (Fig. 3.3).
Other transforms include the Kubelka–Munk and the Dahm equations (Dahm and
Dahm, 2007). Dahm and Dahm provide an excellent account of the theory of diffuse
reflection in scattering and non-scattering samples.

Fig. 3.3 The effect of spectral transformations and preprocessing on reflectance spectra (a). The
log 1/R transformation is shown in (b), preprocessing of the log 1/R spectra using the first derivative
is shown in (c), and the SNV with detrending is shown in (d)
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The particle size distribution of the sample affects the degree of scattering.
A coarser structure increases the scatter (reduces reflection), and as path length
increases, the apparent absorbance also increases. To enhance the more chemically
relevant peaks in the spectra (and reduce effects such as baseline shifts and overall
curvature), various additional preprocessing transformations may be employed. For
example, some of the more commonly used techniques include multiplicative scatter
correction (MSC) (Geladi et al., 1985); simple additive baseline correction; the stan-
dard normal variate (SNV) transform (Fig. 3.3), with or without detrending (Barnes
et al., 1989); first (Fig. 3.3) and second derivatives; and orthogonal signal correction
(OSC) (Wold et al., 1998). Most spectroscopy-dedicated software includes a col-
lection of techniques from which to choose (e.g. Viscarra Rossel, 2008). To reduce
noise in spectral signals, commonly used smoothing algorithms include averaging
of spectra, moving average and median filters, and the Savitzky–Golay transform
(Savitzky and Golay, 1964). Because derivatives tend to amplify noise, a smoothing
algorithm is often used in such cases. More recently, wavelets have been used to
smooth and compress soil spectra, resulting in simpler and more robust calibrations
(e.g. Chapter 17; Viscarra Rossel and Lark, 2009).

There is no one single or combination of preprocessing techniques that will
work with all datasets. For soil samples, the type and amount of preprocessing
required will be data specific. Nevertheless, the first and second derivatives cal-
culated by difference are by far the most popular. Derivatives perform a baseline
correction and enhance weak signals. The standard normal variate (SNV) combined
with detrending has a similar effect, but the enhancement of weak signals is not as
pronounced (Fig. 3.3).

3.5 Spectroscopic Multivariate Calibrations

Diffuse reflectance spectra of soil are largely non-specific due to the overlapping
bands of soil constituents that are themselves varied and interrelated. This charac-
teristic lack of specificity can be compounded by other unidentified soil components
that are chemically reactive as well as by instrumental noise, drift, and scatter
effects. All of these factors result in complex absorption patterns, and the challenge
when acquiring data is to mathematically extract information from the spectra that
is correlated with soil properties. In the end, the analysis of soil diffuse reflectance
spectra will require the use of chemometric techniques and multivariate calibration
(e.g. Martens and Naes, 1989). Chemometrics refers to mathematical or statistical
techniques for treatment of chemical data, while multivariate calibration refers to
the use of empirical data and prior knowledge to predict an unknown soil property
y from many spectroscopic measurements x1, x2, . . . , xk, simultaneously via a
mathematical transfer function or model.

The most common calibration methods are stepwise multiple linear regression
(SMLR) (e.g. Dalal and Henry, 1986; Ben-Dor and Banin, 1995), principal com-
ponent regression (PCR), and partial least squares regression (PLSR). The main
reason for the use of SMLR was the inadequacy of more conventional regression
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techniques like multiple linear regression (MLR) and the ignorance of soil scien-
tists of the existence of full-spectrum data compression techniques such as PCR
and PLSR. Both of these techniques can cope with data containing large numbers
of predictor variables that are highly collinear. PCR and PLSR are related tech-
niques, and in most situations, prediction errors are similar. However, PLSR is
often preferred because PLSR relates the response and predictor variables, mean-
ing that the models explain more of the variance in response to fewer components,
the models are more interpretable, and the algorithm is computationally faster.
Increasingly we see the use of data-mining techniques such as neural networks
(NN) (e.g. Daniel et al., 2003), multivariate adaptive regression splines (MARS)
(e.g. Shepherd and Walsh, 2002), boosted regression trees (e.g. Brown et al., 2006),
and regression rules (e.g. Minasny and McBratney, 2008); however, the outcome
often only has limited advantages over PLSR. Viscarra Rossel (2007) combined
PLSR with bootstrap aggregation (bagging-PLSR) to improve the robustness of the
PLSR models and produce predictions with a measure of their uncertainty. Both
MLR and PLS are linear models, while the data-mining techniques can handle
non-linear data.

As with any other modelling, the selection of a validation procedure when per-
forming spectroscopic multivariate calibrations is particularly important. For exam-
ple, when using PCR or PLSR for calibration, leave-one-out or cross-validation is
an adequate strategy for selecting the number of components (or factors) to use in
the multivariate models. However, for accurate establishment of prediction perfor-
mance, a representative, totally independent set of validation samples is required. To
describe the accuracy, the explained variance (R2) is the universal statistic. However,
its dependence on range and its lack of a measure of prediction bias provide an over-
optimistic view of the actual accuracy. Combined with an error estimate such as the
root mean squared error (RMSE), it gives a more comprehensive view of the pre-
diction error. Often the ratio of performance to deviation (RPD) is also given and
facilitates the comparison between different parameters.

3.6 Spectroscopic Calibrations for Predictions of Soil Properties

3.6.1 Visible–Near-Infrared (Vis–NIR) Calibrations

Over the years, a large number of attempts to predict soil parameters with vis–NIR
have been published. Most frequent are probably calibrations for total and organic
carbon, followed by texture (especially clay content). According to a compilation
of published explained variance statistics (Viscarra Rossel et al., 2006a) these two,
together with total soil N, are also those with the best chance of success. Some
other more-or-less frequently occurring parameters are pH, extracted P, K, Fe, Ca,
Mg, and CEC, and also some properties that are dependent on various other soil
properties such as lime requirement and mineralisable N (Table 3.1). Results for
these are in general moderate or at least highly variable.
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Table 3.1 Investigating the use of DRS for soil analysis in each of the visible (vis), near-infrared
(NIR), mid-infrared (MIR), and vis–NIR. Data shown are average R2 values of validation results
for predictions of soil properties reported by various authors in the period 1986–2006

Soil property Vis Vis–NIR NIR MIR

Chemical
Acid (exch.) – 0.65b 0.61b 0.56c

Al (exch.) 0.05d – 0.61b 0.43c

C (inorg.) – 0.96a 0.87a 0.98a

C (total) – 0.89a 0.91a 0.95a

C:N ratio – 0.88a – –
CEC 0.16d 0.78b 0.48c 0.69b

Ca (exch.) 0.35d 0.80a 0.45c 0.89a

Carbonate – – 0.69b 0.95a

EC 0.10d 0.38d – 0.31d

Fe (DTPA) – 0.69b 0.49c 0.55c

K (exch.) 0.29d 0.52c 0.47c 0.36d

LR 0.25d – 0.62b 0.81a

Mg (exch.) – 0.76b 0.59c 0.76b

N (NO3
–) – 0.63b 0.04d 0.06d

N (total) – 0.86a 0.94a 0.86a

Na (exch.) – 0.22d – 0.33d

P (avail.) 0.06d 0.81a 0.10d 0.14d

pHCa 0.36d 0.63b 0.68b 0.75b

pHw 0.36d 0.61b 0.62b 0.66b

Metal content: As, Cd, Cr,
Cu, Hg, Ni, Pb, Zn

– 0.45–0.93c–a – 0.66–
0.99b–a

Physical
Clay 0.43c 0.76b 0.64b 0.78b

Sand 0.47c 0.70b 0.59b 0.84a

Silt 0.31d 0.59c 0.41c 0.67b

Specific surface area – – 0.70b –
Air-dried water content – 0.78b 0.80b 0.81a

Biological
Microbial biomass – 0.60c 0.75b 0.69b

Enzyme activity – – 0.55c 0.70b

Organic C 0.60c 0.79b 0.76b 0.91a

Microbial respiration rate – 0.66b – –

R2 values for predictions of soil properties are classified as avery good (>0.81), bgood (0.61–0.8),
cfair (0.41–0.6), and dpoor (<0.4)

That organic matter absorbs in the vis–NIR is not surprising, since most of the
functional groups absorbing in this region are abundant in organic molecules. The
strongly absorbing amide groups is expected to be active, which explains good
results for total and organic N. Keep in mind, however, that the capacity of NIR
to predict the N content of soil, which is generally well below 1%, depends on the
close relation between the organic matter and the carbon content. Nevertheless, it
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has been shown that NIR calibrations explain the variation of both organic C and N
better than they explain each other (Chang and Laird, 2002; Fystro, 2002).

It has been frequently shown that vis–NIR relates better to organic matter than
does NIR alone. Islam et al. (2003) reached considerably better results for Australian
soils by including the visible region (350–700 nm) in their calibration. Similar
observations were reported for Norwegian soils (Fystro, 2002). It is suggested that
the brightness of the sample is an important feature in the visible region for it
seems to indicate how well the organic C content can be predicted (Udelhoven
et al., 2003). However, the opposite has been reported for US land resource areas
(Chang et al., 2001) and south-eastern Australia (Dunn et al., 2002). Although it
is generally true that dark soil has more organic matter, many soil properties –
such as texture, structure, moisture, and mineralogy – also have an effect (Hummel
et al., 2001), implying that darkness would only be a useful indicator within strictly
limited geological types.

When it comes to soil texture, most of the focus has been on clay content. There
are also several studies that suggest that NIR has a potential in mineralogical stud-
ies (Madejova and Komadel, 2001). To a large extent it is probably the absorption
features of clay minerals that signal in the near-infrared region. Ben-Dor and Banin
(1995) found the important bands for calibrations of clay content – and the related
parameters, specific surface area (SSA) and cation exchange capacity (CEC) – to be
related to both O–H in surface water and Mg–H, Al–H, and FeO–H in the mineral
crystal lattice. Calibrations for SSA and CEC performed slightly better, which may
be expected under such circumstances, as these parameters are better defined than
clay. In addition the relevant features mentioned relate to surface area rather than
particle size.

For precision agriculture, available P, pH, and lime requirement are important
parameters. None of these have features that absorb in the vis–NIR; nevertheless
there are examples of reasonably well-performing calibrations. Chang et al. (2001)
suggested that correlations to organic matter and clay explain how pH is predicted
by vis–NIR. Such indirect calibrations may lead to instability problems over a large
variety of soils or a large geographical area.

Reeves et al. (1999) found that moving NIR calibrations from one site to another
caused loss in precision to a much higher degree for pH (and some other indirectly
predicted parameters) than it did for organic C and N. It must also be recognised that
the calibrations for pH rarely perform better than an RMSE of one-third or one-half
of a pH unit, which may be high for estimations of within-field variations of lime
requirement, as the error may correspond to up to 10–15 t of lime/ha.

For available P, results are highly variable. Udelhoven et al. (2003) failed to
predict CAL (calcium-acetate-lactate)-extractable P (Schuller, 1969) at the regional
scale, but at the field scale CAL-extractable P was fairly well predicted. This was
attributed to secondary correlations to other variables not measured in the study.
Chang et al. (2001) found that Mehlich III extractable cations in general were better
predicted than those extracted by NH4OAc. Bogrekci and Lee (2005) and Maleki
et al. (2006) hypothesise that P correlates with the near-infrared indirectly through
different soil components that bind to phosphorus. If this is the case, it could also
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explain the variable results, as there are a large variety of methods employed for
available P that in some cases are fairly uncorrelated. Thus, also the correlation with
P-containing soil component complexes would differ. This subject requires further
investigation.

3.6.2 Mid-Infrared (Mid-IR) Calibrations

There are two main techniques for soil analysis using mid-IR spectroscopy: the
pressed KBr method (e.g. Farmer, 1974) and the diffuse reflectance Fourier trans-
form (DRIFT) technique (e.g. Nguyen et al., 1991). The KBr method has been
conventionally used for soil mineral analyses (e.g. Farmer) and organic materials
(Skjemstad and Dalal, 1987). Although the KBr technique provides a high degree
of intensity and linearity, the technique is slow because each sample needs to be
weighed, dispersed, and pressed. In recent years, the DRIFT technique has gained a
lot of attention because it is highly sensitive to the organic mineral composition of
soil, it demands much less sample preparation, and the collection of spectra is rapid
(Nguyen et al., 1991). Accurate predictions of a range of soil properties that depend
on the chemistry of the soil matrix can be achieved by combining mid-IR DRIFT
with a multivariate calibration technique (e.g. PLSR) (Viscarra Rossel et al., 2006a).

Mid-IR has been shown to accurately predict soil organic carbon, total carbon,
total nitrogen, exchangeable Ca and Mg, carbonate, pH, lime requirement, clay and
sand content, and air-dried gravimetric water content (Table 3.1). Mid-IR with PLSR
has also been used to rapidly, accurately, and inexpensively predict the concentra-
tion of organic carbon fractions in soil, including particulate organic carbon (POC)
and charcoal (e.g. Zimmerman et al., 2006, 2007; Janik et al., 2007). Although mid-
IR may be a valuable predictor of such fundamental properties (e.g. Chapters 11
and 12), predictions of soil properties dependent on soil structure, such as volu-
metric moisture retention, may not be possible (Tranter et al., 2008). Mid-IR is also
unlikely to provide accurate predictions for soil properties that are dependent on soil
solution chemistry, especially when concentrations are low – as for, for example, soil
nitrate, available potassium, exchangeable Na, and available P (Table 3.1).

Table 3.1 shows that the mid-IR generally produces better predictions than does
the NIR and the vis–NIR, and that the latter produce better predictions than does
the NIR or visible alone. The studies summarised in Table 3.1 use surface and
subsurface soils and report results collected from single soil types with few sam-
ples (e.g. Masserschmidt et al., 1999; Walvoort and McBratney, 2001) to many soil
types from different continents (including tropical soils) with thousands of samples
(Brown et al., 2006). Mostly, however, the studies include two to four different soil
types and calibrations with 100–200 samples.

3.6.3 Generalisation and Limitations of Spectroscopic Calibrations

An important issue that receives little attention is the generalisation capacity of
diffuse reflectance calibrations. There are several indications that the smaller the
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geographical scale a calibration covers, the smaller the RMSE (explained variance
is not a reliable parameter here as the range tends to increase with scale). The fewer
calibrations required the better, but obviously there is a trade-off between accuracy
and generalisation capacity. If the purpose is to map within-field variations for vari-
able rate fertiliser applications or measure carbon sequestration, predictions need to
be accurate.

Whilst attempting to develop an NIR calibration for clay content for all agricul-
tural areas of Sweden, Stenberg et al. (2002) reduced the RMSE from 5.6 to 3.9%
clay by dividing the dataset into six geographical sub-calibrations instead of one.
In addition, for this particular dataset of 2,600 topsoil samples, it was not possible
to make a satisfactory calibration for organic matter, sub-calibrations or not (RMSE
∼1.5% SOM). However, it was shown that the calibrations improved significantly
by removing the sandiest soils (Fig. 3.4). It was therefore hypothesised that sig-
nals in NIR bands from soil organic matter of sandy soils are masked by the scatter
effects of, for example, quartz. This may also be the case for other soil constituents.
Generally, more research is needed to investigate the effect of soil type on vis–NIR
models. For example, it is improbable that the immense global variations in soil age
and parent materials do not have a confounding effect.

Despite what was said about organic matter being spectrally very active over
the vis–NIR region, it is often reported that organic matter signals are weak there
(e.g. Viscarra Rossel and McBratney, 1998), particularly in soils that contain only
a few percentage of organic matter and the rest is a highly variable mineral matrix.
It may also be that the organic matter itself changes in quality with the amount in a
way that influences spectra (Ben-Dor and Banin, 1995). This may explain why the
range in organic carbon correlates with the RMSE in a number of published cali-
brations (Fig. 3.5a). Another problem with randomly sampled sample sets dealing
with organic matter is the naturally high degree of skewness towards low values in

Fig. 3.4 The difference in
calibration performance for
soil organic matter (%SOM)
between different clay
classes
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Fig. 3.5 Literature data of organic carbon (milligrams per gram) predictions with vis–NIR. (a)
Correlation between range and RMSE (n = 17). (b) Correlation between average:max ratio and
RMSE (n = 15)

1. Soil sampling

2. Select calibration samples

3. Build calibration models

4. Predict the remaining 
samples and interpolate

Fig. 3.6 An example of a farm soil mapping strategy. 1) Location of sample points (1.5 per ha),
2) selection of 25 calibration samples, 3) building the calibrations on these 25 samples and 4) use
the calibration to predict the resulting samples and interpolate maps. © By permission of Johanna
Wetterlind
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agricultural soils. This is illustrated in Fig. 3.5b, where the ratio between the average
and the highest value correlates negatively with the RMSE. A ratio of 0.5 sug-
gests a moderately skewed dataset. The importance of a representative and evenly
distributed calibration set is thus illustrated.

The relationships in Fig. 3.5 imply that more narrow calibrations may be
required, at least for some parameters, to reach the accuracy required by the par-
ticular application. This is particularly so for spectrally inactive or weakly active
soil properties, whose calibrations rely on correlations with spectrally active prop-
erties. In these circumstances, it can be presumed that calibrations at the field scale
will have a better chance for success.

Recent data suggest that a consistent pattern can emerge with farm-scale calibra-
tions. With calibration sets of 25 samples only, targeted from about 100 ha, it was
possible to predict clay and organic matter with high precision (Fig. 3.6). Maps
obtained by kriging of predicted data of approximately 1.5 samples per hectare
improved the accuracy depending on validation samples; such kriging also changed
the outcome of interpolated maps radically compared to those kriged from 0.5
samples per hectare as traditionally sampled (Wetterlind et al., 2008).

3.7 Proximal Soil Sensing Using Portable Spectrometers

Compared to diffuse reflectance analysis in the laboratory, in situ measurements
with portable instruments in the field will need to access the full suite of new meth-
ods the technology has on offer (Chapter 14). This aspect is particularly germane
for applications requiring high-resolution soil data, e.g. precision agriculture, espe-
cially if measurements are made on the go. Although Shonk et al. (1991) described
an on-the-go spectroscopic soil sensor and Sudduth and Hummel (1993) described
a prototype for a portable-field NIR sensor over 15 years ago, it is not until recently
that results from on-the-go measurements of soil properties have been published
(Christy et al., 2006; Mouazen et al., 2005; Shibusawa et al., 2001; Chapter 14).
Assuming that instrumentation is robust enough for field operation, the first prob-
lems to overcome with field measurements are related to constructing a probe
capable of delivering good reproducible spectra. Instability due to dust on the
probe and variable distances between the sensor and soil have been experienced
(Shibusawa et al., 2005; Shonk et al., 1991). Systems with soil-penetrating shanks –
equipped with a fibre optic probe protected by a sapphire glass at the bottom that
should be in close contact with the soil at all times – have been developed to prevent
this (Christy et al., 2006; Mouazen et al., 2005; Stenberg et al., 2007). The fibre optic
probe is in these cases connected to vis–NIR instruments. Generally, on-the-go pre-
dictions do not perform as well as those expected from a corresponding laboratory
measurement. Probable reasons are variable environmental factors like soil water
content, spectral contamination from plant residues and gravel, and the structure of
the measured soil surface. Occasionally, loss of probe–soil contact due to shaking of
the pulling vehicle has been shown to result in noisy spectra (Stenberg et al., 2007).
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Automatic systems for identifying and filtering noisy and contaminated spectra are
therefore sought.

Few studies tested the use of portable spectrophotometers to measure soil pro-
files, either in situ or ex situ by first extracting a soil core. Waiser et al. (2007)
compared predictions of clay content using PLSR and vis–NIR spectra collected ex
situ from soil cores at field moisture conditions (RMSE = 6.1%), smeared cores at
field moisture conditions (RMSE = 7.4%), air-dried cores (RMSE = 4.1%), and
air-dried ground soil (RMSE = 6.2%). Their conclusion was that vis–NIR could be
used to estimate clay content of soil profiles ex situ. Ben-Dor et al. (2008) developed
an accessory that can be attached to a vis–NIR fibre optic spectrophotometer and
inserted down the drilled holes to measure soil spectra down the profile. They used it
to make PLSR predictions of soil moisture, organic matter, carbonates, iron oxides,
and specific surface area. They concluded that although their technique requires
further and independent validations, there is good potential for in situ soil character-
isation of soil using vis–NIR spectroscopy. Viscarra Rossel et al. (2009) evaluated in
situ measurements of soil colour, mineral composition, and clay content using vis–
NIR spectra from 10 different soil profiles that were derived from different parent
materials. They report that (i) spectroscopic estimates of soil colour were in good
agreement with Munsell book estimates; (ii) characterisation of soil mineral com-
position by vis–NIR was effective and in good agreement with XRD (in fact, the
vis–NIR technique – with no sample preparation – detected iron oxides better); and
(iii) PLSR predictions of clay content from the field-collected spectra (RMSE =
7.9%) were slightly more accurate than those from the laboratory-collected spectra
(RMSE = 8.3%).

Water has a strong influence both in the NIR and in the mid-IR region. The strong
absorption bands of water may mask peaks associated with other soil characteris-
tics. Apparently mid-IR is more sensitive in this respect than vis–NIR (Chapter 11).
Chang et al. (2005) compared calibrations on NIR spectra from air-dried and
field-moist soil for several parameters. They found small differences, although cal-
ibrations on air-dried soils were always slightly better. The differences were larger
for soil texture variables than for organic and inorganic C, soil N, CEC, and pH.
On the other hand, Fystro (2002) found that PLS calibrations for SOM and total
N made on spectra from coarse (<4 mm) field-moist soils (R2 = 0.87 for C and
0.80 for N) outperformed those from the same air-dried samples (R2 = 0.81 and
0.68, respectively). In addition to developing technical systems for the collection of
high-resolution, high-quality spectra, the influence of environmental factors and the
required actions to meet them have to be addressed in future research.

3.8 Conclusions

There is ample evidence that both vis–NIR and mid-IR diffuse reflectance spec-
troscopy have good potential for soil analyses and proximal sensing. Nevertheless,
the techniques are still not widely used. The most probable reason for this is that
despite all the ‘promising’ results, calibrations are still unreliable or cumbersome
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to establish. Do we develop robust calibrations that will work over a large range
of soil types but maybe with lower accuracies or smaller less robust calibrations
with higher accuracies for a specific soil type? Research needs to focus on iden-
tifying the limitations of the techniques. Some of the inaccuracies of calibrations
may arise from the lack of sufficient absorption features, particularly in the vis–
NIR, and from large soil type diversity in the calibration sets. By explaining and
identifying these, we may achieve the maximum generalisation capacity for the cal-
ibration of a particular soil property. Considering situations employing calibrations
with very high accuracy, but with low generality, for a specific situation, there is also
a need to develop soil-mapping strategies where not only the calibration as such but
also the sampling scheme used and the selection and size of calibration and vali-
dation sets are considered. It is also important that the accuracy of the calibrations
be evaluated in terms of the requirements of the intended application. It is essential
that researchers quantitatively and qualitatively describe the distributions of soils
included and the methods of calibration and most significantly the manner in which
the validations are performed.
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Chapter 4
High-Resolution Digital Soil Mapping: Kriging
for Very Large Datasets

N. Cressie and E.L. Kang

Abstract The ability to take many observations at precisely known spatial loca-
tions has given birth to precision agriculture and transformed traditional agriculture
into a spatial science. An important aspect of precision agriculture is its intersection
with pedometrics. Maps of soil properties are in great demand, but there is a point
at which datasets from proximal soil sensors can, when very large, overload and
‘break’ the algorithms designed for production of the statistically optimal (kriging)
maps. In this research, we present a geostatistical method that relies on highly flex-
ible, nonstationary spatial covariances, for which exact kriging can be carried out
for very large datasets (on the order of tens of thousands to hundreds of thousands
of elements). The methodology is applied to total counts obtained from gamma
radiometer readings in several fields of Nowley Farm, New South Wales, Australia.

Keywords Kriging · Fixed rank kriging · Gamma radiometer · Geostatistics · GRS
spectrum

4.1 Introduction

Recently, agricultural practices have begun to exploit within-field heterogeneity to
obtain higher yields and more environmental-friendly schemes for fertiliser and pes-
ticide application. Global positioning systems (GPSs) installed in farm equipment
can control the application of fertiliser and insecticides down to the metre scale,
and they can provide closely spaced matching data on crop yields. Characterising
within-field heterogeneity of a multitude of variables, including soil properties and
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yields, has brought precision agriculture to the modern farmer. With this spatial pre-
cision comes the opportunity to make maps of the variables of interest. Geostatistics
is a discipline which can provide maps of spatial predictions from noisy, incomplete
data; it can also provide maps of prediction standard errors.

Advances in soil sensing and GPS technology are giving rise to increasingly
larger datasets (of the order of 10,000 to more than 100,000 observations, as illus-
trated in many chapters in this book); moreover, each sampling point is known with
almost pinpoint accuracy. And yet, gaps in the data always remain, and observa-
tions are inevitably noisy, so that any ‘smoothed’ map somehow has to adequately
quantify these and other sources of uncertainty.

Kriging, or spatial best linear unbiased prediction (spatial BLUP), has become
very popular in the earth, environmental, and soil sciences, where it is sometimes
known as optimum interpolation. With its internal quantification of spatial vari-
ability through the covariance function (or variogram), kriging methodology is
able to produce maps of optimal spatial predictions and associated prediction stan-
dard errors from incomplete and noisy spatial data (e.g. Cressie, 1993, Chapter 3).
Solving the kriging equations directly for a dataset of size n involves inversion of
an n × n variance–covariance matrix �, which typically requires O(n3) computa-
tions. Under these circumstances, straightforward kriging of very large-to-massive
datasets is not possible.

It has been realised for some time that even a spatial dataset on the order of sev-
eral thousands can, for kriging, result in computational breakdown. Ad hoc methods
of subsetting the data were formalised by the moving window approach of Haas
(1995), although the local covariance functions fitted within the moving window
may yield invalid covariances at larger spatial lags. The variance–covariance matrix
� is typically sparse when the covariance function has a finite range, in which case
�−1 could be obtained using sparse matrix techniques. Barry and Pace (1997) were
able to carry out kriging when n = 916 using a MATLAB routine based on the
‘symmetric minimum degree’ algorithm. Rue and Tjelmeland (2002) approximate
�−1 to be sparse, approximating it to the precision matrix of a Gaussian Markov
random field wrapped on a torus.

When datasets are very large (on the order of tens of thousands to hundreds
of thousands), the general feeling is that kriging is not possible, and ad hoc local
kriging neighbourhoods are typically used (e.g. Cressie, 1993, pp 131–134). One
avenue of recent research has been to approximate the kriging equations (Nychka
et al., 1996, 2002; Nychka, 2000; Furrer et al., 2006). Suggestions include giving
an equivalent representation in terms of orthogonal bases and truncating the bases,
doing covariance tapering, using approximate iterative methods such as conjugate
gradient, and replacing the data locations with a smaller set of space-filling loca-
tions. Kammann and Wand (2003) take up this latter idea when fitting a class of
spatial models they call geoadditive models.

Another approach has been to choose classes of covariance functions for which
kriging can be done exactly, even though the dataset is massive. Huang et al. (2002)
introduced a multi-resolution spatial model (MRSM) that is mass balanced (across
resolutions) and designed for processing very large amounts of spatial data. The
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advantage of MRSM lies in the fact that it is able to capture nonstationary spa-
tial dependence and to produce fast, optimal estimates using a change-of-resolution
Kalman filter algorithm (Chou et al., 1994; Huang and Cressie, 2001). Later devel-
opments were given by Johannesson and Cressie (2004a) and Johannesson et al.
(2007). In these papers, a multi-resolution spatial (and spatio-temporal) process is
constructed explicitly so that (simple) kriging can be computed extremely rapidly,
with computational complexity linear in the size of the data. An advantage of hav-
ing a spatial model that allows exact computations is that there is no concern about
how close approximate kriging predictors and approximate mean squared prediction
errors are to the corresponding theoretical values. This puts the emphasis on hav-
ing a highly flexible class of spatial models, from which one model is chosen that
provides the best fit to the data.

When doing optimal spatial prediction (kriging) using exact methods, how flex-
ible are the spatial covariance functions? For the multi-resolution models referred
to above, the implied spatial covariances are nonstationary and ‘blocky’. To some
extent, Tzeng et al. (2005) addressed this problem by ‘mixing’ or averaging the
blocky predictions, but the underlying basis functions are still quite restrictive
(effectively, piecewise linear and continuous). There are two requirements: posi-
tive definiteness of the covariance function implied by the model and computational
ability to invert the matrix. For very large datasets, no satisfactory solution to sat-
isfy these two requirements could, until recently, be found in the spatial statistics
literature.

Cressie and Johannesson (2006, 2008) achieved orders-of-magnitude speed-
ups for optimal spatial prediction by using covariance functions that were very
flexible and could be chosen to be smooth or not (as determined by the type
of spatial dependence exhibited by the n data). They showed how to define the
n × n variance–covariance matrix � so that �−1 could be obtained by invert-
ing r × r positive-definite matrices, where r is fixed (say r = 100). In this case,
the number of computations per prediction location in the kriging equations is
O(n), which has the potential to be scalable – from large to very large to mas-
sive datasets. The result is a spatial BLUP (kriging) procedure they call ‘fixed rank
kriging’ (FRK).

For completeness, we mention another approach to spatial prediction based on
smoothing splines. In contrast to kriging, smoothing splines do not rely on a spatial
stochastic process whose covariance function has to be modelled, fitted, and used
for computing the optimal predictor. However, there are both knots and a smoothing
parameter to be determined and, once again, the size of the dataset causes compu-
tational difficulties. Hastie (1996) and Johannesson and Cressie (2004b) developed
low-rank spline smoothers for very large datasets.

In the following section we present the spatial stochastic process that leads to
FRK. In Section 4.3, results from Cressie and Johannesson (2008) are given which
show how kriging can be carried out for very large datasets. Finally, in Section 4.4,
the results are applied to spatial prediction of a very large spatial dataset of total
counts from gamma radiometer readings from Nowley Farm, New South Wales,
Australia.
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4.2 Spatial Covariance Function

In order to carry out FRK, we must specify the form of the (nonstationary) covari-
ance function. In general, the covariance function C(u,v) has to be positive definite
on R

d × R
d. Often, C(u,v) is modelled as being stationary, in which case it then

has to be a positive-definite function of (u–v). We take a different approach and try
instead to capture the scales of spatial dependence through a set of r (not necessarily
orthogonal) real-valued basis functions:

S(u) ≡ (S1(u), ..., Sr(u))′, u ∈ R
d,

where r is fixed and S(·) is given. For any r × r positive-definite matrix K and
τ 2 ≥ 0, we specify

C(u, v) = S(u)′KS(v) + τ 2I(u = v), u, v ∈ R
d, (4.1)

which is (straightforwardly) a positive-definite function and hence a valid covari-
ance function (Cressie and Johannesson, 2008). The quantities K and τ 2 are
unknown parameters to be estimated.

An equivalent formulation of this spatial covariance model is to write

υ(s) = S(s)′η + ξ (s),

where η is an r-dimensional random vector such that E(η) = 0, var(η) = K, and ξ (·)
is an independent, zero mean, white noise process with variance τ 2. Then

cov(υ(u), υ(v)) = S(u)′KS(v) + τ 2I(u = v),

which is Eq. (4.1). The role of the variance component ξ (·) is to capture the
microscale structure of the spatial dependence as suggested by Cressie and
Johannesson (2008). It is analogous to the ‘nugget effect’ in classical variogram
models and largely addresses Jun and Stein’s (2008) criticism of these models.

Shi and Cressie (2007) and Cressie and Johannesson (2008) call S(·)′η the
‘Spatial Random Effects’ (SRE) model; Zhao et al. (2006), among others, have stud-
ied this model for K ∝ I. One of the contributions of this research is to show that a
general positive-definite K in Eq. (4.1) adds a great deal of flexibility to the spatial
covariance model (4.1).

4.3 Kriging: Optimal Linear Spatial Prediction

In this section, we define and present the notation for kriging, and we equate it with
best linear unbiased prediction (BLUP) in a spatial setting. When the spatial dataset
is massive, exact computation of spatial BLUP is generally not possible. However,
with the class of nonstationary spatial covariances given above, we can carry out
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rapid computation of the kriging predictor (spatial BLUP) and the kriging standard
error (root mean squared prediction error).

Let
{
Y(s) : s ∈ D ⊂ R

d
}

be a real-valued spatial stochastic process. We are
interested in making inference on the Y-process based on data that have mea-
surement error incorporated; consider the process Z(·) of actual and potential
observations:

Z(s) ≡ Y(s) + ε(s), s ∈ D, (4.2)

where {ε(s) : s ∈ D} is a spatial white noise process with mean zero and var(ε(s)) =
σ 2v(s) ∈ (0, ∞), s ∈ D. In fact, the process Z(·) is known only at a finite number of
spatial locations {s1, . . . , sn}; define the vector of available data to be

Z ≡ (Z(s1), ..., Z(sn))′.

The hidden process Y(·) is assumed to have a linear mean structure

Y(s) = T(s)′α + υ(s), s ∈ D, (4.3)

where T(·) ≡ (T1(·), . . . , Tp(·))′ represents a p-dimensional vector process of known
real-valued covariates; the regression coefficients α ≡ (α1, . . . , αp)′ are unknown;
and the random process υ(·) has mean zero, 0 < var(υ(s)) <∝, for all s ∈ D, and
spatial covariance function:

cov(υ(u), υ(v)) ≡ C(u,v); u, v ∈ D,

which for the moment is left as general as possible.
If we define ε, Y, and ν in an analogous manner to Z, then the preceding

equations imply a general linear model:

Z = Tα + δ,
δ = υ + ε,

(4.4)

where T is an n × p matrix of covariates (T(s1), . . . T(sn))′. Observe that the error
term δ is made up of two mean-zero components, resulting in E(δ) = 0 and var(δ) =
� ≡ (σij), where

σij =
{

C(sj, sj) + σ 2v(sj), i = j
C(si, sj), i = j.

Upon writing C ≡ (C(si, sj)) and V ≡ diag(v(s1), . . . ,v(sn)), it is easily seen that

� = C + σ 2V.

No assumptions of stationarity or isotropy of the spatial covariance function have
been made.
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Interest is in inference on the Y-process, not the noisy Z-process. For point pre-
diction, we wish to predict the Y-process at a location s0, s0 ∈ D, regardless of
whether s0 is or is not an observation location. Cressie (1993) (Section 3.4.5) shows
that one particular formula for the kriging predictor of Y(s0) is

Y∗(s0) = T(s0)′α∗ + k(s0)′(Z − Tα∗), (4.5)

where α∗ is the generalised least squares estimator of α

α∗ = (T′�−1T)−1T′�−1Z,
k(s0)′ = c(s0)′�−1,

and c(s0) ≡ (C(s0, s1), . . . , C(s0, sn))′. The kriging standard error is the root mean
squared prediction error of Y∗(s0), given by

σk(s0) ={C(s0, s0) − k(s0)′�k(s0)

+ (T(s0) − T′k(s0))′(T′�−1T)−1(T(s0) − T′k(s0))}1/2.
(4.6)

As the prediction location s0 varies over D, a kriging prediction map and a kriging
standard error map, respectively, are generated. (In practice, prediction locations are
finite in number and typically taken as nodes of a fine-resolution grid superimposed
on D.)

Inspection of the kriging equations shows �−1 to be an essential component and
the most obvious place where a computational bottleneck could occur. Now, for the
class of covariance functions given by Eq. (4.1)

� = SKS′ + τ 2I + σ 2V,

where S = (S(s1), . . . , S(sn))′ is an n × r matrix. This model was proposed by
Cressie and Johannesson (2008) in their discussion; note that when V = I, only
(τ 2 + σ 2) can be estimated. In our case (Section 4.4), σ 2 is known, and hence
τ 2 can be estimated even when V = I. Define D ≡ τ 2I + σ 2V, an n × n
diagonal matrix. Hence, a Sherman–Morrison–Woodbury formula (e.g. Henderson
and Searle, 1981) yields

�−1 = D−1 − D−1S{K−1 + S′D−1S}−1S′D−1.

Note that this formula involves inverting either fixed rank r × r positive-definite
matrices or the n × n diagonal matrix D. Inspection of the kriging equations (4.5)
and (4.6) reveals that for a fixed number of regressors p and a fixed rank r of the
covariance model, the number of computations per prediction location is O(n). Thus,
through FRK, it becomes feasible to construct maps of kriging predictors and krig-
ing standard errors based on very large quantities (hundreds of thousands) of spatial
data. In principle, because FRK is scalable, it could be used to obtain maps for
massive spatial datasets on the order of gigabytes, such as one might obtain from
satellite data.
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To implement FRK, as in classical geostatistics (e.g. Cressie, 1993, Chapter 2),
detrended data are binned for computation of an empirical variance–covariance
matrix estimator based on the method of moments. Estimates K̂ and τ̂ 2 are obtained
by minimising a Frobenius norm between the empirical variance–covariance matrix
and a theoretical variance–covariance matrix. Substituting these estimated param-
eters into Eqs. (4.5) and (4.6), FRK predictions and FRK standard errors can
be calculated. Details on the estimation procedure can be found in Cressie and
Johannesson (2008).

4.4 Soil Properties on a Portion of Nowley Farm, New South
Wales, Australia

Soil is a key factor affecting agricultural production. Soil maps at higher resolution
are beneficial for both sound land management and profitable crop production.

In many current soil surveys, variations in soil attributes are measured by two
sets of high-resolution geophysical tools that result in very large spatial datasets: a
ground-based gamma ray spectrometer (GRS), or gamma radiometer, and electro-
magnetic (EM) instruments such as the EM38 and the EM31. GRSs measure broad
radioactive emissions from elements such as potassium, uranium, and thorium in
the top 40–60 cm of the soil. EM instruments penetrate deeper, measuring ground
conductivity, which can indicate soil salinity and moisture variation. In this study,
we analyse the total count for the full spectrum from a GRS.

Although the data collected with GRSs or EMs are spatially separated, it is the
soil scientists’ aim to generate spatially continuous maps of soil properties using
these very large datasets. Usually, ad hoc (but computationally fast) smoothing
methods such as the inverse distance weighting (IDW) method and the nearest
neighbour smoothing (NNS) method are used, but they are unable to give pre-
diction standard errors of the resulting soil maps. Moreover, they do not possess
any statistical optimality properties. Based on the development in the previous sec-
tion, FRK-based optimal spatial predictions of soil properties can be used for these
very large datasets, whereas standard geostatistical methods either fail or yield
unquantified approximations.

The study area from which the dataset was collected consists of three fields
(F-Brigalow, 12-Brigalow, and Coda) covering about 2.66 km2 of Nowley Farm
(30.23◦S, 150.24◦E), New South Wales, Australia. The soils in this area can
be described as Red Chromosols (Australian Soil Classification System, Isbell,
2002; Luvisols, Word Reference Base, FAO, 2006) in the west grading to Red
Dermosols (Australian Soil Classification System, Isbell, 2002; Ferric Calcisols,
Word Reference Base, FAO, 2006) and Sodosols (Australian Soil Classification
System, Isbell, 2002; Solonetz, Word Reference Base, FAO, 2006) in the east, with
a concomitant topsoil clay content decreasing from 40 to 10% in the east. The area
is made up of two cropping fields and one field under pasture. More details can be
found in Viscara Rossel et al. (2006). In the survey, EM31, EM38, and GRS were run
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simultaneously on a single vehicle, which was driven along (approximately) evenly
spaced swaths, 30–40 m apart, in the direction of tillage. All three sensors received
location data from a single GPS mounted on the vehicle. Total count (TC) in counts
per second (cps) from the GRS is the variable of interest in this chapter, since it
integrates the entire spectrum and often shows strong spatial patterns. Ultimately,
the three fields should perhaps be analysed separately because of different location
and management characteristics. However, in what is to follow we assume that these
differences are small enough to be absorbed into the spatial variability due to trend
and spatial dependence.

The original TC dataset is made up of 34,266 data. Exploratory analysis indicated
that measurement error variance on the original scale depended on the measured
value, and hence a shifted logarithmic transformation was made; we define the
adjusted count (AC) as AC ≡ TC + 160. The spatial analysis was carried out on the
transformed variable, Z ≡ log(AC) = log(TC + 160), and the transformed spatial
dataset is Z ≡ {Z(si) ≡ log(TC(si) + 160), i = 1, . . . , n}, where n = 34,266. We
fitted model (4.2) to the transformed data Z, and the measurement error variance on
the transformed scale was identified from an independent study to be σ 2 = 0.0016.

One of our goals in spatial prediction is to filter out the measurement error.
Hence, we need to interpret this filtering on the original scale. Write

AC ≡ BC · exp(ε), (4.7)

where BC ≡ exp(Y) is interpreted as the measurement error-free process correspond-
ing to the adjusted count (AC) process. To make inference on the original scale,
we define the smoothed count (SC), which is measurement error free and can be
interpreted as the intensity function that gives rise to the observed counts, that is

E(TC|SC) = SC (4.8)

and SC is independent of ε. To relate the process BC, in Eq. (4.7), to SC, let

BC = a · SC + b. (4.9)

From the relations AC = TC+160, Eqs. (4.7), and (4.8), we have

E(TC|SC) = E(AC − 160|SC) = E(BC · exp(ε)|SC) − 160
= a · exp(σ 2/2) · SC + b · exp(σ 2/2) − 160.

Setting E(TC|SC) equal to SC, we obtain a = exp(−σ 2/2) and b =
exp(−σ 2/2) − 160. Thus

SC = exp(σ 2/2) · BC − 160 = exp(σ 2/2) · exp(Y) − 160. (4.10)

Although we fitted spatial models (4.1), (4.2), and (4.3) to data Z and to the
hidden process Y(·), our ultimate interest is in making inference on the original
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scale. That is, we wish to predict the underlying smoothed count (SC) process given
by Eq. (4.10).

Our geostatistical analysis proceeds on the transformed data Z. Trends in the
spatial index s = (x, y)′ were visualised by randomly sampling 1,000 data and
plotting Z(s) versus x and Z(s) versus y (the large amount of data makes visual-
isation problematic and necessitates taking a random sample); see Fig. 4.1. We
observe a strong linear relationship between Z(s) and the x-coordinate and simi-
larly for the y-coordinate (although not quite as strong). Hence, in Eq. (4.4), we put
T(s) = (1, x, y)′ and we fitted α = (α1, α2, α3)′ using ordinary least squares
(OLS), as recommended by Cressie and Johannesson (2008). Then, estimation of
K and τ 2 was carried out on the OLS residuals; those estimates were substituted
into Eqs. (4.5) and (4.6) to produce the kriging predictions and the kriging standard
errors, respectively (on a log scale).

The basis functions (discussed in Section 4.2) we chose are made up of two scales
of variation defined by a quadtree. The coarsest scale has 8 functions associated
with it, and the second scale has 69. The centre points {vj} of the basis functions are
shown in Fig. 4.2.

Generally speaking, the basis functions should be multi-resolutional so that the
covariance function model in Eq. (4.1) is able to capture multiple scales of variation.
Shi and Cressie (2007) used wavelets. In what is to follow, our generic basis function
is the bisquare function (e.g. Cressie and Johannesson, 2008):

Sj(u) ≡
{

(1 − (
∥∥u − vj

∥∥ /rj)2)2,
∥∥u − vj

∥∥ ≤ rj

0, otherwise,

where vj is one of the centre points of Fig. 4.2 and

rj = (1.5) × (shortest distance between like - resolution centre points).

2.235 2.24 2.245 2.25 2.255
× 105 × 106

5.4

5.5

5.6

5.7

x

Z

5.4

5.5

5.6

5.7

Z

6.5265 6.527 6.5275 6.528
y

Fig. 4.1 Scatter plots of a size 1000, randomly sampled subset of the 34,266 data. The data Z(s)
are plotted against x (left-hand scatter plot) and y (right-hand scatter plot), where s = (x, y)′
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2.235 2.24 2.245 2.25 2.255
× 105

× 106

6.5262

6.5264

6.5266

6.5268

6.527

6.5272

6.5274

6.5276

6.5278

6.528

6.5282

Fig. 4.2 Centre points of the first three scales from a quadtree. Units on the x-axis and the y-axis
are in metres

For example, if vj is from scale 1, the shortest distance between centre points is
661.78 m and rj = 992.67 m; if vj is from scale 2, the shortest distance between
centre points is 220.59 m and rj = 330.89 m.

To obtain estimates of K and τ 2 that are not sensitive to edge effects, we recom-
mend putting centre points of basis functions beyond region D but within a distance
of its boundary that is less than or equal to min{rj/(1.5)}. From Fig. 4.2, there are a
total of r = 8 + 69 = 77 basis functions used in our spatial analysis.

Cressie and Johannesson (2008) give a method for estimating parameters K and
τ 2 (σ 2 is assumed known) in our model based on a method of moments estimator
of �, where recall that

� = SKS′ + τ 2I + σ 2V.

Applying their method, the detrended residuals were binned with M = 346 bins
to obtain an empirical covariance; we chose the bin centres as the centre points of
the scale-3 grid (see Fig. 4.2). Because the spatial statistical analysis is done on a
log scale, we chose V = I, and hence we have now specified everything for the
estimation of K and τ 2 Finally, plugging the estimates into the kriging equations
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(4.5) and (4.6), we obtain the kriging prediction Y∗(s0) and the kriging standard
error σk(s0) on a log scale.

Figure 4.3 shows the 34,266 raw data (in units of counts per second). Recall that
we added 160 to each datum and took the natural logarithm, resulting in the 34,266-
dimension vector Z. Further recall that for the dataset of total counts, our interest is
in making inference on the smoothed count, SC, given by Eq. (4.10):

SC(s) ≡ exp(σ 2/2) · BC(s) − 160 = exp(σ 2/2) · exp(Y(s)) − 160, s ∈ D.

Thus, we need to transform the predictions {Y∗(s0), s0 ∈ D} back to the original
scale, with an appropriate bias correction (e.g. Cressie, 2006), using the following
formulas:

SC∗(s0) ≡ exp(σ 2/2) · exp{Y∗(s0) + (σk(s0))2/2 − m(s0)′T(s0)} − 160, (4.11)

Fig. 4.3 Three fields of Nowley Farm, NSW, Australia. Shown are 34,266 γ-radiometer readings
of total count (TC) in units of counts per second (cps). Units on the x-axis and the y-axis are in
metres
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σSC,k(s0) = exp(σ 2/2) · exp{T(s0)′α + var(Y(s0))/2}·
[exp{var(Y(s0))} + exp{var(Y∗(s0))} − 2 exp{λ(s0)′c(s0)}]1/2,

(4.12)

where

m(s0)′ = (T(s0) − T′�−1c(s0))′(T′�−1T)−1,

λ(s0)′ = {c(s0) + T(T′�−1T)−1(T(s0) − T′�−1c(s0))}′�−1,

var(Y∗(s0)) = λ(s0)′�λ(s0),

c(s0) = SKS(s0).

Then, from Eq. (4.11), we obtain the 512 × 512-resolution map of SC∗(·) shown
in Fig. 4.4. The FRK-based prediction standard errors σSC,k(·) (where the gen-
eralised least squares estimator α∗ is substituted for α) given by Eq. (4.12) are
shown on the 512 × 512-resolution map in Fig. 4.5. Overall, the FRK-predicted
map (Fig. 4.4) captures the spatial variability in the original data (Fig. 4.3). It can be

Fig. 4.4 Spatial predictions of SC, in cps. Units on the x-axis and the y-axis are in metres
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Fig. 4.5 Prediction standard errors, in cps. Units on the x-axis and the y-axis are in metres

seen in Fig. 4.5 that the prediction standard errors are dominated by the trend term,
exp{T(s0)′α∗).

The following timings were carried out in Matlab on a Linux machine with a
Pentium 4 dual-core 3.0-GHz processor and 4 GB memory, and they were for com-
puting SC*(·) and σSC,k(·) from 34,266 data at 114,266 prediction locations on the
512 × 512-resolution grid. Timings for the computations, in seconds, are given in
parentheses: S(1.87 s), {S(s0)} (34.38 s), {Y∗(s0)} (24.29 s), and {σk(s0)} (50.17 s).
Timings for estimation of parameters, in seconds, are given in parentheses: the
binned empirical variance–covariance matrix (2.35 s) and K̂ and τ̂ 2 (2.94 s).

4.5 Conclusions

Fixed rank kriging (FRK) is an optimal (best linear unbiased) spatial predictor that
can be implemented on very large datasets. Because the computations are linear in
the size of the dataset, the technology is in principle scalable to massive datasets
on the order of gigabytes. The underlying spatial covariances are nonstationary and
highly flexible. Given the measurement error variance σ 2 is known, we were able
to model the hidden Y-process with microscale variance τ 2 and to estimate it. We
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applied FRK to a soil-sensing dataset of total counts (TC) from a gamma radiometer.
The application illustrates the following:

All the 34,266 data were used to produce Figs. 4.4 and 4.5.

• The covariance function we used was nonstationary.
• A matrix inversion of only a 77 × 77 positive-definite matrix was needed to

produce these two figures.
• The map in Fig. 4.4 is the optimal predictor (for squared error loss) of smoothed

counts (SC) on the 512 × 512-resolution grid.

For complete details on the estimation of parameters or for more discussion on
this methodology, such as choices of basis functions, readers are referred to Cressie
and Johannesson (2006), Shi and Cressie (2007), and Cressie and Johannesson
(2008).
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Part II
Soil Sensing and Sampling



Chapter 5
The Sun Has Shone Here Antecedently

A.B. McBratney and B. Minasny

What has been is what will be, and what has been done is what
will be done; there is nothing new under the sun.

Ecclesiastes

Abstract Some scientific work can be so far ahead of its time that it is not taken up
by contemporaries and is largely forgotten. High-resolution digital soil sensing and
mapping is a classic example of this. The earliest work in this area can be found in
three papers in 1925 and another in 1928 by the Rothamsted soil physicists Haines
and Keen. This was not really followed up until the 1990s when precision agriculture
became the focus. The major developments in these papers are disinterred. Haines
and Keen were concerned with how tillage forces varied, in order to design effi-
cient and effective tillage operations. The first paper described instrumentation – a
dynamometer – capable of sensing soil strength (actually drawbar pull) and its real-
time recording, which they designed and built. The second looked at soil uniformity
‘by means of dynamometer and plough’. They produced perhaps the first contour
maps of a soil property at high (or any) resolution. The third paper dealt with the
Rothamsted classical experiments which are now in their 167th year. The results of
the Broadbalk experiment are shown as a perspective plot (familiar to all users of
surface plotting programs) but constructed by quite different means. They found,
perhaps to their surprise, that the signal of intrinsic soil differences in strength was
heavily imprinted over the treatment effects even after 80 years of continuous wheat.
In the fourth paper they recognised the need for a more light-weight, portable, and
robust sensing system which they designed, built, and demonstrated, as well as a
data-filtering technique based on the viscosity of oil in a sensor-recording system.

Keywords Draught force · ECa soil properties · Sensor · Draft
force · Conductivity · Electrical
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5.1 Introduction

In 1925, before the age of digital computers and electronic sensors, Bernard Keen
and William Haines conceived and built the first on-the-go soil strength sensor,
made measurements and constructed the first high-resolution digital soil map, and
discovered the reality and importance of soil spatial variation. For a biography of
Keen, who wrote a classic text on soil physics (Keen, 1931), see Pereira (1982).
Haines wrote a classic set of papers on soil physics, also published in the Journal of
Agricultural Science.

5.2 High-Resolution Digital Soil Sensing and Mapping

A schematic diagram depicting the various components of high-resolution digital
soil sensing and mapping (HRDSSM) is shown in Fig. 5.1. This book is intended
to flesh out by means of example all the aspects depicted. Such a diagram, although
perhaps incomplete, can only be drawn by considering the efforts of many scientists
around the world and how the work of one group relates to another. There does seem
to be a coherent framework for HRDSSM. What appears remarkable to us is that
Haines and Keen in the 1920s first traced out a significant part of the methodology
(that shown in black – as opposed to grey). How they did this is discussed further
below.

Cost/benefit
analysis

Conventional
Measurement

soil target variable

Soil
sensing

MAP/GIS
Decision[s]
(solution)

Data analysis & 
interpolation

Calibration & 
interpolation
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sampling

High spatial 
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sampling
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resolution 
sampling

Prior data,
information,
knowledge

Target
variable
Ancillary
variable

Problem
(formulation)

Data analysis &
interpolation

Calibration &
interpolation

Calibration
sampling

High spatial
resolution
sampling

Lower spatial
resolution
sampling

Fig. 5.1 A schematic diagram of high-resolution digital soil sensing and mapping (adapted from
Fig. 1.1 in Chapter 1)
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5.3 The Precocious and Prescient Contribution
of Haines and Keen

5.3.1 The Rationale: Cultivation and Soil Strength

The rationale behind inventing the on-the-go soil strength meter was to measure the
relative draughts of cultivation implements, to assess the impact of tillage and culti-
vation on soil structure, and to quantify short-range soil variation. The rationale has
not really changed since. Chapters 26 and 30, inter alia, give up-to-date examples
and there is a brief review of such sensors in Chapter 2.

5.3.2 The Sensor: A (Pre-electronic) Design for a Soil Draught
Force Sensor

Keen and Haines (1925) built an instrument, based on a design by an automotive
engineer, that measured the mechanical resistance that must be overcome by the
applied force of drawing a tillage implement through soil. The first prototype was a
simple spring balance: the instrument was an automated recording pressure gauge,
indicating the pressure produced in an oil system by the pull between the two joints
to which the instrument is hitched. This design was rather large but was suitable for
measuring the draught force of tractor ploughs.

Later Haines and Keen (1928) designed and built a lighter, more portable version
called the ‘Rothamsted dynamometer’ which was suitable for horse ploughs and was
marketed by the Cambridge Instrument Company and which is shown in Fig. 5.2a
and b. It was used in experiments in England and India.

Fig. 5.2 Left: The Rothamsted dynamometer from 1928 in use in the field on a horse-
drawn mouldboard plough. (Photograph courtesy of Rothamsted Experimental Station.) The
sartorially elegant gentleman is believed to be B.A. Keen. Right: A schematic of the
dynamometer. A, hydraulic link; B, recording device with Bourdon tube (http://en.wikipedia.org/
wiki/Pressure_measurement); C, control box with Morse code tapping key for annotating records.
A full description is given in Haines and Keen (1928). Figures from Haines and Keen (1928), used
with permission
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5.3.3 Data Logging: Analogue Data Recording

Recording was on a continuous strip chart with parallel records of drawbar pull
(related to soil strength), depth of ploughing, time interval, and distance travelled
(and thereby speed), as shown in Fig. 5.3.

Fig. 5.3 Example of chart recording from Haines and Keen (1925a). The dashed parallel vertical
lines represent field boundaries. Figure from Haines and Keen (1925a), used with permission

5.3.4 Data Analysis: Spatial Variation and Data Filtering

Haines and Keen (1925a) were the first to quantitatively document considerable
amounts of short-range spatial variation in soil, invalidating the assumption that soil
is in any sense uniform. They also postulated the origin of soil variation: ‘the key
is to be found in the observation that they remain constant from season to season.
They are almost certainly the resultant of the age-long soil-forming processes’.

To handle the data, rather than using sophisticated time-series analysis or Kalman
filtering, Haines and Keen (1928) found that the data could be smoothed dur-
ing recording by using oil of an appropriate viscosity in the sensing system
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Fig. 5.4 The effect of
changing oil viscosity on the
smoothing and delay of the
recorded variation in soil
mechanical resistance, from
Haines and Keen (1928), used
with permission

(see Fig. 5.4). The amount of detail in the record could then be controlled by the
viscosity of the oil: a thin oil gave great detail, while thicker oil gave any desired
degree of smoothing but with an undesirable time lag. A compromise was needed
in order to give reasonable detail without appreciable time lag.

5.3.5 The Product: The First High-Resolution Digital Soil Map

The first experiment was on Sawyers field which had an area of 2.4 ha. It had
received uniform treatment for many years and its soil was believed uniform too.
The result from Sawyers field is shown in Fig 5.5. Haines and Keen (1925a) manu-
ally constructed a contour map based on average soil mechanical resistance values
obtained for each plot. This is quite different from the methods that would be pro-
posed today, for example by Cressie and Kang in Chapter 4. They called these
‘isodynes’ – contour lines of equal force or soil mechanical resistance. Haines
and Keen (1925b) used their dynamometer to map soil mechanical resistance in
the classical Rothamsted experiment plots. They also built a real 3D model (pre-
GIS), shown in Fig. 5.6, of the soil mechanical resistance in one of the fields (the
famous Broadbalk permanent wheat plots), and showed that the predominant factor
was natural soil variation – and not ‘manuring’ – in spite of the long period (1843–
1925) over which the soil had been cultivated. Much of the soil at Rothamsted is
of the Batcombe and Hook series, which comprises silt to silty clay loam overlying
clay with flints (Avery and Catt, 1995). These are probably Chromic Luvisols in the
World Reference Base.
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Fig. 5.5 Isodyne (contours of equal soil mechanical resistance) for Sawyers field, from Haines
and Keen (1925a), used with permission. The map is constructed from 122 observations, each an
average over a small area. The units of lb (pound force) can be converted to Newtons by multiplying
by 4.448. The values range between 4.8 and 7.6 kN

5.4 Degrees of Separation

Nothing was reported in the literature on this kind of work for a very long time,
and published work on on-the-go soil strength measurement seemed to begin afresh
with Stafford and Hendrick (1985, 1988); since then, with the advent of site-specific
soil and crop management, a number of other papers have been published. We list
the ones we have discovered in Table 5.1, and they use a variety of technologies.
We can define the degree of separation (dS) between two articles as ‘the num-
ber of papers that need to be sought for the two articles to meet’. For example,
the dS between articles Alihamsyah et al. (1990) and Chung et al. (2006) is 1, as
Alihamsyah et al. (1990) was cited by Chung et al. (2006). This is shown in row H,
column M of Table 5.1. Another example is for Adamchuk and Christenson (2007)
and Stafford and Hendrick (1988), where the dS is 2. In Adamchuk and Christenson
(2007), no reference is given to Stafford and Hendrick (1988), but it gives refer-
ence to Adamchuk et al. (2001). In Adamchuk et al. (2001) there is a reference to
Stafford and Hendrick (1988). So there are 2 degrees of separation between the two
articles (shown in row E, column O of Table 5.1). The degrees of separation of the
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Fig. 5.6 Physical block
model of variation of soil
mechanical resistance across
the Broadbalk continuous
wheat experiment in 1924,
from Haines and Keen
(1925b), used with
permission

Table 5.1 Degrees of separation between papers on on-the-go soil strength measurement

D F G H I J K L M N O

A ∞a ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
B 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
C 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 ∞
D 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
E ∞ 1 1 ∞ ∞ 2 3 2 3 ∞ 2
F 0 ∞ ∞ ∞ 1 2 2 2 ∞ 2
G 0 ∞ ∞ ∞ ∞ 1 2 ∞ 1
H 0 ∞ 1 1 2 1 ∞ 2
I 0 ∞ ∞ 2 1 ∞ 2
J 0 1 1 1 ∞ 1
K 0 ∞ 1 ∞ 2
L 0 ∞ ∞ 2
M 0 ∞ 1
N 0 ∞
O 0

A Keen and Haines (1925), B Haines and Keen (1925a), C Haines and Keen (1925b), D Haines
and Keen (1928), E Stafford and Hendrick (1985/88), F Owen et al. (1987), G Glancey et al.
(1989), H Alihamsyah et al. (1990), I Van Bergeijk et al. (1996/2001), J Adamchuk et al. (2001),
K Hall and Raper (2005), L Mouazen and Ramon (2006), M Chung et al. (2006), N Watts et al.
(2006), O Adamchuk and Christenson (2007)
a∞ as we possibly have not found all intervening papers this might be better expressed as >5
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main papers on this topic are shown in a matrix in Table 5.1. The rows and columns
are in chronological order and the lower half of the matrix is blank because ear-
lier papers cannot refer to later ones. There appears to be a literature developing, but
there is also a relatively high degree of non-citation – many of the cells show infinite
separation. The most remarkable finding is that none of the early works of Haines
and Keen appear to have been referenced in the scientific literature (see rows A, B,
C, and D) until the Broadbalk measurements were repeated recently (Watts et al.,
2006), and Watts et al.’s work seems to be separated in the citation sense from the
main body of contemporary soil strength-sensing work (see column N).

Further study of the literature would no doubt show other early soil-sensing
methodologies. For example, Murray Lark from Rothamsted has pointed out the
paper by Broughton Edge (1931) as an early kind of electromagnetic induction
apparatus.

5.5 Conclusions

i. Haines and Keen appear to have invented high-resolution digital soil sensing
and mapping in the 1920s.

ii. Haines and Keen constructed the first on-the-go recording soil sensor and made
high-resolution maps from the point data.

iii. The work of Haines and Keen work was lost or seen as irrelevant until the
new impetus given by precision agriculture in the 1990s when similar, but
independent, work evolved again.

iv. There is nothing new under the sun. . .
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Chapter 6
Proximal Soil Nutrient Sensing Using
Electrochemical Sensors

C.R. Lobsey, R.A. Viscarra Rossel, and A.B. McBratney

Abstract Site-specific crop management requires the collection of high spatial
resolution soil property data. Currently, electromagnetic (EM) induction or soil
electrical resistance sensors, which measure soil electrical conductivity, are com-
monly used for this purpose. From the measurements, a number of related soil
properties, e.g. clay content, are inferred. Although these techniques enable rapid,
low-cost measurements that are able to capture within-field soil variability, they
do not provide information on soil nutrient concentrations directly. This chapter
reviews research conducted towards the development of proximal soil nutrient sen-
sors using two forms of electrochemical sensors: ion-selective electrodes (ISEs) and
ion-sensitive field effect transistors (ISFETs). It provides a brief introduction to elec-
trochemical sensors and reviews their application for rapid low-cost soil analysis
and proximal sensing. Over the last three decades, electrochemical sensors have
been used in the laboratory to reduce the time, cost, and complexity of soil nutrient
analysis. More recent studies suggest that ISEs and ISFETs have the potential to be
used for rapid in situ soil analysis. However, the technologies have some limitations,
particularly for on-the-go proximal soil sensing.

Keywords Proximal soil sensing · Ion-selective electrode (ISE) · Ion-sensitive field
effect · Transistor (ISFET) · Nitrate · Sodium · Potassium · Phosphorus · pH

6.1 Introduction

Development of proximal soil sensors is important for improving the efficiency
of crop production and raising our understanding of soil variability. These sen-
sors should provide repeatable measurements and should be rapid, inexpensive,
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and robust. A number of on-the-go proximal soil sensors are being developed
(Chapter 2) and several are available commercially – for example, electromagnetic
instruments (Sudduth et al., 2001), electrical conductivity systems (Lund et al.,
1999), and a pH sensor (Adamchuk et al., 1999). However, proximal soil sensors
for direct measurement of soil macronutrients are not yet commercially available.

Current methods to measure the variability of soil properties for continuous man-
agement have focused on the use of soil electrical conductivity (ECa) measurements
using either EM induction or electrical resistivity sensors (e.g. Sudduth et al., 2005).
However, while these sensors provide rapid and low-cost measurements, they do not
measure soil nutrient concentrations. Handheld ion-selective electrode (ISE) sys-
tems are available for low-cost analysis of soil macronutrients (e.g. Cardy meter);
however, their performance for some important nutrients, such as nitrate, is ques-
tionable, and they still require manual pre-processing of each sample. With the
economic and environmental gains expected from site-specific soil management,
the development of proximal soil nutrient sensors is vital.

Initial research in on-the-go proximal nutrient sensing was targeted at soil pH
(Viscarra Rossel and McBratney, 1997) and nitrate-N (Birrell and Hummel, 1997).
Research into proximal sensing of soil pH has shown the most success (Adamchuk
et al., 2007). Soil pH is relatively easy to measure and is important for manage-
ment decisions through its effect on soil nutrient availability and as an indicator
of soil health. There is also considerable scope for variable rate-liming and other
site-specific management (Viscarra Rossel and McBratney, 2000). Similarly, consid-
erable focus has been placed on the measurement of nitrate-N, which is an important
nutrient for agronomic management. Environmental concerns about ground water
nitrate leaching and high fertiliser prices have created a drive for optimal nitro-
gen application. This creates considerable scope for site-specific management and
variable rate application of nitrogen.

This chapter reviews research on the development of electrochemical proximal
soil sensors. It (i) includes a brief introduction to ion-selective electrodes (ISEs) and
ion-sensitive field effect transistors (ISFETs); (ii) gives an overview of techniques
for implementing on-the-go and in situ electrochemical soil nutrient measurements;
and (iii) describes work to address some limitations of these sensors.

6.2 Proximal Soil Sensing Using Electrochemical Sensors

6.2.1 Electrochemical Sensors

Ion-selective electrodes are a potentiometric sensor for measuring ion activity in a
solution. The sensing component of the ISE is an ion-selective membrane. Various
membranes selective for pH and a range of soil nutrients (such as nitrate, sodium,
potassium, and calcium) have been developed and are commercially available. ISEs
for phosphate are not common; however, there are some research prototypes under
evaluation for soil nutrient sensing (Kim et al., 2007a).
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ISEs used for soil sensing come in three forms: (1) glass (e.g. pH electrode);
(2) solid state (e.g. crystal based); and (3) liquid state (e.g. ionophore and PVC
plasticiser). While ISEs differ in the construction of the sensing membrane, their
mode of operation is similar. The electromotive force (emf) generated at the sensing
surface is proportional to the log of the target ion activity in solution and is defined
by the Nernst equation:

E = E0 + 2.3RT

nF
log10(ai),

where E is the measured potential of the system, E0 is the offset potential, R is
the gas constant, T is the absolute temperature, n is the charge on the ion, F is
the Faraday constant, and ai is the activity of the measured ion. ISFETs are a type
of chemically sensitive field effect transistor that were first described by Bergveld
(1972) and later by Matsuo and Wise (1974) and Esashi and Matsuo (1978). As
the acronym suggests, ISFETs combine two well-established technologies – that of
ion-selective electrodes (ISEs) and field effect transistors (FETs).

The ISFET is constructed like a metal oxide FET; however, the gate is replaced
with an electrode that is in contact with the solution (electrolyte) to be analysed.
Similarly, the insulating oxide (usually SiO2) is in direct contact with the solution
being measured (Fig. 6.1). The charge that develops on the oxide surface due to
proton interaction controls the source–drain current (Ids) of the FET, which is now
indicative of the electrolyte pH.

Chemically modified field effect transistors (CHEMFETs) are ISFETs with spe-
cific membrane layers applied to the oxide insulator surface of the FET (Fig. 6.2),
creating an ISFET selective to the target ionic species, e.g. a nitrate ISFET.

ISFETs and CHEMFETs have some advantages over standard ISEs. Firstly, the
physical nature of the ISFET allows mass production of the sensors using micro-
electronic manufacturing technology, with polyamide and membrane layers applied
using rapid and repeatable techniques such as spin coating, film deposition, and

Fig. 6.1 ISFET construction
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Fig. 6.2 Schematic of a
CHEMFET showing layer
deposition

photolithography. This also allows manufacturing of miniature sensors containing
transducers for multiple ionic species. However, the benefits of miniaturisation – e.g.
lower sample volumes, speed of measurement, in situ deployment – are countered
by the requirement for a reference electrode, which for technical reasons cannot be
miniaturised without sacrificing electrode lifetime and stability.

Currently, pH ISFETs are commercially available; however, CHEMFETs are
more difficult to find. Their commercial development was driven by market focus
on biomedical applications, but development was limited by factors such as biocom-
patibility (Bergveld, 2003). pH ISFETs are commonly used in food processing and
medical science, where the vulnerability of glass membrane pH sensors makes them
problematic (Bergveld, 2003). They have also been used for proximal soil sensing
(Viscarra Rossel and McBratney, 1997). There has been limited use of CHEMFETS
in environmental applications. CHEMFETs selective for nitrate, calcium, and potas-
sium have been developed and evaluated for use in soil nutrient sensing (Artigas
et al., 2001; Birrell and Hummel, 2001). Currently there are no commercially
available CHEMFETs that are selective for ions targeted in soil nutrient analysis.

6.2.2 Soil Nutrient Analysis Using Electrochemical Sensors

The use of pH electrodes for measuring soil pH is a common and well-established
technique. Research into the use of electrochemical sensors for measuring additional
soil nutrients has been going on for decades, particularly after the introduction of the
nitrate ISE by Orion research in the late 1960s (Orion nitrate ion electrode model
92–07). Initially, work was aimed at reducing the time and complexity of labora-
tory analysis and at replacing methods that required pre-treatment and extractions
before analysis (e.g. in colorimetric analysis). This effort focussed on developing
analytical methods that avoided the technical constraints of ISE measurements (such
as interference, calibration, stirring, and response times) (Bremner et al., 1968;
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Dahnke, 1971; Oien and Selmer-Olsen, 1969). These studies demonstrated that
the concept was sound and that ISEs could successfully be used for low-cost soil
nutrient analysis.

There was a renewed interest in electrochemical sensors for soil nutrient sens-
ing in the 1990s, mostly due to the need for high spatial resolution soil information
in precision agriculture. This created demand for sensors that could provide rapid,
inexpensive, real-time measurement of soil properties, and preferably on-the-go.
The use of electrochemical sensors for measuring soil nutrients was attractive for
many reasons: they have a relatively fast response, they are rugged, they can mea-
sure directly in a soil slurry or in solution, they are relatively inexpensive, and they
require little supporting hardware. While there has been some research on proximal
soil sensing using other techniques – e.g. capillary zone electrophoresis (O’Flaherty
et al., 2000) and spectroscopic techniques (Chapter 3) – most of the research on soil
nutrient sensing has focused on electrochemical sensors. The main reasons are that
the measurements provide direct measurements of soil nutrient concentrations and
the measurements can be made directly in a soil slurry. A recent study reported that
the nitrate ISE holds an advantage over colorimetric techniques as a candidate for
soil sensing because it requires lower sample pre-treatment and has a fast response
of 30–60 s (Domingue et al., 2005). Electrochemical sensors have been evaluated for
stationary rapid soil analysis, i.e. static, in-field manual measurements or continuous
deployment (Davenport and Jabro, 2001; Artigas et al., 2001). Research also sug-
gests that they can be developed for autonomous, on-the-go operation (Adamchuk
et al., 2003; Adsett et al., 1999; Viscarra Rossel et al., 2005).

6.2.3 PSS: Stationary In Situ Analysis

Proximal soil nutrient sensing provides real-time and continuous monitoring, open-
ing the way for intelligent irrigation and fertiliser management systems (Artigas
et al., 2001). Davenport and Jabro (2001) assessed the use of handheld Cardy ion
meters for the direct measurement of soil nitrate, sodium, potassium, and pH. Two
types of samples were used – silt loam and sand textures – and distilled water was
added to the samples to provide a range of volumetric water contents. The result-
ing slurries were applied directly to the surface of the Cardy meters. The authors
found that the handheld soil pH meter worked well on soil slurries and provided
reliable measurements after more than 500 measurements. The Cardy potassium
and sodium meters worked well in soils with volumetric water contents between 20
and 25% (potassium) and 20 and 30% (sodium), but the sodium ISE did not perform
well with sandy soils. Durability of these ISEs was also lower and noticeable degra-
dation of the membranes was evident after 300 measurements. The Cardy meter is
not suitable for the measurement of soil nitrate-N (Davenport and Jabro, 2001).

Artigas et al. (2001) reported on the development and evaluation of pH, calcium,
potassium, and nitrate ISFETs for use in real-time soil monitoring. The ISFETs
were created with photo-curable polymeric membranes and soils were measured by
directly inserting them into soil pots (which were subjected to different fertiliser
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treatments) and the sensors were tested daily for 2 months. Over this period the sen-
sitivity of all but the nitrate ISFET remained constant (the nitrate device’s sensitivity
decreased after the first month). The drift of the sensors was in the range of 2–4 mV
per day (Artigas et al., 2001).

Viscarra Rossel and Walter (2004) developed a simple protocol for quantita-
tive spatial field measurements of soil pH using an ISFET. To determine adequate
times for field measurements, the kinetics of soil pH reactions in 1:5 suspensions of
soil/0.01 M CaCl2 (pHCa) and of soil/H2O (pHw) were quantified. The accuracy of
their 10-s field pH measurements was 0.34 pH units. Maps of field pH measurements
in the laboratory and in situ (in the field) were compared, and the latter appeared to
more accurately reflect the spatial structure of soil pHw. Temporal measurements of
field pH over 2 years were in good agreement.

6.2.4 PSS: On-the-Go

On-the-go proximal soil sensing must be rapid so as to allow data to be collected
while a vehicle is traversing the field. In addition, sample collection and analysis
needs to be automated to some degree. The advantage of on-the-go proximal soil
sensing is that the number of samples is greater so that the accuracy need not be as
great as for laboratory analysis where only few samples are measured.

A number of techniques have been explored for use in on-the-go sensing, and
these will be discussed in some detail. In brief, direct soil measurement involves the
direct insertion of the electrochemical sensors into a soil or a soil slurry, and this
is the simplest method. Agitated soil measurement (ASM) involves the controlled
addition of an extracting solution, followed by agitation of the slurry, and is similar
to the chamber and batch methods. Chamber and batch methods require the sam-
ple to be delivered to a measurement chamber so that parameters are more tightly
controlled, but the drawback is that complexity is increased. The final technique
to be discussed – flow injection analysis (FIA) – separates the soil and analysis
components and is called an ISFET-based FIA system.

6.2.4.1 Direct Soil Measurement

Currently there is only one commercial sensor for direct soil chemical measure-
ment – the pH manager, which is a module of the Mobile Sensor Platform (MSP)
commercialised by Veris Technologies, Inc. (Kansas, USA). It consists of a sample
shoe which, while traversing a field, periodically brings a core of soil into direct
physical contact with two pH electrodes (Adamchuk et al., 2006). While the pri-
mary advantage of this technique lies in its simplicity, and it performs well for soil
pH mapping, its performance in the measurement of other soil nutrients is question-
able. The feasibility of adapting this technique to the measurement of potassium,
sodium, and nitrate on naturally moist soil samples has been explored (Adamchuk
et al., 2005). Using the same sampling system as for pH measurements, the pH elec-
trodes were replaced with ISEs selective for nitrate, potassium, and sodium; when
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dealing with soluble potassium and residual nitrate, the system was capable of dis-
tinguishing between in-field areas of very low and high concentration levels. It is
likely that some variability is introduced through inconsistent collection of sample
cores, and its reliance on simple wetting of the soil surface probably results in non-
uniform dilution factors which will affect the measured ion concentration. Similarly,
upon wetting, some nutrient extraction would occur so that the ion concentration in
the slurry would be in a dynamic state, with a time constant likely to exceed that of
the electrode response. Finally, it must be noted that the technique is also physically
harsh on the ISE membranes.

6.2.4.2 Agitated Soil Measurement (ASM)

The agitated soil measurement (ASM) technique (Sethuramasamyraja et al., 2005)
was developed as a superior method, or modification, to the direct soil measurement
technique. It involves using a controlled agitation environment similar to the batch
method of Viscarra Rossel and McBratney (2003), but retaining some of the sim-
plicity of the DM technique by using an open chamber. In implementing an ASM
technique, Sethuramasamyraja et al. (2005) explored the use of a chamber-based
measurement system which they referred to as an integrated agitation chamber mod-
ule (IACM). ISEs selective for hydrogen, nitrate, and potassium ions are immersed
in the soil extract solution, providing an environment more physically suited to the
ISEs. They also observed the effects of various soil:water ratios, rinsing and extract-
ing water quality, agitation, and the requirement for ionic strength adjustment (ISA).
They reported that the best parameters for this system were agitated purified water
extraction, a fixed soil:H2O ratio of 1:1, and regular tap water for electrode rinsing.
No ISA was necessary. Laboratory testing of the system (Sethuramasamyraja et al.,
2008) using a modified soil-sampling shank on a Veris Mobile Sensor Platform was
somewhat disappointing; it showed that while the ASM technique implemented with
the IACM retained the benefits of reduced physical stress on the ISEs, there was no
significant improvement in measurement performance over the original direct soil
measurement technique. The authors suggest this could be due to the design of the
IACM and the use of half-cell electrodes.

6.2.4.3 Batch/Chamber-Based Methods

An alternative approach that avoids some of these problems has been the use of
batch-style processing and chamber-based analysis. Adsett and Zoerb (1991) devel-
oped a system for on-the-go soil nitrate measurement using an automated soil
collection, metering, and delivery system. Nitrate was extracted using deionised
water and analysed with a nitrate ISE. Although initial results were equivocal, they
still demonstrated the feasibility of the technique. An improved design of the sam-
pling system and electronics (Adsett et al., 1999) gave better results; however, field
testing was still not particularly good. This system monitors the initial ion exchange
kinetics, and by using calibrating samples, the initial sensor response is normalised
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and soil nitrate concentration estimated. Laboratory testing gave estimates of nitrate
with 95% accuracy in 6 s.

Loreto and Morgan (1996) developed an automated system for measuring field
nitrate. The system augments various components to produce a complete on-the-
go sample collection and analysis device. It included a sample wheel coring device
that delivers a 50 g soil core to a sample cup on an indexing wheel. On the same
indexing wheel, previous samples are simultaneously agitated and extracted using
deionised water and then analysed using a solid-state nitrate electrode. Total sample
measurement time is 20 s, with a new sample collected and processing initiated
every 5 s. The system was tested in a soil bin, and despite relatively low correlation
with a Lachat colorimetric analyser (R 2 = 0.43), the system showed good potential
for on-the-go sensing.

Viscarra Rossel and McBratney (2003) developed a chamber-based system for
on-the-go measurement of soil pH and lime requirement (LR). The system automat-
ically collected soil, sieving it to a size fraction of < 2 mm, before measuring out
a standard volume of soil. The soil was then delivered to a chamber containing a
modified Mehlich buffer or 0.01 M CaCl2 solution. The soil solution was agitated
and analysed using a pH ISFET. This technique focussed on the chemistry of the
system, in particular the online monitoring of the soil pH–buffer reaction. By mon-
itoring the initial 15 s of the buffer reaction, these data could be used to predict
buffer pH equilibrium and LR. Subsequently, Viscarra Rossel et al. (2005) devel-
oped an on-the-go soil pH and LR measuring system which automatically collected
soil, sieved the sample, and measured and delivered it to an analytical chamber for
real-time and on-the-go measurements.

Sibley et al. (2009) describe the field validation of a soil nitrate mapping sys-
tem (SNMS) which was used to evaluate a nitrate extraction and measurement
sub-unit (NEMS). The conceptual basis for this system follows that of Adsett
and Zoerb (1991) with several design modifications. The study explored various
data-processing methods (real number and integer number) and the use of soil
moisture correction, and the NEMS results were compared with those of standard
laboratory analysis for NO3-N. Samples were processed in the NEMS by adding
15.1 g moist sub-sample to 58 mL of vigorously stirred distilled water for 6 s.
The reported performance of the NEMS was excellent, with RMSE ranging from
2.23 to 3.73 mg kg−1 depending on the data-processing method used. Sibley et al.
suggest that although the sensor performance was robust under various field con-
ditions (crops, soil groups, fertility types, and tillage), wider testing of the system
is still required. They also found that the improvement gained from soil moisture
correction is minimal and does not justify the additional hardware and expense
required.

6.2.4.4 Flow Injection Analysis (FIA)

FIA can be used to measure low sample volumes, the analysis is rapid, and the
electrochemical sensors can be frequently recalibrated to account for variation in
their response. However, the sample injected into the FIA carrier stream must be
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filtered, and precise control of injection times and flow rates is important. These
add to the complexity of the system. Birrell and Hummel (2001) reported the devel-
opment of a multi-ISFET nitrate sensor using an FIA system. They found that the
FIA helps negate the long-term drift problems associated with ISFETs. A mechan-
ical extraction system for proof-of-concept testing under laboratory conditions was
also developed and tested. The system consisted of a soil-metering device and a
rotating sample disc that progressed each sample through stages of soil collec-
tion, injection of extracting solution, and finally filtration. The filtered solution was
then transferred and injected into the FIA carrier stream. It was reported that the
automated extraction system was not particularly successful, likely due to varia-
tion in metered soil volume, variation in injection volumes into the FIA stream,
and underestimation of actual soil nitrate due to incomplete extraction (Birrell and
Hummel, 2001). However, the FIA system was capable of providing measurements
of soil nitrate in manually extracted soil solutions with an R2 greater than 0.9
in 1.25 s.

Price et al. (2003) refined and evaluated a core extraction procedure using the FIA
system component developed by Birrell and Hummel (2001). The extraction system
involved clamping a soil core between two filter discs and injecting an extracting
solution (using a syringe pump) up through the filter soil core and filter assembly.
The resulting extract was sampled and injected into the flow analysis stream and
analysed using the FIA system. Sample response curves from the ISFET chip during
the extraction and analysis process were recorded, and from these a series of data
descriptors – such as response peak, slopes, and cumulative area-to-peak – were
isolated. Stepwise multiple linear regression (SMLR) was performed on response
descriptors, design variables (e.g. flow rates), and soil parameters to develop soil
nitrogen prediction models. The authors concluded that the nitrate extract from the
soil core was indicative of the soil nitrate concentration. They also suggested that
a priori knowledge of soil type may be required if the ISFET technology were to
make accurate real-time measurements of soil nitrate.

6.2.5 Addressing Limitations of Electrochemical Sensors
for Proximal Soil Sensing

There are a number of limitations that must be faced in using electrochemical sen-
sors for proximal soil sensing. The most significant arises from limited selectivity to
the target ion, or ion interference. Most ion-selective membranes respond to a range
of ions, with selectivity defined by selectivity coefficients. Response is defined by
the Nikolsky equation (a modified form of the Nernst equation) shown below for
a single interfering ion, where Kpot

ij represents the selectivity for an interfering ion
with activity aj and valence z:

E = E0 + 2.3RT

nF
log10

(
ai + Kpot

ij (aj)
n/z

)
.
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While ion selectivity coefficients for most electrodes are typically acceptable for
soil measurement of a single ion, problems arise when the aim is to measure mul-
tiple ions using a single extracting solution. High interfering ion activity occurs
in commonly used extracting solutions, particularly when simultaneous analysis of
multiple nutrients is being performed from a single batch extraction. Some limited
work has been done in identifying ion-selective membranes compatible with cer-
tain nutrient-extracting solutions. Kim et al. (2007b) evaluated the compatibility of
various ion-selective membranes and a cobalt rod-based ISE for simultaneous mea-
surement of nitrate-N, available potassium, and available phosphorus in Kelowna
extracting solution (0.25 M CH3COOH + 0.015 M NH4F). The ISE measurements
in Kelowna extract were also compared with traditional laboratory measurements
and, despite lower extracted quantities for phosphorus and potassium using the
Kelowna buffer, the compatibility still allowed for simultaneous measurement of
these soil nutrients.

Changes in sensitivity and sensor drift are other problems that must be addressed.
Typically, this is done by performing frequent calibrations. Sensor drift is typically
higher for ISFETs; however, the incorporation of ISFETs into an FIA system (e.g.
Birrell and Hummel, 1997) addresses this problem. Sensor drift may severely limit
the use of electrochemical sensors for in situ monitoring where frequent recalibra-
tion would be required for acceptable results. Sensor drift is also increased through
exposure to soil extract or slurry, particularly when using nitrate sensors. It has been
reported by several researchers (e.g. Adamchuk et al., 2005; Artigas et al., 2001)
that nitrate sensitivity decreases considerably after exposure to soil and soil slurry.

Another problem with the use of ISEs in proximal soil sensing is durability.
Recent work (Adamchuk and Lund, 2008) evaluates the use of an antimony elec-
trode as a more durable alternative for pH sensing with the DSM technique. The
measurement technique with glass pH electrodes may not be suitable in soils con-
taining heavy impurities or coarser textures. Adamchuk and Lund report that the
antimony electrode provides measurement results of similar quality with improved
durability.

6.3 Conclusions

There is a growing body of literature demonstrating the feasibility of PSS using elec-
trochemical sensors, and in some cases, successful systems have been demonstrated.
Most of these studies tended to focus on constraints imposed by field operation, but
there has been little work done in identifying and solving some of the fundamen-
tal issues associated with such measurements. There has also been only a small
amount of work done on characterising the chemistry of the systems and the effect
of variable environmental conditions, such as temperature. Finally, most work so far
has been limited to soluble or plant-available ion concentration, with little focus on
variable soil properties such as ion exchange kinetics. Due to the buffering nature
of soil, information on both soluble and exchangeable components is critical for
management decisions, e.g. for deciding whether to apply lime or fertiliser.
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Chapter 7
DIGISOIL: An Integrated System of Data
Collection Technologies for Mapping Soil
Properties

G. Grandjean, O. Cerdan, G. Richard, I. Cousin, P. Lagacherie, A. Tabbagh,
B. Van Wesemael, A. Stevens, S. Lambot, F. Carré, R. Maftei, T. Hermann,
M. Thörnelöf, L. Chiarantini, S. Moretti, A.B. McBratney, and E. Ben Dor

Abstract The multidisciplinary DIGISOIL consortium intends to integrate and
improve in situ proximal measurement technologies for assessing soil properties
and soil degradation indicators, moving from the sensing technologies themselves
to their integration and application in (digital) soil mapping (DSM). The core
objective of the project is to explore and exploit new capabilities of advanced geo-
physical technologies for answering this societal demand. To this aim, DIGISOIL
addresses four issues covering technological, soil science, and economic aspects:
(i) development and validation of hydrogeophysical technologies and integrated
pedogeophysical inversion techniques; (ii) the relation between geophysical param-
eters and soil properties; (iii) the integration of derived soil properties for mapping
soil functions and soil threats; and (iv) the evaluation, standardisation, and indus-
trialisation of the proposed methodologies, including technical and economic
studies.

Keywords Soil properties · Sensing technologies · Geophysical
techniques · Inference model · Water content

7.1 Introduction

The main objective of the European FP7 Cooperation Work Program on
Environment1 proposes to address global environmental issues in an integrated
way by advancing our knowledge and capacities to develop new technologies for
sustainable management of the environment and its resources. The DIGISOIL

G. Grandjean (B)
BRGM, Orléans, France
e-mail: g.grandjean@brgm.fr
1Framework Program 7.

89R.A. Viscarra Rossel et al. (eds.), Proximal Soil Sensing, Progress in Soil Science 1,
DOI 10.1007/978-90-481-8859-8_7, C© Springer Science+Business Media B.V. 2010
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project started in autumn 2008. As with the iSoil project (Chapter 8), it is defined
according to the FP7 work program and addresses ‘technologies for data collec-
tion in (digital) soil mapping’. The multidisciplinary DIGISOIL consortium aims
to integrate and improve in situ and proximal measurement technologies for the
assessing soil properties and soil degradation indicators, moving from the sens-
ing technologies themselves to their integration and application in (digital) soil
mapping (DSM).

In order to assess and prevent soil degradation and to benefit from the dif-
ferent ecological, economic, and historical functions of the soil in a sustainable
way, there is an obvious need for high-resolution, accurate maps of soil proper-
ties. The core objective of the project is to explore and exploit new capabilities of
advanced geophysical technologies for answering this societal demand. To this end,
DIGISOIL addresses four issues covering technological, soil science, and economic
aspects (Fig. 7.1): (i) the validation of geophysical (in situ, proximal, and airborne)
technologies and integrated hydrogeophysical inversion techniques (mechanistic
data fusion); (ii) the relation between geophysical parameters and soil properties;
(iii) the integration of derived soil properties for mapping soil functions and soil
threats; and (iv) the evaluation, standardisation, and industrialisation of the proposed
methodologies, including technical and economic studies.

7.2 Objectives

The purpose of the DIGISOIL project is to identify and bridge the technological
gap and develop pertinent, reliable, and cost-effective geophysical mapping solu-
tions. Considering the new equipment and signal processing developments offered
by recent scientific investigations, the problem of performing soil data collections
at the catchment scale using geophysical sensors can be foreseen in the near future,
particularly for methods identified in the following tables (GPR, EMI, seismics,
magnetics, and airborne hyperspectral) (Tables 7.1 and 7.2). Gravity-based and
thermal-based methods will not be incorporated in DIGISOIL because of their low
contribution to the characterisation of soil properties related to degradation pro-
cesses. For gamma radiometrics, several investigations have already been carried
out to study their potential for soil properties mapping (e.g. Viscarra Rossel et al.,
2007). This technology has given satisfactory results and permits one to map types
of clay minerals in the topsoil through the analysis of U, K, and Th anomalies
in the gamma spectrum. We will not consider this method since it appears to be
already used in the soil science community (Wilford and Minty, 2006). However,
since the information provided by this technology has many interesting aspects, we
will integrate it as potential auxiliary data in our mapping strategy. This context is
therefore favourable for the development of DIGISOIL’s mapping tools and prod-
ucts in relation to DSM applications. With respect to these issues, the milestones of
the DIGISOIL project are
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Table 7.1 Common elements for the identification of risk areas

Soil threats

Soil erosion OM decline Compaction Salinisation Landslide

Soil properties

Soil texture Soil
texture/clay
content

Soil texture Soil texture

Soil density Soil density
Soil hydraulic

properties
Soil hydraulic

properties
Soil hydraulic

properties
Soil organic

carbon
Soil organic

matter

Soil-related parameters

Topography Topography Topography Topography
Land cover Land cover Land cover Land cover
Land use Land use Land use Irrigation

areas
Land use

Climate Climate Climate Climate Climate
Hydrological

conditions
Agro-

ecological
zone

Occurrence/density
of existing
landslides

Groundwater
information

Bedrock
Seismic risk

1. To develop, test, and validate the most relevant geophysical technologies for
mapping soil properties: geoelectric, seismic, GPR/EMI, magnetic, and airborne
hyperspectral.

2. To establish correlations between the measured geophysical measurements
and the soil properties involved in soil functions/threats (erosion, compaction,
organic matter decline, salinisation, and shallow landslides) by using innovative
data processing (inversion) and correlation protocols.

3. To evaluate the societal impact of the developed techniques by investigat-
ing their relevance to end-user needs, their technical feasibility, and their
cost-effectiveness.

4. To produce an exploitation plan including the standardisation of the processes
and the technical specifications of the developed methodologies describing
the system components in terms of equipment (sensors, acquisition system,
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Table 7.2 Potential influence of soil threats on functions of soils

Function of
soil/soil threat

Biomass
production

Storing,
filtering
and trans-
formation

Bio
diversity
pools

Physical
and
cultural
media

Raw
material

Carbon
pool

Geological
and archaeo-
logical
heritage

Erosion x x x x x x x
Decline in
organic matter

x x x – x x –

Contamination x x x x x x x
Sealing x x x x x x x
Compaction x x x x – x x
Decline in soil
biodiversity

x x x – – x –

Salinisation x x x – – x –
Floods and
landslides

x x x x x x x

x potential influence; – no influence

mobile vector), techniques (signal processing, inversion or fusion processes,
specialisation), and operational protocols.

7.3 Strategy and Workplan

The DIGISOIL architecture is structured according to five items in relation to the
above-cited objectives of the project:

1. Identification of pertinent sensor technologies: the capabilities of the different
geophysical techniques will be investigated and technically adapted so as to char-
acterise highly complex soil properties (spatial and temporal heterogeneities, low
variations of properties, context-dependant, etc.). Two series of experiments will
be carried out with a two-step feedback approach in order to analyse sequen-
tially, and on different sites, the quality of the results and the efficiency of each
technology.

2. The data integration for estimating soil properties: the conversion of geophys-
ical parameters into soil properties and the derivation of soil threats are not
straightforward. Most of the time, several indicators are necessary to reduce the
uncertainty of the estimation. Studying the different correlation between indica-
tors and possible soil properties should finally lead to an innovative methodology
of fusion, guaranteeing a final assessment in terms of soil diagnostics (soil
properties, threats, and soil functions).

3. Testing and validation on selected sites: the Commission policies have to deal
with various European environments. For that reason, the sensor technologies
will be tested on two series of sites: (i) second-order test sites for a specific
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technique adaptation and (ii) first-order sites for testing the validity domain of
different sensors at the same location. The latter have been selected in order
to ensure a maximal geographical representativeness within Europe. For this
validation task, classical in situ invasive sensors will be used.

4. Evaluation of the proposed methodologies: as the intent is oriented towards serv-
ing DSM applications, the results should be evaluated in terms of technical
feasibility, maturity, and economical costs.

5. Exploitation of the proposed methodology: with respect to the Work Program’s
objectives, which stipulate that technologies developed in the Collaboration
Program have to be finally exploited as European services, an exploitation
plan, including technical specifications of the developed methodologies, will be
presented.

7.4 From Soil Threats to Geophysical Properties

The DIGISOIL project can be seen as the setting up of operational techniques useful
for implementing existing and emerging EU environmental legislation and policy –
like the European Soil Thematic Strategy, which aims to protect soil functions and
prevent soil degradation. Table 7.1 represents the main soil and soil-related parame-
ters to be considered by member states for delineating risk areas. Since soil texture,
soil water content, soil hydraulic properties, bulk density, and soil organic matter
are involved in many soil functions, these properties have to be considered the first
priority. Soils under threat cannot continue to perform all their environmental, eco-
nomic, social, and cultural functions in the same way after being degraded (e.g.
biomass production is not possible on sealed soils). The gradual loss of performance
of soil functions depends on the severity of a threat, which can be gauged in terms
of its intensity and duration. Depending on the type of threat, different soil functions
may be affected (Table 7.2). In some cases more than one threat occur on a certain
piece of land.

The combination of threats sometimes worsens their effect on soil functions. As
illustrated in Fig. 7.1, which summarises the DIGISOIL concept, the core objec-
tives of the program are focused on determining the most relevant soil properties,
which in a second phase (and through the use of pedo- and hydro-models, as
well as auxiliary data) will allow us to map soil threats and functions. In the last
decades, geophysical prospecting applied to subsurface characterisation has been
of an increasing interest, particularly in soil science. Major advances in this tech-
nological domain can be attributed to the development of integrated measuring
systems, increasing computing power, equipment portability, and hardware/software
diffusion. In this context, two kinds of technological platforms can be involved:
ground-based and proximal technologies, working from the surface and from the
air. Ground-based geophysical instruments are now equipped with digital signal pro-
cessing and recording capabilities previously restricted to large corporate computing
centres. This improved computational capacity has provided investigators with
near real-time results that, in turn, drive improvements in instrument sensors and
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Table 7.3 Main ground-based and airborne geophysical methods and related physical parameters.
Italics indicate methods that will not be integrated into the DIGISOIL tool

Geophysical methods Physical parameters

Ground-penetrating radar (GPR) Dielectric permittivity, electric conductivity,
magnetic permeability, frequency dependence of
these electromagnetic properties

Seismic reflection and refraction Volume and shear-wave velocities
Electromagnetic induction (EMI) Electrical resistivity (electric conductivity and

frequency dependence)
Electrical resistivity (geoelectric) Electrical resistivity (almost zero-frequency)
Gravity Density
Magnetics Magnetic susceptibility and viscosity
Airborne thermic Surface temperature
Airborne hyperspectral Spectral reflectance
Gammametry Gamma spectrum (U, K, Th)

processing algorithms. In a similar way, recent airborne geophysics has sparked
strong interest due to the possibilities of civil airplanes equipped with optical, ther-
mal, or hyperspectral sensors. The most common methods that take advantage of
these enhancements, and their related parameters, are listed in Table 7.3.

Measuring the electrical resistivity of soil was proposed in the DIGISOIL project
because it is closely related to several soil parameters and can be performed over
areas of several hectares with high resolution (Panissod et al., 1997; Chapter 26,
this volume). Up to now, the interpreting electrical measurements have remained
difficult because the different influences soil parameters have on electrical resistiv-
ity are still hard to discriminate. There are numerous relationships between electrical
resistivity and any one soil physical or chemical parameter. For example, there are
linear (or more complex) correlations between electrical resistivity and soil temper-
ature (Keller and Frischknecht, 1966), soil water content and salinity (Sen et al.,
1988), soil cationic exchange capacity (Shainberg et al., 1980), soil texture (i.e. clay
content), and soil porosity (Friedman, 2005). Other studies have demonstrated the
influence of soil structure on electrical resistivity, such as the impact of bulk density
or the effect of cracks (Samouëlian et al., 2003).

Spatial electrical investigations therefore enable us to describe soil structural
heterogeneity, with the aim of delineating specific zones for use in precision agri-
culture or to map soil texture (Tabbagh et al., 2000) or salinity (Corwin et al., 2006).
Nevertheless, despite these known relationships, it remains difficult to describe the
effect of ancillary parameters on electrical resistivity, especially the effect of the
soil structure (which changes quickly under the influence of water content and tem-
perature). To address these issues, specific experiments will be conducted in the
DIGISOIL project, such as taking measurements that should help describe the evo-
lution of at least one or two parameters (assuming the others remain constant). As
an example, Fig. 7.2 shows three electrical resistivity maps recorded on three dates
when only the soil water content was supposed to vary (Besson et al., 2008).
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Fig. 7.2 Resistivity maps for three dates showing the impact of water saturation in soils on
electrical resistivity (Besson et al., 2008)

Other studies will evaluate the possibility of using field spectroscopy
(Chapter 11) to estimate carbon content (Stevens et al., 2006). Visible and near-
infrared (VNIR) spectral analysis and diffuse reflectance analysis are techniques
that can rapidly quantify various soil characteristics simultaneously (Ben-Dor and
Banin, 1995; Viscarra Rossel et al., 2006). There are three types of VNIR techniques
(Chapter 13), which operate at different spatial scales and in different environ-
ments: (1) laboratory spectroscopy (LS); (2) portable field spectroscopy (PS); and
(3) imaging spectroscopy (IS). LS and PS rely on ground-based sensors (such as
the Fieldspec Pro FR from Analytical Spectral Devices covering 350–2,500 nm).
IS uses air- or space-borne sensors such as the Compact Airborne Spectrographic
Imager or CASI (covering 405–950 nm) and the Shortwave Infrared Airborne
Spectrographic Imager (SASI), covering 900–2,500 nm). Two different test sites in
southern Belgium were monitored within the framework of the Belgian airborne
imaging spectroscopy campaigns under the PRODEX program. The aim was to
explore the capabilities of VNIR spectroscopy in the context of soil organic car-
bon (SOC) inventories and monitoring. The sites, Ortho in the Ardennes (50◦8′
N, 5◦36′ E) and Attert (49◦45′ N, 5◦44′ E), were overflown with a CASI sensor
in October 2003 when cereal fields had been ploughed, harrowed, and reseeded.
Exactly 120 soil spectra from 13 bare fields were taken at Ortho and 40 from 10 bare
fields at Attert using the Fieldspec Pro (ASD). At the same sites, topsoil (0–5 cm)
samples were taken and analysed for moisture content and organic carbon content
(the latter by wet oxidation). Furthermore, three bulk density samples were taken in
each field in order to calculate the SOC stock in the ploughed layer (mean thick-
ness 22 cm). Another dataset from a previous IS campaign near Attert, using both
CASI and SASI sensors, was also analysed. We used both stepwise and partial least
square (PLS) regression analysis to relate spectral measurements to SOC content.
Root mean square error of prediction (RMSEP) for the ASD ranged from 2.4 to
3.3 g C kg−1 depending on soil moisture content of the surface layer (Table 7.4).
Imaging spectroscopy performed poorly, mainly due to the narrow spectral range of
the CASI. Tests using both the CASI and the SASI performed better. The variation
in soil texture and soil moisture content degrades the spectral response to SOC con-
tents. Currently, RMSEP allows us to detect an SOC stock change of 1.9–4.4 g
C kg−1 or 4.2–9.9 Mg C ha−1 in the upper 22 cm of the soil and is therefore
still somewhat high, at least in comparison with changes in SOC stocks resulting
from management or land conversion reported in the literature (0.3–1.9 Mg C ha−1



7 DIGISOIL: An Integrated System of Data Collection Technologies 97

Table 7.4 PLS regression output statistics of the best model for each dataset

Calibration Validation

RMSECa RMSEPb

Data N g C kg−1 RMSEC/SD N g C kg−1 RPDc R2

ASD 108 2.8 0.45 37 3.3 1.79 0.82
ASDd 77 1.7 0.25 24 2.4 2.33 0.90
CASI (Ortho) 94 3.0 0.93 32 4.4 1.08 0.44
CASI (Attert) 75 3.4 0.51 24 3.8 1.97 0.87
Casi+SASI 73 2.9 0.60 26 1.9 2.50 0.92

aRoot mean square error of calibration
bRoot mean square error of prediction
cRatio of performance to deviation (RMSEP/SD)
dOnly including the dataset of dry soil surfaces

Fig. 7.3 Map of soil organic carbon content in a freshly ploughed field after land consolidation.
The borders of the original fields that were joined are indicated with dashed lines (Stevens et al.,
2006)

yr−1; Freibauer et al., 2004). A detailed SOC map produced by IS reflected the pat-
terns in SOC content due to the site’s recent conversion from grassland to cropland
(Fig. 7.3).

Accuracy of the spectral techniques is lower than that of most routine labora-
tory SOC analyses. However, the large number of samples that can be analysed
by hyperspectral techniques outweighs the slight loss of precision compared to
traditional chemical analyses. The greatest potential lies in airborne applications
because imaging spectroscopy can cover a wide region almost instantaneously and
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produce thousands of samples. Relatively poor detection levels are attributed to sen-
sor characteristics (artefacts, noise, and limited spectral range) and factors affecting
the soil spectral response (limited variability in SOC content, disturbing factors).
The problem of disturbing factors will be addressed in the DIGISOIL project,
through an experimental study of the effect of soil moisture, soil texture, and soil
roughness on reflectance. Experiments on soil texture recovery, particularly well-
suited for distinguishing between calcite and clayed minerals and using ULM’s
onboard sensors, have already begun (Fig. 7.4). Furthermore, specifications for air-
borne sensors as well as the optimal strategy for calibration and validation will be
documented.

Ground-penetrating radar (GPR) is an increasingly used non-invasive and
proximal electromagnetic (EM) sensing technology that can image the subsurface
and identify its physical properties (Chapter 25). It is based on sending electromag-
netic radiation (ultra-wideband VHF-UHF) into the soil and recording the reflected

Fig. 7.4 ULM facility and resulting images: one based on Spectral Angle Mapper (SAM) classi-
fication; the second based on SWIR data where absorption bands of mineral clays (2.0–2.4 μm)
are present (Univ. Firenze). Red: calcite, green: chlorite, yellow: illite, blue: illite-smectite, cyan:
smectite
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signals. In areas of agricultural and environmental engineering, GPR has been
used to identify soil vertical structures, locate water tables, follow wetting front
movement, identify soil hydraulic parameters, measure soil water content, assess
soil salinity, monitor contaminants, and delineate soil compaction. Nevertheless,
existing GPR techniques still suffer from major limitations due to simplifying
assumptions on which they rely, particularly about EM wave propagation. In gen-
eral, the radar system and antennas are not accounted for, ray approximation is
applied to describe GPR wave propagation, and only the propagation time to
reflectors is considered in signal processing algorithms. Reflection amplitude can
also be used, but this is limited to the surface reflection for airborne GPR, and
requires calibrations that are not practical for automated and real-time mapping.
As a result, only a part of the information contained in the GPR data is usually
used, and significant errors in the estimates are often introduced. To circumvent
these shortcomings, Lambot et al. (2004) have recently developed a new approach:
stepped-frequency continuous-wave monostatic off-ground GPR. The off-ground
mode is particularly appropriate for real-time mapping of shallow subsurface prop-
erties. The radar system is based on ultra-wideband vector network analyser (VNA)
technology. In contrast to classical GPR systems, the physical quantity measured
by a VNA is exactly known and defined as an international standard. This per-
mits the use of advanced full-waveform forward and inverse modelling techniques
to estimate soil EM properties from the GPR signal, which intrinsically max-
imises information retrieval from the recorded data. In that respect, Lambot et al.
(2004) developed a remarkably accurate EM model for their specific radar config-
uration, which included internal antenna and antenna–soil interaction propagation
effects; they were able to exactly solve the three-dimensional Maxwell equations
for wave propagation in multilayered media. Through GPR signal inversion, the
approach has been successfully validated in a series of controlled hydrogeophysical
experiments for electromagnetic soil characterisation (which included dielectric per-
mittivity, electric conductivity, and frequency dependence of these quantities). GPR
data inversion has been also integrated with hydrodynamic modelling to retrieve
soil hydraulic properties from time-lapse radar data and to monitor the dynamics
of continuous water content profiles (Lambot et al., 2006). In addition, the tech-
nique improves shallow subsurface imaging, which represents an important asset
for determining high-resolution soil stratigraphy. Figure 7.5 shows an example
of a field application where the developed method is used for real-time mapping
of the soil surface dielectric permittivity and correlated water content, bridging
the spatial scale gap between traditional soil sampling and remote sensing in
hydrology.

To complement the above-cited techniques, DIGISOIL aims also to explore inno-
vative geophysical methods for characterising specific soil properties. In particular,
seismic methods will be tested in order to quantify the soil’s mechanical modulus,
a parameter closely related to soil compaction (Grandjean, 2006). Already vali-
dated in geotechnics for investigating zones tens of metres in extent, the challenge
will be in adapting the methodology to small seismic devices, i.e. zones of several
metres.
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Fig.7.5 Real-time mapping of soil surface water content with advanced GPR (Lambot et al., 2006)

7.5 Conclusions

In order to assess and prevent soil degradation, and to benefit from the different eco-
logical, economic, and historical functions of the soil in a sustainable way, there is an
obvious need for high-resolution, accurate maps of soil properties. The core objec-
tive of the project is to explore and exploit new capabilities of advanced geophysical
technologies for answering this societal demand. Some geophysical techniques that
will be carried out in the project are based on positive experiences in the domain and
promise to fulfil the objectives of the project. Electrical and GPR measurements,
hyperspectral imagery, and more innovative methods like seismic methods will be
tested and technically adapted to soil properties mapping. An important output of
the project will concern the use of related soil properties in an application dedicated
to digital soil mapping (Chapter 5).
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Chapter 8
iSOIL: An EU Project to Integrate Geophysics,
Digital Soil Mapping, and Soil Science

U. Werban, T. Behrens, G. Cassiani, and P. Dietrich

Abstract The Thematic Strategy for Soil Protection, prepared by the European
Commission in 2006, concluded that soil degradation is a significant problem in
Europe. Degradation is driven or exacerbated by human activity and has a direct
impact on water and air quality, biodiversity, climate, and the quality of (human) life.
High-resolution soil property maps are a major prerequisite for the specific protec-
tion of soil functions and the restoration of degraded soils, as well as for sustainable
land use and water and environmental management. To generate such maps, a com-
bination of digital soil mapping approaches and remote and proximal soil sensing
techniques is most promising. However, a feasible and reliable combination of these
technologies for the investigation of large areas (e.g. catchments and landscapes)
and the assessment of soil degradation threats is still missing. There is insufficient
dissemination – to relevant authorities as well as prospective users – of knowledge
on digital soil mapping and proximal soil sensing from the scientific community. As
a consequence, there is inadequate standardisation of the techniques. In this chap-
ter we present the EU project iSOIL, which is funded within the 7th Framework
Program of the European Commission. iSOIL focuses on improving and develop-
ing fast and reliable mapping of soil properties, soil functions, and soil degradation
threats. This requires the improvement and integration of advanced soil sampling
approaches, geophysical and spectroscopic measurement techniques, as well as
pedometric and pedophysical approaches. Another important aspect of the project
is the sustainable dissemination of the technologies and the concepts developed. For
this purpose, guidelines for soil mapping on different scales, and using various meth-
ods for field measurements, will be written. Outcomes of the project’s measurements
will be implemented in national and European soil databases. The present state of
knowledge and future perspectives will be communicated to authorities, providers
of technologies (e.g. small and medium enterprises), and end-users.
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8.1 Introduction

Soil erosion, decline in organic matter, local and diffuse contamination, sealing,
compaction, decline in biodiversity, salinisation, floods, and landslides are serious
threats to soil (Eckelmann et al., 2006). Soil degradation is accelerating, with nega-
tive effects on human health, natural ecosystems, climate, and the economy. In this
context, the availability of high-resolution soil property maps is a major prerequisite
for protecting and restoring soils. Existing databases for soils in Europe normally
cannot provide such maps at sufficient resolution and coverage. Furthermore, these
maps are often inconsistent and based on different soil mapping standards. Most
soil properties are estimated in the field by soil surveyors, resulting in subjec-
tive, non-reproducible, and non-transferable data. Conventional, sample-based soil
property mapping is time-consuming and expensive, and the data collected is only
available for a few discrete points in a landscape. Thus, conventional soil mapping
approaches are not reasonably applicable for large areas at high resolution and accu-
racy. The need to improve the current soil mapping toolbox has been recognised
by the European Union as a result of its ‘Thematic Strategy for Soil Protection’
(European Commission, 2006).

The combination of geophysical methods and pedometrical techniques is
one approach to improve the soil mapping toolbox. Various soil properties can
already be mapped quasi-continuously in two dimension and in three dimen-
sion, using rapid and inexpensive methods (geophysics, infrared spectroscopy; see
Chapters 3 and Chapter 19). However, the techniques available are deficient in
terms of

• reliability and precision,
• the understanding of relationships between mapped soil parameters and relevant

soil functions,
• transfer and application to large areas (e.g. catchments and landscapes), and
• the evaluation of soil degradation.

The EU project ‘iSOIL: Interactions between soil related sciences – Linking
geophysics, soil science, and digital soil mapping’, financed by the European
Commission within the 7th Framework Program, aims to overcome these defi-
ciencies. The iSOIL consortium consists of 19 partners from 9 countries and
contains universities, research organisations, and small- and medium-sized enter-
prises (http://www.iSOIL.info). The companion EU FP7 project is described in
Chapter 7.
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8.2 General Objectives

The focus of the iSOIL project is to develop new (and improve existing) strategies
and innovative methods for generating accurate, high-resolution, soil property maps.
At the same time, the developments should reduce costs compared to traditional soil
mapping. The project tackles this challenge by integrating the following three major
components:

i. high-resolution, non-destructive geophysical, e.g. electromagnetic induction
(Chapter 2), ground-penetrating radar (Chapter 25), magnetics (Chapter 20),
seismics, and spectroscopic methods (Chapters 3, 11, 12, 13, 14, 15, 16, 17, and
Chapter 18) and gamma spectroscopy (Chapters 27 and 28),

ii. spatial interpolation and extrapolation concepts, e.g. geostatistics and machine
learning (McBratney et al., 2003; Scull et al., 2003; Chapter 4), and

iii. soil sampling and validation schemes to provide representative and transferable
results (Brus et al., 2006; Behrens et al., 2009a; Chapters 1, 9, and 10).

Thus, within iSOIL we will develop, validate, and evaluate concepts and strate-
gies for transferring measured physical parameter distributions into soil property,
soil function, and soil threat maps of different scales, maps which are relevant to and
demanded by the ‘Thematic Strategy for Soil Protection’ (European Commission,
2006). The final aim of the iSOIL project is to provide techniques and recommen-
dations for high-resolution, economically feasible, and target-oriented soil mapping
under realistic conditions.

8.3 Motivation of the Project

Global demand for low-cost, high-resolution digital soil maps can only be served
partially at present (McBratney et al., 2003). Traditional soil sampling is labour-
intensive, time-consuming, and very expensive. Additionally, only sparse datasets
are generated. Scale, resolution, and information content of available soil class maps
are not sufficient for applications such as GPS-based precision farming (Adamchuk
et al., 2004). Soils are classified by soil surveyors using national, non-comparable,
soil taxonomy systems instead of soil properties. As a result, soil maps are often not
comparable.

Existing commercial single sensor systems are bound to a specific measure-
ment depth. Relationships between sensor signals and soil properties are often
non-linear and in some cases not understood. At the same time, new and emergent
(geo-)physical techniques not yet in the commercial domain show promise for soil
sensing.

Therefore, the following three topics are of major methodological interest, and
we will briefly describe them.
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8.3.1 Development of Geophysical Techniques

In recent years, various geophysical techniques have been developed for soil map-
ping based on the understanding that several soil properties correlate with physical
parameters. For example, measurements of apparent electrical conductivity provide
very useful soil information for precision farming (Chapter 19; Sudduth et al., 2001,
2005; Lück et al., 2002; Domsch and Giebel, 2004; Hedley et al., 2004; Werban,
2009). Maps prepared from radiometric surveys provide information about the par-
ent soil and properties such as surface texture, weathering, leaching, soil depth, and
clay types (Chapters 27, 28, and 29; Dickson et al., 1996; Viscarra Rossel et al.,
2007; Wong et al., 2009). Extensive, geo-referenced soil maps for precision farm-
ing based on single geophysical sensors are commercially available, but only to a
limited degree. Nevertheless, collection of integrated data from different techniques
is currently only done at universities and research institutes, and most systems are
still in the research stage. Further improvement in the integration of geophysical
and meteorological sensors on platforms is needed. Combining multiple sensor data
to derive a single soil property is the most promising approach to obtaining valid,
high-resolution, and transferable results. However, exploring and developing emerg-
ing techniques, e.g. the derivation of mechanical properties using seismic methods
and the characterisation of soil structures using spectral induced polarisation, is also
part of iSOIL. Improvements of such techniques and development of concepts for
platform integration are being sought (Chapters 31, 32, 33, and 34).

8.3.2 Development of Geophysical Transfer Functions

Since there is rarely a direct relationship between geophysical measurements and
soil properties, a geophysical survey to generate a soil property map generally leads
to ambiguous results. As in similar disciplines, such as well-log analysis (Doveton,
1986; Schön, 1997), it is expected that only suitable combinations of different geo-
physical quantities correlate unambiguously with the soil parameters of interest.
At least in theory, searching for combinations that explain the soil parameter data
should be equivalent to a principal component decomposition of the multi-parameter
geophysical dataset. Even though a coherent view of how soil properties and soil
state affect geophysical responses is lacking, a number of tentative constitutive laws
exist linking certain geophysical properties to soil and rock properties (Chelidze and
Gueguen, 1999; Rubin and Hubbard, 2005). Table 8.1 gives an overview of the main
parameters acquired by geophysical methods and their related soil properties.

Development of geophysical transfer functions needs to be performed on the
basis of both experimental results and theoretical work. In particular, two paral-
lel lines of investigation need to be pursued: (i) the development of empirical and
semi-empirical relationships between geophysical parameters and soil parameters,
accounting for state variables (moisture content, salinity, and temperature), and
(ii) the development of physically based relationships with the aid of numerical
computation (pore scale models), including state variables. With the help of the
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Table 8.1 Quantitative relationships of physical and soil parameters

ρ/σ κM vGPR/εr Ar/α Vp Vs Vp/Vs K μs γ κh τ , c, ρ0, ρ∞

θ x x x x x x X
Sw x x x x x x X
� x x x x x x X
ψ x x x x x x X
ρd x x x x x
TDS x x x X
OC x x x x x
CC x x X
FeC x
T x X
κh x x X

ρ, resistivity; σ , conductivity; κM, magnetic susceptibility; vGPR, GPR velocity; εr, dielectric
permittivity; Ar and α, GPR amplitude and attenuation; Vp, seismic P-wave velocity; Vs, seismic
S-wave velocity; Vp/Vs, Poisson ratio; K, elastic bulk modulus, μs, shear modulus; γ , natural γ-
ray intensity; τ , c, ρ0, ρ∞, IP parameters; θ , vol. water content; Sw, saturation; �, porosity; ψ,
water potential; ρd, density; TDS, total dissolved solids (salinity); OC, organic carbon content;
CC, clay content (by cation exchange capacity); FeC, Fe content; T, temperature; κh, hydraulic
conductivity

multi-parameter constitutive laws, geophysical measurements could then be used to
map soil properties in a quick and efficient manner. This site-specific approach is the
basis for an improved understanding of relationships and strategies for site-specific
determination. Moreover, there is a need to investigate how flow and transport prop-
erties of soils could be assessed using geophysical parameters easily obtainable at
the field scale.

8.3.3 Digital Soil Mapping

As most soil functions, soil threats, and environmental models (e.g. hydrological
models) depend, in general, on soil properties, soil properties are the focus of the
iSOIL project. Mapping soil properties is a more complex task than mapping soil
classes in the field. Estimating soil properties in the field is limited by the soil
surveyor’s experience and is therefore subjective, susceptible to errors, and time-
consuming. To overcome these shortcomings, (geo-)statistical and mathematical
approaches have to be applied, as formulated in the scorpan paradigm introduced
by McBratney et al. (2003), where a given soil property S can be mapped as a func-
tion of other soil properties s, climate c, organisms o, relief r, parent material p, age
a, and space or spatial location n. Within the iSOIL project, new scorpan functions
as well as environmental covariates will be tested.

Combining optimised sampling schemes (Chapter 1) with new and optimised
data processing and digital soil mapping approaches could offer operational and eco-
nomic benefits. Data collection would be based on improved and new geophysical
measurements. Creating digital soil maps relies on data mining, geostatistics,
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machine learning, and fuzzy logic. Thus, it is a challenge to not only find an optimal
combination of geophysical sensors but also devise an accurate, optimised mapping
technique that can cope with diverse levels of data availability and different land-
scape settings and can scale to map soil properties. The developed techniques and
mapping tools need to be validated in terms of different soil functions and threats.
Additionally, mapping and modelling approaches have to be tested at different land-
scape scales. Therefore, spatial data-mining approaches that operate across different
scales have to be developed (Behrens et al., 2009b).

8.4 Structure of the Project

The project is structured as seven work packages (cf. Fig. 8.1). WP1 and WP2
develop and apply mobile measuring platforms by integrating existing geophysical,
spectroscopic, and monitoring techniques and explore emerging technologies. WP3
will develop physically based transfer functions – so-called constitutive models – to
establish site-specific relations between geophysical and soil parameters. The data
generated by WP1–WP3 will be used in WP4 for digital soil mapping approaches.
Furthermore WP4 will provide sampling schemes for WPs 1–3.

In terms of the expected impact of the project, it is necessary to demonstrate
the capability of the technologies developed in WPs 1–4 to map soil functions,
their suitability for different applications (e.g. management of soil threats, precision
farming), and their economic feasibility for end-users. Therefore, the validation and
selected application of soil property maps in soil threat models plays an essential
role in the overall project. Field measurements, testing, and validation will be per-
formed at field sites having different sizes and different threats. To indicate how
the integrated framework might be applied at larger scales, a hierarchical design is

Fig. 8.1 Relation of the work packages to the overall tasks of the iSOIL project
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Fig. 8.2 Hierarchical iSOIL approach to data collection

chosen for the iSOIL project (cf. Fig 8.2). WP5 is responsible for the validation of
the derived techniques and for exploring their application to studying soil threats.
WP6 develops guidelines and standardisation, whereas WP7 prepares information
for disseminating outcomes to end-users.

8.5 Conclusions

Within iSOIL we aim to assess and improve the integration of (multiple) geophys-
ical datasets for digital soil mapping. One objective is the development of new, as
well as improved, methods for mapping soil properties, including geophysical, spec-
troscopic, and monitoring techniques. In addition, different kinds of geophysical
mapping technologies will be integrated into measuring platforms, allowing rapid
(and economically feasible) mapping of large areas with multiple and complemen-
tary parameters. In this way, iSOIL will develop, validate, and evaluate necessary
concepts and strategies for transferring measured physical parameter distributions
into maps of soil properties and soil functions. Furthermore, iSOIL will develop
sampling designs (for measurements, calibration, and validation) and pedometric
approaches (for model and data integration, interpretation, mapping, and cross-scale
analysis) to produce maps of soil properties, functions, and threats.

The major challenge within the iSOIL project is to seamlessly combine and
integrate different measuring techniques, pedometric and geophysical approaches,
enhanced DSM techniques, and subsequent modelling. We expect iSOIL will pro-
vide, at high acquisition rates, the most relevant soil properties, functions, and
threats at high spatial resolution. The combined techniques will greatly improve
digital soil maps and, in this way, planning and decisions related to soil.

Finally, iSOIL should provide realistic techniques and recommendations for
high-resolution, economically feasible, and target-oriented soil mapping for a range
of end-users. The project will transfer knowledge of concepts and technologies to
authorities and small and medium enterprises in different European countries.
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Chapter 9
Conditioned Latin Hypercube Sampling
for Calibrating Soil Sensor Data to Soil
Properties

B. Minasny and A.B. McBratney

Abstract This chapter discusses methods for soil sampling that allow calibration
of proximal sensor readings to soil properties. Conditioned Latin hypercube sam-
pling (cLHS) was recently proposed as a method for sampling based on covariates
obtained from proximal soil sensors. The method provides full coverage of the range
of each variable by maximally stratifying the marginal distribution. A modification
of cLHS was made so that it samples more on the edge of the distribution. This mod-
ification, called DLHS, is inspired by the D-optimality criterion in linear regression,
where the design will place sample points on the corner of the distribution. We run a
simulation to test the performance of cLHS. The simulation assumed a known form
of the response function of EM38, EM31, and elevation to clay content. Results
showed that when the form of the model is known, it is beneficial to place more sam-
ple points on the corners of the hypercube. When the form is unknown, conventional
cLHS performs better.

Keywords Soil sampling · Calibration · Proximal sensor · Hypercube sampling

9.1 Introduction

An important aspect of soil sampling for high-resolution digital soil mapping is
calibration (Chapter 1). There are several approaches to calibration sampling. The
process usually involves surveying an area (a field) with on-the-go sensors, and
soil sampling is required to provide calibration functions relating sensor readings
(soil covariates) with soil properties. Once the calibration functions have been estab-
lished, they are applied throughout the field to obtain high-resolution maps of soil
properties. The goal of sampling in this application, according to Lesch (2005), is
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selecting site locations that (1) can be used to optimise the fitting of a spatial regres-
sion model and (2) are representative of the total spatial variation for the targeted soil
property or properties. A typical example is given by Lesch (2005), who developed
an algorithm for the purpose of calibrating the electromagnetic induction (EMI)
data to soil electrical conductivity and to clay content. The area was surveyed with
an EMI equipment, and soil sampling was required to provide calibration functions
relating EMI readings to soil clay content, water content, and electrical conductivity.

The design of calibration sampling aims to obtain a small number of samples
so that they represent the predictor space effectively. Lesch (2005) developed an
algorithm for calibration of electromagnetic induction (EMI) data. The sampling
strategy not only covers a range of EMI values but also ensures a spreading of
the location of the samples. The application of this sampling strategy is shown
in Chapter 12. Hengl et al. (2003) proposed sampling along the principal com-
ponents of the environmental covariates: the number of samples taken from each
of the components is the proportion of the total variance described by each of
the principal components. Other sampling designs for calibration are discussed in
Chapter 1.

Minasny and McBratney (2006) argued that, for the purpose of spatial regres-
sion calibration, it would be beneficial to cover the range of values of each of
the covariates using Latin hypercube sampling (LHS) (McKay et al., 1979). LHS
is a procedure that ensures full coverage of the range of each variable by maxi-
mally stratifying the marginal distribution. LHS involves sampling n values from
the prescribed distribution of each of k variables x1, x2, . . ., xk. The cumulative
distribution for each variable is divided into n equiprobable intervals. A value is
selected randomly from each interval. The n values obtained for each variable are
matched randomly with those of the other variables. This method does not require
more samples for more dimensions (variables) (Fig. 9.1).

Another type of design optimised the variance of regression prediction using
the so-called D-optimal design (St. John and Draper, 1979). The criterion used in
generating D-optimal designs is to minimise the area of the confidence region for
the linear model’s parameter estimates or maximising the determinant of the infor-
mation (covariance) matrix. The design adds ‘axial’ checkpoints and centre points
or ‘corners’ of the distribution and is particularly useful if the model is linear. An
example for two variables is given in Fig. 9.2.

x1

x2

x1

y

Fig. 9.1 Latin hypercube
sampling for two covariates
x1, x2, and the assumed
response to soil property y
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x1

x2

x1

y

Fig. 9.2 D-optimal design
for an assumed two variables
x1, and x2, and assumed
response to soil property y

Inspired by the D-optimality criterion, we will modify the cLHS algorithm to
place more sample points along the ‘axial’ or edge points of a hypercube. Then
we will investigate its benefits for model calibration in a comparison with the
conditioned Latin hypercube and simple random sampling.

9.2 Theory

A conditioned Latin hypercube sampling (cLHS) was proposed by Minasny and
McBratney (2006) for sampling of existing covariates. We cannot directly apply
conventional LHS to the multivariate distribution of covariates. Sample points
selected by conventional LHS may represent combinations of the variables that do
not exist in the real world (Fig. 9.3). Randomisation is used in this case as the distri-
bution among the variables is not even, and some parts of the variable space might
not correspond with existing soil.

For example, consider the EM38, EM31, and elevation data from Comet field
in New South Wales, Australia (Fig. 9.4) (further examples will be given in
Section 9.3). Figure 9.3 shows the scatter plot of the cumulative probability
of EM38, EM31, and elevation as dots. Clearly, EM38 and EM31 are strongly
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Fig. 9.3 Cumulative probability distribution of the EM38, EM31, and elevation data from the
Comet field
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Meters

Fig. 9.4 EM38, EM31, and elevation from the Comet field

correlated, and the shape of the distribution between EM38 and elevation is uneven
and some combinations do not exist.

The conditioned LHS algorithm attempts to select n observations (sites) from
existing data which can form a Latin hypercube in the feature space. The algorithm
solves an optimisation problem: given N sites with ancillary data (X), select n sample
sites (n << N) so that the sampled sites x form a Latin hypercube. The method is a
search algorithm based on heuristic rules combined with an annealing schedule.

The objective function to be minimised is an error criterion that counts the occu-
pancy of the hypercube. First we define the sample size n, each component of X (size
N × k) is divided into n equally probable strata based on their distribution, and x
(size n × k) is a sub-sample of X. We define matrix η, which counts the number of
x that fall into each of the defined strata:

η =

⎡
⎢⎢⎣

η11 η12 . η1 k

. . . .

. . . .
ηn1 . . ηnk

⎤
⎥⎥⎦ , (9.1)
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where the rows represent the strata s1, . . ., sn and the columns represents variables
x1, . . ., xk. A true LHS will have values of 1 for all cells of matrix η; we call this
matrix ηo.The objective function is to minimise:

O = ‖η − ηo‖ . (9.2)

A new conditioned LHS is proposed with importance placed on the ‘edge’ of the
hypercube; we call it DLHS. We define parameter b, the importance of the edge of
the distribution. For example, b = 2 means the edge of the distribution is twice more
probable of being sampled than the rest. The objective is then to match the sampled
matrix η to ηb:

ηb =

⎡
⎢⎢⎣

b b . b
1 1 . 1
. . . .
b b . b

⎤
⎥⎥⎦ . (9.3)

We note that this is not a D-optimal design; it merely places importance on the edges
of the hypercube.

9.3 Applications

We tested the LHS methods on the Comet field, situated in a property near Moree
in the north-west of NSW. The area has been surveyed with on-the-go proximal
soil sensors: EM38 (vertical mode), EM31, and elevation. The three variables were
mapped at a resolution of 5 × 5 m using kriging with local variograms. The field is
about 0.8 km2 with 32,216 pixels.

For the purpose of this chapter, we postulated that we know the ‘true’ relation-
ship between the proximally sensed covariates and the soil’s clay content (0–30 cm).
Bulk electrical conductivity (ECa) from EM38 and EM31 is assumed to have a pos-
itive correlation with the soil’s clay content (0–30 cm). This is in line with empirical
observations and proposed theory on ECa (McBratney et al., 2006). Elevation is
assumed to have a negative correlation with clay content, which is a general feature
observed in soil–landscape rules in erosional–depositional environments: areas at
lower elevations tend to accumulate higher clay content. Both linear and nonlinear
relationships between ECa and elevation to clay content are postulated and given in
Fig. 9.5.

The postulated ‘true’ clay content of the soil is a linear contribution from the
three factors, with 50% from EM38, 25% from EM31, and 25% from elevation:

True clay content (%) = 0.5 f (EM38) + 0.25 f (EM31) + 0.25 f (z). (9.4)

Normally distributed random numbers (mean = 0, variance = 1) were added to
the ‘true’ clay content and represent measurement error and termed as ‘observed’
clay contents.
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Fig. 9.5 ‘True’ linear and nonlinear models for the response of bulk electrical conductivity (ECa)
and elevation to the soil’s clay content

Three sampling methods are used to select samples of size 20 from the 32,216
data points:

• Conditioned Latin hypercube sampling (cLHS)
• Conditioned Latin hypercube sampling with importance (DLHS), where the edge

of the hypercube is three times more likely to be sampled
• Simple random sampling (SRS)

The three sampling methods were performed 100 times (realisations). For each
sampling method

(1) Select 20 sample points from the whole data (32,216 sites)
(2) Match the ‘observed’ clay for the 20 sample points
(3) Fit a model predicting clay from the three covariates using either a linear or a

quadratic function:

(a) a linear model,
�
Clay = β0 + β1 EM38 + β2 EM38 + β3 z on the linear

relationships,

(b) a quadratic model,
�
Clay = β0 +β1 EM38+β2 EM31+β3 z+β4 EM382 +

β5 EM312 + β6 z2, on the quadratic relationships,

(c) a linear model,
�
Clay = β0 + β1 EM38 + β2 EM38 + β3 z, on the quadratic

relationships.

(4) Apply the prediction model (a), (b), (c) to all data (32,216 sites)

(5) Calculate the RMSE

√
1
/
n

n∑
i=1

(�
y −y

)2
for (a), (b), and (c).
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9.4 Results and Discussion

Figure 9.6 shows an example of using DLHS where the edge of the distribution has
a threefold greater probability of being sampled than the rest. We can see that DLHS
samples more densely the edge of the distribution compared to cLHS (Fig. 9.7).

The sampling locations and position in the distribution of one sampling realisa-
tion of 20 sample points are given in Fig. 9.8.

Figure 9.9 shows the root mean squared error for predicting clay content using
the three types of sampling. When the relationship between the covariates and clay
content is known (i.e. linear or quadratic), DLHS produces lower RMSE than cLHS
and SRS; thus it appears to be a better sampling method. However, when we fit a
linear model to quadratic relationships, the conventional cLHS gives lower RMSE
compared with DLHS. SRS shows the largest RMSE for all.
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Fig. 9.6 Sample points selected using DLHS with 100 samples of size 20, where sampling at the
edge of the distribution was given three times more probability than the rest of the distribution
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From these empirical results, we can conclude that if we know the relationships
between covariates and soil properties (correct model assumption), sampling with
emphasis on the edge of the distribution may be useful for calibration. However
if the relationships are not known, but are assumed to be linear (incorrect model
assumption), cLHS performs better as it ensures adequate ‘spread’ of data along the
distribution. In real situations, most often we know little about the model structure,
and it has to be inferred from the sample data as well.

The above exercise is by no means comprehensive and is intended to show the
application of the cLHS method. One can use the D-optimal design for sampling
with an assumed linear model and assuming the error to be spatially independent.
Alternatively, a more sophisticated model which minimises the variance of universal
kriging can be applied (Brus and Heuvelink, 2007). However, that model requires
the form of the relationship to be known a priori and, in the case for universal
kriging, the variogram of the residuals also needs to be assumed. While some rela-
tionships between covariates and soil properties are known and can be assumed to
be linear, many relationships are dependent on the landscape and not known a pri-
ori. Furthermore, in digital soil mapping soil sampling is conducted for calibration
of not only one soil property but several soil properties at once. Thus we believe
that the cLHS method, which attempts to cover the whole multivariate distribution,
works well for this purpose. Additional coverage at the edge of the distribution may
be beneficial when we know the type of relationship – e.g. ECa and clay content.

Finally, an important question about calibration sampling is, how good are
predictions by the models inferred from the samples selected via the sampling
method? Further work will include examining sampling method and choice of model
structure in the simulation:

sampling → model selection → model fitting → prediction → validation.

Acknowledgement We thank Jaap de Gruijter for his comments and suggestions on the chapter.
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Chapter 10
Response Surface Sampling of Remotely Sensed
Imagery for Precision Agriculture

G.J. Fitzgerald

Abstract Estimating biophysical characteristics of land surfaces using imagery or
spatially contiguous datasets derived from proximal sensors requires developing sta-
tistically robust predictive models between the spatial data and ground features.
These spatial datasets can contain thousands to millions of points or pixels, so
determining the number and location of ground samples to calibrate models is
critical. Zoning and co-kriging approaches have been used to identify sampling
locations, but they suffer from either ambiguous location identification or the need
for 60 or more ground points to produce robust models. In this study, the software
‘ECe Sampling, Assessment, and Prediction’ (ESAP) was used to select sampling
locations from high-resolution (4 m) imagery of a barley crop to develop a predic-
tive regression model for biomass. A normalised difference vegetation index was
derived from imagery of an 80 ha field near Rupanyup, Victoria, Australia in 2006.
The ESAP software was originally developed to calibrate apparent soil electrical
conductivity data to model soil salinity based on response surface theory, but any
geo-located spatial dataset can be input. Results showed that the 12 ESAP-selected
points produced a statistically significant regression model unbiased by spatial auto-
correlation and was better able to predict biomass than models derived from 12
random points and a pooled model derived from 24 sample locations. The corre-
lations between the selected pixels in the imagery and biomass (r2 = 0.38) were
not as high as from ground spectral data (r2 = 0.79) collected coincident with
biomass sampling, possibly due to misalignment between the imagery and ground
data. Digital output from this approach could be used to map soil or plant proper-
ties, schedule variable rate applications of chemicals, or be used as inputs to soil
and crop simulation models for more accurate site-specific modelling.

Keywords Remote sensing · ESAP · ENVI · NDVI · Vegetation index ·
Response surface
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10.1 Introduction

Measuring biophysical and soil features across a landscape is not feasible with-
out using some type of spatial dataset derived from sensors. Whether these sensors
have direct contact with the surface being measured (Stenberg and Viscarra Rossel,
Chapter 3) or sense remotely (e.g. imagers), they generally do not directly mea-
sure the parameter of interest. It is also not practically feasible to sample all points
within the entire area of interest, so sampling routines and predictive equations must
be developed to relate the sampled data to the larger area of interest. Number of
samples, cost, and how to sample are all important variables (De Gruijter et al.,
Chapter 1) and need to be optimised.

Remotely sensed imagery can provide valuable information about the spatial dis-
tribution of crop and soil characteristics. Fine-scale imagery of fields can contain
millions of data points (pixels). If the objective is to develop a relationship between
the imagery and ground data so that crop and soil characteristics can be mapped,
then sampling issues (number and location of sites) become critical. The cost of
physical sampling can limit the number of samples collected, but sufficient samples
are required to produce a robust relationship between the imagery and biophysical
measurements.

There are different techniques to relate ground data to imagery. Zone maps can
be produced using classification routines commonly available in software, based
either on the range of data values in the imagery or between imagery and ground
data after regressions have been developed. One concern, however, is that regres-
sion statistics require sample independence. If they are not independent, then the
correlation coefficients can be inflated and misleading (Stein et al., 2002). Thus,
spatial autocorrelations must be removed or reduced to minimise their impact on
the developed relationships. Techniques such as co-kriging can be used to account
for spatial autocorrelations, but they require 60 or more points of ground data for
model development (Lesch et al., 1995a).

The ‘ECe Sampling, Assessment, and Prediction’ (ESAP) software was used
here to select a small set of sites for directed ground sampling from imagery used
as input. The software minimises the possibility of spatial autocorrelations in the
model residuals by separating out the sampling locations as far as possible. It also
provides for robust regressions by simultaneously selecting points with a large range
of values from the imagery. The ESAP software assumes that a linear or low-order
quadratic relationship exists between the input spatial dataset (imagery) and the
ground data of interest. It was originally developed to direct soil sampling for cali-
bration of electromagnetic induction data for estimation of soil salinity (ECe) from
apparent soil electrical conductivity (ECa) survey data (Lesch et al., 2005, and ref-
erence therein). However, since it requires a spatial dataset as input, any geo-located
data can be used. The theoretical and operational details of this software have been
thoroughly described (Lesch et al., 1995a, b; Lesch et al., 2000; Lesch, 2005) and a
more detailed description of the technique discussed here is presented in Fitzgerald
et al. (2006).
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The objective of this research was to use the ESAP software to provide geo-
registered locations for plant biomass sampling based on input of imagery acquired
over a field planted to barley and determine whether the predictive equation was
statistically robust. Aerial imagery (normalised difference vegetation index, NDVI)
was substituted for ECa and crop biomass (dry) for ECe in the ESAP software,
allowing for the production of predictive maps of crop dry matter. Although plant
data were used as the ground ‘truth’ data, soil characteristics or any spatially discrete
dataset (geo-located) could be used.

10.2 Material and Methods

10.2.1 Remote Sensing and Image Processing

Multispectral imagery was acquired from a Cessna 206 flying at 3,050 m (10,000 ft)
above an 80 ha barley field planted near Rupanyup, Victoria, Australia (36º41.1′ S,
142º33.5′ E), on 8 August 2006 at 12:30 local time under clear skies. The imagery
was collected from an MS3100 imaging system (Redlake Inc., San Diego, CA) cus-
tom designed with three narrow spectral bands centred at 670 (25), 720 (10), and 790
(25) nm with 8-bit resolution. Numbers in parentheses are bandwidths in nanome-
tres. The imager had a 15º × 20º field of view. Ground pixel resolution was about
1 m. Imagery was converted to reflectance using ground tarps of known reflectance
located near the field.

The software ENVI (ITT, Boulder, CO) was used for all image processing.
The 3-band image was converted to an NDVI using the 670 and 790 nm bands
[(790 – 670 nm)/(790 + 670 nm)]. Trees, roads, canals, and other features not of
interest were masked out. Because ESAP limits input data file size to 30,000 points,
the number of pixels was reduced by resampling the 1 m pixels to 4 m and exclud-
ing NDVI values less than 0.53. This also ensured that locations would have plants
available for ground sampling. These data were exported as text for input to the
ESAP software.

10.2.2 Directed Sampling

The ESAP software is composed of several modules. The ESAP-RSSD (response
surface sampling design) module assesses the input geo-located dataset and selects
a subset of sites that are then used to direct ground sampling to the proper loca-
tions in order to build a predictive regression equation for all unsampled locations.
Once the data are entered in the proper format (Lesch et al., 2000), the software
provides the opportunity to remove outliers based on standard deviations from the
mean. This is an iterative process that ends when there are no more outliers above
4 standard deviations (default) from the mean or a value selected by the operator.
Sample designs are then produced that space the sample locations apart to minimise
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spatial autocorrelations. Each sampling design is assigned an ‘optimisation crite-
rion’ (Opt Cri) which is a measure of spatial uniformity of the sample design. The
operator can choose the design with the lowest Opt Cri, or another if desired. Values
below 1.30 are desirable (Lesch et al., 2000), although greater values can be accept-
able even though they indicate more clustering of data points. The default setting
selects 12 geo-registered calibration locations for sampling (6 and 20 can also be
chosen), thus directing the user to these locations. Further details of the selection
procedure and use of the software can be found in Lesch et al. (2000) and Fitzgerald
et al. (2006).

The ESAP-RSSD software requires that the data meet two basic assump-
tions in order to produce accurate sampling designs (Lesch et al., 1995a, b):
(1) A linear relationship must exist between the crop attributes (e.g. biomass)
and the covariate (remotely sensed geospatial data) and (2) the residuals of the
regression model between the crop attribute and the covariate must be spatially
uncorrelated.

One feature of the software is its tendency to select points along the edges of
the input dataset. This occurs because the software attempts to evenly distribute
the data to reduce spatial autocorrelations. Although there is nothing inherently or
statistically wrong about this, the input data must not contain anomalous data along
edges (such as roads and houses) and thus require preprocessing to remove those
features not related to the parameter(s) of interest.

10.2.3 Ground Sampling

Plant samples were collected from 24 ground locations 2 weeks after image acqui-
sition. The barley plants were at growth stage DC 35 (five nodes) at sampling time
(Zadoks et al., 1974). Exactly 12 of these locations were identified using the ESAP
software (designated ‘ESAP’); 12 others were randomly selected sites using the ran-
dom number function within Microsoft Excel (designated ‘RND’). These were used
for validation of the data from the ESAP-selected locations. Ground points were
located using a Trimble Ag132 DGPS (Trimble Navigation Limited, Sunnyvale,
CA). At each location, 1 m lengths of above-ground biomass were cut from four
separate rows within a 2 m radius of the centre of each location in order to collect a
representative sample to compare to the 4 m pixels. Plant matter was weighed, dried
at 100ºC, re-weighed, and dry matter (DM, g/m2) calculated.

Narrow-band remote sensing sensor data were also collected at the time of
ground sampling from each of the 24 locations using a FieldSpec Pro spec-
troradiometer (Analytical Spectral Devices, Boulder, CO). These measurements
represented about 1 m diameter areas of the crop and were radiometrically cor-
rected to reflectance by measuring a white reference Spectralon plate (Labsphere,
North Sutton, NH) immediately after each location measurement. This is a standard
method for converting raw spectral data to reflectance. Reflectance is a physical
measure of the amount of light reflected from a surface under prevailing lighting
conditions and accounts for changes in atmospheric transmittance and sun angle.
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10.2.4 Statistical Analysis and Mapping

The ESAP-Calibrate module was used to develop a regression relationship (a
calibration) between the spatial dataset (NDVI) and the ground reference data
(biomass). It was used to derive statistical parameters for four datasets [ESAP
points, RND points, Pooled data (ESAP + RND), and the ground data]. The out-
put included the Moran statistic for spatial independence (IMS), root mean square
error (RMSE), and predictive equations for developing a regression model to esti-
mate dry matter (DM) biomass at all non-sampled locations (DM = b0+b1×NDVI,
where b0 = intercept and b1 = slope). Once the image was calibrated to biomass,
an unsupervised IsoData classification routine available within ENVI was used to
delineate zones within the image map produced.

10.3 Results and Discussion

Since the objective was to develop accurate predictive models for biomass, spatial
autocorrelation was assessed to provide confidence that the regression coefficients
were not inflated. Four different datasets were tested (Table 10.1) based on the
biomass and NDVI data from the 24 locations (Fig. 10.1). Since the p-values (p IMS)
for the Moran statistic for the model residuals were not significant (p > 0.05) for
any of these, the points chosen could be modelled as simple regressions without
spatial bias. Note that the degree of spatial autocorrelation can be seen in the Pooled
data. As the number of points in the model increased from 12 to 24 (and the mean
distance between points decreased), the significance of the Moran statistic (p IMS)
decreased.

Correlation coefficients of NDVI vs. DM (Fig. 10.2, Table 10.1) show that
the ESAP points provided statistically significant results (p < 0.05), although the
relationship was not very robust (r2 = 0.38). The regression between NDVI and
DM with RND points was not statistically significant (n.s.). Pooling the ESAP and
RND points showed a significant relationship (p = 0.007), but again the relation-
ship was not strong (r2 = 0.28). Other biophysical factors were calculated, such
as leaf area index and plant nitrogen (N/m2), and these had strong relationships to
biomass (data not shown). When these were regressed against the ground-based and
image-based NDVI, the data scatter and relationships were similar to biomass (so

Table 10.1 Regression statistics for predictive equations between NDVI and dry matter
(DM, g m−2)

DM prediction using Slope Intercept R2 p RMSE IMS p IMS

ESAP-selected, 12 points 225.2 −40.2 0.38 0.030 27.9 −0.20 0.84
RND-selected, 12 points – – 0.06 0.46 n.s. – −0.26 0.84
Pooled, 24 points 206.9 −25.2 0.28 0.007 26.7 −0.04 0.46
Ground-measured (ESAP) 877.3 −572.9 0.79 0.0001 16.1 – –
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Fig. 10.1 Normalised
difference vegetation index of
80 ha field. Symbols indicate
sampling locations (◦ =
ESAP, • = RND). Brighter
pixels indicate more plant
biomass

Fig. 10.2 Regression line for
the ESAP (◦) points with the
RND (•) points overlaid (not
included in regression)

these would not have added to the discussion and are not presented, but could be
predicted and mapped similarly to biomass).

The validity of the ESAP point selection process and the strength of the regres-
sion are two separate issues. Model validity can be assessed by comparing with an
independently designed and sampled dataset, such as that provided by the 12 RND
points. The DM values at the RND locations and the ESAP locations overlay each
other, thereby representing the same data space (Fig. 10.2). Given that the slope and
intercept of the ESAP and Pooled points are virtually the same (and not statistically
different), there is confidence that the ESAP model properly describes the relation-
ship and that the 12 points selected by ESAP were just as good as (or better than,
in this case) the larger set of 24 points. The linear assumption of the relationship
between NDVI and DM is shown to be valid by comparing the NDVI measured
with the spectroradiometer directly over the sample locations with DM (Table 10.1,
r2 = 0.79). More comprehensive tests for assessing model robustness are presented
in Fitzgerald et al. (2006), but since the results presented here showed the same
trends as in the previous study, these tests were not duplicated.
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It is possible for this directed sampling (or any modelling) approach to be statis-
tically valid but produce equations that have low accuracy for the predicted variable
because of data scatter. Data from the co-located ground NDVI and biomass samples
showed that this relationship is fundamentally strong (r2 = 0.79, Table 10.1). The
weaker relationship between the imagery and ground data (r2 = 0.38) is likely due
to any or all of the following: inaccuracy of the DGPS (2 m accuracy), slight mis-
registration in the data (1 pixel shift represented 4 m), the delay in ground sampling,
or issues of scaling (Lovejoy et al., 2008). This last point is more critical when
considering the ability of using imagery to estimate ground parameters. Scaling
and sampling have not been well addressed in the remote sensing community and
may represent the missing link in the ability to produce accurate maps derived from
remote sensing.

The RND model chose values that did not result in a significant relationship
between NDVI and DM (Table 10.1, Fig. 10.2). Although the distribution of points
across the field was dispersed (Fig. 10.1), the actual range of values was more
restricted than the ESAP-selected sites (Table 10.2). In addition to separating the
sample locations in space, ESAP selects a wide range of data values to improve the
predictive relationship developed. Including a greater range of values also reduces
the chances of extrapolation errors beyond the model results. Random sampling can-
not guarantee either spatial or value separation of points for development of optimal
regression models.

Since the model derived from the ESAP-selected locations was statistically sig-
nificant and coincided with the Pooled dataset, the slope and intercept in Table 10.1
for the ESAP-selected data was applied to the NDVI image (Fig. 10.1) to derive a
biomass map. A classification routine applied to the imagery emphasises differences
across the landscape (Plate 10.1). The red colour shows known areas of soil includ-
ing roads, bare areas around trees, fence lines, and dry stream channels. The green
and blue areas were arbitrarily divided into low and high NDVI zones for display.
A figure illustrating a continuously variable map is also possible and would look
similar to Fig. 10.1.

The ESAP software maximises the probability that a sampling design will be
generated that yields a regression model with spatially uncorrelated residuals. If
the average sampling distance is less than the residual spatial correlation distance,
then the residuals will show spatial dependence, inflating the correlation coeffi-
cient. Absent spatial dependence, this approach generates a simple regression model
requiring few points for prediction of plant and soil characteristics across the land-
scape. Other indices relating to soil colour, texture, or chemical constituents could

Table 10.2 Univariate
statistics (NDVI values) for
ESAP, RND, and Pooled
datasets

Dataset Mean Min Max

ESAP points 0.64 0.53 0.78
RND points 0.59 0.55 0.63
Pooled points 0.61 0.53 0.78
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Plate 10.1 Classified dry
matter (DM) image (three
zones). Green = low DM
(72 g m−2 [11]), blue = high
DM (106 g m−2 [12]), red =
soil. Numbers in parentheses
are class means and in square
brackets standard deviations

be input regardless of sources, as long as they are geo-located and satisfy the model
assumption of having a linear or near-linear relationship to the ground factor of
interest.

10.4 Conclusions

Ground sampling and validation are the ‘missing links’ between remotely sensed
imagery and quantified measures of ground features of interest. Sampling tech-
niques that require many ground locations for validation are neither practical nor
cost-effective and are unlikely to be put into wider practice. The advent of ever
more readily available spatial datasets requires simpler tools for sampling. Although
imagery was used here as an example, it should be noted that spatially contiguous
datasets derived from any source, including proximal sensors, could be used as input
and then calibrated to create useful maps of the parameter of interest.

The ESAP software presented here allows a spatial dataset to be calibrated by
selecting 12 points within the dataset. It spatially distributes the data points to min-
imise, but not eliminate, the chance of spatial autocorrelations. It provides statistics
for the user to understand the relationships and patterns in the data. It assumes that
the spatial dataset (image) and ground data of interest (e.g. biomass) are linearly or
nearly linearly related. It also requires geo-located points as input. The software is
freely available and can be learned quickly.

This sampling strategy to link spatially explicit remotely sensed and ground data
has the following advantages over other sampling methods:

(1) Identifies unambiguous locations for sampling (unlike zoning);
(2) Requires relatively few ground points to build the regression (calibration) model

(unlike co-kriging);
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(3) Uses any spatially explicit dataset as input;
(4) Minimises chance of spatial autocorrelations;
(5) Produces continuously variable maps of the ground factor of interest.
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Chapter 11
Mid- Versus Near-Infrared Spectroscopy
for On-Site Analysis of Soil

J.B. Reeves, G.W. McCarty, and W.D. Hively

Abstract Research has demonstrated that for the determination of soil carbon, dif-
fuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is often more
accurate and produces more robust calibrations than near-infrared (NIR) reflectance
spectroscopy (NIRS) when analysing ground, dry soils. But DRIFTS is not con-
sidered feasible on non-dried samples due to the strong water absorptions in the
mid-infrared. Also, mid-infrared spectrometers are generally either sealed from the
ambient atmosphere or purged with CO2-free dry air. While DRIFTS has been
shown to be advantageous in the laboratory, if samples need to be ground and dried
and instruments purged, it may not be practical for on-site analysis. The objective
of this research was to determine the effect of ambient atmospheric conditions and
soil state (ground, dried, etc.) on DRIFTS and NIRS calibrations for soil C and N.
Results using a portable DRIFTS spectrometer over a wide range of ambient con-
ditions demonstrated that purging is not necessary to obtain calibrations for C in
soils equal to those obtained in the lab with dry or dried–ground samples. However,
efforts with field-moist samples have demonstrated that while calibrations using
DRIFTS can be developed with an accuracy equal to those obtained using NIRS,
the calibrations may not be as robust and more research is needed. Comparing these
results with results obtained using large-scale scanning such as remote imaging
or in situ NIR (scanning on the fly with a tractor-drawn NIR unit) indicates that
soil analysis in which the sample is analysed by both traditional analysis (com-
bustion) and spectroscopic analysis as performed here results in better calibrations.
However, a much smaller area of the total field is sampled. An important question
that emerges is Which is more valuable, lots of lower quality information or much
less information, but of perhaps much higher quality?

Keywords Soil analysis · Soil carbon · Soil nitrogen · Mid-infrared ·
Near-infrared · NIR
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11.1 Introduction

Near-infrared (NIR) reflectance spectroscopy (NIRS) has been used for decades for
the analysis of a wide variety of agricultural materials including grains and for-
ages (Roberts et al., 2004). More recently mid-infrared (mid-IR) diffuse reflectance
spectroscopy (DRIFTS) has been shown to be capable of such determinations, e.g.
ground forages (Reeves, 1996), grains (Reeves and Delwiche, 1997), and soils
(Janik et al., 1998; Reeves et al., 2001, 2002), without the customary KBr dilu-
tion pretreatment used in mid-infrared spectroscopy. The soil results have indicated
DRIFTS to be more accurate than NIRS for the determination of C and spec-
tral interpretation much easier due to the more advanced state of mid-IR spectral
interpretation (Smith, 1999).

Recently, interest has greatly increased in the concept of sequestering carbon in
soils to help remediate increasing atmospheric CO2. The question of how soil C will
be determined, if credits are given, has yet to be determined. It can be imagined that
the ability to determine soil C on-site could be of benefit, e.g. one could do a quick
survey of the field in order to determine the best locations for selecting samples for
C analysis based on C variability. However, several interrelated questions remain
to be answered if on-site analysis of samples – either as a preliminary survey, or
even as a final means to determine the soil C content, or other measures such as N –
is to be feasible, including what is the best spectral range to use, or even if such
spectral methods are the best procedure? The objective of this work was to examine
NIRS, DRIFTS, laboratory-based, field portable, and remote sensing spectroscopic-
based methods under a variety of soil sample conditions [field-moist (FM), dried,
and sieved but not ground (DRYSV), and dried, sieved, and ground (DRYSVGRN)]
to determine the feasibility of on-site analysis of soils for total C and total N.

11.2 Materials and Methods

11.2.1 Soil Samples

In order to obtain as wide a range of C as possible, 67 soil cores (0–30 cm) were
obtained from a site at the USDA Beltsville Agricultural Research Center (BARC)
based on a previous mapping of carbon values (no consideration of N content was
taken in the sampling design). Each core was sectioned into three sub-samples, 0–
10, 10–20, and 20–30 cm, yielding 201 samples. After scanning FM, sub-samples
were dried at 50◦C for 2 days and crushed using a hammer mill. The crushed
material was further ground in scintillation vials using a SampleTek vial rotator
(SampleTek, Science Hill, KY). Finally, a set of 403 FM samples was obtained
from five bare-soil (recently ploughed) fields on the Eastern Shore of Maryland and
another 125 FM from the original site at BARC.
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11.2.2 Compositional Determination

All C and N values (Table 11.1) were determined by combustion on samples which
had been DRYSVGRD as indicated in Section 11.2.1 using either an Elementar
Analysensysteme vario MAX CNS elemental analyser (Elementar Americas, Mt.
Laurel, NJ) or a Leco TruSpec CN analyser (Leco Corp., St. Joseph, MI).

Table 11.1 Percent C and N values for all 201 soil samples examined

Variable N Mean SD Minimum Maximum

Carbon 201 0.91 0.58 0.11 2.63
Nitrogen 201 0.13 0.09 0.02 0.39

11.2.3 Fourier Transform Spectrometer (FTS)

Dried and sieved, and DRYSVGRN samples were scanned (no KBr dilution) in the
mid-IR from 4,000 to 400 cm−1 or in the NIR from 10,000 to 4,000 cm−1 (4 cm−1

resolution, 64 co-added scans) on a Digilab (Varian, Inc., Palo Alto, CA) FTS7000
FTS equipped with DTGS (deuterated triglycine sulfate) and InSb detectors and
KBr and quartz beam splitters (mid-IR and NIR, respectively) by diffuse reflectance
using a Pike (Pike Technologies, Madison, WI) AutoDiff autosampler (sample cups
∼1 cm in diameter).

Field-moist, DRYSV, and DRYSVGRN samples were also scanned in the mid-
IR on a Surface Optics Corporation model SOC-400 portable FTS (Fig. 11.1) from

Fig. 11.1 SOC-400 scanning
samples under ambient
conditions on-site
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4,000 to 400 cm−1 at 8 cm−1 resolution using a rotating sample cup (approximate
path 2 mm in width around an 8 mm diameter circle).

11.2.4 Non-FTS NIR Spectroscopy

Field-moist, DRYSV, and DRYSVGRN samples were also scanned in the NIR on an
NIRSystems model 6500 scanning monochromator (FossNIRSystems, Eden Prairie,
MN) from 400 to 2,498 nm (25,000–4,003 cm−1) with data collected every 2 nm at
a 10 nm bandwidth using a rotating sample cup ∼4 cm in diameter.

11.2.5 Chemometrics

All calibration development was performed using SAS Ver. 9.12 PLS (Reeves and
Delwiche, 2003). A total of 30 different spectral pre-treatments were tested, includ-
ing multiplicative scatter correction and first and second gap derivatives with all
spectra mean centred and variance scaled. Two types of calibrations were examined
(1) using all samples in a one-out cross validation (Table 11.2 and Fig. 11.2) and
(2) randomly splitting the samples into calibration samples and independent tests
(Beltsville core samples only, Table 11.3 and Fig. 11.3).

Table 11.2 One-out calibration results using all 201 samples, with every four data points
averaged

Analyte DER MSC GAP Factors RMSD CALR2

NIRSystems 6500 with spinning cup

Samples scanned neat
Carbon 2nd Yes 8 9 0.155 0.928
Nitrogen 2nd No 32 13 0.027 0.902

Samples scanned air-dried
Carbon 2nd No 32 13 0.153 0.931
Nitrogen 1st No 64 13 0.030 0.881

Samples scanned air-dried and ground
Carbon 1st No 1 8 0.148 0.935
Nitrogen 1st No 2 8 0.026 0.906

DIGILAB (VARIAN) FTS-7000 FTNIR

Samples scanned air-dried
Carbon 2nd No 2 4 0.171 0.913
Nitrogen 2nd No 32 4 0.025 0.912

Samples scanned air-dried and ground
Carbon 1st No 1 5 0.145 0.938
Nitrogen 1st No 1 5 0.024 0.920
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Table 11.2 (continued)

Analyte DER MSC GAP Factors RMSD CALR2

DIGILAB (VARIAN) FTS-7000 FTIR

Samples scanned air-dried
Carbon 2nd No 1 3 0.175 0.909
Nitrogen 1st Yes 2 5 0.029 0.882

Samples scanned air-dried and ground
Carbon 1st Yes 4 7 0.145 0.938
Nitrogen 2nd Yes 8 4 0.027 0.899

SOC-400 Portable FTIR

Samples scanned neat
Carbon 1st No 8 5 0.208 0.871
Nitrogen 1st No 2 4 0.033 0.849

Samples scanned air-dried
Carbon 1st No 4 4 0.175 0.909
Nitrogen 1st No 4 5 0.024 0.923

Samples scanned air-dried and ground
Carbon 1st Yes 16 8 0.140 0.942
Nitrogen Non No 0 12 0.023 0.927

DER, derivative type; MSC, multiplicative scatter corrected or non-corrected; RMSD, relative
mean squared deviations; CALR2, calibration R2
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11.3 Results and Discussion

The data in Table 11.1 show the composition of the 201 samples collected as cores
at BARC and were typical of soils from the area. As shown, a wide range of values
for both C and N were obtained with a high degree of correlation between the two
analytes (R2= 0.92).
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Table 11.3 Calibration results from 25 runs using 25% (n = 50) of samples as a randomly
generated test set

Analyte DER MSC GAPS Factors RMSD VRMSD CALR2 VALR2

NIRSystems 6500 with spinning cup

Samples scanned neat
Carbon 2nd STR 64 13.28 0.163 0.181 0.920 0.901
Nitrogen 2nd STR 32 10.12 0.028 0.035 0.893 0.822

Samples scanned air-dried
Carbon 1st STR 4 9.60 0.153 0.185 0.930 0.897
Nitrogen 2nd MSC 8 4.04 0.032 0.037 0.863 0.813

Samples scanned air-dried and ground
Carbon 1st STR 2 7.24 0.151 0.203 0.931 0.879
Nitrogen 1st STR 2 7.12 0.027 0.040 0.900 0.790

DIGILAB (VARIAN) FTS-7000 FTNIR

Samples scanned air-dried
Carbon 1st STR 16 4.96 0.187 0.224 0.893 0.854
Nitrogen 1st STR 16 4.92 0.030 0.036 0.872 0.821

Samples scanned air-dried and ground
Carbon Non STR 0 8.80 0.177 0.204 0.906 0.878
Nitrogen Non STR 0 8.48 0.030 0.035 0.873 0.828

DIGILAB (VARIAN) FTS-7000 FTIR

Samples scanned air-dried
Carbon 2nd STR 32 3.28 0.189 0.211 0.892 0.881
Nitrogen 2nd STR 32 3.08 0.032 0.036 0.854 0.835

Samples scanned air-dried and ground
Carbon 2nd STR 16 3.80 0.163 0.187 0.920 0.899
Nitrogen 2nd STR 16 3.68 0.029 0.033 0.887 0.860

SOC-400 Portable FTIR

Samples scanned neat
Carbon 1st STR 8 4.32 0.224 0.286 0.851 0.752
Nitrogen 1st STR 8 4.32 0.034 0.043 0.844 0.741

Samples scanned air-dried
Carbon 1st STR 32 4.00 0.185 0.194 0.897 0.893
Nitrogen 1st STR 32 4.32 0.030 0.033 0.874 0.859

Samples scanned air-dried and ground
Carbon 2nd STR 64 5.00 0.149 0.177 0.932 0.913
Nitrogen 1st STR 32 4.60 0.026 0.030 0.905 0.879

DER, derivative type; MSC, multiplicative scatter corrected or non-corrected; RMSD, relative
mean squared deviations, VRMSD, validation set; CALR2/VALR2, calibration and validation R2
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Fig. 11.3 Average spectra of 201 soil samples scanned on the SOC-400 in various physical states

The results in Table 11.2 show the effect of soil state, spectral range, and
spectrometer used on calibrations for C using all 201 samples in a one-out cross val-
idation. These are the best results one could expect for the determination of C in the
samples in question. Examination of the data in Table 11.2 (results using different
degrees of spectral averaging not shown) showed the following. (1) Averaging spec-
tral data points (none, 1, 2, 4, etc.) generally had little effect on the results. (2)
Calibrations for C were more accurate than those for N. (3) Effects of drying and
grinding appeared dependent on the spectral range, spectrometer, and analyte in a
complex fashion. (4) While drying, sieving, and grinding results in more accurate
calibrations than drying and sieving alone, results were quite similar. (5) Results
with the SOC-400 for FM samples (Fig. 11.2) were acceptable but not quite as
good as for the NIRS6500 (but were quite similar for DRYSV and the best for
DRYSVGRN samples). (6) Data for the SOC-400 were collected at 8 cm−1 resolu-
tion, based on previous work with DRYSVGRN samples. Higher resolution may be
of advantage with FM samples where sharp water bands may exist and will be the
subject of future research. (7) Patterns seen for N were similar to those found for C.
(8) Overall, results supported the conclusion that the mid-IR can be used in the field
to accurately determine the C and N content of soils, but further research is needed
to assess how best to develop calibrations for FM samples, including whether higher
resolution spectra would be of benefit.

Examination of average mid-IR spectra for the set of 201 soils (Fig. 11.3) shows
that while considerable detail still exists in the spectra of the FM (neat SOC-400)
samples, there is at least visually a loss of information. For example, peaks in
the 2,900–3,000 cm−1 range due to organic matter (C–H and N–H bands) are no
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longer apparent. The spectra also often appear very noisy due to the sharp water
vapour bands in the mid-IR, something that higher resolution spectra might help
reduce by deconvoluting the molecular signals. Comparing the SOC-400 spectra
for DRYSVGRN samples to those produced by the FTS7000 (data not presented)
demonstrated that the portable spectrometer produces very similar spectra and
calibrations.

For the results in Table 11.3, samples were randomly selected for calibration
(n = 151) and independent test sets (n = 50). This was done 25 times (25 ran-
dom splits and PLS calibrations) and the results averaged. Examination of the data
for soil carbon in Table 11.3 showed the following. (1) Results were very similar
for DRYSV and DRYSVGRN samples for all spectrometers and spectral ranges
examined, indicating that robust calibrations can be developed using any of the
spectrometers studied. (2) Results for FM samples were significantly better for
the NIRSystems 6500 than those achieved with the SOC-400 (Fig. 11.4). (3) Error
(RMSDs) for the SOC-400 test set increased ∼30% over those in Table 11.2 indicat-
ing a lack of robustness. (4) Comparison of the test set results for the SOC-400 for
FM and DRYSVGRN samples indicated that the problem might be due to specific
outliers which could not be accommodated by the calibration. While results for N
followed similar patterns, overall it appears that the improvement using mid-IR over
NIR was greater than that seen for C, with greater improvement in validation of R2

and RMSD values indicating mid-IR-based calibrations to be more robust than NIR
calibrations.

Efforts were also undertaken using a total of 729 samples (added additional
sets from other studies) scanned FM on the SOC-400 to determine if better cali-
brations were possible. Preliminary results support the conclusion that variations
in moisture, in combination with variations in C content, make samples appear
more dissimilar in the mid-IR than in the NIR (e.g. increased spectral variance,
resulting in a need for greater sample numbers and a more even distribution of
C and moisture levels within the calibration set in order to produce a satisfactory
mid-IR calibration). In particular, insufficient samples at higher C values (>2%)
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appeared to have a large effect on calibration robustness. Thus, results indicate
that mid-IR calibrations for FM samples may be feasible, but greater attention will
be needed in sample selection and calibration development. Other efforts, how-
ever, indicate no benefit in trying to reduce the influence of water by using only
portions of the mid-IR spectra for such calibrations (unpublished data). Finally,
other efforts, not discussed, have shown that excellent calibrations can be achieved
using samples dried in the sun (unpublished data), and thus scanning of FM sam-
ples might not be necessary or even desirable except in cases such as the Veris
on-the-go NIR system (http://www.veristech.com/old/products/products.htm#NIR,
Veris Technologies, Salina, KS) or remote sensing where drying it is not
feasible.

11.4 Conclusions

As a result of studies using mid-IR and NIR spectroscopy, the following conclusions
can be drawn. (1) The greatest accuracy is achieved with DRYSVGRN samples. (2)
What is removed (or not) by sieving has the potential to greatly affect the sam-
ple scanned versus the sample tested by combustion, or the sample scanned in the
field (non-sieved) versus the sample scanned in the lab (sieved). (3) Results with a
portable FTIR spectrometer were equal to those achieved with a research grade,
benchtop instrument for samples in the same state. (4) Results achieved with a
research-grade FTNIR were equal to those achieved with a similar grade, scanning
monochromator. (5) It appears that it is possible to develop accurate and robust cal-
ibrations for soil C using FM samples and NIR spectra, but more work is needed
to determine whether robust mid-IR calibrations for FM samples can be developed.
(6) Considering the move to no-till, where surface litter will likely be considerable
and soil C levels will vary with depth, only methods where samples are scanned
after being obtained at various depths are likely to provide the information needed.
In such cases, scanning sun-dried samples in the mid-IR using a portable instrument
such as the SOC-400 or in the laboratory may be advantageous.

Finally, this study and results using remote sensing (see McCarty et al.,
Chapter 14) indicate that choices may need to be made between accuracy and
quantity of data desired. Methods such as the Veris unit or images taken from
planes have the capability of scanning much larger areas than can be done
by coring. However, the results may not be as accurate due to problems such
as matching a specific soil sample used for calibration to a specific soil area
scanned. Recent developments in handheld NIR and mid-IR spectrometers such
as the NIR-based Phazir (www.polychromix.com) or/and FTIR-based EXOSCAN
(www.a2technologies.com) and other such instruments may help by allowing a
larger area to be scanned on-site to better match spectra and reference data, but
research will be needed to best determine how to do this. Other chapters in this vol-
ume of direct pertinence to this effort include Chapters 3, 12, 13, 14, 15, and 16,
which also investigated various aspects of diffuse reflectance spectroscopy for soil
analysis.
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Chapter 12
Determination of Soil Nitrate and Organic
Matter Content Using Portable, Filter-Based
Mid-Infrared Spectroscopy

B.R. Jahn and S.K. Upadhyaya

Abstract Soil nitrate content and organic matter are two important parameters that
determine the amount of nitrogen available for plant growth. The goal of this study
was to develop soil nitrate and organic matter sensing techniques, since traditional
methods of determining soil organic matter and nitrate content are tedious, time-
consuming, and expensive. Studies conducted at UC Davis have clearly shown that
unmistakable nitrate peaks exist in the mid-infrared (MIR) spectra of soil pastes.
In particular, the peak located at 1,390 cm−1 wave number is nitrate sensitive.
However, this peak is broad and is influenced by carbonate/bicarbonate and organic
matter peaks, which exist in the vicinity of the nitrate peak. Using wavelet analysis,
we were able to isolate a single wave number, 1,350 cm−1, at which these interfer-
ences were minimal. However, if the soil contained a large amount of carbonates,
a second wavelength located at 1,500 cm−1 was necessary to obtain a unique cali-
bration equation. Using the absorbance values at these two wave numbers, nitrate-N
concentrations of 14 different soils (6 Californian soils and 8 Israeli ones) could be
determined using a single calibration curve with a coefficient of multiple determi-
nation (R2 value) of 0.98. When only six Californian field soils were considered, the
calibration equation resulted in an R2 value of 0.95 with a standard error of 8 ppm.
Moreover, preliminary tests indicated that soil organic matter can also be deter-
mined using MIR spectral response at two wave numbers (1,383 and 1,452 cm−1).
The R2 value for soil organic matter determination was 0.95 and the standard error
was 0.25%. These results indicate that both soil nitrate content and organic matter
can be determined using just a few wavelengths in the MIR region with sufficient
accuracy for use in site-specific nutrient management.

Keywords Mid-infrared · MIR · Near infrared · NIR · Attenuated total
reflection · ATR
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12.1 Introduction

Nitrogen is an important nutrient for crop production. Farmers typically apply
uniform amounts of fertiliser in excess of what the crops need to prevent yield
loss due to nutrient deficiency. However, nitrate is a highly mobile ion and eas-
ily leaches to the groundwater. Applying lower fertiliser amounts to areas within
a field with limited yield potential will lead to a reduction in cost as well as less
nitrate leaching. Fisher et al. (1993) have shown that, with variable rate application,
approximately 25% reduction in fertiliser application can be achieved without any
decrease in yield. However, soil organic matter content influences the amount of
soil nitrate available through the mineralisation process. Therefore a nitrate man-
agement scheme should consider the amount of both soil mineral nitrogen (mostly
nitrate) and organic matter content. Measurement of soil nitrate and organic matter
content is a tedious, time-consuming, and expensive process. Rapid techniques of
quantifying soil nitrate and organic matter content would save valuable time and
money.

Adsett et al. (1999) used the nitrate-selective membrane approach to develop
an on-the-go soil nitrate sensor. The calibration procedures for this system were
tedious and possibly inaccurate due to changing potentials on the electrodes. Birrell
and Hummel (2000) used ion-selective field effect transistors (ISFET) in a multi-
ISFET sensor chip to measure soil nitrate. The advantages of using ISFET chips
include fast response times and a need for low sample volumes. This technique
has shown promise and is awaiting further improvements for field application.
Kim et al. (2006) found that nitrate ion-selective membrane with tetradodecyl-
ammonium nitrate (TDDA) was able to detect low concentrations of nitrogen when
used in conjunction with Kelowna extractant. Chapter 6 provides a brief review of
electrochemical sensing.

In the past, techniques to measure soil nitrate and organic matter content based
on near-infrared (NIR) spectroscopy have received considerable attention due to
the availability of inexpensive NIR instruments. However, NIR spectroscopy-based
models tend to have (due to the nonuniqueness of the calibration curve) very limited
ability to predict nitrogen content of soils that were not a part of the calibration
set (Ehsani et al., 1999). The primary reason for this lack of robustness is due to
the absence in the near-infrared region of absorbance (or reflectance) peaks due to
nitrate.

In recent years, attenuated total reflection (ATR) coupled with mid-infrared
(MIR) spectroscopy has shown great promise for detecting low concentrations of
nitrate. The ATR technique applied to MIR spectra has advantages in terms of
minimal sample preparation, even for low nitrate contents (<10 ppm NO3–N), and
increased sensitivity of nitrate peaks due to the fundamental modes of vibration
of the nitrate molecule that occur in this region. In particular, the peak located
at 1,390 cm−1 wave number is nitrate sensitive. However, this peak is broad and
is influenced by carbonate/bicarbonate and organic matter peaks which exist in
the vicinity of the nitrate peak. Linker et al. (2004) conducted MIR spectroscopic
experiments with eight soils ranging in nitrate concentrations from 0 to 1,200 ppm
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NO3−N. Three of the eight soils were calcareous and required special considera-
tions. When they excluded these three soils, they obtained very good results using
partial least squares (PLS) (four components, standard error of 32 ppm NO3–N).
Including the three calcareous soils in the analysis caused the standard errors to
increase approximately twofold. Jahn et al. (2006) and Jahn and Upadhyaya (2006)
applied wavelet analysis technique to the experimental data collected at UC Davis,
as well as data obtained by Linker et al. (2004), to develop a unique calibration equa-
tion. Using wavelet analysis they were able to isolate a single wavelength at which
interference from carbonate/bicarbonate and organic matter was minimal. However,
they did not verify the applicability of this wavelet-based technique to data from a
grower’s field.

The specific objectives of this study were (i) investigate the applicability of
a nitrate calibration equation developed using FTIR/ATR spectroscopy to predict
nitrate concentrations in a grower’s field and (ii) determine the applicability of a
rugged (i.e., no moving mirrors), fixed-filter spectrometer, suitable for field use, to
sense soil nitrate and organic matter contents.

12.2 Materials and Methods

12.2.1 FTIR/ATR Spectrometer Tests

Four processing tomato fields that were owned and operated by the Button and
Turkovich Farm in Winters, CA, were selected for this study. These four fields con-
sisted of the following soil types: Yolo silt loam (Yolo Series – a fine-silty, mixed,
superactive, nonacid, thermic Mollic Xerofluvents), Capay clay (Capay series – fine,
smectitic, thermic Typic Haploxererts), Rincon silty clay loam (Rincon series – fine,
smectitic, thermic Mollic Haploxeralfs), and Sycamore silty clay loam (Sycamore
series – Fine-silty, mixed, superactive, nonacid, thermic Mollic Endoaquepts). Soil
samples were obtained over four sampling periods. These periods were chosen
to represent the variation in nitrate contents the tomato plants experienced during
critical growing periods. The first set of samples was obtained after the pre-plant
application of 8-24-6 (N-P-K) fertiliser at a rate of approximately 19 kg ha−1.
Approximately a week later, samples were again collected. Two other samples were
obtained following the application a post-emergence fertiliser (UN-32 with 32%N)
at the rate of about 168 kg ha−1. Again, these two samples were spaced a week apart.
Five samples were randomly collected from each field from the top 15 cm of soil
for each of the four time periods, and each sample was split into three subsamples.
The soil samples were oven dried at 55◦C for 48 h. Then the samples were ground,
sieved (75 μm), and finally mixed with distilled water on a 1:1 mass basis to form a
paste. The pastes were stored in a refrigerator at 4◦C for approximately 1 day, after
which mid-IR spectra were collected. Soil samples were also sent to an analytical
laboratory for nitrate analyses where a flow injection analysis technique was used.
The nitrate concentrations for these soils varied from 14 to 189 ppm NO3–N.
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Table 12.1 Soil texture and CaCO3 concentrations for soils from Israel

Soil name Soil type Clay (%) Silt (%) Sand (%) CaCO3 concentration (%)

Beit Shean Calcareous clay 55 22 23 47
Bsor Loam 15 9 76 13
Shaalabim Clay 54 19 27 9
H1 Sandy 1 6 93 0
H2 Sandy 1 5 94 0
Germany Loam 24 23 53 0
Columbia Clay N/A N/A N/A 1
Tourba Peat N/A N/A N/A 0

In addition to samples from these four fields, FTIR/ATR data obtained for two
other soils in the USA and eight in Israel were also used for developing a single
calibration equation. The two extra US soils belonged to Capy and Yolo series and
were taken from the UC Davis Agricultural Experiment Station farms. The NO3–N
content for US soil samples ranged from 0 to 200 ppm. Table 12.1 provides tex-
tural details of the eight Israeli soils used in this study. The Israeli soil samples
were spiked with NO3–N concentrations in the range of 0–1,200 ppm. Three of the
Israeli soils contained large amounts of calcium carbonate as shown in Table 12.1.
Additional details of these soil samples and the techniques used to obtain their
FTIR/ATR spectra can be found in Jahn et al. (2006).

12.2.2 Portable Filter-Based Spectrometer Tests

A portable mid-IR variable filter array (VFA) spectrometer manufactured by Wilks
Enterprise1 was used to obtain mid-IR spectra of field soil pastes described in
Section 12.2.1. This rugged portable spectrometer, which contained no moving
parts, also utilised the ATR technique and could provide continuous absorbance
values in the 880–1,684 cm−1 range with a resolution of approximately 12 cm−1.
Figure 12.1 shows a photograph of this spectrometer.

12.2.2.1 Nitrate Experiments

The soil samples used for the nitrate experiments were the same ones as used in
the FTIR/ATR spectroscopy experiments. Each sample was divided into 10 sub-
samples, and the spectrum of each subsample was obtained individually. Soil pastes
were placed over the crystal and the ATR spectra were measured with 30 scans
per sample. The spectra were corrected for added moisture, smoothed, and baseline
corrected as described by Jahn et al. (2005).

1Mention of a trade name is not an endorsement of the product over other similar products by the
authors or the University of California.
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Fig. 12.1 Wilks VFA Spectrometer with ATR crystal, used for collecting mid-IR spectra,
compared with a floppy disk

12.2.2.2 Organic Matter Experiments

Organic matter was added in the form of humus to dry soil samples. Dried humus
was mixed with soil samples to give organic matter concentrations from 0 to 5% in
increments of 1%. Because of the residual nitrate content in these soils, this tech-
nique resulted in organic matter concentrations in the range of 2–7%. Sufficient soils
corresponding to three of the four fields from the Button and Turkovich Farm were
available for conducting these experiments. As in the case of nitrate experiments,
distilled water was added to create a 1:1 paste. Each of the 18 soil samples (three
field soils × six levels) were subdivided into 10 subsamples and 30 mid-IR scans
of each subsample were obtained using the VFA spectrometer. Similarly, these soil
samples were sent to the analytical laboratory for determining the actual soil organic
matter content.

12.3 Results and Discussion

12.3.1 FTIR/ATR Spectrometer Test Results

The development of the nitrate calibration equation using FTIR/ATR spectroscopy
was explained previously by Jahn et al. (2005) and will not be detailed here. The
basis of this equation relied on wavelet analysis to deconvolute mid-IR spectra of
soil pastes. A 3-D plot of the wavelet-transformed MIR absorbance data as a func-
tion of wave number and scale is shown in Fig. 12.2. Note that the scale is related
to the width of the Coiflet-3 wavelets used in transforming the absorbance data.
The nitrate peak that occurs at 1,390 cm−1 wave number is marked with a circle in
the figure. However, this peak is broad and is influenced by carbonate/bicarbonate
and organic matter peaks in the vicinity of the nitrate peak. Additional analysis
of the wavelet-transformed absorbance data by Jahn et al. (2006) indicated that
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Fig. 12.2 Three-dimensional wavelet deconvoluted plot of a soil paste that contained 59 ppm
NO3–N. The nitrate peak is in the vicinity of 1,390 cm−1

interferences from carbonate/bicarbonate ions and organic matter are minimal at
a wave number of 1,350 cm−1, if carbonate content of the soil samples is not too
high (i.e., except for three Israeli soils – Beit Shen, Bsor, and Shaalabim – that
contain high carbonate contents as shown in Table 12.1). However, if the soil con-
tained a large amount of carbonate, a second wavelength located at 1,500 cm−1 wave
number was necessary to obtain a unique calibration equation. The laboratory and
field data obtained in USA and Israel using 14 different soils were randomly split
into calibration (124 samples) and validation (40 samples) sets. Figure 12.3 shows
the calibration plot and Fig. 12.4 shows the validation plot. These plots are based
on ATR absorbance values located at the two-point baseline- and water-corrected
spectra of the soil paste at 1,350 and 1,500 cm−1 wave numbers.

The standard errors of calibration and validation were 41.8 and 40.1 ppm NO3–
N, respectively. These results show that nitrate can be predicted for 14 different
soils using a single equation based on absorbance values at 1,350 and 1,500 cm−1.
Including only the Californian soil samples (a total of 63 samples) with nitrate con-
centrations typical of those found in agricultural fields (0–200 ppm NO3–N) in the
analysis resulted in an R2 value of 0.95 and standard error of approximately 8 ppm
NO3–N.

12.3.2 Filter-Based Spectrometer Test Results

MIR absorbance data due to nitrate and organic matter contents in the soil samples
from farmers’ fields were analysed and results are presented below.
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Fig. 12.3 Calibration plot based on 124 soil samples for all soil sets pooled together. The standard
error of calibration was 41.8 ppm NO3–N. Each point on the graph is an average of 10 subsamples
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Fig.12.4 Validation plot based on 40 soil samples for all soil sets pooled together. The standard
error of validation was 40.1 ppm NO3–N. Each point on the graph is an average of 10 subsamples

12.3.2.1 Nitrate Results

The results obtained using the filter-based portable device were not as accurate as
the laboratory-based FTIR/ATR spectrometer results. One reason for the inferior
predictive ability of the filter-based spectrometer is due to its poorer resolution
compared with the laboratory-based spectrometer. Figure 12.5 shows the spectral
responses of a soil sample containing 25 ppm of nitrate-N obtained using both the
FTIR/ATR spectrophotometer and the filter-based spectrophotometer. The resolu-
tion of the filter-based spectrometer (12 cm−1) is three times higher than the FTIR
spectrometer used in the laboratory experiments (4 cm−1). A statistical analysis
of the VFA spectrometric data of the samples obtained from the four processing
tomato fields described in Section 12.2.1 indicated that a one-term model based on
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Fig. 12.5 Comparison of the spectra of a field soil sample containing 25 ppm NO3–N obtained
using both the FTIR/ATR laboratory spectrophotometer and the filter-based spectrophotometers

the water- and baseline-corrected absorbance at 1,399 cm−1 resulted in a standard
error of 25 ppm NO3–N with an R2 value of 0.81. A plot of predicted versus actual
nitrate concentration for this one-term model is shown in Fig. 12.6. Use of a second
wavelength corresponding to wave number 992 cm−1 led to an improvement in R2

to 0.94 and the standard error decreased to 14.9 ppm. Although the results were not
as good as the ones obtained with the FTIR/ATR machine, it was encouraging to see
detectable nitrate response using this filter-based spectrometer on field soils. Due to
different optics, detector, and resolution, it is not surprising that the spectral charac-
teristics from the filter-based spectrometer are discernable from those obtained from
the FTIR spectrometer used. These results also indicate that some modifications
(i.e., stronger source, better spectral resolution, higher sensitivity) of the filter-based
spectrometer may make it better suited for detecting low nitrate concentrations.
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Fig. 12.6 Calibration plot of a one-term model based on the absorbance at 1,399 cm−1 for 16 soil
samples from four growers’ fields. These spectra were obtained from a filter-based spectrometer.
The standard error of calibration was 25.0 ppm NO3–N
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Fig. 12.7 Calibration plot for organic matter based on three fields. The standard error of
calibration was 0.25% organic matter

12.3.2.2 Organic Matter Results

Figure 12.7 shows a plot of the organic matter calibration equation developed using
absorbance values at two wave numbers located at 1,383 and 1,452 cm−1using a
stepwise regression technique. The R2 value was 0.95 and standard error was 0.25%.
The 1,383 cm−1peak could be due to nitrate and/or carbonate. Preliminary results
shown in Fig. 12.7 indicate that this filter-based spectrometer shows promise for
predicting organic matter concentrations.

12.4 Conclusions

The results of this study showed that a nitrate calibration equation could be success-
fully developed using FTIR/ATR spectroscopy to predict nitrate concentrations in
14 different soils. For large nitrate concentrations (up to 1,200 ppm NO3–N), the
standard error was approximately 40 ppm NO3–N. For a smaller nitrate concen-
tration range (0–200 ppm NO3–N) typical of agricultural fields, the standard error
was approximately 8 ppm NO3–N. On the other hand, for a filter-based portable
spectrometer, results were not as good as for the FTIR/ATR spectrometer. However,
when a multiple linear regression model was developed based on the absorbance
values at 992 and 1,399 cm−1 for soils from four agricultural fields, an R2 of 0.94
and standard error of 14.9 ppm NO3–N were obtained. Moreover, the filter-based
spectrometer also showed promise for predicting soil organic matter content. Based
on a limited number of experiments and a range of organic matter from 0 to approxi-
mately 6%, a multiple linear regression calibration equation was developed resulting
in an R2 of 0.95 and a standard error of 0.25%.
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Chapter 13
VNIR Spectroscopy Estimates of Within-Field
Variability in Soil Properties

K.A. Sudduth, N.R. Kitchen, E.J. Sadler, S.T. Drummond, and D.B. Myers

Abstract Over the last three decades or more, researchers have estimated soil
properties using visible and near-infrared (VNIR) diffuse reflectance spectroscopy
(DRS), with varying results. Using VNIR DRS for estimating soil property varia-
tion within fields is particularly challenging, because in many cases the variation
in the property of interest may be relatively small and because of the need to deal
with spatially correlated data. In this study, we used VNIR DRS to estimate the vari-
ability in soil physical and chemical properties within a typical production field in
north-east Missouri, USA. Soil samples were obtained to 15 cm depth on a 30 m
grid spacing, plus at a number of random sampling locations. Laboratory analyses
were conducted for sand, silt, and clay fractions, organic matter, pH, P, K, Ca, Mg,
and cation exchange capacity (CEC). VNIR reflectance of dried and sieved samples
was obtained in the laboratory using a spectrometer with a wavelength range from
350 to 2,500 nm. Partial least squares (PLS) regression was used to estimate soil
properties from spectra, both for the full range and for subset wavelength ranges
above and below 1,000 nm. A regression kriging approach was used to account for
spatial dependence. We found that for these soils, an NIR-only instrument (1,000–
2,500 nm) would be able to quantify CEC, organic matter, and texture with accuracy
similar to that from a VNIR (350–2,500 nm) instrument. Some soil properties,
including CEC and pH, were well estimated with PLS regression, while others,
including organic matter, were not. Coupling regression kriging with PLS regres-
sion improved estimates in some cases, but was not as effective as has been reported
in some other studies. More advanced calibration methods should be investigated
for their ability to improve within-field VNIR DRS results on these soils.

Keywords Diffuse reflectance spectroscopy · Regression kriging · Precision
agriculture · Soil sensing · Near infrared
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13.1 Introduction

As agriculture has become a more information-intensive activity, from within-field
scales (i.e. precision agriculture) to landscape and basin scales (i.e. digital soil
mapping), the need for accurate, timely, and cost-effective quantification of soil
properties through the use of sensors has increased. Optical diffuse reflectance spec-
troscopy (DRS) is one candidate soil sensing technology (Chapter 3) and has been
investigated since at least the 1970s. Early research (prior to 1990) on this topic,
as reviewed by Sudduth et al. (1997), can be categorised into three broad areas:
(1) understanding how reflectance in satellite wavelength ranges could be related
to soil properties; (2) building on earlier research using qualitative descriptors of
soil colour to develop quantitative relationships between reflectance and soil prop-
erties; and (3) developing mobile reflectance sensors that could be used to control
agronomic inputs, particularly the application rate of herbicides.

With the advent of precision agriculture and the concept of digital soil map-
ping, there has been renewed interest in optical DRS of soil properties. Researchers
have collected spectra in the visible (VIS; 400–700 nm), near-infrared (NIR; 700–
2,500 nm), and mid-infrared (MIR; 2,500–25,000 nm) for this purpose (Chapter 3).
Viscarra Rossel et al. (2006) summarised recent research results and found that the
MIR region generally provided more accurate results, a finding also reported in
Chapter 14. Instrumentation for VIS and NIR (VNIR) DRS is less complex and
expensive and at least one on-the-go VNIR soil sensor has become commercial
(Christy, 2007). Research efforts continue towards adapting MIR technology for
field use (Chapter 11).

Although most studies have developed calibrations using samples across a broad
range (e.g. Sudduth and Hummel, 1991; Chang et al., 2001; Lee et al., 2009;
Chapter 15), some have reported field-specific calibration efforts (Ge et al., 2007;
Viscarra Rossel et al., 2006; Christy, 2007; Chapter 14). At field scales, one issue
that becomes important is spatial dependence in the data. If only a few within-field
sampling sites are employed, then it may be valid to assume that there is little or no
spatial dependence. However, a denser sampling scheme (e.g. grid sampling) may
create significant spatial autocorrelation in the data. Not including these effects in
the model violates the usual assumption of statistical independence of the calibra-
tion residuals and can render the model suboptimal (Ge et al., 2007). For example,
when Ge et al. (2007) applied the regression kriging approach to VNIR spectra for
estimating within-field variations in soil properties, they found improved soil prop-
erty estimates compared to a non-spatial principal component regression (PCR),
particularly for those properties that were poorly estimated by PCR.

The purpose of this study was to determine the ability of VNIR DRS to estimate
within-field variability in soil properties on a typical claypan soil field in north-
central Missouri, USA. We anticipated that this application would be particularly
challenging due to the relatively small variation in some soil properties, such as
organic matter, that are commonly well estimated by VNIR DRS. We used a very
spatially dense dataset and a methodology that might not be directly applicable for
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practical implementation of VNIR DRS soil mapping where a minimum number of
within-field calibration samples would be desired. However, this approach allowed
us to obtain a ‘best case’ calibration that we can use as a baseline in future work eval-
uating calibration alternatives for claypan soil fields. Specific objectives of this study
were (1) to identify the more predictive portion(s) of the VNIR spectrum for esti-
mating claypan soil properties and (2) to compare non-spatial regression estimates
to those obtained using regression kriging.

13.2 Materials and Methods

13.2.1 Study Site and Soil Sampling

Data were collected on a 35 ha research field located near Centralia, Missouri, USA
(92.12◦E, 39.97◦N). The field was managed in a minimum tillage corn–soybean
rotation. Soils are claypan soils of the Mexico (fine, smectitic, mesic aeric Vertic
Epiaqualfs) and Adco series (fine, smectitic, mesic aeric Vertic Albaqualfs). Surface
textures range from a silt loam to a silty clay loam. The subsoil claypan horizon(s)
are silty clay loam, silty clay, or clay and commonly contain as much as 50–60%
smectitic clay.

The field was sampled on a 30 m grid to a 15 cm depth in the spring of 2001.
An additional 24 soil samples were obtained at random locations to help define the
short-range spatial structure. At each location, eight 1.5 cm diameter cores were
obtained to 15 cm depth and composited. Samples were analysed for available P
(Bray 1 extractable), exchangeable K, Ca, and Mg (ammonium acetate extractable),
cation exchange capacity (CEC; sum of bases), organic matter (OM; loss on igni-
tion), and pH, using standard University of Missouri procedures (Nathan et al.,
2006). A rectangular 4 ha sub-field area was sampled on the same grid and anal-
ysed for a number of soil physical, chemical, and microbial properties as described
by Jung et al. (2006). We used data from that study on 0–15 cm soil texture (clay,
silt, and sand fraction) in this analysis.

13.2.2 Spectral Data Acquisition

Soil spectral reflectance data were obtained in the laboratory using an ASD
FieldSpec Pro FR1 spectrometer (Analytical Spectral Devices, Boulder, CO, USA).
Air-dried, ground samples were used for reflectance data collection. The samples
were illuminated by a halogen lamp and the reflected light was transmitted to the

1Mention of trade names or commercial products is solely for the purpose of providing spe-
cific information and does not imply recommendation or endorsement by the US Department of
Agriculture or its cooperators.
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spectrometer through a fibre optic bundle. Spectra (350–2,500 nm) were recorded
and output at a 1 nm interval. Each soil spectrum was the mean of 10 scans.
Compensation for dark current variations was applied at the beginning of each data
collection session and at least once every 30 min thereafter. A Spectralon (Labsphere
Inc., North Sutton, NH) reflectance standard was scanned after every 10 soils and
used to convert raw spectral data to decimal reflectance.

13.2.3 Analysis Procedures

Reflectance data were preprocessed to remove erroneous measurements and
improve stability of the regression. Data from 350 to 499 nm and 2,451 to 2,500 nm
were deleted due to their low signal-to-noise ratio, and the remaining 1951-
point spectra were transformed from reflectance to absorbance (log 1/reflectance).
Preliminary analyses showed no consistent improvement with other data transfor-
mations (e.g. derivative, smoothing), so no other transformations were applied.
Several observations identified as outliers by visual inspection or with missing data
values were also removed. Data were randomly assigned on an 80–20 basis into
calibration and test sets: 42 calibration and 13 test samples for texture and 299
calibration and 74 test samples for all other soil properties.

Although some have reported other methods to be superior in certain situations
(Chapter 17), we chose to use partial least squares (PLS) regression, as implemented
in Unscrambler version 9.1 (CAMO Inc., Oslo, Norway) to develop calibrations
between soil properties and spectra. A 20-fold cross-validation procedure was used
to select the number of PLS factors to use in the regression, increasing predic-
tive capability and decreasing the potential for overfitting. These cross-validation
results were used directly for evaluating the predictive capability of spectral regions.
Models incorporating spatial dependence were constructed using the regression
kriging approach described by Odeh et al. (1995). Semivariograms of measured
soil data and of PLS regression residuals from the calibration set were fitted using
GS+ version 5.1.1 (Gamma Design Software, Plainwell, MI, USA), which was also
used to point-krige the residuals to test set locations. Estimated soil property values
at the test set locations were given by the sum of the non-spatial PLS estimate and
the kriged estimate of the spatial residual. Fit statistics derived from the independent
test set were used for the regression kriging evaluation.

Model evaluation was based on coefficient of determination (R2), root mean
square error of prediction (RMSEP), and the ratio of standard deviation to RMSEP
(RPD). RPD is useful when comparing results from datasets containing different
degrees of variability. Chang et al. (2001) suggested that, as a general guide-
line, RPD > 2.0 or R2 > 0.8 indicates success in estimating soil properties, RPD
< 1.4 or R2 < 0.5 shows unacceptable results, and calibrations with intermedi-
ate values may be improved to acceptable levels using different strategies. Results
obtained with PLS, and PLS plus regression kriging, were further compared using
difference maps of selected soil properties developed using the calibration dataset
(n = 299).
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13.3 Results and Discussion

13.3.1 Variability in Soil Properties

Soil property means were generally similar between the calibration and the test
datasets (Table 13.1), as were standard deviations for all variables except P and
clay fraction, indicating that the partitioning of observations into the two datasets
was reasonable. The variation in many soil properties was quite low (CVs of ∼25%
or less). Variability in measured soil properties has often been higher (CVs of ∼50%
or more) in those wider-scale calibration studies, where good results have been
reported (e.g. Chang et al., 2001; Lee et al., 2009).

Semivariograms fitted to the measured soil data showed varying degrees of
spatial dependence (Table 13.2). Range parameters of these generally exponential
semivariograms varied from 21 to 104 m, verifying that it was important to con-
sider spatial dependence. Spatial structure was particularly well defined for texture
fractions, which had very low nugget ratios. However, because the texture data were
from a sub-field with <15% of the total field area, these results may not be directly
comparable with other data. The highest nugget ratio in the measured data was for
organic matter (OM). This may have been caused by the low relative accuracy of
the OM lab analysis, where results were reported to only the nearest 0.1%.

Table 13.1 Descriptive statistics of soil property measurements

Calibration dataseta Test datasetb

Mean SD CV, % Mean SD CV, %

Exch. Ca, mg kg−1 2, 310 430 18.7 2, 290 440 19.2
Exch. K, mg kg−1 80.4 30.4 38.0 80.8 31.2 38.9
Exch. Mg, mg kg−1 200 79 39.5 208 100 48.2
Av. P, mg kg−1 13.5 15.4 114.7 12.3 8.4 68.1
CEC, cmolc kg−1 15.0 2.8 18.5 15.2 3.3 21.6
pH 6.2 0.50 8.0 6.2 0.58 9.4
Organic matter, % 2.0 0.35 17.1 2.1 0.34 16.4
Clay content, % 18.9 5.0 26.4 17.5 2.4 13.7
Silt content, % 73.5 5.5 7.4 76.3 4.1 5.3
Sand content, % 7.6 2.6 33.9 6.3 2.8 44.9

a n = 42 for texture fractions, n = 299 for all other soil properties
b n = 13 for texture fractions, n = 74 for all other soil properties

13.3.2 Predictive Capability of Spectral Regions

Regression analyses using PLS were completed for each soil property and each
of three different spectral regions: (1) SR0, the complete spectrum from 500 to
2,450 nm; (2) SR1, from 500 to 1,000 nm; and (3) SR2, from 1,001 to 2,450 nm. We
divided the spectrum in this manner due to instrumentation considerations. Below



158 K.A. Sudduth et al.

Table 13.2 Semivariogram parameters for measured soil properties and VNIR regression
residuals

Measured data Regression residuals

Nugget ratio, %a Range, m Nugget ratio, %b Range, m

Ca 34 37 7.2 8
K 22 21 21 10
Mg 27 36 30 37
P 42 60 48 50
CEC 40 50 61 41
pH 26 104 65 40
Organic matter 50 59 68 80
Clay fractionb 4.4 71 100 −
Silt fraction 0.1 57 95 154
Sand fraction 0.1 45 98 154

a Nugget ratio calculated as 100 (nugget/sill)
b Texture fraction data are from a 4 ha area vs. 35 ha area for other properties

about 1,000–1,100 nm, Si-based photodetectors are generally used, while at higher
wavelengths other detector technologies, such as indium gallium arsenide (InGaAs),
are required. Thus our division was based on the spectral range that could be sensed
using a single detector. The specific division we chose (1,000 nm) was where the
ASD spectrometer in this study switched from using its Si detector to the first of its
two InGaAs detectors.

Generally, the same spectral range was best whether evaluation was on the basis
of R2, RMSEP, or RPD (Table 13.3); only in one case (silt fraction) was there a

Table 13.3 Performance of various spectral ranges for estimating soil properties. Bold entries
illustrate the best spectral range for each performance measure and soil property. Results from
cross-validation analysis with n = 42 for texture fractions and n = 299 for other soil properties

R2 RMSEPa RPD

SR0b SR1 SR2 SR0 SR1 SR2 SR0 SR1 SR2

Ca 0.72 0.64 0.63 204 234 233 2.12 1.86 1.86
K 0.32 0.29 0.28 21.5 22.6 22.2 1.41 1.37 1.37
Mg 0.73 0.58 0.71 36.7 46.9 38.6 2.15 1.73 2.10
P 0.31 0.31 0.27 10.7 10.9 11.4 1.44 1.44 1.40
CEC 0.73 0.63 0.72 1.4 1.6 1.5 1.96 1.67 1.92
pH 0.78 0.78 0.56 0.23 0.24 0.32 2.14 2.16 1.52
Organic
matter

0.31 0.18 0.34 0.28 0.30 0.28 1.23 1.14 1.26

Clay fraction 0.49 0.49 0.56 3.59 3.96 3.31 1.39 1.30 1.51
Silt fraction 0.68 0.58 0.67 3.12 3.79 3.11 1.76 1.52 1.77
Sand fraction 0.04 0.02 0.28 2.53 2.59 2.37 1.03 1.02 1.12

aUnits for RMSEP given in Table 13.1
bSR0: 500–2,450 nm; SR1: 500–1,000 nm; SR2: 1,001–2,450 nm
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marginal difference. Best estimates were most often obtained with the full wave-
length range, or in a few cases with the upper NIR spectral range, SR2. The trend
towards better results with NIR data in the regression agrees with prior research (e.g.
Sudduth and Hummel, 1991; Viscarra Rossel et al., 2006). There were cases (e.g.
pH) where the SR1 estimation was as good as the SR0 estimation and considerably
better than the SR2 estimation (Table 13.3). On the other hand, there were instances
(e.g. silt) where SR0 and SR2 gave essentially equivalent results that were much
better than those with SR1.

The importance of different wavelength ranges for different soil properties can
also be illustrated by the PLS regression coefficients. To aid visualisation, the spec-
trum was first averaged to 40 nm resolution. Results with the averaged spectrum
were generally within 3% (in RPD) of those with the original spectrum (data not
shown). For pH, the largest regression coefficients were in the 500–700 nm range
(Fig. 13.1), corresponding to the good SR1 estimate of pH (Table 13.3). For silt,
larger regression coefficients were obtained from the NIR spectrum above 1,900 nm,
corresponding to the good SR2 estimate of silt. This lack of consistency in optimum
wavelength range makes it difficult to use a single-detector instrument when estimat-
ing a wide range of soil properties. For these soils, an NIR-only instrument would
be able to quantify CEC, OM, and texture fractions as well (or almost as well) as a
VNIR instrument. However, to achieve best results for all soil properties, a VNIR
instrument would be needed.

The predictive capability of the VNIR DRS analysis varied among soil prop-
erties. Using RPD to compare across variables of different magnitudes, the most
accurate estimates were obtained for exch. Ca, exch. Mg, pH, and CEC. Less
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Fig. 13.1 PLSR coefficients for pH, which was well estimated with VIS data, and for silt fraction,
which was well estimated by NIR data
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accurate results were obtained for K, P, clay, and silt, while estimates of OM and
sand were poor. The poor OM estimates were contrary to the many previous studies
where OM (or organic carbon, OC) has generally been estimated quite well (R2 >
0.8, RPD > 2.5; see literature review in Viscarra Rossel et al., 2006). On an absolute
basis, OM errors were as good or better (RMSEP = 0.28–0.30) than those obtained
in a number of other studies (RMSEP ∼0.30, Viscarra Rossel et al., 2006; RMSEP
∼0.34, Sudduth and Hummel, 1991; RMSEP ∼0.55, Lee et al., 2009). In this case,
poor relative estimates of OM, and also sand, were likely caused by the low standard
deviations observed for those variables in the study field (Table 13.1).

13.3.3 Regression Kriging

For most soil variables there was an improvement with regression kriging
(Table 13.4). Relatively large improvements were seen for Ca, K, and Mg, all of
which had low nugget ratios, and therefore strong spatial structure, in their residual
semivariograms (Table 13.2). Texture fractions showed little or no improvement,
and their residual semivariograms had very high nugget ratios and little or no spa-
tial structure, perhaps because the texture dataset was much smaller. Compared to
results reported by Ge et al. (2007), regression kriging improvements were generally
smaller. On the other hand, their regression results (by PCR rather than PLS) were
generally poorer than those found in this study, and their overall regression kriging
results were also poorer.

Figure 13.2 shows, for four selected soil properties, maps of actual, laboratory-
measured data, and difference maps comparing (relative to the measured data)
VNIR-PLS estimated data and VNIR regression kriging estimated data. In the case
of exch. Mg, PLS estimates were good (Table 13.4), and there was also strong spatial

Table 13.4 Performance of PLS regression alone compared to PLS regression kriging. Validation
results from separate test set (n = 13 for texture fractions, n = 74 for other soil properties)

R2 RMSEPa RPD

PLS PLS+RK PLS PLS+RK PLS PLS+RK

Ca 0.76 0.80 205 184 2.12 2.36
K 0.39 0.45 21.9 20.7 1.39 1.47
Mg 0.87 0.92 32.4 25.8 2.44 3.07
P 0.51 0.63 6.3 6.2 2.43 2.49
CEC 0.87 0.85 1.22 1.31 2.30 2.14
pH 0.84 0.88 0.24 0.20 2.08 2.50
Organic matter 0.55 0.55 0.23 0.23 1.52 1.52
Clay fraction 0.15 0.14 2.68 2.58 1.87 1.94
Silt fraction 0.63 0.62 1.79 1.84 3.07 2.99
Sand fraction 0.76 0.74 1.91 2.04 1.36 1.27

aUnits for RMSEP given in Table 13.1
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structure (Table 13.2). Thus, the PLS – actual differences were relatively small com-
pared to the actual data range, while the regression kriging difference maps had a
lower magnitude and a more random spatial structure. For CEC, PLS estimates were
good, but there was little spatial structure to the residuals. Thus, the spatial struc-
ture of the two difference maps is similar, although the regression kriging appears
to have removed some of the bias present in the PLS results. In the case of avail-
able P, PLS estimates were not good, but there was spatial structure to the residuals.
Here, the regression kriging difference map has a lower magnitude and less struc-
ture than does the PLS difference map. Finally, in the case of OM, neither the PLS
estimate nor the semivariogram was particularly predictive. The magnitudes of the
differences seen in both maps were relatively large compared to the range of the
actual data.

The usefulness of regression kriging for improving VNIR DRS estimates of soil
properties was mixed. In some cases it provided a significant improvement over a
non-spatial analysis, but in other cases it had little or no effect. An obvious drawback
to practical application of the regression kriging approach is that measured soil data
must be known at a high spatial density, contrary to the usual goal of using spectral
data to estimate soil properties based on a few measurements. However, regression
kriging was useful in this research, where we were interested in establishing a ‘best’
calibration for this dataset against which additional calibration approaches could be
evaluated.

It is worthwhile to note that our evaluation of the predictive capability of the
various spectral ranges and calibration methods was based solely on goodness-of-fit
criteria – R2, RMSEP, and RPD – and that interpretations of whether a particular
method was good were based on how well it represented the lab-measured data.
Given the goals of this research, that approach seemed appropriate. However, a
complete evaluation of the usability of VNIR DRS should also consider the intended
uses of the soil property estimates and the accuracy needed for those particular uses.

13.4 Conclusions

Our goal in this study was to assess the ability of VNIR DRS to estimate the vari-
ability of selected soil properties within a typical claypan soil field. We found that
some soil properties, such as CEC and pH, were well estimated with PLS regres-
sion, while others, such as OM, were not. Coupling regression kriging with PLS
regression improved estimates in some cases, but was not as effective as has been
reported in some other studies. Within-field estimation of soil properties with VNIR
DRS is challenging, particularly so on claypan soil fields, due to the narrow range
seen in some soil properties of interest. More advanced calibration methods, such
as those used by Christy (2007), should be investigated for their ability to improve
within-field VNIR DRS results on these soils.
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Chapter 14
Infrared Sensors to Map Soil Carbon
in Agricultural Ecosystems

G. McCarty, W.D. Hively, J.B. Reeves III, M. Lang, E. Lund,
and O. Weatherbee

Abstract Rapid methods of measuring soil carbon – such as near-infrared (NIR)
and mid-infrared (MIR) diffuse reflectance spectroscopy – have gained interest, but
problems of accurate and precise measurement still persist as a result of the high spa-
tial variability of soil carbon within agricultural landscapes. Tillage-based (meaning
tine-mounted) and airborne-based spectral sensors offer the opportunity to effec-
tively capture the spatial distribution of soil carbon within agricultural landscapes.
We evaluated an airborne hyperspectral sensor covering the range 450–2,450 nm at
2.5 m spatial resolution and a tillage sensor covering the range 920–2,225 nm. We
intensively sampled soils within five tilled agricultural fields within the flight path
of the airborne sensor. The test fields were located on the Delmarva Peninsula in
Maryland, USA. The quality of spectral data acquired by these field-based sensors
was compared to laboratory-acquired spectral data in both NIR (1,000–2,500 nm)
and MIR (2,500–25,000 nm) spectral regions for the soil samples taken at 304
geo-referenced locations within the fields. Partial least squares regression (PLSR)
models developed from the three NIR spectral data sources were very compara-
ble, indicating that the two field-based NIR sensors performed well for generating
spatial data. Although the laboratory-based MIR calibration was found to be sub-
stantially better than the laboratory-derived NIR calibration, current instrumentation
limitations favour the use of NIR for in-field measurements. A 2.5 m resolution soil
carbon map was produced for an agricultural field using the airborne hyperspectral
image and the PLS calibration. This new approach for mapping soil carbon will
permit better assessment of soil carbon sequestration in agricultural ecosystems at
the landscape scale. Such data can be used to improve the landscape models which
account for biogeochemical and soil redistribution processes that occur within often
complex topographic and management settings.

Keywords Mid-infrared diffuse reflectance spectroscopy · Near-infrared diffuse
reflection spectroscopy · Partial least squares regression
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14.1 Introduction

Increasing carbon dioxide in the Earth’s atmosphere has stimulated research to
assess the role of terrestrial ecosystems in the global carbon (C) cycle. The ter-
restrial biosphere is an important component of the global C budget, but estimates
of C sequestration in terrestrial ecosystems are partly constrained by the limited
ability to assess the distribution of soil C storage. Croplands have good potential for
sequestering atmospheric C if C-positive farming methods such as no-till, organic,
and perennial cropping (Lal, 2004) are adopted, but current technologies for moni-
toring soil C sequestration in terrestrial ecosystems are not cost-effective or depend
on laborious methods. Additionally, site-specific management of agricultural land-
scapes requires detailed information regarding the spatial distribution of soil
properties across toposequences found in agricultural ecosystems (Hatfield, 2000).

Spatial assessment of soil carbon within agricultural landscapes requires inten-
sive measurement and is important for understanding the dynamics of carbon within
agricultural ecosystems. Errors in spatial assessment of soil C distribution within an
ecosystem can result from inadequate or biased sampling of the landscape and from
analytical errors in soil C measurements. The largest error is often that of sampling,
which may be a poorly stratified reflection of real landscape variability or be too
small in number to cover the actual range of soil C.

Diffuse reflectance spectroscopy offers a nondestructive means of measuring soil
C based on the reflectance of illuminated soil (see Chapters 11, 12, 13, and 15). Both
the near-infrared (NIR) and the mid-infrared (MIR) regions have been investigated
using chemometrics for their use in quantifying soil C (Chapter 11; Janik et al.,
1998; McCarty et al., 2002; McCarty and Reeves, 2006). Although MIR results are
often superior (McCarty and Reeves, 2006), practical measurement technologies are
generally more advanced in the NIR region. Most reported spectroscopic approaches
involve field sampling, with subsequent laboratory analyses of both reflectance and
soil chemical and physical properties.

For mapping soil carbon, remote sensing approaches have an obvious advan-
tage – the spatially explicit nature of images – but a suitable means of quantification
is needed. Chemometric approaches to quantification use large sample sets for cal-
ibration model development, sufficient to cover the range of properties expected in
the sample population. This reduces interference in the calibration from spectral
variance caused by sources unrelated to the property of interest. This differs from
the customary approach within the remote sensing discipline of using end-member
analysis, which is based on summation of pure spectra for components within the
image. Such an approach can work well for scenes comprised of well-defined com-
ponents such as mineral crystals. A classic example of this approach is mapping
outcrops of minerals on land surfaces by use of hyperspectral imaging (Vaughan
et al., 2005). However, because soil organic matter composition is not constant
or well-defined, a similar end-member approach to quantification is not applicable
because no defined end-member spectrum for soil organic matter can be generated.

Recent developments have led to a tillage-implement-based (tine-mounted) NIR
sensor for detection of soil C in which reflectance measurements are made through
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a sapphire window mounted on the bottom of a shank, which is then pulled through
the soil (Christy et al., 2006). Airborne hyperspectral imaging spectrometers also
hold promise as they can acquire a detailed spatial dataset of a soil. The aim of
this study was to compare the ability to generate partial least squares regression
(PLSR) models for tillage and airborne NIR sensors relative to those generated from
standard laboratory-based NIR and MIR diffuse reflectance instruments. This study
also tests the ability to generate PLS prediction maps for soil carbon using airborne
hyperspectral images.

14.2 Materials and Methods

14.2.1 Soil Samples

In April 2007, 304 samples were collected from the plough layer (0–20 cm) of
five bare soil fields (recently ploughed and generally vegetation-free) located on
the Eastern Shore of Maryland, USA. Soils in this region are generally classified
as acrisols using the Food and Agriculture Organization (FAO) soil classification
system (http://www.fao.org/docrep/W8594E/W8594E00.htm). Sampling occurred
in transects across the fields and corresponded to transects of NIR spectral data
collected by the tillage-based sensor (see next section). Soil samples were dried at
50◦C for 2 days and crushed using a hammer mill to pass through a 2 mm screen.
The crushed material was further ground in scintillation vials containing two stain-
less steel rods and placed on a roller mill overnight. Soil C content of these samples
was determined by dry combustion using a TruSpec CN analyser (Leco Corp, St.
Joseph MI). None of the samples contained significant inorganic C. On the same
day as field sampling, field-based spectral measurements were collected.

14.2.2 Spectral Measurements

14.2.2.1 Airborne Measurements

Hyperspectral image data were acquired with the AISA dual hyperspectral sensor
system (Spectral Imaging Ltd, Finland) for simultaneous acquisition of visible–
near-infrared (VNIR, 400–970 nm) and shortwave infrared (SWIR, 970–2,450 nm)
data. The instrument measures reflected radiance in 178 spectral channels between
400 and 2,450 nm with approximately 10 nm resolution. The instrument is mounted
on a tilting platform allowing for real-time compensation for aircraft motion. The
aircraft was flown by the SpecTIR Corporation (Reno, Nevada, USA) at 1,800 m
above the Earth’s surface with a ground speed of 210 km h−1. The images cover a
swathe approximately 1 km wide (320 adjacent 2.5 m pixels; Fig. 14.1). Airborne
reflectance data associated with soil sampling locations were extracted and spectra
from nine neighbouring pixels centred on the sampling location were then averaged,
resulting in average reflectance from an 81 m2 area.
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Fig. 14.1 An example of an
airborne hyperspectral image
collected in April 2007 on the
Eastern Shore of Maryland,
USA

A preliminary soil carbon prediction map was first generated using the raw (unfil-
tered) hyperspectral data. Before generation of the final soil carbon prediction map,
spectra associated with each pixel in the image were smoothed by use of a low-pass
filter which averages nine neighbouring pixels (kernel = 3) and assigns the average
spectra to each of the central pixels. The smoothed spectra for the pixels were then
used for PLS predictions. In this way, the approximate same degree of smoothing
was applied to spectra used to develop the calibration as were used to generate the
prediction data and the signal-to-noise ratios should be similar.

The airborne hyperspectral imager uses push-broom line scan technology which
means that individual lines of data are obtained using the forward motion of the
aircraft to sweep out a continuous strip image of the ground. One characteristic of
this type of sensor is that a particular sensor array position will collect a line of
data parallel to the flight path (Petrie, 2005). As a result, spectral variations due to
internal instrument variances (associated with different sensor array positions) may
appear as single pixel width bands in the unfiltered prediction image parallel to the
flight path direction. To correct this banding error, we averaged spectra for the two
pixels on both sides of the band and replaced the centre pixel value with the result-
ing spectrum. This operation was performed before spectral data were smoothed
globally using the low-pass filter.

14.2.2.2 Proximal Measurements

Transects of NIR spectral data were collected using a tractor-mounted spectropho-
tometer built into a shank mounted on a toolbar and pulled behind the tractor.
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Fig. 14.2 Pattern of soil
sampling along transects
generated by the tillage-based
sensor. The size of the dots
indicates relative differences
in organic C content

Spacing between transects was 30 m on average (Fig. 14.2). Spectral measurements
were acquired through a sapphire window mounted on the bottom of the shank.
The spectrophotometer uses a tungsten halogen bulb to illuminate the soil and the
reflected light is collected into a fibre optic cable for transmission to the spectrome-
ter. An InGaAs photodiode array spectrometer (Model NIR-128L-1.7-USB, Control
Development, Inc., South Bend, IN) was used to collect spectral data in the range
920–2,225 nm at a resolution of 6.35 nm. Shutters in the shank were manipulated to
acquire dark and reference spectra at approximately 3–5 min intervals. The shank
was pulled through the soil at approximately 7 cm depth at 6 km h−1, acquiring
approximately 20 spectra per second. Reflectance data associated with soil sam-
pling locations were extracted using a Gaussian elliptical weighting algorithm to
obtain a distance weighted average involving approximately five spectra for each
location.

14.2.2.3 Laboratory Measurements

Oven-dried and sieved samples were scanned (64 co-added scans, four wave num-
ber resolution) in the near-infrared (NIR, 1,000–2,500 nm) and mid-infrared (MIR,
2,500–25,000 nm) regions on a Digilab Fourier transform spectrometer (FTS7000
FTS, Varian, Inc., Palo Alto, CA) equipped with DTGS (deuterated triglycine sul-
fate) and InSb detectors using a Pike (Pike Technologies, Madison, WI) AutoDiff
auto-sampler (sample cups ∼1 cm in diameter).

14.2.3 Chemometrics

All calibrations were developed using the partial least squares (PLS) regression sub-
routines in SAS Ver. 9.12 PLS (Reeves and Delwiche, 2003). A total of 30 different
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spectral pre-treatments were tested including multiplicative scatter correction and
first and second gap derivatives with all spectra mean centred and variance scaled.
The PRESS F test was used to select the number of factors used in the calibration.
Calibration and independent validation sets were developed by randomly dividing
the sample set into one-third for validation and two-thirds for calibration.

14.3 Results and Discussion

A comparison of averaged NIR spectrum (n = 304) for the laboratory, airborne-
based, and tillage-based instruments is shown in Fig. 14.3.
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Fig. 14.3 Averaged NIR
spectra (n = 304) generated
by the different near-infrared
sensors

Substantial differences in spectral characteristics were observed among the
methods. The tillage-based sensor generated spectra with the fewest amount of
reflectance features discernable by visual inspection. Peaks around 1,400 and
1,900 nm associated with water were broader for the two field-based sensors. One
notable difference is that the airborne sensor depends on natural sunlight, which
is subjected to atmospheric filtering. This may account for the greater number of
small-scale features evident in the spectra.

14.3.1 Calibration and Validation

The distribution of soil organic C contents within the sample set is shown by the
histogram in Fig. 14.4 showing a near-normal distribution of samples with slight
negative skewness.
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Fig. 14.4 Histogram showing the distribution of soil organic C contents within the 304 sample set
used to develop NIR calibrations

Table 14.1 Calibration and validation statistics for PLSR models generated from the different
spectral data sources

Calibration Validation

Source RMSD R2 RMSD R2

Airborne 0.15 0.64 0.17 0.54
Tillage 0.14 0.71 0.18 0.53
Lab. NIR 0.11 0.81 0.19 0.45
Lab. MIR 0.08 0.90 0.11 0.83

The PLS regression models for the NIR region generated a range of coefficients
of determination (R2) for prediction of soil organic C with the laboratory calibration
outperforming those from tillage and airborne acquired data (Table 14.1). However,
the validation statistics based on an independent sample set consisting of one-third
of total samples indicated that the laboratory-based calibration was the least robust
among the NIR calibrations.

Figure 14.5 shows the relationships between calibration and validation predic-
tions for the MIR and NIR models. The laboratory NIR model provided the greatest
difference in slope between calibration and validation sets, with the airborne and
tillage NIR model performance between that of laboratory MIR and NIR. It is
notable that the ability to quantify soil carbon by spectral measurements in the NIR
region is considerably poorer in this study that what has been previously reported for
other sets of soil (R2 = 0.90, RMSD = 0.14% C for McCarty and Reeves, 2006).
This may be due in part to a more limited range of soil C values within the cur-
rent study (0.5–2.6% C with 73% of samples falling between 1.0 and 1.5% C).
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Fig. 14.5 Calibration data generated by partial least squared (PLS) regression models using the
different spectral data sources

These data are consistent, however, with our previous findings that MIR outper-
forms NIR. This is likely due to the superior information contained within the MIR
spectra (McCarty et al., 2002). Strong atmospheric absorption in portions of the
MIR region is likely to preclude its use in remote sensing of soil carbon but not for
in situ proximal soil sensing.

The under-performance of laboratory NIR during validation is interesting, since
spectral data generated in the laboratory would be expected to have the least amount
of noise. Additionally, there is a disparity in sample support for laboratory- ver-
sus field-scale spectral measurements. The laboratory data were collected from the
actual sample analysed for carbon and therefore should have the lowest amount
of error based on sample heterogeneity. The tillage-based spectral measurements
would be expected to have additional error associated with global positioning
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system (GPS) uncertainty during acquisition of the data, as well as the influence
of soil moisture and aggregate structure. The airborne-based spectral data were
smoothed to an average of nine 2.5 m pixels before analysis and may therefore
be expected to require greater sample support than supplied by a single sampling
point to account for spatial heterogeneity within the pixel.

14.3.2 Potential for Optimising Sampling Design

Interpolation between data transects created by the tillage-based sensor has been
shown to create accurate maps of soil carbon (Christy et al., 2006). Operational
spectral maps created by either the tillage or the airborne sensors could be used
to design the optimal sampling strategy for a landscape with sampling stratifica-
tion based on spatial analysis of spectral variance. Christy et al. (2006) described a
protocol in which reflectance data are compressed using principal components anal-
ysis and then clustered using a fuzzy c-means algorithm. The algorithm was used
to determine representative sample locations within each cluster based on minimal
spatial variability. Acquired samples are then used to develop the calibration. This
approach should generate a balanced sample set for the development of calibra-
tions. McCarty and Reeves (2001) provided evidence that regional calibrations for
soil properties can be developed and bias introduced by a location can be corrected
by adding a few samples from the new location to the calibration set. This can pro-
vide a very efficient means of refining calibrations for the area of interest. By use of
these calibration strategies, in conjunction with diffuse reflectance NIR sensors, it
may be possible to efficiently measure soil carbon stocks within some agricultural
ecosystems.

14.3.3 Remote Sensing of Soil Carbon

To generate a soil carbon prediction map, we applied the aircraft-based PLS cal-
ibration to the bare soil pixels within the hyperspectral image. The use of raw
(unfiltered) spectra from individual pixels to generate predicted soil carbon con-
tent was found to result in high prediction variability between adjacent pixels. This
resulted in a highly speckled soil carbon prediction map (Fig. 14.6).

Because PLS calibrations use all the spectrum, error due to poor signal-to-noise
ratio or a single wave-band spike in any part of a spectrum (due perhaps to malfunc-
tion within the detector array) can cause substantial error in the carbon prediction.
In the upper right corner of the unfiltered image (Fig. 14.6), one can see a nearly
vertical strip along the flight path, and it represents a single position in the push-
broom array of the imager. In another example, a clearly obvious recurring single
wave-band spike in the spectra due to a faulty detector element at one position along
the push-broom array caused a very marked striping pattern in the prediction map
along the direction of flight. We found we could correct these detector errors by
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Fig. 14.6 Comparison of the variance in soil carbon predictions using raw and low-pass filtered
pixel spectra

averaging spectra on either side of that position. We also found that subsequent data
averaging using a low-pass filter improved PLS prediction of soil carbon.

Figure 14.6 also illustrates the effect of this filtering on prediction continuity
between adjacent pixels when compared to predictions using the unfiltered data.
Statistical analysis of the prediction output showed that filtering eliminated nega-
tive prediction values and decreased the variance, but had little impact on the mean
prediction value (Table 14.2).

The increased stability of PLS predictions using the low-pass filter is likely due to
the better signal-to-noise ratio that results from spectral averaging, further indicating
that non-smoothed spectra contain too much noise for stable predictions. The PLS
calibration was produced using similarly averaged pixels, so the signal-to-noise ratio
in spectra used to develop the calibration model was similar to those used to pre-
dict the unknown. The spatial averaging of spectra to gain improved signal-to-noise
may be considered akin to co-adding multiple spectral scans to achieve the same

Table 14.2 Statistics on range, mean, and standard deviation for predicted carbon values (units,
%C) between raw and filtered samples for the sample area shown in Fig. 14.6

Treatment Min. Max. Mean SD

Raw –0.22 1.83 0.79 0.27
Filtered 0.36 1.12 0.78 0.12
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Fig. 14.7 Soil carbon map,
derived from hyperspectral
image of bare soil, draped on
a digital elevation model of
an agricultural field

end. One effect of using filter averaging across the spatial dimension is the loss of
some spatial definition in the soil carbon prediction. Another approach which may
increase signal-to-noise and improve the ability to extract information from spectra
involves the use of wavelets, which has proven to be faster than calibration by PLS
(see Chapter 17).

Figure 14.7 shows a projection of the final soil carbon map on a lidar-derived
digital elevation model (DEM) for the production field. The map shows a corre-
spondence of soil carbon content with landscape position. The carbon pattern can be
expected to be related both to biogeochemical gradients associated with landscape
positions and to soil redistributions resulting primarily from agricultural activities.

14.4 Conclusions

This study demonstrates the potential utility of field-based sensors for measurement
of soil organic C. An advantage of the tillage-based reflectance sensor is the ability
to use it in untilled production fields with depth of sampling adjustable, thereby get-
ting an improved estimate of C storage in no-till fields. Compare this with airborne
or satellite sensors, for which soil C measurements are confounded by surface veg-
etation and crop residues. An obvious advantage of the aircraft-based reflectance
sensor is its ability to rapidly return both intensive and extensive spatial datasets.
Moreover, this study has found that calibration/validation approaches based on anal-
ysis of whole spectrum variance, such as partial least squares (PLS) regression, hold
great promise to quantify soil organic matter. An obvious disadvantage is the need
for bare soil images to detect soil carbon. The extent of interference from live or
dead plant materials present in the image is unknown at this time.
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Chapter 15
Predicting Soil Carbon and Nitrogen
Concentrations and Pasture Root Densities from
Proximally Sensed Soil Spectral Reflectance

B.H. Kusumo, M.J. Hedley, M.P. Tuohy, C.B. Hedley, and G.C. Arnold

Abstract A modified soil probe for a portable spectroradiometer (ASD
FieldSpecPro, Boulder, CO) was developed to acquire reflectance spectra (350–
2,500 nm) from flat-sectioned horizontal (H method) soil surfaces of soil cores
or from the vertical side (V method) of cylindrical soil cores. The spectra have
been used to successfully predict soil carbon (C) and nitrogen (N) concentrations
and root density. Partial least squares regression (PLSR) of the first derivative of
the 5 nm space spectral data from method H against laboratory determined soil C
and N concentrations produced calibrations that allowed quantitative estimates of
C and N concentrations in unknown Pumice, Allophanic, and Tephric Recent soil
samples (for C: R2 validation = 0.76, RPD = 1.97; for N: R2 validation = 0.84,
RPD = 2.45). Compared to the H method, spectra acquired by the V method gave
slightly more accurate predictions of soil C and N concentrations in Fluvial Recent
soil (for C: R2cross-validation (cv) = 0.95 and 0.97, RPD = 4.45 and 5.80; for N:
R2cross-validation = 0.94 and 0.96, RPD = 4.25 and 5.17, where the two values
are for the H and V methods, respectively). Spectra acquired by the V method from
drier soils in May produced a calibration against soil C and N concentrations that
was capable of accurately predicting the soil C and N concentrations from spec-
tra collected from wetter soils in November (C: R2 validation = 0.97 and RPD =
3.43; for N: R2 validation = 0.95 and RPD = 3.44). This indicates that a calibration
dataset can have temporal robustness, which may reduce the number of calibrations
that have to be performed. The root density predictions from spectra acquired by
the H method were more accurate if soil types were separated into Allophanic soil
(RPD = 2.42; R2 cross-validation = 0.83) and Fluvial Recent soil (RPD = 1.99; R2

cross-validation = 0.75).
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15.1 Introduction

In response to increasing atmospheric carbon dioxide concentrations, more nations
are proposing land-use changes to increase soil carbon (C) sequestration. Conse,
agricultural, and forestry management systems that produce a soil C change will
need to be identified (Lal, 2008). Signatories to the Kyoto Protocol who adopt
Article 3.4 will be allowed to offset greenhouse gas emissions with audited proof of
increased soil C to 30 cm soil depth. Before we can determine the C sequestration
ability of different plants (including their root systems) under different manage-
ment regimes, we will need rapid field techniques for measuring soil organic matter
content.

Near-infrared reflectance spectroscopy (NIRS) (see Chapter 3) is a rapid and
non-destructive technique which has been successfully used to predict soil C and
N in the laboratory (e.g. Chang and Laird, 2002) and in the field (e.g. Mouazen
et al., 2007). NIRS has the potential to save time and cost in sample collection
(see Chapters 11, 13, and 14). Moreover, in situ acquisition of reflectance spectra
from soil cores offers the possibility of gaining quantitative information on plant
root density (Kusumo et al., 2007; Kusumo et al., 2009). Such rapid techniques for
measuring root density – without separating root and soil – are rare. Novel tech-
niques using flatbed scanners have been proposed for speeding up the counting of
separated roots (Pan and Bolton, 1991), and digital image acquisition methods have
been proposed for analysing field root systems (Ortiz-Ribbing and Eastburn, 2003),
but these techniques still need to separate roots from soil, and this remains a tedious
procedure. Although fine root density and its turnover rate are highly correlated with
soil organic matter synthesis (Guo et al., 2005), researchers will remain reluctant to
measure root density unless they have access to a rapid technique for separating
roots from soil.

This chapter reports the development and evaluation of a modified soil probe to
acquire soil reflectance spectra for in situ measurement of soil C, N, and root density
in pastoral soils, with the ultimate aim of high-resolution soil mapping.

15.2 Materials and Methods

15.2.1 Contact Probe Modification and Measurement Techniques

A modified soil probe was developed based on a commercial contact probe
(Analytical Spectral Devices, Boulder, CO) by replacing the internal light source
with a higher intensity (4.5◦W) parabolic reflector halogen lamp. A round cas-
ing was developed (Fig. 15.1) which shielded the sensor from ambient light and
avoided direct contact of the quartz probe window with the soil. The object–sensor
distance was fixed at 30.5 mm. Two techniques were used to acquire soil reflectance
spectra of cylindrical soil cores. Method H involved measurements made from a flat,
sectioned horizontal soil surface and method V from the curved vertical wall. The
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(a) H method for C 
and N measurement

(b) H method for root
measurement 

(c) V method for C and N measurement 

(d) Positioning template (e) V method

Fig. 15.1 Soil probe modification for horizontal (a, b) and vertical (c) measurement. Positioning
template (d) for vertical method (e)

soil core was rotated 360◦, giving a collection area of 561 mm2 for the H method
and 4707.4 mm2 for the V method (Fig. 15.1).

15.2.2 Site Locations and Sample Collection

Using the H method, soil reflectance spectra and soil samples were collected
in May and October 2006 from seven sites under permanent pasture; they were
from the Taupo–Rotorua Volcanic Region of New Zealand and had been con-
verted from forest to pasture 1, 3, and 5 years ago. Soils are classified into
Pumice (Vitric Andosol, FAO-WRB soil classification), Allophanic (Vitric Andosol,
FAO-WRB soil classification), and Tephric Recent soil (Vitric Cambisol, FAO-
WRB soil classification) according to the New Zealand soil classification (Hewitt,
1998) and were mostly coarse in texture. A total of 30 soil samples were taken
at each site, from 5 positions along each of 3 transects, and at 2 depths (37.5
and 112.5 mm), totalling 210 samples. The distance between transects was 20 m
and that between sample points in each transect was 15 m. Soil cores were col-
lected with a corer (46 mm diameter). After soil reflectance was acquired from
the horizontal surface, a 15 mm soil slice was taken at each depth for laboratory
measurements.
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The V method was also evaluated for soil C and N content under permanent
pasture; this was done on Fluvial Recent soil (Stagnic Fluvisol, FAO-WRB soil
classification) in the Manawatu region in May 2007. A total of 17 soil cores were
sampled from 3 transects (6 soil cores in a transect) at 6 depths at 50 mm intervals
from 15 to 315 mm depth, totalling 102 samples. The distance between transects and
between samples in a transect was 20 and 15 m, respectively. Field soil reflectance
spectra were acquired from vertical surfaces of a 50 mm soil slice, which was sub-
sequently analysed for total C and N. Another 18 cores (total 108 samples) were
collected at the same site with the same intervals and depths in November 2007 in
order to compare the H and V method and the temporal robustness of calibration
and prediction.

Samples for root density assessment by method H were collected using a corer
(80 mm diameter) at two permanent pasture sites on Ramiha silt loam (Allophanic
soil) (Andic Cambisol, FAO-WRB soil classification) and Manawatu fine sandy
loam (Fluvial Recent soil; Stagnic Fluvisol, FAO-WRB soil classification) in the
Manawatu region. A total of 18 soil cores with 3 depths (15, 30, and 60 mm) were
collected from each site, providing a total of 108 soil samples. The core positions
were determined randomly in a paddock with a distance of 15 m between cores.
After soil reflectance was recorded in each depth, a 3 mm soil slice (slice A) was
collected for root density measurement. A further 3 mm soil slice (slice B, adjacent
to root density samples) was collected from each depth for soil dry weight and soil
moisture determination.

15.2.3 Measurement of Soil Properties

Soil cores were weighed field moist, crumbled, and allowed to air dry before
reweighing. Soil moisture content was expressed as a fraction of air dry weight.
Air dry soils were then ground to <500 μm particle size for total C and N analy-
sis using a LECO FP-2000 CNS Analyser combustion method (Blakemore et al.,
1987).

Root and soil were separated by wet sieving using sieve sizes of 710, 500, 355,
250, and 63 μm diameters. The roots retained on the first three sieves were bulked
and dried for 3 days in a 50◦C oven. Root density was reported in milligram dry
root per gram soil (mg/g).

15.2.4 Spectral Pre-processing and Data Analysis

Exactly 10 replicates of the reflectance spectra were acquired from each soil sam-
ple using the purpose-built contact probe which was attached to the FieldSpecPro
spectroradiometer by fibre optic cable. The instrument recorded spectra from 350–
2,500 nm with a resolution of 1.4 nm for the region 350–1,000 nm and 2 nm for
the region 1,000–2,500 nm. Software supplied with the instrument interpolated the
data points to provide a uniform 1 nm resolution. Prior to regression analysis, spec-
tral data were pre-processed by cutting those wave bands with noisy data (350–470
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and 2,440–2,500 nm), smoothing the spectra with a Savitzky–Golay filter, reduc-
ing the data by taking every fifth spectral data point, calculating the first derivative,
and then finally averaging the 10 replicates. SpectraProc V 1.1 software was used
to pre-process the spectral data (Hueni and Tuohy, 2006), following which the data
were imported into MINITAB 14 for principal component analysis (PCA) and par-
tial least squares regression analysis (PLSR) of the first derivative of the reflectance
spectra against the reference analytical data (C, N, and root density). A PCA score
plot was used to observe the pattern of sample scattering and quantify the scatter by
calculating the Euclidean distances of each sample to the centroid.

During PLSR processing, samples which had a standardised residual >2.0 were
removed as outliers from the calibration and validation set. The accuracy of the
models was tested internally using a leave-one-out cross-validation method and
externally using a separate validation set.

15.2.5 Regression Model Accuracy

The ability of the PLSR model to predict soil properties was assessed using the
following statistical procedure. The root mean square error (RMSE) was taken as
the standard deviation of the difference between the measured and the predicted soil
property values

RMSE =
√∑(

ym − yp
)2

N
,

where ym was the measured laboratory value, yp the predicted value (of cross-
validation or validation) from the PLSR model, and N the number of samples.
RMSE calculated from cross-validation data was called RMSECV and that from
validation data called RMSEP. Coefficient of determination (R2) was calculated as
the ratio of the sum of squares of the predicted values (either predicted values from
cross-validation or validation as defined above) about the mean of the measured
values to the sum of squares of the measured values (ym) about their mean. RPD
was the ratio of the standard deviation of measured values of soil properties to the
RMSE and showed how much more accurate (as measured by the standard error) a
prediction from the model was than simply quoting the overall mean. The variable
RER was taken as the ratio of the range of measured values of soil properties to the
RMSE, so that

RPD = STDEV(ym)

RMSE
and

RER = Max(ym) − Min(ym)

RMSE
.
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Both cross-validation and test set validation were assessed using these equations.
The best prediction model was that with the highest RPD, RER, and R2 and the
lowest RMSECV or RMSEP.

15.3 Results and Discussion

15.3.1 C and N Prediction of Taupo–Rotorua Allophanic,
Pumice, and Tephric Recent Soil

The Taupo–Rotorua soil dataset had a wide range of total C (0.26–11.21%) and
N (0.02–1.01%), even after excluding outliers. Mean total C and N values were
4.42 and 0.32%, respectively. Water content range was also large at 11–82%. The
C:N ratio ranged from 9 to 30; high values indicated a low rate of organic matter
decomposition, caused by the presence of residual forest trash in the areas recently
(1–5 years) converted to pasture. The distribution of spectral samples on the PCA
score plot (68% variance) is presented in Fig. 15.2.

The linear regression of predicted soil C and N concentrations against those
measured by LECO (Fig. 15.3) was constructed as follows. Exactly 50% of the
data (calibration set A) were used to build the PLSR calibration model of spectral
reflectance (first derivative) and measured soil C and N. The calibration model was
then used to predict the C and N concentrations of the remaining 50% (validation
set B). This forms a calibration:validation set ratio of 1:1. The A and B sets were
selected by two methods based on (1) chemical data – all soil samples were ranked
from the lowest to the highest C or N content and odd- and even-ranked numbers
were allocated to set A and B, respectively, and (2) spectral data – standardised
Euclidean distances of all sample points from the centroid of the PCA score plot
were calculated and the samples were ranked from the lowest to the highest stan-
dardised Euclidean distance. Odd- and even-ranked numbers were allocated to set
A and B, respectively.

The H method of acquiring spectral reflectance gave a moderate prediction accu-
racy of soil C and N content despite the lack of sample preparation and the variably
moist soil conditions for the field reflectance determination. Dataset selection tech-
nique had little influence on the accuracy of prediction (RPDs of 1.91–2.45 and R2

validation of 0.74–0.84) (Fig. 15.3).
The soil texture variation of these mostly coarse textured soil types (Pumice,

Allophanic, and Tephric Recent soil) may account for this moderate accuracy. Dalal
and Henry (1986) found higher errors when predicting organic C and total N pre-
diction in coarsely ground (<2 mm) compared to finely ground (<0.25 mm) soil
samples. Barthes et al. (2006) found a less accurate prediction of total C and N of
oven-dried <2 mm than oven-dried <0.2 mm particle size samples. In addition, 46%
of samples contained more than 50% water (with a range of 11–82%), which may
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Fig. 15.2 A score plot of the first two principal components (PC1 and PC2) from a PC analy-
sis of reflectance spectra (first derivative) acquired from soil samples with a range of ages since
conversion from forest to pasture

have reduced accuracy because water can reduce the strength of important absorp-
tion features of C and N. Malley et al. (2002) reported less accurate prediction of
organic matter and NH4–N with field moist soils than dry soils (dried at 40◦C).
Kooistra et al. (2003) also noticed a negative impact of water content on organic
matter and clay content prediction.
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Fig. 15.3 Relationships between the C and N contents of Allophanic, Pumice, and Tephric Recent
soil measured by LECO and predicted from their spectral reflectance (first derivative)

15.3.2 Comparison Between H and V Method for Fluvial
Recent Soil

We found that reflectance spectra collected from the flat intact soil core target sur-
face (H method) – especially those from the most shallow samples (15–65 mm) –
were more influenced by root content than the V method (Fig. 15.4a, c, d). This dif-
ference between the two methods is illustrated by the shallow soil samples enclosed
in the two circles of Fig. 15.4a. A spectrum with high reflectance collected by the
H method (Fig. 15.4d) had high root content, largely because the larger number of
root air voids caused higher reflection (Baumgardner et al., 1985). Method H records
reflectance of soil and the exposed root, which is in contrast to the air-dried 2 mm
sieved soil (from which some coarse roots were removed) used in the LECO mea-
surement of soil C and N. Indeed, differences in the sample used for wet chemistry
and spectroscopy can be a major source of calibration error (Mark and Workman,
2003).

Compared to the H method, the V method gave more accurate predictions of soil
C and N concentrations in Fluvial Recent soil (with and without outliers) which is
shown by higher RPD, R2, and RER and by lower error (RMSECV) (Table 15.1).



15 Predicting Soil Carbon and Nitrogen Concentrations 185

(a) 

0

15

30

45

60

25

Root Density (mg/g)

S
o

il 
D

ep
th

 (
m

m
)

(b) 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Depth   15 – 65 mm
Depth   65–115 mm
Depth 115–165 mm
Depth 165–215 mm
Depth 215–265 mm
Depth 265–315 mm

(c) Reflectance collected by V method 

PC1  ( 48.2 % Variance )

P
C

2 
 (

 1
7.

3 
%

 V
ar

ia
n

ce
 )

6050403020100–10–20–30

20

10

0

–10

–20

–30

0

0

Method
Horz
Vert

Score Plot of Samples Collected using Horizontal and Vertical Method

15–65 mm
depth

15–65 mm
depth

Method
Horz
Vert

15–65 mm
depth

15–65 mm
depth

0 5 10 15 20

350 700 1050 1400 1750 2100 2450
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Depth   15–65 mm
Depth   65–115 mm
Depth 115–165 mm
Depth 165–215 mm
Depth 215–265 mm
Depth 265–315 mm

(d) Reflectance collected by H method 

350 700 1050 1400 1750 2100 2450

Fig. 15.4 (a) A score plot of the first two principal components (PC1 and PC2) from a PC analysis
of reflectance spectra (first derivative) acquired from a range of soil depths (15–315 mm) under
permanent pasture on a Fluvial Recent soil. (b) Root density decreased with depth, as did the
reflectance from the same samples collected by the V (c) and H (d) methods

Table 15.1 Prediction of soil C and N concentrations in Fluvial Recent soil under permanent
pasture (Spring–November 2007)

Prediction values for C

Method n Comp. R2 RMSECV (%) RPD RER Bias Slope

Horizontala 108 5 0.88 0.45 2.90 11.05 0.0030 0.92
Verticala 108 6 0.95 0.29 4.52 17.22 0.0042 0.96
Horizontalb 103 5 0.95 0.27 4.45 18.47 −0.0001 0.95
Verticalb 104 6 0.97 0.21 5.80 23.14 0.00066 0.97

Prediction values for N

Horizontala 108 3 0.90 0.04 3.11 12.27 0.00003 0.91
Verticala 108 5 0.95 0.03 4.52 17.84 0.00028 0.96
Horizontalb 103 5 0.94 0.03 4.25 18.49 0.00022 0.96
Verticalb 104 6 0.96 0.02 5.17 21.17 0.00040 0.97

n, number of samples; Comp., component (factor or latent variable)
aWithout removing outlier
bOutliers removed
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The soil core is rotated in the V method, and this results in a larger collecting area
compared to the H method (Fig. 15.1). The V method is less influenced by the root
content in the 15–65 mm depth. Also, reflectance recorded from the curved surface
possibly includes less specular reflectance, and so this curved 5 cm long surface
better represents the soil C and N variations of the core. The H method will provide
representative C and N predictions for a 5 cm cylindrical soil sample only when
it has a small vertical variation – for example in a mixed topsoil under intensive
cultivation when it has little root content.

Water content of these samples was 20.7–53.6%. The C and N measured by the
combustion method (LECO) were 0.27–5.20% and 0.02–0.50%, respectively.

15.3.3 Vertical Method on Fluvial Recent Soil Collected
in Autumn (May)

The V method gave very accurate predictions of soil C and N concentrations for soil
cores taken at the same site (Fluvial Recent soil) in autumn (May). This accuracy
is expressed by high RPD, and R2 values produced both in the internal validation
(cross-validation) and in the external validation procedures using a 1:1 ratio of sam-
ples for the calibration set and validation set (see Fig. 15.5). Soil water content of the
cores collected in May 2007 was drier (11.5–39.7%), but the C and N values deter-
mined by LECO were quite similar (0.31–5.43% C and 0.02–0.49% N), compared
to November samples.

15.3.4 Is the Calibration Model Influenced by Temporal
Variations in the Soil?

If the calibration of spectral data with soil C and N concentrations is stable over
time then less effort will be required in re-calibrating the prediction model. It was
considered that changes in soil colour, a feature of seasonal water table fluctuations,
may influence the robustness of the calibration model.

The soil reflectance spectra collected in May were used as the calibration set to
predict the soil C and N concentrations of the November samples and vice versa
(May predict Nov, and Nov predict May) (Fig. 15.6). Even though the core samples
taken in November were wetter and more mottled than those taken in May, accurate
prediction of soil C and N concentrations could still be achieved. This indicates
that the V method may be a temporally robust method for in situ measurement of
soil C and N in this Fluvial Recent soil. This technique could facilitate high spatial
resolution mapping of soil C and N to 30 cm soil depth, which would be helpful to
soil C accounting researchers.
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Fig. 15.5 Relationship between measured and predicted C and N (above and middle) and the mean
of measured and predicted C and N with depth (bottom)
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Fig. 15.6 The May PLSR calibration model can be used to predict soil C and N concentrations
from spectra acquired in November (and vice versa)

15.3.5 Root Density Prediction on Ramiha and Manawatu Soil

The wide range of root density measured under permanent pasture on
Allophanic (Ramiha) and Fluvial Recent (Manawatu) soil samples (2.27–23.10 and
1.53–37.03 mg dry root/g soil, respectively) could be predicted using the H method.
Prediction was more accurate if the data from the two soil types were separated
rather than grouped. The prediction of the amalgamated samples was 1.71 (RPD),
0.66 (R2cross-validation), and 0.86 (R2 calibration). A better prediction was found
in the Allophanic (Ramiha) soil (RPD = 2.42; R2 cross-validation = 0.83; R2 cal-
ibration = 0.99) than in the Fluvial Recent (Manawatu) soil (RPD = 1.99; R2

cross-validation = 0.75; R2 calibration = 0.99). The solid and open circles indicate
the calibration and cross-validation data (Fig. 15.7a–c).

The first two principal components, which accounted for 53% of the variance in
the spectral reflectance (first derivative), successfully differentiated Allophanic and
Fluvial Recent soil (Fig. 15.7d). Samples with high root density tend to occur in the
top left corner of the score plot diagram. Samples from each depth can also be distin-
guished, although some samples are close and overlapping, suggesting that they may
have similar soil characteristics. Less overlapping samples from different depths can
be found in the Manawatu soil, indicating that the spectral variations in this soil are
relatively distinguishable. Many overlapping samples from the 30 and 60 mm depth



15 Predicting Soil Carbon and Nitrogen Concentrations 189

Ramiha

RMSEC = 0.43 mg/g
R

2
calib. = 0.99

RMSECV = 1.96 mg/g
R

2
cross-val. = 0.83

RPD = 2.44

0

5

10

15

20

25

30

0 5 10 15 20 25

Wet sieve measured root density (mg/g)

N
IR

S
 p

re
d

ic
te

d
 r

o
o

t 
d

en
si

ty
 (

m
g

/g
)

(a)

Manawatu

RMSEC = 0.93 mg/g
R

2
calib. = 0.99

RMSECV = 5.11 mg/g
R

2
cross-val. = 0.75

RPD = 1.98
–5

5

15

25

35

45

0 10 20 30 40

Wet sieve measured root density (mg/g)

N
IR

S
 p

re
d

ic
te

d
 r

o
o

t 
d

en
si

ty
 (

m
g

/g
)

(b)
Ramiha and Manawatu

RMSEC = 3.09 mg/g
R

2
calib. = 0.86

RMSECV = 4.80 mg/g
R

2
cross-val. = 0.66

RPD = 1.71

–5

5

15

25

35

45

0 10 20 30 40

Wet sieve measured root density (mg/g)

N
IR

S
 p

re
d

ic
te

d
 r

o
o

t 
d

en
si

ty
 (

m
g

/g
)

(c) Score PC1

S
co

re
 P

C
2

20100–10–20–30–40

20

10

0

–10

–20

0

0
Soil and Depth (mm)

Ramiha - 30
Ramiha - 60

Manawatu - 15
Manawatu - 30
Manawatu - 60
Ramiha - 15

 (d)

Fig. 15.7 (a, b, c) Linear relationship between wet sieved and NIRS predicted root density.
(d) PCA score plot of the spectral reflectance of Ramiha and Manawatu soil

in Ramiha soil indicate that these samples may have similar characteristics, a view
supported by there being no significant difference in root density between these two
depths.

15.4 Conclusions

This study indicates that rapid in situ assessment of soil C, N, and root density using
spectral reflectance from soil cores has considerable potential. The acquisition of
reflectance spectra from the curved surface of a soil core (V method) gives more
accurate predictions of soil C and N concentrations than acquisition of spectra from
flat soil surfaces (H method). This method could facilitate high spatial resolution
mapping of soil properties, measuring C and N within the soil profile and therefore
providing a rapid field method for assessing the impacts of land-use change on soil
organic matter stocks, as well as potential rates of soil organic matter synthesis via
root density analysis.
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Chapter 16
Diagnostic Screening of Urban Soil
Contaminants Using Diffuse Reflectance
Spectroscopy

J.G. Bray, R.A. Viscarra Rossel, and A.B. McBratney

Abstract There is increasing demand for cheap and rapid screening tests for soil
contaminants in environmental consultancies. Diffuse infrared reflectance spec-
troscopy in the visible–near-infrared (vis–NIR) and mid-infrared (MIR) has the
potential to meet this demand. The aims of this chapter are to develop diagnostic
screening tests for heavy metals and polycyclic aromatic hydrocarbons (PAHs) in
soil using vis–NIR and MIR diffuse reflectance spectroscopy. Cadmium, copper,
lead, and zinc were analysed, as were total PAHs and benzo[a]pyrene. An ordinal
logistic regression technique was used for predictions in the screening tests and to
determine false-positive and false-negative rates. Zinc had the best prediction accu-
racy (89%) and copper predictions were consistently above 75%. Cadmium and
lead were the least well predicted of the heavy metals (67 and 70%, respectively),
and PAH predictions averaged 78.9%. MIR analysis (average prediction accuracy of
79.9%) was only slightly more accurate than vis–NIR analysis (average prediction
accuracy of 77.1%), but the latter may currently be used in situ, thereby reducing
cost and time of analysis and providing diagnosis in real time. Diffuse reflectance
spectroscopy in the vis–NIR can substantially decrease both the time and the cost
associated with screening for soil contaminants.

Keywords Soil contamination · Heavy metals · Diffuse reflectance infrared
spectroscopy · Visible–near-infrared · Mid-infrared

16.1 Introduction

Soil contamination demands efficient methods for diagnosis and remediation. This
is largely due to the health risks to both humans and ecosystems. Comprehensive
assessments of contaminated land must include the identification of contaminants
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and a risk assessment of exposure. Public awareness has resulted in many govern-
ment and public authorities finding themselves under increased pressure to ensure
that any discovery of contaminated soils is publicly disclosed and remediated
quickly and effectively. Therefore, efficient techniques for sampling and analyses
have become necessary (Chuang et al., 2003). Heterogeneity of soil properties is
an issue confronted by many researchers, such as Besson et al. in Chapter 23, and
there is great difficulty in identifying both the extent of areas of contamination and
the sources of the contaminants (Markus and McBratney, 1996). Other problems
encountered may be simple – such as inaccessibility of soil due to surface sealing
by roads, buildings, or other infrastructures – or more difficult (and frustrating) –
such as restricted access to private land (Markus and McBratney, 1996). In sum,
these are complex problems in need of rapid and simple solutions.

The Australian and New Zealand Conservation Council (ANZECC) has, in the
past, used another method of determining soil contamination thresholds. These have
been labelled ‘environmental investigation trigger values’ and in most cases differ
from the National Health and Medical Research Council (NHMRC) values. The
ANZECC trigger values for lead, zinc, copper, cadmium, benzo[a]pyrene (BaP),
and total PAHs are 300, 200, 120, 3, 1, and 20 mg kg−1, respectively (ANZECC,
1992). Total PAH covers the total concentration of the 16 PAHs that have been
identified as particularly carcinogenic or mutagenic, and includes BaP (Xing et al.,
2006).

The five contaminants listed above present definite challenges to those looking to
efficiently diagnose, analyse, and rehabilitate contaminated sites. That their toxicity
can vary rapidly over very short distances, particularly in industrial areas of urban
landscapes, is also a challenge (Markus and McBratney, 1996). Urban and industrial
land uses compete with one another in major cities, making it all the more important
to ensure that urban soil remains clean enough for any use.

Despite their accuracy, many conventional methods of contaminant identification
fall short because of their cost and long analysis time. Demand for rapid and cheap
contaminant identification creates a niche for diffuse reflectance spectroscopy. The
technology is simple to use and poses no health threats to the user, unlike other
spectroscopic technologies, such as X-ray spectroscopy, which require protective
equipment. Diffuse reflectance spectroscopy is non-destructive and a single scan,
combined with some multivariate statistics, can measure several properties simul-
taneously (Viscarra Rossel et al., 2006; Upadhyahya et al. in Chapter 12). Perhaps
most importantly, soil analysis can be completed within seconds at low cost. The aim
of this research was to develop diagnostic screening tests for heavy metal and PAH
contaminants in urban soil using vis–NIR and MIR diffuse reflectance spectroscopy.

16.2 Materials and Methods

16.2.1 Location

Two soil datasets were used for the experiment. The first consisted of 489 sam-
ples from the Sydney inner-west suburb of Glebe, New South Wales, Australia,



16 Diagnostic Screening of Urban Soil Contaminants 193

an area known to have concentrations of cadmium, copper, lead and zinc (Markus
and McBratney, 1996). The second set was compiled from 65 samples with known
PAH concentrations from a suburb in Melbourne, Victoria. Concentrations of heavy
metals and PAHs were determined by atomic absorption spectrometry.

16.2.2 Diffuse Spectral Reflectance Measurements

Diffuse reflectance spectra of the soils were recorded in the vis–NIR range (350–
2,500 nm) and in the MIR range (2,500–25,000 nm or 4,000–400 cm−1). The spec-
trometers used were the vis–NIR AgriSpec (Analytical Spectral Devices, Boulder,
Colorado, USA) and the FTIR Tensor 37 (Bruker Analytical Technologies). Spectra
were collected over the vis–NIR range at 1 nm intervals (average of 10 scans per
second) and over the MIR range (at 8 cm−1 resolution and 64 scans per second).
A Spectralon white reference was used for calibrating the vis–NIR spectrometer,
while spectroscopic-grade potassium bromide (KBr) was used for calibrating MIR
spectrometer. Soil samples were ground to less than 2 mm diameter for the vis–NIR
analysis and to less than 200 μm for the MIR analysis. The spectra of the PAH-
contaminated soil were measured using only the vis–NIR spectrometer, since these
samples were moist and volatile, making MIR analysis with the Tensor 37 and our
current set-up difficult.

16.2.3 Statistical Analysis

Statistical analysis was carried out for both the vis–NIR and the MIR separately. The
spectra were transformed to apparent absorbance or log(1/reflectance) and a princi-
pal component analysis (PCA) was carried out to compress the spectra into fewer
principal components, a technique similar to that of McCarty et al. (Chapter 14)
and Kusumo et al. (Chapter 15). The first 10 principal components were retained
and used as the independent variables in the analysis. Ordinal logistic regression
(OLR) was used for the diagnostic screening of soil contamination. The selection of
thresholds was based on current ANZECC guidelines, as outlined above. We also
tested half, and double, the ANZECC threshold. Each dataset was randomly split
into two independent datasets: two-thirds for training and the remainder for testing
the models. The OLR models were derived using the training data and the models
were independently tested using the remaining one-third testing dataset. The OLR
models were thus used to predict whether the soils were contaminated or not based
on the predetermined threshold.

16.2.4 Diagnostic Screening of Soil Contaminants

Two types of errors were principally considered from the analysis, namely type I or
false positives and type II or false negatives. These types of errors were determined
using contingency tables (Fig. 16.1).
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Fig. 16.1 Contingency tables used for diagnostic screening of soil contamination

Type I errors occur when a sample is predicted to be contaminated but in fact it
is not. Type II errors occur when samples that are contaminated are predicted to be
free of contamination (Allchin, 2001). Thresholds may be varied to make the test
either more restrictive or more sensitive, depending on the design of the experiment.
In the development of diagnostic screening tests, it is clearly desirable to lower
both the false-negative rate (FNR) and the false-positive rate (FPR) as much as
possible.

16.3 Results and Discussion

16.3.1 Exploratory Data Analysis

Statistical distributions of the six soil contaminants studied are shown in Fig. 16.2,
which shows highly skewed data for all contaminants. A feature of the heavy metal
analysis was a strong correlation between contaminants within samples. That is,
where lead contamination was present, there was an increased chance of copper and
zinc contamination being present, and this can be attributed to previous industrial
activity in Glebe (Markus and McBratney, 1996).

16.3.2 Spectroscopic Analysis

The mean absorbance of lead in the vis–NIR range at three soil concentrations
is shown in Fig. 16.3a, namely high (greater than 500 mg kg−1), low (less than
150 mg kg−1), and moderate (150–500 mg kg−1). The samples that fall into these
categories are plotted onto a principal component score plot in Fig. 16.3b. Together,
these two PCs account for 90.2% of the data variance.

While Fig. 16.3a shows very little spectral activity between 350 and 700 nm,
clear peaks, characteristic of hydroxyl groups (1450 nm), water, and clay (1,950
and 2,250 nm), do appear. It is also clear in Fig. 16.3a that there is a difference in
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Fig. 16.2 Distributions, mean, and standard deviations of the soil contaminants. ANZECC
thresholds are marked with a black line

Fig. 16.3 (a) Average
vis–NIR absorbance of
samples with lead
contamination at low,
medium, and high levels
(wavelengths in nanometre).
(b) Principal component (PC)
score plot of the first two PCs

absorbance between samples with low and high contaminant concentrations. This
is also evident in PAH samples and carries over to MIR analysis. Heavy metals and
PAHs are not spectrally active in the visible or infrared portions of the electromag-
netic spectrum. Spectroscopic diagnostic screening for heavy metal concentration,
particularly lead, zinc, and copper, is possible because of their relationship with
clay, iron, and organic matter (Turer et al., 2001). In this study, the heavy metal con-
taminants are well correlated to soil organic matter (Table 16.1). There is also some
correlation between copper and clay content.

Table 16.1 Correlations between heavy metals, clay, and organic carbon

Analyte Percentage of clay %OC Pb Cd Zn Cu

Pb 0.05 0.35 1.00 0.23 0.42 0.09
Cd −0.02 0.46 0.23 1.00 0.39 0.49
Zn 0.01 0.38 0.42 0.39 1.00 0.29
Cu 0.13 0.38 0.09 0.49 0.29 1.00
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16.3.3 Diagnostic Screening Using Ordinal Logistic Regression

Figure 16.4 shows the contingency table of the OLR results for Pb contamination in
both the vis–NIR and MIR spectra, given three different thresholds.

Figure 16.4 shows that, as thresholds increase, the true negatives increase while
the true positives decrease. From this observation it is easy to see why the propor-
tions of false positives decrease while the false negatives increase with an increase in
threshold. This is to be expected given that at lower thresholds there is an increased
likelihood of a sample being contaminated, while the reverse is expected at higher
thresholds.

The analysis of zinc and copper produced similar results, albeit with greater
changes in false positives and false negatives. Three ways of measuring the model’s
ability to predict contaminants were used. The first was accuracy, the second FPR,
and the third FNR, and these values are shown in Table 16.2. Note that cadmium
contamination was not present in a sufficient number of samples to carry out these
analyses in full, while PAH samples were not analysed in the MIR range.

The FPR and FNR for both vis–NIR and MIR predictions (Table 16.2) show
a decrease in FPR with an increase in threshold and an increase in FNR with an
increase in threshold. The predictions of lead are the least accurate of the heavy
metals analysed (Table 16.2), falling to below 68% in the vis–NIR analysis at the
ANZECC threshold of 300 mg kg−1. The difference in accuracy between vis–NIR

Fig. 16.4 Ordinal logistic regression results showing contingency tables for (a–c) vis–NIR and
(d–e) MIR analysis of Pb at three different thresholds. From left to right, 150, 300, and
600 mg kg−1. Percentage values are shown for each prediction. Grey indicates samples predicted
to be contaminated, and white represents samples predicted to have non-contamination; column
0 represents samples that are known to be below the given thresholds, and column 1 represents
samples that are contaminated
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and MIR analyses at the ANZECC threshold and half the ANZECC threshold is
noticeable for lead, with 10% difference at 300 mg kg−1. However, the vis–NIR
analysis is slightly more accurate at double the ANZECC threshold of 600 mg kg−1.

The most accurate prediction of heavy metal presence was of zinc at the lowest
threshold, where accuracies of 86 and 89.5% were found in the vis–NIR and MIR,
respectively. Copper is the only element to have all six threshold predictions exceed
76% accuracy in Table 16.2.

The average accuracy of prediction for copper is 81.6%, exceeding that of zinc
(78.9%), lead (75.9%), and total PAHs (78.9%). The copper analyses do have very
high FNR values at the higher threshold of 120 mg kg−1 (0.92). With just 2.5% of
the soil samples above the ANZECC cadmium threshold, predictions for this con-
taminant were not considered as reliable as other analyses. This was despite the
accuracy of predictions in both the vis–NIR and the MIR range, which were over
90% accurate. Previous research has failed to sufficiently quantify or qualify the
presence of cadmium in soil (Wu et al., 2007), so it is surprising that this method
has improved the accuracy of predicting cadmium in soil. With the exception of lead
at a 600 mg kg−1 threshold, all MIR predictions were more accurate than those of
the vis–NIR, although these differences were as little as 1.3% for zinc at the highest
threshold and 1% for the anomaly of Pb at the highest threshold. The best predic-
tions were found at the lowest thresholds for all but the copper predictions from
the vis–NIR data. The range in the accuracy of total PAH predictions is the greatest
in Table 16.2. A 25% difference is apparent from half the ANZECC threshold of
10 mg kg−1 to double the threshold at 40 mg kg−1.

The FPR trend in Table 16.2 is fairly consistent, although a rare occurrence in
the FPR increasing with the threshold for total PAH vis–NIR predictions is shown

Table 16.2 Selected contaminants and thresholds used to predict accuracy, false-positive rates
(FPR), and false-negative rates (FNR)

Vis–NIR predictions MIR predictions

Contaminant Threshold (mg kg−1) Accuracy (%) FPR FNR Accuracy (%) FPR FNR

Pb 150 76.06 0.53 0.1 82.65 0.33 0.1
Pb 300 67.84 0.32 0.32 77.17 0.25 0.21
Pb 600 73.07 0.1 0.64 72.6 0.15 0.52
Zn 100 86.04 0.66 0.04 89.5 0.51 0.03
Zn 200 73.82 0.42 0.15 76.71 0.35 0.16
Zn 400 73.07 0.08 0.71 74.42 0.14 0.49
Cu 30 83.79 0.49 0.06 85.39 0.43 0.06
Cu 60 76.06 0.2 0.28 77.7 0.21 0.24
Cu 120 84.29 0.02 0.92 82.65 0.03 0.77
Total PAH 10 90.25 0.57 0
Total PAH 20 80.48 0.88 0.03
Total PAH 40 65.85 0.91 0.13
BaP 0.5 75.91 0.5 0
BaP 1 90.25 0.24 0.25
BaP 2 65.9 0.44 0.26



198 J.G. Bray et al.

in Table 16.2. These results may be attributed to a lack of samples, particularly
given that each threshold bracket had a very different number of samples. Accuracy
was comparable between PAHs and heavy metals at the actual and half the actual
thresholds, although the latter were better predicted at the highest threshold. On
average, the MIR had lower false-positive and false-negative rates when compared
with the vis–NIR.

These results suggest that further development could lead to practical appli-
cations in commercial industries. However, ways of improving predictions and
reducing error values need to be investigated. Viability with regard to time and cost
also needs to be explored.

16.4 Conclusions

• The soil contaminant studies do not exhibit characteristic spectral features. The
spectroscopic screening tests work because of the interaction of the contami-
nants with other soil constituents that are spectrally active, such as clay, iron, and
organic matter.

• Ordinal logistic regression can be used to develop diagnostic screening tests for
soil contaminants. The technique produced accuracies consistently above 75%
and up to 90%.

• There is a trade-off between the false-positive rate and false-negative rate, with
the former generally decreasing with thresholds and the latter increasing with
thresholds. Appropriate guidelines need to be formed regarding the acceptable
levels of FPR and FNR.

• The MIR range (average prediction accuracy of 79.9%) was only slightly
more accurate than the vis–NIR range (average prediction accuracy of 77.1%).
However, this may be compensated by our current ability to use the vis–NIR in
situ.

Acknowledgement We thank Julie Cattle and Dahmon Sorongan for the soil samples.
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Chapter 17
Using Wavelets to Analyse Proximally Sensed
Vis–NIR Soil Spectra

R.A. Viscarra Rossel, R.M. Lark, and A.S. Ortega

Abstract In this research we use the discrete wavelet transform to process visible–
near-infrared (vis–NIR) diffuse reflectance spectra of soil. The aim was to transform
the spectra into wavelet coefficients, some of which may be discarded, to obtain
a more parsimonious representation of the data before multivariate calibration is
performed by multiple linear regression (MLR). We used proximally sensed vis–
NIR spectra from 10 different soil profiles and compared predictions of clay at short
intervals down the profile. Predictions of clay content using 29 wavelet coefficients
were more accurate (RMSE = 7.1%) than those from partial least squares regression
(PLSR) using the original spectra with 208 wavelengths (RMSE = 7.9%) or the
wavelet coefficients’ back-transformed spectra (RMSE = 8.1%). Hence, our wavelet
approach combined with MLR produced simple, robust, and accurate calibrations
of proximally sensed spectroscopic data.

Keywords Visible–near-infrared · Diffuse reflectance spectroscopy · Wavelets ·
Discrete wavelet transform · Proximal soil sensing

17.1 Introduction

Creating high-resolution digital soil maps for use in applications like precision
agriculture requires good-quality data at high spatial resolutions (10 m or less).
Soil analysis by conventional laboratory methods is expensive, time consuming,
and laborious. Much work is being conducted worldwide to develop proximal
soil sensors that can be used in situ to lessen the need for, or to complement,
conventional soil analysis (Chapter 2). Although proximal soil-sensing techniques
produce results that may not be as accurate as conventional laboratory analysis, they
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allow the collection of many more data using simpler, cheaper, and less laborious
techniques. Furthermore, the information is produced in a timely manner. This is
the rationale for proximal soil sensing (Viscarra Rossel and McBratney, 1998). In
this research we used a portable visible–near-infrared (vis–NIR) diffuse reflectance
spectrophotometer for proximal soil sensing to predict clay content.

Soil vis–NIR diffuse reflectance spectra are sensitive to both organic and inor-
ganic soil composition, making vis–NIR spectroscopy a potentially useful and
powerful tool for proximal soil sensing (Chapter 3). The technique is rapid, accurate,
and more economical than are conventional methods of soil analysis. Furthermore,
the technology is simple to use, measurements require only a small amount of
sample preparation, it is non-destructive, and, when combined with multivariate
calibrations, a single spectrum can be used to predict multiple soil properties. These
qualities facilitate the collection of high-resolution soil information.

Visible–NIR spectra result from weak overtones and combinations of molecu-
lar vibrations that occur in the mid-infrared. These spectra are largely non-specific
due to interferences from overlapping spectra of soil constituents that are themselves
varied and interrelated. This lack of selectivity may be compounded by instrumental
noise and drift, light scatter, and path length variations that occur during measure-
ments. Chemometric methods may be used to treat the data and obtain multivariate
calibrations by which soil property values can, from many spectroscopic predic-
tor variables (or bands), be simultaneously predicted using a mathematical model
or a pedotransfer function (PTF). Spectroscopic PTFs contain a large number of
predictor variables that are collinear and, by nature, very redundant. Therefore, data
compression techniques such as partial least squares regression (PLSR) (Wold et al.,
1983) are often used for modelling and prediction.

Wavelet transforms have been used in several branches of scientific research,
including soil science, to elucidate complex signals with multiscale structure. For
example, wavelets can be used for signal processing and image analysis; to com-
press large datasets for more parsimonious representations of the data (and more
efficient data storage, computation, and transmission); to smooth noisy data; and to
detect irregularities.

The aim of this chapter is to use the wavelet transform for data compression
before calibration by multiple linear regression (MLR). By using this approach, we
hope to produce simpler, more robust, and accurate spectroscopic calibrations of
proximally sensed spectroscopic data.

17.2 Materials and Methods

17.2.1 The Soil Spectral Library

The soils used in this study originated from different parts of Australia: New South
Wales, Queensland, and Western Australia. There were a total of 1,361 soil samples
from various depths down to 1 m. The spectra of 1,287 soil samples in the library
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were collected in the laboratory, while the spectra of 74 soils were collected in situ
in the field. For the laboratory-collected spectra, samples were air-dried, ground,
and sieved to a particle size ≤2 mm. The clay content of all 1,361 soil samples
was estimated using the hydrometer method outlined by Gee and Bauder (1986).
The spectrometer used to collect the vis–NIR spectra was a portable spectrometer
(AgriSpec Analytical Spectral Devices, Boulder, Colorado) with a spectral range of
350–2,500 nm. Before scanning, the spectrometer was calibrated with a Spectralon
white sample. For each soil measurement, 10 spectra were averaged to improve
signal-to-noise ratio. The Spectralon calibration was repeated after every 20 mea-
surements. Reflectance was measured at 1 nm wavelength intervals, but because the
data were very redundant, we only retained measurements at every 10 nm. We also
removed excessively noisy portions of the spectra at the edges. As a result, the
final spectra comprised measurements at 208 wavelengths from 380 to 2,450 nm.
Reflectance measurements were transformed to apparent absorbance, log 1/R.

17.2.2 Proximal Vis–NIR Sensing of Soil Profiles

In situ field measurements were made at 10 different locations in New South Wales.
The soil at each of the sites was classified as Ferrosol, Podsol, Hydrosol, Dermosol,
Chromosol, Black Vertosol, Grey Vertosol, Yellow Sodosol, Yellow Kandosol, and
Lithocalcic Calcarosol according to the Australian Soil Classification (Isbell et al.,
1997). Approximate WRB classifications are Ferralsol, Podzol, Gleysol, Planosol,
Luvisol, Vertisol, Solonetz, Arenosol, and Calcisol (FAO, 1998). A schematic of the
approximate measurement design at each profile is shown in Fig. 17.1.

Fig. 17.1 Schematic of the
approximate spectroscopic
measurement and sampling
design at each profile
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Before taking the spectroscopic measurements at each depth, sample sites were
cleared of stones, roots, and debris and their surfaces were evened out with a spat-
ula, taking care not to smear the soil. Three replicate spectroscopic measurements
were made at each depth. After averaging, there were a total of 76 spectra from the
10 profiles. Soil was also sampled at each depth where the spectra were collected
and taken to the laboratory. Validation samples were taken at approximately regular
intervals for each profile and measurements of clay content were made using the
hydrometer method. There were 39 of these validation samples.

17.2.3 The Wavelet Transform

Each spectrum was padded to extend its total length to the nearest whole integer
power of 2, that is, to 256. This was done by the common method of symmetri-
cal reflection (e.g. Percival and Walden, 2000). Each spectrum was then analysed
using the pyramid algorithm, as described by Lark and Webster (1999). This algo-
rithm allowed us to extract 2m−2 sets of wavelet coefficients. The coefficients
were exported and those that corresponded entirely to padding observations were
removed. Wavelet coefficients were selected for compression and multivariate cal-
ibration by sorting them by their variance over the whole dataset and performing
the multivariate calibrations one by one to select the optimal number of coeffi-
cients to be retained. Once selected, the remaining coefficients were set to zero.
This technique is described in full by Viscarra Rossel and Lark (2009). The wavelet
coefficients were also back-transformed for analysis of the denoised spectra.

17.2.4 Multivariate Calibrations

Multivariate calibrations of the selected (orthogonal) wavelet coefficients were done
by MLR. The calibration models were validated by predicting clay content for the 39
validation samples. Predictions were assessed using the adjusted coefficient of deter-
mination (R2

adj) and root mean squared error (RMSE). The RMSE was calculated as
follows:

RMSE =
√√√√ 1

N

N∑
i=1

(
ŷi − yi

)2,

where ŷi is the predicted value, yi the observed value, and N the number of validation
data.

MLR predictions of clay content using the wavelet coefficients were compared to
PLSR predictions using the original spectra as well as the back-transformed wavelet
coefficients. Predictions of ‘unknown’ clay contents at every depth for each of the
10 soil profiles were made using bootstrap aggregation MLR (bagging-MLR). The
technique was also used to produce a measure of the uncertainty of the predictions.
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Uncertainty was measured by 95% confidence intervals. Viscarra Rossel (2007)
demonstrated the use of bagging with PLSR.

17.3 Results

17.3.1 The Soil Vis–NIR Spectral Library and Validation Samples

The soils in the spectral library were largely represented by black and grey Vertosols
(Vertisols), Ferrosols (Ferralsols), Chromosols (Luvisols), Kurosols and Dermosols
(Planosols), and Sodosols (Solonetz), but a smaller number of Podsols (Podzols),
Rudosols and Kandosols (Arenosols), Tenosols (Leptosols), and Calcarosols
(Calcisols) were also represented. Their clay content ranged from 0 to 88%
(Table 17.1).

The library also contained a diverse set of spectra, a sample of which is shown in
Fig. 17.2a.

Multivariate calibration of clay content in the spectral library by PLSR, using
two-thirds of the data to build the model and the remaining one-third to validate it,
produced an R2

adj of 0.83 and an RMSE of 7.9%. Figure 17.3 shows a scatter plot
of the first two principal component scores of the spectra in the library. In Fig. 17.3,
the grey points show the 1,287 laboratory-collected soil spectra, and the black points
show the 74 in situ field-collected spectra of soils in the library.

Table 17.1 Statistics for soil clay content in the spectral library and in the validation samples

Clay percentage measurements n Mean SD Median Min. Max.

Spectral library samples 1, 361 32.6 19.4 30.0 0 87.7
Validation samples 39 31.3 17.0 34.8 2.9 55.3
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Fig. 17.2 (a) Original spectra; (b) back-transformed spectra from 29 wavelet coefficients
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Fig. 17.3 Scatter plot of the
first two principal component
scores (t1, t2) showing the
1,287 laboratory-collected
soil spectra (grey points) and
the 74 in situ field-collected
spectra (black points) of soils
in the library

17.3.2 A Multiresolution Analysis (MRA)

Multiresolution analysis (MRA) of a vis–NIR spectrum in the library shows the
detail (dm), components of the wavelet transform at each scale (λ), and the approx-
imation (or smooth) components (am). The MRA in Fig. 17.4 shows features of
the spectrum at various scales, from the finest scale (λ = 2) showing the highest
frequency wavelet coefficients to the coarsest scale (λ = 64) showing the lowest
frequency wavelet coefficients.

The vis–NIR spectra in the library are relatively smooth with very little noise,
which is evident only when looking at the finer wavelet scales (λ <8) at the edges
of the signal and at specific absorption features, such as those near 1,400, 1,950,
and 2,200 nm (Fig. 17.4). Broader absorption features such as those near 550 and
950 nm, as well as those near 1,400, 1,950, and 2,200 nm, are more evident at coarser
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Fig. 17.4 Multiresolution
analysis (MRA).
Approximation (am) and
detail (dm) components at
each scale, λ, of a soil
vis–NIR spectrum. Each
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its own zero
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scales (λ > 8) (Fig. 17.4). The wavelet coefficients at finer scales contain the high
frequency, stochastic components of the original spectra, while those at the coarser
scales contain the lower frequency, systematic information that may be important in
regression.

17.3.3 The Wavelet Transform for Data Compression
and Multivariate Calibrations

Spectral data compression using wavelets relies on the premise that the spectra can
be quite accurately represented by a smaller number of wavelet coefficients; that is
to say, like many natural phenomena, they have a sparse representation. Figure 17.5a
shows that a multivariate calibration of 29 wavelet coefficients produced the smallest
RMSE when used to predict the clay content of the validation samples.

Figure 17.5b shows the proportion of these wavelet coefficients retained at each
scale. All the scaling coefficients were retained, as were the wavelet coefficients at
the coarsest scales (λ = 64 and 32). Only 62% of the wavelet coefficients at λ = 16,
27% at λ = 8, 4% at λ = 4, and 1% at the finest scale 2 were retained (Fig. 17.5b).

MLR predictions of clay content for the 39 validation data using only 29 wavelet
coefficients are shown in Fig. 17.6a. The spectra were compressed to less than 14%
of their original size. PLSR predictions using the original spectra (208 wavelengths)
are shown in Fig. 17.6b. Predictions of clay content using the 29 wavelet coefficients
were more accurate (RMSE = 7.1% and R2

adj = 0.83) than the PLSR predictions
using the original spectra (RMSE = 7.9% and R2

adj = 0.78) (Fig. 17.6).
Furthermore, the MLR technique was more straightforward and faster to imple-

ment than the full-spectrum PLSR. Bagging-MLR predictions of clay content with
depth, for each of the 10 profiles, are shown in Fig. 17.7, together with their 95%
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Fig. 17.5 (a) Root mean squared errors (RMSEs) of clay content predictions by multiple linear
regression (MLR) using the wavelet coefficients ordered by variance (29 coefficients produced the
smallest RMSE). (b) Proportion of these wavelet coefficients retained at each scale
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linear regression (MLR) and 29 wavelet coefficients and (b) partial least squares predictions using
the original spectra with 208 wavelengths
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Fig. 17.7 MLR predictions using 29 wavelet coefficients, black points, enveloped by their 95%
confidence intervals. Crosses show clay contents measured in the lab using the hydrometer method

confidence intervals and their individual RMSEs of prediction. Poorest predictions
of clay content were obtained for the Hydrosol, Rudosol, and Calcarosol profiles,
with RMSE ≥9%.

17.3.4 Denoising by Back-Transforming the Wavelet Coefficients

A sample of the denoised spectra produced by back-transforming the 29 wavelet
coefficients to the spectral domain is shown in Fig. 17.2b. Their corresponding orig-
inal spectra are shown in Fig. 17.2a. In this case, because the original spectra were
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Table 17.2 Comparison of assessment statistics for predictions of clay content using the original
spectra, the selected wavelet coefficients, and the back-transformed wavelet coefficients

No. of predictors Method R2
adj RMSE (%)

Spectral domain 208 PLSR, NF = 10 0.78 7.9
Wavelet domain 29 MLR 0.83 7.1
Back-transformed wavelet 208 PLSR, NF = 11 0.72 8.1

NF refers to the number of factors used in the partial least squares regression (PLSR) models

relatively smooth, there was no apparent denoising. In fact, the spectra acquired
some of the characteristic shape of the wavelet function (Fig. 17.2b). Predictions
of clay content using the back-transformed spectra and PLSR were less accurate
(RMSE = 8.1% and R2

adj = 0.72) than predictions using the original spectra and the
wavelet coefficients. These results are summarised in Table 17.2.

17.4 Discussion

Multivariate calibrations of spectroscopic data usually involve the use of large spec-
tral libraries that need to be re-calibrated for different soil analyses. By transforming
soil spectra into the wavelet domain and compressing to produce a smaller repre-
sentation of the data, we may improve the efficiency of these calibrations as the
models may be computed with simpler techniques and much reduced, parsimonious
datasets. As this research has shown, the technique may also improve prediction
accuracy for proximally sensed data. The discrete wavelet transform algorithm is
fast and, coupled with a simple calibration technique, may also be useful for proxi-
mal on-the-go spectroscopic soil sensing, where the newly acquired spectrum may
be transformed immediately after collection.

17.5 Conclusions

• A multiresolution analysis of soil diffuse reflectance spectra may be used to
identify different spectral features that occur at different scales.

• The wavelet-transformed vis–NIR soil spectra were compressed to less than 14%
of their original size, thereby producing a more parsimonious representation of
the data.

• Multivariate calibration by MLR using 29 selected wavelet coefficients was more
straightforward and faster than calibration by PLSR.

• Predictions of clay content using the wavelet-transformed proximally sensed
spectra were more accurate (RMSE = 7.1%) than those from PLSR using the
original spectra with 208 wavelengths (RMSE = 7.9%) or the back-transformed
spectra (RMSE = 8.1%).
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Chapter 18
Mapping Soil Surface Mineralogy at Tick Hill,
North-Western Queensland, Australia, Using
Airborne Hyperspectral Imagery

T. Cudahy, M. Jones, M. Thomas, P. Cocks, F. Agustin, M. Caccetta,
R. Hewson, M. Verrall, and A. Rodger

Abstract The use of airborne hyperspectral imagery for mapping soil surface min-
eralogy is examined for the semi-arid Tick Hill test site (20 km2) near Mount Isa
in north-western Queensland. Mineral maps at 4.5 m pixel resolution include the
abundances and physicochemistries (chemical composition and crystal disorder) of
kaolin, illite–muscovite, and Al-smectite (both montmorillonite and beidellite), as
well as iron oxide, hydrated silica (opal), and soil/rock water (bound and unbound).
Validation of these hyperspectral mineral maps involved field sampling (34 sites)
and laboratory analyses (spectral reflectance and X-ray diffraction). The field spec-
tral data were processed for their mineral information content in the same way as
the airborne HyMap data processing. The results showed significant spatial and sta-
tistical correlation. The mineral maps provide more detailed surface composition
information compared with the published soil and geological maps and other geo-
science data (airborne radiometrics and digital elevation model). However, there is
no apparent correlation between the published soil types (i.e. Ferrosols, Vertosols,
and Tenosols) and the hyperspectral mineral maps (e.g. iron oxide-rich areas are
not mapped as Ferrosols and smectite-rich areas are not mapped as Vertosols).
This lack of correlation is interpreted to be related to the current lack of spatially
comprehensive mineralogy for existing regional soil mapping. If correct, then this
new, quantitative mineral-mapping data have the potential to improve not just soil
mapping but also soil and water catchment monitoring and modelling at local to
regional scales. The challenges to achieving this outcome include gaining access to
continental-scale hyperspectral data and models that link the surface mineralogy to
subsurface soil characteristics/processes.

Keywords Remote sensing · Hyperspectral mineral mapping · Airborne
radiometrics · Digital elevation model
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18.1 Introduction

There is a wealth of information on soils but much is dated, inaccurate, unavailable at
appropriate scales, or relatively inaccessible. New airborne and space-borne sensors offer
unprecedented detail, accuracy, rapid regional or global coverage.

[From the IUGS–UNESCO International Year of Planet Earth (2008), ‘Soils – Earth’s
Living Skin’ (www.esfs.org/downloads/Soil.pdf)]

Soil mapping has largely been based on auger/spade methods to observe
and measure the vertical characteristics of near-surface unconsolidated mate-
rials, including layering, texture, colour, organic matter, soil density, pH,
electrical conductivity, and cation exchange capacity. Surface soil maps
(www.asris.csiro.au/index_ie.html) typically represent interpolation between these
‘vertical’ sample points, often supplemented by spatially comprehensive data such
as airborne and satellite optical imagery (Chapters 10 and 34), digital elevation
models (DEMs), and airborne geophysics, especially gamma radiometric data.

McKenzie and Ryan (1999) recommend a quantitative approach for mapping
soils, one that will then enable temporal monitoring and management of various
environmental and agricultural issues. These issues range from the effects of climate
change (e.g. desertification), carbon budgets (e.g. organic content on and within
soils, including as carbon black), land use (e.g. water and wind erosion as well as
groundwater acidity and salinity), and agricultural production (e.g. soil moisture,
cation exchange capacity).

Digital measurement of soil information is now achievable through a range
of laboratory, field, and airborne technologies, including reflectance spectroscopy
(Chapters 3, 11, 12, 13, 14, and 17), gamma spectrometry (Chapters 27 and 28),
ground-penetrating radar (Chapter 25), and electrical conductivity (Chapters 29
and 30). Typically, the measured data are statistically processed to identify any rela-
tionship with the target soil property (Chapters 13, 14, and 17). However, statistical
relationships established for a given area (calibration suite) are rarely transferable
universally. One of the reasons for this is the indirect relationship between the digital
data and the target soil attribute. For example, the use of radiometric digital data to
estimate clay content has been found to be correlated with the thorium (Th) channel
(Chapter 27, Taylor et al., 2002), the potassium (K) channel (Thomas et al., 2003),
or the ratio of the thorium and uranium (U) channels (Pracilio et al., 2006), depend-
ing on the soil type. In each case, the clay-size fraction contains an abundance of a
mineral(s) that hosts these different radioactive elements, such as K in illite and Th
in hematite or goethite.

Direct measurement of the species and abundance of soil minerals is generally
not investigated in soil-mapping procedures, and yet mineralogy is a fundamental
component of all soils and is an indicator for many important soil parameters, such
as pH, redox potential, water/metal activities, and permeability. There are a few
studies that have shown this link between mineralogy and soil properties, includ-
ing one by Van der Merwe et al. (2002) of the mineralogy of melanic soils from
South Africa. Using laboratory X-ray diffraction (XRD), they showed that soil pH is
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correlated with clay composition. That is, increasing kaolin development is propor-
tional to decreasing pH. In general, kaolins form under acid conditions, smectites
under alkaline conditions, and illite can develop under alkaline and neutral con-
ditions, provided there is sufficient K. Similarly, clay mineralogy affects the
availability of soil nutrients. For example, Bajwa (1981) found that beidellitic clay is
the strongest fixer of K in tropical soils. In general, smectitic clays readily exchange
cations (and have a high cation exchange capacity or CEC) such that they have high
nutrient-holding capacity as well as high water-holding capacity. In contrast, kaoli-
nite has low CEC and low water-holding capacity. With regard to soil types (Isbell,
1996), Vertosols, dominated by smectites, have a high CEC, whereas Ferrosols,
comprising kaolinite and Fe oxides, have low CEC per unit weight. Thus accu-
rate mapping of clay mineralogy will provide critical information in recognising
potential fertility and types of soils.

Laboratory studies of the spectral reflectance and emission of minerals (Clark
et al., 1990; Clark, 1999) have shown the potential for measuring specific minerals
and their mineral physicochemistries (cation composition and crystal disorder). For
example, Post and Noble (1993) showed that the change in Al content from beidel-
lite to montmorillonite can be measured as a shift in the wavelength of the Al–OH
absorption feature in the 2,200 nm region. The potential for using field spectral mea-
surements to determine soil properties, such as the clay content for various levels of
moisture content and different parent materials, has been examined (e.g. Chapters
12, 13, 14, and 16, Waiser et al., 2007).

Hyperspectral remote sensing systems, measuring a hundred or more discrete
wavelengths, are able to capture the commonly subtle but diagnostic spectral signa-
tures of specific minerals, including wavelength shifts of absorptions (e.g. positions
of absorption features) like beidellite–montmorillonite. These hyperspectral sys-
tems, such as NASA’s 224-channel airborne AVIRIS system (aviris.jpl.nasa.gov)
and the Finnish AISA (Chapter 14), contrast with multi-spectral systems like
Landsat TM and ASTER (www.ersdac.or.jp), measuring only 7–15 channels and
at best identifying only mineral groups (Cudahy et al., 2005).

Using remote hyperspectral imaging systems, Ben-Dor et al. (2002, 2004) and
Chabrillat et al. (2004) have shown that soil properties, such as soil water infiltra-
tion, organic matter, moisture, salinity, and clay content, can be mapped remotely,
especially in drier climates where vegetation cover does not totally obscure the
underlying soil. The other caveat for using optical remote sensing for soil map-
ping is that the measured mineralogy is from the top few micrometres only and that
not all the important or characteristic soil parameters are exposed at the surface (e.g.
duplex soils).

Regional maps of surface mineralogy are now becoming available to the min-
eral exploration industry in Australia (Cudahy et al., 2005). These are based on
operational airborne hyperspectral systems, such as the Australian HyMap sensor
(www.hyvista.com). A suite of hyperspectral satellite systems are also scheduled to
be launched in the next 1–7 years (www.isiswg.org). Combined, these airborne and
satellite hyperspectral technologies provide an opportunity to deliver high spatial
resolution (≤ 30 m pixels) mineral maps at the continental scale.
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This chapter explores the potential for mineral mapping in the Tick Hill test
site (21

◦
35′ S, 139

◦
55′ E), a 10 km × 20-km area in north-western Queensland

(Fig. 18.1). Specifically, the aims of this study are the following:

• To show examples of the types of mineral maps being generated by hyperspectral
imagery for the mineral exploration industry which may also be of value for
high-resolution digital soil surface mapping;

• To compare these mineral maps with other ‘soil-mapping’ data, including pub-
lished soil and geological maps, airborne radiometrics, and digital elevation
data; and

• To promote the vision of securing a high spatial resolution (< 30 m pixel) mineral
map of the Australian continent that would benefit a range of applications from
environmental baseline mapping and monitoring of soils to mineral exploration.

18.2 Tick Hill Study Area

The Tick Hill area (Fig. 18.1) is located in the Mount Isa region of western
Queensland. This area has a dry tropical climate with < 500 mm rainfall per annum
falling dominantly in the summer months. The topographic relief is subdued

Fig. 18.1 ASRIS (www.asris.csiro.au) webpage screen capture showing the level 3 ‘dominant soil
suborders’ of the Mount Isa region as well as the location of Tick Hill study area
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Fig. 18.2 Field photographs of the Tick Hill area. (a) Exposure of opaline silica (389190 mE;
7617437 mN, GDA94 MGA54); (b) depression of grey illite-rich soil in the foreground and a low
rise of hematitic Al-smectite-rich soil with opaline silica in the background (388804 mE; 7617491
mN, GDA94 MGA54); (c) close-up of the grey illitic soil shown in (b); (d) close-up of the red
Al-smectite soil with abundant opaline silica rock fragments shown in (a)

(< 200 m) and the vegetation cover is limited (< 25%) comprising narrow belts of
green vegetation along the ephemeral drainage (e.g. Eucalyptus spp. and Corymbia
spp.), while hardy bushes and dry grasses occur elsewhere (e.g. Triodia spp.,
also called spinifex grass, Neldner, 2001) (Fig. 18.2a, b). The geology com-
prises folded and metamorphosed Proterozoic felsic and mafic rocks, which hosted
the now closed Tick Hill gold mine (Forrestal et al., 1998). Phanerozoic cover
sequences also occur, including Tertiary rocks described as ‘laterite’ and ‘lateritic
rubble’; Cambrian rocks described in part as ‘massive ferruginous sandstones’; and
Cainozoic alluvium–colluvium of unconsolidated sand–silt–gravel (Fig. 18.3a).

The web-accessible digital ASRIS soil map of Australia (McKenzie et al., 2008)
describes the soils of the Mount Isa region as developing over highly weathered
bedrock (>50%), fresh bedrock (20–50%), and alluvial sediments (< 20%). Soils
typically lack an organic-rich A horizon. Soil types (Isbell, 1996) include Ferrosols
(high iron content), Vertosols (shrink–swell clays), Kandosols (kaolin 1:1 clay
minerals), Rudosols (rudimentary soil development), and Tenosols (weak soil devel-
opment). In the Tick Hill study area, the mapped soil types (Fig. 18.3b) include
Vertosols (VE), which are located in broad drainage lows evident in the associated
DEM and are locally characterised mainly by high radiometric potassium response
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Fig. 18.3 Selected publicly available geoscience data over the Tick Hill study area. (a) The pub-
lished 1:100,000-scale digitally available Dajarra geological map sheet showing only the major
rock divisions based on their age of formation. (b) Ternary colour image of the airborne radio-
metrics, as well as ASRIS level 3 soil map units indicated by the black lines. (c) ASTER-derived
digital elevation model with the location of the field sample sites

(Fig. 18.3c); Tenosols (TE), which are locally characterised by high radiometric tho-
rium responses (Fig. 18.3b); and Ferrosols (FE), which are locally characterised by
high radiometric potassium response (Fig. 18.3b).

18.3 Materials and Methods

18.3.1 Geoscience Mapping Data and Processing

The geoscience mapping data used in the information extraction of the Tick Hill
area include the following:

• Airborne HyMap hyperspectral imagery collected in August/September 2006 at
4.5 m pixel resolution. The Tick Hill area was covered by 12 contiguous N–S
flight lines of 512 pixel swathes each.

• ASTER digital elevation model at 30 m pixel resolution generated by the United
States Geological Survey (USGS).

• Airborne gamma radiometric data collected at 200 m line spacing and resampled/
interpolated to 50 m pixels (Jayawardhana and Sheard, 2000).

• Published 1:100,000 scale Dajarra geological map sheet (Geoscience Australia,
2008).
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18.3.2 Airborne HyMap Data Processing for Mineral Mapping

The HyMap radiance-at-sensor data were processed to apparent reflectance by
HyVista Corporation Pty Ltd using CSIRO’s HYCORR software. HYCORR is
essentially an IDL-based front-end widget to ATREM, based on 6S (Gao et al.,
1993; Clark et al., 1993; http://cires.colorado.edu/cses/atrem.html), both of which
are no longer publicly available or supported. Systematic, high-frequency, residual
atmospheric absorption line features were not removed in the mineral-mapping pro-
cessing as this typically involves the use of scene-dependent statistics, e.g. EFFORT
correction within ENVI software (ITTVIS, 2008). However, selected pixel spectra
for presentation in this chapter were treated to remove this noise using a normal-
isation procedure based on the airborne and field spectra collected from the same
sites.

The mineral information processing of the HyMap reflectance data was con-
ducted using in-house CSIRO software, C-HyperMAP, and was designed to handle
large-volume, multi-scene hyperspectral imagery. C-HyperMAP runs as an add-on
to the commercial hyperspectral image-processing software IDL-ENVI (ITTVIS,
2008) to capture the benefits of ENVI’s image display and other functionality.

The underlying strategy for mineral information extraction using C-HyperMAP
is based on measuring the diagnostic absorption features, including their depths,
wavelengths, and geometries (full-width at half-height – FWHH – and asymmetry).
Essentially, absorption depth (relative to the background continuum) is assumed to
be proportional to the mineral abundance. That is, no absorption measured equates
to no mineral present. The absorption wavelength is assumed to be proportional to
the cation composition (e.g. Tschermak substitution, [Al ↔ Si]tetrahedral ↔ [Al ↔
{Fe2 + , Mg} octahedral] of minerals like white mica (e.g. muscovite; Duke, 1994) and
chlorite. For example, the level of Tschermak substitution in white mica was gauged
using the wavelength of the continuum-normalised 2,200 nm absorption trough and
determined with the first derivative of a fitted fourth-order polynomial between
2,120 and 2,240 nm. Chapter 17 describes the use of wavelets to model these (and
other) absorption features.

Absorption bandwidth is assumed to be proportional to the crystal order/disorder.
That is, the range of vibrational states (degrees of freedom) is increased (spread)
with increasing disorder (long- and short-range molecular structural order). Multiple
diagnostic features are used to mask in (or out) specific minerals and materials. For
example, all pixels are measured for their green and dry vegetation contents and,
if above a certain threshold, are masked out. This nulls many of the pixels avail-
able in a given image. Areas of standing water and deep topographic shading are
also masked out. The images of masked absorption depth are converted to apparent
percent abundance assuming that the USGS library spectra (USGS, 2008) repre-
sent 100% abundance and where no absorption recorded represents 0% abundance.
Using this methodology, the detection limits typically start from 10 to 15% abun-
dance. Details of all the algorithms used for the various mineral products can be
obtained from Cudahy et al. (2008). Note that CSIRO has now developed meth-
ods to unmix the green and dry vegetation components at the pixel scale leaving as
residual ‘vegetation-free’ pixels (Rodger and Cudahy, 2009).
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18.3.3 Field Samples and Related Laboratory Analyses

Exactly 34 field samples from the Tick Hill area were sampled during two field cam-
paigns in late 2006 and 2007. Samples included weathered and fresh rocks, as well
as soils scraped by trowel from the top 5 mm of the surface. Following air drying in
room conditions, all the field samples were measured using an Analytical Spectral
Devices (ASD) FieldSpec Pro reflectance spectrometer (http://www.asdi.com/,
Boulder, Colorado, USA). The contact probe of the ASD was used to measure
the diffuse reflectance in the 350–2,500 nm region using an internal halogen light
source. The data were calibrated using a Spectralon white reference standard
provided by Labsphere (http://www.labsphere.com/).

These ASD reflectance spectra were used to confirm the spectral mineralogical
signatures of the airborne HyMap imagery. Each spectrum was interpreted manually
based on diagnostic spectral features. For example, kaolinite was identified through
the development of a narrow (∼18 nm FWHH) absorption at 2,206 nm coupled with
smaller absorption at 2,160 nm. This manual spectral mineral interpretation was
validated using X-ray diffraction (XRD) on all 34 soil samples.

Mineralogy detected using XRD relies on repetitive crystalline order, so rela-
tively amorphous minerals (e.g. allophone and ferrihydrite) are difficult to detect.
The key minerals targeted for detection by XRD were the clays, especially Al-
smectites (montmorillonite versus beidellite), illite, and kaolin (kaolinite versus
halloysite), as well as silica (opal–cristobalite). The 34 soil samples were prepared
as random powders (< 75 μm) mounted on circular holders. XRD patterns were
obtained using a Philips X′Pert multi-purpose X-ray diffraction (MPD) system fit-
ted with a Cu tube operated at 40 kV, 40 mA, and a curved graphite monochromator.
All samples were scanned from 2◦ to 70◦ at 1.0◦/min in 0.01◦ increments (all angles
2θ ) at 1 or 2 s counting increments. First-pass mineral identification was facilitated
using the Windows-based in-house search-match software XPLOT. Where quartz
was identified in the diffraction patterns, this was used as an internal standard to
correct for instrumental shifts in 2θ position.

From the first-pass spectral and XRD mineral interpretations, four samples were
then selected for more detailed smectite clay analysis, namely the identification of
beidellite versus montmorillonite using a modified Greene-Kelly test (Greene-Kelly,
1953). These samples were mixed with a 0.6% calgon (sodium hexametaphosphate)
solution and allowed to settle to separate the clay fraction, which was dried on cir-
cular mounts before being Li saturated and heated overnight at 200◦C. They were
then treated with ethylene glycol and measured by XRD at a slower scan rate and
a narrower angle range (2–30◦). After heating, all smectites collapse to approxi-
mately 1 nm and after subsequent ethylene glycol solvation, beidellite expands to
1.7 nm, whereas the collapse of montmorillonite is irreversible. However, there is
some concern that interactions with the sodium in the glass used as a substrate may
have affected the results and lead to only a partial collapse of the montmorillonite
(Volzone, 1992).
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18.3.4 Field Validation of Airborne Mineral-Mapping Results

The accuracy of the mineral maps generated from the processed airborne HyMap
imagery was validated using the field sample data. The field ASD spectra were first
convolved to the HyMap band-pass configuration and then processed using the same
algorithms implemented on the HyMap reflectance. For example, the Al–OH clay
content was estimated by calculating the depth of a continuum-normalised, fitted
fourth-order polynomial to the segment of the reflectance signature between the
2,120 and 2,245 nm range. To simplify the comparison between the airborne and
field data, it was assumed that each field site was dominated by soil such that the
contribution of the outcrop rock spectral mineralogical component in the field data
was ignored. In addition, given the paucity of vegetation cover, the HyMap data
were not unmixed of their vegetation component. Regions of interest (ROI) based on
a sample average of 4–40 HyMap pixels were used to improve any geo-referencing
errors between the field site positions (±20 m) and HyMap pixels (±50 m).

Two sets of sample site reflectance measurements were used to provide quan-
titative statistical correlation between the airborne and field data, whereas the
remaining validation presented was based on spatial assessment of the remote and
field measurements provided in the figures.

18.4 Results and Discussion

18.4.1 Field Samples

Figure 18.4 presents selected ASD reflectance spectra of field samples from the
Tick Hill area. These continuum-removed spectra were prepared by normalising an
interpolated hull, or continuum, that is mathematically draped over the spectra to
highlight large and small absorption features. Multiple spectra from the same site
(e.g. MI044) show the diversity of the spectral mineralogy at any one location. Most
of the spectra show absorptions centred on 2,200 nm related to various clay minerals,
including the following:

• Kaolinite, with diagnostic absorptions at 2,160 and 2,207 nm (e.g. sample
MI045);

• Illite/muscovite, with diagnostic absorptions at 2,200, 2,350, and 2,450 nm (e.g.
sample MI044-brown spectrum);

• Al-smectite, with diagnostic absorption at 2,200 nm only (e.g. samples MI051
and MI052).

Broad absorption around 2,250 nm (e.g. sample MI052 in Fig. 18.4) is related
to Si–OH, confirmed by XRD analysis to be cristobalite, a common component of
opaline silica. Bound (i.e. hydrogen bonded) water and unbound (free) water are
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Fig. 18.4 Laboratory ASD
reflectance spectra of selected
soil samples from the Tick
Hill study area. Key features
are annotated

indicated by the geometry of absorption around 1,900 nm. Bound water produces
a relatively narrow, short-wavelength (∼1,907 nm) absorption feature compared to
unbound water. Bound water is evident in samples containing Al-smectite (e.g.
MI052 and MI051) as well as poorly ordered kaolin (e.g. MI050, MI049, MI047,
MI040) and to a lesser degree illite/muscovite (e.g. sample MI044-brown). In the-
ory, illite can be spectrally separated from muscovite, assuming that illite contains
abundant bound water and muscovite is relatively free of water. Unbound water is
detected in samples with water ‘trapped’ in fluid inclusions in silica, as in possible
vein quartz (e.g. sample MI044-red).

18.4.2 Airborne Versus Field Spectra

The reflectance spectra of field samples and matching HyMap pixels from five sites
with different mineralogy are presented in Fig. 18.5. Note that the HyMap data
(Fig. 18.5b) have only 126 spectral bands (∼18 nm spectral resolution at 2,200 nm)
and no bands in the intense water vapour absorption regions at 1,400 and 1,900 nm.
In comparison, the ASD field reflectance spectra (Fig. 18.5a) have over 2,000 chan-
nels (∼8 nm spectral resolution at 2,200 nm). Nevertheless, the same overall shapes
and detailed absorption features can be recognised in both datasets. This includes
the strong ferric oxide absorption of hematite–goethite at 900 nm evident in sample
MI054 (red spectra) and the kaolin doublet at 2,160 and 2,206 nm in sample MI045
(green spectra).

18.4.3 Mineral Group Abundances

Maps of the airborne hyperspectral total Al–OH clay (Fig. 18.6a) and iron oxide
(Fig. 18.6b) contents of the Tick Hill area show a high degree of similarity and are
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Fig. 18.5 Comparison of field sample reflectance spectra (a) and HyMap pixel reflectance
spectra (b) for a selection of field sites that show iron oxide (e.g. MI054), kaolin-
ite (e.g. MI045), illite–muscovite (MI126), Al-smectite plus cristobalite (e.g. MI052), and
Al-smectite and a ferrous silicate (e.g. MI120). Note that the HyMap spectral bands
(crosses) do not cover the strong atmospheric water vapour absorption regions at 1400 and
1900 nm

also consistent between each other and with their field validation soil data (coloured
circles). For example, high abundances of clay and iron oxide are associated
with the Tertiary ‘lateritic’ rocks and Cambrian ‘massive ferruginous sandstones’
(Fig. 18.3a) in the eastern third of the image. The similarity between the field and
airborne mineral estimates is also provided in the scattergrams of Fig. 18.6c, d
which show significant linear correlation, similar to the results of Cudahy et al.
(2005). The Al–OH clay results approach the ideal y = x, which suggests that the
correct assumptions were applied in this validation, especially in the use of only
the soil ASD spectra, and the accuracy of the HyMap data reduction to reflectance.
This is a very important result as it is critical to the hypothesis that the remote



222 T. Cudahy et al.

Fig. 18.6 (a) Total clay mineral content derived from the 2200 nm continuum-absorption depth
measured from the HyMap data. (b) Total iron oxide mineral content derived from the 900 nm
continuum-absorption depth measured from the HyMap data. (c) Scattergram of the field ASD
spectra of soil samples versus the ROI HyMap spectra of the same areas, both processed using
the same 2200 nm continuum-absorption depth. (d) Scattergram of the field ASD spectra of soil
samples versus the ROI HyMap spectra of the same areas, both processed using the same 900 nm
continuum-absorption depth. The GDA94 MGA54 grid shown is 3 km

mineral-mapping results are measuring the surface soils. The iron oxide results
show that the airborne predictions are constantly overestimated, which is inter-
preted to be related to systematic residual water vapour errors in the HyMap data,
prevalent in the 900 nm wavelength region. This could be compensated for by new
data-processing methods now being developed.
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18.4.4 Clay Mineral Abundances

Figure 18.7 presents the airborne hyperspectral estimates of the clay mineral con-
tents for the kaolin group (i.e. kaolinite, halloysite, dickite, nacrite), the illite group
(illite, muscovite, brammallite, paragonite, phengite, lepidolite), and Al-smectite
group (montmorillonite and beidellite). These maps are mutually exclusive based
on the current information extraction methodology. Close inspection of the field
versus airborne clay mineral abundance maps (Fig. 18.7) shows a high degree of
similarity. Note that the field and airborne mineral abundance measurements were
processed and colour coded in the same way. This includes samples where no clay
of a specific type (black dots) was apparent.

Kaolin minerals (Fig. 18.7a) are abundant in the Phanerozoic rocks, especially
the Cambrian ferruginous sandstones and Tertiary laterites. Both of the rock units
are commonly associated with the development of kaolin because of acid, well-
drained conditions. It is unclear why this area was mapped in the ASRIS as a Tenosol
(Fig. 18.3b) rather than a Kandosol or even a Ferrosol (Fig. 18.6b), especially as the
airborne radiometric response shows this area to be relatively rich in thorium, which
is commonly concentrated in ferruginous materials such as laterites (Dauth, 1997).

The Proterozoic ‘basement’ rocks, as well as the overlying alluvium–colluvium
areas, are rich in illite as shown by the illite/muscovite map (Fig. 18.7b). These
areas of spectrally mapped white mica are consistent with the high radiometric K

Fig. 18.7 Airborne hyperspectral-derived estimates of the apparent contents of (a) kaolin;
(b) illite–muscovite; and (c) Al-smectite. Coloured dots are field spectral data that have been con-
volved to the HyMap band responses and then processed using the same HyMap algorithms to
generate the clay mineral estimates. The colour coding for both the HyMap and field data is the
same, with black equal to no clay detected
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responses for this area (Fig. 18.3b). It is unclear why this area was mapped as a
Ferrosol (Fig. 18.3b) as iron oxide abundance is low compared with other parts of
the study area.

Al-smectite (Fig. 18.7c) is more widely distributed, with high abundances over
a central corridor along the valley fill of alluvium–colluvium (Fig. 18.3a, c). Given
that Al-smectite is characteristic of Vertosols, this area, mapped as Ferrosols, is
arguably better described as Vertosols, especially as there is also evidence for
shrink-swell effects (Fig. 18.2c).

These mineral maps (Fig. 18.7) show improved detail compared with the exist-
ing mapping data (Fig. 18.3). Particularly significant is the juxtaposition (near
385930 mE; 7617300 mN, GDA94 MGA54) of kaolin soils (which presumably
formed in acid conditions) with Al-smectitic soils (presumably formed in more
alkaline conditions). This could be explained by kaolinite developed in ‘unmapped’
Cambrian quartz sandstones, i.e. parent rock control, or changes in groundwater
geochemistry.

18.4.5 Clay Mineral Physicochemistry

Remote hyperspectral data can provide measurements of mineral physicochemistry.
Figure 18.8 presents the airborne hyperspectral-derived estimates of the physico-
chemistry of the Al-clay minerals, including kaolin ‘crystallinity’ (Fig. 18.8a), based

Fig. 18.8 Airborne hyperspectral-derived estimates of the apparent ‘crystallinity’ of (a) kaolin;
the level of Tschermak substitution in (b) illite–muscovite; and (c) Al-smectite. Colour coding as
for Fig. 18.7



18 Mapping Soil Surface Mineralogy at Tick Hill 225

on a spectral index involving the relative depth of the 2,160 nm absorption; illite
composition (Fig. 18.8b), based on the wavelength of the 2,200 nm absorption which
is correlated with the degree of Tschermak substitution; and the smectite composi-
tion (Fig. 18.8c), which is also related to Tschermak substitution and the presence
of beidellite versus montmorillonite (Post and Noble, 1993).

The kaolin crystallinity index has proved valuable for mapping transported ver-
sus in situ regolith materials in Western Australia where transported materials such
as alluvium–colluvium contain relatively poorly ordered kaolinite (Cudahy et al.,
2005). The same pattern appears in the Tick Hill area with poorly ordered kaolin
pervasively developed, especially in the Cainozoic sediments. Only windows of
more well-ordered kaolin, associated with Cambrian sediments, protrude through
this younger cover. The main points to note regarding the illite and smectite compo-
sition maps (Fig. 18.8b, c) and the smectite abundance (Fig. 18.7c) are the similarity
between the field and airborne data and the area of abundant smectite along a cor-
ridor (marked by a white dotted line) between two drainage lows in the Cainozoic
alluvium–colluvium (Fig. 18.3a, c). This abundant smectite has long wavelengths
(Fig. 18.8c), which in theory would be associated with montmorillonite rather than
beidellite.

XRD analysis of four smectite-rich samples (Table 18.1) found that both beidel-
lite and montmorillonite are present in the soils. However, when the field sample
XRD results are plotted (Fig. 18.8c), the longer wavelength smectites include the
two beidellite-bearing soils (points with yellow cores and blue rims) as well as one
of the montmorillonite-bearing samples (points with blue cores and green–yellow
rims). The other montmorillonite sample is associated with shorter wavelength
smectites. The reason for this unclear pattern may be the fact that mixed layer
clays are common in these samples and that beidellite, unlike montmorillonite, is
not found alone as the only smectite clay phase in any given soil.

18.4.6 Other Products

In addition to the clay mineral-mapping results, Fig. 18.9 presents predictions for
the soil/rock water content (Fig. 18.9a); nature of water bonding (Fig. 18.9b); and
the distribution of opaline silica (cristobalite, Fig. 18.9c). Note that all three of these
maps show similarity with the field and laboratory data. For example, XRD anal-
ysis found cristobalite only in those samples mapped as having Si–OH absorption

Table 18.1 Interpreted clay mineralogy of selected soil samples as determined using X-ray
diffraction

Sample Major Minor Trace Smectite mineralogy

MI114 Smectite + kaolinite Mixed layer clay Montmorillonite
MI120 Smectite Kaolinite Mixed layer clay Beidellite + montmorillonite
MI122 Smectite + kaolinite Illite Mixed layer clay Beidellite + montmorillonite
MI123 Kaolinite Smectite Mixed layer clay Montmorillonite
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Fig. 18.9 Airborne hyperspectral-derived estimates of (a) the water content for the surface soils
(and rocks), masked to remove pixels with abundant green and dry vegetation; (b) HyMap spectral
index sensitive to bound/unbound water based on the geometry of the 1400-nm-long wavelength
shoulder. Field validation sample data plot the wavelength position of the 1900 nm absorption
ranging from 1907 nm (blue) to 1916 nm (red); (c) HyMap opal–cristobalite content based on the
broad Si–OH 2250 nm absorption. The field validation data are XRD results with opal–cristobalite
detected (red) or not present (black)

in the HyMap data (Fig. 18.9c). Outcrop and surface debris of opaline silica was
also observed at these field sites. Positive results for the two water products occur
despite the differences in time and surface conditions between the airborne acqui-
sition (August 2006), field sampling (November 2007 and 2008), and laboratory
measurements. Note also that different spectral parameters were used for deriv-
ing the water bonding. That is, the airborne product is based on the geometry of
the 1,400-nm-long wavelength shoulder, whereas the field measurements are based
on tracking the shift of the 1900 nm absorption band within the narrow range of
1,907–1,916 nm. Further independent analysis is required to confirm the nature of
this water bonding.

18.4.7 Integrated Mineral Analysis

These mineral maps can be used in combination to provide more accurate predic-
tions of soil composition. For example, abundant smectite (Fig. 18.7c) should in
theory be associated with abundant bound water. This is the case in parts of the
Cainozoic sediments (Figs. 18.3a and 18.9a, b), where there is also a spatial relation-
ship with opaline silica (Fig. 18.9c) and, to a lesser degree, moderate levels of iron
oxide (Fig. 18.6d, b). This mineralogical association can provide information about



18 Mapping Soil Surface Mineralogy at Tick Hill 227

the nature of the ground water fluids, in terms of both physicochemistry (alkaline,
oxidised, dissolved Si, Fe, Mg, and Ca) and architecture (potential upward move-
ment). The challenge now is to begin constructing 3D models that link this detailed
surface mineralogy with subsurface ground water and soil-forming processes.

18.5 Conclusions

The hyperspectral mineral maps – generated as part of the government geological
survey precompetitive geoscience data suite for enhancing mineral exploration –
also have value for mapping soils. Key mineral maps include the abundance of clay
minerals like kaolin, Al-smectite, and illite, which can be used as potential measures
for soil pH, CEC, and permeability. The opportunity to measure both the soil water
content and the nature of this water (bound versus unbound) may also be significant
for understanding soils. The results from Tick Hill show that these hyperspectral
maps provide mineralogical detail not evident in conventional geoscience maps or
in other geophysical data such as airborne gamma radiometrics. The results show
that although the current soil boundaries have some association with mineralog-
ical boundaries, the current mapped soil types do not correlate with the surface
mineralogy as mapped by hyperspectral imagery. There are a number of potential
reasons for this, though the most likely are the assumptions used in interpreting the
available geoscience data (radiometrics, DEM, geology). Given the importance of
mineralogy in soil characterisation, and the lack of accurate mineralogical informa-
tion provided by the currently available geoscience data, remote mineral mapping
has the potential to provide complementary, valuable information for soil mapping.
Given developments in hyperspectral data access, information extraction, and accu-
racy assessment, these mineral maps can also be used in the quantitative modelling
and monitoring of soil properties for multi-temporal management of agriculture and
water catchments from local to continental scales.
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Chapter 19
Combining Proximal and Penetrating Soil
Electrical Conductivity Sensors for
High-Resolution Digital Soil Mapping
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E.J. Sadler, and R.P. Udawatta

Abstract Proximal ground conductivity sensors produce high spatial resolution
maps that integrate the bulk electrical conductivity (ECa) of the soil profile. For
meaningful interpretation, variability in conductivity maps must either be inverted
to profile conductivity or be directly calibrated to profile properties. Penetrating
apparent electrical conductivity (ECa–P) sensors produce high depth resolution data
at relatively fewer spatial locations. The objectives of this research were to (i) inves-
tigate the profile source of ECa in claypan soils via a detailed examination of
ECa–P profiles; (ii) examine the potential for feature detection with ECa–P in clay-
pan soils; and (iii) determine if ECa sensors can be calibrated to ECa–P features.
Two study areas were chosen representing the claypan soils of north-east Missouri,
USA. Profile conductivity was measured at high depth resolution on soil cores using
a miniaturised Wenner conductivity probe and in the field using a conductivity
penetrometer. Proximal ground conductivity was mapped with one direct contact
sensor and two non-contact sensors, providing five distinct coil/electrode geome-
tries. Increasing ECa–P was observed below the claypan, correlated with decreasing
clay and water content and increasing bulk density. Depth to the claypan was suc-
cessfully calibrated to derivative peaks on ECa–P profiles (R2 = 0.72, p < 0.001).
Relationships between ECa and ECa–P features were poor (R2∼ 0.21) to good
(R2∼ 0.87) on a field-specific basis. Results show that ECa–P can be used for
calibration of ECa to the depth to claypan.

Keywords Claypan soils · Soil bulk apparent electrical conductivity ·
Penetrometer · Wenner mini-probe
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19.1 Introduction

Proximal bulk apparent electrical conductivity (ECa) sensors can be used to produce
high spatial resolution maps that integrate soil profile ECa variation by a depth–
response function. For meaningful interpretation, the conductivity data must either
be inverted to approximate profile conductivity or be directly calibrated to profile
properties. Penetrating apparent electrical conductivity (ECa–P) sensors measure
ECa from a small soil volume localised to their sensing electrode. Penetrating sen-
sors measure at high depth resolution, but at sparse locations compared to proximal
ECa sensors. These two types of ECa sensors have synergistic potential. We exam-
ined two avenues for their combined use with a case study in the claypan landscapes
of north-east Missouri, USA. Firstly, we examined the potential for ECa–P to iden-
tify soil morphological features. Next we examined the calibration of ECa–P features
to the spatially dense ECa data. We focus here on resolving the profile source of
conductivity integrated by proximal ECa sensors.

Three specific pathways of electrical conductance occur in soils: free water in
large soil pores, hygroscopic or tightly interacting particle–water interfaces, and
direct soil particle contact (Corwin and Lesch, 2005). As outlined by Corwin and
Lesch (working in western US soils formed in semi-arid to arid environments), the
magnitude of ECa is dependent mainly on soil salinity, Na+ saturation percentage,
water content, and bulk density (BD). The claypan soils of Missouri exist in a humid,
temperate environment. They are leached of salts and free carbonates and have
a small concentration of exchangeable Na+ (< 2 cmol kg−1). These variables are
unlikely to affect ECa. The experiments described in this work allowed the exami-
nation of the remaining factors important for influencing proximal ECa variation in
claypan soils.

Previous studies in claypan soils discovered the relationship between ECa and
depth to claypan (DTC) (Dolittle et al., 1994; Sudduth and Kitchen, 2006). These
investigations speculated that depth to argillic horizon layer silicates was the pri-
mary cause of proximal ECa variation. Several properties of the smectite clay
mineralogy were considered to be important. Smectite and similar clay minerals
might provide greater physical contact due to their size and platy structure, sub-
stantial interlayer water (which is usually present), and very large concentration of
exchangeable cations. Clay content decreases below the claypan and therefore, if
clay mineralogy were largely responsible for ECa variation, then less conductiv-
ity response would be expected from there. However, greater below-claypan ECa–P
was detected during some of our early investigations with ECa–P data (Sudduth
et al., 2000). Confirmation of these observations on isolated samples is needed to
understand the proximal ECa response.

From our experiences with proximal ECa and ECa–P data, we suspected that pro-
file conductivity features could be identified by penetrometer more objectively, at
better depth resolution, and more quantitatively than by coring or augering. Mapping
subsoil ECa–P features via their relationship to ECa would be more efficient than
grid survey. An ECa-to-ECa–P feature calibration should provide the spatial and
depth resolution needed for high-resolution soil mapping. We hypothesised that a
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large gradient in the first derivative of the ECa–P profile could be used to identify
a claypan or other lithologic discontinuity. We examined the relationship between
ECa–P derivative peaks and observed depth to claypan in order to test this possibility.
Further, we hypothesised that ECa could predict the depth to ECa–P first-derivative
peaks.

The specific objectives of this research were to

i. confirm the increase in ECa below the claypan;
ii. determine if ECa–P data can be used to estimate depth to claypan; and

iii. determine if ECa sensors can be calibrated to ECa–P features.

19.2 Materials and Methods

19.2.1 Soil Landscapes, Measurements, and Observations

Four agricultural fields in the claypan region of north-east Missouri were chosen
for this study: three fields with a loess solum near Centralia, MO (fields A, B, and
C) (39◦13′43" N, 92◦8′20" W), and a field with a loess-till solum near Novelty,
MO (field D) (40◦1′46.5" N, 92◦11′19" W). Fields A, B, and C are located near the
southern limit of the claypan region, while field D is at the northern limit, about
90 km away. Physical and chemical characterisation data by horizon were available
from 44 profiles with claypan features. Field descriptions and horizon designations
for these pedons were made by experienced soil morphologists. Observed depth to
claypan was determined as depth to the Bt1 or the Bt2 horizon based on the field
descriptions and lab data.

19.2.2 ECa–P Measurement

Penetrometer ECa–P (see Table 19.1 for ECa abbreviations) and cone index (CI)
were measured at the 44 claypan locations using a Veris1 Profiler 3000 with an
insulated shaft (Veris Technologies, Salina, KS, USA). Measurements of ECa–P and
CI were made on all fields in the late spring of 2007 and occurred within a few
days of proximal ECa measurements on fields B and D. However, ECa–P and CI
were measured on fields A and C approximately 18 months after the ECa surveys.
Gravimetric soil moisture (w) and BD determinations were made in 15-cm layers at
the time of ECa–P measurement.

Cone index and ECa–P were measured to 92 cm, with five penetrations per site.
Replicate ECa–P profiles were pooled and fitted with locally weighted regression

1 Mention of trade names or commercial products is solely for the purpose of providing spe-
cific information and does not imply recommendation or endorsement by the US Department of
Agriculture, University of Missouri, or University of Florida.
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Table 19.1 Bulk apparent electrical conductivity (ECa) is a generic terminology that can be
applied to a variety of sensors which can have multiple measurement channels. We differentiate
the various ECa sensors used in this study by the following abbreviations

Sensor Symbol Channel Effective deptha Sensor type
Coil/electrode
geometry

DUALEM-2S ECa–Dsh Shallow 2.2 m Induction 2 m PCPb

DUALEM-2S ECa–Ddp Deep 10 m Induction 2.1 m HCPc

Geonics EM-38 ECa–EM Deep 5 m Induction 1 m HCP
Veris 3150 MSP ECa–Vsh Shallow 0.3 m Wenner contact 0.7 m
Veris 3150 MSP ECa–Vdp Deep 1 m Wenner contact 2.2 m
Veris Profiler ECa–P Single – Dipole contact Cone electrode
Wenner

mini-probe
ECa–M Single – Wenner contact 5 mm

aDepth to 90% of total response (Sudduth and Kitchen, 2000)
bPCP, perpendicular coplanar
cHCP, horizontal coplanar

models. A Savitzky–Golay procedure was used to calculate the derivative of the
fitted ECa–P profile. A large peak in the first derivative, referred to as the transition
peak, corresponds to the transition between the E horizon and the upper boundary
of the claypan. Depth to the transition peak was determined for all of the fitted
profiles. Clay-maximum depth translation was applied to each fitted ECa–P profile
independently in order to explore the landscape relationship in sub-claypan ECa.
Translated depth (Dt) indicates the depth at which a measurement occurs either
above or below the claypan. Translated depth profiles were pooled into a single
dataset and again fitted with a locally weighted regression.

19.2.3 ECa–M Measurement

We developed a miniaturised Wenner array on a handheld probe (mini-probe) to
measure ECa (ECa–M) on ex situ soil cores to confirm ECa–P observations. Wenner
mini-probe apparent electrical conductivity was measured every 1.25 cm. The mini-
probe had 5 mm electrode spacing, 5 mm insertion depth, and was operated using
the electronics from a Veris ECa sensor. Veris supplied custom software accounting
for the probe geometry. Measurements of ECa–M were made on soil cores com-
pressed into a steel channel which formed the cores into triangular prisms. This
procedure repaired breaks and extrusion cracks in soil cores, consolidated loose
soil, and formed two flat surfaces providing consistent contact for the mini-probe.
Gravimetric soil moisture (w) of these cores was measured at 2.54 cm intervals.

19.2.4 Proximal ECa Measurement

Three conductivity sensors were used to measure proximal ECa with DGPS
position on 10 m transects at 4–6 m intervals. Sensors were the DUALEM-2S
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electromagnetic induction (EMI) sensor (Dualem, Inc., Milton, Ontario, Canada)
in horizontal coplanar mode (ECa–Dsh) and perpendicular planar mode (ECa–Ddp)
(2 m coil spacing); the Geonics EM-38 EMI sensor (Geonics Limited, Mississauga,
Ontario, Canada) in horizontal coplanar mode (ECa–EM), 1 m coil spacing; and the
Veris 3150 rolling coulter Wenner array (Veris Technologies, Salina, KS, USA) with
0.7 m (ECa–Vsh) and 2.2 m (ECa–Vdp) electrode spacing. This combination of sen-
sors provided five distinct coil/electrode geometries for ECa measurement. Fields B
and D had all ECa surveys made within a relatively narrow window of 1 month in
the spring of 2007. Surveys of fields A and C were made within 3 days in the fall of
2005.

The five proximal ECa instrument geometries used for this study were unique
(Table 19.1), but their depth–response functions were overlapping to one degree
or another and their measurements were correlated (Sudduth and Kitchen, 2000).
Partial least squares regression (PLSR) was used to model the ECa relationship to
ECa–P features in order to mitigate correlation in the predictors and to capitalise on
any orthogonality in their response to ECa–P.

19.3 Results and Discussion

19.3.1 Soil Profile ECa

The major morphological features found throughout the study fields were visible
in the depth profile of ECa–P or ECa–M in a representative claypan site from field
A (Fig. 19.1a). Firstly, the silty, granular, and low-density surface had very small
ECa–P. The remaining A horizons had greater ECa–P, but still relatively smaller
ECa–P compared to the claypan and below. When an E horizon was present, it
appeared as a zone of minimum conductivity. Conductivity abruptly increased in
the transition to the Bt1 horizon, the claypan feature. Conductivity continued to
increase below the claypan to 90 cm and beyond, even as clay content decreased.

Mean ECa–P above and below the claypan for all 44 study locations was 20.9
and 47.4 mS m−1 with standard errors 0.31 and 0.26 mS m−1 respectively, and
was significantly different (p < 0.001). This difference and the landscape trend in
ECa–P distribution were emphasised in pooled Dt profiles of ECa–P (Fig. 19.2). The
depth translation procedure allowed comparison of profiles on a coherent depth
scale. These results verified large and increasing sub-claypan ECa–P and empha-
sised the similarity of these soils to the theoretical bilayered earth discussed in the
geotechnical literature (McNeill, 1980; Callegary et al., 2007).

Measurements of ECa–M were highly correlated with ECa–P measurements
(r = 0.82), but were greater by a factor of 3.3 (Fig. 19.3). These results confirmed
the ECa–P sensor measurement and further indicated that as clay content decreases,
profile ECa–P increases – counter to the clay-source hypothesis. The greater magni-
tude of ECa–M data relative to ECa–P warrants further investigation but is potentially
due to increased particle contact caused by the core-pressing procedure used in the
ECa–M measurement.
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Fig. 19.2 Clay-maximum
translated depth (Dt) profiles
of ECa–P from 44 locations in
4 claypan fields. The depth
scale is translated such that
the profile clay maximum for
each location is at 0 cm
(dashed horizontal line).
Translated depth is positive
above the claypan and
negative below.
Measurements of ECa
increase below the claypan
(Dt<0) as emphasised by the
locally weighted regression
(solid black line)
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Fig. 19.3 Scatter plot
showing the correlation
between ECa in claypan soil
profiles measured in situ by
penetrometer (ECa–P) and
ex situ by a Wenner
mini-probe (ECa–M). The
Pearson correlation
coefficient between these
sensor measurements is 0.82
and ECa–M is proportional to
ECa–P by a factor of 3.3

19.3.2 ECa–P Predicted Depth to Claypan

A major objective of this research was to examine the potential for using ECa–P
to rapidly identify and map subsoil features. The claypan is a critical soil
morphological feature because it impacts hydrology, plant-available water capacity,
water quality, subsoil fertility, root distribution, and crop yield (see Chapter 31). The
claypan transition peak was clear on first-derivative plots of ECa–P (Fig. 19.4a).

Claypan transition peaks indicate the depth at which an experienced soil mor-
phologist would describe the E–Bt boundary. The ECa–P sensor allows an objective
and quantitative determination of the claypan and provides a continuous represen-
tation. Depth to claypan was significantly related to ECa–P transition peak depth
(R2 = 0.71, n = 44, p < 0.001) (Fig. 19.4b). This result includes data from all four
study sites spanning opposite ends of the Missouri claypan region. Based on these
results, ECa–P might be used to predict claypan depth anywhere within this area or in
a similar soil region. The penetrometer can rapidly capture short-range spatial vari-
ability with multiple penetrations and may be more consistent and quantitative than
a soil morphologist could be. This type of relationship is very useful for densifying
investigations along transects or within an area (Drummond et al., 2005). Quantified
ECa–P feature observations can be efficiently collected at smaller intervals, while
more time-intensive coring or augering can be performed at larger intervals.

19.3.3 Calibrating ECa to ECa–P Features

Severe correlation between proximal ECa measurements requires a non-traditional
approach to modelling. Partial least squares regression of transition peak depth as
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Fig. 19.4 Penetrometer
electrical conductivity
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and is compared to observed
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a function of ECa–EM, ECa–Dsh, ECa–Ddp, ECa–Vsh, and ECa–Vdp produced varying
results, from no significant model for field A to a very good relationship for field C
(Table 19.2). The profiles from these four field sites were chosen, based on previ-
ous research needs, to represent the landscape variability present within each field.
However, the field datasets differed in their realisation of this goal. Fields C and D
have greater relief and a wider range of landscape positions and thus a wider range
of DTC than does field A. Field B had a relatively wider range in DTC than did A,
but had a lower number of profile samples concentrated in a fairly narrow range of
DTC, and transition peak depth was poorly related to ECa. Pooled results showed
a moderate relationship (Table 19.2). A better stratified sample of ECa–P profiles
from within each field might produce better results. The potential for within-field
mapping of ECa–P features with ECa data is shown in the site C results (Table 19.2,
Fig. 19.5).
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Table 19.2 Fit statistics and number of components for partial least squares regression models of
ECa–P transition peak as a function of five ECa sensor measurements

Intercept Comp. 1 Comp. 1–2 Comp. 1–3 Comp. 1–4

Field N RMSE R2 RMSE R 2 RMSE R 2 RMSE R 2 RMSE

A 16 12.38 − − − − − − − −
B 7 17.67 −0.01 15.20 0.21 13.45 − − − −
C 9 13.67 0.80 5.40 0.76 5.90 0.87 4.45 − −
D 11 16.00 0.64 8.75 − − − − − −
Pooled 43 13.71 0.37 10.67 0.39 10.48 0.43 10.12 0.44 9.99

ECa-P Transition Peak 
Depth (cm)

10

20

30

40

10 20 30 40

E
C

a 
E

st
im

at
ed

 T
ra

ns
iti

on
P

ea
k 

D
ep

th
 (

cm
)

Fig. 19.5 Transition peak
depth was modelled by five
proximal ECa measurements
(see Table 19.2) using partial
least squares regression. The
resulting ECa estimated
transition peak depth is
compared to measured
transition peak depth from
site C. Diagonal line is
one-to-one

Multi-component PLSR models provided only minor gains in R2 or root mean
squared error for transition peak depth over single-component models. One or two
components accounted for most of the variability within sites B, C, and D. This
suggests that a single proximal ECa instrument with dual-simultaneous investigation
depths is sufficient for mapping transition peak depth. The pooled model included
four components, potentially due to additional orthogonal variability in ECa caused
by temporal differences in temperature and soil moisture between ECa surveys. This
asynchrony in survey conditions is known to cause bias between surveys of the same
field (Abdu et al., 2007).

19.3.4 Profile Sources of Proximal ECa

According to Corwin and Lesch (2005), and discounting salinity and Na+ saturation,
the next most important factors determining profile conductivity are water content
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and BD. As mentioned previously, lower ECa–P values in surface soils are probably
due to granular structure and silty texture which cause reduced particle contact and
proximity (Fig. 19.1a). Minimum conductivity in the strongly leached E horizons
may have been due to the high felsic mineral (e.g. quartz, feldspar) content and
reduced contact of the silt-sized particles. The particle-contact pathway of ECa may
be dominating response above the claypan.

The large positive ECa–P gradient at the transition peak coincides with the
largest increase in clay and water content (Fig. 19.1b, c). Conversely, elevated con-
centrations of expanded smectite clays in the claypan cause a reduction in BD
(Fig. 19.1c, d). These relationships suggest that within the transition zone, ECa–P
is more sensitive to the clay-bound soil–solution conductivity pathway (perhaps
enhanced by large cation saturation) than to the particle-contact pathway. This is
in contrast to what happens below the claypan where BD and CI are greater.

We found that clay and water content decreased below the claypan, while BD
and CI both increased. These relationships suggest that below the claypan, ECa–P is
more sensitive to the particle-contact pathway than to the soil–solution or solution–
particle pathway. Processes of cementation may be enhancing this effect. Structural
units also tend to be larger in size with depth. Profile distribution of clay, bulk
density, structure, and water content are confounded by soil genesis. Integrated
processes of soil formation, including loess deposition, eluviation, illuviation, and
subsoil densification, vary systematically with landscape. This combination of
effects is probably responsible for success in the calibration of proximal ECa to
DTC and transition peak depth.

19.4 Conclusions

The spatial resolution of ECa sensors and the depth resolution of ECa–P sensors
offer the potential to synergistically improve high-resolution soil mapping. Claypan
soils are successfully handled in this way because they are essentially bilayered
with respect to ECa. Direct calibration of ECa–P depth profile features to soil
profile features such as depth to claypan is effective, but global or regional cal-
ibration of proximal ECa to ECa–P features is complicated by field-to-field and
temporal variability in proximal ECa measurements. In general, the multiple ECa
sensor geometries of the common commercially available platforms studied here
do provide at least two orthogonal components of ECa information. Finally, pro-
file conductivity actually increases somewhat below the claypan, probably due
to increased particle contact in denser soil. Response of ECa to ECa–P transition
peak and DTC is due to the confounded processes of soil and landscape gene-
sis rather than just depth to argillic horizon clay minerals. It is a combined effect
of lesser ECa near the surface, a profile minimum ECa in E horizons, greater
ECa in the claypan, and even greater ECa in the dense soil material below the
claypan.
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Chapter 20
A Neural Network Approach to Topsoil Clay
Prediction Using an EMI-Based Soil Sensor

L. Cockx, M. Van Meirvenne, U.W.A. Vitharana, F.M.B. Vancoillie,
L.P.C. Verbeke, D. Simpson, and T. Saey

Abstract High-resolution proximal soil sensor data are an important source of
information for optimising the prediction of soil properties. On a 10.5 ha arable field,
an intensive EM38DD survey with a resolution of 2 m × 2 m resulted in 19,694
measurements of ECa-H and ECa-V. A large textural variation was present in the
subsoil due to the presence of former water channels. Nevertheless, both ECa-V and
ECa-H data displayed the same spatial variability. This spatial similarity indicated
the strong influence of the subsoil heterogeneity on the ECa-H measurements. Using
variography, two scales of ECa variability were identified: short-range (∼35 m)
variability associated with the channel pattern and wider within-field variability
(∼200 m). Using artificial neural networks (ANNs), prediction of the topsoil clay
content was optimised (i) by using an input window size of 3, 5, 7, 9, and 11 pixels to
account for local contextual influence and (ii) by including both ECa-H and ECa-V
in the network input layer to isolate the response from the topsoil. The models were
evaluated using R2 and the relative mean squared estimation error (rMSEE) of the
test data. The most accurate predictions were obtained using both orientations of
the EM38DD sensor without contextual information (R2 = 0.66, rMSEE = 0.40).
The importance of ECa-V on the topsoil clay prediction was expressed by a relative
improvement of the rMSEE of 29%. For comparison, a multivariate linear regres-
sion (MVLR) was performed to predict the topsoil clay content based on the two
orientations. The ANN models up to a window size of 5 pixels outperformed the
MVLR, which resulted in an R2 of 0.42 and an rMSEE of 0.63. ANN analysis based
on both orientations of the EM38DD appears to be a useful tool to extract topsoil
information from depth-integrated EM38DD measurements.

Keywords EM38DD · Artificial neural networks · Topsoil texture · Prediction ·
EM38
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20.1 Introduction

Nowadays highly detailed soil sensor data have become an interesting source of
ancillary information to characterise within-field soil variability, a factor impor-
tant for site-specific management. The non-invasive nature of proximal soil sensors
allows the collection of high-resolution data in a short time. One of these proxi-
mal soil sensors is the EM38 (Geonics Ltd, Ontario, Canada) which measures the
apparent soil electrical conductivity (ECa) on the basis of electromagnetic induction
(see Chapter 2). Under non-saline conditions, soil ECa is influenced by a complex
interaction of soil properties like texture (mainly the clay fraction), organic matter
content, and soil moisture content (Cockx et al., 2007; Williams and Hoey, 1987).
The EM38DD soil sensor consists of two EM38 units fixed perpendicular to each
other, allowing the simultaneous measurement of soil ECa in two orientations. The
response of the sensor is a depth-integrated measurement of soil ECa and each
orientation has its own depth–response profile. Theoretically, the vertical orienta-
tion (ECa-V) is mainly influenced by the subsoil, while the horizontal orientation
(ECa-H) receives a dominant influence from the topsoil. However, in soils with
highly varying subsoil and homogeneous topsoil properties, the subsoil variability
can dominate the ECa-H measurements. To characterise the topsoil textural vari-
ability with the EM38DD, the influence of the subsoil on the ECa-H measurements
should be removed.

Since artificial neural network (ANN) analysis is able to model non-linear com-
plex relationships between inputs and outputs without any a priori assumptions
about the nature of the processes (Sy, 2006), this technique is used to estimate the
topsoil clay fraction (referred to as tclay in this chapter) based on ECa-H and ECa-V
data. Such data have already been used as an input in ANNs for estimating crop yield
(Miao et al., 2006; Kitchen et al., 2003), but to our best knowledge the novel aspect
of this research is the incorporation of the two orientations of the EM38DD sensor
for soil texture estimations.

The aim of this study was to optimise topsoil clay predictions (i) by using a vary-
ing window size (of 3, 5, 7, 9, and 11 pixels) to incorporate contextual information
of the input variables in the ANN and (ii) by including high-resolution data of both
sensor orientations in the ANN. The results were compared to the ones obtained
using multivariate linear regression (MVLR).

20.2 Materials and Methods

20.2.1 Study Site and Data Collection

The study site was a 10.5 ha arable field in the polder area of Belgium (51◦16′17" N,
3◦40′35" E). In this area, predominantly sandy Pleistocene aeolian material is
covered with Holocene alluvial loam to clay sediments, due to a series of marine
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transgressions after the last glaciations. These marine transgressions occurred
through water channels which were consequently filled with clayey material,
resulting in large subsoil textural variation. These water channels formed a dominant
pattern, up to 2 m deep, in the subsoil.

The EM38DD soil sensor was used to characterise soil variability; it was attached
to an all-terrain vehicle and combined with a GPS. In this way, soil data (both ECa-H
and ECa-V) were collected every second with an average resolution of 2 m × 2 m,
resulting in a total of 19,694 measurements. These ECa data were processed to cor-
rect a lag between the GPS and the sensor; the noise present in the ECa-H data was
reduced using a Z-score filter – values deviating more than two standard deviations
from their local mean (within a radius of 10 m) were replaced with the local mean
ECa value.

In 78 locations, soil samples were taken according to an ECa-directed sampling
scheme to ensure that the existing soil variability was captured. Due to the presence
of former water channels, the sampling scheme had transect-like parts. The sam-
ples were analysed for subsoil and topsoil texture (indicated by the prefix s- and t-,
respectively) using the pipette method.

20.2.2 Neural Network Analysis

The artificial neural network analysis mimics the capacity of biological neural sys-
tems to learn; nodes, equivalent to biological neurons, are organised into input,
hidden, and output layers. The hidden layer controls the complexity of the relation-
ship between input and output variables. Each node is connected to all the nodes
in the next layer, and these connections have associated with them weights. For
each node in the hidden layer, all input data, multiplied by their respective weight,
are summarised and then used as an input in a non-linear transfer function. Neural
networks are trained in an iterative process by optimising the weights of linkages
connecting input and output variables so as to minimise differences between pre-
dictions and actual values (called back-propagation). For a detailed description on
neural networks, refer to Haykin (1994).

In this study, we used a feed-forward back-propagation network with a tangens
hyperbolicus as activation function and one hidden layer. Since soil texture data
are compositional, two fractions, i.e. tclay and tsand, were estimated but only the
results of tclay will be interpreted in this chapter. The dataset was randomly split
into 10 sets of training (n = 50) and test data (n = 28), and each training set was
initialised 10 times, resulting in 100 replicates per network model. To optimise the
tclay predictions, the input of the network was altered in two ways. Firstly, contex-
tual information was added to the network by using a window of input variables:
a window size (WS) of 3, 5, 7, 9, and 11 pixels was tested. The latter systems
were called contextual neural networks (CNNs) and abbreviated as WS3, WS5, ... .
Secondly, the relative importance of incorporating two orientations of the EM38DD
sensor was determined by treating the ECa-V data as unavailable (and using the
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mean of the ECa-V data as an input). The effect of changing the network input from
two sensor orientations to one was tested for input window sizes of 1 (no contextual
information), 3, and 5 pixels. Depending on the input, the number of neurons in
the hidden layers changed according to the rule of Hecht-Nielsen (1987). The ANN
analysis was performed using LNNS, an artificial neural network simulator devel-
oped at the Laboratory of Forest Management and Spatial Information Techniques
and freely downloadable from http://dfwm.ugent.be/forsit/.

The performance of the ANN systems was determined by calculating the relative
mean squared estimation error (rMSEE) and the coefficient of determination (R2)
of the predicted and the true test tclay concentration. The rMSEE is defined as the
MSEE divided by the sample variance (Green et al., 2007) and the MSEE can be
calculated as follows:

MSEE = 1

n

n∑
α=1

(
z∗(xα) − z(xα)

)2 ,

with n the number of samples, z∗(xα) the predicted value, and z(xα) the true test
value. Using these two parameters, the ability of the ANN systems to reproduce both
the variance of the measured data and the actual errors for the predictions was con-
sidered (Persson et al., 2002). An rMSEE value of 0 represents perfect prediction,
while an rMSEE value of 1 signifies a prediction equivalent to using the mean value
as predictor. A sensitivity analysis was performed to evaluate the relative impor-
tance of the ECa-V data and the contextual information from neighbouring pixels
in explaining the tclay variability. This was expressed by looking at the relative
improvement (RI) of the rMSEE defined as follows:

RI [%] = [(rMSEEmethod1 − rMSEEmethod2)/rMSEEmethod1] × 100.

If RI < 0, then method 2 is superior to method 1; if RI = 0, there is no accu-
racy difference between both methods; and in case RI > 0, method 2 is worse than
method 1.

20.2.3 Multivariate Linear Regression

As an alternative to the prediction of the tclay content based on EM38DD data, the
use of MVLR was evaluated. Due to the limited soil dataset, the analysis was per-
formed using all 78 soil samples. Nevertheless, the validation was conducted in an
equivalent manner to the ANN, since the indices were calculated and averaged out
for the 10 test sets. A stepwise MVLR was performed in SPSS 15.0 with ECa-H and
ECa-V as predictor variables. In stepwise MVLR modelling, predictor variables are
added one at a time to the regression to see if the model improves upon the addi-
tion of that variable. Adding the first predictor is based on the degree of correlation
with the outcome and, because of this, the second predictor is fixed in the case of
two-predictor variables.
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20.3 Results and Discussion

The ECa measurements are shown in Fig. 20.1, while Table 20.1 lists their descrip-
tive statistics. Both orientations were clearly influenced by the former water channel
pattern of the subsoil: in these channels the ECa increased. On both maps, two
dominant linear features (channels) of increased ECaare present: one in the east-
ern part of the field (parallel to the boundary with clear side branches) and one
diagonally crossing the western part of the field. A similar spatial variability was
displayed in the two orientations but higher ECavalues were found in the subsoil
and more noise was registered in the data of the topsoil. Nevertheless, the coeffi-
cient of variation (CV = standard deviation/mean) of both orientations was of the
same order of magnitude and a Pearson correlation coefficient (r) of 0.84 was found
between the ECa-H and ECa-V measurements.

Fig. 20.1 Locations of the ECa measurements: (a) ECa-H, (b) ECa-V, expressed in milliSiemens
per meter

Table 20.1 Descriptive statistics of ECa (n = 19,694) and soil texture (n = 78)

Mean SDa CVa Min. Med. Max

ECa-H (mS m−1) 18.13 2.80 0.15 10.90 18.10 30.30
ECa-V (mS m−1) 21.22 2.83 0.13 14.70 20.7 33.40
tclay (%) 20.12 2.48 0.13 14.30 20.00 23.70
sclay (%) 9.07 4.12 0.45 3.20 7.70 22.10
tsand (%) 45.82 9.03 0.20 23.40 47.55 64.80
ssand (%) 74.17 12.10 0.18 31.70 76.95 92.90
tsilt (%) 35.06 7.29 0.21 20.80 33.30 54.20
ssilt (%) 16.80 9.20 0.55 3.70 15.05 46.30

aSD: standard deviation, CV: coefficient of variation.
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Fig. 20.2 Experimental variograms with a fitted model of (a) ECa-H and (b) ECa-V

A variogram analysis (Fig. 20.2) also led to the following results. The same spa-
tial structure (double spherical model without directional effects) was used to model
the spatial variability of ECa-H and ECa-V, while the relative nugget effect (RNE)
of the horizontal orientation was much higher (30%) than the one with the vertical
orientation (4%). However, the Z-score filter reduced the RNE of the ECa-H data
to 23%. Two scales of spatial textural variability were identified: a range of 35 m
representing the variability within the creek pattern of the subsoil and a range of
200 m for the wider within-field variability. Based on these variograms, the sensor
measurements were kriged to a map with a resolution of 1 m × 1 m.

Table 20.1 also illustrates that the topsoil texture was much more homogeneous
than the subsoil texture, with the largest discrepancy for the silt and clay fractions.
For the clay fraction, the CV of the topsoil was 13%, compared to a CV of 45% in the
subsoil. A location map of the clay content of the samples showed that there was no
channel pattern present in the topsoil: the highest tclay values were situated around
a north-east line in the centre and in the bottom left corner of the field (Fig. 20.3).

Fig. 20.3 Location maps of the soil samples analysed for (a) tclay and (b) sclay. The units are
in %
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Table 20.2 Correlation coefficients between ECa and the soil textural fractions (n = 78)

tclay tsilt tsand sclay ssilt ssand

ECa-H 0.59 0.73 −0.75 0.69 0.70 −0.71
ECa-V 0.44 0.66 −0.66 0.68 0.70 −0.70

The subsoil clay content on the other hand followed the ECa variability. The topsoil
texture was mainly loam, while in the subsoil it ranged over five USDA textural
classes (from sand to silt loam) (Vitharana et al., 2006).

The correlation coefficients between ECa and the textural fractions are given in
Table 20.2. Subsoil texture correlated similarly with ECa-V and ECa-H. This was
an indication of the influence of the subsoil on the ECa-H measurements. The clay
fraction of the subsoil correlated even better (r = 0.69) with ECa-H than did the
topsoil clay content (r = 0.59).

The different ANN systems used to predict tclay were evaluated using the mean
rMSEE of the test data (Fig. 20.4). The most accurate tclay prediction was achieved
using ECa-H and ECa-V as input variables and no contextual information: the
rMSEE was lowest (0.40) and 66% of the tclay variability was explained with this

Fig. 20.4 Graph of the relative error (rMSEE) and R2 of the ANNs/CNNs with the input variables
indicated in the legend. The X-axis shows the input window size
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ANN (R2 = 0.66). Surprisingly, contextual information had a negative effect on
the tclay predictions: increasing the input window size decreased the accuracy. The
same trend was observed using the two indices: the rMSEE increased, while the
R2 decreased. Nevertheless, up to a window size of 5 × 5 pixels the differences
were rather small. It was hypothesised that more contextual information increased
the complexity of the network too much, resulting in generalisation problems. The
advantage of including ECa-V measurements in the network was illustrated by a
decrease in relative error and an increase in R2; the relative improvement of the
rMSEE when using two sensor orientations instead of one was 29, 15, and 14% for
windows of 1, 3, and 5 pixels, respectively. Since increasing the window size from
1 to 3 pixels deteriorated the validation indices on average by 15.5%, it was con-
cluded that the effect of including both EM38DD orientations in the ANN was
essential for optimising the tclay predictions.

Investigating the advantage of using a more complex technique like ANNs, a
comparison was made with multivariate linear regression. A stepwise multivariate
linear regression was performed with ECa-H and ECa-V as predictor variables. Both
orientations contributed significantly to the model, and the following regression
equation was found:

tclay = 13.25 + 1.53 × ECa-H − 0.99 × ECa-V.

The goodness of fit of the model (R2) was 0.488 and the adjusted R2 was 0.47.
The goodness of fit of a univariate regression based on ECa-H data was 0.37
(adjusted R2 = 0.36), indicating that adding the vertical orientation improved the
tclay prediction; however, the individual importance of each orientation was not
assessed due to multi-collinearity concerns – variance inflation factors were 6.96.
The model was validated based on the average indices of the 10 test datasets: the
MVLR model had an rMSEE of 0.65 and 41% of the tclay variability was explained.
So using ANNs clearly improved the clay predictions: for a WS of 1 the differ-
ences of rMSEE and R2 between the two methods were even found to be significant
(p < 0.05). The outperformance of ANNs could be attributed to the non-linear
response of the sensor to soil conductivity with increasing depth. This non-linear
process is too complex to be captured completely by an MVLR.

Based on this analysis, the most accurate tclay map was obtained using an ANN
with WS = 1 and the ECa-H and ECa-V maps as input (Plate 20.1a). The resulting
map demonstrated that the highest tclay was found in the centre of the field (as
in Fig. 20.3). Although it was not evident from the location map, a water channel
pattern with an increased clay percentage was also present in the west of the tclay
map. In contrast to the result obtained using only the ECa-H orientation, the subsoil
channel pattern was substantially filtered out in the final output (Plate 20.1a versus
Plate 20.1b). Moreover, the tclay map obtained using ECa-H data only was more
homogeneous; the standard deviation (SD) of the predictions was 1.43% and the
maximum predicted tclay fraction was 21.0%. On the other hand, the MVLR result
displayed larger tclay variability (SD of 1.54%) and no water channel pattern could
be observed in the tclay map (Plate 20.1c). However, the accuracy of the MVLR
method was not optimal. In all the maps a strong orientation can be seen, a feature
arising from the fluviatile history of the field.
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Plate 20.1 Map of tclay, predicted by (a) the ANN model with WS = 1 based on ECa-H and
ECa-V, (b) the ANN model with WS = 1 based on ECa-H, and (c) the MVLR model

20.4 Conclusions

Topsoil clay content predictions based on high-resolution measurements from the
EM38DD sensor were optimised using a neural network analysis. We conclude that
ANN models (including contextual information up to a window of 5 × 5 pixels)
increased the accuracy of the topsoil clay prediction compared to an MVLR based
on ECa-H and ECa-V data. MVLR was not an optimal method for tclay prediction
based on EM38DD data, due to the non-linear response of the sensor to depth. ANNs
on the other hand were able to capture this non-linearity and increased the topsoil
textural information by optimally fusing the two orientations of the EM38DD sen-
sor. The best ANN model included both orientations of the EM38DD sensor without
contextual information; an R2 of 0.65 was found and the rMSEE was 0.40.
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Chapter 21
Field Determination of Soil Moisture
in the Root Zone of Deep Vertosols
Using EM38 Measurements: Calibration
and Application Issues

M.B. Hossain, D.W. Lamb, P.V. Lockwood, and P. Frazier

Abstract Electromagnetic induction sensors, such as the Geonics EM38, are used
widely for monitoring and mapping soil attributes via the apparent electrical con-
ductivity (ECa) of the soil. The sensor response is the depth-integrated combination
of the depth–response function of the EM38 and the local electrical conductivity
ECa(z). In deep Vertosols, assuming that the depth–response function is not per-
turbed by the soil and that the volumetric moisture content θ (z) dominates ECa(z),
the EM38 should be capable of predicting θ (z). A multi-height EM38 experiment
was conducted over deep Vertosols to confirm the validity of the EM38 depth–
response function, to test the hypothesis that the EM38 response was an additive
combination of its depth–response function and θ (z), and to investigate if on-ground
ECa measurements could estimate average θ within the root zone. A simple model,
involving mathematical summation of measured θ (z) from sectioned ‘calibration
cores’ and the EM38’s known depth–response function, was found to explain 87 and
83% of the variance in measured ECa for both horizontal and vertical dipole con-
figurations, respectively. This included all data acquired at multiple sensor heights
above the ground. However, a subsequent comparison of on-ground, EM38-derived
ECa and average θ from surface to 0.8 m (θ̄0.8) and surface to 1.2 m (θ̄1.2) demon-
strated that θ̄0.8 and θ̄1.2 explained only 37 and 46% of the variance in ECa for
vertical dipole configuration measurements, compared to 55 and 56% of the vari-
ance for horizontal dipole configuration measurements. This result can be attributed
to the small depth-specific changes in the ECa(z) and θ (z) relationship and the lim-
ited proportion of the depth–response function of the EM38 interacting with the
soil volumes investigated. Whereas the best calibration over these depth ranges
was achieved using a horizontal dipole configuration, further improvements in both
dipole orientations might be achieved by calibrating, then deploying, the sensors
while they are elevated tens of centimetres above the ground.
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Keywords Volumetric soil moisture · Electromagnetic induction · EM38 ·
Vertosol · Black Vertosol

21.1 Introduction

Electromagnetic induction (EMI) sensors such as the EM38 (Geonics, Ontario,
Canada) offer the potential to measure numerous soil attributes without the need for
destructive sampling. The EM38 consists of transmitting and receiving induction
coils with an inter-coil spacing of 1 m. The single value of apparent electrical con-
ductivity (ECa) returned by the sensor at any given location is an integrated value
based on a combination of the depth-related sensitivity of the instrument and the
depth-dependent drivers of electrical conductivity (e.g. ion and moisture content)
(McNeill, 1980).

Provided there is sufficient soil depth, variation in ECa values will be primar-
ily due to variations in clay content or volumetric moisture content (McBratney
et al., 2005; Brevik et al., 2006). The relationship between soil moisture content
and electrical conductivity has been established by many investigators (R2 = 0.96,
Kachanoski et al., 1988; R2 = 0.64, Sheets and Hendrickx, 1995; R2 = 0.50–0.90,
Brevik et al. 2006). Hezarjaribi and Sourell (2007) used the EM38 to predict mois-
ture content in a non-saline, loamy, sand soil and found a 56 and 35% relationship
between total available moisture content and vertical and horizontal dipole ECa
values, respectively.

While the relationship between integrated ECa and bulk soil moisture is well doc-
umented, varying the height of the EM38 sensor above a soil profile and factoring
in the ECa depth–response function should allow determination of the depth-related
soil moisture profile rather than a single bulk moisture value. Hendrickx et al.
(2002) and Borchers et al. (1997) have laid the foundations for the inversion of
multi-height EM38 measurements to extract below-ground layer values of ECa;
however, like numerous other workers, only the link between EM38-derived ECa
values and depth-related soil ECa values has been investigated (e.g. Rhoades and
Corwin, 1981). Rhoades and Corwin (1981) performed an experiment that com-
pared the ECa values generated by an EM38 at different heights above the ground
with the integration of ECa values at different depths acquired using a four-electrode
EC sensor. They found that the integrated depth response of the EM38 explained
97% of the variance observed in the calculated EM38 reading based on integrating
the multi-depth ECa values. Although a very good relationship between volumet-
ric soil moisture and ECa has been established (e.g. Kachanoski et al., 1988, R2 =
0.96; Reedy and Scanlon, 2003, R2= 0.80), none of this work has demonstrated
a link between EM38-derived ECa values and depth-related θ . Consequently, the
objectives of this chapter are to

• confirm that the EM38-derived ECa values are in fact an integration of the
accepted depth–response function of the EM38 and θ (z) for deep Vertosols and

• determine the upper accuracy limit to calibrate on-ground ECa measurements for
predicting average volumetric soil moisture content from surface to 0.8 and 1.2
m, depths corresponding to accepted ‘root zones’.
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21.2 Materials and Methods

21.2.1 Study Area

The experiment was conducted on a 2 ha block on Clark’s Farm, an experimen-
tal property located at the University of New England, Australia (30◦31.7′ S,
151◦37′ E) with a deep, Black Vertosol.

21.2.2 EM38 Depth–Response Function

If the depth–response function of the EM38 is not perturbed by the θ (z) profile,
the assumption of McNeill (1980) is correct that horizontal eddy currents induced
by the primary field do not influence each other and the thickness of the individual
contributing layers is identical, then the instrument’s response should be propor-
tional to the addition of the combined depth–response function and θ (z) according
to the equation

ECa ≈
∑

z

k × θ (z) × φV,H (z) .

Here, ECa is the instrument (integrated) response in millisiemens per metre and k
is the constant of proportionality between local ECa(z) at depth and θ (z) at the same
depth, assuming that the relative contributions of all other EC-driving parameters
remain fixed at depth. As set out by McNeill (1980), the depth–response function
ϕV,H(z) is given as follows for both vertical and horizontal dipole orientations:

φV (z) = 4z
(
4z2 + 1

) 3
2

(vertical)

and

φH (z) = 2 − 4z
(
4z2 + 1

) 1
2

(horizontal).

Note that raising the EM38 above the ground and collecting ECa (Table 21.1)
is equivalent to ‘shunting’ the volumetric moisture content profile lower down the
EM38 depth–response function.

Exactly 17 ‘single-core’ sites were established over the field site. Multi-height
EM38 measurements of ECa were first collected at each single-core location in both
vertical and horizontal dipole configurations at seven heights above the ground sur-
face (0, 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 m) using a specially designed polymer plastic
‘ladder’. The ladder was constructed from lengths of 42-mm-diameter polyvinyl
chloride (PVC) pipe segmented at heights corresponding to the ground surface
(0 m) and at 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 m. The EM38 measurements were col-
lected with the sensor axis (that is, the line between the sensor and receiver coils)
orientated east–west. Prior to each measurement, the EM38 was nulled following
the manufacturer’s protocol. Soil cores (50 mm diameter and 1.7 m deep) were then
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Table 21.1 The data combination process for linking multi-height ECa and multi-depth volumetric
moisture content using the depth–response function of the EM38 (vertical and horizontal dipole
configurations)

Sensor height (m)

Depth
(m) φV(z) or φH(z)x 0 0.2 0.4 0.6 0.8 1.0 1.2

0 0 2 θ(0.025)
0.1 0.37715 1.60777 θ(0.1)
0.2 0.64033 1.25722 θ(0.2) θ(0.025)
0.3 0.75661 0.97101 θ(0.3) θ(0.1)
0.4 0.76182 0.75061 θ(0.4) θ(0.2) θ(0.025)
0.5 0.70711 0.58579 θ(0.5) θ(0.3) θ(0.1)
0.6 0.62969 0.46356 θ(0.6) θ(0.4) θ(0.2) θ(0.025)
0.7 0.54982 0.37253 θ(0.7) θ(0.5) θ(0.3) θ(0.1)
0.8 0.47640 0.30400 θ(0.8) θ(0.6) θ(0.4) θ(0.2) θ(0.025)
0.9 0.41234 0.25169 θ(0.9) θ(0.7) θ(0.5) θ(0.3) θ(0.1)
1.0 0.35777 0.21115 θ(1.0) θ(0.8) θ(0.6) θ(0.4) θ(0.2) θ(0.025)
1.1 0.31177 0.17927 θ(1.1) θ(0.9) θ(0.7) θ(0.5) θ(0.3) θ(0.1)
1.2 0.27310 0.15385 θ(1.2) θ(1.0) θ(0.8) θ(0.6) θ(0.4) θ(0.2) θ(0.025)
1.3 0.24055 0.13331 θ(1.1) θ(0.9) θ(0.7) θ(0.5) θ(0.3) θ(0.1)
1.4 0.21306 0.11652 θ(1.2) θ(1.0) θ(0.8) θ(0.6) θ(0.4) θ(0.2)
1.5 0.18974 0.10263 θ(1.1) θ(0.9) θ(0.7) θ(0.5) θ(0.3)
1.6 0.16984 0.09104 θ(1.2) θ(1.0) θ(0.8) θ(0.6) θ(0.4)
1.7 0.15277 0.08127 θ(1.1) θ(0.9) θ(0.7) θ(0.5)
1.8 0.13804 0.07296 θ(1.2) θ(1.0) θ(0.8) θ(0.6)
1.9 0.12527 0.06585 θ(1.1) θ(0.9) θ(0.7)
2.0 0.11413 0.05972 θ(1.2) θ(1.0) θ(0.8)
2.1 0.10438 0.05439 θ(1.1) θ(0.9)
2.2 0.09579 0.04973 θ(1.2) θ(1.0)
2.3 0.08819 0.04565 θ(1.1)
2.4 0.08145 0.04204 θ(1.2)
∑
z

θ (z) × φV,H (z) →

extracted and sectioned into a top sample of 0.05 m (z = 0.025 m) and 12 subsequent
0.1 m thick layers (z = 0.1–1.2 m) for analysis of volumetric water content θ (z).

In the field experiment, the multi-height ECa measurements derived from
the 17 core sites were plotted against depth-weighted average moisture content∑

zθ (z) × φV,H (z), following Table 21.1, using the measured θ (z) and calculated
ϕV,H(z).

21.2.3 Field Calibration and Prediction of Average Moisture
Content at Depth

For the field calibration work, the EM38 sensor was placed on the ground surface
over (or adjacent to) the core sites, again with the sensor itself orientated east–
west. For the first calibration dataset, EM38 measurements were conducted prior to
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extraction of the cores and subsequent determination of average volumetric moisture
content over the depth range 0–0.8 m (θ̄0.8) and 0–1.2 m (θ̄1.2). Calibration equations
for both dipole configurations were derived using simple linear regression.

21.3 Results and Discussion

A plot of ECa versus
∑

zθ (z) × φV,H (z) at different sensor heights above the
ground for a single-core site is given in Fig. 21.1.

The data include both horizontal and vertical dipole orientations. Not surpris-
ingly, the integrated EM38 response (measured in millisiemens per metre) decreases
monotonically as the sensor is raised progressively above the ground. In Fig. 21.1,
progressively raising the sensor above the ground corresponds to the data points (one
for each dipole orientation) starting, in sequence, at the top right and finishing at the
lower left. The measured ECa values explained 99 and 97% of the variance observed
in the

∑
zθ (z) × φV,H (z) values, with RMSE values of 1.38 and 2.57 mS m−1 for

horizontal and vertical dipole configurations, respectively. The R2 and RMSE val-
ues were typical for all 17 test core locations investigated, as was the sequential
trend in data points with increasing sensor height. The entire dataset of ECa val-
ues, for every sensor height at the 17 core locations, is plotted against respective∑

zθ (z) × φV,H (z) values in Fig. 21.2. The coefficients of determinations (R2) for
entire dataset (17 cores and 7 heights each) were 0.87 and 0.83, with RMSE of 6.01

ECaH = 11.69x + 9.58
R2 = 0.99, N = 7
RMSE = 1.38 mS/m

ECaV = 20.38x + 10.68
R2 = 0.97, N = 7
RMSE = 2.57 mS / m
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Fig. 21.1 ECa versus
∑

zθ (z) × φV,H (z) for vertical and horizontal dipole configurations for a
single-core site (ECaV, vertical; ECaH, horizontal). Sensor heights progress from 0 m (ground level,
top right data point) through to maximum height (1.2 m, bottom left data point) in each plot
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Fig. 21.2 ECa versus
∑

zθ (z) × φV,H (z) for vertical and horizontal dipole configurations for all
core sites (ECaV, vertical; ECaH, horizontal)

and 8.06 mS m−1 for horizontal and vertical dipole configurations, respectively.
In all analyses, the response of ECa to

∑
zθ (z) × φV,H (z) was highly significant

(p<0.0001).
A key finding from this correlation analysis is that the plots of Figs. 21.1 and

21.2 are all approximately linear. There is a suggestion of a curvilinear response at
low ECa, corresponding to the sensor located at maximum height above the ground.
Here the EM38 is producing a slightly lower than expected response. However, the
overall linearity supports the underlying assumption that the relative contributions
of all ECa-driving parameters at depth (for example salinity, moisture content, and
clay content) remain the same. Any small, systematic deviation from linearity is
likely to be attributed to small variations in the depth-related distribution of soluble
salts and clay content in the profile. The layered earth model, whereby the con-
tribution of each layer at depth is additive, is also verified, as is the fact that the
depth–response function of the EM38 is not perturbed by the depth profile of the
moisture (or ion) content under the conditions studied here. The significance of the
constant k is also evident. It points to a direct link between ECa(z) and θ (z). For
data collated from the 17 core sites, the values of k are 13.79 ± 0.49 and 22.04
± 0.93 mS m−1 for horizontal and vertical dipole orientations, respectively. In the
absence of any dissolved electrolytes, water has an intrinsic electrical conductiv-
ity of 5.5 μS m−1 (e.g. Marshall, 1987) and this generally increases linearly with
increasing concentrations of ions (e.g. Lide, 2007). The slope of the conductivity–
concentration curves for water varies with the specific acid, base, or salt. Thus, k
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must represent the contribution of dissolved ions in water as well as the soil–water
and soil–soil interfacial characteristics to the electrical conductivity. The linearity in
Figs. 21.1 and 21.2 suggests that these contributing factors are relatively consistent
throughout the deep Vertosol profiles investigated here, at least within the ‘penetra-
tion range’ of the EM38. The actual magnitude of k is found to vary depending on
the dipole orientation of the EM38; however, the ratio of the k values for horizontal
and vertical dipole configurations is approximately 0.6. This value is similar to the
ratio of the horizontal to vertical integrated response of the EM38, calculated by
integrating ϕV,H(z) with respect to depth z for depths exceeding 0.5 m. Thus, k is
attributed to a combination of the soil conductivity characteristics described above
and the sensing volume of the EM38 in the specific dipole configuration to which it
is employed.
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Fig. 21.3 Scatter plot of average volumetric moisture content at depths of (a) 0–0.8 m (θ̄0.8) and
(b) 0–1.2 m (θ̄1.2) derived from the single-core calibration method versus ECa measured by EM38
in both vertical and horizontal dipole orientations
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Table 21.2 Derived linear calibration equations for prediction of θ by EM38 using the single-core
calibration data, where θ̄0.8 and θ̄1.2 are average θv values over surface to 0.8 m and surface to
1.2 m depths, respectively, ECaHand ECaV are on-ground EM38 measurements in horizontal and
vertical dipole configurations, respectively, and n is the number of observations

EM38 dipole orientation Regression equation R2 RMSE (m3 m−3) p-value N

Horizontal θ̄0.8 = 0.003ECaH + 0.240 0.55 0.034 0.000 17
θ̄1.2 = 0.002ECaH + 0.255 0.56 0.033 0.000 17

Vertical θ̄0.8 = 0.002ECaV + 0.224 0.37 0.043 0.009 17
θ̄1.2 = 0.002ECaV + 0.225 0.46 0.037 0.003 17

Scatter plots of θ̄0.8 and θ̄1.2 as functions of ECa (both dipole configurations) are
given in Fig. 21.3, and the derived calibration equations are listed in Table 21.2.
The calibration equations summarised in Table 21.2 are all statistically significant
(p < 0.01); however, both θ̄0.8 and θ̄1.2 explain more of the variance observed in the
measured ECa for the horizontal dipole configuration. This is not surprising, given
that for depths of 0.8 and 1.2 m, 71 and 79% of the horizontal dipole configuration
depth–response function ϕH(z) contributes to the integrated signal – assuming a rel-
atively uniform depth distribution of θ (z) – compared to a 47 and 62% contribution
of the vertical dipole configuration depth–response function ϕV(z). The remaining
‘unexplained’ variance in the equations in Table 21.2 is likely to be tied up with
the fact that there is still a significant EM38 response (both dipole configurations)
originating from below the depths ‘interrogated’ by our measurements of θ (z). This
suggests that an improvement in instrument calibration (and subsequent estimation
accuracy) might be achieved if the sensor were elevated above the ground. A second
source of unexplained variance may be the fact that θ (z) was determined using core
sampling. It has been demonstrated that the physical process of core sampling can
alter the bulk density of the cores compared to the source soil profile, and this would
subsequently alter the derived values of θ (Hossain, 2008).

21.4 Conclusions

In a field site characterised by deep Vertosols, multi-height EM38 measurements
were used to confirm that the volumetric moisture content is the dominant factor in
influencing the integrated ECa response. Similarly, we confirmed that, in generat-
ing that integrated response, the known depth–response function of the EM38 was
valid. Average volumetric moisture content at depths associated with the root zone
of crop plants (surface to 0.8 and 1.2 m) was found to explain more of the variance
associated with horizontal dipole configuration measurements than vertical dipole
configuration measurements. An increase in accuracy is likely to result by conduct-
ing calibrations with the EM38 sensor elevated above the ground and by improved
methods of determining volumetric moisture content (e.g. pits rather than cores).
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Chapter 22
Can the EM38 Probe Detect Spatial Patterns
of Subsoil Compaction?

G. Hoefer, J. Bachmann, and K.H. Hartge

In memoriam of Karl Heinrich Hartge.

Abstract So far, an easy way of locating regions of subsoil compaction on the field
scale has not been achieved using common soil physical methods. Our potential
solution to this problem is to approximate the mechanical strength of the soil using
K0 (a stress-at-rest coefficient) and relate it to the apparent electrical conductivity
(ECa). Firstly, we prove the validity of the underlying assumption that the horizontal
stress component characterises the compaction state of the soil. This consists of
assigning penetration resistance (PR) values to the principal stress (σx) as a function
of depth, normalised by a relation involving the PR value at the greatest accessible
depth (0.8 m). Secondly, we evaluate how well non-destructive ECa measurements
(made with an electromagnetic induction meter) localise compacted areas. Results
from two experimental sites located in the loess belt of northern Germany showed a
strong correlation between penetration resistance and an electromagnetic induction
meter, especially in areas with high PR values. We conclude that the geophysically
based electromagnetic induction technique can be used to map spatial patterns of
subsoil compaction in loess-derived soils.

Keywords Subsoil compaction · State of mechanical stress · Apparent electrical
conductivity (ECa) · Electrical conductivity

22.1 Introduction

Detecting the spatial pattern of soil properties on a field scale is still an open
problem for soil physical investigations. This is mainly because specific measure-
ments for a given location represent only the local compaction state of the soil and
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ignore the spatial variability of soil physical properties. Special investigations on the
mechanical strength of a soil can be accomplished in the laboratory, but are not very
helpful for map making.

The use of non-destructive probes such as the EM38, GPR provides better spatial
resolution, but they do not reveal the state of the mechanical stress and are too time
consuming for field scale work.

To generalise the information obtained from penetration resistance data, Hartge
and Bachmann (2004) proposed a simple, site-specific method of interpreting depth-
dependent penetration resistance (PR). Results for loess profiles showed that the
depth-dependent relation of PR for topsoil can be described in a systematic way so
that deviations from the non-compacted reference state can be detected. PR-detected
compaction increased with duration of land use (Bachmann and Hartge, 2006) or
with land use intensity (Bachmann et al., 2006), e.g. changing from forest soil
(reference) to agricultural soil. Increasing compression, e.g. by adding additional
temporary loads at the soil surface, leads to a decrease in the depth-dependent void
ratio, which coincides with a mean increase in the grain contact area. Bachmann
and Hartge (2006) further reported that the horizontal stress component reflects
the vertical penetration resistance as well as the shear resistance. Readings from
both measurements may be used to represent the horizontal stress component, from
which an estimate of the equivalent stress-at-rest coefficient K0 can be made (where
K0 is the ratio of non-compacted state a and compacted state b; Fig. 22.1). This
compacted state can be sensed by using results of PR measurements.

Vertical stress, log (σV)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

                          a

              b

uncompactedcompacted

measured values

V
oi

d 
ra

tio
, ε

 

K0 (ρb) = b/a

Fig. 22.1 Calculating the stress-at-rest coefficient K0 by using depth-dependent soil bulk density
data
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The underlying assumption is that the vertical stress component for the lower-
most layer assessed by PR measurements represents the hydrostatic stress situation,
i.e. the stress at that depth is uniform in all directions.

The procedure described by Hartge and Bachmann (2004) proposed that draw-
ing a straight line from the maximum depth towards the origin of the coordinates
in the depth vs. PR plot gives, for a mechanically non-affected soil, values of the
hydrostatic condition for each depth – i.e. values for the principal stress (σ x) are
available for each depth right up to the soil surface simply by linear interpola-
tion (Fig. 22.2; a and b are the same as in Fig. 22.1). By assuming a hydrostatic
stress situation, we establish a site-specific and easily definable base, which char-
acterises a non-consolidated and mechanically undisturbed soil. Deviations from
the ideal (hydrostatic) condition, which serves as the non-compacted reference,
are considered to represent the depth-dependent compaction state of the soil, i.e.
K0 > 1 indicates compacted soil layers and K0 < 1 indicates loose layers (Horn et al.,
2007).

The question we considered was, Can a non-destructive geophysical technique
with a short measurement time (seconds) detect inhomogeneities in the field, which
can, in turn, be used as a guide to the compaction state of the soil?

The apparent electrical conductivity (ECa) is a parameter that can be easily mea-
sured with an EM38 probe. The EM38 is widely used and can provide good spatial
resolution of various soil characteristics (Domsch and Giebel, 2004) such as soil
salinity (Doolittle et al., 2001), clay content and depth (Triantafilis and Lesch, 2005),
and yield (Kitchen et al., 2003). ECa measurements can detect variability and hetero-
geneity in soil structures that correlate with traditional soil maps (Mertens and Welp,
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2008) and can delineate management classes for precision agriculture (Vitharana
et al., 2006).

Consequently, we sought to combine two simple field methods (PR and ECa)
to systematically interpret depth-dependent PR data. Our aim was to derive, from
easily measurable data, parameters diagnostic of subsoil compaction. In this way,
different degrees of subsoil compaction might be detected using non-destructive
probing.

22.2 Materials and Methods

22.2.1 Measurement of Penetration Resistance (PR)

Subsoil compaction was assessed by measuring penetration resistance (PR) with a
hand-driven Penetrologger (Eijkelkamp, Giesbeek, The Netherlands). This device
combines an electronic penetrometer with a built-in datalogger for storage and pro-
cessing. The penetration depth is measured continuously as the cone is pushed into
the soil. The measuring range is 0–10 MPa (with a resolution of 0.01 MPa), and
the measuring depth is from the soil surface down to 0.8 m (vertical resolution of
0.01 m). The penetration resistance is greatly influenced by soil water content, soil
texture, speed of penetration, and the length and tip angle of the cone. We measured
the PR at about 7000 measurement points; the penetration speed was either 0.03 or
0.04 m s−1 with a 60◦ cone of 1 cm2.

22.2.2 Measurement of Apparent Electrical Conductivity (ECa)

The spatial variability of soil physical properties was assessed by measuring the
apparent electrical conductivity (ECa). The electromagnetic induction meter (EM38
probe; Geonics, Mississauga, Canada) induces an electromagnetic field in the
ground and measures the apparent electrical conductivity of the soil. The EM38
reaches, on average, depths of exploration of 1.5 m in the vertical dipole mode and
0.75 m in the horizontal mode. The measured quantities are the apparent electri-
cal conductivity in millisiemens per metre. Spacing between the transmitter and
receiver coils was about 1 m and the operating frequency was 14.6 kHz. The range
of measured conductivity was 0–200 mS m−1 with a resolution of about ±0.1% of
full scale and an accuracy of about ±5% at 30 mS m−1.

22.2.3 Study Sites

Both sites under study (Schellerten and Ruthe) are located in northern Germany,
south of Hannover (52◦23′ N, 9◦44′ E) in the German loess belt. Average annual
precipitation is around 600 mm per year. The site at Schellerten is classified as
a Weichselian loess (> 1.8 m) over Jurassic clay, and the site at Ruthe also is a
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Weichselian loess (> 1.2 m) but over Quaternary gravel (of the River Leine valley).
The distance between sites is approximately 50 km. At both locations, typical
Luvisols have developed. The texture at both sites is similar with approximately
10–15% clay, with a maximum of 20% in the Bt horizon, and 10–15% sand through-
out the soil profile. The site at Schellerten is under agricultural cultivation with
a rotation between sugar beet, potatoes, wheat, and rapeseed. Ruthe is also under
agriculture, but with different types of cultivation and with a mixture of crops (e.g.
wheat, barley) and vegetables (e.g. cauliflower, cabbage).

At Schellerten we measured apparent electrical conductivity (ECa) at 1750 loca-
tions and penetration resistance (PR) at 1250 locations. The measured locations
were situated on a regular grid (5 m, locally 1 m). In total, 105 single depth-
dependent PR values were recorded. Measurements were done between April 1 and
5, 2005. At Ruthe, ECa and PR measurements were made in October 2005 and April
2006. ECa measurements were taken at 5000 locations on a field plot (42 × 70 m)
with a nodal spaced 2 m (March and April 2006) and 3 m (October 2005) apart; PR
values were measured at the same locations.

22.3 Results and Discussion

The determined statistical range for ECa of about 15 m for Schellerten and 28 m for
Ruthe was always larger than the grid size of 2–3 m at Ruthe and the grid size of 5
m at Schellerten.

Contour plots of clustered PR measurements showed that the maximum values
are in the range 0.3–0.4 m, which corresponds to a layer of subsoil compaction
beneath the ploughed surface layer. But high variation of the values in nearly all
depth compartments showed that sole reliance on the Penetrologger to detect subsoil
compaction can be done only for point data – it is not statistically possible to extend
this data over a larger region with any precision.

In terms of frequency distribution, the ECa values, as well as the cumulative
values of the penetration resistance (PR) at depths from 0.0 to 0.8 m, are distributed
normal to lognormal.

Contour plots of the ECa values from the test fields at both campaigns were
grouped into classes. The contour plots from Ruthe in 2006 were grouped into
four classes (see Plate 22.1), where class one was with the lowest values and class
four the highest. The results showed a clear structure of the ECa data, indicating
areas with higher absolute values at the lower margin of the field due to intensive
trafficking (Plate 22.1). Contour plots at Schellerten showed a similar tendency.

The proposed hydrostatic stress–depth function is indicated by the line in
Fig. 22.3. The figure shows that the mean of the measured values at 0.8 m (maximum
values of the Penetrologger measurements) is around 3 MPa, which corresponds
well to results for a great number of soil profiles from Middle Europe (Hartge and
Bachmann, 2004).

The estimated compaction state of the soil, evaluated for the profile increment at
depths from 0.3 to 0.4 m, is described by the area between the measured PR depth
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function and the hydrostatic state and is expressed as K0(PR). K0(PR) is given here
as the sum of the highest compacted area at depths between 0.3 and 0.4 m using a
resolution of 0.01 m (a and b in Fig. 22.3 are the same as in Fig. 22.1).

To indicate the relation between PR and domains found by ECa measurements,
in each subplot, 10 locations were selected randomly. As an example, Figs. 22.4 and
22.5 show the depth-dependent PR (mean of 10 replicates) from subplots at Ruthe
with the lowest (Fig. 22.4) and the highest (Fig. 22.5) ECa values, respectively.

The PR–depth functions clearly indicate a local maximum at a depth of about
0.3–0.4 m. With increasing ECa values of the subplots, the mean PR values and
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especially the K0(PR) values in the compaction zone increased in the same rank
order (Fig. 22.6).

This trend is observed both at experimental sites and for all measurement periods.
The differences of the intensity and the distribution of the ECa values are correlated
with the average soil water content at the time of testing.

The PR values are slightly higher for autumn (lower soil water content) com-
pared to spring (higher soil water content), without affecting the general PR
characteristics.

Due to the instrument used, the reference measurement depth is 0.8 m (see
Section 22.1), which was a fixed depth for all soils. Including only one reference
depth may be considered arbitrary, but its reliability can be shown by the agree-
ment between the postulated hydrostatic curve and measured PR at the base of the
profile (0.8 m). Deviations are negligible near the soil surface and only increase
slightly with increasing depth, except for the highly compacted zone (Figs. 22.4 and
22.5). However, no deviation occurs if the subsoil below the lowermost readings is
non-compacted, as is generally found for the subarea with the lowest ECa values.

22.4 Conclusions

Penetration resistance (PR) using hand-driven equipment such as the Penetrologger
is easily measurable because the instrument is easy to handle, allows cost-effective
measurements, and is readily transportable. Measurements can be performed
quickly without extensive destruction of the site and the soil structure. This is the
only method that can measure soil strength directly and in situ. A non-destructive
method, which measures the apparent electromagnetic conductivity of a soil, is the
EM38 probe. In general, a good correlation was found between the Penetrologger
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values (PR) and those of the EM38 (ECa), particularly over the depth range of
30–40 cm, which is generally the depth increment with the highest penetration
resistance.

A reasonable agreement was also found for ECa and the compaction state of the
subsoil, K0(PR). Results show that K0(PR) is correlated with ECa. This leads us to
the conclusion that the non-destructive geophysically based EM38 technique can be
used for detecting subplots with an extreme compaction or non-compaction state.
However, up to now all our investigations have been made on loess-derived soils,
which can be considered relatively homogeneous. Further investigations will show
if this approach can be generalised.
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Chapter 23
Changes in Field Soil Water Tracked
by Electrical Resistivity

A. Besson, I. Cousin, G. Richard, H. Bourennane, C. Pasquier,
B. Nicoullaud, and D. King

Abstract Recently, geophysical methods have been developed that can monitor soil
characteristics spatially at high resolution. However, interpreting electrical measure-
ments is difficult because geophysical data can be influenced by many soil variables,
some of which vary over time. Our objective here was to use spatial measurements
of electrical resistivity to define zones of homogeneity, to interpret them in terms
of changing water contents, and to compare them with a soil map. Our underly-
ing assumption was that the time variation of electrical resistivity at the field scale
was only due to the dynamics of soil moisture in our studied field. Monitoring of
soil electrical resistivity and soil moisture was performed at four dates during 2006
by two methods: by the use of the MUCEP (MultiContinuous Electrical Profiling)
device, which gives measurements over a whole field, and by local gravimetric mea-
surement of soil water content. Homogeneous zones were defined directly from
measurements of the electrical resistivity and after ordinary kriging of the water
content. Our analysis of spatial and temporal variability has permitted us to discrim-
inate three temporally homogeneous zones, in terms of both electrical resistivity and
water content, which were broadly related to the soil map. The use of electrical mea-
surements enabled us to directly describe spatial and temporal changes in soil water
content at the field scale and to describe some hydraulic processes, like lateral flows
or upward capillary flows, that would be difficult to derive from soil maps.

Keywords Field scale · Time and space monitoring · Soil water content · Electrical
resistivity
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23.1 Introduction

Variability in the soil subsurface water content calls for a fine-scale description, both
in space and time. It is commonly obtained by invasive measurements (gravimetric,
TDR, and neutron probe). The last gives only a few isolated points of spatial or tem-
poral information. In recent publications, geophysical and non-invasive methods –
electric and electromagnetic methods – have been described that can quantify the
characteristics of the soil, such as the soil water content, in a space continuum
(Sheets and Hendrickx, 1995; Lambot et al., 2004; Guérin, 2005). One of them –
the electrical resistivity or ER method, which is a technique that measures the resis-
tance (in ohm·metre) of the soil – is well suited to characterise the soil subsurface
and to describe soil properties, even when they are time dependent. Recent technical
developments (Dabas et al., 2001) enable accurate, spatially continuous electrical
estimates to be obtained at the field scale. However, electrical resistivity depends on
several chemical and physical soil variables that can interact. Because of this, the
effect of one soil parameter like soil water content on electrical resistivity is then
hard to estimate.

Nevertheless, when temporal electrical measurements are made, they will be
affected only by those soil parameters that vary with time, i.e. water content,
temperature, and composition of the soil solution. If we were able in some way to
correct for the effect of temperature and composition of the soil solution, electrical
resistivity measurements of the soil could be interpreted in terms of water content.

Our study aimed at using the ER method to describe the spatial and temporal
dynamics of soil water. Monitoring was done at the field scale using the MUCEP
device, which gives spatially continuous measurements of electrical resistivity.
Temporal analysis of these data enables us to define homogeneous zones of elec-
trical resistivity and, as a consequence, of water content. We then compare the
result with a conventionally prepared soil map, and discuss its usefulness for future
investigations.

23.2 Materials and Methods

23.2.1 Characteristics of the Soils Studied

The study site is located in the Beauce region of France on a fallow field of 2 ha.
The soils are Haplic Cambisols (WRB, 2007) formed on limestone materials. The
differences between soils depend on the rock content and the thickness of the loamy-
clay layer. From 39 boreholes, 8 soil units were defined on a soil map (Fig. 23.1).

23.2.2 Soil Water Content Monitoring at the Field Scale

Exactly 33 soil samples, located at different positions in the studied area, were
taken at depths of 0–0.3, 0.3–0.5, 0.5–0.7, and 0.7–1.0 m on four dates in
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Fig. 23.1 Soil map of the study area. Black dots represent the locations of soil sampling

2006 (12/4, 1/6, 30/8, and 24/10). Because of systematic sampling, the sam-
ples were composed of a mixture of soil materials. Gravimetric water content
w of the samples was determined. For comparison with the bulk electrical
resistivity, mean values of soil water content were calculated for four depths:
0–0.3, 0–0.5, 0–0.7, and 0–1.0 m. The mean values were weighted by the layer
thickness.

23.2.3 Electrical Monitoring Over Time

Electrical resistivity measurements were obtained at the field scale by the use of an
MUCEP (multicontinuous electrical profiling) device (Fig. 23.2) on the same days
as the soil water content monitoring.

MUCEP is a mobile soil electrical resistivity mapping system comprising a
multi-probe system of three arrays (V1, V2, and V3) pulled by a cross-country
vehicle. It also houses a resistivity meter (10 mA, 122 Hz) and a Doppler radar
which triggers a measurement every 10 cm. The electrical measurement is an appar-
ent resistivity defined as the integrated value of the real resistivity over the soil
volume between the electrode arrays. Three arrays (V1, V2, and V3) are spaced
0.5, 1.0, and 2.0 m apart horizontally and hence give representative measures at
increasing depths (‘shallow’, ‘medium’, and ‘deeper’). The electrical profiles were
spaced 2 m apart along parallel lines and were oriented SE–NW. All measure-
ments were georeferenced by a dGPS (Trimble) device and recorded on a PC.
At each sampling date and for each array, a minimum of 52,000 measurements
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Fig. 23.2 The multicontinuous electrical profiling (MUCEP) device

were recorded. They were corrected for temperature by the equation of Keller and
Frischknecht (1966):

ERTref = ERTm [1 + α(Tm − Tref)] ,

where ERTref is the corrected electrical resistivity at the reference temperature Tref
of 25◦C, ERTm is the observed electrical resistivity at the measured temperature Tm,
and α is the temperature coefficient (2%).

23.2.4 Spatial and Temporal Variability Analysis

For each date, the maps of water content and electrical resistivity were calculated
by ordinary kriging with regular grids (5 m × 5 m for the water contents and 0.5 ×
0.5 m for the electrical resistivity).

Spatial analysis of the temporal variability of soil water content and of electrical
resistivity was undertaken by first calculating the normalised temporal mean map
from the following equation:

Xj = 1

4

4∑
i=1

xj,ti − xti

sti
,

where xj,ti is the water content (or the electrical resistivity) at location j on date ti
and sti is the standard deviation of the mean hydraulic or electrical state xti .

Negative (or positive) values for Xj indicate that the water content or the electrical
resistivity measured at location j on date ti is always lower (or higher) than the
spatial mean xti at ti. Temporal maps were created with the same regular grids as the
spatial maps; they carry no absolute unit.
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23.3 Results and Discussion

23.3.1 Statistical Relationship Between Electrical Resistivity
and Soil Water Content

For each date, a regression analysis was performed between the electrical resistivity
measurements (V1, V2, and V3 arrays) and the corresponding soil water content
of four soil layers (0–0.3, 0–0.5, 0–0.7, and 0–1.0 m). The linear determination
coefficients and the Pearson correlation coefficient were calculated (Fig. 23.3).

Over a large range of soil water content, the determination coefficients were
higher for the V1 array (about 40% for the soil layer of 0–0.7 m) than were for
the other two (except in June). This suggests that the electrical resistivity measured
by the V2 and V3 arrays was less sensitive to the soil water content measured within
a depth of 1 m. We will therefore focus our analysis on the V1 array and on the soil
water content of the 0–0.7 m layer in the following sections.

23.3.2 Spatial Analysis of the Experimental Data

Whatever be the date, the maps of electrical resistivity showed a similar spatial
organisation in which three electrical zones can be defined (Fig. 23.4): high values
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Fig. 23.3 Determination coefficient (R2) of the linear relationship between the electrical resis-
tivity measurements and the soil water content for each soil layer thickness (0–0.3, 0–0.5, 0–0.7,
0–1.0 m) for four dates. (a) V1 array; (b) V2 array; (c) V3 array
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Fig. 23.4 Maps of electrical resistivity measured by the V1 array. Lines represent the limits of soil
units and dots represent locations of soil water content measurements

on the south-east part of the study area (zone A), low values in the middle of the
site (along a north–south corridor) and along the northern border (zone B), and
intermediate values in the western part (zone C).

For all dates, the three zones (A, B, and C) in Fig. 23.4 can be related to areas
on the soil water content map (Fig. 23.5). High electrical resistivity values match
low soil water content values. This spatial organisation also corresponds to the soil
types identified on the soil map (Fig. 23.1). Zone A corresponds to the shallowest
soils, formed on the Beauce limestone bedrock. Zone B corresponds to deep soils

Fig. 23.5 Maps of water content measured between 0 and 0.70 m depth. Soil units are delineated
by black lines. Black dots correspond to water content values locally measured after sampling
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developed on the cryoturbated limestone deposit and on the soft limestone deposit.
Zone C corresponds to soils thinner than 0.5 m developed on the cryoturbated
limestone deposit.

Hence, the spatial variability of electrical resistivity depends not only on the
soil water content but also on soil type and thickness of the loamy-clay layer.
This confirms the view that temporal electrical measurements reveal only those soil
parameters that vary with time, i.e. the water content.

23.3.3 Temporal Analysis of the Experimental Data

When we compare two values of electrical resistivity at the same location, the dif-
ference between them will not depend on the soil type (which is constant over the
study) or on the soil temperature (which is corrected). We have already shown
(Besson, 2008) that composition of the soil solution will not influence the results
either. Only the water content can explain the difference between the values. We
therefore make the hypothesis that temporal analysis of the electrical resistivity will
help in assessing the temporal variability of the soil water content.

Estimating the spatial variability of water content is difficult because the sam-
pling density of the prediction set is low (soil water content was not determined on
the south-eastern part of the study zone because of the difficulty in sampling the
hard Beauce limestone bedrock).

Zones B and C, identified on the electrical resistivity maps for each sampling
date, are clearly evident on the temporal electrical resistivity map (Fig. 23.6a) and

Fig. 23.6 Maps of temporal mean values of electrical resistivity measured by the V1 array (a) and
the soil water content for the 0.07 m layer (b)
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on the temporal soil water content map (Fig. 23.6b). Zone B corresponds to less than
average temporal mean values for the electrical resistivity and to greater than aver-
age temporal values for the water content. (Negative values in Fig. 23.6 indicate val-
ues less than the mean.) On the other hand, zone C corresponds to higher temporal
mean values for electrical resistivity and lower temporal mean values for the water
content. In zone A, the temporal mean values for the electrical resistivity are high.

In summary, the zones of low electrical resistivity are similar to the zones of high
soil water content and the same can be said, with shifted values, for zones B and C.
In zone A, one assumes that the temporal mean values for the water content would
be uniformly low.

23.4 Conclusion

Electrical resistivity measured by the MUCEP device is well suited to describe spa-
tial and temporal soil hydraulic variability at a field scale. Its use allowed us to
extrapolate temporal changes of water content to unknown zones. We could dis-
criminate three electrical zones corresponding to the soil water content contrasts
found on the soil hydraulic maps, with lower soil water content values being related
to higher electrical resistivity values and to the soil units.

Analysis of the temporal means of electrical resistivity and water content showed
a similar spatial organisation: the zones that present, over time, low soil water con-
tents corresponded to those that present, over time, high electrical resistivity, and
these zones can be related to the soil units. As far as soil hydrology is concerned,
our temporal analysis of changes in water content shows that the flows in our studied
field are probably only vertical, not lateral.
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Chapter 24
Is a Systematic Two-Dimensional EMI Soil
Survey Always Relevant for Vineyard
Production Management? A Test on Two
Pedologically Contrasting Mediterranean
Vineyards

G. Coulouma, B. Tisseyre, and P. Lagacherie

Abstract Thanks to recent technological developments, apparent soil electrical
conductivity (ECa) can now be mapped over large areas, providing new data for
precision agriculture. However, in Mediterranean vineyards, rooting depth can be
greater than usual and the volume of soil that needs to be explored is greater. This
study examined two vineyard blocks in southern France and looked at the abil-
ity of an ECa map, derived from a commercial mobile EMI system, to predict
water-related vineyard variability [defined by variation in a normalised difference
vegetation index (NDVI) map of the canopy]. To validate the ECa–canopy rela-
tionship, electrical resistivity tomography (ERT) profiles and soil observations (42
soil cores sampled to 4 m depth) were made over seven representative transects
across the two blocks. In one of the blocks, the ECa map and the NDVI map were
correlated, whereas only weak correlations were found for the other block. The
examination of ERT data and soil observations in the first block showed a clear
relation between soil electrical properties and soil properties known to influence
vine water supply (e.g. bedrock depth) and a good discrimination of ERT measures
at the measurement depth explored by EM38. In contrast, the second block showed
lower ERT measurements and they were not directly related to any soil property
that could cause variations in plant water. The contrasting responses between the
two blocks demonstrate, as a prerequisite to ECa survey, the importance of prior
and local knowledge of soil patterns.

Keywords Electromagnetic induction (EMI) · Electrical resistivity tomography
(ERT) · Apparent electrical conductivity (ECa) · Map comparison method
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24.1 Introduction

Electromagnetic induction (EMI) is a common geophysical method used for
real-time, on-the-go soil sensing in precision agriculture (PA). EMI records in situ
the soil’s apparent electrical conductivity (ECa), a measure strongly correlated with
various soil properties such as moisture content, clay content, clay mineralogy, ionic
strength of the soil solution, and bulk density (Corwin and Lesch, 2005; Samouëlian
et al., 2005). High-resolution ECa maps are now routinely produced over large areas
by private companies for agronomic management (Chapter 2). This technique has
recently been introduced into viticulture (Taylor et al., 2005), where the ECa maps
are assumed to give useful data for delineating vineyards into management zones
reflecting plant vigour and yield.

However, such inferences from ECa maps have been strongly questioned by some
(McKenzie, 2000), and the limits of the technique need to be better defined, espe-
cially in viticulture. Certainly, most users do not recommend interpretation of ECa
maps without some auxiliary data or ground truthing. Several problems can arise
when using ECa for management: (i) the lack of well-identified relations between
the ECa signal and the local soil and material properties; (ii) difficulties encoun-
tered when the EMI sensor does not respond to locally limiting soil parameters, for
example, high or low soil pH, or when it responds to non-soil factors, such as wire
trellising; and (iii) issues with data quality associated with mobile platforms and
post-processing of data. Here we will evaluate the relative importance of these ques-
tions and in so doing set out refined strategies for using this innovative technique.

This chapter presents results of a specific experiment in a vineyard in southern
France. It concerns EMI and NDVI maps from commercial suppliers on two con-
trasting blocks of 1.2 ha each. In these non-irrigated and well-established vineyards,
the NDVI data are considered suitable for accurately delineating permanent man-
agement zones based on vine water status. Additional ECa measures and soil
observations were made to interpret the ECa maps and isolate the different pos-
sible permutations. This validation is expected to provide an evaluation of the utility
of ECa maps in vineyards where NDVI is unavailable, for example, in designing
vineyards before planting, or maybe less relevant, in irrigated vineyards.

24.2 Materials and Methods

24.2.1 Location, Geology, and Pedology

The experimental sites, Block 96 and Block 64, were located near Narbonne
(43◦08′33′′ N, 3◦07′59′′ E, WGS84, Aude, southern France) on the ‘La Clape’ mas-
sif, a little Pyrenean thrust sheet of Cretaceous marine deposits. Two contrasting
blocks were chosen with different soil types and materials (Fig. 24.1).

Block 96 is situated in a depression on marls and marlstones. It presents signifi-
cant within-block soil variability characterised by (i) an outcrop of marlstone in the
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Fig. 24.1 Location and geological context of experimental blocks. (a) Presentation of the geo-
logical map. (b, c) Airborne images of the two experimental blocks with electrical resistivity
tomography (ERT) transects in bold lines. Location of soil cores on the ERT transects is also
shown

NW upper part and (ii) colluvial soils with or without coarse fragments of Urgonian
limestone developed over an older loamy colluvial deposit in the southern part of
the block. Block 64 is situated on a hillside. Its geological formation is composed of
(i) interbedded micritic limestone and orbitolina-bearing marlstone in the upper part
and (ii) important accumulations of red clay in the lower part of the block. Gravelly
soil is developed from and over micritic limestone. Colluvial soils with or without
coarse fragments of limestone are present over the red clay in the lower part of the
block.

24.2.2 Geophysical Surveys

ECa maps were acquired from SIS John Deere. They were completed for the
two blocks in June 2006 using an EMI sensor towed behind an all-terrain vehi-
cle (ATV) and geo-referenced with an RTK-GPS receiver. Data acquisition was
made every three vine rows (row spacing was 2.2–2.5 m). The depth of investi-
gation was approximately 1 m and the signal was integrated across all the horizons.
The final resolution of the ECa map provided by SIS was 1 m2, meaning that the raw
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data were interpolated to sub-row dimensions. The raw ECa survey data were not
supplied.

To evaluate the validity of the ECa survey, three additional geophysical datasets
were created as follows:

(1) Ninety ECa measurements were made with a handheld Geonics EM38 in the
vertical coil position (VCP) in May 2007. There were 40 measurements made
over the two target blocks (Fig. 24.1) and another 50 measurements were made
over five adjacent blocks located in the same vineyard where the SIS data were
collected.

(2) Two-dimensional electrical resistivity tomography (ERT) sections were made
along three transects in Block 64 and four transects in Block 96 in May 2007.
Locations of the transects are represented by bold black lines in Fig. 24.1b, c.
ERT measurements were performed using a Wenner–Schlumberger array at an
electrode spacing of 1 m. On each transect, 50 electrodes were used simulta-
neously to provide the apparent electrical resistivity over the profile (∼0.5 m
increments down the profile to a depth of 5 m). The soil electrical conductivity
(EC) (Fig. 24.6) for each soil and layer was derived from the electrical resistivity
measurement using an inverse method, i.e. the Gauss–Newton code Res2dinv
as described by Locke (2002).

(3) Isolated 1-m-spaced ECa values were computed from the ERT dataset to simu-
late a 1D ECa measurement to a depth of 1 m. This corresponded to the median
depth of investigation (doi) of the EMI sensor used by the SIS John Deere.

Four types of geophysical data were therefore available on both blocks:

(i) I–ECa, an interpolated ECa map from a mobile EM38 (doi ∼1 m),
(ii) P–ECa point measurements from a handheld EM38 system (doi ∼1 m),

(iii) R–EC electrical conductivity along seven transects derived from ERT (doi
∼5 m), and

(iv) R–ECa to a median depth of 1 m derived from an inverse algorithm of the ERT
measurements.

All the data were geo-referenced. This dataset was designed to compare geo-
physical data from different sources to identify possible sources of error. Although
the geophysical investigation dates were different for the commercial and man-
ual measurements (June 2006 and May 2007), they both corresponded to very dry
conditions, permitting valid comparisons.

24.2.3 Soil Survey

There were 22 soil cores in Block 64 and 20 soil cores in Block 96 sampled to a
maximum depth of 4 m along the ERT sections. The depth of investigation was less
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than 4 m in some areas due to shallow soils or subsoil constraints. The soil cores
were described according to the STIPA system (Falipou and Legros, 2002), with
classical observations (e.g. texture class, colour, and coarse fragments) for each soil
horizon and material.

Soil materials within each block were different, varying in hardness and depth.
Marlstone outcrops in Block 96, and micritic limestone or orbitolina-bearing marl-
stone in Block 64, dramatically limit rooting depth. The colluvial deposits in
Block 96 and red clay in Block 64 are easily colonised by roots, allowing deep
rooting in these areas. The water supply in colluvial soils depends on textural char-
acteristics and coarse fragment proportion. In Block 64 an increase in the gravelly
colluvial soil thickness over the red clay may reduce vine vigour. Each soil core was
analysed according to material hardness and soil properties. Expert knowledge of
the local environment, together with the soil core information, was used to delin-
eate three distinct soil classes in each field. These three classes were related to the
expected vigour (low, medium, and high) (Fig. 24.2). These expert-defined classes
form a reference for the subsequent analysis.

The spatial patterns of the R–EC data in Block 64 were easily interpretable from
the 22 soil cores, and a simple 2D model was developed to convert the ERT read-
ings into soil texture/mineralogy maps. The model was applied to 220 simulated
soil cores across the three transects to create 2D soil texture maps. For each sim-
ulated soil core, the presence of each different soil type was recorded. A value of
ECa, which corresponded to a median investigation depth similar to the EM38, was
extracted from the ERT data along with the soil type information. This permitted
expected frequency distributions of ECa for each soil type to be generated.

For Block 96, the relationship between the soil texture/mineralogy and the ERT
response was unclear, and so this analysis was not undertaken.

24.2.4 NDVI Maps of Vine Vigour and Map Comparison

Within-block vine vigour was estimated from NDVI images obtained from an air-
borne multi-spectral platform at 1 m2 resolution. The images were provided by
the Avion Jaune Company. The NDVI was resampled in Matlab with a moving

Block 64

Block 96

class A class B class C

gravelly soil over
micritic limestone or marlstone

gravelly soil over
marlstone

clayey gravelly soil over
red clay

clayey gravelly soil over
loamy colluvial deposit

loamy soil over
red clay

loamy soil over
loamy colluvial deposit

soil water availability and rooting depth

Fig. 24.2 Presentation of the classification of soils and materials according to soil water avail-
ability and hardness. Three classes were expert defined; they are ranked from lowest (class A) to
highest (class C) expected vigour
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average window of 3 m × 3 m to avoid row effects. In non-irrigated conditions in
Mediterranean environments, vine vigour is directly related to rooting depth and
soil properties which determine water availability.

The I–ECa maps and NDVI maps of both blocks were classified into three equal
quantiles and compared point to point with the Kappa method (Visser et al., 2006).
The output coefficient K of the Kappa method ranges from −1 (inverse spatial pat-
terns) to 1 (same spatial patterns). A value of 0 indicates that patterns observed on
the maps are completely independent.

24.3 Results

24.3.1 Relations Between NDVI, Soil, and ECa

Table 24.1 shows the mean NDVI values obtained from the expert-defined soil
classes for both blocks. Low NDVI values were observed in soil class A for both
blocks. Higher NDVI values were observed in class B and C soil types. Gravelly
soil over micritic limestone and marlstone drastically reduced the vine vigour. No
significant differences in vine vigour were observed between class B and C soils.
Obviously, this result shows that soil types may have a strong effect on vine vigour,
through water availability and rooting depth. However, differences are less than
expected between classes B and C. There may be two reasons for this result: (i) ele-
vation, which may cause larger water accumulation in the lower part of the blocks,
could enhance vine vigour in class B soils situated in the lower part of both blocks
and (ii) the difference in vigour is too small and NDVI is not accurate enough to
record this small variation.

However, this comparison identifies at least two different soil classes in both
blocks and the ECa survey should therefore constitute a relevant information source
to delineate these different soil and vigour zones.

In order to check the relevance of ECa maps for delineating vigour zones, the
NDVI maps were compared to the ECa maps in both blocks (Fig. 24.3). The K
coefficient in Block 96 is very weak (K = 0.008), indicating no relationship between

Table 24.1 Mean NDVI values obtained from expert-defined soil class for both blocks (Block 64
and Block 96). Three soil classes are considered from the lowest (class A) to the highest (class C)
expected vigour

NDVI

Soil and material classes Block 64 Block 96

Class A 0.07 ± 0.02 (7) a 0.07 ± 0.01 (5) a
Class B 0.16 ± 0.04 (11) b 0.21 ± 0.07 (9) b
Class C 0.13 ± 0.04 (4) b 0.19 ± 0.03 (10) b

Mean ± standard deviation (number of samples). Different small letters (a–b)
represent a significant difference between means only within a same column (t-
test, at p<0.001 level)
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Fig. 24.3 NDVI and I–ECa maps for the two blocks. The four maps were realised using a
classification into three equal quantiles

the ECa and NDVI maps in this block. For Block 64, the K coefficient is higher
(K = 0.33) but still low.

This result, in addition to map comparison (Fig. 24.3), highlights two differ-
ent situations. For Block 96, the ECa map seems to be irrelevant in delineating
plant vigour zones. Conversely, for Block 64, some parts of the block show similar
patterns for ECa and NDVI and other parts no similarity, which explains a low K
coefficient. Regarding the relationship between the soil classes and NDVI, a signif-
icant relation was not expected in both blocks due to the similar NDVI response
of classes B and C. However, the significant difference in response observed
between the two blocks is of concern, particularly the low K coefficient observed
in Block 96. The ECa maps seem to fail to delineate vine vigour, particularly in
Block 96. The reasons which might explain this failure are investigated in the next
sections.

24.3.2 Differences Between Different ECa Measurements

Among all the possible permutations that may explain the differences between the
ECa and NDVI maps, one is the accuracy and the quality of ECa data provided
by the SIS company. Map quality may be affected by the fact that the EMI sen-
sor is mounted on a mobile platform (and subject to erratic shifting, which may
induce error from external metal sources); alternatively, there may have been insuf-
ficient data density during surveying, or data smoothing and data interpolation may
have been excessive. The following sections investigate the likelihood of these error
sources.

24.3.2.1 Erratic Shifting with Mobile EMI

In the case of mobile platforms, erratic shifting behind the ATV may involve irreg-
ular change in ECa due to a magnetic interaction with steel posts and trellis wire
(Lamb et al., 2005). This effect is limited by handheld measurement where the



290 G. Coulouma et al.

Fig. 24.4 Relationship
between I–ECa on the go and
P–ECa from handheld EM38

sensor is maintained carefully in the centre of the inter-rows. In order to quantify
potential problems due to erratic shifting, a comparison between P–ECa values from
a handheld EM38 and I–ECa from the mobile EM measured in both blocks and in
five other blocks was made. Graphical results of the comparison are presented in
Fig. 24.4. A high coefficient of determination (R2 = 0.91) was observed between
the systems and a slight offset of ∼12 mS m−1. The offset is likely due to cali-
bration error between the sensors (Sudduth et al., 2001) and small differences in
soil moisture and temperature between the two measurement dates. The high coef-
ficient of determination is encouraging, especially given that a comparison between
the point (handheld) and interpolated (map) data will introduce some uncertainty
with geo-location. The results lead to the conclusion that the ECa map from the
mobile EMI is comparable to the handheld EM38 measurements, and map quality
is unlikely to be the source of gross error in the analysis.

24.3.2.2 Comparison Between R–ECa and I–ECa

As well as the handheld EM38 measurements, the ECa map was compared to the
1 m R–ECa data derived from the ERT. Figure 24.5 shows a plot of the two variables
along the seven transects in the two blocks. Although there is a significant positive
coefficient of determination (R2 = 0.71), the lowest values of R–ECa derived from
the ERT are less than those of the I–ECa derived from mobile EMI. These values cor-
respond to EC between 1 and 10 mS m−1 on gravelly soil and limestone. As already
shown by other authors (Dabas and Tabbagh, 2003; Sudduth et al., 2003), this result
highlights the problems of signal attenuation in the case of low conductivity for EMI
technology. However, regarding the magnitude of variation of ECa values in these
blocks, this problem concerns only a small range of data. Again, given the possible
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Fig. 24.5 Relationship
between I–ECa on the go and
R–ECa from ERT
measurements

errors with geo-location, data conversion, and temporal differences, the strong posi-
tive relationship between the I–ECa map and R–ECa data indicates that the ECa map
quality is not a major source of error. Furthermore it shows that fixing at 1 m, the
median investigation depth represents an acceptable hypothesis to compare I–ECa
from EMI and R–ECa from ERT.

24.3.3 Electrical Conductivity of Different Soils and Materials
in the Two Blocks

Section 24.3.2 eliminated map quality as a potential error source contributing to the
lack of concordance between the NDVI and I–ECa maps observed in Section 24.3.1.
The aim of this section is to focus on the relationship between ECa values and soil
properties in the two experimental sites to see if pedological knowledge helps in
the interpretation of the NDVI and I–ECa maps. The results of the ERT data model
inversion are associated with soil cores in order to determine EC of different soil
types.

Figure 24.6 shows electrical conductivity ranges of the different soil types
observed in both blocks. The observed ranges of conductivity are similar to pre-
vious measurements recorded for these soil types (Telford et al., 1990). Strongly
contrasted soil profiles gave large ranges in electrical conductivity in Block 64
(1–115 mS m−1). In contrast, strongly contrasted soil profiles gave narrow ranges
in electrical conductivity in Block 96 (30–50 mS m−1). Although the soil types in
Block 96 have contrasting texture and hardness, differences in conductivity are not
significant except between the loamy colluvial deposits and gravelly soils (t-test at
p < 0.05, data not shown).
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Block 64 Block 96

Fig. 24.6 Ranges of R–EC calculated for each soil and material on both fields. The mean
conductivity is represented by a black square and the standard deviation by vertical lines

The high conductivity values of marlstone, which constitutes a vine rooting limit,
are probably due to the high clay content, and the similar EC response on contrast-
ing soil types may explain the lack of similarity between the NDVI and ECa maps
in Block 96. In Block 64, the EC data are able to differentiate several soil types,
indicating that the ECa data should be of use in this field, although some dissim-
ilarities between the NDVI and ECa maps still have to be addressed. In order to
understand these dissimilarities, the following section focuses on a more detailed
study of Block 64.

24.3.4 Soil Type Detection with R–ECa Data

Plate 24.1 shows the predicted soil types, from our simple model relating the soil
core information to the ERT data, overlain on the original 2D ERT map. The location
and the depth of the actual soil cores are also indicated.

Figure 24.7 shows two examples of the distribution of ECa values from the sim-
ulated soil data. Simulation was done to mimic the expected EMI sensor response
and to compare (i) sites with red clay and no limitation to rooting depth to sites with
micritic limestone that limits rooting depth and (ii) sites with a loamy soil over a red
clay (which provides good soil moisture availability and good rooting depth) to sites
with a deep gravelly clayey soil that may encounter problems with rooting depth or
soil water retention when the coarse fragment percentage is high.

The first comparison shows two distinct distributions for the two soil types, which
makes it easy to differentiate the soil types. The second example illustrates that
even though some soil types are easily differentiated, there are still some contrasting
soil types in the block that produce similar and overlapping ECa distributions. This
makes it almost impossible to differentiate all soil types in the block on the basis
of ECa alone. This explains why there are still some dissimilarities between the
ECa and NDVI maps in Block 64 and further highlights the need to understand the
pedology of the block prior to interpreting the ECa data.
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Plate 24.1 The three ERT transects calculated on Block 64 and results of the simple model applied
to 220 simulated soil cores across the three transects to create 2D soil maps. The patterns in the
horizontal and vertical ER data in Block 64 were easily interpretable from the 22 soil cores and a
simple 2D model was developed to convert the ERT readings into soil texture/mineralogy maps

Fig. 24.7 Distribution of R–ECa observed on Block 64 in two different pedological situations.
(a) Micritic limestone (gray) and red clay (black), (b) clayey gravelly soil (gray) and loamy soil
(black)
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24.4 Discussion and Conclusions

This study examined the ability of ECa (EMI) maps from a commercial, on-the-go
EMI sensor to explain observed vineyard variability in two pedologically contrast-
ing blocks. A preliminary comparison between vine vigour maps, derived from
airborne images and expert-defined soil classes, showed that soil classification
assisted in delineating differences in vine vigour. Vigour maps were also com-
pared to the ECa maps. A simple comparison of the spatial patterns in the two maps
illustrated the potential difficulties in using ECa maps as a surrogate to determine
perennial management zones. Investigations were undertaken to identify the reasons
for these dissimilarities. Results from these investigations showed the following:

(i) The commercial ECa data were highly correlated with manual handheld ECa
measurements. This indicates that the commercial ECa map did not contain
error or bias from the mode of sensor operation or the method of data analysis.
It also points out the small effect that the vineyard trellis wire and steel posts
have on the data.

(ii) ECa data provided by an invasive method (ERT) were correlated with the
ECa data from the non-invasive method (EMI) used in the commercial survey.
However, in accordance with the literature, signal attenuation in the EMI data
was observed in low-conductivity soils, leading to an over-estimation of ECa
values with EMI at these sites. In this particular instance, this problem occurred
across only a small range of data and did not explain on its own the dissimi-
larities observed between the ECa and vigour maps. In other conditions (with
a majority of low-conductivity soils), this observation could be a significant
drawback with EMI surveys.

(iii) For one of the blocks investigated, Block 96, the different soil types, which
drive plant vigour, exhibited very similar conductivity values. Therefore, the
ECa data can be considered ineffective for differentiating different soils where
significant differences in vine vigour are observed. This result highlights a
strong limitation of ECa maps in determining vigour zones for soils with sim-
ilar ECa responses. For the second block, Block 64, the ECa map was able to
discern between two soil types (red clay versus micritic limestone). However,
the results also showed, for this block, the poor ability of ECa data to discrimi-
nate between two other soil types, loamy soil over red clay and loamy soil with
deep clayey gravelly soil, that may induce significant differences in rooting
depth and water availability.

In conclusion, these results show the extreme care that must be taken in
using systematic EMI to delineate vineyard management zones in non-irrigated
Mediterranean conditions. There are several points that need to be considered.

(i) The depth of investigation of EMI may be of importance in non-irrigated
conditions. Obviously, rooting depth changes drastically as a function of soil
conditions. This aspect was not the purpose of our study; however, further
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experiments should be conducted in order to study the potential improvement
in using an EMI survey with a more suitable depth of investigation compared
to a vine rooting system.

(ii) This study focused on EMI in dry conditions. These conditions may not be the
best to differentiate soil properties in relation to vine vigour. Further work is
needed to evaluate the usefulness of EMI in wet conditions. Another relevant
approach would be based on two surveys, one under dry and the other under wet
soil conditions, and an analysis of the differential ECa. This new information
could be relevant to differentiate soil characteristics which were not possible to
discriminate with ECa data collected only in dry conditions.

Finally this study points out the necessity that ECa always needs to be interpreted
with as much additional information as possible (and not by itself) to get the most
benefit from the ECa data.
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Chapter 25
Full-Waveform Modelling and Inversion
of Ground-Penetrating Radar Data
for Non-invasive Characterisation of Soil
Hydrogeophysical Properties

S. Lambot, E. Slob, J. Minet, K.Z. Jadoon, M. Vanclooster, and H. Vereecken

Abstract We present a new technique for real-time, proximal sensing of the soil
hydrogeophysical properties using ground-penetrating radar (GPR). The radar sys-
tem is based on international standard vector network analyser technology, thereby
setting up stepped-frequency continuous-wave GPR. The radar is combined with
an off-ground, ultra-wideband, and highly directional horn antenna acting simulta-
neously as transmitter and receiver. Full-waveform forward modelling of the radar
signal includes antenna propagation phenomena through a system of linear trans-
fer functions in series and parallel. The system takes into account antenna–soil
interactions and assumes the air–subsurface compartments as a three-dimensional
multilayered medium, for which Maxwell’s equations are solved exactly. We pro-
vide an efficient way for estimating the spatial Green’s function as a solution of
Maxwell’s equations from its spectral counterpart by deforming the integration
path in the complex plane of the integration variable. Signal inversion is for-
mulated as a complex least squares problem and is solved iteratively using the
global multilevel coordinate search optimisation algorithm combined with the local
Nelder–Mead simplex method. The electromagnetic model has unprecedented accu-
racy for describing the GPR signal in controlled laboratory conditions, providing
accurate estimates for both soil dielectric permittivity and electrical conductivity.
The proposed method has been specifically designed for the retrieval of soil sur-
face dielectric permittivity and correlated surface water content, which has been
validated in field conditions. We also show that constraining the electromagnetic
inverse problem using hydrodynamic modelling theoretically permits retrieval of
the soil hydraulic properties and reconstruction of continuous vertical water con-
tent profiles from time-lapse GPR data. The proposed method shows great promise
for field-scale, high-resolution digital soil mapping, and thereby for bridging the
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spatial-scale gap between ground truthing based on soil sampling or local probes
and airborne and spaceborne remote sensing.

Keywords Ground-penetrating radar · Multilayered media · Green’s
function · Full-waveform inversion

25.1 Introduction

Increases in global food and biofuel demands predicted for the next decades
pose huge challenges for the sustainability and productivity of both terrestrial and
aquatic ecosystems and the services they provide to society. Sustainable and optimal
management of water and land resources relies strongly on knowledge of soil hydro-
logical properties; such knowledge is essential in agricultural and environmental
research and engineering as the properties control hydrological processes, contam-
ination of surface and subsurface water, plant growth, sustainability of ecosystems
and biodiversity, and climate. The soil is the interface between the earth and the
atmosphere and it governs all the key processes of the hydrological cycle such as
infiltration, run-off, evaporation, and energy exchanges with the atmosphere.

Characterising and monitoring the distribution of soil properties across the envi-
ronment is therefore essential for developing site-specific management practices
which match human activities with local environmental requirements. Obtaining soil
information with the required spatiotemporal resolution is, however, complicated by
the inaccessibility of the subsurface and its inherent variability. In addition, the inter-
connectivity of different subsystems at different scales requires a holistic approach.
Common techniques to characterise soil hydrological properties are suited either to
small scales (<0.1 m), such as reference sampling methods or time domain reflec-
tometry (TDR), or to large scales (>10–100 m), such as airborne and spaceborne
passive microwave radiometry and active radar systems. Small-scale techniques are
usually invasive, sometimes requiring boreholes, and may not be representative of
the soil properties at the management scale. For the large-scale techniques, the char-
acterisation is limited to the top few centimetres of soil and temporal resolution is
relatively poor.

Non-invasive field-scale techniques are required in applications that include
agricultural water management and soil and water conservation and to bridge the
present scale gap between ground-truth measurements and remote sensing. Soil
electrical sounding is commonly used as a technique to generate proxies of soil
moisture and salinity or contaminants (Myers et al., Chapter 19). Soil electrical
sounding can be performed by classical geo-electrical or electromagnetic induction
techniques. Yet soil electrical conductivity is multivariate, depending simultane-
ously on water content, water salinity, texture, and structure. Its interpretation is
therefore subject to large uncertainties that cannot be resolved by conductivity
methods alone. Electrical soundings have been particularly successful in delineat-
ing management zones qualitatively or detecting contaminant plumes. Over the



25 Non-invasive Characterisation of Soil Hydrogeophysical Properties 301

last decade, ground-penetrating radar (GPR) has received increasing attention in
environmental research and engineering applications (Richard et al., Chapter 26).
Several GPR methods are available to identify soil dielectric permittivity, usu-
ally from determination of the GPR wave propagation velocity (Huisman et al.,
2003). As the dielectric permittivity of liquid water overwhelms the permittivity
of other soil components, soil dielectric permittivity constitutes an accurate sur-
rogate measure of soil water content. In this chapter, we discuss common GPR
techniques to characterise soil and we review our recent developments on the full-
waveform modelling and inversion of proximal GPR (see also Grandjean et al.,
Chapter 7). The theory of the method is summarised and application examples are
presented.

25.2 Ground-Penetrating Radar

GPR is a geophysical technique which is particularly appropriate to image the soil in
two or three dimensions with high spatial resolution, up to a depth of several metres.
GPR operates by transmitting high-frequency (VHF–UHF) electromagnetic waves
into the soil (Fig. 25.1). Wave propagation is governed by the frequency-dependent
soil dielectric permittivity ε (determining wave velocity), electrical conductivity σ

(determining wave attenuation), magnetic permeability μ(determining wave veloc-
ity, affects attenuation), and their spatial distribution. Electromagnetic contrasts
create partial wave reflections and transmissions that are measured by a receiv-
ing antenna, depending on the mode of operation (reflection or transmission). For
non-magnetic materials, which are prevalent in the environment, μ is equal to the
free-space magnetic permeability μ0. GPR has been primarily used to image the
subsurface and detect buried objects. In the areas of unsaturated zone hydrology and
water resources, GPR has been used to identify soil stratigraphy (Boll et al., 1996;
Davis and Annan, 1989; Grandjean et al., 2006), to locate water tables (Nakashima
et al., 2001), to follow wetting front movement (Vellidis et al., 1990), to identify
soil hydraulic parameters (Binley et al., 2002; Cassiani and Binley, 2005; Kowalsky
et al., 2005), to measure soil water content (Chanzy et al., 1996; Galagedara et al.,
2005; Huisman et al., 2003; Lunt et al., 2005; Serbin and Or, 2004), to assess soil

Fig. 25.1
Ground-penetrating radar
(GPR) basic principles. Tx is
the transmitting antenna. Rx
is the receiving antenna. Red
lines represent wave
propagation paths
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salinity (al Hagrey and Müller, 2000), to monitor contaminants (Yoder et al., 2001),
and to delineate soil compaction within agricultural fields (Petersen et al., 2005).

Quantitative information can also be derived from GPR data. Generally, GPR
signal analysis is performed using ray-tracing approximations (Fig. 25.1) and
tomographic inversion. Several methodologies are generally adopted for determin-
ing wave propagation velocity and retrieving soil water content from GPR data
(Huisman et al., 2003):

• Determination of the wave propagation time to a known reflecting interface using
single-offset surface GPR;

• Detection of the velocity-dependent reflecting hyperbola of a buried object using
single-offset surface GPR along a transect;

• Extraction of stacking velocity fields from multi-offset radar soundings at a fixed
central location (common midpoint method, CMP);

• Determination of the ground-wave velocity for surface water content retrieval
using multi- and single-offset surface GPR;

• Determination of the surface reflection coefficient using single-offset off-ground
GPR;

• Determination of the two-dimensional (2D) spatial distribution of water between
boreholes using transmission tomography.

In particular, time-lapse GPR measurements have recently allowed monitoring of
soil water dynamics between boreholes and inferring the soil hydraulic properties
governing water flow. GPR can also be applied to monitor remediation amendments
and processes, provided there is sufficient sensitivity of the GPR signal.

Although these techniques are well established, they still suffer from major limi-
tations originating from the strongly simplifying assumptions on which they rely,
particularly with respect to electromagnetic wave propagation phenomena. As a
result, a bias is introduced in the estimates due to limited GPR model adequacy
and, moreover, only a part of the information contained in the radar data is used,
generally the propagation time. In addition, all these techniques are not appropriate
in a real-time mapping context, as usually several measurements are needed at a
given location.

To simultaneously estimate both the depth-dependent soil dielectric permittivity
and the electrical conductivity, we must resort to the physical basis of GPR wave
propagation. The relation between the subsurface constitutive parameters and the
measured electromagnetic field is governed by Maxwell’s equations. Reconstruction
of the unknown constitutive parameters from the known field relies on inverse
modelling. Inverting electromagnetic data has been a major challenge in applied
geophysics for many years. Successful inversion is challenging, since it involves
rigorous forward modelling of the 3D GPR–subsurface system, which is also com-
putationally very time consuming. Moreover, the inverse problem needs to satisfy
uniqueness and stability conditions, which are related to the information content of
the radar data.
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25.3 Full-Waveform Analysis of Proximal GPR Data

We have recently developed a full-waveform electromagnetic model for the par-
ticular case of zero-offset, off-ground GPR, i.e. a single antenna, situated at some
distance above the soil, simultaneously plays the role of transmitter and receiver
(Lambot et al., 2004a). The model includes propagation effects within the antenna
and antenna–soil interactions (this is usually not accounted for using common
GPR methods) and considers an exact solution of the 3D Maxwell’s equations
for wave propagation in multilayered media (only 1D solutions are usually consid-
ered). Both phase and amplitude information are used for model inversion, thereby
maximising information retrieval from the available radar data, both in terms of
quantity and quality. The technique was validated in a series of hydrogeophysi-
cal applications (Lambot et al., 2004a, b, c, 2006a). Recently, we integrated the
method with hydrodynamic modelling to retrieve the soil hydraulic properties from
time-lapse proximal radar data and monitor the dynamics of water content profiles
(Lambot et al., 2006a). The radar model enhances high-resolution, shallow subsur-
face imaging by suppressing antenna and soil surface reflection effects which may
be ambiguous or hide detailed information (Lopera et al., 2007).

25.3.1 GPR Forward Modelling

25.3.1.1 Antenna Equation in the Frequency Domain

The main advantage of vector network analyser (VNA) technology over traditional
GPR systems is that the measured quantities constitute an international standard
and are well defined physically with proper calibration of the system. Other advan-
tages are the higher dynamic range and the possibility of avoiding transmission into
specific, narrow frequency bands that may be against state regulations. The GPR
signal to be modelled consists of the frequency-dependent complex ratio S11 (ω)

between the returned signal and the emitted signal, ω being the angular frequency.
The antenna is modelled using the block diagram depicted in Fig. 25.2 (Lambot
et al., 2004c). It relies on the linearity of Maxwell’s equations and assumes that
the spatial distribution of the backscattered electromagnetic field measured by the
antenna does not depend on the subsurface, i.e. only the amplitude and the phase
change. This is expected to be a valid assumption if the antenna is not too close to
the ground and if the soil can be described as a horizontally multilayered medium.
The model consists of a linear system composed of elementary model components
in series and parallel, all characterised by their own frequency–response function
accounting for specific electromagnetic phenomena. The resulting transfer function
relating S11 (ω) measured by the VNA to the frequency response G↑

xx (ω) of the
multilayered medium is expressed in the frequency domain as follows:

S11 (ω) = b (ω)

a (ω)
= Hi (ω) + Ht (ω) G↑

xx (ω) Hr (ω)

1 − Hf (ω) G↑
xx (ω)

, (25.1)
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Fig. 25.2 Block diagram representing the VNA–antenna–multilayered medium system modelled
as linear systems in series and parallel (Lambot et al., 2004c)

where b (ω) and a (ω) are the received and emitted signals, respectively, at the
VNA reference calibration plane; Hi (ω), Ht (ω), Hr (ω), and Hf (ω) are the com-
plex return loss, transmitting, receiving, and feedback loss transfer functions of the
antenna, respectively; and G↑

xx (ω) is the transfer function of the air–subsurface sys-
tem modelled as a multilayered medium (referred to as Green’s function below).
Due to inherent variations in the impedance between the antenna feed point, the
antenna aperture, and air, multiple wave reflections occur within the antenna. Under
the assumption above, these reflections can be accounted for exactly using the
antenna transfer functions, which thereby play the role of frequency-dependent,
global reflection and transmission coefficients. In this way, the proposed model
inherently takes into account the multiple wave reflections occurring between the
antenna and the soil.

25.3.1.2 Zero-Offset Green’s Function for Multilayered Media

The solution of Maxwell’s equations for electromagnetic waves propagating in mul-
tilayered media is well known. Following the approach of Lambot et al. (2004a), the
analytical expression for the zero-offset Green’s function in the spectral domain (2D
spatial Fourier domain) is found to be as follows:
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G̃↑
xx =

(
�nRTM

n

ηn
− ξnRTE

n

�n

)
exp (−2�nhn) , (25.2)

where the subscript n equals 1 and denotes the first interface and first layer (in prac-
tice, the air layer); RTM

n and RTE
n are the transverse magnetic (TM) and transverse

electric (TE) global reflection coefficients, respectively (Slob and Fokkema, 2002)
accounting for all reflections and multiples from surface and subsurface interfaces;

�n is the vertical wavenumber defined as �n =
√

k2
ρ + ξnηn; kρ is the spectral

domain transform parameter; ξn = jωμn; ηn = σn + jωεn; and j = √−1.
The transformation of Eq. (25.2) from the spectral domain to the spatial domain

is carried out by employing the 2D Fourier inverse transformation:

G↑
xx = 1

4π

+∞∫

0

G̃↑
xxdkρ , (25.3)

which reduces to a single integral in view of the invariance of the electromagnetic
properties along the x and y coordinates. We developed a specific procedure to prop-
erly evaluate that singular integral in an optimal way (Lambot et al., 2007). As
illustrated in Fig. 25.3, the integration path is deformed in the complex kρ plane by
applying Cauchy’s integral theorem. In addition to avoiding singularities (branch
points and poles), the path minimises oscillations of the complex exponential part
of the integrand, which makes integration faster.

Fig. 25.3 Optimal integration path in the complex kρ plane for the real and imaginary parts of the
two major components I1 and I2 of the integrand and for the full integrand I (Lambot et al., 2007)
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25.3.2 Model Inversion

Inversion of the Green’s function is formulated by the complex least squares
problem as follows:

min φ (b) =
∣∣∣G↑*

xx − G↑
xx

∣∣∣
T

C−1
∣∣∣G↑*

xx − G↑
xx

∣∣∣ , (25.4)

where G↑*
xx = G↑

xx (ω) and G↑
xx = G↑

xx (ω, b) are vectors containing the observed
and the simulated radar measurements, respectively, from which major antenna
effects have been filtered using Eq. (25.1); C is the error covariance matrix; and
b is the parameter vector containing the soil electromagnetic parameters and layer
thicknesses to be estimated. As function φ (b) usually has a complex topography,
we use the global multilevel coordinate search algorithm (Huyer and Neumaier,
1999), combined sequentially with the classical Nelder–Mead simplex algorithm,
for minimising the function.

25.3.3 Model Validation and Applications

We performed radar measurements above a sandbox containing two sand layers
subjected to various water contents, under which a metal sheet was installed as a
perfect electric conductor to control the bottom boundary condition in the electro-
magnetic model (Lambot et al., 2004c). Radar measurements were performed in
the range of 1–3 GHz, with a frequency step of 4 MHz. Figure 25.4 represents the
modelled and measured Green’s functions in the frequency domain for a specific
water content. Figure 25.5 shows the inversely estimated relative dielectric permit-
tivity as a function of the top layer’s volumetric water content. In addition to the
remarkable agreement between the measured and modelled data, we observe that

Fig. 25.4 Measured and modelled Green’s functions for an antenna above a two-layered medium,
with a perfect electric conductor as the bottom boundary condition (Lambot et al., 2004c). Radar
data are presented in both the frequency (left) and time (right) domains
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Fig. 25.5 Inversely estimated relative dielectric permittivity as a function of volumetric water
content (Lambot et al., 2004c). GPR results are compared to reference TDR measurements. Topp’s
model is also shown

the inversely estimated dielectric permittivities are highly consistent with the dif-
ferent water contents and when compared to reference TDR measurements. These
results demonstrate the accuracy of the GPR forward model, the uniqueness of the
inverse solution for this specific inverse problem, and the stability of the inverse
solution with respect to actual modelling and measurement errors. Remaining
differences were partly attributed to the different operating frequency ranges of
both systems (TDR and GPR) and to the different measurement scales. Accurate
estimates were also obtained of the sand’s electric conductivity and frequency
dependence.

In Lambot et al. (2004a), we applied that GPR approach to monitor water con-
tent as a function of time and depth during a free drainage event in a 2-m-high
laboratory sand column. The sand column was also equipped with TDR probes at
two different depths. We subsequently used the water content time series obtained
to identify the soil hydraulic properties, described by the Mualem–van Genuchten
parameterisation, using hydrodynamic inverse modelling. We observed in partic-
ular that GPR was less sensitive than TDR to the small-scale soil heterogeneities
(sedimentation layering) and the water dynamics was better described at the GPR
characterisation scale. In another study (Lambot et al., 2004b), we identified from a
single radar measurement, performed at a controlled outdoor test site, a continuous
vertical water content profile in hydrostatic equilibrium with a water table. In that
case the profile could be constrained using the Mualem–van Genuchten parameter-
isation as it corresponded to the characteristic water retention curve of the soil. As
a result, only four parameters had to be inverted in order to reconstruct the whole
continuous profile.
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Fig. 25.6 Flowchart representing the integrated electromagnetic and hydrodynamic inversion of
time-lapse radar measurements for estimating soil hydraulic properties and electrical profiles,
where t is the time, z is the depth, and f is the frequency (Lambot et al., 2006a)

In Lambot et al. (2006b) and Jadoon et al. (2008), we tackled the issue of
retrieving continuous electromagnetic profiles and soil hydraulic properties from
time-lapse GPR data. The proposed inverse modelling flow chart is presented in
Fig. 25.6. Electromagnetic inverse modelling is constrained by hydrodynamics and
petrophysical laws, significantly reducing the complexity of the inverse problem.
We demonstrated, using numerical experiments, the uniqueness of the inverse solu-
tion for a series of soils and hydrodynamic boundary conditions. Laboratory results
(Lambot et al., 2009) demonstrated the promising prospects of mapping the shallow
soil hydraulic properties at the field scale with high spatial resolution.

Finally, we have set out a proposal for mapping surface water content under
field conditions (Lambot et al., 2006b). For that specific purpose, inversion of
the Green’s function is performed in the time domain, on a time window focused
on the surface reflection only. We have shown that compared to the traditional
surface reflection method, filtering antenna effects and performing full-waveform
inversion provides valuable advantages compared to other existing techniques. In
particular, antenna distortion effects are filtered out (resulting in increased accu-
racy), the antenna elevation does not need to be known a priori as it is inversely
estimated as well, and, finally, it does not require measurements to be made above
a calibrating perfect electric conductor situated at exactly the same height as the
field measurements. Figure 25.7 represents an example of the real-time mapping
GPR platform and shows a map of surface soil moisture acquired over a 16-ha
agricultural field. About 3000 measurements were acquired. Full-waveform inver-
sion for the retrieval of soil surface water content took less than 1 s on a field
laptop.
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Fig. 25.7 Real-time mapping of surface soil water content using an ultra-wideband horn antenna
operating in the range of 200–2000 MHz. (Left) Experimental set-up. (Right) Surface soil water
content map for a 16-ha agricultural field (Walhain, Belgium)

25.4 Conclusions

In this chapter, we emphasised the need for non-invasive techniques for soil char-
acterisation and monitoring at the field scale. GPR is increasingly used for such
applications as it permits both high-resolution subsurface imaging and quantitative
characterisation. Although traditional GPR techniques have been useful in many
applications, more advanced technology and processing are still needed to benefit
from the full potential of GPR for subsurface investigations. We have illustrated such
progress in characterising the shallow subsurface from proximal measurements. The
characterisation depth depends on the operating frequency range, the soil’s elec-
tromagnetic properties and spatial distribution, and on the dynamic range of the
radar system. The proposed method is particularly appropriate to characterise the
top metre of the soil.
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Chapter 26
Using Proximal Sensors to Continuously
Monitor Agricultural Soil Physical Conditions
for Tillage Management

G. Richard, R. Rouveure, A. Chanzy, P. Faure, M. Chanet, A. Marionneau,
P. Régnier, and Y. Duval

Abstract Homogeneity of crop establishment, which directly depends on physi-
cal conditions within the seedbed, is very important for crop yield. We did a field
experiment to test the abilities of various sensors to characterise seedbed physical
conditions and the possibility of continuously modifying the intensity of soil tillage
with the objective of producing a uniform seedbed. The experiment was done on
a silt soil with 19% clay and 74% silt in northern France. We created two initial
soil structures (with and without clods >10 cm) and controlled water content (field
capacity or less). A special cultivator was developed with a continuous-output GPS
and a microwave ground-based radar sensor; it also carried a laser profile meter for
soil surface characterisation, a capacitance probe for monitoring soil water content,
and a load cell for measuring soil mechanical resistance. Each sensor was able to
detect differences in soil physical conditions at the field scale. Because of the simul-
taneous effect of soil water content and soil structure on the geophysical parameters
obtained with the sensors, it was not possible to obtain a continuous characterisation
of the soil’s bulk density, water content, clod-size distribution, or surface roughness
(although the use of two radar angles of incidence might allow better assessment
of soil surface roughness). For tillage control, seedbed conditions depended on ini-
tial soil conditions (water content and degree of compaction) and soil tillage tool
characteristics (working depth and speed of rotation). Working depth and speed of
rotation had opposite effects on the size of clods at the seedbed surface; within the
seedbed, they could reduce initial soil variability. Seeding rate could be controlled
by the same sensors if they were put in front of the seeder. Results of the experiment
are relevant to spatial parameterisation of existing soil models.

Keywords Seedbed · Clod size · Water content radar · Microwave ground-based
radar
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26.1 Introduction

Agricultural practices should simultaneously preserve the environment and the
profit margins of farmers. Seedbed preparation and sowing are particularly impor-
tant for mechanised cropping systems because of (1) energy needed for tillage,
(2) cost of seeds, (3) dependence of crop yield on the homogeneity of crop estab-
lishment, and (4) erosion risk when the soil is bare. In the context of large fields,
continuously finetuning soil tillage and sowing rates could limit the use of energy
and seeds and lead to homogeneous crop emergence. Such a modulation (which
is part of the precision agriculture concept) requires real-time measurement of soil
characteristics that influence crop emergence (e.g. clod-size distribution, resistance
to root penetration, and moisture content) and a dynamic control of the cultivator
and seeder variables (e.g. working depth, forward speed, rotation speed, and sow-
ing rate). It is difficult to continuously characterise soil conditions during tillage
because of the operational constraints of an agricultural environment: a mobile
machine with possible wind and rain, dust in dry conditions, and mud in wet ones.
(Incidentally, this kind of spatial characterisation of soil properties is also relevant
to spatial parameterisation of soil models, for example, erosion prediction at the
catchment scale.) We have therefore undertaken a field experiment with two objec-
tives: (1) to test the abilities of various sensors, with and without soil contact, to
characterise seedbed physical conditions and (2) to evaluate the possibility of con-
tinuously modifying the intensity of soil tillage with the objective of producing a
uniform seedbed. Several sensors were mounted on a special cultivator carrying
continuous-output GPS, microwave ground-based radar sensor, laser profile meter
for soil surface characterisation, capacitance probe for soil water content, and load
cell for soil mechanical resistance. They were used before and after a tilling with a
rotary harrow (using two working depths and two rotation speeds) on a field with
contrasting initial soil structure and water content.

26.2 Materials and Methods

26.2.1 Description of the Sensors

All the sensors were mounted on the rear of a tractor over a special tillage tool whose
operating depth was controlled by wheels rolling on the soil surface (Plate 26.1a, b).
(1) An infrared rangefinder (HT 66 MGV 80; Wenglor) was installed 0.55 m above
the surface to characterise surface roughness. It measured distance to the soil surface
with a precision of 1 mm. (2) We developed a frequency-modulated continuous-
wave radar (FMCW) which provided a cheaper solution than did a pulsed radar
for short-range applications (distance <1 m). The FMCW radar transposes temporal
variables into the frequency domain so that a short time delay �t is transformed
into a broad variation of frequency �f, which is easier to measure (Noyman and
Shmulevich, 1996; Skolnik, 1980). The radar has a carrier frequency of 10 GHz
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Plate 26.1 (a) Location of sensors on the tool behind the tractor. (b) Details of capacitance probe.
(c) Map of relative scattering coefficient before soil tillage, obtained by radar with an incidence
angle of 0◦

(X band, horizontal polarisation) and a transmitted power of 18 dBm. It is mono-
static, which means that a single-lens horn antenna is used for both transmitting
and receiving. The antenna beam width was 10◦. The radar was mounted 1.2 m
above the soil surface and could be used at two angles of incidence, 0◦ and 20◦. (3)
The tillage tool had four rigid metallic pieces that penetrated the soil 10, 20, 30, or
40 cm. A pressure cell on each piece measured the resistance to forward movement.
(4) A capacitance probe was mounted on the 10-cm piece to continuously measure
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dielectric permittivity (Plate 26.1b). It consisted of two brass electrodes (5 cm long,
1 cm wide) enclosed within PVC. The volume of measurement was a bulb 1 cm
thick (Bolvin et al., 2004).

26.2.2 Field Experiment

The experiment was conducted in 2004 in northern France at the INRA experi-
mental centre of Estrées-Mons (Péronne, 50◦ N, 3◦ E, 85 m elevation). The field
had an area of 5000 m2 (50 m wide, 100 m long). The soil was a silt loam devel-
oped from loess (World Reference Base, Orthic Luvisol; FAO, 2006). The first
30 cm contained, per kilogram, an average of 190 g clay, 738 g silt, 50 g sand, 17 g
organic matter, and 5 g CaCO3; its pH was 7.6. Soil water contents at –10, –50,
−100, and −1500 kPa matric potentials were 0.252, 0.213, 0.164, and 0.083 g g−1,
respectively.

Using a digging machine, the soil was deep tilled over the whole field in March
2004 to obtain a homogeneous, fragmentary structure over 30 cm deep. In April,
plots 6 m wide were compacted using a heavy tractor in wet conditions, and these
were separated by 6 m non-compacted plots to create a chequerboard pattern.
Compaction was followed by a second deep tillage operation with the digging
machine. In this way, we obtained two structures in the first centimetres of soil:
(1) a fragmentary structure with fine earth and small clods (NT plots) after digging
without compaction and (2) a fragmentary structure with many large compacted
clods (T plots) after compaction and digging.

Irrigation was applied in May on one-half of the field to obtain two levels of
water content: less than field capacity (non-irrigated, H1 or ‘dry’ plots) and near-
field capacity (irrigated, H2 or ‘wet’ plots). Following irrigation, superficial tillage
was then done to mimic seedbed preparation using a rotary harrow on both NT and
T plots at a tractor velocity of 1.5 m s−1. Two working depths (4 and 8 cm) and two
speeds of PTO rotation (500 and 1000 rpm) were used in the length direction (four
combinations).

26.2.3 Data Acquisition

All measurements were done twice in each plot, before and immediately after sec-
ondary tillage: (1) direct measurement of bulk density (membrane densitometer)
and water content (gravimetric method) of the first 10 cm; (2) photography of soil
surface to assess clod-size distribution by image analysis; seedbed sampling and
dry sieving; (3) continuous recording of all the sensors with an acquisition fre-
quency of 100 Hz at a tractor velocity of 1 m s−1 (i.e. one measurement every
centimetre). A kinematic GPS (global positioning system) with a precision of
±2 cm was used for geo-referencing in order to obtain a precise cartography of the
measured data.
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26.3 Results and Discussion

26.3.1 Soil Physical Conditions

Soil physical conditions obtained before and after tillage are presented in Table 26.1.
Soil water content showed a strong contrast between plots H1 and H2: water suction
was >15,000 kPa in the H1 plots and <100 kPa in the H2 plots. Before tillage,
plots H1–T had a cloddy soil surface with high roughness, whereas plots H2–T and
H2–NT had a smooth, crusted soil surface due to irrigation. Soil surface roughness
was reduced by secondary tillage. H1–T plots continued to have big clods (with
some clods >8 cm diameter) after secondary tillage.

26.3.2 Radar Data

Plate 26.1c shows a plot of relative scattering coefficient before soil tillage using an
incidence angle of 0◦. Both soil surface roughness (characterised by the root mean
square of the profile heights) and soil moisture had an effect on the backscattering
coefficient, as shown in Fig. 26.1 for data obtained before tillage with an incidence
angle of 0◦. Results were similar with an incidence angle of 20◦, but with a lower
range of variation of the backscattering coefficient. On the other hand, the rela-
tive backscattering ratio (coefficient obtained at 20◦ incidence angle compared to
that obtained at 0◦ incidence) depended on the soil surface roughness and was less
sensitive to soil moisture (Fig. 26.2). We suggest that such a ratio might better dis-
criminate between changes in soil surface structure, even if the ratio were not very
sensitive to high surface roughness (e.g. a cloddy seedbed).

Table 26.1 Physical parameters of the plots of the field experiment before and after tillage.
(Pictures after tillage correspond to a working depth of 4 cm and a PTO speed of 500 rpm; water
content and rms height correspond to the mean of the four combinations)

Before tillage 

Water content 
(0–5 cm) g g–1

RMS height 
with laser (mm) 
After tillage

Water content 
(0–2 cm) g g–1

RMS height 
(mm) 

7.5 7.9

0.1800.124

10.5 18.7

0.232

13.0

27.6

0.036

0.020 0.220

7.2

12.8

0.083

0.077

H1–NT plot H2–NT plotH1–T plot H2–T plot
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(a) (b)

Fig. 26.1 Variations of the relative backscattering coefficient (radar angle of incidence of 0◦) of
plots before tillage as a function of the rms surface height (a) and gravimetric soil moisture (b)

Fig. 26.2 Variations of relative backscattering ratios (coefficient obtained at 20◦ incidence angle
compared to that obtained before tillage at 0◦ incidence angle) as a function of the rms surface
height (a) and gravimetric soil moisture (b)

26.3.3 Capacitance Probe

Measurements performed with the mobile capacitance probe were strongly influ-
enced by soil tillage history (Fig. 26.3). NT treatments led to a finer structure,
allowing a good contact between the soil and the electrodes, and therefore to a higher
signal.
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Fig. 26.3 Variation in voltage output from the capacitance probe as it is moved over a dry plot

26.3.4 Mechanical Resistance Probe

Both soil structure and soil water content had an effect on soil mechanical resistance
(Fig. 26.4). Dry H1 plots had a higher resistance, particularly in the NT plots, i.e.
in the plots with big clods. The difference between NT and T plots was not very
pronounced in the wet H2 plots. It seems that the sensor was very sensitive to the
size of the structural elements, in the same way as the comparison between sand and
gravels.

26.3.5 Tillage Effects on Seedling Emergence

We have estimated the mortality of seedlings during emergence to characterise the
seedbed structure. We have used (1) the measurements of clod-size distribution
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Fig. 26.4 Variation in soil resistance (daN) of the 0–20-cm layer in dry and wet plots before tillage
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Table 26.2 Calculated seedling mortality during emergence as a function of seedbed structure in
each plot of the field experiment (bold numbers indicate the minimum for two speed rotations and
two tillage depths)

H1–NT H1–T H2–NT H2–T Mean H1 Mean H2 Mean

Within the seedbed
P1V1 10.1 23.1 13.2 18.9 16.6 16.0 16.3
P1V2 9.3 18.3 16.7 21.9 13.8 19.3 16.6
P2V1 13.4 25.6 16.1 21.1 19.5 18.6 19.0
P2V2 14.2 27.0 15.3 20.9 20.6 18.1 19.3

Surface without crust
P1V1 4.7 20.2 4.7 6.1 12.5 5.4 8.9
P1V2 1.9 15.9 5.0 6.9 8.9 5.9 7.4
P2V1 4.5 19.5 4.9 5.7 12.0 5.3 8.7
P2V2 2.4 10.9 4.0 3.6 6.7 3.8 5.2

Surface with crust
P1V1 30.4 34.4 31.3 33.1 32.4 32.2 32.3
P1V2 32.2 31.5 31.2 32.1 31.9 31.6 31.8
P2V1 22.5 36.1 30.8 30.1 34.8 30.5 32.6
P2V2 33.8 33.7 31.4 30.8 33.8 31.1 32.4

in the seedbed and at the seedbed surface and (2) data on mortality of sugar beet
seedlings from Aubertot et al. (2002) and Dürr et al. (2001) (Table 26.2). The two
measures in (1) were considered as a function of the presence, or not, of a crust due
to rainfall at the surface of the seedbed. The crust corresponded to that area occu-
pied by soil fragments with a diameter less than 2 cm; this situation was obtained
after 20 mm of rainfall in this type of soil (Gallardo et al., 2006).

We calculated that tillage would result in a change in seedling mortality from
3 to 8.7%, as a function of initial soil physical conditions. The relative impact of
initial structure was more important in dry conditions than in wet ones. Whatever
be the water content, seedling mortality was reduced using the lowest tillage depth.
Minimum mortality was obtained with the lowest speed rotation in wet conditions;
it was the opposite in dry.

As a function of initial soil physical conditions, tillage characteristics induced,
in a soil surface without any crust, an increase in mortality from 1 to 9.3% due to
clods. Mortality was always lowest for the highest speed of rotation and deepest
tillage, whatever be the initial soil conditions (except for non-compacted soil in dry
conditions). Mortality due to clods and the crust at the soil surface was less vari-
able. Lowest mortality was obtained with the deepest tillage and the lowest speed of
rotation.

Finally, it was not possible to obtain a uniform seedbed in a field with various
soil conditions (structure and water content). Speed of rotation and depth of tillage
had an effect on seedbed quality, but was less important than the effect of soil water
content. Consequently, the choice of tillage date, and therefore the choice of soil
water content, remained the most important factor to take into account for seedbed
quality.
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26.4 Conclusions

A special cultivator was developed – with a continuous-output GPS, a microwave
ground-based radar sensor, a laser profile meter, a capacitance probe, and a load
cell – for continuously measuring soil physical conditions: water content and
mechanical resistance in the first few centimetres, roughness, and clod size at the
soil surface. Each sensor was able to detect differences in soil physical conditions
at the field scale, but these always depended on soil water content and soil struc-
ture. Further work is needed to determine whether a multi-variable analysis would
allow better identification of specific soil conditions. We suggest that using two
radar angles of incidence might allow better determination of clod-size distribution.
Seedbed conditions depended on initial soil conditions (water content and degree of
compaction) and soil tillage tool characteristics (working depth and speed of rota-
tion). Working depth and speed of rotation had opposite effects on the size of clods
at the seedbed surface and within the seedbed; they could reduce initial soil variabil-
ity but a uniform seedbed was never obtained. Seeding rate could be controlled by
the same sensors if they were put in front of the seed drill. Results of the experiment
are also relevant to work on spatial parameterisation of soil models, for example
assessing soil hydraulic properties for erosion prediction.
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Chapter 27
Gamma Ray Sensor for Topsoil Mapping:
The Mole

F.M. van Egmond, E.H. Loonstra, and J. Limburg

Abstract In general, farmers base their crop management decisions on a combi-
nation of their background knowledge, their experience with a field, and analysis
of soil samples. Optimising agricultural production using precision agriculture
requires detailed, high-resolution soil information. This level of detail is usually
not available in current agricultural practice due to the cost of traditional soil
sampling techniques. However, new sensor technology presents an opportunity to
produce high-resolution soil maps, which can be used to support agricultural deci-
sion making and crop management. This chapter presents a highly sensitive sensor
technology, based on the natural emission of gamma radiation from soil, which
makes quantitative mapping of physical and chemical soil properties of the tillage
layer possible. This method is shown to be capable of producing the high-resolution
maps required for precision agriculture, and evidence is presented that in com-
bination with precision agriculture techniques, it has already contributed to yield
improvement.

Keywords Gamma ray sensor · Full-spectrum analysis · Precision
agriculture · Digital soil mapping · Fluvisols

27.1 Introduction

In the interest of achieving optimum yields, precision agriculture practices deal with
very detailed and spatially differentiated combinations of crop requirements and
soil properties in a field. Significant variations in soil properties can exist within a
field, and addressing these differences requires more detailed information about the
cropping system than traditional agricultural practices allow.
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Precision agriculture uses high-resolution maps of physical and chemical soil
properties, together with yield and crop biomass maps, to enable operational deci-
sion support in crop management and to derive variable rate application (VRA)
maps. VRA maps show the localised doses of an application (e.g. fertiliser or lime)
or indicate, for example, the amount of seed potatoes to be planted based on infor-
mation from the site-specific soil conditions. Ideally, this information should be
quantitative, accurate, and of high spatial resolution. The University of Groningen
(RUG), Medusa Explorations, and The Soil Company (The Netherlands) have
developed a sensor system (called the Mole) that is used commercially for the high-
resolution mapping of physical and chemical soil properties of the tillage layer. The
method is based on (natural) gamma radiation measurements and field or regional
calibration with conventional soil sample analyses.

The fact that gamma radiation carries information on the mineral composition of
soils and rocks has been known for a long time (Cook et al., 1996). Already in the
early 1930s, gamma detectors were built and used for mineral (uranium) prospecting
(de Meijer, 1998). With the advent of scintillation crystals, which replaced the early
Geiger–Muller counter-based systems, it became possible to deconvolute the mea-
sured gamma radiation into a series of constituents, including the naturally occurring
radioactive elements potassium (40K), thorium (232Th), and uranium (238U).

However, it took researchers until the early 1990s to move from a qualitative
interpretation of this information in terms of nuclide concentrations to a quantitative
interpretation in terms of soil or soil mineral properties. A number of coincidental
research findings have contributed to the development of this method.

Firstly, proper calibration methods were devised, which meant that absolute con-
centrations of radionuclides could be measured with field-based systems. At the
same time, several studies were carried out to investigate correlations between
radionuclide concentrations and the mineral properties of soil and sediment sam-
ples taken during vehicle, airborne, and underwater radiometric surveys (de Meijer,
1998; Cook et al., 1996; Pracilio et al., 2006). Strong correlations were found, for
example, between the 232Th radionuclide concentration and the clay content of the
topsoil. Gamma radiation originating from depths as far down as 50 cm is able to
reach the surface, while radiation originating from below that depth is attenuated by
the overlying soil dry matter and soil moisture (Cook et al., 1996, Viscarra Rossel
et al., 2007). As a general rule, it has been found that different soil and sediment
types are characterised by unique fingerprints (van Wijngaarden et al., 2002; Cook
et al., 1996; Pracilio et al., 2006) – i.e. each soil carries a unique concentration of
the naturally occurring nuclides 40K, 238U, and 232Th (CK, CU, and CTh). Some
years later it was found that relationships exist not only between radionuclides and
physical soil properties (texture, grain size, etc.) but also between radionuclides and
chemical soil properties (heavy metal pollution, fertilisers, nutrients, etc.) (van der
Graaf et al., 2007; Viscarra Rossel et al., 2007).

In conjunction with the development of better spectrum analysis and fingerprint-
ing methods, smaller and better gamma data acquisition systems were developed.
Previous systems for measuring radioactivity have been converted into sensors for
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measuring radioactivity-related soil properties. This chapter describes a method
by which relatively low-cost, high-resolution soil maps can be produced by using
these sensors and how farmers can use these maps in precision agriculture for yield
improvement.

27.2 Equipment and Data Analysis Methods

In the past, most field gamma ray-logging systems were built from NaI scintillation
crystals and used a ‘windows’ spectrum analysis to determine the concentration
of the radionuclides. Our innovations, related to both the type of detector material
used and the method of data analysis, have significantly improved the quality of
gamma measurements (Koomans et al., 2007) and the level of detail and accuracy
of the maps.

27.2.1 Hardware

Traditional gamma radiometers use crystals like sodium iodide (NaI), which are not
the most efficient capturers of gamma radiation. They are also brittle and there-
fore accident-prone. Commercially available alternatives are bismuth germanate
(Bi4Ge3O12 or BGO) and caesium iodide (CsI). BGO has a low peak resolution,
which rules out its use in cases where nuclear fallout radionuclides (such as 137Cs)
are the subject of interest. Furthermore, this material is rather expensive and prone to
temperature instability. CsI is a very robust alternative to NaI and BGO. The higher
density of CsI compared to NaI yields better efficiency, especially for smaller crystal
sizes. The Soil Company’s sensor utilises a 70-mm × 150-mm CsI crystal coupled
to a photomultiplier unit and a 512-channel MCA system (Plate 27.1a). The system
stores the full spectral information, which enables post-processing of the spectral
data at a later stage.

27.2.2 Spectral Data Analysis

In order to convert the measured spectral information into concentrations of radionu-
clides, the ‘windows’ analysis method is frequently applied (Grasty et al., 1985).
Here, the activities of the nuclides are found by summing the intensities of the
spectrum found in a certain interval surrounding a peak. In the classic ‘windows’
approach, three peaks are used to establish the content of 232Th, 238U, and 40K. A
major flaw of the method is the limited amount of spectral information that is incor-
porated into the analysis. Another weakness is the inherent use of ‘stripping factors’
to account for contributions of radiation from nuclide A into the peak of nuclide B
(Plate 27.1b).
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(a)

(b)

Plate 27.1 (a) The Mole system (The Soil Company, Groningen) consisting of a detector, a GPS,
and a laptop. (b) Left: ‘Windows’ surrounding the 40K, 238U, and 232Th peaks (left to right).
Right: FSA analysis of a natural gamma spectrum. The measured spectrum (black dots) is fitted
with a curve (yellow); green, blue, and red curves are standard spectra for 40K, 238U, and 232Th,
respectively

The Soil Company’s Mole sensor system incorporates a different method to anal-
yse gamma spectra. In contrast to the ‘windows’ method, our full-spectrum analysis
(FSA) method incorporates virtually all of the data present in the measured gamma
spectrum. With FSA, a chi-squared algorithm is used to fit a set of ‘standard spec-
tra’ to the measured spectrum (see Plate 27.1b). (A standard spectrum is the pure
response of the detector system used on a 1 Bq/kg source of a given radionuclide
in a given geometrical setting.) The fitting procedure yields the multiplication fac-
tors needed to reconstruct the measured spectrum from the standard spectra of the
individual nuclides. The multipliers are equal to the actual concentrations of the
radionuclides in becquerel per kilogram that led to the measured spectrum. This
method is described in detail by Hendriks et al. (2001). Hendriks showed that the
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associated uncertainty in the FSA method is at least a factor of 1.7 less than that in
the ‘windows’ method.

27.2.3 Fingerprinting and Soil Sampling

During field measurements, the Mole is placed on a tractor and driven across
the field. A reading of the gamma spectrum and the GPS position is stored on a
computer every second (Plate 27.1a). A constantly updated map, created on the go,
shows the variation of the total count (spectrum) of gamma radiation ‘live’ in the
field.

To translate the gamma data into soil maps, calibration with soil parameters is
required. With this aim, soil samples are taken down to a depth of 25–30 cm (tillage
depth), within a 2 m radius of the sensor. The locations of the soil samples are chosen
based on the gamma variation in the data identified from the maps. The locations
selected for soil sampling should reflect the overall soil variation in the field. At
these sample sites, a gamma spectrum is measured for 5 min. The soil samples are
analysed in the laboratory and the soil parameters are related to the corresponding
gamma readings by regression analysis. The resulting regression equations allow the
interpolated gamma readings to be translated into soil property maps. Soil sampling
is conducted on the same day as the gamma survey of the field. The gamma spectrum
analysis, regression, interpolation, map calculation, and quality control processes
are conducted in the office.

The fingerprints of soil types and their properties depend on parent material,
soil-forming processes, and age, among other things. In agriculture, soil nutrient
levels are influenced by management practices and vary between different farming
systems. Therefore calibrating the gamma data for soil nutrient maps has to be based
on soil samples from that specific field or farm. However, physical soil properties
and their natural gamma readings can be compared within a geological unit. To
illustrate this, a dataset of soil samples and their gamma readings from an 800 ha
farm on marine clays in Zeeland, The Netherlands, has been collected. The dataset
consisted of 89 samples and was divided into a calibration dataset containing 46
samples and a validation dataset containing 43 samples. (Multiple) linear regression
was performed using the calibration dataset and the best fits for each soil property
are listed in Table 27.1. Soil texture (clay, silt, and loam) shows a good correlation
when compared across the farm. However, soil nutrients like organic matter and
magnesium show poor correlations on a farm scale, but these improve significantly
when considered at field scale.

The Soil Company has gradually built a large database of soil samples and their
gamma readings. This database is used to generate general spatial patterns of dif-
ferent soil properties and provides ‘extra’ regional sample data for the correlation
of nuclides with physical soil properties (and sometimes organic matter and magne-
sium). For a graphical illustration of the data in Table 27.1, two of the correlations
are plotted in Fig. 27.1. Similar plots can be made for other physical and chemical
soil properties.
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Table 27.1 Results of the separate calibration and validation of soil properties and gamma
measurements for an 800-ha farm in Zeeland, The Netherlands

Calibration Validation

Soil properties Nuclide Na R2 RMSEb Nc RMSEb

Clay (<2 μm) 232Th 46 0.85 3.7 43 3.1
Fine silt (<16 μm) 232Th 46 0.80 6.8 43 5.4
Loam (<50 μm) 232Th 46 0.82 8.1 43 8.7
M0 (median grain size) 40K 46 0.84 9.5 43 13.3
Organic matter 40K, 137Cs 46 0.51 0.41
Organic matter 40K, 137Cs 15 0.88 0.24
Magnesium 238U, 137Cs, 40K 46 0.65 15.2
Magnesium 232Th, 137Cs 15 0.90 4.5

aNumber of samples used for calibration
bRMSE for clay, silt, loam, and organic matter is depicted in %; for M0 in μm; and for Mg in mg
kg−1 dry matter

cNumber of samples used for validation

In general, correlation plots had an R2 ranging from 0.6 to 0.95. If the analysis
explained less variance, the regression results were not used in the prediction of a
soil property.

The gamma data from the field were interpolated using inverse distance weight-
ing. Applying the regression equation from Fig. 27.1 to some of the gamma maps
of this farm yielded the map of clay content shown in Fig. 27.2.

The intervals shown in the legend are comparable to the statistical error, and vari-
ation in the maps can therefore be considered as a significant variation. To check the
reliability of a derived soil map, the map values on the sample locations were com-
pared with the actual (measured) soil property values. The R2 values between the
predicted values and the sampled soil properties varied between 0.7 and 0.98. The
image was compared to existing soil maps where available. In these cases, vali-
dation was performed by applying regression equations of the calibration dataset
(Table 27.1, Fig. 27.1) to the gamma data of the separate validation dataset. For
clay, this yielded an R2 of 0.86 with an RMSE of 3.1% (Table 27.1). Results for
validation of other soil properties in this dataset have an R2 between 0.72 and 0.84,
with RMSE between 5.4 and 13.3 (Table 27.1). The patterns in the soil maps cor-
responded well with the farmers’ qualitative knowledge of the fields and confirmed
their perception during tillage.

Maps of bulk density, water retention, etc. can be calculated using pedotransfer
functions and the physical soil and organic matter maps. Maps of compaction risk,
nematode risk, etc. can also be calculated based on information from agricultural
research on the subjects (RBB, 1970).
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Fig. 27.1 Soil samples of clay content (%, top) and median grain size (M0, bottom) versus 232Th
and 40K readings. Data from an 800-ha farm (Zeeland, The Netherlands) taken in three successive
years

The standard set of reported maps from a field measurement consists of four
types: regionally calibrated maps of physical soil properties, field or farm calibrated
maps of chemical soil properties, maps calculated based on pedotransfer functions,
and calculated risk maps.
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Fig. 27.2 Gamma-based map of the clay content of 10 fields (211 ha in total, Zeeland, The
Netherlands) derived from the equation in Fig. 27.1

27.3 Applications

In The Netherlands, experience has been gained from several precision agriculture
applications derived from or based on the gamma ray-based soil maps. Table 27.2
gives an overview of some of these applications and their general benefits.

Clay maps from the Zeeland farm were used to reduce the amount of sugar beet
seed needed by 13%, while maintaining the same yield. Another precision agricul-
ture application used the clay content map to achieve a more homogeneous size
distribution of seed potatoes. This is an attractive perspective for farmers, as seed
potatoes in the 28–55 mm size range are worth more. The clay content map has been
translated into a variable planting distance map (Fig. 27.3), and this has improved
financial yields on average by 6% or 230 C ha−1 in a 4-year trial.

27.4 Future Developments

Currently research is being conducted on the integration of gamma ray sensing with
other sensor techniques like EM38 (Chapters 29, 33, and 28). This can yield com-
plementary data that can perhaps further enhance data-based decision making by
farmers and offer new possibilities for precision agriculture. Improved data inter-
polation and sample location selection techniques are being automated to improve
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Table 27.2 Tested precision agriculture strategies and their measured and perceived benefits in
The Netherlands

Application Base map(s) Desired effect Benefits

Variable planting
distance

Clay content/water
retention

Homogeneous size
distribution of
potatoes/broccoli

5% negative up to 15%
positive financial benefit

Reducing amount of
sugar beet seed

13% reduction in cost
while maintaining yield

Variable fertiliser
amount

Nutrient or clay
content

Saving fertiliser or
improving yield

Up to 60% reduction in
fertiliser

10% yield improvement
consumer potatoes

Variable
application
compost

Organic matter Reducing organic
matter variation in
field

Improved soil structure,
water retention

Variable liming pH and organic
matter

More homogeneous pH Improved sugar yield
sugar beets

Variable
nematode
control

Trichodorus risk Reduction in granular
products

40–60% savings on
chemicals

Variable tillage
speed

Compaction risk Less compaction due
to tillage

Variable tillage patterns
are highly recognisable
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map quality and enable commercial implementation of the process. Additionally,
alternative methods of data analysis are being examined for use instead of, or com-
plementary to, the current regression analysis method to determine if or how gamma
sensor measurements and their translation into soil data could be improved.

27.5 Conclusions

Sensor technology based on gamma ray sensing can be used for creating quan-
titative topsoil maps in conventional units that farmers are familiar with. The
method is highly sensitive and is used to make high-resolution maps for preci-
sion agriculture. The patterns in the soil maps are recognisable to farmers and
confirm their perception during tillage. The quantitative aspect of the soil property
maps enables operational decision support for crop management. This work has
shown that accurate sensor technology and precision agriculture can contribute to
yield improvement.
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Chapter 28
Gamma Ray Sensing for Cadmium Risk
Assessment in Agricultural Soil and Grain:
A Case Study in Southern Sweden

M. Söderström and J. Eriksson

Abstract Cadmium (Cd) is a toxic metal, which is taken up by plants relatively
easily. In Sweden, high Cd levels in soils and crops are encountered in agricultural
areas where the soil parent material is rich in the metal. Farmers must produce grain
with a Cd concentration below permissible limits, and the milling and food industry
rates traceability as increasingly important. In this study, both airborne and proximal
gamma ray sensing were tested in an area where high levels of Cd in soils and crops
have been recorded. The hypothesis was that the occurrence of Cd in the topsoil and
winter wheat grain would follow the variation of 238U so that gamma ray sensing
could thereby be used as a fast and cheap method for monitoring Cd in soils and
crops. We found that the variability of Cd in the topsoil was considerable in the
area and was very well correlated with 238U. It seems possible to delineate areas of
winter wheat that have a very low risk of high Cd. A working model for the practical
application of the sensing technique is suggested.

Keywords Radioactivity · Geochemistry · Wheat · Cadmium · Uranium · Sweden ·
Risk classification

28.1 Introduction

High cadmium (Cd) concentration in grain can be a problem. For humans, grain
food products are normally the main source of Cd (except for smokers). In Sweden,
a certification system, ‘Swedish Seal of Quality’, is in place for quality and environ-
mental control. A low Cd level in delivered grain is one criterion for certification.
Currently, farmers with a soil Cd level above 0.3 mg kg−1 are required to analyse
Cd in the crops. For soil Cd, one sample can at most represent 15 ha, and an analysis

M. Söderström (B)
Department of Soil and Environment, the Precision Agriculture and Pedometrics Group,
Swedish University of Agricultural Sciences, PO Box 234, SE-532 23 Skara, Sweden
e-mail: mats.soderstrom@mark.slu.se

333R.A. Viscarra Rossel et al. (eds.), Proximal Soil Sensing, Progress in Soil Science 1,
DOI 10.1007/978-90-481-8859-8_28, C© Springer Science+Business Media B.V. 2010



334 M. Söderström and J. Eriksson

sample is valid for a maximum of 10 years. In some geographic areas, grain Cd often
exceeds the currently permissible limit of 80 μg kg−1, and one crop sample can rep-
resent a maximum of 25 ha (alternatively, one analysis per 250 t of harvested grain
is needed). Through the database of the certification system, it is possible to locate
areas where high Cd levels occur, but the sampling procedure prevents a detailed
analysis of the local spatial variability of Cd in crops and soil.

In a national soil survey (n = 3,067), the average Cd concentration in Swedish
topsoil was 0.23 mg kg−1, and 19% of the observations had > 0.30 mg Cd kg−1

(Eriksson et al., 1997). Cd uptake from soil to plants depends on many factors – e.g.
plant species, cultivars, and various soil properties – but the most important is Cd
concentration in the soil (Eriksson et al., 1996). In Sweden, high soil Cd areas are
often found in areas where the parent bedrock at least partly is alum shale. The con-
tent of uranium (U) in the soil is also normally related to occurrences of this parent
material. Since the 1960s, U has been mapped by airborne gamma ray measurements
of the 238U isotope by the Swedish Geological Survey (SGU), and recently compa-
rable equipment mounted on a motor vehicle has become available. This equipment
can be used for very detailed gamma ray scanning. The natural emission of gamma
rays from rock outcrops and soil reflects both the type of bedrock and its weathering
and the processes of soil development (e.g. IAEA, 2003; Wilford and Minty, 2007).
In this study, the objective was to test whether airborne and proximal gamma ray
measurements could be used in an area in southern Sweden rich in alum shale for
detailed risk assessment of Cd in agricultural soils.

28.2 Materials and Methods

Data from airborne gamma ray spectrometry (238U, 232Th, and 40K) are available in
the SGU radiometric database. Currently, about 80% of Sweden has been mapped by
this technique (SSI, 2007). In our study area, which is part of Östergötland County,
the SGU radiometric data were obtained in N–W transects with 200 m spacing
(Fig. 28.1). Approximately one measurement was taken for every 16 m of tran-
sect. Aircraft altitude was on average 60 m. Most of the detected signal originates
from an ellipse on the ground (the footprint) with its major axis perpendicular to the
flight path of about 200 m (Mats Wedmark, SGU, personal communication).

Ground-based gamma ray sensing was carried out from a 4WD motor vehicle at
four agricultural fields in the area. The equipment used was ‘the Mole’, a gamma
ray sensor for topsoil mapping developed by the University of Groningen and The
Soil Company (Groningen, The Netherlands). Its use is described in Chapter 27.
Data (238U, 232Th, 40K, and 137Cs) were collected approximately every 4 m along
transects separated by about 12 m. The circular footprint had a diameter of 3–4 m.
The measurements were made in February 2007 when the ground was covered by
no more than 5 cm of fresh snow.

Digital geological maps of soil and bedrock at a scale of 1:50,000 are available
for the study area from SGU (Fromm, 1976; Gorbatschev et al., 1976). The study
area (Fig. 28.1) is in an area of southern Sweden where high Cd levels in soils and
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Fig. 28.1 Interpolated values of 238U recorded from the air and measured along transects with
200 m spacing (dotted lines). Areas covered by glacial till are shown hatched, and 5 m elevation
contours are drawn. The photo shows scenery typical of the area

crops have been recorded under the Swedish Seal of Quality certification system.
The soil texture ranges from silty clay to sandy loam (Fromm, 1976). Most of the
soils are Haplic Cambisols. The area is located in an E–W basin with a 0–20-m-thick
soil cover underlain by Cambrian–Silurian bedrock, mainly limestone, sandstone,
shale, and alum shale. Precambrian granitic bedrock covers the area north and south
of the basin, just outside the study area.

Exactly 56 samples of topsoil (0–20 cm deep) were collected in one part of
the study area (Fig. 28.2). Some 34 samples were obtained in 2001 from field B
(Fig. 28.2) as part of an earlier unpublished study, while the rest were taken in 2006.
A sample consisted of several sub-samples collected with a soil auger, but the sam-
pling procedure differed between the surveys (2001: 7–10 sub-samples obtained
from a circle of 3–5 m radius; 2006: 9 sub-samples obtained in a 3 × 3 grid cover-
ing 20 m × 20 m). In 2007, 25 samples of winter wheat (Triticum aestivum) were
collected (locations shown in Fig. 28.4). These samples were chosen to cover areas
of high and low values of 238U from the airborne survey (Fig. 28.1). Winter wheat
grain samples obtained in 2006 were also used (n = 34). These were located in
different soil types according to the SGU soil map. All grain samples consisted of
nine sub-samples obtained in a 3 × 3 grid covering 20 × 20 m. At each sub-sample,
20 cm of the crop in two rows was cut. Soil Cd concentrations were determined
after extraction with 7 M HNO3 at 100◦C (SIS, 1997). Grain Cd concentrations
were determined after digestion in concentrated HNO3 (suprapure) for 20 h at a
final temperature of 135◦C. Analyses were performed by ICP-MS.
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Fig. 28.2 Cd in topsoil and
238U. Maps of 238Uground at
four fields (A–D) scanned by
the Mole ground sensor. The
background map is based on
238U from the SGU
radiometric database (part of
Fig. 28.1)

The maps in this report were created using ArcGIS 9.1 (ESRI Inc., Redlands,
USA) with the extensions Spatial Analyst and Geostatistical Analyst. The interpo-
lation method used was ordinary block kriging. Experimental variograms and fitting
of variogram models were made in GS+ (Gamma Design, Plainwell, USA). The air-
borne data were interpolated to a 50-m × 50-m grid, whereas the resulting maps of
the ground-based data had a resolution of 5 m × 5 m.

28.3 Results and Discussion

Figure 28.1 shows the interpolated 238U values from the airborne measurements
(238Uair). High 238U values coincided well with soils characterised as glacial till.
The till with high 238U content contains a large percentage of fragments from alum
shale parent material.
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Fig. 28.3 Scatter plots of interpolated 238U and topsoil Cd for (a) the ground sensor and (b) the
SGU radiometric database. White circles, field A; pink squares, south-eastern part of field B; blue
diamonds, north-western part of field B; yellow triangles, field D; dark green circles in diagram b,
samples outside of fields A–D

Soil Cd concentrations in samples obtained in a smaller part of the study area
are shown in Fig. 28.2. Detailed interpolated maps of the ground-based measure-
ments of 238U (238Uground) at four fields are displayed on top of the 238Uair map.
Figure 28.3a and b shows scatter plots of soil Cd vs. 238U based on maps in Fig. 28.2.
The correlation between soil Cd and the 238Uground map is fairly strong, but the
relationship varies between the different fields or parts of a field. For example, the
south-eastern part of field B consists of postglacial silt, which has a very low Cd
concentration. Towards the north-east in the same field, there is an abrupt transi-
tion to a clayey soil, with high soil Cd concentration. Figure 28.3a shows that the
correlation between 238Uground and Cd is different in the two parts of the field. The
airborne measurements of U are also well correlated with soil Cd, despite the fact
that a 238Uair map provides more of a regional overview.

There is a clear positive correlation between the 238U map and Cd in winter
wheat in the 2007 samples (Figs. 28.4 and 28.5). However, a few of the samples
that were taken at locations with very high 238U values have a lower Cd content
than expected. Cd in grain in the 2006 samples was more scattered and values were
generally higher. Three samples had a Cd concentration of 120 μg kg−1, but at
least for one of these the mapped 238U value was not very high. This particular
sample, however, was obtained close to an area with substantially elevated 238U
values.

The spread of values in the scatter plot of Fig. 28.5 may seem discouraging, but
as was mentioned in Section 28.1, Cd uptake by a crop is complicated and depends
on a number of variables. The wheat collected in 2007 was of the same cultivar
(Olivin) and the samples were directed to fields that had sharp gradients from high
to low 238Uair values (Fig. 28.2). The samples from 2006, on the other hand, con-
sisted of a mix of cultivars and the sampling was done without consideration of the
variability of 238Uair. Local variations in soil properties – such as pH, clay content,
and organic matter – may affect Cd uptake. Another problem with the comparison
made in Fig. 28.5 is that a single airborne gamma ray measurement is an average
over a large area on the ground. In this case, measurements are dense in the N–S
direction (every 16 m), but the distance between the flight transects is about 200 m.
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Fig. 28.4 Cd in winter wheat grain in 2006 and 2007. The background map is the 238Uair map in
Fig. 28.1 (airborne instrument), arbitrarily classified into three classes

Fig. 28.5 Scatter plot of Cd in winter wheat grain in 2006 (white squares) and 2007 (dark circles)
vs. values in the 238U map in Fig. 28.1

The position of the measurement is also to some extent uncertain. Depending on the
mapping method, estimated values at single pixels may differ.

Another interesting fact is that the uptake of Cd in the grain in the Östergötland
study area is lower than expected from its soil Cd levels, which are high in some
places. In other areas of Sweden with similar soil Cd concentrations, the Cd in



28 Gamma Ray Sensing for Cadmium Risk Assessment in Agricultural Soil and Grain 339

Fig. 28.6 Box plots of Cd in winter wheat at different levels of 238Uair in (a) Östergötland
U < 85 Bq/kg; (b) Östergötland U > 85 Bq/kg; (c) Skåne U < 85 Bq/kg; (d) Skåne U > 85 Bq/kg.
Note the different scales on the y-axes

winter wheat is normally higher. Apparently, the Cd is less available to plants. In
Fig. 28.6, a comparison is made between 238Uair and Cd in winter wheat in the
Östergötland study area and similar data from another problem area in southern
Sweden (in south-eastern Skåne County). In the Skåne area, the 238Uair values are
similar or slightly lower than in the Östergötland area, but the uptake of Cd is much
higher. In the Skåne area, however, there are other known sources of Cd than alum
shale, e.g. occurrences of Cd-rich sphalerite in Cambrian sandstone (Söderström
and Eriksson, 1996), which would not be recorded by 238U measurements. In addi-
tion, the highest Cd values in Skåne were obtained during a year with very high
precipitation, which has been reported to be an important uptake factor (Eriksson
et al., 1996). Further work is needed to better understand the temporal (between-
year) variations of Cd uptake in grain and the variation in uptake between varieties.
This would improve the usefulness of the strong relationship encountered in this
study between soil Cd and 238U.

For farmers working under the quality certification system, it would be valuable
if some fields could be classified as low risk for Cd in grain, without the need for
analysing Cd in the soil. A system of ‘green cards’ for such areas has been sug-
gested. In the studied area in Östergötland, it is evident that the alum shale is the
primary source of Cd in the soil. The alum shale is also the source of uranium,
and measurements of 238U seem to work well as a proxy for soil Cd in this case.
The variation of Cd is considerable, sometimes even within a field. Fields entirely
located in areas with the lowest 238U values, e.g. the light grey area in Fig. 28.4,
should carry only a small risk for high Cd in either soil or crop. Conversely, fields
wholly or partly located in areas of higher 238U should be required to test for Cd in
the soil. For such fields, a reasonable approach might be to use a detailed proximal
gamma ray survey from a vehicle, together with a few samples for Cd analyses
targeted according to the resulting map.

Given this framework, it seems reasonable to suggest that the described sens-
ing techniques could be used for Cd risk classification of agricultural land in areas
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Fig. 28.7 Suggested steps of cadmium risk classification of agricultural land based on gamma ray
sensing in areas where the main source of cadmium is uranium-rich bedrock, such as alum shale

such as this. A conceptual model of how these techniques could be applied in prac-
tice is shown in Fig. 28.7. The goal would be that farmland classified as low risk
for Cd could receive a ‘green card’ and would not have to test for Cd in grain. In
areas where the main source of Cd is U-rich bedrock, it should be sufficient to do
this initial classification based on airborne gamma ray sensing combined with tar-
geted sampling of soil and crop to develop a risk classification model for the area.
Bearing in mind the differences in relationship between 238Uair and Cd in wheat
shown in Fig. 28.6, the sampling of Cd in soil and crop is crucial. It is advisable that
such a risk model (step 3 in Fig. 28.7) be developed by a method that includes the
uncertainty of the 238Uair data, e.g. indicator kriging or fuzzy classification of the
238Uair map.

Figure 28.8 is an example of a risk classification of agricultural land in the
study area. In this case, agricultural land was derived from a vector polygon map
used for management of EU agricultural subsidies in Sweden (Swedish Board of
Agriculture, Jönköping, Sweden). Physical obstacles constitute boundaries of the
polygons, which can be equivalent to one or a few fields. Owners of agricultural
land that is judged being above a risk limit would need a detailed survey (boxes
6–9 in Fig. 28.7), e.g. by an instrument such as the Mole in combination with local
samples of Cd. After the detailed survey, some additional areas could be given a
‘green card’ (box 10b in Fig. 28.7) or, if above a risk limit, a ‘red card’ (box 10a in
Fig. 28.7). Grain from red card areas would always need to be controlled for Cd.

Although the results of this initial analysis of the co-variability between Cd in
soil and crop and 238U from gamma ray sensing are promising, it is suggested that
further studies in areas with corresponding geological conditions should be con-
ducted. Suitable methods for the development of risk maps in this context also need
to be examined.
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Fig. 28.8 Example of Cd risk classification of agricultural land in the Östergötland study
area according to the model in Fig. 28.7. The cross-hatched areas correspond to box 5a in
Fig. 28.7 and areas classified as ‘green card’ to box 5b. Dark grey areas indicate non-agricultural
land

28.4 Conclusions

There is a risk that a national soil survey may depict, in very general terms, areas
as having high Cd contents. The number of samples involved may be high, but
the sampling density is often low and a single sample will represent a very large
area. Our results indicate that both airborne and ground-based gamma ray measure-
ments of 238U can be used for more detailed assessment of Cd in soil, and thereby
also in winter wheat grain, in areas where the main source of Cd is alum shale.
Detailed maps from proximal gamma ray sensing from vehicles should be useful
in detecting parts of fields with particularly high or low risk of high Cd in soil
and crop. Cd uptake by crops is complicated and difficult to predict, but detailed
knowledge of Cd in the soil improves our understanding of the spatial variabil-
ity of Cd in crops. Precision in sampling of soil and crops for Cd analysis in alum
shale areas could be improved if the sampling is targeted according to the variability
of 238U.
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Chapter 29
Use of EM38 and Gamma Ray Spectrometry
as Complementary Sensors for High-Resolution
Soil Property Mapping

M.T.F. Wong, K. Wittwer, Y.M. Oliver, and M.J. Robertson

Abstract Apparent soil electrical conductivity (ECa) is related to soil properties
such as clay and water content, clay mineralogy, and depth to textural contrast – and
hence to plant-available soil water storage capacity (PAWC). High spatial resolution
sensing of ECa, coupled with local field calibration, has been used to map expensive-
to-measure soil properties, interpret yield maps, locate leaky areas for water and
nitrate, and manage the land. Multiple factors affecting ECa is a weakness of the
method. Salinity interferes with data interpretation, and the method cannot distin-
guish between sandy soils and gravels which have similar and low ECa. Therefore
soil depth and PAWC cannot be estimated in shallow soils over gravels. Gamma
ray spectrometry is relatively new to soil sensing and has shown promise to esti-
mate clay content, PAWC, soil depth, and other soil properties. It is insensitive to
common salt, but again it is difficult to interpret gamma ray emission data alone, as
clays and gravels result in similarly strong signals. This work provides an approach
to overcoming the weaknesses of the single-sensor data by developing a rule-based
method for dual EM38–gamma radiometric sensor interpretation to infer soil prop-
erties. Simple rules are developed and used to identify soil types (ranging from
coarse-textured sands to clay and areas of shallow soils <40 cm deep) and soil acid-
ification risks. The rules are guided by the grower’s soil map and validated with
published maps of soil pH and depth. The dual-sensor method overcomes the weak-
ness of the single-sensor data and has the potential to compensate sparsely sampled
measurements and estimate their spatial distribution at high resolution in complex
field situations without the need for expensive and extensive direct sampling and
measurements.
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29.1 Introduction

Apparent soil electrical conductivity (ECa), or its reciprocal apparent soil electri-
cal resistivity, measured, for example, by on-the-go EM38 sensing, has been used
to estimate a range of expensive-to-measure soil properties such as plant-available
soil water storage capacity (PAWC), clay content, and soil depth to hardpan at high
spatial resolutions similar to those of yield maps (McBratney et al., 2005; Wong and
Asseng, 2006). This high-resolution soil property mapping, combined with process
modelling, has allowed the causes of spatial and seasonal variations in wheat yield
to be determined to support management (Wong and Asseng, 2006, 2007). This
approach of integrating detailed knowledge of the spatial distribution of soil proper-
ties with process modelling has also allowed field locations prone to deep drainage
and nitrate leaching to be identified for targeted management (Wong et al., 2006). It
has the potential to increase the impact of precision agriculture on both profits and
the environment by allowing targeted site and season-specific management of vari-
able yield and environmental performance across the farm (Stoorvogel and Bouma,
2005; Wong and Asseng, 2007).

For deep non-saline soils, ECa is a function of temperature, clay content, miner-
alogy, moisture content, and bulk density (McBratney et al., 2005). Measurements
of ECa have been used to estimate soil depth to underlying hardpan due to contrast
in soil texture and apparent electrical conductivities between the topsoil and the
underlying clayey hardpan (Doolittle et al., 1994). Occurrence of salt in dryland and
coastal environments is a common interference in the estimation of soil properties
(other than salinity) in Australia and elsewhere. An additional weakness of ECa-
based methods is inability to distinguish between sandy soils and gravels because
these materials have similar and low ECa values. Soil depth and hence depth-limited
PAWC therefore cannot be estimated in landscapes with shallow soils over gravels
(Wong et al., 2008). Shallow soils over gravels are common in highly weathered
landscapes (McKenzie et al., 2004). Shortcomings due to salinity and occurrence of
gravels can be overcome by complementing ECa-based methods with other sensors
that are not subject to the same weaknesses.

Gamma ray spectrometry is a relatively new on-the-go soil property sensing tech-
nique that shows promise in high-resolution soil property mapping. While new to
soil property sensing, it is commonly used for geological mapping and mineral
exploration in Australia. Unlike ECa survey, which can be done only proximally, the
spectrometer can be carried on either ground or airborne platforms because γ-rays
are little affected by air. The spectrometer measures natural γ-emissions from the top
30 to 45 cm (maximum depth that γ-rays can penetrate through to the soil surface
and be measured) of the soil due to emitters such as 40K and daughter radionuclides
of 238U and 232Th. Association of these radionuclides with clays, gravels, and soil-
forming materials led to variations in the concentrations of these emitters being used
to estimate soil properties such as clay, potassium, organic carbon and iron contents,
soil depth, and soil pH (Viscarra Rossel et al., 2007; Wong and Harper, 1999; Wong
et al., 2008). Ambiguity in the interpretation of radiometric data arises when soils
with varying gravel and clay contents occur across the surveyed area: both increases
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in clay content and proximity of gravels to the soil surface result in strong signals.
This problem is not encountered with ECa-based methods since clays and gravels
give rise to markedly different ECa values.

This work seeks to overcome the weakness of the single-sensor technology by
developing a rule-based method for dual EM38 and γ-radiometric data interpretation
to infer soil properties. The initial rules for using these data to map soil proper-
ties (Wong et al., 2008) provide a basis for the work presented here. The aim is to
progress the development of this rule-based method to use the grower’s knowledge
to identify texturally contrasting soils across a field and to compare these soils with
reported values of soil pH and soil depth.

29.2 Materials and Methods

29.2.1 Location and Soil

The 200-ha field was 350 km north of Perth at Buntine, WA (116.57◦E, 29.99◦S).
The average annual rainfall for Buntine is 333 mm, of which 238 mm falls in May–
October (growing season). The main crops grown are wheat in rotation with lupin
and canola. The grower produced a map of soil types in 2003 based on field obser-
vations and his knowledge. He used a GPS to approximately locate soil and field
boundaries, and named these soil types as good sand (Eutric Regosol), medium
sand (Eutric Regosol), poor sand (Ferralic Arenosol), gravels (Xanthic Ferralsol),
and red clay (Ferralic Cambisol). This soil-mapping approach was chosen because
these soil types are easily recognised by local growers and is cost effective. The field
slopes to a salty creek which diagonally bounds the north-west of the field, which is
mapped as good sand.

29.2.2 EM38 and γ-Radiometric Survey

We measured apparent soil electrical conductivity (ECa) across the field in 2004
with electromagnetic induction equipment (Geonics EM38) in its vertical dipole
mode (details in Wong et al., 2008). The ECa survey was carried out on a 30-m line
spacing with a quad bike in June 2004 when the soil was moist (75 mm of rain since
the previous month). The ECa data and exponential local variograms were used to
krige values to a 5-m grid to produce a map of ECa. The γ-ray emission survey
was also carried out in 2004 on a 30-m line spacing with an Exploranium γ-ray
spectrometer with a large (8 L) thallium-activated sodium iodide crystal scintillation
detector (details in Wong et al., 2008). This survey was also done on a quad bike
in February 2004 when the soil was dry (to minimise gamma ray attenuation). The
site had received only 22 mm of rain in the previous 5 months. The spectra were
resolved into individual emissions from potassium, thorium, and uranium according
to their characteristic peaks. The individual emission data were kriged as above to
map the surface counts from potassium, uranium, and thorium to a 5-m grid.



346 M.T.F. Wong et al.

29.2.3 Sensor Response and Interpretation

Both ECa and γ-ray emission measured on deep soils increase with increasing clay
content (Wong and Asseng, 2006; Wong and Harper, 1999), provided there is no
interference from salt, superficial rocks, and gravels. Under good conditions, coarse-
textured soils with low clay content result in low values of both ECa and γ-ray
emission, while finer textured loams and clayey soils result in larger values of both
ECa and γ-ray emission which can be calibrated with local clay content to map this
soil property (Wong and Harper, 1999). Presence of salt results in an increase in
ECa that is out of proportion to an increase in γ-ray emission; the reason is that
salinity in dryland and coastal environments is dominated by sodium and calcium
salts which have low radioactivity but high electrical conductivity in the presence of
moisture. Shallow soils with layers of superficial gravels less than 45 cm from the
soil surface result in increases in γ-ray emission not matched by increases in ECa
because gravels have similar ECa values to sands but are strong emitters of γ-rays.
This simple qualitative knowledge provides a basis for developing rules to interpret
dual ECa and γ-ray sensor data. We used the grower’s knowledge of the field to
determine the range of ECa and γ-ray emission values typical of soils encountered
across the field. This avoided expensive field calibrations against the geophysical
data. The goodness of the method was then checked against published maps of soil
depth over gravels and soil pH. Here soil pH is used as a surrogate for soil texture:
coarser-textured soils are more leached, are more poorly buffered, and are at greater
risk of acidification than are finer textured soils.

29.3 Results and Discussion

The area covered by low ECa values (<10 mS m−1) represented 31% of the field
(Plate 29.1a). This area could not be resolved more because of limits in the sen-
sitivity of EM38 sensing. Correspondingly low γ-ray emission from 40K (20–40
counts per 100 s) covered only 13% of the field (Plate 29.1b). Low sensitivity of ECa
measurements at <10 mS m−1 means that the method cannot discriminate between
areas known by field observations and the grower to differ texturally (poor sand
and medium sand) and between deep sandy soils and shallow soils over gravels
(Plate 29.1c). While these soils cannot be resolved solely on the basis of their low
ECa values, ability to identify them is important because they had different crop
yields that varied according to the season (Wong et al., 2008) and may benefit from
site- and season-specific management.

Gamma radiometry is more sensitive to textural changes in sands than is ECa
sensing. The area with ECa <10 mS m−1 can be resolved into the component poor
sand, medium sand, and shallow soil over gravels and mapped accurately with com-
plementary γ-ray emission data and ground knowledge. The coarsest textured sand
(poor sand) occurs where areas of low ECa <10 mS m−1 coincide with areas of low
γ-ray emission from 40K (20–40 counts per 100 s). Emission from 40K is more sen-
sitive to textural change, increasing to ∼40–80 counts per 100 s in the medium



29 Use of EM38 and Gamma Ray Spectrometry as Complementary Sensors 347

Plate 29.1 Apparent soil electrical conductivity measured by EM38 (a), γ-ray emission from 40K
(b), soil map of the field produced by the grower (c), field area covered by rules of dual EM38 and
γ-radiometric sensor data interpretation shown in Table 29.1 (d), sample locations (stars and dots)
and kriged subsoil pH in CaCl2 (e), and soil depth (f). Reproduced from Wong et al. (2008) with
kind permission of Springer Science and Business Media

sand, whereas ECa mostly remains at <10 mS m−1, with small transition areas
having ECa values up to 15 mS m−1. ECa remains low (<15 mS m−1) in shallow
soils over gravels but this area can be identified due to its high γ-ray emission from
40K > 80 counts per 100 s.

The red clayey soil is characterised by both high ECa values >20 mS m−1 and
high γ-ray emission from 40K > 80 counts per 100 s. In contrast, all sands have γ-ray
emission from 40K < 80 counts per 100 s, but the finer textured ‘good sands’ also
have ECa values >20 mS m−1. Very high ECa values measured along the west and
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Table 29.1 Rules for dual EM38 and γ-radiometric sensor data interpretation

Rule number and
description ECa (mS m−1) 40K counts (100 s)−1

Grower’s description
of soil type

1. High–medium >20 <80 Good sand
2. Low–high <15 >80 Shallow gravelly
3. Low–low <10 <40 Poor sand
4. Low–medium <15 40–80 Medium sand
5. High–high >20 >80 Red clayey

north-west boundary of the field, but which are not matched by high γ-ray emission
from 40K, mean that these soils are salt affected. The rules used to interpret the dual
EM38 and γ-radiometric data are summarised in Table 29.1.

The areas of the field covered by the rules presented in Table 29.1 are in
remarkably good accord with the grower’s soil type map drawn without any prior
knowledge of the ECa and γ-ray emission maps (Plate 29.1d), which were avail-
able only 1 year later. This shows that the dual-sensor method is promising but is
not a validation of the method since the range of geophysical values used in each
rule was influenced by the grower’s soil map. Independent kriged values of sub-
soil pH and soil depth across this field, reported by Wong et al. (2008), provide
an indirect means of method validation. There was a good spatial match between
extremely acidic subsoil (pH in CaCl2 <4.2) and the area geophysically mapped as
‘rule 3, poor sand’ (Plate 29.1e). The accurate location of this area, corroborated
by geophysics and subsoil pH measurements, is north-west of where the grower
thought. Similarly, there was a good spatial match between the location of very
acidic subsoils (pH 4.2–4.7) and the location geophysically mapped as medium
sand and between the locations of neutral to alkaline soils (pH 6.2–8.8) and red
clayey soil. Areas of soil with depths measuring <40 cm over gravels (Plate 29.1f)
coincided with areas covered by rule 2 for shallow gravelly soils (Plate 29.1d). The
remarkably good spatial agreement between measured subsoil pH and soil depth and
the geophysically located ‘soil type’ suggests the validity of the method presented
here. The next step is to test the method on fields in the region.

A spatially detailed assessment of soil properties is possible once the nature of
the soil in each soil type polygon is unravelled. For example, once it is established
that high γ-ray emission in an area is due to shallow gravels and not clayey soils,
γ-ray attenuation theory can then be used to map variation in soil depth accurately
at a spatial resolution of 5 m. This work, described elsewhere, solves the current
inability of the currently used ECa-based method of soil depth estimation (Doolittle
et al., 1994) to estimate soil depth in this landscape (Wong et al., 2009).

29.4 Conclusions

A dual-sensor approach enabled different weaknesses of each individual sensor
to be overcome. Apparently conflicting signals from EM38 and gamma radiomet-
ric surveys provide complementary information to interpret potentially ambiguous
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single-sensor data. This interpretation of the dual sensor data is greatly aided by
prior grower’s and agronomist’s knowledge and field observations to finetune the
rules made. Independent soil property measurements indicate the validity and poten-
tial of the method. This approach should be generally applicable, but the actual
sensor values used in rules to interpret the data are expected to vary in differ-
ent landscapes due, perhaps, to differences in soil and landscape properties, giving
rise to different ECa and γ-radiometric responses. The use of dual sensors should
be encouraged, as salts and gravels occur commonly in dryland environments and
interfere with the interpretation of single-sensor data. The cost of each sensor sys-
tem is of a similar order of magnitude, and it may be possible to run both sensors
simultaneously to minimise mobilisation and operating costs. The approach pre-
sented here overcomes the weakness of the single sensor, such as the inability of
ECa-based methods to discern different types of sands, and between sands and grav-
els, which all have low ECa values. It has the potential to compensate sparsely
sampled measurements and estimate their spatial distribution at high resolution
in complex field situations, without the need for expensive and extensive direct
sampling and measurements.
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Chapter 30
Field-Scale Draught Resistance and Soil
Moisture Measurement in Australia Using
a Tine-Based Force–Capacitance Sensing System

B.M. Whelan, Y. Sun, Q. Zeng, P. Schulze Lammers, and J. Hassall

Abstract A newly developed tine-based force/capacitance soil sensing system was
used to measure draught resistance and soil moisture content across a 113-ha
commercial-scale grain field at Gilgandra, NSW, Australia. Soil in the field ranged
in USDA classification from sandy loam, clay loam, silty clay loam to clay. The field
was at an average volumetric moisture content of 30%, and under these conditions
the measured data (∼15,000 observations) showed a positive correlation between
soil moisture content and draught force across the whole field (r = 0.56). The high
moisture content at which the experiment was conducted and the range of soil tex-
ture encountered are believed to have contributed to high friction values between
soil and probe. Importantly, the recorded draught force did show a strong correla-
tion with historical soil ECa (r = 0.65) or crop yield (r = 0.54) measured at a similar
scale. The sensing system shows potential for providing fine-scale information on
important yield-controlling parameters at a useful spatial scale when operated using
standard farm machinery.

Keywords Draught force · Soil moisture · On the go · Crop yield

30.1 Introduction

The development of crop-sensing systems to monitor the quantity and quality of
crop yield is revolutionising the way spatial and temporal variation in produc-
tion output can be documented (Plate 30.1a). Correspondingly, there is a growing
need for tools that can supply data at similar scales about variations in soil
resource parameters that affect crop performance. At the field scale, the concept
of site-specific crop management (SSCM) requires access to such information to
improve decision making about resource use.
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(c)  (d) 

(a)  (b) 

Plate 30.1 Data layer maps for the experimental field: 2005 crop yield (a); soil ECa (b); measured
draught force (c); and soil moisture (d)

To date there have been few instruments that can provide such data on variability
in soil attributes at a commercial scale. The measurement of apparent soil elec-
trical conductivity (ECa) using electromagnetic induction or electrical resistivity
techniques probably leads the way. However, soil ECa is an integrated secondary
property, the magnitude of which is controlled by cumulative contributions from
clay content, clay type, soil moisture (and ergo soil structure/bulk density), and the
ionic concentration of the soil solution. Extracting data on the variability in these
important primary soil properties from the ECa data across a field or a farm still
requires site-specific calibrations. Direct, on-the-go measurements of primary soil
properties would be much more desirable.

In Australia, irrigated land (including crops and pastures) occupies less than 1%
of the total land used for agriculture (ABS, 2006). The overwhelming use of dry-
land agriculture means that direct measurement of variation in soil moisture – or
soil physical parameters that contribute to variability in available water-holding
capacity (AWC) – across a field should be at the top of the development list. At
present, matching the variation in moisture-controlling soil resource parameters to
crop yield has been undertaken using ECa, as a surrogate to direct physical soil
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sampling (Taylor et al., 2007). However, in some cases, more specific soil attribute
calibrations have been explored for individual sites, for example soil AWC in a
Western Australian grain field (Wong et al., 2006).

Adamchuck (2004) provides a summary of early attempts to construct instru-
ments to tackle the direct measurement goal, and since then a number of new
in-ground, real-time sensors for the measurement of soil physical parameters and
moisture content have been tested (e.g. Mouazen et al., 2005). Here, a recently
developed tine-based force- and moisture-sensing system (Sun et al., 2006) is tested
at the full-field scale using standard farm machinery. The aim was to explore,
beyond the research plot scale, the functioning of the instrument and the degree
of spatial variability in soil moisture and draught force.

30.2 Materials and Methods

Figure 30.1a is a schematic showing how the system is based on a horizontal cone
penetrometer mounted on a pivoting force lever which is itself protected behind
a fixed cutting tine. The force lever is attached to a load cell, which registers
the draught force (F2). The force at the tip of the cone (F1) is here termed soil
resistance.

Volumetric soil moisture content is measured using a fringe-capacitance sensor
that is incorporated into the penetrometer shaft. Figure 30.1b shows the tine system
mounted on a three-point linkage, while a close-up of the combined penetrometer is
displayed in Fig. 30.2a. Figure 30.2b shows the unit operating under field conditions.

Laboratory calibration of the force and moisture sensors was carried out prior to
field use. The linear relationships, shown in Fig. 30.3, were found to be as follows:

(a) (b)

Fig. 30.1 Schematic of the soil sensing system (a) and the actual instrument (b)
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Fig. 30.2 The combined force and moisture penetrometer (a) and its in-field operation (b)

θ = −0.05 + 0.62 × Output_Voltage, (30.1)

F2 = −1452.58 + 8146.94 × Output_Voltage, (30.2)

where the unit of F2 is newton and the Output_Voltage is the reading recorded from
the individual sensors. The force F1 can be calculated as follows:

F1 = F2 ×
(

115

530

)
. (30.3)

The sensing system was mounted onto a tool bar attached to the three-point linkage
and set to a penetration depth of 0.02 m. It was then used in a 113-ha commercial
grain cropping field located south-east of Gilgandra, NSW, Australia. The field is
managed using controlled traffic and minimum tillage, with a recent cropping his-
tory of wheat (2005) and canola (2006). The trial described here was conducted in
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July 2007 and consisted of a reasonably detailed spatial study of the whole field
using replicated transects on a 100-m swath with the tractor travelling at an average
speed of 6 km h−1.

30.3 Results and Discussion

30.3.1 Transect

One transect ran the length of the longest axis in the paddock (see Plate 30.1a).
This 1.8-km transect traversed changes in elevation and soil physical composition.
Figure 30.4 shows the elevation recorded along the transect (a), the replicated out-
put for the two sensors (b and c), and also a previous year’s wheat crop yield
(d) recorded along the same transect using a harvester-mounted yield-monitoring
system. The replicated transects (531 and 524 observations, respectively) were con-
ducted in opposing directions but for comparison displayed in a uniform direction.
For analysis the transect was divided into four landscape stages delineated by the
dashed lines in Fig. 30.4. The transect began on the top of a ridge (Stage 1); the
recorded force then rose substantially as the transect entered a slight depression.
The force reached a maximum in the base of the depression and fell again as the
vehicle traversed the depression and climbed up and out (Stage 2). The observed
moisture content mimicked the force readings through these stages, although with a
smaller magnitude of change. The crop yield attributed to the region in Stage 2 rose
to nearly double than that observed from the region in Stage 1.

Within Stage 3, the draught force and soil moisture were generally the lowest
recorded in the paddock and this region also recorded a generally declining elevation
and crop yield. The last half of Stage 3, however, was characterised by a slight
plateau, and while the soil measurements remained relatively stable, the crop yield
rose by 1 t ha−1 across this region. In Stage 4, the force and moisture registered by
the sensors gently increased as the terrain again dipped into a shallow depression.
While the yield dropped entering this stage, it remained generally above that in
Stage 3.

From a visual inspection of the data it is clear that the draught force changed
in line with changes in terrain along the transect. Changes in crop yield also
reflected changes in terrain and draught force. The moisture content appeared to
be more independent. The mean measurements in each of these stages are recorded
in Table 30.1 and provide quantitative confirmation of this assessment.

Soil profile sampling along the transect, at locations in the landscape indicated
by the position of the numbers in Fig. 30.4a, provided the data in Table 30.2. Here
it can be seen that the soil in Stage 1 is characterised by the lowest ECa, CEC,
combined clay and silt content, and Ca and Mg levels; it also had the highest bulk
density. These attributes contribute to a sandy, poorly structured soil. In Stage 2,
the draught force rose dramatically and the soil showed the highest ECa, CEC,
combined clay and silt content, Ca and Mg levels, and the lowest bulk density. The
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Table 30.1 Calculated means for observations in the four stages along the transect

Mean draught force, F2 (kN) Mean soil moisture (%)

Stage
Mean
elevation (m) Transect 1 Transect 2 Transect 1 Transect 2

Mean yield
(t ha−1)

1 384 2.2 2.3 33 30 1.67
2 380 3.7 4.7 34 33 2.70
3 381 2.1 2.3 30 31 1.75
4 379 2.0 2.7 31 32 1.92

Table 30.2 Soil sample data from each stage. Locations identified by numerals in Fig. 4a

Soil ECa pH Mg Clay Silt Sand AWC
Texture
class

Stage (mS m−1) (CaCl) Ca (mmol/kg) CEC (%) (%) (%) (%) BD (USDA)

1 17.651 5.1 71.4 15 99.4 20 25 55 0.17 1.49 SL
2 74.285 6.2 205.8 61.3 283.2 40 43 17 0.21 1.27 ZCL
3 32.652 5.2 107.4 35.6 160.4 54 24 22 0.13 1.31 C
4 39.475 6.1 147.5 52.6 213.7 27 35 38 0.18 1.42 CL

soil in this area has attributes that contribute to a heavier soil with much improved
soil structure and fertility.

The soil in Stage 3 had the highest clay content and the lowest potential AWC,
which is reflected in the lowest mean moisture readings from the transects and the
lowest mean yield. In Stage 4, the sample data showed a soil approaching the con-
ditions found in the large depression and the magnitude of the force, moisture, and
yield observations began to rise accordingly.

Simple linear correlation between the mean values measured in each stage
(Table 30.3) showed that the force measurements from the two transects were sig-
nificantly correlated (0.97), the moisture measurements were not (0.28), but that on
both transects the force/moisture correlation was strong (0.77; 0.85). The crop yield
was highly correlated with the force measurement (0.95; 0.99).

Table 30.3 Correlations between measured parameters in the duplicate transects and also
previously measured soil ECaand crop yield

Elevation Force trans 1 Force trans 2 Moist trans 1 Moist trans 2 Yield

Elevation 1.00
Force trans 1 −0.21 1.00
Force trans 2 −0.43 0.97∗ 1.00
Moist trans 1 0.25 0.77 0.70 1.00
Moist trans 2 −0.84 0.71 0.85 0.28 1.00
Yield −0.50 0.95∗ 0.99∗ 0.64 0.89 1.00

∗Significant at p< 0.05
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30.3.2 Whole Paddock

The data from the whole field sampling were used to estimate the global semivar-
iogram parameters for the soil moisture and draught force (Fig. 30.5). The model
parameters showed that the draught force exhibited the larger structural component
and greater spatial autocorrelation.

These models were used to spatially predict estimates of both draught force and
soil moisture onto a single 5-m grid across the whole paddock. Block kriging with
local neighbours using the global variograms was performed in Vesper (Minasny
et al., 2002) and the resulting maps are displayed in Plate 30.1c, d. Crop yield
and soil ECa previously gathered in 2005 have been predicted onto the same grid
(Plate 30.1a, b), enabling a simple correlation between the soil parameters and the
crop yield to be made across the whole paddock. Table 30.4 shows that there was a
significant positive correlation (r = 0.56) between the two measured soil parameters
and that the force measurement had a stronger relationship with soil ECa and crop
yield.

The significant positive relationship between draught force and soil moisture is
not as predicted by laboratory experiments or small-scale field tests. However, here
there is a substantial change in soil texture, moisture content, and terrain across
this commercial sized field and these parameters are obviously interacting in some
fashion, as evident in the repeatability of results shown in the transect experiment
(Fig. 30.4). According to the USDA/FAO classification system, the soil across the
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Table 30.4 Whole-paddock correlations between measured soil draught force, soil moisture, and
also previously measured soil ECa and crop yield

Soil moisture Draught force Soil ECa Elevation Yield

Soil moisture 1.0
Draught force 0.56∗ 1.0
Soil ECa 0.38∗ 0.65∗ 1.0
Elevation 0.15∗ −0.35∗ −0.39∗ 1.0
Yield 0.18∗ 0.54∗ 0.65∗ −0.5∗ 1.0

∗Significant at p< 0.05
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transect ranges from a sandy loam (SL) in Stage 1 to a clay (C) in Stage 3. The soil
in Stages 2 and 4 has a larger silt content (silty clay loam (ZCL), Stage 2; clay loam
(CL), Stage 4). The soil moisture trace in Fig. 30.4 generally shows that soil with a
higher silt content is holding more water as expected; however, these soils are also
located in relative depressions along the transect.

Mulqueen et al. (1977) noted that the total force on a penetrometer comprised
shear, compressive, tensile, and metal/soil friction components, which varied non-
linearly with soil moisture content. Importantly, they noted that at high and very low
moisture contents, the soil interacted with the penetrometer shaft and increased the
measured resistance. The soil moisture contents at which the measurements were
taken in this trial are much higher than those in previously published tests with
this instrument (Schulze Lammers et al., 2008). The soil strength is highest in this
field where the soil has the highest silt content and is generally wetter, leading to
the possibility that the soil conditions were producing increased friction or ‘grab’
between the soil and the probe. At frequent inspections, soil was not found to be
building up around the probe.

Such an observation in the soil moisture–draught resistance–texture interaction
may be easily missed on small-scale experiments because they fail to cover a broad
range of conditions. In this field the increasing draught resistance may well be asso-
ciated with increasing silt content only at high field moisture contents. There is also
the possibility that using standard machinery and operating speeds may influence
the sensing systems and that in the wetter, more silty areas of the paddock the mea-
surement depth may increase if the vehicle ‘sank’ further below the soil surface than
at set-up conditions. It will be important to ensure that vehicle position relative to
the soil surface is monitored in future applications to ensure accurate probe depth.

The data from the probe did show a significant positive correlation between crop
yield and both draught force and soil moisture. The stronger relationship (r = 0.54)
between crop yield and draught force was similar in magnitude to that observed
between soil ECa and crop yield (r = 0.65). The increased draught force is certainly
reflecting an aspect of the soil/landscape that is associated with higher yield poten-
tials. This is further confirmed by the significant positive relationship between soil
ECa and draught force (r = 0.65).

30.4 Conclusions

Ultimately, this experiment aimed to test the draught resistance–soil moisture
instrument at field scale using standard machinery to investigate the potential for
measuring soil parameters that could explain variability in crop yield. The sensor
has shown that the measured draught force does bear a positive spatial relationship
with crop yield over a commercial-sized field when measured at a similar scale.
There was a positive relationship between draught force and soil moisture in this
field, the reason for which requires further exploration. The spatial autocorrelation
is greater in this field for the measured draught force compared with soil moisture
content.
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Chapter 31
Sensor-Based Mapping of Soil Quality
on Degraded Claypan Landscapes
of the Central United States

N.R. Kitchen, K.A. Sudduth, R.J. Kremer, and D.B. Myers

Abstract Claypan soils (Epiaqualfs, Stagnic Luvisols) in the central United States
have experienced severe erosion as a result of tillage practices of the late 1800s
and 1900s. Because of the site-specific nature of erosion processes within claypan
fields, research is needed to achieve cost-effective sensing and mapping of soil and
landscape properties that quantify the soil’s current ability to produce crops and
provide ecosystem services – the concepts of soil quality. In this research, ECa sen-
sors, aerial imagery, yield mapping, and a horizontally operated penetrometer were
used for high-resolution mapping of soil quality indicators on a 36-ha claypan soil
field in Missouri. Field areas experiencing the most erosion now have reduced grain
production, lower plant-available water capacity (PAWC), and slower infiltration.
These same areas have higher soil penetration resistance (at 30 cm), yet greater
subsoil nutrients. The conclusion of this synthesis is that combining sensor-based
information provides a much clearer picture of spatially important characteristics
of claypan soil quality and can be used by land managers to target remediation of
degraded soils and implement precision conservation practices.

Keywords Apparent soil electrical conductivity · Electrical conductivity ·
Erosion · Historical · Soil quality maps

31.1 Introduction

Highly contrasting textural layers that undulate at varying depths across a land-
scape can have a dominating influence on crop growth and hydrology. Soils with
these characteristics provide an ideal setting for testing and evaluating sensors for
high-resolution soil mapping. An example of such a soil type is the 4 million ha of
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Epiaqualfs (Stagnic Luvisols) or ‘claypan soils’ classified within the central United
States as Major Land Resource Area 113 (MLRA 113). Claypan soils have an abrupt
increase in clay, more than doubling from ∼20% up to ∼60% clay, between the top-
soil (A or E horizon) and the initial argillic horizon. The depth of this claypan varies
from 0 to 1.0 m, depending on landscape position and degree of erosion or downs-
lope deposition. The low saturated hydraulic conductivity within the claypan leads
to perched water tables, creating a high probability of run-off in most years during
the winter and spring periods. As such, claypan soils are usually classified as some-
what poorly to poorly drained. Due to the high shrink–swell potential of smectitic
clays, there is also a high probability of annual shrinkage cracks forming during late
summer and early fall.

Much of the claypan soil landscape of the Midwest United States has been under
cultivation only for about 100–120 years. Early in the 1900s, improvements in agri-
cultural mechanisation allowed farmers to crop larger tracts. Additionally, soaring
grain prices during the First World War resulted in plowing of previously grazed
grasslands for the first time. However, under cultivation, intense storms caused dev-
astating erosion that filled streams and rivers with sediment. It was not until the
1970s and later that conservation measures (e.g. tillage practices shifting to mini-
mum and no-till) began to reduce the degrading effects of water erosion on these
soils. So after only ∼100 years of crop production, many claypan soil fields have
experienced extensive soil quality degradation. Such degradation affects their cur-
rent productivity and their long-term sustainability for food and biofuel production.
Because of the site-specific nature of degradation within these fields, research is
needed to achieve cost-effective sensing and mapping of soil and landscape proper-
ties that quantify the soil’s current ability to produce crops and provide ecosystem
services – the fundamental concepts of soil quality (Doran and Parkin, 1994).

Soil quality is complex due to the interaction of physical, chemical, and bio-
logical soil processes performing various functions. Adding to this complexity are
changes in soil quality across landscapes. Further, the task of evaluating on-going
agronomic and conservation effects on soil quality is daunting. Therefore, site-
specific characterisation of soil quality is needed to provide a baseline understanding
of the impact of past and future management, and can also be used for targeting
remediation with precision agriculture methods. The objective of this chapter is
to summarise our work on sensor measurements and methods that enable high-
resolution mapping of soil quality indicators for claypan soils. The indicators
examined include topsoil depth, yield and yield stability, hydraulic properties,
surface soil carbon, nutrients, and soil compaction.

31.2 Materials and Methods

Investigations over 16 years on a 36-ha claypan soil field located in north-central
Missouri, USA (39.2297 N, −92.1169 W), are summarised in this chapter. The
soils on this field are generally classified as Adco (fine, smectitic, mesic aeric Vertic
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Albaqualfs) and Mexico (fine, smectitic, mesic aeric Vertic Epiaqualfs) using the
USDA–NRCS classification system. The field is typical of production-scale fields
found in MLRA 113, managed in a corn (Zea mays L.)–soybean [Glycine max (L.)
Merr.] crop rotation and mulch tilled. Details regarding the management employed
on this field can be found in Lerch et al. (2005).

31.2.1 Soil ECa

Under different soil conditions and during different years, we obtained soil ECa
using two different sensor systems – a non-contact, electromagnetic induction–
based sensor (Geonics EM38) and a coulter-based sensor (Veris 3100).1 ECa surveys
were usually run on transects spaced approximately 10 m apart with data being
recorded at a 1 s interval (∼4–6 m data spacing) (see also Chapters 2 and 34). Data
obtained by differential GPS were associated with each sensor reading to provide
positional information with an accuracy of 1.5 m or better. From these datasets,
methods were developed for estimating topsoil depth (Sudduth et al., 2003). At the
time of an ECa survey, 12–20 sampling sites were selected within the field to cover
the range of ECa values present. At these sites, a 120-cm-long soil core was obtained
using a hydraulic soil-coring machine. Cores were examined within the field by a
skilled soil scientist and pedogenic horizons identified. Cores were segmented by
horizon for laboratory analysis of soil texture, soil organic C, bulk density, and other
soil chemical properties. These soil measurements were related to soil ECa. The ECa
data were also related to other soil quality characteristics as explained below.

31.2.2 Yield Mapping

This is one of the few field-scale experiments with more than 10 years of continu-
ous, high-quality, spatially referenced, cleaned yield data. Although yield has been
mapped, management has been conventional, with uniform inputs applied across the
field. Thus, yield maps provide insight into yield variation and associated agronomic
interpretations that occur due to spatial processes. Combines equipped with com-
mercially available yield-sensing systems were used to collect data for 1993–2002
yield maps. Individual points where yield data were unreliable due to combine oper-
ation or yield sensor issues were removed. Cleaned yield data were interpolated
with the geostatistical technique of block kriging. Further details on yield-mapping
procedures can be found in Kitchen et al. (2005).

One way in which yield maps were used was by transforming them and soil
test nutrient maps into a nutrient buffering index (BI) map. In essence, fertiliser

1 Mention of trade names or commercial products in this publication is solely for the purpose of
providing specific information and does not imply recommendation or endorsement by the U.S.
Department of Agriculture.
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additions and crop removal were examined relative to change in soil test. The BI is
a quantity–intensity relationship (�Q/�I), where �Q is the net balance of a nutrient
and �I is the change in soil test concentration. BI is interpreted as the quantity of
nutrient balance change responsible for one unit of change in soil test value.

31.2.3 Claypan Hydraulic Properties

To relate ECa to soil hydraulic properties, the lower (−1,500 kPa soil water pres-
sure) and upper (after field capacity was reached) limits of PAWC were determined
from sample profiles at various calibration points within the 36-ha field. Plant-
available water was determined by the difference between the upper and lower
values. Calculations were made on a 1.2 m basis. One hypothesis assessed whether
ECa could directly be used to estimate PAWC. A second hypothesis tested the idea
that maximum PAWC could be approximated with a hypothetical two-layer soil pro-
file composed of a topsoil layer (usually silt loam in texture) and a sub-layer (silty
clay or clay in texture) to the bottom of the rooting depth. The texture-specific PAW
fraction values needed to calculate profile available water are commonly available
through the USDA–NRCS.

31.2.4 Soil Compaction

To enable efficient compaction mapping and targeting of remediation management,
we developed a horizontally operated, multiple-depth penetrometer (Chung et al.,
2006). Similar to the standard vertically operating cone penetrometer, this sensor
measures the resistance of the soil to penetration by a series of prismatic cutting
tips along a blade pulled through the soil. The multiple prismatic tips extend for-
ward from the leading edge of the vertical blade and are spaced apart to minimise
interference from the main blade and adjacent sensing tips. The design maximum
operating depth was 0.5 m, and the upper limit and resolution of soil strength were
19.4 and 0.14 MPa, respectively.

Since this chapter presents a synthesis of previously reported investigations, addi-
tional ‘Materials and Methods’ details will not be repeated here, but can be found
in the cited papers.

31.3 Results and Discussion

31.3.1 Claypan Topsoil Depth

Because the claypan morphology presents a hostile environment for crop root
growth, particularly the E horizon just above the claypan (Myers et al., 2007),
the depth of soil above the claypan is an important indicator of soil quality. The
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Today ~120 yrs ago

Depth to Claypan (cm)

Fig. 31.1 Left: Topsoil depth
for a 36-ha claypan soil field
in Missouri developed from
soil ECa. Right: Modelled
topsoil map of the same field,
but prior to modern farming
and tillage, using soil ECa,
bare-soil remotely sensed
images, and profile
descriptions of nearby
uncultivated soil sites

relationship between topsoil depth and ECa varies by field, soil moisture, temper-
ature, and sensor type, but usually we have found regression R2 values between
0.7 and 0.9. Applying a regression model developed from a calibration dataset
allows transforming a field soil ECa survey into a high-resolution topsoil depth
map, as shown in the ‘today’ map of Fig. 31.1 (see also Chapter 20). Further, a
combination of soil ECa, bare-soil remotely sensed images, and profile descriptions
of nearby uncultivated soil sites allowed us to develop a model estimating topsoil
depth prior to cultivation (∼120 years ago map of Fig. 31.1) (Lerch et al., 2005).
The comparison vividly shows the extent of topsoil loss caused by farming during
the past ∼120 years. The majority of the field has lost topsoil, with an average loss
of 13 cm. The lighter colour areas on the ‘today’ map highlight field areas that have
experienced the greatest amount of erosion, losing up to ∼45 cm of topsoil. The
darker, narrow areas on the north end of the field define a drainage channel that has
accumulated sediments. We find that the visual representation of historical erosion
provided with this set of maps is extremely valuable in educational programs and to
help reinforce the need for conservation practices.

Comparing the thin topsoil areas to yield maps has demonstrated the importance
of topsoil to crop productivity and the instability of corn yield as shown in a 5-year
average yield map and yield coefficient of variation map (Fig. 31.2). Low-yielding
areas (darker areas in Fig. 31.2, left map) correspond to highest year-to-year corn
yield variability (lighter areas on Fig. 31.2, right map), meaning yield is low and
less predictable on thin topsoil areas.

Areas with low topsoil identified by soil ECa have also been identified as creat-
ing the greatest on-going environmental concerns (Lerch et al., 2005) and therefore
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Fig. 31.2 Five-year (1993, 1997, 1999, 2001, and 2003) average corn yield map (left) and
coefficient of variation (right) for a Missouri claypan soil field

should be high priority sites for targeting with precision conservation. In 2003, a pre-
cision agriculture system employing multiple production and environmental goals
was developed and initiated on this field. The plan for this system was developed
on the premise that mapped crop and soil information from sensors was fundamen-
tal to understanding what crops should be grown and what other management and
conservation practices should be adopted. Precision nutrients, crop type and rota-
tion, tillage, and herbicides are components embraced within this system and are
described in detail in Kitchen et al. (2005). The plan calls for conservation practices
targeted to degraded field areas to help remediate soil to a higher level of soil quality
(Kitchen et al., 2005).

31.3.2 Claypan Hydraulic Properties

Another aspect of soil quality relates to hydraulic characteristics. As briefly
described above, the claypan has dramatic effects on the hydrology of claypan soil
watersheds. Understanding variability in the claypan depth over the landscape is
essential for more accurately modelling soil water storage and infiltration rate, and
therefore run-off potential. In our work reported by Jiang et al. (2007), soil ECa
using both electromagnetic induction and coulter-based ECa sensors was applied in
two separate procedures to estimate PAWC of claypan soils. In the first procedure,
simple regression modelling between measured PAWC and ECa showed a signifi-
cant relationship with an R2 of 0.67 and an RMSE of 30 mm. These results were
derived from the significant relationship of ECa to the lower limit of the profile
PAWC, which is highly correlated with topsoil thickness. In the second procedure,
PAWC was simplified by hypothesising a two-layer soil profile composed of a silt
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Fig. 31.3 A two-layered soil
profile obtained from soil
ECa was used to estimate
plant-available water capacity
(PAWC)

loam topsoil layer and a silty clay subsurface layer. The boundary between these
layers (i.e. topsoil depth) can be conveniently estimated by ECa as described in
Section 3.1. Compared to measured PAWC, the results were promising (Fig. 31.3),
with RMSE values of ∼15 mm. With the two-layer approach, some underestimates
of PAWC resulted from the underestimation of topsoil thickness, whereas overesti-
mates were attributed to some soil profiles being short of field capacity at sampling
due to slow recharge. So for similar claypan soil fields, we propose these to be quick
and cost-efficient methods to quantify within-field profile PAWC with reasonable
accuracy.

The two-layered approach was used to create a high-resolution map of PAWC
(Fig. 31.4). Transforming the sensor information into a measure like PAWC allows
one to view problem areas in a metric that has direct meaning to the crop’s physiol-
ogy. Such PAWC maps are also useful for site-specific decision making with regard
to soil and water management.

In other work we have done, soil ECa was negatively correlated with saturated
hydraulic conductivity (Ks) (Jung et al., 2007) and bulk density in the 15–30 cm soil
sampling depth (Jung et al., 2005) of claypan soils. While the ECa–Ks relationship
was weak, it could also be mapped to screen for variations in hydraulic conductivity
at a field scale and isolate areas most prone to generating surface run-off (see also
Chapter 32).

31.3.3 Soil Organic Carbon

Soil organic carbon has long been recognised as one of the most important char-
acteristics for soil quality. While more direct sensor measurements have also been
explored (see Chapter 13), in some situations, indirect sensing of soil organic carbon
may be achieved. In work by Jung et al. (2007), soil ECa was weakly correlated with
surface soil organic carbon (r 0.70) on claypan soils. This relationship was hypothe-
sised as a reason ECa and infiltration were related, as previously described (see also
Chapters 12 and 15).
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Fig. 31.4 High-resolution
plant-available water capacity
(PAWC) mapping can be
obtained from soil ECa
surveys of claypan soils

31.3.4 Nutrients

Another aspect of soil quality is a soil’s ability to supply nutrients to plants. For
convenience, typically only the surface ∼20 cm of soils is sampled for nutrient
analysis. However, the subsoil can be rich in nutrients and significantly contribute
to crop nutrient needs. The challenge is assessing subsoil nutrients without costly
deep soil sampling. We found that claypan topsoil depth was strongly related to
profile soil nutrient content. After summing P and K soil test values over a 90 cm
soil profile, a significant relationship to topsoil thickness was found (Fig. 31.5).
Soil test K levels decreased with increasing topsoil thickness. Soil test P levels also
decreased with topsoil thickness, but then slightly increased with deeper topsoil
depth. This finding is significant because estimates of topsoil thickness using soil
ECa sensing may then be used to help estimate the total nutrients in the root zone
and to predict the response of crop plants to fertiliser inputs. In related studies, we
found a more probable response to P and K fertilisation where claypan soil topsoil
depth was the greatest (Kitchen et al., 1999).

A second concept developed relative to nutrient management is using yield map-
ping and soil test results over time to create a site-specific nutrient BI. Here this
is illustrated with potassium (K). This analysis showed that change in soil test K
to sufficiency levels was impacted by BI, and this factor was variable within this
field (Fig. 31.6). While K was not sustainable without fertiliser additions, not every
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Fig. 31.5 Profile potassium
(top) and phosphorus
(bottom) have been shown to
be highly related to topsoil
depth on claypan soils

location in the field needed to receive the same amount to sustain K supply. Sites
with a positive BI nearing 0 are the least buffered and should receive higher rates
of fertiliser. At these locations, small amounts of removal cause large reductions
in buffered nutrient. Fertiliser additions, whether maintenance or build-up applica-
tions, could be modified by the locally derived BI to provide an application rate that
more efficiently meets the crop’s need.

31.3.5 Soil Compaction

Due to their poor drainage, claypan soils are often wet in the spring. Thus, they
are sensitive to traffic- and tillage-induced compaction problems that impact soil
quality. Using an on-the-go horizontal penetrometer, maps of resistance for claypan
soil fields have been produced. We found that compaction variations seem to be
more strongly related to differences in soil properties than to traffic patterns. In
Fig. 31.7 (∼10 ha at the north end of the same field shown in the other figures), soil
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Fig. 31.7 Compaction variations in a typical claypan soil field, represented as prismatic soil
strength index (PSSI) measured by a horizontally operating, multiple-depth penetrometer. The
solid line represents the drainage channel
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resistance at 10 cm was greatest near the drainage channel, which is what one would
expect since this area stays wetter longer and would be more prone to compaction
by machinery operations. At the 30 cm depth, soil resistance was greatest on the
eroded side slopes. The sensor in this case would generally be within the claypan.
In general, resistance using the sensor was higher at locations with lower ECa, lower
water content, and greater bulk density (see also Chapter 22).

31.4 Conclusions

Claypan soils vary greatly in their ability to produce crops and provide ecological
service for minimal environmental impact. These soils lost resiliency when topsoil
eroded over the last ∼120 years of cultivation. The sensors and methods described
in this chapter help define, with high resolution, the spatial variability of soil quality.
These results can help land managers identify the practices needed and location for
improved precision conservation.
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Chapter 32
Proximal Sensing Methods for Mapping Soil
Water Status in an Irrigated Maize Field

C.B. Hedley, I.J. Yule, M.P. Tuohy, and B.H. Kusumo

Abstract Approximately 80% of allocated freshwater in New Zealand is used for
irrigation, and the area irrigated has increased by 55% every decade since 1965. The
research described in this chapter therefore focuses on developing new techniques to
map and monitor soil attributes relevant to irrigation water use efficiency. The appar-
ent electrical conductivity (ECa) of soils under a 33-ha irrigated maize crop was
mapped using a mobile electromagnetic induction (EM) and RTK-DGPS system,
and this map was used to select three contrasting zones. Within each zone, further
ECa values were recorded at a range of volumetric soil water contents (θ ) to develop
a relationship between ECa, soil texture, soil moisture, and available water-holding
capacity (AWC) (R2 = 0.8). This allowed spatial prediction of AWC, showing that
these sandy and silty soils had similar AWCs (∼160 mm/m). High-resolution digi-
tal elevation data obtained in the EM survey were also co-kriged with TDR-derived
θ to produce soil moisture prediction surfaces, indicating drying patterns and their
relationship to topography and soil texture. There was a 12.5–13.1% difference in
soil moisture to 45 cm soil depth between the wettest and the driest sites at any
one time (n = 47). Spatial and temporal variability of soil moisture, indicated by
these co-kriged prediction surfaces, highlights the need for a rapid high-resolution
method to assess in situ soil moisture. The potential of soil spectral reflectance
(350–2,500 nm range; 1.4–2 nm resolution) for rapid field estimation of soil mois-
ture was therefore investigated. Soil spectra were pre-processed and regressed
against known soil moisture values using partial least squares regression (R2 cal-
ibration = 0.79; R2 prediction using leave-one-out cross-validation = 0.71). These
proximal sensing methods facilitate spatial prediction of soil moisture, information
which could then be uploaded to a variable rate irrigator.

Keywords Available water-holding capacity · Co-krige · Digital elevation
map · EM mapping
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32.1 Introduction

New Zealand reflects a global trend in which increasing gains in agricultural pro-
ductivity are supported by increasing use and reliance on irrigation. This has led
to over-allocation of freshwater for irrigation in parts of the country, mirroring the
global situation. In addition, efficiency of water use is very low in some systems,
for example, up to 50% of water can be wasted in flood irrigation systems. Centre-
pivot irrigators, however, have the ability to apply exact depths of water accurately
to a crop, and recent advances have been made towards individual nozzle control
for variable rate irrigation. However, adequate decision support systems for vari-
able rate irrigators are not available, and there is a need for real-time monitoring,
decision, and control systems to be developed (DeJonge et al., 2007).

This decision support system would ideally provide real-time information to the
irrigator about daily spatial soil water status, where soil water status is defined as the
amount of water available to the crop. As crop yield is directly related to water stress,
this not only addresses the need for sustainable freshwater use but also introduces
cost efficiencies to the producer.

The total amount of water a soil can supply to a crop is usually measured by the
volume it can hold between field capacity and wilting point, which can be assessed
in the field (Hedley et al., 2005). Water status is the amount of this total available
water that is available to a crop on any one day and is commonly expressed as
millimetre water per millimetre rooting depth in soil. However, the spatial variability
of this status, as indeed is the case for many soil properties, will vary across the
landscape, a fact largely ignored before the 1980s (Cook and Bramley, 1998).

EM mapping is a proximal sensing method that maps soil variability on the
basis of soil texture and moisture in non-saline conditions (Hedley et al., 2004;
Chapter 34). The EM sensor records one weighted mean value for apparent soil
electrical conductivity (ECa) to a depth of 1.5 m, and this can be related directly to
soil moisture (e.g. Huth and Poulton, 2007; Chapters 21 and 23) if soil moisture is
the major variable affecting ECa. ECa has also been used to predict AWC (Waine
et al., 2000; Hedley et al., 2005; Hezarjaribi and Sourell, 2007), AWC being the
amount of water held by the soil between field capacity and wilting point. Field
capacity is defined as the point where all macro-pores have drained and is measured
in the field 2 days after a heavy rain (i.e. 2 days after an event which brings the soil
to saturation). Wilting point is the lower limit of available water, the soil moisture
content reached when a plant permanently wilts.

In comparison, direct soil moisture mapping has traditionally been accomplished
by exhaustive point measurements – which is both time consuming and costly.
Embedded sensors such as time domain reflectometry (TDR) are improvements,
but require considerable time and effort for installation and measurement, and the
data cannot be easily logged (Kaleita et al., 2005). A method of determination
that does not require exhaustive manual measurements is therefore desirable for
robust precision irrigation soil information support systems. Proximal sensing with
a vis–NIR spectroradiometer allows rapid field collection of soil reflectance spectra,



32 Proximal Sensing Methods for Mapping Soil Water Status 377

which can then be related to a calibration set of soils for gravimetric soil moisture
estimation (w) (Mouazen et al., 2005; Kaleita et al., 2005). Mouazen et al. (2005)
used a tractor-drawn subsoiler chisel to carry an optical unit through the soil; this
unit carried reflected light to a spectrophotometer (wavelength range 306–1,710 nm)
attached to the tractor. A prediction correlation of 0.75 [root mean squared error of
prediction (RMSEP) of 0.0250 kg/kg] was obtained for in-line field measurements
compared with a prediction correlation of 0.98 [root mean squared error of cross-
validation (RMSECV) of 0.0175 kg/kg] under laboratory conditions. Kaleita et al.
(2005) used an HR2000 spectrometer (spectral resolution 0.065 nm; wavelength
range 331–1,069 nm) to estimate w. Their results returned a lower R2 validation of
0.63 for all soils and an improved R2 validation of 0.71 when only the light-coloured
soils were included.

This chapter reports on our progress in the development of proximal sensing
methods to assess daily spatial soil moisture status for precision irrigation. It uses
high-resolution ECa data to predict AWC and high-resolution DEM to co-krige
TDR values. TDR values are used to investigate spatial and temporal variability
of soil moisture at the research site. The potential of backpack vis–NIR spectro-
radiometry for rapid, real-time mapping and monitoring of soil moisture is also
discussed.

32.2 Materials and Methods

32.2.1 Study Site

A 33-ha irrigated maize crop was selected at a farm near Bulls, approximately 30 km
north-west of Palmerston North, in the Rangitikei River Catchment, New Zealand.
A 600-m centre-pivot irrigator is used at this site during periods of seasonal drought.
The soils occur on a terrace surface and are mapped as Ohakea silt loams (Mottled,
Immature Pallic Soil, New Zealand Soil Classification; Endoaquept, USDA NRCS
classification; Stagnic Cambisol, FAO-WRB soil classification), characterised by
silt loam topsoils and mottled subsoils to about 0.6 to >1.0 m above heterogeneous
layers of sands and gravels. In some places, sand has blown onto this terrace soil
from an adjacent sand dune, forming the Ohakea loamy sand (Mottled, Immature
Pallic Soil; Endoaquept; Stagnic Cambisol). This soil is characterised by loamy sand
topsoil over mottled silt loam subsoil over sands and gravels.

Soil classifications

Soil name NZ USDA FAO

Ohakea silt loam Mottled, Immature Pallic Soil Endoaquept Stagnic Cambisol
Ohakea loam sand Mottled, Immature Pallic Soil Endoaquept Stagnic Cambisol
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32.2.2 Electromagnetic Induction Mapping and Soil AWC

A Geonics EM38 electrical conductivity sensor with Trimble RTK-DGPS and
Trimble Ag170 field computer onboard an ATV was used to map soil variability.
The Geonics EM38 measured apparent soil electrical conductivity (ECa) to a depth
of 1.5 m, providing one mean weighted value that is primarily influenced by soil tex-
ture and moisture in non-saline soils (e.g. Hedley et al., 2004). Survey data points
were collected at 1 s intervals, at an average ATV speed of 15 km h−1, with a
measurement recorded approximately every 4 m along transects 10 m apart. The
ECa map was produced using ordinary kriging in Geostatistical Analyst (ArcMap).

A method was then developed, based on that of Waine et al. (2000), to relate
ECa values to AWC. Three zones with low, intermediate, and high ECa values were
selected on the ECa map and AWC estimated for each zone. AWC was estimated
in the field by sampling three replicate soils in each zone for θ on days when the
soils were at field capacity [soil moisture deficit (SMD) 0 mm], had an intermediate
moisture content (SMD 40 mm), and were very dry (close to wilting point; SMD
130 mm). At an SMD of 130 mm, the very dry soil was losing water at no more
than 1 mm per day and was assumed to be close to wilting point. Soils were cored
to 600 mm (0–150, 150–300, 300–450, and 450–600 mm) and soil moisture was
determined gravimetrically on the known volumes of soil. Handheld ECa values
were also recorded.

Soil samples were also collected for particle size analysis (0–150, 150–300, 300–
450, and 450–600 mm). Percent sand, silt, and clay was determined by wet sieving
the >2-mm soil fraction and by a standard pipette method for the <2-mm soil frac-
tion; then one mean value for percent sand, silt, and clay to 600 mm was calculated
for three replicates in each zone. This was then converted to a single number, using
the fineness class developed by Waine et al. (2000) for UK soils. This fineness class
provides a numeric ranking of soils (1–6 in 0.5 intervals for the 11 classes on a soil
texture triangle) on the basis of increasing fineness of texture and provides a single
numeric value for soil texture.

To check the applicability of this fineness class to New Zealand soils, a cen-
troid value of percent sand, silt, and clay was obtained for each of the 11 classes in
the New Zealand soil texture triangle (Fig. 32.1a), which is used for standard soil
descriptions (Milne et al., 1995). Both UK and New Zealand soil particle classifi-
cations classify soil particle sizes as 0.06–2 mm (sand), 0.002–0.06 mm (silt), and
<0.002 mm (clay).

The texture-weighting equation developed by Waine et al. (2000) to produce a
line of best fit for UK soils was then applied to the New Zealand soil data, giving an
R2 of 0.96 (Fig. 32.1b), confirming its suitability for New Zealand soils. The texture-
weighting equation developed for UK soils can therefore be used for New Zealand
soils to define a numeric value (fineness class) for New Zealand soil textural classes
in terms of the following:

Fineness class =−0.8981 (Tw)2+3.8704(Tw) + 1.9686 and texture weighting
(Tw) = 0.03 (%clay) − 0.004 (%sand).
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Fig. 32.1 (a) New Zealand soil texture triangle. Milne et al. (1995) defines 11 soil texture classes
on the basis of percent sand, silt, and clay. Fineness class is shown for each soil texture class. (b)
Fineness class developed for UK soils (Waine et al., 2000) applied to New Zealand soil texture
classes

The fineness class determined for soils in this study was then plotted as a single
value on the abscissa against θ on the y-coordinate to produce a texture–moisture
graph. The texture–moisture graph displays curves of θ against soil texture for a
range of soil moistures between field capacity and very dry (near wilting point),
providing a field estimate of AWC. It can be used to predict AWC for other soils of
known texture within this range. ECa was measured each time field θ was measured
and these ECa values were plotted against the derived AWC value.

32.2.3 Soil Moisture Measurement

32.2.3.1 Time Domain Reflectometry (TDR)

Soil moisture θ was measured monthly by TDR (n = 47) between December and
March to assess spatial and temporal variability of soil moisture.

32.2.3.2 Collection of Vis–NIR Soil Reflectance Spectra

A vis–NIR spectroradiometer was trialed for rapid field estimation of soil moisture.
Ten replicate soil reflectance spectra were collected at 90 positions using an ASD
FieldSpec Pro FR spectroradiometer (Analytical Spectral Devices). A prototype soil
probe was used in which an internal light source was replaced with a higher inten-
sity halogen lamp; it was based on the ASD plant probe (see Chapter 15). Using
the prototype probe, attached via a fibre optic cable to the ASD FieldSpec Pro FR
spectroradiometer in a backpack, reflectance spectra were collected (350–2,500 nm)
from a freshly cut soil surface at a soil depth of 20 mm. These hyperspectral data
were recorded at bandwidth intervals of 1.4–2 nm. After spectra had been obtained,
soil samples were collected (20–50 mm) at each position to determine w.
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32.2.3.3 Spectral Data Pre-processing

The hyperspectral data were pre-processed and then partial least squares regression
was used for prediction and statistical correlation. Data pre-processing included (i)
waveband filtering to remove the noisy data between 350–470 and 2,440–2,500 nm,
(ii) smoothing (Savitzky–Golay), (iii) data reduction, (iv) derivative calculation, and
finally (v) averaging of the 10 replicate spectra using SpectraProc v1.1 software
(Hueni and Tuohy, 2006). The pre-processed data were then imported into Minitab
14 (Minitab, Inc., 2006) and a calibration model for prediction of soil moisture was
developed using partial least squares regression.

32.3 Results and Discussion

32.3.1 Electromagnetic Induction Mapping and Soil AWC

The ECa map delineated soil differences on the basis of texture and moisture,
confirmed by soil pit examination, particle size analysis, and soil moisture measure-
ments (Table 32.1). Three zones, representing areas of low, medium, and high ECa
values (zones A, B, and C, respectively; Fig. 32.2, Table 32.1), were then defined
as three classes (using Jenks natural breaks) of a prediction surface produced using
a spherical semivariogram and ordinary kriging (Geostatistical Analyst, ArcMap).
These zones were ground truthed as Ohakea loamy sands in the orange-red zones
(zoneA); Ohakea silt loams in the yellow-green zones (zoneB), and a natural low-
lying ponding area where subsoils were more intensely mottled and soils were
generally wetter (zone C) (Fig. 32.2).

Texture–moisture graphs (Fig. 32.3a) and a derived relationship between ECa and
AWC (Fig. 32.3b) were used to produce the AWC map (Fig. 32.4). In Fig. 32.3a, the
top curve represents θ at field capacity and the lower curve represents θ when the
soils were very dry (close to wilting point) for the textural range of sampled soils
(therefore the difference between these two curves is a field estimate of AWC). AWC
is then plotted against ECa (Fig. 32.3b), using the handheld ECa values which were
recorded for each replicate at each time of sampling for soil moisture. This provided

Table 32.1 ECa (20 August 2006 survey) zone characteristics

ECa range Clay Soil moisture (m3m−3)
Zone (mS m−1) (%)a 12/12/06 5/1/07 12/2/07 27/3/07

Pre-irrigation During irrigation

Zone A 12.0–18.5 11 0.276 0.253 0.241 0.258
Zone B 18.5–26.0 23 0.297 0.276 0.258 0.285
Zone C 22.0–31.4 14 0.359 0.320 0.306 0.295

aWeighted mean value for 0–600 mm soil depth
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Fig. 32.2 ECa map of the study area, showing zones A, B, and C
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Fig. 32.3 (a) Texture–moisture graph, showing θ at field capacity (top curve), an intermediate
moisture (middle curve), and when the soils were near wilting point (lower curve) for a range of
soil textures. (b) Relation of AWC to ECa for the study area

a relationship between AWC and ECa (R2 = 0.8), allowing spatial prediction of
AWC using the ECa data.

These sandy and silty soils have very similar AWCs (161–164 mm/m), i.e. these
soils hold similar amounts of crop-available water at field capacity, as shown in
Fig. 32.4.
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Fig. 32.4 AWC map of the study area

32.3.2 Soil Moisture Measurements

The TDR survey showed, however, that at any one time, soil moisture varied by
0.12–0.13 m3 m−3 across this 33-ha maize field. We suggest that this is explained
by (i) soil profile differences in texture, structure, and depth to gravels, and (ii)
topographic position (Plate 32.1).

Sandy soils tend to have a greater proportion of larger pores, which drain faster
than do smaller pores. Topographic position is also a controlling factor for drainage
– soils in low-lying areas typically remain wetter for longer.

TDR values were co-kriged with high-resolution digital elevation data from the
ECa survey, and the prediction surface had a slightly smaller root mean squared
error of prediction (2.78) compared with ordinary kriged TDR values (2.84).

32.3.3 Vis–NIR Soil Reflectance Spectra

Soil reflectance spectra were collected in the spring when the soils were close to
field capacity, and soil surfaces exposed for collection of the spectra were very wet
and in some cases smeared. Ten replicate spectra were obtained at each position. The
collected spectra were then pre-processed and imported into Minitab 14 (Minitab,
Inc., 2003) for principal component analysis (PCA) and partial least squares regres-
sion analysis (PLSR) against the measured data (see Chapter 15). A PCA score
plot was used to observe the pattern of sample scattering. During PLSR process-
ing, 12 samples which had standardised residuals ≥2.0 were removed as outliers.
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Plate 32.1 (a) Soil moisture prediction surface (13 Dec 2006) obtained by co-kriging TDR
(n = 47) with high-resolution digital elevation data (n = 9,350). Point TDR values are shown
(b). 3D soil moisture prediction surface (NW end) showing wetter soils in hollows and a drier area
where sandy soils with low ECa values exist (zone A). The black circle (o) shows the corresponding
point on prediction surfaces in Plate 32.1a and b

An R2 (calibration) of 0.79 and an R2 (prediction using leave-one-out cross-
validation) of 0.71 were obtained, with an RMSECV of 0.019 kg/kg and an RPD
(standard deviation over RMSECV) of 1.85, the latter providing a measure of how
large the error (RMSECV) is with respect to the range of w encountered during cal-
ibration. In comparison, Kaleita et al. (2005) obtained an R2 (calibration) of 0.71 or
lower when predicting field moisture from field-collected spectra and commented
that one prediction model did not fit different soil types. Mouazen et al. (2005) used
a calibration developed in the laboratory (cross-validation correlation 0.98, R2 =
0.96), by adding known amounts of water to one soil, therefore minimising any
other soil differences. However, if this method is to be successfully used in the
field, it should be robust enough to predict soil moisture in soils where several soil
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properties as well as soil moisture vary (for example, organic matter content, sur-
face roughness, and texture). Mouazen et al. (2005) used the laboratory-developed
calibration to predict in-line subsoiler chisel field reflectance measurements and
reported a prediction correlation of 0.75 (RMSEP = 0.025 kg/kg; RPD = 3.376)
in the field compared with 0.98 (RMSEP = 0.016; RPD = 5.115) in the laboratory.
Our results suggest that field-collected spectra can be successfully used for cali-
bration with a prediction correlation of 0.84 and a prediction error (RMSECV) of
0.019 kg/kg for this field site.

32.4 Conclusions

ECa was used to spatially predict AWC (R2 = 0.80), which shows that these soils
store very similar amounts of plant-available water. TDR (n = 47), however, indi-
cates that the spatial and temporal variability of soil moisture is significant, showing
that drying patterns vary, which is most likely due to topography and soil profile
differences. Ideally, therefore, the site should be characterised on a number of occa-
sions during one drying cycle. Vis–NIR reflectance spectra are easily collected in the
field and this method shows promise for rapid, accurate sensing of in situ soil mois-
ture. Best practice precision irrigation scheduling decisions can then be made for
utilisation of water stored in the soil profile, accounting for high-resolution spatial
and temporal differences in soil water status.

Instruments Used
Geonics EM38 ground conductivity meter
Trimble RTK-DGPS
Trimble Ag170 field computer
ASD FieldSpec Pro FR spectroradiometer
Minitrase Kit 6050X3K1 TDR
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Chapter 33
Comparing the Ability of Multiple Soil Sensors
to Predict Soil Properties in a Scottish Potato
Production System

J.A. Taylor, M. Short, A.B. McBratney, and J. Wilson

Abstract A soil survey with two soil sensors – an electromagnetic induction (EMI)
sensor and a gamma radiometer – was conducted on a farm in south-east Scotland.
The collected sensor data were used to direct soil sampling on the farm. The soil
samples were then regressed against the sensor output to identify how well the sen-
sor output predicted individual soil properties. The gamma radiometer produced
better prediction fits in the topsoil than did the EMI sensor; however, the EMI pre-
dicted clay content better in the subsoil. Combining the sensor outputs produced
improved fits for the topsoil data but not the subsoil. Neither sensor, individually
or combined, produced good fits of soil pH. For potato production systems, top-
soil properties are the dominant production determinants; thus a gamma radiometer
using current configurations would be the preferred sensor in a single-sensor sys-
tem assuming that all costs were equal. The economics of single vs. multiple sensor
surveys is still unclear.

Keywords Multi-sensor · Gamma radiometer · Electromagnetic induction · Soil
texture

33.1 Introduction

Spatial information on soil properties is important for management in all agricul-
tural systems. However, the majority of commercially available soil sensors do not
directly map soil properties. Rather, they generally measure soil responses, such as
the apparent soil electrical conductivity (ECa) and naturally occurring γ-ray emis-
sions, which are a function of various soil properties. Some of the soil properties
that affect the sensor response(s) are temporally stable, for example clay content
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and clay mineral type, while others may be highly temporally unstable, such as
soil moisture content, and vary on a daily/weekly basis; still other soil properties,
such as organic matter content and soil pH, exhibit low temporal instability and
can vary over monthly or yearly time frames. The result is that, without extensive
calibration, it is often hard to decompose the sensor output directly into soil prop-
erties. The use of multi-temporal and/or multi-sensor systems may help overcome
this problem.

Soilessentials Ltd has been providing commercial soil mapping for growers in
the United Kingdom, particularly potato growers, for the past 8 years. A core part
of their business revolves around providing growers with variable rate maps for
lime application (pH remediation). Currently, these maps have been derived from a
50-m × 50-m square grid survey, together with spatial information in the form of
ECa maps (collected with a Geonics EM38DD sensor) and a digital elevation map.
The ECa responses of the EM38DD, however, are not directly linked to soil pH. The
current approach by Soilessentials Ltd relies on a further correlation between texture
and the rate of change in soil pH under intensive crop production, but correlations
between the EMI response and pH have not been strong in previously collected
data (hence the current use of a dense (50 m) square grid for pH and lime require-
ment mapping). In Australia, the incorporation of ECa data, with appropriate ground
truthing, into the lime requirement decision-making process has shown significant
savings over conventional composite bulk soil sampling and uniform lime applica-
tion (Adam Inchbold, chairman, Riverine Plains, Inc., pers. comm.). Soilessentials
Ltd was interested in knowing if and how soil sensor data could be used to decrease
the intensity of physical soil sampling without compromising the final pH map
quality.

While the incorporation of ECa data into soil property mapping has been shown
to be profitable, the limitations of this approach are well understood and there are
published accounts (McKenzie, 2000; Chapter 24), as well as anecdotal reports such
as those of Soilessentials Ltd, of areas where using ECa has not provided any bene-
fit in the lime application process. To date, the use of data from other soil sensors –
either instead of ECa data or in combination with ECa data – in generating vari-
able rate lime application maps has not been reported. To investigate the potential
of gamma radiometric data for mapping soil properties, particularly pH, a study
was undertaken in eastern Scotland by Soilessentials Ltd in collaboration with the
Australian Centre for Precision Agriculture (ACPA) at the University of Sydney.
The objectives of the study were to compare gamma radiometric data with ECa for
making pH (lime requirement) maps and what further benefits may be gained from
combining the data (i.e. using multi-sensor data) compared with analysing the data
from individual sensors. The hypothesis here is that the two sensors will have dif-
ferent responses to soil properties and multivariate analysis may provide a better
prediction of soil properties. As well as pH, the topsoil and subsoil texture (clay
content) and the cation exchange capacity (CEC) of the topsoil fraction were also
investigated.
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33.2 Materials and Methods

33.2.1 On-the-Go Soil Survey

The survey was conducted in February 2006 at ‘Stenton’, a farm located near
Pittenweem, Fife, Scotland, UK. An Omnistar HP GPS (global satellite naviga-
tion system receiver), Geonics EM38DD (electromagnetic induction sensor), and
SAIC Exploranium GRS320 (gamma radiometer) were mounted on a quad bike.
The EM38DD is a dual-dipole sensor and provides two ECa readings in real-time
from both the horizontal (ECah) and vertical (ECav) dipoles. The ECah generates
80% of its signal response from 0 to 1.1 m, while the ECav has a deeper penetration
and generates 80% of its signal response from 0 to 2 m (Abdu et al., 2007). The
GRS320 generates 256 discrete energy band readings which are aggregated into
four regions of interest (ROI) relating to the total response (total count, TC) and
peaks associated with the decay of potassium (K), thorium (Th), and uranium (U) in
the spectra. The Omnistar HP is a carrier-phase receiver and was used to geo-locate
the EM38DD and GR320 outputs as well as log the elevation. All data were logged
using Farmsite (Farm Works Software, Hamilton, IN, USA). The survey was con-
ducted at 10–15-m swathes and at a line speed of ∼10 km h−1. The soil was at field
capacity during the survey and the air temperature ranged from ∼0 to 10◦C.

The elevation data, two EM38DD outputs (ECah and ECav), and four ROIs (TC,
K, Th, U) from the GRS320 were interpolated onto a 5-m × 5-m grid that covered
the entire farm. Interpolation was done using block kriging (15 m × 15 m blocks)
with a local variogram function in VESPER (Minasny et al., 2005). The kriged
outputs were displayed in ArcMap v9.1 (ESRI, Redlands, CA, USA, 2005).

33.2.2 Manual Soil Sampling

The kriged data for the seven variables were collated into a single file. A k-means
cluster analysis was performed to generate six classes, and four locations were ran-
domly selected from each of the six. This produced 24 soil sample locations across
the farm.

Soil sampling was done 2 days after the on-the-go survey. A soil core was
extracted to a depth of 0.9 m and subset into a topsoil (0–0.45 m) and a sub-
soil (0.45–0.9 m) fraction. The soil fractions were sent to a commercial laboratory
(Lancrop Labs, Yorkshire, UK) for chemical and physical analysis. Properties mea-
sured were clay content, sand content, pH (1:5 soil:0.2 M CaCl2), available P,
exchangeable K, Mg, Ca, CEC in the topsoil and clay content, sand content, avail-
able P, exchangeable K, Mg, and pH (1:5 soil:0.2 M CaCl2) in the subsoil. An error
in geo-location during soil sampling resulted in one class receiving an extra sample
at the expense of another. One location had a shallow rocky soil with no fraction
below 0.45 m; so only 23 data points were available for the subsoil.
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33.2.3 Multivariate Data Analysis

The seven sensor variables were kriged onto the 24 soil sample locations, using the
same process described above, and joined to the laboratory soil data. Generalised
linear regression (GLM) was performed in the R statistical package using the sensor
variables as predictors of pH and clay content in the topsoil and subsoil fractions,
and CEC in the topsoil fraction. Although with seven independent variables there
are 127 possible regression equations, regression models were confined to (a) ECah,
(b) TC, (c) elevation, (d) TC + ECah, (e) TC + ECah + elevation, and (f) a stepwise
linear regression (SLR) which initially included all seven variables. This approach
enabled a comparison of the accuracy of prediction using the individual data sources
as well as selected combinations of data sources. The ECah variate was preferred to
ECav as it corresponded to the depth of soil sampling. TC was selected as a value
that integrated all information in the γ spectra. The accuracy of prediction was deter-
mined using leave-one-out cross-validation (LOOCV). The observed and predicted
values from the LOOCV were used to calculate the coefficient of determination,
Lin’s concordance coefficient (ρc) (Lin, 1989), and the root mean squared error
(RMSE). For the stepwise linear regression, all the data were initially included and a
mixed (forward and backward) approach was applied to eliminate correlated predic-
tors. The remaining predictors (noted in Table 33.1) were then used in the LOOCV.
The SLR and LOOCV analyses were also performed in the statistical package R.

33.3 Results and Discussion

The interpolated maps for three of the sensor outputs are shown in Plate 33.1. The
total count (GRS320) and ECah (EM38DD) show some similarities in pattern but
also some differences. The results from the LOOCV analysis are given in Table 33.1.

33.3.1 Comparison of the Usefulness of Individual Sensors

In general, the elevation data provided poor predictions of both topsoil and subsoil
properties and, as an individual sensor in this locale, were inferior to the gamma
radiometer and EMI instruments. Poor fits for topsoil pH were found with all
three of the individual sensors, with the gamma radiometrics providing the best fit
(R2 = 0.21), but this cannot be considered satisfactory for any topsoil pH mapping
or management application. The gamma radiometrics data provided the best fits
(R2, ρc, and RMSE) for topsoil clay percent and CEC. The gamma radiometric
model explained 70% of the variance in the topsoil clay data compared to 55% by
the ECah model. Neither model showed either a scale or a location shift as evidenced
by the similarity between R2 and ρc. For topsoil CEC, the gamma radiometric model
was far superior to the ECah model (R2 of 0.48 and 0.09, respectively). It appears
that the gamma radiometric data may have some relevance in mapping and man-
aging general soil fertility. For the three topsoil parameters investigated here, the
gamma radiometrics provided the best predictions (although the usefulness of the
pH model is questionable).
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Plate 33.1 Maps of sensor output for the Stenton property. Top left: Clusters (6) and final soil-
sampling locations; top right: elevation from the Omnistar HP GPS; bottom left: total count from
the GRS320; bottom right: ECah from the EM38DD

For subsoil clay content, the EM38DD initially performed only marginally better
than the gamma radiometrics (data in parentheses in Table 33.1). A closer inves-
tigation of the data revealed an extreme outlier (high subsoil clay percent) in the
data. When this was omitted and the models rerun, the EM38DD (ECah) provided a
much better fit and RMSE than did the gamma radiometrics. This latter result, and
the results from the topsoil analysis, is not surprising, given the physics associated
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with the depth of penetration of the two sensors. The elevation data again performed
poorly in predicting subsoil clay content. Elevation data did provide the best R2 fit
for subsoil pH; however, this is a false fit, the result of chance and a severe scale
shift. The true worth of the elevation model is indicated by the ρc value of 0.04.

33.3.2 Multi-sensors vs. Single Sensor

Multivariate models improved the prediction of topsoil clay content. There was little
or no benefit in using multivariate models for predicting topsoil CEC or pH. In con-
trast, the stepwise multivariate model for subsoil pH was a significant improvement
(R2 = 0.52) on the individual sensor models, and the results appear to be robust
(ρc = 0.52). This reasonable fit for subsoil pH comes despite poor fits for the three
individual sensor models. The SLR model for subsoil pH retained all seven available
variables in the model. The multivariate subsoil clay content models did not provide
any improvement over the ECah model. The SLR models for both the topsoil and
the subsoil clay contents selected the ECav, U, and Th data. The subsoil SLR clay
content model also included the other two gamma radiometric ROIs (TC and K).
The reason for the ‘step’ model selecting the deeper penetrating EM38v data as a
predictor (instead of the ECah data used in the expert-defined models) is unclear.
Regardless, the ECah model provided better predictions than did the multi-sensor
models for subsoil clay content.

33.3.3 Discussion

For potato production, the texture of the topsoil (0–30 cm) is particularly important
for crop management and tuber development. In this context, for a single-sensor
system the GRS320 (gamma radiometrics) may provide more useful information
for the grower. It also provides a better indication of the fertility (CEC) of the soil.
The gamma radiometer should exhibit a higher sensitivity to parent material and
mineralogy than the EMI instrument, so this result is not unexpected although the
translation of this response into improved model fits is welcome. The flip side to
this is the inferior fit of the gamma radiometer data to the subsoil properties. For
mapping subsoil properties, the deeper penetrating EMI instrument is better. The
advantages of a shallower sensing EMI system for mapping topsoil texture (clay
content) were not available for analysis in this study. It may be practical and more
effective to run the dual-dipole EM38DD at an elevated height above the ground,
for example at 0.5 m, so that the horizontal dipole maps the topsoil (0–0.5 m) and
the vertical dipole the vadose zone (0–1.5 m).

A primary objective of the study was to investigate the ability of different indi-
vidual and multi-sensor systems to map pH at a farm scale. With the exception of
the SLR model of subsoil pH, none of the models provided useful information on
soil pH. Mapping pH at the farm scale may be optimistic, given the differences in
crop rotations, lime treatments, and management history between fields. It appears
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that ground truthing the sensor output for pH needs to be done within field or man-
agement units. Thus a more intensive sampling strategy is needed for pH than for
texture mapping. The significance of the moderate model fit for subsoil pH using all
the available predictors is unclear. It may be an anomaly, although the ρc value does
not indicate this. The subsoil pH may be more temporally stable than the topsoil pH
and less influenced by management; however, further investigations are needed to
validate and understand this response.

33.3.4 Other Considerations

This short investigation has focused only on a few soil properties. Many more, par-
ticularly chemical properties, were measured and will be investigated in future work.
The GRS320 output has been analysed only as ROI data. Recent work by Viscarra
Rossel et al. (2007) has shown that analysis of the full spectra, after appropriate
data preparation, can improve prediction over the use of the ROIs. A partial least
squares analysis of the spectral data is the next step in the data analysis to determine
the fit of the GRS320 spectra relative to, and in combination with, the EM38DD
data.

An appropriate model of the value of improved fits and RMSE is also required to
determine if the cost of additional data collection and analysis is offset by the value
of the information gained. That is, how profitable is a management decision made
with the data? This model will vary with different cropping systems and between
cropping regions.

As indicated before, the lack of fit between the sensor data and soil pH data is
of some concern, given the desire for Soilessentials Ltd to use the information for
variable lime application. The prediction of pH data may need more parameters,
such as management history or other soil measurements. Zoning using different
combinations of sensor data may be an alternative way of identifying differences
within and across fields that may assist with differential management. This approach
has not yet been tried with this dataset, but has been used in other studies to identify
soil differences (Taylor et al., 2007).

33.4 Conclusions

Better predictions of topsoil clay content and topsoil CEC, an indicator of soil
fertility, would indicate that the GRS320 may provide more relevant information
for potato producers in this region of Scotland. However, combining the GRS320
with output from the EM38DD improved fits for texture over the single-sensor
approach. The value of this extra information needs to be assessed in economic
terms against the additional costs associated with data collection. Neither sensor,
nor any combination of sensor data, provided good fits to the pH data at the farm
scale.
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Chapter 34
Spatial Variability and Pattern of Selected
Properties of Agricultural Soils in the Czech
Republic Measured by Indirect Proximal
and Remote Sensing

M. Kroulik, J. Kumhalova, Z. Kviz, M. Zlinsky, M. Mimra, and V. Prosek

Abstract Spatial and temporal variabilities of soil properties were monitored
within a 12-ha field over several consecutive years. Particle-size distribution, total
carbon content (Ct), and pH were monitored. Soil samples were taken from points
on a regular square grid. Additionally, the variability of soil properties was evaluated
by proximal measurement methods including draft force measurements, soil electri-
cal conductivity (ECa), and crop yield mapping. Remotely sensed bare-soil satellite
images were obtained and digital elevation models were made. All the observed
variables showed spatial variability, but the spatial patterns of Ct, pH, EC, and
crop yield were temporally stable. Results were processed using statistical and geo-
statistical methods. Variograms and their parameters were used to describe spatial
dependencies between observed variables. Significant dependencies were observed
between monitored soil properties and indirect methods, indicating utility in the
proximal approach.

Keywords Draft force · ECa · Crop yield · Flow accumulation · Soil properties

34.1 Introduction

The cost of sampling soil at a sufficient number of points to create maps of soil
properties is still a limiting factor holding back the commercial expansion of preci-
sion agriculture. Soil is one of the most variable environmental media (Kolar and
Kuzel, 1998), and to accurately describe spatial dependencies, a sufficient den-
sity of field sampling points is necessary. Grid-based soil sampling procedures are
commonly used, but this approach is often not suitable for evaluating spatial rela-
tionships between observed variables (Basso et al., 2003). It seems desirable to
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replace these high-intensive and time-consuming methods with quicker and more
accurate monitoring methods (Hanquet et al., 2004). Cheap measurement methods
that are able to provide high data densities and accurate results are therefore under
intense development and are the subject of this book.

It is possible to monitor soil properties by means of current methods such as
soil conductivity measurement, remote sensing (or aerial photos), and radiometry in
different parts of the spectrum (see Chapter 2). In this way, site-specific application
of fertiliser (and other components necessary for good plant growth) can be achieved
using maps of soil properties and crop yield. Many economic methods of evaluating
soil variability based on very simple measurement principles are available, and there
is a real opportunity for the automation of these processes (Godwin and Miller,
2003; see also Chapter 26).

34.2 Materials and Methods

34.2.1 Experimental Field Description

Variability measurements of soil properties (from soil sampling) and indirect
proximal and remote measuring methods (using methods to be described below)
were performed on a 12-ha experimental field in Prague-Ruzyne, Czech Republic
(50◦05′ N, 14◦18′ E). The soil was a Haplic Luvisol (IUSS Working Group WRB,
2007), and its altitude ranged from 338 to 357 m a.m.s.l. Annual precipitation was
526 mm and average temperature was 7.9◦C.

34.2.2 Soil Sampling and Soil Property Determination

Variability of soil properties was monitored annually in this experimental field
beginning from 2002. Total carbon content (Ct), particle-size distribution, and pH
were sampled at 70 locations by a global positioning system (GPS) on a regular
40-m × 40-m grid over a depth range of 0–30 cm.

34.2.3 Proximal and Remote Measurement Methods

Soil variability was also studied by means of soil electric conductivity (ECa) (in
2002, 2004, and 2005) and draft force measurements (2003, 2005, and 2007). For
ECa measurement, a contact method was used in which a measuring frame holding
six electrodes was pulled by a tractor over the entire area of the field. Every 5s the
output from the conductivity meter was recorded simultaneously with GPS position
in a measuring unit on the tractor.

Draft force measurement was carried out by means of a measuring frame carrying
one shovel and the force exerted on the shovel was measured using a dynamometer.
The dynamometer output was also recorded simultaneously with the GPS position.
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In 1 year, 2007, the draft force measurement was carried out with Fendt 933
Vario tractor with an electro-hydraulically controlled hitch, an arrangement that
meant it was possible to record data from the hitch sensors simultaneously with
the dynamometric measurement. In this way, two sets of draft force data could be
obtained.

Crop yield variability was observed for two consecutive years in the same field.
Winter wheat was grown in the field in 2002 and malting barley in 2003. A combine
harvester, equipped with a crop yield monitor, was used for harvesting planted crops.

Digital panchromatic and multispectral pictures with spatial resolutions of 0.5 m
(for the former) and 2.4 m (for the latter) were taken on 15 February 2002 by the
QuickBird satellite. The pictures were first taken when the soil was bare (no crop
in the field). Unsupervised classification for colour detection was used, in which
darker colours were given a smaller index.

The topographical data were saved on a PCMCIA memory card on the com-
bine harvester. Initially, a digital elevation model (DEM) was created from the point
shapefile, specifically from the elevation data. This elevation model was further used
to create a flow direction model and finally for a flow accumulation model. The flow
accumulation model gives a map of accumulated flow to a particular cell. Detailed
methodology can be found in Jenson and Domingue (1988).

34.2.4 Data Evaluation, Statistical, and Geostatistical Analyses

Values of draft force, conductivity, crop yield, colour index, and flow accumula-
tion were collected from established sampling points only, and their mean values
were calculated. Spatial interdependencies of monitored variables were also calcu-
lated and compared. Besides basic statistical outputs, the evaluation procedure also
produced a Pearson product moment correlation coefficient.

All the data were standardised to zero mean and unit variance. To explore spa-
tial relationships, experimental variograms were estimated. These variograms were
fitted by model variograms and ordinary kriging interpolation was applied. Spatial
cross-dependence was studied by means of cross-variograms for pairs of measured
variables. The software used was ArcGIS 9.1 and GS + 5.1.1. The satellite picture
was obtained from QuickBird Digital Globe (distributed by Eurimage/ARCDATA
PRAHA, s.r.o.).

34.3 Results and Discussion

To evaluate temporal stability, observations of soil properties and crop yield were
made in the same field over several years. The measurements were essentially
stable, especially for Ct and pH which showed only small changes between the
years. Statistically significant dependence (p < 0.01) was observed for the values of
Ct (r = 0.75−0.91) and pH (r = 0.81−0.98).
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Correlation analysis also showed a significant (p < 0.01) temporal stability for
soil conductivity; however, the correlation coefficients in this case were rather low
(r = 0.39−0.63).

By way of contrast, draft force values were not temporally stable, although a
significant correlation existed between the draft force measured by a dynamometer
and the draft force measured by the electro-hydraulic hitch (r = 0.84).

The crop yield values were temporally stable, showing a statistically significant
(p < 0.01) r value of 0.34 between the years.

In cases where temporal stability was observed, average values were calculated
(Table 34.1). The datasets were characterised by a range (expressed as minimum and
maximum values) and by a coefficient of variation (CV), which showed a particular
variability. The relationship between the tested pairs of variables was studied by
means of correlation analysis. The correlation coefficients showing the dependence
between the datasets are given in Table 34.2. The correlation coefficients show the
relationships between soil properties and indirect measurement methods.

34.3.1 Geostatistical Analysis

In all cases, experimental variograms were fitted by a spherical model with nugget.
The details of these isotropic variograms are given in Table 34.3.

According to some authors (Cambardella and Karlen, 1999; Lopez-Granados
et al., 2002) it is possible to divide the spatial dependence pattern into three groups
based on the nugget C0 and sill variance (C0 + C). A value of C0/C0 + C less than
25% indicates a strong spatial relationship between Ct, pH/H2O, EC, crop yield,
particle-size distribution, and the colour index of the digital image. The values of
pH/KCl, flow accumulation, and draft force showed a medium strong spatial depen-
dence (C0/C0 + C of 25−75%). Higher values of C0/C0 + C could be explained
(in the case of draft force) by the micro-variability of soil properties. A high nugget
value for the draft force measurement underlines this finding.

The spatial relationship between variables measured over the sampling grids
is also demonstrated by the variogram range (A0), the distance at which the
semivariance reaches the sill value.

Selected maps obtained from ordinary kriging using the isotropic variograms
are presented in Fig. 34.1. Visual inspection of these maps shows that many of the
variables returned high values mostly at the southern and south-western parts of the
field. In some cases, the maps are remarkably similar.

Because spatial cross-variability can give good insight into soil variation at the
field scale, experimental cross-variograms for all pairs of variables were calcu-
lated and fitted with spherical models (Fig. 34.2) wherever possible (i.e. wherever
a defined structure could be identified and there was a significant correlation). No
defined structure was found for the pairs of variables involving particle-size distribu-
tion (coarse sand), pH KCl with draft force 2005(a), pH H2O with colour index, and
draft force 2005(a) with flow accumulation. (Relationships between pH KCl and pH
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Fig. 34.1 Selected maps of kriged estimates (values standardised to zero mean and unit variance)

H2O and draft force 2007(a) and draft force 2007(b) were not calculated because
dependence was of course expected.) Selected cross-variograms are presented in
Fig. 34.2.

In Table 34.4, the structural correlation coefficients of spherical variogram com-
ponents ρuv, computed on the basis of following formula (Boruvka and Kozak,
2001), are presented:

ρuv = buv√
buubvv

,
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Fig. 34.2 Selected cross-variograms of variables

where buu, bvv, and buv are the coefficients of structural components of the
variogram and cross-variogram of two observed variables.

Except for pairs of variables involving draft force, all the calculated structural
correlation coefficients were higher than, or at least equal to, the correlation coeffi-
cient given in Table 34.2. This means that a large part of the relationship between
the variables was spatially based.

34.3.2 Discussion

Proximal and remote measuring methods will play an increasingly important role
in the development of precision agriculture systems. The high density of the data
measured, time and cost efficiencies, and routine measurement methods are vital
factors in making precision agriculture a common practice. An important outcome
from our work is that crop yield depends strongly on flow accumulation. According
to Reuter et al. (2005), topography influences the textural, physical, and chemical
properties of the soil. Marques da Silva and Alexandre (2005) also conclude that
soil and topographic attributes can affect crop yield and its variability.

Topographical data, in combination with soil information, are key parameters that
can explain much crop yield variability at the field scale. Topographical information
can be especially helpful in managing and delineating sites where crop yields are
sensitive to extreme weather conditions (Kravchenko and Bullock, 2000).

Kumhalova et al. (2008) found that the relation between crop yield and topog-
raphy (elevation, slope, and flow accumulation) was stronger in dry years. From
visual and statistical comparisons of maps of flow accumulation and crop yield, they
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showed that yield depended more on flow accumulation and field water redistribu-
tion in dry years than it did in wet years. They concluded from their experiments
that the flow accumulation layer could be used for delineating certain manage-
ment zones, although the dependence of crop yield on flow accumulation can vary
from year to year, and is affected by weather conditions. In our work, we also
found a strong spatial correlation between flow accumulation and colour index.
Interestingly, we also found that draft force showed a negative correlation with flow
accumulation – in 2007 at least – so that wet soils were weaker.

Data from soil sensors have the potential to be widely used in precision agricul-
ture. In particular, measures of soil conductivity are a powerful handle for describing
soil properties (Zhang et al., 2002; Godwin and Miller, 2003; see also Chapters 19
and 22). Soil ECa measurements also offer a simple and cheap way for determining
soil variability in the field, since soil electrical conductivity is affected in particular
by soil wetness and texture (Godwin and Miller, 2003; see also Chapter 21). In addi-
tion, our results indicate relationships between ECa and particle-size distribution,
crop yield, draft force (2003), colour index, Ct, and pH.

Remote sensing is a quick way of acquiring important and detailed information
about soil variability within a field. In our experience, information from the satellite
image of the bare soil was of high value (see Chapter 14). Except for draft force,
clay and fine silt content, coarse sand, and pH/KCl, significant correlations with the
satellite image of the bare soil were found in all cases.

Knowledge of the draft force exerted during soil cultivation might be a useful
tool. Results could be used for comparing energy consumption, checking machine
performance, optimising settings, and assessing certain agro-technical interventions
(see Chapter 30). As described by Kürsteiner (2003), measuring the force at the
tractor tree-point hitch is usually carried out using a measuring frame inserted
between the tractor and the attached machine. Working with such a frame can be
difficult. Besides experimental frame, measurements can also be obtained from the
serial stepped power pins which are normally used in the tractor for electronic hitch
regulation (Schutte and Kutzbach, 2003). In our view, mapping soil properties dur-
ing cultivation is an easy and natural step from monitoring the draft force of soil
cultivation implements (Rothmund et al., 2003).

Figure 34.3 illustrates relationship between output tension values on the power
pins (tensiometric gauges) and the draft force value for three different heights L
(Fendt 933 Vario tractor). A linear correlation between the output tension and the
draft force was evident, and the coefficient of determination (R2) for the entire
dataset (n = 58) was 0.99. Note how the slopes of the straight lines were influenced
by hitch position.

Our measurements illustrate how modern electronic tractor components can be
used for draft force measurement. At the same time, it must be acknowledged
that draft force is influenced by many factors. Godwin and Miller (2003) noted
deficiencies and disadvantages connected with the practical application of such
measurements, pointing to the large number of factors that could influence mea-
surements. For example, heavy agriculture machinery often crisscrosses a field,
sometimes regularly, sometimes randomly. The repeated tracks compact the soil,
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Fig. 34.3 Output tension values on the power pins related to the draft force value for three
different heights L (tractor: Fendt 933 Vario)

and it suffers more or less irreversible structural changes. In this context, our mea-
surements show that, as a result of conventional tillage, 96% of the total field area
was run over with a machine at least once a year; this figure should be compared
with values of 65 and 43% of the total field area when using conservation tillage
and direct seeding, respectively. We calculate that 144% of the area covered was run
over repeatedly for conventional tillage, 31% for conservation tillage, and only 9%
for direct seeding. To a degree, this fact might explain the variability of the measured
values and the low repeatability of the draft force values between years.

34.4 Conclusions

We have demonstrated certain advantages of using indirect (both proximal and
remote sensing) methods for evaluating soil property variability. We have also
demonstrated the potential of implementing them into precision farming systems.
Correlation analysis applied to our measurements showed significant dependen-
cies between observed variables. A high-resolution satellite image of bare soil gave
remarkably good correlations with Ct, crop yield, ECa, flow accumulation, and silt
and fine sand content. ECa showed a dependency on soil properties, and a correla-
tion between crop yield and the satellite imagery was observed. Many factors can
affect the proximal measurement methods, as was demonstrated in the case of our
draft force measurements. The correlation coefficients between draft force and other
observed variables fluctuated when datasets from different years were compared.

It is not possible to generalise our results completely. However, on the basis
of our measurements, indirect measurement methods appear to have potential for
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practical agricultural use. Temporal stability of Ct, pH, crop yield, and ECa val-
ues suggests to us that periodic sampling is not necessary. Indirect measurement
methods offer a way to simply and quickly describe soil variability; they allow soil
properties to be sampled in cases when they cannot be estimated proximally.

Acknowledgement This research was supported by project MSM 604 6070905 and by the
Ministry of Agriculture of the Czech Republic, project 0002700601.
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Chapter 35
Inverse Meta-modelling of Yield-Monitor Data
for Estimating Soil-Available Water-Holding
Capacities at a Farm Resolution of 10 m

M.J. Florin, A.B. McBratney, and B.M. Whelan

Abstract Spatially dense, geo-referenced information is an integral component of
precision agriculture (PA) management. Moreover, the value of temporally dense
information is gaining recognition. An example of such valuable information is
crop yield data. An intuitively appealing response to these information require-
ments is simulation modelling. In order to meet the temporal density and the spatial
extent requirements of PA, simulation modelling is faced with a major challenge:
that of capturing yield variation at a spatial resolution relevant to PA. Adequate
computer power to run a representative number of simulations (>1,000) and suit-
able information to populate the models are the motivating challenges behind this
study. Inverse meta-models were derived from the agricultural production simulator
(APSIM) using neural network modelling to predict soil-available water capacity
(AWC). Using as many years of yield data as was available for a dryland grain farm
in Australia, ‘effective’ AWC maps with a resolution of 10 m were made by averag-
ing maps estimated from different yield years. The AWC values were validated in
terms of value for predicting spatially variable yield. The AWC maps were signif-
icantly different, depending on the year of yield data used. This demonstrated that
the ‘effective’ component of the AWC values contains information about climate
interacting with the soil, the crop, and the landscape. The AWC values proved use-
ful for predicting yield using simple linear models (0.48 < R2 < 0.80) rather than
using APSIM. A conclusion from this study is that the inverse meta-modelling con-
cept is an efficient way of extracting soil physical information that exists within crop
yield maps. Further research attempting to enhance understanding about the ‘effec-
tive’ components of the AWC values and to improve the temporal consistence of the
AWC values is important. A greater number of AWC scenarios, more years of yield
data, and the inclusion of additional information into the meta-models are possible
ways forward.

M.J. Florin (B)
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Keywords Inverse modeling · Meta-modelling · Soil-available water-holding
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35.1 Introduction

In order to better match inputs with soil and crop requirements (which vary in space
and time), site-specific crop management (SSCM) involves management of spatial
units that are smaller than fields. Spatially dense, geo-referenced information is an
integral component of SSCM.

Yield maps from many years are an example of such information. The use of sim-
ulation models can potentially provide a wealth of yield information satisfying both
spatial and temporal requirements. Under this scenario, point-based crop growth
simulation modelling would allow simulation of as many yield maps as desired
across space and time. In order to meet the temporal density and the spatial extent
required by PA, this modelling approach is faced with a major challenge: that of
capturing yield variation at a spatial resolution relevant to PA. A large obstacle is
the ability to obtain a representative number of simulations across an area of interest.
Populating the required number of points and the computer power required for the
simulations are particularly relevant issues. For these purposes, soil-available water
capacity (AWC) is an important soil property that has proven to be difficult to esti-
mate by means of available sensing techniques. Some examples of current research
attempting to map soil water are described in this book (Chapters 21 and 32).

There are a number of publications within the PA and simulation modelling lit-
erature that address estimation of soil properties for input into simulation models at
a resolution relevant to PA. Most of these studies take advantage of high-resolution
yield information from a number of years and estimate site-specific soil proper-
ties with the inverse use of crop growth simulation models (inverse modelling
or parameter optimisation). These studies document a range of different estima-
tion procedures. Timlin et al. (2001) provided an example of this approach. These
authors optimised available water-holding capacity across a single field for two sep-
arate years with a genetic algorithm that minimised the difference between yields
simulated with a water budget/yield model and measured yields. Morgan et al.
(2003) demonstrated a contrasting approach by using a forward model to create
‘look-up’ tables containing yield values as a function of plant-available water for a
number of years. These tables were then used to match the ‘yield-monitor’ yields
with plant-available water estimates. Maximum available water estimates were then
obtained by averaging across years.

The spatial extent of these examples (a single field) is consistent with other stud-
ies in the literature. It would be potentially valuable to populate a point-based simu-
lation model at fine resolution and at a greater spatial extent – for example a whole
farm. This demand dramatically increases the number of points to simulate. A con-
sequence is that the computer time and memory to run a point-based crop simulation
model in the order of thousands of times is beyond a standard desktop computer.
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Meta-modelling provides a possible solution to this computer power challenge.
A meta-model is an approximation of a more complex simulation model in terms
of transforming model inputs into model outputs (Kleignen and Sargent, 2000).
A clear advantage of using a meta-model rather than the original model is that
the meta-model attempts to take only the significant relationships from the sys-
tem under question and as a consequence input parameters and computing time are
reduced.

The data requirements for inverse modelling in the context of high-resolution
yield maps, and the computer processing power requirements for meta-modelling,
point towards integration of inverse modelling and meta-modelling for estimating
site-specific soil properties across farms. This is particularly the case where little
detailed soil water information is available. Consequently the aims addressed in this
chapter are as follows: (1) to create an inverse meta-model from APSIM to estimate
soil hydraulic properties from yield-monitor data; (2) to generate ‘effective’ soil-
available, water-capacity (AWC) maps across a whole farm at a spatial resolution of
10 m; and (3) to validate the inversely modelled hydraulic properties with respect to
yield prediction.

35.2 Materials and Methods

The method consists of five steps:

(i) Identifing some key assumptions;
(ii) Gathering and generating available and necessary soil, crop, and landscape

information;
(iii) Creating inverse meta-models;
(iv) Inversely estimating AWCs; and
(v) Validating the estimates.

35.2.1 Key Assumptions

It is assumed that water is the most important limiting factor in the dryland grain-
farming system under examination. A substantial amount of literature supports this
assumption; for example, Irmak et al. (2002) demonstrated correlations between
root-zone plant-available water and soybean yield. A consequence of this assump-
tion was that hydraulic properties were the only model input considered in detail.
The only hydraulic property considered was ‘soil-available water capacity’ (AWC)
defined by the difference between ‘field capacity’ or the drained upper limit (DUL)
and ‘wilting point’ or the lower limit (LL). In terms of model input requirements,
previous research has demonstrated relationships between AWC and crop yield
within APSIM (Wong and Asseng, 2006). For this study, AWC was assumed to
be the same as plant-available water capacity (PAWC) (or extractable water).
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35.2.2 Study Site and Available Data

A dryland grain farm, ‘Brook Park’, located 200 km north of Adelaide in South
Australia was chosen for this study. A mean annual rainfall of 345 mm falls
mostly during the winter. Soil types distributed across the farm include Planosols,
Chernozems, and Durosols (FAO, 1998).

AWC scenarios and daily rainfall were the two main datasets required for cre-
ation of an inverse meta-model. The envisaged domain of applicability for the
meta-model is all possible rainfall and AWC scenarios that might occur across the
study site.

We generated 1,000 different, uniformly distributed AWCs using Latin hyper-
cube sampling (LHS). Uniform distributions of DUL and LL at two depths (depth 1,
0–60 cm; depth 2, 60–90 cm) were generated.

We considered 20 years of rainfall data adequate to include a range of climate
scenarios. Daily rainfall data were sourced from the SILO Data Drill (Jeffrey et al.,
2001).

Spatially referenced yield information was required for application of the inverse
meta-model. Yield-monitor data from seasons between and including 1999 and 2006
were obtained in its interpolated form such that it conformed to its respective section
of a whole-farm 10-m grid. Fields were utilised for further study if three or more
years of yield data were available.

35.2.3 Creating a Meta-model

APSIM is a point-based model that runs on a daily time step and is capable of
yield prediction across areas (Keating et al., 2003). APSIM was run for 20 years of
continuous wheat production for each of the 1,000 AWCs. A list of the parameters
that were varied for model calibration is presented in Table 35.1.

Table 35.1 APSIM variables used for model calibration

Some APSIM variables
Aspect of crop growth environment
described

U and Cona Evaporation
SWCon Saturated hydraulic conductivity (sort of)
Diffusivity constant and diffusivity slope Unsaturated soil water movement
Curve number Run-off
kl Root length density and soil diffusivity
xf Root advancement
Sowing date Management environment – crop

development
Sowing density/row spacing/sowing depth Management environment – competition

for resources
Cultivar Management environment – crop

development
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Linear stepwise regression was used to determine which monthly rainfall, along
with AWC, best predicted the APSIM yield output. Based on results from the regres-
sion, these variables were chosen as input into a neural network model designed to
predict AWC and LL at two depths.

35.2.4 Estimating ‘Effective’ Hydraulic Properties

The neural network model was applied across the farm by replacing APSIM yield
with yield-monitor yield. For seven fields, at least three different maps of ‘effective’
AWC were obtained. ‘Best’ estimates were then calculated by averaging the AWC
derived from multiple years.

35.2.5 Validating ‘Effective’ AWCs

A year of yield data was excluded from the ‘best’ estimate of ‘effective’ hydraulic
properties and was then used to validate the inversely modelled hydraulic properties
from a yield prediction perspective. Stepwise linear regression was used to pre-
dict yield using the mean hydraulic properties and monthly rainfall data. Individual
models were derived across the farm for fields that shared the same crop rotations.

35.3 Results and Discussion

The predictors used in the neural network model were APSIM-simulated wheat
yield between and including 1979 and 1998, and monthly rainfall from June, July,
August, and November. The neural network modelling resulted in an R2 value of
0.51 for the meta-model.

Figure 35.1 illustrates the relationship between AWC and APSIM yield where
the AWC is firstly derived from LHS and secondly from the inverse meta-model. In
this figure, different shades of grey represent 20 different years.

There is scope to improve the fit of the meta-model. Some possibilities are to
include greater than 1,000 different hydraulic scenarios for derivation of the meta-
model and to incorporate some other APSIM parameters such as sowing dates, crop
cultivars, and rooting depths.

Figures 35.2 and 35.3 illustrate estimated profile AWC maps that were derived
from two individual years of yield data. These two figures demonstrate clearly that
there are different relationships between AWC and yield under different climate
years.

Figure 35.4 illustrates the ‘best’ estimates of AWC across the farm on a 10-m
grid. It is important to note that there are some conceptual differences between
these estimates and the actual AWC values across the farm. In the context of
these differences, the estimates will be referred to as ‘effective’ AWCs. Firstly,
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Fig. 35.1 Simulated yield versus profile AWC. (a) APSIM yield–AWC relationship (AWC from
LHS); (b) APSIM yield–AWC relationship (AWC from inverse meta-model)

the different estimates between years suggest that the ‘effective’ component of the
AWCs contains some information about climatic interactions with the crop, the soil,
and the landscape. Some possibilities of additional information within the estimates
are root growth, soil depth, soil structure, soil chemical properties, and topography.
For example the assumption that root extraction front depths do not vary across
space provides a possibility for information included in the ‘effective’ AWCs. The
relationship between AWC and yield will necessarily be different if the extraction
front depth of crop roots varies, as this soil and crop property impacts the rate at
which crop roots can take up water.

Fig. 35.2 Inversely modelled profile of AWC at 90 cm using 2005 yield data



35 Inverse Meta-modelling of Yield-Monitor Data 419

Fig. 35.3 Inversely modelled profile of AWC at 90 cm using 2006 yield data

The results and discussion so far imply that the incorporation of additional
APSIM variables into the meta-models could enhance one’s understanding about
information that resides within the ‘effective’ AWCs. At this point, the value of the
simplicity of the meta-model must be considered. If more parameters are incorpo-
rated into the modelling exercise, Ockham’s razor would require that an equivalent

Fig. 35.4 ‘Best’ estimates of profile of AWC at 90 cm based on averages for 3 or 4 years
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Fig. 35.5 An example of linear yield predictions compared with yield-monitor yields across two
fields: (a) ‘Griegs’ and ‘Hill’ 2005; (b) ‘Griegs’ and ‘Hill’ 2006

gain in information is gained from the model. It is important to strike a balance
between the number of parameters, accurate prediction, and the ease of model
application.

Figure 35.5 depicts yield-monitor yield versus predicted yield for two separate
years using a model that was derived for two of the fields on the farm. For these two
fields, the model was based on yield data from 1999, 2002, 2005, and 2006. The R2

values ranged between 0.48 and 0.80. The model performance varied between fields
and between years.

These results suggest that simple yield prediction models are potentially useful
as a means to relatively easily predict yield across whole farms. These models also
make use of information that has been gained from the inverse modelling exercise,
demonstrating the validity of the ‘effective’ AWC values for this purpose.

35.4 Conclusions

1. Inverse meta-modelling has proven to be very useful in terms of solving the
computer power challenge that simulation modelling for PA brings. The inverse
model was efficiently applied to a 10-m grid across a farm. It is impera-
tive for future research to address the ability of meta-models to more closely
approximate APSIM and other crop growth simulation models.

2. Yield-monitor data provided a source of information about AWC. ‘Effective’
hydraulic properties across a farm at a resolution of 10 m were extracted from
the yield-monitor data using an inverse crop growth simulation model. Further
understanding about the ‘effective’ component of the AWC values is required. It
is possible that some additional information such as landscape variables would
improve the AWC estimates. Many years of yield data are required to improve
and to gain confidence in this process.
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3. Value has been gained from the inversely modelled hydraulic properties for yield
prediction using simple linear models. This approach could be applied across
whole farms under different climate scenarios, resulting in yield information at a
spatial and a temporal resolution useful for PA. Model validation with more than
1 year of yield information is required and the amount of variability predicted
could be improved.
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Chapter 36
Reconstructing Palaeotopography at the
Beginning of the Weichselian Glacial Stage
Using an Electromagnetic Induction Sensor

T. Saey, M. Van Meirvenne, D. Simpson, U.W.A. Vitharana, L. Cockx,
and H. Vermeersch

Abstract During the last glacial period (Weichselian), wind-blown loess was
deposited over the undulating landscape of central Belgium, which had been
formed in surfacing Tertiary marine sediments. Since valleys were covered with
a thicker loess layer than were elevated areas, the present topography is much
flatter. Reconstructing the palaeolandscape at a detailed scale is almost impossi-
ble by conventional procedures based on soil augering. Therefore, the use of the
EM38DD electromagnetic induction sensor was evaluated as an alternative for map-
ping the depth to the Tertiary clay substrate. On our 2-ha study site, strong non-linear
relationships (R2 = 0.85) were found between the apparent electrical conductiv-
ities (ECa) measured by the vertical orientation of the EM38DD and the depth
to the Tertiary clay (zclay) on the one hand and between the combination of the
ECas measured by the vertical and horizontal orientations of the EM38DD and
zclay on the other hand. These predictions were validated by independent obser-
vations of the depth to the Tertiary clay, and r values of 0.84 (using only the
measurements in the vertical orientation) and 0.85 (using both measurements in
the vertical and horizontal orientations), with an average error of 0.26 m, were
found. Our dense ECa measurements (2 m × 2 m resolution) allowed us to build
a three-dimensional surface of the depth to the Tertiary substrate, reconstructing the
palaeotopography beneath the loess cover and revealing distinct erosion patterns.
The continuity of these was confirmed by an analysis of surface flow patterns on the
reconstructed palaeotopography. The non-invasive, quick, and cost-effective electro-
magnetic induction sensor offers new possibilities in reconstructing and analysing
the Quaternary palaeotopography beneath the loess cover.

Keywords EM38DD · Apparent electrical conductivity · Palaeolandscape · Erosion
patterns
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36.1 Introduction

During the last glacial period (Weichselian, 80–10 ka BP), the periglacial undulat-
ing landscape of central Belgium, formed in surfacing Tertiary marine sands and
clays, was covered by niveo-aeolian loess, with a thickness ranging from only a
few decimetres on hilltops up to several tens of metres in valleys (Hubert, 1976;
Vanwalleghem et al., 2005). As a consequence, the palaeotopography became much
flatter, and since slope processes have modified the thickness of this loess layer even
further, the palaeotopography cannot be reconstructed on the basis of the present
topography (Leverington et al., 2002). Yet, a precise and accurate representation
of landforms and niveo-aeolian loess sediments offers us a fundamental picture
of Pleistocene periglacial environments (Smith et al., 2006). The extent to which
conventional invasive methods, such as augering, can be employed for quantifying
the small-scale soil variability is limited by the expense and labour associated with
obtaining soil samples (Stroh et al., 2001). As an alternative, soil-adapted geophysi-
cal sensors, like the EM38DD, have proved their worth (Doolittle et al., 1994; Cockx
et al., 2007; Chapters 19, 20, 21, 22, 29, 31, 32, and 33).

The objective of this study was to evaluate, using the EM38DD sensor, two
methodologies for mapping the palaeotopography at shallow depths (<3 m) beneath
the loess cover. As a test case, we used a 2-ha study site in central Belgium where
the palaeolandscape prior to the deposition of the loess cover was formed in Tertiary
marine clay. More information can be found in Saey et al. (2008, 2009).

36.2 Materials and Methods

36.2.1 Study Site

The 2-ha research site (50◦47′58′′ N, 3◦24′41′′ E) is located in Heestert, Belgium,
in the European loess belt. It is situated on a hillside with an average slope of 7%
and elevation of 30–40 m a.s.l. The soil type was a Luvisol according to the WRB
classification system (FAO/ISRIC/ISSS, 1998) and was characterised by an argic
horizon at a depth of between 0.3–0.35 and 1.3–1.4 m.

During the last glacial stage (Weichselian, 80−10 ka BP), wind-blown loess was
deposited over the periglacial undulating landscape of central Europe. Due to the
deposition of the loess, the relief of the Tertiary (generally clayey) substrate became
smoother, making it impossible to reconstruct the small-scale differences in depth
to the Tertiary substrate based on the present topography.

36.2.2 Electromagnetic Induction Sensing

We used the EM38DD, which is a dual-dipole sensor with one dipole oriented
horizontally and the other vertically, yielding two soil ECa measurements with their
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own depth–response profile. The cumulative EM38 responses Rv(z) and Rh(z) from
the soil volume below a depth z (m) were given by McNeill (1980) as follows:

Rv(z) = (4z2 + 1)−0.5, (36.1)

Rh(z) = (4z2 + 1)0.5 − 2z. (36.2)

Due to the quasi-exponential form of the cumulative response curves, the depth
of exploration (DOE) can be arbitrarily defined as the depth where 70% of the
response is obtained from the soil volume above this depth (and 30% from below
this depth). Therefore, the DOE for the horizontal orientation (0.76 m) proves to be
approximately half of the DOE of the vertical orientation (1.55 m).

36.2.3 Mobile ECa Measurement Equipment and ECa Mapping

An EM38DD sensor was mounted on a sled pulled by an all-terrain vehicle (ATV)
driven at a speed of 6–10 km h−1. Every second, ECa-V and ECa-H measure-
ments were recorded by a field computer. A Trimble AgGPS332, with Omnistar
correction, was used to geo-reference the ECa measurements with a pass-to-pass
accuracy of approximately 0.10 m. Measurements were made along parallel lines 2
m apart, guided by a Trimble lightbar system. Additionally, at each ECa measure-
ment point, the soil surface elevation was acquired with the Trimble AgGPS332
(accuracy ±0.30 m).

Table 36.1 shows the summary statistics of the EM38DD measurements obtained
at the study site. The mean of the ECa-V values is higher than the mean of the
ECa-H values, as a result of the larger weighting the former gives to deeper soil
layers. However, the coefficient of variation of these same signals was smaller. This
indicates that in this two-layered soil, the subsoil can be considered more conductive
and less heterogeneous than the topsoil.

Ordinary kriging (OK) (Goovaerts, 1997) was used to interpolate the EM38DD
measurements to a grid of 0.5 m × 0.5 m. A maximum of 64 neighbours was used
within a circular search area with a radius of 20 m around the location being inter-
polated. The spatial structures of ECa-V and ECa-H were modelled by Gaussian
variogram models. The parameters are given in Table 36.2. The interpolated ECa
maps are shown in Fig. 36.1a, b. Large differences in ECa were found over short
distances, with a similar pattern between ECa-V and ECa-H.

Table 36.1 Descriptive statistics of ECa-V and ECa-H measured with the EM38DD (n, number
of observations; m, mean; s2, variance; CV, coefficient of variation)

m Min. Max. s2 CV
n (mS m−1) (mS m−1) (mS m−1) (mS m−1)2 (%)

ECa-H 8562 33 6 86 243 47
ECa-V 8562 67 29 127 408 30
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Table 36.2 Variogram parameters for the variables ECa-V(mS m−1), ECa-H (mS m−1), Z (m),
and z*

clay (m) modelled with EM38DD measurements together with 56 calibration observations

(C0, nugget variance; C0 + C1, sill; a, range of Gaussian variogram models)

C0 C0 + C1 a (m)

ECa-V 5 225 20
ECa-H 5 145 20
Z 0.001 0.601 35
z*

clay (ECa-V + 56 calibration observations) 0.005 0.225 20
z*

clay (ECa-V and ECa-H + 56 calibration observations) 0.005 0.215 20

36.2.4 Depth to Tertiary Clay Observations

Two transects ABCD and EF were laid out in such a way that both the largest and
the lowest ECa measurements of field 1 were visited equally (Fig. 36.1a). Along the
225 m of transect ABCD, 46 observation points were located at 5 m intervals, while
along the 42 m of transect EF, 15 points were selected at 3 m intervals. At each of
these 61 points, the depth to the Tertiary clay (zclay) was observed by augering with
a gouge auger. Figure 36.2b shows zclay in respect to elevation for transect ABCD,
together with the present-day soil surface. At most locations, a clearly observable
demarcation was present between the loess topsoil and the Tertiary clay. However,
between points B and C, a mixture of loess–clay was found on top of the clayey
substrate at some locations. This mixture was as much as 0.5–0.6 m thick. At the first
42 sampling points along this transect, the Tertiary clay substrate was present within
the first 1.6 m. At 14 observation points along transect EF, the Tertiary substrate was
located between 1.5 and 3 m below the soil surface. Due to the extent of the loess
cover below the 3.5 m maximum augering depth, at the last four sampling points on
transect ABCD and the last sampling point on transect EF, the exact zclay at these
points could not be discerned.

36.2.5 Relationship Between ECa-V and Depth to Tertiary Clay

In a two-layered model where silty soil (loess) is located above clayey material,
the relationship between the depth to the clay substrate (zclay) and the ECa-V can
be modelled using the McNeill (1980) cumulative response Rv(zclay) from the soil
below zclay (Eq. (36.1)). The main assumption of the model is that the ECa for
loess and clay is fairly uniform throughout the field. Therefore, at each zclay the
corresponding ECa

∗-V can be modelled, given the apparent conductivity values of
homogeneous Quaternary loess (ECa-loess) and Tertiary clay (ECa-clay):

EC*
a − V = [

1 − Rv(zclay)
]

(ECa − loess) + [
Rv(zclay)

]
(ECa − clay). (36.3)
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Fig. 36.1 (a) Interpolated ECa-V (mS m−1) showing calibration points (dots) on transects ABCD
and EF. (b) Interpolated ECa-H (mS m−1) showing validation points (dots)

Inversely, z∗
clay can be modelled, given the ECa-V measurements. Therefore,

Rv(z∗
clay) was calculated, given the ECa-V measurements, ECa-loess, and ECa-clay:

Rv(z*
clay) = (ECa − V) − (ECa − loess)

(ECa − clay) − (ECa − loess)
. (36.4)
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Fig. 36.2 (a) ECa-V, ECa-H, and zclay measurements along the 225-m transect ABCD. (b) Profiles
of the three layers encountered along this transect

This calculated Rv(z*
clay) can be input to Eq. (36.1) to obtain the modelled z*

clay:

z*
clay =

[
1

4Rv(z*
clay)2

− 1

4

]0.5

. (36.5)
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To fit a theoretical relationship to the zclay−ECa-V data points based on the McNeill
(1980) cumulative depth response, the sum of the squared differences between zclay
and z*

clay must be minimised:

n∑
i=1

[
zclay(i) − z*

clay(i)
]2 = min, (36.6)

with i being the number of observation and n the total amount of observations. The
value of z*

clay was modelled with Eqs. (36.4) and (36.5), given the ECa-V measure-
ments. The modelling parameters ECa-loess and ECa-clay were iteratively adjusted
to obtain the smallest sum of the squared differences between zclay and z*

clay.
Figure 36.2a shows the ECa-V, ECa-H, and zclay profile measured along transect

ABCD. It is clear that the ECa profiles behave similarly to the zclay values as shown
in Fig. 36.2b. The 42 zclay observations of transect ABCD and the 14 observations
of transect EF were compared with their nearest ECa measurements. The fitting of
the McNeill relationship to the zclay−ECa-V data points was done by minimising
the sum of the squared differences between zclay and z*

clay by iteratively altering the
modelling parameters ECa-loess and ECa-clay in Eqs. (36.3) and (36.4).

36.2.6 Relationship Between the Combined ECa-V and ECa-H
and Depth to Tertiary Clay

The cumulative response from the Quaternary topsoil and the Tertiary subsoil can
be calculated as 1 − R(zclay) and R(zclay), for the vertical and horizontal dipole
modes, respectively [Eqs. (36.1) and (36.2)]. For each ECa-V and ECa-H measure-
ment, z*

clay can be modelled by solving a system of non-linear equations. Therefore,
the automated function FSOLVE based on the Levenberg–Marquardt algorithm
(Marquardt, 1963) in the high-level language and interactive environment Matlab
(MathWorks, Natick, Massachusetts, USA) was used, given the conductivity val-
ues of homogeneous Quaternary topsoil (ECa-loess) and Tertiary clayey subsoil
(ECa-clay):

ECa – V = [1 − Rv(z∗
clay)](ECa – loess) + [Rv(z∗

clay)](ECa – clay). (36.7)

ECa – H = [1 − Rh(z∗
clay)](ECa – loess) + [Rh(z∗

clay)](ECa – clay). (36.8)

To fit these theoretical relationships to the zclay−ECa data, the sum of the squared
differences between zclay and z*

clay was minimised:

n∑
i=1

[
zclay(i) − z∗

clay(i)
]2 = min, (36.9)
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with n being the number of observations. The parameters ECa-loess and
ECa-clay were iteratively adjusted to obtain the smallest sum of the squared
differences between zclay and z*

clay.

36.3 Results and Discussion

36.3.1 Relationship Between ECa-V and Depth to Tertiary Clay

The optimal values of ECa-loess and ECa-clay were 17 and 129 mS m−1, respec-
tively, with an R2 of 0.85 (Fig. 36.3). Therefore, the following zclay−ECa-V
relationship was used to predict z*

clay:

z∗
clay =

⎡
⎢⎣ 1

4 ·
(

(ECa – V)−17
129−17

)2
− 1

4

⎤
⎥⎦

0.5

. (36.10)

Fig. 36.3 zclay as a function of ECa-V along study transects ABCD and EF with fitted McNeill
curve
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36.3.2 Relationship Between the Combined ECa-V and ECa-H
and Depth to Tertiary Clay

The obtained values of ECa-loess and ECa-clay were 12 and 125 mS m−1, respec-
tively, with an R2 of 0.85. So, at each measurement point, ECa-V and ECa-H were
linked to z*

clay by using Eqs. (36.1), (36.2), (36.7), and (36.8) as follows:

ECa-V = 12 + 113

(4z∗
clay

2 + 1)0.5
, (36.11)

ECa-H = 12 − 226 · z∗
clay + 113.(4z∗

clay
2 + 1)0.5, (36.12)

This system was solved at each location to z*
clay with Matlab using the Levenberg–

Marquardt algorithm (Marquardt, 1963).

36.3.3 Validation of Predicted Depth of Tertiary Clay

An independent validation was performed to evaluate the predictive quality of the
models. Three indices were used as validation criteria: the mean estimation error
(MEE), the root mean squared estimation error (RMSEE), and the Pearson cor-
relation coefficient r. The MEE and RMSEE were obtained from the following
equation:

MEE = 1

n

n∑
i=1

[
z∗

clay(i) − zclay(i)
]
, (36.13)

RMSEE =
√√√√1

n

n∑
i=1

[
z∗

clay(i) − zclay(i)
]2

, (36.14)

with n denoting the total number of validation observations. The accuracy of the pro-
posed models to predict z*

clay was evaluated by investigating at 24 locations. These
were taken at the centres of 24 grid cells projected over the study site. The observed
depths were compared with the model predictions (Fig. 36.4). A strong correlation
between predicted and measured depths (0.84 using only the measurements in the
vertical orientation and 0.85 using the combined measurements in the horizontal
and vertical orientations) and a low RMSEE (0.26 m) indicated that both proce-
dures predicted z*

clay with a similar accuracy. However, on average, both procedures
overestimated zclay with a bias of 0.12 m, as indicated by the MEE.
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Fig. 36.4 Scatter plot of predicted depth to the Tertiary clay (z*
clay) versus the observed depth

(zclay) for both procedures (n = 24)

36.3.4 Palaeotopography Beneath the Loess Cover

The soil surface elevation (Z) of the fields was interpolated (Table 36.2) and visu-
alised in Plate 36.1. The ECa measurements with the EM38DD were converted
into z*

clay for both procedures. The interpolated z*
clay maps (Table 36.2) were sub-

tracted from the interpolated Z map and the resulting Z − z*
clay maps are shown

in Plate 36.1b, c. A comparison of the current topography (Plate 36.1a) with the
palaeotopography represented by the Tertiary clay (Plate 36.1b and c) reveals the
palaeolandscape beneath the loess cover to be less smooth. A pattern of shallow
gullies emerged in the Tertiary substrate, despite its clayey composition. These gul-
lies combine into one major gully that ends in what seems to be a wider valley.
To evaluate the continuity of these flow pathways, the Idrisi Kilimanjaro modules
RUNOFF and WATERSHED were applied to the palaeotopography surfaces. The
results are visualised in Plate 36.1b and c. A clear accumulation of flow lines, repre-
senting past surface flow patterns, emerges. Hubert (1976) reported the occurrence
of strong erosion during the glacial stages of the Pleistocene. Valleys were filled with
thick loess sediments, while elevated locations received a thinner layer. Subsequent
erosion modified the thickness of the loess further, increasing the thickness of the
valley loess by colluvial deposits.
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Plate 36.1 (a) Elevation of the current soil surface. (b) Z − z*
clay predicted using only the ECa-V

measurements. (c) Z − z*
clay predicted using the combined ECa-V and ECa-H measurements. Both

(b) and (c) are shown with simulated flow lines

36.4 Conclusions

The ECa measurements of the EM38DD sensor proved suitable for predicting zclay.
The relationship between zclay and ECa was found to be well represented by the the-
oretical response curve proposed by McNeill (1980). With the EM38DD, a number
of soil auger observations are required to calibrate the ECa measurements to zclay.
Therefore, applying both ECa measurements instead of only the measurements with
the instrument in the vertical orientation did not improve the accuracy of the zclay
predictions.
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We can conclude that the combination of high-density EMI sensor measurements
with direct observations of the depth of the Tertiary clay beneath the Quaternary
loess cover for shallow depths (<3 m) proved to be a successful method for
reconstructing the palaeotopography at the beginning of the last glacial period.
Additionally, the reconstructed palaeotopography showed realistic patterns of sur-
face processes, which could be modelled as a continuous flow process by a flow
run-off model.
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Postscript: Where to from Here?

Developing and utilising proximal soil sensors has turned into a new field of study
in soil science, a predictable development when we consider that the data collected
can provide key information for solving a wide range of environmental and socio-
economic challenges. This book sheds light on diverse work on the subject being
carried out throughout the world. While Section 1 provided overviews of current
research, here we aim to summarise the key messages emerging from the remaining
sections. For each section, we set out suggestions for future work, and at the end we
sketch some initiatives that have already begun.

Soil Sensing and Sampling

Although soil scientists have been trying to measure soil properties using proximal
soil sensors since the early 1900s, the sensors involved have evolved enormously.
Sensors are now smaller, faster, and more accurate; they consume less energy and
can be wireless. Examples are the ion-sensitive field effect transistors used to mea-
sure soil pH and soil nutrients. It is pleasing to see that two large projects are
underway from the European Commission, Digisoil and iSoil, the aim of which
is to develop integrated soil-sensing systems for digital soil mapping. Soil sampling
is important for PSS, especially for designing the sensor sampling locations and
sampling for calibration.

Future Work

• Where, when, and how do we sample using proximal soil sensors?
• Which technique is most suitable for each soil property?
• What is the most efficient strategy for ‘calibration sampling’? Do we need to

consider geographic space as well as covariate space?

Soil UV, Visible, and Infrared Spectral Sensing

There is much interest in using soil visible and infrared spectroscopy because it
is cheap and rapid, and the measurements can be made in situ in field conditions.

435R.A. Viscarra Rossel et al. (eds.), Proximal Soil Sensing, Progress in Soil Science 1,
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Another major reason for this interest is that, unlike most other sensing techniques,
several soil properties can be measured from a single scan. This multi-attribute
feature of reflectance spectroscopy relies on a single spectrum holding informa-
tion about multiple soil constituents, and this has been clearly shown in our book.
Although soil mineral content can be measured directly from the spectra, for the
most part the techniques rely on correlations; therefore, to be quantitatively useful,
the spectra need to be related to a set of known reference samples through a cali-
bration model. We have learned that the set of reference samples used in the models
need to be representative of the range of soils in which the models are to be used and
that the techniques for analysing the spectra and developing the multivariate models
need to be robust.

Future Work

• Need to develop theoretical multivariate calibrations that use soil knowledge.
• Identify the underlying mechanisms that allow prediction of soil properties from

spectra, particularly those involving secondary (or indirect) correlations.
• Which are best, local or global calibrations? And does this depend on the soil

property?
• Are there cleverer algorithms than conventional ones like PLSR to process and

analyse soil spectra?
• Need to move soil visible and infrared spectroscopy to the field.
• Need research to combine spectral PSS with hyperspectral remote sensing.
• Develop the use of spectra directly into soil mapping and modelling.

Soil Sensing by Electromagnetic Induction
and Electrical Resistivity

Electromagnetic induction and electrical resistivity are really two different means
of measuring the soil’s electrical conductivity. The EMI method is perhaps the most
widely used sensor and now, with multiple frequencies, several depth ranges can
be measured simultaneously. With direct resistivity instruments, this same result
is achieved by having several pairs of electrodes spaced at varying inter-electrode
distances. The major advantage of the former over the latter is that no physical
contact is required, a clear advantage in hard dry soil. On the other hand, the direct
resistivity method is easier to interpret and measurements are not interfered with by
the presence of metal in the vicinity of the instrument. Soil electrical conductivity is
affected by several soil properties, particularly moisture content, clay content, and
salinity – so calibration and inference are always required.

Future Work

• Better inversion techniques for reconstructing soil profiles such as Bayesian
inversion

• A sound theory on interpreting the ECa data, which incorporates soil knowledge



Postscript: Where to from Here? 437

Radar and Gamma Radiometric Sensors

Both ground-penetrating radar and gamma radiometrics provide new avenues for
measuring and inferring soil properties. Radar has been used in soil studies for more
than 20 years, largely in North America for detecting horizon boundaries and topsoil
thickness. It has the potential to calculate, on the run, soil moisture content through
measuring the soil’s dielectric constant, an achievement that would in turn make it
easier to infer other soil properties. Ground-based hyperspectral gamma radiometry
is more recent and its use is not widespread, so the technique is not well known
among soil scientists. Nevertheless, it demonstrates great usefulness in its ability to
discriminate soil materials, texturally and mineralogically.

Future Work

• Better signal and reconstruction methods for deriving soil properties, particularly
soil moisture, directly from radar signals

• Understanding the gamma attenuation due to moisture content and the depth
range of response for different soil materials

Multi-sensor Systems and Other Sensors

Every soil-sensing technology has strengths and weaknesses, and no single sensor
can measure all soil properties. It is therefore important when measuring a suite
of soil properties to select a set of sensors that complement each other. Integrating
multiple proximal soil sensors of both types in a single multi-sensor platform can
provide a number of operational benefits over single-sensor systems: robust opera-
tional performance, increased confidence (as independent measurements are made
on the same soil), extended attribute coverage, and increased dimensionality of the
measurement space.

Future Work

• Data fusion algorithms to produce information from the multi-sensor data
• Develop efficient algorithms that can handle high spatial resolution datasets

Applications

A major application of proximal soil sensing has been precision agriculture.
However, there are other applications. For example, detailed spatial information
furnished by proximal soil sensors can be used to reconstruct palaeoenvironments.
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Because it can make closely spaced observations without much difficulty,
proximal soil sensing is naturally suited to high-resolution mapping (∼20 m or
less). This means it is ideal for sites that call for careful management. Potential areas
of application, besides precision agriculture, include contaminated site assessment,
geotechnical site assessment, and sites of special scientific interest.

Future Work

• High-resolution mapping of soil carbon for sequestration purposes
• Application of multi-sensors for contaminated site assessment
• Investigation of soil diversity–plant biodiversity relationships

Initiatives

FP7 Projects iSoil and Digisoil

The largest current investment in proximal soil sensing is under the European
Commission’s Framework 7 research initiative. There are two large projects, iSoil
and Digisoil (www.isoil.ufz.de and www.digisoil.brgm.fr), which aim to develop
proximal soil sensing for digital soil mapping. The projects, funded at around 3.5
million euro each, comprise consortia from a number of European countries, with
some external scientific advisors. The projects are investigating some of the key
technologies reported in this book. Useful findings will begin to flow from 2010
onwards.

IUSS WG-PSS

The IUSS Working Group on Proximal Soil Sensing (www.proximalsoilsensing.
org) was formed in July 2008. The working group operates under the auspices
of both the Pedometrics Commission and the Soil Physics Commission of the
International Union of Soil Sciences (IUSS). Its purpose is to enable greater inter-
action and collaboration between scientists and engineers with a common interest
in applying state-of-the-art sensing technologies to the study of soil processes and
spatio-temporal soil variability.

Global Soil Spectral Library

An initiative to develop a global soil visible and infrared soil spectral library
was started in April 2008. The Global Soil Spectral Library (www.proximal
soilsensing.org/global-spectroscopy/) aims to develop a collaborative network for



Postscript: Where to from Here? 439

soil spectroscopic research to further its development and encourage its adoption in
soil science.

Australia Raphael Viscarra Rossel
January, 2010 Alex McBratney

Budiman Minasny
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