Bertrand Meyer

Agile!

The Good, the Hype and the Ugly

@ Springer

Agile!

Bertrand Meyer

Agile!

The Good, the Hype and the Ugly

@ Springer

Bertrand Meyer
ETH Zurich,
Zurich, Switzerland

Eiffel Software,
Goleta, USA

ITMO,
Saint Petersburg, Russia

ISBN 978-3-319-05154-3 ISBN 978-3-319-05155-0 (eBook)
DOI 10.1007/978-3-319-05155-0

Library of Congress Control Number: 2014936182

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, repro-
duction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

p. 13 (Tintin), Le Lotus Bleu by Hergé, © Hergé/Moulinsart 2014 , © Reprinted with Permission
p.24 CALVIN AND HOBBES © 1988 Watterson. Reprinted with permission of UNIVERSAL UCLICK. All rights
reserved.
55 (I Musici), I Musici di Roma, www.imusicidiroma.com
63 (lasagne), Kit James, finefettleguide.blogspot.ch
. 127 (story card), Steven Thomas, itsadeliverything.com
. 128 (task board), Gareth Saunders, blog.garethjmsaunders.co.uk
129 (burnup chart), Alistair Cockburn in [Cockburn 2005], © 2005 Addison-Wesley
. 1, 50 (Agile Manifesto) © 2001, the authors. This declaration may be freely reproduced in any form, but only in its
entirety, through this notice.
p. 118 Design by Contract is a registered trademark of Eiffel Software.
p. 131 (Gantt chart) from the documentation of “GanttView for WinForms”, used with permission from Microsoft
(www.microsoft.com/en-us/legal/intellectualproperty/Permissions/default.aspx), © Microsoft

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply , even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be
made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer International Publishing Switzerland is a brand of Springer
Springer is part of Springer Science+Business Media (www.springer.com)

Short contents

The full table of contents appears on page xv.

Preface vii
Contents XV
1 Overview 1
2 Deconstructing agile texts 17
3 The enemy: Big Upfront Anything 31
4 Agile principles 49
5 Agile roles 79
6 Agile practices: managerial 89
7 Agile practices: technical 103
8 Agile artifacts 117
9 Agile methods 133
10 Dealing with agile teams 145

11 The Ugly, the Hype and the Good: an assessment of the agile approach 149
Bibliography 155
Index 163

Preface

This is not a philosophical, theoretical or motivational book, but a practical one. Its pur-
pose is to enable readers — software developers, managers involved in IT, and educators
— to benefit from the good ideas in agile methods and stay away from the bad ones.

Agile methods are undeniably one of the important recent developments in software
engineering. They are also an amazing mix of the best and the worst. This is an extraor-
dinary situation: usually, when a new set of concepts bursts forth, one can quickly assess
its overall contribution as beneficial, neutral or detrimental. Agile texts, however, defy
such a simple judgment: you may find in one paragraph a brilliant insight, in the next
paragraph a harmless platitude, and in the one after some freakish advice guaranteed to
damage your software process and products.

No wonder then that practitioners have massively disregarded injunctions to use this
or that agile method — such as Scrum, Extreme Programming, Lean Software and Crys-
tal, the most prominent ones today — in its entirety. Industry knows better, and every
agile team in the field makes up its own cocktail of agile practices, rejecting the ones that
do not fit. Until now, however, each organization and project has had to repeat for itself
the process of sorting out the gems from the gravel. What a waste of effort. This book
spares you the trouble by presenting a comprehensive description and assessment of the
key agile ideas.

DESCRIPTION AND ASSESSMENT

The first goal is description: you can use this book as a primer on agility, presenting the
approach concisely, coherently and comprehensively. If agile development is new for
you, this presentation will, I hope, teach you what it is about, enable you to apply to your
own projects the agile ideas you decide to retain, and prepare you if you wish to read the
more specialized literature (such as the texts advocating a particular agile method) in the
most effective and profitable way. If you have already read about agile methods, and per-
haps practiced them, I hope it will help you put all the concepts in place, understand them
in depth, and apply them better.

viii PREFACE

What makes this descriptive component of the book necessary is that until now, in spite
of the already enormous literature on agile methods, there was no place, as far as I know,
where you could find a complete yet concise presentation of the essential agile ideas and
techniques, not tied to a particular agile method, not drowned under anecdotes, and not
interspersed with a constant exhortation to join the cult. Sermons have a role, but for most
people, I think, it is more interesting to find out what exactly is meant by “velocity”, “con-

G LEINNT3

tinuous integration”, “user story”, “self-organizing team”, “sprint review”, “planning
29 ¢

game”, “mob programming” and so on. That is what I have tried to provide —in 162 pages.

The second goal is assessment: we take an even-handed look at agile methods and sort
out what helps, what is not worth the attention, and what harms — the good, the hype
and the ugly. The assessment is unbiased (I have no horse in this race) but that does not
mean it is the only possible one, since empirical software engineering, the objective
study of software processes, is still a science in progress. So you will not necessarily
agree with all the conclusions, but I think you will agree with most, and where you dis-
agree you will be able to appreciate rational arguments on both sides.

The two aspects — “news” and “editorial”— are separated: you are entitled to know
at any stage whether you are reading the factual presentation of an agile technique or a g
discussion of its merit. Judgmental elements are marked by the icon shown here on the
right. The scope of its application will be clear from its position: at the start of a paragraph,
it generally applies to the remaining part of the current section; at the start of a section, to
the full section; and in the case of the final assessment, to the full chapter.

-~

KEEPING A COOL HEAD

Anyone trying to gain a clear, cool-headed understanding and appreciation of agile meth-
ods has, so far, faced three difficulties that I hope this book removes: partisanship, intim-
idation and extremism.

Most of the existing texts are partisan. At issue here is not just the normal phenom-
enon of inventors arguing for their inventions, but a lack of restraint that sometimes bor-
ders on religious fervor and demands from the reader a suspension of disbelief. The first
presentations of structured programming, object technology and design patterns — to
cite three earlier developments that each imprinted a durable mark on how the world
builds software, as agile methods have already started to do — were enthusiastically pro-
moting new ideas, but did not ignore the rules of rational discourse. With agile methods
you are asked to kneel down and start praying. This is not the right way to approach solu-
tions to engineering problems involving difficult technical and human aspects.

The agile literature is often intimidating. It dismisses previous approaches as passé,
scornfully labeling them “waterfall” (even though no company applies a strict waterfall
process), and leaving the impression that anyone supporting them is a rigid,
pointy-hair-boss type. We will encounter the typical example of an author for whom any — See “/nzimi-
objection to agile methods is a mark of “bureaucracy”, “incompetence” and “medioc- dation”, 2.2.3,
rity”. The very name for the approach, “agile”, a brilliant marketing decision — no, a 7%

stroke of genius! —, is enough to make any would-be skeptic think twice: who wants to

PREVIOUS ATTEMPTS

ix

be cast as not agile? If you search the dictionary for antonyms to “agile”, you will find
such niceties as “awkward”, “lumbering” and “ungraceful ”. If those are the alternatives,
you, I and everyone else want to be agile! This name is just a name, however; we must
unemotionally assess, one by one, the concrete principles and practices that it covers.

Clear, no-nonsense assessment is also complicated by extremism: the insistence of
some method designers that you must apply their prescriptions entirely. There are excep-
tions; Crystal, for example, is more of a flexible, your-mileage-may-vary approach. But
the prevalence of the all-or-nothing view in many of the foundational texts further com-
plicates the task of identifying which techniques will work for your own project, and
which will not.

PREVIOUS ATTEMPTS

Among the many books on agile methods, I know of only three that have not taken an
adoring tone. The first is McBreen’s Questioning Extreme Programming, whose “ques-
tioning” is plaintive, leaving the reader uncertain about any serious problems with XP.
Extreme Programming Refactored: The Case Against XP by Stephens and Rosenberg
does not suffer from such angst; it is a pamphlet, both funny and enlightening, but like
any pamphlet it does better at highlighting absurdity than at performing a fair
pro-and-con analysis. The book that made the most serious attempt at such an analysis,
Boehm and Turner’s Balancing Agility with Discipline, contrasts agile approaches with
traditional plan-driven software engineering techniques. Its great strength is that it relies
on empirical data from studies comparing the effectiveness of agile techniques to their
classical counterparts. For my taste it tilts a trifle too much to the side of cautiousness;
perhaps because Boehm is such a respected figure in software engineering and feared
being branded as a proponent of the old order, the authors avoid sounding too critical.

Do not expect such timidity in the present book (mentioning this just in case you were
worried). Respect yes, deference no. It will highlight and praise the good ideas, and when
it encounters balderdash it will call it balderdash.

STRUCTURE OF THE BOOK

The book has a simple structure and is intended for sequential reading.

The opening chapter, entitled “overview”, presents a summary of agile ideas and a
first overall assessment. It sets the stage for the rest of the book and serves as a summary
of it.

The second chapter is a short foray into the style of agile descriptions, serving as a
form of immunization against the risk of unjustified generalization. Working from exam-
ples in the agile literature, it analyzes the intellectual devices that agile authors use to
convince the world.

Chapter 3 is a sketch of everything that agile methods do not want to be and agile texts
love to lambast: traditional plan-based software engineering methods, including the
derided “waterfall”.

[McBreen 2002].

[Stephens 2003].

[Boehm 2004].

PREFACE

The next five chapters, the core of the book, review agile ideas: principles in chapter
4, roles (in the sense of personnel roles, such as managers and users) in chapter 5, prac-
tices in chapters 6 and 7, and artifacts, both material and virtual, in chapter 8. Here we
do not focus on any specific method but look instead at the concepts and tools shared by
all or most. This approach illuminates the many commonalities between the various
methods. It will allow you to examine agile ideas by themselves, in a non-denomina-
tional way, so that you can decide which ones are suitable for your context. When some
of them apply more specifically to one method, the discussion points this out, and
includes in the margin one of the icons shown here on the right. The focus in those chap-
ters remains, however, on individual methodological concepts and techniques.

That focus moves to the methods themselves in chapter 9, which studies four of the
principal agile methods in existence today, the four already cited: Scrum, Lean, XP and
Crystal. Since the constituent ideas have been presented in the preceding chapters, 4 to
8, we can in the presentation of each method concentrate on the particular combination
of principles, roles, practices and artifacts that it has chosen, and just as importantly on
the characteristic spirit of that method. The analysis shows that each of them has “one
big idea” that sets it apart, supported by a number of auxiliary concepts.

Chapter 10 is brief; it describes precautions that organizations should take when
adopting agile methods, in particular when some are more agile than others. It warns that
the laws of software engineering continue to apply, and cautions against the
“either-what-or-when” fallacy that works well for consultants but not for their clients.

Chapter 11 is the final assessment: an overall examination of the agile canon, apprais-
ing which ideas stand up and which just do not make sense. It shows indeed that, as the
book’s subtitle indicates, agile ideas can be classified into three categories:

* The good (including the “brilliant”): principles and practices — some new, some not
— that agile authors rightly present as helpful to software quality and productivity.

» The hype: widely touted ideas that will make little difference, good or bad, to the
resulting software.

» The ugly: agile-recommended techniques that are just plain wrong, contradicting
proven rules of good software engineering, jeopardizing the success of projects, and
harming the quality of the resulting software.

PERSPECTIVE AND SCOPE

Any book is colored by its author’s experience. What mostly characterizes mine is the
mix of industrial practice (for most of my career) and academic work (for the past decade).

It is also useful to note what this book does not include: a comprehensive approach to
software development. My previous books describe techniques of quality software
development and argue for specific approaches, particularly object technology, formal
specification and Design by Contract. This one, in contrast, studies other people’s work.
Even when I felt that my own work is relevant to the discussion or predates some of the
successful agile ideas I have (except for a hint or two) refrained from talking about it.

)

X

These symbols
were designed

for the present

book and are not

official logos of
the methods.

ANALYSIS: INSTINCTIVE, EXPERIENTIAL, LOGICAL OR EMPIRICAL?

xi

ANALYSIS: INSTINCTIVE, EXPERIENTIAL, LOGICAL OR EMPIRICAL?

Software methodology is a tricky business because it is difficult to prove anything. Many
ideas get adopted on the strength of an author’s powers of conviction. It does not mean
they are good, or bad.

Authors use four kinds of argument: gut feeling, experience, logical reasoning and
empirical analysis.

Do not laugh at gut feeling as a means of persuasion; after all, the mother of all soft-
ware methodology texts, Dijkstra’s 1968 Go To Statement Considered Harmful, largely
relied on it:

Recently I discovered why the use of the go to statement has such disastrous
effects, and I became convinced that it should be abolished from all higher-level
programming languages.

But if you are not Dijkstra your gut feeling will not take you very far in a quest to con-
vince the community.

Experience was also part of Dijkstra’s rationale:

For a number of years I have been familiar with the observation that the quality
of programmers is a decreasing function of the density of go to statements in the
programs they produce.

Experiential arguments are among the favorite tools of agile authors. The typical agile
book is a succession of alternating general observations and personal anecdotes of
project rescues (rescued, remarkably, by the author) and project failures (failed, remark-
ably, after not following the author’s advice). These anecdotes are usually entertaining
and sometimes enlightening, but a case study is only a case study, and we never know
how much we can generalize. One can, after all, summon an experience in support of
almost any recommendation.

Anecdotes and individual cases, by the way, can have force of proof, but only in one case:
disproving a general law. If such a law has been proposed, it suffices of a single experiment
to negate it (the technical term is “falsify”). For example if someone — say, Aristotle —
told you that bodies fall at a rate that depends on their mass, just go up that tower in Pisa,
drop a light ball and a heavy ball, and see them reach the ground at the same time.

Logical reasoning is a powerful tool; it played a significant role in Dijkstra’s advocacy
(and for Galileo too, who according to some authors proved his hypothesis solely by
thought experiment). But it is only as convincing as the hypotheses from which it starts,
and there is the risk that it will remain academic.

[Dijkstra 1968],
emphasis added.

xii

PREFACE

Ideally, we should use empirical analysis. Does pair programming lead to better
results than code inspections? Is constant customer interaction preferable to a solid
requirements process? Credible answers to questions of software methodology require
systematic, rigorous, realistic studies of projects. This book relies on such results when
available, but there are not enough of them; the burgeoning field of empirical software
engineering has not yet provided answers to many fundamental issues. This has been
perhaps the biggest obstacle in the preparation of the book. Where not enough empirical
evidence was available, the discussion largely relies on analytical reasoning.

I have not completely avoided anecdotes and personal experience, but have tried to
confine them to the illustration of points supported by logical argument and to the task,
mentioned above, of disproving undue generalizations.

FREE CRITICAL INQUIRY

Given that this work includes critical comments, a word is in order to explain the spirit
in which it has been written.

Progress in science and engineering relies on free, critical inquiry of previous work.
In reviewing the agile literature, I have found a number of reasons to disagree with its
authors, and a few reasons to be shocked; I have not been coy about taking their claims
to task. I have also, however, found elements to admire, and learned new insights about
software development. This observation is worth remembering whenever you encounter
criticism in the following pages.

I would not have spent a good part of my last three years immersing myself in agile
methods and the supporting texts if I had not felt that I had something important to learn.
The path has been tortuous at times; with this book I hope to spare you the path and share
the lessons.

In no case does the criticism mean disrespect; the agile pioneers are experienced pro-
fessionals, passionate about software. Even when I find them to be wrong, I value their
views and share the passion. We are all in the same boat.

Bertrand Meyer
January 2014

ACKNOWLEDGMENTS

xiii

ACKNOWLEDGMENTS

Since this book makes a number of judgments, the customary caveat that its content commits only the
author is more than perfunctory: by acknowledging sources of influence and help I do not mean to
imply that anyone listed endorses the views expressed. This caveat particularly applies to the first
group of people to be thanked, some of whom may be expected to disagree: the authors of the best
agile books. I have learned a lot from reading about agile methods, and am particularly indebted to
the books and articles of Kent Beck, Barry Boehm with Richard Turner, Alistair Cockburn, Mike
Cohn, Craig Larman, Mary and Tom Poppendieck, and Ken Schwaber with Mike Beedle. I credit my
first encounter with agile ideas to a presentation of Extreme Programming by Pete McBreen at the Le
Bréau EDF/CEA summer school in 1999. I am grateful to Mike Cohn for clarification of the origin of
two of his citations. I also benefited from a lively Scrum workshop by Jeff Sutherland in Moscow,
enabling me to become a proud Certified Scrum Master.

I have given several industry seminars at ETH on the theme of this book and gained from the par-
ticipants’ comments. I am grateful for the advice of Ralf Gerstner at Springer on refining the focus
of the book, and am also indebted to his colleague Viktoria Meyer. Patrick Smacchia brought some
recent agile practices to my attention. Claude Baudoin, Kent Beck, Judith Bishop, Michael Jackson
and Ivar Jacobson were kind enough to encourage me after seeing a draft. Paul Dubois and Mark
Howard sent me important comments which helped focus and refine the text. Claudia Giinthart and
Annie Meyer helped with editing. Carroll Morgan sent me particularly perceptive comments on both
form and content. [have a special debt to Raphaél Meyer’s for his thorough reading of the text, which
led to essential improvements.

If I ever felt like pontificating abstractly about software engineering, I would quickly be brought
back to earth by the development group at Eiffel Software; we are fighting the battle every day.
Together we have seen it all: successes as well as those less glorious moments, the development iter-
ation that seemingly will never end, the critical bug that surfaces two days after a release, the amo-
rously crafted feature that turns out to interest nary a user. We are agile, in the best sense of the term,
but we are learning all the time.

I have drawn on some material published on my personal blog, at bertrandmeyer.com, and on my
blog at Communications of the ACM (cacm.acm.org/blogs/blog-cacm). I am grateful for reader com-
ments on blog articles.

I am indebted to members of the Chair of Software Engineering at ETH Zurich for many discus-
sions on software engineering issues. I cannot cite everyone but should mention that a remark by Till
Bay was the spark that led to switching the EiffelStudio development to an agile-style time-boxed
release process, and that Marco Piccioni first brought Scrum to my attention. He also made a number
of important suggestions on the draft of the present book. In the ETH course “Distributed Software
Engineering Laboratory”, where students from a dozen universities around the world work together
on a challenging distributed project, my co-instructors of many years, Peter Kolb and Martin Nordio,
contributed numerous insights, as did the assistants (Roman Mitin, Julian Tschannen, Christian
Estler) and the students and instructors from the participating universities. The course led to a number
of published empirical studies which significantly helped my understanding of the field.

se.ethz.ch/dose.

http://bertrandmeyer.com
http://cacm.acm.org/blogs/blog-cacm
http://se.ethz.ch/dose

BOOK PAGE

Further material associated with this book is available at

bertrandmeyer.com/agile

http://bertrandmeyer.com/agile

Contents

Preface
Description and assessment
Keeping a cool head
Previous attempts
Structure of the book
Perspective and scope
Analysis: instinctive, experiential, logical or empirical?
Free critical inquiry
Acknowledgments

Contents
1 OVERVIEW
1.1 VALUES
1.2 PRINCIPLES
Organizational principles
Technical principles
1.3 ROLES
1.4 PRACTICES
Organizational practices
Technical practices
1.5 ARTIFACTS
Virtual artifacts
Material artifacts
1.6 A FIRST ASSESSMENT
Not new and not good
New and not good
Not new but good
New and good!

vii

vii

viii
X

X

xi
Xii

xiii

>
<

— =
— O O OV oo 0 NN BN =

—_— = e e
A hA WD N

Xvi

CONTENTS

2 DECONSTRUCTING AGILE TEXTS

2.1 THE PLIGHT OF THE TRAVELING SEMINARIST

Proof by anecdote

When writing beats speaking

Discovering the gems

Agile texts: reader beware!
2.2 THE TOP SEVEN RHETORICAL TRAPS

Proof by anecdote

Slander by association

Intimidation

Catastrophism

All-or-nothing

Cover-your-behind

Unverifiable claims

Postscript: you have been ill-served by the software industry!

3 THE ENEMY: BIG UPFRONT ANYTHING

3.1 PREDICTIVE IS NOT WATERFALL
3.2 REQUIREMENTS ENGINEERING
Requirements engineering techniques
Agile criticism of upfront requirements
The waste criticism
The change criticism
The domain and the machine
3.3 ARCHITECTURE AND DESIGN
Is design separate from implementation?
Agile methods and design
3.4 LIFECYCLE MODELS
3.5 RATIONAL UNIFIED PROCESS
3.6 MATURITY MODELS
CMMI in plain English
The Personal Software Process
CMMI/PSP and agile methods
An agile maturity scale

4 AGILE PRINCIPLES

4.1 WHAT IS A PRINCIPLE?

4.2 THE OFFICIAL PRINCIPLES

4.3 A USABLE LIST

4.4 ORGANIZATIONAL PRINCIPLES

17
17
18
19
20
21
22
22
23
23
26
27
27
28
30
31
31
32
32
32
33
35
36
37
37
39
41
42
43
44
46
46
47
49
49

50
51
51

CONTENTS xvii

Put the customer at the center 51

Let the team self-organize 53
Work at a sustainable pace 56
Develop minimal software 58
Accept change 68

4.5 TECHNICAL PRINCIPLES 70
Develop iteratively 70
Treat tests as a key resource 75

Do not start any new development until all tests pass 76

Test first 7
Express requirements through scenarios 77

5 AGILE ROLES 79
5.1 MANAGER 79
5.2 PRODUCT OWNER 80
5.3 TEAM 80
Self-organizing 80
Cross-functional 81

5.4 MEMBERS AND OBSERVERS 82
5.5 CUSTOMER]2
5.6 COACH, SCRUM MASTER 84
5.7 SEPARATING ROLES 86
6 AGILE PRACTICES: MANAGERIAL 89
6.1 SPRINT 89
Sprint basics 89

The closed-window rule 90
Sprint: an assessment 91

6.2 DAILY MEETING 91
6.3 PLANNING GAME 93
6.4 PLANNING POKER 94
6.5 ONSITE CUSTOMER 96
6.6 OPEN SPACE 96
6.7 PROCESS MINIATURE 97
6.8 ITERATION PLANNING 98
6.9 REVIEW MEETING 99
6.10 RETROSPECTIVE 99
6.11 SCRUM OF SCRUMS 99

6.12 COLLECTIVE CODE OWNERSHIP 100

xviii

CONTENTS

The code ownership debate
Collective ownership and cross-functionality

7 AGILE PRACTICES: TECHNICAL

7.1
7.2

7.3
7.4

7.5

DAILY BUILD AND CONTINUOUS INTEGRATION
PAIR PROGRAMMING

Pair programming concepts

Pair programming versus mentoring

Mob programming

Pair programming: an assessment

CODING STANDARDS

REFACTORING

The refactoring concept

Benefits and limits of refactoring

Incidental and essential changes

Combining a priori and a posteriori approaches
TEST-FIRST AND TEST-DRIVEN DEVELOPMENT

The TDD method of software development
An assessment of TFD and TDD

8 AGILE ARTIFACTS

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

CODE

TESTS

USER STORIES

STORY POINTS

VELOCITY

DEFINITION OF DONE

WORKING SPACE

PRODUCT BACKLOG, ITERATION BACKLOG
STORY CARD, TASK CARD

8.10 TASK AND STORY BOARDS

8.11 BURNDOWN AND BURNUP CHARTS

8.12 IMPEDIMENT

8.13 WASTE, TECHNICAL DEBT, DEPENDENCY, DEPENDENCY CHARTS
9 AGILE METHODS

9.1

92

METHODS AND METHODOLOGY
Terminology

The fox and the hedgehog

LEAN SOFTWARE AND KANBAN

100
102
103
103
105
106
107
107
107
109
109
109
110
112
113
113
113
115
117
117
117
119
121
123
125
125
126
127
127
128
129
129
133
133

133
133
134

CONTENTS

Lean Software’s Big Idea 134
Lean Software’s principles 134
Lean Software: an assessment 135
Kanban 136
9.3 EXTREME PROGRAMMING 137
XP’s Big Idea 137
XP: the unadulterated source 137
Key XP techniques 138
Extreme Programming: an assessment 139
9.4 SCcrRUM 139
Scrum’s Big Idea 139
Key Scrum practices 140
Scrum: an assessment 140
9.5 CRYSTAL 141
Crystal’s Big Idea 141
Crystal principles 141
Crystal: an assessment 142
10 DEALING WITH AGILE TEAMS 145
10.1 GRAVITY STILL HOLDS 145
10.2 THE EITHER-WHAT-OR-WHEN FALLACY 146
11 THE UGLY, THE HYPE AND THE GOOD:
AN ASSESSMENT OF THE AGILE APPROACH 149
11.1 THE BAD AND THE UGLY 149
Deprecation of upfront tasks 149
User stories as a basis for requirements 150
Feature-based development and ignorance of dependencies 150
Rejection of dependency tracking tools 150
Rejection of traditional manager tasks 150
Rejection of upfront generalization 151
Embedded customer 151
Coach as a separate role 151
Test-driven development 151
Deprecation of documents 151
11.2 THE HYPED 152
11.3 THE GOOD 153
11.4 THE BRILLIANT 154
Bibliography 155

Index 163

1

Overview

Agile ideas date back to the development of Extreme Programming in the 1990s, but

reached fame with the appearance in 2001 of the “Agile Manifesto™: [Agile 2001]

Manifesto for Agile Software Development

We are uncovermng better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:
Individuals and interactions over processes and tools
Workjng software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That 15, while there 1= value m the items on
the nght. we value the items on the left more

Kent Beck James Grenning ~ Robert C. Martin
Mike Beedle Jum Highsnth Steve Mellor
Ane van Bennekum Andrew Hunt Ken Schwaber
Alistawr Cockbum Ron Jeffies Jeft Sutherland
Ward Cunningham Jon Kem Dave Thomas
Martin Fowler Brian Manck

The sight of a half-dozen middle-aged, jeans-clad, potbellied gentlemen turning their
generous behinds to us appears to have provided the decisive sex appeal. Personally, had
I wanted to convey the suggestion of agility, I might have turned to something like the
cover photograph of this book — which only demonstrates how out of tune I am with the
times, since the above picture was successful beyond anyone’s dreams. Agile ideas have

B. Meyer, Agile!, DOI 10.1007/978-3-319-05155-0_1,
© Springer International Publishing Switzerland 2014

2 OVERVIEW §1.1

become the buzz of the industry, the darling of the technical press, the kind of argument
companies use in the fierce competition to attract the best programmers: Come to us! Our
development is agile!

Rather than a single development method, “agile” denotes a compendium of ideas,
which a number of full-fledged methods — particularly Extreme Programming (XP), The ggffwl’a-
Scrum, Lean Software and Crystal —apply in various subsets and combinations; many peo- Z"Z’:n oo
ple also use some of the ideas without embracing a complete method. In this chapter we tive capitaliza-
getinto the mood, if not the details, of agile methods, by reviewing their core characteristics: tion “eXtreme
Programming”.

* Values: general assumptions framing the agile view of the world (1.1).

» Principles: core agile rules, organizational and technical (1.2).

* Roles: responsibilities and privileges of the various actors in an agile process (1.3).
» Practices: specific activities practiced by agile teams (1.4).

» Artifacts: tools, both virtual and material, that support the practices (1.5).

The principles follow from the values; the practices, roles and artifacts follow from the
principles. The last section (1.6) provides a first assessment of the approach.

This chapter serves as a concentrate of the rest of the book, surveying the key ideas
concisely. Except for the last part, it is descriptive, presenting the agile ideas neutrally.
For brevity, it does not cite (with one exception, below on this page) from the agile
sources describing the techniques summarized here; the following chapters include
numerous citations from agile texts, where the authors explain their rationale in detail.

1.1 VALUES

Reading the Agile Manifesto on the previous page is enough to show that “Agile” is not

just a collection of software techniques but a movement, an ideology, a cause. Going

even further, one of the creators of Scrum declares that “Agile is an emotion”. To [Sutherland
describe the fundamental underlying assumptions, agile proponents like to use the term 2009/, at 5:59.
“values”. Before looking at specific principles, practices, roles and artifacts, we must get

a feel for the agile philosophy, in the form of five general tenets:

Agile values

Redefined roles for developers, managers and customers.
No “Big Upfront” steps.

Iterative development.

Limited, negotiated functionality.

Focus on quality, understood as achieved through testing.

N B W N =

§1.1 VALUES

The first tenet affects a fundamental feature of project development: the role of devel-
opers and managers. Agile methods redefine and limit the manager’s job by transfer-
ring many of the duties to the team as a whole, including one of the most important
responsibilities: selecting tasks to be performed and assigning them to developers. It is
possible to give a sociological interpretation of the agile movement as a “revolt of the
cubicles”: the rejection of rigid, top-down, Dilbert’s-boss-like techniques for managing
software projects. Programmers in the trenches — the cubicles — often resent these
attempts as ignorant of the specific nature of software development. The Dilbert types
know that documents and diagrams do not make a system: code does. Agile methods are,
in part, the rehabilitation of code.

The redefinition of roles also affects customers, who in the agile world are not passive
recipients of the software but active participants. Most methods advocate including a
customer representative in the development team itself.

The second tenet is the rejection of “Big Upfront Anything”, a term used derogato-
rily for standard software engineering techniques involving extensive planning at the
beginning of a project; the principal examples are requirements, to define the goals of the
system, and design, to define its architecture. In the agile view:

» Requirements cannot be captured at the beginning of a project, because users do not
know what they want. Even if one managed to write a requirements document, it
would be useless because requirements will change through the project.

» Building a design upfront is a waste of time because we do not know what will work
and what will not.

Instead of a requirements document, agile methods recommend constant interaction with
the customer — hence the benefit of a customer representative in the team — to get both
insights into the problem and feedback on what has been produced so far. Instead of
design, the recommendation is to build the system iteratively, devising at each step the
“simplest solution that can possibly work” (an Extreme Programming slogan) for the
task at hand; then, if the solution turns out to be imperfect, improving its design through
a process known as refactoring.

Agile development, as a consequence, is iterative, time-boxed development. The
agile alternative to a requirements document is, at the beginning of each iteration, a pri-
oritized list of functions from which the team will select for implementation the function
that has the highest Return on Investment (ROI). In the absence of big upfront tasks, this
choice will be made in successive steps, called “sprints” in Scrum, each taking a fixed
time — a few weeks — hence “time-boxed”. The development thus proceeds by iterative
addition of functionality.

By addition, that is, of limited, negotiated functionality. The agile literature laments
the effort that traditional projects devote to building program features that hardly anyone
will use. It advocates limiting features to the most important ones, as measured by their
business value: their ROI. The “Lean Software” school draws on comparisons with other

4 OVERVIEW §1.2

industries (notably car manufacturing) to treat unused functionality as the software
equivalent of “waste” in an industrial production process, and “waste minimization” as
a core concern. “Kanban”, influenced by processes developed for Toyota, seeks to min-
imize “work in progress”.

The “negotiation” occurs at the step of choosing the functionality for each iteration.
Just as it is impossible, in the agile view, to determine full requirements in advance, it is
unrealistic to commit to both functionality and delivery time. With time-boxed develop-
ment, any tradeoffs (“do you want it all or do you want it next month?”’) will tend to be
resolved in favor of the second criterion: if not all the functions planned for an iteration
can be delivered by the deadline, it is the functionality that goes; the deadline stays. The
missed functionality will either be reassigned to a subsequent phase or — if further anal-
ysis deems its ROI insufficient — dropped. This process of planning and adjusting
requires constant negotiation with the customer.

The final tenet is the focus on quality, which in the agile view essentially means con-
tinuous testing (rather than other approaches to quality, in particular those based on design
techniques, formal programming methodology, or whatever smacks of “Big Upfront™).
The agile approach has little patience with what it sees as the lackadaisical attention to
quality in traditional development; it especially dislikes the practice of continuing to
develop functionality even when the code already developed does not pass all the tests.
One of its contributions is to emphasize the role of a project’s regression test suite: the set
of tests that must pass, including all tests that at some point did not pass and hence revealed
faults that were then fixed. Regression testing has been known and applied for a long time,
but agile methods have given this task a central place in the development process.

1.2 PRINCIPLES

The rest of this book considers that the following eight principles (three of them with
sub-principles) constitute the core of the agile canon.

Agile principles
Organizational
1 Put the customer at the center.
2 Let the team self-organize.
3 Work at a sustainable pace.
4

Develop minimal software:
4.1 Produce minimal functionality.
4.2 Produce only the product requested.
43 Develop only code and tests.
5 Accept change.

§1.2 PRINCIPLES

Technical
6 Develop iteratively:

6.1 Produce frequent working iterations.
6.2 Freeze requirements during iterations.
7 Treat tests as a key resource:
7.1 Do not start any new development until all tests pass.

7.2 Test first.
8 Express requirements through scenarios.

These principles follow from the five general “values” of the previous section, turning
them into actual prescriptions.

They are not the principles — twelve of them — listed in the Agile Manifesto. Those
official principles, discussed in a later chapter, are less appropriate for analysis: they are
redundant and combine ideas at different levels, ranging from generous but hardly
earth-shattering intentions (“Build projects around motivated individuals” — who would
disagree?) to specific rules such as releasing software at specific intervals of two weeks to
two months, which are practices rather than principles. They also omit key ideas such as
the primacy of tests. The eight presented here provide a better overview.

1.2.1 Organizational principles

Five principles guide agile project organization and management.

Agile development is customer-centric. The goal of software development is to
deliver the best Return On Investment to the customer; as part of the redefinition of roles,
customer representatives should be involved throughout the project.

Agile teams are self-organizing, deciding on their own tasks. A corollary of this empow-
erment of the team is, as noted, a severe curtailment of the manager’s responsibilities.

Agile projects work at a sustainable pace by refusing so-called “death marches”,
periods of intense pressure forcing a team to work exceptionally hard in preparation for
an upcoming deadline. “Sustainability” requires that programmers work reasonable
hours, preserving evenings and week-ends. The sociological undercurrent mentioned
above — agile methods as empowerment of programmers and consultants against man-
agers — is again apparent here.

Agile development is minimalistic in three ways: building only the essential func-
tions (minimal functionality); building only what is requested, excluding extra work to
prepare for future reuse and extension (minimal product); and building only two kinds of
software, programs and tests, at the exclusion of anything that will not be delivered to
the customer and hence is considered waste (minimal artifacts).

— “The official
principles”,
page 50.

6 OVERVIEW §1.2

Agile development accepts change. In software projects, full requirements cannot be
determined at the beginning; needs emerge as the project develops, and evolve as cus-
tomers and others try intermediate releases. Such change is considered a normal part of
the development process.

1.2.2 Technical principles

Agile development implies an iterative development process, consisting of successive

iterations. Each is fairly short — a few weeks — and produces a working release of the

software, even a very partial one, which customer representatives can try out to provide

reactions that will fuel the next iteration. Scrum introduced the important rule that func- = “Freeze
tionality is frozen during iterations: if an idea for a new function arises during develop- ZZZ';;;:'Z;;’Z\
ment, it is postponed to the preparation of the next iteration. tions”, page 71.

The primacy of tests embodies the approach’s focus on quality. This principle has
two consequences, both significant enough to be considered sub-principles on their own:

* No new development may start until all current tests pass. This rule reflects a
strict approach to quality and a refusal to compromise on bug-fixing.

» Test First. This principle, introduced in connection with Extreme Programming,
prescribes that no code may be written unless there is already a test for it. It makes
tests the first part of the replacement for requirements and specifications in agile
development. The test-driven development practice, introduced in a later section, — “Technical

takes the idea even further. practices”,
page 9.

The last principle gives us the second part of the replacement for requirements: use sce-
narios to define functionality. A scenario is a description of a particular interaction of
a user with the system, for example (if we are building mobile phone software) a phone
conversation from the time the caller dials the number to the time the two parties get dis-
connected. “Scenario” is not a common agile term, but covers variants such as use cases
and user stories which differ by their level of granularity (a use case is a complete inter-
action, a user story an application of a smaller unit of functionality). Scenarios are
obtained from customers and indicate the fundamental properties of the system’s func-
tionality as seen from the user perspective. Collecting scenarios, usually in the form of
user stories, is the principal agile technique for requirements; it differs from traditional
requirements elicitation in two fundamental ways:

* A scenario is just one example; unlike requirements, it cannot lay claim to complete-
ness. A set of scenarios, however large, cannot come even close to achieving this
goal, in the same way that no number of tests of a program can replace a specification.

§1.3 ROLES

» In agile development, requirements are not collected at the beginning of the project
but throughout, as development progresses. Note, however, that this difference is not
as absolute as the agile literature suggests when it blasts “waterfall approaches™:
while the traditional software engineering view presents requirements as a specific
lifecycle step, coming early in the process, it does not rule out — except in the imag-
ination of agile authors — a scheme in which the requirements are constantly updated
in the rest of the lifecycle.

Chapter 4 discusses the organizational and technical agile principles in detail.

1.3 ROLES

Agile methods define roles for the various actors of a software project.

Key agile roles

Team

Product owner.
Scrum Master.
Customer.

AW N~

The first and most important role is the team: a self-organizing group of developers and
others (such as customer representatives), responsible for the ongoing assignment of
development tasks to individual members.

Scrum has gone the furthest among agile methods in defining new roles that take over
some of the traditional manager responsibilities. The definition of the properties of the
product under development is the responsibility of a product owner; it includes the right
to change these properties, but not while a sprint (a development iteration) is in progress.
For the manager’s job as coach, mentor, guru and method enforcer, Scrum defines a spe-
cial role of Scrum Master, who cannot also be the project owner.

Common to all agile methods is the emphasis on involving customers. Defining “cus-
tomer” as an explicit project role is part of the agile rejection of up-front requirements and
general distrust of documents — “valuing customer interaction over contract negotia-
tion”, as the Manifesto puts it. Instead of couching the requirements on paper, the project
involves customers directly. Extreme Programming, at least in its early versions, pre-
scribed the embedding of “a customer” in the team, as a full-fledged project member; this
practice, although simple to state, raises problems that we will analyze. Even when one
does not go that far, every agile project reserves an important role for customers.

Chapter 5 discusses these and other agile roles in detail.

Scrum

8 OVERVIEW §1.4

1.4 PRACTICES

To achieve the principles presented above, agile methods promote a set of practices. Here

are the principal ones, again with more coming up in the chapter on the topic:

Key agile practices
Organizational
1 Daily meeting.
2 Planning game, planning poker.
3 Continuous integration.
4 Retrospective.
5 Shared code ownership.
Technical
6 Test-driven development.
7 Refactoring.
8 Pair programming.
9 Simplest solution that can possibly work.
10 Coding standards.

1.4.1 Organizational practices

All agile methods advocate frequent face-to-face contact, but Scrum specifically
includes a requirement for a daily meeting, held at the beginning of every working day
and known as the “daily Scrum”. The meeting must be kept short: 15 minutes is the stan-
dard. This goal is reachable, with a typical group of a dozen or two people, because the
scope of the meeting is strictly limited to every member of the team answering three
questions: “What did I do in the previous working day?”, “What do I plan to do today?”,
and “What impediments am I facing?”. Anything else, such as resolving non-trivial
impediments, must occur outside of the meeting. The daily meeting — which is only
applicable in its basic form to a team located in a single place — helps teams remain
cohesive, know what everyone is doing, and spot problems early.

Any software development project faces the issue of planning, in particular of esti-
mating delivery times and functionality. Agile methods propose the “planning game”
(Extreme Programming) and the “planning poker” (Scrum). Both are group estimation
techniques which ask the participants to come with initial estimates independently, then
examine each other’s estimates and iterate until a consensus is reached.

— Chapter 6 dis-
cusses agile
practices.

Scrum

§1.4 PRACTICES

More convincing is the concept of continuous integration. A decade or two ago, it
was not uncommon for software projects to split into sub-developments and only try to
put them together (“integrate”) at intervals of months or more. This is a terrible approach:
when attempting integration, projects often discover that the subsystems have made
incompatible assumptions and have to undergo substantial rewriting. Modern develop-
ment practice calls for frequent integration, at intervals not exceeding a few weeks. Agile
methods apply this principle too and some of them actually advocate integrating several
times a day.

Another agile practice is the retrospective, in which a team having finished a devel-
opment iteration takes time off further development to reflect on the experience and the
lessons learned, with the goal of improving its development process.

In many groups, the various units of the software are each “owned” by a particular
developer, not in any legal sense but in the sense that this person ultimately decides what
may and may not change in the unit. This practice is, for example, common at Microsoft.
Agile methods instead advocate shared code ownership, where all of the team is
responsible for all of the code. The goal is to avoid undue dependence on individuals, to
emphasize that all team members have a personal stake in the product, and to avoid ter-
ritorial battles when a change or new development straddles several parts of the system.

1.4.2 Technical practices

Test-driven development turns the “Test first” principle into a specific practice.
Applied iteratively, this practice consists of: writing a test corresponding to a new func-
tionality; running the program, which should not pass the test since the functionality is
new; fixing the program; running the program again, and continuing to fix it until it does
pass the test (and all other tests, to prevent any regression); examining the code and per-
forming refactoring, as discussed next, to make sure the design remains consistent. This
sequence of steps, applied from the start (when the program is empty and hence will fail
any non-trivial test) and repeated from then on, is the central form of software develop-
ment in Extreme Programming.

Refactoring is the process of critically examining a design or implementation and
applying any transformations that may be needed to improve its consistency. Catalogs of
standard refactoring transformations exist; they include such typical examples, in
object-oriented programming, as moving a feature of a class (field or method) up or
down the inheritance hierarchy, to another class where it fits better conceptually. Refac-
toring is particularly necessary in connection with test-driven development: a process
consisting solely of adding a code element for every new test would yield programs with
a messy, ad-hoc structure; refactoring is necessary to maintain a clean design. Just as sce-
narios and tests are the agile replacement for Big Upfront Requirements, refactoring is
the agile answer to Big Upfront Design.

&

E.g. [Fowler
1999].

10 OVERVIEW §1.5

Pair programming has been particularly promoted by Extreme Programming. In this @
practice, code is systematically developed by two people sharing a workstation, one con-

trolling the keyboard and mouse and explaining his thought patterns as he types, the

other commenting, criticizing and making new suggestions. The pilot-and-navigator

metaphor is often used to explain that process. The goal is to catch possible mistakes at

the source: since the “pilot” is forced to explain his thinking aloud, he will often realize

right away that something is wrong, and otherwise the navigator will catch it when trying

to understand. Extreme Programming presents pair programming as the only mode of
development, to be applied systematically and universally. It figures less prominently in

other agile methods.

Extreme Programming also popularized the practice of the simplest solution that
can possibly work. An application of the minimalistic principles described earlier, in
particular “produce only the product requested”, it shuns any work that is intended to
make the solution more extendible or more reusable, as software engineering principles
would normally recommend, in particular the principles of object-oriented development.
In the agile view such work is illusory anyway, because we may not need reuse, and we
do not know ahead of time in which direction the software may have to be extended.

Finally, agile methods promote the use of coding standards: defined style rules that

a team should apply to all the code it produces.

1.5 ARTIFACTS

The application of agile methods relies on a number of supporting tools; some of them
are conceptual, such as the notion of a user story, and others material, such as a story card
used to write such a story.

Key agile artifacts

Virtual

1 Use case, user story.
2 Burndown chart.
Material

3 Story card.

4 Story board.

5 Open room.

1.5.1 Virtual artifacts

Use cases and particularly user stories are scenarios that represent user interactions with
a system. Use cases were popularized, pre-agile, by a book due to Ivar Jacobson; user /Jjacobson
stories have emerged as part of the agile movement. The difference is in granularity; a 1992/

§1.5 ARTIFACTS

11

use case covers a full run through the system, going for example from browsing for a
product on an E-commerce site to completing the order; a user story is a smaller unit of
functionality expected by users, such as

“As a customer, I want to see a list of my recent orders, so that I can track my
purchases with a particular company.”

The burndown chart is a record of a project’s velocity: how fast it processes — “burns
down” — the items in its task list. The chart plots against time (in the example, up to a

certain day in a given iteration) the number of unimplemented tasks:

Remaining tasks

Days
y>

If the task list is fixed for the iteration and no completed task is re-opened, the curve will
be non-increasing. The velocity is the number of tasks discharged; the blue line is the
constant-velocity line. Where the burndown chart is below that line, the project is pro-
gressing faster than expected; above the line, it is progressing more slowly. Maintaining
the burndown chart is a way to make the team aware of its progress and alert it when it
is not discharging tasks fast enough.

1.5.2 Material artifacts

The remaining artifacts are, in their default form, material objects; for all of them, how-
ever, various companies and open-source projects offer software tools providing partial
support or full replacement.

The story card is a paper-card (agile advocates even prescribe the size: 3 by 5 inches,
presumably to be adapted to the local format when working under metric climes) used to
write down a user story. Story cards are meant to be pinned to a story board, a large
board which can host many of them; the team then moves them around the board to group
them into categories.

The story board is often refined into a task board, which complements the burndown
chart to show the progress of the project:

Scrum

Burndown
chart (red)

12 OVERVIEW §1.6

User stories Tasks
To do In progress Under test Done
Story 1 L1 1 | || |
] []
1 [1]
Sow?| 3 |
Story 3 L] | | | |

Post-it notes on the board represent individual tasks. As work gets done, the team moves
them towards the right.

Another recommendation of agile methods addresses the physical layout of the
offices in which programmers work: rather than closed offices, it should be set up as an
open room to favor constant interaction between team members.

1.6 A FIRST ASSESSMENT

We have not gone into enough detail for a full-fledged analysis of the pros and cons of
the agile approach (the good, the hype and the ugly); it will come in the final chapter. But
we can take a first cut.

Remember that this section only provides a general view, and that the comprehensive
assessment of agile methods is the one that comes after the study of agile methods.

Samuel Johnson allegedly responded thus to an aspiring author:

Your work, Sir, is both new and good, but what is new is not good and what is
good is not new.

This statement (although apparently apocryphal!) provides us with a useful grid to eval-
uate agile ideas in four categories, resulting from two possibilities each for newness and
goodness. In each category we will consider only a few examples.

1.6.1 Not new and not good

The agile approach to requirements is based on user stories: units of functionality corre-
sponding to interactions of users with the system. User stories, like use cases, are a valu-
able tool for validating requirements, to check that the identified functionality covers the
most common scenarios. As a tool for defining requirements, they are inadequate
because they only document examples of system execution. The task of requirements is
to go beyond these individual examples, which can only cover a fraction of the possibil-
ities available, and identify the more general functions of the system. If you forgo this
step of generalization and abstraction, you get systems that do a few things — the user
stories — and little else.

Task Board

— Chapter 11:
The Ugly, the
Hype and the
Good: an assess-
ment of the agile
approach.

See www.samuel-
Jjohnson.com/apo
cryph.html.

http://www.samueljohnson.com/apocryph.html

§1.6 A FIRST ASSESSMENT

13

When using software systems, for example web appli-

cations, have you ever felt like Tintin the day he was being
marched in a straightjacket? As soon as you dare to depart
from the exact scenario that the designers, in their
supreme wisdom, have planned for you, nothing works
any more. This kind of system is the direct result of
requirements based on the sole analysis of use cases or
user stories.

Good requirements shoot for more abstract specifica-
tions, subsuming many different scenarios and supporting the development of flexible,
extendible applications.

1.6.2 New and not good

Pair programming was introduced by the XP. To characterize it as “not good” is a bit
strong since pair programming can be an effective technique if applied with reason. XP’s
insistence that it should be the absolute rule, however, makes little sense conceptually,
as it neglects the role of programmer personality (some excellent developers like to con-
centrate alone and will resent having to be paired), and practically, as studies show pair
programming to be no superior to other classical techniques such as code reviews.

To a certain extent pair programming can be dismissed as folklore, since many projects
that try it stop after a while. Worse consequences of agile methods come from the injunc-
tion to develop minimal software, stated earlier as principle 4. Its component rules 4.2
(produce only the product requested) and 4.3 (develop only code and tests) may appeal to
inexperienced project managers as a way to combat programmer perfectionism and deliver
results quickly, focusing on the essential. But from a software engineering perspective they
are not good advice, since they discourage efforts that have proved to be among the most
fruitful practices of software engineering: generalizing code for ease of extension and
reuse, and developing tools to automate repetitive processes. In Lean terminology, the
results of such efforts are “waste” since they are not delivered to the customer; in reality,
when applied appropriately, they are the key to the continuous improvement of a com-
pany’s software process and the professionalization of software practice.

Worse yet is the rejection of upfront requirements. The basic observation is correct:
requirements will change, and are hard anyway to capture at the beginning. In no way,
however, does it imply the dramatic conclusion that upfront requirements are useless!
What it does imply is that requirements should be subject to change, like all other arti-
facts of the software process. This point has been made by much of the software engi-
neering literature and remains as valid as ever. Unfortunately, many projects in recent
years have followed the simplistic agile advice of skipping the systematic requirements
phase, replacing it by attempts to evolve the system iteratively with the help of occa-
sional customer interactions. The results are often (predictably) disappointing; projects
get delayed because requirements end up being collected anyway, but too late in the life-
cyle, when some functionality has already been built; some it will have to be discarded.

© Hergé/Mou-
linsart 2014.

Code reviews
are also known
as inspections.

<« “Agile prin-
ciples”, page 4.

14 OVERVIEW §1.6

The agile advice here is irresponsible and serious software projects should ignore it.
The sound practice is to start collecting requirements at the beginning, produce a provi-
sional version prior to engaging in design, and treat the requirements as a living product
that undergoes constant adaptation throughout the project.

1.6.3 Not new but good

There is a charmingly adolescent quality to the agile literature: I am sooooo unique!
Nobody before me understood what life is about! My folks are sooooo, like, 20-th century!

In reality, despite the scathing attacks on traditional software engineering — the irrep-
arable insult, akin to shouting “liberal!” at a Republican candidate, is “waterfall!” — a
number of the productive ideas of agile methods have long been advocated in the stan-
dard software engineering literature. We will see examples through the rest of the book;
here are two.

The first is iterative development. The industry understood in the nineteen-eighties
that the old model of diverging for months and then trying to bring all the pieces back
together was a recipe for disaster. A 1995 book by Cusumano and Selby — New York /Cusumano
Times best-seller, no less — publicized Microsoft’s “daily build”, a practice which as the 799/
name indicates requires the project to produce a working version every day. Open-source
projects, which have flourished for decades, have a practice of releasing early and often.
The advent of the Web intensified this trend: Google tools and many other cloud-based
applications undergo frequent updates, often without any officially advertised release
process. The agile literature has helped anchor the idea of frequent releases into the
mindset of the software industry, but agile methods did not invent it.

Another example is the recognition that change plays an important role in software.
The better part of the software engineering literature has long emphasized this point.
Object technology, which has taken the software world by storm, is successful largely
because it supports change better than previous software construction methods. Agile
methods may enhance software change through organizational practices, but they make
no technical contribution in this area; in fact, as we will see, some of the agile precepts — “Accepr
work against making software easy to change. The agile approach is not entitled to its change”. 4.4.5,
blanket contempt of earlier methods of improving extendibility. page 08,

1.6.4 New and good!

If at this point you feel ready to throw away the agile bath water, extreme and lean babies
included, do not remove the tub stopper just yet. You would be missing some surpris-
ingly good stuff.

The first major contribution is team empowerment. Giving a central place to the team
and insisting that it can handle many traditional management responsibilities is a plus for
any software project staffed by competent people.

§1.6 A FIRST ASSESSMENT

15

Some of the management practices of agile methods, which may seem simple-minded
at first, can actually make a considerable contribution to project success. One of the most
significant is Scrum’s daily meeting; reinforcing programmer interaction, and requiring
everyone to describe every morning what he just did, what he will do next, and what
impediments he faces, is a brilliant idea, the kind of egg-of-Columbus insight (“/ could
have thought of this myself” — maybe, but you didn’t!) that makes a real difference, at
least when it can be applied, that is to say, when the whole team is in one place rather
than distributed.

A particularly interesting idea is the freezing of requirements during iterations.
While demonstrating that — whatever the Agile Manifesto says — change is not always
welcome even in agile development, this principle brings stability to the software pro-
cess, without seriously hampering the emergence of change requests: they are not
rejected, just delayed, and typically not for long since agile iterations are short.

The time-boxed iteration is also a productive practice, particularly through its influ-
ence on the planning process, since it discourages unrealistic promises.

On the technical side, a major achievement of agile methods has been to establish the
practical importance of tests and specifically of the regression test suite. The regres-
sion testing idea itself is old, but agile methods taught us that the regression suite is a key
asset of the project, that many activities should be organized around it (whether or not
the project applies test-driven development), and that it is futile to move on to new func-
tionality as long as important tests do not pass. Here we have the agile school at its best,
advocating professionalism and quality.

A similar observation applies to several of the ideas listed earlier as “Good but not
new”. Even if the agile movement does not deserve the credit for inventing these con-
cepts, which previous authors had energetically advocated, it has succeeded in convey-
ing them effectively to the software industry, a significant achievement in itself. The two
principal examples are:

» Short iterations. While the more competent companies have relied on iterative
development for a long time, it is partly thanks to agile ideas that this practice has
become so widely accepted.

* The central role of code. Once again this is not new but the agile movement has
been instrumental in reminding everyone that our primary product is code, not dia-
grams or documents.

In emphasizing and popularizing these principles, the agile movement places itself in the
best tradition of software engineering — of the very compendium of wisdom, accumu-
lated over several decades, that it so haughtily deprecates. When the dust has settled and
the field has matured, this is how we will remember the self-proclaimed agile revolution:
as an incremental step, which — aside from indulging in some lunacies that were not
destined to last long — improved our understanding of existing concepts and introduced
a precious few new insights.

2

Deconstructing agile texts

In its quest to convert the world, the agile literature resorts to various devices, some of
them, let us say, intellectually less impeccable than others. As a preparation for the
detailed study of the method, it is important to know these devices and be prepared to look

beyond them. We start with a typical example and move on to a more detailed analysis.

2.1 THE PLIGHT OF THE TRAVELING SEMINARIST

The example comes from one of the important agile books, Succeeding with Agile by
Cohn, widely used and cited in the agile world. The author, an experienced consultant, is
one of the main figures in the movement. The extract comes at the start of a chapter extol-

ling the advantages of verbal communication over written documents.

There is a grand myth about requirements — if you write them down, users will get
exactly what they want. Thats not true. At best, users will get exactly what was written
down, which may or may not be anything like what they really want. Written words are
misleading — they look more precise than they are. For example, recently I wanted to
run a three-day public training course. My assistant and I had discussed this, so I sent
her an e-mail saying “Please book the Hyatt in Denver”, and reminded her of the
dates. The next day she e-mailed me, “the hotel is booked ”. I e-mailed back “Thanks”
and turned my attention toward other matters.

About a week later she e-mailed me saying “the hotel is booked on the days you
wanted. What do you want to me do? Do you want to try another hotel in Denver? A
different week? A different city?”. She and I had completely miscommunicated about
the meaning of “booked”. When she told me “the hotel is booked ”, she meant “The
room we usually use at the Hyatt is already taken”. When I read “the hotel is
booked ”, I took it as a confirmation that she had booked the hotel like I had requested.
Neither of us did anything wrong in this exchange. Rather, it is an example of how easy
it is to miscommunicate, especially with written language. If we had been talking
rather than e-mailing, I would have thanked her when she told me ‘“the hotel is
booked . The happy tone of my voice would have confused her, and we would have
caught our miscommunication right then.

Beyond this problem, there are other reasons to favor discussions over documents.

I am going to tell you what I think of this anecdote and its generalization, but before you
turn the page please take a moment to form your own opinion; it should make reading

the discussion more interesting.

B. Meyer, Agile!, DOI 10.1007/978-3-319-05155-0_2,
© Springer International Publishing Switzerland 2014

Citation from
[Cohn 2010],
page 236.
Emphasis added,
otherwise verba-
tim quote.

18 DECONSTRUCTING AGILE TEXTS §2.1

2.1.1 Proof by anecdote

-~

We start with two observations, one immediate and the other less obvious:

» The argument would fit well in a seminar presentation (maybe this is where it origi-
nated); put in writing, it is so incongruous that the serious reader might dismiss it off-
hand. In other words it provides an excellent refutation of its own message, since the
absurdity that might remain unnoticed verbally becomes obvious in writing.

» The senselessness of the intended lesson should not hide the gems of wisdom that the
anecdote contains, even if they are not what the author emphasizes.

Let us start with the attempted argument. Its first problem is that it follows a form of logic

that appears worryingly often in the software literature (particularly but not exclusively

in agile books): proof by anecdote. An anecdote is not a proof; as we saw in the preface, < “dnalysis:
all it can prove is that a generalization does not hold. It is not even an argument; if can ’:gﬁ’;ﬁé%g ;
help an argument, but only if it is backed by enough evidence of being generalizable. ;,gicasor
Here, for every story of a hotel booking that email messed up and verbal communication empirical?”,
might have avoided, there is an equally fascinating anecdote “proving” the reverse truth. 7¢¢ "

I could tell you, for example, of the time when I wanted to convince my future wife to

go out with me and on the phone I said... I could but (relax!) I will not, first because my

love life is none of your business, second because you got the point already.

Here in fact is another anecdote, this one software-related. I recently witnessed, in a
project, a bug that took two weeks to understand and fix because a developer was away.
Sometimes the program would not terminate. It turned out that the code was calling one
of the developer’s routines on a data structure that occasionally was cyclic; the routine
was traversing the structure, assuming it was acyclic, and looping forever if not. On his
return, the developer found out what was happening and remarked that “everyone knew”
the assumption of acyclicity. Perhaps, but “everyone” else had forgotten; good thing for
the project that at least one person remembered! Even without the benefit of writing in
the code an explicit precondition (require structure.is_acyclic), as you can do in some
programming languages, it would have been better, and probably would have avoided
the bug and the waste of time, simply to write down this requirement somewhere.

While I find this anecdote more relevant to a software engineering discussion than the
story of a hotel booking mishap, someone else may disagree; and neither of them proves
anything. Advocates of verbal communication and written specification could endlessly
throw such war stories at each other without convincing the other party. An anecdote is
just an anecdote.

Paul Dubois tells the following anecdote about anecdotes. In World War II, the military
commissioned his future psychology professor to study whether it was better to train troops
directly on a new rifle, or start with the older model then explain the differences. The
professor does the research. At the meeting, one general offers: “Ya gotta crawl before you
can walk”. Another counters, “You ride the horse you’re gonna ride in the race”. The
discussion escalates into a war of aphorisms, a decision is made; no one asks about the
study. Luckily, its conclusion was that it did not matter.

§2.1 THE PLIGHT OF THE TRAVELING SEMINARIST

19

All that Cohn’s story “proves” is that he should find himself a better assistant. Con-
trary to what he writes (“Neither of us did anything wrong in this exchange”), it was a
mistake, after the first email response, not to write back “so, what do you want me to
do?”. Such mistakes, however, can happen in verbal as well as written communication.

2.1.2 When writing beats speaking

In the case of software projects, which after all are the focus, there are many reasons for
writing down at least part of the requirements:

* The spoken word is notoriously ambiguous, much more than written requirements. If
we bemoan that requirements “look more precise than they are”, the conclusion
should be that we need more precise forms of requirements; that would mean formal
(mathematical) specifications, probably not what the author is suggesting.

» The difficulty of achieving precision in spoken communication is the very reason why
so many verbal requirements or design discussions end up with the request “please
write this down!”, meaning that the person being asked to provide a mechanism can-
not make a final pronouncement before having seen the request on paper.

* Many projects today involve people of different backgrounds and particularly different
accents. It can be hard — say in a Skype discussion between teams in Germany and in
India, both using English, or believing they are — to make out the details of what the
other party is trying to say. Again the usual conclusion is “email this to me please”.
While people also make mistakes in written language, it is much easier in writing to
stick to a common language subset that everyone understands in the same way.

» Verbal discussions are known only to those who attend them. A written description
does not have the warm-and-fuzzy feeling of a verbally agreed decision, but it can be
circulated to any number of people. When software people talk to a representative of
the customer company, they often do not know whether that particular person has the
expertise and authority to specify a property of the system, or is just expressing a per-
sonal preference. Company environments have many actors and many viewpoints; it
is dangerous to follow the lead of the last person you heard. Anything written down
can be checked by many stakeholders, who will raise an alarm, before it is too late,
when they see a requirement reflecting a partial or biased view.

» People in a software project come and go. One of the benefits of consigning require-
ment elements to writing is that they survive the context of a conversation, when six
months later no one remembers why a particular decision was taken; or, worse yet,
key participants are no longer around.

The discussion extends beyond software. If verbally communicated requirements were
truly superior to written ones, engineering of any kind could discard such old-hat tech-
niques as design specifications and plans, relying instead on frequent interactions
between engineers and other stakeholders. After all, our forebears did build pyramids
and cathedrals that way. But modern engineering is possible precisely because the build-

-~

20 DECONSTRUCTING AGILE TEXTS §2.1

ers of houses, bridges, aircraft, circuits — and software — do not stop at a friendly chat
and a handshake, but insist on consigning the specifications on paper and having all sides
endorse the result. No one has ever argued that writing things down removes every risk
of “miscommunicating”; but if speaking them was the solution, humankind would have
spared itself the whole detour through written language.

Think of all that time we wasted in grade school learning reading and writing, while
we could have been enjoying the park and at the same time honing our conversation skills!

2.1.3 Discovering the gems

-~

Setting aside its method (proof by anecdote) and its exaggerations, Cohn’s discussion
does contain three software engineering lessons, even if they are not the ones advertised.

The observation that “Written words are misleading — they look more precise than
they are” is a genuine insight. The authority of the written word can be dangerous.
Human language, written or spoken, is treacherously ambiguous; a well-known example See e.g. [IEEE
in requirements is “the system shall respond in real-time”, which in the end means 998/
nothing: a response coming after a tenth of a second is real-time for a banking terminal
and eternity for a network router. But the alternative is not spoken language, which is
even less precise.

The alternative, when precision is the goal, is mathematics. The requirement
answer.time — query.time < 0.1 does not look more precise than it is: it looks precise and
it is precise. But this is not what Cohn has in mind. He is concerned about taking written
requirements too seriously just because they are written. This is a valid concern, and
yields the first meaningful lesson from this text: Do not let the written form of a
requirement element impress you into believing that everything has been clearly
defined. Written implies neither precise nor correct.

Useful as it is, this observation describes a problem, not a solution. The solution, if
one exists, is certainly not to switch to the spoken word.

The second lesson is that communication is hard. All right, you knew that before read-
ing Cohn’s text or the present discussion, but communication is a particular challenge for
software development. In any large and ambitious project (and in many smaller ones) com-
munication issues are just as important as technical issues, and can wreck the project if the
leadership does not handle them properly and proactively. They are critical for geographi-
cally distributed projects, where the usual issues of communication are compounded by dis-
tance, time differences, and the team members’ diverse mother tongues, accents and cultural
assumptions. (As a hilarious illustration, a YouTube video recorded by an Indian engineer /parawan 2008]

9

explains the various meanings of “yes”, “no” and head nodding in India.)

§2.1 THE PLIGHT OF THE TRAVELING SEMINARIST 21
What about spoken communication? The lesson here is that written descriptions are

not enough; the various project stakeholders should talk (where “stakeholders”

include the development team as well as customers and users). Cohn undoubtedly had in

mind the kind of strict environment where documents are all that matters. Case in point See the official

(this time a milestone incident of software engineering history, not a minor anecdote):
the $125-million loss in 1999 of NASA’s Mars Orbiter Vehicle was due to a software
error that escaped all review processes; while NASA has standardized on the metric sys-
tem, one contractor used English Imperial units in one of the modules, passing along a
measurement that another module then interpreted as if it were metric. The observation
in this case is in line with Cohn’s: documents are great, but they can miss essential and
seemingly obvious information. Those people should have been talking to each other!

Verbal communication is, however, a complement to written documents, not
a replacement.

2.1.4 Agile texts: reader beware!

This example is representative of what you will often find in the agile literature, and its
analysis provides a good guide of how to use that literature.

This conclusion itself generalizes from one example. The generalization is, however, pretty
safe: the emphasis on verbal and other informal forms of communication is common in agile
circles and not specific to the cited book. Alistair Cockburn, for example, writes that “typed-in,
paper-based documentation is one of the most expensive, time-consuming and least
communicative forms available (never mind that it is traditionally the most frequently
requested)”. Well, there is a reason such documents are frequently requested: they can be
organized systematically, archived and searched.

As examples of replacement, Cockburn suggests that the team “videotape one of their
designers explaining a section of the design” and states: “paper napkins happen to be my
favorite documentation medium. They can be posted on the wall or scanned”. Sure, but
when the time comes to find out whether a key system property was decided one way or
another and why, searching text beats sifting through hours of video recordings or heaps of
scanned paper napkins.

Agile authors are on a mission to convince the reader; their zeal leads them to simplify
complex matters and draw conclusions that are sometimes warranted and sometimes not.
As the field progresses, future books and articles will apply higher intellectual standards
(they might also become more boring in the process). Until then, you must keep your
defenses up. You must also keep an open mind and be prepared to draw your own con-
clusions, even when the author’s own do not hold up to examination.

report: [NASA
1999].

-~

[Cockburn
2005], page 179.

22 DECONSTRUCTING AGILE TEXTS §2.2

2.2 THE TOP SEVEN RHETORICAL TRAPS

The textual deconstruction just performed is a good preparation for coping with other
techniques, of similarly questionable soundness, used by agile authors to advocate their
approaches. As training for the rest of our trip and for your own forays into agile litera-
ture, here is the Top 7 list of the most outrageous rhetorical devices, not unique to agile
authors of course, but particularly popular in their texts:

1 Proof by anecdote, which we have seen at work in this example. An anecdote, or
ten, are not a proof.

2 Slander by association: lumping together an idea that an author wants to criticize
with one that everyone loathes. Non-agile ideas get that treatment.

3 Intimidation: labeling anyone who does not buy the agile gospel, chapter and verse,
as a reactionary control freak.

4 Catastrophism: pretending that software development as currently practiced is a
disaster (so that only your agile method can save it).

5 All-or-nothing. promoting an extremist method, not practicable in its entirety, so
that project successes can be ascribed to agile techniques and failures to their
incomplete application.

6 Cover-your-behind: advocating radical prescriptions; then as a footnote stating that
they may not after all be always applicable; but never saying precisely when they
should be used and when not.

7 Unverifiable claims. The Scrum literature in particular routinely touts enormous
productivity improvements. Who would not want to multiply project effectiveness
by an order of magnitude? In the absence of rigorous independent verification, you
should take such assertions (depending on your benevolence on that particular day)
as either a sign of charming youthful enthusiasm or irrelevant hype to be discarded.

Dubious rhetorical techniques do not disprove the value of the ideas being proposed, but
do invite the reader to exert caution. We should both keep an open mind and not lower our
methodological guard. The first step is to be aware of the seven traps to be described now.

2.2.1 Proof by anecdote

Agile books largely make their point through anecdotes; the example at the beginning of
this chapter is typical.

Anecdotes are good for books, and for teaching in general. They can also backfire: if
the anecdote serves as the basis for a general statement, a reader whose own anecdotal
experience does not match the author’s will reject the generalization. We will see an
example in a later chapter with Poppendieck’s enthusiastic invocation of a role model
who in hindsight looks like a less than fortunate choice: Lance Armstrong.

[Schwaber
2012], page 6:
“90% improve-
ment”.

<« “Lean Sofi-
ware: an assess-
ment”, 9.2.3,
page 135.

§2.2 THE TOP SEVEN RHETORICAL TRAPS 23
Another example from the same author is her heartrending story of a bus driver at Dis-
neyland who spotted a little girl crying and managed to have a Mickey Mouse actor greet [Poppendieck

her; the anecdote is supposed to illustrate the importance of quality. For the reader who
has been to Disneyland with children, and found that the whole place, smiling drivers or
not, is grossly under-dimensioned, so that one spends most of the day waiting in lines,
this is not a good omen; the obvious generalization to software is a Web site that features
a pretty interface and pathetic response times. Raising analogies in your readers’ mind is
good, but beware of where they will take them.

The general problem with an anecdote is that it is to a principle what — in software
— atest is to a specification: it gives you one example and you are never sure how much
you can extrapolate from that example to the general case.

2.2.2 Slander by association

An effective — if not too commendable — way to criticize an idea is to associate it, in
the reader’s mind, with one that everyone dislikes.

The positive counterpart of this technique is honorable: choose for your own ideas
aname that connotes a pleasant feeling, and leave it to your audience to get the opposite
feeling for the opposing ideas, or just different ones. This is smart marketing, which
one can only admire; as noted in the preface of this book, the choice of the word “agile”
is brilliant.

The negative version, however, is a different matter: improperly associating compet-
ing ideas with terms or concepts that the audience is likely to find repulsive. Here the
favorite butt of agile scorn is the “waterfall” process, something that everyone knows is
bad. But of course not everyone who does not agree with all agile ideas is preaching a
return to a nineteen-seventies-style waterfall process; in fact almost no one practices it,
and absolutely no one advocates it. Still we will find, in the next chapter, leading agile
authors repeatedly lumping any non-agile (“predictive”) approach with the waterfall, as
in “the predictive, or waterfall, process is in trouble”. It is a cheap trick; do not fall for it.

2.2.3 Intimidation

The next set of dubious arguments takes advantage of the positive vibes that the term
“agile” immediately sends, and of the general good feeling elicited by the hipness of the
agile movement, to cast anyone who raises questions as a reactionary moron.

A good concentrate of the kind of artillery that awaits the impartial observer is a 2012
Forbes magazine article by Steve Denning intended to refute “7en Management Objec-
tions” to agile methods. The author, a former World Bank director, is a business guru
with an impressive list of Fortune-500 customers.

As Agile harangues go, this is not the most subtle — it is a full frontal charge against
anyone who might question the sacred world — but in its very exaggeration it provides
a useful checklist of what to expect if you have the temerity to think for yourself.

2003], page 16.

— “Predictive
is not water-
fall”, page 31.

[Denning 2012]
(also source of
other citations in
this subsection
except as other-
wise marked).

24 DECONSTRUCTING AGILE TEXTS §2.2

You will be hooted down because you reject novelty. Denning’s paper starts with the
Einstein quote that

“If at first an idea is not absurd, there is no hope for it”.

It is always good practice, for an author whose arguments are a bit shaky, to use a hack-
neyed Einstein citation. You will find lots of them around the Web, some even authentic.
Against Einstein, what are we poor souls to do?

Settle for mediocrity, that’s what!

Agile squeezes out mediocrity and requires high-performance. Hierarchical
bureaucracy breeds incompetence and feeds off mediocrity: the organization
performs accordingly. Faced with the choice between high-performance and the
mediocrity, traditional management opts for mediocrity.

Wow! Just one insult at a time, please. Bureaucrats; mediocre; incompetent. Thanks.

Einstein’s witticism can serve to justify anything. The particular intellectual device
invoked here is a variant of the logical fallacy of deducing “B implies A” from “A
implies B”. We may call it the Columbus syndrome: people thought Christopher
Columbus’s project absurd, and he was onto something big; you think that my idea is
rubbish, so I must be onto something big. Or as Calvin put it in his decisive argument
(Einstein again):

OK, \00K. WE'VE GOTTODO | | WERENT YOU EVEN PAYING |, SAS YOU! T WEARD THAT
THIS DUMB PROJECT TOGEMER] | ATTENTION® WHAT WOULD |3 SOMETIMES KIDS DONT PAY
SO WE MIGHT AS WELL GET IT| | YOU DO IF T WASNT HERE |2 ATIENTION BECAUSE THE CLASS | OM, RIGHT.
OVER WITH, WHAT ARE WE || TO ASK™ YOU'D FLUNK |2 GOES AT TOO SLON OF A
SUPPOSED TO BE DOING? AND BE SENT BACK TO |2 PACE FOR THEM. SOME OF SMART.
KINDERGARTEN, THATS WHAT!) S S AQELX%OSSMN{Y TOR THE

BELIEVE IT, LADY.

5
g
©

CALVIN AND HOBBES © 1988 Watterson. Reprinted with permission of UNIVERSAL UCLICK. All rights reserved.

One of the main arguments in Denning’s paper is a textbook case of the Columbus syn-
drome: over four paragraphs, he recalls the story of the discovery by John Harrison, in the The story is

eighteenth century, of how to measure longitude precisely by building better clocks; but: Z“’“;"f??m a
est-seller;

The scientists refused to concede that they had been wrong and give John [Sobel 2007].
Harrison his well-deserved prize.

What does this have to do with agile methods, you ask? You mediocre, incompetent
bureaucrat! Denning explains:

Something similar seems to be happening with Agile.

Now lots of people come up with ideas that “experts” reject; sometimes the experts are
wrong, but often they are right to reject the new idea. If I start arguing that the earth is
flat, I will be scorned by the experts: “something similar” will “seem to happen” and 1

§2.2 THE TOP SEVEN RHETORICAL TRAPS

25

will fail (what a scandal!) to get my “well-deserved prize”. Why are the experts more
wrong in the agile case than in that one? No clue.

The invocation of expert rejection is another rhetorical device. Many defenders of a
cause feel more comfortable if they can identify an enemys; or, if none is available, make
one up. It particularly helps to argue that the Establishment is against your ideas. In this
case, however, the enemy is rather gracious. The software engineering world has been
receptive to agile ideas, giving them ample resonance in the community’s most presti-
gious forums, including its top conferences (OOPSLA, ICSE, ESEC...). An important
book that empirically assesses agile techniques, published shortly after agile ideas burst
onto the scene, has as its lead author one of the most venerated figures of traditional soft-
ware engineering, and provides an open and measured account of the approach. We are
not talking about persecuted innovators facing an entrenched order. The establishment
has been inclusive and welcoming.

Will it help if — in the footsteps of empirical studies as collected by Boehm and
Turner — you perform an objective, empirical analysis of how agile methods work in
your organization? No, that would be irrelevant. If you tried an agile method and found
it did not work, what conclusion do you draw? Silly question. You are the problem:

When the culture doesn t fit Agile, the solution is not to reject Agile. The solution
is to change the organizational culture. One doesn't even have to look at the
business results of firms using hierarchical bureaucracy to know that they are

fatally ill.

(Brings to mind another quotation, not quite Einstein this time, sorry, just Brecht: “The
people have forfeited the confidence of the government; would it not be easier for the
government to dissolve the people, and elect another?”)

Like others in Denning’s paper this argument does not include any specific evidence,
so it could serve to support any radical idea, useful or silly. Note how the reasoning slips
into a faith-based argument: one doesn t even have to look at the business results. At that
level of irrationality, it is not clear what we are supposed to do; if we will not look at busi-
ness results, what is the point of discussing management techniques?

If you are not an enthusiastic promoter of agile approaches, you are by definition a
dinosaur. The technical term is “member of the command-and-control gang”. Agile teams
self-organize, use “radical management”, and non-followers are “control-minded man-
agement practitioners and theorists”. I can think of a few people who fit this last descrip-
tion. Steve Jobs, for example. Judging by the effects of his management — although
admittedly this means that we “look at the business results” — he must not have been
such an ineffective manager. Now his management style may not be to everyone’s taste,
but that is precisely the point: a large spectrum of styles exists, from the completely
self-organized team to the military-style organization micro-managed by a control freak,
and many variants in-between. More than one strategy can work, and a strategy that suc-
ceeds in one environment may fail in another. Summary judgments against those who do
not pliantly follow of the latest fashion are an obstacle, not a benefit.

The rest of the article, which you should read as a form of vaccine, is of the same flavor.

[Boehm 2004].

Brechtpoem: see
bit.ly/hIrKGS.

http://bit.ly/h1rKGS

26 DECONSTRUCTING AGILE TEXTS §2.2

With such defenders, who needs enemies? Serious agile proponents should be wary
of the damage caused by extreme propaganda of this kind: hype and intimidation can con-
vince a company once, but every decision-maker will sooner or later “/ook at the business
results” and is likely, if they do not live up to the hype, to throw away good ideas with bad.

The zealots of an idea are often more extreme than its creators — the phrase “more
royalist than the King” captures that phenomenon — and you will find that foundational
agile texts, such as those by Beck, Larman or Cockburn, occupy a higher plane of dis-
course; in particular they avoid below-the-belt hits at other approaches.

Such hits from the true followers are what you risk if you set out to define a measured,
reasoned adaptation of agile ideas for your organization. Well, you have been warned. In
this book we fearlessly (applause for the courage, please!) undertake to untangle the best
from the not-so-good and the pretty bad.

2.2.4 Catastrophism

When you are advocating a new approach, it is natural to highlight flaws of the current
ways of doing things. If everything were perfect, why should people listen to you? Cer-
tainly the state of software engineering leaves much to be criticized. To be credible, how-
ever, such criticism must be accurate.

Software engineering started around 1968 with the recognition of a “software crisis”.
For many years it was customary to start any article on any software topic by a lament
about the horrible situation of the field; you would not explicitly write that the little con-
tribution of your article — a methodological idea, a new programming language, a pro-
gramming tool — was going to solve the “crisis”; it was enough to plant the suggestion
in the reader’s mind and let him draw the conclusion.

After the field had matured, this lugubrious style (everything is rotten in the kingdom
of software) went out of fashion. It is indeed hard to sustain: in a world where every device
we use, every move we make and every service we receive is powered by software, it
sounds a trifle silly to claim that software development is all broken and everyone is wrong.

The apocalyptic mode has, however, made a comeback in the agile literature, which
is fond in particular of citing the “Chaos” reports. Emanating from the Standish Group,
a consulting firm, these reports purport to show that a large percentage of projects miss
their goals or fail entirely. It was fashionable to cite Standish (I even included a citation
in a 2003 paper), until the methodology and results were debunked starting in 2006
[Glass 2006] [Eveleens 2010]. To summarize, these results are inconsistent, not con-
firmed by other studies, and based on proprietary data that independent researchers are
not permitted to see. Yet to this day they continue to be reverently cited as a justification
for agile processes, including in the most recent book by the Scrum creators, who add

You have been ill served by the software industry for 40 years—not purposely, but [Schwaber
inextricably. We want to restore the partnership. 2012], page 1.

No less!

§2.2 THE TOP SEVEN RHETORICAL TRAPS 27
I tried to imagine the kind of circumstance that might draw one to issue such a definitive — “Postscript:
indictment of an entire industry. You can find the result in a “postscript” to this chapter. you have been

. ill-served by the

Software engineering faces enough obstacles, obvious to anyone in the industry and 0 gysare indus-

any user of software products, that we do not need to conjure up imaginary scandals. /", page 30.

The Standish episode also reminds us of the dangers of exaggeration — of either kind,
aghast at others’ failures or boastful of one’s own triumphs — and of software engineer-
ing’s dire need for sound, credible empirical results.

2.2.5 All-or-nothing

While some agile texts and methods take a measured approach, others, as noted in the
preface, insist that to apply their methods you have to use all the associated practices.

While we cannot deny methodologists the right to specify a few incontrovertible prin-
ciples defining their methods, the number of such absolute requirements has to be small.
Otherwise the principles serve as a marketing gimmick, as one can see in the many agile
presentations that claim to achieve balance by reporting on case studies of both success-
ful and failed projects. The successful ones demonstrate the power of the method; and
the failed projects failed because they dared to ignore one of the recommendations!

The trick is brilliant, but that does not mean we should fall for it. Industry, as noted,
ignores such absolutism: every group devises its own selection, picking some practices
and rejecting others. Software projects are too diverse, and software development too
difficult, to allow for a single recipe that will work identically for everyone.

2.2.6 Cover-your-behind

Not all agile authors want to appear as extremists, but even those who try to shed that
image often leave the reader in the dark about when to use the techniques they advocate
and when to renounce them. The typical scheme is to extol radical ideas, then as a brief
afterthought state that they are not always applicable, without presenting any criterion to
decide. It makes the author look reasonable and even-handed, but is not of much help to
the practitioner trying to make sense of the advice.

A typical example appears in the foundational book on Lean Software by Mary and
Tom Poppendieck. After seven chapters calling for radical changes in software practice,
each based on a strong principle, a final chapter humorously entitled “Instructions and
warranty” suddenly brings in words of caution:

Look for the balance point of the lean principles:
* Eliminate waste [first Lean principle] does not mean throw away all documentation.
* Amplify learning [second principle] does not mean keep on changing your mind.
* Decide as late as possible [third principle] does not mean procrastinate.

and so on (four more “does not mean” bullet points, one for each of the remaining Lean
principles). These comments are intended to demonstrate restraint, but they are useless
since the chapter is only eight pages long and says almost nothing about what would
actually help practitioners: when the principles are not or not fully applicable, and how
they should be attenuated in such cases.

[Poppendieck
2003], page 179.

28 DECONSTRUCTING AGILE TEXTS §2.2

As software developers or managers, we do not need the blanket observation that
extreme principles may need tempering. We figured that out by ourselves. What we do
need are criteria for making exceptions. The exceptions and criteria should be specified
along with each principle, not in a global cop-out which destroys the very credibility of
the principles. Rather than “instructions and warranty”, such a cop-out resembles the
far-sweeping disclaimers attached to many consumer products. It is meant to help not the
users of the method, only its authors, for whom it provides cover-your-behind protection.
You applied my principle X and your project ended in disaster? Sorry to hear that! I did
warn you, of course, that you should look for a balance point.

(Well, yes, thank you so much, but I would have preferred that you tell me what the
balance point is.)

At work here is a common style of cover-your-behind: “A1-does-not-mean-A2”,
where A2 is hardly distinguishable from A1l. For example, A1 is “deciding as late as pos-
sible” and A2 is “procrastination”. If there is a difference, it is subtle. (“Procrastination”
in the Oxford English Dictionary: “the action or habit of postponing or putting some-
thing off; delay; dilatoriness™.)

The agile cover-your-behind device is not specific to the Poppendiecks or to the Lean
method. We will encounter examples from many other sources, such as this gem:
“although project development teams are on their own, they are not uncontrolled”.

When we discover the limits of applying an agile idea dogmatically, we must not fall
into the same pitfall ourselves and just declare that one should exercise moderation. This
book tries to explain when and how agile prescriptions should be replaced or combined
with other techniques. An example is the balance point (in Poppendieck terms) between
the agile rule of producing a running system at every step, and the software engineering
benefit of building infrastructure even without immediately user-visible results. It does
not help much to state blandly that both viewpoints may have a value depending on the
circumstances. The discussion of this issue will present a concrete policy, “Dual Devel-
opment”, combining them in a precisely specified way.

2.2.7 Unverifiable claims

A document by one of the creators of Scrum is entitled “The Art of Doing Twice the Work
in Half the Time”. If my arithmetic is correct, this means a productivity improvement by
a factor of four. Wow. Who would not sign up? In presentations by agile method creators
I have heard more extreme claims, of an order of magnitude improvements or more. In
a comment we will encounter later, the Poppendiecks imply that applying just one of
their recommendations will divide costs by a factor of ten.

We may accept that someone, somewhere, gave an agile method to a team — perhaps
a badly demotivated team which suddenly gained both focus and enthusiasm — and
stirred it into producing amazing results. The question is what it means for other teams,
in particular those already using good software engineering techniques, agile or not.

It is notoriously hard to perform convincing large-scale studies of the effect of soft-
ware development techniques. Obstacles abound:

— See this exam-

ple and others in
“Let the team
self-organize”,

page 53.

— “Dual Devel-
opment”’, page 74.

[Sutherland
2013].

— “Produce
only the product
requested”,
page 58.

§2.2 THE TOP SEVEN RHETORICAL TRAPS

29

» To work under realistic conditions you should take actual projects and collect precise
measurements, but not all companies are willing to put in the effort, and even fewer
to reveal the results.

* Sometimes two methods are applied in succession because the first project failed.
This case is a frequent argument for new methods: “we succeeded where others
failed”. That may be true, but the comparison is biased: the second time around the
team has learned from the first project, even if it was a failure. You can only really
compare projects done in parallel, not one after the other.

» Even fewer companies, however, will be willing to fund two projects with the same
tasks just to assess methods.

» Assuming such a setup, it remains just one case and does not permit drawing general
conclusions since the results may be influenced by the specific task and teams. The
experience should be repeated among several projects and ideally among several
companies, making the whole prospect even less realistic.

While credible empirical industry results do exist, many empirical studies rely on experi-
ments with university students, which have their value but also obvious limitations.

At the other extreme, you will find an IBM study assessing agile methods; reading the
fine print reveals that it was conducted in collaboration with the Scrum Alliance, an
advocacy organization for Scrum. Advocacy has its place, but not in empirical research.
The study finds much good to report about Scrum; are you surprised? Agile seems to
induce so much fever as to make such an organization as IBM, usually more responsible,
toss all methodological caution to the wind. Do not toss yours.

Some company environments are truly messed up. Under-appreciated developers
spend their time on repetitive tasks, subject to the whims of incompetent managers. Then
a team that suddenly gains the confidence of upper management, the opportunity to try
fashionable new ideas, and the benefit of an excellent agile coach, can almost overnight
turn from torpor to torpedo. Such feats can even be sustained, showing that they are not
just due to the “Hawthorne effect” (a phenomenon, named after the Western Electric
plant where it was observed in the 1930s, under which workers perform better as soon
as they are told that they are experimenting with a new approach, whatever it is, and even
if they are not). Drawing general conclusions from such individual experiences is
another matter.

Before you go tell your management that by switching to an agile method you will
gain a four-fold productivity improvement, or more, think carefully. They might just
believe you.

[IBM 2012]; see
also [Ambler
2012].

POSTSCRIPT: YOU HAVE BEEN ILL-SERVED BY THE SOFTWARE INDUSTRY!

After reading one description too many (“you have been ill served by the software industry < "Catastroph-
for 40 years — not purposefully, but inextricably”) of how terrible everything was before the *” ", page 26.
author rode his white horse to the rescue, I had some fun trying to imagine the circum-

stances that might lead someone to write such a sentence. Here is the result.

On a cold morning of February 2012, Mr. S woke up early. He had set up his iPhone s alarm Adapted from
to a favorite tune from Gétterdimmerung, downloaded from a free-MP3 site. He liked his [Meyer 2013].
breakfast eggs cooked in a specific way, and got them exactly right since he had

programmed his microwave oven to the exact combination of heat and cooking time.

He had left his car to his daughter on the previous night, even though the roads were icy,
he did not worry too much for her, since the automatic braking system was good at silently
correcting the mistakes of a still somewhat novice driver, and the navigation system would
advise her away from any impracticable street.

As for himself he was going for public transportation. He looked up the schedule on the Web
and saw that he had a few minutes before the next bus, enough to check his email. He
noticed that he had received, as a PDF attachment, the pay slip for his last consulting gig;
as an Agile consultant, Mr. S was in high demand. He did not need to check the details since
he knew his accountant s system would automatically receive all the information.

He went out and hopped onto the bus, all the way to the clients office continuing to check
his email on his phone, even finding the time to confirm the online reservation for his next
flight, while checking the large monitor in the bus to avoid missing his stop. On reaching
the building, he slid his id into the elevator s slot, gaining access to the right floor.

He brought up his computer from hibernation, for some reason remembering — Mr. S was

fond of such trivia — that the newest version of Windows reportedly consisted of over 50

million lines of code, and reflecting that the system now kind of did what he expected. Mr.

S had thought of moving to a Mac, following many of his friends, but the advantages were

not clear, and he liked the old Word text processing system with which he was writing his

latest agile advocacy text, tentatively entitled “Software in 30 days”. [Schwaber

2012].

Mr. S — whose full name was either “Schwaber” or “Sutherland”, although it might have

been “Scrum” or perhaps “Sprint”, as some of the details of the story are missing —

opened up the document at the spot where he had left it the evening before. Like many a

good author, he had postponed finalizing the introduction to the last moment. Until now
inspiration had failed him and his coauthor: it is always so hard to discover how best to

begin! Over the past months, working together in long Skype discussions from wherever

each happened to be, they had tried many different variants, often simultaneously editing

their shared Google Docs draft. But now he suddenly knew exactly what he had to say to

capture the readers’ attention.

The sentence sprang to his mind in one single, felicitous shot:

You have been ill served by the software industry for 40 years — not purposefully,
but inextricably.

3

The enemy: Big Upfront Anything

Any cause needs a villain. Agile’s villain is variously called “waterfall”, “process-based
methods”, “predictive” (see below) and “Big Upfront Anything” where “Anything” par-
ticularly includes requirements and design. Boehm and Turner, in the title of a book
attempting to reconcile agility with traditional software engineering approaches, use
“discipline”; in the body of the book, however, they note that agile methods can exhibit

discipline too, and resort for the classical techniques to “plan-based” — not a bad name.

This chapter summarizes the main characteristics of plan-based approaches, focusing
on those that agile proponents typically resent. Covering these approaches in detail
would require an entire software engineering textbook; here we only need a bird’s eye
view of the principal ideas.

3.1 PREDICTIVE IS NOT WATERFALL

First, a word of warning, complementing the advice of the previous chapter. In their most
recent book, the creators of Scrum write:

Although the predictive, or waterfall, process is in trouble, many people and
organizations continue to try to make it work.

and later in the same paragraph:

[A customer was using] services from PricewaterhouseCoopers (PWC). The
PWC approach was predictive, or waterfall.

The book’s index entry for “Predictive process” reads “See Waterfall”.

At play here is one of the intellectual devices identified earlier: slander by association
— repetitive association. “Waterfall” means a specific lifecycle model, whose main role
(since it hardly exists in the practice of software engineering) is pedagogical: it serves as
a textbook example of how not to organize a software project. Even the 1970 article that
first explicitly described the model did so to criticize it. Ever since, waterfall-bashing has
been the favorite sport of software engineering authors. “Predictive” is something else.
Engineering is by definition predictive: it tries to organize a greater or lesser part of the
design and production process in advance, based on techniques of science and manage-
ment. There are a myriad predictive approaches out there that are not the waterfall.
Attempting by force of repetition to lump “predictive” in the reader’s mind with the clas-
sic punching ball of software engineering, and hence to discredit anything that is not the
authors’ own approach, is a dubious device that does not help advance understanding.

B. Meyer, Agile!, DOI 10.1007/978-3-319-05155-0_3,
© Springer International Publishing Switzerland 2014

[Boehm 2004]

-~

[Schwaber
2012], page 29.

[Leffingwell
2011], pages
5-6, also pre-
sents “predic-
tive” as a
synonym for
“waterfall”.

[Royce 1970].

32

THE ENEMY: BIG UPFRONT ANYTHING §3.2

The discussion in this chapter summarizes approaches that are predictive to a greater
or lesser extent. Not every one of them is to everyone’s taste and some are subject to
obvious criticism, but they have been widely used and helped make many projects suc-
cessful. Just as agile methods, they are part of what we know about software engineering.

3.2 REQUIREMENTS ENGINEERING

Software engineering is not just programming but solving a problem of interest to some
people, its “stakeholders”. Defining what the problem really is, and what kind of solution
will satisfy the stakeholders — a task known as requirements analysis — is one of the
most important aspects of successful software development: building an otherwise per-
fect system that does not meet stakeholder needs is not very useful. Study after study has
shown that requirements mistakes are among the worst to plague software projects.
Much of software engineering is about building systems right; requirements are about
building the right system.

3.2.1 Requirements engineering techniques

Requirements analysis has developed into a full-fledged discipline with many useful
techniques, tools and methodological principles, described in software engineering text-
books as well as specialized books on the topic. An important part of requirements anal-
ysis is requirements elicitation: gathering user needs. Elicitation techniques include:

» Stakeholder interviews: going around and asking people what they need.

» Stakeholder workshops: bringing together a group of stakeholders to discuss require-
ments. Workshops are particularly useful when various classes of stakeholders exist,
with different and sometimes conflicting wishes; identifying the contradictions and
discussing them openly helps understand and resolve them.

The result of a requirements process typically includes a requirements document,
which summarizes the objectives of the system. Other important outcomes — sometimes
integrated in the requirements document, sometimes yielding separate documents — are
a system test plan (since the requirements define the conditions against which the sys-
tem will have to be tested) and a development plan.

Traditionally, a requirements document was a single, sequential text, but the term also
covers modern, more flexible formats such as a Web site, a wiki (advocated, in an agile
context, by Larman) or a cloud-based collaborative document (e.g. Google Docs).

3.2.2 Agile criticism of upfront requirements

The agile school rejects the idea of upfront requirements. The rejection is common to all
agile variants. Beck, arguing for XP, writes:

Requirements gathering isn't a phase that produces a static document, but an
activity producing detail, just before it is needed, throughout development.

Cohn, in the Scrum context and as part of a broad-encompassing rejection of
Big-Upfront-Anything:

« Unless you
believe that until
agile came
around all
projects were
failures. See
“Catastroph-
ism”, page 26.

General text-
books: e.g.
[Ghezzi 2002],
[Pfleeger 2009]

[Larman 2010],
page 275

[Beck 2005],
page 137.

Scrum

§3.2 REQUIREMENTS ENGINEERING

33

Scrum projects do not have an upfront analysis or design phase, all work occurs
within the repeated cycle of sprints.

Agilists view requirements documents as a form of “waste”, for two reasons:

» The waste criticism: a requirements document is not a useful deliverable, since it will
not be part of what is given over to the customer. Poppendieck writes:

[Cohn 2009].

If your company writes reams of requirements documents (equivalent to inven- [Poppendieck

tory), you are operating with mass-production paradigms. Think “lean” and !ean], 7 Novem-
ber 2002 and 24

you will find a better way.

In case you are wondering, “operating with mass-production paradigms” is not a
compliment. Further:

Inventory in the software development value stream is partially done work [such
as] requirements that are not analyzed and designed.

The analogy here is with inventory in manufacturing, a form of waste.

* The change criticism: the agile view is that customers do not know what they want;
if they think they do, it might be an unrealistic system; and they will change their
minds anyhow. The only way to satisfy them is to start building some piece of the sys-
tem, show it to them, gather feedback and iterate.

These two objections, the waste criticism and the change criticism, are often commin-
gled into one. Beck, for example, writes:

Software development is full of the waste of overproduction, [such as]
requirements documents that rapidly grow obsolete.

This is again a case of criticism by association: conflating the two arguments makes it
easier to criticize upfront requirements. Note how Beck’s earlier citation (at the bottom
of the previous page) rejects the notion of a “phase that produces a static document”; but
these are two different things: as we will see in more detail, requirements can both be a
separate phase (in the software process) and produce a document that changes.

In reality the two arguments are distinct; we will review them in turn.

3.2.3 The waste criticism

The waste criticism is in principle limited to unused requirements (“not analyzed and
designed” in Poppendieck’s terms). This is not much of a restriction, since when you
write requirements they are by definition not yet analyzed and designed, and you do not
know whether they will be retained. In fact the purpose of writing requirements is pre-
cisely to have a sound basis, early in the project, to discuss the system’s future functions,
and in particular to decide which functions to drop.

Does this mean that the effort was “waste”? To decide, we must compare two tech-
niques for weeding out unnecessary functions:

June 2004.

[Beck 2005],
page 136.

-~

34 THE ENEMY: BIG UPFRONT ANYTHING §3.2

1 The plan-first approach: perform an upfront requirements process, rate the impor-
tance of the functions that come out of that process, decide which ones are not essen-
tial, and get rid of them.

2 The agile approach: select a few initial functions, start implementing them, and if the
result is not satisfactory for customers get rid of the unnecessary stuff.

Each approach has merits. It is usually cheaper (approach 1) to kill a superfluous feature
at the requirements stage, before it has wasted implementation resources. This is also
better for the morale of the team: developers get frustrated when something they imple-
mented gets discarded; that form of waste is worse than tossing out a requirement before
anything has been done with it. On the other hand, agilists are right that sometimes the
best way (approach 2) to find out if something will be useful is to build it, show it, and
see whether it fits.

Sometimes, but not always. The problem here is dogmatism. Upfront requirements
are useful; iterative development is useful. Condemning either of these two complemen-
tary techniques in the name of some absolutist ideology does not help projects, but actu-
ally harms them.

The agile criticism is right on target when it lambasts the huge requirements docu-
ments, sometimes running into the thousands of pages, that some bureaucratic environ-
ments demand. While describing every single detail in advance is necessary for some
life-critical systems (typically embedded systems, for example in transportation), for
most business systems such documents are overkill; they become so complex that it is
hard to get them right (contradictions and ambiguities creep in), and so unwieldy that
they end up forgotten on a shelf rather than being used for the development.

This criticism does not justify throwing away the notion of upfront written require-
ments. First, we should note that even a strict definition of “waste” as anything that does
not get delivered to the customer does not necessarily exclude requirements documents,
since requirements often provide a good basis for writing system documentation. But
there are even more fundamental reasons to retain a certain dose of upfront requirements.
Software, in spite of its specificities (its virtual nature, the ease of changing it), is an engi-
neering artifact. There is no justification for renouncing the basic engineering technique
of specifying what you are going to do, in writing and at the appropriate level of detail,
before you do it.

In sum: there is a middle ground between one extreme, absurdly bureaucratic, and the
other, absurdly informal.

That comment was not strong enough. Starting any significant software project (any-
thing beyond a couple of months and a couple of developers) without taking the time to
write some basic document defining the core requirements is professional malpractice.

1 once let myself be swayed by a customer company’s project managers, who said: “we do
not need a requirements phase, we are agile, we can jump in right away”. Spending a few
weeks upfront just on defining the system’s functions precisely would have saved the project
many months of delay, and the team many sleepless nights. I will not repeat that experience.

§3.2 REQUIREMENTS ENGINEERING

35

3.2.4 The change criticism

The agile emphasis on change is correct: it is hopeless to try to freeze the requirements
at the beginning of the project. Even if by some combination of talent, experience and
luck you could get them right, the customers would change their wishes as they start see-
ing versions of the system, which will give them new ideas.

The resulting charge against requirements, however, is largely hitting at a strawman.
No serious software engineering text advocates freezing requirements at the beginning.
The requirements document is just one of the artifacts of software development, along
with code modules and regression tests (for many agilists, the only artifacts worthy of
consideration) but also documentation, architecture descriptions, development plans,
test plans and schedules. In other words, requirements are software. Like other com-
ponents of the software, requirements should be treated as an asset; and like all of
them, they can change (and in practice should be put under the control of configuration
management tools).

To invoke the changeability of requirements as a reason to reject upfront requirements
makes no sense. The proper technical response to the observation that requirements will
change is: “so what?”. When you write an article, its structure will change as you go;
most people still find it useful to start with a table of contents, knowing that it is not cast
in stone. (One may even suspect that some of the best agile books started with a table of
contents, too — just a conjecture, of course.) When a company launches a new product,
it has a marketing plan, and is ready to adapt it as things evolve. These are only examples
— among many possible ones — from fields other than software, but they do indicate
that writing requirements does not imply freezing requirements.

Military strategists like to quote Marshal Helmuth von Moltke: “No battle plan survives
contact with the enemy”. They quote it — and then they make plans! The situation is exactly
the same in software: we know that plans are only plans and will have to be adapted to reality.
That is not a reason for dumping the notion of plan altogether.

We note once again the confusion inherent in such agile criticism as Beck’s comment that
“Requirements gathering isnt a phase that produces a static document”, as if having a
requirements phase implied that the resulting requirements document will be static. The
two matters are separate.

In fact the appropriate software engineering technique is to have a requirements phase
and treat the resulting document as a dynamic product. Similarly, when Beck adds that
instead of a phase, requirements gathering is “an activity”, he invokes a non-existent
contradiction: we should treat requirements gathering as a phase and as an activity that
continues, after that phase, throughout the project.

Here as in many earlier cases, the lesson is to appreciate the validity of the agile obser-
vation and ignore its unwarranted extremist conclusions.

-~

36 THE ENEMY: BIG UPFRONT ANYTHING §3.2

3.2.5 The domain and the machine

In comparing traditional requirements processes with the agile approach, an additional
concept to consider is the distinction between domain and machine requirements,

emphasized for many years by Pamela Zave and Michael Jackson. The idea is simple: /Zave 1997],
. . . [Jackson 1995],
» Some requirements elements describe properties of a model of a part of the world, or /Juckson 2000].

“domain”, in which the system will operate.

* Others describe desired properties of the system, or “machine”, that the project wants
to build.

In a banking application, rules on accounts, deposits and overdrafts are domain proper-
ties; specifications of how to process payments and other operations are machine prop-
erties. In software for phones, the laws of physics, defining for example limits on signal
speed, and the company’s call pricing policy, are “domain”; the functions of the system,
which must be compatible with these constraints, are “machine”. Although requirements
documents often intertwine the two kinds, it is essential, say Jackson and Zave, to sepa-
rate them because they are of a different nature: the project defines the machine, but it
has no influence on the domain. Commingling them causes confusion and mistakes.

A frequent agilist comment is that “requirements are design”, meaning that it is point-
less to pretend that requirements exist as pure customer needs whereas they are in fact
decisions on the system to be built. The Poppendiecks write:

And those things called requirements? They are really candidate solutions; [Poppendieck
separating requirements from implementation is just another form of handover. 2010], page 31.

(“Handover” is one of the kinds of waste.) Here requirements are viewed as equivalent
not just to design, but directly to implementation; the authors argue elsewhere that design Pages 54-55 of
and implementation are the same thing. the same work.

Justified or not, such comments can only apply to the machine part of requirements;
the domain properties do exist independently of any system. Here are examples of rules
that are clearly requirements and not “candidate solutions”:

* In a business system: “Any transaction over $10,000 requires approval by a supervi-
sor”. This statement describes a business rule, perhaps a legal obligation; not some-
thing that the project decides, but a constraint that the implementation must satisfy. If
it does not, the implementation is incorrect. What competent software manager would
ever embark on a banking system, constrained by such rules, without setting aside
time, up front, to write them down?

* In an embedded system: “All cell phone communications shall take place within the
allocated frequency range” (also defined precisely in the requirements). Another
example of a fundamental constraint imposed on the project by its environment.

It is the responsibility of the project to identify such domain properties as requirements,
separate from design decisions. And it should do so early. Missing an important con-
straint means that when it is finally discovered some of the code developed so far will
have to be thrown out. Here we are not talking about incremental development anymore,
but about elementary professional competence.

§3.3 ARCHITECTURE AND DESIGN

37

As in many other cases, agilists identify a real issue: the risk of spending time too
early on design or implementation decisions, camouflaged as requirements for respect-
ability, whereas it would be better to defer them until more information becomes avail-
able. But from this observation on the excesses of some traditional projects, agilists
embark on undue generalization and hasten to their own reverse excess, which is just as
bad. Denying the existence of requirements as separate from design and implementation
stands in the face of reason. That difference is simply the software engineering version
of the difference between problem and solution.

The speed of light is not an implementation decision.

3.3 ARCHITECTURE AND DESIGN

If requirements analysis describes the problem, design is part of the solution. In software,
the solution will be ultimately expressed by the code; but the code is concrete, containing
all the details, whereas the design defines the overall modular structure, or architecture,
of the solution. Examples of design decisions include: choices of abstractions (in
object-oriented development these will be in particular data abstractions, expressed as
classes); use of design patterns, which describe standard software structures for address-
ing specific problems, for example the “Visitor” pattern to support traversal of data struc-
tures; specification of interfaces between modules, and definition of inheritance
structures to organize sets of related abstractions into coherent taxonomies.

There is little meaningful difference between “design” and “architecture”. For clarity,
this discussion will use “design” for the process and “architecture” for its result (then we
do not need “architect” as a verb). The same convention can be applied to “implementa-
tion” and “code”.

3.3.1 Is design separate from implementation?

Many traditional software engineering methods present design as a separate phase, but
there has been growing recognition that no clear boundary exists between design and
implementation. As early as 1968, the conference that started software engineering as a
scientific discipline included a session about the difference between design and “produc-
tion (or implementation)” where Peter Naur said:

The distinction between design and production is essentially a practical one,
imposed by the need for a division of the labor. In fact, there is no essential
difference between design and production, since even the production will
include decisions which will influence the performance of the software system,
and thus properly belong in the design phase.

-~

See [Gamma
1994] on design
patterns.

[NATO 1968],
page 31, empha-
sis added.

38 THE ENEMY: BIG UPFRONT ANYTHING §3.3

and Edsger Dijkstra:

Honestly, I cannot see how these activities allow a rigid separation if we are
going to do a decent job. If you have your production group, it must produce
something, but the thing to be produced has to be correct, has to be good.
However, [am convinced that the quality of the product can never be established
afterwards. Whether the correctness of a piece of software can be guaranteed or
not depends greatly on the structure of the thing made. This means that the ability
to convince users, or yourself, that the product is good, is closely intertwined
with the design process itself.

A 1992 paper by Jack Reeves, often cited by agilists, argues that in talking about design
as a separate activity in software construction the industry got it all wrong. Reeves notes
that “design” in engineering denotes the task of producing documentation that is then
used for the manufacturing process. In software, “manufacturing” corresponds to the
build process (collect, compile and link the various modules involved) and is largely the
task of computerized tools — “make” and such — rather than people. But then:

After reviewing the software development life cycle as I [Reeves] understood it, [
concluded that the only software documentation that actually seems to satisfy the
criteria of an engineering design is the source code.

Reeves is indeed right if the focus is on comparing the software process to the process
of other engineering disciplines. Then, as he points out, their “design” is our program-
ming — writing the source code — and their “production” is our build process. That
insightful observation does not end the discussion, however, since the software commu-
nity has long used the word “design” in its own way, without implying that it is the same
thing as design in — say — mechanical engineering or building construction.

In its specific software meaning, design denotes the process of defining the overall
structure of the code. The difference with implementation is not, as all three authors last
cited note, a matter of intrinsic nature: it is a matter of abstraction. If I show you

across subscribers as sub loop
sub.item.update (arguments)
end

(i.e. code that applies the operation update, with the given arguments, to the value item
of every element sub of the list subscribers), I am giving you code. If I now mention that
I am using the “Observer” design pattern, [am telling you about the architecture: the con-
cept behind the above code is, in that classic architectural solution, to signal a change in
some information (say, a stock price) to all the software elements that monitor it (the
“subscribers”, for example a user interface element that shows the stock price, and a pro-
gram module that updates the stock history database), so that each can execute its spe-
cific update operation.

Same source,
emphasis added.
[Poppendieck
2010], page 54,
also cites from
this comment.

[Reeves
1992-2005].

On Observer see
[Gamma 1994],
or [Meyer 2009].

§3.3 ARCHITECTURE AND DESIGN

39

Clearly, the code is all that counts in the end, since we execute the code, not architec-
tural elements (such as design patterns). But to obtain that code, and to understand it once
it exists, the design is crucial. Once someone has said “Let s use Observer here!” a com-
petent software engineer can derive the code. If the code already exists, knowledge that
it is not some arbitrary loop but an implementation of Observer is critical to whoever has
to work on it further.

A big difference between software and other kinds of engineering is that there is no
firm line between “design” documentation and code. “Program Design Languages” look
suspiciously like programming languages; even UML diagrams, when precise enough to
be useful, can be mapped to code. Implementation is (to paraphrase a famous quote by
Clausewitz) design continued by other means; “by other means” means here “at a differ-
ent level of abstraction”.

Another interesting characteristic of software is that, more than in other fields, it may
make sense to perform the design (to produce the “documentation”) after writing the
code — or partly before and partly after. A classic software engineering article explains
this well: Parnas’s and Clements’s A Rational Design Process: How and Why to Fake it.
The title conveys the core idea: what matters is that we end up not only with the code but
with a good architecture. What matters less is how we get that architecture, and
particularly when: before implementation, as a rigid waterfall-like process would
suggest; during the implementation, with the design and coding effort intertwined;
afterwards, in an effort to document what was meant; or some combination of these
approaches. This is what Parnas means by “faking” the design process. Something
similar is familiar from mathematics: a mathematical publication presents a polished
path of reasoning, where every proposition follows from the previous one and implies
the next one; but ask the mathematician how he derived the result, and he will describe
(as Hadamard did in a classic book) a much more disorderly process where intuition
plays as big a role as rigor. The end justifies the means.

As the age of the cited articles indicates, the strong coupling between design and
implementation in software has long been understood. The evolution of software tech-
nology in recent decades, particularly with the spread of object-oriented technology
(emphasizing seamless development) and of high-level languages offering powerful
abstraction mechanisms, has made that close relationship even move visible.

There probably remain companies that enforce a strict lifecycle model where design
is an entirely separate phase from implementation, but this is not what any serious soft-
ware engineering text promotes.

3.3.2 Agile methods and design

While agile methods are unanimous in their denunciation of any process that includes a
separate design phase at the level of the full system lifecycle, there is no single articu-
lated agile approach to design. Three key ideas, however, characterize the agile views of
design. It is important to present them in a positive style (“do this...”), although we must

Meaning “the
Observer pattern”.

[Parnas 1986].

[Parnas 1986].

[Hadamard
1945].

40 THE ENEMY: BIG UPFRONT ANYTHING §3.3

note that agile presentations always introduce them as a reaction against adverse
approaches (“instead of doing that...”):

1 If a specific design activity is needed, apply it at the level of individual system itera-
tions, and alternate it with implementation phases.
(Instead of: performing design at the level of the entire system.)
2 Focus on solving the problem at hand.
(Instead of: trying to make your solution extendible and reusable.)
3 To obtain a good architecture, produce something that works, then examine its archi-
tecture critically and, if needed, improve it, a task known as refactoring.
(Instead of: aiming for a perfect solution from the start.)
We will come back to both points 2 and 3 in later discussions. The general observation
is that the agile de-emphasis of extendibility and reusability tends, like other prescrip-
tions we have seen, to start from a correct observation and go too far. Refactoring, for its
part, has emerged as an important software engineering technique, but is not a replace-
ment for sound upfront design; if an architecture is decent you can improve it, but refac-
tored junk is still junk.

Larman has been a particularly strong proponent of the idea that design should occur
at the level of individual iterations (point 1). He advocates holding design workshops “at
the start of building each new item” and “just-in-time whenever else the team finds agile
modeling at the walls useful”. The “walls” in this description are “vast open wall spaces
without borders, all virtually covered with whiteboard material”.

With remarkable openness, agile texts explain the limitations of the agile approach to
design. A large part of Cohn’s discussion of design is devoted to describing what can go
wrong in a “life without a big design”:

* Planning becomes harder.
» Partitioning the work among teams and individuals becomes harder.
* Not having an overall architecture may make people uncomfortable.
* Rework will be inevitable.

These are indeed obstacles to be taken into consideration.

Together with the idea of refactoring, what dominates agile discussions of design is
the opposition to any kind of upfront system-level design. Larman, for example, dis-
misses the view that “it is important to have the architectural foundation before you
implement anything else” as a “false dichotomy idea”.

Once again this conclusion is going too far and (although he is no longer around to
tell us) I am pretty sure that it is not what Dijkstra had in mind when he was arguing for
the sameness of implementation and design. Two typical examples:

* Security. A common phrasing in some security circles is that “security cannot be an
afterthought”. In that extreme form, such a statement is in fact as incorrect as the
reverse view (“forget about security until late in the process”) would be. What secu-
rity experts will tell you is that you should include security concerns upfront, and
keep them on the agenda throughout.

-~

[Larman 2010],
pages 289-290.

— See “Open
space”, 0.6,
page 96.

[Cohn 2010],
pages 166-171.
Only the bullet
points headers
are cited.

[Larman 2010],
pages 287.

-~

§3.4 LIFECYCLE MODELS

41

* Multi-lingual user interfaces. It makes a major difference to the construction of a sys-
tem whether the user interface — dialogs, error messages etc. — has to support mul-
tiple languages. This property is fairly easy to ensure, through appropriate
architectural techniques, if it is taken into account right from the start; it can be
extremely expensive to retrofit if the system has initially been built monolingual.

I was once involved as an expert — after the fact, unfortunately — in a legal dispute over
a system which the customer rejected at the time of delivery, in part because the program
had originally been designed for another country and the multi-lingual feature had been
added as an afterthought. Every once in a while, the monthly bills for English-speaking
customers included a sentence in another language; the company was not amused.

More head-scratching. Why can agile proponents not leave a good idea alone? The good
idea is to avoid doing too much at the start: since not all necessary information is avail-
able, defer some of the design decisions to later iterations. There is no reason to turn this
insight into a ban on a// upfront design.

3.4 LIFECYCLE MODELS

Lifecycle models attempt to define and standardize the sequence of phases through which
a software project typically proceeds, such as analysis, implementation, V&V (Verifica-
tion and Validation) and others. The best-known models are the waterfall — the butt of
everyone’s scorn — and the spiral, an iterative variant of the waterfall. There are many
others. They are usually depicted by some diagram where boxes denote phases and

arrows the transitions between them. (The sophisticated reader of this book does not need — 4 pictureofthe
diagrams. In fact let us start a tradition with what has to be, in the entire software engi- “V-Model” vari-

neering literature, the first-ever lifecycle discussion not supported by pretty pictures.)

ant of the water-
fall does appear

in a later section,

. .. on page 82.
“Define” and “standardize”. Lifecycle models play two distinct roles, often confused. pag

One is purely descriptive: trying to capture how successful teams work. The other is
prescriptive: saying how teams should work. This distinction is already present in uses
of the word “model” in everyday language: a “mathematical model” is descriptive; pre-
senting a person as “a role model” is prescriptive.

Lifecycle models, understood in the prescriptive sense, have taken considerable flak,
starting with a 1982 article with the unambiguous title “Lifecycle concept considered
harmful” by McCracken and Jackson; note once again how early the basic concepts were /acCracken
understood. The agile school also shuns traditional lifecycle models in favor of a more /982/.
flexible kind of process.

Before joining the waterfall-bashing party, it is useful to understand three arguments
for considering a waterfall-like model:

42 THE ENEMY: BIG UPFRONT ANYTHING §3.5

* Historical argument: in the early days of the software industry, strict lifecycle models
were a healthy reaction against entirely informal approaches, which may be termed
“code first, think later” or just “hacking” (in the non-security-related sense). By
emphasizing the need for separate activities, in particular those before and after
implementation, lifecycle models brought order into the process. Today the software
industry is far more sophisticated — an observation that applies to agile methods,
whatever limitations they may have — and has moved beyond simple lifecycle mod-
els. To reach the present stage, however, these models played a role.

* Conceptual argument: even if we stop talking of analysis, implementation, V&V etc.
as temporally ordered phases of a project, it remains useful to understand their dis-
tinctive properties as activities of software development.

* Pedagogical argument: when teaching software engineering, it is convenient to
explain these activities, discuss an idealized linear sequencing between them, and
explain why successful software development requires more flexibility.

The remaining presence of the waterfall model in today’s software engineering discourse
is primarily a consequence of the pedagogical argument; the model survives mostly as a
foil against which we can argue for better approaches. This role is important. Think of a
political science course that talks about the monarchical, absolute-power system of gov-
ernment. The professor is probably not arguing for bringing in a Louis XIV-style mon-
arch as head of state, but analyzing why people used to find such a system appropriate
and what lessons it teaches us for applying more modern views.

Beyond that role, the waterfall is discredited today, and agile criticism of it is correct.

-~

The notion of model, regardless of McCracken’s and Jackson’s 30-year-old critique,
is not going away, whether in its descriptive or prescriptive role. For example a good deal
of what we will learn in our study of Scrum is a lifecycle model: successive one-month
sprints, accompanied by specific planning and review phases. A lifecycle model can help
structure any engineering effort, as long as it is used as a guide for getting things orga-
nized, not a barrier to creativity.

Discussions of lifecycle models tend to oscillate between the two title words of a book
by Sigmund Freud: Totem and Taboo. Neither is appropriate. Every project needs a tem-
poral framework to predict and assess its progress. It can be more sequential, influenced
by waterfall ideas, or more iterative, in the Scrum spirit, or some combination of these
and other ideas. Defining and standardizing such a framework is only one of the compo-
nents of project success.

3.5 RATIONAL UNIFIED PROCESS

An influential approach, the Rational Unified Process, promotes a waterfall-style but
iterative lifecycle model, and combines it with a number of recommended software engi-
neering practices. RUP was developed at Rational, a company that became part of IBM.

§3.6 MATURITY MODELS

43

The most important contribution of RUP is a set of six recommended practices:
develop iteratively; manage requirements; use component-based development; model
software visually; verify quality continuously; and control changes. All but one corre-
spond to widely accepted practices of software engineering. (The exception is the rec-
ommendation of visual representation, which describes a technique rather than a
principle at the same level of importance as the others, and establishes a connection to
the UML graphical notations, also developed by Rational.)

The lifecycle model involves four phases for a project: inception, elaboration, con-
struction and transition. The first three sound very much like requirements, design and
implementation under new names, and that is very much what they are. (The RUP liter-
ature says otherwise, with the help of a multi-colored diagram that you will find in any
discussion of the approach, but the distinctions are too subtle for common mortals.)
Transition is another name for deployment, which, although absent from the traditional
models because software issues were much simpler in 1970, is indeed a critical aspect of
any significant software project: imagine you are a bank and have just written your new
program for handling ATMs; you are not out of the woods yet if the system is to be
deployed on thousands of machines in dozens of languages and a hundred countries with
different constraints and regulations. Assigning to deployment a role on a par with other
essential project phases has been one of the contributions of RUP.

RUP is not popular in agile circles, and can in fact serve them as an example of a Big /4mbiler 20017
(Bad) Upfront Method. In spite of the “iterative” label, the lifecycle model is too sequen- discusses agile

tial for agile tastes. The practices, however, do not cause any particular incompatibility. "
Even “manage requirements” has an agile interpretation where requirements, in the form
of user stories, are defined iteratively throughout the project. RUP’s continuous verifica-
tion of quality is definitely in the spirit of agile approaches.

3.6 MATURITY MODELS

Rooted in the tradition of lifecycle models, but addressing more important problems,
maturity models started in the nineteen-eighties with the ISO 9000 set of standards from
the International Standards Organization and the more software-specific Capability
Maturity Model (which the Software Engineering Institute, based at Carnegie-Mellon
University, developed for the US Department of Defense). CMM has since been
extended into a family of models applicable to a variety of industrial disciplines, CMMI
(the “T” stands for “Integration”), which will be our reference for this discussion.

Warning: if you have seen other presentations of CMMI, you may not immediately
recognize the description below. Official CMMI documents use a dreadful form of

s. R

UP.

bureaucratese that obscures simple notions, resulting in 482-page documents for what %%]m]{lfsj\/lMl
could be comfortably explained in 30 pages. No wonder CMMI puts off so many people, cussed how style
agilists and others. It took me a long time to pierce the wall and realize that in spite of its hurts CMMI in a
pomposity CMMI actually introduces useful software engineering concepts. The following blog article:

summary presents these concepts in plain English.

[Meyer 2013a].

44 THE ENEMY: BIG UPFRONT ANYTHING §3.6

3.6.1 CMMI in plain English

CMMLl is a collection of best practices specified precisely enough to help reach identified
goals and to allow assessing an organization’s compliance. These three notions, prac-
tices, goals and assessment, are at the center of the approach. (A simpler but far better
name for the approach would have been “Catalog of Assessable Practices”.)

Most CMMI practices and goals are specific to a “process area”: a clearly identified
aspect of the software process, with its own set of issues and activities. Examples of pro-
cess areas include configuration management, project planning, risk management and
supplier agreement management (handling relationships with contractors). In addition,
CMMI defines some generic goals and practices, applicable across process areas.

For examples of specific goals and practices, consider the “configuration manage-
ment” process area, which we may define as the identification and tracking of the various
items relevant to the software process, such as program modules, test cases, hardware
assets etc., whose evolution will be subject to strict rules. In configuration management:

* One of the specific goals is “Establish baselines”, where a baseline is a collection of
items to be managed under the stated rules.

* One of the specific practices for that goal is “Identify configuration items”: define the
basic elements (program modules, test cases, hardware assets) that will be under the
control of configuration management.

* Also for that goal, another practice is “Establish a configuration management system”.

There are only a few generic goals. An example is “The process is institutionalized as a
managed process”, using words that have a special meaning in the CMMI context: a
“managed process” is a process that is planned in accordance with a clearly stated policy,
employs skilled people, and is subject to monitoring; a process is “institutionalized” if it
is not just practiced but thoroughly supported by the organization, with a clear commit-
ment. A generic practice supporting this generic goal is “Plan the process”.

In addition, specific practices from particular process areas can support a generic
goal. For example, “Include the configuration management plan in the project plan”, a
Configuration Management practice, supports the generic goal just cited.

The third major aspect of CMMI — complementing goals and practices — is assess-
ment. The model allows an organization that develops software to submit to evaluation
the quality of its corresponding process. Process, not product: the assessment only
affects how the software is produced. Any conclusion about the quality of what is being
produced has to be deduced indirectly: for example applying CMMI does not guarantee
the absence of defects (bugs), but does assess whether procedures are in place to evaluate
software quality, for example through precise policies for defect discovery and tracking.

There are two kinds of assessment, each with its corresponding scale of “capability” scamir 2010),
or “maturity”. The continuous scale governs assessment for specific process areas; the pages 22-23.
staged version assesses the overall state of the processes of an organization. For this dis-
cussion we limit ourselves to the staged variant. Its scale defines five levels of increasing
maturity for an organization, starting with little or no process at level 1.

§3.6 MATURITY MODELS 45
You cannot just declare to the world that your organization is at CMMI level i (for
i> 1) but have to qualify for it through an assessment process conducted by approved
assessors. You cannot skip levels: to ask for assessment of level i + 1 qualification, you
must already have been qualified at level i.
It is serious business; moving from one level to the next is typically a matter of many
months and hundreds of thousands of dollars. Like Scrum in the agile world, CMMI
supports a small industry, in this case of assessors, who must themselves be certified, and
consultants helping companies reach their desired level.
The successive levels (each, from level 2 on, including the properties of its predecessors)
reflect an organization’s increasing degree of understanding and control of its processes:
1 Initial, a level generally described in CMMI texts by negative characteristics, remi-
niscent of how agile presentations describe the detestable state of non-agile projects:
“processes are usually ad hoc and chaotic”, “success depends on the completeness [CMmI 2010],

and heroics of the people involved, not on the use of proven processes”. Time to get
ready for serious CMMI implementation, defined by the subsequent levels.

2 Managed: processes exist for projects, supported by adequate resources and commit-
ments from stakeholders.

3 Defined: the processes are specified precisely through documents, procedures and
tools; and these specifications exist at the level of the entire organization, so that even
if a project needs its own variants they will be tailored from that common base.

4 Quantitatively managed: the application of processes is subject to numerical criteria
of quality and performance, and assessed through statistical control techniques.

5 Optimizing: the processes include mechanisms for their own evaluation and contin-
uous improvement (a feedback loop).

Each level includes certain process areas; to reach that level you must have implemented

the corresponding specific practices. For example (partial lists except at level 4):

» Some process areas for level 2: project planning, configuration management, supplier
agreement management.

» Forlevel 3: requirements development, validation and verification, risk management.
» For level 4: quantitative project management.

» For level 5: causal analysis and resolution (mechanisms for identifying the causes of
observed deficiencies and removing them).

The assessment aspect of CMMI and in particular this 1-to-5 scale are the most visible
part of the approach. They should not, however, detract from the core contribution:
defining a catalog of generic and specific management practices.

The original incentive for developing CMMI and its assessment methodology in the
nineteen-eighties was to allow the US Department of Defense (DoD), the largest consumer
of software products and services in the world, to choose its suppliers on an objective basis
by forcing them to qualify at the appropriate level. CMMI also played a major if unintended
role in the development of the modern software industry: it was seized upon by the then
nascent Indian outsourcing industry to establish its credibility with Western customers.
Many of the first companies to achieve level 5 were Indian, and outsourcers continue, along
with DoD suppliers, to be among the main adopters of CMMI.

page 27.

At that time it
was just CMM.

46 THE ENEMY: BIG UPFRONT ANYTHING §3.6

3.6.2 The Personal Software Process

CMMI is meant for organizations and more specifically — if not in intent, at least in

practice, given the costs involved — to /arge organizations. Watts Humphrey, a former /rumphrey
IBM manager who provided much of the inspiration for CMMI, was conscious of the 2005/.
need to translate its core idea — the systematic application of recognized practices —

into recommendations that every programmer could apply at the level of his or her indi-

vidual work, whether or not as part of a company mandate. The result of this effort is the

Personal Software Process. Along with PSP, Humphrey also introduced TSP, for Teams.

TSP and PSP have attracted only a modest level of commentary, usually dismissive,
from agile authors, but the basic ideas are worth noting. It is easy to be turned off at first
by PSP because it relies on a rigid and largely outmoded lifecycle model for individual
programmers: plan-design-code-compile-test-postmortem. Other than the last phase and
(agile buffs please close your eyes for a second) the first, we do not work like that any
more. But the main contribution of PSP is elsewhere, not tied to a particular technology:
encouraging programmers to work in the tradition of engineers by keeping logs, tracking
time spent, recording bugs, and applying the methods of statistical quality control (also
expounded by agile authors such as the proponents of Lean programming). This advice,
not widely applied or even known in the industry, makes the studying of PSP useful for
any programmer even in today’s changed technology world.

3.6.3 CMMI/PSP and agile methods

No fundamental contradiction exists between the agile and CMMI ideas (or with PSP if %
we limit it to its better side as just noted). Agile methods prescribe certain processes and

practices. CMMI requires a company to codify its processes and practices; it does not

say what they should be, and the agile variants can qualify just as well as others.

The common perception is different: CMMI and agile are often considered incompat-
ible (“like oil and water”). Culturally, the two communities are indeed different: one
focused on control, planning, documents, the other rejecting all this “waste” and swear-
ing by just code and tests. The planning-oriented parts of CMMI are indeed hard to swal-
low for an agilist, but most of the practices have turned out to be transposable to a CMMI
context. The Poppendiecks have two main criticisms against CMMI-style models:

» That they “may standardize on less than ideal practices and create a bias against [Poppendieck
change”. But CMMI explicitly fosters a self-improving process, although that aspect 2003/, page 97.
of the approach only becomes most prominent at the higher levels of the CMMI scale.

* That “as frequently implemented, these models tend to remove process design and
decision-making authority from developers and put it under the control of central
organizations”. But even though this phenomenon indeed happens with the models
“as frequently implemented”, nothing in them requires you to apply a particular model
of management, centralized or not. That some companies interpret them to impose a
bureaucratic structure is a problem with the companies, not the models.

§3.6 MATURITY MODELS 47

CMMI is not for everyone; it requires a major commitment on the part of an organiza-

tion, usually triggered by a regulatory obligation or commercial incentive to qualify at a

certain level of the scale. It may not be your cup of tea. But if it is, and you find some

agile ideas attractive, a number of existing experience reports — including one by a team /Susieriand
including Sutherland, devoted to a CMMI level 5 effort using Scrum — show that it is 2010/.
possible to combine ideas from both schools of thought.

Such a combination, refreshingly different from the stridently exclusionary style
sometimes found elsewhere in the agile canon, confirms the observation that recurs
throughout this book: that agile methods are not a tsunami that makes all classical tech-
niques of software engineering suddenly obsolete, but an increment and extension —
and, here and there, partial replacement — of what has been shown to work.

3.6.4 An agile maturity scale

Predictably, a number of authors have proposed “agile maturity models” with the requi- See /Schweigert
site five levels, although at least one of them is ostensibly dated April 1st. They are little 2012/ for a sur-
more than “me too” attempts to show that agilists can also have 5-step scales if they want f{azzi 1;1;;:11
to. (If they were the result of genuine, unbiased analysis, why would they all have to end [,;lmbler 201 0].

up with exactly five levels?)

We saw that even though the assessment scale is the most publicized aspect of CMMI
it is only one of three important components, along with practices and goals. Agile meth-
ods have their own practices and goals. There is no large-scale organization for assessing
compliance of agile projects, although certification of individuals for titles such as
Scrum Master plays an important role for Scrum.

Agile methods do refer to a scale that may be their closest counterpart to the CMMI if)i ({ C"“’;”“"”
levels: Shu-Ha-Ri (or Shuhari), a three-step gradation. The terms come from the vocab- [Smh]elezm J
ulary of Japanese martial arts and denote successive steps in learning, which agile meth- 2073/, pages

ods transpose into steps that agile teams must climb towards mastery of the method: ~ 3-3&
* In the Shu state, from a word meaning obeying, people just learn and apply recipes.

 Inthe Ha state, meaning detach, they are able to abstract from the core rules and com-
bine them in various ways.

» In the Ri state, meaning surpass, they can go beyond existing rules and methods to
devise their own solutions when needed.

You can also think of the bachelor’s-master’s-PhD scale, which admittedly lacks the
exotic frisson of the Japanese characters that adorn agile presentations of Shu-Ha-Ri. (In
education circles, similar ideas underlie a popular five-level scale, the Dreyfus model.)

The parallel with CMMI levels is clear; in particular the last level of Shu Ha Ri is
comparable to level 5, “Optimizing”, of CMML.

4

Agile principles

Underlying the specific practices and artifacts of agile development, we find a number
of general principles: methodological rules that express a general view of how software
should be developed. We will now study these principles, the core of the agile approach.

4.1 WHAT IS A PRINCIPLE?

To clarify the methodological context it is useful to recall first what qualifies, or not, as a
principle. A good methodological principle is both abstract and falsifiable. Abstractness
differentiates principles from practices; falsifiability distinguishes them from platitudes.

Abstractness means that the principle should be a general rule, not a specific prac-
tice. “Build a solid financial foundation for the future” is a principle; “Put 10% of your
earnings every month into a savings account” is a practice. Often, as in this example and
as in the case of agile practices discussed in a later chapter, a practice exists to help sat-
isfy a principle.

Falsifiability means that it must be possible for a reasonable person to disagree with
the principle. If no one in his right mind would ever disagree with a proposed rule, as
with “seek software quality” (who would advocate not seeking quality in developing
software?), then it may be right but it is also uninteresting. For the rule to be a principle,
you must be able — regardless of your own opinion — to envision someone supporting
its negation. “Test first” satisfies this criterion: it is possible to argue that programs
should be written before tests, or that specifications rather than tests should precede the
program. A rule whose negation is unsustainable, such as “seek software quality”, is not
a principle but a platitude.

The principles reviewed in this chapter satisfy these requirements. Practices are
important and have a separate chapter; platitudes occasionally arise in the agile literature
(as elsewhere) but we will ignore them.

In addition, a principle should generally be prescriptive, not descriptive: rather than
stating a fact or property, it directs action (“Do not covet thy neighbor’s wife”). This
requirement is not absolute for principles in non-technical areas (“the best is the enemy
of the good” is a principle even though not expressed as a prescription), but for principles
governing software development methodology it is a good idea to use a prescriptive
style, as will be the case with the principles presented in this chapter.

B. Meyer, Agile!, DOI 10.1007/978-3-319-05155-0_4,
© Springer International Publishing Switzerland 2014

— Chapter 6
reviews agile
practices.

50

AGILE PRINCIPLES §4.2

4.2 THE OFFICIAL PRINCIPLES

As noted in the introductory chapter, the Agile Manifesto itself lists twelve principles, /[4gile 2001];
which we should examine first since they represent the official view:

Al

A2

A3

Ad
A5

A6

A7
A8

A9

Official agile principles

Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

The most efficient and effective method of conveying information to and within
a development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

A10 Simplicity — the art of maximizing the amount of work not done — is essential.
A1l Thebest architectures, requirements, and designs emerge from self-organizing teams.
A12 At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

This list is useful to set the mood but — even though it comes straight from the source
— we cannot work from it and our first task will be to clear the way for a more accurate

and usable set of principles. The official list is not up to this role:

* Some of the points listed are practices: A6, A12.

* Others are platitudes: A5 — who would support building projects around unmoti-

vated individuals? — and A9.

* Some are not prescriptions but assertions, which does not matter when they can
readily be turned into prescriptions (A7 could have been phrased as “Use working
software as the primary measure of progress”), but becomes problematic when the
assertion is wrong. It is not true that, as taken for granted in A10, simplicity means
“maximizing work not done”: seeking simplicity is a meaningful principle; so is max-

numbers added.

imizing the amount of work not done; but they are different principles. (This is an — “Whatis sim-

important matter which we will examine in detail below.) Sticking to a prescriptive

style might have avoided the confusion.

plicity?”, page 66.

§4.3 A USABLE LIST 51

» Although we would expect a set of independent rules, the ones listed here are partly
redundant: frequent delivery is mentioned in Al and A3, the importance of working
software in A3 and A7.

* On the other hand the rules are clearly incomplete: none of them mentions testing,
even though the focus on testing to ensure quality is a core property of agile
approaches, and among their principal contributions.

4.3 A USABLE LIST

To replace the official list, we will use the classification of agile principles introduced in <1—2 “P"imf‘ij?/&“
the overview chapter. Here for ease of reference is the list again: S page s

Agile principles

Organizational
1 Put the customer at the center.
2 Let the team self-organize.
3 Work at a sustainable pace.
4 Develop minimal software:

4.1 Produce minimal functionality.

4.2 Produce only the product requested.

43 Develop only code and tests.
5 Accept change.

Technical
6 Develop iteratively:
6.1 Produce frequent working iterations.
6.2 Freeze requirements during iterations.
7 Treat tests as a key resource:
7.1 Do not start any new development until all tests pass.

7.2 Test first.
8 Express requirements through scenarios.

We look first at organizational principles, then at software-specific fechnical principles.

4.4 ORGANIZATIONAL PRINCIPLES
Organizational principles affect project management, scheduling and team organization.

4.4.1 Put the customer at the center

“We are customer-oriented” is a platitude in business. Agile development takes this idea
seriously, requiring close involvement of customers throughout the development.

52 AGILE PRINCIPLES §4.4

In many traditional approaches, customers intervene only at specified points: they
provide input during the requirements — only as part of a strictly controlled process, in
requirements interviews or workshops — and do not reappear until the final stages, in
“user acceptance testing”. Some organizations even forbid contact between customers
and developers in-between these stages, although many do not go to such extremes.

In agile approaches the interaction with customers takes place throughout the project.
In Beck’s terms:

You will get [better] results with real customers. They are who you are trying to [Beck 2005],
please. No customer at all, or a “proxy” for a real customer, leads to waste as page 62.
you develop features that aren't used, specify tests that don't reflect the real

acceptance criteria, and lose the chance to build real relationships between the

people with the most diverse perspective of the project.

Customers in an agile project are welcome at regular project meetings, can interact freely — “Onsite cus-
with developers and have the opportunity to try the project as it gets released in incre- fomer”, 6.5,
mental versions. Some approaches go further and recommend “embedding” a customer 7%%¢**

in the development team.

The emphasis on customer involvement addresses one of the principal dangers that
threaten software projects: building a software system that does not properly address the
users’ needs. As early as 1981, Boehm’s classic Software Engineering Economics cited [Boehm 1981]
software failures in which projects produced systems where everything was right — reli-
ability, performance, ... — except for one detail: they solved a problem other than what
users wanted, or needed. Lutz’s empirical analysis of the sources of software-related
safety errors in major NASA missions, also a classic, reports that

The primary cause of safety-related functional faults is errors in recognizing [Lutz 1993],
(understanding) the requirements (62% on Voyager, 79% on Galileo). emphasis in
Safety-related conditional faults, for example, are almost always caused by original.
errors in recognizing requirements.

Such studies, however, can also be invoked to justify putting more effort into writing
upfront requirements, precisely the kind of thing agilists dislike.

The encouragement to involve customers is an important agile contribution. The
problem is the insistence that such interactions replace requirements. Such a move is
dangerous because there is no such thing as “the customer”. Any significant project
involves many categories of stakeholders (a more general term than “customer”):

-~

» Users of the future system — themselves of different kinds, such as, for an online
event reservation system, the event staff, the owners of theaters and other venues,
event attendees, artists, agents, producers.

» Executives — also working for the customer company, but particularly concerned
about such matters as integration with company policies and future evolution.

» Purchasing agents, lawyers and so on.

These various constituencies often have conflicting needs and priorities, and it is pre-
cisely the role of a good requirements process to bring contradictions to light, resolve

§4.4 ORGANIZATIONAL PRINCIPLES 53

them if possible (this is why requirements workshops are often a good complement to
individual requirements elicitation sessions), and obtain decisions from the person in
charge — the “product owner”.

If you replace this formal process by a practice of talking to stakeholders, you run the
risk of skewing the result to fit the views of those who participate in these discussions.
They may not be the best source anyway: the people whose perspective really matters
may also be the most busy; they would find time for a focused requirements workshop,
but will not keep their door open to any developer walking in for a question. Chances are
you will be influenced by those who have too much time on their hands, precisely
because their work may not be so important to the organization. The risk is particularly
important with the methods that prescribe embedding a customer representative in the
development team: if management is so willing to assign to your project a supposed — See also
expert of the application domain, taking him or her away from tasks in that domain, you Customer”,
. . 5.5, page 82
may wonder whether the person is really the most qualified.

Beck acknowledges the risk of listening to just one person:

The objection I hear to customer involvement is that someone will get exactly the [Beck 2005],
system he wants, but the system wont be suitable for anyone else. page 62.

He answers the objection by stating that

Its easier to generalize a successful system than to specialize a system that
doesn t solve anyone's problem.

This argument is debatable. The “successful system” might be so unique to the identified
user’s need as to require complete rework for anyone else, while the “system that doesn t
solve anyone’s problem” might have a solid foundation and a terrible user interface that
can be fixed. Even if we accept Beck’s view, it does not explain why talking to some users
throughout the project excludes trying to collect the views of al// stakeholder categories
at specified stages of the project — a rejection that appears pretty irresponsible.

4.4.2 Let the team self-organize

The agile approach takes away from managers such traditional roles as assigning tasks

to developers. It places considerable trust in the team’s ability to organize its own work.

Scrum is particularly systematic in this respect, replacing the traditional notion of project
manager by an empowered team which makes its own decisions, under the control of a

product owner who decides on the product functionality and a Scrum Master who sup-

ports the team and enforces the method. We will study these roles in the next chapter.

For many developers having previously suffered from bad project managers, this
aspect is one of the great attractions of agile methods. In response to a long blog article
critical of agile development, a defender of XP and Scrum wrote:

The most important aspect of these methods is to put the management of the [Yegge 2006],
project squarely where it belongs: on the backs of the people doing the work. Reade; com-
When the peopl.e actually doing the work hgve the final say in what gets done and gzg{y Dixie-
when, then projects actually get done on time.

54 AGILE PRINCIPLES §4.4

The need for managers remains, of course, because this is how companies work and Citedin [Cohn
because in the words of the creators of the original (non-software) Scrum method “subtle 20! 0“,@522‘;“"
control is consistent with the self-organizing character of project teams”. Schwaber and [Nona /
Sutherland, creators of the software Scrum, also emphasize this concept of subtle control:

Control through peer pressure and ‘“control by love” are the basis of subtle [Schwaber 2012],
control. The dynamic flow of the team surfaces the tacit (unconscious) knowledge page 28,
of the group and creates explicit knowledge in the form of software.

Words somewhat scary if you have been told that your team is self-organizing and sud-
denly learn that you are in fact being “subtly” controlled through “tacit” and “uncon-
scious” techniques. The part about love may be reassuring; or not.

Maybe it is a matter of taste. Personally, if I am to be managed, I would rather have a
boss than be told I am self-organized only to be subjected to surreptitious control techniques.

In fact the role of the manager is murky in the agile literature; comments on this topic
tend to be of the scandalized denegation style, as “it is a common misconception that, in
agile projects, ...”, which may be true but does not tell us why the “misconception” arose
in the first place and, more importantly, what is the proper (not misconstrued) role of the
manager. Schwaber and Sutherland, for example, write:

Although project development teams are on their own, they are not uncontrolled. [Schwaber 2012],
And Cohn: page shamphashs

A common misconception about agile project management is that because of [Cohn 2010a].

[the] reliance on self-organizing teams, there is little or no role for team leaders. Emphasis

Nothing could be further from the truth. In “The Biology of Business”, Philip added

Anderson refutes this mistaken assumption: “Self-organization does not mean

that workers instead of managers engineer an organization design. It does not

mean letting people do whatever they want to do. It means that management

commits to guiding the evolution of behaviors that emerge from the interaction of

independent agents instead of specifying in advance what effective behavior is.”

Self-organizing teams are not free from management control. Management
chooses what product to build or often who will work on their project, but the
teams are nonetheless self-organizing. Neither are they free from influence. ...
That being said, the fewer constraints or controls put on a team, the better.

In other words agile managers “control”, except they do not or maybe they do but “none-
theless” not that much.

Agile texts abound with project anecdotes, illustrating the intended balance between
too much and too little; but the manager in search of firm general principles will only find
rules stating what managers should not do, for example deciding what functions to include
(that is for the product owner) and who should work on what when (that is for the team).

Cohn’s assertion that “self-organizing” does not mean “letting people do whatever
they want to do” leaves one wondering. If there is a difference, it must be subtle. Derby,
in an article again devoted to “misconceptions”, emphasizes that “self-organizing” does
not mean “self-organized”:

§4.4 ORGANIZATIONAL PRINCIPLES

55

That’s because [self-organization] is a process and a characteristic, not
something that is done once and for all. Self-organizing, from a social systems
perspective only means that the team can create new approaches and adapt to
meet new challenges in their environment.

“Create new approaches and adapt to new challenges” sounds underwhelming. What
decently led project — including a traditional one led by a strong, “command-and-con-
trol” manager — would not allow its members, in fact encourage them, to do that?
“Self-organizing” has to be more ambitious. Mittal writes that self-organizing teams

still require mentoring and coaching, but they don’t require command and control.

While mentoring and coaching are indeed important roles for agile managers (as we will
see in the next chapter), the negative part of the observation is again disappointing:
“command and control” is what managers traditionally do; as Cohn points out, they still
have to do some of it, but it would be useful to know exactly what.

Although the answer is not to be found in the agile literature, in the end it is not hard
to derive from plain common sense. Most projects need a manager to take care of “com-
mand and control”. The drawback of a military-style scheme in which a single person
performs that role is that it bridles the creativity of team members. At the other extreme,
a talented and experimented team can completely self-organize, with or without a “men-
tor” and “coach”.

In the music world, a famous example is the legendary I Musici ensemble, in contin-
uous operation since 1952 and one of the best chamber orchestras in the world:

[Derby 2011],
emphasis added.

[Mittal 2013],
emphasis added.

-~

I Musici
in
concert

56 AGILE PRINCIPLES §4.4

As the Wikipedia entry states, “/ Musici is a conductorless ensemble. But the relation-
ships among the musicians enable great harmony in their music-making”. Indeed! If you
put a group of top-notch software developers together they can manage by themselves,
like I Musici, and resent any pointy-haired “suit” foolish enough to think he can order
them around. At the other extreme, asking a group of inexperienced music students to
play together will not work. Even seasoned professional musicians generally cannot
work that way; that is why most orchestras, including smaller ensembles, have a conduc-
tor. Most software development teams, similarly, need a project manager.

What we can learn in the end from the agile insistence on self-organizing teams
is this:

» Exceptionally, an experienced and closely-knit team (“/ Programmatori’’) may work
without a manager. Most teams, however, need one.

* Some of the traditional manager roles, such as the selection of tasks for the next
development iteration, may be assigned to other team members.

» The manager should encourage initiative from the team members and gradually move
the team to a partially or totally self-organized mode of operation. (Here we may note
Derby’s notion that until that stage is reached the team is evolving towards
self-management.)

4.4.3 Work at a sustainable pace

Agile methods emphasize the central role of programmers and the need to give them
working conditions that enable them to deliver their full potential. A particularly forceful
consequence of this view is the rejection of what Ed Yourdon, in a popular and useful
book, calls death marches: the management practice of accepting an unrealistic commit-
ment — a project with fuzzy and ever-growing requirements and tight deadlines — then
trying to force the programming team to meet it through pressure, long working days and
sacrificed week-ends.

Another influential book was DeMarco’s and Lister’s People Ware (first published in
1987), which explained in clear terms how programmers function and how important it
is to provide them with a calm, respectful working environment.

Cockburn has been particularly vocal in promoting principles of “Personal Safety”
for developers, enabling them to speak freely. In his words:

Personal Safety is being able to speak when something is bothering you without
fear of reprisal. It may involve telling the manager that the schedule is
unrealistic, a colleague that her design needs improvement, or even that she
needs to take a shower more often. With Personal Safety, the team can discover
and repair its weaknesses. Without it, people won t speak up, and the weaknesses
will continue to damage the team.

[Yourdon 2003]

[DeMarco 1999]

[Cockburn
2005], page 29,
slightly abridged.

§4.4 ORGANIZATIONAL PRINCIPLES 57

More generally, agilism emphasizes, in the People Ware tradition, the respect due to pro-

grammers and the need to provide them with good working conditions. These ideas mesh

well with other aspects of the method: its preference for personal communication over

written documents; and its advice (discussed in a subsequent chapter) to use open spaces — “Open
rather than cubicles. Schwaber describes the before-and-after of a company’s atmosphere: %€ 66

page 96.
The first tour of the engineering space at Servicelst was d0w1.1rlght deprgssmg. [Schwaber
People were either housed in offices with closed doors or exiled to cubicles... 2004a], pages
There was no conversation, no hum of activity, no feeling of a group of people 114-115.

undertaking work that they were excited to do.
The company hired him, however, and at the time of the second sprint review:

Everything felt different... People were talking and sharing laughter and lively
conversation filled the workspace.

The sociopolitical overtones are interesting. We noted in the first chapter that agile ideas « “Values”,
have a sociological interpretation: “the revolt of the cubicles”. The agile movement /- page 2.
reflects programmers’ self-assertiveness, extolling the primacy of code at the expense of

“Dilbert’s boss” artifacts such as plans, models and documents.

The debate is not new: as early as 1977, a book by Philip Kraft, complete with Marxist /Kraft 1977]
analysis, denounced the forerunners of today’s Big Upfront techniques (even including
structured programming) as an attempt by management to taylorize software production
and turn programmers into a voiceless proletariat. The Marxist analysis is gone — if any-
thing, agilists emphasize ROI and other unabashedly capitalistic goals — but the push to
bring the programmer to the forefront remains.

There are nuances between the agile schools. They may all promote empowering pro-
grammers, but not necessarily for the same reasons. Between the four methods particu-
larly covered in this book, two categories emerge:

* XP and Crystal are true programmer-pride movements; Cockburn’s statement
cited above is typical of these methods’ focus on restoring programmers’ dignity
against management.

* The spirit of Scrum and Lean is different. These are methods rooted in the tradition
of industrial production engineering; their authors keep citing Deming and Toyota,
blasting waste and extolling productivity.

As an example of the second school, Schwaber proudly recounts how as the Scrum Mas- /Schwaber
ter for a project he enabled the team to meet its next deadline: when it turned out that the 55);)4“]' page
project could not proceed without the input of a key developer who had gone incommu-
nicado — or so he believed — to Yellowstone for his first vacation in two years (try that

in Europe!), the diligent Scrum Master hired a private detective to track him down (try

that in Europe!). Maybe this is “subtle control” again, leaving one nostalgic for the good

old managers of yore, with their prerogatives but also the built-in limits on their power.

Since the anecdote seems intended not only to boast about the author’s fearless manage-

ment style but to convey a general lesson, the befuddled reader wonders how to reconcile

that lesson with principles of sustainable pace such as Crystal’s Personal Safety.

58 AGILE PRINCIPLES §4.4

Also part of the emphasis on sustainability is the XP-recommended practice of slack,
following the theme of another DeMarco book. Beck writes:

In any plan, include some minor tasks that can be dropped if you get behind.
and

You can structure slack in many ways. One week in eight could be “Geek Week .
Twenty percent of the weekly budget could go to programmer-chosen tasks.

The twenty-percent allowance is, famously, part of Google’s practices.

4.4.4 Develop minimal software

Agile methods emphasize simplicity. The goal is to get user feedback quickly by delivering
software at short increments, even if it covers only a subset of the expected functionality.

The agile spirit of minimalism manifests itself in several forms: minimal functional-
ity; produce only the product requested; produce only code and tests. Let us examine
them in turn, then assess the virtues of minimalism.

Produce minimal functionality

A general agile view is that many software systems suffer from bloat: elements of func-
tionality that are not needed, or needed by only a few users. During development, they
take time away from the fundamental functionality and delay the releases; they harm the
team’s focus; they create a future maintenance burden (since once a feature is there
someone is going to use it and demand that future versions continue to provide it); they
may constrain the future evolution of the software.

A slogan made popular by XP is “You Ain’t Gonna Need It” or YAGNI, which

reminds us always to work on the story we have, not something we think we re
going to need. Even if we know we re going to need it.

The Poppendiecks write:

Our software systems contain far more features than are ever going to be used.
Extra features increase the complexity of the code, driving up costs nonlinearly.
If even half of our code is unnecessary — a conservative estimate — the cost is
not just double, it’s perhaps ten times more expensive than it needs to be.

(I do not know whether the factor of ten is a wild estimate or is meant to be taken literally,
and am not aware of published studies giving precise empirical values.) They add:

Our best opportunity to improve software development productivity is to stop
putting features that are not absolutely necessary.

In short,
If code is not needed now, putting it into the system is a waste. Resist the temptation.
Produce only the product requested

Software engineering wisdom encourages developers to strive for two software qualities
that produce long-term rather than immediate benefits:

[DeMarco 2001].

[Beck 2000],
page 48.

Although the
company report-
edly tried to kill
itin 2013.

)
[Jeffries 2001],
page 190.

[Poppendieck
2010], page 26,
slightly
abridged.

[Poppendieck
2003], page 6.

§4.4 ORGANIZATIONAL PRINCIPLES

59

» Extendibility: devise the architecture to support future extensions, in particular future
user needs.

» Reusability: make software elements as general as possible beyond their immediate
role in the current project, so that they can be reused elsewhere in that project and
future ones. (When this happens they have been turned into software components.)

For agile methods, these are not important goals, and may not be goals at all. What mat-
ters is to develop software that works here and now. Here are two typical quotes illustrat-
ing the agilists’ distrust of anything that addresses more than the needs of the moment.
Ward Cunningham writes:

You are always taught to do as much as you can. Always put checks in. Always
look for exceptions. Always handle the most general case. Always give the user
the best advice. Always print a meaningful error message. Always this. Always
that. You have so many things in the background that you're supposed to do,
there'’s no room left to think. I say, forget all that and ask yourself, “Whats the
simplest thing that could possibly work? ”.

This phrase, “Do the simplest thing that could possibly work”, has — like YAGNI but
without an acronym — become an agile mantra. Ron Jeffries, explaining why designing
for reuse is not worth it, states:

Unless the projects are being done by the same team, reuse is quite difficult to do
effectively. there is a big difference between some part of the project that I can
reuse, and packaging that part well enough so that others can do so. I have to do
packaging work that I wouldn't do for myself, to document it, to make it more
bulletproof, removing issues that I just work around automatically, to support it,
answer questions about it, train people in how to use it. If I do those things, it’s
expensive. If I dont, using my stuff is difficult for others and doesn't help
them much.

1 build the abstractions I need. If [need an abstraction again, in a different context,
1 would improve it. But unless my project’s purpose is to build stuff for other
projects, I try not to waste any of my time and money building for other projects.

Such statements are an occasion for head-scratching. (Yet another one. We encounter so
many that maybe this book should include a discount coupon for hair-restoration treatment.)

As in many other cases, they start from correct, even insightful observations: designing
for the future can detract from solving the problem of here and now; designing for reuse
is hard. An example that I find convincing is that of a class defining points in a two-dimen-
sional space: how do you make it more general? You could think of points in an z#-dimen-
sional space for any dimension n; or of any objects defined by two numerical coordinates
(points, vectors, complex numbers...); or of any two-dimensional figures (points, lines,
polygons...). There is no way to know which of these, if any, will be the useful generali-
zation. In such cases, it is better not to try to guess where the future will take us.

But from this common-sense observation to deduce that we can forget about general-
ity, “checks”, “exceptions” and reuse? Such injunctions are an encouragement to use bad
software engineering practice. A simple example is the use of built-in constants. You are

[Cunningham
2004].

[Jeffiies 2001],
page 190.

-~

60 AGILE PRINCIPLES §4.4

writing software for a small company and need a data structure to represent the list of
employees; well, an array of 1000 elements should be enough, right? Before you know
it, the company has grown and suddenly the software mysteriously stops working. His-
torical catastrophes that caused billions of dollars of wasted effort resulted precisely
from this kind of agile, let’s-just-do-what-we-need-now approach: the MS-DOS 640-K
memory limit, the Y2K mess, the initial size of IP addresses.

The myopic advice quoted above, enjoining you to worry only about what is needed
here and now, is detrimental to your software process. Regardless of what you find useful
in the rest of the agile canon, your best bet is to ignore it.

Develop only code and tests

One of the most radical principles of agile methods deprecates all the standard support-
ing products of a software development, in particular documents — requirements docu-
ments, design documents, plans, program documentation... — as diversions from the
main acts, running code and tests. In Poppendieck’s words:

The documents, diagrams, and models produced as part of a software [Poppendieck
development project are often consumables, aids used to produce the system, but 2001].

not necessarily a part of the final product. Once a working system is delivered,
the user may care little about the intermediate consumables. Lean principles
suggest that every consumable is a candidate for scrutiny. The burden is on the
artifact to prove not only that it adds value to the final product, but also that it is
the most efficient way of achieving that value.

“Consumables” covers anything that is not delivered to the customer. Other than code
and tests, most traditional artifacts of software development can be considered consum-
ables: feasibility studies, transcripts or videos of requirements interviews and work-
shops, requirements documents, PowerPoint presentations about the future system,
emails, design documents, UML diagrams. ..

Similarly, to describe the role of architects, Beck has this to say:

Architects on an XP team look for and execute large-scale refactorings, write [Beck 2005],
system-level tests that stress the architecture, and implement stories. page75.

This definition is clearly a provocation, since the tasks listed have little to do with what
one traditionally expects from an architect: to define the architecture. Here something
will be built initially, “the simplest that could possibly work”, and the architect steps in
only to refactor (that is to say, improve the architecture if it is ex post facto found unsat-
isfactory), test, and, like everyone else in the team, implement user stories.

Some authors accept, reluctantly, that there may be deliverables other than tests.
Cockburn, for example, describes which actual results bring developers credit:

You get no credit for any item that does not result in running, tested code. ggg;;‘b 1‘7‘2 Z’e 98
Okay, you also get credit for final deliverables such as training materials and Emp;,;ls,-s in the
delivery documentation. original.

: « LT} . . S Iso “Def-
Note the grudging “Okay”: there can be a few exceptions, but code and tests remain the an,f z;gon N 4

items truly worthy of interest. page 125.

§4.4 ORGANIZATIONAL PRINCIPLES

61

Minimalism: an assessment

The insistence on minimal software, in the three forms just described, leads to some of
the most absurd and damaging contributions of agile methods.

As always, there is some truth in the agile criticism of traditional projects, in this case
their propensity to bloat. Projects and products do tend to include too many features. The
criticism of paperwork and unnecessary documents is also partly justified. Many docu-
ments produced in companies applying rigid processes are already obsolete the day they
are released, or serve little practical role. It is true, too, that in the end the code is what
counts, not UML diagrams or Gantt charts.

None of this justifies renouncing upfront planning altogether.

First, many of the problems associated with bloat are just the result of bad manage-
ment. A competent project manager knows to fight “creeping featurism” and constantly
to ask whether this or that feature is really needed. The time-honored question, “Do you
want it all, or do you want it now?”, although really akin to blackmail, works wonders.

Classical requirements analysis — the kind of activity that, to the horror of agilists,
takes place at the beginning of a project to make sure that we think before we shoot —
is precisely intended to arbitrate between the needs of many different stakeholders and
establish priorities. When you are faced with a long list of features and for every one of
them a stakeholder claims it is absolutely essential, a trick that works well is to allocate
everyone $100 in virtual money to stake on the features they want most. The truly critical
ones quickly emerge.

The downside of a strategy of “building the simplest thing that can possibly work” is
that it favors picking, at every stage, the low-hanging fruit: the features that can be imple-
mented most easily, to produce a demoable result. Projects using this strategy work well
except at the end. Throughout the development everyone is happy; the developers deliver
feel-good demos and the customer is reassured. At the end, because some hard but incon-
trovertible problem has been put aside, it is impossible to deliver a satisfactory result.

When the first “Obamacare” health exchanges started operating on 1 October 2013, they
fell victim to their own success, to the delight of adversaries of the Affordable Care Act.
Almost no one could get through, even less purchase insurance. High levels of activity were
blamed, but that sounded like a lame excuse for lack of engineering; after all, many
commercial sites routinely process far higher volumes and face higher complexity. Unless
one assumes total incompetence, it is likely that during development and testing all the user
stories must have seemed to work. There was simply not enough architecture and upfront
thinking devoted to ensuring that the system would scale up.

Here is another illustration of the dangers of a piecemeal approach, in the agile tradition
of enlightening anecdotes from fields other than software. The original deployment of
Boeing’s flagship 787 “Dreamliner” in 2013 was a disaster because of dangerous issues

-~

62 AGILE PRINCIPLES §4.4

with batteries; the planes had to be grounded for several months. James Surowiecki had
this to say in his analysis for the New Yorker:

Determined to get the Dreamliners to customers quickly, Boeing built many of [Surowiecki
them while still waiting for the Federal Aviation Administration to certify the 2013].
plane to fly; then it had to go back and retrofit the planes in line with the FAA'S

requirements. “If the saying is check twice and build once, this was more like

build twice and check once”, [an industry analyst] said to me. “With all the time

and cost pressures, it was an alchemist s recipe for trouble.”

These are only examples. But they confirm how naive it is to expect that “refactoring”,
once you have something that works partly, can solve any problems that remain. These
problems can be very hard, for example a major performance issue that cannot be corrected
without a complete redesign. Empirical evidence confirms this suspicion. Boehm and
Turner write:

Experience to date indicates that low-cost refactoring cannot be depended upon [Boehm 2004],
as projects scale up. page 40.
and

The only sources of empirical data we have encountered come from
less-experienced early adopters who found that even for small applications
the percentage of refactoring and defect-correction effort increases with [the
size of requirements].

In software as in engineering of any kind, experimenting with various solutions is good,
but it is critical to engage in the appropriate Big Upfront Thinking to avoid starting out
with the wrong decisions.

Some of the worst project catastrophes I have seen were those in which the customer
or manager was demanding to see something that worked right away (it doesn t matter
if not everything is there, just show me an example run!”) and sternly reproached the
developers who worked on infrastructure that did not produce immediately visible
results — in other words, were doing their job of responsible software professionals. The
managers got their demos, and then nothing else, since with the focus on delivering vis-
ible functionality the hard problems were repeatedly put aside. Each time the next func-
tionality or scaling level was to be added, the team had to restart the design, since all
efforts at generality and infrastructure had been shunned. Inevitably, morale sunk, stake-
holders lost trust, and sooner or later the project was shelved.

Arguing for visible results is justified, but not if this concern comes at the expense of
a fundamental engineering concern: risk management. It is the hallmark of a well-man-
aged project that it identifies early the tasks on the critical path, those which will kill the
project if not done right. A high-risk task may be a fundamental functionality, which can
be demonstrated early, or it may be a scalability requirement (the web site will bear the
load the day Oprah mentions your company on the air) that can only be addressed
through in-depth design that will not be visible in early demonstrations. To focus on the
visible at the expense of the essential is irresponsible.

§4.4 ORGANIZATIONAL PRINCIPLES

63

Additive and multiplicative complexity: the lasagne and the linguine

In spite of the arguments for establishing a solid basis first, agile methods continue to
promote the “get something running now” approach. As a typical example, an instruc-
tional video about Scrum shows a suit-and-tie manager type telling a developer type with
ared scarf and aviator glasses:

1 can live with something simple that works properly. The complexity can be
folded in later.

The best one can say here is: well, if that is what you believe, good luck. Such luck will
befall you if the complexity is in the form of details that can be added one by one. This
is the first kind of complexity, and it does occur. We may call it additive complexity. It
exists when the basic problem is simple, say compute tax as a percentage of price, and
there are many special cases that can just be added one by one.

But there is also another kind, which we may call multiplicative complexity. It exists
when the fundamental problem is already complex, and you will not get any acceptable
solution until you have taken all the key elements into account. An example was cited
earlier: support for a multi-language user interface is much harder to add as an after-
thought than to integrate from the start.

Complexity in all cases comes from the accumulation of features to integrate. The
difference is due to how they interact with each other (if you are reading this as lunch
is approaching, I hope the picture below will not only whet your appetite but visualize
the issue):

» With additive complexity, the various features pile up on each other like the layers of
a plate of lasagne; they are largely independent. Then it is quite all right to start think-
ing about the first few, and bring on the others as you go.

+ With multiplicative complexity, the various features are entangled like the individual
noodles in a bow! of linguine (or spaghetti).

[Collabnet site],
“scrum-meet-
ings” page, at
6:26 in video.

«— “Agile meth-
odsanddesign”,
3.3.2, page 39.

Additive &
multiplicative
complexity

64 AGILE PRINCIPLES §4.4

Pamela Zave from AT&T, who has devoted much of her career to studying feature inter-
action, starting with telecommunication software, writes:

Historically, developers of telecommunication software have had no effective [Zave FAQ].
means of understanding and managing feature interactions. As a result, feature

interactions have been a notorious source of runaway complexity, software bugs,

cost and schedule overruns, and unfortunate user experiences. Developers of

other software systems are beginning to realize that they, too, have a
feature-interaction problem.

She gives a typical example:

Consider “busy treatments” in telephony, which are features for handling busy
situations by performing functions such as forwarding the call to another party,
interrupting the callee, retrying the call later, or offering voice mail to the caller.
Suppose that we have a feature-description language in which a busy treatment
is specified by providing an action, an enabling condition, and a priority. Further
suppose that a special feature-composition operator ensures that, in any busy
situation, the single action applied will be that of the highest-priority enabled
busy treatment.

In a busy situation where two busy treatments Bl and B2 are both enabled, with B2
having higher priority, these features will interact: the action of Bl will not be
applied, even though its stand-alone description of B1 says that it should be applied.

Such cases are typical of why we cannot just assume that we will do “the simplest thing
that can possibly work™ then add features as needed. If we do so, we will keep finding
collisions with what we have done before, and restarting the work. Imagine a standard
agile, user-story-based approach to the problem. A user story in the recommended agile
style would be

(User story #1) As an executive, [want a redirection option so that if my phone The user story

is busy the call is redirected to my secretary. jﬁi’:’;’i; P

. . . . Th th
A bit later as we think about priorities, we might concoct another story: Sm%ﬁ; S,;;e
. . L. described later
(#2) As a system configurator, [want to be able to specify various priorities for in this chapter:
“busy” actions. “Express

requirements
through scenar-
ios”, 4.5.5,
page 77.

Then, as time goes, a couple more:

(#3) As a salesperson, I want to make sure that if a prospect calls while [am in a
conversation, the conversation is interrupted so that I can take the call immediately.

(#4) As a considerate responder, I want to make sure that if a call comes while my
phone is busy I get the option of calling back as soon as the current call is over.

Others will follow. All are perfectly reasonable but, as Zave points out, you cannot just
consider them independently. Some scenarios from the fourteen (!) she gives:

§4.4 ORGANIZATIONAL PRINCIPLES

65

Bob has the “call-forwarding” feature enabled and is forwarding all calls to
Carol. Carol has “do-not-disturb”. Alice calls Bob, the call is forwarded to
Carol, and Carol’s phone rings, because “do-not-disturb” is not applied to a
Jforwarded call.

Alice calls a sales group. A feature for the sales group selects Bob as a sales
representative on duty, and forwards the call to Bob. Bob's cellphone is turned off,
so his personal Voice Mail answers the call and offers to take a message. It would
be much better to re-activate the sales-group feature to find another representative.

A new Mobility service is offered to office workers. When Alice signs up, her
office phone number is forwarded to the Mobility service. On receiving a call for
Alice, the Mobility service forwards it to wherever Alice’s personal data dictates.
However, whenever the data indicates that Alice is in her office, an incoming call
enters a_forwarding loop.

These are typical examples of why a plain iterative approach, starting with a basic func-
tioning system and adding features one after the other, can lead to disaster. And yet it is
the agile mantra, expressed for example by this citation of Poppendieck that opens a
chapter by Cohn:

These days we do not program software module by module, we program software
feature by feature.

For run-of-the-mill software, maybe. For complex stuff (of the multiplicative kind), a
systemic approach is necessary. Such an approach involves Thinking, probably Big, and,
like it or not, best done Upfront.

The agile belief that one can program features incrementally is not applicable to such
sophisticated systems. Here we hit one of the principal limitations of the agile approach.

The role of documents
Taken literally, Poppendieck’s dismissal of documents,

Once a working system is delivered, the user may care little about the
intermediate consumables,

is pointless. Sure, a teenager sending a text message on her smartphone “cares little”
about the requirements and analysis documents that were produced for the system’s
development, but that is also true of any other intermediate artifact, including the pro-
gram code itself! We could just as well state that the user of a car and the inhabitant of a
house “care little” about the “consumables” of the car and house production processes,
but that does not mean these artifacts were useless. The question is not whether users
care but whether developers do, for example those who have to maintain the system.

One may wonder whether Poppendieck meant “customer” rather than “user”. But the same
observation applies in either case. Developers are the relevant constituency.

[Zave FAQ].

Cited without
further source in
chapter 12 of
[Cohn 2006].

-~

<« See page 60.

66 AGILE PRINCIPLES §4.4

The criticism of documents has to be based on better arguments. The key actual issue
is change. Software, as the Agile Manifesto reminds us, will change. If the project pro-
duces requirements and design documents, they are difficult to keep in sync with the arti-
fact that has the final word: the code. This observation is also what limits comparisons
with other disciplines: software is unique in the speed at which we can change it, and in
the absence of any production costs. One of the reasons car manufacturing cannot work
without plans and documents is that once you have a design you produce many copies of
it (cars); changing the design is a major decision, and a costly one, since you also have
to update the production process. The “soft” part of the word “software” is there for a
reason: we can change our program on a whim. If documents describe it, ensuring that
they will always be updated is hard. In fact, most projects hardly ever try. That is the
major problem with requirements, design and other documents.

Modern software technology has answers to propose, such as the “Single-Product
Principle” which (in line with this book’s avoidance of describing my own work) will
not be discussed further here. Even without such techniques, however, the risk of change
is not a reason to dismiss documents.

What is simplicity?

Another agile mantra worth further analysis is simplicity. In the previous subsections we
studied specific consequences of the quest for simplicity: the injunctions to develop min-
imal functionality, no more than the product requested, and only code and tests. We saw
the constant emphasis on “the simplest thing that could possibly work” and “you are not
going to need it”. To conclude this review of agile minimalism it is useful to take a closer
look at the concept of simplicity and correct the confusion reflected in one of the “offi-

« Seealso “The
change criti-
cism”, 3.2.4,
page 35.

cial” agile principles, which defines simplicity as “the art of maximizing the amount of <410, page 50.

work not done”.

As anyone knows who has ever obtained a first solution to a problem of any kind,
found it too complex, and tried to simplify it, achieving simplicity often means adding
work, sometimes lots of it.

In a 1998 Business Week interview, Steve Jobs said it well:

That's been one of my mantras — focus and simplicity. Simple can be harder than
complex: You have to work hard to get your thinking clean to make it simple. But
it's worth it in the end because once you get there, you can move mountains.

A couple of generations earlier, Antoine de Saint-Exupéry, drawing on his observation
of aircraft manufacturing, expressed a similar idea:

1t seems that all human industrial effort, all the computations, all the nights spent
working on the drafts, lead to a single visible result: simplicity — as if the
experience of several generations was needed to extract, little by little, the curve
of a column, of a keel or of an airplane s fuselage, until they reach the elementary
purity of the curve of a breast or a shoulder. It seems that the work of engineers,

At www.business-
week.com/1998/2
1/b3579165.htm.

From Terre des
Hommes, chapter
11 “L’avion”.
My translation,
emphasis added.

http://www.businessweek.com/1998/21/b3579165.htm
http://www.businessweek.com/1998/21/b3579165.htm
http://www.businessweek.com/1998/21/b3579165.htm

§4.4 ORGANIZATIONAL PRINCIPLES

67

designers, draughtsmen and technicians is only to burnish and rub out [until
reaching) a perfectly blossomed form, freed at last from its crust, with the same
spontaneous quality as a poem. It seems that perfection is reached not when
there is nothing more to add, but when there is nothing more to remove.

If Michelangelo had equated simplicity with maximizing the work not done, he could
just have left the block of marble alone, instead of hitting hard at it to bring out David
(“in every block of marble I see a statue as plain as though it stood before me, shaped
and perfect in attitude and action. I have only to hew away the rough walls that imprison
the lovely apparition to reveal it to the other eyes as mine see it”). All right, I will stop
throwing in citations by famous people from various centuries, lest you ask me to add
“proof by citation” to the list of shady intellectual devices covered in an earlier chapter.
All these authors, however, express a fundamental observation: achieving simplicity is
not the same as minimizing work. Both are worthy goals in software engineering, but
they arise in different contexts and lead to different principles:

» Simplicity has long been advocated by the proponents of rigorous, elegant program-
ming techniques, such as Dijkstra, Wirth, Hoare, Gries and Parnas. They often
equate it with the use of simple mathematical models of programs, not a concern of
agile authors.

* Avoiding unneeded work is, for its part, a key theme in the agile literature, as we have
seen. It leads to such principles as “Eliminate waste” and “Decide as late as possible”
in Lean Software.

The two views meet, but not necessarily in the way agile authors would like. Wirth pub-
lished in 1995 a Plea for Lean Software — note the word “lean” — in which he criticized
the accumulation of useless features in modern software products and advocated writing
small, coherent systems. But to describe how to achieve such simplicity he wrote:

The experienced engineer, realizing that free lunches never are, will now ask:
where is the price for this economy hidden? A simplified answer is: in a clear
conceptual basis and a well-conceived, appropriate system structure.

If the core — or any other module — is to be successfully extensible, its designer
must understand how it will be used. Indeed, the most demanding aspect of
system design is its decomposition into modules. Each module is a part with a
precisely defined interface that specifies imports and exports.

In other words: you must think hard and think early. So much for deciding as late as pos-
sible and building the system one feature at a time.

« Chapter 2.

— “Lean Soft-
ware § princi-
ples”, 9.2.2,
page 134.

[Wirth 1995].

68 AGILE PRINCIPLES §4.4

4.4.5 Accept change

The world and our perception of it change; so do software system requirements. Directly
involving customers in the project is likely to lead to even more change requests.

The Agile Manifesto talks of “welcoming” change, not just accepting it. This is an
exaggeration. It is one thing to state that change is a normal phenomenon in software
development, and quite another to start hoping for more changes. After all it always
causes more work, when some functionality has been correctly implemented, to accept
arequirements change than to stick with the original. For comparison, consider how suc-
cessful the hotel booking service booking.com has become by letting customers change
reservations without a penalty: it is hard to imagine that the company’s employees come
to work in the morning wishing that more customers will change their minds today! The
policy may be profitable overall, but every change still causes hassle.

A sure sign that agile methods “accept” rather than “welcome” change, whatever the
Manifesto proclaims, is that in practice they do limit change. Scrum, for example, has a
strict rule — we will call it the closed-window rule — prohibiting the product owner, and
everyone else, from adding or changing product requirements during a project develop- _, .z,

ment phase (sprint). closed-window
rule”, 6.1.2,

For all the abuse heaped on traditional methods and the “waterfall”, Scrum appears to page 90.

align itself here with standard software engineering wisdom. Contrary to the caricature
found in agile texts, the software engineering literature has long recognized the necessity
of change as a lifecycle-long process; it simply states that change must be properly man-
aged. Only a naive team would accept, let alone welcome, unbridled change at any time
— and it would not deliver much software. Scrum uses its own specific rule for change
management: accept change outside of sprints. This is a reasonable policy, entirely in the
spirit of traditional principles and practices.

The enthusiastic acceptance of change is a refreshing departure from the mentality of
many managers accustomed to a strict process-based approach, for whom the only good
requirements are frozen requirements, and who treat change requests as nuisances. The
spread of agile ideas has played a considerable role in changing that attitude.

-~

The need to produce software that can easily be changed, called extendibility, is
hardly a new concern. In fact it has been a core topic of software engineering discussions
for decades. While the agile manifesto is right to promote a change-ready mindset, the
main problem with extendibility is not psychological but technical: what software tech-
niques can we apply to ensure that we do not need to redo everything from scratch when
customers change their mind or some domain property changes?

The agile approach does have one important idea to contribute to advancing extend-
ibility in practice: the Extreme Programming rule that every piece of functionality should @
have an associated test case. One of the impediments to change is the risk of breaking
some previous function of the system, especially if the problem is found late. With a
regression suite ready to be tested after every change, the risk decreases considerably.

§4.4 ORGANIZATIONAL PRINCIPLES

69

Apart from that rule, however, the agile method offers little to help extendibility, and
actually promotes techniques that go against it. Analyzing the agile attitude towards soft-
ware change shows that, as they say of relationships on Facebook, “it’s complicated”. In
grand declarations of intent, agilists proudly “welcome change”; but when it comes to
technical issues they often take a scornful or hostile attitude towards ideas that do help
produce extendible software.

An example of such an idea, in fact an entire software development method designed
to support extendibility, is object-oriented software construction, with its enforcement of
abstraction, information hiding, genericity, polymorphism, dynamic binding and other
concrete mechanisms directly designed to facilitate software change. The Poppendiecks
assert that OO does not deliver:

While in theory OO development produces code that is easy to change, in
practice OO systems can be as difficult to change as any other, especially when
information hiding is not deeply understood and effectively used.

but they do not suggest a better way to achieve extendibility.

Their comment is puzzling: what kind of “O0O development” can there be without proper

use of information hiding, one of the defining characteristics of the method? And any

approach can be dismissed on the basis of bad results from people who do not “understand

it deeply” and do not “use it effectively”. Do we reject the idea of car transportation because

there are bad drivers? Or should we reject Lean Software, the method promoted by the

authors, if we come across someone who does not apply it right? Another example of

bizarre agile logic.
The agile problem with change is not limited to such condescending and gratuitous com-
ments. Some agile principles and practices directly damage extendibility. The most strik-
ing example is the campaign for minimal software, enjoining us, as described in the
preceding sections, to build “only the product needed”. We have been subjected to
YAGNI, informed that it is “a waste” to include code “not needed now”, and ordered not
to “always handle the most general case” but instead to program only for the here and
now. This approach, however, is incompatible with the goal of supporting change.
Change-aware developers try to think ahead and, whenever possible, to build more than
strictly asked, in anticipation of likely evolutions.

Agilists seem not to have noticed this contradiction between the noble ambition of
supporting change and the imposition of principles and practices that hinder it.

As in other cases, the agile criticism of some common practices is correct: program-
mers should not engage in unbounded and unwarranted generalization. But it does not
justify rejecting the sound professional practice of trying to handle, if not the “most gen-
eral case”, at least a case more general than the one at hand.

Beyond the negative effect of such exaggerated advice, the fundamental issue gov-
erning change in software is architectural. Ease of change does not come out of thin air:
it requires designing the architecture for change. Good textbooks teach you how, but
such Big Upfront thinking is precisely what agilists reject.

Agile advocacy of change is the right goal — and only a goal.

[Poppendieck
2010], page 52.
Emphasis in the
original.

< “Develop
minimal soft-
ware”, 4.4.4,
page 58.

70 AGILE PRINCIPLES §4.5

4.5 TECHNICAL PRINCIPLES
We come to a set of software-specific techniques that lie at the core of agile approaches.

4.5.1 Develop iteratively

Agile development is iterative development. Agilists have little patience for water-
fall-style processes — practiced or imagined — that devote weeks or months to activities
such as requirements and design before they produce any code. In the agile view, the
proof of the pudding is in the coding. Deliver early and often.

Produce frequent working iterations

Iterative development, advocated in the software engineering literature ever since a 1975

article by Basili, takes various forms. An iterative process could, for example, produce /Basili 1975].
successive subsystems, or clusters, of the future product, each focused on a technology

layer required by the final system: the persistence (database) cluster, the networking

cluster, the business logic cluster, the user interface cluster. In such an iterative approach

we may say that the decomposition is “vertical”.

User interface Vertically
layered
Networking Iterations

This is not the agile notion of iterative development. The agile decomposition will be
horizontal: every iteration must yield a working system.

UI1 10) 0] Kk Horizontally
integrated

iterations

Logic2

Netl Net2 Net3

DB2

>

Iterations

That system may offer, especially at the beginning, only a small subset of the full mech-
anisms; for example the database part might be primitive, or even just a stub (a place-
holder module simulating the future functionality). But, in contrast with the vertical
approach, it must be a functioning system that provides an end-to-end user experience,
allowing the customer representatives in the project to try it and provide feedback.

§4.5 TECHNICAL PRINCIPLES

71

The distinction between the vertical and horizontal forms of iterative development is
related to the opposition between multiplicative and additive forms of complexity. In the
presence of multiplicative (“linguine”) complexity, establishing first an architectural
basis common to all features will help disentangle feature dependencies. For additive
complexity, a horizontal process is appropriate, adding features one after the other. This
is the scheme promoted in agile development.

Iteration length

All agile methods suggest that iterations should be short, typically a few weeks. They
differ in the precise length they recommend. Scrum calls the iterations “sprints” and
often (although not universally) suggests a duration of four weeks for each sprint.

T have found it useful to follow the Scrum recommendation but explicitly to base iterations
on calendar months. Talking of (for example) “the October release” focuses everyone on
the current milestone, simple and clear: the end of the month. The length differences
between months (28 to 31 days) are immaterial; the actual development time is shorter
anyway, to leave time for sprint planning at the beginning and sprint review at the end.

Such iterative development is time-boxed: the duration of an iteration is fixed in
advance. If at the end of the allotted time some of the expected functionality is not com-
pleted — according to a “definition of done” agreed in advance — the functionality gets
pushed to the next iteration, or dumped altogether, but the deadline does not change.

The time-boxing principle is more important than the exact length of iterations. Since
missing deadlines is so common in the software world, it may take some time to con-
vince a team that deadlines are firm and that if something has to go it will be the func-
tionality, never the iteration’s end date. Once everyone has realized this rule is for real,
it has a healthy effect on the project: predictions become more realistic, since developers
know they will not be allowed any extra time, and customers realize it makes no sense
to ask for unfeasible goals. In my experience, the rule also has the effect of galvanizing
the team: even though it is in principle possible to dump some functionality, the case does
not happen much in practice: it does not look good, so developers, having made sure the
plan is doable, do strive to implement the promised functions in time.

Agilists sometimes invoke the time-boxed nature of iterations as an excuse to refuse to
commit to both delivery time and functionality in deployed releases. The excuse does not
hold, of course. External customer constraints still apply. We will encounter this
“either-what-or-when” fallacy in the discussion of transitioning to agile.

Freeze requirements during iterations

Agile methods, as we know, promote acceptance of change, but in any realistic approach
change has to be controlled. Here we are indebted to Scrum for a strict rule: functionality
can only be added in the sprint planning phase. Once the sprint has actually started,
meaning the team is implementing some of the retained functions, no one is permitted to
add anything until the end of the sprint. The prohibition is strict and applies to everyone
in the project and outside of it, managers included.

<« “Additive
and multiplica-
tive complexity:
the lasagne and
the linguine”,
page 63.

Scrum

— “Definition of
done”, page 125.

— “The
either-what-or-
when fallacy”,
10.2, page 146.

Scrum

72 AGILE PRINCIPLES §4.5

This idea is embodied in the “closed-window” rule, which we will review as part of
the detailed study of the notion of sprint. It is one of the most interesting contributions
of Scrum.

Iterative development: an assessment

We should separately assess the two ideas reviewed: frequent working iterations;
requirements freeze during sprints.

The most important property of frequent working iterations is that they are frequent.
The software industry has understood over the past couple of decades that a “Big Bang”
approach, where the various teams go away on their separate parts of a project and try a
few months later to reconvene, does not work. Divergence is simply too hard to fix; peo-
ple make inconsistent assumptions about the rest of the system, and the longer you wait
to find out the harder it will be to reconcile them. This is the reason why early on
Microsoft introduced the “daily build’ process: compile and run a version of the system
every night, and anyone who introduced a show-stopping bug does not get to go home
until fixing it. A development cycle based on units of a few weeks has become the norm
today, thanks in no small part to agile popularization of the idea.

What about the insistence that the frequent iterations must be working iterations?
Here the assessment has to be nuanced. We saw earlier in this chapter the negative con-
sequences of demanding a working system at every step, and refusing iterations whose
purpose is to build infrastructure. Good engineering requires solid foundations; a com-
petent manager will sometimes just refuse to show something that works, or pretends to
work, and will instead build the core technology that will make the rest of the project
efficient and scalable. Insisting on an executable system at every stage can be a waste of
resources, and an irresponsible policy.

When builders are constructing a house, for a long time they have little to show to the
layperson for their efforts. They are working on the foundations, the piping, all the stuff that
will make the house sustainable. You drive by every morning and think “What on earth are
they doing in all that time? I see nothing at all!” Then one day you spot something that looks
like the beginning of an actual house, and from then on it progresses amazingly fast,
because the appropriate basis has been prepared. Of course the engineer had planned things
that way all along; the layperson is the only one amazed.

Imagine what an agile process would be here. Right from the first iteration we would insist
on something that can be shown to the “user” and that looks like a house. We would need
some floors and some walls. Maybe a roof, although we are in summer and that can wait
until the second sprint. Then — oh yes, do we not need to connect to the sewage system?
Maybe. Electricity? Let’s add it now. Oh yes, foundations! Admittedly, it would be too bad
if the house sunk into the ground. No problem, we can always at some point move the house
to the next yard, dig a hole, set up the foundations, and move the house back.

What, this is Southern California and we should think of earthquake resistance? That would
be a lot of refactoring. Come to think of it, how many users of the house are really going to
encounter earthquakes? The last really big one was, like, a hundred years ago! You Are Not
Going To Need It.

— “The
closed-window
rule”, 6.1.2,

page 90.

-~

— “Daily build
and continuous
integration”,
7.1, page 103.

<« “Minimal-
ism. an assess-
ment”, page 61.

§4.5 TECHNICAL PRINCIPLES

73

Now we all know that software engineering is a different kind of engineering from con-
struction engineering. But not entirely different. The benefits of thinking hard — and
upfront — about infrastructure show up in all kinds of engineering. The obsession with
delivering a working system at every step can be a damaging distraction.

Once again we see an important agile insight damaged by unfettered generalization.
The insight is that developers can become so engulfed in the internal details of the tech-
nology that they forget the big picture: they forget that they have a customer who has
signed up not for technology but for solutions. What the customer wants is a system.
There is always a tradeoff between how much the system will do and when it will
become available. A partial system that appears too early and is not scalable to a satis-
factory result is bad; but so is a system that promises perfection but is always promised
for later.

The order of tasks

Any iterative approach to development raises the question of how a team determines, in
the course of an iteration, the order of individual development steps. XP was the first to
provide an agile answer: start with “the simplest thing that can possibly work”.

All agile approaches promote a similar view. Cockburn, for example, criticizes the
“Worst Thing First” strategy on the grounds that

[1] If the team fails to deliver, the sponsor has no idea where the failure lies: Is
the team not good enough to pull off this project? Is the technology wrong, or is
the process wrong? In addition, the team members may get depressed or start
arguing with each other.

and suggests instead the following for beginning and experienced teams, respectively:

[2] [For] teams that haven’t worked together before and are tackling a new
problem with new technology, I prefer Easiest Thing First, Hardest Second. The
team [...] and the sponsors get the confidence of an early victory. If the most
difficult problem is still outside the teams capabilities, I look for the hardest
thing the team can succeed with as the second task.

[3] Once the risk of team and technical failure abates, a good strategy is Highest
Business Value First.

The rationale for the first advice [2] is convincing; it simply transposes to software the
obvious observation that a new team of alpinists is not going to start with Mount Everest
and a new orchestra with Stravinsky’s Rite of Spring. But the main benefit of the pro-
posed policies are for the team, not the project. What if the “hardest thing”, initially post-
poned, turns out to be beyond the team’s reach? The earlier effort will have been wasted,
and the initial success will have produced a deceptive impression. It is easy to transpose
Cockburn’s above criticism of the “Worst Thing First” strategy [1]:

&

[Cockburn
2005], page 48.
Number added.

Same source,
emphasis in the
original. Num-
bers added.

-~

74 AGILE PRINCIPLES §4.5

“If the team succeeds in delivering the ‘FEasiest Thing’ or the ‘Hardest Thing it Imitated from
can Succeed With’, the sponsor has no idea what the success means: Is the team 7] on the previ-
only good enough to pull off this part of the project? Is the technology right for o pase

the more difficult parts, and does the process scale for them? In addition, the team

members may get over-confident and start congratulating each other prematurely,

not realizing that the true challenges are yet to come.”

Cockburn’s recipe for well-jelled teams, “Highest Business Value First” [3], is the usual
agile recommendation, fundamental in particular to the Scrum strategy of picking the
next available user story at every step of a sprint. Such a discourse is sure to resonate
well with some manager types, but it can also be irresponsible. A product is successful
if it offers not only one deciding benefit but a host of supporting features. After the high-
est-value item come the second-highest and all the others. What if the first one is imple-
mented impressively, but with architecture choices that prove terrible for its successors?
From the initial elation the project will quickly transition to delays and frustration.

Here again there is no single solution. We should note in particular that the conditions
are often different at the beginning of a project and in its subsequent phases. This obser-
vations leads to the suggestion of dual development.

Dual Development

-~

Resolving the tradeoff between infrastructure work and user-visible functions is one of
the core issues of software development; no simplistic recipe — such as “deliver a work-
ing system at every iteration, generalize and solidify later”, but also the other extreme,
“build a perfect foundation first” — holds the solution. One policy that I have seen to
work distinguishes between the early and late parts of a project:

* Early on, infrastructure is key. While mockups, experiments and prototypes can of
course be useful, to simulate the future end-to-end user experience, what matters most
is to analyze in depth the fundamental constraints on the system and to make design
decisions that will guarantee success; not only initial success in the sense of a first
delivery, but an extendible and scalable system whose architecture allows growth and
adaptation. Everything else is a diversion.

If at that stage a consultant tells you that it is impossible to make such decisions
because agile methods say so, and that the only way to proceed is to start building “the
simplest thing that could possibly work”, only one reaction makes sense: fire the con-
sultant. Any amateur developer can build such a mockup. The professional is the one
who knows how to make the fundamental decisions even under incomplete informa-
tion — and get most of these decisions right the first time.

» Later, however, when the key decisions have been made and the essential infrastruc-
ture built, the risk stressed by agile advocates becomes serious: the project could turn
into a sterile, inbred development focused on perfecting internals rather than deliver-
ing value. Then it is time to bring in the relentless focus on delivering working sys-
tems regularly and to start hanging oversized banners in the development rooms:

§4.5 TECHNICAL PRINCIPLES

75

Monthly sprints, built on the infrastructure developed in the first phase but now deliv-
ering working instances of the system, are now the order of the day, each providing
user representatives with an ever closer idea of what they will get, and enabling them
to give the developers the direct feedback they need.

It is also possible to apply these two approaches concurrently rather than in sequence. If
you have a nervous customer who is anxious to see something running early on, you can
assign part of the team to build the fundamental architecture, and the other part to deliver
functionality that immediately works. This second task also functions as a prototyping
and experimentation effort, to try out various possible solutions. The two parts inform
each other: from the experiments follow lessons as to how to build the fundamental
architecture; from the architecture come out pieces that the specific functions can use. It
can be delicate to set up such a policy; in particular, the team must be ready to throw
away unsatisfactory attempts at functionality when something better becomes available.
But it can be the solution to producing visible results right from the beginning without
sacrificing the system’s long-term integrity, extendibility and scalability.

For such a combination of approaches — either one after the other or in parallel —
we may use the name Dual Development.

4.5.2 Treat tests as a key resource

The search for software quality is at the heart of software engineering. It is easier, how-
ever, to argue for quality than to provide concrete ways to guarantee it. There are many
ways to approach quality; some, such as the CMMI practices, affect management pro-
cesses; others are technical and include, for example, formal (mathematics-based) meth-
ods of specification and verification. For most of the industry, and for agile methods, the
principal technical means to quality is testing.

Testing enjoys an interesting status in the software community. Almost everyone
knows Edsger Dijkstra’s verdict from the seventies (“festing can show the presence of
errors, never their absence’), which seems to relegate testing to uselessness. But then
everyone still tests software, and many developers know no other verification technique.

What Dijkstra meant is that testing cannot be exhaustive, and in fact can only cover a
minute part of the possible cases. (He took the elementary example of testing a 32-bit-inte-
ger multiplication program: running and checking 264 cases is beyond computer and human
capability.) On the other hand, the normal reaction — at least, my reaction — when hearing
about a technique that can “only” show the presence of errors is “Yes! Yoo-Hoo! Give me
one of those!”. Surely we want to find all the “errors” we can put our hands on.

Agile methods consider tests a central resource of any project. The resource takes the
form of a regression test suite: the set of tests tried so far, including tests that failed at
some point, revealing a bug that has since been fixed. As the name indicates, the purpose

— See also
“User stories”,
8.3, page 119
and “Combining
a priori and a
posteriori
approaches”,
7.4.4, page 113.

76 AGILE PRINCIPLES §4.5

is to prevent the phenomenon known as “regression”: the reappearance of a bug that had
previously been fixed. Regression is — to an extent that often surprises outsiders to the
field — a common occurrence in software development; old bugs come back to haunt
you. The reasons are diverse: the fix may have corrected the symptom, not the real mis-
take, which manifests itself again when some new part of the software is executed; it may
be the result of wrong reasoning, which has consequences elsewhere; or some configu-
ration management mistake may cause a new version of the program to use a pre-correc-
tion version of the affected module. Whatever the cause, the risk of regression is one of
the reasons why any project should keep a regression test suite, including in particular
every test that failed at any point in the process.

The progress of these ideas is supported by modern tools enabling programmers to:

» Describe every test as a simple script, specifying the testing configuration, the inputs,
and an assertion describing the expected pass/fail criteria (“oracle”).

* Run a set of tests, or the entire regression test suite, as an automated process.

This combination of facilities is usually called “automatic testing”. Even though this On more exten-
term is an exaggeration (since the automation does not cover the most delicate and ;l:t‘;f;‘;; Z’Lf toelz .
time-consuming parts of testing: generating test cases and oracles), the corresponding g see /ieyer
tools, pioneered by JUnit, have changed the practice of software development and made 20094/.

the agile emphasis on regression testing possible, by enabling a project to run all the

regression tests at the push of a button.

The next two principles extend this fundamental role of tests in the agile world.

4.5.3 Do not start any new development until all tests pass

The most concrete manifestation of the agile emphasis on quality is to regard the integ-
rity of what has been produced as more important than the addition of new elements:
quality trumps functionality.

The dilemma is a familiar one to any manager: the task list is large and grows, but not
all that has been produced so far works. Where do you put your resources? In an agile
project this kind of decision belongs to the group rather than one person, but the question
remains. The agile approach is clear: do not move on until all tests pass.

The discipline is laudable but sometimes life has its way of eluding intellectually sim-
ple schemes. In particular, there is bug and bug. A test that fails may reveal a blocking
problem, in which case the agile discipline is right: until it is fixed, moving on to new
functionality is irresponsible. But it may also affect functionality that is not essential at
the current stage. Removing that functionality would do the trick; that is, however, a del-
icate task, which takes up developer time for little benefit and could introduce new bugs.
We can also cheat by declaring the bug a feature, but that does not help in the long term,
since a correct version will eventually be needed.

-~

Any serious project has a classification of bugs into categories such as blocking, seri-
ous and minor. A large project should specify a policy defining which classes of
non-passing regression tests (typically, blocking and serious) preclude new develop-
ments, and which are acceptable.

§4.5 TECHNICAL PRINCIPLES

77

4.5.4 Test first

A more controversial principle is the idea of testing first, associated with the Extreme
Programming method and underlying some of its key practices: test-driven development
and test-first development. The discussion of practices will indeed be the best place to
analyze it in detail, but here we can look at the basic idea.

Just reading the two words “test first” literally would suggest a fairly simple princi-
ple: never write code without first writing a test that exercises it. In an approach that
shuns writing precise requirements specifications, tests are a key part of the replacement,
so the idea is a natural one. But test-first in the Extreme Programming sense goes further.
Beck describes it as: Write a failing automated test before changing any code.

Some functionality is not present yet, and you want to add it. Instead of thinking about
it in the classical style of defining requirements, write a test for it, and — this is the sur-
prising part — run that test (after adding it to the regression suite). The test should fail,
since the functionality is not yet supported. Then fix the code until the test passes.

The test-first principle, like Dijkstra’s observation on the role of tests, is related to the
concept of falsifiability cited at the beginning of this chapter. In the same way that an
interesting principle must be falsifiable, an interesting software function must have an
associated test whose failure demonstrates that the product does not fulfill the function. (A
successful test case, or any number of them, demonstrate nothing, in the same way that no
set of successful examples can prove the validity of a theory or a principle.) Writing the test
first helps clarify what the function is about.

The most important argument in favor of test-first programming is, again in Beck’s
words, to avoid scope creep, the production of code implementing functionality that
might or might not be really needed; remember “YAGNI”. Test-first increases the entry
cost of producing new code since you know you are not even permitted to start without
first having the test; and writing the test forces you to imagine a usage scenario for the
new feature. If you have trouble devising one, you may conclude that the extension is not
needed and just discard it, saving time for more important functionality, and avoiding
producing untested code that would probably be of dubious quality.

The injunction to write the test before the code, considered essential in Extreme Pro-
gramming, goes too far for some people, and is subject to serious criticism if it leads to
using tests as a substitute for specifications. But we do have a major agile contribution
here: the idea of never adding any functionality without also providing a test to go with
it. Whether the test is written before, during or immediately after matters less than the
fundamental rule: no code without test.

4.5.5 Express requirements through scenarios

Agile development rejects Big Upfront Requirements. But software development needs
requirements, upfront or not, and agile methods particularly emphasize the need to pro-
duce software that actually meets user expectations and delivers ROI to the business.

In the previous sections we saw part of the agile answer to requirements: integrate
constant testing in the development cycle. More is needed, since tests cannot completely

)
— “Test-first
and test-driven
development”,
7.5, page 113.

[Beck 2005],
page 50.

<« “Whatis a
principle?”, 4.1,
page 49.

« “Produce min-
imal functional-
ity”, page 58.

-~

78 AGILE PRINCIPLES §4.5

replace requirements. The core requirement techniques recommended in agile
approaches can be viewed as more abstract versions of tests: use cases (which predate
agile methods) and particularly user stories. Both describe typical interaction scenarios
between users and the system.

A use case is coarse-grained and typically describes an entire walk through the sys-
tem; for example, ordering a product on an internet site.

A user story describes an elementary unit of interaction. A standard scheme for user
stories, previewed in earlier examples of this chapter, has emerged in the agile world:

As a [role], I want to [action] so as to [goal].

(The last part may be missing.) For example, in a graphical game product:

As a player, I want all pieces of the winning shape to blink or glow so that I can [Cohn 2006],
see the winning shape. page 270.
Let us use the term “scenario” to cover both use cases and user stories. — See also

“User stories”,
The principle of using scenarios for requirements specification is one of the most 8.3, page 9.

widely practiced agile concepts, and one of the most damaging. (We continue our ride
on the roller coaster of good, hyped and ugly ideas.) A specification is general: it says
what should happen in all cases. A use case or user story, like a test, is specific: it tells
you what should happen in one case. Ten user stories give you ten cases; they still lack
the abstraction of a specification. If I tell you that I have a function that for the input 1
yields 1, for 2 yields 4, for 3 yields 9, and for 4 yields 16, I am really not saying anything
for other values.

I had some fun plotting these values into a curve-fitting program, throwing in, for good [Meyer 2012].
measure, the value 25 for 5, and looking at the results predicted by best-fit functions. Sure

enough, one of the predicted values for 6 is 36, but it is not the only one; just as good are

34 and 35.6. See the blog article cited on the right.

On the other hand if I tell you that f'(x) is x> 1 have specified the function in a way that
ends the story and removes any further questions.

It is unfortunately easy to experience first-hand the damage caused by the systematic
use of scenarios as a substitute for requirements. Many web applications, in particular,
are designed that way. They cover interactions properly as long as you stay exactly
within the schemes that the designers have imagined, but fail you as soon as your needs
deviate from the standard cases.

-~

As a typical example, not long ago I watched a small-business owner grappling with a
pension-plan system which offers perfectly mapped scenarios for plan members and for
plan administrators. Trouble was, she is both, and obviously the authors of the program had
not considered that particular scenario.

This is where a more traditional requirements effort wins: it forces you to go from the

specific to the general and to abstract from individual examples. Of course there is no

guarantee that it will catch all cases; but the very notion of writing a requirements spec- < “The domain
ification encourages you at least to 7y to describe the problem and the solution frame- ;. memachine”,
work — or, to use Jackson’s better terminology, to specify the domain and the machine. 3.2.5, page 36.

S

Agile roles

One of the most tangible and immediate effects of agile methods is to force a fresh look
at the duties and privileges of project members. Agile development redefines in particu-
lar the roles of managers, customers, and the development team.

We will start with the manager’s role, continue with the team and the customers, then
examine other important roles specified by some or all of the agile methods.

5.1 MANAGER

The most striking prescription affects what agile managers do and particularly what they
are not supposed to do. Much of the agile discussion of this topic is indeed negative; the
manager does not:

* Assign tasks (in the non-agile world, perhaps the defining duty of a manager).
* Decide what functions to implement (also a traditional manager’s privilege).

+ Direct the work of team members.

* Request status reports.

Henry Ford and Steve Jobs need not apply.

The tasks listed, no longer the purview of managers, will have to be assigned to other
actors as discussed in the next sections: mostly the team as a whole, but also new roles
such as the Scrum Master.

What remains for the manager? Essentially, a supporting role. The tasks include:

+ Establishing an environment that enables the team to work successfully.

» Ensuring a smooth interaction with the rest of the organization. In this role the man-
ager is a champion of the team with higher management and other organizational
units. Part of the difficulty of this task is to make sure that other divisions of the com-
pany, which may not have seen the full agile light yet, do not impede the progress of
the agile project by applying old ways of thinking.

* Handling resources, including suppliers and outsourcing partners.

A popular way in Scrum circles to describe the shift is that the manager “plays guru”
instead of “playing nanny”.

B. Meyer, Agile!, DOI 10.1007/978-3-319-05155-0_5,
© Springer International Publishing Switzerland 2014

80 AGILE ROLES §5.2

Scrum goes further by not including a manager role at all. According to Schwaber:

There are only three Scrum roles: the Product Owner, the Team, and the Scrum
Master. All management responsibilities in a project are divided among these
three roles.

The next sections review these more specific roles. It is natural to ask about the conse-
quences of removing the manager role, in particular the possible dilution of responsibil-
ity; the last section discusses this issue.

5.2 PRODUCT OWNER

Deciding on product functions is in Scrum the task of a member of the customer organi-
zation called the product owner. As stated by Pichler, the product owner champions the
product, facilitates decisions about that product, and has the final say over these decisions.

Concretely, the principal responsibility of the product owner is to define and maintain
the product backlog: the list of features. We are talking here of product-level units of
functionality, not the individual tasks needed to implement them: these tasks will be
defined by the team at the beginning of each sprint. The product owner is, however, cru-
cially involved at the start and end of every sprint:

» At the start, to select user stories from the product backlog, and explain them in terms
of their business role.

» At the end, to evaluate the result of the sprint.

The Scrum product owner role covers one of the traditional responsibilities of a project
manager, deciding on functionality, but not the others: enforcing rules is the job of the
Scrum Master; and handing out individual development tasks (to implement the selected
user stories) is the job of the next character in our cast — the team.

The Product Owner idea is an important Scrum contribution. Its main benefit is to
separate the job of defining project objectives and assessing their attainment from the
day-to-day management of the project, and in particular of the tasks intended to achieve
these objectives.

5.3 TEAM

The team is a group of people but, like the chorus in a Greek tragedy, can also be viewed
as a single character. It takes over several traditional manager responsibilities, including
the critical one of deciding, step after step, what tasks to implement.

5.3.1 Self-organizing

As we saw in the previous chapter, the team is not a group of people directed by a man-
ager but is empowered and self-organizing.

As an example a contrario of these principles, Schwaber reports on his visit to a com-
pany that thought it was applying Scrum but was not doing it properly:

Scrum

[Schwaber
2004], page 6.

Scrum

[Pichler site],
blog/roles/
one-page-prod-
uct-owner.

-~

<« “Let the team
self-organize”,
4.4.2, page 53.

http://www.romanpichler.com//blog/roles/one-page-product-owner
http://www.romanpichler.com//blog/roles/one-page-product-owner

§5.3 TEAM

81

The ScrumMaster invited me to attend “his Daily Scrum”. An alarm went off in
my head. Why was it “his Daily Scrum” and not “the team's Daily Scrum”? At
the meeting, he went around the room, asking each person present whether he or
she had completed the tasks he had written by their name. He asked questions
like, “Mary, did you finish designing the screen I gave you yesterday? Are you
ready to start on the dialog boxes today?”. Once he had exhausted his list, he
asked whether the team needed any help from him. They were all silent. How
could 1 tell him what I thought of his methods?

What he thought was less than flattering, of course, since they contradicted the idea of a
team that decides by itself what it will do next, picking from the list of remaining tasks.

The team in agile approaches is self-organizing. Cockburn and Highsmith write:

Agile teams are characterized by self-organization and intense collaboration,
within and across organizational boundaries. [They| can organize again and
again, in various configurations, to meet challenges as they arise.

Note the key benefit claimed here: the ability to adapt quickly to new circumstances. The
main task of a self-organizing team is to decide what to do next. In Scrum this means
picking from the task list (“sprint backlog”) the next task to be implemented.

The agile literature goes to great lengths to explain that self-organizing does not
imply rudderless: in some methods at least the manager still has a role to play, as dis-
cussed in the previous section, but this role does not include meddling in everyday
decisions such as picking the next task.

5.3.2 Cross-functional

Another recommended characteristic for agile teams is to be cross-functional. The Pop-
pendiecks write:

Agile development works best with cross-functional teams [which have] the skill
and authority necessary to deliver useful feature sets to customers
independent[ly] of other teams. This means that whenever possible teams should
be formed along the lines of features or services.

The rejected alternative is a division into teams organized along areas of competence, for
example a hardware team and a software team (for an embedded system), or a database
team and an application logic team. The recommendation is instead to use a division
along user-visible subsystems, each covering a subset of the functionality, in line with
the reliance on user stories to define that functionality. For example part of the team
might be in charge of the scenario “process a new purchase order” and another part in
charge of “cancel purchase order”, even if the basic infrastructure is shared.

Such an assignment implies only a temporary responsibility associated with a partic-
ular task, not a long-term specialization, even less any exclusivity. In a fully cross-func-
tional team, any developer should be able to go to the task list and pick the next task

[Schwaber
2004], page 26,
excerpted and
abridged. On
the “daily
Scrum” see
page 91.

[Cockburn
2001].

[Poppendieck
2010], page 69.

— “Collective
ownership and

> cross-function-

whatever it is, that the team has deemed to be of highest priority. The presentation of aliry”, 6.12.2,

agile roles will discuss the benefits and limitations of cross-functional teams.

page 102.

82 AGILE ROLES §5.4

5.4 MEMBERS AND OBSERVERS

The agile world and Scrum in particular make a distinction, for any project, between two
kinds of participants: those who are truly committed to the project, in the sense that its
success is critical for them, and those who are also involved but from the sidelines. The
accepted terms are respectively “pigs” and “chickens”, a terminology that comes from a
vulgar joke repeated in a zillion publications and not worth including here. With or with-
out zoology, the concept is hardly new: committees routinely distinguish between mem-
bers and observers. Another possible terminology would be “core participants” versus
“fellow-travelers”.

The distinction matters in particular for daily meetings, where the roles of the two cat-
egories are delineated: the members should dominate the discussion, with observers stand-
ing on the side. The observers will give their opinion if invited to do so, but actual project
decisions, such as including or rejecting functionality, are the privilege of members.

5.5 CUSTOMER

We have seen, as one of the method’s principles, that agile methods put the customer at « “Pus the cus-

the center. A concrete consequence is to emphasize the role of the customer throughout fomer at the

the project and — in some cases — the role of the customer as a member of the project. ;Z'gfrj i 441
Traditional development approaches also strive to build a system that will please its

customers, of course, but they limit customers’ involvement to specific phases at the

beginning and end of the lifecycle; in the extreme form represented by the “V-model”

variant of the waterfall, those would be the top-left and top-right phases.

Requirements Acceptance testing Simplified
V-model of
the software

Design Integration testing lifecycle

Implementation Unit testing

The simple V-model illustration shown here is not the most common one; usually
implementation figures at the bottom, which makes little sense since it is the direct
counterpart of (on the verification side) unit testing. In addition, some variants have more
phases than shown here.

§5.5 CUSTOMER

83

Even with an upfront requirements phase, many opportunities often arise later in the
project for the developers to obtain more information from customers. Some project
environments discourage such contacts or even prohibit them. Requiring that they hap-
pen through organized channels is reasonable, if only because — as mentioned in the dis-
cussion of the customer’s role — different stakeholders have different views and you
need to make sure you are talking to representative people. But disallowing any interac-
tion between developers and customers is a sure way to obtain systems that do not meet
customer objectives. Agile methods go further and require customer interaction.

While the basic idea is common to all agile approaches, the level of customer involve-
ment differs. Extreme Programming, as explained by Ron Jeffries, directs the team to
include a customer representative, part of the “whole team” experience:

The team must include a business representative — the “Customer” — who
provides the requirements, sets the priorities, and steers the project. It is best if
the Customer or one of her aides is a real end user who knows the domain and
what is needed.

This role does not appear explicitly in Scrum, since the product owner is the person
responsible for representing users, as part of the more general task of conveying to the
team the business goals of the project.

Once one accepts the idea of including customer representation in the team, the
Scrum approach is superior to the XP notion of an embedded customer representative.
There is evidence (anecdotal rather than based on systematic studies) that it is difficult
to integrate even a well-meaning customer representative; sometimes the formula jells,
but often the representative feels left out, since much of the interesting stuff occurs in
technical discussions which he cannot easily follow; and a good deal of the time he just
sits bored. In addition, a customer representative with no decision power can do harm as
well as good. It is difficult to determine how much he represents the needs of the cus-
tomer as a whole, and how much just his own. The odds are not good: think of the kind
of person whom an organization would wish to assign full-time to a project but without
any decision power (taxation without representation, as it were); is that going to be the
most competent expert of the application domain? Probably not: such people are typi-
cally in high demand and very busy — with application domain tasks. Whoever has
enough free time to be posted to a development group for many months may raise some
suspicion: is the customer organization trying to help you, or to get rid of someone?

With the Scrum notion of product owner, you also get a customer representative, not
necessarily full-time, but with a clearly acknowledged strategic decision role: defining
the last word on what goes into the product and what does not. This role justifies putting
at the project’s disposal a product owner who truly understands the business and will pro-
vide operationally valuable input to the developers.

<« Page 52.

&

[Jeffries site],
xpmag/whatisxp
#whole.

-~

< See “Put the
customer at the
center”, 4.4.1,
page 51.

http://xprogramming.com/xpmag/whatisxp#whole
http://xprogramming.com/xpmag/whatisxp#whole

84 AGILE ROLES §5.6

5.6 COACH, SCRUM MASTER

Agile methods raise frequent problems in their daily application and require enforce-
ment, lest the team stray from the recommended principles. Sometimes the project man-
ager plays this role, but the recommendation is to assign it to a specific individual: a
coach in Extreme Programming; a Scrum Master in Scrum.

Larman encourages putting in place a “central” coaching team which advises many /Larman 2010],
different groups. He also insists that the role of coaches should be to advise, not pre- rage 3%9.
scribe; this view is in line with the agile mistrust of consultants or managers who tell
everyone what to do but are not ready to do some of the real work themselves.

“Coach” suggests a training role. Scrum Masters, in addition, take on a management
role. The border can be thin; as Cohn writes:

A ScrumMaster may not be able to say “You're fired”, but can say “I’ve decided [Cohn 2010],

we 're going to try two-week sprints for the next month”. page 399.
More generally,

The Scrum Master is responsible for making sure a Scrum team lives by the [Schwaber

values and practices of Scrum. 2012], page 164.

But the role goes beyond that of a political commissar; one of the primary tasks is to

remove impediments identified by team members in daily meetings. An impediment is —Moreon
any obstacle, technical or organizational, that prevents the team from operating at full ”’,‘f’;fffg’f;’j’,f,’"
productivity (implementing as many user stories as possible). Some impediments are 8.12, page 129.
technical, such as a developer getting stuck because he does not know of an appropriate

algorithm to solve a certain task; others are political or organizational, such as computers

choking up on not enough memory or a subcontractor failing to deliver a component of

the system.

The Scrum Master is also responsible for protecting the team from distractions and
undue interference from the rest of the organization, since it is an agile tenet that devel-
opers should be able to concentrate on one task at one time.

The Scrum Master concept has met with considerable success. Some of that success
is due to non-technical factors: to be worthy of consideration as a Scrum Master you
should be a certified Scrum Master, meaning that you have followed appropriate training
and paid your fee. This certification aspect of Scrum is good business. It provides a
self-reinforcing loop: certified masters are natural advocates for the method, and the
more companies they convince the more Scrum Masters will be needed.

§5.6 COACH, SCRUM MASTER

85

For a new method, the basic concept of having a coach to help apply the method right
is sound. More debatable is the expectation that a Scrum Master will do only that job,
and will not be a developer. While staying away from absolutely ruling out such a pos-
sibility, agile authors clearly state that a Scrum Master should only be a coach; if the
project is too small, rather than doubling up on other duties on the project, the Scrum
Master should double up on projects, coaching several teams. Scrimshire writes of the
risks of a coach who also programs:

Being directly involved in the work, being an agent in the system, being directly
affected by difficulties arising in the team means the Scrum Master could lose
objectivity. They could be too close to a problem to be able to coach the
team effectively.

As a developer, there is opportunity for directive or controlling behavior to creep
in. Is the developer of sufficient character to be able to retain a sense of
objectivity and unbiased questioning in the role coach or facilitator? If the
developer had a differing technical opinion with the team would they be willing
to accept the team's approach or mandate?

My experience runs directly against this advice. [have seen too many times the sad spec-
tacle of advisors who do not want to dirty their hands. That is what is so great about being
a consultant: if the project succeeds it is thanks to your wonderful advice; if it fails it is
for not following it properly. In the Scrum case, consultants make it even easier for them-
selves because the Scrum Master also stays away from programming but from the other
core responsibility-laden task: management.

In traditional settings developers typically do not have much respect for advice-only
consultants. There is still enough reverence around agile methods and Scrum that
advice-only Scrum Masters are taken seriously. The hypnotism will not last forever, and
companies will focus on work that brings real benefits. (Even the Red Army no longer
needs political commissars.) Already today, not everyone buys the idea; a reader from
India commented, a propos Scrimshire’s article cited above:

1 have seen the trend that organizations look forward to hire people with technical
skills. Specially in India, they do not consider Scrum Master as [an] independent
role but always club with developer (they call it technical scrum master).

It is good to encounter some common sense, at least in India. A Scrum Master who also
programs has the advantage of being close to the problem; “too close” perhaps, but it
beats being too far. There is nothing like having to wrestle with the toughest part yourself
to know how to advise the rest of the team.

Assigning the coaching role to a manager, rather than a developer, also makes sense.
A good technical manager should be experienced enough to serve as coach; this is one
of the traditional roles of managers, and there is no clear argument for not continuing it
when the personalities involved fit the bill.

-~

[Scrimshire site].

86 AGILE ROLES §5.7

Harlan Mills developed long ago the concept of chief programmer: the project manager [Mills 1971].
who just happens to be the best programmer on the team and in addition has management

capabilities and like a general who has risen through the ranks leads the team into battle.

The chief programmer is a technical manager, but one who is not afraid to roll up sleeves

once in a while and do the design and implementation for the toughest parts of the system.

This technique is not for every team — if only because good potential chief programmers

are few — but can be effective with the person and team. A good chief programmer will

also play the role of coach.

5.7 SEPARATING ROLES

-~

What should we make of the Scrum insistence on three and exactly three roles (Scrum
Master, Team, Product Owner)? As usual, there is something to be taken and something
to be left.

The most interesting idea is the separation of the product owner role from other man-
agement responsibilities. In many contexts it can indeed be helpful to hand out to two
different persons (or groups, such as “the team” in Scrum) the tasks of :

» Directing the project, day after day.
» Defining what it must do for the business, and assessing whether it actually does it.

This distinction is applicable in projects where no one is equally at ease with the business
and technical sides. Such a situation arises in enterprise-style projects (“business” or
“commercial” data processing), the area from which agile methods seem to have drawn
most of their experience. In a technical company, and particularly in a software company
— Microsoft, Google, Facebook... — the classic distinction between “the software” and
“the business” disappears, since the business is software and often the software is the
business. In such environments one can often find an executive who is both thoroughly
attuned to the business needs and perfectly capable of leading the project. If you intend
to have a project manager — an idea anathema to Scrum and most other agile approaches
— that person may also be qualified to serve as the product owner.

The argument against merging the manager and product owner roles is the risk of
being, in Scrimshire’s terms, “foo close to the problem”. He invoked that risk as a reason
to separate the roles of developer and coach; we saw that there is in fact little cause for
concern in that case, but the risk becomes more serious if we consider the roles of project
manager and product owner. The manager could become so involved with the project —
so “embedded” in it — as to develop a kind of Stockholm Syndrome and lose track of
the needs of the business, which are the reason the project exists in the first place. A dis-
tinct “product owner” will not succumb to that temptation, and will provide an indepen-
dent check on the project’s real progress.

The decision — assign two people as manager and product owner, or keep the roles
separate — is a tradeoff between consistency, favoring a single project manager defining
a clear vision for the team, and independence, favoring the inclusion of a second view-
point. Every project must examine that tradeoff in light of its own circumstances; there
is no universal, dogmatic answer.

§5.7 SEPARATING ROLES

87

Many projects, especially when they have limited resources, consider other mergings:

» It may be legitimate — not just in India — to let one of the more experienced devel-
opers double up as coach (Scrum Master).

» The manager can also be the coach. This is particularly appropriate, and common,
when the manager is a technical manager, in the “chief programmer” style, who has
more experience than the rest of the team and is naturally qualified to serve as mentor
and coach in addition to performing management tasks.

* On the other hand it makes no sense to merge the “coach” and “product owner” role
(if the latter is distinct from “manager”). A separate product owner should represent
the business needs and not meddle into how the team works.

More generally, while ensuring the presence of a method coach in the project is often a
good idea, insistence on keeping it a separate role is not. No doubt it is a good business
strategy for consultants; but businesses, their budgets and their projects are better off
with doers than with talkers.

6

Agile practices: managerial

The agile principles imply, for a software development project, not only specific roles as
studied in the previous chapter, but a set of concrete practices, such as the daily meeting,
pair programming and test-driven development.

What, by the way, qualifies as a practice in software development? A practice has to
be an activity or a mode of working, but with a special twist: repeated application. In the
absence of repetition, we may have an interesting technique, but it is not a practice unless
it is performed regularly (in the case of an activity) or enforced systematically (in the
case of a mode of working).

Scrum also uses, for practices, the more picturesque name ceremonies.

We start in this chapter with practices affecting project organization and management.
The following chapter will cover technical, software-specific practices.

6.1 SPRINT

One of'the core principles of agile development is to work iteratively, producing frequent « “Develop
deliveries. All agile methods apply this idea, with various prescriptions for the duration ZZ;‘Z”;E b
of the individual iterations. To denote these iterations, the Scrum term “sprint” has come

into wide use.

The purpose of a sprint is to advance the project by a significant increment, working
from a task list, known in Scrum as the sprint backlog. In most agile approaches each
task on the list is defined as the implementation of a “user story”.

6.1.1 Sprint basics

A Scrum sprint usually lasts one month. Many teams use other durations, and non-Scrum
agile authors recommend iterations of varying lengths, although never more than a few
weeks in line with the fundamental agile idea of short-cycled iterative development.

This idea of cutting up development into individual iterations lasting a month or so
defines the notion of sprint, but a second property, particularly emphasized in Scrum, is
just as important. It is the rule that during a sprint, the task list does not grow. The rule
has to be absolute: no one, laborer, duke or emperor — or project manager — is permit-
ted to add anything while the sprint is in progress.

B. Meyer, Agile!, DOI 10.1007/978-3-319-05155-0_6,
© Springer International Publishing Switzerland 2014

90 AGILE PRACTICES: MANAGERIAL §6.1

This rule is made realistic by the short duration of sprints. Clearly, if iterations lasted
six months, it would be impossible to repress the customers’ and managers’ natural urge
to add functionality. With a one-month period, once everyone has signed on to the policy,
the project may enforce the strict ban on extensions. No exceptions are allowed, what-
ever the rank of the supplicant. If there is a really pressing need, it gets parked until the
end of the current sprint, and will be examined for possible inclusion in the next sprint.
If not having the envisioned feature is a real show-stopper, then the only solution is the
extreme one (akin, in the execution of a program, to raising an exception): terminating
the sprint early — a decision that, as we have seen, is the privilege of the product owner.
It is a pretty drastic decision; unless the product owner feels things are so critical as to
justify it, he will just wait, like everyone else, until the next sprint.

6.1.2 The closed-window rule

The rule barring additions of functionality during a sprint follows from one of the prin- < “Freeze
ciples we saw in an earlier chapter. It does not seem to have received a specific name in Zzll‘rlg?:f’”f
the agile literature but it is so important that it deserves one. Let us call it the sions”, page 71.
closed-window rule: the window for changes is closed whenever a sprint is in progress.

The closed-window rule addresses one of the biggest practical obstacles to successful
software development: disruptive feature creep, more precisely disruptive customer- or
management-induced feature creep. Customers and managers teem with ideas, and keep
dreaming up new features. Giving them demos of early versions (in general a good prac-
tice, and strongly advocated in agile approaches) can make the phenomenon even worse
by bringing to light what functionality is still missing. By itself the feature creep phe-
nomenon is inevitable and in many respects healthy; a successful system will serve the
business best if the key stakeholders have had their say. The problem is the disruptive
nature of feature requests coming from a person carrying enough authority to change pri-
orities. He or she comes up with a superb idea, so superb indeed that it has to be imple-
mented right this minute at the expense of the currently scheduled tasks. Such
interruptions can quickly derail a project: priorities get messed up, important work is
delayed, and developers lose morale. But without a clear process such requests can be
politically difficult to refuse.

The genius of the closed-window rule is that it neither ignores the risk of feature creep
nor fights it head-on, but channels it into the limited framework of sprint planning exer-
cises. A practical consequence is that a kind of natural selection takes place between fea-
ture ideas. Many a brilliant suggestion loses its luster when you look at it again after a
few days, and when the time does come to select features for the next sprint it may no
longer seem so urgent. Disruptions are avoided and noise takes care of itself. The ideas
that were truly worthy of consideration are prioritized against all other tasks.

§6.2 DAILY MEETING

91

6.1.3 Sprint: an assessment

Two aspects are interesting to discuss: sprint duration, and the closed-window rule.

The one-month standard duration of sprints appears just right. In this book we often
note that strict agile rules are too rigid, and sometimes see that the spirit is more impor-
tant than the exact details; but in this particular case it appears that following the exact
Scrum one-month prescription (including sprint planning and sprint review) works well.
More precisely, Scrum specifies “thirty days”; I have found, as noted earlier, that it is
more effective to use a calendar month. Simplicity breeds focus.

The closed-window rule is an outstanding idea. While it contradicts the Agile Mani-
festo’s principle A2, “Welcome changing requirements, even late in development”, by
conceding that not all change is welcome at all times, it provides a framework for han-
dling change (or “harnessing” change, as the principle puts it).

6.2 DAILY MEETING

A core agile practice is the daily meeting, also known as the “stand-up meeting” and as
the “daily scrum”. Stand-up because one of the original ideas was to make sure the meet-
ing does not last long — fifteen minutes is the standard — by requiring everyone to
stand; this requirement is impractical and usually not applied. Scrum because many
groups use some approximation of the version fine-tuned by the Scrum method.

The rationale for meeting at the beginning of every workday is the general agile
principle that direct contact is critical to project success. It meets here with the just as
general agile distrust of heavy processes and such waste-inducing practices (think
“lean”) as long meetings. Hence the emphasis on both frequency and strict time limits.
The method insists in particular on what a daily scrum is not: it is not intended to solve
problems or engage in deep technical discussions. Its focus is precisely defined:
answering the “three questions”. What did you do on the previous working day? What
will you do today? Any impediments?

The first two questions give the team the opportunity to catch up with each other on
the progress of the project and its immediate future. They also help ensure that team
members make realistic commitments and fulfill them, since today’s answer to the sec-
ond question, the promise, will meet tomorrow’s answer to the first, the reckoning. As
Cohn writes, the exercise is not a status update where a boss finds out who is behind
schedule, but an opportunity for team members to make commitments to each other.

In the third question, an impediment is any obstacle that stands between a team mem-
ber and the realization of his stated goals. There are technical impediments, such as prob-
lems with hardware or software products, and organizational impediments, such as the
absence of a team member whose input is needed. The meeting should remove the

-~

« “Iteration
length”, page 71.

<« Page 50.

— “Impedi-
ment”, 8.12,
page 129.

92 AGILE PRACTICES: MANAGERIAL §6.2

impediments when possible in the short time imparted, and otherwise assign responsibil-
ity for removing them. In Scrum, more specifically, removing impediments is one of the
key responsibilities of the Scrum Master.

As emphasized by agile authors, one should be on the alert for practices that distort
the purpose of the daily meeting and threaten its effectiveness. The two main threats are
project members who go off into digressions, and the temptation to engage in deep tech-
nical discussions. Once you are aware of these risks, it is relatively easy to fend them off;
the person in charge of enforcing good practices — in a traditional approach the project
manager, and in Scrum the Scrum Master — can:

* Remind the ramblers to be concise; a more indirect technique is to enforce the time
limit even (or especially) if this means that some people do not get to speak. It should
not take more than one or two experiences of that kind for those who spoke too long
to understand that they are the ones at fault. If it does, the team truly has a problem.

» If a technical discussion takes off on its own, intervene and suggest holding a sepa-
rate meeting.

The idea of the daily meeting, with its focus on the three questions and the strict limita-
tion of scope and duration, is brilliant. As with other agile ideas, you can stop listening
to the advice when it becomes dogmatic. Some circumstances, such as geographically
distributed projects, naturally lead to variations over the basic scheme:

-~

* Setup time. A 15-minute meeting is fine for a resident team but generally not effective
for a distributed team. Even with good technology and an experienced group of people,
it can take a few minutes (“Can you hear me?”, “Let’s switch from Skype to WebEx”,
“The video conference room is still occupied’) to get down to business.

» Flexible working schedules. In many organizations, some employees come in at differ-
ent times or occasionally work at home. Such practices contradict the agile insistence
on direct personal communication, but they have other justifications, such as the desir-

ability of a “sustainable pace”, and companies may legally be required to allow them. <« “WOI‘}/;[at a
sustainable

pace”, 4.4.3,

* Time zones. Consider a group with some members in California and others in Shang- e 36
ge 56.

hai. 7 AM for the former means (in the winter) 11 PM for the latter. You can ask peo-
ple to be up late once in a while, but not every day.

* Meeting inflation. While there are good reasons for moving deeper technical discus-
sions to a separate meeting, they should be balanced with the overhead of organizing
separate meetings (“Let s discuss this on Tuesday afternoon — Tuesday I am not here,
can you make it Wednesday at 10?7 — Yes, but I think the meeting room is not avail-
able” and so on), plus the context-switching time (the time for everyone to remember
what it was all about). Sometimes when an issue can be solved by a 20-minute dis-
cussion it is just as simple to have that discussion then and there.

» Length variability. There is no reason to use the same limits regardless of team size.
15 minutes may be fine for a group of five people and too short for ten.

§6.3 PLANNING GAME

A distributed team I know, which works across three continents and has honed its process
over several years, has two weekly meetings, Monday and Thursday, at a time that is
acceptable in all time zones affected. Both last one hour for the reasons just mentioned.
They have complementary goals:

* The Monday meeting is developer- and deadline-based. Its purpose is to check
progress towards the next deadline. It is run in the spirit of a Scrum daily meeting:
each member of the team presents his or her current status based on the “three ques-
tions”. Since it uses a full hour, technical discussions are not prohibited as long as
they remain short; anything that requires deeper analysis is moved to the Thursday
meeting or some other medium (such as an email discussion, or an extraordinary
meeting). The team long ago learned to make good use of the available time and never
overruns the one-hour limit. There is no agenda for those meetings; they are orga-
nized around the task list, a shared document that everyone can consult (through
screen sharing) during the meeting.

* In contrast, the Thursday meeting is agenda-based; it is devoted to the discussion of
a list of issues collected in advance by the meeting secretary (a task that rotates
between members of the group). Its decisions are recorded as “action items” in the
minutes (produced in real time during the meeting), and copy-pasted to the agenda of
the next meeting so that the first matter of the day is to check what has been promised,
just as in a daily meeting.

This particular formula, obtained by trial and error (as well as reading agile and other
software books) works well for that particular group. A team subject to different con-
straints will fine-tune its own variant of the daily meeting idea. Freed of dogmatism —
adapted in particular to the multi-site, flexible-personal-schedule working style of mod-
ern companies — that idea, particularly its focus on the “three questions”, is one of the
principal contributions of the agile school. Some day, the whole industry will be practic-
ing it and not even conceive that anyone could ever have been working otherwise.

6.3 PLANNING GAME

The next two practices to be reviewed (in this section and the next) address one of the
toughest challenges of software management and development: estimating the cost of a
system to be developed, or part of that system. The planning game comes from Extreme
Programming, the planning poker from Scrum. Cost estimation, the goal in both cases,
is only a subset of what “planning” normally covers; but this limited scope of the term is
consistent with the rest of the agile creed, which does not like the idea of upfront tasks.

The unit of estimation has traditionally been a unit of work: person-month or, at a
finer level of granularity, developer-day (one programmer working for one day). More
sophisticated metrics have been developed recently, in particular the story point, which — “Story
we will study in the discussion of artifacts. The discussion in this section and the next p‘”’”’sls 18'4’
does not depend on the particular metric used. page et

94 AGILE PRACTICES: MANAGERIAL §6.4

The XP planning game is a “game” not in the sense of a competition, with winners @
and losers, but in the game theory sense of a cooperative game, where two actors try to

maximize different criteria and seek an optimal compromise between them. The two

actors are “business” and “development” in Beck’s term, or more simply the customer

and developer groups. The customers seek to maximize functionality and minimize the

time to obtain it. The developers understand the difficulty level associated with every

element of functionality, and the incompressible time that it requires. In the game:

» Customers define the respective priority of a set of functionality elements — defined
in agile style as user stories — for a project, or a particular iteration.

» Developers estimate the cost (person-days) of implementing each story.

In playing the game, the two groups perform these tasks repeatedly, engaging into nego-
tiation over the estimates. Customers sort the stories on the basis of priority. The game
terminates when the two sides have agreed to select the highest-priority tasks with a total
cost that fits within the time allotted for the release and the number of developers. In a
variant of the game, the result is not so strictly tied to a release cycle but simply consists
of a prioritized list of user stories.

6.4 PLANNING POKER -
Scrum

Scrum’s planning poker is another approach to the same problem as XP’s planning game,
how to estimate the cost of user stories in advance. Again the discussion does not depend
on the choice of measurement unit, such as developer-day or story point.

The two ideas of planning poker are to:
* Rely on the collective judgement of a panel of estimators, iterating until they agree.

* Avoid pointless haggling over small differences by forcing the values to be taken
from a sequence of clearly distinct values.

A sequence of values satisfying the last criterion is the Fibonacci sequence: 0, 1 (and 1
again), 2, 3,5, 8, 13, 21, 35, ...

I hear you: that is not the Fibonacci sequence! Indeed. The last number cited should be 34.
Congratulations on your mathematical sophistication! But one agile consultant has had the
brilliant business idea of producing and selling a deck of planning-poker playing cards.
Trouble is, copyrighting the Fibonacci sequence is kind of hard, since it has been around
since something like 1202 in Italy (and a couple of millennia earlier in India). Not to worry:
just change one of the values. Not exactly as I did above — I am far too scared of a
copyright infringement suit! — but you get the idea.

If estimates are done in person-days, the second value is sometimes replaced by 0.5 since
some simple user stories may be implementable in less than a day. What matters is that
the values differ sufficiently to avoid the estimators getting into a fight over insignificant
differences, such as whether a particular task will take 11 or 12 days; the aim is rough-cut
estimation rather than exactness.

§6.4 PLANNING POKER

95

Some variants of planning poker rely on an even smaller set of choices, in particular
“T-shirt sizing” which offers five values from X-small to X-large. Most variants also
include the value “?” for the benefit of an estimator who feels there is not enough infor-
mation yet to propose an answer.

The panel of estimators is the development team, including the product owner and
other customer representatives as appropriate. It applies a form of the “Delphi”
expert-consensus decision method, which originated with the US military and has been
in use for decades. It is also influenced by the more recent concept of “wisdom of the
crowds”, according to which a group can collectively reach a better decision than even
the best individual experts in its midst. The goal is to arrive at a consensus, but to avoid
reaching it through the intimidation of outlying thinkers by the initial majority.

The process for estimating the cost of a functionality element involves the following steps:

1 Someone, typically the product owner, describes the feature.
The participants discuss it and ask questions as needed.

Every participant privately picks an estimate, from the preset sequence of values.

E>VS I]

The choices are revealed. This where the process gets its name: as in a game of cards,
you show your hand only when asked.

5 Ifthe values agree, the process stops for this item and the common estimate is retained.
(This is where it is important to have widely separated values in the sequence.)

6 If the values are not identical, a discussion takes place, with each member arguing
for his or her choice. Then the process is repeated from step 3, on the basis of infor-
mation gained in the discussion.

7 Ifthe process does not converge quickly enough to a common value, the participants
will have to abandon it and discuss what else to do, such as getting more information
and postponing the estimation to a later date.

Cohn states that

Teams estimating with Planning Poker consistently report that they arrive at
movre accurate estimates than with any technique they’'d used before

without, however, citing actual studies. My own experience, also individual and also not
backed by studies, is less thrilling. The problem I have seen is the power of majority pres-
sure. If you are truly an expert and you come up with an estimate that is widely different
from those of the rest of the group, it is difficult to argue for long without appearing arro-
gant. To preserve group harmony you are naturally led to give up — at least if you know
you are not yourself going to get the task of implementing the item. This outcome can be
damaging to the project, especially when the expert knows how hard some task really is
but is unable to convince the rest of the group, which has not performed such work before
and thinks it will be a breeze.

[Surowiecki
2004]

[Cohn site].

-~

96 AGILE PRACTICES: MANAGERIAL §6.5

6.5 ONSITE CUSTOMER @'p)

All agile methods, as we have seen, recommend involving customers or their represen- < Chapter 5,
tatives in the project. XP in particular has the notion of an “active customer”, also known ? 22”56 ';l arly 5.2
as an embedded customer. This practice is mentioned here as a reminder since an earlier

chapter discussed the corresponding roles: “customer” and “product owner”.

6.6 OPEN SPACE

Agile methods put considerable emphasis on the physical organization of the workspace.

Many development teams traditionally use, at least in the US, private offices for the
lead people and cubicles for everyone else. (Cubicles are less common in Europe, and
the more extreme formats are incompatible with local labor laws; some countries, for
example, require providing every office worker with access to daylight.)

Closed offices and cubicles are anathema to agile development. Because of the core
role of communication, it is a tenet that developers should work in an open space. Here
is a typical exhortation:

Use open working environments. Such environments allow people to [Schwaber
communicate more easily [and)] get together, and facilitate self-organization. 2002], page 39.
When I walk into open areas, I can immediately tell how the team is doing.

Silence is always a bad sign. I know that people are collaborating if I can hear

conversations. When [enter a cubicle environment, there is often silence

indicating an absence of interaction. Cubicles are truly the bane of the modern

workplace. They quite literally keep people apart and break teams up.

In the recommended agile layout:

+ The development area is a large room.

* Developers are seated at desks not too far from each other. If the team practices pair
programming, there will be two developers at each desk, but in any case people should
be able to hear conversations at neighboring desks and spontaneously join them.

» The walls are largely covered with whiteboards to support technical discussions.
* A quiet meeting room is available for technical meetings.

Many developers, in my experience, like this kind of arrangement, contradicting the ste-
reotype of programmers as inward-looking nerds. Many does not mean all; witness the
frequent practice of wearing noise-reduction headphones. Some agile authors recognize

the need for occasional isolation, “cones of silence” in Cockburn’s terms. [Cockburn
2003].
Indeed, while the basic idea is sound, and cubicles deserve all the scorn they get from

agile critics, it would be nice if everyone would follow Cockburn’s example and refrain
from sweeping absolutes. Open spaces are not the solution for all people and all times.
It is impossible to take Schwaber’s “Silence is always a bad sign” as a serious statement.

-~

§6.7 PROCESS MINIATURE

97

Software development is a challenging intellectual activity. There is the engineering
part, which often requires “communication”, “collaboration”, “interaction” and “conver-
sation”, and the research part, which is in many respects akin to doing mathematics. There
is a time for talking, and a time for concentrating. Some people think best by explaining
their thinking to someone else, pair-programming style; some people think best while
walking (like Napoleon); and some people think best by shutting themselves off from the

world for a while. Most people think best by alternating between various models.

We have all met instances of the shy, introverted programmer who stays silent during
meetings and one morning comes in with an impeccably designed and implemented sub-
system, which all the “conversations” in the world would never have produced. It is part
of the respect due to programmers (as advocated forcefully in the Crystal method) to
accept that people are different and not to force a single scheme on them. Sure, you can
gently nudge the silent genius, once in a while, to communicate a bit more. But if you
start harassing him by enforcing a communicate-at-all-costs policy, all you will get is
that he will soon take his talents to a more accommodating environment.

The gentle nudging, by the way, may have to apply to both sides. An incessant chat-
terer may fulfill the agile ideal of “valuing interaction”, as the Agile Manifesto has it,
but may become a serious obstacle to the project’s progress, and deserve an encourage-
ment to stop talking and produce something for a change.

If silence is “always a bad thing”, what of the reverse situation: a workplace where
everyone is babbling all the time? It is just as alarming. A healthy environment, in my
experience, is one in which sometimes people talk and sometimes they silently read, or
write, or just think. When “walking into” a development space and seeing a programmer
who is just staring at the ceiling, only a naive (and mean, and incompetent) manager
jumps to the conclusion that the programmer is wasting the company’s money.

The need for flexibility comes not only from developers’ personality traits but from
the nature of the tasks at hand. Requirements definition calls for lots of interaction
(although even here quiet thinking, to classify and abstract information, is essential);
design and implementation call for lots of thinking (although even here communication,
of the kind advocated by agile methods, is essential).

These reservations do not affect the essential soundness of the agile view: open spaces
often work well. Just do not turn the idea into a dogma. Different people, different cir-
cumstances and different times during projects call for different solutions.

6.7 PROCESS MINIATURE

Agile training frequently uses a technique that Cockburn calls “process miniature”: get
familiar with a proposed software process by applying it to some non-software tasks over
a short period, such as a day, an hour or even less. Scrum tutorial sessions, for example,
are notorious for asking participants to design paper planes by applying the Scrum roles,
principles and practices. Throwing the planes around is great fun.

[Grystal

[Cockburn
2005], page 91.

98 AGILE PRACTICES: MANAGERIAL §6.8

Process miniature can be a good way to visualize techniques that might otherwise
appear abstract, and understand the dynamics of group interaction in a self-organizing
team. One should not forget, however, that it is just a simulation, and that the most seri-
ous issues, technical and personal, will only materialize in the thick of a real project.
Building paper planes is not quite the same as building planes.

6.8 ITERATION PLANNING

A number of agile practices take the form of regular meetings. We have already seen the
“daily meeting”, but there are others, codified in particular by Scrum.

At the start of an iteration (a sprint in Scrum) there should be a meeting to plan that
iteration. The meeting should produce three main outcomes:

1 An iteration goal, describing what the team plans to achieve in the iteration,
concisely — a sentence or two — and in terms understandable by ordinary
stakeholders. A typical example (assuming a compiler project) is: implement the
new functional-language extensions.

2 Aniteration backlog: the list of tasks to be implemented. This outcome is primarily
for the internal benefit of the team.

3 The list of acceptance criteria for each task.

Conspicuously absent from these goals are: the assignment of tasks to individual team
members, which will be done at the “last possible moment” according to the rule of
cross-functionality; and a list of festing tasks, since testing is done continuously as part
of the implementation of user stories, not as a separate activity.

The meeting is primarily reserved for the team and the product owner. As the team
will be responsible for implementing the backlog in the allotted time, the result repre-
sents a commitment on its part, normally ruling out the participation of observers.

The definition of tasks (outcome 2 above) is a two-step process: select user stories
from the backlog for the entire product; then, decompose each of them into tasks.

The process also requires estimating the cost of each task. This is where techniques
such as the planning game and planning poker, discussed earlier in this chapter, come
into play. Because the team is in the best position to size up tasks that it will have to
implement, the product owner may at times be asked to leave the meeting while this esti-
mation is in progress. Disagreements may imply repetitive application of the process.

To avoid endless discussions, the meeting has a time limit, generally a single day
(eight hours), sometimes split into two parts, one for selecting user stories and the other
for decomposing them into tasks.

-~

Scrum

« “Members
and observers”,
5.4, page 82.

§6.9 REVIEW MEETING 99

6.9 REVIEW MEETING -
Scrum

The review meeting mirrors, at the end of a sprint, the planning meeting performed at the
beginning. Its purpose is to assess what has actually been done.

In the meeting, the development team presents to outside stakeholders, and in partic-
ular to the product owner in Scrum, the results of the sprint. It discusses what has been
achieved, and not, against the original goals, cost estimates and acceptance criteria.

Such a review meeting is focused on results, not process. An end of sprint is also a
good opportunity to reflect, beyond what has been done, on how it was done. In Scrum
a separate meeting is reserved for that purpose: the retrospective.

6.10 RETROSPECTIVE -
Scrum

A sprint retrospective reviews what went well and less well during the latest sprint, with
a view to identifying what can be improved for the next one. The purpose is similar to
what we find at level 5, “Optimizing”, of the CMMI: integrating into the process (even « “CMMI in

if this word is not welcome in agile circles) a feedback loop so that it can improve itself. lj’lg”; i’;i’,le"sj’;’

Whereas a review meeting requires the presence of the product owner (or, outside of
Scrum, other stakeholders representing the viewpoint of the customer), a retrospective
meeting is inward-looking and hence should primarily include the team and coach
(Scrum Master), although the product owner may attend.

6.11 SCRUM OF SCRUMS -
Scrum

Basic agile techniques are intended for small teams, up to about 10 people. The question
arises of how to scale up to larger projects. The Scrum answer is worth studying here. It
is known as a “scrum of scrums”, defined as

a daily scrum consisting of one member from each team in a multi-team project. [Schwaber
2004], page 44.

except that “daily” is according to Larman too high a frequency; two or three times a [Larman 2010]
week is enough. page 200. ’

The challenge confronting scrums of scrums is coordination. It manifests itself in
two ways:

-~

» Interface changes.
* Dependencies between sub-projects.

Regular meetings are an effective way to address the first problem; if you make sure that
API changes that can break client code are clearly publicized (and, if possible, discussed
in advance), you avoid a serious source of trouble.

100 AGILE PRACTICES: MANAGERIAL §6.12

On the second problem, the best agile answer that I have seen is that dependencies
should be avoided. According to Schwaber:

Before a project officially begins, the planners parse the work among teams to [Schwaber
minimize dependencies. Teams then work on parts of the project architecture that 2004], page 44.
are orthogonal to each other. However, this coordination mechanism is effective

only when there are minor couplings or dependencies that require resolution.

Quite true; dividing the project into “orthogonal” parts works only if the complexity is < “ddditive
of the additive kind. But of course a large project is usually large because it is truly — Z’fzi Zg"é;’; Cf;‘:y
that is, multiplicatively — complex, and then the dependencies will be tricky. Although e iasagne and
the agile literature claims that Scrum, XP and other methods can scale up, and gives the linguine”,
examples of successful large projects, it provides little guidance on how to tackle the #*¢¢ %
issues. As described in its own texts, the agile approach mostly targets projects involving

a small group of developers.

6.12 COLLECTIVE CODE OWNERSHIP

We end this review of management-related agile practices with an agile prescription that
could also be classified as a principle, although it enjoys neither the same importance nor
the same general application as the principles of the previous chapter.

In many projects every software module or subsystem is under the responsibility of a
specific person. A typical comment in dealing with teams at Microsoft is “If you want to
change something to that API, you will have to convince Liz, she owns that piece”. She
does not “own” it in the sense of intellectual property but in the sense of technical author-
ity: who decides whether to accept a request for change. Code ownership in that sense is
not restricted to commercial software: many open-source projects, such as Mozilla, also
enforce a similar model, where:

A module owner’s OK is required to check code into that module. In exchange, [Mozilla mod-
we expect the module owner to care about what goes in, respond to patches ules].
submitted by others, and be able to appreciate code developed by other people.

6.12.1 The code ownership debate

Individual code ownership has clear benefits: someone is in charge, and will feel respon-
sible for ensuring the consistency of the software and its integrity. One of the worst risks
in the evolution of a software system is a general degradation due to inconsiderate exten-
sions (“creeping featurism”); having a clear point of responsibility helps avoid it.

Individual code ownership can have negative consequences as well, emphasized by
agilists and in particular by proponents of Extreme Programming: balkanization of the
system, where each part of the code becomes a little fiefdom; concentration in one person
of the expertise about each part of the system, raising a serious risk if that person leaves;
and barriers to change, as the owner of a particular element (even if still a member of the
team) may not be available or willing when others need a change, or they may simply
not dare to ask.

§6.12 COLLECTIVE CODE OWNERSHIP

101

XP promotes collective code ownership:

Anyone on the team can improve any part of the system at any time. If something
is wrong with the system and fixing it is not out of scope for what I'm doing right
now, I should go ahead and fix it.

This statement is in fact more nuanced than its predecessor in the first edition of the same
book, which stated that “anybody who sees an opportunity to add value to any portion
of any code is required to do so at any time”.

Both versions surprisingly ignore the role of another core XP practice, pair program-
ming, studied in the next chapter. In the actual application of XP as described by Cock-
burn, pair programming does temper the free-for-all:

XP has a strong ownership model: Any two people sitting together and agreeing
on it [the change] can change any line of code in the system.

This restriction seems to be the minimum needed for making collective code ownership
reasonable. Even in a competent and self-organized team, it would be dangerous to allow
arbitrary changes without involving at least a second pair of eyes. The free-for-all policy
may have made the success of Wikipedia, but only with safeguards such as a vigilant
community of millions of editors and thousands of administrators, and with generally
less momentous consequences. (A mistyped digit in the population figure for the Duluth
entry, even if it takes a few hours before someone detects it, should cause no tragedies.
Program bugs are a serious matter.)

The Crystal method takes a more moderate attitude:

Most of the Crystal projects I have visited adopt the policy “change it, but let
me know”.

In assessing the possible policies — personal ownership, collective ownership, and solu-
tions in-between — it is important to note that preserving correctness is not the only
issue. Agile methods require running the regression test suite regularly; so if as a result
of a change-by-all policy someone messes up code that he does not completely under-
stand, there is a good chance that the problem will be caught right away. A potentially
more serious problem is degradation of the code, as described by Cockburn:

[If] everyone is allowed to add code to any class, [then] no one feels comfortable
deleting someone else’s code from the increasingly messy class. The result is [...]
like a refrigerator shared by several roommates: full of increasingly smelly things
that almost everyone knows should be thrown out, but nobody actually throws out.

Indeed a question more important than code ownership is change control. With modern
configuration management tools it is possible to enforce specific rules automatically; for
example you may prohibit committing a change unless at least one other person approves
it. Google has such a rule. A more formal version requires a review of the code before it
is committed; it is known as RTC, “Review Then Commit” and was Apache’s initial pol-
icy. After complaints in 1998 that it was too constraining, Apache introduced the CTR
option, “Commit Then Review”, tempered by the possibility — seldom used but keeping
programmers on their guard — of veto by any approved committer.

&)
[Beck 2005],
page 66.

[Beck 2000],
page 59, empha-
sis added.

[Cockburn
2005], page 216.
Emphasis in
original.

Same reference
as above.

Again from the
same place.

102 AGILE PRACTICES: MANAGERIAL §6.12

Every project should define its policy on this fundamental issue of change control,
somewhere between the extremes of too much freedom, leading to code rot and bugs,
and too much restriction, leading to an ossified process. The decision on code ownership
should follow from this more fundamental policy, and also depends on other aspects of
the company’s or open-source project’s culture. Once again a one-policy-fits-all rule, as
prescribed here by Extreme Programming, does not survive objective analysis.

6.12.2 Collective ownership and cross-functionality

The extreme suggestion of letting anyone change anything becomes less surprising when

viewed in light of another common agile practice: assigning the next task to the next

available developer. Such an approach can only work if the developers are interchange-

able; anyone can work on anything. This is the agile assumption of cross-functional « “Cross-finc-
teams: developers should remain generalists about the project, and not specialize in a tonal”, 5.3.2,
narrow area. page 1.

Arguments for and against cross-functionality are pretty much the same as those for
and against individual code ownership. The risks of specialization are the emergence of
jealously defended fiefdoms, and the dependency on individuals who may leave or be
unavailable when the project needs them. On the other hand, a complex project will
require highly focused competence in specific areas; it is inefficient to ask non-special-
ists to handle tasks in such an area, for which they will either botch the job or repeatedly
disturb the expert. It is usually more productive to wait until that expert becomes avail-
able to do the job himself.

The application domain has a considerable influence on this discussion. When read-
ing agile discussions, such as the recommendation of cross-functional teams, I some-
times have the impression that they are all based on consultants’ experience with
run-of-the-mill commercial developments for customers. In areas of advanced technical
development, specialization is inevitable. If you are building an operating system and the
next task involves updating the memory management scheme, you do not ask just any-
one on the team. You ask the person who has devoted the last five years of his life to
crafting the memory manager.

-~

7

Agile practices: technical

Beyond the management-oriented practices of the previous chapter, agile principles have
consequences on the techniques of software development. We now review the corre-
sponding practices.

You may have noted a strong Scrum presence in the preceding chapter; in contrast,
many of the practices below come from XP. The distribution of roles is understandable:
Scrum is to some extent a generic management methodology, XP was designed by pro-
grammers for programmers.

The number of techniques in this chapter is not large; indeed many of the most strik-
ing contributions of agility are on the project management side, and relatively few core
ideas are software-specific. But some of them are important, especially the last one dis-
cussed in this chapter, test-first development, which has already had a profound effect on
the software industry.

7.1 DAILY BUILD AND CONTINUOUS INTEGRATION

Integrating a software project means taking the components of the software as written
so far, compiling them together and running the tests (the regression suite).

Historically, large projects often had a long iteration cycle, of weeks or months.
Worse than its duration is the nature of the process, which we may call the Big Bang
approach, with the qualification that in software the Big Bang appears at the end, not at
the start as in physics. In the traditional process, the various members or groups of the
project would go off on their own at the start of a cycle, and start working on their respec-
tive parts. At the end of that cycle they would bring everything together (the Big Bang),
or attempt to. Predictably — well, predictably if you have tried it once — such an attempt
produces tears and blood. It is remarkable how quickly assumptions diverge and compo-
nents become incompatible.

B. Meyer, Agile!, DOI 10.1007/978-3-319-05155-0_7,
© Springer International Publishing Switzerland 2014

104 AGILE PRACTICES: TECHNICAL §7.1

Two evolutions in the practice of programming, respectively in tools and in methods,
have contributed to today’s much improved situation:

 Starting with tools such as the venerable “make” and RCS (followed by CVS, Sub-
version, Git), it has become possible to automate part of the task of putting compo-
nents together and avoiding the awful configuration errors (today’s version of module
A combined with last month’s incompatible version of module B) that have caused so
many disasters. Since integration also involves running tests, the automated testing
tools discussed later in this chapter also help significantly.

» Software projects have increasingly gone to much shorter integration cycles: not
months or weeks but days or even hours.

The most visible initial step towards shortening integration times was Microsoft’s famed
“daily build”, introduced in the nineteen-eighties. The idea was simple: at the end of each
workday a system is built integrating all changes “committed” (that is to say, officially
submitted) by developers; the system is compiled and run on the tests. As a Microsoft
manager put it:

Doing daily builds is just like the most painful thing in the world. But it is the
greatest thing in the world, because you get instant feedback.

The core rule of the daily build is what is sometime called the China Shop Rule: in a por-
celain shop, you break it, you own it; in a software shop, you break it, you fix it. In the
traditional Microsoft process, breaking it meant causing the overall system no longer to
compile and link; the consequence for the culprit is some badge of shame (paying a $5
fine, wearing a goat horn) and, before that, staying at work until you have fixed the prob-
lem, however late that may be. Such measures do not go well with the agile principle of
sustainable pace, but the idea of immediate check-in and integration remains.

It may have been ground-breaking in the nineteen-eighties to demand that developers
fix their code if it kept the system from compiling, but today the expectation goes even
further: we also want the regression suite to pass. New developments in tools have sup-
ported this evolution. Today’s tools include automatic program builders, which figure
out the dependencies between software modules and bring together all the parts that
make up a system, as well as regression testing tools that automatically run an entire test
suite and report any failed test.

Agile rules, particularly in Extreme Programming, go further than the daily build
practice. XP recommends “continuous integration”. Beck’s rule is

Integrate and test changes after no more than a couple of hours.

Note the emphasis on tests. Many teams, including agile ones, do not follow this injunc-
tion; a daily build discipline is already trying. In addition, integrating too often has its
own drawbacks since integration takes time; even if with modern tools you do not need
to run the build and tests manually, you must still wait for the process to complete. The
bigger the system and — even for a small system — the more tests, the longer it takes.
Beck dismisses the problem, a bit too offhandedly, by stating that it provides an oppor-
tunity for the programmer pair to discuss long-term issues of the project while waiting.

Cited in
[Cusumano
1995], page 268.

<« “Workat a
sustainable
pace”, 4.4.3,
page 56.

&)
[Beck 2005],
page 49.

§7.2 PAIR PROGRAMMING

105

The Poppendiecks’ advice on integration frequency is more nuanced. They describe
several strategies: every few minutes, every day, every iteration. They comment that

1t is not always practical to integrate all of the code all of the time. How often you
integrate and test depends on what it takes to find defects... The proof that you
are integrating frequently enough lies in your ability to integrate rapidly at any
time without finding defects.

This focus is the right one: it is less important to set an exact duration than to provide
evidence that the project has found its pace and in particular maintains the right level of
quality, as reflected by the number of bugs found at the time of integration.

The Poppendiecks’ observation confirms my own experience that with a proper pro-
cess and a focus on quality, integration does not have to happen so often; a weekly
period, for example, can work well. What matters is that the team has learned to work
together and to keep constantly in mind, when making a change, what impact it might
have on other parts. The developers also run the regression test themselves before com-
mitting their changes, and in fact throughout the development process, so it becomes
extremely unlikely that an integration test fails. With such proactive thinking, real con-
flicts are rare.

Regardless of the periodicity of updates, the methodology applied by competent
teams has changed considerably since the days of Big Bang software project manage-
ment. Agile methods and their emphasis on frequent integration have contributed to this
fruitful evolution.

7.2 PAIR PROGRAMMING

Pair programming is one of the cornerstones of Extreme Programming; in the early days,
when agile was largely equated with XP, all discussions of agile methods tended to grav-
itate towards this provocative idea. It triggered considerable controversy, and also a large
number of empirical studies to assess its effectiveness against traditional techniques such
as code reviews. Today pair programming is occasionally practiced (and enthusiasts still
come up with new variants such as “mob programming”), but it has retreated from the
limelight; other agile practices are considered more important.

The controversy was largely a consequence of XP’s insistence on imposing pair pro-
gramming as the sole and universal way to develop programs. Beck wrote

Write all production programs with two people sitting at one machine.

As in other cases of agile injunctions that industry found, shall we say, a trifle extreme,
few companies have applied pair programming to “al/” their developments for very
long. But many programmers have found some dose of pair programming beneficial, and
the technique deserves to be known.

[Poppendieck
2010], page 78.

-~

&

— “Mob pro-
gramming”,

7.2.3, page 107.

[Beck 2005],
pages 42-43.

106 AGILE PRACTICES: TECHNICAL §7.2

7.2.1 Pair programming concepts

The two partners “paired” should be closely involved in the work, one handling the key-
board to compose the program, all the time expressing his or her thought process and
uncertainties aloud, and the other commenting and correcting. This is a peer process, so
the partners should regularly reverse roles.

The advertised benefits include keeping one another on task, brainstorming on A4gain by [Beck
improvements, clarifying ideas, holding each other accountable, and enabling one part- f’g?g’p"ges
ner to take the initiative when the other is stuck. '

Beck and other XP authors obligingly provide practical advice: “Set up the machine

so that the partners can sit comfortably side by side”, “cover your mouth when you
cough”, “avoid strong colognes” and so on.

I know of very few other software engineering texts that discuss personal hygiene. Another

distinction of Beck’s Extreme Programming Explained is that it also comes closest, of all

the software books I know, to deserving an X rating: “When programmers are not mature [Beck 2005],
enough to separate approval from arousal” (arousal helped by the strong cologne?), page 43.
“working with a person of the opposite gender can bring up sexual feelings”, which “are

not in the best interest of the team” (whether or not they are in the best interest of the people

involved — regrettably, the text does not say). This is indeed about software projects, so

the team is what matters: “Even if the feelings are mutual, acting on them will hurt the

team”. Just to make sure we understand what is at stake, we are offered an illustration: in a

photograph artfully deferred to the next page in Beck’s book, “the man has moved closer to

the woman than is comfortable for her”. Please do not tell my wife, but I turned the page

with trepidation. Some readers will be relieved and others disappointed: the picture is

suitable for a family audience. The participants are long past eighteen years of age, fully

clothed, seen from the back, and separated by a good two inches. Do buy Beck’s challenging

and insightful book, but not for the titillation. This is, however, stuff for a torrid, florid, lurid

novel — or script (Hollywood, are you listening?). I am eagerly waiting for the first author

who, turned on by the cited paragraph, will write My Pair Lady, The Pair Karamazov or

Fifty Shades of Pair.

Coming back to less romantic aspects, the reaction of many people who hear the idea of
pair programming for the first time is that having two programmers do the job of one will
halve the output. To this objection, XP proponents respond that if those two people pro-
duce software that is more than twice as good, then we get a productivity gain, not a loss.

This response is correct. After all, typical productivity figures in the software indus-
try, measured in SLOC (source lines of code, a metric that everyone criticizes — and that
everyone uses), are around 20 SLOCs per person per day. Since writing twenty lines of
code takes only a few minutes, the explanation — clear to everyone in the field and con-
firmed by numerous studies — is that developers spend most of their time on other tasks,
in particular on thinking about the code they will write, and correcting code that was not
right the first time around. If pair programming truly is a superior process, it is not unrea-
sonable to expect that the two programmers together will produce more than 40 SLOCs;
if these lines are of equal or higher quality, the project benefits. So the trivial productivity
argument against pair programming cannot be sustained without a rational analysis of
costs and benefits.

§7.2 PAIR PROGRAMMING

107

Empirical studies, however, fail to give a resounding answer of support for pair pro-
gramming. When assessed against traditional techniques of code review (which subject
a programmer’s work to a collective inspection process) and PSP, pair programming

See [Miiller
2005], [Nawrocki
2001]. PSP was
describedin3.6.2,

appears to give similar results in overall productivity and code quality. “Appears” because page 46.

no current study is definitive, but the general trend is clear: no breakthrough here.

7.2.2 Pair programming versus mentoring

A mistake often made in the industry’s application of pair programming is to use it as a
mentoring technique by pairing a junior programmer with an experienced one, as a
training experience. Mentoring is a fruitful technique, but its primary purpose is educa-
tion, not software production.

The naive manager who hopes to kill two birds with one stone — get the advertised
benefits of pair programming, and train the junior programmer in the process — will be
disappointed. It is a lose-lose proposition. The junior member will slow down the senior
member, who instead of getting help for the most difficult challenges of the job will find
himself repeatedly explaining the easiest parts. And the would-be learner will not learn
that much because the supposed teacher, thinking of the expected result and the deadline,
will not explain more than strictly needed.

If you are looking for a good way to frustrate your best developers — possibly even
to turn them away from development — do try pairing them with greenhorns.

The idea of pair programming is that it is peer programming: you get feedback from
someone who is roughly at your own level of expertise. Mentoring is something else. Both
have their value, but confusing them means you lose on both counts: mentoring distorted
by the need to produce a serious program will not educate well; pair programming distorted
by the need to educate will not yield the expected productivity and quality benefits.

7.2.3 Mob programming

If more means merrier, why stop at two? Zuill and other XP enthusiasts recently intro-
duced mob programming, defined as “all the brilliant people working at the same time,
in the same space, at the same computer, on the same thing”. No more separation of
roles; the team thinks and programs as if it were a single person, like the battalion in
Donizetti’s La Fille du Régiment.

Such proposals illustrate how agilists have become one of the most fertile communities
in the software engineering world, a laboratory teeming with new ideas. (For other exam-
ples, too fresh to warrant further analysis in this book, look up “thrashing”, “programmer
anarchy” and “no estimates”.) Some will survive and others not. It is too early to predict

the fate of this one; the assessment that follows limits itself to pair programming.

7.2.4 Pair programming: an assessment

To assess pair programming, as well as many other agile techniques, it is useful to
remember Beck’s immortal words, cited on the previous page: we should be “mature
enough to separate approval from arousal”.

See [Mob site].

-~

108 AGILE PRACTICES: TECHNICAL §7.2

Applied judiciously, pair programming can unquestionably be useful. Many develop-
ers enjoy the opportunity to program jointly with a peer, particularly to deal with a thorny
part of an assignment. The basic techniques, in particular the idea of speaking your
thoughts aloud for immediate feedback, are well understood and widely applied. (As a
manager I regularly hear, from a developer, “On this problem I would like to engage in
a round of pair programming with X, and invariably find it a good idea.)

What is puzzling is the insistence of XP advocates that this technique is the only way
to develop software and has to be applied at all times. Such insistence makes no sense,
for two reasons.

The first is the inconclusiveness of empirical evidence, noted above. Granted, lack of
data is often used as a pretext to block the introduction of new techniques. When an idea
is obviously productive, we should not wait for massive, incontrovertible proof. But here
there is actually a fair amount of empirical evidence, and it does not show a significant
advantage for pair programming. Pair programming may be good in some circum-
stances, but if it were always the solution the studies would show it. In the absence of
scientific evidence, a universal move is based on ideology, not reason.

The second reason, which may also explain why studies’ results vary, is that people
are different. Many excellent programmers love interacting with someone else when
they write programs; and many excellent programmers do not. Those of the second kind
want to think in depth, undisturbed. The general agile view is that communication should
be encouraged and that the days of the solitary, silent genius are gone. Fine; but if your
team has an outstanding programmer who during the critical steps needs peace, quiet and
solitude, do you kick him out of the team, or force him to work in a way that for him may
be torture?

It is one thing to require that people explain their work to others; it is another, quite
dangerous, to force a single work pattern, especially in a highly creative and challenging
intellectual endeavor. When Linus Torvalds was writing Linux, he was pretty much by
himself; that did not prevent him from showing his code, and, later on, engaging thou-
sands of people to collaborate on it. Many more examples come to mind: Bill Joy and
Berkeley Unix, Richard Stallman and Emacs, Donald Knuth and TeX. (On second
thought, the idea of forcing Don Knuth to pair-program is brilliant. Someone should try.)

Noting that pair programming implies “too much togetherness” for some people’s taste, [Cockburn
Cockburn proposes “side-by-side programming” whereby two people program separately, zgig pages
each with a personal workstation, but close enough to see each other’s screen. This setup '
seems hardly preferable to a classical mode of operation in which people concentrate when

they need to, with as little interference as possible, and talk when they need to.

The insistence on pair programming as the only true way has clearly embarrassed some
of the agile proponents. Larman, for example, draws the line:
Pair programming is only an XP practice; it is not required in Scrum. [Larman 2010],
page416-417.
While the first comment is an exaggeration (since one finds advocacy of pair program-
ming far beyond the strict confines of Extreme Programming), the refusal to commit
Scrum to a dogmatic application of pair programming is clear.

§7.3 CODING STANDARDS

109

It is to the credit of XP to have introduced pair programming, explained the rules, and
added this technique as an important element of the modern programmer’s toolset. The
decree establishing it as the sole answer is uncalled for, and has been rejected by the pro-
fession even as it was adding pair programming to its catalog of useful practices.

7.3 CODING STANDARDS

Agile methods include the idea that teams should adhere to strict coding standards to
help quality. In the original description of Extreme Programming, Beck writes

If you are going to have all these programmers changing from this part to that
part of the system, swapping partners a couple of times a day, and refactoring
each other’s code constantly, you simply cannot afford to have different sets of
coding practices. With a little practice, it should become impossible to say who
on the team wrote what code.

Coding standards are hardly a new idea; every decent software development organiza-
tion has known for a long time that you need to define precise style rules. What is worth
noting in the citation above is the rationale it gives for coding standards: to ensure that
one cannot find out who wrote a program. This is an old idea too, introduced in the nine-
teen-seventies under the name of “egoless programming”. It used to be criticized as an
attempt by Dilbert’s-boss types to suppress the creativity and individuality of program-
mers, and it is interesting to see it reappear as part of a completely different ideology.
One cannot but be surprised. All this agile emphasis on communication and collabora-
tion is great, but in the end great programs are written by great programmers (such as
Kent Beck). Linux bears the mark of Torvalds, Berkeley Unix the mark of Joy, TeX the
mark of Knuth, xUnit the mark of Beck and Gamma; no one complains. Even projects
involving lesser mortals naturally assign the most difficult parts to the best programmers.

Whether or not one agrees with a particular rationale does not, of course, affect the
soundness of the exhortation to apply coding standards.

7.4 REFACTORING

The agile alternative to upfront design is to adopt a constantly critical attitude towards
successive versions of the program, looking for design and code “smells” (unsatisfactory
elements), and correct them. This process is known as refactoring.

7.4.1 The refactoring concept

A typical example of code smell is duplication. It is always bad to have the same code,
or almost the same, in two different places in the program: two places to debug, two
places to correct if the need arises, two places to change when requirements evolve.

A typical refactoring to correct duplication is to abstract the commonality into a sep-
arate module: in object-oriented programming, move the duplicated code to a new class
representing the common abstraction, and make the existing classes inherit from it.

[Beck 2000],
page 61.

-~

The techniques
of “generaliza-
tion”, intro-
duced in [Meyer
1995], coverpart
of refactoring.

110 AGILE PRACTICES: TECHNICAL §7.4

This change is only one way to remove the duplication and is not always appropriate.
Programmers perform refactoring by identifying code smells and finding out in each
case whether a known refactoring pattern is applicable and desirable.

Some refactorings are less momentous but still useful; for example you may want to
change the name of a feature (method, member) of a class for clarity or consistency.

Modern programming environments provide tools for performing refactoring
changes automatically.

Not every pattern of program change can yield a refactoring pattern. Two conditions
are required:

* A refactoring must not change the semantics of the program.

* A refactoring must improve the quality of the code or the architecture. <; R;member
. . that)y conven-

The first condition means that the program should perform in exactly the same way after rion we use

the refactoring as before. Refactoring is neither about bug fixing nor about fiddling with “design "ﬁ[’l’ the

functionality, not even for j}lst %mproving thg user iqterface. Thqse kinds of changes are pzorif;ei';we

also necessary, but refactoring is only about improving the quality of the architecture. for its result

37).
Both the need for refactoring and the role of automated support follow from this con- (page 37)

stant-functionality requirement. Even a change conceptually as simple as renaming a
routine is not only tedious but error-prone if performed manually, since the name must
be changed not only in the routine’s definition but in all of its calls and other uses
throughout the program. In other words the advantage of refactoring tools is that they can
perform changes not only automatically but also safely.

Ensuring the second above condition requires defining quality for code and, more
importantly, architecture. While there is no single, enforceable definition, the software
design literature provides many criteria. It is clear, for example, that a class with just one
routine, or a deep and narrow inheritance hierarchy (where every non-root class has
exactly one parent and every non-leaf class exactly one heir, as pictured on the right), are
potential signs of bad quality — design smells. (Tellingly, it is usually easier to point to
such examples of non-quality, also known as “anti-patterns”, than to provide a positive
definition of quality.)

SIS

Beck actually has a more specific condition: a refactoring must “make the design sim- [Beck 5 320], ;
pler”. His notion of simplicity includes no duplication, minimum number of classes and 775 ™
minimum number of methods.

7.4.2 Benefits and limits of refactoring

-~

Drawing attention to the importance of refactoring has been one of the most visible
effects of agile methods, and specifically of Extreme Programming. Refactoring has
become one of the principal tools of the modern programmer.

As with many other ideas, the positive contribution (“use this technique”) is more
interesting than the negative one (“this technique is a replacement for traditional ones”).
The mindset of always looking for possible improvements in an architecture is excellent.
But refactoring is not an excuse for rejecting “Big Upfront Design”. If you pay no atten-

§7.4 REFACTORING 111

tion to initial design, just building “the simplest solution that could possibly work”, you
could end up redoing the design again and again since the initial solution, while work-
able, was not adaptable. In describing the process, Beck also shows its limits:

Not all refactorings can be accomplished in a few minutes. If you discover that [Beck 2000],
you have built a big tangled inheritance hierarchy, it might take a month of ZZ«%Z;Z; slightly
concentrated effort to untangle it. But you dont have a month of concentrated '
effort to spend. You have to deliver stories for this iteration.

You have to take such a big refactoring in small steps (incremental change).
You’ll be in the middle of a test case and you’ll see a chance to take one more step
toward your big goal. Take that one step. Move a method here, a variable there.
Eventually all that will remain of the big refactoring is a little job. Then you can
finish it in a few minutes.

A truly “big refactoring”, however, is typically not a sum of small refactorings. In a com-
piler project I know, the team uncovered at some point the reason for a major perfor-
mance overhead: the compiler was using an expensive data structure to keep track of the
units of a system (classes and routines). It came up with a redesign identifying every unit
by a plain integer instead of an object. This is a big system — thousands of classes, over
two million lines of code — for which such a surgical refactoring is what everyone hates:
tricky, painful changes affecting just about every module of the system, for no new
user-visible functionality, the only benefits being a speed improvement and a more solid
foundation for future developments. If you decide for it, there is no way to proceed by
“small steps”; you cannot have one part using integers and the others using object iden-
tifiers. You have to accept that nothing happens, for “a month of concentrated effort” and
possibly more. You might find that the result is not worth such a disruption, but if you
do decide to go ahead it is all or nothing.

Beck’s advice is yet another case of unwarranted generalization. Some changes can
be carried out incrementally: do a bit here, a bit there, and one morning you wake up to
the delightful finding that only a “/ittle job” remains which you can “finish in a few min-
utes”. Renaming classes and features for more consistency, locally rearranging the inher-
itance relations between a few classes, turning an attribute (a field) of a class into a local
variable are typical examples. And some changes just cannot be carried out that way.

It would be nice to believe the mantra that starting from “the simplest thing that can
possibly work” and incrementally improving the architecture yields great software. That
is unfortunately not the case. The old GIGO principle applies: Garbage In, Garbage Out.
As we noted in an earlier chapter, refactored junk is still junk. This observation is by no
means an indictment of refactoring. It simply indicates that refactoring works best when:

» Applied to an architecture that is already sound, although not perfect.
» Combined with upfront design.

The next two subsections detail these two points.

112 AGILE PRACTICES: TECHNICAL §7.4

7.4.3 Incidental and essential changes

-~

There are two ways an initial design can lead to an imperfect architecture: incidental and
essential. Incidental imperfections can be corrected through refactoring, but essential ones
cannot. Inconsistent naming conventions are incidental; a wrong choice of abstractions is
essential. The compiler issue cited above was an example of essential imperfection. Here
is another common one.

You have a set of classes describing loosely related concepts, say jobs in a company.
You also have lists of objects of these types. Several times as you were writing the pro-
gram you realized that you needed some new functionality applicable to all objects in
such lists. For example, you wanted to print the contents of a list, so you had to add a
“print” routine to every one of the classes involved. Then you added an “encode” oper-
ation, to store objects compactly. The next time it was about producing an XML form.

These are functional changes, not refactorings, and you have performed them already.
But you feel that more such cases will arise in the future, and you decide to put a stop to
this constant modification of existing classes. (Maybe it will no longer be possible any-
way, as some of the classes will be moved into a reusable library, not under your control.)

The technical solution is well known: use the Visitor pattern, which makes it possible See [Gamma
to apply arbit tions to arbitrary inst f a class, where th ti 1994], or the
o apply arbitrary operations to arbitrary instances of a class, where the operations are .., vion in
defined anywhere, not necessarily in the class itself. Adopting this solution requires /ieyer 2009).
making one change to all the affected classes: make them “visitable” by inheriting from
a general VISITOR class with an appropriate update routine. You should also remove the
kludge code that had been added as a temporary solution, and move it elsewhere. You
decide that the long-term flexibility benefit is worth the short-term pain.

This is a significant change. Maybe not a month of work, but at least several days
depending on the number of classes involved and the consequences on other parts of the
architecture. For best results it is not desirable to perform it one little step at a time: by
switching contexts repeatedly you may forget the details and introduce inconsistencies.
Better perform the operation in one sitting.

To avoid putting yourself in such situations, there is no substitute for careful upfront
design. Even so, it is not always possible to have perfect foresight. When the case arises,
it calls for an in-depth redesign, not covered by the kind of incremental refactoring pro-
moted by XP and other agile approaches.

Understanding the difference between incidental and essential change is key to « “ddditive
addressing the issue of software extendibility (changeability), and defines the limits of and multiplica-
refactoring. The distinction is related to one that we studied earlier: additive versus mul- "¢ l‘a‘z':g ,fivjffd
tiplicative complexity. In general, a change is incidental when it affects additive ele- e linguine”,
ments: functionality with few dependencies on other parts of the system. If such page 63.
dependencies exist (multiplicative complexity), the change is essential, and not amena-

ble to simple refactoring.

§7.5 TEST-FIRST AND TEST-DRIVEN DEVELOPMENT

113

7.4.4 Combining a priori and a posteriori approaches

Refactoring, cast by agile proponents as an “either-or” technique, has its best use — like
many other agile ideas that we review in this book — as an “and” technique. It works
best when combined it with the ideas against which agilists artificially set it, in this case
upfront design.

No amount of refactoring is going to correct a flawed architecture. The primary
responsibility of any designer is to identify the fundamental abstractions that will pro-
vide the backbone of the architecture. Do it right, and you still have a lot of work to do;
but do it wrong and you will end up (choose your metaphor) patching leak after leak,
extinguishing fire after fire, applying band-aid after band-aid.

If you have an unsound architecture, there is no choice but to recast it, whatever effort
that takes. (“If it is baroque, fix it”.) If you have a sound architecture, you are not out of
the woods yet because it is probably not perfect, and imperfections will creep in anyway
as you refine it. This is where refactoring helps.

Agile methods have taught us that we should never lose our readiness to criticize our
own work; we should remain alert to the possibility of design and code smells, identify
them, and fix them on the fly.

7.5 TEST-FIRST AND TEST-DRIVEN DEVELOPMENT

The final technical practice reviewed in this chapter is a somewhat extreme consequence
of the central role of tests emphasized by agile approaches starting with XP. The idea,
previewed in the discussion of principles, is test-driven development, or TDD for short,
with its corollary of test-first development (which we may call TFD for convenience,
although unlike TDD this abbreviation is not widely used).

7.5.1 The TDD method of software development

TDD is not a testing technique but a full-blown software development method. At the
beginning of the book that introduced the idea to its full extent, Beck defines it as the
repetition of the following basic cycle:

TDD cycle

Quickly add a test.

Run all tests and see the new one fail.
Make a little change.

Run all tests and see them all succeed.
Refactor to remove duplication.

BN W N =

That is it — including at the beginning, when you “add a test” to a still empty project
base. The process thus defined has four major implications.

See also “User
stories”, 8.3,
page 119 and
“Dual Develop-
ment”, page 74.

@

From [Beck
2003], page 1.

114 AGILE PRACTICES: TECHNICAL §7.5

The first implication is that you always write the tests before you write the corre-
sponding program elements. If we stop there we get TFD (test-first development),
which is a subset of TDD — and only a subset, since it omits parts 2, 4 and 5 of the basic
TDD iteration.

The second implication is that the process is extremely incremental: one new test at
a time, exercising one new functionality or one previously unhandled case.

Without step 5 we would have a pure hacking-style process: handle one input value;
add another, update the code accordingly; and so on. We might end up with a huge “if...
then... elseif... else...” with one branch for every value that has been encountered in the
tests. TDD is smarter, of course, and step 5 is key: refactoring. Once the tests run you
are not necessarily happy yet; you want to ascertain the quality of the architecture and,
if it is not good enough — using Beck’s criterion, not simple enough, for example
because it tries cases one after the other instead of unifying them — fix it before you
move on.

The fourth consequence is a rule that we reviewed in the discussion of agile princi- « “Donot start
ples, expressed here as step 4 of the basic cycle: do not move on until all tests succeed. Z%Zi?ﬁfﬁu
This is the second secret (along with refactoring) to preventing the method from turning sees pass”,
into hacking. If you make an inconsiderate change just to satisfy the latest test, chances 4.5.3, page 76.
are it will break some of the previous tests, causing a regression. All tests will be kept in
the test regression suite, which every step must exercise in its entirety; the suite grows
along with the project, providing an ever bigger guarantee of quality if you apply the rule

that all the tests must always pass.

The wording of step 2 may be surprising at first: why should we expect a test to fail?
It is, however, consistent with TDD as a software development method: since the method
forbids you from implementing a new functionality before writing a test for it first, a new
test should not be covered by previously implemented functionality, and hence should
fail. The most obvious example occurs at the very beginning of the process, when you
are not supposed to have any code written yet; for any test, an empty program will fail.
Later on, it is in principle possible that a new test would succeed just because it happens
to be covered by what has already been implemented, but in a strict TDD view such a
test is not interesting since it breaks no new ground.

What is a test, by the way? TDD only makes sense with modern testing technology,
which provides mechanisms for preparing numerous tests, each described by inputs and
expected outputs, and running the whole collection of these tests (the regression suite)
automatically. Tools collectively known as “xUnit” — developed in part, not surpris-
ingly, by some of the people who also originated XP, and reviewed in the chapter on arti- — “7ests”, 8.2,
facts — make it possible both to describe the input and to specify the expected properties 7%2¢ /17
of the result, known as an oracle, in the form of the conditions they must satisfy, known
as assertions. The tools can then automatically run hundreds or thousands of precisely
defined tests and evaluate the oracles.

§7.5 TEST-FIRST AND TEST-DRIVEN DEVELOPMENT

115

7.5.2 An assessment of TFD and TDD

The TFD and TDD techniques have made an important contribution to the state of the
art in software engineering. Let us leave that contribution for last and start with the
aspects that are more subject to criticism.

The most debatable idea is not explicitly stated in TDD but underlies the entire
approach: it is the assumption that tests are all we need to specify programs. This is a
very bad idea. Much of the earlier analysis of why scenarios such as user stories are not
general enough for specification applies here, and indeed more strongly, since tests are
even more specific than user stories. What is missing is abstraction; this was the differ-
ence (mentioned then) between stating that / has values 0, 1, 4, 9 and 25 for the first few

integers, and telling you that /() is n? for every integer n.

It is true that the larger the test suite grows, the more unlikely it becomes that some
case will behave wildly. But unlikelihood is not impossibility, and many software mal-
functions are due to a special case that escaped testing. Writing a specification means
abstracting from specific cases and looking for general rules. Another way of stating this
observation is to note that one can generate tests from specifications (there is an entire
line of software verification research in this direction) but not the other way around.

Another aspect of TDD raises questions, but for entirely different (and almost con-
trary) reasons: the requirement that all tests must pass before the team moves on to any
new functionality. The pros and cons of this principle were discussed earlier.

In practice, few organizations apply the strict TDD process in the form of the repeti-
tion of the sequence of steps described above. The real insight has been test-first devel-
opment and, more specifically, the idea that any new code must be accompanied by
new tests. It is not even critical that the code should come only after the test (the “F” of
TFD): what counts is that you never produce one without the other.

This idea has come to be widely adopted — and should be adopted universally. It is
one of the major contributions of agile methods.

-~

« “Express
requirements
through scenar-
ios”, 4.5.5,
page 77.

< “Do not start
any new devel-
opment until all
tests pass”,
4.5.3, page 76.

8

Agile artifacts

To support their practices, agile approaches have defined a number of artifacts, some
of them concrete such as “story cards”, others virtual, that is to say, of a purely concep-
tual nature. We start with the main virtual artifacts: working code, tests, user stories,
story points, velocity, definition of done, product backlog. Then we move on to con-
crete artifacts: working space, story card, task and story board, burndown chart. We
conclude with five artifacts, four of them virtual and one concrete, which figure promi-
nently in agile discussions, albeit negatively, as pitfalls to avoid: impediment, technical
debt, waste, dependencies, and dependency charts.

8.1 CODE

Code is at the center of the agile universe; specifically, working code, which can be exe-
cuted as part of the system under development.

The emphasis on code is part of the agile quest to shift the conversation in software
engineering from processes and plans to the concrete results that matter most to the suc-
cess of a software project.

8.2 TESTS

Along with code, tests are the main product endorsed by all agile approaches. Extreme
Programming was the approach that rehabilitated tests as a core software engineering
concept. Two kinds of artifact are in fact involved here (the latter one made of a collec-
tion of instances of the former): unit tests and regression test suites.

A unit test is the description of a particular test run and its expected results. The pro-
cess of unit testing has been profoundly reshaped by the appearance of the so-called
“xUnit” testing tools, such as JUnit for Java. As noted in the previous chapter, it is not a
coincidence that Beck, the most prominent figure behind XP, was (along with others such
as Erich Gamma) one of the authors of these tools. A unit test in the xUnit style takes the
form of a class and includes:

B. Meyer, Agile!, DOI 10.1007/978-3-319-05155-0_8,
© Springer International Publishing Switzerland 2014

@

118 AGILE ARTIFACTS §8.2

* A routine (method) which executes the test.

* Set-up and tear down routines, to prepare for the test and reset the context. It might
for example be necessary to open a connection to the database prior to the test and to
restore the database’s original state afterwards.

* An assertion, defining the condition (also known as an “oracle”) for the test to suc-
ceed. Consider for example an operation that processes a request to rent a car and, if
it deems it acceptable, sets the variable age to the driver’s age; a test for that operation
might include the assertion is_accepted implies (age >= 18 and age <= 75).

This standardized approach to defining tests has been one of the significant advances in
the state of the art in software engineering over the past two decades, including for many
projects that do not specifically use an agile approach.

There is an even better approach. Instead of treating the code and tests as separate artifacts, [Meyer 1997];
and associate assertions with tests only, we may view assertions as a specification [Meyer 2009a].
mechanism and write them as an integral part of the code, in the form of class invariants

and routine preconditions and postconditions. This is the method of Design by Contract as

used in Eiffel; it also makes it possible to generate the tests automatically from the code and

assertions. All this, however, is for another discussion.

The regression test suite is a collection of unit tests. It includes any test that has, at some

point in the project, been found to fail. A particular phenomenon of software development

is that old bugs can reappear (because of version control errors, of incomplete bug fixes,

but also simply of continuing to use the same flawed thought patterns). This phenomenon « “Daily build

is known as regression, and part of the purpose of a regression test suite is to avoid it @7 continuous

through the practice of continually running the tests, as part of continuous integration. ZZ;‘?’%?” '
There is in fact no reason to limit the regression test suite to previously failing tests.

We have seen that one of the important contributions of agile methods (originally of XP)

is the rule that every element of code should have at least one associated test. The regres-

sion test suite includes all such tests. Ambler notes that

Agilists are at least doing regression testing if not TDD, [Ambler testing].

confirming that the regression test suite is one of the defining agile artifacts, just as con-
tinuous integration is one of the defining agile practices, even for teams that shun the
more extreme ideas such as test-driven development.

The regression suite is a key asset of any well-managed software project. Part of its
attraction is that it is a truly incremental product. We have seen that the incrementalism
advocated by agile approaches does not always work when applied to development. But
the regression suite is incremental by nature; it can start small and, if everyone sticks to
the discipline of never adding a piece of functionality without also adding a test for it,
grow quickly and become a core project resource.

-~

§8.3 USER STORIES 119

8.3 USER STORIES

User stories provide the basic unit of requirements in agile methods.

A user story is the description of a fine-grain functionality of the system, as seen by its
users. The more general notion is use case, developed extensively in a well-known book
by Jacobson. A use case can be big: it describes an entire interaction scenario, for example /Jacobson
the process of ordering an item on an e-commerce site. A user story is much smaller. 1992].

A standard style has emerged in agile circles to describe user stories. In that style a
user story consists of a triple: [category of user, goal, benefit]. For example:

“As a staff member, I want to cancel a booking so that reasonable requests for
policy exceptions can be accommodated. ”

Although some projects impose such a fixed style, many variants are possible.

The flagship property of user stories as a tool for describing system functionality is
that each story describes a unit of functionality from the user’s perspective; more pre-
cisely — since there is no such person as “the user” — from the perspective of a partic-
ular category of users. “Change from a relational database to a no-SQL solution” is not
a user story. To integrate such an architectural change, you would have to define it as a
task for a user story that describes a benefit visible to users, for example “As a marketing
manager, I want to create new customer offers without having to fit an existing scheme,
so as to react more quickly to market opportunities”.

The benefit of relying on user stories as the basis for development is to keep the team
looking outward for what customers really want, rather than inward for how to develop
the existing code further. But in this very benefit also lies the principal deficiency of the
approach. The size of a user story as implied by its description gives little clue. Consider
the following two examples, each adding a function to an airline booking system:

-~

1 “As an airline customer, I want to enter a discount code at the end of a reservation
rather than at the beginning, so as to avoid having to restart the procedure from
scratch if I did not think of it at the beginning.”

2 “As an airline customer, | want to use the same interface for purchasing a flight and . A
for booking it by redeeming frequent flyer miles, so as not to have to restart the pro- gozgi(;lj;clkzz

cedure from scratch if I did not decide at the beginning.” On Lean Soft-
wares “integ-

Story 2 is inspired by an anecdote told by Poppendieck, complaining that her airline was i?lgmif;isf;%f
violating the Lean principle of “integrity” by providing different systems for flight pur- cjpes”, 9.2.2,

chases and redemption of frequent flyer miles. page 134.

120 AGILE ARTIFACTS §8.3

These two stories look similar but are of far different complexity. Implementing story
1 is probably a routine task, taking a day at most. Assuming that (as in Poppendieck’s
anecdote) the systems for purchasing a ticket and redeeming miles are currently distinct,
story 2 involves merging these systems and may be a major endeavor. Although it is nor-
mal that different user stories require different amounts of implementation effort — this
is the reason for sizing them up in “story points”, as discussed in the next section — here
we are talking about efforts of entirely different kinds: one is an incremental improve-
ment, the other a major surgical rework. Expressing both tasks in user-story style obfus-
cates their fundamental difference of nature. Even if it never hurts to justify any program
change by a user need, it is more effective to specify the change corresponding to story
2 as what it is: an architectural redesign.

The lack of such a perspective can lead to brittle designs and useless work. One can
easily imagine some user stories, in the early days of the airline projects, about the need
to allow users to redeem miles; these stories were implemented, leading to a separate sys-
tem, to which new user stories were repeatedly added. At some point it became as com-
plex as the ordinary booking system and someone realized that the two should be
merged. The proper approach, to avoid duplication and waste of effort, would have been
to take an architectural perspective and realize early on that the airline needed a domain « “The domain
model covering all its flight reservation concepts, such as purchase and redemption; both andthemachine”,
systems would have relied on it. Such an approach requires abstracting from individual %%
user stories and the superficial system views they imply, and concentrating instead on the
essential properties, which often will lead to working on an architecture first — in par-
ticular a domain model — that supports many different user stories, those envisioned ini-
tially and many others that will emerge later.

The advice to look at the whole problem rather than individual details is, by the way,
exactly what another of Lean Software’s principles, “See the whole”, is about. But Pop-
pendieck gives no indication of how this principle might fit with the reliance on user sto-
ries to guide development. It does not.

It has been a significant agile contribution to bring user stories to the forefront. They
do have a role — but not the one that agile development assigns to them. As a basis to
development they lead to piecemeal systems, built to handle one function after the other
without sufficient attention to the infrastructure. True, infrastructure work is unglamor-
ous, and shunned in agile approaches because it does not immediately bring new
user-relevant visibility. Replacing a relational database by a no-SQL solution does not
add functionality, but may be critical to the scalability of the system. Replacing a
tree-based data structure by one based on hash tables is even more of a geek thing, leav-
ing the impatient customer wondering what in the world those developers are doing this
week. No user story here; and yet it may be a key step for the project.

In the same way that a test, or a million tests, cannot replace a specification, user sto-
ries (and use cases) cannot replace requirements and designs. Their unique role, like that
of tests for specifications, is as a validation mechanism for requirements and designs.
Higher-level requirements have the advantage of abstraction and generality, but run the
risk of impracticality: of missing cases that are important to users. Listing user stories is

§8.4 STORY POINTS 121

not a replacement for writing general requirements, but is an important step to make sure
that nothing has been forgotten. They describe particular walkthroughs that, while not
sufficient to describe the system, are necessary if the system is to succeed.

A colleague of mine was once asked to consult on a fancy new computer architecture, full
of great concepts, object-oriented and all. His first reaction after hearing the enthusiastic
presentation by the designers was: very impressive, thanks, but how do I do a load and a
store? These are typical user stories. As checks on a proposed system, they are invaluable.
As a way to build the system (who would devise a new computer architecture on the basis
of load and store?), they are insufficient.

As noted in the earlier example, user stories detract from the task that is critical for all
applications, and particularly for the kind of business application that agile development
often targets: building the domain model. The domain model is (assuming an object-ori-
ented approach) a set of classes covering the fundamental concepts of the envisioned sys-
tem — flights and frequent flyer miles, employees and paychecks, customers and
credit-cards, paragraphs and fonts, phone calls and text messages... — with the associ-
ated operations and relations (inheritance, client) between them. The domain model is
focused on the business aspects of the system, not computer-only aspects such as data-
base access and user interfaces. As a result, building a domain model does not deliver
user-accessible functionality; a solid domain model will, however, serve as a backbone
for successful system development.

There can be too much of a good thing: the risk exists of fine-tuning the domain model « “Dual
forever and neglecting that users need visible functionality. This is where user stories Development”,
come in, as a reality check. The dual development technique introduced in an earlier ﬁ?ﬁe@;}i@;jn_
chapter has its role here, enabling us to mix the approaches in one of two ways: ing a priori and

a posteriori
+ Sequential: give the priority to the domain model in the first phase of system con- @proaches’.
struction, so as to establish a solid basis, then move to a focus on regular delivery of page I13.

user-visible functionality, informed by user stories.
» Parallel: work at the same time on both aspects, constantly informing one by the other.

Relying exclusively on user stories as the source of requirements, on the other hand, is
not sufficient for the design of solid systems. This narrow focus is one of the main limi-
tations of agile methods.

8.4 STORY POINTS

Successful project control requires both estimation of effort, in advance of an iteration, « “Planning
and measurement of progress, during the iteration and at the end. We saw estimation ;:ngg’g_‘szi;[an_
techniques in the discussion of the planning game and the planning poker; measurement ing poker”,

of what actually happens once the project has started is just as important. 6.4, page 94.

For both estimation and measurement, teams need units of progress. The artifacts of
this section and the next provide the basic agile answer.

122 AGILE ARTIFACTS §8.4

Traditionally, the software industry has counted in person-months (or person-days).
This measure is good for human resources and accountants, to prepare paychecks and
determine IT costs, but as a project effectiveness metric it is not so useful. Beyond what
is spent, we want to know what is achieved. (Anyone who has ever had to deal with par-
ents complaining about a student’s bad grade because “he worked so hard and for so
long!”” will be familiar with the difference.)

“Source lines of code” counts (LOCs, SLOCs) are still widely used. They are easy to
measure, but that is almost the only argument in their favor. Even if they were a good
proxy for functionality (a contentious assertion), it is difficult to estimate in advance the
future SLOC count of a system under construction; as a result SLOCs are also not con-
venient for measuring progress in the absence of a solid reference against which to assess
them. (Thanks for telling me that the project produced 85,000 lines so far, but does this
means we are 90%, 50% or 10% done?)

A generally better measure is function points, which estimate the number of individ-
ual functions of the system, but they are also difficult to estimate in advance, and not
always appropriate in developments using modern object-oriented techniques, where
data abstractions are just as important as functions (which are attached to them).

In the agile world the basis for measuring progress will come from the standard mode
of specifying functionality: user stories. We cannot simply count user stories, however,
since they vary in difficulty. Hence the notion of story point. A story point is simply an
integer that estimates the difficulty of a user story.

The unit can be a day of work, but other conventions are possible; for example a
project can take as its story point unit the difficulty of its easiest user stories. Then all
others are evaluated relative to that basis. In Cohn’s words:

The beauty of this is that estimating in story points completely separates the [Cohn 2006],
estimation of effort from the estimation of duration. Of course, effort and page 40.
schedule are related, but separating them allows each to be estimated

independently. In fact you are no longer even estimating the duration of a project:

you are computing or deriving it.

(Cohn’s emphasis in this extract is on estimation, but the observation applies equally to
a-posteriori measurement.)

Story points have three important properties:

* As the last observation indicates, they are relative indicators, not absolute time val-
ues. You could take the story point estimations and measurements for a given project,
multiply them all by 5, and not significantly affect the process. Within a given project,
however, the estimations should be consistent, making it possible to define and pre-
dict velocity as discussed in the next section.

» In measures of already achieved results, story points can only be counted for imple-
mented user stories; incomplete work, such as user stories that have not been fully
implemented, does not count. This rule is in line with the agile rejection of “waste”,
a category that includes any code that is not actually delivered.

§8.5 VELOCITY 123

* More generally, any non-delivered artifacts will not count towards progress. < See “Develop
Examples may include documentation, plans, and requirements, all of which are gen- ;’e’ilt}v ,‘f"‘;‘;gz‘é)
erally considered waste in the agile view, although such artifacts may be taken into ’ '
account if made explicitly part of the definition of done as discussed below. Note that
tests, while definitely not waste, are not counted in story points.

Story points are a fairly recent addition to the collection of agile artifacts. Extreme Pro- /Beck 2000),
gramming initially used absolute measures of time: ideal programming time, the number page178. Onthe
of days required to implement a story assuming full-time work and no distractions, to be nggzﬁ} 7
weighted by a load factor, the ratio of actual time to ideal time, “typically 2 to 4” (Beck). '

A criticism was that estimators used the load factor in practice to fudge the estimation,

indeed an obvious temptation given the magnitude of this range. XP moved in 2002 to

“pure programmer weeks”. A trend then emerged to abandon the reference to precise

units of time, and work instead with dimension-less numbers, which do not mean any-

thing in the absolute; to emphasize this property, the affectionate term “gummi bear” is

sometimes used as a synonym for story point.

Within a project, story points do have a meaning, since they enable the project to com-
pare progress from one iteration to the next using a consistent measure. Cohn again:

There is no set formula for defining the size of a story. Rather, a story-point [Cohn 2006],
estimate is an amalgamation of the amount of effort involved in developing the page 36.
feature, the complexity of developing it, the risk inherent in it, and so on.

The planning poker (as well as its earlier variant the planning game) is one of the
accepted agile techniques for obtaining such estimates. You will remember that the plan-
ning poker used values taken from a sequence of integers, for example Fibonacci-like
values 0, 1, 2, 3, 5, 8, ... With such a practice, 1 simply denotes the smallest significant
user story cost, and all other values are understood relative to it. You might decide that
this smallest unit corresponds to two hours or a half-day of work, although, as Cohn’s
citation on the previous page explains, the exact choice for that correspondence is not
critical in the estimation process.

8.5 VELOCITY

Once the user stories have been given individual cost estimates and an iteration starts,
the same measures can serve to assess progress. This is where velocity becomes useful.

This notion addresses a crucial need which, surprisingly, has been often ignored in
pre-agile software development: to provide a clear, measurable, continuous estimate of
the speed at which a project is progressing.

The field of software development abounds with jokes about projects that are “90%
complete” after a few weeks, and remain there for a very long time. But the question
“how far are you?” is a legitimate one for managers and stakeholders to ask.

124 AGILE ARTIFACTS §8.5

The term “velocity” is, in ordinary language, just a synonym for speed. Speed is a
ratio of advancement over time: for a moving object, d / where d is the distance traveled
and ¢ the time it takes. This property also applies to velocity in agile project management,
where the numerator (d) is nowadays measured in story points, but the denominator, the
time, does not appear explicitly because the convention is to use an iteration, such as a
sprint in Scrum, as the unit of time. So velocity in the agile world denotes the number of
story points achieved in the current project iteration.

Velocity thus defined is a measure of work accomplished. This concept gives further
credence to the policy of choosing relative rather than absolute values. It may be diffi-
cult to know ahead of time whether a particular task will take two hours, a half-day, a
full day or two days. Instead, the story point methodology directs you to abandon hopes
for perfect time accuracy and focus instead on assessing the difficulty of all tasks in
comparison with each other. If you apply this methodology consistently throughout the
project, the relative predictions (story points) will start giving more and more accurate
absolute values (durations).

Concretely, assume that you have made two estimates:

» The first sprint will cover 30 story points.
* A story point corresponds to a day of the team’s work

The second of these may be far off, although you hope the first one is better. Now assume

that the 30-day sprint actually manages to complete 20 story points. Assume further that

this pattern continues over a few more sprints: the ratio of time to story points (remember

the “load factor” of early XP techniques) hovers around about 1.5, instead of 1 as antic-

ipated. If that pattern remains stable for a while and the team continues to get better, as

it should, at estimating story points, that correspondence (time per story point) becomes

ever more precise and credible. This is what Cohn’s first above citation called the « Page 122.
“beauty” of a relative metric.

Such techniques, which use continuously refined measurements to Time
improve the precision of initially rough predictions, are an example of a
more general software engineering concept originally introduced by
Boehm: the “cone of uncertainty”. The cone defines the estimated range |ypcertainty
(and, at the end, a measured value) for a certain project property; as time
progresses and the project learns more, the range shrinks.

High estimate

Low estimate

On the cone of

As noted, velocity is usually measured over a full iteration. A finer level of granularity uncertainty see

might be useful: although it makes little sense to compare yesterday’s velocity to today’s, [Boehm 1981]

tracking velocity on a continuous basis may give good indications to the project. ””1“1’ %IOC((]""'
ne 0/.

Velocity is one of the most interesting concepts popularized by agile methods. While the
underlying metric is subject to the reservations made at the beginning of this chapter on -
the value of user stories as the basic requirement unit, the insistence that projects keep a

precise record of their progress by tracking their velocity is sound and useful advice.

-~

§8.6 DEFINITION OF DONE

125

8.6 DEFINITION OF DONE

The agile emphasis on delivering actual functionality and avoiding waste, reflected in the
strict definition of progress as the number of delivered story points, requires stating and
applying rigorous and consistent criteria to determine whether a task is actually com-
pleted. This is known in Scrum as the “definition of done”, in the sense of explaining
what you mean when you say that you are done.

Consistency is particularly important in the definition of done: we may or may not
require that the completion of a user story include the completion of the corresponding
user manual entry, but we must make the decision for all user stories. Otherwise we can-
not fairly measure progress.

Sutherland cites the following example definitions of done:

* Releasable. (The simplest.)
» Unit- and integration-tested; ready for acceptance test; deployed on demo server.
» Acceptance-tested; release notes written; releasable; no increased technical debt.

“Technical debt”, discussed below, includes complications to the code or design defi-
ciencies that are likely to cause unjustified future work.

8.7 WORKING SPACE

Extreme Programming argued from its origins for grouping programmers in open spaces
with no physical separation, also known as “bullpens”, as a way to foster communica-
tion. Beck wrote:

XP wants to err on the side of too much public space. XP is a communal software
development discipline. The team members need to be able to see each other, to
hear shouted “one-off” questions, to “accidentally” hear conversations to which
they have vital contributions.

The idea has been widely adopted by other agile approaches and you can safely replace
“XP” by “Agile methods” in this advice.

The communal space is not meant to exclude offering privacy when needed. Beck’s
recommended layout also includes “little cubbies” (small personal areas) around the out-
side of the communal space, so that:

The team members can keep their personal items in these cubbies, go to them to
make phone calls, and spend time at them when they don t want to be interrupted.
The rest of the team needs to respect the “virtual” privacy of someone sitting in
[his or her] cubby.

Cockburn’s Crystal method also devotes considerable attention to office layout and its
contribution to ensuring “osmotic communication” between members of the team.

Scrum

[Sutherland
2013], page 182.

— “Waste, tech-
nical debt,
dependency,
dependency
charts”, 8.13,
page 129.

[Beck 2000],
page 79.

Same source.

— “Crystal’s
Big Idea”,
9.5.1, page 141

126 AGILE ARTIFACTS §8.8

While everyone knows that the practical organization of offices has an effect on team
efficiency (as PeopleWare already convincingly argued), we should not exaggerate the
role of programmer comfort. After all, many of the most successful Silicon Valley
projects were started in garages. What is most interesting in the agile contribution here
is the assumption that there is an office to lay out: a place of work for the full team.
Increasingly, this assumption cannot be guaranteed: more and more projects are distrib-
uted across several sites.

Companies adopt a distributed development model for good reasons as well as some
bad ones. Many agile books propose adaptations of their basic models to the case of dis-
tributed teams, but one finds little of general value in these discussions. The real agile
contribution here is rather the opposite: by emphasizing the value of direct communica-
tion, agilists highlight how much more effective it is to have everyone in one place. For
example the most interesting part of a chapter by Larman about agile multi-site develop-
ment is this remark at the beginning:

The product development expert Don Reinertsen told us (and wrote) that he has
informally polled thousands of people over the last decade and not once has he
found a hands-on group that, having had both the contrasting experience of
co-located versus distributed development, would choose the latter again.

Although I have been involved for a decade in a successful and sustainable multi-site
product development project (EiffelStudio at Eiffel Software), and teach at ETH a dis-
tributed software engineering course where students from universities around the world
collaborate in building working software, I can state that our experience fully confirms
this statement. One of the first sentences in our course’s first lecture is:

“Here is the basic law of distributed development: don’t do it.”

If you have a choice, that is. Sometimes you do not have a choice. But agilists remind us
that the everyone-under-one-roof model, when practicable, beats all others.

8.8 PRODUCT BACKLOG, ITERATION BACKLOG

Individual requirements, as we have seen, are covered in the form of user stories. What
about “the requirements” as a whole? (In software engineering, “a requirement” means
the description of a property of the system, and “the requirements” is not just the plural
of “requirement” but denotes the overall description of the system.) Agile approaches
reject, of course, the traditional notion of a comprehensive “requirements document”.

The replacement for such a document is a collection of user stories or tasks. More precisely:

» The collection of user stories for the project as a whole is the product backlog.

» The collection applicable to a particular iteration is the iteration backlog, or sprint
backlog in Scrum, a collection of tasks associated with user stories (that is, each user
story involves a number of elementary tasks).

Some other elements may appear; Cohn gives the examples of bugs, technical work and
knowledge acquisition.

-~

< On People-
Ware see “Work
at a sustainable
pace”, 4.4.3,
page 56.

[Larman 2010],
pages 415-416.

se.ethz.ch/dose.

Scrum

http://se.ethz.ch/dose

§8.9 STORY CARD, TASK CARD 127
The term “backlog” highlights the particular way such a collection is used. The prac-
tice, associated with Scrum but widely used, is to divide the backlog into three parts, con-
taining respectively the user stories or tasks that:
* Remain to be implemented.
* Are being implemented (in progress).
* Have been implemented.
Some teams add the category “to be verified”.
It is useful to visualize the backlogs. The artifacts of the following three sections
serve this purpose.
8.9 STORY CARD, TASK CARD
From tools of a conceptual nature we now move to tangible artifacts.
The systematic use of user stories as units of requirements calls for a standardization
of the form in which they are written. The low-tech version uses “story cards”: stan-
dard-size note cards, each recording a user story as in this typical example:
Story card

16§ Search by Name

As a help desk ocperator I
want to search for rw/
customers éy Zheir F£irst and
last names So that custonrier
response times reman SHort

Numerous tools on the market provide software equivalents, although many people are
comfortable with the paper version.

8.10 TASK AND STORY BOARDS

With the constant focus on velocity — delivering the best customer value in the least pos-
sible time — it is important in the agile approach to keep the team constantly aware of
what has been done, what is in progress and what remains to be done. A visible reminder
helps several agile goals, in particular:

» Supporting the basic development step of picking a task associated with a user story
and assigning it to the next available developer.

» Keeping track of velocity (the number of story points implemented per iteration).

» Boosting team morale: one of the best ways to cheer up developers is to display viv-
idly the progress of tasks from to-be-done to being-done to under-test to done.

» Discouraging waste: work that does not result in deliverable functionality is not shown.

128 AGILE ARTIFACTS §8.11

The visual representation usually takes the form of a board, with columns representing
the possible states of the tasks involved in the implementation of a user story. The states
can be to-do, in-progress, under-test and done. The most common technique uses a
whiteboard and post-it notes that move left to right as tasks get selected and processed:

Task Board

(See also the fig-
ure on page 12.)

Details vary; sometimes the under-test state is merged with in-progress.

The Kanban method of production management uses similar boards. — “Kanban”,
9.2.4, page 136

Numerous software tools are available to replace this physical artifact. They are par-
ticularly used by distributed teams; for a team that is physically located in a single place,
it is hard to beat the simplicity and visual impact of a whiteboard with paper stick-ons.

The task board is a clever way to keep the team’s attention focused on progress and
velocity, especially when complemented by the burndown chart.

8.11 BURNDOWN AND BURNUP CHARTS

The burndown chart is a visual representation of the team’s progress
(velocity). The idea, introduced in the overview chapter, is simple: plot, Remaining tasks
against project time, the number of remaining units of work for the cur-
rent iteration. Time is usually measured in working days; units of work
can be story points or some other appropriate measure. The curve (red in
the figure on the right) is normally decreasing. The blue line serves as a
reference, describing ideal progress with a constant number of story
points discharged every day.

(From the figure on page 11.)

Cockburn’s variant in the Crystal method uses a “burnup” chart which shows progress
rather than remaining work, and also displays the units completed:

§8.12 IMPEDIMENT 129
+ 100% functionality Burnup
[— Ship equipment chart
— 4 Aspign equipment (From [Cock-
| f Prepare equipment burn 2005],
— Complete gpen grders page 99.)
[~ 4 Tool disas sembly
— Mod recap
= ¥ Import calibration
— Part attachment
- File aftachment
= Failure diagposis
AT P v B e >
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 1
Common to all variants is the rule that one should only count work that is both:
» Deliverable work, including code and tests, as well as other deliverables such as train- « “Story
points”, 8.4,

ing materials and user documentation, but excluding results that have an internal role
only, such as a plan or a design.

» Finished work, which for code means that it is fully tested.

Here again various tools are available to offer software support for maintaining and pub-
licizing the chart.

The burndown chart is an important practical agile contribution, enabling teams to
keep track of daily progress in a vivid form accessible to all.

8.12 IMPEDIMENT

We have seen that a constant concern in Scrum, and in particular a core task of the Scrum
Master, is to remove impediments. An impediment, per the earlier definition, is any mat-
ter that damages the progress of the project, whether technical or organizational. Typical
examples include unavailability of some necessary hardware resource such as a worksta-
tion, another team’s delay in producing a module needed by the project, and interference
by outsiders to the project.

The notion of velocity suggests a more concise definition: an impediment is simply
any factor that reduces velocity.

8.13 WASTE, TECHNICAL DEBT, DEPENDENCY, DEPENDENCY CHARTS

Our last three artifacts do not belong to the agile approach, although they do belong to
agile discussions, in a negative role: as obstacles to be avoided.

The fight to avoid waste is at the center of the Lean method, but is a concern in all
agile approaches. Waste is not a single artifact but includes all the products, material and
virtual, not delivered to customers. A design document is waste, unfocused meetings are
waste. The agile insistence on code and tests as the only products worthy of consider-
ation implies that waste takes many forms, which agile teams must always fight.

page 121. See
also “Develop
only code and
tests”, page 60.

130 AGILE ARTIFACTS §8.13

Technical debt denotes code elements of unsatisfactory quality that can accumulate
in a project, like barnacles attached to a ship’s hull, initially ignored because their effect
is hardly noticeable, but growing to a point where they can bring the whole vessel — the
whole project — to a halt. The principal agile tool to fight technical debt is refactoring: « “Refuctoring”,
identifying code and design smells and remove them. 74, page 109.

Dependencies are constraints between development elements, such as tasks or user
stories, expressing that to develop B it is necessary to have completed A. In a compiler
project, for example, B might be “implement the parser” and A might be “specify the
interface of the lexical analyzer”. Dependencies stand in the way of the basic agile pro-
cess of picking the next task in the list and assigning it to the next available developer in
a cross-functional team, where tasks are ordered by business value. Clearly, if B depends
on A but has a higher business value, we cannot apply this technique. Hence the standard
agile advice of minimizing dependencies, a goal easier to state, however, than to achieve.

The discussion of feature interaction has shown how intricately the functions of a system « “Additive
can be connected with each other. This phenomenon of feature interaction is one of the and multiplica-

reasons we cannot realistically hope to get rid of dependencies. tive complexity:
the lasagne and

Another obstacle to the agile scheduling policy is the presence of developer constraints. he linguine”,
It is commendable to aim for cross-functional teams, but in practice people have special ”*** o3
skills and expertise. If for the next-highest-business-value task one of the team members

has much higher competence than anyone else, but is busy with some other task, it is

often better to defer the task until that person becomes available. « “Collective
ownership and
Waste, technical debt and dependencies are virtual notions. The last item in this list cross-function-

of agile rejects can have a physical representation, although it is also used as a purely "”2’”’] 0(3 2.2
virtual artifact. It is the notion of dependency chart, often taking a form (illustrated on pase ioe
the facing page) that attracts the particular scorn of agilists, the Gantt chart, which

serves as the basis for such project management tools as Microsoft Project. The basic

process of using such charts and tools (in traditionally managed projects) is simple:

 List the tasks, their estimated durations and dependencies (in the sense defined above).

» List the people available to perform the tasks. Usually it suffices to list the number of
people and their available time.

* Deduce a possible scheduling and assignment of the tasks, compatible with the con-
straint. This is where tools are useful.

Typical agile criticism of Gantt charts is expressed by Cohn:

Rather than a detailed command-and-control plan based on Gantt charts, the [Cohn 2003].
agile plan’s purpose is to lay out an investment vision against which management

can assess and frequently adjust its investments, lay out a common set of
understandings from which emergence, adaptation and collaboration occur, and

establish expectations against which progress will be measured.

Note the “command-and-control” accusation and the vagueness of the proposed replace-
ment. Cockburn does offer a concrete substitute:

§8.13 WASTE, TECHNICAL DEBT, DEPENDENCY, DEPENDENCY CHARTS 131
Task Name Predecessors |Start - lye [duiy 15 yzz w2z A Gantt
SSMTWTFSSMTWTFS_SMT'WTFSSMT'WTFSSMT_W
1 | Project Management THi2012 [) Chart
2 | Conception/Approval nr2mz2 Tim (100%}
3 | Plan Remainder of Initial. 2 Task: Define Intial Scope £ Aohn
4 | Managing/Monitoring 3 Start Wed 7/4/2012 &
5 | Mext lteration Flanning 4 Firish: Tue 7/17/2012
& | Regquirements Duration: 9 dayls)]
Pl D it Scope [[762002 | Source:
© 8 | Prototype the User. 7 7182012 Microsofi, see
@ 9 | Manage Changing... 7.855 i;:W&-:zDTZ page i
10 | Refine the System 782012
© 11| Requirements Set A 7 7182012
12 | Requirements Set B 1 71232012
@ 13| Requirements Set C 12FF 71202012
14 | Analysis and Design 7102012
15 | Perform Archetectural.. 702012
16 | Completion Review 71312012
17
18
The organization might adopt some of the ideas [of the Crystal method] fo [Coclkburn
simplify or improve their work product set (veplacing the Gantt schedule charts gggggages
with earned-value or burnup charts would be a good start). ’
(Burnup charts are, as seen a few pages back, a variant of burndown charts; earned-value
charts are an earlier, non-software-specific form.) The suggestion is surprising since
burndown and burnup charts are a way to track progress and offer little help in planning.
Being always on the alert for waste, detecting and correcting technical debt, and min- >

imizing dependencies are all worthy goals. Where the agile approach takes a bizarre turn
is in its rejection of Gantt charts and tools for dependency-based scheduling. While
Microsoft Project itself is not the greatest tool of the 21st century — it shows its age and
is heavy to use — it serves only as a red herring here: a profusion of modern tools exist,
many of them available in the cloud, to manage dependencies in an effective way. In any
complex project dependencies exist, some of them subtle but as a result even more
important, since if you detect them too late they will disrupt progress. You can minimize
dependencies but (as agile authors admit, at least in print) you cannot eliminate them.
Gantt charts and similar mechanisms are powerful engineering tools in the modern man-
ager’s bag of tricks. To renounce them is either to pretend that dependencies do not exist
(they will take their revenge when a task stalls because it needs the results of another
which has not been completed yet) or to accept handling them manually, with all the
resulting tedium and risk of error.

Here Agile turns Luddite. There is no reason to bar agile projects from using concepts
and tools which help address an issue that most of them face: ensuring that the schedul-
ing of tasks is compatible with their interdependencies. The effective manager disregards
ideology and picks, for every project, all the tools that help.

9

Agile methods

An Agile Method, such as Lean Software (with its Kanban variant), Extreme Program-
ming, Scrum and Crystal, is a particular combination of some of the components pre-
sented in the previous chapters: principles, practices, roles and artifacts. Not just an
arbitrary mix, but a reasoned construction with its own distinctive view of software
development. In this chapter we review the key characteristics of the four methods cited.

The methods surveyed share the distinction of being documented by books written by
their respective creators. In each case the method and the corresponding books are intri-
cately connected; the books, marked by the strong personalities of their authors, set the
spirit of the methods. As a consequence, each method description in this chapter includes
a brief review of the associated foundational texts.

9.1 METHODS AND METHODOLOGY
We start with a clarification of the underlying concepts.

9.1.1 Terminology

You will see “methods” such as Scrum, XP and consorts also called “methodologies”;
there is nothing wrong with this term since, along with the meaning of “methodology”
as “the study of methods” — the topic of this chapter — the dictionary also accepts “a
methodology” to mean a combination of methods. For the present discussion, “method”
is shorter and just as appropriate.

If this chapter is about methodology, the present section must be about the methodology of
studying methodology. But do not fear; we will stop the escalation here and stay away from
any word beginning with “meta”.

9.1.2 The fox and the hedgehog

Each method consists of “many small ideas™: principles and practices. We will in each
case see a selection of these ideas, but such enumerations do not suffice to define what
the methods are about. The discussion will identify, for each of them, “one Big Idea”,
which stands behind all the method’s components.

The section for a method starts with the method’s Big Idea, continues with the list of
its components and ends with an assessment of the method.

B. Meyer, Agile!, DOI 10.1007/978-3-319-05155-0_9,
© Springer International Publishing Switzerland 2014

134 AGILE METHODS §9.2

9.2 LEAN SOFTWARE AND KANBAN

Prompted by the success of the Japanese carmakers and particularly of Toyota’s hailed
manufacturing process, methods of “lean manufacturing” have enjoyed considerable
attention in many branches of industry. They seek to make industrial production more
efficient by not building any unneeded part or product, delaying production of needed
items until customers or other production steps actually require them (just-in-time
production), minimizing unnecessary communication, and reducing waste at every
step. Mary and Tom Poppendieck have transposed the ideas to software, using the
term “Lean Software Development”.

As we saw in an earlier discussion, Wirth wrote a “plea for lean software” in 1995. Lean <« [Wirth 1995];
Software as a general development method is, however, the Poppendiecks’ creation. see “IW hat) is
simplicity?”,

This section will conclude with a short review of Kanban, a production method featuring ”*** 06.

analogies with Lean Software.

9.2.1 Lean Software’s Big Idea

The obsession in Lean is to:

Reduce waste

“Waste” in software is anything not delivered to the customer. The Lean approach is « “Deveiop
about making sure that software projects concentrate on what matters to customers, and 7inimal soft-
setting aside any distractions from that goal, in particular any artifacts that do not yield ;;Zf 5‘8.4'4‘ .
a tangible business value.

9.2.2 Lean Software’s principles

The Lean Software method promotes seven principles:

Lean Software Development principles

Eliminate waste

Amplify learning.

Decide as late as possible.
Deliver as fast as possible.
Empower the team.

Build integrity in.

See the whole.

~N N bW N~

§9.2 LEAN SOFTWARE AND KANBAN

135

Principle 1, eliminate waste, is the most important. It includes, under “waste”, many tra-
ditional products and activities of software development. Waste products are: detailed
requirements documents which no one will read; partially done work (any code that was
started to implement a certain functionality, but does not deliver it); extra features,
which few users will ever need (bloat); defects (bugs). Waste processes are: unnecessary
tasks, such as long requirements processes mandated by obsolete regulations; task
switching (better to let programmers concentrate on one well-defined task at any time);
waiting (for a module developed by another team, for resources, for information, for
decisions); motion (transfer of artifacts from one group or person to another); needless
management activities.

Principle 2, amplify learning, directs project to seek quality throughout, and program-
mers to learn from experience. It rejects the “do it right the first time” approach in favor
of a “try-it, test-it, fix-it” process.

Principle 3, decide as late as possible, is derived from “just in time” techniques of pro-
duction engineering. It promotes avoiding Big-Upfront-Design decisions, which will cause
high costs if a change must be made down the road, and instead making design choices as
late as possible, when all the necessary information is available.

Principle 4, deliver as fast as possible, is common to all agile approaches: produce a
working system at every iteration, get the users to try it, and benefit from the feedback.

Principle 5, empower the team, is also an agile staple. The idea is to stay away from
the practice of managers giving orders, and instead motivate the team to take its future
and the success of the project into its own hands.

Principle 6, build integrity, covers the need for maintaining the consistency of a sys-
tem’s design. It is closely related to the notion of simplicity built into XP.

Principle 7, see the whole, is about concentrating on what is really important, the
whole picture, and not to sweat the small stuff. Examples of small stuff that should not
be sweated include:

* Intermediate deadlines: optimizing the overall progress of the project is more impor-
tant. (With hindsight it is unfortunate — and an illustration of the danger of meta-
phors and anecdotes — that the supporting example is Lance Armstrong’s brilliant
series of victories in the Tour de France, hardly the most inspirational model given
what we now know.)

* Monitoring individual performance on a continuous basis.

» Business contracts, in line with the Agile Manifesto’s motto of “valuing customer col-
laboration over contract negotiation”.

9.2.3 Lean Software: an assessment

Lean Software is not a cradle-to-grave method that tells you step after step how to orga-
nize your project and develop your software. It is rather a philosophy made of a set of
general observations about what is important and not in software development.

[Poppendieck
2003], pages
155, 157.

[Agile 2001].

-~

136 AGILE METHODS §9.2

The working hypothesis of the method, that software can benefit from ideas taken
from industrial production, has both considerable attraction and built-in limits. Attrac-
tion because so many successes have followed from applying sound principles in, for
example, automobile engineering. Limits since, as the creators of lean software them-
selves state, software does not have production, only design. Many of the improvements
that made the success of Toyota and other innovative companies apply to production.
Some of the analogies work, for example describing incompletely implemented software
functionality as waste, comparable to inventory in traditional industries. Others are more
far-fetched, such as “motion” (in software development people may have to move to see
each other, but this phenomenon is nowhere close to the complexity of moving parts
between factories).

The style of the lean books also complicates making direct sense of the method. They are
eclectic, full of anecdotes and never boring for a minute, but by hopping madly from topic

to topic and story to story, software-related or not — over two typical pages, video tape [Poppendieck
manufacturing then software testing then Lance Armstrong — they make it tough for the 5023{, pages
56-157.

dizzied reader to derive precise rules for software projects.

One should not turn to Lean Software for a comprehensive software development
method, or expect its authors to be always right. Their contribution, however, is signifi-
cant. By emphasizing that software engineering is engineering and can benefit from
some of the same recipes that have worked in other fields, and in particular by reminding
us always to be on the lookout for waste of any kind, Lean Software provides software
developers and particularly project managers with a solid set of useful principles.

9.2.4 Kanban

Although distinct from Lean Software, the Kanban approach draws from the same
source: the Toyota production process, where it evolved from observation of supply
management in supermarkets. Kanban has gained some popularity in software circles, as
a complement to Lean or Scrum.

Kanban’s Big Idea is to minimize work in progress by ensuring just-in-time produc-
tion, driven by demand. “Kanban cards” serve to keep track of needed materials and trig-
ger a signal when the production system runs out of a needed part. A “Kanban board”,
similar to a Scrum task board, visualizes the progress of parts and products in the pro- « “Zask and

duction process as they go through the stages of “to do”, “in progress” and “done”. story ’;;";”ds
page .

There is — so far — no explicit Kanban method for software, but teams have found On Kanban for
Kanban principles of work-in-progress minimization useful, for example to help identify 577 seeeg
. . . X [Kniberg 2010].
impediments in Scrum and focus software teams on the most productive tasks.

§9.3 EXTREME PROGRAMMING

137

9.3 EXTREME PROGRAMMING

Extreme Programming is the original agile approach, in the sense that its introduction in
the late nineteen-nineties was the event that brought agile ideas to the fore of the software
engineering stage.

Extreme Programming is less visible today, much of the limelight having moved to
Scrum. But this change of fashion hides the reality of the method’s continuing influence:
the most constructive XP principles and practices have been integrated into other
approaches and many projects apply them, whether or not project members are aware of
their provenance.

9.3.1 XP’s Big Idea

The Big Idea of Extreme Programming can be understood as follows:

Increment then simplify

This is the basic cycle, repeated until the team and the customer are happy: add function-
ality (induced, in Test-Driven-Development, by a new test that would fail under the pre-
vious version); when it works, look for any damage the new code has caused to the
simplicity of the design; apply refactoring if needed to restore that simplicity.

This process is practiced by a small, self-organizing group of developers, working
in pairs and maintaining at all times a close connection with representatives of the cus-
tomer organization.

9.3.2 XP: the unadulterated source

An observation about the descriptions of Extreme Programming will help readers who
want to study XP in depth beyond the presentation in this book. Although various
authors, particularly Jeffries and Cunningham, have written good articles and books
about XP, the reference is Beck’s Extreme Programming Explained. The book has two
editions, 2000 and 2005, and contrary to expectations I find the earlier version (still in
print) a better source. The impression one gets about the second edition is that the author
was piqued by some comments on the first:

Critics of the first edition have complained that it tries to force them to program
in a certain way.

(Strange: how can someone who buys a programming methodology book complain of
being enjoined to “program in a certain way”?) He appears as a result to have toned
down the message, going from concrete and hence criticizable assertions to more ethe-

[Beck 2005],

138 AGILE METHODS §9.3

real but less interesting generalities. Take for example the beginning (starting with the
second paragraph) of the first edition’s preface:

To some folks, XP seems like just good common sense. So why the “extreme” in
the name? XP takes commonsense principles and practices to extreme levels.

* If code reviews are good, we’ll review code all the time (pair programming).

o [ftesting is good, everybody will test all the time (unit testing), even the customers
(functional testing).

o [f'design is good, we’ll make it part of everybody s daily business (rvefactoring).

(followed by four more bullet points, each citing another practice traditionally consid-
ered beneficial and stating that XP pushes it to the limit). Clear, engaging, challenging.
In the second edition, the corresponding paragraph starts:

There are better ways and worse ways to develop software. Good teams are more
alike than they are different. No matter how good or bad your team you can
always improve.

Sure, such a succession of gentle platitudes will not offend anyone, but what is “extreme”
about them, and what are we learning? I benefit more from the in-your-face simplicity
of the first edition. We are talking here about substance, not style. Although the second
edition cites agile practices, it often does so in abstract terms; to get a precise description
of the practices you need the original book.

Some of the comments of the second edition reflect a more balanced view resulting
from a few extra years of experience, but they tend to dilute the essence of the ideas.
Unless you want to read the two editions (you will have noted that the present book cites
from both), you may expect to find more value in the first.

9.3.3 Key XP techniques

Many of the principles and practices discussed in previous chapters were originally
introduced by Extreme Programming. The XP books include long lists of practices; the
essential techniques (including, in the terminology of this book, not just practices but
also principles and artifacts) are:

+ Short iterations (as in all agile methods).
* Pair programming.

+ User stories.

» Refactoring.

* Open workspace.

» Collective code ownership.

» Continuous integration.

» Test-first (or test-driven) development.

The last two elements constitute Extreme Programming’s most lasting technical contri-
bution to the practice of software development.

[Beck 2000],
page xv.

§9.4 SCRUM

139

9.3.4 Extreme Programming: an assessment

Extreme Programming provided the initial jolt that brought agile methods to the atten-
tion of the programming world. The word “extreme” was intended to convey the deci-
sion to take the best development practices to their full extent, as explained in the
excerpts from the first edition’s preface quoted on the previous page (“if P is good, we’ll
apply it all the way”, for a whole range of practices P). “Extreme” also characterizes the
method’s general assertiveness, its insistence that the techniques it offers are not just pos-
sibilities but obligations: for example, everyone should pair-program.

One can characterize this assertiveness as dogmatism, but it also leads to one of the
method’s main strengths, its consistency. XP reflects a strong view of how programming
should be practiced, leaving little room for compromise. This stance has hampered the
overall adoption of XP by the community. But many of the individual techniques pro-
moted by XP have made their mark on the industry, and not just on teams that explicitly
follow an agile process. If nothing else, Extreme Programming has convinced the world
of the indispensability of the last two techniques mentioned above: projects should not
let branches diverge, but integrate code all the time; and they should treat tests as a key
resource, not letting any code be developed without tests to go with it, and running the
regression test suite all the time. These two contributions alone would be enough to
ensure XP’s place in the history of software engineering.

9.4 SCRUM

Scrum has come to dominate the agile scene. The numerical results of various studies
differ, but the general trend is inescapable: Scrum has taken over from Extreme Program-
ming as the agile method of choice, even if we cannot see the situation entirely in com-
petitive terms since Scrum is more of an organizational technique and many teams that
practice it add concepts from XP on the software-specific technical side.

There is a considerable literature on Scrum including several books from the creators,
Schwaber and Sutherland. The authors and the Scrum Alliance have generously made
available many documents, such as tutorials and lecture notes, which provide more con-
crete details. Cohn and Larman have also authored helpful Scrum books.

9.4.1 Scrum’s Big Idea

The most distinctive characteristic of Scrum is the “closed-window” rule encountered in
previous chapters:

Freeze requirements during short iterations

This is not the idea most highlighted in presentations of the method — you will hear
about the “three roles” and the “four meetings” and Scrum Masters and “pigs” and
“chickens” and various practices — but it is at the core of the method. It addresses one
of the principal challenges of software engineering: how to handle change.

-~

Scrum

[Scrum Alliance].

« “Freeze
requirements
during itera-
tions”, page 71
and “The
closed-window
rule”, 6.1.2,
page 90.

140 AGILE METHODS §9.4

The Agile Manifesto naively states that agilists “welcome change”; but no serious
development can have a policy of taking in any change at any time. The Scrum answer
is to accept changes without letting them disrupt the current iteration, imposing the rule
on everyone, regardless of rank and station. It is sustainable because the iterations are
short, so any rejection is temporary; in addition it gives people the opportunity to cool
off, and possibly to refine or withdraw a request for functionality.

If out of my long immersion in agile methods for the preparation of this book I had to retain

just one idea, that would be it. The principle is innovative, applicable, and effective.

9.4.2 Key Scrum practices

The iterations of Scrum follow practices studied in previous chapters:

» Sprint planning at the beginning.

* Closed-window rule, allowing requirements change but in a controlled way.
» User stories, decomposed in tasks, as the definition of work to be carried out.
* Daily Scrum to track progress and isolate impediments.

* “Definition of Done” to make sure what is claimed as progress truly is.

» Task board and burndown chart to assess velocity.

* Sprint review to reflect on the previous sprint and prepare the next one.

These are only some of the most important elements; many other Scrum techniques
appear in earlier discussions.

9.4.3 Scrum: an assessment

-~

Scrum has conquered the mind of many in the software industry; numerous projects are
clearly finding its rules useful. Scrum has in particular turned the general idea of iterative
development into a precise discipline, with rules codifying the goals, duration and man-
agement of individual iterations. The resulting iteration model, the sprint, is quickly
becoming the industry standard, beyond teams that explicitly apply Scrum.

Scrum has been well-served by a savvy marketing operation, in particular by a certi-
fying process (through the Scrum Alliance) that turns Scrum learners into Scrum sup-
porters. It has also been well served by the first Scrum books, insightful and filled with
reports from projects the authors advised. For software practitioners, however, these
books also limit the method’s applicability, since they are advocacy pieces with little
room for nuance and less for self-doubt. Scrum clearly needs better presentations, more
analytical, even-handed and rigorous.

Scrum’s primary contribution affects the organizational aspects of projects, rather
than software technology per se. (Some people go so far as to promote Scrum to manage
any project, technical or not.) The need remains open for a method that would retain the
best aspects of Scrum and address the unique demands of software development.

§9.5 CRYSTAL 141

9.5 CRYSTAL ;—\

The name Crystal denotes an array of methods developed by Alistair Cockburn. We can
take the word “array” literally: with projects characterized along two dimensions, criti-
cality and size, each featuring four levels, we get a matrix of 16 elements. The names are
color-coded. Understandably, only a few of the slots have been filled by detailed method
descriptions. The Crystal Clear method covers smaller projects; Crystal Orange was the
first to be developed and addresses larger projects.

9.5.1 Crystal’s Big Idea

Crystal puts particular emphasis on the interactions with the team through a principle that
makes a group jell into a single unit:

Osmotic communication

With osmotic communication, “questions and answers flow naturally and with surpris-
ingly little disturbance among the team”. From this goal follows a strong emphasis on an
office space layout favoring open communication. The method treats such matters as
core issues of software development, since projects can face major costs and impedi-
ments from bad communication between team members, delays in answering questions,
and questions that were simply not asked because of some practical obstacle, of which
poor office layout is an example.

This definition of osmotic communication is the Crystal Clear version. For larger groups,
or groups split across different locations, the concept generalizes to “core communication”.

9.5.2 Crystal principles

Crystal defines seven principles, a bit of a mixed bag.

“Frequent delivery” of “running, tested code to real users” is the “single most Al citations (in

important property of any project”. This idea is common to all agile methods. italics) are from
[Cockburn 2005].

“Reflective improvement” requires the team, “once a month, or twice per delivery
cycle, [to] get together in a reflection worskhop or iteration retrospective to discuss how
things are working”. The idea is reminiscent of the “Optimizing” level in a model com-
ing from a different corner of the software engineering scene: CMMI. The specific prac-

EPNT3

tice is also related to Scrum’s “retrospective”.

“Osmotic communication” promotes, as noted, a constant and free flow of informa-
tion between team members.

“Personal safety” is Crystal’s take on the agile idea of sustainable pace. The principle « “Work ata
states that team members should be free to speak up, without fear of reprisal or other sustainable
unpleasant consequences, when they feel they have to, for example to point out that a P " 78¢5
schedule is unrealistic.

142 AGILE METHODS §9.5

“Focus” defines the conditions under which developers can perform their jobs unim-
peded. In particular, they should not be asked to: perform many tasks at once, preventing
them from devoting to each task the attention it requires; handle side tasks, not relevant
to the project goals; cope with frequent interruptions; or be denied knowledge of the
organization’s priorities. “With two hours of guaranteed focus time each day, and two
days in a row on the same project, a developer who otherwise is being driven to distrac-
tion may get four full hours of work done in a week.”

“Easy access to expert users” is Crystal’s variant of the general agile principle of « “Pur the cus-
customer involvement. The method does not prescribe embedding a user in the team, ‘omerat the cen-
XP-style, or defining a product owner as in Scrum (although it does not preclude either "~ 7% I
technique), but requires a realistic guarantee of access to knowledgeable user represen-
tatives. “Even one hour a week of access to a real and expert user is immensely valu-
able”. This recommendation is typical of Crystal’s realism: as we noted in earlier
discussions, real experts are in high demand and unlikely to be made extensively (even
less full-time) available to a project; but it is essential to demand from higher manage-
ment a guaranteed minimum level of access.

“Technical environment with automated tests, configuration management and
frequent integration” is a long name for a principle, but clear enough: programmers
should be given modern tools. Hardly a subversive idea today, except perhaps for some
project managers born in the age of crinoline petticoats, but worth repeating.

9.5.3 Crystal: an assessment

-~

Like Lean Software, Crystal is not a comprehensive method telling you what to do step by
step either on the management side (as Scrum does) or in technical development (as XP
does). Rather, Crystal is a concentrate of software development wisdom, much of it healthy.

What most distinguishes Crystal from other agile approaches is its refusal of dogma-
tism and its acceptance of some of the classical software engineering principles. The pro-
vision for variants of the method adapted to various kinds of projects, critical or not,
large or small, is also a refreshing initiative.

The multi-method idea reflects the wide variety of project circumstances. It seems,
however, unrealistic to fill a 4 x 4 matrix with individual method descriptions, each with
its specific characteristics, reference book and training materials. More unrealistic still
is the expectation that a project would choose one of the methods against the others based
on a determination of its size and criticality; even if the decision is right, projects change
as they go, and they should evolve smoothly rather than have to change methods in
mid-stream. It would be more effective for Crystal to identify the universals of software
development and present a single method that addresses them, while accounting for gra-
dations in project parameters.

§9.5 CRYSTAL

143

In the history of the field, Crystal could end up being only an episode. But if we con-
sider — in terms of moment of acceptance rather than moment of creation — that
Extreme Programming embodied the first generation and Scrum the second, Crystal,
with its attempt to integrate the best ideas of software engineering regardless of their
source and to provide a realistic framework for projects large and small, could grow into
a real method, defining precise techniques of software management and development,
and emerge as a first step towards agile methods of a third generation.

10

Dealing with agile teams

Before we move to a final assessment, some observations are in order on how to deal
with groups that adopt agile ideas in your organization.

10.1 GRAVITY STILL HOLDS

We have seen numerous examples of agile authors asking us to suspend disbelief. A 2012 /4mbier 2012).
book distributed under the aegis of IBM summarily dispels various objections:

[Objection: agile is unsuitable for regulated environments]. [In such environments]
organizations are audited from time to time for compliance with regulations. With
agile, these organizations can feel confident when they endure these audits. They
benefit from faster delivery of data and higher quality of their output.

[Objection: agile means we don’t know what will be delivered.] Because agile is
an iterative process, it provides the opportunity not just for greater control but
better control over building the right things in the lifecycle.

[Objection: agile does not scale] Agile definitely scales. Large teams must be
organized differently. Large agile teams succeed by using products like IBM
Rational Requirements Composer for requirements modeling.

And so on. Trust us, agile solves everything. This is not very good advice to give to man-
agers, who are entitled to more caution from such a venerable company.

The truth is that software engineering has laws that limit what we can expect. An
example of such a law goes back to Boehm’s work in the nineteen-eighties and has been See e.g. /Boehm
confirmed by numerous studies since then. It states that for any IT problem there exist a 1981/ and page
e . 1as 226 in [McCon-
nominal” cost and a nominal development time, and that solutions cannot deviate from ;506 7

them by much. The following figure illustrates it:

A Cost Nominal

—
25% values and
. \. possible
Nominal cost }=====eezezzx- - -] deviations

1
: Impossible zone
1
1
1

. . Time
' Nominal time >

B. Meyer, Agile!, DOI 10.1007/978-3-319-05155-0_10,
© Springer International Publishing Switzerland 2014

146 DEALING WITH AGILE TEAMS §10.2

The big red dot represents the nominal point. According to these studies, it is possible to
get a shorter delivery time by spending more (hiring more developers or managers, or
better ones), as represented by the curve, but that curve stops at about 75% of the nominal
time. The grayed area is an impossible zone: you cannot get the results for less money,
or in less than 75% of the nominal time.

Studies differ as to what happens to the right of the nominal point. Some suggest that you
can save money by taking more time, for example with fewer developers, and others that
you will end up both late and over budget.

When we talk about such “laws” of software engineering we are not at the level of rigor
and universality of the laws of physics; they are simply observations supported by cred-
ible empirical studies. They reflect, in addition, the technology of the moment. Laws
defining the limits of what ships can do ceased to hold when steamboats replaced sailing.
In software too it is quite possible that a technology leap radically alters the rules of
game. Before you believe that it increases productivity — not for a particular flagship
project or group but for everyone — at a level that established software engineering wis-
dom deems infeasible, you had better be careful. Gravity still holds.

The very IBM-sponsored study that touts agile as ready for deployment anywhere
found that 54% of organizations surveyed have “tried and rejected at least one agile
approach”. Characteristically, the conclusion it draws from that finding is that the meth-
ods it promotes (Scrum, Kanban, Lean) are superior. To any unbiased person, the statistic
will serve instead as a warning: an invitation to approach agile methods with caution.

Agile methods clearly have many benefits to offer (otherwise this book would have
no reason to exist). But expecting miracles will not help. It is preferable to set realistic
goals and strive to achieve them.

10.2 THE EITHER-WHAT-OR-WHEN FALLACY

We have seen that iterations in agile development are time-boxed: if something has to
give, it will be the functionality, not the iteration’s end date. We also saw that this prin-
ciple is excellent. But the idea applies to the internal steps of a project. The customers’
world has its own constraints, and they are often not negotiable.

When January 1st, 2002, was chosen as the date of monetary unification for twelve
countries, with the provision that the previous currencies would cease to be legal tender
only two months later, it was pretty clear that the IT infrastructure would have to be ready
for the changeover to the euro by that first day of the year. It was.

It is indeed one of the defining rules of software development that delivery date and
functionality are equally important. Yet the agile world has promoted the idea that one
cannot promise both. You can commit to the what, or to the when, but not both. Beck
articulates this notion explicitly:

Write contracts for software development that fix time, costs, and quality but call
for an ongoing negotiation of the precise scope of the system. Reduce risk by
signing a sequence of short contracts instead of one long one.

[IBM 2012].

<« “Iteration
length”, page 71.

[Beck 2005],
page 69.

§10.2 THE EITHER-WHAT-OR-WHEN FALLACY

147

You can move in the direction of negotiated scope. Big, long contracts can be split
in half or thirds, with the optional part to be exercised only if both parties agree.
Contracts with high costs for change requests can be written with less scope fixed
up front and lower costs for changes.

Clever, especially if you are a consultant. I can promise what it will do. I can also prom-
ise that you will have it by next June. Choose one.

For most customers, of course, this either-what-or-when trick will not do. Customers
want to know the when as well as the what. Agile authors suggest “educating” customers
so that they understand the harsh realities of life. Most customers, of course, will skip the
trip to the re-education camp; they will not fall for that trap, even if that means being
labeled as “mediocre hierarchical bureaucrats” in the terms of an author we encountered
in an early chapter. Call us bureaucrats all you please, but we have a set amount of money
to spend, set business results to achieve, and a set time to achieve them.

This issue is what distinguishes competent software teams (and competent consult-
ants) from the rest. The definition of a competent team is that over the years it consis-
tently delivers appropriate functionality on time and within budget.

The agile mystique can temporarily hide this fundamental difference between the pro-
fessionals and the amateurs, by providing the amateurs — those unable to deliver quality
results within time and budget — with fashionable excuses. Such pretense cannot last for
very long, since economic considerations will quickly put an end to the hype.

In a transitional period, however, the either-what-or-when pretense can cause trouble,
especially in environments where agile teams coexist with others using more classically
predictive techniques. The plan-oriented groups can find it hard to get precise commit-
ments from the agile ones. They should not, of course, let them off the hook; and an inter-
nal division of the project into time-boxed iterations cannot translate into a refusal of
what-and-when deadlines for customer deliverables. But any organization adopting agile
methods should be prepared for such scenarios.

The difficulty of getting agile teams to commit is the most delicate issue in an orga-
nization’s transition, total or partial, to agile development.

As usual, the indefensible agile exaggeration conceals an important and productive
observation. The reluctance to promise both what and when comes from bad experience
with projects featuring oversize goals and unrealistic deadlines.

The reasonable conclusion is that it is better to split such goals into intermediate steps:
better a bird in the hand four months from now than ten in the bush in two years. Define
tangible objectives that can be achieved at regular intervals. Achieving them will not only
yield partial releases that can already be deployed, but also boost the morale of everyone,
development team and customers, by providing a sense of continuous progress. But the
team should commit to these milestones: what the system will do, and when.

« “Intimida-
tion”, 2.2.3,
page 23.

-~

11

The Ugly, the Hype and the Good:
an assessment of the agile approach

We have now studied the core principles, roles, practices and artifacts that make up the
agile canon. It is time to assess the agile contribution: which of the ideas should be kept
at bay, which ones do not really matter, and which ones truly help.

For the sections in this chapter, it is appropriate to reverse the order of the book’s title
(and to use not three but four categories, distinguishing the merely good from the brilliant).
The flaws of agile methods are real enough, but the approach would not warrant our atten-
tion if it did not also include genuine advances, so it is important to end with these pearls.

11.1 THE BAD AND THE UGLY
We start with the worst in the agile approach: ideas that damage the software process.

11.1.1 Deprecation of upfront tasks

The prize undisputedly goes to the deprecation of “upfront” activities, in particular
upfront requirements and upfront design.

Agile criticism of “Big Upfront Anything” includes some perceptive comments. It is
true that one cannot fully comprehend requirements before the development of the system;
that requirements will change; that the architecture will have to be improved as imple-
mentation proceeds. Those observations express some of the fundamental difficulties of
software engineering, and the futility of trying to define everything at the beginning.

There is, however, no argument for shunning the normal engineering practice — the
practice, in fact, of any rational endeavor — of studying a problem before attempting to
solve it, and of defining the architecture of the solution before embarking on the details.
The alternative proposed by agile methods is an ad hoc approach: identify some func-
tionality, build it, assess and correct the result, repeat. It is no substitute for serious
requirements and design.

Iterative development is great. Trying out ideas on a small scale before you make final
decisions is great. Treating requirements as a living, changeable product is great. Reas-
sessing design decisions on the basis of results is great. Insisting on regular deliveries
(once the basic structure is in place) is great. Refactoring is listed at the end of this chap-
ter as one of the significant contributions of agile methods. None of these ideas justifies
forsaking the initial tasks of analysis and design.

B. Meyer, Agile!, DOI 10.1007/978-3-319-05155-0_11,
© Springer International Publishing Switzerland 2014

150 THE UGLY, THE HYPE AND THE GOOD: AN ASSESSMENT OF THE AGILE

In other cases we can see the pros and cons of agile ideas. Here there is no place for
equivocating: neglecting these upfront steps, as agile authors advocate, is guaranteed to
harm your development.

11.1.2 User stories as a basis for requirements

As previous chapters have discussed on several occasions, user stories play a useful role
as ways to check the completeness of requirements, but to use them as the basic form of
requirements means forsaking abstraction. In addition, they ignore the critical Jack- « “The domain

son-Zave distinction between the machine being built and the domain that constrains it. @d 2’?@ .
machine ,

The resulting systems are narrowly geared to the specific user stories that have been 3.2.5, page 36.
identified; they often do not apply to other uses; and they are hard to adapt to more
general requirements.

User stories are no substitute for a system requirements effort aimed at defining the
key abstractions and the associated operations (the domain model) and clearly separating <« Pages
machine and domain properties. 120-121.

11.1.3 Feature-based development and ignorance of dependencies

A core idea of agile methods is that you can treat software development as a sequence of
implementations of individual features, selected at each step on the basis of their busi-
ness value. It would be great if such an approach were applicable, but it exists only in a
land of make-believe. Difficult projects do not lend themselves to this scheme: they
require foundational work (building core architectural elements, such as a communica-
tion or persistence layer) which extend across features; and the features interact through

dependencies, causing complexity of the “multiplicative” kind. « “Additive
and multiplica-
11.1.4 Rejection of dependency tracking tools tive complexity:

the lasagne and
The potential complexity of feature interactions requires a careful analysis of task depen- ¢ inguine”,
dencies; projects can skip this analysis only at their own risk. The advice to stay away page 65.
from Gantt charts and dependency-management tools is not only naive but detrimental.
Such tools are not a panacea for project management but have proved their value over
several decades of use. They can help agile projects just as well; dogmatic rejection of
useful tools is a self-inflicted wound.

11.1.5 Rejection of traditional manager tasks

The self-organizing teams promoted by agile methods, with no manager having the tra-
ditional duty of assigning tasks, are the best solution for a few teams, and are inappro-
priate for many others. The picture of the manager as an incompetent control freak is a
caricature. Many software projects have been brought to completion, and many projects
on the brink of failure have been rescued, through the talents of a strong manager. Impos-
ing a single management scheme on everyone is arrogant.

Suggestions that management can exert its influence through “subtle control” make things
worse. Developers are entitled to demand that any control to which they are subjected be
explicit, not devious.

§11.1 THE BAD AND THE UGLY

151

11.1.6 Rejection of upfront generalization

Agilist rightly note that the primary responsibility of a project is to deliver working soft-
ware to its customers, and that too much early concern for extendibility (ease of change)
and reusability (applicability to future projects) can hinder that goal, especially since it
is not always clear initially in what direction the software will be extended and which
parts will need reuse. But these observations are not a reason to reject the concept of gen-
eralization altogether. We have seen that such an attitude directly contradicts the pro-
fessed agile principle of “welcoming change”. Good software developers do not wait for
change to happen: they plan for it by designing flexible architectures and solving more
than the problem of the moment.

11.1.7 Embedded customer

The XP idea of a customer representative embedded in the development team does not
work well in practice, for reasons explained in an earlier discussion. The Scrum notion
of a product owner, however, figures below in the list of excellent ideas.

11.1.8 Coach as a separate role

The Scrum idea of a dedicated Scrum Master is good for Scrum, but not appropriate for
most projects. Good development requires not just talkers but doers.

11.1.9 Test-driven development

Test-first development, and the requirement of associating a test with every piece of
functionality, appear in the lists of good and excellent ideas below. So does refactoring.

Test-driven development is another matter. A software process defined as the
repeated execution of the basic steps of TDD — write a test, fix the code to pass the test,
refactor if needed — cannot be taken seriously. With such an approach one is limited to
tunnel vision, focused on the latest test. An effective process requires a high-level per-
spective, considering the entire system.

While test-driven development is extensively discussed in the literature, industry has
made its choice: it is not broadly practicing this technique. (On the other hand, many
companies have adopted user stories. One may only hope that they will realize that
replacing requirements by user stories is the same as replacing specifications by tests.)

11.1.10 Deprecation of documents

Agile criticism of document-heavy processes that produce little real customer benefit is
right on target for some segments of the industry — although in some cases, such as mis-
sion-critical systems, little can be done about the situation since the documents are
legally required by certifying agencies. (And not just out of bureaucratic inertia. Even
the most enthusiastic agilist might feel, when flying to the next agile conference, that it
was not such a bad idea after all — not total “waste”— to assess the plane’s software
against a whole pile of certification standards.)

<« “Accept
change”, 4.4.5,
page 68.

« “Onsite cus-
tomer”, 0.5,
page 96.

< “Separating
roles”, 5.7,
page 86.

< “The TDD
method of sofi-
ware develop-
ment”, 7.5.1,
page 113.

152 THE UGLY, THE HYPE AND THE GOOD: AN ASSESSMENT OF THE AGILE

Outside of specific industries with high regulatory requirements, a strong case exists
for lightening up the document infrastructure. It is true, as agilists emphasize, that
“design” in software is not as remote from production (implementation) in other engineer- <« /s design
ing fields. Modern programming languages help, because they make it possible to include $¢P@ @t from

.. . . . implementa-

some of the traditional design in the code itself. (Some of my own work has addressed ;> 33/,
this issue.) None of these observations, however, can justify the deprecation of upfront page 37.
plans and documents. Software engineering is engineering, or should be, and sorely needs

the benefits of a careful predictive approach, as well as the supporting documents.

11.2 THE HYPED

The next category includes ideas that may have value but are unlikely to make a signif-
icant difference in matters that count: productivity of the software process and quality of
software products. Under this heading we may include:

* Pair programming, hyped beyond reason. As a practice to be applied occasionally,
pair programming is a useful addition to the programming team’s bag of tricks. But
there is no credible evidence that it provides major improvements to the programming
process or that it is better than classical techniques such as code reviews, and no rea-
son to impose it as the sole mode of development.

* Open-space working arrangements. There is no single formula for the layout of a
working environment. What we do know is that it is essential to provide simple, obvi-
ous opportunities for informal communication. Beyond that, many office setups are
possible which will not endanger a team’s success. (A related point appears, however,
under the “good” ideas of the next section: avoiding distributed development.)

* Self-organizing teams. A few teams are competent and experienced enough to man-
age themselves, like a conductor-less orchestra. Most are not. Each situation calls for
its own organizational solutions and there is no reason to impose a single scheme on
the entire industry.

* Working at a sustainable pace. All great advice; death marches are not a good man-
agement practice. But advice can only be wishful here; these matters are determined
by economic and organizational pressures more than by good intentions. They are not
specific to the programming world: like a company that is responding to a Request
For Proposals, a researcher who is facing a conference submission deadline will work
through the night to meet it. The most software methodologists can do is to argue that
such practices should remain the exception.

* Producing minimal functionality. It is always a good habit to question whether pro-
posed features are really needed. But usually they get introduced for a reason: some
important customer wants them. It is easy to rail against bloat or heap scorn on mon-
ster software (Microsoft Word and Adobe Acrobat are common targets), but try to
remove any functionality and brace for the screams of the outraged users.

§11.3 THE GOOD

153

* Planning game, planning poker. These are interesting techniques to help estimate in
advance the cost and time of development activities, but they cannot be a substitute
for more scientific approaches. In particular, they are open to the danger of intimidation
by the crowd; the voice of the expert risks being smothered by the chorus of novices.

* Members and observers. In project meetings, the views of the people most seriously
involved matter most. This trivial observation does not deserve the amount of atten-
tion that the agile canon devotes to the distinction between “pigs” and “chickens”.

* Collective code ownership. The policy governing who is permitted to change various
parts of the code is a delicate decision for each project; it depends on the nature of the
team and many other considerations. It is pointless to prescribe a universal solution.

* Cross-functional teams. It is a good idea to encourage developers to gain broad com-
petence and to avoid dividing the projects into narrow kingdoms of expertise each
under the control of one person. Beyond this general advice, there is little a method
can change here to the obvious observation that special areas require special skills. If
one of your developers is a database expert and another is a concurrency expert, you
will not ask the first, if you have a choice, to resolve a tricky deadlock issue, or the
second to optimize queries. This observation is another reason why the agile sched-
uling policy of picking the highest-business-value task in the pipeline is simplistic
and potentially harmful.

11.3 THE GOOD

Promoting refactoring is an important contribution of the agile approach, particularly of
XP. Good programmers have always known that it is not sufficient to get something that
works, but that they should take a second look at the design and improve it if needed.
Refactoring has given a name to this activity, made it respectable, and provided a catalog
of fundamental refactoring patterns. As a substitute for upfront design it is terrible
advice, belonging to the “ugly” part of agile. But as a practice that accompanies careful
initial design it is of benefit to all software development.

Short daily meetings focused on simple verbal reports to progress — the “three ques-
tions” — are an excellent idea. It need not be practiced in a dogmatic way, since distrib-
uted projects and companies with flexible work schedules must adapt the basic scheme,
but is one of the practices that undeniably help software development, and deserves to
be adopted even more widely than it already is.

Agile methods rightly insist on the importance of team communication (“osmotic”
in Crystal terminology) to the success of projects. One of the consequences is to recom-
mend co-located projects, whenever possible, over distributed development

The practice of identifying and removing impediments, in particular as a focus of
progress meetings, is a powerful agile insight.

In a similar vein, Lean’s identification of sources of waste in software development
and insistence on removing them provides an excellent discipline for software projects.

154 THE UGLY, THE HYPE AND THE GOOD: AN ASSESSMENT OF THE AGILE

11.4 THE BRILLIANT

Fortunately, in our review of agile ideas we have encountered a number of effective and
truly inspiring principles and practices.

Short iterations are perhaps the most visible influence of agile ideas, an influence
that has already spread throughout the industry. Few competent teams today satisfy
themselves with six-month objectives. The industry has understood that constant feed-
back is essential, with a checkpoint every few weeks.

The related practice of continuous integration and the associated regression test
suite artifact, while not agile inventions, have been popularized by XP and are major fac-
tors in the success of modern projects. The industry, or at least every competently man-
aged project, has turned away from older “big bang” practices, and will never go back.

The closed-window rule, which prohibits everyone regardless of status from adding
functionality during an iteration, is one of the most insightful and effective agile ideas.

Time-boxing every iteration — not accepting any delays, even if some functionality
has not been implemented — is an excellent discipline, forcing team members and cus-
tomer representatives to plan carefully and realistically, and bringing stability to the
project. (We have seen that it should only apply to iterations, not to an entire project, for
which the customer dictates delivery dates.)

Scrum introduced the beneficial notion of a clearly defined product owner who rep-
resents the goals of the customer organization and has decision power over what goes
into the product and what does not.

The emphasis on delivering working software is another important contribution. We
have seen that it can be detrimental if understood as excluding requirements, infrastruc-
ture and other upfront work. But once a project has established a sound basis, the require-
ment to maintain a running version imposes a productive discipline on the team.

The notion of velocity and the associated artifact of task boards to provide visible,
constantly updated evidence of progress or lack thereof are practical, directly useful
techniques that can help every project.

Associating a test with every piece of functionality is a fundamental rule which
contributes significantly to the solidity of a software project and of the resulting product.

The ideas listed as good or brilliant are relatively few, but they are both important and
beneficial; they deserve careful study and immediate application. They justify the jour-
ney, arduous at times, that we took through the land of agile methods. Once disentangled
from the questionable part of the agile credo, they will leave a durable mark on the prac-
tice of software engineering, and find their place, along with earlier ideas such as struc-
tured programming, formal methods, object-oriented software construction and design
patterns, in the history of major advances in the field.

< “The
closed-window
rule”, page 90.

<« “The
either-what-or-
when fallacy”,
page 146.

« “Dual Devel-
opment”, page 74.

Bibliography

All URLs checked January 2014.

[Agile 2001]
Agile Manifesto, at agilemanifesto.org.
[Agile 2011]
Agile Alliance: Velocity page at guide.agilealliance.org/guide/velocity.html, 2011.
[Ambler 2006]
Scott Ambler: Agile Adoption Rate Survey, at www.ambysoft.com/surveys/agileMarch2006.html.
[Ambler 2001]
Scott W. Ambler: Agile Modeling and the Rational Unified Process (RUP), at www.agilemodeling.
com/essays/agileModelingRUP.htm (part of Ambler’s “agile modeling” site), 2001.
[Ambler 2010]
Scott W. Ambler: The Agile Maturity Model (AMM), in Dr. Dobbs Journal, April 2010, available
at www.drdobbs.com/architecture-and-design/the-agile-maturity-model-amm/224201005.
[Ambler 2012]
Scott W. Ambler and Matthew Holitza: Agile for Dummies, Wiley, 2012. See also “IBM limited
edition” available online at www-01.ibm.com/software/rational/agile/agilesoftware.
[Ambler testing]
Scott W. Ambler: Agile Testing and Quality Strategies: Discipline Over Rhetoric, at www.ambysoft.
com/essays/agileTesting. html#AgileTestingStrategies, undated.
[Anand site]
Bachan Anand: Conscires site at agile.conscires.com.
[Basili 1975]
Victor R. Basili and Albert J. Turner: lterative Enhancement: A Practical Technique for Software
Development, IEEE Transactions on Software Engineering, vol. SE-1, no. 4, December 1975,
pages 390-396, available at www.cs.umd.edu/~basili/publications/journals/J04.pdf.
[Beck 2000]
Kent Beck: Extreme Programming Explained — Embrace Change, Addison-Wesley, 2000. (First
edition; see also [Beck 2005].)
[Beck 2003]
Kent Beck: Test-Driven Development — By Example, Addison-Wesley, 2003.
[Beck 2005]
Kent Beck, with Cynthia Andres: Extreme Programming Explained — Embrace Change,,
Addison-Wesley, 2005. (Second edition; see also [Beck 2000].)
[Boehm 1981]
Barry W. Boehm: Software Engineering Economics, Prentice Hall, 1981.

B. Meyer, Agile!, DOI 10.1007/978-3-319-05155-0,
© Springer International Publishing Switzerland 2014

http://agilemanifesto.org
http://www.ambysoft.com/surveys/agileMarch2006.html
http://agile.conscires.com
http://www.cs.umd.edu/~basili/publications/journals/J04.pdf
http://www.agilemodeling.com/essays/agileModelingRUP.htm
http://www.agilemodeling.com/essays/agileModelingRUP.htm
http://www.drdobbs.com/architecture-and-design/the-agile-maturity-model-amm/224201005
http://guide.agilealliance.org/guide/velocity.html
http://www.ambysoft.com/essays/agileTesting.html#AgileTestingStrategies
http://www.ambysoft.com/essays/agileTesting.html#AgileTestingStrategies
http://www-01.ibm.com/software/rational/agile/agilesoftware

156 BIBLIOGRAPHY §

[Boehm 2004]
Barry W. Boehm & Richard Turner: Balancing Agility and Discipline — A Guide for the Perplexed,
Addison-Wesley, 2004.
[Brooks 1975]
Fred Brooks: The Mythical Man-Month, Addison-Wesley, 1975.
[Chromatic 2003]
Chromatic: Extreme Programming Pocket Guide, O’Reilly, 2003.
[CMMI 2010]
CMMI Product Team: CMMI for Development, Version 1.3, Improving processes for developing

better products and services, Technical Report CMU/SEI-2010-TR-033, Software Engineering
Institute, November 2010, available at www.sei.cmu.edu/reports/10tr033.pdf.

[Cockburn 2001]
Alistair Cockburn and Jim Highsmith: Agile Software Development: The People Factor, in
Computer (IEEE), vol. 34, no. 11, November 2001, pages 131-133.

[Cockburn 2001a]
Alistair Cockburn: Agile Software Development, Addison-Wesley, 2001.

[Cockburn 2003]
Alistair Cockburn: The cone of silence and related project management strategies, online article at
alistair.cockburn.us/The+cone+of+silencet+and+related+project+management-+strategies, 2003.

[Cockburn 2005]
Alistair Cockburn: Crystal Clear — A Human-Powered Methodology for Small Teams,
Addison-Wesley, 2005.

[Cockburn 2010]
Alistair Cockburn: Vid of Alistair describing Shu Ha Ri, video lecture, 7 July 2010, available at
alistair.cockburn.us/Vid+of+Alistair+describing+Shu+Ha+Ri. See explanatory text (from 2001
book) at alistair.cockburn.us/Vid+of+Alistair+describing+Shu+Ha+Ri.

[Cohn 2003]
Mike Cohn: The Need for Agile Project Management, online article at www.mountaingoatsoftware.
com/articles/the-need-for-agile-project-management.

[Cohn 2006]
Mike Cohn: Agile Estimating and Planning, Addison-Wesley, 2006.

[Cohn 2009]
Mike Cohn: Intentional Yet Emergent, online article at www.mountaingoatsoftware.com/blog/agile
-design-intentional-yet-emergent, 4 December 2009.

[Cohn 2010]
Mike Cohn: Succeeding With Agile, Addison-Wesley, 2010.

[Cohn 2010a]
Mike Cohn: The Role of Leaders on a Self-Organizing Team, online article at www.mountaingoat
software.com/blog/the-role-of-leaders-on-a-self-organizing-team, 7 January 2010.

[Cohn site]
Mike Cohn: Succeeding With Agile site, www.mountaingoatsoftware.com.

[Collabnet site]
Collabnet Scrum Methodology site, at scrummethodology.com.

[Cox 1996]
Brad Cox: Superdistribution: Objects as Property on the Electronic Frontier, Addison Wesley. 1996.

http://www.mountaingoatsoftware.com/blog/agile-design-intentional-yet-emergent
http://www.mountaingoatsoftware.com/blog/agile-design-intentional-yet-emergent
http://www.mountaingoatsoftware.com
http://www.mountaingoatsoftware.com/blog/the-role-of-leaders-on-a-self-organizing-team
http://www.mountaingoatsoftware.com/blog/the-role-of-leaders-on-a-self-organizing-team
http://www.sei.cmu.edu/reports/10tr033.pdf
http://www.mountaingoatsoftware.com/articles/the-need-for-agile-project-management
http://www.mountaingoatsoftware.com/articles/the-need-for-agile-project-management
http://alistair.cockburn.us/The+cone+of+silence+and+related+project+management+strategies
http://scrummethodology.com
http://alistair.cockburn.us/Vid+of+Alistair+describing+Shu+Ha+Ri
http://alistair.cockburn.us/Vid+of+Alistair+describing+Shu+Ha+Ri

§ 157

[Cunningham 2004]
Ward Cunningham (interviewed by Bill Venners): The Simplest Thing that Could Possibly Work,
at www.artima.com/intv/simplest.html.

[Cusumano 1995]
Michael A. Cusumano and Richard W. Selby, Microsoft Secrets: How the World's Most Powerful
Software Company Creates Technology, Shapes Markets and Manages People, Simon and
Schuster, 1995

[DeMarco 1999]

Tom DeMarco and Tim Lister: Peopleware: Productive Projects and Teams (Second Edition),
Dorset House, 1999. (First edition was published in 1987.)
[DeMarco 2001]
Tom DeMarco: Slack: Getting Past Burnout, Busywork and the Myth of Total Efficiency, Dorset
House, 2001.
[Deming 1966]
W. Edwards Deming: Some Theory of Sampling, 1966, reprinted by Dover Publications, 2010.
[Denning 2012]
Steve Denning: The Case Against Agile: Ten Perennial Management Objections, in Forbes
magazine, 17 April 2012, at onforb.es/HQS8i6J.
[Derby 2011]
Esther Derby: Misconceptions about Self-Organizing Teams, online article at www.estherderby.co
m/2011/07/misconceptions-about-self-organizing-teams-2.html, 19 July 2011.
[Dhawan 2008]
Krishankumar Dhawan, Geste Kopfschuetteln Indien (Indian head-nodding), YouTube video (in
English), 30 June 2008, , at bit.ly/dmIoGj (short for www.youtube.com/watch?v=3hCV2002akw).
[Dijkstra 1968]
Edsger W. Dijkstra: Go To Statement Considered Harmful, Communications of the ACM, vol. 11,
no. 3, March 1968, pages 147-148.
[Evans 2003]
Eric Evans: Domain-Driven Design: Tackling Complexity in the Heart of Sofiware,
Addison-Wesley, 2003.
[Eveleens 2010]
J. Laurens Eveleens and Chris Verhoef: The Rise and Fall of the Chaos Report Figures, in IEEE
Software, vol. 27, no. 1, Jan-Feb 2010, pages 30-36. See also S. Aidane, The “Chaos Report” Myth
Busters, 26 March 2010, www.guerrillaprojectmanagement.com/the-chaos-report-myth-busters, and
[Glass 2006].
[Gamma 1994]
Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides: Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1994.
[Fowler 1999]
Martin Fowler: Refactoring: Improving the design of existing code, Addison Wesley, 1999.
[Ghezzi 2002]
Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli: Fundamentals of Sofiware Engineering. ond
Edition. Prentice Hall, 2002.
[Glass 2006]
Robert L. Glass: The Standish Report: Does it Really Describe a Software Crisis?, in
Communications of the ACM, vol. 49, no. 8, pages 15-16, August 20006.

http://onforb.es/HQ8i6J
http://bit.ly/dmIoGj
http://www.youtube.com/watch?v=3hCV2oO2akw
http://www.artima.com/intv/simplest.html
http://www.guerrillaprojectmanagement.com/the-chaos-report-myth-busters
http://www.estherderby.com/2011/07/misconceptions-about-self-organizing-teams-2.html
http://www.estherderby.com/2011/07/misconceptions-about-self-organizing-teams-2.html

158 BIBLIOGRAPHY §

[Glazer 2008]
Hillel Glazer, Jeff Dalton, David Anderson, Mike Konrad and Sandy Shrum: CMMI or Agile: Why
Not Embrace Both!, Technical Note CMU/SEI-2008-TN-003, November 2008, available at
www.sei.cmu.edu/library/abstracts/reports/08tn003.cfm.

[Gualtieri 2011]
Mike Gualtieri: Agile Software Is A Cop-Out; Here'’s What's Next, blog article, 12 October 2011,
at blogs.forrester.com/mike gualtieri/11-10-12-agile software is a cop_out _heres whats next.

[Hadamard 1945]
Jacques Hadamard: Psychology of Invention in the Mathematical Field, Princeton University
Press, 1945

[Halliwell 2008]
Luke Halliwell: The Agile Disease, blog article, 16 November 2008, at lukehalliwell.wordpress.
com/2008/11/16/the-agile-disease.

[Humphrey 2005]
Watts S. Humphrey: PSP: A Self-Improvement Process for Software Engineers, Addison-Wesley,
2005.

[IBM 2012]
IBM-sponsored study by Project At Work: Agile Maturity Report, 2012, available online at
www-01.ibm.com/software/rational/agile/agilesoftware.

[IEEE 1998]
IEEE: Standard 830-1998, Recommended Practice for Software Requirements Specifications,
1998, available (for a fee) at standards.ieee.org/findstds/standard/830-1998.html.

[Jacobson 1992]
Ivar Jacobson: Object Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley, 1992.

[Jackson 1995]
Michael Jackson: Software Requirements and Specifications: A Lexicon of Practice, Principles
and Prejudices, Addison Wesley / ACM Press, 1995.

[Jackson 2000]
Michael Jackson: Problem Frames: : Analysing & Structuring Software Development Problems,
Addison-Wesley, 2000.

[Jacobson 1992]
Ivar Jacobson: Object-Oriented Software Engineering: A Use Case DrivenApproach,
Addison-Wesley, 1992.

[Jeffries 2001]
Ron Jeffries, Ann Anderson and Chet Hendrickson: Extreme Programming Installed,
Addison-Wesley, 2001.

[Jeffries site]
Ron Jeffries: Xprogramming site at xprogramming.com.

[Kniberg 2010]
Henrik Kniberg and Mattias Skarin: Kanban and Scrum — Making the Most of Both, InfoQ, 2010.

[Kraft 1977]
Philip Kraft: Programmers and Managers: The Routinization of Computer Programming in the
United States, Springer Verlag, 1977.

[Larman 2010]
Craig Larman and Bas Vodde: Practices for Scaling Lean & Agile Development: Large, Multisite,
and Offshore Product Development with Large-Scale Scrum, Addison-Wesley, 2010.

http://lukehalliwell.wordpress.com/2008/11/16/the-agile-disease
http://lukehalliwell.wordpress.com/2008/11/16/the-agile-disease
http://standards.ieee.org/findstds/standard/830-1998.html
http://xprogramming.com
http://blogs.forrester.com/mike_gualtieri/11-10-12-agile_software_is_a_cop_out_heres_whats_next
http://www.sei.cmu.edu/library/abstracts/reports/08tn003.cfm
http://www-01.ibm.com/software/rational/agile/agilesoftware

§ 159

[Leffingwell 2011]
Dean Leffingwell: Agile Software Requirements — Lean Requirements Practices for Teams,
Programs, and the Enterprise, Addison-Wesley, 2011.
[Lutz 1993]
Robyn Lutz: Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems, in
ISRE 93 (Proc. Int. Symposium on Requirements Engineering), IEEE, 1993, also available at
www.cs.iastate.edu/%7Erlutz/publications/isre93.ps.
[Madeyski 2010]
Lech Madeyski: Test-Driven Development — An Empirical Development of Agile Practice,
Springer Verlag, 2010.
[Markham 2010]
Daniel Markham: Agile Ruined My Life, blog article, 7 September 2010, available at
www.whattofix.com/blog/archives/2010/09/agile-ruined-my.php.
[Martin 2009]
Angela Michele Martin: The Role of Customers in Extreme Programming Projects, PhD thesis,
Victoria University of Wellington, New Zealand, 2009.
[McBreen 2002]
Pete McBreen: Questioning Extreme Programming, Pearson Education, 2002.
[McConnell 2006]
Steve McConnell: Software Estimation: Demystifying the Black Art, Microsoft Press, 2006.
[McCracken 1982]
Daniel D. McCracken and Michael A. Jackson: Life cycle concept considered harmful, in ACM
SIGSOFT Software Engineering Notes, vol. 7, no. 2, April 1982, pages 29-32.
[Meyer 1988]
Bertrand Meyer: Object-Oriented Software Construction (first edition), Prentice Hall, 1988.
[Meyer 1995]
Bertrand Meyer: Object Success: A Manager’s Guide to Object Orientation, Its Impact on the
Corporation and its Use for Reengineering the Software Process, Prentice Hall, 1995.
[Meyer 1997]
Bertrand Meyer: Object-Oriented Software Construction, second edition, Prentice Hall, 1997.
[Meyer 2008]
Bertrand Meyer: Design and Code Reviews in the Age of the Internet, in Communications of the
ACM, vol. 51, no. 9, September 2008, pages 66-71.
[Meyer 2009]
Bertrand Meyer: Touch of Class: Learning to Program Well, Using Objects and Contracts,
Springer-Verlag, 2009.
[Meyer 2009a]
Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Emmanuel Stapf: Programs
that Test Themselves, IEEE Computer, vol. 42, no. 9, September 2009, pages 46-55, available at
se.ethz.ch/~meyer/publications/computer/test_themselves.pdf.
[Meyer 2012]
Bertrand Meyer: A Fundamental Duality of Software Engineering, 14 October 2012, blog article
at bertrandmeyer.com/2012/10/14/a-fundamental-duality-of-software-engineering/.
[Meyer 2013]

Bertrand Meyer: Apocalypse no! (part 1, includes a link to part 2), 12 March 2013, blog article at
bertrandmeyer.com/2013/03/12/apocalypse-no-part-1/.

http://www.eiffel.com/doc/oosc
http://www.cs.iastate.edu/%7Erlutz/publications/isre93.ps
http://www.whattofix.com/blog/archives/2010/09/agile-ruined-my.php
http://bertrandmeyer.com/2012/10/14/a-fundamental-duality-of-software-engineering/
http://se.ethz.ch/~meyer/publications/computer/test_themselves.pdf
http://bertrandmeyer.com/2013/03/12/apocalypse-no-part-1/

160 BIBLIOGRAPHY §

[Meyer 2013a]
Bertrand Meyer: What is wrong with CMMI, 12 May 2013, blog article at
bertrandmeyer.com/2013/05/12/what-is-wrong-with-cmmi/.

[Mills 1971]
Harlan D. Mills: Chief programmer teams, principles, and procedures, IBM Federal Systems
Division Report FSC71-5108, Gaithersburg, 1971.

[Mittal 2013]
Nitin Mittal: Self~-Organizing Teams: What and How, at scrumalliance.org/articles/466-selforgani
zing-teams-what-and-how, 7 January 2013.

[Mob site]
Mob Programming site, at mobprogramming.org.

[Mozilla modules]
Mozilla Modules and Module Owners, at www.mozilla.org/hacking/module-ownership.html.

[Miiller 2005]
Matthias Miiller: Two controlled experiments concerning the comparison of pair programming to
peer review, in Journal of Systems and Software 78, 2005, pages 166-179.

[NASA 1999]
Mars Climate Orbiter Mishap Investigation Board Phase I Report, 10 November 1999, available
at bit.ly/Ot7mJ8 (short for ftp.hq.nasa.gov/pub/pao/reports/1999/MCO _report.pdf). See also the
CNN article at bit.ly/d51nla.
[NATO 1968]
Peter Naur and Brian Randell (eds): Software Engineering, Report on a Conference Sponsored by
the NATO Science Committee, Garmisch, Germany, 7-11 October 1968, republished in 2001 at
homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF.
[Nawrocki 2001]
Jerzy Nawrocki and Adam Wojciechowski: Experimental evaluation of pair programming, in
European Software Control and Metrics (Escom), April 2001, pages 269-276.
[Nonaka 1995]
Ikujiro Nonaka and Hirotaka Takeuchi: The Knowledge-Creating Company: How Japanese
Companies Create the Dynamics of Innovation, Oxford University Press, 1995.
[Parnas 1986]
David L. Parnas and Paul C. Clements: A Rational Design Process: How and Why to Fake it, in
IEEE Transactions on Software Engineering, vol. 12, no. 2, February 1986, pages 251-257,
available at y.web.umkc.edu/yzheng/classes/doc/IEEE86 Parnas Clement.pdf.
[Pfleeger 2009]
Shari Lawrence Pfleeger and Joanne M. Atlee: Sofiware Engineering: Theory and Practice.
Edition, Prentice Hall, 2009.
[Pichler site]
Roman Pichler Consulting: Scrum site at www.romanpichler.com.
[Poppendieck 2001]
May Poppendieck: Lean Programming, in Dr Dobb s, two-part article, | May and 1 June 2001, at
www.drdobbs.com/lean-programming/184414734 and www.drdobbs.com/lean-programming/184414744.
[Poppendieck 2003]
Mary and Tom Poppendieck: Lean Sofiware Development — An Agile Toolkit, Addison-Wesley, 2003.
[Poppendieck 2010]
Mary and Tom Poppendieck: Leading Lean Software Development, Addison-Wesley, 2010.

4th

http://bit.ly/Ot7mJ8
ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf
http://bit.ly/d51nla
http://www.romanpichler.com
http://scrumalliance.org/articles/466-selforganizing-teams-what-and-how
http://scrumalliance.org/articles/466-selforganizing-teams-what-and-how
http://y.web.umkc.edu/yzheng/classes/doc/IEEE86_Parnas_Clement.pdf
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://www.drdobbs.com/lean-programming/184414734
http://www.drdobbs.com/lean-programming/184414744
http://www.mozilla.org/hacking/module-ownership.html
http://bertrandmeyer.com/2013/05/12/what-is-wrong-with-cmmi/
http://mobprogramming.org/

§ 161

[Poppendieck essays]
Mary Poppendieck, Lean Essays site, www.leanessays.com.
[Poppendieck lean]
Mary and Tom Poppendieck: Lean Software Development site, www.poppendieck.com.
[Reeves 1992-2005]
Jack W. Reeves: What is Software Design?, in C++ Journal, Fall 1992, available with two
complementary essays (2005) at www.developerdotstar.com/mag/articles/reeves_design.html.
[Royce 1970]
Winston D. Royce: Managing the Development of Large Software Systems, in Proc. IEEE
WESCON, 1970, pages 1-9, at www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf.
[Schwaber 2002]
Ken Schwaber and Mide Beedle: Agile Software Development with Scrum, Prentice Hall, 2002.
[Schwaber 2004]
Ken Schwaber: Agile Project Management with Scrum, Microsoft Press, 2004.
[Schwaber 2004a]
Ken Schwaber: Managing Agile Projects, Addison-Wesley, 2004.
[Schwaber 2012]
Ken Schwaber and Jeff Sutherland: Sofiware in 30 Days: How Agile Managers Beat the Odds,
Delight Their Customers, And Leave Competitors In the Dust, Wiley, 2012.
[Schweigert 2012]
Thomas Schweigert, Risto Nevalainen, Detlef Vohwinkel, Morten Korsaa and Miklos Biro: Agile
Maturity Model: Oxymoron or the Next Level of Understanding, in Software Process Improvement
and Capability Determination (SPICE), Communications in Computer and Information Science
vol. 290, 2012, pages 289-294, at link.springer.com/chapter/10.1007%2F978-3-642-30439-2 34.
[Scrimshire site]
James Scrimshire: Hurricane Four site, hurricanefour.com.
[Scrum Alliance]
Scrum Alliance site at scrumalliance.org.
[Shore 2008]
James Shore and Shane Warden: The Art of Agile Development, O'Reilly. 2008.
[Shore 2008a]
James Shore: The Decline and Fall of Agile, blog article, 14 November 2008, at www.jamesshore.
com/Blog/The-Decline-and-Fall-of-Agile.html.
[Shore site]
Web site for [Shore 2008] at jamesshore.com/Agile-Book.
[Silver 2007]
Melanie Silver: Am I, or Am I Not, Using Scrum? That is the Question, Scrum Alliance site, 18 March
2007, www.scrumalliance.org/articles/41-am-i-or-am-i-not-using-scrum-that-is-the-question.
[Sobel 2007]
Dava Sobel: Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific
Problem of His Time, Walker, 2007.
[Stellman site]
Andrew Stellman and Jennifer Greene: Building Better Software site, www.stellman-greene.com/.
[Stephens 2003]
Matt Stephens & Doug Rosenberg: Extreme Programming Refactored: The Case Against XP,
Apress, 2003.

http://www.poppendieck.com
http://jamesshore.com/Agile-Book
http://www.scrumalliance.org/articles/41-am-i-or-am-i-not-using-scrum-that-is-the-question
http://www.stellman-greene.com/
http://www.jamesshore.com/Blog/The-Decline-and-Fall-of-Agile.html
http://www.jamesshore.com/Blog/The-Decline-and-Fall-of-Agile.html
http://www.leanessays.com
http://www.developerdotstar.com/mag/articles/reeves_design.html
http://hurricanefour.com
http://link.springer.com/chapter/10.1007%2F978-3-642-30439-2_34
http://scrumalliance.org

162 BIBLIOGRAPHY §

[Surowiecki 2004]
James Surowiecki: The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How
Collective Wisdom Shapes Business, Economies, Societies and Nations, Knopf Doubleday, 2004.
[Surowiecki 2013]
James Surowiecki: Requiem For a Dreamliner, in the New Yorker, 4 February 2013, available at
www.newyorker.com/talk/financial/2013/02/04/130204ta_talk surowiecki.
[Sutherland 2009]
Jeff Sutherland: Self-Organization: The Secret Sauce for Improving your Scrum Team, video at
www.youtube.com/watch?v=M1q6b9JI12Wc.
[Sutherland 2010]
Jeff Sutherland, Carsten Ruseng Jakobson and Kent Johnson: Scrum and CMMI Level 5: The
Magic Potion for Code Warriors, in Proc. 41st Hawaii Int. Conf. on System Sciences, 7-10 Jan.
2008, at ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4439172&tag=1 (and bit.ly/17LZE2R).
[Sutherland 2012]
Jeff Sutherland, Rini van Solingen and Eelco Rustenberg: The Power of Scrum, CreateSpace, 2012.
[Sutherland 2013]
Jeff Sutherland: Scrum: The Art of Doing Twice the Work in Half the Time, tutorial notes, 2013,
available at jeffsutherland.com/CSMjsv16.pdf.
[Wake site]
Bill Wake: Exploring Extreme Programming site at xp123.com.
[Wallace 2002]
Doug Wallace, Isobel Raggett & Joel Aufgang: Extreme Programming for Web Projects,
Addison-Wesley, 2002.
[Waters site]
Kelly Waters: All About Agile site, www.allaboutagile.com.
[Weisert 2010]
Conrad Weisert, Are Agile Methods and Reusable Components Incompatible?, online article at
www.idinews.com/agileReUse.html.
[Wells site]
Don Wells: Extreme Programming site, www.extremeprogramming.org.
[Wenzel site]
Joel Wenzel, In Point Form site, joel.inpointform.net.
[Wirth 1995]
Niklaus Wirth: 4 Plea for Lean Software, in IEEE Computer, Vol. 28, no. 2, February 1995, pages
64-68.
[Yegge 2006]
Steve Yegge: Good Agile, Bad Agile, blog article, 27 September 2006, available at steve-yegge.
blogspot.com/2006/09/good-agile-bad-agile 27.html.
[Yourdon 2003]
Ed Yourdon: Death March, 2nd edition, Prentice Hall, 2003. (First edition published in 1997.)
[Zave 1997]
Pamela Zave and Michael Jackson: Four dark corners of requirements engineering, in ACM
TOSEM (Transactions on Software Engineering and Methodology), vol. 6, no. 1, January 1997,
pages 1-30.
[Zave FAQ)]
Pamela Zave, Feature Interaction FAQ, at www?2.research.att.com/~pamela/faq.html, with links to
a page listing many publications on feature interaction.

http://xp123.com
http://www.allaboutagile.com
http://www.extremeprogramming.org
http://joel.inpointform.net
http://www.idinews.com/agileReUse.html
http://steve-yegge.blogspot.com/2006/09/good-agile-bad-agile_27.html
http://steve-yegge.blogspot.com/2006/09/good-agile-bad-agile_27.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4439172&tag=1
http://bit.ly/17LZE2R
http://www2.research.att.com/~pamela/faq.html
http://jeffsutherland.com/CSMjsv16.pdf
http://www.newyorker.com/talk/financial/2013/02/04/130204ta_talk_surowiecki
http://www.youtube.com/watch?v=M1q6b9JI2Wc

Index

In the electronic version, clicking a page number will take you to the corresponding occurrence.

A

a priori, a posteriori 113
see also dual development
abstractness 49
additive, see under complexity
Affordable Care Act (Obamacare) 61
agile
and CMMI 46-47
and design 39-41
and requirements 32-37
change criticism 35
waste criticism 33-34
artifacts 10-12, 117-131
assessment xi-xii, 12-15, 145, 149-154
techniques xi-xii
assumptions 2-4
books 133, 136-139
claims 28-30
Luddite tendencies 131
Manifesto 1-2, 5, 7, 50, 66, 68, 91, 97, 135, 140
methods 2, 133-143
practices 8-10, 89-115
also called “ceremonies” in Scrum 89
managerial 89-102
technical 103-115
precautions in reading agile texts 17-30
principles 4-7, 49-78
official 5, 50-51
organizational 5, 51-69
should be prescriptive 49
technical 6-7, 70-78
roles 7, 79-87
only three in Scrum 80
see manager, product owner, scrum master, team
separation 86-87
transition 145-147
values 2-4
all-or-nothing ix, 22, 27
Ambler, Scott W. 43, 47, 118, 145
anecdote viii, xi-xii, 17-22, 54, 57, 61, 119, 135-136
see also under proof
anti-pattern 110
Apache 101
API 100
approval

separate from arousal 106-107
architecture 3-4, 9, 14, 19, 21, 31, 33, 35-41, 43,
46, 50, 54, 56, 59-62, 66-67, 69-70, 74-75, 82,
86, 97, 100, 109-114, 120-121, 125, 129-130,
135-138, 149, 152-154
associated with “design” 37
Aristotle xi
Armstrong, Lance 22, 135-136
arousal
separate from approval 106-107
artifact, see under agile
assertion 118
assessment
in CMMI 44-45
of the agile approach, see assessment under agile
Atlee, Joanne M. 32

B

bachelor’s degree 47

backlog 80-81, 89, 98, 117, 126-129

balance point 27-28

Basili, Victor R. 70

Baudoin, Claude xiii

Beck, Kent xiii, 26, 32-33, 35, 52-53, 58, 60, 77, 94,
101, 104-107, 109-111, 113-114, 117, 123, 125,
137-138, 146-147

Beedle, Mike xiii

Berkeley Unix 108-109

Big Bang approach to integration 72, 103, 105, 154

BigIdea 133-134, 136-137, 139, 141

Big Upfront, see upfront tasks

Bishop, Judith xiii

bloat 58, 61, 135, 152

blog xiii

board (story board, task board) 10-12, 117, 127-128

Boehm, Barry W. ix, xiii, 25, 31, 52, 62, 124, 145

Boeing Dreamliner (787) 61

booking.com 68

Brecht, Bertolt 25

bug, see defect

bullpen 125

burndown, burnup, see under chart

Business Week 66

164

INDEX

C

Calvin 24
catastrophism 22, 26-27
ceremony, Scrum name for practice 89
certification (CMMI, Scrum) 45, 47, 84, 140
change
see also extendibility
as criticism of requirements 33, 35
control 101
incidental and essential 112
must be accepted 4, 6, 35, 68-69, 90, 139-140, 154
contradiction with minimalism 69, 151
Chaos report 26-27
chart
burndown 10-11, 117, 128-129
burnup 128-129, 131
dependency 61, 129-131, 150
earned-value 131
Gantt, see dependency under chart
chicken 82, 139, 153
chief programmer 86-87
China Shop rule 104
Clausewitz, Carl von 39
Clear, see under Crystal
Clements, Paul C. 39
closed-window rule 90-91, 139-140, 154
cloud-based tools 131
cluster 70
CMM, see CMMI
CMMI (Capability Maturity Model Integration) 43-47,
75, 99, 141
and India 45
levels 44-45, 47
coach 7, 29, 55, 84-87, 99, 151
see also Master under Scrum
Cockburn, Alistair xiii, 21, 26, 47, 56-57, 60, 73-74,
81, 96-97, 101, 108, 125, 130, 141
code 3-4, 6, 9-10, 13, 15, 35-39, 46, 57-58, 60-61,
65-66, 69-70, 77, 100-107, 109-115, 117-118,
122, 125, 129-130, 135, 137-138, 151-153
see also implementation
associated with tests 118
central role 4, 15, 39, 60, 117, 129
difference with documentation 37-39
difference with “implementation” 37
inspection xii, 13, 107, 138, 152
object-oriented 69
ownership 8-9, 100-102, 138, 153
and cross-functionality 102
assessment 100-102, 153
review, see inspection under code
smell, see this term
standards 10, 109
Cohn, Mike xiii, 17, 19-21, 32-33, 40, 54-55, 65, 78,
84, 91, 95, 122-124, 126, 130, 139

collective code ownership, see ownership under code
cologne, strong 106
Columbus, Christopher 24
Columbus syndrome 24
commit then review (CTR) 101
communication
see documentation, verbal communication
core, see core communication
osmotic, see osmotic communication
Communications of the ACM xiii
complexity 120, 123
see also simplicity
additive and multiplicative 58, 63-65, 71, 100, 112,
150
cone of uncertainty 124
configuration management 35, 44-45, 76, 101, 104
consumables 60, 65
continuous integration viii, 8-9, 103-105, 118, 138,
154
control
subtle, surreptitious, by love, see subtle control
core communication 141
core participant, see members and observers under team
cover-your-behind 22, 27-28
creep, see under feature
cross-functionality 81, 98, 102, 130, 153
and code ownership 102
Crystal vii, ix-x, 2, 57, 97, 101, 125, 128, 131, 133,
141-143, 153
assessment 142
Clear 141
principles 141
cubby 125
cubicle 3, 57, 96
see also space under working
Cunningham, Ward 59, 137
customer xii, 2-7, 11, 13, 21, 33-36, 41, 50-53, 60-
62, 68, 70, 73, 75, 79-83, 90, 94-96, 99, 102,
119-120, 127, 129, 134-135, 137-138, 151-152,
154
see also product owner
at the center 51-53
embedded 53, 83, 86, 96, 151
interaction 83
onsite 83, 96, 151
Cusumano, Michael A. 14, 104
CVS 104

D

daily build 14, 72, 103-105
at Microsoft 104
daily meeting 8, 15, 81-82, 84, 89, 91-93, 98, 140,
153
also known as daily scrum 91
also known as standup meeting 91

INDEX

165

three questions 8, 91, 153
daily Scrum, see daily meeting
David (Michelangelo statue) 67
death march 56
debt, see technical debt
defect xiii, 6, 18, 44, 46, 64, 72, 75-76, 105, 110,
118, 126, 135
classification 76
defined (CMMI level) 45
definition of done 71, 117, 123, 125, 140
Delphi 95
DeMarco, Tom 56, 58
Deming, W. Edwards 57
Denning, Steve 23-25
Department of Defense 43, 45
dependency 71, 99-100, 102, 104, 112, 129-131
chart, see dependency under chart
Derby, Esther 54, 56
design
see also architecture
difference with “architecture” 37
patterns, see this term
separate from implementation? 37-39
smell, see this term
upfront, see upfront tasks
Design by Contract x, 118
development
distributed, see distributed under team
do not start until all tests pass 76
dual, see dual development
iterative, see iterative development
test-driven, test-first, see these terms
Dhawan, Krishankumar 20
Dijkstra, Edsger W. xi, 38, 40, 67, 75
Dijkstra. Edsger W. 77
Dilbert 3, 109
Disneyland 23
distributed, see under team
documentation 21, 27, 34-35, 38-39, 60, 123, 129
difference with code 37-39
versus verbal communication 19-21
domain
model 120-121, 150
vs machine (in requirements) 36-37, 120, 150
done, see definition of done
Donizetti, Gaetano 107
Dreyfus model 47
dual development 28, 74, 113, 121
Dubois, Paul xiii, 18
Duluth 101
dynamic binding 69

E

Easiest Thing First, Hardest Second 73
egoless programming 109

Eiffel 118, 126
Eiffel Software xiii
Einstein, Albert 24-25
either-what-or-when x, 71, 146-147
Emacs 108
embedded, see under customer
empirical software engineering viii-ix, xi-xiii, 25, 27,
29, 52, 58, 62, 105, 107-108
ESEC (European Software Engineering Conference) 25
essential change 112-113
estimation 8, 58, 93-95, 98-99, 121-124, 130, 153
Estler, Hans-Christian xiii
ETH Zurich xiii
euro, scheduling of introduction 146
Eveleens, J. Laurens 26
Everest 73
experience xi
extendibility 5, 10, 13-14, 40, 59, 68-69, 75, 112,
151
see also change
Extreme Programming vii, x, 1-3, 6-10, 13, 32, 53,
57-58, 60, 68, 73, 77, 83-84, 93-94, 96, 100-106,
108-110, 112-114, 117-118, 123-125, 133, 135,
137-139
abbreviated as XP 2
assessment 139
books 137-138
notion of simplicity 110, 135, 137
extremism, see all-or-nothing

F

Facebook 69, 86
falsification, falsifiability xi, 49, 77
feature
creep 61, 77, 90, 100
dependency, see this term
interaction 63-65
featurism
creeping, see creep under feature
Federal Aviation Administration 62
fellow traveler, see members and observers under team
Fibonacci sequence 94, 123
flexible working schedules 92
Forbes 23
Ford, Henry 79
formal methods 19-20, 39, 75, 154
fox 133
Freud, Sigmund 42
function point 122

G

Galileo Galilei xi

game, see under planning

Gamma, Erich 38, 109, 112, 117
Gantt chart, see dependency under chart
generalization 109

166

INDEX

genericity 69

Gerstner, Ralf xiii

Ghezzi, Carlo 32

GIGO (Garbage In, Garbage Out) 111

Git 104

Glass, Robert L. 26

Google 14, 58, 86, 101
Docs 32

Gétterddimmerung 30

gravity 145-146

Gries, David 67

gummi bears 123

Giinthart, Claudia xiii

guru 23, 79

gut feeling xi

H

Hadamard, Jacques 39

handover 36

hardest thing the team can succeed with 73
Harrison, John 24

Hawthorne effect 29

head nodding 20

hedgehog 133

Highest Business Value First 73-74
Highsmith, Jim 81

Hoare, C.A.R. 67

Holitza, Matthew 145

hotel booking 17, 19

Howard, Mark xiii

Humphrey, Watts 46

Hyatt 17

hygiene, personal 106

I Musici 55-56
IBM 29, 42, 145-146
ICSE (International Conference on Software
Engineering) 25
impediment 8, 15, 68, 84, 91-92, 117, 129, 140, 153
implementation 3, 9, 34, 36-37, 40-43, 82, 86, 89,
97-98, 120, 128, 149, 152
see also code
difference with “code” 37
“production” is a synonym 37
separate from design? 37-39
separate from requirements? 36
incidental change 112-113
India 19-20, 45, 85, 87, 94
and CMMI 45
individual code ownership, see ownership under code
information hiding 69
inspection, see under code
integration, see big bang, continuous integration
interaction
of features, see interaction under feature

with customers 83
International Standards Organization 43
intimidation viii-ix, 22-26
ISO standards 43
Italy xi, 94
iteration, see iterative development
backlog, see this term
iterative development 2-3, 5-7, 9, 11, 13-15, 34, 40-
43, 51, 56, 65, 70-72, 74, 89-90, 94, 98-99, 103,
105, 111, 121, 123-124, 126-127, 135, 138-140,
149
assessment 72-75
freeze requirements during iterations 71-72
see also closed-window rule
iteration planning 98-99
kinds 70-71
length of iterations 71, 138, 154
order of tasks 73-74
working iterations 5-6, 14, 50-51, 60, 65, 70-75,
117, 135, 154

J

Jackson, Michael A. xiii, 36, 41-42
Jacobson, Ivar xiii, 10, 119
Jazayeri, Mehdi 32

Jeffries, Ron 58-59, 83, 137

Jobs, Steve 25, 66, 79

Joy, Bill 108-109

JUnit 76, 117
K
Kanban 4, 128, 133-134, 136, 146
board 136
card 136

Kanban board 136

Knuth, Donald Erwin 108-109
Kolb, Peter xiii

Kraft, Philip 57

L

La Fille du Régiment 107
Larman, Craig xiii, 26, 32, 40, 84, 99, 108, 126, 139
lasagne 63
Lean Software vii, x, 2-3, 13-14, 27-28, 33, 46, 57,
67, 91, 119-120, 129, 133-136, 146
assessment 135-136
books 136
Leffingwell, Dean 31
length of iterations, see under iterative development
lifecycle 7, 31, 39, 41-43, 46, 68, 82
model 41-42, 82
V-model 82
linguine 63, 71
Linux 108-109
Lister, Tim 56
LOC (line of code), see SLOC

INDEX

167

logical reasoning xi
Louis XIV 42

love, see subtle control
Luddite 131

Lutz, Robin 52

M

machine vs domain (in requirements) 36-37, 120
make (configuration management tool) 38, 104
managed (CMMI level) 45
manager vii, x, 2-3, 5, 7, 13, 25, 28-29, 36, 53-56,
61-63, 68, 71-72, 74, 76, 79-81, 84-87, 89-90,
92, 97, 104, 107-108, 123, 131, 135-136, 150
incompetent 25, 29, 36, 68, 74, 97, 107
technical 87
Mandrioli, Dino 32
Manifesto, Agile, see Manifesto under agile
master’s degree 47
mathematics, see formal methods
maturity model 43-47
for agile methods 47
McBreen, Pete ix, xiii
McConnell, Steve 124, 145
McCracken, Daniel D. 41-42
meeting, see daily meeting, retrospective review meeting
member (in meetings)
see members and observers under team
mentor 7, 55, 107
difference between mentoring and pair
programming 107
method
see methods under agile
definition of the term 133
methodology, comparison of this term with
“method” 133
Meyer, Annie xiii
Meyer, Raphaél xiii
Meyer, Viktoria (no relation) xiii
Michelangelo (di Ludovico Buonarroti Simoni) 67
Mickey Mouse 23
Microsoft iv, 9, 14, 72, 86, 100, 104
Project 130-131
Mills, Harlan D. 86
miniature, see under process
minimal
artifacts 4, 51, 60
assessment of minimalism 61-67
contradiction with acceptance of change 69, 151
functionality 4-5, 51, 58, 152
not the same as simple 66-67
product 4-5, 51, 58-60
software 4-5, 10, 13, 51, 58-67
minimalism, see minimal
Mitin, Roman xiii
Mittal, Nitin 55

mob programming 107
model
domain, see model under domain
lifecycle, see model under lifecycle
maturity, see maturity model
Moltke, Marshall Helmuth von 35
Morgan, Carroll xiii
Mozilla 100
MS-DOS 60
Miiller, Matthias 107
multiplicative, see under complexity

N

nanny 79

napkin, as a substitute for documentation 21
Napoléon Bonaparte 97

NASA 21, 52

NATO 1968 conference 37

Naur, Peter 37

Nawrocki, Jerzy 107

no estimates 107

Nonaka, Ikujiro 54

(0]

Obamacare 61
object-oriented programming 9-10, 37, 39, 69, 121-
122, 154
agile criticism 69
Observer pattern 38-39
observer (in meetings)
see members and observers under team
onsite customer 96
OOPSLA conference 25
open
room, see space under working
space, see space under working
Oprah 62
optimizing (CMMI level) 45, 141
oracle 118
order of tasks, see under iterative development
osmotic communication 125, 141, 153

ownership
code, see ownership under code
P
pace

sustainable, see sustainable pace
pair programming xii, 8, 10, 13, 89, 96, 101, 105-
109, 138, 152
assessment 13, 107-109, 152
definition 106-107
difference with mentoring 107
paper napkin, as a substitute for documentation 21
Parnas, David L. 39, 67
partisanship viii
patterns, design viii, 37, 112, 154

168

INDEX

see also anti-pattern
Observer 38
Visitor 37, 112
PeopleWare 56-57, 126
personal safety 56-57
Personal Software Process (PSP) 46-47, 107
Pfleeger, Shari Lawrence 32
PhD degree 47
Piccioni, Marco xiii
Pichler, Roman 80
pig 82, 139, 153
planning
game viii, 8, 93-94, 121, 123, 153
iteration, see iteration planning under iterative develop-
ment
poker 8, 93-95, 98, 121, 123, 153
platitude 5, 49, 138
poker, see under planning
polymorphism 69
Poppendieck, Mary and Tom xiii, 22, 27-28, 33, 36-
37, 46, 58, 60, 65, 69, 81, 105, 119-120, 134-136
PowerPoint 60
practices, see under agile
predictive 31-32
not the same as waterfall 31
prescriptive principle 49
principle
agile, see principles under agile
definition 49
difference with a platitude 49
process
miniature 97-98
model, see CMMI
product backlog, see backlog
product owner 7, 53-54, 68, 80, 83, 86-87, 90, 95-
96, 98-99, 151, 154
production, see implementation
terms used as synonyms 37
Program Design Language 39
program, see code, implementation, programming
programmer
anarchy 107
chief, see chief programmer
programming
see also design, architecture, code, implementation
egoless 109
extreme, see Extreme Programming
mob, see mob programming
object-oriented, see object-oriented programming
pair, see pair programming
structured, see structured programming
proof
by anecdote xi, 17-22
by citation 67
PSP, see Personal Software Process

Q

quantitatively managed (CMMI level) 45
questions, see three questions under daily meeting

R
Rational Unified Process 42-43
RCS 104
Red Army 85

Reeves, Jack W. 38
refactoring 3, 8-9, 40, 60, 62, 72, 109-114, 130,
137-138, 149, 151, 153
assessment 110-113
covered in part by “generalization” 109
definition 109-110
must improve quality 110
pattern 110
regression test suite 4, 35, 68, 75-77, 101, 103-105,
114, 117-118, 139
Reinertsen, Don 126
requirements xii, 3-7, 9, 12-15, 17, 19-20, 27, 31-37,
43, 45, 49-53, 56, 60-62, 65-66, 68, 70-72, 77-
78, 82-83, 91, 97, 109, 119-121, 123, 126-127,
135, 139, 149-152, 154
see also specification, user story
see also user story
agile criticism 32-36
as design or implementation 36-37
as software 35
as source of errors 52
as waste 33
domain
vs machine ??-39, 120
domain vs machine 36-37
elicitation 32
techniques 32
upfront, see upfront tasks
workshops 53
retrospective 9, 99, 141
Return On Investment 3-5, 57, 77
reusability, reuse 5, 10, 13, 40, 59, 112, 151
review
see inspection under code
meeting 99
review then commit (RTC) 101
rhetorical devices 17-30
Rite of Spring 73
RO, see Return On Investment
roles, see under agile
room, see space under working
Rosenberg, Doug ix
Royce, Winston D. 31
RUP, see Rational Unified Process

S
Saint-Exupéry, Antoine de 66-67

INDEX

169

scenario, see use case, User story
schedule, see iterative development, schedules under work
Schwaber, Ken xiii, 22, 26, 30-31, 54, 57, 80-81, 84,
96, 99-100, 139
Schweigert, Thomas 47
scope
creep, see creep under feature
Scrimshire, James 85-86
Scrum vii, x, xiii, 2-3, 6-8, 15, 22, 26, 28, 31, 42,
45, 47, 53-54, 57, 63, 68, 71-72, 74, 79-87, 89,
91-94, 98-100, 103, 124-127, 129, 133, 136-137,
139-140, 146, 151
Alliance 29, 139-140
assessment 139-140
books 139
daily, see daily meeting
Master xiii, 7, 47, 53, 57, 79-81, 84, 86-87, 92,
99, 129, 139, 151
certified xiii, 84
in vacation 57
of scrums 99-100
scrummaster, Scrummaster, ScrumMaster, see Master un-
der Scrum
seamless development 39
security 40, 42
Selby, Richard W. 14, 104
self-organizing team, see self-organizing under team
seminarist 17-21
Shu Ha Ri (or Shuhari) 47
side-by-side programming 108
Silicon Valley 126
simplicity 50, 58, 66-67, 91, 110
see also complexity
as defined by Beck 110, 135, 137
simple is not the same as minimal 66-67
simplest solution that can possibly work 3, 8, 10, 59-
61, 64, 66, 73-74, 111
Skype 19
slack 58
slander by association 23, 31
SLOC (source line of code) 106, 111, 122
Smacchia, Patrick xiii
smell 101, 109-110, 113, 130
Sobel, Dava 24
software
component, see reusability
crisis 26
estimation, see this term
minimal, see this term
Software Engineering Institute 43
source, see code, implementation, SLOC
spaghetti, see linguine
speaking, see verbal communication
specification 6, 13, 18-20, 23, 36-37, 45, 49, 75, 77-
78, 115, 118, 120, 151

see also requirements, testing
speed of light 37
sprint 3, 7, 33, 42, 57, 68, 71-72, 74-75, 80-81, 84,
89-91, 98-99, 124, 126, 140
assessment 91
backlog, see this term
retrospective 99
review, see review meeting
stakeholder 19, 21, 32, 45, 52-53, 61-62, 83, 90, 98-
99, 123
Stallman, Richard 108
standards, see under code
Standish Group 26-27
stand-up meeting, see daily meeting
Stephens, Matt ix
Stockholm Syndrome 86
story
see user story
board, see this term
card, see story card under user story
point, see story point under user story
Stravinsky, Igor 73
structured programming viii, 57, 154
subtle control 54, 57
Subversion 104
Surowiecki, James 62, 95
sustainable pace 4-5, 50-51, 56-58, 92, 152
Sutherland, Jeff xiii, 2, 26, 28, 30-31, 47, 54, 125,
139

T

Taboo 42
Takeuchi, Hirotaka 54
task
board, see this term
card 127
order of tasks, see under iterative development
TDD, see test-driven development
team vii-viii, 2-5, 7-12, 14-15, 19-21, 25, 28-29, 34,
40-41, 46-47, 50-60, 62, 68, 71-75, 79-81, 83-87,
89, 91-93, 95-96, 98-102, 104-106, 108-109, 111,
115, 118-119, 121, 124-125, 127-130, 134-135,
137-139, 150-154
cross-functional, see cross-functionality
distributed xiii, 20, 92-93, 126, 128, 152-153
empowerment 14
members and observers 82, 98, 153
multiple 99
self-organizing viii, 4-5, 7, 25, 50-51, 53-56, 80-
81, 96, 101, 137, 150, 152
Team Software Process (TSP) 46
technical debt 117, 125, 129-131
telephony 64-65
test, see testing, test-driven development, test-first devel-
opment

170

INDEX

test-driven development 6, 8-9, 15, 77, 89, 113-115,
118, 138, 151
assessment 115, 151
cycle 113

test-driven development. 138

test-first development 77, 113-115, 138, 151
assessment 115, 151

testing 2, 4-6, 8-9, 12-13, 15, 23, 32, 35, 44, 46,
49, 51-52, 58, 60-61, 66, 68, 75-78, 82, 89, 98,
101, 103-105, 111, 115, 117-118, 120, 123, 125,
127-129, 136-139, 151, 154
do not start new development until all tests pass 6, 76
integrating tests into the code 118
regression, see regression test suite
tests as a key resource 6, 15, 75-76
unit test 82, 117-118

TeX 108-109

TFD, see test-first development

thrashing 107

three questions, see under daily meeting

time-boxed 3, 15, 71, 146-147, 154

time zone 92

Tintin 13

Torvalds, Linus 108-109

Totem 42

Tour de France 135

Toyota 4, 57, 134, 136

traps, rhetorical 22-30

Tschannen, Julian xiii

T-shirt sizing 95

TSP (Team Software Process) 46

Turner, Richard ix, xiii, 25, 31

U

UML 39, 43, 60-61

uncertainty, cone of, see cone of uncertainty

unit test, see under testing

unverifiable claims 28-30

upfront tasks 2-4, 9, 13, 31-32, 35, 40-41, 43-47, 52,
57, 61-62, 65, 69, 73, 77, 83, 93, 109-113, 135,
149-150, 152-154

use case 6, 10-13, 78, 119-120

user story viii, 6, 10-13, 43, 60-61, 64, 74, 78, 80-
81, 84, 89, 94, 98, 115, 117, 119, 123-128, 130,
138, 140, 150-151
assessment 119-121, 150
board, see this term
story board, see board
story card 10-11, 127
story point 93-94, 117, 120-125, 127-128

\%

velocity viii, 11, 117, 122-124, 127-129, 140, 154
assessment 124, 154

verbal communication, versus documents 17-21

Verhoef, Chris 26

video tape manufacturing 136

Visitor pattern 37, 112

V-model, see under lifecycle

V&V (Verification and Validation) 41

W

waste 3-5, 13, 18, 27, 33-34, 36, 46, 52, 57-59, 67,
91, 117, 120, 122-123, 125, 127, 129-131, 134-
136, 151, 153
as criticism of requirements 33-34

waterfall 31, 39, 41-42
not the same as predictive 31

Western Electric 29

Wikipedia 101

Wirth, Niklaus 67, 134

Wojciechowski, Adam 107

work in progress 4, 136

working
code, see working iterations under iterative develop-
ment
days 128
schedules 92, 153
space 10, 12, 57, 96-97, 125-126, 138, 152

work-in-progress 136

workshop, see under requirements

World Bank 23

Worst Thing First 73

writing, see documentation

X
XML 112
XP, see Extreme Programming
X-rated 106
xUnit 109, 114, 117

Y
Y2K 60
YAGNI 58-59, 69, 77
Yourdon, Ed 56
YouTube 20

Z

Zave, Pamela 36, 64
zoology 82
Zuill, Woody 107

	Preface
	Contents
	1 Overview
	1.1 VALUES
	1.2 PRINCIPLES
	1.2.1 Organizational principles
	1.2.2 Technical principles

	1.3 ROLES
	1.4 PRACTICES
	1.4.1 Organizational practices
	1.4.2 Technical practices

	1.5 ARTIFACTS
	1.5.1 Virtual artifacts
	1.5.2 Material artifacts

	1.6 A FIRST ASSESSMENT
	1.6.1 Not new and not good
	1.6.2 New and not good
	1.6.3 Not new but good
	1.6.4 New and good!

	2 Deconstructing agile texts
	2.1 THE PLIGHT OF THE TRAVELING SEMINARIST
	2.1.1 Proof by anecdote
	2.1.2 When writing beats speaking
	2.1.3 Discovering the gems
	2.1.4 Agile texts: reader beware!

	2.2 THE TOP SEVEN RHETORICAL TRAPS
	2.2.1 Proof by anecdote
	2.2.2 Slander by association
	2.2.3 Intimidation
	2.2.4 Catastrophism
	2.2.5 All-or-nothing
	2.2.6 Cover-your-behind
	2.2.7 Unverifiable claims

	3 The enemy: Big Upfront Anything
	3.1 PREDICTIVE IS NOT WATERFALL
	3.2 REQUIREMENTS ENGINEERING
	3.2.1 Requirements engineering techniques
	3.2.2 Agile criticism of upfront requirements
	3.2.3 The waste criticism
	3.2.4 The change criticism
	3.2.5 The domain and the machine

	3.3 ARCHITECTURE AND DESIGN
	3.3.1 Is design separate from implementation?
	3.3.2 Agile methods and design

	3.4 LIFECYCLE MODELS
	3.5 RATIONAL UNIFIED PROCESS
	3.6 MATURITY MODELS
	3.6.1 CMMI in plain English
	3.6.2 The Personal Software Process
	3.6.3 CMMI/PSP and agile methods
	3.6.4 An agile maturity scale

	4 Agile principles
	4.1 WHAT IS A PRINCIPLE?
	4.2 THE OFFICIAL PRINCIPLES
	4.3 A USABLE LIST
	4.4 ORGANIZATIONAL PRINCIPLES
	4.4.1 Put the customer at the center
	4.4.2 Let the team self-organize
	4.4.3 Work at a sustainable pace
	4.4.4 Develop minimal software
	4.4.5 Accept change

	4.5 TECHNICAL PRINCIPLES
	4.5.1 Develop iteratively
	4.5.2 Treat tests as a key resource
	4.5.3 Do not start any new development until all tests pass
	4.5.4 Test first
	4.5.5 Express requirements through scenarios

	5 Agile roles
	5.1 MANAGER
	5.2 PRODUCT OWNER
	5.3 TEAM
	5.3.1 Self-organizing
	5.3.2 Cross-functional

	5.4 MEMBERS AND OBSERVERS
	5.5 CUSTOMER
	5.6 COACH, SCRUM MASTER
	5.7 SEPARATING ROLES

	6 Agile practices: managerial
	6.1 SPRINT
	6.1.1 Sprint basics
	6.1.2 The closed-window rule
	6.1.3 Sprint: an assessment

	6.2 DAILY MEETING
	6.3 PLANNING GAME
	6.4 PLANNING POKER
	6.5 ONSITE CUSTOMER
	6.6 OPEN SPACE
	6.7 PROCESS MINIATURE
	6.8 ITERATION PLANNING
	6.9 REVIEW MEETING
	6.10 RETROSPECTIVE
	6.11 SCRUM OF SCRUMS
	6.12 COLLECTIVE CODE OWNERSHIP
	6.12.1 The code ownership debate
	6.12.2 Collective ownership and cross-functionality

	7 Agile practices: technical
	7.1 DAILY BUILD AND CONTINUOUS INTEGRATION
	7.2 PAIR PROGRAMMING
	7.2.1 Pair programming concepts
	7.2.2 Pair programming versus mentoring
	7.2.3 Mob programming
	7.2.4 Pair programming: an assessment

	7.3 CODING STANDARDS
	7.4 REFACTORING
	7.4.1 The refactoring concept
	7.4.2 Benefits and limits of refactoring
	7.4.3 Incidental and essential changes
	7.4.4 Combining a priori and a posteriori approaches

	7.5 TEST-FIRST AND TEST-DRIVEN DEVELOPMENT
	7.5.1 The TDD method of software development
	7.5.2 An assessment of TFD and TDD

	8 Agile artifacts
	8.1 CODE
	8.2 TESTS
	8.3 USER STORIES
	8.4 STORY POINTS
	8.5 VELOCITY
	8.6 DEFINITION OF DONE
	8.7 WORKING SPACE
	8.8 PRODUCT BACKLOG, ITERATION BACKLOG
	8.9 STORY CARD, TASK CARD
	8.10 TASK AND STORY BOARDS
	8.11 BURNDOWN AND BURNUP CHARTS
	8.12 IMPEDIMENT
	8.13 WASTE, TECHNICAL DEBT, DEPENDENCY, DEPENDENCY CHARTS

	9 Agile methods
	9.1 METHODS AND METHODOLOGY
	9.1.1 Terminology
	9.1.2 The fox and the hedgehog

	9.2 LEAN SOFTWARE AND KANBAN
	9.2.1 Lean Software’s Big Idea
	9.2.2 Lean Software’s principles
	9.2.3 Lean Software: an assessment
	9.2.4 Kanban

	9.3 EXTREME PROGRAMMING
	9.3.1 XP’s Big Idea
	9.3.2 XP: the unadulterated source
	9.3.3 Key XP techniques
	9.3.4 Extreme Programming: an assessment

	9.4 SCRUM
	9.4.1 Scrum’s Big Idea
	9.4.2 Key Scrum practices
	9.4.3 Scrum: an assessment

	9.5 CRYSTAL
	9.5.1 Crystal’s Big Idea
	9.5.2 Crystal principles
	9.5.3 Crystal: an assessment

	10 Dealing with agile teams
	10.1 GRAVITY STILL HOLDS
	10.2 THE EITHER-WHAT-OR-WHEN FALLACY

	11 The Ugly, the Hype and the Good: an assessment of the agile approach
	11.1 THE BAD AND THE UGLY
	11.1.1 Deprecation of upfront tasks
	11.1.2 User stories as a basis for requirements
	11.1.3 Feature-based development and ignorance of dependencies
	11.1.4 Rejection of dependency tracking tools
	11.1.5 Rejection of traditional manager tasks
	11.1.6 Rejection of upfront generalization
	11.1.7 Embedded customer
	11.1.8 Coach as a separate role
	11.1.9 Test-driven development
	11.1.10 Deprecation of documents

	11.2 THE HYPED
	11.3 THE GOOD
	11.4 THE BRILLIANT

	Bibliography
	Index

