
Agile!

Bertrand Meyer

The Good, the Hype and the Ugly

Agile!

Bertrand Meyer

Agile!

The Good, the Hype and the Ugly

Bertrand Meyer
ETH Zurich,
Zurich, Switzerland

Eiffel Software,
Goleta, USA

ITMO,
Saint Petersburg, Russia

ISBN 978-3-319-05154-3
DOI 10.1007/978-3-319-05155-0

ISBN 978-3-319-05155-0 (eBook)

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, repro-
duction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

p. 13	 (Tintin), Le Lotus Bleu by Hergé, © Hergé/Moulinsart 2014 , © Reprinted with Permission
p. 24	 CALVIN AND HOBBES © 1988 Watterson. Reprinted with permission of UNIVERSAL UCLICK. All rights

reserved.
p. 55 	 (I Musici), I Musici di Roma, www.imusicidiroma.com
p. 63	 (lasagne), Kit James, finefettleguide.blogspot.ch
p. 127	 (story card), Steven Thomas, itsadeliverything.com
p. 128	 (task board), Gareth Saunders, blog.garethjmsaunders.co.uk
p. 129	 (burnup chart), Alistair Cockburn in [Cockburn 2005], © 2005 Addison-Wesley
p. 1, 50	(Agile Manifesto) © 2001, the authors. This declaration may be freely reproduced in any form, but only in its

entirety, through this notice.
p. 118	 Design by Contract is a registered trademark of Eiffel Software.
p. 131	 (Gantt chart) from the documentation of “GanttView for WinForms”, used with permission from Microsoft

(www.microsoft.com/en-us/legal/intellectualproperty/Permissions/default.aspx), © Microsoft

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply , even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be
made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer International Publishing Switzerland is a brand of Springer
Springer is part of Springer Science+Business Media (www.springer.com)

Library of Congress Control Number: 2014936182

Sho

The fu

Prefa

Conte

1 Ov

2 De

3 Th

4 Ag

5 Ag

6 Ag

7 Ag

8 Ag

9 Ag

10 De

11 Th

Biblio

Index
rt contents
ll table of contents appears on page xv.

ce vii

nts xv

erview 1

constructing agile texts 17

e enemy: Big Upfront Anything 31

ile principles 49

ile roles 79

ile practices: managerial 89

ile practices: technical 103

ile artifacts 117

ile methods 133

aling with agile teams 145

e Ugly, the Hype and the Good: an assessment of the agile approach 149

graphy 155

163

Pr

This is
pose is
— to b

Ag
engine
dinary
its ove
such a
paragr
damag

No
or that
tal, the
agile te
do not
the pro
spares
key ag

DESC

The fir
approa
you, th
own pr
more s
most e
haps p
in dep
eface
 not a philosophical, theoretical or motivational book, but a practical one. Its pur-
 to enable readers — software developers, managers involved in IT, and educators
enefit from the good ideas in agile methods and stay away from the bad ones.

ile methods are undeniably one of the important recent developments in software
ering. They are also an amazing mix of the best and the worst. This is an extraor-
 situation: usually, when a new set of concepts bursts forth, one can quickly assess
rall contribution as beneficial, neutral or detrimental. Agile texts, however, defy
 simple judgment: you may find in one paragraph a brilliant insight, in the next
aph a harmless platitude, and in the one after some freakish advice guaranteed to
e your software process and products.

 wonder then that practitioners have massively disregarded injunctions to use this
 agile method — such as Scrum, Extreme Programming, Lean Software and Crys-
 most prominent ones today — in its entirety. Industry knows better, and every
am in the field makes up its own cocktail of agile practices, rejecting the ones that

 fit. Until now, however, each organization and project has had to repeat for itself
cess of sorting out the gems from the gravel. What a waste of effort. This book

 you the trouble by presenting a comprehensive description and assessment of the
ile ideas.

RIPTION AND ASSESSMENT

st goal is description: you can use this book as a primer on agility, presenting the
ch concisely, coherently and comprehensively. If agile development is new for
is presentation will, I hope, teach you what it is about, enable you to apply to your
ojects the agile ideas you decide to retain, and prepare you if you wish to read the
pecialized literature (such as the texts advocating a particular agile method) in the
ffective and profitable way. If you have already read about agile methods, and per-

racticed them, I hope it will help you put all the concepts in place, understand them
th, and apply them better.

viii

Wh
of the
where
techniq
intersp
people
tinuou
game”

The
out wh
and th
mean
study
agree w
agree y

The
at any
discus
right. T
it gene
the ful

KEEP

Anyon
ods ha
idation

Mo
enon o
ders on
presen
cite th
builds
moting
you ar
tions t

The
scornf
proce
pointy
objecti
rity”. T
stroke
PREFACE

at makes this descriptive component of the book necessary is that until now, in spite
already enormous literature on agile methods, there was no place, as far as I know,
you could find a complete yet concise presentation of the essential agile ideas and
ues, not tied to a particular agile method, not drowned under anecdotes, and not
ersed with a constant exhortation to join the cult. Sermons have a role, but for most
, I think, it is more interesting to find out what exactly is meant by “velocity”, “con-
s integration”, “user story”, “self-organizing team”, “sprint review”, “planning
, “mob programming” and so on. That is what I have tried to provide — in 162 pages.

 second goal is assessment: we take an even-handed look at agile methods and sort
at helps, what is not worth the attention, and what harms — the good, the hype

e ugly. The assessment is unbiased (I have no horse in this race) but that does not
it is the only possible one, since empirical software engineering, the objective
of software processes, is still a science in progress. So you will not necessarily

ith all the conclusions, but I think you will agree with most, and where you dis-
ou will be able to appreciate rational arguments on both sides.

 two aspects — “news” and “editorial”— are separated: you are entitled to know
stage whether you are reading the factual presentation of an agile technique or a

sion of its merit. Judgmental elements are marked by the icon shown here on the
he scope of its application will be clear from its position: at the start of a paragraph,

rally applies to the remaining part of the current section; at the start of a section, to
l section; and in the case of the final assessment, to the full chapter.

ING A COOL HEAD

e trying to gain a clear, cool-headed understanding and appreciation of agile meth-
s, so far, faced three difficulties that I hope this book removes: partisanship, intim-
 and extremism.

st of the existing texts are partisan. At issue here is not just the normal phenom-
f inventors arguing for their inventions, but a lack of restraint that sometimes bor-
 religious fervor and demands from the reader a suspension of disbelief. The first

tations of structured programming, object technology and design patterns — to
ree earlier developments that each imprinted a durable mark on how the world
software, as agile methods have already started to do — were enthusiastically pro-
 new ideas, but did not ignore the rules of rational discourse. With agile methods

e asked to kneel down and start praying. This is not the right way to approach solu-
o engineering problems involving difficult technical and human aspects.

 agile literature is often intimidating. It dismisses previous approaches as passé,
ully labeling them “waterfall” (even though no company applies a strict waterfall
ss), and leaving the impression that anyone supporting them is a rigid,
-hair-boss type. We will encounter the typical example of an author for whom any
on to agile methods is a mark of “bureaucracy”, “incompetence” and “medioc-

?

→ See “Intimi-
dation”, 2.2.3,
page 23.
he very name for the approach, “agile”, a brilliant marketing decision — no, a

of genius! —, is enough to make any would-be skeptic think twice: who wants to

PREVI

be cas
such n
you, I
unemo

Cle
some m
tions;
the pre
plicate
which

PREV

Amon
adorin
tioning
Extrem
does n
any p
pro-an
Boehm
traditio
on em
classic
perhap
being

Do
worrie
it enco

STRU

The bo

The
first ov
of it.

The
form o
ples in
convin

Cha
love to
deride
OUS ATTEMPTS ix

t as not agile? If you search the dictionary for antonyms to “agile”, you will find
iceties as “awkward”, “lumbering” and “ungraceful ”. If those are the alternatives,
and everyone else want to be agile! This name is just a name, however; we must
tionally assess, one by one, the concrete principles and practices that it covers.

ar, no-nonsense assessment is also complicated by extremism: the insistence of
ethod designers that you must apply their prescriptions entirely. There are excep-

Crystal, for example, is more of a flexible, your-mileage-may-vary approach. But
valence of the all-or-nothing view in many of the foundational texts further com-
s the task of identifying which techniques will work for your own project, and
will not.

IOUS ATTEMPTS

g the many books on agile methods, I know of only three that have not taken an
g tone. The first is McBreen’s Questioning Extreme Programming, whose “ques-
” is plaintive, leaving the reader uncertain about any serious problems with XP.
e Programming Refactored: The Case Against XP by Stephens and Rosenberg

ot suffer from such angst; it is a pamphlet, both funny and enlightening, but like
amphlet it does better at highlighting absurdity than at performing a fair
d-con analysis. The book that made the most serious attempt at such an analysis,
 and Turner’s Balancing Agility with Discipline, contrasts agile approaches with
nal plan-driven software engineering techniques. Its great strength is that it relies

pirical data from studies comparing the effectiveness of agile techniques to their
al counterparts. For my taste it tilts a trifle too much to the side of cautiousness;
s because Boehm is such a respected figure in software engineering and feared

branded as a proponent of the old order, the authors avoid sounding too critical.

 not expect such timidity in the present book (mentioning this just in case you were
d). Respect yes, deference no. It will highlight and praise the good ideas, and when
unters balderdash it will call it balderdash.

CTURE OF THE BOOK

ok has a simple structure and is intended for sequential reading.

 opening chapter, entitled “overview”, presents a summary of agile ideas and a
erall assessment. It sets the stage for the rest of the book and serves as a summary

 second chapter is a short foray into the style of agile descriptions, serving as a
f immunization against the risk of unjustified generalization. Working from exam-
 the agile literature, it analyzes the intellectual devices that agile authors use to
ce the world.

pter 3 is a sketch of everything that agile methods do not want to be and agile texts

[McBreen 2002].

[Stephens 2003].

[Boehm 2004].
 lambast: traditional plan-based software engineering methods, including the
d “waterfall”.

x

The
4, role
tices in
do not
all or
metho
tional
of the
includ
ters re

Tha
princip
Crysta
8, we c
of prin
the ch
big ide

Cha
adopti
the la
“either

Cha
ing wh
book’s

• The
—

• The
resu

• The
pro
har

PERS

Any b
mix of

It is
softwa
develo
specifi
Even w
succes
PREFACE

 next five chapters, the core of the book, review agile ideas: principles in chapter
s (in the sense of personnel roles, such as managers and users) in chapter 5, prac-
 chapters 6 and 7, and artifacts, both material and virtual, in chapter 8. Here we

 focus on any specific method but look instead at the concepts and tools shared by
most. This approach illuminates the many commonalities between the various
ds. It will allow you to examine agile ideas by themselves, in a non-denomina-
way, so that you can decide which ones are suitable for your context. When some
m apply more specifically to one method, the discussion points this out, and
es in the margin one of the icons shown here on the right. The focus in those chap-
mains, however, on individual methodological concepts and techniques.

t focus moves to the methods themselves in chapter 9, which studies four of the
al agile methods in existence today, the four already cited: Scrum, Lean, XP and
l. Since the constituent ideas have been presented in the preceding chapters, 4 to
an in the presentation of each method concentrate on the particular combination
ciples, roles, practices and artifacts that it has chosen, and just as importantly on

aracteristic spirit of that method. The analysis shows that each of them has “one
a” that sets it apart, supported by a number of auxiliary concepts.

pter 10 is brief; it describes precautions that organizations should take when
ng agile methods, in particular when some are more agile than others. It warns that
ws of software engineering continue to apply, and cautions against the
-what-or-when” fallacy that works well for consultants but not for their clients.

pter 11 is the final assessment: an overall examination of the agile canon, apprais-
ich ideas stand up and which just do not make sense. It shows indeed that, as the
 subtitle indicates, agile ideas can be classified into three categories:

 good (including the “brilliant”): principles and practices — some new, some not
that agile authors rightly present as helpful to software quality and productivity.

 hype: widely touted ideas that will make little difference, good or bad, to the
lting software.

 ugly: agile-recommended techniques that are just plain wrong, contradicting
ven rules of good software engineering, jeopardizing the success of projects, and
ming the quality of the resulting software.

PECTIVE AND SCOPE

ook is colored by its author’s experience. What mostly characterizes mine is the
 industrial practice (for most of my career) and academic work (for the past decade).

 also useful to note what this book does not include: a comprehensive approach to
re development. My previous books describe techniques of quality software
pment and argue for specific approaches, particularly object technology, formal
cation and Design by Contract. This one, in contrast, studies other people’s work.

These symbols
were designed
for the present
book and are not
official logos of
the methods.
hen I felt that my own work is relevant to the discussion or predates some of the
sful agile ideas I have (except for a hint or two) refrained from talking about it.

ANALY

ANAL

Softwa
ideas g
they ar

Au
empiri

Do
ware m
relied

Rec
effe
pro

But if
vince t

Exp

For
of p
pro

Experi
book i
projec
ably, a
and so
how m
almost

Ane
disp
to n
told
drop

Logica
(and fo
though
and th
SIS: INSTINCTIVE, EXPERIENTIAL, LOGICAL OR EMPIRICAL? xi

YSIS: INSTINCTIVE, EXPERIENTIAL, LOGICAL OR EMPIRICAL?

re methodology is a tricky business because it is difficult to prove anything. Many
et adopted on the strength of an author’s powers of conviction. It does not mean
e good, or bad.

thors use four kinds of argument: gut feeling, experience, logical reasoning and
cal analysis.

 not laugh at gut feeling as a means of persuasion; after all, the mother of all soft-
ethodology texts, Dijkstra’s 1968 Go To Statement Considered Harmful, largely

on it:

ently I discovered why the use of the go to statement has such disastrous
cts, and I became convinced that it should be abolished from all higher-level
gramming languages.

you are not Dijkstra your gut feeling will not take you very far in a quest to con-
he community.

erience was also part of Dijkstra’s rationale:

 a number of years I have been familiar with the observation that the quality
rogrammers is a decreasing function of the density of go to statements in the
grams they produce.

ential arguments are among the favorite tools of agile authors. The typical agile
s a succession of alternating general observations and personal anecdotes of
t rescues (rescued, remarkably, by the author) and project failures (failed, remark-
fter not following the author’s advice). These anecdotes are usually entertaining
metimes enlightening, but a case study is only a case study, and we never know
uch we can generalize. One can, after all, summon an experience in support of
 any recommendation.

cdotes and individual cases, by the way, can have force of proof, but only in one case:
roving a general law. If such a law has been proposed, it suffices of a single experiment
egate it (the technical term is “falsify”). For example if someone — say, Aristotle —
 you that bodies fall at a rate that depends on their mass, just go up that tower in Pisa,
 a light ball and a heavy ball, and see them reach the ground at the same time.

l reasoning is a powerful tool; it played a significant role in Dijkstra’s advocacy
r Galileo too, who according to some authors proved his hypothesis solely by

[Dijkstra 1968],
emphasis added.
t experiment). But it is only as convincing as the hypotheses from which it starts,
ere is the risk that it will remain academic.

xii

Ide
results
require
system
availab
engine
perhap
eviden

I ha
confin
mentio

FREE

Given
in whi

Pro
In revi
author
to task
softwa
criticis

I w
metho
The pa
the les

In n
fession
views
PREFACE

ally, we should use empirical analysis. Does pair programming lead to better
 than code inspections? Is constant customer interaction preferable to a solid
ments process? Credible answers to questions of software methodology require
atic, rigorous, realistic studies of projects. This book relies on such results when
le, but there are not enough of them; the burgeoning field of empirical software
ering has not yet provided answers to many fundamental issues. This has been
s the biggest obstacle in the preparation of the book. Where not enough empirical
ce was available, the discussion largely relies on analytical reasoning.

ve not completely avoided anecdotes and personal experience, but have tried to
e them to the illustration of points supported by logical argument and to the task,
ned above, of disproving undue generalizations.

 CRITICAL INQUIRY

that this work includes critical comments, a word is in order to explain the spirit
ch it has been written.

gress in science and engineering relies on free, critical inquiry of previous work.
ewing the agile literature, I have found a number of reasons to disagree with its
s, and a few reasons to be shocked; I have not been coy about taking their claims
. I have also, however, found elements to admire, and learned new insights about
re development. This observation is worth remembering whenever you encounter
m in the following pages.

ould not have spent a good part of my last three years immersing myself in agile
ds and the supporting texts if I had not felt that I had something important to learn.
th has been tortuous at times; with this book I hope to spare you the path and share
sons.

o case does the criticism mean disrespect; the agile pioneers are experienced pro-
als, passionate about software. Even when I find them to be wrong, I value their

and share the passion. We are all in the same boat.
Bertrand Meyer
January 2014

ACKN

ACKN

Since th
author
imply t
group o
agile bo
the boo
Cohn, C
first enc
Bréau E
two of
enablin

I ha
ticipant
of the b
recent a
and Iva
Howard
Annie M
form an
led to e

If I
back to
Togethe
ation th
rously c
but we

I ha
blog at
ments o

I am
sions on
Bay wa
release
of impo
Engine
on a ch
contrib
Estler)
of publ
OWLEDGMENTS xiii

OWLEDGMENTS

is book makes a number of judgments, the customary caveat that its content commits only the
is more than perfunctory: by acknowledging sources of influence and help I do not mean to
hat anyone listed endorses the views expressed. This caveat particularly applies to the first
f people to be thanked, some of whom may be expected to disagree: the authors of the best
oks. I have learned a lot from reading about agile methods, and am particularly indebted to
ks and articles of Kent Beck, Barry Boehm with Richard Turner, Alistair Cockburn, Mike
raig Larman, Mary and Tom Poppendieck, and Ken Schwaber with Mike Beedle. I credit my
ounter with agile ideas to a presentation of Extreme Programming by Pete McBreen at the Le
DF/CEA summer school in 1999. I am grateful to Mike Cohn for clarification of the origin of

his citations. I also benefited from a lively Scrum workshop by Jeff Sutherland in Moscow,
g me to become a proud Certified Scrum Master.

ve given several industry seminars at ETH on the theme of this book and gained from the par-
s’ comments. I am grateful for the advice of Ralf Gerstner at Springer on refining the focus
ook, and am also indebted to his colleague Viktoria Meyer. Patrick Smacchia brought some
gile practices to my attention. Claude Baudoin, Kent Beck, Judith Bishop, Michael Jackson
r Jacobson were kind enough to encourage me after seeing a draft. Paul Dubois and Mark
 sent me important comments which helped focus and refine the text. Claudia Günthart and
eyer helped with editing. Carroll Morgan sent me particularly perceptive comments on both

d content. I have a special debt to Raphaël Meyer’s for his thorough reading of the text, which
ssential improvements.

ever felt like pontificating abstractly about software engineering, I would quickly be brought
 earth by the development group at Eiffel Software; we are fighting the battle every day.
r we have seen it all: successes as well as those less glorious moments, the development iter-
at seemingly will never end, the critical bug that surfaces two days after a release, the amo-
rafted feature that turns out to interest nary a user. We are agile, in the best sense of the term,
are learning all the time.

ve drawn on some material published on my personal blog, at bertrandmeyer.com, and on my
Communications of the ACM (cacm.acm.org/blogs/blog-cacm). I am grateful for reader com-
n blog articles.

 indebted to members of the Chair of Software Engineering at ETH Zurich for many discus-
 software engineering issues. I cannot cite everyone but should mention that a remark by Till
s the spark that led to switching the EiffelStudio development to an agile-style time-boxed
process, and that Marco Piccioni first brought Scrum to my attention. He also made a number
rtant suggestions on the draft of the present book. In the ETH course “Distributed Software

ering Laboratory”, where students from a dozen universities around the world work together
allenging distributed project, my co-instructors of many years, Peter Kolb and Martin Nordio,
uted numerous insights, as did the assistants (Roman Mitin, Julian Tschannen, Christian

se.ethz.ch/dose.
and the students and instructors from the participating universities. The course led to a number
ished empirical studies which significantly helped my understanding of the field.

http://bertrandmeyer.com
http://cacm.acm.org/blogs/blog-cacm
http://se.ethz.ch/dose

BOOK PAGE

Further material associated with this book is available at

bertrandmeyer.com/agile

http://bertrandmeyer.com/agile

Co

Prefa
D

K

P

S

P

A

F

A

Conte

1 OV

1

1

1

1

1

1

ntents
ce vii
escription and assessment vii

eeping a cool head viii

revious attempts ix

tructure of the book ix

erspective and scope x

nalysis: instinctive, experiential, logical or empirical? xi

ree critical inquiry xii

cknowledgments xiii

nts xv

ERVIEW 1
.1 VALUES 2

.2 PRINCIPLES 4
Organizational principles 5

Technical principles 6

.3 ROLES 7

.4 PRACTICES 8
Organizational practices 8

Technical practices 9

.5 ARTIFACTS 10
Virtual artifacts 10

Material artifacts 11

.6 A FIRST ASSESSMENT 12
Not new and not good 12

New and not good 13
Not new but good 14

New and good! 14

xvi

2 DEC

2

2

P

3 TH

3
3

3

3
3
3

4 AG

4
4
4
4

CONTENTS

ONSTRUCTING AGILE TEXTS 17
.1 THE PLIGHT OF THE TRAVELING SEMINARIST 17

Proof by anecdote 18
When writing beats speaking 19
Discovering the gems 20
Agile texts: reader beware! 21

.2 THE TOP SEVEN RHETORICAL TRAPS 22
Proof by anecdote 22
Slander by association 23
Intimidation 23
Catastrophism 26
All-or-nothing 27
Cover-your-behind 27
Unverifiable claims 28

ostscript: you have been ill-served by the software industry! 30

E ENEMY: BIG UPFRONT ANYTHING 31
.1 PREDICTIVE IS NOT WATERFALL 31
.2 REQUIREMENTS ENGINEERING 32

Requirements engineering techniques 32
Agile criticism of upfront requirements 32
The waste criticism 33
The change criticism 35
The domain and the machine 36

.3 ARCHITECTURE AND DESIGN 37
Is design separate from implementation? 37
Agile methods and design 39

.4 LIFECYCLE MODELS 41

.5 RATIONAL UNIFIED PROCESS 42

.6 MATURITY MODELS 43
CMMI in plain English 44
The Personal Software Process 46
CMMI/PSP and agile methods 46
An agile maturity scale 47

ILE PRINCIPLES 49
.1 WHAT IS A PRINCIPLE? 49
.2 THE OFFICIAL PRINCIPLES 50
.3 A USABLE LIST 51

.4 ORGANIZATIONAL PRINCIPLES 51

CONT

4

5 AG

5
5
5

5
5
5
5

6 AG

6

6
6
6
6
6
6
6
6
6
6
6

ENTS xvii

Put the customer at the center 51
Let the team self-organize 53
Work at a sustainable pace 56
Develop minimal software 58
Accept change 68

.5 TECHNICAL PRINCIPLES 70
Develop iteratively 70
Treat tests as a key resource 75
Do not start any new development until all tests pass 76
Test first 77
Express requirements through scenarios 77

ILE ROLES 79
.1 MANAGER 79
.2 PRODUCT OWNER 80
.3 TEAM 80

Self-organizing 80
Cross-functional 81

.4 MEMBERS AND OBSERVERS 82

.5 CUSTOMER 82

.6 COACH, SCRUM MASTER 84

.7 SEPARATING ROLES 86
ILE PRACTICES: MANAGERIAL 89
.1 SPRINT 89

Sprint basics 89
The closed-window rule 90
Sprint: an assessment 91

.2 DAILY MEETING 91

.3 PLANNING GAME 93

.4 PLANNING POKER 94

.5 ONSITE CUSTOMER 96

.6 OPEN SPACE 96

.7 PROCESS MINIATURE 97

.8 ITERATION PLANNING 98

.9 REVIEW MEETING 99

.10 RETROSPECTIVE 99

.11 SCRUM OF SCRUMS 99
.12 COLLECTIVE CODE OWNERSHIP 100

xviii

7 AG

7
7

7
7

7

8 AG

8
8
8
8
8
8
8
8
8
8
8
8
8

9 AG

9

9

CONTENTS

The code ownership debate 100
Collective ownership and cross-functionality 102

ILE PRACTICES: TECHNICAL 103
.1 DAILY BUILD AND CONTINUOUS INTEGRATION 103
.2 PAIR PROGRAMMING 105

Pair programming concepts 106
Pair programming versus mentoring 107
Mob programming 107
Pair programming: an assessment 107

.3 CODING STANDARDS 109

.4 REFACTORING 109
The refactoring concept 109
Benefits and limits of refactoring 110
Incidental and essential changes 112
Combining a priori and a posteriori approaches 113

.5 TEST-FIRST AND TEST-DRIVEN DEVELOPMENT 113
The TDD method of software development 113
An assessment of TFD and TDD 115

ILE ARTIFACTS 117
.1 CODE 117
.2 TESTS 117
.3 USER STORIES 119
.4 STORY POINTS 121
.5 VELOCITY 123
.6 DEFINITION OF DONE 125
.7 WORKING SPACE 125
.8 PRODUCT BACKLOG, ITERATION BACKLOG 126
.9 STORY CARD, TASK CARD 127
.10 TASK AND STORY BOARDS 127
.11 BURNDOWN AND BURNUP CHARTS 128
.12 IMPEDIMENT 129
.13 WASTE, TECHNICAL DEBT, DEPENDENCY, DEPENDENCY CHARTS 129
ILE METHODS 133
.1 METHODS AND METHODOLOGY 133

Terminology 133

The fox and the hedgehog 133

.2 LEAN SOFTWARE AND KANBAN 134

CONT

9

9

9

10 DE

1
1

11 TH

A

1

1
1
1

Biblio

Index
ENTS xix

Lean Software’s Big Idea 134
Lean Software’s principles 134
Lean Software: an assessment 135
Kanban 136

.3 EXTREME PROGRAMMING 137
XP’s Big Idea 137
XP: the unadulterated source 137
Key XP techniques 138
Extreme Programming: an assessment 139

.4 SCRUM 139
Scrum’s Big Idea 139
Key Scrum practices 140
Scrum: an assessment 140

.5 CRYSTAL 141
Crystal’s Big Idea 141
Crystal principles 141
Crystal: an assessment 142

ALING WITH AGILE TEAMS 145
0.1 GRAVITY STILL HOLDS 145
0.2 THE EITHER-WHAT-OR-WHEN FALLACY 146

E UGLY, THE HYPE AND THE GOOD:
N ASSESSMENT OF THE AGILE APPROACH 149
1.1 THE BAD AND THE UGLY 149

Deprecation of upfront tasks 149
User stories as a basis for requirements 150
Feature-based development and ignorance of dependencies 150
Rejection of dependency tracking tools 150
Rejection of traditional manager tasks 150
Rejection of upfront generalization 151
Embedded customer 151
Coach as a separate role 151
Test-driven development 151
Deprecation of documents 151

1.2 THE HYPED 152
1.3 THE GOOD 153
1.4 THE BRILLIANT 154

graphy 155
163

1

Ov

Agile
reache

The si
genero
I want
cover p
times,

B. Meye
© Sprin
erview
ideas date back to the development of Extreme Programming in the 1990s, but
d fame with the appearance in 2001 of the “Agile Manifesto”:

ght of a half-dozen middle-aged, jeans-clad, potbellied gentlemen turning their
us behinds to us appears to have provided the decisive sex appeal. Personally, had
ed to convey the suggestion of agility, I might have turned to something like the

[Agile 2001]
hotograph of this book — which only demonstrates how out of tune I am with the
since the above picture was successful beyond anyone’s dreams. Agile ideas have

r, Agile!, DOI 10.1007/978-3-319-05155-0_1,
ger International Publishing Switzerland 2014

2

becom
compa
develo

Rat
which
Scrum
ple als
get into

• Val

• Pri

• Rol

• Pra

• Art

The pr
princip

Thi
concis
For br
source
numer

1.1 V

Readin
just a
even f
describ
“value
a feel f

1 R
2 N
3 It
4 L
5 F
OVERVIEW §1.1

e the buzz of the industry, the darling of the technical press, the kind of argument
nies use in the fierce competition to attract the best programmers: Come to us! Our
pment is agile!

her than a single development method, “agile” denotes a compendium of ideas,
 a number of full-fledged methods — particularly Extreme Programming (XP),
, Lean Software and Crystal — apply in various subsets and combinations; many peo-
o use some of the ideas without embracing a complete method. In this chapter we
 the mood, if not the details, of agile methods, by reviewing their core characteristics:

ues: general assumptions framing the agile view of the world (1.1).

nciples: core agile rules, organizational and technical (1.2).

es: responsibilities and privileges of the various actors in an agile process (1.3).

ctices: specific activities practiced by agile teams (1.4).

ifacts: tools, both virtual and material, that support the practices (1.5).

inciples follow from the values; the practices, roles and artifacts follow from the
les. The last section (1.6) provides a first assessment of the approach.

s chapter serves as a concentrate of the rest of the book, surveying the key ideas
ely. Except for the last part, it is descriptive, presenting the agile ideas neutrally.
evity, it does not cite (with one exception, below on this page) from the agile
s describing the techniques summarized here; the following chapters include
ous citations from agile texts, where the authors explain their rationale in detail.

ALUES

g the Agile Manifesto on the previous page is enough to show that “Agile” is not
collection of software techniques but a movement, an ideology, a cause. Going
urther, one of the creators of Scrum declares that “Agile is an emotion”. To
e the fundamental underlying assumptions, agile proponents like to use the term

s”. Before looking at specific principles, practices, roles and artifacts, we must get
or the agile philosophy, in the form of five general tenets:

Agile values
edefined roles for developers, managers and customers.
o “Big Upfront” steps.
erative development.
imited, negotiated functionality.

The abbrevia-
tion XP comes
from the alterna-
tive capitaliza-
tion “eXtreme
Programming”.

[Sutherland
2009], at 5:59.
ocus on quality, understood as achieved through testing.

§1.1 V

The fir
opers
ring m
respon
possib
cubicle
softwa
attemp
know t
in part

The
recipie
custom

The
rily fo
beginn
system

• Req
kno
wo

• Bui
and

Instead
the cus
insigh
design
“simpl
task at
a proc

Ag
agile a
oritize
that ha
choice
time —
additio

By
the eff
will us
busine
ALUES 3

st tenet affects a fundamental feature of project development: the role of devel-
and managers. Agile methods redefine and limit the manager’s job by transfer-
any of the duties to the team as a whole, including one of the most important
sibilities: selecting tasks to be performed and assigning them to developers. It is
le to give a sociological interpretation of the agile movement as a “revolt of the
s”: the rejection of rigid, top-down, Dilbert’s-boss-like techniques for managing
re projects. Programmers in the trenches — the cubicles — often resent these
ts as ignorant of the specific nature of software development. The Dilbert types
hat documents and diagrams do not make a system: code does. Agile methods are,
, the rehabilitation of code.

 redefinition of roles also affects customers, who in the agile world are not passive
nts of the software but active participants. Most methods advocate including a
er representative in the development team itself.

 second tenet is the rejection of “Big Upfront Anything”, a term used derogato-
r standard software engineering techniques involving extensive planning at the
ing of a project; the principal examples are requirements, to define the goals of the
, and design, to define its architecture. In the agile view:

uirements cannot be captured at the beginning of a project, because users do not
w what they want. Even if one managed to write a requirements document, it

uld be useless because requirements will change through the project.

lding a design upfront is a waste of time because we do not know what will work
 what will not.

 of a requirements document, agile methods recommend constant interaction with
tomer — hence the benefit of a customer representative in the team — to get both

ts into the problem and feedback on what has been produced so far. Instead of
, the recommendation is to build the system iteratively, devising at each step the
est solution that can possibly work” (an Extreme Programming slogan) for the
 hand; then, if the solution turns out to be imperfect, improving its design through
ess known as refactoring.

ile development, as a consequence, is iterative, time-boxed development. The
lternative to a requirements document is, at the beginning of each iteration, a pri-
d list of functions from which the team will select for implementation the function
s the highest Return on Investment (ROI). In the absence of big upfront tasks, this
 will be made in successive steps, called “sprints” in Scrum, each taking a fixed
 a few weeks — hence “time-boxed”. The development thus proceeds by iterative
n of functionality.

addition, that is, of limited, negotiated functionality. The agile literature laments
ort that traditional projects devote to building program features that hardly anyone

e. It advocates limiting features to the most important ones, as measured by their
ss value: their ROI. The “Lean Software” school draws on comparisons with other

4

indust
equiva
a core
imize

The
Just as
unreal
ment,
resolve
can be
missed
ysis de
require

The
tinuou
techniq
The ag
quality
develo
One of
of tests
faults t
but agi

1.2 P

The re
sub-pr

Orga

1 P
2 L
3 W
4 D

4
4
4

5 A
OVERVIEW §1.2

ries (notably car manufacturing) to treat unused functionality as the software
lent of “waste” in an industrial production process, and “waste minimization” as
concern. “Kanban”, influenced by processes developed for Toyota, seeks to min-
“work in progress”.

 “negotiation” occurs at the step of choosing the functionality for each iteration.
 it is impossible, in the agile view, to determine full requirements in advance, it is
istic to commit to both functionality and delivery time. With time-boxed develop-
any tradeoffs (“do you want it all or do you want it next month?”) will tend to be
d in favor of the second criterion: if not all the functions planned for an iteration

 delivered by the deadline, it is the functionality that goes; the deadline stays. The
 functionality will either be reassigned to a subsequent phase or — if further anal-
ems its ROI insufficient — dropped. This process of planning and adjusting
s constant negotiation with the customer.

 final tenet is the focus on quality, which in the agile view essentially means con-
s testing (rather than other approaches to quality, in particular those based on design
ues, formal programming methodology, or whatever smacks of “Big Upfront”).
ile approach has little patience with what it sees as the lackadaisical attention to
 in traditional development; it especially dislikes the practice of continuing to
p functionality even when the code already developed does not pass all the tests.
 its contributions is to emphasize the role of a project’s regression test suite: the set
 that must pass, including all tests that at some point did not pass and hence revealed
hat were then fixed. Regression testing has been known and applied for a long time,
le methods have given this task a central place in the development process.

RINCIPLES

st of this book considers that the following eight principles (three of them with
inciples) constitute the core of the agile canon.

Agile principles
nizational

ut the customer at the center.
et the team self-organize.
ork at a sustainable pace.
evelop minimal software:
.1 Produce minimal functionality.
.2 Produce only the product requested.

.3 Develop only code and tests.
ccept change.

§1.2 P

These
them i

The
offi
red
eart
disa
two
the

1.2.1

Five p

Ag
deliver
custom

Agi
erment

Ag
period
an upc
hours,
above
agers —

Ag
tions (
prepar
softwa
the cus

Techn

6 D
6
6

7 T
7
7

8 E
RINCIPLES 5

principles follow from the five general “values” of the previous section, turning
nto actual prescriptions.

y are not the principles — twelve of them — listed in the Agile Manifesto. Those
cial principles, discussed in a later chapter, are less appropriate for analysis: they are
undant and combine ideas at different levels, ranging from generous but hardly
h-shattering intentions (“Build projects around motivated individuals” — who would
gree?) to specific rules such as releasing software at specific intervals of two weeks to
 months, which are practices rather than principles. They also omit key ideas such as
primacy of tests. The eight presented here provide a better overview.

Organizational principles

rinciples guide agile project organization and management.

ile development is customer-centric. The goal of software development is to
 the best Return On Investment to the customer; as part of the redefinition of roles,
er representatives should be involved throughout the project.

le teams are self-organizing, deciding on their own tasks. A corollary of this empow-
 of the team is, as noted, a severe curtailment of the manager’s responsibilities.

ile projects work at a sustainable pace by refusing so-called “death marches”,
s of intense pressure forcing a team to work exceptionally hard in preparation for
oming deadline. “Sustainability” requires that programmers work reasonable

 preserving evenings and week-ends. The sociological undercurrent mentioned
— agile methods as empowerment of programmers and consultants against man-

 is again apparent here.

ile development is minimalistic in three ways: building only the essential func-
minimal functionality); building only what is requested, excluding extra work to
e for future reuse and extension (minimal product); and building only two kinds of

ical

evelop iteratively:
.1 Produce frequent working iterations.
.2 Freeze requirements during iterations.
reat tests as a key resource:
.1 Do not start any new development until all tests pass.
.2 Test first.
xpress requirements through scenarios.

→ “The official
principles”,
page 50.
re, programs and tests, at the exclusion of anything that will not be delivered to
tomer and hence is considered waste (minimal artifacts).

6

Ag
determ
tomers
the dev

1.2.2

Agile
iteratio
softwa
reactio
tionali
ment,

The
two co

• No
stri

• Tes
pre
test
dev
tak

The la
narios
a user
conver
connec
and us
action
obtain
tionali
user st
require

• A s
nes
goa
OVERVIEW §1.2

ile development accepts change. In software projects, full requirements cannot be
ined at the beginning; needs emerge as the project develops, and evolve as cus-
 and others try intermediate releases. Such change is considered a normal part of
elopment process.

Technical principles

development implies an iterative development process, consisting of successive
ns. Each is fairly short — a few weeks — and produces a working release of the
re, even a very partial one, which customer representatives can try out to provide
ns that will fuel the next iteration. Scrum introduced the important rule that func-
ty is frozen during iterations: if an idea for a new function arises during develop-
it is postponed to the preparation of the next iteration.

 primacy of tests embodies the approach’s focus on quality. This principle has
nsequences, both significant enough to be considered sub-principles on their own:

 new development may start until all current tests pass. This rule reflects a
ct approach to quality and a refusal to compromise on bug-fixing.

t First. This principle, introduced in connection with Extreme Programming,
scribes that no code may be written unless there is already a test for it. It makes
s the first part of the replacement for requirements and specifications in agile
elopment. The test-driven development practice, introduced in a later section,

es the idea even further.

st principle gives us the second part of the replacement for requirements: use sce-
 to define functionality. A scenario is a description of a particular interaction of
with the system, for example (if we are building mobile phone software) a phone
sation from the time the caller dials the number to the time the two parties get dis-
ted. “Scenario” is not a common agile term, but covers variants such as use cases

er stories which differ by their level of granularity (a use case is a complete inter-
, a user story an application of a smaller unit of functionality). Scenarios are
ed from customers and indicate the fundamental properties of the system’s func-
ty as seen from the user perspective. Collecting scenarios, usually in the form of
ories, is the principal agile technique for requirements; it differs from traditional
ments elicitation in two fundamental ways:

cenario is just one example; unlike requirements, it cannot lay claim to complete-

→ “Freeze
requirements
during itera-
tions”, page 71.

→ “Technical
practices”,
page 9.
s. A set of scenarios, however large, cannot come even close to achieving this
l, in the same way that no number of tests of a program can replace a specification.

§1.3 R

• In a
but
as a
wh
life
ina
in t

Chapte

1.3 R

Agile

The fir
others
develo

Scr
some o
produc
to chan
For the
cial ro

Com
tomer”
genera
tion”, a
involv
scribed
practic
does n

Cha

1 T
2 P
3 S
4 C
OLES 7

gile development, requirements are not collected at the beginning of the project
 throughout, as development progresses. Note, however, that this difference is not
bsolute as the agile literature suggests when it blasts “waterfall approaches”:

ile the traditional software engineering view presents requirements as a specific
cycle step, coming early in the process, it does not rule out — except in the imag-
tion of agile authors — a scheme in which the requirements are constantly updated
he rest of the lifecycle.

r 4 discusses the organizational and technical agile principles in detail.

OLES

methods define roles for the various actors of a software project.

st and most important role is the team: a self-organizing group of developers and
 (such as customer representatives), responsible for the ongoing assignment of
pment tasks to individual members.

um has gone the furthest among agile methods in defining new roles that take over
f the traditional manager responsibilities. The definition of the properties of the
t under development is the responsibility of a product owner; it includes the right
ge these properties, but not while a sprint (a development iteration) is in progress.
 manager’s job as coach, mentor, guru and method enforcer, Scrum defines a spe-

le of Scrum Master, who cannot also be the project owner.

mon to all agile methods is the emphasis on involving customers. Defining “cus-
 as an explicit project role is part of the agile rejection of up-front requirements and
l distrust of documents — “valuing customer interaction over contract negotia-
s the Manifesto puts it. Instead of couching the requirements on paper, the project

es customers directly. Extreme Programming, at least in its early versions, pre-
 the embedding of “a customer” in the team, as a full-fledged project member; this
e, although simple to state, raises problems that we will analyze. Even when one
ot go that far, every agile project reserves an important role for customers.

Key agile roles

eam
roduct owner.
crum Master.
ustomer.
pter 5 discusses these and other agile roles in detail.

8

1.4 P

To ach
are the

1.4.1

All ag
includ
and kn
dard. T
scope
questio
and “W
imped
applic
cohesi

An
mating
(Extre
techniq
examin

Orga

1 D
2 P
3 C
4 R
5 S

Techn

6 T
7 R
8 P
9 S
10 C
OVERVIEW §1.4

RACTICES

ieve the principles presented above, agile methods promote a set of practices. Here
 principal ones, again with more coming up in the chapter on the topic:

Organizational practices

ile methods advocate frequent face-to-face contact, but Scrum specifically
es a requirement for a daily meeting, held at the beginning of every working day
own as the “daily Scrum”. The meeting must be kept short: 15 minutes is the stan-
his goal is reachable, with a typical group of a dozen or two people, because the

of the meeting is strictly limited to every member of the team answering three
ns: “What did I do in the previous working day?”, “What do I plan to do today?”,
hat impediments am I facing?”. Anything else, such as resolving non-trivial

iments, must occur outside of the meeting. The daily meeting — which is only
able in its basic form to a team located in a single place — helps teams remain
ve, know what everyone is doing, and spot problems early.

y software development project faces the issue of planning, in particular of esti-
 delivery times and functionality. Agile methods propose the “planning game”

me Programming) and the “planning poker” (Scrum). Both are group estimation

Key agile practices

nizational

aily meeting.
lanning game, planning poker.
ontinuous integration.
etrospective.
hared code ownership.

ical

est-driven development.
efactoring.
air programming.
implest solution that can possibly work.
oding standards.

→ Chapter 6 dis-
cusses agile
practices.
ues which ask the participants to come with initial estimates independently, then
e each other’s estimates and iterate until a consensus is reached.

§1.4 P

Mo
was no
put the
when
incom
ment p
metho
times a

An
opmen
lesson

In m
develo
may an
Agile
respon
empha
ritorial

1.4.2

Test-d
Applie
tionali
new; f
pass th
formin
sequen
any no
ment i

Ref
applyi
standa
object
down
toring
consis
a mess
narios
the agi
RACTICES 9

re convincing is the concept of continuous integration. A decade or two ago, it
t uncommon for software projects to split into sub-developments and only try to
m together (“integrate”) at intervals of months or more. This is a terrible approach:
attempting integration, projects often discover that the subsystems have made
patible assumptions and have to undergo substantial rewriting. Modern develop-
ractice calls for frequent integration, at intervals not exceeding a few weeks. Agile
ds apply this principle too and some of them actually advocate integrating several
 day.

other agile practice is the retrospective, in which a team having finished a devel-
t iteration takes time off further development to reflect on the experience and the
s learned, with the goal of improving its development process.

any groups, the various units of the software are each “owned” by a particular
per, not in any legal sense but in the sense that this person ultimately decides what
d may not change in the unit. This practice is, for example, common at Microsoft.
methods instead advocate shared code ownership, where all of the team is
sible for all of the code. The goal is to avoid undue dependence on individuals, to
size that all team members have a personal stake in the product, and to avoid ter-
 battles when a change or new development straddles several parts of the system.

Technical practices

riven development turns the “Test first” principle into a specific practice.
d iteratively, this practice consists of: writing a test corresponding to a new func-
ty; running the program, which should not pass the test since the functionality is
ixing the program; running the program again, and continuing to fix it until it does
e test (and all other tests, to prevent any regression); examining the code and per-
g refactoring, as discussed next, to make sure the design remains consistent. This
ce of steps, applied from the start (when the program is empty and hence will fail
n-trivial test) and repeated from then on, is the central form of software develop-
n Extreme Programming.

actoring is the process of critically examining a design or implementation and
ng any transformations that may be needed to improve its consistency. Catalogs of
rd refactoring transformations exist; they include such typical examples, in
-oriented programming, as moving a feature of a class (field or method) up or
the inheritance hierarchy, to another class where it fits better conceptually. Refac-
is particularly necessary in connection with test-driven development: a process
ting solely of adding a code element for every new test would yield programs with
y, ad-hoc structure; refactoring is necessary to maintain a clean design. Just as sce-

E.g. [Fowler
1999].
and tests are the agile replacement for Big Upfront Requirements, refactoring is
le answer to Big Upfront Design.

10

Pai
practic
trollin
other c
metaph
the sou
right a
to und
develo
other a

Ext
can po
particu
make t
would
In the
do not

Fin
a team

1.5 A

The ap
are con
used to

1.5.1

Use ca
a syste
stories

Virtu

1 U
2 B

Mate

3 S
4 S
5 O
OVERVIEW §1.5

r programming has been particularly promoted by Extreme Programming. In this
e, code is systematically developed by two people sharing a workstation, one con-
g the keyboard and mouse and explaining his thought patterns as he types, the
ommenting, criticizing and making new suggestions. The pilot-and-navigator
or is often used to explain that process. The goal is to catch possible mistakes at
rce: since the “pilot” is forced to explain his thinking aloud, he will often realize

way that something is wrong, and otherwise the navigator will catch it when trying
erstand. Extreme Programming presents pair programming as the only mode of
pment, to be applied systematically and universally. It figures less prominently in
gile methods.

reme Programming also popularized the practice of the simplest solution that
ssibly work. An application of the minimalistic principles described earlier, in
lar “produce only the product requested”, it shuns any work that is intended to
he solution more extendible or more reusable, as software engineering principles
 normally recommend, in particular the principles of object-oriented development.
agile view such work is illusory anyway, because we may not need reuse, and we
 know ahead of time in which direction the software may have to be extended.

ally, agile methods promote the use of coding standards: defined style rules that
 should apply to all the code it produces.

RTIFACTS

plication of agile methods relies on a number of supporting tools; some of them
ceptual, such as the notion of a user story, and others material, such as a story card
 write such a story.

Virtual artifacts

ses and particularly user stories are scenarios that represent user interactions with

Key agile artifacts

al

se case, user story.
urndown chart.

rial

tory card.
tory board.
pen room.
m. Use cases were popularized, pre-agile, by a book due to Ivar Jacobson; user
 have emerged as part of the agile movement. The difference is in granularity; a

[Jacobson
1992]

§1.5 A

use ca
produc
functio

“As
pur

The bu
down”
certain

If the t
be non
consta
gressin
the bu
is not d

1.5.2

The re
ever, v
suppor

The
presum
write d
board
them i

The
chart t

R

RTIFACTS 11

se covers a full run through the system, going for example from browsing for a
t on an E-commerce site to completing the order; a user story is a smaller unit of
nality expected by users, such as

 a customer, I want to see a list of my recent orders, so that I can track my
chases with a particular company.”

rndown chart is a record of a project’s velocity: how fast it processes — “burns
 — the items in its task list. The chart plots against time (in the example, up to a
 day in a given iteration) the number of unimplemented tasks:

ask list is fixed for the iteration and no completed task is re-opened, the curve will
-increasing. The velocity is the number of tasks discharged; the blue line is the
nt-velocity line. Where the burndown chart is below that line, the project is pro-
g faster than expected; above the line, it is progressing more slowly. Maintaining

rndown chart is a way to make the team aware of its progress and alert it when it
ischarging tasks fast enough.

Material artifacts

maining artifacts are, in their default form, material objects; for all of them, how-
arious companies and open-source projects offer software tools providing partial
t or full replacement.

 story card is a paper-card (agile advocates even prescribe the size: 3 by 5 inches,
ably to be adapted to the local format when working under metric climes) used to
own a user story. Story cards are meant to be pinned to a story board, a large

which can host many of them; the team then moves them around the board to group
nto categories.

emaining tasks
Burndown
chart (red)

Days
 story board is often refined into a task board, which complements the burndown
o show the progress of the project:

12

Post-it
them t

An
offices
open r

1.6 A

We ha
the agi
we can

Rem
asse

Samue

You
goo

This st
uate ag
goodn

1.6.1

The ag
spondi
able to
most c
becaus
to go b
ities av
step of
stories

U

OVERVIEW §1.6

 notes on the board represent individual tasks. As work gets done, the team moves
owards the right.

other recommendation of agile methods addresses the physical layout of the
 in which programmers work: rather than closed offices, it should be set up as an
oom to favor constant interaction between team members.

 FIRST ASSESSMENT

ve not gone into enough detail for a full-fledged analysis of the pros and cons of
le approach (the good, the hype and the ugly); it will come in the final chapter. But
 take a first cut.

ember that this section only provides a general view, and that the comprehensive
ssment of agile methods is the one that comes after the study of agile methods.

l Johnson allegedly responded thus to an aspiring author:

r work, Sir, is both new and good, but what is new is not good and what is
d is not new.

atement (although apparently apocryphal!) provides us with a useful grid to eval-
ile ideas in four categories, resulting from two possibilities each for newness and

ess. In each category we will consider only a few examples.

Not new and not good

ile approach to requirements is based on user stories: units of functionality corre-
ng to interactions of users with the system. User stories, like use cases, are a valu-
ol for validating requirements, to check that the identified functionality covers the
ommon scenarios. As a tool for defining requirements, they are inadequate
e they only document examples of system execution. The task of requirements is
eyond these individual examples, which can only cover a fraction of the possibil-
ailable, and identify the more general functions of the system. If you forgo this

ser stories Tasks

To do In progress Under test Done

Story 1

Story 2

Story 3

Task Board

→ Chapter 11:
The Ugly, the
Hype and the
Good: an assess-
ment of the agile
approach.

See www.samuel-
johnson.com/apo
cryph.html.
 generalization and abstraction, you get systems that do a few things — the user
 — and little else.

http://www.samueljohnson.com/apocryph.html

§1.6 A

Wh
cations
march
from
suprem
any m
require
user st

Go
tions,
extend

1.6.2

Pair pr
strong
insiste
as it ne
centrat
progra

To
that try
tion to
(produ
inexpe
results
are not
fruitfu
reuse,
results
when
pany’s

Wo
require
howev
What i
facts o
neerin
years h
phase,
sional
get del
cyle, w
 FIRST ASSESSMENT 13

en using software systems, for example web appli-
, have you ever felt like Tintin the day he was being

ed in a straightjacket? As soon as you dare to depart
the exact scenario that the designers, in their

e wisdom, have planned for you, nothing works
ore. This kind of system is the direct result of
ments based on the sole analysis of use cases or

ories.

od requirements shoot for more abstract specifica-
subsuming many different scenarios and supporting the development of flexible,
ible applications.

New and not good

ogramming was introduced by the XP. To characterize it as “not good” is a bit
 since pair programming can be an effective technique if applied with reason. XP’s
nce that it should be the absolute rule, however, makes little sense conceptually,
glects the role of programmer personality (some excellent developers like to con-
e alone and will resent having to be paired), and practically, as studies show pair
mming to be no superior to other classical techniques such as code reviews.

a certain extent pair programming can be dismissed as folklore, since many projects
 it stop after a while. Worse consequences of agile methods come from the injunc-
 develop minimal software, stated earlier as principle 4. Its component rules 4.2
ce only the product requested) and 4.3 (develop only code and tests) may appeal to
rienced project managers as a way to combat programmer perfectionism and deliver
 quickly, focusing on the essential. But from a software engineering perspective they
 good advice, since they discourage efforts that have proved to be among the most
l practices of software engineering: generalizing code for ease of extension and
and developing tools to automate repetitive processes. In Lean terminology, the
 of such efforts are “waste” since they are not delivered to the customer; in reality,
applied appropriately, they are the key to the continuous improvement of a com-
 software process and the professionalization of software practice.

rse yet is the rejection of upfront requirements. The basic observation is correct:
ments will change, and are hard anyway to capture at the beginning. In no way,
er, does it imply the dramatic conclusion that upfront requirements are useless!
t does imply is that requirements should be subject to change, like all other arti-
f the software process. This point has been made by much of the software engi-
g literature and remains as valid as ever. Unfortunately, many projects in recent
ave followed the simplistic agile advice of skipping the systematic requirements

 replacing it by attempts to evolve the system iteratively with the help of occa-
customer interactions. The results are often (predictably) disappointing; projects
ayed because requirements end up being collected anyway, but too late in the life-
hen some functionality has already been built; some it will have to be discarded.

© Hergé/Mou-
linsart 2014.

Code reviews
are also known
as inspections.

← “Agile prin-
ciples”, page 4.

14

The
The so
sional
that un

1.6.3

There
Nobod

In r
arable
numbe
dard so
here ar

The
that th
togeth
Times
name i
projec
The ad
applic
proces
mindse

An
The be
Object
becaus
metho
no tech
work a
blanke

1.6.4

If at th
includ
ingly g

The fir
and ins
any so
OVERVIEW §1.6

 agile advice here is irresponsible and serious software projects should ignore it.
und practice is to start collecting requirements at the beginning, produce a provi-
version prior to engaging in design, and treat the requirements as a living product
dergoes constant adaptation throughout the project.

Not new but good

is a charmingly adolescent quality to the agile literature: I am sooooo unique!
y before me understood what life is about! My folks are sooooo, like, 20-th century!

eality, despite the scathing attacks on traditional software engineering — the irrep-
insult, akin to shouting “liberal!” at a Republican candidate, is “waterfall!” — a
r of the productive ideas of agile methods have long been advocated in the stan-
ftware engineering literature. We will see examples through the rest of the book;
e two.

 first is iterative development. The industry understood in the nineteen-eighties
e old model of diverging for months and then trying to bring all the pieces back
er was a recipe for disaster. A 1995 book by Cusumano and Selby — New York
 best-seller, no less — publicized Microsoft’s “daily build”, a practice which as the
ndicates requires the project to produce a working version every day. Open-source
ts, which have flourished for decades, have a practice of releasing early and often.
vent of the Web intensified this trend: Google tools and many other cloud-based

ations undergo frequent updates, often without any officially advertised release
s. The agile literature has helped anchor the idea of frequent releases into the
t of the software industry, but agile methods did not invent it.

other example is the recognition that change plays an important role in software.
tter part of the software engineering literature has long emphasized this point.
 technology, which has taken the software world by storm, is successful largely
e it supports change better than previous software construction methods. Agile
ds may enhance software change through organizational practices, but they make
nical contribution in this area; in fact, as we will see, some of the agile precepts
gainst making software easy to change. The agile approach is not entitled to its
t contempt of earlier methods of improving extendibility.

New and good!

is point you feel ready to throw away the agile bath water, extreme and lean babies
ed, do not remove the tub stopper just yet. You would be missing some surpris-
ood stuff.

st major contribution is team empowerment. Giving a central place to the team

[Cusumano
1995]

→ “Accept
change”, 4.4.5,
page 68.
isting that it can handle many traditional management responsibilities is a plus for
ftware project staffed by competent people.

§1.6 A

Som
at first
signifi
everyo
imped
have th
least w
than d

A p
While
welcom
cess, w
rejecte

The
ence o

On
practi
sion te
asset o
the pro
tionali
advoca

A s
new”.
cepts,
ing the
princip

• Sho
dev
bec

• Th
bee
gra

In emp
best tr
lated o
the fie
as an i
destine
a preci

 FIRST ASSESSMENT 15

e of the management practices of agile methods, which may seem simple-minded
, can actually make a considerable contribution to project success. One of the most
cant is Scrum’s daily meeting; reinforcing programmer interaction, and requiring
ne to describe every morning what he just did, what he will do next, and what
iments he faces, is a brilliant idea, the kind of egg-of-Columbus insight (“I could
ought of this myself ” — maybe, but you didn’t!) that makes a real difference, at
hen it can be applied, that is to say, when the whole team is in one place rather

istributed.

articularly interesting idea is the freezing of requirements during iterations.
demonstrating that — whatever the Agile Manifesto says — change is not always

e even in agile development, this principle brings stability to the software pro-
ithout seriously hampering the emergence of change requests: they are not

d, just delayed, and typically not for long since agile iterations are short.

 time-boxed iteration is also a productive practice, particularly through its influ-
n the planning process, since it discourages unrealistic promises.

 the technical side, a major achievement of agile methods has been to establish the
cal importance of tests and specifically of the regression test suite. The regres-
sting idea itself is old, but agile methods taught us that the regression suite is a key
f the project, that many activities should be organized around it (whether or not
ject applies test-driven development), and that it is futile to move on to new func-
ty as long as important tests do not pass. Here we have the agile school at its best,
ting professionalism and quality.

imilar observation applies to several of the ideas listed earlier as “Good but not
Even if the agile movement does not deserve the credit for inventing these con-
which previous authors had energetically advocated, it has succeeded in convey-
m effectively to the software industry, a significant achievement in itself. The two
al examples are:

rt iterations. While the more competent companies have relied on iterative
elopment for a long time, it is partly thanks to agile ideas that this practice has
ome so widely accepted.

e central role of code. Once again this is not new but the agile movement has
n instrumental in reminding everyone that our primary product is code, not dia-
ms or documents.

hasizing and popularizing these principles, the agile movement places itself in the
adition of software engineering — of the very compendium of wisdom, accumu-
ver several decades, that it so haughtily deprecates. When the dust has settled and
ld has matured, this is how we will remember the self-proclaimed agile revolution:
ncremental step, which — aside from indulging in some lunacies that were not
d to last long — improved our understanding of existing concepts and introduced
ous few new insights.

2

De

In its q
them,
detaile
beyond

2.1 T

The ex
Cohn,
one of
ling th

I am g
turn th
the dis

There
exact
down
misle
run a
her a
dates
and tu

Abou
wante
differ
the m
room
booke
Neith
it is t
rathe
booke
caugh

Beyon

B. Meye
© Sprin
constructing agile texts
uest to convert the world, the agile literature resorts to various devices, some of
let us say, intellectually less impeccable than others. As a preparation for the
d study of the method, it is important to know these devices and be prepared to look
 them. We start with a typical example and move on to a more detailed analysis.

HE PLIGHT OF THE TRAVELING SEMINARIST

ample comes from one of the important agile books, Succeeding with Agile by
widely used and cited in the agile world. The author, an experienced consultant, is
 the main figures in the movement. The extract comes at the start of a chapter extol-
e advantages of verbal communication over written documents.

oing to tell you what I think of this anecdote and its generalization, but before you

 is a grand myth about requirements — if you write them down, users will get
ly what they want. That’s not true. At best, users will get exactly what was written
, which may or may not be anything like what they really want. Written words are
ading — they look more precise than they are. For example, recently I wanted to
 three-day public training course. My assistant and I had discussed this, so I sent
n e-mail saying “Please book the Hyatt in Denver”, and reminded her of the
. The next day she e-mailed me, “the hotel is booked ”. I e-mailed back “Thanks”
rned my attention toward other matters.

t a week later she e-mailed me saying “the hotel is booked on the days you
d. What do you want to me do? Do you want to try another hotel in Denver? A
ent week? A different city?”. She and I had completely miscommunicated about
eaning of “booked”. When she told me “the hotel is booked ”, she meant “The
 we usually use at the Hyatt is already taken”. When I read “the hotel is
d ”, I took it as a confirmation that she had booked the hotel like I had requested.

er of us did anything wrong in this exchange. Rather, it is an example of how easy
o miscommunicate, especially with written language. If we had been talking
r than e-mailing, I would have thanked her when she told me “the hotel is
d ”. The happy tone of my voice would have confused her, and we would have
t our miscommunication right then.

d this problem, there are other reasons to favor discussions over documents.

Citation from
[Cohn 2010],
page 236.
Emphasis added,
otherwise verba-
tim quote.
e page please take a moment to form your own opinion; it should make reading
cussion more interesting.

r, Agile!, DOI 10.1007/978-3-319-05155-0_2,
ger International Publishing Switzerland 2014

18

2.1.1

We sta

• The
nat
han
abs

• The
ane

Let us
that ap
in agil
all it c
help a
Here, f
might
I could
go out
love li

Her
projec
Somet
of the
was tra
return,
the ass
the pro
the cod
progra
the bu

Wh
story o
anythi
throw
just an

Pau
com
dire
prof
can
disc
stud
DECONSTRUCTING AGILE TEXTS §2.1

Proof by anecdote

rt with two observations, one immediate and the other less obvious:

 argument would fit well in a seminar presentation (maybe this is where it origi-
ed); put in writing, it is so incongruous that the serious reader might dismiss it off-
d. In other words it provides an excellent refutation of its own message, since the
urdity that might remain unnoticed verbally becomes obvious in writing.

 senselessness of the intended lesson should not hide the gems of wisdom that the
cdote contains, even if they are not what the author emphasizes.

start with the attempted argument. Its first problem is that it follows a form of logic
pears worryingly often in the software literature (particularly but not exclusively
e books): proof by anecdote. An anecdote is not a proof; as we saw in the preface,
an prove is that a generalization does not hold. It is not even an argument; if can
n argument, but only if it is backed by enough evidence of being generalizable.
or every story of a hotel booking that email messed up and verbal communication
have avoided, there is an equally fascinating anecdote “proving” the reverse truth.
 tell you, for example, of the time when I wanted to convince my future wife to

 with me and on the phone I said… I could but (relax!) I will not, first because my
fe is none of your business, second because you got the point already.

e in fact is another anecdote, this one software-related. I recently witnessed, in a
t, a bug that took two weeks to understand and fix because a developer was away.
imes the program would not terminate. It turned out that the code was calling one
developer’s routines on a data structure that occasionally was cyclic; the routine
versing the structure, assuming it was acyclic, and looping forever if not. On his
 the developer found out what was happening and remarked that “everyone knew”
umption of acyclicity. Perhaps, but “everyone” else had forgotten; good thing for
ject that at least one person remembered! Even without the benefit of writing in
e an explicit precondition (require structure.is_acyclic), as you can do in some

mming languages, it would have been better, and probably would have avoided
g and the waste of time, simply to write down this requirement somewhere.

ile I find this anecdote more relevant to a software engineering discussion than the
f a hotel booking mishap, someone else may disagree; and neither of them proves
ng. Advocates of verbal communication and written specification could endlessly
such war stories at each other without convincing the other party. An anecdote is
 anecdote.

l Dubois tells the following anecdote about anecdotes. In World War II, the military
missioned his future psychology professor to study whether it was better to train troops
ctly on a new rifle, or start with the older model then explain the differences. The
essor does the research. At the meeting, one general offers: “Ya gotta crawl before you
 walk”. Another counters, “You ride the horse you’re gonna ride in the race”. The

?

← “Analysis:
instinctive,
experiential,
logical or
empirical?”,
page xi.
ussion escalates into a war of aphorisms, a decision is made; no one asks about the
y. Luckily, its conclusion was that it did not matter.

§2.1 T

All
trary t
mistak
do?”. S

2.1.2

In the
writing

• The
we
sho
(ma

• The
so m
wri
not

• Ma
acc
Ind
oth
Wh
stic

• Ver
doe
circ
the
exp
son
is d
can
wh

• Peo
me
mo
key

The di
truly s
niques
betwee
and ca
HE PLIGHT OF THE TRAVELING SEMINARIST 19

 that Cohn’s story “proves” is that he should find himself a better assistant. Con-
o what he writes (“Neither of us did anything wrong in this exchange”), it was a
e, after the first email response, not to write back “so, what do you want me to
uch mistakes, however, can happen in verbal as well as written communication.

When writing beats speaking

case of software projects, which after all are the focus, there are many reasons for
 down at least part of the requirements:

 spoken word is notoriously ambiguous, much more than written requirements. If
bemoan that requirements “look more precise than they are”, the conclusion
uld be that we need more precise forms of requirements; that would mean formal
thematical) specifications, probably not what the author is suggesting.

 difficulty of achieving precision in spoken communication is the very reason why
any verbal requirements or design discussions end up with the request “please

te this down!”, meaning that the person being asked to provide a mechanism can-
 make a final pronouncement before having seen the request on paper.

ny projects today involve people of different backgrounds and particularly different
ents. It can be hard — say in a Skype discussion between teams in Germany and in
ia, both using English, or believing they are — to make out the details of what the
er party is trying to say. Again the usual conclusion is “email this to me please”.
ile people also make mistakes in written language, it is much easier in writing to
k to a common language subset that everyone understands in the same way.

bal discussions are known only to those who attend them. A written description
s not have the warm-and-fuzzy feeling of a verbally agreed decision, but it can be
ulated to any number of people. When software people talk to a representative of

 customer company, they often do not know whether that particular person has the
ertise and authority to specify a property of the system, or is just expressing a per-
al preference. Company environments have many actors and many viewpoints; it
angerous to follow the lead of the last person you heard. Anything written down
 be checked by many stakeholders, who will raise an alarm, before it is too late,
en they see a requirement reflecting a partial or biased view.

ple in a software project come and go. One of the benefits of consigning require-
nt elements to writing is that they survive the context of a conversation, when six
nths later no one remembers why a particular decision was taken; or, worse yet,
 participants are no longer around.

scussion extends beyond software. If verbally communicated requirements were
uperior to written ones, engineering of any kind could discard such old-hat tech-
 as design specifications and plans, relying instead on frequent interactions

?

n engineers and other stakeholders. After all, our forebears did build pyramids
thedrals that way. But modern engineering is possible precisely because the build-

20

ers of
and a h
endors
of “mi
spared

Thi
we cou

2.1.3

Setting
does c

The
they a
Human
in req
nothin
and et
even le

The
answe
it is pr
require
yields
requir
define

Use
one ex

The
ing Co
softwa
munica
leaders
cally d
tance,
assump
explain
DECONSTRUCTING AGILE TEXTS §2.1

houses, bridges, aircraft, circuits — and software — do not stop at a friendly chat
andshake, but insist on consigning the specifications on paper and having all sides
e the result. No one has ever argued that writing things down removes every risk
scommunicating”; but if speaking them was the solution, humankind would have
 itself the whole detour through written language.

nk of all that time we wasted in grade school learning reading and writing, while
ld have been enjoying the park and at the same time honing our conversation skills!

Discovering the gems

 aside its method (proof by anecdote) and its exaggerations, Cohn’s discussion
ontain three software engineering lessons, even if they are not the ones advertised.

 observation that “Written words are misleading — they look more precise than
re” is a genuine insight. The authority of the written word can be dangerous.
 language, written or spoken, is treacherously ambiguous; a well-known example

uirements is “the system shall respond in real-time”, which in the end means
g: a response coming after a tenth of a second is real-time for a banking terminal
ernity for a network router. But the alternative is not spoken language, which is
ss precise.

 alternative, when precision is the goal, is mathematics. The requirement
r.time – query.time ≤ 0.1 does not look more precise than it is: it looks precise and
ecise. But this is not what Cohn has in mind. He is concerned about taking written
ments too seriously just because they are written. This is a valid concern, and

 the first meaningful lesson from this text: Do not let the written form of a
ement element impress you into believing that everything has been clearly
d. Written implies neither precise nor correct.

ful as it is, this observation describes a problem, not a solution. The solution, if
ists, is certainly not to switch to the spoken word.

 second lesson is that communication is hard. All right, you knew that before read-
hn’s text or the present discussion, but communication is a particular challenge for
re development. In any large and ambitious project (and in many smaller ones) com-
tion issues are just as important as technical issues, and can wreck the project if the
hip does not handle them properly and proactively. They are critical for geographi-
istributed projects, where the usual issues of communication are compounded by dis-
time differences, and the team members’ diverse mother tongues, accents and cultural

?

See e.g. [IEEE
1998].
tions. (As a hilarious illustration, a YouTube video recorded by an Indian engineer
s the various meanings of “yes”, “no” and head nodding in India.)

[Dhawan 2008]

§2.1 T

Wh
not en
includ
mind t
(this ti
the $1
error th
tem, o
measu
in this
seemin

Ver
a repla

2.1.4

This e
analys

This
safe
circ
pap
com
requ
orga

As
desi
favo
whe
ano
scan

Agile
compl
As the
(they m
defens
clusion
HE PLIGHT OF THE TRAVELING SEMINARIST 21

at about spoken communication? The lesson here is that written descriptions are
ough; the various project stakeholders should talk (where “stakeholders”

e the development team as well as customers and users). Cohn undoubtedly had in
he kind of strict environment where documents are all that matters. Case in point
me a milestone incident of software engineering history, not a minor anecdote):
25-million loss in 1999 of NASA’s Mars Orbiter Vehicle was due to a software
at escaped all review processes; while NASA has standardized on the metric sys-

ne contractor used English Imperial units in one of the modules, passing along a
rement that another module then interpreted as if it were metric. The observation
 case is in line with Cohn’s: documents are great, but they can miss essential and
gly obvious information. Those people should have been talking to each other!

bal communication is, however, a complement to written documents, not
cement.

Agile texts: reader beware!

xample is representative of what you will often find in the agile literature, and its
is provides a good guide of how to use that literature.

 conclusion itself generalizes from one example. The generalization is, however, pretty
: the emphasis on verbal and other informal forms of communication is common in agile
les and not specific to the cited book. Alistair Cockburn, for example, writes that “typed-in,
er-based documentation is one of the most expensive, time-consuming and least
municative forms available (never mind that it is traditionally the most frequently
ested)”. Well, there is a reason such documents are frequently requested: they can be
nized systematically, archived and searched.

examples of replacement, Cockburn suggests that the team “videotape one of their
gners explaining a section of the design” and states: “paper napkins happen to be my
rite documentation medium. They can be posted on the wall or scanned ”. Sure, but
n the time comes to find out whether a key system property was decided one way or
ther and why, searching text beats sifting through hours of video recordings or heaps of
ned paper napkins.

authors are on a mission to convince the reader; their zeal leads them to simplify
ex matters and draw conclusions that are sometimes warranted and sometimes not.
 field progresses, future books and articles will apply higher intellectual standards

ight also become more boring in the process). Until then, you must keep your

See the official
report: [NASA
1999].

?

[Cockburn
2005], page 179.
es up. You must also keep an open mind and be prepared to draw your own con-
s, even when the author’s own do not hold up to examination.

22

2.2 T

The te
techniq
approa
ture, h
author

1 Pr
ten

2 Sl
wi

3 In
as

4 Ca
dis

5 Al
th
inc

6 Co
the
sh

7 Un
pr
by
sh
as

Dubio
do inv
metho

2.2.1

Agile b
this ch

An
the ane
experi
examp
who in
DECONSTRUCTING AGILE TEXTS §2.2

HE TOP SEVEN RHETORICAL TRAPS

xtual deconstruction just performed is a good preparation for coping with other
ues, of similarly questionable soundness, used by agile authors to advocate their
ches. As training for the rest of our trip and for your own forays into agile litera-
ere is the Top 7 list of the most outrageous rhetorical devices, not unique to agile
s of course, but particularly popular in their texts:

oof by anecdote, which we have seen at work in this example. An anecdote, or
, are not a proof.

ander by association: lumping together an idea that an author wants to criticize
th one that everyone loathes. Non-agile ideas get that treatment.

timidation: labeling anyone who does not buy the agile gospel, chapter and verse,
 a reactionary control freak.

tastrophism: pretending that software development as currently practiced is a
aster (so that only your agile method can save it).

l-or-nothing. promoting an extremist method, not practicable in its entirety, so
at project successes can be ascribed to agile techniques and failures to their
omplete application.

ver-your-behind: advocating radical prescriptions; then as a footnote stating that
y may not after all be always applicable; but never saying precisely when they

ould be used and when not.

verifiable claims. The Scrum literature in particular routinely touts enormous
oductivity improvements. Who would not want to multiply project effectiveness
 an order of magnitude? In the absence of rigorous independent verification, you
ould take such assertions (depending on your benevolence on that particular day)
 either a sign of charming youthful enthusiasm or irrelevant hype to be discarded.

us rhetorical techniques do not disprove the value of the ideas being proposed, but
ite the reader to exert caution. We should both keep an open mind and not lower our
dological guard. The first step is to be aware of the seven traps to be described now.

Proof by anecdote

ooks largely make their point through anecdotes; the example at the beginning of
apter is typical.

ecdotes are good for books, and for teaching in general. They can also backfire: if
cdote serves as the basis for a general statement, a reader whose own anecdotal

ence does not match the author’s will reject the generalization. We will see an

[Schwaber
2012], page 6:
“90% improve-
ment”.

← “Lean Soft-
ware: an assess-
le in a later chapter with Poppendieck’s enthusiastic invocation of a role model
 hindsight looks like a less than fortunate choice: Lance Armstrong.

ment”, 9.2.3,
page 135.

§2.2 T

An
neylan
her; th
has be
not, is
this is
a prett
good,

The
— a te
you ca

2.2.2

An eff
the rea

The
a name
feeling
one ca
is brill

The
ing ide
favorit
bad. B
return
and ab
author
in “the

2.2.3

The ne
“agile”
agile m

A g
Forbes
tions”
with a

As
anyone
a usefu
HE TOP SEVEN RHETORICAL TRAPS 23

other example from the same author is her heartrending story of a bus driver at Dis-
d who spotted a little girl crying and managed to have a Mickey Mouse actor greet
e anecdote is supposed to illustrate the importance of quality. For the reader who
en to Disneyland with children, and found that the whole place, smiling drivers or
 grossly under-dimensioned, so that one spends most of the day waiting in lines,
not a good omen; the obvious generalization to software is a Web site that features
y interface and pathetic response times. Raising analogies in your readers’ mind is
but beware of where they will take them.

 general problem with an anecdote is that it is to a principle what — in software
st is to a specification: it gives you one example and you are never sure how much
n extrapolate from that example to the general case.

Slander by association

ective — if not too commendable — way to criticize an idea is to associate it, in
der’s mind, with one that everyone dislikes.

 positive counterpart of this technique is honorable: choose for your own ideas
 that connotes a pleasant feeling, and leave it to your audience to get the opposite
 for the opposing ideas, or just different ones. This is smart marketing, which

n only admire; as noted in the preface of this book, the choice of the word “agile”
iant.

 negative version, however, is a different matter: improperly associating compet-
as with terms or concepts that the audience is likely to find repulsive. Here the
e butt of agile scorn is the “waterfall” process, something that everyone knows is
ut of course not everyone who does not agree with all agile ideas is preaching a
to a nineteen-seventies-style waterfall process; in fact almost no one practices it,
solutely no one advocates it. Still we will find, in the next chapter, leading agile
s repeatedly lumping any non-agile (“predictive”) approach with the waterfall, as
 predictive, or waterfall, process is in trouble”. It is a cheap trick; do not fall for it.

Intimidation

xt set of dubious arguments takes advantage of the positive vibes that the term
 immediately sends, and of the general good feeling elicited by the hipness of the
ovement, to cast anyone who raises questions as a reactionary moron.

ood concentrate of the kind of artillery that awaits the impartial observer is a 2012
 magazine article by Steve Denning intended to refute “Ten Management Objec-
to agile methods. The author, a former World Bank director, is a business guru
n impressive list of Fortune-500 customers.

Agile harangues go, this is not the most subtle — it is a full frontal charge against

[Poppendieck
2003], page 16.

→ “Predictive
is not water-
fall”, page 31.

[Denning 2012]
(also source of
other citations in
this subsection
except as other-
wise marked).
 who might question the sacred world — but in its very exaggeration it provides
l checklist of what to expect if you have the temerity to think for yourself.

24

You
Einste

“If

It is al
neyed
Agains

Set

Agi
bur
per
med

Wow!

Ein
invoke
implie
Colum
rubbis
(Einste

One of
drome
eightee

The
Ha

What
bureau

Som

Now l
wrong
flat, I

CALV
DECONSTRUCTING AGILE TEXTS §2.2

 will be hooted down because you reject novelty. Denning’s paper starts with the
in quote that

at first an idea is not absurd, there is no hope for it”.

ways good practice, for an author whose arguments are a bit shaky, to use a hack-
Einstein citation. You will find lots of them around the Web, some even authentic.
t Einstein, what are we poor souls to do?

tle for mediocrity, that’s what!

le squeezes out mediocrity and requires high-performance. Hierarchical
eaucracy breeds incompetence and feeds off mediocrity: the organization
forms accordingly. Faced with the choice between high-performance and the
iocrity, traditional management opts for mediocrity.

Just one insult at a time, please. Bureaucrats; mediocre; incompetent. Thanks.

stein’s witticism can serve to justify anything. The particular intellectual device
d here is a variant of the logical fallacy of deducing “B implies A” from “A
s B”. We may call it the Columbus syndrome: people thought Christopher
bus’s project absurd, and he was onto something big; you think that my idea is
h, so I must be onto something big. Or as Calvin put it in his decisive argument
in again):

 the main arguments in Denning’s paper is a textbook case of the Columbus syn-
: over four paragraphs, he recalls the story of the discovery by John Harrison, in the
nth century, of how to measure longitude precisely by building better clocks; but:

 scientists refused to concede that they had been wrong and give John
rrison his well-deserved prize.

does this have to do with agile methods, you ask? You mediocre, incompetent
crat! Denning explains:

ething similar seems to be happening with Agile.

ots of people come up with ideas that “experts” reject; sometimes the experts are

The story is
taken from a
best-seller,
[Sobel 2007].

IN AND HOBBES © 1988 Watterson. Reprinted with permission of UNIVERSAL UCLICK. All rights reserved.
, but often they are right to reject the new idea. If I start arguing that the earth is
will be scorned by the experts: “something similar” will “seem to happen” and I

§2.2 T

will fa
wrong

The
cause f
one up
case, h
recepti
gious
book t
onto th
ware e
not tal
has be

Wil
Turner
your o
it did n

Wh
is t
bus
fata

(Bring
people
govern

Lik
so it co
into a f
level o
ness re

If y
dinosa
self-or
ageme
tion. S
admitt
such a
but tha
self-or
and ma
ceeds i
not pli

The
HE TOP SEVEN RHETORICAL TRAPS 25

il (what a scandal!) to get my “well-deserved prize”. Why are the experts more
 in the agile case than in that one? No clue.

 invocation of expert rejection is another rhetorical device. Many defenders of a
eel more comfortable if they can identify an enemy; or, if none is available, make
. It particularly helps to argue that the Establishment is against your ideas. In this
owever, the enemy is rather gracious. The software engineering world has been
ve to agile ideas, giving them ample resonance in the community’s most presti-

forums, including its top conferences (OOPSLA, ICSE, ESEC…). An important
hat empirically assesses agile techniques, published shortly after agile ideas burst
e scene, has as its lead author one of the most venerated figures of traditional soft-
ngineering, and provides an open and measured account of the approach. We are
king about persecuted innovators facing an entrenched order. The establishment
en inclusive and welcoming.

l it help if — in the footsteps of empirical studies as collected by Boehm and
 — you perform an objective, empirical analysis of how agile methods work in
rganization? No, that would be irrelevant. If you tried an agile method and found
ot work, what conclusion do you draw? Silly question. You are the problem:

en the culture doesn’t fit Agile, the solution is not to reject Agile. The solution
o change the organizational culture. One doesn’t even have to look at the
iness results of firms using hierarchical bureaucracy to know that they are
lly ill.

s to mind another quotation, not quite Einstein this time, sorry, just Brecht: “The
 have forfeited the confidence of the government; would it not be easier for the
ment to dissolve the people, and elect another?”)

e others in Denning’s paper this argument does not include any specific evidence,
uld serve to support any radical idea, useful or silly. Note how the reasoning slips
aith-based argument: one doesn’t even have to look at the business results. At that
f irrationality, it is not clear what we are supposed to do; if we will not look at busi-
sults, what is the point of discussing management techniques?

ou are not an enthusiastic promoter of agile approaches, you are by definition a
ur. The technical term is “member of the command-and-control gang”. Agile teams
ganize, use “radical management”, and non-followers are “control-minded man-
nt practitioners and theorists”. I can think of a few people who fit this last descrip-
teve Jobs, for example. Judging by the effects of his management — although
edly this means that we “look at the business results” — he must not have been
n ineffective manager. Now his management style may not be to everyone’s taste,
t is precisely the point: a large spectrum of styles exists, from the completely

ganized team to the military-style organization micro-managed by a control freak,
ny variants in-between. More than one strategy can work, and a strategy that suc-
n one environment may fail in another. Summary judgments against those who do
antly follow of the latest fashion are an obstacle, not a benefit.

[Boehm 2004].

Brecht poem: see
bit.ly/h1rKGS.
 rest of the article, which you should read as a form of vaccine, is of the same flavor.

http://bit.ly/h1rKGS

26

Wit
of the d
vince a
results

The
royalis
agile t
course

Suc
reason
this bo
from t

2.2.4

When
ways o
tainly
ever, s

Sof
For ma
about t
tributio
gramm
in the

Aft
of soft
we use
sounds

The
is fond
a cons
their g
in a 20
[Glass
firmed
not per
for agi

You
ine

No les
DECONSTRUCTING AGILE TEXTS §2.2

h such defenders, who needs enemies? Serious agile proponents should be wary
amage caused by extreme propaganda of this kind: hype and intimidation can con-
 company once, but every decision-maker will sooner or later “look at the business
” and is likely, if they do not live up to the hype, to throw away good ideas with bad.

 zealots of an idea are often more extreme than its creators — the phrase “more
t than the King” captures that phenomenon — and you will find that foundational
exts, such as those by Beck, Larman or Cockburn, occupy a higher plane of dis-
; in particular they avoid below-the-belt hits at other approaches.

h hits from the true followers are what you risk if you set out to define a measured,
ed adaptation of agile ideas for your organization. Well, you have been warned. In
ok we fearlessly (applause for the courage, please!) undertake to untangle the best
he not-so-good and the pretty bad.

Catastrophism

you are advocating a new approach, it is natural to highlight flaws of the current
f doing things. If everything were perfect, why should people listen to you? Cer-

the state of software engineering leaves much to be criticized. To be credible, how-
uch criticism must be accurate.

tware engineering started around 1968 with the recognition of a “software crisis”.
ny years it was customary to start any article on any software topic by a lament
he horrible situation of the field; you would not explicitly write that the little con-
n of your article — a methodological idea, a new programming language, a pro-
ing tool — was going to solve the “crisis”; it was enough to plant the suggestion

reader’s mind and let him draw the conclusion.

er the field had matured, this lugubrious style (everything is rotten in the kingdom
ware) went out of fashion. It is indeed hard to sustain: in a world where every device
, every move we make and every service we receive is powered by software, it
 a trifle silly to claim that software development is all broken and everyone is wrong.

 apocalyptic mode has, however, made a comeback in the agile literature, which
 in particular of citing the “Chaos” reports. Emanating from the Standish Group,
ulting firm, these reports purport to show that a large percentage of projects miss
oals or fail entirely. It was fashionable to cite Standish (I even included a citation
03 paper), until the methodology and results were debunked starting in 2006

 2006] [Eveleens 2010]. To summarize, these results are inconsistent, not con-
 by other studies, and based on proprietary data that independent researchers are
mitted to see. Yet to this day they continue to be reverently cited as a justification
le processes, including in the most recent book by the Scrum creators, who add

 have been ill served by the software industry for 40 years—not purposely, but
xtricably. We want to restore the partnership.

[Schwaber
2012], page 1.
s!

§2.2 T

I tri
indi

Softwa
any us

The
aghast
ing’s d

2.2.5

While
prefac

Wh
ciples
Otherw
presen
ful and
the fai

The
ignore
and re
difficu

2.2.6

Not al
image
and wh
afterth
decide
the pra

A t
Tom P
each b
warran

Loo
•
•
•

and so
princip
since t
actuall
they sh
HE TOP SEVEN RHETORICAL TRAPS 27

ed to imagine the kind of circumstance that might draw one to issue such a definitive
ctment of an entire industry. You can find the result in a “postscript” to this chapter.

re engineering faces enough obstacles, obvious to anyone in the industry and to
er of software products, that we do not need to conjure up imaginary scandals.

 Standish episode also reminds us of the dangers of exaggeration — of either kind,
 at others’ failures or boastful of one’s own triumphs — and of software engineer-
ire need for sound, credible empirical results.

All-or-nothing

some agile texts and methods take a measured approach, others, as noted in the
e, insist that to apply their methods you have to use all the associated practices.

ile we cannot deny methodologists the right to specify a few incontrovertible prin-
defining their methods, the number of such absolute requirements has to be small.
ise the principles serve as a marketing gimmick, as one can see in the many agile

tations that claim to achieve balance by reporting on case studies of both success-
 failed projects. The successful ones demonstrate the power of the method; and

led projects failed because they dared to ignore one of the recommendations!

 trick is brilliant, but that does not mean we should fall for it. Industry, as noted,
s such absolutism: every group devises its own selection, picking some practices
jecting others. Software projects are too diverse, and software development too
lt, to allow for a single recipe that will work identically for everyone.

Cover-your-behind

l agile authors want to appear as extremists, but even those who try to shed that
often leave the reader in the dark about when to use the techniques they advocate
en to renounce them. The typical scheme is to extol radical ideas, then as a brief

ought state that they are not always applicable, without presenting any criterion to
. It makes the author look reasonable and even-handed, but is not of much help to
ctitioner trying to make sense of the advice.

ypical example appears in the foundational book on Lean Software by Mary and
oppendieck. After seven chapters calling for radical changes in software practice,
ased on a strong principle, a final chapter humorously entitled “Instructions and
ty” suddenly brings in words of caution:

k for the balance point of the lean principles:
Eliminate waste [first Lean principle] does not mean throw away all documentation.
Amplify learning [second principle] does not mean keep on changing your mind.
Decide as late as possible [third principle] does not mean procrastinate.

 on (four more “does not mean” bullet points, one for each of the remaining Lean
les). These comments are intended to demonstrate restraint, but they are useless
he chapter is only eight pages long and says almost nothing about what would

→ “Postscript:
you have been
ill-served by the
software indus-
try!”, page 30.

[Poppendieck
2003], page 179.
y help practitioners: when the principles are not or not fully applicable, and how
ould be attenuated in such cases.

28

As
extrem
need a
along
the pri
far-sw
users o
You ap
warn y

(We
balanc

At
where
sible”
in the
thing o

The
metho
“altho

Wh
into th
book t
with o
the agi
benefi
not he
circum
opmen

2.2.7

A docu
in Hal
a facto
I have
a com
their re

We
a badl
stirred
in part

It is
ware d
DECONSTRUCTING AGILE TEXTS §2.2

software developers or managers, we do not need the blanket observation that
e principles may need tempering. We figured that out by ourselves. What we do
re criteria for making exceptions. The exceptions and criteria should be specified
with each principle, not in a global cop-out which destroys the very credibility of
nciples. Rather than “instructions and warranty”, such a cop-out resembles the
eeping disclaimers attached to many consumer products. It is meant to help not the
f the method, only its authors, for whom it provides cover-your-behind protection.
plied my principle X and your project ended in disaster? Sorry to hear that! I did
ou, of course, that you should look for a balance point.

ll, yes, thank you so much, but I would have preferred that you tell me what the
e point is.)

work here is a common style of cover-your-behind: “A1-does-not-mean-A2”,
A2 is hardly distinguishable from A1. For example, A1 is “deciding as late as pos-
and A2 is “procrastination”. If there is a difference, it is subtle. (“Procrastination”
Oxford English Dictionary: “the action or habit of postponing or putting some-
ff; delay; dilatoriness”.)

 agile cover-your-behind device is not specific to the Poppendiecks or to the Lean
d. We will encounter examples from many other sources, such as this gem:
ugh project development teams are on their own, they are not uncontrolled ”.

en we discover the limits of applying an agile idea dogmatically, we must not fall
e same pitfall ourselves and just declare that one should exercise moderation. This
ries to explain when and how agile prescriptions should be replaced or combined
ther techniques. An example is the balance point (in Poppendieck terms) between
le rule of producing a running system at every step, and the software engineering
t of building infrastructure even without immediately user-visible results. It does
lp much to state blandly that both viewpoints may have a value depending on the
stances. The discussion of this issue will present a concrete policy, “Dual Devel-
t”, combining them in a precisely specified way.

Unverifiable claims

ment by one of the creators of Scrum is entitled “The Art of Doing Twice the Work
f the Time”. If my arithmetic is correct, this means a productivity improvement by
r of four. Wow. Who would not sign up? In presentations by agile method creators
 heard more extreme claims, of an order of magnitude improvements or more. In
ment we will encounter later, the Poppendiecks imply that applying just one of
commendations will divide costs by a factor of ten.

 may accept that someone, somewhere, gave an agile method to a team — perhaps
y demotivated team which suddenly gained both focus and enthusiasm — and
 it into producing amazing results. The question is what it means for other teams,
icular those already using good software engineering techniques, agile or not.

→ See this exam-
ple and others in
“Let the team
self-organize”,
page 53.

→ “Dual Devel-
opment”, page 74.

[Sutherland
2013].

→ “Produce
only the product
requested”,
page 58.
 notoriously hard to perform convincing large-scale studies of the effect of soft-
evelopment techniques. Obstacles abound:

§2.2 T

• To
me
to r

• Som
Thi
fail
team
com

• Eve
task

• Ass
con
exp
com

While
ments

At t
fine pr
advoca
The st
induce
toss al

Som
spend
a team
fashion
turn fr
just du
plant w
as they
if they
anothe

Bef
gain a
believe
HE TOP SEVEN RHETORICAL TRAPS 29

work under realistic conditions you should take actual projects and collect precise
asurements, but not all companies are willing to put in the effort, and even fewer
eveal the results.

etimes two methods are applied in succession because the first project failed.
s case is a frequent argument for new methods: “we succeeded where others
ed”. That may be true, but the comparison is biased: the second time around the

 has learned from the first project, even if it was a failure. You can only really
pare projects done in parallel, not one after the other.

n fewer companies, however, will be willing to fund two projects with the same
s just to assess methods.

uming such a setup, it remains just one case and does not permit drawing general
clusions since the results may be influenced by the specific task and teams. The
erience should be repeated among several projects and ideally among several
panies, making the whole prospect even less realistic.

credible empirical industry results do exist, many empirical studies rely on experi-
with university students, which have their value but also obvious limitations.

he other extreme, you will find an IBM study assessing agile methods; reading the
int reveals that it was conducted in collaboration with the Scrum Alliance, an
cy organization for Scrum. Advocacy has its place, but not in empirical research.

udy finds much good to report about Scrum; are you surprised? Agile seems to
 so much fever as to make such an organization as IBM, usually more responsible,
l methodological caution to the wind. Do not toss yours.

e company environments are truly messed up. Under-appreciated developers
their time on repetitive tasks, subject to the whims of incompetent managers. Then
 that suddenly gains the confidence of upper management, the opportunity to try
able new ideas, and the benefit of an excellent agile coach, can almost overnight

om torpor to torpedo. Such feats can even be sustained, showing that they are not
e to the “Hawthorne effect” (a phenomenon, named after the Western Electric
here it was observed in the 1930s, under which workers perform better as soon

 are told that they are experimenting with a new approach, whatever it is, and even
 are not). Drawing general conclusions from such individual experiences is
r matter.

ore you go tell your management that by switching to an agile method you will
 four-fold productivity improvement, or more, think carefully. They might just
 you.

[IBM 2012]; see
also [Ambler
2012].

POST

After r
for 40 y
author
stance

On
to a
bre
prog

He
he d
corr
adv

As f
and
noti
as a
he k

He
his
fligh
the

He
fond
mill
S ha
not
late

Mr.
bee
ope
goo
insp
beg
eac
thei
cap

The
SCRIPT: YOU HAVE BEEN ILL-SERVED BY THE SOFTWARE INDUSTRY!

eading one description too many (“you have been ill served by the software industry
ears — not purposefully, but inextricably”) of how terrible everything was before the
 rode his white horse to the rescue, I had some fun trying to imagine the circum-
s that might lead someone to write such a sentence. Here is the result.

a cold morning of February 2012, Mr. S woke up early. He had set up his iPhone’s alarm
 favorite tune from Götterdämmerung, downloaded from a free-MP3 site. He liked his
akfast eggs cooked in a specific way, and got them exactly right since he had
rammed his microwave oven to the exact combination of heat and cooking time.

had left his car to his daughter on the previous night; even though the roads were icy,
id not worry too much for her, since the automatic braking system was good at silently
ecting the mistakes of a still somewhat novice driver; and the navigation system would
ise her away from any impracticable street.

or himself he was going for public transportation. He looked up the schedule on the Web
 saw that he had a few minutes before the next bus, enough to check his email. He
ced that he had received, as a PDF attachment, the pay slip for his last consulting gig;
n Agile consultant, Mr. S was in high demand. He did not need to check the details since
new his accountant’s system would automatically receive all the information.

went out and hopped onto the bus, all the way to the client’s office continuing to check
email on his phone, even finding the time to confirm the online reservation for his next
t, while checking the large monitor in the bus to avoid missing his stop. On reaching

building, he slid his id into the elevator’s slot, gaining access to the right floor.

brought up his computer from hibernation, for some reason remembering — Mr. S was
 of such trivia — that the newest version of Windows reportedly consisted of over 50
ion lines of code, and reflecting that the system now kind of did what he expected. Mr.
d thought of moving to a Mac, following many of his friends, but the advantages were
clear, and he liked the old Word text processing system with which he was writing his
st agile advocacy text, tentatively entitled “Software in 30 days”.

S — whose full name was either “Schwaber” or “Sutherland”, although it might have
n “Scrum” or perhaps “Sprint”, as some of the details of the story are missing —
ned up the document at the spot where he had left it the evening before. Like many a
d author, he had postponed finalizing the introduction to the last moment. Until now
iration had failed him and his coauthor: it is always so hard to discover how best to
in! Over the past months, working together in long Skype discussions from wherever
h happened to be, they had tried many different variants, often simultaneously editing
r shared Google Docs draft. But now he suddenly knew exactly what he had to say to
ture the readers’ attention.

 sentence sprang to his mind in one single, felicitous shot:

← “Catastroph-
ism”, page 26.

Adapted from
[Meyer 2013].

[Schwaber
2012].
You have been ill served by the software industry for 40 years — not purposefully,
but inextricably.

3

Th

Any ca
metho
ticular
attemp
“discip
discipl

Thi
on tho
would
view o

3.1 P

First, a
recent

Alth
org

and lat

[A
PW

The bo

At p
— rep
(since
a textb
first ex
been th
Engine
design
ment.
Attem
sic pun
author

B. Meye
© Sprin
e enemy: Big Upfront Anything
use needs a villain. Agile’s villain is variously called “waterfall”, “process-based
ds”, “predictive” (see below) and “Big Upfront Anything” where “Anything” par-
ly includes requirements and design. Boehm and Turner, in the title of a book
ting to reconcile agility with traditional software engineering approaches, use
line”; in the body of the book, however, they note that agile methods can exhibit
ine too, and resort for the classical techniques to “plan-based” — not a bad name.

s chapter summarizes the main characteristics of plan-based approaches, focusing
se that agile proponents typically resent. Covering these approaches in detail
 require an entire software engineering textbook; here we only need a bird’s eye
f the principal ideas.

REDICTIVE IS NOT WATERFALL

 word of warning, complementing the advice of the previous chapter. In their most
book, the creators of Scrum write:

ough the predictive, or waterfall, process is in trouble, many people and
anizations continue to try to make it work.

er in the same paragraph:

customer was using] services from PricewaterhouseCoopers (PWC). The
C approach was predictive, or waterfall.

ok’s index entry for “Predictive process” reads “See Waterfall”.

lay here is one of the intellectual devices identified earlier: slander by association
etitive association. “Waterfall” means a specific lifecycle model, whose main role
it hardly exists in the practice of software engineering) is pedagogical: it serves as
ook example of how not to organize a software project. Even the 1970 article that
plicitly described the model did so to criticize it. Ever since, waterfall-bashing has
e favorite sport of software engineering authors. “Predictive” is something else.
ering is by definition predictive: it tries to organize a greater or lesser part of the
 and production process in advance, based on techniques of science and manage-
There are a myriad predictive approaches out there that are not the waterfall.
pting by force of repetition to lump “predictive” in the reader’s mind with the clas-

[Boehm 2004]

?

[Schwaber
2012], page 29.

[Leffingwell
2011], pages
5-6, also pre-
sents “predic-
tive” as a
synonym for
“waterfall”.

[Royce 1970].
ching ball of software engineering, and hence to discredit anything that is not the
s’ own approach, is a dubious device that does not help advance understanding.

r, Agile!, DOI 10.1007/978-3-319-05155-0_3,
ger International Publishing Switzerland 2014

32

The
or less
obviou
cessfu

3.2 R

Softwa
people
will sa
most i
fect sy
shown
Much
buildin

3.2.1

Requir
techniq
books
ysis is

• Sta

• Sta
me
wit
disc

The re
which
integra
a syste
tem w

Tra
covers
contex

3.2.2

The ag
agile v

Req
act

Cohn,
Big-U
THE ENEMY: BIG UPFRONT ANYTHING §3.2

 discussion in this chapter summarizes approaches that are predictive to a greater
er extent. Not every one of them is to everyone’s taste and some are subject to
s criticism, but they have been widely used and helped make many projects suc-

l. Just as agile methods, they are part of what we know about software engineering.

EQUIREMENTS ENGINEERING

re engineering is not just programming but solving a problem of interest to some
, its “stakeholders”. Defining what the problem really is, and what kind of solution
tisfy the stakeholders — a task known as requirements analysis — is one of the
mportant aspects of successful software development: building an otherwise per-
stem that does not meet stakeholder needs is not very useful. Study after study has
 that requirements mistakes are among the worst to plague software projects.
of software engineering is about building systems right; requirements are about
g the right system.

Requirements engineering techniques

ements analysis has developed into a full-fledged discipline with many useful
ues, tools and methodological principles, described in software engineering text-

as well as specialized books on the topic. An important part of requirements anal-
 requirements elicitation: gathering user needs. Elicitation techniques include:

keholder interviews: going around and asking people what they need.

keholder workshops: bringing together a group of stakeholders to discuss require-
nts. Workshops are particularly useful when various classes of stakeholders exist,
h different and sometimes conflicting wishes; identifying the contradictions and
ussing them openly helps understand and resolve them.

sult of a requirements process typically includes a requirements document,
summarizes the objectives of the system. Other important outcomes — sometimes
ted in the requirements document, sometimes yielding separate documents — are
m test plan (since the requirements define the conditions against which the sys-

ill have to be tested) and a development plan.

ditionally, a requirements document was a single, sequential text, but the term also
 modern, more flexible formats such as a Web site, a wiki (advocated, in an agile
t, by Larman) or a cloud-based collaborative document (e.g. Google Docs).

Agile criticism of upfront requirements

ile school rejects the idea of upfront requirements. The rejection is common to all
ariants. Beck, arguing for XP, writes:

uirements gathering isn’t a phase that produces a static document, but an
ivity producing detail, just before it is needed, throughout development.

← Unless you
believe that until
agile came
around all
projects were
failures. See
“Catastroph-
ism”, page 26.

General text-
books: e.g.
[Ghezzi 2002],
[Pfleeger 2009]

[Larman 2010],
page 275

[Beck 2005],
page 137.
 in the Scrum context and as part of a broad-encompassing rejection of
pfront-Anything:

§3.2 R

Scr
wit

Agilist

• The
not

In c
com

The

• The
if t
min
tem

These
gled in

Sof
req

This is
easier
of the
these a
separa

In r

3.2.3

The w
design
write r
know
cisely
and in

Do
niques
EQUIREMENTS ENGINEERING 33

um projects do not have an upfront analysis or design phase; all work occurs
hin the repeated cycle of sprints.

s view requirements documents as a form of “waste”, for two reasons:

 waste criticism: a requirements document is not a useful deliverable, since it will
 be part of what is given over to the customer. Poppendieck writes:

If your company writes reams of requirements documents (equivalent to inven-
tory), you are operating with mass-production paradigms. Think “lean” and
you will find a better way.

ase you are wondering, “operating with mass-production paradigms” is not a
pliment. Further:

Inventory in the software development value stream is partially done work [such
as] requirements that are not analyzed and designed.

 analogy here is with inventory in manufacturing, a form of waste.

 change criticism: the agile view is that customers do not know what they want;
hey think they do, it might be an unrealistic system; and they will change their
ds anyhow. The only way to satisfy them is to start building some piece of the sys-
, show it to them, gather feedback and iterate.

two objections, the waste criticism and the change criticism, are often commin-
to one. Beck, for example, writes:

tware development is full of the waste of overproduction, [such as]
uirements documents that rapidly grow obsolete.

 again a case of criticism by association: conflating the two arguments makes it
to criticize upfront requirements. Note how Beck’s earlier citation (at the bottom
previous page) rejects the notion of a “phase that produces a static document”; but
re two different things: as we will see in more detail, requirements can both be a
te phase (in the software process) and produce a document that changes.

eality the two arguments are distinct; we will review them in turn.

The waste criticism

aste criticism is in principle limited to unused requirements (“not analyzed and
ed” in Poppendieck’s terms). This is not much of a restriction, since when you
equirements they are by definition not yet analyzed and designed, and you do not
whether they will be retained. In fact the purpose of writing requirements is pre-
to have a sound basis, early in the project, to discuss the system’s future functions,
 particular to decide which functions to drop.

[Cohn 2009].

[Poppendieck
lean], 7 Novem-
ber 2002 and 24
June 2004.

[Beck 2005],
page 136.

?

es this mean that the effort was “waste”? To decide, we must compare two tech-
 for weeding out unnecessary functions:

34

1 The
tan
tial

2 The
resu

Each a
at the
better
mented
anythi
best w
see wh

Som
are use
tary te
ally ha

The
ments,
ments
life-cr
most b
hard to
they en

Thi
ments.
not ge
since r
there a
Softwa
neerin
of spec
before

In s
other,

Tha
thing b
write s

I on
not
wee
man
THE ENEMY: BIG UPFRONT ANYTHING §3.2

 plan-first approach: perform an upfront requirements process, rate the impor-
ce of the functions that come out of that process, decide which ones are not essen-
, and get rid of them.

 agile approach: select a few initial functions, start implementing them, and if the
lt is not satisfactory for customers get rid of the unnecessary stuff.

pproach has merits. It is usually cheaper (approach 1) to kill a superfluous feature
requirements stage, before it has wasted implementation resources. This is also
for the morale of the team: developers get frustrated when something they imple-
 gets discarded; that form of waste is worse than tossing out a requirement before

ng has been done with it. On the other hand, agilists are right that sometimes the
ay (approach 2) to find out if something will be useful is to build it, show it, and
ether it fits.

etimes, but not always. The problem here is dogmatism. Upfront requirements
ful; iterative development is useful. Condemning either of these two complemen-

chniques in the name of some absolutist ideology does not help projects, but actu-
rms them.

 agile criticism is right on target when it lambasts the huge requirements docu-
 sometimes running into the thousands of pages, that some bureaucratic environ-
demand. While describing every single detail in advance is necessary for some
itical systems (typically embedded systems, for example in transportation), for
usiness systems such documents are overkill; they become so complex that it is
 get them right (contradictions and ambiguities creep in), and so unwieldy that
d up forgotten on a shelf rather than being used for the development.

s criticism does not justify throwing away the notion of upfront written require-
 First, we should note that even a strict definition of “waste” as anything that does
t delivered to the customer does not necessarily exclude requirements documents,
equirements often provide a good basis for writing system documentation. But
re even more fundamental reasons to retain a certain dose of upfront requirements.
re, in spite of its specificities (its virtual nature, the ease of changing it), is an engi-

g artifact. There is no justification for renouncing the basic engineering technique
ifying what you are going to do, in writing and at the appropriate level of detail,

 you do it.

um: there is a middle ground between one extreme, absurdly bureaucratic, and the
absurdly informal.

t comment was not strong enough. Starting any significant software project (any-
eyond a couple of months and a couple of developers) without taking the time to
ome basic document defining the core requirements is professional malpractice.

ce let myself be swayed by a customer company’s project managers, who said: “we do
need a requirements phase, we are agile, we can jump in right away”. Spending a few

ks upfront just on defining the system’s functions precisely would have saved the project
y months of delay, and the team many sleepless nights. I will not repeat that experience.

§3.2 R

3.2.4

The ag
at the
luck yo
ing ve

The
No ser
The re
with c
consid
test pl
ponen
them,
manag

To
makes
change
most p
in ston
conten
it has a
— am
that wr

Mil
con
the
Tha

We no
“Requ
require
two m

In f
and tre
instead
contra
contin

Her
vation
EQUIREMENTS ENGINEERING 35

The change criticism

ile emphasis on change is correct: it is hopeless to try to freeze the requirements
beginning of the project. Even if by some combination of talent, experience and
u could get them right, the customers would change their wishes as they start see-

rsions of the system, which will give them new ideas.

 resulting charge against requirements, however, is largely hitting at a strawman.
ious software engineering text advocates freezing requirements at the beginning.
quirements document is just one of the artifacts of software development, along
ode modules and regression tests (for many agilists, the only artifacts worthy of
eration) but also documentation, architecture descriptions, development plans,
ans and schedules. In other words, requirements are software. Like other com-
ts of the software, requirements should be treated as an asset; and like all of
they can change (and in practice should be put under the control of configuration
ement tools).

invoke the changeability of requirements as a reason to reject upfront requirements
 no sense. The proper technical response to the observation that requirements will
 is: “so what?”. When you write an article, its structure will change as you go;
eople still find it useful to start with a table of contents, knowing that it is not cast
e. (One may even suspect that some of the best agile books started with a table of
ts, too — just a conjecture, of course.) When a company launches a new product,
 marketing plan, and is ready to adapt it as things evolve. These are only examples
ong many possible ones — from fields other than software, but they do indicate
iting requirements does not imply freezing requirements.

itary strategists like to quote Marshal Helmuth von Moltke: “No battle plan survives
tact with the enemy”. They quote it — and then they make plans! The situation is exactly
same in software: we know that plans are only plans and will have to be adapted to reality.
t is not a reason for dumping the notion of plan altogether.

te once again the confusion inherent in such agile criticism as Beck’s comment that
irements gathering isn’t a phase that produces a static document”, as if having a
ments phase implied that the resulting requirements document will be static. The

atters are separate.

act the appropriate software engineering technique is to have a requirements phase
at the resulting document as a dynamic product. Similarly, when Beck adds that
 of a phase, requirements gathering is “an activity”, he invokes a non-existent

diction: we should treat requirements gathering as a phase and as an activity that
ues, after that phase, throughout the project.

?

e as in many earlier cases, the lesson is to appreciate the validity of the agile obser-
 and ignore its unwarranted extremist conclusions.

36

3.2.5

In com
concep
empha

• Som
“do

• Oth
to b

In a ba
ties; sp
erties.
speed,
which
docum
rate th
has no

A f
less to
decisio

And
sep

(“Hand
not jus
and im

Jus
the do
that ar

• In a
sor
thin
it d
eve
tim

• In a
allo
exa

It is th
separa
straint
have to
but ab
THE ENEMY: BIG UPFRONT ANYTHING §3.2

The domain and the machine

paring traditional requirements processes with the agile approach, an additional
t to consider is the distinction between domain and machine requirements,

sized for many years by Pamela Zave and Michael Jackson. The idea is simple:

e requirements elements describe properties of a model of a part of the world, or
main”, in which the system will operate.

ers describe desired properties of the system, or “machine”, that the project wants
uild.

nking application, rules on accounts, deposits and overdrafts are domain proper-
ecifications of how to process payments and other operations are machine prop-
In software for phones, the laws of physics, defining for example limits on signal
 and the company’s call pricing policy, are “domain”; the functions of the system,
must be compatible with these constraints, are “machine”. Although requirements
ents often intertwine the two kinds, it is essential, say Jackson and Zave, to sepa-
em because they are of a different nature: the project defines the machine, but it
 influence on the domain. Commingling them causes confusion and mistakes.

requent agilist comment is that “requirements are design”, meaning that it is point-
 pretend that requirements exist as pure customer needs whereas they are in fact
ns on the system to be built. The Poppendiecks write:

 those things called requirements? They are really candidate solutions;
arating requirements from implementation is just another form of handover.

over” is one of the kinds of waste.) Here requirements are viewed as equivalent
t to design, but directly to implementation; the authors argue elsewhere that design
plementation are the same thing.

tified or not, such comments can only apply to the machine part of requirements;
main properties do exist independently of any system. Here are examples of rules
e clearly requirements and not “candidate solutions”:

 business system: “Any transaction over $10,000 requires approval by a supervi-
”. This statement describes a business rule, perhaps a legal obligation; not some-
g that the project decides, but a constraint that the implementation must satisfy. If

oes not, the implementation is incorrect. What competent software manager would
r embark on a banking system, constrained by such rules, without setting aside
e, up front, to write them down?

n embedded system: “All cell phone communications shall take place within the
cated frequency range” (also defined precisely in the requirements). Another
mple of a fundamental constraint imposed on the project by its environment.

e responsibility of the project to identify such domain properties as requirements,
te from design decisions. And it should do so early. Missing an important con-
 means that when it is finally discovered some of the code developed so far will

[Zave 1997],
[Jackson 1995],
[Jackson 2000].

[Poppendieck
2010], page 31.

Pages 54-55 of
the same work.
 be thrown out. Here we are not talking about incremental development anymore,
out elementary professional competence.

§3.3 A

As
early o
ability
able. B
embar
bad. D
stands
of the

The

3.3 A

If requ
the sol
all the
of the
object-
classes
ing spe
tures;
structu

The
this dis
do not
tion” a

3.3.1

Many
there h
implem
scienti
tion (o

The
imp
diff
inc
and
RCHITECTURE AND DESIGN 37

in many other cases, agilists identify a real issue: the risk of spending time too
n design or implementation decisions, camouflaged as requirements for respect-

, whereas it would be better to defer them until more information becomes avail-
ut from this observation on the excesses of some traditional projects, agilists

k on undue generalization and hasten to their own reverse excess, which is just as
enying the existence of requirements as separate from design and implementation
 in the face of reason. That difference is simply the software engineering version
difference between problem and solution.

 speed of light is not an implementation decision.

RCHITECTURE AND DESIGN

irements analysis describes the problem, design is part of the solution. In software,
ution will be ultimately expressed by the code; but the code is concrete, containing
 details, whereas the design defines the overall modular structure, or architecture,
 solution. Examples of design decisions include: choices of abstractions (in
oriented development these will be in particular data abstractions, expressed as
); use of design patterns, which describe standard software structures for address-
cific problems, for example the “Visitor” pattern to support traversal of data struc-
specification of interfaces between modules, and definition of inheritance
res to organize sets of related abstractions into coherent taxonomies.

re is little meaningful difference between “design” and “architecture”. For clarity,
cussion will use “design” for the process and “architecture” for its result (then we

 need “architect” as a verb). The same convention can be applied to “implementa-
nd “code”.

Is design separate from implementation?

traditional software engineering methods present design as a separate phase, but
as been growing recognition that no clear boundary exists between design and
entation. As early as 1968, the conference that started software engineering as a

fic discipline included a session about the difference between design and “produc-
r implementation)” where Peter Naur said:

 distinction between design and production is essentially a practical one,
osed by the need for a division of the labor. In fact, there is no essential
erence between design and production, since even the production will

?

See [Gamma
1994] on design
patterns.

[NATO 1968],
page 31, empha-
sis added.
lude decisions which will influence the performance of the software system,
 thus properly belong in the design phase.

38

and Ed

Ho
goi
som
Ho
afte
not
to c
wit

A 199
as a se
that “d
used f
build p
task of

Afte
con
crit

Reeve
of othe
ming —
insight
nity ha
thing a

In i
structu
cited n

(i.e. co
of ever
I am us
cept be
some i
“subsc
gram m
cific u

acros
su

end
THE ENEMY: BIG UPFRONT ANYTHING §3.3

sger Dijkstra:

nestly, I cannot see how these activities allow a rigid separation if we are
ng to do a decent job. If you have your production group, it must produce
ething, but the thing to be produced has to be correct, has to be good.

wever, I am convinced that the quality of the product can never be established
rwards. Whether the correctness of a piece of software can be guaranteed or
 depends greatly on the structure of the thing made. This means that the ability
onvince users, or yourself, that the product is good, is closely intertwined

h the design process itself.

2 paper by Jack Reeves, often cited by agilists, argues that in talking about design
parate activity in software construction the industry got it all wrong. Reeves notes
esign” in engineering denotes the task of producing documentation that is then

or the manufacturing process. In software, “manufacturing” corresponds to the
rocess (collect, compile and link the various modules involved) and is largely the
 computerized tools — “make” and such — rather than people. But then:

r reviewing the software development life cycle as I [Reeves] understood it, I
cluded that the only software documentation that actually seems to satisfy the
eria of an engineering design is the source code.

s is indeed right if the focus is on comparing the software process to the process
r engineering disciplines. Then, as he points out, their “design” is our program-

 writing the source code — and their “production” is our build process. That
ful observation does not end the discussion, however, since the software commu-
s long used the word “design” in its own way, without implying that it is the same
s design in — say — mechanical engineering or building construction.

ts specific software meaning, design denotes the process of defining the overall
re of the code. The difference with implementation is not, as all three authors last
ote, a matter of intrinsic nature: it is a matter of abstraction. If I show you

de that applies the operation update, with the given arguments, to the value item
y element sub of the list subscribers), I am giving you code. If I now mention that
ing the “Observer” design pattern, I am telling you about the architecture: the con-
hind the above code is, in that classic architectural solution, to signal a change in
nformation (say, a stock price) to all the software elements that monitor it (the
ribers”, for example a user interface element that shows the stock price, and a pro-

s subscribers as sub loop
b.item.update (arguments)

Same source,
emphasis added.
[Poppendieck
2010], page 54,
also cites from
this comment.

[Reeves
1992-2005].

On Observer see
[Gamma 1994],
or [Meyer 2009].
odule that updates the stock history database), so that each can execute its spe-
pdate operation.

§3.3 A

Cle
tural e
it exist
petent
it is no
to wor

A b
firm li
suspic
be use
Clause
ent lev

An
make
code —
this we
The tit
with a
particu
sugges
afterw
approa
simila
path o
the nex
(as Ha
plays a

As
implem
nology
(emph
abstrac

The
is an e
ware e

3.3.2

While
separa
lated a
design
RCHITECTURE AND DESIGN 39

arly, the code is all that counts in the end, since we execute the code, not architec-
lements (such as design patterns). But to obtain that code, and to understand it once
s, the design is crucial. Once someone has said “Let’s use Observer here!” a com-
software engineer can derive the code. If the code already exists, knowledge that
t some arbitrary loop but an implementation of Observer is critical to whoever has
k on it further.

ig difference between software and other kinds of engineering is that there is no
ne between “design” documentation and code. “Program Design Languages” look
iously like programming languages; even UML diagrams, when precise enough to
ful, can be mapped to code. Implementation is (to paraphrase a famous quote by
witz) design continued by other means; “by other means” means here “at a differ-
el of abstraction”.

other interesting characteristic of software is that, more than in other fields, it may
sense to perform the design (to produce the “documentation”) after writing the

 or partly before and partly after. A classic software engineering article explains
ll: Parnas’s and Clements’s A Rational Design Process: How and Why to Fake it.
le conveys the core idea: what matters is that we end up not only with the code but
 good architecture. What matters less is how we get that architecture, and
larly when: before implementation, as a rigid waterfall-like process would
t; during the implementation, with the design and coding effort intertwined;
ards, in an effort to document what was meant; or some combination of these
ches. This is what Parnas means by “faking” the design process. Something

r is familiar from mathematics: a mathematical publication presents a polished
f reasoning, where every proposition follows from the previous one and implies
t one; but ask the mathematician how he derived the result, and he will describe

damard did in a classic book) a much more disorderly process where intuition
s big a role as rigor. The end justifies the means.

the age of the cited articles indicates, the strong coupling between design and
entation in software has long been understood. The evolution of software tech-
 in recent decades, particularly with the spread of object-oriented technology
asizing seamless development) and of high-level languages offering powerful
tion mechanisms, has made that close relationship even move visible.

re probably remain companies that enforce a strict lifecycle model where design
ntirely separate phase from implementation, but this is not what any serious soft-
ngineering text promotes.

Agile methods and design

agile methods are unanimous in their denunciation of any process that includes a
te design phase at the level of the full system lifecycle, there is no single articu-

Meaning “the
Observer pattern”.

[Parnas 1986].

[Parnas 1986].

[Hadamard
1945].
gile approach to design. Three key ideas, however, characterize the agile views of
. It is important to present them in a positive style (“do this…”), although we must

40

note t
approa

1 If a
tion

2 Foc

3 To
tect

We wi
is that
tions w
part, h
ment f
tored j

Lar
at the l
the sta
modeli
withou

Wit
design
wrong

• Pla

• Par

• Not

• Rew

These

Tog
the op
misses
implem

On
tell us)
the sam

• Sec
afte
rev
rity
kee
THE ENEMY: BIG UPFRONT ANYTHING §3.3

hat agile presentations always introduce them as a reaction against adverse
ches (“instead of doing that…”):

 specific design activity is needed, apply it at the level of individual system itera-
s, and alternate it with implementation phases.

(Instead of: performing design at the level of the entire system.)
us on solving the problem at hand.

(Instead of: trying to make your solution extendible and reusable.)
obtain a good architecture, produce something that works, then examine its archi-
ure critically and, if needed, improve it, a task known as refactoring.

(Instead of: aiming for a perfect solution from the start.)
ll come back to both points 2 and 3 in later discussions. The general observation
 the agile de-emphasis of extendibility and reusability tends, like other prescrip-
e have seen, to start from a correct observation and go too far. Refactoring, for its

as emerged as an important software engineering technique, but is not a replace-
or sound upfront design; if an architecture is decent you can improve it, but refac-
unk is still junk.

man has been a particularly strong proponent of the idea that design should occur
evel of individual iterations (point 1). He advocates holding design workshops “at
rt of building each new item” and “just-in-time whenever else the team finds agile
ng at the walls useful”. The “walls” in this description are “vast open wall spaces
t borders, all virtually covered with whiteboard material”.

h remarkable openness, agile texts explain the limitations of the agile approach to
. A large part of Cohn’s discussion of design is devoted to describing what can go
 in a “life without a big design”:

nning becomes harder.

titioning the work among teams and individuals becomes harder.

 having an overall architecture may make people uncomfortable.

ork will be inevitable.

are indeed obstacles to be taken into consideration.

ether with the idea of refactoring, what dominates agile discussions of design is
position to any kind of upfront system-level design. Larman, for example, dis-
 the view that “it is important to have the architectural foundation before you
ent anything else” as a “false dichotomy idea”.

ce again this conclusion is going too far and (although he is no longer around to
 I am pretty sure that it is not what Dijkstra had in mind when he was arguing for
eness of implementation and design. Two typical examples:

urity. A common phrasing in some security circles is that “security cannot be an
rthought”. In that extreme form, such a statement is in fact as incorrect as the
erse view (“forget about security until late in the process”) would be. What secu-

?

[Larman 2010],
pages 289-290.

→ See “Open
space”, 6.6,
page 96.

[Cohn 2010],
pages 166-171.
Only the bullet
points headers
are cited.

[Larman 2010],
pages 287.

?

 experts will tell you is that you should include security concerns upfront, and
p them on the agenda throughout.

§3.4 L

• Mu
tem
tipl
arc
ext

I wa
a sy
had
add
cust

More h
idea is
able, d
insight

3.4 L

Lifecy
a softw
tion an
everyo
others
arrows
diagra
neerin

“De
One is
prescr
of the
senting

Lif
startin
harmfu
unders
flexibl

Bef
for con
IFECYCLE MODELS 41

lti-lingual user interfaces. It makes a major difference to the construction of a sys-
 whether the user interface — dialogs, error messages etc. — has to support mul-
e languages. This property is fairly easy to ensure, through appropriate

hitectural techniques, if it is taken into account right from the start; it can be
remely expensive to retrofit if the system has initially been built monolingual.

s once involved as an expert — after the fact, unfortunately — in a legal dispute over
stem which the customer rejected at the time of delivery, in part because the program
 originally been designed for another country and the multi-lingual feature had been
ed as an afterthought. Every once in a while, the monthly bills for English-speaking
omers included a sentence in another language; the company was not amused.

ead-scratching. Why can agile proponents not leave a good idea alone? The good
 to avoid doing too much at the start: since not all necessary information is avail-
efer some of the design decisions to later iterations. There is no reason to turn this
 into a ban on all upfront design.

IFECYCLE MODELS

cle models attempt to define and standardize the sequence of phases through which
are project typically proceeds, such as analysis, implementation, V&V (Verifica-
d Validation) and others. The best-known models are the waterfall — the butt of
ne’s scorn — and the spiral, an iterative variant of the waterfall. There are many
. They are usually depicted by some diagram where boxes denote phases and
 the transitions between them. (The sophisticated reader of this book does not need
ms. In fact let us start a tradition with what has to be, in the entire software engi-
g literature, the first-ever lifecycle discussion not supported by pretty pictures.)

fine” and “standardize”. Lifecycle models play two distinct roles, often confused.
 purely descriptive: trying to capture how successful teams work. The other is
iptive: saying how teams should work. This distinction is already present in uses
word “model” in everyday language: a “mathematical model” is descriptive; pre-
 a person as “a role model” is prescriptive.

ecycle models, understood in the prescriptive sense, have taken considerable flak,
g with a 1982 article with the unambiguous title “Lifecycle concept considered
l” by McCracken and Jackson; note once again how early the basic concepts were
tood. The agile school also shuns traditional lifecycle models in favor of a more
e kind of process.

→ A picture of the
“V-Model” vari-
ant of the water-
fall does appear
in a later section,
on page 82.

[McCracken
1982].
ore joining the waterfall-bashing party, it is useful to understand three arguments
sidering a waterfall-like model:

42

• His
wer
“co
em
imp
ind
wh
els.

• Co
as t
tinc

• Ped
exp
exp

The re
is prim
foil ag
politic
ernme
arch as
and wh

Bey

The
is not g
of wha
sprints
structu
nized,

Dis
by Sig
poral f
by wat
and oth
nents o

3.5 R

An inf
iterativ
neerin
THE ENEMY: BIG UPFRONT ANYTHING §3.5

torical argument: in the early days of the software industry, strict lifecycle models
e a healthy reaction against entirely informal approaches, which may be termed
de first, think later” or just “hacking” (in the non-security-related sense). By
phasizing the need for separate activities, in particular those before and after
lementation, lifecycle models brought order into the process. Today the software

ustry is far more sophisticated — an observation that applies to agile methods,
atever limitations they may have — and has moved beyond simple lifecycle mod-
 To reach the present stage, however, these models played a role.

nceptual argument: even if we stop talking of analysis, implementation, V&V etc.
emporally ordered phases of a project, it remains useful to understand their dis-
tive properties as activities of software development.

agogical argument: when teaching software engineering, it is convenient to
lain these activities, discuss an idealized linear sequencing between them, and
lain why successful software development requires more flexibility.

maining presence of the waterfall model in today’s software engineering discourse
arily a consequence of the pedagogical argument; the model survives mostly as a
ainst which we can argue for better approaches. This role is important. Think of a
al science course that talks about the monarchical, absolute-power system of gov-
nt. The professor is probably not arguing for bringing in a Louis XIV-style mon-
 head of state, but analyzing why people used to find such a system appropriate
at lessons it teaches us for applying more modern views.

ond that role, the waterfall is discredited today, and agile criticism of it is correct.

 notion of model, regardless of McCracken’s and Jackson’s 30-year-old critique,
oing away, whether in its descriptive or prescriptive role. For example a good deal
t we will learn in our study of Scrum is a lifecycle model: successive one-month
, accompanied by specific planning and review phases. A lifecycle model can help
re any engineering effort, as long as it is used as a guide for getting things orga-
not a barrier to creativity.

cussions of lifecycle models tend to oscillate between the two title words of a book
mund Freud: Totem and Taboo. Neither is appropriate. Every project needs a tem-
ramework to predict and assess its progress. It can be more sequential, influenced
erfall ideas, or more iterative, in the Scrum spirit, or some combination of these
er ideas. Defining and standardizing such a framework is only one of the compo-
f project success.

ATIONAL UNIFIED PROCESS

luential approach, the Rational Unified Process, promotes a waterfall-style but

?

e lifecycle model, and combines it with a number of recommended software engi-
g practices. RUP was developed at Rational, a company that became part of IBM.

§3.6 M

The
develo
softwa
spond
omme
princip
the UM

The
structi
implem
ature s
discus
Transi
model
any sig
progra
deploy
differe
essenti

RU
(Bad)
tial for
Even “
of user
tion of

3.6 M

Rooted
maturi
the In
Matur
Unive
extend
(the “I

Wa
reco
bur
cou
agil
pom
sum
ATURITY MODELS 43

 most important contribution of RUP is a set of six recommended practices:
p iteratively; manage requirements; use component-based development; model
re visually; verify quality continuously; and control changes. All but one corre-
to widely accepted practices of software engineering. (The exception is the rec-
ndation of visual representation, which describes a technique rather than a
le at the same level of importance as the others, and establishes a connection to
L graphical notations, also developed by Rational.)

 lifecycle model involves four phases for a project: inception, elaboration, con-
on and transition. The first three sound very much like requirements, design and

entation under new names, and that is very much what they are. (The RUP liter-
ays otherwise, with the help of a multi-colored diagram that you will find in any
sion of the approach, but the distinctions are too subtle for common mortals.)
tion is another name for deployment, which, although absent from the traditional
s because software issues were much simpler in 1970, is indeed a critical aspect of
nificant software project: imagine you are a bank and have just written your new
m for handling ATMs; you are not out of the woods yet if the system is to be
ed on thousands of machines in dozens of languages and a hundred countries with
nt constraints and regulations. Assigning to deployment a role on a par with other
al project phases has been one of the contributions of RUP.

P is not popular in agile circles, and can in fact serve them as an example of a Big
Upfront Method. In spite of the “iterative” label, the lifecycle model is too sequen-
 agile tastes. The practices, however, do not cause any particular incompatibility.
manage requirements” has an agile interpretation where requirements, in the form
 stories, are defined iteratively throughout the project. RUP’s continuous verifica-
 quality is definitely in the spirit of agile approaches.

ATURITY MODELS

 in the tradition of lifecycle models, but addressing more important problems,
ty models started in the nineteen-eighties with the ISO 9000 set of standards from
ternational Standards Organization and the more software-specific Capability
ity Model (which the Software Engineering Institute, based at Carnegie-Mellon
rsity, developed for the US Department of Defense). CMM has since been
ed into a family of models applicable to a variety of industrial disciplines, CMMI
” stands for “Integration”), which will be our reference for this discussion.

rning: if you have seen other presentations of CMMI, you may not immediately
gnize the description below. Official CMMI documents use a dreadful form of

eaucratese that obscures simple notions, resulting in 482-page documents for what
ld be comfortably explained in 30 pages. No wonder CMMI puts off so many people,
ists and others. It took me a long time to pierce the wall and realize that in spite of its

[Ambler 2001]
discusses agile
vs. RUP.

Such as [CMMI
2010]. I dis-
cussed how style
hurts CMMI in a
posity CMMI actually introduces useful software engineering concepts. The following
mary presents these concepts in plain English.

blog article:
[Meyer 2013a].

44

3.6.1

CMMI
goals a
tices, g
name f

Mo
aspect
cess ar
supplie
CMMI

For
ment”
items
assets

• On
item

• On
bas
con

• Als

There
manag
“mana
emplo
is not j
ment.

In a
goal. F
Config

The
ment.
the qu
affects
produc
the abs
softwa

The
or “ma
staged
cussio
maturi
THE ENEMY: BIG UPFRONT ANYTHING §3.6

CMMI in plain English

 is a collection of best practices specified precisely enough to help reach identified
nd to allow assessing an organization’s compliance. These three notions, prac-
oals and assessment, are at the center of the approach. (A simpler but far better
or the approach would have been “Catalog of Assessable Practices”.)

st CMMI practices and goals are specific to a “process area”: a clearly identified
 of the software process, with its own set of issues and activities. Examples of pro-
eas include configuration management, project planning, risk management and
r agreement management (handling relationships with contractors). In addition,
 defines some generic goals and practices, applicable across process areas.

 examples of specific goals and practices, consider the “configuration manage-
process area, which we may define as the identification and tracking of the various
relevant to the software process, such as program modules, test cases, hardware
etc., whose evolution will be subject to strict rules. In configuration management:

e of the specific goals is “Establish baselines”, where a baseline is a collection of
s to be managed under the stated rules.

e of the specific practices for that goal is “Identify configuration items”: define the
ic elements (program modules, test cases, hardware assets) that will be under the
trol of configuration management.

o for that goal, another practice is “Establish a configuration management system”.

are only a few generic goals. An example is “The process is institutionalized as a
ed process”, using words that have a special meaning in the CMMI context: a
ged process” is a process that is planned in accordance with a clearly stated policy,
ys skilled people, and is subject to monitoring; a process is “institutionalized” if it
ust practiced but thoroughly supported by the organization, with a clear commit-
A generic practice supporting this generic goal is “Plan the process”.

ddition, specific practices from particular process areas can support a generic
or example, “Include the configuration management plan in the project plan”, a
uration Management practice, supports the generic goal just cited.

 third major aspect of CMMI — complementing goals and practices — is assess-
The model allows an organization that develops software to submit to evaluation
ality of its corresponding process. Process, not product: the assessment only
 how the software is produced. Any conclusion about the quality of what is being
ed has to be deduced indirectly: for example applying CMMI does not guarantee
ence of defects (bugs), but does assess whether procedures are in place to evaluate
re quality, for example through precise policies for defect discovery and tracking.

re are two kinds of assessment, each with its corresponding scale of “capability”
turity”. The continuous scale governs assessment for specific process areas; the
 version assesses the overall state of the processes of an organization. For this dis-

[CMMI 2010],
pages 22-23.
n we limit ourselves to the staged variant. Its scale defines five levels of increasing
ty for an organization, starting with little or no process at level 1.

§3.6 M

You
i > 1)
assesso
must a

It is
mon
sup
con

The su
reflect

1 Ini
nisc
“pr
and
rea

2 Ma
me

3 Def
too
if a

4 Qu
of q

5 Op
uou

Each l
the cor

• Som
agr

• For

• For

• For
obs

The as
part of
definin

The
nine
of s
by f
role
nasc
Man
with
ATURITY MODELS 45

 cannot just declare to the world that your organization is at CMMI level i (for
but have to qualify for it through an assessment process conducted by approved
rs. You cannot skip levels: to ask for assessment of level i + 1 qualification, you

lready have been qualified at level i.

 serious business; moving from one level to the next is typically a matter of many
ths and hundreds of thousands of dollars. Like Scrum in the agile world, CMMI

ports a small industry, in this case of assessors, who must themselves be certified, and
sultants helping companies reach their desired level.

ccessive levels (each, from level 2 on, including the properties of its predecessors)
 an organization’s increasing degree of understanding and control of its processes:

tial, a level generally described in CMMI texts by negative characteristics, remi-
ent of how agile presentations describe the detestable state of non-agile projects:

ocesses are usually ad hoc and chaotic”, “success depends on the completeness
 heroics of the people involved, not on the use of proven processes”. Time to get

dy for serious CMMI implementation, defined by the subsequent levels.
naged: processes exist for projects, supported by adequate resources and commit-
nts from stakeholders.
ined: the processes are specified precisely through documents, procedures and
ls; and these specifications exist at the level of the entire organization, so that even
 project needs its own variants they will be tailored from that common base.
antitatively managed: the application of processes is subject to numerical criteria
uality and performance, and assessed through statistical control techniques.

timizing: the processes include mechanisms for their own evaluation and contin-
s improvement (a feedback loop).

evel includes certain process areas; to reach that level you must have implemented
responding specific practices. For example (partial lists except at level 4):

e process areas for level 2: project planning, configuration management, supplier
eement management.

 level 3: requirements development, validation and verification, risk management.

 level 4: quantitative project management.

 level 5: causal analysis and resolution (mechanisms for identifying the causes of
erved deficiencies and removing them).

sessment aspect of CMMI and in particular this 1-to-5 scale are the most visible
 the approach. They should not, however, detract from the core contribution:
g a catalog of generic and specific management practices.

 original incentive for developing CMMI and its assessment methodology in the
teen-eighties was to allow the US Department of Defense (DoD), the largest consumer

oftware products and services in the world, to choose its suppliers on an objective basis
orcing them to qualify at the appropriate level. CMMI also played a major if unintended
 in the development of the modern software industry: it was seized upon by the then
ent Indian outsourcing industry to establish its credibility with Western customers.

[CMMI 2010],
page 27.

At that time it
was just CMM.
y of the first companies to achieve level 5 were Indian, and outsourcers continue, along
 DoD suppliers, to be among the main adopters of CMMI.

46

3.6.2

CMMI
practic
IBM m
need t
into re
vidual
Person

TSP
from a
by PSP
progra
(agile
more.
encour
time sp
expoun
not wi
any pr

3.6.3

No fun
we lim
practic
say wh

The
ible (“
focuse
ing by
low fo
contex

• Tha
cha
of t

• Tha
dec
org
“as
of m
bur
THE ENEMY: BIG UPFRONT ANYTHING §3.6

The Personal Software Process

 is meant for organizations and more specifically — if not in intent, at least in
e, given the costs involved — to large organizations. Watts Humphrey, a former
anager who provided much of the inspiration for CMMI, was conscious of the

o translate its core idea — the systematic application of recognized practices —
commendations that every programmer could apply at the level of his or her indi-
 work, whether or not as part of a company mandate. The result of this effort is the
al Software Process. Along with PSP, Humphrey also introduced TSP, for Teams.

 and PSP have attracted only a modest level of commentary, usually dismissive,
gile authors, but the basic ideas are worth noting. It is easy to be turned off at first
 because it relies on a rigid and largely outmoded lifecycle model for individual

mmers: plan-design-code-compile-test-postmortem. Other than the last phase and
buffs please close your eyes for a second) the first, we do not work like that any
But the main contribution of PSP is elsewhere, not tied to a particular technology:
aging programmers to work in the tradition of engineers by keeping logs, tracking
ent, recording bugs, and applying the methods of statistical quality control (also
ded by agile authors such as the proponents of Lean programming). This advice,

dely applied or even known in the industry, makes the studying of PSP useful for
ogrammer even in today’s changed technology world.

CMMI/PSP and agile methods

damental contradiction exists between the agile and CMMI ideas (or with PSP if
it it to its better side as just noted). Agile methods prescribe certain processes and
es. CMMI requires a company to codify its processes and practices; it does not
at they should be, and the agile variants can qualify just as well as others.

 common perception is different: CMMI and agile are often considered incompat-
like oil and water”). Culturally, the two communities are indeed different: one
d on control, planning, documents, the other rejecting all this “waste” and swear-
 just code and tests. The planning-oriented parts of CMMI are indeed hard to swal-
r an agilist, but most of the practices have turned out to be transposable to a CMMI
t. The Poppendiecks have two main criticisms against CMMI-style models:

t they “may standardize on less than ideal practices and create a bias against
nge”. But CMMI explicitly fosters a self-improving process, although that aspect
he approach only becomes most prominent at the higher levels of the CMMI scale.

t “as frequently implemented, these models tend to remove process design and
ision-making authority from developers and put it under the control of central
anizations”. But even though this phenomenon indeed happens with the models
 frequently implemented”, nothing in them requires you to apply a particular model

[Humphrey
2005].

?

[Poppendieck
2003], page 97.
anagement, centralized or not. That some companies interpret them to impose a
eaucratic structure is a problem with the companies, not the models.

§3.6 M

CMMI
tion, u
certain
agile id
includ
possib

Suc
someti
throug
niques
and, he

3.6.4

Predic
site fiv
more t
to. (If
up wit

We
it is on
ods ha
compl
Scrum

Ag
levels:
ulary o
ods tra

• In t

• In t
bin

• In t
dev

You ca
exotic
educat

The
compa
ATURITY MODELS 47

 is not for everyone; it requires a major commitment on the part of an organiza-
sually triggered by a regulatory obligation or commercial incentive to qualify at a
 level of the scale. It may not be your cup of tea. But if it is, and you find some
eas attractive, a number of existing experience reports — including one by a team

ing Sutherland, devoted to a CMMI level 5 effort using Scrum — show that it is
le to combine ideas from both schools of thought.

h a combination, refreshingly different from the stridently exclusionary style
mes found elsewhere in the agile canon, confirms the observation that recurs
hout this book: that agile methods are not a tsunami that makes all classical tech-
 of software engineering suddenly obsolete, but an increment and extension —
re and there, partial replacement — of what has been shown to work.

An agile maturity scale

tably, a number of authors have proposed “agile maturity models” with the requi-
e levels, although at least one of them is ostensibly dated April 1st. They are little
han “me too” attempts to show that agilists can also have 5-step scales if they want
they were the result of genuine, unbiased analysis, why would they all have to end
h exactly five levels?)

 saw that even though the assessment scale is the most publicized aspect of CMMI
ly one of three important components, along with practices and goals. Agile meth-
ve their own practices and goals. There is no large-scale organization for assessing
iance of agile projects, although certification of individuals for titles such as
 Master plays an important role for Scrum.

ile methods do refer to a scale that may be their closest counterpart to the CMMI
 Shu-Ha-Ri (or Shuhari), a three-step gradation. The terms come from the vocab-
f Japanese martial arts and denote successive steps in learning, which agile meth-
nspose into steps that agile teams must climb towards mastery of the method:

he Shu state, from a word meaning obeying, people just learn and apply recipes.

he Ha state, meaning detach, they are able to abstract from the core rules and com-
e them in various ways.

he Ri state, meaning surpass, they can go beyond existing rules and methods to
ise their own solutions when needed.

n also think of the bachelor’s-master’s-PhD scale, which admittedly lacks the
frisson of the Japanese characters that adorn agile presentations of Shu-Ha-Ri. (In
ion circles, similar ideas underlie a popular five-level scale, the Dreyfus model.)

[Sutherland
2010].

See [Schweigert
2012] for a sur-
vey. The April
1st article is
[Ambler 2010].

See [Cockburn
2010] and
[Sutherland
2013], pages
35-38.
 parallel with CMMI levels is clear; in particular the last level of Shu Ha Ri is
rable to level 5, “Optimizing”, of CMMI.

4

Ag

Under
of gen
should

4.1 W

To clar
princip
differe

Ab
tice. “B
earnin
as in th
isfy a p

Fal
the pri
with “
softwa
you m
its neg
should
progra
a princ

The
import
(as els

In a
stating
require
of the g
govern
style, a

B. Meye
© Sprin
ile principles
lying the specific practices and artifacts of agile development, we find a number
eral principles: methodological rules that express a general view of how software
 be developed. We will now study these principles, the core of the agile approach.

HAT IS A PRINCIPLE?

ify the methodological context it is useful to recall first what qualifies, or not, as a
le. A good methodological principle is both abstract and falsifiable. Abstractness
ntiates principles from practices; falsifiability distinguishes them from platitudes.

stractness means that the principle should be a general rule, not a specific prac-
uild a solid financial foundation for the future” is a principle; “Put 10% of your

gs every month into a savings account” is a practice. Often, as in this example and
e case of agile practices discussed in a later chapter, a practice exists to help sat-
rinciple.

sifiability means that it must be possible for a reasonable person to disagree with
nciple. If no one in his right mind would ever disagree with a proposed rule, as
seek software quality” (who would advocate not seeking quality in developing
re?), then it may be right but it is also uninteresting. For the rule to be a principle,
ust be able — regardless of your own opinion — to envision someone supporting
ation. “Test first” satisfies this criterion: it is possible to argue that programs
 be written before tests, or that specifications rather than tests should precede the
m. A rule whose negation is unsustainable, such as “seek software quality”, is not
iple but a platitude.

 principles reviewed in this chapter satisfy these requirements. Practices are
ant and have a separate chapter; platitudes occasionally arise in the agile literature
ewhere) but we will ignore them.

ddition, a principle should generally be prescriptive, not descriptive: rather than
 a fact or property, it directs action (“Do not covet thy neighbor’s wife”). This
ment is not absolute for principles in non-technical areas (“the best is the enemy
ood” is a principle even though not expressed as a prescription), but for principles

→ Chapter 6
reviews agile
practices.
ing software development methodology it is a good idea to use a prescriptive
s will be the case with the principles presented in this chapter.

r, Agile!, DOI 10.1007/978-3-319-05155-0_4,
ger International Publishing Switzerland 2014

50

4.2 T

As not
which

This li
— we
and us

• Som

• Oth
vat

• Som
rea
sof
ass
“m
imi
imp
styl

A1 O
d

A2 W
h

A3 D
m

A4 B
A5 B

s
A6 T

a
A7 W
A8 A

u
A9 C
A10 S
A11 T
A12 A

t

AGILE PRINCIPLES §4.2

HE OFFICIAL PRINCIPLES

ed in the introductory chapter, the Agile Manifesto itself lists twelve principles,
we should examine first since they represent the official view:

st is useful to set the mood but — even though it comes straight from the source
cannot work from it and our first task will be to clear the way for a more accurate
able set of principles. The official list is not up to this role:

e of the points listed are practices: A6, A12.

ers are platitudes: A5 — who would support building projects around unmoti-
ed individuals? — and A9.

e are not prescriptions but assertions, which does not matter when they can
dily be turned into prescriptions (A7 could have been phrased as “Use working
tware as the primary measure of progress”), but becomes problematic when the
ertion is wrong. It is not true that, as taken for granted in A10, simplicity means
aximizing work not done”: seeking simplicity is a meaningful principle; so is max-
zing the amount of work not done; but they are different principles. (This is an

Official agile principles

ur highest priority is to satisfy the customer through early and continuous
elivery of valuable software.
elcome changing requirements, even late in development. Agile processes

arness change for the customer's competitive advantage.
eliver working software frequently, from a couple of weeks to a couple of
onths, with a preference to the shorter timescale.
usiness people and developers must work together daily throughout the project.
uild projects around motivated individuals. Give them the environment and

upport they need, and trust them to get the job done.
he most efficient and effective method of conveying information to and within
 development team is face-to-face conversation.
orking software is the primary measure of progress.
gile processes promote sustainable development. The sponsors, developers, and
sers should be able to maintain a constant pace indefinitely.
ontinuous attention to technical excellence and good design enhances agility.
implicity — the art of maximizing the amount of work not done — is essential.
he best architectures, requirements, and designs emerge from self-organizing teams.
t regular intervals, the team reflects on how to become more effective, then

unes and adjusts its behavior accordingly.

[Agile 2001];
numbers added.

→ “What is sim-
plicity?”, page 66.
ortant matter which we will examine in detail below.) Sticking to a prescriptive

e might have avoided the confusion.

§4.3 A

• Alt
red
sof

• On
eve
app

4.3 A

To rep
the ov

We loo

4.4 O

Organ

4.4.1

“We ar
serious

Orga

1 P
2 L
3 W
4 D

4
4
4

5 A

Techn

6 D
6
6

7 T
7
7

8 E
 USABLE LIST 51

hough we would expect a set of independent rules, the ones listed here are partly
undant: frequent delivery is mentioned in A1 and A3, the importance of working
tware in A3 and A7.

 the other hand the rules are clearly incomplete: none of them mentions testing,
n though the focus on testing to ensure quality is a core property of agile
roaches, and among their principal contributions.

 USABLE LIST

lace the official list, we will use the classification of agile principles introduced in
erview chapter. Here for ease of reference is the list again:

k first at organizational principles, then at software-specific technical principles.

RGANIZATIONAL PRINCIPLES

izational principles affect project management, scheduling and team organization.

Put the customer at the center

Agile principles

nizational

ut the customer at the center.
et the team self-organize.
ork at a sustainable pace.
evelop minimal software:
.1 Produce minimal functionality.
.2 Produce only the product requested.
.3 Develop only code and tests.
ccept change.

ical

evelop iteratively:
.1 Produce frequent working iterations.
.2 Freeze requirements during iterations.
reat tests as a key resource:
.1 Do not start any new development until all tests pass.
.2 Test first.
xpress requirements through scenarios.

← “Principles”,
1.2, page 4.
e customer-oriented” is a platitude in business. Agile development takes this idea
ly, requiring close involvement of customers throughout the development.

52

In m
provid
require
“user a
and de

In a
In Bec

You
ple
you
acc
peo

Custom
with d
mental
in the

The
threate
users’
softwa
ability
users w
safety

The
(un
Saf
erro

Such s
upfron

The
proble
danger
involv

• Use
eve
eve

• Exe
abo

• Pur

These
cisely
AGILE PRINCIPLES §4.4

any traditional approaches, customers intervene only at specified points: they
e input during the requirements — only as part of a strictly controlled process, in
ments interviews or workshops — and do not reappear until the final stages, in
cceptance testing”. Some organizations even forbid contact between customers
velopers in-between these stages, although many do not go to such extremes.

gile approaches the interaction with customers takes place throughout the project.
k’s terms:

 will get [better] results with real customers. They are who you are trying to
ase. No customer at all, or a “proxy” for a real customer, leads to waste as
 develop features that aren’t used, specify tests that don’t reflect the real
eptance criteria, and lose the chance to build real relationships between the
ple with the most diverse perspective of the project.

ers in an agile project are welcome at regular project meetings, can interact freely
evelopers and have the opportunity to try the project as it gets released in incre-
 versions. Some approaches go further and recommend “embedding” a customer
development team.

 emphasis on customer involvement addresses one of the principal dangers that
n software projects: building a software system that does not properly address the
needs. As early as 1981, Boehm’s classic Software Engineering Economics cited
re failures in which projects produced systems where everything was right — reli-
, performance, … — except for one detail: they solved a problem other than what

anted, or needed. Lutz’s empirical analysis of the sources of software-related
errors in major NASA missions, also a classic, reports that

 primary cause of safety-related functional faults is errors in recognizing
derstanding) the requirements (62% on Voyager, 79% on Galileo).
ety-related conditional faults, for example, are almost always caused by
rs in recognizing requirements.

tudies, however, can also be invoked to justify putting more effort into writing
t requirements, precisely the kind of thing agilists dislike.

 encouragement to involve customers is an important agile contribution. The
m is the insistence that such interactions replace requirements. Such a move is
ous because there is no such thing as “the customer”. Any significant project
es many categories of stakeholders (a more general term than “customer”):

rs of the future system — themselves of different kinds, such as, for an online
nt reservation system, the event staff, the owners of theaters and other venues,
nt attendees, artists, agents, producers.

cutives — also working for the customer company, but particularly concerned
ut such matters as integration with company policies and future evolution.

chasing agents, lawyers and so on.

[Beck 2005],
page 62.

→ “Onsite cus-
tomer”, 6.5,
page 96.

[Boehm 1981]

[Lutz 1993],
emphasis in
original.

?

various constituencies often have conflicting needs and priorities, and it is pre-
the role of a good requirements process to bring contradictions to light, resolve

§4.4 O

them i
individ
charge

If y
risk of
They m
may al
but wi
you w
becaus
import
develo
expert
may w

Bec

The
sys

He ans

It’s
doe

This ar
user’s
solve a
can be
throug
at spec

4.4.2

The ag
to dev
Scrum
manag
produc
ports t

For
aspect
critica

The
pro
Wh
whe
RGANIZATIONAL PRINCIPLES 53

f possible (this is why requirements workshops are often a good complement to
ual requirements elicitation sessions), and obtain decisions from the person in
 — the “product owner”.

ou replace this formal process by a practice of talking to stakeholders, you run the
 skewing the result to fit the views of those who participate in these discussions.

ay not be the best source anyway: the people whose perspective really matters
so be the most busy; they would find time for a focused requirements workshop,
ll not keep their door open to any developer walking in for a question. Chances are
ill be influenced by those who have too much time on their hands, precisely
e their work may not be so important to the organization. The risk is particularly
ant with the methods that prescribe embedding a customer representative in the
pment team: if management is so willing to assign to your project a supposed
 of the application domain, taking him or her away from tasks in that domain, you
onder whether the person is really the most qualified.

k acknowledges the risk of listening to just one person:

 objection I hear to customer involvement is that someone will get exactly the
tem he wants, but the system won’t be suitable for anyone else.

wers the objection by stating that

easier to generalize a successful system than to specialize a system that
sn’t solve anyone’s problem.

gument is debatable. The “successful system” might be so unique to the identified
need as to require complete rework for anyone else, while the “system that doesn’t
nyone’s problem” might have a solid foundation and a terrible user interface that

 fixed. Even if we accept Beck’s view, it does not explain why talking to some users
hout the project excludes trying to collect the views of all stakeholder categories
ified stages of the project — a rejection that appears pretty irresponsible.

Let the team self-organize

ile approach takes away from managers such traditional roles as assigning tasks
elopers. It places considerable trust in the team’s ability to organize its own work.
 is particularly systematic in this respect, replacing the traditional notion of project
er by an empowered team which makes its own decisions, under the control of a
t owner who decides on the product functionality and a Scrum Master who sup-

he team and enforces the method. We will study these roles in the next chapter.

 many developers having previously suffered from bad project managers, this
 is one of the great attractions of agile methods. In response to a long blog article
l of agile development, a defender of XP and Scrum wrote:

 most important aspect of these methods is to put the management of the
ject squarely where it belongs: on the backs of the people doing the work.

→ See also
“Customer”,
5.5, page 82

[Beck 2005],
page 62.

[Yegge 2006],
Reader com-
ment by “Dixie-
en the people actually doing the work have the final say in what gets done and

n, then projects actually get done on time.
Geek”.

54

The ne
becaus
contro
Suther

Con
con
of t

Words
denly
scious

Ma
boss th

In f
tend to
agile p
in the f
manag

Alt

And C

A c
[the
No
And
tha
me
com
ind

Sel
cho
tea
Tha

In othe
theless

Ag
too mu
rules s
(that is

Coh
they w
in an a
not me
AGILE PRINCIPLES §4.4

ed for managers remains, of course, because this is how companies work and
e in the words of the creators of the original (non-software) Scrum method “subtle
l is consistent with the self-organizing character of project teams”. Schwaber and
land, creators of the software Scrum, also emphasize this concept of subtle control:

trol through peer pressure and “control by love” are the basis of subtle
trol. The dynamic flow of the team surfaces the tacit (unconscious) knowledge
he group and creates explicit knowledge in the form of software.

 somewhat scary if you have been told that your team is self-organizing and sud-
learn that you are in fact being “subtly” controlled through “tacit” and “uncon-
” techniques. The part about love may be reassuring; or not.

ybe it is a matter of taste. Personally, if I am to be managed, I would rather have a
an be told I am self-organized only to be subjected to surreptitious control techniques.

act the role of the manager is murky in the agile literature; comments on this topic
 be of the scandalized denegation style, as “it is a common misconception that, in
rojects, …”, which may be true but does not tell us why the “misconception” arose
irst place and, more importantly, what is the proper (not misconstrued) role of the
er. Schwaber and Sutherland, for example, write:

hough project development teams are on their own, they are not uncontrolled.

ohn:

ommon misconception about agile project management is that because of
] reliance on self-organizing teams, there is little or no role for team leaders.

thing could be further from the truth. In “The Biology of Business”, Philip
erson refutes this mistaken assumption: “Self-organization does not mean

t workers instead of managers engineer an organization design. It does not
an letting people do whatever they want to do. It means that management
mits to guiding the evolution of behaviors that emerge from the interaction of

ependent agents instead of specifying in advance what effective behavior is.”

f-organizing teams are not free from management control. Management
oses what product to build or often who will work on their project, but the
ms are nonetheless self-organizing. Neither are they free from influence. …
t being said, the fewer constraints or controls put on a team, the better.

r words agile managers “control”, except they do not or maybe they do but “none-
” not that much.

ile texts abound with project anecdotes, illustrating the intended balance between
ch and too little; but the manager in search of firm general principles will only find

tating what managers should not do, for example deciding what functions to include
 for the product owner) and who should work on what when (that is for the team).

n’s assertion that “self-organizing” does not mean “letting people do whatever
ant to do” leaves one wondering. If there is a difference, it must be subtle. Derby,

Cited in [Cohn
2010a]. See also
[Nonaka 1995].

[Schwaber 2012],
page 28.

[Schwaber 2012],
page 28, emphasis
added.

[Cohn 2010a].
Emphasis
added.
rticle again devoted to “misconceptions”, emphasizes that “self-organizing” does
an “self-organized ”:

§4.4 O

Tha
som
per
mee

“Creat
decent
trol” m
“Self-o

still

While
see in
“comm
have to

Alt
to deri
mand
perform
a talen
tor” an

In t
uous o
RGANIZATIONAL PRINCIPLES 55

t’s because [self-organization] is a process and a characteristic, not
ething that is done once and for all. Self-organizing, from a social systems

spective only means that the team can create new approaches and adapt to
t new challenges in their environment.

e new approaches and adapt to new challenges” sounds underwhelming. What
ly led project — including a traditional one led by a strong, “command-and-con-
anager — would not allow its members, in fact encourage them, to do that?
rganizing” has to be more ambitious. Mittal writes that self-organizing teams

 require mentoring and coaching, but they don’t require command and control.

mentoring and coaching are indeed important roles for agile managers (as we will
the next chapter), the negative part of the observation is again disappointing:
and and control” is what managers traditionally do; as Cohn points out, they still
 do some of it, but it would be useful to know exactly what.

hough the answer is not to be found in the agile literature, in the end it is not hard
ve from plain common sense. Most projects need a manager to take care of “com-
and control”. The drawback of a military-style scheme in which a single person

s that role is that it bridles the creativity of team members. At the other extreme,
ted and experimented team can completely self-organize, with or without a “men-
d “coach”.

he music world, a famous example is the legendary I Musici ensemble, in contin-
peration since 1952 and one of the best chamber orchestras in the world:

[Derby 2011],
emphasis added.

[Mittal 2013],
emphasis added.

?

I Musici
in
concert

56

As the
ships a
put a g
like I M
them a
play to
work t
tor. Mo

Wh
is this:

• Exc
wit

• Som
dev

• The
the
De
self

4.4.3

Agile
workin
conseq
book,
ment —
trying
sacrifi

An
1987),
is to pr

Coc
for dev

Per
fea
unr
nee
and
wil
AGILE PRINCIPLES §4.4

 Wikipedia entry states, “I Musici is a conductorless ensemble. But the relation-
mong the musicians enable great harmony in their music-making”. Indeed! If you
roup of top-notch software developers together they can manage by themselves,

usici, and resent any pointy-haired “suit” foolish enough to think he can order
round. At the other extreme, asking a group of inexperienced music students to
gether will not work. Even seasoned professional musicians generally cannot

hat way; that is why most orchestras, including smaller ensembles, have a conduc-
st software development teams, similarly, need a project manager.

at we can learn in the end from the agile insistence on self-organizing teams

eptionally, an experienced and closely-knit team (“I Programmatori ”) may work
hout a manager. Most teams, however, need one.

e of the traditional manager roles, such as the selection of tasks for the next
elopment iteration, may be assigned to other team members.

 manager should encourage initiative from the team members and gradually move
 team to a partially or totally self-organized mode of operation. (Here we may note
rby’s notion that until that stage is reached the team is evolving towards
-management.)

Work at a sustainable pace

methods emphasize the central role of programmers and the need to give them
g conditions that enable them to deliver their full potential. A particularly forceful
uence of this view is the rejection of what Ed Yourdon, in a popular and useful

calls death marches: the management practice of accepting an unrealistic commit-
 a project with fuzzy and ever-growing requirements and tight deadlines — then

to force the programming team to meet it through pressure, long working days and
ced week-ends.

other influential book was DeMarco’s and Lister’s PeopleWare (first published in
 which explained in clear terms how programmers function and how important it
ovide them with a calm, respectful working environment.

kburn has been particularly vocal in promoting principles of “Personal Safety”
elopers, enabling them to speak freely. In his words:

sonal Safety is being able to speak when something is bothering you without
r of reprisal. It may involve telling the manager that the schedule is
ealistic, a colleague that her design needs improvement, or even that she
ds to take a shower more often. With Personal Safety, the team can discover

[Yourdon 2003]

[DeMarco 1999]

[Cockburn
2005], page 29,
slightly abridged.
 repair its weaknesses. Without it, people won’t speak up, and the weaknesses
l continue to damage the team.

§4.4 O

More g
gramm
well w
written
rather

The
Peo
The
und

The co

Eve
con

The so
have a
reflect
“Dilbe

The
analys
structu
and tur
thing,
bring t

The
gramm
larly c

• XP
cite
aga

• The
of i
bla

As an
ter for
projec
nicado
in Eur
that in
old ma
Since t
ment s
that le
RGANIZATIONAL PRINCIPLES 57

enerally, agilism emphasizes, in the PeopleWare tradition, the respect due to pro-
ers and the need to provide them with good working conditions. These ideas mesh
ith other aspects of the method: its preference for personal communication over
 documents; and its advice (discussed in a subsequent chapter) to use open spaces

than cubicles. Schwaber describes the before-and-after of a company’s atmosphere:

 first tour of the engineering space at Service1st was downright depressing.
ple were either housed in offices with closed doors or exiled to cubicles…
re was no conversation, no hum of activity, no feeling of a group of people
ertaking work that they were excited to do.

mpany hired him, however, and at the time of the second sprint review:

rything felt different… People were talking and sharing laughter and lively
versation filled the workspace.

ciopolitical overtones are interesting. We noted in the first chapter that agile ideas
 sociological interpretation: “the revolt of the cubicles”. The agile movement
s programmers’ self-assertiveness, extolling the primacy of code at the expense of
rt’s boss” artifacts such as plans, models and documents.

 debate is not new: as early as 1977, a book by Philip Kraft, complete with Marxist
is, denounced the forerunners of today’s Big Upfront techniques (even including
red programming) as an attempt by management to taylorize software production
n programmers into a voiceless proletariat. The Marxist analysis is gone — if any-
agilists emphasize ROI and other unabashedly capitalistic goals — but the push to
he programmer to the forefront remains.

re are nuances between the agile schools. They may all promote empowering pro-
ers, but not necessarily for the same reasons. Between the four methods particu-

overed in this book, two categories emerge:

 and Crystal are true programmer-pride movements; Cockburn’s statement
d above is typical of these methods’ focus on restoring programmers’ dignity
inst management.

 spirit of Scrum and Lean is different. These are methods rooted in the tradition
ndustrial production engineering; their authors keep citing Deming and Toyota,
sting waste and extolling productivity.

example of the second school, Schwaber proudly recounts how as the Scrum Mas-
a project he enabled the team to meet its next deadline: when it turned out that the
t could not proceed without the input of a key developer who had gone incommu-
 — or so he believed — to Yellowstone for his first vacation in two years (try that
ope!), the diligent Scrum Master hired a private detective to track him down (try
 Europe!). Maybe this is “subtle control” again, leaving one nostalgic for the good
nagers of yore, with their prerogatives but also the built-in limits on their power.
he anecdote seems intended not only to boast about the author’s fearless manage-

→ “Open
space”, 6.6,
page 96.

[Schwaber
2004a], pages
114-115.

← “Values”,
1.1, page 2.

[Kraft 1977]

[Schwaber
2004a], page
117.
tyle but to convey a general lesson, the befuddled reader wonders how to reconcile
sson with principles of sustainable pace such as Crystal’s Personal Safety.

58

Als
follow

In a

and

You
Twe

The tw

4.4.4

Agile m
softwa

The
ity; pr
them i

Produ

A gene
tionali
take tim
team’s
someo
may co

A s

rem
goi

The Po

Ou
Ext
If e
not

(I do n
and am

Ou
put

In sho

If co

Produ

Softwa
that pr
AGILE PRINCIPLES §4.4

o part of the emphasis on sustainability is the XP-recommended practice of slack,
ing the theme of another DeMarco book. Beck writes:

ny plan, include some minor tasks that can be dropped if you get behind.

 can structure slack in many ways. One week in eight could be “Geek Week”.
nty percent of the weekly budget could go to programmer-chosen tasks.

enty-percent allowance is, famously, part of Google’s practices.

Develop minimal software

ethods emphasize simplicity. The goal is to get user feedback quickly by delivering
re at short increments, even if it covers only a subset of the expected functionality.

 agile spirit of minimalism manifests itself in several forms: minimal functional-
oduce only the product requested; produce only code and tests. Let us examine
n turn, then assess the virtues of minimalism.

ce minimal functionality

ral agile view is that many software systems suffer from bloat: elements of func-
ty that are not needed, or needed by only a few users. During development, they

e away from the fundamental functionality and delay the releases; they harm the
 focus; they create a future maintenance burden (since once a feature is there
ne is going to use it and demand that future versions continue to provide it); they
nstrain the future evolution of the software.

logan made popular by XP is “You Ain’t Gonna Need It” or YAGNI, which

inds us always to work on the story we have, not something we think we’re
ng to need. Even if we know we’re going to need it.

ppendiecks write:

r software systems contain far more features than are ever going to be used.
ra features increase the complexity of the code, driving up costs nonlinearly.
ven half of our code is unnecessary — a conservative estimate — the cost is
 just double; it’s perhaps ten times more expensive than it needs to be.

ot know whether the factor of ten is a wild estimate or is meant to be taken literally,
 not aware of published studies giving precise empirical values.) They add:

r best opportunity to improve software development productivity is to stop
ting features that are not absolutely necessary.

rt,

de is not needed now, putting it into the system is a waste. Resist the temptation.

ce only the product requested

[DeMarco 2001].

[Beck 2000],
page 48.

Although the
company report-
edly tried to kill
it in 2013.

[Jeffries 2001],
page 190.

[Poppendieck
2010], page 26,
slightly
abridged.

[Poppendieck
2003], page 6.
re engineering wisdom encourages developers to strive for two software qualities
oduce long-term rather than immediate benefits:

§4.4 O

• Ext
use

• Reu
role
futu

For ag
ters is
ing the
Ward C

You
loo
the
tha
the
sim

This p
withou
for reu

Un
effe
reu
pac
bul
ans
exp
the

I bu
I w
pro

Such s
many t

As
for the
is hard
sional
sional
(points
polygo
zation.

But
ity, “ch
softwa
RGANIZATIONAL PRINCIPLES 59

endibility: devise the architecture to support future extensions, in particular future
r needs.

sability: make software elements as general as possible beyond their immediate
 in the current project, so that they can be reused elsewhere in that project and
re ones. (When this happens they have been turned into software components.)

ile methods, these are not important goals, and may not be goals at all. What mat-
to develop software that works here and now. Here are two typical quotes illustrat-
 agilists’ distrust of anything that addresses more than the needs of the moment.
unningham writes:

 are always taught to do as much as you can. Always put checks in. Always
k for exceptions. Always handle the most general case. Always give the user
 best advice. Always print a meaningful error message. Always this. Always
t. You have so many things in the background that you’re supposed to do,
re’s no room left to think. I say, forget all that and ask yourself, “What’s the
plest thing that could possibly work?”.

hrase, “Do the simplest thing that could possibly work”, has — like YAGNI but
t an acronym — become an agile mantra. Ron Jeffries, explaining why designing
se is not worth it, states:

less the projects are being done by the same team, reuse is quite difficult to do
ctively: there is a big difference between some part of the project that I can
se, and packaging that part well enough so that others can do so. I have to do
kaging work that I wouldn’t do for myself, to document it, to make it more
letproof, removing issues that I just work around automatically, to support it,
wer questions about it, train people in how to use it. If I do those things, it’s
ensive. If I don’t, using my stuff is difficult for others and doesn’t help
m much.

ild the abstractions I need. If I need an abstraction again, in a different context,
ould improve it. But unless my project’s purpose is to build stuff for other
jects, I try not to waste any of my time and money building for other projects.

tatements are an occasion for head-scratching. (Yet another one. We encounter so
hat maybe this book should include a discount coupon for hair-restoration treatment.)

in many other cases, they start from correct, even insightful observations: designing
 future can detract from solving the problem of here and now; designing for reuse
. An example that I find convincing is that of a class defining points in a two-dimen-
space: how do you make it more general? You could think of points in an n-dimen-
space for any dimension n; or of any objects defined by two numerical coordinates
, vectors, complex numbers…); or of any two-dimensional figures (points, lines,
ns…). There is no way to know which of these, if any, will be the useful generali-
 In such cases, it is better not to try to guess where the future will take us.

 from this common-sense observation to deduce that we can forget about general-

[Cunningham
2004].

[Jeffries 2001],
page 190.

?

ecks”, “exceptions” and reuse? Such injunctions are an encouragement to use bad
re engineering practice. A simple example is the use of built-in constants. You are

60

writing
emplo
it, the
torical
from t
memo

The
here an
in the

Develo

One of
ing pro
ments,
main a

The
dev
not
the
sug
arti
the

“Cons
and tes
ables:
shops,
emails

Sim

Arc
sys

This d
one tra
will be
only to
isfacto

Som
Cockb

You
Oka
del

Note t
items t
AGILE PRINCIPLES §4.4

 software for a small company and need a data structure to represent the list of
yees; well, an array of 1000 elements should be enough, right? Before you know
company has grown and suddenly the software mysteriously stops working. His-
 catastrophes that caused billions of dollars of wasted effort resulted precisely
his kind of agile, let’s-just-do-what-we-need-now approach: the MS-DOS 640-K
ry limit, the Y2K mess, the initial size of IP addresses.

 myopic advice quoted above, enjoining you to worry only about what is needed
d now, is detrimental to your software process. Regardless of what you find useful

rest of the agile canon, your best bet is to ignore it.

p only code and tests

 the most radical principles of agile methods deprecates all the standard support-
ducts of a software development, in particular documents — requirements docu-
 design documents, plans, program documentation… — as diversions from the
cts, running code and tests. In Poppendieck’s words:

 documents, diagrams, and models produced as part of a software
elopment project are often consumables, aids used to produce the system, but
 necessarily a part of the final product. Once a working system is delivered,
 user may care little about the intermediate consumables. Lean principles
gest that every consumable is a candidate for scrutiny. The burden is on the
fact to prove not only that it adds value to the final product, but also that it is
 most efficient way of achieving that value.

umables” covers anything that is not delivered to the customer. Other than code
ts, most traditional artifacts of software development can be considered consum-
feasibility studies, transcripts or videos of requirements interviews and work-
 requirements documents, PowerPoint presentations about the future system,
, design documents, UML diagrams…
ilarly, to describe the role of architects, Beck has this to say:

hitects on an XP team look for and execute large-scale refactorings, write
tem-level tests that stress the architecture, and implement stories.

efinition is clearly a provocation, since the tasks listed have little to do with what
ditionally expects from an architect: to define the architecture. Here something
 built initially, “the simplest that could possibly work”, and the architect steps in
 refactor (that is to say, improve the architecture if it is ex post facto found unsat-
ry), test, and, like everyone else in the team, implement user stories.

e authors accept, reluctantly, that there may be deliverables other than tests.
urn, for example, describes which actual results bring developers credit:

 get no credit for any item that does not result in running, tested code.
y, you also get credit for final deliverables such as training materials and

ivery documentation.

[Poppendieck
2001].

[Beck 2005],
page 75.

[Cockburn
2005], page 98.
Emphasis in the
original.

→ See also “Def-

he grudging “Okay”: there can be a few exceptions, but code and tests remain the
ruly worthy of interest.

inition of done”,
page 125.

§4.4 O

Minim

The in
the mo

As
their p
criticis
ments
are rel
counts

No

Firs
ment.
to ask
want i

Cla
takes p
is prec
establi
them a
everyo
ones q

The
that it f
mented
except
feel-go
trovert

Wh
fell
Alm
blam
com
one
stor
thin

Here i
of enli
Boeing
RGANIZATIONAL PRINCIPLES 61

alism: an assessment

sistence on minimal software, in the three forms just described, leads to some of
st absurd and damaging contributions of agile methods.

always, there is some truth in the agile criticism of traditional projects, in this case
ropensity to bloat. Projects and products do tend to include too many features. The
m of paperwork and unnecessary documents is also partly justified. Many docu-
produced in companies applying rigid processes are already obsolete the day they
eased, or serve little practical role. It is true, too, that in the end the code is what
, not UML diagrams or Gantt charts.

ne of this justifies renouncing upfront planning altogether.

t, many of the problems associated with bloat are just the result of bad manage-
A competent project manager knows to fight “creeping featurism” and constantly
whether this or that feature is really needed. The time-honored question, “Do you
t all, or do you want it now?”, although really akin to blackmail, works wonders.

ssical requirements analysis — the kind of activity that, to the horror of agilists,
lace at the beginning of a project to make sure that we think before we shoot —
isely intended to arbitrate between the needs of many different stakeholders and
sh priorities. When you are faced with a long list of features and for every one of
 stakeholder claims it is absolutely essential, a trick that works well is to allocate
ne $100 in virtual money to stake on the features they want most. The truly critical
uickly emerge.

 downside of a strategy of “building the simplest thing that can possibly work” is
avors picking, at every stage, the low-hanging fruit: the features that can be imple-
 most easily, to produce a demoable result. Projects using this strategy work well

 at the end. Throughout the development everyone is happy; the developers deliver
od demos and the customer is reassured. At the end, because some hard but incon-
ible problem has been put aside, it is impossible to deliver a satisfactory result.

en the first “Obamacare” health exchanges started operating on 1 October 2013, they
victim to their own success, to the delight of adversaries of the Affordable Care Act.
ost no one could get through, even less purchase insurance. High levels of activity were
ed, but that sounded like a lame excuse for lack of engineering; after all, many

mercial sites routinely process far higher volumes and face higher complexity. Unless
 assumes total incompetence, it is likely that during development and testing all the user
ies must have seemed to work. There was simply not enough architecture and upfront
king devoted to ensuring that the system would scale up.

s another illustration of the dangers of a piecemeal approach, in the agile tradition

?

ghtening anecdotes from fields other than software. The original deployment of
’s flagship 787 “Dreamliner” in 2013 was a disaster because of dangerous issues

62

with b
this to

Det
the
pla
req
bui
and

These
once y
proble
withou
Turner

Exp
as p

and

The
less
the
size

In soft
but it i
with th

Som
or man
if not
develo
results
manag
ible fu
tionali
efforts
holder

Arg
a fund
aged p
projec
be dem
load th
throug
visible
AGILE PRINCIPLES §4.4

atteries; the planes had to be grounded for several months. James Surowiecki had
 say in his analysis for the New Yorker:

ermined to get the Dreamliners to customers quickly, Boeing built many of
m while still waiting for the Federal Aviation Administration to certify the
ne to fly; then it had to go back and retrofit the planes in line with the FAA’s
uirements. “If the saying is check twice and build once, this was more like
ld twice and check once”, [an industry analyst] said to me. “With all the time
 cost pressures, it was an alchemist’s recipe for trouble.”

are only examples. But they confirm how naïve it is to expect that “refactoring”,
ou have something that works partly, can solve any problems that remain. These
ms can be very hard, for example a major performance issue that cannot be corrected
t a complete redesign. Empirical evidence confirms this suspicion. Boehm and
 write:

erience to date indicates that low-cost refactoring cannot be depended upon
rojects scale up.

 only sources of empirical data we have encountered come from
-experienced early adopters who found that even for small applications

 percentage of refactoring and defect-correction effort increases with [the
 of requirements].

ware as in engineering of any kind, experimenting with various solutions is good,
s critical to engage in the appropriate Big Upfront Thinking to avoid starting out
e wrong decisions.

e of the worst project catastrophes I have seen were those in which the customer
ager was demanding to see something that worked right away (“it doesn’t matter

everything is there, just show me an example run!”) and sternly reproached the
pers who worked on infrastructure that did not produce immediately visible
 — in other words, were doing their job of responsible software professionals. The
ers got their demos, and then nothing else, since with the focus on delivering vis-
nctionality the hard problems were repeatedly put aside. Each time the next func-
ty or scaling level was to be added, the team had to restart the design, since all
 at generality and infrastructure had been shunned. Inevitably, morale sunk, stake-
s lost trust, and sooner or later the project was shelved.

uing for visible results is justified, but not if this concern comes at the expense of
amental engineering concern: risk management. It is the hallmark of a well-man-
roject that it identifies early the tasks on the critical path, those which will kill the
t if not done right. A high-risk task may be a fundamental functionality, which can
onstrated early, or it may be a scalability requirement (the web site will bear the
e day Oprah mentions your company on the air) that can only be addressed

[Surowiecki
2013].

 [Boehm 2004],
page 40.
h in-depth design that will not be visible in early demonstrations. To focus on the
 at the expense of the essential is irresponsible.

§4.4 O

Additi

In spit
promo
tional
a red s

I ca
fold

The be
befall
is the f
exists
there a

But
when t
solutio
earlier
though

Com
differe
is appr
the iss

• Wit
a pl
ing

• Wit
noo
RGANIZATIONAL PRINCIPLES 63

ve and multiplicative complexity: the lasagne and the linguine

e of the arguments for establishing a solid basis first, agile methods continue to
te the “get something running now” approach. As a typical example, an instruc-
video about Scrum shows a suit-and-tie manager type telling a developer type with
carf and aviator glasses:

n live with something simple that works properly. The complexity can be
ed in later.

st one can say here is: well, if that is what you believe, good luck. Such luck will
you if the complexity is in the form of details that can be added one by one. This
irst kind of complexity, and it does occur. We may call it additive complexity. It
when the basic problem is simple, say compute tax as a percentage of price, and
re many special cases that can just be added one by one.

 there is also another kind, which we may call multiplicative complexity. It exists
he fundamental problem is already complex, and you will not get any acceptable
n until you have taken all the key elements into account. An example was cited
: support for a multi-language user interface is much harder to add as an after-
t than to integrate from the start.

plexity in all cases comes from the accumulation of features to integrate. The
nce is due to how they interact with each other (if you are reading this as lunch
oaching, I hope the picture below will not only whet your appetite but visualize
ue):

h additive complexity, the various features pile up on each other like the layers of
ate of lasagne; they are largely independent. Then it is quite all right to start think-
 about the first few, and bring on the others as you go.

 [Collabnet site],
“scrum-meet-
ings” page, at
6:26 in video.

← “Agile meth-
ods and design”,
3.3.2, page 39.

Additive &
multiplicative
complexity
h multiplicative complexity, the various features are entangled like the individual
dles in a bowl of linguine (or spaghetti).

64

Pamel
action,

His
mea
inte
cos
oth
fea

She gi

Con
situ
inte
Sup
is s
sup
situ
bus

In a
hav
app

Such c
that ca
collisio
agile, u
style w

(Us
is b

A bit l

(#2
“bu

Then,

(#3
con

(#4
pho

Others
consid
AGILE PRINCIPLES §4.4

a Zave from AT&T, who has devoted much of her career to studying feature inter-
 starting with telecommunication software, writes:

torically, developers of telecommunication software have had no effective
ns of understanding and managing feature interactions. As a result, feature
ractions have been a notorious source of runaway complexity, software bugs,
t and schedule overruns, and unfortunate user experiences. Developers of
er software systems are beginning to realize that they, too, have a
ture-interaction problem.

ves a typical example:

sider “busy treatments” in telephony, which are features for handling busy
ations by performing functions such as forwarding the call to another party,
rrupting the callee, retrying the call later, or offering voice mail to the caller.
pose that we have a feature-description language in which a busy treatment
pecified by providing an action, an enabling condition, and a priority. Further
pose that a special feature-composition operator ensures that, in any busy
ation, the single action applied will be that of the highest-priority enabled
y treatment.

 busy situation where two busy treatments B1 and B2 are both enabled, with B2
ing higher priority, these features will interact: the action of B1 will not be
lied, even though its stand-alone description of B1 says that it should be applied.

ases are typical of why we cannot just assume that we will do “the simplest thing
n possibly work” then add features as needed. If we do so, we will keep finding
ns with what we have done before, and restarting the work. Imagine a standard
ser-story-based approach to the problem. A user story in the recommended agile
ould be

er story #1) As an executive, I want a redirection option so that if my phone
usy the call is redirected to my secretary.

ater as we think about priorities, we might concoct another story:

) As a system configurator, I want to be able to specify various priorities for
sy” actions.

as time goes, a couple more:

) As a salesperson, I want to make sure that if a prospect calls while I am in a
versation, the conversation is interrupted so that I can take the call immediately.

) As a considerate responder, I want to make sure that if a call comes while my
ne is busy I get the option of calling back as soon as the current call is over.

 [Zave FAQ].

 The user story
examples are
mine, not Zave’s.
They use the
standard style
described later
in this chapter:
“Express
requirements
through scenar-
ios”, 4.5.5,
page 77.
 will follow. All are perfectly reasonable but, as Zave points out, you cannot just
er them independently. Some scenarios from the fourteen (!) she gives:

§4.4 O

Bob
Car
Car
forw

Alic
rep
so h
be m

A n
offi
Alic
Ho
ent

These
tioning
the ag
chapte

The
fea

For ru
system
like it

The
sophis

The ro

Taken

On
inte

is poin
about
develo
gram c
house
but tha
care bu

One
obs
RGANIZATIONAL PRINCIPLES 65

 has the “call-forwarding” feature enabled and is forwarding all calls to
ol. Carol has “do-not-disturb”. Alice calls Bob, the call is forwarded to
ol, and Carol’s phone rings, because “do-not-disturb” is not applied to a
arded call.

e calls a sales group. A feature for the sales group selects Bob as a sales
resentative on duty, and forwards the call to Bob. Bob’s cellphone is turned off,
is personal Voice Mail answers the call and offers to take a message. It would
uch better to re-activate the sales-group feature to find another representative.

ew Mobility service is offered to office workers. When Alice signs up, her
ce phone number is forwarded to the Mobility service. On receiving a call for
e, the Mobility service forwards it to wherever Alice’s personal data dictates.

wever, whenever the data indicates that Alice is in her office, an incoming call
ers a forwarding loop.

are typical examples of why a plain iterative approach, starting with a basic func-
 system and adding features one after the other, can lead to disaster. And yet it is

ile mantra, expressed for example by this citation of Poppendieck that opens a
r by Cohn:

se days we do not program software module by module, we program software
ture by feature.

n-of-the-mill software, maybe. For complex stuff (of the multiplicative kind), a
ic approach is necessary. Such an approach involves Thinking, probably Big, and,
or not, best done Upfront.

 agile belief that one can program features incrementally is not applicable to such
ticated systems. Here we hit one of the principal limitations of the agile approach.

le of documents

literally, Poppendieck’s dismissal of documents,

ce a working system is delivered, the user may care little about the
rmediate consumables,

tless. Sure, a teenager sending a text message on her smartphone “cares little”
the requirements and analysis documents that were produced for the system’s
pment, but that is also true of any other intermediate artifact, including the pro-
ode itself! We could just as well state that the user of a car and the inhabitant of a
“care little” about the “consumables” of the car and house production processes,
t does not mean these artifacts were useless. The question is not whether users
t whether developers do, for example those who have to maintain the system.

 [Zave FAQ].

Cited without
further source in
chapter 12 of
[Cohn 2006].

?

← See page 60.
 may wonder whether Poppendieck meant “customer” rather than “user”. But the same
ervation applies in either case. Developers are the relevant constituency.

66

The
is chan
duces
fact th
with o
the abs
withou
it (cars
to upd
reason
they w
major

Mo
Princip
not be
is not a

What

Anoth
studied
imal fu
the con
going
look a
cial” a
work n

As
found
work,

In a

Tha
com
it's

A coup
of airc

It se
wor
exp
of a
pur
AGILE PRINCIPLES §4.4

 criticism of documents has to be based on better arguments. The key actual issue
ge. Software, as the Agile Manifesto reminds us, will change. If the project pro-

requirements and design documents, they are difficult to keep in sync with the arti-
at has the final word: the code. This observation is also what limits comparisons
ther disciplines: software is unique in the speed at which we can change it, and in
ence of any production costs. One of the reasons car manufacturing cannot work
t plans and documents is that once you have a design you produce many copies of
); changing the design is a major decision, and a costly one, since you also have
ate the production process. The “soft” part of the word “software” is there for a
: we can change our program on a whim. If documents describe it, ensuring that
ill always be updated is hard. In fact, most projects hardly ever try. That is the
problem with requirements, design and other documents.

dern software technology has answers to propose, such as the “Single-Product
le” which (in line with this book’s avoidance of describing my own work) will

discussed further here. Even without such techniques, however, the risk of change
 reason to dismiss documents.

is simplicity?

er agile mantra worth further analysis is simplicity. In the previous subsections we
 specific consequences of the quest for simplicity: the injunctions to develop min-
nctionality, no more than the product requested, and only code and tests. We saw
stant emphasis on “the simplest thing that could possibly work” and “you are not

to need it”. To conclude this review of agile minimalism it is useful to take a closer
t the concept of simplicity and correct the confusion reflected in one of the “offi-
gile principles, which defines simplicity as “the art of maximizing the amount of
ot done”.

anyone knows who has ever obtained a first solution to a problem of any kind,
it too complex, and tried to simplify it, achieving simplicity often means adding
sometimes lots of it.

 1998 Business Week interview, Steve Jobs said it well:

t's been one of my mantras — focus and simplicity. Simple can be harder than
plex: You have to work hard to get your thinking clean to make it simple. But

worth it in the end because once you get there, you can move mountains.

le of generations earlier, Antoine de Saint-Exupéry, drawing on his observation
raft manufacturing, expressed a similar idea:

ems that all human industrial effort, all the computations, all the nights spent
king on the drafts, lead to a single visible result: simplicity — as if the
erience of several generations was needed to extract, little by little, the curve

← See also “The
change criti-
cism”, 3.2.4,
page 35.

← A10, page 50.

At www.business-
week.com/1998/2
1/b3579165.htm.

From Terre des
Hommes, chapter
III, “L’avion”.
My translation,
 column, of a keel or of an airplane’s fuselage, until they reach the elementary
ity of the curve of a breast or a shoulder. It seems that the work of engineers,

emphasis added.

http://www.businessweek.com/1998/21/b3579165.htm
http://www.businessweek.com/1998/21/b3579165.htm
http://www.businessweek.com/1998/21/b3579165.htm

§4.4 O

des
rea
spo
the

If Mic
just ha
(“in ev
and pe
the lov
throwi
“proof
All the
not the
they ar

• Sim
min
equ
agi

• Avo
see
in L

The tw
lished
the acc
small,

The
whe
con

If th
mu
sys
pre

In othe
sible a
RGANIZATIONAL PRINCIPLES 67

igners, draughtsmen and technicians is only to burnish and rub out [until
ching] a perfectly blossomed form, freed at last from its crust, with the same
ntaneous quality as a poem. It seems that perfection is reached not when
re is nothing more to add, but when there is nothing more to remove.

helangelo had equated simplicity with maximizing the work not done, he could
ve left the block of marble alone, instead of hitting hard at it to bring out David
ery block of marble I see a statue as plain as though it stood before me, shaped
rfect in attitude and action. I have only to hew away the rough walls that imprison
ely apparition to reveal it to the other eyes as mine see it ”). All right, I will stop
ng in citations by famous people from various centuries, lest you ask me to add
 by citation” to the list of shady intellectual devices covered in an earlier chapter.
se authors, however, express a fundamental observation: achieving simplicity is
 same as minimizing work. Both are worthy goals in software engineering, but
ise in different contexts and lead to different principles:

plicity has long been advocated by the proponents of rigorous, elegant program-
g techniques, such as Dijkstra, Wirth, Hoare, Gries and Parnas. They often
ate it with the use of simple mathematical models of programs, not a concern of
le authors.

iding unneeded work is, for its part, a key theme in the agile literature, as we have
n. It leads to such principles as “Eliminate waste” and “Decide as late as possible”
ean Software.

o views meet, but not necessarily in the way agile authors would like. Wirth pub-
in 1995 a Plea for Lean Software — note the word “lean” — in which he criticized
umulation of useless features in modern software products and advocated writing
coherent systems. But to describe how to achieve such simplicity he wrote:

 experienced engineer, realizing that free lunches never are, will now ask:
re is the price for this economy hidden? A simplified answer is: in a clear
ceptual basis and a well-conceived, appropriate system structure.

e core — or any other module — is to be successfully extensible, its designer
st understand how it will be used. Indeed, the most demanding aspect of
tem design is its decomposition into modules. Each module is a part with a
cisely defined interface that specifies imports and exports.

← Chapter 2.

→ “Lean Soft-
ware’s princi-
ples”, 9.2.2,
page 134.

 [Wirth 1995].
r words: you must think hard and think early. So much for deciding as late as pos-
nd building the system one feature at a time.

68

4.4.5

The w
involv

The
exagge
develo
causes
a requi
cessfu
reserva
to wor
policy

A s
Manife
strict r
everyo
ment p

For
align i
found
of chan
aged. O
— and
manag
spirit o

The
many m
require
spread

The
hardly
for dec
main p
niques
custom

The
ibility
have a
some p
regress
AGILE PRINCIPLES §4.4

Accept change

orld and our perception of it change; so do software system requirements. Directly
ing customers in the project is likely to lead to even more change requests.

 Agile Manifesto talks of “welcoming” change, not just accepting it. This is an
ration. It is one thing to state that change is a normal phenomenon in software
pment, and quite another to start hoping for more changes. After all it always
 more work, when some functionality has been correctly implemented, to accept
rements change than to stick with the original. For comparison, consider how suc-
l the hotel booking service booking.com has become by letting customers change
tions without a penalty: it is hard to imagine that the company’s employees come

k in the morning wishing that more customers will change their minds today! The
 may be profitable overall, but every change still causes hassle.

ure sign that agile methods “accept” rather than “welcome” change, whatever the
sto proclaims, is that in practice they do limit change. Scrum, for example, has a

ule — we will call it the closed-window rule — prohibiting the product owner, and
ne else, from adding or changing product requirements during a project develop-
hase (sprint).

 all the abuse heaped on traditional methods and the “waterfall”, Scrum appears to
tself here with standard software engineering wisdom. Contrary to the caricature
in agile texts, the software engineering literature has long recognized the necessity
ge as a lifecycle-long process; it simply states that change must be properly man-
nly a naïve team would accept, let alone welcome, unbridled change at any time

 it would not deliver much software. Scrum uses its own specific rule for change
ement: accept change outside of sprints. This is a reasonable policy, entirely in the
f traditional principles and practices.

 enthusiastic acceptance of change is a refreshing departure from the mentality of
anagers accustomed to a strict process-based approach, for whom the only good

ments are frozen requirements, and who treat change requests as nuisances. The
 of agile ideas has played a considerable role in changing that attitude.

 need to produce software that can easily be changed, called extendibility, is
 a new concern. In fact it has been a core topic of software engineering discussions
ades. While the agile manifesto is right to promote a change-ready mindset, the
roblem with extendibility is not psychological but technical: what software tech-
 can we apply to ensure that we do not need to redo everything from scratch when
ers change their mind or some domain property changes?

 agile approach does have one important idea to contribute to advancing extend-
in practice: the Extreme Programming rule that every piece of functionality should
n associated test case. One of the impediments to change is the risk of breaking

→ “The
closed-window
rule”, 6.1.2,
page 90.

?

revious function of the system, especially if the problem is found late. With a
ion suite ready to be tested after every change, the risk decreases considerably.

§4.4 O

Ap
actuall
ware c
grand
technic
produc

An
to supp
abstrac
concre
assert

Wh
pra
info

but the

The
use
app
it de
ther
auth
biza

The ag
ments.
ing ex
preced
YAGN
to “alw
now. T
Chang
strictly

Ag
suppor

As
mers s
justify
eral ca

Bey
erning
it requ
such B

Ag
RGANIZATIONAL PRINCIPLES 69

art from that rule, however, the agile method offers little to help extendibility, and
y promotes techniques that go against it. Analyzing the agile attitude towards soft-
hange shows that, as they say of relationships on Facebook, “it’s complicated ”. In
declarations of intent, agilists proudly “welcome change”; but when it comes to
al issues they often take a scornful or hostile attitude towards ideas that do help
e extendible software.

 example of such an idea, in fact an entire software development method designed
ort extendibility, is object-oriented software construction, with its enforcement of
tion, information hiding, genericity, polymorphism, dynamic binding and other
te mechanisms directly designed to facilitate software change. The Poppendiecks
that OO does not deliver:

ile in theory OO development produces code that is easy to change, in
ctice OO systems can be as difficult to change as any other, especially when
rmation hiding is not deeply understood and effectively used.

y do not suggest a better way to achieve extendibility.

ir comment is puzzling: what kind of “OO development” can there be without proper
 of information hiding, one of the defining characteristics of the method? And any
roach can be dismissed on the basis of bad results from people who do not “understand
eply” and do not “use it effectively”. Do we reject the idea of car transportation because
e are bad drivers? Or should we reject Lean Software, the method promoted by the
ors, if we come across someone who does not apply it right? Another example of
rre agile logic.

ile problem with change is not limited to such condescending and gratuitous com-
 Some agile principles and practices directly damage extendibility. The most strik-
ample is the campaign for minimal software, enjoining us, as described in the
ing sections, to build “only the product needed”. We have been subjected to
I, informed that it is “a waste” to include code “not needed now”, and ordered not
ays handle the most general case” but instead to program only for the here and
his approach, however, is incompatible with the goal of supporting change.

e-aware developers try to think ahead and, whenever possible, to build more than
 asked, in anticipation of likely evolutions.

ilists seem not to have noticed this contradiction between the noble ambition of
ting change and the imposition of principles and practices that hinder it.

in other cases, the agile criticism of some common practices is correct: program-
hould not engage in unbounded and unwarranted generalization. But it does not
 rejecting the sound professional practice of trying to handle, if not the “most gen-
se”, at least a case more general than the one at hand.

ond the negative effect of such exaggerated advice, the fundamental issue gov-
 change in software is architectural. Ease of change does not come out of thin air:
ires designing the architecture for change. Good textbooks teach you how, but
ig Upfront thinking is precisely what agilists reject.

[Poppendieck
2010], page 52.
Emphasis in the
original.

← “Develop
minimal soft-
ware”, 4.4.4,
page 58.
ile advocacy of change is the right goal — and only a goal.

70

4.5 T

We co

4.5.1

Agile
fall-sty
such a
proof o

Produ

Iterativ
article
succes
layer r
cluster
we ma

This is
horizo

That s
anisms
holder
approa
allowi
AGILE PRINCIPLES §4.5

ECHNICAL PRINCIPLES

me to a set of software-specific techniques that lie at the core of agile approaches.

Develop iteratively

development is iterative development. Agilists have little patience for water-
le processes — practiced or imagined — that devote weeks or months to activities
s requirements and design before they produce any code. In the agile view, the
f the pudding is in the coding. Deliver early and often.

ce frequent working iterations

e development, advocated in the software engineering literature ever since a 1975
 by Basili, takes various forms. An iterative process could, for example, produce
sive subsystems, or clusters, of the future product, each focused on a technology
equired by the final system: the persistence (database) cluster, the networking
, the business logic cluster, the user interface cluster. In such an iterative approach
y say that the decomposition is “vertical”.

 not the agile notion of iterative development. The agile decomposition will be
ntal: every iteration must yield a working system.

ystem may offer, especially at the beginning, only a small subset of the full mech-
; for example the database part might be primitive, or even just a stub (a place-
 module simulating the future functionality). But, in contrast with the vertical

[Basili 1975].

Vertically
layered
clusters

Database

Networking

Business Logic

User interface

Iterations

Horizontally
integrated
iterations

DB1

Net1

Logic1

UI1

Iterations

DB2

Net2

Logic2

UI2

DB3

Net3

Logic3

UI3

…

ch, it must be a functioning system that provides an end-to-end user experience,
ng the customer representatives in the project to try it and provide feedback.

§4.5 T

The
related
presen
basis c
compl
is the s

Iterati

All ag
differ
often (

I ha
on c
the
betw
any

Such i
advanc
pleted
pushed

The
missin
vince a
tionali
it has a
know
to ask
the tea
not hap
plan is

Agi
com
hol
“eit

Freeze

Agile m
change
can on
meanin
add an
in the
ECHNICAL PRINCIPLES 71

 distinction between the vertical and horizontal forms of iterative development is
 to the opposition between multiplicative and additive forms of complexity. In the
ce of multiplicative (“linguine”) complexity, establishing first an architectural
ommon to all features will help disentangle feature dependencies. For additive

exity, a horizontal process is appropriate, adding features one after the other. This
cheme promoted in agile development.

on length

ile methods suggest that iterations should be short, typically a few weeks. They
in the precise length they recommend. Scrum calls the iterations “sprints” and
although not universally) suggests a duration of four weeks for each sprint.

ve found it useful to follow the Scrum recommendation but explicitly to base iterations
alendar months. Talking of (for example) “the October release” focuses everyone on
current milestone, simple and clear: the end of the month. The length differences
een months (28 to 31 days) are immaterial; the actual development time is shorter

way, to leave time for sprint planning at the beginning and sprint review at the end.

terative development is time-boxed: the duration of an iteration is fixed in
e. If at the end of the allotted time some of the expected functionality is not com-
— according to a “definition of done” agreed in advance — the functionality gets
 to the next iteration, or dumped altogether, but the deadline does not change.

 time-boxing principle is more important than the exact length of iterations. Since
g deadlines is so common in the software world, it may take some time to con-
 team that deadlines are firm and that if something has to go it will be the func-

ty, never the iteration’s end date. Once everyone has realized this rule is for real,
 healthy effect on the project: predictions become more realistic, since developers

they will not be allowed any extra time, and customers realize it makes no sense
for unfeasible goals. In my experience, the rule also has the effect of galvanizing
m: even though it is in principle possible to dump some functionality, the case does
pen much in practice: it does not look good, so developers, having made sure the

 doable, do strive to implement the promised functions in time.

lists sometimes invoke the time-boxed nature of iterations as an excuse to refuse to
mit to both delivery time and functionality in deployed releases. The excuse does not

d, of course. External customer constraints still apply. We will encounter this
her-what-or-when” fallacy in the discussion of transitioning to agile.

 requirements during iterations

ethods, as we know, promote acceptance of change, but in any realistic approach
 has to be controlled. Here we are indebted to Scrum for a strict rule: functionality
ly be added in the sprint planning phase. Once the sprint has actually started,
g the team is implementing some of the retained functions, no one is permitted to

← “Additive
and multiplica-
tive complexity:
the lasagne and
the linguine”,
page 63.

→ “Definition of
done”, page 125.

→ “The
either-what-or-
when fallacy”,
10.2, page 146.
ything until the end of the sprint. The prohibition is strict and applies to everyone
project and outside of it, managers included.

72

Thi
the det
of Scru

Iterati

We sh
require

The
The so
approa
few m
ple ma
to find
Micros
every
until fi
today,

Wh
Here t
sequen
purpos
petent
work,
efficie
resour

Wh
layp
will
they
like
bec
that

Ima
on s
som
unti
May
if th
to th

Wh
be a
enc
Goi
AGILE PRINCIPLES §4.5

s idea is embodied in the “closed-window” rule, which we will review as part of
ailed study of the notion of sprint. It is one of the most interesting contributions
m.

ve development: an assessment

ould separately assess the two ideas reviewed: frequent working iterations;
ments freeze during sprints.

 most important property of frequent working iterations is that they are frequent.
ftware industry has understood over the past couple of decades that a “Big Bang”
ch, where the various teams go away on their separate parts of a project and try a
onths later to reconvene, does not work. Divergence is simply too hard to fix; peo-
ke inconsistent assumptions about the rest of the system, and the longer you wait
 out the harder it will be to reconcile them. This is the reason why early on
oft introduced the “daily build’ process: compile and run a version of the system

night, and anyone who introduced a show-stopping bug does not get to go home
xing it. A development cycle based on units of a few weeks has become the norm
thanks in no small part to agile popularization of the idea.

at about the insistence that the frequent iterations must be working iterations?
he assessment has to be nuanced. We saw earlier in this chapter the negative con-
ces of demanding a working system at every step, and refusing iterations whose
e is to build infrastructure. Good engineering requires solid foundations; a com-
manager will sometimes just refuse to show something that works, or pretends to
and will instead build the core technology that will make the rest of the project
nt and scalable. Insisting on an executable system at every stage can be a waste of
ces, and an irresponsible policy.

en builders are constructing a house, for a long time they have little to show to the
erson for their efforts. They are working on the foundations, the piping, all the stuff that
 make the house sustainable. You drive by every morning and think “What on earth are
 doing in all that time? I see nothing at all!” Then one day you spot something that looks
 the beginning of an actual house, and from then on it progresses amazingly fast,
ause the appropriate basis has been prepared. Of course the engineer had planned things
 way all along; the layperson is the only one amazed.

gine what an agile process would be here. Right from the first iteration we would insist
omething that can be shown to the “user” and that looks like a house. We would need
e floors and some walls. Maybe a roof, although we are in summer and that can wait
l the second sprint. Then — oh yes, do we not need to connect to the sewage system?
be. Electricity? Let’s add it now. Oh yes, foundations! Admittedly, it would be too bad

e house sunk into the ground. No problem, we can always at some point move the house
e next yard, dig a hole, set up the foundations, and move the house back.

at, this is Southern California and we should think of earthquake resistance? That would
 lot of refactoring. Come to think of it, how many users of the house are really going to

→ “The
closed-window
rule”, 6.1.2,
page 90.

?

→ “Daily build
and continuous
integration”,
7.1, page 103.

← “Minimal-
ism: an assess-
ment”, page 61.
ounter earthquakes? The last really big one was, like, a hundred years ago! You Are Not
ng To Need It.

§4.5 T

Now w
structi
upfron
deliver

On
The in
nology
signed
There
becom
factory
for late

The or

Any it
the cou
provid

All
“Wors

[1]
the
the
arg

and su

[2]
pro
tea
diff
thin

[3]
Bu

The ra
obviou
and a
posed
poned,
and th
Cockb
ECHNICAL PRINCIPLES 73

e all know that software engineering is a different kind of engineering from con-
on engineering. But not entirely different. The benefits of thinking hard — and
t — about infrastructure show up in all kinds of engineering. The obsession with
ing a working system at every step can be a damaging distraction.

ce again we see an important agile insight damaged by unfettered generalization.
sight is that developers can become so engulfed in the internal details of the tech-
 that they forget the big picture: they forget that they have a customer who has
 up not for technology but for solutions. What the customer wants is a system.
is always a tradeoff between how much the system will do and when it will
e available. A partial system that appears too early and is not scalable to a satis-
 result is bad; but so is a system that promises perfection but is always promised
r.

der of tasks

erative approach to development raises the question of how a team determines, in
rse of an iteration, the order of individual development steps. XP was the first to

e an agile answer: start with “the simplest thing that can possibly work”.

 agile approaches promote a similar view. Cockburn, for example, criticizes the
t Thing First” strategy on the grounds that

If the team fails to deliver, the sponsor has no idea where the failure lies: Is
 team not good enough to pull off this project? Is the technology wrong, or is
 process wrong? In addition, the team members may get depressed or start
uing with each other.

ggests instead the following for beginning and experienced teams, respectively:

[For] teams that haven’t worked together before and are tackling a new
blem with new technology, I prefer Easiest Thing First, Hardest Second. The
m […] and the sponsors get the confidence of an early victory. If the most
icult problem is still outside the team’s capabilities, I look for the hardest
g the team can succeed with as the second task.

Once the risk of team and technical failure abates, a good strategy is Highest
siness Value First.

tionale for the first advice [2] is convincing; it simply transposes to software the
s observation that a new team of alpinists is not going to start with Mount Everest

new orchestra with Stravinsky’s Rite of Spring. But the main benefit of the pro-
policies are for the team, not the project. What if the “hardest thing”, initially post-
 turns out to be beyond the team’s reach? The earlier effort will have been wasted,

[Cockburn
2005], page 48.
Number added.

Same source,
emphasis in the
original. Num-
bers added.

?

e initial success will have produced a deceptive impression. It is easy to transpose
urn’s above criticism of the “Worst Thing First” strategy [1]:

74

“If
can
onl
the
me
not

Cockb
agile r
next a
well w
if it off
est-val
mented
From t

Her
are oft
vation

Dual D

Resolv
the cor
ing sys
“build
work d

• Ear
cou
is t
dec
del
ada

If a
bec
sim
sult
wh
tion

• Lat
ture
into
ing
tem
AGILE PRINCIPLES §4.5

the team succeeds in delivering the ‘Easiest Thing’ or the ‘Hardest Thing it
 Succeed With’, the sponsor has no idea what the success means: Is the team
y good enough to pull off this part of the project? Is the technology right for
 more difficult parts, and does the process scale for them? In addition, the team
mbers may get over-confident and start congratulating each other prematurely,
 realizing that the true challenges are yet to come.”

urn’s recipe for well-jelled teams, “Highest Business Value First” [3], is the usual
ecommendation, fundamental in particular to the Scrum strategy of picking the
vailable user story at every step of a sprint. Such a discourse is sure to resonate
ith some manager types, but it can also be irresponsible. A product is successful
ers not only one deciding benefit but a host of supporting features. After the high-
ue item come the second-highest and all the others. What if the first one is imple-
 impressively, but with architecture choices that prove terrible for its successors?
he initial elation the project will quickly transition to delays and frustration.

e again there is no single solution. We should note in particular that the conditions
en different at the beginning of a project and in its subsequent phases. This obser-
s leads to the suggestion of dual development.

evelopment

ing the tradeoff between infrastructure work and user-visible functions is one of
e issues of software development; no simplistic recipe — such as “deliver a work-
tem at every iteration, generalize and solidify later”, but also the other extreme,

 a perfect foundation first” — holds the solution. One policy that I have seen to
istinguishes between the early and late parts of a project:

ly on, infrastructure is key. While mockups, experiments and prototypes can of
rse be useful, to simulate the future end-to-end user experience, what matters most
o analyze in depth the fundamental constraints on the system and to make design
isions that will guarantee success; not only initial success in the sense of a first
ivery, but an extendible and scalable system whose architecture allows growth and
ptation. Everything else is a diversion.

t that stage a consultant tells you that it is impossible to make such decisions
ause agile methods say so, and that the only way to proceed is to start building “the
plest thing that could possibly work”, only one reaction makes sense: fire the con-
ant. Any amateur developer can build such a mockup. The professional is the one
o knows how to make the fundamental decisions even under incomplete informa-
 — and get most of these decisions right the first time.

er, however, when the key decisions have been made and the essential infrastruc-
 built, the risk stressed by agile advocates becomes serious: the project could turn
 a sterile, inbred development focused on perfecting internals rather than deliver-

Imitated from
[1] on the previ-
ous page.

?

 value. Then it is time to bring in the relentless focus on delivering working sys-
s regularly and to start hanging oversized banners in the development rooms:

§4.5 T

Mo
erin
use
to g

It is al
you ha
assign
functio
and ex
each o
archite
can be
away u
But it
sacrifi

For
we ma

4.5.2

The se
ever, t
ways t
cesses
ods of
princip

Tes
knows
errors
everyo

Wh
minute
ger mu
capabi
about a
one of

Ag
form o
some p
ECHNICAL PRINCIPLES 75

nthly sprints, built on the infrastructure developed in the first phase but now deliv-
g working instances of the system, are now the order of the day, each providing
r representatives with an ever closer idea of what they will get, and enabling them
ive the developers the direct feedback they need.

so possible to apply these two approaches concurrently rather than in sequence. If
ve a nervous customer who is anxious to see something running early on, you can
 part of the team to build the fundamental architecture, and the other part to deliver
nality that immediately works. This second task also functions as a prototyping
perimentation effort, to try out various possible solutions. The two parts inform
ther: from the experiments follow lessons as to how to build the fundamental
cture; from the architecture come out pieces that the specific functions can use. It
 delicate to set up such a policy; in particular, the team must be ready to throw
nsatisfactory attempts at functionality when something better becomes available.

can be the solution to producing visible results right from the beginning without
cing the system’s long-term integrity, extendibility and scalability.

 such a combination of approaches — either one after the other or in parallel —
y use the name Dual Development.

Treat tests as a key resource

arch for software quality is at the heart of software engineering. It is easier, how-
o argue for quality than to provide concrete ways to guarantee it. There are many
o approach quality; some, such as the CMMI practices, affect management pro-
; others are technical and include, for example, formal (mathematics-based) meth-
specification and verification. For most of the industry, and for agile methods, the
al technical means to quality is testing.

ting enjoys an interesting status in the software community. Almost everyone
 Edsger Dijkstra’s verdict from the seventies (“testing can show the presence of
, never their absence”), which seems to relegate testing to uselessness. But then
ne still tests software, and many developers know no other verification technique.

at Dijkstra meant is that testing cannot be exhaustive, and in fact can only cover a
 part of the possible cases. (He took the elementary example of testing a 32-bit-inte-
ltiplication program: running and checking 264 cases is beyond computer and human
lity.) On the other hand, the normal reaction — at least, my reaction — when hearing
 technique that can “only” show the presence of errors is “Yes! Yoo-Hoo! Give me
those!”. Surely we want to find all the “errors” we can put our hands on.

ile methods consider tests a central resource of any project. The resource takes the

H
R W

E I
Y

A
S TE ?P P I GN

E

→ See also
“User stories”,
8.3, page 119
and “Combining
a priori and a
posteriori
approaches”,
7.4.4, page 113.
f a regression test suite: the set of tests tried so far, including tests that failed at
oint, revealing a bug that has since been fixed. As the name indicates, the purpose

76

is to pr
previo
field —
you. T
take, w
be the
ration
tion ve
the rea
every

The

• Des
and

• Run

This c
term i
time-c
tools, p
the ag
regress

The

4.5.3

The m
rity of
quality

The
all tha
projec
remain

The
ple sch
proble
functio
the cur
icate ta
We can
since a

An
ous an
non-pa
ments,
AGILE PRINCIPLES §4.5

event the phenomenon known as “regression”: the reappearance of a bug that had
usly been fixed. Regression is — to an extent that often surprises outsiders to the

 a common occurrence in software development; old bugs come back to haunt
he reasons are diverse: the fix may have corrected the symptom, not the real mis-
hich manifests itself again when some new part of the software is executed; it may
result of wrong reasoning, which has consequences elsewhere; or some configu-
management mistake may cause a new version of the program to use a pre-correc-
rsion of the affected module. Whatever the cause, the risk of regression is one of
sons why any project should keep a regression test suite, including in particular

test that failed at any point in the process.

 progress of these ideas is supported by modern tools enabling programmers to:

cribe every test as a simple script, specifying the testing configuration, the inputs,
 an assertion describing the expected pass/fail criteria (“oracle”).

 a set of tests, or the entire regression test suite, as an automated process.

ombination of facilities is usually called “automatic testing”. Even though this
s an exaggeration (since the automation does not cover the most delicate and
onsuming parts of testing: generating test cases and oracles), the corresponding
ioneered by JUnit, have changed the practice of software development and made

ile emphasis on regression testing possible, by enabling a project to run all the
ion tests at the push of a button.

 next two principles extend this fundamental role of tests in the agile world.

Do not start any new development until all tests pass

ost concrete manifestation of the agile emphasis on quality is to regard the integ-
 what has been produced as more important than the addition of new elements:
 trumps functionality.

 dilemma is a familiar one to any manager: the task list is large and grows, but not
t has been produced so far works. Where do you put your resources? In an agile
t this kind of decision belongs to the group rather than one person, but the question
s. The agile approach is clear: do not move on until all tests pass.

 discipline is laudable but sometimes life has its way of eluding intellectually sim-
emes. In particular, there is bug and bug. A test that fails may reveal a blocking

m, in which case the agile discipline is right: until it is fixed, moving on to new
nality is irresponsible. But it may also affect functionality that is not essential at
rent stage. Removing that functionality would do the trick; that is, however, a del-
sk, which takes up developer time for little benefit and could introduce new bugs.
 also cheat by declaring the bug a feature, but that does not help in the long term,
 correct version will eventually be needed.

y serious project has a classification of bugs into categories such as blocking, seri-
d minor. A large project should specify a policy defining which classes of

On more exten-
sive forms of
automatic test-
ing see [Meyer
2009a].

?

ssing regression tests (typically, blocking and serious) preclude new develop-
 and which are acceptable.

§4.5 T

4.5.4

A mor
Progra
and te
analyz

Jus
ple: ne
shuns
so the
Beck d

Som
it in th
prising
since t

The
con
inte
asso
succ
set o
first

The m
words
might
cost of
first ha
new fe
needed
produc

The
gramm
using t
here: t
it. Wh
fundam

4.5.5

Agile
require
duce s

In t
consta
ECHNICAL PRINCIPLES 77

Test first

e controversial principle is the idea of testing first, associated with the Extreme
mming method and underlying some of its key practices: test-driven development
st-first development. The discussion of practices will indeed be the best place to
e it in detail, but here we can look at the basic idea.

t reading the two words “test first” literally would suggest a fairly simple princi-
ver write code without first writing a test that exercises it. In an approach that

writing precise requirements specifications, tests are a key part of the replacement,
idea is a natural one. But test-first in the Extreme Programming sense goes further.
escribes it as: Write a failing automated test before changing any code.

e functionality is not present yet, and you want to add it. Instead of thinking about
e classical style of defining requirements, write a test for it, and — this is the sur-
 part — run that test (after adding it to the regression suite). The test should fail,
he functionality is not yet supported. Then fix the code until the test passes.

 test-first principle, like Dijkstra’s observation on the role of tests, is related to the
cept of falsifiability cited at the beginning of this chapter. In the same way that an
resting principle must be falsifiable, an interesting software function must have an
ciated test whose failure demonstrates that the product does not fulfill the function. (A
essful test case, or any number of them, demonstrate nothing, in the same way that no
f successful examples can prove the validity of a theory or a principle.) Writing the test
 helps clarify what the function is about.

ost important argument in favor of test-first programming is, again in Beck’s
, to avoid scope creep, the production of code implementing functionality that
or might not be really needed; remember “YAGNI”. Test-first increases the entry
 producing new code since you know you are not even permitted to start without
ving the test; and writing the test forces you to imagine a usage scenario for the
ature. If you have trouble devising one, you may conclude that the extension is not
 and just discard it, saving time for more important functionality, and avoiding
ing untested code that would probably be of dubious quality.

 injunction to write the test before the code, considered essential in Extreme Pro-
ing, goes too far for some people, and is subject to serious criticism if it leads to
ests as a substitute for specifications. But we do have a major agile contribution
he idea of never adding any functionality without also providing a test to go with
ether the test is written before, during or immediately after matters less than the

ental rule: no code without test.

Express requirements through scenarios

development rejects Big Upfront Requirements. But software development needs
ments, upfront or not, and agile methods particularly emphasize the need to pro-

oftware that actually meets user expectations and delivers ROI to the business.

→ “Test-first
and test-driven
development”,
7.5, page 113.

 [Beck 2005],
page 50.

← “What is a
principle?”, 4.1,
page 49.

← “Produce min-
imal functional-
ity”, page 58.

?

he previous sections we saw part of the agile answer to requirements: integrate
nt testing in the development cycle. More is needed, since tests cannot completely

78

replac
approa
agile m
betwee

A u
tem; fo

A u
stories

As

(The la

As
see

Let us

The
widely
on the
what s
you w
the abs
yields
for oth

I ha
mea
eno
34 a

On the
ends th

It is
use of
are de
within
deviate

As
pen
plan
not

This is
specifi
guaran
ificatio
work —
AGILE PRINCIPLES §4.5

e requirements. The core requirement techniques recommended in agile
ches can be viewed as more abstract versions of tests: use cases (which predate
ethods) and particularly user stories. Both describe typical interaction scenarios
n users and the system.

se case is coarse-grained and typically describes an entire walk through the sys-
r example, ordering a product on an internet site.

ser story describes an elementary unit of interaction. A standard scheme for user
, previewed in earlier examples of this chapter, has emerged in the agile world:

a [role], I want to [action] so as to [goal].

st part may be missing.) For example, in a graphical game product:

a player, I want all pieces of the winning shape to blink or glow so that I can
 the winning shape.

 use the term “scenario” to cover both use cases and user stories.

 principle of using scenarios for requirements specification is one of the most
 practiced agile concepts, and one of the most damaging. (We continue our ride
 roller coaster of good, hyped and ugly ideas.) A specification is general: it says
hould happen in all cases. A use case or user story, like a test, is specific: it tells
hat should happen in one case. Ten user stories give you ten cases; they still lack
traction of a specification. If I tell you that I have a function that for the input 1
1, for 2 yields 4, for 3 yields 9, and for 4 yields 16, I am really not saying anything
er values.

d some fun plotting these values into a curve-fitting program, throwing in, for good
sure, the value 25 for 5, and looking at the results predicted by best-fit functions. Sure
ugh, one of the predicted values for 6 is 36, but it is not the only one; just as good are
nd 35.6. See the blog article cited on the right.

 other hand if I tell you that f (x) is x2 I have specified the function in a way that
e story and removes any further questions.

 unfortunately easy to experience first-hand the damage caused by the systematic
 scenarios as a substitute for requirements. Many web applications, in particular,
signed that way. They cover interactions properly as long as you stay exactly
 the schemes that the designers have imagined, but fail you as soon as your needs
 from the standard cases.

a typical example, not long ago I watched a small-business owner grappling with a
sion-plan system which offers perfectly mapped scenarios for plan members and for
 administrators. Trouble was, she is both, and obviously the authors of the program had
considered that particular scenario.

 where a more traditional requirements effort wins: it forces you to go from the
c to the general and to abstract from individual examples. Of course there is no
tee that it will catch all cases; but the very notion of writing a requirements spec-

 [Cohn 2006],
page 270.

→ See also
“User stories”,
8.3, page 119.

 [Meyer 2012].

?

← “The domain

n encourages you at least to try to describe the problem and the solution frame-
 or, to use Jackson’s better terminology, to specify the domain and the machine.

and the machine”,
3.2.5, page 36.

5

Ag

One of
at the d
lar the

We
examin

5.1 M

The m
are no
manag

• Ass

• Dec

• Dir

• Req

Henry

The
actors
such a

Wh

• Est

• Ens
age
uni
pan
the

• Han

A pop
instead

B. Meye
© Sprin
ile roles
 the most tangible and immediate effects of agile methods is to force a fresh look
uties and privileges of project members. Agile development redefines in particu-

 roles of managers, customers, and the development team.

 will start with the manager’s role, continue with the team and the customers, then
e other important roles specified by some or all of the agile methods.

ANAGER

ost striking prescription affects what agile managers do and particularly what they
t supposed to do. Much of the agile discussion of this topic is indeed negative; the
er does not:

ign tasks (in the non-agile world, perhaps the defining duty of a manager).

ide what functions to implement (also a traditional manager’s privilege).

ect the work of team members.

uest status reports.

 Ford and Steve Jobs need not apply.

 tasks listed, no longer the purview of managers, will have to be assigned to other
as discussed in the next sections: mostly the team as a whole, but also new roles
s the Scrum Master.

at remains for the manager? Essentially, a supporting role. The tasks include:

ablishing an environment that enables the team to work successfully.

uring a smooth interaction with the rest of the organization. In this role the man-
r is a champion of the team with higher management and other organizational
ts. Part of the difficulty of this task is to make sure that other divisions of the com-
y, which may not have seen the full agile light yet, do not impede the progress of
 agile project by applying old ways of thinking.

dling resources, including suppliers and outsourcing partners.
ular way in Scrum circles to describe the shift is that the manager “plays guru”
 of “playing nanny”.

r, Agile!, DOI 10.1007/978-3-319-05155-0_5,
ger International Publishing Switzerland 2014

80

Scr

The
Ma
thre

The ne
quence
ity; the

5.2 P

Decidi
zation
produc

Con
the pr
functio
define
cially

• At t
of t

• At

The Sc
manag
Scrum
user st

The
separa
day-to
these o

5.3 T

The te
as a sin
the cri

5.3.1

As we
ager b

As
pany t
AGILE ROLES §5.2

um goes further by not including a manager role at all. According to Schwaber:

re are only three Scrum roles: the Product Owner, the Team, and the Scrum
ster. All management responsibilities in a project are divided among these
e roles.

xt sections review these more specific roles. It is natural to ask about the conse-
s of removing the manager role, in particular the possible dilution of responsibil-
 last section discusses this issue.

RODUCT OWNER

ng on product functions is in Scrum the task of a member of the customer organi-
called the product owner. As stated by Pichler, the product owner champions the
t, facilitates decisions about that product, and has the final say over these decisions.

cretely, the principal responsibility of the product owner is to define and maintain
oduct backlog: the list of features. We are talking here of product-level units of
nality, not the individual tasks needed to implement them: these tasks will be

d by the team at the beginning of each sprint. The product owner is, however, cru-
involved at the start and end of every sprint:

he start, to select user stories from the product backlog, and explain them in terms
heir business role.

the end, to evaluate the result of the sprint.

rum product owner role covers one of the traditional responsibilities of a project
er, deciding on functionality, but not the others: enforcing rules is the job of the
 Master; and handing out individual development tasks (to implement the selected
ories) is the job of the next character in our cast — the team.

 Product Owner idea is an important Scrum contribution. Its main benefit is to
te the job of defining project objectives and assessing their attainment from the
-day management of the project, and in particular of the tasks intended to achieve
bjectives.

EAM

am is a group of people but, like the chorus in a Greek tragedy, can also be viewed
gle character. It takes over several traditional manager responsibilities, including

tical one of deciding, step after step, what tasks to implement.

Self-organizing

 saw in the previous chapter, the team is not a group of people directed by a man-
ut is empowered and self-organizing.

[Schwaber
2004], page 6.

[Pichler site],
blog/roles/
one-page-prod-
uct-owner.

?

← “Let the team
self-organize”,
4.4.2, page 53.
an example a contrario of these principles, Schwaber reports on his visit to a com-
hat thought it was applying Scrum but was not doing it properly:

http://www.romanpichler.com//blog/roles/one-page-product-owner
http://www.romanpichler.com//blog/roles/one-page-product-owner

§5.3 T

The
my
the
she
like
rea
ask
cou

What h
team t

The

Agi
wit
aga

Note th
main t
pickin

The
imply
cussed
decisio

5.3.2

Anoth
pendie

Agi
and
ind
be f

The re
examp
team a
along
the rel
might
charge

Suc
ular ta
tional
whatev
agile r
EAM 81

 ScrumMaster invited me to attend “his Daily Scrum”. An alarm went off in
head. Why was it “his Daily Scrum” and not “the team’s Daily Scrum”? At
 meeting, he went around the room, asking each person present whether he or
 had completed the tasks he had written by their name. He asked questions
, “Mary, did you finish designing the screen I gave you yesterday? Are you
dy to start on the dialog boxes today?”. Once he had exhausted his list, he
ed whether the team needed any help from him. They were all silent. How
ld I tell him what I thought of his methods?

e thought was less than flattering, of course, since they contradicted the idea of a
hat decides by itself what it will do next, picking from the list of remaining tasks.

 team in agile approaches is self-organizing. Cockburn and Highsmith write:

le teams are characterized by self-organization and intense collaboration,
hin and across organizational boundaries. [They] can organize again and
in, in various configurations, to meet challenges as they arise.

e key benefit claimed here: the ability to adapt quickly to new circumstances. The
ask of a self-organizing team is to decide what to do next. In Scrum this means
g from the task list (“sprint backlog”) the next task to be implemented.

 agile literature goes to great lengths to explain that self-organizing does not
rudderless: in some methods at least the manager still has a role to play, as dis-
 in the previous section, but this role does not include meddling in everyday
ns such as picking the next task.

Cross-functional

er recommended characteristic for agile teams is to be cross-functional. The Pop-
cks write:

le development works best with cross-functional teams [which have] the skill
 authority necessary to deliver useful feature sets to customers
ependent[ly] of other teams. This means that whenever possible teams should
ormed along the lines of features or services.

jected alternative is a division into teams organized along areas of competence, for
le a hardware team and a software team (for an embedded system), or a database
nd an application logic team. The recommendation is instead to use a division
user-visible subsystems, each covering a subset of the functionality, in line with
iance on user stories to define that functionality. For example part of the team
be in charge of the scenario “process a new purchase order” and another part in
 of “cancel purchase order”, even if the basic infrastructure is shared.

h an assignment implies only a temporary responsibility associated with a partic-
sk, not a long-term specialization, even less any exclusivity. In a fully cross-func-
team, any developer should be able to go to the task list and pick the next task,

 [Schwaber
2004], page 26,
excerpted and
abridged. On
the “daily
Scrum” see
page 91.

 [Cockburn
2001].

 [Poppendieck
2010], page 69.

→ “Collective
ownership and
cross-function-
er it is, that the team has deemed to be of highest priority. The presentation of
oles will discuss the benefits and limitations of cross-functional teams.

ality”, 6.12.2,
page 102.

82

5.4 M

The ag
kinds
succes
accept
vulgar
out zo
bers a
“fellow

The
egorie
ing on
decisio

5.5 C

We ha
the cen
the pro

Tra
custom
beginn
varian

The
imp
cou
pha
AGILE ROLES §5.4

EMBERS AND OBSERVERS

ile world and Scrum in particular make a distinction, for any project, between two
of participants: those who are truly committed to the project, in the sense that its
s is critical for them, and those who are also involved but from the sidelines. The
ed terms are respectively “pigs” and “chickens”, a terminology that comes from a
 joke repeated in a zillion publications and not worth including here. With or with-
ology, the concept is hardly new: committees routinely distinguish between mem-
nd observers. Another possible terminology would be “core participants” versus

-travelers”.

 distinction matters in particular for daily meetings, where the roles of the two cat-
s are delineated: the members should dominate the discussion, with observers stand-
 the side. The observers will give their opinion if invited to do so, but actual project
ns, such as including or rejecting functionality, are the privilege of members.

USTOMER

ve seen, as one of the method’s principles, that agile methods put the customer at
ter. A concrete consequence is to emphasize the role of the customer throughout
ject and — in some cases — the role of the customer as a member of the project.

ditional development approaches also strive to build a system that will please its
ers, of course, but they limit customers’ involvement to specific phases at the
ing and end of the lifecycle; in the extreme form represented by the “V-model”
t of the waterfall, those would be the top-left and top-right phases.

 simple V-model illustration shown here is not the most common one; usually
lementation figures at the bottom, which makes little sense since it is the direct

← “Put the cus-
tomer at the
center”, 4.4.1,
page 51.

Unit testing

Requirements

Implementation

Design

Acceptance testing

Integration testing

Simplified
V-model of
the software
lifecycle
nterpart of (on the verification side) unit testing. In addition, some variants have more
ses than shown here.

§5.5 C

Even w
projec
enviro
pen thr
cussio
need to
tion be
custom

Wh
ment d
includ

The
pro
the
wha

This r
respon
team t

On
Scrum
There
to inte
but oft
technic
sits bo
well a
tomer
of pers
any de
most c
cally i
enough
suspic

Wit
necess
the las
at the p
vide o
USTOMER 83

ith an upfront requirements phase, many opportunities often arise later in the
t for the developers to obtain more information from customers. Some project
nments discourage such contacts or even prohibit them. Requiring that they hap-
ough organized channels is reasonable, if only because — as mentioned in the dis-
n of the customer’s role — different stakeholders have different views and you
 make sure you are talking to representative people. But disallowing any interac-
tween developers and customers is a sure way to obtain systems that do not meet
er objectives. Agile methods go further and require customer interaction.

ile the basic idea is common to all agile approaches, the level of customer involve-
iffers. Extreme Programming, as explained by Ron Jeffries, directs the team to

e a customer representative, part of the “whole team” experience:

 team must include a business representative — the “Customer” — who
vides the requirements, sets the priorities, and steers the project. It is best if
 Customer or one of her aides is a real end user who knows the domain and
t is needed.

ole does not appear explicitly in Scrum, since the product owner is the person
sible for representing users, as part of the more general task of conveying to the
he business goals of the project.

ce one accepts the idea of including customer representation in the team, the
 approach is superior to the XP notion of an embedded customer representative.
is evidence (anecdotal rather than based on systematic studies) that it is difficult
grate even a well-meaning customer representative; sometimes the formula jells,
en the representative feels left out, since much of the interesting stuff occurs in
al discussions which he cannot easily follow; and a good deal of the time he just

red. In addition, a customer representative with no decision power can do harm as
s good. It is difficult to determine how much he represents the needs of the cus-
as a whole, and how much just his own. The odds are not good: think of the kind
on whom an organization would wish to assign full-time to a project but without
cision power (taxation without representation, as it were); is that going to be the
ompetent expert of the application domain? Probably not: such people are typi-
n high demand and very busy — with application domain tasks. Whoever has
 free time to be posted to a development group for many months may raise some

ion: is the customer organization trying to help you, or to get rid of someone?

h the Scrum notion of product owner, you also get a customer representative, not
arily full-time, but with a clearly acknowledged strategic decision role: defining
t word on what goes into the product and what does not. This role justifies putting

← Page 52.

[Jeffries site],
xpmag/whatisxp
#whole.

?

← See “Put the
customer at the
center”, 4.4.1,
page 51.
roject’s disposal a product owner who truly understands the business and will pro-
perationally valuable input to the developers.

http://xprogramming.com/xpmag/whatisxp#whole
http://xprogramming.com/xpmag/whatisxp#whole

84

5.6 C

Agile
ment,
ager p
coach

Lar
differe
scribe;
everyo

“Co
role. T

A S
we’

More g

The
val

But th
remov
any ob
produc
technic
algorit
chokin
the sys

The
undue
opers s

The
is due
should
and pa
self-re
more c
AGILE ROLES §5.6

OACH, SCRUM MASTER

methods raise frequent problems in their daily application and require enforce-
lest the team stray from the recommended principles. Sometimes the project man-
lays this role, but the recommendation is to assign it to a specific individual: a
in Extreme Programming; a Scrum Master in Scrum.

man encourages putting in place a “central” coaching team which advises many
nt groups. He also insists that the role of coaches should be to advise, not pre-
 this view is in line with the agile mistrust of consultants or managers who tell
ne what to do but are not ready to do some of the real work themselves.

ach” suggests a training role. Scrum Masters, in addition, take on a management
he border can be thin; as Cohn writes:

crumMaster may not be able to say “You’re fired”, but can say “I’ve decided
re going to try two-week sprints for the next month”.

enerally,

 Scrum Master is responsible for making sure a Scrum team lives by the
ues and practices of Scrum.

e role goes beyond that of a political commissar; one of the primary tasks is to
e impediments identified by team members in daily meetings. An impediment is
stacle, technical or organizational, that prevents the team from operating at full
tivity (implementing as many user stories as possible). Some impediments are
al, such as a developer getting stuck because he does not know of an appropriate

hm to solve a certain task; others are political or organizational, such as computers
g up on not enough memory or a subcontractor failing to deliver a component of
tem.

 Scrum Master is also responsible for protecting the team from distractions and
interference from the rest of the organization, since it is an agile tenet that devel-
hould be able to concentrate on one task at one time.

 Scrum Master concept has met with considerable success. Some of that success
to non-technical factors: to be worthy of consideration as a Scrum Master you
 be a certified Scrum Master, meaning that you have followed appropriate training
id your fee. This certification aspect of Scrum is good business. It provides a

[Larman 2010],
page 399.

[Cohn 2010],
page 399.

[Schwaber
2012], page 164.

→ More on
impediments in
“Impediment”,
8.12, page 129.
inforcing loop: certified masters are natural advocates for the method, and the
ompanies they convince the more Scrum Masters will be needed.

§5.6 C

For
is soun
and wi
sibility
projec
Master
risks o

Bei
affe
obj
tea

As
in.
obj
dev
to a

My ex
tacle o
a cons
for not
selves
core re

In t
consul
advice
compa
needs
India c

I ha
skil
role

It is go
progra
beats b
to kno

Ass
A goo
of the
when t
OACH, SCRUM MASTER 85

 a new method, the basic concept of having a coach to help apply the method right
d. More debatable is the expectation that a Scrum Master will do only that job,
ll not be a developer. While staying away from absolutely ruling out such a pos-
, agile authors clearly state that a Scrum Master should only be a coach; if the
t is too small, rather than doubling up on other duties on the project, the Scrum
 should double up on projects, coaching several teams. Scrimshire writes of the
f a coach who also programs:

ng directly involved in the work, being an agent in the system, being directly
cted by difficulties arising in the team means the Scrum Master could lose
ectivity. They could be too close to a problem to be able to coach the
m effectively.

a developer, there is opportunity for directive or controlling behavior to creep
Is the developer of sufficient character to be able to retain a sense of
ectivity and unbiased questioning in the role coach or facilitator? If the
eloper had a differing technical opinion with the team would they be willing
ccept the team’s approach or mandate?

perience runs directly against this advice. I have seen too many times the sad spec-
f advisors who do not want to dirty their hands. That is what is so great about being
ultant: if the project succeeds it is thanks to your wonderful advice; if it fails it is
 following it properly. In the Scrum case, consultants make it even easier for them-
because the Scrum Master also stays away from programming but from the other
sponsibility-laden task: management.

raditional settings developers typically do not have much respect for advice-only
tants. There is still enough reverence around agile methods and Scrum that
-only Scrum Masters are taken seriously. The hypnotism will not last forever, and
nies will focus on work that brings real benefits. (Even the Red Army no longer
political commissars.) Already today, not everyone buys the idea; a reader from
ommented, à propos Scrimshire’s article cited above:

ve seen the trend that organizations look forward to hire people with technical
ls. Specially in India, they do not consider Scrum Master as [an] independent
 but always club with developer (they call it technical scrum master).

od to encounter some common sense, at least in India. A Scrum Master who also
ms has the advantage of being close to the problem; “too close” perhaps, but it
eing too far. There is nothing like having to wrestle with the toughest part yourself
w how to advise the rest of the team.

igning the coaching role to a manager, rather than a developer, also makes sense.
d technical manager should be experienced enough to serve as coach; this is one

?

[Scrimshire site].
traditional roles of managers, and there is no clear argument for not continuing it
he personalities involved fit the bill.

86

Har
who
cap
The
onc
Thi
are
also

5.7 S

What s
Master
to be l

The
ageme
differe

• Dir

• Def

This d
and te
“comm
most o
— Mic
“the b
busine
attuned
to have
— tha

The
being,
to sepa
concer
manag
so “em
the nee
tinct “
dent ch

The
separa
a clear
point.
is no u
AGILE ROLES §5.7

lan Mills developed long ago the concept of chief programmer: the project manager
 just happens to be the best programmer on the team and in addition has management

abilities and like a general who has risen through the ranks leads the team into battle.
 chief programmer is a technical manager, but one who is not afraid to roll up sleeves
e in a while and do the design and implementation for the toughest parts of the system.
s technique is not for every team — if only because good potential chief programmers
few — but can be effective with the person and team. A good chief programmer will
 play the role of coach.

EPARATING ROLES

hould we make of the Scrum insistence on three and exactly three roles (Scrum
, Team, Product Owner)? As usual, there is something to be taken and something
eft.

 most interesting idea is the separation of the product owner role from other man-
nt responsibilities. In many contexts it can indeed be helpful to hand out to two
nt persons (or groups, such as “the team” in Scrum) the tasks of :

ecting the project, day after day.

ining what it must do for the business, and assessing whether it actually does it.

istinction is applicable in projects where no one is equally at ease with the business
chnical sides. Such a situation arises in enterprise-style projects (“business” or
ercial” data processing), the area from which agile methods seem to have drawn

f their experience. In a technical company, and particularly in a software company
rosoft, Google, Facebook… — the classic distinction between “the software” and

usiness” disappears, since the business is software and often the software is the
ss. In such environments one can often find an executive who is both thoroughly
 to the business needs and perfectly capable of leading the project. If you intend
 a project manager — an idea anathema to Scrum and most other agile approaches

t person may also be qualified to serve as the product owner.

 argument against merging the manager and product owner roles is the risk of
 in Scrimshire’s terms, “too close to the problem”. He invoked that risk as a reason
rate the roles of developer and coach; we saw that there is in fact little cause for
n in that case, but the risk becomes more serious if we consider the roles of project
er and product owner. The manager could become so involved with the project —
bedded” in it — as to develop a kind of Stockholm Syndrome and lose track of
ds of the business, which are the reason the project exists in the first place. A dis-

product owner” will not succumb to that temptation, and will provide an indepen-
eck on the project’s real progress.

 decision — assign two people as manager and product owner, or keep the roles
te — is a tradeoff between consistency, favoring a single project manager defining
 vision for the team, and independence, favoring the inclusion of a second view-

[Mills 1971].

?

Every project must examine that tradeoff in light of its own circumstances; there
niversal, dogmatic answer.

§5.7 S

Ma

• It m
ope

• The
wh
mo
and

• On
(if t
the

More g
good i
strateg
with d

EPARATING ROLES 87

ny projects, especially when they have limited resources, consider other mergings:

ay be legitimate — not just in India — to let one of the more experienced devel-
rs double up as coach (Scrum Master).

 manager can also be the coach. This is particularly appropriate, and common,
en the manager is a technical manager, in the “chief programmer” style, who has
re experience than the rest of the team and is naturally qualified to serve as mentor
 coach in addition to performing management tasks.

 the other hand it makes no sense to merge the “coach” and “product owner” role
he latter is distinct from “manager”). A separate product owner should represent

 business needs and not meddle into how the team works.

enerally, while ensuring the presence of a method coach in the project is often a
dea, insistence on keeping it a separate role is not. No doubt it is a good business
y for consultants; but businesses, their budgets and their projects are better off
oers than with talkers.

6

Ag

The ag
studied
pair pr

Wh
be an a
absenc
it is pe
case o

Scr

We
The fo

6.1 S

One of
deliver
of the
into w

The
from a
task on

6.1.1

A Scru
agile a
weeks

Thi
define
just as
has to
ted to

B. Meye
© Sprin
ile practices: managerial
ile principles imply, for a software development project, not only specific roles as
 in the previous chapter, but a set of concrete practices, such as the daily meeting,

ogramming and test-driven development.

at, by the way, qualifies as a practice in software development? A practice has to
ctivity or a mode of working, but with a special twist: repeated application. In the
e of repetition, we may have an interesting technique, but it is not a practice unless
rformed regularly (in the case of an activity) or enforced systematically (in the

f a mode of working).

um also uses, for practices, the more picturesque name ceremonies.

 start in this chapter with practices affecting project organization and management.
llowing chapter will cover technical, software-specific practices.

PRINT

 the core principles of agile development is to work iteratively, producing frequent
ies. All agile methods apply this idea, with various prescriptions for the duration

individual iterations. To denote these iterations, the Scrum term “sprint” has come
ide use.

 purpose of a sprint is to advance the project by a significant increment, working
 task list, known in Scrum as the sprint backlog. In most agile approaches each
 the list is defined as the implementation of a “user story”.

Sprint basics

m sprint usually lasts one month. Many teams use other durations, and non-Scrum
uthors recommend iterations of varying lengths, although never more than a few
 in line with the fundamental agile idea of short-cycled iterative development.

s idea of cutting up development into individual iterations lasting a month or so
s the notion of sprint, but a second property, particularly emphasized in Scrum, is
 important. It is the rule that during a sprint, the task list does not grow. The rule

← “Develop
iteratively”,
page 70.
be absolute: no one, laborer, duke or emperor — or project manager — is permit-
add anything while the sprint is in progress.

r, Agile!, DOI 10.1007/978-3-319-05155-0_6,
ger International Publishing Switzerland 2014

90

Thi
six mo
to add
the pro
ever th
end of
If not
extrem
the spr
It is a
justify

6.1.2

The ru
ciples
the ag
closed

The
softwa
manag
dream
tice, an
by brin
nomen
busine
nature
orities
mente
interru
delaye
politic

The
nor fig
cises. A
ture id
few da
longer
that w
AGILE PRACTICES: MANAGERIAL §6.1

s rule is made realistic by the short duration of sprints. Clearly, if iterations lasted
nths, it would be impossible to repress the customers’ and managers’ natural urge
functionality. With a one-month period, once everyone has signed on to the policy,
ject may enforce the strict ban on extensions. No exceptions are allowed, what-
e rank of the supplicant. If there is a really pressing need, it gets parked until the
 the current sprint, and will be examined for possible inclusion in the next sprint.
having the envisioned feature is a real show-stopper, then the only solution is the
e one (akin, in the execution of a program, to raising an exception): terminating
int early — a decision that, as we have seen, is the privilege of the product owner.
pretty drastic decision; unless the product owner feels things are so critical as to
 it, he will just wait, like everyone else, until the next sprint.

The closed-window rule

le barring additions of functionality during a sprint follows from one of the prin-
we saw in an earlier chapter. It does not seem to have received a specific name in
ile literature but it is so important that it deserves one. Let us call it the
-window rule: the window for changes is closed whenever a sprint is in progress.

 closed-window rule addresses one of the biggest practical obstacles to successful
re development: disruptive feature creep, more precisely disruptive customer- or
ement-induced feature creep. Customers and managers teem with ideas, and keep
ing up new features. Giving them demos of early versions (in general a good prac-
d strongly advocated in agile approaches) can make the phenomenon even worse
ging to light what functionality is still missing. By itself the feature creep phe-
on is inevitable and in many respects healthy; a successful system will serve the
ss best if the key stakeholders have had their say. The problem is the disruptive
 of feature requests coming from a person carrying enough authority to change pri-
. He or she comes up with a superb idea, so superb indeed that it has to be imple-
d right this minute at the expense of the currently scheduled tasks. Such
ptions can quickly derail a project: priorities get messed up, important work is
d, and developers lose morale. But without a clear process such requests can be
ally difficult to refuse.

 genius of the closed-window rule is that it neither ignores the risk of feature creep
hts it head-on, but channels it into the limited framework of sprint planning exer-
 practical consequence is that a kind of natural selection takes place between fea-

eas. Many a brilliant suggestion loses its luster when you look at it again after a
ys, and when the time does come to select features for the next sprint it may no

← “Freeze
requirements
during itera-
tions”, page 71.
 seem so urgent. Disruptions are avoided and noise takes care of itself. The ideas
ere truly worthy of consideration are prioritized against all other tasks.

§6.2 D

6.1.3

Two a

The
note th
tant th
Scrum
More
more e

The
festo’s
conced
dling c

6.2 D

A core
the “da
ing do
stand;
groups

The
princip
genera
“lean”
The m
proble
answe
will yo

The
the pro
memb
ond qu
Cohn
schedu

In t
ber and
lems w
absenc
AILY MEETING 91

Sprint: an assessment

spects are interesting to discuss: sprint duration, and the closed-window rule.

 one-month standard duration of sprints appears just right. In this book we often
at strict agile rules are too rigid, and sometimes see that the spirit is more impor-
an the exact details; but in this particular case it appears that following the exact
 one-month prescription (including sprint planning and sprint review) works well.
precisely, Scrum specifies “thirty days”; I have found, as noted earlier, that it is
ffective to use a calendar month. Simplicity breeds focus.

 closed-window rule is an outstanding idea. While it contradicts the Agile Mani-
 principle A2, “Welcome changing requirements, even late in development”, by
ing that not all change is welcome at all times, it provides a framework for han-
hange (or “harnessing” change, as the principle puts it).

AILY MEETING

 agile practice is the daily meeting, also known as the “stand-up meeting” and as
ily scrum”. Stand-up because one of the original ideas was to make sure the meet-
es not last long — fifteen minutes is the standard — by requiring everyone to
 this requirement is impractical and usually not applied. Scrum because many
 use some approximation of the version fine-tuned by the Scrum method.

 rationale for meeting at the beginning of every workday is the general agile
le that direct contact is critical to project success. It meets here with the just as
l agile distrust of heavy processes and such waste-inducing practices (think
) as long meetings. Hence the emphasis on both frequency and strict time limits.
ethod insists in particular on what a daily scrum is not: it is not intended to solve
ms or engage in deep technical discussions. Its focus is precisely defined:
ring the “three questions”. What did you do on the previous working day? What
u do today? Any impediments?

 first two questions give the team the opportunity to catch up with each other on
gress of the project and its immediate future. They also help ensure that team

ers make realistic commitments and fulfill them, since today’s answer to the sec-
estion, the promise, will meet tomorrow’s answer to the first, the reckoning. As

writes, the exercise is not a status update where a boss finds out who is behind
le, but an opportunity for team members to make commitments to each other.

he third question, an impediment is any obstacle that stands between a team mem-
 the realization of his stated goals. There are technical impediments, such as prob-

?

← “Iteration
length”, page 71.

← Page 50.

→ “Impedi-
ment”, 8.12,
page 129.
ith hardware or software products, and organizational impediments, such as the
e of a team member whose input is needed. The meeting should remove the

92

imped
ity for
key re

As
the pu
projec
nical d
the per
manag

• Rem
lim
not
to u

• If a
rate

The id
tion of
to the
distrib

• Set
for
it c
“Th

• Fle
ent
on d
abil

• Tim
hai
ple

• Me
sion
sep
can
abl
wh
cus

• Len
15
AGILE PRACTICES: MANAGERIAL §6.2

iments when possible in the short time imparted, and otherwise assign responsibil-
removing them. In Scrum, more specifically, removing impediments is one of the
sponsibilities of the Scrum Master.

emphasized by agile authors, one should be on the alert for practices that distort
rpose of the daily meeting and threaten its effectiveness. The two main threats are
t members who go off into digressions, and the temptation to engage in deep tech-
iscussions. Once you are aware of these risks, it is relatively easy to fend them off;
son in charge of enforcing good practices — in a traditional approach the project
er, and in Scrum the Scrum Master — can:

ind the ramblers to be concise; a more indirect technique is to enforce the time
it even (or especially) if this means that some people do not get to speak. It should
 take more than one or two experiences of that kind for those who spoke too long
nderstand that they are the ones at fault. If it does, the team truly has a problem.

 technical discussion takes off on its own, intervene and suggest holding a sepa-
 meeting.

ea of the daily meeting, with its focus on the three questions and the strict limita-
 scope and duration, is brilliant. As with other agile ideas, you can stop listening
advice when it becomes dogmatic. Some circumstances, such as geographically
uted projects, naturally lead to variations over the basic scheme:

up time. A 15-minute meeting is fine for a resident team but generally not effective
a distributed team. Even with good technology and an experienced group of people,
an take a few minutes (“Can you hear me?”, “Let’s switch from Skype to WebEx”,
e video conference room is still occupied ”) to get down to business.

xible working schedules. In many organizations, some employees come in at differ-
times or occasionally work at home. Such practices contradict the agile insistence
irect personal communication, but they have other justifications, such as the desir-
ity of a “sustainable pace”, and companies may legally be required to allow them.

e zones. Consider a group with some members in California and others in Shang-
. 7 AM for the former means (in the winter) 11 PM for the latter. You can ask peo-
 to be up late once in a while, but not every day.

eting inflation. While there are good reasons for moving deeper technical discus-
s to a separate meeting, they should be balanced with the overhead of organizing

arate meetings (“Let’s discuss this on Tuesday afternoon — Tuesday I am not here,
 you make it Wednesday at 10? — Yes, but I think the meeting room is not avail-
e” and so on), plus the context-switching time (the time for everyone to remember
at it was all about). Sometimes when an issue can be solved by a 20-minute dis-
sion it is just as simple to have that discussion then and there.

?

← “Work at a
sustainable
pace”, 4.4.3,
page 56.
gth variability. There is no reason to use the same limits regardless of team size.
minutes may be fine for a group of five people and too short for ten.

§6.3 P

A distr
over s
accept
They h

• The
pro
eac
tion
the
me
me
ove
niz
scre

• In c
a li
bet
min
the
just

This p
softwa
straint
adapte
ern co
princip
ing it a

6.3 P

The ne
toughe
system
Progra
is only
consis

The
finer l
sophis
we wi
does n
LANNING GAME 93

ibuted team I know, which works across three continents and has honed its process
everal years, has two weekly meetings, Monday and Thursday, at a time that is
able in all time zones affected. Both last one hour for the reasons just mentioned.
ave complementary goals:

 Monday meeting is developer- and deadline-based. Its purpose is to check
gress towards the next deadline. It is run in the spirit of a Scrum daily meeting:
h member of the team presents his or her current status based on the “three ques-
s”. Since it uses a full hour, technical discussions are not prohibited as long as

y remain short; anything that requires deeper analysis is moved to the Thursday
eting or some other medium (such as an email discussion, or an extraordinary
eting). The team long ago learned to make good use of the available time and never
rruns the one-hour limit. There is no agenda for those meetings; they are orga-
ed around the task list, a shared document that everyone can consult (through
en sharing) during the meeting.

ontrast, the Thursday meeting is agenda-based; it is devoted to the discussion of
st of issues collected in advance by the meeting secretary (a task that rotates
ween members of the group). Its decisions are recorded as “action items” in the
utes (produced in real time during the meeting), and copy-pasted to the agenda of

 next meeting so that the first matter of the day is to check what has been promised,
 as in a daily meeting.

articular formula, obtained by trial and error (as well as reading agile and other
re books) works well for that particular group. A team subject to different con-
s will fine-tune its own variant of the daily meeting idea. Freed of dogmatism —
d in particular to the multi-site, flexible-personal-schedule working style of mod-
mpanies — that idea, particularly its focus on the “three questions”, is one of the
al contributions of the agile school. Some day, the whole industry will be practic-
nd not even conceive that anyone could ever have been working otherwise.

LANNING GAME

xt two practices to be reviewed (in this section and the next) address one of the
st challenges of software management and development: estimating the cost of a
 to be developed, or part of that system. The planning game comes from Extreme
mming, the planning poker from Scrum. Cost estimation, the goal in both cases,
 a subset of what “planning” normally covers; but this limited scope of the term is
tent with the rest of the agile creed, which does not like the idea of upfront tasks.

 unit of estimation has traditionally been a unit of work: person-month or, at a
evel of granularity, developer-day (one programmer working for one day). More
ticated metrics have been developed recently, in particular the story point, which → “Story

points”, 8.4,
ll study in the discussion of artifacts. The discussion in this section and the next
ot depend on the particular metric used.

page 121.

94

The
and lo
maxim
actors
and de
time to
elemen

• Cus
in a

• Dev

In play
tiation
termin
cost th
varian
of a pr

6.4 P

Scrum
how to
on the

The

• Rel

• Avo
from

A sequ
again)

I he
Con
bril
Tro
sinc
just
cop

If estim
some s
the val
differe
estima
AGILE PRACTICES: MANAGERIAL §6.4

 XP planning game is a “game” not in the sense of a competition, with winners
sers, but in the game theory sense of a cooperative game, where two actors try to
ize different criteria and seek an optimal compromise between them. The two
are “business” and “development” in Beck’s term, or more simply the customer
veloper groups. The customers seek to maximize functionality and minimize the
 obtain it. The developers understand the difficulty level associated with every
t of functionality, and the incompressible time that it requires. In the game:

tomers define the respective priority of a set of functionality elements — defined
gile style as user stories — for a project, or a particular iteration.

elopers estimate the cost (person-days) of implementing each story.

ing the game, the two groups perform these tasks repeatedly, engaging into nego-
 over the estimates. Customers sort the stories on the basis of priority. The game
ates when the two sides have agreed to select the highest-priority tasks with a total
at fits within the time allotted for the release and the number of developers. In a
t of the game, the result is not so strictly tied to a release cycle but simply consists
ioritized list of user stories.

LANNING POKER

’s planning poker is another approach to the same problem as XP’s planning game,
 estimate the cost of user stories in advance. Again the discussion does not depend
 choice of measurement unit, such as developer-day or story point.

 two ideas of planning poker are to:

y on the collective judgement of a panel of estimators, iterating until they agree.

id pointless haggling over small differences by forcing the values to be taken
 a sequence of clearly distinct values.

ence of values satisfying the last criterion is the Fibonacci sequence: 0, 1 (and 1
, 2, 3, 5, 8, 13, 21, 35, …

ar you: that is not the Fibonacci sequence! Indeed. The last number cited should be 34.
gratulations on your mathematical sophistication! But one agile consultant has had the

liant business idea of producing and selling a deck of planning-poker playing cards.
uble is, copyrighting the Fibonacci sequence is kind of hard, since it has been around
e something like 1202 in Italy (and a couple of millennia earlier in India). Not to worry:
 change one of the values. Not exactly as I did above — I am far too scared of a
yright infringement suit! — but you get the idea.

ates are done in person-days, the second value is sometimes replaced by 0.5 since
imple user stories may be implementable in less than a day. What matters is that
ues differ sufficiently to avoid the estimators getting into a fight over insignificant

nces, such as whether a particular task will take 11 or 12 days; the aim is rough-cut
tion rather than exactness.

§6.4 P

Som
“T-shi
includ
mation

The
other
expert
in use
crowd
the bes
reachin

The

1 So

2 Th

3 Ev

4 Th
yo

5 If
(T

6 If
fo
ma

7 If
wi
an

Cohn s

Tea
mo

withou
backed
sure. I
from th
gant. T
you ar
damag
but is u
and th
LANNING POKER 95

e variants of planning poker rely on an even smaller set of choices, in particular
rt sizing” which offers five values from X-small to X-large. Most variants also
e the value “?” for the benefit of an estimator who feels there is not enough infor-
 yet to propose an answer.

 panel of estimators is the development team, including the product owner and
customer representatives as appropriate. It applies a form of the “Delphi”
-consensus decision method, which originated with the US military and has been
for decades. It is also influenced by the more recent concept of “wisdom of the
s”, according to which a group can collectively reach a better decision than even
t individual experts in its midst. The goal is to arrive at a consensus, but to avoid
g it through the intimidation of outlying thinkers by the initial majority.

 process for estimating the cost of a functionality element involves the following steps:

meone, typically the product owner, describes the feature.

e participants discuss it and ask questions as needed.

ery participant privately picks an estimate, from the preset sequence of values.

e choices are revealed. This where the process gets its name: as in a game of cards,
u show your hand only when asked.

the values agree, the process stops for this item and the common estimate is retained.
his is where it is important to have widely separated values in the sequence.)

the values are not identical, a discussion takes place, with each member arguing
r his or her choice. Then the process is repeated from step 3, on the basis of infor-
tion gained in the discussion.

the process does not converge quickly enough to a common value, the participants
ll have to abandon it and discuss what else to do, such as getting more information
d postponing the estimation to a later date.

tates that

ms estimating with Planning Poker consistently report that they arrive at
re accurate estimates than with any technique they’d used before

t, however, citing actual studies. My own experience, also individual and also not
 by studies, is less thrilling. The problem I have seen is the power of majority pres-

f you are truly an expert and you come up with an estimate that is widely different
ose of the rest of the group, it is difficult to argue for long without appearing arro-
o preserve group harmony you are naturally led to give up — at least if you know
e not yourself going to get the task of implementing the item. This outcome can be
ing to the project, especially when the expert knows how hard some task really is

[Surowiecki
2004]

[Cohn site].

?

nable to convince the rest of the group, which has not performed such work before
inks it will be a breeze.

96

6.5 O

All ag
tatives
as an e
chapte

6.6 O

Agile m

Ma
lead p
the mo
examp

Clo
role of
is a typ

Use
com
Wh
Sile
con
ind
wor

In the

• The

• Dev
pro
be a

• The

• A q

Many
reotyp
freque
the nee

Ind
agile c
from s
It is im
AGILE PRACTICES: MANAGERIAL §6.5

NSITE CUSTOMER

ile methods, as we have seen, recommend involving customers or their represen-
 in the project. XP in particular has the notion of an “active customer”, also known
mbedded customer. This practice is mentioned here as a reminder since an earlier
r discussed the corresponding roles: “customer” and “product owner”.

PEN SPACE

ethods put considerable emphasis on the physical organization of the workspace.

ny development teams traditionally use, at least in the US, private offices for the
eople and cubicles for everyone else. (Cubicles are less common in Europe, and
re extreme formats are incompatible with local labor laws; some countries, for
le, require providing every office worker with access to daylight.)

sed offices and cubicles are anathema to agile development. Because of the core
 communication, it is a tenet that developers should work in an open space. Here
ical exhortation:

 open working environments. Such environments allow people to
municate more easily [and] get together, and facilitate self-organization.

en I walk into open areas, I can immediately tell how the team is doing.
nce is always a bad sign. I know that people are collaborating if I can hear
versations. When I enter a cubicle environment, there is often silence
icating an absence of interaction. Cubicles are truly the bane of the modern
kplace. They quite literally keep people apart and break teams up.

recommended agile layout:

 development area is a large room.

elopers are seated at desks not too far from each other. If the team practices pair
gramming, there will be two developers at each desk, but in any case people should
ble to hear conversations at neighboring desks and spontaneously join them.

 walls are largely covered with whiteboards to support technical discussions.

uiet meeting room is available for technical meetings.

developers, in my experience, like this kind of arrangement, contradicting the ste-
e of programmers as inward-looking nerds. Many does not mean all; witness the
nt practice of wearing noise-reduction headphones. Some agile authors recognize
d for occasional isolation, “cones of silence” in Cockburn’s terms.

eed, while the basic idea is sound, and cubicles deserve all the scorn they get from
ritics, it would be nice if everyone would follow Cockburn’s example and refrain

← Chapter 5,
particularly 5.2
and 5.5.

[Schwaber
2002], page 39.

[Cockburn
2003].

?

weeping absolutes. Open spaces are not the solution for all people and all times.
possible to take Schwaber’s “Silence is always a bad sign” as a serious statement.

§6.7 P

Sof
part, w
sation”
is a tim
their th
walkin
world

We
meetin
system
of the
accept
gently
start h
that he

The
terer m
but ma
ment t

If s
everyo
experi
write,
who is
jumps

The
the na
(althou
design
of the

The
often w
cumsta

6.7 P

Agile
familia
a short
are not
princip
ROCESS MINIATURE 97

tware development is a challenging intellectual activity. There is the engineering
hich often requires “communication”, “collaboration”, “interaction” and “conver-
, and the research part, which is in many respects akin to doing mathematics. There
e for talking, and a time for concentrating. Some people think best by explaining
inking to someone else, pair-programming style; some people think best while
g (like Napoleon); and some people think best by shutting themselves off from the
for a while. Most people think best by alternating between various models.

 have all met instances of the shy, introverted programmer who stays silent during
gs and one morning comes in with an impeccably designed and implemented sub-
, which all the “conversations” in the world would never have produced. It is part
respect due to programmers (as advocated forcefully in the Crystal method) to
 that people are different and not to force a single scheme on them. Sure, you can
 nudge the silent genius, once in a while, to communicate a bit more. But if you
arassing him by enforcing a communicate-at-all-costs policy, all you will get is
 will soon take his talents to a more accommodating environment.

 gentle nudging, by the way, may have to apply to both sides. An incessant chat-
ay fulfill the agile ideal of “valuing interaction”, as the Agile Manifesto has it,
y become a serious obstacle to the project’s progress, and deserve an encourage-
o stop talking and produce something for a change.

ilence is “always a bad thing”, what of the reverse situation: a workplace where
ne is babbling all the time? It is just as alarming. A healthy environment, in my
ence, is one in which sometimes people talk and sometimes they silently read, or
or just think. When “walking into” a development space and seeing a programmer
 just staring at the ceiling, only a naïve (and mean, and incompetent) manager
to the conclusion that the programmer is wasting the company’s money.

 need for flexibility comes not only from developers’ personality traits but from
ture of the tasks at hand. Requirements definition calls for lots of interaction
gh even here quiet thinking, to classify and abstract information, is essential);

 and implementation call for lots of thinking (although even here communication,
kind advocated by agile methods, is essential).

se reservations do not affect the essential soundness of the agile view: open spaces
ork well. Just do not turn the idea into a dogma. Different people, different cir-
nces and different times during projects call for different solutions.

ROCESS MINIATURE

training frequently uses a technique that Cockburn calls “process miniature”: get
r with a proposed software process by applying it to some non-software tasks over
 period, such as a day, an hour or even less. Scrum tutorial sessions, for example,

[Cockburn
2005], page 91.
orious for asking participants to design paper planes by applying the Scrum roles,
les and practices. Throwing the planes around is great fun.

98

Pro
appear
team. O
ous iss
Buildi

6.8 IT

A num
“daily

At
iteratio

1 An
co
sta
ne

2 An
fo

3 Th

Consp
memb
cross-f
of the

The
will be
sents a

The
from t

The
such a
into pl
implem
mation

To
(eight
for dec
AGILE PRACTICES: MANAGERIAL §6.8

cess miniature can be a good way to visualize techniques that might otherwise
 abstract, and understand the dynamics of group interaction in a self-organizing
ne should not forget, however, that it is just a simulation, and that the most seri-

ues, technical and personal, will only materialize in the thick of a real project.
ng paper planes is not quite the same as building planes.

ERATION PLANNING

ber of agile practices take the form of regular meetings. We have already seen the
meeting”, but there are others, codified in particular by Scrum.

the start of an iteration (a sprint in Scrum) there should be a meeting to plan that
n. The meeting should produce three main outcomes:

 iteration goal, describing what the team plans to achieve in the iteration,
ncisely — a sentence or two — and in terms understandable by ordinary
keholders. A typical example (assuming a compiler project) is: implement the
w functional-language extensions.

 iteration backlog: the list of tasks to be implemented. This outcome is primarily
r the internal benefit of the team.

e list of acceptance criteria for each task.

icuously absent from these goals are: the assignment of tasks to individual team
ers, which will be done at the “last possible moment” according to the rule of
unctionality; and a list of testing tasks, since testing is done continuously as part
implementation of user stories, not as a separate activity.

 meeting is primarily reserved for the team and the product owner. As the team
 responsible for implementing the backlog in the allotted time, the result repre-
 commitment on its part, normally ruling out the participation of observers.

 definition of tasks (outcome 2 above) is a two-step process: select user stories
he backlog for the entire product; then, decompose each of them into tasks.

 process also requires estimating the cost of each task. This is where techniques
s the planning game and planning poker, discussed earlier in this chapter, come
ay. Because the team is in the best position to size up tasks that it will have to
ent, the product owner may at times be asked to leave the meeting while this esti-

 is in progress. Disagreements may imply repetitive application of the process.

avoid endless discussions, the meeting has a time limit, generally a single day

?

← “Members
and observers”,
5.4, page 82.
hours), sometimes split into two parts, one for selecting user stories and the other
omposing them into tasks.

§6.9 R

6.9 R

The re
beginn

In t
ular to
achiev

Suc
good o
a sepa

6.10

A sprin
a view
what w
if this

Wh
Scrum
meetin
(Scrum

6.11

Basic a
arises
is know

a d

except
week i

The
two w

• Inte

• Dep

Regula
API ch
in adv
EVIEW MEETING 99

EVIEW MEETING

view meeting mirrors, at the end of a sprint, the planning meeting performed at the
ing. Its purpose is to assess what has actually been done.

he meeting, the development team presents to outside stakeholders, and in partic-
 the product owner in Scrum, the results of the sprint. It discusses what has been
ed, and not, against the original goals, cost estimates and acceptance criteria.

h a review meeting is focused on results, not process. An end of sprint is also a
pportunity to reflect, beyond what has been done, on how it was done. In Scrum

rate meeting is reserved for that purpose: the retrospective.

RETROSPECTIVE

t retrospective reviews what went well and less well during the latest sprint, with
 to identifying what can be improved for the next one. The purpose is similar to
e find at level 5, “Optimizing”, of the CMMI: integrating into the process (even

word is not welcome in agile circles) a feedback loop so that it can improve itself.

ereas a review meeting requires the presence of the product owner (or, outside of
, other stakeholders representing the viewpoint of the customer), a retrospective
g is inward-looking and hence should primarily include the team and coach
 Master), although the product owner may attend.

SCRUM OF SCRUMS

gile techniques are intended for small teams, up to about 10 people. The question
of how to scale up to larger projects. The Scrum answer is worth studying here. It

n as a “scrum of scrums”, defined as

aily scrum consisting of one member from each team in a multi-team project.

 that “daily” is according to Larman too high a frequency; two or three times a
s enough.

 challenge confronting scrums of scrums is coordination. It manifests itself in
ays:

rface changes.

endencies between sub-projects.

r meetings are an effective way to address the first problem; if you make sure that

← “CMMI in
plain English”,
3.6.1, page 44.

[Schwaber
2004], page 44.

[Larman 2010],
page 200.

?

anges that can break client code are clearly publicized (and, if possible, discussed
ance), you avoid a serious source of trouble.

100

On
should

Bef
min
are
onl

Quite
of the
that is,
the ag
examp
issues.
a smal

6.12

We en
could a
the sam

In m
specifi
change
does n
ity: wh
not res
enforc

A m
we
sub

6.12.1

Individ
sible fo
in the e
sions (

Ind
agilists
system
of the
and ba
team)
not da
AGILE PRACTICES: MANAGERIAL §6.12

 the second problem, the best agile answer that I have seen is that dependencies
 be avoided. According to Schwaber:

ore a project officially begins, the planners parse the work among teams to
imize dependencies. Teams then work on parts of the project architecture that
 orthogonal to each other. However, this coordination mechanism is effective
y when there are minor couplings or dependencies that require resolution.

true; dividing the project into “orthogonal” parts works only if the complexity is
additive kind. But of course a large project is usually large because it is truly —
 multiplicatively — complex, and then the dependencies will be tricky. Although
ile literature claims that Scrum, XP and other methods can scale up, and gives
les of successful large projects, it provides little guidance on how to tackle the
 As described in its own texts, the agile approach mostly targets projects involving
l group of developers.

COLLECTIVE CODE OWNERSHIP

d this review of management-related agile practices with an agile prescription that
lso be classified as a principle, although it enjoys neither the same importance nor
e general application as the principles of the previous chapter.

any projects every software module or subsystem is under the responsibility of a
c person. A typical comment in dealing with teams at Microsoft is “If you want to
 something to that API, you will have to convince Liz, she owns that piece”. She

ot “own” it in the sense of intellectual property but in the sense of technical author-
o decides whether to accept a request for change. Code ownership in that sense is
tricted to commercial software: many open-source projects, such as Mozilla, also
e a similar model, where:

odule owner’s OK is required to check code into that module. In exchange,
expect the module owner to care about what goes in, respond to patches
mitted by others, and be able to appreciate code developed by other people.

 The code ownership debate

ual code ownership has clear benefits: someone is in charge, and will feel respon-
r ensuring the consistency of the software and its integrity. One of the worst risks
volution of a software system is a general degradation due to inconsiderate exten-
“creeping featurism”); having a clear point of responsibility helps avoid it.

ividual code ownership can have negative consequences as well, emphasized by
 and in particular by proponents of Extreme Programming: balkanization of the
, where each part of the code becomes a little fiefdom; concentration in one person

expertise about each part of the system, raising a serious risk if that person leaves;
rriers to change, as the owner of a particular element (even if still a member of the

[Schwaber
2004], page 44.

← “Additive
and multiplica-
tive complexity:
the lasagne and
the linguine”,
page 63.

[Mozilla mod-
ules].
may not be available or willing when others need a change, or they may simply
re to ask.

§6.12

XP

Any
is w
now

This st
book,
of any

Bot
ming,
burn, p

XP
on

This re
reason
arbitra
may h
comm
less m
entry,
Progra

The

Mo
me

In asse
tions i
issue.
of a ch
stand,
more s

[If]
del
like
tha

Indeed
config
examp
it. Goo
is com
icy. Af
option
progra
COLLECTIVE CODE OWNERSHIP 101

 promotes collective code ownership:

one on the team can improve any part of the system at any time. If something
rong with the system and fixing it is not out of scope for what I’m doing right
, I should go ahead and fix it.

atement is in fact more nuanced than its predecessor in the first edition of the same
which stated that “anybody who sees an opportunity to add value to any portion
 code is required to do so at any time”.

h versions surprisingly ignore the role of another core XP practice, pair program-
studied in the next chapter. In the actual application of XP as described by Cock-
air programming does temper the free-for-all:

 has a strong ownership model: Any two people sitting together and agreeing
it [the change] can change any line of code in the system.

striction seems to be the minimum needed for making collective code ownership
able. Even in a competent and self-organized team, it would be dangerous to allow
ry changes without involving at least a second pair of eyes. The free-for-all policy
ave made the success of Wikipedia, but only with safeguards such as a vigilant
unity of millions of editors and thousands of administrators, and with generally
omentous consequences. (A mistyped digit in the population figure for the Duluth
even if it takes a few hours before someone detects it, should cause no tragedies.
m bugs are a serious matter.)

 Crystal method takes a more moderate attitude:

st of the Crystal projects I have visited adopt the policy “change it, but let
know”.

ssing the possible policies — personal ownership, collective ownership, and solu-
n-between — it is important to note that preserving correctness is not the only
Agile methods require running the regression test suite regularly; so if as a result
ange-by-all policy someone messes up code that he does not completely under-
there is a good chance that the problem will be caught right away. A potentially
erious problem is degradation of the code, as described by Cockburn:

 everyone is allowed to add code to any class, [then] no one feels comfortable
eting someone else’s code from the increasingly messy class. The result is […]
 a refrigerator shared by several roommates: full of increasingly smelly things
t almost everyone knows should be thrown out, but nobody actually throws out.

 a question more important than code ownership is change control. With modern
uration management tools it is possible to enforce specific rules automatically; for
le you may prohibit committing a change unless at least one other person approves
gle has such a rule. A more formal version requires a review of the code before it
mitted; it is known as RTC, “Review Then Commit” and was Apache’s initial pol-
ter complaints in 1998 that it was too constraining, Apache introduced the CTR

[Beck 2005],
page 66.

[Beck 2000],
page 59, empha-
sis added.

[Cockburn
2005], page 216.
Emphasis in
original.

Same reference
as above.

?

Again from the
same place.
, “Commit Then Review”, tempered by the possibility — seldom used but keeping
mmers on their guard — of veto by any approved committer.

102

Eve
somew
and too
should
the com
prescri

6.12.2

The ex
viewed
availab
able; a
teams:
narrow

Arg
and ag
jealous
unavai
require
ists to
disturb
able to

The
ing ag
times
run-of
develo
next ta
one on
craftin

AGILE PRACTICES: MANAGERIAL §6.12

ry project should define its policy on this fundamental issue of change control,
here between the extremes of too much freedom, leading to code rot and bugs,
 much restriction, leading to an ossified process. The decision on code ownership

 follow from this more fundamental policy, and also depends on other aspects of
pany’s or open-source project’s culture. Once again a one-policy-fits-all rule, as

bed here by Extreme Programming, does not survive objective analysis.

 Collective ownership and cross-functionality

treme suggestion of letting anyone change anything becomes less surprising when
 in light of another common agile practice: assigning the next task to the next
le developer. Such an approach can only work if the developers are interchange-
nyone can work on anything. This is the agile assumption of cross-functional
 developers should remain generalists about the project, and not specialize in a
 area.

uments for and against cross-functionality are pretty much the same as those for
ainst individual code ownership. The risks of specialization are the emergence of
ly defended fiefdoms, and the dependency on individuals who may leave or be
lable when the project needs them. On the other hand, a complex project will
 highly focused competence in specific areas; it is inefficient to ask non-special-

handle tasks in such an area, for which they will either botch the job or repeatedly
 the expert. It is usually more productive to wait until that expert becomes avail-
 do the job himself.

 application domain has a considerable influence on this discussion. When read-
ile discussions, such as the recommendation of cross-functional teams, I some-
have the impression that they are all based on consultants’ experience with
-the-mill commercial developments for customers. In areas of advanced technical
pment, specialization is inevitable. If you are building an operating system and the
sk involves updating the memory management scheme, you do not ask just any-
 the team. You ask the person who has devoted the last five years of his life to
g the memory manager.

← “Cross-func-
tional”, 5.3.2,
page 81.

?

7

Ag

Beyon
conseq
spondi

You
many
Scrum
gramm

The
ing co
ideas a
cussed
the sof

7.1 D

Integra
so far,

His
Worse
approa
the sta
projec
tive pa
or atte
produc
nents b

B. Meye
© Sprin
ile practices: technical
d the management-oriented practices of the previous chapter, agile principles have
uences on the techniques of software development. We now review the corre-
ng practices.

 may have noted a strong Scrum presence in the preceding chapter; in contrast,
of the practices below come from XP. The distribution of roles is understandable:
 is to some extent a generic management methodology, XP was designed by pro-
ers for programmers.

 number of techniques in this chapter is not large; indeed many of the most strik-
ntributions of agility are on the project management side, and relatively few core
re software-specific. But some of them are important, especially the last one dis-
 in this chapter, test-first development, which has already had a profound effect on
tware industry.

AILY BUILD AND CONTINUOUS INTEGRATION

ting a software project means taking the components of the software as written
 compiling them together and running the tests (the regression suite).

torically, large projects often had a long iteration cycle, of weeks or months.
 than its duration is the nature of the process, which we may call the Big Bang
ch, with the qualification that in software the Big Bang appears at the end, not at
rt as in physics. In the traditional process, the various members or groups of the
t would go off on their own at the start of a cycle, and start working on their respec-
rts. At the end of that cycle they would bring everything together (the Big Bang),
mpt to. Predictably — well, predictably if you have tried it once — such an attempt

es tears and blood. It is remarkable how quickly assumptions diverge and compo-
ecome incompatible.

r, Agile!, DOI 10.1007/978-3-319-05155-0_7,
ger International Publishing Switzerland 2014

104

Tw
have c

• Sta
ver
nen
A c
ma
too

• Sof
mo

The m
“daily
workd
submit
manag

Do
gre

The co
celain
traditio
compi
fine, w
lem, h
sustain

It m
fix the
further
ported
out the
make u
suite a

Ag
practic

Inte

Note th
tion; a
own d
to run
bigger
Beck d
tunity
AGILE PRACTICES: TECHNICAL §7.1

o evolutions in the practice of programming, respectively in tools and in methods,
ontributed to today’s much improved situation:

rting with tools such as the venerable “make” and RCS (followed by CVS, Sub-
sion, Git), it has become possible to automate part of the task of putting compo-
ts together and avoiding the awful configuration errors (today’s version of module
ombined with last month’s incompatible version of module B) that have caused so
ny disasters. Since integration also involves running tests, the automated testing
ls discussed later in this chapter also help significantly.

tware projects have increasingly gone to much shorter integration cycles: not
nths or weeks but days or even hours.

ost visible initial step towards shortening integration times was Microsoft’s famed
build”, introduced in the nineteen-eighties. The idea was simple: at the end of each
ay a system is built integrating all changes “committed” (that is to say, officially
ted) by developers; the system is compiled and run on the tests. As a Microsoft
er put it:

ing daily builds is just like the most painful thing in the world. But it is the
atest thing in the world, because you get instant feedback.

re rule of the daily build is what is sometime called the China Shop Rule: in a por-
shop, you break it, you own it; in a software shop, you break it, you fix it. In the
nal Microsoft process, breaking it meant causing the overall system no longer to

le and link; the consequence for the culprit is some badge of shame (paying a $5
earing a goat horn) and, before that, staying at work until you have fixed the prob-
owever late that may be. Such measures do not go well with the agile principle of
able pace, but the idea of immediate check-in and integration remains.

ay have been ground-breaking in the nineteen-eighties to demand that developers
ir code if it kept the system from compiling, but today the expectation goes even
: we also want the regression suite to pass. New developments in tools have sup-
 this evolution. Today’s tools include automatic program builders, which figure
 dependencies between software modules and bring together all the parts that
p a system, as well as regression testing tools that automatically run an entire test

nd report any failed test.

ile rules, particularly in Extreme Programming, go further than the daily build
e. XP recommends “continuous integration”. Beck’s rule is

grate and test changes after no more than a couple of hours.

e emphasis on tests. Many teams, including agile ones, do not follow this injunc-
 daily build discipline is already trying. In addition, integrating too often has its
rawbacks since integration takes time; even if with modern tools you do not need
the build and tests manually, you must still wait for the process to complete. The
 the system and — even for a small system — the more tests, the longer it takes.

Cited in
[Cusumano
1995], page 268.

← “Work at a
sustainable
pace”, 4.4.3,
page 56.

[Beck 2005],
page 49.
ismisses the problem, a bit too offhandedly, by stating that it provides an oppor-
for the programmer pair to discuss long-term issues of the project while waiting.

§7.2 P

The
severa

It is
inte
are
tim

This fo
eviden
quality

The
cess a
period
togeth
have o
mitting
extrem
flicts a

Reg
teams
ment.
fruitfu

7.2 P

Pair pr
when a
itate to
numbe
as cod
come
limelig

The
gramm

Wri

As in o
few co
long. B
the tec
AIR PROGRAMMING 105

 Poppendiecks’ advice on integration frequency is more nuanced. They describe
l strategies: every few minutes, every day, every iteration. They comment that

 not always practical to integrate all of the code all of the time. How often you
grate and test depends on what it takes to find defects… The proof that you
 integrating frequently enough lies in your ability to integrate rapidly at any
e without finding defects.

cus is the right one: it is less important to set an exact duration than to provide
ce that the project has found its pace and in particular maintains the right level of
, as reflected by the number of bugs found at the time of integration.

 Poppendiecks’ observation confirms my own experience that with a proper pro-
nd a focus on quality, integration does not have to happen so often; a weekly
, for example, can work well. What matters is that the team has learned to work
er and to keep constantly in mind, when making a change, what impact it might
n other parts. The developers also run the regression test themselves before com-
 their changes, and in fact throughout the development process, so it becomes
ely unlikely that an integration test fails. With such proactive thinking, real con-
re rare.

ardless of the periodicity of updates, the methodology applied by competent
has changed considerably since the days of Big Bang software project manage-
Agile methods and their emphasis on frequent integration have contributed to this
l evolution.

AIR PROGRAMMING

ogramming is one of the cornerstones of Extreme Programming; in the early days,
gile was largely equated with XP, all discussions of agile methods tended to grav-
wards this provocative idea. It triggered considerable controversy, and also a large
r of empirical studies to assess its effectiveness against traditional techniques such
e reviews. Today pair programming is occasionally practiced (and enthusiasts still
up with new variants such as “mob programming”), but it has retreated from the
ht; other agile practices are considered more important.

 controversy was largely a consequence of XP’s insistence on imposing pair pro-
ing as the sole and universal way to develop programs. Beck wrote

te all production programs with two people sitting at one machine.

ther cases of agile injunctions that industry found, shall we say, a trifle extreme,
mpanies have applied pair programming to “all ” their developments for very

[Poppendieck
2010], page 78.

?

→ “Mob pro-
gramming”,
7.2.3, page 107.

[Beck 2005],
pages 42-43.
ut many programmers have found some dose of pair programming beneficial, and
hnique deserves to be known.

106

7.2.1

The tw
board
uncert
the par

The
improv
ner to

Bec
so tha
cough”

I kn
dist
the
eno
“wo
not
invo
the
team
pho
the
with
suit
clot
and
nov
who
Fift

Comin
pair pr
halve t
duce s

Thi
try, me
everyo
code ta
firmed
in part
right th
sonabl
if these
argum
costs a
AGILE PRACTICES: TECHNICAL §7.2

Pair programming concepts

o partners “paired” should be closely involved in the work, one handling the key-
to compose the program, all the time expressing his or her thought process and
ainties aloud, and the other commenting and correcting. This is a peer process, so
tners should regularly reverse roles.

 advertised benefits include keeping one another on task, brainstorming on
ements, clarifying ideas, holding each other accountable, and enabling one part-

take the initiative when the other is stuck.

k and other XP authors obligingly provide practical advice: “Set up the machine
t the partners can sit comfortably side by side”, “cover your mouth when you
, “avoid strong colognes” and so on.

ow of very few other software engineering texts that discuss personal hygiene. Another
inction of Beck’s Extreme Programming Explained is that it also comes closest, of all
software books I know, to deserving an X rating: “When programmers are not mature
ugh to separate approval from arousal” (arousal helped by the strong cologne?),
rking with a person of the opposite gender can bring up sexual feelings”, which “are
in the best interest of the team” (whether or not they are in the best interest of the people
lved — regrettably, the text does not say). This is indeed about software projects, so
team is what matters: “Even if the feelings are mutual, acting on them will hurt the
”. Just to make sure we understand what is at stake, we are offered an illustration: in a

tograph artfully deferred to the next page in Beck’s book, “the man has moved closer to
woman than is comfortable for her”. Please do not tell my wife, but I turned the page
 trepidation. Some readers will be relieved and others disappointed: the picture is

able for a family audience. The participants are long past eighteen years of age, fully
hed, seen from the back, and separated by a good two inches. Do buy Beck’s challenging
 insightful book, but not for the titillation. This is, however, stuff for a torrid, florid, lurid
el — or script (Hollywood, are you listening?). I am eagerly waiting for the first author
, turned on by the cited paragraph, will write My Pair Lady, The Pair Karamazov or

y Shades of Pair.

g back to less romantic aspects, the reaction of many people who hear the idea of
ogramming for the first time is that having two programmers do the job of one will
he output. To this objection, XP proponents respond that if those two people pro-
oftware that is more than twice as good, then we get a productivity gain, not a loss.

s response is correct. After all, typical productivity figures in the software indus-
asured in SLOC (source lines of code, a metric that everyone criticizes — and that
ne uses), are around 20 SLOCs per person per day. Since writing twenty lines of
kes only a few minutes, the explanation — clear to everyone in the field and con-
 by numerous studies — is that developers spend most of their time on other tasks,
icular on thinking about the code they will write, and correcting code that was not
e first time around. If pair programming truly is a superior process, it is not unrea-

e to expect that the two programmers together will produce more than 40 SLOCs;
 lines are of equal or higher quality, the project benefits. So the trivial productivity

Again by [Beck
2005], pages
42-43.

[Beck 2005],
page 43.
ent against pair programming cannot be sustained without a rational analysis of
nd benefits.

§7.2 P

Em
gramm
a prog
appear
no cur

7.2.2

A mist
mento
trainin
tion, n

The
benefi
disapp
memb
himsel
that m
will no

If y
to turn

The
someo
have th
by the
by the

7.2.3

If mor
duced
in the
roles;
Donize

Suc
in the s
ples, to
anarch
the fat

7.2.4

To ass
remem
enough
AIR PROGRAMMING 107

pirical studies, however, fail to give a resounding answer of support for pair pro-
ing. When assessed against traditional techniques of code review (which subject
rammer’s work to a collective inspection process) and PSP, pair programming
s to give similar results in overall productivity and code quality. “Appears” because
rent study is definitive, but the general trend is clear: no breakthrough here.

Pair programming versus mentoring

ake often made in the industry’s application of pair programming is to use it as a
ring technique by pairing a junior programmer with an experienced one, as a
g experience. Mentoring is a fruitful technique, but its primary purpose is educa-
ot software production.

 naïve manager who hopes to kill two birds with one stone — get the advertised
ts of pair programming, and train the junior programmer in the process — will be
ointed. It is a lose-lose proposition. The junior member will slow down the senior
er, who instead of getting help for the most difficult challenges of the job will find
f repeatedly explaining the easiest parts. And the would-be learner will not learn
uch because the supposed teacher, thinking of the expected result and the deadline,
t explain more than strictly needed.

ou are looking for a good way to frustrate your best developers — possibly even
 them away from development — do try pairing them with greenhorns.

 idea of pair programming is that it is peer programming: you get feedback from
ne who is roughly at your own level of expertise. Mentoring is something else. Both
eir value, but confusing them means you lose on both counts: mentoring distorted

need to produce a serious program will not educate well; pair programming distorted
need to educate will not yield the expected productivity and quality benefits.

Mob programming

e means merrier, why stop at two? Zuill and other XP enthusiasts recently intro-
mob programming, defined as “all the brilliant people working at the same time,
same space, at the same computer, on the same thing”. No more separation of
the team thinks and programs as if it were a single person, like the battalion in
tti’s La Fille du Régiment.

h proposals illustrate how agilists have become one of the most fertile communities
oftware engineering world, a laboratory teeming with new ideas. (For other exam-
o fresh to warrant further analysis in this book, look up “thrashing”, “programmer
y” and “no estimates”.) Some will survive and others not. It is too early to predict
e of this one; the assessment that follows limits itself to pair programming.

Pair programming: an assessment

ess pair programming, as well as many other agile techniques, it is useful to

See [Müller
2005], [Nawrocki
2001]. PSP was
described in 3.6.2,
page 46.

See [Mob site].

?

ber Beck’s immortal words, cited on the previous page: we should be “mature
 to separate approval from arousal”.

108

Ap
ers enj
part of
though
manag
a roun

Wh
to dev
for two

The
data is
is obvi
there i
advan
stance
scienti

The
are dif
they w
want to
be enc
team h
solitud
be tort

It is
danger
intelle
himsel
sands
Berke
though

Not
Coc
each
seem
they

The in
of the

Pai

While
ming f
Scrum
AGILE PRACTICES: TECHNICAL §7.2

plied judiciously, pair programming can unquestionably be useful. Many develop-
oy the opportunity to program jointly with a peer, particularly to deal with a thorny
 an assignment. The basic techniques, in particular the idea of speaking your
ts aloud for immediate feedback, are well understood and widely applied. (As a
er I regularly hear, from a developer, “On this problem I would like to engage in
d of pair programming with X ”, and invariably find it a good idea.)

at is puzzling is the insistence of XP advocates that this technique is the only way
elop software and has to be applied at all times. Such insistence makes no sense,
 reasons.

 first is the inconclusiveness of empirical evidence, noted above. Granted, lack of
 often used as a pretext to block the introduction of new techniques. When an idea
ously productive, we should not wait for massive, incontrovertible proof. But here
s actually a fair amount of empirical evidence, and it does not show a significant
tage for pair programming. Pair programming may be good in some circum-
s, but if it were always the solution the studies would show it. In the absence of
fic evidence, a universal move is based on ideology, not reason.

 second reason, which may also explain why studies’ results vary, is that people
ferent. Many excellent programmers love interacting with someone else when
rite programs; and many excellent programmers do not. Those of the second kind
 think in depth, undisturbed. The general agile view is that communication should

ouraged and that the days of the solitary, silent genius are gone. Fine; but if your
as an outstanding programmer who during the critical steps needs peace, quiet and
e, do you kick him out of the team, or force him to work in a way that for him may
ure?

 one thing to require that people explain their work to others; it is another, quite
ous, to force a single work pattern, especially in a highly creative and challenging
ctual endeavor. When Linus Torvalds was writing Linux, he was pretty much by
f; that did not prevent him from showing his code, and, later on, engaging thou-
of people to collaborate on it. Many more examples come to mind: Bill Joy and
ley Unix, Richard Stallman and Emacs, Donald Knuth and TeX. (On second
t, the idea of forcing Don Knuth to pair-program is brilliant. Someone should try.)

ing that pair programming implies “too much togetherness” for some people’s taste,
kburn proposes “side-by-side programming” whereby two people program separately,
 with a personal workstation, but close enough to see each other’s screen. This setup
s hardly preferable to a classical mode of operation in which people concentrate when

 need to, with as little interference as possible, and talk when they need to.

sistence on pair programming as the only true way has clearly embarrassed some
agile proponents. Larman, for example, draws the line:

r programming is only an XP practice; it is not required in Scrum.

the first comment is an exaggeration (since one finds advocacy of pair program-

 [Cockburn
2005], pages
92-93.

 [Larman 2010],
page416-417.
ar beyond the strict confines of Extreme Programming), the refusal to commit
 to a dogmatic application of pair programming is clear.

§7.3 C

It is
added
decree
fession

7.3 C

Agile
help q

If y
par
eac
cod
on

Coding
tion ha
noting
one ca
teen-se
attemp
mers,
One ca
tion is
Kent B
mark o
involv

Wh
soundn

7.4 R

The ag
succes
elemen

7.4.1

A typi
or alm
places

A t
arate m
represe
ODING STANDARDS 109

 to the credit of XP to have introduced pair programming, explained the rules, and
this technique as an important element of the modern programmer’s toolset. The
 establishing it as the sole answer is uncalled for, and has been rejected by the pro-
 even as it was adding pair programming to its catalog of useful practices.

ODING STANDARDS

methods include the idea that teams should adhere to strict coding standards to
uality. In the original description of Extreme Programming, Beck writes

ou are going to have all these programmers changing from this part to that
t of the system, swapping partners a couple of times a day, and refactoring
h other’s code constantly, you simply cannot afford to have different sets of
ing practices. With a little practice, it should become impossible to say who
the team wrote what code.

 standards are hardly a new idea; every decent software development organiza-
s known for a long time that you need to define precise style rules. What is worth
 in the citation above is the rationale it gives for coding standards: to ensure that
nnot find out who wrote a program. This is an old idea too, introduced in the nine-
venties under the name of “egoless programming”. It used to be criticized as an
t by Dilbert’s-boss types to suppress the creativity and individuality of program-
and it is interesting to see it reappear as part of a completely different ideology.
nnot but be surprised. All this agile emphasis on communication and collabora-

 great, but in the end great programs are written by great programmers (such as
eck). Linux bears the mark of Torvalds, Berkeley Unix the mark of Joy, TeX the
f Knuth, xUnit the mark of Beck and Gamma; no one complains. Even projects

ing lesser mortals naturally assign the most difficult parts to the best programmers.

ether or not one agrees with a particular rationale does not, of course, affect the
ess of the exhortation to apply coding standards.

EFACTORING

ile alternative to upfront design is to adopt a constantly critical attitude towards
sive versions of the program, looking for design and code “smells” (unsatisfactory
ts), and correct them. This process is known as refactoring.

The refactoring concept

cal example of code smell is duplication. It is always bad to have the same code,
ost the same, in two different places in the program: two places to debug, two
 to correct if the need arises, two places to change when requirements evolve.

ypical refactoring to correct duplication is to abstract the commonality into a sep-

[Beck 2000],
page 61.

?

The techniques
of “generaliza-
tion”, intro-
duced in [Meyer
1995], cover part
of refactoring.
odule: in object-oriented programming, move the duplicated code to a new class
nting the common abstraction, and make the existing classes inherit from it.

110

Thi
Progra
case w

Som
change

Mo
change

No
are req

• A r

• A r

The fir
the ref
functio
also ne

Bot
stant-f
routine
be cha
throug
perform

Ens
import
design
routine
exactly
potent
such e
definit

Bec
pler”.
minim

7.4.2

Drawi
effects
becom

As
interes
The m
But ref
AGILE PRACTICES: TECHNICAL §7.4

s change is only one way to remove the duplication and is not always appropriate.
mmers perform refactoring by identifying code smells and finding out in each
hether a known refactoring pattern is applicable and desirable.

e refactorings are less momentous but still useful; for example you may want to
 the name of a feature (method, member) of a class for clarity or consistency.

dern programming environments provide tools for performing refactoring
s automatically.

t every pattern of program change can yield a refactoring pattern. Two conditions
uired:

efactoring must not change the semantics of the program.

efactoring must improve the quality of the code or the architecture.

st condition means that the program should perform in exactly the same way after
actoring as before. Refactoring is neither about bug fixing nor about fiddling with
nality, not even for just improving the user interface. Those kinds of changes are
cessary, but refactoring is only about improving the quality of the architecture.

h the need for refactoring and the role of automated support follow from this con-
unctionality requirement. Even a change conceptually as simple as renaming a
 is not only tedious but error-prone if performed manually, since the name must
nged not only in the routine’s definition but in all of its calls and other uses
hout the program. In other words the advantage of refactoring tools is that they can

 changes not only automatically but also safely.

uring the second above condition requires defining quality for code and, more
antly, architecture. While there is no single, enforceable definition, the software
 literature provides many criteria. It is clear, for example, that a class with just one
, or a deep and narrow inheritance hierarchy (where every non-root class has
 one parent and every non-leaf class exactly one heir, as pictured on the right), are

ial signs of bad quality — design smells. (Tellingly, it is usually easier to point to
xamples of non-quality, also known as “anti-patterns”, than to provide a positive
ion of quality.)

k actually has a more specific condition: a refactoring must “make the design sim-
His notion of simplicity includes no duplication, minimum number of classes and
um number of methods.

Benefits and limits of refactoring

ng attention to the importance of refactoring has been one of the most visible
 of agile methods, and specifically of Extreme Programming. Refactoring has
e one of the principal tools of the modern programmer.

with many other ideas, the positive contribution (“use this technique”) is more
ting than the negative one (“this technique is a replacement for traditional ones”).

← Remember
that by conven-
tion we use
“design” for the
process and
“architecture”
for its result
(page 37).

[Beck 2000],
pages 106 and
109.

?

indset of always looking for possible improvements in an architecture is excellent.
actoring is not an excuse for rejecting “Big Upfront Design”. If you pay no atten-

§7.4 R

tion to
could
able, w

Not
you
con
effo

You
You
tow
Eve
fini

A truly
piler p
mance
units o
by a pl
two m
tricky,
user-v
founda
“small
tifiers.
possib
do dec

Bec
be carr
the del
utes”.
itance
variab

It w
possib
is unfo
As we
means

• Ap

• Com

The ne
EFACTORING 111

 initial design, just building “the simplest solution that could possibly work”, you
end up redoing the design again and again since the initial solution, while work-
as not adaptable. In describing the process, Beck also shows its limits:

 all refactorings can be accomplished in a few minutes. If you discover that
 have built a big tangled inheritance hierarchy, it might take a month of
centrated effort to untangle it. But you don’t have a month of concentrated
rt to spend. You have to deliver stories for this iteration.

 have to take such a big refactoring in small steps (incremental change).
’ll be in the middle of a test case and you’ll see a chance to take one more step
ard your big goal. Take that one step. Move a method here, a variable there.
ntually all that will remain of the big refactoring is a little job. Then you can
sh it in a few minutes.

 “big refactoring”, however, is typically not a sum of small refactorings. In a com-
roject I know, the team uncovered at some point the reason for a major perfor-
 overhead: the compiler was using an expensive data structure to keep track of the
f a system (classes and routines). It came up with a redesign identifying every unit
ain integer instead of an object. This is a big system — thousands of classes, over
illion lines of code — for which such a surgical refactoring is what everyone hates:
 painful changes affecting just about every module of the system, for no new
isible functionality, the only benefits being a speed improvement and a more solid
tion for future developments. If you decide for it, there is no way to proceed by
 steps”; you cannot have one part using integers and the others using object iden-
 You have to accept that nothing happens, for “a month of concentrated effort ” and
ly more. You might find that the result is not worth such a disruption, but if you
ide to go ahead it is all or nothing.

k’s advice is yet another case of unwarranted generalization. Some changes can
ied out incrementally: do a bit here, a bit there, and one morning you wake up to
ightful finding that only a “little job” remains which you can “finish in a few min-
Renaming classes and features for more consistency, locally rearranging the inher-
relations between a few classes, turning an attribute (a field) of a class into a local
le are typical examples. And some changes just cannot be carried out that way.

ould be nice to believe the mantra that starting from “the simplest thing that can
ly work ” and incrementally improving the architecture yields great software. That
rtunately not the case. The old GIGO principle applies: Garbage In, Garbage Out.
 noted in an earlier chapter, refactored junk is still junk. This observation is by no
 an indictment of refactoring. It simply indicates that refactoring works best when:

plied to an architecture that is already sound, although not perfect.

bined with upfront design.

[Beck 2000],
page 107, slightly
abridged.
xt two subsections detail these two points.

112

7.4.3

There
essenti
cannot
essenti
is anot

You
You al
gram y
such li
“print”
ation,

The
But yo
this co
way, a

The
to app
define
makin
a gene
kludge
decide

Thi
depend
archite
switch
Better

To
design
it calls
moted

Un
addres
refacto
tiplica
ments
depend
ble to
AGILE PRACTICES: TECHNICAL §7.4

Incidental and essential changes

are two ways an initial design can lead to an imperfect architecture: incidental and
al. Incidental imperfections can be corrected through refactoring, but essential ones
. Inconsistent naming conventions are incidental; a wrong choice of abstractions is
al. The compiler issue cited above was an example of essential imperfection. Here
her common one.

 have a set of classes describing loosely related concepts, say jobs in a company.
so have lists of objects of these types. Several times as you were writing the pro-
ou realized that you needed some new functionality applicable to all objects in
sts. For example, you wanted to print the contents of a list, so you had to add a
 routine to every one of the classes involved. Then you added an “encode” oper-

to store objects compactly. The next time it was about producing an XML form.

se are functional changes, not refactorings, and you have performed them already.
u feel that more such cases will arise in the future, and you decide to put a stop to
nstant modification of existing classes. (Maybe it will no longer be possible any-
s some of the classes will be moved into a reusable library, not under your control.)

 technical solution is well known: use the Visitor pattern, which makes it possible
ly arbitrary operations to arbitrary instances of a class, where the operations are
d anywhere, not necessarily in the class itself. Adopting this solution requires
g one change to all the affected classes: make them “visitable” by inheriting from
ral VISITOR class with an appropriate update routine. You should also remove the
 code that had been added as a temporary solution, and move it elsewhere. You
 that the long-term flexibility benefit is worth the short-term pain.

s is a significant change. Maybe not a month of work, but at least several days
ing on the number of classes involved and the consequences on other parts of the
cture. For best results it is not desirable to perform it one little step at a time: by
ing contexts repeatedly you may forget the details and introduce inconsistencies.
perform the operation in one sitting.

avoid putting yourself in such situations, there is no substitute for careful upfront
. Even so, it is not always possible to have perfect foresight. When the case arises,
 for an in-depth redesign, not covered by the kind of incremental refactoring pro-
 by XP and other agile approaches.

derstanding the difference between incidental and essential change is key to
sing the issue of software extendibility (changeability), and defines the limits of
ring. The distinction is related to one that we studied earlier: additive versus mul-
tive complexity. In general, a change is incidental when it affects additive ele-
: functionality with few dependencies on other parts of the system. If such

?

See [Gamma
1994], or the
presentation in
[Meyer 2009].

← “Additive
and multiplica-
tive complexity:
the lasagne and
the linguine”,
page 63.
encies exist (multiplicative complexity), the change is essential, and not amena-
simple refactoring.

§7.5 T

7.4.4

Refact
many
best w
upfron

No
respon
vide th
but do
exting

If y
that ta
the wo
as you

Ag
own w
them,

7.5 T

The fin
of the
previe
with it
althou

7.5.1

TDD i
beginn
repetit

That is
base. T

1 Q
2 R
3 M
4 R
5 R
EST-FIRST AND TEST-DRIVEN DEVELOPMENT 113

Combining a priori and a posteriori approaches

oring, cast by agile proponents as an “either-or” technique, has its best use — like
other agile ideas that we review in this book — as an “and” technique. It works
hen combined it with the ideas against which agilists artificially set it, in this case
t design.

 amount of refactoring is going to correct a flawed architecture. The primary
sibility of any designer is to identify the fundamental abstractions that will pro-
e backbone of the architecture. Do it right, and you still have a lot of work to do;
 it wrong and you will end up (choose your metaphor) patching leak after leak,
uishing fire after fire, applying band-aid after band-aid.

ou have an unsound architecture, there is no choice but to recast it, whatever effort
kes. (“If it is baroque, fix it”.) If you have a sound architecture, you are not out of
ods yet because it is probably not perfect, and imperfections will creep in anyway
 refine it. This is where refactoring helps.

ile methods have taught us that we should never lose our readiness to criticize our
ork; we should remain alert to the possibility of design and code smells, identify
and fix them on the fly.

EST-FIRST AND TEST-DRIVEN DEVELOPMENT

al technical practice reviewed in this chapter is a somewhat extreme consequence
central role of tests emphasized by agile approaches starting with XP. The idea,
wed in the discussion of principles, is test-driven development, or TDD for short,
s corollary of test-first development (which we may call TFD for convenience,
gh unlike TDD this abbreviation is not widely used).

The TDD method of software development

s not a testing technique but a full-blown software development method. At the
ing of the book that introduced the idea to its full extent, Beck defines it as the
ion of the following basic cycle:

TDD cycle

uickly add a test.
un all tests and see the new one fail.
ake a little change.
un all tests and see them all succeed.
efactor to remove duplication.

?

See also “User
stories”, 8.3,
page 119 and
“Dual Develop-
ment”, page 74.

From [Beck
2003], page 1.
 it — including at the beginning, when you “add a test” to a still empty project
he process thus defined has four major implications.

114

The
spondi
which
TDD i

The
a time

Wit
add an
then…
tests. T
are no
if it is
becaus
move

The
ples, e
This is
into ha
are it w
the tes
along w
that al

The
It is, ho
forbids
test sh
fail. T
are no
Later o
to be c
test is

Wh
which
expect
autom
ingly, b
facts —
of the
as asse
define
AGILE PRACTICES: TECHNICAL §7.5

 first implication is that you always write the tests before you write the corre-
ng program elements. If we stop there we get TFD (test-first development),
is a subset of TDD — and only a subset, since it omits parts 2, 4 and 5 of the basic
teration.

 second implication is that the process is extremely incremental: one new test at
, exercising one new functionality or one previously unhandled case.

hout step 5 we would have a pure hacking-style process: handle one input value;
other, update the code accordingly; and so on. We might end up with a huge “if…
 elseif… else…” with one branch for every value that has been encountered in the
DD is smarter, of course, and step 5 is key: refactoring. Once the tests run you

t necessarily happy yet; you want to ascertain the quality of the architecture and,
 not good enough — using Beck’s criterion, not simple enough, for example
e it tries cases one after the other instead of unifying them — fix it before you

on.

 fourth consequence is a rule that we reviewed in the discussion of agile princi-
xpressed here as step 4 of the basic cycle: do not move on until all tests succeed.
 the second secret (along with refactoring) to preventing the method from turning
cking. If you make an inconsiderate change just to satisfy the latest test, chances
ill break some of the previous tests, causing a regression. All tests will be kept in

t regression suite, which every step must exercise in its entirety; the suite grows
ith the project, providing an ever bigger guarantee of quality if you apply the rule

l the tests must always pass.

 wording of step 2 may be surprising at first: why should we expect a test to fail?
wever, consistent with TDD as a software development method: since the method
 you from implementing a new functionality before writing a test for it first, a new

ould not be covered by previously implemented functionality, and hence should
he most obvious example occurs at the very beginning of the process, when you
t supposed to have any code written yet; for any test, an empty program will fail.
n, it is in principle possible that a new test would succeed just because it happens
overed by what has already been implemented, but in a strict TDD view such a
not interesting since it breaks no new ground.

at is a test, by the way? TDD only makes sense with modern testing technology,
provides mechanisms for preparing numerous tests, each described by inputs and
ed outputs, and running the whole collection of these tests (the regression suite)
atically. Tools collectively known as “xUnit” — developed in part, not surpris-
y some of the people who also originated XP, and reviewed in the chapter on arti-
 make it possible both to describe the input and to specify the expected properties

result, known as an oracle, in the form of the conditions they must satisfy, known

← “Do not start
any new devel-
opment until all
tests pass”,
4.5.3, page 76.

→ “Tests”, 8.2,
page 117.
rtions. The tools can then automatically run hundreds or thousands of precisely
d tests and evaluate the oracles.

§7.5 T

7.5.2

The T
art in
aspect

The
approa
very b
genera
even m
ence (m

integer

It is
case w
functio
abstrac
observ
line of

An
trary)
new fu

In p
tion of
opmen
new te
TFD):

Thi
one of
EST-FIRST AND TEST-DRIVEN DEVELOPMENT 115

An assessment of TFD and TDD

FD and TDD techniques have made an important contribution to the state of the
software engineering. Let us leave that contribution for last and start with the
s that are more subject to criticism.

 most debatable idea is not explicitly stated in TDD but underlies the entire
ch: it is the assumption that tests are all we need to specify programs. This is a
ad idea. Much of the earlier analysis of why scenarios such as user stories are not
l enough for specification applies here, and indeed more strongly, since tests are
ore specific than user stories. What is missing is abstraction; this was the differ-
entioned then) between stating that f has values 0, 1, 4, 9 and 25 for the first few

s, and telling you that f (n) is n2 for every integer n.

 true that the larger the test suite grows, the more unlikely it becomes that some
ill behave wildly. But unlikelihood is not impossibility, and many software mal-
ns are due to a special case that escaped testing. Writing a specification means
ting from specific cases and looking for general rules. Another way of stating this
ation is to note that one can generate tests from specifications (there is an entire
 software verification research in this direction) but not the other way around.

other aspect of TDD raises questions, but for entirely different (and almost con-
reasons: the requirement that all tests must pass before the team moves on to any
nctionality. The pros and cons of this principle were discussed earlier.

ractice, few organizations apply the strict TDD process in the form of the repeti-
 the sequence of steps described above. The real insight has been test-first devel-
t and, more specifically, the idea that any new code must be accompanied by
sts. It is not even critical that the code should come only after the test (the “F” of

 what counts is that you never produce one without the other.

s idea has come to be widely adopted — and should be adopted universally. It is
 the major contributions of agile methods.

?

← “Express
requirements
through scenar-
ios”, 4.5.5,
page 77.

← “Do not start
any new devel-
opment until all
tests pass”,
4.5.3, page 76.

8

Ag

To sup
of them
tual na
story p
crete a
conclu
nently
debt, w

8.1 C

Code i
cuted a

The
engine
cess of

8.2 T

Along
Progra
concep
tion of

A u
cess o
“xUnit
coincid
as Eric
form o

B. Meye
© Sprin
ile artifacts
port their practices, agile approaches have defined a number of artifacts, some
 concrete such as “story cards”, others virtual, that is to say, of a purely concep-

ture. We start with the main virtual artifacts: working code, tests, user stories,
oints, velocity, definition of done, product backlog. Then we move on to con-
rtifacts: working space, story card, task and story board, burndown chart. We
de with five artifacts, four of them virtual and one concrete, which figure promi-
 in agile discussions, albeit negatively, as pitfalls to avoid: impediment, technical
aste, dependencies, and dependency charts.

ODE

s at the center of the agile universe; specifically, working code, which can be exe-
s part of the system under development.

 emphasis on code is part of the agile quest to shift the conversation in software
ering from processes and plans to the concrete results that matter most to the suc-
 a software project.

ESTS

 with code, tests are the main product endorsed by all agile approaches. Extreme
mming was the approach that rehabilitated tests as a core software engineering
t. Two kinds of artifact are in fact involved here (the latter one made of a collec-
 instances of the former): unit tests and regression test suites.

nit test is the description of a particular test run and its expected results. The pro-
f unit testing has been profoundly reshaped by the appearance of the so-called
” testing tools, such as JUnit for Java. As noted in the previous chapter, it is not a
ence that Beck, the most prominent figure behind XP, was (along with others such

h Gamma) one of the authors of these tools. A unit test in the xUnit style takes the
f a class and includes:

r, Agile!, DOI 10.1007/978-3-319-05155-0_8,
ger International Publishing Switzerland 2014

118

• A r

• Set
for
rest

• An
cee
it d
mig

This st
the sta
projec

The
and
mec
and
used
asse

The re
point i
is that
but als
is kno
throug

The
We ha
is the r
sion te

Agi

confirm
tinuou
more e

The
attract
advoca
the reg
the dis
grow q
AGILE ARTIFACTS §8.2

outine (method) which executes the test.

-up and tear down routines, to prepare for the test and reset the context. It might
example be necessary to open a connection to the database prior to the test and to
ore the database’s original state afterwards.

 assertion, defining the condition (also known as an “oracle”) for the test to suc-
d. Consider for example an operation that processes a request to rent a car and, if
eems it acceptable, sets the variable age to the driver’s age; a test for that operation
ht include the assertion is_accepted implies (age >= 18 and age <= 75).

andardized approach to defining tests has been one of the significant advances in
te of the art in software engineering over the past two decades, including for many
ts that do not specifically use an agile approach.

re is an even better approach. Instead of treating the code and tests as separate artifacts,
 associate assertions with tests only, we may view assertions as a specification
hanism and write them as an integral part of the code, in the form of class invariants
 routine preconditions and postconditions. This is the method of Design by Contract as
 in Eiffel; it also makes it possible to generate the tests automatically from the code and
rtions. All this, however, is for another discussion.

gression test suite is a collection of unit tests. It includes any test that has, at some
n the project, been found to fail. A particular phenomenon of software development
old bugs can reappear (because of version control errors, of incomplete bug fixes,
o simply of continuing to use the same flawed thought patterns). This phenomenon
wn as regression, and part of the purpose of a regression test suite is to avoid it
h the practice of continually running the tests, as part of continuous integration.

re is in fact no reason to limit the regression test suite to previously failing tests.
ve seen that one of the important contributions of agile methods (originally of XP)
ule that every element of code should have at least one associated test. The regres-
st suite includes all such tests. Ambler notes that

lists are at least doing regression testing if not TDD,

ing that the regression test suite is one of the defining agile artifacts, just as con-
s integration is one of the defining agile practices, even for teams that shun the
xtreme ideas such as test-driven development.

 regression suite is a key asset of any well-managed software project. Part of its
ion is that it is a truly incremental product. We have seen that the incrementalism
ted by agile approaches does not always work when applied to development. But
ression suite is incremental by nature; it can start small and, if everyone sticks to

[Meyer 1997];
[Meyer 2009a].

← “Daily build
and continuous
integration”,
page 103.

[Ambler testing].

?

cipline of never adding a piece of functionality without also adding a test for it,
uickly and become a core project resource.

§8.3 U

8.3 U

User s

A u
users.
by Jaco
the pro

A s
user st

“As
pol

Althou

The
that ea
cisely
ular ca
a user
task fo
manag
so as t

The
lookin
the exi
approa
the fol

1 “A
rat
sc

2 “A
fo
ce

Story 2
violati
chases
SER STORIES 119

SER STORIES

tories provide the basic unit of requirements in agile methods.

ser story is the description of a fine-grain functionality of the system, as seen by its
The more general notion is use case, developed extensively in a well-known book
bson. A use case can be big: it describes an entire interaction scenario, for example
cess of ordering an item on an e-commerce site. A user story is much smaller.

tandard style has emerged in agile circles to describe user stories. In that style a
ory consists of a triple: [category of user, goal, benefit]. For example:

 a staff member, I want to cancel a booking so that reasonable requests for
icy exceptions can be accommodated.”

gh some projects impose such a fixed style, many variants are possible.

 flagship property of user stories as a tool for describing system functionality is
ch story describes a unit of functionality from the user’s perspective; more pre-
— since there is no such person as “the user” — from the perspective of a partic-
tegory of users. “Change from a relational database to a no-SQL solution” is not
story. To integrate such an architectural change, you would have to define it as a
r a user story that describes a benefit visible to users, for example “As a marketing
er, I want to create new customer offers without having to fit an existing scheme,
o react more quickly to market opportunities”.

 benefit of relying on user stories as the basis for development is to keep the team
g outward for what customers really want, rather than inward for how to develop
sting code further. But in this very benefit also lies the principal deficiency of the
ch. The size of a user story as implied by its description gives little clue. Consider
lowing two examples, each adding a function to an airline booking system:

s an airline customer, I want to enter a discount code at the end of a reservation
her than at the beginning, so as to avoid having to restart the procedure from

ratch if I did not think of it at the beginning.”

s an airline customer, I want to use the same interface for purchasing a flight and
r booking it by redeeming frequent flyer miles, so as not to have to restart the pro-
dure from scratch if I did not decide at the beginning.”

 is inspired by an anecdote told by Poppendieck, complaining that her airline was

[Jacobson
1992].

?

[Poppendieck
2003], page 127.
On Lean Soft-
ware’s “integ-
rity” see “Lean
Software’s prin-
ng the Lean principle of “integrity” by providing different systems for flight pur-
 and redemption of frequent flyer miles.

ciples”, 9.2.2,
page 134.

120

The
1 is pr
anecdo
story 2
mal th
is the r
we are
ment,
cates t
change
2 as w

The
easily
to allo
tem, to
plex a
merge
to take
model
system
user st
essenti
ticular
tially a

The
exactly
pendie
ries to

It h
do hav
develo
withou
ous, a
user-re
add fu
tree-ba
ing the
week.

In t
ries (an
of test
Higher
risk of
AGILE ARTIFACTS §8.3

se two stories look similar but are of far different complexity. Implementing story
obably a routine task, taking a day at most. Assuming that (as in Poppendieck’s
te) the systems for purchasing a ticket and redeeming miles are currently distinct,
 involves merging these systems and may be a major endeavor. Although it is nor-
at different user stories require different amounts of implementation effort — this
eason for sizing them up in “story points”, as discussed in the next section — here
 talking about efforts of entirely different kinds: one is an incremental improve-
the other a major surgical rework. Expressing both tasks in user-story style obfus-
heir fundamental difference of nature. Even if it never hurts to justify any program
 by a user need, it is more effective to specify the change corresponding to story

hat it is: an architectural redesign.

 lack of such a perspective can lead to brittle designs and useless work. One can
imagine some user stories, in the early days of the airline projects, about the need
w users to redeem miles; these stories were implemented, leading to a separate sys-
 which new user stories were repeatedly added. At some point it became as com-
s the ordinary booking system and someone realized that the two should be
d. The proper approach, to avoid duplication and waste of effort, would have been
 an architectural perspective and realize early on that the airline needed a domain
 covering all its flight reservation concepts, such as purchase and redemption; both
s would have relied on it. Such an approach requires abstracting from individual
ories and the superficial system views they imply, and concentrating instead on the
al properties, which often will lead to working on an architecture first — in par-
 a domain model — that supports many different user stories, those envisioned ini-
nd many others that will emerge later.

 advice to look at the whole problem rather than individual details is, by the way,
 what another of Lean Software’s principles, “See the whole”, is about. But Pop-
ck gives no indication of how this principle might fit with the reliance on user sto-
 guide development. It does not.

as been a significant agile contribution to bring user stories to the forefront. They
e a role — but not the one that agile development assigns to them. As a basis to
pment they lead to piecemeal systems, built to handle one function after the other
t sufficient attention to the infrastructure. True, infrastructure work is unglamor-
nd shunned in agile approaches because it does not immediately bring new
levant visibility. Replacing a relational database by a no-SQL solution does not
nctionality, but may be critical to the scalability of the system. Replacing a
sed data structure by one based on hash tables is even more of a geek thing, leav-
 impatient customer wondering what in the world those developers are doing this
No user story here; and yet it may be a key step for the project.

he same way that a test, or a million tests, cannot replace a specification, user sto-
d use cases) cannot replace requirements and designs. Their unique role, like that

s for specifications, is as a validation mechanism for requirements and designs.

← “The domain
and the machine”,
page 36.
-level requirements have the advantage of abstraction and generality, but run the
 impracticality: of missing cases that are important to users. Listing user stories is

§8.4 S

not a r
that no
suffici

A c
of g
pres
stor
As
of l

As not
applica
often t
ented a
tem —
credit-
ated o
focuse
base a
user-ac
for suc

The
foreve
come
chapte

• Seq
stru
use

• Par

Relyin
not suf
tations

8.4 S

Succes
and m
techniq
of wha

For
this se
TORY POINTS 121

eplacement for writing general requirements, but is an important step to make sure
thing has been forgotten. They describe particular walkthroughs that, while not

ent to describe the system, are necessary if the system is to succeed.

olleague of mine was once asked to consult on a fancy new computer architecture, full
reat concepts, object-oriented and all. His first reaction after hearing the enthusiastic
entation by the designers was: very impressive, thanks, but how do I do a load and a
e? These are typical user stories. As checks on a proposed system, they are invaluable.
a way to build the system (who would devise a new computer architecture on the basis
oad and store?), they are insufficient.

ed in the earlier example, user stories detract from the task that is critical for all
tions, and particularly for the kind of business application that agile development

argets: building the domain model. The domain model is (assuming an object-ori-
pproach) a set of classes covering the fundamental concepts of the envisioned sys-
 flights and frequent flyer miles, employees and paychecks, customers and

cards, paragraphs and fonts, phone calls and text messages… — with the associ-
perations and relations (inheritance, client) between them. The domain model is
d on the business aspects of the system, not computer-only aspects such as data-
ccess and user interfaces. As a result, building a domain model does not deliver
cessible functionality; a solid domain model will, however, serve as a backbone
cessful system development.

re can be too much of a good thing: the risk exists of fine-tuning the domain model
r and neglecting that users need visible functionality. This is where user stories
in, as a reality check. The dual development technique introduced in an earlier
r has its role here, enabling us to mix the approaches in one of two ways:

uential: give the priority to the domain model in the first phase of system con-
ction, so as to establish a solid basis, then move to a focus on regular delivery of
r-visible functionality, informed by user stories.

allel: work at the same time on both aspects, constantly informing one by the other.

g exclusively on user stories as the source of requirements, on the other hand, is
ficient for the design of solid systems. This narrow focus is one of the main limi-
 of agile methods.

TORY POINTS

sful project control requires both estimation of effort, in advance of an iteration,
easurement of progress, during the iteration and at the end. We saw estimation
ues in the discussion of the planning game and the planning poker; measurement
t actually happens once the project has started is just as important.

← “Dual
Development”,
page 74. See
also “Combin-
ing a priori and
a posteriori
approaches”,
page 113.

← “Planning
game”, 6.3,
page 93; “Plan-
ning poker”,
6.4, page 94.
 both estimation and measurement, teams need units of progress. The artifacts of
ction and the next provide the basic agile answer.

122

Tra
This m
determ
is spen
ents co
long!”

“So
measu
proxy
future
venien
them.
means

A g
ual fun
always
data ab

In t
of spec
since t
integer

The
projec
others

The
esti
sch
ind
you

(Cohn
a-poste

Sto

• As
ues
mu
how
dic

• In m
me
imp
a ca
AGILE ARTIFACTS §8.4

ditionally, the software industry has counted in person-months (or person-days).
easure is good for human resources and accountants, to prepare paychecks and
ine IT costs, but as a project effectiveness metric it is not so useful. Beyond what
t, we want to know what is achieved. (Anyone who has ever had to deal with par-
mplaining about a student’s bad grade because “he worked so hard and for so

 will be familiar with the difference.)

urce lines of code” counts (LOCs, SLOCs) are still widely used. They are easy to
re, but that is almost the only argument in their favor. Even if they were a good
for functionality (a contentious assertion), it is difficult to estimate in advance the
SLOC count of a system under construction; as a result SLOCs are also not con-
t for measuring progress in the absence of a solid reference against which to assess
(Thanks for telling me that the project produced 85,000 lines so far, but does this
 we are 90%, 50% or 10% done?)

enerally better measure is function points, which estimate the number of individ-
ctions of the system, but they are also difficult to estimate in advance, and not
 appropriate in developments using modern object-oriented techniques, where
stractions are just as important as functions (which are attached to them).

he agile world the basis for measuring progress will come from the standard mode
ifying functionality: user stories. We cannot simply count user stories, however,

hey vary in difficulty. Hence the notion of story point. A story point is simply an
 that estimates the difficulty of a user story.

 unit can be a day of work, but other conventions are possible; for example a
t can take as its story point unit the difficulty of its easiest user stories. Then all
are evaluated relative to that basis. In Cohn’s words:

 beauty of this is that estimating in story points completely separates the
mation of effort from the estimation of duration. Of course, effort and
edule are related, but separating them allows each to be estimated
ependently. In fact you are no longer even estimating the duration of a project:
 are computing or deriving it.

’s emphasis in this extract is on estimation, but the observation applies equally to
riori measurement.)

ry points have three important properties:

the last observation indicates, they are relative indicators, not absolute time val-
. You could take the story point estimations and measurements for a given project,
ltiply them all by 5, and not significantly affect the process. Within a given project,
ever, the estimations should be consistent, making it possible to define and pre-

t velocity as discussed in the next section.

easures of already achieved results, story points can only be counted for imple-
nted user stories; incomplete work, such as user stories that have not been fully

[Cohn 2006],
page 40.
lemented, does not count. This rule is in line with the agile rejection of “waste”,
tegory that includes any code that is not actually delivered.

§8.5 V

• Mo
Exa
era
acc
test

Story p
gramm
of day
weight
A criti
indeed
“pure
units o
thing i
someti

Wit
pare p

The
esti
fea

The p
accept
ning p
values
user st
this sm
citatio
critica

8.5 V

Once t
the sam

Thi
pre-ag
the spe

The
compl
“how f
ELOCITY 123

re generally, any non-delivered artifacts will not count towards progress.
mples may include documentation, plans, and requirements, all of which are gen-

lly considered waste in the agile view, although such artifacts may be taken into
ount if made explicitly part of the definition of done as discussed below. Note that
s, while definitely not waste, are not counted in story points.

oints are a fairly recent addition to the collection of agile artifacts. Extreme Pro-
ing initially used absolute measures of time: ideal programming time, the number

s required to implement a story assuming full-time work and no distractions, to be
ed by a load factor, the ratio of actual time to ideal time, “typically 2 to 4 ” (Beck).
cism was that estimators used the load factor in practice to fudge the estimation,
 an obvious temptation given the magnitude of this range. XP moved in 2002 to
programmer weeks”. A trend then emerged to abandon the reference to precise
f time, and work instead with dimension-less numbers, which do not mean any-
n the absolute; to emphasize this property, the affectionate term “gummi bear” is
mes used as a synonym for story point.

hin a project, story points do have a meaning, since they enable the project to com-
rogress from one iteration to the next using a consistent measure. Cohn again:

re is no set formula for defining the size of a story. Rather, a story-point
mate is an amalgamation of the amount of effort involved in developing the
ture, the complexity of developing it, the risk inherent in it, and so on.

lanning poker (as well as its earlier variant the planning game) is one of the
ed agile techniques for obtaining such estimates. You will remember that the plan-
oker used values taken from a sequence of integers, for example Fibonacci-like
 0, 1, 2, 3, 5, 8, … With such a practice, 1 simply denotes the smallest significant
ory cost, and all other values are understood relative to it. You might decide that
allest unit corresponds to two hours or a half-day of work, although, as Cohn’s

n on the previous page explains, the exact choice for that correspondence is not
l in the estimation process.

ELOCITY

he user stories have been given individual cost estimates and an iteration starts,
e measures can serve to assess progress. This is where velocity becomes useful.

s notion addresses a crucial need which, surprisingly, has been often ignored in
ile software development: to provide a clear, measurable, continuous estimate of
ed at which a project is progressing.

 field of software development abounds with jokes about projects that are “90%

← See “Develop
only code and
tests”, page 60.

[Beck 2000],
page 178. On the
history, see
[Agile 2011].

[Cohn 2006],
page 36.
ete” after a few weeks, and remain there for a very long time. But the question
ar are you?” is a legitimate one for managers and stakeholders to ask.

124

The
ratio o
and t th
where
time, d
sprint
story p

Vel
creden
cult to
full da
for pe
compa
projec
absolu

Con

• The

• A s

The se
that th
this pa
the “lo
ipated.
it shou
ever m
“beaut

Suc
improv
more
Boehm
(and, a
progre

As
mig
trac

Veloci
underl
the val
precise
AGILE ARTIFACTS §8.5

 term “velocity” is, in ordinary language, just a synonym for speed. Speed is a
f advancement over time: for a moving object, d / t where d is the distance traveled
e time it takes. This property also applies to velocity in agile project management,
the numerator (d) is nowadays measured in story points, but the denominator, the
oes not appear explicitly because the convention is to use an iteration, such as a

in Scrum, as the unit of time. So velocity in the agile world denotes the number of
oints achieved in the current project iteration.

ocity thus defined is a measure of work accomplished. This concept gives further
ce to the policy of choosing relative rather than absolute values. It may be diffi-
 know ahead of time whether a particular task will take two hours, a half-day, a
y or two days. Instead, the story point methodology directs you to abandon hopes
rfect time accuracy and focus instead on assessing the difficulty of all tasks in
rison with each other. If you apply this methodology consistently throughout the
t, the relative predictions (story points) will start giving more and more accurate
te values (durations).

cretely, assume that you have made two estimates:

 first sprint will cover 30 story points.

tory point corresponds to a day of the team’s work

cond of these may be far off, although you hope the first one is better. Now assume
e 30-day sprint actually manages to complete 20 story points. Assume further that
ttern continues over a few more sprints: the ratio of time to story points (remember
ad factor” of early XP techniques) hovers around about 1.5, instead of 1 as antic-
 If that pattern remains stable for a while and the team continues to get better, as
ld, at estimating story points, that correspondence (time per story point) becomes
ore precise and credible. This is what Cohn’s first above citation called the

y” of a relative metric.

h techniques, which use continuously refined measurements to
e the precision of initially rough predictions, are an example of a

general software engineering concept originally introduced by
: the “cone of uncertainty”. The cone defines the estimated range
t the end, a measured value) for a certain project property; as time
sses and the project learns more, the range shrinks.

noted, velocity is usually measured over a full iteration. A finer level of granularity
ht be useful: although it makes little sense to compare yesterday’s velocity to today’s,
king velocity on a continuous basis may give good indications to the project.

ty is one of the most interesting concepts popularized by agile methods. While the
ying metric is subject to the reservations made at the beginning of this chapter on

← Page 122.

Time

Uncertainty

High estimate

Low estimate

On the cone of
uncertainty see
[Boehm 1981]
and [McCon-
nell 2006].

?

ue of user stories as the basic requirement unit, the insistence that projects keep a
 record of their progress by tracking their velocity is sound and useful advice.

§8.6 D

8.6 D

The ag
strict d
applyi
pleted.
what y

Con
require
user m
not fai

Sut

• Rel

• Un

• Acc

“Techn
ciencie

8.7 W

Extrem
with n
tion. B

XP
dev
hea
the

The id
“XP” b

The
recom
side of

The
ma
The
[his

Cockb
contrib
EFINITION OF DONE 125

EFINITION OF DONE

ile emphasis on delivering actual functionality and avoiding waste, reflected in the
efinition of progress as the number of delivered story points, requires stating and
ng rigorous and consistent criteria to determine whether a task is actually com-
 This is known in Scrum as the “definition of done”, in the sense of explaining
ou mean when you say that you are done.

sistency is particularly important in the definition of done: we may or may not
 that the completion of a user story include the completion of the corresponding
anual entry, but we must make the decision for all user stories. Otherwise we can-
rly measure progress.

herland cites the following example definitions of done:

easable. (The simplest.)

it- and integration-tested; ready for acceptance test; deployed on demo server.

eptance-tested; release notes written; releasable; no increased technical debt.

ical debt”, discussed below, includes complications to the code or design defi-
s that are likely to cause unjustified future work.

ORKING SPACE

e Programming argued from its origins for grouping programmers in open spaces
o physical separation, also known as “bullpens”, as a way to foster communica-
eck wrote:

 wants to err on the side of too much public space. XP is a communal software
elopment discipline. The team members need to be able to see each other, to
r shouted “one-off” questions, to “accidentally” hear conversations to which
y have vital contributions.

ea has been widely adopted by other agile approaches and you can safely replace
y “Agile methods” in this advice.

 communal space is not meant to exclude offering privacy when needed. Beck’s
mended layout also includes “little cubbies” (small personal areas) around the out-
 the communal space, so that:

 team members can keep their personal items in these cubbies, go to them to
ke phone calls, and spend time at them when they don’t want to be interrupted.
 rest of the team needs to respect the “virtual” privacy of someone sitting in
 or her] cubby.

[Sutherland
2013], page 182.

→ “Waste, tech-
nical debt,
dependency,
dependency
charts”, 8.13,
page 129.

[Beck 2000],
page 79.

Same source.

→ “Crystal’s

urn’s Crystal method also devotes considerable attention to office layout and its
ution to ensuring “osmotic communication” between members of the team.

Big Idea”,
9.5.1, page 141

126

Wh
efficie
role o
projec
is the
Increa
uted ac

Com
bad on
tribute
contrib
tion, a
examp
ment i

The
info
fou
co-

Althou
produc
tribute
collabo
this sta

“He

If you
that th

8.8 P

Individ
about
the des
of “req
reject,

The

• The

• The
bac
stor

Some
knowl
AGILE ARTIFACTS §8.8

ile everyone knows that the practical organization of offices has an effect on team
ncy (as PeopleWare already convincingly argued), we should not exaggerate the
f programmer comfort. After all, many of the most successful Silicon Valley
ts were started in garages. What is most interesting in the agile contribution here
assumption that there is an office to lay out: a place of work for the full team.
singly, this assumption cannot be guaranteed: more and more projects are distrib-
ross several sites.

panies adopt a distributed development model for good reasons as well as some
es. Many agile books propose adaptations of their basic models to the case of dis-
d teams, but one finds little of general value in these discussions. The real agile
ution here is rather the opposite: by emphasizing the value of direct communica-

gilists highlight how much more effective it is to have everyone in one place. For
le the most interesting part of a chapter by Larman about agile multi-site develop-
s this remark at the beginning:

 product development expert Don Reinertsen told us (and wrote) that he has
rmally polled thousands of people over the last decade and not once has he

nd a hands-on group that, having had both the contrasting experience of
located versus distributed development, would choose the latter again.

gh I have been involved for a decade in a successful and sustainable multi-site
t development project (EiffelStudio at Eiffel Software), and teach at ETH a dis-
d software engineering course where students from universities around the world
rate in building working software, I can state that our experience fully confirms
tement. One of the first sentences in our course’s first lecture is:

re is the basic law of distributed development: don’t do it.”

have a choice, that is. Sometimes you do not have a choice. But agilists remind us
e everyone-under-one-roof model, when practicable, beats all others.

RODUCT BACKLOG, ITERATION BACKLOG

ual requirements, as we have seen, are covered in the form of user stories. What
“the requirements” as a whole? (In software engineering, “a requirement” means
cription of a property of the system, and “the requirements” is not just the plural
uirement” but denotes the overall description of the system.) Agile approaches

 of course, the traditional notion of a comprehensive “requirements document”.

 replacement for such a document is a collection of user stories or tasks. More precisely:

 collection of user stories for the project as a whole is the product backlog.

 collection applicable to a particular iteration is the iteration backlog, or sprint
klog in Scrum, a collection of tasks associated with user stories (that is, each user
y involves a number of elementary tasks).

?

← On People-
Ware see “Work
at a sustainable
pace”, 4.4.3,
page 56.

[Larman 2010],
pages 415-416.

se.ethz.ch/dose.
other elements may appear; Cohn gives the examples of bugs, technical work and
edge acquisition.

http://se.ethz.ch/dose

§8.9 S

The
tice, as
taining

• Rem

• Are

• Hav

Some

It i
serve t

8.9 S

From t

The
of the
dard-s

Numer
comfo

8.10

With th
sible ti
what h
helps s

• Sup
and

• Kee

• Boo
idly

• Dis
TORY CARD, TASK CARD 127

 term “backlog” highlights the particular way such a collection is used. The prac-
sociated with Scrum but widely used, is to divide the backlog into three parts, con-
 respectively the user stories or tasks that:

ain to be implemented.

 being implemented (in progress).

e been implemented.

teams add the category “to be verified”.

s useful to visualize the backlogs. The artifacts of the following three sections
his purpose.

TORY CARD, TASK CARD

ools of a conceptual nature we now move to tangible artifacts.

 systematic use of user stories as units of requirements calls for a standardization
form in which they are written. The low-tech version uses “story cards”: stan-
ize note cards, each recording a user story as in this typical example:

ous tools on the market provide software equivalents, although many people are
rtable with the paper version.

TASK AND STORY BOARDS

e constant focus on velocity — delivering the best customer value in the least pos-
me — it is important in the agile approach to keep the team constantly aware of
as been done, what is in progress and what remains to be done. A visible reminder
everal agile goals, in particular:

porting the basic development step of picking a task associated with a user story
 assigning it to the next available developer.

ping track of velocity (the number of story points implemented per iteration).

sting team morale: one of the best ways to cheer up developers is to display viv-
 the progress of tasks from to-be-done to being-done to under-test to done.

Story card
couraging waste: work that does not result in deliverable functionality is not shown.

128

The vi
the po
can be
whiteb

Details

The

Nu
ticular
it is ha

The
velocit

8.11

The bu
(veloc
agains
rent ite
can be
the fig
referen
points

Coc
rather
AGILE ARTIFACTS §8.11

sual representation usually takes the form of a board, with columns representing
ssible states of the tasks involved in the implementation of a user story. The states
 to-do, in-progress, under-test and done. The most common technique uses a
oard and post-it notes that move left to right as tasks get selected and processed:

 vary; sometimes the under-test state is merged with in-progress.

 Kanban method of production management uses similar boards.

merous software tools are available to replace this physical artifact. They are par-
ly used by distributed teams; for a team that is physically located in a single place,
rd to beat the simplicity and visual impact of a whiteboard with paper stick-ons.

 task board is a clever way to keep the team’s attention focused on progress and
y, especially when complemented by the burndown chart.

BURNDOWN AND BURNUP CHARTS

rndown chart is a visual representation of the team’s progress
ity). The idea, introduced in the overview chapter, is simple: plot,
t project time, the number of remaining units of work for the cur-
ration. Time is usually measured in working days; units of work

 story points or some other appropriate measure. The curve (red in
ure on the right) is normally decreasing. The blue line serves as a
ce, describing ideal progress with a constant number of story
discharged every day.

Task Board

(See also the fig-
ure on page 12.)

→ “Kanban”,
9.2.4, page 136

?

Remaining tasks

Days

(From the figure on page 11.)
kburn’s variant in the Crystal method uses a “burnup” chart which shows progress
than remaining work, and also displays the units completed:

§8.12

Comm

• Del
ing
onl

• Fin

Here a
licizin

The
keep tr

8.12

We ha
Master
ter tha
examp
tion, a
by out

The
any fa

8.13

Our la
agile d

The
agile a
virtual
waste.
ation i
IMPEDIMENT 129

on to all variants is the rule that one should only count work that is both:

iverable work, including code and tests, as well as other deliverables such as train-
 materials and user documentation, but excluding results that have an internal role
y, such as a plan or a design.

ished work, which for code means that it is fully tested.

gain various tools are available to offer software support for maintaining and pub-
g the chart.

 burndown chart is an important practical agile contribution, enabling teams to
ack of daily progress in a vivid form accessible to all.

IMPEDIMENT

ve seen that a constant concern in Scrum, and in particular a core task of the Scrum
, is to remove impediments. An impediment, per the earlier definition, is any mat-
t damages the progress of the project, whether technical or organizational. Typical
les include unavailability of some necessary hardware resource such as a worksta-
nother team’s delay in producing a module needed by the project, and interference
siders to the project.

 notion of velocity suggests a more concise definition: an impediment is simply
ctor that reduces velocity.

WASTE, TECHNICAL DEBT, DEPENDENCY, DEPENDENCY CHARTS

st three artifacts do not belong to the agile approach, although they do belong to
iscussions, in a negative role: as obstacles to be avoided.

 fight to avoid waste is at the center of the Lean method, but is a concern in all
pproaches. Waste is not a single artifact but includes all the products, material and
, not delivered to customers. A design document is waste, unfocused meetings are

Burnup
chart

(From [Cock-
burn 2005],
page 99.)

← “Story
points”, 8.4,
page 121. See
also “Develop
only code and
tests”, page 60.

?

 The agile insistence on code and tests as the only products worthy of consider-
mplies that waste takes many forms, which agile teams must always fight.

130

Tec
in a pr
is hard
whole
identif

Dep
stories
projec
interfa
cess of
a cross
on A b
agile a

The
can
reas

Anoth
It is co
skills a
has mu
often b

Wa
of agil
virtual
the fac
serves
proces

• Lis

• Lis
peo

• Ded
stra

Typica

Rat
agi
can
und
esta

Note th
ment.
AGILE ARTIFACTS §8.13

hnical debt denotes code elements of unsatisfactory quality that can accumulate
oject, like barnacles attached to a ship’s hull, initially ignored because their effect
ly noticeable, but growing to a point where they can bring the whole vessel — the
project — to a halt. The principal agile tool to fight technical debt is refactoring:
ying code and design smells and remove them.

endencies are constraints between development elements, such as tasks or user
, expressing that to develop B it is necessary to have completed A. In a compiler
t, for example, B might be “implement the parser” and A might be “specify the
ce of the lexical analyzer”. Dependencies stand in the way of the basic agile pro-
 picking the next task in the list and assigning it to the next available developer in
-functional team, where tasks are ordered by business value. Clearly, if B depends
ut has a higher business value, we cannot apply this technique. Hence the standard
dvice of minimizing dependencies, a goal easier to state, however, than to achieve.

 discussion of feature interaction has shown how intricately the functions of a system
 be connected with each other. This phenomenon of feature interaction is one of the
ons we cannot realistically hope to get rid of dependencies.

er obstacle to the agile scheduling policy is the presence of developer constraints.
mmendable to aim for cross-functional teams, but in practice people have special
nd expertise. If for the next-highest-business-value task one of the team members
ch higher competence than anyone else, but is busy with some other task, it is
etter to defer the task until that person becomes available.

ste, technical debt and dependencies are virtual notions. The last item in this list
e rejects can have a physical representation, although it is also used as a purely
 artifact. It is the notion of dependency chart, often taking a form (illustrated on
ing page) that attracts the particular scorn of agilists, the Gantt chart, which

 as the basis for such project management tools as Microsoft Project. The basic
s of using such charts and tools (in traditionally managed projects) is simple:

t the tasks, their estimated durations and dependencies (in the sense defined above).

t the people available to perform the tasks. Usually it suffices to list the number of
ple and their available time.

uce a possible scheduling and assignment of the tasks, compatible with the con-
int. This is where tools are useful.

l agile criticism of Gantt charts is expressed by Cohn:

her than a detailed command-and-control plan based on Gantt charts, the
le plan’s purpose is to lay out an investment vision against which management
 assess and frequently adjust its investments, lay out a common set of
erstandings from which emergence, adaptation and collaboration occur, and
blish expectations against which progress will be measured.

← “Refactoring”,
7.4, page 109.

← “Additive
and multiplica-
tive complexity:
the lasagne and
the linguine”,
page 63.

← “Collective
ownership and
cross-function-
ality”, 6.12.2,
page 102.

[Cohn 2003].
e “command-and-control” accusation and the vagueness of the proposed replace-
Cockburn does offer a concrete substitute:

§8.13

The
sim
wit

(Burnu
charts
burndo

Bei
imizin
is in it
Micros
is heav
many o
compl
import
depend
Gantt c
ager’s
(they w
which
resulti

Her
and to
ing of
ideolo

WASTE, TECHNICAL DEBT, DEPENDENCY, DEPENDENCY CHARTS 131

 organization might adopt some of the ideas [of the Crystal method] to
plify or improve their work product set (replacing the Gantt schedule charts
h earned-value or burnup charts would be a good start).

p charts are, as seen a few pages back, a variant of burndown charts; earned-value
are an earlier, non-software-specific form.) The suggestion is surprising since
wn and burnup charts are a way to track progress and offer little help in planning.

ng always on the alert for waste, detecting and correcting technical debt, and min-
g dependencies are all worthy goals. Where the agile approach takes a bizarre turn
s rejection of Gantt charts and tools for dependency-based scheduling. While
oft Project itself is not the greatest tool of the 21st century — it shows its age and
y to use — it serves only as a red herring here: a profusion of modern tools exist,
f them available in the cloud, to manage dependencies in an effective way. In any

ex project dependencies exist, some of them subtle but as a result even more
ant, since if you detect them too late they will disrupt progress. You can minimize
encies but (as agile authors admit, at least in print) you cannot eliminate them.
harts and similar mechanisms are powerful engineering tools in the modern man-
bag of tricks. To renounce them is either to pretend that dependencies do not exist
ill take their revenge when a task stalls because it needs the results of another

 has not been completed yet) or to accept handling them manually, with all the
ng tedium and risk of error.

e Agile turns Luddite. There is no reason to bar agile projects from using concepts
ols which help address an issue that most of them face: ensuring that the schedul-
tasks is compatible with their interdependencies. The effective manager disregards
gy and picks, for every project, all the tools that help.

A Gantt
chart

Source:
Microsoft, see
page iv.

[Cockburn
2005], pages
252-253.

?

9

Ag

An Ag
ming,
sented
arbitra
develo

The
their re
cately
spirit o
a brief

9.1 M

We sta

9.1.1

You w
there i
as “the
metho
is shor

If th
stud
any

9.1.2

Each m
case se
the me
which

The
its com

B. Meye
© Sprin
ile methods
ile Method, such as Lean Software (with its Kanban variant), Extreme Program-
Scrum and Crystal, is a particular combination of some of the components pre-
 in the previous chapters: principles, practices, roles and artifacts. Not just an
ry mix, but a reasoned construction with its own distinctive view of software
pment. In this chapter we review the key characteristics of the four methods cited.

 methods surveyed share the distinction of being documented by books written by
spective creators. In each case the method and the corresponding books are intri-
connected; the books, marked by the strong personalities of their authors, set the
f the methods. As a consequence, each method description in this chapter includes
 review of the associated foundational texts.

ETHODS AND METHODOLOGY

rt with a clarification of the underlying concepts.

Terminology

ill see “methods” such as Scrum, XP and consorts also called “methodologies”;
s nothing wrong with this term since, along with the meaning of “methodology”
 study of methods” — the topic of this chapter — the dictionary also accepts “a

dology” to mean a combination of methods. For the present discussion, “method”
ter and just as appropriate.

is chapter is about methodology, the present section must be about the methodology of
ying methodology. But do not fear; we will stop the escalation here and stay away from
 word beginning with “meta”.

The fox and the hedgehog

ethod consists of “many small ideas”: principles and practices. We will in each
e a selection of these ideas, but such enumerations do not suffice to define what
thods are about. The discussion will identify, for each of them, “one Big Idea”,
stands behind all the method’s components.
 section for a method starts with the method’s Big Idea, continues with the list of
ponents and ends with an assessment of the method.

r, Agile!, DOI 10.1007/978-3-319-05155-0_9,
ger International Publishing Switzerland 2014

134

9.2 L

Promp
manuf
attenti
efficie
items
produc
step. M
term “

As
Sof

This se
analog

9.2.1

The ob

“Waste
about
setting
a tangi

9.2.2

The Le

1 E
2 A
3 D
4 D
5 E
6 B
7 S
AGILE METHODS §9.2

EAN SOFTWARE AND KANBAN

ted by the success of the Japanese carmakers and particularly of Toyota’s hailed
acturing process, methods of “lean manufacturing” have enjoyed considerable
on in many branches of industry. They seek to make industrial production more
nt by not building any unneeded part or product, delaying production of needed
until customers or other production steps actually require them (just-in-time
tion), minimizing unnecessary communication, and reducing waste at every
ary and Tom Poppendieck have transposed the ideas to software, using the

Lean Software Development”.

we saw in an earlier discussion, Wirth wrote a “plea for lean software” in 1995. Lean
tware as a general development method is, however, the Poppendiecks’ creation.

ction will conclude with a short review of Kanban, a production method featuring
ies with Lean Software.

Lean Software’s Big Idea

session in Lean is to:

” in software is anything not delivered to the customer. The Lean approach is
making sure that software projects concentrate on what matters to customers, and
 aside any distractions from that goal, in particular any artifacts that do not yield
ble business value.

Lean Software’s principles

an Software method promotes seven principles:

Reduce waste

Lean Software Development principles

liminate waste
mplify learning.
ecide as late as possible.
eliver as fast as possible.
mpower the team.
uild integrity in.

← [Wirth 1995];
see “What is
simplicity?”,
page 66.

← “Develop
minimal soft-
ware”, 4.4.4,
page 58.
ee the whole.

§9.2 L

Princip
ditiona
require
started
which
tasks,
switch
waitin
decisio
manag

Prin
mers t
of a “t

Prin
ductio
high co
late as

Prin
workin

Prin
the pra
and th

Prin
tem’s d

Prin
whole
be swe

• Inte
tan
pho
seri
wh

• Mo

• Bus
lab

9.2.3

Lean S
nize y
genera
EAN SOFTWARE AND KANBAN 135

le 1, eliminate waste, is the most important. It includes, under “waste”, many tra-
l products and activities of software development. Waste products are: detailed
ments documents which no one will read; partially done work (any code that was
 to implement a certain functionality, but does not deliver it); extra features,
few users will ever need (bloat); defects (bugs). Waste processes are: unnecessary
such as long requirements processes mandated by obsolete regulations; task
ing (better to let programmers concentrate on one well-defined task at any time);
g (for a module developed by another team, for resources, for information, for
ns); motion (transfer of artifacts from one group or person to another); needless
ement activities.

ciple 2, amplify learning, directs project to seek quality throughout, and program-
o learn from experience. It rejects the “do it right the first time” approach in favor
ry-it, test-it, fix-it” process.

ciple 3, decide as late as possible, is derived from “just in time” techniques of pro-
n engineering. It promotes avoiding Big-Upfront-Design decisions, which will cause
sts if a change must be made down the road, and instead making design choices as

 possible, when all the necessary information is available.

ciple 4, deliver as fast as possible, is common to all agile approaches: produce a
g system at every iteration, get the users to try it, and benefit from the feedback.

ciple 5, empower the team, is also an agile staple. The idea is to stay away from
ctice of managers giving orders, and instead motivate the team to take its future

e success of the project into its own hands.

ciple 6, build integrity, covers the need for maintaining the consistency of a sys-
esign. It is closely related to the notion of simplicity built into XP.

ciple 7, see the whole, is about concentrating on what is really important, the
picture, and not to sweat the small stuff. Examples of small stuff that should not
ated include:

rmediate deadlines: optimizing the overall progress of the project is more impor-
t. (With hindsight it is unfortunate — and an illustration of the danger of meta-
rs and anecdotes — that the supporting example is Lance Armstrong’s brilliant
es of victories in the Tour de France, hardly the most inspirational model given
at we now know.)

nitoring individual performance on a continuous basis.

iness contracts, in line with the Agile Manifesto’s motto of “valuing customer col-
oration over contract negotiation”.

Lean Software: an assessment

oftware is not a cradle-to-grave method that tells you step after step how to orga-

[Poppendieck
2003], pages
155, 157.

[Agile 2001].

?

our project and develop your software. It is rather a philosophy made of a set of
l observations about what is important and not in software development.

136

The
from i
tion be
examp
selves
that m
Some
functio
far-fet
each o
betwee

The
ecle
to t
man
dizz

One s
metho
cant. B
some o
us alw
develo

9.2.4

Althou
source
manag
a comp

Kan
tion, d
ger a s
similar
ductio

The
Kanba
imped
AGILE METHODS §9.2

 working hypothesis of the method, that software can benefit from ideas taken
ndustrial production, has both considerable attraction and built-in limits. Attrac-
cause so many successes have followed from applying sound principles in, for
le, automobile engineering. Limits since, as the creators of lean software them-
state, software does not have production, only design. Many of the improvements
ade the success of Toyota and other innovative companies apply to production.
of the analogies work, for example describing incompletely implemented software
nality as waste, comparable to inventory in traditional industries. Others are more

ched, such as “motion” (in software development people may have to move to see
ther, but this phenomenon is nowhere close to the complexity of moving parts
n factories).

 style of the lean books also complicates making direct sense of the method. They are
ctic, full of anecdotes and never boring for a minute, but by hopping madly from topic
opic and story to story, software-related or not — over two typical pages, video tape
ufacturing then software testing then Lance Armstrong — they make it tough for the
ied reader to derive precise rules for software projects.

hould not turn to Lean Software for a comprehensive software development
d, or expect its authors to be always right. Their contribution, however, is signifi-
y emphasizing that software engineering is engineering and can benefit from
f the same recipes that have worked in other fields, and in particular by reminding
ays to be on the lookout for waste of any kind, Lean Software provides software
pers and particularly project managers with a solid set of useful principles.

Kanban

gh distinct from Lean Software, the Kanban approach draws from the same
: the Toyota production process, where it evolved from observation of supply
ement in supermarkets. Kanban has gained some popularity in software circles, as
lement to Lean or Scrum.

ban’s Big Idea is to minimize work in progress by ensuring just-in-time produc-
riven by demand. “Kanban cards” serve to keep track of needed materials and trig-
ignal when the production system runs out of a needed part. A “Kanban board”,
 to a Scrum task board, visualizes the progress of parts and products in the pro-

n process as they go through the stages of “to do”, “in progress” and “done”.

re is — so far — no explicit Kanban method for software, but teams have found

[Poppendieck
2003], pages
156-157.

← “Task and
story boards”,
page 127.

On Kanban for
Scrum see e.g.
n principles of work-in-progress minimization useful, for example to help identify

iments in Scrum and focus software teams on the most productive tasks.
[Kniberg 2010].

§9.3 E

9.3 E

Extrem
the late
engine

Ext
Scrum
the mo
approa
their p

9.3.1

The B

This is
ality (i
vious
simpli

Thi
in pair
tomer

9.3.2

An ob
want t
author
about
edition
print) a
was pi

Cri
in a

(Strang
being
down
XTREME PROGRAMMING 137

XTREME PROGRAMMING

e Programming is the original agile approach, in the sense that its introduction in
 nineteen-nineties was the event that brought agile ideas to the fore of the software
ering stage.

reme Programming is less visible today, much of the limelight having moved to
. But this change of fashion hides the reality of the method’s continuing influence:
st constructive XP principles and practices have been integrated into other
ches and many projects apply them, whether or not project members are aware of
rovenance.

XP’s Big Idea

ig Idea of Extreme Programming can be understood as follows:

 the basic cycle, repeated until the team and the customer are happy: add function-
nduced, in Test-Driven-Development, by a new test that would fail under the pre-
version); when it works, look for any damage the new code has caused to the
city of the design; apply refactoring if needed to restore that simplicity.

s process is practiced by a small, self-organizing group of developers, working
s and maintaining at all times a close connection with representatives of the cus-
organization.

XP: the unadulterated source

servation about the descriptions of Extreme Programming will help readers who
o study XP in depth beyond the presentation in this book. Although various
s, particularly Jeffries and Cunningham, have written good articles and books
XP, the reference is Beck’s Extreme Programming Explained. The book has two
s, 2000 and 2005, and contrary to expectations I find the earlier version (still in
 better source. The impression one gets about the second edition is that the author

qued by some comments on the first:

tics of the first edition have complained that it tries to force them to program
 certain way.

e: how can someone who buys a programming methodology book complain of

Increment then simplify

[Beck 2005],
page xxii.
enjoined to “program in a certain way”?) He appears as a result to have toned
the message, going from concrete and hence criticizable assertions to more ethe-

138

real bu
second

To
the

•

•

•

(follow
ered b
In the

The
alik
alw

Sure, s
about
of the
edition
of the

Som
from a
Unless
from b

9.3.3

Many
introdu
essent
also pr

• Sho

• Pai

• Use

• Ref

• Op

• Col

• Con

• Tes

The la
bution
AGILE METHODS §9.3

t less interesting generalities. Take for example the beginning (starting with the
 paragraph) of the first edition’s preface:

some folks, XP seems like just good common sense. So why the “extreme” in
 name? XP takes commonsense principles and practices to extreme levels.

If code reviews are good, we’ll review code all the time (pair programming).

If testing is good, everybody will test all the time (unit testing), even the customers
(functional testing).

If design is good, we’ll make it part of everybody’s daily business (refactoring).

ed by four more bullet points, each citing another practice traditionally consid-
eneficial and stating that XP pushes it to the limit). Clear, engaging, challenging.
second edition, the corresponding paragraph starts:

re are better ways and worse ways to develop software. Good teams are more
e than they are different. No matter how good or bad your team you can
ays improve.

uch a succession of gentle platitudes will not offend anyone, but what is “extreme”
them, and what are we learning? I benefit more from the in-your-face simplicity
first edition. We are talking here about substance, not style. Although the second
 cites agile practices, it often does so in abstract terms; to get a precise description
practices you need the original book.

e of the comments of the second edition reflect a more balanced view resulting
 few extra years of experience, but they tend to dilute the essence of the ideas.
 you want to read the two editions (you will have noted that the present book cites
oth), you may expect to find more value in the first.

Key XP techniques

of the principles and practices discussed in previous chapters were originally
ced by Extreme Programming. The XP books include long lists of practices; the

ial techniques (including, in the terminology of this book, not just practices but
inciples and artifacts) are:

rt iterations (as in all agile methods).

r programming.

r stories.

actoring.

en workspace.

lective code ownership.

tinuous integration.

t-first (or test-driven) development.

[Beck 2000],
page xv.
st two elements constitute Extreme Programming’s most lasting technical contri-
 to the practice of software development.

§9.4 S

9.3.4

Extrem
tion of
sion to
excerp
apply i
metho
sibiliti

On
metho
should
overal
moted
follow
of the
let bra
resour
regres
ensure

9.4 S

Scrum
differ,
ming a
petitiv
practic

The
Schwa
availab
crete d

9.4.1

The m
previo

This is
about
“chick
of the
CRUM 139

Extreme Programming: an assessment

e Programming provided the initial jolt that brought agile methods to the atten-
 the programming world. The word “extreme” was intended to convey the deci-
 take the best development practices to their full extent, as explained in the
ts from the first edition’s preface quoted on the previous page (“if P is good, we’ll
t all the way”, for a whole range of practices P). “Extreme” also characterizes the
d’s general assertiveness, its insistence that the techniques it offers are not just pos-
es but obligations: for example, everyone should pair-program.

e can characterize this assertiveness as dogmatism, but it also leads to one of the
d’s main strengths, its consistency. XP reflects a strong view of how programming
 be practiced, leaving little room for compromise. This stance has hampered the
l adoption of XP by the community. But many of the individual techniques pro-
 by XP have made their mark on the industry, and not just on teams that explicitly
 an agile process. If nothing else, Extreme Programming has convinced the world
indispensability of the last two techniques mentioned above: projects should not
nches diverge, but integrate code all the time; and they should treat tests as a key
ce, not letting any code be developed without tests to go with it, and running the
sion test suite all the time. These two contributions alone would be enough to
 XP’s place in the history of software engineering.

CRUM

 has come to dominate the agile scene. The numerical results of various studies
but the general trend is inescapable: Scrum has taken over from Extreme Program-
s the agile method of choice, even if we cannot see the situation entirely in com-
e terms since Scrum is more of an organizational technique and many teams that
e it add concepts from XP on the software-specific technical side.

re is a considerable literature on Scrum including several books from the creators,
ber and Sutherland. The authors and the Scrum Alliance have generously made
le many documents, such as tutorials and lecture notes, which provide more con-
etails. Cohn and Larman have also authored helpful Scrum books.

Scrum’s Big Idea

ost distinctive characteristic of Scrum is the “closed-window” rule encountered in
us chapters:

 not the idea most highlighted in presentations of the method — you will hear
the “three roles” and the “four meetings” and Scrum Masters and “pigs” and

Freeze requirements during short iterations

?

[Scrum Alliance].

← “Freeze
requirements
during itera-
tions”, page 71
and “The
closed-window
rule”, 6.1.2,
page 90.
ens” and various practices — but it is at the core of the method. It addresses one
principal challenges of software engineering: how to handle change.

140

The
develo
is to ac
on eve
short,
off, an

If o
just

9.4.2

The ite

• Spr

• Clo

• Use

• Dai

• “De

• Tas

• Spr

These
appear

9.4.3

Scrum
clearly
develo
ageme
becom

Scr
fying p
porters
reports
books
room f
analyti

Scr
than so
any pr
best as
AGILE METHODS §9.4

 Agile Manifesto naïvely states that agilists “welcome change”; but no serious
pment can have a policy of taking in any change at any time. The Scrum answer
cept changes without letting them disrupt the current iteration, imposing the rule
ryone, regardless of rank and station. It is sustainable because the iterations are
so any rejection is temporary; in addition it gives people the opportunity to cool
d possibly to refine or withdraw a request for functionality.

ut of my long immersion in agile methods for the preparation of this book I had to retain
 one idea, that would be it. The principle is innovative, applicable, and effective.

Key Scrum practices

rations of Scrum follow practices studied in previous chapters:

int planning at the beginning.

sed-window rule, allowing requirements change but in a controlled way.

r stories, decomposed in tasks, as the definition of work to be carried out.

ly Scrum to track progress and isolate impediments.

finition of Done” to make sure what is claimed as progress truly is.

k board and burndown chart to assess velocity.

int review to reflect on the previous sprint and prepare the next one.

are only some of the most important elements; many other Scrum techniques
 in earlier discussions.

Scrum: an assessment

 has conquered the mind of many in the software industry; numerous projects are
 finding its rules useful. Scrum has in particular turned the general idea of iterative
pment into a precise discipline, with rules codifying the goals, duration and man-
nt of individual iterations. The resulting iteration model, the sprint, is quickly
ing the industry standard, beyond teams that explicitly apply Scrum.

um has been well-served by a savvy marketing operation, in particular by a certi-
rocess (through the Scrum Alliance) that turns Scrum learners into Scrum sup-
. It has also been well served by the first Scrum books, insightful and filled with
 from projects the authors advised. For software practitioners, however, these
also limit the method’s applicability, since they are advocacy pieces with little
or nuance and less for self-doubt. Scrum clearly needs better presentations, more
cal, even-handed and rigorous.

um’s primary contribution affects the organizational aspects of projects, rather
ftware technology per se. (Some people go so far as to promote Scrum to manage

?

oject, technical or not.) The need remains open for a method that would retain the
pects of Scrum and address the unique demands of software development.

§9.5 C

9.5 C

The na
take th
cality a
color-c
descrip
first to

9.5.1

Crysta
makes

With o
ingly l
office
core is
ments
and qu
poor o

Thi
or grou

9.5.2

Crysta

“Fr
import

“Re
cycle,
things
ing fro
tice is

“O
tion be

“Pe
states
unplea
schedu
RYSTAL 141

RYSTAL

me Crystal denotes an array of methods developed by Alistair Cockburn. We can
e word “array” literally: with projects characterized along two dimensions, criti-
nd size, each featuring four levels, we get a matrix of 16 elements. The names are
oded. Understandably, only a few of the slots have been filled by detailed method
tions. The Crystal Clear method covers smaller projects; Crystal Orange was the

 be developed and addresses larger projects.

Crystal’s Big Idea

l puts particular emphasis on the interactions with the team through a principle that
 a group jell into a single unit:

smotic communication, “questions and answers flow naturally and with surpris-
ittle disturbance among the team”. From this goal follows a strong emphasis on an
space layout favoring open communication. The method treats such matters as
sues of software development, since projects can face major costs and impedi-
from bad communication between team members, delays in answering questions,
estions that were simply not asked because of some practical obstacle, of which
ffice layout is an example.

s definition of osmotic communication is the Crystal Clear version. For larger groups,
ps split across different locations, the concept generalizes to “core communication”.

Crystal principles

l defines seven principles, a bit of a mixed bag.

equent delivery” of “running, tested code to real users” is the “single most
ant property of any project”. This idea is common to all agile methods.

flective improvement” requires the team, “once a month, or twice per delivery
[to] get together in a reflection worskhop or iteration retrospective to discuss how
are working”. The idea is reminiscent of the “Optimizing” level in a model com-
m a different corner of the software engineering scene: CMMI. The specific prac-
also related to Scrum’s “retrospective”.

smotic communication” promotes, as noted, a constant and free flow of informa-
tween team members.

rsonal safety” is Crystal’s take on the agile idea of sustainable pace. The principle
that team members should be free to speak up, without fear of reprisal or other

Osmotic communication

All citations (in
italics) are from
[Cockburn 2005].

← “Work at a
sustainable
pace”, page 56.
sant consequences, when they feel they have to, for example to point out that a

le is unrealistic.

142

“Fo
peded.
them f
to the
organi
days in
tion m

“Ea
custom
XP-sty
techniq
tatives
able”.
discus
less fu
ment a

“Te
freque
should
projec

9.5.3

Like L
step ei
does).

Wh
tism an
vision
large o

The
howev
its spe
is the e
on a de
as they
mid-st
develo
dation
AGILE METHODS §9.5

cus” defines the conditions under which developers can perform their jobs unim-
 In particular, they should not be asked to: perform many tasks at once, preventing
rom devoting to each task the attention it requires; handle side tasks, not relevant
project goals; cope with frequent interruptions; or be denied knowledge of the
zation’s priorities. “With two hours of guaranteed focus time each day, and two
 a row on the same project, a developer who otherwise is being driven to distrac-

ay get four full hours of work done in a week.”

sy access to expert users” is Crystal’s variant of the general agile principle of
er involvement. The method does not prescribe embedding a user in the team,
le, or defining a product owner as in Scrum (although it does not preclude either
ue), but requires a realistic guarantee of access to knowledgeable user represen-

. “Even one hour a week of access to a real and expert user is immensely valu-
 This recommendation is typical of Crystal’s realism: as we noted in earlier
sions, real experts are in high demand and unlikely to be made extensively (even
ll-time) available to a project; but it is essential to demand from higher manage-
 guaranteed minimum level of access.

chnical environment with automated tests, configuration management and
nt integration” is a long name for a principle, but clear enough: programmers
 be given modern tools. Hardly a subversive idea today, except perhaps for some
t managers born in the age of crinoline petticoats, but worth repeating.

Crystal: an assessment

ean Software, Crystal is not a comprehensive method telling you what to do step by
ther on the management side (as Scrum does) or in technical development (as XP
Rather, Crystal is a concentrate of software development wisdom, much of it healthy.

at most distinguishes Crystal from other agile approaches is its refusal of dogma-
d its acceptance of some of the classical software engineering principles. The pro-

 for variants of the method adapted to various kinds of projects, critical or not,
r small, is also a refreshing initiative.

 multi-method idea reflects the wide variety of project circumstances. It seems,
er, unrealistic to fill a 4 x 4 matrix with individual method descriptions, each with
cific characteristics, reference book and training materials. More unrealistic still
xpectation that a project would choose one of the methods against the others based
termination of its size and criticality; even if the decision is right, projects change
 go, and they should evolve smoothly rather than have to change methods in

ream. It would be more effective for Crystal to identify the universals of software

← “Put the cus-
tomer at the cen-
ter”, page 51.

?

pment and present a single method that addresses them, while accounting for gra-
s in project parameters.

§9.5 C

In t
sider —
Extrem
with it
source
a real
and em

RYSTAL 143

he history of the field, Crystal could end up being only an episode. But if we con-
 in terms of moment of acceptance rather than moment of creation — that

e Programming embodied the first generation and Scrum the second, Crystal,
s attempt to integrate the best ideas of software engineering regardless of their
 and to provide a realistic framework for projects large and small, could grow into
method, defining precise techniques of software management and development,
erge as a first step towards agile methods of a third generation.

10

De

Before
with g

10.1

We hav
book d

[Ob
org
agi
ben

[Ob
an
bet

[Ob
org
Rat

And so
agers,

The
examp
confirm
“nomi
them b

N

B. Meye
© Sprin

aling with agile teams
 we move to a final assessment, some observations are in order on how to deal
roups that adopt agile ideas in your organization.

GRAVITY STILL HOLDS

e seen numerous examples of agile authors asking us to suspend disbelief. A 2012
istributed under the aegis of IBM summarily dispels various objections:

jection: agile is unsuitable for regulated environments]. [In such environments]
anizations are audited from time to time for compliance with regulations. With
le, these organizations can feel confident when they endure these audits. They
efit from faster delivery of data and higher quality of their output.

jection: agile means we don’t know what will be delivered.] Because agile is
iterative process, it provides the opportunity not just for greater control but
ter control over building the right things in the lifecycle.

jection: agile does not scale] Agile definitely scales. Large teams must be
anized differently. Large agile teams succeed by using products like IBM
ional Requirements Composer for requirements modeling.

 on. Trust us, agile solves everything. This is not very good advice to give to man-
who are entitled to more caution from such a venerable company.

 truth is that software engineering has laws that limit what we can expect. An
le of such a law goes back to Boehm’s work in the nineteen-eighties and has been
ed by numerous studies since then. It states that for any IT problem there exist a

nal” cost and a nominal development time, and that solutions cannot deviate from
y much. The following figure illustrates it:

[Ambler 2012].

See e.g. [Boehm
1981] and page
226 in [McCon-
nell 2006].

ominal cost

Impossible zone

25%

Nominal
values and
possible
deviations

Cost
Nominal time Time

r, Agile!, DOI 10.1007/978-3-319-05155-0_10,
ger International Publishing Switzerland 2014

146

The bi
get a s
better
time. T
or in le

Stud
can
you

When
and un
ible em
definin
In soft
game.
projec
dom d

The
found
approa
ods it p
will se

Ag
no rea
goals a

10.2

We ha
give, i
ciple i
world

Wh
countr
only tw
for the

It is
functio
cannot
articul

Wri
for
sign
DEALING WITH AGILE TEAMS §10.2

g red dot represents the nominal point. According to these studies, it is possible to
horter delivery time by spending more (hiring more developers or managers, or
ones), as represented by the curve, but that curve stops at about 75% of the nominal
he grayed area is an impossible zone: you cannot get the results for less money,
ss than 75% of the nominal time.

ies differ as to what happens to the right of the nominal point. Some suggest that you
 save money by taking more time, for example with fewer developers, and others that
 will end up both late and over budget.

we talk about such “laws” of software engineering we are not at the level of rigor
iversality of the laws of physics; they are simply observations supported by cred-
pirical studies. They reflect, in addition, the technology of the moment. Laws
g the limits of what ships can do ceased to hold when steamboats replaced sailing.
ware too it is quite possible that a technology leap radically alters the rules of
Before you believe that it increases productivity — not for a particular flagship
t or group but for everyone — at a level that established software engineering wis-
eems infeasible, you had better be careful. Gravity still holds.

 very IBM-sponsored study that touts agile as ready for deployment anywhere
that 54% of organizations surveyed have “tried and rejected at least one agile
ch”. Characteristically, the conclusion it draws from that finding is that the meth-
romotes (Scrum, Kanban, Lean) are superior. To any unbiased person, the statistic
rve instead as a warning: an invitation to approach agile methods with caution.

ile methods clearly have many benefits to offer (otherwise this book would have
son to exist). But expecting miracles will not help. It is preferable to set realistic
nd strive to achieve them.

THE EITHER-WHAT-OR-WHEN FALLACY

ve seen that iterations in agile development are time-boxed: if something has to
t will be the functionality, not the iteration’s end date. We also saw that this prin-
s excellent. But the idea applies to the internal steps of a project. The customers’
has its own constraints, and they are often not negotiable.

en January 1st, 2002, was chosen as the date of monetary unification for twelve
ies, with the provision that the previous currencies would cease to be legal tender
o months later, it was pretty clear that the IT infrastructure would have to be ready

 changeover to the euro by that first day of the year. It was.

 indeed one of the defining rules of software development that delivery date and
nality are equally important. Yet the agile world has promoted the idea that one
 promise both. You can commit to the what, or to the when, but not both. Beck
ates this notion explicitly:

te contracts for software development that fix time, costs, and quality but call

[IBM 2012].

← “Iteration
length”, page 71.

[Beck 2005],
an ongoing negotiation of the precise scope of the system. Reduce risk by
ing a sequence of short contracts instead of one long one.

page 69.

§10.2

You
in h
Con
up

Clever
ise tha

For
want to
so that
trip to
labeled
in an e
to spen

Thi
ants) f
tently

The
fession
results
very lo

In a
especi
predic
ments
nal div
what-a
metho

The
nizatio

As
observ
with p

The
better
tangib
yield p
develo
team s
THE EITHER-WHAT-OR-WHEN FALLACY 147

 can move in the direction of negotiated scope. Big, long contracts can be split
alf or thirds, with the optional part to be exercised only if both parties agree.
tracts with high costs for change requests can be written with less scope fixed

front and lower costs for changes.

, especially if you are a consultant. I can promise what it will do. I can also prom-
t you will have it by next June. Choose one.

 most customers, of course, this either-what-or-when trick will not do. Customers
 know the when as well as the what. Agile authors suggest “educating” customers

 they understand the harsh realities of life. Most customers, of course, will skip the
 the re-education camp; they will not fall for that trap, even if that means being
 as “mediocre hierarchical bureaucrats” in the terms of an author we encountered

arly chapter. Call us bureaucrats all you please, but we have a set amount of money
d, set business results to achieve, and a set time to achieve them.

s issue is what distinguishes competent software teams (and competent consult-
rom the rest. The definition of a competent team is that over the years it consis-
delivers appropriate functionality on time and within budget.

 agile mystique can temporarily hide this fundamental difference between the pro-
als and the amateurs, by providing the amateurs — those unable to deliver quality
 within time and budget — with fashionable excuses. Such pretense cannot last for
ng, since economic considerations will quickly put an end to the hype.

 transitional period, however, the either-what-or-when pretense can cause trouble,
ally in environments where agile teams coexist with others using more classically
tive techniques. The plan-oriented groups can find it hard to get precise commit-
from the agile ones. They should not, of course, let them off the hook; and an inter-
ision of the project into time-boxed iterations cannot translate into a refusal of
nd-when deadlines for customer deliverables. But any organization adopting agile
ds should be prepared for such scenarios.

 difficulty of getting agile teams to commit is the most delicate issue in an orga-
n’s transition, total or partial, to agile development.

usual, the indefensible agile exaggeration conceals an important and productive
ation. The reluctance to promise both what and when comes from bad experience
rojects featuring oversize goals and unrealistic deadlines.

 reasonable conclusion is that it is better to split such goals into intermediate steps:
a bird in the hand four months from now than ten in the bush in two years. Define
le objectives that can be achieved at regular intervals. Achieving them will not only
artial releases that can already be deployed, but also boost the morale of everyone,

← “Intimida-
tion”, 2.2.3,
page 23.

?

pment team and customers, by providing a sense of continuous progress. But the
hould commit to these milestones: what the system will do, and when.

11

Th
an

We ha
agile c
at bay,

For
(and to
The fla
tion if

11.1

We sta

11.1.1

The pr
upfron

Ag
true th
that re
mentat
softwa

The
practic
solve i
The al
tionali
require

Iter
decisio
sessing
(once t
ter as o
forsak

B. Meye
© Sprin

e Ugly, the Hype and the Good:

 assessment of the agile approach

ve now studied the core principles, roles, practices and artifacts that make up the
anon. It is time to assess the agile contribution: which of the ideas should be kept
 which ones do not really matter, and which ones truly help.

 the sections in this chapter, it is appropriate to reverse the order of the book’s title
 use not three but four categories, distinguishing the merely good from the brilliant).
ws of agile methods are real enough, but the approach would not warrant our atten-
it did not also include genuine advances, so it is important to end with these pearls.

THE BAD AND THE UGLY

rt with the worst in the agile approach: ideas that damage the software process.

 Deprecation of upfront tasks

ize undisputedly goes to the deprecation of “upfront” activities, in particular
t requirements and upfront design.

ile criticism of “Big Upfront Anything” includes some perceptive comments. It is
at one cannot fully comprehend requirements before the development of the system;
quirements will change; that the architecture will have to be improved as imple-
ion proceeds. Those observations express some of the fundamental difficulties of
re engineering, and the futility of trying to define everything at the beginning.

re is, however, no argument for shunning the normal engineering practice — the
e, in fact, of any rational endeavor — of studying a problem before attempting to
t, and of defining the architecture of the solution before embarking on the details.
ternative proposed by agile methods is an ad hoc approach: identify some func-
ty, build it, assess and correct the result, repeat. It is no substitute for serious
ments and design.

ative development is great. Trying out ideas on a small scale before you make final
ns is great. Treating requirements as a living, changeable product is great. Reas-
 design decisions on the basis of results is great. Insisting on regular deliveries
he basic structure is in place) is great. Refactoring is listed at the end of this chap-

ne of the significant contributions of agile methods. None of these ideas justifies

ing the initial tasks of analysis and design.

r, Agile!, DOI 10.1007/978-3-319-05155-0_11,
ger International Publishing Switzerland 2014

150

In o
equivo
harm y

11.1.2

As pre
as way
require
son-Za

The
identif
genera

Use
key ab
machin

11.1.3

A core
implem
ness v
land o
require
tion or
depend

11.1.4

The po
dencie
from G
Such t
severa
useful

11.1.5

The se
ditiona
priate
caricat
on the
ing a s

Sug
wor
exp
THE UGLY, THE HYPE AND THE GOOD: AN ASSESSMENT OF THE AGILE

ther cases we can see the pros and cons of agile ideas. Here there is no place for
cating: neglecting these upfront steps, as agile authors advocate, is guaranteed to
our development.

 User stories as a basis for requirements

vious chapters have discussed on several occasions, user stories play a useful role
s to check the completeness of requirements, but to use them as the basic form of
ments means forsaking abstraction. In addition, they ignore the critical Jack-
ve distinction between the machine being built and the domain that constrains it.

 resulting systems are narrowly geared to the specific user stories that have been
ied; they often do not apply to other uses; and they are hard to adapt to more
l requirements.

r stories are no substitute for a system requirements effort aimed at defining the
stractions and the associated operations (the domain model) and clearly separating
e and domain properties.

 Feature-based development and ignorance of dependencies

 idea of agile methods is that you can treat software development as a sequence of
entations of individual features, selected at each step on the basis of their busi-

alue. It would be great if such an approach were applicable, but it exists only in a
f make-believe. Difficult projects do not lend themselves to this scheme: they
 foundational work (building core architectural elements, such as a communica-
 persistence layer) which extend across features; and the features interact through
encies, causing complexity of the “multiplicative” kind.

 Rejection of dependency tracking tools

tential complexity of feature interactions requires a careful analysis of task depen-
s; projects can skip this analysis only at their own risk. The advice to stay away
antt charts and dependency-management tools is not only naïve but detrimental.

ools are not a panacea for project management but have proved their value over
l decades of use. They can help agile projects just as well; dogmatic rejection of
tools is a self-inflicted wound.

 Rejection of traditional manager tasks

lf-organizing teams promoted by agile methods, with no manager having the tra-
l duty of assigning tasks, are the best solution for a few teams, and are inappro-
for many others. The picture of the manager as an incompetent control freak is a
ure. Many software projects have been brought to completion, and many projects
brink of failure have been rescued, through the talents of a strong manager. Impos-
ingle management scheme on everyone is arrogant.

gestions that management can exert its influence through “subtle control” make things

← “The domain
and the
machine”,
3.2.5, page 36.

← Pages
120-121.

← “Additive
and multiplica-
tive complexity:
the lasagne and
the linguine”,
page 63.
se. Developers are entitled to demand that any control to which they are subjected be
licit, not devious.

§11.1

11.1.6

Agilist
ware to
and re
is not
parts w
eraliza
fessed
change
than th

11.1.7

The X
work w
of a pr

11.1.8

The Sc
most p

11.1.9

Test-fi
functio

Tes
repeate
refacto
tunnel
spectiv

Wh
made
compa
replaci

11.1.1

Agile
right o
sion-c
legally
the mo
was no
agains
THE BAD AND THE UGLY 151

 Rejection of upfront generalization

 rightly note that the primary responsibility of a project is to deliver working soft-
 its customers, and that too much early concern for extendibility (ease of change)

usability (applicability to future projects) can hinder that goal, especially since it
always clear initially in what direction the software will be extended and which
ill need reuse. But these observations are not a reason to reject the concept of gen-
tion altogether. We have seen that such an attitude directly contradicts the pro-
 agile principle of “welcoming change”. Good software developers do not wait for
 to happen: they plan for it by designing flexible architectures and solving more
e problem of the moment.

 Embedded customer

P idea of a customer representative embedded in the development team does not
ell in practice, for reasons explained in an earlier discussion. The Scrum notion

oduct owner, however, figures below in the list of excellent ideas.

 Coach as a separate role

rum idea of a dedicated Scrum Master is good for Scrum, but not appropriate for
rojects. Good development requires not just talkers but doers.

 Test-driven development

rst development, and the requirement of associating a test with every piece of
nality, appear in the lists of good and excellent ideas below. So does refactoring.

t-driven development is another matter. A software process defined as the
d execution of the basic steps of TDD — write a test, fix the code to pass the test,
r if needed — cannot be taken seriously. With such an approach one is limited to

 vision, focused on the latest test. An effective process requires a high-level per-
e, considering the entire system.

ile test-driven development is extensively discussed in the literature, industry has
its choice: it is not broadly practicing this technique. (On the other hand, many
nies have adopted user stories. One may only hope that they will realize that
ng requirements by user stories is the same as replacing specifications by tests.)

0 Deprecation of documents

criticism of document-heavy processes that produce little real customer benefit is
n target for some segments of the industry — although in some cases, such as mis-
ritical systems, little can be done about the situation since the documents are
 required by certifying agencies. (And not just out of bureaucratic inertia. Even
st enthusiastic agilist might feel, when flying to the next agile conference, that it

← “Accept
change”, 4.4.5,
page 68.

← “Onsite cus-
tomer”, 6.5,
page 96.

← “Separating
roles”, 5.7,
page 86.

← “The TDD
method of soft-
ware develop-
ment”, 7.5.1,
page 113.
t such a bad idea after all — not total “waste”— to assess the plane’s software
t a whole pile of certification standards.)

152

Ou
for lig
“desig
ing fie
some o
this iss
plans a
the ben

11.2

The ne
icant d
softwa

• Pai
pai
the
pro
son

• Op
wo
ous
pos
und

• Sel
age
its o
the

• Wo
age
by e
spe
For
thro
suc

• Pro
pos
imp
ster
rem
THE UGLY, THE HYPE AND THE GOOD: AN ASSESSMENT OF THE AGILE

tside of specific industries with high regulatory requirements, a strong case exists
htening up the document infrastructure. It is true, as agilists emphasize, that
n” in software is not as remote from production (implementation) in other engineer-
lds. Modern programming languages help, because they make it possible to include
f the traditional design in the code itself. (Some of my own work has addressed
ue.) None of these observations, however, can justify the deprecation of upfront
nd documents. Software engineering is engineering, or should be, and sorely needs
efits of a careful predictive approach, as well as the supporting documents.

THE HYPED

xt category includes ideas that may have value but are unlikely to make a signif-
ifference in matters that count: productivity of the software process and quality of
re products. Under this heading we may include:

r programming, hyped beyond reason. As a practice to be applied occasionally,
r programming is a useful addition to the programming team’s bag of tricks. But
re is no credible evidence that it provides major improvements to the programming
cess or that it is better than classical techniques such as code reviews, and no rea-
 to impose it as the sole mode of development.

en-space working arrangements. There is no single formula for the layout of a
rking environment. What we do know is that it is essential to provide simple, obvi-
 opportunities for informal communication. Beyond that, many office setups are
sible which will not endanger a team’s success. (A related point appears, however,
er the “good” ideas of the next section: avoiding distributed development.)

f-organizing teams. A few teams are competent and experienced enough to man-
 themselves, like a conductor-less orchestra. Most are not. Each situation calls for
wn organizational solutions and there is no reason to impose a single scheme on

 entire industry.

rking at a sustainable pace. All great advice; death marches are not a good man-
ment practice. But advice can only be wishful here; these matters are determined
conomic and organizational pressures more than by good intentions. They are not

cific to the programming world: like a company that is responding to a Request
 Proposals, a researcher who is facing a conference submission deadline will work
ugh the night to meet it. The most software methodologists can do is to argue that

h practices should remain the exception.

ducing minimal functionality. It is always a good habit to question whether pro-
ed features are really needed. But usually they get introduced for a reason: some
ortant customer wants them. It is easy to rail against bloat or heap scorn on mon-

← “Is design
separate from
implementa-
tion?”, 3.3.1,
page 37.
 software (Microsoft Word and Adobe Acrobat are common targets), but try to
ove any functionality and brace for the screams of the outraged users.

§11.3

• Pla
adv
for
by

• Me
inv
tion

• Co
par
team

• Cro
pet
und
can
one
wil
sec
ulin
and

11.3

Promo
XP. Go
works,
Refact
of fun
advice
initial

Sho
tions”
uted p
but is
be ado

Ag
in Cry
mend

The
progre

In a
and in
THE GOOD 153

nning game, planning poker. These are interesting techniques to help estimate in
ance the cost and time of development activities, but they cannot be a substitute
more scientific approaches. In particular, they are open to the danger of intimidation
the crowd; the voice of the expert risks being smothered by the chorus of novices.

mbers and observers. In project meetings, the views of the people most seriously
olved matter most. This trivial observation does not deserve the amount of atten-
 that the agile canon devotes to the distinction between “pigs” and “chickens”.

llective code ownership. The policy governing who is permitted to change various
ts of the code is a delicate decision for each project; it depends on the nature of the

 and many other considerations. It is pointless to prescribe a universal solution.

ss-functional teams. It is a good idea to encourage developers to gain broad com-
ence and to avoid dividing the projects into narrow kingdoms of expertise each
er the control of one person. Beyond this general advice, there is little a method
 change here to the obvious observation that special areas require special skills. If
 of your developers is a database expert and another is a concurrency expert, you
l not ask the first, if you have a choice, to resolve a tricky deadlock issue, or the
ond to optimize queries. This observation is another reason why the agile sched-
g policy of picking the highest-business-value task in the pipeline is simplistic
 potentially harmful.

THE GOOD

ting refactoring is an important contribution of the agile approach, particularly of
od programmers have always known that it is not sufficient to get something that
 but that they should take a second look at the design and improve it if needed.
oring has given a name to this activity, made it respectable, and provided a catalog
damental refactoring patterns. As a substitute for upfront design it is terrible
, belonging to the “ugly” part of agile. But as a practice that accompanies careful
design it is of benefit to all software development.

rt daily meetings focused on simple verbal reports to progress — the “three ques-
— are an excellent idea. It need not be practiced in a dogmatic way, since distrib-
rojects and companies with flexible work schedules must adapt the basic scheme,
one of the practices that undeniably help software development, and deserves to
pted even more widely than it already is.

ile methods rightly insist on the importance of team communication (“osmotic”
stal terminology) to the success of projects. One of the consequences is to recom-
co-located projects, whenever possible, over distributed development

 practice of identifying and removing impediments, in particular as a focus of
ss meetings, is a powerful agile insight.
 similar vein, Lean’s identification of sources of waste in software development
sistence on removing them provides an excellent discipline for software projects.

154

11.4

Fortun
truly in

Sho
that ha
themse
back is

The
suite a
tors in
aged p

The
functio

Tim
has no
tomer
projec
which

Scr
resents
into th

The
have s
ture an
ment t

The
consta
techniq

Ass
contrib

The
benefi
ney, ar
from th
tice of
tured p
pattern
THE UGLY, THE HYPE AND THE GOOD: AN ASSESSMENT OF THE AGILE

THE BRILLIANT

ately, in our review of agile ideas we have encountered a number of effective and
spiring principles and practices.

rt iterations are perhaps the most visible influence of agile ideas, an influence
s already spread throughout the industry. Few competent teams today satisfy
lves with six-month objectives. The industry has understood that constant feed-
 essential, with a checkpoint every few weeks.

 related practice of continuous integration and the associated regression test
rtifact, while not agile inventions, have been popularized by XP and are major fac-
 the success of modern projects. The industry, or at least every competently man-
roject, has turned away from older “big bang” practices, and will never go back.

 closed-window rule, which prohibits everyone regardless of status from adding
nality during an iteration, is one of the most insightful and effective agile ideas.

e-boxing every iteration — not accepting any delays, even if some functionality
t been implemented — is an excellent discipline, forcing team members and cus-
representatives to plan carefully and realistically, and bringing stability to the
t. (We have seen that it should only apply to iterations, not to an entire project, for
the customer dictates delivery dates.)

um introduced the beneficial notion of a clearly defined product owner who rep-
 the goals of the customer organization and has decision power over what goes
e product and what does not.

 emphasis on delivering working software is another important contribution. We
een that it can be detrimental if understood as excluding requirements, infrastruc-
d other upfront work. But once a project has established a sound basis, the require-
o maintain a running version imposes a productive discipline on the team.

 notion of velocity and the associated artifact of task boards to provide visible,
ntly updated evidence of progress or lack thereof are practical, directly useful
ues that can help every project.

ociating a test with every piece of functionality is a fundamental rule which
utes significantly to the solidity of a software project and of the resulting product.

 ideas listed as good or brilliant are relatively few, but they are both important and
cial; they deserve careful study and immediate application. They justify the jour-
duous at times, that we took through the land of agile methods. Once disentangled
e questionable part of the agile credo, they will leave a durable mark on the prac-

 software engineering, and find their place, along with earlier ideas such as struc-

← “The
closed-window
rule”, page 90.

← “The
either-what-or-
when fallacy”,
page 146.

← “Dual Devel-
opment”, page 74.
rogramming, formal methods, object-oriented software construction and design
s, in the history of major advances in the field.

Bi

[Agile
Ag

[Agile
Ag

[Ambl
Sc

[Ambl
Sc
co

[Ambl
Sc
at

[Ambl
Sc
ed

[Ambl
Sc
co

[Anan
Ba

[Basili
Vi
De
pa

[Beck
Ke
ed

[Beck
Ke

[Beck
Ke
Ad

[Boehm
Ba

B. Meye
© Sprin
bliography
All URLs checked January 2014.

 2001]
ile Manifesto, at agilemanifesto.org.
 2011]
ile Alliance: Velocity page at guide.agilealliance.org/guide/velocity.html, 2011.

er 2006]
ott Ambler: Agile Adoption Rate Survey, at www.ambysoft.com/surveys/agileMarch2006.html.
er 2001]
ott W. Ambler: Agile Modeling and the Rational Unified Process (RUP), at www.agilemodeling.
m/essays/agileModelingRUP.htm (part of Ambler’s “agile modeling” site), 2001.
er 2010]
ott W. Ambler: The Agile Maturity Model (AMM), in Dr. Dobbs Journal, April 2010, available
www.drdobbs.com/architecture-and-design/the-agile-maturity-model-amm/224201005.
er 2012]
ott W. Ambler and Matthew Holitza: Agile for Dummies, Wiley, 2012. See also “IBM limited
ition” available online at www-01.ibm.com/software/rational/agile/agilesoftware.
er testing]
ott W. Ambler: Agile Testing and Quality Strategies: Discipline Over Rhetoric, at www.ambysoft.
m/essays/agileTesting.html#AgileTestingStrategies, undated.
d site]
chan Anand: Conscires site at agile.conscires.com.
 1975]
ctor R. Basili and Albert J. Turner: Iterative Enhancement: A Practical Technique for Software
velopment, IEEE Transactions on Software Engineering, vol. SE-1, no. 4, December 1975,
ges 390-396, available at www.cs.umd.edu/~basili/publications/journals/J04.pdf.
2000]
nt Beck: Extreme Programming Explained — Embrace Change, Addison-Wesley, 2000. (First
ition; see also [Beck 2005].)
2003]
nt Beck: Test-Driven Development — By Example, Addison-Wesley, 2003.
2005]
nt Beck, with Cynthia Andres: Extreme Programming Explained — Embrace Change,,
dison-Wesley, 2005. (Second edition; see also [Beck 2000].)

 1981]

rry W. Boehm: Software Engineering Economics, Prentice Hall, 1981.

r, Agile!, DOI 10.1007/978-3-319-05155-0,
ger International Publishing Switzerland 2014

http://agilemanifesto.org
http://www.ambysoft.com/surveys/agileMarch2006.html
http://agile.conscires.com
http://www.cs.umd.edu/~basili/publications/journals/J04.pdf
http://www.agilemodeling.com/essays/agileModelingRUP.htm
http://www.agilemodeling.com/essays/agileModelingRUP.htm
http://www.drdobbs.com/architecture-and-design/the-agile-maturity-model-amm/224201005
http://guide.agilealliance.org/guide/velocity.html
http://www.ambysoft.com/essays/agileTesting.html#AgileTestingStrategies
http://www.ambysoft.com/essays/agileTesting.html#AgileTestingStrategies
http://www-01.ibm.com/software/rational/agile/agilesoftware

156

[Boehm
Ba
Ad

[Brook
Fr

[Chrom
Ch

[CMM
CM
be
In

[Cockb
Al
Co

[Cockb
Al

[Cockb
Al
ali

[Cockb
Al
Ad

[Cockb
Al
ali
bo

[Cohn
M
co

[Cohn
M

[Cohn
M
-d

[Cohn
M

[Cohn
M
so

[Cohn
M

[Colla
Co

[Cox 1
Br
BIBLIOGRAPHY §

 2004]
rry W. Boehm & Richard Turner: Balancing Agility and Discipline – A Guide for the Perplexed,
dison-Wesley, 2004.
s 1975]

ed Brooks: The Mythical Man-Month, Addison-Wesley, 1975.
atic 2003]

romatic: Extreme Programming Pocket Guide, O’Reilly, 2003.
I 2010]
MI Product Team: CMMI for Development, Version 1.3, Improving processes for developing

tter products and services, Technical Report CMU/SEI-2010-TR-033, Software Engineering
stitute, November 2010, available at www.sei.cmu.edu/reports/10tr033.pdf.
urn 2001]

istair Cockburn and Jim Highsmith: Agile Software Development: The People Factor, in
mputer (IEEE), vol. 34, no. 11, November 2001, pages 131-133.
urn 2001a]

istair Cockburn: Agile Software Development, Addison-Wesley, 2001.
urn 2003]

istair Cockburn: The cone of silence and related project management strategies, online article at
stair.cockburn.us/The+cone+of+silence+and+related+project+management+strategies, 2003.
urn 2005]

istair Cockburn: Crystal Clear — A Human-Powered Methodology for Small Teams,
dison-Wesley, 2005.
urn 2010]

istair Cockburn: Vid of Alistair describing Shu Ha Ri, video lecture, 7 July 2010, available at
stair.cockburn.us/Vid+of+Alistair+describing+Shu+Ha+Ri. See explanatory text (from 2001
ok) at alistair.cockburn.us/Vid+of+Alistair+describing+Shu+Ha+Ri.
 2003]
ike Cohn: The Need for Agile Project Management, online article at www.mountaingoatsoftware.
m/articles/the-need-for-agile-project-management.
 2006]
ike Cohn: Agile Estimating and Planning, Addison-Wesley, 2006.
 2009]
ike Cohn: Intentional Yet Emergent, online article at www.mountaingoatsoftware.com/blog/agile
esign-intentional-yet-emergent, 4 December 2009.
 2010]
ike Cohn: Succeeding With Agile, Addison-Wesley, 2010.
 2010a]
ike Cohn: The Role of Leaders on a Self-Organizing Team, online article at www.mountaingoat
ftware.com/blog/the-role-of-leaders-on-a-self-organizing-team, 7 January 2010.
 site]
ike Cohn: Succeeding With Agile site, www.mountaingoatsoftware.com.
bnet site]
llabnet Scrum Methodology site, at scrummethodology.com.

996]
ad Cox: Superdistribution: Objects as Property on the Electronic Frontier, Addison Wesley. 1996.

http://www.mountaingoatsoftware.com/blog/agile-design-intentional-yet-emergent
http://www.mountaingoatsoftware.com/blog/agile-design-intentional-yet-emergent
http://www.mountaingoatsoftware.com
http://www.mountaingoatsoftware.com/blog/the-role-of-leaders-on-a-self-organizing-team
http://www.mountaingoatsoftware.com/blog/the-role-of-leaders-on-a-self-organizing-team
http://www.sei.cmu.edu/reports/10tr033.pdf
http://www.mountaingoatsoftware.com/articles/the-need-for-agile-project-management
http://www.mountaingoatsoftware.com/articles/the-need-for-agile-project-management
http://alistair.cockburn.us/The+cone+of+silence+and+related+project+management+strategies
http://scrummethodology.com
http://alistair.cockburn.us/Vid+of+Alistair+describing+Shu+Ha+Ri
http://alistair.cockburn.us/Vid+of+Alistair+describing+Shu+Ha+Ri

§

[Cunn
W
at

[Cusum
M
So
Sc

[DeMa
To
Do

[DeMa
To
Ho

[Demi
W

[Denn
St
ma

[Derby
Es
m/

[Dhaw
Kr
En

[Dijks
Ed
no

[Evans
Er
Ad

[Evele
J.
So
Bu
[G

[Gamm
Er
Re

[Fowle
M

[Ghezz
Ca
Ed

[Glass
Ro
Co
157

ingham 2004]
ard Cunningham (interviewed by Bill Venners): The Simplest Thing that Could Possibly Work,
www.artima.com/intv/simplest.html.

ano 1995]
ichael A. Cusumano and Richard W. Selby, Microsoft Secrets: How the World’s Most Powerful
ftware Company Creates Technology, Shapes Markets and Manages People, Simon and
huster, 1995
rco 1999]
m DeMarco and Tim Lister: Peopleware: Productive Projects and Teams (Second Edition),
rset House, 1999. (First edition was published in 1987.)
rco 2001]
m DeMarco: Slack: Getting Past Burnout, Busywork and the Myth of Total Efficiency, Dorset
use, 2001.

ng 1966]
. Edwards Deming: Some Theory of Sampling, 1966, reprinted by Dover Publications, 2010.
ing 2012]
eve Denning: The Case Against Agile: Ten Perennial Management Objections, in Forbes
gazine, 17 April 2012, at onforb.es/HQ8i6J.
 2011]
ther Derby: Misconceptions about Self-Organizing Teams, online article at www.estherderby.co
2011/07/misconceptions-about-self-organizing-teams-2.html, 19 July 2011.
an 2008]
ishankumar Dhawan, Geste Kopfschuetteln Indien (Indian head-nodding), YouTube video (in
glish), 30 June 2008, , at bit.ly/dmIoGj (short for www.youtube.com/watch?v=3hCV2oO2akw).

tra 1968]
sger W. Dijkstra: Go To Statement Considered Harmful, Communications of the ACM, vol. 11,
. 3, March 1968, pages 147-148.
 2003]
ic Evans: Domain-Driven Design: Tackling Complexity in the Heart of Software,
dison-Wesley, 2003.

ens 2010]
Laurens Eveleens and Chris Verhoef: The Rise and Fall of the Chaos Report Figures, in IEEE
ftware, vol. 27, no. 1, Jan-Feb 2010, pages 30-36. See also S. Aidane, The “Chaos Report” Myth
sters, 26 March 2010, www.guerrillaprojectmanagement.com/the-chaos-report-myth-busters, and
lass 2006].
a 1994]

ich Gamma, Richard Helm, Ralph Johnson and John Vlissides: Design Patterns: Elements of
usable Object-Oriented Software, Addison-Wesley, 1994.
r 1999]

artin Fowler: Refactoring: Improving the design of existing code, Addison Wesley, 1999.
i 2002]
rlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli: Fundamentals of Software Engineering. 2nd

ition. Prentice Hall, 2002.
 2006]

bert L. Glass: The Standish Report: Does it Really Describe a Software Crisis?, in
mmunications of the ACM, vol. 49, no. 8, pages 15-16, August 2006.

http://onforb.es/HQ8i6J
http://bit.ly/dmIoGj
http://www.youtube.com/watch?v=3hCV2oO2akw
http://www.artima.com/intv/simplest.html
http://www.guerrillaprojectmanagement.com/the-chaos-report-myth-busters
http://www.estherderby.com/2011/07/misconceptions-about-self-organizing-teams-2.html
http://www.estherderby.com/2011/07/misconceptions-about-self-organizing-teams-2.html

158

[Glaze
Hi
No
ww

[Gualt
M
at

[Hadam
Ja
Pr

[Halliw
Lu
co

[Hump
W
20

[IBM
IB
ww

[IEEE
IE
19

[Jacob
Iv
Ad

[Jacks
M
an

[Jacks
M
Ad

[Jacob
Iv
Ad

[Jeffrie
Ro
Ad

[Jeffrie
Ro

[Knibe
He

[Kraft
Ph
Un

[Larm
Cr
an
BIBLIOGRAPHY §

r 2008]
llel Glazer, Jeff Dalton, David Anderson, Mike Konrad and Sandy Shrum: CMMI or Agile: Why
t Embrace Both!, Technical Note CMU/SEI-2008-TN-003, November 2008, available at
w.sei.cmu.edu/library/abstracts/reports/08tn003.cfm.

ieri 2011]
ike Gualtieri: Agile Software Is A Cop-Out; Here’s What’s Next, blog article, 12 October 2011,
blogs.forrester.com/mike_gualtieri/11-10-12-agile_software_is_a_cop_out_heres_whats_next.

ard 1945]
cques Hadamard: Psychology of Invention in the Mathematical Field, Princeton University
ess, 1945

ell 2008]
ke Halliwell: The Agile Disease, blog article, 16 November 2008, at lukehalliwell.wordpress.
m/2008/11/16/the-agile-disease.
hrey 2005]

atts S. Humphrey: PSP: A Self-Improvement Process for Software Engineers, Addison-Wesley,
05.
2012]
M-sponsored study by Project At Work: Agile Maturity Report, 2012, available online at
w-01.ibm.com/software/rational/agile/agilesoftware.

 1998]
EE: Standard 830-1998, Recommended Practice for Software Requirements Specifications,
98, available (for a fee) at standards.ieee.org/findstds/standard/830-1998.html.
son 1992]
ar Jacobson: Object Oriented Software Engineering: A Use Case Driven Approach,
dison-Wesley, 1992.

on 1995]
ichael Jackson: Software Requirements and Specifications: A Lexicon of Practice, Principles
d Prejudices, Addison Wesley / ACM Press, 1995.
on 2000]
ichael Jackson: Problem Frames: : Analysing & Structuring Software Development Problems,
dison-Wesley, 2000.

son 1992]
ar Jacobson: Object-Oriented Software Engineering: A Use Case DrivenApproach,
dison-Wesley, 1992.
s 2001]
n Jeffries, Ann Anderson and Chet Hendrickson: Extreme Programming Installed,
dison-Wesley, 2001.
s site]
n Jeffries: Xprogramming site at xprogramming.com.
rg 2010]
nrik Kniberg and Mattias Skarin: Kanban and Scrum — Making the Most of Both, InfoQ, 2010.
1977]
ilip Kraft: Programmers and Managers: The Routinization of Computer Programming in the
ited States, Springer Verlag, 1977.

an 2010]

aig Larman and Bas Vodde: Practices for Scaling Lean & Agile Development: Large, Multisite,
d Offshore Product Development with Large-Scale Scrum, Addison-Wesley, 2010.

http://lukehalliwell.wordpress.com/2008/11/16/the-agile-disease
http://lukehalliwell.wordpress.com/2008/11/16/the-agile-disease
http://standards.ieee.org/findstds/standard/830-1998.html
http://xprogramming.com
http://blogs.forrester.com/mike_gualtieri/11-10-12-agile_software_is_a_cop_out_heres_whats_next
http://www.sei.cmu.edu/library/abstracts/reports/08tn003.cfm
http://www-01.ibm.com/software/rational/agile/agilesoftware

§

[Leffin
De
Pr

[Lutz 1
Ro
IS
ww

[Made
Le
Sp

[Mark
Da
ww

[Marti
An
Vi

[McBr
Pe

[McCo
Ste

[McCr
Da
SI

[Meye
Be

[Meye
Be
Co

[Meye
Be

[Meye
Be
AC

[Meye
Be
Sp

[Meye
Be
tha
se

[Meye
Be
at

[Meye
Be
be
159

gwell 2011]
an Leffingwell: Agile Software Requirements — Lean Requirements Practices for Teams,
ograms, and the Enterprise, Addison-Wesley, 2011.
993]
byn Lutz: Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems, in

RE 93 (Proc. Int. Symposium on Requirements Engineering), IEEE, 1993, also available at
w.cs.iastate.edu/%7Erlutz/publications/isre93.ps.

yski 2010]
ch Madeyski: Test-Driven Development – An Empirical Development of Agile Practice,
ringer Verlag, 2010.
ham 2010]
niel Markham: Agile Ruined My Life, blog article, 7 September 2010, available at
w.whattofix.com/blog/archives/2010/09/agile-ruined-my.php.

n 2009]
gela Michele Martin: The Role of Customers in Extreme Programming Projects, PhD thesis,

ctoria University of Wellington, New Zealand, 2009.
een 2002]
te McBreen: Questioning Extreme Programming, Pearson Education, 2002.
nnell 2006]
ve McConnell: Software Estimation: Demystifying the Black Art, Microsoft Press, 2006.

acken 1982]
niel D. McCracken and Michael A. Jackson: Life cycle concept considered harmful, in ACM

GSOFT Software Engineering Notes, vol. 7, no. 2, April 1982, pages 29-32.
r 1988]
rtrand Meyer: Object-Oriented Software Construction (first edition), Prentice Hall, 1988.
r 1995]
rtrand Meyer: Object Success: A Manager’s Guide to Object Orientation, Its Impact on the
rporation and its Use for Reengineering the Software Process, Prentice Hall, 1995.
r 1997]
rtrand Meyer: Object-Oriented Software Construction, second edition, Prentice Hall, 1997.
r 2008]
rtrand Meyer: Design and Code Reviews in the Age of the Internet, in Communications of the
M, vol. 51, no. 9, September 2008, pages 66-71.

r 2009]
rtrand Meyer: Touch of Class: Learning to Program Well, Using Objects and Contracts,
ringer-Verlag, 2009.
r 2009a]
rtrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Emmanuel Stapf: Programs
t Test Themselves, IEEE Computer, vol. 42, no. 9, September 2009, pages 46-55, available at

.ethz.ch/~meyer/publications/computer/test_themselves.pdf.
r 2012]
rtrand Meyer: A Fundamental Duality of Software Engineering, 14 October 2012, blog article
bertrandmeyer.com/2012/10/14/a-fundamental-duality-of-software-engineering/.
r 2013]

rtrand Meyer: Apocalypse no! (part 1, includes a link to part 2), 12 March 2013, blog article at
rtrandmeyer.com/2013/03/12/apocalypse-no-part-1/.

http://www.eiffel.com/doc/oosc
http://www.cs.iastate.edu/%7Erlutz/publications/isre93.ps
http://www.whattofix.com/blog/archives/2010/09/agile-ruined-my.php
http://bertrandmeyer.com/2012/10/14/a-fundamental-duality-of-software-engineering/
http://se.ethz.ch/~meyer/publications/computer/test_themselves.pdf
http://bertrandmeyer.com/2013/03/12/apocalypse-no-part-1/

160

[Meye
Be
be

[Mills
Ha
Di

[Mitta
Ni
zin

[Mob
M

[Mozil
M

[Mülle
M
pe

[NASA
M
at
CN

[NATO
Pe
the
ho

[Nawr
Je
Eu

[Nona
Ik
Co

[Parna
Da
IE
av

[Pfleeg
Sh
Ed

[Pichle
Ro

[Poppe
M
ww

[Poppe
M

[Poppe
M

BIBLIOGRAPHY §

r 2013a]
rtrand Meyer: What is wrong with CMMI, 12 May 2013, blog article at
rtrandmeyer.com/2013/05/12/what-is-wrong-with-cmmi/.
1971]
rlan D. Mills: Chief programmer teams, principles, and procedures, IBM Federal Systems
vision Report FSC71-5108, Gaithersburg, 1971.
l 2013]
tin Mittal: Self-Organizing Teams: What and How, at scrumalliance.org/articles/466-selforgani
g-teams-what-and-how, 7 January 2013.

site]
ob Programming site, at mobprogramming.org.
la modules]
ozilla Modules and Module Owners, at www.mozilla.org/hacking/module-ownership.html.
r 2005]
atthias Müller: Two controlled experiments concerning the comparison of pair programming to
er review, in Journal of Systems and Software 78, 2005, pages 166-179.
 1999]

ars Climate Orbiter Mishap Investigation Board Phase I Report, 10 November 1999, available
bit.ly/Ot7mJ8 (short for ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf). See also the
N article at bit.ly/d51nla.
 1968]

ter Naur and Brian Randell (eds): Software Engineering, Report on a Conference Sponsored by
 NATO Science Committee, Garmisch, Germany, 7-11 October 1968, republished in 2001 at
mepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF.
ocki 2001]
rzy Nawrocki and Adam Wojciechowski: Experimental evaluation of pair programming, in
ropean Software Control and Metrics (Escom), April 2001, pages 269-276.

ka 1995]
ujiro Nonaka and Hirotaka Takeuchi: The Knowledge-Creating Company: How Japanese
mpanies Create the Dynamics of Innovation, Oxford University Press, 1995.
s 1986]
vid L. Parnas and Paul C. Clements: A Rational Design Process: How and Why to Fake it, in
EE Transactions on Software Engineering, vol. 12, no. 2, February 1986, pages 251-257,
ailable at y.web.umkc.edu/yzheng/classes/doc/IEEE86_Parnas_Clement.pdf.
er 2009]
ari Lawrence Pfleeger and Joanne M. Atlee: Software Engineering: Theory and Practice. 4th

ition, Prentice Hall, 2009.
r site]
man Pichler Consulting: Scrum site at www.romanpichler.com.
ndieck 2001]

ay Poppendieck: Lean Programming, in Dr Dobb’s, two-part article, 1 May and 1 June 2001, at
w.drdobbs.com/lean-programming/184414734 and www.drdobbs.com/lean-programming/184414744.
ndieck 2003]

ary and Tom Poppendieck: Lean Software Development — An Agile Toolkit, Addison-Wesley, 2003.

ndieck 2010]

ary and Tom Poppendieck: Leading Lean Software Development, Addison-Wesley, 2010.

http://bit.ly/Ot7mJ8
ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf
http://bit.ly/d51nla
http://www.romanpichler.com
http://scrumalliance.org/articles/466-selforganizing-teams-what-and-how
http://scrumalliance.org/articles/466-selforganizing-teams-what-and-how
http://y.web.umkc.edu/yzheng/classes/doc/IEEE86_Parnas_Clement.pdf
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://www.drdobbs.com/lean-programming/184414734
http://www.drdobbs.com/lean-programming/184414744
http://www.mozilla.org/hacking/module-ownership.html
http://bertrandmeyer.com/2013/05/12/what-is-wrong-with-cmmi/
http://mobprogramming.org/

§

[Poppe
M

[Poppe
M

[Reeve
Ja
co

[Royce
W
W

[Schw
Ke

[Schw
Ke

[Schw
Ke

[Schw
Ke
De

[Schw
Th
M
an
vo

[Scrim
Ja

[Scrum
Sc

[Shore
Ja

[Shore
Ja
co

[Shore
W

[Silver
M
20

[Sobel
Da
Pr

[Stellm
An

[Steph
M
Ap
161

ndieck essays]
ary Poppendieck, Lean Essays site, www.leanessays.com.
ndieck lean]

ary and Tom Poppendieck: Lean Software Development site, www.poppendieck.com.
s 1992-2005]

ck W. Reeves: What is Software Design?, in C++ Journal, Fall 1992, available with two
mplementary essays (2005) at www.developerdotstar.com/mag/articles/reeves_design.html.
 1970]

inston D. Royce: Managing the Development of Large Software Systems, in Proc. IEEE
ESCON, 1970, pages 1-9, at www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf.
aber 2002]
n Schwaber and Mide Beedle: Agile Software Development with Scrum, Prentice Hall, 2002.

aber 2004]
n Schwaber: Agile Project Management with Scrum, Microsoft Press, 2004.

aber 2004a]
n Schwaber: Managing Agile Projects, Addison-Wesley, 2004.

aber 2012]
n Schwaber and Jeff Sutherland: Software in 30 Days: How Agile Managers Beat the Odds,
light Their Customers, And Leave Competitors In the Dust, Wiley, 2012.

eigert 2012]
omas Schweigert, Risto Nevalainen, Detlef Vohwinkel, Morten Korsaa and Miklos Biro: Agile

aturity Model: Oxymoron or the Next Level of Understanding, in Software Process Improvement
d Capability Determination (SPICE), Communications in Computer and Information Science
l. 290, 2012, pages 289-294, at link.springer.com/chapter/10.1007%2F978-3-642-30439-2_34.
shire site]
mes Scrimshire: Hurricane Four site, hurricanefour.com.
 Alliance]

rum Alliance site at scrumalliance.org.
 2008]
mes Shore and Shane Warden: The Art of Agile Development, O'Reilly. 2008.
 2008a]
mes Shore: The Decline and Fall of Agile, blog article, 14 November 2008, at www.jamesshore.
m/Blog/The-Decline-and-Fall-of-Agile.html.
 site]
eb site for [Shore 2008] at jamesshore.com/Agile-Book.
 2007]
elanie Silver: Am I, or Am I Not, Using Scrum? That is the Question, Scrum Alliance site, 18 March
07, www.scrumalliance.org/articles/41-am-i-or-am-i-not-using-scrum-that-is-the-question.
 2007]
va Sobel: Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific
oblem of His Time, Walker, 2007.
an site]
drew Stellman and Jennifer Greene: Building Better Software site, www.stellman-greene.com/.

ens 2003]

att Stephens & Doug Rosenberg: Extreme Programming Refactored: The Case Against XP,
ress, 2003.

http://www.poppendieck.com
http://jamesshore.com/Agile-Book
http://www.scrumalliance.org/articles/41-am-i-or-am-i-not-using-scrum-that-is-the-question
http://www.stellman-greene.com/
http://www.jamesshore.com/Blog/The-Decline-and-Fall-of-Agile.html
http://www.jamesshore.com/Blog/The-Decline-and-Fall-of-Agile.html
http://www.leanessays.com
http://www.developerdotstar.com/mag/articles/reeves_design.html
http://hurricanefour.com
http://link.springer.com/chapter/10.1007%2F978-3-642-30439-2_34
http://scrumalliance.org

162

[Surow
Ja
Co

[Surow
Ja
ww

[Suthe
Je
ww

[Suthe
Je
M
20

[Suthe
Je

[Suthe
Je
av

[Wake
Bi

[Walla
Do
Ad

[Water
Ke

[Weise
Co
ww

[Wells
Do

[Wenz
Jo

[Wirth
Ni
64

[Yegge
St
blo

[Yourd
Ed

[Zave
Pa
TO
pa

[Zave
Pa
a p
BIBLIOGRAPHY §

iecki 2004]
mes Surowiecki: The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How
llective Wisdom Shapes Business, Economies, Societies and Nations, Knopf Doubleday, 2004.
iecki 2013]

mes Surowiecki: Requiem For a Dreamliner, in the New Yorker, 4 February 2013, available at
w.newyorker.com/talk/financial/2013/02/04/130204ta_talk_surowiecki.

rland 2009]
ff Sutherland: Self-Organization: The Secret Sauce for Improving your Scrum Team, video at

w.youtube.com/watch?v=M1q6b9JI2Wc.
rland 2010]
ff Sutherland, Carsten Ruseng Jakobson and Kent Johnson: Scrum and CMMI Level 5: The
agic Potion for Code Warriors, in Proc. 41st Hawaii Int. Conf. on System Sciences, 7-10 Jan.
08, at ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4439172&tag=1 (and bit.ly/17LZE2R).
rland 2012]
ff Sutherland, Rini van Solingen and Eelco Rustenberg: The Power of Scrum, CreateSpace, 2012.
rland 2013]
ff Sutherland: Scrum: The Art of Doing Twice the Work in Half the Time, tutorial notes, 2013,
ailable at jeffsutherland.com/CSMjsv16.pdf.
 site]
ll Wake: Exploring Extreme Programming site at xp123.com.
ce 2002]
ug Wallace, Isobel Raggett & Joel Aufgang: Extreme Programming for Web Projects,
dison-Wesley, 2002.
s site]
lly Waters: All About Agile site, www.allaboutagile.com.
rt 2010]
nrad Weisert, Are Agile Methods and Reusable Components Incompatible?, online article at
w.idinews.com/agileReUse.html.

 site]
n Wells: Extreme Programming site, www.extremeprogramming.org.

el site]
el Wenzel, In Point Form site, joel.inpointform.net.
 1995]
klaus Wirth: A Plea for Lean Software, in IEEE Computer, Vol. 28, no. 2, February 1995, pages
-68.
 2006]

eve Yegge: Good Agile, Bad Agile, blog article, 27 September 2006, available at steve-yegge.
gspot.com/2006/09/good-agile-bad-agile_27.html.
on 2003]
 Yourdon: Death March, 2nd edition, Prentice Hall, 2003. (First edition published in 1997.)
1997]
mela Zave and Michael Jackson: Four dark corners of requirements engineering, in ACM
SEM (Transactions on Software Engineering and Methodology), vol. 6, no. 1, January 1997,

ges 1-30.
FAQ]

mela Zave, Feature Interaction FAQ, at www2.research.att.com/~pamela/faq.html, with links to
age listing many publications on feature interaction.

http://xp123.com
http://www.allaboutagile.com
http://www.extremeprogramming.org
http://joel.inpointform.net
http://www.idinews.com/agileReUse.html
http://steve-yegge.blogspot.com/2006/09/good-agile-bad-agile_27.html
http://steve-yegge.blogspot.com/2006/09/good-agile-bad-agile_27.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4439172&tag=1
http://bit.ly/17LZE2R
http://www2.research.att.com/~pamela/faq.html
http://jeffsutherland.com/CSMjsv16.pdf
http://www.newyorker.com/talk/financial/2013/02/04/130204ta_talk_surowiecki
http://www.youtube.com/watch?v=M1q6b9JI2Wc

In
In the e

a priori
see a

abstract
additive
Afforda
agile

and C
and d
and r

c
w

artifa
asses

te
assum
book
claim
Ludd
Mani
meth
pract

a
m
te

preca
princ

o
o
sh
te

roles
o
se
se

trans
value

all-or-n
Ambler
anecdot

see a
anti-pat
Apache
API 10
approva
dex
lectronic version, clicking a page number will take you to the corresponding occurrence.

A
, a posteriori 113
lso dual development
ness 49
, see under complexity
ble Care Act (Obamacare) 61

MMI 46-47
esign 39-41
equirements 32-37
hange criticism 35
aste criticism 33-34
cts 10-12, 117-131
sment xi-xii, 12-15, 145, 149-154
chniques xi-xii
ptions 2-4

s 133, 136-139
s 28-30
ite tendencies 131
festo 1-2, 5, 7, 50, 66, 68, 91, 97, 135, 140
ods 2, 133-143
ices 8-10, 89-115
lso called “ceremonies” in Scrum 89
anagerial 89-102
chnical 103-115
utions in reading agile texts 17-30
iples 4-7, 49-78
fficial 5, 50-51
rganizational 5, 51-69
ould be prescriptive 49
chnical 6-7, 70-78
 7, 79-87
nly three in Scrum 80
e manager, product owner, scrum master, team
paration 86-87

ition 145-147
s 2-4
othing ix, 22, 27
, Scott W. 43, 47, 118, 145
e viii, xi-xii, 17-22, 54, 57, 61, 119, 135-136
lso under proof
tern 110
 101

separate from arousal 106-107
architecture 3-4, 9, 14, 19, 21, 31, 33, 35-41, 43,

 46, 50, 54, 56, 59-62, 66-67, 69-70, 74-75, 82,
 86, 97, 100, 109-114, 120-121, 125, 129-130,
 135-138, 149, 152-154
associated with “design” 37

Aristotle xi
Armstrong, Lance 22, 135-136
arousal

separate from approval 106-107
artifact, see under agile
assertion 118
assessment

in CMMI 44-45
of the agile approach, see assessment under agile

Atlee, Joanne M. 32

B
bachelor’s degree 47
backlog 80-81, 89, 98, 117, 126-129
balance point 27-28
Basili, Victor R. 70
Baudoin, Claude xiii
Beck, Kent xiii, 26, 32-33, 35, 52-53, 58, 60, 77, 94,

 101, 104-107, 109-111, 113-114, 117, 123, 125,
 137-138, 146-147

Beedle, Mike xiii
Berkeley Unix 108-109
Big Bang approach to integration 72, 103, 105, 154
Big Idea 133-134, 136-137, 139, 141
Big Upfront, see upfront tasks
Bishop, Judith xiii
bloat 58, 61, 135, 152
blog xiii
board (story board, task board) 10-12, 117, 127-128
Boehm, Barry W. ix, xiii, 25, 31, 52, 62, 124, 145
Boeing Dreamliner (787) 61
booking.com 68
Brecht, Bertolt 25
bug, see defect
bullpen 125
0
l

burndown, burnup, see under chart
Business Week 66

164

Calvin
catastro
ceremo
certifica
change

see a
as cri
contr
incid
must

c
Chaos r
chart

burnd
burnu
depe
earne
Gant

chicken
chief pr
China S
Clausew
Clear, s
Clemen
closed-
cloud-b
cluster
CMM,
CMMI

 75,
and I
level

coach 7
see a

Cockbu
 81,

code 3
 65-
 122
see a
assoc
centr
differ
differ
inspe
objec
owne

a
a

revie
smel
stand

Cohn, M
 84,
INDEX

C
 24
phism 22, 26-27
ny, Scrum name for practice 89
tion (CMMI, Scrum) 45, 47, 84, 140

lso extendibility
ticism of requirements 33, 35
ol 101
ental and essential 112
 be accepted 4, 6, 35, 68-69, 90, 139-140, 154
ontradiction with minimalism 69, 151
eport 26-27

own 10-11, 117, 128-129
p 128-129, 131

ndency 61, 129-131, 150
d-value 131
t, see dependency under chart
 82, 139, 153
ogrammer 86-87
hop rule 104
itz, Carl von 39

ee under Crystal
ts, Paul C. 39
window rule 90-91, 139-140, 154
ased tools 131
 70
see CMMI
(Capability Maturity Model Integration) 43-47,
 99, 141
ndia 45
s 44-45, 47
, 29, 55, 84-87, 99, 151

lso Master under Scrum
rn, Alistair xiii, 21, 26, 47, 56-57, 60, 73-74,
 96-97, 101, 108, 125, 130, 141
-4, 6, 9-10, 13, 15, 35-39, 46, 57-58, 60-61,
66, 69-70, 77, 100-107, 109-115, 117-118,
, 125, 129-130, 135, 137-138, 151-153
lso implementation
iated with tests 118
al role 4, 15, 39, 60, 117, 129
ence with documentation 37-39
ence with “implementation” 37
ction xii, 13, 107, 138, 152
t-oriented 69
rship 8-9, 100-102, 138, 153

nd cross-functionality 102
ssessment 100-102, 153
w, see inspection under code
l, see this term
ards 10, 109

collective code ownership, see ownership under code
cologne, strong 106
Columbus, Christopher 24

Columbus syndrome 24
commit then review (CTR) 101
communication

see documentation, verbal communication
core, see core communication
osmotic, see osmotic communication

Communications of the ACM xiii
complexity 120, 123

see also simplicity
additive and multiplicative 58, 63-65, 71, 100, 112,

 150
cone of uncertainty 124
configuration management 35, 44-45, 76, 101, 104
consumables 60, 65
continuous integration viii, 8-9, 103-105, 118, 138,

 154
control

subtle, surreptitious, by love, see subtle control
core communication 141
core participant, see members and observers under team
cover-your-behind 22, 27-28
creep, see under feature
cross-functionality 81, 98, 102, 130, 153

and code ownership 102
Crystal vii, ix-x, 2, 57, 97, 101, 125, 128, 131, 133,

 141-143, 153
assessment 142
Clear 141
principles 141

cubby 125
cubicle 3, 57, 96

see also space under working
Cunningham, Ward 59, 137
customer xii, 2-7, 11, 13, 21, 33-36, 41, 50-53, 60-

62, 68, 70, 73, 75, 79-83, 90, 94-96, 99, 102,
 119-120, 127, 129, 134-135, 137-138, 151-152,
 154
see also product owner
at the center 51-53
embedded 53, 83, 86, 96, 151
interaction 83
onsite 83, 96, 151

Cusumano, Michael A. 14, 104
CVS 104

D
daily build 14, 72, 103-105

at Microsoft 104
daily meeting 8, 15, 81-82, 84, 89, 91-93, 98, 140,

 153

ike xiii, 17, 19-21, 32-33, 40, 54-55, 65, 78,

 91, 95, 122-124, 126, 130, 139
also known as daily scrum 91
also known as standup meeting 91

INDEX

three
daily Sc
David (
death m
debt, se
defect

 118
class

defined
definiti
Delphi
DeMarc
Deming
Dennin
Departm
depend

chart
Derby,
design

see a
differ
patte
separ
smel
upfro

Design
develop

distri
do no
dual,
iterat
test-d

Dhawan
Dijkstra
Dijkstra
Dilbert
Disneyl
distribu
docume

differ
versu

domain
mode
vs m

done, se
Donize
Dreyfus
dual de
Dubois
Duluth
dynami

Easiest
egoless
165

 questions 8, 91, 153
rum, see daily meeting
Michelangelo statue) 67
arch 56
e technical debt
xiii, 6, 18, 44, 46, 64, 72, 75-76, 105, 110,
, 126, 135
ification 76
 (CMMI level) 45
on of done 71, 117, 123, 125, 140
 95
o, Tom 56, 58
, W. Edwards 57

g, Steve 23-25
ent of Defense 43, 45

ency 71, 99-100, 102, 104, 112, 129-131
, see dependency under chart
Esther 54, 56

lso architecture
ence with “architecture” 37

rns, see this term
ate from implementation? 37-39
l, see this term
nt, see upfront tasks
by Contract x, 118
ment
buted, see distributed under team
t start until all tests pass 76

 see dual development
ive, see iterative development
riven, test-first, see these terms
, Krishankumar 20
, Edsger W. xi, 38, 40, 67, 75
. Edsger W. 77
 3, 109
and 23
ted, see under team
ntation 21, 27, 34-35, 38-39, 60, 123, 129
ence with code 37-39
s verbal communication 19-21

l 120-121, 150
achine (in requirements) 36-37, 120, 150
e definition of done

tti, Gaetano 107
 model 47

velopment 28, 74, 113, 121
, Paul xiii, 18
 101
c binding 69

E

Eiffel 118, 126
Eiffel Software xiii
Einstein, Albert 24-25
either-what-or-when x, 71, 146-147
Emacs 108
embedded, see under customer
empirical software engineering viii-ix, xi-xiii, 25, 27,

 29, 52, 58, 62, 105, 107-108
ESEC (European Software Engineering Conference) 25
essential change 112-113
estimation 8, 58, 93-95, 98-99, 121-124, 130, 153
Estler, Hans-Christian xiii
ETH Zurich xiii
euro, scheduling of introduction 146
Eveleens, J. Laurens 26
Everest 73
experience xi
extendibility 5, 10, 13-14, 40, 59, 68-69, 75, 112,

 151
see also change

Extreme Programming vii, x, 1-3, 6-10, 13, 32, 53,
 57-58, 60, 68, 73, 77, 83-84, 93-94, 96, 100-106,
 108-110, 112-114, 117-118, 123-125, 133, 135,
 137-139
abbreviated as XP 2
assessment 139
books 137-138
notion of simplicity 110, 135, 137

extremism, see all-or-nothing

F
Facebook 69, 86
falsification, falsifiability xi, 49, 77
feature

creep 61, 77, 90, 100
dependency, see this term
interaction 63-65

featurism
creeping, see creep under feature

Federal Aviation Administration 62
fellow traveler, see members and observers under team
Fibonacci sequence 94, 123
flexible working schedules 92
Forbes 23
Ford, Henry 79
formal methods 19-20, 39, 75, 154
fox 133
Freud, Sigmund 42
function point 122

G
Galileo Galilei xi
game, see under planning
Gamma, Erich 38, 109, 112, 117
Thing First, Hardest Second 73
 programming 109

Gantt chart, see dependency under chart
generalization 109

166

generic
Gerstne
Ghezzi,
GIGO (
Git 104
Glass, R
Google

Docs
Götterd
gravity
Gries, D
gummi
Güntha
guru 2
gut feel

Hadam
handov
hardest
Harriso
Hawtho
head no
hedgeh
Highest
Highsm
Hoare,
Holitza
hotel bo
Howard
Humph
Hyatt 1
hygiene

I Music
IBM 2
ICSE

Engi
impedim
implem

 97-9
see a
differ
“prod
separ
separ

inciden
India 1

and C
individu
informa
inspecti
integrat
interact

of fea
INDEX

ity 69
r, Ralf xiii
 Carlo 32
Garbage In, Garbage Out) 111

obert L. 26
 14, 58, 86, 101
 32
ämmerung 30
 145-146
avid 67

bears 123
rt, Claudia xiii
3, 79
ing xi

H
ard, Jacques 39
er 36
 thing the team can succeed with 73
n, John 24
rne effect 29
dding 20
og 133
 Business Value First 73-74
ith, Jim 81
C.A.R. 67
, Matthew 145
oking 17, 19
, Mark xiii
rey, Watts 46
7
, personal 106

I
i 55-56
9, 42, 145-146
(In te rna t iona l Confe rence on Sof tware
neering) 25
ent 8, 15, 68, 84, 91-92, 117, 129, 140, 153

entation 3, 9, 34, 36-37, 40-43, 82, 86, 89,
8, 120, 128, 149, 152

lso code
ence with “code” 37
uction” is a synonym 37
ate from design? 37-39
ate from requirements? 36
tal change 112-113
9-20, 45, 85, 87, 94
MMI 45
al code ownership, see ownership under code
tion hiding 69
on, see under code
ion, see big bang, continuous integration

with customers 83
International Standards Organization 43
intimidation viii-ix, 22-26
ISO standards 43
Italy xi, 94
iteration, see iterative development

backlog, see this term
iterative development 2-3, 5-7, 9, 11, 13-15, 34, 40-

43, 51, 56, 65, 70-72, 74, 89-90, 94, 98-99, 103,
 105, 111, 121, 123-124, 126-127, 135, 138-140,
 149
assessment 72-75
freeze requirements during iterations 71-72

see also closed-window rule
iteration planning 98-99
kinds 70-71
length of iterations 71, 138, 154
order of tasks 73-74
working iterations 5-6, 14, 50-51, 60, 65, 70-75,

 117, 135, 154

J
Jackson, Michael A. xiii, 36, 41-42
Jacobson, Ivar xiii, 10, 119
Jazayeri, Mehdi 32
Jeffries, Ron 58-59, 83, 137
Jobs, Steve 25, 66, 79
Joy, Bill 108-109
JUnit 76, 117

K
Kanban 4, 128, 133-134, 136, 146

board 136
card 136

Kanban board 136
Knuth, Donald Erwin 108-109
Kolb, Peter xiii
Kraft, Philip 57

L
La Fille du Régiment 107
Larman, Craig xiii, 26, 32, 40, 84, 99, 108, 126, 139
lasagne 63
Lean Software vii, x, 2-3, 13-14, 27-28, 33, 46, 57,

 67, 91, 119-120, 129, 133-136, 146
assessment 135-136
books 136

Leffingwell, Dean 31
length of iterations, see under iterative development
lifecycle 7, 31, 39, 41-43, 46, 68, 82

model 41-42, 82
V-model 82

linguine 63, 71
Linux 108-109
ion
tures, see interaction under feature

Lister, Tim 56
LOC (line of code), see SLOC

INDEX

logical
Louis X
love, se
Luddite
Lutz, R

machin
make (c
manage
manage

 61-6
 92,
incom
techn

Mandri
Manife
master’
mathem
maturit

for ag
McBree
McCon
McCrac
meeting
membe

see m
mentor

differ
pro

method
see m
defin

metho
“me

Meyer,
Meyer,
Meyer,
Michela
Mickey
Microso

Proje
Mills, H
miniatu
minima

artifa
asses
contr
funct
not th
produ
softw

minima
Mitin, R
Mittal,
167

reasoning xi
IV 42
e subtle control
 131
obin 52

M
e vs domain (in requirements) 36-37, 120
onfiguration management tool) 38, 104
d (CMMI level) 45
r vii, x, 2-3, 5, 7, 13, 25, 28-29, 36, 53-56,
3, 68, 71-72, 74, 76, 79-81, 84-87, 89-90,

 97, 104, 107-108, 123, 131, 135-136, 150
petent 25, 29, 36, 68, 74, 97, 107

ical 87
oli, Dino 32
sto, Agile, see Manifesto under agile
s degree 47
atics, see formal methods

y model 43-47
ile methods 47
n, Pete ix, xiii
nell, Steve 124, 145
ken, Daniel D. 41-42
, see daily meeting, retrospective review meeting

r (in meetings)
embers and observers under team
 7, 55, 107
ence between mentoring and pair
gramming 107

ethods under agile
ition of the term 133
dology , compar i son of th i s t e rm wi th

thod” 133
 Annie xiii
 Raphaël xiii
 Viktoria (no relation) xiii
ngelo (di Ludovico Buonarroti Simoni) 67
 Mouse 23
ft iv, 9, 14, 72, 86, 100, 104

ct 130-131
arlan D. 86

re, see under process
l
cts 4, 51, 60
sment of minimalism 61-67
adiction with acceptance of change 69, 151
ionality 4-5, 51, 58, 152
e same as simple 66-67
ct 4-5, 51, 58-60
are 4-5, 10, 13, 51, 58-67
lism, see minimal

mob programming 107
model

domain, see model under domain
lifecycle, see model under lifecycle
maturity, see maturity model

Moltke, Marshall Helmuth von 35
Morgan, Carroll xiii
Mozilla 100
MS-DOS 60
Müller, Matthias 107
multiplicative, see under complexity

N
nanny 79
napkin, as a substitute for documentation 21
Napoléon Bonaparte 97
NASA 21, 52
NATO 1968 conference 37
Naur, Peter 37
Nawrocki, Jerzy 107
no estimates 107
Nonaka, Ikujiro 54

O
Obamacare 61
object-oriented programming 9-10, 37, 39, 69, 121-

122, 154
agile criticism 69

Observer pattern 38-39
observer (in meetings)

see members and observers under team
onsite customer 96
OOPSLA conference 25
open

room, see space under working
space, see space under working

Oprah 62
optimizing (CMMI level) 45, 141
oracle 118
order of tasks, see under iterative development
osmotic communication 125, 141, 153
ownership

code, see ownership under code

P
pace

sustainable, see sustainable pace
pair programming xii, 8, 10, 13, 89, 96, 101, 105-

109, 138, 152
assessment 13, 107-109, 152
definition 106-107
difference with mentoring 107

paper napkin, as a substitute for documentation 21
Parnas, David L. 39, 67
oman xiii
Nitin 55

partisanship viii
patterns, design viii, 37, 112, 154

168

see a
Obse
Visit

PeopleW
persona
Persona
Pfleege
PhD de
Piccion
Pichler,
pig 82,
plannin

game
iterat

me
poke

platitud
poker, s
polymo
Poppen

37,
PowerP
practice
predicti

not th
prescrip
principl

agile
defin
differ

process
minia
mode

product
product

96,
product

terms
Program
program
program

anarc
chief

program
see a
egole
extre
mob,
objec
pair,
struc

proof
by an
by ci

PSP, se
INDEX

lso anti-pattern
rver 38
or 37, 112

are 56-57, 126
l safety 56-57
l Software Process (PSP) 46-47, 107
r, Shari Lawrence 32
gree 47
i, Marco xiii
 Roman 80
 139, 153
g
 viii, 8, 93-94, 121, 123, 153
ion, see iteration planning under iterative develop-
nt
r 8, 93-95, 98, 121, 123, 153
e 5, 49, 138
ee under planning
rphism 69
dieck, Mary and Tom xiii, 22, 27-28, 33, 36-
46, 58, 60, 65, 69, 81, 105, 119-120, 134-136
oint 60
s, see under agile
ve 31-32
e same as waterfall 31
tive principle 49
e
, see principles under agile
ition 49
ence with a platitude 49

ture 97-98
l, see CMMI
 backlog, see backlog
 owner 7, 53-54, 68, 80, 83, 86-87, 90, 95-
98-99, 151, 154
ion, see implementation
 used as synonyms 37
 Design Language 39
, see code, implementation, programming
mer

hy 107
, see chief programmer
ming

lso design, architecture, code, implementation
ss 109
me, see Extreme Programming
 see mob programming
t-oriented, see object-oriented programming
see pair programming
tured, see structured programming

ecdote xi, 17-22

Q
quantitatively managed (CMMI level) 45
questions, see three questions under daily meeting

R
Rational Unified Process 42-43
RCS 104
Red Army 85
Reeves, Jack W. 38
refactoring 3, 8-9, 40, 60, 62, 72, 109-114, 130,

 137-138, 149, 151, 153
assessment 110-113
covered in part by “generalization” 109
definition 109-110
must improve quality 110
pattern 110

regression test suite 4, 35, 68, 75-77, 101, 103-105,
 114, 117-118, 139

Reinertsen, Don 126
requirements xii, 3-7, 9, 12-15, 17, 19-20, 27, 31-37,

 43, 45, 49-53, 56, 60-62, 65-66, 68, 70-72, 77-
78, 82-83, 91, 97, 109, 119-121, 123, 126-127,
 135, 139, 149-152, 154
see also specification, user story
see also user story
agile criticism 32-36
as design or implementation 36-37
as software 35
as source of errors 52
as waste 33
domain

vs machine ??-39, 120
domain vs machine 36-37
elicitation 32
techniques 32
upfront, see upfront tasks
workshops 53

retrospective 9, 99, 141
Return On Investment 3-5, 57, 77
reusability, reuse 5, 10, 13, 40, 59, 112, 151
review

see inspection under code
meeting 99
review then commit (RTC) 101

rhetorical devices 17-30
Rite of Spring 73
ROI, see Return On Investment
roles, see under agile
room, see space under working
Rosenberg, Doug ix
Royce, Winston D. 31
RUP, see Rational Unified Process
tation 67
e Personal Software Process

S
Saint-Exupéry, Antoine de 66-67

INDEX

scenario
schedul
Schwab

 96,
Schwei
scope

creep
Scrimsh
Scrum

 45,
 91-9
 139
Allia
asses
book
daily
Mast

 99
c
in

of sc
scrumm

der S
seamles
security
Selby, R
self-org
seminar
Shu Ha
side-by
Silicon
simplic

see a
as de
simp
simp

61
Skype
slack 5
slander
SLOC (
Smacch
smell 1
Sobel, D
softwar

comp
crisis
estim
minim

Softwar
source,
spaghet
speakin
specific

78,
169

, see use case, user story
e, see iterative development, schedules under work
er, Ken xiii, 22, 26, 30-31, 54, 57, 80-81, 84,
 99-100, 139
gert, Thomas 47

, see creep under feature
ire, James 85-86

 vii, x, xiii, 2-3, 6-8, 15, 22, 26, 28, 31, 42,
 47, 53-54, 57, 63, 68, 71-72, 74, 79-87, 89,
4, 98-100, 103, 124-127, 129, 133, 136-137,

-140, 146, 151
nce 29, 139-140
sment 139-140
s 139
, see daily meeting
er xiii, 7, 47, 53, 57, 79-81, 84, 86-87, 92,
, 129, 139, 151

ertified xiii, 84
 vacation 57

rums 99-100
aster, Scrummaster, ScrumMaster, see Master un-
crum
s development 39
 40, 42
ichard W. 14, 104

anizing team, see self-organizing under team
ist 17-21
 Ri (or Shuhari) 47
-side programming 108
Valley 126
ity 50, 58, 66-67, 91, 110
lso complexity
fined by Beck 110, 135, 137
le is not the same as minimal 66-67
lest solution that can possibly work 3, 8, 10, 59-
, 64, 66, 73-74, 111
19
8
 by association 23, 31
source line of code) 106, 111, 122
ia, Patrick xiii
01, 109-110, 113, 130
ava 24

e
onent, see reusability
 26
ation, see this term
al, see this term

e Engineering Institute 43
 see code, implementation, SLOC
ti, see linguine
g, see verbal communication

see also requirements, testing
speed of light 37
sprint 3, 7, 33, 42, 57, 68, 71-72, 74-75, 80-81, 84,

 89-91, 98-99, 124, 126, 140
assessment 91
backlog, see this term
retrospective 99
review, see review meeting

stakeholder 19, 21, 32, 45, 52-53, 61-62, 83, 90, 98-
99, 123

Stallman, Richard 108
standards, see under code
Standish Group 26-27
stand-up meeting, see daily meeting
Stephens, Matt ix
Stockholm Syndrome 86
story

see user story
board, see this term
card, see story card under user story
point, see story point under user story

Stravinsky, Igor 73
structured programming viii, 57, 154
subtle control 54, 57
Subversion 104
Surowiecki, James 62, 95
sustainable pace 4-5, 50-51, 56-58, 92, 152
Sutherland, Jeff xiii, 2, 26, 28, 30-31, 47, 54, 125,

 139

T
Taboo 42
Takeuchi, Hirotaka 54
task

board, see this term
card 127
order of tasks, see under iterative development

TDD, see test-driven development
team vii-viii, 2-5, 7-12, 14-15, 19-21, 25, 28-29, 34,

 40-41, 46-47, 50-60, 62, 68, 71-75, 79-81, 83-87,
 89, 91-93, 95-96, 98-102, 104-106, 108-109, 111,
 115, 118-119, 121, 124-125, 127-130, 134-135,
 137-139, 150-154
cross-functional, see cross-functionality
distributed xiii, 20, 92-93, 126, 128, 152-153
empowerment 14
members and observers 82, 98, 153
multiple 99
self-organizing viii, 4-5, 7, 25, 50-51, 53-56, 80-

81, 96, 101, 137, 150, 152
Team Software Process (TSP) 46
technical debt 117, 125, 129-131
telephony 64-65
ation 6, 13, 18-20, 23, 36-37, 45, 49, 75, 77-
115, 118, 120, 151

test, see testing, test-driven development, test-first devel-
opment

170

test-driv
 118
asses
cycle

test-driv
test-firs

asses
testing

 49,
 101
 127
do no
integ
regre
tests
unit t

TeX 10
TFD, se
thrashin
three qu
time-bo
time zo
Tintin
Torvald
Totem
Tour de
Toyota
traps, rh
Tschan
T-shirt
TSP (T
Turner,

UML 3
uncerta
unit tes
unverif
upfront

 57,
 149

use case
user sto

81,
 138
asses
board
story
story
story

velocity
asses

verbal c
Verhoe
INDEX

en development 6, 8-9, 15, 77, 89, 113-115,
, 138, 151
sment 115, 151
 113
en development. 138

t development 77, 113-115, 138, 151
sment 115, 151
 2, 4-6, 8-9, 12-13, 15, 23, 32, 35, 44, 46,
 51-52, 58, 60-61, 66, 68, 75-78, 82, 89, 98,
, 103-105, 111, 115, 117-118, 120, 123, 125,
-129, 136-139, 151, 154
t start new development until all tests pass 6, 76
rating tests into the code 118
ssion, see regression test suite
as a key resource 6, 15, 75-76
est 82, 117-118
8-109
e test-first development
g 107
estions, see under daily meeting
xed 3, 15, 71, 146-147, 154
ne 92
13
s, Linus 108-109

 42
 France 135
 4, 57, 134, 136
etorical 22-30

nen, Julian xiii
sizing 95
eam Software Process) 46
 Richard ix, xiii, 25, 31

U
9, 43, 60-61

inty, cone of, see cone of uncertainty
t, see under testing
iable claims 28-30
 tasks 2-4, 9, 13, 31-32, 35, 40-41, 43-47, 52,
 61-62, 65, 69, 73, 77, 83, 93, 109-113, 135,
-150, 152-154
 6, 10-13, 78, 119-120
ry viii, 6, 10-13, 43, 60-61, 64, 74, 78, 80-
84, 89, 94, 98, 115, 117, 119, 123-128, 130,
, 140, 150-151
sment 119-121, 150
, see this term

 board, see board
 card 10-11, 127
 point 93-94, 117, 120-125, 127-128

V
 viii, 11, 117, 122-124, 127-129, 140, 154
sment 124, 154

video tape manufacturing 136
Visitor pattern 37, 112
V-model, see under lifecycle
V&V (Verification and Validation) 41

W
waste 3-5, 13, 18, 27, 33-34, 36, 46, 52, 57-59, 67,

 91, 117, 120, 122-123, 125, 127, 129-131, 134-
136, 151, 153
as criticism of requirements 33-34

waterfall 31, 39, 41-42
not the same as predictive 31

Western Electric 29
Wikipedia 101
Wirth, Niklaus 67, 134
Wojciechowski, Adam 107
work in progress 4, 136
working

code, see working iterations under iterative develop-
ment

days 128
schedules 92, 153
space 10, 12, 57, 96-97, 125-126, 138, 152

work-in-progress 136
workshop, see under requirements
World Bank 23
Worst Thing First 73
writing, see documentation

X
XML 112
XP, see Extreme Programming
X-rated 106
xUnit 109, 114, 117

Y
Y2K 60
YAGNI 58-59, 69, 77
Yourdon, Ed 56
YouTube 20

Z
Zave, Pamela 36, 64
zoology 82
Zuill, Woody 107

ommunication, versus documents 17-21
f, Chris 26

	Preface
	Contents
	1 Overview
	1.1 VALUES
	1.2 PRINCIPLES
	1.2.1 Organizational principles
	1.2.2 Technical principles

	1.3 ROLES
	1.4 PRACTICES
	1.4.1 Organizational practices
	1.4.2 Technical practices

	1.5 ARTIFACTS
	1.5.1 Virtual artifacts
	1.5.2 Material artifacts

	1.6 A FIRST ASSESSMENT
	1.6.1 Not new and not good
	1.6.2 New and not good
	1.6.3 Not new but good
	1.6.4 New and good!

	2 Deconstructing agile texts
	2.1 THE PLIGHT OF THE TRAVELING SEMINARIST
	2.1.1 Proof by anecdote
	2.1.2 When writing beats speaking
	2.1.3 Discovering the gems
	2.1.4 Agile texts: reader beware!

	2.2 THE TOP SEVEN RHETORICAL TRAPS
	2.2.1 Proof by anecdote
	2.2.2 Slander by association
	2.2.3 Intimidation
	2.2.4 Catastrophism
	2.2.5 All-or-nothing
	2.2.6 Cover-your-behind
	2.2.7 Unverifiable claims

	3 The enemy: Big Upfront Anything
	3.1 PREDICTIVE IS NOT WATERFALL
	3.2 REQUIREMENTS ENGINEERING
	3.2.1 Requirements engineering techniques
	3.2.2 Agile criticism of upfront requirements
	3.2.3 The waste criticism
	3.2.4 The change criticism
	3.2.5 The domain and the machine

	3.3 ARCHITECTURE AND DESIGN
	3.3.1 Is design separate from implementation?
	3.3.2 Agile methods and design

	3.4 LIFECYCLE MODELS
	3.5 RATIONAL UNIFIED PROCESS
	3.6 MATURITY MODELS
	3.6.1 CMMI in plain English
	3.6.2 The Personal Software Process
	3.6.3 CMMI/PSP and agile methods
	3.6.4 An agile maturity scale

	4 Agile principles
	4.1 WHAT IS A PRINCIPLE?
	4.2 THE OFFICIAL PRINCIPLES
	4.3 A USABLE LIST
	4.4 ORGANIZATIONAL PRINCIPLES
	4.4.1 Put the customer at the center
	4.4.2 Let the team self-organize
	4.4.3 Work at a sustainable pace
	4.4.4 Develop minimal software
	4.4.5 Accept change

	4.5 TECHNICAL PRINCIPLES
	4.5.1 Develop iteratively
	4.5.2 Treat tests as a key resource
	4.5.3 Do not start any new development until all tests pass
	4.5.4 Test first
	4.5.5 Express requirements through scenarios

	5 Agile roles
	5.1 MANAGER
	5.2 PRODUCT OWNER
	5.3 TEAM
	5.3.1 Self-organizing
	5.3.2 Cross-functional

	5.4 MEMBERS AND OBSERVERS
	5.5 CUSTOMER
	5.6 COACH, SCRUM MASTER
	5.7 SEPARATING ROLES

	6 Agile practices: managerial
	6.1 SPRINT
	6.1.1 Sprint basics
	6.1.2 The closed-window rule
	6.1.3 Sprint: an assessment

	6.2 DAILY MEETING
	6.3 PLANNING GAME
	6.4 PLANNING POKER
	6.5 ONSITE CUSTOMER
	6.6 OPEN SPACE
	6.7 PROCESS MINIATURE
	6.8 ITERATION PLANNING
	6.9 REVIEW MEETING
	6.10 RETROSPECTIVE
	6.11 SCRUM OF SCRUMS
	6.12 COLLECTIVE CODE OWNERSHIP
	6.12.1 The code ownership debate
	6.12.2 Collective ownership and cross-functionality

	7 Agile practices: technical
	7.1 DAILY BUILD AND CONTINUOUS INTEGRATION
	7.2 PAIR PROGRAMMING
	7.2.1 Pair programming concepts
	7.2.2 Pair programming versus mentoring
	7.2.3 Mob programming
	7.2.4 Pair programming: an assessment

	7.3 CODING STANDARDS
	7.4 REFACTORING
	7.4.1 The refactoring concept
	7.4.2 Benefits and limits of refactoring
	7.4.3 Incidental and essential changes
	7.4.4 Combining a priori and a posteriori approaches

	7.5 TEST-FIRST AND TEST-DRIVEN DEVELOPMENT
	7.5.1 The TDD method of software development
	7.5.2 An assessment of TFD and TDD

	8 Agile artifacts
	8.1 CODE
	8.2 TESTS
	8.3 USER STORIES
	8.4 STORY POINTS
	8.5 VELOCITY
	8.6 DEFINITION OF DONE
	8.7 WORKING SPACE
	8.8 PRODUCT BACKLOG, ITERATION BACKLOG
	8.9 STORY CARD, TASK CARD
	8.10 TASK AND STORY BOARDS
	8.11 BURNDOWN AND BURNUP CHARTS
	8.12 IMPEDIMENT
	8.13 WASTE, TECHNICAL DEBT, DEPENDENCY, DEPENDENCY CHARTS

	9 Agile methods
	9.1 METHODS AND METHODOLOGY
	9.1.1 Terminology
	9.1.2 The fox and the hedgehog

	9.2 LEAN SOFTWARE AND KANBAN
	9.2.1 Lean Software’s Big Idea
	9.2.2 Lean Software’s principles
	9.2.3 Lean Software: an assessment
	9.2.4 Kanban

	9.3 EXTREME PROGRAMMING
	9.3.1 XP’s Big Idea
	9.3.2 XP: the unadulterated source
	9.3.3 Key XP techniques
	9.3.4 Extreme Programming: an assessment

	9.4 SCRUM
	9.4.1 Scrum’s Big Idea
	9.4.2 Key Scrum practices
	9.4.3 Scrum: an assessment

	9.5 CRYSTAL
	9.5.1 Crystal’s Big Idea
	9.5.2 Crystal principles
	9.5.3 Crystal: an assessment

	10 Dealing with agile teams
	10.1 GRAVITY STILL HOLDS
	10.2 THE EITHER-WHAT-OR-WHEN FALLACY

	11 The Ugly, the Hype and the Good: an assessment of the agile approach
	11.1 THE BAD AND THE UGLY
	11.1.1 Deprecation of upfront tasks
	11.1.2 User stories as a basis for requirements
	11.1.3 Feature-based development and ignorance of dependencies
	11.1.4 Rejection of dependency tracking tools
	11.1.5 Rejection of traditional manager tasks
	11.1.6 Rejection of upfront generalization
	11.1.7 Embedded customer
	11.1.8 Coach as a separate role
	11.1.9 Test-driven development
	11.1.10 Deprecation of documents

	11.2 THE HYPED
	11.3 THE GOOD
	11.4 THE BRILLIANT

	Bibliography
	Index

