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Passion at a Distance

Don Howard

In 1984, Abner Shimony invented the expression, “passion at a distance,” to charac-
terize the distinctive relationship of two entangled quantum mechanical systems [1].
It is neither the local causality of pushes, pulls, and central forces familiar from
classical mechanics and electrodynamics, nor the non-local causality of instanta-
neous or just superluminal action at a distance that would spell trouble for relativity
theory. This mode of connection of entangled systems has them feeling one an-
other’s presence and properties enough to ensure the strong correlations revealed
in the Bell experiments, correlations that undergird everything from superfluidity
and superconductivity to quantum computing and quantum teleportation, but not in
a way that permits direct control of one by manipulation of the other. Intended to
echo Aristotle’s distinguishing of “potentiality” from “actuality” as different senses
of “being,” Shimony’s “passion at a distance” is all about tendency and propensity,
not the concreteness whose misplacement in realm of the physical was lamented by
Alfred North Whitehead.

No metaphor is better suited, however, to describe as well the feelings of Abner’s
students, colleagues, and friends for his presence in their lives and for the character
that he brings to his own work, to his work with others, and to the world whose
betterment has been his abiding aim. However great the distances later grow, world
lines once intersecting Abner’s remain forever entangled with his in this passionate
way. Here are lives and careers with outcomes that will never again be independent,
however much the outward parameters might differ and change.

There is passion, too, in all that Abner does, whether campaigning against nuclear
weapons, helping a graduate student over a rough patch in dissertation research, or
closing the last loophole in a no-go theorem. There is passionate sympathy and
passionate intensity. These are passions driven in equal measure by high moral and
intellectual principle and by simple joy in living.

D. Howard
Department of Philosophy, and Program in History and Philosophy of Science, University of Notre
Dame, Notre Dame, IN 46556
e-mail: dhoward1@nd.edu

W.C. Myrvold and J. Christian (eds.), Quantum Reality, Relativistic Causality, and Closing 3
the Epistemic Circle, The Western Ontario Series in Philosophy of Science 73,
c© Springer Science+Business Media B.V. 2009



4 D. Howard

The main object of Abner’s intellectual passion has been, of course, the philo-
sophical foundations of physics. Within that larger arena, his having done the work
that made possible the experimental tests of the Bell inequalities, which, in turn,
made plain the ubiquity and deep importance of quantum entanglement, will be the
achievement for which Abner is best remembered, and rightly so. No revolution in
physics will as much transform either our understanding of nature or the range and
subtlety of our mastery of it. No thinker has played a more crucial role in facili-
tating that revolution than has Abner. No wonder, then, that questions descending
from this early and important work of Abner’s dominate the present volume of pa-
pers honoring his legacy, as well as an earlier pair of volumes with a similar aim [2].

But Abner’s contributions to philosophy, physics, and intellectual life more gen-
erally extend well beyond the work that made his reputation. Can one call to mind
another philosopher-physicist of our era who has been a presence also in fields as
diverse as naturalistic epistemology, inductive logic, and children’s literature? Let’s
start with this last and work our way back to philosophy of physics.

Tibaldo and the Hole in the Calendar is a delightful story [3]. Young Tibaldo
Bondi, who lives in Bologna, suffers the misfortune of his twelfth birthday’s being
lost when Pope Gregory XIII eliminated ten days in October, 1582, as part of his re-
form of the calendar. The aggrieved Tibaldo protests all the way to the Pope himself,
who is persuaded to decree the celebration of all of the otherwise missing festivals,
saints’ days, and holidays. Beautifully illustrated by Abner’s son, Jonathan, Tibaldo
is a good read but also teaches the young reader a lot about Renaissance science,
culture, and history. The science might be far removed from quantum mechanics,
but the youthful enthusiasm for science is the same as that which animates all of
Abner’s work (yes, there is more than a little of Abner in the character of Tibaldo,
not just the quick, wide-ranging mind, but also the moral character that will not rest
until a wrong is righted). And the broad range of Tibaldo reminds one of Abner’s
many other enthusiasms, music and art prominent among them.

At some seeming remove from quantum physics is also Abner’s long interest
in naturalistic epistemology. The larger context here is a rich and old American
tradition of embedding epistemology in a broadly Darwinian, evolutionary frame-
work, a tradition dating back to James Mark Baldwin, William James, and John
Dewey, among others, a tradition wherein cognition is to be regarded as an adaptive
trait of the human organism. But an important local influence was Abner’s meet-
ing and learning from the work of the psychologist Donald Campbell, the person
who invented the term “evolutionary epistemology” [4], and gave to the project so
known a theoretical articulation not found in the broad-brush musings of that earlier
generation.

Campbell’s evolutionary epistemology, and Abner’s, differs importantly from
that of, say, Karl Popper, in that, for Popper, Darwinian evolution is mainly
a metaphor or model for a diachronic structure of theory change, whereas, for
Campbell and Shimony, evolution is more than just a model, the evolutionary psy-
chology of cognition being continuous with the evolutionary biology of the whole
human organism. One might, for that reason, think to compare Abner’s natural-
ism with that of W.V.O. Quine, who celebrates a debt to Dewey and, like Dewey,
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draws anti-foundationalist and (some think) anti-realist conclusions from natural-
istic premises. The evolutionary version of that argument would ask whether the
relationship of an adaptive trait to its environment bears any noteworthy similarity
or analogy to a semantic relationship between theory and world or proposition and
fact. Crudely put, the question is whether utility in the guise of fitness has anything
to do with truth. But Abner’s naturalism is not Quine’s. Abner is to Quine somewhat
as the critical realist Roy Wood Sellars was to Dewey, arguing that a thoroughgoing
evolutionary naturalism implies a robust realism and a strong notion of truth, it
being precisely the presumptive truth of evolutionary theory that grounds one’s nat-
uralism and precisely the dependable, truth-tracking capacity of human cognition,
especially in its highly refined scientific form, that renders it adaptive. And by em-
phasizing truth-tracking as the distinguishing adaptive feature of human cognition,
Abner’s naturalism can ground a normative epistemology – unlike Campbell’s and
Quine’s mere descriptivism – wherein the biology and psychology of cognition give
us tools for the critical assessment of scientific practice and epistemic practice more
generally.

Abner’s epistemological naturalism found an early and engaging expression in
his 1971 paper, “Perception from an Evolutionary Point of View” [5]. But his most
compelling presentation of the view came a decade later, in the paper “Integral Epis-
temology” [6], the significance of which is obvious from its placement as the lead
essay in the 1993 collection of Abner’s philosophical papers, Search for a Natural-
istic World View [7]. That collection’s title makes clear that naturalism is, indeed,
integral to Abner’s larger philosophical project, scientific perspectives on knowl-
edge being necessary to achieve the theoretical “closure” that Abner prizes as a
pre-eminent virtue of a comprehensive, philosophical world view [8].

More than anywhere else, it is in Abner’s extensive work on inductive logic and
scientific inference that his pursuit of a critical, normative, epistemological natu-
ralism is on display. This, too, is a very old interest, dating back at least to his
widely-discussed 1965 lecture and the resulting, vastly expanded 1970 paper, “Sci-
entific Inference” [9]. The view that Shimony defends, “tempered personalism,” is
to be situated within the larger arena of Bayesian approaches to the formal, proba-
bilistic modeling of scientific inference. It distinguishes itself within that crowded
field mainly by its trying to avoid the problem of arbitrary priors by restricting atten-
tion to the scientists’ seriously proposed hypotheses and by probability assignments
that reflect not just guesses or subjective whims but the accumulated insights of sci-
ence. This is a normative project, influenced by Harold Jeffreys, yielding not just
rational criteria for the comparative preferment of hypotheses in specific instances,
but also a pragmatic justification of induction in general. It is, at the same time, an
exercise in philosophical naturalism precisely by the restriction to seriously con-
sidered hypotheses and the constraining of the priors on the basis of extant science.
Scientific inference is thus justified, in part, on the basis of earlier scientific achieve-
ments. Critics of naturalism see this as vicious circularity, with science seeking self-
justification. Champions of such a weakly normative naturalism, such as Abner, see
the circularity as virtuous theoretical closure, science, as it were, pulling itself up by
its bootstraps.
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Abner’s interest in epistemic probability and the probabilistic modeling of scien-
tific inference is something that he shared with, among others, his teacher, Rudolf
Carnap, and his longtime friend, Richard Jeffrey. As was true of Carnap, Abner’s
interest in the role of probability in scientific inference is continuous with a still
broader interest in the role of probability and statistics in science, from statistical
thermodynamics to evolution and population genetics. The concept of information
and its physical avatar, entropy, is one especially important place where questions
about epistemic probability and questions about physical probability intersect. No
surprise, then, that this, too, has long engaged Abner’s attention, whether it is a mat-
ter of his trying to make sense of Leo Szilard’s 1929 “Demon” paper [10], which
gave birth to the modern habit of connecting information and entropy, or assaying
the contemporary project of providing an information-theoretic axiomatic founda-
tion for quantum mechanics. One simultaneously professional and personal expres-
sion of this specific interest was Abner’s bringing to public view two important,
previously unpublished papers by Carnap on entropy [11].

Mention of probability in physics brings us full circle, of course, back to the
suite of issues in the foundations of quantum mechanics where Abner made his
name. The name thus made will be forever tied to experimental tests of the Bell
inequalities, more on which in a moment. But there is a background to Abner’s
early work on Bell’s theorem that provides a needed context for understanding that
work. It is relevant to recall here that Abner began his career in the 1960s as one
of a still small community of philosopher-scientists with two Ph.D.s. Abner’s first
was in philosophy, from Yale (also Abner’s undergraduate alma mater), in 1953; his
second was in physics, from Princeton, in 1962. At Yale, Abner got a heady dose
of Whitehead from Paul Weiss and Robert Calhoun. That exposure to process meta-
physics provided at least a vocabulary for describing how, in the quantum world,
the actual is the realization of potentialities or propensities, which have equal claim
to being part of our physical ontology, as well as for appreciating how, in a world
where elementary particles might be endowed with “proto-mental characteristics,”
consciousness can play a role in physics, and physics a role in consciousness [12].
It was at Yale that Abner also got his first introduction to Peirce – Weiss again being
the intermediary – and thus his introduction to a kind of pragmatism and evolution-
ary naturalism that does not eschew metaphysics but insists on its respecting the
judgments of science.

At Princeton, Abner had the good fortune to study with physicists such as Eugene
Wigner and John Archibald Wheeler, who encouraged both an interest in founda-
tional questions and speculative approaches to physics, as long as the latter were
subjected to the same critical standards in play elsewhere in science. This was the
same Princeton physics environment in which, under Wheeler’s direction, Hugh Ev-
erett had in 1957 produced the “many-worlds” or “relative-state” interpretation of
quantum mechanics [13], and where, just five years earlier and immediately before
his exile, David Bohm had developed his version of a non-local hidden variables
theory [14].

So when Abner arrived at MIT in 1959 to begin his teaching career in the
Humanities department, his had been a truly unusual intellectual formation. He was
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more deeply grounded in physics than any young philosopher since perhaps Moritz
Schlick, Hans Reichenbach, or Rudolf Carnap, but, of course, with an importantly
different philosophical pedigree, and more thoroughly steeped in philosophy than
any young physicist since, perhaps, Albert Einstein, Erwin Schrödinger, or Werner
Heisenberg. Here was a mind in which were married uncompromising technical
rigor and a boldly speculative metaphysical imagination.

Abner’s first major paper on the philosophical foundations of physics, “Role of
the Observer in Quantum Theory,” appeared in 1963 [15]. It has aged well and
rewards the reader still today. In it, Abner assesses two views on quantum measure-
ment, the von Neumann and London and Bauer picture wherein wave-packet col-
lapse occurs when the results of measurement are registered in consciousness, and
Bohr’s complementarity interpretation, which relates the change of state upon mea-
surement to the role of the experimental arrangement in the description of quantum
phenomena. Abner judges each a failure, the former for want of corroborating psy-
chological evidence and its making problematic the notion of intersubjective agree-
ment about the results of observation, the latter for its vagueness and its making
problematic the construction of a unified physical ontology because of its supposed
fundamental distinction between a macroscopic classical realm and the quantum
microworld. What is needed to solve the measurement problem, Abner concludes,
is a reformulation of quantum mechanics itself.

Precisely here is to be found the origin of so many of Abner’s more specific
interests and so much of his own later work. Research into non-linear variants of the
Schrödinger equation is one such. Better to treat wave packet collapse as a stochastic
process or as induced by some physical factor, such as the gravitational potential,
than as resulting from subjective mentality’s intrusion into the objective physical
realm, though the latter is not to be ruled out on a priori grounds. Better still if
collapse were not needed in the first place. Thus Abner’s decades-long interest in
hidden variables theories.

In all such areas, the approach was basically the same. First, make sure that
the space of theoretical possibilities is filled, which means encouraging sometimes
highly heterodox theoretical variants. Second, seek a clear and natural way to pa-
rameterize and parse the resulting possibility space. Third, look for no-go theorems
that might rule out large swaths of that space. And, fourth, within the space that
remains, where logic and mathematics alone can’t do the work, design and do ex-
periments to kill off the rest of the unfit.

Thus it was that Abner came to co-write in 1969 his most important single pa-
per, with John Clauser, Michael Horne, and Richard Holt, “Proposed Experiment
to Test Local Hidden-Variable Theories” [16]. The story of this paper’s genesis and
aftermath has now been told several times and need not be told again in this brief
resume of Abner’s life and work [17]. Suffice it to record here that, the scrupulously
honest and modest arraying of authorship notwithstanding, Abner was an engine
in this effort to recast Bell’s theorem in a form amenable to laboratory test and
to him goes the full measure of credit for all that followed by way of proving the
now virtually undeniable presence in our world of the deepest mystery of the quan-
tum realm, the entanglement evinced by the joint state of previously interacting
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systems in orthodox quantum mechanics or the corresponding quantum potential in
the Bohmian variant. Ever since, Abner has been the guiding spirit, generous collab-
orator, and gentle critic for those who carry on the work of refining and extending
Bell’s original insight.

We could dawdle over any of a number of Abner’s more specific engagements in
this later work. Most noteworthy, however, have been his reflections on Jon Jarrett’s
rederivation of Bell’s theorem. In 1984, in a University of Chicago dissertation writ-
ten under the supervision of Abner’s old and close friend, Howard Stein, Jarrett
showed that the original Bell locality condition is, in fact, a conjunction of two
logically independent conditions, which Jarrett dubbed “locality” and “complete-
ness” [18]. The potential gain from Jarrett’s work was immediately obvious, for by
so decomposing the Bell locality condition one could hope to identify more nar-
rowly the reason or reasons why orthodox quantum mechanics, Bohm-type hidden
variables theories, and nature itself, as revealed in the Bell experiments, agreed in
violating the Bell locality condition. Especially tantalizing was the suggestion that
the Jarrett “locality” condition captured more precisely than did the original Bell
“locality” condition whatever might be the relevant constraint from the side of rel-
ativity theory. But otherwise the physical significance of the two Jarrett conditions
was not transparent.

Enter Abner. In two deep and reflective papers [1, 19], he pushed and prodded,
reworked and revised. The result was his now-classic recrafting of the Jarrett condi-
tions as what are known as “parameter independence” and “outcome independence.”
The first – a cousin of relativistic locality constraints or the principle of microcausal-
ity in quantum field theory – asserts the stochastic independence of measurement
outcomes in one wing of a Bell experiment from the choice of a parameter to mea-
sure in the other wing. The second, which one suspects is deeply related to quantum
nonseparability or entanglement, asserts the stochastic independence of measure-
ment outcomes in one wing from measurement outcomes in the other wing.

There are various reasons why Abner’s gloss on Jarrett is important. High on
Abner’s own list would be that clearer insight into the precise nature of quantum me-
chanical non-locality makes possible our employing Bell’s theorem and experimen-
tal demonstrations of violations of the Bell inequality as levers by means of which
to uncover what Abner has long suspected is the really deep lesson, namely, that
quantum mechanics points to the need for profound changes in our understanding
of space-time structure. Nothing so simple as just discretizing space-time structure
is envisioned here. No, for Abner the question has always been the Whiteheadean
or Aristotelian one about the actualization of potentialities. That’s the whole point
of turning the Jarrett decomposition theorem explicitly into a theorem about the two
different ways in which measurement outcomes (which are actualizations) can fail to
be independent of physical events and processes – measurement outcomes and pa-
rameter settings – in space-like separated regions of space-time. The question, then,
is this: What kind of structure in space-time is necessary to sustain the mode(s) of
dependence between space-like separated events revealed in the Bell experiments?
The possibilities are many, from novel topologies to Whiteheadean “prehension,”
and no possibility is to be ignored simply for being unfashionable.
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Einstein thought that the arrow of implication ran in the other direction. Einstein
thought that the more or less a priori necessity of what he called the “separation
principle,” a principle enshrined in general relativistic space-time structure and in
any field theory built on such a framework, entailed that quantum mechanics could
not be the right framework for fundamental physics [20]. Abner tends to think oth-
erwise. A future physics will have to render judgment.

That physics will have to be the judge – not intuition, not a priori reason, and
certainly not dogma – brings us to one final point that Abner has always stressed.
The questions at issue here are not just physical, they are metaphysical questions,
questions about the fundamental nature of reality. They are the really big questions,
if you will. But their answers are to be sought not by some mode of inquiry or
insight beyond physics (or biology or psychology). The answers are to be sought
within physics, by doing more physics. The kind of inquiry intended here is what
Shimony famously characterized as “experimental metaphysics.” The basic idea is
simply that one asks what is the manifest ontology of one’s current best physics.
The idea is controversial. Many metaphysicians are ill at ease with a metaphysics
that is contingent and corrigible. Many physicists (and some philosophers) are still
shy about pressing physics’ claims too far beyond the bounds of the observable. But
Abner is a bit unusual here, too, combining a kind of metaphysical temperament –
the big questions are the ones worth asking – with the scientist’s cautious skepticism.
The resulting attitude toward metaphysics is as much a part of Abner’s philosophical
naturalism as is attitude toward epistemology. Here, too, the circle closes.

The professional world has long recognized Abner’s achievements and their im-
port for both the physics and the philosophy that have been his life. He is a Fellow of
the American Academy of Arts and Sciences and a Fellow of the American Physical
Society. He has been a visiting professor at Paris, Mount Holyoke, Geneva, and the
ETH (Zurich). In 1996, Abner’s collected philosophical papers [7] were awarded the
Lakatos Prize in the Philosophy of Science. He was honored by election as President
of the Philosophy of Science Association for 1995 and 1996. And, as mentioned
above, this collection of papers is the second such by which his students, friends,
and colleagues have sought to show their respect and affection.

One might guess, however, that Abner would prefer that we think well of him less
for the honors that have come his way, and more for the service that he has done for
others. Such service has been a constant in his life. His students know this well.
They know the Abner who put so much energy into every dissertation he directed
that he allowed himself only two Ph.D. students at a time, one each in physics and
philosophy. Abner’s colleagues know it well, too. His service to them has come in
many forms. Consider only the evidence of the volumes he has edited, or with which
he has otherwise assisted, to honor and showcase the works of those with whom
he has enjoyed the closest intellectual and personal relationships, including Laszlo
Tisza [21], Eugene Wigner [22], Daniel Greenberger [23], Howard Stein [24], John
Stachel [25], and Martin Eger [26].

Let us celebrate, finally, Abner the person. Born in 1928 in Columbus, Ohio,
and raised in Memphis, Tennessee. The son of Morris (Moshe) and Sara Altman
Shimony, and the stepson of Dora Farber Shimony. Husband of the noted Wellesley
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anthropologist, Annemarie Anrod Shimony, with whom he had two sons, Ethan and
Jonathan [27]. After Annemarie’s untimely demise in 1995, he became in 1998 the
husband of Helen Claire Walker, his close high school friend, who died in 2002.
He is now married to Manana Sikic, to whom he was wed in 2005 by his former
doctoral student, the late Fr. Ronald Anderson, who performed a miraculously mov-
ing ceremony combining Catholic and Jewish elements. All this and more is Abner.
Army signalman and longtime Professor of both Philosophy and Physics at Boston
University, where he has been a prominent intellectual and moral presence. Lover
of literature, art, and music. Mentor, friend, and champion of peace.
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Balancing Necessity and Fallibilism: Charles
Sanders Peirce on the Status of Mathematics
and its Intersection with the Inquiry into Nature

Ronald Anderson∗

Abstract An interest in Charles Sanders Peirce and pragmatist thought in general
emerged in the United States in the middle of last century to exert a powerful influ-
ence on a generation of American philosophers educated in the 1940s and 1950s,
including Abner Shimony, whose thought is the occasion for this paper. Those
threads in Peirce’s work related to developing a scientifically informed worldview
and metaphysics were the natural influences on Abner and this paper will begin by
briefly reviewing a number of these threads and their influences in his writings. This
sets the scene for the main project of the paper, an earlier historical project on a
related aspect of Peirce’s thought—his understanding of mathematics and its place
in the description of nature. Mathematics was a foundational discipline for Peirce,
one with qualities of necessity and certainty, features that stand in interesting con-
trast and tension to Peirce’s view of an evolving nature which is governed by chance
and our knowledge of which is always fallible and thus open to revision. Exploring
these issues reveals deep background beliefs structuring Peirce’s thought. The paper
concludes in the contemporary realm with the speculation that due to the scientific
developments of the 20th century, aspects of Peirce’s work that formed a vision for

R. Anderson
Department of Philosophy, Boston College, Chestnut Hill, MA 02467, USA

∗In Memory of Fr. Ronald Anderson, SJ.
It is with great sadness we note here that Fr. Ronald Anderson, SJ passed away soon after com-

pleting this essay in honour of his former mentor, Abner Shimony. Ron, who received a doctoral
degree in particle physics in 1980 from the University of Melbourne, did his second doctorate in
philosophy under Abner at Boston University; this was awarded in 1991.

It is likely that this essay will be the last work by Ron to appear in print. Readers should be
aware that he did not have an opportunity to proof-read the final copy. The editors have had to edit
a number of sentences in the text for grammar and punctuation, but the essay as printed here is
essentially as he left it, and the voice in which it speaks is Ron’s own. The editors.

W.C. Myrvold and J. Christian (eds.), Quantum Reality, Relativistic Causality, and Closing 15
the Epistemic Circle, The Western Ontario Series in Philosophy of Science 73,
c© Springer Science+Business Media B.V. 2009



16 R. Anderson

a scientific metaphysics for earlier generations may be less relevant now. Neverthe-
less, the naturalistic spirit and orientation of Peirce’s work remains compelling and
productive.

1 Peirce Scholarship and Peirce as a Resource for Forming
a Scientifically Informed Metaphysics

An intricate and complex yet engaging and enticing task awaits the contempo-
rary student seeking to enter the worlds and thought of Charles Sanders Peirce
(1838–1914). One reason for this is simply: Peirce’s vast output of texts. Esti-
mates are given of published texts of around 10,000 printed pages with unpublished
manuscripts of around 80,000 sheets.1 Other reasons are the often technical nature
of Peirce’s writings, and their wide range. The topics addressed by Peirce include
(in intersecting combinations) logic, semiotics, purely mathematical and scientific
topics, the philosophical significance of these topics, and a sustained concern for
building a comprehensive philosophical system informed by mathematics and sci-
ence.2 A further complexity arises from Peirce’s thought evolving during his life,
generating a subtle layered effect in his work that needs navigating carefully.

In addition, an equally intricate task awaits in tracing through scholarship on
Peirce, a body of writings that matches the richness of Peirce’s own writings. From
the 1940s, when studies of his thought emerged (see [3] and [4] as early examples)
to the present, the student is confronted with a range of academic styles and con-
cerns reflecting the changing philosophical landscape of the 20th century.3 During
this period those reading Peirce as an historical project in classical American phi-
losophy are together with those primarily concerned with locating resources within
Peirce for informing present projects. Moreover, for a generation formed in and af-
ter the historiographic and sociological revolution in the study of science of the past
few decades, it is instinctive to locate thinking deeply within its context, to attend
to unique scientific practices of a time and culture, and to eschew seeking any abid-
ing general essence to science. Thus for this generation factors such as the radical
difference in present science (and mathematics) from that of Peirce’s world lead to
an unease with the project of earlier generations of Peirce scholars, of locating re-
sources in Peirce for building a contemporary naturalized form of metaphysics or
epistemology. Instead contextual projects suggest themselves, with force given the
dense nature of Peirce’s writings, with the attendant dangers of getting caught in
projects that resist closure.

For exploring Peirce’s life, Joseph Brent’s biography [8] provides a perceptive
and sympathetic reading, one that traces Peirce’s upbringing in an academically and

1 Ketner and Putnam, introduction to [1, p. 8].
2 For a careful comment on the last mentioned of these projects in Peirce, see [2].
3 For a general history in the 20th century of pragmatist thought relevant to the issues here, see
[5–7].
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socially privileged world in Cambridge, Massachusetts, through to his final years,
isolated in Milford, Pennsylvania, at a property acquired in 1888.

Brent brings out vividly the complexity of Peirce’s personal life and the degree it
was marked with loss and tragedy through health problems, psychological struggles,
financial difficulties, and the absence of a steady institutional context in which to
work. For Brent:

The beauty of the past arises from its permanence, from the impossibility of changing what
was done. It is this forgiving permanence, suffusing even folly and tragedy with melan-
choly beauty, that transform the brilliant, bitter, humiliating, and above all tragic life of the
American philosopher Charles Sanders Peirce into an odyssey of spirit which is at once
fascinating, saddening, and compelling [8, p. 1].

In the spirit of Brent’s assessment (and as Brent recognizes in this passage), the
invariable experience of reading Peirce is to grow in admiration for his persistent
creativity in generating ideas and texts in spite of the tragedy surrounding his life.
Also on this point, Ketner and Putnam remark: “At times he must have written with-
out stop: perhaps this explains at least in part his difficult nature” [1, p. 8]. The
compelling quality is evident in the way Peirce is able to captivate and inspire oth-
ers, reflected in the steady positive assessments by those who have encountered his
thought. For example, his friend and supporter William James, writing to the Presi-
dent of Harvard in 1895 to recommend Peirce for teaching a course, remarked:

He is the best man by far in America for such a course, and one of the best men living. The
better graduates would flock to hear him—his name is one of mysterious greatness for them
now—and he would leave a wave of influence, tradition, gossip, etc. that wouldn’t die away
for many years (quoted in [8, p. 243]).

And, as a long time scholar of Peirce’s thought, Max Fisch, assessed the place of
Peirce in glowing terms:

Who is the most original and the most versatile intellect that the Americas have so far
produced?” The answer “Charles S. Peirce” is uncontested, because any second would be
so far behind as not to be worth nominating (quoted in [8, p. 2]).

The introductions to the two volume collection of Peirce’s philosophical writings by
Houser and Kloesel [9] and Houser [10] provide a concise entry to Peirce’s thought,
and the texts by Goudge [11], Murphey [12] and Hookway [13], and the more re-
cent collection of studies edited by Houser et al. [14], together give a secure and
comprehensive view of Peirce’s thought and texts.

On venturing into Peirce’s writings the now canonical multi-volume collection of
his papers by Paul Weiss and Charles Hartshorne, joined later by Arthur W. Burks
[15] is still the standard source and is now available on-line.4 In addition, a chrono-
logical edition of his writings has been emerging [16]. Peirce has captivated many
a student, not only by the power and breath of his ideas but also by his direct and
immediate style as he develops ideas in an exploratory manner. His sustained use of
vivid metaphors and tropes adds color, irreducible complexity, and subtlety to his

4 References to the Collected Papers will be designated by the customary letters CP x.y, where x
is the volume and y the paragraph number.
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thinking. Indeed, for Peirce metaphor is intrinsic to philosophy, as we can see in a
passage sounding distinctly contemporary, given recent studies of the intrinsic and
important place of metaphor in writing and cognition:

Metaphysics has been said contemptuously to be a fabric of metaphors. But not only
metaphysics, but the logical and phaneroscopical [phenomenological] concepts need to be
clothed in such garments. For a pure idea without metaphor or other significant clothing is
like an onion without a peel [10, p. 392].

Given the power of Peirce’s texts in these ways, the use of quotations from Peirce
in the following is a perspicuous way to bring out the points I wish to make.

One of the centers for Peirce studies mid-century was Yale’s philosophy depart-
ment. Peirce scholars such as Paul Weiss and Rulon Wells had arrived in 1945
and John E. Smith in 1952. Abner’s undergraduate years there in the 1940s, with
teachers such as Weiss, and subsequent PhD studies in the early 1950s, were in the
ambiance of these studies. Also, his Master’s degree at Chicago in between under-
graduate and PhD studies had another Peirce scholar, Charles Hartshorne, as direc-
tor, who was familiar as well with the thought of Alfred North Whitehead. Later
in the 1950s, when Richard Rorty and Richard Bernstein graduated from the de-
partment, it has been characterized as a “hotbed of pragmatist activity” [17, p. 97].
Rorty’s PhD thesis on the history of concept of Potentiality for example, ended with
an explicit pragmatist conclusion: “our descriptions of logical empiricism’s difficul-
ties . . . suggest that we need to strive for the sort of rapprochement between formal
logic, semiotics, and traditional epistemology which is found in the work of Peirce.”
(quoted in [17, p. 96]). When speaking of his earlier years, the captivating quality
of Peirce’s thought is evident in Abner’s recollections:

I read Peirce avidly and assented to almost everything that I understood of his semiotics,
phenomenology, scientific methodology, pragmatism, critical common-sensism, and evolu-
tionary metaphysics. Peirce’s mixture of logical toughness, immersion in the history and
practice of the natural sciences, and metaphysical speculation was inspiring to me then and
continues to be so [18, vol. I, p. x].5

I read lots of Peirce’s papers, and I loved Peirce. I love Peirce to this day, and I think my
point of view is closer to Peirce than to anyone else ([19, p. 15]).

As an illustration of the resources from Peirce’s writings for forming a scientif-
ically informed metaphysics, in the rest of this section I will outline a number of
themes from Peirce’s thought that figure in Abner’s writings. This part of the paper
will also serve to bring into relief aspects of the nature of Peirce’s inquiry into the
“facts of nature” (CP 2.750) as well as respect the occasion for the paper.

One central characteristic of Peirce’s thought is his “fallibilism.” For Peirce, hu-
man inquiry is such that “. . . people cannot attain absolute certainty concerning
questions of fact” (CP 1.149). Peirce’s notion is woven into other themes such as

5 Susan Haack [20] provides a similar list, attesting to the power of Peirce’s thought to a gener-
ation: “Over time, it has been Peirce’s work that has come to influence me the most: his formal
fluency and logical innovations, of course, but also his distrust of easy dichotomies, his idea of the
growth of meaning, his attractively naturalistic theory of inquiry, his constructive reconception of
metaphysics and its role—not to mention his penchant for neologisms.”
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his critique of Descartes’ foundational project of grounding knowledge, his position
that chance is woven deeply and intrinsically into the universe, and his perspective
on the evolutionary nature of the universe (e.g. CP 1.173 and 1.152). Peirce’s fal-
libilism goes with a belief that although we have no assurance of the correctness
about our knowledge of nature, over time, with inquiry, we converge closer to truth
about reality.6 For 20th century pragmatism, this quality continued as a spirit of anti-
foundationalism and a rejection of secure absolutes that to Dewey figured in much
of Western philosophy.7 Moreover, as Bernstein observes: “It was Peirce who ini-
tially argued that fallibilism is essential for understanding the distinctive character
of modern experimental science” [21].

For Abner this feature of Peirce’s thought was associated with the use of proba-
bility theory and “. . . certainly prepared me for the point of view that probability is
essential in our epistemology, and that judgments of very high probability in favor of
one conjecture and against another are quite compatible with his overall fallibilism”
[19, p. 18].

Peirce also has the elements of what is known as the propensity interpretation
of probability in a notion of “would be,” referred to by one commentator as a
“watershed” separating the middle from the final years of his intellectual life [10,
p. xx] and characterized by Abner succinctly:

It is not surprising that two of the most eminent advocates of the frequency interpretation,
Peirce (1932) [15, vol. II] and Karl Popper (1957) [73], abandoned the frequency interpreta-
tion in favor of a different ontic interpretation, or propensity. The propensity interpretation
ascribes an ontological status to the tendencies of propensities of the various possible out-
comes of a singular chance event, such as the toss of a coin or the decay of a nucleus [18,
vol. II, p. 237 and associated discussion].

There is an interesting lineage of Peirce’s idea to Abner’s profound and striking de-
velopment of the idea that quantum states prior to measurement can be characterized
by a notion of “objective indeterminacy,” a notion in continuity with Heisenberg’s
idea of potentiality. When asked on the origin of this idea in the AIP interview, he
noted: “I was ripe for it. Because of my advocacy of Peirce’s would-be analysis of
probability I was ripe to accept Heisenberg’s analysis of the wave function in terms
of potentiality” [19, p. 7].

Related to his fallibilism is Peirce’s abiding concern with the process of human
knowing, particularly that associated with the sciences. He observed in 1897:

From the moment when I could think at all, until now, about forty years, I have been dili-
gently and incessantly occupied with the study of methods of inquiry. . . .. I have paid most
attention to the methods of the most exact sciences, have intimately communed with some
of the greatest minds of our time in physical science (CP 1.3).

6 See for example, Hookway [13, p. 73f] for a standard presentation of Peirce on these matters.
7 As representative of that perspective: “Pragmatism which arose in the first instance through
Peirce’s canonical critique of Descartes, has always been a very pluralist movement centered on
a concern to continue the discussion of knowledge on a non-foundationalist basis. . .” [6, p. 467].
See also [22].
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In an essay of Abner’s in 1981, developing an naturalist epistemology where
scientific investigations are drawn on, Peirce is nearby: “Among classical philoso-
phers, Peirce seems to come closest to the integral epistemology which I envisage”
[18, vol. I, p. 5] and in a later comment, that Peirce had “. . . the makings of a bal-
anced epistemology. . . . between dogmatism . . . and excessive skepticism . . . [and
that] he also really anticipated so much of the epistemology of the latter half of the
20th century” [19, p. 18]. Further, on particularities of Peirce’s characterization of
methods of scientific inquiry:

To summarize, I find at least four methodological ideas of great value in Peirce’s paper on
scientific inference: that the scientific method achieves its successes by submission to real-
ity, that a hopeful attitude towards hypotheses proposed by human beings is indispensable
to rational investigation of the unknown, that a usable criterion of fair sample involves sub-
jective and ethical considerations, and that it is rational to make certain weak assumptions
about the fairness of the data in order to permit inquiry to proceed [18, vol. I, pp. 234–235].

Two further aspects of Peirce’s thought that one finds mention of in Abner’s writ-
ings relate to Peirce’s understanding of evolution and the notion that the laws of
nature themselves are emerging and evolving features of the universe. Peirce ex-
pressed various doubts as to Darwin’s account of the manner of evolution, although
not doubting that evolution had taken place (see e.g., [11, p. 227f]), and Abner, on
arguing for the non-existence of the principle of natural selection, sees an affinity
with Peirce on this point:

Peirce seems to subsume the theory of natural selection under the theory of probability. . . .
I believe that the my thesis of the non-existence of a principle of natural selection fits the
main current of his thought. It is honorable to be an epigone of Peirce [18, vol. II, p. 245].

A more radical idea may be found in Peirce—that the fundamental laws themselves
have an evolutionary explanation (CP 6.33), a speculation the nature of which to
Abner reminds us of the “continuity of modern physics with metaphysics” [18,
vol. I, p. 29]. In general Peirce posits the universe as evolutionary on its deepest
level:

The evolutionary process is, therefore, not a mere evolution of the existing universe, but
rather a process by which the very Platonic forms themselves have become or are becoming
developed (CP 6.194).

A sympathetic assessment of the idea in a range of thinkers (yet critical of Peirce)
is given in [23], and Paul Davies has drawn on the idea in a number of general
publications, e.g., most recently, [24].

The final idea of Peirce I wish to mention is that of proto-mentality or mentalism,
referred to more generally as a position of panpsychism. The idea is found rather
widely late 19th to the middle of the 20th century in the writings of figures such
as James, Royce, Bergson, Teilhard de Chardin, Whitehead, and Hartshorne (for a
impressive history of panpsychism, see [25]). For panpsychism, at a lower level of
matter there is a dimension of mind or mentality throughout the universe, one that
gets concentrated on higher levels such as in human consciousness. The idea is in
conflict with that of contemporary notions of emergence, when consciousness can
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be seen as naturally emergent property, arising from the complexity of a pre-mental
neurological matter. Debates on this topic continues, although as we increasingly
understand how the brain generates the nature of consciousness, a “naturalist” per-
spective (and on that, in accord with the spirit of Peirce) would now seem to align
with the notion of emergence. Peirce presented the idea in a series of papers (1891–
1893) where he argued for a monism of mind and matter and a “dual aspect” theory
of mind:

The one intelligible theory of the universe is that of objective idealism, that matter is effete
mind, inveterate habits becoming physical laws (CP 6.25) and . . . what we call matter is not
completely dead, but is merely mind hidebound with habits (CP 6.128).

But all mind is directly or indirectly connected with all matter, and acts in a more or less
regular way; so that all mind more or less partakes of the nature of matter. . . . Viewing a
thing from the outside, considering its relations of action and reaction with other things, it
appears as matter. Viewing it from the inside, looking at its immediate character as feeling,
it appears as consciousness (CP 6.268).

Abner mentions in his AIP interview how the idea was an attractive and important
one for him, both religiously and intellectually, in his early encounter with Peirce
as well as Whitehead, observing, in what constitutes the main reason for the notion,
that if we evolved then our mental faculties are production of evolution, not just
our bodies—and if they are, then “there must be something mental-like from which
the faculties evolve” [19, p. 10]. More recently as well Abner has suggested that
a naturalist “physicalism” can be a component in an epistemological naturalism
when combined with a mentalism of a sort that “would have a fundamental status in
nature, either coordinate with physical reality or yet more fundamental” [26, p. 306].

2 Peirce on Mathematics: Necessary and Hypothetical

While Peirce has been known for fields such as his studies on scientific as well as
his work on logic and as one of the founders of American Pragmatism, the new
wave of Peirce scholars from the 1960s onwards have drawn out and emphasized
the central place of mathematics in his thought.8 Benjamin Peirce, his father, was
a well known mathematician in 19th century America and a powerful charismatic
teacher at Harvard during Peirce’s youth. He played an important role in Peirce’s
early education in a variety of ways. Peirce directly refers to the important influ-
ence of his father in his early education and in particular that “. . . without appearing
to be so, he [Benjamin Peirce] was extremely attentive to my training when I was
achild, and especially insisted upon my being taught mathematics according to his

8 The work of Carolyn Eisele stands out here, both in numerous studies on Peirce’s mathematics
and scientific philosophy [28] as well as in editing the four volume The New Elements of Mathe-
matics [27] containing Peirce’s mathematical writings. Also, studies by Buchler [3], Goudge [11],
Hookway [13], Joswick [29], Levy [30], Cooke [31] and Campos [32] have drawn out the impor-
tance and significance of aspects of Peirce’s thought on mathematics.
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directions . . .” (quoted in [27, vol. 4, p. v]). Brent’s biography of Peirce emphasizes
the weighty legacy of his father on his life, that his father had “draped on his shoul-
ders the crushing mantle of genius” and engaged him in an exacting and intellectual
training, the effects of which “were to aggravate his neurological pathologies, to
nourish his arrogance, and to set his ambition afire” [8, p. 16].

Peirce first of all makes mathematics central in the priority he gives it in a classifi-
cation of the disciplines. Moreover, it is a discipline in need of no other disciplines.9

In one of his disciplinary mappings of the sciences, and the “architectonic character”
of philosophy, Peirce observed:

. . .. mathematics meddles with every other science without exception. There is no science
whatever to which is not attached an application of mathematics. This is not true of any
other science, since pure mathematics has not, as a part of it, any application of any other
science, inasmuch as every other science is limited to finding out what is positively true,
either as an individual fact, as a class, or as a law; while pure mathematics has no interest in
whether a proposition is existentially true or not. In particular, mathematics has such a close
intimacy with one of the classes of philosophy, that is, with logic, that no small acumen is
required to find the joint between them (CP 1.245).

. . .. It might, indeed, very easily be supposed that even pure mathematics itself would have
need of one department of philosophy; that is to say, of logic. Yet a little reflection would
show, what the history of science confirms, that that is not true. Logic will, indeed, like
every other science, have its mathematical parts (CP 1.247).

. . .. But mathematics is the only science which can be said to stand in no need of philosophy,
excepting, of course, some branches of philosophy itself. It so happens that at this very
moment the dependence of physics upon philosophy is illustrated by several questions now
on the tapis (CP 1.249).

Rather strikingly Peirce gives mathematics a central role in developing a philosophy,
as in a letter of 1894:

My special business is to bring mathematical exactitude,—I mean modern mathematical
exactitude, into philosophy,—and to apply the ideas of mathematics in philosophy (quoted
in [27, vol. 4, p. x]).

Moreover in the development of thought itself, mathematics was the “earliest field
of inquiry” as mathematics is the “most abstract of all the sciences” and the first
questions asked are “naturally the most general and abstract ones” (CP 1.52–53).

The relationship between logic and mathematics forms an entangled thread in
Peirce’s thought. In various passages Peirce stressed the independence of mathe-
matics from logic:

I will not admit that the mathematician stands in any need of logic. The mathematician
must reason, of course; but he needs no theory of reasoning, because no difficulties arise
in mathematics which require a theory of reasoning for their resolution. The metaphysician
does require a theory of reasoning; because in his science such difficulties do arise. All the
special sciences (especially the nomological sciences) repose, more or less, on metaphysics,
and therefore, at least indirectly, and some of them directly too, require a theory of logic.
But pure mathematics can postpone such a theory [27, vol. 4, p. 98].

9 For more on the manner in which mathematics is foundational in Peirce see [33] and [13,
Chapter 6].
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It does not seem to me that mathematics depends in any way upon logic. It reasons, of
course. But if the mathematician ever hesitates or errs in his reasoning, logic cannot come
to his aid (CP 4. 228, 1902).

Logic can be of no avail to mathematics; but mathematics lays the foundation on which
logic builds . . . (CP 4.250).

He will also characterize mathematics as an activity of reasoning that is direct and
intuitive. Logic, on the other hand, is a study of reasoning [34]. Referred to by Dipert
[35, p. 46] as a “reverse-logicism,” Peirce’s priority of mathematics is a persistent
strain in his writings. Yet, as commentators have noted, in other places Peirce com-
ments on mathematics’ dependency on logic.10 And Peirce will note, when referring
to Dedekind’s work on numbers of 1888 that the “boundary between some parts of
logic and pure mathematics . . . is almost evanescent” (CP 2.215).

One can see resonances in Peirce of an analogous distinction made in Whately’s
Elements of Logic [36]—a widely used logic book in the 19th century.11 On several
occasions Peirce noted that Whately’s text, which he had first read as a youth, was
of considerable influence on him, reflecting in a latter to Lady Welby in 1908 that
“. . . from the day when at the age of 12 or 13 I took up, in my elder brother’s room
a copy of Whately’s Logic . . . it has never been in my power to study anything—
mathematics, ethics, metaphysics, gravitation, thermo-dynamics, optics, chemistry,
comparative anatomy, astronomy, psychology, phonetics, economic, the history of
science, whist, men and women, wine, metrology, except as a study of semeiotic”
[37, p. 85]. Whately remarks that one can reason accurately prior to a study of
logic, much as one can speak prior to the study of grammar he also likens logic to
the “grammar of reasoning” [36, p. 11]. Analogously for Peirce, the ability to do
mathematics is independent of a study of its methods of reasoning.

These foundational features of mathematics are woven into a number of other
features Peirce ascribes to mathematics. First, stressing that he owes the idea to
his father, Peirce often referred to mathematics as a science that draws “necessary
conclusions”:

Of late decades, philosophical mathematicians have come to a pretty just understanding
of the nature of their own pursuit. I do not know that anybody struck the true note be-
fore Benjamin Peirce, who, in 1870, declared mathematics to be “the science which draws
necessary conclusions,” adding that it must be defined “subjectively” and not “objectively”
(CP 3.558).

. . . It was Benjamin Peirce, whose son I boast myself, that in 1870 first defined mathematics
as “the science which draws necessary conclusions.” This was a hard saying at the time;
but today, students of the philosophy of mathematics generally acknowledge its substantial
correctness (CP 4.229).

The phrase that Peirce quotes is the opening sentence in Benjamin Peirce’s well
known study, “Linear Associative Algebra” [38]. Peirce argues in a number of
places against a traditional definition of mathematics as the science of quantity
(e.g. CP 3.554). Peirce also knew Boole’s work well and there are echoes in Peirce

10 Comprehensive discussions of this topic may be found in [30] and [35].
11 For a study of the influence of Whately’s text on Peirce see [39].
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of Boole’s same questioning of the significance of mathematics as the science of
quantity as in his essay of 1847 [40, p. 4]. Similar notions of mathematics occur
in the “Preface” of Analytical Society Memories, by Charles Babbage and John
Herschel, where the power of a symbolic language for mathematical reasoning is
celebrated and mathematics is characterize as examining “. . . the varied relations
of necessary truth” [41, p. i]. Peirce also proposed a more general significance to
mathematics in philosophy—all necessary a priori thinking is a form of mathemat-
ical thinking:

Philosophy requires exact thought, and all exact thought is mathematical . . . I can only
say that I have been bred in the lap of the exact sciences and I know what mathematical
exactitude is, that is as far as I can see the character of my philosophical training (quoted in
[27, vol. 4, p. x]).

All necessary reasoning is strictly speaking mathematical reasoning [,] that is to say, it is
performed by observing something equivalent to a mathematical Diagram . . .. [1, p. 116].

Perice refers positively to an analogous definition by George Chrystal in the ninth
edition of the Encyclopedia Britannica (1883).12 Hints of such a position may also
be found in his father’s writings [42]. Mathematics with a definition as the science
that draws necessary conclusions is such that, to his father it “belongs to every in-
quiry, moral as well as physical.” ([43, p. 97] and see also [44, p. 377]).

As one would suspect, to give such a foundational role for mathematics requires a
rich conception of mathematics, which is indeed the case for Peirce. In particular for
Peirce mathematical reasoning involves diagrams and a form of interior observation:

. . . What then is the source of mathematical truth? For that has been one of the most vexed
of questions. I intend to devote an early chapter of this book to it.1 I will merely state here
that my conclusion agrees substantially with Lange’s, that mathematical truth is derived
from observation of creations of our own visual imagination, which we may set down on
paper in form of diagrams (CP 2.77).

. . . In mathematical reasoning there is a sort of observation. For a geometrical diagram or
array of algebraical symbols is constructed according to an abstractly stated precept, and
between the parts of such diagram or array certain relations are observed to obtain, other
than those which were expressed in the precept. These being abstractly stated, and being
generalized, so as to apply to every diagram constructed according to the same precept,
give the conclusion. (CP 2.216).

Peirce’s references to observation and mathematics occur shortly after a famous
British Association for the Advancement of Science address by J.J. Sylvester in
1868 where a role is given for observation in the practice of the mathematics [45].
Perice quotes a phrase from Gauss that Sylvester had used in his address: “. . . for as
the great mathematician Gauss has declared—algebra is a science of the eye—only
it is observation of artificial objects and of a highly recondite character” (CP 1.34).

12 Chrystal [42] characterized mathematics as: “any conception which is definitely and completely
determined by means of a finite number of specifications, say by assigning a finite number of
elements, is a mathematical conception. . . . As an example of a mathematical conception we may
take “a triangle”; regarded without reference to its position in space, this is determined when three
elements are specified, say its three sides . . .”.
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Peirce also associates perceptual judgments with mathematical proof noting the
“. . . compulsiveness of the perceptual judgment is precisely what constitutes the
cogency of mathematical demonstration” (CP 7.659, 1903). In this way the “com-
pulsory” feature of mathematics is grounded.

For Peirce, this underlies a role mathematics can play in philosophy as errors will
be reduced “to a minimum” in philosophy by:

. . . treating the problems as mathematically as possible, that is, by constructing some sort
of a diagram representing that which is supposed to be open to observation by every sci-
entific intelligence, and thereupon mathematically,—that is, intuitionally,—deducing the
consequences of that hypothesis (quoted in [27, vol. 4, p. x]).

Other features of Peirce’s notion of mathematics include taking mathematical rea-
soning as a form of experimenting with diagrams. A particularly bold statement of
his position on this occurs in “Notes on Ampliative Reasoning” in 1902 that “Math-
ematical proof is probably accomplished by appeal to experiment upon images or
other signs, just as inductive proof appeals to outward experiment” (CP 2.782).
Such mathematical diagrams are “iconic” which leads to Peirce’s rich and extensive
work on semiotics that would take us to far a field to consider here (on this see [13,
p. 189f]). That all thinking for Peirce involves signs is another way mathematics is
linked deeply to general reasoning. Peirce in the following, on the practice of the
reasoning, weaves all these threads together:

. . . he searches his heart, and in doing so makes what I term an abstractive observation. He
makes in his imagination a sort of skeleton diagram, or outline sketch, of himself, considers
what modifications the hypothetical state of things would require to be made in that picture,
and then examines it, that is, observes what he has imagined, to see whether the same
ardent desire is there to be discerned. By such a process, which is at bottom very much like
mathematical reasoning, we can reach conclusions as to what would be true of signs in all
cases, so long as the intelligence using them was scientific (CP 2.227).

In addition to characterizing mathematics as the discipline that draws necessary con-
sequences, Peirce stressed (as in the last quotation), and increasingly as his thought
developed, that mathematics is hypothetical. In particular, that “. . . all mathemati-
cians now see clearly that mathematics is only busied about purely hypothetical
questions” (CP 1.52). In this way mathematics is distinguished from an inquiry into
nature:

For all modern mathematicians agree with Plato and Aristotle that mathematics deals exclu-
sively with hypothetical states of things, and asserts no matter of fact whatever; and further,
that it is thus alone that the necessity of its conclusions is to be explained. This is the true
essence of mathematics . . . (CP 4.232, 1902).

Mathematics is the study of what is true of hypothetical states of things. That is its essence
and definition. (CP 4.333, 1902)

Peirce emphasizes in other places that hypotheses are creations of the mathemati-
cian and that this is the origin of the necessary nature of mathematics (CP 3.560,
8.110). This cluster of features then—mathematics as manipulating with and exper-
imenting on diagrams, as observational, as working with hypothesis that are other
than to do with facts about the world, as that which draws necessary consequences,
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as the discipline that is foundational and central in philosophy—together constitute
Peirce’s vision of mathematics. Ketner and Putnam go so far to remark that many
of these features meant mathematics “was the inspirational source for the pragmatic
maxim, the jewel in the methodological part of the semeiotic, and the distinctive
feature of Peirce’s thought” [1, p. 2].

That a significant feature of Peirce’s characterization of mathematics is blended
with actual practices of the mathematician provides further support for the place
of mathematics in pragmatism. When commenting on the nature of mathematics
Peirce often refers to the beliefs and practices of mathematicians, with attention fre-
quently to historical contexts. The words “mathematician” and “mathematicians,”
for example, occur 202 times in the Collected Papers, and while less that “math-
ematics” (340) and “mathematical” (334) the number is significant. The usage ac-
cords with Peirce’s pervading epistemological concern with the nature of human
reasoning. Campos [32] has drawn attention to this dimension of mathematics for
Peirce, noting Peirce’s definitions of mathematics as necessary and hypothetical are
“descriptions of mathematical activity” and observed in a comment that concisely
sums up various points in this section:

The practice of imagining hypothetical states of things and asking what would necessarily
be true about them provides the context in which mathematical icons are conceived, created
and recreated, so as to explore a myriad would-be worlds.

3 Balancing Mathematics and Inquiry into Nature

A long persistent thread in reflection on the empirical and natural sciences has been
on the role of mathematics in such sciences.13 As mathematics is a structured sym-
bolic system with features of a natural language and long taken, as expressed by
Galileo’s famous trope, as the language of the book of nature, the issue in the broad-
est sense is one of the relationship of a language to reality, on the junction of “word”
and “thing”, an issue that has haunted modern philosophy. Locke’s clear and direct
separation of words, things and ideas in An Essay Concerning Understanding leaves
the unsettling question of their relationship, and forms a textual monument to this
question that has haunted modernity:

We should have a great many fewer disputes in the world if only words were taken for what
they are, the signs of our ideas only, and not for things themselves [46, vol. III, p. 10].

As applied to mathematics, the question appears as a semantic one of how the sym-
bols and notation of mathematics embody mathematical concepts and refer either to
mathematical objects or to features of empirical objects, such as properties and the
laws of nature.14

13 For the manner in which this topic can be addressed in tracing the history of physics, see [47,48].
14 As an aside, Benjamin Peirce’s study of Algebra of 1870 in various places uses the textual image
for mathematics; mathematics as a language and with a grammar [43, p. 98, 105].
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During the 19th century the question was sharpened as mathematics was increas-
ingly seen as abstract and as a discipline separate from the sciences of nature. The
development of abstract symbolic algebra (separate from arithmetic algebra) by
Peacocke, Hamilton, and De Morgan in the early part of the century was part of
this development in mathematics while the development of non-Euclidean geome-
try in the latter part was another.15 Herschel’s influential Preliminary Discourse [49]
is representative of these moves and draws a sharp distinction between the abstract
sciences of mathematics and the natural sciences concerned with causality and laws
of nature. In Whately’s logic, too, the text mentioned earlier, there is a persistent
emphasis on how a proper understanding of Logic requires recognizing that logical
matters to do with reasoning are distinct from “the observations and experiments
essential to the study of nature” [36, p. 9; see also, p. 25, 338].

This stress on the unique features of mathematics brings into clear relief the
question of relationship of mathematics and the natural sciences in a discipline such
as mathematical physics. This multi-sided question can be posed generally as one
about probing the nature of the meeting point of the abstract, necessary and symbolic
with the concrete, contingent and empirical. This question will set the agenda for
tracing Perice’s texts on this topic.

By stressing in various places that mathematics has a distinct identity, different
from the natural sciences, Peirce is part of these movements within 19th century
mathematics. His emphasis on the hypothetical nature of mathematics is one such
place where this occurs: “Mathematics is engaged solely in tracing out the conse-
quences of hypotheses. As such, she never at all considers whether or not anything
be existentially true, or not” (CP 1.247). And in some striking passages:

The mathematician lives in another world from the rest of us, in a world of pure forms.
Here he is domiciled and spends part of his time, but he is a mere sojourner; this is not
the world that he knows or that he cares for. If you tell him that something in the world of
mathematical forms corresponds to something in the real world, be cautious not to speak
as if such a correspondence could impart any value to the mathematical object, or he may
consider you impertinent. Of what consequence is that reality to him? [16, vol. 6, p. 258].

There is no essential difference between pure and applied mathematics. The mathematician
does not, as such, inquire into facts. He only develops ideal hypotheses. These hypotheses
are all more or less suggested by observation and all depart from or transcend, more or less,
what observation fully warrants. But if the hypotheses are developed with a view to ideal
interests, it is pure mathematics. If they are made crabbed and one sided in the interest of
truth it is applied mathematics. [27, vol. 2, p. vi].

Both of these passages, and the second one in particular, bear a resemblance to
his father’s almost Pythagorean vision of a fusion of mathematics and nature. For
example, in a series of lectures published shortly after his death his father writes,
with vivid metaphors:

But in the frozen cave of geometry, the thoughts which may trickle in from the actual
world are crystallized into glittering, passionless, and unsympathizing stalactites; and the

15 For an exploration of this topic see [50].
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mathematical sage cares not whence they came,—whether they fell as dew from the quiet
sky, or as rain from the clouds driven by the wind. Whatever their origin, they are ideal truth
[43, p. 167].

And for his father, on the ready application of mathematics to the study of nature,
the mathematics of quaternions to which the mathematician was led from imaginary
numbers has become “the true algebra of space” that “clearly elucidates some of the
darkest intricacies of mechanical and physical philosophy” (Ibid. p. 29).

In these passages and in his son’s writings in particular there are hints of Cantor’s
view of “pure mathematics” as “free mathematics,” presented in the Grundlagen
of 1883. Such a mathematics is in opposition to that constrained by the empirical
world, or “crabbed” in Peirce’s phrase quoted above. As well Boole, in the text
referred to above, remarks that mathematics considers operations in themselves,
“independently of the diverse objects to which they can be applied” [40].

The spirit here is in accord with another characteristic of mathematics that Peirce
stresses, viz., generalization, and this too is outlined in a context that places it in
opposition to applied mathematics:

Another characteristic of mathematical thought is that it can have no success where it cannot
generalize. One cannot, for example, deny that chess is mathematics, after a fashion; but,
owing to the exceptions which everywhere confront the mathematician in this field—such
as the limits of the board; the single steps of king, knight, and pawn; the finite number of
squares; the peculiar mode of capture by pawns; the queening of pawns; castling—there
results a mathematics whose wings are effectually clipped, and which can only run along
the ground (CP 4.236).

Interestingly Peirce then will often identify aspects of mathematics by placing them
in contrast to science. The creative and free nature of forming hypotheses in math-
ematics, the necessary features of mathematics, and the pursuit of generalization in
mathematics all stand in apparent contrast to the practices of the natural sciences.

The frequency with which Peirce places the intersection of mathematics and
study of nature in this way is striking. It is a particular way of doing mathematics:

The truths of mathematics are truths about ideas merely . . .. Thomson and Tait (Natural
Philosophy §438) wisely remark that it is “utterly impossible to submit to mathematical
reasoning the exact conditions of any physical question.” A practical problem arises, and
the physicist endeavors to find a soluble mathematical problem that resembles the practical
one as closely as it may. . . . The mathematics begins when the equations or other purely
ideal conditions are given. “Applied Mathematics” is simply the study of an idea which has
been constructed to look more or less like nature [27, vol. 4, p. xv].

Peirce continues this passage to mention that geometry is an example of “applied
mathematics.” The mathematician, will use a “space imagination” to form “icons of
relations which have no particular connection with space.” These are diagrams visu-
ally imagined of a space. But at the same time “space is a matter of real experience”
(Ibid. p. xv). Elsewhere too, Peirce dwells on geometry’s dual nature: non-Euclidean
geometry is securely established in abstract mathematics, yet “geometry, while in its
main outlines, it must ever remain within the borders of philosophy, since it depends
and must depend upon the scrutinizing of everyday experience, yet at certain special
points it stretches over into the domain of physics” (CP 1.249). Only measurements
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will tell the nature of the geometry of actual space. Peirce also intriguingly specu-
lates on the existence of higher dimension, a topic of sustained interest in the latter
part of the 19th century: “Thus, space, as far as we can see, has three dimensions;
but are we quite sure that the corpuscles into which atoms are now minced have not
room enough to wiggle a little in a fourth?” (CP 1.249). With practice a mathemati-
cian at home in universal geometry can adjust to a space of four dimensions: “Give
a higher geometer sixty days to accustom himself to a four-dimensional space, and
he would be ever so much more at home there than he ever can be in this perverse
world” [51, vol. 3. p. 182].

The overall context for this seeming opposition between mathematics as the
abstract hypothetical study and mathematics as practiced in the midst of the investi-
gation into nature is one where Peirce is often addressing the practices of the math-
ematician and the practices of the scientist. It is here I propose we have a clue to a
pervasive feature of Peirce’s thought: that the apparently more systematic issue such
as that posed above of the relationship of mathematics as a formal system to natural
science and its objects, Western philosophy’s old haunting issue of representation
of thought to reality, appears invisible to Peirce. Instead it appears as steadily posed
instead in terms of activities.16 This is illustrated nicely in a passage where Peirce
directly addresses the use of mathematics for physics:

The complex plane is one of the meeting-grounds of mathematicians and physicists, and
the latter are now quite at home in the presence of that coy handmaiden, the complex vari-
able; indeed, the well-known transformation scene in which she and her image play such
a prominent part, is now an important feature in the solution of some practical problems
[27, vol. 3, p. 145].

Also mathematics is useful for the work of the physicist as, “First, it enables him
to solve his own problems instead of employing a mathematician . . .. Secondly, it
supplies him with fundamental conceptions and methods of thinking without which
he never can rise from the ranks of the army of science” [27, vol. 3, p. 121].

While posing the issue of the meeting places of mathematics and the natural sci-
ences in terms of the practices of both disciplines is a persistent feature of Peirce’s
thought, there’s a deeper more systematic question: how does mathematics’ nec-
essary and certain nature fits with Peirce’s Fallibilism? The issue has been directly
addressed by Haack [52] and Cooke [31] and to both there are unresolved tensions in
Peirce’s writings on this topic. For Haack the puzzle is that Peirce seems able to hold
that our mathematical beliefs could be mistaken while still holding to a position that
mathematical truths are necessary [52, p. 37]. Indeed Peirce in places stresses how
mistakes can be made in doing mathematics and it is clear it is an uneasy problem
for him (see, e.g., CP 1.149, CP 4.237). For Haack the tension resides in Peirce’s
failure to specify fully what is meant by fallibilism (a point other commentators
have remarked on) and with a more elaborate specification, there are ways in which
it could coexist for Peirce with mathematics necessary nature.

16 There is an intriguing link between Peirce on this point and J.J. Sylvester and others in the British
context such as James Clerk Maxwell that awaits further exploration. Maxwell, for example, in
an British Association address in 1870, soon after Sylvester’s address considers the relationship
between mathematics and physics largely in terms of the activities of those in both disciplines.
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Cooke argues that Peirce “can and should hold a position of fallibilism within
mathematics, and that this position is more consistent with his overall pragmatic
theory of inquiry and general commitment to the growth of knowledge” [31, p. 159].
In particular, for Peirce to hold for a type of theoretical infallibilism for mathematics
would be deeply incompatible with his rejection of the separation of a science’s in-
telligibility from its human knowers. Yet for Cooke Peirce could consistently allow
error in the practice of the mathematician who for Peirce experiments with hypo-
thetical truths via diagrams, and could be brought about by allowing a different
form of fallibilism from that associated with investigating empirical features about
the world. This would be a particular type of “internal fallibilism” such to allow for
the obvious way mathematicians can make errors in doing mathematics, and further,
recognizing such doubt in this realm for Cooke allows a general conclusion that it
allows inquiring into new areas in mathematics—consequently discovering new re-
lations and new systems [31, p. 174]. Such a position accords with Peirce remarks
when commenting as indicated earlier on how deduction (or “analytical reasoning”)
involves perception and experimentation:

Deduction is really a matter of perception and of experimentation, just as induction and hy-
pothetic inference are; only, the perception and experimentation are concerned with imagi-
nary objects instead of with real ones. The operations of perception and of experimentation
are subject to error, and therefore it is only in a Pickwickian sense that mathematical rea-
soning can be said to be perfectly certain. It is so only under the condition that no error
creeps into it; yet, after all, it is susceptible of attaining a practical certainty. (CP 6.595)

There is another deep issue here related to that to do with of foundations of knowl-
edge. As those in the later pragmatist tradition of American thought have empha-
sized, Peirce’s fallibilism can be seen as a form of anti-foundationalism, one that
is not an either or sort where the opposite to foundationalism is a relativism (e.g.
see [21, 53]). Moreover, we are now in the wake of a long sustained consideration
in the 20th century of the pursuit of foundations in mathematics (see, e.g., [54,55]).
Peirce’s famous critique of Descartes’ grounding of the edifice of knowledge on an
indubitable inner intuition is the basis of his anti-foundationalism (CP 5.264).

Also Peirce’s metaphors have an anti-foundationalist flavor. Peirce will indeed
use the metaphor of architecture, positively remarking when treating the classifica-
tion of science and the “architectonic of philosophy” that the “. . . universally and
justly lauded parallel which Kant draws between a philosophical doctrine and a
piece of architecture has excellencies which the beginner in philosophy might eas-
ily overlook” (CP 1.176).17 However, for Peirce the metaphor functions more as a
way to comment on the texture and structure of a philosophical system: “that is why
philosophy ought to be deliberate and planned out; and that is why, though pitch-
forking articles into a volume is a favorite and easy method of bookmaking it is
not the one which Mr. Peirce has deemed to be the most appropriate to the exposi-
tion of the principles of philosophy . . ..” (CP 1.179). The architecture metaphor for

17 Also, when characterizing philosophical systems Peirce will invoke the architectural metaphor:
“There is a synchronism between the different periods of medieval architecture, and the different
periods of logic. The great dispute between the Nominalists and Realists took place while men
were building the round-arched churches . . .” (CP 4.27).
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knowledge therefore is not taken, as commonly taken in the philosophical tradition,
to describe the building knowledge built on firm foundations.

Peirce also has various other powerful metaphors for knowledge which argue
against knowledge being grounded on foundations, one being his famous metaphor
of knowledge as on a bog and another, that of a bottomless lake.18

The only end of science, as such, is to learn the lesson that the universe has to teach it.
In Induction it simply surrenders itself to the force of facts. But it finds . . . that this is not
enough. It is driven in desperation to call upon its inward sympathy with nature, its instinct
for aid, just as we find Galileo at the dawn of modern science making his appeal to il lume
naturale. But in so far as it does this, the solid ground of fact fails it. It feels from that
moment that its position is only provisional. It must then find confirmations or else shift its
footing. Even if it does find confirmations, they are only partial. It still is not standing upon
the bedrock of fact. It is walking upon a bog, and can only say, this ground seems to hold
for the present. Here I will stay till it begins to give way. (CP 5.589)

Consciousness is like a bottomless lake in which ideas are suspended at different depths.
Indeed, these ideas themselves constitute the very medium of consciousness itself. Percepts
alone are uncovered by the medium. We must imagine that there is a continual fall of rain
upon the lake; which images the constant inflow of percepts in experience. All ideas other
than percepts are more or less deep, and we may conceive that there is a force of gravitation,
so that the deeper ideas are, the more work will be required to bring them to the surface.
(CP 7:533)

Then there is Peirce’s powerful and famous metaphor of knowledge as constituted
by the fibers of a cable given when criticizing Descartes (adapted, as Haack [2]
notes, from Thomas Reid):

Philosophy ought to imitate the successful sciences in its methods, so far as to proceed only
from tangible premisses which can be subjected to careful scrutiny, and to trust rather to the
multitude and variety of its arguments than to the conclusiveness of any one. Its reasoning
should not form a chain which is no stronger than its weakest link, but a cable whose fibers
may be ever so slender, provided they are sufficiently numerous and intimately connected.
(CP 5.265)

All these metaphors, which capture the spirit of Peirce’s understanding of the in-
quiry into nature, are at odds with the spirit of mathematics. A chain metaphor in
particular, one in opposition with that of a cable of fibers, has a long association
with the deductive structure of mathematics in figures such as Descartes and Hume
and in early 19th century writings on mathematics in the British context. Yet, as we
have seen above, mathematics for Peirce has a foundational place in philosophy, it
is acritical in that it stands in need of no other discipline to proceed and there is
a necessary quality to its deductions. Moreover these qualities are often outlined

18 Both Thagard [56] and Abrams [57] address Peirce’s use of these metaphors. One may specu-
late too on the influence of Peirce’s cultural context. As commentators on the anti-foundationalist
dimension of pragmatist though have remarked, the world of the America following the civil war
was one to encourage the development of “. . . a more flexible, open experimental way of thinking
that would avoid all forms of absolutism and ideologies that result in intolerance” [21]. And in
more general terms the expansionist spirit of a new country, with vast territory arguably lent itself
to such thinking rather than the trend of European philosophy to search for secure foundations.
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in contrast with the nature of the other sciences. There’s a complex and apparent
tension then, one that invites further consideration on the nature of mathematics.

A dimension of mathematics that mutes the foundationalist image is the role
mathematicians play in the creation of hypotheses. Here, as Peirce stresses, they are
not constrained by the nature of the world, and in this process lies a creative freedom
for the mathematician. Thus a natural way to think of mathematics as foundational
by virtue of its axioms and starting points is not immediately to the foreground in
Peirce. However, and balancing this, Peirce is careful to note the process of hypoth-
esis creation is not an arbitrary one. Peirce has hints in place of Platonist conception
of mathematics, a potential foundation for mathematics. When addressing the is-
sue that one would expect with arbitrary hypothesis creation, namely that “different
mathematicians to shoot out in every direction into the boundless void of arbitrari-
ness” Peirce remarks that this does not happen and this phenomena:

. . . is not an isolated one; it characterizes the mathematics of our times, as is, indeed, well
known. All this crowd of creators of forms for which the real world affords no parallel, each
man arbitrarily following his own sweet will, are, as we now begin to discern, gradually
uncovering one great cosmos of forms, a world of potential being. The pure mathematician
himself feels that this is so . . . if you enjoy the good fortune of talking with a number of
mathematicians of a high order, you will find that the typical pure mathematician is a sort
of Platonist. Only, he is [a] Platonist who corrects the Heraclitan error that the eternal is
not continuous. The eternal is for him a world, a cosmos, in which the universe of actual
existence is nothing but an arbitrary locus. The end that pure mathematics is pursuing is to
discover that real potential world. (CP 1.646)

Peirce here makes the commonplace observation that the practicing mathematician
is a Platonist, and there’s a hint of convergence of mathematics to a given form that
parallels Peirce’s notion of scientific investigators converging in time to truth about
nature. Peirce’s Platonist phrases can take lyrical form:

That passage of the mathematician, Plato, strikes a sympathetic chord in every mathemati-
cians’ breast when he says that these heavens and earth we gaze upon are but the walls and
floor of a dismal cavern which shut out from our direct view the glories of the world of
forms beyond [16, vol. 6, p. 258].19

He leaves open however what this could mean for particular mathematical systems.
It would take us to far a field to pursue the idea, but in giving a place to obser-
vation in mathematics, and experimentation on diagrams as part of mathematical
reasoning, Peirce could be read as grounding a form of mathematical Platonism in
a naturalist manner.20 In general for Peirce the most likely source of inspiration for
the mathematician’s practices come for situations in the world, not a Platonic world
of the beyond.

19 As a further example of Peirce’s balance of this mathematical world of the beyond with the
study of nature, Peirce continues: “Yet, what would steam-engines, electric cables, turbine wheels,
life-insurance and a thousand things be but for the hints which mathematicians have vouchsafed?”
(Ibid. vol. 6, 258).
20 Abner interestingly explores Gödel’s Platonism in this manner, noting Gödel’s fondness of
“comparing intuition of mathematical objects with sensory perception of physical objects of
ordinary experience” [26, p. 301].
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The hypothetical nature of mathematics nevertheless dominates Peirce’s account
of mathematics, despite the hints of a grounding in a Platonic realm of potential
form. Peirce also resists a Kantian move of grounding the axioms and starting points
of mathematics in a metaphysical or otherwise foundation. In particular, Peirce de-
nies any dependence of mathematics on space, time, or any form of “intuition”
(CP 3.556).

Here Peirce’s view on mathematical truth and certainty has interesting reso-
nances with the Scottish mathematician Stewart (1753–1828). Stewart stressed that
the starting points of mathematics are assumed: “we have in view [. . .] not to as-
certain truths with respect to the actual existences, but to trace the logical filiation
of consequences which follow from an assumed hypothesis. If from this hypothesis
we reason with correctness, nothing [. . .] can be wanting to complete the evidence of
the result; as this result only asserts a necessary connexion between the supposition
and the conclusion” [58, vol. II, p. 114]. Stewart’s view was opposed by the Cam-
bridge philosopher William Whewell, who sought to ground mathematical truths in
broader metaphysical foundations of a Kantian nature.

Peirce’s stress on the hypothetic nature of mathematics goes along as well with
the spirit of characterizing logical inference in a hypothetical manner: “To say that
an inference is correct is to say that if the premises are true the conclusion is also
true; or that every possible state of things in which the premises should be true would
be included among the possible state of things in which the conclusion would be
true.” (CP 2.710) It is also in accord with his support of a “Philonian” interpretation
of conditional statements such “If A then B” as being true if A is either an empty
class or A is untrue (for a discussion of this point see, Ketner and Putnam in [1]).
What matters essentially is the structure of inference or mathematical or logical
deduction, not its grounding in initial axioms or premises. Peirce’s account has also
later been associated with a position of “If-Thenism” or “deductivism” where truth
as understood in this manner of connection and deducibility within a system (see
[59], Chapter 10 for a modern discussion of this position).

In places when considering scientific investigations, Peirce sees that as hypothet-
ical as well:

Nothing is vital for science: nothing can be. . . . The scientific man is not in the least wedded
to his conclusions. He risks nothing upon them. He stands ready to abandon one or all
as soon as experience opposes them. Some of them, I grant, he is in the habit of calling
established truths; but that merely means propositions to which no competent man today
demurs. It seems probable that any given proposition of that sort will remain for a long time
upon the list of propositions to be admitted. Still, it may be refuted tomorrow; and if so, the
scientific man will be glad to have got rid of an error. There is thus no proposition at all in
science which answers to the conception of belief ([1], Lecture 1).

Here then an activity of science shares a feature of mathematics.
By dwelling on the hypothetical nature of mathematics (and science), and de-

ductive relations Peirce on these issues appears as an early exemplification of the
structuralism that was to flourish in the 20th century. Bourbaki’s text, for exam-
ple, Elements of the History of Mathematics, notes on that history that it would be
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“. . . be tempting to say that the modern notion of “structure” is attained in substance
around 1900; in fact it will need still another thirty years of apprenticeship before it
appears in all its glory” [60, p. 21].

There remains the clear foundational nature of the “necessary” nature of infer-
ences of the mathematician, and exploring this leads to a key distinction Peirce
makes in mathematical reasoning. One type, “corollarial,” involves immediate de-
ductions in a straightforward way from axioms. They need not involve the iconic
diagrams directly. The other type is “theorematic” reasoning, which involves a more
active creation of strategies and experimentation with diagrams to achieve a result
(CP 2.267 and CP 4.613 and for a discussion of this distinction see [29, 30]). And
example of the latter would be a supplementary construction needed in a proof to
bring about the conclusion. The significance of such reasoning to Peirce had been
overlooked in the tradition, and Peirce’s remarks here are part of his attention to
activities of the mathematician.

As we have seen, Peirce will ground the necessary nature of mathematics in
various ways. A further way for Peirce is in the intuition—to imply a type of math-
ematical intuitionism. Goudge perceptively remarks that while Peirce can be read
this way it is “entirely out of harmony with his naturalism” [11, p. 259]. It is not,
though, grounded in a psychological form of intuition, as, for Peirce, “the math-
ematician clothes his thought in mental diagrams, which exhibit regularities and
analogies of abstract forms almost quite free from the feelings that would accom-
pany real perceptions” [51, vol. 3, p. 258]. Among recent commentators on this
point, Joswick [29] takes the semiotic dimension of Peirce’s mathematics as provid-
ing of seeing how Peirce grounds mathematical necessity. Of the threefold types of
signs for Peirce—symbols, icons and indexes—it is only an icon that can bring out
the inferential nature of mathematics, as it exhibits the form of an object and thus
presents the relationships in the object. For Joswick,

The icon is the essential mathematical sign because by “direct observation of it other truths
concerning its object can be discovered” (2.280). Through the direct examination of an icon
necessary connections in the object can be seen and unexpected relations revealed. “The
whole of inference,” Peirce contends, “consists in observation, namely in the observation
of icons” (7.557) [29, p. 111].

Such a position is in accord with Peirce’s notion that all necessary reasoning in-
volves the use of diagrams, stated strongly in manuscript notes of 1896: “All valid
necessary reasoning is in fact thus diagrammatic” (CP 1.54). What appears as sig-
nificant is that again for Peirce a foundational dimension is significantly grounded
in the very activity of the mathematician, not in a formal independent feature of a
mathematical knowledge or mathematical objects. In this way it parallels the quality
of fallibilism that attends the inquiry into the facts of nature.

In tracing in Peirce’s thought the qualities of fallibilism and necessity that attend
the natural sciences and mathematics respectively, one can see a subtle overlap of
both realms. Yet there is a persistent tension. In a recent essay, Cooke, on this very
topic, remarks that on a “pragmatic level” as to “how it is practiced” as indicated
here, mathematics is like the empirical sciences, even though Peirce “so frequently
holds that mathematics and science must be conceived as separate” [61].
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A further point where the apparent contradictory qualities appear in balance in
Peirce is on the topic of abstraction in mathematics. For Peirce the abstract is an
important feature of mathematics: “Another characteristic of mathematical thought
is the extraordinary use it makes of abstractions” (CP 4.234) and “. . . it may be said
that mathematical reasoning (which is the only deductive reasoning, if not abso-
lutely, at least eminently) almost entirely turns on the consideration of abstractions
as if they were objects” (CP 3.509). Yet for Peirce the use of abstractions are woven
into everyday life as well as mathematics and science. In a rich play of metaphor
Peirce weaves together these contexts:

These examples exhibit the great rolling billows of abstraction in the ocean of mathematical
thought; but when we come to a minute examination of it, we shall find, in every department,
incessant ripples of the same form of thought, of which the examples I have mentioned give
no hint (CP 4.235).

The point here is similar to an observation of Whitehead, that, as mathematics in-
creasingly entered into ever greater extremes of abstract thought, it became at the
same time increasingly relevant for the analysis of particular concrete facts [62,
p. 47], and to Dewey’s remark that the very power of mathematics in physics arises
from its free and abstract nature [63, p. 412].

The final point I wish to address the question originally posed on how mathemat-
ics relates to nature: what is that meeting place of mathematics and nature? Here two
commentators on Peirce can provide a way to focus two threads in Peirce’s thought.

The first arises from Peirce discussion of how maps, as icons and diagrams repre-
sent (CP 5.329 and CP 8.122). To Hookway [13], this example, plus a consideration
of how for Peirce a color sample may be taken to represent color schemes of a
house, provide a way to understand what Peirce would take to be the applicability
of mathematics to nature. Maps represent and require interpretation, and in a sim-
ilar way mathematical systems represent when interpreted and applied to “state of
affairs” of the same form as the relational structure of the mathematical system [13,
p. 191]. Various phrases in Peirce support such a perspective, for example, as quoted
above, to Peirce for a practical problem “. . . the physicist endeavors to find a soluble
mathematical problem that resembles the practical one as closely as it may.” In such
a way then Peirce can be seen as using the old metaphor of representation theory:
mathematics mirrors and maps a reality other than it. The perspective is surely one
of the dominant ways mathematics is seen to function in a scientific theory.

Another thread though places the issue of the union between mathematics and the
natural sciences in an activity associated with mathematics. For Peirce, mathematics
with its observational nature and manner of experimenting on diagrams, as well as
its hypothetical nature shares similar practices to those of the natural science. Plus
as we have seen, any necessary type of thinking for Peirce is mathematical. Such a
position has been argued recently by Daniel Campos:

I would claim that for Peirce the most important application of mathematics does not consist
in the deployment of this or that particular mathematicaltheory to solve this or that practical
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problem, but in the overall deployment of necessary reasoning to investigate problems in,
say, phenomenology, aesthetics, ethics, logic, and the practical, physical and practical sci-
ences [64, p. 73].

The abiding focus in Peirce is on the practices of the mathematician and scientist,
plus the pervasive and central feature he gives to mathematics makes this a com-
pelling perspective. It is one that sidesteps the long standing issue of how one realm
of human endeavor, the mathematical and the resultant mathematical structures and
theories, can represent a different realm that is implicated in notions of representa-
tion. It may be as well that in the background is Peirce’s evocative expression that
dealing with matters of representation entails further representations in an unending
manner:

The meaning of a representation can be nothing but a representation. In fact, it is nothing but
the representation itself conceived as stripped of irrelevant clothing. But this clothing never
can be completely stripped off; it is only changed for something more diaphanous. So there
is an infinite regression here. Finally, the interpretant is nothing but another representation
to which the torch of truth is handed along; and as representation, it has its interpretant
again. Lo, another infinite series. (CP 1.399)

Moreover in a modern guise the position is similar to Hacking’s proposal that tra-
ditional questions of realism when placed in the form of exploring classical issues
to do with “representation” are intractable and a better perspective is obtained by
exploring the instrumentality of our engagement with the world [65]. Hacking links
his position directly to pragmatism: “The final arbitrator in philosophy is not what
we think, but what we do” (Ibid. p. 31).

Further support from this position I’d suggest, although indirect, is related to
Perice’s panpsychism, his ascribing of a mental dimension to matter, and to a closely
help belief that there is a natural mapping between mind and matter. That latter
glides into a residue of idealism present in Peirce’s writings, as, e.g., quoted above:
“objective idealism, that matter is effete mind, inveterate habits becoming physical
laws” (CP 6.25).

Here there is a blurring of traditional boundaries, not so much between the activ-
ity of the knower doing mathematics and the one involved in investigating nature,
but between the knower doing mathematics and the realm which is the subject of
that investigation, nature.

Peirce’s father is the likely influence here.21 Peirce in 1889, in a dictionary entry
on the topic of ideal-realism described his father’s position as “the opinion that
nature and the mind have such a community as to impart to our guesses a tendency
toward the truth, while at the same time they require the confirmation of empirical
evidence” (quoted in [2, p. xxv]). In various places in Benjamin Peirce’s writings
hints of such a fusion of mind and matter emerge such as from a textbook written
when teaching at Harvard: “Every portion of the material universe is pervaded by the
same laws of mechanical action, which are incorporated into the very constitutions
of the human mind” [44, p. 30; 66, p. 495]. Then later, that the “identity between the
laws of mind and matter” suggests their common origin, one that if it is “conceded

21 For a discussion of the influences of Benjamin Peirce on Charles, see [67].
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to reside in the decree of a Creator,” ceases to be mystery (Ibid. p. 31). To suggest
alternatively that consciousness was “evoked out of the unconscious” would fail to
give an adequate cause for it. And in an address to the American Association for the
Advancement of Science in 1853, noted that the sciences and geometry in particular
show “the world to which we have been allotted is peculiarly adapted to our minds,
and admirable fitted to promote our intellectual progress” [68, p. 12]. A striking
poetic Pythagorean fusion of matter and mathematics occurs in the following:

The highest researches undertaken by the mathematicians of each successive age have been
especially transcendental . . . but the time has ever arrived . . . when the progress of obser-
vation has justified the prophetic inspiration of the geometers, and identified their curious
speculations with the actual workings of Nature. [44, p. 29]

Long before . . . observation had begun to penetrate the veil under which nature has hidden
her mysteries, the restless mind sought some principle of power strong enough and of suf-
ficient variety to collect and bind together all parts of the found. This seems to be found,
where one might least expect it, in abstract numbers. Everywhere the exactest numerical
proportion was seen to constitute the spiritual element of the highest beauty. (Benjamin
Peirce, quoted in [69, p. 101])

His father refers to his position as one of “ideality” and will write that “the whole
domain of physical science is equally permeated with ideality” [43, p. 17].

Peirce was immersed in this world view from his earliest years and given the
influence of his father overall in his life, this would account for beliefs that math-
ematics may be applied to nature and that the worlds of nature and mathematics
cohere together. Moreover I would claim, they form background assumptions and
beliefs in Peirce, a haunting presence from his father’s world. They are invisible
to him in the sense they are not to the foreground to be subject to philosophical
investigation.

In addition, Peirce’s ready and powerful use of metaphor is such to allow a back-
ground belief to persist, carried subtly in images beyond full explication. Against
this backdrop, the tensions of the two fields of inquiry, mathematics and the natu-
ral sciences, as focused abstractly above, can remain invisible. This supplements the
unity in the knower due to the overlapping similarities in the practices of the knower
of both fields. The complexity here is in need of further elaboration and contextual-
ization, but its presence is a pointer to the deep currents guiding Peirce’s thought. If
correct, there is exemplified what I would propose is a general lesson: that pressing
the status of mathematics in a system of thought and its relationship to the study
of nature is a sure path to the depth structures, often silent ones, that constitute that
system of thought.

4 Concluding Reflections

Together, the topics of this paper leave us with the question of what resources
from Peirce and his understanding of mathematics and its place in the natural sci-
ence can we use to inspire and inform contemporary projects. In some ways Peirce
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sounds rather modern (and postmodern). The foundationalist projects of 20th cen-
tury foundations of mathematics have receded. Long reflections on the implications
of Gödel’s incompleteness results have taught us that foundations in grounding de-
ductive thought tend to recede and elude us. Also, naturalist movements in the phi-
losophy of mathematics, which see similarities of mathematics with the empirical
sciences have taken hold and have undertaken to explore the practices and activities
of the mathematician (see, for example [70, 71]). On both of these points, Peirce
appears as a fellow traveler who initiated new paths.

Other parts of Peirce’s world now appear dated. The complexity of neurological
structure as revealed by contemporary cognitive sciences have made projects of un-
derstanding consciousness possible in new ways, such as an emergent phenomena
of (pre-mental) matter. John Searle, expresses this vision powerfully, if polemically:

Some traditional philosophical problems, though unfortunately not very many, can eventu-
ally receive a scientific solution. This actually happened with the problem of what consti-
tutes life. We cannot now today recover the passions with which mechanists and vitalists
debated whether a “mechanical” account of life could be given. The point is not so much
that the mechanists won and the vitalists lost, but that we got a much richer conception of the
mechanisms. I think we are in a similar situation today with the problem of consciousness.
It will, I predict, eventually receive a scientific solution. But like other scientific solutions in
biology, it will have to give us a causal account. It will have to explain how brain processes
cause conscious experiences, and this may well require a much richer conception of brain
functioning than we now have [72].

In continuity with this perspective Peirce’s (and Whitehead’s) panpsychism, that
placed a mental dimension on lower levels of matter, now, through the advances
of science, appears superfluous. Also studies on the practices of mathematics with
the resources of contemporary projects in the sociology of science and naturalist
accounts of reasoning have surpassed what Peirce achieved. Both of these devel-
opments mean that Peirce’s blend and balance of mathematics and the natural sci-
ences that I’ve suggested are tied into deeply held beliefs on the unity of mind and
matter inspired by his father, and grounded in commonality of practices, are simi-
larly dated.

In addition, 20th century physics, with its new understandings of the nature of
chance in nature arising from quantum theory have supplanted Peirce’s worlds.
Overall our emerging theories on the structure of matter and space and time from
decades of particle physics and the more recent string theory and loop quantum
loop gravity have revealed a complexity and richness of matter unknown in Peirce’s
time, and thus dated various of the themes mentioned in section I above. And again,
Whitehead’s elaborate metaphysics of the event appears as from an earlier time in
physics, prior to our present micro-theory of fundamental reality (even if presently
incomplete) that’s of such a nature to supplant many features of Whitehead’s meta-
physics. As a lighthearted observation, the complexity and details of string theory
then can be seen to rival and surpass the difficulties previous generations had in
working though the elaborate structures of Whitehead’s Process and Reality.

Still questions to do with the nature of mathematics tend to persist and the vigor
and complexity of Peirce’s thought on mathematics and the activity of the mathe-
matician are such that the very exercise to enter into Peirce’s texts and those of the
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Peirce scholarship on this topic remains valuable. The exercise is valuable histor-
ically in order to understand a key part in American intellectual history and how
that unfolded in 20th century thought, and its present configuration. Here though
projects still await on contextualizing Peirce’s thought in more complete ways than
some of those touched on above. The exercise is also of value to develop a set of
skills to explore analogous issues on the contemporary landscape. Moreover, as the
work of both Peirce and Abner witness to: a naturalist vision of using the resources
of the natural sciences to pursue the deep questions associated with our philosoph-
ical tradition remains productive. And something else, very rewarding, remains for
all who encounter the writings of Peirce: the inspiring example of what it means
to live the life of a scholar, on how, with persistence and single mindedness, to ex-
plore ideas in spite of personal struggles and setbacks and at the same time to write,
steadily, persistently, and relentlessly.
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Newton’s Methodology

William Harper

Abstract Newton’s methodology is richer than the hypothetico-deductive model of
scientific inference that was the focus of many philosophers of science in the last
century. These enrichments focus on theory-mediated measurements of theoreti-
cal parameters by phenomena. It is argued that this richer methodology of New-
ton’s informs a pre-relativity response to the Mercury perihelion problem, endorses
the transition from Newton’s theory to Einstein’s, and continues to inform the test-
ing frameworks for relativistic gravity theories today. On this rich methodology of
Newton’s, science is very informative about the world, without any commitment to
progress toward an ideal limit of a final theory of everything.

Newton’s scientific methodology is much richer than the models of scientific
inference that have been studied by philosophers of science. I will be explaining
several salient features that make this richer methodology more informative about
the world than, even, quite sophisticated Bayesian models of scientific inference
of the sort Abner Shimony has developed in his classic papers [23, 24]. Abner,
Wayne Myrvold and I have begun a program of joint research designed to enrich the
Bayesian model with resources to accommodate Newton’s richer methodology. This
paper will characterize some features that I shall argue ought to be accommodated in
order to do justice to Newton’s methodology. The job of how to enrich the Bayesian
framework to do justice to these features will left to be addressed in future work.1

1 Newton’s Methodology vs. Hypothetico-Deductive Model
of Scientific Method

On the basic hypothetico-deductive (H-D) model of scientific method hypotheses
are verified by the conclusions to be drawn from them and empirical success is
accurate prediction.

W. Harper
Department of Philosophy, University of Western Ontario

1 A beginning is made in [25].

W.C. Myrvold and J. Christian (eds.), Quantum Reality, Relativistic Causality, and Closing 43
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There are various versions of this basic H-D model of scientific method. One ver-
sion is that of Karl Popper. On his account, scientific inference would be limited to
rejecting hypotheses that failed to make the right predictions of observable data. The
more usual versions of this basic H-D model are inductive ones, according to which
successful prediction would lead to increases in the epistemic probability assigned
to the hypothesis being tested. The Bayesian learning model, on which agents up-
date their epistemic probabilities by conditionalizing on the empirical outcomes of
experiments, can be viewed as an extension of this more liberal inductive version of
the H-D approach to scientific inference.

Newton’s methodology adds features that go beyond all these versions of
the hypothetico-deductive model of scientific inference and its usual Bayesian
extensions. I will ague that these features that enrich Newton’s methodology make
it more informative about the world. They are important to the scientific practice
in the investigation of gravity from Newton’s time to our own; but, unfortunately,
they have been largely ignored by philosophers of science. These important features
are also not often mentioned in what scientists articulate to the public about their
scientific practice. Even people developing and applying the testing frameworks
for relativistic theories of gravity, which I will be arguing is a clear example of
Newton’s methodology at work, sometimes sound like they are just testing theories
when they say what they are doing.

The first thing that I claim Newton’s methodology adds to the basic hypothetico-
deductive model is a new and stronger sort of empirical success. To realize this
richer sort of empirical success a theory needs to do more than just accurately predict
the phenomena it purports to explain. In addition, it needs to have those phenomena
accurately measure the parameters which explain them. This will be illustrated in
some detail with Newton’s classic inferences from phenomena.

A second feature added is an appeal to theory-mediated measurements. In this
methodology from Newton, one exploits, in so far as possible, theory-mediated mea-
surements from phenomena so as to give empirical answers to theoretical questions.
Many of the talks that we have seen at this conference are about experiments which
are obviously doing this. There has been, however, a whole tradition in philosophy
of science where “theory” is treated as a bad word.

A third feature added is provisional acceptance of theoretical propositions as
guides to research. Without this, theory-mediated measurements do not even get
off the ground. As we shall see, Newton starts by accepting his laws of motion,
and uses propositions derived from them to make orbital motion phenomena afford
information about centripetal forces.

All three of these features come together in a method of successive approxi-
mations that informs applications of universal gravity to motions of solar system
bodies. On this method deviations from the model developed so far count as new
theory-mediated phenomena to be exploited as carrying information to aid in devel-
oping a more accurate successor.

I am not claiming that there are no other significant ways Newton’s methodology
goes beyond the basic H-D model. I will argue, and I hope to convince some of
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you, that these three ways in which Newton’s methodology is richer are important,
because they really do make it a more informative methodology for investigating
the world.

2 Newton’s Classic Inferences from Phenomena

I am going to discuss Newton’s classic inferences from phenomena. We will see how
each of these illustrates the feature of having the phenomenon measure a theoretical
parameter. The proposition inferred is a certain value of that parameter—the one
that’s measured by the cited phenomenon. The first of these classic inferences goes
from Kepler’s area law for an orbit to the centripetal direction of the force deflecting
a body into that orbit

Kepler’s area law ⇒ centripetal direction

The second is from Kepler’s harmonic law for a system of orbits about a common
center, e. g. the planets about the Sun, to the inverse square variation with respect
distance from that common center of the centripetal accelerations induced by the
centripetal force maintaining bodies in those orbits.2

Kepler’s harmonic law ⇒ inverse-square variation

Newton also infers the inverse-square variation of the centripetal force maintain-
ing a single body in its orbit from the absence of orbital precession.

Absence of precession ⇒ inverse-square variation

I will be focusing on the systematic dependencies that back up these inferences,
which Newton proves from his laws of motion as assumed premisses. We shall see
that these systematic dependencies turn these inferences into measurements by the
cited phenomena.

Kepler’s area law phenomenon is that the rate at which areas are swept out by
radii drawn from the center is constant. According to the first Proposition of the
Principia, a body that is deflected from inertial motion by a force that is directed
toward an inertial center moves in a plane, and the rate at which areas are swept out
by radii to that center is constant. This gives

Centripetal direction of force ⇒ areal rate is constant

So, if you were doing a scientific inference according to the hypothetico-
deductive method, that would be it. Proposition 1 shows that a centripetal force

2 Newton defines such a centripetal force as a capacity, a field of attraction, surrounding the center.
A fundamental characteristic of the inverse-square centripetal forces toward the Sun and planets,
which Newton infers from orbits, is that these inverse-square varying induced centripetal acceler-
ation components would be equal for any bodies at any equal distances from the center. Howard
Stein has called these “fields of acceleration” (see [26–29]). Newton counts such a centripetal force
as the common cause of the several motive forces corresponding to the centripetal accelerations
times the masses of bodies being attracted toward that center. See [3], 405–408.
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would predict the area law phenomenon. Therefore, the hypothesis that the force
maintaining the body in its orbit is directed toward this center is confirmed by the fit
of this area law phenomenon to the data.

Newton’s inference is backed by things that make it far more compelling than
any such hypothetico-deductive confirmation. According to the second Proposition
of the Principia, if you have a body that is moving in a plane relative to an inertial
center and the rate at which areas are being swept out by radii to that center is
constant then the force is directed toward that center. This gives

Areal rate is constant ⇒ centripetal direction of force

This is the proposition Newton cites in support the inference. Notice how you
have theoretical background assumptions that are getting the centripetal direction
from the area law phenomenon. It is even better than this. According to Corollary 2
of Proposition 2

Areal rate is increasing ⇒ force is directed off-center forward
and, in the absence of resistance,
Areal rate is decreasing ⇒ force is directed off-center backward.

These implications, which are coming from the laws of motion, support coun-
terfactuals.3 They are systematic dependencies that afford a very powerful way that
Kepler’s area law carries the information that the force maintaining a body in an
orbit is directed toward the center about which the rate at which it sweeps out areas
is constant.

Consider next Kepler’s harmonic law for a system of several orbits about a com-
mon center. He discovered that the ratio of the square of the period to the cube of
the mean distance of its orbit is the same constant value for all six of the primary
planets known in his day. That is, the periods are proportional to the 3/2 power of
the mean distances. One way to illustrate the fit of this harmonic law to cited periods
and mean distances is to plot the logarithms of the periods against the logarithms of
the distances. Such a plot, for the data cited by Newton for Mercury, Venus, Earth,
Mars, Jupiter and Saturn, is shown in Fig. 1, Newton cites periods agreed to by as-
tronomers and mean distances from Kepler and also from the French astronomer
Boulliau.

To have the periods be some power or other of the mean distances is to
have these log periods plotted against log distances be fit by some straight line.
To have the harmonic law hold is to have these fit by a straight line of slope 3/2.
Notice the good fit of this harmonic law phenomenon to the data Newton cites. The
line in the diagram is one with a 3/2 slope, not a fit to the data.

3 According to Newton’s Laws of Motion, if at a given instant the rate at which a body is sweep-
ing out areas by radii to a given inertial center were increasing (decreasing) then the total force
deflecting that body from inertial motion at that instant would be directed off center in a forward
(backward) direction.

The counterfactual-supporting nature of these dependencies make Newton’s inferences immune
to the counter examples based on constructing “unnatural” material conditionals that led to the
demise of Clark Glymour’s boot-strap confirmation as a serious candidate for explicating scientific
inference. See [30].
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Fig. 1 Log-log plot of planetary periods against distances, from data cited in Newton’s Principia

This diagram also illustrates another interesting thing about Newton’s inferences
from phenomena. Phenomena are not just data. They are patterns exhibited in sets
of data. In this case we have the data originally cited by Kepler as well as additional
data obtained later by Boulliau.

This harmonic law phenomenon measures the inverse- square relation among
the centripetal accelerations exhibited by these orbits at their respective mean-
distances.4

4 What is counted as the mean-distance of a Keplerian orbit with force toward a focus is a distance
equal to the length of the semi-major axis (half the major axis) of the ellipse.

Newton proves proposition 4 and its corollaries for concentric uniform motion circular orbits,
but the results extend exactly to the corresponding relations among the centripetal accelerations of
con-focal elliptical orbits at their respective mean- distances from that focus.

At its mean distance from the focus, toward which the force maintaining a body in such a
Keplerian elliptical orbit is directed, the acceleration toward that focus equals the centripetal ac-
celeration of a uniform motion concentric circular orbit with radius equal to the mean-distance of
the ellipse and period equal to that of the elliptical orbit. Note that
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According to Corollary 7 of Proposition 4 of book 1,5

t ∝ Rs ⇔ F ∝ R1−2s

To have the periods be as some power s of the mean-distances is equivalent to hav-
ing the centripetal force count as one producing accelerations that vary as the 1–2s
power of those distances. Newton’s sixth corollary

t ∝ R3/2 ⇔ F ∝ R−2

is a special case that follows immediately from the more general seventh corollary.
Notice, however, that the more general relation established in corollary seven

backs up this equivalence with additional systematic dependencies. We have not
only the above equivalence, but also

s > 3/2 ⇔ 1−2s <−2

as well as

s < 3/2 ⇔ 1−2s >−2

So, in addition to having s = 3/2 equivalent to having the accelerations induced
by the force be as the inverse-square of the distances, we also have s > 3/2 just in
case the induced accelerations would fall off faster than the inverse-square, while
s < 3/2 would be to have those induced accelerations fall off less fast than the
inverse-square of these mean-distances. Alternative values of s would carry infor-
mation about alternative values of a power-law relating the accelerations produced
by the centripetal force to the mean distances of the orbits it maintains. These sys-
tematic dependencies make the harmonic law phenomenon for a system of such
orbits measure the inverse-square power law relating the accelerations produced at
their mean-distances on bodies being maintained in those orbits.

In the opening proposition of his argument for universal gravitation Newton ar-
gues for an inverse-square centripetal force toward Jupiter from the area law motion
and harmonic law relation of the orbits of its satellites. By the second edition of
the Principia he had enough data on such orbits of Saturn’s moons to add an infer-
ence to an inverse-square centripetal force toward Saturn. In the next proposition,
Newton infers an inverse-square centripetal force toward the sun from the area law
and harmonic law phenomena for the orbits of the primary planets.

accr =−(4π2a3/t2)(1/r2)

where accr is the centripetal acceleration corresponding to distance (e.g. radius vector) r from the
focus in an elliptical orbit of semimajor axis a and period t with the force toward that focus (See
French 1971, 588). Now set r = a. This yields

accr =−(4π2r/t2),

which equals the centripetal acceleration of a concentric circular uniform motion orbit of radius r
and period t about that center.
5 This is a special case, for power-law forces, of a more general relation established in Corollary 2
of Proposition 4, according to which F ∝ R/t2.
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For these primary planets Newton also infers the inverse-square from the absence
of orbital precession. In a stable elliptical orbit a planet would traverse against the
fixed stars exactly 360 degrees in order to go from and return to the aphelion (the
most distant point from the sun) of its orbit.6 The orbit would count as precessing
with p degrees of precession per revolution just in case the planet would traverse
against the fixed stars 360+ p, rather than just 360 degrees, to return to its aphelion.
In the time it takes the planet to get back to the same point in its ellipse the axis of
that ellipse will have traversed p degrees against the stars. The orbit is precessing
forward if p is positive and is precessing backward (in the opposite direction from
the motion of the planet in the ellipse) if p is negative. A stable orbit has zero
precession.

Here is Corollary 1 of Proposition 45 book 1 of Newton’s Principia, which ap-
plies to the orbit of a body acted upon by a centripetal force F that is proportional to
the power n of the distance R from the center toward which that force is directed.7

p◦ precession/revolution ⇔ n = [360/(360+ p)]2 −3

Having p = 0 is equivalent to having n = −2, so that zero orbital precession is
equivalent to having the centripetal force F maintaining a body in that orbit vary
inversely as the square of the distance R from the center toward which it is directed.
As in the case of the harmonic law inference, the basic equivalence is backed up
by systematic dependencies. Having p be positive is equivalent to having n be less
than −2, while having p be negative is equivalent to having n greater than −2.
Forward precession corresponds to having the centripetal force fall off faster than
the inverse-square of the distance, while backward precession corresponds to having
the centripetal force fall off less fast than the inverse-square of the distance. Zero
precession would exactly measure the inverse-square variation with distance of the
centripetal force maintaining a body in such an orbit.

Here, from his System of the World, is a comment by Newton on the absence of
precession in the orbits of the planets about the Sun.

But now, after innumerable revolutions, hardly any such motion has been perceived in the
orbits of the circumsolar planets. Some astronomers affirm there is no such motion; others
reckon it no greater than what may easily arise from causes hereafter to be assigned, which
is of no moment to the present question [1, p. 561].

Newton can apply the foregoing one-body results to systems, like the orbits of the
planets about the sun, where there are forces of interaction between planets which
perturb what would be motion under the inverse-square centripetal force toward the
sun alone. If all the orbital precession of a planet is accounted for by perturbations, the
zero left-over precession can be counted as measuring the inverse-square variation
of the basic centripetal force that maintains that planet it in its orbit about the sun.

6 In Newton’s time it was common to refer to orbital precession as motion of the aphelion. We
now refer to it as motion of the perihelion (the opposite end of the major axis), which is the closest
point in the orbit to the sun.
7 This is a special case, for a power law force, of a more general theorem, Newton’s Proposition
45, relating rate of orbital precession to the dependency of a centripetal force on distance.
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3 Successive Approximations and Newton’s 4th Rule
as a Characterization of Acceptance in Science

In August 1684 Edmund Halley, who would become the Astronomer Royal in 1720,
visited Newton in Cambridge. According to a much retold story, Halley’s visit con-
vinced Newton of the importance of a calculation in which Newton had connected
the ellipse with an orbit produced by an inverse-square force. By November Newton
had sent Halley a small but revolutionary treatise De Motu. An extraordinarily in-
tense and productive effort by Newton over the next few years transformed this
small treatise into his Principia.

One of the intermediate versions of the De Motu text has the scholium we are
about to quote. What probably led Newton to this was his realization that the center
of mass of a group of interacting bodies is not disturbed by the interactions among
those bodies. So, if you are going to find anything that could count as a center
relative to which you can fix what can be counted as true motions among the solar
system bodies it would be the center of the mass.

By reason of the deviation of the Sun from the center of gravity, the centripetal force does
not always tend to that immobile center, and hence the planets neither move exactly in
ellipses nor revolve twice in the same orbit. There are as many orbits of a planet as it has
revolutions, as in the motion of the Moon, and the orbit of any one planet depends on the
combined motion of all the planets, not to mention the action of all these on each other. But
to consider simultaneously all these causes of motion and to define these motions by exact
laws admitting of easy calculation exceeds, if I am not mistaken, the force of any human
mind. [2, p. 253]

This would have been written some time in 1684. Instead of giving up, Newton em-
barked upon the prodigious additional effort that resulted in his Principia, which
was published in 1687. I like to think of this effort as one devoted to developing
resources for dealing with this daunting complexity problem by successive approx-
imations.

Newton’s center of mass resolution of the two chief world systems problem in
his application of his theory of universal gravity to solar system motions showed
that neither the sun nor the earth could be considered as a center which fixes what
are to count as the true motions. But, while the center of the Earth is hopelessly de-
viant, the center of the Sun could be counted upon as a good enough approximation
from which to begin. Elliptical orbits with the sun at a focus could be counted as an
initial model of the orbital motions of the planets corresponding to the basic inverse-
square gravity toward the Sun. Deviations could then be treated as theory-mediated
phenomena to be exploited as carrying information about interactions to be taken
into account in constructing more accurate successor models. As is well known, this
was the enterprise that, in the hands of such successors as Laplace, developed into
the science of celestial mechanics. Newton’s fourth rule for doing natural philoso-
phy is a general statement of his methodology. It actually got published only in the
third edition of the Principia.
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Rule 4. In experimental philosophy, propositions gathered from phenomena by induc-
tion should be considered either exactly or very nearly true notwithstanding any contrary
hypotheses, until yet other phenomena make such propositions either more exact or liable
to exceptions.

This rule should be followed so that arguments based on induction may not be nullified by
hypotheses. [3, p. 796]

We shall see that this rule characterizes the important role of acceptance of propo-
sitions as guides to research in the enterprise of using empirical deviations to find
successively better approximations.

Newton’s characterization of his enterprise as “experimental philosophy” is an
explicit contrast to the mechanical philosophy of his continental critics. The aim of
the mechanical philosophy was to render motion phenomena intelligible by giving
some hypothesis about how it could be caused by contact action between bodies.
The initial reaction to the Principia, especially on the continent by such figures as
Huygens and Leibniz, who were in their various ways committed this mechanical
philosophy, was that it didn’t look like there could be any reasonable hypothesis
that could recover Newton’s gravitational interactions at a distance by contact action
between bodies. For example, Newton’s applications of the third law of motion to
construe the equal and opposite reaction to the attraction of a planet toward the
Sun to be an attraction of the Sun toward that planet were objected to.8 According
to the mechanical philosophy the natural application of the third law would be to
hypothesized vortical particles pushing the planet toward the Sun.

Newton’s comment tells us that Rule 4 should be followed so that arguments
based on induction may not be nullified by hypotheses. Consider an appeal to this
rule to prevent his argument from being undercut by the contrary hypothesis that
Jupiter is maintained in its orbit by vortical particles pushing it toward the Sun. In
order to assess such an application of this Rule we will need to better understand
what are to be counted as propositions gathered from phenomena by induction and
how these differ from what are to be dismissed as mere contrary hypotheses.

Newton tells us “propositions gathered from phenomena by induction are to be
considered either exactly or very nearly true . . . until yet other phenomena make
such propositions either more exact or liable to exceptions.” One thing we see
here is acceptance subject to correction rather than just assigning and adjusting
probabilities. Acceptance of theoretical propositions is really central to Newton’s
methodology. A second thing is that the accepted propositions can be accepted as
approximations even if they are not exactly true.

8 Huygens [42, p. 159] objected to Newton’s gravity as a mutual attraction between whole bodies,
as well as to Newton’s universal gravity as a mutual attraction between all the small parts of bodies,
in comments on Newton’s argument that he added to his own Discourse on the Cause of Gravity
after reading Newton’s Principia. Huygens published his Discourse on gravity as an addition to
his Treatise on Light in 1690.

Leibniz developed his theory of harmonic vortices specifically to give a vortex theoretic alter-
native to Newton’s inverse-square centripetal forces. See Aiton 1995, 10–13.
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In his classic paper on scientific inference, Abner Shimony9 discusses commit-
ment to a theory h as belief that:

i. Within the domain of current experimentation, h yields almost the same obser-
vational predictions as the true theory.

ii. The concepts of the true theory are generalizations or more complete realiza-
tions of those of h.

iii. Among the currently formulated theories competing with h, there is none that
better satisfies conditions (i) and (ii).

This is very much in line with Newton’s provisional acceptance of propositions as
approximations appropriate to guide further research.

According to Newton’s Rule 4, the acceptance of propositions he counts as “gath-
ered from phenomena by induction” is not to be undercut by mere contrary hypothe-
ses. I want to say more about what ought to be counted interesting clear cases where
mere hypotheses can be distinguished from an alternative explanation to be taken se-
riously. Consider the following strong formulation of an ideal of empirical success
that informs Newton’s methodology.

Newton’s Strong Ideal of Empirical Success: Convergent accurate measurement of parame-
ters by the phenomena to be explained.

By convergent I mean agreeing measurements of the same parameter by different
phenomena. Where the propositions to be counted as gathered from phenomena by
induction realize this strong ideal of empirical success we can characterize what
should be dismissed as mere contrary hypotheses by contrast.

Mere Contrary Hypothesis: An alternative that does not realize this ideal of empirical suc-
cess sufficiently well to count as a serious rival.

On this interpretation of Newton’s Rule 4, the alternative hypothesis that Jupiter is
maintained in its orbit by vortex particles pushing it toward the sun could be dis-
missed as a mere contrary hypothesis, unless it were backed up by measurements of
vortical parameters that could rival the agreeing measurements of the relative masses
of solar system bodies afforded by Newton’s treatment of gravity as an interaction.

The dismissal of contrary hypotheses in Rule 4 focuses the engine of change on
empirical phenomena. Newton tells us to continue to consider a proposition gath-
ered from phenomena by induction as either exactly or very nearly true until yet
other phenomena make such propositions either more exact or liable to exceptions.
Start from the basic Keplerian orbits corresponding to the inverse-square gravitation
toward the Sun. Empirically established deviations from motion in accord with these
orbits are examples of yet other phenomena that make propositions asserting motion
in accord with them liable to exceptions. But, to the extent that these exceptions can
be accounted for as perturbations due to additional interactions, they can be used to
make the propositions characterizing the details of the gravitational model of the so-
lar system motions more exact. This enterprise of treating such deviations as further
phenomena carrying information to help find more accurate corrected models was

9 See [23, p. 199].
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very impressively realized in the hands of Newton’s successors. They succeeded in
generating increasingly precise perturbation-corrected phenomena that would accu-
rately fit large open-ended bodies of increasingly precise data. This extraordinary
predictive success was backed up by the increasingly accurate agreeing measure-
ments of the relative masses of the interacting solar system bodies afforded from the
perturbation corrections to the phenomena. These agreeing measurements of such
parameters count as an equally extraordinary realization of Newton’s stronger ideal
of empirical success.

4 The Mercury Precession Problem10

Van Fraassen [4, p. 265–266] has claimed that Newton’s methodology is too con-
servative to do justice to radical theory change. Thomas Kuhn has gone so far as
to challenge the very idea that there can be non-question begging standards of the-
ory assessment that apply across scientific revolutions (see quotation below from
Kuhn [5, p. 94]). I want to argue that Einstein’s solution to the Mercury preces-
sion problem gave good grounds to expect that Newton’s standard of empirical suc-
cess would favor general relativity over Newton’s own theory. I will also argue that
Newton’s rich methodology applies to the empirical assessment of a pre-relativity
proposal to alter the inverse-square law to accommodate the extra precession and
that this same rich methodology applies to the empirical assessment of a proposed
alternative to general relativity that also involved the precession of Mercury. This
last episode illustrates that Newton’s rich methodology is very much exemplified
in the formulation and application of testing frameworks for assessing alternative
relativistic gravity theories today.

(a) The Classic Problem: Hall’s Hypothesis and Brown’s Measurement

The actual precession of Mercury’s orbit is approximately 574 s per century. About
531 of those are due to Newtonian perturbations. In addition you have the fa-
mous 43 s per century that are not explainable by Newtonian gravitation (see, e.g.,
[6, p. 181; 7, p. 91]). This value of about 43 s per century was arrived at by Simon
Newcomb in 1882 when he revised and corrected an earlier estimate from Le Verrier
[8, p. 473]. It has been holding up ever since.

Hall [9] proposed to account for this anomalous extra precession by revising the
inverse-square law.

Applying BERTRAND’s formula to the case of Mercury I find, taking NEWCOMB’s value of
the motion, or 43′′, that the perihelion would move as the observations indicate by taking

n =−2.00000016

10 A slightly different version of this material was given as a separate paper at PSA 2006 and is
published in [36]. The author is grateful for permission to use this material.
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The formula Hall appeals to is equivalent to Newton’s (see [10]). The alternative
value −2.00000016 for the power of distance is just what Newton’s formula would
take to be the value measured by the 43 s per century precession left over after
perturbations had been accounted for.11

In 1903 Ernest Brown had refined the complex theory of our moon’s orbit with
sufficient precision to empirically constrain departures δ from the inverse-square to
less than 0.00000004. Here, from the Monthly Notices of the Royal Astronomical
Society is Brown’s statement of his result and its implication for Hall’s hypothesis.

If the new theoretical values of the motions of the Moon’s perigee and node are correct, the
greatest difference between theory and observation is only 0′′.3, making δ < .00000004.
Such a value for δ us quite insufficient to explain the outstanding deviation in the motion
of the perihelion of Mercury. It appears, then, that this assumption must be abandoned for
the present, or replaced by some other law of variation which will not violate the conditions
existing at the distance of the Moon [11].

Notice Brown has used the motion of our moon to measure the inverse-square out
to at least seven decimal places. It is this measurement bound on differences from
the inverse-square that rules out Hall’s hypothesis. This measurement bound from
data limiting extra precession of our moon’s orbit is taken as a measurement bound
limiting deviations from the inverse-square for gravitation generally.

(b) Einstein and General Relativity: An Answer to Kuhn’s Challenge on Criteria
Across Revolutions

Here, from Einstein’s 1915 Berlin Academy paper on Mercury’s perihelion is his
statement of the fact that his theory does account for the residual precession of
Mercury’s orbit.

The calculation yields, for the planet Mercury, a perihelion advance of 43′′ per century,
while the astronomers assign 45′′ ± 5′′ per century as the unexplained difference between
observations and the Newtonian theory [12].

This paper was written 2 weeks before he had the full field equation for general
relativity. He got the result from constraints on what the field equation would have
to be like (see [13]). Within 2 weeks of this encouraging positive result Einstein had
gone on to develop his full field equation for General Relativity.

Einstein’s reaction to accounting for this anomalous precession was quite strong.
There are stories about how Einstein did not take much interest in the light bending
experiments. Some have taken this to indicate that Einstein’s great confidence in
General Relativity was based almost completely on its theoretical virtues alone. The
following quotations from Pais’ biography makes clear that his successful account
of Mercury’s precession was very important to him.

11 Here is the calculation for Newton’s formula from corollary 1 of proposition 45 bk 1. The
period of Mercury is approximately 0.24 Julian years. 43 seconds of precession per century is
therefore 0.000029 degrees per revolution. On Newton’s formula the corresponding power law for
the centripetal force is as the (360/360.000029)2 −3 =−2.00000016 power of distance.
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The first result was that his theory ‘explains. . .quantitatively. . .the secular rotation of the
orbit of Mercury, discovered by Le Verrier, . . . without the need of any special hypothe-
ses.’ This discovery was, I believe, by far the strongest emotional experience in Einstein’s
scientific life, perhaps in all his life [14, p. 253].

Here is more.

Nature had spoken to him. He had to be right. ‘For a few days, I was beside myself with
joyous excitement’. Later, he told Fokker that his discovery had given him palpitations of
the heart. What he told de Haas is even more profoundly significant: when he saw that his
calculations agreed with the unexplained astronomical observations, he had the feeling that
something actually snapped in him. (Ibid.)

Now I want to claim that this attitude of Einstein’s was appropriate to the fact that
with this result he could be confident that his theory of General Relativity would
beat Newton’s theory on Newton’s own standard of empirical success.

I am not saying that Einstein would have seen these facts in just this way, but it is
important that he had good grounds for counting his theory as better than Newton’s
without any question begging appeal to some new standard that would favor it. One
essential part of this is that he knew the Newtonian limit of General Relativity could
recover the 531 s per century of Mercury’s precession that had been successfully
accounted for by Newtonian perturbations. Without this recovery of the Newtonian
perturbations, his accounting for those 43 s would not have counted as a solution
of the Mercury precession problem. The Newtonian limit recovers all the empirical
successes of Newton’s theory including all the agreeing measurements of parame-
ters such as the relative masses of the Sun and planets. In addition to overcoming
the Mercury precession anomaly Einstein’s solution to that problem also affords a
new agreeing measurement of the mass of the sun. In the years since 1915 many
post-Newtonian corrections to solar system motion phenomena have afforded addi-
tional empirical successes that clearly favor Einstein’s theory over Newton’s without
relying on any question begging appeal to new standards.

This raises deep problems for Thomas Kuhn’s famous thesis that pre and post
revolutionary theories are incommensurable paradigms.

Like the choice between competing political institutions, that between competing paradigms
proves to be a choice between incompatible modes of community life. Because it has this
character, the choice is not and cannot be determined merely by the evaluative procedures
characteristic of normal science, for these depend in part upon a particular paradigm, and
that paradigm is at issue. When paradigms enter, as they must, into a debate about paradigm
choice, their role is necessarily circular. Each group uses its own paradigm to argue in that
paradigm’s defense [5, p. 94].

The fact that Newton’s standard of empirical success clearly favors Einstein’s theory
over his own should count very heavily against Kuhn’s doctrine that all revolution-
ary theory changes are to be understood as transitions between incommensurable
paradigms.

(c) Mercury’s Precession and a Challenge to General Relativity

One proposed alternative to General Relativity was the Brans–Dicke theory, which
was motivated in part by Mach’s objections to Newton’s bucket experiment (see
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[34]). Where Newton had used the rise of water against the sides of a spinning
bucket to argue that absolute rotation can be empirically distinguished by dynamical
effects, Mach challenged the assumption that such a dynamical effect would obtain
if there were no background of fixed stars. In 1961 C. Brans and R. H. Dicke argued
that General Relativity shares with Newton’s theory an objectionable commitment
to absolute rotation (see [15, p. 78]). A key feature of their alternative theory can be
represented in the Parametrized Post Newtonian (PPN) Formalism for comparing
alternative metrical gravity theories by the assignment of

γ = (1+ω)/(2+ω)

where γ is the PPN parameter representing the amount of space curvature per unit
mass andω is an additional parameter to be interpreted as representing contributions
of distant masses to local curvature. In General Relativity the PPN parameter γ
is fixed at the value 1. Therefore, the larger the value assigned to its additional
parameter ω , the closer will be the Brans–Dicke theory assignment to agreement
with General Relativity.

In 1967, Dicke and H. Mark Goldenberg reported measurements of solar oblate-
ness which suggested that about 4 s per century of Mercury’s precession would be
accounted for by the quadrupole moment generated by a rapidly rotating inner core
of the Sun [16–18]. This would make a version of the Brans–Dicke theory with ω
set at 5, which would give 39 rather than 43 extra seconds per century, do better than
General Relativity at accounting for Mercury’s orbital precession.

In 1964 Irwin Shapiro proposed radar time delay as a test of general relativity.
On a relativistic gravity theory there is round-trip time delay for radar ranging to
planets, due to the gravitational potential of the sun along the path of the radiation,
when that path passes close to the sun [19,20]. This round-trip time delay measures
γ, the parameter representing space curvature at issue above.12

In the positive detection of Shapiro’s time delay, the exhibited pattern counts as
a phenomenon (Fig. 2).

The quantity Δτ is not an observable but is indicative of the magnitude and behavior of the
measurable effect as predicted by general relativity [20, p. 1132].

In the 1979 Viking experiment with Mars, this time delay phenomenon was es-
tablished with sufficient precision to measure γ = 1± 0.002. Such measurements
are precise enough to rule out any versions of the Brans–Dicke theory with ω < 500
[21]. It was some time later, perhaps into the late 1980s, before further investigation
established that effects of solar rotation were not great enough to undercut GR’s
account of Mercury’s perihelion motion (see [6]).

12 Shapiro’s round trip time delay Δτ for radar ranging to planets measures γ:

Δτ = (2r0/c)((1+ γ)/2) ln((re + rp +R)/(re + rp −R))

where r0 = 2GMS/c2, MS is the solar mass, re and rp are respectively the distances of the earth and
the target planet from the sun, and R is the distance of the target planet from the earth. See [21].
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Fig. 2 Radar time delay (courtesy of Irwin Shapiro).

The development and applications of testing frameworks for relativistic gravi-
tation theories is very much an illustration of Newton’s methodology. The many
successful tests of GR measure parameters that constrain alternative theories to ap-
proximate GR for scales and field strengths similar to those explored by the phe-
nomena exhibited in those tests (see [6]).

5 Modest Newton: Progress Without Appeal to a Final Theory

Now I want to end with two pictures. This will be a comment on Newton inspired
by a wonderful presentation that Lucien Hardy gave at a public debate on interpre-
tations of quantum mechanics (Fig. 3). This was a debate put on by the Perimeter
Institute that also had Antony Valentini talking about Bohm type interpretations and
Wayne Myrvold talking about collapse interpretations. It ended with Lucien’s pre-
sentation which included two depictions of Newton.

The first was the famous Blake depiction of Newton (Fig. 3). You can see that
this Newton is a very impressive figure. He also can be seen as at least aspiring to the
idea that his theory, represented by the diagram on which his attention is so sharply
focused, is giving him a God like access to the world. He looks like he thinks of
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Fig. 3 William Blake, Newton (1795)

the theory as giving the whole story about the world. That is, he takes his theory
to afford him something very like a God’s eye view of the whole world from the
outside.

Lucien suggested that this Blake depiction of Newton represented the extremely
optimistic view of the prospects for science that he had before struggling with the
problems of Quantum Mechanics. He then contrasted the Blake depiction with a
more modest depiction of Newton, done in 1870 and printed in the The Illustrated
London News (Fig. 4). Newton is in the world and he’s finding out more about it; but
there is no pretension to anything like a God-like view from the outside. Lucien told
us that Quantum Mechanics had driven him from the God-like prospects for science
corresponding to the view of the Newton in Blake’s depiction to the more modest
aspirations corresponding to the depiction of Newton investigating light and colors.

Now I want to suggest that this more modest aspiration for the prospects of sci-
ence was Newton’s own view. Not just for his theory of light and colors but also for
his theory of gravity. My evidence for this is that in one of his queries in the Optiks
he comments that one of the features of his theory of gravity is that you would expect
stability-threatening perturbations to the planets and suggested that one could use
this as an argument for God [22, p. 402]. You would need to have God to interfere
from time to time to keep the solar system stable.

The important thing for us today is that Newton did not see the prospect of a
final theory of everything as a commitment needed to underwrite confidence in his
methodology for using empirical deviations from the accepted theoretical model
as theory mediated phenomena carrying information to be exploited in finding a
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Fig. 4 “Newton Investigating Light,” from The Illustrated London News, June 4, 1870

more accurate successor model. Newton’s rich empirical methodology for generat-
ing deeper understanding by finding successively more accurate theoretical models
need not be undercut by doubts about the conception scientific progress as progress
toward the ideal limit of a theory of everything.
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Whitehead’s Philosophy and Quantum
Mechanics (QM)
A Tribute to Abner Shimony

Shimon Malin

Abstract This paper is a tribute to Abner Shimony and a continuation of my discus-
sions with him. In the first part some of Whitehead’s concepts, and, in particular, ac-
tual entities and atemporal processes, are introduced. These are shown to correspond
to the objectivized aspects of the collapse of quantum states. Next we reconcile the
entanglement of quantum states with the speed of light barrier for the transmission
of information by modifying Whitehead’s system: We suggest that events that take
place far apart can be aspects if the same actual entity. We show that this takes care
of Lovejoy’s objection to Whitehead’s system.

1 The Challenge

Last year, when Abner and I conducted a dialogue on Whitehead’s philosophy and
QM, in Vienna, on the occasion of Anton Zeilinger’s 60th birthday conference,
Abner assigned me the task of winning the argument and restoring his enthusiasm
and love for Whitehead.

I tried and failed. But I haven’t given up. I consider this talk a second chance to
fulfill Abner’s task.

Following J. M. Burgers, who established, back in the 1960s, the intriguing con-
nection between Process philosophy and quantum mechanics, Abner has been one of
the champions, if not the champion of this connection. It was primarily A. Lovejoy’s
book, The Revolt Against Dualism [1], that convinced him otherwise. The point that
convinced him seems to be the vagueness in the term “experience,” which made it so
far from the usual meaning of the term that it seemed to him virtually meaningless.

Early on Abner showed that certain modifications of Whitehead’s philosophy as
originally formulated are indispensable. As we shall see, other modifications are
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needed to deal with the entanglement issue. The question is, whether the modified
version enriches or destroys the Whiteheadian paradigm.

2 Whitehead’s Philosophy and QM

Since the very existence of the relationship of Whitehead’s philosophy (also known
as “Process philosophy”) and QM may be news for some of us, I will begin by
establishing this intriguing connection.

The connection is based on the Whiteheadian concept of “actual entities,” also
known as “actual occasions,” “throbs of experience,” or “pulses of experience,”
depending on the context. They are, according to Whitehead, the “atoms of real-
ity.” The enormous gulf between Whitehead and contemporary scientific thinking is
revealed already at this stage: According to Whitehead this universe we live in is an
alive universe, a universe of experiences, rather than a universe of mostly inanimate
matter.

Actual entities are processes (hence the name “Process philosophy”). They are
the processes of their own self creation. They have both an objective and subjective
aspects. And—as soon as they are completed they die. Dying, they become immortal
in the sense that the fact that they did exist cannot be erased. In saying that actual
entities are processes of their own self creation, creativity is implied. Whitehead’s
universe is not a completely deterministic one. It is a universe characterized by the
phrase “creative advance into novelty.”

The time constraints do not allow me to elaborate further. I am mentioning these
points just to whet your appetites. Being introduced to Whitehead’s thinking is a
challenging, difficult and rewarding experience.

But how is it related to QM?

3 Schrödinger’s Principle of Objectivation

Before addressing the question of a possible correspondence between Process Phi-
losophy and QM, we need to put one more ingredient into the soup. This ingredient
is Schrödinger’s “Principle of objectivation.”

When I recently discussed with Abner the role of the great physicists as philoso-
phers, he said that Schrödinger is “in a class by himself.” I agree.

According to Schrödinger, science, as it is practiced now, is based on two prin-
ciples. First, the belief that nature is comprehensible, and, second, the principle of
objectivation.

By this [i.e., by “the principle of objectivation”] I mean what is also frequently called
the ‘hypothesis of the real world’ around us. I maintain that it amounts to a certain
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simplification, which we adopt in order to master the infinitely intricate problem of nature.
Without being aware of it and without being rigorously systematic about it, we exclude the
Subject of Cognizance from the domain of nature that we endeavor to understand. We step
with our own person back into the part of an onlooker who does not belong to the world,
which by this very procedure becomes an objective world. [2]

4 The Correspondence Between Actual Entities and Collapse

I suggest that the QM process that corresponds to an actual entity is the collapse of
a quantum state. Like an actual entity, a collapse is an atemporal process that is not
completely deterministic. Hence there is room for creativity.

I used the term “atemporal process.” What are these?
The process of self-creation of an actual entity is not a process in time; it is,

rather, an atemporal process leading to the momentary appearance of the completed
actual entity in spacetime. Quoting Whitehead: “[In the process of self-creation
which is an actual entity] the genetic passage from phase to phase is not in physical
time . . . the genetic process is not the temporal succession . . . Each phase in the
genetic process presupposes the entire quantum.” [3] For example:

1. The creation of time in Plato’s Timaeus comes after many other acts of creation—
all of these must be atemporal.

2. The Platonic “participation” of the Forms in sensible things is another example
of atemporal processes.

Whitehead’s thinking was Platonic, yet his precision was a mathematician’s.
Therefore his inclusion of atemporal processes in his system is significant.

Having digressed to discuss atemporal processes, let us return now to the corre-
spondence between actual entities and the collapse.

The final result of the collapse is “an elementary quantum event” in spacetime.
The final phase of an actual entity is, likewise, an event in spacetime. The corre-
spondence works, except for one problem.

The problem with the correspondence of the collapse to an actual entity is that
QM, as a part of our science, is subject to the principle of objectivation. The col-
lapse, as it is now understood, has nothing subjective about it. An actual entity,
however, has both a subjective aspect and an objective aspect.

The main conclusion I am driving to is this: The collapse corresponds to
an actual entity to the extent that our science would allow it to; i.e., it
corresponds to the objective aspects of an actual entity.

When one follows, point by point, the characteristics of actual entities, one is
amazed to realize what extent one can think of collapse as an objectivized actual
entity.
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5 Bell’s Correlations and Actual Entities

The relationship between Whitehead’s thought and QM is a two-way street. QM
adds credence to the Whiteheadian vision, and Whitehead’s philosophy helps us
understand the apparently weird aspects of QM. We will now embark on a reexam-
ination of EPR and Bell’s correlations from a Whiteheadian perspective.

The EPR/Bell correlations seem to show that something (call it “influence”) trav-
els faster-than-light, but this faster-than-light travel cannot be harnessed to transmit
signals. How can we understand this strange state of affairs?

A modification of Process philosophy is needed. Not knowing about entangle-
ment, Whitehead naturally assumed that an actual entity is spatially confined to
a small region. Let’s modify Process philosophy by dropping this requirement.
Let’s assume that one actual entity can end up occupying two or more distant lo-
cations.

How is this modification related to the EPR/Bell situation?
In an EPR/Bell experiment two events that take place at the same time seem

to influence each other, regardless of the distance between them. In principle this
distance can be astronomical. Even when the events take place very far apart, they
seem to be “entangled,” they “feel” each other.

Is it possible that such a connection takes place because both events are a single
creative act, a single “actual entity,” arising out of a common field of potentialities?
A single act of transition from the potential to the actual that occurs in two places
is not the result of the propagation of anything between these two places; hence the
speed of light barrier does not apply.

This is why such creative acts cannot be utilized to transmit signals faster than
light: To transmit a signal two creative acts are required. The transmission and
reception of a signal is, precisely, the creation of a situation where one com-
pleted actual entity affects another. Such transmissions cannot propagate faster than
light.

The distinction between influences and signals reflects the distinction between
two events that are components of a single act of self-creation and two events that
are connected, yet distinct creative acts.

A mundane analogy may help clarify this distinction: Think of a dancer in the
act of performing. The single creative act we have been discussing corresponds to
the dancer gracefully lifting her left leg and right arm in one harmonious movement.
In contrast, the two distinct events correspond to the appearance of an itch on the
dancer’s left leg, and scratching with her right hand.

The graceful lifting of arm and leg is really a single movement; its two correlated
components take place simultaneously. The two events of itching and scratching are
separated in time, since one is a reaction to the other.

The material covered so far is a prelude to the big question that we are now ready
for. I will put this way:
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6 Is Lovejoy’s Objection as Convincing as Abner Takes It to Be?

The main point of Lovejoy’s objection, which Abner endorses, is the loose use of
terms like “experience,” or “mentality.” Differently stated, the possible meaning of
such terms, as Whitehead uses them, is so vague that one wonders whether they
mean anything at all.

This is a serious objection. I believe, however, that by using these terms, White-
head tries to indicate something that is not vague at all. The idea I believe he had in
mind (and, obviously, this is my formulation) is this: If the basic units of the universe
are dead, no amount of complexity will make them alive.

This negation of the physicalistic approach means that the presence of mentality
at the human level tells us that some level of mentality, however insignificant in
itself, must be present at all levels. Abner’s term “protomentality” is appropriate in
this context.

And here is another point. To the best of my knowledge, Lovejoy was not aware
of either the correspondence of Process philosophy and QM or of the issue of
entanglement. Thus he staked his position against Whitehead being blissfully ig-
norant of the two unexpected, major triumphs of Process philosophy in terms of
what Whitehead called “elucidation of things observed.” [4]

Because of the results of what Abner called “experimental metaphysics,” we no
longer have the luxury of blissful ignorance. One cannot ignore a metaphysical ap-
proach that corresponds so well to QM and gives an elegant explanation of the char-
acteristics of entanglement.

7 Is There an Agreement, At Least in Part, Between Abner
and Myself?

Let me begin by stating what I am trying to achieve and what I am not trying to
achieve in this presentation. I am not trying to arrive at a metaphysical statement
that is, in any sense, final. Rather, I accept Whitehead’s statement, “There remains
the final reflection, how shallow, puny and imperfect are efforts to sound the depth
in the nature of things. In philosophical discussions, the merest hint of dogmatic
certainty as to finality of statement is an exhibition of folly.” [5]

What I am trying to arrive at is the metaphysical system that is most true in the
following sense: (1) it feels true (2) it is non-dogmatic in the sense of being open
to possible changes, and (3) it is in line with the findings of physics in general and
quantum mechanics in particular. Does a modified version of Process Philosophy fit
the bill?

(1) It does feel true. If it doesn’t, than Abner has to explain howcome he was a
Whiteheadian for so many decades.

(2) It is non-dogmatic. As we saw, it can be modified to great advantage and no
major damage.
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(3) It is in line with the finding of QM in general, and the EPR/Bell entanglement
in particular.

So, to conclude, here is my $64,000 question to Abner: Given that we are not look-
ing for a final metaphysical statement, would you agree that a modified Process
philosophy is the best one we currently have?
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Bohr and the Photon∗

John Stachel

Abstract Contrary to legend, in his quantum theory of the hydrogen atom Bohr
did not utilize the photon concept. In fact, he rejected the concept vehemently until
the mid-1920s, when experiments forced a change in his outlook. Exchanges with
Einstein during this period contributed to the development of Bohr’s concept of
complementarity and subsequently, he recognized the role of the photon concept in
describing one of the complementary aspects of electromagnetic phenomena: en-
ergy and momentum exchanges with ponderable matter. Yet, in accord with his in-
terpretation of the correspondence principle, he still denied equal status to the wave
and particle pictures, stressing the primacy of the classical wave picture of light and
of the classical particle picture of the electron. Curiously enough, Einstein agreed.

1 Introduction—The Textbook Story

I started to survey textbook discussions of the Bohr atom, to see how they present
the relation between Bohr’s work on the hydrogen atom and Einstein’s light quan-
tum hypothesis. The first book at which I looked is so perfect an example of what I
expected to find that I stopped my search—lest further research invalidate my belief
that the presentation in one of the best texts available, Arnold B. Arons’ Develop-
ment of the Concepts of Physics,1 is typical of many others.

J. Stachel
Center for Einstein Studies, Boston University

∗A talk given March 11, 1986 at “A Centenary Symposium: In Memory of Niels Bohr” of the Boston
Colloquium for the Philosophy of Science. I have added some notes and more recent references,
notably to Dresden 1987 [1], an excellent biography of Kramers, but have not updated the talk.
1 Prof. Arons made major contributions to physics education (see his obituary in Physics Today [2])
and the fact that I singled out his book is not intended to denigrate his work. On the contrary, it
highlights the need for care in using even the best textbook accounts of the history of modern
physics.
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After quoting from the opening of Bohr’s classic 1913 paper, Arons continues:

With this background of motivation, Bohr suggested a direct application of Einstein’s pho-
ton hypothesis in the following manner:

(1) Abandon classical electrodynamics to the extent of assuming that at radii of atomic di-
mensions . . . electrons can revolve in stable orbits without continuously radiating energy
in the form of electromagnetic waves . . ..

(2) Invoking Einstein’s heuristic model, assume that electromagnetic radiation is absorbed
or emitted in transfer of electrons from one orbit to another and that such absorption and
emission of energy by individual electrons is associated with absorption or emission of
individual photons or radiation quanta of energy hν–as suggested by Einstein’s heuristic
explanation of the photoelectric effect [3, p. 856].

2 The Actual Story

The actual story is quite different, of course. It would be more correct to say (but still
not really accurate) that Bohr was an inveterate opponent of the photon concept until
1925, when the results of Bothe–Geiger and Compton–Simon experiments forced
him to incorporate the photon concept into his thinking.

My purpose here is to document in some detail the story of Bohr and the photon,
providing the nuances that are missing from straw-man story I have just told. I think
the full story is worth telling, because it provides much of the raw material for
a better understanding of how Bohr developed his views on correspondence and
complementarity; and, although I shall not elaborate much on this theme, how he
later understood and applied them.

3 Planck’s Second Theory of Radiation

The starting point of Bohr’s attempt [4] to explain the radiation spectrum of atoms
was not Einstein’s light quantum hypothesis of 1905,2 but (as first noted in [6])
Planck’s 1910–1911 [7, 8] so-called “second theory” of radiation.3 Once he had
been forced to admit an element of discontinuity into his theory of radiation, Planck
attempted to localize the discontinuous element, first in the act of absorption, and
then later in the act of emission:

2 The main reference to Einstein’s work in Bohr 1913 [4] reads: “The general importance of
Planck’s theory for the discussion of the behavior of atomic systems was originally pointed out
by Einstein. The considerations of Einstein have been developed and applied especially by Stark,
Nernst and Sommerfeld” (translation cited from [5, p. 137]. The only other reference is to Ein-
stein’s photoelectric law.
3 See [1, p. 31]: “In this controversy [between Einstein and Planck over the nature of radiation]
Bohr unquestionably sided with Planck.” This book Dresden cites much additional evidence for
this assertion.
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The discontinuity must enter somehow . . . Therefore, I have located the discontinuity at the
place where it can do the least harm, at the excitation of the oscillator; its decay can then
occur continuously, with constant damping (Planck to Lorentz, January 1910, quoted from
[9, p. 236]).

Planck soon switched from absorption to emission as the locus of discontinuity,
deriving his radiation law in a way that

does not depart from the core of classical electrodynamics and electron theory more than
is absolutely necessary in view of the undeniably irreconcilable differences with the quan-
tum hypothesis (Planck 1912 [10], a talk to German Physical Society on 12 January, 1912,
translation quoted from [11, p. 47]).

Planck was at pains to distance himself from what he called the “extreme attitude”
of Einstein and a few others:

They tend to the view that even the electrodynamic processes in pure vacuum, even the light
waves, do not propagate continuously but in discrete quanta . . . of magnitude hν , where ν
denotes the frequency ([7], translation quoted from [12, p. 123]).

4 Bohr’s First Theory of the Atom

The existence of both absorption and emission spectra forced Bohr in 1913 to in-
troduce complete symmetry between discontinuous processes of emission and ab-
sorption; but otherwise his attitude at this time seems to have paralleled that of
Planck. He constantly refers to “Planck’s theory of radiation,” citing only Planck
1910–1912 [7, 8, 10].

The clearest statement of Bohr’s views on radiation at this time is found in a 1914
letter to his mentor and friend the Swedish physicist Carl W. Oseen:

I wish I could once really learn your opinion of the assumptions on which I built. As far
as I can see they need not be in conflict with the assumption of Maxwell’s equations in
empty space. Since I, contrary to Planck, assume that emission and absorption go perfectly
together. To obtain mutual consistency it seems to me necessary to break much more sharply
with the customary mechanics than Planck would, and not for example assume that the
systems in the stationary states neither emit nor absorb (Bohr to Oseen, 3 March 1914, in
[13, p. 555]).

In a slightly later letter to Oseen, there is a passage fraught with significance for
Bohr’s later viewpoint, when read with hindsight (the clearest sight of all):

In Göttingen I talked quite a bit with Debye about the general foundation for my considera-
tions. For the most part, he took a friendly line but stated that if there should be any reality in
this kind of considerations, there had to be in his opinion a general principle, which allowed
one to understand the connection between the quantum theory and the usual electrodynam-
ics. In this discussion I tried to say that the necessity of such a principle was perhaps not
evident, and that the problem which classical mechanics and electrodynamics had tried to
solve perhaps was very different from the one which the phenomena confronted us with,
that the possibility of a comprehensive picture should perhaps not be sought in the general-
ity of the points of view, but rather in the strictest possible limitation of the applicability of
the points of view (Bohr to Oseen 28 September, 1914, in [13, p. 563], emphasis added).
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5 The Correspondence Principle

As seems to have been first noted in Jammer 1966 [11, p. 50], Bohr also may have
taken from Planck the beginnings of what he later elaborated into his correspon-
dence principle. But it was probably Einstein’s well-known work of 1916–1917 on
a new derivation of Planck’s black-body radiation law that most directly inspired
Bohr’s formulation, around 1918, of the Correspondence Principle, which there-
after played such a large role in his attempts to understand quantum phenomena.
Speaking of Bohr 1918 [14], Oskar Klein—who joined Bohr in Copenhagen in that
year, notes:

[I]n the paper . . . Bohr had made an important advance by means of the correspondence
viewpoint in showing that—in spite of the abyss, whose depth he never ceased to empha-
size, between the quantum-theoretical mode of description and that of classical physics—a
detailed correspondence is exhibited between these two modes of description, so that their
results coincide in the limit where Planck’s quantum of action is very small compared with
the actions to be described. In this work he had built on a new derivation by Einstein of
Planck’s radiation law, the very origin of quantum theory. Einstein obtained this result by
formulating probability laws for the transitions of an atom from one stationary state to an-
other. I well remember Bohr’s great admiration for Einstein arising equally from this great
scientist’s contributions to statistical molecular theory, to quantum theory and to relativity
theory.

Bohr, however, could not reconcile himself to Einstein’s concept of light quanta, which
had been further elaborated in the work I have just mentioned. Bohr’s objections came
from his thorough familiarity with the wave theory of light, and, when these things were
mentioned, he used to emphasize the fantastic accuracy and completeness of this theory in
accounting for the many experiments on the propagation of light. Especially he underlined
that the definition of the frequency of a light quantum, which determines its energy, is itself
derived from the wave theory. Einstein, on the other hand, believed that a true theory of light
must in some way combine wave and particle features, so that light energy is concentrated
within small regions; and he looked for experiments, through which deviations from the
superposition principle might be discovered. How deep a revision of our accustomed ideas
Bohr was already prepared to accept, appeared in his remark that perhaps one would have
to give up the rigorous validity of the energy principle. Many years later he returned to this
idea, which, however, was refuted by direct experiments [15, p. 77].

The importance of the correspondence principle for Bohr’s approach has been em-
phasized in [16]:

This principle of correspondence became a very powerful method for treating specific prob-
lems in the theory of spectra, but Bohr saw its real significance as being more than that: it
made it possible, he wrote, “in a certain sense to regard this theory [the quantum theory of
spectra] as a natural generalization of our ordinary ideas of radiation.” In his search for a
new theory, the correspondence principle was one of the few sure guides; it gave Bohr a
way of keeping in contact with the solid results of classical electro-magnetic theory, while
seeking the quantum theory which would be its “natural generalization” [16, pp. 18–19].

It was indeed, his reliance on the correspondence principle that seems to have been
a principal motive for Bohr’s distrust of the photon concept and his related willing-
ness to give up energy–momentum conservation to save the classical electrodynamic
picture of radiation.
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But before going in this question, let me document Bohr’s continued adherence
to the classical picture of radiation and rejection of the photon concept. The earliest
evidence I know occurs in a 1919 draft of a letter to George Darwin, written in July
1919, but not sent. Bohr wrote:

Next as regards the wave theory of light I feel inclined to take the often proposed view
that the fields in free space (or rather in gravitational fields) are governed by the classical
electrodynamical laws and that all difficulties are concentrated on the interaction between
the electromagnetic forces and matter. Here I feel on the other hand inclined to take the
most radical or rather mystical views imaginable. On the quantum theory conservation of
energy seems quite out of question and the frequency of the incident light would just seem
to be the key to the lock which controls the starting of the interatomic process.

As regards the question of conservation of energy there is quite apart from its validity in
the usual sense the problem of what there become[s] of the energy if this particle has to be
abandoned and here we meet with a curious state of affair[s] in the quantum theory which
does not make it so criminal as it looks at first sight to speak with such light heart of the
fundamental difficulties touched upon above and still to attempt to be a serious worker in the
present crippled field of physics. In fact quite independent of the mechanism of interaction
of radiation and matter we can in the worlds of stationary states obtain a rational definition
of the energy by means of the principle of mechanical transformability of stationary states.
(Independent support of this transference potentials.)

Finally the often seen sentence that the electrons cannot know the final state of transition and
adapt its [their] frequency to this beforehand is to me a misconception of the fundamental
ideas. Why should the atom itself not as well as we know the stationary states [17, p. 16].

In a 1921 manuscript on “Applications of the Quantum Theory to Atomic Problems
in General,” Bohr wrote:

As well known, Einstein has several years ago, in connection with his considerations on the
photoelectric effect, proposed the view, that quite apart from the problem of the mechanism
of the emission and absorption of electromagnetic radiation from atomic system, already
the propagation through space of this radiation should take place in a way widely different
from that, corresponding to the classical electromagnetic theory. Thus according to this the-
ory of light quanta, electromagnetic radiation from an atom should not spread as a system
of spherical waves, but should be propagated in a definite direction as a concentrated en-
tity, containing within a very small volume the energy hν . On one hand such a conception
seems to offer the only simple possibility of accounting for the phenomena of photoelec-
tric action, if we adhere to an unrestricted application of the notions of conservation of
energy and momentum. On the other hand, it does not appear reconcilable with the phe-
nomena of interference of light, which constitute our only means of analysing radiation in
its harmonic constituents and determining the frequency and state of polarisation of each
of these constituents. At this state of things it would appear, that the interesting arguments
brought forward more recently by Einstein, and which are based on a consideration of the
interchange of momentum between the atom and the radiation rather than supporting the
theory of light quanta will seem to bring the legitimacy of a direct application of the the-
orems of conservation of energy and momentum to the radiation processes into doubt [18,
pp. 412–413].

In Bohr’s notes for the 1923 Second Silliman Lecture, he wrote:

Einstein also pointed out that energy should be emitted in quanta.. . . Einstein’s lead from
this view to the suggestion that the transmission of light does not take place by waves
but is atomic in nature. This cannot however be considered as a serious theory of light
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transmission. Light is not only a flow of energy, but our description of radiation involves
a large amount of physical experience involving optical apparatus including our eyes for
the understanding of the working of which nothing seems satisfactory except wave theory
of light. No significance for the quantity ν without waves. This paradox an example of the
present state of physics, which is a promising state. Inadequacy of present conception. In
the sequel philosophical problems will not be treated but we shall see how quantum ideas
will furnish a clue to the interpretation of the properties of matter [18, p. 587].

In his manuscript on “Problems of The Atomic Theory,” written in 1923 or 1924,
he wrote:

While the theory of light quanta undoubtedly is suited to stress essential features of the laws
governing the exchange of energy and momentum in radiation processes, it is hardly com-
patible with a simple interpretation of the numerous optical phenomena which have been
explained, in so many respects satisfactorily, with the aid of the classical electromagnetic
theory of light. It is more probable that the chasm appearing between these so different con-
ceptions of the nature of light is an evidence of unavoidable difficulties of giving a detailed
description of atomic processes without departing essentially from the casual description in
space and time that is characteristic of the classical mechanical description of nature.

This circumstance, however, does not constitute a hindrance to an account of the connection
between the observable physical phenomena; in fact, it seems possible, without abandoning
either the conception of the propagation of radiation in empty space, held by the classical
electromagnetic theory, or the postulate of the stability of the stationary states, to obtain
a basis suited to describe all known optical phenomena. According to this description, the
interaction between radiation and atom is uniquely determined, as far as the continuous
change of the radiation field is concerned, by the state of this field and the instantaneous
state of the atom. On the other hand, every change of the atom is regarded as contingent on
probability laws. In fact, such a change consists in a transition to another state and is con-
sidered to be of so short duration that it is without essential significance for the radiation
field and, hence, can be described as discontinuous as far as the description of the opti-
cal phenomena is concerned. The introduction of probability laws in the description of the
course of interaction between atoms and radiation is due to Einstein, who used such con-
siderations in his derivation of Planck’s law of heat radiation on the basis of the existence
and stability of stationary states and relation (1) [hν = the energy difference between the
two atomic states]. As is well known, through this derivation Einstein proved at the same
time that relation (2) [hν/c = the momentum difference between the two atomic states]
was necessary and believed in this way to have found a decisive support for the reality of
light quanta. However, the theory of light quanta may be characterized as an endeavor to
uphold the unlimited validity of the classical principles of the conservation of energy and
momentum. On the other hand, in a description as that considered above, it is a principle
feature that these principles lose their strict validity for atomic processes and appear only
as statistical results of probability laws [18, pp. 571–572].

In Bohr 1924 [19], we read:

[T]he hypothesis under discussion [of light quanta] can in no wise be regarded as a satis-
factory solution. As is well known, this hypothesis introduces insuperable difficulties, when
applied to the explanation of the phenomena of interference, which constitute our chief
means of investigating the nature of radiation. We can even maintain that the picture, which
lies at the foundation of the hypothesis of light-quanta, excludes in principle of the possi-
bility of a rational definition of the concept of a frequency ν , which plays a principle part in
this theory. The hypothesis of light-quanta, therefore, is not suitable for giving a picture of
the processes, in which the whole of the phenomena can be arranged, which are considered
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in the application of the quantum theory. The satisfactory manner in which the hypothesis
reproduces certain aspects of the phenomena is rather suited for supporting the view, which
has been advocated from various sides, that, in contrast to the description of natural phe-
nomena in classical physics in which it is always a question only of statistical results of a
great number of individual processes, a description of atomic processes in terms of space
and time cannot be carried through in a manner free from contradiction by the use of con-
ceptions borrowed from classical electrodynamics, which, up to this time, have been our
only means of formulating the principles which form the basis of the actual applications of
the quantum theory (cited from [18, p. 492]).

These quotations seem to me fully justify Martin Klein’s conclusion, summarizing
Bohr’s attitude:

One conclusion could be drawn from all the difficulties: “A general description of the phe-
nomena, in which the laws of the conservation of energy and momentum retain in detail
their validity in their classical formulation, cannot be carried through.” As a result, Bohr
warned, “We must be prepared for the fact that deductions from these laws will not possess
unlimited validity.” It was not the conservation laws but rather the correspondence principle
and Ehrenfest’s adiabatic principle to which Bohr looked for guidance. They were “suited,
in a higher degree, to point out new ways for further extensions of the quantum theory of
atomic structure,” and they offered “a hope in the future of a consistent theory, which at the
same time reproduces the characteristic features of the quantum theory . . . and, nevertheless,
can be regarded as a rational generalization of classical electrodynamics” [16, p.22].

Note that Ehrenfest’s adiabatic principle, which Bohr called “the principle of me-
chanical transformability of stationary states”, is vital: it allows a “rational definition
of the energy” in the absence of the conservation laws.

In 1923 Hendrik Kramers, who was working closely with Bohr at the time, to-
gether with Helge Holst wrote a popular book on quantum theory. In it, they took
pains to dissociate Bohr from the photon concept.4 After rehearsing the difficulties
with the concept, they concluded:

The theory of light quanta may thus be compared with medicine which will cause the dis-
ease to vanish but kill the patient. When Einstein, who has made so many essential contribu-
tions in the field of the quantum theory, advocated these remarkable representations about
the propagation of radiation energy he was naturally not blind to the great difficulties just
indicated. His apprehension of the mysterious light in which the phenomena of interference
appear on his theory is shown in the fact that in his considerations he introduces something
which he calls a “ghost” field of radiation to help to account for the observed facts. But he
has evidently wished to follow the paradoxical in the phenomena of radiation out to the end
in the hope of making some advance in our knowledge.

This matter is introduced here because the Einstein light quanta have played an important
part in discussions about the quantum theory, and some readers may have heard about them
without being clear as to the real standing of the theory of light quanta. The fact must be
emphasized that this theory in no way has sprung from the Bohr theory, to say nothing of
its being a necessary consequence of it [20, p. 175].

4 It is particularly ironic that in 1921 Bohr had dissuaded Kramers from publishing a theoretical
prediction of what later came to be known as the Compton effect (see [1], Chapter 14, “The Curious
Copenhagen Interlude,” pp. 289–298).
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6 The Bohr–Kramers–Slater Interlude

As is well known,5 Bohr attempted to synthesize his views on the non-conservation
of energy-momentum in individual processes and the validity of the classical pic-
ture of radiation for the free field in a new version of quantum theory by grafting
them onto John Slater’s virtual oscillator model of the radiation process. Slater had
originally intended his model to include photons; indeed, his original model in-
cluded something rather like Einstein’s ghost field, which guided the photons (see
the quotation in the previous section from [20]), but Bohr persuaded Slater to jettison
the photons. The resulting Bohr–Kramers–Slater 1924 [21] theory was immediately
subjected to a barrage of theoretical criticism by Einstein and Pauli, in particular;
most crucially, it was unable to withstand the experimental criticism provided by
the results of the Bothe–Geiger and Compton–Simon experiments.

Bohr summed up his reaction to the failure of the Bohr–Kramers–Slater theory
in an “Addendum,” added in July 1925, to his paper “On the Behavior of Atoms in
Collision,” which had been written in March of that year before the results of the
Bothe–Geiger experiment were known:

Since the above was written the question of the strict validity of the conservation laws has
entered a new phase through the publication by Bothe and Geiger of the results of their
important experiments on the scattering of X-rays . . . The renunciation of the strict validity
of the conservation laws, and consequently of a coupling between the individual transition
processes, was occasioned by the fact that no space-time mechanism seemed conceivable
that permitted such a coupling and at the same time achieved a sufficient connection with
classical electrodynamics, which has been successful to such a great extent in describing
optical phenomena. In this connection it must be emphasized that the question of a coupling
or an independence of the individual observable atomic processes cannot be looked at as
simply distinguishing between two well-defined conceptions of the propagation of light in
empty space corresponding to either a corpuscular theory or a wave theory of light. Rather,
the problem is to what extent the space-time pictures, by means of which the description
of natural phenomena has hitherto been attempted, are applicable to atomic processes. In
fact, the analysis of optical phenomena can hardly be formulated without the assumption
that the radiative activity of individual atoms is influenced by the presence of other atoms
in the sense to be expected in the picture of the wave propagation of light. In this respect,
the analysis of these phenomena with the aid of the correspondence principle—as indicated
in the paper by Bohr, Kramers and Slater—may touch upon something essential in this
matter and may be suited to give hints for the further extension of this analysis. However,
the hope of giving a general formulation of the laws of quantum theory in the manner
attempted would have the ground cut from under it by the demonstration of a coupling
between individual atomic processes, which forces upon us the picture of a corpuscular
propagation of light corresponding to Einstein’s theory of light quanta. In this state of affairs
one must be prepared to find that the generalization of the classical electrodynamic theory
that we are striving for will require a fundamental revolution in the concepts upon which
the description of nature has been based until now [17, pp. 204–205].

It appears that, at this time, Bohr was willing to consider the possibility that some
totally novel set of concepts was needed to describe quantum phenomena—a possi-
bility that he later vigorously denied.

5 For a particularly good account (see [1], Part 2, Chapter 13, Section III, “The Bohr–Kramers–
Slater Theory,” pp. 159–215).
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7 Einstein’s Experiment

In January 1926, Bohr wrote Slater about earlier conversations Bohr had with
Einstein in 1925 in Leiden:

Although of course we were wrong in Copenhagen as regards the question of the coupling
of the quantum process—in which respect I have a bad conscience in persuading you to our
view [Bohr is alluding to Slater’s dropping of the photon from his model]—I believe that
Einstein agrees with us in the general ideas, and that especially he has given up any hope of
proving the correctness of the light quantum theory by establishing contradictions with the
wave theory description of optical phenomena (Bohr to Slater, 28 January 1926 [17, pp. 68,
497]).

Bohr is alluding to the second of two attempts by Einstein [22, 23] to design a
“crucial” optical experiment, the result of which would distinguish between the light
quantum theory and the classical wave theory of light. In both cases, it became clear
to Einstein [24,25]—after considerable resistance—that his experiment actually did
not predict a result that was not predicted by the classical theory.

Analysis of the failure of such attempts as Einstein’s proposed experiments may
well have been one of the important clues that led Bohr to formulate his comple-
mentarity interpretation of the new quantum mechanics of Born and Heisenberg,
together with the new wave mechanics of de Broglie and Schrödinger, both devel-
oped within the two years following the failure of the Bohr–Kramers–Slater theory.
At any rate, as noted by Jørgen Kalckar,6 it was in a letter to Einstein7 (which in-
cluded the proofs of Heisenberg’s “uncertainty principle” paper) that Bohr seems
first to have sketched out the complementarity concept:

It has of course long been recognized how intimately the difficulties of quantum theory are
connected with the concepts, or rather the words that are used in the customary description
of nature, and which all have their origin in the classical theories. These concepts leave us
only with the choice between Charybdis and Scylla, according to whether we direct our
attention towards the continuous or discontinuous aspect of the description [27, p. 21].

After describing Heisenberg’s treatment of a wave packet of light, Bohr goes on:

Through the new formulation we are presented with the possibility of bringing the require-
ment of conservation of energy into harmony with the consequences of the wave theory of
light, since according to the character of the description, the different aspects of the problem
never appear at the same time (ibid., p. 22).

Bohr then analyzes Einstein’s most recent experimental proposal. As Kalckar notes:

In the paper cited, Einstein had shown from general arguments that light emitted from a
moving atom must be expected to exhibit the same interference effects as radiation from
a classical moving oscillator. On this basis he concluded that, in the experiment consid-
ered, there would be no effects associated with the light quanta, contrary to his earlier
expectations.

6 See [26, pp. 16, 21].
7 Bohr to Einstein, 15 April 1927, German text in [27, pp. 418–421], translation in [27, pp. 21–24].
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First Bohr analyzes the experiment from the viewpoint of classical wave theory,
showing that a certain range of uncertainty in the frequency of the diffracted light is
to be expected classically. Then he analyzes it from the viewpoint of the light quan-
tum theory, using conservation of energy for the individual light quanta. Bohr shows
that the frequency range to be expected on the basis of the classical optical picture
just corresponds to the range of energies expected for the light quanta, because of
the different recoil energies associated with the beam of emitting atoms, depending
on the range of possible directions of their emission. He concludes the discussion
by stating:

That one can observe not merely a statistical, but an individual energy balance is connected
to the fact that as you [i.e., Einstein] indicate in your footnote, no possible ‘light quantum
description’ can ever explicitly do justice to the geometrical relations of the ‘ray path’ (ibid.,
p. 23).

The footnote by Einstein, to which Bohr alludes, reads:

In particular, one may not assume that the quantum processes of emission, which is en-
ergetically determined by position, time, direction and energy, is also determined in its
geometrical characteristics by these quantities [25, p. 337].

This discussion of Einstein’s second experiment is the first example known to me,
in which Bohr discusses what he would soon call the complementary nature of a de-
scription in terms of the conservation laws and one in terms of a space-time picture;
an example in which he goes into great detail in discussing a particular physical
situation—or rather, two complementary situations.

8 Bohr’s Complementarity

Soon Bohr began to expound this concept of complementary descriptions, and to
develop his concept of “quantum phenomenon,” which (as I shall discuss a little
later) ultimately came to encompass nothing short of a complete cycle of prepara-
tion, interaction and registration.8 Sometimes his interpretation of the wave-particle
duality is misunderstood to imply that Bohr considered the wave and particle as-
pects of ordinary matter on one hand, and of radiation on the other to have equal
validity. But, even in his earliest discussions of complementarity, this was not the
case. The reason for the distinction he makes lies in the correspondence argument,
which played a crucial role in Bohr’s thinking: In each individual case, the classical
aspect of wave-particle duality has predominant significance. He summarized his
views on the role of classical concepts in the introduction to the first collection of
his essays [30]:

[I]t would be a misconception to believe that the difficulties of the atomic theory may be
evaded by eventually replacing the concepts of classical physics by new conceptual forms.

8 For further discussion of this concept, stressing its relation to Feynman’s approach to quantum
mechanics, see [28, 29].
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Indeed, as already emphasized, the recognition of the limitation of our forms of perception
by no means implies that we can dispense with our customary ideas or their direct verbal
expressions when reducing our sense impressions to order. No more is it likely that the fun-
damental concepts of the classical theories will ever become superfluous for the description
of physical experience. The recognition of the indivisibility of the quantum of action, and
the determination of its magnitude, not only depend on an analysis of measurements based
on classical concepts, but it continues to be the application of these concepts alone that
makes it possible to relate the symbolism of the quantum theory to the data of experience.
At the same time, however, we must bear in mind that the possibility of an unambiguous
use of these fundamental concepts solely depends upon the self-consistency of the classical
theories from which they are derived and that, therefore, the limits imposed upon the ap-
plication of these concepts are naturally determined by the extent to which we may, in our
account of the phenomena, disregard the element which is foreign to classical theories and
symbolized by the quantum of action [30, p. 16].

He drew the consequences of the correspondence argument for the differing nature
of matter and radiation in a number of places. In his 1930 Faraday Lecture [31], he
said:

The extreme fertility of wave pictures in accounting for the behavior of electrons must,
however, not make us forget that there is no question of a complete analogy with ordinary
wave propagation in material media or with non-substantial energy transmission in electro-
magnetic waves. Just as in the case of radiation quanta, often termed “photons,” we have
here to do with symbols helpful in the formulation of the probability laws governing the
occurrence of the elementary processes which cannot be further analysed in terms of clas-
sical physical ideas. In this sense, phrases such as “the corpuscular nature of light” or “the
wave nature of electrons” are ambiguous, since such concepts as corpuscle and wave are
only well defined within the scope of classical physics, where, of course, light and electrons
are electromagnetic waves and material corpuscles respectively (cited from [27, p. 394]).

One of his most detailed and clear discussion of this question is in a paper given in
Cambridge on the occasion of the Maxwell Centenary in 1931 [32]:

When one hears physicists talk nowadays about ‘electron waves’ and ‘photons’, it might
perhaps appear that we have completely left the ground on which Newton and Maxwell
built; but we all agree, I think, that such concepts, however fruitful, can never be more than
a convenient means of stating characteristic consequences of the quantum theory which
cannot be visualized in the ordinary sense. It must not be forgotten that only the classical
ideas of material particles and electromagnetic waves have a field of unambiguous appli-
cation, whereas the concepts of photons and electron waves have not. Their applicability is
essentially limited to cases in which, on account of the existence of the quantum of action, it
is not possible to consider the phenomena observed as independent of the apparatus utilised
for their observation. I would like to mention, as an example, the most conspicuous appli-
cation of Maxwell’s ideas, namely, the electromagnetic waves in wireless transmission. It
is a purely formal matter to say that these waves consist of photons, since the conditions
under which we control the emission and the reception of the radio waves preclude the pos-
sibility of determining the number of photons they should contain. In such a case we may
say that all trace of the photon idea, which is essentially one of enumeration of elementary
processes, has completely disappeared (cited from [27, pp. 359–360]).

A more careful and mathematically complete discussion of this question forms a
(small) part of the content of the Bohr–Rosenfeld (1933) [33] paper. Let me just
quote a few lines:
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[T]here are, in the quantum domain, the peculiar fluctuation phenomena which derive from
the basically statistical character of the formalism. . ..

The fluctuations in question are intimately related to the impossibility, which is character-
istic of the quantum theory of fields, of visualizing the concept of light quanta in terms
of classical concepts. In particular, they give expression to the mutual exclusiveness of an
accurate knowledge of the light quantum composition of an electromagnetic field and of
knowledge of the average value of any of its components in a well-defined space-time re-
gion (translation cited from [34, p. 365]).

[F]or a more detailed comparison of the measurement possibilities and the requirements
of the quantum-electromagnetic formalism one must also take into account the limitation
imposed on the classical mode of calculation by the quantum-theoretical features of any
field effect, symbolized by the concept of light quanta (ibid., p. 382).

[I]t is a major result of the quantum theory of fields that all predictions concerning field av-
erages which do not rest on true field measurements, but on the light quantum composition
of the field to be investigated or on the knowledge of classically described field sources,
must be of an essentially statistical nature (ibid., p. 381).

In field measurements, this complementary feature of the description, essential for consis-
tency, corresponds to the fact that the knowledge of the light quantum composition of the
field is lost through the field effects of the test body; and in fact, the more so, the greater the
desired accuracy of the measurement. Moreover, it will appear from the following discus-
sion that any attempt to re-establish the knowledge of the light quantum composition of the
field through a subsequent measurement by means of any suitable device would at the same
time prevent any further utilization of the field measurement in question (ibid., p. 388).

9 Bohr’s “Phenomena”

In a talk at the 1938 Warsaw meeting of the International Institute for Intellectual
Cooperation [35], Bohr gave a particularly clear exposition of the way he ultimately
came to use the word “phenomenon”:

The essential lesson of the analysis of measurements in quantum theory is thus the empha-
sis on the necessity, in the account of the phenomena, of taking the whole experimental
arrangement into consideration, in complete conformity with the fact that all unambiguous
interpretation of the quantum mechanical formalism involves the fixation of the external
conditions, defining the initial state of the atomic system concerned and the character of
the possible predictions as regards subsequent observable properties of that system. Any
measurement in quantum theory can in fact only refer either to a fixation of the initial state
or to the test of such predictions, and it is first the combination of measurements of both
kinds which constitutes a well-defined phenomenon [35, p. 20; 36, p. 312].

He proceeded as usual to give examples, but with his new use of “phenomenon”
made clearer:

Instructive examples of this situation are offered respectively by the interference effects of
electrons and by the Compton effect, which are equally paradoxical from the point of view
of classical physics. In the former case, the phenomenon is in fact only defined when the rel-
ative positions of all scattering bodies and photographic plates are known with an accuracy
excluding the possibility, by means of a control of momentum transfer, of discriminating be-
tween various imaginable paths of the electron, to an extent incompatible with the very idea
of interference. In the latter case, a control of the space-time co-ordination of the scattering
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process irreconcilable with the definition of momentum and energy quantities is excluded
in advance by any arrangement allowing a test of the momentum and energy conservation
such as is implied in the specification of the phenomenon itself. In neither case is there
indeed any question of a simple replacement of the classical particle picture of electrons
and wave picture of light with the electron wave idea or the photon concept respectively;
rather we have to do with individual phenomena, which cannot be analyzed on classical
lines, and which exhibit the peculiar complementary relationship of superposition principle
and conservation laws in quantum theory (ibid., pp. 22–23).

10 Bohr and Einstein Agree!

I shall close by noting that, curiously enough and contrary to some simplified ac-
counts of Einstein’s views on light quanta, he and Bohr ended up not differing on the
question of the distinction between the nature of electrons and photons. Although
Einstein claimed never to have made sense of Bohr’s concept of complementarity—
or rather never to have been able to give it a precise meaning—at least once Einstein
made a statement quite similar to Bohr’s:

I do not believe that the light-quanta have reality in the same immediate sense as the cor-
puscles of electricity [i.e., electrons]. Likewise I do not believe that the particle-waves have
reality in the same sense as the particles themselves. The wave-character of particles and the
particle-character of light will—in my opinion—be understood in a more indirect way, not
as immediate physical reality. (Einstein to Paul Bonofield, September 18, 1939, translation
quoted from [28, pp. 373–374]).

The difference, of course, is that where Bohr saw a solution to the problem of their
nature, Einstein saw the beginning of the puzzle.
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Birkhäuser, 2002, 367–402.

29. Stachel, John (1997). “Feynman Paths and Quantum Entanglement: Is There Any More to the
Mystery?” In Robert S. Cohen, Michael Horne and John Stachel, eds., Potentiality, Entan-
glement and Passion-at-a-Distance/Quantum Mechanical Studies for Abner Shimony, Volume
Two. Dordrecht/Boston/London: Kluwer Academic, 245–256.

30. Bohr, Niels (1934). Atomic Theory and the Description of Nature. Cambridge: Cambridge
University Press.

31. Bohr, Niels (1932). “Chemistry and the quantum theory of atomic constitution”, The Journal
of the Chemical Society: 349–384. Reprinted in [27], 373–408.

32. Bohr, Niels (1931). “Maxwell and modern theoretical physics”, Nature (Suppl.) 12: 691–693.
Reprinted in [27], 359–360.

33. Bohr, Niels and Rosenfeld, Leon (1933). “Zur Frage der Messbarkeit der elektromagnetischen
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Extending the Concept of an “Element
of Reality” to Work with Inefficient Detectors

Daniel M. Greenberger

Abstract In two previous papers, we have shown that one may perform a
Greenberger–Horne–Zeilinger (GHZ) analysis on a two-particle state formed by
“entanglement swapping”, so the two particles have never met. We showed that
even for perfect correlations, the quantum mechanical result is inconsistent for any
local, deterministic, realistic theory, even with very inefficient detectors.

Here we discuss in more detail the assumption that one may extend the Einstein–
Rosen–Podolsky (EPR) reality condition to the case where one has inefficient
detectors.

1 Introduction

I would like to thank the organizers for inviting me here, especially since the purpose
of the meeting is to honor Abner Shimony. I have known Abner for many years, and
have had many discussions with him, on many topics. He is a very wise man, a very
learned man, a wonderful, generous person, and a dear friend. My life would have
been much poorer had I not known him, and I am very thankful that this blessing
has come my way.

Mike Horne, Anton Zeilinger and I recently produced a Bell’s Theorem [1] for
two entangled particles that uses a Greenberger–Horne–Zeilinger (GHZ)-type ar-
gument [2]. The argument occurs in two papers (the second of which was also co-
authored by Marek Zukowski) and applies to the case where the two particles have
a perfect correlation, meaning that if one knows the outcome of a measurement on
one of them, one can predict the outcome of a corresponding measurement on the
other with absolute certainty, so that an Einstein–Podolsky–Rosen (EPR) element of
reality [3] exists. Another feature of the argument is that it involves no inequalities,
and discusses only perfectly correlated states.
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This argument used a two-particle entangled state that was produced by the
method of “entanglement-swapping” [4]. In this method, two pairs of particles,
each pair in a singlet state, are independently produced. Then one catches one par-
ticle of each pair simultaneously (which correlates them into what we call a “cross-
entangled” state). This automatically correlates the other particles, which have never
met, into an entangled state, the “entanglement-swapped” state. Because the parti-
cles have never met and have no shared history, there are many limitations present
on the capability of a deterministic, realistic, local theory that attempts to model the
behavior of such a state. The first of these papers (which we will call paper A) as-
sumes detectors of 100% efficiency, and it had no need to exploit all the limitations
inherent in the system in order to prove that any such realistic, deterministic, local
theory is inconsistent.

However there is a natural extension of the idea of reality proposed by EPR
that applies to inefficient detectors, and in the second paper (which we will call
paper B) we showed that we can model such detectors in the type of experiment
we are considering. Then, exploiting the EPR non-locality assumptions, we showed
that the Bell functions that describe the outcome of our experiments must factor
in such a way that the instructions to the system contained in the hidden variables
cannot make use of the angular settings of the polarization rotators used in the ex-
periment. It follows from this that the predictions of such local realistic models
are self-contradictory, even when one has very inefficient detectors. This is a new
type of result, that can be used to rule out such realistic theories, even when using
detectors of low efficiency. We also do not need to assume any kind of random sam-
pling hypothesis, and thus our result closes two of the important loopholes in this
field [5]. The experiment we discuss uses the technology of experiments that have
already been performed, and the Zeilinger group is actively planning to perform an
experiment using two independent sources.

A recent paper by Broadbent and Méthot [6] argues that entanglement swapping
experiments can be explained by local hidden variables. But it gives an example that
is much simpler than our experiment, and their results do not apply to our experi-
ment1.

In this paper, we want to discuss in a little more detail than in paper B the jus-
tification for being able to extend the notion of “element of reality” to those cases
when the detectors do not have 100% efficiency. We will review just enough of the
original papers to give a flavor of what we are doing, in order to make our discussion
relatively self-contained.

1 There are several reasons why Ref. [6] does not apply to our analysis, Ref. [1]. However the
biggest is that they leave out the four independent angles of rotation in our experiment, which
rotate the polarization of each beam, in ways not known to the observers in the other beams, so
that in our case their auxiliary experiments cannot be done as they describe. These rotations are
crucial as our chief result is to be able to separate the angular and hidden variable knowledge.
There is no counterpart to this in their experiment. (Even in the original EPR experiment, leaving
out the angles leads to a trivial explanation by hidden variables.) As an afterthought they discuss
the case when these variables are in continual long range contact, but this defeats the entire locality
motivation of EPR.
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2 A Quick Review of the Experiment

The Bell states of a two-particle system are a particular set of four orthogonal en-
tangled states that form a complete set of states for the system. For a two-photon
system they are

∣
∣φ+〉= 1√

2
(|H1〉 |H2〉+ |V1〉 |V2〉),

∣
∣φ−
〉

= 1√
2
(|H1〉 |H2〉− |V1〉 |V2〉),

∣
∣ψ+〉= 1√

2
(|H1〉 |V2〉+ |V1〉 |H2〉),

∣
∣ψ−〉= 1√

2
(|H1〉 |V2〉− |V1〉 |H2〉).

(1)

Here the subscripts 1,2 refer to two different momentum states for the different pho-
tons. The notations |φ±〉 , |ψ±〉 in Eq. (2) represent the conventional labeling of each
of these states. With present technology, by making suitable unitary transformations
between the four Bell states, one can detect any two of the four states.

Our experiment also involves rotating the polarizations of each of our photons.
This is given by the equations

R(ϕ) |H〉 = |H〉cosϕ+ |V 〉sinϕ,

R(ϕ) |V 〉= |V 〉cosϕ−|H〉sinϕ.
(2)

We apply this to an experiment that was recently performed by the Zeilinger
group [4], in which they swapped the entanglement of two photons as mentioned
in the introduction, and as depicted in Fig. 1. In this experiment, two indepen-
dent pairs of photons are created, each in the photon equivalent of a singlet state,

1√
2
(H1V2 −V1H2) = |ψ−〉, and the polarizations of the four photons are indepen-

dently rotated, through the angles ϕ1,ϕ2,ϕ3, and ϕ4, as in Eq. (2).
The initial state of the system produced by the two independent lasers and two

independent down-conversions is a product of two singlet states, photons a and b
produced by one laser, and c and d produced by the other

|ψI〉= 1
2 (|H〉a |V 〉b −|V 〉a |H〉b)(|H〉c |V 〉d −|V 〉c |H〉d), (3)

We call this the “Volkswagen state” (VW state), from the shape of Fig. 1. Next,
the polarization of each of the photons a, b, c, and d, gets rotated through their
respective angles, ϕi. The subsequent experiment combines photons b and c at a Bell
state analyzer (BSA) and also detects photons a and d separately, as well as their
polarizations. The state in Eq. (3), rewritten in terms of the Bell states of particles b
and c, and the Bell states of particles a and d, after the polarization of each of the
photons has been rotated, is (after a lot of algebra)
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ξ = ((ϕ1 −ϕ2)+(ϕ3 −ϕ4)),
η = ((ϕ1 −ϕ2)− (ϕ3 −ϕ4)).

(4)

As they approach the BSA, the two particles b and c are in a superposition of all
four Bell states, according to Eq. (4). With a fully functional BSA, all of the four
Bell states would be detectable. Then Eq. (4) shows that, once the BSA result is
registered, particles a and d are in general thrown into a superposition of the Bell
states, and with a suitable choice of the ϕi, into a very specific Bell state. In what
follows, we will assume a full Bell state detection of particles b and c has been made.

3 Analysis of the Arrangement in Terms of Elements of Reality

In paper A we showed that in the experiment shown in Fig. 1, where we consid-
ered only 100% efficient detectors, the EPR local reality conditions imply that one
can establish the existence of the four functions A(ϕ1,λ1),D(ϕ4,λ4),κ(λ1,λ4), and
Fκ(λ1,λ4)(ϕ1,ϕ4,λ1,λ4), each of which can take on the values ±1. Here λ1 refers col-
lectively to any hidden variables whose values are set when particles a and b are cre-
ated, which can determine a specific outcome of a measurement of the polarization
of these particles when they are detected. These functions exist as a consequence of
the perfect correlations that arise in special cases of our measurements. (A perfect
correlation occurs when it is possible in an event for one to make a measurement
on three of the particles, and thereby predict with 100% certainty some property

Fig. 1 Schematic diagram of the creation of the two-particle state. In this experiment there are two
independent down-conversions, one creating the pair of photons a–b, and the other the pair c–d.
Each of them undergoes a rotation through the angle ϕi, and particles b and c enter a Bell-state-
analyzer (BSA), which will annihilate them while detecting which Bell state they were in. If the
angles ϕi are set properly, as one of the perfect correlation cases, this process forces the particles a
and d into a two-particle Bell state. In the experiment the Bell state of a and d is not determined,
only their polarizations, but this is sufficient to rule out locally realistic, deterministic theories as
an explanation of their observed properties
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for the fourth particle, without interacting with that particle. In such a situation, the
property was labeled an “element of reality” by EPR.) The function A specifically
records the outcome of a polarization measurement of particle a. It can only depend
on the settings of λ1 and ϕ1, and it can only take on the values +1, for horizontal po-
larization (H), and −1, for vertical polarization (V), so that one has A(ϕ1,λ1) =±1.
The hidden variable λ4 plays a similar role for particles c and d, and the function D
records the polarization of particle d, analogous to the role played by the function A.

Examination of Eq. (4) shows that whenever particles b and c occur in one of the
Bell states

∣
∣φ+

bc

〉

or
∣
∣ψ−

bc

〉

, then particles a and d will also occur in one of the same
two Bell states, regardless of the settings of the ϕi. This leads to the existence of an
element of reality, described by a function κ, which can depend on both λ1 and λ4,
but which is independent of the ϕi. These two Bell states determine the value +1
for κ. A similar argument holds for the occurrence of the other two Bell states,

∣
∣φ−bc

〉

and
∣
∣ψ+

bc

〉

, also with the particles a and d in the same two Bell states, and when this
occurs, it determines the value −1 for κ.

The function F records the results of the Bell state measurement for particles
b and c. There are four separate outcomes, one for each of the Bell states, but it
is more convenient for us to give the outcome equivalently as the product of the
polarizations of particles b and c, so that Fκ = +1 for the outcomes HH or VV, and
Fκ =−1 for the outcomes HV and VH. Thus the equivalency becomes

F1 = +1, refers to φ+
bc,

F1 =−1, ” ψ−
bc,

F−1 = +1, ” ψ+
bc,

F−1 =−1, ” φ−bc.

(5)

All of the perfect correlations in a classical deterministic, realistic, local description
of this experiment, which are contained quantum mechanically in Eq. (4), for the
case of 100% efficient detectors, are given by

A(ϕ1,λ1)Fκ(λ1,λ4)(ϕ2,ϕ3,λ1,λ4)D(ϕ4,λ4) = 1, ζκ = 0,±π,

A(ϕ1,λ1)Fκ(λ1,λ4)(ϕ2,ϕ3,λ1,λ4)D(ϕ4,λ4) =−1, ζκ =±π
2 ,

ζκ = ϕ1 −ϕ2 +κ(λ1,λ4)(ϕ3 −ϕ4), (ζ+ = ξ ,ζ− = η).

(6)

Equation (6) records the product of the polarizations of the four particles.

4 Extending the EPR Analysis to the Case of Inefficient
Detectors

These results hold in the case where the detectors are 100% efficient, which means
that the functions A(ϕ1,λ1),D(ϕ4,λ4),Fκ(ϕ2,ϕ3,λ1,λ4), and κ(λ1,λ4), exist ac-
cording to the EPR postulates, and are equal to ±1 for every value of their argu-



92 D.M. Greenberger

ments, which in turn means that every one of the four photons that is generated in
each event is counted at a detector. In paper A we showed that this situation, given
by Eq. (16), is inconsistent. In paper B we assumed that this 100% efficiency is not
necessarily the case, but rather that the particles may reach their detectors and not
be counted.

This introduces a complication into the argument since the existence of the func-
tions A, D, κ, and F, depends critically on the EPR postulates. However if the particle
is not always counted, then one no longer has the one-to-one correspondence be-
tween predictability and reality needed to define an element of reality, and therefore
completeness. Nonetheless, if we are considering a realistic, deterministic model,
there is a natural extension of the EPR argument to cover this case. We discussed
this case in paper B, but nonetheless, we would like to amplify on it here, as we do
not believe that a deterministic GHZ-type analysis has been used before for ineffi-
cient detectors.

The standard classical EPR element of reality situation is often discussed in terms
of the following example. I take two pieces of paper and draw a

√
mark on one

(≡+1) and an X mark on the other (≡−1). I put each piece in a separate envelope
and hand them to two students and ask them to go to opposite ends of the room.

Now if one student opens his envelope and finds a
√

mark, he immediately knows
that the other student has an X. The element of reality argument asserts that although
by opening his envelope he obtains knowledge of the other student’s mark, in this
act he in no way interacted with or affected the other student’s result. Therefore the
other student’s mark, since it wasn’t affected by the first student’s action, must be
a real, objective property, and so it must have been there before the other student
looked at his mark. In fact it must have been there since the students were first given
their envelopes. Its not being affected by the other student’s distant action is what
determines the mark to be what EPR called an element of reality.

Now consider the case where I again draw the marks, but I tell them I might not
put the slips of paper into the envelopes I give them. It is still true that when the first
student opens his envelope, if he has a

√
, he knows that if the other student has a

slip of paper, it will contain an X. He does not know whether the other student has
a slip or not, but it is also still true that he knows that the other student does not
have a

√
. So this is an element of reality in the original sense. But it is still also

true that his action has no effect on whether the other student has a piece of paper
or not. So that information must also be an objective fact that was determined when
the other student received his envelope. (In our experiment the evidence is even
stronger, because by energy and momentum conservation, we know that the particle
reached its detector, whether it gets measured or not. So reaching the detector is an
element of reality.) Therefore the function A can take this into account, and may be
extended to take on the value 0, to cover the deterministic fact that the envelope is
empty, corresponding to inefficient detection in our case.

In our experiment, in any run where the conditions for a perfect correlation are
met, if we successfully detect three of the particles in a given event then there are
only two possibilities for the fourth particle. The first is that we detect it, in which
case we can predict in advance what its polarization will be. If this happens to be
particle a, say, we can say that in this case A(ϕ1,λ1) exists, and has the value ±1,
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which was determined when the particle was created. The second possibility is that
it passes through its detector, but is not detected. But because it is not detected, it
has no further effect on the experiment, and we can consistently assign to A(ϕ1,λ1)
the value A = 0.

In a deterministic theory, we can assume that this value was assigned to the par-
ticle when it was created. In other words this photon, with these particular values
of λ1 and ϕ1, was destined at its creation not to be detected. The alternative is that
the particle is not recorded simply because the detector is inefficient. It counts only
a certain percentage of particles impinging upon it, independently of any state vari-
ables λi, and angles ϕi, that may determine the properties of the particles. This case
is conceptually rather simple in that one may then merely consider those particles
that are counted, knowing that one is counting a fair sampling of all the particles that
impinge upon the counters. Then the outcome is independent of the properties of the
interaction of the counters with the particles, except for random efficiency effects
which will not prejudice any results one might obtain in the case of 100% efficiency
and one can apply Bell-like theorems in this case. We will not be concerned with
this case in what follows. We are concerned with a deterministic theory, for which
no random sampling assumptions need be made. This case is more general than the
stochastic case mentioned above, since a deterministic theory can be modelled to
duplicate the results of a stochastic theory.

One may well question whether what we have left after extending the EPR theory
to inefficient counters can truly be called an “element of reality”. The answer is
definitely “yes”, because one must remember the motivation for introducing the
term. Since one can predict a property of the particle without in any way interacting
with it, then according to EPR we cannot have affected this property, and so the
property must have existed before we made the measurement. Thus this is a true,
objective property of the particle that it must have possessed since it was created,
or at least since it last interacted with another particle, and hence the designation
“element of reality”. This argument still holds in our situation since, while we cannot
predict whether it will be detected, we can predict this property precisely, if it is
detected. Thus the particle must either possess this property beforehand, or it must
be determined beforehand that it will not be detected. In either case, the existence of
the property does not depend on the measurement, and so it is an objective element
of reality.

Everything we have said about particle a also applies to particle d. So the func-
tions A and D are to be considered as deterministic functions representing instruc-
tions to the particle not only to have a particular polarization if it is counted, but
also to determine whether the particle is to be counted or not. Specifically, we will
amend the definitions of the functions A and D in the inefficient case to read

A(ϕ1,λ1) =±1,0; D(ϕ4,λ4) =±1,0, (7)

In Eq. (7), no limits are placed on the functions, except that we will demand the
consistency condition that the product of all the functions agrees with the results for
perfect correlations whenever all four particles are actually detected, an important
condition we discussed in papers A and B. The existence of these functions extends
the concept of completeness to the case of inefficient counters.
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The situation for particles b and c is similar, but a little more subtle. These parti-
cles are not counted separately, but as part of an entangled state. However, this does
not affect our argument above, so we shall not comment on it here (although it is
discussed in A and B). But it is also true in this case that for F, as well as for A
and D,

Fκ(ϕ2,ϕ3,λ1,λ4) =±1,0. (8)

Here, the ±1 values represent the product of their polarizations.

5 Summary

We have shown that one can extend the concept of “element of reality” in the case
of inefficient detectors. One must remember that the entire point of introducing the
concept was because EPR objected to the idea that the reality of an object can be de-
termined by actions one takes elsewhere that do not affect the object in question. Our
extension of the concept does not interfere with this motivation, and in this sense it
is a natural extension.
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A General Proof of Nonlocality without
Inequalities for Bipartite States

GianCarlo Ghirardi and Luca Marinatto

Abstract We exhibit a general nonlocality argument without inequalities for
bipartite (pure and mixed) states belonging to Hilbert space of arbitrary dimen-
sionality. The argument, which makes use of simple set-theoretic manipulations,
comprise, as its particular instances, the nonlocality proofs for bipartite states ex-
isting in the literature. Moreover, its relation with the Clauser-Horne inequality is
investigated.

1 Introduction

It is a great pleasure to contribute to this volume honoring Abner Shimony with
a paper dealing with some aspects of nonlocality, a topic to which he has given
significant contributions.

Hardy’s nonlocality without inequalities proof [1] is an ingenious argument,
seemingly not involving Bell-like inequalities [2, 3], which demonstrates that there
cannot exist a local hidden variable model reproducing the quantum mechanical
predictions of almost any entangled bipartite pure state of two spin−1/2 particles.
To this end, appropriate joint-probability distributions are considered which cannot
be simultaneously accounted for by a local model in which the outcomes of single-
particle measurements are predetermined by the knowledge of the hidden variables.
Subsequently, refinements of the original proof [4] as well as generalizations to
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multipartite entangled state vectors and to higher dimensional Hilbert spaces [5]
have been presented. Other works have extended the original proof to the case of cer-
tain classes of nonseparable mixed states [6]. The relevant feature which is claimed
to be common to all the mentioned proofs is that they do not involve explicitly
Bell-like inequalities [2, 3], that is, inequalities involving linear combinations of
correlation functions. In fact, in these proofs the inconsistency between quantum
mechanical predictions and any conceivable hidden variable model is established
either by resorting to counterfactual reasonings, as in Refs. [1, 4, 5, 7], or to set-
theoretic manipulations, as in Ref. [6].

The aim of this paper is twofold: from one side to exhibit, by resorting to a recent
approach [6], an extremely general scheme for a nonlocality proof without inequal-
ities which is valid for bipartite (pure and mixed) states whose constituents belong
to Hilbert spaces of arbitrary (finite) dimensions. The new aspect of the approach
derives from its being based on the consideration of probability distributions which,
contrary to what is usually the case in the literature [1,4,7], may all differ from zero.
Our proof recovers well-known results, such as, for example, the original Hardy’s
proof [1] or those of Ref. [7], as particular instances of a more general scheme.
Moreover, it is able to detect the nonlocal nature of some states which do not fall
in the range of applicability of the existing proofs (as, for example, the maximal
entangled states of two spin−1/2 particles).

The second and, in our opinion, more interesting point of our analysis is that it
makes clear the relations between the alleged proofs without inequalities and the va-
lidity of the Clauser-Horne inequality [3] (CH in what follows). To be more precise,
we will show that the Hardy-like conditions of nonlocality presented in the litera-
ture (the original one [1] as well as its generalizations [4, 6, 7]) are nothing more
than particular instances of the violation of the Clauser-Horne inequality. As a con-
sequence, the claimed absence of Bell-like inequalities in all Hardy-like nonlocality
proofs is only seeming.

2 Generalized Hardy’s Proof

Let us start by exhibiting a generalized version of Hardy’s nonlocality proof, in-
spired by the techniques presented in Ref. [6]. For pedagogical reasons, we deal
first with the simpler case of a bipartite quantum state |ψ〉 ∈ C

2 ⊗C
2 and only sub-

sequently we will extend our proof to cover the case of higher dimensional Hilbert
spaces. To this end, let us suppose that there exist appropriate (dichotomic) spin-
observables Xi and Yi (i = 1,2 being the particle index), such that the following joint
probability distributions are satisfied:

Pψ(X1 = +1,X2 = +1) = q1, (1)
Pψ(Y1 = +1,X2 =−1) = q2, (2)
Pψ(X1 =−1,Y2 = +1) = q3, (3)
Pψ(Y1 = +1,Y2 = +1) = q4 (4)



A General Proof of Nonlocality without Inequalities for Bipartite States 97

where q1,q2,q3,q4 ∈ [0,1]. The issue whether and under which conditions a state
ψ , a set of spin-observables {Xi,Yi} and a collection of probabilities {qi} exist and
satisfy Eqs. (1)–(4) will be touched upon later on; for the moment we simply sup-
pose that the previous equations are valid for an (unspecified) choice of the state,
the observables and the ensuing quantum mechanical probabilities.

Consider now a mixed state σ and denote as ε its trace distance D(σ ,ψ) from
the projection operator associated to the state |ψ〉 of the previous equations, that is,
D(σ ,ψ) ≡ 1

2 Tr|σ − |ψ〉〈ψ| | = ε . A small trace distance implies that the states σ
and ψ give rise to close probability distributions for every measurement outcome
since the inequality

|Tr[Qσ ]−Tr[Q|ψ〉〈ψ|] | ≤ D(σ ,ψ) (5)

holds for any projection operator Q. Using this property and considering such a
mixed state σ , the probabilities (1)–(4) are modified as follows

Pσ (X1 = +1,X2 = +1) ∈ [q1 − ε,q1 + ε], (6)

Pσ (Y1 = +1,X2 =−1) ∈ [q2 − ε,q2 + ε], (7)

Pσ (X1 =−1,Y2 = +1) ∈ [q3 − ε,q3 + ε], (8)

Pσ (Y1 = +1,Y2 = +1) ∈ [q4 − ε,q4 + ε]. (9)

In order to face our basic question, namely if there is a way to locally account for the
above mentioned set of joint probabilities, we need to make precise the idea of a hid-
den variable model for the state σ . Roughly speaking, it consists in any conceivable
theory where (i) the measurement outcomes m,n of arbitrary single particle observ-
ables M1,N2 are predetermined given the variables (commonly referred to as hidden
variables) λ ∈Λ, Λ being a set, and where (ii) the quantum mechanical probabilities
Pσ are obtained by averaging the predetermined values of the corresponding hidden
variables probabilities Pλ over the (normalized to unity) positive distribution ρ(λ )
of such variables, according to

Pσ (M1 = m,N2 = n) =
∫

Λ
dλ ρ(λ )Pλ (M1 = m,N2 = n). (10)

The hidden variable model is called local if the joint probabilities Pλ of the model
factorize whenever the measurements of the single-particle observables M1 and N2
refer to space-like separated events, that is

Pλ (M1 = m,N2 = n) = Pλ (M1 = m)Pλ (N2 = n) ∀λ ∈ Λ. (11)

Here, Pλ (M1 = m) and Pλ (N2 = n) are the single particle probabilities of the in-
dicated outcomes given by the model, and they are determined by the value of λ .
In a deterministic hidden variable model, like the one we will be considering, such
probabilities can assume only the values 0 or 1 for any given value of λ ∈ Λ 1.

1 Local and stochastic models, where Pλ belongs to the interval [0, 1], are completely equivalent
to the local and deterministic models we are considering in this paper, as proven in Ref. [8].
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In order to determine under which circumstances one gets a contradiction be-
tween the probabilities (6)–(9) and a local and deterministic hidden variable model
accounting for them, we proceed as follows. First of all, we define A,B,C, and D,
as the subsets of Λ where the (single-particle) probabilities Pλ (X1 = +1),Pλ (X2 =
+1),Pλ (Y1 = +1) and Pλ (Y2 = +1) take the value +1, respectively—for example,
A = {λ ∈ Λ |Pλ (X1 = +1) = 1}.

It is then possible to rewrite Eqs. (6)–(9) in terms of the measures μ [Z] =
∫

Z dλ ρ(λ ) of appropriate subsets Z ⊆ Λ. In fact, let us rewrite, e.g., the relation
of Eq. (7) taking into account Eqs. (10) and (11). We have

Pσ (Y1 = +1,X2 =−1) =
∫

Λ
dλ ρ(λ )Pλ (Y1 = +1)Pλ (X2 =−1)

=
∫

Λ
dλ ρ(λ )Pλ (Y1 = +1)[1−Pλ (X2 = +1)]

= μ [C]−μ [B∩C] ∈ [q2 − ε,q2 + ε] (12)

where use has been made of the relation Pλ (X2 = −1)+ Pλ (X2 = +1) = 1 which
must hold for any λ ∈ Λ. Proceeding in a similar way, Eqs. (6)–(9) are replaced by
relations involving the measures of the indicated sets, i.e.,

μ [A∩B] ∈ [q1 − ε,q1 + ε], (13)
μ [C]−μ [B∩C] ∈ [q2 − ε,q2 + ε], (14)
μ [D]−μ [A∩D] ∈ [q3 − ε,q3 + ε], (15)

μ [C∩D] ∈ [q4 − ε,q4 + ε]. (16)

If we follow the set-theoretic manipulations presented in Ref. [6] (which we omit
here for the sake of brevity), starting from Eqs. (13)–(16) we end up with an inequal-
ity constraining the values of ε and {qi}, whenever a local and deterministic hidden
variable model exists yielding the quantum probabilities implied by σ , namely:

−4ε ≤ q1 +q2 +q3 −q4. (17)

Of course, the relevance of this result resides in the equivalent (and converse) state-
ment: given a pure state ψ and a set of observables {Xi,Yi} satisfying Eqs. (1)–(4)
and considering a mixed state σ , having trace distance D(σ ,ψ) = ε from ψ , if the
relation

q1 +q2 +q3 −q4 <−4ε (18)

is satisfied, then there does not exist any local and deterministic hidden variable
model reproducing the probability distributions implied by quantum mechanics
for the state σ . Equivalently, without making any reference to a pure state ψ , we
could have said: given a mixed state σ and a set of observables {Xi,Yi} satisfying
Eqs. (6)–(9) for chosen values of {qi} and ε , if the relation of Eq. (18) is satis-
fied, then there cannot exist a local and deterministic hidden variable model for σ .
Moreover, such a mixed state σ turns out to be nonseparable since, if it would be
separable, it would admit a local model reproducing its predictions [9], contrary to
our proof.
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This procedure to identify states incompatible with the nonlocality assumption is
general enough to encompass the usual nonlocality without inequalities proofs [1,4,
6, 7] as its particular instances. For example, one can consider the following cases:

(i) ε = 0,q1 = q2 = q3 = 0 and q4 > 0: this is the situation considered in the orig-
inal Hardy’s proof [1]. In this case, given any entangled, but not maximally
entangled, state of two-qubits ψ , one can explicitly exhibit four appropriate
spin-observables {Xi,Yi}, defined in terms of the coefficients appearing in the
Schmidt decomposition of the state ψ , such that Eqs. (1)–(4) are satisfied. As
a consequence, with our choice of the parameters ε and {qi}, Eq. (18) is obvi-
ously satisfied and this automatically implies the nonlocal character of the state
ψ . Nothing changes, as we have shown in Ref. [6], when one considers the
more general case ε > 0: with the same choice of the state ψ and of the set of
observables made by Hardy, one can still prove nonlocality for all mixed states
σ for which 0 < 4ε < q4 is satisfied.

(ii) ε = 0,q2 = q3 = 0 and 0 < q1 < q4: this is the situation considered in Ref. [7].
Also in this case, by following the calculations of the authors, one can identify
some states and observables which satisfy both Eqs. (1)–(4) and the nonlocality
condition of Eq. (18). Obviously, through our approach, one can also cover the
case of mixed states σ by simply noticing that whenever 0 < 4ε < (q4 −q1) is
satisfied nonlocality is established for the considered σ .

The procedure to discover quantum states exhibiting nonlocal effects can be fur-
ther improved with a novel argument. It aims at enlarging the set of values of the
parameters {qi} and ε for which no local and deterministic hidden variable model
exists reproducing the quantum probabilities of the associated quantum states. To
this end, let us consider four arbitrary sets A,B,C, and D,2 and work out some use-
ful relations between them. First of all, it is easy to prove that

D ⊆ Ā∪ (A∩D), (19)
C ⊆ B̄∪ (B∩C), (20)

where we have denoted with Z̄ the complement of the set Z within Λ, i.e., Z̄ =Λ−Z.
As a consequence of Eqs. (19)–(20) we obtain that D∪C ⊆ Ā∪ B̄∪(A∩D)∪(B∩C)
and, being μ any measure defined on sets, we end up with the following set-theoretic
inequality

μ [D]+μ [C]−μ [D∩C] = μ [D∪C]
≤ μ [Ā∪ B̄∪ (A∩D)∪ (B∩C)]
≤ μ [Ā∪ B̄]+μ [A∩D]+μ [B∩C], (21)

where use have been made of the fact that μ [X ]≤ μ [Y ] for any X ⊆Y (first inequal-
ity), and that μ [X ∪Y ]≤ μ [X ]+μ [Y ], holding for any sets X ,Y (second inequality).

2 Obviously, later on we will identify A,B,C,D with the subsets ofΛwe have considered previously
but, at present, the relations we will exhibit are completely general, holding for any quadruple of
sets.
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Now, when the sets A,B,C,D, are precisely those appearing in Eqs. (13)–(16),
one has

μ [A∩B]+μ [C]−μ [B∩C]+μ [D]−μ [A∩D]−μ [C∩D]≥ q1 +q2 +q3 −q4 −4ε
(22)

where the inequality derives from taking into account the bounds of Eqs. (13)–(16).
Moreover, Eq. (21) and the relation μ [Ā∪ B̄] = μ [Λ− (A∩B)] = μ [Λ]− μ [A∩B],
lead to

μ [A∩B]+μ [C]−μ [B∩C]+μ [D]−μ [A∩D]−μ [C∩D]≤ μ [Ā∪ B̄]+μ [A∩B]
= μ [Λ] = 1 (23)

Concluding, by combining Eq. (22) with Eq. (23) and taking into account the rela-
tion of Eq. (17), we get the following theorem

Theorem I Consider a pure state ψ ∈ C
2 ⊗ C

2 and four spin-observables
{Xi,Yi}i=1,2 such that Eqs. (1)–(4) are satisfied. Given a mixed state σ such that
D(σ ,ψ) = ε , if there exists a local and deterministic hidden variable model for σ
then the inequality

−4ε ≤ q1 +q2 +q3 −q4 ≤ 1+4ε (24)

holds true.
Once again, the usefulness of this result stems from the opposite statement: if the

previous inequality is violated, that is, if either q1 +q2 +q3−q4 <−4ε or q1 +q2 +
q3−q4 > 1+4ε , then there cannot exist any local and deterministic hidden variable
model which can reproduce the joint probabilities of Eqs. (13)–(16).

The interval of values of the parameters {qi} and ε implying nonlocal effects for
the considered mixed states has been considerably enlarged with respect to our pre-
vious work on the subject [6]. In fact, in Ref. [6], evidence of nonlocality has been
related only to a violation of the lower bound of Eq. (24), while nothing has been
proved concerning a violation of the upper bound. For example, as is well known,
the original Hardy’s criterion [1] does not allow to prove nonlocality for maximally
entangled pure states, just because there does not exist any set of spin-observables
giving rise to probabilities {qi} such that qi �=4 = 0 and q4 > 0. In particular, in the
case of the singlet state and within the restricted scenario envisaged by Hardy, the
joint probabilities of any conceivable choice of spin-observables cannot violate the
lower bound of Eq. (24), assuming ε = 0. A similar negative result was conjec-
tured [7] to hold also for the case q1,3 = 0 and q1−q4 < 0. On the contrary, accord-
ing to the present argument, given the singlet state, we can choose {X1,Y2,Y1,X2}
as spin-observables lying in the same plane (e.g., in the x−y plane) and forming
the angles 0,π/4,π/2 and 3π/4 with respect to the positive direction of the x axis,
respectively. In this case, one easily sees that the upper bound of Eq. (24) is vio-
lated just because the quantity q1 + q2 + q3 − q4 equals (1 +

√
2)/2 and it exceeds

1, thus establishing nonlocality for a maximally entangled state. Thus, our gener-
alized argument is powerful enough to account for the nonlocality of every (pure)
entangled state of two spin-1/2 particles, contrary to the similar proofs existing in
the literature.
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Before concluding, let us briefly mention how the whole nonlocality argument
can be generalized to the case of a Hilbert space C

d1 ⊗C
d2 , where d1 and d2 are

integers strictly greater than 2. First of all, given any state ψ , let us define, in place
of the previously considered observables, four new observables Xi and Yi (i = 1,2),
such that the spectrum of Xi is the set {−1,0+1}, while the one of Yi is only re-
quiered to contain the value +1. We then add to the set of Eqs. (1)–(4) two other
relations

Pψ(Y1 = +1,X2 = 0) = q5, (25)
Pψ(X1 = 0,Y2 = +1) = q6. (26)

with q5,q6 ∈ [0,1]. As a consequence, for a mixed state σ , having trace distance
equal to ε from ψ , one has

Pσ (Y1 = +1,X2 = 0) ∈ [q5 − ε,q5 + ε], (27)
Pσ (X1 = 0,Y2 = +1) ∈ [q6 − ε,q6 + ε]. (28)

Now suppose that a local and deterministic model exists for σ and proceed as be-
fore. Using the relations Eqs. (27)–(28) and the fact that Pλ (Xi = −1)+Pλ (Xi = 0)
+Pλ (Xi = +1) = 1 for any λ , Eqs. (14) and (15) get modified in the following way

μ [C]−μ [B∩C] ∈ [q2 +q5 −2ε,q2 +q5 +2ε], (29)
μ [D]−μ [A∩D] ∈ [q3 +q6 −2ε,q3 +q6 +2ε] (30)

respectively. Since all other relations constraining the measures of the considered
sets remain valid by simply replacing q2 and q3 appearing in Eq. (24) with q2 +
q5 + ε and q3 + q6 + ε , respectively, we can conclude that, if a local deterministic
hidden variable model exists for σ then the relation

−6ε ≤ q1 +q2 +q3 +q5 +q6 −q4 ≤ 1+6ε (31)

holds true. Equivalently, given the mixed state σ , if (i) there exist a pure state ψ and
observables {Xi,Yi} satisfying Eqs. (1)–(4) together with Eqs. (25) and (26), and (ii)
if the trace distance D(σ ,ψ) = ε is such that either q1 +q2 +q3 +q5 +q6−q4 <−6ε
or q1 + q2 + q3 + q5 + q6 − q4 > 1 + 6ε then no local and deterministic model can
exist for σ .

Up to now we have not faced the issue whether there exist (pure) states ψ and
observables Xi and Yi such that the associated probabilities take the values (1)–(4)
and (25)–(26) and such that q1 +q2 +q3 +q5 +q6−q4 < 0 and qi > 0 hold. The an-
swer is affirmative and the easiest way to prove this is to start by considering the par-
ticular case qi �=4 = 0 and q4 > 0 (that is, the Hardy’s case). As proven in [10], in such
a situation, given any entangled state ψ possessing at least two different coefficients
in its Schmidt decomposition, there exist appropriate observables {Xi,Yi} satisfying
Eqs. (1)–(4) and (25)–(26) for the considered choice of {qi}. Quantum mechani-
cal probability distributions are the squared moduli of the scalar product between
appropriate vectors with a fixed state vector ψ and, as such, they are continuous
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functionals. This implies that there is a neighborhood of ψ in the Hilbert space,
containing infinitely many vectors φ for which the probabilities q̄i of Eqs. (1)–(4)
and of Eqs. (25)–(26) are such that (i) there exists at least one q̄i strictly greater
than zero, and (ii) the inequality q̄1 + q̄2 + q̄3 + q̄5 + q̄6 − q̄4 < 0 is still satisfied.
Then, for any such state φ , we may determine a precise neighborhood of it, in the
trace-distance topology, containing mixed states σ exhibiting nonlocal effects.

3 Clauser-Horne Inequality

In the previous section we have presented a very general approach which includes,
and remarkably generalizes, all known nonlocality without inequalities proofs for
bipartite quantum states. Evidence of nonlocality is obtained by a violation of (any
instance) of Eq. (31)—or, in a restricted scenario, of Eq. (24). Such a relation is
an inequality constraining joint probabilities and, as such, it must be related to the
Clauser-Horne inequality. In fact, as proven by Fine,3 satisfaction of the Clauser-
Horne inequality is a necessary and sufficient condition for a quantum state to admit
a local and deterministic hidden variable model accounting for the joint probability
distributions involving four observables (which is exactly the situation considered
by the nonlocality without inequalities arguments). In a sense, Clauser-Horne is
the only relevant inequality within this scenario, all others inequalities being equiv-
alent or weaker than it—that is, unable to identify all nonlocal states which the
Clauser-Horne criterion detects. This is precisely what happens with the inequal-
ity (31) which we will prove to be straightforwardly implied by the Clauser-Horne
inequality.

To start with we consider a mixed state σ acting on B(Cd1 ⊗C
d2), while the

observables Xi and Yi are the same as in the previous section. Then, a straightforward
result follows.

Theorem II. If a local hidden variable model exists for σ then the relation

Pσ (X1 = +1,X2 = +1)+Pσ (Y1 = +1,X2 =−1)+Pσ (Y1 = +1,X2 = 0)+
Pσ (X1 =−1,Y2 = +1)+Pσ (X1 = 0,Y2 = +1)−Pσ (Y1 = +1,Y2 = +1) ∈ [0,1]

(32)

is satisfied.

Proof: the existence of a local deterministic model for σ implies that Eq. (32) can
be written as

∫

dλρ(λ )[Pλ (X1 = +1)Pλ (X2 = +1)−Pλ (Y1 = +1)Pλ (X2 = +1)−
Pλ (X1 = +1)Pλ (Y2 = +1)−Pλ (Y1 = +1)Pλ (Y2 = +1) + Pλ (Y1 = +1) + Pλ (Y2 =
+1)]. The possible values attained by the integrand of the previous expression be-
long to the interval [0,1] for any λ ∈ Λ, since

0 ≤ xȳ− xy− x̄y− x̄ȳ+ x̄+ y ≤ 1 (33)

3 Local and stochastic models, where Pλ belongs to the interval [0,1], are completely equivalent to
the local and deterministic models we are considering in this paper, as proven in Ref. [8].
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is an algebraic expression satisfied by any variables x,y, x̄, ȳ ∈ [0,1], such as the
single particle probabilities Pλ . As a consequence, the integral belongs to [0,1], thus
concluding the proof. �

We stress that Eq. (32) is nothing more than an equivalent version of the Clauser-
Horne inequality [3]. In fact, as one can deduce from the arguments yielding the
proof of the previous theorem, Eq. (32) turns out to be equal to the expression

Pσ (X1 = +1,X2 = +1)−Pσ (Y1 = +1,X2 = +1)−Pσ (X1 = +1,Y2 = +1)
−Pσ (Y1 = +1,Y2 = +1)+Pσ (Y1 = +1)+Pσ (Y2 = +1) ∈ [0,1], (34)

which is the inequality derived by Clauser-Horne [3]. It is now apparent that if
we take into account Eqs. (6)–(9) together with Eqs. (27)–(28), the inequality of
Eq. (32) trivially implies the relation of Eq. (31) which we have obtained in the
previous section. Therefore, in the framework of the generalized nonlocality without
inequalities proofs, the relevant constraint linking {qi} and ε when a local hidden
variable model exists for σ could have been simply deduced by the Clauser-Horne
inequality.

It is worth stressing this point by analyzing once again the extremal case repre-
sented by Hardy’s argument [1]. In its usual presentation, evidence of nonlocality
is obtained by ascertaining that three appropriately chosen joint-probabilities are
(strictly) null while a fourth one is not. The absence of inequalities is only seeming,
since if we plug such joint-probabilities into Eq. (32) (by neglecting the probabili-
ties involving the outcome Xi = 0, since, in this case, the whole Hilbert space is only
four-dimensional) we obtain exactly the condition q4 > 0 considered by Hardy. It
is clearly an inequality and, most important of all, it is a particular instance of a
violation of the Clauser-Horne inequality. Therefore, the expression “nonlocality
without inequalities proof” used to refer to the Hardy’s argument appears to be a
bit misleading, because the kind of nonlocality condition it provides is nothing else
than a particular instance of a violated Clauser-Horne inequality. A similar remark
can be obviously applied to all existing Hardy-like nonlocality arguments [4, 6, 7].

4 Conclusions

In this paper we have exhibited a general framework for the so-called nonlocality
without inequalities proofs for bipartite states, which includes all known cases ex-
isting in the literature [1,4,6,7] as particular cases. Subsequently, we have provided
evidence how these nonlocality arguments, including the original one devised by
Hardy [1], are particular instances of the violation of the Clauser-Horne inequality,
thus proving that such an inequality is the one which actually grasps the features of
any state of a bipartite system which exhibits nonlocal effects.

Acknowledgement Work supported in part by Istituto Nazionale di Fisica Nucleare, Sezione di
Trieste, Italy.
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On the Separability of Physical Systems

Jon P. Jarrett

Abstract In the context of Bell-type experiments, two notions of “separability”
emerge from the application of some simple considerations from information theory.
The first of these applies to physical states construed as probability measures, while
the second applies to states construed in terms of “elements of physical reality”. The
former is found to be logically equivalent to the “completeness” constraint (a.k.a.
“outcome independence” or “factorizabilility”) in Bell-type arguments. Moreover,
it is found that there are theories that are separable in the first sense but which are
empirically equivalent to no theory that is separable in the second sense. I offer some
speculations about the significance of these and a few related results.

Bell’s Theorem and the associated empirical tests of the Bell Inequalities are widely
considered to reveal some strikingly non-classical features of our world. In the in-
terest of trying to come to a fuller understanding of these features, I wish to propose
some suggestions for how we might characterize the “separability” (or lack thereof)
of systems in entangled states. For this purpose, I offer the following brief summary
of the Bell milieu.1, 2

J.P. Jarrett
Department of Philosophy, University of Illinois at Chicago, IL, USA
e-mail: jarrett@uic.edu

1 I find it congenial to address these issues in a framework consisting of an idealization of actual
Bell-type experimental apparatuses, an idealization devised by N. David Mermin. I have dubbed
Mermin’s idealized experimental setup “the Mermin Contraption”. It debuted (as simply “the de-
vice”) in Mermin [1].
2 This is intended as a handy reference for what is to follow. While most of this notation has become
standard in the Bell literature, some of it (and some of my nomenclature) is rather idiosyncratic.
See Jarrett [2] for further discussion.
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The Mermin Contraption

1
2

3 1
2

3

SOURCE CDETECTOR A DETECTOR B

RED GREEN GREEN RED

COMPOSITE SYSTEM STATES: λ ∈ Λ
DETECTOR SETTINGS: 1, 2, 3
MEASUREMENT OUTCOMES: GREEN (+1), RED (−1)

Joint Probability Functions

p l
AB(x, y | i, j)

SWITCH SETTING AT DETECTOR B

SWITCH SETTING AT DETECTOR A

OUTCOME AT B

OUTCOME AT A

Determinism

∀λ ,x,y, i, j,

pAB
λ (x,y|i, j) ∈ {0,1}

Theoretical Predictions

∀λ ,x,y, i, j,

PAB (x,y|i, j) =
∫

λ∈Λ

ρ(λ )pAB
λ (x,y|i, j)dλ ,

where ρ(λ ) is the distribution of states.
The Mermin Contraption consists of three devices A, B and C. A and B are

detectors of some sort, situated at diametrically opposed positions with respect to a
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source of particles, C. We make only some very limited assumptions regarding the
nature of these devices and particles. Each detector can measure any one of three
different things; the measurement outcomes consist of the illumination of either a
red light or a green light at the detector. Distinct measurement-types correspond
to distinct switch settings at a detector. Switch setting k at detector A corresponds
to a measurement of the same type as switch setting k at detector B. A candidate
theory for these experiments has to specify a set of states, Λ, for the two-particle
system and must also provide an algorithm for computing joint probability functions
of the form pλ (x,y | i, j). Here, λ is the state of the two particle system, x and y
are the outcomes at site A and B, respectively; and i and j are the switch settings
at site A and B, respectively. (A theory that satisfies DETERMINISM posits only
states whose associated probability functions are restricted to {0,1}.) The testable
predictions of the theory, then, are generated by summing these joint probability
functions over all states, using a weighting function, ρ(λ ), the distribution of states,
which the theory also must specify.

Marginal Probability Functions

(A) pA
λ (x|i, j)≡ pAB

λ (x,+1|i, j)+ pAB
λ (x,−1|i, j)

(B) pB
λ (y|i, j)≡ pAB

λ (+1,y|i, j)+ pAB
λ (−1,y|i, j)

Locality

∀λ ,x, i, i′, j, j′,

(A) pA
λ (x|i, j) = pA

λ
(

x|i, j′
)

(B) pB
λ (y|i, j) = pB

λ
(

y|i′, j
)

In terms of the joint probability functions, we can define marginal probabilities for
A and B. I call LOCALITY the constraint that each of the marginals is independent
of the switch setting at the distant site.3 Relativity theory prohibits the superlu-
minal transport of ma tter and energy. This relativistic “locality” constraint is by
no means strictly equivalent to the foregoing LOCALITY. However, any theory that

3 Abner Shimony prefers to call my LOCALITY condition parameter independence, and for good
reason. This is a requirement that the probabilities at each detector site be independent of the
switch setting (the “parameter”) at the other detector site. “Locality” has been defined in various
ways and taken to mean many different things; “parameter independence” however, is not only
very descriptive, but also (in contrast to “locality”) an expression whose meaning is univocal.
For better or worse, I’ve chosen to retain this terminology, mainly out of deference to Einstein,
Podolsky, and Rosen. I think that this constraint, while certainly not in any strict sense equivalent
to the relativistic prohibition against superluminal signaling, does function in the Bell arguments in
a manner that is very similar in spirit to the way that “locality,” in the sense of EPR, was employed
in their argument. Similar remarks apply to my use of the term “completeness.”
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violates LOCALITY faces at least a difficult reconciliation with relativity. (Note that
quantum mechanics itself does satisfy LOCALITY.) Modulo a few related caveats,
LOCALITY is a sufficient constraint from which to derive a Bell Inequality for
theories that satisfy DETERMINISM. The results of actual experiments (in good
agreement with the predictions of quantum mechanics) violate the Bell Inequality.
Consequently, since relativity theory is so well confirmed independently, the exper-
imental results are widely (though not universally) taken to provide rather direct
evidence against DETERMINISM.4

Completeness

∀λ ,x,y, i, j,

pAB
λ (x,y|i, j) = pA

λ (x|i, j) pB
λ (y|i, j)

or, equivalently,

(A) pA
λ (x|i, j,y)≡

pAB
λ (x,y|i, j)
pB
λ (y|i, j)

,
(

pB
λ (y|i, j) �= 0

)

= pA
λ (x|i, j)

(B) pB
λ (y|i, j,x)≡

pAB
λ (x,y|i, j)
pA
λ (x|i, j)

,
(

pA
λ (x|i, j) �= 0

)

= pB
λ (y|i, j)

Condition C

∀λ , i, j, det C(λ |i, j) = 0,

where C(λ |i, j) =
[

pAB
λ (+1,+1|i, j) pAB

λ (+1,−1|i, j)
pAB
λ (−1,+1|i, j) pAB

λ (−1,−1|i, j)

]

CONDITION C ⇔ COMPLETENESS

I call COMPLETENESS the requirement that for any specified state of the two-
particle system and for any pair of measurement-types at the two detectors, the con-
ditional probability of a specified outcome at either site given a specified outcome
at the other site is just that (unconditioned) probability for getting the outcome at
the first site.5 To understand the sense in which this can be seen to be a kind of
4 Most prominent among the dissenters are the advocates of a Bohmian mechanics. The Bohmians
reject LOCALITY as a suitable constraint on physical theories.
5 Shimony has called my COMPLETENESS constraint outcome independence, for it expresses the
requirement that the probabilities at each detector site be independent of the outcome at the other
detector site.
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completeness condition, consider the following: an independence constraint of this
sort is precisely that which should be satisfied if the information associated with the
outcome at A(B) is redundant with respect to the probability assignments at B(A).
Because of this redundancy, conditionalization on the outcome at A(B) cannot alter
the probabilities assigned at B(A). The conditional probability of such and such at
B(A) given the outcome at A(B) is the same as the unconditioned probability at B(A)
because the (complete) state description already includes that information; there is
nothing more that one can learn regarding what one might find at B(A) based on
what one finds at A(B).

One might think of it this way: Our two particles of a given pair—call them
“A” and “B”—interact with each other at the source. As a result of this interaction,
B might leave its “particle footprint” or some of its “particle DNA” or whatever
on A. An observation of A, then, could conceivably reveal some trace of informa-
tion about B’s properties, so that conditionalization on the measurement outcome
at A could permit us to revise the probability for getting a specified outcome at B.
However, it is precisely all such information that we suppose to be included an-
tecedently in a genuinely complete state description. Thus, if our state description
is complete, there should be no correlation between such pairs of measurement out-
comes, and we would expect the joint probability functions to reduce to the product
of the two marginals. For this reason, in some of the literature on Bell’s Theorem,
COMPLETENESS also gets called “factorizability”, for it constrains the joint prob-
abilities to factor into this product of the two marginals.6

COMPLETENESS demands that states posited by the theory afford a representa-
tion of phenomena in terms of the interactions of entities possessing physical prop-
erties in a suitably independent manner. State descriptions that are “complete” in
this sense encode information in a manner that insures the “screening off” of any
correlations between sets of measurement outcomes at the two wings of the Mermin
Contraption. Any theory (whether deterministic or not) that posits entities that pos-
sess properties (whatever those properties may be) in the ways familiar to us from
our experience at the classical level might plausibly be expected to satisfy this con-
straint. It has the look of nothing more than a requirement that state descriptions
include all causally relevant information. (Note that quantum mechanics violates
COMPLETENESS.)

CONDITION C deserves mention here, if only as a curiosity. I will address its
possible significance later. The elements of the matrix C(λ |i, j) are the joint prob-
abilities assigned by λ to the four possible pairs of measurement outcomes, for
specified switch settings i and j. CONDITION C is the requirement that the deter-
minant of C vanish for all λ , i, and j. As can easily be verified by substitution of
the relevant expressions for the marginal probabilities (and by applying the standard
normalization constraint, according to which the probabilities for all possible pairs
of outcomes sum to unity), COMPLETENESS and CONDITION C are logically
equivalent.7

6 The term “factorizability” was introduced by Arthur Fine, long-time nemesis of its referent.
7 It is useful to appeal to this equivalence between COMPLETENESS and CONDITION C in
order to see that theories that satisfy DETERMINISM also satisfy COMPLETENESS, while the
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Strong Locality

∀λ ,x,y, i, j, i′, j′,

pAB
λ (x,y|i, j) = pA

λ
(

x|i, j′
)

pB
λ
(

y|i′, j
)

STRONG LOCALITY

⇐
⇒

⇐⇒

⎧

⎨

⎩

LOCALITY
&

COMPLETENESS

GENERALIZED BELL INEQUALITIES

Finally, STRONG LOCALITY is logically equivalent to the conjunction of
LOCALITY and COMPLETENESS. Theories that satisfy STRONG LOCALITY
represent the composite system as a pair of component systems that are mutually
independent in both the sense of LOCALITY and that of COMPLETENESS. Bell’s
Theorem and the related experimental results provide good evidence that no theory
satisfying STRONG LOCALITY is empirically adequate, for it is this constraint
from which the generalized Bell Inequalities are derived. These generalized Bell
Inequalities, too, are violated by empirical data that are in excellent accord with
the predictions of quantum mechanics. By a broad consensus, COMPLETENESS
is assumed to be the culprit in all of this. However, it is crucial to bear in mind that
theories that violate COMPLETENESS need not ipso facto have omitted anything
whatsoever from their representation of physical states of affairs. That COMPLETE-
NESS is satisfied by no acceptable empirically adequate theory cannot be regarded
as some eliminable artifact of our currently best theory; rather, it appears to be a
reflection of some highly non-classical feature of the world itself. Quantum me-
chanics appears to hook on to the world in some fashion that accurately mirrors this
feature. In this respect, one might argue that Einstein, Podolsky, and Rosen (EPR)
were quite right in concluding that quantum mechanics is “incomplete” in some
important sense. Nevertheless, Bohr also appears to have been right, at least to the
extent that “incompleteness” in this sense is demonstrably not a defect in a theory.8

If (as I am assuming here) our theory must satisfy LOCALITY, and if that theory
is to be empirically adequate, then it must violate COMPLETENESS. Again, this
is not to say that any empirically adequate theory that satisfies LOCALITY fails to
incorporate into its state descriptions all causally relevant factors; but it is to say that
even if the state descriptions of such a theory do include that information (and, so,
might still be called “complete” by that measure), those state descriptions neverthe-
less fail to screen off Bell-type correlations. This situation constitutes a much more
radical departure from the classical worldview than is required by the mere rejection
of DETERMINISM.

converse does not hold in general. If a theory satisfies DETERMINISM, then normalization de-
mands that three of the four probabilities in matrix C have the value 0, while the other has the
value 1. Thus, the determinant of C vanishes. However, it is easy to construct a 2× 2 matrix of
numbers that are in the interval [0,1) and which sum to 1 for which the determinant still vanishes.
8 The classic papers here are Einstein, Podolsky, and Rosen [3] and Bohr [4].
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The results of Bell-type experiments may be seen to impose constraints on our
conception of causality and the strictures of relativity. COMPLETENESS itself
may be regarded as a locality condition of a special sort, one that is closely re-
lated to the notion of “separability” (of the two component systems in Bell-type
experiments). Below, I will introduce a notion of “separability” that turns out to be
logically equivalent to COMPLETENESS in the previously described sense. How-
ever, as a candidate for a criterion of the individuation of physical systems, this
is a comparatively weak separability constraint, certainly one that is weaker than
any that would have drawn the support of EPR. Consequently, the mere incorpora-
tion into one’s worldview of the “causal holism” implicit in the rejection of what I
shall call EPR-SEPARABILITY is not by itself sufficient to move us into the realm
of viable theories. Put in terms of how far we are compelled to retreat from the
worldview of classical physics, giving up DETERMINISM is not enough; giving up
EPR-SEPARABILITY is not enough; COMPLETENESS (this even weaker form of
separability) must be abandoned as well.

If we accept the popular view that the lesson (or at least one of the lessons)
that we must learn from Bell’s Theorem is that apart from the empirical ade-
quacy of quantum mechanics, apart from its future successes or ultimate demise,
any theory that supersedes quantum mechanics is also going to have to violate
COMPLETENESS,9 then we must ask just what precisely it means to say of a the-
ory that it is “incomplete”. In particular, is there anything more to say about such
theories beyond that which has already been said?10

Subsequent to the EPR paper, Einstein offered his own argument for the incom-
pleteness of quantum mechanics.11 Guided by considerations raised therein, Don
Howard has suggested that we understand “separability” as a requirement that each
of the putative subsystems possess its own distinct physical state in such a way
that they fix the state of the composite system in precisely the manner specified
by COMPLETENESS. For specified values of i and j, (marginal at A) represents
the state of the A component system, (marginal at B) represents the state of the B
component system, and (joint AB probability) represents the state of the composite
system. COMPLETENESS is the requirement that the joint probability associated
with λ , i, and j be fixed by the product of the two marginals. Thus, Howard recom-
mends that COMPLETENESS be construed simply as separability.12

9 I trust that even the Bohmians would allow that it is at least of some interest to consider what
follows from this supposition.
10 Whether or not Bell-type correlations should be deemed in need of further “explanation”, so
as to render them less “mysterious” is a question that impinges on some of the most fundamental
issues in the philosophy of science. I do have views about the issues that bear on this question, but I
will refrain from unleashing them here. An extremely stimulating discussion of these matters may
be found in Cushing and McMullin [5]. (See, especially, Arthur Fine [6], Bas van Fraassen [7], and
R. I. G. Hughes [8].)
11 Historical scholarship suggests the possibility that Einstein did not even see the EPR paper until
it appeared in print (see Fine [9], pp. 35–36), and that in any case he was not altogether pleased
with the finished product. Einstein’s own “incompleteness” argument first appeared in [10] and
was later more fully elaborated in [11].
12 See Howard [12] and [13].
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Before acceding to Howard’s recommendation, there are two important questions
that need to be considered:

(i) Are probability functions alone properly regarded as providing an exhaustive
characterization of physical states?

(ii) Even if physical states are to be understood in this manner, why ought a con-
straint deserving of the name “separability” require that the state of the composite
system be determined by the states of the two component systems in the particu-
lar manner specified by COMPLETENESS? More specifically, why couldn’t it be
determined by those states in some other way and still, then, be considered as ex-
pressing an acceptable “separability” constraint?13

I will begin with question (ii). One way to formalize the talk of the “information”
contained in state descriptions is in terms the Shannon information. This suggests
the following definition:

Separability

∀λ , i, j,

I
(

pAB
λ |i, j

)

= I
(

pA
λ |i, j

)

+ I
(

pB
λ |i, j

)

,

where I (p) ≡ ∑ p ln p is the Shannon information associated with probability func-
tion p, and the sum is over all values of the outcome variable(s) in p.

SEPARABILITY is just the requirement that the Shannon information associated
with the joint probability function (representing the state of the composite system)
equal the sum of the Shannon information associated with the marginal probability
function at A (representing the state of the A component system)14 and the Shannon
information associated with the marginal probability function at B (representing the
state of the B component system). This constraint, then, has a natural interpretation
as one way, of perhaps many ways, one might choose to make precise the cliché that
the whole is equal to the sum of the parts, and thereby serves as a “separability”
constraint.

Interpreted in this manner, SEPARABILITY presupposes that states be construed
as probability functions. Quantum mechanical states are in one-to-one correspon-
dence with probability measures over the set of closed linear subspaces of a Hilbert
space. So quantum mechanics is one example of a theory that effectively identifies
states with probability functions. Classical mechanics can be regarded as a theory of
that type as well, but in classical mechanics, we can also represent states as points

13 This latter question is one that has been raised explicitly by Erik Winsberg and Arthur Fine,
about whom more anon. See Winsberg and Fine [14].
14 Note that I

(

pA|i, j
)

is a function not only of λ , but also of i and j. So this quantity cannot
be interpreted as the information associated merely with λ . This “contextual” character of SEP-
ARABILITY attaches to COMPLETENESS and CONDITION C as well. I leave as a project for
future research the investigation of relationships that hold among suitable counterparts to these
three constraints, where the counterparts are characterized in terms of λ alone.
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in a phase space, connecting states with a set of exact values of the position and
momentum of each particle in the system. Suppose we were to try to generalize this:
consider theories for which the states are given by a specification of exact values
of some distinguished set of physical magnitudes. We might even choose to call
these quantities “elements of physical reality”, or “EPRs”.15 These EPRs need not
be restricted to properties like the values of position and momentum, nor need the
EPRs be restricted to properties in the ordinary sense at all. They might include,
for example, irreducibly dispositional quantities, represented probabilistically as
physical propensities. How then might we think about characterizing our “separa-
bility” constraint? This leads us back to question (i), and suggests something of the
following sort:

EPR-Separability

A theory will be said to be EPR-SEPARABLE (or to satisfy EPR-SEPARABILITY)
just in case it satisfies each of the following constraints:

(1) The theory distinguishes a collection of physical magnitudes, {σ1,σ2, . . . ,σK},
as the “elements of physical reality” or “EPRs”, exact values of which uniquely
specify the state. For all λ ∈ Λ, λ = λ (< σ1,σ2, . . . ,σK >).

(2) For each state λ ∈ Λ, there exist unique subsystem states, λA and λB, such
that λA = λA(< σA

1 ,σA
2 , . . . ,σA

K >), λB = λB(< σB
1 ,σB

2 , . . . ,σB
K >), and for each

k = 1,2, . . . ,K, σk = σk(< σA
k ,σB

k >).
(3) There exists a function pω(z|k1,k2) such that pA

λ (x|i, j) = pλA(x|i, j) and
pB
λ (y|i, j) = pλB(y| j, i).

(4) I(λ |i, j) = I(λA|i, j)+ I(λB| j, i), where

I(λ |i, j)≡ I(pAB
λ |i, j)≡ ∑

x,y
pAB
λ (x,y|i, j) lnpAB

λ (x,y|i, j)

and I(λΓ|k1,k2)≡ ∑
z

pλΓ(z|km,km′) ln pλΓ(z|km,km′), where

m =

{

1, Γ= A
2, Γ= B

and m′ =

{

2, Γ= A
1, Γ= B

(5) pAB
λ (x,y|i, j) = pAB

λ
(y,x| j, i), where λ = λ (< σ1,σ2, . . . ,σn >) and for each

k = 1,2, . . . ,K, σ k = σk(< σB
k ,σA

k >).
(6) ρ(λ ) = φA(λA)φB(λB), where φA = φB ≡ φ .
(7) Λ= ΛA ×ΛB, where ΛA = ΛB ≡Ω.
(8) PAB(x,y|i, j) ≡

∫

Λ
ρ(λ )pAB

λ (x,y|i, j)dλ and PΓ(z|k1,k2) ≡
∫

ΛΓ
φΓ(λΓ)pλΓ(z|km,

km′) dλΓ, where m and m′ are defined as in clause (4) above.

15 Every ray of a Hilbert space, and so, every pure state of quantum mechanics, corresponds
uniquely to some (“complete”, in the quantum-mechanical sense) set of eigenvalues of a maxi-
mal set of commuting Hermitian operators. However, no one such set of Hermitian operators will
serve for all pure states. So the states posited by quantum mechanics defy representation in terms
of EPRs.
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Clauses (1) and (2) of EPR-SEPARABILITY require that each state, for both
the composite and the component systems, is fixed by appropriate sets of EPRs as
indicated, so that each composite system state λ is decomposable into a pair of
component system states, λA, to be associated with the A subsystem, and λB, to
be associated with the B subsystem. Clause (3) requires that the probability func-
tions determined by the subsystem states λA and λB, respectively, be equal to the
corresponding marginal probability functions, as is needed for consistency with the
definition of the joint probability functions associated with the composite system
states. It also requires that each EPR associated with λA “play the same role” as
the corresponding EPR associated with λB in generating their respective probability
functions. Clause (4) is my proposal for imposing on this picture what I consider to
be a central feature of any acceptable separability constraint. It is the requirement
that the Shannon information associated with the probability function determined by
the composite system state description be equal to the sum of the two corresponding
quantities determined by the subsystem states. The whole is equal to the sum of the
parts. SEPARABILITY simpliciter makes the analogous demand without reference
to any EPR-conception of physical states.16

From clause (4), EPR-SEPARABILITY entails plain SEPARABILITY, while
from clauses (1) and (2), the converse does not hold. The point here is simply that a
theory may satisfy SEPARABILITY without positing anything whatsoever regard-
ing “elements of physical reality” that provide a decomposition of a λ into a λ A
and a λ B. (See the figure below.) If one prefers to think about this from the other
direction, we might define HOLISM simply as the denial of SEPARABILITY, and
EPR-HOLISM as the denial of EPR-SEPARABILITY.

EPR–SEPARABILTY SEPARABILITY

EPR–HOLISM ~ (EPR–SEPARABILITY)

HOLISM ~ SEPARABILITY

HOLISM EPR–HOLISM

EPR-SEPARABILITY HOLISM

QM

QM

SEPARABILITY

EPR-HOLISM

16 Consequently, I presume that of those attracted to an information-theoretic characteri-
zation of “separability”, those with a realist bent would favor something akin to EPR-
SEPARABILITY, while those situated more toward the anti-realist end of the spectrum would
prefer SEPARABILITY.
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If we proceed, at least for the moment, under the assumption that we must reject
SEPARABILITY, then this has consequences that are not as widely appreciated as I
believe they ought to be. I will elaborate on this shortly. Returning to the character-
ization of EPR-SEPARABILITY, clauses (5), (6), and (7) impose some symmetry
conditions on the two component systems based on the identity of the constituent
entities, while clause (8) gives the standard prescription for generating testable pre-
dictions by summing over all states.17

If COMPLETENESS is to be abandoned, it should be of some interest to consider
the relationship between this constraint and SEPARABILITY. As it happens, the two
are logically equivalent.18 This gives us the following chain of equivalences:19

SEPARABILITY

⇐
⇒

(∗)∀λ , i, j,

c11
c11c12

c12 c21
c21c22

c22 = (c11 −Δ)c11 (c12 +Δ)c12 (c21 +Δ)c21 (c22 −Δ)c22 ,

where Δ≡ det C(λ |i, j) = c11c22 − c12c21

⇐
⇒

∀λ , i, j, Δ= 0

⇐
⇒

CONDITION C

⇐
⇒

COMPLETENESS

Thus, in rejecting COMPLETENESS, we give up not just EPR-SEPARABILITY,
but also that gap between EPR-SEPARABILITY and (the logically weaker) SEPA-
RABILITY. Depending on one’s views about the proper way to characterize states,
one might say that the implications of Bell’s Theorem and the experimental tests
of the Bell Inequalities are even more drastic than previously thought. Our retreat

17 For the sake of simplicity, I forego the readily available revisions needed to accommodate non-
identical particles.
18 This is an immediate consequence of the Gibbs Inequality (sometimes called “the Shannon-
Gibbs Inequality”. See Ash [15], pp. 16–19, for a proof. The Gibbs Inequality is a special case of a
more general result that applies to all convex functions. For this more general result, see Billingsley
[16], pp. 544–545. I am grateful to David Malament for calling my attention to the latter.
19 I will have some things to say presently about the constraint denoted by the asterisk. For now,
note that it may be seen to arise as follows: express SEPARABILITY in terms of the elements
of the matrix C(λ |i, j), and exponentiate both sides of the resulting equation. (∗) emerges after a
further bit of algebraic manipulation. That CONDITION C (and, so, COMPLETENESS) implies
SEPARABILITY is now trivial. (The implication in the other direction is not.) For a generalization
of each of these constraints, see Appendix 2.
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from the classical worldview is even more extreme than perhaps is generally rec-
ognized. I wish to emphasize this point because the conventional wisdom has been
that the deep meaning of Bell’s Theorem and related experimental work is that not
only deterministic theories, but even indeterministic theories that are not suitably
“holistic”, must be given up once and for all; and one might have thought that the
holism in question, that associated with the “passion-at-a-distance” exhibited by the
entangled states of systems in Bell-type experiments, in violation of COMPLETE-
NESS, is really no more than that which follows from rejecting an EPR-style as-
sumption of separability. In particular, one might have thought that every theory that
satisfies COMPLETENESS (or, equivalently, SEPARABILITY), even those that do
not posit states that are represented in terms of EPRs, is empirically equivalent to
some such theory. If this were so, that logical gap between EPR-SEPARABILITY
and SEPARABILITY simpliciter would be empirically vacuous, and most (certainly
those who incline toward any form of anti-realism) would decline to acknowledge
any meaningful distinction between the two classes of theories. However, it can be
shown that there do exist COMPLETE (or, if one prefers, SEPARABLE) theories
that are empirically equivalent to no EPR-SEPARABLE theory. (See Appendix 1.)

Consider that from a given composite-system state λ , COMPLETENESS alone
determines neither λA nor λB. While it does afford a factorization of the joint prob-
abilities into a product of the marginals, it remains utterly indifferent with regard
to the manner of specification of the separate states themselves. Unless one simply
rejects the EPR conception of state by fiat (in which case the marginal probabilities
may be identified with the subsystem states), EPR-SEPARABILITY appears as a
reasonable demand; and the constraint that states be represented in the form cod-
ified via that demand induces an empirical restriction that (merely) SEPARABLE
theories need not meet.

I think it helpful to note that SEPARABILITY (and, so, COMPLETENESS) re-
quires only that the quantity of information associated with the probability function
determined by the composite system state description equal the sum of the cor-
responding quantities associated with the two marginal probability functions. But
given this EPR conception of physical states, that requirement can well be met,
even though the chunks of information appearing on the two sides of the equation
that defines SEPARABILITY are qualitatively distinct.20 Moreover, such qualita-
tive distinctions can have empirical consequences. It is striking that empirical tests
of the Bell Inequalities appear to demand that we reject even the weaker constraint
(SEPARABILITY), the one having to do with information in this merely quantita-
tive sense. This is what I meant when I suggested previously that Bell’s Theorem and
the associated experimental results force us to a more radical retreat from the classi-
cal world view than is perhaps generally recognized. I take EPR-SEPARABILITY
to be a natural generalization of the classical worldview in the spirit of Einstein,
Podolsky, and Rosen. It jettisons determinism as a requirement, but it retains the
fundamental role of elements of physical reality. And yet, we see that the holism we

20 For this insight I am indebted to Brandon Fogel, who suggested something similar to it in
conversation.
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are compelled to embrace is even more extreme than that which follows from the
mere rejection of this EPR-SEPARABILITY.

A few years ago, Winsberg and Fine proposed that we take as a suitable “separa-
bility” constraint, that the joint probability function (associated with the composite
system) simply be some function of the marginals.21 That it be the product of the
marginals would then be a simple special case of that proposal; but to insist that
the function in question take that particular form would be overly restrictive, on
their view. However, it can now be seen that if one agrees to adopt the information
theoretic conception of “separability”, and if one chooses to characterize states as
probability functions (whether or not those probability functions are taken to be the
manifestations of some set of more fundamental elements of physical reality), then
the “choice” of the product function is forced upon us.

One further point about the equivalence of SEPARABILITY and COMPLETE-
NESS: We can define mutual information as indicated here:

Mutual Information

∀λ , i, j,

I [X ;Y ]λ ,i, j ≡ ∑
x=±1
y=±1

pAB
λ (x,y|i, j) ln

[

pAB
λ (x,y|i, j)

pA
λ (x|i, j) pB

λ (y|i, j)

]

≡ I [Y ;X ]λ ,i, j

= ∑
x=±1
y=±1

pAB
λ (x,y|i, j) ln

[

pA
λ (x|i, j,y)
pA
λ (x|i, j)

]

= ∑
x=±1
y=±1

pAB
λ (x,y|i, j) ln

[

pB
λ (y|i, j,x)
pB
λ (y|i, j)

]

,

(for pA
λ (x|i, j) pB

λ (y|i, j) �= 0)

NOTE: COMPLETENESS ⇒∀λ , i, j,I [X ;Y ]λ ,i, j = I [Y ;X ]λ ,i, j = 0

That mutual information is a symmetric function is apparent from the definition.
The conditional probabilities appearing in the definition reduce to the unconditioned
probabilities if and only if COMPLETENESS is satisfied, so COMPLETENESS
holds just in case the mutual information is zero. That means, in turn, that (for a
specified pair of detector switch settings) the information in the composite system
state description is such that conditionalization on the outcome at one measurement
site has no bearing on the probabilities assigned at the other site, the former merely
providing redundant information with respect to such a “complete” state description.

21 See Winsberg and Fine [14]. These authors challenge the views developed by Howard. For a
trenchant analysis of these issues, see Fogel [17].
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I note this in an effort to add reinforcement to the earlier interpretation I suggested
for COMPLETENESS, where I also used the word “information”, but there in an
informal, non-technical sense.

Consider now the following constraint:22

Condition S

∀λ , i, j,

cc11
11 cc12

12 cc21
21 cc22

22 = (c11 −Δ)c11 (c12 +Δ)c12 (c21 +Δ)c21 (c22 −Δ)c22 ,

where Δ≡ det C(λ |i, j).
Suppose an imaginary someone who has a reasonably good familiarity with the

philosophical literature on Bell’s Theorem, but who is blissfully unaware of any at-
tempts toward an information-theoretic construal of “separability”. What might be
this person’s initial response upon being told that COMPLETENESS and SEPARA-
BILITY are logically equivalent? I daresay it might be something such as this, “So, I
see that someone has succeeded in expressing COMPLETENESS in a grossly more
complicated and obscure way.” This might be followed by a sarcastic “(S)he has
my congratulations.” However, if our imaginary friend were to reflect for a time and
play around with CONDITION S sufficiently, the response might continue in this
manner, “Wait a minute, that. . . that looks like entropy, I mean that’s a constraint
on information; hey, that’s a requirement that the information associated with the
probability function representing the composite system is equal to the sum. . . Could
we interpret that as a ‘separability’ condition of some sort?” Our friend just might
discern this link between the two conceptually distinct classes of theories: the class
of theories that satisfy COMPLETENESS on the one hand, and the class of theories
that satisfy SEPARABILITY on the other. That those two sets are coextensive might
be deemed to be of genuine significance.

This exercise of the imagination is intended to set the stage for a little speculation.
Might something similar to that which our friend achieved with CONDITION S be
done for CONDITION C as well? Of course, there is no reason why that would have
to be so; CONDITION C might be nothing more than a way of expressing COM-
PLETENESS (or, equivalently, SEPARABILITY) in a different mathematical form;
it might carry with it no suitably independent physical interpretation that would
help us to enrich our understanding of COMPLETENESS and SEPARABILITY.
However, the fact that CONDITION C is posed as the vanishing of a determinant
is very suggestive, even tantalizing; for this allows us to recognize CONDITION C
as the necessary and sufficient condition that there exist a non-trivial solution to a
particular set of equations.

22 The alert reader will immediately recognize CONDITION S as the aforementioned asterisked
constraint.
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CONDITION C

⇐
⇒

∀λ , i, j, the following pair of equations has a non-trivial solution:

z1 pAB
λ (+1,+1|i, j)+ z2 pAB

λ (+1,−1|i, j) = 0

z1 pAB
λ (−1,+1|i, j)+ z2 pAB

λ (−1,−1|i, j) = 0

[equivalently, ∀λ , i, j, the following pair of equations has a non-trivial solution:

z1 pAB
λ (+1,+1|i, j)+ z2 pAB

λ (−1,+1|i, j) = 0

z1 pAB
λ (+1,−1|i, j)+ z2 pAB

λ (−1,−1|i, j) = 0

Alternatively,

CONDITION C ⇐⇒

⎧

⎪⎨

⎪⎩

∀λ , i, j, there exists a zero− eigenvalue
solution to the equation
Cz = γz

We can work out the solutions to these equations and put them in various forms
and try to interpret them.23 We can also note that CONDITION C asserts the ex-
istence of a zero-eigenvalue solution to a certain matrix equation. Does that matrix
equation have an independent physical significance? What would it mean to demand
of a theory that the corresponding matrix equation of that sort have any solution, let
alone that it have a zero-eigenvalue solution?24

Success in the search for an independent physical interpretation of CONDI-
TION C might yet deliver to us at least some small deepening of our understanding
of COMPLETENESS and SEPARABILITY, and thereby help us to achieve a firmer
grasp of precisely what it is that Bell’s Theorem has to teach us about the way the
world is not.
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Appendix 1

CLAIM: There exist SEPARABLE theories that are empirically equivalent to no
EPR-SEPARABLE theory.

To establish the CLAIM, it will be helpful first to show the following:

(∗∗) EPR-SEPARABILITY =⇒
{

∀x,y, i, j,
PAB(x,y|i, j) = PAB(y,x| j, i)

Note the following, straightforward consequence of EPR SEPARABILITY:

∀λ ,x,y,z, i, j,

(1) pAB
λ (x,y|i, j) = pA

λ (x|i, j)pB
λ (y|i, j)

(2) Λ= Λ and ρ(λ ) = ρ(λ )
(3) PAB(x,y|i, j) = PA(x|i, j)PB(y|i, j)
(4) PA(z|i, j) = PB(z| j, i)
For arbitrary values of x,y, i, and j,25

PAB(x,y|i, j) = PA(x|i, j)PB(y|i, j) (3)

=
∫

Ω

φ(ω)pω(x|i, j)dω
∫

Ω

φ(ω ′)pω ′(y| j, i)dω ′ <7>,<8>

=
∫

ΛB

φB(λB)pλB(x|i, j)dλB

∫

ΛA

φA(λA)pλA(y| j, i)dλA <7>

=
∫

ΛB×ΛA

φB(λB)pλB(x|i, j)φA(λA)pλA(y| j, i)dλBdλA

=
∫

ΛB×ΛA

φB(λB)φA(λA)pλB(x|i, j)pλA(x|i, j)dλBdλA

=
∫

Λ̄

ρ(λ )pA
λ (x|i, j)pB

λ (y| j, i)dλ (2),<3>,<6>

25 In what follows, numbers in angle brackets refer to the corresponding clauses in the definition
of EPR-SEPARABILITY, while numbers in parentheses refer to the corresponding clauses of the
aforementioned consequence of EPR-SEPARABILITY.
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=
∫

Λ̄

ρ(λ )pAB
λ (x,y|i, j)dλ (1)

=
∫

Λ

ρ(λ )pAB
λ (x,y|i, j)dλ (2)

=
∫

Λ

ρ(λ )pAB
λ (y,x| j, i)dλ <5>

= PAB(y,x| j, i) <8>

This establishes (∗∗).
Now let T be a theory that posits a set of states Λ= {λ1,λ2, . . . ,λm} and uniform

distribution function ρ(λi) = 1
m and suppose that for each i = 1,2, . . . ,m, there are

values αi, βi, γi such that for all k:

C(λi|k,k) =
1

(1+ γi)(αi +βi)

[
αi βi
γiαi γiβi

]

, where βi > γiαi.

(Note: These states are normalized, and T satisfies CONDITION C.)
For T, then,

∀k,PAB(1,−1|k,k) =
1
m

m

∑
i=1

βi

(1+ γi)(αi +βi)
, and

PAB(−1,1|k,k) =
1
m

m

∑
i=1

γiαi

(1+ γi)(αi +βi)

<
1
m

m

∑
i=1

βi

(1+ γi)(αi +βi)
= PAB(1,−1|k,k)

Thus, by (∗∗), T violates EPR-SEPARABILITY; but since T satisfies CONDI-
TION C, it also satisfies SEPARABILITY. Moreover, since T requires that for all k,
PAB(1,−1|k,k) �= PAB(−1,1|k,k), this SEPARABLE theory makes predictions that
are compatible with no EPR-SEPARABLE theory.

This establishes the CLAIM.

Appendix 2

COMPLETENESS, SEPARABILITY, CONDITION C, and equation (∗) all admit
of generalization to cases with arbitrary values of s ≥ 2 and n ≥ 2, where s is the
number of component systems and n is the number of possible outcomes at each
detector site. In the general case, we have the following:

OUTCOME VARIABLES: x1,x2, . . . ,xs
POSSIBLE VALUES FOR VARIABLE xk: xk1,xk2, . . . ,xkn
DETECTOR SETTING VARIABLE FOR DETECTOR AT Ak: ik
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JOINT PROBABILITY FUNCTIONS:

pA1A2...As
λ (x1,x2, . . . ,xs|i1, i2, . . . , is)

MARGINALS:

pAK
λ (xk|i1, i2, . . . , is)≡ ∑

x j ∈ X j
j �= k

pA1A2...As
λ (x1,x2, . . . ,xs|i1, i2, . . . , is),

where X j ≡ {x j1,x j2, . . . ,x js}

and ∀ j,m,m′,m < m′ ⇒ x jm ≤ x jm′

COMPLETENESS

∀λ ,x j, i j,

pA1A2...As
λ (x1,x2, . . . ,xs|i1, i2, . . . , is) =

s

∏
k=1

pAK
λ (xk|i1, i2, . . . , is)

SEPARABILITY

∀λ , i j,

I
(

pA1A2...As
λ |i1, i2, . . . , is

)

=
s

∑
k=1

I(pAk
λ |i1, i2, . . . , is)

CONDITION C

For all 1 ≤ j < m ≤ s, and for all1 ≤ j′< m′ ≤ s,

det
[

ck1k2...k j ...km...ks ck1k2...k j ...km′ ...ks

ck1k2...k j′ ...km...ks ck1k2...k j′ ...km′ ...ks

]

= 0,

where ck1k2...ks (λ |i1, i2, . . . , is) = pA1A2...As
λ (x1(k1),x2(k2), . . . ,xs(ks)|i1, i2, . . . , is).

CONDITION Q
∀λ , i j,k j,

qk1k2...ks (λ |i1, i2, . . . , is) = 0,
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where qk1k2...ks (λ |i1, i2, . . . , is) =

−

⎧

⎨

⎩
ck1k2...ks

s−1

∑
j=1

⎡

⎣
(s−1)!(−1) j

j!(s− j−1)!

⎛

⎝ ∑
<k′1,k′2,...,k′s>∈M(k1,k2,...,ks)

ck′1k′2...k′s

⎞

⎠

j⎤

⎦

+
s

∑
m=1

⎡

⎣(ck1k2...ks)
s−m ∑

jm> jm−1>...> j1

m

∏
i=1

⎛

⎝

ck′1k′2 ...k′s

∑
<k′1,k′2,...,k′s>∈Kji

⎞

⎠

⎤

⎦

⎫

⎬

⎭
,

M(k1,k2, . . . ,ks)≡ {< k′1,k
′
2, . . . ,k

′
s > | < k′1,k

′
2, . . . ,k

′
s > �=< k1,k2, . . . ,ks >},

Kj(k1,k2, . . . ,ks)≡ {< k′1,k
′
2, . . . ,k

′
s > |k′j = k j& < k′1,k

′
2, . . . ,k

′
s >

�=< k1,k2, . . . ,ks >},

and for m = 1, ∑
jm> jm−1>...> j1

m

∏
i=1

⎛

⎝

ck′1k′2...k′s

∑
<k′1,k′2,...,k′s>∈Kji

⎞

⎠≡
s

∑
j=1

⎛

⎝

ck′1k′2...k′s

∑
<k′1,k′2,...,k′s>∈Kj

⎞

⎠.

NOTE: The generalized form of (∗) is as follows:

∏
k1,k2,...,ks

c
ck1k2 ...ks
k1k2...ks

= ∏
k1,k2,...,ks

(

ck1k2...ks −qk1k2...ks

)ck1k2...ks

For n = s = 2, we have q11 = q22 = detC = −q12 = −q21, and CONDITION Q
reduces to (∗) in this case.

I offer the following assertion here without proof:
∀n ≥ 2, ∀s ≥ 2, the following are logically equivalent:

COMPLETENESS
CONDITION C
SEPARABILITY
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Bell Inequalities: Many Questions,
a Few Answers

Nicolas Gisin

Abstract What can be more fascinating than experimental metaphysics, to quote
one of Abner Shimony’s enlightening expressions? Bell inequalities are at the heart
of the study of nonlocality. I present a list of open questions, organised in three cate-
gories: fundamental; linked to experiments; and exploring nonlocality as a resource.
New families of inequalities for binary outcomes are presented.

1 Introduction

This Festschrift in honor of Abner Shimony is the ideal occasion to review some of
the many questions about Bell inequalities that remain open, despite more than four
decades of active research and a vast number of publications on this fascinating sub-
ject. Indeed, Abner was—in modern terminology—an early adaptor of the product
Bell inequality. At that time, in the 1960s and 1970s, it required quite some courage
and independence of thought, two qualities characterizing Abner, to recognize the
value of Bell’s work on the foundations of Quantum Physics. Even in the 1980s,
after Aspect’s experiments, Bell inequality was still considered a dirty work. “Bohr
sorted out all that years ago”, was the standard answer. In those days, if you wanted
your work published in PRL or similar high-standard journals you had better avoid
terms like Bell inequality and (even worse) quantum nonlocality.

Starting with Artur Ekert’s PRL relating Bell inequalities with quantum key dis-
tribution things have drastically changed [1]. Today it would be hard to find an issue
of PRL without a mention of Bell inequality, nonlocality and—on top of it all—“the
potential relevance of the presented work for quantum information processing”. It
is nice to see how human physicists are! And who is more human, in the most noble
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Fig. 1 (Color online) Number of occurrences of the words Bell inequality or Bell inequalities in
the title or abstract of papers published during the last 16 years on the quant-ph preprint server and
in Physical Review (PRL+PRA+PRB+PRC+PRD+PRE)

sense of the word, than Abner? Abner, you helped me tremendously; moreover, you
did so at a time when I really needed it. Thank you Abner!

Let’s return to the product Bell inequalities. Today it is fashionable, see Fig. 1,
although I suspect that a large majority of physicists would still be unable to prop-
erly derive any Bell inequality. I bet that in a few decades Bell inequalities will be
taught at high school, because of their mathematical simplicity, their force as an ex-
ample of the scientific methodology and their huge impact on our world view. Yet,
there remains a surprisingly large number of open questions, several of which are
listed in Section 3. Section 4 presents a new family of Bell inequalities for an arbi-
trary even number of settings and binary outcomes. In appendix B an elegant Bell
inequality for qubits is presented; its optimal quantum violation requires measure-
ments of all three Pauli matrices σx, σy and σz. However, let’s start in Section 2 by
defining the notation.

2 Bell Inequalities

Bell inequalities are relations between conditional probabilities valid under the
locality assumption. Hence, a priori they have nothing to do with quantum physics
(and thus should not be written using quantum operators). However, it is the
fact that quantum physics predicts a violation of these relations that makes them
interesting. The purpose here is not to present yet another derivation of Bell in-
equalities, but merely to fix notation. Let p(a,b,c, ...|x,y,z, ...) denote the con-
ditional probability that players A,B,C, ... produce the outcome a,b,c, ... when
they receive the input x,y,z, .... Typically the players are physicists that per-
form measurements x,y,z, ... with results a,b,c, .... Note that a,b,c, ... need not
be numbers. We call the conditional probabilities p(a,b,c, ...|x,y,z, ...) correlations.
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We assume the numbers of players, inputs and outcomes are all finite. Under
the assumption of locality (i.e., there is a probability distribution p(λ ) such that
p(a,b,c, ...|x,y,z, ...) = ∑λ p(λ ) · p(a|x,λ ) · p(b|y,λ ) · p(c|z,λ ) · ...) the set of all
correlations is convex with finitely many vertices. Such sets are called polytopes [2].
Thus, for any given finite number of players, inputs and outcomes, the set of local
correlation p(a,b,c, ...|x,y,z, ...) is called the local polytope [2]. These polytopes
are bounded by facets (hyperplanes). Each facet can be described by a linear equa-
tion: ∑a,b,c,...,x,y,z,...C

xyz...
abc...p(a,b,c, ...|x,y,z, ...) = Slhv with real coefficients Cxyz...

abc...
and Slhv. All local correlations lie on one side of the facet, hence they necessarily
satisfy the inequality:

∑
a,b,c,...,x,y,z,...

Cxyz...
abc...p(a,b,c, ...|x,y,z, ...)≤ Slhv (1)

Such inequalities are called tight Bell inequalities (for an elegant, but not tight Bell
inequality, see appendix B). We say that a quantum state ρ is nonlocal iff there are
measurements on ρ that produce a correlation that violates a Bell inequality.

The famous CHSH inequality [3] reads

E(x = 0,y = 0) + E(x = 0,y = 1)+
E(x = 1,y = 0) − E(x = 1,y = 1)≤ 2 (2)

where in our notations E(x,y) = p(a = b|x,y)− p(a �= b|x,y). It is convenient to use
the following self-explanatory matrix notation:

CHSH .=
(

+1 +1
+1 −1

)

≤ 2 (3)

This CHSH inequality is the only tight Bell inequality for the bipartite case (i.e.,
two players) with binary inputs and outcomes (up to local symmetries).

Let us emphasize that the entire game consists for each player in producing, for
a given situation, a classical outcome with some probability for any possible in-
put. In the quantum case this implies performing measurements with classical out-
comes on a given quantum state ρ . Accordingly, the players can’t combine several
instances, i.e., several quantum states ρ , and perform quantum information process-
ing on them, i.e., exploit coherent measurement on ρ⊗n for n ≥ 2. Note that this
does not exclude the situation where the players receive a fixed number of states,
like e.g., ρ⊗3, but this is a different game from the one based on ρ . Clearly, a priori
a state ρ can be local, while ρ⊗n is nonlocal for all n ≥ nthreshold > 1.

3 Open Questions

The open questions can be organized in three groups. First, the fundamental ques-
tions, most in the spirit of Bell. Next, questions more related to experiments, in the
spirit of Abner’s works (e.g., the famous CHSH-Bell inequality and the detection
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loophole). Finally, Bell-like inequalities for nonlocal resources, the most timely re-
search on nonlocality.

Note that many open questions in quantum information theory are listen on the
web page [4].

3.1 Fundamental Questions

There are infinitely many Bell inequalities. Even if one is restricted to tight Bell
inequalities corresponding to facets of the polytope of local correlations, the number
of Bell inequality is infinite. Restricting the given number of inputs and outcomes
limits the number of Bell inequalities, but it is a computationally hard problem to
list them [2].

1. Why is the CHSH inequality almost always the most efficient one to prove a
quantum state to be nonlocal? Until 2004 there was no example of a quantum
state not violating the CHSH inequality, but violating some other Bell inequality
[5]. Still today, no natural example, i.e., a state with some natural symmetry, has
been found. This leads to the concept of relevant Bell inequalities: an inequality
is relevant with respect to a given set of inequalities if there is a quantum state
violating it, but not violating any of the inequalities in the set.

2. Is there a finite set of inequalities such that no other inequality is relevant with
respect to that set? What if one limits the dimension of the Hilbert space?

3. Find an inequality that is more efficient than the CHSH one for the Werner
states [6] or prove it is impossible. In dimension two, Werner states are simply
mixtures of a maximally entangled pure state ψ with noise (i.e., the identity
operator): ρW = W |ψ〉〈ψ |+ (1−W )11/4, where W is the visibility. A local
model exists for W � 0.66 [7], the CHSH inequality proves Werner states to be
nonlocal for W > 1/

√
2. The region in between is unknown. The same question

for the isotropic state (mixture of maximally pure state and noise) has been
answered in part in [8, 9] where a generalization of the CHSH inequality to
arbitrary numbers of outcomes has been shown to be more efficient. But for
the isotropic states there remains also a gap in between the best known local
model [10] and the proven nonlocality visibility threshold.

4. Is hidden nonlocality generic for all entangled quantum states, including mixed
states? In dimension ≥ 5, Popescu proved that the Werner states, although ad-
mitting local models, have hidden nonlocality, i.e., there are local filters such
that if the Werner state passes the filters, then the resulting state violates the
CHSH inequality [11], see also [12] for a simple example of hidden nonlocal-
ity. In the same vein, one should ask whether for all quantum states with hidden
nonlocality there is a Bell inequality, possibly with more inputs and outcomes,
that can be violated by this state? Finally, is there an example of hidden nonlo-
cality that requires a sequence of local filters rather than a single one (the local
model should reproduce all intermediate results)?
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5. Prove some entangled quantum states to be local. This requires one to prove the
existence of a local model. This has been done for Werner states (see [6] for
projective measurements and [13] for general POVMs) and very recently for
isotropic states [10]. A weaker form of this question asks for a proof that a state
can’t violate any Bell inequality with less than a given number of inputs and/or
outcomes. There is only one general result to this question, see the elegant
construction in [14].

6. Why are almost all known Bell inequalities for more than 2 outcomes maxi-
mally violated by states that are not maximally entangled [15]? There is quite a
lot of evidence that entanglement and nonlocality are different resources [16].

7. Can all Bell inequalities with d outcomes be maximally violated by a quantum
state of dimension d? Or is there an example requiring states of dimension
larger than the number of outcomes? In reference [17], a Bell inequality with m
outcomes on Alice’s side and binary outcomes on Bob’s side is presented. It is
maximally violated by the maximally entangled state in dimension m.

8. Is there a local quantum state ρ such that ρn violates some Bell inequality? Note
that if the state ρ is distillable, then ρn, for large enough n, contains hidden
nonlocality.

9. Find genuine n-party inequalities violated by all n-party pure entangled states.
In the case of two parties, the CHSH inequality is such an example, i.e., it
can be violated by any pure entangled state of whatever dimension [18, 19].
In the case of three parties there are entangled states that do not violate the
MBK inequality [20, 21]. In [22, 23], a Bell inequality is presented that shows
numerical evidence that all 3-party pure entangled state violate it. But the case
of arbitrarily many parties is still open. Note that all n-party pure entangled
states can always be projected onto a 2-party pure entangled state by projecting
n−2 parties onto appropriate local pure states [24]. This can be formulated as a
tight Bell inequality where n−2 parties have only a single input. Hence, there is

a set of
(

n
n−2

)

inequalities that does the job. But is there a single inequality?

10. There is no known Bell inequality that requires POVMs for optimal violation
on some quantum states. For binary outcomes, one can prove that POVMs are
never relevant [25], but for larger a number of outcomes the question is open.

11. Almost all Bell inequalities are maximally violated by quantum states and mea-
surements that can all be written, in an appropriate basis, using only real num-
bers. This is surprising since interference, a basic quantum property, “requires”
complex numbers. It would be nice to find Bell inequalities suitable for distin-
guishing real Hilbert spaces from complex ones (i.e., an inequality that can only
be violated by states and settings that require complex numbers). An example
is [17].

12. Is there a bound entangled state that violates some Bell inequality? In [26]
Masanes proves that no bound entangled state violates the CHSH inequality.
But what about other Bell inequalities? Note that in the case of three players or
more, it is important to distinguish different meanings of bound entanglement:
bound means that the players can’t distill a maximally entangled states between
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all of them; while totally bound means that even if some parties join into groups,
they still can’t distil entanglement between the groups. Dürr found a bound en-
tangled state of 8 qubits that violates the MKB inequality [27]. However the
violation is small, indicating that there is no 8-party entanglement [28]. Actu-
ally it was then demonstrated for qubits that any violation of a Bell inequality,
with two inputs per player implies that the players, can join into groups such
that the groups can distill a maximally entangled state [29, 30].

13. In the case of more than 2 parties, find inequalities testing models that assume
bi-partite nonlocality but no arbitrary multi-partite nonlocality. A first example
was presented already in 1987 by Svetlichny [31] and generalized in [32–34].

14. Find families of Bell inequalities valid for any number of inputs and outcomes.
An example of such a family is presented in [5]. Another example is presented
in this paper, see Section 4, though valid only for binary outcomes and even
numbers of settings. The MKB inequality [20, 21] is an example of a family of
Bell inequalities with fixed numbers of inputs and outcomes, but for arbitrarily
many parties. See also the recent [35].

15. Given a multi-party quantum state ρ , how can one know whether ρ is nonlocal,
i.e., whether there is a Bell inequality and measurements such that quantum
physics predicts a violation of the inequality? For pairs of qubits and the CHSH
inequality this problem has been solved in 1995 by the Horodecki family [36],
but the general problem seems exceedingly hard.

3.2 Questions Relevant for Experiments

The original Bell inequality [37] is, strictly speaking, not a Bell inequality according
to the modern terminology that we use here. Indeed, the original inequality required,
besides locality, another assumption about perfect correlations. Abner immediately
recognized that this auxiliary assumption made the entire enterprize non testable and
searched for an inequality involving only measurable quantities. This led him and
his co-workers to find the CHSH inequality. Interestingly, the CHSH paper [3] al-
ready mentions the detection loophole, again underlying the importance the authors
gave to the experimental issues. Concerning the detection loophole, see also [38].

1. Find Bell inequalities easier to test experimentally with today’s technology, while
avoiding all known loopholes. Quantum nonlocality is so fundamental for our
world view that it deserves to be tested in the most convincing way. It is thus
surprising and annoying that no experiment to date has managed to close simul-
taneously the locality loophole (space-like separation from the choice of settings
until the classical data are secured) and the detection loophole. The latter con-
sists in assuming that the detection efficiency is independent of the hypotheti-
cal local variables (for example, if polarization would be unknown, one would
assume that all detectors are polarization insensitive, a clearly wrong assump-
tion). Reference [39] presents a simple model reproducing all quantum corre-
lations on maximally entangled qubits assuming detection efficiencies of 2/3
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(and projective measurements). Violation of the CHSH inequality requires de-
tection efficiencies of at least 82.84%, for maximally entangled states. There
is only a single known inequality with few settings that does better, though
only marginally better, ηthreshold =

√

2/3 ≈ 81.65% [40]. This inequality has
three settings on each side and is not a facet of the polytope of local correla-
tions. For numbers of settings larger than 100 a better inequality has been de-
rived from communication complexity arguments [41]. Interestingly, Philippe
Eberhard noticed that partially entangled states are less sensitive to the detection
loophole [42].

2. A timely variation of the previous question addresses situations where the de-
tection efficiency differs from one side of the experiment to the other. This is
natural for experiments on entanglement between quantum systems of different
kinds, like, e.g., an atom and a photon [43–45].

3. Find inequalities suitable for a Bell test with simple quantum-optics states and
homodyne detectors. Indeed, the homodyne detection technique is well devel-
oped and always produces an outcomes. But simple cases likes, e.g., a delocal-
ized photon in state |0,1〉+ |1,0〉, although clearly entangled, does not violate
the CHSH inequality with homodyne detection and a simple binarisation of the
measurement results. More complicated states could violate the CHSH, but only
by a tiny amount, see [46] and references therein.

4. Find inequalities for many settings. Experimentally one rarely measures pre-
cisely the four probabilities that appear in the CHSH inequality. Most of the time
a series of points is measured and fitted with a sinus. Hence, an inequality for
such series of points could be more appropriate. Examples are given in [47, 48]
and in Section 4.

3.3 Bell-Like Inequalities for Nonlocal Resources

This subsection presents recently opened questions and moves away from the tra-
ditional work on Bell inequalities. It starts by admitting quantum nonlocality and
aims at better quantifying it and at understanding it as a new kind of resource.
These questions investigate nonlocal but non-signaling correlations [49]. Recall
that a correlation p(a,b,c, ...|x,y,z, ...) is non-signaling iff all the marginals are
independent of the other players’s inputs: ∑b,c,... p(a,b,c, ...|x,y,z, ...) = p(a|x),
∑a,c,d,... p(a,b,c, ...|x,y,z, ...) = p(b, |y), etc.

Bell inequalities are tests for correlations that can be simulated using only local
resources and shared randomness (a modern terminology for the obsolete local hid-
den variables). This view raises the question of correlations that can be simulated
using, in addition to shared randomness, some finite amount of some given nonlocal
resource. For example, it is known that any pair of projective (Von Neumann) mea-
surements on any maximally entangled state of two 2-level quantum systems can be
simulated using only shared randomness and a single PR-box (a sort of unit of non-
locality) [50–53]. Hence, it is interesting to characterize all correlations that can’t



132 N. Gisin

be simulated using shared randomness and one PR-box. Surprisingly, some correla-
tions resulting from quantum measurements on partially entangled 2-level systems
are of that kind.

1. Is there a Bell-like inequality valid for all correlations simulable with a single
bit of communication and violated by some partially entangled 2-qubit states?
Actually, the entire field of research considered in this subsection started with
a paper presenting Bell-like inequalities valid for 1 bit of communication [54].
However, the presented inequalities can’t be violated by any 2-qubit states. We
know that maximally entangled 2-qubit states can be simulated with a single bit
of communication; thus such states don’t violate any of the considered Bell-like
inequalities. However, the question remains open for partially entangled states.

2. Are all partially entangled qubit pairs not simulable by a single PR-box? A few
Bell-like inequalities satisfied by all correlations simulable by a single PR-box
and shared randomness are known [55, 56]. From these one knows that very
poorly entangled states can’t be simulated with one PR-box, but the case of high-
but-not-maximally entangled states is open.

3. Find inequalities satisfied by all correlation that can be simulated by two PR-
boxes. Two bits of communication suffice to simulate any two qubit state. Is the
same true for two PR-boxes?

4. Find any non-signaling box [49] with finitely many inputs and outcomes with
which one can simulate partially entangled states.

5. Find the Quantum-Bell inequalities that bound the correlations achievable with
quantum measurements and states? An example is the Tsirelson bound [57] stat-
ing that quantum correlations can’t violate the CHSH inequality by more than
the well known factor 2

√
2, see also [58].

6. Can a secret key be distilled out of any nonlocal correlation, (secret against any
non-signaling adversary performing arbitrary individual attacks) [59–61]? This
question may appear to move away from Bell questions, but it concerns the power
of the nonlocal resources as witnessed by Bell inequalities. It also addresses the
question of the existence of bound information [62, 63], a classical analog to
bound entanglement.

4 The AS-Bell Inequality Family

I know of only a single family of bipartite Bell inequalities valid for any number
of inputs and outcomes [5]. In this section I briefly present a new family of bipar-
tite Bell inequalities for any even number of inputs and binary outcomes. I found
this family by looking for correlation Bell inequalities with a few inputs and bi-
nary outcomes. Recall that a correlation inequality involves only expectation val-
ues: E(x,y) = p(a = b|x,y)− p(a �= b|x,y). For binary inputs, the CHSH is the only
inequality. For ternary inputs, there is no new correlation inequality [5,64]. For four
inputs on each side, I searched numerically all possibilities assuming small integer
coefficient. I found only two new inequalities (the coefficient in the matrix indicate
the coefficients of the corresponding expectation values):
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AS4
.=

⎛

⎜
⎜
⎝

+1 +1 +1 +1
+1 +1 +1 −1
+1 +1 −2 0
+1 −1 0 0

⎞

⎟
⎟
⎠
≤ 6 (4)

D4
.=

⎛

⎜
⎜
⎝

+2 +1 +1 +2
+1 +1 +2 −2
+1 +2 −2 −1
+2 −2 −1 −1

⎞

⎟
⎟
⎠
≤ 10 (5)

Avis and co-workers demonstrated that these are indeed the only correlation in-
equalities for four inputs [65]. Inspired by inequality AS4, it is not difficult to guess
the form of the next inequalities:

AS6
.=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

+1 +1 +1 +1 +1 +1
+1 +1 +1 +1 +1 −1
+1 +1 +1 +1 −2 0
+1 +1 +1 −3 0 0
+1 +1 −2 0 0 0
+1 −1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

≤ 12 (6)

AS8
.=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 +1 +1 +1 +1 −1
+1 +1 +1 +1 +1 +1 −2 0
+1 +1 +1 +1 +1 −3 0 0
+1 +1 +1 +1 −4 0 0 0
+1 +1 +1 −3 0 0 0 0
+1 +1 −2 0 0 0 0 0
+1 −1 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≤ 20 (7)

The generalization to arbitrary even number of inputs is straightforward. Note
that AS2 is nothing but the CHSH inequality. Numerically, these ASn inequalities
are tight and maximally violated by maximally entangled qubit states for visibilities
larger than Vn, with V2 = 1/

√
2≈ 0.7071, V4 ≈ 0.7348, V10 ≈ 0.7469, V32 ≈ 0.7497,

V50 ≈ 0.7499. Apparently V∞ ≈ 0.75; this contrasts with the Inn22 family presented
in [5] where for binary outcomes and large numbers of inputs the threshold visibility
appears to tend to 1. All settings can be chosen to lie on a grand circle of the Poincaré
sphere.

5 Conclusion

We are lucky to live at the time where physics discovers and explores the nonlo-
cal characteristics of Nature. Contrary to the nonlocality of Newtonian gravitation,
quantum nonlocality is with us for ever [66, 67]. Future historians of Science will
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describe our epoch as that of the great discovery of nonlocality. The name of Abner
Shimony will forever be associated with this fascinating epoch.

The choice of questions listed in this contribution to Abner’s Festschrift is nec-
essarily somewhat subjective. Others may like to add their favorite ones or to for-
mulate the questions differently. Important is the fact that there are many interesting
open questions of very different kinds. The basic maths is simple, but a deeper un-
derstanding requires concepts ranging from combinatorial and complexity theories
to algebra and geometry in high dimensions. Hence, it is likely that most of the
listed problems are hard. But their solutions, even partial solutions, will be valuable
contributions to one of the most fascinating research fields of the 21st century.

Note added in proof. Since the writing of this paper, posted on the arXiv as
quant-ph/0702021, several of the problems listed in this contribution have been
(partially) solved. In particular, for problem 3.1.3 see arXiv:0806.0096, for 3.1.4
see Phys. Rev. Lett. 100, 090403 (2008), for 3.1.7 see arXiv:0712.4320, for 3.1.11
(and the question raised in appendix B) see arXiv:0810.1923, for 3.3.4 see Phys.
Rev. A 78, 052111 (2008).
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Appendix A: Some Diagonal Bell Inequalities

Correlation Bell inequalities of a form similar to D4 (eq. 5) can easily be found
numerically. For five inputs on each side there seems to exist only two such inequal-
ities (at least I found only two). They are entirely defined by their first line and the
permutation rule as in (5) (from one line to the next: shift each entry to the left, the
entry that falls out is re-introduced on the right hand side with the opposite sign):

D51
.= (11011) ≤ 8 (8)

D52
.= (32113) ≤ 20 (9)

For six inputs I found:

D61
.= (101011) ≤ 10 (10)

D62
.= (311124) ≤ 28 (11)

D63
.= (422125) ≤ 36 (12)

D64
.= (422136) ≤ 42 (13)

For more inputs, the numbers of such D-inequalities seems to grow rapidly.
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Appendix B: An Elegant Bell Inequalities

In [17] Helle Bechmann-Pasquinucci and myself presented a Bell inequality tailored
for quantum cryptography in high dimension Hilbert spaces. Since this inequality
seems to have a few original features, like being optimally violated by states and
quantum measurements requiring complex numbers and Hilbert spaces of dimen-
sion larger than the number of outcomes on Bob’s side (but equal to the number
of outcomes on Alice’s side), I recall it in this appendix with the notations used
throughout this contribution. Moreover, this new way of looking at this inequality
underlines its similarity with communication complexity [68].

In this game, Alice receives as input a number x ∈ {0,1, ...,n− 1}, while Bob’s
input consists of n numbers y0,y1, ...,yn−1 with each y j ∈ {0,1, ...,m−1}. Basically,
the goal is that Alice outputs a = yx. As such this would be merely an example
of a communication complexity game. But in our game, Bob can use a joker and
refuse that this instance of the game counts. Accordingly, Bob’s outcome is binary.
Whenever b = 0, the score is null, whatever Alice’s outcome. Whenever b = 1 the
score is +1 if a = yx and −1 if a �= yx. Explicitly, the Bell inequality reads:

SHB =

∑
x = 0...n−1

y0...yn−1 = 0...m−1

(

p(a = yx,b = 1|x,y0, ...,yn−1)
−p(a �= yx,b = 1|x,y0, ...,yn−1)

)

≤ Slocal (14)

The optimal local strategy consists of Alice and Bob agreeing in advance on a se-
quence yg

0, ...,y
g
n−1 and Alice producing a = yg

x while Bob accepts the game only for
the inputs y0, ...,yn−1 for which the averaged score is positive:

Slocal =
[ n−1

2 ]

∑
r=0

(n−2r)
(

n
r

)

(15)

Let us concentrate on the case n = 2 for which Slocal = 2. The optimal quantum
strategy requires Alice and Bob to share a maximally entangled state of dimension
m. Alice measures her quantum system in one out of two mutually conjugated bases,
depending on her input x = 0 or x = 1. Bob receives two symbols as input, y0 and
y1, corresponding to two quantum states, one in each of the two bases. He applies to
his quantum system a measurement described by the projector onto the state which
lies precisely in between the two states that correspond to y0 and y1 (Since the two
states belong to two mutually conjugated bases, such an intermediate state is always
uniquely define. Take for instance the eigenstate with maximal eigenvalue of the
density matrix obtained by a 50–50% mixture of the two states.) If Bob’s projection
is successful, this projects Alice’s state onto the state that maximizes her chance of
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finding the correct outcome. In such a case Bob outputs b = 1. In the alternative
case, i.e., failure of his projection measurement, he outputs b = 0; that is, Bob’s
outcome is his measurement result. With this quantum strategy, Alice and Bob beat
the optimal local strategy by a factor

√
m:

Squantum = 2
√

m > Slocal = 2 (16)

Note that for m = 2, this reduces to the well studied CHSH inequality. Indeed, al-
though in this case Bob has formally four possible inputs, the corresponding four
projectors form two bases. Explicitly, Alice measures one of the two operators σx or
σz, depending on her input, and Bob measures in the intermediate bases σ+450 (for
his inputs 0,0 and 1,1) or σ−450 (for inputs 0,1 and 1,0).

For n = 2 and m = 3 the quantum optimum of 2
√

3 ≈ 3.464 is reached by the
strategy summarised above and presented in [17]. Numerical evidence suggests that
if one restricts oneself to settings that can be expressed using only real numbers, the
maximum is slightly lower: 10/3≈ 3.333 [17]. Moreover, this maximum is reached
for a non-maximally entangled state. But it is unknown whether a higher score can
be achieved using only real numbers in larger Hilbert spaces.

The case n = 3, m = 2 appears also to be interesting. Indeed, the quantum max-
imum is 4

√
3 ≈ 6.928, while the maximum using only real numbers is reached by

the singlet state at 2 + 2
√

5 ≈ 6.472. This might open the possibility to test corre-
lations requiring complex Hilbert spaces (however, here again it remains to test the
inequality in higher dimensions).

Note that this inequality n = 3,m = 2 can also be written as a correlation inequal-
ity. Indeed, Bob’s mn = 8 inputs can be grouped into four projective measurements.
In this form, this inequality reads:

S3×4
.=

⎛

⎜
⎜
⎝

+1 +1 +1
+1 −1 −1
−1 +1 −1
−1 −1 +1

⎞

⎟
⎟
⎠
≤ 6 (17)

Another elegant feature of this case n = 3, m = 2 is seen when the optimal set-
tings are represented on the Poincaré sphere: for Alice the three vectors are mutu-
ally orthogonal, while Bob’s four vectors are on the vertices of the tetrahedron, see
Fig. 2.

To conclude, let us note that most inequalities presented in this appendix, in
particular the elegant S3×4, are not facets of the local polytope. This indicates that
the geometry of the local polytope doesn’t match the symmetries of elegant quantum
states and measurements. In the case of three and four inputs on Alice and Bob’s
side, respectively, all facets are known [5], hence one shouldn’t be surprised that the
new inequality S3×4 is not a facet.
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b0

b3

a0 a1

a2

b1 b2

Fig. 2 (Color online) Measurement settings represented on the Poincaré sphere for the elegant
inequality S3x4 defined by eq. (17). Alice’s three settings are represented by three mutually orthog-
onal vectors, and Bob’s four settings by the vertices of the tetrahedron
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Do Experimental Violations of Bell Inequalities
Require a Nonlocal Interpretation of Quantum
Mechanics? II: Analysis à la Bell

Edward S. Fry, Xinmei Qu, and Marlan O. Scully

Abstract Bell inequalities are derived assuming (i) hidden variables, (ii) positive
probabilities for seemingly physical correlations, and (iii) locality. The over-riding
role of assumption (ii) has generally not been emphasized. Since results of Bell
inequality experiments show a violation of the inequality and agreement with quan-
tum mechanical predictions, one or more of these assumptions is wrong. Thus, in
the physical world, we cannot have hidden variables, and/or we must accept nega-
tive probabilities, and/or we must accept non-locality. Equivalently, the experiments
tell us that any hidden variable theory (with associated non-negative probabilities)
must be non-local; on the other hand, if a theory encompasses no hidden variables
(e.g. quantum mechanics), the experiments do not make a statement about local-
ity. Of course, the definition of “locality” plays a critical role, and that will be re-
viewed. In a previous paper (Phys. Lett. A 347, 56–61, 2005), it was shown that
the assumption of hidden variables (e.g. seemingly physical correlations) leads di-
rectly to negative (non-physical) probabilities in the Wigner–Bell model. In this
paper, we provide analyses based both on Bell’s derivation of the inequality and
on the Clauser–Horne version for inherently stochastic theories. We examine prob-
abilities that must be non-negative in these derivations and show how to evaluate
them within the framework of quantum mechanics. We repeatedly show that the
assumption of hidden variables in the derivation of a Bell inequality leads to sup-
posedly non-negative probabilities whose quantum mechanical counterparts are, in
fact, negative under some conditions.
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1 Introduction

The interpretation of quantum physics represents one of the more intriguing prob-
lems of modern science. On the one hand, quantum mechanics is a superbly success-
ful computational tool with unprecedented predictive powers. On the other hand, the
foundations of the subject and its relationship to relativity theory are still a source
of vigorous debate and counter-intuitive notions.

A major focus has been the fascinating arguments of Einstein–Podolsky–Rosen
(EPR) [1] and the associated work of John Bell that resulted in the inequalities bear-
ing his name [2]. A modification of the Bell inequality by Clauser, Horne, Shimony,
and Holt led to some of the first experimental tests [3–6], followed by other land-
mark experiments [7–11], as well as proposed “loophole free” experiments [12–14].
The history of Bell inequalities has been well-documented; of special note is the
book “Search for a Naturalistic World View: Volume 2” by Shimony [15] and
“Speakable and Unspeakable in Quantum Mechanics” by Bell [16].

In this paper, we provide an analysis based on Bell’s derivation of the inequality
for hidden variable theories and another based on the derivation of the Clauser–
Horne inequality for stochastic hidden variables. We analyze probabilities that must
be non-negative in both of these derivations. We show how to evaluate these proba-
bilities within the framework of quantum mechanics, and show that they can, in fact,
be negative. Thus, in these two examples as well as one in the previous paper [17],
the assumption of hidden variables inevitably leads to classical (supposedly non-
negative) probabilities whose counterparts in quantum mechanics are negative, i.e.
hidden variables and positive probabilities for the corresponding seemingly physical
correlations are jointly untenable within quantum mechanics.

2 Locality and Nonlocality

It had long been recognized that Bell’s concept of locality was essentially a con-
junction of two concepts. Jarrett was first to clearly enunciate them [18]; he defined
the two components and named them “locality” and “completeness”. He coined the
name “strong locality” for the conjunction of these two components; “strong local-
ity” is equivalent to the locality concept used by Bell. Shimony provides a superb,
in depth discussion that will only be briefly summarized [19]. In order to provide a
more descriptive nomenclature, Shimony renamed the two components “Parameter
Independence” and “Outcome Independence”. These can be defined as follows:

Parameter Independence: The outcome of a measurement on particle 1 is inde-
pendent of the analyzer parameters of a spatially separate analyzer apparatus for
particle 2. Specifically, this requires

p1
λ (m|a,b) = p1

λ (m|a) ,

p2
λ (n|a,b) = p2

λ (n|b) ,
(1)

where the right hand sides are independent of b and a, respectively.
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Outcome Independence: The outcome of a measurement on particle 2 is inde-
pendent of the outcome of a measurement on particle 1. This requires

p1
λ (m|a,b,n) = p1

λ (m|a,b) ,

p2
λ (n|a,b,m) = p2

λ (n|a,b) ,
(2)

where the right hand sides are independent of n and m, respectively. The notation
in Eqs. (1) and (2) can be explained via the example, p1

λ (m|a,b,n). This is the
conditional probability of the outcome m in a measurement on particle 1 given the
apparatus parameters (e.g. Stern–Gerlach orientations) are a for the apparatus used
to measure particle 1 and b for the apparatus used to measure particle 2, and also
given that the outcome of a measurement on particle 2 is n.

Jarrett’s theorem is that the conjunction of Parameter Independence and Outcome
Independence is equivalent to Bell’s locality assumption,

pλ (m,n|a,b) = p1
λ (m|a) p2

λ (n|b) , (3)

which explicitly displays the assumption that p1
λ (m|a) is independent of both n

and b, and that p2
λ (n|b) is independent of both m and a.

As discussed by Shimony [19], a violation of Parameter Independence implies
an in-principle possibility of superluminal communication. Shimony points to three
independent proofs [20–22] that quantum mechanics does not violate Parameter
Independence, but notes that these depend on the linearity of quantum dynamics.
Gisin [23] has shown that introducing non-linear elements (e.g. Weinberg [24]) does
enable a violation of Parameter Independence.

On the other hand, Outcome Independence does not permit superluminal com-
munication [19]. But, it is violated by quantum mechanical entanglement as can be
seen by direct examination of the quantum state for two spin one-half particles in a
singlet state,

|Ψ〉=
1√
2
{|↑〉1 |↓〉2 −|↓〉1 |↑〉2} . (4)

The probability of a measurement of spin down along some axis for particle 2 is
zero or unity depending on whether the outcome of a measurement along the same
axis for particle 1 is down or up, respectively.

Quantum mechanics inherently violates the Outcome Independence aspect of
Bell’s locality assumption. Unfortunately, the word “non-local” generally conjures
up thoughts such as superluminal communication; that is not justified in the case
of a violation of Outcome Independence. When Tittle et al. [11] begin their paper
“Violation of Bell Inequalities by Photons More Than 10 km Apart” with the state-
ment that quantum theory is non-local, they are specifically referring to its violation
of Outcome Independence, not superluminal communication.

It is appropriate to restate the assumptions used in the derivation of Bell inequal-
ities, explicitly listing the two components of locality:

(i) Hidden variables
(ii) Positive probabilities for some seemingly physical correlations
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(iii) Parameter Independence
(iv) Outcome Independence

Quantum mechanics inherently violates (iv). We are emphasizing that, in addition,
(i) and (ii), are also jointly incompatible in quantum mechanics, although the im-
portance of (ii) has not been generally recognized. There is no justification to argue
a violation of Parameter Independence (i.e. superluminal communication) based on
the results of Bell inequality experiments.

3 Classical (Hidden Variable) Preliminaries

Consider two spin 1/2 particles, in the entangled state given by Eq. (4). The particles
are spatially well separated and their spins are measured by Stern–Gerlach apparata
(SGA) whose z-directions are defined by unit vectors â, b̂, or ĉ e.g. Fig. 1. We
introduce the following notation for the classical probability Pab of measuring the
component of spin of particle 1 to be +1/2 in the direction â and the spin of particle
2 to be +1/2 in the direction b̂,

Pab = P(+a db dc |da +b dc) . (5)

Z

a

X

S1 S2

Y

Z

X

Source
S=0

Stern-Gerlach
analyzer

Stern-Gerlach
analyzer

"Spin-up"

"Spin-down"

"Spin-up"

"Spin-down"

Magnet
orientation axis

Z

b

X

Detection
screen

Detection
screen

Y-axis into page
b

a

Magnet
orientation axis

Fig. 1 Bohm’s version of the Einstein–Podolsky–Rosen gedankenexperiment
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In this six-element symbol, the left side of the partition refers to particle 1 and the
right side to particle 2. Each element of the symbol shows whether a measurement of
the component of the spin of the particle gives + or − in the corresponding direction
â, b̂, or ĉ; bj indicates no determination in the direction ĵ. This notation inherently
assumes locality, e.g. we make the assignment +b for particle 2 independent of any
direction â or outcome, + or −, for particle 1.

Now, in a classical (hidden variable) theory, if the spin component of particle 1
is measured in the direction â, and found to be +1/2, then a measurement of the
spin of particle 2 in the same direction â can be predicted to be −1/2 with certainty.
Hence, we include this information and write,

Pab = P(+ − d c|− + d c) . (6)

Similarly, we have

Pbc = P(d a + −|d a − +) , (7)

Pac = P(+ d b −|− d b +) . (8)

In a classical probability theory, the remaining undetermined components, b j, will
have specific values. That is, in any fixed direction, the spin component of every
particle must have a definite value, either +1/2 or −1/2. Consequently, we can write
Eq. (6) as a sum of probabilities for these two possibilities for b c

Pab = P(+−+|−+−)+P(+−−|−++)
≡ P(+−+) +P(+−−) ,

(9)

where on the second line we have dropped the redundant information involving
the second particle by writing P(+−+) for P(+−+|−+−); that is, for every
direction, the signs for the second particle must be opposite to those for the first
particle. Thus, we can write Eqs. (6)–(8) as

Pab = P(+−+)+P(+−−) , (10)

Pbc = P(++−)+P(−+−) , (11)

Pac = P(++−)+P(+−−) . (12)

The P(+−+), etc. describe measurements that, contrary to the actual experimental
situation, were never carried out. In fact, no prescription is known for measuring the
separate classical probabilities P(+−+), P(+−−), etc. on the right hand sides
of Eqs. (10)–(12). But, their sums, the Pab, etc. on the left hand sides are indeed
physical measurable probabilities.
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4 Quantum Mechanics Preliminaries

For calculational purposes, the state vector, Eq. (4), for two spin 1/2 particles in an
entangled singlet state can be written as

|Ψ 〉=
1√
2

{(
1
0

)

1

(
0
1

)

2
−
(

0
1

)

1

(
1
0

)

2

}

. (13)

We now set the stage for our quantum mechanical considerations by recalling that
for a spin 1/2 particle in a state |Ψ 〉, the probability of observing spin up in a
direction at angle θ to the z-axis is

|〈θ |Ψ〉|2 = 〈Ψ | θ〉〈θ |Ψ〉= 〈Ψ |π̂θ|Ψ〉 , (14)

where π̂θ = |θ〉〈θ| is the projection operator, and |θ〉 = exp[−(i/2)σyθ] |↑〉. Thus,
the projection operator for spin up in the direction of a unit vector r̂ at angle θ to the
z-axis is

π̂θ = |θ〉〈θ|= 1
2

(I+σz cosθ+σx sinθ)≡ 1
2

(I+�σ · r̂) , (15)

where �σ = (σx,σy,σz) are Pauli matrices and I is the identity matrix. We can also
explicitly rewrite π̂θ as a matrix,

π̂θ =
1
2

(
1+ cosθ sinθ

sinθ 1− cosθ

)

. (16)

We define the physical observable Pab to be the joint probability that if particle 1
passes through an SGA oriented in direction â, it will be deflected in the +â (“up”)
direction and if particle 2 passes through an SGA oriented in direction b̂, it will be
deflected in the +b̂ direction

Pab =
〈

Ψ
∣
∣
∣π̂(1)

â π̂
(2)
b̂

∣
∣
∣Ψ
〉

, (17)

where each projection operator has a superscript identifying the particle and a vector
subscript defining the measurement direction in the x–z plane. (A calligraphy font
P is used for quantum mechanical probabilities to contrast with the plain font P for
classical probabilities.) Similarly,

Pbc =
〈

Ψ
∣
∣
∣π̂(1)

b̂
π̂(2)

ĉ

∣
∣
∣Ψ
〉

, (18)

Pac =
〈

Ψ
∣
∣
∣π̂(1)

â π̂
(2)
ĉ

∣
∣
∣Ψ
〉

, (19)

Evaluation of Eq. (17) using Eq. (16) and the state vector Eq. (13) gives,

Pab =
1
4
{1− cos(θa −θb)} =

1
4
{

1− â · b̂
}

, (20)
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where θa(θb) is the angle of vector â (b̂) with respect to the z-axis. This is the well-
known result for the quantum mechanical prediction. Other forms can be readily
obtained from this expression; for example, P−ab is the joint probability when the
SGA for particle 1 is in the direction â and that for particle 2 is in the direction b̂,

P−ab =
1
4
{

1+ â · b̂
}

. (21)

Similarly, for example, we immediately see from Eq. (20) that P−a−b = Pab. For
other directions such as Pac, one would simply change b to c in Eq. (20).

Let us now present a simple, quantum mechanically sound argument that will
also provide guidance later. In particular, it will enable us to cast the quantum me-
chanical joint passage probability Pab into forms that are in direct correspondence
with the classical probability expressions, Eqs. (10)–(12). First, recall the complete-
ness expression,

I = π̂(1)
â + π̂(1)

−̂a. (22)

In this expression, note that if the angle between â and the +z-axis is θa, then for
−̂a this angle is θa +π. By inserting this identity operator I into Eqs. (17)–(19), we
can obtain the quantum mechanical analogs of Eqs. (10)–(12),

Pab =
〈

Ψ
∣
∣
∣π̂(1)

+âπ̂
(2)
+b̂

I(1)
∣
∣
∣Ψ
〉

=
〈

Ψ
∣
∣
∣π̂(1)

+âπ̂
(2)
+b̂
π̂(1)

+ĉ

∣
∣
∣Ψ
〉

+
〈

Ψ
∣
∣
∣π̂(1)

+âπ̂
(2)
+b̂
π̂(1)
−̂c

∣
∣
∣Ψ
〉

≡ P(+−+) + P(+−−),
(23)

Pbc =
〈

Ψ
∣
∣
∣I(1)π̂(1)

+b̂
π̂(2)

+ĉ

∣
∣
∣Ψ
〉

=
〈

Ψ
∣
∣
∣π̂(1)

+âπ̂
(2)
+b̂
π̂(1)

+ĉ

∣
∣
∣Ψ
〉

+
〈

Ψ
∣
∣
∣π̂(1)

−âπ̂
(2)
+b̂
π̂(1)

+ĉ

∣
∣
∣Ψ
〉

≡ P(++−) + P(−+−),
(24)

Pac =
〈

Ψ
∣
∣
∣π̂(1)

+b̂
I(1)π̂(2)

+ĉ

∣
∣
∣Ψ
〉

=
〈

Ψ
∣
∣
∣π̂(1)

+âπ̂
(2)
+b̂
π̂(1)

+ĉ

∣
∣
∣Ψ
〉

+
〈

Ψ
∣
∣
∣π̂(1)

+âπ̂
(2)
−b̂
π̂(1)

+ĉ

∣
∣
∣Ψ
〉

≡ P(++−) + P(+−−),
(25)

where P(+−+), P(+−−), etc. are the quantum mechanical analogs of the P(+−
+), P(+−−), etc. in Eqs. (10)–(12). Note that the concept of locality plays no role
in the derivation of Eqs. (23)–(25).

Using the projection operator, Eq. (16), and the state vector, Eq. (13), it is
a straight-forward calculation to evaluate the terms on the right hand sides of
Eqs. (23)–(25). We explicitly present the first one,

〈

Ψ
∣
∣
∣π̂(1)

+âπ̂
(2)
+b̂
π̂(1)

+ĉ

∣
∣
∣Ψ
〉

= P(+−+) =
1
8
[1− â · b̂+ â · ĉ− b̂ · ĉ], (26)

and note that knowledge of P(+−+), is sufficient to obtain the others. For example,
P(+−−) = 1

8 [1− â · b̂− â · ĉ+ b̂ · ĉ] is obtained from Eq. (26) by simply changing
ĉ to −ĉ. Likewise, an exchange of particle labels (e.g. 1 ↔ 2) corresponds to a
change of sign of the vector direction (â, b̂, or ĉ), since spin “up” for one particle
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corresponds to spin “down” for the other. Such considerations are “useful” because
they make clear the derived results that,

P(+−−) =
〈

Ψ
∣
∣
∣π̂(1)

+âπ̂
(1)
−b̂π̂

(2)
+ĉ

∣
∣
∣Ψ
〉

=
〈

Ψ
∣
∣
∣π̂(1)

+âπ̂
(2)
+b̂π̂

(1)
−ĉ

∣
∣
∣Ψ
〉

=
〈

Ψ
∣
∣
∣π̂(1)

+âπ̂
(1)
−b̂π̂

(1)
−ĉ

∣
∣
∣Ψ
〉

= . . . , (27)

where, for example, the third term involves only particle 1. Furthermore, in spite of
the fact that projection operators for the same particle do not generally commute,
the P (.. .. ..), are independent of the ordering of the operators as may be shown by
explicit evaluation, e.g.

P(+−−) =
〈

Ψ
∣
∣
∣π̂(1)

+âπ̂
(1)
−b̂
π̂(2)

+ĉ

∣
∣
∣Ψ
〉

=
〈

Ψ
∣
∣
∣π̂(1)

−b̂
π̂(1)

+âπ̂
(2)
+ĉ

∣
∣
∣Ψ
〉

=
〈

Ψ
∣
∣
∣π̂(1)

+âπ̂
(1)
−ĉ π̂

(1)
−b̂

∣
∣
∣Ψ
〉

= . . . , (28)

In a previous paper [17], we have shown that in a classical hidden variable theory,
the probabilities given in Eqs. (10)–(12) lead to the expression

Pab +Pbc = Pac +P(+−+)+P(−+−). (29)

Since it is assumed every P(.. .. ..) ≥ 0, the Bell–Wigner inequality is immediately
obtained,

Pab +Pbc ≥ Pac. (30)

The expressions shown in the second lines of Eqs. (23)–(25) can be combined to
obtain

Pab +Pbc = Pac +P(+−+)+P(−+−). (31)

By comparing this to Eq. (29), one can easily identify the quantum analogs of the
classical probabilities, P(+−+). But, the quantities P (+−+) and P(−+−),
which are the quantum counterparts of P(+−+) , and P(−+−), are not always
positive. For example, at the angles θa = 0, θb = π/3, and θc = 2π/3, we find
P(+−+) = P (−+−) =−0.0625. Thus, the introduction of hidden variables leads
to probabilities that must be positive to obtain a Bell inequality, but whose quantum
counterparts can be negative; i.e. they cannot be physical probabilities. This is the
first example that shows the assumptions (i) hidden variables and (ii) corresponding
positive probabilities are jointly untenable in quantum mechanics.

We will make use of the foregoing to examine the assumption of positive proba-
bilities in Bell’s original derivation of an inequality [2]. We will then further extend
this examination to the strong Bell inequality of Clauser–Horne [25]. The latter does
not require auxiliary assumptions for a doable experiment and also tests inherently
stochastic theories.
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5 Bell’s Original Inequality

In his pioneering paper [2] Bell considers an EPR state given by Eq. (13), and
assumes a “more complete specification effected by means of parameters λ” with
probability distribution ρ(λ). Then the expectation value of the product of the
two components �σ1 · â and �σ2 · b̂ of particles 1 and 2 in the directions â and b̂
respectively, is

Eab ≡ E(â, b̂) =
∫

dλρ(λ)A(â,λ)B(b̂,λ), (32)

where A =±1 and B =±1 are the results of measuring�σ1 · â and�σ2 · b̂, respectively.
The quantum mechanical expectation value of (�σ1 · â)(�σ2 · b̂) in the singlet state,
Eq. (13), is

Eab =
〈

Ψ
∣
∣(�σ1 · â)

(
�σ2 · b̂

)∣
∣Ψ
〉

=−â · b̂. (33)

(Note, Bell used P for expectation value; we use E and E to avoid confusion with
the probabilities P and P.) The relation between the quantum mechanical quantities
Pab and Eab is easily determined. First, from Eq. (15) we find,

π̂(1)
+â − π̂

(1)
−â =

1
2

(I+�σ1 · â)− 1
2

(I−�σ1 · â) =�σ1 · â. (34)

Hence, from Eq. (33) we have

Eab =
〈

Ψ
∣
∣
∣

(

π̂(1)
+â − π̂

(1)
−â

) (

π̂(2)
+b̂

− π̂(1)
−b̂

)∣
∣
∣Ψ
〉

=
〈

Ψ
∣
∣
∣π̂(1)

+âπ̂
(2)
+b̂

∣
∣
∣Ψ
〉

−
〈

Ψ
∣
∣
∣π̂(1)

−âπ̂
(2)
+b̂

∣
∣
∣

〉

−
〈

Ψ
∣
∣
∣π̂(1)

+âπ̂
(2)
−b̂

∣
∣
∣Ψ
〉

+
〈

Ψ
∣
∣
∣π̂(1)

−âπ̂
(2)
−b̂

∣
∣
∣Ψ
〉

.

(35)

From the definition, Eq. (17), this gives

Eab = Pab −P−ab −Pa−b +P−a−b. (36)

Now, since the space ρ(λ) in Eq. (32) is spanned by 4 regions with classical
probabilities Pab, P−ab, Pa−b, P−a−b, in which A and B have values ±1, the integral
in Eq. (32) can be explicitly evaluated as

Eab = (+1)(+1)Pab+(−1)(+1)P−ab +(+1)(−1)Pa−b +(−1)(−1)P−a−b, (37)

Eab = Pab −P−ab −Pa−b +P−a−b, (38)

in exact correspondence with the quantum mechanical result, Eq. (36).
To derive the Bell inequality, relationships between expectation values for com-

binations among three directions, e.g. â, b̂ and ĉ are required. Consequently, we use
Eqs. (10)–(12) to rewrite measurable expectation values Ejk in terms of the hidden
variable probabilities P( .. .. ..). Using Eq. (10) in Eq. (38) gives
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Eab = P(+−+)+P(+−−)−P(−−+)−P(−−−)−P(+++)
−P(++−)+P(−++)+P(−+−) . (39)

Together with the normalization condition ∑P(±±±) = 1, this becomes

Eab = 2{P(+−+)+P(+−−)+P(−++)+P(−+−)}−1. (40)

Similarly, we find

Eac = 2{P(++−)+P(+−−)+P(−++)+P(−−+)}−1. (41)
Ebc = 2{P(++−)+P(−+−)+P(+−+)+P(−−+)}−1. (42)

Comparison of Eqs. (40)–(42) shows that

Eab −Eac = 1+Ebc −4P(++−)−4P(−−+) (43)
Eac −Eab = 1+Ebc −4P(−+−)−4P(+−+) (44)

If, and only if, the P(. . .)’s are ≥ 0, then Eqs. (43) and (44) can be written

Eab −Eac ≤ 1+Ebc, (45)
Eac −Eab ≤ 1+Ebc, (46)

respectively. The right hand sides are identical and the left-hand sides have opposite
sign; consequently we immediately have Bell’s original inequality,

|Eac −Eab| ≤ 1+Ebc. (47)

Thus, the Bell hidden variable proof requires the assumption that classical proba-
bilities like P(+−+) are ≥0; but, their quantum mechanical counterparts can, in
fact, be negative. One can only expect that the experimental tests of Bell inequalities
should violate the inequalities when the experimental conditions are such that the
quantum mechanical counterparts of the classical probabilities are negative. Again,
since the results of experimental tests agree with the quantum mechanical predic-
tions, hidden variables and their corresponding positive probabilities cannot co-exist
in quantum mechanics.

We demonstrate the necessity of this positive probability assumption one more
time by explicitly examining the derivation of Eq. (15) in Bell’s original paper [2].
Specifically, in the second equation preceding his Eq. (15), Bell writes,

E(â, b̂)−E(â, ĉ) =
∫

dλρ(λ)A(â,λ)B(b̂,λ)
[

A(b̂,λ)A(ĉ,λ)−1
]

. (48)

The space ρ(λ) in Eq. (48) is spanned by 8 regions with probabilities P(±±±) in
which A(â,λ), A(b̂,λ), and A(ĉ,λ) have values ±1. Evaluation of the integral in
Eq. (48) over these eight regions gives

E(â, b̂)−E(â, ĉ) =−2P(++−)+2P(+−+)+2P(−+−)−2P(−−+) . (49)
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Bell takes the absolute value of both sides to obtain his eq. 15,
∣
∣E(â, b̂)−E(â, ĉ)

∣
∣≤+2P(++−)+2P(+−+)+2P(−+−)+2P(−−+) . (50)

Using Eq. (42) gives
∣
∣E(â, b̂)−E(â, ĉ)

∣
∣≤ 1+E(b̂, ĉ). (51)

To obtain Eq. (50) from Eq. (49), one must assume all the required classical
P(±±±) are real, non-negative probabilities. In fact, we know their quantum coun-
terparts can be negative.

6 The Bell Inequality of Clauser–Horne

Clauser and Horne [25] proved a Bell inequality for general local realistic theo-
ries, including inherently stochastic ones. It had the distinct advantage of defin-
ing a doable experiment that did not require auxiliary assumptions. Clauser and
Shimony [26] derived the Clauser–Horne (CH) inequality using a method invented
by Wigner [27] and then independently by Belinfante [28]. We will first very briefly
sketch their derivation, but with two changes in notation to match the rest of our
paper. We replace their ρ(ij; kl) with P(ij; kl); their p12(a, b) with Pab; their p1(a)
with P1a; and their p2(b) with P2b. We also make the discussion in the context of
Bohm’s version of the Einstein–Podolsky–Rosen gedankenexperiment, see Fig.1.

Consider two orientations, a and a′, of the analyzer for particle 1, and two ori-
entations, b and b′, of the analyzer for particle 2. At each orientation, there are two
possible results of the measurement, +1 and −1. (We will denote these as simply
+ and −). Thus the space of possible measurement results consists of 16 disjoint
subspaces, i.e. two possible results for each orientation: a, a′, b and b′ gives 24 = 16
subspaces. The probability of each subspace is defined to be P(ij; kl), where i is
+ (−) if the spin of particle 1 is up (down) in the direction a; j is + (−) if the spin
of particle 1 is up (down) in the direction a′; k is + (−) if the spin of particle 2 is
up (down) in the direction b; and l is + (−) if the spin of particle 2 is up (down)
in the direction b′. The authors state “Clearly all P(ij; kl) are non-negative”, where
we have written P instead of their ρ; this statement is crucial to the derivation of
the Bell inequality and it is these P(ij; kl) whose quantum mechanical counterparts
will be shown to have negative values. Since the 16 subspaces are exhaustive and
disjoint, we have

∑
ijkl

P(ij;k l) = 1. (52)

The probability Pab for measurement results of spin up in the direction a for
particle 1 and direction b for particle 2 is given by the sum of all the probabilities
P(i j; kl) for which i = + and k = +, similarly for Pa′b, etc. The probability P1a′ for
measurement results of spin up in the direction a for particle 1 is given by the sum
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of all the probabilities P(i j; kl) for which j = +, the result for P2b is analogous.
Thus we have:

Pab = P(++;++)+P(++;+−)+P(+−;++)+P(+−;+−) (53)

Pab′ = P(++;++)+P(++;−+)+P(+−;++)+P(+−;−+) (54)

Pa′b = P(++;++)+P(++;+−)+P(−+;++)+P(−+;+−) (55)

Pa′b′ = P(++;++)+P(++;−+)+P(−; ++)+P(−+;−+) (56)

P1a′ = P(++;++)+P(++;+−)+P(++;−+)+P(++;−−)
+P(−+;++)+P(−+;+−)+P(−+;−+)+P(−+;−−)

(57)

P2b = P(++;++)+P(++;+−)+P(+−;++)+P(+−;+−)
+P(−+;++)+P(−+;+−)+P(−−;++)+P(−−;+−)

(58)

It follows that

Pab −Pab′ +Pa′b +Pa′b′ −P1a′ −P2b

=−P(++;−+)−P(++;−−)−P(+−;++)−P(+−;−+)
−P(−+;+−)−P(−+;−−)−P(−−;++)+P(−−;+−)

(59)

The right hand side (RHS) of Eq. (59) is a sum over only 8 of the 16 subspaces,
therefore we have

RHS ≥−∑
ijkl

P(ij;k l) =−1. (60)

From Eqs. (59) and (60) the Bell inequality of CH for the more general stochastic
case is obtained,

−1 ≤ Pab −Pab′ +Pa′b +Pa′b′ −P1a′ −P2b ≤ 0. (61)

But this result is critically dependent all the P(. . .)S in the RHS of Eq. (59) being
non-negative; we now evaluate their quantum mechanical counterparts.

Again, in concert with the definition of Pab, Eq. (53), we define the quantum
mechanical observable Pab to be the joint probability that if particle 1 passes through
an SGA oriented in the direction â, it will be deflected in the +â (“up”) direction and
if particle 2 passes through an SGA oriented in the direction b̂, it will be deflected
in the +b̂ direction, Eq. (17),

Pab =
〈

Ψ
∣
∣
∣π̂(1)

â π̂
(2)
b̂

∣
∣
∣Ψ
〉

. (62)

We now write two identity operators analogous to Eq. (22)

I(1) = π̂(1)
â′ + π̂(1)

−â′ and I(2) = π̂(2)
b̂′

+ π̂(2)
−b̂′

, (63)
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and insert them in Eq. (62),

Pab =
〈

Ψ
∣
∣
∣π̂(1)

â I(1)π̂(2)
b̂

I(2)
∣
∣
∣Ψ
〉

=
〈

Ψ
∣
∣
∣π̂(1)

â

(

π̂(1)
â′ + π̂(1)

−â′

)

π̂(2)
b̂

(

π̂(2)
b̂′

+ π̂(2)
−b̂

)∣
∣
∣Ψ
〉

.

(64)

Expanding the projection operator products gives

Pab =
〈

Ψ
∣
∣
∣π̂(1)

â π̂
(1)
â′ π̂

(2)
b̂
π̂(2)

b̂′

∣
∣
∣Ψ
〉

+
〈

Ψ
∣
∣
∣π̂(1)

â π̂
(1)
â′ π̂

(2)
b̂
π̂(2)
−b̂′

∣
∣
∣Ψ
〉

+
〈

Ψ
∣
∣
∣π̂(1)

â π̂
(1)
−â′ π̂

(2)
b̂
π̂(2)
−b̂′

∣
∣
∣Ψ
〉

+
〈

Ψ
∣
∣
∣π̂(1)

â π̂
(1)
−â′ π̂

(2)
b̂
π̂(2)
−b̂′

∣
∣
∣Ψ
〉 (65)

The four terms on the right hand side of Eq. (65) are the quantum mechanical coun-
terparts of the four corresponding classical probabilities on the right hand side of
Eq. (53). We therefore write

Pab = P(++;++)+P(++;+−)+P(+−;++)+P(+−;+−) (66)

We evaluate the first term on the right hand side of Eqs. (65) or (66) using the
entangled singlet state of Eq. (13) and the projection operators given by Eq. (16),

P(++;++) =
〈

Ψ
∣
∣
∣π̂(1)

â π̂
(1)
â′ π̂

(2)
b̂
π̂(2)

b̂′

∣
∣
∣Ψ
〉

=
1

16
{1+cos(θa −θa′)− cos(θa −θb)− cos(θa′ −θb)− cos(θa −θb′)

− cos(θa′ −θb′)+ cos(θb −θb′)+ cos(θa −θa′)cos(θb −θb′)
+sin(θa −θa′)sin(θb −θb′)}

≡ P(θa,θa′ ,θb,θb′),
(67)

where θa, θa′ , θb, and θb′ are the angles between the z-axis and the unit vectors
â, â′, b̂ and b̂′, respectively, and we have defined the function p(θa,θa′ ,θb,θb′). The
function p(θa,θa′ ,θb,θb′) can be used to evaluate the probabilities P(i j ; k l) on all
16 subspaces by noting that if â is at angle θa to the z = axis, then −â is at angle
π+θa to the z = axis. Thus, for example

P(−+;++) = p(π+θa,θa′ ,θb,θb′). (68)

Equation (67) can also be written directly in terms of the unit vectors â, â′, b̂ and b̂′

P(++;++) =
1

16

{

1+ â · â′ − â · b̂− â′ · b̂− â′ · b̂′ − â′ · b̂′ + b̂ · b̂′ +(â · b̂)(â′ · b̂′)

−(â′ · b̂)(â · b̂′)− (â · â′)(b̂ · b̂′)
}

. (69)

All 16 of the quantum counterparts, P(i j;k l), can be immediately obtained from
Eq. (69) by changing the sign of the appropriate vector(s) in the result; this is equiv-
alent to adding π to the angle as in Eq. (68). For example, we have
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P(+−;++) =
1

16

{

1− â · â′ − â · b̂+ â′ · b̂− â′ · b̂′ + â′ · b̂′+ b̂ · b̂′ − (â · b̂)(â′ · b̂′)

+(â′ · b̂)(â · b̂′)+(â · â′)(b̂ · b̂′)
}

. (70)

Using Eq. (69) together with the appropriate modifications for the other 15 ex-
pressions, e.g. Eq. (70), one can show by direct evaluation that

∑
i jkl

P(i j; k l) = 1, (71)

independent of the unit vectors â, â′, b̂ and b̂′. Equation (71) is the quantum counter-
part of Eq. (52).

We can evaluate all P(i j; k l) for arbitrary â, â′, b̂ and b̂′ using p(θa,θa′ ,θb,θb′)
as defined in Eq. (67) and with the caveat of9adding π to the angle when the corre-
sponding i, j, k, or l is negative. The crucial discovery is that, although the classical
P(i j; kl) must be non-negative in order to derive a Bell inequality, their quantum
counterparts P(i j; k l) can be negative. As an example,

p
(

θa,
π
2
,
π
2
,0
)

=−cosθa

8
. (72)

This is clearly negative for a wide range of angles.

7 Summary

We have repeatedly found that the introduction of hidden variables leads to classi-
cal probabilities that must be non-negative in order to derive a Bell inequality, but
whose quantum counterparts can, in fact, be negative. (It should be noted that for-
mulation of those non-negative classical probabilities assumes Bell’s locality.) It is
not surprising that quantum mechanical predictions violate Bell inequalities; quan-
tum mechanics predicts some quantities are negative that the Bell inequality deriva-
tions assume are non-negative! The assumption of non-negative probabilities for
seemingly physical correlations is in direct conflict with the predictions of quantum
mechanics. The fact that experimental tests of Bell inequalities violate the inequali-
ties and agree with quantum mechanical predictions is strong evidence for quantum
mechanics without hidden variables. The Bell inequality derivations make a local-
ity assumption that is inherently violated by quantum mechanics from the aspect of
Outcome Independence; but, the Bell inequality experiments offer no justification
for non-locality in the sense of superluminal communication.

To conclude, it is worthwhile to recall some previous work that bears directly on
the present discussion of negative probabilities in classical models that reproduce
quantum mechanical predictions. These include: (i) the Belinfante–Scully [28, 29]
hidden variable theory that requires negative probabilities in order to reproduce
quantum predictions; (ii) a response by Aspect [30] showing that a classical model
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of Barut invokes negative probabilities; (iii) the observation by Meystre [31] that the
introduction of negative probabilities permits construction of local hidden variable
theories that reproduce quantum predictions.
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The Physics of 2 �= 1+1

Yanhua Shih

Abstract One of the most surprising consequences of quantum mechanics is the
entanglement of two or more distant particles. In an entangled EPR two-particle
system, the value of the momentum (position) for neither single subsystem is de-
termined. However, if one of the subsystems is measured to have a certain momen-
tum (position), the other subsystem is determined to have a unique corresponding
value, despite the distance between them. This peculiar behavior of an entangled
quantum system has been observed experimentally, such as in two-photon tempo-
ral correlation measurements and in two-photon imaging experiments. This arti-
cle addresses the fundamental concerns behind these experimental observations and
explores the nonclassical nature of two-photon superposition by emphasizing the
physics of 2 �= 1+1.

1 Introduction

In quantum theory, a particle is allowed to exist in a set of orthogonal states simul-
taneously. A vivid picture of this concept might be Schrödinger’s cat, where his cat
is in a state of both alive and dead simultaneously. In mathematics, the concepts
of “alive” and “dead” are expressed through the idea of orthogonality. In quantum
mechanics, the superpositions of these orthogonal states are used to describe the
physical reality of a quantum object. In this respect the superposition principle is
indeed a mystery when compared with our everyday experience.

In this article, we discuss another surprising consequence of quantum me-
chanics, namely that of quantum entanglement. Quantum entanglement involves a
multi-particle system in a coherent superposition of orthogonal states. Here again
Schrödinger’s cat is a nice way of emphasizing the strangeness of quantum en-
tanglement. Now imagine two Schrödinger’s cats propagating to separate distant
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locations. The two cats are nonclassical by means of the following two criteria:
(1) each of the cats is in a state of alive and dead simultaneously; (2) the two must
be observed to be both alive or both dead whenever we observe them, despite their
separation. There would probably be no concern if our observations were based on
a large number of alive–alive or dead–dead twin cats, pair by pair, with say a 50%
chance to observe a dead–dead or alive–alive pair. However, we are talking about a
single pair of cats with this single pair being in the state of alive–alive and dead–
dead simultaneously, and, in addition each of the cats in the pair must be alive and
dead simultaneously. The superposition of multi-particle states with these entangled
properties represents a troubling concept to classical theory. These concerns derive
not only from the fact that the superposition of multi-particle states has no classical
counterpart, but also because it represents a nonlocal behavior which may never be
understood classically.

The concept of quantum entanglement in 1935 was emphasized by Einstein,
Podolsky and Rosen [1], who suggested a gedankenexperiment and introduced an
entangled two-particle system based on the superposition of two-particle wavefunc-
tions. The EPR system is composed of two distant interaction-free particles which
are characterized by the following wavefunction:

Ψ(x1, x2) =
1

2π h̄

∫

d p1d p2 δ (p1 + p2)eip1(x1−x0)/h̄eip2x2/h̄ = δ (x1 − x2 − x0) (1)

where eip1(x1−x0)/h̄ and eip2x2/h̄ are the eigenfunctions with eigenvalues p1 = p and
p2 = −p of the momentum operators p̂1 and p̂2 associated with particles 1 and 2,
respectively. x1 and x2 are the coordinate variables to describe the positions of par-
ticles 1 and 2, respectively; and x0 is a constant. The EPR state is very peculiar.
Although there is no interaction between the two distant particles, the two-particle
superposition cannot be factorized into a product of two individual superpositions
of two particles. Remarkably, quantum theory permits such states.

What can we learn from the EPR state of Eq. (1)?

(1) In coordinate representation, the wavefunction is a delta function δ (x1 − x2 −
x0). The two particles are separated in space with a constant value of x1 − x2 =
x0, although the coordinates x1 and x2 of the two particles are both unspecified.

(2) The delta wavefunction δ (x1 − x2 − x0) is the result of the superposition of
plane wavefunctions for free particle one, eip1(x1−x0)/h̄, and free particle two,
eip2x2/h̄, with a particular distribution δ (p1 + p2). It is δ (p1 + p2) that made the
superposition special. Although the momentum of particle one and particle two
may take on any values, the delta function restricts the superposition to only
those terms in which the total momentum of the system takes a constant value
of zero.

Now, we transfer the wavefunction from coordinate representation to momentum
representation:

Ψ(p1, p2) =
1

2π h̄

∫

dx1dx2 δ (x1 − x2 − x0)e−ip1(x1−x0)/h̄e−ip2x2/h̄ = δ (p1 + p2). (2)
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What can we learn from the EPR state of Eq. (2)?

(1) In momentum representation, the wavefunction is a delta function δ (p1 + p2).
The total momentum of the two-particle system takes a constant value of p1 +
p2 = 0, although the momenta p1 and p2 are both unspecified.

(2) The delta wavefunction δ (p1 + p2) is the result of the superposition of plane
wavefunctions for free particle one, e−ip1(x1−x0)/h̄, and free particle two,
e−ip2x2/h̄, with a particular distribution δ (x1−x2−x0). It is δ (x1−x2−x0) that
made the superposition special. Although the coordinates of particle one and
particle two may take on any values, the delta function restricts the superposi-
tion to only those terms in which x1 − x2 is a constant value of x0.

In an EPR system, the value of the momentum (position) for neither single sub-
system is determined. However, if one of the subsystems is measured to be at a cer-
tain momentum (position), the other one is determined with a unique corresponding
value, despite the distance between them. An idealized EPR state of a two-particle
system is therefore characterized by Δ(p1 + p2) = 0 and Δ(x1 − x2) = 0 simultane-
ously, even if the momentum and position of each individual free particle are com-
pletely undefined, i.e., Δp j ∼ ∞ and Δx j ∼ ∞, j = 1,2. In other words, each of the
subsystems may have completely random values or all possible values of momentum
and position in the course of their motion, but the correlations of the two subsystems
are determined with certainty whenever a joint measurement is performed.

The EPR states of Eqs. (1) and (2) are simply the results of the quantum me-
chanical superposition of two-particle states. The physics behind EPR states is far
beyond the acceptable limit of Einstein.

Does a free particle have a defined momentum and position in the state of Eqs. (1)
and (2), regardless of whether we measure it or not? On one hand, the momentum
and position of neither independent particle is specified and the superposition is
taken over all possible values of the momentum and position. We may have to be-
lieve that the particles do not have any defined momentum and position, or have
all possible values of momentum and position within the superposition, during the
course of their motion. On the other hand, if the measured momentum (position) of
one particle uniquely determines the momentum (position) of the other distant par-
ticle, it would be hard for anyone who believes no action-at-a-distance to imagine
that the momenta (position) of the two particles are not predetermined with defined
values before the measurement. EPR thus put us into a paradoxical situation. It
seems reasonable for us to ask the same question that EPR had asked in 1935: “Can
quantum-mechanical description of physical reality be considered complete?” [1].

In their 1935 article, Einstein, Podolsky and Rosen argued that the existence of
the entangled two-particle state of Eqs. (1) and (2), a straightforward quantum me-
chanical superposition of two-particle states, led to the violation of the uncertainty
principle of quantum theory. To draw their conclusion, EPR started from the follow-
ing criteria.

Locality: there is no action-at-a-distance;
Reality: “if, without in any way disturbing a system, we can predict with cer-

tainty the value of a physical quantity, then there exist an element of physical reality
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corresponding to this quantity.” According to the delta wavefunctions, we can pre-
dict with certainty the result of measuring the momentum (position) of particle 1 by
measuring the momentum (position) of particle 2, and the measurement of particle
2 cannot cause any disturbance to particle 1, if the measurements are space-like sep-
arated events. Thus, both the momentum and position of particle 1 must be elements
of physical reality regardless of whether we measure it or not. This, however, is not
allowed by quantum theory. Now consider:

Completeness: “every element of the physical reality must have a counterpart in
the complete theory.” This led to the question as the title of their 1935 article: “Can
Quantum-Mechanical Description of Physical Reality Be Considered Complete?”

The EPR argument was never appreciated by Copenhagen. Bohr criticized EPR’s
criterion of physical reality [2]: “it is too narrow”. However, it is perhaps not easy to
find a wider criterion. A memorable quote from Wheeler, “No elementary quantum
phenomenon is a phenomenon until it is a recorded phenomenon”, summarizes what
Copenhagen has been trying to teach us [3]. By 1927, most physicists accepted the
Copenhagen interpretation as the standard view of quantum formalism. Einstein,
however, refused to compromise. As Pais recalled in his book, during a walk around
1950, Einstein suddenly stopped and “asked me if I really believed that the moon
(pion) exists only if I look at it.” [4]

There has been arguments considering Δ(p1 + p2)Δ(x1 − x2) = 0 a violation of
the uncertainty principle. This argument is false. It is easy to find that p1 + p2 and
x1 − x2 are not conjugate variables. As we know, non-conjugate variables corre-
spond to commuting operators in quantum mechanics, if the corresponding opera-
tors exist.1 To have Δ(p1 + p2) = 0 and Δ(x1 − x2) = 0 simultaneously, or to have
Δ(p1 + p2)Δ(x1 − x2) = 0, is not a violation of the uncertainty principle. This point
can easily be seen from the following two dimensional Fourier transforms:

Ψ(x1, x2) =
1

2π h̄

∫

d p1 d p2 δ (p1 + p2)eip1(x1−x0)/h̄ eip2x2/h̄

=
1

2π h̄

∫

d(p1 + p2)δ (p1 + p2)ei(p1+p2)(x′1+x2)/2h̄
∫

d(p1 − p2)/2ei(p1−p2)(x′1−x2)/2h̄

= 1×δ (x1 − x2 − x0)

where x′ = x1 − x0;

Ψ(p1, p2) =
1

2π h̄

∫

dx1 dx2 δ (x1 − x2 − x0)e−ip1(x1−x0)/h̄ e−ip2x2/h̄

=
1

2π h̄

∫

d(x′1 + x2)e−i(p1+p2)(x′1+x2)/2h̄
∫

d(x′1 − x2)/2δ (x′1 − x2)e−i(p1−p2)(x′1−x2)/2h̄

= δ (p1 + p2)×1.

The Fourier conjugate variables are (x1 +x2)⇔ (p1 + p2) and (x1−x2)⇔ (p1− p2).
Although it is possible to have Δ(x1 − x2) ∼ 0 and Δ(p1 + p2) ∼ 0 simultaneously,

1 It is possible that no quantum mechanical operator is associated with a measurable variable, such
as time t. From this perspective, an uncertainty relation based on variables rather than operators is
more general.
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the uncertainty relations must hold for the Fourier conjugates Δ(x1 + x2)Δ(p1 +
p2)≥ h̄, and Δ(x1 − x2)Δ(p1 − p2)≥ h̄; with Δ(p1 − p2)∼ ∞ and Δ(x1 + x2)∼ ∞.

In fact, in their 1935 paper, Einstein–Podolsky–Rosen never questioned Δ(x1 −
x2)Δ(p1 + p2) = 0 as a violation of the uncertainty principle. The violation of the
uncertainty principle was probably not Einstein’s concern at all, although their 1935
paradox was based on the argument of the uncertainty principle. What really both-
ered Einstein so much? For all of his life, Einstein, a true believer of realism, never
accepted that a particle does not have a defined momentum and position during its
motion, but rather is specified by a probability amplitude of certain a momentum
and position. “God does not play dice” was the most vivid criticism from Einstein
to refuse the Schrödinger’s cat. The entangled two-particle system was used as an
example to clarify and to reinforce Einstein’s realistic opinion. To Einstein, the ac-
ceptance of Schrödinger’s cat perhaps means action-at-a-distance or an inconsis-
tency between quantum mechanics and the theory of relativity, when dealing with
the entangled EPR two-particle system. Let us follow Copenhagen to consider that
each particle in an EPR pair has no defined momentum and position, or has all pos-
sible momentum and position within the superposition state, i.e., imagine Δp j �= 0,
Δx j �= 0, j = 1,2, for each single-particle until the measurement. Assume the mea-
surement devices are particle counting devices able to identify the position of each
particle among an ensemble of particles. For each registration of a particle the mea-
surement device records a value of its position. No one can predict what value is
registered for each measurement; the best knowledge we may have is the probabil-
ity to register that value. If we further assume no physical interaction between the
two distant particles and believe no action-at-a-distance exist in nature, we would
also believe that no matter how the two particles are created, the two registered val-
ues must be independent of each other. Thus, the value of x1 − x2 is unpredictable
within the uncertainties of Δx1 and Δx2. The above statement is also valid for the
momentum measurement. Therefore, after a set of measurements on a large num-
ber of particle pairs, the statistical uncertainty of the measurement on p1 + p2 and
x1 − x2 must obey the following inequalities:

Δ(p1 + p2) =
√

(Δp1)2 +(Δp2)2 > Max(Δp1,Δp2) (3)

Δ(x1 − x2) =
√

(Δx1)2 +(Δx2)2 > Max(Δx1,Δx2).

Equation (3) is obviously true in statistics, especially when we are sure that no
disturbance is possible between the two independent-local measurements. This con-
dition can be easily realized by making the two measurement events space-like sep-
arated events. The classical inequality of Eq. (3) would not allow Δ(p1 + p2) = 0
and Δ(x1 − x2) = 0 as required in the EPR state, unless Δp1 = 0, Δp2 = 0, Δx1 = 0
and Δx2 = 0, simultaneously. Unfortunately, the assumption of Δp1 = 0, Δp2 = 0,
Δx1 = 0, Δx2 = 0 cannot be true because it violates the uncertainty relations
Δp1Δx1 ≥ h̄ and Δp2Δx2 ≥ h̄.
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In a non-perfect entangled system, the uncertainties of p1 + p2 and x1 − x2 may
differ from zero. Nevertheless, the measurements may still satisfy the EPR inequal-
ities [5]:

Δ(p1 + p2) < min(Δp1,Δp2) (4)
Δ(x1 − x2) < min(Δx1,Δx2).

The apparent contradiction between the classical inequality Eq. (3) and the EPR
inequality Eq. (4) deeply troubled Einstein. While one sees the measurements of
p1 + p2 and x1 − x2 of the two distant individual free particles satisfying Eq. (4),
but believing Eq. (3), one might easily be trapped into concluding either there is a
violation of the uncertainty principle or there exists action-at-a-distance.

Is it possible to have a realistic theory which provides correct predictions of the
behavior of a particle similar to quantum theory and, at the same time, respects
the description of physical reality by EPR as “complete”? Bohm and his followers
have attempted a “hidden variable theory”, which seemed to satisfy these require-
ments [6]. The hidden variable theory was successfully applied to many different
quantum phenomena until 1964, when Bell proved a theorem to show that an in-
equality, which is violated by certain quantum mechanical statistical predictions,
can be used to distinguish local hidden variable theory from quantum mechanics [7].
Since then, the testing of Bell’s inequalities became a standard instrument for the
study of fundamental problems of quantum theory [8]. The experimental testing of
Bell’s inequality started from the early 1970’s. Most of the historical experiments
concluded the violation of the Bell’s inequalities and thus disproved the local hidden
variable theory [8–10].

In the following, we examine a simple yet popular realistic model to simulate
the behavior of the entangled EPR system. This model concerns an ensemble of
classically correlated particles instead of the quantum mechanical superposition of
a particle. In terms of “cats”, this model is based on the measurement of a large
number of twin cats in which 50% are alive–alive twins and 50% are dead–dead
twins. This model refuses the concept of Schrödinger’s cat which requires a cat to
be alive and dead simultaneously, and each pair of cats involved in a joint detection
event is in the state of alive–alive and dead–dead simultaneously.

In this model, we may have three different states:

(1) State one, each single pair of particles holds defined momenta p1 = constant
and p2 = constant with p1 + p2 = 0. From pair to pair, the values of p1 and
p2 may vary significantly. The sum of p1 and p2, however, keeps a constant of
zero. Thus, each joint detection of the two distant particles measures precisely
the constant values of p1 and p2 and measures p1 + p2 = 0. The uncertainties
of Δp1 and Δp2 only have statistical meaning in terms of the measurements of
an ensemble. This model successfully simulated Δ(p1 + p2) = 0 based on the
measurement of a large number of classically correlated particle pairs. This is,
however, only half of the EPR story. Can we have Δ(x1−x2) = 0 simultaneously
in this model? We do have Δx1 ∼ ∞ and Δx2 ∼ ∞, otherwise the uncertainty
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principle will be violated. The position correlation, however, can never achieve
Δ(x1 − x2) = 0 by any means.

(2) State two, each single pair of particles holds a well defined position x1 = con-
stant and x2 = constant with x1 − x2 = x0. From pair to pair, the values of x1
and x2 may vary significantly. The difference of x1 and x2, however, maintains
a constant of x0. Thus, each joint detection of the two distant particles mea-
sures precisely the constant values of x1 and x2 and measures x1−x2 = x0. The
uncertainties of Δx1 and Δx2 only have statistical meaning in terms of the mea-
surements of an ensemble. This model successfully simulated Δ(x1 − x2) = 0
based on the measurement of a large number of classically correlated particle
pairs. This is, however, only half of the EPR story. Can we have Δ(p1 + p2) = 0
simultaneously in this model? We do have Δp1 ∼∞ and Δp2 ∼∞, otherwise the
uncertainty principle will be violated. The momentum correlation, however, can
never achieve Δ(p1 + p2) = 0 by any means.

The above two models of classically correlated particle pairs can never
achieve both Δ(p1 + p2) = 0 and Δ(x1−x2) = 0. What would happen if we com-
bine the two parts together? This leads to the third model of classical simulation.

(3) State three, among a large number of classically correlated particle pairs, we
assume 50% to be in state one and the other 50% state two. The p1 + p2 mea-
surements would have 50% chance with p1 + p2 = 0 and 50% chance with
p1 + p2 = random value. On the other hand, the x1 − x2 measurements would
have 50% chance with x1 − x2 = x0 and 50% chance with x1 − x2 = random
value. What are the statistical uncertainties on the measurements of (p1 + p2)
and (x1−x2) in this case? If we focus on only these events of state one, the sta-
tistical uncertainty on the measurement of (p1 + p2) is Δ(p1 + p2) = 0, and if
we focus on these events of state two, the statistical uncertainty on the measure-
ment of (x1 − x2) is Δ(x1 − x2) = 0; however, if we consider all the measure-
ments together, the statistical uncertainties on the measurements of (p1 + p2)
and (x1 − x2), are both infinity: Δ(p1 + p2) = ∞ and Δ(x1 − x2) = ∞.

In conclusion, classically correlated particle pairs may partially simulate EPR
correlation with three types of optimized observations:

(1) Δ(p1 + p2) = 0 (100%) & Δ(x1 − x2) = ∞ (100%);

(2) Δ(x1 − x2) = 0 (100%) & Δ(p1 + p2) = ∞ (100%);

(3) Δ(p1 + p2) = 0 (50%) & Δ(x1 − x2) = 0 (50%);

Within one setup of experimental measurements, only the entangled EPR states
result in the simultaneous observation of

Δ(p1 + p2) = 0 (100%) & Δ(x1 − x2) = 0 (100%)
Δp1 ∼ ∞, Δp2 ∼ ∞, Δx1 ∼ ∞, Δx2 ∼ ∞.

We thus have a tool, besides the testing of Bell’s inequality, to distinguish quantum
entangled states from classically correlated particle pairs.
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2 Entangled State

The entangled state of a two-particle system was mathematically formulated by
Schrödinger [11]. Consider a pure state for a system composed of two distinguish-
able subsystems

|Ψ〉=∑
a,b

c(a,b) |a〉 |b〉 (5)

where {| a〉} and {| b〉} are two sets of orthogonal vectors for subsystems 1 and 2,
respectively. If c(a,b) does not factor into a product of the form f (a)×g(b), then it
follows that the state does not factor into a product state for subsystems 1 and 2:

ρ̂ = |Ψ〉〈Ψ| =∑
a,b

c(a,b)|a〉|b〉∑
a′,b′

c∗(a′,b′)〈b′|〈a′| �= ρ̂1 × ρ̂2, (6)

where ρ̂ is the density operator, the state was defined by Schrödinger as an entangled
state.

Following this notation, the first classic entangled state of a two-particle system,
the EPR state of Eqs. (1) and (2), is thus written as:

|Ψ〉EPR = ∑
x1,x2

δ (x1 − x2 + x0) |x1 〉|x2 〉= ∑
p1,p2

δ (p1 + p2) | p1 〉| p2 〉, (7)

where we have described the entangled two-particle system as the coherent su-
perposition of the momentum eigenstates as well as the coherent superposition of
the position eigenstates. The two δ -functions in Eq. (7) represent, respectively and
simultaneously, the perfect position–position and momentum–momentum correla-
tion. Although the two distant particles are interaction-free, the superposition selects
only the eigenstates which are specified by the δ -function. We may use the follow-
ing statement to summarize the surprising feature of the EPR state: the values of the
momentum and the position for neither interaction-free single subsystem is deter-
minated. However, if one of the subsystems is measured to be at a certain value of
momentum and/or position, the momentum and/or position of the other one is 100%
determined, despite the distance between them.

It should be emphasized again that Eq. (7) is true, simultaneously, in the conju-
gate space of momentum and position. This is different from classically correlated
states

ρ̂ = ∑
p1,p2

δ (p1 + p2) | p1 〉| p2 〉〈 p2 |〈 p1 |, (8)

or
ρ̂ = ∑

x1,x2

δ (x1 − x2 + x0) |x1 〉|x2 〉〈x2 |〈x1 |. (9)

Equations (8) and (9) represent mixed states. Equations (8) and (9) cannot be true si-
multaneously as we have discussed earlier. Thus, we can distinguish entangled states
from classically correlated states through the measurements of the EPR inequalities
of Eq. (4).
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2.1 Two-Photon State of Spontaneous Parametric
Down-Conversion

The state of a signal-idler photon pair created in spontaneous parametric down-
conversion (SPDC) is a typical EPR state [12, 13]. Roughly speaking, the process
of SPDC involves sending a pump laser beam into a nonlinear material, such as
a non-centrosymmetric crystal. Occasionally, the nonlinear interaction leads to the
annihilation of a high frequency pump photon and the simultaneous creation of a
pair of lower frequency signal-idler photons forming an entangled two-photon state:

|Ψ〉=Ψ0∑
s,i
δ (ωs +ωi −ωp)δ (ks +ki −kp)a†

s (ks)a†
i (ki) | 0〉 (10)

where ω j, k j ( j = s, i, p) are the frequency and wavevector of the signal (s), idler
(i), and pump (p), a†

s and a†
i are creation operators for the signal and the idler pho-

ton, respectively, and Ψ0 is the normalization constant. We have assumed a CW
monochromatic laser pump, i.e., ωp and kp are considered as constants. The two
delta functions in Eq. (10) are technically named as the phase matching condi-
tion [12, 14]:

ωp = ωs +ωi, kp = ks +ki. (11)

The names signal and idler are historical leftovers. The names perhaps came about
due to the fact that in the early days of SPDC, most of the experiments were done
with non-degenerate processes. One radiation was in the visible range (and thus
easily observable, the signal), while the other was in the IR range (usually not
measured, the idler). We will see in the following discussions that the role of the
idler is no any less important than that of the signal. The SPDC process is referred
to as type-I if the signal and idler photons have identical polarizations, and type-II
if they have orthogonal polarizations. The process is said to be degenerate if the
SPDC photon pair has the same free space wavelength (e.g. λi = λs = 2λp), and
nondegenerate otherwise. In general, the pair exit the crystal non-collinearly, that
is, propagate to different directions defined by the second equation in Eq. (11) and
Snell’s law. In addition, the pair may also exit collinearly, in the same direction,
together with the pump.

The state of the signal–idler pair can be derived, quantum mechanically, by the
first order perturbation theory with the help of the nonlinear interaction Hamiltonian.
The SPDC interaction arises in a nonlinear crystal driven by a pump laser beam. The
polarization, i.e., the dipole moment per unit volume, is given by

Pi = χ(1)
i, j E j +χ

(2)
i, j,kE jEk +χ(3)

i, j,k,lE jEkEl + ... (12)

where χ(m) is the mth order electrical susceptibility tensor. In SPDC, it is the second
order nonlinear susceptibility χ(2) that plays the role. The second order nonlinear
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interaction Hamiltonian can be written as

H = ε0

∫

V
dr χ(2)

i jk EiE jEk (13)

where the integral is taken over the interaction volume V .
It is convenient to use the Fourier representation for the electrical fields in

Eq. (13):

E(r, t) =
∫

dk [E(−)(k)e−i(ω(k)t−k·r) +E(+)(k)ei(ω(k)t−k·r)]. (14)

Substituting Eq. (14) into Eq. (13) and keeping only the terms of interest, we obtain
the SPDC Hamiltonian in the interaction representation:

Hint(t)

= ε0

∫

V
dr
∫

dks dki χ
(2)
lmnE(+)

pl ei(ωpt−kp·r)E(−)
sm e−i(ωs(ks)t−ks·r)E(−)

in e−i(ωi(ki)t−ki·r) +h.c.,

(15)

where h.c. stands for Hermitian conjugate. To simplify the calculation, we have also
assumed the pump field to be a monochromatic plane wave with wave vector kp and
frequency ωp.

It is easily noticeable that in Eq. (15), the volume integration can be done for
some simplified cases. At this point, we assume that V is infinitely large. Later, we
will see that the finite size of V in longitudinal and/or transversal directions may
have to be taken into account. For an infinite volume V , the interaction Hamiltonian
Eq. (15) is written as

Hint(t) = ε0

∫

dks dki χ
(2)
lmn E(+)

pl E(−)
sm E(−)

in δ (kp −ks −ki)ei(ωp−ωs(ks)−ωi(ki))t +h.c.

(16)
It is reasonable to consider the pump field to be classical, which is usually a laser
beam, and quantize the signal and idler fields, which are both at the single-photon
level:

E(−)(k) = i

√

2π h̄ω
V

a†(k), E(+)(k) = i

√

2π h̄ω
V

a(k), (17)

where a†(k) and a(k) are photon creation and annihilation operators, respectively.
The state of the emitted photon pair can be calculated by applying the first order
perturbation

|Ψ〉=− i
h̄

∫

dt Hint(t) |0〉. (18)

By using vacuum |0〉 for the initial state in Eq. (18), we assume that there is no input
radiation in any signal and idler modes, that is, we have a spontaneous parametric
down conversion (SPDC) process.
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Further assuming an infinite interaction time, evaluating the time integral in
Eq. (18) and omitting altogether the constants and slow (square root) functions of ω ,
we obtain the entangled two-photon state of Eq. (10) in the form of an integral [13]:

|Ψ〉=Ψ0

∫

dksdki δ [ωp −ωs(ks)−ωi(ki)]δ (kp −ks −ki)a†
s (ks)a†

i (ki)|0〉 (19)

where Ψ0 is a normalization constant which has absorbed all omitted constants.
The way of achieving phase matching, i.e., the delta functions, in Eq. (19) ba-

sically determines how the signal–idler pair “looks”. For example, in a negative
uniaxial crystal, one can use a linearly polarized pump laser beam as an extraordi-
nary ray of the crystal to generate a signal–idler pair both polarized as the ordinary
rays of the crystal, which is defined as type-I phase matching. One can alternatively
generate a signal–idler pair with one ordinary polarized and another extraordinary
polarized, which is defined as type II phase matching. Figure 1 shows three exam-
ples of an SPDC two-photon source. All three schemes have been widely used for
different experimental purposes. Technical details can be found in text books and
research references in nonlinear optics.

The two-photon state in the forms of Eq. (10) or Eq. (19) is a pure state, which
mathematically describes the behavior of a signal–idler photon pair. The surprise
comes from the coherent superposition of the two-photon modes:

Does the signal or the idler photon in the EPR state of Eq. (10) or Eq. (19) have a defined
energy and momentum regardless of whether we measure it or not? Quantum mechanics
answers: No! However, if one of the subsystems is measured with a certain energy and
momentum, the other one is determined with certainty, despite the distance between them.

It is indeed a mystery from a classical point of view. There has been, neverthe-
less, classical models to avoid the surprises. One of the classical realistic models
insists that the state of Eq. (10) or Eq. (19) only describes the behavior of an ensem-
ble of photon pairs. In this model, the energy and momentum of the signal photon
and the idler photon in each individual pair are defined with certain values and the

a cb

Fig. 1 Three widely used SPDC setups. (a) Type-I SPDC. (b) Collinear degenerate type-II SPDC.
Two rings overlap at one region. (c) Non-collinear degenerate type-II SPDC. For clarity, only
two degenerate rings, one for e-polarization and the other for o-polarization, are shown. Notice,
the color rainbows represent the distribution function of a signal–idler pair. One signal–idler pair
yields the entire rainbow
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resulting state is a statistical mixture. Mathematically, it is incorrect to use a pure
state to characterize a statistical mixture. The concerned statistical ensemble should
be characterized by the following density operator

ρ̂ =
∫

dks dki δ (ωp −ωs −ωi)δ (kp −ks −ki) a†
s (ks)a†

i (ki) |0〉〈0 |as(ks)ai(ki)

(20)

which is very different from the pure state of SPDC. We will show later that a sta-
tistical mixture of Eq. (20) can never have delta-function-like two-photon temporal
and/or spatial correlation that is shown by the measurement of SPDC.

For finite dimensions of the nonlinear interaction region, the entangled two-
photon state of SPDC may have to be estimated in a more general format. Following
the earlier discussions, we write the state of the signal–idler photon pair as

|Ψ〉=
∫

dks dki F(ks,ki)a†
i (ks)a†

s (ki)|0〉 (21)

where

F(ks,ki) = ε δ (ωp −ωs −ωi) f (ΔzL)htr(�κ1 +�κ2)

f (ΔzL) =
∫

L
dze−i(kp−ksz−kiz)z

htr(�κ1 +�κ2) =
∫

A
d�ρ h̃tr(�ρ)e−i(�κs+�κi)·�ρ (22)

Δz = kp − ksz − kiz

where ε is named as the parametric gain index. ε is proportional to the second order
electric susceptibility χ(2) and is usually treated as a constant, L is the length of the
nonlinear interaction, the integral in �κ is evaluated over the cross section A of the
nonlinear material illuminated by the pump, �ρ is the transverse coordinate vector,
�κ j (with j = s, i) is the transverse wavevector of the signal and idler, and f (|�ρ |) is
the transverse profile of the pump, which can be treated as a Gaussion in most of the
experimental conditions. The functions f (ΔzL) and htr(�κ1 +�κ2) turn to δ -functions
for an infinitely long (L ∼ ∞) and wide (A ∼ ∞) nonlinear interaction region. The
reason we have chosen the form of Eq. (22) is to separate the “longitudinal” and the
“transverse” correlations. We will show that δ (ωp −ωs −ωi) and f (ΔzL) together
can be rewritten as a function of ωs −ωi. To simplify the mathematics, we assume
near co-linearly SPDC. In this situation, |�κs,i | � |ks,i |.

Basically, the function f (ΔzL) determines the “longitudinal” space-time correla-
tion. Finding the solution of the integral is straightforward:

f (ΔzL) =
∫ L

0
dze−i(kp−ksz−kiz)z = e−iΔzL/2 sinc(ΔzL/2). (23)

Now, we consider f (ΔzL) with δ (ωp −ωs −ωi) together, and taking advantage
of the δ -function in frequencies by introducing a detuning frequency Ω to evaluate
function f (ΔzL):
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ωs = ω0
s +Ω

ωi = ω0
i −Ω (24)

ωp = ωs +ωi = ω0
s +ω0

i .

Ω = (ωs −ωi)/2.

The dispersion relation k(ω) allows us to express the wave numbers through the
frequency detuning Ω:

ks ≈ k(ω0
s )+Ω

dk
dω

∣
∣
∣
ω0

s
= k(ω0

s )+
Ω
us

,

ki ≈ k(ω0
i )−Ω dk

dω

∣
∣
∣
ω0

i

= k(ω0
i )− Ω

ui
(25)

where us and ui are group velocities for the signal and the idler, respectively. Now,
we connect Δz with the detuning frequency Ω:

Δz = kp − ksz − kiz

= kp −
√

(ks)2 − (�κs)2 −
√

(ki)2 − (�κi)2

∼= kp − ks − ki +
(�κs)2

2ks
+

(�κi)2

2ki
(26)

∼= kp − k(ω0
s )− k(ω0

i )+
Ω
us
− Ω

ui
+

(�κs)2

2ks
+

(�κi)2

2ki
∼= DΩ

where D ≡ 1/us −1/ui. We have also applied kp − k(ω0
s )− k(ω0

i ) = 0 and |�κs,i | �
|ks,i |. The “longitudinal” wavevector correlation function is rewritten as a func-
tion of the detuning frequency Ω = (ωs −ωi)/2: f (ΔzL) ∼= f (ΩDL). In addition
to the above approximations, we have inexplicitly assumed the angular indepen-
dence of the wavevector k = n(θ)ω/c. For type II SPDC, the refraction index of
the extraordinary-ray depends on the angle between the wavevector and the opti-
cal axis and an additional term appears in the expansion. Making the approximation
valid, we have restricted our calculation to a near-collinear process. Thus, for a good
approximation, in the near-collinear experimental setup

ΔzL ∼=ΩDL = (ωs −ωi)DL/2. (27)

Type-I degenerate SPDC is a special case. Due to the fact that us = ui, and hence,
D = 0, the expansion of k(ω) should be carried out up to the second order. Instead
of (27), we have

ΔzL ∼=−Ω2D′L =−(ωs −ωi)2D′L/4 (28)

where
D′ ≡ d

dω
(

1
u
)
∣
∣
∣
ω0

.
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The two-photon state of the signal–idler pair is then approximated as

|Ψ〉=
∫

dΩd�κs d�κi f (Ω)htr(�κs +�κi)a†
s (ω0

s +Ω,�κs)a†
i (ω

0
i −Ω,�κi)|0〉 (29)

where the normalization constant has been absorbed into f (Ω).

3 Correlation Measurement of Entangled State

EPR state is a pure state which characterizes the behavior of a pair of entangled par-
ticles. In principle, one EPR pair contains all information of the correlation. A ques-
tion naturally arises: Can we then observe the EPR correlation from the measure-
ment of one EPR pair? The answer is no. Generally speaking, we may never learn
any meaningful physics from the measurement of one particle or one pair of par-
ticles. To learn the correlation, an ensemble of a large number of identical pairs is
necessary, where “identical” means that all pairs which are involved in the ensemble
measurement must be prepared in the same state, except for an overall phase factor.
This is a basic requirement of quantum measurement theory.

Correlation measurements are typically statistical and involve a large number of
measurements of individual quanta. Quantum mechanics does not predict a precise
outcome for a measurement. Rather, quantum mechanics predicts the probabilities
for certain outcomes. In photon counting measurements, the outcome of a measure-
ment is either a “yes” (a count or a “click”) or a “no” (no count). In a joint measure-
ment of two photon counting detectors, the outcome of “yes” means a “yes–yes” or a
“click–click” joint registration. If the outcome of a joint measurement shows 100%
“yes” for a certain set of values of a physical observable or a certain relationship
between physical variables, the measured quantum system is correlated in that ob-
servable. As a good example, EPR’s gedankenexperiment suggested to us a system
of quanta with perfect correlation δ (x1 − x2 + x0) in position. To examine the EPR
correlation, we need to have a 100% “yes” when the positions of the two distant de-
tectors satisfy x1 − x2 = x0, and 100% “no” otherwise, when x1 − x2 �= x0. To show
this experimentally, a realistic approach is to measure the correlation function of
| f (x1 − x2)|2 by observing the joint detection counting rates of R1,2 ∝ | f (x1 − x2)|2
while scanning all possible values of x1−x2. In quantum optics, this means the mea-
surement of the second-order correlation function, or G(2)(r1, t1;r2, t2), in the form
of longitudinal correlation G(2)(τ1−τ2) and/or transverse correlation G(2)(�ρ1−�ρ2),
where τ j = t j−z j/c, j = 1,2, and�ρ j is the transverse coordinate of the jth point-like
photon counting detector.

Now, we study the two-photon correlation of the entangled photon pair of SPDC.
The probability of jointly detecting the signal and idler at space-time points (r1, t1)
and (r2, t2) is given by the Glauber theory [15]:

G(2)(r1, t1;r2, t2) = 〈E(−)(r1, t1)E(−)(r2, t2)E(+)(r2, t2)E(+)(r1, t1)〉 (30)



The Physics of 2 �= 1+1 171

where E(−) and E(+) are the negative-frequency and the positive-frequency field
operators of the detection events at space-time points (r1, t1) and (r2, t2). The ex-
pectation value of the joint detection operator is calculated by averaging over the
quantum states of the signal–idler photon pair. For the two-photon state of SPDC,

G(2)(r1, t1;r2, t2) = | 〈0 |E(+)(r2, t2)E(+)(r1, t1) |Ψ〉 |2 = |ψ(r1, t1;r2, t2) |2 (31)

where |Ψ〉 is the two-photon state, and Ψ(r1, t1;r2, t2) is named the effective two-
photon wavefunction. To evaluate G(2)(r1, t1;r2, t2) and ψ(r1, t1;r2, t2), we need
to propagate the field operators from the two-photon source to space-time points
(r1, t1) and (r2, t2).

In general, the field operator E(+)(r, t) at space-time point (r, t) can be written in
terms of the Green’s function, which propagates a quantized mode from space-time
point (r0, t0) to (r, t) [16, 17]:

E(+)(r, t) =∑
k

g(k,r− r0, t − t0)E(+)(k,r0, t0). (32)

where g(k,r− r0, t − t0) is the Green’s function, which is also named the optical
transfer function. For a different experimental setup, g(k,r− r0, t − t0) can be quite
different. To simplify the notation, we have assumed one polarization.

Considering an idealized simple experimental setup, shown in Fig. 2, in which
collinear propagated signal and idler pairs are received by two point photon count-
ing detectors D1 and D2, respectively, for longitudinal G(2)(τ1 − τ2) and transverse
G(2)(�ρ1 −�ρ2) correlation measurements. To simplify the mathematics, we further
assume paraxial experimental condition. It is convenient, in the discussion of lon-
gitudinal and transverse correlation measurements, to write the field E(+)(r j, t j)

χ(2)

Pump Signal

Id
le

r

D1

D2

G(2)
ki

0

ks
0

Fig. 2 Collinear propagated signal–idler photon pair, either degenerate or non-degenerate, are re-
ceived by two distant point photo-detectors D1 and D2, respectively, for longitudinal G(2)(τ1 − τ2)
and transverse G(2)(�ρ1 −�ρ2) correlation measurements. To simplify the mathematics, we assume
paraxial approximation is applicable to the signal–idler fields. The z1 and z2 are chosen along the
central wavevector k0

s and k0
i
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in terms of its longitudinal and transversal space-time variables under the Fresnel
paraxial approximation:

E(+)(�ρ j,z j, t j) ∼=
∫

dω d�κ g(�κ,ω;�ρ j,z j)e−iωt j a(ω,�κ)

∼=
∫

dω d�κ γ(�κ,ω;�ρ j,z j)e−iωτ j a(ω,�κ) (33)

where g(�κ,ω;�ρ j,z j) = γ(�κ,ω;�ρ j,z j)eiωz j/c is the spatial part of the Green’s func-
tion, �ρ j and z j are the transverse and longitudinal coordinates of the jth photo-
detector and�κ is the transverse wavevector. We have chosen z0 = 0 and t0 = 0 at the
output plane of the SPDC. For convenience, all constants associated with the field
are absorbed into g(�κ,ω;�ρ j,z j).

The two-photon effective wavefunction Ψ(�ρ1,z1, t1;�ρ2,z2, t2) is thus calculated
as follows

Ψ(�ρ1,z1, t1;�ρ2,z2, t2)

= 〈0 |
∫

dω ′ d�κ ′ g(�κ ′,ω ′;�ρ2,z2)e−iω ′t2 a(ω ′,�κ ′)

×
∫

dω ′′ d�κ ′′ g(�κ ′′,ω ′′;�ρ1,z1)e−iω ′′t1 a(ω ′′,�κ ′′)

×
∫

dΩd�κs d�κi f (Ω)htr(�κs +�κi)a†
s (ω0

s +Ω,�κs)a†
i (ω

0
i −Ω,�κi)|0〉

= Ψ0 e−i(ω0
s τ1+ω0

i τ2)

×
∫

dΩd�κs d�κi f (Ω)htr(�κs +�κi)e−iΩ(τ1−τ2)γ(�κs,Ω;�ρ1,z1)γ(�κi,−Ω;�ρ2,z2).

(34)

Although Eq. (34) cannot be factorized into a trivial product of longitudinal and
transverse integrals, it is not difficult to measure the temporal correlation and the
transverse correlation separately by choosing suitable experimental conditions.

Experiments may be designed for measuring either temporal (longitudinal) or
spatial (transverse) correlation only. Thus, based on different experimental setups,
we may simplify the calculation to either the temporal (longitudinal) part:

Ψ(τ1;τ2) =Ψ0 e−i(ω0
s τ1+ω0

i τ2)
∫

dΩ f (Ω)e−iΩ(τ1−τ2) =Ψ0 e−i(ω0
s τ1+ω0

i τ2)Fτ1−τ2

{

f (Ω)
}

(35)

or the spatial part:

Ψ(�ρ1,z1;�ρ2,z2) =Ψ0

∫

d�κs d�κi htr(�κs +�κi)g(�κs,ωs;�ρ1,z1)g(�κi,ωi;�ρ2,z2). (36)

In Eq. (35), Fτ1−τ2
{

f (Ω)
}

is the Fourier transform of the spectrum amplitude func-
tion f (Ω). In Eq. (36), we may treat htr(�κs +�κi) ∼ δ (�κs +�κi) by assuming certain
experimental conditions.
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3.1 Two-Photon Temporal Correlation

To measure the two-photon temporal correlation of SPDC, we select a pair of trans-
verse wavevectors �κs = −�κi in Eq. (34) by using appropriate optical apertures. The
effective two-photon wavefunction is thus simplified to that of Eq. (35)

Ψ(τ1;τ2) ∼= Ψ0 e−i(ω0
s τ1+ω0

i τ2)
∫

dΩ f (Ω)e−iΩ(τ1−τ2) (37)

=
[

Ψ0 e−
i
2 (ω0

s +ω0
i )(τ1+τ2) ][Fτ1−τ2

{

f (Ω)
}

e−
i
2 (ω0

s −ω0
i )(τ1−τ2) ]

where, again, Fτ1−τ2
{

f (Ω)
}

is the Fourier transform of the spectrum amplitude
function f (Ω). Equation (37) indicates a 2-D wavepacket: a narrow envelope along
the τ1 − τ2 axis with constant amplitude along the τ1 + τ2 axis. In certain experi-
mental conditions, the function f (Ω) of SPDC can be treated as constant from −∞
to ∞ and thus Fτ1−τ2 ∼ δ (τ1−τ2). In this case, for fixed positions of D1 and D2, the
2-D wavepacket means the following: the signal–idler pair may be jointly detected
at any time; however, if the signal is registered at a certain time t1, the idler must
be registered at a unique time of t2 ∼ t1 − (z1 − z2)/c. In other words, although the
joint detection of the pair may happen at any times of t1 and t2 with equal probabil-
ity (Δ(t1 + t2) ∼ ∞), the registration time difference of the pair must be a constant
Δ(t1 − t2) ∼ 0. A schematic of the two-photon wavepacket is shown in Fig. 3. It is
a non-factorizeable 2-D wavefunction indicating the entangled nature of the two-
photon state. The longitudinal correlation function G(2)(τ1 − τ2) is thus

G(2)(τ1 − τ2) ∝ |Fτ1−τ2
{

f (Ω)
}

|2,

0

Fig. 3 A schematic envelope of a two-photon wavepacket with a Gaussian shape along τ1 − τ2
corresponding to a Gaussian function of f (Ω). In the case of SPDC, the envelope is close to a
δ -function in τ1−τ2 corresponding to a broad-band f (Ω) = constant. The wavepacket is uniformly
distributed along τ1 + τ2 due to the assumption of ωp = constant
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which is a δ -function-like function in the case of SPDC. Thus, we have shown the
entangled signal–idler photon pair of SPDC hold a typical EPR correlation in energy
and time:

Δ(ωs +ωi)∼ 0 & Δ(t1 − t2)∼ 0
with Δωs ∼ ∞, Δωi ∼ ∞, Δt1 ∼ ∞, Δt2 ∼ ∞.

Now we examine a statistical model of SPDC for temporal correlation. As we
have discussed earlier, realistic statistical models have been proposed to simulate
the EPR two-particle state. Recall that for a mixed state in the form of

ρ̂ =∑
j

Pj |Ψ j 〉〈Ψ j |

where Pj is the probability for specifying a given set of state vectors |Ψ j 〉, the
second-order correlation function of fields E(r1, t1) and E(r2, t2) is given by

G(2)(r1, t1;r2, t2) = Tr[ ρ̂ E(−)(r1, t1)E(−)(r2, t2)E(+)(r2, t2)E(+)(r1, t1) ]

=∑
j

Pj 〈Ψ j |E(−)(r1, t1)E(−)(r2, t2)E(+)(r2, t2)E(+)(r1, t1) |Ψ j 〉

=∑
j

Pj G(2)
j (r1, t1;r2, t2),

which is a weighted sum over all individual contributions of G(2)
j . Considering the

following simplified version of Eq. (20) to simulate the state of SPDC as a mixed
state:

ρ̂ =
∫

dΩ | f (Ω)|2 a†(ω0
s +Ω)a†(ω0

i −Ω)|0〉〈0 |a(ω0
i −Ω)a(ω0

s +Ω), (38)

with
|ΨΩ 〉= a†(ω0

s +Ω)a†(ω0
i −Ω)|0〉, Pj = dΩ | f (Ω)|2. (39)

It is easy to find G(2)
Ω (τ1 − τ2) = constant, and thus G(2)(τ1 − τ2) = constant. This

means that the uncertainty of the measurement on t1 − t2 for the mixed state of
Eq. (38) is infinite: Δ(t1 − t2) ∼ ∞. Although the energy (frequency) or momentum
(wavevector) for each photon may be defined with constant values pair by pair, the
corresponding temporal correlation measurement of the ensemble can never achieve
a δ -function-like relationship. In fact, the correlation is undefined, i.e., taking an
infinite uncertainty. Thus, the statistical model of SPDC cannot satisfy the EPR
inequalities of Eq. (4).

3.2 Two-Photon Spatial Correlation

Similar to that of the two-photon temporal correlation, as an example, we ana-
lyze the effective two-photon wavefunction of the signal–idler pair of SPDC. To
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emphasize the spatial part of the two-photon correlation, we choose a pair of fre-
quencies ωs and ωi with ωs +ωi = ωp. In this case, the effective two-photon wave-
function of Eq. (34) is simplified to that of Eq. (36)

Ψ(�ρ1,z1;�ρ2,z2) =Ψ0

∫

d�κs d�κi δ (�κs +�κi)g(�κs,ωs,�ρ1,z1)g(�κi,ωi,�ρ2,z2)

where we have assumed htr(�κs +�κi)∼ δ (�κs +�κi), which is reasonable by assuming
a large enough transverse cross-session laser beam of pump.

We now design a simple joint detection measurement between two point photon
counting detectors D1 and D2 located at (�ρ1,z1) and (�ρ2,z2), respectively, for the
detection of the signal and idler photons. We have assumed that the two-photon
source has a finite but large transverse dimension. Under this simple experimental
setup, the Green’s function, or the optical transfer function describing arm- j, j =
1,2, in which the signal and the idler freely propagate to photodetector D1 and D2,
respectively, is given by Eq. (A.5) of the Appendix. Substitute the g j(ω,�κ;z j,�ρ j),
j = 1,2, into Eq. (36), the effective wavefunction is then given by

Ψ(�ρ1,z1;�ρ2,z2) = Ψ0

∫

d�κs d�κi δ (�κs +�κi)
(
−iωs

2πcz1
eiωs

c z1

) (
−iωi

2πcz2
eiωi

c z2

)

×
∫

A
d�ρs d�ρi G

(

|�ρ1 −�ρs|,
ωs

cz1

)

ei�κs·�ρs G
(

|�ρ2 −�ρi|,
ωi

cz2

)

ei�κi·�ρi

(40)

where �ρs (�κs) and �ρi (�κi) are the transverse coordinates (wavevectors) for the
signal and the idler fields, respectively, defined on the output plane of the two-
photon source. The integral of d�ρs and d�ρi is over area A, which is determined
by the transverse dimension of the nonlinear interaction. The Gaussian function
G(|�α|,β ) = ei(β/2)|�α|2 represents the Fresnel phase factor that is defined in the Ap-
pendix. The integral of d�κs and d�κi can be evaluated easily with the help of the EPR
type two-phonon transverse wavevector distribution function δ (�κs +�κi):

∫

d�κs d�κi δ (�κs +�κi)ei�κs·�ρs ei�κi·�ρi ∼ δ (�ρs −�ρi). (41)

Thus, we have shown that the entangled signal–idler photon pair of SPDC holds a
typical EPR correlation in transverse momentum and position while the correlation
measurement is on the output plane of the two-photon source, which is very close
to the original proposal of EPR:

Δ(�κs +�κi)∼ 0 & Δ(�ρs −�ρi)∼ 0
with Δ�κs ∼ ∞, Δ�κi ∼ ∞, Δ�ρs ∼ ∞, Δ�ρi ∼ ∞.

In EPR’s language, we may never know where the signal photon and the idler photon
are emitted from the output plane of the source. However, if the signal (idler) is
found at a certain position, the idler (signal) must be observed at a corresponding
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unique position. The signal and the idler may have also any transverse momentum.
However, if the transverse momentum of the signal (idler) is measured at a certain
value in a certain direction, the idler (signal) must be of equal value but pointed
to a certain opposite direction. In collinear SPDC, the signal–idler pair is always
emitted from the same point in the output plane of the two-photon source, �ρs =�ρi,
and if one of them propagates slightly off from the collinear axes, the other one must
propagate to the opposite direction with �κs =−�κi.

The interaction of spontaneous parametric down-conversion is nevertheless a lo-
cal phenomenon. The nonlinear interaction coherently creates mode-pairs that sat-
isfy the phase matching conditions of Eq. (11) which are also named as energy
and momentum conservation. The signal–idler photon pair can be excited to any of
these coupled modes or in all of these coupled modes simultaneously, resulting in a
particular two-photon superposition. It is this superposition among those particular
“selected” two-photon states which allows the signal–idler pair to come out from
the same point of the source and propagate to opposite directions with �κs =−�κi.

The two-photon superposition becomes more interesting when the signal–idler is
separated and propagated to a large distance, either by free propagation or guided
by optical components such as a lens. A classical picture would consider the sig-
nal photon and the idler photon independent whenever the pair is released from the
two-photon source because there is no interaction between the distant photons in
free space. Therefore, the signal photon and the idler photon should have indepen-
dent and random distributions in terms of their transverse position �ρ1 and �ρ2. This
classical picture, however, is incorrect. It is found that the signal–idler two-photon
system would not lose its entangled nature in the transverse position. This interest-
ing behavior has been experimentally observed in quantum imaging by means of an
EPR type correlation in transverse position. The sub-diffraction limit spatial resolu-
tion observed in the “quantum lithography” experiment and the nonlocal correlation
observed in the “ghost imaging” experiment are both the results of this peculiar
superposition among those “selected” two-photon amplitudes, namely that of two-
photon superposition, corresponding to different yet indistinguishable alternative
ways of triggering a joint photo-electron event at a distance. Two-photon superposi-
tion does occur in a distant joint detection event of a signal–idler photon pair. There
is no surprise that one has difficulties facing this phenomenon. The two-photon su-
perposition is a nonlocal concept in this case. There is no counterpart for such a
concept in classical theory and it may never be understood classically.

Now we consider propagating the signal–idler pair away from the source to
(�ρ1,z1) and (�ρ2,z2), respectively, and taking the result of Eq. (41), i.e.,�ρs =�ρi =�ρ0
on the output plane of the SPDC source, the effective two-photon wavefunction
becomes

Ψ(�ρ1,z1;�ρ2,z2)

=− ωsωi

(2πc)2z1z2
ei(ωs

c z1+ωi
c z2)

∫

A
d�ρ0 G

(

|�ρ1 −�ρ0|,
ωs

cz1

)

G
(

|�ρ2 −�ρ0|,
ωi

cz2

)

(42)
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where �ρ0 is defined on the output plane of the two-photon source. Equation (42)
indicates that the propagation-diffraction of the signal and the idler cannot be con-
sidered as independent. The signal–idler photon pair are created and diffracted to-
gether in a peculiar entangled manner. This point turns out to be both interesting
and useful when the two photodetectors coincided, or are replaced by a two-photon
sensitive material. Taking z1 = z2 and �ρ1 =�ρ2, Eq. (42) becomes

Ψ(�ρ,z;�ρ,z) =− ωsωi

(2πcz)2 ei(ωp
c z)
∫

A
d�ρ0 G(|�ρ−�ρ0|,

ωp

cz
) (43)

where ωp is the pump frequency, which means that the signal–idler pair is diffracted
as if they have twice the frequency or half the wavelength. This effect is named as
“two-photon diffraction”. This effect is useful for enhancing the spatial resolution
of imaging.

4 Quantum Imaging

Although questions regarding fundamental issues of quantum theory still exist,
quantum entanglement has started to play important roles in practical engineering
applications. Quantum imaging is one of these exciting areas [18]. Taking advantage
of entangled states, Quantum imaging has so far demonstrated two peculiar features:
(1) enhancing the spatial resolution of imaging beyond the diffraction limit, and (2)
reproducing ghost images in a “nonlocal” manner. Both the apparent “violation” of
the uncertainty principle and the “nonlocal” behavior of the momentum–momentum
position–position correlation are due to the two-photon coherent effect of entangled
states, which involves the superposition of two-photon amplitudes, a nonclassical
entity corresponding to different yet indistinguishable alternative ways of triggering
a joint-detection event in the quantum theory of photodetection. In this section, we
will focus our discussion on the physics of imaging resolution enhancement. The
nonlocal phenomenon of ghost imaging will be discussed in the following section.

The concept of imaging is well defined in classical optics. Figure 4 schematically
illustrates a standard imaging setup. A lens of finite size is used to image the object
onto an image plane which is defined by the “Gaussian thin lens equation”

1
si

+
1
so

=
1
f

(44)

where so is the distance between object and lens, f is the focal length of the lens, and
si is the distance between the lens and image plane. If light always follows the laws
of geometrical optics, the image plane and the object plane would have a perfect
point-to-point correspondence, which means a perfect image of the object, either
magnified or demagnified. Mathematically, a perfect image is the result of a con-
volution of the object distribution function f (�ρo) and a δ -function. The δ -function
characterizes the perfect point-to-point relationship between the object plane and
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Source

Image
Plane

Imaging
LensObject

Plane

So

f

Si

Fig. 4 A lens produces an image of an object in the plane defined by the Gaussian thin lens equa-
tion 1/si + 1/so = 1/ f . The concept of an image is based on the existence of a point-to-point
relationship between the object plane and the image plane

the image plane:

F(�ρi) =
∫

ob j
d�ρo f (�ρo)δ (�ρo +

�ρi

m
) = f (�ρo)⊗δ (�ρo +

�ρi

m
) (45)

where �ρo and �ρi are 2-D vectors of the transverse coordinate in the object plane
and the image plane, respectively, and m is the magnification factor. The symbol ⊗
means convolution.

Unfortunately, light behaves like a wave. The diffraction effect turns the point-
to-point correspondence into a point-to-“spot” relationship. The δ -function in the
convolution of Eq. (45) will be replaced by a point-spread function.

F(�ρi) =
∫

ob j
d�ρo f (�ρo)somb

[
R
so

ω
c

∣
∣�ρo +

�ρi

m

∣
∣

]

= f (�ρo)⊗ somb
[

R
so

ω
c

∣
∣�ρo +

�ρi

m

∣
∣

]

(46)

where

somb(x) =
2J1(x)

x
,

and J1(x) is the first-order Bessel function, R is the radius of the imaging lens. R/so
is named as the numerical aperture of the imaging system. The finite size of the spot,
which is defined by the point-spread function, determines the spatial resolution of
the imaging setup, and thus, limits the ability of making demagnified images. It is
clear from Eq. (46), the use of a larger imaging lens and shorter wavelength light of
source will result in a narrower point-spread function. To improve the spatial resolu-
tion, one of the efforts in the lithography industry is the use of shorter wavelengths.
This effort is, however, limited to a certain level because of the inability of lenses to
effectively work beyond a certain “cutoff” wavelength.

Equation (46) imposes a diffraction limited spatial resolution on an imaging sys-
tem while the aperture size of the imaging system and the wavelength of the light
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source are both fixed. This limit is fundamental in both classical optics and in quan-
tum mechanics. Any violation would be considered as a violation of the uncertainty
principle.

Surprisingly, the use of quantum entangled states gives a different result: by re-
placing classical light sources in Fig. 5 with entangled N-photon states, the spatial
resolution of the image can be improved by a factor of N, despite the Rayleigh
diffraction limit. Is this a violation of the uncertainty principle? The answer is no!
The uncertainty relation for an entangled N-particle system is radically different
from that of N independent particles. In terms of the terminology of imaging, what
we have found is that the somb(x) in the convolution of Eq. (46) has a different form
in the case of an entangled state. For example, an entangled two-photon system has

x =
R
so

2ω
c

∣
∣�ρo +

�ρi

m

∣
∣.

Comparing with Eq. (46), the factor of 2ω yields a point-spread function half the
width of that from Eq. (46) and results in a doubling spatial resolution for imaging.

It should be further emphasized that one must not confuse a “projection” with an
image. A projection is the shadow of an object, which is obviously different from
the image of an object. Figure 6 distinguishes a projection shadow from an image. In
a projection, the object-shadow correspondence is essentially a “momentum” corre-
spondence, which is defined only by the propagation direction of the light rays.

We now analyze classical imaging. The analysis starts with the propagation of the
field from the object plane to the image plane. In classical optics, such propagation

D1

D2

ρ1 ρ2ρo

so

Light
Source

si

ρl

Fig. 5 Typical imaging setup. A lens of finite size is used to produce a demagnified image of a
object with limited spatial resolution. Replacing classical light with an entangled N-photon system,
the spatial resolution can be improved by a factor of N, despite the Rayleigh diffraction limit

ProjectionsObject
Plane

Source

Fig. 6 Projection: a light source illuminates an object and no image forming system is present, no
image plane is defined, and only projections, or shadows, of the object can be observed
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is described by an optical transfer function h(r− r0, t − t0), which accounts for the
propagation of all modes of the field. To be consistent with quantum optics calcula-
tions, we prefer to work with the single-mode propagator g(k,r− r0, t − t0), and to
write the field E(r, t) in terms of its longitudinal (z) and transverse (�ρ) coordinates
under the Fresnel paraxial approximation:

E(�ρ,z, t) =
∫

dω d�κ Ẽ(�κ,ω)g(�κ,ω;�ρ,z)e−iωt (47)

where Ẽ(ω,�κ) is the complex amplitude of frequency ω and transverse wave-
vector �κ . In Eq. (47) we have taken z0 = 0 and t0 = 0 at the object plane as usual.
To simplify the notation, we have assumed one polarization.

Based on the experimental setup of Fig. 5, g(�κ,ω;�ρ,z) is found to be

g(�κ,ω;�ρi,so + si)

=
∫

ob j
d�ρo

∫

lens
d�ρl

{

A(�ρo)ei�κ·�ρo
}{−iω

2πc
eiωc so

so
G(|�ρl −�ρo|,

ω
cso

)
}

×
{

G(|�ρl |,−
ω
c f

)
}{−iω

2πc
eiωc si

si
G(|�ρi −�ρl |,

ω
2csi

)
}

(48)

where �ρo, �ρl , and �ρi are two-dimensional vectors defined, respectively, on the ob-
ject, the lens, and the image planes. The first curly bracket includes the object-
aperture function A(�ρo) and the phase factor ei�κ·�ρo contributed to the object plane
by each transverse mode �κ . Here we have assumed a far-field finite size source.
Thus, a phase factor ei�κ·�ρo appears on the object plane of z = 0. If a collimated laser
beam is used, this phase factor turns out to be a constant. The terms in the second
and the fourth curly brackets describe free-space Fresnel propagation-diffraction
from the source/object plane to the imaging lens, and from the imaging lens to
the detection plane, respectively. The Fresnel propagator includes a spherical wave
function eiωc (z j−zk)/(z j − zk) and a Fresnel phase factor G(|�α|,β ) = ei(β/2)|�α|2 =
eiω|�ρ j−�ρk|2/2c(z j−zk). The third curly bracket adds the phase factor, G(|�ρl |,− ω

c f ) =

e−i ω2c f , which is introduced by the imaging lens.
Applying the properties of the Gaussian function, Eq. (48) can be simplified into

the following form

g(�κ,ω;�ρi,z = so + si)

=
−ω2

(2πc)2sosi
eiωc (so+si) G(|�ρi|,

ω
csi

)
∫

ob j
d�ρo A(�ρo)G(|�ρo|,

ω
cso

)ei�κ·�ρo

×
∫

lens
d�ρl G(|�ρl |,

ω
c

[
1
so

+
1
si
− 1

f
])e−iωc (�ρo

so +�ρi
si

)·�ρl . (49)

The image plane is defined by the Gaussian thin-lens equation of Eq. (44). Hence,
the second integral in Eq. (49) simplifies and gives, for a finite sized lens of radius R,
the so called point-spread function of the imaging system: somb(x) = 2J1(x)/x,
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where x = [ R
so
ω
c |�ρo +ρi/m|], J1(x) is the first-order Bessel function and m = si/so

is the magnification of the imaging system.
Substituting the result of Eq. (49) into Eq. (47) enables one to obtain the classical

self-correlation of the field, or, equivalently, the intensity on the image plane

I(�ρi,zi, ti) = 〈E∗(�ρi,zi, ti)E(�ρi,zi, ti)〉 (50)

where 〈...〉 denotes an ensemble average. We assume monochromatic light for clas-
sical imaging as usual.2

Case (I): incoherent imaging. The ensemble average of 〈 Ẽ∗(�κ,ω) Ẽ(�κ ′,ω)〉
yields zeros except when �κ = �κ ′. The image is thus

I(�ρi) ∝
∫

d�ρo
∣
∣A(�ρo)

∣
∣2
∣
∣somb[

R
so

ω
c
|�ρo +

�ρi

m
|]
∣
∣2. (51)

An incoherent image, magnified by a factor of m, is thus given by the convolution
between the squared moduli of the object aperture function and the point-spread
function. The spatial resolution of the image is thus determined by the finite width
of the |somb|2-function.

Case (II): coherent imaging. The coherent superposition of the �κ modes in both
E∗(�ρi,τ) and E(�ρi,τ) results in a wavepacket. The image, or the intensity distribu-
tion on the image plane, is thus

I(�ρi) ∝
∣
∣
∣

∫

ob j
d�ρo A(�ρo)ei ω

2cso |�ρo|2somb[
R
so

ω
c
|�ρo +

�ρi

m
|]
∣
∣
∣

2
. (52)

A coherent image, magnified by a factor of m, is thus given by the squared modulus
of the convolution between the object aperture function (multiplied by a Fresnel
phase factor) and the point-spread function.

For si < so and so > f , both Eqs. (51) and (52) describe a real demagnified in-
verted image. In both cases, a narrower somb-function yields a higher spatial reso-
lution. Thus, the use of shorter wavelengths allows for improvement of the spatial
resolution of an imaging system.

To demonstrate the working principle of quantum imaging, we replace classical
light with an entangled two-photon source such as spontaneous parametric down-
conversion (SPDC) and replace the ordinary film with a two-photon absorber, which
is sensitive to two-photon transition only, on the image plane. We will show that,
in the same experimental setup of Fig. 5, an entangled two-photon system gives
rise, on a two-photon absorber, to a point-spread function half the width of the one
obtained in classical imaging at the same wavelength. Then, without employing
shorter wavelengths, entangled two-photon states improve the spatial resolution of
a two-photon image by a factor of 2 [19, 20]. We will also show that the entangled
two-photon system yields a peculiar Fourier transform function as if it is produced
by a light source with λ/2.

2 Even if assuming a perfect lens without chromatic aberration, Fresnel diffraction is wavelength
dependent. Hence, large broadband (Δω ∼ ∞) would result in blurred images in classical imaging.
Surprisingly, the situation is different in quantum imaging: no aberration blurring.
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In order to cover two different measurements, one on the image plane and one
on the Fourier transform plane, we generalize the Green’s function of Eq. (48) from
the image plane of z = so + si to an arbitrary plane of z = so +d, where d may take
any values for different experimental setups:

g(�κ j,ω j;�ρk,z = so +d)

=
∫

ob j
d�ρo

∫

lens
d�ρl A(�ρo){

−iω j

2πcso
ei�κ j ·�ρo ei

ω j
c so G(|�ρo −�ρl |,

ω j

cso
)}

× G(|�ρl |,−
ω j

c f
){−iω j

2πcd
ei
ω j
c d G(|�ρl −�ρk|,

ω j

cd
)}, (53)

where�ρo,�ρl , and�ρ j are two-dimensional vectors defined, respectively, on the (trans-
verse) output plane of the source (which coincide with the object plane), on the
transverse plane of the imaging lens and on the detection plane; and j = s, i, labels
the signal and the idler; k = 1,2, labels the photodetector D1 and D2. The function
A(�ρo) is the object-aperture function, while the terms in the first and second curly
brackets of Eq. (53) describe, respectively, free propagation from the output plane
of the source/object to the imaging lens, and from the imaging lens to the detection
plane.

Similar to the earlier calculation, by employing the second and third expressions
given in Eq. (A.3), Eq. (53) simplifies to

g(�κ j,ω j;�ρk,z = so +d)

=
−ω2

j

(2πc)2sod
ei
ω j
c (so+d) G(|�ρk|,

ω j

cd
)
∫

ob j
d�ρo A(�ρo)G(|�ρo|,

ω j

cso
)ei�κ j ·�ρo

×
∫

lens
d�ρl G(|�ρl |,

ω j

c
[

1
so

+
1
d
− 1

f
])e−i

ω j
c (�ρo

so +
�ρk
d )·�ρl . (54)

Substituting the Green’s functions into Eq. (34), the effective two-photon wave-
function Ψ(�ρ1,z;�ρ2,z) is thus

Ψ(�ρ1,z;�ρ2,z) = Ψ0

∫

dΩ f (Ω)G(|�ρ1|,
ωs

cd
)G(|�ρ2|,

ωi

cd
)

×
∫

ob j
d�ρo A(�ρo) G(|�ρo|,

ωs

cso
)
∫

ob j
d�ρ ′o A(�ρ ′o) G(|�ρ ′o|,

ωi

cso
)

×
∫

lens
d�ρl G(|�ρl |,

ωs

c
[

1
so

+
1
d
− 1

f
]) e−iωs

c (�ρo
so +

�ρ1
d )·�ρl

×
∫

lens
d�ρ ′l G(|�ρ ′l |, [

ωi

c
[

1
so

+
1
d
− 1

f
]) e−iωi

c (
�ρ ′o
so +

�ρ2
d )·�ρ ′l

×
∫

d�κs d�κi δ (�κs +�κi)ei(�κs·�ρo+�κi·�ρ ′o) (55)

where we have absorbed all constants into Ψ0, including the phase

eiωs
c (so+d) eiωi

c (so+d) = eiωp
c (so+d).
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The double integral of d�κs and d�κi yields a δ -function of δ (�ρo − �ρ ′o), and Eq. (55)
is simplified as:

Ψ(�ρ1,z;�ρ2,z)

=Ψ0

∫

dΩ f (Ω)G(|�ρ1|,
ωs

cd
)G(|�ρ2|,

ωi

cd
)
∫

ob j
d�ρo A2(�ρo) G(|�ρo|,

ωp

cso
)

×
∫

lens
d�ρl G(|�ρl |,

ωs

c
[

1
so

+
1
d
− 1

f
]) e−iωs

c (�ρo
so +

�ρ1
d )·�ρl

×
∫

lens
d�ρ ′l G(|�ρ ′l |, [

ωi

c
[

1
so

+
1
d
− 1

f
]) e−iωi

c (�ρo
so +

�ρ2
d )·�ρ ′l . (56)

We consider the following two cases:

Case (I) on the imaging plane and �ρ1 =�ρ2 =�ρ .
In this case, Eq. (56) is simplified as

Ψ(�ρ,z;�ρ,z) ∝
∫

ob j
d�ρo A2(�ρo)G(|�ρo|,

ωp

cso
)
∫

d�ρl e−i ωp
2c ( �ρo

so
+ �ρ

si
)·�ρl
∫

d�ρ ′l e−i ωp
2c ( �ρo

so
+ �ρ

si
)·�ρ ′ l

×
{∫

dΩ f (Ω)e−iΩ[( �ρo
cso

+ �ρ
csi

)·(�ρl−�ρ ′ l)]
}

(57)

where we have used ωs = ωp/2 +Ω and ωs = ωp/2−Ω following ωs +ωi = ωp.
The integral of dΩ gives a δ -function of δ [( �ρo

cso
+ �ρ

csi
)(�ρl − �ρ ′l)] while taking

the integral to infinity with a constant f (Ω). This result indicates again that the
propagation-diffraction of the signal and the idler are not independent. The “two-
photon diffraction” couples the two integrals in�ρo and�ρ ′o as well as the two integrals
in �ρl and �ρ ′

l and thus gives the G(2) function

G(2)(�ρ,�ρ) ∝
∣
∣
∣

∫

ob j
d�ρo A2(�ρo)ei ωp

2cso |�ρo|2
2J1

(
R
so

ωp
c

∣
∣�ρo + �ρ

m

∣
∣

)

(
R
so

ωp
c

∣
∣�ρo + �ρ

m

∣
∣

)2

∣
∣
∣

2
(58)

which indicates that a coherent image (see Eq. (52)) magnified by a factor of
m = si/so is reproduced on the image plane by joint-detection or by two-photon
absorption.

In Eq. (58), the point-spread function is characterized by the pump wavelength
λp = λs,i/2; hence, the point-spread function is half the width of the (first order)
classical case (Eqs. (52) and (51)). An entangled two-photon state thus gives an im-
age in joint-detection with double spatial resolution when compared to the image
obtained in classical imaging. Moreover, the spatial resolution of the two-photon
image obtained by perfect SPDC radiation is further improved because it is deter-
mined by the function 2J1(x)/x2, which is much narrower than the somb(x).

It is interesting to see that, different from the classical case, the frequency integral
over Δωs ∼ ∞ does not give any blurring, but rather enhances the spatial resolution
of the two-photon image.
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Case (II): on the Fourier transform plane and �ρ1 =�ρ2 =�ρ .
The detectors are now placed in the focal plane, i.e., d = f . In this case, the

spatial effective two-photon wavefunction Ψ(�ρ,z;�ρ,z) becomes:

Ψ(�ρ,z;�ρ,z) ∝
∫

dΩ f (Ω)
∫

ob j
d�ρo A2(�ρo) G(|�ρo|,

ωp

cso
)
∫

lens
d�ρl G(|�ρl |,

ωs

cso
) e−i ωs

c (�ρo
so +�ρ

f )·�ρl

×
∫

lens
d�ρ ′l G(|�ρ ′l |,

ωi

cso
) e−i ωi

c (�ρo
so +�ρ

f )·�ρ ′ l . (59)

We will first evaluate the two integrals over the lens. To simplify the mathematics we
approximate the integral to infinity. Differing from the calculation for imaging res-
olution, the purpose of this evaluation is to determine the Fourier transform. Thus,
the approximation of an infinite lens is appropriate. By applying Eq. (A.3), the two
integrals over the lens contribute the following function of �ρo to the integral of d�ρo
in Eq. (59):

C G(|�ρo|,−
ωp

cso
)e−iωp

c f �ρo·�ρ

where C absorbs all constants including a phase factor G(|�ρ|,− ωp
c f 2/so

). Replacing

the two integrals of d�ρl and d�ρ ′l in Eq. (59) with this result, we obtain:

Ψ(�ρ,z;�ρ,z) ∝
∫

dΩ f (Ω)
∫

ob j
d�ρo A2(�ρo) e−iωp

c f �ρ·�ρo ∝ F[ωp
c f �ρ ]

{

A2(�ρo)
}

, (60)

which is the Fourier transform of the object-aperture function. When the two pho-
todetectors scan together (i.e.,�ρ1 =�ρ2 =�ρ), the second-order transverse correlation
G(2)(�ρ,z;�ρ,z), where z = so + f , is reduced to:

G(2)(�ρ,z;�ρ,z) ∝
∣
∣F[ωp

c f �ρ ]

{

A2(�ρo)
}∣
∣2. (61)

Thus, by replacing classical light with entangled two-photon sources, in the double-
slit setup of Fig. 5, a Young’s double-slit interference/diffraction pattern with twice
the interference modulation and half the pattern width, compared to that of classical
light at wavelength λs,i = 2λp, is observed in the joint detection. This effect has also
been examined in a recent “quantum lithography” experiment [20].

Due to the lack of two-photon sensitive material, the first experimental demon-
stration of quantum lithography was measured on the Fourier transform plane, in-
stead of the image plane. Two point-like photon counting detectors were scanned
jointly, similar to the setup illustrated in Fig. 5, for the observation of the interfer-
ence/diffraction pattern of Eq. (61). The published experimental result is shown
in Fig. 7 [20]. It is clear that the two-photon Young’s double-slit interference-
diffraction pattern has half the width with twice the interference modulation com-
pared to that of the classical case although the wavelengths are both 916nm.

Following linear Fourier optics, it is not difficult to see that, with the help of
another lens (equivalently building a microscope), one can transform the Fourier
transform function of the double-slit back onto its image plane to observe its image
with twice the spatial resolution.
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Fig. 7 (a) Two-photon Fourier transform of a double-slit. The light source was a collinear degen-
erate SPDC of λs,i = 916nm. (b) Classical Fourier transform of the same double-slit. A classical
light source of λ = 916nm was used

The key to understanding the physics of this experiment is again through entan-
gled nature of the signal–idler two-photon system. As we have discussed earlier, the
pair is always emitted from the same point on the output plane of the source, thus
always passing the same slit together if the double-slit is placed close to the surface
of the nonlinear crystal. There is no chance for the signal–idler pair to pass different
slits in this setup. In other words, each point of the object is “illuminated” by the
pair “together” and the pair “stops” on the image plane “together”. The point-“spot”
correspondence between the object and image planes are based on the physics of
two-photon diffraction, resulting in a twice narrower Fourier transform function in
the Fourier transform plane and twice the image resolution in the image plane. The
unfolded schematic setup, which is shown in Fig. 8, may be helpful for understand-
ing the physics. It is not difficult to calculate the interference-diffraction function
under the experimental condition indicated in Fig. 8. The non-classical observation
is due to the superposition of the two-photon amplitudes, which are indicated by
the straight lines connecting D1 and D2. The two-photon diffraction, which restricts
the spatial resolution of a two-photon image, is very different from that of classical
light. Thus, there should be no surprise in having an improved spatial resolution
even beyond the classical limit.
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Fig. 8 Unfolded experimental setup. The joint measurement is on the Fourier transform plane.
Each point of the object is “illuminated” by the signal–idler pair “together”, resulting in twice
narrower interference-diffraction pattern width in the Fourier transform plane through the joint
detection of the signal–idler pair, equivalent to the use of classical light of λ/2

It is worthwhile to emphasize the following important aspects of physics in this
simplified illustration:

(1) The goal of lithography is the reproduction of demagnified images of com-
plicated patterns. The sub-wavelength interference feature does not necessar-
ily translate into an improvement of the lithographic performance. In fact, the
Fourier transform argument works for imaging setups only; sub-wavelength in-
terference in a Mach-Zehnder type interferometer, for instance, does not neces-
sarily lead to an image.

(2) In the imaging setup, it is the peculiar nature of the entangled N-photon system
that allows one to generate an image with N-times the spatial resolution: the
entangled photons come out from one point of the object plane, undergo N-
photon diffraction, and stop in the image plane within a N-times narrower spot
than that of classical imaging. The historical experiment by D’Angelo et al.,
in which the working principle of quantum lithography was first demonstrated,
has taken advantage of the entangled two-photon state of SPDC: the signal–
idler photon pair comes out from either the upper slit or the lower slit that is
in the object plane, undergoes two-photon diffraction, and stops in the image
plane within a twice narrower image than that of the classical one. It is easy
to show that a second Fourier transform, by means of the use of a second lens
to set up a simple microscope, will produce an image on the image plane with
double spatial resolution.



The Physics of 2 �= 1+1 187

(3) Certain “clever” tricks allow the production of doubly modulated interference
patterns by using classical light in joint photo-detection. These tricks, how-
ever, may never be helpful for imaging. Thus, they may never be useful for
lithography.

5 Ghost Imaging

The nonlocal position–position and momentum–momentum EPR correlation of the
entangled two-photon state of SPDC was successfully demonstrated in 1995 [21]
inspired by the theory of Klyshko [22]. The experiment was immediately named
as “ghost imaging” in the physics community due to its surprising nonlocal nature.
The important physics demonstrated in the experiment, however, may not be the so
called “ghost”. Indeed, the original purpose of the experiment was to study the EPR
correlation in position and in momentum and to test the EPR inequality of Eq. (4) for
the entangled signal-idler photon pair of SPDC [18, 23]. The experiments of “ghost
imaging” [21] and “ghost interference” [24] together stimulated the foundation of
quantum imaging in terms of geometrical and physical optics.

The schematic setup of the “ghost” imaging experiment is shown in Fig. 9. A CW
laser is used to pump a nonlinear crystal, which is cut for degenerate type-II phase
matching to produce a pair of orthogonally polarized signal (e-ray of the crystal) and
idler (o-ray of the crystal) photons. The pair emerges from the crystal as collinear,
with ωs ∼= ωi ∼= ωp/2. The pump is then separated from the signal–idler pair by
a dispersion prism, and the remaining signal and idler beams are sent in different
directions by a polarization beam splitting Thompson prism. The signal beam passes
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aperturelaser
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X-Y scanning
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Fig. 9 Schematic set-up of the “ghost” image experiment
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through a convex lens with a 400 mm focal length and illuminates a chosen aperture
(mask). As an example, one of the demonstrations used the letters “UMBC” for
the object mask. Behind the aperture is the “bucket” detector package D1, which
consists of a short focal length collection lens in whose focal spot is an avalanche
photodiode. D1 is mounted in a fixed position during the experiment. The idler beam
is met by detector package D2, which consists of an optical fiber whose output is
mated with another avalanche photodiode. The input tip of the fiber is scanned in
the transverse plane by two step motors. The output pulses of each detector, which
are operating in photon counting mode, are sent to a coincidence counting circuit
for the signal–idler joint detection.

By recording the coincidence counts as a function of the fiber tip’s transverse
plane coordinates, the image of the chosen aperture (for example, “UMBC”) is ob-
served, as reported in Fig. 10. It is interesting to note that while the size of the
“UMBC” aperture inserted in the signal beam is only about 3.5mm×7mm, the ob-
served image measures 7mm×14mm. The image is therefore magnified by a factor
of 2. The observation also confirms that the focal length of the imaging lens, f , the
aperture’s optical distance from the lens, So, and the image’s optical distance from
the lens, Si (which is from the imaging lens going backward along the signal photon
path to the two-photon source of the SPDC crystal then going forward along the
path of idler photon to the image), satisfy the Gaussian thin lens equation. In this
experiment, So was chosen to be So = 600mm, and the twice magnified clear im-
age was found when the fiber tip was on the plane of Si = 1200mm. While D2 was
scanned on other transverse planes not defined by the Gaussian thin lens equation,
the images blurred out.

Fig. 10 (a) A reproduction of the actual aperature “UMBC” placed in the signal beam. (b) The
image of “UMBC”: coincidence counts as a function of the fiber tip’s transverse plane coordinates.
The step size is 0.25 mm. The image shown is a “slice” at the half maximum value
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The measurement of the signal and the idler subsystem themselves are very
different. The single photon counting rate of D2 was recorded during the scanning of
the image and was found fairly constant in the entire region of the image. This means
that the transverse coordinate uncertainty of either signal or idler is considerably
large compared to that of the transverse correlation of the entangled signal–idler
photon pair: Δx1 (Δy1) and Δx2 (Δy2) are much greater than Δ(x1−x2) (Δ(y1−y2)).

The EPR δ -functions, δ (�ρs−�ρi) and δ (�κs +�κi) in transverse dimension, are the
key to understanding this interesting phenomenon. In degenerate SPDC, although
the signal–idler photon pair has equal probability to be emitted from any point on the
output surface of the nonlinear crystal, the transverse position δ -function indicates
that if one of them is observed at one position, the other one must be found at the
same position. In other words, the pair is always emitted from the same point on
the output plane of the two-photon source. The transverse momentum δ -function,
defines the angular correlation of the signal–idler pair: the transverse momenta of
a signal–idler amplitude are equal but pointed in opposite directions: �κs = −�κi. In
other words, the two-photon amplitudes are always existing at roughly equal yet
opposite angles relative to the pump. This then allows for a simple explanation of
the experiment in terms of “usual” geometrical optics in the following manner: we
envision the nonlinear crystal as a “hinge point” and “unfold” the schematic of Fig. 9
into that shown in Fig. 11. The signal–idler two-photon amplitudes can then be
represented by straight lines (but keep in mind the different propagation directions)
and therefore, the image is well produced in coincidences when the aperture, lens,
and fiber tip are located according to the Gaussian thin lens equation of Eq. (5). The
image is exactly the same as one would observe on a screen placed at the fiber tip if

EPR
Source

So Si

f

D1

Imaging lens
Collection

lens

D2

Fig. 11 An unfolded setup of the “ghost” imaging experiment, which is helpful for understanding
the physics. Since the two-photon “light” propagates along “straight-lines”, it is not difficult to find
that any geometrical light point on the subject plane corresponds to an unique geometrical light
point on the image plane. Thus, a “ghost” image of the subject is made nonlocally in the image
plane. Although the placement of the lens, the object, and detector D2 obeys the Gaussian thin lens
equation, it is important to remember that the geometric rays in the figure actually represent the
two-photon amplitudes of an entangled photon pair. The point to point correspondence is the result
of the superposition of these two-photon amplitudes
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detector D1 were replaced by a point-like light source and the nonlinear crystal by
a reflecting mirror.

Following a similar analysis in geometric optics, it is not difficult to find that any
geometrical “light spot” on the subject plane, which is the intersection point of all
possible two-photon amplitudes coming from the two-photon light source, corre-
sponds to a unique geometrical “light spot” on the image plane, which is another
intersection point of all the possible two-photon amplitudes. This point to point cor-
respondence made the “ghost” image of the subject-aperture possible. Despite the
completely different physics from classical geometrical optics, the remarkable fea-
ture is that the relationship between the focal length of the lens, f , the aperture’s
optical distance from the lens, So, and the image’s optical distance from the lens, Si,
satisfy the Gaussian thin lens equation:

1
so

+
1
si

=
1
f
.

Although the placement of the lens, the object, and the detector D2 obeys the
Gaussian thin lens equation, it is important to remember that the geometric rays
in the figure actually represent the two-photon amplitudes of a signal–idler pho-
ton pair and the point to point correspondence is the result of the superposition of
these two-photon amplitudes. The “ghost” image is a realization of the 1935 EPR
gedankenexperiment.

Now we calculate G(2)(�ρo,�ρi) for the “ghost” imaging experiment, where�ρo and
�ρi are the transverse coordinates on the object plane and the image plane. We will
show that there exists a δ -function like point-to-point relationship between the ob-
ject plane and the image plane, i.e., if one measures the signal photon at a position of
�ρo on the object plane the idler photon can be found only at a certain unique position
of �ρi on the image plane satisfying δ (m�ρo −�ρi), where m = −(si/so) is the image-
object magnification factor. After demonstrating the δ -function, we show how the
object-aperture function of A(�ρo) is transfered to the image plane as a magnified im-
age A(�ρi/m). Before showing the calculation, it is worthwhile to emphasize again
that the “straight lines” in Fig. 11 schematically represent the two-photon ampli-
tudes belonging to a pair of signal–idler photon. A “click–click” joint measurement
at (r1, t1), which is on the object plane, and (r2, t2), which is on the image plane,
in the form of an EPR δ -function, is the result of the coherent superposition of all
these two-photon amplitudes.

We follow the unfolded experimental setup shown in Fig. 12 to establish the
Green’s functions g(�κs,ωs,�ρo,zo) and g(�κi,ωi,�ρ2,z2). In arm-1, the signal propa-
gates freely over a distance d1 from the output plane of the source to the imaging
lens, then passes an object aperture at distance so, and then is focused onto pho-
ton counting detector D1 by a collection lens. We will evaluate g(�κs,ωs,�ρo,zo) by
propagating the field from the output plane of the two-photon source to the object
plane. In arm-2, the idler propagates freely over a distance d2 from the output plane
of the two-photon source to a point-like detector D2. g(�κi,ωi,�ρ2,z2) is thus a free
propagator.
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Fig. 12 In arm-1, the signal propagates freely over a distance d1 from the output plane of the source
to the imaging lens, then passes an object aperture at distance so, and then is focused onto photon
counting detector D1 by a collection lens. In arm-2, the idler propagates freely over a distance d2
from the output plane of the source to a point-like photon counting detector D2

(I) Arm-1 (source to object):

The optical transfer function or Green’s function in arm-1, which propagates the
field from the source plane to the object plane, is given by:

g(�κs,ωs;�ρo,zo = d1 + so)

= eiωs
c zo

∫

lens
d�ρl

∫

A
d�ρS

{ −iωs

2πcd1
ei�κs·�ρS G(|�ρS −�ρl |,

ωs

cd1
)
}

×
{

G(|�ρl |,
ωs

c f
)
}{ −iωs

2πcso
G(|�ρl −�ρo |,

ωs

cso
)
}

, (62)

where �ρS and �ρl are the transverse vectors defined, respectively, on the output plane
of the source and on the plane of the imaging lens. The terms in the first and third
curly brackets in Eq. (62) describe free space propagation from the output plane of
the source to the imaging lens and from the imaging lens to the object plane, respec-
tively. The function G(|�ρl |, ωc f ) in the second curly brackets is the transformation

function of the imaging lens. Here, we treat it as a thin-lens: G(|�ρl |, ωc f )
∼= e−i ω2c f |�ρl |2 .

(II) Arm-2 (from source to image):

In arm-2, the idler propagates freely from the source to the plane of D2, which is
also the plane of the image. The Green’s function is thus:

g(�κi,ωi;�ρ2,z2 = d2) =
−iωi

2πcd2
eiωi

c d2

∫

A
d�ρ ′S G(|�ρ ′S −�ρ2 |,

ωi

cd2
)ei�κi·�ρ ′S (63)
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where �ρ ′S and�ρ2 are the transverse vectors defined, respectively, on the output plane
of the source, and on the plane of the photo-detector D2.

(III) Ψ(�ρo,�ρi) (object plane – image plane):

To simplify the calculation and to focus on the transverse correlation, in the fol-
lowing calculation we assume degenerate (ωs = ωi = ω) and collinear SPDC. The
transverse two-photon effective wavefunctionΨ(�ρo,�ρ2) is then evaluated by substi-
tuting the Green’s functions g(�κs,ω;�ρo,zo) and g(�κi,ω;�ρ2,z2) into the expression
given in Eq. (36):

Ψ(�ρo,�ρ2)

∝
∫

d�κs d�κi δ (�κs +�κi)g(�κs,ω;�ρo,zo)g(�κi,ω;�ρ2,z2)

∝ eiωc (s0+si)
∫

d�κs d�κi δ (�κs +�κi)
∫

lens
d�ρl

∫

A
d�ρS ei�κs·�ρS G(|�ρS −�ρl |,

ω
cd1

)

× G(|�ρl |,
ω
c f

) G(|�ρl −�ρo |,
ω
cso

)
∫

A
d�ρ ′S ei�κi·�ρ ′S G(| �ρ ′S −�ρ2 |,

ω
cd2

) (64)

where we have ignored all the proportional constants. Completing the double inte-
gral of d�κs and d�κs

∫

d�κs d�κi δ (�κs +�κi)ei�κs·�ρS ei�κi·�ρ ′S ∼ δ (�ρS − �ρ ′S), (65)

Eq. (64) becomes:

Ψ(�ρo,�ρ2)

∝
∫

lens
d�ρl

∫

A
d�ρS G(|�ρ2 −�ρS |,

ω
cd2

)G(|�ρS −�ρl |,
ω

cd1
)G(|�ρl |,

ω
c f

)G(|�ρl −�ρo |,
ω

cso
).

We then apply the properties of the Gaussian functions of Eq. (A.3) and complete
the integral on d�ρS by assuming the transverse size of the source is large enough to
be treated as infinity.

Ψ(�ρo,�ρ2) ∝
∫

lens
d�ρl G(|�ρ2 −�ρl |,

ω
csi

)G(|�ρl |,
ω
c f

)G(|�ρl −�ρo |,
ω
cso

). (66)

Although the signal and idler propagate to different directions along two optical
arms, Interestingly, the Green function in Eq. (66) is equivalent to that of a clas-
sical imaging setup, if we imagine the fields start propagating from a point �ρo on
the object plane to the lens and then stop at point �ρ2 on the imaging plane. The
mathematics is consistent with our previous qualitative analysis of the experiment.

The integral on d�ρl yields a point-to-point relationship between the object plane
and the image plane that is defined by the Gaussian thin-lens equation:

∫

lens
d�ρl G(|�ρl |,

ω
c

[
1
so

+
1
si
− 1

f
])e−iωc (�ρo

so +�ρi
si

)·�ρl ∝ δ (�ρo +
�ρi

m
) (67)
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where the integral is approximated to infinity and the Gaussian thin-lens equation of
1/so + 1/si = 1/ f is applied. We have also defined m = si/so as the magnification
factor of the imaging system. The function δ (�ρo +�ρi/m) indicates that a point �ρo
on the object plane corresponds to a unique point �ρi on the image plane. The two
vectors point in opposite directions and the magnitudes of the two vectors hold a
ratio of m = |�ρi|/|�ρo|.

If the finite size of the imaging lens has to be taken into account (finite diame-
ter D), the integral yields a point-spread function of somb(x):

∫

lens
d�ρl e−iωc (�ρo

so +�ρi
si

)·�ρl ∝ somb
( R

so

ω
c

[�ρo +
�ρi

m
]
)

(68)

where somb(x) = 2J1(x)/x, J1(x) is the first-order Bessel function and R/so is
named as the numerical aperture. The point-spread function turns the point-to-point
correspondence between the object plane and the image plane into a point-to-“spot”
relationship and thus limits the spatial resolution. This point has been discussed in
detail in the last section.

Therefore, by imposing the condition of the Gaussian thin-lens equation, the
transverse two-photon effective wavefunction is approximated as a δ function

Ψ(�ρo,�ρi) ∝ δ (�ρo +
�ρi

m
) (69)

where �ρo and �ρi, again, are the transverse coordinates on the object plane and the
image plane, respectively, defined by the Gaussian thin-lens equation. Thus, the
second-order spatial correlation function G(2)(�ρo,�ρi) turns out to be:

G(2)(�ρo,�ρi) = |Ψ(�ρo,�ρi) |2 ∝ |δ (�ρo +
�ρi

m
) |2. (70)

Equation (70) indicates a point to point EPR correlation between the object plane
and the image plane, i.e., if one observes the signal photon at a position �ρo on the
object plane, the idler photon can only be found at a certain unique position �ρi on
the image plane satisfying δ (�ρo +�ρi/m) with m = si/so.

We now include an object-aperture function, a collection lens and a photon count-
ing detector D1 into the optical transfer function of arm-1 as shown in Fig. 9.

We will first treat the collection-lens-D1 package as a “bucket” detector.
The “bucket” detector integrates all Ψ(�ρo,�ρ2) which passes the object aperture
A(�ρo) as a joint photo-detection event. This process is equivalent to the following
convolution:

R1,2 ∝
∫

ob j
d�ρo
∣
∣A(�ρo)

∣
∣2
∣
∣Ψ(�ρo,�ρi)

∣
∣2 �

∣
∣A(

−�ρi

m
)
∣
∣2 (71)

where, again, D2 is scanning in the image plane, �ρ2 =�ρi. Equation (71) indicates a
magnified (or demagnified) image of the object-aperture function by means of the
joint-detection events between distant photodetectors D1 and D2. The “−” sign in
A(−�ρi/m) indicates opposite orientation of the image. The model of the “bucket”
detector is a good and realistic approximation.
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Now we consider a detailed evaluation by including the object-aperture function,
the collection lens and the photon counting detector D1 into arm-1. The Green’s
function of Eq. (62) becomes:

g(�κs,ωs;�ρ1,z1 = d1 + so + fcoll)

= eiωs
c z1

∫

ob j
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∫

lens
d�ρl

∫
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d�ρS

{ −iωs

2πcd1
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cd1
)
}

× G(|�ρl |,
ωs

c f
)
{ −iωs

2πcso
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cso
)
}

A(�ρo)

× G(|�ρo|,
ωs

c fcoll
)
{ −iωs

2πc fcoll
G(|�ρo −�ρ1|,

ωs

c fcoll
)
}

(72)

where fcoll is the focal-length of the collection lens and D1 is placed on the fo-
cal point of the collection lens. Repeating the previous calculation, we obtain the
transverse two-photon effective wavefunction:

Ψ(�ρ1,�ρ2) ∝
∫

ob j
d�ρo A(�ρo)δ (�ρo +

�ρ2

m
) = A(�ρo)⊗δ (�ρo +

�ρ2

m
) (73)

where ⊗ means convolution. Notice, in Eq. (73) we have ignored the phase fac-
tors which have no contribution to the formation of the image. The joint detection
counting rate, R1,2, between photon counting detectors D1 and D2 is thus:

R1,2 ∝ G(2)(�ρ1,�ρ2) ∝
∣
∣A(�ρo)⊗δ (�ρo +

�ρ2

m
)
∣
∣2 =

∣
∣A(

−�ρ2

m
)
∣
∣2 (74)

where, again, �ρ2 =�ρi.
As we have discussed earlier, the point-to-point EPR correlation is the result of

the coherent superposition of a special selected set of two-photon states. In principle,
one signal–idler pair contains all the necessary two-photon amplitudes that gener-
ate the ghost image—a nonclassical characteristic which we name as a two-photon
coherent image.

6 Popper’s Experiment

In quantum mechanics, one can never expect to measure both the precise position
and momentum of a particle simultaneously. It is prohibited. We say that the quan-
tum observable “position” and “momentum” are “complementary” because the pre-
cise knowledge of the position (momentum) implies that all possible outcomes of
measuring the momentum (position) are equally probable.

Karl Popper, being a “metaphysical realist”, however, took a different point of
view. In his opinion, the quantum formalism could and should be interpreted real-
istically: a particle must have a precise position and momentum [25]. This view
was shared by Einstein. In this regard, he invented a thought experiment in the
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Fig. 13 Popper’s thought experiment. An entangled pair of particles are emitted from a point
source with momentum conservation. A narrow slit on screen A is placed in the path of particle 1
to provide the precise knowledge of its position on the y-axis and this also determines the precise
y-position of its twin, particle 2, on screen B. (a) Slits A and B are both adjusted very narrowly.
(b) Slit A is kept very narrow and slit B is left wide open

early 1930’s aimed to support his realistic interpretation of quantum mechanics [26].
What Popper intended to show in his thought experiment is that a particle can have
both precise position and momentum simultaneously through the correlation mea-
surement of an entangled two-particle system.

Similar to EPR’s gedankenexperiment, Popper’s thought experiment is also based
on the feature of two-particle entanglement: if the position or momentum of particle
1 is known, the corresponding observable of its twin, particle 2, is then 100% de-
termined. Popper’s original thought experiment is schematically shown in Fig. 13.
A point source S, positronium as Popper suggested, is placed at the center of the
experimental arrangement from which entangled pairs of particles 1 and 2 are emit-
ted in opposite directions along the respective positive and negative x-axes towards
two screens A and B. There are slits on both screens parallel to the y-axis and the
slits may be adjusted by varying their widths Δy. Beyond the slits on each side stand
an array of Geiger counters for the joint measurement of the particle pair as shown
in the figure. The entangled pair could be emitted to any direction in 4π solid an-
gles from the point source. However, if particle 1 is detected in a certain direction,
particle 2 is then known to be in the opposite direction due to the momentum con-
servation of the pair.

First, let us imagine the case in which slits A and B are both adjusted very nar-
rowly. In this circumstance, particle 1 and particle 2 experience diffraction at slit
A and slit B, respectively, and exhibit greater Δpy for smaller Δy of the slits. There
seems to be no disagreement in this situation between Copenhagen and Popper.



196 Y. Shih

Next, suppose we keep slit A very narrow and leave slit B wide open. The main
purpose of the narrow slit A is to provide the precise knowledge of the position
y of particle 1 and this subsequently determines the precise position of its twin
(particle 2) on side B through quantum entanglement. Now, Popper asks, in the
absence of the physical interaction with an actual slit, does particle 2 experience a
greater uncertainty in Δpy due to the precise knowledge of its position? Based on his
beliefs, Popper provides a straightforward prediction: particle 2 must not experience
a greater Δpy unless a real physical narrow slit B is applied. However, if Popper’s
conjecture is correct, this would imply the product of Δy and Δpy of particle 2 could
be smaller than h (ΔyΔpy < h). This may pose a serious difficulty for Copenhagen
and perhaps for many of us. On the other hand, if particle 2 going to the right does
scatter like its twin, which has passed though slit A, while slit B is wide open, we
are then confronted with an apparent action-at-a-distance!

The use of a “point source” in Popper’s proposal has been criticized histori-
cally as the fundamental mistake Popper made [27]. It is true that a point source
can never produce a pair of entangled particles which preserves the EPR correla-
tion in momentum as Popper expected. However, notice that a “point source” is
not a necessary requirement for Popper’s experiment. What is required is a precise
position–position EPR correlation: if the position of particle 1 is precisely known,
the position of particle 2 is 100% determined. As we have shown in the last section,
“ghost” imaging is a perfect tool to achieve this.

In 1998, Popper’s experiment was realized with the help of two-photon “ghost”
imaging [28]. Figure 14 is a schematic diagram that is useful for comparison with
the original Popper’s thought experiment. It is easy to see that this is a typical
“ghost” imaging experimental setup. An entangled photon pair is used to image
slit A onto the distant image plane of “screen” B. In the setup, so is chosen to be
twice the focal length of the imaging lens LS, so = 2 f . According to the Gaussian
thin lens equation, an equal size “ghost” image of slit A appears on the two-photon
image plane at si = 2 f . The use of slit A provides a precise knowledge of the po-
sition of photon 1 on the y-axis and also determines the precise y-position of its
twin, photon 2, on screen B by means of the two-photon “ghost” imaging. The ex-
perimental condition specified in Popper’s experiment is then achieved. When slit
A is adjusted to a certain narrow width and slit B is wide open, slit A provides pre-
cise knowledge about the position of photon 1 on the y-axis up to an accuracy Δy
which equals the width of slit A, and the corresponding “ghost image” of pinhole
A at screen B determines the precise position y of photon 2 to within the same ac-
curacy Δy. Δpy of photon 2 can be independently studied by measuring the width
of its “diffraction pattern” at a certain distance from “screen” B. This is obtained
by recording coincidences between detectors D1 and D2 while scanning detector D2
along its y-axis, which is behind screen B at a certain distance.

Figure 15 is a conceptual diagram to connect the modified Popper’s experiment
with two-photon “ghost” imaging. In this unfolded “ghost” imaging setup, we as-
sume the entangled signal–idler photon pair holds a perfect transverse momentum
correlation with�ks +�ki ∼ 0, which can be easily realized in SPDC. In this experi-
ment, we have chosen so = si = 2 f . Thus, an equal size “ghost” image of slit A is
expected to appear on the image plane of screen B.
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Fig. 14 Modified version of Popper’s experiment. An entangled photon pair is generated by SPDC.
A lens and a narrow slit A are placed in the path of photon 1 to provide the precise knowledge of its
position on the y-axis and also to determine the precise y-position of its twin, photon 2, on screen
B by means of two-photon “ghost” imaging. Photon counting detectors D1 and D2 are used to scan
in y-directions for joint detections. (a) Slits A and B are both adjusted very narrowly. (b) Slit A is
kept very narrow and slit B is left wide open

D1

a b = b1+b2

BBO

LS

D2

2f2f

Y

Collection
Lens Screen B

Fig. 15 An unfolded schematic of ghost imaging. We assume the entangled signal–idler photon
pair holds a perfect momentum correlation δ (ks +ki)∼ 0. The locations of the slit A, the imaging
lens LS, and the “ghost” image must be governed by the Gaussian thin lens equation. In this
experiment, we have chosen so = si = 2 f . Thus, the “ghost” image of slit A is expected to be the
same size as that of slit A

The detailed experimental setup is shown in Fig. 16 with indications of the vari-
ous distances. A CW Argon ion laser line of λp = 351.1nm is used to pump a 3mm
long beta barium borate (BBO) crystal for type-II SPDC to generate an orthogo-
nally polarized signal–idler photon pair. The laser beam is about 3mm in diameter
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Fig. 16 Schematic of the experimental setup. The laser beam is about 3mm in diameter. The
“phase-matching condition” is well reinforced. Slit A (0.16mm) is placed 1,000mm = 2 f behind
the converging lens, LS ( f = 500mm). The one-to-one “ghost image” (0.16mm) of slit A is located
at B. The optical distance from LS in the signal beam taken as back through PBS to the SPDC
crystal (b1 = 255mm) and then along the idler beam to “screen B” (b2 = 745mm) is 1,000mm =
2 f (b = b1 +b2)

with a diffraction limited divergence. It is important to keep the pump beam a large
size so that the transverse phase-matching condition,�ks +�ki ∼ 0 (�kp = 0), is well
reinforced in the SPDC process, where �k j ( j = s, i) is the transverse wavevector
of the signal (s) and idler (i), respectively. The collinear signal-idler beams, with
λs = λi = 702.2 nm = 2λp are separated from the pump beam by a fused quartz dis-
persion prism, and then split by a polarization beam splitter PBS. The signal beam
(photon 1) passes through the converging lens LS with a 500mm focal length and a
25mm diameter. A 0.16mm slit is placed at location A which is 1000mm (= 2 f )
behind the lens LS. A short focal length lens is used with D1 for focusing the sig-
nal beam that passes through slit A. The point-like photon counting detector D2 is
located 500mm behind “screen B”. “Screen B” is the image plane defined by the
Gaussian thin lens equation. Slit B, either adjusted as the same size as that of slit
A or opened completely, is placed to coincide with the “ghost” image. The output
pulses from the detectors are sent to a coincidence circuit. During the measurements,
detector D1 is fixed behind slit A while detector D2 is scanned on the y-axis by a
step motor.

Measurement 1: Measurement 1 studied the case in which both slits A and B were
adjusted to be 0.16mm. The y-coordinate of D1 was chosen to be 0 (center) while D2
was allowed to scan along its y-axis. The circled dot data points in Fig. 17 show the
coincidence counting rates against the y-coordinates of D2. It is a typical single-slit
diffraction pattern with ΔyΔpy = h. Nothing is special in this measurement except
that we have learned the width of the diffraction pattern for the 0.16mm slit and this
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Fig. 17 The observed coincidence patterns. The y-coordinate of D1 was chosen to be 0 (center)
while D2 was allowed to scan along its y-axis. Circled dot points: Slit A = Slit B = 0.16mm.
Diamond dot points: Slit A = 0.16mm, Slit B wide open. The width of the sinc function curve fitted
by the circled dot points is a measure of the minimum Δpy diffracted by a 0.16mm slit

represents the minimum uncertainty of Δpy. We should emphasize at this point that
the single detector counting rate of D2 as a function of its position y is basically the
same as that of the coincidence counts except for a higher counting rate.

Measurement 2: The same experimental conditions were maintained except that
slit B was left wide open. This measurement is a test of Popper’s prediction. The
y-coordinate of D1 was chosen to be 0 (center) while D2 was allowed to scan along
its y-axis. Due to the entangled nature of the signal–idler photon pair and the use of
a coincidence measurement circuit, only those twins which have passed through slit
A and the “ghost image” of slit A at screen B with an uncertainty of Δy = 0.16mm
(which is the same width as the real slit B we have used in measurement 1) would
contribute to the coincidence counts through the joint detection of D1 and D2. The
diamond dot data points in Fig. 17 report the measured coincidence counting rates
against the y coordinates of D2. The measured width of the pattern is narrower than
that of the diffraction pattern shown in measurement 1. It is also interesting to no-
tice that the single detector counting rate of D2 keeps constant in the entire scanning
range, which is very different from that in measurement 1. The experimental data
has provided a clear indication of ΔyΔpy < h in the joint measurements of the en-
tangled photon pairs.

Given that ΔyΔpy < h, is this a violation of the uncertainty principle? Does quan-
tum mechanics agree with this peculiar experimental result? If quantum mechanics
does provide a solution with ΔyΔpy < h for photon 2. We would indeed be forced
to face a paradox as EPR had pointed out in 1935.
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Quantum mechanics does provide a solution that agrees with the experimental
result. However, the solution is for a joint measurement of an entangled photon pair
that involves both photon 1 and photon 2, but not just for photon 2 itself .

We now examine the experimental results with the quantum mechanical calcula-
tion by adopting the formalisms from the ghost image experiment with two modifi-
cations:

Case (I): slits A = 0.16mm, slit B = 0.16mm.
This is the experimental condition for measurement one: slit B is adjusted to

be the same as slit A. There is nothing surprising about this measurement. The
measurement simply provides us with the knowledge for Δpy of photon 2 caused
by the diffraction of slit B (Δy = 0.16mm). The experimental data shown in Fig. 17
agrees with the calculation. Notice that slit B is about 745mm away from the 3mm
two-photon source, the angular size of the light source is roughly the same as λ/Δy,
Δθ ∼ λ/Δy, where λ = 702nm is the wavelength and Δy = 0.16mm is the width
of the slit. The calculated diffraction pattern is very close to that of the “far-field”
Fraunhofer diffraction of a 0.16mm single-slit.

Case (II): slit A = 0.16mm, slits B ∼ ∞ (wide open).
Now we remove slit B from the ghost image plane. The calculation of the trans-

verse effective two-photon wavefunction and the second-order correlation is the
same as that of the ghost image except the observation plane of D2 is moved behind
the image plane to a distance of 500mm. The two-photon image of slit A is located
at a distance si = 2 f = 1,000mm (b1 +b2) from the imaging lens, in this measure-
ment D2 is placed at d = 1,500mm from the imaging lens. The measured pattern
is simply a “blurred” two-photon image of slit A. The “blurred” two-photon image
can be calculated from Eq. (75) which is a slightly modified version of Eq. (66)

Ψ(�ρo,�ρ2) ∝
∫

lens
d�ρl G(|�ρ2 −�ρl |,

ω
cd

)G(|�ρl |,
ω
c f

)G(|�ρl −�ρo |,
ω
cso

)

∝
∫

lens
d�ρl G(|�ρl |,

ω
c

[
1
so

+
1
d
− 1

f
])e−iωc (�ρo

so +�ρi
d )·�ρl (75)

where d is the distance between the imaging lens and D2. In this measurement, D2
was placed 500mm behind the image plane, i.e., d = si +500mm. The numerically
calculated “blurred” image, which is narrower than that of the diffraction pattern of
the 0.16mm slit B, agrees with the measured result of Fig. 17 within experimental
error.

The measurement does show a result of ΔyΔpy < h. The measurement, however,
has nothing to do with the uncertainty relation, which governs the behavior of pho-
ton 2 (the idler). Popper and EPR were correct in the prediction of the outcomes
of their experiments. Popper and EPR, on the other hand, made the same error by
applying the results of two-particle physics to the explanation of the behavior of an
individual subsystem.

In both the Popper and EPR experiments, the measurements are “joint detection”
between two detectors applied to entangled states. Quantum mechanically, an en-
tangled two-particle state only provides the precise knowledge of the correlations
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of the pair. The behavior of “photon 2” observed in the joint measurement is con-
ditioned upon the measurement of its twin. A quantum must obey the uncertainty
principle but the “conditional behavior” of a quantum in an entangled two-particle
system is different in principle. We believe paradoxes are unavoidable if one insists
the conditional behavior of a particle is the behavior of the particle. This is the
central problem in the rationale behind both Popper and EPR. ΔyΔpy ≥ h is not ap-
plicable to the conditional behavior of either “photon 1” or “photon 2” in the cases
of Popper and EPR.

The behavior of photon 2 being conditioned upon the measurement of photon 1
is well represented by the two-photon amplitudes. Each of the straight lines in the
above discussion corresponds to a two-photon amplitude. Quantum mechanically,
the superposition of these two-photon amplitudes are responsible for a “click–click”
measurement of the entangled pair. A “click–click” joint measurement of the two-
particle entangled state projects out certain two-particle amplitudes, and only these
two-particle amplitudes are featured in the quantum formalism. In the above anal-
ysis we never consider “photon 1” or “photon 2” individually. Popper’s question
about the momentum uncertainty of photon 2 is then inappropriate.

Once again, the demonstration of Popper’s experiment calls our attention to the
important message: the physics of an entangled two-particle system must be inher-
ently very different from that of individual particles.

7 Subsystem in an Entangled Two-Photon State

The entangled EPR two-particle state is a pure state with zero entropy. The precise
correlation of the subsystems is completely described by the state. The measure-
ment, however, is not necessarily always on the two-photon system. It is an exper-
imental choice to study a single subsystem and to ignore the other. What can be
learn about a subsystem from these kinds of measurements? Mathematically, it is
easy to show that by taking a partial trace of a two-particle pure state, the state of
each subsystem is in a mixed state with entropy greater than zero. One can only
learn statistical properties of the subsystems in this kind of measurement.

In the following, again, we use the signal–idler pair of SPDC as an example to
study the physics of a subsystem. The two-photon state of SPDC is a pure state that
satisfies

ρ̂2 = ρ̂, ρ̂ ≡ |Ψ〉〈Ψ|
where ρ̂ is the density operator corresponding to the two-photon state of SPDC. The
single photon states of the signal and idler

ρ̂s = tri |Ψ〉〈Ψ| , ρ̂i = trs |Ψ〉〈Ψ|

are not pure states. To calculate the signal (idler) state from the two-photon state,
we take a partial trace, as usual, summing over the idler (signal) modes.
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We assume a type II SPDC. The orthogonally polarized signal and idler are de-
generate in frequency around ω0

s = ω0
i = ωp/2. To simplify the discussion, by as-

suming appropriate experimental conditions, we trivialize the transverse part of the
state and write the two-photon state in the following simplified form:

|Ψ〉=Ψ0

∫

dΩ Φ(DLΩ)a†
s (ω0

s +Ω)a†
i (ω

0
i −Ω) |0〉

where Φ(DLΩ) is a sinc-like function:

Φ(DLΩ) =
1− e−iDLΩ

iDLΩ

which is a function of the crystal length L, and the difference of inverse group ve-
locities of the signal (ordinary) and the idler (extraordinary), D ≡ 1/uo −1/ue. The
constant Ψ0 is calculated from the normalization tr ρ̂ = 〈Ψ |Ψ〉 = 1. It is easy to
calculate and to find ρ̂2 = ρ̂ for the two-photon state of the signal–idler pair.

Summing over the idler modes, the density matrix of signal is given by

ρ̂s =Ψ2
0

∫

dΩ |Φ(Ω)|2 a†
s (ω0

s +Ω) |0〉〈0| as(ω0
s +Ω) (76)

with
|Φ(Ω)|2 = sinc2 DLΩ

2
where all constants coming from the integral have been absorbed into Ψ0. First, we
find immediately that ρ̂2

s �= ρ̂s. It means the state of the signal is a mixed state (as
is the idler). Second, it is very interesting to find that the spectrum of the signal
depends on the group velocity of the idler. This, however, should not come as a
surprise, because the state of the signal photon is calculated from the two-photon
state by summing over the idler modes.

The spectrum of the signal and idler has been experimentally verified by
Strekalov et al using a Michelson interferometer in a standard Fourier spectroscopy
type measurement [29]. The measured interference pattern is shown in Fig. 18. The
envelope of the sinusoidal modulations (in segments) is fitted very well by two
“notch” functions (upper and lower part of the envelope). The experimental data
agrees with the theoretical analysis of the experiment.

The following is a simple calculation to explain the observed “notch” function.
We first define the field operators:

E(+)(t,zd) = E(+)(t − z1

c
,z0)+E(+)(t − z2

c
,z0)

where zd is the position of the photo-detector, z0 is the input point of the interferom-
eter, t1 = t − z1

c and t2 = t − z2
c , respectively, are the early times before propagating

to the photodetector at time t with time delays of z1/c and z2/c, where z1 and z2
are the optical paths in arm 1 and arm 2 of the interferometer. We have defined a
very general field operator which is a superposition of two early fields propagated
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Fig. 18 Experimental data indicated a “double notch” envelope. Each of the dotted single vertical
line contains many cycles of sinusoidal modulation

individually through arm 1 and arm 2 of any type of interferometer. The counting
rate of the photon counting detector is thus

Rd = tr
[

ρ̂sE(−)(t,zd)E(+)(t,zd)
]

= Ψ2
0

∫

dΩ |Φ(Ω)|2
∣
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s +Ω) |0〉

∣
∣2

= Ψ2
0

∫

dΩ |Φ(Ω)|2
∣
∣〈0|
[

E(+)(t − z1

c
,z0)+E(+)(t − z2

c
,z0)
]

a†
s (ω0

s +Ω) |0〉
∣
∣2

∝ 1+Re
[

e−iω0τ
∫

dΩ sinc2 DLΩ
2

e−iΩτ
]

(77)

where τ = (z1−z2)/c. The Fourier transform of sinc2(DLΩ/2) has a “notch” shape.
It is noticed that the base of the “notch” function is determined by parameter DL of
the SPDC, which is easily confirmed from the experiment.

Now we turn to another interesting aspect of physics, namely the physics of en-
tropy. In classical information theory, the concept of entropy, named as Von Neuman
entropy, is defined by [30]

S =− tr (ρ̂ log ρ̂) (78)

where ρ̂ is the density operator. It is easy to find that the entropy of the entangled
two-photon pure state is zero. The entropy of its subsystems, however, are both
greater than zero. The value of the Von Neuman entropy can be numerically evalu-
ated from the measured spectrum. Note that the density operator of the subsystem is
diagonal. Taking its trace is simply performing an integral over the frequency spec-
trum with the measured spectrum function. It is straightforward to find the entropy
of the subsystems Ss > 0. This is an expected result due to the statistical mixture
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nature of the subsystem. Considering that the entropy of the two-photon system is
zero and the entropy of the subsystems are both greater than zero, does this mean
that negative entropy is present somewhere in the entangled two-photon system?
According to classical “information theory”, for the entangled two-photon system,
Ss +Ss|i = 0, where Ss|i is the conditional entropy. It is this conditional entropy that
must be negative, which means that given the result of a measurement over one
particle, the result of a measurement over the other must yield negative informa-
tion [31]. This paradoxical statement is similar and, in fact, closely related to the
EPR “paradox”. It comes from the same philosophy as that of the EPR.

8 Summary

The physics of an entangled system is very different from that of either classically
independent or correlated systems. We use 2 �= 1+1 to emphasize the nonclassical
behavior of an entangled two-particle system. The entangled system is character-
ized by the properties of an entangled state which does not specify the state of an
individual system, but rather describes the correlation between the subsystems. An
entangled two particle state is a pure state which involves the superposition of a set
of “selected” two-particle states, or two-particle quantum mechanical amplitudes.
Here, the term “selection” stems from the physical laws which govern the creation
of the subsystems in the source, such as energy or momentum conservation. Inter-
estingly, quantum mechanics allows for the superposition of these local two-particle
states which have been observed in nature. However, the most surprising physics
arises from the joint measurement of the two particles when they are released form
the source and propagated a large distance apart. The two well separated interaction-
free particles do not lose their entangled properties, i.e., they maintain their “se-
lected” set of two-particle superposition. In this sense quantum mechanics allows
for the two-particle superposition of well separated particles which has, remarkably,
also been observed to exist in nature.

The two-photon state of SPDC is a good example. The nonlinear interaction of
spontaneous parametric down-conversion coherently creates a set of mode in pairs
that satisfy the phase matching conditions of Eq. (11) which is also characteristic
of energy and momentum conservation. The signal–idler photon pair can be excited
to any or all of these coupled modes simultaneously, resulting in a superposition of
these coupled modes inside of the nonlinear crystal. The physics behind the two-
photon superposition becomes even more interesting when the signal–idler pair is
separated and propagated a large distance apart outside the nonlinear crystal, either
through free propagation or guided by optical components. Remarkably the entan-
gled pair does not lose its entangled properties once the subsystems are interaction
free. As a result the properties of the entangled two-photon system, such as the EPR
correlation or the EPR inequalities, are still observable in the joint detection count-
ing rate of the pair, regardless of the distance between the two photons as well as
the two individual photo-detection events. In this situation the superposition of the
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two-photon amplitudes, corresponding to different yet indistinguishable alternative
ways of triggering a joint photo-electron event at any distance can be regarded as
nonlocal. There is no counterpart to such a concept in classical theory and this be-
havior may never be understood in any classical sense. It is with this intent that we
use 2 �= 1+1 to emphasize that the physics of a two-photon is not the same as that
of two photons.
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Appendix: Fresnel Propagation-Diffraction

In Fig. A.1, the field is freely propagated from the source plane σ0 to an arbitrary
plane σ . It is convenient to describe such a propagation in the form of Eq. (33).
We now evaluate g(�κ,ω;�ρ,z), namely the Green’s function for free-space Fresnel
propagation-diffraction.

According to the Huygens-Fresnel principle, the field at a space-time point
(�ρ,z, t) is the result of a superposition of the spherical secondary wavelets origi-
nated from each point on the σ0 plane, see Fig. A.1,

E(+)(�ρ,z, t) =
∫

dω d�κ a(ω,�κ)
∫

σ0

d�ρ0
Ã(�ρ0)

r′
e−i(ωt−kr′) (A.1)

where Ã(�ρ0) is the complex amplitude, or distribution function, in terms of the
transverse coordinate �ρ0, which may be a constant, a simple aperture function, or a

ρ0 ρ

z

r'
k(κ,ω) r

r''

A(ρ0)

σ0 σ

E(ρ,z)

Fig. A.1 Schematic of free-space Fresnel propagation. The complex amplitude Ã(�ρ0) is composed
by a real function A(�ρ0) and a phase e−i�κ·�ρ0 associated with each of the transverse wavevector �κ
on the plane of σ0. Notice: only one mode of wavevector k(�κ,ω) is shown in the figure
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combination of the two. In Eq. (A.1), we have taken z0 = 0 and t0 = 0 on the source
plane of σ0 as usual.

In a paraxial approximation, we take the first-order expansion of r′ in terms of z
and �ρ

r′ =
√

z2 + |�ρ−�ρ0|2 � z(1+
|�ρ−�ρ0|2

2z2 ).

E(+)(�ρ,z, t) is thus approximated as

E(+)(�ρ,z, t)�
∫

dω d�κ a(ω,�κ)
∫

d�ρ0
Ã(�ρ0)

z
eiωc z ei ω2cz |�ρ−�ρ0|2e−iωt

where ei ω2cz |�ρ−�ρ0|2 is named as the Fresnel phase factor.
Assuming the complex amplitude Ã(�ρ0) is composed of a real function A(�ρ0)

and a phase e−i�κ·�ρ0 , associated with the transverse wavevector and the transverse
coordinate on the plane of σ0, which is reasonable for the setup of Fig. A.1, E(�ρ,z, t)
can be written in the following form

E(+)(�ρ,z, t) =
∫

dω d�κ a(ω,�κ)e−iωt eiωc z

z

∫

d�ρ0 A(�ρ0)ei�κ·�ρ0 ei ω2cz |�ρ−�ρ0|2 .

The Green’s function g(�κ,ω;�ρ,z) for free-space Fresnel propagation is thus

g(�κ,ω;�ρ,z) =
eiωc z

z

∫

σ0

d�ρ0 A(�ρ0)ei�κ·�ρ0 G(|�ρ−�ρ0|,
ω
cz

). (A.2)

In Eq. (A.2) we have defined a Gaussian function G(|�α|,β ) = ei(β/2)|α|2 , namely
the Fresnel phase factor. It is straightforward to find that the Gaussian function
G(|�α|,β ) has the following properties:

G∗(|�α|,β ) = G(|�α|,−β ),
G(|�α|,β1 +β2) = G(|�α|,β1)G(|�α|,β2),

G(|�α1 +�α2|,β ) = G(|�α1|,β )G(|�α2|,β )eiβ�α1·�α2 ,
∫

d�α G(|�α|,β )ei�γ·�α = i
2π
β

G(|�γ|,− 1
β

). (A.3)

Notice that the last equation in Eq. (A.3) is the Fourier transform of the G(|�α|,β )
function. As we shall see in the following, these properties are very useful in sim-
plifying the calculations of the Green’s functions g(�κ,ω;�ρ,z).

Now, we consider inserting an imaginary plane σ ′ between σ0 and σ . This is
equivalent having two consecutive Fresnel propagations with a diffraction-free σ ′

plane of infinity. Thus, the calculation of these consecutive Fresnel propagations
should yield the same Green’s function as that of the above direct Fresnel propaga-
tion shown in Eq. (A.2):
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g(�κ,ω;�ρ,z)

= C2 eiωc (d1+d2)

d1d2

∫

σ ′
d�ρ ′
∫

σ0

d�ρ0 Ã(�ρ0)G(|�ρ ′ −�ρ0|,
ω

cd1
)G(|�ρ− �ρ ′|, ω

cd2
)

= C
eiωc z

z

∫

σ0

d�ρ0 Ã(�ρ0)G(|�ρ−�ρ0|,
ω
cz

) (A.4)

where C is a necessary normalization constant for a valid Eq. (A.4), and z = d1 +d2.
The double integral of d�ρ0 and d�ρ ′ in Eq. (A.4) can be evaluated as

∫

σ ′
d�ρ ′
∫

σ0

d�ρ0 Ã(�ρ0)G(|�ρ ′ −�ρ0|,
ω

cd1
)G(|�ρ− �ρ ′|, ω

cd2
)

=
∫

σ0

d�ρ0 Ã(�ρ0)G(�ρ0,
ω

cd1
)G(�ρ,

ω
cd2

)
∫

σ ′
d�ρ ′G(�ρ ′,

ω
c

(
1
d1

+
1
d2

))e−iωc (
�ρ0
d1

+ �ρ
d2

)·�ρ ′

=
i2πc
ω

d1d2

d1 +d2

∫

σ0

d�ρ0 Ã(�ρ0)G(�ρ0,
ω

cd1
)G(�ρ,

ω
cd2

)G(|
�ρ0

d1
+

�ρ
d2
|, ω

c
(

d1d2

d1 +d2
))

=
i2πc
ω

d1d2

d1 +d2

∫

σ0

d�ρ0 Ã(�ρ0)G(|�ρ−�ρ0|,
ω

c(d1 +d2)
)

where we have applied Eq. (A.3), and the integral of d�ρ ′ has been taken to infinity.
Substituting this result into Eq. (A.4), we thus have

g(�κ,ω;�ρ,z) = C2 i2πc
ω

eiωc (d1+d2)

d1 +d2

∫

σ0

d�ρ0 Ã(�ρ0)G(|�ρ−�ρ0|,
ω

c(d1 +d2)
)

= C
eiωc z

z

∫

σ0

d�ρ0 Ã(�ρ0)G(|�ρ−�ρ0|,
ω
cz

).

Therefore, the normalization constant C must take the value of C = −iω/2πc. The
normalized Green’s function for free-space Fresnel propagation is thus

g(�κ,ω;�ρ,z) =
−iω
2πc

eiωc z

z

∫

σ0

d�ρ0 Ã(�ρ0)G(|�ρ−�ρ0|,
ω
cz

). (A.5)
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Part IV
Probability, Uncertainty, and Stochastic

Modifications of Quantum Mechanics



Interpretations of Probability in Quantum
Mechanics: A Case of “Experimental
Metaphysics”

Geoffrey Hellman

Abstract After reviewing paradigmatic cases of “experimental metaphysics” bas-
ing inferences against local realism and determinism on experimental tests of Bells
theorem (and successors), we concentrate on clarifying the meaning and status of
“objective probability” in quantum mechanics. The terms “objective” and “subjec-
tive” are found ambiguous and inadequate, masking crucial differences turning on
the question of what the numerical values of probability functions measure vs. the
question of the nature of the “events” on which such functions are defined. This
leads naturally to a 2×2 matrix of types of interpretations, which are then illustrated
with salient examples. (Of independent interest are the splitting of “Copenhagen in-
terpretation” into “objective” and “subjective” varieties in one of the dimensions and
the splitting of Bohmian hidden variables from (other) modal interpretations along
that same dimension.) It is then explained why Everett interpretations are difficult
to categorize in these terms. Finally, we argue that Bohmian mechanics does not
seriously threaten the experimental-metaphysical case for ultimate randomness and
purely physical probabilities.

1 Introduction

One of the most philosophically important and fruitful ideas emerging from the
work of Abner Shimony et al. relating to the Bell theorems, named and high-
lighted by Shimony, is that of “experimental metaphysics”. (See e.g. Shimony [1].)
Although the general view that there is no sharp boundary between metaphysics
and natural science and that questions in the former domain are affected by em-
pirical evidence bearing directly on the latter is not new, and indeed forms a cen-
tral tenet of mid-twentieth-century Quinean philosophy of science, the links be-
tween experimental tests of Bell inequalities, for example, bear far more directly
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on matters standardly called “metaphysical” than even that sophisticated philoso-
phy could ever have anticipated. Those links—for example, between experiments
of Aspect, et al. [2] and theses of “local realism” and “local determinism”—stand
independently of any appeal to Duhemian-Quinean “holism” of testing (according to
which it is really whole theories, including various metaphysical background prin-
ciples, that are tested by experimental evidence, rather than individual statements).
What is truly extraordinary about the tests of Bell-type inequalities is the directness
of the role of the metaphysical theses, e.g. Einstein’s principle of separability of
physical states according to space-time location, leading to mathematically precise
conditions constraining assignments of values of relevant quantities of local hidden
variables theories. The accumulated wealth of evidence confirming quantum corre-
lations between separated subsystems (e.g. paired photons in atomic cascades), thus
violating relevant Bell-type inequalities, tells quite directly that aspects of physical
nature as we understand it violate separability. The same holds, mutatis mutandis,
with respect to the conclusion that certain systems exhibit (temporally or dynam-
ically) indeterministic behavior, that certain “actualization” phenomena (e.g. of a
value of polarization or spin in a specified orientation) occur “randomly”, violating
the entrenched rationalist principle of causality (or “sufficient reason”).

But what about “loopholes”? Testing a Bell-type inequality always involves
special assumptions pertaining to the experimental setup, and the tenacious devil’s
advocate is bound to find some narrow crack somewhere through which a hidden
variable or two might slip. In some cases, improvements in the experimental appara-
tus have sealed a crack shut or have promised to do so (were one to try hard enough,
along a course that would merely continue a pattern of improvements, say of the
efficiency of photon detectors); in other cases, a new style of proof of inequalities
has bypassed a putative gap in earlier derivations between a “metaphysical” moti-
vating premise (e.g. separability) and a mathematical condition (e.g. factorizability
of certain joint probabilities relative to hypothetical, hidden, “physically complete”
states) taken to “precisify” the premise.1 But surely it is in the nature of the beast
that there will always be “loopholes”, i.e. some wiggle-room “in principle” for the
die-hard hidden-variables advocate, some uncertainty in the case based on exper-
imental tests of Bell-type inequalities, however carefully and sturdily it may have
been erected. Experimental metaphysics is, after all, experimental, and—as Abner
Shimony has often emphasized—we must be fallibilists, recognising the possibility
of error but without that at all muting the voice of reason.

To motivate the main focus of this essay, let us recall the case against (dynamical)
“determinism-in-nature” based on experimental tests of Bell-type inequalities (in-
cluding the Clauser–Horne–Shimony–Holt [3] and related inequalities). That case
rests on an argument beginning, per reductio, with the assumption of “local deter-
minism”, that the actual outcomes of (say, for simplicity) spin experiments on each
of a pair of spin- 1

2 particles prepared in the singlet state, carried out under circum-
stances such that the analyzer-setting (orientation of magnetic field of Stern-Gerlach
devices) and outcome events at opposite wings of the setup are space-like separated,

1 See e.g. [4].
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are determined by physical conditions on a space-like slice restricted to the past light
cones, respectively, of the individual analyzer-setting and outcome events. Those
conditions may, of course, pertain to the local measuring apparatus. But it is required
that physical conditions of the apparatus at the opposite wing not be included. Out-
comes at each wing are assumed to be physically and statistically independent of
parameter settings at the other wing (“parameter independence”). This is the “lo-
cality” part of “local determinism”. (We will assume that this is well-motivated by
various arguments based on limitations on the speed of energy-momentum transfer
inherent in the special and general theories of relativity.) Further, in the ideal case,
conservation (of angular momentum) requires that opposite outcomes will be found
in parallel experiments (i.e. same orientation of magnetic fields of Stern-Gerlach ap-
parati set up along a common axis at the two respective wings of the experiment).2

Still these assumptions are not sufficient for a test of “determinism-in-nature”. For
each (sub-)system can be tested only once for a particular orientation of spin and
setting of parameters at the opposite wing. What then is to block a deterministic
account (theory) of any ensemble of such systems-cum-experiments you like which
just manages to deliver the right actual outcomes for each experiment, one-by-one,
as it were? By “one-by-one” we don’t mean that such a theory simply provides a list
of outcomes, and therefore could be excluded for not being “well-systematized”.
Rather we mean that the theory somehow manages to take into account—for all
we know, perhaps in a unified way—only the actual conditions obtaining for the
individual systems involved. The short answer is that such a theory is not “robust”
unless it also supports counterfactuals telling us what outcomes would have emerged
at a given wing had the parameter settings been different at the opposite wing. This,
of course, is the same requirement that the Einstein–Podolsky–Rosen [5] argument
invoked in their famous case that quantum mechanics must be “incomplete”. In the
present setting, it is used to infer that a robust or respectable deterministic theory
must deliver (counterfactual) predictions of outcomes at a given wing for various
parameter settings at the opposite wing. (Three directions altogether suffice, set e.g.
120◦ apart, for deriving a Bell inequality discriminating local, deterministic hidden
variables’ predictions from those of quantum mechanics.)3 It is assumed that, as
in experiments of Aspect, et al., the preparation of apparatus at an opposite wing
being considered is space-like related to the opposite subsystem’s measurement at
the other wing so that it is reasonable to assume that no physical interaction oc-
curs between these “events” (or space-time regions). Then we can proceed as in
the standard proofs of Bell’s theorem, that the theory must deliver a set of (actually
and counterfactually predicted) “values” to the given subsystems’ spins that respect
parameter-independence and thus necessarily satisfy Bell-type inequalities in cases
in which quantum mechanically predicted statistics violate them.4

2 In the case of polarization in photon cascade experiments, (exact) conservation requires that
passage or non-passage through analyzers set at the same orientation at opposite wings be directly
strictly correlated.
3 For an elegant presentation and further simplification of an argument due to D. Mermin (itself
simplifying one given by E. Wigner), see [6], 143–48.
4 For more explicit and rigorous derivations, see e.g. [7, 8].
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This reasoning makes it clear that the “metaphysics” in experimental metaphysics
is mediated by requirements that we are led to impose on putative theories that
would transcend quantum mechanics but account for the observed statistics. That
should not be surprising, however, since the metaphysical words (such as “local
determinism”) must be spelled out carefully if we are to carry out a mathemati-
cal argument constraining possible explanations of the observations, and of course
explanations in physics, at any rate, typically involve some theory.5

If the physical world, at least at the quantum level, is really indeterministic in the
ways described by the Bell results just outlined, it is natural to speak of individual
outcomes in tests for spin or polarization as “objectively random”, in that literally
nothing in nature causes any of those particular outcomes (as opposed to the oppo-
site value of the relevant two-valued observable). If we think of trying to connect
this with various mathematical definitions of “random sequence” (of digits), we
can imagine generating sequences of outcomes (coded by, say, 0’s and 1’s, respec-
tively, for the two possible outcomes at each wing, L and R, taken separately) by
repeating “identically prepared” experiments many times and checking the relevant
formal properties exhibited by the outcomes at a given wing. (Clearly, this will be
rather easier if the mathematical definition of “random sequence”, such as that of
Kolmogorov-Chaitin, applies to finite sequences!) But we will not expect such se-
quences to be entirely random or chaotic in an intuitive sense. Rather we expect
that, in almost every case, they will exhibit convergence of ratios presented in the
initial segments to probability values given by quantum theory. (For example, in the
case of spin- 1

2 particles of singlet-state pairs, we expect convergence to 1
2 of the

ratio of (occurrences of) one of the possible outcomes to the total number of all
outcomes in initial segments of longer and longer sequences of outcomes at each
wing, L or R, taken separately.) But in making such connections we think that we
only re-enforce the view that we are here dealing with “objective probabilities”,
fundamentally different from the probabilities found useful in classical statistical
mechanics or in applications to everyday life in which we are prepared to grant that
causal determinism reigns—at least with practical certainty—, with respect to the
macroscopic systems involved, in spite of the quantum mechanical nature of their
micro-constituents.

This brings us to the main questions we would like to address: How, more pre-
cisely, are we to understand quantum probabilities as “objective” or not? Further-
more, as different interpretations of the quantum formalism interpret probabilities
differently, it should be useful to classify them according to their treatment of the
central concept of probability. How shall this be done? We propose a scheme in the
next section, and then illustrate how it helps in assessing the reasoning of experi-
mental metaphysics in central cases such as that of indeterminism-in-nature as just
reviewed.

5 For certain purposes, it may be useful to think of “theories” as classes of models, according to
some version of the so-called “semantic view” of theories. But when it comes to explanations,
especially in physics, the earlier sentence- or statement-based notion of “theory” has its point.
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2 Interpretations of QM Probabilities

We take for granted that the mathematical apparatus for treating probabilities in
quantum mechanics is well understood, due to the work of von Neumann, Lüders,
Mackey, and culminating in the famous theorem of Gleason [9] characterizing mea-
sures on the closed linear subspaces of Hilbert space (of dimension ≥3) as given by
the quantum algorithm via trace-class statistical operators. However, this machinery
is open to a wide variety of interpretations bearing on physics and experiment which
it is our purpose here to classify and survey briefly with the aim of clarifying the
meaning and place of so-called “objective” interpretations of quantum probability.

It is unfortunate, we maintain, that interpretations of quantum probability have
been labelled simply “objective” and “subjective”, for this encourages conflation of
issues that must be kept distinct if serious confusions are to be avoided. These is-
sues pertain to two dimensions integral to the very concept of probability. The first
issue concerns the values of probability functions, the real numbers assigned lying
in the interval [0,1]. The question here is what, according to a given interpretation,
quantum probabilities measure. For example, do they measure actual relative fre-
quencies of experimental outcomes in ensembles of systems, or limiting values of
such frequencies taken over idealized (infinite) sequences of such outcomes? Or
do they measure strengths of physical dispositions of individual systems to behave
in various ways if they undergo, or were to undergo, various interactions with other
systems (“propensities” is a term for such dispositions)? Or do they measure degrees
of belief that a rational betting agent given certain specified information would have
in this or that prediction about the system? That is dimension 1. And one could rea-
sonably classify these possible answers as “objective” or “subjective”: for example,
strengths of physical dispositions of individual quantum systems are an objective
matter, whereas degrees of belief or certainty of agents are not unreasonably termed
“subjective”. Relative frequencies in ensembles are more complex: while the fre-
quencies themselves are an objective matter, if the ensembles are selected according
to states of knowledge, we tend to speak of the associated probabilities as “subjec-
tive”, whereas if ensembles are selected according to, say, a (putatively) complete
set of physical properties or physical state, we would classify the associated proba-
bility as “objective”.

Perhaps this is the primary meaning of the “objective/subjective” distinction that
discussants of the subject have had in mind. But there is a second dimension which,
from a foundational point of view, is equally important and which intrudes itself
upon all the examples given so far. That concerns not the values of probability func-
tions but rather their domain of definition, the “events” on which they are defined,
the bearers of probability as it were, or what the probabilities are probabilities
of.6 Thus, in connection with the options mentioned above for interpreting what

6 As indicated, the “event space” of quantum probabilities in a purely mathematical sense is per-
fectly definite (the lattice of closed subspaces of the Hilbert space representing the system). Sub-
spaces typically correspond to “properties” of the form “the value of observable O lies in Borel
set I”. However, interpretations differ as to just how these properties are related to physical systems
and the experiments performed on them, e.g. whether they are “objectively possessed”, “found in
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quantum probabilities measure, we may ask, strength of dispositions to do what,
described how? Or degree of belief in what, described how? Even in the case of
relative frequencies in ensembles selected in a manner already classified as above
(e.g. as relative to epistemic states of agents or not), we may further ask, “ensem-
bles of systems” doing what, described how? In classical mechanics, these issues
are not problematic: probabilities are assigned to measurable regions of phase space
and these are understood as collections of physical states in which certain physi-
cal magnitudes are possessed by the systems in question. Probabilities, even though
they are based on our ignorance of precise details of the systems involved, are still
probabilities of possession of properties. Indeed states can be considered essen-
tially as “lists” of key physical properties. That of course is notoriously not the case
in quantum mechanics, except under certain non-standard interpretations, and it is
decidedly not the case in textbook quantum mechanics. Indeed, in order to avoid
contradictions that naturally arise in the peculiarly quantum mechanical context of
incompatible observables, one has resort to talk of properties, not simply possessed
by quantum systems, but found to be possessed if suitably measured, which is the
essential move in the Bohrian doctrine of “complementarity”. Pure quantum states
can be taken as extremal probability measures on closed subspaces of Hilbert space
(equivalently projection operators) which specify how systems would behave, what
properties they would exhibit, if observed in this or that specified way. Even this is
controversial, resting on inference from the observed apparatus system in a mea-
surement to properties of the quantum system itself, and interpretations appealing
to complementarity (of the “Copenhagen” variety, broadly speaking) range from
“more objective” in licensing such inferences to “completely operational” in ban-
ning them entirely. So now the simple classical language of property possession, a
purely objective matter, has been replaced with a complicated reference to a variety
of possible outcomes of interactions, and these themselves are described with lan-
guage frequently bringing in “big, bad words” like “measurement”, “observation”,
etc., which are not yet explained physically and which refer obliquely to cognitive
agents. That is, the “events” assigned probabilities have “subjective” elements in
their common descriptions.7 Thus, this dimension 2 can also be divided broadly into
“objective” and “subjective” sides, where “objective” applies to probability bearers
described in physical language without reference to “measurement”, “observation”,
or “appearance”, etc., and “subjective” applies to bearers whose description does
make such reference.

This leads then to a two-by-two matrix of interpretative possibilities, with, say,
dimension 1 labelling the rows and dimension 2 labelling the columns:

Obj 2 Subj 2
Obj 1 Modal Interps Textbook (e.g. Bohm ’51)
Subj 1 Bohmian Mech Instrumentalist CI, Bayesian

appropriate measurements”, etc. It is “bearers of probablities” in this extra-mathematical sense that
we are concerned with here.
7 “Anthropocentric” would be a more accurate term than “subjective”. But it has too many sylla-
bles, so we acquiesce in the more common terminology.
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Let us comment briefly on the cell occupants and why they are where they are.
Modal interpretations give up the eigenvalue-eigenstate link, assigning some val-

ues to systems beyond what that rule allows (i.e. to observables pertaining to sys-
tems not in an eigenstate of those observables). Conflicts with “no go”results ruling
out sufficiently many such value assignments (at a time), based e.g. on Gleason’s
theorem or the Kochen and Specker theorem, are avoided by severely restricting
value assignments to special situations, e.g. to operators (“observables”) appearing
in the polar decomposition of the pure state of a whole, typically complex system8;
or to the form of Hamiltonian operators appearing in the dynamical description of
interactions typified in “good measurements” of a given observable. Relative to such
value assignments, however, probabilities are of possession of properties, just as in
classical physics (Objective 2), although the properties themselves are characteris-
tically quantum mechanical (based on the closed linear subspaces of Hilbert space).
But note that, while good measurements are taken to reveal such properties, offi-
cially modal interpretations avoid terms like “measurement” as primitive, speaking
instead of interactions described with Hamiltonian operators meeting certain formal
conditions.9 However, ultimate physical randomness is also recognized: just which
properties will be revealed or actualized in an interaction involving an individual
quantum system is not determined by anything in nature; rather quantum (pure)
states give measures of the strength of dispositions to actualize various properties
depending on the interaction. Thus, these interpretations seek objectivity in both
senses. Although an attractive solution to the notorious measurement problem is
provided, challenges remain especially in connection with relativity, where value
assignments of modal interpretations can readily violate Lorentz invariance,10 and
with extension to quantum field theory, where modal rules for assigning properties
yield only trivial results in fairly common situations.11 It remains to be seen whether
a minimalist modal interpretation can isolate a class of genuine “measurement type”
interactions, described in QFT, which admit non-trivial property ascriptions.

In contrast with modal interpretations, textbook treatments, such as Bohm’s [10]
Quantum Theory, respect the eigenvalue–eigenstate link. Moreover, probabilities
are of measurement outcomes, classically described in a classical background
framework. The notion of “measurement” or “recording apparatus with many de-
grees of freedom”, in effect leading to decoherence, is taken as given, hence the
placement in column 2. This is thus a version of “Copenhagen interpretation”,
although of a decidedly “objective” variety, because of the treatment of the first
dimension of probability, what the numbers measure. Again, like modal interpreta-
tions, it is the strengths of complex physical dispositions of the quantum systems
themselves, dispositions to reveal this or that value of given observable if a suitable
measurement is or were carried out. These are conceptually new, quantum mechan-
ical properties, requiring the mastery of new scientific ideas and language (sharing

8 See [11, 12].
9 See [13], Ch. 9.
10 See e.g. [14]; but also [15].
11 See [16].
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also this feature of modal interpretations). Again, “ultimate physical randomness”
makes sense on this view and is taken as a remarkable, non-classical feature of
the physical world. Pure quantum states are physically complete, and the probabil-
ities they provide (when lying strictly between 0 and 1), while they indeed reflect
our ignorance of actualizations, also describe these complex, non-classical physical
properties, thought of as “tendencies” or “propensities”.12 This aspect is thoroughly
objective (row 1), even though “subjective” elements may enter in saying “what
these tendencies are toward”.

A remark on sources: Bohm’s 1951 [10] text is the most reflective, sustained, and
consistent effort to work out these ideas in detail that I am familiar with. Perhaps
Bohr scholars can judge the extent to which it represents Bohr’s own considered
views. In any case, it strikes me as still the most defensible presentation of Copen-
hagen around, one whose main themes are echoed in many other texts and contexts.
Its principal drawbacks are two: in requiring a classical background—even with the
cut varying with context, as it must, since “recording apparati” can also be treated as
quantum systems—it does not readily lend itself to the notion of a “wave-function
of the whole universe” as needed in quantum cosmology. Secondly, in its appeal to
randomized phase factors entering into the wave function of a system interacting
with a measuring device with many degrees of freedom, it provides at best an ap-
proximate solution—good “for all practical purposes” (FAPP solutions, as John Bell
called a whole class of attempts along these lines)—of the measurement problem.

Moving to the second row, Bohmian mechanics based on Bohm’s hidden vari-
ables theory of 1952 is the exact reversal of the (partially) “objective” Copenhagen
interpretation just considered.13 Here probabilities are of objective position prop-
erties of systems, to which all quantum observables are ultimately reduced. But

12 Bohm frequently uses the term ‘tendency’ although not ‘propensity’, which was used promi-
nently by Popper. Popper’s own understanding, however, was quite at odds with the interpretation
we are describing, as he thought quantum-mechanical probabilities and randomness were not es-
sentially different from what is encountered in classical statistical physics. Popper’s “propensity
interpretation” of QM was trenchantly criticized by Feyerabend [17] and by Bub [18], essentially
for ignoring the peculiarly quantum phenomenon of incompatible observables giving rise to non-
classical methods of evaluating conditional probabilities. In effect, Popper did not attend to the
crucial distinction we are labelling dimension 2 of probability concepts. For a powerful critique of
Popper’s whole conception of propensities, see [19]. An informative summary of all this is given
by [20], pp. 448–453. His footnote 44, p. 449, also provides a synopsis of earlier antecedents of
probabilities as “propensities”, going back to Maimonides.
13 It may with some justification be claimed that “Bohmian mechanics” should not be classified
as an “interpretation” of quantum mechanics at all, for it is, rather, an alternative physical theory
which is contrived to reproduce the experimental results predicted by quantum mechanics. We
include it in our table anyway because of its significance as a gadfly challenging Copenhagen in-
terpretations as well as in order to illustrate the remarkable differences in concepts of probability
offered by empirically indistinguishable theories. Furthermore, it does retain quantum state func-
tions (defined on configuration space) along with their evolution according to the time-dependent
Schrödinger equation. In this latter respect, Bohmian mechanics differs with recent physical col-
lapse theories, known as GRW [21], in which random collapses interrupt the continuous, linear
Schrödinger evolution of quantum state functions, but in such a way as to be practically certain
in measurement-type situations (where we need them) but practically impossible in circumstances
prevailing at the atomic scale in which Schrödinger dynamics is empirically confirmed as accurate.
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since these position properties evolve deterministically, probabilities are needed
only because of our ignorance of the precise details of initial configurations and
velocities. That is, they reflect our ignorance rather than indeterminism in nature
and so are reasonably classed as “subjective” along dimension 1, what the num-
bers measure. To be sure, they measure relative frequencies in certain ensembles
(at least approximately), but these ensembles are selected as a matter of human
convenience and necessity due to the inaccessibility of exact microstates. This ap-
paratus restores classicality of property ascriptions, avoids the quantum/classical cut
problem of Copenhagen, restores determinism in the evolution of definite values of
position, and avoids the measurement problem. The main price is a high degree of
non-locality and related problems with extending the theory to relativistic quantum
fields. (We will return to this theory/interpretation in the final section, below.)

This brings us finally to the fourth quadrant, “Subjective–Subjective”. Here we
encounter extreme empiricist or instrumentalist versions of Copenhagen. Prob-
abilities measure relative frequencies in ensembles of observations, described
either macro-physically or mentalistically in terms of “appearances”, and they
are of measurement outcomes so described. In the most extreme versions, one
does not even attribute properties to micro-systems in eigenstates, but confines
oneself to “pointer readings” (or appearances thereof). The contrast with “ob-
jective Copenhagen” discussed above would be hard to overstate. Indeed, so far
from explaining observed statistics via “physical probabilistic dispositions,” the
subjective-subjective version renounces any hope of explaining in physical terms
the statistical distributions of measurement outcomes one observes. Prediction and
practical application replace that classical preoccupation (regarded as “quaint”, or
“old-old-European”?), and, by fiat, there are no problems of interpreting the physi-
cal significance of state functions. And there is certainly no measurement problem,
for consistency can be enforced by withholding the quantum formalism from any
system that appears not to obey it (i.e. appears definite in ways that the quantum
formalism fails to deliver).

As indicated, new Bayesian views of quantum probability belong in this fourth
quadrant as well. Quantum probabilities measure degrees of rational belief and these
beliefs are of measurement outcomes (idealized in Pitowsky’s “quantum gambling
devices” [30]). This view shares with subjective Copenhagen the advantages of
avoiding theoretical problems. But, it is to be noted, it also shares the renunciation
of the goal of explaining observed quantum statistics. After all, quantum states can
be identified as generalized probability measures. If these probability measures are
then understood as giving rational betting quotients, then quantum states can hardly
be called upon to explain observed relative frequencies in ensembles or why those
quotients agree (indeed agree so well) with those relative frequencies. Of course,
they had better agree, i.e. if we don’t want to “lose our shirts”, our bets need to
conform to the long-run frequencies actually encountered.14 But here the arrow of

The reader is nevertheless invited to extend the classification scheme we are presenting to cover
these and other theories that have been or may be proposed.
14 This idea underlies Lewis’s “principal principle”, applicable to Bayesian reasoning generally:
informally, this says that degrees of belief in predicted outcomes of experiments, say, should be
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explanation is reversed, as it should be: our degrees of belief are adjusted to fit
the empirical facts, or we’re not rational. But those degrees of belief cannot possi-
bly account for those facts, unless you subscribe to a truly radical psychokinesis!
Thus like its subjective cousin from Denmark, this approach to quantum probability
avoids the main foundational problems and puzzles of quantum mechanics, but one
might say that it does so at the price of renouncing the enterprise of physics.

3 Where’s Everett?

Conspicuous by its absence from our table of interpretations of quantum proba-
bilities is the so-called “Everett interpretation”, after Hugh Everett [22], who in-
vented it in his Princeton doctoral dissertation in physics (1957) entitled “Theory
of the Universal Wave Function”, supervised by John Archibald Wheeler. This was
an attempt to provide an alternative to the Copenhagen interpretation, avoiding its
partition of reality into observed quantum system and classical observing system
and avoiding the notorious collapse of the wave-function upon measurement. The
Everett interpretation soon underwent something of a metamorphosis (at the hands
of Bryce DeWitt) into what became known as “the many worlds interpretation”, a
notorious metaphysical extravaganza in which, upon “quantum measurements”, the
whole universe “splits” into multiple successor universes corresponding to differ-
ent branches of the universal wave-function (of the whole physical cosmos) in turn
corresponding to eigenstates in which a “measured observable” has a definite value
(eigenvalue). In this theory, collapses are replaced with literal splittings of the uni-
verse into mutually causally non-interacting universes, each with its own spacetime
and physical contents. Stories can be told about why it is that no one can ever experi-
ence any such splitting. And stories can also be told about how quantum mechanical
probabilities of outcomes of measurements on ensembles of systems within a single
universe are in some sense respected. However, since collapses never occur within
a world and since values of observables do not go beyond what the eigenvalue-
eigenstate link allows, we can never say that the component individual systems of
such ensembles actually take on “measured values” of quantum observables. In-
stead, everything must be translated into statements of (applied) wave mechanics,
such as that a universal wave function (at a time in a suitable reference frame) is
small in a region (say, of configuration space) in which the frequency of “measure-
ment outcomes” in an ensemble , as normally described, departs appreciably from
the predicted quantum mechanical probability of the “outcome” in question.15 And

guided by what is known about “objective probabilities” of those outcomes. For discussion, see
[23].
15 Geroch [24], in his interpretation of Everett, to be described in a moment, refers to such regions
as “precluded”, and deploys this notion to replace ordinary quantum probabilities. While “pre-
cluded” itself is not a notion of Schrödinger wave mechanics per sē, the suggestion is that it can be
used to eliminate “probability” in any application of wave mechanics (whence our own reference
to “applied wave mechanics”). For critical discussion of this point, see [25].
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the appeal of Everett’s ideas to cosmologists, based on the applicability of quantum
mechanics to the universe as a whole without the need to suppose any “outside ob-
server”, must surely be overwhelmed by the problems raised by fantastically many,
mutually non-interacting but partially resembling universes constantly undergoing
splitting—as if the task of accounting for the evolution of a single universe weren’t
enough! In any case, serious discussions of Everett do better to treat not a “many-
worlds interpretation” at all, but rather a far simpler scheme, a one-world version
of Everett (perhaps as he intended it) in which neither splittings nor collapses ever
occur and the universe evolves strictly in accordance with Schrödinger dynamics.

Now, whereas on the “many worlds” theory, too much was happening, here the
problem is that too little happens, viz. when at the conclusion of a quantum mea-
surement we normally say that a definite outcome has occurred even though the
quantum mechanical probability of that outcome assigned by the pure state of the
total system involved is strictly between 0 and 1, on one-world Everett we cannot
say this but rather must continue to describe our experience of definite outcomes
with what will, mathematically, be merely a complicated component (“branch”) of
an extremely complicated total evolving wave-function of the universe. It follows
immediately from the eigenvalue-eigenstate link, which one-world Everett tacitly
accepts, that such outcome events do not actually occur.16 A fortiori, probabilities
of such occurrences do not make sense in the theory, i.e. probability functions can-
not have such events in their domains of definition.

Such a view is essentially what Robert Geroch described in his [1984] paper [24]
on Everett. There he makes an intriguing comparison with the theoretical situation
presented by Einsteinian relativity theory: we have learned that various common-
place ideas of time and space—e.g. that we all share a unique standard of simultane-
ity, that “before” and “after” are absolute notions, that mass is velocity-independent,
etc.—should be treated as phenomena of our experience to be explained rather than
as corresponding to physical reality.17 Much the same, it is suggested, should be
said about our commonplace beliefs about definiteness of measurement outcomes
and quantum reality. The amazing teachings of quantum physics that we must learn
how to assimilate tell us that “measurement outcomes” as we ordinarily describe
them don’t actually occur in many, many cases, since the recording devices and
events involved are in fact bound up, even if only weakly, with goings-on elsewhere
in the universe (some near, some far) so that the local “systems” in which we are
interested typically do not even possess pure quantum states. (They only occupy
improper mixed states obtained from vast superpositions of states of much larger

16 Thus, what we are calling “one-world Everett” is to be sharply distinguished from what
Healey [26] called the “one-world version” [of the ‘many-worlds’ interpretation], which does give
up the eigenvalue-eigenstate link (from left to right), thereby coming much closer to a modal
interpretation.
17 Actually, Geroch concentrates on more problematic aspects of experience, such as our direct
awareness of a present moment of time, which find no place at all in spacetime physics. But,
as Stein [25] points out, this is not a particular feature of relativistic physics, but of the science
of physics in general. For the sake of argument (indeed, argument that has been made at least
in conversation on this point), we have given examples of notions that relativity theory rules ill-
conceived that do not raise such general (or deep) problems.
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systems, perhaps extending to the whole universe, by tracing over many degrees
of freedom pertaining to that larger context. On pain of contradiction, given the
eigenvalue-eigenstate link (from left to right), these improper mixed states of sub-
systems of the universe cannot be given an ignorance interpretation, that is they can-
not be understood as merely reflecting our uncertainty as to a particular value of the
observable in question which the subsystem is supposed to possess.) Our experience
of definiteness, in this sense,18 however useful for practical purposes, is strictly illu-
sory: accounting for such experience is indeed a challenge, but it is one for a future
psycho-physics; and in any case (dare I say, “in any event”) not counter-evidence
to quantum mechanics itself or to the (one-world) Everett interpretation of it. How
good is this analogy?

Not good, I would argue. It breaks down for the following reason: as quantum
observers, situations in which we say that “it seems to us that pointers point” are
themselves—as we may assume (call this “assumption (0)”)—the result of physical
processes in our brains, and so the very assumptions that the view (one-world Ev-
erett) is founded upon and certainly not challenging, viz. (1) the validity of quantum
mechanics without the projection postulate, (2) its universal applicability to phys-
ical reality, and (3) the eigenvalue-eigenstate link (in both directions) will lead to
a contradiction in many situations: the wave function describing (enough of) the
universe, including our brains, will not be in an eigenstate of “the pointer seems to
so-and-so at time t to be definite (⊗ other components of a very big tensor product
state...) ” when it needs to be, and so a value of a quantum observable will have
been attributed in violation of the eigenvalue-eigenstate link (3). (Granted it’s not
an ordinary quantum observable in any sense, but neither is “the pointer pointed up”
at the end of, say, a Stern-Gerlach experiment testing for spin. Anyway, playing this
game (with universality (2) as an assumption) inevitably involves us in extraordinary
observables relative the ordinary practice of quantum mechanics.)

(What justifies assumption (0), that we may assume that the subjective experience
of definiteness in the minds of human observers in the relevant situations that obtain
after good quantum measurements may be thought of as purely physical conditions
of those observers (mainly their central nervous systems), hence falling within the
purview of quantum mechanics according to universality (assumption (2))? Surely,
we cannot just dogmatically assert this physicalist view of the mental, on pain of
weakening the argument. Indeed, but we are not asserting it; we are merely re-
quiring that the contrary non-physicalist view of the mental not be assumed, that
any satisfactory resolution of the quantum measurement problem within our current

18 Here and below, “experience of definiteness” is used to include experience of particular out-
comes or readings of experiments, not merely that one outcome or another (or ...) was obtained.
Playing by the usual idealized rules stipulating an exhaustive set of mutually exclusive possibilities
(corresponding to an eigenbasis of the system observable in question, where the system may in-
clude a person with experiential and belief states, etc.), a “bare theory” with Schrödinger dynamics
(but no collapse or projection postulate) can claim a kind of Pyrrhic victory in “respecting defi-
niteness” in the sense of assigning probability 1 to the relevant disjunction over possible outcomes,
associated with the whole Hilbert space of the system (spanned by a complete set of eigenvectors
of the operator for the relevant observable). See [27], and, for a detailed, critical discussion of the
bare theory, [28].
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state of knowledge must be compatible with a thoroughgoing physicalism regarding
the mind-body question. For otherwise an appeal to any version of the Everett inter-
pretation is simply récherché: if one is prepared already to treat mental experience
as ontologically non-physical, one can simply declare by fiat that quantum mechan-
ics, while it may apply to the physical world in its entirety, does not govern our
mental experience, so that in assigning definiteness to “observables” correspond-
ing to that experience, we are not ever violating the eigenvalue-eigenstate link, i.e.
those “observables” are not really quantum mechanical anyway and so fall outside
the scope of that rule. In effect, an a priori assumption of definiteness of mental
states is used to obtain effective collapses of wave functions. Difficulties that such
a view faces apart (such as how to explain the remarkable psycho-physical correla-
tions that we observe), this approach is completely contrary to the spirit if not the
letter of Everett, since in effect it leads right back to Bohr’s cut between observed
and observing systems which Everett seeks to transcend.)

Thus, assumptions (0)–(3) force us, in certain circumstances in which we claim
honestly to experience definite pointings of pointer systems, to deny even that it
appears to us that certain pointer systems definitely point!19 Following Geroch’s
suggestion, we presumably would say that it only appears to us that it is definite
that it appears to us that pointers point, and that the great revolutionary new thing
that Everettian quantum mechanics highlights for us is that it is this appearance
of definiteness (of our appearances of pointers) that is illusory and requires scien-
tific explanation. But—and it is just here that one sees most clearly why the analogy
with relativity breaks down—this just pushes the problem up yet one more level, i.e.
this leads to a vicious regress—which may aptly be called “Descartes’ regress”)—
whereas no regress is generated by the confrontation between relativity and experi-
ence. At some point, in describing the situation in some way that can “save enough
of the phenomena” for the experimental confirmation of ordinary quantum mechan-
ics to make any sense at all, we need to say something about how things seem to us,
i.e. that certain appearance statements are true (even if they are only about appear-
ances of appearances of ...of pointers). At some level, it must be conceded in effect
that we are not deceived. And then, you are stuck with a “revved up” version of the
original measurement problem. QED20

It should, moreover, now be clear why (one-world) Everett finds no place in our
table of possibilities for interpreting probabilities in quantum mechanics. We simply
do not see how this radical view can make sense of typical quantum probabilities
for lack of suitable events or outcomes that the domain of definition of probability
measures would comprise and without which we cannot make sense of the empiri-
cal confirmation of the theory (supporting assumption (1) above, in the first place).

19 See the note immediately preceding.
20 The reader is invited to compare this line of argument with one in a quite similar spirit given
by Stein [25] in his examination and critique of Geroch’s version of the Everett interpretation.
As Stein puts it, whereas on Geroch’s version of Everett, a great many “classical occurrences”
disappear entirely, “there is no such disappearance according to the theory of relativity”. (p. 644)
The former, but not the latter, should be posing Chico Marx’s question in Duck Soup: “Who you
gonna believe, me or your own eyes?” (I am grateful to Howard Stein for this quote and its source.)
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Appeals to decoherence— the widespread phenomenon of practical vanishing, in
very short times in measurement-type situations, of interference terms in the evolv-
ing wave function of a larger system incorporating the environment of the object
system of interest—do not really help; approximate collapses are not genuine col-
lapses, and without giving up the eigenvalue-eigenstate link, definite outcomes still
literally do not occur, and probabilities remain ill-defined. No wonder we did not
list this interpretation in the table.21

4 Bohmian Mechanics and Experimental Metaphysics

As the table makes clear, Bohmian mechanics stands in the way of the conclusions
we are tempted to draw from the empirical successes of quantum mechanics (includ-
ing the Bell results) and of relativistic physics as well, in which “locality”, at least in
the sense of “parameter independence”, is rooted. Our prime example of “ultimate
randomness in nature” is paradigmatic. Note that this is common to the interpreta-
tions of the top row. We have already encountered strong reasons to avoid the fourth
quadrant (Subjective 1 and 2). Thus, it is only Bohmian mechanics that keeps us
from confinement to the top row and the conclusion of ultimate randomness as a
strongly empirically supported lesson of our experience with quantum mechanics.
How seriously must we take the Bohmian challenge?

As indicated in the brief summary of main features of Bohmian mechanics
above, it does succeed in recovering all the statistical predictions of ordinary (non-
relativistic) quantum mechanics on a basis that can be called “classical” in respect of
its (theoretical, in-principle) ascription of precise values of positions and velocities
at all times to particles which evolve in these variables deterministically. Probabil-

21 Another, more recent branch of Everett-inspired interpretations due to Deutsch, Wallace, et al.,
explicitly invokes decoherence to identify privileged observables whose eigensubspaces are effec-
tively “separated” (over very brief interaction times) from one another within a universal wave
function. These approximately non-overlapping “branches” correspond to quantum experiments
(on individual systems as well as ensembles) with different outcomes and associated “weights”—
squared amplitudes got from coefficients of the privileged basis vectors in the wave function, be-
having as probabilities in accordance with the Born rules—all of which are said to be “realized”
or “equally real”; this is the Everettian twist. (See [29] and references cited therein.) In effect, in
contrast with the Geroch version of Everett, the eigenvalue-eigenstate link is really being given up,
and the post measurement-type interaction superposition is being treated as a mixture.

Now an adequate treatment of this approach cannot be given here, and we will rest with a
pointed question: why not just stipulate, along with modal interpretations, that such states are to
be understood as if they were mixtures (approximately delivered by decoherence), and proceed
to take on the various problems that then arise (especially the problem of Lorentz invariance),
without the additional metaphysical burdens of “many worlds”—only one of which is accessible
to our experience—, duplicated individual systems, including persons, etc.? What work, in other
words, is done by reading all the branches as actually realized (“with the appropriate probabilities,”
whatever that really means), rather than saying, with modal interpretations, that only the branches
that we actually observe occur with the probabilities assigned, applying an ignorance interpretation
of mixtures? All the work seems to be done by decoherence + the additional definiteness of the
relevant properties.Why shouldn’t the distinctively Everettian baggage be discarded?
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ities, recall, are epistemic, reflecting our imperfect information about initial condi-
tions (hence anthropocentric, i.e. “Subj. 1”), but they are of objectively possessed
position properties (“Obj. 2”). On this theory, there is no place for ultimate physi-
cal randomness: that certain aspects of our world appear to behave randomly in an
ultimate sense is really an illusion, arising from our ignorance of the precise details
of quantum particle configurations; moreover, this ignorance is in a strong sense
“perpetual”: since the velocity functions of the theory are functions of the quan-
tum wave function (defining a ray in Hilbert space), and, since the predictions of
Bohmian mechanics recover the Heisenberg “uncertainty relations”, so long as the
world is genuinely quantum mechanical, we could never be in a position to know
the precise values of enough Bohmian hidden variables to violate the appearance of
random outcomes of quantum measurements. In this manner, Bohmian mechanics
is truly diabolical in character: it posits an underlying classical level but one that is
always accompanied by enough quantum-mechanical statistical behavior so as al-
ways to elude detection. No experiment we can perform will distinguish this theory
with its extraordinary posits from quantum mechanics as it is ordinarily practiced
(if not well understood). No wonder that physicists of a positivist inclination would
tend to dismiss this theory (if they ever studied it).

But it gets worse: As is evident from the equations of motion of Bohmian me-
chanics, position values typically depend instantaneously on values at a distance,
in principle as far away as you like from a given space-time region. Indeed, it is
not hard to see that, if we had precise information about enough precise positions,
physical information could be transmitted superluminally, violating parameter in-
dependence (in Bell-EPR-type experiments); and outcomes of such experiments on
separated or spread-out systems could be seen to depend on an absolute tempo-
ral ordering, i.e. it would make sense to say that a particular inertial frame agrees
with an absolute time-ordering of events, i.e. defining a privileged frame, but that
which frame it is must remain forever undetectable. (For a proof-sketch, see [27], pp.
159–160.) Thus, not only is physical randomness an illusion, so is special relativity
with its frame-dependence of “simultaneity”, “before and after” of space-like re-
lated events, and so forth. You don’t have to be a positivist to find yourself recoiling
from this implication!

The contrast with quantum mechanics as understood through interpretations
falling in the first row of our table deserves emphasis. There “non-locality” accord-
ing to various definitions also must be recognized. It seems to be a fact of life that
quantum statistics present us with a kind of “holism” of complex quantum systems,
violating certain forms of locality such as “outcome independence”, of the form

Pr(A/B&λ ) = Pr(A/λ );Pr(B/A&λ ) = Pr(B/λ ),

where ‘A’ and ‘B’ stand for local outcomes on the respective parts of a two-
component system and ‘λ ’ stands for the most complete physical state we can find
for the whole system consisting of strongly correlated parts as in EPR-Bell-type
systems. (Such holistic states generate joint probabilities which are not “factoriz-
able”, contrary to Reichenbach’s conception of “screening off” as integral to scien-
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tific explanation of correlations.) Similarly, we cannot expect there to be separate
physical states of such parts which fix the respective outcomes of (certain relevant)
experiments on those parts. (Such holistic systems are in this sense “non-separable”,
contrary to Einstein’s conception of acceptable physics of separated systems.) But
precisely because these interpretations also make room for ultimate physical ran-
domness of particular measurement outcomes, signal locality (e.g. in the form of
parameter independence) is respected. Bell-type systems cannot be contrived to
transmit physical information superluminally precisely because outcomes of, say,
Stern-Gerlach measurements on spin of one of a strongly correlated pair of particles
are beyond experimental control. This sounds anthropocentric, but it is so only in a
superficial sense, as it is a limitation affecting any possible epistemic agents as well
as ourselves, resulting from the inherent randomness of the events involved, despite
the strong correlations among them.

What Bohmian mechanics shows is that these conclusions are not absolutely
forced on us by the data alone. Experimental metaphysics, however, does not oper-
ate in a theoretical vacuum. If we are prepared to accept enough grossly non-local,
hidden physics masked by “illusory” phenomena as effectively described by spe-
cial relativity and objective-1 interpretations of quantum phenomena recognizing
ultimate physical probabilities, then we might be able to salvage determinism-in-
principle—provided Bohmian mechanics can be convincingly extended to quantum
field theory. But if we require that some experimental evidence favor such hidden
posits (as exact trajectories of particles and a privileged inertial frame), insisting that
the case not rest entirely upon some theoretically appealing consequences (which,
after all, are accompanied by some rather repugnant ones, as sketched), then we
will be within our rights to assert that ultimate randomness is one of the surpris-
ing lessons of twentieth century physics, and, moreover, that a better solution of
the measurement problem than that afforded by Bohmian mechanics must still be
found.
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“No Information Without Disturbance”:
Quantum Limitations of Measurement

Paul Busch

Abstract In this contribution I review rigorous formulations of a variety of lim-
itations of measurability in quantum mechanics. To this end I begin with a brief
presentation of the conceptual tools of modern measurement theory. I will make
precise the notion that quantum measurements necessarily alter the system under
investigation and elucidate its connection with the complementarity and uncertainty
principles.

1 Introduction

It is a great honor and pleasure for me to contribute to this celebration of the sci-
entific life work and achievements of Abner Shimony, from whom I have received
much inspiration, personal encouragement and the gift of friendship in a decisive pe-
riod of my scientific career. When I came to know Abner more closely, I was thrilled
to realize the close agreement between our quantum mechanical world views; and
ever since, when contemplating foundational issues, I found myself often wonder:
“What would Abner say?”. I am proud to share with Abner one piece of work on
an important item of “unfinished business”, a paper on the insolubility of the quan-
tum measurement problem [1], which I hope may prove useful as a stepping stone
towards resolving this problem. In this contribution I will address another area of
concern to Abner, one that remains even when the measurement problem is sus-
pended: quantum limitations of measurements.

By way of introduction of terminology and notation I briefly review the basic
and most general probabilistic structures of quantum mechanics, encoded in the
concepts of states, effects and observables; I then recall how these objects enter the
modeling of measurements (Section 2).
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This general framework of quantum measurement theory will then be used to
obtain precise formulations and proofs of some long-disputed limitations of quan-
tum measurements, such as the inevitability of disturbance and entanglement in a
measurement, the impossibility of repeatable measurements for continuous quanti-
ties, and the incompatibility between conservation laws and the notion of repeatable
sharp measurements (Section 3). In Section 4 the “classic” quantum limitations
expressed by the complementarity and uncertainty principles are revisited. Ap-
propriate operational measures of inaccuracy and disturbance for the formulation
of quantitative trade-off relations for (joint) measurement inaccuracies and distur-
bances have been introduced in recent years; these will be discussed in Section 5.

I conclude with an outlook on open questions (Section 6).

2 Quantum Measurement Theory—Basic Concepts

2.1 States, Effects and Observables

Every quantum system is represented by a finite or infinite-dimensional, separable
Hilbert space H over the complex field C. States are described as positive operators1

T of trace equal to one.2 The set of states S(H) is a convex subset of the real
vector space of all self-adjoint trace-class operators. The role of a quantum state is to
assign a probability to the outcome of any measurement; in other words, associated
with every measurement with possible outcomes ωi, i = 1,2, . . . , are mappings Ei :
S(H) → [0,1] assigning the probabilities pT (ωi) ≡ Ei(T ). Since mixtures of states
lead to the corresponding mixtures of probabilities, it follows that the mappings Ei
are affine and hence extend uniquely to bounded positive linear mappings. Since the
dual space of the trace class is isomorphic to the vector space of bounded operators,
each Ei is of the form Ei(T ) = tr [T Ei], where Ei is an operator satisfying O≤ Ei ≤ 1
(here 1 denotes the identity operator). Such operators are called effects. The set of
effects will be denoted E(H). The normalization of the probability distributions pT
(∑i pT (ωi) = 1) entails the condition

∑
i

Ei = 1. (1)

1 The term operator will be taken as shorthand for “linear operator”. With A ≤ B or equivalently
B ≥ A we denote the usual ordering of self-adjoint operators; thus, A ≤ B if and only if 〈ϕ|Aϕ〉 ≤
〈ϕ|Bϕ〉 for all ϕ ∈H. An operator A is positive if A ≥O, the null operator.
2 We remark that our notation follows closely that of the monograph [2]. The letter T was chosen
there to denote a state since it is the first letter of the Finnish word for “state”; the authors of that
monograph found this preferable to W , which would stand for the German word for “knowledge”,
or ρ , which is reminiscent of the phase space density with its classical connotations. Linguistic bal-
ance between the authors was maintained by taking Z to denote the pointer (“Zeiger”) observable in
a measurement scheme (see below). Naturally, M will stand for the English term “measurement”.
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The mapping ωi �→ Ei together with the property (1) is a (discrete) instance
of a normalized positive-operator-valued measure (POVM), the general definition
being that of an operator-valued mapping X �→ E(X) with the following properties:
(i) the domain consists of all elements X of a σ -algebra Σ of subsets of an out-
come space Ω; (ii) the operators E(X) in the range are effects; (iii) the mapping is
σ -additive (with infinite sums defined as weak limits): E(

⋃

i Xi) = ∑i E(Xi) for any
finite or countable family of mutually disjoint sets in Σ; (iv) E(Ω) = 1. POVMs
are taken as the most general representation of an observable. In this contribution
the measurable space of outcomes (Ω,Σ) will be (R,B(R)) or (R2,B(R2)), where
B(Rn) denotes the Borel algebra of subsets of R

n. The usual notion of observable is
then recovered as the special case of a projection-valued measure (PVM) on B(R),
which is nothing but the spectral measure associated with a selfadjoint operator. Ob-
servables represented by PVMs are called sharp observables, all other POVMs are
referred to as unsharp observables. The extreme case of a trivial observable arises
when all the effects in its range are trivial, that is, of the form E(X) = λX1; the
statistics associated with trivial effects and observables carries no information about
the state.

2.2 Measurement Schemes

Measurements are physical processes and as such they are subject to the laws of
physics. In quantum mechanics, a measurement performed on an isolated object is
described as an interaction between this object system and an apparatus system,
both being treated as quantum systems. Being a macroscopic system, the apparatus
will interact with a wider environment, but it is often convenient and sufficient to
subsume the degrees of freedom of this “rest of the world” into the description of
the apparatus.

The quantum description of a measurement is succinctly summarized in the no-
tion of a measurement scheme, i.e., a quadruple M := 〈HA,TA,U,Z〉, where HA is
the Hilbert space of the apparatus (or probe) system, TA the initial apparatus state,
U =U(t0, t0 +Δt) :H⊗HA →H⊗HA is the unitary operator representing the time
evolution and ensuing coupling between the object system and apparatus during the
period of measurement from time t0 to t0 +Δt. Finally, Z is the apparatus pointer
observable, usually modeled as a sharp observable.

A schematic sketch of a measurement process is given in Fig. 1 which is taken
from [2]. Here T and TA denote the initial states of the object and apparatus, and
V (T ⊗TA) := UT ⊗TAU∗ is the final state of the compound system after the mea-
surement coupling has ceased. It is understood that upon reading an outcome, sym-
bolized in the diagram with a discrete label k, the apparatus is considered to be
describable in terms of a pointer eigenstate TA,k, and this determines uniquely the
associated final state Tk of the object, as will be shown below.
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Fig. 1 Sketch of a measurement scheme. The symbols are explained in the main body of the text

The observable measured by such a scheme is determined by the pointer statistics
for every object input state and is thus represented by a POVM E that is unambigu-
ously defined by the following probability reproducibility condition:

tr [UT ⊗TAU∗ I⊗Z(X)] =: tr [T E(X)]≡ pE
T (X). (2)

Here X is any element of a σ -algebra Σ of subsets of an outcome space Ω. The
positivity of the operators E(X) in the range of the map X �→ E(X) and the measure
properties of this map follows from the fact that the maps X �→ pE

T (X) are probability
measures for every state T .

The state TX of the object after recording a measurement outcome in the set X is
determined by the following sequential joint probability for a value of the pointer to
be found in X and an immediately subsequent measurement of an effect B to yield
a positive outcome:

tr [UT ⊗TAU∗B⊗Z(X)] =: tr [IX (T )B]≡ tr [TX B] (3)

The maps T �→ IX (T ) = TX , called (quantum) operations, are affine and trace norm-
nonincreasing:

tr [IX (T )] = tr [TX ] = tr [T E(X)]≤ tr [T ] = 1, (4)

and they compose an instrument, that is, an operation-valued map X �→ IX . Note that
these maps IX extend in a unique way to linear maps on the complex vector space
of trace class operators. The above equation shows that every instrument defines a
unique POVM.

An important property of the operations IX deriving from a measurement scheme
is their complete positivity: for every n ∈ N, the linear map defined by T ⊗Θ �→
IX (T )⊗Θ (where T is any trace class operator on H and Θ is any trace class oper-
ator on C

n) is positive, that is, it sends state operators to (generally non-normalized)
state operators.3 The instrument composed of the completely positive operations is
also called completely positive.

3 An example of a positive state transformation that is not completely positive is given by T �→
CTC∗, where C is antilinear operator such as complex conjugation ψ(x) �→ ψ(x)∗ for ψ ∈ L2(R).
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Every measurement scheme defines thus a unique completely positive instru-
ment, and the latter fixes a unique POVM which represents the observable measured
by the scheme. Starting from ground-breaking mathematical work of Neumark
and Stinespring, the converse statement was developed in increasing generality by
Ludwig and collaborators, Davies and Lewis, and Ozawa (detailed references can
be found in [2]).

Theorem 1 (Fundamental Theorem of Quantum Measurement Theory). Every
observable, represented as a POVM E, admits infinitely many completely positive
instruments I from which it arises via Eq. (2), and every completely positive instru-
ment admits infinitely many implementations by means of a measurement scheme
according to Eq. (3).

2.3 Examples

Next I recall some model realizations of measurement schemes and completely pos-
itive instruments; these will provide valuable case studies in subsequent sections.

2.3.1 Von Neumann Model of an Unsharp Position Measurement

On the final pages of his famous book of 1932, “Mathematische Grundlagen der
Quantenmechanik”, von Neumann introduces a mathematical model of what he de-
scribes as a measurement of the position of a particle in one spatial dimension.
Both the particle and measurement probe are represented by the Hilbert spaces
H =HA = L2(R); and the coupling

U = exp(− i
h̄λQ⊗PA), (5)

generates a correlation between the observable intended to be measured, Q, and
the pointer observable Z = PA.4 To simplify the calculations, one assumes that the
interaction is impulsive, that is, the coupling constant is large so that the duration
of the interaction can be kept small enough so as to neglect the free Hamiltonians
of the two systems. It is further assumed that the initial state of the probe is a pure
state, TA = P[φ ], with 〈QA〉φ := 〈φ |QAφ〉 = 0 and finite variance Var(QA,φ) =
〈Q2

A〉φ −〈QA〉2
φ .

Von Neumann proceeded to calculate the correlation between the particle’s po-
sition and the pointer observable after the coupling period and took this measure
of repeatability as an indication of the quality of the measurement. Had he made
the computation associated with Eq. (2) above, he would have found the actually
measured observable to be a smeared position observable Qe:

4 The letters Q,P denote the selfadjoint canonical position and momentum operators, and their
spectral measures are denoted Q,P, respectively.
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E = Qe : X �→ Qe(X) = χX ∗ e(Q) =
∫

R

χX ∗ e(q)Q(dq),

where e(q) = λ |φ(−λq)|2.
(6)

Here ∗ denotes the convolution. Thus von Neumann was very close to discovering
the representation of observables as POVMs! The variance Var(pQe

T ) of the proba-
bility distribution pQe

T is

Var(Qe,T ) =
∫

R

(x− x)2pQe
T (dx) = Var(Q,T )2 +Var(e), (7)

where x =
∫

R
xpQe

T (dx) = tr [T Q]. The second term in the expression for the variance,
Var(e), indicates the unsharpness of the observable Qe and at the same time is a
measure of the inaccuracy of the measurement, that is, the separation between Q
and Qe.

The instrument induced by von Neumann’s measurement scheme is given as fol-
lows:

IQe : X ,T �→ IQe
X (T ) =

∫

X
KqT K∗

q dq,

where (Kqϕ)(x) =
√
λφ (λ (q− x))ϕ(x).

(8)

2.3.2 Ozawa’s Model of a Sharp Position Measurement

It turned out much more intricate to find a measurement scheme realizing a measure-
ment of the sharp position observable. One solution was presented by Ozawa [3, 4]
who introduced the following coupling:

U = exp
[

− iπ
3
√

3h̄
(2Q⊗PA−2P⊗QA +QP−QAPA)

]

= exp
(

− i
h̄ Q⊗PA

)

exp
( i

h̄ P⊗QA
)

.
(9)

Taking the pointer as Z = QA, the measured observable is Q, the sharp position, in-
dependently of the choice of initial probe state TA. Indeed, the associated instrument
is found to be

IOzawa
X (T ) =

∫

X
tr [TQ(dq)] e−

i
h̄ qP TA e

i
h̄ qP, (10)

so that tr [T E(X)] = tr
[

IOzawa
X (T )

]

= tr [TQ(X)] for all states T of the system.

3 Quantum Limitations on Measurability

The formalism of quantum measurements reviewed above provides a framework for
the rigorous formulation of limitations on the measurability of physical quantities
arising from quantum structures.



“No Information Without Disturbance”: Quantum Limitations of Measurement 235

3.1 “No Information Gain Without Disturbance”

There has been much debate over the claim that according to quantum theory, every
measurement necessarily “disturbs” the object system. Here is a theorem that states
a precise sense in which this claim is true.

Theorem 2. There is no instrument that leaves unchanged all states of the system
unless the associated observable is trivial. More precisely: if an instrument I on
(Ω,Σ) satisfies IΩ(T ) = T for all T ∈ S(H), then T �→ tr [IX (T )] =: λ (X) is a
constant map for all X ∈ Σ, and so the induced observable E is trivial, E(X) =
λ (X)1.

The proof is quickly sketched: if T = P[ϕ] �→ IΩ(P[ϕ]) = IX (P[ϕ]) +
IΩ\X (P[ϕ]) = P[ϕ], then IX (P[ϕ]) = λ (X)P[ϕ]. Due to the linearity of IX , the
term λ (X) is independent of ϕ , and the measured observable E gives probabilities
independent of ϕ: pE

ϕ(X) = tr [IX (P[ϕ])] = λ (X). QED
Hence a measurement scheme with no state change yields no information gain.

We note that “disturbance” has here been interpreted as state change. This conclu-
sion immediately leads to another question: is it possible to restrict the quality or
accuracy of a measurement and thereby control the extent of the disturbance? This
will be addressed in Section 5.

3.2 “No Measurement Without (Some Transient) Entanglement”

It is a general fact of quantum mechanics that interactions between two systems lead
to entanglement between them, that is, to states which are not of product form. From
this it would seem to follow that in a measurement the object system and apparatus
end up necessarily in an entangled state at the end of the coupling period. The next
theorem shows that this implication does not hold true without qualifications.

Theorem 3. Let U :H1⊗H2 →H1⊗H2 be a non-entangling unitary measurement
coupling such that for a fixed vector φ0 and all vectors ϕ ∈H1, one has U(ϕ⊗φ0) =
ϕ ′ ⊗φ ′. Then U acts in one of the following ways:
(a) U(ϕ⊗φ0) = V (ϕ)⊗φ ′, where V is an isometry;
(b) U (ϕ⊗φ0) = ϕ ′ ⊗W12ϕ , where W12 : H1 →H2 is a surjective isometry and ϕ ′
is a fixed vector in H1

The proof is given in [5]. From this result it follows that if one aims at construct-
ing a measurement scheme that leaves the object and apparatus in a non-entangled
(separable) state after the coupling, and if this measurement is to transfer informa-
tion about the initial object state ϕ to the apparatus, then the coupling U must act as
in (b). It is therefore conceivable that after a suitable coupling interaction has been
applied, the object and apparatus are left in an non-entangled state and yet complete
information about the object state has been transferred to the apparatus. However,
due to the continuity of the unitary dynamical evolution t �→Ut which comprises the
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coupling operator Ut+Δt , not all Ut ′ with t < t ′ < t +Δt can be of the non-entangling
form (b), since that operator is not continuously connected with the identity operator
U0 at t = 0. It follows that some intermittent entanglement must build up during the
interval [t, t +Δt].

In order to extend this proof to measurement schemes for which the initial appa-
ratus state TA is not pure, it is necessary to sharpen the no-entanglement condition
of the theorem to hold for any vector in HA whose projection operator can arise as
a convex component of TA. These vectors are known to be given exactly by those in
the range of T 1/2

A [6]. The following theorem, also proven in [5], can then be applied
to take a step towards extending the above discussion to mixed apparatus states.

Theorem 4. Let U : H1 ⊗H2 →H1 ⊗H2 be a unitary mapping such that for all
vectors ϕ ∈H1, φ ∈H2, the image of H1 ⊗H2 under U is of the form U(ϕ⊗φ) =
ϕ ′ ⊗φ ′. Then U is one of the following:
(A) U = V ⊗W where V : H1 →H1 and W : H2 →H2 are unitary;
(B) U (ϕ⊗φ) = V21φ ⊗W12ϕ , where V21 : H2 →H1 and W12 : H1 →H2 are sur-
jective isometries.
The latter case can only occur if H1 and H2 are Hilbert spaces of equal dimensions.

It is not hard to construct a measurement scheme with a non-entangling coupling
of the form (B) for any object observable E. This can be achieved by making the
object interact with another system of the same type onto which the state of the
original system is identically copied.

Example 1. Let H1 = H2 = H. Let E : Σ → E(H) be a POVM in H. Define
U (ϕ⊗φ) = φ ⊗ϕ . Then we have

〈Uϕ⊗φ |I⊗E (X)Uϕ⊗φ〉= 〈ϕ|E (X)ϕ〉. (11)

3.3 “No Repeatable Measurement for Continuous Observables”

3.3.1 Repeatability and Ideality

A measurement and its associated instrument are called repeatable if the probability
for obtaining the same result upon immediate repetition of the measurement is equal
to one:

tr [IX (IX (T ))] = tr [IX (T )] for all X ∈ Σ, T ∈ S(H). (12)

A measurement of a discrete observable and its associated instrument is called
ideal if it does not change any eigenstate; thus, if the state T is such that a particular
outcome is certain to occur, then an ideal instrument does not alter the state:

for all T,k, if tr [T Pk] = 1 then Ik(T ) = T. (13)

Examples of repeatable measurements are the von Neumann and Lüders mea-
surements which will be defined next.
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Let A be an observable with discrete spectrum and associated spectral decompo-
sition A = ∑k akPk. We allow the eigenvalues to have multiplicity greater than one,
so that the spectral projections can be decomposed into a sum of orthogonal rank-1
projections: Pk = ∑� P[ϕk�]. Then a von Neumann measurement is a measurement
whose associated instrument has the form

IvN
k (T ) =∑

�

P[ϕk�]T P[ϕk�]. (14)

A Lüders measurement is a measurement whose associated instrument is given by:

IL
k (T ) = PkT Pk. (15)

Note that Lüders measurement are ideal but von Neumann measurements are not
ideal if at least one eigenvalue is degenerate. The ideal measurements are uniquely
characterized by the form of their instruments [2]:

Theorem 5. Any ideal measurement of a discrete sharp observable is a Lüders mea-
surement.

In particular, it follows that every ideal measurement is repeatable. A much deeper
result is the following, conjectured by Davies and Lewis in 1970 [7] and proven by
M. Ozawa in 1984 [8]. An observable E on (Ω,Σ) is discrete if there is a countable
subset of N of Ω such that E(N) = 1.

Theorem 6. If a measurement of an observable E is repeatable then E is discrete.

I discuss briefly the implications of these results. First observe that the existence
of ideal measurements enables the applicability of the famous reality criterion of
Einstein et al. [9]:

If, without in any way disturbing a system, we can predict with certainty (i.e., with probabil-
ity equal to unity) the value of a physical quantity, then there exists an element of physical
reality corresponding to that physical quantity.

Since ideal measurements are repeatable, the associated observables must be dis-
crete. Hence the EPR criterion can only be applied to discrete observables or dis-
crete coarse-grainings of continuous observables.

3.3.2 Approximate Repeatability

While strict repeatability is impossible for continuous observables such as position
(or momentum), there do exist instruments for position (say) that are approximately
repeatable in the following sense. Let δ > 0, and for any (Borel) subset X of R let
Xδ denote the set of all points which have a distance of not more than δ from some
point in X . (Since Xδ =

⋃

x∈X [x−δ ,x+δ ], this set Xδ is a Borel set.) An instrument
I on B(R) is δ -repeatable if for all states T and all X ∈ B(R),

tr
[

IXδ (IX (T ))
]

= tr [IX (T )] . (16)
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An example is given by Ozawa’s instrument of a sharp position measurement,
Eq. (10) if the probe state TA is chosen such that its position distribution pQA

TA
is

concentrated within [−δ ,δ ].
The same form of instrument can also be defined for an unsharp position observ-

able Qe,

IQe
X (T ) =

∫

X
tr [TQe(dq)]e−iqPTAeiqP, (17)

and if T is chosen as before, one can find d > 0 such that

tr
[

IQe
Xd

(IQe
X (T ))

]

≥ (1− ε)tr
[

IQe
X (T )

]

. (18)

Instruments with this property can be called (d,1− ε)-repeatable. A detailed proof
can be found in [10], and connections with the intrinsic unsharpness of the observ-
able Qe have recently been studied in [11].

3.3.3 Approximate Ideality

Ideality is a form of nondisturbance, but it is restricted to the eigenstates of the
measured observable: if the quantity being measured has a definite value, then such
measurements do not change the state. But any state other than an eigenstate will be
disturbed: it will be transformed into one of the eigenstates due to the repeatability
property of an ideal measurement.

The tight link between ideality and repeatability is relaxed if unsharp observ-
ables are considered: these still allow a notion of approximate ideality, but that does
not imply approximate repeatability. I illustrate the last statement by means of the
generalized Lüders instrument associated with a discrete observable E : ωi �→ Ei:

IL
i (T ) = E1/2

i T E1/2
i . (19)

The operations IL
i have the following property:

if tr [T Ei]≥ 1− ε then tr
[

IL
i (T )Ei

]

≥ (1− ε)tr [T Ei] . (20)

That is, they do not decrease the probability. Further, it can be shown that for all
states T for which tr [T Ei] ≥ 1− ε , the (trace norm) difference between the states
T and IL

i (T ) is of the order ε1/2; this is the sense in which the generalized Lüders
instruments are approximately ideal. Approximately ideal measurements enable a
weakening of the EPR criterion applicable to unsharp or continuous observables,
thus yielding a notion of unsharp reality [12].

It is not hard to construct examples of effects (with some eigenvalues small) such
that the associated Lüders operation does not increase the small probability repre-
sented by that eigenvalue since the corresponding eigenstate is left unchanged. This
shows that repeatability does not hold even in an approximate sense. Thus unsharp
observables sometimes admit measurements that are less invasive than measure-
ments of sharp observables.
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The notion of a Lüders measurement was introduced by G. Lüders in 1951 [13]
(english translation in [14]) who showed that such measurements can be used to test
the compatibility of sharp observables.

Theorem 7 (Lüders Theorem). Let A = ∑k akPk and B be two (discrete) observ-
able. The following are equivalent:
(a) For all states T , tr [∑k PkT PkB] = tr [T B];
(b) AB = BA.

The statement also holds if the observable B is not discrete or bounded; in that case
statements (a) and (b) can be rephrased by replacing B with all spectral projections
of B. This theorem has been used in relativistic quantum theory to motivate the
“local commutativity” condition by virtue of the postulate that measurements in
one spacetime region should not lead to observable effects in another, spacelike
separated region.

According to the Lüders theorem, any observable B not commuting with A is
sensitive to a Lüders measurement being performed on A. In other words, a Lüders
measurement of A disturbs the distributions of B in some states if B does not com-
mute with A. If A,B are allowed to be unsharp observables, the corresponding state-
ment is no longer true in general but requires stronger assumptions [15].

Theorem 8. Let E :ωi �→ Ei be a discrete observable and B an effect. The following
are equivalent if one of the assumptions (I) or (II) or (III) stated below holds:
(a’) For all states T , tr

[

∑k E1/2
k T E1/2

k B
]

= tr [T B];
(b’) EkB = BEk for all k.
The assumptions are:
(I) E is a simple observable with only two effects E1,E2 = 1−E1.
(II) B has a discrete spectrum of eigenvalues that can be numbered in decreasing or
increasing order.
(III) Condition (a’) is also stipulated for the effect B2.

That some additional assumptions are necessary has been demonstrated by means
of a counter example in [16]. There a discrete unsharp observable E and effect B
not commuting with E were found such that the generalized Lüders instrument of E
does not disturb the statistics of B.

3.4 Measurement Limitations due to Conservation Laws

There is an obvious limitation on measurability due to the fact that the physical re-
alization of a measurement scheme depends on the interactions available in nature.
In particular, the Hamiltonian of any physical system has to satisfy the symmetry
requirements associated with the fundamental conservation laws. This measurement
limitation is reviewed in Abner Shimony’s contribution, so that here some comple-
mentary points and comments will be sufficient.
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An early demonstration of the impact of the existence of additive conserved
quantities on the measurability of a physical quantity was given by Wigner in
1952 [17]. Wigner showed that repeatable measurements of the x-component of
a spin-1/2 system are impossible due to the conservation of the z-component of
the total angular momentum of the system and the apparatus. The conclusion was
generalized by other authors to the statement that a repeatable measurement of a
discrete quantity is impossible if there is a (bounded) additive conserved quantity
of the object plus apparatus system that does not commute with the quantity to be
measured.

Wigner’s resolution was to show that a successful measurement can be real-
ized with an angular-momentum-conserving interaction and with an arbitrarily high
success probability if the apparatus is sufficiently large. Thus he allowed for an
additional measurement “outcome” that indicated “no information” about the spin.
The outcomes associated with “spin up” and “spin down” were shown to be re-
produced with probabilities that came arbitrarily closely to the ideal quantum me-
chanical probabilities. In [18, Sec. IV.3] it was shown that this resolution amounts to
describing the measurement by means of a POVM with three possible outcomes and
associated effects E+,E−,E?, where the effects E± = (1−ε)Psx

± , i.e., they are “close
to” the spectral projections of sx if 0 < ε ≤ 1, and the effect E? = ε1 is a multiple
of 1. It can be shown that ε can be made very small if the size of the measuring
system is large.

These considerations show that it is a matter of principle that measurements of
spin can never be perfectly accurate as a consequence of the additive conserva-
tion law for total angular momentum. The necessary inaccuracy is appropriately
described by a POVM of the kind described above. However, the common descrip-
tion of a sharp spin measurement is found to be an admissible idealization; the error
made by breaking (ignoring) the fundamental rotation symmetry of the measure-
ment Hamiltonian is negligible due to the fact that the measuring system is very
large.

It seems to be a difficult problem to decide whether a limitation of measurability
arises also in cases where the observable to be measured and the conserved quantity
are unbounded and have continuous spectra. This question was raised by Shimony
and Stein in 1979 [19]. The most general result at that time was the following (ex-
pressed in the notation of the present paper):

Theorem 9. If a sharp observable E admits a repeatable measurement, and if L⊗
1+1⊗LA is a bounded selfadjoint operator representing a conserved quantity for
the combined object and apparatus system, then E commutes with L.

Since repeatable measurements exist only for discrete observables (Theorem 6),
the above statement is only applicable to object observables with discrete spectra.
Hence it does not apply to measurements of position.

Ozawa [20] presented what seems to be a counter example, using a coupling
that is manifestly translation invariant. However, this model constitutes an unsharp
position measurement which becomes a sharp measurement only if the initial state
of the apparatus is allowed to be a non-normalizable state (that is, not a Hilbert
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space vector or state operator).5 A proof that a sharp position measurement (without
repeatability, but with some additional physically reasonable assumptions) cannot
be reconciled with momentum conservation was given in [21]. A general proof is
still outstanding.

Here we use another modification of the von Neumann model to demonstrate
that momentum conservation is compatible with unsharp position measurements
where the inaccuracy can be made arbitrarily small [18, Sec. 4.3]. Note that the total
momentum P+PA commutes with the coupling

U = exp
(

−iλ2
[

(Q−QA)PA +PA(Q−QA)
])

. (21)

The pointer is again taken to be Z = QA. Then the measured observable is the

smeared position Qe = e∗Q, where e(q) =
(

eλ −1
)
∣
∣
∣φ
(

−(eλ −1)q
)
∣
∣
∣

2
.

One can argue that the clash between the conservation law and position measure-
ment has been shifted and reappears when the measurement of QA is considered.
However, if momentum conservation is taken into account in the measurement of the
pointer, it would turn out that the pointer itself is only measured approximately, that
is, an unsharp pointer QA,h is actually measured, which then yields the measured
observable as Qe∗h.

The lesson of the current subsection is this: to the extent that the limitation on
measurability due to additive conservation laws holds as a general theorem, it shows
that the notion of a sharp measurement of the most important quantum observables
is an idealization which can be realized only approximately as a matter of principle;
yet the quality of the approximation can be extremely good due to the macroscopic
nature of the measuring apparatus.

To conclude this section, it is worth remarking that the quantum limitations of
measurements described here are valid independently of the view that one may take
on the measurement problem. This is the case because these limitations follow from
consideration of the total state of system and apparatus as it arises in the course of
its unitary evolution.

4 Complementarity and Uncertainty

The “classic” expressions of quantum limitations of preparations and measure-
ments are codified in the complementarity and uncertainty principles, formulated
by Bohr and Heisenberg 80 years ago.

This section offers a “taster” for two recent extensive reviews on the complemen-
tarity principle, [22], and the uncertainty principle, [23], which together develop a
novel coherent account of these two principles. In a nutshell, complementarity states
a strict exclusion of certain pairs of operations whereas the uncertainty principle

5 The same observation applies to the von Neumann measurement model of which Ozawa’s model
is a modification.
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shows a way of “softening” complementarity into a graded, quantitative relation-
ship, in the form of a trade-off between the accuracies with which these two options
can be realized together approximately. This interpretation is compatible with, if not
envisaged in, the following passage of Bohr’s published text of his famous Como
lecture of 1927 [24].

In the language of the relativity theory, the content of the relations (2) [the uncertainty rela-
tions] may be summarized in the statement that according to the quantum theory a general
reciprocal relation exists between the maximum sharpness of definition of the space-time
and energy-momentum vectors associated with the individuals. This circumstance may be
regarded as a simple symbolical expression for the complementary nature of the space-time
description and claims of causality. At the same time, however, the general character of this
relation makes it possible to a certain extent to reconcile the conservation laws with the
space-time co-ordination of observations, the idea of a coincidence of well-defined events
in a space-time point being replaced by that of unsharply defined individuals within finite
space-time regions.

Bohr summarizes here his idea of complementarity as the falling-apart in quantum
physics of the notions of observation, which leads to space-time description, and
state definition, linked with conservation laws and causal description; he regarded
the possibility of combining space-time description and causal description as an
idealization that was admissible in classical physics. Note also the reference to un-
sharpness (the emphasis in the quotation is ours), which seems to constitute the first
formulation of an intuitive notion of unsharp reality (and the first occurrence of this
teutonic addition to the English language).

4.1 The Complementarity Principle

In a widely accepted formulation, the Complementarity Principle is the statement
that there are pairs of observables which stand in the relationship of complemen-
tarity. That relationship comes in two variants, stating the mutual exclusivity of
preparations or measurements of certain pairs of observables. In quantum mechan-
ics there are pairs of observables the eigenvector basis systems of which are mutu-
ally unbiased. This means that the system is in an eigenstate of one observable, so
that the value of that observable can be predicted with certainty, the values of the
other observable are uniformly distributed. This feature is an instance of prepara-
tion complementarity, and it has been called value complementarity. Measurement
complementarity of observables with mutually unbiased eigenbases can be charac-
terized by the following property: any attempt to obtain simultaneous information
about both observables by first measuring one and then the other is bound to fail
since the first measurement completely destroys any information about the other
observable; that is to say, the second measurement gives no information about the
state prior to the first measurement. This will be illustrated in an example below.
We conclude that the “principle” of complementarity, as formalized here, is in fact
a consequence of the quantum mechanical formalism.
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Examples of complementary pairs of observables are spin-1/2 observables such
as sx,sz, and the canonically conjugate position and momentum observables Q,P of
a free particle. A unified formalization of preparation and measurement complemen-
tarity can be given in terms of the spectral projections of these observables (Px

±,Pz
±

for sx,sz), and Q(X),P(Y ) for Q,P:

Px
k ∧Pz

� = O for k, � = +,− ;
Q(X)∧P(Y ) = O for bounded intervals X ,Y.

(22)

The symbol ∧ represents the lattice-theoretic infimum of two projections, that is,
for example, Q(X)∧P(Y ) is the projection onto the closed subspace which is the
intersection of the ranges of Q(X) and P(Y ). These relations entail, in particular, that
complementary pairs of observables do not possess joint probability distributions
associated with a state T in the usual way: for example, there is no POVM G :
B(R2) → E(H) such that G(X ×R) = Q(X) and G(R×Y ) = P(Y ) for all X ,Y ∈
B(R). In fact, if these marginality relations were satisfied for all bounded intervals
X ,Y , then one must have G(X ×Y )≤Q(X) and G(X ×Y )≤ P(Y ), and this implies
that any vector in the range of G(X ×Y ) must also be in the ranges of Q(X) and
P(Y ), hence G(X ×Y ) = O.

Example 2 (Complementarity for measurement sequences (1)). Let A,B be ob-
servables in C

n, n ≥ 2, with mutually unbiased eigenbases ϕ1,ϕ2, . . . ,ϕn and
ψ1,ψ2, . . . ,ψn, respectively. (Hence A,B are value complementary.) Let IA be
the repeatable (von Neumann-Lüders) instrument associated with A: IA

k (T ) :=
〈ϕk|Tϕk〉|ϕk 〉〈ϕk|. Let IA

R
:= ∑k IA

k be the nonselective measurement opera-
tion, then the probability for a B measurement following the A measurement is
pB
IR(T )(�) = 1/n, which is independent of T . This can be expressed by saying that

the observable effectively measured in this process is not B but the trivial POVM
whose effects are E� = 1

n1.

Example 3 (Complementarity for measurement sequences (2)). Consider a measure-
ment of position Q followed by a measurement of momentum P. Let IQ be the in-
strument representing the position measurement. Then the following defines a joint
probability distribution:

tr
[

IQ
X (T )P(Y )

]

= pT (X ×Y ) =: tr [T G(X ×Y )] , X ,Y ∈ B(R). (23)

The marginal observables are sharp position and a “distorted momentum” ob-
servable, G(X ×R) = Q(X) and G(R×Y ) = P̃(Y ). Since one of these marginal
observables is a sharp observable, it follows that the effects of the other marginal
observable commute with the sharp observable. But Q is a maximal observable,
and so the effects P̃(Y ) are in fact functions of the position operator. The attempted
momentum measurement only defines an effectively measured observable which
contains a “shadow” of the information of the first position measurement. Hence a
sharp measurement of position destroys all prior information about momentum (and
vice versa).
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The following defines a completely positive instrument IQ which renders the
effective observable defined by a subsequent momentum measurement trivial: let
Tx be the continuous family of positive operators of trace one, generated by Tx :=
UxT0U−1

x , where Ux are unitary operators that commute with momentum P. Then put

IQ
X (T ) :=

∫

X
Tx tr [TQ(dx)] . (24)

The associated measured observable is indeed the sharp observable Q since
tr
[

IQ
X (T )

]

= tr [TQ(X)]. Then the distorted momentum observable P̃ defined
above is found to be:

tr
[

T P̃(Y )
]

:= tr
[

IQ
R

(T )P(Y )
]

=
∫

R

tr [TxP(Y )] tr [TQ(dx)]

=
∫

R

tr
[

T0U−1
x P(Y )Ux

]

tr [TQ(dx)]

=
∫

R

tr [T0P(Y )] tr [TQ(dx)] = tr [T0P(Y )] . (25)

Thus P̃ is a trivial observable. Note that in this calculation Q could have been re-
placed by any observable as the first-measured observable. However, if the instru-
ment (24) is required to be approximately repeatable, then T0 must have a position
distribution concentrated around the origin 0, and Ux must ensure that Tx has a po-
sition distribution concentrated around the point x; this is achieved if Ux is chosen
to be exp( i

h̄ xP). Notice that this form is in fact realized in the Ozawa instrument for
a sharp position measurement, Eq. (10). While we have not shown that this form
is necessary, this consideration suggests that for approximately repeatable position
measurements a subsequent momentum measurement leads to a (nearly) trivial ob-
servable as the distorted momentum.

4.2 The Uncertainty Principle

Following [22], we propose that the term uncertainty principle refers to the broad
statement that there are pairs of observables for which a trade-off relationship per-
tains for the degrees of sharpness of the preparation or measurement of their values,
such that a simultaneous or sequential determination of the values requires a nonzero
amount of unsharpness (latitude, inaccuracy, disturbance). This gives rise to three
variants of uncertainty relations, exemplified here for position and momentum: first
there is the well-known inequality for the widths of the probability distributions of
position and momentum in any quantum state that can be expressed in terms of the
standard deviations,

Δ(Q,T )Δ(P,T )≥ 1
2 h̄. (26)
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Second, one may consider a trade-off relation for the inaccuracies in any attempted
joint measurement of position and momentum,

δ (Q̃,Q)δ (P̃,P)≥Ch̄, (27)

where the inaccuracies are to be defined appropriately as measures of the differences
between the sharp position and momentum observables Q,P and their approxima-
tions Q̃, P̃, respectively, which are to be measured jointly. Finally, there is a trade-off
between the accuracy of an approximate measurement of position (momentum) and
a necessary disturbance of the momentum (position) distribution:

δ (Q̃,Q)D(P̃,P)≥Ch̄, δ (P̃,P)D(Q̃,Q)≥Ch̄, (28)

where D(Q̃,Q) and D(P̃,P) denote appropriate measures of the disturbance of po-
sition and momentum, respectively.

Suitable measures of inaccuracy and disturbance which make the last two mea-
surement uncertainty relations precise will be presented in Section 5. It thus turns
out that similar to the complementarity principle, the uncertainty principle in its
three manifestations is also a formal consequence of the noncommutativity of the
observables in question. The term “principle” may still be used to highlight the fact
that the uncertainty relations reflect an important nonclassical feature of quantum
mechanics.

4.3 Complementarity Versus Uncertainty?

The reviews [22, 23] propose a resolution of a long-standing controversy over the
relationship, relative roles and interplay of the complementarity and uncertainty
principles. This resolution will be briefly summarized here. As indicated in the in-
troductory quote from Bohr (1928), the traditional view describes the uncertainty
relations as a formal expression of the complementarity principle. However, as a
quick survey of the research and textbook literature on quantum mechanics shows,
this view has met with a considerable degree of uneasiness by many. Some authors
consistently avoid any reference to complementarity while others play down the sig-
nificance of the uncertainty relations, denying them the status of a principle which
they reserve for complementarity.

Yet, in recent years there has been a shift of perspective which was indeed an-
ticipated in the same quote of Bohr: complementarity is seen as a statement of the
impossibility of jointly performing certain pairs of preparation or measurement pro-
cedures, whereas the role of the uncertainty principle is to quantify the degree to
which an approximate reconciliation of these mutually exclusive options becomes a
possibility. It seems that in this way a more balanced assessment has been achieved:
compared to the view that emphasized complementarity over uncertainty, the pos-
itive role of the uncertainty relations as enabling joint determinations and joint
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measurements is now highlighted more prominently; and even though it is true (as
shown in [22]) that the uncertainty relations entail the complementarity relations in
a suitable limit sense, it is still appropriate to point out the strict mutual exclusivity
of sharp value assignments which, after all, is the reason for the quest for an approx-
imate reconciliation in the form of simultaneous but unsharp value assignments.

The principles of complementarity and uncertainty are extreme manifestations of
the existence of noncommuting pairs of observables and of superpositions of states,
which both entail fundamental limitations of the possibilities of preparing or mea-
suring simultaneous sharp values of observables that do not commute. These limita-
tions are consequences of a famous theorem of von Neumann which we summarize
here as follows.

Theorem 10. Let A and B be two sharp observables represented as selfadjoint op-
erators. The following are equivalent:
(a) A and B possess a joint spectral representation (possibility of preparing joint
sharp values).
(b) A and B possess a joint observable that defines joint probabilities for them
(jointly measurability).
(c) AB = BA.

The reason for the long-standing debate over the superiority of either the comple-
mentarity principle or the uncertainty principle seems to lie in the fact that the fea-
tures of complementarity and uncertainty are formally intertwined in Hilbert space
quantum mechanics. It is only in the context of theoretical frameworks more abstract
and general than quantum or classical theories that the logical relationships between
complementarity and uncertainty postulates can be investigated; in such a general-
ized setting these postulates can in fact be used as principles within a set of axioms
from which the Hilbert space framework of quantum mechanics can be deduced. As
an example, we note the work of Lahti together with the late Bugajski [25] who used
appropriate formalizations of complementarity and the existence of von Neumann-
Lüders measurements in the so-called convexity framework to derive Hilbert space
quantum theory.

5 Inaccuracy and Disturbance in Quantum Measurements

It remains to show how the above programmatic statement of the uncertainty prin-
ciple for joint and sequential measurements can be made precise by appropriate
measures of inaccuracy and disturbance. Such measures are also applicable in the
analysis of the other quantum limitations of measurability discussed in Section 3.

First I will introduce the idea of an approximate joint measurement of two non-
commuting quantities and present an operational definition of measurement error
applicable to continuous observables such as position and momentum; the error
measures for these observables obey a trade-off relation valid in any approximate
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joint measurements. Then I will show that a trade-off relation between the accu-
racy of a measurement and the disturbance of the distributions of an observable
not commuting with the measured observable can be considered as an instance of a
trade-off relation between the inaccuracies in an approximate joint measurement of
two noncommuting observables.

5.1 Approximate Joint Measurements

A necessary criterion for the joint measurability of two observables is the existence
of a joint probability distribution for every state T in the usual quantum mechanical
form. Von Neumann’s theorem entails that two noncommuting sharp observables
such as position and momentum do not possess joint distributions (for all states).
Hence these observables are not jointly measurable. However, for the joint measur-
ability of pairs of unsharp observables, commutativity is not a necessary require-
ment. This suggests the following consideration: it should be possible to find two
jointly measurable observables M1,M2 on B(R) which are approximations, in a suit-
able sense, of position Q and momentum P, respectively. Then a measurement of
a joint observable M on B(R2) of M1,M2 will be accepted as an approximate joint
measurement of Q,P if the deviations of M1 from Q and of M2 from P are finite in
some appropriate measure. This constellation is shown in Fig. 2.

Two tasks need to be addressed in order to complete the above program. First,
one needs to introduce suitable operational measures of inaccuracy, that is, of the
deviation between two observables defined on the same outcome space (Ω,Σ). Sec-
ond, since we are interested in good joint approximations of noncommuting pairs
of observables, the optimal approximators M1,M2 must be expected to be noncom-
muting and hence unsharp observables in order to be jointly measurable; therefore,
the problem arises to quantify the necessary degree of unsharpness required for the
joint measurability given the finite “distance” of M1,M2 from two noncommuting
observables.

Fig. 2 Idea of a joint approximate measurement of position Q and momentum P, by means of an
observable M on B(R2) whose marginals M1 and M2 are approximations of Q and P, respectively
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The definition of such measures of inaccuracy and unsharpness will in general
depend on the type of outcome space. A variety of approaches for the case (R,B(R))
are analyzed in [23] and compared in detail in [26], and the case of discrete (qubit)
observables is investigated in [27]. Here I will give a brief survey of notions appli-
cable to the position-momentum case.

5.1.1 Standard Error

The only known measure that is universally applicable to different types of outcome
spaces (barring questions of domains of unbounded operators) is a quantity that may
be called standard error as it is defined in terms of the first and second moments of
the relevant operator measures, similar to the standard deviation. This seems to be
the only measure of inaccuracy or error that has been in use in the literature over
an extended period. Examples of its application in the formulation of uncertainty
relations for joint measurements are the works of Appleby [28, 29], Hall [30], and
Ozawa (e.g., [31, 32]).

For an observable E on B(R), let E[k] :=
∫

xkE(dx) denote the kth moment oper-
ator of E (defined on its natural domain D(E[k]) := {ϕ ∈ H :

∣
∣
∫

xk〈ψ|E(dx)ϕ〉
∣
∣<

∞ for all ψ ∈ H} [33]). Assume M is a measurement scheme defining an observ-
able E on B(R) which is intended to approximate the sharp position Q. Then a
suggestive choice of measure of inaccuracy is

ε(Z,Q;T ) := tr
[

UT ⊗P[φ ]U∗(1⊗Z[1]−Q⊗1)2]1/2
. (29)

This can be expressed in terms of the actually measured observable E:

ε(E,Q;T ) :=
(

tr
[

T (E[1]−Q)2]+ tr
[

T (E[2]−E[1]2)
])1/2

. (30)

The inaccuracy in a momentum measurement is defined similarly. Ozawa proved the
following universal uncertainty relation for the marginals M1,M2 of an observable
M on B(R2):

ε(M1,Q;T )ε(M2,P;T )+ ε(M1,Q;T )Δ(P,T )+Δ(Q,T )ε(M2,P;T )≥ 1
2

h̄. (31)

He noted that the first product term can be zero (this happens in Ozawa’s model of
a sharp position measurement introduced above), and considers this to be a demon-
stration that the Heisenberg uncertainty principle for joint measurements of position
and momentum and that for inaccuracy vs disturbance does not have the common
form with a state-independent lower bound.

However, this way of reasoning ignores two crucial deficiencies in the definition
of ε(E,Q;T ) as a measure of inaccuracy. First, the above uncertainty relation is not
a statement solely about measurement inaccuracies since it depends on the prepa-
ration of the system. An appropriate definition of measurement inaccuracy should
give an estimate of error which can be obtained without reference to the state of
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the measured object (which usually is unknown in a measurement). This point was
observed by Appleby in 1998 who introduced what we propose to call the (global)
standard error:

ε(E,Q) := sup
T∈S(H)

(

tr
[

T (E[1]−Q)2]+ tr
[

T (E[2]−E[1]2)
])1/2

. (32)

This quantity gives rise to a universal trade-off relation for joint measurement errors.

Theorem 11. Let M be an observable on B(R2). Its marginals M1,M2 obey the
following:

ε(M1,Q)ε(M2,P)≥ 1
2 h̄. (33)

This result was proven by Appleby [29].
The second deficiency of the definition of ε(E,Q;T )—and also of ε(E,Q)—lies

in the fact that this quantity cannot be estimated in terms of the measurements of
E and Q under consideration unless the operators E[1] and Q commute so that they
can be jointly measured to determine the expectation of the operator (E[1]−Q)2. If
E[1] and Q do not commute then normally the squared difference operator does not
commute with either of them and a third, quite different measurement is required to
find its expectation value. This is to say that the standard error is not operationally
significant, in general.

An interesting but very special subclass of measurements where this deficiency
does not arise is the family of unbiased measurements, for which E[1] = Q. In this
case the standard error is given solely by the second term in Eq. (30), which is actu-
ally an operational measure of the intrinsic noise or unsharpness of the approximator
E of Q (see below).

5.1.2 A Distance Between Observables on B(R)

In 2004, Werner [34] introduced a distance d(E,F) between two observables E and
F on B(R) which is sensitive to the distance of the bulks of probability distributions
pE

T and pF
T , and he derived an uncertainty relation for position and momentum. Some

definitions are required in order to present this result.
For any bounded continuous function g on R, one can define the operator

L(g,E) :=
∫

R
g(x)E(dx). The definition of d(E,F) makes use of the set of (Lipshitz)

functions Λ := {g : R → R : g bounded, |g(x)−g(y) ≤ |x− y|}. Werner’s distance
then is given as follows:

d(E,F) := sup
{

‖L(g,E)−L(g,F)‖ : g ∈ Λ
}

(34)

Werner’s joint measurement uncertainty relation is stated as follows [34].

Theorem 12. Let M1,M2 be marginals of an observable M on B(R2). The distances
d(M1,Q) and d(M2,P) obey the inequality

d(M1,Q)d(M2,P)≥Ch̄. (35)
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Here the optimal constant C is determined via Ch̄ = E2
0/(4ab), where E0 is the

lowest (positive) eigenvalue of the operator a|Q|+b|P| for some a,b > 0. Its value
is given by C ≈ 0.304745.

This result constitutes the first universal joint measurement inaccuracy relation for
operationally significant measures of inaccuracy. Moreover, the proof techniques
used turn out to be applicable for quite different definitions of inaccuracy (see
[26, 35]). The distance d(E,F) is geometrically appealing and constitutes a natural
choice due to its connection with the so-called Monge metric on the space of prob-
ability measures on B(R), as explained in [34]. However, from an experimenter’s
perspective, it may be considered less appealing to be asked to estimate d(E,F) by
measuring differences of expectation values for L(g,E) and L(g,F), where g runs
through the set Λ of Lipshitz functions.

5.1.3 Error Bar Width

A measure of measurement inaccuracy that would appear natural to an experimenter
is the width of error bars, which is estimated in a process of calibration: the mea-
surement scheme to be calibrated is fed with systems prepared with fairly sharply
defined values of (say) the position observable. For each value, one estimates the
spread of output values which gives a measure of the error bar width. If this measure
is found to be bounded across all input values, the measurement will be considered
to constitute a good approximation of the position observable to be measured. This
consideration is captured in the following definitions.

Let M1 be an observable on B(R) which is to approximate Q. Let Jq;δ := [q−
δ/2,q + δ/2]. By Wε1,δ (M1,Q) I denote the inaccuracy, defined as the smallest
interval width w such that whenever the value of Q is certain to lie within an interval
Jq;δ , then the output distribution pM1

ϕ is concentrated to within 1− ε1 in Jq;w:

Wε1,δ (M1,Q) := inf{w | for all q ∈ R, ψ ∈H,

if pQ
ψ(Jq;δ ) = 1 then pM1

ψ (Jq;w)≥ 1− ε1}.
(36)

The inaccuracy describes the range within which the input values can be inferred
from the output distributions, with confidence level 1−ε1, given initial localizations
within δ . The inaccuracy is an increasing function of δ , so that one can define the
error bar width of M1 relative to Q:

Wε1(M1,Q) := inf
δ
Wε1,δ (M1,Q) = lim

δ→0
Wε1,δ (M1,Q). (37)

If Wε1(M1,Q) is finite for all ε1 ∈ (0, 1
2 ), we will say that M1 approximates Q in

the sense of finite error bars. Similar definitions apply to approximations M2 of
momentum P, yielding Wε2,δ (M2,P) and Wε2(M2,P).

It is interesting to note that the finiteness of either ε(M1,Q) or d(M1,Q) im-
plies the finiteness of Wε1(M1,Q) [26]. Therefore, among the three measures of



“No Information Without Disturbance”: Quantum Limitations of Measurement 251

inaccuracy introduced above, the condition of finite error bars gives the most gen-
eral criterion for selecting “good” approximations of Q and P.

The following uncertainty relation for error bar widths is proven in [35].

Theorem 13. Let M be an observable on B(R2). The marginals M1,M2 obey the
following trade-off relation (for 0 < ε1,ε2 < 1

2 ):

Wε1(M1,Q)Wε2(M2,P)≥ 2π h̄ (1− ε1 − ε2)
2 . (38)

5.1.4 Unsharpness

A measure of the intrinsic unsharpness of an observable E on B(R) is given by the
resolution width (at confidence level 1− ε), as defined in [11]:

γε(E) := inf{w > 0 |∀x ∈ R∃ρ ∈ S : ρE([x− w
2 ,x+ w

2 ])≥ 1− ε}. (39)

This measure describes the smallest interval width for which probability of no less
than 1− ε can be achieved, irrespectively of where the interval is located. For a
sharp observable E on B(R) with support equal to R (so that E(X) �= O for any
open interval), the resolution width is γε(E) = 0 for all ε ∈ (0,1).

I put forth the conjecture (being studied in [26]) that the resolution widths in ap-
proximate joint measurements of position and momentum obey the following trade-
off relation.

Conjecture. Let M be an approximate joint observable for Q,P in the sense of finite
error bars. Then the resolution widths of M1 and M2 obey the following inequality:

γε1(M1)γε2(M2)≥ 2π h̄ (1− ε1 − ε2)
2 . (40)

The special case where M is a covariant phase space observable has already been
proven in [11].

5.2 Inaccuracy-Disturbance Trade-Off

We have seen that a momentum measurement following a sharp position measure-
ment defines an observable that carries no information about the momentum dis-
tributions of the states prior to the position measurement. A sharp measurement of
position thus destroys completely the momentum information contained in the initial
state. The question arises whether the disturbance of momentum can be diminished
if the position is measured approximately rather than sharply.

This possibility was already envisaged by Heisenberg in his discussion of thought
experiments illustrating the uncertainty relations [36, 37]. For example, in the case
of a particle passing through a slit he noted that due to the diffraction at the slit, an
initially sharp momentum distribution is distorted into a broader distribution whose
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width Δp is of the order h̄/δx, where δx is the width of the slit. The width Δp is a
measure of the change, or disturbance, of the momentum distribution, and δx can
be interpreted as the inaccuracy of the position determination effected by the slit.
Further, one may also consider the recording of the location at which the particle
hits the screen as a geometric determination of the (direction) of its momentum, the
inaccuracy δ p of which is given by the width Δp of the distribution obtained after
many repetitions of the experiment. In this way the passage through the slit followed
by the recording at the screen constitutes an approximate joint measurement of the
position and momentum of the particle at the moment of its passage through the slit;
see Fig. 3.

Generalizing this idea of making an approximate joint measurement by way of a
sequence of approximate measurements, we consider the schemes of Figs. 4 and 5).
Here M1 is either the sharp position Q or an unsharp position observable Qe mea-
sured first, followed by a sharp momentum observable, whose measurement is to be
followed by a sharp momentum measurement. The observable M2 effectively mea-

Fig. 3 Slit experiment as an approximate (sequential) joint measurement of position and
momentum

Fig. 4 Sharp position measurement followed by a sharp momentum measurement. The two
marginals M1 = Q and M2 commute and have a unique joint observable M

Fig. 5 Approximate joint measurement of position and momentum defined by an unsharp position
measurement followed by a sharp momentum measurement. The marginals are M1 = Qe and M2 =
P f where e, f are probability distributions which are related as described in the main text
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sured by this momentum measurement is defined via pM2
T := pP

T ′ for all initial states
T , where T ′ is the state after the position measurement. Thus M2 is the “distorted”
momentum observable. Collecting the probabilities for finding an outcome in a set
X for the first measurement and an outcome in Y for the second measurement de-
fines a probability measure for each state T via X ×Y �→ pT (X ×Y ). Hence there is
a unique joint observable M for M1 and M2 determined by the given measurement
scheme [23].

In the first case, since the marginal M1 = Q is sharp, M2 commutes with Q and
is therefore not a good approximation of the momentum observable P. However, in
the second case, M1 = Qe, it is known [38] that the second marginal observable M2
is a smeared momentum observable, M2 = P f , if the first, unsharp position mea-
surement is such that the induced instrument is the von Neumann instrument (8).
The inaccuracy distributions are then related as follows (cf. Eq. (6)):

e(q) = λ |φ(−λq)|2, f (p) = 1
λ |φ̃(− 1

λ p)|2. (41)

Here φ̃ is the Fourier transform of φ , from which it follows that the standard devia-
tions of the distributions e, f obey the uncertainty relation:

Δ(e)Δ( f )≥ 1
2 h̄. (42)

Note that Δ(e), Δ( f ) are measures of how well the sharp observables Q,P are ap-
proximated by M1,M2, respectively. Thus they are measures of measurement in-
accuracy, and at the same time Δ( f ) quantifies the disturbance of the momentum
distribution due to the position measurement.

These considerations show that an operational definition disturbance of the mo-
mentum distribution due to a position measurement is obtained by considering the
sequential joint measurement composed of first measuring position and then mo-
mentum. The inaccuracy of the second measurement, that is, any measure of the
separation between P and M2, is also a measure of the momentum disturbance.
Consequently, all the joint measurement inaccuracy relations discussed above ap-
ply to sequential joint measurements of position and momentum, and in this case
they constitute rigorous versions of the long-sought-after inaccuracy-vs-disturbance
trade-off relations.

6 Conclusion

Using the apparatus of modern quantum measurement theory, I have reviewed rig-
orous formulations of some well-known quantum limitations of measurements: the
inevitability of disturbance and (transient) entanglement; the impossibility of re-
peatable measurements for continuous quantities, the restrictions on measurements
arising from the presence of an additive conserved quantity, and the necessarily ap-
proximate and unsharp nature of joint measurements of noncommuting quantities.
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In each case, a strict no-go theorem is complemented with a positive result de-
scribing conditions for an approximate realization of the impossible goal: repeata-
bility can be approximated arbitrarily well for continuous sharp observables, also in
the presence of a conservation law. It was found that ideal measurements of sharp
observables are necessarily repeatable, but in the case of unsharp observables, ap-
proximate ideality can be achieved without forcing approximate repeatability. Thus,
unsharp measurements may be less invasive than sharp measurements.

The impossibility of joint sharp measurements of complementary pairs of observ-
ables can be modulated into the possibility of approximate joint measurements of
such observables, provided the inaccuracies are allowed to obey a universal Heisen-
berg uncertainty relation. Likewise, the complete destruction of momentum infor-
mation by a sharp position measurement can be avoided if an unsharp position
measurement is performed. The trade-off between the information gain in the ap-
proximate measurement of one observable and the disturbance of (the distribution
of) its complementary partner observable was found to be an instance of the joint-
measurement uncertainty relation.

These results, some of which were made precise in very recent investigations,
open up a range of interesting new questions and tasks. In particular, it will be
important to find operational measures of inaccuracy that are applicable to all types
of observables, whether bounded or unbounded, discrete or continuous. This would
probably enable a formulation of a universal form of joint measurement uncertainty
relation for arbitrary pairs of (noncommuting) observables, thus generalizing the
relations presented here for the special case of complementary pairs of continuous
observables such as position and momentum.
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How Stands Collapse II

Philip Pearle

Abstract I review 10 problems associated with the dynamical wave function col-
lapse program, which were described in the first of these two papers. Five of these,
the interaction, preferred basis, trigger, symmetry and superluminal problems, were
shown there to have been resolved. In this volume in honor of Abner Shimony, I
discuss the five remaining problems, tails, conservation law, experimental, relativ-
ity, legitimization. Particular emphasis is given to the tails problem, first raised by
Abner. The discussion of legitimization contains a new argument, that the energy
density of the fluctuating field which causes collapse should exert a gravitational
force. This force can be repulsive, since this energy density can be negative. Specu-
lative illustrations of cosmological implications are offered.

1 Introduction and Recapitulation

All things in the world come from being. And being comes from non-being.
The Way of Lao Tzu

In 1977, a graduate student at the University of Edinburgh’s department of Soci-
ology of Science named Bill Harvey (presently Deputy Director of the Scottish Edu-
cation Funding Council) was doing his PhD thesis, and wrote to physicists working
in the field of foundations of quantum theory, including myself, to ask if he could
visit and ask questions. After my interview, which took place at Hamilton College,
Bill, two colleagues and I went out to dinner and, as we drove back, I asked him
what his PhD thesis was about. He said: “Social deviance.”

In the first of these papers [1], hereafter referred to as paper I, as well as in a
previous festschritt for Abner Shimony [2], I presented some personal history, my
route to becoming a social deviant. Closet deviance, shared by a small (but growing,

P. Pearle
Hamilton College, Clinton, NY 13323, USA
e-mail: ppearle@hamilton.edu

W.C. Myrvold and J. Christian (eds.), Quantum Reality, Relativistic Causality, and Closing 257
the Epistemic Circle, The Western Ontario Series in Philosophy of Science 73,
c© Springer Science+Business Media B.V. 2009



258 P. Pearle

I hope) group of physicists, is the belief that standard quantum theory, handed down
on Mount Copenhagen, while a most marvelous set of laws, has conceptual flaws.
Outright deviance is the temerity to try and do something about it.

(Parenthetically, Abner Shimony, whom I first met in Wendell Furry’s office at
Harvard around 40 years ago, has over these years been supportive of my apostasy.
Since Abner is both a physicist and philosopher, he is at most half a deviant, since
what is deviant in physics is normal in philosophy).

The flaws are encapsulated in the inadequate answer given by standard quantum
theory to what has been called “the measurement problem,” but which I prefer to
call “the reality problem”:

For a closed system of any kind, given a state vector and the Hamiltonian, specify
the evolving realizable states and their probabilities of realization.

That is, there is no well-defined procedure within standard quantum theory for, at
any time, plucking out from the state vector the possible states which describe what
we see around us. At best, in a restricted set of situations, namely measurement
situations by human beings, which are a small subset of the full set of situations
in the universe created by nature, one can apply procedures that work FAPP ( “For
All Practical Purposes,” a useful acronym coined by John Bell, in his pungent cri-
tique of standard quantum theory [3]). These procedures require additional, ad hoc
(which means “for this case only”) information: this is the apparatus, that is the
environment, etc.

Paper I [1] described the Continuous Spontaneous Localization (CSL) dynamical
wave function collapse theory [4,5]. It consists of two equations. A dynamical equa-
tion describes how the state vector evolves under the joint influence of the Hamil-
tonian and an operator depending upon an arbitrarily chosen fluctuating scalar field
w(x, t). A probability rule equation gives the probability that this w(x, t) is realized
in nature. Then, the answer given by CSL to the measurement/reality problem is
simply:

Given any w(x, t), a state vector evolving according to the dynamical equation is
a realizable state, and the probability rule gives its probability of realization.

The claim of CSL is “what you see (in nature) is what you get (from the theory).”
Among other considerations, in this paper it will be argued that this works well.

1.1 CSL Lite

Que será, será, whatever will be, will be...
Jay Livingstone and Ray Evans, sung by Doris Day

In order that this paper be self contained, some of paper I’s discussion of CSL will
be repeated here, First comes “CSL lite,” a simplified formulation which illustrates
essential features. An initial state vector

|ψ,0〉=
N

∑
n=1

cn|an〉 (1)
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(the |an〉 are eigenstates of an operator A with nondegenerate eigenvalues an) evolves
according to the dynamical equation

|ψ, t〉w ≡ e
1

4λ
∫ t

0 dt ′[w(t ′)−2λA]2 |ψ,0〉

=
N

∑
n=1

cn|an〉e−
1

4λ
∫ t

0 dt ′[w(t ′)−2λan]2 . (2)

In Eq. (2), w(t) is a sample random function of white noise type, and λ charac-
terizes the collapse rate. The state vector given by (2) is not normalized to 1, so
one must remember to normalize it when calculating expectation values, the density
matrix, etc.

The probability associated to |ψ, t〉w is given by the probability rule

Pw(t)Dw ≡w〈ψ, t|ψ, t〉wDw =
N

∑
n=1

|cn|2e−
1

2λ
∫ t

0 dt ′[w(t ′)−2λan]2Dw. (3)

To see that the integrated probability is 1, discretize the time integral in Eq. (3), so
that it appears as a product of gaussians and, using

Dw ≡ dw(0)
√

2πλ/Δt

dw(Δt)
√

2πλ/Δt
...

dw(t)
√

2πλ/Δt
,

integrate over all dw(nΔt) from −∞ to ∞.
Here is a proof (not given in paper I, where the result was just cited) that, as

t → ∞, Eqs. (2) and (3) describe collapse to one of the eigenstates |am〉 with proba-
bility |cm|2 .

Consider first the special class of w(t), labeled wa(t), which have the asymptotic
behavior

lim
T→∞

(2λT )−1
∫ T

0
dtwa(t)→ a,

where a is a constant. Write wa(t) = w0(t)+2λa, and define

(2λT )−1
∫ T

0
dtw0(t)≡ ε(T ),

so limT→∞ ε(T )→ 0. Then Eq. (3) may be written

Pw(t) =
N

∑
n=1

|cn|2e−
1

2λ
∫ t

0 dt ′w2
0(t ′)e−2λ t(a−an)[2ε(t)+(a−an)]. (4)

If a �= an for any n, the probability density (4) vanishes for t → ∞, since it is
a sum of terms which vanish as exp−2λ t(a− an)2. The (normalized) state vector
corresponding to such a wa(t), as given by Eq. (2), is generally not a collapsed state,
but its asymptotic probability of occurrence is zero.
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If a = am, Eqs. (2) and (3) respectively become

|ψ, t〉w = e−
1

4λ
∫ t

0 dt ′w2
0(t ′)

[

cm|am〉+
N

∑
n �=m

cn|an〉e−λ t(am−an)[2ε(t)+(am−an)]

]

→ e−
1

4λ
∫∞

0 dt ′w2
0(t ′)cm|am〉 (5)

Pw(t) = e−
1

2λ
∫ t

0 dt ′w2
0(t ′)

[

|cm|2 +
N

∑
n �=m

|cn|2e−2λ t(am−an)[2ε(t)+(am−an)]

]

→ |cm|2e−
1

2λ
∫∞

0 dt ′w2
0(t ′). (6)

Eq. (5) shows that collapse to |am〉 occurs for any wam(t). When Eq. (6) is inte-
grated over all possible wam(t), (i.e., over all possible w0(t)), the total associated
probability is |cm|2.

There are other possibilities for w(t) other than the wa(t), namely the cases for
which T−1 ∫ T

0 dtw(t) it has no asymptotic limit. However, since the probability for
the wam(t)’s totals to 1, these possibilities have measure 0. End of proof.

The density matrix constructed from (2), (3) is

ρ =
∫

Pw(t)Dw
|ψ, t〉w w〈ψ, t|
w〈ψ, t|ψ, t〉w

=
N

∑
n,m=1

cnc∗m|an〉〈am|e−(λ t/2)(an−am)2
. (7)

Thus, the off-diagonal elements decay at a rate determined by the squared differ-
ences of eigenvalues.

For many mutually commuting operators Ak, and with a possibly time-dependent
Hamiltonian H(t) to boot, the evolution (2) becomes

|ψ, t〉w ≡ T e−
∫ t

0 dt ′{iH(t ′)+ 1
4λ ∑k[wk(t ′)−2λAk]2}|ψ,0〉, (8)

where T is the time-ordering operator. With H = 0, the probability ∼w〈ψ, t|ψ, t〉w
is asymptotically non-vanishing only when wk(t) has its asymptotic value equal to
2λ multiplied by an eigenvalue of Ak, for each k. The collapse is to the eigenstate
labeled by these joint eigenvalues.

1.2 CSL

For full-blown CSL, the index k corresponds to spatial position x: wk(t) → w(x, t)
is considered to be a physical scalar field. The commuting operators Ak → A(x)
are taken to be (proportional to) the mass density operator M(x) “smeared” over a
region of length a around x. Thus, the dynamical equation is

|ψ, t〉w ≡ T e−
∫ t

0 dt ′{iH(t ′)+ 1
4λ
∫

dx[w(x,t ′)−2λA(x)]2}|ψ,0〉, (9)
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A(x)≡ 1
m0(πa2)3/4

∫

dze−
1

2a2 (x−z)2
M(z). (10)

In Eq. (9), m0 is taken to be the proton’s mass, and the choices λ ≈ 10−16s−1, a ≈
10−5cm, the values suggested by Ghirardi, Rimini and Weber for their Spontaneous
Localization (SL) theory ([6]) are taken, although the present experimental situation
allows a good deal of latitude [7, 8]. The probability rule is, as before,

Pw(t)Dw =w〈ψ, t|ψ, t〉w

t

∏
x,t=0

dw(x, t)
√

2πλ/ΔxΔt
. (11)

Thus, for a state which initially is a superposition of states corresponding to dif-
ferent mass density distributions, ideally (i.e., if one neglects the Hamiltonian evolu-
tion, and waits for an infinite time) one state survives under the CSL dynamics. The
greater the mass density distribution differences between the states, the more rapid
is the collapse rate. When describing the collapse competition between macroscop-
ically distinguishable states, the Hamiltonian evolution can have little effect when it
is slow compared to the collapse rate, or when it does not materially affect the mass
distribution.

2 Problem’s Progress

Paper I discusses a framework for dynamical collapse models begun in the 70’s
[9, 10]. I listed nine problems which were evident then. Then, SL came along, a
well-defined model of instantaneous collapse, which provides a resolution of four
problems, but raised one more. CSL, which was stimulated by the earlier work and
by SL, provides a (somewhat different) resolution of these five problems. The five
problems and their resolutions are:

Interaction problem: what should be the interaction which gives rise to collapse?
This is specified in Eqs. (9) and (10).

Preferred basis problem: what are the states toward which collapse tends? They
are eigenstates of the (smeared) mass density operator (10).

Trigger problem: how can it be ensured that the collapse mechanism is “off ” for
microscopically distinguishable states, but “on” for macroscopically distinguish-
able states? This is resolved in CSL, as in SL, by having the collapse always “on.”
In CSL, the collapse rate is slow in the microscopic case because the mass density
differences are small, and fast in the macroscopic case because the mass density dif-
ferences are large.

Symmetry problem: how to make the collapse mechanism preserve the exchange
symmetry properties of fermionic and bosonic wave functions, which was a problem
of SL [11]? This is ensured by the symmetry preserving mass density operator in
Eq. (10).

Superluminal problem: how can it be ensured that the collapse dynamics does not
allow superluminal communication? Gisin [10] pointed out a necessary condition.
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It is that the density matrix ρ(t), evolving from an initial density matrix matrix ρ(0)
which can be composed from pure state vectors in various ways, only depend upon
ρ(0) and not upon this composition. It is straightforward to see this is satisfied in
CSL, since the density matrix, from Eqs. (9) and (11), is

ρ(t) ≡
∫

DwPw(t)
|ψ, t〉w w〈ψ, t|

w〈ψ, t|ψ, t〉w

= T e−
∫ t

0 dt ′{iHL(t ′)−iHR(t ′)+ λ
2
∫

dx[AL(x)−AR(x)]2}ρ(0) (12)

(the subscripts L or R mean that the operators are to appear to the left or right of
ρ(0), and T time-reverse orders operators to the right). The other necessary in-
gredient is that the interaction not be long-range. The gravitational and electrostatic
interactions are non-local but not long-range. In a relativistic theory, of course, these
interactions are local, transmitted with speed c. In a non-relativistic theory, where
particles interact via a non-local potential, the best one can expect is the prevention
of long-range communication. In CSL, the interaction is via the gaussian-smeared
local mass density operator (10), so it is non-local, but it is not long-range.

In the remainder of this paper I shall discuss five problems which remained after
the advent of CSL, the tails, experimental, conservation law, relativity and legit-
imization problems. They shall be defined when encountered. I shall spend most
time on the tails problem, because it was first raised by Abner.

3 Tails Problem

With a little bit, with a little bit, ...
My Fair Lady, A. J. Lerner and F. Loewe

In November 1980, Abner kindly invited me to stay at his home in Wellesley. We
discussed various aspects of my dynamical collapse program. In the course of the
discussion, Abner expressed the point of view that, in a collapse situation involving
macroscopically distinguishable alternatives, one cannot justify saying a definite
outcome has occurred if the amplitude of the outcome state is not precisely 1 ( i.e.,
if the amplitudes of the rest of the states—the “tails”—are not precisely zero, no
matter how small they are). Outcomes are observed to occur in a finite time, and
the framework for collapse models I had developed allowed different models, ones
where the tails vanish in a finite time or in an infinite time. When I was looking for
a physical principle to enable selection of one model over another, I bought Abner’s
argument and seized upon this to make a choice ([9], 1985). However, Gisin [10]
had a better physical principle, avoidance of the superluminal problem. He proposed
a model in which the superluminal problem is avoided, but for which the collapse
time is infinite. I showed ([9], 1986) that, generally, solution of the superluminal
problem comes with infinite collapse time. So, CSL entails the tails problem.

At a conference in Amherst in June 1990, which was the last time many of us
saw John Bell, I remarked in an open session at the end of the conference that I had
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previously phrased the tails situation in CSL, quite poetically I had thought, as “a
little bit of what might have been is always present with what is,” at which point
John frowned. But, I went on, I had learned from him not to say this, for one should
not express a new theory in an old theory’s language, at which he beamed.

John died on October 1, 1990. At a memorial session at the end of that month,
Abner, GianCarlo and I gave talks [12, 13] about dynamical collapse, which had
been championed by John as a conceptually clear alternative to standard quantum
theory. Abner’s talk was entitled “Desiderata for a Modified Quantum Mechanics.”
A number of his desiderata involved the tails issue, raising the question as to whether
CSL is indeed conceptually clear, in particular:

... it should not permit excessive indefiniteness of the outcome, where “excessive” is defined
by considerations of sensory discrimination ... it does not tolerate “tails” which are so broad
that different parts of the range of the variable can be discriminated by the senses, even if
very low probability amplitude is assigned to the tail.

A decade ago, in a festschritt for Abner, GianCarlo and Tullio Weber [14] and
I [15] gave responses to Abner’s position (as did Sohatra Sarkar [16], who adopted
it)—see also the lucid paper of Albert and Loewer [17]. The problem, in a collapse
theory with tails, is to provide a well-defined criterion for the existence of pos-
sessed properties of macroscopic variables which coincides with the evidence of, in
Abner’s words, “sensory discrimination.”

3.1 Smeared Mass Density Criterion

Ghirardi and co-worker’s response is based upon the smeared mass density (SMD)
whose operator is A(x) (Eq. (10)). For a state |ψ〉, their criterion for the SMD at x to
have a possessed value (or, in their language, “accessible” value) is when the ratio
R(x) of variance of A(x) to 〈ψ|A(x)|ψ〉2 satisfies R(x) << 1: then one identifies
the possessed value of the SMD with 〈ψ|A(x)|ψ〉.

In measurement situations, because of CSL dynamics, the possessed SMD value
criterion very rapidly becomes consistent with our own observations of SMD, for
macroscopic objects. For microscopic objects, e.g., in regions where only a few par-
ticles are cavorting, the SMD does not have a possessed value but, as Abner stressed,
the point of the criterion is to serve to compare the theory with our macroscopic
experience.

However, as Ghirardi et al. point out, for a macroscopic object in a superposi-
tion of two locations, after a short time undergoing CSL evolution, R(x) ! 1 in
the region where the object in the tail is located, so the SMD does not have a pos-
sessed value there: one would wish for the value 0. (This presumes there is no air
in the region; when air at STP is present, the SMD possesses a value in agreement
with experience, the air density). Nonetheless, although the criterion fails there,
〈ψ|A(x)|ψ〉<< m0/a3 in that region, which is consistent with the experienced value
0. Another place where the criterion fails is in neither location, where there is no
mass density, since R(x) = 0/0.
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One would like the criterion for the SMD to be possessed to include these cases,
since zero mass density is, in principle, a macroscopic observable. Although the au-
thors do not give one, it is easy to obtain: the SMD possesses the value 〈ψ|A(x)|ψ〉
if either R(x) � 1 OR R(x ! 1 but 〈ψ|A(x)|ψ〉 � m0/a3 OR 〈ψ|A(x)|ψ〉 = 0.
There still is an ambiguity as to how small is � 1, which I shall try to make precise
later, in the context of my own response to Abner’s challenge.

As I wrote to GianCarlo and Abner, I regard this as an elegant answer to the
question: “What is the minimum structure which will allow one to attribute macro-
scopic reality?” I addressed, and will address here a different question: “What is the
maximum structure which will allow one to attribute reality, both macroscopic and
microscopic?”

3.2 Qualified Possessed Value Criterion

Rather than reprise my previous argument, I wish to take this opportunity to make it
more simple and general. My point of view is that a collapse theory is different from
standard quantum theory and, as I said to John Bell in Amherst, therefore requires a
new language, conceptual as well as terminological.

The second sentence of Abner’s desideratum quoted above utilizes some words
and concepts which, while appropriate for standard quantum theory, are inappropri-
ate for CSL: at the end of this discussion, I shall be more specific. But, in the first
sentence, Abner was absolutely right: a conceptually sound collapse theory with
tails must allow an interpretation which provides no “indefiniteness of the outcome”
and that what is crucial to characterize the definite outcome, are “considerations of
sensory discrimination.”

The new language I propose devolves upon the meaning of the words correspond
and possess which, to emphasize their importance, I shall irritatingly continue to
italicize. For expository reasons, I shall first review the use of these words in clas-
sical and standard quantum physics, before addressing their use in a dynamical col-
lapse theory.

3.2.1 Classical Theory Language

In classical physics, to a physical state of a system corresponds its “mathematical
descriptor” (e.g., a vector in phase space for a mechanical system) and, correspond-
ing to either, every variable possesses a value.

When one is in ignorance about the physical state, then every variable possesses,
not a value but, rather, a probability distribution of values. However, these possessed
entities correspond to one’s state of ignorance of the physical state of the system,
not to the (unknown, but existing) physical state of the system.



How Stands Collapse II 265

3.2.2 Standard Quantum Theory Language

With the advent of quantum phenomena, physicists (especially Bohr) tried to main-
tain as much classical language as possible. But something had to give. What gave
is the correspondence of the physical state of the system to the mathematical de-
scriptor, the state vector.

For a microsystem, the notion of possessed value of a variable is preserved by
the so-called “eigenstate-eigenvalue link”: a variable has a possessed value only if
the operator corresponding to the variable has the state vector as an eigenstate, and
then the possessed value is the eigenvalue. But, generally, only for very few state
vectors can a useful variable can be found which has a possessed value. Even for a
system of modest complexity, for the overwhelming majority of state vectors which
describe it, variables which have possessed values are of limited interest, e.g., the
projection operator on the state itself.

For a macrosystem, the precisely applied eigenstate-eigenvalue link does not
work. For example, for such variables as the center of mass position of a meter nee-
dle, the location of the ink in a symbol on a computer printout, or the excited state of
a radiating pixel on a computer screen, a reasonable state vector corresponding to an
observed physical state is not an eigenstate of the corresponding operator. However,
if the wave function (the projection of the state vector on a basis vector of the opera-
tor) in some sense has a narrow range, one may try to adopt some criterion to assign
a “near” possessed value to the variable, a value within the range [13, 15, 17].

By a preparation or a measurement, i.e., a judicious coupling of a microsystem
to a macrosystem, one can force a microsystem to change its physical state to a
more desirable one. Initially, the physical state corresponds to microscopic vari-
ables which do not have possessed values and macroscopic variables which do have
(near) possessed values. Afterwards, the physical state corresponds to microsystem
and macrosystem variables, which both do have possessed values or near possessed
values.

The problem, of course, is that the state vector corresponding to the physical
state is not produced by the theory. Schrödinger’s equation evolves the initial state
vector into a state vector where neither microscopic nor macroscopic variables have
possessed values. One might regard the evolved state vector as a sum (superposition)
of state vectors, each of which corresponds to a different possible physical state.

Because the evolved state vector is not the descriptor of the state of the evolved
physical system, there are various positions taken, within the framework of standard
quantum theory to make sense of this situation.

One position is to try to maintain the correspondence between the state of the
physical system and the state vector by introducing the collapse postulate. To try
to select the possible physical states, the collapse results, out of the superposition,
there may be pressed into service a (near) possessed value criterion for the macro-
scopic variables, or properties of a distinguished part of the physical system, the
“environment,” may be relied upon. However, these criteria are ad hoc: for each
different situation they require different knowledge outside the theory. Sometimes
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selections made can be quite arbitrary e.g., when the superposition of states is a con-
tinuum [18]. Indeed, the collapse postulate itself is also ill-defined [19] with regard
to when and under what circumstances to apply it.

Another position is to regard quantum theory solely as a theory of measurement
[20], and the state vector as a calculational tool. Thus, Heisenberg considered the
state vector of a microsystem to be the repository of “potentia,” the capability to
describe potential outcomes of future experiments. Schrödinger [21], in discussing
this position (with which he was not comfortable), called the state vector which
evolves after a measurement the “expectation catalog,” in the sense that it tells one
what to expect. To pluck out the macroscopically distinguishable alternatives from
the catalog, again one utilizes the (near) possessed value criterion, informed by the
experimental situation. The ambiguity of when to apply it is of no concern: it is
any time after the measurement is completed. The circumstances of application are
limited to experimental situations: although what that means is ill-defined, that is
also of no concern to people who take such a pragmatic view of the purpose of
quantum theory.

Suppose one takes this position, or adopts the ensemble interpretation, the po-
sition that it is an ensemble of physical states which corresponds to the state vec-
tor [19, 20]. One thus gives up the idea of the correspondence of the state of the
physical system to the state vector. If one also believes, as did Bohr, that standard
quantum theory cannot be improved upon, one thereby gives up the possibility of
the physical system’s state having any kind of mathematical descriptor. Bell was
moved to say that adoption of this position “is to betray the great enterprise” [3]. At
the least, it certainly is a great break with classical physics ideas.

A position which does not make that break is the “histories” program [23]. Here,
the state of a physical system corresponds to a mathematical construct different from
the state vector, the so-called “decoherence functional.” Utilizing standard quantum
theory structures, the hope is to have the decoherence functional correspond to vari-
ables which occasionally have possessed values.

In all these cases, one is ignorant of the outcome of an experiment. Thus, just as
in classical physics, corresponding to one’s state of ignorance of the physical state,
a viable variable possesses a probability distribution of values.

For these positions, how is a tails situation treated? Suppose a state vector evolv-
ing in a measurement situation becomes a superposition of two states whose ratio of
amplitudes is enormous. Suppose also that the values possessed by a macroscopic
variable characterizing these states, in Abner’s words, “can be discriminated by the
senses even if very low probability is assigned to the tail.” This state vector is in-
terpreted as describing a two-outcome measurement, albeit one outcome is much
less likely than the other. (In the histories scheme, which does not use a state vector,
a similar interpretation arises.) When this situation arises in CSL, one needs a dif-
ferent conclusion, that this state vector describes a one-outcome experiment. This
requires a new language.
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3.2.3 Dynamical Collapse Theory Language

CSL retains the classical notion that the physical state of a system corresponds
to the state vector. Corresponding to a random field w(x, t) whose probability of
occurrence (11) is non-negligible, the dynamics always evolves a realizable state.
Therefore, one is freed from requiring the (near) eigenstate-eigenvalue link crite-
rion for the purpose of selecting the realizable states. I suggest that the eigenstate-
eigenvalue link criterion be subsumed by a broader concept. It must be emphasized
that this new conceptual structure is only applicable for a theory which hands you
macroscopically sensible realizable states, not superpositions of such states.

In the new language, corresponding to a quantum state, every variable possesses
a distribution of values, defined as follows.

If the normalized state is |ψ〉, consider a variable corresponding to the operator B,
with eigenvalues b. Denote the eigenvectors |b,c〉, where c represents eigenvalues
of other operators C which commute with B, all comprising a complete set. The
variable’s possessed distribution is defined to be Trc|〈b,c|ψ〉|2 (Trc represents the
trace operation over C’s eigenstates). One may generalize this to say that the set
of variables corresponding to the complete set of commuting operators possesses a
joint distribution |〈b,c|ψ〉|2.

What does it mean to say that a variable possesses a distribution? I am never sure
what it means to ask what something means1, except that it is a request for more
discourse.

I choose to call this a distribution, not a probability distribution, even though
it has all the properties of a probability distribution. This is because, in classical
physics, a probability distribution is what corresponds to a state of ignorance, and
that is not the case here. What is it a distribution of, if not probability? Following
[15], one may give the name “stuff” to a distribution’s numerical magnitude at each
value of the variable, as a generalization of Bell’s quasi-biblical characterization
[3], ”In the beginning, Schrödinger tried to interpret his wavefunction as giving
somehow the density of the stuff of which the world was made.”

One is encouraged to think of each variable’s stuff distribution as something that
is physically real. The notion allows retention of the classical idea that, for a physical
state, every variable possesses an entity. What is different from classical ideas is that
the entity is not a number. One may think of this difference as an important part of
what distinguishes the quantum world picture from the classical world picture.

But, the distribution notion also differs from standard quantum theory, where
one is precluded from thinking of simultaneous values of complementary variables.

1 This brings to mind the “shaggy dog” story of a man who is driven to find the meaning of life.
After incredible hardship over many years (which takes a long time to recount, but which will be
forgone here) he reaches a high mountain in India and obtains an audience with a Guru whom he
has been told is the wisest man on earth and who can answer his question. He asks “Oh sir, what
is the meaning of life,” and the Guru answers serenely, “My son, life is a bridge.” At this the man
jumps up, visibly upset, and recounts the incredible hardships he has endured (again taking a long
time to recount, but which will be forgone here) ending with, “And, after all that, what I get is
this lousy answer, that life is a bridge? To which the Guru also jumps up, visibly upset, and says
“Y-y-you mean, life isn’t a bridge?”
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In the present view, simultaneously, every variable possesses its stuff distribution.
Complementarity here means that variables whose operators don’t commute do not
possess joint distributions, but they do jointly possess distributions.

Here are a few simple examples.
If B is the position operator of a particular particle, one may think of the asso-

ciated position-stuff as representing something real flowing in space. If the parti-
cle undergoes a two-slit interference experiment, something real is going through
both slits and interfering. Likewise, for the particle’s momentum operator, real
momentum-stuff also flows in momentum space. The “something real” can be stuff
for any variable represented by an operator function of position and momentum, and
all these are possessed simultaneously.

If B is the operator representing spin in the n̂ direction of a spin-1/2 particle,
one may think of the n̂-spin variable as possessing something real, n̂-spin-stuff cor-
responding to both values +h̄/2 and −h̄/2, in varying amounts. Just as in clas-
sical physics where a spinning object has a projection of angular momentum on
each direction, and all those values are simultaneously possessed, the particle state
corresponds to variables for all directions, all of whose spin-stuff distributions are
simultaneously possessed. There is one direction, m̂, in which the m̂-spin-stuff dis-
tribution has magnitude 1 at value +h̄/2 and magnitude 0 at value −h̄/2. In this
case, one can use the language that the m̂-spin possesses the value +h̄/2.

3.2.4 Qualified Possessed Value

A criterion is needed for when it is appropriate to promote a macroscopic vari-
able’s possessed stuff distribution to a possessed value. This must be done in or-
der to compare the theory with observation, since observers insist that macroscopic
variables possess values. We shall follow Abner’s insightful recourse to “sensory
discrimination,” as well as take sustenance from a remark in a recent article on the
Federal Reserve in The New Yorker [24]: “As social scientists have long recognized,
we prefer confident statements of fact to probabilistic statements... .” Here are two
probabilistic considerations.

The first consideration is that an observer’s quotation of a possessed value of a
macroscopic variable, such as location, velocity, rotation, trajectory, color, bright-
ness, length, hardness, ..., is not sufficient. It should contain an error bar. Such a
qualification can readily be supplied, although usually it is not. Thus, CSL need
only present a possessed value prediction within the observer’s supplied error bar,
to favorably compare with the observer’s value.

The second consideration is that, when an observer makes a “confident state-
ment” about the possessed value of a macroscopic variable (plus error bar), it needs
to be qualified in another way. If this is to be compared with the theory, there is
the implication that anyone who observes this variable will quote the same value.
This is a prediction, an assertion about the observations of other observers in sim-
ilar circumstances, and so it requires qualification by providing a measure of the
confidence one may give to the assertion or, alternatively, to its falsification.
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For example, one might confidently say that all observers will see that lamp is on
the table, all observers will see that board’s thickness is 0.75 ± 0.01”, all observers
who toss 100 coins will see them not all come up heads, all observers who spill water
on the floor will not see it jump back up into the glass, all observers will see that
a particular star is in the heavens, all observers of me today can see me tomorrow,
etc. However, each statement is not absolutely sure, and each should be qualified by
giving the probability of its falsification, although sometimes that is not so easy to
estimate.

In summary, a statement about an observed variable, should be characterized by
three numbers, a possessed value, the error bar associated with that value, and the
probability the statement of value plus error bar is false. We shall use the latter two
numbers in conjunction with a macroscopic variable’s stuff distribution, to obtain a
criterion for assigning a possessed value to the macroscopic variable, for compari-
son with the first number.

From the theory, for the state vector of interest, take the stuff-distribution pos-
sessed by the macroscopic variable of interest, graphed as stuff versus variable
value. From the observation, take the error bar and slide it along the variable value
axis until the maximum amount of stuff lies within the error bar. (If the variable has
a continuous range of values, and Δ is the error bar, this condition is simply

∂
∂b

∫ b+ 1
2Δ

b− 1
2Δ

db′Trc|〈b′,c|ψ〉|2 = Trc|〈b+
1
2
Δ,c|ψ〉|2 −Trc|〈b−

1
2
Δ,c|ψ〉|2 = 0.

If the amount of stuff outside the error bar is less than the probability of falsifica-
tion, then the criterion is met, and we shall say that the macroscopic variable has a
qualified possessed value.

That value is found, first, by dividing the variable’s distribution by the amount of
stuff within the error bar. The resulting “renormalized” distribution is restricted to
the error bar range, so that the renormalized amount of stuff within the error bar = 1.
The qualified possessed value is defined as the mean value of the variable calculated
with this renormalized distribution. This qualified possessed value is what is to be
compared with the observed possessed value, in order to test the validity of the
theory.

(An alternative is to simply use the variable’s unrenormalized distribution to cal-
culate the mean, and call this the variable’s qualified possessed value, if it lies within
the error bar. However, even if the tail amplitude is very small, the variable’s value at
the tail could be so large that it makes a significant contribution to the mean, putting
it outside the error bar, which is why this alternative might not produce a qualified
possessed value which agrees with observation, in circumstances where it ought).

3.2.5 Comparison with Observation

Consider a simple example, a wave packet modeled by a sphere of mass density
1g/cc and radius 10−4 cm. Suppose the variable of interest is the center of mass po-
sition of the sphere. According to CSL [7], its center of mass wave packet achieves
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an equilibrium width of ≈10−8 cm in about 0.6 s, due to the competition between
spreading caused by the Schrödinger evolution and contracting caused by the col-
lapse evolution. Suppose the wave packet has that equilibrium width.

Suppose somehow the particle is put into a superposition of two states of equal
amplitude, where the centers of mass are further apart than the radius. Accord-
ing to CSL, the collapse rate R ≈ λ × (number of nucleons within a volume a3)×
(number of nucleons within the sphere). Thus, R ≈ 10−16 × 6 · 108 × 2.5 · 1012 =
1.5 · 105s−1. Since the tail’s squared amplitude ∼ exp−Rt, when 1 ms has passed,
this is ≈ exp−150 (and is overwhelmingly likely to be rapidly going down). There-
fore, after 1 ms, the typical state describes a center of mass stuff distribution which
consists of a packet corresponding to squared amplitude ≈1 and width ≈10−8 cm
at one location and squared amplitude ≤exp−150 and width ≈10−8 cm at the other
location.

We wish to know whether a qualified possessed value of the center of mass exists,
according to the criterion and, if so, if it agrees with what an observer would say.
An observer sees the sphere at one location. “See,” is meant literally: observers use
optical light. We thus can conservatively assign a light wavelength-restricted error
bar of ≈10−5 cm.

Moreover, we believe that, in all of human history, all observers in like circum-
stances would see the same thing. However, we cannot be absolutely sure of this
belief—it hasn’t been tested, and can’t be. This suggests that the measure of falsi-
fication is not larger than the following stringent estimate. If all the homo sapiens
who have ever lived, an upper estimate of ≈1011 people, were each to spend their
whole lives (upper estimate of 100 years ≈3 · 1012 ms ) doing nothing else but ob-
serving such a sphere every millisec (<< human perception time of ≈100 ms), that
in such circumstances only one person once might report seeing something else.
This amounts to a probability of falsification of ≈1/[1011 × 3 · 1012] = 3 · 10−24

≈ exp−54.
The qualified possessed value criterion is met. The error bar of 10−5cm is much

larger than the 10−8cm spread of the center of mass wave packet. Essentially all the
stuff at the location corresponding to squared amplitude ≈1 can be considered to be
within the error bar e.g., if the center of mass wave function is ∼exp−r2/(10−8)2,
this has the value exp−106 at r = 10−5cm. Therefore, the amount of stuff outside
the error bar is exp−150, solely due to the tail. It is much less than the probability
of falsification: exp−150 << exp−54. Thus, the theory’s assignment of possessed
center of mass location agrees with the observer’s assignment. For a larger object
than a mote of dust, it would be satisfied even more easily.

More generally, CSL can be applied to the state of an arbitrarily large fraction
of the universe (idealized as isolated), in principle even up to the universe itself.
The physical system should be describable by macroscopic variables with possessed
values all over space, even if no observer is there. For the picture given by CSL, it
is helpful [15] to probe the corresponding state vector with operators representing
density variables of every sort: density of various elementary particle types (i.e.,
proton, neutron, electron, photon, etc.), density of bound state types, (i.e., nucleii or
atoms), density of mass, momentum, velocity, angular momentum, energy,..., inte-
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grated over a conveniently sized volume. For each spatial location of the volume,
each such variable will possess its distribution. Because the CSL collapse mecha-
nism rapidly collapses to states where macroscopic objects are well localized, as
one moves the probe volume over the space, one recognizes locations where the
variable’s distribution exhibits the behavior discussed above, a narrow width packet
of total squared amplitude very close to 1, and a small tail. Thus, one can assign
qualified possessed values to these variables, and so build up a picture of the macro-
scopic structure of the system described by the state vector.

3.2.6 Desideratum Revisited

I believe the second sentence in Abner’s desideratum,

... it does not tolerate “tails” which are so broad that different parts of the range of the vari-
able can be discriminated by the senses, even if very low probability amplitude is assigned
to the tail.,

in referring to the nature and amplitude of a tail state, uses language appropriate for
a quantum theory of measurement, but inappropriate for CSL, which is a quantum
theory of reality.

Consider the example of a state vector which is a superposition of two macro-
scopically distinguishable states, a “dominant” state with squared amplitude 1− ε
and an orthogonal tail state of extremely small squared amplitude ε . According to
standard quantum theory, if somehow a measurement of this state can be made in
the future (for it is possible in principle, but generally not in practice, to measure a
superposition of macroscopically distinguishable states), ε is the probability that the
result will correspond to the tail state. Since repeated measurements do not always
yield the dominant state, in a theory where 100% reproduceability of measurement
results is the criterion for assigning values to variables, one cannot say that the state
vector corresponds to the dominant state.

In CSL, the tail state and its squared amplitude represent something rather dif-
ferent than a possible outcome of a future measurement and its probability. The
tail state represents an unobservably small amount of stuff which allows describing
the state vector by (qualified) possessed values assigned to macroscopic variables,
consistent with the dominant state.

The role of a tail state’s squared amplitude in CSL is best understood by consid-
ering the gambler’s ruin game analogy to the collapse process. This was described
in paper I but, for completeness, here is a brief recapitulation, in the context of our
example. Two gamblers correspond to the two states. They toss a coin, which cor-
responds to the fluctuating field. They exchange money, depending upon the toss
outcome, and their net worth fluctuations correspond to fluctuations of the squared
amplitudes. A result is that a gambler who possesses a fraction ε of the total money
has the probability ε of eventually winning all the money. In particular, even if ε
is extremely small, so one of the gamblers has almost lost all his money, it still is
possible that a highly improbable sequence of coin tosses favorable to that gambler
can occur, which completely reverses the two gambler’s fortunes.
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Analogously, for our example, this means that the dominant state and the tail
state have the probability ε of spontaneously changing places, what I call a “flip.”
What does this imply about the picture of nature provided by the theory?

It means that there is a highly improbable possibility that nature, “on a whim”
(i.e., by choosing an appropriate field w(x, t) for a sufficient time interval), can
change the universe to a different universe. In either universe, macroscopic objects
have (qualified) possessed values of macroscopic variables.

Note that such a flip is not triggered by a “measurement” by anybody: it is some-
thing that can happen spontaneously, at any time. But, consider a flip, by nature’s
whim, occurring right after a measurement with two possible outcomes, where the
state vector is as described above. Before the flip, the universe contains an observer
who is sure that result 1 has occurred, and the (qualified) possessed values of macro-
scopic variables all concur. After the flip, the universe contains an observer who is
sure that result 2 has occurred, and the (qualified) possessed values of macroscopic
variables all concur.

To summarize, in the quantum theory of measurement, because one only has
the eigenstate–eigenvalue link as a tool for assigning reality status, one must con-
clude that a state vector with a tail cannot be assigned a reality status consistent
with the dominant state. In CSL, where the dynamics and the (qualified) possessed
value criterion are what allows assigning reality status, one concludes that the state
vector with a tail can be assigned a reality status consistent with the dominant state.
There is no problem here, before or after the flip, with assigning a reality status and
reconciling an observer’s observations with the theory.

Then, what, in CSL, corresponds to the difficulty faced by the quantum theory of
measurement? The difficulty belongs, not to an observer within the universe, but to
some hypothetical being outside the universe (a theoretical physicist?) who keeps
track of its state vector. This being cannot say with 100% certainty that the realistic
universe with a certain history may not at some future time be replaced by another
realistic universe with a somewhat different history. Observers within the universe
will be oblivious to this (highly improbable) possibility. And, the theory describes
their observations.

Although I have argued here against Abner’s position, I find impressive his in-
sight, a quarter of a century ago, that the tails issue is key to an understanding of
important interpretational implications of a dynamical collapse theory.

4 Experimental Problem

CSL is a different theory than standard quantum theory, and so makes different
predictions in certain situations. The problem is to find and perform experiments
which test these predictions, with the ultimate goal of either refuting or confirming
CSL vis-a-vis standard quantum theory.

Perhaps the quintessential experimental test involves interference [25, 26]. Sup-
pose an object undergoes a two slit interference experiment. According to CSL,
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once there are two spatially separated packets which describe the center of mass
exiting the separated slits, they play the gambler’s ruin game and their amplitudes
will fluctuate. Thus, when the packets are brought together once more and their
interference is observed, the pattern which results from repeated measurements is
predicted to have less contrast (be “washed out”) as compared to the prediction of
standard quantum theory. Indeed, if the packets are separate long enough so that one
packet is dominant, the interference pattern essentially disappears.

The largest objects so far undergoing interference experiments are C60 and
C70(fullerene or buckyball) [27]. These experiments involved a diffraction grating,
so one may visualize a superposition of wave packets emerging from each slit and
thereafter all pairs of packets simultaneously compete in the gambler’s ruin game.
The off-diagonal elements of the density matrix between two such packet states
decay just as do those for two-slit interference. The decay factor can be obtained
from Eqs. (10) and (12) (with the slit size and therefore the packet size less than
a): it is exp−λ tn2, where n is the number of nucleons in the molecule (n = 720
for C60). The time of flight of a C60 was about 0.05 s and, if one takes the agree-
ment of the observed diffraction pattern with standard quantum theory’s prediction
to be of 1% accuracy, this places the limit λ × .05× 7202 < .01, or λ−1 > 106.
A recent proposal [28] to test dynamical collapse, involving the superposition of a
mirror in states undisplaced and displaced, has the capability of pushing this limit
to λ−1 > 1010 [29]. Thus, at present, interference experiments have only had a mild
impact on CSL.

The only experiments which, so far, have had an important impact upon CSL,
look for “spontaneous” increase in particle energy. It is these experiments which
have strongly suggested that a viable CSL must have the mass-density proportional
coupling given in Eq. (10).

Because collapse narrows wave packets, this leads to momentum increase by the
uncertainty principle, and therefore energy increase, of all particles. According to
Eqs. (10) and (12), independently of the potential, the average rate of increase of
energy is

dEA

dt
=∑

k

3λα2
k nkh̄2

4mka2 , (13)

for any state describing nk particles of type k and mass mk (αk ≡ (mk/m0)). How-
ever, the SL model, and CSL following it, initially assumed that all particles had the
same collapse rate, so that αk = 1.

More generally, assume that αp = 1 for the proton and αk is unknown for other
particles. Eq. (13) is an average: CSL predicts that, occasionally, a particle can get
a large excitation, which could be detected if a large enough number of particles is
observed for a long enough time.

One can find the probability/sec of a transition from an initial bound state to a
final state, from Eq. (12) expanded in a series in the size of the bound state divided
by a. With the effect of the center of mass wavefunction integrated out, denoting the
initial bound state |ψ0〉 and the final state |ψ f 〉 (bound or free), where these states
are eigenstates of the center of mass operator with eigenvalue 0, the transition rate
is [30]
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dP
dt

=
λ

2a2 |〈ψ f |∑
j,k
αkr jk|ψ0〉|2 +o(size/a)4, (14)

where r jk is the position operator of the jth particle of kth type. Interestingly, if
αk ∼ mk, the matrix element of the center of mass operator appears in (14), which
vanishes. Then, dP/dt depends upon the much smaller o(size/a)4 term.

For this reason, experiments which put an upper limit on spontaneous excitation
from bound states of atoms or nucleii can constrain the ratios of αk’s to be close to
the ratios of masses.

An experiment, which looks for unexplained radiation appearing within a
≈1/4 kg slab of germanium [31] over a period of about a year, has been applied
to a putative CSL ionization of a Ge atom by ejection of a 1s electron [32]. Such
an excitation should yield a pulse of radiation, 11.1 keV from photons emitted by
the other electrons in the atom as they cascade down to the new ground state plus
the kinetic energy of the ejected electron deposited in the slab. The probability to
ionize the atom is calculated and compared with the experimental upper limit on
pulses above 11.1 keV. The result at present is 0 ≤ αe/αN ≤ 13me/mN , where the
subscripts e, N refer to the electron and nucleon (proton and neutron parameters are
assumed identical).

In the Sudbury Neutrino Observatory experiment [33], solar neutrinos can collide
with deuterium in a sphere 12 m in diameter. The result is dissociation of deuterium.
(Thereafter, the released neutron, thermalized by collisions, bonds with a deuterium
nucleus to form tritium, releasing a 6.25 MeV gamma which then Compton scatters
from electrons which emit Cerenkov radiation detected by photodetectors bound-
ing the sphere). The experiment took data for ≈254 days, and the observed number
of deuterium nucleii was ≈5× 1031. The predicted result, using the standard so-
lar model with neutrino oscillations and the neutrino-deuterium dissociation cross-
section, agreed well with the experimental result, within an error range. Taking this
error range as representing an upper limit to CSL excitation of the deuteron, the re-
sult is αn/αp = mn/mp ±4×10−3 [34] (note, 4×10−3 ≈ 3(mn −mp)/(mn +mp)).

These results make plausible the use of the mass density as the discriminating
operator in CSL, αk = mk/m0. The rate of energy increase (13) is thus quite small,
e.g., over the 13.7×109 year age of the universe, with the SL values for λ and a, a
single particle acquires energy E ≈ 1.3 ·10−16mkc2.

Steve Adler [8] has discussed a number of experiments which could reveal CSL
collapse behavior, were λ to be substantially larger, than the SL value, say by a
factor of 106 or more. I know of only one experimental proposal at present [7],
which appears to be currently technically feasible, which could test CSL with the
SL value of λ .

The idea is that a small sphere will undergo random walk due to CSL [35]. The
expansion of the center of mass wave packet due to Schrödinger dynamics is coun-
teracted by the contraction of the wave packet due to CSL dynamics, which results
in an equilibrium size for the wave packet. However, since a collapse contraction
can occur anywhere within the wave packet, the center of the packet jiggles about.
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Actually, the proposal is rather to observe the random rotation of a small disc: the
mechanism is similar to that discussed above. The disc, charged and made of metal,
could be suspended and maintained on edge in a Paul trap (an oscillating quadrupole
electric field) or, as suggested by Alain Aspect (private communication), a dielectric
disc suspended by laser tweezers might be feasible.

It is a consequence of (12) that the ensemble average rms angular deflection of the
disc is ΔΘCSL ≈ (h̄/ma2)(λ f t3/12)1/2 ( f is a form factor of order 1, depending on
the disc dimensions). For a disc of radius 2×10−5 cm and thickness 0.5×10−5 cm,
ΔΘCSL diffuses through 2π rad in about 70 s. For comparison, according to stan-
dard quantum theory, ΔΘQM ≈ 8h̄t/πmR2 which, in 70 s, is about 100 times less
than ΔΘCSL. For example, at an achieved low pressure of 5× 10−17 Torr at liquid
helium temperature [36], the mean time between gas molecule collisions with the
disc is about 45 min, allowing for even a diffusion of the magnitude of ΔΘQM to be
observable.

I hope that someone interested in testing fundamental physics will undertake this
experiment.

5 Conservation Law Problem

The problem here is that the collapse process appears to violate the conservation
laws. For example, as discussed in the previous section, particles gain energy from
the narrowing of wave functions by collapse. The resolution is that the conservation
laws are satisfied when not only the particle contributions, but also the contributions
of the w(x, t) field to the conserved quantities are taken into account. The easiest way
to see this is to take a detour which is interesting in its own right.

The detour is to discuss a way to quantize the w(x, t) field, and obtain an or-
dinary Hamiltonian evolution which is mathematically completely equivalent to
CSL [37–40]. For this reason (and because I like the alliteration) I call it a “Com-
pletely Quantized Collapse” (CQC) model although, as will be seen, strictly speak-
ing, this is not what is usually considered as a collapse model. But, then, it is easy to
identify the space-time and rotation generators as conserved quantities, as is usual
in a Galilean-invariant quantum theory, and then extract from them the contributions
of the classical w(x, t) field in CSL.

5.1 CQC

Define the quantum fields

W (x) ≡ λ 1/2

(2π)2

∫

d4k[eik·xb(k)+ e−ik·xb†(k)], (15)

Π(x) ≡ i
2λ 1/2(2π)2

∫

d4k[−eik·xb(k)+ e−ik·xb†(k)], (16)
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where x is a four vector, k ·x ≡ωt−k·x and [b(k),b†(k′)] = δ 4(k−k′). It is readily
verified that [W (x),W (x′)] = 0, [Π(x),Π(x′)] = 0 (the negative energy contribution
to these commutators cancels the positive energy contribution) and [W (x),Π(x′)] =
iδ 4(x− x′).

Thus, although W (x) is a quantum field, its value can be simultaneously specified
at all space-time events, just like a classical field. At the space-time event x, a basis
of eigenstates of W (x) can be constructed: W (x)|w〉x = w|w〉x, where −∞< w < ∞.
Using these, a basis |w(x)〉 ≡ ∏x |w〉x of eigenstates of the operator W (x) at all
events can be constructed, where the eigenstate |w(x)〉 can have any eigenvalue at
any x, and so is labeled by a white noise “function” w(x). (For later use, define
|w(x)〉(a,b) ≡∏t=b

x,t=a |w〉x, with |w(x)〉= |w(x)〉(−∞,∞)).
If the “vacuum” state |0〉 is defined by b(k)|0〉= 0, it follows from (15), (16) that

〈w(x)|
[

W (x)+2iλΠ(x)
]

|0〉=
[

w(x)+2λ
δ

δw(x)
]

〈w(x)|0〉,

so
〈w(x)|0〉= exp−

1
4λ
∫∞
−∞ d4xw2(x), (17)

with the notation
∫ b

a d4x ≡
∫ b

a dt
∫ ∞
−∞ dx.

If |ψ,0〉|0〉 is the initial state, where |ψ,0〉 is the initial particle state, define the
evolution in the interaction picture as

|Ψ, t〉 ≡ T e−2iλ
∫ t

0 d4x′A(x′)Π(x′)|0〉|ψ,0〉 (18)

so, from (17), (18),

〈w(x)|Ψ, t〉= C(t)T e−
1

4λ
∫ t

0 d4x′[w(x′)−2λA(x′)]2 |ψ,0〉, (19)

where C(t) = exp−(4λ )−1[
∫ 0
−∞+

∫ ∞
t ]d4x′w2(x′)] and A(x) is the Heisenberg picture

operator, A(x)≡ exp(iHAt)A(x)exp(−iHAt) (HA is the particle Hamiltonian).
The expression in Eq. (19), apart from the factor C(t), is the CSL interaction

picture statevector |ψ, t〉w, corresponding to the Schrödinger picture Eq. (9). Thus it
follows from (19) that |Ψ, t〉 may be written as

|Ψ, t〉= |χ〉
∫

Dw(0,t)|w(x)〉0,t |ψ, t〉w (20)

where |χ〉 ≡
∫

Dw(−∞,0)Dw(t,∞)C(t)|w(x)〉−∞,0,|w(x)〉t,∞ and Dw(0,t) is as defined in
Eq. (11).

Equations (17)–(19) show that this interaction may be thought of as having the
form of a sequence of brief von Neumann measurements, where each point of space-
time contains a measurement “pointer.” A “pointer” w(x), labeled by x, has an initial
wave function exp−(4λ )−1d4xw2(x), a very broad gaussian. The pointers at all x
with common time t are idle until time t, when the brief (duration dt) entangle-
ment interaction occurs (Eq. (18) with the integral over t removed), and they are
once again idle. Each measurement is quite inaccurate, as its variance is ∼ (d4x)−1.
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The resulting wave function Eq. (19) describes the state of all pointers having made
measurements over the interval (0, t), with C(t) describing the pointers labeled by
t < ∞ which will never make measurements, while the pointers labeled by t > 0
stand waiting to make measurements.

I call |Ψ, t〉, given by Eq. (20), the “ensemble vector.” It is the “sum” of the
(non-orthogonal) CSL states, each multiplied by a unique pointer state, the mutually
orthogonal eigenstates of the quantized w(x, t) field. Therefore, the product states
are mutually orthogonal, do not mutually interfere, and they may be unambiguously
identified. One may think of the ensemble vector as representing a precisely defined
example of Schrodinger’s “expectation catalog,” a “horizontal listing” (i.e., the sum)
of the real states of nature, identifiable with the “vertical listing” of the same states
given by CSL.

The difficulty in making standard quantum theory provide a precise description
of the real states of nature, compared with the success of collapse models, was suc-
cinctly characterized by John Bell as “AND is not OR.” But, with CQC, “AND
is OR.” CQC provides a successful model for any interpretation of standard quan-
tum theory, Environmental Decoherence (the w-field is the environment), Consistent
Histories, Many Worlds, Modal Interpretations, ... . Key is that, as the particle states
evolve, they are generally not orthogonal, but CQC “tags” them with eigenstates
|w(x)〉 which are orthogonal, allowing the eigenstate–eigenvalue link to be success-
fully employed. Also crucial is that the particle states can be regarded as realizable,
sensible states of nature, as they are CSL states.

A possible benefit of CQC is that it is formulated in standard quantum theory
terms, albeit with the strange W -field. This may make it easier to connect the col-
lapse mechanism with physical mechanisms proposed for other purposes, which are
formulated in standard quantum theory terms (see Section 7).

5.2 Conservation of Energy

The free W (x)-field time-translation generator is its energy operator:

Hw ≡
∫ ∞

−∞
d4kωb†(k)b(k) =

∫ ∞

−∞
d4xẆ (x)Π(x). (21)

(the order of Ẇ (x) and Π(x) can be reversed). In the Schrödinger picture, the
Hamiltonian

H = Hw +HA +2λ
∫

dxA(x)Π(x,0) (22)

is the time-translation generator, and is conserved. Because the Hamiltonian is trans-
lation and rotation invariant, the momentum and angular momentum operators are
likewise conserved (e.g., the momentum operator is −

∫ ∞
−∞ d4x∇W(x)Π(x) + PA).

Conservation of energy can be expressed in terms of the constancy of the moment-
generating function,
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〈Ψ, t|e−iβH |Ψ, t〉 = 〈Ψ, t|Ψ, t +β 〉= 〈ψ,0|〈0|e−iβH |0〉|ψ,0〉 (23)

= 〈ψ,0|〈0|e−iβ (Hw+HA)T e−i2λ
∫ β

0 d4xA(x)Π(x)|0〉|ψ,0〉

= 〈ψ,0|e−iβHAT e−
λ
2
∫ |β |

0 d4xA2(x)|ψ,0〉

= 〈ψ,0|e−
[

iβHA+|β | λ2
∫

dxA2(x)
]

|ψ,0〉. (24)

Its fourier transform, P(E) ≡ (2π)−1 ∫ dβ exp iβE〈Ψ, t|exp−iβH|Ψ, t〉, is the
probability distribution of the energy:

P(E) =
1
π
〈ψ,0| 1

(E −HA + i(λ/2)
∫

dxA2(x))
· (λ/2)

∫

dxA2(x)

· 1
(E −HA − i(λ/2)

∫

dxA2(x))
|ψ,0〉, (25)

which is, roughly speaking, like the form π−1〈ψ,0|c/[(E−HA)2 +c2]|ψ,0〉, where
HA ≡ 〈ψ,0|HA|ψ,0〉. In the limit λ → 0, (25) reduces to 〈ψ,0|δ (E−HA)|ψ,0〉. For
λ �= 0, the interaction spreads the distribution: E = HA, E2 = ∞.

Similarly, expressions can be written for the probability distribution of Ew, EA, EI
or any sum of two of these, which generally vary with time since these are not con-
stants of the motion. For example, it follows from (19) that the mean energies are:

〈Ψ, t|HA|Ψ, t〉 = 〈ψ,0|Tre−
λ
2
∫ t

0 dx[AL(x)−AR(x)]2HA|ψ,0〉, (26)

〈Ψ, t|Hw|Ψ, t〉 = 〈ψ,0|
∫ t

0
Tre−

λ
2
∫ t′

0 dx[AL(x)−AR(x)]2 ·
∫

dx′[A(x′), [A(x′),HA]|ψ,0〉,

(27)

〈Ψ, t|HI |Ψ, t〉 = 0. (28)

where Tr is the time-reversal ordering operator (AL’s are time-reversed, AR’s are
time-ordered). Taking the time derivative of (26), (27) shows that dHA/dt =
−dHw/dt: in particular, in CSL, the mean particle kinetic energy increase (13)
resulting from (26) is compensated by the mean w-field energy decrease.

When collapse has occurred, e.g., following a measurement, the ensemble vector
(20) can be written as a sum of macroscopically distinguishable states:

|Ψ, t〉=∑
n
|χ〉
∫

Ωn

Dw(0,t)|wn(x)〉(0,t)|ψ, t〉wn ≡∑
n
|Ψ, t〉n, (29)

where |ψ, t〉wn is a CSL state corresponding to the nth outcome engendered by the
field wn(x), andΩn is the set of such fields. Here, not only (0,t)〈wm(x)|wn(x)〉(0,t) = 0
for m �= n, but also the CSL states are orthogonal (modulo tails), wm〈ψ, t|ψ, t〉wn ≈
0. This is because “macroscopically distinguishable states” means that the mass
density distributions of the CSL states have non-overlapping wave functions (except
for tails) in some spatial region(s).
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In this case, energy expressions may be written as the sum of contributions of the
separate CSL outcome states. The product of powers of the energy operators HA, Hw,
HI , acting on |Ψ, t〉n, is essentially orthogonal (that is, up to tails contributions) to
states |Ψ, t〉m, where m �= n. This is because none of these operators affects the non-
overlapping nature of the mass density distribution wave functions. Hw doesn’t act
on |ψ, t〉n. HA is the integral over the energy density operator, so it only changes the
wave function of the state where the mass density is non-zero. HI behaves similarly
as it depends upon the integral of the mass density operator. Thus, for any operator
Q formed from these energy operators,

〈Ψ, t|Q|Ψ, t〉 ≈∑
n

n〈Ψ, t|Q|Ψ, t〉n.

In this manner, generating functions and probabilities can be expressed as the sum
of the separate contributions of the CSL states.

Mention should be made of a recent interesting work by Angelo Bassi, Emiliano
Ippoliti and Bassano Vacchini [41], who consider a single free particle. The collapse
engendering operator is the position, but modified by adding to it a small term pro-
portional to momentum. The result is that the energy does not increase indefinitely,
but reaches an asymptote, in analogy to the behavior of a particle reaching equilib-
rium with a thermal bath. The hope is to eventually model the bath and obtain, as
discussed here, energy conservation when the particle and bath are both considered.

6 Relativity Problem

The problem is to make a relativistic quantum field theory which describes collapse.
Although a good deal of effort has been expended upon it [42–47], there is not a
satisfactory theory at present.

The difficulty is that, while the collapse behavior seems to work just fine, the
collapse interaction produces too many particles out of the vacuum, amounting to
infinite energy per second per volume.

6.1 With White Noise

By replacing A(x) in Eqs. (9) and (12) by a Heisenberg picture quantum field opera-
tor Φ(x) which is a relativistic scalar, replacing

∫ t
0 dt ′H(t ′) by a space-time integral

over the usual quantum field theory interaction density VI(x) and performing the
space-time integral over the region between space-like hypersurfaces σ0,σ , one ob-
tains interaction picture state vector and density matrix evolution equations which
are manifestly covariant:

|ψ,σ〉w ≡ T e−
∫ σ
σ0

d4x{iVI(x)+ 1
4λ [w(x)−2λΦ(x)]2}|ψ,σ0〉, (30)
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ρ(σ) = T e−
∫ σ
σ0

d4x{i[VIL(x)−VIR(x)]+ λ
2 [ΦL(x)−ΦR(x)]2}ρ(σ0). (31)

The probability density in (11) is essentially unchanged, with t replaced by σ .
Suppose Φ(x) is a scalar quantum field. If VI(x) = gΦ(x) : Ψ(x)Ψ(x) :, where

Ψ(x) is a Dirac fermion quantum field representing some particle type of mass M,
then the scalar field “dresses” the particle field, distributing itself around the particle
mass density. Thus, a superposition representing different particle mass distributions
will also be a superposition of different scalar field spatial distributions, and collapse
will occur to one or another of these.

To see what goes wrong, it is easiest to work in what I like to call the “collapse in-
teraction picture,” where Φ(x) is the Heisenberg picture scalar field: this eliminates
VI(x)’s explicit presence in Eqs. (30) and (31). In a reference frame where (σ0,σ)
are constant time hyperplanes (0, t), consider the average energy for an initial den-
sity matrix |φ〉〈φ |:

H(t) = Tr
{

HT e−
λ
2
∫ σ
σ0

d4x[ΦL(x)−ΦR(x)]2 |φ〉〈φ |
}

= 〈φ |
{

H − λ
2

∫ t

0
d4x[Φ(x)[Φ(x),H]]+ ...|

}

|φ〉

= 〈φ |H|φ〉− iλ
2

∫ t

0
d4x〈φ |

{

[Φ(x),Φ̇(x)]|
}

|φ〉

= 〈φ |H|φ〉+ λ
2

∫ t

0
d4xδ (0)

= 〈φ |H|φ〉+ λ t
2

V
1

(2π)3

∫

dk. (32)

In Eq. (32),
∫

dx = V is the volume of space, δ (0) = (2π)−3 ∫ dkexp ik·0 is
the sum over modes of the vacuum and is the 0th component of the four-vector
(2π)−3 ∫ (dk/E){E,k}. Although the energy increase/second-vol per mode is small,
the vacuum gains infinite energy/second-vol because the vacuum has an infinite
number of modes.

The reason the vacuum is excited can be seen by writing Eq. (30) in fourier
transform form, mentioned in Eq. (20) of paper I:

|ψ, t〉w =
∫

Dηe−λ
∫ σ
σ0

d4xη2(x)ei
∫ σ
σ0

d4xη(x)w(x) · T e−i
∫ σ
σ0

d4x{VI(x)+2λη(x)Φ(x)}|ψ,0〉.
(33)

This can be regarded as an ensemble average over a classical white noise field η(x)
(the first term in (33) is the white noise gaussian probability distribution). The av-
erage is a superposition of unitary evolutions. The collapse evolution is due to the
“interaction Hamiltonian” density η(x)Φ(x). Since η(x) is a classical white noise
field, it contains all frequencies and wave numbers in equal amounts. As a result,
because of its interaction withΦ(x), it excitesΦ-particles of all allowed frequencies
and wavelengths out of the vacuum.
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Indeed, if any mode of the vacuum is excited, for a relativistically invariant the-
ory, all modes must be excited, since that mode looks like another mode in another,
equivalent, reference frame.

6.2 Gaussian Noise

To try to remove the vacuum excitation, it is worth considering a noise field that is
not white noise, and therefore doesn’t have all frequencies and wavelengths [37,48,
49]. A generalization of Eqs. (30) and (31) is

|ψ,σ〉w ≡ T e−i
∫ σ
σ0

d4xVI(x)

·e−
1

4λ
∫ ∫ σ
σ0

d4xd4x′[w(x)−2λΦ(x)]G(x−x′)[w(x′)−2λΦ(x′)]|ψ,σ0〉, (34)

ρ(σ) = T e−i
∫ σ
σ0

d4x{[VIL(x)−VIR(x)]

·e−
λ
2
∫ ∫ σ
σ0

d4xd4x′[ΦL(x)−ΦR(x)]G(x−x′)[ΦL(x′)−ΦR(x′)]ρ(σ0), (35)

with
G(x− x′) =

1
(2π)4

∫

d4keik·(x−x′)G̃(p2), (36)

where G̃(p2)≥ 0: if G̃(p2) = 1, this reduces to the white noise case.
CSL, although non-relativistic, can be written in this form. Put the expression for

A(x) from Eq. (10) into Eq. (9), as well as replace w(x, t) by

w(x, t)≡ (πa2)−3/4
∫

dze−
1

2a2 (x−z)2
w′(z, t),

and perform the integral over x in the exponent. The result is

|ψ, t〉w ≡ T e−i
∫ t

0 dt ′H(t ′) · e−
1

4λ
∫ ∫ t

0 dzdz′[w′(z)− 2λ
m0

M(z)]G(z−z′)[w′(z′)− 2λ
m0

M(z′)]|ψ,0〉 (37)

where
G(z− z′) = δ (t − t ′)e−

1
4a2 (z−z′)2

. (38)

6.3 Tachyonic Noise

6.3.1 � = Free Scalar Field

To see how this flexibility can help with the energy creation problem, reconsider the
calculation of H(t) given in (32), with the density matrix (35), with (σ0,σ) replaced
by (−T/2,T/2) as T →∞, and with Φ(x) a free scalar field of mass m (VI(x) = 0):
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H(t) = 〈φ |
{

H − λ
2

∫ ∫ T/2

−T/2
d4xd4x′G(x− x′)Tr

{

[Φ(x)[Φ(x′),H]]+ ...
}

|φ〉

= 〈φ |H|φ〉+ λT
2

V G̃(m2)
1

(2π)3

∫

dk (39)

(Tr is the time-reversed-ordering operator). So, if G̃(m2) = 0, there is no energy
creation from the vacuum in this case. But, then, nothing else happens either!

This can be seen in terms of Feynman diagrams for the density matrix. Write the
density matrix (35) in fourier transform form:

ρ(
T
2

) =
∫

Dηe−2λ
∫ ∫ T/2

−T/2 d4xd4x′η(x)G−1(x−x′)η(x′)

·T e−i
∫ T/2
−T/2 d4x{VI(x)+η(x)2λΦ(x)}ρ(−T

2
)Tre

i
∫ T/2
−T/2 d4x{VI(x)+η(x)2λΦ(x)}

. (40)

The last line of (40) is a unitary transformation, so it can be expanded in a power
series, and Wick’s theorem used to replace a time-ordered product of operators by a
product of positive and negative frequency normal ordered operators and Feynman
propagators. Then,

∫

Dη can be performed, resulting in
∫ ∫ T/2

−T/2 d4xd4x′η(x)η(x′)→
∫ ∫ T/2

−T/2 d4xd4x′G(x−x′): a term containing an even number of η(x) factors becomes
a sum of terms with all possible pairings of η(x)’s replaced by G’s. (A term with an
odd number of η(x) factors vanishes). When the integrals over x are performed, the
result is the momentum space expression for the sum of Feynman diagrams. G̃(p2)
plays the role of the Feynman propagator for the η field.

Return to the case of the freeΦ field (i.e., VI(x) = 0). Before and after integration
over η , every normal-ordered positive or negative frequency Φ operator appears in
an integral,

∫ T/2

−T/2
d4xη(x)Φ±(x)→

∫ T/2

−T/2
d4xG(x′ − x)Φ±(x) = G̃(m2)Φ±(x′) = 0,

i.e., G and Φ are orthogonal if G̃(m2) = 0. Thus, the operators disappear from (40).
Then, ρ(T

2 ) = Cρ(−T
2 ): when the trace is taken, this implies the c-number C = 1,

i.e., there is no evolution.
To see how the energy creation disappears, look at the first order in λ Feynman

graph which describes creation of a Φ-particle from the vacuum, and is responsible
for the energy increase given by Eq. (39). Represent the Φ field by " and the η
propagator by . To lowest order (terms quadratic in η), the relevant diagram is " ".
The Φ particle created out of the vacuum appears to the left and right sides of the
initial density matrix ρ(−T

2 ) = |0〉〈0|. The η propagator crosses from one side to
the other. Because the 4-momentum p is conserved (it goes in at the right and out
at the left), the diagram is proportional to G̃(p2) = G̃(m2), with no contribution if
G̃(m2) = 0.
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6.3.2 � = Interacting Scalar Field

With VI(x) �= 0, there can be particle creation out of the vacuum to first order in λ .
The relevant diagram is " " with a fermion-antifermion pair ∨ tacked on to the end of
each " (" attached at both ends then represents a Φ-particle propagator). If p1 and p2
are the outgoing fermion 4-momenta, the diagram is proportional to G̃([(p1 + p2]2).
Vanishing of the contribution of this diagram requires G to vanish for the range of its
argument (2M)2 ≤ p2 <∞. If M can be arbitrarily small, then G̃(p2) must vanish for
all time-like p. Thus, if we take G̃(p2) = 0 for 0 ≤ p2 < ∞, there is no particle cre-
ation from the vacuum to first order in λ : a space-like (i.e., tachyonic) 4-momentum
(for which G̃(p2) does not vanish) cannot equal a time-like 4-momentum (of the
outgoing fermions).

So, the time-like 4-momenta of G̃(p2) are responsible for the energy creation
from the vacuum to first order in λ . In the next subsection we shall see that it is the
space-like 4-momenta of G̃(p2) which are responsible for collapse.

First note that, for non-vanishing diagrams describing collapse, any " attached to
a must be a Φ-particle propagator since, if it represents a free Φ-particle, the dia-
gram’s contribution ∼ G̃(m2) = 0. But, then, this diagram segment’s contribution is

∼ 1
p2 −m2 + iε

G̃(p2) = [P 1
p2 −m2 − iπδ (p2 −m2)]G̃(p2) = P 1

p2 −m2 G̃(p2).

Thus, the Φ-particle propagator can be absorbed into the η propagator: P[p2 −
m2]−1G̃(p2) ≡ G̃′(p2). In Feynman diagrams, this means that the Φ-particle prop-
agator line can be replaced by a point: for example, the diagram described in the
second sentence of this section, " " with ∨ tacked on to the end of each ", can be
replaced by ∨∨ (which, of course, vanishes).

6.3.3 � = Fermion Density

Therefore, we may just consider the model with collapse directly toward fermion
density eigenstates, putting Φ(x) =:Ψ(x)Ψ(x) : (and setting VI as the usual interac-
tion Hamiltonian for the fermion field with e.g., photons, mesons, ...) into Eqs. (34,
35, 40).

In the non-relativistic limit, (36) becomes

G(x− x′) → lim
c→∞

1
(2π)4

∫

dEdpeiE(t−t ′)−ip·(x−x′)G̃[
(E

c

)2
−p2]

= δ (t − t ′)
1

(2π)3

∫

dpe−ip·(x−x′)G̃(−p2). (41)

With the choice

G̃(p2)≡ (4πa2)3/2Θ(−p2)ea2 p2 → (4πa2)3/2e−a2p2



284 P. Pearle

(Θ is the step function), (41) is identical to the CSL form (38). Another interesting
choice is the spectrum G̃(p2) ≡ δ (p2 +μ2) of a tachyon of mass μ ≈ h̄/ac ≈ 2eV .
Then, (41) becomes G(x− x′) → (2π)−2δ (t − t ′)sinμ |x− x′|/|x− x′|/, which is a
perfectly good substitute for the gaussian smearing function.

Indeed, with one of these choices, if one regards the non-relativistic limit of
: Ψ(x)Ψ(x) : as allowing one to neglect its pair creation and annihilation terms,
the remainder would be the operator M(x)/m0, the sum of the number operators for
fermion and anti-fermion. Then (35) would become (37): the model would reduce
to CSL in the non-relativistic limit. Unfortunately, one cannot neglect these terms.

So, while there is no vacuum production of particles to order λ , alas, in the rela-
tivistic model, there is production to order λ 2. The expansion of (40) to fourth order
in η produces the vacuum excitation diagram ∨ ∨ : two space-like four-momenta
of the two η propagators can add up to the timelike four-momentum of the excited
fermion pair.

Thus, I have given up trying to make a satisfactory relativistic collapse model. A
reason I have gone over this failure in such detail is that it might perhaps stimulate
someone to succeed in this endeavor. Another reason is that, if this failure persists,
it helps motivate my fall-back position, the “Quasi-relativistic” model sketched be-
low [50].

6.4 Quasi-Relativistic Collapse Model

In this model, which has no particle creation from the vacuum, the state vector and
density matrix evolution equations are Eqs. (30) and (31), with

Φ(x) ≡ (4πa2)3/4e−
a2
2 �[Ψ+(x)Ψ−(x)+Ψ+(x)Ψ−(x)]

=
1

21/2(πa2)5/4

∫

db0dbe−
1

2a2 [(b0)2+b2]

·[Ψ+Ψ− +Ψ+Ψ−](t + ib0,x+b), (42)

where � is the D’Alembertian. This should be compared with the CSL expression
for A in Eq. (10), written in terms of the particle annihilation and creation operators
ξ (t,x), ξ †(t,x):

A(x) ≡ (4πa2)3/4e−
a2
2 ∇

2
ξ †(t,x)ξ (t,x)

=
1

(πa2)3/4

∫

dbe−
1

2a2 b2
ξ †ξ (t,x+b), (43)

to which (42) reduces in the non-relativistic limit (when the anti-particle term
Ψ+Ψ− is discarded, and the spin degrees of freedom are ignored). Of course, to
agree with CSL, when more than one fermion type is considered, there should be a
sum of terms with coefficients proportional to their masses.
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The first expression in (42) is manifestly a Lorentz scalar, but the model given
by Eqs. (30, 31, 42) is not Lorentz invariant. This is because, while ΨΨ does com-
mute with itself at space-like separations, [Ψ+Ψ− +Ψ+Ψ−] does not. Therefore,
the time-ordering operation in one Lorentz frame is not the time-ordering operation
in another Lorentz frame. However, it can be shown that, for −(x− x′)2 > a2, the
commutator [Φ(x),Φ(x′)] ∼ exp−[a/(h̄/Mc)] which for nucleons is ≈ exp−109,
i.e., it “almost” commutes. It is in this sense that the model is quasi-relativistic.

Since there is a preferred reference frame in the model, the one in which time-
ordering prevails, it is natural to take it as the co-moving frame in the universe.
Since the earth is not far from the co-moving frame, and the non-relativistic limit
of the model is CSL, it so far agrees with experiment. It would be worthwhile ex-
ploring whether there are feasible experiments predicted by the model which would
show deviations from relativistic invariance, e.g., experiments with apparatus mov-
ing rapidly with respect to the preferred frame.

A number of theoretical proposals [35, 51–53] have suggested that collapse is
related to gravity. This idea has been buttressed, in the context of CSL, by the ex-
perimental evidence for coupling of the fluctuating field w(x, t) to the mass density
operator. Therefore, there is a positive aspect to a model which is most naturally
specialized to the co-moving frame, in that it additionally suggests a cosmological
connection for collapse (see the next section).

It may also be observed that the relativistic collapse models, which do pro-
duce satisfactory collapse behavior in the midst of unsatisfactory excitation, re-
quire the causes of collapse and the space-time locations of the regions where the
wave function collapses (rapidly diminishes or grows) to be reference frame depen-
dent [42, 43, 54]. This is not a problem, since the causes and locations of collapse
cannot be observed. But, this differs from the situation in standard quantum field the-
ory, where the amplitudes for particles being in a space-time region do not change
when the reference frame changes. It may then be considered a benefit of this quasi-
relativisitic model that it also possesses this same behavior of standard quantum
field theory, since the causes and locations associated with collapse are those of the
preferred frame.

7 Legitimization Problem

When, over 35 years ago, as described in paper I, I had the idea of introducing a
randomly fluctuating quantity to cause wave function collapse, I thought, because
there are so many things in nature which fluctuate randomly, that when the theory
was better developed, it would become clear what thing in nature to identify with
that randomly fluctuating quantity. Perhaps ironically, this problem of legitimizing
the phenomenological CSL collapse description by trying it in a natural way to
established physics remains almost untouched [55].

Although, as mentioned in the previous section, various authors, as well as the
experimental evidence supporting coupling of the collapse-inducing fluctuating field
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to mass density, have suggested a connection between collapse and gravity, it is fair
to say that the legitimization problem is still in its infancy. No convincing connec-
tion (for example, identification of metric fluctuations, dark matter or dark energy
with w(x, t)) has yet emerged. But, I shall give here a new argument that the w-field
energy density must have a gravitational interaction with ordinary matter, and a
perhaps less-convincing argument, that the w-field energy density could be cosmo-
logically significant.

7.1 Gravitational Considerations

What happens to the w-field energy once it is created, either in small amounts as in
measurement situation collapses, or in large amounts as will be suggested below?
Suppose we do not alter the CQC Hamiltonian (22). Then this energy just sits where
it was created, and has no other effect on matter. The picture given in Section 5.1
is that the w-field in an infinitesimal space-time volume is like a pointer making
a measurement, which briefly interacts and therefore changes during the measure-
ment, but is unchanged before and after, and its associated energy density has the
same behavior.

But, here is an argument that the CQC Hamiltonian (22) must be altered, so
that the w-field energy density exerts a gravitational force on matter. Consider the
equation of quasi-classical general relativity, Gμ,ν = −8πG〈Ψ|T μ,ν |Ψ〉, i.e., Gμ,ν

is classical, but the classical stress tensor is replaced by the quantum expectation
value of the stress tensor operator. Of course, the latter must obey the conservation
laws if the equation to be consistent. However, due to the collapse interaction, the
expectation value of the particle energy-momentum is not, by itself, conserved. As
discussed in Section 5.2, it is the expectation value of the sum of particle energy-
momentum and w-field energy-momentum which is conserved. Therefore, T μ,ν =
T μ,ν

A + T μ,ν
w : the expectation value of the sum of particle and w-field stress tensor

operators must be utilized.
In the non-relativistic limit, G0,0 = −8πG〈Ψ|T 0,0|Ψ〉 reduces to ∇2φ =

4πG〈Ψ|T 0,0|Ψ〉. Thus, the w-field energy density acts just like matter’s energy
density in creating a gravitational potential, except that the w-field energy density
can be negative or positive.

Therefore, when modeling the local behavior of the w-field in CQC, and wishing
to take into account its gravitational behavior, one ought to modify the CQC Hamil-
tonian (22), adding a term representing the gravitational interaction of the w-field
energy density with the matter energy density:

HG ≡−G
∫ ∞

−∞
dxẆ (x)Π(x)

∫

dz
1

|x− z|HM(z).

With this addition, although the w-field energy, once created in a volume, still sits
in that volume as if nailed in space, it now has an effect on matter, which is re-
pelled/attracted by a region containing negative/positive w-field energy.
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One could consider further alterations in the local CQC Hamiltonian, to make the
w-field energy density dynamic, for example, to treat it like a fluid. Then, it would
be gravitationally attracted by matter, or repelled/attracted by itself, if the w-field
energy density is negative/positive. One might add a positive constant w-field energy
to the Hamiltonian, so that the w-field energy, although decreased by the collapse
interaction, remains positive. We shall not consider such modifications here.

To reiterate, the argument here is that compatibility with general relativity re-
quires a gravitational force exerted upon matter by the w-field.

7.2 Cosmological Creation of Negative w-Field Energy

It was discussed in Section 5.2 that, as the mean energy of matter increases due to
collapse, the mean w-field energy goes negative by an equal amount. Thus, if there
is an amount of negative w-field energy which is of cosmological significance, it
would repel matter, and contribute to the observed cosmic acceleration [57].

But, as pointed out in Section 4, the mean amount of kinetic energy (13) gained
by a particle of mass m over the age of the universe is very small,

E ≈ λa2
0

λ0a2 1.3×10−16mc2

(λ0, a0 are the SL values of λ and a). A factor of 1016 increase in λ/a2 which makes
this energy comparable to mc2 would violate already established experimental lim-
its, e.g., on “spontaneous” energy production in atoms or nucleii. Thus, w-field en-
ergy created by the collapses accompanying the dynamical evolution of the particles
in the universe is not of cosmological significance.

However, it is in the spirit of models of the beginning of the universe to imag-
ine that the universe started in a vacuum state, and that it was briefly governed by
a Hamiltonian which describes production of particles from the vacuum. We now
illustrate, by a simple model, that negative w-field energy of a cosmologically signif-
icant amount could be generated in such a scenario. Suppose that, even under such
circumstances, the CSL collapse equations apply. If collapse went on then, as we
suppose it does now, the universe would have been in a superposition of the vacuum
state and states with various numbers of particles in various configurations, and the
collapse mechanism would have been responsible for choosing the configuration of
our present universe.

This model can also be utilized to describe continuous production of particles as
the universe evolves, as in the steady state cosmology. However, we shall not make
that application here.

In this simple model, only scalar particles of mass m are produced, and the
Hamiltonian is

HA =
∫

V
dx{mξ †(x)ξ (x)+g[ξ (x)+ξ †(x)]}. (44)
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where ξ (x) is the annihilation operator for a scalar particle at x, V is the volume of
the early universe and g is a coupling constant. With initial state |ψ,0〉 = |0〉, with
A(x) = exp(iHAt)A(x)exp(−iHAt) and A(x) given in Eq. (10), we obtain from (26),
(44):

N(t) ≡ 〈Ψ, t|
∫

V1

dxξ †(x)ξ (x)|Ψ, t〉

=
g2V1

m2 +(λ/2)2

{

λ t −2(cosθ − e−
λ t
2 cos(θ +mt)

}

, (45)

Q(t) ≡ 〈Ψ, t|
∫

V1

dx
1
2
[ξ †(x)+ξ (x)]|Ψ, t〉

=
−gmV1

m2 +(λ/2)2

{

1− e−
λ t
2 (cosmt)+

λ
2m

sinmt
}

, (46)

HA(t)≡ 〈Ψ, t|HA|Ψ, t〉= mN(t)+2gQ(t) (47)

where λ = λ0(m/m0)2, V1 ⊆ V , and θ ≡ 2tan−1(2m/λ ). One can check that the
λ → 0 limit of these equations is the usual oscillatory quantum mechanical result
(since θ = π/2, mN(t) =−2gQ(t), and so HA(t) = 0). Also, all expressions → 0 as
λ → ∞, i.e., in that case the universe remains in the vacuum state due to “watched
pot” or “Zeno’s paradox” behavior (the collapse occurs so fast that there is no chance
for the vacuum state to evolve).

The interesting thing is that the coefficient of the linear increase in N(t) is ∼ g2λ :
the Hamiltonian, acting by itself, generates and annihilates particles, but without
linear growth. It is the collapse dynamics which, favoring creation over annihilation,
is ultimately responsible for creating the matter in the universe, according to this
model.

Because dHw/dt =−dHA/dt, the mean w-field energy Hw(t) goes linearly neg-
ative. Moreover, if Hw(x, t) and HA(x, t) are the w-field and particle energy densi-
ties at time t, it can be shown that dHw(x, t)/dt = −dHA(x, t)/dt. Since the initial
value of each is zero, we have that Hw(x, t) =−HA(x, t), where the average is over
the ensemble of possible universes, one of which became ours, due to collapse. In
each universe, the particle and w-field energy densities vary from place to place: in
particular, the w-field energy density can be negative or positive.

We can say something interesting about the total w-field and particle energies, Hw
and HA in any one universe. Suppose we divide a particular universe into N equal
volumes ΔV , and calculate the mean of the sum S≡(w-field energy+particle energy
in kth volume)/ ΔV over that universe, i.e., the mean of S = ∑N

k=1(Ek/ΔV )/N =
(Hw +HA)/V . The probability of Ek is independent of k, and the mean of Ek is zero,
so the mean of S is zero. By the law of large numbers, as N → ∞ (which can be
achieved by letting ΔV become infinitesimal), S achieves zero variance. Thus, each
universe satisfies Hw =−HA.

This may be thought of as a crude model for the reheating after inflation which
produces matter. It should not be taken too seriously: for one thing, one would prefer
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drawing conclusions from the collapse mechanism applied to the field accompany-
ing an accepted inflationary model. But, it suggests that it is possible for the w-field
energy to be of cosmological significance, that regions of both positive and neg-
ative w-field energy would then be present, the former attracting matter, the latter
repelling matter. If the collapse interaction is not limited to ordinary matter, but in-
cludes dark matter, then it suggests that there is a negative amount of w-field energy
in the universe equal in magnitude to the mass–energy of all matter.

7.3 Some Cosmological Considerations

Astronomical observation and theory, which lead to what is called the “standard
model,” are woven together in a tight web, so it is rather presumptuous to inject the
w-field into the mix, especially since the suggestion described at the end of the last
subsection is not very detailed. However, it may stimulate further scrutiny to return
to semi-classical gravity, model the quantum expectation values of the matter and w-
field energy densities in our universe by classical distributions ρm(x, t), ρw(x, t) and
discuss a few ways in which the w-field might play a role in affecting the evolution
of the universe, with regard to both fluctuations about the mean behavior and the
mean behavior itself.

With regard to fluctuations, following the suggestion of the model in Section
7.2, we suppose, after the period of particle production in the early universe, that
the w-field energy density ρw is fixed in space, varies from place to place on the
scale of a, can be positive or negative, and is initially overlain by mass density ρm.
The negative w-field energy density should repel the mass density nearby, the pos-
itive w-field energy density should attract it, and so the scenario of matter density
fluctuations in the early universe could be affected. One might speculate that the
presently observed voids between galaxies could initially have been sites of neg-
ative w-field energy density, perhaps initially of scale a which expanded with the
universe, that the sites of positive w-field energy density could have helped seed ini-
tial galactic gravitational collapse and could play a role similar to that of the CDM,
etc. If the w-field negative energy density (perhaps equal in magnitude to the matter
mass–energy, estimated at ≈ ρc/4, where ρc ≡ 3H2

0 /8πG is the critical mass density
which makes the universe flat) is spread fairly uniformly throughout the universe,
its gravitational repulsive effect on matter would not seem to have much of an effect
on the behavior of formed galaxies, because the density of matter in galaxies is so
much greater than ρc.

As is well known, the mean behavior of the universe is described by the
Friedmann–Robertson–Walker general relativistic homogeneous isotropic cos-
mological model, which gives rise to two equations. One of these can be taken to
be the conservation of energy equation relating the universe’s scale factor R, the
energy density ρ , and the pressure p:
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d
dR

(ρR3) =−3pR2. (48)

This equation holds for ρw by itself (pw = 0) which, glued to space, evolves only
due to the expansion of the universe after the period of particle creation has ended,
ρw ∼ R−3(t). Also, ρm ∼ R−3(t) as the matter pressure is negligible. Let us neglect
the radiation density and pressure, and assume a cosmological constant ρΛ = −pΛ
which also satisfies (48).

The second equation, the evolution equation for the scale factor R(t), and its
current consequence are

Ṙ2

R2 =
8πG

3
ρ− k

R2 ≡ H2
0

[
ρ
ρc

− k
R2H2

0

]

=⇒ 1 =Ωm +Ωw +ΩΛ+Ωk (49)

where R0 is the present scale factor, H0 ≡ Ṙ0/R0 is Hubble’s constant, k = 1,0,−1
depending respectively upon whether the universe is closed, flat or open, Ωm ≡
ρ0m/ρc etc., andΩk ≡−k/H2

0 R2
0. From (48), (49) also follows the useful expression

− R̈
H2

0 R
=
ρ

2ρc
+

3p
2ρc

=⇒ q0 =
1
2
(Ωm +Ωw)−ΩΛ, (50)

where the deceleration parameter is q0 ≡−R̈0R0/Ṙ2
0.

The matter mass density and w-field energy density affect equations (49), (50)
only through their sum. If we suppose that the w-field collapse interaction generates
not only the ordinary matter in the universe, but the CDM as well, thenΩm +Ωw = 0.
The consequent result from (49), ΩΛ+Ωk = 1, appears to be within 1σ of the mi-
crowave radiation background data [56], assuming a flat universe,Ωk = 0. But, when
combined with the result from (50), q0 = −ΩΛ = −1, while qualitatively consis-
tent with the observed cosmic acceleration, appears to be 3σ from the Hubble plot
data [57]. However, these analyses assume certain prior constraints, and analyzing
the prior Ωm +Ωw = 0 has not received priority.

It is likely that the simple scenario given here will conflict with various astro-
nomical observations and constraints. There are variants of the model which could
be explored to resolve such conflicts, e.g., the parameters λ , a could vary with time,
the w-field energy could be made dynamic, its magnitude could be smaller than the
magnitude of the matter energy (e.g., ≈20% of it because the collapse interaction
could only occur for ordinary matter and not dark matter), its magnitude could be
larger than that of the matter energy (e.g., because collapse could be governed by
energy density rather than mass density, and so could occur for light as well as mat-
ter), it could play a role in the generation of dark energy, or even be dark energy, etc.
The purpose of this discussion is to illustrate the hope that progress may be made in
legitimizing the phenomenological CSL collapse dynamics by connecting it to the
still mysterious contents of the universe.
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Is There a Relation Between the Breakdown
of the Superposition Principle
and an Indeterminacy in the Structure
of the Einsteinian Space-Time?

Andor Frenkel

Abstract It has been shown that a small, assessable amount of quantum indeter-
minacy in the space-time structure leads to the destruction of the coherence of the
wave functions (of the Ψ’s) of macroscopic bodies, whereas the coherence of the
Ψ’s of the microparticles remains nearly perfect. Assuming that whenever the co-
herence gets lost, a breakdown of the superposition principle takes place whether
observed or not, it has been possible to formulate the rule for the breakdown such
that, due to an instantaneous, stochastic contraction of Ψ, the loss of the coherence
is counterbalanced. After each breakdown Ψ undergoes a Schrödinger time evo-
lution until the next breakdown. The successive expansion–contraction cycles keep
the indeterminacy of the position of the center of mass (c.m.) of a macroscopic body
microscopically small, whereas the indeterminacy of the position of a microparticle
may be, and often is macroscopic. The mechanism of the observation-independent
decay of a superposition of droplet-tracks in a cloud chamber is also presented.

1 Introduction

I would like to thank Wayne Myrvold, Joy Christian and Kate Gillespie for having
organized this colorful, high-spirited conference. Also, I am grateful to Abner for
more than 30 years of friendship, and for his help in my work through encourage-
ment and benevolent criticism.

Turning to my topic, let me recall that while the breakdown of the superposition
principle is an essential element of the orthodox (von Neumann) theory of quantum
measurement, there is no mathematical, quantitative criterion in this theory to tell
when, under what circumstances does the superposition principle break down. One
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of the first, perhaps the very first theoretical construct providing such a criterion has
been proposed by Károlyházy about 40 years ago [1, 2]. First, he noticed that the
incompatibility between the sharply determined structure of the Einsteinian space-
time on the one hand, and the quantum mechanical indeterminacies of the positions
and of the momenta of the bodies determining that structure on the other hand,
can be lifted if one associates a small amount of indeterminacy with the space-
time structure. The order of magnitude of this structural indeterminacy could be
estimated relying on basic formulas of the two theories (of General Relativity and
of Quantum Mechanics) themselves.

Next, Károlyházy has shown that, in its turn, the indeterminacy of the space-time
structure induces indeterminacies in the relative phases of the Schrödinger wave
function of any physical system propagating on the somewhat “hazy” space-time.
For some simple but important generic systems the order of magnitude of the rel-
ative phase indeterminacies could be calculated. This made possible, for these sys-
tems, to characterize quantitatively the stage at which the coherence gets destroyed.
Assuming that at that stage the superposition principle breaks down independently
of observation (or of measurement), one obtains sensible results without having in-
troduced any free parameter. Namely, in the case of bodies empirically perceived
as macroscopic, the stage for the breakdown is reached, whereas in the case of the
feather-weight microparticles it is not even approached.

In Sections 2 and 3 the order of magnitude of the structural indeterminacy in the
length of a time interval and in the synchronization of moments of time is given.
In Section 4 the indeterminacy (more precisely the spread) of the difference in the
values of two synchronized moments of time is expressed in terms of an expecta-
tion value in the ground state of space-time. With the help of this expression, in
Section 5 the general formula for the spread in the relative phases of the wave func-
tion of any isolated physical system is obtained in a simpler form than in [2]. In
Sections 6 and 7 the notions of the coherence cell and of the cell length are recalled,
and with their help the mass regions of microscopic and macroscopic behavior in
the case of homogeneous, spherical solid bodies are quantitatively characterized.
In Section 8 it is shown that the transition between these regions takes place at
Mtr ≈ 10−14 g, the mass of dust particles and of colloidal grains. In Section 9 the
notions of the expansion–contraction cycles and of the cycle period are exposed.
Section 10 deals with the “anomalous Brownian motion” [2] of a body on the hazy
space-time, and references to papers discussing the prospects of the observation of
this anomaly are given. In Section 11 the competition between the localizing effect
of the surroundings and of the expansion–contraction cycles is shortly described. In
Section 12 the “submacroscopic decay” [2–4] of the superposition of droplet-tracks
in a cloud chamber is discussed. Section 13 contains a comment on the preferred
basis problem. In the concluding section it is emphasized that quantum measure-
ments and observations should also be described by the unified dynamics exposed
in the talk.
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2 Lower Bound of the Indeterminacy in the Length
of a Time Interval

Examining the indeterminacy of the structure of the Einsteinian space-time induced
by various quantum mechanical bodies, Károlyházy noticed the existence of a lower
bound of this indeterminacy. The order of magnitude of that bound could be con-
veniently expressed (see the Appendix) in the form of a relation between the length
T of a time interval, and the value ΔLT of the smallest possible indeterminacy of T
(L stands for lower bound):

ΔLT ≈ T 2/3
P T 1/3 (1)

where
TP = 5.4×10−44 s (2)

is the Planck time. The symbol “≈” in (1) means “equal, up to a numerical factor
between 0.1 and 10”. In the absence of the unified theory of General Relativity
(GR) and Quantum Mechanics (QM), this factor could not be calculated precisely.
Its looseness does not influence the general picture presented in this talk.

Two restrictions should be put on the value of T :
(i) When deducing relation (1), formulas of non-relativistic QM have been used.

Accordingly, (1) can be applied only to time intervals taken along |v|� c worldlines
(in a reference frame in which the 2.7◦K background radiation is isotropic).

(ii) When T � TP, the very concept of space-time becomes questionable. There-
fore for the T ’s in (1) the restriction

T ! TP (3)

should hold. It is needed to keep well out from those very small space-time domains
inside which the laws of physics are not known. The spatial extension of such a
domain is, of course, the Planck length

Λ= cTP = 1.6×10−33 cm. (4)

Notice that ΔLT is an absolute lower bound. For a given value of T , ΔLT cannot
decrease at the expense of the increase of the indeterminacy of an other quantity,
like e.g. Δx at the expense of Δp or vice versa. Notice also how small ΔLT is. For
T = 1 s

ΔLT ≈ 10−29 s (5)

only. Still, as we shall see, such tiny indeterminacies are large enough to destroy the
coherence of the wave functions of macroscopic bodies, and small enough to leave
the coherence of the Ψ of a microparticle nearly perfect.

It should be emphasized that the relation between ΔLT and T involves only the
universal constant

TP =

√

G�

c5 , (6)
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where G is the constant of gravitation. The parameters (mass, velocity, etc.) of the
quantum object used in the deduction of relation (1) dropped out from the final for-
mula. Now, a space-time relation independent of any particular property of matter
can be, perhaps even must be attributed to the space-time itself, in particular also to
the empty space-time, which in the future unified {GR+QM} theory should be the
ground state of space-time. Relation (1) says that the compatibility of GR with QM
demands, as a minimum, to admit that the structure of the empty space-time has
a slight indeterminacy, therefore it cannot be exactly Minkowskian. We know that
in the quantum world the expectation concerning the simplicity of physical ground
states (or “vacuums”) had to be given up. Examples are the zero point energy of
the oscillator, the Dirac sea, the BCS energy gap of superconductors, the vacuum of
the elektroweak quantum field theory. A deeper understanding of the slightly inde-
terminate, non-Minkowskian character of the empty space-time probably cannot be
reached without a genuine unification of GR and QM.

3 Lower Bound of the Indeterminacy in the Synchronization
of Moments of Time

The existence of the lower bound of the indeterminacy in the length of time in-
tervals along |v| � c worldlines involves the existence of a lower bound of the
indeterminacy in the synchronization of the moments of time between two such
worldlines [3]. To see this consider, first in Minkowskian space-time, two |v| = 0
worldlines W1 and W2 at a distance r from each other (Fig. 1). A light signal emitted
on W1 arrives back to W1 from W2 after a time 2T , where

T =
r
c
. (7)

Fig. 1 Synchronization in-
determinacy generated by
ΔLT

ΔLT (ΔLT)syn

r=cT

W1 W2
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Since the time interval 2T along W1 has the indeterminacy

ΔL(2T )≈ T 2/3
P (2T )1/3 ≈ 21/3ΔLT ≈ ΔLT, (8)

the moment of arrival of the signal to W2 cannot be synchronized with a correspond-
ing moment on W1 better than with the indeterminacy

(ΔLT )syn ≈ T 2/3
P

( r
c

)1/3
=
Λ2/3r1/3

c
. (9)

Similarly to ΔLT , this lower bound in the synchronization is an attribute of the space-
time structure, therefore it cannot be beaten by clocks, however exact. Notice that,
again similarly to ΔLT , (ΔLT )syn is very small. The relative lower bound

(ΔLT )syn

T
=

(ΔLT )syn

r/c
≈
(
Λ
r

)2/3

, (r ! Λ) (10)

tends to zero when r tends to infinity, and e.g. for r = 10 m (T ≈ 10−8 s) it is already
as small as 10−24. The relative indeterminacy in the time-keeping of the best atomic
clocks is much larger.

4 Tentative Expression of (�LT)syn Through Vacuum
Expectation Values

As exposed in a recent paper of mine [5], in the future unified {GR + QM} theory
the indeterminacies ΔLT and (ΔLT )syn will presumably appear as spreads of time
intervals in the ground state of space-time. In what follows we shall need only the
expression for (ΔLT )syn. To obtain it, let us consider t = constant hyperplanes in
Minkowskian space-time. For any pair of points x, x′ on such a plane we have, of
course,

tx′ = tx = t, (11)

that is
tx′ − tx = 0. (12)

In the space-time where (9) holds, the value of the difference tx′ − tx is slightly
indeterminate. It seems reasonable to assume that in the ground state of space-time
(for short in the vacuum state) the expectation value of this difference is equal to the
Minkowskian zero value, while the value of its squared spread is equal to (ΔLT )2

syn.
Quantities having indeterminacies in their values can be represented by opera-

tors. Instead of (12) we should therefore write
〈

t̂(t,x′)− t̂(t,x)
〉

= 0, (13)
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where 〈. . .〉 denotes the vacuum expectation value of an operator, in our case of
the difference of a local time operator t̂ taken at the world points (t,x′), (t,x) [5].
However, hoping that this will not lead to misunderstanding, here we shall use the
lighter notation

〈tx′ − tx〉= 0. (14)

Taking into account (9) and (14), we find

(ΔLT )2
syn =

〈

(tx′ − tx −〈tx′ − tx〉)2〉

=
〈

(tx′ − tx)2〉≈ Λ4/3|x′ −x|2/3

c2 .
(15)

5 Indeterminacies in the Relative Phases of a Quantum State

In regular, non-relativistic QM the time evolution of an isolated physical system
of N microparticles with masses

M1,M2, . . . ,MN (16)

can be described by the Schrödinger wave function

Ψ(x, t) = e−
i
�

HtΨ(x,0). (17)

Since the time evolution on a Minkowskian space-time is deterministic, Ψ, and
therefore its relative phase between any pair of points

x = (x1, . . . ,xN) (18)

and x′ of the 3N-dimensional configuration space, is sharply determined. The wave
function of any isolated system, no matter how complicated, is and remains perfectly
coherent.

How does the indeterminacy in the synchronization affect the relative phases if
Ψ propagates on the hazy space-time? At this point one has to remember [2, 3] that
on the r.h.s. of (17) the rest energy phase factor

e
− i

�

N
∑

�=1
M�c2t

:= eiφ(t) (19)

has been omitted, because, being independent of x and of p = −i�(∇1, . . . ,∇N),
it drops out from all the observables. However, if there is an indeterminacy in the
synchronization, then

φ(t)→ φ(t,x) =−c2

h̄

N

∑
�=1

M�tx�
, (20)
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because the coordinate of the particle with mass M� is x�. The relative rest energy
phase between two points x,x′ becomes

φ(t,x,x′) =−c2

�

N

∑
�=1

M�

(

tx′� − tx�

)

. (21)

Here a remark is in order. It is not clear what kind of a substitution should be
made for t in the phase factor

e−
i
�

Ht , (22)

but, at any rate, in the non-relativistic regime the absolute values of the matrix el-
ements of the Hamiltonian H are much smaller than the rest energy, therefore the
latter gives the leading contribution.

Relying on our formulas (14), (15) and (21), the spread Δφ̂(t,x,x′) of the relative
phase can be easily calculated. From (14) and (21) one sees that

〈

φ(t,x,x′)
〉

= 0, (23)

therefore
Δ2
φ (t,x,x

′) =
〈

(φ(t,x,x′))2〉

=
c4

�2

N

∑
i,�=1

MiM�

〈(

tx′i − txi

)(

tx′� − tx�

)〉

.
(24)

The product under the r.h.s. bracket is identically equal to the algebraic sum

1
2

[(

tx′i − tx�

)2 +
(

txi − tx′�
)2 −

(

txi − tx�

)2 −
(

tx′i − tx′�
)2
]

(25)

of full squares. Furthermore, due to the i ↔ � symmetry of the product MiM�, the
two first terms of (25) give equal contributions to the sum. Taking into account the
expression for

〈

(tx − tx′)
2
〉

in (15) one finds

Δφ (x,x′)≈ Λ4/3 c2

�2

N

∑
i,�=1

MiM�

(

|x′i −x�|2/3 − 1
2
|xi −x�|2/3 − 1

2
|x′i −x′�|2/3

)

. (26)

The time argument of Δφ has been dropped, because Δφ turned out to be time
independent.

We see that Δφ increases with the masses and with the number of the particles
constituting the system, and for a given system Δφ increases with the distances
|x′i −x�|, that is with the separation between the points x,x′ in the configuration
space. These are encouraging properties from the point of view of the expected loss
of the coherence between “macroscopically distinct” components of the wave func-
tion of a massive body.

The formula for Δφ deduced by Károlyházy in the early seventies ([2], see also
[6, 7]) looks very different from (26). Namely, it is a momentum space integral of
a weighted difference of the Fourier transform of the mass distributions in the two
configurations x and x′. It was a surprise to me that the simpler expression (26) is
not just approximately, but exactly equal to the original one.



300 A. Frenkel

6 The Coherence Cell and the Cell Length of a Single
Microparticle

Let us look at Δφ in the case of a single microparticle. Then in (26) N = 1, so that
i and � are restricted to i = � = 1. In the parenthesis only the first term survives.
Dropping the index 1 of M1, x1 and x′1, we find

Δφ (x,x′)≈ Λ2/3 cM
�
|x′ −x|2/3 =

Λ2/3a1/3

L
, (27)

where
L =

�

cM
(28)

is the Compton wavelength of the particle, and

a = |x′ −x| (29)

is the distance between two points x = (x) and x′ of the configuration space. From
(27) we see that for a given particle Δφ depends only on a. Namely, Δφ = 0 if
a = 0, and it increases monotonically with a. This means that the coherence of
a normalized wave function is never perfect, because the support of such a wave
function cannot be concentrated to a single point, and Δφ > 0 for any pair of points
x′ �= x. However, it may be that the coherence is and remains nearly perfect even
if Ψ extends over a very large domain of the configuration space, and this is what
happens in the case of a microparticle.

Indeed, let us consider a sphere of diameter a in the configuration space (x) of
a microparticle, e.g. of a neutron. Due to its monotonicity, Δφ is maximal at the
diametrically opposed pairs of points on the surface of the sphere. The Compton
wavelength of the neutron being 1.8×10−14 cm, we find that for a sphere of diam-
eter as large as that of the Earth (≈ 109 cm)

Δφ (aEarth)≈
(10−33)2/3

10−14 (109)1/3 = 10−5 � π. (30)

This means that the Ψ of a neutron would be still far from losing its coherence even
if it expanded over a domain as large as the Globe. The message is: there is no hope
to see the neutron interference to die out, no matter how large a monocrystal one
would use in the interferometer.

A remark concerning the expression “the domain occupied by the wave function”
seems to be in order here. As a rule, Ψ is non-zero (almost) everywhere, so that,
strictly speaking, it occupies the whole configuration space. In the present context
“the domain occupied by Ψ” refers to the smallest domain Ω in which the weight

wΩ =
∫

Ω

dx|Ψ(x, t)|2 (31)
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of Ψ is close to the maximal weight 1, e.g. in which

wΩ = 1−10−4. (32)

There is an obvious, but tolerable arbitrariness in the choice of the closeness of wΩ
to 1, similar to that in the choice of the point beyond which exponentially falling
tails are considered negligible.

Let me now recall the important notions of the coherence cell and of the cell
length.

Between two points x, x′ of the configuration space the coherence is completely
lost if

Δφ (x,x′)≥ π; (33)

a maximal domain Ωc of the configuration space in which

Δφ (x,x′)≤ π for all x,x′ ∈Ωc, (34)

i.e. in the interior of which the coherence is still not lost, has been called “coherence
cell” in [2]. Thus, a coherence cell of a microparticle is a sphere of diameter ac,
where ac is determined by the relation

Δφ (ac) = π. (35)

From (27) one finds that

Δφ (ac)≈
Λ2/3a1/3

c

L
, (36)

and, dropping a factor π3 ≈ 30, (35) gives

ac ≈
(

L
Λ

)2

L. (37)

For the neutron

ane
c ≈

(
10−14

10−33

)2

·10−14 = 1024 cm. (38)

The diameter of our Galaxy, with its spherical halo included, is only 1021 cm. The
wave function of a neutron, and of any other microparticle, occupies only a tiny part
of a coherence cell. Ψ is therefore always almost perfectly coherent, no breakdown
of the superposition principle occurs. The same situation prevails for any microsys-
tem, i.e. for any system composed of a moderate number of microparticles, free or
bound.

The diameter of the coherence cell of a microparticle, characterizing the size of
the cell, has been called “coherence width” in [2]. Since this term is often used in
other contexts, the name “cell length” seems preferable. Of course, in the case of
complex systems—as a matter of fact, already in the case of a system composed of
two free microparticles—the coherence cell is not spherical, and several cell lengths
may be needed to characterize the coherence cell.
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7 The Coherence Cell and the Cell Length of a Homogeneous,
Spherical Solid Body; Microscopic and Macroscopic Behavior

At first sight one would think that not much can be said about the indeterminacy
of the relative phases of the Ψ of a system consisting of N ≈ 1023 microparticles.
Surprisingly enough, one can say a lot. In the case of a (macroscopically) homo-
geneous, spherical solid body the coherence cell turns out to be again spherical,
and the cell length ac (the diameter of the cell) can be estimated. The calculations,
carried out in two different ways, can be found in [2, 6] and in [5].

A salient point hinting at the relative simplicity of the situation, is that the wave
function of an isolated solid body expands practically only in the center of mass co-
ordinate subspace. In the 3(N−1) dimensional subspace of the relative coordinates
there is no appreciable expansion, because the system is tightly bound. Therefore,
in very good approximation, in Δφ (x,x′) only the center of mass coordinates xc.m.
and x′c.m. play a role. Furthermore, if the body is homogeneous and spherical, then
the coherence cell turns out to be spherical in the c.m. subspace, and Δφ depends
only on the distance

a =
∣
∣x′c.m. −xc.m.| (39)

between the centers of mass in the two configurations x,x′. The calculation shows
that the expression for the cell length ac (the value of a at which Δφ reaches the
value π ≈ 1) depends now on whether ac turns out to be larger or smaller than the
diameter 2R of the body in question. Namely,

ac ≈
(

L
Λ

)2

L if ac ≥ 2R, (40)

ac ≈
(

2R
Λ

)2/3

L if ac ≤ 2R, (41)

where
L =

�

cM
(42)

is the Compton wavelength corresponding to the full mass M of the body. In [2]
Károlyházy considered these relations to be “the most important results” of his the-
sis. Their physical meaning is easy to grasp if one looks at the extreme cases ac ! 2R
and ac � 2R.

If ac ! 2R, then the wave function of the body can, without losing its coher-
ence, expand in the c.m. coordinate subspace over a domain much larger than the
geometrical size 2R of the body. A large indeterminacy in the position of the center
of mass is a basic characteristic of microbehavior. Notice also that in the whole re-
gion ac ≥ 2R the formula for ac is the same as for the microparticles. (The detailed
calculation shows that this is true up to small corrections hidden here in the “≈”
symbol.)

Let us now look at the case ac � 2R. Then Ψ begins to develop incoherent com-
ponents as soon as it expands over a domain of linear size larger than ac, still much



Breakdown of Superposition Principle due to Space-Time Indeterminacy 303

smaller than the geometrical size of the body. At that stage a stochastic contraction
of Ψ to one of the coherence cells takes place. So, the indeterminacy of the position
of the c.m. remains of the order of ac � 2R. Small indeterminacy in the position of
a body is a characteristic of macrobehavior. Also, it is noteworthy that in the whole
region ac ≤ 2R the formula for ac depends not only on M, but also on R. It should
be noted that (40) and (41) are valid only up to about R = 1 m, because for larger
bodies the vibrational degrees of freedom contribute appreciably to Δφ [2].

8 The Transition Between Microscopic and Macroscopic
Behavior

It is clear from the preceding section that for spherical, homogeneous solid bodies
the transition between micro- and macrobehavior takes place in the region where

ac ≈ 2R, (43)

that is, where the indeterminacy in the position of the c.m. equals the geometrical
size of the body. Taking into account that

L =
�

Mc
=

3�

4πρ�R3c
, (44)

for water density � = 1 g/cm3 one finds from (40), or equivalently from (41), that
the transition values are

atr
c ≈ 2Rtr ≈ 2.5 ·10−5 cm, (45)

Mtr =
4π
3

�(Rtr)3 ≈ 10−14 g. (46)

This is the mass region of dust particles and of colloidal grains. (The reason for
having kept factors of the order of unity when estimating the transition values is that
(Rtr)10 appears in the equation, and e.g. 210 = 1024.)

The idea that the indeterminacy of the space-time structure may play a role
in the transition from micro to macrobehavior, has been raised, among others, by
Feynman [8]. The idea has not been pursued, probably because it was thought that
if gravitation is at work, then the transition should take place in the region of the
Planck mass

MP =
�

cΛ
= 2.2×10−5 g. (47)

Now, even bodies of considerably smaller mass are known to behave macroscopi-
cally, therefore MP cannot represent the transition region.

However, as we have seen, only the amount of the indeterminacy in the space-
time structure is fixed by MP (or, what is the same, by TP = �/MPc2). The degree of
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the loss of the coherence is determined by Δφ , which depends not only on MP, but
also on the masses constituting the system considered. This leads to

Mtr ≈ 10−14 g � MP, (48)

a plausible value.

9 Expansion–Contraction Cycles; the Cycle Period τc

The observation-independent rule for the breakdown of the superposition principle
can be formulated in several ways. The rule proposed by Károlyházy in his thesis [2]
says that the breakdown occurs as soon as Ψ occupies at least two non-overlapping
coherence cells, and it consists in the instantaneous, stochastic contraction of Ψ to
one of these cells (and not to a single point of a cell), with probability proportional
to the weight ofΨ in that cell just before the breakdown. The rule for the calculation
of the contracted Ψ is also given in [2, 7].

In the case of a spherical, homogeneous solid body, after a contractionΨ expands
in the c.m. coordinate subspace as dictated by the Schrödinger equation. When the
expansion reaches the linear size 2ac, a new contraction throws back Ψ to a single
cell, and so on. In the generic case of a Gaussian Ψc.m., the time τc needed for
the doubling of the width from ac to 2ac is

τc ≈
Ma2

c

�
. (49)

In Table 1 ac and the cycle period τc are given for a microparticle, and for bodies
in the micro-, the transition, and the macro-region. The astronomical values of ac
and τc of a microparticle are due to the strong dependence of ac on M in the micro-
region ac ≥ 2R. Indeed, from (40) one sees that ac is inversely proportional to the
third power of M. The same reason explains the spectacular growth of ac from the
transition value 10−5 cm to 100 m while M decreases only from 10−14 to 10−17 g.
In the macro-region ac ≤ 2R the dependence of ac on M is much milder. Namely,
according to (41)

ac ∼ R2/3L ∼ M2/9 ·M−1 ∼ M−7/9; (50)

Table 1 Characteristic values of ac and of τc

neutron mini grain dust marble

M (g) 10−24 10−17 10−14 1
2R (cm) 0 10−6 10−5 1
ac (cm) 1024 104 10−5 10−16

τc (s) 1051 1018 103 10−5
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still, when we arrive at M = 1 g, ac ≈ 10−16 cm only. Thus, the localization of the
c.m. of a marble of 1 g is almost pointlike due to the frequent, 105 s contractions.

In the Károlyházy cycles the contractions are jumps from the size 2ac to ac,
and they follow each other at finite time intervals τc. Pearle [9], Gisin [10, 11] and
Diósi [12] proposed procedures in which the breakdowns are infinitesimal, and they
are repeated at infinitesimally small time intervals. The applicability of such a pro-
cedure to the Károlyházy model has been shown in [13], the main topic of that paper
being the comparison of the K model with the model of Ghirardi et al. [14].

10 Anomalous Brownian Motion

The momentum (more precisely the momentum distribution) of the center of mass
of an isolated body is conserved during the Schrödinger time evolution. However,
at each contraction the indeterminacy in the position of the c.m. shrinks from the
linear size 2ac to ac, and this involves a change

Δp ≈ �

Δxc.m.
≈ �

ac
(51)

in the momentum of the c.m. The direction of this momentum kick being random,
the center of mass deviates from the straight Newtonian (or Ehrenfestian) trajectory,
producing a zig-zaging “anomalous Brownian motion” (ABM) [2,6]. For an isolated
marble of 1 g the elongation of the ABM would reach the respectable value of
10−5 cm within about an hour. Notice that under pure Schrödinger evolution during
this time the width of a Gaussian wave packet would increase from the initial size
ac ≈ 10−16 cm only to 10−7 cm. Here the prediction of the K model differs not only
from the classical, but also from the orthodox quantum mechanical prediction.

The ABM is fuelled by the kinetic energy

ε =
(Δp)2

2M
≈ �

2

Ma2
c
≈ �

τc
(52)

produced at each contraction. For our marble ε ≈ 10−22 erg = 10−29 J. Since there
are about 105 contractions per second, during a year an isolated marble would store
only 10−11 erg. Of course, under normal conditions the surroundings would convert
this tiny energy into heat long before an appreciable elongation could appear. On
the prospects of observing the ABM under special laboratory conditions see [2, 6].

The energy (52) is furnished by the hazy space-time. Whether this is an energy
production slightly violating the energy conservation law, or this energy gets back to
the space-time structure, is again a question which probably can be answered only
in the framework of the future unified theory of GR and QM.
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11 Taking into Account the Surroundings

The localizing effect of various natural environments (air, radiations) on quantum
objects of various size has been estimated by Joos and Zeh [15]. The comparison of
their results with those of the K model shows [13] that for a marble of 1 g the effect
of the expansion–contraction cycles is much stronger than that of the surroundings.
On the other hand, in the transition mass region the localization by the surroundings
(e.g. by the air molecules) is more effective than the 10−5 cm wide localization due
to the cycles. Notice, however, that while according to the K model the contractions
do not allow the localization of the c.m. of a dust particle (of a marble) to be worse
than about 10−5 cm (10−16 cm), the surroundings, while keeping the localization
within certain limits in the branches of a superposition, does not prevent the de-
velopment of branches macroscopically separated from each other. This is a basic
difference between decoherence theories with no breakdown of the superposition
principle, and theories in which the breakdown takes place [2, 9–12, 14, 16].

12 Submacroscopic Decay of a Superposition of Droplet-Tracks
in a Cloud Chamber

The description of the expansion–contraction cycles of a spherical, homogeneous
body is simple because Δφ is determined by a single degree of freedom (the c.m.
coordinate of the body).

In the case of a gas, the many quasi-independent degrees of freedom of the gas
molecules all contribute to Δφ , and the situation becomes complicated. Still, realistic
results have been obtained in [2] (see also [3, 7]).

Let us consider a cloud chamber filled with vapor. The walls of the chamber
are taken into account only as boundary conditions: Ψ = 0 on the walls. We shall
look at the fate of a state in which Ψ(x, t) is a superposition of two components of
comparable weights. In both components there is a water droplet surrounded by the
vapor molecules. The components differ in the positions of the droplet.

Imagine, first, a superposition with a droplet in the two branches, but without the
vapor. Then, if the droplet is massive enough, the two components of the superposi-
tion will belong to different coherence cells, and a random contraction will choose
one of the components. If the droplet is not massive enough, then no contraction
occurs, the state remains a superposition.

However, if the vapor is there, the thermal motion of its molecules leads to a
“submacroscopic” decay of the superposition, even if the droplet is not massive
enough to trigger its own expansion–contraction cycle. Namely, due to the differ-
ence in the positions of the droplet in the two branches, in the configuration space
of the vapor molecules such subdomains develop between which Δφ > π , but inside
each of which Δφ < π . The ensuing random contraction to one of these subdomains
does not select at once one of the branches of the superposition. Instead, it modi-
fies randomly the coefficients c1 and c2 of the superposition by a small, calculable



Breakdown of Superposition Principle due to Space-Time Indeterminacy 307

amount. As has been shown in [2, 7], the repetition of this procedure amounts to
the well-known “win or lose” game between the coefficients. The ith coefficient
wins the game with probability |ci|2, in agreement with the prediction of the or-
thodox QM. The smaller the droplet, the longer the game lasts. A rough estimate
shows [2] that with a droplet composed of 106 molecules in the two components of
the superposition, the game—that is the exponential decay of the superposition—is
practically over in 10−7 s, if initially |c1| = |c2| = 1/

√
2, and if the separation be-

tween the positions of the droplet in the two branches is macroscopic (e.g. 1 cm).
Let me point out that both breakdown processes (the expansion–contraction cycles
and the submacroscopic decay) satisfy Gisin’s criterion [11] of non-superluminal
signalling.

13 Comment on the Preferred Basis Problem

In the von Neumann measurement theory the breakdown projects the wave function
onto an eigenstate of an operator of some observable. In the K model Ψ is pro-
jected not onto an eigenstate, but on a coherence cell. The latter is determined by
the dimensionless condition Δφ ≤ π , which does not choose a basis. We have seen
that in the case of a homogeneous, spherical solid body the coherence cell can be
conveniently described in the c.m. coordinate subspace, there it is simply a sphere.
But this does not mean that the position is a preferred basis. The condition Δφ ≤ π
could be expressed also e.g. in the c.m. momentum subspace, but the shape of the
coherence cell would be more complicated. Thus, in the K model there is no pre-
ferred basis, but it is advantageous to choose suitable variables. In the case of the
droplet-tracks these are the c.m. coordinates of the droplet in the two branches, and
appropriately chosen momentum space coordinates of the vapor molecules [2].

14 Conclusion

According to the orthodox view, in order to extract observable results from QM,
one needs at least one agent which does not obey the laws of QM, but behaves
“classically”.

However, if one allows for a small indeterminacy of the space-time structure,
involving also a limitation of the validity of the superposition principle, then the di-
vision of the world into objects with purely quantum mechanical or purely classical
behavior is not needed. The time evolution of any physical system obeys a unified
dynamics, in which the deterministic Schrödinger time evolution is blended with
stochastic contractions of the wave function. In principle theΨ of a microparticle is
also subject to contraction, but in practice this never happens. For a solid macroob-
ject the contractions occur frequently, and they would keep the localization of its
c.m. very tight even if the body would be completely isolated, and if nobody would
observe it.



308 A. Frenkel

The measurement processes and the observations should also fit into the frame-
work of the unified dynamics. In most of the cases troublesome superpositions are
killed by one of the two mechanisms described above, independently of a measure-
ment or of observation. This is certainly the case for the superposition of a dying
and a healthy Schrödinger cat. In other cases superpositions may decay in the ner-
vous system—a system with many quasi-independent degrees of freedom—while
travelling towards the cortex. And one cannot exclude a priori that in some cases an
entangled state of a certain domain of the cortex with an outer object develops, even
if we do not know what do we feel then.

Thank you for your attention.

Appendix

In this appendix a deduction of relation (1)

ΔLT ≈ T 2/3
P T 1/3 (A1)

will be presented, following a line of thought exposed in [2]. Although many of the
equalities below are only order of magnitude estimates, for simplicity the equality
sign will be used everywhere.

Let us consider the indeterminacy ΔT of the length T of a time interval in the
case of a quantum body of mass M, moving with velocity v � c, forgetting for a
moment about General Relativity. If the indeterminacy in the position of the center
of mass is Δx, then the indeterminacy in the moment of time of the passage of the
c.m. near a point P is

ΔT =
Δx
v

. (A2)

Δx should be chosen such that its order of magnitude does not change during the
travelling time T . The relation

T =
M(Δx)2

�
(A3)

will give a good Δx, because at the end of the travel time the initial Δx becomes only
2Δx. With

Δx =
�

Δp
(A4)

one finds
ΔT =

�

vΔp
=

�

ΔK
, (A5)

where K is the kinetic energy of the body. (It is easy to verify that from the natural
requirement ΔT � T it follows that Δv � v.)

Now let General Relativity act. If the body were at rest, the Minkowskian time
interval T would be changed in the vicinity of the body into



Breakdown of Superposition Principle due to Space-Time Indeterminacy 309

T ′ =
(

1− rs

2R

)

T, (A6)

where R is the linear size of the body, and

rs =
2GM

c2 (A7)

is its Schwartzshcild radius. If the body moves with velocity v� c, then in (A7) one
should put

M −→ M +
K
c2 . (A8)

(The correctness of this simple-minded substitution is corroborated by a 1/c4 order
post-Newtonian calculation. I am indebted to John Stachel for this comment.)

The salient point made by Károlyházy is that although K � Mc2 in the non-
relativistic regime, ΔK is not zero, and it gives an important contribution to ΔT ′:

ΔT ′ = ΔT +
GΔK
c4R

T. (A9)

Indeed, since ΔT and ΔK work against each other, ΔT ′ has a minimum. Inserting
(A5) into (A9) one gets

ΔT ′ = ΔT +
G�

c4RΔT
T. (A10)

In order to make ΔT ′ as small as possible, one should make R as large as possible.
Károlyházy argued [2] that since the c.m. of the body reaches distinguishable po-
sitions during the time interval ΔT , material parts from which even a light signal
cannot reach the c.m. during the time ΔT , cannot belong to the body. Accordingly,

Rmax = cΔT. (A11)

Inserting (A11) into (A10) one finds

ΔT ′ = ΔT +
T 2

P T
(ΔT )2 . (A12)

The minimal value of ΔT ′ as a function of ΔT is

(ΔT ′)min =
(

21/3 +
1

22/3

)

T 2/3
P T 1/3, (A13)

and this minimum is reached when

(ΔT ) = 21/3T 2/3
P T 1/3, (A14)

so that the order of magnitude of the lower bound of the indeterminacy of the length
of the time interval T is indeed T 2/3

P T 1/3.
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Indistinguishability or Stochastic Dependence?

D. Costantini and U. Garibaldi

Abstract Our approach casts some light upon the probabilistic difference existing
among elementary particles, bosons, fermions and classical ones. In order to de-
scribe the behaviors of elementary particles we refers to the different values of
a parameter governing the stochastic (in)dependence. The equilibrium probability
distributions we attain are defined on the same finite and discrete set of vectors.

1 Introduction

Abner Shimony played a very important role in our scientific development. After
having devoted ourselves to the foundation of statistics/and solide state physics re-
spectively, in the middle of the 80’s we (the authors of the present paper) met in
Genova and began to study the foundations of statistical mechanics. Our first paper
in this direction [1] was devoted to the (in)distinguishability of classical particles.
This paper had been prepared by both of us but, for reasons that are to too long to be
recalled here, only one of us signed it. Broadening our field of research, we moved
on to elementary particle statistics, namely to Maxwell-Boltzmann, Bose-Einstein,
and Fermi-Dirac statistics [2, 3]. Our work aimed at giving a characterization of el-
ementary particles statistics based on the notions of exchangeability and invariance,
a probability condition generalizing Carnap’s λ -principle [4, 5]. Essentially, what
we did was to treat these statistics as probability distributions and to deduce them
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by assuming the validity of exchangeability and invariance [6]. Although we were
acquainted with the fact that those statistics are equilibrium distributions, we faced
them as abstract probability distributions. That is, by means of the following formula
(1) we calculated the probability of the descriptions of the elements (complexions)
and then by the multiplicities we arrived at those of the descriptions of the cells (oc-
cupation vectors), i.e. to the core of the elementary particles statistics. To be more
precise, we reached the equilibrium distribution of the occupation vectors of n el-
ements on d cells of the same energy, the difference among the various types of
particles being entirely ascribed to different value of λ .

Discussing the talk that we presented at the conference “Probability, dynamics
and causality” held in Luino in the spring of 1995 [7], Abner remarked that our re-
search was purely logical. As a consequence our deduction of the three elementary
particles statistics was intrinsically static. Moreover with great lucidity he expressed
the conviction that an equilibrium distribution must result from time evolution, gen-
erated by interparticle collisions, which conserve the total energy of the system, not
the energy of a single particle. Thus it is not to be deduced as an abstract theorem
regarding the probabilities of individuals constrained to move among cells of the
same energy level. Briefly: a satisfactory reconstruction of an equilibrium distribu-
tion must be dynamical, and dynamics must be rooted on collisions.

Abner’s criticism struck us profoundly. It compelled us to leave the static way we
had followed until then. We began to think how to deduce the elementary particle
statistics taking time into account. The first consequence of this change of perspec-
tive was published two years later [8]. The more recent results in this direction ap-
peared in [9,10]. This is the reason why it seems appropriate to us to give an account
of our results in this “dynamical” direction at a Conference in honor of Abner.

Before beginning we would like to recall an occasion when we first showed
Abner the example we are going to present in Section 6. The story goes as fol-
lows. The Springer-Verlag Italia had decided to translate Abner’s wonderful novel
into Italian “Tibaldo and the hole in the calender”. After the book was printed, the
best place to present the Italian translation was surely Bologna, the city in which
Tibaldo lived. The presentation of the Italian translation was arranged for late au-
tumn 2000. For the event we invited Abner and his son Jonathan (who illustrated the
book) to Bologna. In the few days Abner spent in this town we also organized a brief
workshop at the Faculty of Statistics of the University of Bologna. On that occasion
we gave a talk on the example to be discussed in Section 6. Unfortunately, there
is no published record of that workshop so that the proceedings of this Conference
seemed to us the best opportunity to introduce this example.

2 Indistinguishability

Recently the problem of indistinguishability has been once more tackled by
Saunders [11]. The question posed by this author is: Why does indistinguisha-
bility, in quantum mechanics but not in classical mechanics, force a change in
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Statistics? Or: What can explain the difference between classical and quantum
statistics? Saunders gave the following answer:

The structure of their state spaces: in the quantum case the measure is discrete, the sum over
states, but in the classical case it is continuous. This makes a difference when one passes to
the quotient space under permutations, as we should for particles intrinsically alike. [11]

Thus the equilibrium measure on classical phase space is continuous, whilst it is
discrete on Hilbert space.

In order to show a mistake usually made when discussing classical and non clas-
sical probability, we focus on a very simple example made by Saunders to stress the
difference he points out. He says

therein lies the difference with classical theory (and the reason why, for two quantum
coins, the probabilities {H,T} {H,H} and {T,T} are all the same). Arriving at a quan-
tity (Cτ)N/N!, rather than (C +N−1)!/N!(C−1)!, is not an option. [11]

In other words, in the case of throwing the two imaginary quantum coins one must
assume the uniform distribution on the three outcomes H,T (one head and one tail),
H,H (two heads) and T,T (two tails). On the contrary, when we are throwing two
customary classical coins we must assume a uniform probability distribution on the
four outcomes H,H (head in the first and in the second) H,T (head in the first and
tail in the second), T,H (tail in the first and head in the second) and T,T (tail in the
first and in the second). We do not enter into the details of the difference between
these two uniform distributions because we shall consider them in the following. We
only note: Laplace [12], producing the first scientific work on statistical inference,
used a “quantum” probability distribution thus imagining an infinity of “quantum”
cards in order to derive his rule of succession. Broad [13] in reconstructing the
celebrated Laplace’s rule in the case of a bag containing a finite number of counters
also worked with a “quantum” probability distribution, as a matter of fact he started

hypothesizing an uniform probability on all the
(C +N−1)!
N!(C−1)!

possible “quantum”

composition of the bag. It is completely superfluous to note that both Laplace and
Broad have had nothing to do with quantum objects.

Saunders’ explanation suggests essentially that the difference between classical
and quantum statistics is mainly due to the difference in phase space volume. His
argument refers to the different nature of elementary particles and it follows the
usual old pattern. It is a paraphrase of the well-known argument: Classical parti-
cles have trajectories while quantum particles have no trajectories. Such an answer
completely obscures the probabilistic side of the question. This has been stressed by
A. Bach [14, 15] and us on many occasions.. Regarding classical indistinguishabil-
ity, Saunders refers to Bach. But he also says

If there is to be a departure from classical statistics [...], it will require the existence of a
fundamental unit of phase space volume, with the dimensions of action [11]

adding in note that this consideration also applies to our attempt, performed in our
paper of 1987, to explain quantum statistics by making use of a classical probability
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function. To this respect, in [1, 2] our argument was essentially that both classical
and quantum particles may be described with exchangeable probability-functions.
Hence as a consequence of the introduction of an exchangeable probability func-
tion, classical and quantum particles are assumed to be probabilistically indistin-
guishable. But now we are able to go much further. More precisely, we can give in
fully probability terms a deduction of the equilibrium probability distribution for the
elements of an abstract system. Specializing this distribution we reach equilibrium
distributions for classical particles, bosons and fermions. Moreover in a form differ-
ing from that of Gentile [25], we may deduce some parastatistics too. These kinds
of parastatistics are one parameter equilibrium distributions arising from parame-
ter values different from those of the three well-known statistics. These equilibrium
distributions can be applied to econophysics, a new discipline that bridges physics
and economics [16].

3 A Result on Random Variables

We begin by recalling a result to be used in what follows. Let X1,X2, ...,Xn, ... be a
sequence of random variables whose range is {1, ...,g}, n j ≡ #{Xi = j; i = 1,2, ...,n}
the occupation number of j in the evidence, that is in the first n random variables,
n ≡ (n1, ...,ng),∑g

j=1 n j = n, the corresponding occupation vector, and P(.|.) an ex-
changeable and invariant probability-function. For the definitions of exchangeability
and invariance we refer to [6]. It can be proved that, if x ≡ X1 = j1, ...,Xn = jn, then
for all j

P(Xn+1 = j|x) =
λ j +n j

λ +n
, (1)

where λ = ∑g
j=1λ j and

λ j

λ
≡ P(X1 = j) ≡ p j is the initial probability. {λ1, ...,λg}

or equivalently {λ , p1, ..., pg−1} is a set of g free parameters to be fixed. From the

equation λ ≡ P(X2 = j|X1 = h)
p j −P(X2 = j|X1 = h)

, j �= h, we see that: if λ > 0, the probability-

function P(.|.) is positively stochastic dependent; if λ < 0, the probability-function
P(.|.) is negatively stochastic dependent; if λ → ∞, the probability-function P(.|.)
is stochastic independent. Hence the value of (1) depends on the initial distribution
p ≡ (p1, ..., pg),∑g

j=1 p j = 1, and the stochastic (in)dependence fixed by λ .

4 Destruction and Creation Probabilities

Now we consider a system S amounting to n elements and g cells 1, ...,g. We shall
call the number of elements of S the size of S. The system-state is the cells descrip-
tion or cell occupation vector n ≡(n1, ...,n j, ...,ng) that may be seen as the set of
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all element descriptions (complexions) x ≡ X1 = j1, ...,Xi = ji, ...,Xn = jn, for all i,
ji ∈ {1, ...,g}, whose occupation numbers are n1, ...,ng. We shall denote by X (g,n)

and N (g,n) respectively the set of all elements descriptions and the set of all cells
descriptions (cell occupation vectors) of S.

When n is the system-state of S, we look for the probabilities of destroying and
creating elements in cells. During these operations the size S shrinks or enlarges, as
elements are supposed to be extracted from or added to S. To this end we assume
the validity of the condition:

C (general condition). Destruction and creation probabilities are exchangeable
and invariant, that is they follow (1).

The free parameters in (1) are fixed by the following supplementary conditions:
DC (destruction condition). If the starting state is n, for the destruction sequence

D1,D2, ...,Di, i ≤ n, the parameters of (1) take the values λ d
j =−n j for all j.

CC (creation condition). If the starting state is n, for the creation sequence
C1,C2, ...,Ci, ..., the parameters of (1) take the values λ c

j = α j + n j for all j that
are available.

We see immediately that the destruction probability is completely determined
by the starting state. It does not depend on the type of particle and does not suffer
any other constraint. The destruction sequence is finite, and proves to be a random
sampling without replacement.

On the contrary this is not the case for CC. This latter condition depends on the
initial state and on the set α ={α j, ...,αg} (the initial creation weights) which varies
according to the type of particles being created.

In the system we are considering creations may occur only after destructions,
and their number must be equal to that of destructions. In other words, sequences of
destructions and creations do not change the size of the system. In what follows we
shall consider two destructions immediately followed by two creations. According
to C, DC and CC these probabilities are

P(D1 = k,D2 = l;n) =
nk

n
· nl

n−1
, (2)

P(C1 = m,C2 = o;nkl ,α) =
αm +nm

α+n−2
· αo + cno

α+n−1
(3)

where the starting state for creation nkl ≡ (n1, ...,nk −1, ...,nl −1, ...,ng) is written
in terms of the initial state n of the double operation.

In all the following applications the initial creation weigths {α j, ...,αg} are sup-
posed to be uniform, so that it is convenient to pose α j = 1

c for all j. Thus (3) can
be usefully rewritten as

P(C1 = m,C2 = o;nkl ,c) =
1+ cnm

g+ c(n−2)
· 1+ cno

g+ c(n−1)
. (4)

The n after the semicolon “;” in (2) and nkl and c after the semicolon “;” in (3)
recall that the free parameters depend on the initial state and the type of particle to
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which destructions and creations occur.1 If c is positive, the creation sequence is
not limited; if c is negative (in this case its absolute value must be the reciprocal
of an integer, see [2]), the creation sequence is limited to g|c|. A main constraint,
typical of elastic collisions, comes from the conservation of the total energy, as we
will see immediately. Indeed (3) is a normalized probability function if all cells can
be reached by the double creation. If some couple of cells were forbidden, then the
denominator is the sum of the probability of all admitted creations:

P(C1 = m,C2 = o;nkl ,c) =
(1+ cnm)(1+ cno)
∑i, j(1+ cni)(1+ cn j)

. (5)

Now we have put forward all probabilistic conditions that can be used to describe
elastic binary collisions i.e. collisions of one particle with another one, conserving
the total energy. We denote by ε( j) the energy of the cell j. If an elastic binary
collision takes place, then a particle may gain energy whilst the other may lose the
same amount of energy. Then for the four cells m,o,k and l involved in such a
collision, ε(m)+ ε(o) = ε(k)+ ε(l) hold.2 An elastic binary collision changes the
system-state from n to nmo

kl ≡ (n1, ...,nk − 1, ...,nl − 1, ...,nm + 1, ...,no + 1, ...,ng).
We suppose that k, l,m and o are all different. By (2) and (3) the transition probabil-
ity we are interested in is

P(nmo
kl |n) = P(nkl |n)P(nmo

kl |nkl) = Amo
kl (n)nknl(1+ cnm)(1+ cno), (6)

where Amo
kl (n) takes into account both denominators of (2) and (5). For the following

it is useful to write also the inverse transition, from nmo
kl to n:

P(n|nmo
kl ) = P(nkl |nmo

kl )P(n|nkl)

= Akl
mo(n

mo
kl )(nm +1)(no +1)(1+ c(nk −1))(1+ c(nl −1)). (7)

We note that the constants of proportionality in (6) and (7) are equal, i.e. Akl
mo(nmo

kl ) =
Amo

kl (n) (see [6]).

5 Stochastic Dynamics

Now we consider the stochastic dynamics of S, that is the sequence of random
variables

S(0),S(1), ...,S(t),S(t +1), .... . (8)

1 For the sake of simplicity we considered destructions and creations occurring in all different
cells. To take the general case into account one must introduce Kronecker’s functions for repeated
indices (see [6]).
2 We suppose that all microstates of the same energy communicate via binary collisions. If this
were not the case, we could consider ternary or even r-ary collisions, till the ergodic set fills the
whole energy shell. The form of the equilibrium distribution does not depend on r. The sole effect
is that of enlarging its domain, improving communication within the energy shell, and of increasing
the rate of approach to equilibrium.
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whose range is the set of possible occupation vectors, that from now on will be called
microstates. If P(S(t + 1) = n′|S(t) = n) is a function of n and n′ the sequence is
a homogeneous Markov chain. The transition matrix that describes a binary elastic
collision is (6). Let us suppose that for the initial state P(S(0) = n0) = 1 holds. It
is apparent that due to repeated transitions (collisions) the probability mass spreads
on all microstates that are reachable from n0 via binary elastic collisions. All these
microstates have the same energy as the initial one, say E0 = E(n0).3 A probability
distribution π(n) defined on the set of microstates is an equilibrium probability
distribution for S when, whatever may be the initial state n0, lim

t→∞
P(S(t) = n|S(0) =

n0) exists and neither depends upon time nor upon the initial state of the system.
Instead a probability distribution on the states of S is invariant (stationary) if it does
not change with time. If a set of states is ergodic (that is all states communicate
with each other reversibly), there exists a stationary distribution for this set. But the
stationary distribution and the equilibrium distribution coincide only if the set is
aperiodic. As our set is aperiodic, we have to search the stationary distribution π(n)
of the Markov chain whose transition probability is (6).

The probabilistic time evolution of S is given by the Chapman–Kolmogorov
equation, that is

P(S(t +1) = n) =∑
n′

P(S(t +1) = n|S(t) = n′)P(S(t) = n′), t = 0,1,2, ... ,

that might be written as

P(S(t +1) = n)−P(S(t) = n) =

∑
n′

P(S(t +1) = n|S(t) = n′)P(S(t) = n
′
)−∑

n′
P(S(t +1) = n′|S(t) = n)P(S(t) = n).

This is a discrete “Master Equation”. When for any pair n′ �= n, the equality

P(S(t +1) = n|S(t) = n′)P(S(t) = n
′
) = P(S(t +1) = n′|S(t) = n)P(S(t) = n) (9)

holds, then

P(S(t +1) = n) = P(S(t) = n) = π(n).

This equality asserts that the distribution π(n) does not change over time. Hence
a distribution satisfying (9) is invariant. The set of equations (9) expresses the de-
tailed balance between pairs of occupation vectors belonging to the same ergodic
set. Roughly speaking, the meaning of (9) is that the probability flux from n to n′
equals the flux from n′ to n.

3 Here we suppose that all microstates belonging to the same energy E0 (that is the energy shell)
may reach each other via binary elastic collisions. If it is not the case, see the previous footnote.
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6 Equilibrium

For binary collision such that ε(m)+ε(o) = ε(k)+ε(l), considering (6) and (7), the
equations expressing the detailed balance ensure that the equilibrium distribution is
reached if a probability πc(·) exists on all possible microstates such that

πc(nmo
kl )

πc(n)
=

nknl(1+ cnm)(1+ cno)
(nm +1)(no +1)(1+ c(nk −1))(1+ c(nl −1))

. (10)

This c−distribution exists, and the quantum cases are trivial. For c = +1, the
left side of (10) is equal to 1. This means that all microstates reached by elastic
binary collision have the same probability, that is the equilibrium probability distri-
bution π1(n) is uniform on the energy shell. This is the Bose–Einstein statistics. For
c =−1, the left side of (10) is equal to 1 if nk = nl = 1 and nm = no = 0. This means
that all microstates satisfying the Pauli exclusion principle reached by elastic binary
collisions have the same probability. That is the equilibrium probability distribution
π−1(n) is uniform on all microstates of the energy shell which satisfy Pauli’s

principle. This is the Fermi–Dirac statistics. For c = 0,
π0(nmo

kl )
π0(n)

=
nknl

(nm +1)(no +1)
.

This equality is satisfied by a π0(n) proportional to
n!

∏g
j=1 n j!

. This means that

the equilibrium probability distribution allots the same probability to all elements
description (complexions) belonging to the energy shell. This is the Maxwell–
Boltzmann statistics.

Hence the homogeneous Markov chain whose transition probability is governed
by C, CD and CC leads the system towards the following equilibrium probability
distributions

πc(n) =

⎧

⎨

⎩

const for E(n)=E(n0) if c = +1
const for E(n)=E(n0), n j = 0,1 if c =−1

const× (∏g
j=1 n j!)−1 for E(n)=E(n0) if c = 0.

(11)

where the set {n : E(n) = E(n0)} is the energy shell of the initial state n0.
Values of c different from those considered in (11) have no interest in elementary

particle physics. These values eventually characterize parastatistics. Nothing pre-
vents our approach from being used fruitfully with new values of c or, dropping the
equality of all p j, for arbitrary values of λ j. This happens in econophysics where
parastatistics may be profitably used [16, 17].

The three distributions (11) are equilibrium distributions of a family of Markov
chains that mimic binary elastic collisions between elements, trigged by a sole
parameter, c. We note that they are usually assumed as postulates (if we follow
Tolman [18], to our knowledge still the best account of the foundations of Statistical
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Mechanics). With regard to the different interpretations of the probability in the
usual vindication versus the probabilistic dynamics here presented, we refer to [19].

We now consider the level occupation vector (the macrostate) N, whose ith com-
ponent is the sum of the occupation vectors of all gi cells belonging to the ith energy
level εi. Its Markov transition matrix, derived by (6), is given by

P(Nkl
i j |N) = P(Ni j|n)P(Nkl

i j |Ni j) = Akl
i j(N)NiNj(gk + cNk)(gl + cNl) , (12)

with the constraint εk + εl = εi + ε j. The equilibrium distribution πc(N) is propor-

tional to ∏
i

cNi(gi/c)[Ni]

Ni!
, that is

πc(N)∼∏
i

cNi(gi/c)[Ni]

Ni!
, (13)

that specializes in the well-known combinatorial factors∏
i

(
Ni +gi −1

Ni

)

,∏
i

gi
Ni

Ni!
and

∏
i

(
gi

Ni

)

for c = 1,0,−1. In the thermodynamic limit the most probable macrostate

is given by
N∗

i =
gi

eβεi−ν − c
. (14)

Remember that to achieve (14) it is necessary to assume Stirling’s approximations
of factorials, that is gi,Ni ! 1.4 The same form can be deduced for a quite different
probability notion, the expectation value of Ni. In fact by considering the average of
the balance equation:

E[NiNj(gk + cNk)(gl + cNl)] = E[NkNl(gi + cNi)(g j + cNj)], (15)

and supposing that the mean of the product is equal to the product of the means,

(15) is satisfied if for any level
E[Ni]

gi + cE[Ni]
= e−βεi+ν , that is if

E[Ni] =
gi

eβεi−ν − c
. (16)

For systems whose equilibrium probability has a strong maximum around N∗ we
have E[Ni]≡∑N NiP(N)→ N∗

i . As the covariance of two level occupation numbers
is a very rapidly decreasing function of the number of levels, it happens that (16)
approximately holds also for very small systems, where N∗

i is meaningless.

4 Note that for quantum particles in the case of no degeneracy (that is gi = 1) all level occupation
vectors are equiprobable, and (14) has no meaning, notwithstanding the system is large. This is the
deep reason for grouping energy levels into classes (see [20]), so that the corresponding macrostate
is a much coarser description than the exact one presented here .
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7 c-Thermodynamics of Small Systems

We stress that our derivation is exact. An interesting consequence of this is that
the equilibrium probability distribution (13) does not depend upon the size of S.
Obviously when the size is that of the systems usually taken into account, i.e of the
order of 1023 elements, the thermodynamics is the usual one, that is based on (14).
But two improvements are possible: the first is to consider c for values different from
0,±1, that is abandoning the comfortable realm of uniform equilibrium distributions
on some domains. This improvement has probably little use in Physics, but can be
interesting for systems of elements whose correlation is whatever, and whose motion
is constrained by some conservation law. A general conceptual advance should be
reached for the notion of entropy, usually tied to the number of available microstates,
and so bounded to uniform distributions. A second improvement is the possibility
to treat exactly the probabilistic c-thermodynamics of very small systems. In this
section we shall give an example of such a thermodynamics.

7.1 An Elastic Dipole

Let us consider two particles of mass m in a cubic box of side L. The correlation
between them is described by c. Consider the stationary wave functions. There
is one fundamental state whose energy is ε1 = 3 h2

8mL2 , g1 = 1, where h denotes

Planck’s constant. Three states whose energy is ε2 = 6 h2

8mL2 , g2 = 3. Three states

whose energy is ε3 = 9 h2

8mL2 , g3 = 3. Let the two particles are in some cell of the
first excited level. We limit our attention to macrostates. Let the initial macrostate
be (0,2,0) ≡ A. After the first collision we have two possibilities: either the system
stays in A, or it will be found in (1,0,1)≡ B (see Fig. 1)

Fig. 1 The elastic dipole. The width of the levels is proportional to gi; the macrostate A is black,
B is white
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From (12) P(B|A)∼ 2g1g3, while P(A|B)∼ g2(g2 +c), and the equilibrium prob-
ability distribution is such that

π(A)
π(B)

=
P(A|B)
P(B|A)

=
g2(g2 + c)

2g1g3
=

3+ c
2

(17)

Hence the odds for A are respectively 2,1.5 and 1 in the thee cases c = 1,0 and −1.5

The state wherein particles are close together is preferred proportionally to c.
Now suppose that π(A) and π(B) are estimated by the Maximum Entropy

Principle [21]. Following Jaynes, the cell entropy associated to a macrostate is
S(N) = ∑S(Ni), and S(Ni) = −∑n(i)∈Ni

P(n(i)|Ni) lnP(n(i)|Ni), where {n(i) ∈ Ni}
denotes the set of all occupation numbers of a level containing Ni particles. This
quantity is easy to calculate only in the quantum cases due to the fact that P(n(i)|Ni)

is uniform, and one gets SBE(N) =∑i ln
(

Ni +gi −1
Ni

)

, and SFD(N) =∑i ln
(

gi

Ni

)

. It

is easy to see that, posing P(N)∼eS(N), we obtain the result (13) in the case c =±1.
As long as we deal with uniform distributions it is right that π(N)∼eS(N). But in
general P(n(i)|Ni) is a gi− generalized Polya distribution, whose probabilistic en-
tropy is hard to calculate. The case c = 0 it is a multinomial distribution, and its
probabilistic entropy is different from ln gi

Ni
Ni!

forseen by (13).6

This example is so simple that we calculate exactly the following table:

c = 1 c = 0 c =−1
S(A) ln6 1.74 ln3
S(B) ln3 ln3 ln3

exp[S(A)−S(B)] 2 1.9 1
π(A)
π(B) 2 1.5 1

It is obvious that the “true” probability is that provided by the probabilistic dy-
namics. In fact we show the results of a computer simulation consisting in 10,000
collisions, starting from B. Here ν(A) vs ν(B) are the frequencies for the system to
stay in A vs B

c = 1 c = 0 c =−1
ν(A) 6,656 5,992 4,941
ν(B) 3,344 4,008 5,059
ν(A)
ν(B) 1.99 1.495 .98
π(A)
π(B) 2 1.5 1

5 If the case c = −1 is referred to a fermion, one could object that the degeneracies have to be
multiplied by 2 due to the spin of the particle. In this case g2(g2+c)

2g1g3
= 6+c

4 = 5
4 .

6 Note that for c = 0 it is easy to calculate the entropy of particles, that is lngi
Ni , as particles

are uniformly distributed. The lacking factor Ni!−1 can be added without danger because in most
physical applications of the Mawell–Boltzmann statistics Ni is considered very small with respect
to gi.
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For c = ±1 to maximize P(N) is equivalent to chose the macrostate whose
entropy is maximum. In fact, in absence of any dynamics, it may be reasonable to
suppose that will be achieved the macrostate whose entropy is maximum.

As a consequence for c �= ±1 the most probable macrostate does not coincide
with the macrostate which maximizes the entropy of microstates. And the thermo-
dynamical entropy is bounded to the probability of the macrostate, not to its entropy.

7.2 No Most Probable Macrostate

Let us consider a system of equispaced non-degenerate energy levels, that is εi = i
ε,gi = 1. Suppose that the initial state is such that n = 30 elements are put in the
third level. They suffer binary elastic collisions, and allow the correlation parameter
c = 1. Figure 2 shows the result of a simple computer simulation: the grey dots
represent the mean occupation numbers of the first, second,..., 40th level after s =
10,000 collisions.

The conservation of the energy E = 90ε implies that the maximum reachable
level corresponds to i = 61. The line (continuous for graphical opportunity) repre-
sents the function 1

eβ i−ν−1
, where β and ν are obtained as numerical solutions of

the system ∑61
i=1

1
eβ i−ν−1

= 30, ∑61
i=1

i
eβ i−ν−1

= 90. It is apparent that the two curves
are close to each other, so that we can conclude that (16) is not so bad even in the
case of only 30 elements. We can reasonably suppose that when (16) begins to hold,
it makes sense to introduce intensive variables like the temperature and the chem-
ical potential, so that the usual apparatus of thermodynamics “emerges” form the
probabilistic dynamics.

The example has been chosen for the following reason. If c = 1 all microstates
are equiprobable, which is also the case for all macrostates if gi = 1. In this peculiar

0 5 10 15 20 25 30 35 40
0.0001

0.001

0.01

0.1

1

10

Fig. 2 Simulated (gray dots) and theoretical (continuous) mean occupation numbers of the energy
levels; n = 30,c = 1,s = 10,000
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case there is no most probable macrostate, and (14) is meaningless. This not only be-
cause the system is small, but also due to the essential uniformity of the equilibrium
distribution.7

8 Conclusion

Our approach casts some light upon the difference among elementary particles. The
difference lies in the properties of the probability-function used to describe their
behaviour. The discrete or continuous nature of the phase-space does not matter.
The equilibrium probability distributions we attained, i.e. (11), are defined on the
same finite and discrete set of vectors, that is, the set of all vectors which can be
attained by elastic collisions starting from the initial state. The difference between
classical and quantum statistics is explained by the values of c used in the transition
probabilities. In the various cases we consider different creation probabilities which
allot different probability values to elements descriptions (complexions) of the same
system. This has already been seen by Ehrenfest [22], who has twice played an
influential role. Firstly, when he (together with Tatiana) introduced the celebrated
urn model [23], whose broad generalization is at the base of our attempt. Secondly,
there is the far less known paper written five years later, where he pointed out that
the essential traits (Zuege) of the hypothesis of Lichtquanten were to be located
in the different probabilities allotted to the complexions. In other words, in order
to reach a uniform distribution on the set of cells’ descriptions it is necessary to
allot different probability values to the elements’ descriptions. Twenty years later
substantial progress in this approach has been made another neglected work, due
to Brillouin [24], who tried to unify the three statistics using a classical probability
space. The c-Thermodynamics is promising for economic and genetic applications,
while the thermodynamics of small systems, apart from its foundational interest, is
possibly fruitful in the realm of nanoscience.
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Plane Geometry in Spacetime

N. David Mermin

Abstract Minkowski’s spacetime diagrams are extracted directly from Einstein’s
1905 postulates, using only some very elementary plane geometry.

I have spent a significant part of my career looking at familiar results from unfa-
miliar perspectives. This has been partly because I very much enjoy teaching courses
about aspects of physics to nonscientists, for whom the conventional approach is al-
most always an impenetrable thicket. But it’s also because I have a lot of trouble
understanding physics myself. If I don’t think it through in my own terms, more
often than not I can’t make much sense of it.

The fruits of this self-indulgent approach have elicited a broad spectrum of re-
actions. The worst was a proposal review from an extremely distinguished senior
physicist who anonymously complained that my work was characterized by a sur-
prising lack of originality. (The only encouraging word in the entire report was “sur-
prising”.) Less depressing was “What made you write a paper about that?” from a
cosmologist friend and “I still don’t understand what bothers you”, from a beloved
postdoctoral advisor. Moving in the positive direction through nervous silence, one
passes by “Nice!” in varying degrees of intensity and sincerity until one finally
reaches those who have truely appreciated what I was trying to do. Of these two
stand out from the others in the warmth of their encouragement, the penetration of
their constructive criticisms, and the high regard in which I hold them quite aside
from our direct interactions. One was the late Ed Purcell. The other was, and remains
to this day, Abner Shimony.

So I know that Abner won’t mind my revisiting a subject that has been with us
in pretty much its current form for 98 years, and since this meeting is for Abner, the
rest of you will just have to put up with it. Even Abner, however, may be tempted to
catch up on lost sleep, because much of my talk can be found in Chapter 10 of a new
book I sent him last year. Although I can hope that he has not read it, knowing Abner
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I very much fear that he has. Nevertheless, Abner, pay attention. While I was putting
this talk together my muse—curiously enough, also named Abner Shimony—kept
raising questions that hadn’t occurred to me, cleverly objecting to obvious points,
and otherwise helping me to come up with a better formulation than the one you’ve
already read.

My subject is how to construct Minkowski’s space-time diagrams (1908) straight
from Einstein’s postulates (1905) without the intermediate of the Lorentz transfor-
mation or the invariant interval. I also assume no familiarity with graphs or coordi-
nate systems, and in this respect my approach is to the conventional approach as the
plane geometry of Euclid is to the analytical geometry of Descartes.

As this point of view evolved I found myself led into some entertaining bywaters,
which various relativists I consulted seemed not to have visited. In particular, if you
do chose to catch up on some lost sleep, keep an ear open for the notion of the light
rectangle which I commend to all as a genuinely useful unfamiliar relativistic tool.

Here are Einstein’s two postulates. Purcell once complained that I had quoted
an execrable translation of them, so I give below my own translation. But because
my knowledge of German is limited to Schubert lieder and the operas of Richard
Strauss, I also reproduce the original texts.

1. In electrodynamics, as well as in mechanics, no properties of phenomena corre-
spond to the concept of absolute rest. . . . dem Begriffe der absoluten Ruhe nicht
nur in der Mechanik, sondern auch in der Elektrodynamik keine Eigenschaften
der Erscheinungen entsprechen.

2. Light always propagates in empty space with a definite velocity c, independent
of the state of motion of the emitting body. . . . sich das Licht im leeren Raume
stets mit einer bestimmten, von Bewegungszustande des emittierenden Körpers
unabhängigen Geschwindigkeit V fortpflanze.

My Abner-muse kept pointing out that I was slipping in other postulates down the
road, so I decided to present up front a third postulate. Having formulated it, I found
it sounded familiar, so I looked up Einstein (1905) and sure enough, he states it
himself a few pages after the two famous ones:

3. If a clock at A runs synchronously with clocks at B and C, then the clocks at B
and C also run synchronously relative to each other. Wenn die Uhr in A sowohl
mit der Uhr in B als auch mit der Uhr in C synchron läuft, so laufen auch die
Uhren in B und C synchron relativ zueinander.

The third postulate comes in an obviously equivalent version:

3′. If event A is simultaneous with event B and event C, then events B and C are also
simultaneous.

I will combine this with its equivalent under the interchange of space and time:

3′′. If an event A happens in the same place as event B and event C, then the events
B and C also happen in the same place.

While Postulate 3 can probably be extracted from Postulates 1 and 2 in the case
of a single spatial dimension, it has an independent status in two or more spatial
dimensions and constructing this talk led me to appreciate why Einstein had made
what I had once regarded as an unnecessarily pedantic remark. No pedant he.
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Fig. 1 Some events of interest to Alice

An event, of course, is something that happens at a definite place and time: a
point in spacetime. It is, as Einstein (1905) also wisely points out, an idealization
and, I would have said, a classical (i.e. pre-quantum) idealization, in that it is an
unambiguous phenomenon whose spatial and temporal extent we are willing to treat
as inconsequential.

Alice wants to make a plane diagram depicting events that happen at various
times and places in one spatial dimension—e.g. along a long straight railroad track.
Figure 1 gives an example of such a diagram:

Alice organizes events in her diagram according to the time at which they take
place. Postulate 3 permits her to place all the events to which she assigns the same
time on a single straight line, which we shall call an equitemp. (I would have pre-
ferred calling it an isochron but an internet search revealed “isochron” to be a stan-
dard term in radioactive dating and dendrochronology. “Equitemp” only produced a
few furnaces and kettles.)

Equitemps associated with different times must be parallel, for if they were not
then the event represented by their point of intersection would happen at two dif-
ferent times, contradicting the idea that an event is localized in time. Following the
usual conventions of mapmakers (Fig. 2) Alices takes the distance between two eq-
uitemps in her diagram to be proportional to the time between the two sets of events
they represent.

Alice still has the freedom of sliding points along her equitemps and she takes
advantage of it to organize events in her diagram according to the location at which
they happen, requiring (as Postulate 3 again permits) all events to which she assigns
the same place to lie on a single straight line, which we shall call an equiloc. (Here,
the more elegant “isotop” is clearly out of the question.)

Equilocs associated with different positions must be parallel, or the event repre-
sented by their point of intersection would happen in two different places, contra-
dicting the idea that an event is localized in space. Alice again follows mapmakers
(Fig. 3) in taking the distance between equilocs in her diagram to be proportional to
the spatial separation of the two sets of events they represent.

The intersection of an equiloc and equitemp specifies a definite place and time
and therefore corresponds to a unique event, so equilocs cannot be parallel to
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Fig. 2 Some of Alice’s equitemps

= an event

Distance between equilocs proportional
to real space distance between events

(lines of constant position)

Equilocs 

Fig. 3 Some of Alice’s equilocs

equitemps, but aside from that restriction the angle Θ between Alice’s equilocs and
equitemps is free for her to chose as she wishes. Picking it to be a right angle ob-
scures many important features of the diagrams, so we shall keep it general.

It is convenient for Alice to redefine the foot (ft). I remind our Canadian hosts
that the foot is an obscure unit of distance, still used south of the border and in a few
other backward countries. It is defined by 1 ft = 0.3048 m. Alice prefers a foot (f)
that is just a little more than 1% shorter than the foot (ft): 1f = 0.299792458 m. Since
the meter is now defined so that the speed of light is 299,792,458 m/s, the speed of
light is exactly 1 f/ns. Once the United States abandons this archaic practice (along,
one hopes, with a few other barbarisms) I confidently expect the foot (f) to reemerge
on the international scene as the light nanosecond.

It is also highly convenient for Alice to relate the spatial and temporal scales
in her diagrams so that equilocs representing events 1 f apart are same distance λ
apart in a diagram as equitemps representing events 1 ns apart. The scale factor λ ,
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with dimensions centimeter (of diagram) per nanosecond (of time), or centimeter (of
diagram) per foot (of distance), is strictly analogous to the mapmakers scale factor
of, for example, centimeter (of map) per kilometer (of distance).

It is conventional to orient such a diagram so that equilocs are more vertical
than horizontal and equitemps are more horizontal than vertical. It is also useful to
introduce an alternative scale factor μ , defined to be the distance along an equiloc
of two events 1 ns apart in time or, equivalently, the distance along an equitemp of
two events 1 f apart in space. All this is illustrated in Figs. 4 and 5.

Θ

λ

λ

1ns

2ns

3ns

1 f = 0.299792458 m

1 ns = 10−9 sec

1f

2f

3f

equitemp

equitemp

equitemp

equiloc
equiloc

equiloc

Fig. 4 Some of Alice’s equitemps and equilocs and her scale factor λ
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Fig. 5 The scale factor μ
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Fig. 6 Photon trajectories (dashed lines). θ = 1/2 Θ

Equilocs and equitemps are thus characterized by two independent parameters,
which can be any two of λ ,μ , and Θ (the three are related by λ = μ sinΘ). Note
(Fig. 5) that the area of a unit rhombus whose opposite sides represent events 1 f
and 1 ns apart is given by λμ = μ2 sinΘ.

Of particular importance in Alice’s diagrams are photon trajectories, which are
lines (conventionally dashed) that contain all events in the history of something
moving at the speed of 1 f/ns. Photon trajectories are the diagonals of a rhombus
whose sides are equitemps and equilocs, and therefore (as Fig. 6 makes clear)
photon trajectories associated with motion in opposite directions cross at right
angles, and they bisect the angleΘ= 2θ between equitemps and equilocs. Putting it
another way, equilocs and equitemps are symmetrically disposed about the photon
trajectories.

Bob, who moves along the tracks uniformly with respect to Alice at vBA feet per
nanosecond (f/ns) would like to describe the same events as Alice has described. He
could, of course, make a diagram of his own, but since Alice has already put down
points representing the events on a piece of paper, Bob can try to impose on those
points (without moving them on the page) his own equitemps and equilocs.

It turns out that these are also straight lines. This is particularly evident for Bob’s
equilocs, since an equiloc for Bob is just the trajectory of something that moves
at velocity vBA according to Alice—i.e. the heavy straight line depicted in Fig. 7.
Note that Bob’s velocity according to Alice is the ratio of Alice’s time between the
two events indicated on Bob’s equiloc to her distance between the same two events:
vBA = μAg/μAh = g/h.

Up to now Einstein’s first two postulates have played no role. Relativity enters
the story for the first time when we ask for the orientation of Bob’s equitemps in
Alice’s diagram. This is determined by Einstein’s famous gedanken experiment that
determines simultaneous events on a moving train (Fig. 8.). If Bob rides along the
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Fig. 7 One of Bob’s equilocs in Alice’s diagram
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Fig. 8 Einstein’s train: Determining the orientation of Bob’s equitemps in Alice’s diagram

tracks on a train moving uniformly with velocity vBA and if two oppositely moving
photons originate from a single flash at the center of the train, then the arrival of
the photons at the two ends of the train constitute simultaneous events for Bob,
who takes the train to be stationary. This immediately determines the orientation of
Bob’s equitemps in Alice’s diagram (and that Bob’s equitemps, like his equilocs,
are straight lines).
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The easiest way to see immediately how to characterize the orientation of Bob’s
equitemps in Alice’s diagram is to continue the experiment after the photons arrive
at the two ends of the train, letting them encounter mirrors and bounce back towards
the middle. Since according to Bob they bounce off the mirrors at the same time
(and he takes the train to be stationary), they will also arrive back at the middle at
the same time. Their trajectories therefore form a rectangle—the first of many such
“light rectangles” we shall be encountering. One of the diagonals of the rectangle
is Bob’s equitemp, and the other is his equiloc associated with events at the center
of the train. It follows immediately from the symmetry of the rectangle that Bob’s
equitemp is tilted downward from a photon trajectory through the same angle θB =
1
2ΘB as his equiloc is tilted upward.

So when Bob imposes his own equitemps and equilocs on Alice’s diagram he
finds that they are straight lines that make same angle θB = 1

2ΘB with photon tra-
jectories. But Alice originally made her diagram by imposing the rules that her own
equitemps and equilocs should be straight lines that make same angle θA = 1

2ΘA
with the photon trajectories. There is thus no way to tell who made the diagram first
and who later added their own equitemps and equilocs (Fig. 9). This is a strikingly
direct demonstration that the principle of relativity is indeed entirely compatible
with the principle of the constancy of the velocity of light.

It remains only to establish the relation between Bob’s scale factor λB and Alice’s
scale factor λA. But it is worth pausing to note that the single most important quanti-
tative result of special relativity is already at hand, even before we know Bob’s scale
factor. This is the quantitative statement of the relativity of simultaneity, which fol-
lows directly from the symmetry of both Bob’s and Alice’s equitemps and equilocs
under reflection in 45◦ photon lines.

The events P and R in Fig. 10 lie on an equiloc of Bob, so according to Bob
they happen in the same place. They lie on two different Alice-equilocs, however,
and according to Alice they happen μAg feet apart. According to Alice they also

ΘA

ΘB

θA

θA

θB

θB

Bob equiloc

Bob
equitemp

equiloc
Alice

Alice
equitemp

Fig. 9 Bob’s and Alice’s equitemps and equilocs
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Fig. 10 The quantitative measure of the relativity of simultaneity

happen μAh nanoseconds apart, so although Bob says they happen in the same place
Alice disagrees. She says that the distance DA between them in feet is g/h times
the time TA between them in nanoseconds. Since g/h = vBA f/ns, Alice concludes
that DA = vBATA: the distance between them in f is the time between them in ns
multiplied by Bob’s speed in f/ns. A banal conclusion well known to Galileo, except
for the choice of units.

The reflection Q of the event R in the dashed photon line lies on the same Bob-
equitemp with P and therefore occurs at the same time, according to Bob. Alice
disagrees. The time TA between P and Q is μAg nanoseconds and the distance be-
tween them is μAh feet. So Alice concludes that when Bob, who moves at vBA f/ns,
says two events are simultaneous, then if the events are DA feet apart then they are
also TA nanoseconds apart where TA = vBADA. This is the quantitative statement of
the relativity of simultaneity, in its clearest form. It is, however, surprisingly unfa-
miliar to some professional relativists, one of whom, as a referee, insisted that I had

left out a factor of
√

1− v2
BA and had to be convinced of his error.

To determine the relation between the scales used by Alice and Bob it is use-
ful first to introduce some nomenclature. The first bit of terminology is familiar
(Fig. 11). Two events are said to be spacelike separated if they lie on somebody’s
(Alice’s, Bob’s, Carol’s, Dick’s, . . .) equitemp, so for that person their separation is
entirely spatial. And they are said to be timelike separated if they lie on somebody’s
equiloc, so for that person their separation is entirely temporal. Two events that lie
on a single photon trajectory are said to be lightlike separated.

The second bit of terminology is probably unfamiliar (Fig. 12). Two spacelike
or timelike separated events determine a unique rectangle of photon lines with the
events at diagonally opposite vertices. We call this rectangle the light rectangle de-
termined by the events. We have already encountered such a light rectangle in the
Einstein-train experiment (Fig. 8), and they play a central role in what follows.
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Fig. 12 Light rectangles

A light rectangle determined by two events 1 ns apart on the same Alice-equiloc
(or 1 f apart on the same Alice-equitemp) is called a unit light rectangle for Alice
(Fig. 13). The area Ω0 of Alice’s unit light rectangles is just half the product of her
two scale factors: Ω0 = 1

2λAμa. This is established in Fig. 14, which shows that a
unit light rectangle (connecting spacelike separated events) can be sliced along the
equiloc connecting the events into two congruent triangles, four of which can be
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Fig. 14 Area of Alice’s unit light rectangle, in terms of the area of her unit rhombus

reassembled into a rhombus whose sides are equilocs and equitemps separated by
1 f and 1 ns, and whose area is therefore just the product of the two scale factors λ
and μ .

Armed with this terminology we can give a very simple geometrical specification
of the connection between Alice’s and Bob’s scale factors by appealing to a second
gedanken experiment. This one might be called the reciprocity of the Doppler effect.
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Fig. 15 Reciprocity of the Doppler effect. Alice and Bob each watch the other’s clock

If Alice and Bob each carry a clock and each looks at the other’s clock, Einstein’s
first two principles require that each should see the other’s running at a rate that
differs from the rate of their own clock in exactly the same way.

This is shown in the diagram of Fig. 15. The two solid lines are the space-time
trajectories of Alice and Bob (and therefore an Alice-equiloc and a Bob-equiloc).
When Alice and Bob are together in the event at the bottom of Fig. 15 they set their
coincident clocks to 0. (Both clocks are shown as a single circle with a 0 inside it.)
Subsequently their trajectories diverge and their clocks advance. When the clock
of each reads T , each looks at the clock of the other and sees it reading t—i.e.
the photons arriving from Alice’s clock at the moment Bob’s clock reads T , were
emitted from Alice’s clock at the moment it read t, and vice-versa. That each sees
the same t when his or her own clock reads the same T is required by the principle
of relativity and the principle of the constancy of the speed of light.

This is enough to determine the ratio of their scale factors, since the length of
the line between his clocks reading 0 and T on Bob’s equiloc is μBT while the cor-
responding length on Alice’s equiloc is μAT . Hence the length ratio of their two
line segments is just the ratio of their scale factors. It might appear that some in-
tricate trigonometry would be required to extract this ratio from the figure, but a
simple trick gives it a very elementary geometric interpretation. The trick is to note
that the two photon trajectories in the figure form segments of sides of two light rect-
angles, one determined by the events in which Alice’s clock reads T and 0, and the
other by the corresponding readings of Bob’s clock. The complete light rectangles
are drawn in Fig. 16.

Notice that the long side B of Bob’s light rectangle exceeds the long side A of
Alice’s by just the ratio T/t of the two readings of Bob’s clock. But this is compen-
sated for by the fact that the short side a of Alice’s light rectangle exceeds the short
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Fig. 16 The photon lines in Fig. 15 have been expanded into two light rectangles
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Fig. 17 Alice’s and Bob’s light rectangles have the same area

side b of Bob’s by the ratio T/t of the two readings of her clock. Since these ratios
are the same, the two light rectangles have the same area. This is shown in Fig. 17,
where the two light rectangles and equilocs in Fig. 16 have been slid apart from one
another.

Specializing to the case T = 1 we conclude that Bob’s and Alice’s unit light
rectangles must have same area. Since the area of a unit light rectangle is given by
Ω0 = 1

2μλ , we have a simple analytic expression for this (even simpler) geometric
condition: the product μλ of scale factors must be the same for everyone: μAλA =
μBλB = μCλC = · · · .

The area Ω of the light rectangle determined by a pair of events has an important
significance of its own, which becomes immediately evident if one notes that for
timelike separated events Ω/Ω0 is the square of the time between the events in the
frame in which the events happen at the same place, while for spacelike separated
events Ω/Ω0 is the square of the distance between the events in the frame in which
the events happen at the same time (Fig. 18).
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Fig. 19 Interval is also proportional to the area of the rhombus determined by the events

But this is precisely the definition of the squared interval I2 between pairs of
timelike or spacelike separated events. We conclude that the squared interval be-
tween any pair of events is just the areaΩ of the light rectangle determined by those
events, expressed in units of the (frame-independent) area Ω0 of the unit light rect-
angle: I2 = Ω/Ω0. (This also works for lightlike separated events, since the light
rectangle determined by such a pair degenerates to a line—the area goes to zero.)

Can we see geometrically why the squared interval is given by I2 = |T 2 −
D2|, where T and D are the time and distance between the events (according to
anybody—Alice, Bob, Carol, Dick, . . .)? This can be seen at a glance if one replaces
light rectangles by the rhombi of twice the area shown in Fig. 19.

Figure 20 shows two events P and Q and the Alice-equilocs and Alice-equitemps
on which the events lie. Alice’s time T between P and Q is the same as her time
between P and R, so T 2, the time between P and R in the frame in which they
happen at the same place is proportional to the area of the rhombus they determine.
For the same reason D2, the square of Alice’s distance between P and Q is also
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Fig. 20 Is the area of the rhombus determined by P and Q equal to the difference in areas of the
rhombi determined by R and P and by Q and R?

proportional to the area of the rhombus they determine. And the squared interval I2

between P and Q is proportional to the area of the rhombus they determine. Why
should the area of the PQ rhombus be equal to the difference in areas of the PR and
QR rhombi?

This is made evident in Fig. 21. Part (a) reproduces the construction of Fig. 20.
Part (b) combines two copies of the black triangle with the PQ and QR rhombi,
while part (c) combines the two triangles with the PR rhombus alone. But the two
quadrilaterals in (b) and (c) are easily verified to be identical in size and shape, so
they therefore have the same area. (One can also, of course, reach the same conclu-
sion using light rectangles, but this is the more beautiful way to see it.)

Here is an important application of light rectangles in three spatial dimensions.
There is a wonderful way to measure the interval between two events P and Q using
only light signals and a single clock. Alice moves uniformly with her clock, and
both of them are both present at event P. Bob is present at event Q. When P happens
Alice’s clock reads T0. When Q happens, Bob sees Alice’s clock reading T1. When
Alice sees Q happen, her clock reads T2. The squared interval between P and Q is
given by I2

PQ = |(T1 −T0)(T2 −T0)|.
Light rectangles provide an elegant proof of this. Since a point (event Q) and

a line (Alice’s trajectory) determine a plane, and since all the relevant photon tra-
jectories lie in that plane, we can capture the situation fully with a 2-dimensional
space-time diagram.

In Fig. 22 the events P and Q are timelike separated. (Note, by the way, how trans-
parently the diagram conveys the procedure compared with the verbal description
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Fig. 21 Why the squared interval is |T 2 −D2|

I gave above.) Alice’s small light rectangle determined by her clock reading T1 and
T0 is scaled down (in both dimensions) by a factor f from her big light rectan-
gle determined by her clock reading T2 and T0 The light rectangle determined by
P and Q has an area ΩPQ that is smaller than the area Ω20 of Alice’s big light
rectangle by a factor f , but larger than the area Ω10 of Alice’s small light rectan-
gle by a factor 1/ f . So its area is the geometric mean of the areas of Alice’s two
light rectangles: Ω2

PQ = Ω20Ω10. Since I2
PQ = ΩPQ/Ω0, (T2 −T0)2 = Ω20/Ω0, and

(T1 −T0)2 = Ω10/Ω0, we have established the desired relation. (You can make the
argument even simpler, but less symmetric, by noting right away that the factor f is
just T1−T0

T2−T0
.)

Exactly the same argument works for spacelike separated events, so I give the
accompanying Fig. 23 without further comment.

Finally, there is the question of how to extend the whole procedure to cases
where more than a single spatial dimension comes nontrivially into play. The fig-
ures, of course, become harder to draw on a page and their geometric transparency is



Plane Geometry in Spacetime 343

Alice and
her clock

fb

b

a
fa

Bob

T2

T0

T1

P

Q

Fig. 22 Measuring the interval between timelike separated events

Alice and
her clock

fb
fa

a

Bob

b

Q

P

T2

T1

T0

Fig. 23 Measuring the interval between spacelike separated events

considerably diminished, but there is an important point to be made. Let Alice add
a second spatial dimension perpendicular to the plane of the planar diagrams we
have been examining. Every two-dimensional slice of her new three-dimensional
diagram parallel to the original diagram has, of course, exactly the same structure.
Her equitemps expand into equitemporal planes, perpendicular to her slices. Her
equilocs remain lines, parallel to her earlier equilocs, but now lying in any of the
slices. Everything is as it was before for motion within a slice, but now she can
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Fig. 24 A plane slice of Alice’s 3-dimensional diagram in which the line from P to R is an Alice-
equiloc. According to Alice events P and R are 1 ns apart

describe motion with a component perpendicular to the slices. Bob, Carol, and Dick
are no longer constrained to move within one of Alice’s slices but for reasons of
spatial isotropy, their own slices ought to retain all the features we found before.
In particular oppositely moving photon trajectories in their slices should also be
perpendicular and thus their photon trajectories through any point should lie on the
same right circular cone as Alice’s.

Alice, on the other hand, must agree that photons move a foot in a nanosecond,
even when they move out of the plane of her diagram, and it is this combination of
spatial isotropy and the constancy of the speed of light, that determines Alice’s scale
factor for her slices.

Figure 24 shows a single one of Alice’s slices—a plane diagram of just the kind
we have been considering. The points P and R on Alice’s equiloc represent events
one ns apart, so the length of the line segment PR is just Alice’s scale factor μ .
A photon trajectory through P and Q is also shown. In the full three dimensional
diagram the trajectories of other photons through P will fill up the right circular
cone given by rotating the line PQ about the vertical line PX . The lengths of the two
sides of the triangle PXR in terms of the angle θ = 1

2Θ between Alice’s equiloc and
the photon trajectory are as indicated.

We wish to determine σ , the distance in Alice’s three-dimensional diagram be-
tween slices containing events separated by 1 f in the new perpendicular direction.
We can do this by considering a second photon originating at P whose motion is
only in the direction perpendicular to Alice’s slices. Its trajectory must therefore lie
on the equilocs given by displacing the equiloc PR in the perpendicular direction.
After 1 ns the second photon will be represented by the point on its trajectory that
intersects the slice of Alice’s diagram a distance σ from the slice in Fig. 24. That
point must represent an event 1 ns after the event represented by P, and it therefore
lies on the equitemporal plane perpendicular to the slices passing through R.
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Fig. 25 Alice’s scale factor σ

This whole three-dimensional situation is pictured in Fig. 25. The plane slice
containing the points P,Q, and R is reproduced in the figure (along with the equi-
loc and photon trajectory it contains). The second plane slice, a distance σ away,
contains points S,T, and U , which are just the displacements of P,Q, and R in the
perpendicular direction. The line RU lies within an equitemporal plane. The trajec-
tory of the second photon goes from P to U and lies in the plane PRUS. Since the
events P and U in the history of the second photon are a nanosecond apart, the event
U is a foot away from the event R, so the distance in the diagram from point R to
point U is indeed the perpendicular scale factor σ .

Both photon trajectories must lie on the right circular cone through P (whose
intersection with the plane PRUT is indicated by the circular arc through Q and U).
Since PX is the axis of that cone, the lengths of the lines XQ and XU must be the
same. The length of the XQ is μ cos(π/4− θ), while XU is the hypothenuse of a
right triangle with sides σ and μ sin(π/4− θ). Therefore σ2 + μ2 sin2(π/4− θ)
=μ2 cos2(π/4−θ), so σ2 = μ2 cos(π/2−2θ) = μ2 sin(2θ) = μ2 sinΘ = μλ .

Thus the out-of-plane scale factor σ is just the geometric mean of the in-plane
scale factors μ and λ . Since the product μλ is the same for all observers, we have
produced what has to be the world’s most difficult demonstration that “y′ = y,z′ = z”.
I regard this as a fitting punishment for one who began this essay by boasting of his
ability to make complicated matters simple.
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Some Philosophical Remarks

Although I remember firmly declaring at the age of 25 that I planned to spend my
declining years as a philosopher, and although I cannot imagine an occasion more
appropriate for such meditations, I will be extremely brief and may well deny ever
having said what follows. I emerge from these exercises thinking that:

1. The raw material of our experience consists of events.
2. Events, by virtue of being directly accessible to our experience, have an unavoid-

ably classical character.
3. Space and time and spacetime are not properties of the world we live in, but

concepts we have invented to help us organize (classical) events.
4. Notions like dimension or interval, or, to look beyond the story I tell here, cur-

vature or geodesics, are not properties of the world we live in, but of the abstract
geometric constructions we have invented to help us make sense of events.

5. When I hear that spacetime becomes a foam at the Planck scale, I don’t reach
for my gun (because I haven’t any) but I do wonder what this has to do with
(classical) events.

6. Alice knows not to confuse her diagrams with the events they help her describe.
Do we?

7. Is the difficulty in reconciling quantum mechanics with general relativity better
regarded as another aspect of the “measurement problem”?
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The Transient nows

Steven F. Savitt

Abstract It is often claimed that features of the spacetime of special relativity are
inimical to the passage of time. In opposition to this view, I show how the passage
of time is to be understood in Minkowski spacetime. A (local, specious) present is
construed as an open set in the Alexandroff topology and the passage of time is a
succession of presents along a timelike curve. Temporal becoming is a local, rather
than a global, phenomenon.

I offer some motivations for the view I propose, and I consider five objections
that might be raised against it. For instance, one general objection to the notion of
the “flow” or passing of time is that one can not answer the natural question ‘How
fast does time “flow” or pass?’ I claim that Minkowski spacetime provides a natural
answer to this question.

In his “Intellectual Autobiography” the philosopher Rudolf Carnap [1, p. 37] de-
scribed a conversation he had with Albert Einstein at the Institute for Advanced
Study in the early 1950s:

Once Einstein said that the problem of the Now worried him seriously. He explained that
the experience of the Now means something special for man, something essentially different
from the past and the future, but that this important difference does not and cannot occur
within physics. That this experience cannot be grasped by science seemed to him a matter
of painful but inevitable resignation.

Other distinguished scientists have had similar qualms. Hermann Weyl [2, p. 116]
wrote:

The objective world simply is, it does not happen. Only to the gaze of my consciousness,
crawling upward along the life line of my body, does a section of this world come to life as
a fleeting image in space which continuously changes in time.
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Weyl is taken to be claiming that the “objective world” lacks passage, temporal
becoming, or transience, a phenomenon that is merely subjective. P. C. W. Davies
[3, p. 21] endorses this view forthrightly:

The four dimensional space-time of physics makes no provision whatever for either a
‘present moment’ or a ‘movement’ of time . . .. Rather than thinking in terms of a suc-
cession of experiences by a particular particle, we must instead deal with its entire world
line in four dimensions; in the words of H. Weyl ‘the objective world simply is, it does not
happen.’

Finally Carlo Rovelli wrote, “[T]he notion of present, of the ‘now’, is com-
pletely absent from the description of the world in physical terms” [4]. These
views, expressed by distinguished scientists, are philosophical views and so open
to philosophical examination. What I hope to do in this paper is show that there is a
viable alternative picture to these views, a picture that includes, in some sense, a now
and the passage of time. I cannot, like Einstein, talk about what can be grasped by
‘science’ or by ‘physics’. I hope I can talk, coherently and persuasively and philo-
sophically, about one small bit of physics, the special theory of relativity, and the
treatment of time in Minkowski spacetime.

1 Closing the Circle

It is useful to begin with Carnap’s response [1, pp. 37–38] to Einstein’s problems
with the Now:

I remarked that all that occurs objectively can be described in science; on the one hand the
temporal sequence of events is described in physics; and, on the other hand, the peculiari-
ties of man’s experience with respect to time, including his different attitude towards past,
present, and future, can be described and (in principle) explained in psychology. But Ein-
stein thought that these scientific descriptions cannot possibly satisfy our human needs . . ..
I definitely had the impression that Einstein’s thinking on this point involved a lack of dis-
tinction between experience and knowledge. Since science in principle can say all that can
be said, there is no unanswerable question left. But though there is no theoretical question
left, there is still the common human emotional experience, which is sometimes disturbing
for special psychological reasons.

Carnap was the quintessential anti-metaphysician, and it is very tempting, for
those of us who are similarly inclined, to agree with the sentiment that after all that
Carnap says can be objectively described is described (“the temporal sequence of
events” on the one hand, and “the peculiarities of man’s experience with respect to
time” on the other), then there is nothing left to be said. What I have been led to see
by reading Abner Shimony is that there is something important left out, something
left to be said. What is left out is an account of the relation between these two.

That, at least, is my way of construing the implications of his program of “closing
the circle”, a way of doing philosophy (or, at least, metaphysics and epistemology)
that Shimony traces back to Aristotle and that lets him, in his version of it, stake



The Transient nows 351

out a position in opposition to the later Putnam and van Fraassen in the battle over
realism. Here’s his capsule description [5, p. 40]:

The program [of closing the circle] envisages the identification of the knowing subject (or,
more generally, the experiencing subject) with a natural system that interacts with other
natural systems. In other words, the program regards the first person and an appropriate
third person as the same entity. From the subjective standpoint the knowing subject is at
the center of the cognitive universe, and from the objective standpoint it is an unimportant
system in a corner of the universe.

This program guides his discussion of realism. I suggest that the program can
be adapted to the philosophy of time as well, in the form of the following slogan:
Philosophy of time should aim at an integrated picture of the experiencing subject
with its felt time in an experienced universe with its spatiotemporal structure. This
rationale underlies and shapes the picture of time in Minkowski spacetime that I will
sketch in the rest of this paper.1

Shimony’s summary statement of the nature of closing the circle is followed by
a particularly elegant diagnosis of what goes wrong in an unbalanced discussion:

If either the subjective or the objective aspect of the knowing subject is played down, or if
the substantial identity of their two aspects is neglected, then the problem . . . is flattened,
or—to use quasimathematical language—it is projected into a subspace of smaller dimen-
sionality than it deserves. [5, p. 40]

This last remark exactly captures my feeling as to what is wrong with contempo-
rary discussions of time. Many analytic philosophers concentrate single-mindedly
on the subjective side of time and find nothing more to it than the Now. Others, like
the three scientists I quoted at the beginning of this talk, look first to the spacetime
of physics and cannot find a Now at all. I think we will only begin to do justice to
time (and all I can hope to do here is to begin to do justice to it) if we look at both
sides and at the hitherto missing connection between them—if, that is, we try to
close the circle.

2 What Transience is Not

The first step towards finding relativistic notions of the Now and transience (the
passage, flow, or lapsing of time) must be elucidation of the classical notions. The
classical Now is straightforward and not controversial. A classical Now is a global

1 I would be remiss, however, if I did not mention that my views are everywhere shaped by those
of two additional thinkers. The first is Howard Stein, a friend of Shimony’s, whose papers on time
in relativity theory are beacons of light in dark waters, and C. D. Broad, a British philosopher of
the generation before them.
I am also indebted to Richard Arthur, Craig Callender, Carl Hoefer, and Wayne Myrvold for helpful
discussions and suggestions as the paper evolved. Arthur was a pioneer in directing attention to
what I now call Alexandroff presents. In addition, I have received individual support from the
Social Sciences and Humanities Research Council, but participation in the TaU cluster, which
SSHRC supports, has provided valuable opportunities to engage with others on the topics of this
paper.
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hypersurface of simultaneous events. Any given event, if idealized as having no
duration, is contained in precisely one such global hypersurface, its Now. These
global hypersurfaces foliate spacetime into equivalence classes that are mutually
exclusive but exhaustive Nows.

Transience is the successive occurrence of these global hypersurfaces. As Kurt
Gödel [6, p. 558] put it succinctly:

The existence of an objective lapse of time . . . means (or, at least, is equivalent to the fact)
that reality consists of an infinity of layers of “now” which come into existence successively.

If the “objective” lapsing of time requires frame- or observer-independent hy-
perplanes of simultaneity, then Gödel is right that there is no lapsing of time in
Minkowski spacetime.

Gödel then presents the well-known argument that this global version of tran-
sience runs into insurmountable difficulties if transferred to a special relativistic
setting:

But, if simultaneity is something relative in the sense just explained,2 reality cannot be split
up into such layers in an objectively determined way. Each observer has his own set of
“nows,” and none of these various systems of layers can claim the prerogative of represent-
ing the objective lapse of time. (ibid.)

There is a variant of this argument that appears in recent paper by Dennis Dieks
that I find very suggestive. Dieks argues (1) that the experiences of observers are of
such short duration and occupy such a small amount of space that they can, without
loss, be idealized as point-like, (2) amongst these experiences are those that con-
vince us that time flows or passes, and (3) given the upper limit of speed of prop-
agation of causal signals, so that no event spacelike separated from a given event
can influence it causally, it follows that (4) the human experiences that suggest at
any event e in the history of an observer that time flows are invariant under different
choices of global hypersurface containing e. [7, Section 1]

The moral I draw from Dieks’ argument is, at this point, conditional. If there is
such a thing in special relativity theory as the passage of time and if it is to relate
to the experiences of creatures like us in spacetime, then global hypersurfaces are
irrelevant to it. This conclusion is deeply shocking to common sense metaphysics,
since global Nows permeate pre-relativistic thinking about time. It is difficult to
think about time without them, yet David Mermin has reminded us recently that
special relativity is a radical theory [8, p. xii]. “That no inherent meaning can be
assigned to the simultaneity of distant events is the single most important lesson to
be learned from relativity.” Time, we must learn, is not spread through space.

So far my argument is conditional and negative. If there is such a thing as tran-
sience countenanced in Minkowski spacetime, it won’t be the successive occurrence

2 “The very starting point of special relativity theory consists in the discovery of a new and very
astonishing property of time, namely the relativity of simultaneity, which to a large extent implies
that of succession. The assertion that the events A and B are simultaneous (and, for a large class of
pairs of events, also the assertion that A happened before B) loses its objective meaning, in so far as
another observer, with the same claim to correctness, can assert that A and B are not simultaneous
(or that B happened before A).” [6, p. 557].



The Transient nows 353

of global hypersurfaces. Transience, if such there be, would have to a local rather
than a global notion. But is there such a thing, relativistically, as transience? It is
time, I submit, to turn to poetry.

3 Time Goes, You Say?

Consider the following clever couplet from Henry Austin Dobson [9]:
Time goes, you say? Ah no!
Alas, Time stays, we go. . .
I hope that you have the same two-fold reaction to this verse that I do. First, one’s

attention is drawn from the transience of time to the transience of self, as Dobson
intended. But then I hope you ask yourself, “Is there really a difference here? Isn’t
this a cheat, some poetical slight-of-hand or misdirection?”

I think it is. I believe that there is no difference between our going and time’s
going, no difference (that is) between ordered events or objects moving in or through
time and time’s moving along or by ordered but static events or objects, no differ-
ence (that is, again) between on the one hand future events “approaching” us, be-
coming present, and then “receding” from us into the past or, on the other hand, our
leaving the past ever further behind as we “move” into the future. The “motion” is
relative to whichever of the two, time or objects, one chooses to think of as “static”,
and one may choose either.

I do not think that it useful to try to understand the passage of time as a kind
of motion, since motion has to be understood as change of position through time.
Nevertheless, I think the point of the previous paragraph is general. If there is a way
to make sense of the passage of time (and it is a notoriously difficult idea to make
sense of in any terms), then in whatever terms prove successful there will be only a
verbal difference between (on the one hand) speaking of time’s passing or “going”
and our remaining still and (on the other hand) speaking of our going or progressing
through a “static” time.

This point may seem innocuous, but when combined with the idea of the last
section that special relativity constrains one to construe transience locally rather than
globally, the resulting point of view is anything but commonplace. Let us reconsider
in this new light, for instance, the supposedly anti-passage remark of Weyl cited
earlier in the paper:

The objective world simply is, it does not happen. Only to the gaze of my consciousness,
crawling upward along the life line of my body, [emphasis added] does a section of this
world come to life as a fleeting image in space which continuously changes in time.

Is there a difference between my consciousness “crawling” along my world line
(on the one hand), as opposed to my consciousness being static but time itself “pass-
ing” along my world line? If not (as we have agreed), then Weyl cannot simply be
read as a partisan of a static universe, as Davies does. Weyl can also be read as a
proponent of the local passage of time.
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Perhaps I am taking advantage of an unfortunate turn of phrase to misconstrue
Weyl. Perhaps. But note that in one other famous remark of Weyl’s on time the same
phrasing recurs.

However deep the chasm may be that separates the intuitive nature of space from that of
time in our experience, nothing of this qualitative difference enters into the objective world
which physics endeavours to crystallize out of direct experience. It is a four-dimensional
continuum which is neither “time” nor “space”. Only the consciousness that passes on in
one portion of this world [emphasis added] experiences the detached piece which comes to
meet it and passes behind it, as history, that is, as a process that is going forward in time
and takes place in space. [10, p. 217]

Suppose, then, that Weyl can be read as backhandedly legitimizing the local pas-
sage of time. Is there a local structure that can support such a notion of transience?
If the program of closing the circle is to be our guide and if that program starts
with the experiencing subject, then we must immediately note that this subject, as
a physical system in spacetime, is represented by a timelike curve. The program
of closing the circle suggests, then, that we look to timelike curves. If classical
transience is the successive occurrence of global Nows, perhaps special relativistic
transience is the successive occurrence of local nows along a timelike curve. But
what can a local now be?

4 Interlude

Before proceeding further, it will be useful to be a bit more explicit about a few
matters. For instance, I will consider the special theory of relativity to be the theory
developed in the early chapters, especially chapters 4 and 5, of Hartle [11].3 The
setting of the theory is a four-dimensional real vector space, R4, along with a metric
to endow it with geometric structure. We can indicate points in R4 by using four
coordinates, suggestively labeled (t,x,y,z), and we can define a spacetime “distance”
function on pairs of points (t0,x0,y0,z0) and (t1,x1,y1,z1) in R4 as

(ΔS)2 =−(Δt)2 +(Δx)2 +(Δy)2 +(Δz)2, (1)

where Δt = t1 – t0, etc. Hartle shows that, given the Principle of Relativity (“Iden-
tical experiments carried out in different inertial frames give identical results.”), the
quantity (ΔS)2 does not change when one switches from the coordinates of one iner-
tial frame to those of another. Since the directed line segment from (t0,x0,y0,z0) to
(t1,x1,y1,z1) is a vector, one can use the invariant quantity of spacetime distance to
divide vectors at (t0,x0,y0,z0) (or any other point in the spacetime, for that matter)
into three kinds:

1. Those for which ΔS2 > 0, the spacelike vectors
2. Those for which ΔS2 = 0, the null vectors
3. Those for which ΔS2 < 0, the timelike vectors

3 In some places I will appeal to Naber [12] for mathematical notions that do not appear in Hartle’s
presentation.
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Equation (1) is often written in the infinitesimal form:

ds2 =−dt2 +dx2 +dy2 +dz2. (2)

When discussing timelike vectors and time, it is convenient to multiply Eq. (2)
by −1, in order to change the negative quantities. The result is written

dτ2 = dt2 −dx2 −dy2 −dz2. (3)

The quantity ‘τ’ is known as proper time.
We will call the set R4 with a (Lorentz) metric like Eq. (2) Minkowski spacetime,

M. If we choose a point p ∈ M, the set of points whose spacetime distance from
p = 0 comprise the (exterior of ) the null cone at p. A curve through a set of points
that is inside the null cone of any point that it goes through is a timelike curve. The
histories or careers of ordinary objects (like us), whose rest mass is greater than 0,
are to be represented by timelike curves (world lines) in M.

Timelike curves or world lines can be parameterized by proper time, τ. We can
define proper time lengths between two points A and B on a timelike line, τAB as:

τAB =
∫ B

A
dτ =

∫ B

A
[dt2 − (dx2 +dy2 +dz2)]1/2. (4)

If we choose some point on the timelike line and assign it proper time 0, then we
can define the proper time function along the timelike line by:

τA = τ0A (5)

From Eq. (4) one can easily derive a useful relation between proper time τ and
coordinate time t:

τAB =
∫ τB

τA
dt[1−−→

V
2
(t)]1/2, (6)

where
−→
V is a three-dimensional velocity vector.

In order to do physics properly and relativistically in M we must have four-
dimensional quantities or four-vectors. For instance, the four-velocity u of a moving
object is:

u = (dt/dτ,dx/dτ,dy/dτ,dz/dτ), (7)

where boldface type is used to distinguish four-vectors. One can then go on to define
four-acceleration and the relativistic analogs of Newton’s laws in order to do special
relativistic dynamics.

It will be useful to note here one further fact. Suppose that we write

u ·u =− dt2

dτ2 +
dx2

dτ2 +
dy2

dτ2 +
dz2

dτ2 =
ds2

dτ2 =−1. (8)

Then we see that, for any massive particle or object, its velocity four-vector is a
timelike vector of unit length, since the length of a timelike four-vector is

√
−u ·u.
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Since speed is the length of the velocity vector, we have the odd result that all
massive objects have the same speed in spacetime, 1.

5 Now, now

To return to the main line of argument, we now know what a timelike line is. In
addition, in my characterization of transience as the successive occurrence of events
on a timelike world line, I am supposing that we know what it means for one event
to occur after another. I am, therefore, supposing not only that our timelike curves
occur in a temporally orientable manifold, but also that one of the orientations has
been chosen as future (and the other as past). I do not know how this orientation is
selected. Perhaps the choice is based on some asymmetry amongst the fundamental
laws of physics, but that is a (deep) problem for another day. I will assume that an
orientation is given.4

Recall the way I understand “closing the circle” in thinking about time:
Philosophy of time should aim at an integrated picture of the experiencing subject with its
felt time in an experienced universe with its spatiotemporal structure.

If we begin with the experiencing subject, we notice that its present is not point-
like; it is extended. We experience the whole of a spoken sentence or a musical
phrase, for example, as occurring now.

This phenomenon has traditionally been referred to as the specious present, but
has recently come to be called the psychological present. The temporal extent of
this temporally extended present no doubt varies both inter- and intra-personally.
An eminent psychologist has told me that the specious or psychological present is
variously estimated to last from 0.5 to 3 s, and I will fix on a middling value of 1 s
for the sake of convenience in this discussion.5 Extending the present opens up new
possibilities, as we shall see.6

Suppose that we parameterize the timelike curves in Minkowski spacetime M
with proper time (as characterized in the preceding section). Suppose also that we
choose two events, e1 and e2 (with e1 earlier than e2) that are 1 s apart on a timelike
curve, λ. Call the set of events in the intersection of the interior of the future light
cone of e1 with the interior of the past light cone of e2 ALEX (e1, e2).7 Here is a
picture of this set of events, taken from [14, p. 156].

4 Tim Maudlin [13] defends passage in Minkowski spacetime, but he takes the notion as basic or
primitive and uses it to select an orientation as future.
5 There is a recent account of the specious present in [15, chapter 4]. This chapter contains useful
references, but I think that the account of the specious present in chapter 35 of Broad [16] is not
adequately represented.
6 I would like to emphasize from the outset that considering an extended present makes neither the
present, as I characterize it below, nor the passage of time subjective. Once τAB is fixed, the present
for such an interval is an invariant open subset of Minkowski spacetime.
7 These open sets are elements of the Alexandroff topology for M discussed in [14, Section 3].
Winnie calls them Alexandroff intervals, and I will call them Alexandroff presents.
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I propose that ALEX (e1, e2) is the present for the interval from e1 to e2 along
λ .8 If the passage of time or transience pre-relativistically is a succession of world-
instants or Nows, then its relativistic successor concept must be the succession of
presents (in the sense of ALEX (e1, e2)) along a timelike curve λ .

I would like to point out three advantages of this proposal. The first advantage
applies not just in Minkowski spacetime but in any general relativistic spacetime that
is stably causal—i.e., one that admits a global time function t: M→R, which in turn
means that for all distinct events p, q ∈ M, if p � q (that is, if there is a smooth,
future-directed timelike curve from p to q), then t(p) < t(q). In such a spacetime if
e′ ∈ ALEX (e1, e2), then t(e1) < t(e′) < t(e2). If one defines a present or now based
on an interval [e1, e2], then one surely would want it to meet this condition.

One reasonable demand on a scientific successor concept to a previous scientific
concept or even to a folk concept is that it explains why the earlier concept is as use-
ful or salient as it is. The explanation on offer for our commonsense or Newtonian
notion of the present as the universe-at-an-instant is inspired by section V of [18].
Stein there observes that in a psychological present “light travels a spatial distance
that bears a very large ratio to the spatial extent of our bodies or of ordinary ob-
jects.” (p. 161) In one second, for instance, light travels in vacuo about 300,000 km,
meaning that ALEX (e1, e2), with the small proper time duration of 1 s, is 300,000
km across at its widest. In the course of human conceptual development, it would
be no more surprising that we developed the idea that this brief, fat structure was
unbounded than that we developed the idea that the surface of the earth was flat.

Nor is it surprising that we developed the idea that we share a common present.
Suppose that you walk past me at a reasonable pace of 4 km/h, that we call our
meeting e, and that we compare the volumes of your present and my present, as-
suming they are symmetric about e (that is, each present extends 0.5 s to the future

8 Throughout this discussion I represent conscious beings or “observers” as timelike world lines
rather than world tubes. Relaxing this idealization will likely greatly complicate the definitions,
if such relaxation is indeed possible. It is hoped, however, that the idealization itself is no more
inexact than Einstein’s [17, Section 1] extension of simultaneity to events “in the immediate prox-
imity” or “in the immediate neighborhood” of a clock but not to a second clock not so located with
respect to the first.
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and to the past along our two world lines. Then our two presents agree—that is, in-
clude the same events—up to about one half of one millionth of 1% (∼5×10−9).9

6 Reservations and Rejoinders

The first reservation that is apt to occur to one is that there is something arbitrary
about the claim that the Alexandroff present is the special relativistic successor of
the classical world-at-a-time. We can generate other structures by adding or deleting
from an Alexandroff present. Why not them?

Note, though, that if we consider supersets of the closure of ALEX (e1, e2), then
we must give up the first advantage that I claimed for it above. Call a superset of the
closure of ALEX (e1, e2) that is a putative present PRES (e1, e2). In a spacetime that
is oriented and stably causal, it would no longer follow that if e′ ∈ PRES (e1, e2),
then t(e1) < t(e′) < t(e2). I think such structures would lack a feature that a now
ought to have.

If we consider subsets of ALEX (e1, e2), then the one set available that is defined
invariantly is just the set of events in the intersection of ALEX (e1, e2) with the
world line λ which contains e1 and e2. I believe that this is the structure thought of
as now in [5, 7], but conceiving of the relativistic now this way forfeits the second
and third advantages that I highlighted above.

Nevertheless, this view raises a second question or challenge. As we noted above
in Section 2, Dieks [7, Sections 1–3] argues that the passage of time must be con-
strued locally. Then in Sections 4–5 he sketches of view of temporal becoming or
transience that seems more austere than the one offered here. The existence of an
event is just its happening,10 and these happenings are constrained in the temporal
dimension only by the partial ordering familiar from the special theory of relativ-
ity. There is no now and, especially, no moving now, since that (in his view) would
require “the addition of something to the four-dimensional continuum” [7, p. 21].

What has to be added, according to Dieks, is “a moving very narrow ‘window’
through which a small portion of the continuum is made visible (or ‘real’).” (ibid.)
This metaphysics is indeed suspect, even in the classical case, as I argue else-
where [19]. But the nows as I construe them are well-defined subsets of Minkowski
spacetime and are no addition to it. The nows along a timelike worldline can be
totally ordered, given the simplifying assumption of a fixed length for the psycho-
logical present, and the nows in spacetime can be partially ordered by extending
in an obvious way the usual partial ordering for the events of which they are com-
prised. Transience, along a timelike line, is just the succession of nows according
to this ordering, and Dieks is committed to this sort of “motion” no less than I. Of
course one cannot think of all the events in one now as “co-occurring” since many
pairs of events in a now—such as any two distinct points along the world line λ—are
timelike separated.

9 My thanks to Alexandre Korolev for this calculation.
10 On this point we agree, and he approvingly cites me [20] as a recent proponent of this view.



The Transient nows 359

The Shimony/Dieks view does call one’s attention to the importance of timelike
curves, along which we characterize transience. But this new focus in turn calls up
the third reservation one might have about my proposal (in fact, about mine and the
Shimony/Dieks proposal as well).

My notion of transience is local and metaphysically very austere. It may avoid the
sorts of objection that are brought against metaphysically stronger (or, as I would
say, more baroque) conceptions of passage, but it might be that in order to avoid
these objections it falls foul of a problem at the other extreme. The problem is that
one could parameterize a spacelike curve with, say, proper length. Is my notion of
transience not so weak that I am, then, committed to a parallel notion of spatial
becoming, change of length along a spacelike curve? And is this not a reductio?
There is no spatial becoming. Space does not pass, and in this way space differs
from time.

Before I try my hand at a rejoinder, I’d like to point to a line of thought that
doesn’t do the trick. It is simply to emphasize that the timelike curves along which
Alexandroff presents occur successively are timelike. Therefore, one might think,
change in this dimension is trivially change (or passage) of time. But thus far, the
‘time’ part of timelike has not been given any temporal content. Timelike vectors
are distinguished in Section 4 in the usual purely formal way in terms of the metric,
and timelike curves are those that have timelike tangent vectors. It’s true that the
signature of the metric is (1,3) and so has one distinguished dimension, but it is
difficult to see how pointing to this fact will help with objection raised here.

Nevertheless, I do think there is a cogent response, and I was led to it by thinking
about closing the circle—about finding a connection between our experience of time
(as crude clocks) and timelike worldlines. The connection is typically left implicit in
discussions of special relativity, but it is explicitly stated in mathematically complete
characterizations of the theory. It is the clock hypothesis, and one can find it stated
in [12, p. 52]:

If α : [a,b] → M is a timelike worldline in M, then L(α) [my τAB above] is interpreted as
the time lapse between the events α (a) and α (b) as measured by an ideal standard clock
carried along by the particle whose world line is represented by α.

These standard clocks are ideal in that they continue to register proper time even
though accelerated and hence subject to forces.11 But these clocks are idealiza-
tions of the clocks around us and, even more so, of ourselves, since we are crude
clocks (as any of us who have traveled across more than two time zones have been
made aware). It is through clocks, and as clocks, that we experience time. Timelike
curves are connected to ideal clocks via the clock hypothesis, and ideal clocks are
an idealization of real clocks. These connections show why timelike lines are indeed
timelike and why the succession of nows along a timelike curve should count as an
idealized version of the passage of time.

There is no similar spatial phenomenon (as the objector noted above) and so no
connection from spacelike curves to it through any parallel or analogous hypothesis.

11 Herein could lie a long and fascinating digression. See [21, Section 6.2.1].
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That is why there is no spatial becoming, no transient here, even though spacelike
curves can be parameterized too.

Another (fourth) problem that is often raised to accounts of transience is this: if
time is supposed to “pass”, then it must make sense to ask how quickly it passes. Yet,
it is objected, there is no sensible answer to this question. Consider, for example,
Price’s presentation [22, p. 13] of this “stock objection” to the so-called “block
universe” view of time:

[T]he stock objection is that if it made sense to say that time flows then it would make sense
to ask how fast it flows, which doesn’t seem to be a sensible question. Some people reply
that time flows at one second per second, but even if we could live with the lack of other
possibilities, this answer misses the more basic aspect of the objection. A rate of seconds
per second is not a rate at all in physical terms. It is a dimensionless quantity, rather than a
rate of any sort. (We might just as well say that the ratio of the circumference of a circle to
its diameter flows at π seconds per second!)

I think there are two ways of meeting this objection. The first is a “bite the bullet”
strategy. One of the things we learn from the four-vector formulation of special
relativity, as we saw above in Section 4, is that all massive objects move through
spacetime with speed 1. That is, the velocity four-vector u of all such objects has
length –1, and the absolute value of this length is a speed.12 This result holds for
an object in its rest frame, when it is not moving through space at all. There is
only one dimension left in which it has this speed, then, the temporal dimension.
If these objects move through time with speed 1, however, then our anti-Dobsonian
argument ensures that we can equally well say that, for these objects, time passes
with speed 1.

Does this make sense? Maudlin [13] has a heroic argument that it does. Consider
by way of analogy, he says, exchange rates. The exchange rate for the US dollar
might be (say) $1.10 Canadian dollars per US dollar but only 0.7 Euros. What is the
exchange rate for the US dollar itself ? One US dollar per US dollar, of course. Isn’t
this limiting rate a valid exchange rate? The why isn’t 1 s per s a valid “flow” rate?

In addition, one can point out that in many standard presentations of the spe-
cial theory, time is given by ct, a distance. Speeds are dimensionless when time is
indicated this way, and this result has not been perceived as problematic.

There is another, and perhaps subtler, way to look at this matter. N. David
Mermin deduces from the invariance of the spacetime interval that for any massive
object13

(T0/T)2 +v2 = 1, (9)

where T0 is proper time, T is coordinate time in a fixed frame, and v2 is velocity
squared. Then he comments:

Now a stationary clock moves through time at 1 nanosecond [of proper time] per nanosec-
ond [of frame or coordinate time] and does not move through space at all. But if the

12 See [11, Section 5.2].
13 That is, the events for which Mermin considers the interval must be timelike separated, since
one clock can be present at each. Mermin has told me that his discussion was inspired by Greene
(1999) [23, p. 47–51].
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clock moves through space—i.e. the larger v is—the slower it moves through time—i.e.
the smaller T0/T is—in such a way as to maintain the sum of the squares of the two at 1. It
is as if the clock is always moving through a union of space and time—spacetime—at the
speed of light. If the clock is stationary then the motion is entirely through time (at a speed
of 1 nanosecond per nanosecond) [14, p. 86].

This second strategy for meeting the objection does provide a genuine ratio of
one quantity to another in order to make a rate of transience or passage. In the
classical case, this strategy is disastrous. Introducing a second temporal dimension
re-raises the question of its “flow” and so leads to an infinite regress of temporal
dimensions. The two kinds of time are already in the special theory, however. No
new time dimension has to be added in order to solve the problem of transience, nor
do both of the time dimensions have to “flow”.

In fact, in my view transience is to be found in proper time, rather than coordinate
time, and I would prefer to work with the reciprocal of the ratio in Eq. (9). In this
case, one would have to think of (coordinate) time as speeding up as an object’s
spatial speed increased, and hence as moving clocks running faster. Mermin notes
this [14, p. 163] but seems to think of coordinate time as that which passes.

The fifth and final reservation is one that is difficult to state and may prove the
most difficult to overcome. Our cognitive life seems to be structured in a very deep
way around classical Nows, around thinking in terms of the-world-at-an-instant. It
is hard to have an intuitively satisfying picture of time, of local transience, of the
sort sketched above.

We seem to have evolved to have a false picture of time for the Steinian reason
given near the end of the previous section. I note that there are similar but in some
odd way dual difficulties in understanding quantum mechanics, where features that
we took to be local turn out not to be (instead of a global structure turning out to
be, if I am right local). Perhaps these difficulties are in some deep way connected.
Perhaps it is no coincidence that a similar picture seems to underlie the following
remark of Lee Smolin, a prominent researcher in the field of quantum gravity [24,
p. 55]:

A causal universe is not a series of stills following on, one after the other. There is time, but
there is not really a notion of a moment of time. There are only processes that follow one
another by causal necessity.

A universe with local passing of time is unfamiliar to most of us, puzzling to
common sense; but it looks as if this is the picture of time we must learn to live with
if we are to understand our universe.
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Quantum in Gravity?

Michael Horne

Abstract After a review of the elementary relativistic wave function that makes
quantum fringes move, contract and adjust their probability correctly in all inertial
frames, I transform the wave function to a non-inertial frame. The non-inertial wave
function is approximate.

1 Introduction

Quantum mechanics in its original wave mechanical form gave new physics to an
old object—the particle. The new physics rests on the wave function, the complex
probability amplitude extending over space–time regions, possibly large. For exam-
ple, the wave function of a particle of definite momentum–energy is a plane wave
spread over the whole space–time. Since the plane wave probability density is a
constant over the whole space–time, it possesses no features, and hence cannot ex-
hibit motion. Only the particle has motion here. However, a superposition of two
plane waves has a density that is a new kind of object—the fringe. Fringes are pure
quantum mechanical objects with observable motions and extended features, spa-
tial and temporal, in every frame, inertial and non-inertial. To prepare the moving
fringes, I’m imagining here the ubiquitous double-slit experiment with the detec-
tion screen sliding parallel to itself and perpendicular to the fringes. Observation of
the fringes at high speed requires both high particle count rates and an area detec-
tor with fine spatial and temporal resolution, since each fringe contracts and takes
less time to pass. Theoretical description of the fringes requires relativistic quantum
mechanics, special relativity (SR) in the inertial frames and general relativity (GR)
in the non-inertial. This paper reports my attempt to set up these wave mechanical
descriptions.
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The correct fringe contraction and motion and even that the fringes move at all
must originate in the relativistic wave mechanics itself. In the first section of the
paper I review the rigorous details of how all that happens in the inertial frames.
In the second section I try to extend the wave-mechanical description of the fringe
features and motions to an accelerating frame. This takes the elements of wave me-
chanics to the edge of general relativity. Note that since I never leave flat space-time,
I never consider any “real” gravity. Thus a lengthier but more accurate title would
be Relativistic Motions of Quantum Interference Fringes in Inertial and Non-Inertial
Frames.

2 Inertial Frames

To introduce the fringe state and to show my methods, I first review some elementary
states and their Lorentz transforms. The fringe state will be a superposition of two
of these. Consider the state, phase, and density for a particle of rest mass m at rest,

ψ = eiφ (1a)

φ =−mc2t/h̄ (1b)
ρ = ψ∗ψ = 1 (1c)

In another frame where the same particle has speed u in the x′ direction, these are

ψ ′ = γ
1
2 (u)eiφ ′ (2a)

φ ′ = γ(u)m
(

ux′ − c2t ′
)

/h̄ (2b)
ρ ′ = γ(u) (2c)

The phase φ ′ follows from the fact that kx−ωt transforms to k′x′ −ω ′t ′. Then, I’ve
just inserted for k′ and ω ′ their values as functions of the transform speed. Note,
then, that the space–time transforms are not directly employed in writing φ ′; but they
entered indirectly via the proof of phase invariance. The magnitude enhancement
γ 1

2 (u) on ψ ′ is a consequence of the equation

ρ = ψ∗ψ (3)

for density and a requirement of interframe agreement on probability,

ρdx = ρ ′dx′ (4)

How can the symmetric Lorentz transform introduce an asymmetry between the
wave functions, primed and unprimed? Physically, asymmetry is allowed because
ψ is the particle at rest while ψ ′ is the same particle with speed u. Since proper
spatial interval dx in the particle rest frame contracts to dx′ = dx/γ(u) in the primed
frame, both the primed density and wave function must be enhanced to compensate
for the smaller interval. In short, the probability of finding the particle in a region
must be frame independent.
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Now consider another particle whose state in some inertial frame (primed) is a
superposition of two states (2a), one with +u and the other with −u,

ψ ′ =
1√
2
γ

1
2 (u)

(

eiφ ′+ + eiφ ′−
)

(5a)

φ ′± = γ(u)m(±ux′ − c2t ′)/h̄ (5b)

ρ ′ = γ(u)
[

1+ cos
(

φ ′+−φ ′−
)]

= γ(u)[1+ cos
(

2γ(u)mux′/h̄
)

] (5c)

This density shows the stationary fringes of interest. These are the fringes of perfect
visibility seen on the screen in an ideal double-slit experiment. The fringe width is

w′ = π h̄/γ(u)mu (5d)

Finally, transform (5a) to another inertial frame (unprimed) moving at speed +v
along the x′ axis, i.e. sliding right along the usual Young’s screen. The state, phases,
density, and fringe width are

ψ =
1√
2
γ

1
2 (v)γ

1
2 (u)

(

eiφ+ + eiφ−
)

(6a)

φ± = γ(v)γ(u)m
[

(±u− v)x−
(

c2 ∓ vu
)

t
]

/h̄ (6b)
ρ = γ(v)γ(u) [1+ cos(φ+−φ−)]

= γ(v)γ(u) [1+ cos(2γ(u)mu{γ(v) [x+ vt]}/h̄)] (6c)
w = π h̄/γ(v)γ(u)mu (6d)

The wave function ψ picks up an additional γ 1
2 (v) by the same heuristic argument as

before, except, notably, here the resting object in the original frame (here primed) is
the fringe. The phases φ± are found by the same method as the φ in (2b), i.e. evaluate
each phase function kx−ωt by inserting the correct momentum and energy values
for the new frame; again the new coordinates come along for free without direct use
of the space-time transforms. Note, however, that I have used the identities

γ
(

α+β
)(

α+β
)

= γ(α)γ(β )(α+β ) (7a)

γ(α+β ) = γ(α)γ(β )(1+αβ ) (7b)

to clear the momenta and energies of relativistic velocity addition, denoted by the
bar. These identities are derived from relativistic addition and hence from the space-
time transforms. The density ρ shows that the fringes move, contract and enhance
correctly. Since the curly bracket is the Lorentz transform of the x′ coordinate
in the fringe rest frame, the ρ could be derived directly as the transform of ρ ′,
independently of the quantum origin of the fringes. The states in this section are the
relativistic wave mechanics behind the fringes and their motion.
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Standard treatments of relativistic wave mechanics do not enhance the magni-
tudes of the wave function when transforming from the rest frame of an object
(particle or fringe), but assume that ψ ′ = ψ for all transforms. The necessary en-
hancement of the density is achieved by replacing (3) with

ρ =
ih̄

2mc2

(

ψ∗ ∂ψ
∂ t

−ψ ∂ψ
∗

∂ t

)

. (8)

If any of the above states is inserted in (8), but with enhancements omitted, the iden-
tical densities are recovered. In short, density (3) with the enhancements is exactly
equal to (8) without the enhancements.

3 A Non-inertial Frame

Equations (6) are the fully relativistic wave mechanics of fringes as seen from an
inertial frame moving through the fringes at speed v, with Lorentz transform of (5)
as foundation. Now imagine a frame moving through the fringes at constant proper
acceleration g, with the following transforms of (5) as foundation,

x′ = (1+ x)coshτ−1 (9)
t ′ = (1+ x)sinhτ (10)

Here the primed coordinates are those of (5), except here dimensionless instead of
conventional,

x′ =
g
c2 x′conv., t ′ =

g
c

t ′conv. (11)

and x and τ are the tentative new coordinates, also dimensionless. At the new origin,
x = 0, these equations are rigorous SR, with τ the proper time carried by a clock
riding the accelerating origin. With non-zero x, these are an attempt to hang an
extended spatial frame on the accelerating origin point and spread τ into a global
time—Fermi-Walker coordinates. Note that at τ = 0 when the new frame is at rest
everywhere, all clocks in both frames are zeroed and spatial coordinates in the two
frames match.

Some important consequences of these space-time transforms can be determined
by simply paralleling the standard SR derivation of velocity addition. First define
(dimensionless) speed in each frame,

u′ ≡ dx′

dt ′
(12)

u ≡ dx
dτ

(13)
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then take differentials of (9) and (10), employ (12) and (13), and thereby derive the
velocity relation

u
1+ x

=
u′ − v
1−u′v

(14)

Here

v ≡ dx′

dt ′

∣
∣
∣
∣
x=const.

=
t ′

1+ x′
= tanhτ (15)

is the instantaneous speed of the point in the accelerating frame coincident with the
inertial frame event x′, t ′. The (1 + x) denominator in (14) has three disappointing
effects. First it spoils what would otherwise be standard velocity addition, with a
space-time dependent speed v of the accelerating frame. Second it spoils equality
of relative speeds of the frames at coincident space-time points. To see this, insert
u′ = 0 into (14), and thereby get −(1+x)v, instead of −v, for u. Third, the valuable
identities (7), that are direct consequences of velocity addition, are not valid.

Fortunately all three are fixed if an accelerating frame clock at x keeps a new
time t, not the τ time of the origin clock, where

dt = (1+ x)dτ (16)

Then the troublesome (1 + x) denominator in (14) gets absorbed into a corrected
speed. That is, instead of (13), the correct speed u of an object in the accelerating
frame is

u =
dx
dt

=
dx

(1+ x)dτ
(17)

which fixes all three breakdowns. Equation (16) is the general relativistic (GR) effect
on clocks in an accelerated frame.

With restoration of velocity addition, equality of relative speed of the frames, and
the identities (7), the inertial frame wave function (6) can be employed here in the
accelerating frame if the space-time dependent speed v of Eq. (15) is inserted for
the constant speed v of the Lorentz transform. Integrate the GR differential relation
(16) to obtain

τ(x, t) =
t

1+ x
(?) (18)

The question mark concerning this integral will be discussed below. From (15) and
(18), the relative speed of the frames, in the non-inertial coordinates, is

v = c tanh

⎡

⎢
⎣

gt
c

1+
gx
c2

⎤

⎥
⎦ (19)

where the c is inserted to convert dimensionless speed to conventional speed and
the space–time coordinates have also been returned to conventional. Then the ac-
celerating frame wave function, phases, density and fringe width are, respectively,
Eqs. (6a), (6b), (6c), and (6d) with the substitution (19).
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4 Approximations

There is evidence, independently of the QM, that the space–time of GR has not been
adequately incorporated and that the integral (18) is the prime suspect. When the in-
tegrated τ(x, t) is inserted in the original transforms (9) and (10) and the differentials
are run again, now directly in terms of x and t, the exact relativistic velocity addition
is not recovered. As expected, the old troublesome (1 + x) denominator on the left
side of (14) does disappear, but now new small-departure-from-one factors appear
against the v and the u′v terms on the right side. This inconsistency is direct evidence
that (18) is unsound and thus that (6) with (19) inserted for v are approximations.

There is also direct quantum mechanical evidence that the wave function (6a)
with v from (19) is approximate. When the hand-inserted magnitude enhancements
are omitted and the wave function is inserted in the density (8), the density (6c),
with (19) substituted for v, is not exactly recovered. As expected, the correct en-
hancements do come down, but another troublesome small-departure-from-one fac-
tor comes down with them. This factor arises because of the time dependence in
the momenta and energies. If the time derivative operators in (8) were “blind” to
these time dependencies, the correct (6c) is recovered. I take this to be additional
evidence that the accelerated wave function is approximate.



A Proposed Test of the Local Causality
of Spacetime

Adrian Kent

Abstract A theory governing the metric and matter fields in spacetime is locally
causal if the probability distribution for the fields in any region is determined solely
by physical data in the region’s past, i.e. it is independent of events at space-like
separated points. General relativity is manifestly locally causal, since the fields in
a region are completely determined by physical data in its past. It is natural to ask
whether other possible theories in which the fundamental description of space-time
is classical and geometric—for instance, hypothetical theories which stochastically
couple a classical spacetime geometry to a quantum field theory of matter—might
also be locally causal.

A quantum theory of gravity, on the other hand, should allow the creation of
spacetimes which violate local causality at the macroscopic level. This paper de-
scribes an experiment to test the local causality of spacetime, and hence to test
whether or not gravity behaves as quantum theories of gravity suggest, in this re-
spect. The experiment will either produce direct evidence that the gravitational field
is not locally causal, and thus weak confirmation of quantum gravity, or else identify
a definite limit to the domain of validity of quantum theory.

1 Introduction

Abner Shimony’s many profound contributions to theoretical physics have greatly
deepened our understanding of the nature of physical reality. This paper is devoted
to subjects on which Abner’s work is particularly celebrated, namely the theoretical
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definition and understanding of locality and local causality and the ways in which
these properties can be experimentally tested in Nature.

General relativity and quantum theory are both impressively confirmed within
their domains of validity, but are, of course, mutually inconsistent. Despite decades
of research, there are still deep conceptual problems in formulating and interpret-
ing quantum gravity theories: we don’t have a fully consistent quantum theory of
gravity, nor do we know precisely how we would make sense of one if we did.

One initially natural-seeming possibility is to combine general relativity and
quantum theory in a semi-classical theory that couples the metric to the expectation
of the stress-energy tensor via the Einstein equations [1–3]. However, the problems
with this suggestion are well-known. In particular, if the unitary quantum evolution
of the matter fields is universal, then it would imply that the complete state of the
matter fields in the current cosmological era ought to be a superposition of many (in
fact, presumably an infinite continuum of) macroscopically distinct cosmologies.
A semi-classical theory of gravity coupled to these matter fields would imply, inter
alia, that the gravitational fields in our solar system and galaxy correspond to the
weighted average over all possible matter distributions, rather than the actual distri-
bution we observe. This would be grossly inconsistent with the observed data. It is
also contradicted by terrestrial experiment [4].

One might try to rescue the hypothesis by supposing, instead, that unitary quan-
tum evolution is not universal and that the metric couples to the expectation of
the stress tensor of non-unitarily evolving matter fields. Obviously, this requires
some explicit alternative to unitary quantum theory, such as a dynamical collapse
model [5]. It is not presently known whether such a theory can be combined with
a metric theory of gravity in a generally covariant way. An interesting related pos-
sibility is that a classical metric might be coupled to quantum matter via stochastic
equations [6, 7]: however, no consistent and generally covariant theory of this type
has yet been developed either.

I take here a possibly controversial stance. It seems to me that, because we
haven’t made any really certain progress in understanding how general relativity and
quantum theory are unified, we should take more seriously the possibility that the
answer might take a rather different form from anything we’ve yet considered. On
this view, even apparently rather basic and solid intuitions are worth questioning: if
an intuition can be tested experimentally, and we can unearth a sliver of motivation
for speculating that it might possibly fail, we should test it.

2 Gravity, Local Causality and Reality

2.1 Sketch of Experiment

Before getting into technicalities, let me summarise the proposed experiment.
We start with a standard Bell experiment, carried out on an entangled pair of

elementary particles, in which the measurement choices and measurement outcomes
on both wings are spacelike separated.
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The choices and outcomes are then amplified to produce distinct local gravita-
tional fields, on both wings. This amplification can be carried out by any practical
means, for example by recording the choice and outcome on each wing in an elec-
tronic signal, and feeding this signal into a circuit connected to a device that moves
a macroscopic quantity of matter to one of four possible macroscopically distinct
configurations. Note that this amplification need not necessarily maintain quantum
coherence.

These gravitational fields produced are then directly measured, by observing their
influence on small masses in the relevant region, for example by Cavendish ex-
periments. This is done quickly enough that the region A2, in which the amplified
gravitational field on wing A is measured, is spacelike separated from the region
B1 in which the Bell measurement choice on wing B was made, and similarly A1
is spacelike separated from B2. The results of these measurements are recorded and
compared, to check whether they display the correlations which quantum theory
predicts for the relevant Bell experiment.

2.2 Standard Expectations and Why They Should Be Tested

Almost all theoretical physicists would, I think, fairly confidently predict that any
experiment of this type will indeed produce exactly the same non-local correlations
as those observed in standard Bell experiments. What I want to argue is that there
are some coherent—although of course speculative—theoretical ideas which would
imply a different outcome, and that these provide scientific motivation enough to
justify doing the experiment. To justify this, one needn’t argue that the standard
expectation is likely to be wrong (indeed, I think it’s very likely right). One need
only argue that there are some alternative lines of thought which have some non-
negligible probability of being closer to the truth.1

2.2.1 One Possible Motivation

One view of quantum theory, advocated by Bell and taken seriously by many, is
that the theory is incomplete without some mathematical account of “beables” or
“elements of reality” or “real events”—the quantities which, ultimately, define the
sample space for quantum probabilities, i.e. which are the things which quantum
probabilities are probabilities of. Most attempts to resolve this problem postulate
that the beables are at least approximately localised in space-time.

Now, a standard Bell experiment ensures that the particles in the two wings enter
detectors at space-like separated points, in a sense which we can justify intuitively

1 Obviously, there’s no precise way to quantify how likely a surprising outcome must be to make
an experiment worth doing. But to give a rough illustration, a probability of 10−5 of a surprising
answer here would seem to me more than sufficient justification for carrying out an experiment
that requires relatively modest resources.
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within the quantum path integral formalism (and more precisely in some interpre-
tations of quantum theory). But this does not ensure that any beables or real events
associated with the measurements are necessarily space-like separated. For instance,
if the beables or real events are associated with the collapse of the wavefunction, and
if this collapse takes place only when a measurement result is amplified to macro-
scopic degrees of freedom, then the relevant question is whether these amplification
processes on the two wings take place in space-like separated regions.

Consider now:

Assumption I Bell experiments appear to produce non-local correlations, con-
sistent with the predictions of quantum theory, when the relevant beables are
time-like separated (i.e. when there is time for information about the first rel-
evant real event to propagate to the second), but not when they are space-like
separated.
Assumption II in all Bell experiments to date, the relevant beables have indeed
been time-like separated.

If both assumptions were correct, the apparent demonstration of non-locality
in Bell experiments to date would be an artefact. The assumptions may, however,
at first sight seem purely conspiratorial and completely lacking in theoretical
motivation. Surprisingly, though, it is possible to sketch an alternative version of
quantum theory which appears to be internally consistent, is not evidently refuted
by the data, and implies both I and II [8].

Now, let us extend this speculation further. It is sometimes suggested that the
solution to the quantum measurement problem is tied up with the link between
quantum theory and gravity. Consider
Assumption III to ensure that a real event (selecting one outcome and one of
the possible fields) takes place requires a measurement event whose different
possible outcomes create measurably distinct gravitational fields.

If (I–III) were all true, the gravitational Bell experiment described above would
indeed produce a different outcome from standard Bell experiments. To be sure,
taking this possibility seriously requires one to take seriously three non-standard
hypotheses. From the perspective of a firm believer in the universality of unitary
quantum evolution and in quantum gravity, each of these hypotheses might be seen
as quite implausible. It is worth stressing, though, that none of these hypotheses is
an ad hoc invention, produced specifically for the purposes of the present discussion.
Each of them has an independent motivation:

(I) results from a nonstandard but interesting way of trying to reconcile beable
quantum theory and special relativity.

(II) becomes quite plausible if one takes seriously the idea of wave function col-
lapse as a real physical process defined by explicit equations. Models, such as
those defined by Ghirardi–Rimini–Weber–Pearle [5], which have this feature
and which are consistent with other experiments tend to imply that collapse
only takes place quickly (on a scale of μs) as the measurement result be-
comes amplified to a macroscopic number of particles (of order 1017). In other
words, according to these models, collapse need not take place at all quickly
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in the photo-detectors or electronic circuits used in standard Bell experiments.
Hence, it need not necessarily be the case that there are spacelike separated
collapses in the two wings of such experiments: as far as I am aware, in all
Bell experiments to date, reasonable choices of the GRWP collapse parame-
ters would imply that no significant collapse occurs until later, after the data
have been brought together and stored.

(III) is a widely considered, if non-standard, intuition about the possible form of
a theory unifying quantum theory and gravity. It is also related to another
motivation for the proposed experiment, to which we now turn.

2.2.2 A Second Possible Motivation

Perhaps quantum theory and general relativity are unified, not via a quantum theory
of gravity, but by some theory which somehow combines a classical description of
a space-time manifold with a metric together with a quantum description of mat-
ter fields. Any such theory would presumably have to have a probabilistic law for
the metric, since it seems essentially impossible to reconcile a deterministic metric
evolution law with quantum indeterminism. That is, a fundamental law of nature
selects a four-geometry drawn from a probability distribution defined by some set
of principles, which also define the evolution of matter. Also, to be consistent with
observation to date, these principles must tend to produce spacetimes approximately
described by the Einstein equations on large scales.

Granted, we don’t even know whether there is a consistent generally covariant
theory of this form. Before dismissing the entire line of thought as thus presently
unworthy of attention, though, one should remember that we don’t know if there’s a
consistent quantum theory of gravity either. The idea of a stochastic hybrid theory,
with a classical manifold coupled to quantum matter, has some attraction, despite its
difficulties, as it suggests a possible way around some of the conceptual problems
that arise when trying to make sense of a quantum theory of spacetime.

Suppose then that we agree to take this idea as serious enough to be worth
contemplating exploring a little. Given the central role of causality in general rel-
ativity, it seems reasonably natural to consider the class of metric theories whose
axioms require the metric encode some version of Einstein causality. Such theories
would preclude the gravitational field exhibiting the type of non-local correlations
that quantum theory predicts for matter fields—and so would have surprising and
counter-intuitive features. Once again, it needs to be stressed that we neither want
nor need to argue that this is the likeliest possibility, only that it has some theo-
retical motivation and has testable consequences. In the next section we define a
local causality principle adapted to non-deterministic metric theories, and examine
its consequences.
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3 Local Causality for Metric Theories: Technicalities

One key feature on which various theories and proto-theories of gravity differ is the
causal structure of the classical or quasi-classical space-time which emerges. Bell’s
definition of local causality [9] applies to physical operations taking place in a fixed
Minkowski space-time. As Bell famously showed, quantum theory is not locally
causal. The possibility of adapting the definition to apply to theories with a variable
space-time geometry (or a variable structure of some sort from which space-time
geometry is intended to emerge) has been considered by Rideout and Sorkin [10]
and Henson [11], among others. The following definition is a modified version of
one suggested by Dowker [12].

Define a past region in a metric spacetime to be a region which contains its own
causal past, and the domain of dependence of a region R in a spacetime S to be the
set of points p such that every endless past causal curve through p intersects R.

Suppose that we have identified a specified past region of spacetime Λ, with
specified metric and matter fields, and let κ be any fixed region with specified metric
and matter fields.

Let Λ′ be another past region, again with specified metric and matter fields. (In
the cases we are most interested in, Λ∩Λ′ will be non-empty, and thus necessarily
also a past region.)

Define
Prob(κ|Λ⊥ Λ′)

to be the probability that the domain of dependence of Λ will be isometric to κ ,
given that Λ∪Λ′ form part of space-time, and given that the domains of dependence
of Λ and Λ′ are space-like separated regions.

Let κ ′ be another fixed region of spacetime with specified metric and matter
fields.

Define
Prob(κ|Λ⊥ Λ′;κ ′)

to be the probability that the domain of dependence of Λ will be isometric to κ ,
given that Λ∪Λ′ form part of space-time, that the domain of dependence of Λ′
is isometric to κ ′, and that the domains of dependence of Λ and Λ′ are space-like
separated.

We say a metric theory of space-time is locally causal if for all such Λ,Λ′,κ and
κ ′ the relevant conditional probabilities are defined by the theory and satisfy

Prob(κ|Λ⊥ Λ′) = Prob(κ|Λ⊥ Λ′;κ ′) .

4 Testing Local Causality of Metric Theories

By definition, general relativity is locally causal, since the metric and matter fields
in the domain of dependence κ of Λ are completely determined by those in Λ via
the Einstein equations and the equations of motion. If we neglect (or believe we
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can somehow circumvent) the fact that quantum theory is not locally causal (in
Bell’s original sense), it would also seem a natural hypothesis that any fundamen-
tal stochastic theory of space-time, or any fundamental stochastic theory coupling
a classical metric to quantum matter, should be locally causal. One reason for con-
sidering this possibility is that, while it admittedly seems hard to see how to frame
closed form generally covariant equations for any theory of this type, it seems par-
ticularly hard to see how to frame such equations for a non-locally causal theory. If
we allow the evolution of the metric, and hence the causal structure, at any given
point to depend on events at space-like separated points, it seems difficult to main-
tain any notion of causality, or to find any other ordering principle which ensures
that equations have a consistent solution.

However, we should not expect a quasiclassical space-time emerging from a
quantum theory of gravity to be locally causal, for the following reason. Consider a
standard Bell experiment carried out on two photons in a polarization singlet state.
For definiteness, let us say that the two possible choices of measurement on either
wing are made by local quantum random number generators, and are chosen to pro-
duce a maximal violation of the CHSH inequality [13].

We suppose that the two wings of the experiment, A and B, are fairly widely sep-
arated. Now suppose that the measurement choices and outcomes obtained by the
detectors in each wing mechanically determine one of four macroscopically distinct
configurations. To be definite, let us suppose that the Bell experiment is coupled to
local Cavendish experiments on each wing, in such a way that each of the two set-
tings and two possible measurement outcomes on any given wing causes one of four
different configurations of lead spheres—configurations which we know would, if
the experiment were performed in isolation, produce one of four macroscopically
and testably distinct local gravitational fields. Suppose also that the Cavendish ex-
periments are arranged so that the local gravitational fields are quickly tested, using
small masses on a torsional balance in the usual way. The separation of the two
wings is such that the gravitational field test on either wing can be completed in a
region space-like separated from the region in which the photon on the other wing
is detected.

A quantum theory of gravity should predict that the superposition of quantum
states in the singlet couples to the detectors in either wing to produce entangled
superpositions of detector states, and thence entangled superpositions that include
the states of the Cavendish experiments, and finally entangled superpositions of
states that include the states of the local gravitational field. Extrapolating any of
the standard interpretations of quantum theory to this situation, we should expect to
see precisely the same joint probabilities for the possible values of the gravitational
fields in each wing’s experiments as we should for the corresponding outcomes in
the original Bell experiment. As Bell [14] and Clauser et al. [13] showed, provided
we make the standard and natural (although not logically necessary) assumption
that the measurement choices in each wing are effectively independent from the
variables determining the outcome in the other wing, these joint probabilities violate
local causality in Bell’s original sense.
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We now make the further natural assumption that when, as in our proposed ex-
periment, the measurement choices are made by the outputs of the local quantum
random number generators, the choices made on each wing are independent of the
metric and matter fields in the past of the measurement region on the other wing.
Then, if κ is the region immediately surrounding the measurement choice and out-
come in one wing of the experiment, κ ′ the corresponding region for the other wing,
Λ the past of κ , and Λ′ the past of κ ′, we have

Prob(κ|Λ⊥ Λ′) �= Prob(κ|Λ⊥ Λ′;κ ′) .

Does such an experiment even need to be performed, given the impressive exper-
imental confirmation of quantum theory in Bell experiments to date? In my view, it
does.

Taking the Bell experiments to date at face value—that is, neglecting any remain-
ing possible loopholes in their interpretation—they confirm predictions of quantum
theory as a theory of matter fields when gravity is negligible. Specifically, they con-
firm predictions of quantum theory for experiments involving matter states when
those states do not produce significant superpositions of macroscopically distinct
gravitational fields.

The question at issue here is precisely how far quantum theory’s domain of valid-
ity extends. When it comes to predicting whether or not the metric is locally causal,
there is a genuine tension between intuitions extrapolated from quantum theory and
those which one might extrapolate from general relativity. Examining and testing
this question seems a very natural development of the line of questioning begun by
Einstein, Podolsky and Rosen [15] and continued by Bell [14].

Standard Bell experiments test the conflicting predictions implied by quantum
theory and by EPR’s intuitions about the properties of elements of physical reality.
EPR’s intuitions can be motivated by a combination of classical mechanics (which
suggests that the notion of an element of physical reality is a sensible one) and
special relativity (which suggests the hypothesis that an element of physical reality
has the locality properties ascribed to it by EPR). In the experiment considered here,
we again have a tension between intuitions drawn from two successful theories—in
this case quantum theory and general relativity.

5 Possible Counterarguments

But isn’t this a crazy line of thought? How could the correlations obtained from
Bell experiments possibly be altered by coupling classical devices to the detector
outputs? Is the Bell experiment supposed to know that the classical devices are
waiting for the data, and change its result because of that? Or, even more weirdly,
is the gravitational field in each wing supposed to know that the classical lumps
of matter are being moved around as the result of a Bell experiment, and change
its behaviour—violating the predictions of Newtonian gravity as well as general
relativity within a local region—because of that?
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I find it hard to accept the full rhetorical force of such objections, natural though
they are. Nature has a capacity to surprise, and surprising experimental results
sometimes have theoretical explanations which occurred to nobody beforehand. The
“common sense” view just expressed implicitly assumes, among other things, first,
that the outcomes of detector measurements in Bell experiments constitute local,
macroscopic events that in some physically meaningful sense are definite and ir-
reversible once they occur, and second, that the local gravitational fields respond
instantly to these events in the same way as they would if they resulted from iso-
lated experiments on unentangled states. These plausible propositions may very well
be given precise meaning and completely justified by some deeper understanding of
quantum theory and gravity than we currently have. Even if they don’t turn out
to have a precise and literal justification—for instance, because the fundamental
theory contains no definition of definite local events—it seems very plausible that
we nonetheless reach the right conclusion about Bell experiments and gravity by
reasoning as though they were true. However, none of this is completely beyond
reasonable doubt in the light of our current knowledge.

As we’ve already noted, there’s some independent motivation for exploring
variants of quantum theory in which definite local events are defined but in which
photo-detector measurement outcomes aren’t, so to speak, macroscopic enough to
constitute such events.

There’s also some motivation for exploring theories of quantum theory and grav-
ity in which a probabilistic law defines a locally causal classical gravitational field.
Standard reductionist reasoning would break down in such a theory—as it does,
though in a different way, in quantum theory—and the behaviour of the gravitational
field in one wing of a Bell experiment would indeed depend on the configurations
of both wings of the experiment.

What, then, are the conceivable experimental outcomes, and what would they im-
ply? One is that the violations of local causality predicted by quantum theory, and
to be expected if some quantum theory of gravity holds true, are indeed observed.
This would demonstrate that space-time is indeed not locally causal, as predicted by
quantum theories of gravity, but not necessarily by other hypotheses about the uni-
fication of quantum theory and gravity. It would thus provide at least some slight
experimental evidence in favour of the quantization of the gravitational field. It
might be argued, pace Page and Geilker [4], that this would be the first such ex-
perimental evidence, since, as noted above, Page and Geilker’s experiment tested a
version of semi-classical gravity already excluded by astronomical and cosmologi-
cal observation.

A second logical possibility is that the violations of local causality predicted by
quantum theory fail to be observed at all in this particular extension of the Bell
experiment: i.e., that the measurement results obtained from the detectors fail to vi-
olate the CHSH inequality. This would imply that quantum theory fails to describe
correctly the results of the Bell experiment embedded within this particular experi-
mental configuration, and so would imply a definite limit to the domain of validity
of quantum theory.
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A third logical possibility is that the Bell experiment correlations follow the pre-
dictions of quantum theory, but that the Cavendish experiments show gravitational
fields which do not correspond to the test mass configurations in the expected way
(or at least do not do so until a signal has had time to travel from one wing to the
other). This would suggest the coexistence of a quantum theory of matter with some
classical theory of gravity which respects local causality, but which has the surpris-
ing property that classical gravitational fields do not always couple to macroscopic
matter in the way suggested by general relativity.

In summary: although our present understanding of physics leads us to expect
the first outcome, the point at issue seems sufficiently fundamental, and our present
understanding of gravity sufficiently limited, that it would be very interesting and
worthwhile to carry out experiments capable of discriminating between some (and
of course, ideally, all) of the possible outcomes outlined above.
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Quantum Gravity Computers: On the Theory
of Computation with Indefinite Causal Structure

Lucien Hardy

Abstract A quantum gravity computer is one for which the particular effects of
quantum gravity are relevant. In general relativity, causal structure is non-fixed. In
quantum theory non-fixed quantities are subject to quantum uncertainty. It is there-
fore likely that, in a theory of quantum gravity, we will have indefinite causal struc-
ture. This means that there will be no matter of fact as to whether a particular interval
is time-like or not. We study the implications of this for the theory of computation.
Classical and quantum computations consist in evolving the state of the computer
through a sequence of time steps. This will, most likely, not be possible for a quan-
tum gravity computer because the notion of a time step makes no sense if we have
indefinite causal structure. We show that it is possible to set up a model for compu-
tation even in the absence of definite causal structure by using a certain framework
(the causaloid formalism) that was developed for the purpose of correlating data
taken in this type of situation. Corresponding to a physical theory is a causaloid, �
(this is a mathematical object containing information about the causal connections
between different spacetime regions). A computer is given by the pair {�,S} where
S is a set of gates. Working within the causaloid formalism, we explore the ques-
tion of whether universal quantum gravity computers are possible. We also examine
whether a quantum gravity computer might be more powerful than a quantum (or
classical) computer. In particular, we ask whether indefinite causal structure can be
used as a computational resource.

1 Introduction

A computation, as usually understood, consists of operating on the state of some
system (or collection of systems) in a sequence of steps. Turing’s universal com-
puter consists of a sequence of operations on a tape. A classical computation is
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often implemented by having a sequence of operations on a collection of bits and a
quantum computation by a sequence of operations on a collection of qubits. Such
computations can be built up of gates where each gate acts on a small number of
bits or qubits. These gates are defined in terms of how they cause an input state
to be evolved. A physical computer may have some spatial extension and so gates
may be acting at many different places at once. Nevertheless, we can always foli-
ate spacetime such that we can regard the computer as acting on a state at some
time t and updating it to a new state at time t +1, and so on, till the computation is
finished. Parallel computation fits into this paradigm since the different parts of the
parallel computation are updated at the same time. The notion that computation pro-
ceeds by a sequence of time steps appears to be a fairly pervasive and deep rooted
aspect of our understanding of what a computation is. In anticipation of more gen-
eral computation, we will call computers that implement computation in this way
step computers (SC). This includes Turing machines and parallel computers, and it
includes classical computers and quantum computers.

Turing developed the theory of computation as a formalization of mathemati-
cal calculation (with pencil, paper, and eraser for example) [1]. Deutsch later em-
phasized that any computation must be implemented physically [2]. Consequently,
we must pay attention to physical theories to understand computation. Currently,
there are basically two fundamental physical theories, quantum theory (QT) and
Einstein’s theory of general relativity (GR) for gravity. However, we really need
a physical theory which is more fundamental—a theory of quantum gravity (QG).
A correct theory of QG will reduce to QT and GR in appropriate situations (includ-
ing, at least, those situations where those physical theories have been experimentally
verified). We do not currently have a theory of quantum gravity. However, we can
hope to gain some insight into what kind of theory this will be by looking at QT
and GR. Causal structure in GR is not fixed in advance. Whether two events are
time-like or not depends on the metric and the metric depends on the distribution
of matter. In quantum theory a property that is subject to variation is also subject to
quantum uncertainty—we can be in a situation where there is no matter of fact as
to the value of that quantity. For example, a quantum particle can be in a superposi-
tion of being in two places at once. It seems likely that this will happen with causal
structure. Hence, in a theory of QG we expect that we will have indefinite causal
structure.

Indefinite causal structure is when there is, in general, no matter of fact as to whether the
separation between two events is time-like or not.

If this is, indeed, the case then we cannot regard the behaviour of a physical system
(or collection of systems) as evolving in time through a sequence of states defined
on a sequence of space-like hypersurfaces. This is likely to have implications for
computer science. In particular, it is likely that a quantum gravity computer cannot
be understood as an instance of a SC. In this paper we will explore the consequences
of having indefinite causal structure for the theory of computation. In particular, we
will look at how the causaloid framework (developed in [3]) can be applied to pro-
vide a definite model for computation when we have indefinite causal structure.
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Although there are compelling reasons for believing that the correct theory of QG
will have indefinite causal structure, it is possible that this will not be the case. Nev-
ertheless, in this paper we will assume that QG will have this property. There may
be other features of a theory of QG which would be interesting for the study of com-
putation but, in this paper, we will restrict ourselves to indefinite causal structure.

2 General Ideas

2.1 What Counts as a Computer?

The idea of a computer comes from attempting to formalize mathematical calcula-
tion. A limited notion of computation would entail that it is nothing more than a pro-
cess by which a sequence of symbols is updated in a deterministic fashion—such as
with a Turing machine. However, with the advent of quantum computation, this no-
tion is no longer sufficient. David Deutsch was able to establish a theory of quantum
computation which bares much resemblance to the theory of classical computation.
Given that quantum computers can be imagined (and may even be built one day) we
need a richer notion of computation. However, a quantum computer still proceeds
by means of a sequence of time steps. It is a SC. The possibility of considering time
steps at a fundamental level will, we expect, be undermined in a theory of quantum
gravity for the reasons given above.

This raises the question of whether or not we want to regard the behaviour of
a physical machine for which the particular effects of QG are important and lead
to indefinite causal structure as constituting a computer. We could certainly build a
machine of this nature (at least in principle). Furthermore, somebody who knows the
laws by which this machine operates could use it to address mathematical issues (at
the very least they could solve efficiently the mathematical problem of generating
numbers which would be produced by a simulation of this machine in accordance
with the known laws). Hence, it is reasonable to regard this machine as a computer—
a quantum gravity computer.

At this point it is worth taking a step back to ask, in the light of these consid-
erations, what we mean by a the notion of a computer in general? One answer is
that

(1) A computer is a physical device that can give correct answers to well formulated ques-
tions.

For this to constitute a complete definition we would need to say what the terms
in this definition mean. However, whatever a “well formulated question” means, it
must be presented to the computer in the form of some physical input (or program).
Likewise, whatever an “answer” is, it must be given by the computer in the form
of some physical output. It is not clear what the notion of “correctness” means.
However, from the point of view of the physical computer it must mean that the
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device operates according to sufficiently well known rules. Hence, a more physical
definition is that

(2) A computer is a physical device has an output that depends on an input (or program)
according to sufficiently well known rules.

This still leaves the meaning of the word “sufficiently” unclear. It is not necessary
that we know all the physics that governs a computer. For example, in a classical
computer we do not need to have a detailed understanding of the physics inside a
gate, we only need an understanding of how the gate acts on an input to produce an
output. There remain interesting philosophical questions about how we understand
the translation from the terms in definition (1) to those in definition (2) but these go
beyond the scope of this paper.

These definitions are useful. In particular they do not require that the computa-
tional process proceed by a sequence of steps. We will see how we can meaningfully
talk about computation in the absence of any spacelike foliation into timelike steps
in the sense of definition (2) of a computer.

It is likely that, in going to QG computers, we will leave behind many of the more
intuitive notions of computation we usually take for granted. This already happened
in the transition from classical to quantum computation—but the the likely failure
of the step computation model for a QG computer may cause the transition from
quantum to quantum gravity computation to be even more radical.

2.2 The Church-Turing-Deutsch Principle

Consider the following

The Church-Turing-Deutsch principle: Every physical process can be simulated by a
universal model computing device.

Deutsch [2] was motivated to state this principle by work of Church [4] and Turing
[1] (actually he gives a stronger and more carefully formulated version). Deutsch’s
statement emphasizes the physical aspect of computation whereas Church and
Turing were more interested in mathematical issues (note that, in his acknowledge-
ments, Deutsch thanks “C. H. Bennett for pointing out to me that the Church-Turing
hypothesis has physical significance”). We can take the widespread successful sim-
ulation of any number of physical processes (such as of cars in a wind tunnel, or
of bridges prior to their being built) on a modern classical computer, as evidence of
the truth of this principle. A principle like this would seem to be important since
it provides a mechanism for verifying physical theories. The physical theory tells
us how to model physical processes. To verify the physical theory there needs to
be some way of using the theory to simulate the given physical process. However,
there is a deeper reason that this principle is interesting. This is that it might lead us
to say that the universe is, itself, a computer. Of course, the CTD principle does not
actually imply that. Even though we might be able to simulate a physical process on
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a computer, it does not follow that the computation is an accurate reflection of what
is happening during that physical process. This suggests a stronger principle

The computational reflection principle: The behaviour of any physical process is accu-
rately reflected by the behaviour of an appropriately programmed universal model comput-
ing device.

A proper understanding of this principle requires a definition of what is meant by
“accurately reflected” (note that a dictionary definition of the relevant meaning of
the word reflect is to “embody or represent in a faithful or appropriate way” [5]).
We will not attempt to provide a precise definition but rather will illustrated our
discussion with examples. Nevertheless, “accurate reflection” would entail that not
only is there the same mapping between inputs and outputs for the physical process
and the computation, but also that there is a mapping between the internal struc-
ture of the physical process and the computation. This relates to ideas of functional
equivalence as discussed by philosophers.

We may think of a universal computer in the Turing model where the program is
included in the tape. But we may also use the circuit model where the program is
represented by a prespecified way of choosing the gates.

It is possible to simulate any quantum system with a finite dimensional Hilbert
space (including quantum computers) to arbitrary accuracy on a classical computer.
In fact, we can even simulate a quantum computer with polynomial space on a clas-
sical computer but, in general, this requires exponential time [6]. We might claim,
then, that the CTD principle holds (though, since this is not exact simulation, we
may prefer to withhold judgment). However, we would be more reluctant to claim
that the CR principle holds since the classical simulation has properties that the
quantum process does not: (i) It is possible to measure the state of the classical
computer without effecting its subsequent evolution; (ii) the exponential time clas-
sical computer is much more powerful than a polynomial time quantum computer;
and (iii) the detailed structure of the classical computation will look quite different
to that of the quantum process.

2.3 Physics Without State Evolution

The idea of a state which evolves is deeply ingrained in our way of thinking about
the world. But is it a necessary feature of any physical theory? This depends what
a physical theory must accomplish. At the very least, a physical theory must corre-
late recorded data. Data is correlated in the evolving state picture in the following
way. Data corresponding to a given time is correlated by applying the mathematical
machinery of the theory to the state at that given time. And data corresponding to
more than one time is correlated by evolving the state through those given times, and
then applying the mathematical machinery of the theory to the collection of states
so generated. However, there is no reason to suppose that this is the only way of
correlating data taken in different spacetime regions. In fact, we have already other
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pictures. In GR we solve local field equations. A solution must simply satisfy the
Einstein field equations and be consistent with the boundary conditions. We do not
need the notion of an evolving state here—though there are canonical formulations
of GR which have a state across space evolving in time. In classical mechanics we
can extremize an action. In this case we consider possible solutions over all time
and find the one that extremizes the action. Again, we do not need to use the notion
of an evolving state. In quantum theory we can use Feynman’s sum over histories
approach which is equivalent to an evolving state picture but enables us to proceed
without such a picture. In [3] the causaloid formalism was developed as a candidate
framework for a theory of QG (though QT can be formulated in this framework).
This enables one to calculate directly whether (i) there is a well defined correla-
tion between data taken from two different spacetime regions and, if there is, (ii)
what that correlation is equal to. Since this calculation is direct, there is no need
to consider a state evolving between the two regions. The causaloid formalism is,
in particular, suited to dealing with the situation where there is no matter of fact to
whether an interval is time-like or not.

2.4 What is a Quantum Gravity Computer?

A quantum gravity computer is a computer for which the particular effects of QG
are important. In this paper we are interested in the case where we have indefinite
causal structure (and, of course, we are assuming that QG will allow this property).

As we discussed in Section 2.1, a computer can be understood to be a physical
device having an output that depends on an input (or program) according to suffi-
ciently well known rules. The computer occupies a certain region of spacetime. The
input can consist of a number of inputs into the computer distributed across this re-
gion, and likewise, the output can consist of a number of outputs from the computer
distributed across the region. Typically the inputs are selected (by us) in accordance
with some program corresponding to the question we wish to use the computer to
find an answer to. Usually we imagine setting the computer in some initial state (typ-
ically, in quantum computing, this consists of putting all the qubits in the zero state).
However, physically this is accomplished by an appropriate choice of inputs prior
to this initial time (for example, we might have a quantum circuit which initializes
the state). Hence, the picture in which we have inputs and outputs distributed across
the given region of spacetime is sufficient. We do not need to also imagine that we
separately initialize the computer. This characterization of a computer is useful for
specifying a QG computer since we must be careful using a notion like “initial state”
when we cannot rely on having a definite notion of a single time hypersurface in the
absence of definite causal structure. The QG computer itself must be sensitive to
QG effects (as opposed to purely quantum or purely general relativistic effects). To
actually build a QG computer we need a theory of quantum gravity because (i) this
is the only way to be sure we are seeing quantum gravity effects and (ii) we need to
have known physical laws to use the device as a computer.
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In the absence of a theory of QG it is difficult to give an example of a device
which will function as a QG computer. Nevertheless we will give a possible can-
didate example for the purposes of discussion. We hope that the essential features
of this example would be present in any actual QG computer. We imagine, for this
example, that our quantum gravity computer consists of a number of mesoscopic
probes of Planck mass (about 20 μg) immersed in a controlled environment of
smaller quantum objects (such as photons). There must be the possibility of hav-
ing inputs and outputs. The inputs and outputs are distributed across the region of
spacetime in which the QG computer operates. We take this region of spacetime
to be fuzzy in the sense that we cannot say whether a particular interval in it is
time-like or space-like. However, we can still expect to be able to set up physical
coordinates to label where a particular input or output is “located” in some appropri-
ate abstract space. For example, imagine that a GPS system is set up by positioning
four satellites around the region. Each satellite emits a signal carrying the time of its
internal clock. We imagine that the mesoscopic probes can detect these four times
thus providing a position x ≡ (t1, t2, t3, t4). Each satellite clock will tick and so x is
a discrete variable. A given probe will experience a number of different values of x.
Assume that each probe can be set to give out a light pulse or not (denote this by
s = 1 or s = 0 respectively), and has a detector which may detect a photon or not
(denote this by a = 1 or a = 0 respectively) during some given short time interval.
Further, allow the value of s to depend on x. Thus,

s = F(x,n) (1)

where n labels the probe. We imagine that we can choose the function F as we like.
This constitutes the program. Thus, the inputs are given by the s’s and the outputs
by the a’s. We record many instances of the data (x,n,s,a). We might like to have
more complicated programs where F is allowed to depend on the values of previous
outputs from other probes. However, we cannot assume that there is fixed causal
structure, and so we cannot say, in advance, what will constitute previous data. Thus,
any program of this nature must “physicalize” the previous data by allowing the
probe to emit it as a physical signal, r. If this signal is detected at a probe along with
x then it can form part of the input into F . Thus, we would have

s = F(x,n,r) (2)

At the end of a run of the QG computer, we would have many instances of
(x,n,r,s,a).

This is just a possible example of a possible QG computer. We might have the
property of indefinite causal structure in this example since the mesoscopic probes
are (possibly) sufficiently small to allow quantum effects and sufficiently massive
to allow gravitational effects. Penrose’s cat [7] consists of exploring the possible
gravity induced breakdown of quantum theory for a Planck mass mirror recoiling
(or not) from a photon in a quantum superposition.

Regardless of whether this is a good example, we will assume that any such com-
puter will collect data of the form (x,n,s,a) (or (x,n,r,s,a)), and that a program can
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be specified by a function F(x,n) (or F(x,n,r)). Whilst we can imagine more com-
plicated examples, it would seem that they add nothing extra and could, anyway, be
accommodated by the foregoing analysis. Importantly, although we have the coor-
dinate x, we do not assume any causal structure on x. In particular, there is no need
to assume that some function of x will provide a time coordinate—this need not
be a SC.

3 The Causaloid Formalism

3.1 Analyzing Data

We will now given an abbreviated presentation of the causaloid formalism which is
designed for analyzing data collected in this way and does not require a time coor-
dinate. This formalism was first presented in [3] (see also [8, 9] for more accessible
accounts). Assume that each piece of data ((x,n,s,a) or (x,n,r,s,a)) once collected
is written on a card. At the end of the computation we will have a stack of cards.
We will seek to find a way to calculate probabilistic correlations between the data
collected on these cards. The order in which the cards end up in the stack does not,
in itself, constitute recorded data and consequently will play no role in this analysis.
Since we are interested in probabilities we will imagine running the computation
many times so that we can calculate probabilities as relative frequencies (though,
this may not be necessary for all applications of the computer). Now we will pro-
vide a number of basic definitions in terms of the cards.

The full pack,V , is the set of all logically possible cards.
The program, F , is the set of all cards from V consistent with a given program

F(x,n,s,a) (or F(x,n,r,s,a)). Note that the set F and the function F convey the
same information so we use the same notation, the meaning being clear from the
context.

A stack,Y , is the set of cards collected during a particular run of the computer.
An elementary region, Rx, is the the set of all cards from V having a particular x

written on them.

Note that
Y ⊆ F ⊆V (3)

We will now give a few more definitions in terms of these basic definitions.

Regions. We define a composite spacetime region by

RO1 =
⋃

x∈O1

Rx (4)

We will often denote this by R1 for shorthand.
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The outcome set in region R1 is given by

YR1 ≡ Y ∩R1 (5)

This set contains the results seen in the region R1. It constitutes the raw output
data from the computation. We will often denote this set by Y1.

The program in region R1 is given by

FR1 ≡ F ∩R1 (6)

This set contains the program instructions in region R1. We will often denote it
by F1.

3.2 Objective of the Causaloid Formalism

We will consider probabilities of the form

Prob(Y2|Y1,F2,F1) (7)

This is the probability that we see outcome set Y2 in R2 given that we have procedure
F2 in that region and that we have outcome set Y1 and program F1 in region R1. Our
physical theory must (i) determine whether the probability is well defined, and if so
(ii) determine its value. The first step is crucial. Most conditional probabilities we
might consider are not going to be well defined. For example if R1 and R2 are far
apart (in so much as such a notion makes sense) then there will be other influences
(besides those in R1) which determine the probabilities of outcomes in R2, and if
these are not take into account we cannot do a calculation for this probability. To
illustrate this imagine an adversary. Whatever probability we write down, he can
alter these extraneous influences so that the probability is wrong. Conventionally
we determine whether a probability is well defined by simply looking at the causal
structure. However, since we do not have definite causal structure here we have to
be more careful.

To begin we will make an assumption. Let the region R be big (consisting of most
of V ).

Assumption 1: We assume that there is some condition C on FV−R and YV−R such
that all probabilities of the form

Prob(YR|FR,C) (8)

are well defined.

We can regard condition C as corresponding to the setting up and maintenance of the
computer. We will consider only cases where C is true (when it is not, the computer
is broken or malfunctioning). We will regard region R as the region in which the
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computation is performed. Since we will always be assuming C is true, we will drop
it from our notation. Thus, we assume that the probabilities Prob(YR|FR) are well
defined.

The probabilities Prob(YR|FR) pertain to the global region R. However, we nor-
mally like to do physics by building up a picture of the big from the small. We will
show how this can be done. We will apply three levels of physical compression.
The first applies to single regions (such as R1). The second applies to composite
regions such as R1 ∪R2 (the second level of physical compression also applies to
composite regions made from three or more component regions). The first and sec-
ond levels of physical compression result in certain matrices. In the third level of
physical compression we use the fact that these matrices are related to implement
further compression.

3.3 First Level Physical Compression

First we implement first level physical compression. We label each possible pair
(YR1 ,FR1) in R1 with α1. We will think of these pairs as describing measurement
outcomes in R1 (YR1 denotes the outcome of the measurement and FR1 denotes the
choice of measurement). Then we write

pα1 ≡ Prob(Yα1
R1

∪YR−R1 |F
α1
R1

∪FR−R1) (9)

By Assumption 1, these probabilities are all well defined. We can think of what
happens in region R−R1 as constituting a generalized preparation of a state in region
R1. We define the state to be that thing represented by any mathematical object
which can be used to calculate pα1 for all α1. Now, given a generalized preparation,
the pα1 ’s are likely to be related by the physical theory that governs the system. In
fact we can just look at linear relationships. This means that we can find a minimal
set Ω1 such that

pα1 = rα1(R1) ·p(R1) (10)

where the state p(R1) in R1 is given by

p(R1) =

⎛

⎜
⎜
⎝

...
pl1
...

⎞

⎟
⎟
⎠

l1 ∈Ω1 (11)

We will call Ω1 the fiducial set (of measurement outcomes). Note that the probabil-
ities pl1 need not add up to 1 since the l1’s may correspond to outcomes of incom-
patible measurements. In the case that there are no linear relationships relating the
pα1 ’s we set Ω1 equal to the full set of α1’s and then rα1 consists of a 1 in position
α1 and 0’s elsewhere. Hence, we can always write (10). One justification for using
linear compression is that probabilities add in a linear way when we take mixtures.
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It is for this reason that linear compression in quantum theory (for general mixed
states) is the most efficient. The set Ω1 will not, in general, be unique. Since the set
is minimal, there must exist a set of |Ω1| linearly independent states p (otherwise
further linear compression would be possible). First level physical compression for
region R1 is fully encoded in the matrix

Λl1
α1 ≡ rα1

l1
(12)

where rα1
l1

is the l1 component of rα1 . The more physical compression there is the
more rectangular (rather than square) this matrix will be.

3.4 Second Level Physical Compression

Next we will implement second level physical compression. Consider two regions
R1 and R2. Then the state for region R1 ∪R2 is clearly of the form

p(R1 ∪R2) =

⎛

⎜
⎜
⎝

...
pk1k2

...

⎞

⎟
⎟
⎠

k1k2 ∈Ω12 (13)

We can show that it is always possible to choose Ω12 such that

Ω12 ⊆Ω1 ×Ω2 (14)

where × denotes the cartesian product. This result is central to the causaloid for-
malism. To prove (14) note that we can write pα1α2 as

prob(Yα1
R1

∪Yα2
R2

∪YR−R1−R2 |F
α1
R1

∪Fα2
R2

∪FR−R1−R2)
= rα1(R1) ·pα2(R1)
= ∑

l1∈Ω1

rα1
l1

(R1)pα2
l1

(R1)

= ∑
l1∈Ω1

rα1
l1

(R1)rα2(R2) ·pl1(R2)

= ∑
l1l2∈Ω1×Ω2

rα1
l1

rα2
l2

pl1l2 (15)

where pα2(R1) is the state in R1 given the generalized preparation (Yα2
R2

∪
YR−R1−R2 ,F

α2
R2

∪FR−R1−R2) in region R−R1, and pl1(R2) is the state in R2 given

the generalized preparation (Y l1
R1
∪YR−R1−R2 ,F

l1
R1
∪FR−R1−R2) in region R−R2, and

where
pl1l2 = prob(Y l1

R1
∪Y l2

R2
∪YR−R1−R2 |F

l1
R1
∪Fl2

R2
∪FR−R1−R2) (16)
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Now we note from (15) that pα1α2 is given by a linear sum over the probabilities
pl1l2 where l1l2 ∈Ω1 ×Ω2. It may even be the case that we do not need all of these
probabilities. Hence, it follows that Ω12 ⊆Ω1 ×Ω2 as required.

Using (15) we have

pα1α2 = rα1α2(R1 ∪R2) ·p(R1 ∪R2)
= ∑

l1l2

rα1
l1

rα2
l2

pl1l2

= ∑
l1l2

rα1
l1

rα2
l2

rl1l2 ·p(R1 ∪R2)

We must have
rα1α2(R1 ∪R2) =∑

l1l2

rα1
l1

rα2
l2

rl1l2(R1 ∪R2) (17)

since we can find a spanning set of linearly independent states p(R1∪R2). We define

Λk1k2
l1l2

≡ rl1l2
k1k2

(18)

where rl1l2
k1k2

is the k1k2 component of rl1l2 . Hence,

rα1α2
k1k2

=∑
l1l2

rα1
l1

rα2
l2
Λk1k2

l1l2
(19)

This equation tells us that if we know Λk1k2
l1l2

then we can calculate rα1α2(R1∪R2) for
the composite region R1 ∪R2 from the corresponding vectors rα1(R1) and rα2(R2)
for the component regions R1 and R2. Hence the matrix Λk1k2

l1l2
encodes the second

level physical compression (the physical compression over and above the first level
physical compression of the component regions). We can use Λk1k2

l1l2
to define a new

type of product—the causaloid product—denoted by ⊗Λ.

rα1α2(R1 ∪R2) = rα1(R1)⊗Λ rα2(R2) (20)

where the components are given by (19).
We can apply second level physical compression to more than two regions. For

three regions we have the matrices

Λk1k2k3
l1l2l3

(21)

and so on.

3.5 Third Level Physical Compression

Finally, we come to third level physical compression. Consider all the compres-
sion matrices we pick up for elementary regions Rx during first and second level
compression. We have
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Λlx
αx for all x ∈ OR

Λkxkx′
lxlx′

for all x,x′ ∈ OR

Λkxkx′ kx′′
lxlx′ lx′′

for all x,x′,x′′ ∈ OR

...
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(22)

where OR is the set of x in region R. Now, these matrices themselves are likely to be
related by the physical theory. Consequently, rather than specifying all of them sep-
arately, we should be able to specify a subset along with some rules for calculating
the others

�≡ (subset of Λ′s;RULES) (23)

We call this mathematical object the causaloid. This third level of physical compres-
sion is accomplished by identities relating the higher order Λ matrices (those with
more indices) to the lower order ones. Here are some examples from two families
of such identities. The first family uses the property that when Ω sets multiply so do
Λ matrices.

Λkx···kx′ kx′′ ···kx′′′
lx···lx′ lx′′ ···lx′′′

= Λkx···kx′
lx···lx′

Λkx′′ ···kx′′′
lx′′ ···lx′′′

if Ωx···x′x′′···x′′′ =Ωx···x′ ×Ωx′′···x′′′ (24)

The second family consists of identities from which Λ matrices for composite re-
gions can be calculated from some pairwise matrices (given certain conditions on
the Ω sets). The first identity in this family is

Λk1k2k3
l1l2l3

= ∑
k′2∈Ω2�3

Λk1k2
l1k′2
Λk′2k3

l2l3
if Ω123 =Ω12 ×Ω�23 and Ω23 =Ω2 �3 ×Ω�23 (25)

where the notation Ω�23 means that we form the set of all k3 for which there exists
k2k3 ∈Ω23. The second identity in this family is

Λk1k2k3k4
l1l2l3l4

= ∑
k′2∈Ω2�3,k′3∈Ω3�4

Λk1k2
l1k′2
Λk′2k3

l2k′3
Λk′3k4

l3l4
if
Ω1234 =Ω12 ×Ω�23 ×Ω�34
Ω23 =Ω2 �3 ×Ω�23
Ω34 =Ω3 �4 ×Ω�34

(26)

and so on. These identities are sufficient to implement third level physical compres-
sion for classical and quantum computers. However, we will probably need other
identities to implement third level physical compression for a QG computer. The
task of fully characterizing all such identities, and therefore of fully characterizing
third level physical compression, remains to be completed.
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3.6 Classical and Quantum Computers in the Causaloid
Formalism

Since third level compression has been worked out for classical and quantum com-
puters we should say a little about this here (see [3, 8] for more details). Consider a
classical (quantum) computer which consists of pairwise interacting (qu)bits. This
is sufficient to implement universal classical (quantum) computation. This situation
is shown in Fig. 1. Each (qu)bit is labeled by i, j, . . . and is shown by a thin line. The
nodes where the (qu)bits meet are labeled by x. Adjacent nodes (between which a
(qu)bit passes) have a link. We call this diagram a causaloid diagram. At each node
we have a choice, s, of what gate to implement. And then there may be some out-
put, a, registered at the gate itself (in quantum terms this is both a transformation
and a measurement). We record (x,s,a) on a card. The program is specified by some
function s = F(x). We can use our previous notation. Associated with each (x,s,a) at
each gate is some rαx . It turns out that there exists a choice of fiducial measurement
outcomes at each node x which break down into separate measurement outcomes
for each of the two (qu)bits passing through that node. For these measurements we
can write lx ≡ lxilx j where lxi labels the fiducial measurements on (qu)bit i and lx j
labels the fiducial measurements on the other (qu)bit j. All Ω sets involving differ-
ent (qu)bits factorize as do all Ω sets involving non-sequential clumps of nodes on
the same (qu)bit and so identity (24) applies in these cases. For a set of sequential
nodes theΩ sets satisfy the conditions for (25, 26) and related identities to hold. This
means that it is possible to specify the causaloid for a classical (quantum) computer
of pairwise interacting (qu)bits by

Fig. 1 This figure shows a number of pairwise interacting (qu)bits. The (qu)bits travel along the
paths indicated by the thin lines and interact at the nodes. At each node we can choose a gate
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� =
(

{Λlxilx j
αx ∀ x},{Λkxikx′i

lxilx′i
∀ adjacent x,x′};

{
clumping method
causaloid diagram

})

(27)

where the “clumping method” is the appropriate use of the identities (24, 25, 26)
and related identities to calculate general Λ matrices. The causaloid diagram is also
necessary so we know how the nodes are linked up and how the (qu)bits move. There
is quite substantial third level compression. The total number of possible Λmatrices
is exponential in the number of nodes but the number of matrices required to specify
the causaloid is only linear in this number. There may be simple symmetries which
relate the matrices living on each node and each link. In this case there will be even
further compression.

3.7 Using the Causaloid Formalism to Make Predictions

We can use the causaloid to calculate any r vector for any region in R. Using these
we can calculate whether any probability of the form (7) is well defined, and if so,
what it is equal to. To see this note that, using Bayes rule,

p ≡ Prob(Yα1
1 |Yα2

2 ,Fα1
1 ,Fα2

2 ) =
rα1α2(R1 ∪R2) ·p(R1 ∪R2)

∑β1
rβ1α2(R1 ∪R2) ·p(R1 ∪R2)

(28)

where β1 runs over all (Y1,F1) consistent with F1 = Fα1
1 (i.e. all outcomes consistent

with the program in region R1). For this probability to be well defined it must be
independent of what happens outside R1 ∪R2. That is, it must be independent of
the state p(R1 ∪R2). Since there exists a spanning set of linearly independent such
states, this is true if and only if

rα1α2(R1 ∪R2) is parallel to ∑
β1

rβ1α2(R1 ∪R2) (29)

This, then, is the condition for the probability to be well defined. In the case that
this condition is satisfied then the probability is given by the ratio of the lengths of
these two vectors. That is by

rα1α2(R1 ∪R2) = p∑
β1

rβ1α2(R1 ∪R2) (30)

It might quite often turn out that these two vectors are not exactly parallel. So long
as they are still quite parallel we can place limits on p. Set

v ≡ rα1α2(R1 ∪R2) and u ≡∑
β1

rβ1α2(R1 ∪R2) (31)
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Define v‖ and v⊥ as the components of v parallel and perpendicular to u respectively.
Then it is easy to show that

|v‖|
|u| −

|v⊥|
|v|cosφ

≤ p ≤ |v‖|
|u| +

|v⊥|
|v|cosφ

(32)

where φ is the angle between v and v⊥ (we get these bounds using |v ·p| ≤ |u ·p|).

3.8 The Notion of State Evolution in the Causaloid Formalism

In setting up the causaloid formalism we have not had to assume that we can have a
state which evolves with respect to time. As we will see, it is possible to reconstruct
an evolving state even though this is looks rather unnatural from point of view of
the causaloid formalism. However, this reconstruction depends on Assumption 1
of Section 3.2 being true. It is consistent to apply the causaloid formalism even if
Assumption 1 does not hold. In this case we cannot reconstruct an evolving state.

We choose a nested set of spacetime regions Rt where t = 0 to T for which

R0 ⊃ R1 ⊃ R2 · · · ⊃ RT (33)

where R0 = R and RT is the null set. We can think of t as a “time” parameter and the
region Rt as corresponding to all of R that happens “after” time t. For each region
Rt we can calculate the state, p(t) ≡ p(Rt), given some generalized preparation up
to time t (that is in the region R−Rt). We regard p(t) as the state at time t. It can be
used to calculate any probability after time t (corresponding to the region Rt ) and can
therefore be used to calculate probabilities corresponding to the region Rt+1 since
this is nested inside Rt . Using this fact it is easy to show that the state is subject to
linear evolution so that

p(t +1) = Zt,t+1p(t) (34)

where Zt,t+1 depends on YRt−Rt+1 and FRt−Rt+1 .
Thus, it would appear that, although we did not use the idea of an evolving state

in setting up the causaloid formalism, we can reconstruct a state that, in some sense,
evolves. We can do this for any such nested set of regions. There is no need for the
partitioning to be generated by a foliation into spacelike hypersurfaces and, indeed,
such a foliation will not exist if the causal structure is indefinite. This evolving state
is rather artificial—it need not correspond to any physically motivated “time”.

There is a further reason to be suspicious of an evolving state in the causaloid
formalism. To set up this formalism it was necessary to make Assumption 1 (in
Section 3.2). It is likely that this assumption will not be strictly valid in a theory of
QG. However, we can regard this assumption as providing scaffolding to get us to a
mathematical framework. It is perfectly consistent to suppose that this mathematical
framework continues to be applicable even if Assumption 1 is dropped. Thus it
is possible that we can define a causaloid and then use the causaloid product and
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(29, 30) to calculate whether probabilities are well defined and, if so, what these
probabilities are equal to. In so doing we need make no reference to the concept of
state. In particular, since we cannot suppose that all the probabilities prob(YR|FR,C)
are well defined, we will not be able to force an evolving state picture. The causaloid
formalism provides us with a way of correlating inputs and outputs across a region
of space time even in the absence of the possibility of an evolving state picture.

4 Computation in the Light of the Causaloid Formalism

4.1 Gates

In the standard circuit model a computer is constructed out of gates selected from a
small set of possible gates. The gates are distributed throughout a spacetime region
in the form of a circuit. Hence we have a number of spacetime locations (label them
by x) at which we may place a gate. At each such location we have a choice of which
gate to select. The gates are connected by “wires” along which (qu)bits travel. This
wiring represents the causal structure of the circuit. Since the wiring is well defined,
causal structure cannot be said to be indefinite. In fact in classical and quantum
computers we can work with a fixed wiring and vary only the choice of gates. The
wires can form a diamond grid like that shown in Fig. 1. Where the wires cross
two (qu)bits can pass through a gate. As long as we have a sufficient number of
appropriate gates we can perform universal computation. In Section 3.6 we outlined
how to put this situation into the causaloid formalism.

In the causaloid model we have spacetime locations labeled by x. At each x we
have a choice of setting s. This choice of setting can be regarded as constituting
the choice of a gate. Since we may have indefinite causal structure we will not be
able to think in terms of “wiring” as such. However information about the causal
connections between what happens at different x’s is given by the Λ matrices which
can be calculated from the causaloid. For example the matrix Λkxkx′

lxlx′
tells us about the

causal connection between x and x′′ by quantifying second level compression. Thus,
the matrices associated with second level compression (which can be deduced from
the causaloid, �) play the role of wiring. Since we do not have wires we cannot
necessarily think in terms of (qu)bits moving between gates. Rather, we must think
of the gates as being immersed in an amorphous interconnected sea quantitatively
described by the causaloid. In the special case of a classical or quantum computer
we will have wiring and this can be deduced from �.

Typically, in computers, we restrict the set of gates we employ. Thus, assume that
we restrict to s∈ {s1,s2, . . . ,sN} ≡ S where S is a subset of the set, SI , of all possible
s. Then a computer is defined by the pair

{�,S} where S ⊂ SI (35)
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The program for this computer is given by some function like s = F(x,n) (or
s = F(x,n,r)) from Section 2.4 where s ∈ S. This is a very general model for com-
putation. Both classical and quantum computers can be described in this way as well
as computers with indefinite causal structure.

4.2 Universal Computation

Imagine we have a class of computers. A universal computer for this class is a
member of the class which can be used to simulate any computer in the class if it
is supplied with an appropriate program. For example, a universal Turing machine
can be used to simulate an arbitrary Turing machine. This is done by writing the
program for the Turing machine to be simulated into the first part of the tape that is
fed into the universal Turing machine. It follows from their definition that universal
computers can simulate each other.

Given a causaloid, � and some integer M we can generate an interesting class
of computers—namely the class CM

Λ defined as the class of computers {�,S} for
all S ⊂ SI such that |S| ≤ M. We will typically be interested in the case that M is
a fairly small number (less than 10 say). The reason for wanting M to be small is
that usually we imagine computations being constructed out of a small set of basic
operations.

We can then ask whether there exist any universal computers in this class. We will
say that the computer {�,SU} with |SU | ≤M is universal for the class CM

Λ if we can
use it to simulate an arbitrary computer in this class. This means that there must
exist a simple map from inputs and outputs of the universal computer to inputs and
outputs (respectively) of the computer being simulated such that the probabilities
are equal (or equal to within some specified accuracy). We will then refer to SU as a
universal set of gates.

If we choose the causaloid Λ of classical or quantum theory discussed in
Section 3.6 then it is well established that there exist universal computers for
small M. This is especially striking in the quantum case since there exist a infi-
nite number of gates which cannot be simulated by probabilistic mixtures of other
gates. One way to understand how this is possible in the classical and quantum
cases is the following. Imagine that we want to simulate {�,S} with {�,SU}. We
can show that any gate in the set S can be simulated to arbitrary accuracy with some
number of gates from the set SU . Then we can coarse-grain on the diamond grid to
larger diamonds which can have sufficient gates from SU to simulate an arbitrary
gate in S. In coarse-graining in this way we do not change in any significant way the
nature of the causal structure. Thus we can still link these coarse-grained diamonds
to each other in such a way that we can simulate {Λ,S}. This works because, in
classical and quantum theory, we have definite causal structure which has a certain
scale invariance property as we coarse-grain.
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However, if we start with a class of computers CM
Λ generated by a causaloid,

�, for which there is indefinite causal structure, then we do not expect this scale
invariance property under coarse-graining. In particular, we would expect, as we go
to larger diamonds, that the causal structure will become more definite. Hence we
may not be able to arrange the same kind of causal connection between the simulated
versions of the gates in S as between the original versions of these gates. Hence, we
cannot expect that the procedure just described for simulation in the classical and
quantum case will work in the case of a general causaloid.

This suggests that the concept of universal computation is may not be applicable
in QG. However the situation is a little more subtle. The classical physics that is
required to set up classical computation should be a limiting case of any theory of
QG. If a given causaloid, �, corresponds to QG then we expect that it is possible to
use this to simulate a universal classical computer if we coarse-grain to a classical
scale. We can also build random number generator since we have probabilistic pro-
cesses (since QT is also a limiting case). This suggests a way to simulate (in some
sense of the word) a general QG computer in the class corresponding to �. We can
use the classical computer to calculate whether probabilities are well defined and,
if so, what they are equal to arbitrary accuracy from the causaloid by programming
in the equations of the causaloid formalism. We can then use the random number
generator to provide outputs with the given probabilities thus simulating what we
would see with a genuine QG computer. We might question whether this is genuine
simulation since there will not necessarily be a simple correspondence between the
spacetime locations of these outputs in the simulation and the outputs in the actual
QG computation. In addition, in simulating the classical computer from the quan-
tum gravitational �, we may need a gate set S with very large M. Nevertheless, one
might claim that the Church Turing Deutsch principle is still true. However, it seems
that the computational reflection principle is under considerable strain. In particular,
the classical simulation would have definite causal structure unlike the QG com-
puter. But also the detailed causal structure of the classical simulation would look
quite different from that of the QG computer it simulates. There may also be com-
putational complexity issues. With such issues in mind we might prefer to use the
QG causaloid to simulate a universal quantum computer (instead of a universal clas-
sical computer) and then use this to model the equations of the causaloid formalism
to simulate the original causaloid. This may be quicker than a classical computer.
However, the computational power of a QG computer may go significantly beyond
that of a quantum computer (see Section 4.3).

If the computational reflection principle is undermined for QG processes then we
may not be able to think that the world is, itself, a computational process. Even if
we widen our understanding of what we mean by computation, it is possible that we
will not be able to define a useful notion of a universal computer that is capable of
simulating all fundamental quantum gravitational processes in a way that accurately
reflects what is happening in the world. This would have an impact on any research
program to model fundamental physics as computation (such as that of Lloyd [10])
as well as having wider philosophical implications.
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4.3 Will Quantum Gravity Computers have Greater Computational
Power than Quantum Computers?

Whether or not we can define a useful notion of universal QG computation, it is still
possible that a QG computer will have greater computational power than a quantum
computer (and, therefore, a classical computer). Are there any reasons for believing
this?

Typically we are interested in how computational resources scale with the input
size for a class of problems. For example we might want to factorize a number.
Then the input size is equal to the number of bits required to represent this num-
ber. To talk about computational power we need to a way of measuring resources.
Computer scientists typically make much use of SPACE and TIME as separate re-
sources. TIME is equal to the number of steps required to complete the calculation
and SPACE is equal to the maximum number of (qu)bits required. Many complex-
ity classes have been defined. However, of most interest is the class P of decision
problems for which TIME is a polynomial function of the size of the input on a
classical computer (specifically, a Turing machine). Most simple things like addi-
tion, multiplication, and division, are in P. However factorization is believed not to
be. Problems in P are regarded as being easy and those which are not in P are re-
garded as being hard. Motivated by the classical case, BQP is the class of decision
problems which can be solved with bounded error on a quantum computer in poly-
nomial time. Bounded error means that the error must be, at most, 1/3. We need
to allow errors since we are dealing with probabilistic machines. However, by re-
peating the computation many times we can increase our certainty whilst still only
requiring only polynomial time.

In QG computation with indefinite causal structure we cannot talk about SPACE
and TIME as separate resources. We can only talk of the SPACETIME resources
required to complete a calculation. The best measure of the spacetime resources is
the number of locations x (where gates are chosen) that are used in the computation.
Thus, if we have x ∈ O for a computation then SPACETIME = |O|.

In standard computation, the SPACE used by a computer with polynomial TIME
is, itself, only going to be at most polynomial in the input size (since, in the compu-
tational models used by computer scientists, SPACE can only increase as a polyno-
mial function of the number of steps). Hence, if a problem is in P then SPACETIME
will be a polynomial function of the input size also. Hence, we can usefully work
with SPACETIME rather than TIME as our basic resource.

We define the class of problems BP{Λ,S} which can be solved with bounded er-
ror on the computer {�,S} in polynomial SPACETIME. The interesting question,
then, is whether there are problems which are in BP{Λ,S} but not in BQP for some
appropriate choice of computer {�,S}. The important property that a QG computer
will have that is not possessed by a quantum (or classical) computer is that we do
not have fixed causal structure. This means that, with respect to any attempted foli-
ation into spacelike hypersurfaces, there will be backward in time influences. This
suggests that a QG computer will have some insight into its future state (of course,
the terminology is awkward here since we do not really have a meaningful notion
of “future”). It is possible that this will help from a computational point of view.
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A different way of thinking about this question is to ask whether a QG computer
will be hard to simulate on a quantum computer. Assuming, for the sake of argu-
ment, that Assumption 1 is true then, as seen in Section 3.8, we can force an evolving
state point of view (however unnatural this may be). In this case we can simulate
the QG computer by simulating the evolution of p(t) with respect to t. However,
this is likely to be much harder when there is not the kind of causal structure with
respect to t which we would normally have if t was a physically meaningful time
coordinate. In the classical and quantum cases we can determine the state at time
t by making measurements at time t (or at least in a very short interval about this
time). Hence, to specify the state, p(t), we need only list probabilities pertaining to
the time-slice Rt −Rt+1 rather than all of Rt . The number of probabilities required to
specify p(t) (i.e. the number of entries in this vector) is therefore much smaller than
it might be if we needed to specify probabilities pertaining to more of the region
Rt . If, however, we have indefinite causal structure, then we cannot expect to have
this property. Hence the state at time t may require many more probabilities for its
specification. This is not surprising since the coordinate t has no natural meaning in
this case. Hence, it is likely that we will require much greater computational power
to simulate the evolution of p(t) simply because we will have to store more proba-
bilities at each stage of the evolution. Hence we can expect that it will be difficult
to simulate a QG computer on a quantum computer. However, an explicit model is
required before we can make a strong claim on this point.

5 Conclusions

It is likely that a theory of quantum gravity will have indefinite causal structure. If
this is the case it will have an impact on the theory of computation since, when all
is said and done, computers are physical machines. We might want to use such QG
effects to implement computation. However, if there is no definite causal structure
we must depart from the usual notion of a computation as corresponding to taking
a physical machine through a time ordered sequence of steps—a QG computer will
likely not be a step computer. We have shown how, using the causaloid formalism,
we can set up a mathematical framework for computers that may not be step com-
puters. In this framework we can represent a computer by the pair {�,S}. Classical
and quantum computers can be represented in this way.

We saw that the notion of universal computation may be undermined since the
nature of the causal structure is unlikely to be invariant under scaling (the fuzzyness
of the indefinite causal structure is likely to go away at large enough scales). If
this is true then it will be difficult to make the case that the universe is actually a
computational process.

It is possible that the indefinite causal structure will manifest itself as a computa-
tional resource allowing quantum gravity computers to beat quantum computers for
some tasks.
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An interesting subject is whether general relativity computers will have greater
computational powers. There has been some limited investigation of the conse-
quences of GR for computation for static spacetimes (see [11–13]). General rela-
tivity has not been put into the causaloid framework. To explore the computational
power of GR we would need to put it into an operational framework of this nature.

The theory of quantum gravity computation is interesting in its own right. Think-
ing about quantum gravity from a computational point of view may shed new light
on quantum gravity itself—not least because thinking in this way forces operational
clarity about what we mean by inputs and outputs. Thinking about computation
in the light of indefinite causal structure may shed significant light on computer
science—in particular it may force us to loosen our conception of what constitutes
a computer even further than that already forced on us by quantum computation.
Given the extreme difficulty of carrying out quantum gravitational experiments,
however, it is unlikely that we will see quantum gravity computers any time soon.

We have investigated the issue of QG computers in the context of the causa-
loid framework. This is a candidate framework for possible theories of QG within
which we can use the language of inputs and outputs and can model indefinite
causal structure (a likely property of QG). The main approaches to QG include
String Theory [14], Loop Quantum Gravity [15–17], Causal Sets [18], and Dynami-
cal Triangulations [19]. These are not formulated in a way that it is clear what would
constitute inputs and outputs as understood by computer scientists. Aaronson pro-
vides an interesting discussion of some of these approaches and the issue of quan-
tum gravity computation [20]. He concludes that it is exactly this lack of conceptual
clarity about what would constitute inputs and outputs that prohibits the develop-
ment of a theory of quantum gravity computation. Whilst the causaloid formalism
does not suffer from this problem, it does not yet constitute an actual physical the-
ory. It is abstract and lacks physical constants, dimensionalful quantities, and all the
usual hallmarks of physics that enable actual prediction of the values of measurable
quantities.

Issues of computation in the context of quantum gravity have been raised by
Penrose [21, 22]. He has suggested that quantum gravitational processes may be
non-computable and that this may help to explain human intelligence. In this paper
we have chosen to regard quantum gravitational processes as allowing us to define a
new class of computers which may have greater computational powers because they
may be able to harness the indefinite causal structure as a computational resource.
It is likely that QG computers, as understood in this paper, can be simulated by both
classical and quantum computers so they will not be able to do anything that is non-
computable from the point of view of classical and quantum computation. However,
it may require incredible classical or quantum resources to simulate a basic QG
computational process. Further the internal structure of a QG computation will most
likely be very different to that of any classical or quantum simulation. Hence, the
“thought process” on a QG computer may be very different to that of a classical
or quantum computer in solving the same problem and so, in spirit if not in detail,
the conclusions of this paper may add support to Penrose’s position. Of course, QG
computation can only be relevant to the human brain if it can be shown that the
particular effects of QG can be resident there [22, 23].
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Dedication

It is a great honour to dedicate this paper to Abner Shimony whose ideas permeate
the field of the foundations of quantum theory. Abner has taught us the importance
of metaphysics in physics. I hope that not only can metaphysics drive experiments
(Abner’s “experimental metaphysics”) but that it can also drive theory construction.
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“Definability,” “Conventionality,”
and Simultaneity in Einstein–Minkowski
Space-Time

Howard Stein

For Abner Shimony—in gratitude for the light and warmth I
have received from a lifelong friendship.

Abstract In this article, I attempt to clarify certain misunderstandings that have
contributed to continuing controversy over the status of the concept of relative si-
multaneity in the special theory of relativity. I also correct a number of technical
errors in the literature of the subject, and present several new technical results that
may further serve to clarify matters.

Controversy over the status of the concept of relative simultaneity in the special
theory of relativity has proved remarkably durable. Very recently (within two days
of first writing these words), as a result of ruminations on a recent paper of Adolf
Grünbaum’s, I have come to believe that an important contributing factor to the per-
sistence of the dispute is the use of certain key words (or phrases) in quite different
senses by some of the disputants. One central aim of this paper, therefore, is to (try
to) clarify these misunderstandings, and thereby both to reduce the number of the
points of disagreement, and for the remaining points—for one can hardly expect all
disagreement to be thus dispelled—at least to help clarify what the disagreements
really are. A second aim is to correct some technical errors in the literature of the
subject, and to state and prove some new technical results that may help contribute
to clarity in the matter.

1 David Malament’s Contribution: (a) Remarks on Some
Technical Objections; (b) Refinements of the Theorem

In a recent “revisiting” of David Malament’s well-known discussion of this subject
[1], Mark Hogarth [2, p. 492] writes as follows, quoting a remark of mine from [3]:

Just how decisive is Malament’s result for the issue of conventionality of simultaneity?
Howard Stein echoes a common sentiment:
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The issue . . . has been dealt with—in my opinion, conclusively—by David Malament, who
pointed out that the Einstein–Minkowski conception of relative simultaneity is not only
characterizable in a direct geometrical way within the framework of Minkowski’s geom-
etry . . . but is the only possible such conception that satisfies certain very weak ‘natural’
constraints.

Hogarth then notes that Malament has made use of the assumption that change of
scale is an automorphism of the structure of space-time; objects that physics itself
is not invariant under change of scale; concludes that Malament’s result is after
all inconclusive; and offers an argument of his own to show that invariance under
change of scale can be replaced by another requirement, and the uniqueness of the
standard conception of simultaneity thereby rescued.1

In correspondence before his paper was published, I remarked to Hogarth that
there is a footnote to the statement he quotes from me—see [3, p. 153, n. 1]—
in view of which the statement cannot reasonably be interpreted to mean that—in
my view—Malament “had, as it were, dotted all the i’s and crossed all the t’s of
the subject”; that, rather, what I had meant was “that Malament had redirected the
discussion, away from the consideration of alternative ways of introducing ‘a time-
coordinate,’ to the consideration of what purely geometric notions are available in
Minkowski geometry.” The footnote in question reads:

There is one slightly delicate point to be noted: Malament’s discussion, which is concerned
with certain views of Grünbaum, follows the latter in treating space-time without a dis-
tinguished time-orientation. To obtain Malament’s conclusion for the (stronger) structure
of space-time with a time-orientation, one has to strengthen the constraints he imposes on
the relation of simultaneity: it suffices, for instance, to make that relation (as in the text
above) relative to a state of motion (i.e., a time-like direction), rather than—as in Mala-
ment’s paper—to an inertial observer (i.e., a time-like line).

I did not think it necessary to demonstrate the stated fact, taking it for granted that
anyone who cared to would easily see how a proof would go.

Some years after [3] appeared, a paper was published by Sahotra Sarkar and
John Stachel [4]—under the title, “Did Malament Prove the Non-Conventionality
of Simultaneity in the Special Theory of Relativity?” These authors criticize Mala-
ment’s argument on the very grounds mentioned in the footnote; but they elaborate
upon these grounds in a way that in my opinion is very defective, and is in serious

1 Malament, requiring invariance under change of scale, adds, besides the condition of invariance
under automorphisms of space-time, only the assumption that simultaneity relative to O (a) is an
equivalence relation, and (b) holds for at least one pair of points (p,q) with p on O and q not on
O, but does not hold for every pair of points.—Hogarth appeals to quantum field theory for the
fact that physics is not invariant under change of scale (this is indeed already clear in classical
physics, since the fundamental classical physical constants allow us, in more than one way, to de-
termine a unit of length; moreover, at the very beginning of the modern science of physics, Day 1
of Galileo’s Two New Sciences opens with this paradox: a scale model of, for instance, a ship, may
be perfectly stable, but the ship built from this model may collapse under its own weight—and
Galileo’s spokesman Salviati says that, although geometry is invariant under change of scale, this
non- scale-invariance of “machines” can be explained by geometry).

Hogarth, renouncing appeal to scale-invariance, strengthens Malament’s assumption (b) by re-
quiring that, for any “inertial observer world-line” O and any point p in space-time, there is one and
only one point q on O to which p is simultaneous relative to O. (See also Supplementary Note 1.)
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need of clarification. They also offer a proof of a result akin to that indicated in
the footnote; but their proof is fallacious, and the result therefore does demand the
explicit proof that I thought superfluous. Since Hogarth’s theorem is subject to the
same objection raised by Sarkar and Stachel—Hogarth, too, makes crucial use of
reflection-invariance—it is clearly desirable to establish a conclusion that depends
neither upon invariance under scale-change nor upon invariance under reflections.2

But first I wish to make it clear that Malament’s theorem itself—exactly as he
has formulated it—is entirely correct. This seems important to emphasize, because
Sarkar and Stachel have challenged the entire correctness of this theorem.3 A dis-
cussion of the point is especially desirable because it concerns the question, just
what is meant when one says that a notion is “definable from” something or other—
I shall say, definable from the elements of a given kind of structure, or from the
basic notions of a given mathematical theory (understood as being “the theory of
that kind of structure”); and it turns out that a misunderstanding on this score is also
relevant to points raised by Adolf Grünbaum, which we shall consider later.

Malament’s theorem explicitly refers to a relation “definable from κ and O,”
where κ is the binary relation, on the set of points of Minkowski space-time, “p
and q are such that one of them may causally influence the other,” and where O
is a given straight time-like world-line (what I shall henceforth refer to—and have
already referred to, in Supplementary Note 1—as an “observer-line”). (So strictly
speaking, if the phrasing of the end of the preceding paragraph is taken pedantically,
the “theory” concerned is “the theory of the relation κ in a Minkowski space-time
with a particular observer-line O singled out.”) Malament then says [1, p. 297],“If
an n-place relation is definable from κ and O, in any sense of ‘definable’ no matter
how weak, then it will certainly be preserved under all O causal automorphisms
[that is: mappings that preserve both O and κ].” It is this statement that Sarkar
and Stachel challenge: they acknowledge the correctness of Malament’s theorem
if “causal definability” (as they put it) is construed in Malament’s way; but they
deny that this is an appropriate way to construe such definability—and they give an
alleged counterexample.

Now, the issue this raises is simply one of logic. And the logical situation should
be altogether clear: for the logician—or the mathematician—to define a notion in
terms of certain basic concepts is in effect to introduce an abbreviated mode of ex-
pression; any statement phrased using the defined notion may be rephrased using
only those basic concepts: the “new” notion is simply eliminable. But that a state-
ment using only the basic notions of a theory is unaffected by automorphisms of the

2 Sarkar and Stachel mention in passing [4, p. 215 n. 11, and p. 217] that they do not use scale-
invariance in their proof; but, as remarked—and as will be shown below—the proof is invalid, so
this fact is irrelevant.
3 If this formulation seems odd, it should—it is designedly so; for although Sarkar and Stachel
say, “Clearly, something is amiss with Malament’s theorem,” they add, “A correct mathematical
result [emphasis added] seems to be contradicted by patently good counterexamples”; what they
challenge is, not the soundness of Malament’s argument, but “the interpretation of one of the condi-
tions that Malament imposes on simultaneity relations” [4, p. 214]. So the result is “correct”—but
not entirely so.
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object treated of by the theory is an immediate consequence of the very definition of
“automorphism.” So “in principle,” it is hard to see how a controversy can arise here.

“In practice,” however, one sees how confusion did occur. Sarkar and Stachel
point to the facts that “the distinction between the [two, oppositely directed,]4 half
null cones of [the full null cone of an event e] can be made using causal definability
alone” [4, p. 213], and that this distinction can be made “coherently” for all point-
events of the Minkowski space-time concerned. They conclude that the following
two relations, satisfying Malament’s other criteria, can be defined from the null-cone
structure of the space-time, and thus from the relation κ alone (O plays no role): (a)
p lies on the mantle of the backwards null-cone at q; (b) p lies on the mantle of
the forwards null-cone at q; and conclude therefore that both (a) and (b), applied
to point-pairs (p,q) with q on O, constitute relations definable from κ and O that
satisfy all Malament’s other conditions on a simultaneity relation. These examples,
they accordingly maintain, show that his theorem is incorrect when “definable from
κ and O” is rightly construed.

The error here turns on an ambiguity in the notion of “distinguishing” two
things—that is, “telling the difference between” them. A Minkowski space-time
has two possible “time-orientations.” This statement certainly implies that one can
“tell them apart”—enough, at least, to count them. And yet, one can’t “tell which
is which”—the two time-orientations are like two bosons in this respect.—Well,
to continue with amusing word-games in the vernacular (even the vernacular of
physics), would soon grow tiresome, and might amplify confusion; that is why logi-
cal pedantry has its legitimate place: One can define from κ and O a set of relations,
each of which satisfies Malament’s other requirements. The set I mean5 contains two
relations—the two described by Sarkar and Stachel. But one cannot “distinguish”—
“single out”—either one of those two relations in distinction from the other; that is,
one cannot do this in terms of κ and O alone. If only one could once “simply point
to” one of the two half null-cones at one space-time point, the structure of κ would
allow this choice to be “spread around” all through space-time, and we should have
one of Sarkar and Stachel’s examples; and why, indeed, should one not be able to
do so?—But that isn’t the question: the question is, What is definable from κ and
O? And Malament’s answer stands.

There remains the point that this may not be “the right question”; and I think
this may be argued from two different points of view. It could—it seems to me—be
claimed quite plausibly by an adherent of a “causal theory of time,” Grünbaum for
instance, that such a view of time is not restricted to what can be characterized in
terms of the symmetric relation κ—that, rather, the non-symmetric relation “causal
influence may be propagated from p to q′′ is part of the basic apparatus of that

4 Sarkar and Stachel say “backwards and forwards”; but they emphasize—rightly—that these ad-
jectives are mere labels, not to be taken as denoting the “past” and the “future”; so I have preferred
to substitute a neutral characterization, lest the reader suppose that they have overstepped at this
point.
5 This—a set that bears upon the Sarkar-Stachel examples—is by no means the only set of relations
(besides the one relation of Malament’s theorem) that can be defined from κ and O—there are
infinitely many others; but there is no need to consider them here.
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theory. (I am not sure whether Grünbaum himself would take this position; he has
not, so far as I know, actually done so; and we shall see presently that his real
disagreement with Malament has an entirely different basis.) And it could—can—
also be based, as in my remark in the cited footnote and in Sarkar and Stachel’s
further discussion [4, pp. 214 ff.], on the consideration that time-reversal (as well as
reversal of spatial orientation, and change of scale) cannot be considered as clearly
demanded by physics.6

Turning now to the theorem Sarkar and Stachel claim to prove that covers the
vulnerable points in that of Malament, their formulation reads as follows [4, p. 216]:

Standard simultaneity is the only non-vacuous simultaneity relation causally’ definable
from κ and O that depends only on an inertial frame, and not on the particular world line O
initially chosen to define that inertial frame.

By a “non-vacuous simultaneity relation” is here meant a relation S that satisfies
the following three conditions, borrowed from Malament: (1) S is an equivalence
relation; (2) there exists a point p on O and a point q not on O such that S(p,q); (3) S
does not hold for every pair of space-time points. By “the inertial frame defined by a
(straight, time-like) world-line O” is meant (of course) the family of all lines parallel
to O (I shall also use the term “inertial system” for such a family). And by “causally’
definable” is meant: invariant under all automorphisms of the Minkowski space-time
that preserve the inertial frame and that are continuously connectible to the identity
(“causal’ automorphisms,” as Sarkar and Stachel call them). This class of mappings
excludes time-reversals and “spatial” reflections—it is precisely the class of all those
automorphisms (in the standard sense) that preserve both time-orientation and the
orientation of the whole manifold. In particular, it includes changes of scale.

The last point deserves to be emphasized. With it, the theorem is true. But
Sarkar and Stachel say—rightly—that they actually do not make any use of scale-
invariance in their proof; and without the assumption of scale-invariance, the
theorem becomes false. There are infinitely many counterexamples, of which the
simplest is this: Let S(p,q) be the relation: “p and q belong to hyperplanes orthog-
onal to the direction of O, having, for some integer n, the orthogonal (time-like)
Minkowski distance nτ , where τ is a particular distance (given once for all)”.7 This
relation clearly satisfies the conditions on a “non-vacuous simultaneity relation,”

6 I should not wish to be taken as endorsing every aspect of the critical discussion of this point
in [4], but there is no need to argue the matter here: the general point, as I have here stated it,
suffices for our purposes.—Let me add that the fact that invariance under change of scale might
be challenged was likewise suggested in [3]—see p. 149, near the top—and that, accordingly (see
p. 250), an alternative proof was indicated for the theorem demonstrated on p. 249, avoiding appeal
to scale-invariance. Having mentioned this I must add to the criticisms I have made of passages by
others, one directed to a passage of my own: the argument [3. p. 149] leading up to the theorem
mentioned is sound, but the formulation of the theorem itself does not state correctly what the
argument has proved: the theorem as there stated is false!—On this, see Supplementary Note 2
below.
7 The other counterexamples are fairly obvious variants of this one, taking the coefficients of τ to
be, for instance, rational numbers, or elements of a given real algebraic number-field, or of any
given proper subfield of the real numbers, or indeed of any given additive proper subgroup of the
real numbers.
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and as clearly is invariant under all automorphisms (reflections too!) that preserve
the inertial frame to which O belongs, except scale-invariance.

If one wants to avoid reliance on scale-invariance, then, Malament’s conditions
on the relation S must be strengthened. (This is quite acceptable: Malament has
simply chosen a very weak set of conditions, not for any “ideological” reason, but
simply to show how restricted the class of “causally definable” relations in his sense
is.) A suitable condition is this: that, for a given point p, S(p,q) holds for exactly
one point q on each line of the given inertial system. But a far weaker condition suf-
fices: namely, that (a) for at least one observer-line O of the given inertial system, no
two distinct points p, q on O satisfy S(p,q), and (b) at least one pair of distinct points
(p,q) in space-time does satisfy S(p,q). (It is obvious, just from invariance under
translations—which ipso facto take the inertial system to itself—that condition (a)
entails that no two distinct points on any line of the system satisfy S.) To forestall any
possible ambiguity of terminology, I shall henceforth use the word “automorphism”
to refer to the full class of mappings normally considered by mathematicians to be
automorphisms of a Minkowski space-time (including, therefore, all reflections and
changes of scale); these coincide with the “causal automorphisms” of Malament;
I shall use the phrase “proper automorphisms” for those called “causal’ automor-
phisms” by Sarkar and Stachel (these still include changes of scale, but do not in-
clude reflections of any sort, “spatial” or “temporal”); and I shall use the phrase
“strict automorphisms” for proper automorphisms that preserve the scale.

Let us proceed to the proof of two theorems: the one stated by Sarkar and Stachel
for a “non-vacuous” simultaneity relation and requiring invariance under change of
scale, and one using our strengthened condition on the relation but not requiring
scale-change invariance (both, however, relativize simultaneity to an inertial sys-
tem, not just to a “single observer”). For convenience, the two theorems will be
formulated as a single one with two “cases”:

Theorem 1. In a Minkowski space-time of three or more dimensions let there be
singled out an inertial system I, and let S be an equivalence relation on the space-
time points satisfying one of the following two sets of conditions:8

(a)(1) S is invariant under all strict automorphisms of the space-time that preserve
I;

(2) S(p,q) does not hold if p and q are distinct points on a single world-line of I;
(3) S(p,q) holds for at least one pair of distinct points;

(b)(1) S is invariant under all proper automorphisms of the space-time that preserve
I;

(2) S(p,q) does not hold for every pair of points;
(3) S(p,q) holds for at least one pair of points not on the same world-line of I;

—then for any distinct points p, q, S(p,q) holds if and only if the line pq is orthogonal
to the lines of I.

8 S(p,q) will also be expressed by saying “p and q are simultaneous for I,” or “p and q are
I-simultaneous”; and that a line, or vector, or direction, is perpendicular to the lines of I will
also be expressed by saying that it is “perpendicular—or orthogonal—to I.”
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Proof. Let p, p′, be any points on different lines of I—O and O′ respectively—
that are simultaneous for I (such points exist in both cases, (a) and (b)); let s be
the orthogonal (space-like) distance of p′ from O; and let M be a three-dimensional
subspace of our space-time that contains the plane spanned by the parallel time-
like lines O and O′. Under all rotations of M about O as axis, the images of the
point p′ are all the points of the circle through p′, in the (space-like) plane of M
orthogonal to I, having its center at the intersection of that plane with O. Since
each such rotation can be extended to a strict automorphism of the entire space-time
preserving I and leaving p fixed (just allow it to act as the identity on any orthogonal
complement to M in the space-time), all the points of that circle are simultaneous
with p, and therefore also with one another; and the vectors p′p′′ from p′ to the other
points of that circle (i) are all orthogonal to I and (ii) have lengths that fill the half-
open interval of real numbers (0,2s]. We therefore have established the following.

Lemma 1. If p′ has space-like orthogonal distance s from the I-line through a point
p with which it is I-simultaneous, then for every real number s′′ with 0 < s′′ ≤ 2s
there is a point p′′, I-simultaneous with p′, such that (i) p′p′′ is orthogonal to I and
(ii) the space-like length of p′p′′ is s′′. (This holds, be it also noted, for both cases,
(a) and (b).)

But this has the following as an almost immediate corollary: Any two dis-
tinct space-time points q, q′ such that the vector qq′ is orthogonal to I are
I-simultaneous.—Indeed, for our special point p′ above, the lemma shows that
the property possessed by the real number s is also possessed by (among others) 2s
(for if p1 is the point diametrically opposite p′ in the circle, the space-like orthogo-
nal distance of p′ from the I-line through p1 is just the space-like distance of p′ from
p1 itself, namely 2s); therefore, by successive doubling, that property is possessed
by arbitrarily large real numbers;9 and then, by the full conclusion of the lemma,
it is possessed by every positive real number smaller than some “arbitrarily large”
one—i.e., by all real numbers. Now let r be the space-like distance between our
points q and q′. There is a point p′′, by what has already been shown, I-simultaneous
with p′, such that p′p′′ is orthogonal to I and has space-like length r. The translation
taking p′ to q is a strict automorphism of the space-time that preserves I, so the
image q′′ of p′′ by that translation is I-simultaneous with q, and the vector qq′′ is
orthogonal to I and has space-like length r. Moreover, there is a rotation that leaves
q fixed, preserves I, and takes q′′ to q′; therefore q′ is I-simultaneous with q.

We now know that any two points satisfying the “standard” condition for simul-
taneity relative to I are I-simultaneous. But to establish the converse is trivial: For
case (a), we have only to remark that if Σ is a hyperplane orthogonal to I, p any
point of Σ, and q any point I-simultaneous with p, the line of I through q meets Σ in
a point q′ that is I-simultaneous with q by the preceding result, and therefore is also
simultaneous with q. So in case (a), q′ must coincide with q—i.e., q must belong to
Σ—since we cannot have distinct I-simultaneous points on a time-like line. As for
case (b), the argument just given shows that if Σ is not the complete class of points

9 Formally, an argument by mathematical induction is of course required.
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I-simultaneous with p, there must be two distinct points q, q′, that belong to the
same line of I and that are I-simultaneous with p and therefore with one another.
By changes of scale, the vectors qq′ and q′q can be transformed to vectors of arbi-
trary time-like length, and of both senses, all pointing in the direction of I. But such
vectors, starting from all the points of Σ, reach all the points of the space-time; and
since their end-points are simultaneous, we shall have that every point of the space-
time is I-simultaneous with a point of Σ; so, since all the points of Σ are themselves
I-simultaneous, all the points of space-time will be I-simultaneous, contradicting
(b)(2): the proof is complete.10

The main point of these results is, as I have intimated, rather obvious; if the
proofs are a bit lengthy and a little intricate, that is the result of making the con-
ditions posited very Spartan. Thinking of the matter more broadly, it is easy to
see—and to prove—that a relation, satisfying conditions one would surely ask of
simultaneity, that is invariant under (a) every rotation about a line of the inertial sys-
tem I and (b) every translation of space-time can have no other equivalence-classes
than the hyperplanes orthogonal to the lines of I. Relativizing simultaneity to an
inertial system is of course in consonance with the original procedure of Einstein,
who envisaged, as coordinating their spatio-temporal observations, a “community of
observers,” in a shared “inertial state.” But it has occurred to me to ask whether one
can reach any sort of result from a weaker assumption—one that does not require
ab initio that the “observers” of this community be at rest relative to one another;
and indeed—in a certain sense—one can. I do not think that the results I shall now
present are of great philosophical interest (this I shall discuss later); but I think they
are of some—although again I should not say of “great”—mathematical interest;
they are not “obvious.”

Let us, then, make the following assumptions, for a Minkowski space-time of
at least three dimensions (as we shall see, the two-dimensional case is notably
different):

With each observer-line O there is associated an equivalence relation SO on the
whole space-time, in such a way that:

(S1) any strict automorphism that maps O to O′ transforms SO to SO′ ;
(S2) if Σ is an equivalence-class of SO then:

(a) every observer-line O′ has one and only one point in common with Σ, and
(b) for every point p′ of Σ there is an observer-line O′ containing p′ such that Σ is

an equivalence-class of SO′ (as well as of SO).

—From these assumptions it does not follow that SO is the standard Einstein–
Minkowski11 relation; let us examine what does follow.

10 The counterexamples already given to the Sarkar-Stachel theorem with scale-changes excluded
make it plain that the inference from the assumption that an I-line contains two simultaneous points
to the conclusion that all its points are simultaneous could not be made without the condition
of scale-change invariance. (For further discussion, locating the particular fallacy in the Sarkar–
Stachel proof, see Supplementary Note 3.)
11 I continue to use this designation, rather than “Poincaré–Einstein” as in [4], because I think
it historically far more justified. Poincaré’s treatment of what we now call “the special theory of
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Let Σ be the equivalence-class of the relation SO (for a given O), let p be the point
of O in Σ, and let p′ be any other point of Σ (note that p, as well as p′, is an arbitrary
point of Σ—for, by (S2)(b), every point of Σ is the point, in Σ, of some observer-line
having Σ as an equivalence-class). A key lemma in our discussion will be this: If O′

is the observer-line containing p′ for which Σ is an equivalence-class, then O′ and
O are coplanar (that is, if we call an observer-line having Σ as an equivalence-class
an “axis” of Σ, then every pair of axes of Σ is a pair of coplanar world-lines).

In any event, O and O′ can be embedded in a three-dimensional Minkowskian
subspace M of our space-time; for if they are not coplanar, then there is a unique
three-dimensional affine subspace M containing them (and this is necessarily
Minkowskian, since it contains time-like lines), whereas if they are coplanar the
two-dimensional subspace that they span can be extended to a three-dimensional
subspace M. Any strict automorphism of M can be extended to the entire space-time
(e.g., by making it act trivially on an orthogonal complement of M); therefore any
such automorphism maps the intersection of Σ and M to itself (this follows obvi-
ously from (S1)). Consider, first, the family of all rotations of M about O as fixed
axis. Under these rotations, p′ generates a circle C, whose plane is orthogonal to O,
and all of whose points are in Σ (since for any such point p′′ we have SO(p′′, p)—p
itself being fixed under all these rotations). Let l be the tangent-line to C at p′; I
claim that O′ must be orthogonal to l. Suppose it is not so. Then the plane through
p′ orthogonal to O′ does not contain l. Now, that plane is space-like, and it separates
M into two connected components—call them A and B. Since l meets, but does not
lie entirely in, this plane, it contains—arbitrarily close to the point p′ in which it
meets the plane—points of a and points of B. The same must then be true of the
circle C, to which l is tangent: in fact, any arc of C which contains p′ in its interior
and which does not extend as far as the point diametrically opposite to p′ is divided
by p′ into a part that lies in A and one that lies in B; and each of these contains
points arbitrarily close to p, and therefore points whose perpendicular distances
from O′ are arbitrarily small. In particular, C contains a pair of points, say q in A
and q′ in B, that are of equal orthogonal distance from O′. Under rotation of M
about O′, therefore, q and q′ describe circles, in planes orthogonal to O′, one in A
and one in B, lying on a single cylinder having O′ as axis; and all the points one
both these circles, together, are in Σ, since q and q′—as points of C—lie in Σ, and
Σ is invariant under rotations about O′. And this leads to a contradiction of (S2)(a):
for the generating lines of our cylinder, which are parallel to O′ and thus time-like,

relativity” is quite wonderful; but (a) although he had previously discussed the lack of clarity of
the notion of simultaneity for distant events, there is not a single word about distant simultaneity
in his great essay [5], except for what is implicit in the spatio-temporal transformation equations
(represented as changes of coordinates)—and equations, which Poincaré attributes to Lorentz, are
indeed those introduced by Lorentz [6]. Further, Poincaré expresses in the introduction to this
essay deep reservations about the theory he is presenting, as one that seems artificial and might
perhaps some day be simplified by a critical consideration of measurement (so far is he from
offering such a consideration here!). So (a) there is something to be said for “Lorentz-Einstein,”
rather than “Poincaré-Einstein,” but (b) on the other hand, it was Einstein who made a clarification
of simultaneity a central theme, and it was Minkowski who geometrized that clarification; hence
my preference.
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each meet both the circle generated by q and that generated by q′, whereas these
two circles do not meet (since one lies in A and the other in B). So it is established
that O′ is orthogonal to l, as claimed.

But this result means that O′ and O are coplanar—that is, it establishes our
lemma: for l, as the tangent-line to C, lies in the plane of C—i.e., the plane orthog-
onal to O; so any plane orthogonal to l is parallel to O; but the plane orthogonal to
l at the point p′, since it contains the center of C, meets O, and so must contain O;
and since this plane, as we have just seen, also contains O′, O and O′ are indeed
coplanar.

There are now two possibilities: O and O′ intersect, or they are parallel.12 Let O′′

be any axis of the same equivalence-class Σ that does not lie in the same plane as O
and O′ (there are such, of course: take an axis at any point of Σ outside that plane—
that such points exist is guaranteed, in the light of our assumption that the space-time
is at least three-dimensional, by condition (S2)(a)). If O and O′ are parallel, then
since O′′ cannot meet both of them it must be parallel to one—but, then, to both;
any other axis is non-coplanar with either O and O′ or O and O′′, and is therefore
parallel to O: in other words, in this case all the axes of Σ are parallel; and by the
invariance of SO under translations in the direction of O, the same must be true of
all the equivalence-classes of SO; and then, since there is a strict automorphism that
takes O to any other observer-line, for all the equivalence-classes of any observer
at all. But this puts us in the situation of Theorem 1 above (either (a) or (b)—the
conditions of either are satisfied); so for this case it does follow that SO is Einstein–
Minkowski simultaneity: the equivalence-classes of simultaneity are hyperplanes
orthogonal to the axes of simultaneity.

Suppose, then, that O and O′ intersect. Then O′′ (chosen as above) cannot be
parallel to either—say, to O—by the immediately preceding result (putting O′′ for
O′ and O′ for O′′). So we have three non-coplanar lines that intersect in pairs; from
which it follows that all three intersect in one common point p0. It follows by an
obvious argument13 (appealing to the fact that if, of three non-coplanar lines, every
two intersect, then all three have a point in common) that all axes of Σ meet in p0.
(Note that at this point we have established—we have not assumed—that through
each point q of Σ there passes exactly one axis of Σ: in the previous case, the line
parallel to O; in this case, the line p0q [that p0 is distinct from q, so that there is a
determinate line p0q, is clear, since p0 is not in Σ].)

To complete the analysis of this case, we must note that any strict automorphism
that maps Σ onto itself must also take the set of axes of Σ one-to-one onto itself. For
let φ be such an automorphism, let p be any point of Σ, let the axis of Σ at p be O,
let φ(p) be p′, and let φ(O) be O′. By the invariance assumption (S1), φ transforms
SO to SO′ ; so, since Σ is invariant under φ , Σ is an equivalence-class of SO′ ; in other
words, O′ is an axis of Σ—and therefore, since there is only one axis of Σ at each
point of Σ, it is the axis of Σ at p′; and this shows that φ does indeed map the set of
axes of Σ one-to-one onto itself.

12 If we adopt the point of view of projective geometry, introducing the “projective completion” of
our space-time, these alternatives merge into one.
13 From the projective point of view, the same argument as in the former case.
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But from this it follows that any strict automorphism that maps Σ onto itself
leaves fixed the point p0 in which all the axes of Σ meet. Now, if p and p′ are any
two points of Σ, there is a strict automorphism taking p to p′ and taking the axis of Σ
at p to that at p′ (for, given any points p and p′, and any time-like lines l and l′ con-
taining p and p′ respectively, there is a strict automorphism of the space-time taking
p to p′ and l to l′). That automorphism maps Σ to itself, and therefore leaves p0
fixed. Since a strict automorphism preserves the length and the time-orientation of a
time-like vector, the vectors p0 p and p0 p′ have the same length and the same time-
orientation. Let us call any class of all the time-like vectors that agree in length and
time-orientation with a given one v the temporally oriented radius [v] determined
by v. Then what we have just established is that, for any point p on an observer-
line O, and any point p′, if SO(p, p′) holds then the vector p0 p′ is time-like and the
temporally oriented radius [p0 p′] is the same as [p0 p]. We may describe this situa-
tion by saying that the equivalence-class Σ of SO that contains p is contained in the
“Minkowski hemisphere” with temporally oriented radius [p0 p]; but it must then be
the entire hemisphere, since otherwise it will not be the case that every observer-
line meets Σ (i.e., assumption (S2)(a) will be violated).—However, this formulation
is elliptical: it does not identify the point p0. The answer to that objection is that
what must be given (once for all) to determine the function S that assigns to every
observer-line its “simultaneity-relation” SO is a temporally oriented radius r. Then,
given p, and O containing p, the point p0 in the foregoing statement—the “center”
of the Minkowski hemisphere containing p and having O as an axis—is the unique
point on O such that [p0 p] = r.—It is of course in singling out a particular (time-
like) distance and time-orientation that we make essential use of the fact that we
have not postulated invariance under change of time-orientation or change of scale.

To sum up, we have established the following:

Theorem 2. In a Minkowski space-time of three or more dimensions let there be
given an assignment, to each observer-line O, of an equivalence relation SO on the
whole space-time, in such a way that:

(S1) any strict automorphism that maps O to O′ transforms SO to SO′ ;
(S2) if Σ is an equivalence-class of SO then:

(a) every observer-line O′ has one and only one point in common with Σ, and
(b) for every point p′ of Σ there is an observer-line O′ containing p′ such that Σ

is an equivalence-class of SO′ (as well as of SO);

—then EITHER (1) for every O, p, and q, we have that SO (p,q) holds if and only
if the line pq is orthogonal to O, OR (2) there is a temporally oriented radius r
such that for every O, every p on O, and every point q, we have that SO (p,q) holds
if and only if [p0q] = r, where p0 is the (unique) point on O for which [p0 p] = r.
(Equivalently we may say, in case (2), that for every O, p, and q, SO (p,q) holds if
and only if, for some p0 on O, [p0 p] = [p0q] = r.)

Two ways suggest themselves to strengthen the hypotheses of this theorem so as
to eliminate the alternative (2) and leave standard Einstein–Minkowski simultaneity
as the only possibility: we may replace (S2)(b) either by:
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(S2) (b′) for every pair of space-time points p, p′, and every observer-line O con-
taining p, there is an observer-line O′ containing p′ such that SO′ coincides
with SO;

or by:

(S2) (b′′) for every observer-line O, every equivalence-class Σ of SO and every
space-time point p, there is an observer-line O′ containing p such that Σ is an
equivalence-class of SO′ (as well as of SO).

—The first of these alternative assumptions obviously rules out the alternative con-
clusion (2), since in the latter the families of equivalence-classes of any two distinct
observer-lines have, ipso facto, their “moving centers” on different lines (the centers
coincide only where the lines intersect). The second rules out conclusion (2) because
for Σ to be an equivalence-class of SO′ it is necessary that O′ pass through the cen-
ter p0 of the “Minkowski hemisphere” Σ,14 and of course not every observer-line
does so.

Let us now consider a two-dimensional Minkowski space-time. This case differs,
as has been intimated, in important ways from that of any higher dimension, and I
think the difference is worth noting. (One point is obvious from the outset: namely,
that the lemma we have exploited in the proof of Theorem 2 holds trivially in two
dimensions—all the axes of a simultaneity-class are coplanar, because everything
is coplanar; but this fact, in just this case, is of no help at all, and a quite different
line of attack is required.) I shall begin by reviewing a few basic facts about the
geometry of a Minkowski space-time of two dimensions:

(1) In two dimensions, there is complete symmetry in the geometry as between
space and time, since the fundamental quadratic form has, in diagonal form,
one positive and one negative coefficient.15 It would, indeed, be possible in
this case to extend the notion of an “automorphism” of the space so as to in-
clude an interchange of “space” and “time.”16 One aspect of this (as it were)

14 This condition is also sufficient.
15 There is in the literature some variation in the choice of signs: in the older convention, introduced
by Minkowski (the “time-coordinate” as an imaginary number), the negative sign is assigned to
the one temporal dimension, the positive sign to the n (for physics, 3) spatial ones; but the reverse
choice is often made. This is, in the clearest sense, a pure matter of “convention”: which of them
one adopts makes no real difference. Accordingly, in the above discussion, I have never indicated
a preference on this point: I have referred to vectors and subspaces as “time-like” or “space-like,”
without assigning an algebraic sign to the one or the other. I shall continue to do this in what
follows.
16 As we know, the wider sense of “automorphism” usual in mathematics for Minkowski space-
times includes change of scale; this is tantamount to regarding, as characterizing the geometry, not
a given non-degenerate quadratic form of appropriate signature, but a class of such forms, arising
from one another through multiplication by arbitrary positive real factors. Nothing prevents one
from admitting instead multiplication by arbitrary nonzero real factors. This, in the general case, of
n+1 dimensions with n > 1, would make no difference at all to the theory; but in the case n = 1, it
would automatically allow as automorphisms maps that preserve the linear (more exactly, affine)
structure, preserve the relation of orthogonality, but take “time-like” vectors to “space-like” ones
and vice versa.
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“time-likeness of space” in a two-dimensional space-time is that, just as it
is possible to divide time-like vectors into two classes that are topologically
separated from each other, so this is also possible for space-like vectors. In
fact, under “proper automorphisms,” the non-zero vectors of a two-dimensional
Minkowski space-time fall into eight distinct classes: two of time-like vectors
(we may call them “future-pointing” and “past-pointing”), two of space-like
vectors (“right-pointing” and “left-pointing”), and four classes of null vectors
(“right-and-future pointing,” “left-and-future pointing,” “left-and-past point-
ing,” “right-and-past pointing”): one non-zero vector can be taken to another
by a proper automorphism if and only if the two belong to the same class.17 I
shall call two non-zero vectors—or two lines—“like,” or “of the same charac-
ter,” if they are both time-like, both space-like, or both null; and shall call (as
above) two like vectors “of the same class” if they are similarly oriented—i.e.,
if they are “equivalent” under proper automorphisms.—Two vectors are like if
and only if their inner products with themselves have like signs (here zero is
to be counted as a sign in its own right, distinct from plus and minus); two
non-null like vectors are of the same class if and only if their inner product has
the same sign as the inner product of each with itself.18—The fact that proper
automorphisms—and, a fortiori, strict automorphisms—preserve spatial as well
as temporal orientation of individual vectors will prove to be important in the
following.

(2) We shall have occasion to make use of the following facts about triangles—
equivalently, about three vectors of which one is the sum of the other two—in a
Minkowski plane:

(a) Let two vectorial sides—AB, BC—of a triangle be space-like and of the
same class; then the side AC (their vector-sum) is also space-like and of the
same class with them.
—This is perhaps obvious; to prove it, we have—representing the inner
product by angle brackets—that, since AC = AB + BC, < AC, AC >=
< AB, AB > +2 < AB, BC > + < BC, BC >. By the criterion stated in
(1) above, all three terms have the same sign; therefore the inner product of
AC with itself has the same sign as those of AB and of BC with themselves:
AC is space-like. And < AC, AB >=< AB, AB > + < BC, AB >—again a
sum of terms of like sign—so it, too, has the same sign as the inner product
of AB with itself, which shows that AC and AB are of the same class.

(b) If A, B, C are non-collinear points and D is a point on the space-like line BC
such that AD is orthogonal to BC, then:

17 To avoid a possible misunderstanding: “automorphism” is not here used in the extended sense
mentioned in the previous note; and indeed, even if it were, since “proper” automorphisms are those
that belong to the connected component of the identity in the Lie group of all automorphisms, the
ones “interchanging time and space” would be excluded.
18 Although it will be of no importance in what follows, it perhaps ought to be noted explicitly that
this criterion fails for null vectors: two null-vectors directed along the same line have inner product
zero whether their “senses” are the same or opposite.
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(1) the vectors AB and AC are of like character and equal in length if and
only if D is the midpoint of the segment BC (i.e., if and only if A is on
the perpendicular bisector of BC);

(2) if this is indeed the case—i.e., if D is the midpoint of BC—then:
(i) if AB and AC are space-like, then BA, AC, and BC are all of the

same class, and the lengths of BA and of AC are less than half that
of BC;

(ii) if AB and AC are time-like, then AB, AD, and AC are all of the
same class.

—For, setting for convenience x = AD, y = BD, z = DC (all as vectors),
and noting that AB = x− y and AC = x + z, the necessary and sufficient
condition for AB and AC to be of like character and equal in length is that
< x− y, x− y >=< x + z, x + z >; i.e., in view of the orthogonality of x
to y and to z, that < x, x > + < y, y >=< x, x > + < z, z >; i.e., that
< y, y >=< z, z >; and since y and z are in the same line, this means that
y = ±z. But y = −z is impossible, because that would mean BD+DC = 0,
i.e., C = B, whereas our assumption that A, B, and C are non-collinear im-
plies that these are three distinct points. So the condition for AB and AC to
be of like character reduces to y = z, i.e., BD = DC, which is to say: D is
the midpoint of BC; so (1) is proved.—Proceeding to (2)(i), we are now to
assume that z = y and, further, that AB and AC are space-like, which is to
say that < x− y, x− y > and < x + y, x + y > (which of course are both
equal to < x, x > + < y, y >) have the same sign as < y, y > (this in view
of the fact that y is space-like). What has to be proved is that y− x, x + z
(i.e., x+ y), and y+ z (i.e., 2y) are of the same class. It suffices to show that
each of the first two is of the same class with the third; which is to say, that
the inner products < y−x, 2y > and < y+x, 2y > have each the same sign
as that of the inner product of a space-like vector with itself. But—again,
since x and y are orthogonal—these are both equal to 2 < y, y > and, y being
space-like, the point is established. The claim about the lengths of BA and
of AC—that is, of y− x and of x+ y—follows almost immediately from the
expression for both of them, < y, y > + < x, x >: since the terms of this sum
are of opposite sign and the sum, by hypothesis, has the sign of < y, y >, it
is smaller in absolute value than < y, y >; so the (common) length of y− x
and of y+x is less than that of y—i.e., than half the length of BC.—Finally,
as for (2)(ii), we now have to suppose that < x, x > + < y, y > has the same
sign as < x, x >, and to show that x− y, x, and x + y are of the same class.
Analogously to the case of (i), it suffices to show that the inner product with
x of each of the other two has the same sign as that of x with itself; but this
is even more obvious than in the other case: each of these inner products is
equal to < x, x >. The proof of (b) is complete.

(c) In an isosceles triangle ABC with the two vectorial sides AB, AC space-like,
equal in length, and of the same class, the “base” BC is time-like.
—This is most easily seen by considering the sum AB+AC, which by (a) is
space-like. Its inner product with BC—since the latter is AC−AB [for AB+
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BC = AC]—is < AB, AC >−< AB, AB > + < AC, AC >−< AC, AB >.
The first and last terms of this sum cancel, by the commutativity of the inner
product, and so do the middle two terms, since AB and AC are like and of
equal length; so the whole is zero—i.e., BC is orthogonal to the space-like
vector AB+AC.

(3) Finally, some facts about the strict automorphisms of a Minkowski plane (or the
connected component of the identity in its Poincaré group):

(a) There are two kinds of automorphisms besides the identity: the translations,
which have no fixed points and which leave invariant one complete family
of parallel lines; and the “Minkowski rotations” (“Lorentz transformations,”
“boosts”), each of which has a unique fixed-point and leaves invariant only
the two null-lines through the fixed-point. If p and p′ are any two points,
there is a unique translation that maps p to p′. If p and p′ are any two points,
and if l and l′ are any two non-null lines of the same character through p
and p′ respectively, there is a unique strict automorphism that takes p to p′

and l to l′.19 For there is a translation that takes p to p′, and this may be
followed by a “boost” that leaves p′ fixed and takes the image of l under the
translation to l′. (That the resulting automorphism is unique follows from
the fact that the identity is the only automorphism that leaves a point fixed
and a non-null line through that point invariant; this—which is not hard to
prove—I here simply take for granted.)

(b) If one considers all the strict automorphisms having a given fixed-point
(here including the identity), they constitute a one-parameter subgroup of
the Poincaré group. Unlike the case of Euclidean rotations, a one-parameter
group of “Minkowski rotations” is non-compact—as the parameter varies
from −∞ to +∞, the mapping from parameter values to group elements
is one-to-one. In spite of this fact, one can—as in the Euclidean case—
make a “natural” choice of parameter, which in the Euclidean case is the
angle of rotation (the “natural” choice—there is not a unique one!—may
be the radian-measure, or the measure by fractions of a full rotation).20

In any event, the correspondence of the parameters to the rotations they
parametrize is of such a kind that multiplying the parameter by, say, a posi-
tive integer n corresponds to “composing a rotation with itself” n−1 times
(the “minus one” comes from the fact that, e.g., “composing an operation
with itself” once means “performing that operation” twice). Multiplication

19 Although, once again, it is of no importance for us, let it be remarked that this is not the case if
L and L′ are both null: in this case, these lines must also be, let me say, “similarly inclined” (either
they must both go from past and left to future and right, or both from past and right to future and
left, for there to be any automorphism that takes one to the other; and then there will be infinitely
many automorphisms that take p to p′ and L to L′).
20 It is striking that in spite of the fact that in the Minkowski case there is no such thing as a
“full rotation,” there is nevertheless a “natural” analogue to the angle; but this is just one more
manifestation of the marvelous interconnection of the trigonometric functions and the exponential
function. (I trust the reader will forgive this gratuitous advertisement of the splendors of [even the
rather elementary part of] mathematics.)
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of the parameter by −1 amounts to taking the inverse of the given rotation
(from which follows the interpretation of multiplying by any negative inte-
ger). Analogously—but this actually gives us something new—multiplying
the parameter corresponding to a given rotation φ by the reciprocal of an
integer n, we obtain a rotation which, “performed n times,” results in the
original rotation φ . Since the nth iterate is indicated by n as an exponent,
the procedure just described yields what one might call the “nth root” of
φ ; but I shall call this instead—bearing in mind the parameter (the “quasi-
angle”) of the rotation—the result of dividing the rotation by n; and by an
obvious extension, we obtain the interpretation of multiplication by any ra-
tional number.—Multiplication by irrational real numbers is an entirely new
generalization of the simple idea of “composition of an operator with itself.”
(As will be seen below, what we shall have to consider is primarily the case
n = 2 or a power of 2, and then multiplication by any rational number whose
denominator is a power of 2; and I shall speak of “halving” the rotation, or of
its “successive halving,” etc., rather than of “taking square roots,” or “taking
to a rational power,” etc.)

(c) The analogous situation for a translation is simpler: a translation (different
from the identity) is represented by a (non-zero) vector, and when transla-
tions are considered separately, their composition is represented as addition
of vectors (but when they are considered together with the other elements of
the Poincaré group their composition with any group-element—translations
themselves included—is represented multiplicatively). So, treating a trans-
lation and its compositions with itself (and iterations thereof), these amount
to multiplications by a positive integer; the extension to positive and nega-
tive rational (or, for that matter, irrational) numbers remains in the domain
familiar from the ordinary treatment of vectors, and the structure of the one-
parameter group “generated by” a given non-zero translation is obvious.
(Let it be noted that every non-zero multiple of a Minkowski rotation is a
rotation and every non-zero multiple of a translation is a translation.)

In treating the higher-dimensional case, we excluded from the start (via condition
(S2)(a)) the possibility that a simultaneity equivalence-class contains two distinct
points with time-like separation, but we did not exclude in advance the possibility
that such a class contains two distinct points with null separation—this emerged
as a consequence of our hypotheses. In the two-dimensional case, if we wish to
avoid this possibility in the end, we have to strengthen the assumptions (this will
emerge clearly when the analysis is complete). Therefore, for the following dis-
cussion, I wish to strengthen condition (S2), replacing clause (a) by the following:
(a′)(i) every observer-line O′ meets Σ; (ii) any two distinct points of Σ have space-
like separation. The remaining hypotheses of Theorem 2 remain unaltered—except,
of course, that we are now to consider a Minkowski space-time of two dimensions.

Let Σ again be an equivalence-class, containing the point p, of the “simultaneity”
relation SO, where p belongs to the axis O. It will be useful in the present case to
begin by proving that there is no other axis of Σ at p. Suppose there were an axis
O′, distinct from O, containing p. Let q be a point of Σ with space-like separation
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from p (that there are such points follows immediately from condition (S2)(a′)(i)
and (ii), and from the fact that there are observer-lines that do not pass through p).
Consider, now, the Minkowski rotation about p that takes O to O′. The image q′ of
q under this rotation belongs to Σ: for q, as a point of Σ, satisfies SO(p,q); therefore,
by the invariance condition (S1), q′ satisfies SO′(p,q)—and since O′ is (assumed
to be) an axis of Σ, q′ belongs to Σ. On the other hand, the rotation about p that
took q to q′ took the vector pq to pq′; and since a rotation preserves the character,
the length, and the class of a vector, pq′ is space-like, equal in length to pq, and of
the same character as pq. Therefore, by (2)(c) in the foregoing discussion, if there
is at p an axis O′ distinct from O—which implies that q′ is distinct from q—there
is a time-like line qq′ containing two distinct points of Σ; and since this violates
condition (S2)(a′)(ii), there cannot be an axis at p distinct from O.

Next we shall see that any strict automorphism that maps Σ into itself must (a)
take the set of axes of Σ into itself, and must (b) take both the set of points, and the
set of axes, of Σ, one-to-one onto themselves. For let φ be such an automorphism,
let p be a point of Σ, let O be the axis of Σ at p, let p′ be φ(p) and let O′ be the image
φ(O) of O under φ . We must first show that O′ is an axis of Σ; so let q be any point
such that SO′(p′,q) holds. Since φ−1, the inverse of φ , is (of course) also a strict
automorphism, we have by invariance that SO(p,φ−1(q)) holds; therefore φ−1(q)
belongs to Σ, so since φ maps Σ into itself φ(φ−1(q))—which is to say, q—belongs
to Σ; and this means that O′ is indeed an axis of Σ. Now let q be any point of Σ, and
let φ , p, O, and O′ be as in the discussion of clause (a). We have just seen that O′ is
an axis of Σ, so SO′(p′,q) holds (as was assumed of q in that discussion); therefore
it follows again (or still!) that φ−1(q) belongs to Σ, and accordingly that q is the
image under φ of a point of Σ, which shows that φ maps Σ onto itself. Further, φ
(as we already know) takes axes of Σ to axes of Σ; therefore it takes the axis of Σ at
φ−1(q) to that at q; and since q was an arbitrary point of Σ—and so the axis of Σ at
q is an arbitrary axis of Σ—every axis of Σ is the image under φ of some axis of Σ,
so the mapping by φ of the set of all such axes is onto that same set. Finally, as an
automorphism of the space-time, φ is automatically one-to-one on any set of space-
time points; and although an automorphism is not necessarily one-to-one on the set
of time-like lines (“observer-lines”), an automorphism of Σ is one-to-one on its axes
because the axes correspond one-to-one with their points of intersection with Σ, and
the automorphism is one-to-one on that set of points. Thus clause (b) too has been
fully demonstrated.

With all these perhaps tedious but comparatively trivial points now established,
the main conclusion of the present an analysis could be rather quickly reached, on
the basis of the discussion of one-parameter groups under (3)(b) and (c) above.
But since just that part of the preliminary discussion contented itself with a vague
indication of the proofs of its claims—by means, namely, in (3)(b), of the notion of
“quasi-angles” (which is to say, the “hyperbolic trigonometry” of the Minkowskian
plane), it seems preferable to base the results instead on more elementary geometric
constructions.

Let, then, Σ still be an equivalence-class of a “simultaneity-relation,” let p and
p′ be points of Σ, let O and O′ be its axes at p and p′ respectively, and let φ be the
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strict automorphism that takes p to p′ and O to O′. Then φ maps Σ into itself (and
therefore, by the preceding result, onto itself), because if q is in Σ if q′ = φ(q), we
have SO(p,q); therefore SO′(p′,q′); therefore q′ is in Σ. We mean now to “halve” φ .
To this end, consider the perpendicular bisector of the space-like line-segment pp′.
This is a time-like line (cf. n. 21 above), and therefore contains a (unique) point p′′

of Σ; let the axis of Σ at p′′ be O′′, and let the strict automorphism that takes p to p′′

and O to O′′ be ψ .21 I maintain that ψ “halves” φ .—Proof: First, if q = ψ p′′) then
q is a point of Σ, and p′′q, as the image under ψ of pp′′, is of the same character
and length as the latter; but therefore, by (2)(b) of the preliminary discussion, of the
same character and length as p′′p′ as well. From this in turn, by (2)(c),22 it follows
that unless q = p′, qp′ will be a time-like line containing two distinct points of Σ.
Since this last is impossible, we must have q = p′; but then also the image under
ψ of O′′ must be O′; so since ψ takes p to p′′ and p′′ to p′, and takes O to O′′

and O′′ to O′, its “double” ψ2 takes p to p′ and O to O′; but these are the defining
characteristics of φ , so the point is established.

Now observe that if we allow φ to “act iteratively on p,” a countable set of points
will be generated—all on Σ, equally spaced—proceeding from p on the one side;
that φ−1 will similarly generate such a set proceeding from p on the opposite side;
and that allowing ψ and its inverse to act similarly, we shall obtain another such
pair of sets, which include all the points of the first pair, with new points inter-
polated between every two adjacent points of the first sets. The (equal) distances
between successive points of the “refined” system will be no more than half that be-
tween successive points of the first system: namely, if three successive points such
as p, p′′, p′ above form a triangle, the distances |pp′′| and |p′′p′| are less than half
|pp′| (see (2)(b) of the preliminary discussion), whereas if these points are on a sin-
gle straight line then p′′ is the midpoint of pp′, so the former distances are exactly
half the latter one.

We next conceive this process of “bisection” of the automorphism and the gen-
eration of new points on Σ to be iterated without bound. The result is a system of
points “densely” distributed on Σ, in the sense that any one point has, on each “spa-
tial side” of itself, others whose (space-like) distances from it are arbitrarily small.23

We must now consider the geometric nature of the locus of these points.

21 Note, by the way, that in light of what we now know we could characterize ψ equivalently as
the strict automorphism that takes p to p′′ and maps Σ into (or: onto) itself. By the same token, φ
can be characterized as the strict automorphism that takes p to p′ and maps Σ into (or: onto) itself.
22 Here the reader may (should!) have a sense of déjà vu.
23 Caution!—We cannot immediately conclude that these points are “dense in the topology induced
on Σ by that of the Minkowski plane. For the space-like distance is not a metric in the standard sense
of the theory of metric spaces—this because the triangle inequality is, as we have seen, “the wrong
one.” Indeed, it is quite possible for a sequence of points to be (as it were) a “Cauchy sequence in
the space-like distance,” but not to converge; or for the distances of those points from a given point
p to converge to zero, but the points not to converge to p. (This last is especially easy to see: let
the “Cauchy sequence” converge to a point q, distinct from p, with null separation from p; then
the “distances” from p will go to zero, but the sequence will not converge to p.) We shall have to
(and we shall be able to) circumvent this difficulty eventually.
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With Σ, p, p′, p′′, O, O′, O′′, φ , and ψ as above, suppose first that p, p′′, and p′

are collinear—so that p′′ is the midpoint of pp′. Then the vectors pp′′ and p′′p′ are
the same; so φ , mapping p to p′′ and p′′ to p′, and therefore taking the vector pp′′

to p′′p′, leaves that vector fixed.24 But a strict automorphism that leaves a non-null
vector fixed also (a) leaves fixed all its multiples by scalars, and (b) leaves fixed any
vector orthogonal to the given one (since strict automorphisms preserve the relation
of orthogonality and preserve the length, character, and class of any vector).25 But
given a non-null vector, every vector can be represented as a sum of a multiple
of that vector and a vector orthogonal to it; and automorphisms preserve sums; so
we conclude that a strict automorphism that leaves a non-nulll vector fixed leaves
every vector fixed. However, it is easy to see that an automorphism that leaves every
vector fixed is a translation. So—in the case in which p, p′, and p′′ are collinear—
the automorphism ψ is a translation—and, in consequence, all its powers, and also
its inverse and all the powers of its inverse are translations.

Before we draw the (almost obvious) conclusion from this about the geometric
character of the set Σ, it will prove best to consider the other case—that, namely, in
which the points in question are not collinear, so that the segments—and the vectors
(we have been using the same notation for both)—pp′, pp′′, and p′′p′ are distinct,
and the segments are the (space-like) sides of a (n isosceles) triangle. Consider, then,
the perpendicular bisectors of the equal sides pp′′ and p′′p′. These meet (since the
lines pp′′ and p′′p′ are not parallel, lines orthogonal to them are also not parallel)
in a point p0 that is equidistant from the end-points of both—i.e., from p, p′′, and
p′—and that therefore lies on the perpendicular bisector of pp′ (see (2)(b) of the
preliminary discussion). Since that perpendicular bisector is time-like, the vector
p0 p′′ is time-like; I claim that the vectors p0 p and p0 p′ must then also be time-like,
and of the same class as p0 p′′. Indeed, we know already, by (2)(b) of the prelimi-
nary discussion applied to the triangle whose vertices are p0, p, and p′′, that p0 p
and p0 p′′ are of the same character, since p0 lies on the perpendicular bisector of
the space-like pp′′; so p0 p must be time-like, because p0 p′′ is so; and analogously
for p0 p′. But then we know —again by (2)(b), now applied to the triangle whose
vertices are p0, p, and p′, and in which p′′ is the midpoint of pp′—that p0 p, p0 p′,
and p0 p′′ are indeed of the same class.

Now, the strict automorphism ψ takes p to p′′ and p′′ to p′. It therefore takes
the perpendicular bisector of pp′′ to that of p′′p′. Let r be the temporally oriented

24 Lest there be confusion: an automorphism of a Minkowski space is to be regarded as acting both
on the space of points and on the associated vector space (thus, in a more precise sense, as a pair
of maps [which we nonetheless designate by the same symbol])—the connection between the two
actions (or the two maps) being that if the points A and B are taken to A′ and B′ respectively, then
the vector AB is taken to A′B′.
25 Two points of clarification: (1) strictness is required only for the preservation of “class”: without
that, vectors orthogonal to a fixed one need not themselves be fixed, they may be “reversed”—i.e.,
multiplied by −1; (2) “non-null” is important here because a vector orthogonal to a null-vector
in a Minkowski plane is a multiple of that null-vector: it is not true that every vector is a linear
combination of the first vector and the second. (It does remain true for a non-zero null-vector—
in two dimensions—that a strict automorphism that leaves one fixed leaves all vectors fixed; but
another argument would be required to prove this, and we have no need of the fact.)
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radius [p0 p]; then the point p0 may be characterized as the unique point q on the
perpendicular bisector of pp′′ for which [qp] = r; it may also be characterized as
the unique point q on that perpendicular bisector for which [qp′′] = r. And by the
same token, p0 may be characterized as the unique point q′ on the perpendicular
bisector of p′′p′ for which [q′p′′] = r. But ψ takes any point q on the perpendicular
bisector of pp′′ for which [qp] = r to a point q′ on the perpendicular bisector of
p′′p′ for which [q′p′′] = r; that is, ψ takes p0 to p0 : p0 is a fixed-point of ψ (and,
as we know, there cannot be more than one such: p0 is the fixed-point of ψ (which,
incidentally, by this very argument possesses a fixed point: i.e., ψ is a Minkowski
rotation.

This conclusion leads to a far-reaching consequence for our other case—that in
which p, p′, and p′′ are collinear. We saw that in that case ψ is a translation. We
can now infer that the result of halving ψ is again a translation. For we saw, in our
previous analysis, that if, starting from p, p′, and the strict automorphism φ that
takes p to p′ and maps Σ into itself (cf. n. 22 above), we construct the point p′′ and
the automorphism ψ that halves φ , then if p, p′, p′′ are collinear, ψ is a translation,
and has no fixed-point; we have now seen that if those points are not collinear, ψ
is a rotation, and does have a fixed-point. Applying this to the halving of ψ (with
p′′ playing the role that p′ did previously, and with a new “third point” for p′′), we
see that unless the new triad of points is collinear, the result of halving ψ will be
a rotation—a transformation that has a fixed-point. But this is impossible; for if a
transformation has a fixed-point, so does the result of “doubling” it. Therefore, as
claimed, the result of halving ψ will in that first case be again a translation; and
so on ad infinitum. And it follows immediately that not only the “backwards and
forwards sequences of points” that we constructed from φ and refined using ψ , but
all the points of the subsequently constructed “dense” system in Σ lie on a single
straight line.

The conclusion for the second case—in which the first three points of the con-
struction, p, p′, p are non-collinear—is obviously analogous: If ψ has a fixed-point
p0, all the subsequent results of halving must likewise have, not only a fixed-point,
but the same fixed-point p0—the result of doubling a rotation has the same fixed-
point—or “center”—as the original rotation, and therefore the result of halving a
rotation must have the same fixed point as the original rotation. It follows that the
points of the “dense” array in Σ in this case all lie on a “Minkowski semicircle”
having the temporally oriented radius [p0 p].

Two matters remain to be treated. First, we are obviously led to think that Σ
itself just is the straight line or “semicircle” concerned; but this has to be proved.
And then, we have so far determined nothing about the axes of Σ: in the higher-
dimensional case, the fact that these axes (in the “hemispherical” case) have all
a single point of intersection was crucial to our whole argument; but in the two-
dimensional case, we have made very limited use of arguments involving the axes,
and have so far draw no conclusion whatever about their geometrical configuration.

In order to deal with the first problem, there is one obstruction we have to
remove. We have indeed seen that the range of points that lie on, in the one
case a straight line, in the other a circle, extends “infinitely” in both directions,
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and has “everywhere” points as close together as one wants; but “infinitely” and
“everywhere” here are in an important respect misleading: we have shown that there
are infinitely many points, in each direction, in our array; we have not shown—now
taking advantage of the possibility of using the geometric loci, the straight line or
the “semicircle,” as a sort of standard—that our range of points extends from the
initial point p, in both directions, past any given point of the line or “semicircle”
that we care to name.

In the case of the straight line, this is trivial to deal with: at the very first stage,
when we iterate the translation φ or ψ , we do obtain points arbitrarily far from p
along the line in either direction; and of course this continues to be true at every stage
of the subdivision. In the case of the “semicircle,” the situation is quite analogous:
the iteration of a rotation leads to points, in both directions from p along the curve,
that extend (in point of the natural ordering of points on an “open” curve) past any
given point. To prove this is not hard, but going into the details of a proof would not
afford any new insight into the matter—any reader who is unfamiliar with the fact
stated and who cares to have a proof should be able to find one—so I shall now take
this for granted. More precisely, I shall make use of the fact that if one is given any
positive real number a, and any point q of the straight line or “semicircle,” we can
find a sequence of points of our array, starting from p and continuing past q, such
that the space-like separation between any two successive points of the sequence is
less than a. Then, from this sequence, one can select two points, say q′ and q′′, one
on each side of q, and with space-like separation less than a.

If this is granted, the question of the full geometric locus can be settled at once.
Let q be any point on our line or “semicircle” that contains our “generated” array
(q is not assumed to belong to the array); it is to be shown that q belongs to Σ. To
this end, let l be any time-like line through q. By condition (S2)(a′)(i), l contains a
point of Σ. By the fact stated just above, there are points q′,q′′ of our constructed
point-array—points belonging both to Σ and to the line or “semicircle”—on both
sides of the point of l in Σ and “arbitrarily close” to one another. Both q′ and q′′

have space-like separation from the point of l in Σ (since all points of Σ have space-
like separation, by (2)(a′)(ii)). But it is obvious that a point x that has space-like
separation from points on the line or “semicircle” lying arbitrarily close to one an-
other and on both spatial sides of x can only be a point that itself lies on the line or
“semicircle”. Therefore the point of l in Σ must be the point q in which l meets that
geometric locus—as was to be shown.

Now that we know that every point of our line or “semicircle” belongs to Σ,
we can easily show that these are the only points of Σ—i.e., that Σ is the line or
“semicircle”: for every point q of Σ belongs to some time-like world-line; and every
time-like world-line meets the line or “semicircle” in some point q′; that point of
intersection q′ belongs to Σ (as we have just seen); but l has only one point in
common with Σ. So the point q of Σ through which L passes is the same as the point
q′ in which l meets the line or “semicircle”: the analysis of the geometrical nature
of Σ is complete.

As to the axes of Σ—and this is the only point on which we shall find a difference
in the end result from the higher dimensions—one can choose the axis at a given
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point q of Σ arbitrarily; that is, it can be any time-like line l through p. For the
choice of such a line as axis can be specified in the following “objectively geomet-
rical” way: Choose—“in advance” and once for all—a spatially oriented radius s,
of absolute length less than unity. (It is obvious how “spatially oriented radius” is
to be defined, except for the new proviso that here we allow the vector 0 to count as
“space-like” and “oriented”; it therefore constitutes a class by itself—the spatially
oriented radius 0. By the “absolute length” of a spatially or temporally oriented ra-
dius r we of course mean the absolute value of the length of any vector in the class r).
Then let u be the time-like, “future-pointing,” unit vector normal to the surface Σ at
the point p; let v be the unique vector orthogonal to u such that [v] = s (of course,
if s = 0, v is the zero vector); and let l be the line through p in the direction of the
vector u + v (any time-like line through p—and only such lines—can be described
in this way). Now, it can be seen without great difficulty (I forgo details here) that
if we start with one particular locus Σ of the kind already determined; if we then,
having chosen the spatially oriented radius s once for all, assign to every point p of
Σ the corresponding line l as “axis of simultaneity” for Σ at p; and if, finally, we
apply to this configuration all possible strict automorphisms of the two-dimensional
Minkowski space-time; then the resulting configuration determines an assignment
to every time-like line l of a relation Sl satisfying all our conditions.26

If one equivalence-class of our system is a straight (necessarily space-like) world-
line, then they all are; all those that belong to some one axis are parallel; and all
the axes of any one equivalence-class are parallel. The axes of different systems
of equivalence-classes—that is, the observer-lines O with different associated rela-
tions SO—are “inclined at the same angle” to the lines normal to their equivalence-
classes: this can be taken to mean simply that there is a strict automorphism taking
the one normal line to the other, and at the same time taking the one axis to the other.

If one of the equivalence-classes is a “Minkowski semicircle,” then they all
are—and, moreover, they all have the same temporally oriented radius r. No two
equivalence-classes have the same set of axes: as in the higher-dimensional case,
each observer-line has its own family of equivalence-classes. And just as in the case
of the straight-line equivalence-classes, each axis of an equivalence-class is “in-
clined at a given angle”—the same for all axes and for all equivalence-classes—to
the line normal to the equivalence-class at its point of intersection with the axis.

It is worth noting that whereas the possibility of “Minkowski-semicircular”
equivalence-classes is tied to the fact that we are not requiring scale-invariance—so
that we are free to choose a temporally oriented radius r �= 0—the possibility, in the

26 More precisely, for any observer-line l and any point p, there will be one and only one set Σ′ that
is an image of (the original) Σ under a strict automorphism such that p belongs to Σ′, l is an axis of
Σ′ at its point of intersection with Σ′, and for any points q, Sl(p,q) holds if and only if q belongs
to Σ′.—There are of course many details to check to justify the statement that this S satisfies all
our conditions; the only matter that may seem doubtful is whether, for any given time-like line l
and associated equivalence-class Σ with l oblique to the normal to Σ′ at their point of intersection,
the system of all translates of Σ′ in the direction of l constitutes a foliation of the space—i.e.,
whether every point belongs to one and only one such translate. This can be made transparently
so, in the usual Euclidean picture of the Minkowskian plane, through a judicious transformation of
coordinates.



“Definability,” “Conventionality,” and Simultaneity in Einstein–Minkowski Space-Time 425

case of straight-line equivalence-classes, of “inclined axes,” does not depend upon
that weakening of the invariance requirement (although it does depend on giving
up invariance under spatial or temporal reflections); for the construction of the axis
described above may be modified as follows: instead of taking for u the unit future-
pointing normal vector, take for it any future-pointing normal vector; and then take
(as a preliminary step) a vector u′ orthogonal to u, having as inner product with it-
self the negative of the inner product of u with itself and pointing “right,” and then,
having chosen (once for all) a non-zero (signed) real number s, let v = su′.

Either of the strengthened conditions (S2)(b′) or (S2)(b′′) will again restrict the
equivalence-classes to the “straight” ones only—i.e., to the same classes given by
the Einstein–Minkowski relative simultaneity relations. But the relations of simul-
taneity relative to an observer are not necessarily those of Einstein–Minkowski: for
the axes retain their degree of arbitrariness: they can be “inclined at any given angle”
(given once for all, that is) to the lines normal to the equivalence-classes.

One further fact seems worth pointing out, regarding the contrast with the higher-
dimensional case: There, when the simultaneity set was a “hemisphere,” all its
axes of simultaneity (which of course were just the diameters of the correspond-
ing “sphere”) had a common point of intersection: the center of the “sphere.” But in
two dimensions, for an s different from zero, the axes of simultaneity of a “semicir-
cle” do not all meet in a single point.—What particular geometrical configuration
the set of axes form for r different from zero is a question that may here be left for
the entertainment of Platonic philosophers.27

Summing up, our results for the case of a two-dimensional Minkowski space-
time are as follows:

Theorem 3. In a two-dimensional Minkowski space let there be given an assign-
ment, to each observer-line O, of an equivalence relation SO on the whole space-
time, in such a way that:

(S1) any strict automorphism that maps O to O′ transforms SO to SO′ ;
(S2) if Σ is an equivalence-class of SO then:

(a′) (i) every observer-line O′ meets Σ;
(ii) any two distinct points of Σ have space-like separation, and

(b) for every point p′ of Σ there is an observer-line O′ containing p′ such that
Σ is an equivalence-class of SO′ (as well as of SO);

—then (1) the system of equivalence-classes for one observer-line is either (a) a
family of parallel space-like straight lines, or (b) a family of “Minkowski semicir-
cles” of given temporally oriented radius r; (2) these alternatives hold “uniformly”
for all observer-lines—that is, either (a) holds for all, or (b) holds for all—and then
with the same time-oriented radius r for all the observers; and (3) in either case,
there is a fixed spatially oriented radius s of absolute length less than unity (it may
be zero), such that for any point p of any equivalence-class Σ, if u is the unit normal
vector to Σ at p, and if v is a spatially oriented vector orthogonal to u such that the

27 That is, lovers of geometry. (I have stated the result in Supplementary Note 4.)
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oriented radius [v] is s, the axis of Σ at p is the line through p in the direction of the
vector u + v.—If condition (S2)(b) is replaced by either (S2)(b′) or (S2)(b′′)—(for
which see the discussion following Theorem 2 above)—then the alternative (b) is
excluded: all the equivalence-classes are straight lines.

Addendum: In the case of straight-line equivalence classes, invariance holds
under the wider class of all “proper” automorphisms; for this wider class, modify
clause (3) as follows: (3′) there is a fixed non-zero (signed) real number s such that
for any point p of any equivalence-class Σ, if u is any future-pointing normal vector
and u′ is a right-pointing vector orthogonal to u, the absolute value of whose inner
product with itself is equal to the absolute vale of the inner product of u with itself,
the axis of Σ at p is the line through p in the direction of the vector u+ v.28

2 Remarks on the Controversy

It is certainly no new observation that philosophical controversy is often vitiated
by the fact that the disputants argue at cross-purposes; in particular, that they use
the same words with different meanings. Locke was far from the first, Wittgenstein,
Carnap, and Quine far from the last to see in a lack of clarity in linguistic use a
prime source of the apparent intransigence of philosophical problems.29 Nor, con-
sidering that the pointing out of this (in principle after all fairly obvious) fact has
not so far notably lessened the evil, is it at all likely—to compare a minor writer
with major ones—that I shall be the last one to do so either. Nonetheless, as I have
indicated in the opening paragraph, I have some hope of helping a little to clarify
this particular issue.

The most crucial notion that cries out here for clarification is that of the “conven-
tional.” Poincaré, whose emphasis upon this notion is the beginning of its latter-day
philosophical prominence, argued that the great organizing principles of geome-
try and mechanics—and in part, of pure mathematics—are “conventions, or def-
initions in disguise.” Now, it is clear that definitions are “conventions”: they are
stipulations—or agreements, since one assumes that the stipulation will be accepted
at least within a given discussion by all the discussants—concerning how a word
or phrase is to be used. But this does not help us, because Adolf Grünbaum has
always been quite explicit that his claims concerning conventionality are not about
the “trivial semantic conception” of conventionality (and of course, if they were, the
claims themselves would be trivial, and there would be no need for discussion).

Now, I do not know how to characterize “conventional” and its contrary in a gen-
eral sense that particularizes to the one that Grünbaum has in mind in this context, in
a clear way.30 It does not follow that it is impossible to give such a characterization;

28 Of course this slightly modified construction could have been used in Theorem 3 itself.
29 Or: the intransigence of apparent philosophical problems.
30 The notion of a distinction between a “merely conventional” definition and one that is not so—
i.e., that is “conventional” only in the “trivial semantical sense”—seems closely related to the dis-
tinction, in traditional philosophy, between (merely) “nominal,” and “real definitions”—ones that
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but since I am unable to give one, I shall content myself—a little later—with sug-
gesting what I think is a helpful explanation of what, just in this particular context,
would count for Grünbaum (and, I suppose, for his supporters) as not conventional
(in the non-trivial sense of “convention”). I have some hope that my explanation
will be acceptable to Grünbaum, because (I say a little shamefacedly) I shall there
merely copy, or paraphrase, part of what I have read in his recent paper. If I de-
serve any credit for this, it is only that of having at last realized that Grünbaum’s
claim has all along been misunderstood by those—among whom I count myself—
who have objected that the Einstein–Minkowski concept of simultaneity is not just
a “convention.”

And I continue to hold this latter position; but—I now hope—in a sense that
does not conflict with Grünbaum’s main contention, because I am using the word
“convention” with a different meaning from his.

Before I offer my new understanding of what Grünbaum has contended for all
along, I shall suggest a few corrections of detail to some of his adversarial remarks,
and shall try to explain the sense in which I—and, I believe, Malament and others
who have disagreed with Grünbaum—have understood the issue about simultaneity.

I pointed out in [3, p. 153] that the question of “conventionality” is a different
one for the procedure of Einstein in 1905 from what it is for that of Minkowski in
1907–8: Einstein was seeking a theory that should satisfy certain requirements—a
theory that did not yet exist; whereas Minkowski was seeking the most cogent and
instructive formulation of a theory already in existence. We, of course, are not at
all in the situation of Einstein;31 but it seems worthwhile to discuss briefly how the
issue looks from the perspective of that situation—all the more, in view of the fact
that Grünbaum has cited some words of Einstein in support of the conventionality
thesis.

It is indeed true, as Grünbaum remarks, that Einstein [7, p. 279]32 characterizes
his conception of simultaneity as the result of a Festsetzung, or “stipulation” by
means of a definition: a definition according to which, for an observer at rest in “a
coordinate system in which the Newtonian mechanical equations are valid” (ibid.,
p. 277), the time that light takes to get from A to B is the same as the time it takes
to get from B to A. This is very clearly a convention, then—but it is “clearly” so
only in the “trivial semantical sense”: it is a definition. Should one conclude that it
is a convention in a nontrivial sense? It seems to me difficult to draw this conclusion
simply from Einstein’s own words in this passage.

Grünbaum takes Michael Friedman to task for saying that the theory that resulted
from Einstein’s investigation “postulates” metrical relations that include the notion
of “relative simultaneity” for distant events; Grünbaum’s comment [8, p. 14] is:

in some sense define the “essence” of something; it is well known that many traditional philoso-
phers have rejected such a notion entirely: this is the “nominalist” position.
31 Not in that of Minkowski either, since Minkowski has performed his task; nonetheless our sit-
uation more nearly resembles Minkowski’s, in that we are concerned with a critical discussion of
the theory.
32 The page reference is to the Collected Papers.
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But, as we saw, Einstein stated emphatically that assertions of metrical simultaneity in the
STR are not “hypotheses” which are “postulated” in Friedman’s sense, ontologically on a
par with, say, the postulate that light is the fastest causal chain. Why then does Friedman
feel entitled to gloss over that important ontological difference by using the same term
“postulate” for both?

But this ignores something else that Einstein says, before the passage about
“stipulating” equal speeds of light in opposite directions: in the second para-
graph of the introductory section of the paper, after speaking of empirical evidence
that leads to the “conjecture”—Vermutung—that not only in mechanics but also
in electrodynamics “no properties of the phenomena correspond to the concept of
absolute rest, but that rather [—vielmehr—] for all coordinate systems for which
the mechanical equations are valid the same electromagnetic and optical laws are
also valid,” Einstein has written (and I quote his words in German first, to make
sure that no distortion is introduced by translation):

Wir wollen diese Vermutung (deren Inhalt im folgenden “Prinzip der Relativität” genannt
werden wird) zur Voraussetzung erheben und außerdem die mit ihm nur scheinbar un-
verträgliche Voraussetzung einführen, daß sich das Licht im leeren Raume stets mit
einer bestimmten, vom Bewegungszustände des emittierenden Körpers unabhängigen
Geschwindigkeit V fortpflanze.

We intend to elevate this conjecture (whose content in the following will be called “Princi-
ple of Relativity”) to a presupposition, and, besides, to introduce the presupposition—only
in appearance incompatible with [the former one]—that light in empty space is always
propagated with a determinate speed V , which is independent of the state of motion of the
emitting body.

It would seem, then, that we have Einstein’s authority after all for characterizing as
a “postulate” (or “presupposition” or “hypothesis”) the principle that the “speed of
light is the same” in one direction as in the other. This of course does not decide the
issue as to whether these postulates themselves should be regarded as “conventions”
(as Poincaré did regard the axioms of geometry); it bears only on the particular
appeal to Einstein’s statements made by Grünbaum.

The situation, then, for Einstein’s investigation was this: he did have reasons to
want a theory that satisfies the two “presuppositions” he formulated. The urgent
desirability of such a theory had been emphasized in 1900 by Poincaré [9]. When
Poincaré himself solved this problem in 1905, he regarded the solution as a mere
tour de force (and in subsequent writings, after the publication of his great paper
[5] [see, e.g., Part 3 of Science and Method, which reproduces a review article of
1908], he never referred to his own work but only to the not quite satisfactory “new
dynamics” of Lorentz). Whether or not he had read the 1900 report by Poincaré.
Einstein was motivated by the same considerations as Poincaré; and if, both having
found essentially the same theory, Einstein’s view of it was radically different from
Poincaré’s, this rests to no small degree upon the fact that Einstein had subjected
the concept of time to a much deeper criticism than had Poincaré, for whom the
“transformed time-coordinate t ′′′ was no more than a mathematical trick to make the
theory work. (I believe that this is not something that Grünbaum will disagree with.)

So: the problem lay precisely in the “apparent contradiction” referred to by
Einstein between his two “presuppositions.” The resolution he found of this appar-
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ent contradiction consisted precisely in his realization—and it evidently cost him
considerable intellectual struggle (cf. [9])—that the discrepancy in synchronization
between the time t and the transformed time t ′ in the Lorentz transformation—a
discrepancy that had led Lorentz to call t ′ the “local time”—corresponds to a con-
ceptual gap concerning the concept of “simultaneity” or “synchronization”: that, as
Einstein says [11, p. 61], in a passage also cited by Grünbaum [8, p. 14], “There
is no such thing as simultaneity of distant events.”33—This recognition opened the
way to the introduction of a suitable definition to close that conceptual gap; and it
is not at all surprising, therefore, that Einstein was concerned to emphasize to his
readers that a definition was here (a) needed and (b) (therefore) legitimate.

In the light of all this—considering the fact that it was essential for the success
of Einstein’s project to find a systematization of spatiotemporal relations and mea-
sures that would satisfy two requirements: (1) that for investigators who use these
measures, the laws of classical mechanics and of classical electrodynamics (includ-
ing optics) hold (at least to high approximation) for the results of measurement, and
(2) that this should be true for a system of teams of investigators, the investigators
of each single team being mutually at rest, the investigators of different teams in
arbitrary states of uniform motion relative to one another; the fact that the classical
laws presuppose, for any single such team of observers, a standard of synchroniza-
tion; and the fact that any standard of synchronization that meets these requirements
must agree, in application, with the criterion proposed by Einstein’s Festsetzung—it
seems somewhat misleading to call the latter a “convention” in a deeper sense than
the one applicable to all matters of linguistic usage.

Just one further turn regarding this aspect of the matter—i.e., Einstein’s own
procedure: Einstein could perfectly well have contented himself with the Vorausset-
zungen he formulates in his introductory section, and instead of “defining” simul-
taneity, have deduced from these two assumptions that light that travels back and
forth (or vice versa!) between two “inertial” observers A and B at relative rest must
take equal times both ways, and therefore can serve as a signal to synchronize clocks
in precisely the way the “definition” prescribes.—I do not think this alternate expos-
itory mode changes anything essential: an upholder of the view of “conventionality”
could just say that the Voraussetzungen themselves have to be counted as “conven-
tions,” rather as Poincaré did with respect to the axioms of geometry and mechanics.
And I remind my readers (and myself!) that I do not here claim to “settle” the issue
of conventionality—on the contrary, I have already said that for me the very notion
(in general) of what is or is not a “convention” is distressingly unclear; I should
really prefer to say the sort of things I have already said about the role played by

33 Grünbaum urges the fact that, according to Einstein, this is one of the “insights of definitive
character that physics owes to special relativity,” as showing again that Einstein is on Grünbaum’s
side on the question of the “conventionality” of simultaneity. But what Einstein says in the passage
cited, in the very next clause, is: “thus there is no unmediated distance action in the sense of
Newtonian mechanics.” The point—the “definitive insight”—is that there is no such thing in nature
as simultaneity schlechthin of distant events: no absolute, but only (at most) relative simultaneity.
At any rate, simultaneity “relative to” either an observer or an inertial system is not mentioned by
Einstein in this passage at all!
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Einstein’s concept of simultaneity, and leave the word “convention” out of the dis-
cussion entirely.

Let us then proceed to the other point of view: that of the finished theory. The
theorems of the first part of this paper—together, of course, with that of Malament—
are for me the main text for this point of view; but they do require some comment.

First, then, I have already said that the generalization contained in Theorem 2
does not seem to me of much philosophical interest. The reason is that the “com-
munities” of observers who share a simultaneity equivalence-class, in the “new”
case—where the classes are “Minkowski hemispheres”—are, as noted, constantly
changing; it is therefore impossible to refer any sort of stable measurements to them:
the purpose for which Einstein’s systems of inertial observers were introduced has
been entirely lost.

But some remarks about that purpose also need to be made. These systems of
inertial observers play, for the theory, the role of a kind of Platonic myth. In actual
fact there are no such observers: first because the real world is not characterized by a
Minkowski space-time, and second because “even if it were,” it would be very hard
to see how even one such system of inertial observers could be created.—What on
earth can the meaning of “even if it were” be here?—Well, I should say (in the spirit
still of “Platonic myth-making”), we might just envisage the possibility that a theory
of gravitation (such as Poincaré and Minkowski independently did attempt to formu-
late) could be envisaged within the Einstein–Minkowski framework. If for a moment
we consider that as a possibility, the first observation to make concerning our prob-
lem is that we certainly are not (would not be) inertial observers, since we live on a
body that is not in a state of inertial motion. In order to produce an inertial environ-
ment, we should have to embark upon a program of space-travel expressly designed
for that purpose: that is, to devise space vehicles whose navigational systems were
designed to compensate exactly for gravitational forces.—I shall not continue with
this fantasy; I am not good enough at science fiction. But I hope the point will be
clear—how far from “reality” these envisaged inertial observers are. They are none
the less useful, however, as vivid embodiments of the relationships expressed by the
“congruence transformations” of Minkowskian geometry—i.e., of the Lorentz trans-
formations (both homogeneous and inhomogeneous—in other words, the Poincaré
group). But there are two corollaries of these elementary remarks: (1) that Einstein’s
“definition” of simultaneity, and analogous considerations, are best thought of, not
as quasi-“operational” definitions, but as depicting” something like “thought experi-
ments” to make vivid the situation in this theory; (2) that it is indeed the situation “in
this theory” that is concerned—not that “in the real world”: any insight provided into
“the real world” comes only through the fact that the theory can claim to give “par-
tial,” or “approximate,” information—or, perhaps, information of an “infinitesimal”
kind—about the real world. To put it simply: any conclusions we are inclined to
draw about such things as “conventionality” or the opposite should in principle re-
fer, in the first instance, to how things stand, conceptually, within the theory.

With this understood, I have one remark to make that may be surprising: it is
that unlike Theorem 2, I think there is a point of (mild) “philosophical interest”
in Theorem 3—which deals with a space-time of two dimensions, hence a space
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of only one dimension, which is extremely far from the “real world.” This interest
attaches to the easier and more familiar branch of the theorem—the case where the
simultaneity equivalence-classes are straight lines. The point is that just here we
find a “possible system of inertial observers” with a deviant concept of “relative
simultaneity”; I hope it will be a little instructive to examine this case.

But just what is this deviant concept (or what are these deviant concepts)?—
The answer is that they are very close to the ε-relations of Reichenbach, for whose
viability Grünbaum has long contended; and they coincide—but under the drastic
dimensional restriction—with a conception put forward by Allen Janis (cited by
Grünbaum [7, pp. 9–10]). For if we choose a system of relative simultaneity rela-
tions in the way described in Theorem 3, the axes determined by the spatially ori-
ented radius s (represented by a real number of absolute value less than 1, positive
if “to the right,” negative if “to the left”), then our “observers” are taking the ratio of
“the speed of light to the right” to “the speed of light to the left” to be (1−s)/(1+s);
and this amounts, for a Reichenbachian observer, to choosing ε = (1+s)/2 for light
sent, from his position, to the right, and ε = (1− s)/2 for light sent, from his po-
sition, to the left. (This differs from Reichenbach’s principal example [12, p. 127]
in that Reichenbach supposes one “central” observer who uses the same value of ε
for all directions;34 but he also gives an example [12, p. 162] in which ε depends on
the direction, so our present situation does fall under the class of those he at least
implicitly envisages.)

There are two reasons why this possibility does emerge in two dimensions but
(from the point of view under discussion) does not in higher dimensions. One simple
point that rules this out in higher dimensions is that such a choice of the relation
violates the relativistic invariance principle. It would do so in two dimensions also,
if (as in Malament’s theorem) we required invariance under reflections. In higher
dimensions it violates even the narrower invariance requirement, because any spatial
direction can be transformed to any other by rotation (whereas when there is only
one dimension of space, there is no room to turn around: we can distinguish left and
right, and make the axes lean, or the speeds differ). The second reason is in a way
more interesting: in higher dimensions, there is no “intrinsic,” or “objective,” way
to INSTRUCT an observer as to how to make the choice of a preferred direction.35

This does not mean that such a choice could not be made; it only means
that it could not be made according to a “universal” rule: a “team” of inertial
(imaginary!—science-fictional!) observers, at rest with respect to one another, who
wished to carry out systematic measurements and to determine (for instance) veloc-
ities and accelerations using a “Janis-simultaneity relation” would have to come to
a special agreement with one another as to how to determine the direction of the

34 This is not really clear from Reichenbach’s text at this point; at least, it has not been clear to me:
I had until recently always supposed that Reichenbach wanted the speed of light to be constant in a
given direction—and this would obviously necessitate, for ε �= 1/2, that ε be different in different
directions.
35 It might be argued that this “more interesting” point is really the same one as the first point; this
bears on the question of the connection of “invariance with respect to” and “definable from”—on
which there will be a little more below.
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world-line that is to be their axis of simultaneity; and this agreement would have
to use some special features of the “geography”—or, rather, the “cosmography” of
their universe. This would in general not be an easy thing to do; its possibility would
depend on the existence of recognizable, and stable, features of their cosmos to
serve as (the analogue of) landmarks for determining and redetermining directions
that “are the same” for all the observers and “remain the same” over time. In the
alternative choice of a simultaneity relation described by Janis [8], the person who
chooses this alternative notion does so “by specifying a set of three parameters,” and
thereby singling out a time-like direction that is inclined to the investigator’s own.
The three parameters required are the coordinates—in the projective space associ-
ated with space-time—of a time-like direction: three are needed because the projec-
tive space of the directions in a two-dimensional affine space is three-dimensional.
But one can single out a direction in that way only if coordinates have been laid
down for that space of directions. Since this is itself a task at least as complicated
as that of determining a relation of simultaneity, to speak so cursorily of “speci-
fying three parameters” partially masks the problem.—Note that the problem lies,
not in the need to specify the values of the parameters, which, as real numbers,
are available as “individual concepts” belonging to the logico-mathematical appa-
ratus, but in the need to choose a way of relating parameters to directions (i.e., a
“coordinatization” of the projective space). That is why the problem does not arise
for a two-dimensional Minkowski space-time: the “space of directions” of such a
space-time is one-dimensional, which means that there is an “intrinsic” association
of directions with real numbers.

An analogy may help to make the main point clear. When temperature was first
introduced into physics, and first measured, the quantity so named was not a sin-
gle one at all—there were as many such “quantities” as there were types of ther-
mometer, and the choice among them was nothing but “conventional.” Indeed, for
various investigators—or the same investigator in various experiments—who were
concerned with temperature, whether the quantities they referred had simple rela-
tions to one another depended entirely upon stability in this respect; the quantities
could “in principle” vary with the thermometric material, with the material in which
(if the thermometric material was a gas or liquid) that material was contained, in
the proportions of the containing vessel and of its cavity, etc. The situation became
radically different after the development of the second law of thermodynamics: now
a theoretical definition of temperature was available, that determined the quantity
“temperature” precisely, leaving open only the choice of a unit for the temperature
scale: the notion of ratios of temperatures—which, initially, would have seemed
least likely to have any significance at all (since the zero-point of a temperature
scale was at first entirely arbitrary)—had now received an “absolute” theoretical
meaning.

It was perhaps—it is perhaps—still open to a disputant to argue that the so-called
“absolute temperature” itself remains a matter of convention, chosen in the interest
of “merely descriptive simplicity.” I should not care to debate that point. But I do
maintain, and think it important to recognize, that the difference, within the special
theory of relativity, between the “simultaneity relative to a state of inertial motion”
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of Einstein and Minkowski, and the simultaneity relations described by Janis or by
Reichenbach, resembles in an important way the difference between the “material”
conceptions of temperature as a quantity, and the “absolute” conception offered by
developed thermodynamics.

Before coming specifically to Grünbaum’s claims and the misunderstandings—
on both sides—that I now believe to have muddied the issue, I want to mention
one interesting point raised by Sarkar and Stachel. They speak of the possibility
of “formulat[ing] the basic structure of the special theory of relativity without the
use of any simultaneity convention” [4, p. 219]. This is certainly possible—there is
more than one way to interpret their words; but in the strongest way of all, namely
taking them to mean “without the use of any conception whatever of “distant simul-
taneity,” it is surely possible. Indeed, the general theory of relativity, in its “most
general case,” altogether lacks any such notion as distant simultaneity; and this does
not prevent the theory from being formulated. But: (1) A formulation that dispenses
with any use notion of relative simultaneity must also dispense with any notion of
relative velocity, and with the notion of acceleration in its usual form. Therefore, (2)
such a formulation is not adapted to the comparison of the theory with Newtonian
mechanics. On the other hand, (3) such a comparison is instructive; and since, as we
know, it can be made, it must follow that (4) the formulation of special relativity that
does not use a notion of relative simultaneity must nonetheless include the means
of formulating such a notion whenever it is desired to do so. The reason a notion of
distant simultaneity is not needed to formulate physical laws is that physical inter-
actions, in this theory, are “infinitesimally near-by” interactions, governed entirely
by partial differential equations. There is an “infinitesimal counterpart” of “simul-
taneity equivalence-class,” relative, not to an “inertial observer,” but to any state of
(smooth) motion, inertial or not: it is the space-like hyperplane, in the tangent space
to space-time, that is orthogonal to the tangent-line of the world-line of that motion.
This infinitesimal (or “differential”) notion is quite indispensable, both in the spe-
cial and in the general theory. In the special theory, for the special case of “inertial
motions that constitute, together, a state of relative rest,” this “infinitesimal” notion
is (uniquely) integrable; and that is the description of the Einstein–Minkowski rel-
ative simultaneity concept that, in my own view, presents the best case for its “true
standing”36 in the theory.

Turning, then (at last!) to Grünbaum’s views as I now understand them, I have
first to complement my earlier discussion of the notion “definable from” or “defin-
able in terms of”; for this is one of the phrases in which it seems clear that peo-
ple on each side of the debate have misunderstood their opponents’ statements. For
Grünbaum’s part, he has certainly used that phrase in a sense very different from that
of its customary use in logic and mathematics. This is not an intellectual crime—
but it is a misfortune for all parties, when one of them uses a term in an unusual
way without taking pains to explain this fact (of course, such an occurrence is not
deliberate: it results from the fact that the party in question does not realize what
the customary usage is). I was mystified to read that Grünbaum [7, p. 3] rejected

36 Do I mean its “non-conventional” standing?—I have said that I should really prefer to express
my opinions without using the word “conventional” at all.
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Malament’s condition, on a relation “definable in terms of the relation of causal
connectibility,” that it be invariant under all “causal automorphisms”—that is, one-
to-one mappings of space-time to itself that preserve the relation κ of causal con-
nectibility. I have explained above, in discussing the paper of Sarkar and Stachel,
the grounds for this condition (although not long ago I should have thought this
something too well known to require “explanation”). But part of the clarification
of Grünbaum’s use of the term appears when he attributes to Bas van Fraassen the
remark that Malament defines the notion he is defending “in terms of κ alone” [8,
p. 11, emphasis in the original]. I call this “part of” the clarification, because it
shows that Grünbaum does not mean the same thing by “definable from. . .” as by
“definable from. . . alone”; this still leaves us with the question, which for some time
seemed to me hard to answer, what he does mean by the former expression. If, for
example, one asks a geometer whether the concept of “the vertical direction” can
be defined “from” the basic concepts of Euclidean geometry, the geometer would
surely say no: “vertical” is, first of all, a concept of physics, not of geometry; and
second, it is only defined for points near the earth’s surface—or, in a more sophis-
ticated view, for points at which there is a non-vanishing gravitational field. But it
seems that in Grünbaum’s usage the answer to that question must be yes: “vertical”
means “in the direction of the gravitational field,” and the notion of “direction” used
here can be—ordinarily is—that based upon Euclidean geometry.—I may be wrong
here in my interpretation of Grünbaum; if so, I am willing to be corrected. This
of course still does not answer the question that I have said remains open; I shall
try—again, under correction—to give at least a partial answer presently.

At any rate, Grünbaum has surely misread Malament when he writes of the lat-
ter as follows: “But before giving [[the]] proof, [[Malament]] declared: ‘To be sure,
there are other two-place relations [of relative simultaneity] which are definable
from κ and O [i.e., relative simultaneity relations corresponding to non-standard
synchrony, for example, some fixed ε �= 1/2]. But all these are ruled out if min-
imal seeming innocuous conditions are imposed.”’ The words in double brackets
are substitutes by me for Grünbaum’s words—substitutions made only to adapt the
passage from its context in Grünbaum to the context here; the passages in single
brackets are bracketed in Grünbaum’s own text, and are interpretations offered by
him of Malament’s words. They are serious misinterpretations: (1) The other two-
place relations Malament means are ones that are quite unsuited to serve as relative
simultaneity relations—they are the relations that are ruled out by his conditions that
a simultaneity relation S relative to an observer O be an equivalence relation; that it
hold between some point on the world-line of O and some point not on that line; and
that it not be the universal relation. (2) In particular, not only (as stated in (1)) are the
excluded relations not relative simultaneity relations at all, but the Reichenbachian
ε �= 1/2 relations are not examples of relations “which are definable from κ and O.”
This strange misconception must have arisen from the fact that after discussing the
matter of “definability from κ and O,” Malament lists invariance as the first of his
conditions on S: Grünbaum has failed to realize that Malament has done so for the
sake of the exact mathematical formulation of his result, not because invariance is
a special condition added to “definability from κ and O”; on the contrary, it is rela-
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tions that satisfy this invariance condition, and only these, that Malament has called
“definable from κ and O.”

All this is pedantry; necessary, I think, but not edifying. Let us now consider
what, in my present opinion, is the sound core of Grünbaum’s view. In discussing
this, I am going to have to dissent (still) from some of Grünbaum’s particular
expressions of that view; and to begin with, from this one, which initially puz-
zled me as much or more as did the one concerning definability: Grünbaum asks
whether—and clearly means to deny that—“the facts of causal connectibility and
non-connectibility mandate (dictate)” the standard (Einstein–Minkowski) relation
of simultaneity relative to an inertial frame [8, p. 2; cf. pp. 3 and 5 for the explicit
denial that this relation is “mandated” by those facts]. I was, and remain, still more
puzzled by his claim that the standard relation of relative simultaneity, unlike the
relation of causal connectibility, lacks a fundamentum in re: a “foundation in the
thing,” or “in nature” (pp. 12–13); and that “there is no fact to the matter” in as-
criptions of this relation (pp. 1, 9, 12, 13)—that they lack “facticity”37 (pp. 2, 3,
12). What is very strange here, in point of the “foundation in nature” especially,
is this: we know that the whole metric structure of Minkowski space-time (with-
out a distinguished spatio-temporal unit) is definable from the one basic relation
of causal connectibility (the symmetric one if a time-orientation is not presupposed,
the asymmetric one if such an orientation is presupposed). Therefore this structure—
and in particular, the relation of orthogonality, which gives the Einstein–Minkowski
relative-simultaneity relation—has a “foundation” in the relation κ of causal con-
nectibility (again: symmetric or asymmetric). So if this relation has a “foundation
in the thing,” the standard relation of simultaneity relative to an inertial state has
one also—assuming that the relation “A has a foundation in B” is transitive; which
seems hard to deny. By the same token, it would seem that the ascription of the re-
lation of relative simultaneity has “factual content.” And as to being “mandated”: a
relation “founded on” κ would seem to derive whatever is meant by a “mandate”
from that fact itself, as long as κ is regarded as “founded in things.”

Of these puzzles, the one about having a foundation seems to me irresoluble: I
may be wrong, but I think that Grünbaum has simply overlooked what I just referred
to as the transitivity of “foundedness” (probably because he has not quite seen the
importance, and the strength, of “definable from” in what I have called the usual
sense). But the other two puzzles seem to me to have a solution. It is easiest to
see with the question of factual content. Suppose I say that the space-time vector
pq is orthogonal to the time-like straight world-line O. I maintain—since I have
argued that the relation of orthogonality (and also the properties of linearity and
time-like-ness, since they belong to the geometry that is derivable from the relation
κ) is (are) “founded in things”—that that statement conveys factual content (always,
of coursed, assuming, contrary to fact, that the world is Einstein–Minkowskian).
I hope that I have said enough to persuade Grünbaum that this is so. What I think
he will deny is that this admitted factual content is about simultaneity; so if I say
that p and q are simultaneous relative to O, Grünbaum will deny that this statement

37 Linguistic point: this word seems like the nominalization of the adjective “factitious,” whose
meaning is opposite to the one desired; I should suggest “factuality.”
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has factual content—even though I myself have defined “simultaneity relative to
O” to be just the relation expressed by the former statement. In other words, what—
according to Grünbaum—what the theory, or the facts of causal connectedness, does
not “mandate” is how the word simultaneity is to be used.

Now, if this is all there is to it, it looks as if Grünbaum is after all defending
nothing more than the “trivial semantic conventionality” of the use of the words
“simultaneous” and “simultaneity.” But I think that is not quite all there is to it.
There is a certain traditional baggage carried by the word “simultaneous”; and I
think Grünbaum is rightly maintaining that that baggage has no place in the special
theory of relativity. But this statement is crudely metaphorical; is it possible to say
clearly what this “baggage” is?—Probably not; but I think it was a mistake on the
part of Wittgenstein when he produced his celebrated aphorism that whatever can
be said at all can be said clearly: my own motto is that whatever one thinks is worth
saying, one should try to say as clearly as one can. An exact statement is possible,
and I shall make it; it is the one about which I expressed “some hope” that Grünbaum
will accept it (as far as it goes). This exact statement, however, will not express what
the “baggage” is, but only clarify something about the source of the latter. I shall
then try to indicate—but only by indirection and example—something about what
baggage the relativistic notion of simultaneity does not carry.

The exact statement is based upon Grünbaum’s own very clear depiction of the
state of affairs in pre-relativistic theory and in the special theory of relativity—that
is, in the Newtonian world and that of Einstein [7] and Minkowski. I paraphrase
what he has said thus: In each of these theories of physics, there is an “objective”
division of the world, viewed from any point p, into the class of points that are
past for p, those that are future for p, and those that are neither.38 An admissible
time-function39 is a function τ on the entire space-time of the theory such that for
any pair of points p, q, if p is in the past of q then τ(p) < τ(q). If τ is a time-
function, then the relation between p and q expressed by τ(p) = τ(q) is an admis-
sible simultaneity-relation. In the Newtonian theory there is a great abundance of
admissible time-functions, but there is a unique admissible simultaneity-relation; in
the Einstein–Minkowski theory, this is very far from true. In so far as any admissible
time-function, and correspondingly any admissible simultaneity-relation, is compat-
ible with the structure of the Einstein–Minkowski theory, the choice among them is
a matter of “convention” (or, for that matter, “convenience”); in Grünbaum’s termi-
nology, all these functions, and all these relations, are “definable in terms of” the
structure of Einstein–Minkowski space-time. An example of a space-time structure

38 It is crucial, in Grünbaum’s opinion, that this classification is grounded in facts about “causal
connection.” I am a skeptic in this matter (not a disbeliever, an agnostic). I agree that the notions
of “causal past” and “causal future” are deeply important in the theories—perhaps especially so in
the theory of relativity; but, on the other hand, (1) I think the notion of “cause” itself is in some
degree problematic, so that what [if anything!] we “know” about this notion is derived from the
knowledge we have gained in physics, and is not the “foundation” of the latter; (2) in assessing
the knowledge we have from physics we cannot ignore quantum physics; and (3) how quantum
physics ultimately affects the framework notions of relativity theory seems to remain a problem.
39 My own term—this is intended as my own paraphrase, or formulation of what I believe follows
from what Grünbaum has said.
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“in terms of which” there is no “definable” simultaneity-relation is that of Gödel: in
the original Gödel “rotating universe,” there is in fact no admissible time-function
whatever.40

But why should we accept this very liberal notion of what is “admissible,” not
alongside of, but instead of, the narrower—stronger!—notion of what is (in the usual
sense) “definable from” the structure of Newtonian space-time on the one hand,
Einstein–Minkowski space-time on the other?—Indeed, I do not think we should
“accept [the former]. . . instead of [the latter]”; that is what most of this paper
has been about. I think we should acknowledge, side by side, the points made by
Grünbaum and the points made by Malament et al.

As to the matter of “baggage”: I have already stated my objection to Grünbaum’s
claim that the Einstein–Minkowski notion lacks a fundamentum in re; but the bag-
gage I have referred to is “metaphysical baggage.” I suspect—I confess that I hope—
that at least part of what Grünbaum means in rejecting any “metaphysical founda-
tion” for relative simultaneity is what I myself meant, long ago, when I wrote the
following, in criticizing metaphysical arguments of C. W. Rietdijk and of Hilary
Putnam:

[W]hat Einstein’s arguments showed was that a certain procedure of measurement singles
out a time axis and gives numerical time differences dependent upon that distinguished
axis; not that an observer’s state of motion imposes upon him a special view of the world’s
structure. This illegitimate metaphysical interpretation of the time-coordinate appears per-
haps most plainly in Rietdijk’s phrase describing C and A, when at rest with respect to one
another, as “experiencing the same ‘present”’; there is of course no such “experience”: the
fact that there is no experience of the presentness of remote events was one of Einstein’s
basic starting points [13, p. 16, n. 15].

The “baggage,” then, can be said to be the carrying around of a special relation
of simultaneity, as it were “in one’s head.” I believe that A. N. Whitehead thought
something like this, when he contrasted, among “actual entities,” the relation of
“causal efficacy” and that of “presentational immediacy”: in the latter, the mode of
perceptual space, what we perceive is the entire present simultaneity slice “relative
to us,” as if it were characterized by the perceptual qualities that we experience.
Perhaps I am wrong about Whitehead; at any rate, it is an impossible conception.
If there were no other trouble with it, what are we to say about an observer who
is not in a state of uniform motion? For such an observer, it is entirely possible—
indeed, it is certain!—that “his or her” simultaneity-slice at one moment will contain
“events” that are in the future of “his or her” simultaneity slice at a later moment;
a perfect muddle! It is, then, certainly not the case that the special theory of rel-
ativity “mandates” that a sentient being carry such a relation around through that
being’s career. A paradigm of what I think of as the poignancy of the “old” notion
of simultaneity that is quite lost to the new one is the old sentimental song-line, “I
wonder who’s kissing her now!”—In fact, for events that are within normal human
spatio-temporal range of one another, the special (or the general) theory of relativity

40 This, then, clarifies, at least to some extent, what Grünbaum’s notion of “definable in terms of”
can exclude.
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provides a perfectly intelligible notion of “now” to carry that kind of poignancy;
and it is not the geometrical notion of the “instantaneous now” relative to a state of
inertial motion.41

The moral that I draw, then, is that although Grünbaum is (in my opinion) wrong
to believe that, in so far as the causal theory of time has real—or factual—or fun-
damental content, the Einstein–Minkowski notion of relative simultaneity does not
have such content, he is right to deny that this notion has content entirely compara-
ble to that of the old Newtonian relation of absolute simultaneity. I do not believe
that Malament, for one, would differ with Grünbaum on this point any more than
I do.

3 Supplementary Notes

1. Hogarth’s proof is far more complicated than the theorem requires; here is a
simpler one: What is to be proved is:

If to every “inertial observer world-line” (more briefly: “observer-line”) O there is as-
signed an equivalence relation between space-time points, “p and q are simultaneous for
O,” (a) invariant under all maps of Minkowski space onto itself that preserve the Minkowski
quadratic form, and such that (b) for every point p there is a unique point q on O that is
simultaneous with p for O, then points p, q, are simultaneous for O if and only if they lie in
a hyperplane orthogonal to O.

Proof. First, let p and q be simultaneous for O. Let p0 be the point on O that is si-
multaneous with p—and so also with q—for O, and let h be the hyperplane through
p orthogonal to O. Reflection of space-time in the (space-like) hyperplane h is a map
satisfying the conditions laid down; under it, p is fixed and O is mapped to itself;
so, by the invariance condition (a), the image p′0 of p0 is simultaneous with p for
O. Unless p′0 and p0 coincide—i.e., unless p0 is in the hyperplane h—this implies
that two distinct points, p0 and p′0, both on O, are simultaneous with p for O. Since
this violates condition (b), p0 must lie in h. But q satisfies the same conditions as
p, vis-à-vis O and p0; p0 therefore lies also in the hyperplane through q orthogonal
to O. Since p0 lies in only only one hyperplane orthogonal to O, and this is h, q
too must lie in h. This establishes the “only if” clause of the theorem. Second, if
h is a hyperplane orthogonal to O, and if p and q lie in h, let p0 be the point of O
simultaneous, for O, with p; then by what we have already seen, p and p0 lie in
a hyperplane orthogonal to O—and this can only be h. By the same token, q must
be simultaneous, for O, with a point of O that lies in h—and this can only be p0.
It follows that p and q, since each is simultaneous for O with p0, are themselves
simultaneous for O; and this completes the proof.

2. As stated above (end of n. 6), the formulation of the theorem on p. 149 of [3] not
only fails to state accurately what the argument preceding it has established, but
is simply false. A correct statement is:

41 What it is, is discussed, implicitly, in Stein [3, p. 159].
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If R is a reflexive, transitive relation on a Minkowski space (of any number of dimensions—
of course at least two), invariant under automorphisms that preserve the time-orientation,
and if Rxy does not hold for every pair of points (x, y) of the space, but does hold whenever
xy is a past-pointing (time-like or null) nonzero vector, then Rxy holds if and only if xy is a
past-pointing vector.

If the dimension is greater than two, the automorphisms considered may be re-
stricted further to such as preserve the spatial orientation as well the time-orientation
[equivalently: that preserve the orientation of the whole manifold as well as the time-
orientation], and also preserve the scale.

3. In the proof—or proof sketch—they give for their Theorem 1 (which is essen-
tially the same as case (b) of Theorem 1 above), the exposition of Sarkar and
Stachel is not at all points quite clear: for instance, they refer, near the beginning
of part (ii) of their argument [4, p. 217], to “the family of hypersurfaces of simul-
taneity,” although they have not given any reason to suppose that the equivalence-
classes of the simultaneity relation are hypersurfaces (the counterexamples given
above show that in the absence of a requirement of scale-invariance this need not
be the case), or even that the equivalence-classes contain hypersurfaces; so one
cannot be entirely sure exactly what they may be assuming tacitly. Nevertheless,
there is in their proof one passage containing a clearly identifiable and crucial
paralogism. They have (almost) correctly remarked, at the beginning of (ii), that
“[a]ccording to our definition, any simultaneity relation causally’ definable from
κ and O must be invariant under any transformation belong to the group of O
causal’ automorphisms. This implies that it must take the family of hypersur-
faces of simultaneity onto itself under any such automorphism” (sic; but read, of
course, “that any such automorphism must take [etc.]”). Some lines below this,
however, they say of translations orthogonal to the world-lines of the inertial sys-
tem, “If they are not to affect the simultaneity relation (which amounts to our
assumption that the simultaneity relation is independent of the initially-chosen
world line O), these translations must take each simultaneity hypersurface onto
itself.” This simply does not follow: what does, is just that each translation must
take each equivalence-class to some equivalence-class, not necessarily to itself.
The point is crucial, because it is only from the premise that each equivalence-
class (a) is a hypersurface, and (b) is mapped to itself by translations orthog-
onal to the inertial system, that they conclude that the classes are hyperplanes
orthogonal to the inertial system. Indeed, the mere assumption of translation-
invariance, if one did not also postulate invariance under rotations that take the
inertial system to itself, would allow the possibility of simultaneity hyperplanes
“inclined at a fixed angle” to the world-lines of the inertial system; the system
of such hyperplanes would, then, be invariant under translations orthogonal to
the inertial-system’s world-lines; but the individual hyperplanes would not be in-
variant under these translations. And Sarkar and Stachel—as they seem not to
have noticed!—not only make no appeal to scale-change-invariance, they like-
wise make no appeal to rotation-invariance in their proof-sketch.

I have not discussed Theorem 2 of Sarkar and Stachel. It is fairly clear what
this theorem is intended to say, and that what it is intended to say is true. But its
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formulation [4, p. 218] is, when one looks at it closely, very obscure; and the proof
given for it there is garbled. As to the obscurity: in this theorem, the authors impose
the condition—condition (ii)—that “no event is simultaneous with one in its causal
future (past)”; the parenthesis is intended to imply an alternative: one of the two
simultaneity relations they arrive at has as its equivalence-classes the “backwards”
mantle of a null-cone, the other the “forwards” mantle; the former contains “no
event in the causal future” of the vertex of the cone, the latter “no event in its causal
past.” But the condition as formulated certainly does not do what it is meant to:
simultaneity is—not just usually, but explicitly for Sarkar and Stachel—an equiv-
alence relation. If event e is simultaneous with e′, and if e′ is on the backwards
mantle of the cone of e and thus “not in the causal future of e,” then ipso facto e′ is
simultaneous with e; but e is in the causal future of e′; so the condition as the au-
thors have stated it rules out the mantles of the null-cone (forwards or backwards)
as simultaneity-classes. As to the proof: The theorem requires that simultaneity be
relativized to an inertial observer-line O, and that it be invariant, for every point e of
O, under “boosts” at O; this is condition (i) of the theorem. The proof sketch begins:
“Let p be any event not on O that is simultaneous with e. Consider the vector ep.
By condition (i) of the theorem, under boosts at e, the length of this vector must
remain invariant.”—This, I say, is garbled: the conclusion has nothing to do with
condition (i) of the theorem; “boosts,” which are among the transformations in the
Poincaré group, ipso facto preserve the lengths of vectors.—The proof continues:
“Thus, the locus of p under all such boosts is either the forward or backward null
cone or a time-like hyperboloid within the null cone.”42—Again, this is just a fact
about the geometry of boosts; so far, none of the conditions of the theorem has been
actually used. The remainder of the proof is: “Now, e does not belong to any such
hyperboloid. Therefore, if such a hyperboloid were used to define the simultaneity
relation, e would not be simultaneous with itself violating the reflexivity condition
of an equivalence relation. Thus, only the two half null cones remain as potential
hypersurfaces of simultaneity. Condition (ii) restricts us to one of the two.”

Well, we have already seen that condition (ii) cannot be helpful as it stands.
But as to the connection with condition (i): the conclusion that the locus of the
point p under boosts is either a half-cone or a lobe of a “hyperboloid,” as already
remarked, is independent of condition (i); what that condition does now imply is
that this locus consists entirely of points simultaneous with e. However, what we
need for the conclusion drawn by Sarkar and Stachel is that these are the only points
simultaneous with e; and condition (i) does not imply this, without some further
stipulation.

Perhaps it was overstating the matter to say that it is “fairly clear” what the theo-
rem is intended to say. Here is an attempt at it: If we require of a simultaneity relation
relative to an observer-line O (a) that for every point e on O, simultaneity is invariant
under boosts at O and (b) that no observer-line meet any of the equivalence-classes
of this relation in more than one point, then the only possibilities are the two Sarkar

42 “Hyperboloid,” of course, in the usual Euclidean model of a Minkowskian space-time. “Time-
like” is perhaps misleading: this is a hyperboloid of two branches; vectors from one to another
point of one branch are space-like; it is the separation between the two branches that is time-like.
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and Stachel describe.—This is true; and it follows by a straightened-out redaction of
their argument (as shown just above, one concludes that the class of events simulta-
neous with a given e on O is either one mantle of the null-cone at O, or a “branch
of a hyperboloid” [the full cone or hyperboloid is ruled out by the fact that there
are observer-lines that meet them in two points]; but this class must contain e—by
reflexivity—whereas O meets the hyperboloid-branches in points other than e, and
it must also contain e; but meeting an equivalence-class in more than one point has
been excluded).

Second thoughts (or afterthought)—an alternative reconstruction of the intent of
Theorem 2: it may be that condition (ii) was intended to mean that no event on O is
simultaneous with an event in its causal future (alternatively: its causal past). This
would do the trick (although the part of the proof invoking this condition would
need a little rewriting).

4. In the two-dimensional case, if the equivalence-classes are “Minkowski semicir-
cles” and if the axes are not normal to these curves, the configuration of a given
equivalence-class Σ and its axes may be described as follows: The equivalence-
class, as we know, has a given temporally oriented radius r. Let us represent
this simply by a real number (positive or negative, denoting “future-pointing”
or “past-pointing”—zero is not a possibility). In the usual Euclidean model of a
Minkowski plane, Σ is a connected branch of a hyperbola whose principal semi-
axis is r—understanding the sign of r to mean (taking the time-axis to be vertical)
the “upper branch” if r is positive, the “lower branch” if r is negative. We may,
as usual, take the center of the hyperbola—which represents the center of the
“Minkowski semicircle”—to be at the origin of the system of coordinates. Now
let there be given also a spatially oriented non-zero radius d (also representable
as a real number—with an analogous convention about the sign: e.g., positive “to
the right,” negative “to the left”. Consider a second “Minkowski semicircle,” or
hyperbolic branch, Ω, having the same center as Σ, but with the space-like ori-
ented radius d; and take the axis of the equivalence-class Σ, at any given point
p, to be the line through p that is tangent to Ω; so the family of all axes of Σ
is just the family of all lines tangent to Ω: it is this that takes the place of the
family of all lines through the center (which may indeed be considered as the
limiting—degenerate—case of our “hyperbolic” construction when the spatial
radius d goes to zero).—The radius d of the auxiliary hyperbola Ω is not the
same as the spatially oriented radius s used in the construction described in The-
orem 3 of the text above; r being given, the connection between the s and d (this
is the one point that does necessitate a little calculation to determine), if we rep-
resent s, d, and r by real numbers, is given by the pair of equations, inverse to
one another: d =−sr/

√
(1− s2), s =−d/

√
(d2 + r2). (Note that s must, as pre-

viously specified, be chosen with absolute value less than 1; this is guaranteed
by the second equation. On the other hand, d is entirely arbitrary.—Note too that
these equations also hold in the “degenerate” case (or perhaps, rather, the normal
case!) s = d = 0.
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1954), pp. 494–550. A brief summary of the main results had previously been given in the
Comptes rendus of the Académie des Sciences, Paris, 140, 1504–8 (5 June 1905); Poincaré,
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Concluding Words



Bistro Banter
A Dialogue with Abner Shimony and Lee Smolin

Abstract This is a transcript of a dialogue that took place between Abner Shimony,
Lee Smolin, and members of the audience, on July 21, 2006, in the Black Hole
Bistro at the Perimeter Institute for Theoretical Physics. A video of the discussion
can be found online at http://www.pirsa.org/06070049.

Smolin

Welcome, everybody. My name is Lee Smolin. I’m one of the faculty here at Perime-
ter Institute and, first, it’s been said before but all of our guests and friends here
attending this conference are welcomed, and thank you for coming such a long way
for many of you. The main reason for this evening, as well as for the conference,
is to celebrate Abner Shimony; I think he needs no introduction here, so he won’t
get one.

The aim of this evening is for all of us to have a discussion with Abner. I will
start it off by asking him some questions and, as we go along in the evening, anyone
who wants also to pose some questions to Abner, please feel free. Here at Perimeter
we’re used to being very informal and also as part of the atmosphere here—I feel
like in the old days when I used to play in bars—so, drink up, drinks are available
all evening and I think food is still available for another fifteen minutes for those
who want to order. The idea is to have an informal atmosphere here, to have fun as
well as try to understand better Abner’s thinking.

Here’s a starting point. In preparing this I’ve been very intimidated, very daunted
because I’m a theoretical physicist. Like many of us here I’ve been very influenced
by Abner and was as a student. He played a crucial role in my educational devel-
opment at a crucial stage for myself as well, I think, for many people here, and I
know something of Abner’s work related to foundations of quantum mechanics, I
know even something of his work related to statistical physics, statistical mechan-
ics, but his work has a much larger scope than this and we see this here in the
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conference. There are some people who are physicists interested in quantum me-
chanics and other things, but there are also here professional philosophers with a
range of interests and they reflect the fact that Abner is a philosopher. This is a lit-
tle bit intimidating because he is also, as we see by the conference, an influential
philosopher and a philosopher—I would say like the best, at least to my under-
standing, people who work in philosophy of science or philosophy of physics—his
motivation is not just what some of our motivations are, that quantum mechanics
may not make sense, or we’d like to go a little bit further, solve some problems and
understand gravity or space and time or something a little bit better. He starts with
the ancient and deep philosophical questions about ontology, epistemology, their re-
lationship; and he has an agenda, a longstanding agenda, a longstanding program in
philosophy and I think to understand Abner’s thought we have to start there, with
the basic questions in philosophy and his program. So that’s where I’d like to start,
Abner. So, if you don’t mind just jumping in, can you - and remember some of us
know this very well and some of us do not - can you tell us something about your
larger philosophical program, what is the main ambition, what are the main ideas
behind it?

Shimony

Well, curiosity is a wonderful human trait and I’m delighted that I’m endowed with
it. It also can take one in odd directions. You can be curious about very general
questions, about why human beings are here in the world, what their aims are, was
there a purpose in having them here, what are the basic principles on which the
universe is run—but you can also be curious about specific phenomena. My intro-
duction to science, the earliest I can remember, was going down—this was during
prohibition, by the way—going down to the basement, and my father would take
a jug down and fill the jug from a barrel of wine and he would suck up the wine
through a tube and then hold it up and the wine would go from the tube into the jug.
How could it do that? So curiosity can be very specific about a phenomenon. So I
became a scientist, and my father is partly responsible for it. That’s how curiosity
works. Well, what happens? You do try to systematize. Partly as a matter of effi-
ciency, partly because any one problem you’re curious about is going to somehow
spill over into another. In about sophomore year in college I was attracted to become
a philosophy major for reasons which were partly wrong. That, is I thought that phi-
losophy would give me as much of a surrogate for omniscience as any branch of
learning could. Well, there is no surrogate for omniscience; that was a misguided
child’s illusion. However, it does help organize one’s thoughts and there have been
very smart people who have tried to give systematic views of human knowledge,
human values and the structure of the universe and how the various subdisciplines
mesh. I think I’m grateful for my error as a sophomore because, even though I later
decided that the standard approach to philosophy is too schematic, too lacking in de-
tail, and I went back to my initial love of physics, and tried to get an education that
would supplement the kind of things that are done in standard philosophy courses.
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However, if it weren’t for the philosophy program I wouldn’t have made this at-
tempt to somehow systematize, to the extent that I was capable of doing, my view
of the world.

From audience

When you decided to go to graduate school in physics, was it with the idea of be-
coming a physicist rather than a philosopher?

Shimony

First, first, and as time went on—the thing is I was curious about everything. How
to satisfy all those curiosities? Somehow, philosophy seemed to be the best way
of doing it. It isn’t. It isn’t by itself. It has to be done with something else, but I
didn’t realize that right away. But, yes, my initial choice of a prospective major was
physics. In fact, one week after I came to Yale I was assigned to the cyclotron and
I wrote to my parents, “I’m just a freshman and I’m going to be working on the
cyclotron” It turned out there was a strike of the handymen, and I was used as a
scab; that already was a beginning of correction of illusions.

[Remark from audience, inaudible]

Smolin

Yes, thank you for saying that. I was going to say it was not the last time Yale
employed that strategy.

Shimony

Anyway, I did sweep the cyclotron room.

Smolin

Abner, a phrase that is associated with your philosophy is “closing the circle.” Can
you tell us what you mean by that?
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Shimony

Well, let me go back a bit in the history of philosophy. There are great philosophers
whom I revere. When I’m critical of them that doesn’t mean that I don’t revere them
and that I haven’t learned from them. I’ll take two particular ones, Descartes, who
was a rationalist, and Hume, who was an empiricist. Both of them shared a kind of
architectural view of knowledge. That is, that there should be a solid foundation,
and on that solid foundation a first floor, a second floor and so on, until the whole
skyscraper of knowledge is constructed. It didn’t work, because: How is the foun-
dation to be laid? Is there a set of principles that are in no need of correction? I
believe our experience over some four or five hundred years is that there may be
reasonable starting points, but none of them that aren’t in need of reexamination
and reassessment in the light of what structure has been built upon that foundation.
So, I think the alternative to this architectural model is “closing the circle.” That is,
one has to start somewhere, one starts with one’s native endowment and with one’s
psychology, but also with one’s culture and also with one’s reading and education,
and you start, and go where you can, and then in the course of learning more about
the world, starting from your tentative first principles, you go back and reassess the
first principles. It seems to me that the best strategy, the one that is most promising
for human beings to have a reliable view of the world, is to follow this pattern of
trying to close this circle of epistemology and ontology. That is, you start with ten-
tative principles of methodology and assessment of beliefs, you build up, you use
those to explore the world and then, in the course of exploring the world, you learn
something about your own faculties. We’ve learned some psychology, we’ve learned
where human beings fit in the Earth that they live on. We learn about human beings
as products of evolution. That learning enables one to reassess the beginnings, and
I think the best chance of having a reliable view of the world is to keep repair-
ing the foundations in the light of what one has learnt. One of the Vienna circle,
Neurath, has the wonderful simile that we are like sailors at sea whose ship needs
repair. We can’t go to port to repair it, we repair the ship while we’re at sea, and I
think—this may not work, the ship may sink—but if anything will work this will
work. And if this doesn’t work, our quest for knowledge is futile. I am a fallibilist
concerning the quest for knowledge. That’s Peirce’s phrase, and I’m a very devoted
follower of Peirce. One can be a fallibilist and think that any proposition that we’re
committed to may be wrong, may be subject to correction, but one can be an opti-
mistic fallibilist. I’m a highly optimistic one. This is something of an aside but not
entirely, it’s an historical remark: the twentieth century was a time when the best-
established physical theories were overturned. This has led sociologists of science
and some historians of science to be very skeptical about any claim of approach-
ing the truth about the world. My feeling is that’s an entirely wrong misreading of
the scientific revolutions of the twentieth century, because the theories that were
overthrown—like Newtonian mechanics, Newtonian spacetime—the theories were
retired, like presidents who have completed their terms honorably. They were not
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impeached. And of course Bohr’s expression of a correspondence principle applies.
The new theories do not discredit the old ones; they give the old theories their place
as approximations. And this program that I’ve sketched of closing the circle of epis-
temology and ontology embraces the idea of approximation. Approximation fits in
very naturally in such a view of the world.

Smolin

Now, I’m going to going to show my philosophical naı̈veté. A word that you didn’t
use is “realism.”

Shimony

I’ll use it now. REALISM.
But, Lee, I’m a fallibilistic realist. That is, any claim I make to a certain

principle—it may be well-established in the textbooks as being a good approxima-
tion to the truth—is subject to revision and to reassessment, but that doesn’t mean
that one is skeptical in a wholesale way. Our experience in twentieth-century science
has led us to be both skeptical of excessive claims of being right at the truth and also
skeptical of claims about the hopelessness of obtaining knowledge of reality.

From audience

It seems to me that you can also use a simile of a “spiral” instead of a “circle.”

Shimony

Yes. There’s also a nice word that goes back to Plato, which is “dialectic.” The
dialectic is a procedure in which one starts where one starts, with whatever equip-
ment one has, and learns as much as one can, including reassessment of the start-
ing point. My optimism comes because the spiral is generally upward. Not always,
but when you look, I think, in an unbiased way at the history of science, how can
one fail to be impressed by the magnificent progress that has been made? It can’t
be just an accident that we have electromagnetic principles which enable us to make
electromagnetic devices that work. Is that just a social conspiracy? How can one
believe that?
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Smolin

Abner, you’re preaching to the converted here. Certainly there are big obstacles to
closing the circle are there not, in your view?

Shimony

Yes. And we do not know in advance how bad the obstacles are.

Smolin

What are the obstacles you worry about?

Shimony

Well, for one, there are practical obstacles. We may annihilate ourselves.

Smolin

You’re in Canada!

Shimony

But that’s a political question, not an epistemological question. We really do not
know how different—cosmologists of course talk about this, and you do—how dif-
ferent the early universe or the pre-universe is from the one we live in. If our knowl-
edge of the great world in some way is an extrapolation from what we learn about
locally, but extrapolated to other galaxies, fifteen billion years ago, back to the Big
Bang and so on, how do we know that that process of extrapolation will remain
as reliable as it has been? Look, it seems to me a miracle—just overwhelming—
that we could learn about the chemical constitution of the stars, that it was possible
to extrapolate knowledge of the chemical composition of matter nearby to far off
galaxies because—well, what is our explanation?—matter is essentially the same
in the far off galaxies as here, and the optical laws, the optical phenomena which
carry information from the stars to us and allow us to do spectroscopy to learn the
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chemical composition, hold generally. The universe, from a logical point of view,
need not have been made in such a way that we could proceed stepwise. How do we
know in advance that this stepwise progress will continue indefinitely? There may
come a time when there are singularities, discontinuities, and so this type of extrap-
olation that made us capable of learning the chemical composition of stars simply
won’t work. That’s one such barrier.

Smolin

Surely. And I was just at a meeting to celebrate the birthday of another very in-
fluential person, Gerard ‘t Hooft, and a theme of the meeting was that essentially,
since 1976, with the establishment of the standard model of particle physics, there’s
been no further progress in our understanding of the fundamental laws of nature, no
definitive progress. So this question can always be asked of the reach of knowledge.
But my understanding is that for you “closing the circle” particularly refers to the
relationship between ontology and epistemology and somehow situating ourselves
as the subject who knows and who learns, inside the picture, the story about the
natural world that we describe. Am I right?

Shimony

Absolutely.

Smolin

And, how are we on that project? How are we doing?

Shimony

Well, in some ways we’re doing very well. In some ways I’m not so optimistic.
It seems to me the one great philosophical problem which I believe may not be
solvable at all—and I certainly don’t think it’s solvable quickly—is the mind-body
problem. There is a real problem for closing the circle of your epistemological be-
ginning and your ontological structure. There’s nothing we know better than that we
have conscious experience. There’s nothing that we know much better than that the
matter that the world is made of is inanimate. There’s nothing that we know much
better than that somehow there was pre-biotic evolution, then biological evolution,
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and then here we are. Put those together; you don’t have a solution, you have a
puzzle, a terrible puzzle. How can it be that from inanimate beginnings something
endowed with our type of conscious experience can emerge? Now, there are people
who use computer models, who use neurological models. I believe they are deluded,
because they are denying the immediate experience of their own phenomenology,
that a felt pain or a felt desire is something that is different from a neural impulse.
Some of you heard the little debate that Malin and I had on Whitehead. Now, I’m
very sympathetic with Whitehead because Whitehead does give an answer to this
by postulating a primitive universe which is not entirely inanimate; he calls his phi-
losophy the “philosophy of organism.” That is as promising as anything I know for
a solution to the mind-body problem but it leaves out the details terribly.

Smolin

Now, my understanding is that for some time of your career you did embrace
Whitehead and then you came to reject him. Can you say more about why you
rejected Whitehead and where the problem stands now?

Shimony

Well, I gave it in the debate—some of you have heard it already.

From audience

You didn’t give enough of it!

Shimony

I read a passage in Lovejoy’s The Revolt Against Dualism. He has only about a page
on Whitehead but it’s a very, very good page. He says Whitehead tries to overcome
the dualism of mentality and materiality by essentially postulating a primitive world
which is mentalistic in character. That is, an electron is conceived of as a temporal
string of experiencing but not conscious occasions, experience below the level of
what we call conscious experience. He [Lovejoy] said that’s a verbal trick. What do
we know of the experience of an electron that allows us to use the word “experi-
ence” and apply it to ourselves and the electron without absolute equivocation? We
know something—I believe we know something—about the experience of babies,
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we know something about the experience of dogs, we can extrapolate down to sim-
pler animals. When we get down to worms and crayfish and so on I’m not sure we
understand what “experience” means applied to them, though we’re tender-hearted
creatures and we don’t like to squash them—I don’t like to squash them, anyway.
What in the world are we talking about when we apply the term “experience” to an
electron? It’s simply an equivocation and we cannot take it literally. We do not have
a solution to the mind-body problem. I think that’s right. That seems to me a very
powerful argument and the only way one can solve it is by having tremendously
more information of a kind that I don’t even understand what would constitute it.
How are we going to learn what the experience of the lowest animals is like? What
kind of information would give it to us? I don’t see that the tools that are available
now to biologists and neurologists and so on are likely to give us the information
that Lovejoy is demanding.

Now, at this point I may be falling into just the kind of habit that I was deriding
before, that is, excessive skepticism. Maybe what’s needed is to be a little bit less
rigid about what one can demand of explanations. And there are certain phrases that
have been used about the primitive world. That there are “brute facts” concerning
the constitution of this world, and the very word “brute” already is a gross word.
It somehow underestimates the richness and the complexity of this primitive world.
Maybe I’m being excessively skeptical in underestimating the richness with which
the world began, but I don’t know what to do! So I’m sympathetic with Whitehead’s
general program, but I do not see how to implement it. I don’t see how to fill out
the details. I don’t see the tools in the making for filling out the details. So that’s the
answer to the question.

From audience: Geoff Hellman

I’d like to connect this with another major question that science confronted at the
turn of the twentieth century, the notion of life was quite mysterious and very much
up for debate and it was not unrespectable to be a vitalist, to believe that there
were some special properties of living matter, some special forces at work that sim-
ply could not be brought within the framework of the physical sciences, including
chemistry. Now, that’s a dead idea. It was reasonable to take it seriously up until a
point, but most people in the scientific community would agree that today it’s not a
viable idea and it’s not needed. And so this would be some grounds for some more
optimism that we might gain the tools—I think you’re right to emphasize that we
don’t have them now, we don’t seem to have them now and I don’t at all mean to
suggest that there aren’t special problems about consciousness and experience that
make it harder and different from the problem of life, but, what do you think about
that problem? Isn’t that some grounds for optimism that the biological sciences now
have grappled with this, and essentially replaced the question with. . .
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Shimony

I wish I could go along with you, but I think it’s a mistake to conflate the problem
of the nature of life with the problem of the nature of conscious experience.

Hellman

I’m not doing that.

Shimony

But I am! That is, I’m saying that’s the sticking point for me. That is, one can
analyze—the biologists have learnt how to analyze life (setting aside conscious ex-
perience) with extreme subtlety and with physical tools, that is, chemical cybernet-
ics, completely formulated in terms of atomic and molecular physics. It’s the basis
of explanation of cell behavior, replication, metabolism, anything that you want
about living creatures, provided you leave out the conscious experience. I don’t
see that we have the conscious experience in this way other than something that
is correlated with neural behavior. But a correlation is not an identity. There’s an
enormous philosophical literature about the idea of identity here. My feeling is that
it’s very unconvincing. I have one principle, which I didn’t say earlier, I call it the
“phenomenological principle.” The phenomenological principle is that anything that
appears must be accepted as real sui generis. And what does that mean? It means we
have to understand in terms of our ontology where and how that aspect of appear-
ance has entered into our consciousness. If we haven’t done justice to the phenom-
ena as they appear something is still missing in our structure of knowledge. Now, I
think that’s a crude argument, but it’s enough to recognize that there are some things
which reductionist philosophers have fallaciously characterized as derivative. One
of them is conscious experience; as phenomenon it’s not the same as neurological
impulses and transitions and so on. The sense of transience, absolutely central to a
complete theory of time, it’s not part of current spacetime theory but that may be
the fault of current spacetime theory. Transience still has an ontological status.

Now, I’ll make a little deviation. There are people who say that the sense of
transience is entirely psychological.

Smolin

Can I interrupt you, because, before we—don’t worry, we’re going to talk about
time and transience. . .
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Shimony

I just want to say one thing. That is, because it’s not really about time but about what
happens when you attribute a phenomenon to consciousness. That’s possible. It’s
possible and it may be so that this phenomenon, like color sense, like appreciation
of music, is entirely psychological, though there are physical correlates, but when
you do that you don’t impoverish the ontology, you say the ontology must include
a mentalistic component. The mentalistic component may be inseparable from the
physicalistic as in Whitehead’s philosophy of organism, or it may be a separate
type of thing as in a dualistic ontology, Descartes’ mind and body as two kinds of
substance. I don’t want to take a stand on that, I will just say that anybody who
takes seriously certain appearances, like consciousness, like transience, but tries to
give as the locus of these things the mental aspect of the world, has a coherent point
of view but it doesn’t mean that these things somehow are derivative. It means that
they have a status different from the status of molecules.

I don’t need to talk any more about transience.

Smolin

We will come back because many of us are interested in that. There was a third
thing you were connecting with. You started of saying that there were three things
that were connected. The issue of consciousness, transience, but there was a third.

Shimony

The very small. The experimentalists here can tell you how much more energy and
how much more effort and how much more control is necessary in order to probe
into smaller and smaller spatial intervals. So what is going to be necessary to probe
the ten to the minus thirty-third of a centimeter? And if we can’t probe by high
enough frequencies of light how are we going to find out about the structure of
spacetime in the very small? So that may be a barrier just because of the relation
between wavelength and frequency and energy.

Smolin

I’m not going to take that bait but I have two questions for you. I could, but I’m
not going to; we can later, if you want. You suggested that somebody who believes
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that consciousness is part of the ontology of the world could also incorporate, if I
understood right, a belief in transience of the present moment as an aspect of that
ontology.

Shimony

Indeed, that’s a possibility.

Smolin

Now, have you noticed (because I have) that people who take an artificial intelli-
gence or an identity theory view of the brain and the mind—that is, there is no issue
of consciousness—often are people who are happy, at least in my experience, with
timeless formulations of physics in which transience disappears? I wonder if the
opposite of that is true amongst some of the people in our community.

Shimony

I’ll tell you my crude reaction. If you can believe that you can believe anything. A
timeless formulation? This is a really timeless formulation, not just denying tran-
sience? Time itself is not an independent parameter?

Smolin

Something that is quite commonly said in the field of quantum gravity, quantum
cosmology. . .

Shimony

Barbour.

Smolin

Julian Barbour and Steven Hawking, Jim Hartle. . .



Bistro Banter 457

Shimony

He smuggles in time. Everybody who tries to get rid of time and then explains the
derivation smuggles it in. He does it by that model of cards, putting data on cards,
and then he arranges the cards. Tell me about arrangement without time.

Smolin

It was the Wheeler-de Witt equation that arranged the cards, allegedly. But just to
say, because this is important for those of us, a number of us here in this building and
at this conference who work on quantum gravity, and it’s quite a respectable and may
even be considered the mainstream position in quantum gravity, or a dominant po-
sition, that fundamentally nature is timeless and time “emerges” in a semi-classical
description, and it sounds like you’re not convinced by that.

Shimony

No, I’m sorry, you didn’t quite understand my position. What I was really trying to
do was open up what I called the phenomenological principle. I would say if one
ascribes transience or ascribes consciousness to a type of reality which is not phys-
ical, that doesn’t make it unreal, that just means that your ontology is richer than
a materialistic ontology. It’s certainly—I’m just talking at the level of sketching a
metaphysics—it’s certainly possible to have a coherent materialistic ontology, and
we have a number of examples like Hobbes’, or a materialistic or a mentalistic on-
tology like Berkeley’s or a dualistic one like Descartes’, or something of a synthesis.
Whitehead’s is an example of a synthesis, in which the entities are in a sense biased
toward a mentalistic pole but still are endowed with certain things that we usually
attribute to matter. Whitehead still tries to maintain a concept of energy and apply it
to the actual occasion. Now, I don’t want to judge among these various ontologies.
They’re all possibilities. I just want to say that when you take seriously an appear-
ance which occurs as part of your phenomenology and then you say I want to find
a niche for that in the great world, that doesn’t make the phenomenon unreal; it just
places the phenomenon in one part of the ontology. We need to go further to see
whether it has a derivative status or an ultimate and primitive status in this ontology.
And I would say—I won’t use the ‘t’ word again - but consciousness seems to me
ineradicable. There’s no way of getting rid of it.

Smolin

Okay, I’d like to query you about transience and about time. Here is a version
of the physicists’ argument that transience is unreal. We start with a belief in the
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configuration space in some Platonic sense. That is, there is, symbolized maybe by
this blackboard, the space of all possible configurations of our physical system, let’s
say the universe or a subsystem of the universe. We then hypothesize equations of
motion which, given a starting-point in the configuration space, some initial con-
dition, give us a path in the configuration space. And then we say a history of the
universe is that path in the configuration space and that is physical reality, and the
present moment or transience has disappeared from the scene, we’re just left with
the curve frozen there in a Platonically existing space.

Shimony

It may be physical reality, but it’s not all of reality. Let me quote one of my fa-
vorite philosophers, Max Beerbohm. Max Beerbohm has a wonderful play called
‘Savonarola’ Brown. Savonarola, in that play, is in prison, and he is humiliated that
he’s in prison. And he knows that when he’s released from prison people will point
at him and say “That man hath done Time” and then he reflects: “but the worst of
Time is not in having done it but in doing it.” It’s one thing to have done time and
that’s on your record, it’s another thing sitting in the cell for year after year. That
is left out in the scenario that you presented. The scenario is a partial scenario and
it’s a good one. It may be a good one. It may not be, that is if we find a physi-
cal correlate for transience, which I rather hope for, then it’s not the whole story
even physically, but even if it’s the whole story physically it’s not the whole story
ontologically. That’s why one of my favorite philosophers is Beerbohm.

From audience

For example, put consciousness in it.

Shimony

Well, fine, alright, that’s a possibility.

From audience

Glad to hear it!
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Shimony

That’s a possible ontology.

Smolin

I’m not glad to hear it. It sounds like what you’re saying is the way out of that
dilemma is that physical reality is not all there is to ontology, but I would have
hoped that the task of physics is to explain or model all of ontology.

From audience: Shimon Malin

The description is never the described. This is Krishnamurti. I think we get so at-
tached to our descriptions, our concepts, our conceptual models, we forget, this is
not the world, it’s not the world at all. This is part of your point, is it not? We have
a conceptual model and take it seriously; it’s part of the ontology, but it’s not all of
the ontology.

Shimony

Look, a phenomenology is a very crude beginning to a view of the world but it is
an important beginning. We are able to communicate among ourselves, we seem
to be made similarly enough that we can talk about our phenomena of color, of
tone, of pain and so on. That doesn’t parcel out what parts of those phenomena
have physical correlates and what parts are fantasies. That’s a further job and a
very subtle job. We know by now quite a lot about the physical correlates of our
color sense. It’s very subtle indeed, it’s not just association of different frequencies
with the different sensed colors because context makes a difference. There are the
beautiful experiments of Land in which one can get color sense without the usual
accompanying frequency, so it’s a subtle matter. But, still, you’re not going to expel
color from the universe by saying that color is a combination of physical stimulus
of certain types and contexts of certain types with mental capacities. That’s sorting
out and giving the details. There’s a difference between the outline of the ontology
and the details of the ontology.

From audience: Jonathan Hackett

You talk about different ontologies, and I want to comment on these possible ontolo-
gies. At a certain point, these ontologies involve consciousness. Where do you ever
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get to decide that one’s better than the other or that one could be the actual ontology
if these things all, in the end, end up being untestable—and I guess maybe I’m just
showing my background as a physicist rather than a philosopher—my concern is
whether or not, at some point if you’ve got all these options, if you can’t choose
between them through any logical process, then it doesn’t matter that you have all
these options.

Shimony

You need detailed knowledge. We’ve learned a lot from physiologists of vision,
we’ve learned from neurologists who know something about visual centers in the
brain, we know something about the evolution of color sense in lower animals,
which ones have it and which ones don’t. We have at least some reasonable expla-
nations, given the lifestyle of, say, bees, why they should have color sense and why
some other insects don’t have color sense. There’s no way to complete the details
of the ontology without making use of our scientific knowledge about the world.
The bare general principles of a mentalism versus a materialism or a dualism, those
don’t give you the details.

From audience: Philip Pearle

I just wanted to put in a partial answer to your [Hackett’s] question.. There’s a quo-
tation from Feynman, I don’t remember where it is, where it comes from, but it
is that, the more ways you can look at something differently, the richer the phe-
nomenon is. You don’t need to make a choice. I think he might be talking about, for
example, the path-integral formulation of quantum mechanics versus the formula-
tion of Schrödinger—we don’t need to choose between them and the world is richer
to have these two different ways of looking at it, and I feel that way about what you
call dualistic or multiple-istic ways of looking at things. You don’t need to have just
the physical explanation: the internal explanation of love, the physiological expla-
nation of love and every other explanation you have of love is fine, the phenomenon
is rich, that’s wonderful.

Shimony

But one wants details, too! Look, here is a very important question which histo-
rians and sociologists of science have made really central in their investigations.
To what extent are data theory-dependent? And the more skeptical of these have
said they’re very theory-dependent, so the experimentalist cannot help but see his
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experimental results in the light of his theoretical preconceptions and that becomes
an argument for the fallibility of science. Now, let me tell you about one of my fa-
vorite experiments by Bruner and Postman, which shows how much more subtle the
whole question is than that the data are independent of theory or that the data are
dependent on theory. There are subtleties in the mind of shifting from one mode of
perception to another. They did card experiments in which they exposed a card to a
viewer very briefly or for longer intervals. The cards they used were doctored cards,
like a black Ace of hearts: wrong color to match with the shape of the pip. They
flashed the card for a brief time and almost always the subjects will say “Ace of
hearts” or “Ace of spades,” will make a guess. When they’re exposed longer, a long
time, then they say, “Oh, you’re trying to fool me, that’s a doctored card!” In other
words, with enough time to reexamine them, the subject can overcome his theoreti-
cal knowledge of a normal deck of cards. The most interesting case is the right time,
which of course is subject-dependent, not too long, not too short a time. The subject
becomes very confused: “I don’t even know what an Ace looks like, I don’t know
what a heart looks like, what are you doing to me?” They really are very confused.
So, what is the moral of that kind of experiment? It does seem that our perceptual
system is flexible. It is very good at making rapid decisions, which are important
for a lot of activities in the world, and the cost of making rapid decisions is mak-
ing mistakes. We’re also good, when there’s time enough to examine in a leisurely
way, at correcting the errors. If you realize this flexibility in the multi-modal nature
of the perceptual system then you have a very simple answer to the skeptics about
scientific evidence being somehow dictated by the theory that the experimenter has
initially. If they have time enough they can re-examine their data and correct their
mistakes, and they take time.

From audience: Andre Mirabelli

Abner, I just want to understand you. Are you suggesting that we could come to
deeply understand something like consciousness or transience and keep physics
from coherently incorporating it into its worldview?

Shimony

I don’t know the answer. Look, I’ll give you various possibilities that people have
played with. One is that the sense of transience is nothing but psychological. That
doesn’t make it unreal, it has its place in the universe, but it only comes in because
we’re creatures endowed with consciousness. Another is that there is a physical
correlate of transience. One of my favorite physicists, Bialynicki-Birula, has an in-
teresting paper in which he tries to relate transience to reduction of the wave packet.
It’s a possibility. Now, people who don’t believe in reduction of the wave packet
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certainly wouldn’t accept that, but those of us who think that that is also a physi-
cal phenomenon can be open-minded about saying, well, that may be the physical
correlate of the sense of transience. It’s not out of the question.

Mirabelli

That attaches transience to consciousness but, now what if they went further. . .

Shimony

No, no, I’ve given a physical correlate.

Mirabelli

Let me just stick to consciousness. Is it possible that we come to a deep understand-
ing of consciousness and physics not coherently incorporate it into its worldview?

Shimony

My guess is you don’t know what your words mean.

Smolin

I understood them!

Shimony

No, Andre, I’m not trying to tease you. I’m saying we’re trapped by our words, we
are trying for explanation and the price people pay for their avidness to have expla-
nations is they start stretching words beyond their literal meanings. You start say-
ing, “This is a physical explanation of conscious experience.” What does the word
“physical” mean anymore? My guess is, partly because I’m a residual Whitehea-
dian, is that “physical” no longer means physical in the sense of Lucretius’s atoms;



Bistro Banter 463

it is something like physics but with the primitive entities modelled partly on little
minds. So, you’re not using words literally any more.

Mirabelli

That’s why I said coherently incorporated. Do you believe that it’s really possible
that you’ll end up with a complete dualism?

Shimony

Well, I would say a necessary condition for coherence, though not a sufficient one,
is to use words literally. If you don’t use words literally you’ll confuse yourself and
other people.

Smolin

May I try here, because this is related to something I wanted to take you back to.
I gave you this little syllogism against transience which I—I should say personally
I’m with you about transience—but in this syllogism one starts with this Platonic
configuration space, one posits the laws of motion, one writes down a solution and
of course that could be Hilbert space in the Schrödinger equation and so forth. If you
let me say those things then, somebody might argue, how could there be a physical
correlate of transience because you’ve already expressed the laws of physics entirely
in a framework which has none. So if there is a physical correlate of - do you agree, if
there is a physical correlate of transience there’s something wrong, that is incorrect,
with that formulation of the laws of physics?

Shimony

No, what I’m saying is that accepting transience phenomenologically doesn’t dic-
tate a physical theory. It leaves open the possibility that your basic physical theory
has room for a correlate to sense-transience, it also leaves open the possibility that
you’re now espousing that your complete physical theory does not have to pay atten-
tion to it at all. It can do physics, it can take into account all physical measurements,
all physical observations, without transience at all.
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Smolin

But let me tell you what I think I argued. What I think I argued was that if I’m a
Platonist about configuration space, that is it exists in some timeless sense, and if
I’m deterministic about either the classical equations of motion or the Schrödinger
equation then there is no place for a correlate of transience. Therefore, either I can-
not be a Platonist about configuration space, that is I have to give up the notion that
physics is done by first specifying the configuration space as some eternally exist-
ing space of possible configurations, and then proceeding. And if I take that point of
view, which I have tried to, then it’s a bit scary because how else are we to formulate
the laws of physics?

Shimony

Okay. Look, a major reason why I’m sympathetic with Bialynicki-Birula’s paper is
that I think the problem of the reduction of the wave packet is unsolved. And I also
believe it’s not going to be solved without some fundamental change in physics.
And one more thing, this is a very nice paradigm case of closing the circle of episte-
mology and ontology because, if you don’t have physical data, you’re not going to
get a quantum mechanics, you’re not going to get any physical theory at all. So, if
you have a physical theory, as quantum mechanics is now constituted, the dynamics
being a unitary dynamics which preserves superpositions, you don’t get data, you
get no experimental results. Therefore, you can’t close the circle. One of the rea-
sons why I spend lots of time on the problem of measurement, the problem of the
reduction of superposition, is that it is a—I wouldn’t say manageable case because
it seems far from manageable—but it is a particularly rich case with a lot of infor-
mation that’s promising for future use and it is an example, almost a paradigmatic
example, of the whole enterprise of closing a circle. So now, having said that, that’s
what I really care about in the quantum-mechanical problem. Then, as a secondary
theme, because transience is not my main interest, as a secondary thing there may
be a bonus. The bonus may be that whatever the modifications of quantum mechan-
ics may be, sufficient to explain reduction of superpositions, may give us the gift
of a physical correlate with phenomenological transience. I hope so, but I’m not
obsessed with that question.

Smolin

What you seem to be suggesting, is that there’s a cluster of beliefs here and there’s
another cluster of beliefs [there (gestured)]. So, this cluster of beliefs, that I think
you’re identifying yourself with, is that you deny the identity theory, that is, you say
there is something irreducible about consciousness, you believe in transience, that
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there is something true and irreducible about transience, and you believe that there’s
a problem of measurement in quantum mechanics, that is, if you will, how the data
come to exist. What I think is interesting to observe is that there is cluster of beliefs
held by many of our friends which denies all three of those things. And I think it’s
interesting just to notice, if you like, phenomenologically, that the three things come
together. And so I think if we’re going to talk about - there are of course positions
in between because academics can do anything

From audience

Especially philosophers!

Smolin

[to remark from audience] You don’t hang out with people who do quantum cos-
mology; you have no idea what can happen. But having opened it up, and if we’re
going to talk about. . .

Shimony

I just want to make a little comment about the clustering of problems. It’s sometimes
very fruitful when you see problems which initially were posed in very different
ways, because of different problematic situations, nevertheless can be solved by
common means. We have a lot of medical examples like this. What we have learned
about the immune system has carried over from prevention of smallpox to many,
many diseases that do not seem to be contagious, that can be genetic, you see what I
mean. But it’s not always the case that one gains by consolidating problems. When
the finance company says consolidate your debts, be skeptical!

Smolin

So, not to have too many philosophical debts, when we come to quantum mechanics
I happen to agree with you, and this is where I know your views and I agree with
you. So I don’t want to say too much, I want to open up the floor to people who
don’t agree with you. Anton, for example. While Anton is gathering his thoughts,
we have another question.
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From audience

I wanted to direct this question more to Lee than to you. It sounds to me like you
have an aversion to incorporating transience into the fundamental physics.

Smolin

My own view, this is not about my view but since you asked, my view is in agree-
ment with Abner that transience is real and should be somehow, I hope it will be
somehow in the future incorporated into fundamental physics. We had a very inter-
esting small workshop here that some of us were in about this issue in which we
phrased it in the language of “Do the laws of nature need to be eternal or could
laws of nature evolve in time, could time in some sense go all the way down?” And
a very interesting contributor to that discussion was a philosopher that I’m more
and more interested in, Roberto Unger. I’m just sort of throwing out things to be
provocative, he talks about the poisoned gift of mathematics to physics that allows
us to replace description of causal relations with logical relations which perhaps live
in some Platonic realm where they’re eternally true and therefore are quite different
from causal relations, and I’m convinced this is a problem. I’m also convinced that
to get out of it is not trivial; it means finding–and this is the question I was posing–it
means finding a way to do physics without the notion of a pre-existing configura-
tion space. But, again, I’m happy to discuss my views elsewhere. Anton, have you
collected your thoughts?

From audience: Anton Zeilinger

That’s a good question! About your closing the circle: this is a very fertile idea.
This is now related to the question does this pass? If you want to close the circle,
you need to have some kind of principle. Your phenomenological principle is one of
them. There must be other ideas, like a consistency requirement, or things like that.
Now I want to know: which principles do we need which guide us along the circle?

Shimony

You have to begin with your natural faculties, however flawed they are. There’s no
doubt that our rational faculties and our various emotional faculties are very much
entangled and it was a great cultural achievement to start sorting things out and to
use rational analysis to examine values and motivations. But you have to start where
you are and then you learn, and one of the things you learn is that with primitive
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methodology one learns something about the regularities of the world. The Greeks
were able to predict eclipses, the Egyptians could predict the time of the rising of the
Nile, they had rather primitive scientific method but they had something. When one
learns something about the regularities of the world, and it was certainly a cultural
achievement to learn that some regularities of the world can be explained mathe-
matically, then that went back and refined the methodology. I’m not sure there was
an explicit formulation of scientific method in which the mathematical character
of fruitful hypotheses was emphasized until probably about the time of Huygens.
Huygens did talk about the hypothetico-deductive method and certainly talked about
physical laws in mathematical form. Well, not long afterwards there was Thomas
Bayes who did a mathematical theorem, probability treated with an equation relat-
ing posterior probabilities to priors and to likelihood. But this is partly a cultural
achievement and it meant looking back at the primitive scientific method and real-
izing that there are various components in it. One component being the credibility
of various starting points, various hypotheses. Another is the component of how
well our various pieces of evidence, how well they are predicted by competing hy-
potheses. Those are the likelihoods. But it took quite a lot of intelligent analysis to
pick apart the hypothetico-deductive method and put it into that quantitative form.
Well, my feeling is the job isn’t done yet. We still don’t have a completely adequate
Bayesian formulation of scientific method. The weak spot being the prior proba-
bilities. I have a sketch of a Bayesian theory which I call “strategic Bayesianism.”
Strategic Bayesianism is in contrast to personal probability theory which says the
probabilities are nothing more than assertions of your degree of belief. Then there
are the logical probabilists who say that somehow assignments of probabilities are
natural extensions of relations of implication. That was Keynes’ and Carnap’s and
Johnson’s view.

Strategic probability is more modest in a way. It’s more modest than logical
probability because it doesn’t say that the probabilities are intrinsic in the relations
among propositions. It does say that there is a human element. On the other hand
it’s less modest than subjective probabilities because it says there are good strategies
and bad strategies. My favorite formulation of a good strategy is by Saki, who said
“In baiting a mousetrap with cheese, be sure to leave room for the mouse.” I think
that’s terrific strategy. You don’t want to assign such low prior probability—even to
a hypothesis that you don’t like and is proposed by one of your rivals anyway—you
don’t want to don’t want to give it such low prior probability that no envisageable
amount of evidence in favor of that hypothesis will overcome its initial disabilities.
You’ve got to leave room for the mouse. That’s a sketch of strategic Bayesianism.
My hope is that with some friends here we’ll examine what Newton did in detail.
I think Newton was a crypto-Bayesian and an extremely subtle one and we will
learn how he did it. And if we can make articulate what he kept secret, that will
revolutionize Bayesianism. That’s a hope; we’ll see.
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Smolin

I don’t know if I’m the mouse or the cheese, but Chris:

From audience: Chris Fuchs

When you said that you were a strategic Bayesian. . .

Shimony

I’m a strategic Bayesian. I invented the term; I’m entitled to be it!

Fuchs

The only thought that came to my mind was that you are a strategic Bayesian and I
am a Bayesian strategist.

Shimony

“Bayesian strategist” is a wider term.

Smolin

It leaves more room.

Shimony

That’s right, but you also have more room for error than I do!
Listen, Bayesianism is still in its youth, after two hundred and fifty years. It really

needs fine-tuning.
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Smolin

Anton, are you satisfied?

Zeilinger

You start from a very fundamental, basic approach to the world. I think you still
seem to subscribe to making a distinction between epistemology and ontology. What
leads you to that? What leads you to make a distinction between epistemology and
ontology?

Shimony

Well, they’re different enterprises even though they may link. Epistemology is the
discipline of assessing beliefs and refining assertions, refining propositions about
the world. Ontology is the discipline of systematizing knowledge of how the world
is constituted. You need the epistemology in order to build a structure of knowledge.
That was recognized very well by Leibniz and by Descartes and by rationalists, that
you need epistemology to make the whole structure of knowledge grow. What I
think was not fully realized—Peirce is very good on this—is that you need some
knowledge of the world in order to assess and refine the epistemology. I think you
will find in the history of philosophy more philosophers who consider epistemol-
ogy to be autonomous, and ontology a derivative or an application of epistemology
than you find people who thought the two need to be mutually supportive, mutually
corrective. But I’m in the latter line of thought.

If you look at the Encyclopedia Britannica around 1911 on philosophy you will
see how strongly epistemological it was. You have more of that in the later twentieth
century with analytic philosophy, but, well, I hope I’m part of a reaction to this.

[Shimony takes a break, leaves platform]

Smolin to audience

Let’s think of good things to pose to Abner when he comes back. Meanwhile, I’m
happy to be the cheese.
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From audience to Smolin

I don’t see how your comment before about evolving laws comes from transience.
You can imagine that, if you come to an understanding of the evolving laws, and
you make an overall law in the theory of everything, it has some, maybe local, but
some time parameter, and then you have an eternal law, that has a time parameter in
it, and still no transience exists in your world.

Smolin

That’s one of the severe puzzles. I agree with you. I have two things to offer, neither
of which is very helpful.

Well, here is Abner.

Shimony

May I make a philosophical comment?

Smolin

Please do so, yes.

Shimony

menschliches, allzumenschliches.

Smolin

For those of us who are badly educated, what does that mean?

Shimony

Human, all too human.
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Smolin

So, the question which was posed was, and let’s make this our last topic, it really
comes back to the issue of time, and the question is the following. Since you’re a
great admirer of Peirce, let me set the question and then quote Peirce, which I think
is related. Many of us went into physics with the belief that there are eternally true
laws and, our job is to find them. A remarkable feature of the last twenty years in
theoretical particle physics, in the efforts for unification, is that we have not found
unique true laws. What has seemed to have happened is that—and this is all in
the realm of theory, unconfirmed by experiment—as models appear to unify more,
they have more freedom in the choice of laws, the choice of parameters, not less
freedom. The old hope that more unification would lead to more uniqueness, larger
symmetries, tighter structures, seems in fact to be going the other way. The more
unification, the more symmetries, in fact, the more free parameters in the laws. And
this is a. . .

Shimony

May I just add one thing? More broken symmetries, which makes things even more
complicated.

Smolin

Indeed, and many of the parameters come not just from how the symmetries break
but from the models required to model the process of broken symmetry. And this
has led to, in some peoples’ minds, a crisis, it goes under the name of “the land-
scape,” to some extent it was anticipated twenty years ago by a few people but has
now become, with Lenny Susskind, a general hue and a cry, without much wisdom
coming from our philosopher friends to help straighten it out. And surely wisdom
is needed here. One extreme point of view is to say maybe the mistake was in look-
ing for ultimate explanation of physical theory in some notion of some Platonically,
eternally true law and here I quote Peirce, who worried about this, as you know,
and this seems to have been his response: “To suppose universal laws of nature. . .”
(I’m sure you know the quote but for those of you who don’t know it) “. . .capable
of being apprehended by the mind and yet having no reason for their special forms,
but standing inexplicable and irrational, is hardly a justifiable position. Uniformities
are precisely the sort of facts that need to be accounted for. Law is par excellence
the thing that wants a reason. Now, the only possible way of accounting for the laws
of nature, and for uniformity in general, is to suppose them results of evolution.”

Now, I’ll let you respond, but the question that our friend here was asking is that
if you buy something like that surely, whatever scenario that evolution is described
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within, will take place against a framework of yet another law which will be posited
to remain true throughout the evolution and therefore there’s an infinite regress. How
do we escape from this?

Shimony

Okay, well I have lots of things to say to that. One is this. The experience of twenty
years or so is such a short time. Really, if there’s any wisdom to be learned from
the history of science it’s patience. Think of the time between 1913 and 1925. How
confused people were on atomic structure. They knew they were onto something
right. but things didn’t fall into place. Then there were de Broglie, Heisenberg,
Schrödinger and their followers and things did fall into place. But why should one
despair if for twelve years or so there’s confusion? So that’s one reaction.

Another reaction. Peirce is right to cite, but you’re with him. I wrote a paper
called ‘Can the fundamental laws of nature be considered products of evolution?’
and there are four principle characters: Whitehead, Peirce, John Wheeler and Lee
Smolin.

Smolin

Not Andrei Linde?

Shimony

So you’re in good company. And of course these are people I sympathize with.
I think that the idea of evolution as a meta-explanatory principle is incredibly pow-
erful. It’s not only attractive as a project, but we know how powerful it is in practice
in biology and for that matter in, say, the history of languages. It’s an incredibly
powerful one. The question is, is it the whole story? That is, can the idea of the
four of you, that essentially all laws of nature are products of evolution, can that be
maintained?

From audience: Geoff Hellman

What does it mean? I’ve no idea what it means. What does it mean to say a law is a
product of evolution? You don’t mean human activity of thinking of the law. . .
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Shimony

No, no, not the history of science but the history of the universe, that is. . .

Hellman

What does that mean?

Shimony

Well, alright, let’s give an unequivocal example first and then we’ll go on to more
questionable cases. The notion of law in biology is not as rigorous and strict as the
notion of law in physics but it means something to biologists. And it is, I suppose, a
law of biology that the inheritance of genetic traits is governed by DNA organized in
chromosomes. But that clearly is a product of evolution. We have evidence that DNA
was not the first organization of the nucleotides, that RNA, which is a simpler, one
strand structure rather than a double helix, almost certainly came first. But it wasn’t
as efficient for various purposes as DNA was. So there’s an example of a biological
law, something that biologists would consider law, having a history, having a . . .

Hellman

It’s a law-like phenomenon.

Shimony

Well, you see, what Peirce is saying is that all laws of nature are really law-like.
Even, whatever you like, the second law of motion in Newtonian mechanics, or
Maxwell’s equations, they are all law-like in that they are the products of evolution.
Various things have been tried out and these, in some way or another, are the more
stable situations. I’m paraphrasing these people, Lee can. . .

Hellman

You mean, you treat it as a chaotic situation, and then order evolves.
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Shimony

Yeah, but I think it’s a truly wonderful idea and partly true. But can it be the whole
truth? And I am really skeptical that it can be the whole truth. Let me speak for
Peirce because I’ve studied him more than the others. Peirce slips at one point. He
says that in the primitive universe, chaotic universe, in fact there wasn’t a metrical
structure of time yet, so you can’t even talk about time order, it was so chaotic. But
in the primitive universe anything could happen. If anything can happen, anything
can unhappen because these primitive events didn’t have staying-power. One thing
that happened, by chance, was a—this is his phrase—‘a germ of habit-formation’.
A pretty phrase. And unlike the other things that happened by chance it had the pro-
clivity to spread. It’s habit-formation. So it spreads, and it spreads to its neighbors.
Now you see where my skepticism sets in. What is he talking about when he talks
about “its neighbors”? How do you have neighbors if you don’t have a geometrical
structure? What is this all about? So hasn’t he smuggled some primitive structure in
order for the law-like habits to grow? And my real question is simply one question
to all four of you: can you dispense with some kind of primitive law which allows
the more detailed laws to grow? And I don’t know that any of you gave an answer
to that.

Smolin

And I believe that’s the question being asked.

Shimony

Lee, do you have anything to add to what you wrote?

Smolin

I struggle with this myself, not just in the context that you described but I think
that those of us who think about quantum spacetime—after all, if you’re right about
quantum mechanics then maybe we don’t have to do quantum spacetime. Maybe the
theory that you hopefully soon will discover that supersedes quantum mechanics,
with some of the other people here, will save us and will be more easily integrated..
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Shimony

But wouldn’t that then be the kind of primitive law that I’m talking about, that is
needed in order to get the more detailed law?

Smolin

Yes. Like you, I am a—I forget your wonderful word, but I believe we make lots
of mistakes and I’m hesitating to appear more foolish than I must necessarily be
because. . .

Shimony

No, I don’t accuse you of that. No, no, never ever.

Smolin

No, no, just all of them [indicating audience]! But these are the hard problems and
the question, you know, it sounds—the little story there with Peirce, and the little
kernel of habit-formation—this sounds like Andrei Linde again, or those of us who
worry—the question of what does it mean to be a neighbor if you’re below the level
of classical spacetime is a question that people here think about and try to see if
there’s a crucial question. I think of those thinking about quantum gravity, Lucien,
Fotini, Olaf, just to mention some of the people here, a question like that, what does
it mean to be a neighbor? And is that structure there initially, in which case geometry
was classical, was intrinsic to begin with and if it’s not how does the notion of being
a neighbor arise from some level where it doesn’t exist? Olaf is nodding, I think he’s
spent years working on that.

[Inaudible remark from Olaf Dreyer]

Smolin continues

He’s just the photographer, he says.
So there’s nothing to do but to wonder at the clarity of the thought of somebody

like Peirce who in his confusion can mark out confusions that a hundred and twenty
years later are still with us at the forefront. I think this is why, from the point of view
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of those of us who are scientists, this is why we value our friends and our mentors
who are philosophers.

Shimony

Let me just ask a question about philosophical attitude in questions of this depth.
My question is: is there anything wrong, in your opinion, intrinsically wrong that
you would have to stay away from it, of having several different levels, and sev-
eral different approaches appropriate to the different levels? One level being the
rather primitive laws of great generality, and they allow the evolutionary process to
proceed. And the other kind of laws are themselves products of evolution and they
presuppose the first kind. Is there anything intrinsically wrong about that?

Smolin

No.

Shimony

Now, let me tell you why I prefer it—I would prefer not to have it but we may have
to live with it. It sounds as if you then are adopting an attitude that really is very
peculiar. You’re saying that you are taking as the very basis of rational knowledge
about the world something for which no reason can be given. Namely, that’s the way
the world is, these primitive. . .

Smolin

That’s what Mr. Peirce is saying, yes.

Shimony

. . . these primitive laws are the way the world is and they are brute fact. Now, here’s
my reaction to my reaction: Stay away from the word that I use, “brute.” “Brute”
is already an insult. It may be that you have to say, yes, there is something that is
there, it’s the fundamental in the way the world is constituted. Why not use a more
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favorable simile, like the richness of the womb of nature instead of brute fact? But
stay away from terms that are tendentious either for or against. Anyway, I would say
that it’s a possibility that we have to accept these fundamental laws, that’s the way
things are. And is it so bad?

Smolin

That sounds like wisdom to me and I think that we should thank Abner.
[applause]

Smolin

And the bar is still open, I believe.

From audience: Myrvold

And we should thank Lee.
[more applause]

Shimony

May I tell you something? What I want to tell you is that this was much more fun
than I thought it would be!
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(1) A quantum mechanical limitation upon the possibility of exact measurement
due to the existence of additive conserved quantities; (2) The apparent impossibility
of achieving a quantum mechanical mixture of definite measurement outcomes by
means of a measurement procedure that is reliable or even approximately reliable if
the initial state of the object is a superposition of eigenstates with different eigen-
values; (3) The extension to a system of n particles, with n greater than two, of an
established complementarity relation between one-particle and two-particle interfer-
ometric visibilities in a two-particle system; (4) The refinement and performance of
a proposed experiment for testing the hypothesis that the validity of the Pauli Exclu-
sion Principle is a time dependent phenomenon, holding with increasing accuracy
with the aging of an ensemble of fermions; (5) The resolution of the conflict between
the locality implied by the special theory of relativity and the non-locality exhibited
by violations of Bell’s Inequalities in entangled quantum mechanical systems.

1 Introduction
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2 Limitations on Exact Measurement due to Additive Conserved
Quantities

Consider an object associated with a Hilbert space Ω1 and a self-adjoint operator
M measured by an apparatus associated with Hilbert space Ω2. Suppose that the
measurement is non-distorting, in the sense that if the object is just before the mea-
surement in a state represented by an eigenvector u of M with eigenvalue r, it is after
the measurement still in a state represented by u even if r is degenerate. Wigner [1]
and Araki and Yanase [2] demonstrated that such a measurement is possible only
if M commutes with every operator L1 which is the first term of a bounded linear
operator of the form L1 ⊕L2, where L1 and L2 are operators on Ω1 and Ω2 respec-
tively. Stein and Shimony [3] generalized this theorem by allowing L1 ⊕ L2 to be
unbounded and permitting the measuring procedure to be finitely distorting, that is,
the eigenspace E(r)⊆Ω1 associated with an eigenvalue r of M is the direct sum of
eigenspaces E(r, j), each of which is finite dimensional and carried into itself under
the measurement process. They were unable to prove the natural further general-
ization in which the limitation to finite dimensionality of the eigenspaces E(r, j) is
dropped, nor were they able to construct a counter-example to the theorem when
the condition of finite dimensionality is dropped. Furthermore, they were not able
to settle this uncertainty even in a simple concrete model [4] of the measurement
process, nor has any one else succeeded in doing so in spite of some effort. This
open problem is of limited physical importance, since less ideal but experimentally
satisfying measuring procedures are possible even when M fails to commute with
an additive conserved quantity [3, pp. 62–63], but we continue to be intrigued by
the mathematical problem.

3 The Problem of Definite Measurement Outcomes

An idealized scheme of measurement, when applied to an initial state of an object
that is a superposition of eigenstates of the measured quantity, leads to the conclu-
sion that there is there is no definite measurement result. Let u1 and u2 be eigenvec-
tors with distinct eigenvalues of the self-adjoint linear operator M being measured,
hence orthogonal, and let v0 be the initial (neutral) state of the measuring apparatus
with the property that the linear dynamics of object plus apparatus implies

u j ⊗ v0 ⇒ u j ⊗ v j, (1)

where vi is an eigenvector of the operator Q of the apparatus with an eigenvalue
indicative of the initial value of the measured operator M. Then

(c1u1 + c2u2)⊗ v0 ⇒ c1(u1 ⊗ v1)+ c2(u2 ⊗ v2). (2)
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Hence, if neither of the coefficients c1 and c2 is zero, then the apparatus does not
exhibit a definite value. Thus the formalism of quantum mechanics seems to pre-
clude the occurrence of definite measurement results, if the measurement procedure
is treated in the foregoing idealized way.

It has often been maintained that the interaction of the apparatus with the en-
vironment requires a correction of this idealization, and that definite measurement
results can be obtained if the initial state of the apparatus is represented by a sta-
tistical operator T influenced by the environment. There exists, however, a series
of theorems throwing doubt upon this optimism. A pioneering theorem of this type
by Wigner [5] assumes a statistical operator T as the initial (neutral) state of the
apparatus but continues to idealize measurement by assuming that if the initial state
of the object is represented by an eigenvector ui of the measured operator M with
eigenvalue ai, then the statistical operator W (t) of object plus apparatus at the final
time t of the measurement process,

W (t) = U(t)[P(ui)⊗T ])[U(t)]−1, (3)

has the property
W (t) = P(ui)⊗Σkck|ψik >< ψik|. (4)

Here P(u1) is the projection onto the one-dimensional subspace (or ray) of Ω1
spanned by eigenvector u1, and ψik is a vector in Ω2/E(i) belonging to a subspace
Fi of Ω2 in which the indicative operator Q of the measuring apparatus exhibits the
eigenvalue ai of the measured operator M of the object; k is an index of degeneracy
required because the initial state of the apparatus is a statistical operator The pio-
neering theorem of Wigner asserts that if the foregoing conditions are satisfied but
the initial state of the object is represented by the superposition u = (c1u1 +c2u2) as
in Eq. (2), with non-zero coefficients ci, then the final state of object plus apparatus
cannot be expressed as a statistical operator of the form

W (t) = Σkck|Φik ><Φik|, (5)

where Φik is a vector in Ω1 ⊗Ω2 in which M has value ai and Q has the indicative
value exhibiting this eigenvalue of M, and k is an index of degeneracy; in other
words the final state is not a mixture of product states of object plus apparatus, each
member of which exhibits a definite outcome of the measurement of M. Thus, within
the scope of the assumptions of Wigner’s theorem the linear dynamics of quantum
mechanics is incompatible with definite results of measurement.

Of course Wigner’s theorem as it stands does not preclude a solution to the mea-
surement problem within the framework of standard quantum mechanics, because
its negative result could conceivably still be due to an idealized characterization of
measurement in spite of its replacement of the pure initial state of the apparatus by
a statistical operator. In particular, expression (4) above is essentially a requirement
that the measurement of M on an object initially in a definite (though presumably
unknown) eigenstate of M is accomplished without the possibility of error. Con-
ceivably the barrier to obtaining definite measurement results can be removed by
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replacing Eq. (4) by the condition that if the initial state of object plus apparatus is
P(ui)⊗T , then the state at time t has a probability greater than one-half of lying in
the subspace {u1}⊗E(i), where E(i) is the subspace of Ω2 in all of which Q has a
value indicative of the value ai of the object operator M. This condition is expressed
more formally in Shimony [6]. In that reference it is then demonstrated that even
with the foregoing weakened condition on measurement a transition from the initial
superposition (2) to the desirable mixture (5) of eigenstates of the indexical operator
Q is impossible. The same theorem was proved in a different way by Stein [7].

A further weakening of conditions on the procedure of measurement is to allow
measurable quantities to be represented by positive operator valued measures [8]
instead of the traditional self-adjoint operators, which are projection-valued mea-
sures. It was shown by Busch and Shimony [9] that the same impossibility result
demonstrated in reference [5] holds when the procedure of measurement is thus
generalized. Hence a radical and apparently promising avenue towards a solution
within the standard formalism of quantum mechanics of the problem of obtaining
definite measurement outcomes (which is also called “the measurement problem”
and “the problem of the reduction of superpositions”) would confront an impasse.

The open problem which I am bequeathing to the participants in this Conference
and their students and colleagues is the assessment of some optimistic statements of
Machida and Namiki [10], Araki [11], and of Namiki and Pascazio [12] for solving
the measurement problem.

Our answer to the measurement problem is affirmative. In fact we have explicitly derived the
wave-function collapse by measurement. . . by taking into account the statistical fluctuations
in the measuring apparatus, in the limit of infinite number of degrees of freedom of the
apparatus system.

It is very important to remark that the exact wave-function collapse takes place only in
the infinite limit of N (the number of degrees of freedom) and is to be regarded as an
asymptotic process, like a phase transition. However, in practice, a finite but very large
N suffices to produce the wave-function collapse, as was repeatedly discussed and was
shown by numerical simulations. Of course, as long as we keep N finite, the present theory
yields only an approximate wave-function collapse, even though the exact collapse can be
approximated up to any desired accuracy be increasing N. Do not forget that the present
theory describes the exact wave-function collapse as an asymptotic limit.

For fixed and finite N, coherence among the branch waves engendered by the spectral de-
composition is partially lost, and the measurement is not perfect. . . . Up to what extent a
measurement is imperfect depends on the details of the physical process taking place in the
detector. [12, p. 405]

Several questions need to be investigated concerning this program. One is
whether the authors mentioned have succeeded in rigorously proving that in a sys-
tem with infinitely many degrees of freedom the wave-function collapse occurs in
the measurement process without violating the principles of quantum mechanics—
that is, that the negative result established by Wigner and generalized by Shimony
and Busch concerning the final statistical operator W (t) in Eq. (5) is rigorously
avoided by assuming that the number N of degrees of freedom is infinite. A second
question concerns the claim regarding finite but very large N that this suffices for
“an approximate wave-function collapse.” One aspect of this question is to clarify
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the meaning of “approximately”. A possible meaning is that the eigenvectors ψk
of the indexical operator N do not have exact real values of the indexical quantity
but rather have support on very small intervals αk which are non-overlapping for
different values of the index k. If the result claimed by Machida, Namiki, et al.
holds for this sense of “approximately” then the reasonable requirement of the
epistemology of measurement would be satisfied, since sensory differentiation of
the different intervals would be possible. An entirely different meaning of “ap-
proximately” would sacrifice the exact orthogonality of the ψk. With this sense,
the claimed result would not be epistemologically satisfactory, because there would
be no definite results registered by the measuring apparatus, but only probabilities
of results, which are just “potentialities” in Heisenberg’s terminology. And even
if all but one of these probabilities is very small and only one is non-negligible,
one still would not have an actual result. And therefore the conceptual problem
of explaining the transition from potentiality to actuality, which is the heart of
the problem of wave-function collapse, strictly construed, would remain unsolved.
A third question is partly conceptual and partly historical, concerning the relation
between the program under discussion and the cluster of theories called “consistent
history” [13] and “decoherence” [14] interpretations of quantum mechanics: does
the mathematics of Machida and Namiki et al. fill in gaps in the informal reasoning
of those theories, and do those theories suffice to clear up the obscurities concerning
“approximately” when N is finite but very large?

4 Complementarity in n-Particle Interferometery

Two-particle interferometry has been investigated extensively, both theoretically
[15] and experimentally [16]. A typical arrangement is shown in Fig. 1.

S is a source from which pairs of particles are emitted within a short time interval,
with particle 1 propagating to the left through two apertures into paths A and A′

and particle 2 propagating to the right into paths B and B′. The quantum states
determined by paths A and A′ are assumed to constitute a complete set of states for
the Hilbert space of particle 1, and analogously for B and B′ concerning particle
2. A phase shifter φ1 is inserted in path A, and a phase shifter φ2 is inserted in
path B. Paths A and A′ impinge on a symmetrical beam-splitter H1 from which

Fig. 1 Schematic two-particle four-beam inteferometer, using beam splitters H1 and H2
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there is probability 1/2 to trigger a detector fed by path U1 and probability 1/2 to
trigger a detector fed by path L1. Analogously B and B′ impinge on symmetric beam
splitter H2, each yielding probability 1/2 for particle 2 to trigger the detector fed by
U2 and probability 1/2 to trigger the detector fed by L2. The most general state of the
particle pair 1+2 is

|Ψ>= γ1|A > |B > +γ2|A > |B′ > +γ3|A′ > |B > +γ4|A′ > ||B′ >, (6)

which by Schmidt’s theorem [14, p. 85] can be expressed as

|Ψ>= α|C > |D > +β|C′ > |D′ > . (7)

Here |C> and |C′> constitute a basis in the space apanned by |A> and |A′>, while
|D> and |D′> constitute a basis the space spanned by |B> and |B′>, and the coef-
ficients α and β (where α2 +β2 = 1) can be chosen real by using the phase options
of the vectors |C>. |C′>, |D>, |D′>. The most general unitary unimodular map-
ping relating the domain and counterdomain for particle 1 can be expressed in the
|C>, |C′> basis as

T1|C >= a exp(iθ1)|U1 > +b exp(iθ′1)|L1 > (8a)
T1|C′ >=−b exp(−iθ′1)|U1 > +a exp(−iθ1)|L1 >, (8b)

And likewise the most general unitary unimodular mapping for particle 2 is

T2|D >= c exp(iθ2)|U2 > +d exp(iθ′2)|L2 > (9a)
T2|D′ >=−d exp(−iθ′2)|U2 > +c exp(−iθ2)|L2 >, (9b)

where c and d are real numbers whose squares sum to unity.
The phases in Eqs. (8a, b) and (9a, b) are determined by the phase shifts φ1 and

φ2 above and by the scalars in Eqs. (6), (8a), (8b), (9a), and (9b),
T = T1⊗T2 is the unitary unimodular mapping from the space initially associated

with the pair 1+2 into the space of output states. The probabilities of joint outcomes
by ideal detectors placed in the output beams are

P(U1U2) = (αac)2 +(βbd)2 +αβabcd cosΘ, (11)

where
Θ= θ1 +θ2 +θ′1 +θ′2 (12)

Likewise,

P(U1L2) = (αad)2 +(βbc)2 −2αβabcd cosΘ, (13)
P(L1U2) = (αbc)2 +(βad)2 −2αβabcd cosΘ, (14)
P(L1L2) = (αbd)2 +(βac)2 +2αβabcd cosΘ, (15)

The probabilities of single outcomes are

P(U1) = P(U1U2)+P(U1L2) = β2 +a2(α2 −β2) (16)
P(U2) = P(U1U2)+P(L1U2) = β2 +a2(α2 −β2). (17)
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The fringe visibilities for single outcomes are defined in the standard manner:

Vsingle = {[P(Ui)]max − [P(Ui)]min}/{[P(Ui)]max +[P(Ui)]min}= α2 −β2 f or i = 1 or 2
(18)

(Note: same evaluation if L is substituted for U .)
It is tempting to use the analogue of Eq. (18) to define the two-particle fringe

visibility,

Vpair = {[P(UiU2)]max − [P(UiU2)]min}/{[P(UiU2)]max +[P(UiU2)]min}

This expression would yield a nonzero value even if |Ψ > were a product state,
for in that case P(U1U2) would equal the product of P(U1) and P(U2), and these
factors vary respectively with T1 and T2. We therefore “correct” the expressions for
joint probability by subtracting the product P(U1)P(U2) and adding a constant as a
compensation against excessive subtraction:

P∗(U1U2) = P(U1U2)−P(U1)P(U2)+ 1/4. (19)

Now the two-particle visibility is defined as

Vpair = [P∗(UiU2)]max − [P∗(UiU2)]min/[P∗(UiU2)]max +[P∗(UiU2)]min. (20)

The foregong equations yield, after some calculation [18], a complementarity rela-
tion between Vsingle and Vpair:

(Vsingle)2 +(Vpair)2 = 1, (21)

a relation which provides an alternative to Bohr’s explanation of the complementar-
ity between determining the position of a particle and exhibiting its contribution to
an interference pattern interference pattern [18, p. 54].

An open problem is to establish a generalization of the complementarity rela-
tion Eq. (21) for entangled n-tuples of particles, with n greater than 2. Some results
have been obtained for special cases of n = 3 by Horne [19], but no general expres-
sion. There is reason to suspect complications for n greater than 2, because then
entanglement can be achieved in various ways: for example, a measurement per-
formed on a single one of three entangled particles may yields a product state of
the three individual particles, or it may yield a product state of two subsystems, one
of which consists of a single particle and the other of two particles in an entangled
state—a situation named “entangled entanglement” by Anton Zeilinger. Obviously,
the taxonomy of types of entanglement becomes more complicated as n increases.
It should also be noted that Horne does not introduce a “corrected” joint probability
analogous to Eq. (19) in his treatment of n = 3.

Another open problem is to find a generalization of Eq. (20) when the initial
state of the pair of particles 1+2 is quantum mechanically described by a statistical
operator rather than by a pure entangled state. I conjecture that the generalization is
simply Eq. (21) with = replaced by ≤.
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5 Proposed Experiment to Test the Possible Time Dependence
of the Onset of the Pauli Exclusion Principle (PEP)

Corinaldesi [20] has conjectured that the symmetry of integral spin particles under
exchange and the anti-symmetry of half-integral spin particles under exchange are
not kinematic principles but are the time-dependent consequences of interactions
among the particles. Hence, a freshly constituted ensemble of electrons may exhibit
violations of PEP, but as the ensemble ages the violations become much less fre-
quent. I have proposed [21] an experiment to test Corinaldesi’s conjecture, in which
a beam of Ne+ ions in a linear accelerator is crossed by a beam of electrons from an
electron gun at variable positions along the flow direction of the ions (see Fig. 2).
Some of the ions capture electrons, at a rate monitored by detectors sensitive to the
photons emitted in the capture process. A PEP-violating electron can make a transi-
tion from the outermost level to the doubly occupied 1s level of a Ne atom, emitting
a photon of approximately 1 keV. The rate of detection of such photons, which di-
minishes with the age of the ensemble and hence with the distance of the detector
from the point of capture, permits in principle a calculation of the equilibration con-
stant of Corinaldesi’s conjecture. Reasonable assumptions about the parameters of
the experimental arrangement indicate that if the conjecture is correct and the equili-
bration constant is not shorter than 10−15 s, the proposed experiment can determine
the value of this constant.

The main unfinished work of this project is finding a research team with a lin-
ear accelerator willing and able to perform the proposed experiments. When the
characteristics of this linear accelerator are specified there will obviously be further
problems of adapting and fine-tuning the proposed experiment.

If the experiment is performed and Corinaldesi’s conjecture is vindicated, some
important theoretical questions will be raised. What interactions among the elec-
trons are responsible for the onset of an “equilibrium” regime in which PEP holds?

linear accelerator

electron
gun

D D1 D2 D3

Ne+ Ne

lens
X x=0 x=D x=2D

micrometer screw0

e−
D0

Fig. 2 Micrometer screw moves X in steps of 10−4 cm. Lens moves X in steps of 10−6 cm.
Detectors Δ0 and Δ′ at X, both movable. Detectors Δ1, . . . ,Δ10 fixed, separated by 80 cm. Diameter
of each detector: 2.5 cm. Δ′ monitors the number of electrons captured by neon ions in a small
interval around X. All other detectors Δi monitor anomalous electrons making transition to its
level. Diagram not drawn to scale
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In particular, is the Hamiltonian proposed by Corinaldesi himself in good agreement
with the detailed experimental results? What explanation can be offered for the
breakdown of Pauli’s theorem on the connection of spin and statistics [22], which
of course is incompatible with time dependence of PEP? One of the premisses of
Pauli’s theorem is the validity of Lorentz Invariance in the small.

Evidence for the time-dependence of the onset of PEP would conceivably indi-
cate a limitation on the validity of Lorentz Invariance.

6 Tension Between Relativistic Locality and the Non-locality
Exhibited in Tests of Bell’s Inequalities

Figure 3 presents schematically an experiment involving particle pairs 1+2 emitted
from a source S, with particle 1 subject to analysis by an analyzer with a controllable
parameter a and particle 2 subject to analysis by an analyzer with controllable pa-
rameter b. The possible outcomes of analysis of particle 1 are sm (m = 1,2, . . .), and
−1≤ sm ≤ 1; the possible outcomes of the analysis of particle 2 are tn (n = 1 . . .) and
−1 ≤ tm ≤ 1. The complete state (possibly the quantum state and possibly a more
detailed state containing “hidden variables”) of the pair 1+2 at the time of emission
from S will be denoted by k, and the space of states k will constitute a probability
space <K, Σ(K), ρ>, where Σ(K) is a sigma-algebra of subsets of K, and ρ is a
probability measure on Σ(K). Even when the complete state k of 1+2 is specified,
the outcomes of analysis of the two particles may be given only probabilistically:

Pk(mn|ab) = probability that when the complete state is k and a is the parameter
of the analyzer of 1 and b is the parameter of the analyzer of 2, then the outcomes
of analysis are respectively sm and tn.

If the factorization condition

pk(mn|ab) = pk(m|a)pk(n|b) (22)

is satisfied, then various inequalities can be derived regarding the probabilities de-
termined by the complete states k, and by integrating these probabilities using the
probability measure ρ one obtains inequalities governing the integrated probabilities

p(mn|ab) = ∫ρ pk(mn|ab)dρ, (23)

b a
Source

2
tn sm

1

Fig. 3 An ensemble of particle pairs 1 + 2 is emitted in a uniform manner from the source.
Particle 1 enters an analyzer with a controllable parameter a, and the possible outcomes are
sm(m = 1,2, . . .). Particle 2 enters an analyzer with controllable parameter b, and the possible
outcomes are tn(n = 1,2, . . .)
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or by calculating expectation values with these probabilities:

E(ab) = Σmn p(mn|ab)smtn. (24)

Quantities (23) and (24) are the theoretical counterparts of the frequencies and av-
erages obtained with the experimental arrangement of Fig. 3. The collection of in-
equalities obtained in this way are collectively called “Bell’s Inequalities”, since the
pioneering inequality of this class was derived by Bell [23] in 1964. An inequality
experimentally investigated more frequently than Bell’s pioneering inequality is that
of Clauser, Horne, Shimony, and Holt (CHSH) [24], which will be stated explicitly:

−2 ≤ E(ab)+E(ab′)+E(a′b)−E(a′b′)≤ 2. (25)

The foregoing formalism is mainly a straightforward application of probability the-
ory to the outcomes of analysis of the ensemble of pairs 1 + 2. The factorization
condition (Eq. (21), however) is a crucial physical condition, which Bell himself
refers to as a “locality condition.” This name is appropriate if the events of choos-
ing the parameters a and b for analyzing particles 1 and 2 are spacelike separated
in Einstein–Minkowski space, and the equivalence (established independently by
Bell [25, pp. 56–57, 64–65] and Jarrett [26]) of Eq. (23) to the conjunction of the
following two conditions (26) and (27) is applied:

Parameter Independence

pk(m|ab) is independent of b and can be written pk(m|a) (26a)
pk(n|ab) is independent of b and can be written pk(n|b) (26b)

Outcome Independence

pk(m|abn) is independent of n and can be written pk(m|ab) (27a)
pk(n|abm) is independent of m and can be written pk(n|ab) (27b)

Equations (26) and (27) are extensions to probabilistic connections of the usual
limitation in the Special Theory of Relativity on direct causal connection, given the
assumption above of the spacelike separation of the choice of parameters a and b.

Bell and his followers showed that the quantum mechanical predictions for anal-
yses of certain pairs 1+2 according to the scheme of Fig. 3 violates Ineq. (25) and
others of Bell’s Inequalities. More generally, Gisin [27] and Popescu and Rohrlich
[28] have shown that any ensemble of pairs of particles whose complete state k is an
entangled two-particle quantum state will predict a violation of Ineq. (25). Conse-
quently, from the foregoing discussion, the quantum mechanics of such an ensemble
predicts a violation of either Parameter Independence or Outcome Independence,
and in this sense quantum mechanics is a non-local theory. Which one is violated,
or are both violated? The violation of Outcome Independence is exhibited explicitly
in quantum mechanical examples studied by Bell and his followers in the references
cited above. That quantum mechanics does not violate Parameter Independence
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has been demonstrated independently by Eberhard [29], Ghirardi et al. [30], and
Page [31]. If Parameter Independence failed, then information could be encoded at
the first locus by the choice of parameter a and would be probabilistically received at
the locus of analysis of particle 2. The maintenance of Parameter Independence pre-
cludes the success of such encoding. On the other hand, no message can be conveyed
by the failure of Outcome Independence, because the outcome m after parameter a
has been chosen in the analysis of particle 1 is a matter of chance, not under the
control of an experimenter at that locus.

The impossibility of capitalizing on quantum nonlocality for the purpose of send-
ing superluminal messages has inspired hope that there is a kind of “peaceful co-
existence” between this peculiarity of quantum mechanics and the special theory of
relativity. For a long time I was attracted by this way of reconciling two of the fun-
damental branches of physics. With some regret I now find the following argument
by Bell to be convincing:

Do we then have to fall back on ‘no signaling faster than light’ as the expression of the
fundamental structure of theoretical physics? This is hard for me to accept. For one thing
we have lost the idea that correlations can be explained, or at least this idea awaits refor-
mulations. More importantly, the ‘no signaling. . .’ notion rests on concepts that which are
desperately vague, or vaguely applicable. The assertion that ‘we cannot signal faster than
light’ immediately provokes the question:

Who do we think we are?

We who can make ‘measurements’, we who can manipulate ‘external fields’. we who can
‘signal’ at all, even if not faster than light? Do we include chemists, or only physicists,
plants, or only animals, pocket calculators, or only mainframe computers? [32, p. 254]

If Bell is right, that “peaceful coexistence” between relativistic locality and quan-
tum nonlocality is not achieved by exhibiting the inability of the latter to permit
superluminal signaling, then my bequest to you contains a very difficult problem.
It is hard for me to believe that this is an isolated problem, because there are other
difficulties in combining quantum mechanics with space-time theory, notably the
problem of quantizing general relativity theory and the problem of maintaining the
concept of a space-time continuum at the Planck level (around 10−33 cm), where
quantum uncertainties undermine the meaningfulness of the metric. One radical the-
ory proposed for dealing with this tangle of problem is due to Heller [33], based on
the non-commutative geometry of Connes [34].

The heuristic for this geometry is to approach ordinary differential geometry
through algebra, and then to generalize the resulting algebraic formulation.

The information about a differentiable manifold is contained in the algebra of
smooth functions on the manifold, by identifying a point in the manifold with the
set of smooth functions vanishing at it. The algebra of smooth functions is com-
mutative if the ordinary multiplication of function is taken to be the multiplication
operation of the algebra. If, however, a non-commutative algebra, such as the alge-
bra of bounded operators on a Hilbert space, is given instead of this commutative
algebra, then in the corresponding space the local notions of point and neighbor-
hood have no meaning. The distinction between singular and non-singular states
breaks down, which looks very unpromising for extending the geometric concepts
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of general relativity, but a compensation may be a new way of dealing with the cos-
mological problem of the beginning of the universe. The breakdown of the concept
of neighborhood seems to undermine the possibility of physical dynamics, which
ordinarily requires the use of continuous functions; but the use of Leibniz’s rule—
D( f g) = f (Dg)+ (D f )g—provides an algebraic surrogate for the ordinary opera-
tion of derivation, thereby making a generalized dynamics possible.

How seriously Heller’s scheme should be taken depends upon success in several
directions: first, the recovery of standard quantum mechanics and standard general
relativity as “correspondence limits” at appropriate physical scales; second, the illu-
mination of puzzling features of standard theories by considering them to be limiting
cases of a physics with a pervasive global character—notably the feature of nonlo-
cality in entangled quantum states, and the singularities and horizon problems of
general relativity theory; and third, and most important, experimental evidence con-
firming predictions of the new physics at the Planck level. It is conceivable that some
relevant experimental evidence will be provided if the test proposed above favors the
time-dependence of the onset of the Pauli Exclusion Principle, and if, furthermore,
the generalized dynamics at the Planck level predicts the observed time-dependence.

Of all the unfinished work that I am offering you as my bequest, this proposal
about physics in the small is the most speculative and difficult. In the long run it
probably will be accomplished, but I nevertheless must remind you of Pogo’s warn-
ing, “We are surrounded by unsurmountable opportunities.”
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Published works of Abner Shimony: Errata

129. “The Transient Now”, reprinted in [110] Search for a Naturalistic World View, vol. II, paper
18, Eq. 4: the radical in the denominator should be in the numerator. Also, in footnote 5,
“Zelicovici” should be “Zeilicovici,” and likewise for all other occurences of this name.

132. In the first poem, “The Present,” line 3, “thrill” should be replaced by “trill”.
135. “A Bayesian Examination of Time-Symmetry in the Process of Measurement”: the summa-

tions with respect to i in the numerator and with respect to j in the denominator should be
outside the absolute value signs. Consequently, this paper is not reliable.

141. “On Ensembles That Are Both Pre- and Post-Selected”: in Eq. (3) the W on the lhs should be
W ′, and the rhs should be divided by Tr[WQ(c′)]. In Eq. (5) the summation should be with
respect to i rather than c. The argument against time symmetry in the latter part of the paper
should be carefully re-examined.

166. “Aspects of Nonlocality in Quantum Mechanics” has serious errors in Sections 6.3 and 6.4.
These two sections should be replaced by the following.

The demonstration of a generalized Bell’s Inequality is correct, but the demonstra-
tion that some of the calculation of quantum mechanical violation of this Inequality
is erroneous.

The discrepancy between Bell’s Inequality and some of the predictions of quan-
tum mechanics will be demonstrated in the special case of a pair of photons, prop-
agating in opposite senses along the z-direction, hence with polarizations in the
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xy-plane. A possible basis for the space of polarization states of photon 1 consists
of the two vectors |x+> and |x−>, the former representing a state of polarization in
the x-direction, the latter a state of polarization in the y-direction, hence blocked by
an analyzer that allows with certainty light polarized in the x direction to pass. The
pair of vectors |x′+> and |x′−> represent analogous polarization states for photon
2. The pair of photons is assumed to be quantum mechanically described by the
entangled two-photon state

|Ψ> = (1/
√

2)[|x+>|x′+>+ |x−>|x′−>] (1)

Other polarization states can of course be expressed in terms of these basis vectors.
The state of the first photon with polarization in the direction in the xy-plane making
an angle a with the x-axis will be represented by |a+> and that with polarization
in the perpendicular direction is |a−>; analogous states for the second photon are
represented by |a′+> and |a′−>. The self-adjoint operator representing polarization
in the prescribed direction a is A, with the property

A|a+> = |a+>,A|a−> =−|a−> (2)

Other capital roman letters will represent polarization in other directions for both
first and second photons. In terms of the bases that have been chosen:

|a+> = (1/
√

2)[cosa|x+>+ sina|x−>], (3a)
|a−> = (1/

√
2)[−sina|x+>+ cosa|x−>], (3b)

and likewise for |b′+> and |b′−> in terms of the basis vectors |x′+> and |x′−>.
In order to expedite the calculation of the expectation values

EΨ(AB) =<Ψ|AB|Ψ>, (4)

it is useful to write the action of the operators A, B etc. on the basis vectors:

A|x+> = cos2a||x+>+ sin2a|x−>, (5a)
A|x−> = sin2a||x+>− cos2a|x−> (5b)

It is then straightforward to show that

EΨ(AB) = cos2(a−b), (6)

where a and b are the angles made by the directions of polarization of photons 1 and
2 with the x and x′ axes.

To exhibit a discrepancy between Bell’s Inequality, Eq. (6.13) on p. 114 of
“Quantum Mechanics at the Crossroads” and a quantum mechanical prediction it
suffices to choose two angles a = π/4 and f = 0 for polarization measurements on
photon 1 and two directions b = π/8 and g = 3π/8 for polarization measurements
on photon 2.
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Since

cos2(a−b) = cos2(a−g) = cos2( f −b) =−cos2( f −g) =−.707, (7)

one obtains

EΨ(AB)+EΨ(AG)+EΨ(FB)−EΨ(FG) = 2.828, (8)

in disagreement with Bell’s Inequality (6.13) on p. 114.
(Note the correction of the order of letters BF and BG in Eq. (6.14) on p. 115.)
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