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Preface

Almost a century has gone by since the discovery of general relativity and quantum
mechanics, yet the goal of finding a consistent theory of quantum gravity nonethe-
less remains elusive. After the two major triumphs of modern quantum field theory,
quantum electrodynamics and the quantization of non-abelian gauge theories (in-
cluding quantum chromodynamics and the electro-weak theory) the early seventies
provided high hopes that a quantum treatment of general relativity might be around
the corner. However, to the dismay of many, the results of t’ Hooft and Veltman con-
clusively established that quantum gravity is not perturbatively renormalizable, thus
confirming earlier suspicions based on purely dimensional arguments. Disturbingly,
the divergences which appear in gravity at one loop order in the semiclassical expan-
sion, involving curvature squared terms, cannot be re-absorbed into a redefinition
of the coupling constants, thereby making it difficult to derive unambiguous state-
ments about the properties of the underlying quantum theory. More importantly, the
now exhaustively explored examples of quantum electrodynamics and non-abelian
gauge theories have established that until these ultraviolet renormalization effects
are consistently and systematically brought under control, it will be very difficult to
make any sort of physically relevant predictions. To this day, the ultraviolet prob-
lems of quantum gravity border on the speculative for many: after all, if quantum
gravity effects are relevant at distances of the order of the Planck length (10−33cm),
then these might very well have little relevance for laboratory particle physics in the
foreseeable future. But how could one so conclude without actually doing the rele-
vant calculations? What if new, non-perturbative scales arise in the renormalization
procedure, as occurs in non-abelian gauge theories?

Since the seventies, strategies that deal with the problem of ultraviolet diver-
gences in quantum gravity have themselves diverged. Some have advocated the
search for a new theory of quantum gravity, a theory which does not suffer from
ultraviolet infinity problems. In supersymmetric theories, such as supergravity and
ten-dimensional superstrings, new and yet unobserved particles are introduced thus
reducing the divergence properties of Feynman amplitudes. In other, very restricted
classes of supergravity theories in four dimensions, proponents have claimed that

vii
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enough conspiracies might arise thereby making these models finite. For super-
strings, which live in a ten-dimensional spacetime, one major obstacle prevails to
date: what dynamical mechanism would drive the compactification of spacetime
from the ten dimensional string universe to our physical four-dimensional world, or
for that matter, to any other dimension less than ten?

A second approach to quantum gravity has endeavored to pursue new avenues
to quantization, by introducing new quantum variables and new cutoffs, which in-
volve quantum Hamiltonian methods based on parallel transport loops, spacetime
spin foam and new types of quantum variables describing quantum dust. It is char-
acteristic of these methods that the underlying theory is preserved, it essentially
remains a quantum version of Einstein’s relativistic theory, yet the ideas employed
are intended to go past the perturbative treatment. While some of these innovative
tools have had limited success in exploring the much simpler non-perturbative fea-
tures of ordinary gauge theories, proponents of such methods argue that gravity is
fundamentally different, thereby necessitating the use of new methods.

The third approach to quantum gravity, which forms the underlying topic of this
book, focuses on the application of modern methods of quantum field theory, whose
cornerstones include the manifestly covariant Feynman path integral approach, Wil-
son’s modern renormalization group ideas and the development of lattice methods
to define a regularized form of the path integral, which then allows non-perturbative
calculations. In non-ablelian gauge theories and in the standard model of elementary
particle interactions, said methods are invariably the the tools of choice; the covari-
ant Feynman path integral approach is crucial in proving the renormalizability of
non-abelian gauge theories; modern renormalization group methods establish the
core of the derivation of the asymptotic freedom result and the related discussion
of momentum dependence of amplitudes in terms of running coupling constants;
and finally, the lattice formulation of gauge theories, which thus far provides the
only convincing theoretical evidence of confinement and chiral symmetry breaking
in non-abelian gauge theories.

Therefore, this book shall cover key aspects and open issues related to a consis-
tent regularized formulation of quantum gravity from the perspective of the covari-
ant Feynman path integral quantization. In the author’s opinion, such a formulation
is an important and essential step towards a quantitative and controlled investigation
of the physical content of the theory.

An Outline of the Book

This book is composed of three major sections. Part I introduces basic elements of
the covariant formulation of continuum quantum gravity, with some emphasis on
those issues which bear an immediate relevance for the remainder of the book. Dis-
cussion will include the nature of the spin-two field, its wave equation and possible
gauge choices, the Feynman propagator, the coupling of a spin two field to matter
and the implementation of a consistent local gauge invariance to all orders, ulti-
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mately leading to the Einstein gravitational action. Additional terms in the gravita-
tional action, such as the cosmological constant and higher derivative contributions,
are naturally introduced at this stage.

A section on the perturbative weak field expansion will later introduce the main
aspects of background field method as applied to gravity, including issues such as
the choice of field parametrization and gauge fixing. Then, results related to the
structure of one- and two-loop divergences in pure gravity shall be discussed, lead-
ing up to the statement of perturbative non-renormalizability for the Einstein theory
in four dimensions. One important aspect that will be stressed is that perturbative
methods generally rely on a weak field expansion for the metric fluctuations, and are
therefore not necessarily well suited for the investigation of potentially physically
relevant regime of large metric fluctuations.

Next, the Feynman path integral for gravitation will be introduced by closely
analogizing the theory with the related Yang-Mills case. The discussion brings up
the thorny issue of the gravitational functional measure, a threshold requirement
used to define Feynman’s sum over histories, as well some other important aspects
related to the convergence of the path integral and derived quantum averages, along
with the origin of the conformal instability affecting the Euclidean case. Emphasis
will be drawn to the strongly constrained nature of the theory, which depends on
the absence of matter, and its close analogy to pure Yang-Mills theories, on a single
dimensionless parameter Gλ , besides the required usual short distance cutoff.

Since quantum gravity is not perturbatively renormalizable, the next question
arises naturally: what other theories are not perturbatively renormalizable, and what
can be derived from those theories? The following sections will thus summarize the
methods of Wilson’s 2+ ε expansion as applied to gravity, expanding the deviation
of the space-time dimensions from two; in such a dimension the gravitational cou-
pling becomes dimensionless and the theory is therefore power-counting renormal-
izable. As an initial motivation, but also for illustrative and pedagogical purposes,
the non-linear sigma model is introduced first. The latter represents a reasonably
well understood perturbatively non-renormalizable theory above two dimensions
which is characterized by a rich two-phase structure, and whose scaling properties
in the vicinity of the fixed point can nevertheless be accurately computed in three
dimensions (via the 2+ ε expansion, as well as by other methods which include the
strong coupling expansions and a variety of other lattice approximation techniques),
and whose universal predictions are known to compare favorably with experiments.
Within the context of gravity, which is discussed next the main results of the pertur-
bative expansion are the existence of a nontrivial ultraviolet fixed point close to the
origin above two dimensions (a phase transition in statistical field theory language),
and the predictions of non-trivial universal scaling exponents in the vicinity of the
new fixed point.

Generally, discussion of the quantization of gravity without referring in some de-
tail to the Hamiltonian formulation is not possible. As in ordinary non-relativistic
quantum mechanics, there are a number of important physical results which are ob-
tained much more readily using this approach. Particularly notable, in the case of
gravity, involves the nature of the Hamiltonian constraint, which implies that the to-
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tal energy of a quantum gravitational system is zero, and the Wheeler-DeWitt equa-
tion, a Schrödinger-like equation for the vacuum functional, whose solution in some
simple cases can be obtained using reduced phase space (minisuperspace) methods.
In addition, the Hamiltonian method can be used as a starting point for a lattice de-
scription of quantum gravity, whose results may be regarded as complementary to
those obtained via the Feynman path integral approach. The ambiguities that appear
here as operator ordering problems have their correspondence in the path integral
approach, under the rubric of issue associated with the choice of functional measure.
The Hamiltonian approach also presents additional problems, including the lack of
covariance due to the choice of time coordinate, and the difficulty of doing practical
approximate non-perturbative calculations. Closely related to Hamiltonian approach
is an array of semiclassical methods which have been used to obtain approximate
cosmological solutions to the Wheeler-DeWitt equations, which are discussed later
in some detail. The section ends with the exposition of some physically relevant
results such as black hole radiance, and some more general issues which arise in a
semiclassical treatment of quantum gravity.

Part II discusses the lattice theory of gravity based on Regge’s simplicial for-
mulation, with a primary focus on the physically relevant four-dimensional case.
The starting point is a description of discrete manifolds in terms of edge lengths
and incidence matrices, then moving on to a description of curvature in terms of
deficit angles, thereby offering a re-formulation of continuum gravity in terms of a
discrete action and a set of lattice field equations. The direct and clear correspon-
dence between lattice quantities (edges, dihedral angles, volumes, deficit angles,
etc.) and continuum operators (metric, affine connection, volume element, curva-
ture tensor etc.) allows one to define, as an example, discrete versions of curvature
squared terms which arise in higher derivative gravity theories, or more generally as
radiatively induced corrections. An important element in the lattice-to-continuum
correspondence is the development of the lattice weak field expansion, allowing a
clear and precise identification between lattice and continuum degrees of freedom,
as well as their gauge invariance properties, as illustrated for example in the weak
field limit by the arbitrariness in the assignments of edge lengths used to cover a
given physical geometry. On the lattice one can then see how the lattice analogs of
gravitons arise naturally, and how their transverse-traceless nature is made evident.

When coupling matter fields to lattice gravity one needs to introduce new fields
localized on vertices, as well as appropriate dual volumes which enter the defini-
tion of the kinetic terms for those fields. In the fermion case, it is necessary (as in
the continuum) to introduce vierbein fields within each simplex, and then use an
appropriate spin rotation matrix to relate spinors between neighboring simplices. In
general the formulation of fractional spin fields on a simplicial lattice is useful in
formulating a lattice discretization of supergravity. At this point it will be useful to
compare and contrast the simplicial lattice formulation to other discrete approaches
to quantum gravity such as, the hypercubic (vierbien-connection) lattice formulation
and simplified fixed-edge-length approaches such as dynamical triangulations.

Subsequent sections deal with the interesting problem of what gravitational ob-
servables should look like, that is which expectation values of operators (or ratios
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thereof) have meaning and physical interpretation in the context of a manifestly
covariant formulation, specifically in a situation where metric fluctuations are not
necessarily bounded. Such averages naturally include expectation values of the inte-
grated scalar curvature and other related quantities (involving for example curvature
squared terms), as well as correlations of operators at fixed geodesic distance, some-
times referred to as bi-local operators. Another set of physical averages refer to the
geometric nature of space-time itself, such as the fractal dimension. Finally, one
more set of physical observables correspond to the gravitational analog of the Wil-
son loop, which provides information about the parallel transport of vectors, and
therefore on the effective curvature, around large near-planar loops, and the corre-
lation between particle world-lines, which gives the static gravitational potential.
These quantities play an important role in the physical characterization of the two
phases of gravity, as seen both in the 2+ ε expansion and in the lattice formulation
in four dimensions.

Part III of the book discusses applications of the lattice theory to non-perturbative
gravity. Ultimately, investigations of the strongly coupled regime of quantum grav-
ity where metric fluctuations cannot be assumed to be small, requires the use of
numerical methods applied to the lattice theory. A discrete formulation combined
with numerical tools can therefore be viewed as an essential step towards a quanti-
tative and controlled investigation of the physical content of the theory: that is, in
the same way that a discretization of a complicated ordinary differential equation
can be viewed as a mean to determine the properties of its solution with arbitrary
accuracy. These methods are outlined next, together with a summary of the main lat-
tice results, showing the existence of two phases, depending on the value of the bare
gravitational coupling, and in good agreement with the qualitative predictions of
the 2+ ε expansion. Specifically, lattice gravity in four dimensions is characterized
by two phases: a weak coupling degenerate polymer-like phase, and a strong cou-
pling smooth phase with small average curvature. The somewhat technical aspect
of the determination of universal critical exponents and non-trivial scaling dimen-
sions, based on finite size methods, is outlined, together with a brief discussion of
how the lattice continuum limit has to be approached in the vicinity of a non-trivial
ultraviolet fixed point.

The determination of non-trivial scaling dimensions in the vicinity of the fixed
point leads to a discussion of the renormalization group properties of fundamental
couplings, that is their scale dependence, as well as the emergence of physical renor-
malization group invariant quantities, such as the fundamental gravitational corre-
lation length and the closely related gravitational condensate. These are discussed
next, with an eye towards physical applications. This includes a discussion of the
physical nature of the expected quantum corrections to the gravitational coupling,
based, in part on an analogy to QED and QCD, on the effects of a virtual gravi-
ton cloud, and of how the two phases of lattice gravity relate to the two opposite
scenarios of gravitational screening (for weak coupling, and therefore unphysical
due to the branched polymer nature of this phase) versus anti-screening (for strong
coupling, and therefore physical).
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A final section touches on the general problem of formulating running gravita-
tional couplings in a context that does not assume weak gravitational fields. The
discussion includes a brief presentation on the topic of covariant running of G based
on the formalism of non-local field equations, with the scale dependence of G ex-
pressed through the use of a suitable covariant d’Alembertian. Simple applications
to standard metrics (static isotropic and homogeneous isotropic) are briefly summa-
rized and their potential physical consequences and interpretation elaborated. The
book ends with a general outlook on future prospects for lattice studies of quantum
gravity, some open questions and work that can be done to help elucidate the re-
lationship between discrete and continuum models, such as extending the range of
problems addressed by the lattice, and providing new impetus for further develop-
ments in covariant continuum quantum gravity.

One final comment on the notation used in this book. Unless stated otherwise,
the same notation is used as in (Weinberg, 1972), with the sign of the Riemann
tensor reversed; the signature in the Lorentzian case is therefore −,+,+,+. In the
Euclidean case t = −iτ on the other hand the flat metric is of course the Kronecker
δμν , with the same conventions as before for the Riemann tensor.

Berlin, May 2008 Herbert W. Hamber
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Chapter 1
Continuum Formulation

1.1 General Aspects

The Lagrangian for the massless spin-two field can be constructed in close analogy
to what one does in the case of electromagnetism. In gravity the electromagnetic
interaction e j ·A is replaced by a term

1
2 κ hμν(x)T μν(x), (1.1)

where κ is a constant to be determined later, T μν is the conserved energy-momentum
tensor

∂μ T μν(x) = 0 , (1.2)

associated with the sources, and hμν(x) describes the gravitational field. It will be
shown later that κ is related to Newton’s constant G by κ =

√
16πG.

1.2 Massless Spin Two Field

As far as the pure gravity part of the action is concerned, one has in principle four
independent quadratic terms one can construct out of the first derivatives of hμν ,
namely

∂σhμν ∂σhμν , ∂νhμν ∂σhμσ ,

∂νhμν ∂ μh σ
σ , ∂ μh ν

ν ∂μh σ
σ . (1.3)

The term ∂σhμν ∂νhμσ need not be considered separately, as it can be shown to
be equivalent to the second term in the above list, after integration by parts. After
combining these four terms into an action

∫
dx [ a∂σhμν ∂σhμν +b∂νhμν ∂σhμσ

1
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+c∂νhμν ∂ μh σ
σ +d ∂ μh ν

ν ∂μh σ
σ

+ 1
2 κ hμν T μν ] , (1.4)

and performing the required variation with respect to hαβ , one obtains for the field
equations

2a ∂σ∂σhαβ
+ b (∂β∂σhασ +∂α∂σhβσ )
+ c (∂α∂βh σ

σ +ηαβ ∂μ∂νhμν )
+ 2d ηαβ ∂μ∂ μh σ

σ

= 1
2 κ Tαβ , (1.5)

with ηαβ = diag(−1,1,1,1). Consistency requires that the four-divergence of the
above expression give zero on both sides, ∂β (. . .) = 0. After collecting terms of the
same type, one is led to the three conditions

(2a+b) ∂σ∂σ∂β hαβ = 0

(b+ c) ∂α∂β ∂σ hβσ = 0

(c+2d) ∂α∂β ∂β h σ
σ = 0 , (1.6)

with unique solution (up to an overall constant, which can be reabsorbed into κ)
a = − 1

4 , b = 1
2 , c = − 1

2 and d = 1
4 . As a result, the quadratic part of the Lagrangian

for the pure gravitational field is given by

Lsym = − 1
4 ∂σhμν ∂σhμν + 1

2 ∂
νhμν ∂σhμσ

− 1
2 ∂

νhμν ∂ μh σ
σ + 1

4 ∂
μh ν

ν ∂μh σ
σ . (1.7)

1.3 Wave Equation

One notices that the field equations of Eq. (1.5) take on a particularly simple form
if one introduces trace reversed variables h̄μν(x),

h̄μν = hμν − 1
2 ημν h σ

σ (1.8)

and
T̄μν = Tμν − 1

2 ημν T σ
σ . (1.9)

In the following it will be convenient to write the trace as h = hσσ so that h̄σσ = −h,
and define the d’Alembertian as � = ∂μ∂ μ = ∇2 − ∂ 2

t . Then the field equations
become simply

�hμν −2∂ν ∂σ h̄μσ = −κ T̄μν . (1.10)
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One important aspect of the field equations is that they can be shown to be invariant
under a local gauge transformation of the type

h′μν = hμν +∂μ εν +∂ν εμ , (1.11)

involving an arbitrary gauge parameter εμ(x). This invariance is therefore analogous
to the local gauge invariance in QED, A′

μ = Aμ + ∂με . In the quantum theory it
implies the existence of Ward identities. Furthermore, it suggests choosing a suitable
gauge (analogous to the familiar Lorentz gauge ∂ μAμ = 0) in order to simplify the
field equations, for example

∂σ h̄μσ = 0 , (1.12)

which is usually referred to as the harmonic gauge condition. Then the field equa-
tions in this gauge become simply

�hμν = −κ T̄μν . (1.13)

These can then be easily solved in momentum space (� →−k2) to give

hμν = κ
1
k2 T̄μν , (1.14)

or, in terms of the original Tμν ,

hμν = κ
1
k2 (Tμν − 1

2 ημνT σ
σ ) . (1.15)

It should be clear that this gauge is particularly convenient for practical calculations,
since then graviton propagation is given simply by a factor of 1/k2; later on gauge
choices will be introduced where this is no longer the case.

Next one can compute the amplitude for the interaction of two gravitational
sources characterized by energy-momentum tensors T and T ′. From Eqs. (1.1) and
(1.14) one has

1
2 κ T ′

μν hμν = 1
2 κ

2 T ′
μν

1
k2 T̄ μν , (1.16)

which can be compared to the electromagnetism result j′μ
1
k2 jμ .

To fix the value of the parameter κ it is easiest to look at the static case, for which
the only non-vanishing component of Tμν is T00. Then

1
2 κ

2 T ′
00

1
k2 T̄ 00 = 1

2 κ
2 T ′

00
1
k2 (T00 − 1

2 η00T 0
0 ) . (1.17)

For two bodies of mass M and M′ the static instantaneous amplitude (by inverse
Fourier transform, thus replacing 4π

k2 → 1
r ) then becomes

− 1
2 κ

2 1
2 M′ 1

4πr
M′ , (1.18)
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which, by comparison to the expected Newtonian potential energy −GMM′/r, gives
the desired identification κ =

√
16πG.

The pure gravity part of the action in Eq. (1.7) only propagates transverse trace-
less modes (shear waves). These correspond quantum mechanically to a particle of
zero mass and spin two, with two helicity states h = ±2, as shown for example in
(Weinberg, 1972) by looking at the nature of plane wave solutions to the wave equa-
tion in the harmonic gauge. Helicity 0 and ±1 appear initially, but can be made to
vanish by a suitable choice of coordinates.

It is relatively easy to see that the particle described by the field hμν has spin
two. Consider the wave equation for hμν in the absence of sources, and subject to
the harmonic gauge condition

�hμν = 0 , ∂μ hμν = 1
2∂ν hλλ . (1.19)

A plane wave
hμν(x) = eμν(k) eik·x + e∗μν(k) e−ik·x , (1.20)

will satisfy the wave equation and the harmonic gauge condition, provided k2 = 0
and

kμ eμν = 1
2 kν eλλ , (1.21)

respectively. Initially the polarization tensor eμν = eνμ has ten independent com-
ponents, which then get reduced to six by the imposition of the harmonic gauge
condition. These get further reduced to just two when one allows for local coordi-
nate changes xμ → xμ + εμ(x), which here modify hμν according to

h′μν = hμν − ∂ μ εν − ∂ν εμ . (1.22)

To see the effects of this invariance, one first expands εμ(x) as well in plane waves,

εμ(x) = iε(k) eik·x − iε(k) e−ik·x , (1.23)

so that under the gauge transformation hμν → h′μν one has

h′μν = e′μν eik·x + e′∗μν e−ik·x , (1.24)

with new polarization tensor

e′μν = eμν + kμ εν + kν εμ . (1.25)

One can explicitly verify that the new polarization tensor e′μν still obeys the har-

monic gauge condition, kμe′μν = 1
2 kνe′λλ , which shows that the residual gauge in-

variance can indeed be used to eliminate four additional degrees of freedom.
To proceed further it will be useful to consider a wave propagating along the 3

direction, for which k1 = k2 = 0 and k3 = k0 = k > 0. The harmonic gauge condition
of Eq. (1.21) then gives the four equations
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e01 + e31 = 0 (ν = 1)
e02 + e32 = 0 (ν = 2)
e03 + e33 = 1

2 (e11 + e22 + e33 − e00) (ν = 3)

e00 + e03 = − 1
2 (e11 + e22 + e33 − e00) (ν = 0) , (1.26)

which can be used to solve for e01, e02, e03 and e22 :

e01 = −e31 , e02 = −e32 , e03 = − 1
2 (e00 + e33) , e22 = −e11 , (1.27)

so that there are six leftover independent variables e11, e13, e33, e12, e23 and e00.
Under the gauge transformation of Eq. (1.25) one then has

e′11 = e11 e′12 = e12

e′13 = e13 + kε1 e′23 = e23 + kε2

e′33 = e33 + 2kε3 e′00 = e00 − 2kε0 , (1.28)

which shows that, for this choice of wave, only e11 and e12 are physical; the remain-
ing polarization components e′13, e′23, e′33 and e′00 can be set to zero by a suitable
choice of ε1, ε2, ε3 and ε0.

To determine the spin of the particle, one considers a spatial rotation R ν
μ (θ)

around the 3 axis,

R ν
μ (θ) =

⎛
⎜⎝

cosθ sinθ 0 0
−sinθ cosθ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠ , (1.29)

which, due to the particular choice of wave vector kμ , leaves kμ invariant, R ν
μ kν =

kμ . The polarization tensor then transforms as

e′μν = R λ
μ R σ

ν eλσ . (1.30)

But its properties are most easily expressed in terms of the following helicity ampli-
tudes

t± = e11 ± ie12

v± = e31 ∓ ie32 . (1.31)

Under the rotation R ν
μ (θ) these transform in a simple way,

t ′± = exp(±2iθ) t±
v′± = exp(±iθ) v±
e′33 = e33

e′00 = e00 . (1.32)
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In general one expects a wave ψ to transform as ψ → eihθψ under a rotation by an
angle θ about the direction of propagation if it has helicity h.

Then the results of Eq. (1.32) implies that the two physical modes t± (made out
of polarizations e11 and e12) have helicity ±2. On the other hand the two unphysical
modes v± (made out of polarizations e13 and e23, and which can be made to vanish
by a suitable choice of gauge function εμ ) have helicity ±2. Finally, the remaining
two unphysical modes e33 and e00 have helicity zero. The fact that only two helicities
±2 are physical implies that one is dealing with a particle of zero mass and spin two.

One would expect the gravitational field hμν to carry energy and momentum,
which would be described by a tensor τμν(h). As in the case of electromagnetism,
where one has

T (em)
αβ = FαγF

γ
β − 1

4 ηαβFγδFγδ , (1.33)

one would also expect such a tensor to be quadratic in the gravitational field hμν . A
suitable candidate for the energy-momentum tensor of the gravitational field is

τμν =
1

8πG

(
− 1

4 hμν ∂λ ∂λhσσ + . . .
)

, (1.34)

where the dots indicate 37 possible additional terms, involving schematically, either
terms of the type h∂ 2h, or of the type (∂h)2. Such a τμν term would have to be
added on the r.h.s. of the field equations in Eq. (1.10), and would therefore act as
an additional source for the gravitational field (see Fig. 1.1). But the resulting field
equations would then no longer invariant under Eq. (1.11), and one would have to
change therefore the gauge transformation law by suitable terms of order h2, so as
to ensure that the new field equations would still satisfy a local gauge invariance.
In other words, all these complications arise because the gravitational field carries
energy and momentum, and therefore gravitates.

Ultimately, a complete and satisfactory answer to these recursive attempts at con-
structing a consistent, locally gauge invariant, theory of the hμν field is found in Ein-
stein’s non-linear General Relativity theory, as shown in (Feynman, 1962; Boulware
and Deser, 1975). The full theory is derived from the Einstein-Hilbert action

IE =
1

16πG

∫
dx
√

g(x)R(x) , (1.35)

which generalized Eq. (1.7) beyond the weak field limit. Here
√

g is the square root
of the determinant of the metric field gμν(x), with g = −detgμν , and R the scalar
curvature. The latter is related to the Ricci tensor Rμν and the Riemann tensor Rμνλσ
by

Rμν = gλσRλμσν

R = gμνgλσRμλνσ , (1.36)

where gμν is the matrix inverse of gμν ,

gμλ gλν = δ μν . (1.37)
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Fig. 1.1 Lowest order diagrams illustrating the gravitational analogue to Compton scattering. Con-
tinuous lines indicate a matter particle, short dashed lines a graviton. Consistency of the theory
requires that the two bottom diagrams be added to the two on the top.

In terms of the affine connection Γ λ
μν , the Riemann tensor Rλ

μνσ (x) is given by

Rλ
μνσ = ∂νΓ λ

μσ −∂σΓ λ
μν +Γ η

μσΓ λ
νη −Γ η

μνΓ λ
ση , (1.38)

and therefore
Rμν = ∂σΓ σ

μν −∂νΓ σ
μσ +Γ λ

σλΓ
σ
μν −Γ λ

σνΓ σ
μλ , (1.39)

with the affine connection Γ λ
μν(x) in turn constructed from components of the metric

field gμν

Γ λ
μν = 1

2 gλσ
(
∂μgνσ +∂νgμσ −∂σgμν

)
. (1.40)

The following algebraic symmetry properties of the Riemann tensor will be of use
later

Rμνλσ = −Rνμλσ = −Rμνσλ = Rνμσλ (1.41)

Rμνλσ = Rλσμν (1.42)

Rμνλσ +Rμλσν +Rμσνλ = 0 . (1.43)

In addition, the components of the Riemann tensor satisfy the differential Bianchi
identities
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∇αRμνβγ +∇βRμνγα +∇γRμναβ = 0 , (1.44)

with ∇μ the covariant derivative. It is known that these, in their contracted form,
ensure the consistency of the field equations. From the expansion of the Einstein-
Hilbert gravitational action in powers of the deviation of the metric from the flat
metric ημν , using

Rμν = 1
2 (∂ 2hμν −∂α∂μhαν −∂α∂νhαν +∂μ∂νhαα)+O(h2)

R = ∂ 2hμμ −∂α∂μhαμ +O(h2) , (1.45)

one has for the action contribution

√
gR = − 1

4 ∂σhμν ∂σhμν + 1
2 ∂

νhμν ∂σhμσ

− 1
2 ∂

νhμν ∂ μh σ
σ + 1

4 ∂
μh ν

ν ∂μh σ
σ +O(h3) , (1.46)

again up to total derivatives. This last expression is in fact the same as Eq. (1.7). The
correct relationship between the original graviton field hμν and the metric field gμν
is

gμν(x) = ημν +κ hμν(x) . (1.47)

If, as is often customary, one rescales hμν in such a way that the κ factor does not
appear on the r.h.s., then both the g and h fields are dimensionless.

The weak field invariance properties of the gravitational action of Eq. (1.11)
are replaced in the general theory by general coordinate transformations xμ → x′μ ,
under which the metric transforms as a covariant second rank tensor

g′μν(x
′) =

∂xρ

∂x′μ
∂xσ

∂x′ν
gρσ (x) , (1.48)

which leaves the infinitesimal proper time interval dτ with

dτ2 = −gμν dxμdxν , (1.49)

invariant. In their infinitesimal form, coordinate transformations are written as

x′μ = xμ + εμ(x) , (1.50)

under which the metric at the same point x then transforms as

δgμν(x) = −gλν(x)∂μελ (x)−gλμ(x)∂νελ (x)− ελ (x)∂λgμν(x) , (1.51)

and which is usually referred to as the Lie derivative of g. The latter generalizes the
weak field gauge invariance property of Eq. (1.11) to all orders in hμν .

For infinitesimal coordinate transformations, one can gain some additional phys-
ical insight by decomposing the derivative of the small coordinate change εμ in
Eq. (1.50) as

∂εμ
∂xν

= sμν +aμν + tμν (1.52)
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with

sμν = 1
d ημν ∂ · ε

aμν = 1
2 (∂μεν −∂νεμ)

tμν = 1
2 (∂μ εν +∂ν εμ − 2

d ημν ∂ · ε) . (1.53)

Then sμν(x) can be thought of describing local scale transformations, aμν(x) is
written in terms of an antisymmeric tensor and therefore describes local rotations,
while tμν(x) contains a traceless symmetric tensor and describes local shears.

Since both the scalar curvature R(x) and the volume element dx
√

g(x) are sep-
arately invariant under the general coordinate transformations of Eqs. (1.48) and
(1.50), both of the following action contributions are acceptable

∫
dx
√

g(x)
∫

dx
√

g(x) R(x) , (1.54)

the first being known as the cosmological constant contribution (as it represents the
total space-time volume). In the weak field limit, the first, cosmological constant
term involves

√
g = 1+ 1

2 h μ
μ + 1

8 h μ
μ h ν

ν − 1
4 hμνhμν +O(h3) , (1.55)

which is easily obtained from the matrix formula
√

detg = exp( 1
2 tr lng) = exp[ 1

2 tr ln(η+h)] , (1.56)

after expanding out the exponential in powers of hμν . We have also reverted here to
the more traditional way of performing the weak field expansion (i.e. without factors
of κ),

gμν = ημν +hμν
gμν = ημν −hμν +h α

μ hαν + . . . (1.57)

with ημν the flat metric. The reason why such a
√

g cosmological constant term
was not originally included in the construction of the Lagrangian of Eq. (1.7) is that
it does not contain derivatives of the hμν field. It is in a sense analogous to a mass
term, but does have the very important property that it does not break the local gauge
invariance.

This is a good place to discuss another issue. There is an old question of whether
the graviton is exactly massless, or whether it has possibly a very small mass m.
It is clear that the mass has to be very small, otherwise it would cause observable
deviations from the Newtonian potential used to describe successfully large galactic
cluster scales. In principle there are a number of well known problems that arise
when a (Pauli-Fierz) spin-two mass term
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1
2 m2 [hμν hμν − (hμμ)2 ] , (1.58)

is added to the gravitational Lagrangian. As in electromagnetism, such a term vi-
olates the local gauge invariance of Eq. (1.11), and in the general theory it spoils
general coordinate invariance and the principle of equivalence. Since a massive
spin-two particle has five polarization states and a massless one two, one has a
clear mismatch in the number of physical degrees of freedom, even as m → 0, as
discussed originally in (van Dam and Veltman, 1970; Zakharov, 1970). In particular
these authors point out the fact that the discontinuity which appears in the classical
theory when the graviton mass goes to zero implies that the bending of light by the
sun for massive gravitons is only 3/4 of the experimentally confirmed general rela-
tivistic effect, thereby ruling out the possibility of a massive graviton, no matter how
small its mass is. Furthermore the discontinuity does not seem to go away when a
cosmological constant term is included (Dilkes et al, 2001). The latter acts in some
way as a mass-like term, but does not increase the number of polarization states
of the graviton since it does not break general covariance, so that a persistence of
the discontinuity would be expected, for fixed cosmological constant. The problem
is not entirely new, as it arises in gauge theories as well, where one finds that the
only way to give the gauge particle a mass without spoiling local gauge invariance
is via the Higgs mechanism. This result would suggest that a smooth limit might be
obtained if a graviton mass is generated spontaneously by some sort of dynamical
mechanism.

In the general theory, the energy-momentum tensor for matter Tμν is most suit-
ably defined in terms of the variation of the matter action Imatter,

δ Imatter = 1
2

∫
dx

√
g δgμν T μν , (1.59)

and is conserved if the matter action is a scalar,

∇μ T μν = 0 . (1.60)

Variation of the gravitational Einstein-Hilbert action of Eq. (1.35), with the matter
part added, then leads to the field equations

Rμν − 1
2 gμνR+λgμν = 8πGTμν . (1.61)

Here we have also added a cosmological constant term, with a scaled cosmological
constant λ = λ0/16πG, which follows from adding to the gravitational action a term
λ0
∫ √

g.1

1 The present experimental value for Newton’s constant is h̄G/c3 = (1.61624(12)× 10−33cm)2.
Recent observational evidence [reviewed in (Damour, 2006)] suggests a non-vanishing positive
cosmological constant λ , corresponding to a vacuum density ρvac ≈ (2.3×10−3eV )4 with ρvac re-
lated to λ by λ = 8πGρvac/c4. As can be seen from the field equations, λ has the same dimensions
as a curvature. One has from observation λ ∼ 1/(1028cm)2, so this new curvature length scale is
comparable to the size of the visible universe ∼ 4.4×1028cm.
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One can exploit the freedom under general coordinate transformations x′μ =
f (xμ) to impose a suitable coordinate condition, such as

Γ λ ≡ gμν Γ λ
μν = 0 , (1.62)

which is seen to be equivalent to the following gauge condition on the metric

∂μ(
√

ggμν) = 0 , (1.63)

and therefore equivalent, in the weak field limit, to the harmonic gauge condition
introduced previously in Eq. (1.12).

1.4 Feynman Rules

The Feynman rules represent the standard way to do perturbative calculations in
quantum gravity. To this end one first expands again the action out in powers of the
field hμν and separates out the quadratic part, which gives the graviton propagator,
from the rest of the Lagrangian which gives the O(h3),O(h4) . . . vertices. To define
the graviton propagator one also requires the addition of a gauge fixing term and the
associated Faddeev-Popov ghost contribution (Feynman, 1962; Faddeev and Popov,
1967). Since the diagrammatic calculations are performed using dimensional reg-
ularization, one first needs to define the theory in d dimensions; at the end of the
calculations one will be interested in the limit d → 4.

So first one expands around the d-dimensional flat Minkowski space-time metric,
with signature given by ημν = diag(−1,1,1,1, . . .). The Einstein-Hilbert action in
d dimensions is given by a generalization of Eq. (1.35)

IE =
1

16πG

∫
ddx

√
g(x)R(x) , (1.64)

with again g(x) = −det(gμν) and R the scalar curvature; in the following it will
be assumed, at least initially, that the bare cosmological constant λ0 is zero. The
simplest form of matter coupled in an invariant way to gravity is a set of spinless
scalar particles of mass m, with action

Im = 1
2

∫
ddx

√
g(x)

[
−gμν(x)∂μφ(x)∂νφ(x) − m2 φ 2(x)

]
. (1.65)

In Feynman diagram perturbation theory the metric gμν(x) is expanded around the
flat metric ημν , by writing again

gμν(x) = ημν +
√

16πGhμν(x) . (1.66)

The quadratic part of the Lagrangian [see Eq. (1.7)] is then
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L = − 1
4 ∂μhαβ ∂ μhαβ + 1

8 (∂μhαα)2 + 1
2 C2

μ + 1
2 κ hμν T μν +Lgf + . . . (1.67)

where the dots indicate terms that are either total derivatives, or higher order in h. A
suitable gauge fixing term Cμ is given by

Cμ ≡ ∂αhαμ − 1
2 ∂μhαα . (1.68)

Without such a term the quadratic part of the gravitational Lagrangian of Eq. (1.7)
would contain a zero mode hμν ∼ ∂μεν + ∂νεμ , due to the gauge invariance of
Eq. (1.11), which would make the graviton propagator ill defined.

The gauge fixing contribution Lgf itself will be written as the sum of two terms,

Lgf = − 1
2 C2

μ +Lghost , (1.69)

with the first term engineered so as to conveniently cancel the + 1
2C2

μ in Eq. (1.67)
and thus give a well defined graviton propagator. Note incidentally that this gauge
is not the harmonic gauge condition of Eq. (1.12), and is usually referred to instead
as the DeDonder gauge. The second term is determined as usual from the variation
of the gauge condition under an infinitesimal gauge transformation of the type in
Eq. (1.11)

δCμ = ∂ 2εμ +O(ε2) , (1.70)

which leads to the lowest order ghost Lagrangian

Lghost = −∂μη̄α ∂ μηα +O(h2) , (1.71)

where ηα is the spin-one anticommuting ghost field, with propagator

D(η)
μν (k) =

ημν
k2 . (1.72)

In this gauge the graviton propagator is finally determined from the surviving
quadratic part of the pure gravity Lagrangian, which is

L0 = − 1
4 ∂μhαβ ∂ μhαβ + 1

8 (∂μhαα)2 . (1.73)

The latter can be conveniently re-written in terms of a matrix V

L0 = − 1
2 ∂λhαβ Vαβμν ∂λhμν (1.74)

with
Vαβμν = 1

2 ηαμηβν −
1
4 ηαβημν . (1.75)

The matrix V can easily be inverted, for example by re-labeling rows and columns
via the correspondence

11 → 1, 22 → 2, 33 → 3, . . . 12 → 5, 13 → 6, 14 → 7 . . . (1.76)
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and the graviton Feynman propagator in d dimensions is then found to be of the
form

Dμναβ (k) =
ημαηνβ +ημβηνα − 2

d−2ημν ηαβ
k2 , (1.77)

with a suitable iε prescription to correctly integrate around poles in the complex
k space. Equivalently the whole procedure could have been performed from the
start with an Euclidean metric ημν → δμν and a complex time coordinate t = −iτ
with hardly any changes of substance. The simple pole in the graviton propagator
at d = 2 serves as a reminder of the fact that, due to the Gauss-Bonnet identity, the
gravitational Einstein-Hilbert action of Eq. (1.64) becomes a topological invariant
in two dimensions.

Higher order correction in h to the Lagrangian for pure gravity then determine
to order h3 the three-graviton vertex, to order h4 the four-graviton vertex, and so
on. Because of the

√
g and gμν terms in the action, there are an infinite number of

vertices in h.
Had one included a cosmological constant term as in Eq. (1.55), which can also

be expressed in terms of the matrix V as

√
g = 1+ 1

2 hμμ − 1
2 hαβVαβμνhμν +O(h3) , (1.78)

then the expression in Eq. (1.74) would have read

L0 = λ0(1+κ 1
2 hαα)+ 1

2 hαβ Vαβμν (∂ 2 +λ0κ2)hμν , (1.79)

with κ2 = 16πG. Then the graviton propagator would have been remained the same,
except for the replacement k2 → k2 −λ0κ2. In this gauge it would correspond to the
exchange of a particle of mass μ2 = −λ0κ2. The term linear in h can be interpreted
as a uniform constant source for the gravitational field. But one needs to be quite
careful, since for non-vanishing cosmological constant flat space gμν ∼ ημν is no
longer a solution of the vacuum field equations and the problem becomes a bit more
subtle: one needs to expand around the correct vacuum solutions in the presence of
a λ -term, which are no longer constant.

Another point needs to be made here. One peculiar aspect of perturbative gravity
is that there is no unique way of doing the weak field expansions, and one can
have therefore different sets of Feynman rules, even apart from the choice of gauge
condition, depending on how one chooses to do the expansion for the metric.

For example, the structure of the scalar field action of Eq. (1.65) suggests to
define instead the small fluctuation graviton field hμν(x) via

g̃μν(x) ≡ gμν(x)
√

g(x) = ημν +K hμν(x) , (1.80)

with K2 = 32πG (Faddeev and Popov, 1974; Capper et al, 1973). Here it is hμν(x)
that should be referred to as “the graviton field”. The change of variables from
the gμν ’s to the gμν(x)

√
g(x)’s involves a Jacobian, which can be taken to be one

in dimensional regularization. There is one obvious advantage of this expansion
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over the previous one, namely that it leads to considerably simpler Feynman rules,
both for the graviton vertices and for the scalar-graviton vertices, which can be
advantageous when computing one-loop scattering amplitudes of scalar particles
(Hamber and Liu, 1985). Even the original gravitational action has a simpler form
in terms of the variables of Eq. (1.80) as shown originally in (Goldberg, 1958).

Again, when performing Feynman diagram perturbation theory a gauge fixing
term needs to be added in order to define the propagator, for example of the form

1
K2

(
∂μ

√
ggμν

)2
. (1.81)

In this new framework the bare graviton propagator is given simply by

Dμναβ (k) =
ημαηνβ +ημβηνα −ημνηαβ

2k2 , (1.82)

which should be compared to Eq. (1.77) (the extra factor of one half here is just
due to the convention in the choice of K). One notices that now there are no factors
of 1/(d − 2) for the graviton propagator in d dimensions. But such factors appear
instead in the expression for the Feynman rules for the graviton vertices, and such
(d − 2)−1 pole terms appear therefore regardless of the choice of expansion field.
For the three-graviton and two ghost-graviton vertex the relevant expressions are
quite complicated. The three-graviton vertex is given by

U(q1,q2,q3)α1β1,α2β2,α3β3
=

−K
2

[
q2
(α1

q3
β1)

(
2ηα2(α3

ηβ3)β2
− 2

d−2ηα2β2
ηα3β3

)

+q1
(α2

q3
β2)

(
2ηα1(α3

ηβ3)β1
− 2

d−2ηα1β1
ηα3β3

)

+q1
(α3

q2
β3)

(
2ηα1(α2

ηβ2)β1
− 2

d−2ηα1β1
ηα2β2

)

+2q3
(α2
ηβ2)(α1

ηβ1)(α3
q2
β3) +2q1

(α3
ηβ3)(α2

ηβ2)(α1
q3
β1) +2q2

(α1
ηβ1)(α3

ηβ3)(α2
q1
β2)

+q2 ·q3
(

2
d−2ηα1(α2

ηβ2)β1
ηα3β3

+ 2
d−2ηα1(α3

ηβ3)β1
ηα2β2

−2ηα1(α2
ηβ2)(α3

ηβ3)β1

)

+q1 ·q3
(

2
d−2ηα2(α1

ηβ1)β2
ηα3β3

+ 2
d−2ηα2(α3

ηβ3)β2
ηα1β1

−2ηα2(α1
ηβ1)(α3

ηβ3)β2

)

+q1 ·q2
(

2
d−2ηα3(α1

ηβ1)β3
ηα2β2

+ 2
d−2ηα3(α2

ηβ2)β3
ηα1β1

−2ηα3(α1
ηβ1)(α2

ηβ2)β3

)]
.

(1.83)

The ghost-graviton vertex is given by

V (k1,k2,k3)αβ ,λμ = K
[
−ηλ (αk1β )k2μ +ηλμk2(α)k3β )

]
, (1.84)

and the two scalar-one graviton vertex is given by

K
2

(
p1μ p2ν + p1ν p2μ −

2
d −2

m2 ημν
)

, (1.85)
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where the p1, p2 denote the four-momenta of the incoming and outgoing scalar field,
respectively. Finally the two scalar-two graviton vertex is given by

K2m2

2(d −2)

(
ημληνσ +ημσηνλ −

2
d −2

ημνηλσ
)

, (1.86)

where one pair of indices (μ ,ν) is associated with one graviton line, and the other
pair (λ ,σ) is associated with the other graviton line. These rules follow readily
from the expansion of the gravitational action to order G3/2 (K3), and of the scalar
field action to order G (K2), as shown in detail in (Capper et al, 1973). Note that
the poles in 1/(d − 2) have disappeared from the propagator, but have moved to
the vertex functions. As mentioned before, they reflect the kinematic singularities
that arise in the theory as d → 2 due to the Gauss-Bonnet identity. As an illustration,
Fig. 1.2 shows the lowest order diagrams contributing to the static potential between
two massive spinless sources (Hamber and Liu, 1995).

 

Fig. 1.2 Lowest order diagrams illustrating modifications to the classical gravitational potential
due to graviton exchange. Continuous lines denote a spinless heavy matter particle, short dashed
lines a graviton and the long dashed line the ghost loop. The last diagram shows the scalar matter
loop contribution.
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1.5 One-Loop Divergences

Once the propagators and vertices have been defined, one can then proceed as in
QED and Yang-Mills theories and evaluate the quantum mechanical one loop cor-
rections. In a renormalizable theory with a dimensionless coupling, such as QED
and Yang-Mills theories, one has that the radiative corrections lead to charge, mass
and field re-definitions. In particular, for the pure SU(N) gauge action one finds

IY M = − 1
4g2

∫
dx trF2

μν → − 1

4g2
R

∫
dx trF2

R μν , (1.87)

so that the form of the action is preserved by the renormalization procedure: no new
interaction terms such as (DμFμν)2 need to be introduced in order to re-absorb the
divergences.

In gravity the coupling is dimensionful, G ∼ μ2−d , and one expects trouble al-
ready on purely dimensional grounds, with divergent one loop corrections propor-
tional to

GΛ d−2 where Λ is an ultraviolet cutoff.2 Equivalently, one expects to lowest
order bad ultraviolet behavior for the running Newton’s constant at large momenta,

G(k2)
G

∼ 1+ const. Gkd−2 + O(G2) . (1.88)

These considerations also suggest that perhaps ordinary Einstein gravity is pertur-
batively renormalizable in the traditional sense in two dimensions, an issue to which
we will return later in Sect. 3.5.

A more general argument goes as follows. The gravitational action contains the
scalar curvature R which involves two derivatives of the metric. Thus the graviton
propagator in momentum space will go like 1/k2, and the vertex functions like k2.
In d dimensions each loop integral with involve a momentum integration ddk, so
that the superficial degree of divergence D of a Feynman diagram with V vertices,
I internal lines and L loops will be given by

D = d L+2V −2I . (1.89)

The topological relation involving V , I and L

L = 1+ I −V , (1.90)

is true for any diagram, and yields

2 Indeed it was noticed very early on in the development of renormalization theory that perturba-
tively non-renormalizible theories would involve couplings with negative mass dimensions, and for
which cross-sections would grow rapidly with energy (Sakata, Umezawa and Kamefuchi, 1952).
It had originally been suggested by Heisenberg (Heisenberg, 1938) that the relevant mass scale
appearing in such interactions with dimensionful coupling constants should be used to set an upper
energy limit on the physical applicability of such theories.
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D = 2+(d −2)L , (1.91)

which is independent of the number of external lines. One concludes therefore that
for d > 2 the degree of divergence increases with increasing loop order L.

The most convenient tool to determine the structure of the divergent one-loop
corrections to Einstein gravity is the background field method (DeWitt, 1967 a,b,c;
’t Hooft and Veltman, 1974) combined with dimensional regularization, wherein
ultraviolet divergences appear as poles in ε = d−4.3 In non-Abelian gauge theories
the background field method greatly simplifies the calculation of renormalization
factors, while at the same time maintaining explicit gauge invariance.

The essence of the method is easy to describe: one replaces the original field ap-
pearing in the classical action by A+Q, where A is a classical background field and
Q the quantum fluctuation. A suitable gauge condition is chosen (the background
gauge), such that manifest gauge invariance is preserved for the background A field.
After expanding out the action to quadratic order in the Q field, the functional in-
tegration over Q is performed, leading to an effective action for the background
A field. From the structure of this effective action the renormalization of the cou-
plings, as well as possible additional counterterms, can then be read off. In the case
of gravity it is in fact sufficient to look at the structure of those terms appearing in
the effective action which are quadratic in the background field A. A very readable
introduction to the background field method as applied to gauge theories can be
found in (Abbot, 1982).

Unfortunately perturbative calculations in gravity are rather cumbersome due to
the large number of indices and contractions, so the rest of this section is only in-
tended more as a general outline, with the scope of hopefully providing some of the
flavor of the original calculations. The first step consists in the replacement

gμν → ḡμν = gμν +hμν , (1.92)

where now gμν(x) is the classical background field and hμν the quantum field, to
be integrated over. To determine the structure of one loop divergences it will often
be sufficient to consider at the very end just the case of a flat background metric,
gμν = ημν , or a small deviation from it.

After a somewhat tedious calculation one finds for the bare action

L =
√

g [c0 + c1R ] , (1.93)

expanded out to quadratic order in h

L =
√

g [c0{1+ 1
2 hαα − 1

4 hαβhβα + 1
8 hααhββ}

3 The second reference uses a complex time (Euclidean) x0 = ict notation that differs from the one
used here.
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+ c1{R− 1
2 hααR+hαβRβ

α − 1
8 Rhααhββ + 1

4 Rhαβhβα

− hνβhβαRα
ν + 1

2 hααhνβRβ
ν − 1

4∇νhαβ∇
νhβα

+ ∇νhαα∇
νhββ −

1
2∇βhαα∇

μhβμ + 1
2∇

αhνβ∇νhβα}] ,

(1.94)

up to total derivatives. Here ∇μ denotes a covariant derivative with respect to the
metric gμν . For gμν = ημν the above expression coincides with the weak field
Lagrangian contained in Eqs. (1.7) and (1.67), with a cosmological constant term
added, as given in Eq. (1.55).

To this expression one needs to add the gauge fixing and ghost contributions, as
was done in Eq. (1.67). The background gauge fixing term used is

− 1
2C2

μ = − 1
2
√

g(∇αhαμ − 1
2∇μhαα)(∇βhβμ − 1

2∇
μhββ ) , (1.95)

with a corresponding ghost Lagrangian

Lghost =
√

g η̄μ(∂α∂αημ −Rμ
αηα) . (1.96)

The integration over the hμν field can then be performed with the aid of the standard
Gaussian integral formula

ln
∫

[dhμν ] exp{− 1
2 h ·M(g) ·h−N(g) ·h}

= 1
2 N(g) ·M−1(g) ·N(g)− 1

2 tr lnM(g)+ const. , (1.97)

leading to an effective action for the gμν field. In practice one is only interested in
the divergent part, which can be shown to be local. Specific details of the functional
measure over metrics [dgμν ] are not deemed to be essential at this stage, as in per-
turbation theory one is only doing Gaussian integrals, with hμν ranging from −∞ to
+∞. In particular when using dimensional regularization one uses the formal rule

∫
ddk = (2π)dδ (d)(0) = 0 , (1.98)

which leads to some technical simplifications but obscures the role of the measure.
In the flat background field case gμν = ημν , the functional integration over the

hμν fields would have been particularly simple, since then one would be using

hμν(x)hαβ (x′) → <hμν(x)hαβ (x′)> = Gμναβ (x,x′) , (1.99)

with the graviton propagator G(k) given in Eq. (1.77). In practice, one can use the
expected generally covariant structure of the one-loop divergent part

ΔLg ∝
√

g
(
α R2 +β RμνRμν) , (1.100)

with α and β some real parameters, as well as its weak field form, obtained from
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R2 = ∂ 2hμμ∂ 2hαα −2∂ 2hμμ∂α∂βhαβ +∂α∂βhαβ ∂μ∂νhμν

RαβRαβ = 1
4 (∂ 2hμμ∂ 2hαα +∂ 2hμα∂ 2hμα −2∂ 2hμμ∂α∂βhαβ

−2∂α∂νhνμ∂α∂βhμβ +2∂μ∂νhμν∂α∂βhαβ ) ,

(1.101)

[compare with Eq. (1.45)], combined with some suitable special choices for the
background metric, such as gμν(x) = ημν f (x), to further simplify the calculation.
This eventually determines the required one-loop counterterm for pure gravity to be

ΔLg =
√

g

8π2(d −4)

(
1

120
R2 +

7
20

RμνRμν
)

. (1.102)

For the simpler case of classical gravity coupled invariantly to a single real quantum
scalar field one finds

ΔLg =
√

g

8π2(d −4)
1

120

(
1
2 R2 +RμνRμν) . (1.103)

The complete set of one-loop divergences, computed using the alternate method of
the heat kernel expansion and zeta function regularization4 close to four dimensions,
can be found in the comprehensive review (Hawking, 1977) and further references
therein. In any case one is led to conclude that pure quantum gravity in four di-
mensions is not perturbatively renormalizable: the one-loop divergent part contains
local operators which were not present in the original Lagrangian. It would seem
therefore that these operators would have to be added to the bare L , so that a con-
sistent perturbative renormalization program can be developed in four dimensions.
As a result, the field equations become significantly more complicated due to the
presence of the curvature squared terms (Barth and Christensen, 1983).

There are two interesting, and interrelated, aspects of the result of Eq. (1.102).
The first one is that for pure gravity the divergent part vanishes when one imposes
the tree-level equations of motion Rμν = 0: the one-loop divergence vanishes on-
shell. The second interesting aspect is that the specific structure of the one-loop
divergence is such that its effect can actually be re-absorbed into a field redefinition,

gμν → gμν +δgμν

δgμν ∝
7
20

Rμν −
11
60

Rgμν , (1.104)

which renders the one-loop amplitudes finite for pure gravity. Unfortunately this
hoped-for mechanism does not seem to work to two loops, and no additional miracu-
lous cancellations seem to occur there. At two loops one expects on general grounds

4 The zeta-function regularization (Ray and Singer, 1971; Dowker and Critchley, 1976; Hawking,
1977) involves studying the behavior of the function ζ (s) = ∑∞

n=0(λn)−s, where the λn’s are the
eigenvalues of the second order differential operator M in question. The series will converge for
s > 2, and can be used for an analytic continuation to s = 0, which then leads to the formal result
log(detM) = log∏∞

n=0 λn = −ζ ′(0).
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terms of the type ∇4R, R∇2R and R3. It can be shown that the first class of terms
reduce to total derivatives, and that the second class of terms can also be made to
vanish on shell by using the Bianchi identity. Out of the last set of terms, the R3 ones,
one can show (’t Hooft, 2002) that there are potentially 20 distinct contributions, of
which 19 vanish on shell (i.e. by using the tree level field equations Rμν = 0). An
explicit calculation then shows that a new non-removable on-shell R3-type diver-
gence arises in pure gravity at two loops (Goroff and Sagnotti, 1985; van de Ven,
1992) from the only possible surviving non-vanishing counterterm, namely

ΔL (2) =
√

g

(16π2)2(d −4)
209

2880
R ρσ
μν R κλ

ρσ R μν
κλ . (1.105)

To summarize, radiative corrections to pure Einstein gravity without a cosmological
constant term induce one-loop R2-type divergences of the form

Γ (1)
div =

1
d −4

h̄
16π2

∫
d4x

√
g

(
7
20

Rμν Rμν +
1

120
R2
)

, (1.106)

and a two-loop non-removable on-shell R3-type divergence of the type

Γ (2)
div =

1
d −4

209
2880

h̄2 G
(16π2)2

∫
d4x

√
g R ρσ

μν R κλ
ρσ R μν

κλ , (1.107)

which present an almost insurmountable obstacle to the traditional perturbative
renormalization procedure in four dimensions.

∫
d4x

√
g Rμναβ Rαβρσ Rρσκλ Rκλμν . (1.108)

Again on-shell all other invariants can be shown to be proportional to this one. One
can therefore attempt to summarize the situation so far as follows:

◦ In principle perturbation theory in G in provides a clear, covariant framework in
which radiative corrections to gravity can be computed in a systematic loop ex-
pansion. The effects of a possibly non-trivial gravitational measure do not show
up at any order in the weak field expansion, and radiative corrections affecting
the renormalization of the cosmological constant, proportional to δ d(0), are set
to zero in dimensional regularization.

◦ At the same time at every order in the loop expansion new invariant terms involv-
ing higher derivatives of the metric are generated, whose effects cannot simply
be absorbed into a re-definition of the original couplings. As expected on the ba-
sis of power-counting arguments, the theory is not perturbatively renormalizable
in the traditional sense in four dimensions (although it seems to fail this test by a
small measure in lowest order perturbation theory).

◦ The standard approach based on a perturbative expansion of the pure Einstein
theory in four dimensions is therefore not convergent (it is in fact badly diver-
gent), and represents therefore a temporary dead end.
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1.6 Gravity in d Dimensions

In view of some of the discussion that will appear later on, it will be useful to recall
here some rather interesting features of gravity that appear in dimensions not equal
to four. The tensor field equations for general relativity with λ = 0

Gμν = 8πGTμν , (1.109)

seem at first to make sense in any dimension. But on closer examination one notices
that some rather special circumstances arise in four dimensions.

As an exercise one can start for example by counting the number of algebraically
independent components of the Riemann curvature tensor Rμρσ which is d2(d2 −
1)/12 in d dimensions. For the Ricci tensor one has instead 1

2 d(d +1) independent
components in d > 1 (there is no notion of intrinsic curvature in d = 1), for the
Einstein tensor Gμν one has also 1

2 d(d + 1) independent components in d > 2 (the
Einstein tensor vanishes identically in d = 2), whereas the Ricci scalar has clearly
only one component in any dimension d > 1.

In d = 1 space is flat, and all tensors Rμρσ , Gμν , Rμν as well as R vanish identi-
cally. In d > 2 the Ricci and Einstein tensor are related to each other

Gμν = Rμν − 1
2 Rgμν G = 1

2 (2−d)R

Rμν = Gμν − 1
d −2

gμν R R =
2

2−d
G . (1.110)

For d = 2 both the Riemann tensor and the Ricci tensor only have one component,
which is related to the scalar curvature,

Rμνρσ = 1
2 R(gμσ gνρ − gμρ gνσ ) Rμν = 1

2 Rgμν . (1.111)

Because of the last identity, in two dimensions the Einstein tensor vanishes identi-
cally, Gμν = 0, and there is no Einstein gravity in d = 2.

Therefore the first interesting integer dimension is clearly d = 3. Now, in four di-
mensions the Riemann tensor has 20 algebraically independent components, while
the Ricci and Einstein tensor have ten (as the metric). But in three dimensions the
Riemann, Ricci and Einstein tensor all have the same number of algebraically inde-
pendent components (6), and are related to each other by

Rμνρσ = gμρ Gνσ +gνσ Gμρ −gμσ Gνρ −gνρ Gμσ +G(gμσ gνρ −gμρ gνσ ) .
(1.112)

The field equations Gμν = 8πGTμν and their trace G = 8πGT then imply, using
Eq. (1.112), that the Riemann tensor is completely determined by the matter distri-
bution implicit in Tμν ,

Rμνρσ = 8πG
[
gμρ Tνσ +gνσ Tμρ +gμσ Tνρ −gνρ Tμσ +T (gμσ gνρ −gμρ gνσ )

]
.

(1.113)
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Furthermore, in empty space Tμν = 0, which then implies the vanishing of Riemann
there

Rμνρσ = 0 (1.114)

As a result in three dimensions classical spacetime is locally flat everywhere outside
a source, gravitational fields do not propagate outside matter, and two bodies cannot
experience any gravitational force: they move uniformly on straight lines.

There cannot be any gravitational waves either: the Weyl tensor which carries in-
formation about gravitational fields not determined locally by matter, vanishes iden-
tically in three dimensions. One further surprising (and disappointing) conclusion
from the previous arguments is that black holes cannot exist in three dimensions,
as spacetime is flat outside matter, which always allows light emitted from a star
to escape to infinity. One interesting case though is three-dimensional anti-DeSitter
space, with a scaled cosmological constant λ = −1/ξ 2. There one can show that
objects which could be described as black holes exist, with a black hole horizon
in the non-rotating case at r0 = ξ

√
MG, where M is the mass of the collapsed ob-

ject (Banados Teitelboim and Zanelli, 1992). Note that in three dimensions G has
dimensions of a length, so that the product MG ends up being dimensionless. The
scale of the horizon is therefore supplied by the scale ξ .

What seems rather puzzling at first is that Newtonian theory seems to make per-
fect sense in d = 3. The Newtonian potential is non-vanishing and grows logarith-
mically with distance,

V (r) ∝ G
∫

d2keix·k/k2 ∼ G logr . (1.115)

This can only mean that the Newtonian theory is not recovered in the weak field limit
of the relativistic theory (Deser, Jackiw and Templeton, 1982; Giddings, Abbott and
Kuchar, 1984).

To see this explicitly, it is sufficient to consider the trace-reversed form of the
field equations,

Rμν = 8πG

(
Tμν − 1

d −2
gμν T

)
, (1.116)

with T = T λ
λ , in the weak field limit. In the linearized theory, with hμν = gμν−ημν ,

and in the Hilbert-DeDonder gauge

∇λhλμ − 1
2∇μhλλ = 0 , (1.117)

one obtains the wave equation

�hμν = −16πG

(
τμν − 1

d −2
ημν τ

)
, (1.118)

with τμν the linearized stress tensor. After neglecting the spatial components of τμν
in comparison to the mass density τ00, and assuming that the fields are quasi-static,
one obtains a Poisson equation for h00,
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∇2 h00 = −16πG
d −3
d −2

τ00 . (1.119)

In four dimension this is equivalent to Poisson’s equation for the Newtonian theory

∇2 φ = 4πGρ , (1.120)

when one identifies the metric with the Newtonian field φ in the usual way via
h00 = −2φ (an identification which follows independently of the previous argu-
ments, from the weak field limit of the geodesic equation). But in three dimen-
sions such a correspondence is prevented by the fact that, due to the result in
Eq. (1.119) for the non-relativistic Newtonian coupling appearing in Poisson’s equa-
tion, Eq. (1.120),

GNewton =
d −3

2(d −2)
G , (1.121)

the mass density τ00 decouples from the gravitational field h00. As a result, the
linearized theory in three dimensions fails to reproduce the Newtonian theory.

One can show by an explicit construction in the linearized theory that gravita-
tional waves are not possible in three dimensions. To this purpose consider the wave
equation in the absence of sources,

�hμν = 0 . (1.122)

It implies the existence of plane wave solutions of the type hμν(x) = εμν(k)e±ik·x

with k2 = 0 and polarization vector εμν(k). The transverse-traceless gauge condi-
tions

∂λ hλν = 0 hλλ = 0 hμ0 = 0 , (1.123)

then imply for the remaining wave equation

�hi j = 0 , (1.124)

the transversality ki ε i
j = 0 and trace ε i

i = 0 conditions, with i, j=1,2. The only
possible solution is then the trivial one εi j(k) = 0 and therefore hi j(x) = 0. One con-
cludes therefore that three-dimensional gravity cannot sustain gravitational waves.
The explicit derivation also makes apparent the issue that the absence of gravita-
tional waves and the lack of a non-trivial Newtonian limit are not connected to each
other in the three-dimensional theory.

One can count explicitly the number of physical degrees of freedom in the d-
dimensional theory. The metric gμν has 1

2 d(d + 1) independent components, the
Bianchi identity and the coordinate conditions reduce this number to 1

2 d(d + 1)−
d − d = 1

2 d(d − 3), which gives indeed the correct number of physical degrees of
freedom (two) corresponding to a massless spin two particle in d = 4, and no physi-
cal degrees of freedom in d = 3 (it also gives minus one degree of freedom in d = 2,
which will be discussed later). One can compare this counting of degrees of free-
dom to electromagnetism, where one has d degrees of freedom for the field Aμ(x)
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in d dimensions. The Coulomb gauge conditionsA0 = 0 and ∇iAi = 0 then reduce
the number of physical degrees of freedom to d −2.

Investigations of quantum two dimensional gravity have uncovered the fact
though that there can be surviving scalar degrees of freedom in the quantum the-
ory, at least in two dimensions. The usual treatment of two-dimensional grav-
ity (Polyakov, 1981a,b) starts from the metric in the conformal gauge gμν(x) =
eφ (x)g̃μν , where g̃μν is a reference metric, usually taken to be the flat one. The con-
formal gauge fixing then implies a non-trivial Faddeev Popov determinant, which,
when exponentiated, results in the Liouville action,

I[φ ] =
13

24π

∫
d2x

[
1
2 (∂μφ)2 + μ2eφ

]
, (1.125)

where the μ-term amounts to a renormalization of the bare cosmological constant. In
the language of the conformal gauge, where

√
g = eφ and R = e−φ ∂ 2φ , the preced-

ing action can be re-written in arbitrary coordinate as a nonlocal contribution. When
D scalar fields are minimally coupled to two-dimensional gravity and integrated out,
the conformal anomaly contribution modifies the Liouville effective action to

I[φ ] =
26−D

48π

∫
d2x

[
1
2 (∂μφ)2 + μ2eφ

]
, (1.126)

which establishes a connection to bosonic string theories (and random surfaces),
whose critical embedding dimension is known to be D = 26. One would therefore
conclude from this example that gravity in the functional integral representation
needs a careful treatment of the conformal degree of freedom, since in general its
dynamics cannot be assumed to be trivial. Of particular interest is of course the
three-dimensional (2+1) case, since there again one has no progagating spin-two
degrees of freedom. One would expect in this case that the conformal mode, if it has
any residual non-trivial local dynamics, should be described by the same universal-
ity class as an interacting scalar field, equivalent to the 3d Ising model.5

1.7 Higher Derivative Terms

In the previous section it was shown that quantum corrections to the Einstein theory
generate in perturbation theory R2-type terms in four dimensions. It seems therefore
that, for the consistency of the perturbative renormalization group approach in four
dimension, these terms would have to be included from the start, at the level of
the bare microscopic action. Thus the main motivation for studying gravity with
higher derivative terms is that it might cure the problem of ordinary quantum gravity,
namely its perturbative non-renormalizabilty in four dimensions. This is indeed the

5 In the 2+ε expansion for gravity one finds in d = 3 for the universal correlation length exponent
ν = 1/(1+3/5+ · · ·) � 0.63, which is not inconsistent with the Ising model value ν � 0.629.
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case, in fact one can prove that higher derivative gravity (to be defined below) is
perturbatively renormalizable to all orders in four dimensions.

At the same time new issues arise, which will be detailed below. The first set
of problems has to do with the fact that, quite generally higher derivative theories
with terms of the type φ ∂ 4φ suffer from potential unitarity problems, which can
lead to physically unacceptable negative probabilities. But since these are genuinely
dynamical issues, it will be difficult to answer them satisfactorily in perturbation
theory. In non-Abelian gauge theories one can use higher derivative terms, instead
of the more traditional dimensional continuation, to regulate ultraviolet divergences
(Slavnov, 1972), and higher derivative terms have been used successfully for some
time in lattice regulated field theories (Symanzik, 1983a,b). In these approaches the
coefficient of the higher derivative terms is taken to zero at the end. The second set of
issues is connected with the fact that the theory is asymptotically free in the higher
derivative couplings, implying an infrared growth which renders the perturbative
estimates unreliable at low energies, in the regime of perhaps greatest physical in-
terest. Note that higher derivative terms arise in string theory as well (Forger, Ovrut,
Theisen and Waldram, 1996).

Let us first discuss the general formulation. In four dimensions possible terms
quadratic in the curvature are

∫
d4x

√
g R2

∫
d4x

√
g RμνRμν

∫
d4x

√
g RμνλσRμνλσ

∫
d4x

√
g CμνλσCμνλσ

∫
d4x

√
g εμνκλ ερσωτ RμνρσRκλωτ = 128π2 χ

∫
d4x

√
g ερσκλ RμνρσRμν

κλ = 96π2 τ , (1.127)

where χ is the Euler characteristic and τ the Hirzebruch signature. It will be shown
below that these quantities are not all independent. The Weyl conformal tensor is
defined in d dimensions as

Cμνλσ = Rμνλσ − 2
d−2 (gμ[λ Rσ ]ν −gν [λ Rσ ]μ)

+ 2
(d−1)(d−2) Rgμ[λgσ ]ν , (1.128)

where square brackets denote antisymmetrization. It is called conformal because
it can be shown to be invariant under conformal transformations of the metric,
gμν(x) →Ω 2(x)gμν(x). In four dimensions one has

Cμνλσ = Rμνλσ −Rλ [μgν ]σ −Rσ [μgν ]λ + 1
3 Rgλ [μgν ]σ . (1.129)
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The Weyl tensor can be regarded as the traceless part of the Riemann curvature
tensor,

gλσCλμσν = gμνgλσCμλνσ = 0 , (1.130)

and on-shell the Riemann tensor in fact coincides with the Weyl tensor. From the
definition of the Weyl tensor one infers in four dimensions the following curvature-
squared identity

RμνλσRμνλσ = CμνλσCμνλσ +2RμνRμν − 1
3 R2 . (1.131)

Some of these results are specific to four dimensions. For example, in three dimen-
sions the Weyl tensor vanishes identically and one has

RμνλσRμνλσ −4RμνRμν −3R2 = 0 CμνλσCμνλσ = 0 . (1.132)

In four dimensions the expression for the Euler characteristic can be written equiv-
alently as

χ =
1

32π2

∫
d4x

√
g
[
RμνλσRμνλσ −4RμνRμν +R2

]
. (1.133)

The last result is the four-dimensional analogue of the two-dimensional Gauss-
Bonnet formula

χ =
1

2π

∫
d2x

√
g R , (1.134)

where χ = 2(g−1) and g is the genus of the surface (the number of handles). For a
manifold of fixed topology one can therefore use in four dimensions

RμνλσRμνλσ = 4RμνRμν −R2 + const. (1.135)

and
CμνλσCμνλσ = 2(RμνRμν − 1

3 R2)+ const. (1.136)

Thus only two curvature squared terms for the gravitational action are independent
in four dimensions (Lanczos, 1938), which can be chosen, for example, to be R2 and
R2
μν . Consequently the most general curvature squared action in four dimensions can

be written as

I =
∫

d4x
√

g
[
λ0 + k R+aRμνRμν − 1

3 (b+a)R2
]

, (1.137)

with k = 1/16πG, and up to boundary terms. The case b = 0 corresponds, by virtue
of Eq. (1.136), to the conformally invariant, pure Weyl-squared case. If b < 0 then
around flat space one encounters a tachyon at tree level. It will also be of some
interest later that in the Euclidean case (signature + + ++) the full gravitational
action of Eq. (1.137) is positive for a > 0, b < 0 and λ0 > −3/4b(16πG)2.

Curvature squared actions for classical gravity were originally considered in
(Weyl, 1918) and (Pauli, 1958). In the sixties it was argued that the higher deriva-
tive action of Eq. (1.137) should be power counting renormalizable (Utiyama and
DeWitt, 1962). Later it was proven to be renormalizable to all orders in perturbation
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theory (Stelle, 1977). Some special cases of higher derivative theories have been
shown to be classically equivalent to scalar-tensor theories (Whitt, 1984).

One way to investigate physical properties of higher derivative theories is again
via the weak field expansion. In analyzing the particle content it is useful to in-
troduce a set of spin projection operators (Arnowitt, Deser and Misner, 1960; van
Nieuwenhuizen, 1973), quite analogous to what is used in describing transverse-
traceless (TT) modes in classical gravity (Misner, Thorne and Wheeler, 1973). These
projection operators then show explicitly the unique decomposition of the contin-
uum gravitational action for linearized gravity into spin two (transverse-traceless)
and spin zero (conformal mode) parts. The spin-two projection operator P(2) is de-
fined in k-space as

P(2)
μναβ =

1
3k2

(
kμkνηαβ + kαkβημν

)

− 1
2k2

(
kμkαηνβ + kμkβηνα + kνkαημβ + kνkβημα

)

+
2

3k4 kμkνkαkβ +
1
2

(
ημαηνβ +ημβηνα

)
− 1

3
ημνηαβ , (1.138)

the spin-one projection operator P(1) as

P(1)
μναβ =

1
2k2

(
kμkαηνβ + kμkβηνα + kνkαημβ + kνkβημα

)

− 1
k4 kμkνkαkβ , (1.139)

and the spin-zero projection operator P(0) as

P(0)
μναβ = − 1

3k2

(
kμkνηαβ + kαkβημν

)

+
1
3
ημνηαβ +

1
3k4 kμkνkαkβ . (1.140)

It is easy to check that the sum of the three spin projection operators adds up to unity

P(2)
μναβ + P(1)

μναβ + P(0)
μναβ =

1
2

(
ημαηνβ + ημβηνα

)
. (1.141)

These projection operators then allow a decomposition of the gravitational field hμν
into three independent modes. The spin two or transverse-traceless part

hT T
μν = Pα

μPβ
νhαβ − 1

3 PμνPαβhβα , (1.142)

the spin one or longitudinal part

hL
μν = hμν −Pα

μPβ
νhαβ , (1.143)
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and the spin zero or trace part

hT
μν = 1

3 PμνPαβhαβ , (1.144)

are such that their sum gives the original field h

h = hT T +hL +hT , (1.145)

with the quantity Pμν defined as

Pμν = ημν −
1
∂ 2 ∂μ∂ν , (1.146)

or, equivalently, in k-space Pμν = ημν − kμkν/k2.
One can learn a number of useful aspects of the theory by looking at the lin-

earized form of the equations of motion. As before, the linearized form of the action
is obtained by setting gμν = ημν +hμν and expanding in h. Besides the expressions
given in Eq. (1.45), one needs

√
g R2 = (∂ 2hλλ −∂λ∂κhλκ)2 +O(h3)

√
g RλμνκRλμνκ = 1

4 (∂μ∂κhνλ +∂λ∂νhμκ −∂λ∂κhμν −∂μ∂νhκλ )2 +O(h3) ,

(1.147)

from which one can then obtain, for example from Eq. (1.135), an expression for√
g(Rμν)2,

√
g RαβRαβ = 1

4 (∂ 2hμμ∂ 2hαα +∂ 2hμα∂ 2hμα −2∂ 2hμμ∂α∂βhαβ

−2∂α∂νhνμ∂α∂βhμβ +2∂μ∂νhμν∂α∂βhαβ )+O(h3) .

(1.148)

Using the three spin projection operators defined previously, the action for linearized
gravity without a cosmological constant term, Eq. (1.7), can then be re-expressed as

Ilin = 1
4 k
∫

dx hμν [P(2) −2P(0)]μναβ ∂ 2 hαβ . (1.149)

Only the P(2) and P(0) projection operators for the spin-two and spin-zero modes,
respectively, appear in the action for the linearized gravitational field; the spin-one
gauge mode does not enter the linearized action. Note also that the spin-zero mode
enters with the wrong sign (in the linearized action it appears as a ghost contribu-
tion), but to this order it can be removed by a suitable choice of gauge in which the
trace mode is made to vanish, as can be seen, for example, from Eq. (1.13).

It is often stated that higher derivative theories suffer from unitarity problems.
This is seen as follows. When the higher derivative terms are included, the corre-
sponding linearized expression for the gravitational action becomes
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Ilin = 1
2

∫
dx { hμν [ 1

2 k + 1
2 a(−∂ 2)](−∂ 2)P(2)

μνρσ hρσ

+ hμν [−k−2b(−∂ 2)](−∂ 2)P(0)
μνρσ hρσ } . (1.150)

Then the potential problems with unitarity and ghosts at ultrahigh energies, say com-
parable to the Planck mass q ∼ 1/G, can be seen by examining the graviton propa-
gator (Salam and Strathdee, 1978). In momentum space the free graviton propagator
for higher derivative gravity and λ0 = 0 can be written as

k < hμν(q)hρσ (−q) > =
2P(2)

μνρσ

q2 + a
k q4 +

P(0)
μνρσ

−q2 − 2b
k q4

+gauge terms . (1.151)

The first two terms on the r.h.s. can be decomposed as

2P(2)
μνρσ

[
1
q2 − 1

q2 + k
a

]
+P(0)

μνρσ

[
− 1

q2 +
1

q2 + k
2b

]
. (1.152)

One can see that, on the one hand, the higher derivative terms improve the ultraviolet
behavior of the theory, since the propagator now falls of as 1/q4 for large q2. At the
same time, the theory appears to contain a spin-two ghost of mass m2 = μ/

√
a and a

spin-zero particle of mass m0 = μ/
√

2b. Here we have set μ = 1/
√

(16πG), which
is of the order of the Planck mass (1/

√
G/h̄c = 1.2209× 1019GeV/c2). For b < 0

one finds a tachyon pole, which seems, for the time being, to justify the original
choice of b > 0 in Eq. (1.137).

Higher derivative gravity theories also lead to modifications to the standard New-
tonian potential, even though such deviations only become visible at very short dis-
tances, comparable to the Planck length lP =

√
h̄G/c3 = 1.61624× 10−33cm. In

some special cases they can be shown to be classically equivalent to scalar-tensor
theories without higher derivative terms (Whitt, 1984). The presence of massive
states in the tree level graviton propagator indicates short distance deviations from
the static Newtonian potential of the form

h00 ∼ 1
r
− 4

3
e−m2r

r
+

1
3

e−m0r

r
. (1.153)

Moreover in the extreme case corresponding to the absence of the Einstein term
(k = 0) the potential is linear in r; but in this limit the theory is strongly infrared
divergent, and it is not at all clear whether weak coupling perturbation theory is of
any relevance.

In the quantum theory perturbation theory is usually performed around flat space,
which requires λ0 = 0, or around some fixed classical background. One sets again
gμν → ḡμν = gμν +hμν and expands the higher derivative action in powers of hμν .
If λ0 is nonzero, one has to expand around a solution of the classical equations of
motion for higher derivative gravity with a λ -term (Barth and Christensen, 1983),
and the solution will no longer be constant over space-time. The above expansion is
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consistent with the assumption that the two higher derivative couplings a and b are
large, since in such a limit one is close to flat space. One-loop radiative corrections
then show that the theory is asymptotically free in the higher derivative couplings a
and b (Julve and Tonin, 1978; Fradkin and Tseytlin, 1981; Avramidy and Barvinsky,
1985).

The calculation of one-loop quantum fluctuation effects proceeds in a way that
is similar to the pure Einstein gravity case. One first decomposes the metric field
as a classical background part gμν(x) and a quantum fluctuation part hμν(x) as in
Eq. (1.92), and then expands the classical action to quadratic order in hμν , with
gauge fixing and ghost contributions added, similar to those in Eqs. (1.95) and
(1.96), respectively. The first order variation of the action of Eq. (1.137) gives the
field equations for higher derivative gravity in the absence of sources,

∂ I
∂gμν

=
1
κ2

√
g(Rμν − 1

2 gμνR)+ 1
2λ0

√
ggμν

+a
√

g [ 2
3 (1+ω)R(Rμν − 1

4 gμνR)

+ 1
2 gμνRαβRαβ −2RμανβRαβ + 1

3 (1−2ω)∇μ∇νR

−�Rμν + 1
6 (1+4ω)gμν �R ] = 0 , (1.154)

where we have set for the ratio of the two higher derivative couplings ω = b/a.
The second order variation is done similarly. It then allows the Gaussian integral

over the quantum fields to be performed using the formula of Eq. (1.97). One then
finds that the one-loop effective action, which depends on gμν only, can be expressed
as

Γ = 1
2 tr lnFmn − tr lnQαβ − 1

2 tr lncαβ , (1.155)

with the quantities Fnm and Qαβ defined by

Fnm =
δ 2I

δgm δgn +
δχα
δgm cαβ

δχβ
δgn

Qαβ =
δχα
δgm ∇m

β . (1.156)

A shorthand notation is used here, where spacetime and internal indices are grouped
together so that gm = gμν(x). χα are a set of gauge conditions, cαβ is a nonsingular
functional matrix fixing the gauge, and the ∇i

α are the local generators of the group
of general coordinate transformations, ∂ i

α f α = 2gα(μ∇ν) f α(x).
Ultimately one is only interested in the divergent part of the effective one-loop

action. The method of extracting the divergent part out of the determinant (or trace)
expression in Eq. (1.155) is similar to what is done, for example, in QED to evaluate
the contribution of the fermion vacuum polarization loop to the effective action.
There, after integrating out the fermions, one obtains a functional determinant of
the massless Dirac operator �D(A) in an external Aμ field,
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tr ln �D(A)− tr ln �∂ =
c
ε

∫
d4xAμ (ημν ∂ 2 −∂μ∂ν)Aν + . . . (1.157)

with c a calculable numerical constant. The trace needs to be regulated, and one way
of doing it is via the integral representation

1
2 tr ln �D2(A) = − 1

2

∫ ∞

η

dt
t

trexp [−t �D2(A)] , (1.158)

with η a cutoff that is sent to zero at the end of the calculation. For gauge theories a
more detailed discussion can be found for example in (Rothe, 2005), and references
therein. In the gravity case further discussions and more results can be found in
(DeWitt, 1967; ’t Hooft and Veltman, 1974; Gilkey, 1975; Christensen and Duff,
1978) and references therein.

In the end, by a calculation similar to the one done in the pure Einstein gravity
case, one finds that the one-loop contribution to the effective action contains for
d → 4 a divergent term of the form

ΔL =
√

g

16π2(4−d)
{
β2 (R2

μν − 1
3 R2)+β3 R2 +β4 R+β5

}
, (1.159)

with the coefficients for the divergent parts given by

β2 =
133
10

β3 =
10
9
ω2 +

5
3
ω+

5
36

β4 =
1

aκ2

(
10
3
ω− 13

6
− 1

4ω

)

β5 =
1

a2κ4

(
5
2

+
1

8ω2

)
+

λ̃
aκ4

(
56
3

+
2

3ω

)
. (1.160)

Here ω ≡ b/a and λ̃ is the dimensionless combination of the cosmological and
Newton’s constant λ̃ ≡ 1

2λ0κ4 with κ2 = 16πG. A divergence proportional to the
topological invariant χ with coefficient β1 has not been included, as it only adds
a field-independent constant to the action for a manifold of fixed topology. Also
δ (4)(0)-type divergences possibly originating from a non-trivial functional measure
over the gμν ’s have been set to zero.

The structure of the ultraviolet divergences (which for an explicit momentum
cutoff Λ would have appeared as 1/ε ↔ lnΛ ) allow one to read off immediately
the renormalization group β -functions for the various couplings. To this order, the
renormalization group equations for the two higher derivative couplings a and b and
the dimensionless ratio of cosmological and Newton’s constant λ̃ are

∂a
∂ t

= β2 + . . .
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∂ω
∂ t

= −1
a

(3β3 +ωβ2)+ . . .

∂ λ̃
∂ t

= 1
2κ

4β5 +2λ̃κ2β4 + . . . (1.161)

with the dots indicating higher loop corrections. Here t is the logarithm of the rele-
vant energy scale, t = (4π)−2 ln(μ/μ0), with μ a momentum scale q2 ≈ μ2, and μ0

some fixed reference scale. It is argued furthermore by the quoted authors that only
the quantities β2, β3 and the combination κ4β5 +4λ̃κ2β4 are gauge independent, the
latter combination appearing in the renormalization group equation for λ̃ (t) (this is a
point to which we shall return later, as it follows quite generally from the properties
of the gravitational action, and therefore from the gravitational functional integral,
under a field rescaling, see Sect. 3.5).

The perturbative scale dependence of the couplings a(μ), b(μ) and λ̃ (μ) follows
from integrating the three differential equations in Eq. (1.161). The first renormal-
ization group equation is easily integrated, and shows the existence of an ultraviolet
fixed point at a−1 = 0; the one-loop result for the running coupling a is simply given
by a(t) = a(0)+β2 t, or

a−1(μ) ∼
μ→∞

16π2

β2 ln(μ/μ0)
, (1.162)

with μ0 a reference scale. It suggests that the effective higher derivative coupling
a(μ) increases at short distances, but decreases in the infrared regime μ → 0. But
one should keep in mind that the one loop results are reliable at best only at very
short distances, or large energy scales, t → ∞. At the same time these results seem
physically reasonable, as one would expect curvature squared terms to play less of
a role at larger distances, as in the classical theory.

The scale dependence of the other couplings is a bit more complicated. The equa-
tion for ω(t) exhibits two fixed points at ωuv ≈ −0.0229 and ωir ≈ −5.4671; in
either case this would correspond to a higher derivative action with a positive R2

term. It would also give rise to rapid short distance oscillations in the static poten-
tial, as can be seen for example from Eq. (1.153) and the definition of m0 = μ/

√
2b.

The equation for λ̃ (t) gives a solution to one-loop order λ̃ (t) ∼ const. tq with
q ≈ 0.91, suggesting that the effective gravitational constant, in units of the cos-
mologial constant, decreases at large distances. The experimental value for New-
ton’s constant h̄G/c3 = (1.61624×10−33cm)2 and for the scaled cosmological con-
stant Gλ0 ∼ 1/(1028cm)2 is such that the observed dimensionless ratio between the
two is very small, G2λ0 ∼ 10−120. In the present model is seems entirely unclear
how such a small ratio could arise from perturbation theory alone.

At short distances the dimensionless coupling λ̃ ∼ λ0G2 seems to increases
rapidly, thus partially invalidating the conclusions of a weak field expansion around
flat space, which are based generally on the assumption of small G and λ0. At the
same time, the fact that the higher derivative coupling a grows more rapidly in the
ultraviolet than the coupling λ̃ can be used retroactively at least as a partial justifica-
tion for the flat space expansion, in which the cosmological and Einstein terms are
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treated perturbatively. Ultimately the resolution of such delicate and complex issues
would presumably require the development of the perturbative expansion not around
flat space, but more appropriately around the de Sitter metric, for which R = 2λ0/κ2.
Even then one would have to confront such genuinely non-perturbative issues, such
as what happens to the spin-zero ghost mass, whether the ghost poles gets shifted
away from the real axis by quantum effects, and what the true ground state of the
theory looks like in the long distance, strong fluctuation regime not accessible by
perturbation theory.

What is also a bit surprising is that higher derivative gravity, to one-loop order,
does not exhibit a nontrivial ultraviolet point in G, even though such a fixed point
is clearly present in the 2+ ε expansion (to be discussed later) at the one- and two-
loop order, as well as in the lattice regularized theory in four dimensions (also to be
discussed later). But this could just reflect a limitation of the one-loop calculation;
to properly estimate the uncertainties of the perturbative results in higher derivative
gravity and their potential physical implications a two-loop calculation is needed,
which hopefully will be performed in the near future.

To summarize, higher derivative gravity theories based on R2-type terms are per-
turbatively renormalizable, but exhibit some short-distance oddities in the tree-level
spectrum, associated with either ghosts or tachyons. Their perturbative (weak field)
treatment suggest that the higher derivative couplings are only relevant at short dis-
tances, comparable to the Planck length, but the general evolution of the couplings
away from a regime where perturbation theory is reliable remains an open question,
which perhaps will never be answered satisfactorily in perturbation theory, if non-
Abelian gauge theories, which are also asymptotically free, are taken as a guide.

1.8 Supersymmetry

An alternative approach to the vexing problem of ultraviolet divergences in per-
turbative quantum gravity (and for that matter, in any field theory) is to build in
some additional degree of symmetry between bosons and fermions, such that loop
effects acquire reduced divergence properties, or even become finite. One such pro-
posal, based on the invariance under local supersymmetry transformation, adds to
the Einstein gravity Lagrangian a spin-3/2 gravitino field, whose purpose is to ex-
actly cancel the loop divergences in the ordinary gravitational contribution. This last
result comes from the well known fact that fermion loops in quantum field theory
carry an additional factor of minus one, thus potentially reducing, or even canceling
out entirely, a whole class of divergent diagrams. The issue then is to specify the
nature of such a supersymmetry transformation, and from it deduce an extension of
pure gravity which includes such a symmetry in an exact way. Since ordinary grav-
ity has a local gauge invariance under the diffeomorphism group, one would expect
its supersymmetric extension to have some sort of local supersymmetry.

The first step towards defining a theory of supergravity is therefore to introduce
the concept of global supersymmetry. Quantum field theory in flat space is invariant
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under the Poincaré group, whose generators include Pμ for space translations, and
Σμν = −Σνμ for Lorentz transformations. Their algebra

[Pμ ,Pν ] = 0

[Σμν ,Pλ ] = Pμ ηνλ − Pνημλ

[Σμν ,Σλσ ] = Σμσ ηνλ − Σνσ ημλ − Σμλ ηνσ + Σνλ ημσ ,

(1.163)

with infinitesimal group element

U(ω,ε) = 1 + 1
2 Σμνω

μν + iPμεμ , (1.164)

and infinitesimal spacetime transformation

xμ → xμ + ωμν xν + εμ , (1.165)

has therefore the general structure

[P,P] = 0 [P,Σ ] � P [Σ ,Σ ] � Σ . (1.166)

The first relationship implies that translations commute with each other, the second
one that translations transform under the Lorentz group as four-vectors, and the third
one that the Lorentz generators transform under the Lorentz group as antisymmetric
tensors.

Supersymmetry generalizes the Poincaré group by adding Grassman-valued
(fermionic) generators Qα , whose most important property is to transform bosons
into fermions

Q |boson〉 = |fermion〉
Q |fermion〉 = |boson〉 . (1.167)

The new fermionic operators are such that their anti-commutator is an operator pro-
portional to the Hamiltonian, so that it automatically commutes with it; but actually
in a Lorentz-invariant theory the anticommutator should be proportional to the total
energy-momentum Pμ . Consequently the new fermion operators need to satisfy a
set of mixed commutation and anti-commutation relations of the type

[Pμ ,Qα ] = [Pμ , Q̄α ] = 0

{Qα ,Qβ} = {Q̄α , Q̄β} = 0

{Qα , Q̄β} = 2γμαβ Pμ

[Σμν ,Qα ] =
i
2

(
σμν

)
αβ Qβ , (1.168)

with the Dirac spin matrix σμν ≡ 1
2i [γμ ,γν ]; for a more complete discussion see for

example (Fayet and Ferrara, 1977; Ferrara, 1984). The superalgebra of the P’s, Q’s
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and Σ ’s has therefore the general structure

{Q,Q} = 0 [P,Q] = 0 [Q,Σ ] � Q {Q, Q̄} � P . (1.169)

The first relationship implies that Q is Grassmann-valued, the second that Q com-
mutes with spacetime translations (including therefore the generator of time trans-
lations H), the third one that Q transforms under Lorentz transformations as a two-
component Weyl spinor, and finally the last one that two supersymmetry transforma-
tions together give a spacetime translation. Physically, the first and second identities
imply that there are pairs of fermion-boson states which are degenerate, while the
last equality implies that the supersymmetry charge Q can in some sense be con-
sidered as the “square root” of the Hamiltonian operator P0 ≡ H. The fact that the
supersymmetry generator Q is tied with the translation generator P causes some
problems when trying to implement supersymmetry on a lattice, since the latter is
generally only translationally invariant by an integer multiple of the lattice spacing
(although one can find ways around it, as shown in Curci and Veneziano, 1987).

One of the remarkable properties of supersymmetry is that it predicts that every
bosonic state be paired with a fermionic state of the same energy, and vice versa.
Furthermore the supersymmetric vacuum has zero energy, since zero momentum
implies Pi |0〉 >= 0, while supersymmetry gives

Qα |0〉 > = Q̄β |0〉 > = 0 , (1.170)

and therefore from Eq. (1.168)

〈0 |H |0〉 > = 0 . (1.171)

The last result is particularly interesting in the case of gravity, since it would tend
to generally imply, for unbroken supersymmetry, a vanishing vacuum energy, and
therefore a vanishing cosmological constant (until recently it was in fact believed
that observationally the cosmological constant was consistent with zero, and there-
fore in good agreement with the predictions from supersymmetry; this has changed
in the last decade since the distant supernovae surveys find that the cosmological
constant is non-zero and positive). One more consequence of supersymmetry is that
in a relativistic quantum field theory mass renormalization effects are expected to be
identical for particles belonging to the same supersymmetric pair. A more general
feature of supersymmentric theories is that they give rise to what are often referred
to as non-renormalization theorems: if a particular type of bare coupling is omitted,
it cannot be generated by radiative corrections. But since no supersymmetric part-
ners of the standard model particles have been observed so far, supersymmetry must
be rather far from an exact symmetry of the real world, at least at ordinary energies.

In the original formulation of supersymmetry there is only one fermionic gen-
erator which is a Majorana spinor. But it is in fact possible to have more than one
supersymmetric charge, so that a more general form for the anti-commutation rela-
tion for the Q’s is of the type
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{Qi
α , Q̄ j

β} = 2δ i j γμαβ Pμ , (1.172)

with i, j = 1 . . .N . The original case of Eq. (1.168) then corresponds to the simplest
choice, N = 1 supersymmetry, whereas N > 1 is referred to as extended super-
symmetry. So different supersymmetric theories can be labeled by the number N
of supersymmetric charges, but it turns out that this number is highly constrained, as
in any given spacetime dimensions only certain values of N are possible. As shown
above, in four dimensions N = 1 supersymmetry has a complex pair Q, Q̄ of super-
symmetry charges, which are each two-component Weyl spinors, thus giving a total
of four real supercharges. On the other hand, still in four dimensions, N = 4 super-
symmetry has four complex pairs Q, Q̄ of supersymmetry charges, again with each a
two-component Weyl spinors, thus giving now a total of sixteen real supercharges.
Accordingly the renormalization properties of supersymmetric field theories vary
dramatically, depending on which type of supersysmmetry is actually being imple-
mented. For example, for N = 2 supersymmetry the vanishing of the β -function
at leading order implies that it will vanish to all orders. For N = 4 supersymmetry
the situation is even more remarkable, since there one has β (g) = 0 to all orders
in g without any need to fine-tune the interaction. The latter provides an example
of a theory with no ultraviolet divergences, and truly constant coupling constant.
Ultimately whether any of these theories are just ingenious elaborate mathematical
recreations, or appear instead as parts of physical theories realized in nature in some
form or another remains so far still an open question (for a recent survey of phe-
nomenological opportunities for supersymmetric theories see, for example Zumino
and Gaillard, 2008). After all QED or QCD are not finite theories, and still lead to
perfectly acceptable, non-trivial and experimentally verifiable predictions once the
problem of ultraviolet divergences is treated correctly via the renormalization proce-
dure. The danger in the case of supersymmetric theories is that after all the elaborate
work done to construct such theories one might be left with an empty shell: a trivial
theory and a complicated way of re-writing an essentially non-interacting, Gaussian
theory.

Of great phenomenological interests are supersymmetric Yang-Mills theories in
four dimensions. The simplest corresponds to an SU(Nc) pure gauge theory with
N = 1 supersymmetry. The theory contains gauge bosons Aa

μ (the ordinary gluons,
with a = 1 . . .N2

c − 1) and a single 4-component Majorana spinor λ a, the gluino,
satisfying the Majorana condition λ̄ a = λ aT C. The gluino is the supersymmetric
partner of the gluon, and, like the gluon itself, transforms under the adjoint repre-
sentation of the group (thus in the case of SU(3) both the gluon and the gluino are
in a color octet representation). The susy-Yang-Mills Lagrangian is

L = − 1
4 Fa

μν Faμν + 1
2 λ̄ γ

μ Dμ(A)λ , (1.173)

with Fa
μν the usual Yang-Mills field strength tensor, and Dμ(A) the usual gauge co-

variant derivative acting on λ a. The action is locally invariant under supersymmetry
transformations
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δAμ = −2g λ̄ a T a γμ ε

δλ a = − i
g
σμν Fa

μν ε

δ λ̄ a =
i
g
ε̄ σ μν Fa

μν , (1.174)

with σμν = 1
2i [γ

μ ,γν ], and ε(x) an arbitrary Grassmann parameter with Majorana
properties. The supersymmetry of Eq. (1.174) leaves the action locally invariant,
and at the same time relates fermions to bosons. The corresponding Noether current
is

Sμ = −Fa
ρσ σρσ γμ λ a , (1.175)

and satisfies ∂μSμ = 0 after using the field equations, as well as γμSμ = 0. Further-
more it is known that in this theory gluino condensation occurs non-perturbatively,
giving rise to a non-vanishing condensate 〈λ̄λ 〉 �= 0.

1.9 Supergravity

When supersymmetry is promoted to a local invariance of the theory one obtains su-
pergravity: supergravity can therefore rightfully be considered as the gauge theory
of supersymmetry. In the simplest model one adds to the Einstein gravity Lagrangian
a spin-3/2 gravitino field, whose purpose is to exactly cancel loop divergences from
the Einstein contributions. The enhanced symmetry is built into the action so as to
ensure that such a cancellation does not just occur at one loop order, but propa-
gates to every order of the loop expansion. In these theories the gravitino therefore
emerges as the natural fermionic partner of the graviton, with zero mass for unbro-
ken supersymmetry. The intent of this section is more to provide the general flavor
of such an approach, and illustrate supergravity theories by a few specific examples
of suitable actions, without getting into elegant technical aspect such as superfields
and superpropagators. The reader is then referred to the vast literature on the subject
for further examples, as well as contemporary leading candidate theories.

As stated, in the simplest scenario, one adds to gravity a spin- 3
2 fermion field with

suitable symmetry properties. A generally covariant action describing the interac-
tion of vierbein fields ea

μ(x) (with the metric field given by gμν = ea
μeaν ) and Rarita-

Schwinger spin- 3
2 fields ψμ(x), subject to the Majorana constraints ψρ = Cψ̄T

ρ , was
originally given in (Ferrara, Freedman and van Nieuwenhuizen, 1976). In the second
order formulation it contains three contributions

I =
∫

d4x (L2 +L3/2 +L4) , (1.176)

with the usual Einstein term

L2 =
1

4κ2

√
gR , (1.177)
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the gravitino contribution

L3/2 = − 1
2 ε

λρμν ψ̄λ γ5γμDνψρ , (1.178)

and a quartic fermion self-interaction

L4 = − 1
8κ2 √g

(εταβνε γδμ
τ + εταμνε γδβ

τ − ετβμνε γδα
τ )

× (ψ̄αγμψβ )(ψ̄γ γνψδ ) , (1.179)

with the Rarita-Schwinger fields subject to the Majorana constraint ψμ = Cψ̄μ(x)T .
The covariant derivative defined as

Dνψρ = ∂νψρ −Γ σ
νρ ψσ + 1

2 ωνabσabψρ , (1.180)

involves the standard affine connection Γ σ
νρ , as well as the vierbein connection

ων ab = 1
2 [e μ

a (∂ν ebμ −∂μ ebν)+ e ρ
a e σ

b (∂σ ecρ)ec
ν ]

− (a ↔ b) , (1.181)

with Dirac spin matrices σab = 1
2i [γa,γb]. One can show that the combined La-

grangian is invariant, up to terms of order (ψ)5, under the simultaneous transfor-
mations

δea
μ = iκ ε̄ γaψμ

δgμν = iκ ε̄ [γμ ψν + γν ψμ ]

δψμ = κ−1Dμ ε+ 1
4 iκ (2 ψ̄μγaψb + ψ̄aγμψb)σab ε , (1.182)

where ε(x) in an arbitrary Majorana spinor.
The action of Eq. (1.176) can be written equivalently in first order form (Deser

and Zumino, 1976) as

I =
∫

d4x
(

1
4κ

−2 eR− 1
2 ε

λρμν ψ̄λ γ5 γμ Dν ψρ
)

, (1.183)

with eaμ the vierbein with eaμea
ν = gμν , and

e = deteaμ , R = e μ
a e ν

b R ab
μν . (1.184)

The covariant derivative Dμ on ψν is defined in terms of its spin- 1
2 part only

Dμ = ∂μ − 1
2 ωμ abσab , (1.185)

and is related to the curvature tensor via the commutator identity

[Dμ ,Dν ] = − 1
2 Rμν abσab . (1.186)
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The first order action in Eq. (1.183) is invariant under

δea
μ = iκ ε̄(x)γaψμ

δψμ = κ−1 Dμ ε
δω ab

μ = B ab
μ − 1

2 e b
μ B ab

c + 1
2 e a

μ B bc
c , (1.187)

with the quantity B defined as

Bλμ
a = iελμνρ ε̄ γ5 γa Dν ψρ , (1.188)

and ε(x) in an arbitary local Majorana spinor. In the first order formulation the
vierbeins eaμ(x), the connections ω ab

μ (x) and the Majorana vector-spinors ψμ(x)
are supposed to be varied independently.

The original motivation for the supergravity action of Eqs. (1.176) or (1.183)
was that, just like ordinary source-free gravity is ultraviolet finite on-shell because
of the identity relating the invariant (Rμνρ σ )2 to (Rμν)2 and R2, identities among
invariants constructed out of ψμ and the strong constraints of supersymmetry would
ensure one-loop, and higher, renormalizabilty of supergravity. There are reasons to
believe that the triviality results found originally in globally supersymmetric theo-
ries (Nicolai, 1984) will not carry over into theories with local supersymmetry.

It was shown originally in (Grisaru, van Nieuwenhuizen and Vermaseren, 1976)
and (Grisaru, 1977) that the original supergravity theory is finite to at least two
loops, but most likely it fails to be finite at three loops. As a consequence, more
complex theories were devised to avoid the three-loop catastrophe. A new formula-
tion, N = 4 extended supergravity based on an SO(4) symmetry, was suggested in
(Das, 1977; Cremmer and Scherk, 1977; Nicolai and Townsend, 1981). This theory
now contains vector, spinor and scalar particle in addition to the gravitino and the
graviton. Specifically, the theory contains a vierbein field eaμ , four spin- 3

2 Majo-

rana fields ψ i
μ , four spin- 1

2 Majorana fields ξ i, six vector fields Ai j
μ , a scalar field A

and a pseudoscalar field B, all massless, for a grand total of 53 independent terms
in the Lagrangian. Subsequently N = 8 supergravity was proposed, based on the
even larger group SO(8) (Cremmer and Julia, 1978). The enlarged theory now con-
tains one graviton, 8 gravitinos, 28 vector fields, 56 Majorana spin- 1

2 fields and 70
scalar fields, all massless. In general, SO(N ) supergravity contains N gravitinos,
1
2N (N − 1) gauge fields, as well as several spin- 1

2 Majorana fermions and com-
plex scalars. The SO(N ) symmetry here is one which rotates, for example, the
N gravitinos into each other. In (Christensen, Duff, Gibbons and Roc̆ek, 1980) it
was shown that in general such theories are finite at one loop order for N > 4. For
N > 8 these theories become less viable since one then has more than one graviton,
which leads to paradoxes, as well as particles with spin j > 2.

It is beyond our scope here to go any more deeply in the issue of the origin of such
intriguing ultraviolet cancellations (for a broad overview see for example Ferrara,
1984; Wess and Bagger, 1992). But, as perhaps the simplest and most elementary
motivation, one can use the Nielsen-Hughes formula (Nielsen, 1981; Hughes, 1981)
for the one-loop β -function contribution from a particle of spin s
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β0 = −(−1)2s [(2s)2 − 1
3 ] , (1.189)

to verify, by virtue of the particle multiplicities given above, that for example for
N = 4 the lowest order divergences cancel

β0 = − 47
3 ·1+ 26

3 ·4− 11
3 ·6+ 2

3 ·4+ 1
3 ·1 = 0 . (1.190)

For N = 8 one has a similar complete cancellation

β0 = − 47
3 ·1+ 26

3 ·8− 11
3 ·28+ 2

3 ·56+ 1
3 ·35 = 0 . (1.191)

Still, the issue of perturbative ultraviolet finiteness of these theories remains largely
an open question, in part due to the daunting complexity of higher loop calculations,
even though one believes that the high level of symmetry should ensure the cancel-
lation of ultraviolet divergences to a very high order (perhaps up to seven loops).
Recently it was even suggested, based on the correspondence between N = 8 su-
pergravity and N = 4 super Yang-Mills theory and the cancellations which arise at
one and higher loops, that supergravity theories might be finite to all orders in the
loop expansion (Bern et al, 2007).

One undoubtedly very attractive feature of supergravity theories is that they lead
naturally to a small, or even vanishing, renormalized cosmological constant λ0. Due
to the high level of symmetry, quartic and quadratic divergences in this quantity are
expected to cancel exactly between bosonic and fermionic contributions, leaving
a finite or even zero result. The hope is that some of these desirable features will
survive supersymmetry breaking, a mechanism eventually required in order to re-
move, or shift to a high mass, the so far unobserved supersymmetric partners of the
standard model particles. Another possibility discussed separately later on is that
supergravity theories, such as the N = 1 one, might exhibit a non-trivial ultraviolet
fixed point in 2+ε , and perhaps even four dimension. This would cause a new phase
to appear at sufficiently strong coupling, as in the non-linear sigma model.

1.10 String Theory

String theory postulates that the fundamental constituents of matter are not point
particles, as in usual quantum field theory where fields φ(x) are defined at the point
x, but tiny one-dimensional strings. As a result, the short distance behavior is ex-
pected to be changed drastically, as one is ultimately dealing with intrinsically ex-
tended objects. String theory’s ultimate ambition goes in fact beyond the problem of
regulating ultraviolet divergences in quantum field theory and quantum gravity: part
of the general program is to provide a truly fundamental unified theory that contains
all known interactions and particle species, including of course the graviton. One
might argue that supergravity theories have had similar ambitions, but in string the-
ory one would expect even better ultraviolet behavior due to the delocalized nature
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of the string, provided of course one understands how to formulate the theory in a
consistent and calculable way.

The concept of a relativistic string (see Fig. 1.3) originated in the late sixties in
the context of hadron physics, where it provided a very useful phenomenological
description of certain peculiarities of strong interaction amplitudes. Later on three
main motivations for studying string theories emerged: the search for a description
of quark confinement in terms of gluon strings, a model of grand unification based
on superstrings (Schwarz, 1982), and a description of the three-dimensional Ising
model in terms of some sort of fermionic string (Polyakov, 1979).

One of the first concrete field-theoretic models of a string was given in (Nambu,
1969; Goto, 1971). The usual description introduces world-sheet coordinates σ and
τ , defined on the two-dimensional surface swept out by the time evolution of the
string. When the string is embedded in a d-dimensional space, points on the string
world sheet are assigned coordinates Xμ(σ ,τ) with μ = 1 . . .d. In analogy with the
action for a relativistic point particle, which is proportional to the proper time, and
therefore to the length of the world line, I =

∫ τ f
τi dτ , the simplest action for such a

string is the total area of the world sheet, I =
∫

dA. One can re-write this quantity
by introducing an induced metric gab on the worldsheet,

gab(σ ,τ) = ημν
∂ Xμ

∂ σa

∂ Xν

∂ σb , (1.192)

with σ1 ≡ τ and σ2 ≡ σ , and ημν the flat metric in d dimensions. Then the two-
dimensional volume element is dA =

√
gd2σ with g = −det(gab), and one has

I =
∫

S
d2σ

√
g . (1.193)

In a gravity language what one has so far is essentially a cosmological constant term.
In terms of the variables Ẋ = ∂X/∂τ and X ′ = ∂X/∂σ one has

I[X ] =
1

2πα ′

∫
S

d2σ
√

(Ẋ ·X ′)2 − (Ẋ)2 (X ′)2 , (1.194)

where a coupling constant α ′ has been introduced, having dimensions of an area,
or of an inverse mass squared. The quantity T0 = 1/2πα ′ is often referred to for
obvious reasons as the string tension: a string of spatial size R and time extent T will
have an energy per unit length of value T0. In the following it will be convenient to
re-absorb such a coupling into a re-definition of the X variables.

One clear distinction that appears early on in this picture is between open (de-
scribing geometrically, in their time evolution, a sheet) and closed strings (described
by a tube). Another important property of the string action is its invariance under
reparametrizations of the world sheet coordinates, Xμ(σ ,τ) → Xμ [ f (σ ,τ)]. These
can be considered as two dimensional diffeomorphism acting within the surface;
they express an invariance of the area action under σa coordinate redefinitions.
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Fig. 1.3 A string vertex (left) and a closed string loop (right).

The Nambu-Goto string is not easy to work with due to the square root. One can
write down an action (Polyakov, 1981a,b) which is classically equivalent to it, but
does not involve the square root of the X variables, if one introduces the metric gab

as a Lagrange multiplier. The Euclidean action

I [g,X ] = 1
2

∫
d2σ

√
g gab ∂a Xμ ∂b Xμ . (1.195)

Variation of this action with respect to Xμ gives Laplace’s equation for Xμ , while
the variation with respect to gab gives Eq. (1.192). One noteworthy feature of the
action in Eq. (1.195) is its large invariance group. It is invariant under world sheet
(a,b) diffeomorphisms, spacetime (μ ,ν) Lorentz invariance, and invariance under
Weyl or conformal transformations

gab(σ ,τ) → e2ω(σ ,τ) gab(σ ,τ) , (1.196)

which implies that one is dealing with a two-dimensional conformal field theory.
Note also that the string so far is embedded in flat space, but one could con-
sider a more general embedding, with a suitable change in the spacetime met-
ric ημν → Gμν(X), and possibly additional terms in the action such as curvature
[2R(X)] contributions.

Note that in the gauge gab = ηab the field X satisfies the wave equation

�Xμ ≡
(

∂ 2

∂ σ2 − ∂ 2

∂ τ2

)
Xμ = 0 , (1.197)

supplemented by the constraint equations Tab = 0 with

T10 = T01 = Ẋ ·X ′ = 0 (1.198)

and
T00 = T11 = 1

2

(
Ẋ2 + X ′2

)
= 0 . (1.199)
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Solutions to the massless wave equation in Eq. (1.197) can be obtained in the usual
way, by setting

Xμ(σ ,τ) = Xμ
R (σ−) + Xμ

L (σ+) , (1.200)

with σ± ≡ τ ±σ . Then Xμ
R (σ−) is the right-moving mode, while Xμ

L (σ+) is the
left-moving mode. The boundary conditions depend on whether one has a closed
or open string. For closed strings the boundary condition is a periodicity in the σ
coordinate,

Xμ(σ ,τ) = Xμ(σ +π,τ) . (1.201)

For open strings one requires the vanishing of the normal derivative X ′μ = 0 at
σ = 0,π .

One can then expand the solutions to the wave equation of Eq. (1.197) in Fourier
amplitudes αμ

n

Xμ
R = 1

2 xμ + 1
2 l2 pμ(τ−σ) + 1

2 i l ∑
n �=0

1
n
αμ

n e−2in(τ−σ) , (1.202)

and similarly for Xμ
L in terms of α̃μ

n . Only an outline of the method will be provided
here, the reader is referred for more detail for example to the recent monograph
(Becker, Becker and Schwarz, 2007). Here l is the fundamental string length l =√

2α ′, and xμ and pμ are the center of mass coordinate and momentum of the string.
The reality condition on Xμ implies

αμ
−n = (αμ

n )† , (1.203)

and a similar requirement for the α̃μ
n ’s. To get the correct commutation relations for

the αμ
n ’s and α̃μ

n ’s one needs the Poisson brackets for the Xμ variables. The only
non-vanishing one is

{Ẋμ(σ),Xν(σ ′)} = T−1
0 δ (σ −σ ′)ημν , (1.204)

which implies the commutation relations (via the usual replacement of the Poisson
bracket with the commutator {. . .}→−i[. . .]) for the αμ

n ’s

[αμ
m ,αν

n ] = m δm+nημν , (1.205)

a similar expression for α̃μ
n , and all other commutators equal to zero. Up to a factor

of
√

m difference in normalization, these are quite similar to the usual harmonic
oscillator operators. But note that due to the appearance of the ημν on the r.h.s. the
Hilbert space built up from the oscillator operators αμ

n is not positive definite.
The classical Hamiltonian for the two-dimensional closed string is given by

H = 1
2 T

∫ π

0
dσ

(
Ẋ2 + X ′2

)
= 1

2

+∞

∑
n=−∞

α−nαn . (1.206)
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Similarly one can expand the constraint Tab in Fourier modes; it is more convenient
to write these constraints as Ẋ2

R ≡ T−− = 0 and Ẋ2
L ≡ T++ = 0. One defines

Lm ≡
∫ π

0
dσ T−− = 1

2

+∞

∑
n=−∞

αm−n ·αn , (1.207)

and similarly for L̃m in terms of Ẋ2
L and therefore α̃μ

n . A little algebra then gives the
classical Poisson bracket

{Lm,Ln} = i(m−n)Lm+n , (1.208)

and an analogous expression for L̃m. A simple interpretation for the occurrence of
the above algebra in the closed string case is that it is obeyed by the generators Dn

of the infinitesimal “diffeomorphisms” on the unit circle S1

Dn = ieinθ d
dθ

. (1.209)

In a quantum mechanical treatment for the operators αμ
n and α̃μ

n one has to be care-
ful about ordering ambiguities, which were not taken into account when deriving the
classical result of Eq. (1.208). These do not affect the above result unless m+n = 0,
in which case a new term can arise, the so-called central extension of the Virasoro
algebra. In particular one needs to be careful to restrict the physical Hilbert space
through the conditions

Lm |φ〉 = 0 (m > 0)
(L0 −a) |φ〉 = 0 , (1.210)

and the normalization requirement

〈0| [L2,L−2] |0〉 =
d
2

, (1.211)

where a is an arbitrary parameter (it will turn out to be a = 1). Thus by a care-
ful treatment of the operator ordering problem and a suitable physically motivated
choice of the oscillator ground state one finds that the quantum-mechanical version
of Eq. (1.208) is

[Lm,Ln] = (m−n)Lm+n + 1
12 d (m3 − m)δm+n,0 . (1.212)

The origin of the central term proportional to δm+n is a requirement that the operator
L0 be normal ordered so as to obtain a finite matrix element.

Of great interest is of course the ground state of the bosonic string. From the form
of the string Hamiltonian the mass M of the closed string excitations (for α ′ = 1

2 ) is
given by



1.10 String Theory 45

M2 = −8a + 8
∞

∑
n=1

α−n ·αn , (1.213)

and for the open string

M2 = −2a + 2
∞

∑
n=1

α−n ·αn , (1.214)

with a a constant to be determined from consistency conditions (absence of ghosts).
Thus the mass squared for the for the ground state of closed strings is four times that
for the open strings. In the first case on can show that the vector particle is massless,
but the scalar ground state is a tachyon with m2 < 0. Further analysis reveals though
that the absence of ghosts (or negative norm states), which in the case of the bosonic
string are associated with the timelike mode of Xμ(σ ,τ), implies that either d = 26
and a = 1, or d ≤ 25 and a ≤ 1. But the theory can be shown to be truly Lorentz
invariant only in d = 26, which implies that for the bosonic string quantization and
regularization are only consistent at d = 26.

Once the commutator algebra has been specified (as we have seen it is strongly
restricted by the Lorentz and Weyl invariance of the theory) one can start enumerat-
ing the lowest excitations. The structure of the spectrum for closed strings is

|0〉 → tachyon

α† μ
1 α̃† ν

1 |0〉 → massless tensor , (1.215)

while for open strings one finds the following spectrum

|0〉 → tachyon

α† μ
1 |0〉 → massless vector

α† μ
2 |0〉 → massive vector

α† μ
1 α† ν

1 |0〉 → massive tensor , (1.216)

with the mass squared increasing linearly with spin (linear Regge trajectories).
Thus open bosonic string theory contains a massless spin two particle, described

by a traceless symmetric tensor, whose low energy limit should be identified with
the action for general relativity plus higher order corrections. In the original string
theory framework this was regarded as a major disappointment, as no such particle
appeared in the known hadron spectrum (Scherk and Schwartz, 1974).

There is one big problem that remains with the bosonic string discussed so far,
namely that the ground state corresponds to a tachyon, a particle of mass m2 < 0,
which suggests some sort of fundamental instability of the theory. It is possible that
the tachyon is just an artifact due to the expansion around the wrong string theory
vacuum, but this remains a largely unsolved questions since it is not easy to treat
the bosonic string non-perturbatively. But one possible approach to this problem is
offered by the covariant Euclidean Feynman path integral.
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It is possible at least in principle to write down a path integral for strings, in
analogy to what one does for a free particle, and therefore provide a manifestly
covariant quantization framework, without possible artifacts that might arise from
the choice of conformal gauge. There one has for the Euclidean propagator

G(x,x′) = ∑
paths x→ x′

exp[−mL(x,x′)] , (1.217)

with L(x,x′) the length of the path connecting x and x′. In the case of strings one
would write an object of the type

Zstring(Ci,Cf ) =
∫ Cf

Ci

[dX ] [dg]e−I[X ,g] , (1.218)

where the sum is over all possible configurations of the string, including all allowed
intervening topologies, and matching the configuration of loops at some initial (Ci)
and final (Cf ) time. So in principle there will be a number of preassigned bound-
ary terms in the string amplitude, corresponding to some specified initial and final
configurations for one or more strings. In string perturbation theory one would then
consider breaking up the sum into terms involving increasingly complex topologies,
starting from the trivial one, say a two-sphere or a tree-level type diagram in the
case of an amplitude describing string interactions. It is clear that a quantity of cen-
tral importance in the first quantized bosonic string is in fact the N-point scattering
amplitude, which is computed by treating the incoming and outgoing strings essen-
tially as point-like entities (which in the bosonic string theory are actually tachyons
with some momentum k) connected to string world sheet surface on specific surface
points.

The quantum string of Eq. (1.195) is therefore more generally defined by an
action for the surface S given by

I [g,X ] = λ
∫

S
d2σ

√
g + 1

2

∫
d2σ

√
ggab∂a Xμ ∂b Xμ + kχ , (1.219)

where λ is a (so far arbitrary) cosmological term, required later by renormalization
effects, and kχ a curvature term, related by the Gauss-Bonnet theorem to the Euler
characteristic χ of the surface,

χ =
1

4π

∫
d2σ

√
g 2R +

1
2π

∫
∂S

ds K . (1.220)

Here 2R(g) is the scalar curvature on the two-dimensional surface, and K the cur-
vature on the boundary ∂S. The path integral is then a sum over all such surfaces,

Z =
∫

[dgab] [dXμ ] exp(−I[g,X ] ) , (1.221)
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with [dgab] an invariant functional measure over the two-dimensional metrics. The
Euler characteristic term is a constant for a surface of given topology, but adds
a relative weight e−kχ for string contributions with different topology. Eventually
one would like to sum over all topologies for the string (i.e. sum over surfaces
of arbitrary genus h with χ = 2[1− h)], but what could stand in the way is that
bosonic string perturbation theory seems badly divergent and is not Borel summable,
Z ∼ ∑h ghh!, contrary to what happens for example in QED, (Gross and Periwal,
1988). Such a result is usually taken as an indication of a serious vacuum instability
and large non-perturbative contributions (Parisi, 1979) (originally this estimate was
in fact viewed as a welcome feature, as there were many aspects of perturbative
string theory that were not shared by the real world!).

The usual treatment of quantum two-dimensional gravity then proceeds to set the
metric in the conformal gauge gab(x) = eφ (x) g̃ab, where g̃ab is a reference metric,
usually taken to be the flat one, δab. The conformal gauge fixing for the metric then
implies a non-trivial Faddeev Popov determinant, which when exponentiated results
in the Liouville action for two-dimensional pure gravity in the conformal gauge

I [φ ] =
13

24π

∫
d2σ

[
1
2 (∂aφ)2 + μ2 eφ

]
, (1.222)

with the μ-term amounting to a renormalization of the bare cosmological constant.
In the language of the conformal gauge, where

√
g = eφ and R = e−φ ∂ 2φ , the pre-

ceding action can in fact be re-written in arbitrary coordinate as a nonlocal contri-
bution.

When the d scalar X fields are coupled to the two-dimensional gravity and in-
tegrated out (since they appear quadratically in the action), the conformal anomaly
contribution modifies the Liouville effective action to

I [φ ] =
26−d
48π

∫
d2σ

[
1
2 (∂aφ)2 + μ2 eφ

]
, (1.223)

which suggests that the bosonic string only makes sense for embedding dimensions
d < 26, i.e. less than the critical dimension known already from dual models.

So far fluctuations in the string are essentially unconstrained when viewed from
embedding space. But it is possible to add some rigidity to the string by considering
extrinsic curvature terms (Polyakov, 1786). There are a number of equivalent ways
of writing such contributions, the simplest one being of the form

Iex [g,X ] =
1

2α

∫
S

d2σ
√

g gab ∂a tμν ∂b tμν (1.224)

with

tμν = εab 1
√

g
∂a Xμ ∂b Xν , (1.225)

and α a dimensionless coupling. Note that the new term involves higher deriva-
tives of the “matter field” Xμ . A one-loop calculation shows that the renormaliza-
tion group behavior for α is α−1(μ) = α−1(Λ) + (D/4π) log(μ/Λ) with Λ the
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ultraviolet cutoff. This implies that the coupling α is asymptotically free, and there-
fore grows with distance. Since it is 1/α that appears in the action, one would still
recover the Nambu-Goto string in the continuum limit, unless some new unexpected
fixed points emerge to higher order.

Finally it is possible to generalize the bosonic string action of Eq. (1.195) by
including a background X that is not flat (Callan, Friedan, Martinec and Perry, 1985)

Inlsm [g,X ,b,φ ] = 1
4πα ′

∫
d2σ

√
g [
√

ggab gμν(X)∂a Xμ ∂bXμ

+ g−1/2 εab Aμν(X)∂a Xμ ∂b Xμ − 1
2 α

′ 2Rφ(X) ] ,

(1.226)

where the new fields include the graviton gμν(X), an antisymmetric tensor field
Aμν(X), and the dilaton φ(X). These models are usually referred to, for historical
reasons, as non-linear sigma models for strings. Note, from the structure of the last
term in Eq. (1.226) involving 2R, that the dilaton field is related to the string coupling
“constant”, with the n-loop amplitude involving a factor e−2(1−n)φ (at least for a
slowly varying dilaton field).

In general these theories will no longer be conformally invariant unless one im-
poses conditions on the “beta functions for each field”, such as Rμν(X)+ . . . = 0,
where the ellipsis refers to contributions from the other two fields φ(X) and Aμν(X).
It can be shown that these string consistency equations can be derived from a d-
dimensional action with a rather simple form

Idil = − 1
16πG

∫
ddX

√
Geφ

{
R + 4(∇φ)2 − 1

12 F2
μνσ + . . .

}
, (1.227)

with Fμνσ the curl of Aμν . After rescaling the d-dimensional metric
Gμν → e4φ/(d−2) Gμν one obtains the more familiar form

Idil = − 1
16πG

∫
ddX

√
G

{
R − 4

d −2
(∇φ)2 − 1

12 e−8φ(d−2) F2
μνσ + . . .

}
,

(1.228)
which shows the general feature of strings coupled to background gravity: they gen-
erally involve dilaton corrections to Einstein gravity.

1.11 Supersymmetric Strings

From the preceding discussion it appears that there are three main problems with
the bosonic string, the first one being that the ground state is a tachyon, a particle
of mass m2 < 0. The second problem is that the bosonic string is only consistently
defined in d = 26 spacetime dimensions, and the third problem is that it does not
contain fermions which are after all an essential component of ordinary matter.
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One way of introducing fermionic degrees of freedom is to look for a supersym-
metric extension of the bosonic string action of Eq. (1.195) (Brink and Schwarz,
1977),

I [g,χ,X ,ψ] = 1
2

∫
d2σ e [ gab ∂a Xμ ∂b Xμ + ψ̄μ iγa ∂aψμ

+ χ̄a γb γa(∂b Xμ + 1
2 χbψμ)ψμ ] . (1.229)

Here again Xμ(σ ,τ) (μ = 1 . . .d) parametrizes the surface, ψμ(σ ,τ) is a two-
component Majorana spinor, χa(σ ,τ) a spin- 3

2 gravitino field (a two-component
Majorana spinor and a world-sheet vector), and eαa (σ ,τ) a zweibein for the metric
gab, such that

√
g = e. In order to ensure local supersymmetry, gab and χa have to be

treated as independent variables. The action of Eq. (1.229) now has a much larger
invariance, which consists of the local supersymmetry transformations

δXμ = ε̄ ψμ δψμ = −iγa ε (∂aXμ − ψ̄μ χa)
δeαa = −2 i ε̄ γα χa δχa = ∇a ε , (1.230)

with ε(x) an arbitrary fermionic function. In addition there is the local Weyl (or
conformal) symmetry, already present in the bosonic string,

δXμ = 0 δψμ = − 1
2 Λ ψμ

δeαa = Λ eαa δχa = 1
2 Λ χa , (1.231)

with Λ(x) a real function, as well as the purely fermionic local symmetry

δXμ = 0 δψμ = 0

δeαa = 0 δχa = iγaη , (1.232)

with η(x) an arbitrary Majorana spinor. The resulting invariance under ε , Λ and η
transformations is denoted as superconformal.

Just as conformal invariance of the bosonic string restricted the Virasoro algebra
for the quantities Lm, here the corresponding superconformal symmetry will restrict
the structure of the commutation relations for the quantities Lm, Fm and Gr. One
now finds that the theory is ghost-free provides d = 10 and a = 1/2 in the bosonic
sector, and a = 0 in the fermionic one.

Alternatively one can treat the theory using covariant functional integral meth-
ods. First one needs to fix the superconformal gauge by the choice

gab(σ ,τ) = e2(σ ,τ) δab χa(σ ,τ) = γa χ(σ ,τ) , (1.233)

after which one can integrate out the ψ and X fields (Polyakov, 1981a,b) as was
done in the bosonic case. This gives an effective action for the e and χ fields just
defined,

e−S(e,χ) =
∫

[dψ] [dX ]e−I [g,χ,X ,ψ] . (1.234)
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The superconformal gauge fixing implies a Faddeev-Popov determinant contribu-
tion to the functional measure; after this contribution is properly taken into account
one finds an effective action given in terms of the direct supersymmetric extension
of the Liouville action,

I [φ ,χ] =
10−d

8π

∫
d2σ

[
1
2 (∂aφ)2 + 1

2 μ
2 e2φ + 1

2 i χ̄ (γ ·∂ )χ + 1
2 μ (χ̄ γ5χ)eφ

]
,

(1.235)
where d again is the number of components of the original X field, or, equivalently,
the embedding dimension of the supersymmetric string. The theory then describes a
two-dimensional renormalizable field theory, which is intended to reproduce a sum
over random surfaces with fermionic structure. The result of Eq. (1.235) implies
that the supersymmetric string only makes sense in ten dimensions, just like the
bosonic string was only consistent in ten dimensions. There is one important dif-
ference though: the ground state of the supersymmetric string can be chosen so as
to avoid the tachyon (the requirement to achieve this are known as the GSO condi-
tions). Also, the previous discussion dealt with an extension of the original bosonic
string which included N = 1 world-sheet supersymmetry. It is possible though to
consider a wider range of string theories which have N = 2 (with a local SO(2) in-
variance) and N = 4 world-sheet supersymmetry (with a local SU(2) invariance).

But there is one important physical aspect that is still missing in the ten-
dimensional supersymmetric theory, and that is the presence of non-abelian gauge
bosons, which are necessary, at least for a grand unified theory, in order to eventu-
ally make contact with the real world. There are two approaches one can follow in
introducing gauge interactions in d = 10, which will be outlined here.

In the first approach the new internal symmetry charges are placed at the ends
of the string. In type I superstring has one supersymmetry (N = 1) in the ten-
dimensional sense, and therefore 16 supercharges. The unique feature of this theory
is that it is based on unoriented open and closed strings; since only type I superstring
theories contain open strings, only there this approach is possible. In type I strings
the symmetry group is SO(32).

The remaining string theories are based on oriented closed strings. The type
II string has N = 2 supersymmetry and cannot be consistently coupled to open
strings, which only allow at most N = 1 supersymmetry. Here one has two su-
persymmetries in the ten-dimensional sense, giving 32 supercharges. There are in
fact two kinds of type II strings, the IIA and the IIB type. The main difference is
in the fact that the IIA theory massless fermion modes are such that the theory is
non-chiral and thus parity conserving, while the IIB theory is chiral and therefore
parity violating.

In the so-called heterotic string one again has supersymmetry and closed strings
only, but with separate right- and left-moving string modes. These models are based
therefore on a peculiar hybrid of the type I superstring and a bosonic string. There
are two kinds of heterotic strings which differ in their ten-dimensional gauge groups,
which can be either SO(32) or E8 ×E8 (Gross, Harvey, Martinec and Rohm, 1985).
In these theories the charges are distributed on closed strings (as stated before, open
strings are not possible in the heterotic string scenario). Since it is a general feature
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of closed-string theories (at least in flat backgrounds) that the left- and right-moving
modes are decoupled, one has the freedom of allowing left-moving modes to be of
one type, and right-moving modes to be of a different type. The hybridization im-
plied by the name heterotic string comes about because the right moving modes are
chosen to be superstring modes (thus avoiding the tachyon of the bosonic string),
whereas the left-moving ones are taken to be representations of a suitable current
algebra describing gauge degrees of freedom. One surprising aspect that was dis-
covered later is the fact type I superstrings are in fact “dual” to the heterotic SO(32)
superstring theory, and therefore more closely related to it than would appear on the
surface.

A theory of this type is described by the action

I [g,χ,X ,ψ] = 1
2

∫
d2σ

(
gab ∂a Xμ ∂b Xμ − 2i ψ̄μ

− ∂+ψ
μ
− − 2i

n

∑
A=1

λA
+ ∂−λA

+

)
.

(1.236)
Here ψμ , with μ = 1 . . .10, is a Majorana-Weyl fermion transforming as the vector
representation of the Lorentz group, and λA, with A = 1 . . .n, a set of Majorana-Weyl
fermions which are Lorentz singlets, possibly endowed with some internal quantum
numbers. For a ten-dimensional supersymmetric theory one has a 32-component
Majorana spinor. This can be decomposed into a pair of 16-component Majorana-
Weyl (chiral) spinors. The right-moving modes are the ψμ and the right-moving
part of Xμ , whereas the left-moving modes are the left-moving part of Xμ and the
λA fields. Note that the absence of a “left-moving” supersymmetry. For n = 32 one
obtains the heterotic SO(32) theory which is anomaly free. Another possibility is a
theory based on the exceptional group E8 ×E8.

The anomaly issue in ten-dimensional string theories arises from the fact that
chiral gauge theories can be inconsistent due to anomalies. This happens already
in ordinary non-abelian gauge theories when certain one-loop Feynman diagrams
cause a quantum mechanical breakdown, induced by radiative corrections, of the
gauge symmetry, which leads to a non-conservation of gauge currents. In string
theory the anomalies were canceled out via the Green-Schwarz mechanism, which
severely restricts the gauge group structure of ten dimensional strings.

String theories can in principle contain additional rather exotic objects, such as
D-Branes; these are membrane-like configuration in the ten-dimensional superstring
theory, which can occur as a result of a Kaluza-Klein compactification of an eleven-
dimensional M-theory (matrix theory) containing membranes.

Of course one key issue that ten-dimensional supersymmetric string theories have
to face eventually is how to come down from ten to four dimensions, which raises
the key problem of string compactification, a largely unsolved problem to this day.
One usually assumes that the ten-dimensional string compactifies to four dimension
through the choice of some suitable manifold (often of the Calabi-Yau type) so
that the main phenomenologically desirable feature of the original ten-dimensional
theory (such as chiral fermions) survive in four dimensions. There is no clear input
from the ten-dimensional string dynamics on what choices might be dynamically
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allowed or favored, the manifold is generally chosen so that desirable features are
achieved for the four-dimensional theory; indeed recent work suggests that there
might be infinitely many choices for the vacua in ten dimensions. Generally in these
compactification scenarios the additional unwanted six space dimensions are curled
up in tiny tubes whose spatial extent is of the order of the string scale, although
several alternative scenarios are possible (for a recent review see Font and Theisen,
2005). One of the more speculative points of view asserts that string theory not
only predicts extra dimensions, but that the strength of four-dimensional gravity is
in fact affected by the presence of these extra dimensions by making it stronger in
these higher dimensional directions, an effect which be detectable by future high
precision experiments.

There is one generic feature of all string-theoretic models of gravity, and that is
the appearance of an extra scalar particle called the dilaton. All perturbative string
theories (type I, type II and heterotic) already start out with a dilaton in ten dimen-
sions.

Although different in the details, the low energy effective action for the gravita-
tional degrees of freedom is similar to the bosonic dilaton actions of Eqs. (1.227)
and (1.228). In particular for the heterotic string one finds (Fradkin and Tseytlin,
1985)

Idil[G,φ ,Aμν ] = − 1
16πG

∫
ddX

√
Ge−2φ {R + 4(∂μφ)2 − 1

12 F2
μνσ + . . .

}
,

(1.237)
with R the scalar curvature for the metric Gμν , and

√
16πG ∼ gα ′(d−2)/4

, (1.238)

with g the dimensionless string coupling constant. Away from ten dimensions one
also has a cosmological constant contribution which is order one in units of α ′.
Here and in the following it will be assumed that compactification has occurred
by now, so that the effective low energy theory resides in the physical dimension
d = 4. Furthermore it is a general feature of the string that it contains both massless
and massive modes. In the low energy effective field theory description only the
massless modes are retained, but the effect of the massive modes can in many ways
be regarded as being equivalent to having a cutoff at the string mass scale Λs =
(α ′)−1/2.

After the Weyl rescaling Gμν → Gμν exp[4π/(d − 2)] the action coincides with
the corresponding part of N = 2 d = 10 supergravity,

Idil = − 1
16πG

∫
ddX

√
G
{

R − 1
2 (∂μφ)2 − 1

12 F2
μνσ e−φ + . . .

}
. (1.239)

The last term involving the gauge fields contains a dilaton-field dependent gauge
coupling constant, so that the main modification to the matter sector is in the form
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Imatt =
∫

ddX
√

G

{
−ψ̄Dψ − 1

4g2(φ)
F2
μνσ + . . .

}
, (1.240)

with g−2 ≡ e−φ/12, with the vacuum expectation value of the dilaton field, related
to the original string coupling constant gst by g2

st = 〈e2φ 〉. Therefore the coupling
constant gst is a dynamical variable in string theory, unlike the case of quantum
field theory where it is usually considered a true constant, up to renormalization
group effects. As long as supersymmetry is unbroken, scalar fields like φ can take
arbitrary values (they are referred to as moduli). However, supersymmetry breaking
could create a potential for these scalar fields, whose minima could then in principle
be calculable. But since the non-perturbative potential for the dilaton field is not
known, there is no theory for the dilaton mass either.

Nevertheless there are two main, in principle observable, effects of the dila-
ton in low energy phenomena (Damour and Polyakov, 1994; Damour, Piazza and
Veneziano, 2002). The first one is that the dilaton field enters the gravitational ac-
tion and modifies it, as shown in Eq. (1.239). It can therefore lead to violations of
the Equivalence Principle, which could be large if the dilaton mass is small. There-
fore high precision tests of the Equivalence Principle such as the universality of free
fall, could be viewed as possible windows on string-scale physics. Similarly a small
dilaton mass could affect high precision tests of the inverse square law for gravity
on sub-millimeter scales, although, by the nature of its couplings, a light dilaton is
not likely to play an important role in cosmological evolution.

The second main effect of the dilaton is its influence on the gauge coupling con-
stant, through the gluon field strength in Eq. (1.240) (Taylor and Veneziano, 1988;
Kaplan and Wise, 2000). Again specific investigation of the effects associated with
the dilaton require some educated guess on its mass, which in some scenarios, based
on specific mechanisms for supersymmetry breaking, is assumed to be of the order
m ∼ Λ 2

susy/μp, giving for Λsusy ∼ 1TeV a dilaton Compton wavelength of a few
millimeters. From these numbers on can then make appropriate estimates on the
modifications of matter couplings.

Finally one interesting aspect of string theories is how they relate to the physics
of black holes. In the field theory (supergravity) description of strings the D-branes
that appear in the perturbative string picture re-emerge in the supergravity frame-
work as so-called black-branes. In the supergravity framework it is in fact more
natural to look at charged black holes in anti-DeSitter space, since these spaces are
supergravity solutions with maximal supersymmetry. It is believed that in string the-
ory black hole evaporation then arise through the emission of closed strings from
excited D-branes.

In conclusion superstring theory provides a fascinating alternative to the tradi-
tional field theoretic approach to quantum gravity. Yet it still has to confront some
very basic issues: there is no known non-perturbative formulation of strings that
would allow the investigation and selection of superstring vacua in ten dimensions.
Furthermore, the dynamical mechanism for compactification is not understood, in-
stead the usual avenue for compactification is the selection of a class of manifolds
which appear to have desirable properties in four dimensions. Indeed there is to this
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date no compelling argument for why one should end up in four dimensions instead
of three or five. And finally there is the remaining core issue of what the mecha-
nisms for supersymmetry breaking might be, for which string theory so far has not
provided an indication for a possible scenario.



Chapter 2
Feynman Path Integral Formulation

2.1 The Path Integral

So far the discussion of quantum gravity has focused almost entirely on perturbative
scenarios, where the gravitational coupling G is assumed to be weak, and the weak
field expansion based on ḡμν = gμν + hμν can be performed with some degree of
reliability. At every order in the loop expansion the problem then reduces to the
systematic evaluation of an increasingly complex sequence of Gaussian integrals
over the small quantum fluctuation hμν .

But there are reasons to expect that non-perturbative effects play an important
role in quantum gravity. Then an improved formulation of the quantum theory is
required, which does not rely exclusively on the framework of a perturbative ex-
pansion. Indeed already classically a black hole solution can hardly be considered
as a small perturbation of flat space. Furthermore, the fluctuating metric field gμν
is dimensionless and carries therefore no natural scale. For the simpler cases of a
scalar field and non-Abelian gauge theories a consistent non-perturbative formula-
tion based on the Feynman path integral has been known for some time and is by
now well developed. Combined with the lattice approach, it provides an effective
and powerful tool for systematically investigating non-trivial strong coupling be-
havior, such as confinement and chiral symmetry breaking. These phenomena are
known to be generally inaccessible in weak coupling perturbation theory. Further-
more, the Feynman path integral approach provides a manifestly covariant formula-
tion of the quantum theory, without the need for an artificial 3+1 split required by
the more traditional canonical approach, and the ambiguities that may follow from
it. In fact, as will be seen later, in its non-perturbative lattice formulation no gauge
fixing of any type is required.

In a nutshell, the Feynman path integral formulation for pure quantum gravitation
can be expressed in the functional integral formula

Z =
∫

geometries
e

i
h̄ Igeometry , (2.1)

55
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Fig. 2.1 Quantum mechani-
cal amplitude of transitioning
from an initial three-geometry
described by g at time tinitial

to a final three-geometry
described by g′ at a later
time t f inal . The full amplitude
is a sum over all interven-
ing metrics connecting the
two bounding three-surfaces,
weighted by exp(iI/h̄) where
I is a suitably defined gravita-
tional action.

 

g 

g’ 

initialt

finalt

(for an illustration see Fig. 2.1), just like the Feynman path integral for a non-
relativistic quantum mechanical particle (Feynman, 1948; 1950; Feynman and Hi-
bbs, 1965) expresses quantum-mechanical amplitudes in terms of sums over paths

A(i → f ) =
∫

paths
e

i
h̄ Ipath . (2.2)

What is the precise meaning of the expression in Eq. (2.1)? The remainder of this
section will be devoted to discussing attempts at a proper definition of the gravita-
tional path integral of Eq. (2.1). A modern rigorous discussion of path integrals in
quantum mechanics and (Euclidean) quantum field theory can be found, for exam-
ple, in (Albeverio and Hoegh-Krohn, 1976), (Glimm and Jaffe, 1981) and (Zinn-
Justin, 2002).

2.2 Sum over Paths

Already for a non-relativistic particle the path integral needs to be defined quite
carefully, by discretizing the time coordinate and introducing a short distance cutoff.
The standard procedure starts from the quantum-mechanical transition amplitude

A(qi, ti → q f , t f ) = < q f |e−
i
h̄ H(t f −ti) |qi > , (2.3)

and subdivides the time interval into n+1 segments of size ε with t f = (n+1)ε+ ti.
Using completeness of the coordinate basis |q j > at all intermediate times, one ob-
tains the textbook result, here for a non-relativistic particle described by a Hamilto-
nian H(p,q) = p2/(2m)+V (q),
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A(qi, ti → q f , t f ) = lim
n→∞

∫ ∞

−∞

n

∏
j=1

dq j√
2πih̄ε/m

×exp

{
i
h̄

n+1

∑
j=1

ε

[
1
2 m

(
q j −q j−1

ε

)2

−V

(
q j +q j−1

2

)]}
.

(2.4)

The expression in the exponent is easily recognized as a discretized form of the
classical action. The above quantum-mechanical amplitude A is then usually written
in shorthand as

A(qi, ti → q f , t f ) =
∫ q f (t f )

qi(ti)
[dq ] exp

{
i
h̄

∫ t f

ti
dt L(q, q̇)

}
, (2.5)

with L = 1
2 mq̇2 −V (q) the Lagrangian for the particle. What appears therefore in

the exponent is the classical action

I =
∫ t f

ti
dt L(q, q̇) , (2.6)

associated with a given trajectory q(t), connecting the initial coordinate qi(ti) with
the final one q f (t f ). Then the quantity [dq] is the functional measure over paths q(t),
as spelled out explicitly in the precise lattice definition of Eq. (2.4). One advantage
associated with having the classical action appear in the quantum mechanical ampli-
tude is that all the symmetries of the theory are manifest in the Lagrangian form. The
symmetries of the Lagrangian then have direct implications for the study of quan-
tum mechanical amplitudes. A stationary phase approximation to the path integral,
valid in the limit h̄ → 0, leads to the least action principle of classical mechanics

δ I = 0 . (2.7)

In the above derivation it is not necessary to use a uniform lattice spacing ε; one
could have used as well a non-uniform spacing εi = ti−ti−1 but the result would have
been the same in the limit n →∞ (in analogy with the definition of the Riemann sum
for ordinary integrals). Since quantum mechanical paths have a zig-zag nature and
are nowhere differentiable, the mathematically correct definition should be taken
from the finite sum in Eq. (2.4). In fact it can be shown that differentiable paths have
zero measure in the Feynman path integral: already for the non-relativistic particle
most of the contributions to the path integral come from paths that are far from
smooth on all scales (Feynman and Hibbs, 1965), the so-called Wiener paths, in turn
related to Brownian motion. In particular, the derivative q̇(t) is not always defined,
and the correct definition for the path integral is the one given in Eq. (2.4). A very
complete and contemporary reference to the many applications of path integrals to
non-relativistic quantum systems and statistical physics can be found in two recent
monographs (Zinn-Justin, 2005; Kleinert, 2006).
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As a next step, one can generalized the Feynman path integral construction to N
particles with coordinates qi(t) (i = 1,N), and finally to the limiting case of contin-
uous fields φ(x). If the field theory is defined from the start on a lattice, then the
quantum fields are defined on suitable lattice points as φi.

2.3 Eulidean Rotation

In the case of quantum fields, one is generally interested in the vacuum-to-vacuum
amplitude, which requires ti →−∞ and t f → +∞. Then the functional integral with
sources is of the form

Z[J] =
∫

[dφ ]exp

{
i
∫

d4x[L (x)+ J(x)φ(x)]
}

, (2.8)

where [dφ ] =∏x dφ(x), and L the usual Lagrangian density for the scalar field,

L = − 1
2 [(∂μφ)2 −μ2 φ 2 − iε φ 2]−V (φ) . (2.9)

However even with an underlying lattice discretization, the integral in Eq. (2.8) is
in general ill-defined without a damping factor, due to the i in the exponent (Zinn-
Justin, 2003).

Advances in axiomatic field theory (Osterwalder and Schrader, 1972; 1973;
1975; Glimm and Jaffe, 1974; Glimm and Jaffe, 1981) indicate that if one is able to
construct a well defined field theory in Euclidean space x = (x,τ) obeying certain
axioms, then there is a corresponding field theory in Minkowski space (x, t) with

t = − iτ , (2.10)

defined as an analytic continuation of the Euclidean theory, such that it obeys the
Wightmann axioms (Streater and Wightman, 2000). The latter is known as the Eu-
clidicity Postulate, which states that the Minkowski Green’s functions are obtained
by analytic continuation of the Green’s function derived from the Euclidean func-
tional. One of the earliest discussion of the connection between Euclidean and
Minkowski filed theory can be found in (Symanzik, 1969). In cases where the
Minkowski theory appears pathological, the situation generally does not improve
by rotating to Euclidean space. Conversely, if the Euclidean theory is pathological,
the problems are generally not removed by considering the Lorentzian case. From a
constructive field theory point of view it seems difficult for example to make sense,
for either signature, out of one of the simplest cases: a scalar field theory where the
kinetic term has the wrong sign (Gallavotti, 1985).

Then the Euclidean functional integral with sources is defined as

ZE [J] =
∫

[dφ ]exp

{
−
∫

d4x[LE(x)+ J(x)φ(x)]
}

, (2.11)
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with
∫

LE the Euclidean action, and

LE = 1
2 (∂μφ)2 + 1

2 μ
2φ 2 +V (φ) , (2.12)

with now (∂μφ)2 = (∇φ)2 +(∂φ/∂τ)2. If the potential V (φ) is bounded from be-
low, then the integral in Eq. (2.11) is expected to be convergent. In addition, the
Euclidicity Postulate determines the correct boundary conditions to be imposed on
the propagator (the Feynman iε prescription). Euclidean field theory has a close and
deep connection with statistical field theory and critical phenomena, whose founda-
tions are surveyed for example in the comprehensive monographs of (Parisi, 1981)
and (Cardy, 1997).

Turning to the case of gravity, it should be clear that to all orders in the weak
field expansion there is really no difference of substance between the Lorentzian (or
pseudo-Riemannian) and the Euclidean (or Riemannian) formulation. Indeed most,
if not all, of the perturbative calculations in the preceding sections could have been
carried out with the Riemannian weak field expansion about flat Euclidean space

gμν = δμν +hμν , (2.13)

with signature + + ++, or about some suitable classical Riemannian background
manifold, without any change of substance in the results. The structure of the diver-
gences would have been identical, and the renormalization group properties of the
coupling the same (up to the trivial replacement of say the Minkowski momentum
q2 by its Euclidean expression q2 = q2

0 +q2 etc.). Starting from the Euclidean result,
the analytic continuation of results such as Eq. (1.161) to the pseudo-Riemannian
case would have been trivial.

2.4 Gravitational Functional Measure

It is still true in function space that one needs a metric before one can define a
volume element. Therefore, following DeWitt (DeWitt, 1962; 1964), one needs first
to define an invariant norm for metric deformations

‖δg‖2 =
∫

ddxδgμν(x)Gμν ,αβ (g(x)
)
δgαβ (x) , (2.14)

with the supermetric G given by the ultra-local expression

Gμν ,αβ (g(x)
)

= 1
2

√
g(x)

[
gμα(x)gνβ (x)+gμβ (x)gνα(x)+λ gμν(x)gαβ (x)

]
,

(2.15)
with λ a real parameter, λ �= −2/d. The DeWitt supermetric then defines a suitable
volume element

√
G in function space, such that the functional measure over the

gμν ’s taken on the form
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∫
[d gμν ] ≡

∫
∏

x

[
detG[g(x)]

]1/2

∏
μ≥ν

dgμν(x) . (2.16)

The assumed locality of the supermetric Gμν ,αβ [g(x)] implies that its determinant
is a local function of x as well. By a scaling argument given below one finds that, up
to an inessential multiplicative constant, the determinant of the supermetric is given
by

detG[g(x)] ∝ (1+ 1
2 dλ )

[
g(x)

](d−4)(d+1)/4
, (2.17)

which shows that one needs to impose the condition λ �=−2/d in order to avoid the
vanishing of detG. Thus the local measure for the Feynman path integral for pure
gravity is given by

∫
∏

x

[
g(x)

](d−4)(d+1)/8 ∏
μ≥ν

dgμν(x) . (2.18)

In four dimensions this becomes simply
∫

[d gμν ] =
∫
∏

x
∏
μ≥ν

dgμν(x) . (2.19)

However it is not obvious that the above construction is unique. One could have
defined, instead of Eq. (2.15), G to be almost the same, but without the

√
g factor in

front,

Gμν ,αβ [g(x)
]

= 1
2

[
gμα(x)gνβ (x)+gμβ (x)gνα(x)+λ gμν(x)gαβ (x)

]
. (2.20)

Then one would have obtained

detG[g(x)] ∝ (1+ 1
2 dλ )

[
g(x)

]−(d+1)
, (2.21)

and the local measure for the path integral for gravity would have been given now
by ∫

∏
x

[
g(x)

]−(d+1)/2 ∏
μ≥ν

dgμν(x) . (2.22)

In four dimensions this becomes
∫

[d gμν ] =
∫
∏

x

[
g(x)

]−5/2 ∏
μ≥ν

dgμν(x) , (2.23)

which was originally suggested in (Misner, 1957).
One can find in the original reference an argument suggesting that the last mea-

sure is unique, provided the product ∏x is interpreted over “physical” points, and
invariance is imposed at one and the same “physical” point. Furthermore since there
are d(d + 1)/2 independent components of the metric in d dimensions, the Misner
measure is seen to be invariant under a re-scaling gμν → Ω 2gμν of the metric for
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any d, but as a result is also found to be singular at small g. Indeed the DeWitt
measure of Eq. (2.18) and the Misner scale invariant measure of Eqs. (2.22) and
(2.23) could be just as well regarded as two special cases of a slightly more general
supermetric G with prefactor

√
g(1−ω), with ω = 0 and ω = 1 corresponding to the

original DeWitt and Misner measures, respectively.
The power in Eqs. (2.17) and (2.18) can be found for example as follows. In

the Misner case, Eq. (2.22), the scale invariance of the functional measure follows
directly from the original form of the supermetric G(g) in Eq. (2.20), and the fact
that the metric gμν has 1

2 d(d +1) independent components in d dimensions. In the
DeWitt case one rescales the matrix G(g) by a factor

√
g. Since G(g) is a 1

2 d(d +
1)× 1

2 d(d +1) matrix, its determinant is modified by an overall factor of gd(d+1)/4.
So the required power in the functional measure is − 1

2 (d +1)+ 1
8 d(d +1) = 1

8 (d−
4)(d +1), in agreement with Eq. (2.18).

Furthermore, one can show that if one introduces an n-component scalar field
φ(x) in the functional integral, it leads to further changes in the gravitational mea-
sure. First, in complete analogy to the gravitational case, one has for the scalar field
deformation

‖δφ‖2 =
∫

ddx
√

g(x)
(
δφ(x)

)2
, (2.24)

and therefore for the functional measure over φ one has the expression
∫

[dφ ] =
∫
∏

x

[√
g(x)

]n/2 ∏
x

dφ(x) . (2.25)

The first factor clearly represents an additional contribution to the gravitational mea-
sure. One can indeed verify that one just followed the correct procedure, by evalu-
ating for example the scalar functional integral in the large mass limit,

∫
∏

x

[√
g(x)

]n/2 ∏
x

dφ(x) exp

(
− 1

2 m2
∫ √

gφ 2
)

=
(

2π
m2

)nV/2

= const.

(2.26)
so that, as expected, for a large scalar mass m the field φ completely decouples,
leaving the dynamics of pure gravity unaffected.

These arguments would lead one to suspect that the volume factor gσ/2, when
included in a slightly more general gravitational functional measure of the form

∫
[d gμν ] = ∏

x
[g(x)]σ/2 ∏

μ≥ν
dgμν(x) , (2.27)

perhaps does not play much of a role after all, at least as far as physical properties are
concerned. Furthermore, in d dimensions the

√
g volume factors are entirely absent

(σ = 0) if one choosesω = 1−4/d, which would certainly seem the simplest choice
from a practical point of view.

When considering a Hamiltonian approach to quantum gravity, one finds a rather
different form for the functional measure (Leutwyler, 1964), which now includes
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non-covariant terms. This is not entirely surprising, as the introduction of a Hamil-
tonian requires the definition of a time variable and therefore a preferred direction,
and a specific choice of gauge. The full invariance properties of the original action
are no longer manifest in this approach, which is further reflected in the use of a
rigid lattice to properly define and regulate the Hamiltonian path integral, allowing
subsequent formal manipulations to have a well defined meaning. In the covariant
approach one can regard formally the measure contribution as effectively a modifi-
cation of the Lagrangian, leading to an Le f f . The additional terms, if treated con-
sistently will result in a modification of the Hamiltonian, which therefore in general
will not be of the form one would have naively guessed from the canonical rules
(Abers, 2004). One can see therefore that the possible original measure ambiguity
found in the covariant approach is still present in the canonical formulation. One
new aspect of the Hamiltonian approach is though that conservation of probability,
which implies the unitarity of the scattering matrix, can further restrict the form of
the measure, if such a requirement is pushed down all the way to the cutoff scale
(in a simplicial lattice context, the latter would be equivalent to the requirement of
Osterwalder-Schrader reflection positivity at the cutoff scale). Whether such a re-
quirement is physical and meaningful in a geometry that is strongly fluctuating at
short distances, and for which a notion of time and orthogonal space-like hypersur-
faces is not necessarily well defined, remains an open question, and perhaps mainly
an academic one. When an ultraviolet cutoff is introduced (without which the theory
would not be well defined), one is after all concerned in the end only with distance
scales which are much larger than this short distance cutoff.

Along these lines, the following argument supporting the possible irrelevance
of the measure parameter σ can be given (Faddeev and Popov, 1973; Fradkin and
Vilkovisky, 1973). Namely, one can show that the gravitational functional measure
of Eq. (2.27) is invariant under infinitesimal general coordinate transformations,
irrespective of the value of σ . Under an infinitesimal change of coordinates x′μ =
xμ + εμ(x) one has

∏
x

[g(x)]σ/2 ∏
μ≥ν

dgμν(x) → ∏
x

(
det

∂x′β

∂xα

)γ

[g(x)]σ/2 ∏
μ≥ν

dgμν(x) , (2.28)

with γ a power that depends on σ and the dimension. But for an infinitesimal coor-
dinate transformations the additional factor is equal to one,

∏
x

(
det

∂x′β

∂xα

)γ

= ∏
x

[
det(δ β

α +∂αεβ )
]γ = exp

{
γ δ d(0)

∫
ddx ∂αεα

}
= 1 ,

(2.29)
and we have used

ad∑
x

→
∫

ddx , (2.30)

with lattice spacing a = π/Λ and momentum cutoff Λ [see Eq. (1.98)]. So in some
respects it appears that σ can be compared to a gauge parameter.
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In conclusion, there is no clear a priori way of deciding between the various
choices for σ , and the evidence so far suggests that it may very well turn out to
be an irrelevant parameter. The only constraint seems that the regularized gravita-
tional path integral should be well defined, which would seem to rule out singular
measures, which need additional regularizations at small volumes. It is noteworthy
though that the gσ/2 volume term in the measure is completely local and contains no
derivatives. Thus in perturbation theory it cannot affect the propagation properties
of gravitons, and only contributes ultralocal δ d(0) terms to the effective action, as
can be seen from

∏
x

[
g(x)

]σ/2 = exp

{
1
2 σ δ

d(0)
∫

ddx lng(x)
}

(2.31)

with
lng(x) = 1

2 h μ
μ − 1

4 hμνhμν +O(h3) , (2.32)

which follows from the general formal expansion formula for an operator M≡ 1+K

tr ln(1+K) =
∞

∑
n=1

(−1)n+1

n
trKn , (2.33)

which is valid provided the traces of all powers of K exist. On a spacetime lattice
one can interpret the delta function as an ultraviolet cutoff term, δ d(0) ≈Λ d . Then
the first term shifts the vacuum solution and the second one modifies the bare cos-
mological constant. To some extent these type of contributions can be regarded as
similar to the effects arising from a renormalization of the cosmological constant,
ultimately affecting only the distribution of local volumes. So far numerical studies
of the lattice models to be discussed later show no evidence of any sensitivity of the
critical exponents to the measure parameter σ .

Later in this review (Sect. 6.9) we will again return to the issue of the functional
measure for gravity in possibly the only context where it can be posed, and to some
extent answered, satisfactorily: in a lattice regularized version of quantum gravity,
going back to the spirit of the original definition of Eq. (2.4).

In conclusion, the Euclidean Feynman path integral for pure Einstein gravity with
a cosmological constant term is given by

Zcont =
∫

[d gμν ] exp
{
−λ0

∫
dx

√
g +

1
16πG

∫
dx
√

gR
}

. (2.34)

It involves a functional integration over all metrics, with measure given by a suitably
regularized form of

∫
[d gμν ] =

∫
∏

x
[g(x)]σ/2 ∏

μ≥ν
dgμν(x) , (2.35)

as in Eqs. (2.18), (2.22) and (2.27). For geometries with boundaries, further terms
should be added to the action, representing the effects of those boundaries. Then
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the path integral will depend in general on some specified initial and final three-
geometry (Hartle and Hawking, 1977; Hawking, 1979).

2.5 Conformal Instability

Euclidean quantum gravity suffers potentially from a disastrous problem associated
with the conformal instability: the presence of kinetic contributions to the linearized
action entering with the wrong sign.

As was discussed previously in Sect. 1.7, the action for linearized gravity without
a cosmological constant term, Eq. (1.7), can be conveniently written using the three
spin projection operators P(0),P(1),P(2) as

Ilin =
k
4

∫
dx hμν [P(2) −2P(0)]μναβ ∂ 2 hαβ , (2.36)

so that the spin-zero mode enters with the wrong sign, or what is normally referred
to as a ghost contribution. Actually to this order it can be removed by a suitable
choice of gauge, in which the trace mode is made to vanish, as can be seen, for
example, in Eq. (1.13). Still, if one were to integrate in the functional integral over
the spin-zero mode, one would have to distort the integration contour to complex
values, so as to render the functional integral convergent.

The problem is not removed by introducing higher derivative terms, as can be
seen from the action for the linearized theory of Eq. (1.150),

Ilin = 1
2

∫
dx { hμν [ 1

2 k + 1
2 a(−∂ 2)](−∂ 2)P(2)

μνρσ hρσ

+ hμν [−k−2b(−∂ 2)](−∂ 2)P(0)
μνρσ hρσ } , (2.37)

as the instability reappears for small momenta, where the higher derivative terms
can be ignored [see for example Eq. (1.152)]. There is a slight improvement, as the
instability is cured for large momenta, but it is not for small ones. If the perturbative
quantum calculations can be used as a guide, then at the fixed points one has b <
0, corresponding to a tachyon pole in the spin-zero sector, which would indicate
further perturbative instabilities. Of course in perturbation theory there never is a
real problem, with or without higher derivatives, as one can just define Gaussian
integrals by a suitable analytic continuation.

But the instability seen in the weak field limit is not an artifact of the weak field
expansion. If one attempts to write down a path integral for pure gravity of the form

Z =
∫

[d gμν ] e−IE , (2.38)

with an Euclidean action
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IE = λ0

∫
dx

√
g − 1

16πG

∫
dx
√

gR , (2.39)

one realizes that it too appears ill defined due to the fact that the scalar curvature
can become arbitrarily positive, or negative. In turn this can be seen as a direct
consequence of the fact that while gravitational radiation has positive energy, gravi-
tational potential energy is negative because gravity is attractive. To see more clearly
that the gravitational action can be made arbitrarily negative consider the conformal
transformation g̃μν =Ω 2gμν where Ω is some positive function. Then the Einstein
action transforms into

IE(g̃) = − 1
16πG

∫
d4x

√
g (Ω 2R+6 gμν∂μΩ ∂νΩ) , (2.40)

which can be made arbitrarily negative by choosing a rapidly varying conformal
factor Ω . Indeed in the simplest case of a metric gμν =Ω 2ημν one has

√
g(R−2λ ) = 6gμν∂μΩ ∂νΩ − 2λΩ 4 , (2.41)

which looks like a λφ 4 theory but with the wrong sign for the kinetic term. The
problem is referred to as the conformal instability of the classical Euclidean gravi-
tational action (Hawking, 1977). The gravitational action is unbounded from below,
and the functional integral is possibly divergent, depending on the detailed nature of
the gravitational measure contribution [dgμν ], more specifically its behavior in the
regime of strong fields and rapidly varying conformal factors.

A possible solution to the unboundedness problem has been described by Hawk-
ing, who suggests performing the integration over all metrics by first integrating
over conformal factors by distorting the integration contour in the complex plane to
avoid the unboundedness problem, followed by an integration over conformal equiv-
alence classes of metrics (Gibbons and Hawking, 1977; Hawking, 1978a,b; Gib-
bons, Hawking and Perry, 1978; Gibbons and Perry, 1978). Explicit examples have
been given where manifestly convergent Euclidean functional integrals have been
formulated in terms of physical (transverse-traceless) degrees of freedom, where the
weighting can be shown to arise from a manifestly positive action (Schleich, 1985;
Schleich, 1987). A similar convergent procedure seem obtainable for some so-called
minisuperspace models, where the full functional integration over the fluctuating
metric is replace by a finite dimensional integral over a set of parameters character-
izing the reduced subspace of the metric in question, see for example (Barvinsky,
2007). But it is unclear how this procedure can be applied outside perturbation the-
ory, where it not obvious how such a split for the metric should be performed.

An alternate possibility is that the unboundedness of the classical Euclidean grav-
itational action (which in the general case is certainly physical, and cannot therefore
be simply removed by a suitable choice of gauge) is not necessarily an obstacle
to defining the quantum theory. The quantum mechanical attractive Coulomb well
problem has, for zero orbital angular momentum or in the one-dimensional case,
a similar type of instability, since the action there is also unbounded from below.
The way the quantum mechanical treatment ultimately evades the problem is that
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the particle has a vanishingly small probability amplitude to fall into the infinitely
deep well. In other words, the effect of quantum mechanical fluctuations in the paths
(their zig-zag motion) is just as important as the fact that the action is unbounded.
Not unexpectedly, the Feynman path integral solution of the Coulomb problem re-
quires again first the introduction of a lattice, and then a very careful treatment of the
behavior close to the singularity (Kleinert, 2006). For this particular problem one is
of course aided by the fact that the exact solution is known from the Schrödinger
theory.

In quantum gravity the question regarding the conformal instability can then be
rephrased in a similar way: Will the quantum fluctuations in the metric be strong
enough so that physical excitations will not fall into the conformal well? Phrased
differently, what is the role of a non-trivial gravitational measure, giving rise to a
density of states n(E)

Z ∝
∫ ∞

0
dE n(E) e−E , (2.42)

regarding the issue of ultimate convergence (or divergence) of the Euclidean path
integral. Of course to answer such questions satisfactorily one needs a formulation
which is not restricted to small fluctuations and to the weak field limit. Ultimately
in the lattice theory the answer is yes, for sufficiently strong coupling G (Hamber
and Williams, 1984; Berg, 1985).



Chapter 3
Gravity in 2+ε Dimensions

3.1 Dimensional Expansion

In the previous sections it was shown that pure Einstein gravity is not perturbatively
renormalizable in the traditional sense in four dimensions. To one-loop order higher
derivative terms are generated, which, when included in the bare action, lead to po-
tential unitarity problems, whose proper treatment most likely lies outside the per-
turbative regime. The natural question then arises: Are there any other field theories
where the standard perurbative treatment fails, yet for which one can find alternative
methods and from them develop consistent predictions? The answer seems unequiv-
ocally yes (Parisi, 1975; 1985). Outside of gravity, there are two notable examples
of field theories, the non-linear sigma model and the self-coupled fermion model,
which are not perturbatively renormalizable for d > 2, and yet lead to consistent and
in some instances testable predictions above d = 2.

The key ingredient to all of these results is, as originally recognized by Wilson,
the existence of a non-trivial ultraviolet fixed point, a phase transition in the sta-
tistical field theory context, with non-trivial universal scaling dimensions (Wilson,
1971a,b; Wilson and Fisher, 1972; Wilson, 1973; 1975; Gross, 1976). Furthermore,
three quite different theoretical approaches are available for comparing predictions:
the 2+ε expansion, the large-N limit, and the lattice approach. Within the lattice ap-
proach, several additional techniques are available: the strong coupling expansion,
the weak coupling expansion and the numerically exact evaluation of the path inte-
gral. Finally, the results for the non-linear sigma model in the scaling regime around
the non-trivial ultraviolet fixed point can be compared to high accuracy satellite
experiments on three-dimensional systems, and the results agree in some cases to
several decimals.

The next three sections will therefore discuss these models from the perspective
of those results which will have some relevance later for the gravity case. Of par-
ticular interest are predictions for universal corrections to free field behavior, for
the scale dependence of couplings, and the role of the non-perturbative correlation
length which arises in the strong coupling regime.

67
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Later sections will then discuss the 2 + ε expansion for gravity, and what can
be learned from it by comparing it to the analogous expansion in the non-linear
sigma model. The similarity between the two models is such that they both exhibit
a non-trivial ultraviolet fixed point, a two-phase structure, non-trivial exponents and
scale-dependent couplings.

3.2 Perturbatively Non-renormalizable Theories:
The Sigma Model

The O(N)-symmetric non-linear σ -model provides an instructive and rich exam-
ple of a theory which, above two dimensions, is not perturbatively renormalizable
in the traditional sense, and yet can be studied in a controlled way in the context
of Wilson’s 2 + ε expansion. Such framework provides a consistent way to calcu-
late nontrivial scaling properties of the theory in those dimensions where it is not
perturbatively renormalizable (for example d = 3 and d = 4), which can then be
compared to non-perturbative results based on the lattice theory, as well as to exper-
iments, since in d = 3 the model describes either a ferromagnet or superfluid helium
in the vicinity of its critical point. In addition, the model can be solved exactly in the
large N limit for any d, without any reliance on the 2+ε expansion. Remarkably, in
all three approaches it exhibits a non-trivial ultraviolet fixed point at some coupling
gc (a phase transition in statistical mechanics language), separating a weak coupling
massless ordered phase from a massive strong coupling phase.

The non-linear σ -model is described by an N-component field φa satisfying a
unit constraint φ 2(x) = 1, with functional integral given by

Z[J] =
∫

[dφ ]∏
x
δ [φ(x) ·φ(x)−1]

× exp

(
−Λ d−2

g
S(φ) +

∫
ddx J(x) ·φ(x)

)
.

(3.1)

The action is taken to be O(N)-invariant

S(φ) = 1
2

∫
ddx ∂μφ(x) ·∂μφ(x) . (3.2)

Λ here is the ultraviolet cutoff and g the bare dimensionless coupling at the cutoff
scale Λ ; in a statistical field theory context g plays the role of a temperature.

In perturbation theory one can eliminate one φ field by introducing a conve-
nient parametrization for the unit sphere, φ(x) = {σ(x),π(x)} where πa is an N−1-
component field, and then solving locally for σ(x)

σ(x) = [1−π2(x) ]1/2 . (3.3)
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In the framework of perturbation theory in g the constraint |π(x)| < 1 is not impor-
tant as one is restricting the fluctuations to be small. Nevertheless the π integrations
will be extended from −∞ to +∞, which reduces the development of the perturbative
expansion to a sequence of Gaussian integrals. Values of π(x)∼ 1 give exponentially
small contributions of order exp(−const./g) which are therefore negligible to any
finite order in perturbation theory.

In term of the π field the original action S becomes

S(π) = 1
2

∫
ddx

[
(∂μπ)2 +

(π ·∂μπ)2

1−π2

]
. (3.4)

The change of variables from φ(x) to π(x) also gives rise to a Jacobian

∏
x

[
1−π2 ]−1/2 ∼ exp

[
− 1

2 δ
d(0)

∫
ddx ln(1−π2)

]
, (3.5)

which is necessary for the cancellation of spurious tadpole divergences. The com-
bined functional integral for the unconstrained π field is then given by

Z[J] =
∫

[dπ ] exp

(
−Λ d−2

g
S0(π) +

∫
ddx J(x) ·π(x)

)
(3.6)

with

S0(π) = 1
2

∫
ddx

[
(∂μπ)2 +

(π ·∂μπ)2

1−π2

]

+ 1
2 δ

d(0)
∫

ddx ln(1−π2) . (3.7)

In perturbation theory the above action is expanded out in powers of π . The propa-
gator for the π field can be read off from the quadratic part of the action,

Δab(k2) =
δab

k2 . (3.8)

In the weak coupling limit the π fields correspond to the Goldstone modes of the
spontaneously broken O(N) symmetry, the latter being broken spontaneously by a
non-vanishing vacuum expectation value 〈π〉 �= 0.

Since the π field has mass dimension 1
2 (d − 2), and the interactions ∂ 2π2n con-

sequently has dimension n(d−2)+2, one finds that the theory is renormalizable in
d = 2 and perturbatively non-renormalizable above d = 2. Furthermore, in spite of
the theory being non-polynomial, it can still be renormalized via the introduction of
only two renormalization constant, the coupling renormalization being given by a
constant Zg and the wavefunction renormalization by a second constant Z. Potential
infrared problems due to massless propagators are handled by introducing an exter-
nal h-field term for the original composite σ field, which then acts as a mass term
for the π field,
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h
∫

ddxσ(x) = h
∫

ddx [1−π2(x) ]1/2

=
∫

ddx [h− 1
2 hπ2(x) + . . . ] . (3.9)

A proof can be found (David, 1982) that all O(N) invariant Green’s are infrared
finite in the limit h → 0.

One can write down the same field theory on a lattice, where it corresponds
to the O(N)-symmetric classical Heisenberg model at a finite temperature T ∼ g.
The simplest procedure is to introduce a hypercubic lattice of spacing a, with sites
labeled by integers n = (n1 . . .nd), which introduces an ultraviolet cutoff Λ ∼ π/a.
On the lattice field derivatives are replaced by finite differences

∂μφ(x) → Δμφ(n) =
φ(n+μ)−φ(n)

a
, (3.10)

and the discretized path integral then reads

Z[J ] =
∫
∏

n
dφ(n)δ [φ 2(n)−1]

× exp

[
−a2−d

2g ∑
n,μ

(
Δμφ(n)

)2 +∑
n

J(x) ·φ(x)

]
.

(3.11)

The above expression is recognized as the partition function for a ferromagnetic
O(N)-symmetric spin system at finite temperature. Besides ferromagnets, it can be
used to describe systems which are related to it by universality, such as supercon-
ductors and superfluid helium transitions, whose critical behavior is described by
a complex phase, and which are therefore directly connected to the plane rotator
N = 2, or U(1), model.

In addition the lattice model of Eq. (3.11) provides an explicit regularization for
the continuum theory, which makes expressions like the one in Eq. (3.5) acquire a
well defined meaning. It is in fact the only regularization which allows a discussion
of the role of the measure in perturbation theory (Zinn-Justin, 2002). At the same
time it provides an ultraviolet regularization for perturbation theory, and allows for
various non-perturbative calculations, such as power series expansions in three di-
mensions and explicit numerical integrations of the path integral via Monte Carlo
methods.

In two dimensions one can compute the renormalization of the coupling g from
the action of Eq. (3.6) and one finds after a short calculation (Polyakov, 1975) for
small g

1
g(μ)

=
1
g

+
N −2

8π
ln
μ2

Λ 2 + . . . (3.12)

where μ is an arbitrary momentum scale. Physically one can view the origin of
the factor of N − 2 in the fact that there are N − 2 directions in which the spin can
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(a) (b) (c) 

Fig. 3.1 One-loop diagrams giving rise to coupling and field renormalizations in the non-linear
σ -model. Group theory indices a flow along the thick lines, dashed lines should be contracted to a
point.

experience rapid small fluctuations perpendicular to its average slow motion on the
unit sphere, and that only these fluctuations contribute to leading order.

In two dimensions the quantum correction (the second term on the r.h.s.) in-
creases the value of the effective coupling at low momenta (large distances), unless
N = 2 in which case the correction vanishes. In fact the quantum correction can be
shown to vanish to all orders in this case; the vanishing of the β -function in two
dimensions for the O(2) model is true only in perturbation theory, for sufficiently
strong coupling a phase transition appears, driven by the unbinding of vortex pairs
(Kosterlitz and Thouless, 1973). For N > 2 as g(μ) flows toward increasingly strong
coupling it eventually leaves the regime where perturbation theory can be consid-
ered reliable. But for bare g ≈ 0 the quantum correction is negligible and the the-
ory is scale invariant around the origin: the only fixed point of the renormalization
group, at least in lowest order perturbation theory, is at g = 0. For fixed cutoffΛ , the
theory is weakly coupled at short distances but strongly coupled at large distances.
The results in two dimensions for N > 2 are qualitatively very similar to asymptotic
freedom in four-dimensional SU(N) Yang-Mills theories.

Above two dimensions, d −2 = ε > 0 and one can redo the same type of pertur-
bative calculation to determine the coupling renormalization. The relevant diagrams
are shown in Fig. 3.1. One finds for the effective coupling ge, i.e. the coupling which
includes the leading radiative correction (using dimensional regularization, which is
more convenient than an explicit ultraviolet cutoff Λ for performing actual pertur-
bative calculations),

1
ge

=
Λε

g

[
1 − 1

ε
N −2

2π
g + O(g2)

]
. (3.13)

The requirement that the dimensionful effective coupling ge be defined indepen-
dently of the scaleΛ is expressed asΛ d

dΛ ge = 0, and gives for the Callan-Symanzik
β -function (Callan, 1970; Symanzik, 1970) for g
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Λ
∂ g
∂ Λ

= β (g) = ε g− N −2
2π

g2 + O
(
g3,εg2) . (3.14)

The above β -function determines the scale dependence (at least in perturbation the-
ory) of g for an arbitrary scale, which from now on will be denoted as μ . Then the
differential equation μ ∂g

∂μ = β [g(μ)] uniquely determines how g(μ) flows as a func-
tion of momentum scale μ . The scale dependence of g(μ) is such that if the initial
g is less than the ultraviolet fixed point value gc, with

gc =
2πε

N −2
+ . . . (3.15)

then the coupling will flow towards the Gaussian fixed point at g = 0. The new phase
that appears when ε > 0 and corresponds to a low temperature, spontaneously bro-
ken phase with finite order parameter. On the other hand if g > gc then the coupling
g(μ) flows towards increasingly strong coupling, and eventually out of reach of per-
turbation theory. In two dimensions the β -function has no zero and only the strong
coupling phase is present.

The simplest way of obtaining explicitly the renormalization group behavior of
the coupling g is as follows. One parametrises, for N > 2, the original N-component
field φ , which is constrained by φ 2 = 1, in terms of two fields θ and τ , defined by

φ1 =
√

1 − τ2 cosθ

φ2 =
√

1 − τ2 sinθ
φ j = τ j j = 3 . . .N . (3.16)

In this new set of variables, the original action for the non-linear sigma model be-
comes

S = 1
2

∫
ddx

[
(1 − τ2)(∂μ θ)2 + (∂μ

√
1 − τ2 )2 + (∂μ τ)2

]
. (3.17)

The θ variable now enters the action in a very simple way, through a quadratic term.
Since the action now contains as unconstrained variables θ and τ , one can now
think, at least for sufficiently small coupling g (low temperatures), of integrating
first over the τ variables, after rescaling τ →√

gτ . The result is an effective action
for the θ variables, and to lowest order the overall effect is to replace in the first
term τ2 by its average 〈τ2〉. Since τ is to lowest order a free field, one computes

〈 τi(x)τ j(y) 〉 = gΛ 2−d δi j

∫
ddk

(2π)d

eik·(x−y)

k2 . (3.18)

After evaluating the k integral, taking the limit x → y, and doing the trace over the
index i = 3 . . .N one obtains for d > 2

〈τ2 〉 = (N − 2)
g

2πε
+ O(g2) . (3.19)
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This then gives the desired result for the beta function of the nonlinear sigma model,
to lowest order in g, as in Eqs. (3.13) and (3.14).

In exactly d = 2 one needs to cutoff the k integral, and one finds instead 〈τ2〉 =
(N − 2) g

2π logΛ + O(g2). So in two dimensions the effective coupling is

1
geff

=
1
g
− N − 2

2π
logΛ + O(g) (d = 2) , (3.20)

which implies the asymptotic freedom result for d = 2 and N > 2, namely

β (g) = −(N −2)
g2

2π
+ O(g3) (d = 2) . (3.21)

(see Fig. 3.2).

Fig. 3.2 The ε-expansion re-
sult for the Callan-Symanzik
β -function in the non-linear
σ -model for d > 2. The non-
trivial ultraviolet fixed point
is, to lowest order in ε , located
at gc = 2π(d −2)/(N −2).

 (g)β  

g gc

The one-loop running of g as a function of a sliding momentum scale μ = k and
ε > 0 can be obtained by integrating Eq. (3.14). One finds

g(k2) =
gc

1 ± a0 (m2/k2)(d−2)/2
, (3.22)

with a0 a positive constant and m a mass scale; the combination a0md−2 is just the
integration constant for the differential equation, which we prefer to split here in
a momentum scale and a dimensionless coefficient for reasons that will become
clear later. The choice of + or − sign is determined from whether one is to the left
(+), or to right (-) of gc, in which case g(k2) decreases or, respectively, increases as
one flows away from the ultraviolet fixed point. The renormalization group invariant
mass scale ∼m arises here as an arbitrary integration constant of the renormalization
group equations, and cannot be determined from perturbative arguments alone. It
should also be clear that multiplying both sides of Eq. (3.22) by the ultraviolet cutoff
factor Λ 2−d to get back the original dimensionful coupling multiplying the action
S(φ) in Eq. (3.1) does not change any of the conclusions.

It is important to point out that the result of Eq. (3.22) is quite different from the
naive expectation based on straight perturbation theory in d > 2 dimensions (where
the theory is not perturbatively renormalizable)
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g(k2)
g

∼ 1+ const. g kd−2 +O(g2) , (3.23)

which gives a much worse ultraviolet behavior. The existence of a non-trivial ul-
traviolet fixed point alters the naive picture and drastically improves the ultraviolet
behavior.

For large g one can easily see, for example from the structure of the lattice action
in Eq. (3.11), that correlation functions must decay exponentially at large separa-
tions. In the strong coupling limit, spins separated by a distance |x| will fluctuate
in an uncorrelated fashion, unless they are connected by a minimal number of link
contributions from the action. One expects therefore for the lattice connected corre-
lation function of two φ fields, separated by a lattice distance na,

<π(na)π(0)>c ∼
n→∞

(
1
g

)n

, (3.24)

which can be re-written in continuum language

<π(x)π(0)>c ∼
|x|→∞

exp(−|x|/ξ ) , (3.25)

with m = 1/ξ = Λ [lng + O(1/g)] and Λ = 1/a. From the requirement that the
correlation length ξ be a physical quantity independent of scale, and consequently
a renormalization group invariant,

Λ
d

dΛ
m[Λ ,g(Λ)] = 0 , (3.26)

one obtains in the strong coupling limit

β (g) = −g lng + O(1/g) . (3.27)

The quantity m = 1/ξ is usually referred to as the mass gap of the theory, that is the
energy difference between the ground state (vacuum) and the first excited state.

If in Eq. (3.22) one sets the momentum scale k equal to the cutoff scale Λ and
solves for m in the strong coupling phase one obtains

gc

g(Λ)
= 1−a0

(
m2

Λ 2

)(d−2)/2

, (3.28)

and therefore for m in terms of the bare coupling g ≡ g(Λ)

m(g) =Λ
(

gc

a0

)2/(d−2)( 1
gc

− 1
g

)1/(d−2)

. (3.29)

This last result shows the following important fact: if m is identified with the inverse
of the correlation length ξ (which can be extracted non-perturbatively, for exam-
ple from the exponential decay of correlation functions, and is therefore generally
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unambiguous), then the calculable constant relating m to g in Eq. (3.29) uniquely
determines the coefficient a0 in Eq. (3.22). For example, in the large N limit the
value for a0 will be given later in Eq. (3.60).

In general one can write down the complete renormalization group equations
for the cutoff-dependent n-point functions Γ (n)(pi,g,h,Λ) (Brezin and Zinn-Justin,
1976; Zinn-Justin, 2002). For this purpose one needs to define the renormalized

truncated n-point function Γ (n)
r ,

Γ (n)
r (pi,gr,hr,μ) = Zn/2(Λ/μ ,g)Γ (n)(pi,g,h,Λ) , (3.30)

where μ is a renormalization scale, and the constants gr, hr and Z are defined by

g = (Λ/μ)d−2Zg gr π(x) = Z1/2πr(x)

h = Zhhr Zh = Zg/
√

Z . (3.31)

The requirement that the renormalized n-point function Γ (n)
r be independent of the

cutoff Λ then implies
[
Λ

∂
∂Λ

+β (g)
∂
∂g

− n
2
ζ (g)+ρ(g)h

∂
∂h

]
Γ (n)(pi,g,h,Λ) = 0 , (3.32)

with the renormalization group functions β (g), ζ (g) and ρ(g) defined as

Λ
∂
∂Λ

|ren.fixed g = β (g)

Λ
∂
∂Λ

|ren.fixed (− lnZ) = ζ (g)

2−d + 1
2ζ (g)+

β (g)
g

= ρ(g) . (3.33)

Here the derivatives of the bare coupling g, of the π-field wave function renormaliza-
tion constant Z and of the external field h with respect to the cutoff Λ are evaluated
at fixed renormalized (or effective) coupling, at the renormalization scale μ .

To determine the renormalization group functions β (g), ζ (g) and ρ(g) one can
in fact follow a related but equivalent procedure, in which, instead of requiring the

renormalized n-point functions Γ (n)
r to be independent of the cutoffΛ at fixed renor-

malization scale μ as in Eq. (3.33), one imposes that the bare n-point functions
Γ (n) be independent of the renormalization scale μ at fixed cutoff Λ . One can show
(Brezin, Le Guillou and Zinn-Justin, 1976) that the resulting renormalization group
functions are identical to the previous ones, and that one can obtain the scale depen-
dence of the couplings [i.e. β (g)] either way. Physically the latter way of thinking
is perhaps more suited to a situation where one is dealing with a finite cutoff the-
ory, where the ultraviolet cutoff Λ is fixed and one wants to investigate the scale
(momentum) dependence of the couplings, for example g(k2).
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For our purposes it will sufficient to look, in the zero-field case h = 0, at the
β -function of Eq. (3.14) which incorporates, as should already be clear from the
result of Eq. (3.33), a tremendous amount of information about the model. Herein
lies the power of the renormalization group: the knowledge of a handful of functions
[β (g),ζ (g)] is sufficient to completely determine the momentum dependence of all
n-point functions Γ (n)(pi,g,h,Λ).

One can integrate the β -function equation in Eq. (3.14) to obtain the renormal-
ization group invariant quantity

ξ−1(g) = m(g) = const.Λ exp

(
−
∫ g dg′

β (g′)

)
, (3.34)

which is identified with the correlation length appearing, for example, in Eq. (3.25).
The multiplicative constant in front of the expression on the r.h.s. arises as an in-
tegration constant, and cannot be determined from perturbation theory in g. Con-
versely, it is easy to verify that ξ is indeed a renormalization group invariant,
Λ d

dΛ ξ [Λ ,g(Λ)] = 0, as stated previously in Eq. (3.26).
In the vicinity of the fixed point at gc one can do the integral in Eq. (3.34), using

Eq. (3.15) and the resulting linearized expression for the β -function in the vicinity
of the non-trivial ultraviolet fixed point,

β (g) ∼
g→gc

β ′(gc)(g−gc) + . . . (3.35)

and one finds
ξ−1(g) = m(g) ∝ Λ |g−gc |ν , (3.36)

with a correlation length exponent ν = −1/β ′(gc) ∼ 1/(d −2)+ . . .. Thus the cor-
relation length ξ (g) diverges as one approaches the fixed point at gc.

In general the existence of a non-trivial ultraviolet fixed point implies that the
large momentum behavior above two dimensions is not given by naive perturbation
theory; it is given instead by the critical behavior of the renormalized theory. In
the weak coupling, small g phase the scale m can be regarded as a crossover scale
between the free field behavior at large distance scales and the critical behavior
which sets in at large momenta.

In the non-linear σ -model another quantity of physical interest is the function
M0(g),

M0(g) = exp

[
− 1

2

∫ g

0
dg′

ζ (g′)
β (g′)

]
, (3.37)

which is proportional to the order parameter (the magnetization) of the non-linear
σ -model. To one-loop order one finds ζ (g) = 1

2π (N −1)g+ . . . and therefore

M0(g) = const.(gc −g)β , (3.38)

with β = 1
2ν(d−2+η) and η = ζ (gc)−ε . To leading order in the ε expansion one

has for the anomalous dimension of the π field η = ε/(N − 2)+ O(ε2). In gauge
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theories, including gravity, there is no local order parameter, so this quantity has no
obvious generalization there.

In general the ε-expansion is only expected to be asymptotic. This is already seen
from the expansion for ν which has recently been computed to four loops (Hikami
and Brezin, 1978; Bernreuther and Wegner, 1986; Kleinert, 2000)

ν−1 = ε +
ε2

N −2
+

ε3

2(N −2)

− [30−14N +N2 +(54−18N)ζ (3)]

× ε4

4(N −2)3 + . . . (3.39)

which needs to be summed by Borel-Padé methods to obtain reliable results in three
dimensions. For example, for N = 3 one finds in three dimensions ν ≈ 0.799, which
can be compared to the 4− ε result for the λφ 4 theory to five loops ν � 0.705, to
the seven-loop perturbative expansion for the λφ 4 theory directly in 3d which gives
ν � 0.707, with the high temperature series result ν � 0.717 and the Monte Carlo
estimates ν � 0.718, as compiled for example in a recent comprehensive review
(Guida and Zinn-Justin, 1998).

There exist standard methods to deal with asymptotic series such as the one in
Eq. (3.39). To this purpose one considers a general series

f (g) =
∞

∑
n=0

fn gn , (3.40)

and defines its Borel transform as

F(b) =
∞

∑
n=0

fn

n!
bn . (3.41)

One can attempt to sum the series for F(b) using Padé methods and conformal trans-
formations. The original function f (g) is then recovered by performing an integral
over the Borel transform variable b

f (g) = 1
g

∫ ∞

0
dbe−b/g F(b) , (3.42)

where the familiar formula
∫ ∞

0
dzzn e−z/g = n!gn+1 , (3.43)

has been used. Bounds on the coefficients fn suggest that in most cases F(z) is
analytic in a circle of radius a around the origin, and that the integral will converge
for |z| small enough, within a sector |argz|< α/2 with typically α ≥ π (Le Guillou
and Zinn-Justin, 1980).
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The first singularity along the positive real axis is generally referred to as
an infrared renormalon, and is expected to be, in the 2d non-linear σ -model, at
b = 1/2β0 where β0 = (N −2)/2π , and gives rise to non-analytic corrections of or-
der exp(−2π/(N−2)g) (David, 1982). Such non-analytic contributions presumably
account for the fact (Cardy and Hamber, 1980) that the N = 2 model has a vanishing
β -function to all orders in d = 2, and yet has non-trivial finite exponents in d = 3, in
spite of the result of Eq. (3.39). Indeed the 2+ε expansion is not particularly useful
for the special case of the N = 2 σ -model. Then the action is simply given by

S(θ) =
Λ d−2

2g

∫
ddx

[
∂μθ(x)

]2
, (3.44)

with φ1(x) = sinθ(x) and φ2(x) = cosθ(x), describing the fluctuations of a planar
spin in d dimensions. The β -function of Eq. (3.14) then vanishes identically in d =
2, and the corrections to ν diverge for d > 2, as in Eq. (3.39). Yet this appears to be
more a pathology of the perturbative expansion in ε , since after all the lattice model
of Eq. (3.11) is still well defined, and so is the 4− ε expansion for the continuum
linear O(N) σ -model. Thus, in spite of the model being again not perturbatively
renormalizable in d = 3, one can still develop, for these models, the full machinery
of the renormalization group and compute the relevant critical exponents.

Perhaps more importantly, a recent space shuttle experiment (Lipa et al, 2003)
has succeeded in measuring the specific heat exponent α = 2− 3ν of superfluid
Helium (which is supposed to share the same universality class as the N = 2 non-
linear σ -model, with the complex phase of the superfluid condensate acting as the
order parameter) to very high accuracy

α = −0.0127(3) . (3.45)

Previous theoretical predictions for the N = 2 model include the most recent four-
loop 4− ε continuum result α = −0.01126(10) (Kleinert, 2000), a recent lattice
Monte Carlo estimate α = −0.0146(8) (Campostrini et al, 2001), and the lattice
variational renormalization group prediction α = −0.0125(39).

Perhaps the message one gains from this rather lengthy discussion of the non-
linear σ -model in d > 2 is that:

◦ The model provides a specific example of a theory which is not perturbatively
renormalizable in the traditional sense, and for which the naive perturbative ex-
pansion in fixed dimension leads to uncontrollable divergences and inconsistent
results;

◦ Yet the model can be constructed perturbatively in terms of a double expansion
in g and ε = d − 2. This new perturbative expansion, combined with the renor-
malization group, in the end provides explicit and detailed information about
universal scaling properties of the theory in the vicinity of the non-trivial ultravi-
olet point at gc;

◦ The continuum field theory predictions obtained this way generally agree, for
distances much larger than the cutoff scale, with lattice results, and, perhaps more
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importantly, with high precision experiments on systems belonging to the same
universality class of the O(N) model.

3.3 Non-linear Sigma Model in the Large-N Limit

A rather fortunate circumstance is represented by the fact that in the large N limit the
non-linear σ -model can be solved exactly. This allows an independent verification
of the correctness of the general ideas developed in the previous section, as well as
a direct comparison of explicit results for universal quantities. The starting point is
the functional integral of Eq. (3.1),

Z =
∫

[dφ(x) ]∏
x
δ
[
φ 2(x)−1

]
exp [−S(φ)] (3.46)

with

S(φ) =
1

2T

∫
ddx ∂μφ(x) ·∂μφ(x) . (3.47)

The constraint on the φ field can be implemented via an auxiliary Lagrange multi-
plier field α(x). One writes

Z =
∫

[dφ(x)] [dα(x)] exp [−S(φ ,α)] (3.48)

with

S(φ ,α) =
1

2T

∫
ddx

[
[∂μφ(x)]2 + α(x)(φ 2(x)−1)

]
. (3.49)

Since the action is now quadratic in φ(x) one can integrate over N − 1 φ -fields
(denoted previously by π). The resulting determinant is then re-exponentiated, and
one is left with a functional integral over the remaining first field φ1(x) ≡ σ(x), as
well as the Lagrange multiplier field α(x),

Z =
∫

[dσ(x)dα(x)] exp [−SN(φ ,α)] (3.50)

with now

SN(φ ,α) =
1

2T

∫
ddx

[
(∂μσ)2 +α(σ2 −1)

]

+ 1
2 (N −1) tr ln[−∂ 2 +α] . (3.51)

In the large N limit one can neglect, to leading order, fluctuations in the α and σ
fields. For a constant α field, <α(x)>= m2, the last (trace) term can be written in
momentum space as
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1
2 (N −1)

∫ Λ ddk
(2π)d ln(k2 +m2) , (3.52)

which makes the evaluation of the trace straightforward. As should be clear from
Eq. (3.49), the parameter m can be interpreted as the mass of the φ field. The func-
tional integral in Eq. (3.50) can then be evaluated by the saddle point method. It is
easy to see from Eq. (3.51) that the saddle point conditions are

σ2 = 1− (N −1)Ωd(m)T ,

m2σ = 0 (3.53)

with the function Ωd(m) given by the integral

Ωd =
∫ Λ ddk

(2π)d

1
k2 +m2 . (3.54)

The latter can be evaluated in terms of a hypergeometric function,

Ωd =
1

2d−1πd/2Γ (d/2)
Λ d

m2d 2F1

[
1,

d
2

; 1+
d
2

; −Λ 2

m2

]
, (3.55)

but here one only really needs it in the large cutoff limit, m �Λ , in which case one
finds the more tractable expression

Ωd(m)−Ωd(0) = m2[c1md−4 + c2Λ d−4 +O(m2Λ d−6)] , (3.56)

with c1 and c2 some d-dependent coefficients.
From Eq. (3.53) one notices that at weak coupling and for d > 2 a non-vanishing

σ -field expectation value implies that m, the mass of the π field, is zero. If one sets
(N −1)Ωd(0) = 1/Tc, one can then write the first expression in Eq. (3.53) as

σ(T ) = ± [1−T/Tc]1/2 , (3.57)

which shows that Tc is the critical coupling at which the order parameter σ vanishes.
Above Tc the order parameter σ vanishes, and m(T ) is obtained, from Eq. (3.53),

by the solution of the nonlinear gap equation

1
T

= (N −1)
∫ Λ ddk

(2π)d

1
k2 +m2 . (3.58)

Using the definition of the critical coupling Tc, one can now write, for 2 < d < 4,
for the common mass of the σ and π fields

m(T ) ∼
m�Λ

(
1
Tc

− 1
T

)1/(d−2)

, (3.59)
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which gives for the correlation length exponent the non-gaussian value ν = 1/(d −
2), with the gaussian value ν = 1/2 being recovered as expected at d = 4 (Wilson
and Fisher, 1972). Note that in the large N limit the constant of proportionality in
Eq. (3.59) is completely determined by the explicit expression for Ωd(m).

Perhaps one of the most striking aspects of the non-linear sigma model above
two dimensions is that all particles are massless in perturbation theory, yet they all
become massive in the strong coupling phase T > Tc, with masses proportional to
the non-perturbative scale m.

Again one can perform a renormalization group analysis as was done in the pre-
vious section in the context of the 2 + ε expansion. To this end one defines dimen-
sionless coupling constants g = Λ d−2T and gc = Λ d−2Tc as was done in Eq. (3.1).
Then the non-perturbative result of Eq. (3.59) becomes

m(g) � cd ·Λ
(

1
gc

− 1
g

)1/(d−2)

, (3.60)

with the numerical coefficient given by cd = [ 1
2 (d − 2)π|csc

(
dπ
2

)
|] 1

d−2 . One wel-
come feature of this large-N result is the fact that it provides an explicit value for
the coefficient in Eq. (3.29), namely

cd =
(

gc

a0

)1/(d−2)

, (3.61)

and thereby for the numerical factor a0 appearing in Eqs. (3.29) and (3.22).
Again the physical, dimensionful mass m in Eqs. (3.59) or (3.60) is required to

be scale- and cutoff-independent as in Eq. (3.26)

Λ
d

dΛ
m[Λ ,g(Λ)] = 0 , (3.62)

or, more explicitly, using the expression for m in Eq. (3.60),
[
Λ

∂
∂Λ

+ β (g)
∂
∂g

]
Λ (

1
gc

− 1
g
)1/(d−2) = 0 , (3.63)

which implies for the O(N) β -function in the large N limit the simple result

β (g) = (d −2)g(1−g/gc) . (3.64)

The latter is valid again in the vicinity of the fixed point at gc, due to the assumption,
used in Eq. (3.59), of m � Λ . Note that it vanishes in d = 2, and for g = 0, in
agreement with the 2 + ε result of Eq. (3.14). Furthermore Eq. (3.64) gives the
momentum dependence of the coupling at fixed cutoff. After integration, one finds
for the momentum (μ) dependence of the coupling at fixed cutoff Λ

g(μ)
gc

=
1

1− c(μ0/μ)d−2 ≈ 1+ c(μ0/μ)d−2 + . . . (3.65)
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Fig. 3.3 The β -function for
the non-linear σ -model in the
large-N limit for d > 2.

 (g)β  

g gc

with cμd−2
0 the integration constant. The sign of c then depends on whether one is

on the right (c > 0) or on the left (c < 0) of the ultraviolet fixed point at gc.
One notices therefore again that the general shape of β (g) is of the type shown

in Fig. 3.3, with gc a stable non-trivial UV fixed point, and g = 0 and g = ∞ two
stable (trivial) IR fixed points. Once more, at the critical point gc the β -function
vanishes and the theory becomes scale invariant. Furthermore one can check that
again ν = −1/β ′(gc) where ν is the exponent in Eq. (3.59). As before one can
re-write the physical mass m for 2 < d < 4 as

ξ−1(g) = m(g) ∝Λ exp

(
−
∫ g dg′

β (g′)

)
, (3.66)

as was done previously in Eq. (3.34).
Another general lesson one learns is that Eq. (3.62),

[
Λ

∂
∂Λ

+ β (g)
∂
∂g

]
m[Λ ,g(Λ)] = 0 , (3.67)

can be used to provide a non-perturbative definition for the β -function β (g). If one
sets m = ΛF(g), with F(g) a dimensionless function of g, then one has the simple
result

β (g) = − F(g)
F ′(g)

. (3.68)

Thus the knowledge of the dependence of the mass gap m on the bare coupling g
fixes the shape of the β function, at least in the vicinity of the fixed point. It should
be clear then that the definition of the β -function per se, and therefore the scale
dependence of g(μ) which follows from it [as determined from the solution of the
differential equation μ ∂g

∂μ = β (g(μ))] is not necessarily tied to perturbation theory.
When N is large but finite, one can develop a systematic 1/N expansion in or-

der to evaluate the corrections to the picture presented above (Zinn-Justin, 2002).
Corrections to the exponents are known up to order 1/N2, but the expressions are
rather complicated for arbitrary d and will not be reproduced here. In general it ap-
pears that the 1/N expansion is only asymptotic, and somewhat slowly convergent
for useful values of N in three dimensions.
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3.4 Self-coupled Fermion Model

The non-linear sigma model is not an isolated example of a field theory that is
not perturbatively renormalizable above two dimensions, although it is certainly by
far the most thoroghly explored one. Here it seems worthwhile to mention a second
example of a theory which naively is not perturbatively renormalizable in d > 2, and
yet whose critical properties can again be worked out both in the 2 + ε expansion,
and in the large N limit. It is described by an U(N)-invariant action containing a set
of N massless self-coupled Dirac fermions (Wilson, 1973; Gross and Neveu, 1974)

S(ψ, ψ̄) = −
∫

ddx[ψ̄ · �∂ ψ+ 1
2Λ

d−2 u(ψ̄ ·ψ)2] . (3.69)

In even dimensions the discrete chiral symmetry ψ → γ5ψ , ψ̄ →−ψ̄γ5 prevents the
appearance of a fermion mass term. Interest in the model resides in the fact that it
exhibits a mechanism for dynamical mass generation and chiral symmetry breaking.

In two dimensions the fermion self-coupling constant is dimensionless, and after
setting d = 2+ε one is again ready to develop the full machinery of the perturbative
expansion in u and ε , as was done for the non-linear σ -model, since the model is
again believed to be multiplicatively renormalizable in the framework of the 2 + ε
expansion. For the β -function one finds to three loops

β (u) = εu− N̄ −2
2π

u2 +
N̄ −2
4π2 u3 +

(N̄ −2)(N̄ −7)
32π3 u4 + . . . (3.70)

with the parameter N̄ = N tr1, where the last quantity is the identity matrix in the γ-
matrix algebra. In two dimensions N̄ = 2N and the model is asymptotically free; for
N̄ = 2 the interaction is proportional to the Thirring one and the β -function vanishes
identically.

As for the case of the non-linear σ -model, the solution of the renormalization
group equations involves an invariant scale, which can be obtained (up to a con-
stant which cannot be determined from perturbation theory alone) by integrating
Eq. (3.70)

ξ−1(u) = m(u) = const.Λ exp

[
−
∫ u du′

β (u′)

]
. (3.71)

In two dimensions this scale is, to lowest order in u, proportional to

m(u) ∼
u→0

Λ exp

[
− 2π

(N̄ −2)u

]
, (3.72)

and thus non-analytic in the bare coupling u. Above two dimensions a non-trivial
ultraviolet fixed point appears at

uc =
2π

N̄ −2
ε+

2π
(N̄ −2)2 ε

2 +
(N̄ +1)π
2(N̄ −2)3 ε

3 + . . . (3.73)
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In the weak coupling phase u < uc the fermions stay massless and chiral symmetry
is unbroken, whereas in the strong coupling phase u > uc (which is the only phase
present in d = 2) chiral symmetry is broken, a fermion condensate arises and a non-
perturbative fermion mass is generated. In the vicinity of the ultraviolet fixed point
one has for the mass gap

m(u) ∼
u→uc

Λ (u−uc)
ν , (3.74)

up to a constant of proportionality, with the exponent ν given by

ν−1 ≡−β ′(uc) = ε− ε2

N̄ −2
− (N̄ −3)π

2(N̄ −2)2 ε
3 + . . . (3.75)

The rest of the analysis proceeds in a way that, at least formally, is virtually identical
to the non-linear σ -model case. It need not be repeated here, as one can just take over
the relevant formulas for the renormalization group behavior of n-point functions,
for the running of the couplings, etc.

The existence of a non-trivial ultraviolet fixed point implies that the large mo-
mentum behavior above two dimensions is not given by naive perturbation theory;
it is given instead by the critical behavior of the renormalized theory, in accordance
with Eq. (3.70). In the weak coupling, small u phase the scale m can be regarded
as a crossover scale between the free field behavior at large distance scales and the
critical behavior which sets in at large momenta.

Finally, the same model can be solved exactly in the large N limit. There too
one can show that the model is characterized by two phases, a weak coupling phase
where the fermions are massless and a strong coupling phase in which a chiral sym-
metry is spontaneously broken.

3.5 The Gravitational Case

In two dimensions the gravitational coupling becomes dimensionless, G ∼ Λ 2−d ,
and the theory appears perturbatively renormalizable. In spite of the fact that the
gravitational action reduces to a topological invariant in two dimensions, it would
seem meaningful to try to construct, in analogy to what was suggested originally for
scalar field theories (Wilson, 1973), the theory perturbatively as a double series in
ε = d −2 and G.

One first notices though that in pure Einstein gravity, with Lagrangian density

L = − 1
16πG0

√
gR , (3.76)

the bare coupling G0 can be completely reabsorbed by a field redefinition

gμν = ω g′μν , (3.77)
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with ω is a constant, and thus the renormalization properties of G0 have no physical
meaning for this theory. This simply follows from the fact that

√
gR is homogeneous

in gμν , which is quite different from the Yang-Mills case. The situation changes
though when one introduces a second dimensionful quantity to compare to. In the
pure gravity case this contribution is naturally supplied by the cosmological constant
term proportional to λ0,

L = − 1
16πG0

√
gR + λ0

√
g . (3.78)

Under a rescaling of the metric as in Eq. (3.77) one has

L = − 1
16πG0

ωd/2−1
√

g′ R′ + λ0ωd/2
√

g′ , (3.79)

which is interpreted as a rescaling of the two bare couplings

G0 → ω−d/2+1G0 , λ0 → λ0ωd/2 , (3.80)

leaving the dimensionless combination Gd
0λ

d−2
0 unchanged. Therefore only the lat-

ter combination has physical meaning in pure gravity. In particular, one can always

choose the scale ω = λ−2/d
0 so as to adjust the volume term to have a unit co-

efficient. More importantly, it is physically meaningless to discuss separately the
renormalization properties of G0 and λ0, as they are individually gauge-dependent
in the sense just illustrated. These arguments should clarify why in the following it
will be sufficient at the end to just focus on the renormalization properties of one
coupling, such as Newton’s constant G0.

In general it is possible at least in principle to define quantum gravity in any d > 2
(Weinberg, 1979). There are d(d + 1)/2 independent components of the metric in
d dimensions, and the same number of algebraically independent components of
the Ricci tensor appearing in the field equations. The contracted Bianchi identities
reduce the count by d, and so does general coordinate invariance, leaving d(d−3)/2
physical gravitational degrees of freedom in d dimensions. At the same time, four
space-time dimensions is known to be the lowest dimension for which Ricci flatness
does not imply the vanishing of the gravitational field, Rμνλσ = 0, and therefore the
first dimension to allow for gravitational waves and their quantum counterparts,
gravitons.

In a general dimension the position space tree-level graviton propagator of the
linearized theory, given in k-space in Eq. (1.77), can be obtained by Fourier trans-
form and is proportional to

∫
ddk

1
k2 eik·x =

Γ
(

d−2
2

)
4πd/2 (x2)d/2−1

. (3.81)

The static gravitational potential is then proportional to the spatial Fourier transform

V (r) ∝
∫

dd−1k
eik·x

k2 ∼ 1
rd−3 , (3.82)
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and can be shown to vanish in d = 3. To show this one needs to compute the analog
of Eq. (1.17) in d dimensions, which is

− κ2

2

∫
ddx

[
Tμν �−1 T μν − (d −2)−1 T μ

μ �−1 T ν
ν

]

→ − d −3
d −2

κ2

2

∫
dd−1xT 00 G T 00 , (3.83)

where the Green’s function G is the static limit of 1/�, and κ2 = 16πG. The above
result implies that there are no Newtonian forces in d=2+1 dimensions (Deser,
Jackiw and ’t Hooft, 1984; Deser and Jackiw, 1984). The only fluctuations left in
3d are possibly associated with the scalar curvature (Deser, Jackiw and Templeton,
1982).

The 2+ ε expansion for pure gravity then proceeds as follows. First the gravita-
tional part of the action

L = − με

16πG
√

gR , (3.84)

with G dimensionless and μ an arbitrary momentum scale, is expanded by setting

gμν → ḡμν = gμν + hμν , (3.85)

where gμν is the classical background field and hμν the small quantum fluctuation.
The quantity L in Eq. (3.84) is naturally identified with the bare Lagrangian, and
the scale μ with a microscopic ultraviolet cutoff Λ , the inverse lattice spacing in a
lattice formulation. Since the resulting perturbative expansion is generally reduced
to the evaluation of Gaussian integrals, the original constraint (in the Euclidean
theory)

detgμν(x) > 0 , (3.86)

is no longer enforced [the same is not true in the lattice regulated theory, where it
plays an important role, see the discussion following Eq. (6.70)].

A gauge fixing term needs to be added, in the form of a background harmonic
gauge condition,

Lg f = 1
2α

√
ggνρ

(
∇μhμν − 1

2βgμν∇μh
)(
∇λhλρ − 1

2βgλρ∇λh
)

, (3.87)

with hμν = gμαgνβhαβ , h = gμνhμν and ∇μ the covariant derivative with respect
to the background metric gμν . The gauge fixing term also gives rise to a Faddeev-
Popov ghost contribution Lghost containing the ghost field ψμ , so that the total La-
grangian becomes L +Lg f +Lghost .

In a flat background, gμν = δ μν , one obtains from the quadratic part of the La-
grangian of Eqs. (3.84) and (3.87) the following expression for the graviton propa-
gator

<hμν(k)hαβ (−k)>=
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(a) (b) (c) 

× × ×

Fig. 3.4 One-loop diagrams giving rise to coupling renormalizations in gravity. From left to right,
graviton loop, ghost loop and scalar matter loop.

1
k2 (δμαδνβ +δμβ δνα)− 2

d −2
1
k2 δμνδαβ

−
(

1− 1
α

)
1
k4 (δμαkνkβ +δναkμkβ +δμβ kνkα +δνβ kμkα)

+
1

d −2
4(β −1)
β −2

1
k4 (δμνkαkβ +δαβ kμkν)

+
4(1−β )
(β −2)2

[
2− 3−β

α
− 2(1−β )

d −2

]
1
k6 kνkνkαkβ .

(3.88)

Normally it would be convenient to choose a gauge α=β = 1, in which case only
the first two terms for the graviton propagator survive. But here it might be advan-
tageous to leave the two gauge parameters unspecified, so that one can later show
explicitly the gauge independence of the final result. In particular the gauge pa-
rameter β is related to the gauge freedom associated with the possibility, described
above, of rescaling the metric gμν . Note also the presence of kinematical poles in
ε = d −2 in the second, fourth and fifth term for the graviton propagator.

To illustrate explicitly the mechanism of coupling renormalization, the cosmo-
logical term will be discussed first, since the procedure is a bit simpler. The cosmo-
logical term

√
g is first expanded by setting gμν = gμν +hμν with a flat background

gμν = δμν . One has
√

g = 1+ 1
2 h− 1

4 hμνhμν + 1
8 h2 +O(h3) , (3.89)

with h = hμμ . Terms linear in the fluctuation hμν are dropped, since in a properly
chosen background such terms are expected to be absent. The one-loop correction
to the 1 term in the above expression is then given by the tadpole diagrams for the
two quadratic terms,

− 1
4 hμνhμν + 1

8 h2 → − 1
4 <hμνhμν > + 1

8 <h2 > . (3.90)

These are easily evaluated using the graviton propagator of Eq. (3.88). For the one
loop divergences (see Fig. 3.4) associated with the

√
g term one then obtains



88 3 Gravity in 2+ ε Dimensions

λ0 → λ0

[
1−

(a1

ε
+

a2

ε2

)
G
]

(3.91)

with coefficients

a1 = − 8
α

+8
(β −1)2

(β −2)2 +4
(β −1)(β −3)
α(β −2)2

a2 = 8
(β −1)2

(β −2)2 . (3.92)

One notices that the kinematic singularities in the graviton propagator, proportional
to 1/(d−2), can combine with the one loop ultraviolet divergent part of momentum
integrals, as in

1
ε

∫
ddk

(2π)d

1
k2 ∼ 1

ε2 , (3.93)

to give terms of order 1/ε2 in Eq. (3.91). Generally it is better to separate the ultravi-
olet divergence from the infrared one, by using for example the following regulated
integral ∫

ddk
(2π)d

1
(k2 +μ2)a =

1

(4π)d/2

Γ (a−d/2)
Γ (a)

(μ2)d/2−a , (3.94)

for a = 1 and μ → 0.
One can then follow the same procedure for the

√
gR term. First one needs to

expand the Einstein term to quadratic order in the quantum field hμν
√

ḡ R̄ =
√

gR

+
√

g
{

1
4∇ρhμν∇ρhνμ − 1

2∇νhνμ∇ρhρμ + 1
2 Rσ

ρμνhρσhμν
}

+ . . .

(3.95)

where ∇μ denotes the covariant derivative with respect to the background metric
gμν . The complete expansion was given previously in Eq. (1.94). The same expan-
sion then needs to be done for the gauge fixing term of Eq. (3.87) as well, and
furthermore it is again convenient to choose as a background field the flat metric
gμν = δμν . For the one loop divergences associated with the

√
gR term one then

finds
με

16πG
→ με

16πG

(
1− b

ε
G

)
, (3.96)

with the coefficient b given by (Gastmans et al, 1978; Christensen et al, 1980)

b =
2
3
·19+

4(β −1)2

(β −2)2 . (3.97)

Thus the one-loop radiative corrections modify the total Lagrangian to

L →− με

16πG

(
1− b

ε
G

)
√

gR+λ0

[
1−

(a1

ε
+

a2

ε2

)
G
]√

g . (3.98)
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Next one can make use of the freedom to rescale the metric, by setting
[
1−

(a1

ε
+

a2

ε2

)
G
]√

g =
√

g′ , (3.99)

which restores the original unit coefficient for the cosmological constant term. The
rescaling is achieved by the following field redefinition

gμν =
[
1−

(a1

ε
+

a2

ε2

)
G
]−2/d

g′μν . (3.100)

Hence the cosmological term is brought back into the standard form λ0
√

g′, and one
obtains for the complete Lagrangian to first order in G

L →− με

16πG

[
1− 1

ε
(b− 1

2 a2)G
]√

g′R′ +λ0

√
g′ , (3.101)

where only terms singular in ε have been retained. From this last result one can
finally read off the renormalization of Newton’s constant

1
G

→ 1
G

[
1− 1

ε
(b− 1

2 a2)G

]
. (3.102)

From Eqs. (3.92) and (3.97) one notices that the a2 contribution cancels out the
gauge-dependent part of b, giving for the remaining contribution b− 1

2 a2 = 2
3 · 19.

Therefore the gauge dependence has, as one would have hoped on physical grounds,
disappeared from the final answer. It is easy to see that the same result would have
been obtained if the scaled cosmological constant Gλ0 had been held constant, in-
stead of λ0 as in Eq. (3.99). One important aspect of the result of Eq. (3.102) is
that the quantum correction is negative, meaning that the strength of G is effectively
increased by the lowest order radiative correction.

In the presence of an explicit renormalization scale parameter μ the β -function
for pure gravity is obtained by requiring the independence of the quantity Ge (here
identified as an effective coupling constant, with lowest order radiative corrections
included) from the original renormalization scale μ ,

μ
d

dμ
Ge = 0

1
Ge

≡ με

G(μ)

[
1− 1

ε
(b− 1

2 a2)G(μ)
]

. (3.103)

To zero-th order in G, the renormalization group β -function entering the renormal-
ization group equation

μ
∂
∂μ

G = β (G) (3.104)

is just given by
β (G) = εG + . . . (3.105)
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The above result just follows from the trivial scale dependence of the classical,
dimensionful gravitational coupling: to achieve a fixed given Ge, the dimensionless
quantity G(μ) itself has to scale like με . Next, to first order in G, one has from
Eq. (3.103)

μ
∂
∂μ

G = β (G) = εG − β0 G2 + O(G3,G2ε) , (3.106)

with β0 = 2
3 · 19. From the procedure outlined above it is clear that G is the only

coupling that is scale-dependent in pure gravity. As will be appreciated further be-
low, the importance of the gravitational β -function β (G) lies in the fact that it can
be used either to determine the ultraviolet cutoff dependence of the bare coupling
needed to keep the effective coupling fixed (as in Eq. (3.103), or to determine the
momentum dependence of the physical coupling G(k) for a fixed cutoff.

Matter fields can be included as well. When NS scalar fields and NF Majorana
fermion fields are added, the results of Eqs. (3.97), (3.102) and (3.103) are modified
to

b → b− 2
3 c , (3.107)

with c = NS + 1
2 NF (the central charge of the Virasoro algebra in two dimensions),

and therefore for the combined β -function of Eq. (3.106) to one-loop order one has
β0 = 2

3 (19− c). Of course one noteworthy aspect of the perturbative calculation is
the appearance of a non-trivial ultraviolet fixed point at Gc = (d −2)/β0 for which
β (Gc) = 0, whose physical significance will be discussed further below.

To check their consistency, the one-loop calculations just described have been
repeated by performing a number of natural variations. One modification consists in
using the Thirring interaction

L = − με

16πG
√

gR + eψ̄ iγμDμψ − keψ̄γaψψ̄γaψ , (3.108)

instead of the cosmological constant term to set the scale for the metric. This results
in a β -function still of the form of Eq. (3.106) but with β0 = 2

3 (25− c). The slight
discrepancy between the two results was initially attributed (Kawai and Ninomiya,
1990) to the well known problems related to the kinematic singularities of the gravi-
ton propagator in 2d discussed previously. To address this issue, a new perturbative
expansion can be performed with the metric parametrized as

gμν → ḡμν = gμρ
(

eh
)ρ

ν
e−φ , (3.109)

where the conformal mode φ [responsible for the kinematic singularity in the second
term on the r.h.s. of Eq. (3.88)] is explicitly separated out, and hμν is now taken to
be traceless, hμμ = 0. Furthermore the conformal mode is made massive by adding a
cosmological constant term λ0

√
g, which again acts as an infrared regulator. Repeat-

ing the calculation for the one loop divergences (Kawai, Kitazawa and Ninomiya,
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1993a,b) one now finds β0 = 2
3 (25− c) which is consistent with the above quoted

Thirring result.1

Fig. 3.5 Two loop graviton
diagrams in 2+ ε gravity. (a) (b) 

Fig. 3.6 Two loop graviton-
ghost diagrams in 2+ ε grav-
ity. (a) (b) (c) 

In the meantime the calculations have been laboriously extended to two loops
(see Figs. 3.5 and 3.6) (Aida and Kitazawa, 1997), with the result

μ
∂
∂μ

G = β (G) = εG − β0 G2 − β1 G3 + O(G4,G3ε,G2ε2) , (3.110)

with β0 = 2
3 (25− c) and β1 = 20

3 (25− c).
Of some interest is the fact that N = 1 supergravity in 2 + ε dimensions also

seems to give rise to a non-trivial ultraviolet fixed point (Kojima, Sakai and Tanii,
1994). These authors consider a model with a vielbein e a

μ , a Majorana Rarita-
Schwinger field ψμ and a real auxiliary scalar field S, with indices a,b, . . . and
μ ,ν , . . . running from 0 to d −1. The action taken to be of the form

ISG =
1

16πG

∫
ddx dete

[
R + i ψ̄μ γμνρ Dν ψρ − d −2

d −1
S2
]

, (3.111)

with γμνρ ≡ 1
3! (γ

μγνγρ± permutations). There are some subtleties associated with
the dimensional reduction of supergravity that will not be discussed here. To lowest

1 For a while there was considerable uncertainty about the magnitude of the graviton contribution
to β0, which was quoted originally as 38/3 (Tsao, 1977), later as 2/3 (Gastmans et al, 1978;
Weinberg, 1977; Christensen and Duff, 1978), and more recently as 50/3 (Kawai, Kitazawa and
Ninomiya, 1993). As discussed in (Weinberg, 1979), the original expectation was that the graviton
contribution should be d(d−3)/2 = −1 times the scalar contribution close to d = 2, which would
suggest for gravity the value 2/3. Direct numerical estimates of the scaling exponent ν in the lattice
theory for d = 3 (Hamber and Williams, 1993) give, using Eq. (3.125), a value β0 ≈ 44/3 and are
therefore in much better agreement with the larger, more recent values.
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order in the ε expansion these authors then find

β (G) = εG − (9− c)G2 + . . . (3.112)

and therefore a non-trivial ultraviolet fixed point close to two dimensions at Gc =
ε/(9−c), where c is the central charge of the superconformal matter multiplet, such
as c free scalars and spinor fields. Taken at face value, these result would suggest
that, besides ordinary Einstein gravity, also N = 1 supergravity could have a non-
trivial strong coupling phase, which appears for G > Gc.

3.6 Phases of Gravity in 2+ε Dimensions

The gravitational β -function of Eqs. (3.106) and (3.110) determines the scale de-
pendence of Newton’s constant G for d close to two. It has the general shape shown
in Fig. 3.7. Because one is left, for the reasons described above, with a single cou-
pling constant in the pure gravity case, the discussion becomes in fact quite similar
to the non-linear σ -model case.

For a qualitative discussion of the physics it will be simpler in the following
to just focus on the one loop result of Eq. (3.106); the inclusion of the two-loop
correction does not alter the qualitative conclusions by much, as it has the same
sign as the lower order, one-loop term. Depending on whether one is on the right
(G > Gc) or on the left (G < Gc) of the non-trivial ultraviolet fixed point at

Gc =
d −2
β0

+O[(d −2)2] , (3.113)

(with Gc positive provided one has c < 25) the coupling will either flow to increas-
ingly larger values of G, or flow towards the Gaussian fixed point at G = 0, respec-
tively. In the following we will refer to the two phases as the strong coupling and
weak coupling phase, respectively. Perturbatively one only has control on the small

Fig. 3.7 The renormalization
group β -function for grav-
ity in 2 + ε dimensions. The
arrows indicate the coupling
constant flow as one ap-
proaches increasingly larger
distance scales.

 (G) 

G 

β

Gc
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G regime. When one then sets d = 2 only the strong coupling phase survives, so
two-dimensional gravity is always strongly coupled within this picture.

The running of G as a function of a sliding momentum scale μ = k in pure gravity
can be obtained by integrating Eq. (3.106), and one finds

G(k2) =
Gc

1 ± a0 (m2/k2)(d−2)/2
, (3.114)

with a0 a positive constant and m a mass scale. The choice of + or − sign is deter-
mined from whether one is to the left (+), or to right (-) of Gc, in which case the
effective G(k2) decreases or, respectively, increases as one flows away from the ul-
traviolet fixed point towards lower momenta, or larger distances. Physically the two
solutions represent a screening (G < Gc) and an anti-screening (G > Gc) situation.
The renormalization group invariant mass scale ∼ m arises here as an arbitrary in-
tegration constant of the renormalization group equations (one could have absorbed
the constant a0 in m, but we will not do so here for reasons that will become clearer
later).

While in the continuum perturbative calculation both phases, and therefore both
signs, seem acceptable, the Euclidean lattice results on the other hand seem to rule
out the weak coupling phase as pathological, in the sense that the lattice collapses
into a two-dimensional branched polymer, as will be discussed later in Sect. 8.2.

At the opposite end, at energies sufficiently high to become comparable to the
ultraviolet cutoff (the inverse lattice spacing in a lattice discretization), the gravita-
tional coupling G flows towards the ultraviolet fixed point,

G(k2) ∼
k2→Λ2

G(Λ) , (3.115)

where G(Λ) is the coupling at the cutoff scale Λ , to be identified with the bare
(or lattice) coupling. Note that it would seem meaningless to consider, within this
framework, momenta which are larger than the ultraviolet cutoffΛ . At such energies
higher dimension operators (such as higher derivative curvature terms) are expected
to become important and should therefore be included in the microscopic action.

Note that the result of Eq. (3.114) is quite different from the naive expectation
based on straight perturbation theory in d > 2 dimensions (where the theory is not
perturbatively renormalizable)

G(k2)
G

∼ 1+ const. Gkd−2 +O(G2) , (3.116)

which gives a much worse ultraviolet behavior. The existence of a non-trivial ul-
traviolet fixed point alters the naive picture and drastically improves the ultraviolet
behavior.

The k2-dependent contribution in the denominator of Eq. (3.114) is the quantum
correction, which at least within a perturbative framework is assumed to be small. In
the weak coupling phase G < Gc the coupling then flows towards the origin corre-
sponding to a gravitational screening solution, which sounds a bit odd as one would
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not expect gravity to be screened. On the other hand the infrared growth of the cou-
pling in the strong coupling phase G > Gc can be written equivalently as

G(k2) � Gc

[
1 + a0

(
m2

k2

)(d−2)/2

+ . . .

]
, (3.117)

where the dots indicate higher order radiative corrections, and which exhibits a
number of interesting features. Firstly the fractional power suggests new non-trivial
gravitational scaling dimensions, just as in the case of the non-linear σ -model. Fur-
thermore, the quantum correction involves a new physical, renormalization group
invariant scale ξ = 1/m which cannot be fixed perturbatively, and whose size de-
termines the scale for the quantum effects. In terms of the bare coupling G(Λ), it is
given by

m = Am ·Λ exp

(
−
∫ G(Λ) dG′

β (G′)

)
, (3.118)

which just follows from integrating μ ∂
∂μ G = β (G) and then setting as the arbitrary

scale μ →Λ . Conversely, since m is an invariant, one hasΛ d
dΛ m = 0; the running of

G(μ) in accordance with the renormalization group equation of Eq. (3.104) ensures
that the l.h.s. is indeed a renormalization group invariant. The constant Am on the
r.h.s. of Eq. (3.118) cannot be determined perturbatively, it needs to be computed by
non-perturbative (lattice) methods, for example by evaluating invariant correlations
at fixed geodesic distances. It is related to the constant a0 in Eq. (3.117) by a0 =
1/(A1/ν

m Gc).
At the fixed point G = Gc the theory is scale invariant by definition. In statistical

field theory language the fixed point corresponds to a phase transition, where the
correlation length ξ = 1/m diverges and the theory becomes scale (conformally)
invariant. In general in the vicinity of the fixed point, for which β (G) = 0, one can
write

β (G) ∼
G→Gc

β ′(Gc)(G−Gc) + O[(G−Gc)2] . (3.119)

If one then defines the exponent ν by

β ′(Gc) = −1/ν , (3.120)

then from Eq. (3.118) one has by integration in the vicinity of the fixed point

m ∼
G→Gc

Λ ·Am |G(Λ)−Gc|ν , (3.121)

which is why ν is often referred to as the mass gap exponent. Solving the above
equation (with Λ → k) for G(k) one obtains back Eq. (3.117), with the constant a0

there related to Am in Eq. (3.121) by a0 = 1/(A1/ν
m Gc) and ν = 1/(d −2).

That m is a renormalization group invariant is seen from
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μ
d

dμ
m ≡ μ

d
dμ

[
Am μ |G(μ)−Gc|ν

]
= 0 , (3.122)

provided G runs in accordance with Eq. (3.117). To one-loop order one has from
Eqs. (3.106) and (3.120) ν = 1/(d−2). When the bare (lattice) coupling G(Λ) = Gc

one has achieved criticality, m = 0. How far the bare theory is from the critical point
is determined by the choice of G(Λ), the distance from criticality being measured
by the deviation ΔG = G(Λ)−Gc.

Furthermore Eq. (3.121) shows how the (lattice) continuum limit is to be taken.
In order to reach the continuum limit a ≡ 1/Λ → 0 for fixed physical correlation
ξ = 1/m, the bare coupling G(Λ) needs to be tuned so as to approach the ultraviolet
fixed point at Gc,

Λ → ∞ , m fixed , G → Gc . (3.123)

The fixed point at Gc thus plays a central role in the cutoff theory: together with the
universal scaling exponent ν it determines the correct unique quantum continuum
limit in the presence of an ultraviolet cutoff Λ . Sometimes it can be convenient to
measure all quantities in units of the cutoff and set Λ = 1/a = 1. In this case the
quantity m measured in units of the cutoff (i.e. m/Λ ) has to be tuned to zero in order
to construct the lattice continuum limit: for a fixed lattice cutoff, the continuum
limit is approached by tuning the bare lattice G(Λ) to Gc. In other words, the lattice
continuum limit has to be taken in the vicinity of the non-trivial ultraviolet point.

The discussion given above is not altered significantly, at least in its qualitative
aspects, by the inclusion of the two-loop correction of Eq. (3.110). From the expres-
sion for the two-loop β -function

μ
∂
∂μ

G = β (G) = εG − 2
3

(25− c)G2 − 20
3

(25− c)G3 + . . . (3.124)

for c massless real scalar fields minimally coupled to gravity, one computes the roots
β (Gc) = 0 to obtain the location of the ultraviolet fixed point, and from it on can
then determine the universal exponent ν = −1/β ′(Gc). One finds

Gc =
3

2(25− c)
ε − 45

2(25− c)2 ε
2 + . . .

ν−1 = ε +
15

25− c
ε2 + . . . (3.125)

which gives, for pure gravity without matter (c = 0) in four dimensions, to lowest
order ν−1 = 2, and ν−1 ≈ 4.4 at the next order.2

Also, in general higher order corrections to the results of the linearized renor-
malization group equations of Eq. (3.119) are present, which affect the scaling away
from the fixed point. Let us assume that close to the ultraviolet fixed point at Gc one
can write for the β -function the following expansion

2 If one does not expand the solution in ε , one finds from the two-loop result ν−1 = 2d−(1/6)(19+√
60d −95) which gives a smaller value ≈ 2.8 in d = 4, as well as rough estimate of the uncertainty.
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β (G) = − 1
ν (G−Gc) − ω (G−Gc)2 +O[(G−Gc)3] . (3.126)

After integrating μ ∂
∂μ G = β (G) as before, one finds for the structure of the correc-

tion to m [see for comparison Eq. (3.121)]

(m
Λ

)1/ν
= Am

[
(G(Λ)−Gc) − ω ν (G(Λ)−Gc)2 + . . .

]
. (3.127)

The hope of course is that these corrections to scaling are small, (ω � 1); in the
vicinity of the fixed point the higher order term becomes unimportant when |G−
Gc| � 1/(ων). For the effective running coupling one then has

G(μ)
Gc

= 1 + a0

(m
μ

)1/ν
+a0ω ν

(m
μ

)2/ν
+O

((m
μ

)3/ν)
, (3.128)

which gives an estimate for the size of the modifications to Eq. (3.117).
Finally, as a word of caution, one should mention that in general the convergence

properties of the 2 + ε expansion are not well understood. The poor convergence
found in some better known cases is usually ascribed to the suspected existence of
infrared renormalon-type singularities ∼ e−c/G close to two dimensions, and which
could possibly arise in gravity as well. At the quantitative level, the results of the
2 + ε expansion for gravity therefore remain somewhat limited, and obtaining the
three- or four-loop term still represents a daunting task. Nevertheless they provide,
through Eqs. (3.117) and (3.121), an analytical insight into the scaling properties
of quantum gravity close and above two dimensions, including the suggestion of
a non-trivial phase structure and an estimate for the non-trivial universal scaling
exponents [Eq. (3.125)]. The key question raised by the perturbative calculations
is therefore: what remains of the above phase transition in four dimensions, how
are the two phases of gravity characterized there non-perturbatively, and what is the
value of the exponent ν determining the running of G in the vicinity of the fixed
point in four dimensions.

Finally we should mention that there are other continuum renormalization group
methods which can be used to estimate the scaling exponents. An approach which
is closely related to the 2+ ε expansion for gravity is the derivation of approximate
flow equations from the changes of the Legendre effective action with respect to a
suitably introduced infrared cutoff μ . The method can be regarded as a variation on
Wilson’s original momentum slicing technique for obtaining approximate renormal-
ization group equations for lattice couplings. In the simplest case of a scalar field
theory (Morris, 1994a,b) one starts from the partition function

exp(W [J]) =
∫

[dφ ] exp
{
− 1

2φ ·C
−1 ·φ − IΛ [φ ]+ J ·φ

}
. (3.129)

The C ≡ C(k,μ) term is taken to be an “additive infrared cutoff term”. For it to be
an infrared cutoff it needs to be small for k < μ , ideally tending to zero as k → 0,
and such that k2C(k,μ) is large when k > μ . Since the method is only ultimately
applied to the vicinity of the fixed point, for which all physical relevant scales are
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much smaller than the ultraviolet cutoff Λ , it is argued that the specific nature of
this cutoff is not really relevant in the following. Taking a derivative of W [J] with
respect to the scale μ gives

∂W [J]
∂μ

= − 1
2

[
δW
δJ

· ∂C−1

∂μ
· δW
δJ

+ tr

(
∂C−1

∂μ
δ 2W
δJ δJ

)]
, (3.130)

which can be re-written in terms of the Legendre transform Γ [φ ] = −W [J]− 1
2φ ·

C−1 ·φ + J ·φ as

∂ Γ [φ ]
∂μ

= − 1
2 tr

[
1
C
∂C
∂μ

·
(

1+C · δ 2Γ
δφ δφ

)−1
]

, (3.131)

where now φ = δW/δJ is regarded as the classical field. The traces can then be
simplified by writing them in momentum space. What remains to be done is first
settle on a suitable cutoff function C(k,μ), and subsequently compute the effective
action Γ [φ ] in a derivative expansion, thus involving terms of the type ∂ nφm, with
μ dependent coefficients.

As far as the cutoff function is concerned, it is first written as C(k,μ) =
μη−2C(k2/μ2) so as to include the expected anomalous dimensions of the φ prop-
agator. To simplify things further, it is then assumed for the remaining function of
a single variables that C(q2) = q2p with p a non-negative integer (Morris, 1994a,b).
The subsequent derivative expansion gives for example for the O(N) model in d = 3
to lowest order O(∂ 0) an anomalous dimensions η = 0 for all N, and ν = 0.73
for N = 2. At the next order O(∂ 2) in the derivative expansion the method gives
ν = 0.65, compared to the best theoretical and experimental value ν = 0.67 (Morris
and Turner, 1998).

In the gravitational case one can proceed in a similar way. First the gravity analog
of Eq. (3.131) is clearly

∂ Γ [g]
∂μ

= − 1
2 tr

[
1
C
∂C
∂μ

·
(

1+C · δ
2Γ

δgδg

)−1
]

, (3.132)

where now gμν = δW/δJμν corresponds to the classical metric. The effective action
itself contains the Einstein and cosmological terms

Γμ [g] = − 1
16πG(μ)

∫
ddx

√
g [R(g)−2λ (μ) ]+ . . . (3.133)

as well as gauge fixing and possibly higher derivative terms (Reuter, 1998; Reuter
and Saueressig, 2002; Reuter, 2008). After the addition of a background harmonic
gauge fixing term with gauge parameter α , the choice of a suitable (scalar) cut-
off function is required, C−1(k,μ) = (μ2 − k2)θ(μ2 − k2) (Litim, 2004), which is
inserted into ∫

[dh] exp
{
− 1

2 h ·C−1 ·h− IΛ [g]+ J ·h
}

. (3.134)
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Note that this added momentum-dependent cutoff term violates both the weak field
general coordinate invariance [see for instance Eq. (1.11)], as well as the general
rescaling invariance of Eq. (3.79).

The solution of the resulting renormalization group equation for the two cou-
plings G(μ) and λ (μ) is then truncated to the Einstein and cosmological term,
a procedure which is equivalent to the derivative expansion discussed previously.
A nontrivial fixed point in both couplings (G∗,λ ∗) is then found in four dimen-
sions, with complex eigenvalues ν−1 = 1.667±4.308i for a gauge parameter choice
α → ∞ [for general gauge parameter the exponents can vary by as much as seventy
percent (Lauscher and Reuter, 2002)]. In the special limit of vanishing cosmological
constant the equations simplify further and one finds a trivial Gaussian fixed point at
G = 0, as well as a non-trivial ultraviolet fixed point with ν−1 = 2d(d−2)/(d +2),
which in d = 4 gives now ν−1 = 2.667. So in spite of the apparent crudeness of the
lowest order approximation, an ultraviolet fixed point similar to the one found in the
2+ ε expansion is recovered.

3.7 Running of α(μ) in Gauge Theories

QED and QCD provide two invaluable illustrative cases where the running of the
gauge coupling with energy is not only theoretically well understood, but also ver-
ified experimentally. This section is just intended to provide some analogies and
distinctions between the two theories, in a way later suitable for a comparison with
the gravitational case. Most of the results found in this section are well known (see,
for example, Frampton, 2000), but the purpose here is to provide some contrast (and
in some instances, a relationship) with the gravitational case.

In QED the non-relativistic static Coulomb potential is affected by the vacuum
polarization contribution due to electrons (and positrons) of mass m. To lowest order
in the fine structure constant, the contribution is from a single Feynman diagram
involving a fermion loop. One finds for the vacuum polarization contributionωR(k2)
at small k2 the well known result (Itzykson and Zuber, 1980)

e2

k2 → e2

k2[1+ ωR(k2)]
∼ e2

k2

[
1 +

α
15π

k2

m2 + O(α2)
]

, (3.135)

which, for a Coulomb potential with a charge centered at the origin of strength −Ze
leads to well-known Uehling δ -function correction

V (r) =
(

1 − α
15π

Δ
m2

)
−Z e2

4π r
=

−Z e2

4π r
− α

15π
−Z e2

m2 δ (3)(x) . (3.136)

It is not necessary though to resort to the small-k2 approximation, and in general a
static charge of strength e at the origin will give rise to a modified potential
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e
4π r

→ e
4π r

Q(r) (3.137)

with

Q(r) = 1 +
α

3π
ln

1
m2 r2 + . . . mr � 1 (3.138)

for small r, and

Q(r) = 1 +
α

4
√
π (mr)3/2

e−2mr + . . . mr � 1 , (3.139)

for large r. Here the normalization is such that the potential at infinity has Q(∞) =
1.3 The reason we have belabored this example is to show that the screening vacuum
polarization contribution would have dramatic effects in QED if for some reason
the particle running through the fermion loop diagram had a much smaller (or even
close to zero) mass. There are two interesting aspects of the (one-loop) result of
Eqs. (3.138) and (3.139). The first one is that the exponentially small size of the
correction at large r is linked with the fact that the electron mass me is not too small:
the range of the correction term is ξ = 2h̄/mc = 0.78× 10−10cm, but would have
been much larger if the electron mass had been a lot smaller.

In QCD (and related Yang-Mills theories) radiative corrections are also known to
alter significantly the behavior of the static potential at short distances. The changes
in the potential are best expressed in terms of the running strong coupling constant
αS(μ), whose scale dependence is determined by the celebrated beta function of
SU(3) QCD with n f light fermion flavors

μ
∂ αS

∂ μ
= 2β (αS) = − β0

2π
α2

S − β1

4π2 α
3
S − β2

64π3 α
4
S − . . . (3.140)

with β0 = 11− 2
3 n f , β1 = 51− 19

3 n f , and β2 = 2857− 5033
9 n f + 325

27 n2
f . The solution

of the renormalization group equation of Eq. (3.140) then gives for the running of
αS(μ)

αS(μ) =
4π

β0 lnμ2/Λ 2
MS

[
1 − 2β1

β 2
0

ln [lnμ2/Λ 2
MS

]

lnμ2/Λ 2
MS

+ . . .

]
, (3.141)

(see Fig. 3.8). The non-perturbative scale ΛMS appears as an integration constant
of the renormalization group equations, and is therefore - by construction - scale
independent. The physical value of ΛMS cannot be fixed from perturbation theory
alone, and needs to be determined by experiment, giving ΛMS � 220MeV .

In principle one can solve for ΛMS in terms of the coupling at any scale, and in
particular at the cutoff scale Λ , obtaining

3 The running of the fine structure constant has recently been verified experimentally at LEP. The
scale dependence of the vacuum polarization effects gives a fine structure constant changing from
α(0)∼ 1/137.036 at atomic distances to about α(mZ0 )∼ 1/128.978 at energies comparable to the
Z0 boson mass, in good agreement with the theoretical renormalization group prediction.
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ΛMS = Λ exp

(
−
∫ αS(Λ) dα ′

S

2β (α ′
S)

)

= Λ
(
β0αS(Λ)

4π

)β1/β 2
0

e
− 2π
β0 αS(Λ) [1 + O[αS(Λ)] ] . (3.142)

In lattice QCD this is usually taken as the definition of the running strong cou-
pling constant αS(μ). It then leads to an effective potential between quarks and
anti-quarks of the form

V (k2) = − 4
3
αS(k2)

k2 , (3.143)

and the leading logarithmic correction makes the potential appear softer close to the
origin, V (r) ∼ 1/(r lnr).

When the QCD result is contrasted with the QED answer of Eqs. (3.135) and
(3.136) it appears that the infrared small k2 singularity in Eq. (3.143) is quite seri-
ous. An analogous conclusion is reached when examining Eq. (3.141): the coupling
strength αS(k2) diverges in the infrared due to the singularity at k2 = 0. In phe-
nomenological approaches to low energy QCD (Richardson, 1979) the uncontrolled
growth in αS(k2) due to the spurious small-k2 divergence is regulated by the dy-
namically generated QCD infrared cutoff ΛMS, which can then be shown to give a
confining linear potential at large distances.

Not all physical properties can be computed reliably in weak coupling perturba-
tion theory. In non-Abelian gauge theories a confining potential is found at strong
coupling by examining the behavior of the Wilson loop (Wilson, 1973), defined for
a large closed loop C as

W (C) =< trP exp
{

ig
∮

C
Aμ(x)dxμ

}
> , (3.144)

with Aμ ≡ taAa
μ and the ta’s the group generators of SU(N) in the fundamental

representation. In the pure gauge theory at strong coupling, the leading contribution
to the Wilson loop can be shown to follow an area law for sufficiently large loops

W (C) ∼
A→∞

exp(−A(C)/ξ 2) , (3.145)

where A(C) is the minimal area spanned by the planar loop C. The quantity ξ is the
gauge field correlation length, defined for example from the exponential decay of the
Euclidean correlation function of two infinitesimal loops separated by a distance |x|,

G�(x) =< trP exp
{

ig
∮

Cε
Aμ(x′)dx′μ

}
(x) trP exp

{
ig
∮

Cε
Aμ(x′′)dx′′μ

}
(0) >c .

(3.146)
Here the Cε ’s are two infinitesimal loops centered around x ands 0 respectively,
suitably defined on the lattice as elementary square loops, and for which one has at
sufficiently large separations
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Fig. 3.8 The QCD β -function
in four dimensions, with an
ultraviolet stable fixed point
at g = 0.  (gβ ) 

g 

G�(x) ∼
|x|→∞

exp(−|x|/ξ ) . (3.147)

The inverse of the correlation length ξ corresponds to the lowest mass excitation in
the gauge theory, the scalar glueball, m0 = 1/ξ . Notice that since the glueball mass
m0 is expected to be proportional to the parameter ΛMS of Eq. (3.142) for small g, it
is non-analytic in the gauge coupling.



Chapter 4
Hamiltonian and Wheeler-DeWitt Equation

4.1 Classical Initial Value Problem

In formulating the gravitational analogue of the classical initial value (or Cauchy)
problem one needs to specify initial value data at some given time; one should then
be able to determine the field configurations at some later time, by making appro-
priate use of the field equations. In such a program the first requirement is therefore
a knowledge of gμν and ∂0gμν everywhere on some spatial hypersurface at a given
initial time x0 = t. If one can extract from the field equations the quantities ∂ 2

0 gμν ,
then these can be used to fix gμν and ∂0gμν at a later time x0 = t +δ t. The process
could then be iterated, and one would eventually obtain a full solution for the metric
gμν valid at all subsequent times.

It would seem at first that the above procedure should work, as there are ten
second time derivatives of the metric, and ten field equations. But this is not so,
since the field equations are not all independent due to the Bianchi identity,

(
Rμν − 1

2 gμνR
)

;ν = 0 , (4.1)

which implies that the Einstein tensor Gμν = Rμν − 1
2 gμνR satisfies

∂0 Gμ0 = −∂iG
μi − Γ μ

νλ Gλν − Γ ν
νλ Gμλ . (4.2)

One can verify that the right-hand side only contains first and second time deriva-
tives of the metric, which implies that Gμ0 does not contain second time derivatives
of the metric. As a result, one cannot use the four field equations

Gμ0 = 8πG T μ0 , (4.3)

as time evolution equations for the metric. Instead, these should be regarded as
constraints to be imposed on the initial conditions, that is on the quantities gμν
and ∂0gμν at an initial time x0 = t.

The remaining six field equations

103
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Gi j = 8πGT i j (4.4)

should then be viewed as the true dynamical equations. In order to write down these
equations, it will be necessary to solve for the ten second derivatives ∂ 2

0 gμν . But fur-
ther thought reveals that this is not possible, as one can only solve for the six quan-
tities ∂ 2

0 gi j, since there are only six equations, thereby leaving the remaining four
quantities ∂ 2

0 gμ0 undetermined. Nevertheless the resulting ambiguity in the solution
is not unexpected, due to the freedom of performing arbitrary coordinate transfor-
mations. One would therefore expect that the ambiguity present in the solution could
be resolved by imposing a suitable coordinate condition, such as the harmonic one,

∂ν (
√

ggμν) = 0 . (4.5)

In this case, after differentiating with respect to time, one obtains

∂ 2
0

(√
ggμ0) = −∂0 ∂i

(√
ggμi) , (4.6)

which would then allow one to determine the remaining second time derivatives of
the metric ∂ 2gμ0.

Furthermore one might worry that the constraint on the initial data needs to be
imposed at every step of the calculation. This is not so, as the Bianchi identity
(Gμν −8πGT μν);ν = 0, together with the initial data constraint Gμ0 = 8πT μ0 and
the second derivatives from Eq. (4.4), guarantees that at the initial time x0 = t one
has

∂0
(
Gμ0 − 8πG T μ0) = 0 . (4.7)

So that the constraint on the initial data will still be satisfied at a later time
x0 = t +δ t. It would seem therefore that the above method will lead to a consistent
scheme for determining the time evolution of the metric gμν , provided one makes a
suitable choice of coordinate conditions, so as to avoid the problem of having some
components of the metric remaining undetermined. The key issue of identifying the
relevant dynamical equations, as well as the constraints, in a Hamiltonian formu-
lation of gravity was first addressed in a series of papers by Dirac (Dirac, 1958;
1959).

4.2 First Order Formulation

One natural way of posing the initial value problem is, as in classical mechanics,
in terms of a Hamiltonian. In developing a Hamiltonian approach to gravity it is
useful to first write the action in first order form, where the metric g and connection
Γ are considered as independent variables. In the Lagrangian formulation of gen-
eral relativity one considers variations of the Einstein-Hilbert action with respect to
the metric gμν , which then yield the field equations. But if one wants to obtain a
canonical form of these equations, that is a set of equations of the type q̇ = ∂H/∂ p,
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ṗ =−∂H/∂q, then one needs to re-write the equations of motion in such a way that
only first derivatives of the metric appear.

In the first order (Palatini) formulation of general relativity one writes for the
Einstein-Hilbert pure gravity action

I =
1

16πG

∫
d4x

√
ggμν Rμν(Γ ) , (4.8)

with Rμν(Γ ) now considered only as a function of the affine connection Γ ,

Rμν(Γ ) = ∂λΓ λ
μν −∂νΓ λ

μλ +Γ λ
μνΓ σ

λσ −Γ λ
μσΓ σ

νλ . (4.9)

Variation of the gravitational action then requires that

1
16πG

∫
d4x δ [

√
ggμν Rμν ] = 0 . (4.10)

First by varying with respect to the metric gμν one obtains the Einstein field equa-
tions,

Rμν − 1
2 gμν R = 0 . (4.11)

At this point the metric gμν and the connection Γ λ
μν are still thought of as indepen-

dent variables, and a relationship between the two needs to be established before
one can claim to have reproduced correctly the field equations.

The variation of Rμν can be simplified by virtue of the Palatini identity

δ Rλ
μνσ = δΓ λ

μσ ;ν −δΓ λ
μν ;σ . (4.12)

After integrating by parts one can then show that the term involving the variation of
the connection Γ implies

∂λgμν − gνσΓ σ
μλ − gμσΓ σ

νλ = 0 , (4.13)

(normally one writes this as gμν ;λ = 0). The last equation can then be solved to give
the usual relationship between the connection Γ and the metric g in Riemannian
geometry, namely

Γ λ
μν(g) = 1

2 gλσ
(
∂μgνσ +∂νgμσ −∂σgμν

)
. (4.14)

Instead of using the metric form, one can introduce local Lorentz frames and write
the gravitational action in terms of vierbeins (tetrads) ea

μ(x) and spin connections
ωab
μ (x). In this formalism (see for example Weinberg, 1972) the metric is written as

gμν(x) = ηab ea
μ(x)eb

ν(x) , (4.15)

where one can think of the four covariant vector fields ea
μ as relating locally non-

inertial coordinate system (described by gμν ) to locally inertial ones (described by
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the flat metric ηab), with ea
μeνa = δ μν . In terms of flat (ξ a) and curved (xμ ) coordi-

nates,

d ξ a =
∂ ξ a

∂ xμ
dxμ , (4.16)

with transformation matrix

ea
μ ≡ ∂ ξ a

∂ xμ
. (4.17)

Now one can construct a new coordinate-scalar Lorentz vector covariant derivative
Da defined as

Da = e μ
a

(
∂μ + Γμ

)
, (4.18)

with the matrix Γμ given by

Γμ = 1
2 σ

ab e ν
a ∇μ ebν . (4.19)

The matrices σab satisfying the usual commutation relations for the generators of
the Lorentz group,

[σab,σcd ] = ηbcσad − ηacσbd + ηbd σac − ηad σbc , (4.20)

with σab = −σba. The spin connection ωab
μ is given in terms of the ea

μ ’s by

ωab
μ = 1

2 eaν(∂μeb
ν − ∂νeb

μ) + 1
4 eaρebσ (∂σec

ρ − ∂ρec
σ )eμ c − (a ↔ b) . (4.21)

It has a number of important properties, the first of which is a relationship to the
usual affine connection Γ λ

μν ,

Γ λ
μν = eλa ebμ ωab

ν + eλa ∂ν ea
μ . (4.22)

The second property is related to the fact that the quantities ωab
μ have been con-

structed in such a way that the covariant derivative of ea
μ is identically zero,

Dμea
ν = ∂μ ea

ν − Γ λ
μν ea

λ + ωab
μ ebν

= ∂μ ea
ν − ebνωab

μ − ∂μ ea
ν + ωab

μ ebν = 0 . (4.23)

The new formulation is essential for incorporating fermions into general relativity.
Thus on a fermion field the correct definition of a covariant derivative involves the
spin connection ωab

μ , Dμψ = (∂μ + 1
2σabωab

μ )ψ .
Finally one can construct the curvature tensor in the ea

μ basis,

Rab
μν = ∂μ ωab

ν − ∂ν ωab
μ + ωa

μcωcb
ν − ωa

νcωcb
μ , (4.24)

and the vierbein field can be used later to transform it into the ordinary Riemann
tensor

Rλ
σμν = eλa ebσ Rab

μν . (4.25)
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In this formalism the pure gravitational action can be written as

I =
1

16πG

∫
d4x |det e|

(
eμa eνb Rab

μν − 2λ
)

, (4.26)

where we have added, for later reference, a cosmological constant term. The above
action can be shown to reproduce, after varying with respect to eμa and ωab

μ , the
Einstein field equations. By construction it is invariant under both local Lorentz and
general coordinate transformations.

A closely related approach is the starting point for the loop quantization of grav-
ity. There one introduces a self-dual connection defined as

Aab
μ = 1

2

(
ωab
μ − 1

2 i εab
cd ω

cd
μ

)
, (4.27)

where the dual (∗) of an antisymmetric two index object is defined here as f ∗ab ≡
− 1

2 iεab
cd f cd with f ∗∗ = f . From the field Aab

μ one can define a curvature Fab
μν , and

from it an action

I =
1

8πG

∫
d4x |det e|

(
eμa eνb Fab

μν − λ
)

, (4.28)

which can also be shown to reproduce correctly the classical field equations
(Ashtekar, 1986a,b; 2004). These variables then provide the basis for the so-called
loop quantum gravity method, for which recent reviews can be found in (Smolin,
2003; Thiemann, 2007a,b).

4.3 Arnowitt-Deser-Misner (ADM) Formalism

The next step in developing a Hamiltonian formulation for gravity is to introduce
a time-slicing of space-time, by introducing a sequence of spacelike hypersurfaces,
labeled by a continuous time coordinate t (Arnowitt, Deser and Misner, 1960; 1962).
The invariant distance ds2 = −dτ2 is then written as

−dτ2 = gμν dxμdxν

= gi j (dxi +Nidt)(dx j +N jdt) − N2dt2

= gi j dxi dx j + 2gi j Nidx jdt − (N2 − gi j NiN j)dt2 , (4.29)

where xi (i = 1,2,3) are coordinates on a three-dimensional manifold. The rela-
tionship between the quantities dτ , dt, dxi, N and Ni here basically expresses the
Lorentzian version of Pythagoras’ theorem (see Fig. 4.1).

Indices are raised and lowered with gi j(x) (i, j = 1,2,3), which denotes the three-
metric on the given spacelike hypersurface, and N(x) and Ni(x) are the lapse and
shift functions, respectively. These last two quantities describe the lapse of proper
time (N) between two infinitesimally close hypersurfaces, and the corresponding
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Fig. 4.1 Illustration of the
lapse and shift functions. Ni

is the shift function and N the
lapse function. In terms of a
normal to the surface nμ one
has ∂t Xμ = N nμ +Ni ∂i Xμ .

dtXN i
i μ∂

t

dtt +

dt
.

X μ
dtNnμ

ix

ii dxx +

shift in spatial coordinate (Ni). It will be useful in the following to mark four-
dimensional quantities by the prefix 4, so that all un-marked quantities will refer
to three dimensions (and are occasionally marked explicitly by a 3). In terms of the
original four-dimensional metric 4gμν one has

(
4g00

4g0 j
4gi0

4gi j

)
=
(

NkNk −N2 Nj

Ni gi j

)
, (4.30)

and for its inverse
(

4g00 4g0 j

4gi0 4gi j

)
=
(
−1/N2 N j/N2

Ni/N2 gi j −NiN j/N2

)
, (4.31)

which then gives for the spatial metric and the lapse and shift functions

gi j = 4gi j N =
(
−4g00)−1/2

Ni = 4g0i . (4.32)

For the volume element one has
√

4g = N
√

g , (4.33)

where the latter involves the determinant of the three-metric, g = detgi j. As usual
gi j denotes the inverse of the matrix gi j.

In terms of these quantities, the Einstein-Hilbert Lagrangian of General Relativ-
ity can then be written, up to an overall multiplicative constant, in the following
(first-order) form

L =
√

4g 4R = −gi j ∂tπ i j − N R0 − Ni Ri

−2∂i
(
π i jNj − 1

2πNi + ∇iN
√

g
)

, (4.34)

where one has defined the following quantities:

π i j =
√

4g
( 4Γ 0

kl −gkl
4Γ 0

mn gmn)gikgl j
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R0 = −√
g
[3R + g−1( 1

2π
2 −π i jπi j)

]
Ri = −2∇ j π i j . (4.35)

Here the symbol ∇i denotes covariant differentiation with respect to the index i
using the spatial three-metric gi j, and 3R is the scalar curvature computed from this
metric. Also note that the affine connection coefficients Γ k

i j have been eliminated in
favor of the spatial derivatives of the metric ∂kgi j, and one has defined π = π i

i.
A particularly simple form for the Lagrangian of Eq. (4.34) is obtained when the

term involving a spatial divergence and a total time derivative is omitted. In this case

L = π i j ∂tgi j − N R0 − Ni Ri

Rμ = Rμ(gi j,πi j) . (4.36)

Since the quantities N and Ni do not appear in the π i j ∂tgi j part, they are interpreted
as Lagrange multipliers, and the “Hamiltonian” density

H = N R0 + NiR
i = 0 , (4.37)

vanishes as a result of the constraints.
Varying the first order Lagrangian of Eq. (4.34) with respect to gi j, Ni, N and πi j

one then obtains a set of equations which are equivalent to Einstein’s field equations.
First varying with respect to πi j one obtains an equation which can be viewed as
defining πi j (in analogy to q̇ = ∂H/∂ p)

∂tgi j = 2Ng−1/2 (πi j − 1
2 gi j π) + ∇ j Ni + ∇iNj . (4.38)

Varying with respect to the spatial metric gi j gives the time evolution for πi j (in
analogy to ṗ = −∂H/∂q),

∂tπ i j = −N
√

g(3Ri j − 1
2 gi j 3R)+ 1

2 Ng−1/2gi j(πklπkl − 1
2π

2)

−2Ng−1/2(π ikπ j
k − 1

2ππ
i j)+

√
g(∇i∇ jN −gi j∇k∇k N)

+∇k (π i jNk)−∇k Niπk j −∇k N j πki . (4.39)

Finally varying with respect to the lapse (N) and shift (Ni) functions gives

R0(gi j,πi j) = 0 Ri(gi j,πi j) = 0 , (4.40)

which can be viewed as the four constraint equations 4G0
μ = 4R0

μ − 1
2δ

0
μ

4R = 0, ex-
pressed for this choice of metric decomposition (Dirac, 1958). The above constraints
can be considered as analogous to Gauss’s law ∂i Fi0 = ∇ ·E = 0 in electromag-
netism.

One can count the number of physical degrees of freedom of the gravitational
field, and verify that one obtains the expected answer. There are twelve dynami-
cal variables gi j and πi j, but the Bianchi identities reduce the number by four. An
additional four constraints can be imposed through coordinate conditions, giving a
residual of four fields describing two degrees of freedom, corresponding to the two
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helicity states of the linearized gravitational field, which describes a massless spin
two particle.

4.4 Orthogonal Decomposition in the Linearized Theory

The linearized gravitational field case is the easiest to work out. As usual one as-
sumes boundary conditions such that some or all the field vanish at infinity, where
space is assumed to be flat. One needs an orthogonal decomposition of the metric
into trace part, longitudinal part and transverse-traceless part, which is achieved by
writing for any symmetric tensor

fi j = f T T
i j + f T

i j + ∂i f j + ∂ j fi , (4.41)

which similar to what is done in electromagnetism, where the vector potential A is
written as a transverse and a longitudinal part. Here one writes

fi = (1/∂ 2)
[
∂ j fi j − 1

2 (1/∂ 2)∂i ∂ j ∂k fk j
]

f T = fii − (1/∂ 2)∂i ∂ j fi j

f T T
i j = fi j − f T

i j [ f ] − ∂i f j[ f ] − ∂ j fi[ f ] , (4.42)

for the longitudinal, trace and transverse-traceless part respectively, with the quan-
tity f T

i j defined by

f T
i j ≡ 1

2

[
δi j f T − (1/∂ 2)∂i∂ j f T ] . (4.43)

In the above expressions ∂ 2 ≡ ∂i∂i. To this order one can show that both gT and
π i vanish. Furthermore πT and gi also can be eliminated by a choice of coordinate
condition, such as

t = (−1/2∂ 2) πT , (4.44)

giving Ni = g0i = 0 everywhere, as well as N = 1.
This finally leaves gT T

i j and π i j T T as the only two remaining canonically conju-
gate variables in the linearized theory, with fundamental equal time Poisson bracket

{
gT T

i j (x), πkl T T (x′)
}

= δ kl
i j(x−x′) , (4.45)

and all other equal time Poisson brackets equal to zero. The modified Dirac δ func-
tion on the r.h.s. ensures that the transversality constraint on the fields appearing on
the l.h.s. is not violated. The use of a fundamental Poisson bracket then allows a
straightforward transition to a quantum mechanical treatment via the usual replace-
ment {q, p} → (1/ih̄) [q̂, p̂].
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4.5 Intrinsic and Extrinsic Curvature, Hamiltonian

Some of the quantities introduced in the previous section (such as 3R) describe in-
trinsic properties of the spacelike hypersurface. Some others can be related to the ex-
trinsic properties of such a hypersurface when embedded in four-dimensional space.
Consider spacetime as sliced up (foliated) by a one-parameter family of spacelike
hypersurfaces xμ = xμ(xi, t). One then has for the intrinsic metric within the space-
like hypersurface

gi j = gμν Xμ
i Xν

j with Xμ
i ≡ ∂i xμ , (4.46)

while the extrinsic curvature is given in terms of the unit normals to the spacelike
surface, Uμ ,

Ki j(xk, t) = −∇μ Uν Xν
i Xμ

j . (4.47)

In this language, the lapse and shift functions appear in the expression

∂t x
μ = NUμ + Ni Xμ

i . (4.48)

Then the Einstein tensor Gμν can be projected into directions normal (⊥) and tan-
gential (i) to the hypersurface, with the result

G⊥⊥ ≡ GμνUμUν = − 1
2 (Ki jK

i j −K2 − 3R)

Gi⊥ ≡ −GμνXμ
i Uν = ∇ j(K

j
i −Kδ j

i )

Gi
j ≡ GμνXμiXν

j = −∂t(Ki
j −K δ i

j)+K Ki
j

− 1
2 (Km

n Kn
m +K2)δ i

j + 3Gi
j , (4.49)

with K = gi jKi j = Ki
i the trace of the matrix K.

Then in the canonical formalism the momentum can be expressed in terms of the
extrinsic curvature as

π i j = −√
g(Ki j −K gi j) . (4.50)

By inverting this last relationship, one can then replace the extrinsic curvatures K by
the six momenta π . Then the quantities G⊥⊥ and Gi⊥ in Eq. (4.49) can be expressed
entirely in terms of gi j and π i j within a given spacelike hypersurface,

−2
√

g G⊥⊥ ≡ H = 2Kg−1/2 (πi jπ i j − 1
2π

2) − 1
2K

√
g 3R

2
√

g Gi⊥ ≡ Hi = −2Kg−1/2∇ j π j
i , (4.51)

with π = π i
i. The last two statements are essentially equivalent to the definitions

in Eq. (4.35). On the other hand the expression involving Gi
j in Eq. (4.49) can be

rearranged to give

∂tπ i j(x, t) =
{
π i j(x, t),HN +HN

}
+ N Gi j , (4.52)
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while Eq. (4.50) gives the evolution equation for the intrinsic metric,

∂t gi j(x, t) =
{

gi j(x, t),HN +HN
}

. (4.53)

Here {A,B} ≡ ∑r(∂A/∂qr ∂B/∂ pr − ∂A/∂ pr ∂B/∂qr) is the classical Poisson
bracket. Its use is motivated here by the fact that the transition from classical to
quantum mechanics can be affected easily by promoting the Poisson bracket to a
quantum commutator,

{H,O} → 1
ih̄ [Ĥ, Ô] , (4.54)

thus leading in a natural and simple way from Eqs. (4.52) and (4.53) to the Heisen-
berg equations of motions for the canonically conjugate quantum operators ĝi j and
π̂ i j. The quantities HN and HN are given by

HN ≡
∫

d3xN(x)H(x) , HN ≡
∫

d3xNi(x)Hi(x) . (4.55)

In this notation, the Einstein field equations in the absence of sources Gμν = 0 are
equivalent to the initial value constraint

H(x) = Hi(x) = 0 , (4.56)

supplemented by the canonical evolution equations of Eqs. (4.52) and (4.53), with
Gi j = 0. The quantity

H =
∫

d3x
[
N(x)H(x)+Ni(x)Hi(x)

]
, (4.57)

should then be regarded as the Hamiltonian for classical general relativity. Then
Eq. (4.56) is equivalent to

H = 0 , (4.58)

for all N and Ni.

4.6 Matter Source Terms

When matter is added to the Einstein-Hilbert Lagrangian,

I[g,φ ] =
1

16πG

∫
d4x

√
g 4R[gμν(x)] + Iφ [gμν ,φ ] , (4.59)

where φ(x) are some matter fields, it is easy to see that the action within the ADM
parametrization of the metric coordinates needs to be modified to

I[g,π,φ ,πφ ,N] =
∫

dt d3x
(

1
16πG π i j ∂tgi j +πφ ∂tφ −N T −NiTi

)
. (4.60)
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One still has the same definitions as before for the (Lagrange multiplier) lapse and
shift function, namely N = (−4g00)−1/2 and Ni = gi j 4g0 j. The gravitational con-
straints are modified as well, since now one defines

T ≡ 1
16πG H(gi j,π i j) + Hφ (gi j,π i j,φ ,πφ )

Ti ≡ 1
16πG Hi(gi j,π i j) + Hφ

i (gi j,π i j,φ ,πφ ) , (4.61)

with the first part describing the gravitational part already given in Eq. (4.51),

H(gi j,π i j) = Gi j,klπ i jπkl − √
g 3R + 2λ

√
g

Hi(gi j,π i j) = −2gi j∇k π jk , (4.62)

here conveniently re-written using the (inverse of) the DeWitt supermetric of
Eq. (2.14),

Gi j,kl = 1
2 g−1/2 (gikg jl +gilg jk +α gi jgkl

)
, (4.63)

with parameter α = −1. In the previous expression a cosmological term (propor-
tional to λ ) has been added as well, for future reference. For the matter part one
has

Hφ (gi j,π i j,φ ,πφ ) =
√

g T00 (gi j,π i j,φ ,πφ )

Hφ
i (gi j,π i j,φ ,πφ ) = −√

g T0i (gi j,π i j,φ ,πφ ) . (4.64)

We note here that the (inverse of the) DeWitt supermetric in Eq. (4.63) can be used
to define a distance in the space of three-metrics gi j(x). Consider an infinitesimal
displacement of such a metric gi j → gi j + δgi j, and define the natural metric G on
such deformations by considering a distance in function space

‖δg‖2 =
∫

d3xN(x) Gi j,kl(x) δgi j(x)δgkl(x) . (4.65)

Here the lapse N(x) is an essentially arbitrary but positive function, to be taken
equal to one in the following. The quantity Gi j,kl(x) is the three-dimensional version
version of the DeWitt supermetric,

Gi j,kl = 1
2
√

g
(

gikg jl +gilg jk + ᾱ gi jgkl
)

, (4.66)

with the parameter α of Eq. (4.63) related to ᾱ in Eq. (4.66) by ᾱ =−2α/(2+3α),
so that α = −1 gives ᾱ = −2. One can then verify that for any choice of α �= −2/3

Gi j,ab Gkl,ab = 1
2

(
δ i

kδ
j

l + δ i
l δ

j
k

)
. (4.67)

As shown originally by DeWitt, in three dimensions the supermetric has signature
(+,+,+,+,+,−), implying infinitely many negative signs, one for each spatial
point x. The negative directions in function space can be shown to correspond to
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constant conformal displacements in the three-metric δgi j(x) = δΩ 2gi j(x) (Giulini,
1995).

4.7 Wheeler-DeWitt Equation

Within the framework of the previous construction, a transition from the classical to
the quantum description of gravity is obtained by promoting gi j, π i j, H and Ha to
quantum operators, with ĝi j and π̂ i j satisfying canonical commutation relations. In
particular the classical constraints now select a physical vacuum state |Ψ〉, such that
in the source free case

Ĥ |Ψ〉 = 0 Ĥi |Ψ〉 = 0 , (4.68)

and in the presence of sources more generally

T̂ |Ψ〉 = 0 T̂i |Ψ〉 = 0 . (4.69)

As in ordinary non-relativistic quantum mechanics, one can choose different rep-
resentations for the canonically conjugate operators ĝi j and π̂ i j. In the functional
position representation one sets

ĝi j(x) → gi j(x) π̂ i j(x) → −ih̄ ·16πG · δ
δgi j(x)

. (4.70)

In further developing the analogy with standard non-relativistic quantum mechanics,
one notices that in this picture the quantum states become wave functionals of the
three-metric gi j(x),

|Ψ〉 → Ψ [gi j(x)] . (4.71)

The two quantum constraint equations in Eq. (4.69) become the Wheeler-DeWitt
equation

{
−16πG ·Gi j,kl

δ 2

δgi j δgkl
− 1

16πG
√

g
( 3R − 2λ

)
+ Ĥφ

}
Ψ [gi j(x)] = 0 ,

(4.72)
and the diffeomorphism, or momentum, constraint

{
2 igi j∇k

δ
δg jk

+ Ĥφ
i

}
Ψ [gi j(x)] = 0 . (4.73)

The last constraint implies that the gradient of Ψ on the superspace of gi j’s and
φ ’s is zero along those directions that correspond to gauge transformations, i.e. dif-
feomorphisms on the three dimensional manifold whose points are labeled by the
coordinates x.

A number of basic issues need to be addressed before one can gain a full and
consistent understanding of the dynamical content of the theory. These include the
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problem of operator ordering in the above equations (in particular regarding the π2

term, which classically can be written in a number of different and equivalent ways),
a discussion of what is meant by the time variable, and how it can be suitably defined
in concrete models, for example in cosmological applications. In addition one needs
to be specific about a suitable Hilbert space, which entails at some point a specific
choice for the inner product of wave functionals over the space Σ (and thus a notion
of self-adjointness for operators), for example in the Schrödinger form

〈Ψ |Φ〉 =
∫
Σ

dμ [g]Ψ ∗[gi j]Φ [gi j] , (4.74)

where dμ [g] is some appropriate measure over the three-metric g. The latter does
not seem to be the only choice, since a Klein Gordon inner product could be used
instead, which is not positive definite.

Another peculiar property of the Wheeler-DeWitt equation, and which distin-
guishes it from the usual Schrödinger equation HΨ = ih̄∂tΨ , is the absence of an
explicit time coordinate. As a result the r.h.s. term of the Schrödinger equation is
here entirely absent. The reason is of course diffeomorphism invariance of the un-
derlying theory, which expresses now the fundamental quantum equations in terms
of fields gi j, and not coordinates. As a result the Wheeler-DeWitt equation con-
tains no explicit time evolution parameter, a problem that is usually referred to as
the problem of time (see for example Kuchar̆, 1992). Nevertheless in some cases
it seems possible to assign the interpretation of “time coordinate” to some specific
variable entering the Wheeler-DeWitt equation, such as the overall spatial volume
or the magnitude of some scalar field. But in general a consistent and unambiguous
prescription does not seem to be known yet.

4.8 Semiclassical Expansion of the Wheeler-DeWitt Equation

The simplest approach to finding solutions to the Wheeler-DeWitt equations, be-
sides working with the linearized theory, is to expand around the classical theory.
One writes a (WKB-type) ansatz for the wave functionalΨ ,

Ψ [gi j(x)] = exp
{

i
16πG S[gi j]

}
Φ [gi j(x)] , (4.75)

where the action function S[gi j] is a solution of the Hamilton-Jacobi equations for
classical gravity (Peres, 1962),

Gi j,kl
δS
δgi j

δS
δgkl

− √
g
( 3R − 2λ

)
= 0

2 igi j∇k
δS
δg jk

= 0 , (4.76)
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and Φ [gi j] some new wave functional to be determined. From the original Wheeler-
DeWitt equation one then obtains a new set of equations for the wavefunctional
Φ [gi j],

{
−2iGi j,kl

δS
δgi j

δ
δgkl

− iGi j,kl
δ 2S

δgi j δgkl

−16πG ·Gi j,kl
δ 2

δgi j δgkl
+ Ĥφ

}
Φ [gi j(x)] = 0 . (4.77)

{
2 igi j∇k

δ
δg jk

+ Ĥφ
i

}
Φ [gi j(x)] = 0 . (4.78)

The next step consists in approximating (again, in analogy with the semiclassi-
cal expansion in non-relativistic quantum mechanics), the solution by neglecting
second derivative terms δ 2S/δg2 and δ 2/δg2 terms in the equations for Φ [gi j]
(Wheeler, 1964). The latter step is usually justified by regarding (or assuming) the
back-reaction of quantum matter on the gravitational field as small.

The resulting truncated Wheeler-deWitt equations then become, to first order in
δ/δg,

{
−2 iGi j,kl

δS
δgi j

δ
δgkl

+ Ĥφ
}
Φ [gi j(x)] = 0

{
2 igi j∇k

δ
δg jk

+ Ĥφ
i

}
Φ [gi j(x)] = 0 .

(4.79)

Furthermore the wavefunction Φ [gi j(x)] is now evaluated along a solution of the
classical field equations gi j(x, t). This means that S[gi j] is first determined from a
solution of the classical Hamilton-Jacobi equations

∂t gi j = N Gi j,kl
δS
δgkl

− 2(DiNj + D jNi) , (4.80)

with [see Eq. (4.73)]

Di ≡ −2
i
∇ j

δ
δgi j

, (4.81)

after which the relevant derivatives δS/δg are inserted in Eq. (4.77).
To make further progress, one need to be more specific about the form of the

lapse (N) and shift (Ni) functions. One can show that Φ [gi j] satisfies an evolution
equation of the type

∂
∂ t
Φ(t) =

∫
d3x ∂t gi j(x)

δ
δgi j(x)

Φ [gmn] , (4.82)
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as well as Eqs. (4.77) and (4.78). It was DeWitt who first showed that these are
equivalent to the Schrödinger equation for quantized matter field in a classical grav-
itational background gi j(x),

i
∂
∂ t
Φ(t) = Ĥφ [gi j]Φ(t) , (4.83)

with a background gi j-dependent matter field Hamiltonian

Ĥφ [gi j] =
∫

d3x
{

N(x)Ĥφ (x) + Ni(x)Ĥφ
i (x)

}
. (4.84)

A discussion on how the Wheeler-deWitt equation and its semiclassical expan-
sion relate to the conventional covariant Feynman diagram picture can be found
in (Barvinsky and Kiefer, 1998; Barvinsky, 1998).

4.9 Connection with the Feynman Path Integral

In principle any solution of the Wheeler-deWitt equation corresponds to a possible
quantum state of the universe. It is also clear the effects of the boundary conditions
on the wavefunction will act to severely restrict the class of possible solutions. In
ordinary quantum mechanics these are determined by the physical context of the
problem and some set of external conditions. In the case of the universe as a whole
the situation is less clear, and in many approaches some suitable set of boundary
conditions are postulated instead, based on general arguments involving concepts
such as simplicity or economy.

One proposal (Hartle and Hawking, 1983) is to restrict the quantum state of the
universe by requiring that the wave functionΨ be determined by a path integral over
compact Euclidean metrics. The wave function would then be given by

Ψ [gi j,φ ] =
∫

[dgμν ] [dφ ] exp
(
−Î[gμν ,φ ]

)
, (4.85)

where Î is the Euclidean action for gravity plus matter

Î = − 1
16πG

∫
d4x

√
g(R−2λ ) − 1

8πG

∫
d3x

√
gi j K −

∫
d4x

√
gLm . (4.86)

The functional integral would be restricted to those four-metrics which have the in-
duced metric gi j and the matter field φ as given on the boundary surface S. One
would expect, as is already the case in non-relativistic quantum mechanics where
the path integral with a boundary surface satisfies the Schrödinger equation (Feyn-
man and Hibbs, 1963), that the wavefunction constructed in this way would also
automatically satisfy the Wheeler-DeWitt equation. In (Hartle and Hawking, 1983)
this is shown to be indeed the case.
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Other approaches to the issue of boundary conditions and the construction of
the wave functional can be found, among others, in (Linde, 1998), where an anti-
Wick rotation t = iτ is suggested, which might improve convergence issues in-
volving the gravitational conformal mode, but causes irreparable damage in the
non-gravitational path integrals, and in (Vilenkin, 1998) where tunneling minisu-
perspace models are examined and considered as phenomenologically viable, based
on claims that the Hartle-Hawking wafe functions might tend to disfavor inflation-
ary evolution. A very recent reference addressing these issues is (Hartle, Hawking
and Hertog, 2008).

4.10 Minisuperspace

The quantum state of a gravitational system is described, in the Wheeler-deWitt
framework just introduced, by a wave functionΨ which is a functional of the three-
metric gi j and the matter fields φ . In general the latter could contain fields of arbi-
trary spins, but here we will consider for simplicity just one single component scalar
field φ(x).

The wavefunctionΨ will then obey the zero energy Schrödinger-like equation of
Eqs. (4.72) and (4.73),

{
−16πG ·Gi j,kl

δ 2

δgi j δgkl
− 1

16πG
√

g
(

3R − 2λ
)

+
√

gT00(∂/∂φ ,φ)
}
Ψ [gi j,φ ] = 0 ,

(4.87)
with inverse supermetric

Gi j,kl = 1
2 g−1/2 (gikg jl +gilg jk −gi jgkl

)
, (4.88)

and momentum constraint
{

i∇i
δ
δgi j

− 1
2
√

g T 0 j(∂/∂φ ,φ)
}
Ψ [gi j,φ ] = 0 . (4.89)

Then quantum state described byΨ is a functional on the infinite dimensional man-
ifold W consisting of all positive definite metrics gi j(x) and matter fields φ(x) on a
spacelike three-surface S. On this space there is a natural metric Γ (N)

ds2[δg,δφ ]=
∫

d3xd3x′

N(x)

[
Gi j,kl(x,x′) δgi j δgkl(x′)+

√
gδ 3(x−x′) δφ(x)δφ(x′)

]
,

(4.90)
where

Gi j,kl(x,x′) = Gi j,kl(x)δ 3(x− x′)

Gi j,kl(x) = 1
2
√

g
[
gik(x)g jl(x)+gil(x)g jk(x)−2gi j(x)gkl(x)

]
,

(4.91)
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is the inverse of the deWitt supermetric Gi j,kl .
Due to ambiguities in the choice of operator ordering in the Wheeler-DeWitt

equations, not all terms and their coefficients can be fixed in a unique way. Gen-
eral symmetry requirements (here covariance in superspace) restrict the Hamiltonian
H =

∫
d3xN(x)H(x) in Eqs. (4.62) and (4.72) to be of the following form (Hawking

and Page, 1986 a,b)

H = − 1
2 ∇

2 + β ·16πG
∫

d3xN g−1/2 gi j
δ
δgi j

+ ε + V (4.92)

V =
∫

d3xN
√

g
[

1
16πG (−3R + 2λ ) + U(φ)

]
(4.93)

where ∇2 the covariant Laplacian in the function space W with metric Γ (N) [see
Eq. (4.90)],

ε = ξ R(g)+η
∫

d3x
√

g , (4.94)

is a scalar term involving the scalar curvature on the function space W , ξ and η two
constants, and

U = T00 − 1
2 π

2
φ . (4.95)

Since in general the β -term violates the self-adjointness requirement on H, one
sets β = 0. The most natural (and simplest choice) for ξ , the coefficient of the
scalar curvature term R, is zero. The η term can be re-absorbed into a shift of the
cosmological term λ . We shall not dwell here on the rather technical point that in
general the function N enters non-linearly in the superspace connection on W , and
therefore in H, which then spoils the interpretation of N as a Lagrange multiplier.

In general the wavefunction for all the dynamical variables of the gravitational
field in the universe is difficult to calculate, since an infinite number of degrees
of freedom are involved: the infinitely many values of the metric at all spacetime
points, and the infinitely many values of the matter field φ at the same points. One
option is to restrict the choice of variable to a finite number of suitable degrees of
freedom (Blyth and Isham, 1975; Hartle and Hawking, 1983). As a result the overall
quantum fluctuations are severely restricted, since these are now only allowed to be
nonzero along the surviving dynamical directions. If the truncation is severe enough,
the transverse-traceless nature of the graviton fluctuation is lost as well. Also, since
one is not expanding the quantum solution in a small parameter, it can be difficult
to estimate corrections. In a cosmological context, it seems natural to consider ini-
tially a homogeneous and isotropic model, and restrict the function space to two
variables, the scale factor a(t) and a minimally coupled homogeneous scalar field
φ(t) (Hawking and Page, 1986a,b). The space-time metric is given by

dτ2 = N2(t)dt2 − gi j dxi dx j . (4.96)

The three-metric gi j is then determined entirely by the scale factor a(t),

gi j = a2(t) g̃i j , (4.97)
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with g̃i j a time-independent reference three-metric with constant curvature,

3R̃i jkl = k
(
g̃i j g̃kl − g̃il g̃ jk

)
, (4.98)

and k = 0,±1 corresponding to the flat, closed and open universe case respectively.
In this case the minisuperspace W is two dimensional, with coordinates a and φ ,
and supermetric Γ (N)

ds2[a,φ ] = N−1(−ada2 + a3 dφ 2) . (4.99)

It is important to note the indefinite nature of the supermetric, a general feature of
general relativity. From the above expression for ds2[a,φ ] one obtains the Laplacian
in the metric Γ (N) needed in Eq. (4.92),1

− 1
2 ∇

2(a,φ) =
N

2a2

{
∂
∂a

a
∂
∂a

− 1
a
∂ 2

∂φ 2

}
. (4.100)

Since the space is homogeneous, the diffeomorphism constraint is trivially satisfied.
Also N is independent of gi j so in the homogeneous case it can be taken to be a
constant, conveniently chosen as N = 1. This is because the lapse function N(t)
represents the freedom to reparametrize the time coordinate t; it has no kinetic term
and hence no canonical momentum, its only effect being to ensure the constraint
H = 0. In light of the previous discussions, once the constraint has been imposed,
one is free to choose a time coordinate such that N = 1. Furthermore, the super-
curvature R(g) is zero for this choice of metric, removing one source of ambiguity
in the equation.

The simplest and most straightforward way to derive the Wheeler-DeWitt equa-
tion for these models is to start from the gravitational action written in terms of the
appropriate metric coefficients,

I = V3

∫
dt N

{
3

8πG [−N−2 aȧ2 + k a − 1
3 λ a3] + 1

2 a3 [N−2φ̇ 2 − 2U(φ)]
}

,

(4.101)
with V3 the volume of three-space (for a three-sphere V3 = 2π2), and U(φ) a po-
tential for the scalar field φ . In the following we will assume for simplicity that φ
is a free scalar field with U(φ) = 1

2 m2φ 2 and m the scalar field’s mass. From the
canonical momenta derived from the action in Eq. (4.101),

pa = − 3
4πG

N−1 aȧ pφ = N−1 a3 φ̇ pN = 0 , (4.102)

one can then construct the classical Hamiltonian,

1 The ambiguity regarding the operator ordering of p2/a = a−(q+1) paq p in the Wheeler-DeWitt
equation can in principle be retained by writing for the above operator ∇2 the expression
−(N/aq+1)

{
(∂/∂a)aq (∂/∂a) − (∂ 2/∂φ 2)

}
, but this does not seem to affect the qualitative na-

ture of the solutions. The case discussed in the text corresponds to q = 1, but q = 0 seems even
simpler.
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H = pa ȧ + pφ φ̇ + pN Ṅ − L(pa,a, pφ ,φ , pN ,N)

= − Ḡa−1 p2
a + 1

2 a−3 p2
φ − k̄ a + λ̄ a3 + 1

2 m2 a3 φ 2 , (4.103)

where we have defined Ḡ ≡ 2πG/3, λ̄ = λ/8πG and k̄ = 3k/8πG (occasionally
a system of units is used in which 4π

3 G = 1), and we have set for the lapse func-
tion N = 1.2 Classically the resulting equations of motion coincide, as expected,
with the Friedman equations for a and φ . Quantum-mechanically one obtains from
Eq. (4.103) the reduced Wheeler-DeWitt equation HΨ = 0, which reads3

{
Ḡ

1
a2

∂
∂a

a
∂
∂a

− 1
2a3

∂ 2

∂φ 2 − k̄ a + λ̄ a3 + 1
2 m2 a3 φ 2

}
Ψ(a,φ) = 0 . (4.104)

This quantum Schrödinger-type equation can be contrasted with the classical
Friedman-Robertson-Walker equations of motion for a(t) and φ(t) (here, as far as
a(t) is concerned, they are essentially Newtonian, as shown originally by Milne and
McCrea) , and which read

ȧ2 =
4πG

3
a2 ( φ̇ 2 + m2 φ 2) − k + 1

3 λ a2

φ̈ = −3a−1 ȧ φ̇ − m2 φ , (4.105)

subject to some initial conditions at t = t0.
One might wonder if in this case one really needs the full machinery of the

Wheeler-deWitt equation to obtain the correct quantum-mechanical minisuperspace
equation. The classical FRW equations for a(t) and φ̇ = 0 in Eq. (4.105) can af-
ter all be derived from an action which is similar, but not identical, to the one in
Eq. (4.101). From the canonical momentum pa one then obtains a classical Hamil-
tonian, which leads to a Schrödinger-like equation ĤΨ = 0 after the substitution
pa → (h̄/i)∂/∂a. Using this procedure one finds for pφ = 0 an equation for Ψ(a)
of the form

{
−1

2
∂ 2

∂a2 − 8πG
3

ρ a3 − λ
3

a3 − 2πG
3

m2 a2 φ 2 +
k
2

}
Ψ(a) = 0 , (4.106)

2 One can advocate the point of view that for a genuine canonical quantization the system has to be
reduced to true canonical form before quantization. In this scheme the constraint H = 0 is solved
first at the classical level, thereby eliminating here the variable pa. The remaining gravitational
variable a is then picked as a time coordinate, t = a (Blyth and Isham, 1975). In general it seems
this procedure leads to unconstrained Hamiltonians involving square roots.
3 Some authors have expressed concerns about possible singularities of the Wheeler-deWitt equa-
tion at a = 0, and prefer therefore to use as field coordinate α = log(a/a0). We shall not pursue
this choice here. A full quantum treatment generally requires the presence of an ultraviolet cutoff
Λ , which would suggest the imposition of a lower bound of the type a > 1/Λ .
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which is quite different in structure from Eq. (4.104), although some significant
similarities are still recognizable.

4.11 Solution of Simple Minisuperspace Models

Returning to the minisuperspace Wheeler-DeWitt equation of Eq. (4.104), one
can consider, as an illustrative example, the simplest case of no matter (φ = 0),
in the flat case k = 0. Then the solution to the quantum equation on the half-
line a > 0, Eq. (4.104), is given for λ �= 0 by a linear combination of Bessel
functions

Ψ(a) = c1 J0( 1
3

√
λ̃ a3) + c2 Y0( 1

3

√
λ̃ a3) , (4.107)

with λ̃ = λ̄/Ḡ, c1 and c2 arbitrary constants, and Ψ(a) further constrained by a
normalization condition such as

∫ ∞
0 dμ(a) |Ψ(a)|2 = 1.4 Because of the restriction

a > 0 one would expect thatΨ(0) = 0; this would then possibly exclude the second
solution which is singular at the origin. Note that the condition a > 0 can be traced
back to the requirement on the three-metric detgi j > 0.

It should be clear that in general the quantum behavior of the solutions is ex-
pected to be quite different from the classical one. In the latter case one imposes
some initial conditions on the scale factor at some time t0, which then determines
a(t) at all later times. In the minisuperspace view of quantum cosmology one has to
instead impose a condition on the wavepacket Ψ at a = 0. Due to their simplicity,
in general it is possible to analyze the solutions to the minisuperspace Wheeler-
deWitt equation in a rather complete way, given some sensible assumptions on how
Ψ(a,φ) should behave, for example, when the scale factor a approaches zero. For
k = 1 (closed universe) and λ̄ = 0 it is convenient to express the Wheeler-DeWitt
equation forΨ [a,φ ] in the field coordinates

x = a sinhφ y = a coshφ , (4.108)

which leads to
1
2

[
∂ 2

∂y2 − ∂ 2

∂x2 + V (x,y)
]
Ψ(x,y) = 0 , (4.109)

with a “potential” V

V (x,y) = x2 − y2 +m2(x2 − y2)2 arctanh2(x/y) . (4.110)

Then the physical domain a > 0 corresponds, in the new parametrization, to y > |x|.
To fully determine the solution, a condition needs to be imposed on or near the

4 For a general operator ordering, parametrized by q, the solution is modified to a different combi-

nation of Bessel functions,Ψ(a) = c1 a(1−q)/2 J(1−q)/6( 1
3

√
λ̃ a3) + c2 a(1−q)/2 J−(1−q)/6( 1

3

√
λ̃ a3).
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“light cone” y ≈ |x|, and one possible choice is Ψ = 1. Presumably a better proce-
dure would be an approximate determination in this region of Ψ via an Euclidean
functional integral. The qualitative behavior of the solutions in general depends cru-
cially on whether one is in the region V < 0 (where the solution Ψ increases ex-
ponentially) or in the region V > 0 (where the solution for Ψ is oscillatory). From
the nature of the solution and its semiclassical correspondence it has been argued
that the behavior close to y = |x| (a = 0 in the original variable) is consistent with
a minimum radius or “bounce” at V = 0 (Hawking and Wu, 1984; Ochiai and Sato,
2000).

How do the properties of the solutions to the Wheeler-DeWitt equation applied to
minisuperspace models depend on additional terms that might enter into the original
gravitational action? To answer this question, one could consider the addition of
higher derivative terms, such as

Î = − 1
16πG

∫
d4x

√
g
[
R − αCμνρσ Cμνρσ + β R2] + s.t. , (4.111)

where Cμνρσ is the Weyl tensor, and “s.t.” refers to surface terms (Hawking and
Luttrell, 1984a,b). Following a procedure analogous to the one discussed in the
previous case, one obtains for a homogeneous isotropic universe the following
Wheeler-DeWitt equation forΨ(a,R), or, more conveniently, forΨ(x,y)

1
2

[
∂ 2

∂y2 − ∂ 2

∂x2 + V (x,y)
]
Ψ(x,y) = 0 , (4.112)

now with “potential” V

V (x,y) = x2 − y2 + gx2(x− y)2 , (4.113)

with g ≡ 1/18πβ , and variables x and y given by x = 2βaR and y = 2a(1 +βR),
where R is the scalar curvature.

As in the previous example, one is interested in a solution for a > 0 which cor-
responds to y > x, with boundary conditionΨ(x = y) = 1 (see Fig. 4.2). But this is
not sufficient to determine the Cauchy data, and one has to make some additional
guess on what a semiclassical wavefunction might look like in the vicinity of x = y
or x = −y, which suggests

Ψ(y = −x) = exp(−a4/36πβ ) . (4.114)

These conditions are then in principle sufficient to determine the wavefunction
Ψ(x,y).

Physically the oscillatory behavior of the wavefunction then suggests the ex-
istence of small amplitude oscillations superimposed on an overall expansion or
contraction. These oscillations in radius would cause particle creation in any matter
fields present, which in turn would damp the oscillation.

As one last illustrative example consider a minisuperspace model for a universe
filled with matter (or radiation) of uniform density, such that ρ(a) = M/aσ where
σ = 3 (matter) or 4 (radiation); σ = 0 would correspond to a pure vacuum energy.
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Fig. 4.2 Minisuperspace wavefunctionΨ(x,y) for the problem in Eq. (4.112), gravity with higher
derivative terms, in the region y > |x|.

In the following we will consider for simplicity only the case σ = 3, corresponding
to non-relativistic matter. The classical Friedman equations for λ = 0 give

ȧ2 + k − 8πG
3

a3ρ(a) = 0 , (4.115)

with k = 0,±1, and subject to some initial conditions at t = t0. The above equation
can be regarded as a classical one-dimensional mechanics problem, with an inverted
parabolic potential V (a) = k

2 −
8πG

3 a3ρ(a). Introducing, as before, the canonical
momentum derived from the appropriate classical Lagrangian one finds for the clas-
sical Hamiltonian

H = −Ḡa−1 p2 − k̄ a + a3ρ(a) = 0 , (4.116)

with Ḡ = 2π
3 G and k̄ = 3

8πG . After setting p2/a = a−q+1 paq p, with q a parameter
introduced to describe an operator ordering ambiguity, and replacing p →−i∂/∂a
one obtains for the Wheeler-DeWitt equation

{
α

1
a2

∂ 2

∂a2 + qα
1
a3

∂
∂a

− k +
8πG

3
a2ρ(a)

}
Ψ(a) = 0 , (4.117)

with α ≡ 4Ḡ2 = 16π2G2/9. Then for the choice q = 1 one can re-write the equation
as a one-dimensional zero-energy stationary state Schrödinger-like problem,

{
1
a2

∂
∂a

a
∂
∂a

− k
α

a +
8πG
3α

a3ρ(a)
}
Ψ(a) = 0 , (4.118)

which in the non-relativistic matter case (ρ(a) = M/a3) corresponds to one-
dimensional quantum motion with potential Ve f f (a) = (k/α)a2 − β a, with β ≡
8πGM/3α > 0. The shape of the potential for k = 1 is an inverted U going through
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the origin, and a maximum at a0 = βα/2k, so that quantum mechanical tunnel-
ing through the barrier is possible. The vanishing of the wavefunction at the origin
ψ(0) = 0 would imply here the absence of a singularity in the quantum case. The
solution in this case can be found explicitly,

Ψ(a) = c1 J0(γ a3/2) + c2 Y0(γ a3/2) , (4.119)

with γ = (32πGM/9α)1/2. The regular and irregular solutions are shown in Fig.
(4.3) for γ = 1. A slow oscillating decay of the wavefunction Ψ(a) for large scale
factor a can be seen as the quantum counterpart to the power-law increase of the
scale factor a(t) for large times. A more complete treatment of this problem would
include matter as a dynamical variable, with its own equations of motion, as was
done in the scalar field case. An update on the methods of minisuperspace models
can be found in the recent review (Page, 2002).

Fig. 4.3 Minisuperspace
wavefunction Ψ(a) for the
problem in Eq. (4.118), de-
scribing the fluctuations in
the scale factor a for non-
relativistic matter, shown here
in the physical region a > 0.

Finally one should mention that the problem of singularity avoidance in quantum
cosmology has been, and remains, of great interest. To what extent is the singular
behavior of the scale factor (and curvature invariants) at the big-bang singularity
avoided by quantum fluctuations? In the models presented so far the singularity at
a = 0 appears at the boundary of phase space, and has measure zero. The quantum
probability would therefore seem to be vanishingly small. Based on our understand-
ing of path integrals such a result should not come as unexpected: singular solutions
of classical field equations could end up having zero measure in the full quantum
path integral; after all one can prove in a number of simpler cases that all classical
(differentiable) paths have zero measure in the Feynman path integral (Glimm and
Jaffe, 1981). Even if the probability at the origin were finite it is not clear that it
would necessarily cause a problem. The analogy with the Hydrogen atom comes to
mind, where the Coulomb potential is singular at the origin. Quantum-mechanically,
even though the electron in an s-wave state has a finite probability of being at the
origin, this does not cause a problem as the electron just moves through. In general
it appears that, at least within the context of a variety of minisuperspace models,
normalizable solutions to the Wheeler-DeWitt equations can be made to vanish at
the classical singularity (Kamenshchik, Kiefer and Sandhofer, 2007; Kiefer, 2008).
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In concluding the discussion on minisuperspace models as tools for studying
the physical content of the Wheeler-DeWitt equation it seems legitimate to ask the
following question: to what extent can results for such models, and specifically the
ones discussed in the previous section, be representative of what might or might not
happen in the full quantum theory?

To such purpose let us consider a field theory model that is non-trivial, yet much
simpler that gravity: a self-coupled quantum scalar field φ(x) in four dimensions
with Lagrangian

Lφ = 1
2 (∂μ φ)2 − 1

2 m2 φ 2 − 1
4 λ φ

4 , (4.120)

with a mass term proportional to m2 and a quartic self-interaction proportional to
the dimensionless coupling λ . The perturbative treatment in four dimensions (Wil-
son, 1973; for a review see Zinn-Justin, 2002) shows that the quantum theory is
strongly interacting at short distances, whereas the long distance behavior is de-
termined by the Gaussian fixed point at λ = 0. The theory essentially becomes
non-interacting at large distances, with an effective running coupling λ (p2) ∼p2 →0

1/| log(p2/Λ 2)| → 0.
A minisuperspace approximation to such a theory would consist in neglecting

altogether all spatial derivatives of the quantum field, by setting ∇φ = 0. The model
is then described by a single degree of freedom φ(t), with Lagrangian

Lφ = 1
2 φ̇

2 − 1
2 m2 φ 2 − 1

4 λ φ
4 . (4.121)

From the expression for the momentum variable πφ = φ̇ , and the substitution π̂φ →
(h̄/i)∂/∂φ , one then obtains the quantum Schrödinger equation for stationary states
in this reduced phase space, which is

{
− 1

2
∂ 2

∂φ 2 + U(φ) − k

}
Ψ(φ) = 0 , (4.122)

with U(φ) = 1
2 m2 φ 2 + 1

4 λ φ
4 and k the energy eigenvalue. Normalizable solutions

are of course the usual Hermite eigenfunctions of the quantum harmonic oscillator
in the position representation. The ground state wavefunction (with k = 1

2 m) would
then roughly correspond to the minisuperspace solution of the Wheeler-DeWitt
equation HΨ = 0 for gravity.

The shortcomings of such a minisuperspace truncation of the original quantum
theory of Eq. (4.120) are now becoming evident: the model no longer contains any
propagating degrees of freedom along the spatial directions x. Since φ is assumed
to be constant in x, any correlations in the spatial directions are absent, which is
troubling since for the free part one knows that such vacuum correlations are not
negligible: they are given by

〈φ(x,0)φ(x′,0)〉 ∼ 1
|x − x′|2 , (4.123)



4.12 Quantum Hamiltonian for Gauge Theories 127

and cannot be considered small in any sense (in particular they diverge as x → x′,
or, equivalently, become sensitive to an ultraviolet cutoff at short distances).

Furthermore, since one is dealing with a finite number of degrees of freedom,
there are no radiative corrections, no renormalization effects, and thus no scale de-
pendent couplings arising from the quantum corrections. In other words, the model
is still in many ways essentially classical, in spite of the appearance of some quan-
tum variables such as π̂φ . In particular the short distance, and therefore high particle
density, behavior of the theory, which in the full treatment becomes strongly coupled
at short distance due to the UV growth of the coupling λ , is not described correctly
by the minisuperspace model.

It would seem that similar concerns could be raised regarding the minisuperspace
approximation to quantum gravity. The infinitely many degrees of freedom of the
metric in this case are just reduced to a few, such as a(t). As a result, the transverse-
traceless nature of quantum fluctuations in the linearized limit is no longer apparent.
The spatial quantum fluctuations of the metric, which are expected to acquire diver-
gent contributions due to the ultraviolet renormalization effects of four-dimensional
quantum field theories, and quantum gravity in particular, are set to zero, and quan-
tum correlations in the spatial directions are entirely neglected. Finally the highly
degenerate (and therefore genuinely quantum mechanical) nature of the strongly
coupled graviton gas is not taken into account, one more aspect which could, possi-
bly, be quite relevant for early time cosmology.

4.12 Quantum Hamiltonian for Gauge Theories

It is of interest to see how the Hamiltonian approach has fared for ordinary SU(N)
gauge theories, whose non-trivial infrared properties (confinement, chiral symmetry
breaking) cannot be seen to any order in perturbation theory, and require therefore
some sort of non-perturbative approach, based for example on a strong coupling
expansion. In the continuum one starts from the Yang-Mills action

I = − 1
4g2

∫
d4xFa

μν Fμνa , (4.124)

with field strength
Fa
μν = ∂μAa

ν −∂νAa
μ +g fabc Ab

μAc
ν , (4.125)

and gauge fields are Aa
μ with (a = 1 . . .N2 − 1), where the quantities fabc are the

structure constants of the Lie group, such that the generators satisfy [Ta,Tb] =
i fabcTc. The gauge invariant energy-momentum tensor for this theory is given by

T μν = Fμρ
a Fν

ρa − 1
4 η

μν Fρσ
a Fσρ

a , (4.126)

and in terms of the fields strengths Ei
a = Fi0

a and Bi
a = − 1

2εi jkF jk
a (with i, j,k =

1,2,3) one has
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T 00 = 1
2

(
Ei

aEi
a + Bi

aBi
a

)
(4.127)

and
T 0i = εi jk E j

a Bk
a . (4.128)

T 00 could be interpreted as a Hamiltonian density, and therefore be used to con-
struct the quantum Hamiltonian, were it not for the fact that some of the degrees of
freedom, as shown below, are unphysical.

It is convenient to rewrite the gauge field Lagrangian in first order form (see
for example Itzykson and Zuber, 1980), For concreteness we will discuss here the
SU(2) case with fabc = εabc (in the following bold-face vectors will therefore refer
to iso-vectors with color index a). The Lagrangian is then

L = 1
4 Fμν ·Fμν − 1

2 Fμν · (∂ μAν − ∂νAμ + gAμ ×Aν) . (4.129)

The Euler-Lagrange equations give

Fμν = ∂μAν − ∂νAμ + gAμ ×Aν (4.130)

and
∂ μFμν + gAμ ×Fμν = 0 , (4.131)

with time evolution equations

∂0Ai = F0i + (∇i + gAi×)A0

∂0F0i = (∇ j + gA j×)F ji − gA0 ×F0i . (4.132)

The field canonically conjugate to Ai is F0i (with the chromo-electric field having
been defined as Ei

a = Fi0
a ).

On the other hand the field canonically conjugate to A0 vanishes, since there is
no ∂0A0 term in the Lagrangian,

π0 = 0 , (4.133)

so this field must be treated as a dependent variable. In Dirac’s language this is
called a primary constraint. From the second equation of motion, Eq. (4.131) one
has

(∇k + gAk×)Fk0 = 0 , (4.134)

which is the analog of Gauss’s equation ∇ ·E = 0 in electrodynamics. Equivalently
the last constraint can be written in terms of canonical momenta πi as

(∇k + gAk×)πk = 0 , (4.135)

which is sometimes referred to as a secondary constraint, since it involves the use
of the equations of motion. Eq. (4.134) tells us that not all conjugate momenta Fk0

are independent, and one needs therefore to impose a gauge condition, such as

∇kAk = 0 , (4.136)
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which then implies that A is transverse.
The next step is to separate out the transverse and longitudinal parts in F0i by set-

ting FL
0i =−∇if and FT

0i = Ei, solve for f using the constraint equation of Eq. (4.134),
and eliminate A0 to obtain the physical Hamiltonian

H = 1
2

∫
d3x

[
E2

i + B2
i + (∇if)2 ] . (4.137)

The last terms represents the instantaneous Coulomb interaction that is characteristic
of this gauge.

4.13 Lattice Regularized Hamiltonian for Gauge Theories

The previous section discussed the Hamiltonian formulation for Yang-Mills theories
in the continuum. In view of applying the Hamiltonian method to quantum gravity, it
is of interest to see how such an approach is implemented in SU(N) gauge theories at
strong coupling first. In gauge theories the only known way to deal in a systematic
way with the strong coupling problem is to formulate gauge theories on a lattice,
obtain an appropriate lattice Hamiltonian by taking the continuous time limit, and
from it develop a strong coupling expansion for physical states such as glueballs
and hadrons. One would hope that a similar procedure could be applied to gravity
as well. It is in order to understand the general ideas and issues better that the gauge
theory methods will be described in some detail first.

A lattice regularized form of the gauge action in Eq. (4.124) was given in
(Wilson, 1974). The theory is defined on a d-dimensional hyper-cubic lattice with
lattice spacing a, vertices labeled by an index n and directions by μ (see Fig 4.4).
The group elements Unμ = exp iagAa

μTa are defined in the fundamental representa-
tion, and reside on the links of the lattice. The pure gauge Euclidean action involves
a sum of traces of path-ordered products [with U−μ(n + ν) = U†

μ(n)] of unitary
Uμ(n) matrices around an elementary square loop (“plaquettes”, here denoted by �),

I[U ] = −a4−d

4g2 ∑
�

tr
[
UUU†U† + h.c.

]
. (4.138)

From now on we will discuss exclusively the case d = 4. The action is locally gauge
invariant with respect to the change

Uμ(n) → V †(n)Uμ(n)V (n+ν) , (4.139)

where V is an arbitrary SU(N) matrix defined on the lattice sites. The product of four
U matrices around a plaquettes can be shown, using the Baker-Hausdorff formula
exp(A)exp(B) = exp(A + B + 1

2 [A,B] + . . .), to give the exponential of the lattice
field strength tensor in the limit of small lattice spacing,
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Uμ(n)Uν(n+μ)U−μ(n+μ+ν)U−ν(n+ν) ≈ exp
[
ia2gFμν(A)

]
(4.140)

with
Fμν(A) = ∂μAν −∂νAμ + ig [Aμ ,Aν ] , (4.141)

and Aμ ≡ Aa
μT a. Taking the trace of the expression in Eq. (4.140) and replacing the

sums over lattice points by integrals,

a4 ∑
sites

→
∫

d4x , (4.142)

then gives, up to an irrelevant additive constant, the continuum Yang-Mills action of
Eq. (4.124).
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Fig. 4.4 An elementary plaquette in Wilson’s lattice gauge theory. Shown is also a small Wilson
loop and a Wilson line, closed by the lattice’s periodicity.

The next step is to define the path integral as

Z(g2) =
∫

[dUH ] exp(−I[U ]) , (4.143)

where [dUH ] is the Haar measure over the group SU(N), one copy for each lattice
link variable U . In this formulation only gauge-invariant terms have non-vanishing
expectation values, there are no auxiliary conditions, no Faddeev-Popov ghosts, and
the gauge volume only contributes a finite factor since there are a finite number of
lattice points N→ ∞.
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A lattice regularized Hamiltonian can be defined on a purely spatial lattice, by
taking the zero lattice spacing limit in the time direction (Kogut, 1983). The process
can be regarded as the inverse to the one usually follows in deriving the Feynman
path integral from the matrix elements of the quantum time evolution operator e−iHt .
One starts by writing the lattice partition function Z in terms of a product of transfer
matrices T (Ut+1,Ut) connecting the fields on successive time slices, labeled by t,
and integrated over all intermediate variables U ,

Z = trT L =
∫

dUt+1 dUt dUt−1 . . . T (Ut+1,Ut)T (Ut ,Ut−1)T (Ut−1,Ut−2) . . .

(4.144)
with L is the total time extent of the lattice. In order to take the zero lattice spacing
limit in the time direction, it is convenient to distinguish the lattice spacing in this
direction by the symbol a0. Local gauge invariance further allows one to set all the
link variables in the time direction to unity, Un0 = 1, or Aa

n0 = 0 in this lattice version
of the temporal gauge. Consequently gauge invariance will need to be imposed as a
constraint, which will eventually take the form of a discrete version of Gauss’s law.

With this choice of temporal gauge, the action can be decomposed in a part that
involves only the spatial plaquettes, and a remainder involving pairs of oppositely
oriented link variables separated by a single time step,

I[U ] = − 1
4g2 ∑

spatial �

tr
[
UUU†U† + h.c.

]

− 1
4g2 ∑

spatial <nm>

tr
[
UnmU†

n+a0t,m+a0t + h.c.
]

. (4.145)

After labeling the gauge variables on two neighboring time slices by U and U ′, one
can write the transfer matrix element T (U,U ′) as

〈U |T |U ′〉 = exp

{
1

4g2 ∑
spatial�

tr
[
UUU†U† + h.c.

]
+ tr

[
U ′U ′U†′U†′ + h.c.

]

+
1

4g2 ∑
links<nm>

tr
[
UnmU†′

nm + h.c.
]}

. (4.146)

In general the matrix elements of the transfer matrix T have a rather complicated
form, but in the limit a0 → 0 one can write T � 1−a0H + O(a2

0) and extract from
T an expression for the Hamiltonian H. But one notices further that the last two
terms in Eq. (4.146) involve only temporal loops, with two (gauge fixed) links
pointing in the time direction. When written out explicitly, they contain terms of
the type

tr[U†(t +1)U(t)+h.c.] , (4.147)
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which, up to irrelevant constant contributions, can be written as combinations of
lattice differences in the time direction,

tr
1
a0

[
U†(t +1) − U†(t)

] 1
a0

[
U(t +1) − U(t)

]
. (4.148)

In the limit as a0 → 0 these turn into a combination of time derivatives of the form
U̇†U̇ , and in this limit the exponent inside the path integral involves therefore the
quantity

L =
a

4g2 ∑
links

trU̇†U̇ +∑
�

1
4ag2 tr

[
UUU†U† + h.c.

]
. (4.149)

The next step is an elimination of the U̇ angular variables in favor of the local gen-
erators of rotations (Creutz, 1977). First from the above action one can construct a
Hamiltonian in the usual way, by defining

H = ∑
links nm

(
U̇†

nm
∂L

∂U̇†
nm

+ U̇nm
∂L

∂U̇nm

)
− L(U̇ ,U,U̇†,U†) , (4.150)

which in this case gives

H =
a

4g2 ∑
links

trU̇†U̇ −∑
�

1
4ag2 tr

[
UUU†U† + h.c.

]
. (4.151)

The U̇ variables can now be eliminated by introducing generators of local rotations
Ea

i (n), defined on the links (with spatial directions labeled by i, j = 1,2,3) and
satisfying the commutation relations

[Ea
i (n),Uj(m)] = T a Ui(n)δi j δnm , (4.152)

along with the SU(N) generator algebra commutation relation
[
Ea

i (n),Eb
j (m)

]
= i f abc Ec

i (n)δi j δnm . (4.153)

Since Ea generates local rotations, it can be written explicitly in term of the U’s. An
infinitesimal local gauge rotation of the U link matrices is achieved by

Ui(n) → (1 + iεa T a) Ui(n) . (4.154)

The generator for such a symmetry of the original Lagrangian L is by Noether’s
theorem

Ea =
∂L

∂U̇i j
(iT a U)i j +

∂L

∂U̇†
i j

(iT a U)†
i j

= i
a

4g2

(
trU̇†T a U − h.c.

)
. (4.155)
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In terms of the operators Ea one then has for the first term in the Hamiltonian H

EaEa =
a

2g4 trU̇† U̇ , (4.156)

after using the normalization condition on the SU(N) generators T a, trT aT b = 1
2δ

ab.
This finally gives for the Hamiltonian of Wilson’s lattice gauge theory (Kogut and
Susskind, 1975)

H =
g2

2a ∑links

EaEa −∑
�

1
4ag2 tr

[
UUU†U† + h.c.

]
. (4.157)

The first term in Eq. (4.157) is the lattice analog of the electric field term E2, while
the second term is a lattice discretized version, involving lattice finite differences,
of the magnetic field, (∇×A)2 term. In this picture the analog of Gauss’s law is a
constraint, which needs to be enforced on physical states at each spatial site n

6

∑
i=1

Ea
i (n) |Ψ〉 = 0 . (4.158)

In the special case of the group SU(2), the generators of group rotations in
Eq. (4.153) are just the usual angular momentum operators Ja(n), a = 1,2,3. The
system can be regarded therefore as a collection of quantum rotators, with a kinetic
term defined on the links and proportional to J2 [with eigenvalue j( j+1)], and a po-
tential, or link coupling, term. An appropriate basis in the extreme strong coupling
limit is then represented by a suitable product of angular momentum eigenstates

|Ψ〉 = ∏
n,i

| j,m〉n,i . (4.159)

In this limit the B2 term can be regarded as a perturbation, whose action on the
above state can then be determined from the commutation relation in Eq. (4.152).

Even simpler is the Abelian case U(1). Here only one angle variable θμ(n) sur-
vives on each link. In the position representation one writes for the electric field op-
erator E ≡ Jθ =−i∂/∂θ , with integer eigenvalues m and eigenfunctions eimθ/

√
2π .

The remainder of the Hamiltonian then involves for each spatial plaquette the term
cosθ� with

θ� = θμ(n)+θν(n+μ)−θμ(n+ν)−θν(n) . (4.160)

It is characteristic of this lattice gauge theory model, compact electrodynamics, that
the gauge variables are angles. For weak enough coupling g = e one can con-
sider them as variables ranging over the whole real line, and ordinary QED is
recovered.

In general, and irrespective of the symmetry group chosen, the ground state in
the strong coupling g2 → ∞ limit has all the SU(N) rotators in their ground state,
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which for example for SU(2) means all j = 0. In this limit the Hamiltonian has the
simple form

H =
g2

2a ∑links

Ea
i Ea

i . (4.161)

Then the vacuum is a state for which each link is in a color singlet state

Ea
i |0〉 > = 0 . (4.162)

The lowest order excitation of the vacuum is a “boxciton” state, with one unit of
chromo-electric field on each link of an elementary lattice square, with energy

E� = 4 · g2

2a
N2 −1

2N
. (4.163)

The mass of the lowest excitation in the theory is usually referred to as the mass
gap, the energy gap between the vacuum and the first excited state. Note that if one
creates states out of the vacuum by having the Hamiltonian act on it, there is no
need to separately enforce the Gauss law constraint, as the states obtained in this
way automatically satisfy the constraint.

By the same kind of arguments, the static potential between a quark and an anti-
quark pair, separated by a distance R, increases linearly with distance causing linear
confinement at strong coupling. This is due to the fact that, given two static quarks
separated form each other by this distance R [and described by fermion operators
ψ(n) and ψ†(n)], a number of link variables U proportional to the distance between
the two has to be laid down,

ψ†(n)

(
∏

n →n+R
U

)
ψ(n+R) , (4.164)

in order to construct the manifestly gauge invariant color singlet state. Then each
link variable which is not in the ground state costs a unit of energy proportional to
1/g2.

All of this applies to the strong coupling limit of the theory. Raleigh-Schrödinger
perturbation theory can then be used to compute corrections to such results, in prin-
ciple to arbitrarily high order in 1/g2. But ultimately one is interested in the limit
g2 → 0, corresponding to the ultraviolet, asymptotic freedom fixed point of the non-
abelian gauge theory, and to the lattice continuum limit a → 0. Therefore in order to
recover the original theory’s continuum limit, one needs to examine a limit where
the mass gap in units of the lattice spacing goes to zero, am(g) → 0.

It is easy to see that this limit corresponds to an infinite correlation length in
lattice units, since the correlation length is given by ξ (g) = 1/m. The last result can
most easily be seen from the Lehman representation of the connected vacuum field
correlations in the Euclidean time (τ) direction



4.14 Lattice Hamiltonian for Quantum Gravity 135

〈0|φ(τ)φ(0) |0〉 = 〈0|eHτφ(0)e−Hτ φ(0) |0〉 = ∑
n
〈0|φ(0)|n〉|2 e−(En−E0)τ ,

(4.165)
(with H|n〉 = En|n〉). For sufficiently large Euclidean time one has therefore an
asymptotic decay of the correlation function 〈0|φ(τ)φ(0)|0〉 ∼ e−τ/ξ , with ξ related
to the mass gap m by 1/ξ = E1−E0 = m. The zero lattice spacing limit so described
is a crucial step in fully recovering the properties (rotational or Lorentz invariance,
asymptotic freedom, massless perturbative gluon excitations) of the original contin-
uum theory.

It is possible to develop a systematic strong coupling 1
g2 expansion on the lattice

based on the Hamiltonian in Eq. (4.157). Alternatively one can develop a strong
coupling expansion starting from the original Wilson formulation in Eqs. (4.138)
and (4.143). To this purpose one expands the exponential of the lattice action in
terms of group characters χ j

exp [β tr(U�)] = F0

[
1 + ∑

j �=0

d j c j(g2)χ j(U�)

]
, (4.166)

with U� = UUU†U† around a single plaquette labeled by �, and β = 2N/g2. The
sum is over all non-trivial irreducible representations of SU(N), here labeled by j.
The partition function of Eq. (4.143) can then be re-expressed as

Z(g2) =
∫

[dUH ] ∏
�

[
1 + ∑

j �=0

d j c j(g2)χ j(U�)

]
. (4.167)

Relatively long series for Z(g2) (and derived quantities), for the string tension and
for the glueball correlation function can then be obtained by this method using dia-
grammatic techniques, such as the linked cluster expansion, borrowed from statisti-
cal mechanics (Drouffe and Itzykson, 1978; Münster, 1981; 1982).

4.14 Lattice Hamiltonian for Quantum Gravity

In constructing a discrete Hamiltonian for gravity one has to decide first what de-
grees of freedom one should retain on the lattice. There are a number of possibili-
ties, depending on which continuum theory one chooses to discretize, and at what
stage. So, for example, one could start with a discretized version of Cartan’s for-
mulation, and define vierbeins and spin connections on a flat hypercubic lattice.
Later one could define the transfer matrix for such a theory and construct a suitable
Hamiltonian.

Another possibility, which is the one we choose to pursue here, is to use the more
economical Regge discretization for gravity, with edge lengths defined on a random
lattice as the primary dynamical variables. Even in this specific case several avenues
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for discretization are possible. One could discretize the theory from the very begin-
ning, while it it is still formulated in terms of an action, and introduce for it lapse
and shift functions, extrinsic and intrinsic discrete curvatures, etc. Alternatively one
could try to discretize the continuum Wheeler-deWitt equation directly, a proce-
dure that makes sense in the lattice formulation, as these equations are still given in
terms of geometric objects, for which the Regge theory is well suited. It is the latter
approach which we will outline here.

The starting point for the following discussion is therefore the Wheeler-DeWitt
equation for pure gravity in the absence of matter, Eq. (4.72),

{
−(16πG)2 Gi j,kl(x)

δ 2

δgi j(x)δgkl(x)
−
√

g(x)
( 3R(x) − 2λ

)}
Ψ [gi j(x)] = 0 ,

(4.168)
and the diffeomorphism constraint of Eq. (4.73),

{
2 igi j(x)∇k(x)

δ
δg jk(x)

}
Ψ [gi j(x)] = 0 . (4.169)

Note that there is a constraint on the state |Ψ〉 at every x, each of the form
Ĥ(x) |Ψ〉 = 0 and Ĥi (x)|Ψ〉 = 0.

On a simplicial lattice (see Sect. 6.1 for a discussion of the lattice formulation
for gravity) one knows that deformations of the squared edge lengths are linearly
related to deformations of the induced metric, within a given simplex s and based
on a vertex 0, as discussed elsewhere here, for example in Eq. (6.3),

gi j(s) = 1
2

(
l2
0i + l2

0 j − l2
i j

)
. (4.170)

Note that in the following discussion only edges and volumes along the spatial direc-
tion are involved. Furthermore, one can introduce in a natural way a lattice analog
of the DeWitt supermetric of Eq. (4.66), by writing

‖δ l2 ‖2 = ∑
i j

Gi j(l2) δ l2
i δ l2

j , (4.171)

with the quantity Gi j(l2) suitably defined on the space of squared edge lengths
(Lund and Regge, 1974; Hartle, Miller and Williams, 1997). Through a straightfor-
ward exercise of varying the squared volume of a given simplex s in d dimensions

V 2(s) =
(

1
d!

)2
detgi j[l2(s)] , (4.172)

to quadratic order in the metric (on the r.h.s.), or in the squared edge lengths (on the
l.h.s.), one finds the identity

1
V (l2) ∑i j

∂ 2V 2(l2)
∂ l2

i ∂ l2
j

δ l2
i δ l2

j = 1
d!

√
det(gi j)

[
gi jgklδgi jδgkl −gi jgklδg jkδgli

]
.

(4.173)
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The r.h.s. of this equation contains precisely the expression appearing in the contin-
uum supermetric of Eq. (2.14) or Eq. (4.66) (for a specific choice of the parameter
α =−2), while the l.h.s. contains the sought-for lattice supermetric. One is therefore
led to the identification

Gi j(l2) = − d! ∑
s

1
V (s)

∂ 2 V 2(s)
∂ l2

i ∂ l2
j

. (4.174)

In spite of the appearance of a sum over simplices s, Gi j(l2) is quite local (in corre-
spondence with the continuum, where it is ultra-local), since the derivatives on the
r.h.s. vanish when the squared edge lengths in question are not part of the same sim-
plex. The sum over s therefore only extends over those few tetrahedra which contain
either the i or the j edge.

At this point one is finally ready to write a lattice analog of the Wheeler-DeWitt
equation for pure gravity, which reads
{
−(16πG)2 Gi j(l2)

∂ 2

∂ l2
i ∂ l2

j

−
√

g(l2)
[ 3R(l2) − 2λ

] }
Ψ [ l2 ] = 0 , (4.175)

with Gi j(l2) the inverse of the matrix Gi j(l2). Note that the lattice supermetric
is dimensionful, Gi j ∼ l4−d and Gi j ∼ ld−4 in d spacetime dimensions, and it
might be useful from now on to introduce a lattice spacing a (or momentum cut-
offΛ = 1/a) and express all dimensionful quantities (G,λ , li) in terms of this lattice
spacing.

One notes that Eqs. (4.168) or (4.175) express a constraint equation for each
“point” in space. On the lattice these points are replaced by a set of edge labels i,
with a few edges clustered around each vertex, in a way that depends on the di-
mensionality and the local lattice coordination number. To be more specific, the first
term in Eq. (4.175) contains derivatives with respect to edges i and j connected by
a matrix element Gi j which is nonzero only if i and j are close to each other, es-
sentially nearest neighbor. One would therefore expect that the first term could be
represented by a sum of edge contributions all from within one d − 1-simplex (a
tetrahedron in three dimensions) s. The second term containing 3R(l2) in Eq. (4.175)
is also local in the edge lengths: it only involves a handful of edge lengths which
enter into the definition of areas, volumes and angles around the point x, and follows
from the fact that the local curvature at the original point x is completely determined
by the values of the edge lengths clustered around i and j. Apart from some geomet-
ric factors, it describes, through a deficit angle δh, the parallel transport of a vector
around an elementary dual lattice loop. One would expect that it should be adequate
to represent this second term by a sum over contributions over all d−3-dimensional
hinges (edges in three dimensions) h attached to the simplex s, giving therefore in
three dimensions
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{
−(16πG)2 ∑

i, j⊂s
Gi j (s)

∂ 2

∂ l2
i ∂ l2

j

− ∑
h⊂s

lh δh + 2λ Vs

}
Ψ [ l2 ] = 0 . (4.176)

Here δh is the deficit angle at the hinge h, lh the corresponding edge length,
Vs =

√
g(s) the volume of the tetrahedron centered on s, and Gi j (s) obtained from

Eq. (4.63)

Gi j,kl(s) = 1
2 g−1/2(s)

[
gik(s)g jl(s)+gil(s)g jk(s)− gi j(s)gkl(s)

]
, (4.177)

with the induced metric gi j(s) within a simplex s given in Eq. (4.170).
It is in fact quite encouraging that the discrete equation in Eqs. (4.175) and

(4.176) is very similar to what one would derive in Regge lattice gravity by do-
ing the 3+1 split of the lattice metric carefully from the very beginning (Piran and
Williams, 1986; Williams and Tuckey, 1990). These authors also derived a lattice
Hamiltonian in three dimensions, written in terms of lattice momenta conjugate to
the edge length variables. In this formulation the Hamiltonian constraint equations
have the form

Hn = 1
4 ∑
α∈n

G(α)
i j π iπ j − ∑

β∈n

√
gβ δβ

= 1
4 ∑
α∈n

1
Vα

[
(tr π2)α − 1

2 (tr π)2
α
]
− ∑

β∈n

√
gβ δβ ,

= 0 (4.178)

with Hn defined on the lattice site n. The sum ∑α∈n extends over neighboring tetra-
hedra labeled by α , whereas the sum ∑β∈n extends over neighboring edges, here

labeled by β . G(α)
i j the inverse of the DeWitt supermetric at the site α , and δβ the

deficit angle around the edge β . √gβ is the dual (Voronoi) volume associated with
the edge β . In this discrete formulation there is also an additional semi-local con-
straint at each vertex n, corresponding to the continuum constraint

1
√

g

[
tr π2 − 1

2 (tr π)2] − √
g 3R = 0 . (4.179)

The lattice Wheeler-DeWitt equation of Eq. (4.175) has an interesting structure,
which is in part reminiscent of the Hamiltonian for lattice gauge theories,
Eq. (4.157). The first, local kinetic term is the gravitational analogue of the elec-
tric field term E2

a . It contains momenta which can be considered as conjugate to the
squared edge length variables. The second local term involving 3R(l2) is the analog
of the magnetic (∇×Aa)2 term in the lattice Hamiltonian of Eq. (4.175). In the ab-
sence of a cosmological constant term, the first and second term have opposite sign,
and need to cancel out exactly on physical states in order to give H(x)Ψ = 0. On
the other hand, the last term proportional to λ has no gauge theory analogy, and is,
as expected, genuinely gravitational.
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It is important to note that the squared edge lengths take on only positive values
l2
i > 0, a fact that would seem to imply that the wavefunction has to vanish when

the edge lengths do, Ψ(l2 = 0) � 0. In addition one has some rather complicated
constraints on the squared edge lengths, due to the triangle inequalities. These en-
sure that the areas of triangles and the volumes of tetrahedra are always positive. As
a result one would expect an average soft local upper bound on the squared edge
lengths of the type l2

i ∼< l2
0 where l0 is an average edge length, 〈l2

i 〉 = l2
0 . The term

“soft” refers to the fact that while large values for the edge lengths are possible,
these should nevertheless enter with a relatively small probability, due to the small
phase space available in this region.

These considerations have some consequences already in the strong coupling
limit of the theory. For sufficiently strong coupling (large Newton constant G) the
first term in Eq. (4.175) is dominant, which shows again some similarity with what
one finds for non-abelian gauge theories for large g, Eq. (4.157). It is then easy to
see, both from the constraint li > 0 and the triangle inequalities, that the spectrum of
this operator is discrete. In particular the mass gap, the spacing between the lowest
eigenvalue and the first excited state, is of the same order as the ultraviolet cutoff.
One can argue that this is in fact a general feature of the strong coupling theory,
where one is far removed from a lattice continuum limit. The latter has to be taken
in the vicinity of a non-trivial ultraviolet fixed point, if such a fixed point can be
found. One would then anticipate that the excitation spectrum would become denser
as one approaches the lattice continuum limit, in accordance with the existence of a
massless spin two particle in this limit.

Note that in the lattice theory the operator ordering ambiguity has not gone away
either: in principle one would have to check that different orderings give the same
physical results, whichever way those are defined (for example in terms of vacuum
expectation values of invariant operators, or quantum correlations of invariant oper-
ators at fixed geodesic distance along the spatial directions).

Irrespective of its specific form, it is in general possible to simplify the lattice
Hamiltonian constraint in Eqs. (4.175) and (4.176) by using scaling arguments, as
one does often in ordinary non-relativistic quantum mechanics. After setting for the
scaled cosmological constant λ = 8πGλ0 and dividing the equation out by common
factors, it can be recast in the slightly simpler form
{
−α a6 · 1√

g(l2)
Gi j(l2)

∂ 2

∂ l2
i ∂ l2

j

− β a2 · 3R(l2) + 1

}
Ψ [ l2 ] = 0 , (4.180)

where one finds it useful to define a dimensionless Newton’s constant, as measured
in units of the cutoff Ḡ≡ 16πG/a2, and a dimensionless cosmological constant λ̄0 ≡
λ0a4, so that in the above equation one has α = Ḡ/λ̄0 and β = 1/Ḡλ̄0. Furthermore
the edge lengths have been rescaled so as to be able to set λ0 = 1 in lattice units (it is
clear from the original gravitational action that the cosmological constant λ0 simply
multiplies the total spacetime volume, thereby just shifting around the overall scale
for the problem). Schematically Eq. (4.176) is therefore of the form
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{
− ḠΔq −

1
Ḡ

3R(q) + 1

}
Ψ [q ] = 0 , (4.181)

with Δq a discretized form of the covariant Laplacian, acting locally on the function
space of the q = l2 variables; on near-transverse traceless modes it is expected to
have positive eigenvalues. Furthermore, at this point the similarity with the lattice
Hamiltonian for non-abelian gauge theories in Eq. (4.157) has become evident.

Due to the triangle inequalities, finding a solution of Eq. (4.180) for all lattice
points might not be easy; in principle it could be done numerically. For N lattice q
variables, the solution forΨ(q) is expected to be in general a linear combination of
N wave functions. But if one is only interested in the lowest p2 ≈ 0 excitations of the
theory, one could perhaps approximate the Laplacian term by its lowest eigenvalue
∼ (π/L)2 where L is the linear size of the spatial system (for a spatial volume 3V
one would use L � (3V )1/3). Furthermore the local three-curvature operator 3R(q)
involves an elementary loop on the lattice, with size of the order of the average
lattice spacing l0. From dimensional arguments one would expect this term on the
average to contribute 3R � c0/l2

0 + c1/L2, the first piece representing a subtraction,
and the second one a correction dependent on the boundary conditions in x. Inserting
this expression into Eq. (4.181) one finds

c0 = l2
0 Ḡ c1 = π2 Ḡ2. (4.182)

The first condition amounts to requiring a critical value for Ḡ, reminiscent of the
ultraviolet fixed point condition for G in the 2+ ε expansion. If the theory develops
self-consistently a non-perturbative scale ξ by a mechanism analogous to dimen-
sional transmutation, then one would replace L → ξ in the above expressions.



Chapter 5
Semiclassical Gravity

5.1 Cosmological Wavefunctions

The basic idea of semiclassical gravity is that for energies well below the Planck
scale it is adequate to treat matter as quantum mechanical, but keep gravity classical.
The underlying assumption is that quantum gravity effects do not extend to large
distances, and that the Planck length lP =

√
G is the only length that can set the scale

for such quantum corrections, and not, for example, a non-vanishing cosmological
constant λ . One is therefore lead to consider quantum fields embedded in a general
curved background, whose local curvature radii are generally expected to be much
larger than the Planck length. The field equations will then be written as

Rμν − 1
2 gμν R + λ gμν = 8πG 〈Tμν〉 , (5.1)

where 〈Tμν〉 is some suitable local quantum average of the energy-momentum ten-
sor for matter fields.

One possible framework for discussing semiclassical gravity is the Wheeler-
DeWitt equation. Generally this equation will exhibit, even for pure quantum gravity
without matter, a vast number of solutions. These will in part be restricted by the
imposition of suitable, physically or otherwise, motivated, boundary conditions. In
the end the problem remains of how to concretely construct such wave functionals,
beyond the simplest minisuperspace approximation. Another possibility is to use
the Feynman path integral approach. There the wavefunction is represented by an
Euclidean functional integral over four-metrics and matter fields, weighted by the
Euclidean action Î for gravity plus with matter (Hartle and Hawking, 1983),

Ψ [gi j,φ ] =
∫

M
[dgμν ] [dφ ] exp

{
−1

h̄
Î(gμν ,φ)

}
. (5.2)

The Euclidean theory is obtained as usual from the Lorentzian path integral by a
standard Wick rotation t = −iτ , thereby continuing the spacetime metric to a Rie-
mannian signature. The sign of the Wick rotation is not arbitrary, since the action for
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ordinary matter fields needs to be reproduced correctly. In the above expression the
Feynman path integral is defined over those metrics gμν(x) and matter fields φ(x)
which have the hypersurface ∂M as a boundary, where the fields take on values
specified in the argument of the wavefunction Ψ . In addition the fields are possi-
bly subject to some other sort of boundary condition at some earlier time. One of
the earliest discussions of the connection between the canonical approach to gravity
and the Feynman sum over histories method can be found in (Leutwyler, 1964) and
(DeWitt, 1967a,b,c).

An essential ingredient of the proposal is that only closed universes should be
included in the path integral. This if often referred to as the no boundary (or perhaps
more appropriately, the one boundary) proposal. The motivation is to pursue an anal-
ogy with ordinary field theory, where vacuum to vacuum amplitudes are obtained in
the limit of large (Euclidean) time. Thus the integral is intended to extend over an
appropriate class of Euclidean compact four-geometries with compact boundary on
which the induced metric is hi j, and an appropriate class of Euclidean matter field
configurations which match the values given on the boundary. The wave functional
so obtained is usually denoted byΨ0 and referred to as the state of minimum exci-
tation. It would seem inappropriate to refer to it as a state of zero energy, as there
is no natural definition of energy, just as there is no natural definition of time, and
furthermore one expects the total energy of a closed universe to add up to zero when
both matter (positive) and gravitational (negative) contributions are added up.

It is clear that there are several advantages to this formalism (Halliwell and
Louko, 1989a,b,c; Halliwell and Hartle, 1990). Since it is based on path integrals,
one can develop a systematic semi-classical expansion to compute the wavefunction,
or even non-pertubative methods based on saddle point expansions or importance
samplings. Secondly, it gives a relatively unambiguous prescription for constructing
a wave functional which is a solution to the Wheeler-DeWitt equation, including
an explicit specification of the boundary conditions. Finally it should shed light on
the issue of cosmological singularities, since it allows the calculation of quantum-
mechanical amplitudes (which might be finite or zero) to transition across those
singularities. The problem is of course that, as discussed previously, the path inte-
gral is affected by severe ultraviolet divergences due to the fact that gravity is not
perturbatively renormalizable, and the semiclassical expansion does little to remove
these divergences. Secondly, the Euclidean path integral is unbounded from below,
and some sort of prescription for integrating over the metric has to be given, such as
integrating over complex conformal factors, and selecting the appropriate complex
extrema about which to expand the metric.

A close relationship between the Schrödinger equation (to which the Wheeler-
DeWitt equation itself is closely related) and the Feynman path integral arises al-
ready in non-relativistic quantum mechanics (Feynman and Hibbs, 1963). The non-
relativistic wavefunction for a spinless particleΨ(x, t) satisfies the integral equation

Ψ(x, t) =
∫

d3x G(x, t;x′, t ′)Ψ(x′, t ′) . (5.3)
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Physically the above expression means that the total quantum-mechanical amplitude
for a particle to arrive at (x, t) is a sum over all possible values x′ of the total ampli-
tude to arrive at the (x′, t ′) (which is given byΨ(x′, t ′), multiplied by the amplitude
to go from x to x′, which is given by the propagator G(x, t;x′, t ′). The propagator
itself corresponds to a special situation: the amplitude where the particle started out
at precisely (x′, t ′).

Let us recall that in Feynman’s formulation of quantum mechanics the propagator
G is expressed as a sum over all paths connecting initial and final points, weighted
by an action I,

G(x f , t f ;xi, ti) ≡ 〈x f , t f |xi, ti 〉 =
∫ x f (t f )

xi(ti)
[dx(t)] exp

{
i
h̄

I[x(t)]
}

. (5.4)

The paths x(t) contributing to the integral are known to be continuous, but not neces-
sarily differentiable (one can give arguments in support of the statement that differ-
entiable paths have measure zero), which requires in general that the above integral
be carefully defined on a lattice of N points with spacing a, with the limit a → 0,
N → ∞ taken at the end.

Returning to the gravitational case, the question arises then of how to compute
the path integral in Eq. (5.2), even in the absence of matter, and what boundary
conditions need to be imposed. In gravity the analogue of Eq. (5.4) is the quantum
mechanical amplitude

〈g( f )
i j ,φ ( f ) |g(i)

i j ,φ (i) 〉 =
∫ g( j)

i j ,φ ( f )

g(i)
i j ,φ (i)

[dgμν ] [dφ ] exp

{
−1

h̄
Î(gμν ,φ)

}
, (5.5)

where the functional integral is over all four-geometries that match the initial (i)
and final ( f ) field configurations on the two spacelike surfaces. One noteworthy
aspect of such gravitational amplitudes is the fact that, since all intervening four-
geometries are summed over, there is no notion of unique intervening proper time
interval: the proper time distance between the two hypersurfaces will depend on the
specific choice of interpolating four-geometry in the ensemble.

As mentioned previously, in computing the ground state wave functional Ψ of
Eq. (5.2) the proposal has been put forward to functionally integrate over all metrics
associated with compact Euclidean four-geometries specified by gμν , with a given
three-metric gi j on the boundary. For obvious reasons this is usually referred to as
the “no-boundary” proposal. It elegantly bypasses the issue of having to specify a
boundary or continuity condition on cosmological singularities, by suitably restrict-
ing the choice of geometries at “initial” times. In this approach the wave functional
for pure gravity is given by (from now on we set again h̄ = 1)

Ψ [gi j] =
∫

M
[dgμν ] exp

{
−Î(gμν)

}
, (5.6)

with an Euclidean action containing both volume (M) and boundary (∂M) terms,
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Î[gμν ] = − 1
16πG

∫
M

d4x
√

g(R − 2λ ) − 1
8πG

∫
∂M

d3x
√

gi j K , (5.7)

where K is the trace of the extrinsic curvature on the boundary. Note that the in-
ner product between two wave functionals is obtained by gluing together two wave
functionals and integrating over the fields on their common boundary, which is lo-
cated on a spatial hypersurface,

〈Ψ [gi j,φ ] |Ψ ′[gi j,φ ]〉 =
∫

[dgi j] [dφ ]Ψ̄ [gi j,φ ]Ψ ′[gi j,φ ]

=
∫

M,M′
[dgμν ] [dφ ] exp

{
−1

h̄
Î(gμν ,φ)

}
, (5.8)

is interpreted as an integral over all of space, half of it to the left of the spacelike
hypersurface (M), and half of it to the right (M′).

To evaluate the path integral definingΨ one option is to use the method of steep-
est descent, which is equivalent to the semi-classical, or WKB, approximation and
produces an answer in the form of an expansion in powers of h̄. In quantum field
theory such an expansion is equivalent to expanding in the number of loop diagrams
associated with perturbative Feynman diagrams. The leading term to the wave func-
tionalΨ is then the classical contributions, and the next correction is determined by
the quadratic quantum fluctuations around the chosen background. After the fluc-
tuations are integrated over via a Gaussian integral formula, one obtains a func-
tional determinant, whose effects then determine the leading quantum correction.
The wave functional will then take the form

Ψ [gi j] = P[gi j] exp
{
−Îcl(gi j)

}
, (5.9)

where Îcl(gi j) is the classical Euclidean action associated with the saddle point
(if there is more than one, an additional sum will be required), and P[gi j] is a
prefactor whose form is determined by the expansion of the Euclidean action
to quadratic order and the subsequent functional integration. One sets for the
four-metric

gμν → ḡμν = gμν + hμν , (5.10)

where hμν is a perturbation of the saddle-point four-metric gμν (which therefore
satisfies δ Î/δgμν = 0), vanishing on the boundary. The prefactor P in Eq. (5.9) is
then given formally by the integral,

P[gi j] =
∫

M
[dhμν ] exp

{
−Î2(hμν)

}
, (5.11)

with Î2 the contribution to the action Î quadratic in the metric perturbation hμν ,
and itself also a function of the background metric gμν . The integral over the hμν
fluctuations will involve zero modes from the gauge degrees of freedom, which
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will need to be factored out. Or, equivalently, one needs to restrict the functional
integration to physical degrees of freedom.

To carry the program through in specific cases, one first needs a choice of suitable
background metric, then an explicit expression for the second variation of the action
around this metric, and finally a procedure for evaluating the contribution of the
quantum fluctuation around this background. With the metric written as in Eq. (5.10)
one finds for the second variation of the action for λ = 0

Î2[h] = − 1
32πG

∫
d4x

√
g hμν Gμν (5.12)

with

Gμν = ∇λ∇λ h̄μν + gμν∇λ∇σ h̄λσ − ∇μ∇λ h̄λν − ∇ν∇λ h̄λμ , (5.13)

for a background metric satisfying Rμν = 0, and up to total derivatives. Here ∇μ
is the covariant derivative with respect to the background metric gμν , and h̄μν the
trace-reversed metric perturbation,

h̄μν = hμν − 1
2 gμν hμν . (5.14)

There is no surface contribution in Î2[h], since it would have to be of the form h∇h
with hμν , thus vanishing on the boundary.

The path integral over the hμν variables in Eq. (5.11) suffers from the usual
problem of configuration over-counting due to the gauge freedom in the metric h.
Specifically, the action Î2[h] is invariant under local gauge variations of hμν

hμν → hμν + ∂μξν + ∂νξμ , (5.15)

such that the gauge function ξμ vanishes on the boundary. In order to avoid a di-
vergence in the integration over the quantum fluctuations hμν , one needs to restrict
the functional integration over physically distinct metrics. One way of doing this is
to introduce a gauge-fixing term, and the associated Faddeev-Popov determinant. A
possible gauge condition would be

f ν = ∇μ

(
hμν − β gμν hλλ

)
, (5.16)

with f ν some prescribed vector function on the background manifold. The corre-
sponding Faddeev-Popov determinant would then involve a differential operator,
determined by the derivative of the gauge condition with respect to the gauge pa-
rameter. For the gauge condition in Eq. (5.16) the relevant operator Cμν is

Cμν(h) ξν = −∇λ∇λ ξμ − Rμν ξ ν + (2β − 1)∇μ∇ν ξν . (5.17)

The above procedure works well with manifolds without boundaries (Gibbons and
Perry, 1978). But it runs into technical problems when boundaries are present, which
makes the procedure less transparent.
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An alternative way of doing the calculation is to use a hybrid Hamiltonian for-
malism with an explicit choice of gauge, and later integrate (with some suitable
functional measure) over the physical degrees only (Schleich, 1985). The procedure
relies on establishing a correspondence between the covariant path integral approach
and some aspects of the machinery, notably the constraint equations, of canonical
quantum gravity. Such a procedure is possible because the Feynman path integral,
already for a non-relativistic particle, can be written in the equivalent form

G(q f , t f ;qi, ti) = 〈q f , t f |qi, ti 〉

=
∫ q f (t f )

qi(ti)

[
dq(t)dp(t)

2π h̄

]
exp

{
i
h̄

∫ t f

ti
dt [pq̇−H(p,q)]

}
,

(5.18)

which gives the expression in Eq. (5.4) after integrating out the p’s (see, for example,
Abers and Lee, 1973). Some of the earliest discussions on the connection between
the canonical and functional-integral approaches to quantum gravity, and of some of
the subtleties that arise in such a correspondence, can be found in (Leutwyler, 1964;
Faddeev and Popov, 1973; Fradkin and Vilkovisky, 1973).

5.2 Semiclassical Expansion

To proceed further it will help to be a bit more specific about the boundary geom-
etry in Eq. (5.6). If one wants to investigate the quantum mechanical behavior of
closed cosmologies in the vicinity of classical singularities, one is naturally led to
consider the behavior of the wave functionalΨ at small volume, where corrections
to the classical solution can be large and new effects can arise. In the semiclassical
expansion of quantum gravity it is therefore natural to consider as saddle points of
the Euclidean action solutions whose boundary geometry has the shape of a three-
sphere. Indeed in the case of a positive cosmological constant λ any regular Eu-
clidean solution of the field equations is necessarily compact, with the solution of
greatest symmetry corresponding to the four-sphere or radius

√
3/λ .

In the following it will be assumed (Schleich, 1985) that the boundary geometry
is a three-sphere with radius a, such that

ds2 = a2 ĝi j dφ i dφ j , (5.19)

where a is the radius of the three-sphere, and ĝi j is the metric on the unit three-
sphere. With such a boundary condition, the compact extrema of the action in
Eq. (5.7) are sections of Euclidean de Sitter space, with

ds2 = dθ 2 + r2
0 sin2 (θ/r0) ĝi j dφ i dφ j , (5.20)
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with θ ranging from 0 to π , r0 =
√

3/λ and a < r0. For sufficiently small boundary
three-geometries, a � r0, the metric interior to the boundary approaches that of
Euclidean flat space (with θ → t),

ds2 = dt2 + t2 ĝi j dφ i dφ j . (5.21)

In this limit one would expect therefore that a calculation of the quantum corrections
could be carried out in a flat background with λ = 0, with higher order corrections
then involving the ratio between the two radii in question, O(a2/r2

0). Then in the
expansion of the metric of Eq. (5.10) one just has gμν = ημν , the flat metric.

The first step in such a program is therefore a re-writing of the expansion of
the Euclidean action to quadratic order in the h field, and specifically of Î2[h] in
Eqs. (5.12) and (5.13), in terms of the quantities t and ĝi j appearing in the metric in
Eq. (5.21). One finds

Î2[h] = − 1
16πG

∫
d4x

{√
g pi j ∂thi j − HT − HL − h00 C − h0i C

I } , (5.22)

with background three-metric gi j = t2ĝi j,
√

g the square root of the determinant of
this gi j, π i j =

√
gpi j the momentum conjugate to the quantum fluctuation hi j, and

HT =
√

g
[

pi j pi j + 2 t−1 pi jhi j − 1
4

(
∇khi j∇khi j + 2 t−2hi jhi j

)]

HL = 1
2
√

g
[

pi
i p j

j + t−1 pi
ih

j
j

+ 1
2

(
∇kh j

j∇
kh j

j + 2∇ih
i j(∇khk

j −∇ jh
k
k)− 1

2 7 t−2(hi
i)

2
)]

C = 1
2
√

g
[
∇i∇ jh

i j −∇k∇khi
i + 2 t−1 pi

i − 1
2 5 t−2hi

i

]

C i = −√
g
[

2∇ j p
ji − t−1∇ih j

j

]
. (5.23)

The metric components h00 and h0i act as Lagrange multiplier, giving four con-
straints

C = 0 C i = 0 . (5.24)

The physical subspace is obtained by imposing a gauge condition, in the case at hand
one that leads to a substantial simplification of the problem. The gauge condition is

∇i hi j = 0 hi
i = 0 , (5.25)

and restricts the functional integration over transverse-traceless (T T ) modes only.
Due the decomposition of Î2 in Eq. (5.22) into transverse and longitudinal contribu-
tions, HL only contains longitudinal and trace parts, and therefore vanishes.

In the physical phase space spanned by the p (π i j
T T ≡√

g pi j
T T ) and q (hT T

i j ) vari-
ables one has

P[a] =
∫

[dπ i j
T T ] [dhT T

i j ] exp
{
−Î2(πT T ,hT T )

}
, (5.26)
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with T T quadratic action

Î2(πT T ,hT T ) = − 1
16πG

∫
d4x

(
π i j

T T∂th
T T
i j − HT [πT T ,hT T ]

)
. (5.27)

After assuming a canonical measure ∏(d pdq/2π h̄) over the conjugate variables
π i j

T T and hT T
i j , and integrating out the momenta π i j

T T , one finally obtains the simple
result

P[a] =
∫

[dhT T
μν ] exp

{
− 1

32πG

∫
d4x

√
g hT T μν ∇λ∇λhT T

μν

}
. (5.28)

Note that the last expression has been re-written in terms of purely T T components
hT T μν of the original four-metric perturbation in Eq. (5.10). Since physical pertur-
bations of the metric are known to be transverse-traceless (associated with a particle
of zero mass and spin two) the result is not surprising, and in fact has wider appli-
cability to the semiclassical expansion, beyond the simple choice for background
metric implicit in Eq. (5.21).

Formally, the Gaussian integration over the hT T variables gives

P[a] = det−1/2

(
−∇λ∇λ
4π l2

P μ2

)
, (5.29)

where μ is a parameter with units of inverse length, and l2
P = 16πG. The specific

power of μ appearing in this last expression actually depends on the details of the
measure [dhT T

μν ], which will be discussed further below.
The determinant in Eq. (5.29) is fomally defined through an infinite product of

eigenvalues λn of the Laplacian ∇λ∇λ satisfying Dirichlet boundary conditions,

−∇λ∇λ φ
(n)
μν = λn φ

(n)
μν (5.30)

det
(
−μ2∇λ∇λ

)
→ ∏

n
(μ2λn) . (5.31)

But the product is expected to be divergent and needs to be regularized. One way of
doing it is to define a zeta-function sum over eigenvalues (Hawking, 1976)

ζ (s) ≡ ∑
n

1
λ s

n
, (5.32)

so that formally on obtains

− 1
2 logdet

(
−∇λ∇λ

)
= − 1

2 tr log
(
−∇λ∇λ

)
= − 1

2 ∑
n

logλn = 1
2 ζ

′(0) , (5.33)

with ζ ′(0) ≡ dζ/ds|s=0. For the wave function P[a] itself one then has



5.2 Semiclassical Expansion 149

logP[a] = 1
2 ζ

′(0) + ζ (0) log(4π l2
P μ2) . (5.34)

The dependence of P[a] on a can be determined by a scaling argument. When re-
scaling the original radius a appearing in the background metric gμν by a → ka
the Laplacian ∇λ∇λ scales like 1/k2, and therefore ζ (s) by k2s. The first term in
Eq. (5.34) therefore gives a contribution to P[a] of the form aζ (0).

The second contribution in Eq. (5.34) depends on μ , and therefore on the specific
details of the functional measure [dhT T

μν ]. The measure factor comes in through a

local weight hp/2,
∫

[dhT T
μν ] =

∫
∏

x
[deth(x) ]p/2 dhT T

μν (x) , (5.35)

[see Eqs. (2.18) and (2.22)]. If the above measure is chosen to be scale invariant
(as in Faddeev and Popov, 1973), then the second contribution in Eq. (5.34) is scale
independent, i.e. k- or a-independent. Then only the first contribution matters, and
one has simply, to this order in the semiclassical expansion,

P[a] = N aζ (0) , (5.36)

where N is an a-independent normalization constant. In general though one would
expect P[a], as defined here, to be sensitive to short-distance details of the theory,
and to contain some dependence on the details of the regularization procedure of
the measure. The general problem in these types of calculations seems to be the
difficulty in decoupling the short distance details of the ultraviolet cutoff μ , which
is required to make the product ∏x in Eq. (5.35) well defined, from the other short
distance quantity appearing in this problem, namely the spatial scale for the three-
metric a.

The last point that needs to be addressed therefore is a determination of ζ (s)
from the eigenvalues of the Laplacian ∇2, acting on transverse traceless tensors
vanishing on the boundary of the three-sphere. Several sub-steps are involved in this
calculation, which we will summarize here. The first is to establish a relationship
between the function ζ (s) and the short time expansion for the kernel of the heat
equation (for an accessible elementary introduction to the methods of zeta function
regularization for functional determinants see for example Ramond, 1990). One can
write for ζ (s) the integral representation

ζ (s) =
1

Γ (s)

∫ ∞

0
dτ τs−1 G (τ) , (5.37)

with G (τ) defined as

G (τ) =
∫

d4x G μν
μν(x,x;τ) = ∑

n
exp(−λnτ) . (5.38)

Here Gμν ,ρσ (x,x′;τ) is a transverse-traceless Green’s function for the heat equation
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[
d

dτ
− ∇λ∇λ

]
Gμν ,ρσ (x,x′;τ) = δμν ,ρσ (x,x′)δ (τ) , (5.39)

whose expansion in a complete orthonormal basis of T T eigenfunction of the Lapla-
cian ∇2 reads

Gμν ,ρσ (x,x′;τ) = ∑
n
φ (n)∗
μν (x)φ (n)

ρσ (x′) exp(−λnτ) , (5.40)

(similar to the usual quantum-mechanical completeness, here in imaginary time τ).
Using completeness it is then easy to see that the above relations indeed hold, and
that G (τ) vanishes exponentially for large τ , so that the integral in Eq. (5.37) is
convergent for large argument.

If G (τ) has a short time asymptotic expansion of the form

G (τ) =
1
τ2 ∑

i=0
gi/2 τ i/2 , (5.41)

then a determination of ζ (0) in Eq. (5.37) requires (since 1/Γ (s) has a simple zero
at s = 0) the knowledge of the simple pole term at s = 0 in the τ integral, which
comes from the g2 (constant) term.

After transforming from the imaginary time variable τ to the Laplace transform
“energy” variable E

[
E2 − ∇λ∇λ

]
Gμν ,ρσ (x,x′) = δμν ,ρσ (x,x′) , (5.42)

and expanding the solution out in a complete set of transverse-traceless hyperspher-
ical harmonics, one can solve the radial equation (in the original metric coordinate
t) and extract form it (by inverse Laplace transform) the small τ behavior for G (τ).
In the end one finds (Schleich, 1985) g2 =−γ with γ = 278/45 ≈ 6.18 in Eq. (5.41),
and thus ζ (0) = −γ in Eq. (5.36), and finally

P[a] = N a−γ . (5.43)

One concludes therefore that at least in the semi-classical approximation the am-
plitude Ψ diverges at small volume. In general the probability P is related to the
square of the amplitude,

d P(a) = |Ψ(a)|2 dμ(a) , (5.44)

where now dμ(a) is a suitable measure, induced from a functional measure on the
original space on whichΨ(h) in Eq. (5.2) is defined, and hereΨ(a) ≡ P[a].

We conclude this section with a brief discussion of regularization issues. The
problems that arise in attempting to regulate the determinant in Eq. (5.29) can, in
our opinion, be illustrated through the following simple example. Consider the pro-
totype integral over a spinless field h(x)
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Q[a] =
∫

[dh] exp

(
− 1

4a2
0

∫
V

d4x h(−∇2)h

)
, (5.45)

where V � ad , and we have set l2
P = a2

0 with a0 a short distance cutoff (this could
have been set to a value much smaller than the Planck length, but here for simplicity
we will identify the two scales). Furthermore we will assume in the following that
we are in the vicinity of flat space, so that momentum space is still a useful tool. A
discretized form, specifying a bit more what is meant in Eq. (5.45), is

∫
∏

x
dh(x) exp

(
− 1

4a2
0
∑
x

a4
0 h(x)(−∇2)x h(x)

)
, (5.46)

with (−∇2)x some discretized lattice version of the original operator. After integrat-
ing over the h variables one has

det−1/2
(−a2

0∇
2

4π

)
= exp

{
− 1

2∑
k

log

(
a2

0 k2

4π

)}
. (5.47)

To define the quantity in the exponent, one needs to supply an infrared cutoff (1/a
here) and an ultraviolet one (1/a0). Using the usual form for the flat space density
of states

∑
k

→ V
(2π)d

∫
ddk =

V Ωd

(2π)d

∫
kd−1dk , (5.48)

one has

Q[a] = exp

{
− 1

2 ad Ωd

(2π)d

∫ 1/a0

1/a
dk kd−1 log

(
k2a2

0

4π

)}
,

� exp
{
−c(a/a0)d log(a/a0)

}
(5.49)

where c is some d-dependent numerical constant. One should perhaps not commit
oneself at this point to a specific form of the functional measure for the field h(x).
A slightly more general measure over h(x) could have been used in Eq. (5.45), such
as ∫ +∞

−∞
dh |h|α e−ah2

= a−(1+α)/2Γ
(

1
2 (1+α)

)
, (5.50)

which would have given instead

Q[a] � e−c(1+α)(a/a0)d log(a/a0) . (5.51)

Clearly the case of a scale invariant measure, α =−1, which gives Q[a] = const., is
interesting but singular: the integral in Eq. (5.50) diverges, and needs to be somehow
regulated at small h. Furthermore, in general one has a power law behavior for Q[a]
only if the k-measure in Eq. (5.49) is scale invariant ∼ dk/k, corresponding here to
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the case d = 0. In this case one has

Q[a] �
(

a
a0

)c(1+α)

. (5.52)

It is unclear if this simple model is sophisticated enough to capture the essence
of the more complete calculation, but it does suggest that the behavior at small a
could be strongly influenced by the detailed nature of the short distance cutoff, the
form of the effective action as small distances, and the choice of measure over the h
variables.

5.3 Pair Creation in Constant Electric Fields

It is known that if an atom is subject to a sufficiently strong external uniform electric
field it is possible for the field to create pairs. To be specific, if the atomic potential
is approximated by a function with a minimum −V0 and going to zero at infinity,
then an external electric field, with potential eEx, will give an ionization probability
for a bound electron

P � exp −
∫ V0/|eE|

0
dx
√

2m(V0 − |eE|x) = exp

(
−4

3

√
2mV0

V0

|eE|

)
, (5.53)

using the WKB formula, with V0/|eE| the distance between the two classical turning
points. If one thinks of a negative energy electron as trapped in a potential of depth
V0 ≈−2m, then one obtains for the probability of pair production in a strong electric
field the semiclassical estimate

P � exp

(
−16m2

3 |eE|

)
. (5.54)

Clearly in this last instance one is dealing with a relativistic process involving strong
fields, so a fully relativistic treatment would seem more appropriate.

To this end one considers the external field-dependent Feynman amplitude Z[A]
describing the vacuum to vacuum amplitude in the presence of an external electric
field, expressed as a path integral over fermion fields ψ and ψ̄ in a fixed classical
background A,

Z[A] =
∫

[dψ][dψ̄] exp

[∫
d4x ψ̄(i �∂ + e �A + m − iε)ψ

]

= det [ i �∂ + e �A + m − iε] . (5.55)

Using the formal identity detM(A) = exptr logM(A), the corresponding effective
action S(A) is then given by minus the exponent of the above expression
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S(A) = − tr logdet( i �∂ + e �A + m − iε ) + tr logdet( i �∂ + m − iε ) , (5.56)

where the zero external field, A = 0, contribution has been subtracted out in order to
avoid spurious divergences. Due to charge conjugation invariance one can re-write
the above traces as expressions involving the square of the Dirac operator,

S(A) = 1
2 tr logdet

{
( i �∂ + e �A)2 + m2 − iε

−∂ 2 + m2 − iε

}
. (5.57)

The pair creation probability at the point x will be denoted by P(x), and is given by

|Z[A] |2 = e−2S(A) = e−
∫

d4xP(x) , (5.58)

so it is this P(x) that one needs to extract from the trace in Eq. (5.57) (Schwinger,
1951; Brezin and Itzykson, 1970). After making use of the identity

log
x
y

=
∫ ∞

0

ds
s

(
eis(y+iε) − eis(x+iε)

)
, (5.59)

and the explicit form for the square of the Dirac operator (which is the Klein-Gordon
operator, plus the spin part σμν Fμν ), one obtains for the probability of pair creation
at x

P(x) = Retr
∫ ∞

0

ds
s

e−is(m2−iε)

× 〈x|
(

exp
(
is [( i∇μ + eAμ)2 + 1

2 eσμν Fμν ]
)
− exp

(
is( i∇μ )2)) |x〉 >

(5.60)

where now the trace is over spinor indices only.
In general, for arbitrary x-dependent fields A(x), this is still a rather formidable

expression. To simplify things a bit, one can consider a static uniform electric field
along the z axis, for which A3 =−E t with E constant. In this gauge the 〈x|(. . .)|x〉>
matrix element can be evaluated by inserting a complete set of momentum eigen-
functions, which reduces the problem to computing the trace of the time evolution
operator for a harmonic oscillator with imaginary frequency ω0 = 2ieE. Since the
energy levels for such a system are well known, one can easily compute the trace,
which then reduces the problem to the evaluation of a single s integral. This last in-
tegral can then be evaluated by residues, and one finds for the probability of creating
a pair the exact result, for constant uniform field E,

P =
2e2 E2

(2π)3

∞

∑
n=1

1
n2 exp

(
− nπm2

|eE|

)
. (5.61)

Since the scale for the external field is set by the electron mass squared (m2), the
effect is generally very small in atoms. It is important to note that the result is
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essentially non-perturbative, and non-analytic in the external field perturbation E.
Furthermore, a comparison of the exact answer in Eq. (5.61) with the WKB result
of Eq. (5.54) shows that the latter only gives the leading term in an infinite series of
progressively smaller contribution.

The result obtained for electrons and positrons in strong uniform electric fields
are clearly not transferable as is to the gravitational case. For once, there is no no-
tion of oppositely charged particles in gravity. Thus the naive replacement |eE| →
m/4MG for a particle-antiparticle pair, say close to the horizon of a black hole, does
not seem to make much sense. Yet the strong electric field QED calculation shows
that quantum mechanical tunneling events can take place, and that their effects can
be computed to first order using the WKB approximation. A second lesson from
QED is that in general higher order corrections should be expected.

5.4 Black Hole Particle Emission

Originally quantum gravitational effects for black holes were ignored, since the ra-
dius of curvature outside the black hole is much larger than the Planck length, the
length scale on which one would expect quantum fluctuations of the metric to be-
come important. If the gravitational field is able to create locally virtual pairs, the
local energy density associated with such a pair would be much smaller than the
energy scale associated with the local curvature. It can be shown though that in the
vicinity of a black hole horizon particle production is possible, due to vacuum fluc-
tuations and tunneling. The resulting effects add up over time, are therefore macro-
scopic and could in principle be observable.

Normally when describing a stationary non-rotating black hole one uses the
Schwarzschild metric in standard form

ds2 = −
(

1 − 2GM
r

)
dt2 +

(
1 − 2M G

r

)−1

dr2 + r2 dΩ 2
2 , (5.62)

with dΩ 2
2 ≡ dθ 2 + sin2 θdφ 2. The metric shows a singularity at r = 2MG. Since

none of the curvature invariants are singular on the horizon r = 2MG, one would
expect the singularity to be perhaps an artifact of the coordinate system, here most
suitably describing the viewpoint of an observer stationary at infinity. On the other
hand a freely falling observer is expected to pass initially unscathed through the
black hole horizon, and indeed a singularity-free coordinate system can be found de-
scribing such an observer (Kruskal, 1960). In these new coordinates, defined by the
transformation from the original Schwarzschild coordinates (r,θ ,φ , t) → (r′,θ ,φ , t ′)

r′2 − t ′2 = T 2
( r

2GM
− 1

)
exp

( r
2GM

)

2r′t ′

r′2 + t ′2
= tanh

( t
2GM

)
, (5.63)
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the line element takes on the form

ds2 = −
(

32G3 M3

r T 2

)
exp

(
−r

2GM

)
(dt ′2 − dr′2) + r2 dΩ 2

2 , (5.64)

with T an arbitrary parameter, usually taken to be equal to one (often the Kruskal
metric is described in terms of equivalent coordinates x = r′ − t ′ and y = r′+ t ′). The
original singularity at r = 2GM has disappeared entirely, at the price of a rather un-
usual topology, since now there are two solutions r′, t ′ for every r, t, joined together
at r′ = 0. Of course the curvature singularity at the origin r = 0 is still present in
both coordinate systems.

Hawking has suggested a detailed mechanism by which classical black holes can
radiate particles (Hawking, 1975). The basic idea invokes the process of vacuum
fluctuations of quantum matter fields, by which virtual particle-antiparticle pairs
can be created out of the vacuum as long as their fleeting lifetime is consistent with
the uncertainty principle, Δ t ∼ h̄/2m. When a virtual particle pair is created just
inside the horizon, the positive energy particle can escape outside the horizon by
a process similar to quantum mechanical tunneling, whereas the negative energy
antiparticles continues to stay inside the horizon. Conversely, as one would expect
from particle-antiparticle symmetry, if a pair is created just outside the horizon, the
negative energy antiparticle will tunnel inward, while the positive energy one will
eventually escape to infinity. Since particles can be described as positive energy so-
lutions of the wave equation, and antiparticles as negative energy ones, one expects
the black hole to accrete a small negative energy through this process, in other words
decrease its mass. As a result a classical black hole is far from static, constantly cer-
ating and emitting a steady stream of particles, whose existence, were it not for the
very small integrated flux (gravitation is weak, and the relevant quantum amplitudes
are very small), could be detected someday.

While the above intuitive picture is easy to convey, the actual original calculation,
which will be only outlined below, is technically challenging. The problem is first
of all finding a suitable well behaved coordinate system where the singularity at the
horizon is not in the way. Secondly, to define a quantum amplitude for particle pro-
duction one needs to define suitable “in” and “out” states, specifying the Fock space
of the system at initial and final times, in a background that is not flat, and for which
the notion of frequencies (and therefore energies) and of a vacuum state is frame
dependent. Finally one needs to work out in detail the (Bogoliubov) transformation
relating these two equivalent Fock spaces, in the case of the Schwarzschild solu-
tion or modification thereof. The resulting amplitudes can then be shown to lead
to a thermal emission of particles, essentially identical to a black-body radiation
spectrum, with temperature

k T =
h̄ c3

8πMG
. (5.65)

Recently a new derivation of the particle emission rate has been obtained, based
on a relatively concise calculation involving quantum mechanical tunneling and the
WKB approximation (Parikh and Wilczek, 2000). It hinges on the key idea of energy
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conservation: the mass of the black hole M needs to be decreased suitably when the
virtual particle is emitted, thus leading to a non-zero real tunneling amplitude, which
can then be shown to agree with the original Hawking calculation.

The computation is most easily carried out in Painlevé coordinates for a static,
non-rotating black hole. The Painlevé line element (Painlevé, 1921; Gullstrand,
1922) reads

ds2 = −
(

1 − 2M G
r

)
dt2 + 2

√
2M G

r
dt dr + dr2 + r2 dΩ 2

2 . (5.66)

The corresponding metric describes the same physics, but has several attractive fea-
tures when compared to the Schwarzschild metric: none of the metric (or inverse
metric) components diverge on the horizon r = 2MG; furthermore it still covers the
inside and outside of the black hole, and constant time slices simply correspond to
flat Euclidean space. One can show that the Painlevé time is related to the original
Schwarzschild time ts by

t = ts + 2
√

2MGr + 2MG ln

√
r−

√
2MG

√
r +

√
2MG

. (5.67)

From dτ/dt = 1 it follows that in these coordinates the time t is linearly related to
proper time, τ = t + c, for a radially infalling observer.

In this metric the radial null geodesics have a rather simple form,

dr
dt

= ±1−
√

2MG
r

, (5.68)

where the choice of signs depends on whether the rays go towards infinity (+),
or away from it (−). One can view the above geodesic equation as arising from
a classical mechanics effective potential Ve f f (r) =

√
2MG/r − GM/r, shown in

Fig. (5.1), with a total energy fixed at 1/2. Note that the maximum of this function
is precisely at r = 2GM, and that the peak is at the total energy value 1/2, which
seems to make the two classical turning points coincide with the peak.

The fact that the coordinate system is stationary and non-singular allows one to
define what is meant by a vacuum: a state whose quantum fields will annihilate
modes which carry negative frequency with respect to the Painlevé time t. But it
is important to note that modifications arise when the particle’s self-gravitation is
taken into account, and which are crucial in obtaining the correct result. For a non-
rotating self-gravitating shell of energy E (visualized as an s-wave state) one can
show (Kraus and Wilczek, 1995) that the shell moves on a geodesic still described
by the line element in Eq. (5.66), but with mass M → M + E, whereas if the total
mass is fixed and the black hole mass is allowed to vary, then the shell moves on a
geodesic with mass M → M−E.

In order to compute a tunneling amplitude one would like to use the semi-
classical or WKB approximation, which assumes point particles. One might worry
that a point particle description might not be adequate since the wavelengths



5.4 Black Hole Particle Emission 157

involved could be comparable to the black hole size, but this is not so due to the
blueshift of frequencies in the vicinity of the horizon. In the following it will there-
fore be assumed that such particles can be described by point-like objects.

In the WKB approximation, the imaginary part of the amplitude for an s-wave
outgoing positive energy particle which crosses the horizon outward from rin to rout

is given by

ImS = Im
∫ rout

rin

pr dr = Im
∫ rout

rin

∫ pr

0
d p′r dr , (5.69)

where the actual emission rate is the square of the amplitude, Γ ∼ exp(−2ImS).
Using Hamilton’s equation for the classical trajectory q̇ = ∂H/∂ p, here in the form

d pr =
(

dr
dt

)−1

dH , (5.70)

with H = M−E and thus dH =−dE, and inserting the radial geodesic dr/dt given
by Eq. (5.68), one obtains

ImS = − Im
∫ rout

rin

∫ E

0

dr dE ′

1 −
√

2G(M−E ′)
r

. (5.71)

The r-integral can now be done by residues, first by transforming to the variable
z =

√
r, and then by adding a Feynman iε to the energy, which slightly displaces the

pole to the upper half-plane,

ImS = − Im
∫ E

0
dE ′

∫ zout

zin

2z2 dz

z −
√

2G(M − E ′ + iε)
. (5.72)

After closing the contour in the upper half plane and keeping only the imaginary
part of the amplitude (the real part contributes an irrelevant phase) one has

Fig. 5.1 The effective poten-
tial Ve f f (r), obtained from the
geodesic equation in Painlevé
coordinates (here shown for
G = M = 1). The maxi-
mum occurs on the horizon
r = 2MG.
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ImS = Im 2πi · 1
2

∫ E

0
dE ′ 4G(M − E ′) = 4πGME

(
1 − E

2M

)
. (5.73)

Note the sign change due to the fact that zi > z f . This last result, essential in getting
the right sign for the tunneling amplitude, can be visualized by noting that the out-
going particle starts at r = 2MG− ε (which is just barely inside the initial location
of the horizon) and then traverses the contraction horizon (through the classically
forbidden region) to materialize at r = 2G(M−E ′)+ ε , which is just outside of the
final location for the horizon!

The quantum-mechanical tunneling rate is then given, in the WKB approxima-
tion, by

Γ ∼ exp(−2ImS) = exp

{
−8πGM E

(
1 − E

2M

)}
. (5.74)

When the quadratic correction in E is neglected (small energy change in the black
hole mass), one obtains the Boltzmann weight for a particle with energy E and
inverse Hawking temperature T−1 = 8πGM.

It is tempting to pursue for a while the thermodynamic analogy. Since one can
associate with the black hole a temperature T = 1/8πMG, one can also define an
entropy for it, using the thermodynamic relation dE = T dS, here with dE = dM.
This gives

S = 8πG
∫ M

M0

M′ dM′ = 4πGM2 , (5.75)

assuming the integration constant is zero (“a zero mass black hole has zero en-
tropy”). Note then that the expression in the exponent of Eq. (5.74) is precisely
the change in the Hawking-Beckenstein (Beckenstein, 1973; 1974; Hawking, 1976;
t’Hooft, 1985) black hole entropy,

ΔS = 4πGM2 − 4πG(M − E)2 = 8πG(ME − 1
2 E2) . (5.76)

One largely unresolved puzzle in the context of the semiclassical picture is: what
microstates are being counted when one assigns to the black hole an entropy S =
k logN.

5.5 Method of In and Out Vacua

The original derivation by Hawking of black hole radiance relies on a slightly dif-
ferent set of arguments (Hawking, 1975). Here we will only outline the main steps
of the argument. One start by considering a massless real scalar field with wave
equation

gμν∇μ∇ν φ(x) = 0 , (5.77)

where the covariant derivative ∇μ is defined for an asymptotically flat spacetime,
describing initially the gravitationally collapsed object that gave origin to the black
hole. The quantum operator φ can be expanded
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φ(x) = ∑
k

[
fk(x)ak + f̄k(x)a†

k

]
, (5.78)

in terms of a complete set { fk} of (generally complex) c-number solutions of the
original wave equation,

gμν∇μ∇ν fk(x) = 0 . (5.79)

The fk’s contain asymptotically only ingoing, and positive frequency components:
they only contain positive frequency particles on past null infinity, here denoted
by I− (we follow here the original notation, where a state of positive frequency is
assumed to have a time dependence eiωt ). The position independent operators a†

k and
ak are therefore interpreted as creation and destruction operators for these incoming
particles. Such operators define in the usual way a vacuum, here denoted by |0−〉,
which is devoid of a quanta

ak|0−〉 = 0 , (5.80)

and from it a corresponding Fock space.
The field operator φ can also be equivalently expanded in a different, but still

complete, set of c-number solutions of the original wave equation. These will now
be denoted by pk and qk, with their complex conjugate counterparts p̄k and q̄k. The
pk’s are chosen to be asymptotically outgoing, positive frequency, solutions of the
wave equation, subject to the condition that they be zero on the horizon: they will
only contain a positive frequency part on the future null horizon I+. The pk’s do
not form a complete set, and that is where the qk’s come in: they represent solutions
which contain no outgoing component, and are zero on the future null horizon I+.
No restriction is needed on the frequency part of the qk’s.

In this second basis the quantum operator φ has the expansion

φ(x) = ∑
k

[
pk(x)bk + p̄k(x)b†

k + qk(x)ck + q̄k(x)c†
k

]
, (5.81)

with pk and qk c-number solutions of the original wave equation,

gμν∇μ∇ν pk(x) = gμν∇μ∇ν qk(x) = 0 , (5.82)

and the b†
k , bk, c†

k , ck the corresponding creation and destruction operators for parti-
cles in the corresponding mode.

Since the two sets of c-number solutions both individually form a complete set,
and are equivalent, they should be related to each other by a linear transformation,

pk = ∑
k′

[
αk k′ fk′ + βk k′ f̄k′

]
, (5.83)

with a similar expressions for qk. It is easy to see that the mixing between the fk’s
and the pk’s will in general involve complex coefficients due to the mixing of pos-
itive and negative frequencies taking place during the collapse, as a consequence
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of the time dependence of the metric (which can be visualized as a time dependent
external quantum mechanical perturbation).

After substituting Eq. (5.83) into Eq. (5.81) and equating it to the expansion
in Eq. (5.78), one obtains a direct expression for the second set of creation and
destruction operators b†

k , bk, c†
k , ck in terms of the original set a†

k , ak, with

bk = ∑
k′

[
ᾱk k′ ak′ − β̄k k′ a

†
k′

]
, (5.84)

and similarly for the ck operators.
The last equality allows one to compute the expectation value of the number

operator N(b)
k = b†

kbk, in a state which does not contain any incoming particles (and
therefore, as stated at the beginning, is |0−〉 with ak|0−〉 = 0), giving therefore for
the mode k

〈0−|b†
kbk |0−〉 = ∑

k′
|βk k′ |2 . (5.85)

Therefore the problem of computing the number of particles created and emitted to
infinity has been reduced to computing the complex expansion coefficients βk k′ in
Eq. (5.83).

To derive an expression for the coefficients βk k′ it is sufficient to consider a metric
with spherical symmetry, where the solutions to the wave equation ∇2 fk = 0 can be
written as a product of spherical harmonics Ylm( theta,φ) times a time dependent
radial wave function. The latter can be written in terms of advanced and retarded
solutions with frequency dependence

1√
2πω

eiω u , (5.86)

with u and v retarded and advanced coordinates

u = t − r − 2MG log
∣∣∣ r
2MG

− 1
∣∣∣

v = t + r +2MG log
∣∣∣ r
2MG

− 1
∣∣∣ , (5.87)

and invariant distance

ds2 = −2M G
r

e−r/2MG e(v−u)/4MG dudv + r2 dΩ 2
2 , (5.88)

with r = r(u,v). Then the sum over modes ∑k gets replaced by a sum over frequen-
cies ∑ω l m, so that for each partial wave (l,m)

fω ′ lm =
1√

2π ω ′ fω ′(r)Ylm(θ ,φ)
eiω ′ v

r
(5.89)

pω lm =
1√

2π ω
pω(r)Ylm(θ ,φ)

eiω u

r
, (5.90)
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one has an expansion of the outgoing solution plm in terms of the incoming flm and
f̄lm solutions,

pω =
∫

dω ′ [αωω ′ fω ′ + βωω ′ f̄ω ′
]

. (5.91)

The conventions used are such that on past null infinity I− one has for the f solution

fω → eiωu . (5.92)

In order to compute the amplitudes αωω ′ and βωω ′ one considers the following
process: a wave which has a positive frequency ω on the future null infinity I+,

pω → eiωu , (5.93)

and propagates backward through spacetime. Part of this wave will be scattered
elastically by the curvature of the black hole and will end up at past null infinity
I−, with the same frequency it started out with. Its contribution to αωω ′ is therefore
be proportional to δ (ω−ω ′). A second part of the wave will propagate backwards
into the black hole, through the origin at r = 0 and out to past null infinity I−. These
waves will experience a large blueshift due to the presence of the horizon, and will
reach I− with an asymptotic form

pω ∼ C
1√

2πω
e−iω κ log(v0−v) , (5.94)

for v < v0, and zero for v > v0. Here κ = 4MG/c4 (the inverse of the surface gravity
of the black hole), and v0 is the last advanced time at which the particle can leave
I− and reach I+ by passing through the origin.

Then the complex amplitude αωω ′ is computed from Eq. (5.74) by Fourier trans-
form, and in the limit of large ω ′,

αωω ′ = ( fω ′ , pω)I− . (5.95)

With the help of the v integral

1√
2πω

1√
2πω ′

∫ 0

−∞
dv
(
κ
ω
v
− ω ′

)
e− iω ′ v e−iω κ log(−v)

= − i√
ωω ′ (−iω ′)iωκ Γ (1− iωκ) , (5.96)

one can evaluate the Fourier transforms, and for large values of ω ′ one finds

αωω ′ ≈ C exp
[
i(ω−ω ′)v0

]
(ω ′/ω)1/2Γ (1− iωκ)

[
−i(ω−ω ′)

]−1+iωκ

βωω ′ ≈ C exp
[
i(ω+ω ′)v0

]
(ω ′/ω)1/2Γ (1− iωκ)

[
−i(ω+ω ′)

]−1+iωκ
,

(5.97)

and βωω ′ ≈ −iαω,−ω ′ .
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One can then compute the total number of outgoing particles created in the fre-
quency range dω around ω . It is given by

dω ·
∫

dω ′ |βωω ′ |2 , (5.98)

which is infinite since βωω ′ goes like 1/
√
ω ′ for large ω ′. The infinity in the total

number of created particles indicates a steady rate of particle emission from the
black hole, continuing for an infinite amount of time.

A precise relationship between the magnitudes of αωω ′ and βωω ′ can be com-
puted by the following argument based on the analytic properties of the amplitude.
The pω solutions just constructed is zero on past null infinity I− for large values
of v. Its Fourier transform will therefore be analytic in the upper half ω ′ plane, but
the complex amplitude αωω ′ contains a factor (−iω ′)iωκ with a logarithmic branch
point at ω ′ = 0. To obtain βωω ′ from αωω ′ one needs to analytically continue αωω ′

around the singularity, which implies for large ω ′ the relationship

|αωω ′ | = eπωκ |βωω ′ | . (5.99)

This last equality then implies, for a given mode of frequency ω and for a fixed
ω ′ ≡ ω0, the following frequency distribution of outgoing particles

|βωω0 |2
|αωω0 |2 − |βωω0 |2

=
1

eπωκ − 1
, (5.100)

where the denominator |αωω0 |2 − |βωω0 |2 describes the fraction of particles that
enters the collapsing body. It leads therefore to an emission probability

N (ω) =
1

eπωκ − 1
. (5.101)

But this is precisely the relationship one would expect between absorption and emis-
sion cross sections for a body with temperature T = 1/2πκ = 1/8πMG.

Other types of fields can be considered, such as the electromagnetic field or the
linearized gravitational field, and one finds also in these cases a thermal radiation
spectrum. If the particles are fermions, such as neutrinos, then the spectrum can be
shown to be of the Fermi-Dirac type (eπωκ + 1)−1. If the fermions have mass m,
then ω will contain a rest mass contribution. The thermal emission will then be very
small unless T = 1/8πGM is greater than m. Finally there is the very interesting
and difficult general issue of the extent to which these results are universal, that
is independent of the detailed nature, history and composition of the black hole
(Fredenhagen and Haag, 1990).
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5.6 Complex Periodic Time

There is another, and perhaps more direct, way by which a temperature can be as-
sociated with a Schwarzschild black hole: through a periodicity in imaginary time
of the original static isotropic Lorentzian solution of Eq. (5.62). One performs the
usual Wick rotation t = −iτ on this metric, and obtains

ds2 =
(

1 − 2GM
r

)
dτ2 +

(
1 − 2M G

r

)−1

dr2 + r2 dΩ 2
2 , (5.102)

which has positive signature for r > 2MG. One can now define a new radial coordi-
nate ρ through

ρ = 4M G

(
1 − 2M G

r

)1/2

. (5.103)

In these new coordinates the Euclidean Schwarzschild metric becomes

ds2 = ρ2
(

dτ
4M G

)
+
(

r2

4M2 G2

)
dρ2 + r2 dΩ 2

2 . (5.104)

Near r = 2MG one can compare the first two terms with a flat Euclidean two-
dimensional metric in polar coordinates (ds2 = dr2 + r2dθ 2). In order to keep the
metric regular at ρ = 0, the variable τ/4MG has to be identified with period 2π .
This in turn implies that the Euclidean Schwarzschild solution has to be periodic in
imaginary time, with period 8πMG. As will be shown below, this implies the result
β = 8πMG of Eq. (5.65).

The Schwarzschild solution is not the only case where one finds a periodicity
in imaginary time, and therefore an associated natural temperature. In the case of
a uniformly accelerated observer in the x direction the natural metric is the Rindler
one

ds2 = −a2ρ2 dτ2 + dρ2 , (5.105)

which is related to the flat Minkowski metric by x = ρ cosh(aτ) and t = ρ sinh(aτ)
(the y and z coordinates are left unchanged). Therefore Rindler coordinates corre-
spond to a flat metric written in polar coordinates, and describe a detector moving
with uniform acceleration a along a path of constant ρ . Since Rindler coordinates
are periodic in complex time with period 2π/a, they can be associated with an in-
verse temperature β = 2π/a, which implies

k T =
h̄a
2πc

, (5.106)

for the temperature seen by the uniformly accelerating particle.
This leads to one of the simplest examples for the Unruh effect (Unruh, 1976),

whereby an accelerated observer observes a black-body radiation spectrum when
an inertial observer under otherwise identical conditions sees none, implying that
the notion of a vacuum depends on the state of motion of the observer. A space
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that looks empty for one observer (the inertial one), is filled with a thermal bath
of particles for a different observer (the uniformly accelerating one). It is easy to
see that in fact Rindler coordinates can be used to approximate the Schawrzschild
solution close to the horizon, with a surface gravity for the black hole given by
a = 1/4MG.

From rather general arguments one can relate the real time evolution of a quan-
tum state to the imaginary time evolution of quantum statistical mechanics, at a fixed
finite temperature β = 1/T , via the correspondence

U(t) ≡ e−
i
h̄ H t ∼

t →−i h̄τ
e−H τ ∼

τ → β
e−β H , (5.107)

with a periodic complex time τ , with period β . This last statement is proven as fol-
lows. One notices that this rather well known chain of connections between quan-
tum and statistical mechanics is particularly evident in the Feynman path integral
approach. There one writes for the quantum-mechanical amplitude of Eq. (5.4)

〈x f | exp

(
− i

h̄
H (t f − ti)

)
|xi 〉 =

∫ x f (t f )

xi(ti)
[dx(t)] exp

{
i
h̄

I[x(t)]
}

. (5.108)

In statistical mechanics on the other hand one considers the canonical partition func-
tion Z at inverse temperature β ,

Z(β ) = ∑
states n

〈φn | exp(−β H) |φn 〉 =
∫

[dφ ] exp
{
−β Î[φ ]

}
, (5.109)

where the sum over n is over a complete set of states φn. In the last expression the
quantity Î[φ ] is essentially the same as the statistical mechanics Hamiltonian H, and
in the last integral one is summing over all φ field configurations. Thus effectively
one is considering, in the statistical mechanics case, an Euclidean functional integral
(“sum over all states”) over all fields or degrees of freedom φ , on a space which is
periodic (due to the trace over n) in the imaginary time direction, with period β =
1/T . The connection between the two theories generally holds between quantum
mechanics in (d −1)+1 dimensions and statistical mechanics in d dimensions.

In the Feynman path integral approach it is possible to introduce a finite temper-
ature from the start (Feynman and Hibbs, 1965; Bernard, 1974; Dolan and Jackiw,
1974). One writes, in analogy to the non-relativistic single particle derivation of the
Feynman path integral,

tre−β H = ∑
φ
〈φ |e−βH |φ 〉

= N
∫

[dπ]
∫

periodic
[dφ ]exp

{
1
h̄

∫ β

0
dτ
∫

d3x
[
iπ φ̇ − H (π,φ

]}
,

(5.110)



5.6 Complex Periodic Time 165

with φ̇ = i∂φ/∂τ , N a normalization factor, and complex time t = −iτ . The func-
tional integration [dφ ] only contain those paths which are periodic in the complex
time τ , i.e. φ(τ = β ) = φ(τ) (for Fermions they need to be anti-periodic). Integrat-
ing over the momenta π gives

tre−β H = N ′
∫

periodic
[dφ ]exp

{
1
h̄

∫ β

0
dτ
∫

d3xL (φ , iφ̇)
}

(5.111)

where N ′(β ) is a second β -dependent constant that comes from the Gaussian π
integration. The latter has to be defined, as in the original non-relativistic path in-
tegral, by introducing a lattice spacing and doing the π integration carefully. Note
that the finite temperature formalism has automatically achieved a Wick rotation to
the Euclidean theory, and the Feynman iε prescription is no longer needed. Further-
more, because of the periodicity in complex time, all energy integrals are converted
into finite frequency sums [see, for example, Abrikosov, Gorkov and Dzyaloshinski,
1963; Fetter and Walecka, 1971].

In the gravitational case, a similar functional integral needs to be evaluated at
finite temperatures. Formally it is given by

Z(β ) = tre−β H = N ′
∫

periodic
[dgμν ]exp

{
1
h̄

∫ β

0
dτ
∫

d3xL
(
gμν , iġμν

)}
.

(5.112)
Here the path integral is over all gravitational fields gμν which are periodic in imag-
inary time τ , with period β ; only in the semi classical limit these are restricted to
the saddle points of L , corresponding to suitable solutions of the classical field
equation of general relativity. But the introduction of a finite temperature β does
not of course alleviate the short distance problem of ultraviolet divergences, which
still remains and needs to somehow be addressed in order to obtain finite quantum
corrections to Z(β ).

The periodicity in imaginary time of the Schwarzschild solution has in fact been
used to provide an alternative path integral derivation of black hole radiance (Hartle
and Hawking, 1976). There the amplitude for a black hole to emit a scalar particle in
a particular mode is expressed as a sum over paths connecting the future singularity
and infinity. By analytic continuation in the complexified Schwarzschild space this
amplitude is then related to that for a particle to propagate from the past singularity
to infinity and hence, by time reversal, to the amplitude for the black hole to absorb
a particle in the same mode. The form of the connection between the emission and
absorption probabilities then shows that the black hole will emit scalar particles with
a thermal spectrum characterized by the temperature of Eq. (5.65).

The thermodynamic analogy, applied to a black hole with a temperature T =
β−1 = 1/8πM with (average) energy E = M and entropy S = 4πGM2, gives a free
energy F ≡ E −T S = 1

2 M and therefore a partition function Z (for a single state!)

Z = ∑
n

e−βEn = e−βF → e−
β2

16πG . (5.113)
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But the last contribution is all there is to it only if one assumes that the Schwarzschild
solution is the only one contributing to the thermodynamic state sum at fixed inverse
temperature β . This is indeed true in the saddle point approximation, but in general
many more configurations, which are not necessarily saddle points, will contribute
to the finite temperature Euclidean Feynman path integral.

5.7 Black Hole Evaporation

If black holes emit particles by quantum mechanical tunneling, then one would ex-
pect them to gradually loose mass and eventually disappear. Thus one of the most
important effects of Hawking radiation is that black holes, given enough time, can
evaporate. One would expect that the back reaction, i.e. the adjustment of the space-
time metric to the process of thermal emission, would be rather small provided
the Schwarzschild radius is much larger than the Planck length, MG �

√
G, or

M � 1/
√

G, in which case one could continue to use the previous semi-classical
results.

It is of interest to provide a quantitative framework and determine an approximate
lifetime for the black hole. Since the thermal emission of particles is a quantum
effect, one would expect the rate of mass decrease to be proportional to h̄. Thus by
purely dimensional arguments one is lead to an equation of the type

d M(t)
dt

= − h̄α
G2 M2(t)

, (5.114)

with α a dimensionless constant of order one, which could in principle be estimated
by more detailed calculations. Integrating this equation with initial condition M(t =
0) = M0 gives

M(t) = M0

(
1 − 3 h̄α

G2 M3
0

t

)1/3

, (5.115)

which shows that the black hole will eventually evaporate, with a characteristic time
scale τ � G2 M3

0/3 h̄α . In terms of actual numbers the above result implies that to-
day, i.e. about 1.37×1010 years after the big bang, one would expect to see the final
explosive stages in the evaporation of relatively small black holes of mass ca. 1015g
(the mass of a small mountain), expected to have been created at the beginning of
the universe, the so-called primordial black holes. The Hawking temperature of such
mini black holes must have been originally therefore about 1011 degrees Kelvin. On
the other hand, for astronomically large black holes, the evaporation time is expected
to be extremely long, about 1061 times the age of the universe for a 30 solar mass
black hole.

Since black holes radiate energy in the form of black body radiation, one expects
their total luminosity L to be described by the Stefan-Boltzmann formula (essen-
tially the frequency integral of the Planck distribution),
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L = Aσ T 4 , (5.116)

with A = 4π(2MG)2 the surface area of the black hole, and σ = π2k4/60c2h̄3, the
Stefan-Boltzmann constant. Depending on the value of the Hawking temperature
relative to the rest mass of the particle, the black body will then either radiate mostly
photons (at low temperatures), or photons as well as other particles (at high temper-
atures). The effect of these additional particles will then be to increase slightly the
above quoted luminosity, by an additional factor which will take into account the
number of particle species and their spin multiplicities.

5.8 Quantum Gravity Corrections

The effects of black hole radiation are derived within a semi classical picture of
gravity, where relativistic matter is treated quantum-mechanically but the gravity
background is classical. Thus the back reaction of the particles on the metric, and
quantum fluctuations of the metric itself, are not taken into account. How do quan-
tum fluctuations in the metric affect the semi classical picture? One might worry,
for example, to what extent a scale-dependent gravitational constant G(r) would af-
fect the classical background metric and therefore lead to a modification of the semi
classical tunneling results, in a way that is similar to how the QED Uehling correc-
tion affects the nature of the static Coulomb potential and therefore energy levels in
atomic physics. The problem is of course largely unresolved to this day, but a few
interesting proposals have been put forward.

In a quantum theory of gravity one would expect radiative corrections to involve
the Planck length lP, which can be regarded in some ways as a natural ultravio-
let cutoff. In particular a (largely Newtonian) argument has been given in (Sorkin,
1996; see also Casher et al., 1997) suggesting that quantum fluctuations in the met-
ric endow the horizon at short distances with a non-zero quantum mechanical width
whose size is related to lP (for an illustration see Fig. 5.2). One can understand such
arguments based on the intuitive picture of quantum fluctuations one gathers from
the Feynman path integral approach. In such a theory of gravity one is supposed to
sum over all field configurations, weighted by exp(iS).

In a semi-classical expansion for quantum gravity one would expect the domi-
nant contribution to the path integral to come from field configurations close to the
stationary points of the action, i.e. solutions to the classical field equations. The semi
classical corrections would then arise from a Gaussian integral over small fluctua-
tions in the vicinity of the saddle point. Up to ultraviolet divergences, which would
lead to a possibly scale-dependent renormalizations of Newton’s constant G, of the
cosmological constant λ and other short distance corrections coming from higher
derivative terms, one would expect the relevant scale close to the horizon to be the
Planck length lP, or some combination of the Planck scale and the black hole mass
M. The quoted author suggests that the spectrum of metric fluctuations around the
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Fig. 5.2 Pictorial representa-
tion of the wrinkled surface of
a quantum-mechanical black
hole. The geometry of the
horizon is rendered rough by
strong short distance quantum
fluctuations in the metric.
Since these are described by a
massless particle, one would
expect the microscopic geom-
etry to be self-similar, perhaps
best described by a gravita-
tional Hausdorff dimension,
in analogy with the quantum-
mechanical Feynman path of
a non-relativistic particle.

horizon then changes to a scale-invariant spectrum for length scales smaller than
some critical value.

This would imply that, in a quantum theory of gravity, the classical notion of
a sharp black hole horizon at r = 2MG would be superseded at shorter distances
by a geometrically more complex object, an entity whose shape is far from smooth
on small scales. The horizon would appear to be essentially classical up to some
distance scale, below which its self-similar (or fractal) nature would start to emerge
(in the Newtonian approximation this scale is of the order of (MG2)1/3). Thus its
surface area would no longer be given by the Euclidean result; instead it would
depend, just like the overall size of a random walk or a Wiener path, on the scale at
which it is measured.

Since these short distance fluctuations are essentially described by a massless
particle, one would expect equally the microscopic geometry to be self-similar or
fractal, and therefore to be best described by a suitable Hausdorff dimension, in
analogy with the quantum-mechanical Feynman path of a non-relativistic particle.
Furthermore, one would expect that the difference in surface area on microscopic
scales, comparable to the ultraviolet cutoff, and on the larger classical scale would be
described by an (ultraviolet divergent) renormalization factor, AR = ZA(Λ) ·A0(Λ),
in analogy to charge and wavefunction renormalization in QED.



Chapter 6
Lattice Regularized Quantum Gravity

6.1 The Lattice Theory

The following sections are based on the lattice discretized description of gravity
known as Regge calculus, where the Einstein theory is expressed in terms of a
simplicial decomposition of space-time manifolds. Its use in quantum gravity is
prompted by the desire to make use of techniques developed in lattice gauge the-
ories (Wilson, 1973),1 but with a lattice which reflects the structure of space-time
rather than just providing a flat passive background (Regge, 1961). It also allows
one to use powerful nonperturbative analytical techniques of statistical mechanics
as well as numerical methods. A regularized lattice version of the continuum field
theory is also usually perceived as a necessary prerequisite for a rigorous study of
the latter.

In Regge gravity the infinite number of degrees of freedom in the continuum is
restricted by considering Riemannian spaces described by only a finite number of
variables, the geodesic distances between neighboring points. Such spaces are taken
to be flat almost everywhere and are called piecewise linear (Singer and Thorpe,
1967). The elementary building blocks for d-dimensional space-time are simplices
of dimension d. A 0-simplex is a point, a 1-simplex is an edge, a 2-simplex is a
triangle, a 3-simplex is a tetrahedron. A d-simplex is a d-dimensional object with
d +1 vertices and d(d +1)/2 edges connecting them. It has the important property
that the values of its edge lengths specify the shape, and therefore the relative angles,
uniquely.

A simplicial complex can be viewed as a set of simplices glued together in such
a way that either two simplices are disjoint or they touch at a common face. The
relative position of points on the lattice is thus completely specified by the incidence
matrix (it tells which point is next to which) and the edge lengths, and this in turn
induces a metric structure on the piecewise linear space. Finally the polyhedron
constituting the union of all the simplices of dimension d is called a geometrical

1 As an example of a state-of-the-art calculation of hadron properties in the lattice formulation of
SU(3) QCD see (Aoki et al, 2003).
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Fig. 6.1 Polydedral approxi-
mation to a sphere.

complex or skeleton. The transition from a smooth triangulation of a sphere to the
corresponding secant approximation is illustrated in Fig. 6.1.

A manifold can then be defined by its relationship to a piecewise linear space: a
topological space is called a closed d-dimensional manifold if it is homeomorphic to
a connected polyhedron, and furthermore, if its points possess neighborhoods which
are homeomorphic to the interior of the d-dimensional sphere.

6.2 General Formulation

We will consider here a general simplicial lattice in d dimensions, made out of a
collection of flat d-simplices glued together at their common faces so as to constitute
a triangulation of a smooth continuum manifold, such as the d-torus or the surface
of a sphere. If we focus on one such d-simplex, it will itself contain sub-simplices
of smaller dimensions; as an example in four dimensions a given 4-simplex will
contain 5 tetrahedra, 10 triangles (also referred to as hinges in four dimensions), 10
edges and 5 vertices. In general, an n-simplex will contain

(n+1
k+1

)
k-simplices in its

boundary. It will be natural in the following to label simplices by the letter s, faces
by f and hinges by h. A general connected, oriented simplicial manifold consisting
of Ns d−simplices will also be characterized by an incidence matrix Is,s′ , whose
matrix element Is,s′ is chosen to be equal to one if the two simplices labeled by s and
s′ share a common face, and zero otherwise.

The geometry of the interior of a d-simplex is assumed to be flat, and is therefore
completely specified by the lengths of its d(d + 1)/2 edges. Let xμ(i) be the μ-th
coordinate of the i-th site. For each pair of neighboring sites i and j the link length
squared is given by the usual expression

l2
i j = ημν [x(i)− x( j)]μ [x(i)− x( j)]ν , (6.1)

with ημν the flat metric. It is therefore natural to associate, within a given simplex
s, an edge vector lμi j(s) with the edge connecting site i to site j.
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Fig. 6.2 Coordinates chosen
along edges of a simplex, here
a triangle.
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Fig. 6.3 A four-simplex, the
four-dimensional analog of
a tetrahedron. It contains
five vertices, ten edges, ten
triangles and five tetrahedra. 
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6.3 Volumes and Angles

When focusing on one such n-simplex it will be convenient to label the vertices by
0,1,2,3, . . . ,n and denote the square edge lengths by l2

01 = l2
10, ... , l2

0n. The simplex
can then be spanned by the set of n vectors e1, ... en connecting the vertex 0 to the
other vertices. To the remaining edges within the simplex one then assigns vectors
ei j = ei−e j with 1≤ i < j ≤ n. One has therefore n independent vectors, but 1

2 n(n+
1) invariants given by all the edge lengths squared within s (see Figs. 6.2 and 6.3).

In the interior of a given n−simplex one can also assign a second, orthonormal
(Lorentz) frame, which we will denote in the following by Σ(s). The expansion
coefficients relating this orthonormal frame to the one specified by the n directed
edges of the simplex associated with the vectors ei is the lattice analogue of the
n-bein or tetrad ea

μ .
Within each n-simplex one can define a metric

gi j(s) = ei · e j , (6.2)
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with 1≤ i, j ≤ n, and which in the Euclidean case is positive definite. In components
one has gi j = ηabea

i eb
j . In terms of the edge lengths li j = |ei−e j|, the metric is given

by
gi j(s) = 1

2

(
l2
0i + l2

0 j − l2
i j

)
. (6.3)

Comparison with the standard expression for the invariant interval ds2 = gμνdxμdxν

confirms that for the metric in Eq. (6.3) coordinates have been chosen along the n ei

directions.
The volume of a general n-simplex is given by the n-dimensional generalization

of the well-known formula for a tetrahedron, namely

Vn(s) =
1
n!

√
detgi j(s) . (6.4)

An equivalent, but more symmetric, form for the volume of an n-simplex can be
given in terms of the bordered determinant of an (n+2)× (n+2) matrix (Wheeler,
1964)

Vn(s) =
(−1)

n+1
2

n!2n/2

∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . .
1 0 l2

01 . . .
1 l2

10 0 . . .
1 l2

20 l2
21 . . .

. . . . . . . . . . . .
1 l2

n,0 l2
n,1 . . .

∣∣∣∣∣∣∣∣∣∣∣

1/2

. (6.5)

It is possible to associate p-forms with lower dimensional objects within a simplex,
which will become useful later (Hartle, 1984). With each face f of an n-simplex (in
the shape of a tetrahedron in four dimensions) one can associate a vector perpendic-
ular to the face

ω( f )α = εαβ1...βn−1
eβ1
(1) . . .e

βn−1
(n−1) , (6.6)

where e(1) . . .e(n−1) are a set of oriented edges belonging to the face f , and εα1...αn

is the sign of the permutation (α1 . . .αn).
The volume of the face f is then given by

Vn−1( f ) =

(
n

∑
α=1

ω2
α( f )

)1/2

. (6.7)

Similarly, one can consider a hinge (a triangle in four dimensions) spanned by edges
e(1),. . ., e(n−2). One defines the (un-normalized) hinge bivector

ω(h)αβ = εαβγ1...γn−2
eγ1
(1) . . .e

γn−2
(n−2) , (6.8)

with the area of the hinge then given by

Vn−2(h) =
1

(n−2)!

(
∑
α<β

ω2
αβ (h)

)1/2

. (6.9)
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Next, in order to introduce curvature, one needs to define the dihedral angle between
faces in an n-simplex. In an n-simplex s two n−1-simplices f and f ′ will intersect
on a common n− 2-simplex h, and the dihedral angle at the specified hinge h is
defined as

cosθ( f , f ′) =
ω( f )n−1 ·ω( f ′)n−1

Vn−1( f )Vn−1( f ′)
, (6.10)

where the scalar product appearing on the r.h.s. can be re-written in terms of squared
edge lengths using

ωn ·ω ′
n =

1
(n!)2 det(ei · e′j) , (6.11)

and ei ·e′j in turn expressed in terms of squared edge lengths by the use of Eq. (6.3).
(Note that the dihedral angle θ would have to be defined as π minus the arccosine
of the expression on the r.h.s. if the orientation for the e’s had been chosen in such
a way that the ω’s would all point from the face f inward into the simplex s). As an
example, in two dimensions and within a given triangle, two edges will intersect at
a vertex, giving θ as the angle between the two edges. In three dimensions within
a given simplex two triangles will intersect at a given edge, while in four dimen-
sion two tetrahedra will meet at a triangle. For the special case of an equilateral
n-simplex, one has simply θ = arccos 1

n . A related and often used formula for the
sine of the dihedral angle θ is

sinθ( f , f ′) =
n

n−1
Vn(s)Vn−2(h)

Vn−1( f )Vn−1( f ′)
, (6.12)

but is less useful for practical calculations, as the sine of the angle does not unam-
biguously determine the angle itself, which is needed in order to compute the local
curvature.

In a piecewise linear space curvature is detected by going around elementary
loops which are dual to a (d − 2)-dimensional subspace. From the dihedral angles
associated with the faces of the simplices meeting at a given hinge h one can com-
pute the deficit angle δ (h), defined as

δ (h) = 2π − ∑
s⊃h

θ(s,h) , (6.13)

where the sum extends over all simplices s meeting on h. It then follows that the
deficit angle δ is a measure of the curvature at h. The two-dimensional case is illus-
trated in Fig. 6.4, while the three- and four-dimensional cases are shown in Fig. 6.5.

6.4 Rotations, Parallel Transports and Voronoi Loops

Since the interior of each simplex s is assumed to be flat, one can assign to it a
Lorentz frame Σ(s). Furthermore inside s one can define a d-component vector
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δ

Fig. 6.4 Illustration of the deficit angle δ in two dimensions, where several flat triangles meet at a
vertex.

Fig. 6.5 Deficit angle in three dimensions where several flat tetrahedra meet at an edge, and in
four dimensions where several flat four-simplices meet at a triangle.

φ(s) = (φ0 . . .φd−1). Under a Lorentz transformation of Σ(s), described by the d×d
matrix Λ(s) satisfying the usual relation for Lorentz transformation matrices

ΛT ηΛ = η , (6.14)

the vector φ(s) will rotate to

φ ′(s) = Λ(s)φ(s) . (6.15)

The base edge vectors eμi = lμ0i(s) themselves are of course an example of such a
vector.

Next consider two d-simplices, individually labeled by s and s′, sharing a com-
mon face f (s,s′) of dimensionality d −1. It will be convenient to label the d edges
residing in the common face f by indices i, j = 1 . . .d. Within the first simplex s one
can then assign a Lorentz frame Σ(s), and similarly within the second s′ one can as-
sign the frame Σ(s′). The 1

2 d(d −1) edge vectors on the common interface f (s,s′)
(corresponding physically to the same edges, viewed from two different coordinate
systems) are expected to be related to each other by a Lorentz rotation R,
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lμi j(s
′) = Rμ

ν(s′,s) lνi j(s) . (6.16)

Under individual Lorentz rotations in s and s′ one has of course a corresponding
change in R, namely R → Λ(s′)R(s′,s)Λ(s). In the Euclidean d-dimensional case
R is an orthogonal matrix, element of the group SO(d).

In the absence of torsion, one can use the matrix R(s′,s) to describes the parallel
transport of any vector φμ from simplex s to a neighboring simplex s′,

φμ(s′) = Rμ
ν(s′,s)φν(s) . (6.17)

R therefore describes a lattice version of the connection (Lee, 1983). Indeed in the
continuum such a rotation would be described by the matrix

Rμ
ν =

(
eΓ ·dx

)μ
ν

, (6.18)

with Γ λ
μν the affine connection. The coordinate increment dx is interpreted as joining

the center of s to the center of s′, thereby intersecting the face f (s,s′). On the other
hand, in terms of the Lorentz frames Σ(s) and Σ(s′) defined within the two adjacent
simplices, the rotation matrix is given instead by

Ra
b(s

′,s) = ea
μ(s′)eνb(s) Rμ

ν(s′,s) , (6.19)

(this last matrix reduces to the identity if the two orthonormal bases Σ(s) and
Σ(s′) are chosen to be the same, in which case the connection is simply given by
R(s′,s) ν

μ = e a
μ eνa). Note that it is possible to choose coordinates so that R(s,s′) is

the unit matrix for one pair of simplices, but it will not then be unity for all other
pairs if curvature is present.

This last set of results will be useful later when discussing lattice Fermions. Let
us consider here briefly the problem of how to introduce lattice spin rotations. Given
in d dimensions the above rotation matrix R(s′,s), the spin connection S(s,s′) be-
tween two neighboring simplices s and s′ is defined as follows. Consider S to be
an element of the 2ν -dimensional representation of the covering group of SO(d),
Spin(d), with d = 2ν or d = 2ν + 1, and for which S is a matrix of dimension
2ν ×2ν . Then R can be written in general as

R = exp
[

1
2 σ

αβθαβ
]

, (6.20)

where θαβ is an antisymmetric matrix The σ ’s are 1
2 d(d − 1) d × d matrices, gen-

erators of the Lorentz group (SO(d) in the Euclidean case, and SO(d − 1,1) in the
Lorentzian case), whose explicit form is

[
σαβ

]γ
δ = δ γα ηβδ − δ γβ ηαδ , (6.21)

so that, for example,
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σ12 =

⎛
⎜⎝

0 1 0 0
−1 0 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎠ . (6.22)

For fermions the corresponding spin rotation matrix is then obtained from

S = exp
[

i
4 γ

αβθαβ
]

, (6.23)

with generators γαβ = 1
2i [γ

α ,γβ ], and with the Dirac matrices γα satisfying as usual
γαγβ +γβ γα = 2ηαβ . Taking appropriate traces, one can obtain a direct relationship
between the original rotation matrix R(s,s′) and the corresponding spin rotation
matrix S(s,s′)

Rαβ = tr
(
S† γα Sγβ

)
/ tr1 , (6.24)

which determines the spin rotation matrix up to a sign.
One can consider a sequence of rotations along an arbitrary path P(s1, . . . ,sn+1)

going through simplices s1 . . .sn+1, whose combined rotation matrix is given by

R(P) = R(sn+1,sn) · · ·R(s2,s1) , (6.25)

and which describes the parallel transport of an arbitrary vector from the interior of
simplex s1 to the interior of simplex sn+1,

φμ(sn+1) = Rμ
ν(P)φν(s1) . (6.26)

If the initial and final simplices sn+1 and s1 coincide, one obtains a closed path
C(s1, . . . ,sn), for which the associated expectation value can be considered as the
gravitational analog of the Wilson loop. Its combined rotation is given by

R(C) = R(s1,sn) · · ·R(s2,s1) . (6.27)

Under Lorentz transformations within each simplex si along the path one has a pair-
wise cancellation of the Λ(si) matrices except at the endpoints, giving in the closed
loop case

R(C) → Λ(s1)R(C)ΛT (s1) . (6.28)

Clearly the deviation of the matrix R(C) from unity is a measure of curvature. Also,
the trace trR(C) is independent of the choice of Lorentz frames.

Of particular interest is the elementary loop associated with the smallest non-
trivial, segmented parallel transport path one can build on the lattice. One such
polygonal path in four dimensions is shown in Fig. 6.6. In general consider a
(d − 2)-dimensional simplex (hinge) h, which will be shared by a certain num-
ber m of d-simplices, sequentially labeled by s1 . . .sm, and whose common faces
f (s1,s2) . . . f (sm−1,sm) will also contain the hinge h. Thus in four dimensions sev-
eral four-simplices will contain, and therefore encircle, a given triangle (hinge).
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Fig. 6.6 Elementary polyg-
onal path around a hinge
(triangle) in four dimensions.
The hinge ABC, contained in
the simplex ABCDE, is en-
circled by the polygonal path
H connecting the surrounding
vertices, which reside in the
dual lattice. One such vertex
is contained within the sim-
plex ABCDE.

 

A 
B 

C 

E D 

H 

In three dimensions the path will encircle an edge, while in two dimensions it will
encircle a site. Thus for each hinge h there is a unique elementary closed path Ch for
which one again can define the ordered product

R(Ch) = R(s1,sm) · · ·R(s2,s1) . (6.29)

The hinge h, being geometrically an object of dimension (d − 2), is naturally rep-
resented by a tensor of rank (d − 2), referred to a coordinate system in h: an edge

vector lμh in d = 3, and an area bi-vector 1
2 (lμh l

′ν
h − lνh l

′μ
h ) in d = 4 etc. Following

Eq. (6.8) it will therefore be convenient to define a hinge bi-vector U in any dimen-
sion as

Uμν(h) = N εμνα1αd−2 lα1
(1) . . . l

αd−2
(d−2) , (6.30)

normalized, by the choice of the constant N , in such a way that UμνUμν = 2. In
four dimensions

Uμν(h) =
1

2Ah
εμναβ lα1 lβ2 , (6.31)

where l1(h) and l2(h) two independent edge vectors associated with the hinge h, and
Ah the area of the hinge.

An important aspect related to the rotation of an arbitrary vector, when parallel
transported around a hinge h, is the fact that, due to the hinge’s intrinsic orien-
tation, only components of the vector in the plane perpendicular to the hinge are
affected. Since the direction of the hinge h is specified locally by the bivector Uμν
of Eq. (6.31), one can write for the loop rotation matrix R

Rμ
ν(C) =

(
eδU

)μ
ν

, (6.32)

where C is now the small polygonal loop entangling the hinge h, and δ the deficit
angle at h, previously defined in Eq. (6.13). One particularly noteworthy aspect of
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this last result is the fact that the area of the loop C does not enter in the expression
for the rotation matrix, only the deficit angle and the hinge direction.

At the same time, in the continuum a vector V carried around an infinitesimal
loop of area AC will change by

ΔV μ = 1
2 Rμ

νλσ Aλσ V ν , (6.33)

where Aλσ is an area bivector in the plane of C, with squared magnitude AλσAλσ =
2A2

C. Since the change in the vector V is given by δVα = (R−1)αβ V β one is led to
the identification

1
2 Rα

βμν Aμν = (R−1)αβ . (6.34)

Thus the above change in V can equivalently be re-written in terms of the infinites-
imal rotation matrix

Rμ
ν(C) =

(
e

1
2 R ·A

)μ

ν
, (6.35)

(where the Riemann tensor appearing in the exponent on the r.h.s. should not be
confused with the rotation matrix R on the l.h.s.).

It is then immediate to see that the two expressions for the rotation matrix R in
Eqs. (6.32) and (6.35) will be compatible provided one uses for the Riemann tensor
at a hinge h the expression

Rμνλσ (h) =
δ (h)

AC(h)
Uμν(h)Uλσ (h) , (6.36)

expected to be valid in the limit of small curvatures, with AC(h) the area of the
loop entangling the hinge h. Here use has been made of the geometric relationship
Uμν Aμν = 2AC. Note that the bivector U has been defined to be perpendicular to
the (d −2) edge vectors spanning the hinge h, and lies therefore in the same plane
as the loop C. Furthermore, the expression of Eq. (6.36) for the Riemann tensor at
a hinge has the correct algebraic symmetry properties, such as the antisymmetry in
the first and second pair of indices, as well as the swap symmetry between first and
second pair, and is linear in the curvature, with the correct dimensions of one over
length squared.

The area AC is most suitably defined by introducing the notion of a dual lattice,
i.e. a lattice constructed by assigning centers to the simplices, with the polygonal
curve C connecting these centers sequentially, and then assigning an area to the
interior of this curve. One possible way of assigning such centers is by introducing
perpendicular bisectors to the faces of a simplex, and locate the vertices of the dual
lattice at their common intersection, a construction originally discussed in (Voronoi,
1908) and in (Meijering, 1953). Another, and perhaps even simpler, possibility is to
use a barycentric subdivision (Singer and Thorpe, 1967).
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6.5 Invariant Lattice Action

The first step in writing down an invariant lattice action, analogous to the continuum
Einstein-Hilbert action, is to find the lattice analogue of the Ricci scalar. From the
expression for the Riemann tensor at a hinge given in Eq. (6.36) one obtains by
contraction

R(h) = 2
δ (h)

AC(h)
. (6.37)

The continuum expression
√

gR is then obtained by multiplication with the volume
element V (h) associated with a hinge. The latter is defined by first joining the ver-
tices of the polyhedron C, whose vertices lie in the dual lattice, with the vertices of
the hinge h, and then computing its volume.

By defining the polygonal area AC as AC(h)= dV (h)/V (d−2)(h), where V (d−2)(h)
is the volume of the hinge (an area in four dimensions), one finally obtains for the
Euclidean lattice action for pure gravity

IR(l2) = − k ∑
hinges h

δ (h)V (d−2)(h) , (6.38)

with the constant k = 1/(8πG). One would have obtained the same result for the
single-hinge contribution to the lattice action if one had contracted the infinitesi-
mal form of the rotation matrix R(h) in Eq. (6.32) with the hinge bivector ωαβ of
Eq. (6.8) (or equivalently with the bivector Uαβ of Eq. (6.31) which differs from
ωαβ by a constant). The fact that the lattice action only involves the content of the
hinge V (d−2)(h) (the area of a triangle in four dimensions) is quite natural in view
of the fact that the rotation matrix at a hinge in Eq. (6.32) only involves the deficit
angle, and not the polygonal area AC(h).

An alternative form for the lattice action (Fröhlich, 1981) can be obtained instead
by contracting the elementary rotation matrix R(C) of Eq. (6.32), and not just its
infinitesimal form, with the hinge bivector of Eq. (6.8),

Icom(l2) = − k ∑
hinges h

1
2 ωαβ (h)Rαβ (h) . (6.39)

The above construction can be regarded as analogous to Wilson’s lattice gauge
theory, for which the action also involves traces of products of SU(N) color ro-
tation matrices (Wilson, 1973). For small deficit angles one can of course use
ωαβ = (d −2)!V (d−2)Uαβ to show the equivalence of the two lattice actions.

But in general, away from a situation of small curvatures, the two lattice action
are not equivalent, as can be seen already in two dimensions. Writing the rotation

matrix at a hinge as R(h) =
(

cosδ sinδ
−sinδ cosδ

)
, expressed for example in terms of

Pauli matrices, and taking the appropriate trace (ωαβ = εαβ in two dimensions) one
finds

tr
[

1
2 (−iσy)(cosδp + iσy sinδp)

]
= sinδp , (6.40)
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and therefore Icom = − k ∑p sinδp. In general one can show that the compact action
Icom in d dimensions involves the sine of the deficit angle, instead of just the angle
itself as in the Regge case. In the weak field limit the two actions should lead to
similar expansions, while away from the weak field limit one would have to verify
that the same universal long distance properties are recovered.

The preceding observations can in fact be developed into a consistent first order
(Palatini) formulation of Regge gravity, with suitably chosen independent transfor-
mation matrices and metrics, related to each other by a set of appropriate lattice
equations of motion (Caselle, D’Adda and Magnea, 1989). Ultimately one would
expect the first and second order formulations to describe the same quantum theory,
with common universal long-distance properties. How to consistently define finite
rotations, frames and connections in Regge gravity was first discussed systemati-
cally in (Fröhlich, 1981).

One important result that should be mentioned in this context is the rigorous
proof of convergence in the sense of measures of the Regge lattice action towards
the continuum Einstein-Hilbert action (Cheeger, Müller and Schrader, 1984). Some
general aspects of this result have recently been reviewed from a mathematical point
of view in (Lafontaine, 1986). A derivation of the Regge action from its continuum
counterpart was later presented in (Lee, Feinberg and Friedberg and Reu, 1984).

Other terms can be added to the lattice action. Consider for example a cosmo-
logical constant term, which in the continuum theory takes the form λ0

∫
ddx

√
g.

The expression for the cosmological constant term on the lattice involves the total
volume of the simplicial complex. This may be written as

Vtotal = ∑
simplices s

Vs , (6.41)

or equivalently as

Vtotal = ∑
hinges h

Vh , (6.42)

where Vh is the volume associated with each hinge via the construction of a dual
lattice, as described above. Thus one may regard the local volume element

√
gddx

as being represented by either Vh (centered on h) or Vs (centered on s).
The Regge and cosmological constant term then lead to the combined action

Ilatt(l2) = λ0 ∑
simplices s

V (d)
s − ∑

hinges h

δh V (d−2)
h . (6.43)

One would then write for the lattice regularized version of the Euclidean Feynman
path integral

Zlatt(λ0, k) =
∫

[d l2] exp
(
−Ilatt(l2)

)
, (6.44)

where [d l2] is an appropriate functional integration measure over the edge lengths,
to be discussed later.
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The structure of the gravitational action of Eq. (6.43) leads naturally to some
rather general observations, which we will pursue here. The first, cosmological con-
stant, term represents the total four-volume of space-time. As such, it does not con-
tain any derivatives (or finite differences) of the metric and is completely local; it
does not contribute to the propagation of gravitational degrees of freedom and is
more akin to a mass term (as is already clear from the weak field expansion of∫ √

g in the continuum). In an ensemble in which the total four-volume is fixed in
the thermodynamic limit (number of simplices tending to infinity) one might in fact
take the lattice coupling λ0 = 1, since different values of λ0 just correspond to a triv-
ial rescaling of the overall four-volume (of course in a traditional renormalization
group approach to field theory, the overall four-volume is always kept fixed while
the scale or q2 dependence of the action and couplings are investigated). Alterna-
tively, one might even want to choose directly an ensemble for which the probability
distribution in the total four-volume V is

P(V ) ∝ δ (V −V0) , (6.45)

in analogy with the microcanonical ensemble of statistical mechanics.
The second, curvature contribution to the action contains, as in the continuum,

the proper kinetic term. This should already be clear from the derivation of the lat-
tice action given above, and will be made even more explicit in the section dedicated
to the lattice weak field expansion. Such a term now provides the necessary coupling
between neighboring lattice metrics, but the coupling still remains local. Geometri-
cally, it can be described as a sum of elementary loop contributions, as it contains
as its primary ingredient the deficit angle associated with an elementary parallel
transport loop around the hinge h. When k = 0 one resides in the extreme strong
coupling regime There the fluctuations in the metric are completely unconstrained
by the action, insofar as only the total four-volume of the manifold is kept constant.

At this point it might be useful to examine some specific cases with regards to
the overall dimensionality of the simplicial complex. In two dimensions the Regge
action reduces to a sum over lattice sites p of the 2− d deficit angle, giving the
discrete analog of the Gauss-Bonnet theorem

∑
sites p

δp = 2π χ , (6.46)

where χ = 2− 2g is the Euler characteristic of the surface, and g the genus (the
number of handles). In this case the action is therefore a topological invariant, and
the above lattice expression is therefore completely analogous to the well known
continuum result

1
2

∫
d2x

√
gR = 2π χ . (6.47)

This remarkable identity ensures that two-dimensional lattice R-gravity is as trivial
as in the continuum, since the variation of the local action density under a small
variation of an edge length li j is still zero. Of course there is a much simpler formula
for the Euler characteristic of a simplicial complex, namely
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χ =
d

∑
i=0

(−1)iNi , (6.48)

where Ni is the number of simplices of dimension i. Also it should be noted that
in two dimensions the compact action Icom = ∑p sinδp does not satisfy the Gauss-
Bonnet relation.

In three dimensions the Regge lattice action reads

IR = −k ∑
edges h

lh δh , (6.49)

where δh is the deficit angle around the edge labeled by h. Variation with respect to
an edge length lh gives two terms, of which only the term involving the variation of
the edge is non-zero

δ IR = −k ∑
edges h

δ lh ·δh . (6.50)

In fact it was shown by Regge that for any d > 2 the term involving the variation
of the deficit angle does not contribute to the equations of motion (just as in the
continuum the variation of the Ricci tensor does not contribute to the equations of
motion either). Therefore in three dimensions the lattice equations of motion, in the
absence of sources and cosmological constant term, reduce to

δh = 0 , (6.51)

implying that all deficit angles have to vanish, i.e. a flat space.
In four dimensions variation of IR with respect to the edge lengths gives the

simplicial analogue of Einstein’s field equations, whose derivation is again, as men-
tioned, simplified by the fact that the contribution from the variation of the deficit
angle is zero

δ IR = ∑
triangles h

δ (Ah) ·δh . (6.52)

In the discrete case the field equations reduce therefore to

λ0 ∑
s

∂Vs

∂ li j
− k∑

h

δh
∂Ah

∂ li j
= 0 , (6.53)

and the derivatives can then be worked out for example from Eq. (6.5). Alternatively,
a rather convenient and compact expression can be given (Hartle, 1984) for the
derivative of the squared volume V 2

n of an arbitrary n-simplex with respect to one of
its squared edge lengths

∂V 2
n

∂ l2
i j

=
1
n2 ωn−1 ·ω ′

n−1 , (6.54)
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where the ωα
(n−1)’s (here referring to two (n − 1) simplices part of the same n-

simplex) are given in Eqs. (6.6) and (6.11). In the above expression the ω’s are
meant to be associated with vertex labels 0, . . . , i − 1, i + 1, . . . ,n for ωn−1, and
0, . . . , j−1, j +1, . . . ,n for ω ′

n−1 respectively.
Then in the absence of a cosmological term one finds the remarkably simple

expression for the lattice field equations

1
2 lp ∑

h⊃lp

δh cotθph = 0 , (6.55)

where the sum is over hinges (triangles) labeled by h meeting on the common edge
lp, and θph is the angle in the hinge h opposite to the edge lp. This is illustrated in
Fig. 6.7.

Fig. 6.7 Angles appearing in
the Regge equations.

p

θ ph

The discrete equations given above represent the lattice analogs of the Einstein
field equations in a vacuum, for which suitable solutions can be searched for by ad-
justing the edge lengths. Since the equations are in general non-linear, the existence
of multiple solutions cannot in general be ruled out (Misner, Thorne and Wheeler,
1973). A number of papers have addressed the general issue of convergence to the
continuum in the framework of the classical formulation (Brewin and Gentle, 2001).
Several authors have discussed non-trivial applications of the Regge equations to
problems in classical general relativity such as the Schwarzschild and Reissner-
Nordstrom geometries (Wong, 1971), the Friedmann and Tolman universes (Collins
and Williams, 1973; 1974), and the problem of radial motion and circular (actu-
ally polygonal) orbits (Williams and Ellis, 1981; 1984). Spherically symmetric, as
well as more generally inhomogeneous, vacuum spacetimes were studied using a
discrete 3 + 1 formulation with a variety of time-slicing prescriptions in (Porter,
1987a,b,c), and later extended (Dubal, 1989a,b) to a systematic investigation of
the axis-symmetric non-rotating vacuum solutions and to the problem of relativistic
spherical collapse for polytropic perfect fluids.

In classical gravity the general time evolution problem plays of course a central
role. The 3+1 time evolution problem in Regge gravity was discussed originally in
(Sorkin, 1975a,b) and later re-examined from a numerical, practical prespective in
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(Barrett et al, 1997) using a discrete time step formulation, whereas in (Piran and
Williams, 1986) a continuous time fomalism was proposed. The choice of lapse and
shift functions in Regge gravity were discussed further in (Tuckey, 1989; Galassi,
1993) and in (Gentle and Miller, 1998), and applied to the Kasner cosmology in the
last reference. An alternative so-called null-strut approach was proposed in (Miller
and Wheeler, 1985) which builds up a spacelike-foliated spacetime with a maxi-
mal number of null edges, but seems difficult to implement in practice. Finally in
(Khatsymovsky, 1991) and (Immirzi, 1996) a continuous time Regge gravity for-
malism in the tetrad-connection variables was developed, in part targeted towards
quantum gravity calculations. A recent comprehensive review of classical applica-
tions of Regge gravity can be found for example in (Gentle, 2002), as well as a more
complete set of references.

6.6 Lattice Diffeomorphism Invariance

Consider the two-dimensional flat skeleton shown in Fig. 6.8. It is clear that one
can move around a point on the surface, keeping all the neighbors fixed, without
violating the triangle inequalities and leave all curvature invariants unchanged.

Fig. 6.8 On a random simpli-
cial lattice there are in general
no preferred directions.

 

In d dimensions this transformation has d parameters and is an exact invariance
of the action. When space is slightly curved, the invariance is in general only an ap-
proximate one, even though for piecewise linear spaces piecewise diffeomorphisms
can still be defined as the set of local motions of points that leave the local contribu-
tion to the action, the measure and the lattice analogues of the continuum curvature
invariants unchanged (Hamber and Williams, 1998). Note that in general the gauge
deformations of the edges are still constrained by the triangle inequalities. The gen-
eral situation is illustrated in Figs. 6.8, 6.9 and 6.10. In the limit when the number
of edges becomes very large, the full continuum diffeomorphism group should be
recovered.
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Fig. 6.9 Example of a lattice
diffeomorphism, the local
gauge transform of a flat
lattice, corresponding in d
dimensions to a d-parameter
local deformation of the
edges.

Fig. 6.10 Another example of
a lattice diffeomorphism, the
gauge deformation of a lattice
around a vertex 0, leaving the
local action contribution from
that vertex unchanged.
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In general the structure of lattice local gauge transformations is rather compli-
cated and will not be given here; it can be found in the above quoted reference.
These are defined as transformations acting locally on a given set of edges which
leave the local lattice curvature invariant. The simplest context in which this local in-
variance can be exhibited explicitly is the lattice weak field expansion, which will be
discussed later in Sect. 7.2. The local gauge invariance corresponding to continuum
diffeomorphism is given there in Eq. (7.9). From the transformation properties of
the edge lengths it is clear that their transformation properties are related to those of
the local metric, as already suggested for example by the identification of Eqs. (6.3)
and (6.68). In the quantum theory, a local gauge invariance implies the existence of
Ward identities for n-point functions.
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6.7 Lattice Bianchi Identities

Consider therefore a closed path Ch encircling a hinge h and passing through each
of the simplices that meet at that hinge. In particular one may take Ch to be the
boundary of the polyhedral dual (or Voronoi) area surrounding the hinge. We recall
that the Voronoi polyhedron dual to a vertex P is the set of all points on the lattice
which are closer to P than any other vertex; the corresponding new vertices then
represent the sites on the dual lattice. A unique closed parallel transport path can
then be assigned to each hinge, by suitably connecting sites in the dual lattice.

With each neighboring pair of simplices s,s+1 one associates a Lorentz transfor-
mation Rα

β (s,s+1), which describes how a given vector Vμ transforms between the
local coordinate systems in these two simplices As discussed previously, the above
transformation is directly related to the continuum path-ordered (P) exponential of
the integral of the local affine connection Γ λ

μν via

Rμ
ν =

[
P e

∫
path

between simplices
Γ λ dxλ ]μ

ν
. (6.56)

The connection here has support only on the common interface between the two
simplices.

Fig. 6.11 Illustration of the
exact lattice Bianchi identity
in the case of three dimen-
sions, where several hinges
(edges) meet on a vertex. The
combined rotation for a path
that sequentially encircles
several hinges and which can
be shrunk to a point is given
by the identity matrix.
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Just as in the continuum, where the affine connection and therefore the infinitesi-
mal rotation matrix is determined by the metric and its first derivatives, on the lattice
one expects that the elementary rotation matrix between simplices Rs,s+1 is fixed by
the difference between the gi j’s of Eq. (6.3) within neighboring simplices.

For a vector V transported once around a Voronoi loop, i.e. a loop formed by
Voronoi edges surrounding a chosen hinge, the change in the vector V is given by



6.7 Lattice Bianchi Identities 187

Fig. 6.12 A second illus-
tration of the exact lattice
Bianchi identity, now in
four dimensions. Here sev-
eral hinges (triangles) meet
at the vertex labelled by 0.
Around each hinge one has
a corresponding rotation and
therefore a deficit angle δ .
The product of rotation matri-
ces that sequentially encircle
several hinges and is topolog-
ically trivial gives the identity
matrix.
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δVα = (R−1)αβ V β , (6.57)

where R≡∏s Rs,s+1 is now the total rotation matrix associated with the given hinge,
given by [

∏
s

Rs,s+1

]μ
ν

=
[

eδ (h)U(h)
]μ
ν

. (6.58)

It is these lattice parallel transporters around closed elementary loops that satisfy the
lattice analogues of the Bianchi identities. These are derived by considering paths
which encircle more than one hinge and yet are topologically trivial, in the sense that
they can be shrunk to a point without entangling any hinge (Regge, 1961; Roček and
Williams, 1985).

Thus, for example, the ordered product of rotation matrices associated with the
triangles meeting on a given edge has to give one, since a single path can be con-
structed which sequentially encircles all the triangles and is topologically trivial

∏
hinges h

meeting on edge p

[
eδ (h)U(h)

]μ
ν

= 1 . (6.59)

Other identities might be derived by considering paths that encircle several hinges
meeting on one point. Regge has shown that the above lattice relations correspond
precisely to the continuum Bianchi identities. One can therefore explicitly con-
struct exact lattice analogues of the continuum uncontracted, partially contracted,
and fully contracted Bianchi identities. The lattice Bianchi identities are illustrated
in Fig. 6.11 for the three-dimensional case, and Fig. 6.12 for the four-dimensional
case.

The resulting lattice equations are quite similar in structure to the Bianchi identi-
ties in SU(N) lattice gauge theories, where one considers identities arising from the
multiplication of group elements associated with the square faces of a single cube
part of a hypercubic lattice (Wilson, 1973). The motivation there was the possible
replacement of the integration over the group elements by an integration over the
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“plaquette variables” associated with an elementary square (thereby involving the
ordered product of four group elements), provided the Bianchi identity constraint is
included as well in the lattice path integral.

6.8 Gravitational Wilson Loop

We have seen that with each neighboring pair of simplices s,s + 1 one can asso-
ciate a Lorentz transformation Rμ

ν(s,s + 1), which describes how a given vector
V μ transforms between the local coordinate systems in these two simplices, and
that the above transformation is directly related to the continuum path-ordered (P)
exponential of the integral of the local affine connection Γ λ

μν(x) via

Rμ
ν =

[
P e

∫
path

between simplices
Γλ dxλ ]μ

ν
, (6.60)

with the connection having support only on the common interface between the two
simplices. Also, for a closed elementary path Ch encircling a hinge h and passing
through each of the simplices that meet at that hinge one has for the total rotation
matrix R ≡∏s Rs,s+1 associated with the given hinge

[
∏

s
Rs,s+1

]μ
ν

=
[

eδ (h)U(h)
]μ
ν

. (6.61)

Equivalently, this last expression can be re-written in terms of a surface integral
of the Riemann tensor, projected along the surface area element bivector Aαβ (Ch)
associated with the loop,

[
∏

s
Rs,s+1

]μ
ν
≈
[

e
1
2

∫
S

R ·
·αβ Aαβ (Ch)]μ

ν
. (6.62)

More generally one might want to consider a near-planar, but non-infinitesimal,
closed loop C, as shown in Fig. 7.9. Along this closed loop the overall rotation
matrix will still be given by

Rμ
ν(C) =

[
∏
s⊂C

Rs,s+1

]μ
ν

. (6.63)

In analogy with the infinitesimal loop case, one would like to state that for the overall
rotation matrix one has

Rμ
ν(C) ≈

[
eδ (C)U(C))

]μ
ν

, (6.64)
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where Uμν(C) is now an area bivector perpendicular to the loop - which will work
only if the loop is close to planar so that Uμν can be taken to be approximately
constant along the path C.

If that is true, then one can define, again in analogy with the infinitesimal loop
case, an appropriate coordinate scalar by contracting the above rotation matrix R(C)
with the bivector of Eq. (6.8), namely

W (C) = ωαβ (C)Rαβ (C) , (6.65)

where the loop bivector, ωαβ (C) = (d − 2)!V (d−2)Uαβ = 2AC Uαβ (C) in four di-
mensions, is now intended as being representative of the overall geometric features
of the loop. For example, it can be taken as an average of the hinge bivector ωαβ (h)
along the loop.

In the quantum theory one is of course interested in the average of the above
loop operator W (C), as in Eq. (3.144). The previous construction is indeed quite
analogous to the Wilson loop definition in ordinary lattice gauge theories (Wilson,
1973), where it is defined via the trace of path ordered products of SU(N) color
rotation matrices. In gravity though the Wilson loop does not give any information
about the static potential (Modanese, 1993; Hamber, 1994). It seems that the Wilson
loop in gravity provides instead some insight into the large-scale curvature of the
manifold, just as the infinitesimal loop contribution entering the lattice action of
Eqs. (6.38) and (6.39) provides, through its averages, insight into the very short
distance, local curvature. Of course for any continuum manifold one can define
locally the parallel transport of a vector around a near-planar loop C. Indeed parallel
transporting a vector around a closed loop represents a suitable operational way of
detecting curvature locally. If the curvature of the manifold is small, one can treat
the larger loop the same way as the small one; then the expression of Eq. (6.64)
for the rotation matrix R(C) associated with a near-planar loop can be re-written in
terms of a surface integral of the large-scale Riemann tensor, projected along the
surface area element bivector Aαβ (C) associated with the loop,

Rμ
ν(C) ≈

[
e

1
2

∫
S

R ·
·αβ Aαβ (C)]μ

ν
. (6.66)

Thus a direct calculation of the Wilson loop provides a way of determining the ef-
fective curvature at large distance scales, even in the case where short distance fluc-
tuations in the metric may be significant. Conversely, the rotation matrix appearing
in the elementary Wilson loop of Eqs. (6.29) and (6.32) only provides information
about the parallel transport of vectors around infinitesimal loops, with size compa-
rable to the ultraviolet cutoff.

One would expect that for a geometry fluctuating strongly at short distances (cor-
responding therefore to the small k limit) the infinitesimal parallel transport matrices
R(s,s′) should be distributed close to randomly, with a measure close to the uniform
Haar measure, and with little correlation between neighboring hinges. In such in-
stance one would have for the local quantum averages of the infinitesimal lattice
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parallel transports < R >= 0, but < RR−1 >�= 0, which would require, for a non-
vanishing lowest order contribution to the Wilson loop, that the loop at least be tiled
by elementary action contributions from Eqs. (6.38) or (6.39), thus forming a min-
imal surface spanning the loop. Then, in close analogy to the Yang-Mills case of
Eq. (3.145) (see for example Peskin and Schroeder, 1995), the leading contribution
to the gravitational Wilson loop would be expected to follow an area law,

W (C) ∼ const.kA(C) ∼ exp(−A(C)/ξ 2) , (6.67)

where A(C) is the minimal physical area spanned by the near-planar loop C, and
ξ = 1/

√
| lnk| the gravitational correlation length at small k. Thus for a close-to-

circular loop of perimeter P one would use A(C) ≈ P2/4π .
The rapid decay of the gravitational Wilson loop as a function of the area is seen

here simply as a general and direct consequence of the disorder in the fluctuations
of the parallel transport matrices R(s,s′) at strong coupling. It should then be clear
from the above discussion that the gravitational Wilson loop provides in a sense a
measure of the magnitude of the large-scale, averaged curvature, where the latter is
most suitably defined by the process of parallel-transporting test vectors around very
large loops, and is therefore, from the above expression, computed to be of the order
R∼ 1/ξ 2, at least in the small k limit. A direct calculation of the Wilson loop should
therefore Provide, among other things, a direct insight into whether the manifold is
de Sitter or anti-de Sitter at large distances. More details on the lattice construction
of the gravitational Wilson loop, the various issues that arise in its precise definition,
and a sample calculation in the strong coupling limit of lattice gravity, can be found
in (Hamber and Williams, 2007).

Finally we note that the definition of the gravitational Wilson loop is based on a
surface with a given boundary C, in the simplest case the minimal surface spanning
the loop. It is possible though to consider other surfaces built out of elementary
parallel transport loops. An example of such a generic closed surface tiled with
elementary parallel transport polygons (here chosen for illustrative purposes to be
triangles) will be given later in Fig. 7.13.

Later similar surfaces will arise naturally in the context of the strong coupling
(small k) expansion for gravity, as well as in the high dimension (large d) expansion.

6.9 Lattice Regularized Path Integral

As the edge lengths li j play the role of the continuum metric gμν(x), one would
expect the discrete measure to involve an integration over the squared edge lengths
(Hamber, 1984; Hartle, 1984; 1986; Hamber and Williams, 1999). Indeed the in-
duced metric at a simplex is related to the squared edge lengths within that simplex,
via the expression for the invariant line element ds2 = gμνdxμdxν . After choosing
coordinates along the edges emanating from a vertex, the relation between metric
perturbations and squared edge length variations for a given simplex based at 0 in d
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dimensions is
δgi j(l2) = 1

2 (δ l2
0i +δ l2

0 j −δ l2
i j) . (6.68)

For one d-dimensional simplex labeled by s the integration over the metric is thus
equivalent to an integration over the edge lengths, and one has the identity

(
1
d!

√
detgi j(s)

)σ

∏
i≥ j

dgi j(s) =
(
− 1

2

) d(d−1)
2

[
Vd(l2)

]σ d(d+1)/2

∏
k=1

dl2
k . (6.69)

There are d(d + 1)/2 edges for each simplex, just as there are d(d + 1)/2 inde-
pendent components for the metric tensor in d dimensions (Cheeger, Müller and
Schrader, 1982). Here one is ignoring temporarily the triangle inequality constraints,
which will further require all sub-determinants of gi j to be positive, including the
obvious restriction l2

k > 0.
Let us discuss here briefly the simplicial inequalities which need to be imposed

on the edge lengths (Wheeler, 1964). These are conditions on the edge lengths li j

such that the sites i can be considered the vertices of a d-simplex embedded in flat
d-dimensional Euclidean space. In one dimension, d = 1, one requires trivially for
all edge lengths

l2
i j > 0 . (6.70)

In two dimensions, d = 2, the conditions on the edge lengths are again l2
i j > 0 as in

one dimensions, as well as

A2
Δ =

(
1
2!

)2

detg(2)
i j (s) > 0 , (6.71)

which is equivalent, by virtue of Heron’s formula for the area of a triangle A2
Δ =

s(s− li j)(s− l jk)(s− lki) where s is the semi-perimeter s = 1
2 (li j + l jk + lki), to the

requirement that the area of the triangle be positive. In turn Eq. (6.71) implies that
the triangle inequalities must be satisfied for all three edges,

li j + l jk > lik
l jk + lki > l ji

lki + li j > lk j . (6.72)

In three dimensions, d = 3, the conditions on the edge lengths are again such that
one recovers a physical tetrahedron. One therefore requires for the individual edge
lengths the condition of Eq. (6.70), the reality and positivity of all four triangle areas
as in Eq. (6.71), as well as the requirement that the volume of the tetrahedron be real
and positive,

V 2
tetrahedron =

(
1
3!

)2

detg(3)
i j (s) > 0 . (6.73)

The generalization to higher dimensions is such that one requires all triangle in-
equalities and their higher dimensional analogs to be satisfied,
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l2
i j > 0

V 2
k =

(
1
k!

)2

detg(k)
i j (s) > 0 , (6.74)

with k = 2 . . .d for every possible choice of sub-simplex (and therefore sub-
determinant) within the original simplex s.

The extension of the measure to many simplices glued together at their common
faces is then immediate. For this purpose one first needs to identify edges lk(s) and
lk′(s′) which are shared between simplices s and s′,

∫ ∞

0
dl2

k (s)
∫ ∞

0
dl2

k′(s
′) δ

[
l2
k (s)− l2

k′(s
′)
]

=
∫ ∞

0
dl2

k (s) . (6.75)

After summing over all simplices one derives, up to an irrelevant numerical constant,
the unique functional measure for simplicial geometries

∫
[dl2] =

∫ ∞

ε
∏

s
[Vd(s)]

σ ∏
i j

dl2
i j Θ [l2

i j] . (6.76)

HereΘ [l2
i j] is a (step) function of the edge lengths, with the property that it is equal

to one whenever the triangle inequalities and their higher dimensional analogs are
satisfied, and zero otherwise. The quantity ε has been introduced as a cutoff at small
edge lengths. If the measure is non-singular for small edges, one can safely take the
limit ε → 0. In four dimensions the lattice analog of the DeWitt measure (σ = 0)
takes on a particularly simple form, namely

∫
[dl2] =

∫ ∞

0
∏
i j

dl2
i j Θ [l2

i j] . (6.77)

Lattice measures over the space of squared edge lengths have been used extensively
in numerical simulations of simplicial quantum gravity (Hamber and Williams,
1984; Hamber, 1984; Berg, 1985; 1986). The derivation of the above lattice measure
closely parallels the analogous procedure in the continuum.

There is no obstacle in defining a discrete analog of the supermetric, as a way
of introducing an invariant notion of distance between simplicial manifolds, as pro-
posed in (Cheeger, Müller and Schrader, 1984). It leads to an alternative way of
deriving the lattice measure in Eq. (6.77), by considering the discretized distance
between induced metrics gi j(s)

‖δg(s)‖2 = ∑
s

Gi jkl [g(s)] δgi j(s)δgkl(s) , (6.78)

with the inverse of the lattice DeWitt supermetric now given by the expression

Gi jkl [g(s)] = 1
2

√
g(s)

[
gik(s)g jl(s)+gil(s)g jk(s)+λ gi j(s)gkl(s)

]
, (6.79)
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and with again λ �= −2/d. This procedure defines a metric on the tangent space of
positive real symmetric matrices gi j(s). After computing the determinant of G, the
resulting functional measure is

∫
dμ [l2] =

∫
∏

s
[ detG [g(s)] ]

1
2 ∏

i≥ j
dgi j(s) , (6.80)

with the determinant of the super-metric Gi jkl [g(s)] given by the local expression

detG[g(s)] ∝ (1+ 1
2 dλ ) [g(s)](d−4)(d+1)/4 . (6.81)

Using Eq. (6.69), and up to irrelevant constants, one obtains again the standard
lattice measure of Eq. (6.76). Of course the same procedure can be followed for the
Misner-like measure, leading to a similar result for the lattice measure, but with a
different power σ .

One might be tempted to try to find alternative lattice measures by looking di-
rectly at the discrete form for the supermetric, written as a quadratic form in the
squared edge lengths (instead of the metric components), and then evaluating the
resulting determinant. The main idea, inspired by work described in a paper (Lund
and Regge, 1974) on the 3+1 formulation of simplicial gravity, is as follows. First
one considers a lattice analog of the DeWitt supermetric by writing

‖δ l2‖2 = ∑
i j

Gi j(l2) δ l2
i δ l2

j , (6.82)

with Gi j(l2) now defined on the space of squared edge lengths (Hartle, Miller and
Williams, 1997). The next step is to find an appropriate form for Gi j(l2) expressed in
terms of known geometric objects. One simple way of constructing the explicit form
for Gi j(l2), in any dimension, is to first focus on one simplex, and write the squared
volume of a given simplex in terms of the induced metric components within the
same simplex s,

V 2(s) =
(

1
d!

)2
detgi j

[
l2(s)

]
. (6.83)

One computes to linear order

1
V (l2) ∑i

∂V 2(l2)
∂ l2

i

δ l2
i = 1

d!

√
det(gi j) gi j δgi j , (6.84)

and to quadratic order

1
V (l2) ∑i j

∂ 2V 2(l2)
∂ l2

i ∂ l2
j

δ l2
i δ l2

j = 1
d!

√
det(gi j)

[
gi jgklδgi jδgkl −gi jgklδg jkδgli

]
.

(6.85)
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The r.h.s. of this equation contains precisely the expression appearing in the con-
tinuum supermetric of Eq. (2.14), for the specific choice of the parameter λ = −2.
One is led therefore to the identification

Gi j(l2) = − d! ∑
s

1
V (s)

∂ 2 V 2(s)
∂ l2

i ∂ l2
j

, (6.86)

and therefore for the norm

‖δ l2‖2 = ∑
s

V (s)

{
− d!

V 2(s) ∑i j

∂ 2 V 2(s)
∂ l2

i ∂ l2
j

δ l2
i δ l2

j

}
. (6.87)

One could be tempted at this point to write down a lattice measure, in parallel with
Eq. (2.16), and write

∫
[dl2] =

∫
∏

i

√
detGi j (ω ′)(l2)dl2

i (6.88)

with

Gi j (ω ′)(l2) = − d! ∑
s

1

[V (s)]1+ω ′
∂ 2 V 2(s)
∂ l2

i ∂ l2
j

, (6.89)

where one has allowed for a parameter ω ′, possibly different from zero, interpo-
lating between apparently equally acceptable measures. The reasoning here is that,
as in the continuum, different edge length measures, here parametrized by ω’, are
obtained, depending on whether the local volume factor V (s) is included in the su-
permetric or not.

One rather undesirable, and puzzling, feature of the lattice measure of Eq. (6.88)
is that in general it is non-local, in spite of the fact that the original continuum
measure of Eq. (2.18) is completely local (although it is clear that for some special
choices of ω ′ and d, one does recover a local measure; thus in two dimensions and
for ω ′ =−1 one obtains again the simple result

∫
[dl2] =

∫ ∞
0 ∏i dl2

i ). Unfortunately
irrespective of the value chosen for ω ′, one can show (Hamber and Williams, 1999)
that the measure of Eq. (6.88) disagrees with the continuum measure of Eq. (2.18)
already to lowest order in the weak field expansion, and does not therefore describe
an acceptable lattice measure.

The lattice action for pure four-dimensional Euclidean gravity contains a cosmo-
logical constant and Regge scalar curvature term

Ilatt = λ0 ∑
h

Vh(l2) − k∑
h

δh(l2)Ah(l2) , (6.90)

with k = 1/(8πG), as well as possibly higher derivative terms. It only couples edges
which belong either to the same simplex or to a set of neighboring simplices, and
can therefore be considered as local, just like the continuum action, and leads to the
regularized lattice functional integral
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Zlatt =
∫

[d l2] e−λ0∑h Vh +k∑h δhAh , (6.91)

where, as customary, the lattice ultraviolet cutoff is set equal to one (i.e. all length
scales are measured in units of the lattice cutoff).

The lattice partition function Zlatt should then be compared to the continuum
Euclidean Feynman path integral of Eq. (2.34),

Zcont =
∫

[d gμν ] e−λ0
∫

dx
√

g+ 1
16πG

∫
dx
√

gR . (6.92)

Occasionally it can be convenient to include the λ0-term in the measure. For this
purpose one defines

dμ(l2) ≡ [d l2] e−λ0∑h Vh . (6.93)

It should be clear that this last expression represents a fairly non-trivial quantity,
both in view of the relative complexity of the expression for the volume of a sim-
plex, Eq. (6.5), and because of the generalized triangle inequality constraints already
implicit in [d l2]. But, like the continuum functional measure, it is certainly local,
to the extent that each edge length appears only in the expression for the volume
of those simplices which explicitly contain it. Furthermore, λ0 sets the overall scale
and can therefore be set equal to one without any loss of generality.

6.10 An Elementary Example

In the very simple case of one dimension (d = 1) one can work out explicitly a
number of details, and see how potential problems with the functional measure arise,
and how they are resolved.

In one dimension one discretizes the line by introducing N points, with lengths
ln associated with the edges, and periodic boundary conditions, lN+1 = l1. Here ln
is the distance between points n and n+1. The only surviving invariant term in one
dimension is then the overall length of a curve,

L(l) =
N

∑
n=1

ln , (6.94)

which corresponds to ∫
dx
√

g(x) =
∫

dx e(x) , (6.95)

[with g(x) ≡ g00(x)] in the continuum. Here e(x) is the “einbein”, and satisfies the
obvious constraint

√
g(x) = e(x) > 0. In this context the discrete action is unique,

preserving the geometric properties of the continuum definition. From the expres-
sion for the invariant line element, ds2 = gdx2, one associates g(x) with l2

n (and
therefore e(x) with ln). One can further take the view that distances can only be
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assigned between vertices which appear on some lattice in the ensemble, although
this is not strictly necessary, as distances can also be defined for locations that do
not coincide with any specific vertex.

The gravitational measure then contains an integration over the elementary lattice
degrees of freedom, the lattice edge lengths. For the edges one writes the lattice
integration measure as ∫

dμ [l] =
N

∏
n=1

∫ ∞

0
dl2

n lσn , (6.96)

where σ is a parameter interpolating between different local measures. The posi-
tivity of the edge lengths is all that remains of the triangle inequality constraints in
one dimension. The factor lσn plays a role analogous to the gσ/2 which appears for
continuum measures in the Euclidean functional integral.

The functional measure does not have compact support, and the cosmological
term (with a coefficient λ0 > 0) is therefore necessary to obtain convergence of the
functional integral, as can be seen for example from the expression for the average
edge length,

〈L(l)〉 = 〈
N

∑
n=1

ln〉 = Z −1
N

N

∏
n=1

∫ ∞

0
dl2

n lσn exp

(
−λ0

N

∑
n=1

ln

)
N

∑
n=1

ln =
2+σ
λ0

N

(6.97)
with

ZN(λ0) =
N

∏
n=1

∫ ∞

0
dl2

n lσn exp

(
−λ0

N

∑
n=1

ln

)
=

[
2 Γ (2+σ)
λ 2+σ

0

]N

. (6.98)

Similarly one finds for the fluctuation in the total length ΔL/L = 1/
√

(2+σ)N,
which requires σ >−2. Different choices for λ0 then correspond to trivial rescalings
of the average lattice spacing, l0 ≡ 〈l〉 = (2+σ)/λ0.

In the continuum, the action of Eq. (6.95) is invariant under continuous repara-
metrizations

x → x′(x) = x− ε(x) (6.99)

g(x) → g′(x′) =
(

dx
dx′

)2

g(x) = g(x)+2 g(x)
(

dε
dx

)
+O(ε2) , (6.100)

or equivalently
δg(x) ≡ g′(x′)−g(x) = 2g∂ε , (6.101)

and we have set ∂ ≡ d/dx. A gauge can then be chosen by imposing g′(x′) = 1,
which can be achieved by the choice of coordinates x′ =

∫
dx
√

g(x).
The discrete analog of the transformation rule is

δ ln = εn+1 − εn , (6.102)
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where the εn’s represent continuous gauge transformations defined on the lattice
vertices. In order for the edge lengths to remain positive, one needs to require
εn −εn+1 < ln, which is certainly satisfied for sufficiently small ε’s. The above con-
tinuous symmetry is an exact invariance of the lattice action of Eq. (6.94), since

δL =
N

∑
n=1

δ ln =
N

∑
n=1

εn+1 −
N

∑
n=1

εn = 0 , (6.103)

and we have used εN+1 = ε1. Moreover, it is the only local symmetry of the action
of Eq. (6.94).

The infinitesimal local invariance property defined in Eq. (6.102) formally se-
lects a unique measure over the edge lengths, corresponding to ∏n dln [σ = −1 in
Eq. (6.96)], as long as we ignore the effects of the lower limit of integration. On the
other hand for sufficiently large lattice diffeomorphisms, the lower limit of integra-
tion comes into play (since we require ln > 0 always) and the measure is no longer
invariant. Thus a measure

∫ ∞
−∞∏dln would not be acceptable on physical grounds;

it would violate the constraint
√

g > 0 or e > 0.
The same functional measure can be obtained from the following physical con-

sideration. Define the gauge invariant distance d between two configurations of edge
lengths {ln} and {l′n} by

d2(l, l′) ≡
[
L(l)−L′(l′)

]2 =

(
N

∑
n=1

ln −
N

∑
n′=1

l′n′

)2

=
N

∑
n=1

N

∑
n′=1

δ ln Mn,n′ δ ln′ ,

(6.104)
with Mn,n′ = 1. Since M is independent of ln and l′n′ , the ensuing measure is again
simply proportional to ∏dln. Note that the above metric over edge length deforma-
tions δ l is non-local.

In the continuum, the functional measure is usually determined by considering
the following (local) norm in function space,

||δg||2 =
∫

dx
√

g(x) δg(x) G(x) δg(x) , (6.105)

and diffeomorphism invariance would seem to require G(x) = 1/g2(x). The volume
element in function space is then an ultraviolet regulated version of∏x

√
G(x) dg(x)

=∏x dg(x)/g(x), which is the Misner measure in one dimension. Its naive discrete
counterpart would be ∏dln/ln, which is not invariant under the transformation of
Eq. (6.102) (it is invariant under δ ln = ln(εn+1 − εn), which is not an invariance of
the action).

The point of the discussion of the one-dimensional case is to bring to the surface
the several non-trivial issues that arise when defining a properly regulated version
of the continuum Feynman functional measure [dgμν ], and how they can be system-
atically resolved.
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6.11 Lattice Higher Derivative Terms

So far only the gravitational Einstein-Hilbert contribution to the lattice action and
the cosmological constant term have been considered. There are several motivations
for extending the discussion to lattice higher derivative terms, which would include
the fact that these terms a) might appear in the original microscopic action, or might
have to be included to cure the classical unboundedness problem of the Euclidean
Einstein-Hilbert action, b) that they are in any case generated by radiative correc-
tions, and c) that on a more formal level they may shed new light on the relationship
between the lattice and continuum expressions for curvature terms as well as quan-
tities such as the Riemann tensor on a hinge, Eq. (6.36).

For these reasons we will discuss here a generalization of the Regge gravity
equivalent of the Einstein action to curvature squared terms. When considering
contributions quadratic in the curvature there are overall six possibilities, listed in
Eq. (1.127). Among the two topological invariants, the Euler characteristic χ for
a simplicial decomposition may be obtained from a particular case of the general
formula for the analogue of the Lipschitz-Killing curvatures of smooth Riemannian
manifolds for piecewise flat spaces. The formula of (Cheeger, Müller and Schrader,
1984) reduces in four dimensions to

χ =∑
σ0

[
1− ∑

σ2⊃σ0

(0,2)− ∑
σ4⊃σ0

(0,4)+ ∑
σ4⊃σ2⊃σ0

(0,2)(2,4)
]

, (6.106)

where σ i denotes an i-dimensional simplex and (i, j) denotes the (internal) dihedral
angle at an i-dimensional face of a j-dimensional simplex. Thus, for example, (0,2)
is the angle at the vertex of a triangle and (2,4) is the dihedral angle at a triangle
in a 4-simplex (The normalization of the angles is such that the volume of a sphere
in any dimension is one; thus planar angles are divided by 2π , 3-dimensional solid
angles by 4π and so on).

Of course, as noted before, there is a much simpler formula for the Euler charac-
teristic of a simplicial complex

χ =
d

∑
i=0

(−1)iNi , (6.107)

where Ni is the number of simplices of dimension i. However, it may turn out to be
useful in quantum gravity calculations to have a formula for χ in terms of the angles,
and hence of the edge lengths, of the simplicial decomposition. These expression
are interesting and useful, but do not shed much light on how the other curvature
squared terms should be constructed.

In a piecewise linear space curvature is detected by going around elementary
loops which are dual to a (d −2)-dimensional subspace. The area of the loop itself
is not well defined, since any loop inside the d-dimensional simplices bordering the
hinge will give the same result for the deficit angle. On the other hand the hinge has
a content (the length of the edge in d = 3 and the area of the triangle in d = 4), and
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there is a natural volume associated with each hinge, defined by dividing the vol-
ume of each simplex touching the hinge into a contribution belonging to that hinge,
and other contributions belonging to the other hinges on that simplex (Hamber and
Williams, 1984). The contribution belonging to that simplex will be called dihe-
dral volume Vd (for an illustration, see Fig. 6.13). The volume Vh associated with
the hinge h is then naturally the sum of the dihedral volumes Vd belonging to each
simplex

Vh = ∑
d−simplices
meeting on h

Vd . (6.108)

The dihedral volume associated with each hinge in a simplex can be defined using
dual volumes, a barycentric subdivision, or some other natural way of dividing the
volume of a d-simplex into d(d + 1)/2 parts. If the theory has some reasonable
continuum limit, then the final results should not depend on the detailed choice of
volume type.

Fig. 6.13 Illustration of dual
volumes in two dimensions.
The vertices of the polygons
reside in the dual lattice. The
shaded region describes the
dual area associated with the
vertex 0.
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As mentioned previously, there is a well-established procedure for constructing a
dual lattice for any given lattice. This involves constructing polyhedral cells, known
in the literature as Voronoi polyhedra, around each vertex, in such a way that the cell
around each particular vertex contains all points which are nearer to that vertex than
to any other vertex. Thus the cell is made up from (d − 1)-dimensional subspaces
which are the perpendicular bisectors of the edges in the original lattice, (d − 2)-
dimensional subspaces which are orthogonal to the 2-dimensional subspaces of the
original lattice, and so on. General formulas for dual volumes are given in (Hamber
and Williams, 1986). In the case of the barycentric subdivision, the dihedral volume
is just 2/d(d +1) times the volume of the simplex. This leads one to conclude that
there is a natural area ACh associated with each hinge
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ACh =
Vh

A(d−2)
h

, (6.109)

obtained by dividing the volume per hinge (which is d-dimensional) by the volume
of the hinge (which is (d −2)-dimensional).

The next step is to find terms equivalent to the continuum expression of Eq.
(1.127), and the remainder of this section will be devoted to this problem. It may be
objected that since in Regge calculus where the curvature is restricted to the hinges
which are subspaces of dimension 2 less than that of the space considered, then
the curvature tensor involves δ -functions with support on the hinges, and so higher
powers of the curvature tensor are not defined. But this argument clearly does not
apply to the Euler characteristic and the Hirzebruch signature of Eq. (1.127), which
are both integrals of 4-forms. However it is a common procedure in lattice field
theory to take powers of fields defined at the same point, and there is no reason
why one should not consider similar terms in lattice gravity. Of course one would
like the expressions to correspond to the continuum ones as the edge lengths of the
simplicial lattice become smaller and smaller.

Since the curvature is restricted to the hinges, it is natural that expressions for
curvature integrals should involve sums over hinges as in Eq. (6.38). The curvature
tensor, which involves second derivatives of the metric, is of dimension L−2. There-
fore 1

4

∫
ddx

√
gRn is of dimension Ld−2n. Thus if one postulates that an R2-type term

will involve the square of Ahδh, which is of dimension L2(d−2), then one will need to
divide by some d-dimensional volume to obtain the correct dimension for the extra
term in the action. Now any hinge is surrounded by a number of d-dimensional sim-
plices, so the procedure of dividing by a d-dimensional volume seems ambiguous.
The crucial step is to realize that there is a unique d-dimensional volume associated
with each hinge, as described above.

If one regards the invariant volume element
√

gddx as being represented by Vh

of Eq. (6.108) when one performs the sum over hinges as in Eq. (6.38), then this
means that one may regard the scalar curvature R contribution as being represented
at each hinge by 2Ahδh/Vh

1
2

∫
ddx

√
g R → ∑

hinges h

Vh
Ahδh

Vh
≡ ∑

hinges h

Ahδh . (6.110)

It is then straightforward to see that a candidate curvature squared term is

∑
hinges h

Vh

(Ahδh

Vh

)2
≡ ∑

hinges h

Vh

( δh

ACh

)2
, (6.111)

where ACh was defined in Eq. (6.109). Since the expression in Eq. (6.111) vanishes
if and only if all deficit angles are zero, it is naturally identified with the continuum
Riemann squared term,
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1
4

∫
ddx

√
g RμνλσRμνλσ → ∑

hinges h

Vh

( δh

ACh

)2
. (6.112)

The above construction then leaves open the question of how to construct the re-
maining curvature squared terms in four dimensions. If one takes the form given
previously in Eq. (6.36) for the Riemann tensor on a hinge and contracts one ob-
tains

R(h) = 2
δh

ACh

, (6.113)

which agrees with the form used in the Regge action for R. But one also finds readily
that with this choice the higher derivative terms are all proportional to each other
(Hamber and Williams, 1986),

1
4 Rμνρσ (h)Rμνρσ (h) = 1

2 Rμν(h)Rμν(h) = 1
4 R(h)2 =

( δh

ACh

)2
. (6.114)

Furthermore if one uses the above expression for the Riemann tensor to evaluate the
contribution to the Euler characteristic on each hinge one obtains zero, and becomes
clear that at least in this case one needs cross terms involving contributions from
different hinges.

The next step is therefore to embark on a slightly more sophisticated approach,
and construct the full Riemann tensor by considering more than one hinge. Define
the Riemann tensor for a simplex s as a weighted sum of hinge contributions

[
Rμνρσ

]
s
= ∑

h⊂s

ωh

[ δ
AC

UμνUρσ

]
h

, (6.115)

where the ωh are dimensionless weights, to be determined later. After squaring one
obtains

[
RμνρσRμνρσ

]
s
= ∑

h,h′⊂s

ωhωh′

[ δ
AC

UμνUρσ

]
h

[ δ
AC

UμνUρσ
]

h′
. (6.116)

The question of the weights ωh introduced in Eq. (6.115) will now be addressed.
Consider the expression for the scalar curvature of a simplex defined as

[
R
]

s
= ∑

h⊂s

ωh

[
2
δ

AC

]
h

. (6.117)

It is clear from the formulae given above for the lattice curvature invariants (con-
structed in a simplex by summing over hinge contributions) that there is again a
natural volume associated with them : the sum of the volumes of the hinges in the
simplex

Vs = ∑
h⊂s

Vh , (6.118)
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where Vh is the volume around the hinge, as defined in Eq. (6.108). Summing the
scalar curvature over all simplices, one should recover Regge’s expression

∑
s

Vs

[
R
]

s
=∑

s
∑
h⊂s

ωh

[
2
δ

AC

]
h
=∑

h

δhAh , (6.119)

which implies

N2,4Vsωh
δh

ACh

≡ N2,4Vsωh
δhAh

Vh
= δhAh , (6.120)

where N2,4 is the number of simplices meeting on that hinge. Therefore the correct
choice for the weights is

ωh =
Vh

N2,4 Vs
=

Vh

N2,4∑h⊂s Vh
. (6.121)

Thus the weighting factors that reproduce Regge’s formula for the Einstein action
are just the volume fractions occupied by the various hinges in a simplex, which is
not surprising (of course the above formulae are not quite unique, since one might
have done the above construction of higher derivative terms by considering a point
p instead of a four-simplex s).

In particular the following form for the Weyl tensor squared was given in (Ham-
ber and Williams, 1986)

∫
ddx

√
g CμνλσCμνλσ ∼

2
3∑

s
Vs ∑

h,h′⊂s

εh,h′

(
ωh

[ δ
AC

]
h
−ωh′

[ δ
AC

]
h′

)2
, (6.122)

which introduces a short range coupling between deficit angles. The numerical fac-
tor εh,h′ is equal to 1 if the two hinges h,h′ have one edge in common and −2 if they
do not. Note that this particular interaction term has the property that it requires
neighboring deficit angles to have similar values, but it does not require them to be
small, which is a key property one would expect from the Weyl curvature squared
term.

In conclusion the formulas given above allow one to construct the remaining
curvature squared terms in four dimensions, and in particular to write, for example,
the lattice analog of the continuum curvature squared action of Eq. (1.137)

I =
∫

d4x
√

g
[
λ0 −k R−b RμνρσRμνρσ

+ 1
2 (a+4b) CμνρσCμνρσ

]
. (6.123)

To compare with the form of Eq. (1.137) use has been made of R2 = 3R2
μνρσ −6C2

and R2
μν = R2

μνρσ − 3
2C2, up to additive constant contributions. A special case cor-

responds to b = −a/4, which gives a pure R2
μνρσ contribution. The latter vanishes
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if and only if the curvature is locally zero, which is not true of any of the other
curvature squared terms.

6.12 Scalar Matter Fields

In the previous section we have discussed the construction and the invariance prop-
erties of a lattice action for pure gravity. Next a scalar field can be introduced as the
simplest type of dynamical matter that can be coupled invariantly to gravity. In the
continuum the scalar action for a single component field φ(x) is usually written as

I[g,φ ] = 1
2

∫
dx

√
g [gμν ∂μφ ∂νφ +(m2 +ξR)φ 2]+ . . . (6.124)

where the dots denote scalar self-interaction terms. Thus for example a scalar field
potential U(φ) could be added containing quartic field terms, whose effects could
be of interest in the context of cosmological models where spontaneously broken
symmetries play an important role. The dimensionless coupling ξ is arbitrary; two
special cases are the minimal (ξ = 0) and the conformal (ξ = 1

6 ) coupling case. In
the following we shall mostly consider the case ξ = 0. Also, it will be straightfor-
ward to extend later the treatment to the case of an Ns-component scalar field φ a

with a = 1, ...,Ns.
One way to proceed is to introduce a lattice scalar φi defined at the vertices of

the simplices. The corresponding lattice action can then be obtained through a pro-
cedure by which the original continuum metric is replaced by the induced lattice
metric, with the latter written in terms of squared edge lengths as in Eq. (6.3). For
illustrative purposes only the two-dimensional case will be worked out explicitly
here (Christ, Friedberg and Lee, 1982; Itzykson, 1983; Itzykson and Bander, 1983;
Jevicki and Ninomiya, 1985). The generalization to higher dimensions is straightfor-
ward, and in the end the final answer for the lattice scalar action is almost identical
to the two dimensional form. Furthermore in two dimensions it leads to a natural
dicretization of the bosonic string action (Polyakov, 1989).

In two dimensions the simplicial lattice is built out of triangles. For a given tri-
angle it will be convenient to use the notation of Fig. 6.14, which will display more
readily the symmetries of the resulting scalar lattice action. Here coordinates will
be picked in each triangle along the (1,2) and (1,3) directions.

To construct a lattice action for the scalar field, one performs in two dimensions
the replacement

gμν(x) −→ gi j(Δ)
detgμν(x) −→ detgi j(Δ)

gμν(x) −→ gi j(Δ)
∂μφ ∂νφ −→ Δiφ Δ jφ , (6.125)
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Fig. 6.14 Labeling of edges
and fields for the construction
of the scalar field action.
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(6.126)

detgi j(Δ) = 1
4

[
2(l2

1 l2
2 + l2

2 l2
3 + l2

3 l2
1)− l4

1 − l4
2 − l4

3

]
≡ 4A2

Δ (6.127)

gi j(Δ) =
1

detg(Δ)

(
l2
2

1
2 (l2

1 − l2
2 − l2

3)
1
2 (l2

1 − l2
2 − l2

3) l2
3

)
. (6.128)

The scalar field derivatives get replaced as usual by finite differences

∂μφ −→ (Δμφ)i = φi+μ −φi , (6.129)

where the index μ labels the possible directions in which one can move away from
a vertex within a given triangle. Then

Δiφ Δ jφ =
(

(φ2 −φ1)2 (φ2 −φ1)(φ3 −φ1)
(φ2 −φ1)(φ3 −φ1) (φ3 −φ1)2

)
. (6.130)

Then the discrete scalar field action takes the form

I = 1
16∑

Δ

1
AΔ

[
l2
1(φ2 −φ1)(φ3 −φ1)+ l2

2(φ3 −φ2)(φ1 −φ2)+ l2
3(φ1 −φ3)(φ2 −φ3)

]
,

(6.131)
where the sum is over all triangles on the lattice. Using the identity

(φi −φ j)(φi −φk) = 1
2

[
(φi −φ j)2 +(φi −φk)2 − (φ j −φk)2] , (6.132)

one obtains after some re-arrangements the slightly more appealing expression for
the action of a massless scalar field (Itzykson and Bander, 1983)

I(l2,φ) = 1
2 ∑

<i j>
Ai j

(φi −φ j

li j

)2
. (6.133)
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Ai j is the dual (Voronoi) area associated with the edge i j, and the symbol < i j >
denotes a sum over nearest neighbor lattice vertices. It is immediate to generalize
the action of Eq. (6.133) to higher dimensions, with the two-dimensional Voronoi
volumes replaced by their higher dimensional analogs, leading to

I(l2,φ) = 1
2 ∑

<i j>
V (d)

i j

(φi −φ j

li j

)2
. (6.134)

Here V (d)
i j is the dual (Voronoi) volume associated with the edge i j, and the sum is

over all links on the lattice.
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Fig. 6.15 Dual area associated with the edge l1 (shaded area), and the corresponding dual link h1.

In two dimensions, in terms of the edge length li j and the dual edge length
hi j, connecting neighboring vertices in the dual lattice, one has Ai j = 1

2 hi jli j (see
Fig. 6.15). Other choices for the lattice subdivision will lead to a similar formula
for the lattice action, with the Voronoi dual volumes replaced by their appropriate
counterparts for the new lattice. Explicitly, for an edge of length l1 the dihedral dual
volume contribution is given by

Al1 =
l2
1(l2

2 + l2
3 − l2

1)
16A123

+
l2
1(l2

4 + l2
5 − l2

1)
16A234

= 1
2 l1h1 , (6.135)

with h1 is the length of the edge dual to l1.
On the other hand the barycentric dihedral area for the same edge would be

simply (see Fig 6.16)
Al1 = (A123 +A234)/3 . (6.136)

It is well known that one of the disadvantages of the Voronoi construction is the lack
of positivity of the dual volumes, as pointed out in (Hamber and Williams, 1984).
Thus some of the weights appearing in Eq. (6.133) can be negative for such an
action. For the barycentric subdivision this problem does not arise, as the areas Ai j
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are always positive due to the enforcement of the triangle inequalities. Thus from
a practical point of view the barycentric volume subdivision is the simplest to deal
with.
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Fig. 6.16 More dual areas appearing in the scalar field action.

The scalar action of Eq. (6.134) has a very natural form: it involves the squared
difference of fields at neighboring points divided by their invariant distances (φi −
φ j)/li j, weighted by the appropriate space-time volume element V (d)

i j associated
with the lattice link i j. This suggests that one could just as well define the scalar
fields on the vertices of the dual lattice, and write

I(l2,φ) = 1
2 ∑

<rs>
V (d)

rs

(φr −φs

lrs

)2
, (6.137)

with lrs the length of the edge connecting the dual lattice vertices r and s, and con-

sequently V (d)
rs the spacetime volume fraction associated with the dual lattice edge

rs. One would expect both forms to be equivalent in the continuum limit.
Continuing on with the two-dimensional case, mass and curvature terms such as

the ones appearing in Eq. (6.124) can be added to the action, so that the total scalar
lattice action contribution becomes

I = 1
2 ∑

<i j>
Ai j

(φi −φ j

li j

)2
+ 1

2∑
i

Ai (m2 +ξRi)φ 2
i . (6.138)

The term containing the discrete analog of the scalar curvature involves the quantity

AiRi ≡∑
h⊃i

δh ∼ √
gR . (6.139)

In the above expression for the scalar action, Ai j is the area associated with the
edge li j, while Ai is associated with the site i. Again there is more than one way to
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define the volume element Ai, (Hamber and Williams, 1986), but under reasonable
assumptions, such as positivity, one expects to get equivalent results in the lattice
continuum limit, if it exists.

In higher dimensions one would use

I = 1
2 ∑

<i j>
V (d)

i j

(φi −φ j

li j

)2
+ 1

2∑
i

V (d)
i (m2 +ξRi)φ 2

i , (6.140)

where the term containing the discrete analog of the scalar curvature involves

V (d)
i Ri ≡∑

h⊃i

δhV (d−2)
h ∼√

gR . (6.141)

In the expression for the scalar action, V (d)
i j is the (dual) volume associated with the

edge li j, while V (d)
i is the (dual) volume associated with the site i.

The lattice scalar action contains a mass parameter m, which has to be tuned to
a small value in lattice units to achieve the lattice continuum limit for scalar corre-
lations. The agreement between different lattice actions in the smooth limit can be
shown explicitly in the lattice weak field expansion. But in general, as is already
the case for the purely gravitational action, the correspondence between lattice and
continuum operators is true classically only up to higher derivative corrections. But
such higher derivative corrections in the scalar field action are expected to be irrel-
evant when looking at the large distance limit, and they will not be considered here
any further.

As an extreme case one could even consider a situation in which the matter action
by itself is the only action contribution, without any additional term for the gravi-
tational field, but still with a non-trivial gravitational measure; integration over the
scalar field would then give rise to an effective non-local gravitational action.

Finally let us take notice here of the fact that if an Ns-component scalar field is
coupled to gravity, the power σ appearing in the gravitational functional measure
has to be modified to include an additional factor of ∏x(

√
g)Ns/2. The additional

measure factor insures that the integral

∫
∏

x

[
dφ (

√
g)

Ns
2

]
exp

(
− 1

2 m2
∫ √

gφ 2
)

=
(

2π
m2

)NsV
2

, (6.142)

evaluates to a constant. Thus for large mass m the scalar field completely decouples,
leaving only the dynamics of the pure gravitational field.

The quadratic scalar field action of Eq. (6.134) can be written in terms of a matrix
Δi j(l2)

I(l2,φ) = − 1
2 ∑

<i j>
φiΔi j(l2)φ j . (6.143)

The matrix Δi j(l2) can then be regarded as a lattice version of the continuum scalar
Laplacian,
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Δ(g) =
1
√

g
∂μ

√
ggμν∂ν , (6.144)

for a given background metric. This then allows one to define the massless lat-
tice scalar propagator as the inverse of the above matrix, Gi j(l2) = Δ−1

i j (l2). The
continuum scalar propagator for a finite scalar mass m and in a given background
geometry, evaluated for large separations d(x,y) � m−1,

G(x,y|g) = <x | 1
−Δ(g) + m2 |y>

∼
d(x,y)→∞

d−(d−1)/2(x,y) exp
{
−md(x,y)

}
, (6.145)

involves the geodesic distance d(x,y) between points x and y,

d(x,y|g) =
∫ τ(y)

τ(x)
dτ
√

gμν(τ)
dxμ

dτ
dxν

dτ
. (6.146)

Analogously, one can define the discrete massive lattice scalar propagator

Gi j(l2) =
[

1
−Δ(l2) + m2

]
i j

∼
d(i, j)→∞

d−(d−1)/2(i, j) exp
{
−md(i, j)

}
, (6.147)

where d(i, j) is the lattice geodesic distance between vertex i and vertex j. The
inverse can be computed, for example, via the recursive expansion (valid for m2 > 0
to avoid the zero eigenvalue of the Laplacian)

1
−Δ(l2) + m2 =

1
m2

∞

∑
n=0

(
1

m2 Δ(l2)
)n

. (6.148)

The large distance behavior of the Euclidean (flat space) massive free field propaga-
tor in d dimensions is known in the statistical mechanics literature as the Ornstein-
Zernike result.

As a consequence, the lattice propagator Gi j(l2) can be used to estimate the lat-
tice geodesic distance d(i, j|l2) between any two lattice points i and j in a fixed
background lattice geometry (provided again that their mutual separation is such
that d(i, j) � m−1).

d(i, j) ∼
d(i, j)→∞

− 1
m

lnGi j(l2) . (6.149)
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6.13 Invariance Properties of the Scalar Action

In the very simple case of one dimension (d = 1) one can work out the details to any
degree of accuracy, and see how potential problems arise and how they are resolved.
Introduce a scalar field φn defined on the sites, with action

I(φ) = 1
2

N

∑
n=1

V1(ln)
(
φn+1 −φn

ln

)2

+ 1
2 ω

N

∑
n=1

V0(ln) φ 2
n , (6.150)

with φ(N + 1) = φ(1). It is natural in one dimension to take for the “volume per
edge” V1(ln) = ln, and for the “volume per site” V0(ln) = (ln + ln−1)/2. Here ω
plays the role of a mass for the scalar field, ω = m2. In addition one needs a term

λ L(l) = λ0

N

∑
n=1

ln , (6.151)

which is necessary in order to make the dln integration convergent at large l. Varying
the action with respect to φn gives

2
ln−1 + ln

[
φn+1 −φn

ln
− φn −φn−1

ln−1

]
= ω φn . (6.152)

This is the discrete analog of the equation g−1/2∂g−1/2∂φ = ωφ . The spectrum of
the Laplacian of Eq. (6.152) corresponds to Ω ≡−ω > 0. Variation with respect to
ln gives instead

1
2l2

n
(φn+1 −φn)2 = λ0 +

1
4
ω (φ 2

n +φ 2
n+1) . (6.153)

For ω = 0 it suggests the well-known interpretation of the fields φn as coordinates
in embedding space. In the following we shall only consider the case ω = 0, corre-
sponding to a massless scalar field.

It is instructive to look at the invariance properties of the scalar field action under
the continuous lattice diffeomorphisms defined in Eq. (6.102). Physically, these lo-
cal gauge transformations, which act on the vertices, correspond to re-assignments
of edge lengths which leave the distance between two fixed points unchanged. In
the simplest case, only two neighboring edge lengths are changed, leaving the total
distance between the end points unchanged. On physical grounds one would like to
maintain such an invariance also in the case of coupling to matter, just as is done in
the continuum.

The scalar nature of the field requires that in the continuum under a change of
coordinates x → x′,

φ ′(x′) = φ(x) , (6.154)
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where x and x′ refer to the same physical point in the two coordinate systems. On
the lattice, as discussed previously, diffeomorphisms move the points around, and at
the same vertex labeled by n we expect

φn → φ ′
n ≈ φn +

(
φn+1 −φn

ln

)
εn . (6.155)

One can determine the exact form of the change needed in φn by requiring that
the local variation of the scalar field action be zero. Solving the resulting quadratic
equation for Δφn one obtains a rather unwieldy expression, given to lowest order by

Δφn =
εn

2

[
φn −φn−1

ln−1
+
φn+1 −φn

ln

]

+
ε2

n

8

[
−φn −φn−1

l2
n−1

+
φn+1 −φn

l2
n

+
φn+1 −2φn +φn−1

ln−1ln

]

+O(ε3
n ) , (6.156)

and which is indeed of the expected form (as well as symmetric in the vertices n−1
and n + 1). For fields which are reasonably smooth, this correction is suppressed if
|φn+1 −φn|/ln � 1. On the other hand it should be clear that the measure dφn is no
longer manifestly invariant, due to the rather involved transformation property of
the scalar field.

The full functional integral for N sites then reads

ZN =
N

∏
n=1

∫ ∞

0
dl2

n lσn

∫ ∞

−∞
dφn exp

{
−λ0

N

∑
n=1

ln − 1
2

N

∑
n=1

1
ln

(φn+1 −φn)2

}
.

(6.157)
In the absence of the scalar field one just has the ZN(λ0) of Eq. (6.98). The trivial
translational mode in φ can be eliminated for example by setting ∑N

n=1 φn = 0.
It is possible to further constrain the measure over the edge lengths by examining

some local averages. Under a rescaling of the edge lengths ln → α ln one can derive
the following identity for ZN

ZN(λ0,z) = λ−(5/2+σ)N
0 z−N/2ZN(1,1) , (6.158)

where we have replaced the coefficient 1/2 of the scalar kinetic term by z/2. It
follows then that

〈l〉 ≡ 1
N
〈

N

∑
n=1

ln〉 = (
5
2

+σ) λ−1
0 (6.159)

and
1
N
〈

N

∑
n=1

1
ln

(φn+1 −φn)2〉 = 1 . (6.160)
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Without loss of generality we can fix the average edge length to be equal to one,
〈l〉 = 1, which then requires λ0 = 5

2 +σ . In order for the model to be meaningful,
the measure parameter is constrained by σ > −5/2, i.e. the measure over the edges
cannot be too singular.

6.14 Lattice Fermions, Tetrads and Spin Rotations

On a simplicial manifold spinor fieldsψs and ψ̄s are most naturally placed at the cen-
ter of each d-simplex s. In the following we will restrict our discussion for simplic-
ity to the four-dimensional case, and largely follow the original discussion given in
(Drummond, 1986). As in the continuum (see for example Veltman, 1975), the con-
struction of a suitable lattice action requires the introduction of the Lorentz group
and its associated tetrad fields ea

μ(s) within each simplex labeled by s.
Within each simplex one can choose a representation of the Dirac gamma matri-

ces, denoted here by γμ(s), such that in the local coordinate basis

{γμ(s),γν(s)} = 2gμν(s) . (6.161)

These in turn are related to the ordinary Dirac gamma matrices γa, which obey

{
γa,γb

}
= 2ηab (6.162)

by

γμ(s) = eμa (s)γa , (6.163)

so that within each simplex the tetrads ea
μ(s) satisfy the usual relation

eμa (s) eνb (s) ηab = gμν(s) . (6.164)

In general the tetrads are not fixed uniquely within a simplex, being invariant under
the local Lorentz transformations discussed earlier in Sect. 6.4.

In the continuum the action for a massless spinor field is given by

I =
∫

dx
√

g ψ̄(x)γμ Dμ ψ(x) , (6.165)

where Dμ = ∂μ + 1
2ωμabσab is the spinorial covariant derivative containing the spin

connection ωμab. It will be convenient to first consider only two neighboring sim-
plices s1 and s2, covered by a common coordinate system xμ . When the two tetrads
in s1 and s2 are made to coincide, one can then use a common set of gamma matrices
γμ within both simplices. Then in the absence of torsion the covariant derivative Dμ
in Eq. (6.165) reduces to just an ordinary derivative. The fermion field ψ(x) within
the two simplices can then be suitably interpolated, by writing for example
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ψ(x) = θ(n · x)ψ(s1) + [1−θ(n · x)]ψ(s2) , (6.166)

where nμ is the common normal to the face f (s1,s2) shared by the simplices s1 and
s2, and chosen to point into s1. Inserting the expression for ψ(x) from Eq. (6.166)
into Eq. (6.165) and applying the divergence theorem (or equivalently using the fact
that the derivative of a step function only has support at the origin) one obtains

I = 1
2 V (d−1)( f ) (ψ̄1 + ψ̄2)γμ nμ (ψ1 −ψ2) , (6.167)

where V (d−1)( f ) represents the volume of the (d − 1)-dimensional common inter-
face f , a tetrahedron in four dimensions. But the contributions from the diagonal
terms containing ψ̄1ψ1 and ψ̄2ψ2 vanish when summed over the faces of an n-
simplex, by virtue of the useful identity

n+1

∑
p=1

V ( f (p))n(p)
μ = 0 , (6.168)

where V ( f (p)) are the volumes of the p faces of a given simplex, and n(p)
μ the inward

pointing unit normals to those faces.
So far the above partial expression for the lattice spinor action was obtained by

assuming that the tetrads eμa (s1) and eμa (s2) in the two simplices coincide. If they do
not, then they will be related by a matrix R(s2,s1) such that

eμa (s2) = Rμ
ν(s2,s1) eνa (s1) , (6.169)

and whose spinorial representation S was given previously for example in Eq. (6.24).
Such a matrix S(s2,s1) is now needed to additionally parallel transport the spinor ψ
from a simplex s1 to the neighboring simplex s2.

The invariant lattice action for a massless spinor takes therefore the form

I = 1
2 ∑

faces f(ss′)
V [ f (s,s′)] ψ̄s S[R(s,s′)]γμ(s′)nμ(s,s′)ψs′ , (6.170)

where the sum extends over all interfaces f (s,s′) connecting one simplex s to a
neighboring simplex s′. As shown in (Drummond, 1986) it can be further extended
to include a dynamical torsion field.

The above spinorial action can be considered analogous to the lattice Fermion
action proposed originally in (Wilson, 1973) for non-Abelian gauge theories. It is
possible that it still suffers from the Fermion doubling problem, although the situa-
tion is less clear for a dynamical lattice (Lehto, Nielsen and Ninomiya, 1987; Christ
and Lee, 1982).
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6.15 Gauge Fields

In the continuum a locally gauge invariant action coupling an SU(N) gauge field to
gravity is

Igauge = − 1
4g2

∫
d4x

√
ggμλ gνσ Fa

μν Fa
λσ , (6.171)

with Fa
μν = ∇μAa

ν −∇νAa
μ +g f abcAb

μAc
ν and a = 1 . . .N2 −1.

On the lattice one can follow a procedure analogous to Wilson’s construction
on a hypercubic lattice, with the main difference that the lattice is now simplicial.
Given a link i j on the lattice one assigns group element Ui j, with each U an N ×N
unitary matrix with determinant equal to one, and such that Uji = U−1

i j . Then with
each triangle (plaquettes) Δ labeled by the three vertices i jk one associates a product
of three U matrices,

UΔ ≡ Ui jk = Ui j Ujk Uki . (6.172)

The discrete action is then given by (Christ Friedberg and Lee, 1982)

Igauge = − 1
g2 ∑

Δ
VΔ

c

A2
Δ

Re [tr(1 − UΔ )] , (6.173)

with 1 the unit matrix, VΔ the 4-volume associated with the plaquettes Δ , AΔ the
area of the triangle (plaquettes) Δ , and c a numerical constant of order one. If one
denotes by τΔ = cVΔ/AΔ the d − 2-volume of the dual to the plaquette Δ , then the
quantity

τΔ
AΔ

= c
VΔ
A2
Δ

, (6.174)

is simply the ratio of this dual volume to the plaquettes area. The edge lengths li j

and therefore the metric enter the lattice gauge field action through these volumes
and areas.

One important property of the gauge lattice action of Eq. (6.173) is its local
invariance under gauge rotations gi defined at the lattice vertices, and for which Ui j

on the link i j transforms as

Ui j → gi Ui j g−1
j . (6.175)

These leave the product

tr
[
(gi Ui j g−1

j )(g j Ujk g−1
k )(gk Uki g−1

i

]
= tr

[
Ui j Ujk Uki

]
, (6.176)

and therefore the action invariant. One can further show that the discrete action of
Eq. (6.173) goes over in the lattice continuum limit to the correct Yang-Mills action
for manifolds that are smooth and close to flat.
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6.16 Lattice Gravitino

Supergravity in four dimensions naturally contains a spin-3/2 gravitino, the super-
symmetric partner of the graviton. In the case of N = 1 supergravity these are
the only two degrees of freedom present. The action contains, beside the Einstein-
Hilbert action for the gravitational degrees of freedom, the Rarita-Schwinger action
for the gravitino, as well as a number of additional terms (and fields) required to
make the action manifestly supersymmetric off-shell. The idea in formulating su-
pergravity on a lattice is to try to construct a lattice action with enough symmetry
(local gauge and supersymmetry) so that when one eventually takes a lattice con-
tinuum limit one gets back all the desired symmetries of the original continuum
theory.

Consider a spin-3/2 Majorana fermion in four dimensions, which correspond to
self-conjugate Dirac spinors ψμ , where the Lorentz index μ = 1 . . .4. In flat space
the action for such a field is given by the Rarita-Schwinger term

LRS = − 1
2 ε

αβγδ ψT
α C γ5 γβ ∂γ ψδ . (6.177)

Locally the action is invariant under the gauge transformation

ψμ(x) → ψμ(x) + ∂μ ε(x) , (6.178)

where ε(x) is an arbitrary local Majorana spinor.
The construction of a suitable lattice action for the spin-3/2 particle proceeds in

a way that is rather similar to what one does in the spin-1/2 case. On a simplicial
manifold the Rarita-Schwinger spinor fields ψμ(s) and ψ̄μ(s) are most naturally
placed at the center of each d-simplex s. Like the spin-1/2 case, the construction
of a suitable lattice action requires the introduction of the Lorentz group and its
associated vierbein fields ea

μ(s) within each simplex labeled by s.
Within each simplex one can choose a representation of the Dirac gamma matri-

ces, denoted here by γμ(s), such that in the local coordinate basis {γμ(s),γν(s)} =
2gμν(s), with

{
γa,γb

}
= 2ηab and γμ(s) = eμa (s)γa. Then within each simplex

the vierbeins ea
μ(s) satisfy the usual relation eμa (s) eνb (s) ηab = gμν(s). In general

the vierbeins are not fixed uniquely within a simplex, being invariant under the local
Lorentz transformations discussed earlier in Sect. 6.4.

Now in the presence of gravity the continuum action for a massless spin-3/2 field
is given by

I3/2 = − 1
2

∫
dx
√

g εμνλσ ψ̄μ(x)γ5 γν Dλ ψσ (x) , (6.179)

with the Rarita-Schwinger field subject to the Majorana constraint ψμ = Cψ̄μ(x)T .
Here the covariant derivative is defined as

Dνψρ = ∂νψρ −Γ σ
νρ ψσ + 1

2 ωνabσabψρ , (6.180)
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and involves both the standard affine connection Γ σ
νρ , as well as the vierbein con-

nection

ων ab = 1
2 [e μ

a (∂ν ebμ −∂μ ebν)+ e ρ
a e σ

b (∂σ ecρ)ec
ν ] ,

− (a ↔ b) (6.181)

with Dirac spin matrices σab = 1
2i [γa,γb], and εμνρσ the usual Levi-Civita tensor,

such that εμνρσ = −gεμνρσ .
Next one considers just two neighboring simplices s1 and s2, covered by a com-

mon coordinate system xμ . When the two vierbeins in s1 and s2 are made to coincide,
one can then use a common set of gamma matrices γμ within both simplices. Then
(in the absence of torsion) the covariant derivative Dμ in Eq. (6.179) reduces to just
an ordinary derivative. The fermion field ψμ(x) within the two simplices can then be
suitably interpolated, and one obtains a lattice action expression very similar to the
spinor case. One can then relax the condition that the vierbeins eμa (s1) and eμa (s2)
in the two simplices coincide. If they do not, then they will be related by a matrix
R(s2,s1) such that

eμa (s2) = Rμ
ν(s2,s1) eνa (s1) , (6.182)

and whose spinorial representation S was given previously in Eq. (6.24). But the
new ingredient in the spin-3/2 case is that, besides requiring a spin rotation ma-
trix S(s2,s1), now one also needs the matrix Rν

μ(s,s′) describing the corresponding
parallel transport of the Lorentz vector ψμ(s) from a simplex s1 to the neighboring
simplex s2.

An invariant lattice action for a massless spin-3/2 particle takes therefore the
form

I = − 1
2 ∑

faces f(ss′)
V [ f (s,s′)]εμνλσ ψ̄μ(s)S[R(s,s′)]γν(s′)nλ (s,s′)Rρ

σ (s,s′)ψρ(s′)

(6.183)
with

ψ̄μ(s)S[R(s,s′)]γν(s′)ψρ(s′) ≡ ψ̄μ α(s)Sαβ [R(s,s′)]γ β
ν γ(s′)ψ

γ
ρ(s′) , (6.184)

and the sum ∑faces f(ss′) extends over all interfaces f (s,s′) connecting one simplex
s to a neighboring simplex s′. When compared to the spin-1/2 case, the most im-
portant modification is the second rotation matrix Rν

μ(s,s′), which describes the
parallel transport of the fermionic vector ψμ from the site s to the site s′, which is
required in order to obtain locally a Lorentz scalar contribution to the action.

In supergravity one more term is needed in the action. In order to achieve local
supersymmetry invariance, one needs an additional quartic fermion self-interaction
term, given in Eq. (1.176), and which is of the form (Ferrara, Freedman and van
Nieuwenhuizen, 1976)

L4 = − 1
32κ2√g

(εταβνε γδμ
τ + εταμνε γδβ

τ − ετβμνε γδα
τ )

×(ψ̄αγμψβ )(ψ̄γ γνψδ ) , (6.185)
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here with κ2 ≡ 4πG. Then one can show that the combined Lagrangian (containing
the gravity part, the gravitino action and the four-fermion term) is invariant, up to
terms of order (ψ)5, under the simultaneous transformations

δea
μ = iκ ε̄ γaψμ

δgμν = iκ ε̄ [γμ ψν + γν ψμ ]

δψμ = κ−1Dμ ε+ 1
4 iκ (2 ψ̄μγaψb + ψ̄aγμψb)σab ε ,

(6.186)

where ε(x) in an arbitrary Majorana spinor. The lattice action will in general not
preserve all of these symmetries, but one can hope that they will be restored in the
quantum continuum limit. The difficulties one encounters in transcribing supersym-
metry on a lattice are discussed, for example, in the recent review (Feo, 2003).

6.17 Alternate Discrete Formulations

The simplicial lattice formulation offers a natural way of representing gravitational
degrees in a discrete framework by employing inherently geometric concepts such
as areas, volumes and angles. It is possible though to formulate quantum gravity
on a flat hypercubic lattice, in analogy to Wilson’s discrete formulation for gauge
theories, by putting the connection centerstage. In this new set of theories the natural
variables are then lattice versions of the spin connection and the vierbein. Also,
because the spin connection variables appear from the very beginning, it is much
easier to incorporate fermions later. Some lattice models have been based on the
pure Einstein theory (Smolin, 1979; Das, Kaku and Townsend, 1979; Mannion and
Taylor, 1981; Caracciolo and Pelissetto, 1988), while others attempt to incorporate
higher derivative terms (Tomboulis, 1984; Kondo, 1984).

Difficult arise when attempting to put quantum gravity on a flat hypercubic lattice
a la Wilson, since it is not entirely clear what the gravity analogue of the Yang-Mills
connection is. In continuum formulations invariant under the Poincaré or de Sitter
group the action is invariant under a local extension of the Lorentz transformations,
but not under local translations (Kibble, 1961). Local translations are replaced by
diffeomorphisms which have a different nature. One set of lattice discretizations
starts from the action of (MacDowell and Mansouri, 1977a,b; West, 1978) whose
local invariance group is the de Sitter group Spin(4), the covering group of SO(4).
In the lattice formulation of (Smolin, 1979; Das, Kaku and Townsend, 1979) the
lattice variables are gauge potentials eaμ(n) and ωμab(n) defined on lattice sites n,
generating local Spin(4) matrix transformations with the aid of the de Sitter gen-
erators Pa and Mab. The resulting lattice action reduces classically to the Einstein
action with cosmological term in first order form in the limit of the lattice spacing
a → 0; to demonstrate the quantum equivalence one needs an additional zero torsion
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constraint. In the end the issue of lattice diffeomorphism invariance remains some-
what open, with the hope that such an invariance will be restored in the full quantum
theory.

As an example, we will discuss here the approach of (Mannion and Taylor, 1981)
which relies on a four-dimensional lattice discretization of the Einstein-Cartan the-
ory with gauge group SL(2,C), and does not initially require the presence of a cos-
mological constant, as would be the case if one had started out with the de Sitter
group Spin(4). On a lattice of spacing a with vertices labelled by n and directions
by μ one relates the relative orientations of nearest-neighbor local SL(2,C) frames
by

Uμ(n) =
[
U−μ(n+μ)

]−1
= exp[ iBμ(n)] , (6.187)

with Bμ = 1
2 aBab

μ (n)Jba, Jba being the set of six generators of SL(2,C), the covering
group of the Lorentz group SO(3,1), usually taken to be

σab =
1
2i

[γa,γb] , (6.188)

with γa’s the Dirac gamma matrices. The local lattice curvature is then obtained in
the usual way by computing the product of four parallel transport matrices around
an elementary lattice square,

Uμ(n)Uν(n+μ)U−μ(n+μ+ν)U−ν(n+ν) , (6.189)

giving in the limit of small a by the Baker-Hausdorff formula the value exp[iaRμν
(n)], where Rμν is the Riemann tensor defined in terms of the spin connection Bμ

Rμν = ∂μBν −∂νBμ + i[Bμ ,Bν ] . (6.190)

If one were to write for the action the usual Wilson lattice gauge form

∑
n,μ,ν

tr[Uμ(n)Uν(n+μ)U−μ(n+μ+ν)U−ν(n+ν) ] , (6.191)

then one would obtain a curvature squared action proportional to ∼
∫

R ab
μν Rμν

ab in-
stead of the Einstein-Hilbert one. One needs therefore to introduce lattice vierbeins
e b
μ (n) on the sites by defining the matrices

Eμ(n) = ae a
μ γa . (6.192)

Then a suitable lattice action is given by

I =
i

16κ2 ∑
n,μ,ν ,λ ,σ

tr[γ5 Uμ(n)Uν(n+μ)U−μ(n+μ+ν)U−ν(n+ν)Eσ (n)Eλ (n) ] .

(6.193)
The latter is invariant under local SL(2,C) transformations Λ(n) defined on the lat-
tice vertices
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Uμ →Λ(n)Uμ(n)Λ−1(n+μ) , (6.194)

for which the curvature transforms as

Uμ(n)Uν(n+μ)U−μ(n+μ+ν)U−ν(n+ν)

→ Λ(n)Uμ(n)Uν(n+μ)U−μ(n+μ+ν)U−ν(n+ν)Λ−1(n) , (6.195)

and the vierbein matrices as

Eμ(n) →Λ(n)Eμ(n)Λ−1(n) . (6.196)

SinceΛ(n) commutes with γ5, the expression in Eq. (6.193) is invariant. The metric
is then obtained as usual by

gμν(n) = 1
4 tr[Eμ(n)Eν(n)] . (6.197)

From the expression for the lattice curvature R ab
μν given above if follows immedi-

ately that the lattice action in the continuum limit becomes

I =
a4

4κ2 ∑
n
εμνλσ εabcd R ab

μν (n)e c
λ (n)e d

σ (n) + O(a6) , (6.198)

which is the Einstein action in Cartan form

I =
1

4κ2

∫
d4xεμνλσ εabcd R ab

μν e c
λ e d

σ , (6.199)

with the parameter κ identified with the Planck length. One can add more terms to
the action; in this theory a cosmological term can be represented by

λ0∑
n
εμνλσ tr[γ5 Eμ(n)Eν(n)Eσ (n)Eλ (n) ] . (6.200)

Both Eqs. (6.193) and (6.200) are locally SL(2,C) invariant. The functional integral
is then given by

Z =
∫
∏
n,μ

dBμ(n)∏
n,σ

dEσ (n) exp
{
−I(B,E)

}
, (6.201)

and from it one can then compute suitable quantum averages. Here dBμ(n) is the
Haar measure for SL(2,C); it is less clear how to choose the integration measure
over the Eσ ’s, and how it should suitably constrained, which obscures the issue of
diffeomorphism invariance in this theory.

In these theories it is possible to formulate curvature squared terms as well. In
general for a hypercubic lattices the formulation of R2-type terms in four dimensions
involves constraints between the connections and the tetrads, which are a bit difficult
to handle. Also there is no simple way of writing down topological invariants, which
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are either related to the Einstein action (in two dimensions), or are candidates for
extra terms to be included in the action. A flat hypercubic lattice action has been
written with higher derivative terms which appears to be reflection positive but has a
very cumbersome form. These difficulties need not be present on a simplicial lattice
(except that it is not known how to write an exact expression for the Hirzebruch
signature in lattice terms).

There is another way of discretizing gravity, still using largely geometric con-
cepts as is done in the Regge theory. In the dynamical triangulation approach (David,
1985) one fixes the edge lengths to unity, and varies the incidence matrix. As a result
the volume of each simplex is fixed at

Vd =
1
d!

√
d +1

2d , (6.202)

and all dihedral angles are given by the constant value

cosθd =
1
d

, (6.203)

so that for example in four dimensions one has θd = arccos(1/4) ≈ 75.5o. Local
curvatures are then determined by how many simplices ns(h) meet on a given hinge,

δ (h) = 2π−ns(h)θd . (6.204)

The action contribution from a single hinge is therefore from Eq. (6.38) δ (h)A(h) =
1
4

√
3[2π − ns(h)θd ] with ns a positive integer. In this model the local curvatures

are inherently discrete, and there is no equivalent lattice notion of continuous dif-
feomorphisms, or for that matter of continuous local deformations corresponding,
for example, to shear waves. Indeed it seems rather problematic in this approach to
make contact with the continuum theory, as the model does not contain a metric,
at least not in an explicit way. This fact has some consequences for the functional
measure, since there is really no useful criterion which could be used to restrict it to
the form suggested by invariance arguments, as detailed earlier in the discussion of
the continuum functional integral for gravity. The hope is that for lattices made of
some large number of simplices one would recover some sort of discrete version of
diffeomorphism invariance. The aims of the dynamical triangulation approach have
recently been reviewed in (Ambjørn, Jurkiewicz and Loll, 2005), and we refer the
reader to further references therein. A recent discussion of attempts at simulating
the Lorentzian case, which in principle leads to complex weights in the functional
integral which are known to be difficult to handle correctly in numerical simulations
(since the latter generally rely on positive probabilities) can be found in (Loll, 2007).

Another lattice approach closely related to the Regge theory described in this
review is based on the so-called spin foam models, which have their origin in an
observation found in (Ponzano and Regge, 1968) relating the geometry of simplicial
lattices to the asymptotics of Racah angular momentum addition coefficients. The
original Regge-Ponzano concepts were later developed into a spin model for gravity
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(Hasslacher and Perry, 1981) based on quantum spin variables attached to lattice
links. In these models representations of SU(2) label edges. One natural underlying
framework for such theories is the canonical 3 + 1 approach to quantum gravity,
wherein quantum spin variables are naturally related to SU(2) spin connections.
Extensions to four dimensions have been attempted, and we refer the reader to the
recent review of spin foam models in (Perez, 2003).

6.18 Lattice Invariance versus Continuum Invariance

In simplicial lattice gravity, and for that matter, in any theory of lattice gravity,
one could wonder what the effects might be due to the restrictions on the metric
arising from the generalized triangle inequalities of Eq. (6.74). Effectively these
imply a soft cutoff at large edge lengths, and possibly, for scale invariant measures,
a second cutoff at small edge lengths, in addition to the cosmological constant term
of Eq. (6.43), which exponentially suppresses large volumes.2

On the lattice one would ideally like to preserve all of the symmetries of the
continuum theory, including some version of diffeomorphism invariance. Since a
truly diffeomorphism invariant cutoff does not seem to exists, there might be diffi-
culties in implementing such a program. The hope therefore is that the lattice theory
has enough symmetry built into it from the start to fully recover the symmetries of
the original theory in some suitable lattice continuum limit. One example of such a
mechanism is the demonstrated restoration of rotational invariance in many exam-
ples of ordinary lattice field theories in the vicinity of ultraviolet fixed points. What
is meant by having enough symmetry built into the lattice theory is the following:
that the unwanted terms arising from the lattice regularization can in some sense be
considered small because they lead to vanishing contributions in the limit of small
momenta and large distances.

For gauge theories the proof that small violations of gauge invariance do not
affect the long distance properties of the theory, which is therefore still described
by a locally gauge invariant effective action, goes as follows (Foerster, Nielsen and
Ninomiya, 1980; Parisi, 1992). One first assumes that under local gauge transfor-
mations of the gauge fields Aμ(x)

(Aμ)Ω = Ω−1 Aμ Ω + Ω−1 ∂μ Ω , (6.205)

the action can be decomposed as a gauge invariant part S0(A) , plus a small non-
invariant contribution δS(A)

S(A) = S0(A) + δS(A) =
∫

dx [L0[A(x)] + δL [A(x)] ] . (6.206)

2 In the continuum such delicate field cutoff do not arise, since in a perturbative calculation the
integration domain for the metric perturbation hμν is generally extended from minus infinity to
plus infinity, leading in the usual way to straightforward Gaussian integrations, without regards to
field constraints such as detg > 0.
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Furthermore it will be assumed that the functional measure [dA] is also locally gauge
invariant, so that one has

[dAΩ ] = [dA] S0(AΩ ) = S0(A) . (6.207)

Here and in the following a lattice regularization will be implicit, in order to make
various functional manipulations well defined. In addition, the fact that the gauge
theory is compact will play a crucial role, as the proof generally does not go through
if the gauge variables are not compact. The compactness of the gauge group implies
for the measure over the gauge parameters

∫
[dΩ ] = finite , (6.208)

and furthermore by invariance [dΩ ] = [d(ΣΩ)] with Σ an arbitrary group element.
Thus both [dA] and [dΩ ] will be assumed to be the Haar measure over the group.
Under a gauge transformation for the fields one has

S(AΩ−1) = S0(A) + δS(AΩ−1) , (6.209)

since the first term is assumed to be invariant. As a consequence only the term δS(A)
causes gauge breaking in Z.

Using perturbation theory in δS(A) one can compute the vacuum expectation
value of the gauge invariant quantity F(A)

〈F(A)〉 =
∫

[dA] e−S(A) F(A) /
∫

[dA] e−S(A) . (6.210)

For small δS(A) it is given by the expansion

〈F(A)〉 = 〈F(A)〉0 −
∫

dx 〈δL (x)F(A)〉0

+ 1
2

∫
dxdx′ 〈δL (x)δL (x′)F(A)〉c

0 + . . . (6.211)

Gauge invariance of the lowest order action S0(A) and measure [dA], used in the
average 〈 . . .〉0, implies that the first correction on the r.h.s. vanishes. The second
order correction only gives a contribution when x = x′, which is given by

1
2

∫
dx〈 [δL (x)]2 F(A) 〉c

0 = 1
2

∫
dx〈 δI (x)F(A) 〉c

0 , (6.212)

where δI (x) is some gauge invariant operator. One concludes that a small gauge
breaking term leads to a correction which can be described by the insertion of a suit-
able gauge-invariant operator. Such effects could then be re-absorbed into a suitable
redefinition of the bare coupling constants of the theory.
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To actually show this, it will be useful to introduce an artificial integration
∫
[dΩ ]

over the gauge group parameters, by writing for the Euclidean partition function

Z =
∫

[dA]e−S(A)

= const.
∫

[dΩ ] [dA]e−S(A)

= const.
∫

[dΩ ] [dAΩ ]e−S(A)

= const.
∫

[dΩ ] [dA]e−S(AΩ−1 ) . (6.213)

To take into account the effect of the Ω variables one first integrates over them, and
then deduces from this procedure an effective action for the A fields,

Seff(A) = S0(A) + δSinv(A) . (6.214)

The new effective action is made out of the original invariant contribution S0(A),
plus a correction from δSinv(A), which is obtained from

exp{−δSinv(A)} =
∫

[dΩ ] exp{−S(AΩ−1)} . (6.215)

In general there is no guarantee that the additional contribution δSinv(A) will be
local, i.e. of the form

δSinv(A) =
∫

dx δLinv[A(x)] . (6.216)

But the δSinv(A) term will indeed be local provided certain conditions are met, i.e.
that the correlations in the Ω variables will be sufficiently short ranged. Then at
distances large compared to the correlation length ξΩ of the Ω variables it is pos-
sible to expand δLinv[A(x)] in terms of locally gauge invariant terms of the type
tr(Fμν)2, tr(∇σFμν)2, etc. At sufficiently large distances one expects only terms
with the lowest dimensions to be important, the leading one being tr(Fμν)2, whose
effect will be just to renormalize the bare gauge coupling.

Clearly the argument for the decoupling of the Ω variables only works if there
are long range correlations in the unperturbed gauge variables Aμ (so that the
two correlation lengths can be compared to each other, and thus the notion of
“short range” makes sense) which implies g � 1 in an asymptotically free gauge
theory, or in general that one is close to an ultraviolet fixed point of the gauge
theory.

In summary, the expectation is that if the non-invariant correction is small there
are no significant changes compared to the invariant theory, which is a rather re-
markable result. On the other hand if the non-invariant correction is large then a
phase transition appears and one moves into a qualitatively new phase. The argu-
ment is nice because of its simplicity, but still leaves one major issue open: namely
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what is meant exactly by a small non-invariant perturbation, an aspect that will pre-
sumably have to be addressed individually case by case.

How do these considerations apply to gravity? There are two major issues that
stand in the way of taking over the result for gauge theories. the first one is the
fact that the gauge group of continuum gravity, the diffeomorphism group, is not
compact. On the lattice the situation is less clear, due to the triangle inequality con-
straints of Eq. (6.74), and the fact that in some lattice formulations one can take
some lattice variables to be compact [see for example the lattice theory described in
Eqs. (6.193) and (6.200)].

In the case of lattice gravity one would again decompose the lattice action into
an invariant part S0(g), plus a small non-invariant contribution δS(g)

S(g) = S0(g) + δS(g) =
∫

dx
[
L0[gμν(x)] + δL [gμν(x)]

]
, (6.217)

and one would need to assume again that the functional measure [dg] is also invari-
ant. The volume of the diffemorphism group will of course cancel out when one
computes vacuum averages, as in

〈F(g)〉 =
∫

[dg] e−S(g) F(g) /
∫

[dg] e−S(g) . (6.218)

Proceeding in analogy to the gauge theory case, one finds, after integrating over
the variables Ω of Eq. (1.11), that the effective action is made out of the original
invariant contribution S0(g), plus the correction from δSinv(g),

exp{−δSinv(g)} =
∫

[dΩ ] exp{−S(gΩ−1)} . (6.219)

The non-compact nature of the group might cause problems in the above integral
over gauge parameters Ω . It is therefore more appropriate to look instead at the
physically more relevant difference in action between two metrics g and g′

exp
{
−δSinv(g) + δSinv(g′)

}
=

∫
[dΩ ] exp{−S(gΩ−1)}∫
[dΩ ′] exp

{
−S(g′Ω ′−1)

} . (6.220)

As in the gauge case, there is in general no guarantee that the additional contribution
δSinv(g) will be local, i.e. of the form

δSinv(g) =
∫

dx δLinv[gμν(x)] , (6.221)

but δSinv(g) will indeed be local provided the correlations in the Ω variables will
be sufficiently short ranged.

Then at distances large compared to the correlation length ξΩ of the Ω variables
it should be possible to expand δLinv[gμν(x)] in terms of invariant terms of the type√

g,
√

gR,
√

gR2
μν , etc. At sufficiently large distances only terms with the lowest

dimensions are expected to be important, the leading one being
√

gR, whose effect
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will be to renormalize the bare Newton coupling G. Finally, as in the gauge theory
case, the argument for the decoupling of the Ω variables only works if there are long
range correlations in the unperturbed gauge variables gμν , which implies that one is
close to a gravitational ultraviolet fixed point.



Chapter 7
Analytical Lattice Expansion Methods

7.1 Motivation

The following sections will discuss a number of instances where the lattice theory
of quantum gravity can be investigated analytically, subject to some necessary sim-
plifying assumptions.

The first problem deals with the lattice weak field expansion about a flat back-
ground. It will be shown that in this case the relevant modes are the lattice analogs
of transverse-traceless deformations.

The second problem involves the strong coupling (large G) expansion, where the
weight factor in the path integral is expanded in powers of 1/G. The domain of
validity of this expansion can be regarded as somewhat complementary to the weak
field limit.

The third case to be discussed is what happens in lattice gravity in the limit of
large dimensions d, which formally is similar in some ways to the large-N expansion
discussed previously in this review. In this limit one can derive exact estimates for
the phase transition point and for the scaling dimensions.

7.2 Lattice Weak Field Expansion and Transverse-Traceless
Modes

One of the simplest possible problems that can be treated in quantum Regge cal-
culus is the analysis of small fluctuations about a fixed flat Euclidean simplicial
background (Roček and Williams, 1981; 1984). In this case one finds that the lat-
tice graviton propagator in a De Donder-like gauge is precisely analogous to the
continuum expression.

To compute an expansion of the lattice Regge action

225
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IR ∝ ∑
hinges

δ (l) A(l) , (7.1)

to quadratic order in the lattice weak fields one needs first and second variations
with respect to the edge lengths. In four dimensions the first variation of the lattice
Regge action is given by

δ IR ∝ ∑
hinges

δ ·
(
∑

edges

∂A
∂ l

δ l

)
, (7.2)

since Regge has shown that the term involving the variation of the deficit angle
δ vanishes (here the variation symbol should obviously not be confused with the
deficit angle). Furthermore in flat space all the deficit angles vanish, so that the
second variation is given simply by

δ 2IR ∝ ∑
hinges

(
∑

edges

∂δ
∂ l

δ l

)
·
(
∑

edges

∂A
∂ l

δ l

)
. (7.3)

Next a specific lattice structure needs to be chosen as a background geometry. A
natural choice is to use a flat hypercubic lattice, made rigid by introducing face
diagonals, body diagonals and hyperbody diagonals, which results into a subdivi-
sion of each hypercube into d! (here 4!=24) simplices. This subdivision is shown in
Fig. 7.1.

Fig. 7.1 A four-dimensional
hypercube divided up into
four-simplices.

By a simple translation, the whole lattice can then be constructed from this one
elemental hypercube. Consequently there will be 2d −1 = 15 lattice fields per point,
corresponding to all the edge lengths emanating in the positive lattice directions
from any one vertex. Note that the number of degrees per lattice point is slightly
larger than what one would have in the continuum, where the metric gμν(x) has
d(d + 1)/2 = 10 degrees of freedom per spacetime point x in four dimensions
(perturbatively, the physical degrees of freedom in the continuum are much less:
1
2 d(d +1)−1−d− (d−1) = 1

2 d(d−3), for a traceless symmetric tensor, and after
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imposing gauge conditions). Thus in four dimensions each lattice hypercube will
contain 4 body principals, 6 face diagonals, 4 body diagonals and one hyperbody
diagonal. Within a given hypercube it is quite convenient to label the coordinates
of the vertices using a binary notation, so that the four body principals with co-
ordinates (1,0,0,0) . . .(0,0,0,1) will be labeled by integers 1,2,4,8, and similarly
for the other vertices (thus for example the vertex (0,1,1,0), corresponding to a
face diagonal along the second and third Cartesian direction, will be labeled by the
integer 6).

For a given lattice of fixed connectivity, the edge lengths are then allowed to
fluctuate around an equilibrium value l0

i

li = l0
i (1+ εi) . (7.4)

In the case of the hypercubic lattice subdivided into simplices, the unperturbed edge
lengths l0

i take on the values 1,
√

2,
√

3,2, depending on edge type. The second
variation of the action then reduces to a quadratic form in the 15-component small
fluctuation vector εn

δ 2IR ∝ ∑
mn

εT
m Mmn εn . (7.5)

Here M is the small fluctuation matrix, whose inverse determines the free lattice
graviton propagator, and the indices m and n label the sites on the lattice. But just as
in the continuum, M has zero eigenvalues and cannot therefore be inverted until one
supplies an appropriate gauge condition. Specifically, one finds that the matrix M in
four dimensions has four zero modes corresponding to periodic translations of the
lattice, and a fifth zero mode corresponding to periodic fluctuations in the hyperbody
diagonal. After block-diagonalization it is found that 4 modes completely decouple
and are constrained to vanish, and thus the remaining degrees of freedom are 10,
as in the continuum, where the metric has 10 independent components. The wrong
sign for the conformal mode, which is present in the continuum, is also reproduced
by the lattice propagator.

Due to the locality of the original lattice action, the matrix M can be considered
local as well, since it only couples edge fluctuations on neighboring lattice sites. In
Fourier space one can write for each of the fifteen displacements ε i+ j+k+l

n , defined
at the vertex of the hypercube with labels (i, j,k, l),

ε i+ j+k+l
n = (ω1)i(ω2) j(ω4)k(ω8)l ε0

n , (7.6)

with ω1 = eik1 , ω2 = eik2 , ω4 = eik3 and ω8 = eik4 (it will be convenient in the
following to use binary notation for ω and ε , but the regular notation for ki). Here
and in the following we have set the lattice spacing a equal to one.

In this basis the matrix M reduces to a block-diagonal form, with entries given
by the 15×15 dimensional matrices

Mω =

⎛
⎝A10 B 0

B† 18I4 0
0 0 0

⎞
⎠ , (7.7)
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where A10 is a 10×10 dimensional matrix, B a 10×4 dimensional matrix and I4 is
the 4×4 dimensional identity matrix. Explicitly the above cited authors find

(Mω)1,1 = 6

(Mω)1,2 = ω1(ω4 +ω8)+ ω̄2(ω̄4 + ω̄8)
(Mω)1,3 = 2+2ω̄2

(Mω)1,6 = 2ω1 +2ω̄2ω̄4

(Mω)1,7 = ω̄2 + ω̄4

(Mω)1,14 = 0

(Mω)3,3 = 4

(Mω)3,5 = ω2 + ω̄4

(Mω)3,12 = 0

(Mω)3,7 = 1+ ω̄4

(Mω)3,13 = 0 , (7.8)

where the remaining non-vanishing matrix elements can be obtained either by per-
muting appropriate indices, or by complex conjugation.

Besides one obvious zero eigenvalue, corresponding to a periodic fluctuation
in ε15, the matrix Mω exhibits four additional zero modes corresponding to the
four-parameter group of translations in flat space. An explicit form for these eigen-
modes is

εi = (1−ωi)xi

εi+ j = 1
2 (1−ωiω j)(xi + x j)

εi+ j+k = 1
3 (1−ωiω jωk)(xi + x j + xk)

εi+ j+k+l = 1
4 (1−ωiω jωkωl)(xi + x j + xk + xl) ,

(7.9)

with i, j,k, l = 1,2,4,8 and i �= j �= k �= l.
The next step consists in transforming the lattice action Mω into a form more suit-

able for comparison with the continuum action. To this end a set of transformations
are performed sequentially, the first of which involves the matrix

S =

⎛
⎝ I10 0 0
− 1

18 B† I4 0
0 0 1

⎞
⎠ , (7.10)

which rotates Mω into

M′
ω = S† Mω S =

⎛
⎝A10 − 1

18 BB† 0 0
0 18 I4 0
0 0 0

⎞
⎠ , (7.11)
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thus completely decoupling the (body diagonal) fluctuations ε7,ε11,ε13,ε14. These
in turn can now be integrated out, as they appear in the action with no ω (i.e. deriva-
tive) term. As a result the number of dynamical degrees of freedom has been reduced
from 15 to 10, the same number as in the continuum.

The remaining dynamics is thus encoded in the 10×10 dimensional matrix Lω =
A10 − 1

18 BB†. By a second rotation, here affected by the matrix T , it can finally be
brought into the form

L̃ω = T † Lω T =
[
8− (Σ + Σ̄)

]( 1
2β 0
0 I6

)
− C†C , (7.12)

with the matrix β given by

β = 1
2

⎛
⎜⎝

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎞
⎟⎠ . (7.13)

The other matrix C appearing in the second term is given by

C =

⎛
⎜⎝

f1 0 0 0 f̃2 f̃4 0 f̃8 0 0
0 f2 0 0 f̃1 0 f̃4 0 f̃8 0
0 0 f4 0 0 f̃1 f̃2 0 0 f̃8

0 0 0 f8 0 0 0 f̃1 f̃2 f̃4

⎞
⎟⎠ , (7.14)

with fi ≡ ωi − 1 and f̃i ≡ 1− ω̄i. Furthermore Σ = ∑iωi, and for small momenta
one finds

8− (Σ + Σ̄) = 8−
4

∑
i=1

(eiki + e−iki) ∼ k2 +O(k4) , (7.15)

which shows that the surviving terms in the lattice action are indeed quadratic in k.
The rotation matrix T involved in the last transformation is given by

T =
(
Ω4β 0

0 I6

)(
I4 0
Ω6γ I6

)
, (7.16)

with Ω4 = diag(ω1,ω2,ω4,ω8) and Ω6 = diag(ω1ω2,ω1ω4,ω2ω4,ω1ω8,ω2ω8,
ω4ω8), and

γ = − 1
2

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 1
0 1 0 1
1 0 0 1
0 1 1 0
1 0 1 0
1 1 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (7.17)

At this point one is finally ready for a comparison with the continuum result, namely
with the Lagrangian for pure gravity in the weak field limit as given in Eq. (1.7)
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Lsym = − 1
2∂λ hλμ ∂μhνν + 1

2∂λ hλμ ∂νhνμ

− 1
4∂λ hμν ∂λhμν + 1

4∂λ hμμ ∂λhνν . (7.18)

The latter can be conveniently split into two parts, as was done already in Eq. (1.67),
as follows

Lsym = − 1
2∂λ hαβVαβμν ∂λhμν + 1

2C2 (7.19)

with
Vαβμν = 1

2 ηαμηβν −
1
4 ηαβημν , (7.20)

or as a matrix,

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4 − 1

4 − 1
4 − 1

4 0 0 0 0 0 0
− 1

4
1
4 − 1

4 − 1
4 0 0 0 0 0 0

− 1
4 − 1

4
1
4 − 1

4 0 0 0 0 0 0
− 1

4 − 1
4 − 1

4
1
4 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7.21)

with metric components 11,22,33,44,12,13,14,23,24,34 more conveniently la-
beled sequentially by integers 1 . . .10, and the gauge fixing term Cμ given by the
term in Eq. (1.68)

Cμ = ∂νhμν − 1
2∂μhνν . (7.22)

The above expression is still not quite the same as the lattice weak field action, but
a simple transformation to trace reversed variables h̄μν ≡ hμν − 1

2δμνhλλ leads to

Lsym = 1
2 kλ h̄iVi jkλ h̄ j − 1

2 h̄i(C†C)i jh̄ j , (7.23)

with the matrix V given by

Vi j =
(

1
2β 0
0 I6

)
, (7.24)

with k = i∂ . Now β is the same as the matrix in Eq. (7.13), and C is nothing but
the small k limit of the matrix by the same name in Eq. (7.14), for which one needs
to set ωi − 1 � i ki. The resulting continuum expression is then recognized to be
identical to the lattice weak field results of Eq. (7.12).

This concludes the outline of the proof of equivalence of the lattice weak field
expansion of the Regge action to the corresponding continuum expression. To sum-
marize, there are several ingredients to this proof, the first of which is a relatively
straightforward weak field expansion of both actions, and the second of which is the
correct identification of the lattice degrees of freedom εi(n) with their continuum
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counterparts hμν(x), which involves a sequence of non-trivial ω-dependent trans-
formations, expressed by the matrices S and T . One more important aspect of the
process is the disappearance of redundant lattice variables (five in the case of the
hypercubic lattice), whose dynamics turns out to be trivial, in the sense that the
associated degrees of freedom are non-propagating.

It is easy to see that the sequence of transformations expressed by the matrices
S of Eq. (7.10) and T of Eq. (7.16), and therefore ultimately relating the lattice
fluctuations εi(n) to their continuum counterparts hμν(x), just reproduces the ex-
pected relationship between lattice and continuum fields. On the one hand one has
gμν = ημν + hμν , where ημν is the flat metric. At the same time one has from
Eq. (6.3) for each simplex within a given hypercube

gi j = 1
2 (l2

0i + l2
0 j − l2

i j) . (7.25)

By inserting li = l0
i (1 + εi), with l0

i = 1,
√

2,
√

3,2 for the body principal (i =
1,2,4,8), face diagonal (i = 3,5,6,9,10,12), body diagonal (i = 7,11,13,14) and
hyperbody diagonal (i = 15), respectively, one gets for example (1+ε1)2 = 1+h11,
(1+ ε3)2 = 1+ 1

2 (h11 +h22)+h12 etc., which in turn can then be solved for the ε’s
in terms of the hμν ’s. One would then obtain

ε1 = −1+[1 +h11]1/2

ε3 = −1+[1 + 1
2 (h11 +h22)+h12)]1/2

ε7 = −1+[1 + 1
3 (h11 +h22 +h33)

+ 2
3 (h12 +h23 +h13)]1/2

ε15 = −1+[1 + 1
4 (h11 +h22 +h33 +h44)

+ 3
4 (h12 +h13 +h14 +h23 +h24 +h34)]1/2 ,

(7.26)

and so on for the other edges, by suitably permuting indices. These relations can
then be expanded out for weak h, giving for example

ε1 = 1
2 h11 +O(h2)

ε3 = 1
2 h12 + 1

4 (h11 +h22)+O(h2)

ε7 = 1
6 (h12 +h13 +h23)+ 1

6 (h23 +h13 +h12)

+ 1
6 (h11 +h22 +h33)+O(h2) ,

(7.27)

and so on. The above correspondence between the ε’s and the hμν are the underlying
reason for the existence of the rotation matrices S and T of Eqs. (7.10) and (7.16),
with one further important amendment: on the hypercubic lattice four edges within a
given simplex are assigned to one vertex, while the remaining six edges are assigned
to neighboring vertices, and require therefore a translation back to the base vertex of
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the hypercube, using the result of Eq. (7.6). This explains the additional factors of
ω appearing in the rotation matrices S and T . More importantly, one would expect
such a combined rotation to be independent of what particular term in the lattice
action one is considering, implying that it can be used to relate other lattice gravity
contributions, such as the cosmological term and higher derivative terms, to their
continuum counterparts.

The lattice action has a local gauge invariance, whose explicit form in the weak
field limit was given in Eq. (7.9). This local invariance has d parameters in d di-
mensions and describes lattice diffeomorphisms. In the quantum theory, such local
gauge invariance implies the existence of Ward identities for n-point functions. The
choice of gauge in Eq. (7.22) is of course not the only possible one. Another pos-
sible choice is the so-called vacuum gauge for which in the continuum hik,k = 0,
h00 = h0i = 0. Expressed in terms of the lattice small fluctuation variables such a
condition reads in momentum space

e8 = 0

e9 = 1
2 ω8 e1

e10 = 1
2 ω8 e2

e12 = 1
2 ω8 e4

e11 = 1
3 (1+ω8)e3 − 1

6 (1−ω8)(ω2e1 +ω1e2)

e13 = 1
3 (1+ω8)e5 − 1

6 (1−ω8)(ω4e1 +ω1e4)

e14 = 1
3 (1+ω8)e6 − 1

6 (1−ω8)(ω2e4 +ω4e2) . (7.28)

One can then evaluate the lattice action in such a gauge and again compare to the
continuum expression. First one expands again the ei’s in terms of the hi j’s, as given
in Eq. (7.26), and then expand out the ω’s in powers of k. If one then sets k4 = 0 one
finds that the resulting contribution can be re-written as the sum of two parts (Ham-
ber and Williams, 2005a,b), the first part being the transverse-traceless contribution

1
4 k2 Tr [ 3h[P 3hP− 1

2 PTr (P 3h)]] = 1
4 k2 h̄T T

i j (k) hT T
i j (k) (7.29)

h̄T T
i j hT T

i j ≡ Tr [ 3h[P 3hP− 1
2 PTr (P 3h)]] , (7.30)

with Pi j = δi j − kik j/k2 acting on the three-metric 3hi j, and the second part arising
due to the trace component of the metric

− 1
4 k2 Tr [PTr (P 3h)PTr (P 3h)] = k2 h̄T

i j(k) hT
i j(k) , (7.31)

with hT = 1
2 PTr (P 3h). In the vacuum gauge hik,k = 0, hii = 0, h0i = 0 one can

further solve for the metric components h12, h13, h23 and h33 in terms of the two
remaining degrees of freedom, h11 and h22,

h12 = − 1
2k1k2

(h11k2
1 +h22k2

2 +h11k2
3 +h22k2

3)
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h13 = − 1
2k1k3

(h11k2
1 −h22k2

2 −h11k2
3 −h22k2

3)

h23 = − 1
2k2k3

(−h11k2
1 +h22k2

2 −h11k2
3 −h22k2

3)

h33 = −h11 −h22 , (7.32)

and show that the second (trace) part vanishes.
The above manipulations underscore the fact that the lattice action, in the weak

field limit and for small momenta, only propagates transverse-traceless modes, as
for linearized gravity in the continuum. They can be used to derive an expression
for the lattice analog of the result given in (Kuchař, 1970) and (Hartle, 1984) for
the vacuum wave functional of linearized gravity, which gives therefore a suitable
starting point for a lattice candidate for the same functional.

A cosmological constant term can be analyzed in the lattice weak field expansion
along similar lines. According to Eqs. (6.41) or (6.42) it is given on the lattice by
the total space-time volume, so that the action contribution is given by

IV = λ0 ∑
edges h

Vh , (7.33)

where Vh is defined to be the volume associated with an edge h. The latter is obtained
by subdividing the volume of each four-simplex into contributions associated with
each hinge (here via a barycentric subdivision), and then adding up the contributions
from each four-simplex touched by the given hinge. Expanding out in the small edge
fluctuations one has

IV ∼ ∑
n

(ε(n)
1 + ε(n)

2 + ε(n)
4 + ε(n)

8 )+ 1
2 ∑

mn,i j
ε(m) T

i M(m,n)
i, j ε(n)

j . (7.34)

One needs to be careful since the expansion of εi in terms of hμν contains terms
quadratic in hμν , so that there are additional diagonal contributions to the small
fluctuation matrix Lω ,

ε1+ε2+ε4+ε8 = 1
2 (h11+h22+h33+h44)− 1

8 (h2
11+h2

22+h2
33+h2

44)+ · · · . (7.35)

These additional contributions are required for the volume term to reduce to the
continuum form of Eq. (1.55) for small momenta and to quadratic order in the weak
field expansion.

Next the same set of rotations needs to be performed as for the Einstein term,
in order to go from the lattice variables εi to the continuum variables h̄μν . After
the combined Sω - and Tω -matrix rotations of Eqs. (7.10) and (7.16) one obtains for
the small fluctuation matrix Lω arising from the gauge-fixed lattice Einstein-Regge
term [see Eq. (7.12)]

Lω = − 1
2 k2 V, (7.36)
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with the matrix V given by Eq. (7.21). Since the lattice cosmological term can also
be expressed in terms of the matrix V ,

√
g = 1+ 1

2 hμμ − 1
2 hαβVαβμνhμν +O(h3) , (7.37)

one finds, as in the continuum, for the combined Einstein and cosmological constant
terms

λ0 (1+ 1
2 hμμ)+ 1

2 ·
k
2

hαβVαβμν (∂ 2 +
2λ0

k
) hμν +O(h3) , (7.38)

corresponding in this gauge to the exchange of a particle of “mass” μ2 = −2λ0/k,
in agreement with the continuum weak field result of Eq. (1.79). As for the Regge-
Einstein term, there are higher order lattice corrections to the cosmological constant
term of O(k) (which are completely absent in the continuum, since no derivatives
are present there). These should be irrelevant in the lattice continuum limit.

7.3 Lattice Diffeomorphism Invariance

The appearance of exact zero modes in the weak field expansion of the lattice grav-
itational action is not specific to an expansion about flat space. One can consider
the same procedure for variations about spaces which are classical solutions for the
gravitational action with a cosmological constant term as in Eq. (6.43), such as the
regular or irregular tessellations of the d-sphere. In principle it is possible to look
at a general d-dimensional case, but here, for illustrative purposes, only two dimen-
sions will be considered, in which case on is looking, in the simplest case, at the
regular tessellations of the two-sphere. In the following the discussion will focus
therefore at first on edge length fluctuations about the regular tetrahedron (with 6
edges), octahedron (12 edges), and icosahedron (30 edges). One could consider ir-
regular tessellations as well, but this will not be pursued here, although one believes
the results to have general validity for lattices sufficiently dense with points (Hartle,
1985; Hamber and Williams, 1997).

In two dimensions the lattice action for pure gravity is

I(l2) = λ∑
h

Vh − 2k∑
h

δh + 4a∑
h

δ 2
h

Ah
, (7.39)

with the two-dimensional volume element equated here to the dual area surrounding
a vertex Vh = Ah, and the local curvature given by Rh = 2 δh/Ah. In the limit of
small fluctuations around a smooth background, the above lattice action describes
the continuum action

I[g] =
∫

d2x
√

g
[
λ − k R+aR2] . (7.40)
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For a manifold of fixed topology the term proportional to k can be dropped, since
∑h δh = 2πχ , where χ is the Euler characteristic. The classical solutions have con-
stant curvature with R = ±

√
λ/a (there being no real solutions for λ < 0). The

curvature-squared leads to some non-trivial interactions in two dimensions, although
the resulting theory is not unitary. This is not important here, as we only plan to ad-
dress for now the issue of lattice diffeomorphism invariance.

Fig. 7.2 Tetrahedral tessella-
tion of the two-sphere, with
arbitrary edge length assign-
ments.
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After expanding about the equilateral configuration, the action at the stationary
point reduces to

I = λ 8π
√

a/λ +a 8π/
√

a/λ = 16π
√

a λ , (7.41)

independently of the tessellation considered. Vanishing of the linear terms in the
small fluctuation expansion gives for the average edge length

l0 =
[
cπ2 (4a/λ )

]1/4
, (7.42)

with c = 16/3,4/3,16/75 for the tetrahedron, octahedron and icosahedron, respec-
tively. For fluctuations about the classical solution for a tetrahedral tessellation of S2

[see Fig. (7.2)] the small edge length fluctuation matrix gives rise to the following
coefficients

ε2
12 → 16

√
aλ (54−6

√
3π+5π2)/81π

ε12 ε13 → 16
√

aλ π/9

ε12 ε15 → 64
√

aλ (−27+3
√

3π+2π2)/81π ,

(7.43)

with the remaining coefficients being determined by symmetry. The small fluctua-
tion matrix is therefore given by
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8π
√

aλ
9

⎛
⎜⎜⎜⎜⎜⎜⎝

μ 1 1 1 1 2−μ
1 μ 1 2−μ 1 1
1 1 μ 1 2−μ 1
1 2−μ 1 μ 1 1
1 1 2−μ 1 μ 1

2−μ 1 1 1 1 μ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (7.44)

where μ = 2(5π2 − 6
√

3π + 54)/9π2 ≈ 1.5919. (the λ/a dependence has disap-
peared since the couplings a and λ only appear in the dimensionless combination√

aλ ). The eigenvalues of the above matrix (apart from the constants in front of it)
are 0 (with multiplicity 2), 2(μ−1) (with multiplicity 3) and 6 (with multiplicity 1).
The zero modes correspond to flat directions, for which deformations of the edge
lengths leave the lattice geometry unchanged. Their explicit form in the weak field
limit was given in Eq. (7.9).

Fig. 7.3 Octahedral tessella-
tion of the two-sphere, with
arbitrary edge length assign-
ments.
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For the octahedron [see Fig. (7.3)] one obtains instead the following coefficients
of the small fluctuation matrix

ε2
12 → 2

√
aλ (216−12

√
3π+5π2)/27π

ε12 ε13 → 8
√

aλ (−27−3
√

3π+2π2)/27π
ε12 ε14 → 4

√
aλ (54+π2)/9π

ε12 ε34 → 8
√

aλ (−54+3
√

3π+π2)/27π
ε12 ε46 → 4

√
aλ (108+12

√
3π+π2)/27π ,

(7.45)

again with the remaining coefficients being determined by symmetry. Up to a com-
mon factor of 2

√
aλ/27π , the eigenvalues of the 12× 12 small fluctuation matrix

are given by 36π2 (with multiplicity 1), 972 (with multiplicity 2), and 8(3
√

3−π)2

(with multiplicity 3), and zero (with multiplicity 6).
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Fig. 7.4 Icosahedral tessella-
tion of the two-sphere, with
arbitrary edge length assign-
ments.
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Finally, for the icosahedron [shown in Fig. (7.4)] one computes the following
coefficients of the small fluctuation matrix

ε2
12 → 16

√
aλ (270−6

√
3π+π2)/135π

ε12 ε13 → 16
√

aλ (−675−30
√

3π+8π2)/675π
ε12 ε14 → 16

√
aλ (270−6

√
3+π2)/135π

ε12 ε34 → 32
√

aλ (−675+15
√

3π+2π2)/675π
ε12 ε45 → 16

√
aλ (−675+15

√
3π+2π2)/675π

ε12 ε38 → 16
√

aλ (−675+15
√

3π+2π2)/675π
ε12 ε48 → 16

√
aλ (675+30

√
3π+π2)/675π ,

(7.46)

with the remaining coefficients being determined by symmetry. Up to a common
factor of 8

√
aλ/675π , the eigenvalues of the 30×30 small edge length fluctuation

matrix are given by 12340.173 (with multiplicity 3), 7238.984 (with multiplicity 5),
888.264 = 90π2 (with multiplicity 1), 20.887 (with multiplicity 3), and zero (with
multiplicity 18).

The presence of the zero modes is interpreted as a lattice manifestation of the
diffeomorphism invariance of the gravitational action. One can summarize the pre-
vious results so far as

Tetrahedron (N0 = 4) : 2 zero modes

Octahedron(N0 = 6) : 6 zero modes

Icosahedron(N0 = 12) : 18 zero modes .

(7.47)
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If the number of zero modes for each triangulation of the sphere is denoted by Nz.m.,
then the results can be re-expressed as

Nz.m. = 2N0 − 6 , (7.48)

which agrees with the expectation that in the continuum limit, N0 → ∞, Nz.m./N0

should approach the constant value d in d space-time dimensions, which is the num-
ber of local parameters for a diffeomorphism. On the lattice the diffeomorphisms
correspond to local deformations of the edge lengths about a vertex, which leave
the local geometry physically unchanged, the latter being described by the values of
local lattice operators corresponding to local volumes, and curvatures. The lesson
is that the correct count of zero modes will in general only be recovered asymp-
totically for sufficiently large triangulations, where N0 is roughly much larger than
the number of neighbors to a point in d dimensions. A similar pattern is expected
in higher dimensions, although in general one would expect such results to hold
only for deformations of flat space which are not too large. In particular one should
always keep in mind the presence of the triangle inequalities, which do not allow
deformations of the edges past a certain configuration space boundary.

Fig. 7.5 Notation for an arbi-
trary simplicial lattice, where
the edge lengths meeting at
the vertex 0 have been de-
formed away from a regular
lattice by a small amount qi

(minimally deformed equilat-
eral lattice).
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The previous discussion dealt with the expansion of the gravitational action about
a regular lattice: a regular tessellation of the sphere, a manifold of constant curva-
ture. One might wonder whether the results depend on the lattice having a particular
symmetry, but this can be shown not to be the case. To complete our discussion, we
turn therefore to the slightly more complex task of exhibiting explicitly the local lat-
tice invariance for an arbitrary background simplicial complex. The idea here is to
look at lattices that are deformations of a regular lattice, and small edge fluctuations
around them. To this end we write for the edge length deformations
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l2
i = l2

0i +qi +δ l2
i , (7.49)

where qi describes an arbitrary but small deviation from a regular lattice, and δ l2
i is

a gauge fluctuation, whose form needs to be determined. We shall keep terms O(q2)
and O(q δ l2), but neglect terms O(δ l4).

The squared volumes V 2
n (σ) of n-dimensional simplices σ are given by homo-

geneous polynomials of order (l2)n. In particular for the area of a triangle AΔ with
arbitrary edges l1, l2, l3 one has

δA2
Δ = 1

8 (−l2
1 + l2

2 + l2
3)δ l2

1 + 1
8 (l2

1 − l2
2 + l2

3)δ l2
2 + 1

8 (l2
1 + l2

2 − l2
3)δ l2

3 , (7.50)

and similarly for the other quantities which are needed in order to construct the
action. For our notation in two dimensions we refer to Fig. (7.5). The subsequent
Figs. 7.6 and 7.7 illustrate the difference between a gauge deformation of the sur-
face, which leaves the area and curvature at the point labeled by 0 invariant, and a
physical deformation which corresponds to a re-assignment of edge lengths meeting
at the vertex 0 such that it alters the area and curvature at 0. In the following we will
characterize unambiguously what we mean by the two different operations.

Consider therefore an expansion about a deformed equilateral lattice, for which
l0i = 1 to start with. A motivation for this choice is provided by the fact that in
the numerical studies of two-dimensional gravity the averages of the squared edge
lengths in the three principal directions turn out to be equal, 〈l2

1〉 = 〈l2
2〉 = 〈l2

3〉. The
baricentric area associated with vertex 0 is then given by

A = A0(q)+
1

2 ·35/2

[
δ l2

01 (3+q06 −4q01 +q02 +q16 +q12)

+ δ l2
02 (3+q01 −4q02 +q03 +q12 +q23)

+ δ l2
03 (3+q02 −4q03 +q04 +q23 +q34)

+ δ l2
04 (3+q03 −4q04 +q05 +q34 +q45)

+ δ l2
05 (3+q04 −4q05 +q06 +q45 +q56)

+ δ l2
06 (3+q05 −4q06 +q01 +q56 +q16)

]

+ O(δ l4) .

(7.51)

The normalization here is such that A0 =
√

3
2 for qi = 0. Equivalently one can write,

in more compact notation, at the vertex 0

A = A0(q)+ 1
3 vA(q) ·δ l2 +O(δ l4) , (7.52)

with δ l2 = (δ l2
01, . . . ,δ l2

06). After adding the contributions from the neighboring
vertices one obtains

∑
P0...P6

A = ∑
P0...P6

A0(q)+vA(q) ·δ l2 +O(δ l4) . (7.53)
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Fig. 7.6 Local gauge defor-
mations of the lattice act on
the edge lengths meeting at
the vertex 0, and are per-
formed in such a way that
the area and curvature at the
vertex 0 are left unchanged.
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Therefore the area associated with the vertex 0 will remain unchanged provided the
variations in the squared edge lengths meeting at 0 satisfy the constraint

vA(q) ·δ l2 = 0 . (7.54)

This is nothing but the curved space equivalent of the well known flat equilateral
lattice condition for deformations to be of the pure gauge form, given in Eq. (7.9),
form

6

∑
i=1

δ l2
i (n) = 0 . (7.55)

Furthermore, if one considers a dual lattice subdivision, a similar result can be
shown to hold.

Fig. 7.7 Physical deforma-
tions change the area and
curvature at the vertex 0, thus
changing the lattice geometry.
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A similar calculation can be done for the curvature associated with vertex 0. One
has for the deficit angle at 0

δ = δ0(q)+
1

33/2

[
δ l2

01 (3−2q06 −q01 −2q02 +q16 +q12)

+ δ l2
02 (3−2q01 −q02 −2q03 +q12 +q23)

+ · · ·
]
+O(δ l4) ,

(7.56)

and therefore for the variation of the sum of the deficit angles surrounding 0

Δ

(
∑
h

δh

)
= ∑

P0...P6

Δδ (7.57)

and

∑
P0...P6

δ = ∑
P0...P6

δ0(q)+vR(q) ·δ l2 +O(δ l4) (7.58)

with in this case, as expected, vR(q) ≡ 0.
Finally for the curvature squared associated with vertex 0 one computes

δ 2

A
=

δ 2
0

A0
(q)+

4

33/2

[
δ l2

01

(
q01 +q02 +q03 +q04 +q05 +q06

− q12 −q23 −q34 −q45 −q56 −q16
)

+δ l2
02

(
q01 +q02 +q03 +q04 +q05 +q06

− q12 −q23 −q34 −q45 −q56 −q16
)
+ · · ·

]
+ O(δ l4) .

(7.59)

Adding up all seven contributions one gets

Δ

(
∑
h

δ 2
h /Ah

)
= ∑

P0...P6

Δ(δ 2/A) , (7.60)

and therefore

∑
P0...P6

δ 2/A = ∑
P0...P6

(
δ 2/A

)
0 +vR2(q) ·δ l2 +O(δ l4) . (7.61)

In this case the curvature squared associated with the vertex 0 will remain un-
changed, provided the variations in the squared edge lengths meeting at 0 satisfy
the constraint

vR2(q) ·δ l2 = 0 , (7.62)
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which provides a second constraint on the edge length variations δ l2 at the vertex
0. Again this constraint is the generalization to curved space of the condition of
Eq. (7.55) for flat space.

A similar calculation can be performed for square lattices with l01 = l02 = 1 and
l03 =

√
2, and one obtains analogous results. In general one can show explicitly

how gauge variations of the edge lengths at each vertex can be defined by requir-
ing that the lattice action contributions be locally invariant (Hamber and Williams,
1999). Here we have looked at small deformations, but larger deformations can be
treated along the same lines, provided one is careful not to violate the triangle in-
equalities, which impose a sharp non-perturbative cutoff in orbit space. Finally the
same approach can be extended to higher dimensions, leading to similar (but rather
more complicated, when written out explicitly) results. The main conclusions do not
change, namely that there is a local d-parameter invariance of the lattice action for
small deformations of the edges, analogous to the local diffeomorphism invariance
of the continuum theory.

7.4 Strong Coupling Expansion

In this section the strong coupling [large G or small k = 1/(8πG)] expansion of
the lattice gravitational functional integral will be discussed. The resulting series
is expected to be useful up to some k = kc, where kc is the lattice critical point, at
which the partition function develops a singularity.

There will be two main aspects to the following discussion. The first aspect will
be the development of a systematic expansion for the partition function and the cor-
relation functions in powers of k, and a number of rather general considerations
that follow from it. The second main aspect will be a detailed analysis and inter-
pretation of the individual terms which appear order by order in the strong coupling
expansion. This second part will lead to a later discussion of what happens for large
d.

One starts from the lattice regularized path integral with action Eq. (6.43) and
measure Eq. (6.76). In the following we will focus at first on the four-dimensional
case. Then the four-dimensional Euclidean lattice action contains the usual cosmo-
logical constant and Regge scalar curvature terms of Eq. (6.90)

Ilatt = λ ∑
h

Vh(l2) − k∑
h

δh(l2)Ah(l2) , (7.63)

with k = 1/(8πG), and possibly additional higher derivative terms as well. The ac-
tion only couples edges which belong either to the same simplex or to a set of neigh-
boring simplices, and can therefore be considered as local, just like the continuum
action. It leads to a lattice partition function defined in Eq. (6.91)

Zlatt =
∫

[d l2] e−λ0∑h Vh +k∑h δhAh , (7.64)
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where, as customary, the lattice ultraviolet cutoff is set equal to one (i.e. all length
scales are measured in units of the lattice cutoff). For definiteness the measure will
be of the form ∫

[d l2] =
∫ ∞

0
∏

s
[Vd(s)]

σ ∏
i j

dl2
i j Θ [l2

i j] . (7.65)

The lattice partition function Zlatt should be compared to the continuum Euclidean
Feynman path integral of Eq. (2.34),

Zcont =
∫

[d gμν ] e−λ
∫

dx
√

g+ 1
16πG

∫
dx
√

gR . (7.66)

When doing an expansion in the kinetic term proportional to k, it will be convenient
to include the λ -term in the measure. We will set therefore in this Section as in
Eq. (6.93)

dμ(l2) ≡ [d l2]e−λ0∑h Vh . (7.67)

It should be clear that this last expression represents a fairly non-trivial quantity,
both in view of the relative complexity of the expression for the volume of a sim-
plex, Eq. (6.5), and because of the generalized triangle inequality constraints already
implicit in [d l2]. But, like the continuum functional measure, it is certainly local,
to the extent that each edge length appears only in the expression for the volume of
those simplices which explicitly contain it. Also, we note that in general the inte-
gral

∫
dμ can only be evaluated numerically; nevertheless this can be done, at least

in principle, to arbitrary precision. Furthermore, λ0 sets the overall scale and can
therefore be set equal to one without any loss of generality.

Thus the effective strong coupling measure of Eq. (7.67) has the properties that
(a) it is local in the lattice metric of Eq. (6.3), to the same extent that the contin-
uum measure is ultra-local, (b) it restricts all edge lengths to be positive, and (c)
it imposes a soft cutoff on large simplices due to the λ0-term and the generalized
triangle inequalities. Apart from these constraints, it does not significantly restrict
the fluctuations in the lattice metric field at short distances. It will be the effect of
the curvature term to restrict such fluctuation, by coupling the metric field between
simplices, in the same way as the derivatives appearing in the continuum Einstein
term couple the metric between infinitesimally close space-time points.

As a next step, Zlatt is expanded in powers of k,

Zlatt(k) =
∫

dμ(l2) ek∑h δh Ah =
∞

∑
n=0

1
n!

kn
∫

dμ(l2)

(
∑
h

δh Ah

)n

. (7.68)

It is easy to show that Z(k) = ∑∞
n=0 an kn is analytic at k = 0, so this expansion should

be well defined up to the nearest singularity in the complex k plane. A quantitative
estimate for the expected location of such a singularity in the large-d limit will be
given later in Sect. 7.6. Beyond this singularity Z(k) can sometimes be extended, for
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example, via Padé or differential approximants.1 The above expansion is of course
analogous to the high temperature expansion in statistical mechanics systems, where
the on-site terms are treated exactly and the kinetic or hopping term is treated as a
perturbation. Singularities in the free energy or its derivatives can usually be pinned
down with the knowledge of a large enough number of terms in the relevant expan-
sion (Domb and Green, 1976).

Next consider a fixed, arbitrary hinge on the lattice, and call the corresponding
curvature term in the action δA. Such a contribution will be denoted in the following,
as is customary in lattice gauge theories, a plaquette contribution. For the average
curvature on that hinge one has

< δA > =

∞

∑
n=0

1
n!

kn
∫

dμ(l2)δA

(
∑
h

δh Ah

)n

∞

∑
n=0

1
n!

kn
∫

dμ(l2)

(
∑
h

δh Ah

)n . (7.69)

After expanding out in k the resulting expression, one obtains for the cumulants

< δ A > =
∞

∑
n=0

cn kn (7.70)

with

c0 =

∫
dμ(l2)δ A
∫

dμ(l2)
, (7.71)

whereas to first order in k one has

c1 =

∫
dμ(l2)δ A

(
∑
h

δh Ah

)

∫
dμ(l2)

−

∫
dμ(l2)δ A ·

∫
dμ(l2)∑

h

δh Ah

(∫
dμ(l2)

)2 . (7.72)

This last expression clearly represents a measure of the fluctuation in δ A, namely
[〈(∑h δh Ah)2〉 − 〈∑h δh Ah〉2]/Nh, using the homogeneity properties of the lattice
δA → ∑h δhAh/Nh. Here Nh is the number of hinges in the lattice. Equivalently,
it can be written in an even more compact way as Nh[〈(δA)2〉−〈δA〉2].

To second order in k one has

c2 = N2
h [〈(δA)3〉− 3〈δA〉〈(δA)2〉+ 2〈δA〉3]/2 . (7.73)

1 A first order transition cannot affect the singularity structure of Z(k) as viewed from the strong
coupling phase, as the free energy is C∞ at a first order transition.
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At the next order one has

c3 = N3
h [〈(δA)4〉− 4〈δA〉〈(δA)3〉− 3〈(δA)2〉2 + 12〈(δA)2〉〈δA〉2 − 6〈δA〉4]/6 ,

(7.74)
and so on. Note that the expressions in square parentheses become rapidly quite
small, O(1/Nn

h ) with increasing order n, as a result of large cancellations that must
arise eventually between individual terms inside the square parentheses. In principle,
a careful and systematic numerical evaluation of the above integrals (which is quite
feasible in practice) would allow the determination of the expansion coefficients in
k for the average curvature < δA > to rather high order.

As an example, consider a non-analyticity in the average scalar curvature

R(k) =
<
∫

dx
√

g(x)R(x) >

<
∫

dx
√

g(x) >
≈ < ∑h δh Ah >

< ∑h Vh >
, (7.75)

assumed for concreteness to be of the form of an algebraic singularity at kc, namely

R(k) ∼
k→kc

AR (kc − k)δ , (7.76)

with δ some exponent. It will lead to a behavior, for the general term in the series
in k, of the type

(−1)n AR
(δ −n+1)(δ −n+2) . . .δ

n!kn−δ
c

kn . (7.77)

Given enough terms in the series, the singularity structure can then be investigated
using a variety of increasingly sophisticated series analysis methods.

It can be advantageous to isolate in the above expressions the local fluctuation
term, from those terms that involve correlations between different hinges. To see
this, one needs to go back, for example, to the first order expression in Eq. (7.72)
and isolate in the sum ∑h the contribution which contains the selected hinge with
value δA, namely

∑
h

δh Ah = δ A +∑
h

′ δh Ah , (7.78)

where the primed sum indicates that the term containing δA is not included. The
result is

c1 =

∫
dμ(l2)(δ A)2

∫
dμ(l2)

−

(∫
dμ(l2)δ A

)2

(∫
dμ(l2)

)2

+

∫
dμ(l2)δ A∑

h

′ δh Ah

∫
dμ(l2)

−

(∫
dμ(l2)δ A

)(∫
dμ(l2)∑

h

′ δh Ah

)

(∫
dμ(l2)

)2 .

(7.79)
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One then observes the following: the first two terms describe the local fluctuation of
δA on a given hinge; the third and fourth terms describe correlations between δA
terms on different hinges. But because the action is local, the only non-vanishing
contribution to the last two terms comes from edges and hinges which are in the im-
mediate vicinity of the hinge in question. For hinges located further apart (indicated
below by “not nn”) one has that their fluctuations remain uncorrelated, leading to a
vanishing variance

∫
dμ(l2)δ A ∑

hnotnn

′ δh Ah

∫
dμ(l2)

−

(∫
dμ(l2)δ A

)(∫
dμ(l2) ∑

hnotnn

′ δh Ah

)

(∫
dμ(l2)

)2 = 0 ,

(7.80)
since for uncorrelated random variables Xn’s, < XnXm > − < Xn >< Xm >= 0.
Therefore the only non-vanishing contributions in the last two terms in Eq. (7.79)
come from hinges which are close to each other.

The above discussion makes it clear that a key quantity is the correlation between
different plaquettes,

< (δ A)h (δ A)h′ > =

∫
dμ(l2)(δ A)h (δ A)h′ e

k∑h δh Ah

∫
dμ(l2)ek∑h δh Ah

, (7.81)

or, better, its connected part (denoted here by < .. . >C)

< (δ A)h (δ A)h′ >C ≡ < (δ A)h (δ A)h′ > − < (δ A)h >< (δ A)h′ > , (7.82)

which subtracts out the trivial part of the correlation. Here again the exponentials in
the numerator and denominator can be expanded out in powers of k, as in Eq. (7.69).
The lowest order term in k will involve the correlation

∫
dμ(l2)(δ A)h (δ A)h′ . (7.83)

But unless the two hinges are close to each other, they will fluctuate in an uncor-
related manner, with < (δ A)h (δ A)h′ > − < (δ A)h >< (δ A)h′ >= 0. In order to
achieve a non-trivial correlation, the path between the two hinges h and h′ needs to
be tiled by at least as many terms from the product (∑h δh Ah)n in

∫
dμ(l2)(δ A)h (δ A)h′

(
∑
h

δh Ah

)n

, (7.84)

as are needed to cover the distance l between the two hinges. One then has

< (δ A)h (δ A)h′ >C ∼ kl ∼ e−l/ξ , (7.85)
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hAδ 'hAδ

Fig. 7.8 Correlations between action contributions on hinge h and hinge h′ arise to lowest order
in the strong coupling expansions from diagrams describing a narrow tube connecting the two
hinges. Here vertices represent points in the dual lattice, with the tube-like closed surface tiled
with parallel transport polygons. For each link of the dual lattice, the SO(4) parallel transport
matrices R of Sect. 6.4 are represented by an arrow.

with the correlation length ξ = 1/| logk| → 0 to lowest order as k → 0 (here we
have used the usual definition of the correlation length ξ , namely that a generic cor-
relation function is expected to decay as exp(−distance/ξ ) for large separations).2

This last result is quite general, and holds for example irrespective of the boundary
conditions (unless of course ξ ∼ L, where L is the linear size of the system, in which
case a path can be found which wraps around the lattice).

But further thought reveals that the above result is in fact not completely correct,
due to the fact that in order to achieve a non-vanishing correlation one needs, at least
to lowest order, to connect the two hinges by a narrow tube (Hamber and Williams,
2006). The previous result should then read correctly as

< (δ A)h (δ A)h′ >C ∼ (knd )l , (7.86)

where nd l represents the minimal number of dual lattice polygons needed to form a
closed surface connecting the hinges h and h′, with l the actual distance (in lattice
units) between the two hinges. Fig. 7.8 provides an illustration of the situation.

With some additional effort many additional terms can be computed in the strong
coupling expansion. In practice the method is generally not really competitive with
direct numerical evaluation of the path integral via Monte Carlo methods. But it
does provide a new way of looking at the functional integral, and provide the basis
for new approaches, such as the large d limit to be discussed in the second half of
the next section.

2 This statement, taken literally, oversimplifies the situation a bit, as depending on the spin (or
tensor structure) of the operator appearing in the correlation function, the large distance decay of
the corresponding correlator is determined by the lightest excitation in that specific channel. But in
the gravitational context one is mostly concerned with correlators involving spin two (transverse-
traceless) objects, evaluated at fixed geodesic distance.
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7.5 Gravitational Wilson Loop

An important question for any theory of quantum gravity is what gravitational
observables should look like, i.e. which expectation values of operators (or ra-
tios thereof) have meaning and physical interpretation in the context of a mani-
festly covariant formulation, in particular in a situation where metric fluctuations
are not necessarily bounded. Such averages naturally include expectation values of
the (integrated) scalar curvature and other related quantities (involving for exam-
ple curvature-squared terms), as well as correlations of operators at fixed geodesic
distance. Another set of physical observables corresponds to the gravitational ana-
log of the Wilson loop (Modanese, 1995), which provides information about the
parallel transport of vectors, and therefore on the effective curvature, around large,
near-planar loops. In contrast to gauge theories, the Wilson loop in quantum gravity
does not provide useful information on the static potential, which is obtained in-
stead for the correlation between particle world-lines (Modanese, 1995; Hamber and
Williams, 1995) Here we will concentrate on defining and exploring physical prop-
erties of the gravitational Wilson loop at strong coupling (Hamber and Williams,
2007).

Before embarking on the gravitational case, it might be useful to recall more
generally the well-known fact (see for example Peskin and Schröder, 1995) that
many low energy physical properties in gauge theories cannot be computed reliably
in weak coupling perturbation theory. Thus, for example, in non-Abelian SU(N)
gauge theories a confining potential for static sources placed in the fundamental
representation is found at sufficiently strong coupling, by examining the behavior of
the Wilson loop (Wilson, 1974), defined for a large closed planar loop C as

W (C) =< trP exp
{

ig
∮

C
Aμ(x)dxμ

}
> , (7.87)

with Aμ ≡ taAa
μ and the ta’s the group generators of SU(N) in the fundamental

representation. Specifically, in the pure gauge theory at strong coupling the leading
contribution to the Wilson loop can be shown to follow an area law for sufficiently
large loops

W (C) ∼
A→∞

exp(−A(C)/ξ 2) , (7.88)

where A(C) is the minimal area spanned by the planar loop C (Balian Drouffe and
Itzykson, 1975). The quantity ξ is the gauge field correlation length, defined for
example from the exponential decay of the Euclidean correlation function of two
infinitesimal loops separated by a distance |x|,

G�(x) =< trP exp
{

ig
∮

C′
ε

Aμ(x′)dx′μ
}

(x) trP exp
{

ig
∮

C′′
ε

Aμ(x′′)dx′′μ
}

(0) >c .

(7.89)
Here the Cε ’s are two infinitesimal loops centered around x and 0 respectively, suit-
ably defined on the lattice as elementary square loops, and for which one has at
sufficiently large separations
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G�(x) ∼
|x|→∞

exp(−|x|/ξ ) . (7.90)

The inverse of the correlation length ξ is known to correspond to the lowest mass
excitation in the gauge theory, the scalar glueball.

The gauge theory definition can be adapted to the lattice gravitational case. It will
turn out that it is most easily achieved by using a slight variant of Regge calculus, in
which the action coincides with the usual Regge action in the near-flat limit. Here
we will use extensively the notion of lattice parallel transport discussed in Sect. 6.4,
and how areas are defined on the dual lattice. From those properties the behavior
of large Wilson loops can be derived, and much of what is done is in close parallel
with the analogous procedure in lattice gauge theories at strong coupling. One finds
that the results for the lattice gravitational loop imply that for sufficiently strong
coupling (large bare Newton’s constant G) the behavior of the loop at large distances
is consistent with a positive vacuum curvature, and therefore with (Euclidean) De
Sitter space.

The construction of the lattice action and measure, leading to a discretized form
for the gravitational functional integral, are discussed in Sects. (6.4), (6.5) and (6.9).
In the following it will be convenient to include at strong coupling the cosmological
constant term in the measure, since this contribution is ultralocal and contains no
derivatives of the metric, giving rise to an effective strong coupling measure dμ(l2),

dμ(l2) ≡ [d l2]e−λ0∑h Vh . (7.91)

In view of previous discussions, this last expression represents a fairly non-trivial
quantity, both in view of the relative complexity of the expression for the volume
of a simplex, and because of the generalized triangle inequality constraints already
implicit in the definition of [d l2].

The main assumption used here regarding the effective strong coupling measure
dμ(l2) will be the existence of a stable ground state with a well-defined average
lattice spacing, as implied by direct numerical evaluations of the lattice integrals in
four dimensions, at least for sufficiently strong coupling. In the following the lattice
measure [d l2] will be a suitable discretization of the continuum functional measure,
and therefore of the form

∫
[d l2] =

∫ ∞

0
∏

s
[Vd(s)]

σ ∏
i j

dl2
i j Θ [l2

i j] , (7.92)

with σ again a real parameter, andΘ a function of the squared edge lengths ensuring
that the generalized triangle inequalities discussed in Sect. (6.9) are satisfied.

At strong coupling the measure and cosmological constant terms form the domi-
nant part of the functional integral, since the Einstein part of the action is vanishingly
small in this limit. Yet, and in contrast to strongly coupled lattice Yang-Mills theo-
ries, the functional integral is still non-trivial to compute analytically in this limit,
mainly due to these triangle inequality constraints. Therefore, in order to be able
to derive some analytical estimates for correlation functions in the strong coupling
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limit, one needs still to develop some set of approximation methods. In principle
the reliability of the approximations can later be tested by numerical means, for
example by integrating directly over edges using the explicit lattice measure given
above.

One approach that appears natural in the gravity context follows along the lines of
what is normally done in gauge theories, namely an integration over compact group
variables, using the invariant measure over the gauge group. It is of this method that
we wish to take advantage here, as we believe that it is well suited for gravity as
well. In order to apply such a technique to gravity one needs (i) to formulate the
lattice theory in such a way that group variables are separated and therefore appear
explicitly; (ii) integrate over the group variables using an invariant measure; and
(iii) approximate the relevant correlation functions in such a way that the group
integration can be performed exactly, using for example mean field methods for the
parts that appear less tractable. In such a program one is aided by the fact that in the
strong coupling limit one is expanding about a well defined ground state, and that
the measure and the interactions are local, coupling only lattice variable (edges or
rotations) which are a few lattice spacings apart. The downside of such methods is
that one is no longer evaluating the functional integral for quantum gravity exactly,
even in the strong coupling limit; the upside is that one obtains a clear analytical
estimate, which later can be in principle systematically tested by numerical methods
(which are in principle exact).

In the gravity case the analogs of the gauge variables of Yang-Mills theories are
given by the connection, so it is natural therefore to look for a first order formulation
of Regge gravity (Caselle D’Adda and Magnea, 1989), discussed in Sect. (4.2). The
main feature of this approach is that one treats the metric gμν and the affine con-
nection Γ λ

μν as independent variables. There one can safely consider functionally
integrating separately over the affine connection and the metric, treated as indepen-
dent variables, with the correct relationship between metric and connection arising
then as a consequence of the dynamics. In the lattice theory we will follow a similar
spirit, separating out explicitly in the lattice action the degrees of freedom corre-
sponding to local rotations (the analogs of the Γ ’s in the continuum), which we will
find to be most conveniently described by orthogonal matrices R.

The next step is a use of the properties of local rotation matrices in the context
of the lattice theory, and how these relate to the lattice gravitational action. It was
shown in Sect. (6.4) that with each neighboring pair of simplices s,s + 1 one can
associate a Lorentz transformation Rμ

ν(s,s+1), which describes how a given vector
V μ transforms between the local coordinate systems in these two simplices, and
that the above transformation is directly related to the continuum path-ordered (P)
exponential of the integral of the local affine connection Γ λ

μν(x) via

Rμ
ν =

[
P e

∫
path

between simplices
Γλ dxλ ]μ

ν
, (7.93)

with the connection having support only on the common interface between the two
simplices. Also, for a closed elementary path Ch encircling a hinge h and passing
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Fig. 7.9 Gravitational analog of the Wilson loop. A vector is parallel-transported along the larger
outer loop. The enclosed minimal surface is tiled with parallel transport polygons, here chosen
to be triangles for illustrative purposes. For each link of the dual lattice, the elementary parallel
transport matrices R(s,s′) are represented by arrows. In spite of the fact that the (Lorentz) matrices
R can fluctuate strongly in accordance with the local geometry, two contiguous, oppositely oriented
arrows always give RR−1 = 1.

through each of the simplices that meet at that hinge one has for the total rotation
matrix R ≡∏s Rs,s+1 associated with the given hinge

[
∏

s
Rs,s+1

]μ
ν

=
[

eδ (h)U(h)
]μ
ν

, (7.94)

as in Eq. (6.32). This matrix describes the parallel transport of a vector round the
loop.

More generally one might want to consider a near-planar, but non-infinitesimal,
closed loop C, as shown in Fig. (7.9). Along this closed loop the overall rotation
matrix will still be given by

Rμ
ν(C) =

[
∏
s⊂C

Rs,s+1

]μ
ν

. (7.95)

In analogy with the infinitesimal loop case, one would like to state that for the overall
rotation matrix one has

Rμ
ν(C) ≈

[
eδ (C)U(C))

]μ
ν

, (7.96)

where Uμν(C) is now an area bivector perpendicular to the loop, which will work
only if the loop is close to planar so that Uμν can be taken to be approximately
constant along the path C. By a near-planar loop around the point P, we mean one
that is constructed by drawing outgoing geodesics, on a plane through P.

If that is true, then one can define an appropriate coordinate scalar by contracting
the above rotation matrix R(C) with the some appropriate bivector, namely

W (C) = ωαβ (C)Rαβ (C) , (7.97)
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where the bivector, ωαβ (C), is intended as being representative of the overall geo-
metric features of the loop (for example, it can be taken as an average of the hinge
bivector ωαβ (h) along the loop).

In the quantum theory one is interested in the average of the above loop oper-
ator W (C), as in Eq. (7.87). The previous construction is indeed quite analogous
to the Wilson loop definition in ordinary lattice gauge theories, where it is defined
via the trace of path ordered products of SU(N) color rotation matrices. In gravity
though the Wilson loop does not give any information about the static potential;
instead it provides some insight into the large-scale curvature of the manifold, just
as the infinitesimal loop contribution entering the lattice action of Eqs. (6.90) and
(6.39) provides, through its averages, information on the very short distance, local
curvature.

One the other hand for any continuum manifold one can define locally the paral-
lel transport of a vector around a near-planar loop C. Indeed parallel transporting a
vector around a closed loop represents a suitable operational way of detecting cur-
vature locally. If the curvature of the manifold is small, one can treat the larger loop
the same way as the small one; then the expression of Eq. (7.96) for the rotation ma-
trix R(C) associated with a near-planar loop can be re-written in terms of a surface
integral of the large-scale Riemann tensor, projected along the surface area element
bivector Aαβ (C) associated with the loop,

Rμ
ν(C) ≈

[
e

1
2

∫
S

R ·
·αβ Aαβ (C)]μ

ν
. (7.98)

Thus a direct calculation of the Wilson loop provides a way of determining the ef-
fective curvature at large distance scales, even in the case where short distance fluc-
tuations in the metric may be significant. Conversely, the rotation matrix appearing
in the elementary Wilson loop of Eqs. (6.29), (6.32) and (7.94) only provides infor-
mation about the parallel transport of vectors around infinitesimal loops, with size
comparable to the ultraviolet cutoff.

Let us now look in detail at how to construct a Wilson loop in quantum gravity.
Since this involves finding the expectation value of a product of rotation matrices
round a loop, the natural procedure is to treat these rotation matrices as variables and
to integrate over their product, weighted by the exponential of minus the Regge ac-
tion. The expression for this action has been given in terms of functions of the edge
lengths, but an alternative (Fröhlich, 1981; Caselle D’ Adda and Magnea, 1989) is
to find an expression for it in terms of the rotation matrices. For the dual loop around
each hinge, the product of the rotation matrices gives the exponential of the deficit
angle, δ , times the rotation generator, U , [see Eq. (6.32)] and one needs to find a
way of extracting the deficit angle from this product of matrices, at the same time
as constructing a scalar function to be averaged. The obvious way of doing this is to
contract the product of the R-matrices with the rotation generator, U , and then take
the trace. This is equivalent to the action obtained by contracting the elementary
rotation matrix R(C) of Eq. (6.32), with the hinge bivector of Eq. (6.30), as done in
Eq. (6.39),
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Icom(l2) = − k
2 ∑

hinges h

Ah Uαβ (h)Rαβ (h) . (7.99)

The above construction can be regarded as analogous to Wilson’s lattice gauge the-
ory, for which the action also involves traces of products of SU(N) color rotation
matrices. This contraction produces the sine of the deficit angle times the area of the
triangular hinge and so for small deficit angles it is equivalent to the Regge action.

But one notices that when evaluating Wilson loops, the final result often involves
the trace of the bivector U , which is zero. It will be useful therefore to contract with
a linear combination of U and the unit matrix, and use as a pure gravity action

Ih =
k
4

Ah Tr[(Uh + ε I4) (Rh − R−1
h )] , (7.100)

where I4 is the unit matrix in four dimensions, and ε an arbitrary real parameter. We
have subtracted the inverse of the rotation matrix for the hinge for reasons that will
become apparent when one evaluates Wilson loops. In the end one is interested in
the limit of small but non-zero ε . One might worry that the ε term might modify
the weak field limit, but this is not the case. Since R equals the exponential of δ
times U , it may be expanded in a power series in δ , which is then contracted with
the (U + εI4) and the trace taken. Using Tr(U2n+1) = 0 and Tr(U2n) = 2 (−1)n

one finds
Ih = − k Ah sin(δh) , (7.101)

independently of the value of the parameter ε . Thus ε is in fact an arbitrary param-
eter, which can be conveniently taken to be non-zero, as we shall see.

There is now a slight amount of freedom in how we define the Wilson loop, for a
path C in the dual lattice of a simplicial space. The main choices seem to be either

(i) W (C) = < Tr(R1 R2 ... Rn) > ; (7.102)

or
(ii) W (C) = < Tr[(UC + ε I4) R1 R2 ... ... Rn] > . (7.103)

Here the Ri are the rotation matrices along the path; in (ii), there is a factor of
(UC + εI4), containing some “average” direction bivector, UC, for the loop, which,
after all, is assumed to be almost planar. The position of the UC term in the product
of Ri’s is not arbitrary; to give a unique answer, it needs to be placed before an R
which begins one of the plaquette contributions to the action.

One would like to take as independent fluctuating variables the rotation matri-
ces Ri and the loop bivectors Ui, in a first order formalism similar in spirit to that
used in (Caselle, D’Adda and Magnea, 1989). This last statement clearly requires
some clarification, as both the rotation matrices and the loop bivectors depend on the
choice of the original edge lengths, as well as on the orientation of the local coordi-
nate system, and cannot therefore in general be considered as independent variables
(as should have already been clear from the detailed discussion of the properties of
rotation matrices given in the previous section). On the lattice strong edge length
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fluctuations get reflected in large fluctuations in the local geometry, which in turn
imply large correlated fluctuations in both the deficit angles and in the orientations
of the elementary loop. It would therefore seem at first that one would have to in-
tegrate over both sets of coupled variables simultaneously, with some non-trivial
measure derived from the original lattice measure over edge lengths, which in turn
would make the problem of computing the Wilson loop close to intractable, even
in the strong coupling limit. In particular one has to take notice of the fact that the
lattice deficit angles and the loop bivectors are related to the metric and connection,
as they appear in a first order formulation, in a rather non-trivial way.

But there are two important aspect that come into play when evaluating the ex-
pectation value of the gravitational Wilson loop for strongly coupled gravity, the first
one being that the overall geometric features of the large near-planar loop provide a
natural orientation, specified for example by a global loop bivector UC. As will be-
come clear from explicit calculations given below, in the strong coupling limit the
tiling of the large Wilson loop surface by elementary parallel transport loops, which
in general have random orientations, requires that their normals be preferentially
oriented perpendicular to the plane of the loop, since otherwise a non-minimal sur-
face must result, which leads to a necessarily higher order contribution in the strong
coupling limit.

In the case of a hinge surrounded by the large loop with bivector UC, one is
therefore allowed to write for the bivector operator Uh associated with that hinge,
labelled by h,

Uh = UC + δUh , (7.104)

where δUh is the quantum fluctuation associated with hinge bivector at h. But as-
suming the fluctuation in δUh to be zero is an unnecessarily strong requirement,
and in the following it will be sufficient to take < δUh >= 0 and < (δUh)2 >�= 0,
which can be regarded as a mean-field type treatment for the loop bivectors. It will
be important therefore in the following to keep in mind this distinction between the
fluctutating hinge bivector Uh, and its quantum average.

The second important aspect of the calculation is that at strong coupling the edge
lengths, and therefore the local geometry, fluctuate in a way that is uncorrelated over
distances greater than a few lattice spacing. Thus, mainly due to the ultralocal nature
of the gravitational lattice measure at strong coupling, the fluctuations in the U ′s can
be taken as essentially uncorrelated as well, again over distances greater than a few
lattice spacings, which further simplifies the problem considerably.

One would expect that for a geometry fluctuating strongly at short distances (cor-
responding therefore to the small k limit) the infinitesimal parallel transport matrices
R(s,s′) should be distributed close to randomly, with a measure close to the uniform
Haar measure, and with little correlation between neighboring hinges. In such in-
stance one would have for the local quantum averages of the infinitesimal lattice
parallel transports < R >= 0, but < R R−1 >�= 0, which would require, for a non-
vanishing lowest order contribution to the Wilson loop, that the loop at least be tiled
by elementary loops with action contributions from Eqs. (6.90) or (7.99), thus form-
ing a minimal surface spanning the loop. Then, in close analogy to the Yang-Mills
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case of Eq. (7.88), the leading contribution to the gravitational Wilson loop would
be expected to follow an area law,

W (C) ∼ const.kA(C) ∼ exp(−A(C)/ξ 2) , (7.105)

where A(C) is the minimal physical area spanned by the near-planar loop C, and
ξ the gravitational correlation length, equal to ξ = 1/

√
| lnk| for small k. For a

close-to-circular loop of perimeter P one would use A(C) ≈ P2/4π .
We choose now to focus on the Euclidean case in four dimensions, where the

rotation matrices will be elements of SO(4). In evaluating the averages over the
rotation matrices in the expectation values in the Wilson loops, the integrations we
have to perform will be of the form

∫ (
n

∏
i=1

dμH(Ri)

)
Tr [...(Uj + ε I4)...Rk...]

× exp

(
− k

4 ∑
hingesh

Ah Tr[(Uh + ε I4)(Rh − R−1
h ) ]

)
/N ,

(7.106)

where the normalization factor is given by

N =
∫ (

n

∏
i=1

dμH(Ri)

)
exp

(
− k

4 ∑
hingesh

Ah Tr[(Uh + ε I4)(Rh − R−1
h )]

)
.

(7.107)
This factor will be omitted from subsequent expressions, for notational simplicity.

For smooth enough geometries, with small curvatures, the rotation matrices can
be chosen to be close to the identity. Small fluctuations in the geometry will then
imply small deviations in the R’s from the identity matrix. However, for strong cou-
pling (k → 0) the usual lattice measure

∫
dμ(l2) does not significantly restrict fluc-

tuations in the lattice metric field. As a result we will assume that these fields can be
regarded, at least in this regime, as basically unconstrained random variables, only
subject to the relatively mild constraints implicit in the measure dμ(l2). Thus as
k → 0, the geometry is generally far from smooth, since there is no coupling term to
enforce long range order (the coefficient of the lattice Einstein term goes to zero),
and one has as a consequence large local fluctuations in the geometry. The matrices
R will therefore fluctuate with the local geometry, and average out to zero, or a value
close to zero, which suggests the use of the Haar measure over the group variables,
as in ordinary SU(N) lattice gauge theories. The uniform (Haar) measure over the
group SO(n) is given by

dμH(R) =

(
n

∏
i=1

Γ (i/2)/2nπn(n+1)/2

)
n−1

∏
i=1

i

∏
j=1

sin j−1 θ i
j dθ i

j , (7.108)
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with 0 ≤ θ 1
k < 2π , 0 ≤ θ j

k < π (see for example Vilenkin and Klimyk, 1993). In
practice one does not need to explicitly integrate over SO(4) angles. Instead one
uses the following properties of the normalized Haar measure,

∫
dHR = 1 ; (7.109)

∫
dHR Tr(A R) Tr(R−1 B) =

1
4

Tr(A B) , (7.110)

for arbitrary 4×4 matrices A and B, which also implies

∫
dHR Ri j R−1

kl =
1
4
δil δ jk . (7.111)

As stated previously, we will regard the individual hinge bivectors Uh as aligned on
average with the Wilson loop bivector UC.

One is now ready to evaluate < W > for some simple loops. Later we will dis-
cuss the general behavior for arbitrary loops, ending with a consideration of the
asymptotic behavior for large loops. In the following only the second definition (ii)
of the Wilson loop < W > in Eq. (7.103) will be considered; when one works out
the details for the other choice one finds very similar results, and in the end the main
conclusions are unchanged.

Consider a single hinge of area A, at which four 4-simplices meet see Fig. (7.10).
The loop C will consist of four segments between the Voronoi centers of the sim-
plices. Let the rotation matrices on these segments be R1,R2,R3,R4, and the rotation
generator for the hinge U . Then one has

W (C) = < Tr[(U + ε I4) R1 R2 R3 R4] > . (7.112)

Fig. 7.10 A parallel transport
loop with four oriented links
on the boundary. The parallel
transport matrices R along
the links, represented here by
arrows, appear in pairs and are
sequentially integrated over
using the uniform measure.

 

Since the only non-vanishing contribution to the integration over the R’s will come
from the product of an Ri with the corresponding R−1

i , then the lowest order contri-
bution in k will come from the term in the expansion of the exponential of minus
the action which is linear in R−1. One obtains

k
4

A
∫

dHR1 dHR2 dHR3 dHR4 Tr[(U + ε I4) R1 R2 R3 R4]

× Tr[(U + ε I4) R−1
4 R−1

3 R−1
2 R−1

1 ] .

(7.113)
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Integration over the R’s results in

k
4

1
4

A Tr(U2 + ε2 I4) = − k
8

A (1 − 2 ε2) , (7.114)

and the integration over the U’s (a sum over all possible orientations of the loop) is
trivial.

Next consider a less trivial situation where the Wilson loop goes around a number
of hinges and there is at least one internal hinge, i.e. a hinge where the elementary
loop surrounding it is not part of the Wilson loop. For simplicity, we shall consider
the case of one such loop. For the labeling of the rotation matrices and the hinges,
the reader can annotate Fig. (7.11) in a way consistent with the expressions below.

Fig. 7.11 A larger parallel
transport loop with twelve
oriented links on the bound-
ary. As before, the parallel
transport matrices along the
links appear in pairs and are
sequentially integrated over
using the uniform measure.
The new ingredient in this
configuration is an elementary
loop at the center not touching
the boundary.

 

In this case, the lowest order contribution comes from a ninth-order term in the
expansion of the exponential of the action. One obtains the following result

k9

49

1
417

(
9

∏
i=1

Ai

)
Tr[(UC + εI4)(U1 + εI4)]

(
9

∏
i=2

Tr(Ui + εI4)

)

=
k9

418

(
9

∏
i=1

Ai

)
ε8 [Tr(UCU1)+4ε2] . (7.115)

In this last equation one sets U1 =UC +δU1, with < δU1 >= 0, after which the sum
over the loop’s orientation also becomes trivial. The above result also shows that it
is better to take ε > 0, otherwise the answer vanishes to this order. But this is not a
problem, as the correct lattice action is recovered irrespective of the value of ε , as
shown earlier in Eq. (7.101).

Finally the value of a Wilson loop, when the loop is very large and surrounds n
hinges, can be seen to be of the general form
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kn

42n

(
n

∏
i=1

Ai

)
εα [p + qε2]β , (7.116)

where α + β = n. If Ā is of the order of the geometric or arithmetic mean of the
individual loops, this can be approximated by

(
k Ā
16

)n

εα [p + qε2]β . (7.117)

This shows again that one should take ε > 0, otherwise the answer vanishes to this
order, and one needs to go to higher order in the expansion in k. This is quite legit-
imate, as the correct lattice action is recovered irrespective of the value of ε , as in
Eq. (7.101). Then using n = AC/Ā, one can write the area-dependent first factor as

exp[ (AC/Ā) log(k Ā/16) ] = exp(−AC/ξ 2) , (7.118)

where ξ ≡ [Ā/| log(k Ā/16)|]1/2. Recall that this is in the case of strong coupling,
when k → 0. The above is the main result so far. The rapid decay of the quantum
gravitational Wilson loop as a function of the area is seen here simply as a general
and direct consequence of the assumed disorder in the uncorrelated fluctuations of
the parallel transport matrices R(s,s′) at strong coupling.

We note here the important point that the gravitational correlation length ξ is
defined independently of the expectation value of the Wilson loop. Indeed a key
quantity in gauge theories as well as gravity is the correlation between different
plaquettes, which in simplicial gravity is given by see Eq. (7.81)

< (δ A)h (δ A)h′ > =

∫
dμ(l2)(δ A)h (δ A)h′ e

k∑h δh Ah

∫
dμ(l2)ek∑h δh Ah

. (7.119)

In order to achieve a non-vanishing correlation one needs, at least to lowest order,
to connect the two hinges by a narrow tube, so that

< (δ A)h (δ A)h′ >C ∼ (knt )l ∼ e−d(h,h′)/ξ , (7.120)

where the “distance” nt l represents the minimal number of dual lattice polygons
needed to form a closed surface connecting the hinges h and h′ (as an example,
for a narrow tube made out of cubes connecting two squares one has nt=4). In the
above expression d(h,h′) represents the actual physical distance between the two
hinges, and the correlation length is given in this limit (k → 0) by ξ ∼ l0/nt | logk|.
where l0 is the average lattice spacing. Here we have used the usual definition of the
correlation length ξ , namely that a generic correlation function is expected to decay
as exp(−distance/ξ ) for large separations. Fig. (7.8) provides an illustration of the
situation.
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The strong coupling area law behavior predicted for a large Wilson loop in
Eq. (7.118) should be compared with the results for this in numerical simulations of
lattice gravity. For small deficit angles (small curvature), the action used here [in-
volving Eq. (7.100)] is sufficiently close to the usual Regge action of Eq. (6.90) that
the standard simulations can be used for comparison. Universality arguments would
suggest a similar behavior for the gravitational Wilson loop for a wide class of lat-
tice actions, constructed so as to reproduce the Einstein-Hilbert continuum action in
the continuum limit.

The final step is an interpretation of this last and main result in semi classical
terms. As discussed at the beginning of this section, the rotation matrix appearing
in the gravitational Wilson loop can be related classically to a well-defined physical
process: a vector is parallel transported around a large loop, and at the end it is
compared to its original orientation. The vector’s rotation is then directly related to
some sort of average curvature enclosed by the loop. The total rotation matrix R(C)
is given in general by a path-ordered (P) exponential of the integral of the affine
connection Γ λ

μν via

Rα
β (C) =

[
P exp

{∮
path C

Γ ·
λ ·dxλ

}]α
β

. (7.121)

In such a semi classical description of the parallel transport process of a vector
around a very large loop, one can re-express the connection in terms of a suitable
coarse-grained, or semi-classical, Riemann tensor, using Stokes’ theorem

Rα
β (C) ∼

[
exp

{
1
2

∫
S(C)

R ·
·μν Aμν

C

}]α
β

, (7.122)

where here Aμν
C is the usual area bivector associated with the loop in question,

Aμν
C = 1

2

∮
dxμ xν . (7.123)

The use of semi-classical arguments in relating the above rotation matrix R(C) to
the surface integral of the Riemann tensor assumes (as usual in the classical context)
that the curvature is slowly varying on the scale of the very large loop. Since the
rotation is small for weak curvatures, one can write

Rα
β (C) ∼

[
1 + 1

2

∫
S(C)

R ·
·μν Aμν

C + . . .
]α
β

. (7.124)

At this stage one is ready to compare the above expression to the quantum re-
sult of Eq. (7.118), and in particular one should relate the coefficients of the area
terms, which leads to the identification of the magnitude of the large scale semi-
classical curvature with the genuinely quantum quantity 1/ξ 2. Since one expression
[Eq. (7.124)] is a matrix and the other [Eq. (7.118)] is a scalar, we shall take the
trace after first contracting the rotation matrix with (UC + ε I4), as in our second
definition of the Wilson loop, giving
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W (C) ∼ Tr

(
(UC + ε I4) exp

{
1
2

∫
S(C)

R ·
·μν Aμν

C

})
. (7.125)

Next, as is standard in simplicial gravity, we consider the lattice analog of a back-
ground manifold with constant or near-constant large scale curvature,

Rμνλσ = 1
3 λ (gμν gλσ − gμλ gνσ )

Rμνλσ Rμνλσ = 8
3λ

2 , (7.126)

so that here in our case we can set

Rα
β μν = R̄ U α

β Uμν , (7.127)

where R̄ is some average curvature over the loop, and the U’s here will be taken to
coincide with UC. The trace of the product of (UC + ε I4) with this expression gives

Tr(R̄ U2
C AC) = − 2 R̄ AC , (7.128)

where one has used Uμν Aμν
C = 2AC (the choice of direction for the bivectors will

be such that the latter is true for all loops). This is to be compared with the linear
term from the other exponential expression, −AC/ξ 2. Thus the average curvature is
computed to be of the order

R̄ ∼ 1/ξ 2 , (7.129)

at least in the small k = 1/8πG limit. An equivalent way of phrasing the last result
is that 1/ξ 2 should be identified, up to a constant of proportionality, with the scaled
cosmological constant λ , with the latter being regarded as a measure of the intrinsic
curvature of the vacuum. We see therefore that a direct calculation of the Wilson
loop for gravity provides an insight into whether the manifold is De Sitter or anti-
De Sitter at large distances.

7.6 Discrete Gravity in the Large-d Limit

In the large-d limit the geometric expressions for volume, areas and angles simplify
considerably, and as will be shown below one can obtain a number of interesting
results for lattice gravity. These can then be compared to earlier investigations of
continuum Einstein gravity in the same limit (Strominger, 1981).

Here we will consider a general simplicial lattice in d dimensions, made out
of a collection of flat d-simplices glued together at their common faces so as to
constitute a triangulation of a smooth continuum manifold, such as the d-torus or the
surface of a sphere. Each simplex is endowed with d +1 vertices, and its geometry is



7.6 Discrete Gravity in the Large-d Limit 261

completely specified by assigning the lengths of its d(d +1)/2 edges. We will label
the vertices by 1,2,3, . . . ,d +1 and denote the square edge lengths by l2

12 = l2
21, ... ,

l2
1,d+1.

As discussed in Sect. 6.3, the volume of a d-simplex can be computed from the
determinant of a (d +2)× (d +2) matrix,

Vd =
(−1)

d+1
2

d!2d/2

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . .
1 0 l2

12 . . .
1 l2

21 0 . . .
1 l2

31 l2
32 . . .

. . . . . . . . . . . .
1 l2

d+1,1 l2
d+1,2 . . .

∣∣∣∣∣∣∣∣∣∣∣∣

1/2

. (7.130)

If one calls the above matrix Md then previous expression can the re-written as

Vd =
(−1)

d+1
2

d!2d/2

√
detMd . (7.131)

In general the formulae for volumes and angles are quite complicated and therefore
of limited use in large dimensions. The next step consists in expanding them out in
terms of small edge length variations, by setting

l2
i j = l(0)2

i j + δ l2
i j . (7.132)

From now on we will set δ l2
i j = εi j. Unless stated otherwise, we will be considering

the expansion about the equilateral case, and set l(0)
i j = 1; later on this restriction will

be relaxed. In the equilateral case one has for the volume of a simplex

Vd =
1
d!

√
d +1

2d . (7.133)

From the well-known expansion for determinants

det(1+M) = etr ln(1+M)

= 1 + trM +
1
2!

[
(trM)2 − trM2] + . . . .

(7.134)

one finds after a little algebra

Vd ∼
d→∞

√
d

d!2d/2

{
1 − 1

2 ε
2
12 + . . . + 1

d (ε12 + . . . + ε12 ε13 + . . .) + O(d−2)
}

.

(7.135)
Note that the terms linear in ε , which would have required a shift in the ground state
value of ε for non-vanishing cosmological constant λ0, vanish to leading order in
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1/d. The complete volume term λ0∑Vd appearing in the action can then be easily
written down using the above expressions.

In d dimensions the dihedral angle in a d-dimensional simplex of volume Vd ,
between faces of volume Vd−1 and V

′
d−1, is obtained from Eq. (6.12)

sinθd =
d

d −1
Vd Vd−2

Vd−1 V
′
d−1

. (7.136)

In the equilateral case one has for the dihedral angle

θd = arcsin

√
d2 −1

d
∼

d→∞

π
2
− 1

d
− 1

6d3 + . . . (7.137)

which will require four simplices to meet on a hinge, to give a deficit angle of
2π − 4× π

2 ≈ 0 in large dimensions. One notes that in large dimensions the sim-
plices look locally (i.e. at a vertex) more like hypercubes. Several d-dimensional
simplices will meet on a (d − 2)-dimensional hinge, sharing a common face of di-
mension d−1 between adjacent simplices. Each simplex has (d−2)(d−1)/2 edges
“on” the hinge, some more edges are then situated on the two “interfaces” between
neighboring simplices meeting at the hinge, and finally one edge lies “opposite” to
the hinge in question.

In the large d limit one then obtains, to leading order for the dihedral angle at the
hinge with vertices labelled by 1 . . .d −1

θd ∼d→∞ arcsin

√
d2 −1

d
+ εd,d+1 + ε1,d ε1,d+1 + . . .

+ 1
d

(
−ε1,d + . . . − 1

2 ε
2
1,d + . . . − 1

2 ε
2
d,d+1

−ε12 ε1,d+1 − ε1,d ε3,d+1 − ε1,d εd,d+1 + . . .
)

.

+O(d−2) . (7.138)

From the expressions in Eq. (7.135) for the volume and Eq. (7.138) for the dihedral
angle one can then evaluate the d-dimensional Euclidean lattice action, involving
cosmological constant and scalar curvature terms as in Eq. (6.43)

I(l2) = λ0 ∑Vd − k∑δd Vd−2 , (7.139)

where δd is the d-dimensional deficit angle, δd = 2π −∑simplices θd . The lattice
functional integral is then

Z(λ0, k) =
∫

[d l2] exp
(
−I(l2)

)
. (7.140)

To evaluate the curvature term −k∑δdVd−2 appearing in the gravitational lattice
action one needs the hinge volume Vd−2, which is easily obtained from Eq. (7.135),
by reducing d → d −2.



7.6 Discrete Gravity in the Large-d Limit 263

We now specialize to the case where four simplices meet at a hinge. When ex-
panded out in terms of the ε’s one obtains for the deficit angle

δd = 2π−4 · π
2

+ ∑
simplices

1
d − εd,d+1 + . . . − ε1,d ε1,d+1 + . . .

− 1
d

(
−ε1,d − 1

2 ε
2
1,d − 1

2 ε
2
d,d+1 − ε12 ε1,d+1 − ε1,d ε3,d+1 − ε1,d εd,d+1 + . . .

)

+O(
1
d2 ) .

(7.141)

The action contribution involving the deficit angle is then, for a single hinge,

−kδd Vd−2 = (−k)
2d3/2 (d −1)

d!2d/2

(
−εd,d+1 + . . . − ε1,d ε1,d+1 + . . .

)
. (7.142)

It involves two types of terms: one linear in the (single) edge opposite to the hinge,
as well as a term involving a product of two distinct edges, connecting any hinge
vertex to the two vertices opposite to the given hinge. Since there are four simplices
meeting on one hinge, one will have 4 terms of the first type, and 4(d −1) terms of
the second type.

To obtain the total action, a sum over all simplices, resp. hinges, has still to
be performed. Dropping the irrelevant constant term and summing over edges one
obtains for the total action λ0∑Vd − k∑δd Vd−2 in the large d limit

λ0
(
− 1

2 ∑ε2
i j

)
− 2k d2 (−∑ε jk −∑εi j εik

)
, (7.143)

up to an overall multiplicative factor
√

d/d!2d/2, which will play no essential role
in the following.

The next step involves the choice of a specific lattice. Here we will evaluate the
action for the cross polytope βd+1. The cross polytope βn is the regular polytope in n
dimensions corresponding to the convex hull of the points formed by permuting the
coordinates (±1,0,0, ...,0), and has therefore 2n vertices. It is named so because
its vertices are located equidistant from the origin, along the Cartesian axes in n-
space. The cross polytope in n dimensions is bounded by 2n (n−1)-simplices, has
2n vertices and 2n(n−1) edges.

In three dimensions, it represents the convex hull of the octahedron, while in four
dimensions the cross polytope is the 16-cell (Coxeter, 1948; Coxeter, 1974). In the
general case it is dual to a hypercube in n dimensions, with the “dual” of a regular
polytope being another regular polytope having one vertex in the center of each cell
of the polytope one started with. Fig. 7.12 shows as an example the polytope β8.

When we consider the surface of the cross polytope in d +1 dimensions, we have
an object of dimension n−1 = d, which corresponds to a triangulated manifold with
no boundary, homeomorphic to the sphere. From Eq. (7.141) the deficit angle is then
given to leading order by
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Fig. 7.12 Cross polytope
βn with n = 8 and 2n = 16
vertices, whose surface can
be used to define a simplicial
manifold of dimension d =
n− 1 = 7. For general d, the
cross polytope βd+1 will have
2(d + 1) vertices, connected
to each other by 2d(d + 1)
edges.

δd = 0 +
4
d
−
(
εd,d+1 + 3terms + ε1,d ε1,d+1 + . . .

)
+ . . . (7.144)

and therefore close to flat in the large d limit (due to our choice of an equilateral
starting configuration). Indeed if the choice of triangulation is such that the deficit
angle is not close to zero, then the discrete model leads to an average curvature
whose magnitude is comparable to the lattice spacing or ultraviolet cutoff, which
from a physical point of view does not seem very attractive: one obtains a space-
time with curvature radius comparable to the Planck length.

When evaluated on such a manifold the lattice action becomes
√

d 2d/2

d!
2
(
λ0 − k d3) [1 − 1

8 ∑ε2
i j +

1
d

(
1
4∑εi j +

1
8∑εi j εik

)
+ O(1/d2)

]
.

(7.145)
Dropping the 1/d correction the action is proportional to

− 1
2

(
λ0 − k d3)∑ε2

i j . (7.146)

Since there are 2d(d + 1) edges in the cross polytope, one finds therefore that, at
the critical point kd3 = λ0, the quadratic form in ε , defined by the above action,
develops 2d(d +1) ∼ 2d2 zero eigenvalues.

This result is quite close to the d2/2 zero eigenvalues expected in the continuum
for large d, with the factor of four discrepancy presumably attributed to an underly-
ing intrinsic ambiguity that arises when trying to identify lattice points with points
in the continuum.

It is worth noting here that the competing curvature (k) and cosmological constant
(λ0) terms will have comparable magnitude when

kc =
λ0 l2

0

d3 . (7.147)
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Here we have further allowed for the possibility that the average lattice spacing
l0 = 〈l2〉1/2 is not equal to one (in other words, we have restored the appropriate
overall scale for the average edge length, which is in fact largely determined by the
value of λ0).

The average lattice spacing l0 can easily be estimated from the following argu-
ment. The volume of a general equilateral simplex is given by Eq. (7.133), multi-
plied by an additional factor of ld

0 . In the limit of small k the average volume of a
simplex is largely determined by the cosmological term, and can therefore be com-
puted from

< V >= − ∂
∂λ0

log
∫

[dl2]e−λ0V (l2) , (7.148)

with V (l2) = (
√

d +1/d!2d/2) ld ≡ cdld . After doing the integral over l2 with mea-
sure dl2 and solving this last expression for l2

0 one obtains

l2
0 =

1

λ 2/d
0

[
2
d

d!2d/2
√

d +1

]2/d

, (7.149)

(which, for example, gives l0 = 2.153 for λ0 = 1 in four dimensions, in reasonable
agreement with the actual value l0 ≈ 2.43 found near the transition point).

This then gives for λ0 = 1 the estimate kc =
√

3/(16 ·51/4) = 0.0724 in d = 4, to
be compared with kc = 0.0636(11) obtained in (Hamber, 2000) by direct numerical
simulation in four dimensions. Even in d = 3 one finds again for λ0 = 1, from
Eqs. (7.147) and (7.149), kc = 25/3/27 = 0.118, to be compared with kc = 0.112(5)
obtained in (Hamber and Williams, 1993) by direct numerical simulation.

Using Eq. (7.149) inserted into Eq. (7.147) one obtains in the large d limit for

the dimensionless combination k/λ (d−2)/d
0

kc

λ 1−2/d
0

=
21+2/d

d3

[
Γ (d)√
d +1

]2/d

. (7.150)

To summarize, an expansion in powers of 1/d can be developed, which relies on a
combined use of the weak field expansion. It can be regarded therefore as a double
expansion in 1/d and ε , valid wherever the fields are smooth enough and the geom-
etry is close to flat, which presumably is the case in the vicinity of the lattice critical
point at kc.

A somewhat complementary 1/d expansion can be set up, which does not require
weak fields, but relies instead on the strong coupling (small k = 1/8πG, or large
G) limit. As such it will be a double expansion in 1/d and k. Its validity will be
in a regime where the fields are not smooth, and in fact will involve lattice field
configurations which are very far from smooth at short distances.

The general framework for the strong coupling expansion for pure quantum grav-
ity was outlined in the previous section, and is quite analogous to what one does in
gauge theories (Balian, Drouffe and Itzykson, 1975). One expands Zlatt in powers
of k as in Eq. (7.68)
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Zlatt(k) =
∫

dμ(l2) ek∑h δh Ah =
∞

∑
n=0

1
n!

kn
∫

dμ(l2)

(
∑
h

δh Ah

)n

. (7.151)

Then one can show that dominant diagrams contributing to Zlatt correspond to
closed surfaces tiled with elementary transport loops. In the case of the hinge-
hinge connected correlation function the leading contribution at strong coupling
come from closed surfaces anchored on the two hinges, as in Eq. (7.86).

It will be advantageous to focus on general properties of the parallel transport
matrices R, discussed previously in Sect. 6.4. For smooth enough geometries, with
small curvatures, these rotation matrices can be chosen to be close to the identity.
Small fluctuations in the geometry will then imply small deviations in the R’s from
the identity matrix. But for strong coupling (k → 0) the measure

∫
dμ(l2) does not

significantly restrict fluctuations in the lattice metric field. As a result we will as-
sume that these fields can be regarded, in this regime, as basically unconstrained
random variables, only subject to the relatively mild constraints implicit in the mea-
sure dμ . The geometry is generally far from smooth since there is no coupling term
to enforce long range order (the coefficient of the lattice Einstein term is zero), and
one has as a consequence large local fluctuations in the geometry. The matrices R
will therefore fluctuate with the local geometry, and average out to zero, or a value
close to zero. In the sense that, for example, the SO(4) rotation

Rθ =

⎛
⎜⎝

cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠ , (7.152)

averages out to zero when integrated over θ . In general an element of SO(n) is
described by n(n− 1)/2 independent parameters, which in the case at hand can be
conveniently chosen as the six SO(4) Euler angles. The uniform (Haar) measure
over the group is then

dμH(R)=
1

32π9

∫ 2π

0
dθ1

∫ π

0
dθ2

∫ π

0
dθ3

∫ π

0
dθ4 sinθ4

∫ π

0
dθ5 sinθ5

∫ π

0
dθ6 sin2 θ6 .

(7.153)
This is just a special case of the general n result, which reads

dμH(R) =

(
n

∏
i=1

Γ (i/2)/2nπn(n+1)/2

)
n−1

∏
i=1

i

∏
j=1

sin j−1 θ i
j dθ i

j , (7.154)

with 0 ≤ θ 1
k < 2π , 0 ≤ θ j

k < π .
These averaging properties of rotations are quite similar of course to what hap-

pens in SU(N) Yang-Mills theories, or even more simply in (compact) QED, where
the analogs of the SO(d) rotation matrices R are phase factors Uμ(x) = eiaAμ (x).

There one has
∫ dAμ

2π Uμ(x) = 0 and
∫ dAμ

2π Uμ(x)U†
μ(x) = 1. In addition, for two con-

tiguous closed paths C1 and C2 sharing a common side one has
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ei
∮
C1

A·dl ei
∮
C2

A·dl = ei
∮
C A·dl = ei

∫
S B·ndA , (7.155)

with C the slightly larger path encircling the two loops. For a closed surface tiled
with many contiguous infinitesimal closed loops the last expression evaluates to
1, due to the divergence theorem. In the lattice gravity case the discrete analog of
this last result is considerably more involved, and ultimately represents the (exact)
lattice analog of the contracted Bianchi identities. An example of a closed surface
tiled with parallel transport polygons (here chosen for simplicity to be triangles) is
shown in Fig. 7.13.

Fig. 7.13 Elementary closed
surface tiled with parallel
transport polygons, here
chosen to be triangles for
illustrative purposes. For each
link of the dual lattice, the
elementary parallel transport
matrices R(s,s′) are repre-
sented by an arrow. In spite
of the fact that the (Lorentz)
matrices R fluctuate with
the local geometry, two con-
tiguous, oppositely oriented
arrows always give RR−1 = 1.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

As one approaches the critical point, k → kc, one is interested in random surfaces
which are of very large extent. Let np be the number of polygons in the surface,
and set np = T 2 since after all one is describing a surface. The critical point then
naturally corresponds to the appearance of surfaces of infinite extent,

np = T 2 ∼ 1
kc − k

→ ∞ . (7.156)

A legitimate parallel is to the simpler case of scalar field theories, where random
walks of length T describing particle paths become of infinite extent at the critical
point, situated where the inverse of the (renormalized) mass ξ = m−1, expressed in
units of the ultraviolet cutoff, diverges.

In the present case of polygonal random surfaces, one can provide the follow-
ing concise argument in support of the identification in Eq. (7.156). First approx-
imate the discrete sums over n, as they appear for example in the strong coupling
expansion for the average curvature, Eq. (7.69) or its correlation, Eq. (7.119), by
continuous integrals over areas
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∞

∑
n=0

cn

(
k
kc

)n

→
∫ ∞

0
dAAγ−1

(
k
kc

)A

= Γ (γ)
(

log
kc

k

)−γ
, (7.157)

where A ≡ T 2 is the area of a given surface. The Aγ−1 term can be regarded as
counting the multiplicity of the surface (its entropy, in statistical mechanics terms).
The exponent γ depends on the specific quantity one is looking at. For the average
curvature one has from Eq. (7.76) γ = −δ , while for its derivative, the curvature
fluctuation (the curvature correlation function at zero momentum), one expects γ =
1−δ . The saddle point is located at

A =
(γ−1)
log kc

k

∼
k→kc

(γ−1)kc

kc − k
. (7.158)

From this discussion one then concludes that close to the critical point very large
areas dominate, as claimed in Eq. (7.156).

Furthermore, one would expect that the universal geometric scaling properties
of such a (closed) surface would not depend on its short distance details, such as
whether it is constructed out of say triangles or more complex polygons. In general
excluded volume effects at finite d will provide constraints on the detailed geometry
of the surface, but as d → ∞ these constraints can presumably be neglected and
one is dealing then with a more or less unconstrained random surface. This should
be regarded as a direct consequence of the fact that as d → ∞ there are infinitely
many dimensions for the random surface to twist and fold into, giving a negligible
contribution from unallowed (by interactions) directions. In the following we will
assume that this is indeed the case, and that no special pathologies arise, such as the
collapse of the random surface into narrow tube-like, lower dimensional geometric
configurations. Then in the large d limit the problem simplifies considerably.

Related examples for what is meant in this context are the simpler cases of ran-
dom walks in infinite dimensions, random polymers and random surfaces in gauge
theories (Drouffe, Parisi and Sourlas, 1979), which have been analysed in detail in
the large-d limit. There too the problem simplifies considerably in such a limit since
excluded volume effects (self-intersections) can be neglected there as well. A sum-
mary of these results, with a short derivation, is given in the appendices of (Hamber
and Williams, 2006).

Following (Gross, 1984) one can define the partition function for such an ensem-
ble of unconstrained random surfaces, and one finds that the mean square size of
the surface increases logarithmically with the intrinsic area of the surface. This last
result is usually interpreted as the statement that an unconstrained random surface
has infinite fractal (or Hausdorff) dimension. Although made of very many trian-
gles (or polygons), the random surface remains quite compact in overall size, as
viewed from the original embedding space. In a sense, an unconstrained random
surface is a much more compact object than an unconstrained random walk, for
which < X2 >∼ T . Identifying the size of the random surface with the gravitational
correlation length ξ then gives
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ξ ∼
√

logT ∼
k→kc

| log(kc − k)|1/2 . (7.159)

From the definition of the exponent ν , namely ξ ∼ (kc −k)−ν , the above result then
implies ν = 0 (i.e. a weak logarithmic singularity) at d = ∞.

It is of interest to contrast the result ν ∼ 0 for gravity in large dimensions
with what one finds for scalar (Wilson and Fisher, 1972; Wilson, 1973) and gauge
(Drouffe, Parisi and Sourlas, 1979) fields, in the same limit d = ∞. So far, known
results can be summarized as follows

scalar field ν = 1
2

lattice gauge field ν = 1
4

lattice gravity ν = 0 . (7.160)

It should be regarded as encouraging that the new value obtained here, namely ν = 0
for gravitation, appears to some extent to be consistent with the general trend ob-
served for lower spin, at least at infinite dimension. What happens in finite dimen-
sions? The situation becomes much more complicated since the self-intersection
properties of the surface have to be taken into account. But a simple geometric ar-
gument then suggests in finite but large dimensions ν = 1/(d − 1) (Hamber and
Williams, 2004).

7.7 Mean Field Theory

In this section we will describe briefly a simple mean-field approach to quantum
gravity, which contains some features observed in the numerical simulations. Write
for the local average curvature R,

R(k) =
<
∫

ddx
√

gR >

<
∫

ddx
√

g >
, (7.161)

an effective action (or effective potential) which entirely neglects any further effects
of the metric degrees of freedom,

Ie f f (R) = (k− kc)V |R| + aV |R|λ , (7.162)

with as usual k ≡ 1/8πG and a > 0 some additional coupling; in the strong coupling
phase of gravity k < kc.

The above effective action is inspired by the analogy with the Landau theory for
order-disorder transitions (Landau and Lifshitz, 1980), and the term proportional to
a is supposed to represent, in some crude and effective theory way, the effects of
the interactions. Classically one has of course kc = 0, but fluctuations give rise to a
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nonzero value for the critical coupling that separates the smooth (k < kc) from the
rough phase (k > kc). The last term can be thought of parametrizing the lattice and
continuum higher derivative terms, as well as the effects of radiative corrections,
which include the measure contribution.

Numerical simulations show that in the smooth phase of gravity R < 0, so one
can set R = −|R| in this phase; a physically acceptable phase with local average
curvature R > 0 (the rough phase) does not seem to exist. Then

∂ Ie f f

∂R
= (kc − k)V − aλV (−R)λ−1 , (7.163)

with stationary point at

R0(k) = −(aλ )−1/(λ−1) (kc − k)1/(λ−1) . (7.164)

This in a sense justifies the original form for Ie f f , since it is known that the aver-
age curvature is non-analytic at kc, [see for example Eq. (8.53)], and identifies the
curvature critical exponent as δ = 1/(λ−1). Furthermore it gives, from δ = dν−1,

λ−1 = 1 − 1
d ν

, (7.165)

where ν is the correlation length exponent. For the fluctuation in the local curvature
one then obtains

χR0 ∼ (kc − k)−(λ−2)/(λ−1) , (7.166)

with exponent α = 2−dν = (λ −2)/(λ −1), and in agreement with Eq. (7.165).
Classically one expects of course no higher order corrections, which would then

correspond to either a = 0 or λ = 1. But in four dimensions numerical simulations
give ν = 1/3, which gives instead λ = 4. In general for large enough dimensions one
expects ν = 1/(d−1) [see Sect. (7.6)], which would then imply λ = d. Furthermore,
as long as R < 0 the above solution is stable, since

∂ 2 Ie f f

∂ R2 = aV λ (λ −1) (−R)λ−2 ,

= a V λ (λ −1) (aλ )−(λ−2)/(λ−1) (kc − k)(λ−2)/(λ−1) , (7.167)

which incidentally requires λ > 1 for the second derivative of Ie f f to be finite at
the origin R = 0. Note that in this approach there is always only one minimum for
k < kc.

For R > 0 the effective action is complex, as it should, since no stable ground
state is found in the lattice theory for R > 0. Two further predictions arise out of this
model. The first one is that the amplitude of the average curvature should diverge
when the parameter a becomes sufficiently small, as

AR ∼ a−1/(λ−1) . (7.168)



7.7 Mean Field Theory 271

The second one is that the minimum should become increasingly shallow as a → 0,
which leads to larger fluctuations in the average curvature. But in the end one does
not expect the mean field theory to be quantitatively accurate, just as it is not for
scalar field theories in low dimensions. It only represents an effective theory for the
average local curvature, which is represented here as a single scalar quantity.



Chapter 8
Numerical Studies

8.1 Nonperturbative Gravity

The exact evaluation of the lattice functional integral for quantum gravity by nu-
merical methods allows one to investigate a regime which is generally inacessible
by perturbation theory, where the coupling G is strong and quantum fluctutations
are expected to be large.

The hope in the end is to make contact with the analytic results obtained, for ex-
ample, in the 2+ε expansion, and determine which scenarios are physically realized
in the lattice regularized model, and then perhaps even in the real world.

Specifically, one can enumerate several major questions that one would like to get
at least partially answered. The first one is: which scenarios suggested by perturba-
tion theory are realized in the lattice theory? Perhaps a stable ground state for the
quantum theory cannot be found, which would imply that the regulated theory is still
inherently pathological. Furthermore, if a stable ground state exists for some range
of bare parameters, does it require the inclusion of higher derivative couplings in an
essential way, or is the minimal theory, with an Einstein and a cosmological term,
sufficient? Does the presence of dynamical matter, say in the form of a massless
scalar field, play an important role, or is the non-perturbative dynamics of gravity
determined largely by the pure gravity sector (as in Yang-Mills theories)?

More generally, is there any indication that the non-trivial ultraviolet fixed point
scenario is realized in the lattice theory in four dimensions? This would imply,
as in the non-linear sigma model, the existence of at least two physically distinct
phases and non-trivial exponents. Which quantity can be used as an order param-
eter to physically describe, in a qualitative, way the two phases? A clear physical
characterization of the two phases would allow one, at least in principle, to decide
which phase, if any, could be realized in nature. Ultimately this might or might not
be possible based on purely qualitative aspects. As will discussed below, the lat-
tice continuum limit is taken in the vicinity of the fixed point, so close to it is the
physically most relevant regime. At the next level one would hope to be able to es-
tablish a quantitative connection with those continuum perturbative results which

273
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are not affected by uncontrollable errors, such as for example the 2 + ε expansion
of Sect. 3.5. Since the lattice cutoff and the method of dimensional regularization
cut the theory off in the ultraviolet in rather different ways, one needs to compare
universal quantities which are cutoff-independent. One example is the critical expo-
nent ν , as well as any other non-trivial scaling dimension that might arise. Within
the 2 + ε expansion only one such exponent appears, to all orders in the loop ex-
pansion, as ν−1 = −β ′(Gc). Therefore one central issue in the lattice regularized
theory is the value of the universal exponent ν .

Knowledge of ν would allow one to be more specific about the running of the
gravitational coupling. One purpose of the discussion in Sect. 3.3 was to convince
the reader that the exponent ν determines the renormalization group running of
G(μ2) in the vicinity of the fixed point, as in Eq. (3.22) for the non-linear σ -model,
and more appropriately in Eq. (3.117) for quantized gravity. From a practical point
of view, on the lattice it is difficult to determine the running of G(μ2) directly from
correlation functions , since the effects from the running of G are generally small.
Instead one would like to make use of the analog of Eqs. (3.29), (3.59) and (3.60)
for the non-linear σ -model, and, again, more appropriately of Eqs. (3.121) and pos-
sibly (3.127) for gravity to determine ν , and from there the running of G. But the
correlation length ξ = m−1 is also difficult to compute, since it enters the curvature
correlations at fixed geodesic distance, which are hard to compute for (genuinely
geometric) reasons to be discussed later. Furthermore, these generally decay expo-
nentially in the distance at strong G, and can therefore be difficult to compute due
to the signal to noise problem of numerical simulations.

Fortunately the exponent ν can be determined instead, and with good accuracy,
from singularities of the derivatives of the path integral Z, whose singular part is
expected, on the basis of very general arguments, to behave in the vicinity of the
fixed point as F ≡ − 1

V lnZ ∼ ξ−d where ξ is the gravitational correlation length.
From Eq. (3.121) relating ξ (G) to G−Gc and ν one can then determine ν , as well
as the critical coupling Gc.

8.2 Observables, Phase Structure and Critical Exponents

The starting point is once again the lattice regularized path integral with action as
in Eq. (6.43) and measure as in Eq. (6.76). Then the lattice action for pure four-
dimensional Euclidean gravity contains a cosmological constant and Regge scalar
curvature term as in Eq. (6.90)

Ilatt = λ0 ∑
h

Vh(l2) − k∑
h

δh(l2)Ah(l2) , (8.1)

with k = 1/(8πG), and leads to the regularized lattice functional integral

Zlatt =
∫

[d l2] e−λ0∑h Vh +k∑h δhAh , (8.2)
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where, as customary, the lattice ultraviolet cutoff is set equal to one (i.e. all length
scales are measured in units of the lattice cutoff). The lattice measure is given in
Eq. (6.76) and will be therefore of the form

∫
[d l2] =

∫ ∞

0
∏

s
[Vd(s)]

σ ∏
i j

dl2
i j Θ [l2

i j] , (8.3)

with σ a real parameter given below.
Ultimately the above lattice partition function Zlatt is intended as a regularized

form of the continuum Euclidean Feynman path integral of Eq. (2.34),

Zcont =
∫

[d gμν ] e−λ0
∫

dx
√

g+ 1
16πG

∫
dx
√

gR , (8.4)

with functional measure over the gμν(x)’s of the form

∫
[d gμν ] ≡∏

x
[g(x)]σ/2 ∏

μ≥ν
dgμν(x) , (8.5)

where σ is a real parameter constrained by the requirement σ ≥ −(d + 1). For
σ = 1

2 (d −4)(d +1) one obtains the De Witt measure of Eq. (2.18), while for σ =
−(d + 1) one recovers the original Misner measure of Eq. (2.22). In the following
we will mostly be interested in the four-dimensional case, for which d = 4 and
therefore σ = 0 for the DeWitt measure.

It is possible to add higher derivative terms to the lattice action and investigate
how the results are affected. The original motivation was that they would improve
the convergence properties of functional integral for the lattice theory, but extensive
numerical studies suggest that they don’t seem to be necessary after all. In any
case, with such terms included the lattice action for pure gravity acquires the two
additional terms whose lattice expressions can be found in Eqs. (6.111) and (6.122),

Ilatt = ∑
h

[
λ0 Vh − kδhAh −bA2

hδ
2
h /Vh

]

+ 1
3 (a+4b)∑

s
Vs ∑

h,h′⊂s

εh,h′

(
ωh

[ δ
AC

]
h
−ωh′

[ δ
AC

]
h′

)2
. (8.6)

The above action is intended as a lattice form for the continuum action

I =
∫

dx
√

g
[
λ0 − 1

2 k R− 1
4 bRμνρσRμνρσ + 1

2 (a+4b) CμνρσCμνρσ
]

, (8.7)

and is therefore of the form in Eqs. (1.137) and (6.123). Because of its relative
complexity, in the following the Weyl term will not be considered any further, and b
will chosen so that b = − 1

4 a. Thus the only curvature term to be discussed here will
be a Riemann squared contribution, with a (small) positive coefficient + 1

4 a → 0.
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8.3 Invariant Local Gravitational Averages

Among the simplest quantum mechanical averages is the one associated with the
local curvature

R(k) ∼
<
∫

dx
√

gR(x) >

<
∫

dx
√

g >
. (8.8)

The curvature associated with the quantity above is the one that would be detected
when parallel-transporting vectors around infinitesimal loops, with size comparable
to the average lattice spacing l0. Closely related to it is the fluctuation in the local
curvature

χR(k) ∼
< (

∫
dx
√

gR)2 > − <
∫

dx
√

gR >2

<
∫

dx
√

g >
. (8.9)

The latter is related to the connected curvature correlation at zero momentum

χR ∼
∫

dx
∫

dy <
√

g(x)R(x)
√

g(y)R(y) >c

<
∫

dx
√

g(x) >
. (8.10)

Both R(k) and χR(k) are directly related to derivatives of Z with respect to k,

R(k) ∼ 1
V

∂
∂k

lnZ (8.11)

and

χR(k) ∼ 1
V

∂ 2

∂k2 lnZ . (8.12)

Thus a divergence or non-analyticity in Z, as caused for example by a phase tran-
sition, is expected to show up in these local averages as well. Note that the above
expectation values are manifestly invariant, since they are related to derivatives of
Z.

On the lattice one prefers to define quantities in such a way that variations in
the average lattice spacing

√
< l2 > are compensated by an appropriate factor de-

termined from dimensional considerations. In the case of the average curvature one
defines therefore the lattice quantity R as

R(k) ≡ < l2 >
< 2 ∑h δhAh >

< ∑h Vh >
, (8.13)

and similarly for the curvature fluctuation,

χR(k) ≡ < (∑h δhAh)2 > − < ∑h δhAh >2

< ∑h Vh >
. (8.14)

Fluctuations in the local curvature probe graviton correlations, and are expected
to be sensitive to the presence of a massless spin two particle. Note that both of
the above expressions are dimensionless, and are thefore unaffected by an overall
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rescaling of the edge lengths. As in the continuum, they are proportional to first and
second derivatives of Zlatt with respect to k.

One can contrast the behavior of the preceding averages, related to the curvature,
with the corresponding quantities involving the local volumes Vh (the quantity

√
gdx

in the continuum). Consider the average volume per site

〈V 〉 ≡ 1
N0

<∑
h

Vh > , (8.15)

and its fluctuation, defined as

χV (k) ≡ < (∑h Vh)2 > − < ∑h Vh >2

< ∑h Vh >
, (8.16)

where Vh is the volume associated with the hinge h. The last two quantities are again
simply related to derivatives of Zlatt with respect to the bare cosmological constant
λ0, as for example in

<V > ∼ ∂
∂λ0

lnZlatt (8.17)

and

χV (k) ∼ ∂ 2

∂λ 2
0

lnZlatt . (8.18)

Some useful relations and sum rules can be derived, which follow directly from
the scaling properties of the discrete functional integral. Thus a simple scaling ar-
gument, based on neglecting the effects of curvature terms entirely (which, as will
be seen below, vanish in the vicinity of the critical point), gives an estimate of the
average volume per edge [for example from Eqs. (7.148) and (7.149)]

<Vl > ∼ 2(1+σ d)
λ0 d

∼
d=4, σ=0

1
2λ0

, (8.19)

where σ is the functional measure parameter in Eqs. (2.27) and (6.76). In four di-
mensions direct numerical simulations with σ = 0 (corresponding to the lattice De-
Witt measure) agree quite well with the above formula.

Some exact lattice identities can be obtained from the scaling properties of the
action and measure. The bare couplings k and λ0 in the gravitational action are
dimensionful in four dimensions, but one can define the dimensionless ratio k2/λ0,
and rescale the edge lengths so as to eliminate the overall length scale

√
k/λ0. As a

consequence the path integral for pure gravity,

Zlatt(λ0,k,a,b) =
∫

[dl2] e−I(l2) , (8.20)

obeys the scaling law
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Zlatt(λ0,k,a,b) = (λ0)
−N1/2 Zlatt

(
1,

k√
λ0

,a,b

)
, (8.21)

where N1 represents the number of edges in the lattice, and the dl2 measure (σ = 0)
has been selected. This implies in turn a sum rule for local averages, which for the
dl2 measure reads

2λ0 <∑
h

Vh > − k <∑
h

δhAh > − N1 = 0 , (8.22)

and is easily derived from Eq. (8.21) and the definitions in Eqs. (8.11) and (8.17).
N0 represents the number of sites in the lattice, and the averages are defined per site
(for the hypercubic lattice divided up into simplices as in Fig. 7.1, N1 = 15). This
last formula can be very useful in checking the accuracy of numerical evaluations
of the path integral. A similar sum rule holds for the fluctuations

4 λ 2
0

[
< (∑

h

Vh)2 > − <∑
h

Vh >2

]

− k2

[
< (∑

h

δhAh)2 > − <∑
h

δhAh >2

]
− 2N1 = 0 . (8.23)

In light of the above discussion one can therefore consider without loss of generality
the case of unit bare cosmological coupling λ0 = 1 (in units of the cutoff). Then all

lengths are expressed in units of the fundamental microscopic length scale λ−1/4
0 .

8.4 Invariant Correlations at Fixed Geodesic Distance

Compared to ordinary field theories, new issues arise in quantum gravity due to the
fact that the physical distance between any two points x and y

d(x,y |g) = min
ξ

∫ τ(y)

τ(x)
dτ
√

gμν(ξ ) dξ μ
dτ

dξν
dτ , (8.24)

is a fluctuating function of the background metric gμν(x). In addition, the Lorentz
group used to classify spin states is meaningful only as a local concept.

In the continuum the shortest distance between two events is determined by solv-
ing the equation of motion (equation of free fall, or geodesic equation)

d2xμ

dτ2 + Γ μ
λσ

dxλ

dτ
dxσ

dτ
= 0 . (8.25)

On the lattice the geodesic distance between two lattice vertices x and y requires
the determination of the shortest lattice path connecting several lattice vertices, and
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having the two given vertices as endpoints. This can be done at least in principle by
enumerating all paths connecting the two points, and then selecting the shortest one.
Equivalently it can be computed from the scalar field propagator, as in Eq. (6.145).

Consequently physical correlations have to be defined at fixed geodesic distance
d, as in the following correlation between scalar curvatures

<
∫

dx
∫

dy
√

gR(x)
√

gR(y) δ (|x− y|−d) > . (8.26)

Generally these do not go to zero at large separation, so one needs to define the
connected part, by subtracting out the value at d =∞. These will be indicated in the
following by the connected <>c average, and we will write the resulting connected
curvature correlation function at fixed geodesic distance compactly as

GR(d) ∼ <
√

g R(x)
√

g R(y) δ (|x− y|−d) >c . (8.27)

One can define several more invariant correlation functions at fixed geodesic dis-
tance for other operators involving curvatures (Hamber, 1994). The gravitational
correlation function just defined is similar to the one in non-Abelian gauge theories,
Eq. (3.146).

In the lattice regulated theory one can define similar correlations, using for ex-
ample the correspondence of Eqs. (6.38) or (6.110) for the scalar curvature

√
gR(x) → 2 ∑

h⊃x

δhAh . (8.28)

If the deficit angles are averaged over a number of contiguous hinges h sharing a
common vertex x, one is naturally lead to the connected correlation function

GR(d) ≡ < ∑
h⊃x

δhAh ∑
h′⊃y

δh′Ah′ δ (|x− y|−d) >c , (8.29)

which probes correlations in the scalar curvatures. In practice the above lattice cor-
relations have to be computed by a suitable binning procedure: one averages out all
correlations in a geodesic distance interval [d,d +Δd] with Δd comparable to one
lattice spacing l0. See Fig. 8.1. Similarly one can construct the connected correlation
functions for local volumes at fixed geodesic distance

GV (d) ≡ < ∑
h⊃x

Vh ∑
h′⊃y

Vh′ δ (|x− y|−d) >c . (8.30)

In general one expects for the curvature correlation either a power law decay, for
distances sufficiently larger than the lattice spacing l0,

<
√

g R(x)
√

g R(y) δ (|x− y|−d) >c ∼
d � l0

1
d2n , (8.31)
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Fig. 8.1 Geodesic distance
and correlations. On each
metric configuration correla-
tion functions are computed
for lattice vertices within
the physical distance range
[d,d +Δd].

o 

with n some exponent characterizing the power law decay, or at very large distances
an exponential decay, characterized by a correlation length ξ ,

<
√

g R(x)
√

g R(y) δ (|x− y|−d) >c ∼
d � ξ

e−d/ξ . (8.32)

In fact the invariant correlation length ξ is generally defined (in analogy with what
one does for other theories) through the long-distance decay of the connected, in-
variant correlations at fixed geodesic distance d. In the pure power law decay case
of Eq. (8.31) the correlation length ξ is of course infinite. One can show from scal-
ing considerations (see below) that the power n in Eq. (8.31) is related to the critical
exponent ν by n = 4−1/ν .

In the presence of a finite correlation length ξ one needs therefore to carefully
distinguish between the “short distance” regime

l0 � d � ξ , (8.33)

where Eq. (8.31) is valid, and the “long distance” regime

ξ � d � L , (8.34)

where Eq. (8.32) is appropriate. Here l0 =
√

< l2 > is the average lattice spacing,
and L = V 1/4 the linear size of the system.

Recently the issue of defining diffeomorphism invariant correlations in quantum
gravity has been re-examined from a new perspective (Giddings, Marolf and Hartle,
2006).
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8.5 Wilson Lines and Static Potential

In a gauge theory such as QED the static potential can be computed from the man-
ifestly gauge invariant Wilson loop. To this end one considers the process where
a particle-antiparticle pair are created at time zero, separated by a fixed distance
R, and re-annihilated at a later time T . In QED the amplitude for such a process
associated with the closed loop Γ is given by the Wilson loop

W (Γ ) = < exp
{

ie
∮
Γ

Aμ(x)dxμ
}

> , (8.35)

which is a manifestly gauge invariant quantity. Performing the required Gaussian
average using the (Euclidean) free photon propagator one obtains

< exp
{

ie
∮
Γ

Aμdxμ
}

> = exp
{
− 1

2 e2
∮
Γ

∮
Γ

dxμdyνΔμν(x− y)
}

. (8.36)

For a rectangular loop of sides R and T one has after a short calculation

< exp
{

ie
∮
Γ

Aμdxμ
}

> � exp
{
− e2

4πε
(T +R)+

e2

4π
T
R

+
e2

2π2 log(
T
ε

)+ · · ·
}

(8.37)
∼

T�R
exp

[
−V (R) T )

]
, (8.38)

where ε → 0 is an ultraviolet cutoff. In the last line use has been made of the fact
that for large imaginary times the exponent in the amplitude involves the energy for
the process multiplied by the time T . Thus for V (R) itself one obtains

V (R) = − lim
T→∞

1
T

log < exp
{

ie
∮
Γ

Aμdxμ
}

> ∼ cst.− e2

4πR
, (8.39)

which is the correct Coulomb potential for two oppositely charged particles.
To obtain the static potential it is not necessary to consider closed loops. Alterna-

tively, in a periodic box of length T one can introduce two long oppositely oriented
parallel lines in the time direction, separated by a distance R and closed by the peri-
odicity of the lattice, and associated with oppositely charged particles,

< exp
{

ie
∫
Γ

Aμdxμ
}

exp
{

ie
∫
Γ ′

Aνdyν
}

> (8.40)

In the large time limit one can then show that the result for the potential V (R) is the
same.

In the gravitational case there is no notion of “oppositely charged particles”, so
one cannot use the closed Wilson loop to extract the potential (Modanese, 1995).
One is therefore forced to consider a process in which one introduces two separate
world-lines for the two particles. It is well known that the equation for free fall can
be obtained by extremizing the space-time distance travelled. Thus the quantity
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μ
∫ τ(b)

τ(a)
dτ
√

gμν(x) dxμ
dτ

dxν
dτ , (8.41)

can be taken as the Euclidean action contribution associated with the heavy spinless
particle of mass μ .

Next consider two particles of mass M1, M2, propagating along parallel lines in
the “time” direction and separated by a fixed distance R. Then the coordinates for the
two particles can be chosen to be xμ = (τ,r,0,0) with r either 0 or R. The amplitude
for this process is a product of two factors, one for each heavy particle. Each is of
the form

L(0; M1) = exp
{
−M1

∫
dτ
√

gμν(x) dxμ
dτ

dxν
dτ

}
, (8.42)

where the first argument indicates the spatial location of the Wilson line. For the
two particles separated by a distance R the amplitude is

Amp. ≡W (0,R; M1,M2) = L(0; M1) L(R; M2) . (8.43)

For weak fields one sets gμν = δμν +hμν , with hμν � 1, and therefore gμν(x) dxμ
dτ

dxν
dτ

= 1+h00(x). Then the amplitude reduces to

W (M1,M2) = exp
{
−M1

∫ T

0
dτ
√

1+h00(τ)
}

exp
{
−M2

∫ T

0
dτ ′
√

1+h00(τ ′)
}

.

(8.44)
In perturbation theory the averaged amplitude can then be easily evaluated (Hamber
and Williams, 1995)

< W (0,R; M1,M2) > = exp
{
−T (M1 +M2 −G

M1M2

R
)+ · · ·

}
, (8.45)

and the static potential has indeed the expected form, V (R) = −G M1M2/R. The
contribution involving the sum of the two particle masses is R independent, and can
therefore be subtracted, if the Wilson line correlation is divided by the averages of
the individual single line contribution, as in

V (R) = − lim
T→∞

1
T

log
< W (0,R; M1,M2) >

< L(0; M1) >< L(R; M2) >
∼− G

M1M2

R
. (8.46)

If one is only interested in the spatial dependence of the potential, one can simplify
things further and take M1 = M2 = M. To higher order in the weak field expan-
sion one has to take into account multiple graviton exchanges, contributions from
graviton loops and self-energy contributions due to other particles.

How does all this translate to the lattice theory? At this point, the prescription for
computing the Newtonian potential for quantum gravity should be clear. For each
metric configuration (which is a given configuration of edge lengths on the lattice)
one chooses a geodesic that closes due to the lattice periodicity (and there might
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be many that have this property for the topology of a four-torus), with length T
(see Fig. 8.2). One then enumerates all the geodesics that lie at a fixed distance R
from the original one, and computes the associated correlation between the Wilson
lines. After averaging the Wilson line correlation over many metric configurations,
one extracts the potential from the R dependence of the correlation of Eq. (8.46).
In general since two geodesics will not be at a fixed geodesic distance from each
other in the presence of curvature, one needs to introduce some notion of average
distance, which then gives the spatial separations of the sources R.

On the lattice one can construct the analog of the Wilson line for one heavy
particle,

L(x,y,z) = exp
{
−M∑

i
li
}

, (8.47)

where edges are summed in the “t” direction, and the path is closed by the periodic-
ity of the lattice in the t direction. One can envision the simplicial lattice as divided
up in hypercubes, in which case the points x,y,z can be taken as the remaining labels
for the Wilson line.

Fig. 8.2 Correlations between
Wilson lines closed by the
lattice periodicity.

R

T

For a single line one expects

< L(x,y,z) > = < exp
{
−M∑

i
li
}

> ∼ e−M̃T , (8.48)

where T is the linear size of lattice in the t direction and M̃ the renormalized mass.
The correlation between Wilson lines at average “distance” R is then given by

− 1
T

log
[ < L(x,y,0) L(x,y,R) >

< L(x,y,0) >< L(x,y,R) >

]
∼

T � R
V (R) . (8.49)

Numerical studies suggest that the correct qualitative features of the potential
emerge close to the critical point. In particular it was found that the potential is
attractive close to the critical point, and for two equal mass particles of mass μ
scales, as expected, like the mass squared. As for any correlation in gravity, the ac-
curate determination of the potential as a function of distance R is a more difficult
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task, since at large distance the correlations are small and the statistical noise be-
comes large. Still, the first results (Hamber and Williams, 1995) suggest that the
potential has more or less the expected classical form in the vicinity of the critical
point, both as far as the mass dependence and perhaps even the distance dependence
are concerned. In particular it is attractive.

8.6 Scaling in the Vicinity of the Critical Point

In practice the correlation functions at fixed geodesic distance are difficult to com-
pute numerically, and therefore not the best route to study the critical properties.
But scaling arguments allow one to determine the scaling behavior of correlation
functions from critical exponents characterizing the singular behavior of the free
energy and various local averages in the vicinity of the critical point. In general a
divergence of the correlation length ξ

ξ (k) ≡ ∼
k→kc

Aξ |kc − k|−ν , (8.50)

signals the presence of a phase transition, and leads to the appearance of a singu-
larity in the free energy F(k). The scaling assumption for the free energy postulates
that a divergent correlation length in the vicinity of the critical point at kc leads to
non-analyticities of the type

F ≡− 1
V

lnZ = Freg +Fsing

Fsing ∼ ξ−d , (8.51)

where the second relationship follows simply from dimensional arguments (the free
energy is an extensive quantity). The regular part Freg is generally not determined
from ξ by purely dimensional considerations, but as the name implies is a regu-
lar function in the vicinity of the critical point. Combining the definition of ν in
Eq. (8.50) with the scaling assumption of Eq. (8.51) one obtains

Fsing(k) ∼
k→kc

(const.) |kc − k|dν . (8.52)

The presence of a phase transition can then be inferred from non-analytic terms in
invariant averages, such as the average curvature and its fluctuation. For the average
curvature one obtains

R(k) ∼
k→kc

AR |kc − k|dν−1 , (8.53)

up to regular contributions (i.e. constant terms in the vicinity of kc). An additive
constant can be added, but numerical evidence sor far points to this constant being
consistent with zero. Similarly one has for the curvature fluctuation
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χR(k) ∼
k→kc

AχR
|kc − k|−(2−dν) . (8.54)

At a critical point the fluctuation χ is in general expected to diverge, correspond-
ing to the presence of a divergent correlation length. From such averages one can
therefore in principle extract the correlation length exponent ν of Eq. (8.50) without
having to compute a correlation function.

An equivalent result, relating the quantum expectation value of the curvature to
the physical correlation length ξ , is obtained from Eqs. (8.50) and (8.53)

R(ξ ) ∼
k→kc

ξ 1/ν−4 , (8.55)

again up to an additive constant. Matching of dimensionalities in this last equation
is restored by inserting an appropriate power of the Planck length lP =

√
G on the

r.h.s..
One can relate the critical exponent ν to the scaling behavior of correlations at

large distances. The curvature fluctuation is related to the connected scalar curvature
correlator at zero momentum

χR(k) ∼
∫

dx
∫

dy <
√

gR(x)
√

gR(y) >c

<
∫

dx
√

g >
. (8.56)

A divergence in the above fluctuation is then indicative of long range correlations,
corresponding to the presence of a massless particle. Close to the critical point one
expects for large separations l0 � |x− y| � ξ a power law decay in the geodesic
distance, as in Eq. (8.31),

<
√

gR(x)
√

gR(y) > ∼
|x−y|→∞

1
|x− y|2n . (8.57)

Inserting the above expression in Eq. (8.56) and comparing with Eq. (8.54) deter-
mines the n as n = d − 1/ν . A priori one cannot exclude to possibility that some
states acquire a mass away from the critical point, in which case the correlation
functions would have the behavior of Eq. (8.32) for |x− y| � ξ .

8.7 Physical and Unphysical Phases

An important alternative to the analytic methods in the continuum is an attempt
to solve quantum gravity directly via numerical simulations. The underlying idea
is to evaluate the gravitational functional integral in the discretized theory Z by
summing over a suitable finite set of representative field configurations. In principle
such a method given enough configurations and a fine enough lattice can provide an
arbitrarily accurate solution to the original quantum gravity theory.

In practice there are several important factors to consider, which effectively limit
the accuracy that can be achieved today in a practical calculation. Perhaps the most
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important one is the enormous amounts of computer time that such calculations can
use up. This is particularly true when correlations of operators at fixed geodesic
distance are evaluated. Another practical limitation is that one is mostly interested
in the behavior of the theory in the vicinity of the critical point at Gc, where the
correlation length ξ can be quite large and significant correlations develop both be-
tween different lattice regions, as well as among representative field configurations,
an effect known as critical slowing down. Finally, there are processes which are
not well suited to a lattice study, such as problems with several different length (or
energy) scales. In spite of these limitations, the progress in lattice field theory has
been phenomenal in the last few years, driven in part by enormous advances in com-
puter technology, and in part by the development of new techniques relevant to the
problems of lattice field theories.

The starting point is the generation of a large ensemble of suitable edge length
configurations. The edge lengths are updated by a straightforward Monte Carlo al-
gorithm, generating eventually an ensemble of configurations distributed according
to the action and measure of Eq. (6.91) (Hamber and Williams, 1984; Hamber, 1984;
Berg, 1985); some more recent references are (Beirl et al, 1994; Riedler et al, 1999;
Bittner et al, 2002). Further details of the method as applied to pure gravity can be
found for example in the recent work (Hamber, 2000) and will not be repeated here.

As far as the lattice is concerned, one starts with the 4-d hypercube of Fig. 7.1
divided into simplices, and then stacks a number of such cubes in such a way as to
construct an arbitrarily large lattice, as shown in Fig. 8.3. Other lattice structures are
of course possible, including even a random lattice. The expectation is that for long
range correlations involving distance scales much larger than the lattice spacing the
precise structure of the underlying lattice structure will not matter.

Fig. 8.3 Four-dimensional hypercubes divided into simplices and stacked to form a four-
dimensional lattice.
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Fig. 8.4 A pictorial description of the smooth (left) and rough (right) phases of four-dimensional
lattice quantum gravity.

The lattice sizes investigated typically range from 44 sites (3840 edges) to 324

sites (15,728,640 edges). On a dedicated massively parallel supercomputer millions
of consecutive edge length configurations can be generated for tens of values of k in
a few months time.

Even though these lattices are not very large, one should keep in mind that due
to the simplicial nature of the lattice there are many edges per hypercube with many
interaction terms, and as a consequence the statistical fluctuations can be compar-
atively small, unless measurements are taken very close to a critical point, and at
rather large separation in the case of the correlation functions or the potential. In ad-
dition, extrapolations to the infinite volume limit can be aided by finite size scaling
methods, which exploit predictable renormalization group properties of finite size
systems.

Usually the topology is restricted to a four-torus, corresponding to periodic
boundary conditions. One can perform similar calculations with lattices employ-
ing different boundary conditions or topology, but one would expect the universal
scaling properties of the theory to be determined exclusively by short-distance renor-
malization effects. Indeed the Feynman rules of perturbation theory do not depend
in any way on boundary terms, although some momentum integrals might require
an infrared cutoff.

Based on physical considerations it would seem reasonable to impose the con-
straint that the scale of the curvature be much smaller than the inverse of the av-
erage lattice spacing, but still considerably larger than the inverse of the overall
system size. Equivalently, that in momentum space physical scales should be much
smaller that the ultraviolet cutoff, but much larger than the infrared cutoff. A typical
requirement is therefore that

l0 � ξ � L , (8.58)

where L is the linear size of the system, ξ the correlation length related for example
to the large scale curvature by R ∼ 1/ξ 2, and l0 the lattice spacing. Contrary to or-
dinary lattice field theories, the lattice spacing in lattice gravity is a dynamical quan-
tity. Thus the quantity l0 =

√
< l2 > only represents an average cutoff parameter.
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Fig. 8.5 A typical edge length distribution in the smooth phase for which k < kc, or G > Gc. Note
that the lattice gravitational measure of Eq. (6.77) cuts off the distribution at small edge lengths,
while the cosmological constant term prevents large edge lengths from appearing.

Furthermore the bare cosmological constant λ0 appearing in the gravitational
action of Eq. (6.91) can be fixed at 1 in units of the cutoff, since it just sets the overall
length scale in the problem. The higher derivative coupling a can be set to a value
very close to 0 since one ultimately is interested in the limit a → 0, corresponding
to the pure Einstein theory.

One finds that for the measure in Eq. (6.77) this choice of parameters leads to
a well behaved ground state for k < kc for higher derivative coupling a → 0. The
system then resides in the “smooth” phase, with an effective dimensionality close to
four. On the other hand for k > kc the curvature becomes very large and the lattice
collapses into degenerate configurations with very long, elongated simplices (see
Fig. 8.4). Fig. 8.5 shows an example of a typical edge length distribution in the well
behaved strong coupling phase close to but below kc.

Fig. 8.6 shows the corresponding curvature (δA or
√

gR) distribution.
One finds that as k is varied, the average curvature R is negative for sufficiently

small k (“smooth” phase), and appears to go to zero continuously at some finite
value kc. For k > kc the curvature becomes very large, and the simplices tend to
collapse into degenerate configurations with very small volumes (<V > / < l2 >2∼
0). This “rough” or “collapsed” phase is the region of the usual weak field expansion
(G → 0). In this phase the lattice collapses into degenerate configurations with very
long, elongated simplices (Hamber, 1984; Hamber and Williams, 1985; Berg, 1985).
This phenomenon is usually intepreted as a lattice remnant of the conformal mode
instability of Euclidean gravity discussed in Sect. (2.5).

An elementary argument can be given to explain the fact that the collapsed phase
for k > kc has an effective dimension of two. The instability is driven by the Eu-
clidean Einstein term in the action, and in particular its unbounded conformal mode
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Fig. 8.6 A typical curvature distribution in the smooth phase for which k < kc, or G > Gc. Note
that the distribution is peaked around a local curvature value which close to zero.

contribution. As the manifold during collapse reaches an effective dimension of two,
the action effectively turns into a topological invariant, unable to drive the instability
further to a still lower dimension1.

Accurate and reproducible curvature data can only be obtained for k below the
instability point, since for k > ku ≈ 0.053 an instability develops, presumably as-
sociated with the unbounded conformal mode. Its signature is typical of a sharp
first order transition, beyond which the system ventually tunnels into the rough,
elongated phase which is two-dimensional in nature and has no physically accept-
able continuum limit. The instability is caused by the appearance of one or more
localized singular configuration, with a spike-like curvature singularity. At strong
coupling such singular configurations are suppressed by a lack of phase space due
to the functional measure, which imposes non-trivial constraints due to the triangle
inequalities and their higher dimensional analogs. In other words, it seems that the
measure regulates the conformal instability at sufficiently strong coupling.

1 One way of determining coarse aspects of the underlying geometry is to compute the effective
dimension in the scaling regime, for example by considering how the number of points within a
thin shell of geodesic distance between τ and τ +Δ scales with the geodesic distance itself. For
distances a few multiples of the average lattice spacing one finds

N(τ) ∼
τ→∞

τ dv , (8.59)

with dv = 3.1(1) for G > Gc (the smooth phase) and dv � 1.6(2) for G < Gc (the rough phase).
One concludes that in the rough phase the lattice tends to collapse into a degenerate tree-like
configuration, whereas in the smooth phase the effective dimension of space-time is consistent
with four. Higher derivative terms affect these results at very short distances, where they tend to
make the geometry smoother.
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As a consequence, the non-analytic behavior of the free energy (and its deriva-
tives, which include for example the average curvature) has to be obtained by
analytic continuation of the Euclidean theory into the metastable branch. This pro-
cedure, while perhaps unusual, is formally equivalent to the construction of the con-
tinuum theory exclusively from its strong coupling (small k, large G) expansion

R(k) =
∞

∑
n=0

bnkn . (8.60)

Ultimately it should be kept in mind that one is really only interested in the pseudo-
Riemannian case, and not the Euclidean one for which an instability due to the con-
formal mode is to be expected. Indeed had such an instability not occurred for small
enough G one might have wondered if the resulting theory still had any relationship
to the original continuum theory.

8.8 Numerical Determination of the Scaling Exponents

One way to extract the critical exponent ν is to fit the average curvature to the form
[see Eq. (8.53)]

R(k) ∼
k→kc

−AR (kc − k)δ . (8.61)

Using this set of procedures one obtains on lattices of up to 164 sites kc = 0.0630(11)
and ν = 0.330(6). Note that the average curvature is negative at strong coupling up
to the critical point: locally the parallel transport of vectors around infinitesimal
loops seems to be described by a lattice version of Euclidean anti-de Sitter space.

Fig. 8.7 shows as an example a graph of the average curvature R(k) raised to
the third power. One would expect to get a straight line close to the critical point
if the exponent for R(k) is exactly 1/3. The numerical data indeed supports this
assumption, and in fact the linearity of the results close to kc is quite striking. Using
this procedure one obtains on the 164-site lattice an esimate for the critical point,
kc = 0.0639(10).

Often it can be advantageous to express results obtained in the cutoff theory
in terms of physical (i.e. cutoff independent) quantities. By the latter one means
quantities for which the cutoff dependence has been re-absorbed, or restored, in the
relevant definition. As an example, an expression equivalent to Eq. (8.53), relating
the vacuum expectation value of the local scalar curvature to the physical correlation
length ξ , is

<
∫

dx
√

gR(x) >

<
∫

dx
√

g >
∼

G→Gc
const.

(
l2
P

)(d−2−1/ν)/2
(

1
ξ 2

)(d−1/ν)/2

, (8.62)
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Fig. 8.7 Average curvature R(k) on a 164 lattice, raised to the third power. If ν = 1/3, the data
should fall on a straight line. The continuous line represents a linear fit of the form A (kc − k). The
small deviation from linearity of the transformed data is quite striking.

which is obtained by substituting Eq. (8.50) into Eq. (8.53). The correct dimen-
sions have been restored in this last equation by supplying appropriate powers of the

Planck length lP = G1/(d−2)
phys , which involves the ultraviolet cutoff Λ . For ν = 1/3

the result of Eq. (8.62) becomes particularly simple

<
∫

dx
√

gR(x) >

<
∫

dx
√

g >
∼

G→Gc
const.

1
lP ξ

. (8.63)

Note that a naive estimate based on dimensional arguments would have suggested
the incorrect result ∼ 1/l2

P. Instead the above expression actually vanishes at the crit-
ical point. This shows that ν plays the role of an anomalous dimension, determining
the magnitude of deviations from naive dimensional arguments.

Since the critical exponents play such a central role in determining the existence
and nature of the continuum limit, it appears desirable to have an independent way
of estimating them, which either does not depend on any fitting procedure, or at least
analyzes a different and complementary set of data. By systematically studying the
dependence of averages on the physical size of the system, one can independently
estimate the critical exponents.

Reliable estimates for the exponents in a lattice field theory can take advantage
of a comprehensive finite-size analysis, a procedure by which accurate values for
the critical exponents are obtained by taking into account the linear size dependence
of the result computed in a finite volume V .

In practice the renormalization group approach is brought in by considering the
behavior of the system under scale transformations. Later the scale dependence is
applied to the overall volume itself. The usual starting point for the derivation of
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the scaling properties is the renormalization group behavior of the free energy F =
− 1

V logZ

F(t,{u j}) = Freg(t,{u j}) + b−d Fsing(byt t,{by j u j}) , (8.64)

where Fsing is the singular, non-analytic part of the free energy, and Freg is the reg-
ular part. b is the block size in the RG transformation, while yt and y j( j ≥ 2) are
the relevant eigenvalues of the RG transformation, and t the reduced temperature
variable that gives the distance from criticality. One denotes here by yt > 0 the rel-
evant eigenvalue, while the remaining eigenvalues y j ≤ 0 are associated with either
marginal or irrelevant operators. Usually the leading critical exponent y−1

t is called
ν , while the next subleading exponent y2 is denoted −ω . For more details on the
method we have to refer to the comprehensive review in (Cardy, 1988).

The correlation length ξ determines the asymptotic decay of correlations, in the
sense that one expects for example for the two-point function at large distances

< O(x)O(y) > ∼
|x−y| � ξ

e−|x−y|/ξ . (8.65)

The scaling equation for the correlation length itself

ξ (t) = b ξ (byt t) , (8.66)

implies for b = t−1/yt that ξ ∼ t−ν with a correlation length exponent

ν = 1/yt . (8.67)

Derivatives of the free energy F with respect to t then determine, after setting the
scale factor b = t−1/yt , the scaling properties of physical observables, including cor-
rections to scaling. Thus for example, the second derivative of the free energy with
respect to t yields the specific heat exponent α = 2−d/yt = 2−dν ,

∂ 2

∂ t2 F(t,{u j}) ∼ t−(2−dν) . (8.68)

In the gravitational case one identifies the scaling field t with kc − k, where k =
1/16πG involves the bare Newton’s constant. The appearance of singularities in
physical averages, obtained from appropriate derivatives of F , is rooted in the fact
that close to the critical point at t = 0 the correlation length diverges.

The above results can be extended to the case of a finite lattice of volume V and
linear dimension L = V 1/d . The volume-dependent free energy is then written as

F(t,{u j},L−1) = Freg(t,{u j}) + b−d Fsing(byt t,{by j u j},b/L) . (8.69)

For b = L (a lattice consisting of only one point) one obtains the Finite Size Scaling
(FSS) form of the free energy [see for example (Brezin and Zinn-Justin, 1985) for a
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field-theoretic justification]. After taking derivatives with respect to the fields t and
{u j}, the FSS scaling form for physical observables follows,

O(L, t) = LxO/ν [ f̃O (L tν) + O(L−ω)
]

, (8.70)

where xO is the scaling dimension of the operator O, and f̃O(x) an arbitrary function.
As an example, consider the average curvature R. From Eq. (8.70), with t ∼

kc − k and xO = 1−4ν , one has

R(k,L) = L−(4−1/ν)
[

R̃
(
(kc − k) L1/ν

)
+ O(L−ω)

]
, (8.71)

where ω > 0 is a correction-to-scaling exponent. If scaling involving k and L holds
according to Eq. (8.70), then all points should lie on the same universal curve.

Fig. 8.8 shows a graph of the scaled curvature R(k) L4−1/ν for different values
of L = 4,8,16, versus the scaled coupling (kc − k)L1/ν . If scaling involving k and
L holds according to Eq. (8.71), with xO = 1− 4ν the scaling dimension for the
curvature, then all points should lie on the same universal curve. The data is in good
agreement with such behavior, and provides a further test on the exponent, which
seems consistent within errors with ν = 1/3.

Fig. 8.8 Finite size scaling behavior of the scaled curvature versus the scaled coupling. Here L = 4
for the lattice with 44 sites (�), L = 8 for a lattice with 84 sites (�), and L = 16 for the lattice
with 164 sites (◦). Statistical errors are comparable to the size of the dots. The continuous line
represents a best fit of the form a+bxc. Finite size scaling predicts that all points should lie on the
same universal curve. At kc = 0.0637 the scaling plot gives the value ν = 0.333.

As a second example consider the curvature fluctuation χR . From the general
Eq. (8.70) one expects in this case, for t ∼ kc − k and xO = 2−4ν ,
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χR(k,L) = L2/ν−4
[
χ̃R

(
(kc − k) L1/ν

)
+ O(L−ω)

]
, (8.72)

where ω > 0 is again a correction-to-scaling exponent. If scaling involving k and L
holds according to Eq. (8.70), then all points should lie again on the same universal
curve.

The value of kc itself should depend on the size of the system. One expects

kc(L) ∼
L→∞

kc(∞)+ c L−1/ν + · · · (8.73)

where kc(∞) is the infinite-volume limit critical point.
The previous discussion applies to continuous, second order phase transitions.

First order phase transitions are driven by instabilities, and are in general not gov-
erned by any renormalization group fixed point. The underlying reason is that the
correlation length does not diverge at the first order transition point, and thus the
system never becomes scale invariant. In the simplest case, a first order transition
develops as the system tunnels between two neighboring minima of the free energy.
In the metastable branch the free energy acquires a small complex part with a very
weak essential singularity in the coupling at the first order transition point (Langer,
1967a,b; Fisher, 1967; Griffiths, 1969). As a consequence, such a singularity is not
generally visible from the stable branch, in the sense that a power series expansion
in the temperature is unaffected by such a weak singularity. Indeed in the infinite
volume limit the singularities associated with a first order transition at Tu become
infinitely sharp, a θ - or δ -function type singularity. While the singularity in the free
energy at the endpoint of the metastable branch (at say Tc) cannot be explored di-
rectly, it can be reached by a suitable analytic continuation from the stable side of
the free energy branch. A similar situation arises in the case of lattice QCD with
fermions, where zero fermion mass (chiral) limit is reached by extrapolation (Ham-
ber and Parisi, 1983).

From the best data (with the smallest statistical uncertainties and the least sys-
tematic effects) one concludes

kc = 0.0636(11) ν = 0.335(9) , (8.74)

which suggests ν = 1/3 for pure quantum gravity. Note that at the critical point
the gravitational coupling is not weak, Gc ≈ 0.626 in units of the ultraviolet cutoff.
It seems that the value ν = 1/3 does not correspond to any known field theory
or statistical mechanics model in four dimensions. For a perhaps related system,
namely dilute branched polymers, it is known that ν = 1/2 in three dimensions, and
ν = 1/4 at the upper critical dimension d = 8, so one would expect a value close
to 1/3 somewhere in between. On the other hand for a scalar field one would have
obtained ν = 1 in d = 2 and ν = 1

2 for d ≥ 4, which seems excluded.

Table 8.1 provides a short summary of the critical exponents for quantum grav-
itation as obtained by various perturbative and non-perturbative methods in three
and four dimensions. The 2 + ε and the truncation method results were discussed
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Method ν−1 in d = 3 ν−1 in d = 4

lattice 1.67(6) -
lattice - 2.98(7)
2+ ε 1.6 4.4
truncation 1.2 2.666

exact ? 1.5882 3

Table 8.1 Direct determinations of the critical exponent ν−1 for quantum gravitation, using various
analytical and numerical methods in three and four space-time dimensions.

previously in Sects. (3.5) and (3.6), respectively. The lattice model of Eq. (6.91)
in four dimensions gives for the critical point Gc ≈ 0.626 in units of the ultravio-
let cutoff, and ν−1 = 2.98(7) which is used for comparison in Table 8.1. In three
dimensions the numerical results are consistent with the universality class of the in-
teracting scalar field. The same set of results are compared graphically in Fig. 8.9
and Fig. 8.10 below.

The direct numerical determinations of the critical point kc = 1/8πGc in d = 3
and d = 4 space-time dimensions are in fact quite close to the analytical prediction
of the lattice 1/d expansion given previously in Eq. (7.150),

kc

λ 1−2/d
0

=
21+2/d

d3

[
Γ (d)√
d +1

]2/d

. (8.75)

The above expression gives for a bare cosmological constant λ0 = 1 the estimate
kc =

√
3/(16 ·51/4) = 0.0724 in d = 4, to be compared with the numerical result kc =

0.0636(11) in (Hamber, 2000). Even in d = 3 one has kc = 25/3/27 = 0.118, to be
compared with the direct determination kc = 0.112(5) from (Hamber and Williams,
1993). These estimates are compared below in Fig. 8.10.

8.9 Renormalization Group and Lattice Continuum Limit

The discussion in the previous sections points to the existence of a phase transition
in the lattice gravity theory, with divergent correlation length in the vicinity of the
critical point, as in Eq. (8.50)

ξ (k) ∼
k→kc

Aξ |kc − k|−ν . (8.76)

As described previously, the existence of such a correlation length is usually inferred
indirectly by scaling arguments, from the presence of singularities in the free energy
Flatt = − 1

V lnZlatt as a function of the lattice coupling k. Equivalently, ξ could have
been computed directly from correlation functions at fixed geodesic distance using
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Fig. 8.9 Universal gravitational exponent 1/ν as a function of the dimension. The abscissa is
z = (d−2)/(d−1), which maps d = 2 to z = 0 and d =∞ to z = 1. The larger circles at d = 3 and
d = 4 are the lattice gravity results, interpolated (continuous curve) using the exact lattice results
1/ν = 0 in d = 2, and ν = 0 at d =∞ [from Eq. (7.159)]. The two curves close to the origin are the
2+ ε expansion for 1/ν to one loop (lower curve) and two loops (upper curve). The lower almost
horizontal line gives the value for ν expected for a scalar field theory, for which it is known that
ν = 1 in d = 2 and ν = 1

2 in d ≥ 4.

the definition in Eq. (8.32), or even from the correlation of Wilson lines associated
with the propagation of two heavy spinless particles. The outcome of such large
scale numerical calculations is eventually a determination of the quantities ν , kc =
1/8πGc and Aξ from first principles, to some degree of numerical accuracy.

In either case one expects the scaling result of Eq. (8.76) close to the fixed point,
which we choose to rewrite here in terms of the inverse correlation length m ≡ 1/ξ

m = Λ Am |k − kc |ν . (8.77)

Note that in the above expression the correct dimension for m (inverse length) has
been restored by inserting explicitly on the r.h.s. the ultraviolet cutoff Λ . Here k
and kc are of course still dimensionless quantities, and correspond to the bare mi-
croscopic couplings at the cutoff scale, k ≡ k(Λ) ≡ 1/ [8πG(Λ)]. Am is a calculable
numerical constant, related to Aξ in Eq. (8.50) by Am = A−1

ξ . It is worth pointing

out that the above expression for m(k) is almost identical in structure to the one for
the non-linear σ -model in the 2 + ε expansion, Eq. (3.36) and in the large N limit,
Eqs. (3.59), (3.60) and (3.64). It is of course also quite similar to 2 + ε result for
continuum gravity, Eq. (3.121).

The lattice continuum limit corresponds to the large cutoff limit taken at fixed m,

Λ → ∞ , k → kc , m fixed , (8.78)



8.9 Renormalization Group and Lattice Continuum Limit 297

0 2 4 6 8 10
d

0.1

0.2

0.3

0.4

0.5
k
c

Fig. 8.10 Critical point kc = 1/8πGc in units of the ultraviolet cutoff as a function of dimension
d. The circles at d = 3 and d = 4 are the lattice results, suitably interpolated (dashed curve) using
the additional lattice result 1/kc = 0 in d = 2. The lower continuous curve is the analytical large-d
lattice result of Eq. (7.150).

which shows that the continuum limit is reached in the vicinity of the ultraviolet
fixed point (see Fig. 8.11). Phrased equivalently, one takes the limit in which the
lattice spacing a ≈ 1/Λ is sent to zero at fixed ξ = 1/m, which requires an ap-
proach to the non-trivial UV fixed point k → kc. The quantity m is supposed to be a
renormalization group invariant, a physical scale independent of the scale at which
the theory is probed. In practice, since the cutoff ultimately determines the physical
value of Newton’s constant G, Λ cannot be taken to ∞. Instead a very large value
will suffice, Λ−1 ∼ 10−33cm, for which it will still be true that ξ � Λ which is all
that is required for the continuum limit.

For discussing the renormalization group behavior of the coupling it will be more
convenient to write the result of Eq. (8.77) directly in terms of Newton’s constant G
as

m = Λ
(

1
a0

)ν [G(Λ)
Gc

−1

]ν
, (8.79)

with the dimensionless constant a0 related to Am by Am = 1/(a0kc)ν . Note that
the above expression only involves the dimensionless ratio G(Λ)/Gc, which is the
only relevant quantity here. The lattice theory in principle completely determines
both the exponent ν and the amplitude a0 for the quantum correction. Thus from
the knowledge of the dimensionless constant Am in Eq. (8.77) one can estimate
from first principles the value of a0 in Eq. (8.84). Lattice results for the correlation
functions at fixed geodesic distance give a value for Am ≈ 0.72 with a significant
uncertainty, which, when combined with the values kc � 0.0636 and ν � 0.335

given above, gives a0 = 1/(kc A1/ν
m ) � 42. The rather surprisingly large value for a0
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Fig. 8.11 The lattice quantum continuum limit is gradually approached by considering sequences
of lattices with increasingly larger correlation lengths ξ in lattice units. Such a limit requires the
existence of an ultraviolet fixed point, where quantum field correlations extend over many lattice
spacing.

appears here as a consequence of the relatively small value of the lattice kc in four
dimensions.

The renormalization group invariance of the physical quantity m requires that
the running gravitational coupling G(μ) varies in the vicinity of the fixed point in
accordance with the above equation, withΛ → μ , where μ is now an arbitrary scale,

m = μ
(

1
a0

)ν [G(μ)
Gc

−1

]ν
. (8.80)

The latter is equivalent to the renormalization group invariance requirement

μ
d

d μ
m [μ ,G(μ)] = 0 , (8.81)

provided G(μ) is varied in a specific way. Indeed this type of situation was already
encountered before, for example in Eqs. (3.62) and (3.122). Eq. (8.81) can therefore
be used to obtain, if one so wishes, a β -function for the coupling G(μ) in units of
the ultraviolet cutoff,

μ
∂
∂ μ

G(μ) = β [G(μ)] , (8.82)

with β (G) given in the vicinity of the non-trivial fixed point, using Eq. (8.80), by

β (G) ≡ μ
∂
∂ μ

G(μ) ∼
G→Gc

− 1
ν

(G−Gc)+ . . . (8.83)

The above procedure is in fact in complete analogy to what was done for the non-
linear σ -model, for example in Eq. (3.64). But the last two steps are not really
necessary, for one can obtain the scale dependence of the gravitational coupling
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directly from Eq. (8.80), by simply solving for G(μ),

G(μ) = Gc

[
1 + a0(m2/μ2)1/2ν + . . .

]
. (8.84)

This last expression can be compared directly to the 2 + ε result of Eq. (3.117),
as well as to the σ -model result of Eq. (3.22). The physical dimensions of G can
be restored by multiplying the above expression on both sides by the ultraviolet
cutoff Λ , if one so desires. One concludes that the above result physically implies
gravitational anti-screening: the gravitational coupling G increases with distance.

Note that the last equation only involves the dimensionless ratio G(μ)/Gc, and
is therefore unaffected by whether the coupling G is dimensionful (after inserting
an appropriate power of the cutoff Λ ) or dimensionless. It simply relates the gravi-
tational coupling at one scale to the coupling at a different scale,

G(μ1)
G(μ2)

≈ 1 + a0(m/μ1)1/ν + . . .

1 + a0(m/μ2)1/ν + . . .
. (8.85)

In conclusion, the lattice result for G(μ) in Eq. (8.84) and the β -function in
Eq. (8.83) are qualitatively similar to what one finds both in the 2 + ε expansion
for gravity and in the non-linear σ -model in the strong coupling phase.

But there are also significant differences. Besides the existence of a phase tran-
sition between two geometrically rather distinct phases, one major new aspect pro-
vided by non-perturbative lattice studies is the fact that the weakly coupled small
G phase turns out to be pathological, in the sense that the theory becomes unstable,
with the four-dimensional lattice collapsing into a tree-like two-dimensional struc-
ture for G < Gc. While in continuum perturbation theory both phases, and therefore
both signs for the coupling constant evolution in Eq. (3.114), seem acceptable (giv-
ing rise to both a “Coulomb” phase, and a strong coupling phase), the Euclidean
lattice results rule out the small G < Gc branched polymer phase (Hamber, 1984;
Berg, 1985). The collapse eventually stops at d = 2 because the gravitational action
then becomes a topological invariant.

It appears difficult therefore to physically characterize the weak coupling phase
based on just the lattice results, which only seem to make sense in the strong cou-
pling phase G > Gc. One could envision an approach wherein such a weak coupling
phase would be discussed in the framework of some sort of analytic continuation
from the strong coupling phase, which would seem possible at least for some lattice
results, such as the gravitational β -function of Eq. (8.83). The latter clearly makes
sense on both sides of the transition, just as is the case for Eq. (3.64) for the non-
linear σ -model. In particular Eq. (8.83) implies that the coupling will flow towards
the Gaussian fixed point G = 0 for G < Gc. The scale dependence in this phase will
be such that one expects gravitational screening: the coupling G(μ) gets increas-
ingly weaker at larger distances. But how to remove the geometric collapse to a
two-dimensional manifold remains a major hurdle; one could envision an approach
where one introduces one more cutoff on the edges at short distances, so that each
simplex cannot go below a certain fatness. But if the results so far can be used as a
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guide, the gradual removal of such a cutoff would then plunge the theory back into
a degenerate two-dimensional, and therefore physically unacceptable, geometry.

8.10 Curvature Scales

As can be seen from Eqs. (3.79) and (8.21) the path integral for pure quantum gravity
can be made to depend on the gravitational coupling G and the cutoff Λ only: by a
suitable rescaling of the metric, or the edge lengths in the discrete case, one can set
the cosmological constant to unity in units of the cutoff. The remaining coupling G
should then be viewed more appropriately as the gravitational constant in units of
the cosmological constant λ .

The renormalization group running of G(μ) in Eq. (8.84) involves an invariant
scale ξ = 1/m. At first it would seem that this scale could take any value, including
very small ones based on the naive estimate ξ ∼ lP, which would preclude any
observable quantum effects in the foreseeable future. But the result of Eqs. (8.62)
and (8.63) suggest otherwise, namely that the non-perturbative scale ξ is in fact
related to curvature. From astrophysical observation the average curvature is very
small, so one would conclude from Eq. (8.63) that ξ is very large, and possibly
macroscopic. But the problem with Eq. (8.63) is that it involves the lattice Ricci
scalar, a quantity related curvature probed by parallel transporting vectors around
infinitesimal loops with size comparable to the lattice cutoff Λ−1. What one would
like is instead a relationship between ξ and quantities which describe the geometry
on larger scales.

In many ways the quantity m of Eq. (8.80) behaves as a dynamically gener-
ated mass scale, quite similar to what happens in the non-linear σ -model case
[Eq. (3.60)], or in the 2 + ε gravity case [Eq. (3.118)]. Indeed in the weak field
expansion, presumably appropriate for slowly varying fields on very large scales, a
mass-like term does appear, as in Eq. (1.79), with μ2 = 16πG|λ0| ≡ 2|λ | where λ
is the scaled cosmological constant. From the classical field equation R = 4λ one
can relate the above λ , and therefore the mass-like parameter m, to curvature, which
leads to the identification

λobs � 1
ξ 2 , (8.86)

with λobs the observed small but non-vanishing cosmological constant.
A further indication that the identification of the observed scaled cosmological

constant with a mass-like - and thefore renormalization group invariant - term makes
sense beyond the weak field limit can be seen for example by comparing the struc-
ture of the three classical field equations

Rμν − 1
2 gμν R + λ gμν = 8πGTμν

∂ μFμν + μ2 Aν = 4πe jν

∂ μ∂μ φ + m2 φ =
g
3!
φ 3 , (8.87)
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for gravity, QED (massive via the Higgs mechanism) and a self-interacting scalar
field, respectively.

A third argument suggesting the identification of the scale ξ with large scale cur-
vature and therefore with the observed scaled cosmological constant goes as follows.
Observationally the curvature on large scale can be determined by parallel transport-
ing vectors around very large loops, with typical size much larger than the lattice
cutoff lP. In gravity, curvature is detected by parallel transporting vectors around
closed loops. This requires the calculation of a path dependent product of Lorentz
rotations R, in the Euclidean case elements of SO(4), as discussed in Sect. 6.4. On
the lattice, the above rotation is directly related to the path-ordered (P) exponential
of the integral of the lattice affine connection Γ λ

μν via

Rα
β =

[
P e

∫
path

between simplices
Γ λ dxλ ]α

β
. (8.88)

Now, in the strongly coupled gravity regime (G > Gc) large fluctuations in the grav-
itational field at short distances will be reflected in large fluctuations of the R ma-
trices. Deep in the strong coupling regime it should be possible to describe these
fluctuations by a uniform (Haar) measure. Borrowing from the analogy with Yang-
Mills theories, and in particular non-Abelian lattice gauge theories with compact
groups [see Eq. (3.145)], one would therefore expect an exponential decay of near-
planar Wilson loops with area A of the type

W (Γ ) ∼ trexp

[ ∫
S(C)

R ·
·μν Aμν

C

]
∼ exp(−A/ξ 2) , (8.89)

where A is the minimal physical area spanned by the near-planar loop. A derivation
of this standard result for non-Abelian gauge theories can be found, for example, in
the textbook (Peskin and Schroeder, 1995).

In summary, the Wilson loop in gravity provides potentially a measure for the
magnitude of the large-scale, averaged curvature, operationally determined by the
process of parallel-transporting test vectors around very large loops, and which
therefore, from the above expression, is computed to be of the order R ∼ 1/ξ 2.
One would expect the power to be universal, but not the amplitude, leaving open
the possibility of having both de Sitter or anti-de Sitter space at large distances
(as discussed previously in Sect. 8.8, the average curvature describing the parallel
transport of vectors around infinitesimal loops is described by a lattice version of
Euclidean anti-de Sitter space). A recent explicit lattice calculation indeed suggests
that the de Sitter case is singled out, at least for sufficiently strong copuling (Ham-
ber and Williams, 2007). Furthermore one would expect, based on general scaling
arguments, that such a behavior would persists throughout the whole strong cou-
pling phase G > Gc, all the way up to the on-trivial fixed point. From it then follows
the identification of the correlation length ξ with a measure of large scale curva-
ture, the most natural candidate being the scaled cosmological constant λphys, as in
Eq. (8.86). This relationship, taken at face value, implies a very large, cosmological
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value for ξ ∼ 1028cm, given the present bounds on λphys. Other closely related pos-
sibilities may exist, such as an identification of ξ with the Hubble constant (as mea-
sured today), determining the macroscopic expansion rate of the universe via the
correspondence ξ � 1/H0. Since this quantity is presumably time-dependent, a
possible scenario would be one in which ξ−1 = H∞ = limt→∞H(t), with H2

∞ = λ
3 ,

for which the horizon radius is R∞ = H−1
∞ .

Since, as pointed out in Sects. (3.5) and (8.3), the gravitational path integral only
depends in a non-trivial way on the dimensionless combination G

√
λ0, the physical

Newton’s constant itself G can be decomposed into non-running and running parts
as

G =
1

Gλ0
·G2λ0 → ξ 2 ·

[
(G
√
λ0)(μ2)

]2
, (8.90)

where we have used 1/Gλ0 ∼ ξ 2. The running of the second, dimensionless term in
square brackets can be directly deduced from either Eqs. (8.80) or (8.84). Note that
there λ0 does not appear there explicitly, since originally it was set equal to one by
scaling the metric (or the edge lengths).

In conclusion, the modified Einstein equations, incorporating the quantum run-
ning of G, read

Rμν − 1
2 gμν R + λ gμν = 8πG(μ)Tμν , (8.91)

with λ � 1
ξ 2 , and only G(μ) on the r.h.s. scale-dependent in accordance with

Eq. (8.84). The precise meaning of G(μ) in a covariant framework will be given
later in Sect. 9.2.

8.11 Gravitational Condensate

In strongly coupled gravity there appears to be a deep relationship, already encoun-
tered previously in non-Abelian gauge theories, between the non-perturbative scale
ξ appearing in Eq. (8.84), and the non-perturbative vacuum condensate of Eq. (8.62)
and (8.86), which is a measure of curvature. The inescapable conclusion of the re-
sults of Eqs. (8.62) and (6.67) is that the scale ξ appearing in Eq. (8.84) is related
to curvature, and must be macroscopic for the lattice theory to be consistent. How
can quantum effects propagate to such large distances and give such drastic modi-
fications to gravity? The answer to this paradoxical question presumably lies in the
fact that gravitation is carried by a massless particle whose interactions cannot be
screened, on any length scale.

It is worth pointing out here that the gravitational vacuum condensate, which only
exists in the strong coupling phase G > Gc, and which is proportional to the curva-
ture, is genuinely non-perturbative. One can summarize the result of Eq. (8.86) as

Robs � (10−30eV )2 ∼ ξ−2 , (8.92)



8.11 Gravitational Condensate 303

where the condensate is, according to Eq. (8.79), non-analytic at G = Gc. A graviton
vacuum condensate of order ξ−1 ∼ 10−30eV is of course extraordinarily small com-
pared to the QCD color condensate (ΛMS � 220MeV ) and the electro-weak Higgs
condensate (v � 250GeV ). One can pursue the analogy with non-Abelian gauge
theories further by stating that the quantum gravity theory cannot provide a value
for the non-perturbative curvature scale ξ : it needs to be fixed by some sort of phe-
nomenological input, either by Eqs. (8.84) or by (8.86). But one important message
is that the scale ξ in those two equations is one and the same.

Can the above physical picture be used to provide further insight into the nature
of the phase transition, and more specifically the value for ν? We will mention here
a simple geometric argument which can be given to support the exact value ν = 1/3
for pure gravity (Hamber and Williams, 2004). First one notices that the vacuum
polarization induced scale dependence of the gravitational coupling G(r) as given
in Eq. (8.84) implies the following general structure for the quantum corrected static
gravitational potential,

V (r) = −G(r)
mM

r
≈ −G(0)

mM
r

[
1+ c(r/ξ )1/ν +O

[
(r/ξ )2/ν

]]
, (8.93)

for a point source of mass M located at the origin and for intermediate distances
lp � r � ξ . One can visualize the above result by stating that virtual graviton loops
cause an effective anti-screening of the primary gravitational source M, giving rise
to a quantum correction to the potential proportional to r1/ν−1. But only for ν = 1/3
can the additional contribution be interpreted as being due to a close to uniform mass
distribution surrounding the original source, of strength

ρξ (M) =
3cM
4πξ 3 . (8.94)

Such a simple geometric interpretation fails unless the exponent ν for gravitation
is exactly one third. In fact in dimensions d ≥ 4 one would expect based on the
geometric argument that ν = 1/(d − 1) if the quantum correction to the gravita-
tional potential arises from such a virtual graviton cloud. These arguments rely of
course on the lowest order result V (r) ∼

∫
dd−1k eik·x/k2 ∼ r3−d for single graviton

exchange in d > 3 dimensions.
Equivalently, the running of G can be characterized as being in part due to a tiny

non-vanishing (and positive) non-perturbative gravitational vacuum contribution to
the cosmological constant, with

λ0(M) =
3cM
ξ 3 , (8.95)

and therefore an associated effective classical average curvature of magnitude
Rclass ∼ Gλ0 ∼ GM/ξ 3. It is amusing that for a very large mass distribution M,
the above expression for the curvature can only be reconciled with the naive dimen-
sional estimate Rclass ∼ 1/ξ 2, provided for the gravitational coupling G itself one
has G ∼ ξ/M, which is reminiscent of Mach’s principle and its connection with the
Lense-Thirring effect (Lense and Thirring, 1918; Sciama, 1953; Feynman, 1962).



Chapter 9
Scale Dependent Gravitational Couplings

9.1 Renormalization Group and Scale Dependence of G

Non-perturbative studies of quantum gravity suggest the possibility that gravita-
tional couplings might be weakly scale dependent due to nontrivial renormalization
group effects. This would introduce a new gravitational scale, unrelated to Newton’s
constant, required in order to parametrize the gravitational running in the infrared
region. If one is willing to accept such a scenario, then it seems difficult to find
a compelling theoretical argument for why the non-perturbative scale entering the
coupling evolution equations should be very small, comparable to the Planck length.
One possibility is that the relevant non-perturbative scale is related to the curvature
and therefore macroscopic in size, which could have observable consequences. One
key ingredient in this argument is the relationship, in part supported by Euclidean
lattice results combined with renormalization group arguments, between the scaling
violation parameter and the scale of the average curvature.

9.2 Effective Field Equations

To summarize the results of the previous section, the result of Eq. (8.84) implies for
the running gravitational coupling in the vicinity of the ultraviolet fixed point

G(k2) = Gc

⎡
⎣ 1 + a0

(
m2

k2

) 1
2ν

+ O[ (m2/k2)
1
ν ]

⎤
⎦ , (9.1)

with m = 1/ξ , a0 > 0 and ν � 1/3. Since ξ is expected to be very large, the quantity
Gc in the above expression should now be identified with the laboratory scale value√

Gc ∼ 1.6× 10−33cm. Quantum corrections on the r.h.s. are therefore quite small
as long as k2 � m2, which in real space corresponds to the “short distance” regime
r � ξ .

305
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The interaction in real space is often obtained by Fourier transform, and the above
expression is singular as k2 → 0. The infrared divergence needs to be regulated,
which can be achieved by utilizing as the lower limit of momentum integration m =
1/ξ . Alternatively, as a properly infrared regulated version of the above expression
one can use

G(k2) � Gc

⎡
⎣ 1 + a0

(
m2

k2 + m2

) 1
2ν

+ . . .

⎤
⎦ . (9.2)

The last form for G(k2) will only be necessary in the regime where k is small, so
that one can avoid unphysical results. From Eq. (9.2) the gravitational coupling then
approaches at very large distances r � ξ the finite value G∞ = (1 + a0 + . . .)Gc.
Note though that in Eqs. (9.1) or (9.2) the cutoff no longer appear explicitly, it is
absorbed into the definition of Gc. In the following we will be mostly interested in
the regime lP � r � ξ , for which Eq. (9.1) is completely adequate.

The first step in analyzing the consequences of a running of G is to re-write the
expression for G(k2) in a coordinate-independent way. The following methods are
not new, and have found over the years their fruitful application in gauge theories
and gravity, for example in the discussion of non-local effective actions (Vilkovisky,
1984; Barvinsky and Vilkovisky, 1985). Since in going from momentum to position
space one usually employs k2 → −�, to obtain a quantum-mechanical running of
the gravitational coupling one should make the replacement

G → G(�) , (9.3)

and therefore from Eq. (9.1)

G(�) = Gc

[
1 + a0

(
1

ξ 2�

) 1
2ν

+ . . .

]
. (9.4)

In general the form of the covariant d’Alembertian operator � depends on the spe-
cific tensor nature of the object it is acting on,

� Tαβ ...
γδ ... = gμν∇μ

(
∇ν Tαβ ...

γδ ...

)
. (9.5)

Only on scalar functions one has the fairly simple result

�S(x) =
1
√

g
∂μ gμν

√
g∂ν S(x) , (9.6)

whereas on second rank tensors one has the already significantly more complicated
expression �Tαβ ≡ gμν∇μ(∇νTαβ ).

The running of G is expected to lead to a non-local gravitational action, for ex-
ample of the form
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I =
1

16πG

∫
dx
√

g

(
1 − a0

(
1

ξ 2�

)1/2ν
+ . . .

)
R . (9.7)

Due to the fractional exponent in general the covariant operator appearing in the
above expression, namely

A(�) = a0

(
1

ξ 2�

)1/2ν
, (9.8)

has to be suitably defined by analytic continuation from positive integer powers.
The latter can be done for example by computing �n for positive integer n and
then analytically continuing to n →−1/2ν . Alternatively one can make use of the
identity

1
�n =

(−1)n

Γ (n)

∫ ∞

0
dssn−1 exp(i s�) , (9.9)

and later perform the relevant integrals with n → 1/2ν . Other procedures can be
used to define A(�), for example based on an integral representation involving the
scalar propagator (Lopez Nacir and Mazzitelli, 2007).

It should be stressed here that the action in Eq. (9.7) should be treated as a clas-
sical effective action, with dominant radiative corrections at short distances (r � ξ )
already automatically built in, and for which a restriction to generally smooth field
configurations does make some sense. In particular one would expect that in most
instances it should be possible, as well as meaningful, to neglect terms involving
large numbers of derivatives of the metric in order to compute the effects of the new
contributions appearing in the effective action.

Had one not considered the action of Eq. (9.7) as a starting point for constructing
the effective theory, one would naturally be led [following Eq. (9.3)] to consider the
following effective field equations

Rμν − 1
2 gμν R + λ gμν = 8πG [1+A(�)] Tμν , (9.10)

the argument again being the replacement G → G(�) ≡ G [1+A(�)]. Being man-
ifestly covariant, these expressions at least satisfy some of the requirements for a
set of consistent field equations incorporating the running of G. The above effective
field equation can in fact be re-cast in a form similar to the classical field equations

Rμν − 1
2 gμν R + λ gμν = 8πGT̃μν , (9.11)

with T̃μν = [1+A(�)] Tμν defined as an effective, or gravitationally dressed,
energy-momentum tensor. Just like the ordinary Einstein gravity case, in general
T̃μν might not be covariantly conserved a priori, ∇μ T̃μν �= 0, but ultimately the
consistency of the effective field equations demands that it be exactly conserved,
in consideration of the Bianchi identity satisfied by the Riemann tensor [a similar
problem arises in other non-local modifications of gravity (Barvinsky, 2003)]. The
ensuing new covariant conservation law
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∇μ T̃μν ≡ ∇μ [ [1+A(�)] Tμν
]

= 0 , (9.12)

can be then be viewed as a constraint on T̃μν (or Tμν ) which, for example, in the
specific case of a perfect fluid, will imply again a definite relationship between the
density ρ(t), the pressure p(t) and the RW scale factor a(t), just as it does in the
standard case. Then the requirement that the bare energy momentum-tensor be con-
served would imply that the quantum contribution A(�)Tμν itself be separately con-
served. That this is indeed attainable can be shown in a few simple cases, such as
the static isotropic solution discussed below. There a “vacuum fluid” is introduced
to account for the vacuum polarization contribution, whose energy momentum ten-
sor can be shown to be covariantly conserved. That the procedure is consistent in
general is not clear, in which case the present approach should perhaps be limited to
phenomenological considerations.

Let us make a few additional comments regarding the above effective field equa-
tions, in which we will set the cosmological constant λ = 0 from now on. One
simple observation is that the trace equation only involves the (simpler) scalar
d’Alembertian, acting on the trace of the energy-momentum tensor

R = −8πG [1+A(�)] T μ
μ . (9.13)

Finally, to the order one is working here, the above effective field equations should
be equivalent to

(
1 − A(�) + O(A(�)2)

)(
Rμν − 1

2 gμν R
)

= 8πG Tμν , (9.14)

where the running of G has been moved over to the “gravitational” side.

9.3 Poisson’s Equation and Vacuum Polarization Cloud

One of the simplest cases to analyze is of course the static case. The non-relativistic,
static Newtonian potential is defined as usual as

φ(r) = (−M)
∫

d3k
(2π)3 eik·x G(k2)

4π
k2 , (9.15)

and therefore proportional to the 3−d Fourier transform of

4π
k2 → 4π

k2

⎡
⎣ 1 + a0

(
m2

k2

) 1
2ν

+ . . .

⎤
⎦ . (9.16)

But, as already mentioned, for small k proper care has to be exercised in providing a
properly infrared regulated version of the above expression, which, from Eq. (9.2),
reads
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Fig. 9.1 A virtual graviton
cloud surrounds the point
source of mass M, leading to
an anti-screening modification
of the static gravitational
potential. This antiscreening
effect of vacuum fluctuations
is quite natural in gravity,
since the larger the cloud is,
the stronger the gravitational
force is expected to be.

 

M 

4π
(k2 + μ2)

→ 4π
(k2 + μ2)

⎡
⎣ 1 + a0

(
m2

k2 + m2

) 1
2ν

+ . . .

⎤
⎦ , (9.17)

where the limit μ → 0 should be taken at the end of the calculation.
Given the running of G from either Eqs. (9.2) or (9.1) in the large k limit, the next

step is naturally an attempt at finding a solution to Poisson’s equation with a point
source at the origin, so that one can determine the structure of the quantum correc-
tions to the static gravitational potential in real space. There are in principle two
equivalent ways to compute the potential φ(r), either by inverse Fourier transform
of Eq. (9.16), or by solving Poisson’s equation Δφ = 4πρ with the source term ρ(r)
given by the inverse Fourier transform of the correction to G(k2), as given below
in Eq. (9.20). The zero-th order term then gives the standard Newtonian −MG/r
term, while the correction in general is given by a rather complicated hypergeomet-
ric function. But for the special case ν = 1/2 the Fourier transform of Eq. (9.17)
is easy to do, the integrals are elementary and the running of G(r) so obtained is
particularly transparent,

G(r) = G∞

(
1 − a0

1 + a0
e−mr

)
, (9.18)

where we have set G∞≡ (1+a0)G and G≡G(0). G therefore increases slowly from
its value G at small r to the larger value (1 + a0)G at infinity. Fig. 9.1 illustrates
the anti-screening effect of the virtual graviton cloud. Fig. 9.2 gives a schematic
illustration of the behavior of G as a function of r.

Another possible procedure to obtain the static potential φ(r) is to solve directly
the radial Poisson equation for φ(r). This will give a density ρ(r) which can later
be used to generalize to the relativistic case. In the a0 �= 0 case one needs to solve
Δφ = 4πρ , or in the radial coordinate for r > 0
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1
r2

d
d r

(
r2 d φ

d r

)
= 4πGρm(r) , (9.19)

with the source term ρm determined from the inverse Fourier transform of the cor-
rection term in Eq. (9.17). The latter is given by

ρm(r) =
1

8π
cν a0 M m3 (mr)−

1
2 (3− 1

ν ) K 1
2 (3− 1

ν )(mr) , (9.20)

with the constant

cν ≡ 2
1
2 (5− 1

ν )
√
πΓ ( 1

2ν )
. (9.21)

One can verify that the vacuum polarization density ρm has the property

4π
∫ ∞

0
r2 drρm(r) = a0 M , (9.22)

where the standard integral
∫ ∞

0 dxx2−n Kn(x) = 2−n√πΓ
(

3
2 −n

)
has been used.

Note that the gravitational vacuum polarization distribution is singular close to
r = 0, just as in QED, Eq. (3.138).

The r → 0 result for φ(r) (discussed in the following, as an example, for ν = 1/3)
can then be obtained by solving the radial equation for φ(r),

1
r

d2

d r2 [rφ(r) ] =
2a0 M Gm3

π
K0(mr) , (9.23)

where the (modified) Bessel function is expanded out to lowest order in r, K0(mr) =
−γ− ln

(
mr
2

)
+O(m2 r2), giving

φ(r) = − M G
r

+ a0 M Gm3 r2

3π

[
− ln

(mr
2

)
− γ+

5
6

]
+ O(r3) , (9.24)

where the two integration constants are matched to the general large r solution

φ(r) ∼
r→∞

− M G
r

[
1 + a0

(
1 − cl (mr)

1
2ν−1 e−mr

)]
, (9.25)

with cl = 1/[ν 2
1

2ν Γ ( 1
2ν )]. Note again that the vacuum polarization density ρm(r)

has the expected normalization property

4π
∫ ∞

0
r2 dr

a0 M m3

2π2 K0(mr) =
2a0 M m3

π
· π

2m3 = a0 M , (9.26)

so that the total enclosed additional gravitational charge is indeed just a0M, and
G∞ = G0(1+a0).
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Fig. 9.2 Schematic scale dependence of the gravitational coupling G(r), from Eq. (9.18) valid
for ν = 1/2. The gravitational coupling rises initially like a power of r, and later approaches the
asymptotic value G∞ = (1+a0)G for large r. The behavior for other values of ν > 1/3 is similar.

9.4 Static Isotropic Solution

The discussion of the previous section suggests that the quantum correction due to
the running of G can be described, at least in the non-relativistic limit of Eq. (9.2)
as applied to Poisson’s equation, in terms of a vacuum energy density ρm(r), dis-
tributed around the static source of strength M in accordance with the result of
Eqs. (9.20) and (9.22).

In general a manifestly covariant implementation of the running of G, via the
G(�) given in Eq. (9.4), will induce a non-vanishing effective pressure term. It is
natural therefore to attempt to represent the vacuum polarization cloud by a rela-
tivistic perfect fluid, with energy-momentum tensor

Tμν = ( p + ρ ) uμ uν + gμν p , (9.27)

which in the static isotropic case reduces to

Tμν = diag [B(r)ρ(r), A(r) p(r), r2 p(r), r2 sin2 θ p(r) ] , (9.28)

and gives a trace T = 3 p−ρ . The tt, rr and θθ components of the field equations
then read

−λB(r)+
A′(r)B(r)

rA(r)2 − B(r)
r2A(r)

+
B(r)
r2 = 8πGB(r)ρ(r) (9.29)

λA(r)− A(r)
r2 +

B′(r)
rB(r)

+
1
r2 = 8πGA(r)p(r) (9.30)
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− B′(r)2r2

4A(r)B(r)2 +λ r2 − A′(r)B′(r)r2

4A(r)2B(r)
+

B′′(r)r2

2A(r)B(r)
− A′(r)r

2A(r)2 +
B′(r)r

2A(r)B(r)
= 8Gπr2 p(r) ,

(9.31)
with the ϕϕ component equal to sin2 θ times the θθ component. Covariant energy
conservation ∇μ Tμν = 0 implies

[ p(r)+ρ(r) ]
B′(r)
2B(r)

+ p′(r) = 0 , (9.32)

and forces a definite relationship between B(r), ρ(r) and p(r). The three field equa-
tions and the energy conservation equation are, as usual, not independent, because
of the Bianchi identity. It seems reasonable to attempt to solve the above equations
[usually considered in the context of relativistic stellar structure (Misner, Thorne
and Wheeler, 1973)] with the density ρ(r) given by the ρm(r) of Eq. (9.20). This of
course raises the question of how the relativistic pressure p(r) should be chosen, an
issue that the non-relativistic calculation did not have to address. One finds that co-
variant energy conservation in fact completely determines the pressure in the static
case, leading to consistent equations and solutions (note that in particular it would
not be consistent to take p(r) = 0).

Since the function B(r) drops out of the tt field equation, the latter can be inte-
grated immediately, giving

A(r)−1 = 1 − 2MG
r

− λ
3

r2 − 8πG
r

∫ r

0
dxx2ρ(x) . (9.33)

It is natural to identify c1 = −2MG, which of course corresponds to the solution
with a0 = 0 (p = ρ = 0). Next, the rr field equation can be solved for B(r),

B(r) = exp

{
c2 −

∫ r

r0

dy
1+A(y)

(
λ y2 −8πGy2 p(y)−1

)
y

}
, (9.34)

with the constant c2 again determined by the requirement that the above expression
for B(r) reduce to the standard Schwarzschild solution for a0 = 0 (p = ρ = 0), giving
c2 = ln(1− 2MG/r0 − λ r2

0/3). The last task left therefore is the determination of
the pressure p(r). One needs to solve the equation

p′(r)+

[
8πGr3 p(r) + 2MG − 2

3λ r3 + 8πG
∫ r

r0
dxx2ρ(x)

]
[p(r)+ρ(r)]

2r
(

r − 2MG − λ
3 r3 −8πG

∫ r
0 dxx2ρ(x)

) = 0 ,

(9.35)
which is usually referred to as the equation of hydrostatic equilibrium. From now
on we will focus only the case λ = 0. The last differential equation can be solved
for p(r),

pm(r) =
1√

1− 2MG
r

⎛
⎝c3 −

∫ r

r0

dz
MGρ(z)

z2
√

1− 2MG
z

⎞
⎠ , (9.36)



9.4 Static Isotropic Solution 313

where the constant of integration has to be chosen so that when ρ(r) = 0 (no quan-
tum correction) one has p(r) = 0 as well. Because of the singularity in the integrand
at r = 2MG, we will take the lower limit in the integral to be r0 = 2MG + ε , with
ε → 0.

To proceed further, one needs the explicit form for ρm(r), which was given in
Eq. (9.20),

ρm(r) =
1

8π
cν a0 M m3 (mr)−

1
2 (3− 1

ν ) K 1
2 (3− 1

ν )(mr) . (9.37)

The required integrands involve for general ν the modified Bessel function Kn(x),
which can lead to rather complicated expressions for the general ν case. To deter-
mine the pressure, one supposes that it as well has a power dependence on r in the
regime under consideration, pm(r) = cp A0 rγ , where cp is a numerical constant, and
then substitute pm(r) into the pressure equation of Eq. (9.35). This gives, past the
horizon r � 2MG the algebraic condition

(2γ − 1)cp M Grγ−1 − cp γ rγ − M Gr1/ν−4 � 0 , (9.38)

giving the same power γ = 1/ν−3 as for ρ(r), cp =−1 and surprisingly also γ = 0,
implying that in this regime only ν = 1/3 gives a consistent solution.

The case ν = 1/3 can be dealt with separately, starting from the expression for
ρm(r) for ν = 1/3

ρm(r) =
1

2π2 a0 M m3 K0(mr) . (9.39)

One has for small r

ρm(r) = − a0

2π2 M m3
(

ln
mr
2

+ γ
)

+ . . . (9.40)

and consequently

A−1(r) = 1 − 2M G
r

+
4a0 M Gm3

3π
r2 ln(mr) + . . . (9.41)

From Eq. (9.35) one can then obtain an expression for the pressure pm(r), and one
finds again in the limit r � 2MG

pm(r) =
a0

2π2 M m3 ln(mr) + . . . (9.42)

After performing the required r integral in Eq. (9.34), and evaluating the resulting
expression in the limit r � 2MG, one obtains

B(r) = 1 − 2M G
r

+
4a0 M Gm3

3π
r2 ln(mr) + . . . (9.43)

It is encouraging to note that in the solution just obtained the running of G is the
same in A(r) and B(r). The expressions for A(r) and B(r) are consistent with a
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gradual slow increase in G with distance, in accordance with the formula

G → G(r) = G

(
1 +

a0

3π
m3 r3 ln

1
m2 r2 + . . .

)
, (9.44)

in the regime r � 2M G, and therefore of course in agreement with the original
result of Eqs. (9.1) or (9.2), namely that the classical laboratory value of G is ob-
tained for r � ξ . Note that the correct relativistic small r correction of Eq. (9.44)
agrees roughly in magnitude (but not in sign) with the approximate non-relativistic,
Poisson equation result of Eq. (9.24).

There are similarities, as well as some rather substantial differences, with the
corresponding QED result of Eq. (3.138). In the gravity case, the correction vanishes
as r goes to zero: in this limit one is probing the bare mass, unobstructed by its
virtual graviton cloud. On the other hand, in the QED case, as one approaches the
source one is probing the bare charge, whose magnitude diverges logarithmically
for small r.

Finally it should be recalled that neither function A(r) or B(r) are directly re-
lated to the relativistic potential for particle orbits, which is given instead by the
combination

Ve f f (r) =
1

2A(r)

[
l2

r2 − 1
B(r)

+ 1

]
, (9.45)

where l is proportional to the orbital angular momentum of the test particle, as dis-
cussed for example in (Hartle, 2003).

The running G term acts in a number of ways as a local cosmological constant
term, for which the r dependence of the vacuum solution for small r is fixed by
the nature of the Schwarzschild solution with a cosmological constant term. One
can therefore wonder what the solutions might look like in d dimensions. In d ≥ 4
dimensions the Schwarzschild solution to Einstein gravity with a cosmological term
is (Myers and Perry, 1986)

A−1(r) = B(r) = 1−2MGcd r3−d − 2λ
(d −2)(d −1)

r2 , (9.46)

with cd = 4πΓ ( d−1
2 )/(d−2)π d−1

2 , which would suggest, in analogy with the results
for d = 4 given above that in d ≥ 4 dimensions only ν = 1/(d−1) is possible. This
last result would also be in agreement with the exact value ν = 0 found at d = ∞ in
Sect. 7.6.

9.5 Cosmological Solutions

A scale dependent Newton’s constant will lead to small modifications of the stan-
dard cosmological solutions to the Einstein field equations. Here we will pro-
vide a brief discussion of what modifications are expected from the effective field
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equations on the basis of G(�), as given in Eq. (9.3), which itself originates in
Eqs. (9.2) and (9.1) (Hamber and Williams, 2005a,b).

The starting point is the quantum effective field equations of Eq. (9.10),

Rμν − 1
2 gμν R + λ gμν = 8πG [1+A(�)] Tμν , (9.47)

with A(�) defined in Eq. (9.8). In the Friedmann-Robertson-Walker (FRW) frame-
work these are applied to the standard homogeneous isotropic metric

ds2 = −dt2 +a2(t)
{

dr2

1− k r2 + r2 (dθ 2 + sin2 θ dϕ2)} . (9.48)

It should be noted that there are two quantum contributions to the above set of effec-
tive field equations. The first one arises because of the presence of a non-vanishing
cosmological constant λ � 1/ξ 2 caused by the non-perturbative vacuum conden-
sate of Eq. (8.86). As in the case of standard FRW cosmology, this is expected to be
the dominant contributions at large times t, and gives an exponential (for λ > 0 or
cyclic (for λ < 0) expansion of the scale factor.

The second contribution arises because of the running of G in the effective field
equations,

G(�) = G [1+A(�)] = G

[
1+a0

(
ξ 2�

)− 1
2ν + . . .

]
, (9.49)

for t � ξ , with ν � 1/3 and a0 > 0 a calculable coefficient of order one [see
Eqs. (9.1) and (9.2)].

As a first step in solving the new set of effective field equations, consider first the
trace of the field equation in Eq. (9.47), written as

(
1 − A(�) + O(A(�)2)

)
R = 8πGT μ

μ , (9.50)

where R is the scalar curvature. Here the operator A(�) has been moved over on
the gravitational side, so that it now acts on functions of the metric only, using the
binomial expansion of 1/[1 + A(�)]. To proceed further, one needs to compute the
effect of A(�) on the scalar curvature. The d’Alembertian operator acting on scalar
functions S(x) is given by

1
√

g
∂μ gμν

√
g∂ν S(x) , (9.51)

and for the Robertson-Walker metric, acting on functions of t only, one obtains a
fairly simple result in terms of the scale factor a(t)

− 1
a3(t)

∂
∂ t

[
a3(t)

∂
∂ t

]
F(t) . (9.52)

As a next step one computes the action of � on the scalar curvature R, which gives
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−6
[
−2k ä(t)−5 ȧ2(t) ä(t)+a(t) ä2(t)+3a(t) ȧ(t)a(3)(t)+a2(t)a(4)(t)

]
/a3(t) ,

(9.53)
and then �2 on R etc. Since the resulting expressions are of rapidly escalating com-
plexity, one sets a(t) = r0 tα , in which case one has first for the scalar curvature
itself

R = 6

[
k

r2
0 t2α +

α (−1+2α)
t2

]
. (9.54)

Acting with �n on the above expression gives for k = 0 and arbitrary power n

cn 6α (−1+2α) t−2−2n , (9.55)

with the coefficient cn given by

cn = 4nΓ (n+1)Γ ( 3α−1
2 )

Γ ( 3α−1
2 −n)

. (9.56)

Here use has been made of the relationship

(
d

d z

)α
(z − c)β =

Γ (β +1)
Γ (β −α+1)

(z − c)β−α , (9.57)

to analytically continue the above expressions to negative fractional n (Samko et al,
1993; Zavada, 1998). For n = −1/2ν the correction on the scalar curvature term R
is therefore of the form[

1−a0 cν (t/ξ )1/ν
]
· 6α (−1+2α) t−2 (9.58)

with

cν = 2−
1
ν
Γ (1− 1

2ν )Γ ( 3α−1
2 )

Γ ( 3α−1
2 + 1

2ν )
. (9.59)

Putting everything together, one then obtains for the trace part of the effective field
equations

[
1−a0 cν

(
t
ξ

)1/ν
+ O

(
(t/ξ )2/ν

)] 6α (2α−1)
t2 = 8πGρ(t) (9.60)

The new term can now be moved back over to the matter side in accordance with
the structure of the original effective field equation of Eq. (9.47), and thus avoids
the problem of having to deal with the binomial expansion of 1/[1 + A(�)]. One
then has

6α (2α−1)
t2 = 8πG

[
1+a0 cν

(
t
ξ

)1/ν
+ O

(
(t/ξ )2/ν

)]
ρ(t) , (9.61)
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which is the Robertson-Walker metric form of Eq. (9.47). If one assumes for the
matter density ρ(t) ∼ ρ0 tβ , then matching powers when the new term starts to take
over at larger distances gives the first result

β = −2−1/ν . (9.62)

Thus the density decreases faster in time than the classical value (β = −2) would
indicate. The expansion appears therefore to be accelerating, but before reaching
such a conclusion one needs to determine the time dependence of the scale factor
a(t) (or α) as well.

One can alternatively pursue the following exercise in order to check the overall
consistency of the approach. Consider �n acting on T μ

μ = −ρ(t) instead, as in the
trace of the effective field equation of Eq. (9.47)

R = −8πG [1+A(�)] T μ
μ , (9.63)

for λ = 0 and p(t) = 0. For ρ(t) = ρ0 tβ and a(t) = r0 tα one finds in this case

�n [−ρ(t)] → 4n(−1)n+1 Γ (β2 +1)Γ (β+3α+1
2 )

Γ (β2 +1−n)Γ (β+3α+1
2 −n)

ρ0 tβ−2n , (9.64)

which again implies for n → −1/2ν the value β = −2− 1/ν as in Eq. (9.62) for
large(r) times, when the quantum correction starts to become important (since the
l.h.s. of Einstein’s equation always goes like 1/t2, no matter what the value for α is,
at least for k=0).

The next step is to examine the full effective field equations (as opposed to just
their trace part) of Eq. (9.13) with cosmological constant λ = 0,

Rμν − 1
2 gμν R = 8πG [1+A(�)] Tμν . (9.65)

Here the d’Alembertian operator

� = gμν∇μ∇ν , (9.66)

acts on a second rank tensor,

∇νTαβ = ∂νTαβ −Γ λ
ανTλβ −Γ λ

βνTαλ ≡ Iναβ

∇μ
(
∇νTαβ

)
= ∂μ Iναβ −Γ λ

νμ Iλαβ −Γ λ
αμ Iνλβ −Γ λ

βμ Iναλ , (9.67)

and would thus seem to require the calculation of 1920 terms, of which fortunately
many vanish by symmetry. Next one assumes again that Tμν has the perfect fluid
form, for which one obtains from the action of � on Tμν

(
�Tμν

)
tt = 6 [ρ(t) + p(t)]

(
ȧ(t)
a(t)

)2

− 3 ρ̇(t)
ȧ(t)
a(t)

− ρ̈(t)
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(
�Tμν

)
rr =

1
1 − k r2

{
2 [ρ(t) + p(t)] ȧ(t)2 − 3 ṗ(t)a(t) ȧ(t) − p̈(t)a(t)2}

(
�Tμν

)
θθ = r2 (1 − k r2)

(
�Tμν

)
rr(

�Tμν
)
ϕϕ = r2 (1 − k r2) sin2 θ

(
�Tμν

)
rr , (9.68)

with the remaining components equal to zero. Note that a non-vanishing pres-
sure contribution is generated in the effective field equations, even if one assumes
initially a pressureless fluid, p(t) = 0. As before, repeated applications of the
d’Alembertian � to the above expressions leads to rapidly escalating complexity,
which can only be tamed by introducing some further simplifying assumptions.
In the following we will therefore assume that Tμν has the perfect fluid form ap-
propriate for non-relativistic matter, with a power law behavior for the density,
ρ(t) = ρ0 tβ , and p(t) = 0. Thus all components of Tμν vanish in the fluid’s rest
frame, except the tt one, which is simply ρ(t). Setting k = 0 and a(t) = r0 tα one
then finds

(
�Tμν

)
tt =

(
6α2 −β 2 −3α β +β

)
ρ0 tβ−2

(
�Tμν

)
rr = 2r2

0 t2αα2ρ0 tβ−2 , (9.69)

which again shows that the tt and rr components get mixed by the action of the �

operator, and that a non-vanishing rr component gets generated, even though it was
not originally present.

Higher powers of the d’Alembertian � acting on Tμν can then be computed as
well. But a comparison with the left hand (gravitational) side of the effective field
equation, which always behaves like ∼ 1/t2 for k = 0, shows that in fact a solution
can only be achieved at order �n provided the exponent β satisfies β = −2+2n, or

β = −2 − 1/ν , (9.70)

as was found previously from the trace equation, Eqs. (9.47) and (9.62). As a result
one obtains a much simpler set of expressions, which for general n read

(
�n Tμν

)
tt → ctt(α,ν)ρ0 t−2 , (9.71)

for the tt component, and similarly for the rr component
(
�n Tμν

)
rr → crr(α,ν)r2

0 t2α ρ0 t−2 . (9.72)

But remarkably one finds for the two coefficients the simple identity

crr(α,ν) = 1
3 ctt(α,ν) , (9.73)

as well as cθθ = r2 crr and cϕϕ = r2 sin2 θ crr. The identity crr = 1
3 ctt implies, from

the consistency of the tt and rr effective field equations at large times,

α =
1
2

. (9.74)
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One can find a closed form expression for the coefficients ctt and crr = ctt/3 as func-
tions of ν which are not particularly illuminating, except for providing an explicit
proof that they exist.

As a result, in the simplest case, namely for a universe filled with non-relativistic
matter (p=0), the effective Friedmann equations then have the following appearance

k
a2(t)

+
ȧ2(t)
a2(t)

=
8πG(t)

3
ρ(t) +

1
3ξ 2

=
8πG

3

[
1 + cξ (t/ξ )1/ν + . . .

]
ρ(t) + 1

3 λ , (9.75)

for the tt field equation, and

k
a2(t)

+
ȧ2(t)
a2(t)

+
2 ä(t)
a(t)

= − 8πG
3

[
cξ (t/ξ )1/ν + . . .

]
ρ(t) + λ , (9.76)

for the rr field equation. The running of G appropriate for the Robertson-Walker
metric, and appearing explicitly in the first equation, is given by

G(t) = G

[
1 + cξ

(
t
ξ

)1/ν
+ . . .

]
, (9.77)

with cξ of the same order as a0 of Eq. (9.1). Note that the running of G(t) induces
as well an effective pressure term in the second (rr) equation.1 One has therefore an
effective density given by

ρe f f (t) =
G(t)

G
ρ(t) , (9.78)

and an effective pressure

pe f f (t) =
1
3

(
G(t)

G
− 1

)
ρ(t) , (9.79)

with pe f f (t)/ρe f f (t) = 1
3 (G(t)−G)/G(t). Strictly speaking, the above results can

only be proven if one assumes that the pressure’s time dependence is given by a
power law. In the more general case, the solution of the above equations for various
choices of ξ and a0 has to be done numerically. Within the FRW framework, the
gravitational vacuum polarization term behaves therefore in some ways (but not all)
like a positive pressure term, with p(t) = ω ρ(t) and ω = 1/3, which is therefore
characteristic of radiation. One could therefore visualize the gravitational vacuum
polarization contribution as behaving like ordinary radiation, in the form of a dilute
virtual graviton gas: a radiative fluid with an equation of state p = 1

3ρ . But this

1 We wish to emphasize that we are not talking here about models with a time-dependent value
of G. Thus, for example, the value of G � Gc at laboratory scales should be taken to be constant
throughout most of the evolution of the universe.
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would overlook the fact that the relationship between density ρ(t) and scale factor
a(t) is quite different from the classical case.

The running of G(t) in the above equations follows directly from the basic result
of Eq. (9.1), following the more or less unambiguously defined sequence G(k2) →
G(�) → G(t). For large times t � ξ the form of Eq. (9.1), and therefore Eq. (9.77),
is no longer appropriate, due to the spurious infrared divergence of Eq. (9.1) at small
k2. Indeed from Eq. (9.2), the infrared regulated version of the above expression
should read instead

G(t) � G

⎡
⎣ 1 + cξ

(
t2

t2 + ξ 2

) 1
2ν

+ . . .

⎤
⎦ . (9.80)

For very large times t � ξ the gravitational coupling then approaches a constant,
finite value G∞ = (1 + a0 + . . .)Gc. The modification of Eq. (9.80) should apply
whenever one considers times for which t � ξ is not valid. But since ξ ∼ 1/

√
λ is

of the order the size of the visible universe, the latter regime is largely of academic
interest.

It should also be noted that the effective Friedmann equations of Eqs. (9.75) and
(9.76) also bear a superficial degree of resemblance to what might be obtained in
some scalar-tensor theories of gravity, where the gravitational Lagrangian is postu-
lated to be some singular function of the scalar curvature (Capozziello et al, 2003;
Carroll et al, 2004; Flanagan, 2004). Indeed in the Friedmann-Robertson-Walker
case one has, for the scalar curvature in terms of the scale factor,

R = 6
(
k + ȧ2(t) + a(t) ä(t)

)
/a2(t) , (9.81)

and for k = 0 and a(t) ∼ tα one has

R =
6α(2α−1)

t2 , (9.82)

which suggests that the quantum correction in Eq. (9.75) is, at this level, nearly in-
distinguishable from an inverse curvature term of the type (ξ 2 R)−1/2ν , or 1/(1 +
ξ 2R)1/2ν if one uses the infrared regulated version. The former would then corre-
spond the to an effective gravitational action

Ie f f � 1
16πG

∫
dx

√
g

(
R +

f ξ− 1
ν

|R| 1
2ν−1

− 2λ

)
, (9.83)

with f a numerical constant of order one, and λ � 1/ξ 2. But this superficial resem-
blance is seen here more as an artifact, due to the particularly simple form of the
Robertson-Walker metric, with the coincidence of several curvature invariants not
expected to be true in general. In particular in Eqs. (9.75) and (9.76) it would seem
artificial and in fact inconsistent to take λ ∼ 1/ξ 2 to zero while keeping the ξ in
G(t) finite.



9.6 Quantum Gravity and Mach’s Principle 321

9.6 Quantum Gravity and Mach’s Principle

The essence of Mach’s proposal can be summarized in the statement that faraway
galaxies provide a preferential reference frame with respect to which the motion of
an observer can be characterized as inertial or not (Mach, 1960). In such a frame-
work acceleration cannot be described in absolute terms, since in the absence of
such a distant mass distribution the very notion of acceleration would be meaning-
less. Water in the Newtonian water bucket rotating by itself in an empty universe
could not possibly rise at the sides, since there would be no frame of reference for
such an isolated bucket. It would seem possible therefore that the origin of inertial
mass itself might be due to some new long range interaction between a test mass
and the faraway galaxy distribution (Sciama, 1953; Feynman, 1963).

Over the years, and starting with considerations by Einstein himself, extensive
discussion’s of Mach’s principle and its relation to General Relativity have appeared.
Some have argued convincingly that some aspects of Mach’s principle are indeed
incorporated in the framework of General Relativity, since for example the choice
of locally inertial frames is determined form the overall mass distribution, and in
particular the Einstein tensor is completely determined by the energy-momentum
tensor for matter. On the other hand the Weyl conformal tensor Wμνλσ is not deter-
mined by matter, and the field equations remain incomplete without the specifica-
tions of suitable boundary conditions. Another disturbing aspect is the fact that in
a universe without matter, T μν = 0, there still exist flat space solutions gμν = ημν
describing the motion of a test particle in terms of Minkowski dynamics, whereas
based on Mach’s principle one would expect in this case a complete absence of in-
ertia (as discussed in some detail already in (Pauli, 1958), where he provides some
arguments in favor of the existence of a small cosmological constant λ ).

A number of proposals have been put forward to address the issue of how to
incorporate some aspects of Mach’s proposal in General Relativity. One possibility
has been the introduction of boundary terms to account for non-trivial boundary con-
ditions at infinity. Another set of proposals (Sciama, 1953; 1971; Brans and Dicke,
1961; Feynman, 1963) postulate that the value of Newton’s constant G is in some
way related to a new cosmic field describing inertial “forces”, i.e. the natural ten-
dency of massive bodies to resist acceleration. In Sciama’s original theory, which
is non-relativistic and therefore in many ways incomplete, the key ingredient is the
fact that an acceleration of a test particle with respect to the universe should be
equivalently described by an acceleration of the universe as a whole, with the test
particle at rest.

In the Brans-Dicke relativistic scalar-tensor theory of gravity, G is assumed not
to be a constant of nature: instead it is described by a local average of the additional
Brans-Dicke scalar field φ , G−1 � 〈φ〉. Of course even in this extended theory of
gravity on needs at some point to specify a consistent set of boundary conditions
at infinity. But unfortunately the theory, at least in its original formulation is not
favored by current solar system tests, which put stringent bounds on the value of
the Brans-Dicke parameter ω describing the coupling of the cosmic scalar field φ to
gravity.
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Nevertheless these arguments are sufficiently concrete to allow specific predic-
tions, the principal one being a relationship between Newton’s constant G and the
nature of mass distribution in the universe. Feynman in particular argues that the fact
that the total energy of the visible universe, of approximate mass M and approximate
size R, is zero,

M − 3
5

GM2

R
� 0 , (9.84)

might not be a simple numerical coincidence. After all, in order to cancel com-
pletely, the first and second term need to be fine tuned to one part in 1080 (the
approximate numbers of protons in the visible universe). In fact a result of this type
should not be seen as entirely surprising, since one knows for example that in the
canonical formulation of gravity the Hamiltonian constraint is precisely H = 0. If
that is indeed the case, then one would expect G to be related to cosmic quantities,

G � R
M

. (9.85)

Another separate and puzzling result, coming from cosmology, is that the observed
matter density is very close to one, in the appropriate units, Ω ≈ 1 (more properly,
it is actually a combined density of baryonic, non-baryonic and dark energy com-
ponents, Ωt =Ωλ +Ωdm +Ωb, but we will overlook such subtle distinctions here).
For non-relativistic matter one has Ω = ρ/ρcrit with ρcrit = 3H2/8πG, which then
gives

Ω =
8πGρ
3H2

0

, (9.86)

where H0 is the value of the Hubble constant today. Since H0 is expected in general
to be time-dependent, a possible scenario would be one in which for large times
R−1 = H∞ = limt→∞H(t), with H2

∞ = λ
3 , and for which the horizon radius is R∞ =

H−1
∞ . Then for H0 ∼ R one has Ω ∼ 1 if 2MGR � 1, which would again relate G to

the overall size and mass of the visible universe in accordance with Eq. (9.85).
Perhaps a slightly more convincing argument can be formulated by making use

of the Lense-Thirring effect (Lense and Thirring, 1918). There one considers a test
particle at rest at the origin, and a thin spherical shell of total mass M rotating rigidly
around it, at some distance R and at angular velocity Ω . Originally the problem was
solved assuming the fields to be weak and the accelerations to be small, but a more
complete analysis (Brill and Cohen, 1966) shows that the test mass at the origin (a
Foucault pendulum, for example) will rotate due to frame dragging with an angular
velocity given by

ω = Ω
[

1+
3
4

R − 2M G
M G(1 + β )

]−1

, (9.87)

where β is a dimensionless constant that depends on the relative contributions of
T i j and T 00 to the shell’s gravitational mass. For small MG and β one recovers
the post-Newtonian result ω/Ω = 4MG/3R. The full solution on the other hand
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gives complete inertial frame dragging ω = Ω if one has exactly G = R/2M, as
Mach would have expected. It seems a general feature of these scenarios that, since
Newton’s constant is related to the total size and overall mass distribution in the
visible universe, it is in fact not expected to be a constant, although the specific way
in which R and M would vary over time is not understood.

Turning to quantum gravity, the question arises if any of the above ideas and
speculations have any relevance for a quantum version of General Relativity. One
can approach the problem from a number of different points of view.

For example, if gravity is indeed embedded in a larger unified theory of all forces
in nature (such as supergravity or string theory), it is often stated that such a unifi-
cations would become manifest at distances of the order of lP =

√
G. These claims

build on an implicit underlying assumption that the Planck energy μP = 1/lP is a
fundamental energy scale at which all fundamental forces attain the same strength,
and where unification therefore has to take place.2 But if G is related to cosmic
quantities such as R and M, then the argument for why the unification scale should
be at μP, and not at some other scale, becomes less compelling. Nevertheless the
statement that quantum effects in gravity will presumably become very important at
distances of order lP remains valid, since the latter is one of the fundamental scales
appearing in the gravitational Lagrangian.

Recent astrophysical observations suggest our universe is described to a good
approximation by General Relativity with a non-vanishing cosmological constant
λ . Within the framework of General Relativity λ can be viewed as describing the
curvature of empty space, and therefore not associated in any way with the matter
distribution. Of course one of the great puzzles of theoretical physics is why the
observed cosmological constant is so small in “natural” gravitational units, λG ∼
10−122. If indeed Mach’s ideas are correct, and gravitational constants such as G are
related to cosmic quantities, then one would expect λ to be related to the quantities
R and M. Since λ describes the curvature of the vacuum, it cannot involve M, which
then leaves as the only possibility, by dimensional arguments,

λ � 1
R2 . (9.88)

The smallness of the observed cosmological constant is then simply a consequence
of the product λG ∼ 1/MR being a ratio of two vastly different scales, the Compton
wavelength of the universe (1/M), and its visible size R. From this point of view,
one is lead to the paradoxical conclusion that it is actually λ (or R), and not G, that
appears in the end as the genuinely gravitational scale, to the extent that only the
former makes sense even in purely gravitational, matter-less universe. The hierar-
chy problem of particle physics would then be shifted to the new question of why
1/R ends up being so small (by 41 orders of magnitude) compared to other typical
particle physics scales, such as the proton mass.

2 Even though even to this day the precise relationship between the string coupling constant g, the
string scale α ′ and the Planck scale μP remains somewhat unclear.
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Painlevé, P., 1921, C. R. Acad. Sci. (Paris) 173, 677–680.
Parikh, M. K., and F. Wilczek, 2000, Phys. Rev. Lett. 85, 5042.
Parisi, G., 1975, Nucl. Phys. B 100, 368.



References 331

Parisi, G., 1979, Phys. Rept. 49, 215.
Parisi, G., 1981, Statistical Field Theory (Benjamin Cummings, New York, 1981).
Parisi, G., 1985, Nucl. Phys. 254, 58.
Parisi, G., 1992, in the proceedings of the Conference on Chiral Gauge Theories (Rome, 1992)

Nucl. Phys. Proc. Suppl. 29 BC, 247.
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Painlevé coordinates, 156
pair creation, 152, 154
Palatini formulation, 104, 180
Palatini identity, 105
parallel transport, 173, 188, 248
particle orbits, 314
particle thermal emission, 155, 158, 162
partition function, 135
path ordered exponential, 100
Pauli paramagnetism, 39
Pauli-Fierz mass term, 9



340 Index

perfect fluid, 311
periodic complex time, 165
perpendicular bisectors, 178
perturbatively non-renormalizable theories, 67
phase transition, 67, 82, 92, 96, 295
phases of gravity, 92, 273, 285
physical degrees of freedom, 103, 127
physical phase, 285
piecewise linear space, 169, 198
planar loop, 251
planar rotator, 70
Planck length, 29, 167
plane wave solutions, 4, 23, 227
plaquette, 130, 187, 244, 253
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unphysical phase, 285
Unruh effect, 163

vacumm polarization in QED, 98
vacuum contribution, 302
vacuum energy density, 10, 311
vacuum instability, 47
vacuum polarization, 30
vacuum state, 133, 156, 159, 163
vacuum to vacuum amplitude, 142
van Dam - Veltman discontinuity, 9
vierbein, 105, 106, 171, 214, 217
Virasoro algebra, 40
virtual graviton cloud, 308, 314
virtual particle pair, 154
visible universe, 10
volume dependence, 291
volume of a face, 172
volume of a simplex, 171
Voronoi loop, 173
Voronoi polyhedra, 199
Voronoi volume, 205

Ward identities, 2, 185, 232
wave function of the universe, 141
wave functional, 114, 117, 141, 148
weak coupling phase, 288, 300
weak field expansion, 1, 225
Weyl conformal tensor, 24, 202
Weyl spinors, 33
Weyl symmetry, 48
Wheeler-DeWitt equation, 114, 135, 141
Wick rotation, 13, 58, 118, 163, 165
Wiener paths, 58
Wilson line, 281
Wilson loop, 100, 188, 248, 301
WKB method, 115, 144, 146, 152, 156, 158
world lines, 281
world sheet coordinates, 40
world-sheet supersymmetry, 48

Yang-Mills theories, 71, 84, 98, 127, 248

zero energy Schrödinger equation, 114, 141
zero lattice spacing limit, 295
zero modes, 11, 227, 228, 234, 237, 264
zeta function regularization, 19, 148
zig-zag motion of a quantum particle, 58, 66
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