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TO FRIEDRICH HIRZEBRUCH
IN GRATITUDE



Preface

And God said, Let there be light; and there was light.
Genesis 1,3

Light is not only the basis of our biological existence, but also an essential
source of our knowledge about the physical laws of nature, ranging from
the seventeenth century geometrical optics up to the twentieth century
theory of general relativity and quantum electrodynamics.

Folklore

Don’t give us numbers: give us insight!
A contemporary natural scientist to a mathematician

The present book is the second volume of a comprehensive introduction to
the mathematical and physical aspects of modern quantum field theory which
comprehends the following six volumes:

Volume I: Basics in Mathematics and Physics
Volume II: Quantum Electrodynamics
Volume III: Gauge Theory
Volume IV: Quantum Mathematics
Volume V: The Physics of the Standard Model
Volume VI: Quantum Gravitation and String Theory.

It is our goal to build a bridge between mathematicians and physicists based
on the challenging question about the fundamental forces in

• macrocosmos (the universe) and
• microcosmos (the world of elementary particles).

The six volumes address a broad audience of readers, including both under-
graduate and graduate students, as well as experienced scientists who want
to become familiar with quantum field theory, which is a fascinating topic in
modern mathematics and physics.

For students of mathematics, it is shown that detailed knowledge of the
physical background helps to motivate the mathematical subjects and to
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discover interesting interrelationships between quite different mathematical
topics. For students of physics, fairly advanced mathematics are presented,
which is beyond the usual curriculum in physics. The strategies and the
structure of the six volumes are thoroughly discussed in the Prologue to
Volume I. In particular, we will try to help the reader to understand the
basic ideas behind the technicalities. In this connection, the famous ancient
story of Ariadne’s thread is discussed in the Preface to Volume I. In terms
of this story, we want to put the beginning of Ariadne’s thread in quantum
field theory into the hands of the reader.

The present volume is devoted to the physics and mathematics of
light.

It contains the following material:

Part I: Introduction
• Chapter 1: Mathematical Principles of Modern Natural Philosophy
• Chapter 2: The Basic Strategy of Extracting Finite Information from

Infinities – Ariadne’s Thread in Renormalization Theory
• Chapter 3: The Power of Combinatorics
• Chapter 4: The Strategy of Equivalence Classes in Mathematics

Part II: Basic Ideas in Classical Mechanics
• Chapter 5: Geometrical Optics
• Chapter 6: The Principle of Critical Action and the Harmonic Oscilla-

tor as a Paradigm
Part III: Basic Ideas in Quantum Mechanics

• Chapter 7: Quantization of the Harmonic Oscillator – Ariadne’s Thread
in Quantization

• Chapter 8: Quantum Particles on the Real Line – Ariadne’s Thread in
Scattering Theory

• Chapter 9: A Glance at General Scattering Theory.
Part IV: Quantum Electrodynamics (QED)

• Chapter 10: Creation and Annihilation Operators
• Chapter 11: The Basic Equations in Quantum Electrodynamics
• Chapter 12: The Free Quantum Fields of Electrons, Positrons, and

Photons
• Chapter 13: The Interacting Quantum Field, and the Magic Dyson

Series for the S-Matrix
• Chapter 14: The Beauty of Feynman Diagrams in QED
• Chapter 15: Applications to Physical Effects

Part V: Renormalization
• Chapter 16: The Continuum Limit
• Chapter 17: Radiative Corrections of Lowest Order
• Chapter 18: A Glance at Renormalization to all Orders of Perturbation

Theory
• Chapter 19: Perspectives
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We try to find the right balance between the mathematical theory and its
applications to interesting physical effects observed in experiments. In par-
ticular, we do not consider purely mathematical models in this volume.

It is our philosophy that the reader should learn quantum field theory
by studying a realistic model, as given by quantum electrodynamics.

Let us discuss the main structure of the present volume. In Chapters 1
through 4, we consider topics from classical mathematics which are closely
related to modern quantum field theory. This should help the reader to un-
derstand the basic ideas behind quantum field theory to be considered in
this volume and the volumes to follow. In Chapter 1 on the mathematical
principles of modern natural philosophy, we discuss

• the infinitesimal strategy due to Newton and Leibniz,
• the optimality principle for processes in nature (the principle of critical action)

and the calculus of variations due to Euler and Lagrange, which leads to the
fundamental differential equations in classical field theory,

• the propagation of physical effects and the method of the Green’s function,
• harmonic analysis and the Fourier method for computing the Green’s functions,
• Laurent Schwartz’s theory of generalized functions (distributions) which is re-

lated to the idea that the measurement of physical quantities by devices is based
on averaging,

• global symmetry and conservation laws,
• local symmetry and the basic ideas of modern gauge field theory, and
• the Planck quantum of action and the idea of quantizing classical field theories.

Gauge field theory is behind both

• the Standard Model in elementary particle physics and
• Einstein’s theory of gravitation (i.e., the theory of general relativity).

In quantum field theory, a crucial role is played by renormalization. In terms
of physics, this is based on the following two steps:

• the regularization of divergent integrals, and
• the computation of effective physical parameters measured in experiments (e.g.,

the effective mass and the effective electric charge of the electron).

Renormalization is a highly technical subject. For example, the full proof
on the renormalizability of the electroweak sector of the Standard Model in
particle physics needs 100 pages. This can be found in:

E. Kraus, Renormalization of the electroweak standard model to all orders,
Annals of Physics 262 (1998), 155–259.

Whoever wants to understand quantum field theory has to understand the
procedure of renormalization. Therefore, the different aspects of renormal-
ization theory will be studied in all of the six volumes of this series of mono-
graphs. This ranges from

• resonance phenomena for the anharmonic oscillator (classical bifurcation theory),
• the Poincaré–Lindstedt series (including small divisors) in celestial mechanics,
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• and the Kolmogorov–Arnold–Moser (KAM) theory for perturbed quasi-periodic
oscillations (e.g., in celestial mechanics) based on sophisticated iterative tech-
niques (the hard implicit function theorem)

to the following fairly advanced subjects:
• the Feynman functional integral (the Faddeev–Popov approach),
• the Wiener functional integral (the Glimm–Jaffe approach),
• the theory of higher-dimensional Abelian integrals (algebraic Feynman integrals),
• Hopf algebras and Rota–Baxter algebras in combinatorics (the modern vari-

ant of the Bogoliubov–Parasiuk–Hepp–Zimmermann (BPHZ) approach due to
Kreimer),

• the Riemann–Hilbert problem and the Birkhoff decomposition (the Connes–
Kreimer approach),

• Hopf superalgebras (the Brouder–Fauser–Frabetti–Oeckl (BFFO) approach),
• characterization of physical states by cohomology and algebraic renormalization

(the Becchi–Rouet–Stora–Tyutin (BRST) approach),
• the Riesz–Gelfand theory of distribution-valued meromorphic functions (con-

struction of the Green’s functions),
• wave front sets and Hörmander’s multiplication of distributions (the Stueckelberg–

Bogoliubov–Epstein–Glaser–Scharf approach),
• the Master Ward identity as a highly non-trivial renormalization condition and

the generalized Dyson–Schwinger equation (the Dütsch–Fredenhagen approach),
• q-deformed quantum field theory (the Wess–Majid–Wachter–Schmidt approach

based on the q-deformed Poincaré group, quantum groups, and the q-analysis on
specific classes of q-deformed quantum spaces),

• deformation of bundles and quantization (the Weyl–Flato–Sternheimer–Fedosov–
Kontsevich approach),

• microlocal analysis and renormalization on curved space-times (the Radzikowski–
Brunetti–Fredenhagen–Köhler approach),

• renormalized operator products on curved space-times (the Wilson–Hollands–
Wald approach to quantum field theory),

• natural transformations of functors in category theory and covariant quantum
field theory on curved space-time manifolds (the Brunetti–Fredenhagen–Verch
approach),

as well as
• one-parameter Lie groups and the renormalization group,
• attractors of dynamical systems in the space of physical theories (the Wilson–

Polchinski–Kopper–Rivasseau approach to renormalization based on the renor-
malization group),

• the Master Ward Identity and the Stueckelberg–Petermann renormalization
group (the Dütsch–Fredenhagen approach),

• motives in number theory and algebraic geometry, the Tannakian category, and
the cosmic Galois group as a universal (motivic) renormalization group (the
Connes–Marcolli approach),

• noncommutative geometry and renormalization (the Grosse–Wulkenhaar ap-
proach).

The recent work of Alain Connes, Dirk Kreimer, and Matilde Marcolli shows
convincingly that renormalization is rooted in highly nontrivial mathemati-
cal structures. We also want to emphasize that the theory of many-particle
systems (considered in statistical physics and quantum field theory) is deeply
rooted in the theory of operator algebras. This concerns
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• von Neumann algebras (the von Neumann approach),
• C∗-algebras (the Gelfand–Naimark–Segal approach),
• local nets of operator algebras (the Haag–Kastler approach) and,
• noncommutative geometry (the Connes approach).

As a warmup, we show in Chapter 2 that the regularization of divergent
expressions represents a main subject in the history of mathematics starting
with Euler in the eighteenth century. In this connection, we will consider

• the regularization of divergent series, and
• the regularization of divergent integrals.

In particular, in Sect. 2.1.3, we will discuss the classical Mittag–Leffler theo-
rem on meromorphic functions f . If the function f has merely a finite number
of poles, then the method of partial fraction decomposition works well. How-
ever, as a rule, this method fails if the function f has an infinite number of
poles. In this case, Mittag–Leffler showed in the late nineteenth century that
one has to subtract special terms, which are called subtractions by physicists.

The subtractions force the convergence of the infinite series.

This is the prototype of the method of iteratively adding subtractions in the
Bogoliubov–Parasiuk–Hepp–Zimmermann (BPHZ) approach to renormaliza-
tion theory. The corresponding iterative algorithm (called the Bogoliubov
R-operation) has to be constructed carefully (because of nasty overlapping
divergences). This was done by Nikolai Bogoliubov in the 1950s. An ingenious
explicit solution formula for this iterative method was found by Wolfhart Zim-
mermann in 1969. This is the famous Zimmermann forest formula. In the
late 1990s, it was discovered by Dirk Kreimer that the sophisticated combi-
natorics of the Zimmermann forest formula can be understood best in terms
of a Hopf algebra generated by Feynman diagrams. By this discovery, the
modern formulation of the BPHZ approach is based on both Hopf algebras
and Rota–Baxter algebras.

As a warmup, in Chapter 3, we give an introduction to the modern com-
binatorial theory, which was founded by Gian-Carlo Rota (MIT, Cambridge,
Massachusetts) in the 1960s. This includes both Hopf algebras and Rota–
Baxter algebras.

Surprisingly enough, it turns out that the Zimmermann forest for-
mula is closely related to methods developed by Lagrange in the eigh-
teenth century when studying the solution of the Kepler equation for
the motion of planets in celestial mechanics.

In modern terminology, the Lagrange inversion formula for power series ex-
pansions is based on the so-called Faà di Bruno Hopf algebra.1 This will be
studied in Sect. 3.4.3.
1 The Italian priest and mathematician Francesco Faà di Bruno (1825–1888) was

beatified in 1988.
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In physics, symmetries are basic. For describing symmetries in terms of
mathematics, there are two approaches based on

• groups and
• Hopf algebras.

In 1941, Heinz Hopf wanted to compute the cohomology of topological groups.
Hopf discovered that the cohomology ring of topological groups is equipped
with an additional structure which is called a Hopf algebra structure today.
This additional algebraic structure is based on the notion of the coproduct.
Roughly speaking, the concept of Hopf algebra is dual to the concept of
group. Hopf algebras are intimately related to quantum groups. We will show
in Chapter 3 that:

The product and the coproduct of a Hopf algebra model the fusion
and the splitting of objects (e.g., elementary particles), respectively.

In terms of analysis, the algebra of linear differential operators with constant
coefficients can be equipped with the structure of a Hopf algebra. Here,

• the coproduct is related to the Leibniz product rule of differentiation, and
• the coinverse (also called the antipode) is related to the integration-by-parts

formula (see Sect. 3.3.1).

The integration-by-parts formula is a special case of the general Stokes inte-
gral theorem, which lies at the heart of the duality between homology and
cohomology in topology. This duality plays a key role for the mathematical
description of processes in nature. In particular, cohomology is deeply rooted
in Maxwell’s theory of electrodynamics (see Sect. 4.4.7).

Incredible cancellations. When doing computations in renormalization
theory, as a big surprise, physicists and mathematicians encounter incredible
cancellations of a large amount of terms. This dramatically simplifies the
final result. In terms of mathematics, a sophisticated combinatorics is behind
these cancellations. The prototype for this is given by the Faà di Bruno Hopf
algebra mentioned above.

The language of modern mathematics. We do not assume that the
reader of this series of monographs is familiar with the language used in mod-
ern mathematics. In this connection, we want to help the reader. For example,
many notions in advanced mathematics and hence in modern mathematical
physics are based on mathematical operations applied to equivalence classes.
For example, this concerns

• the construction of quantum states as equivalence classes of elements of Hilbert
spaces (and the relation to projective geometry),

• the Gelfand–Naimark–Segal (GNS) construction for representing the elements of
an abstract C∗-algebra as observables on a Hilbert space (the algebraic approach
to quantum theory),

• the Wightman reconstruction theorem for axiomatically defined quantum fields
(via the GNS-construction),
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• moduli spaces of Riemann surfaces (modulo conformal equivalence) and physical
states in string theory.

This leads to quotient spaces in algebra, analysis, geometry, and topology,
which will be encountered again and again in this series of monographs (e.g.,
homology groups, cohomology groups, homotopy groups, and K-theory in
topology). Chapter 4 serves as an introduction to quotient structures in math-
ematics and physics. The idea of the quotient ring (modulo a fixed integer)
can be traced back at least to the Disquisitiones arithmeticae written by the
young Gauss (1777–1855) in 1801.2 In order to give the reader a feel for the
usefulness of working with equivalence classes, we will consider the following
examples:

• Gaussian quotient rings (modulo a prime number) and coding theory (as warmup
for quantum information),

• quotient fields and Heaviside’s symbolic method in electrical engineering (the
Mikusiński operational calculus),

• physical fields, observers, bundles, and cocycles,
• deformation, mapping classes, and topological charges,
• loop spaces and higher homotopy groups,
• the projective and the injective limit of mathematical structures (e.g., topological

spaces), and
• the rigorous approach to Leibniz’s infinitesimals via ultrafilters (nonstandard

analysis).

For the foundation of nonstandard analysis, one needs the construction of
ultrafilers via Zorn’s lemma based on the axiom of choice in set theory.
The language of theoretical physics. Chapters 5 through 9 are devoted
to the basic ideas of

• classical geometric optics,
• classical mechanics, and
• quantum mechanics.

Here, we want to help mathematicians who are not familiar with theoretical
physics. In Chapter 5, we study Carathéodory’s royal road to geometrical
optics based on the fundamental duality between

• light rays and
• wave fronts

which can be traced back to the work of Huygens in the seventeenth cen-
tury. In string theory, Kähler manifolds play a crucial role. In Chapter 5, we
will show how Poincaré’s non-Euclidean geometry on the upper half-plane is
related to both geometrical optics and Kähler geometry.
2 The enormous influence of Gauss’ first masterpiece on the development of math-

ematics is described in the monograph by C. Goldstein, N. Schappacher, and J.
Schwermer: The Shaping of Arithmetic after Gauss’ Disquisitiones Arithmeticae,
Springer, Berlin 2007.
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Since all the models of quantum fields are based on the study of an infinite
number of (slightly perturbed) harmonic oscillators in the setting of pertur-
bation theory, we use the harmonic oscillator as a paradigm for both classical
mechanics and quantum mechanics. In Chapter 6 on classical mechanics, we
will study the following topics:

• Newtonian mechanics,
• Lagrangian mechanics (the Euler–Lagrange equation, the Jacobi accessory eigen-

value problem and Morse theory),
• Hamiltonian mechanics (the canonical dynamical system and the Hamilton–

Jacobi partial differential equation), and
• Poissonian mechanics.

In particular, this concerns

• the Legendre transformation and contact geometry,
• the Hamiltonian flow and symplectic geometry,
• the tangent bundle of the position space (the position-velocity space also called

the state space),
• the cotangent bundle of the position space (the position-momentum space also

called the phase space),
• the Legendre transformation as a transformation from the tangent bundle to the

cotangent bundle; the latter is equipped with a natural symplectic structure.

In terms of mathematics, the fundamental relation between symmetry and
conservation laws in physics is related to

• the Noether theorem, and
• Poisson brackets and Lie’s momentum map.

Quantum mechanics. The comprehensive Chapter 7 lies at the heart of
this series of monographs. This chapter should help the reader to understand
the different aspects of the passage from classical physics to quantum physics,
by using the different procedures of quantization. We will use the paradigm
of the harmonic oscillator in order to explain the basic ideas of the following
approaches:

• Heisenberg’s quantum mechanic (via creation and annihilation operators),
• Schrödinger’s quantum mechanics (via the Schrödinger partial differential equa-

tion),
• Feynman’s quantum mechanics (via the path integral),
• von Neumann’s functional-analytic approach (via the spectral theory for self-

adjoint operators in Hilbert spaces),
• von Neumann’s density operator in statistical physics (via trace class operators),
• Weyl’s symbolic calculus for pseudo-differential operators (deformation quanti-

zation),
• the Poincaré–Wirtinger calculus and Bargmann’s holomorphic quantization,
• the Stone-von Neumann uniqueness theorem (for the fundamental commutation

relations in quantum mechanics) and the Weyl functor3 based on symplectic
geometry,

• supersymmetric quantization.

3 At this place, the general theory of mathematical structures (also called category
theory) enters the theory of quantization (also called quantum mathematics).
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Concerning the Feynman path integral as a fundamental tool in quantum
physics, we will study the following:

• Brownian motion and the infinite-dimensional rigorous Wiener integral based on
measure theory,

• the rigorous Feynman–Kac formula for diffusion processes,
• rigorous finite-dimensional Gaussian integrals, the computation of correlations

and moments, the Wick theorem, and Feynman diagrams,
• rigorous definition of infinite-dimensional Gaussian integrals via zeta function

regularization,
• the Wentzel–Kramers–Brioullin (WKB) method of stationary phase for the com-

putation of Gaussian integrals, and the approximate computation of Feynman
path integrals.

The Feynman path integral can be obtained from the Wiener integral by
using formal analytic continuation from real time to imaginary time. This
corresponds to the fact that the Schrödinger equation describes diffusion
processes in imaginary time. Furthermore, in Chapter 7, we discuss the basic
ideas of the algebraic approach to quantum mechanics by using C∗-algebras
and von Neumann algebras. In this connection, we consider:

• applications to statistical mechanics (Boltzmann statistics, Bose–Einstein statis-
tics, and Fermi–Dirac statistics),

• thermodynamic equilibrium states (Kubo–Martin–Schwinger (KMS) states) and
the Tomita–Takesaki theory for von Neumann algebras,

• the Murray–von Neumann classification of factors in the theory of von Neumann
algebras,

• projection operators and the main theorem of quantum logic (Gleason’s extension
theorem for C∗-algebras).

The modern theory of operator algebras culminates in Alain Connes’s non-
commutative geometry, which represents the appropriate mathematical struc-
ture for a deeper understanding of the Standard Model in elementary particle
physics. This will be investigated in Volume IV on quantum mathematics.
For the interested reader, we refer to the following fundamental monograph:

A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields,
and Motives, American Mathematical Society 2008.
Internet: http://www.math.fsu.edu/∼ marcolli/bookjune4.pdf

Chapters 8 and 9 serve as an introduction to scattering theory, which plays
a crucial role in elementary particle physics. As a paradigm for general scat-
tering theory, we consider the scattering of a quantum particle on the real
line. We consider

• the energy levels of bound states,
• the energy levels of scattering states, and distributions as generalized eigenfunc-

tions of the Schrödinger equation,
• the transition matrix,
• the unitary S-matrix and transition probabilities for scattering processes,
• the relation between the singularities of the S-matrix in the complex energetic

plane and the energy levels of stable bound states,
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• unstable particles (resonances) and the second sheet of the energetic Riemann
surface (the Breit–Wigner formula for the energy levels and the mean lifetime of
resonances),

• stationary scattering theory, the Green’s function of the Helmholtz equation, and
the Lippmann–Schwinger integral equation,

• instationary scattering theory, wave operators, the absolutely continuous spec-
trum of the Hamiltonian, and the S-matrix in functional analysis.

Here, we do not assume that the reader is familiar with
• von Neumann’s functional-analytic spectral theory for self-adjoint operators in

Hilbert spaces,
• the Gelfand–Kostyuchenko theory of generalized eigenfunctions for self-adjoint

operators,
• the Møller–Kato theory of wave operators in scattering theory, and
• the Weyl–Kodaira theory for singular differential operators.

For the convenience of the reader, the necessary material will be summarized
at the proper place when it is needed in Volumes II and III.

Quantum electrodynamics. In the present volume, it is our main goal to
illustrate the beauty of quantum electrodynamics by proceeding pragmati-
cally.

We do not start with an abstract approach, but with the computa-
tion of important physical effects which are observed in experiments,
including radiative corrections in lowest order of renormalization the-
ory.

This should help the reader in getting a feel for the essential questions. More
sophisticated approaches are postponed to later volumes of this series of
monographs. In the introductory Chapter 10, we study creation and anni-
hilation operators for electrons, positrons, and photons. In Chapter 11, we
formulate the classical field equations of quantum electrodynamics on the in-
teraction between electrons and photons, by coupling the Maxwell equations
of the electromagnetic field to the Dirac equation of the electron wave func-
tion. This equation depends on the gauge fixing of the four-potential for the
electromagnetic field. However, it turns out that physical effects measured in
experiments are independent of the choice of the gauge fixing. The point is
that:

The classical field equations of quantum electrodynamics have to be
quantized.

In this connection, we have to distinguish between
• the single free quantum fields for electrons, positrons, and photons, and
• the total interacting quantum field for electrons, positrons, and photons.

In Chapter 12, we construct free quantum fields by using the method of
Fourier quantization based on creation and annihilation operators.

In Chapter 13, we study the interacting quantum field of electrons,
positrons, and photons by using
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• the magic Dyson formula for the S-matrix (scattering matrix), and
• the main Wick theorem for the S-matrix, which implies the Feynman diagrams.

This is Dyson’s classical approach to understanding the Feynman diagrams.4

Originally, Feynman invented his exciting diagram technique on the basis of
ingenious physical intuition. In Dyson’s mathematical setting, the Feynman
diagrams are nothing other than graphical representations of well-defined an-
alytic expressions, which are effectively produced by the main Wick theorem.
Feynman’s use of propagators and Dyson’s magic formula for the S-matrix
are closely related to Lagrange’s variation-of-parameter formula in celestial
mechanics. Many mathematicians complain about the following situation:

In the physics textbooks, one reads the Feynman rules for Feynman
diagrams, but it is not clear where the Feynman rules come from.

In the present textbook, we will thoroughly study the mathematical and
physical origin of both the Feynman diagrams and the Feynman rules. We
will also consider applications to interesting physical effects.

In Chapter 15, we investigate the following physical effects in lowest order
of perturbation theory:
• the cross section for Compton scattering between photons and electrons (im-

provement of the Thomson formula in classical electrodynamics),
• the cross section for the scattering of electrons in an external electromagnetic

field,
• the intensity of spectral lines for bound states in an external electromagnetic

field, and
• the Cherenkov radiation.

For the computation of terms corresponding to higher order of perturba-
tion theory, renormalization theory is needed. In Chapter 17, we discuss the
physics behind the following radiative corrections in lowest possible order of
renormalization theory:
• the screening of the Coulomb potential by vacuum polarization (the Uehling

potential),
• the anomalous magnetic moment of the electron (the Schwinger formula),
• the anomalous magnetic moment of the muon, and
• the Lamb shift in the spectrum of the hydrogen atom.

Unfortunately, the explicit computations (in the framework of dimensional
regularization in renormalization theory) are lengthy. We will postpone these
detailed computations to Volume III.

In Chapter 18, we discuss the main result telling us that quantum elec-
trodynamics can be renormalized to all orders of perturbation theory. The
final result consists of getting finite expressions in each order of perturbation
theory (e.g., cross sections for scattering processes), which depend on the two
fundamental free parameters
4 Dyson’s discovery of this approach is described by himself in his book, F. Dyson,

Disturbing the Universe, Harper & Row, New York, 1979 (see page 27 of Volume
I for this fascinating story).
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• meff (effective mass of the electron) and
• −eeff (effective electric charge of the electron).

Observe the crucial fact that:

The free parameters meff and eeff cannot be determined theoretically
by quantum electrodynamics.

They have to be determined by physical experiments. In the SI system, one
obtains the following values:

meff = 0.511 MeV/c2, eeff = 1.602 · 10−19 As.

A reader who wants to become familiar with quantum electrodynamics as
quickly as possible should start reading with Chapter 10.
The incredible effectiveness of perturbation theory in physics. Sur-
prisingly enough, low-order radiative corrections are sufficient for getting a
fantastic coincidence between theory and experimental data. For example,
the anomalous magnetic moment of the electron measured in experiments is
predicted very precisely by fourth-order radiative corrections (up to 9 digits).
However, the necessary amount of computations is enormous. One has to eval-
uate high-dimensional integrals which correspond to 891 Feynman diagrams;
this needs years of supercomputer time.
A warning to the reader. In summer 1976, Arthur Wightman (Princeton
University) organized a famous conference in Erice (Sicily/Italy) on renor-
malization theory. In the introduction to the Proceedings of this conference,
he writes:5

Renormalization theory is a notoriously complicated and technical sub-
ject. . . I want to tell stories with a moral for the earnest student: Renor-
malization theory has a history of egregious errors by distinguished savants
(see page 967). It has a justified reputation for perversity; a method that
works up to 13th order in the perturbation theory fails in the 14th order.
Arguments that sound plausible often dissolve into mush when examined
closely. The worst that can happen often happens. The prudent student
would do well to distinguish sharply between what has been proved and
what has been plausible, and in general he should watch out!

In 1999 Gerardus ’t Hooft and Martinus Veltman were awarded the Nobel
prize in physics for their contributions to the renormalization of the theory
of electroweak interaction and for the computation of radiative corrections in
the Standard Model of particle physics.

Perspectives. More advanced approaches to renormalization theory will be
systematically studied in the following volumes of this series of monographs.
In particular, this concerns the new approaches to perturbative quantum field
theory due to Connes and Kreimer (Hopf algebras), and Brunetti, Dütsch,

5 A. Wightman, Orientation. In: Renormalization Theory, pp. 1–20. Edited by G.
Velo and A. Wightman, Reidel, Dordrecht, 1976 (reprinted with permission).
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and Fredenhagen (microlocal analysis and the Master Ward Identity). In
order to give the reader an overview on the large variety of different ap-
proaches to renormalization theory, we summarize important references in
Section 19.11, and in Chapter 19 we sketch some basic ideas.

The propagation of light in the universe, namely,

• the deflection of light at the sun, and
• the red shift of spectral lines as a consequence of the expansion of the universe

(the Hubble effect)

will be investigated in Volume III in terms of Einstein’s theory of general
relativity.

The basic idea of our approach to quantum electrodynamics. As a
rule, mathematicians have trouble with reading some textbooks on quantum
field theory written by physicists. The point is that:

In mathematics, one never does computations with quantities which
do not exist.6

In order to respect this basic principle in mathematics, we will use the lattice
approach. That is, roughly speaking, we will proceed in the following two
steps.
Step 1: The discretized physical system. We put the physical system in a cubic
box of finite side length L and volume V = L3. The boundary conditions are
given by periodicity.

• We observe the physical system in a finite time interval [−T
2
, T

2
].

• We choose a maximal energy Emax.
• In the 3-dimensional momentum space, we introduce a finite lattice of spacing

Δp and maximal momentum Pmax. In this setting, the Fourier integral transform
is replaced by a discrete Fourier transform via finite Fourier series expansions.

• We define Dyson’s S-matrix for this situation.
• The main Wick theorem allows us to compute the S-matrix elements (i.e., the

transition amplitudes) in an elegant manner, by eliminating the creation and
annihilation operators, and replacing them by propagators (i.e., correlation func-
tions for free fields).

• The point is that the propagators are discrete algebraic Feynman integrals, which
are indeed well-defined finite sums.

• The transition amplitudes can be graphically represented by Feynman diagrams.
• The Feynman rules allow us to translate the Feynman diagrams into well-defined

finite sums.
• From the transition amplitudes, we obtain the transition probabilities which

yield the cross sections for scattering processes. Note that cross sections can be
measured in particle accelerators.

Step 2: The delicate continuum limit. Explicitly, we have to study the follow-
ing limits:

• L → ∞ (the volume L3 of the cubic box becomes infinite),
6 For example, this concerns infinite renormalization constants or ill-defined

infinite-dimensional functional/path integrals.



XX Preface

• T → ∞ (the time interval becomes infinite),
• Pmax → ∞ (i.e., Emax → ∞) (high-energy limit),
• Δp → 0 (low-energy limit).

In order to force the convergence of the discrete algebraic Feynman integrals
to well-defined expressions, we modify the classical Lagrangian density by
setting

meff := me + δm, eeff := e + δe.

That is, we replace the so-called bare electron mass me and the so-called bare
electron charge −e in the Lagrangian density by

me = meff − δm, −e = −eeff + δe,

respectively. This way, the classical Lagrangian density

L(ψ, ∂ψ, A, ∂A; me, e)

is modified by the function

Lmodified(ψ, ∂ψ, A, ∂A; meff , eeff ; δm, δe).

The terms multiplied by δm, δe are called counterterms of the classical La-
grangian density L. Note that in this lattice approach, δe and δm are real
parameters which depend on the shape of the lattice, that is, they depend on
the maximal energy Emax. Now consider the high-energy limit

Emax → +∞.

Roughly speaking, we have to show that δm(Emax) and δe(Emax) can be
chosen in such a way that the finite continuum limit exists for the S-matrix
elements (i.e., the transition elements). This is the procedure of renormaliza-
tion.

Observe the following peculiarity. By the Stone–von Neumann uniqueness
theorem, a finite number of creation and annihilation operators is uniquely
determined by the commutation relations (up to unitary equivalence). This is
not true anymore for an infinite number of creation and annihilation opera-
tors, as was shown by Lars G̊arding and Arthur Wightman in 1954. However,
our approach avoids the latter ambiguity, since we only work with a finite
number of creation and annihilation operators before passing to the contin-
uum limit (of the vacuum expectation values). We also would like to empha-
size that our approach differs only slightly from the usual approach used by
physicists. In particular, we use a notation for discrete Fourier integrals such
that the formal passage to the language used by physicists is possible at each
stage of our procedure.

For the physical quantities which can be measured in experiments,
our final formulas coincide with the formulas used by physicists.
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Moreover, in each step of our procedure it is easy to pass formally to the
expressions used by physicists, since the Feynman diagrams are the same.

This way, we hope to help mathematicians in getting a better under-
standing for the ingenious and beautiful approach invented by physi-
cists.

From the physical point of view, the modification of the classical Lagrangian
density reflects the fact that:

Quantum effects have to be added to the classical theory.

Intuitively, this means that the quantum fluctuations of the ground state
of the quantum field of electrons, positrons, and photons influence physical
effects observed in experiments. For example, this concerns the anomalous
magnetic moment of the electron and the spectrum of the hydrogen atom
(Lamb shift).

Convention. If we do not expressively state the opposite, we will use the SI
system of physical units (international system of units) which can be found
in the Appendix to Volume I. In particular, note that in Chapters 10–19
on quantum electrodynamics, we will use the energetic system with c = 1
(velocity of light in a vacuum), � = h/2π = 1 (Planck’s quantum of action),
k = 1 (Boltzmann constant), ε0 = μ0 = 1 (see page 790).

The Poincaré Seminar. The best way of getting information about re-
cent developments in modern physics is to look at the books which report
the lectures given at the Poincaré Seminar in Paris. Starting in 2002, this
seminar has been organized by l’Institut Henri Poincaré in Paris (see page
1050). Bertrand Duplantier and Vincent Rivasseau write in the Foreword to
Quantum Spaces, Birkhäuser, Basel, 2007:

This book is the seventh in a series of lectures of the Séminaire Poincaré,
which is directed towards a large audience of physicists and mathemati-
cians.
The goal of this seminar is to provide up-to-date information about gen-
eral topics of great interest in physics. Both the theoretical and experimen-
tal aspects are covered, with some historical background. Inspired by the
Séminaire Bourbaki in mathematics in its organization, hence nicknamed
“Séminaire Bourbaphy,” the Poincaré Seminar is held twice a year at the
Institut Henri Poincaré in Paris, with contributions prepared in advance.
Particular care is devoted to the pedagogical nature of the presentation so
as to fulfill the goal of being readable by a large audience of scientists.

Two recent survey volumes. The following two volumes try to reflect
the state of the art by summarizing the most important approaches used in
modern quantum field theory:

• B. Fauser, J. Tolksdorf, and E. Zeidler (Eds.), Quantum Gravity: Mathematical
Models and Experimental Bounds, Birkhäuser, Basel, 2006.

• B. Fauser, J. Tolksdorf, and E. Zeidler (Eds.), Quantum Field Theory – Com-
petitive Methods, Birkhäuser, Basel, 2008.
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Regine Lübke (invaluable support), Katarzyna Baier (answering patiently
almost infinitely many bibliographical questions), the library team (steadily
support), Kerstin Fölting (graphics and tables), Micaela Krieger-Hauwede
(answering patiently my LATEX questions), Katrin Scholz (internet searching),
and Thomas Heid (computer expert). I also would like to thank the staff of



Preface XXIII

the Springer publishing house in Heidelberg, Ruth Allewelt, Joachim Heinze,
and Martin Peters, for the harmonious collaboration. Many years ago, my
Czech colleague from Prague, the late Svatopluk Fučik, wrote the following
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Prologue

One thing I have learned in a long life: that all our science, measured
against reality, is primitive and childlike – and yet it is the most precise
thing we have.

Albert Einstein (1879–1955)

The development of quantum mechanics in the years 1925 and 1926 had
produced rules for the description of systems of microscopic particles,
which involved promoting the fundamental dynamical variables of a corre-
sponding classical system into operators with specified commutators. By
this means, a system, described initially in classical particle language, ac-
quires characteristics associated with the complementary classical wave
picture. It was also known that electromagnetic radiation contained in an
enclosure, when considered as a classical dynamical system, was equiva-
lent energetically to a denumerably infinite number of harmonic oscillators.
With the application of the quantization process to these fictitious oscil-
lators, the classical radiation field assumed characteristics describable in
the complementary classical particle language. The ensuing theory of light
quantum emission and absorption by atomic systems7 marked the begin-
ning of quantum electrodynamics. . .
When it was attempted to quantize the complete electromagnetic field,8

difficulties were encountered that stem from the gauge ambiguity of the
potentials that appear in the Lagrangian formulation of the Maxwell equa-
tions. . .
From the origin of quantum electrodynamics, in the classical theory of
point charges, came a legacy of difficulties.9 The coupling of an electron
with the electromagnetic field implied an infinite displacement, and, in-
deed, an infinite shift of all spectral lines emitted by an atomic system;10

7 P. Dirac, The quantum theory of the emission and absorption of radiation, Proc.
Royal Soc. Ser. A 14 (1927), 244–265.

8 W. Heisenberg and W. Pauli, On the quantum electrodynamics of wave fields
(in German), Z. Phys. 56 (1929), 1–61; 59 (1930), 108–190.

9 H. Lorentz, Theory of Electrons, Dover, New York, 1915.
10 R. Oppenheimer, Note on the interaction of field and matter, Phys. Rev. 35

(1930), 461–477.
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in the reaction of the electromagnetic field stimulated by the presence
of the electron, arbitrary short wave lengths play a disproportionate and
divergent role. The phenomenon of electron-positron pair creation, which
finds a natural place in the relativistic electron field theory, contributes to
this situation in virtue of the fluctuating densities of charge and current
that occur even in the vacuum state11 as the matter-field counterpart of
the fluctuations in electric and magnetic field strengths.12

In computing the energy of a single electron relative to that of the vacuum
state, it is of significance that the presence of the electron tends to suppress
the charge-current fluctuations induced by the fluctuating electromagnetic
field. The resulting electron energy, while still divergent in its dependence
upon the contributions of arbitrarily short wave lengths exhibits only a
logarithmic infinity;13 the combination of quantum and relativistic effects
has destroyed all correspondence with the classical theory and its strongly
structured-dependent electromagnetic mass.
The existence of current fluctuations in the vacuum has other implica-
tions, since the introduction of an electromagnetic field induces currents
that tend to modify the initial field; the “vacuum” acts as a polarizable
medium.14

New nonlinear electromagnetic phenomena appear, such as the scattering
of one light beam by another, or by an electrostatic field. . .
It is not likely that future developments will change drastically the prac-
tical results of the electron theory, which gives contemporary quantum
electrodynamics a certain enduring value. Yet the real significance of the
work of the past decade lies in the recognition of the ultimate problems
facing electrodynamics, the problems of conceptual consistency and of phys-
ical completeness. No final solution can be anticipated until physical sci-
ence has met the heroic challenge to comprehend the structure of the
sub-microscopic world that nuclear exploration has revealed.15

Julian Schwinger, 1958

This quotation is taken from a beautiful collection of 34 papers which played
a fundamental role in the development of quantum electrodynamics. This
volume was edited by Julian Schwinger from Harvard University who himself
made fundamental contributions to this fascinating field of contemporary
physics.

In the present volume, we will use Dyson’s extremely elegant approach to
quantum electrodynamics based on the Dyson series for the S-matrix (scat-

11 The ground state of a quantum field is also called the vacuum state, by abuse of
language. Note that the vacuum state is full of physics. In particular, quantum
fluctuations of the vacuum state cause the essential physical effects observed in
physical experiments.

12 W. Heisenberg, On electric charge fluctuations caused by electron-positron pair
creation, Sächsische Akademie der Wissenschaften, Leipzig, Vol. 86 (1934), 317–
323 (in German).

13 V. Weisskopf, On the self-energy and the electromagnetic field of the electron,
Phys. Rev. 56 (1939), 72–86.

14 P. Dirac, Théorie du positron, Rapport du 7e Conseil Solvay de Physique 1934,
pp. 203–212.

15 J. Schwinger (Ed.), 34 Selected Papers on Quantum Electrodynamics, Dover
Publications, New York, 1958 (reprinted with permission).
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tering matrix). In the beginning of his Selected Papers, Freeman Dyson (born
1923) describes the history of quantum electrodynamics:16

My first stroke of luck was to find Nicholas Kemmer in Cambridge (Eng-
land) in 1946. He was the teacher I needed. He rapidly became a friend
as well as a teacher.17 Our friendship is still alive and well after 45 years.
Kemmer gave two courses of lectures in Cambridge, one on nuclear physics
and one on quantum field theory. In 1946, the only existing text-book on
quantum field theory was the book “Quantentheorie der Wellenfelder”, by
Gregor Wentzel (1898–1978) written in Zürich and published in 1943 in
Vienna in the middle of the war. Kemmer had been a student of Wentzel
and possessed a copy of Wentzel’s book. It was at that time a treasure
without price. I believe there were then only two copies in England. It was
later reprinted in America and translated into English.18 But in 1946, few
people in America knew of its existence and fewer considered it important.
Kemmer not only possessed a copy, he also lent it to me and explained
why it was important. . .
In 1947, I arrived at Cornell as a student and found myself, thanks to
Kemmer, the only person in the whole university who knew about quantum
field theory. The great Hans Bethe (1906–2005) and the brilliant Richard
Feynman (1918–1988) taught me a tremendous lot about many areas of
physics, but when we were dealing with quantum field theory, I was the
teacher and they were the students19 . . .

Julian Schwinger (1918–1994) had known about quantum field theory long
before. But he shared the American view that it was a mathematical ex-
travagance, better avoided unless it should turn out to be essential. In 1948,
he understood that it could be useful. He used it for calculations of the
energy level shifts20 revealed by the experiments of Lamb and Retherford,

16 F. Dyson, Selected Papers of Freeman Dyson with Commentary, American Math-
ematical Society, Providence, Rhode Island, and International Press, Cambridge,
Massachusetts (reprinted with permission).

17 Nicholas Kemmer (1911–1998) was born in Saint Petersburg (Russia). In 1922,
his family moved to Germany. He studied at the University of Göttingen. In
1940, he moved to Trinity College, Cambridge (England), to work on the wartime
atomic energy project. He went to the University of Edinburgh from 1953–1979
as Tait Professor of Mathematical Physics, then Professor Emeritus. He was
elected F.R.S. (Fellow of the Royal Society) in 1956.

18 G. Wentzel, Quantum Theory of Wave Fields, Interscience, New York, 1949.
19 Hans Bethe was born in Strasbourg (Alsace) in 1906. He studied at the Uni-

versity of Frankfurt/Main (Germany), and he obtained his Ph.D. at the Uni-
versity of Munich in 1928. In 1934, he emigrated to the United States, and he
was appointed to a professorship at the Cornell University (Ithaca, New York).
From 1943 until 1946, he worked in Los Alamos (New Mexico) (the Manhattan
project for constructing the atomic bomb). In 1946, Bethe returned to Cornell
and brought with him a group of brilliant young experimental and theoreti-
cal physicists. Among them was Richard Feynman. In 1967, Hans Bethe was
awarded the Nobel prize in physics for his contributions to the theory of nuclear
reactions, especially his discoveries concerning the energy production in stars.
See H. Bethe, R. Bacher, and M. Livingstone, Basic Bethe: Seminal Articles on
Nuclear Physics 1936–1937, American Institute of Physics, 1986.

20 The first calculations of the Lamb shift were accomplished by Bethe in 1947; this
was a highlight in quantum electrodynamics.
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Foley and Kusch at Columbia.21 But he used it grudgingly. In his publi-
cations, he preferred not to speak explicitly about quantum field theory.
Instead, he spoke about Green’s Functions. It turned out that the Green’s
Functions that Schwinger talked about and the quantum field theory that
Kemmer talked about were fundamentally the same thing. . .

At Cornell, I was learning Richard Feynman’s quite different way of calcu-
lating atomic processes. Feynman had never been interested in quantum
field theory. He had his own private way of doing calculations. His way
was based on things that he called “Propagators,” which were probabil-
ity amplitudes for particles to propagate themselves from one space-time
point to another. He calculated the probabilities of physical processes by
adding up the propagators. He had rules for calculating the propagators.
Each propagator was represented graphically by a collection of diagrams.
Each diagram gave a pictorial view of particles moving along straight lines
and colliding with one another at points where the straight lines met.
When I learned this technique of drawing diagrams and calculating prop-
agators from Feynman, I found it completely baffling, because it always
gave the right answer, but did not seem based on any solid mathemati-
cal foundation. Feynman called his way of calculating physical processes
“the space-time approach,” because his diagrams represented events as
occurring at particular places and at particular times. The propagators
described sequences of events in space and time. It later turned out that
Feynman’s propagators were merely another kind of Green’s Functions.
Feynman had been talking the language of Green’s Functions all his life
without knowing it.

Green’s Functions also appeared in the work of Sin-Itiro Tomonaga (1906–
1979), who had developed independently a new elegant version of relativis-
tic quantum field theory. His work was done in the complete isolation of
war-time Japan, and was published in Japanese in 1943. The rest of the
world became aware of it only in the spring of 1948, when an English
translation of it arrived at Princeton sent by Hideki Yukawa (1907–1981)
to Robert Oppenheimer (1904–1967). Tomonaga was a physicist in the
European tradition, having worked as a student with Heisenberg (1901–
1976) at Leipzig before the war. For him, in contrast to Schwinger and
Feynman, quantum field theory was a familiar and natural language in
which to think.
After the war, Tomonaga’s students had been applying his ideas to calcu-
late the properties of atoms and electrons with high accuracy, and were
reaching the same results as Schwinger and Feynman. When Tomonaga’s
papers began to arrive in America, I was delighted to see that he was
speaking the language of quantum field theory that I had learned from
Kemmer. It did not take us long to put the various ingredients of the pud-
ding together. When the pudding was cooked, all three versions of the new
theory of atoms and electrons turned out to be different ways of express-
ing the same basic idea. The basic idea was to calculate Green’s Functions
for all atomic processes that could be directly observed. Green’s Functions
appeared as the essential link between the methods of Schwinger and Feyn-
man, and Tomonaga’s relativistic quantum field theory provided the firm
mathematical foundation for all three versions of quantum electrodynam-
ics.

21 Columbia University, New York
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Dyson wrote two fundamental papers on the foundations of quantum elec-
trodynamics, which are now classics:

F. Dyson, The radiation theories of Tomonaga, Schwinger, and Feynman,
Phys. Rev. 75 (1949), 486–502.

F. Dyson, The S-matrix in quantum electrodynamics, Phys. Rev. 75
(1949), 1736–1755.

The fascinating story of the first paper can be found on page 27 of Vol. I.
Dyson’s second paper on renormalization theory starts as follows:

The covariant (i.e., relativistically invariant) quantum electrodynamics of
Tomonaga, Schwinger, and Feynman is used as the basis for a general treat-
ment of scattering problems involving electrons, positrons, and photons.
Scattering processes, including the creation and annihilation of particles,
are completely described by the S-matrix (scattering matrix) of Heisen-
berg.22 It is shown that the elements of this matrix can be calculated by
a consistent use of perturbation theory to any order in the fine-structure
constant. Detailed rules are given for carrying out such calculations, and
it is shown that divergences arising from higher order radiative corrections
can be removed from the S-matrix by a consistent use of the ideas of mass
and charge renormalization.
Not considered in this paper are the problems of extending the treatment
to bound-state phenomena, and of proving the convergence of the theory
as the order of perturbation itself tends to infinity.23

In 1950, John Ward published a short note where he used a highly formal
argument in order to get a specific identity:24

It has been recently proved by Dyson that all divergences in the S-matrix
may be removed by a renormalization of mass and charge. Dyson defines
certain fundamental divergent operators Γμ, S

′
F , D

′
F and gives a procedure

for their finite parts Γμ1, S
′
F1, D

′
F1 by a process of successive approxima-

tion. It is then shown that

Γμ = Z−1
1 Γμ1(e1), S′

F = Z2S
′
F1(e1), D′

F = Z3D
′
F1(e1),

e1 = Z−1
1 Z2Z

1/2
3 e,

where Z1, Z2, and Z3 are certain infinite constants and e1 is the (finite)
renormalized electronic charge. Dyson conjectured that Z1 = Z2 and it is
proposed here to give a formal proof of this relation.

22 W. Heisenberg, The observable quantities in particle physics I–III, Z. f. Phys.
120 (1943), 513–538, 673–702; 123 (1944), 93–112 (in German).

23 Bound states were considered in:
H. Bethe and E. Salpeter, A relativistic equation for bound-state problems. Phys.
Rev. 84 (1951), 1232–1242.
H. Bethe and E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms,
Springer, Berlin, 1957.

24 J. Ward, An identity in quantum electrodynamics, Phys. Rev. 78 (1950), p. 182
(letter to the editor).
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Nowadays this identity is called the Ward identity; it is the prototype of
the crucial Ward–Takahashi–Slavnov–Taylor identities in gauge field theo-
ries, which are consequences of (local) gauge symmetry. In quantum electro-
dynamics, the Ward identity guarantees the unitarity of the S-matrix; this
is a decisive ingredient of S-matrix theory. In fact, the unitarity is crucial for
relating elements of the S-matrix to transition probabilities (see Sect. 7.15 of
Vol. I). If the unitarity of the S-matrix is violated, then the theory becomes
meaningless from the physical point of view.

After thinking about the convergence problem in quantum electrodynam-
ics for a long time, Dyson published his paper Divergence of perturbation
theory in quantum electrodynamics, Phys. Rev. 85 (1952), 631–632. The ab-
stract of this paper reads as follows:

An argument is presented which leads tentatively to the conclusion that all

the power-series expansions currently in use in quantum electrodynamics

are divergent after the renormalization of mass and charge. The divergence

in no way restricts the accuracy of practical calculations that can be made

with the theory, but raises important questions of principle concerning the

nature of the physical concepts upon which the theory is built.

Dyson’s heuristic argument can be found in Sect. 15.5.1 of Vol. I. Silvan
Schweber writes the following in his excellent history on quantum elec-
trodynamics entitled QED and the Men Who Made It: Dyson, Feynman,
Schwinger, and Tomonaga, Princeton University Press, Princeton, New Jer-
sey, 1994:25

The importance of Schwinger’s 1947 calculation of the anomalous magnetic
moment of the electron cannot be underestimated. In the course of theoret-
ical developments, there sometimes occur important calculations that alter
the way the community thinks about particular approaches. Schwinger’s
calculation is one such instance. . .
The papers of Tomonaga, Schwinger, and Feynman did not complete the
renormalization program since they confined themselves to low order cal-
culations. It was Dyson who dared to face the problem of high orders
and brought the program to completion. In magnificently penetrating pa-
pers, he pointed out and resolved the main problems of this very difficult
analysis. . . Whatever the future may bring, it is safe to assert that the
theoretical advances made in the unravelling of the constitution of matter
since World War II comprise one of the greatest intellectual achievements
of mankind. They were based on the ground secured by the contributions
of Bethe, Tomonaga, Schwinger, Feynman, and Dyson to quantum field
theory and renormalization theory in the period from 1946 to 1951.

For creating quantum electrodynamics, Richard Feynman, Julian Schwinger,
and Sin-Itiro Tomonaga were awarded the Nobel prize in physics in 1965.
Freemann Dyson was awarded the Wolf prize in physics in 1981. Working at
the Institute for Advanced Study in Princeton, Dyson is one of the most in-
fluential intellectuals of our time; his research concerns mathematics (number

25 Reprinted by permission of Princeton University Press.



Prologue 7

theory, random matrices), physics (quantum field theory, statistical mechan-
ics, solid state physics, stability of matter), astrophysics (interstellar com-
munication), biology (origin of life), history, and philosophy of the sciences.
Much material can be found in the Selected Papers of Freeman Dyson, Amer.
Math. Soc., Providence, Rhode Island and International Press, Cambridge,
Massachusetts, 1996. In particular, we refer to the following beautiful essays
and books written by Dyson:
Essays:

• Mathematics in the physical sciences, Scientific American 211 (1964), 129–
164.

• Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635–652.
• George Green and Physics, Physics World 6, August 1993, 33–38.
• A walk through Ramanujan’s garden. Lecture given at the Ramanujan

(1887–1920) Centenary Conference in 1987, University of Illinois. In: F.
Dyson, Selected Papers, pp. 187–208.

• Foreword to J. Havil, Gamma: Exploring Euler’s Constant, Princeton Uni-
versity Press, 2003.

• Foreword to P. Odifreddi, The Mathematical Century: The 30 Greatest Prob-
lems of the Last 100 Years, Princeton University Press, 2004.

• The Scientist as Rebel, New York Review Books, 2007.

Books:

• Disturbing the Universe, Harper and Row, New York, 1979.
• From Eros to Gaia, Pantheon Books, New York, 1992.
• Origins of Life, Cambridge University Press, 1999.
• The Sun, the Genome and the Internet: Tools of Scientific Revolution, Oxford

University Press, 1999.

Elliott Lieb (Princeton University) writes the following in the foreword to
Dyson’s Selected Papers (reprinted with permission):

If any proof be needed that theoretical physics papers are not ephemeral
and are not written on a blackboard that has to be erased every five years,
then the papers in this volume will supply ample witness. The writings of
Freeman Dyson are among the jewels that crown the subject and today
even the earliest among them can be read with profit and much pleasure
by beginners and experts. . .
Dyson along with Feynman, Schwinger, and Tomonaga was a founder of
quantum electrodynamics. When I started my graduate studies in the
fifties, it was not easy to find a coherent pedagogical representation of
the new field, but fortunately, Dyson had given lectures at Cornell in 1951
and these were available as notes. Thanks to their clarity many people,
including me, were able to enter the field.

Recently, these classic notes were published:

F. Dyson, Advanced Quantum Mechanics: Cornell Lectures on Quantum
Electrodynamics 1951, World Scientific, Singapore, 2007.

Feynman’s approach to quantum electrodynamics was elegantly based on
the use of graphs called Feynman diagrams today. David Kaiser writes the
following in his book Drawing Theories Apart: The Dispersion of Feynman
Diagrams in Postwar Physics (the University of Chicago Press, Chicago and
London, 2005 – reprinted with permission):



8 Prologue

For all of Feynman’s many contributions to modern physics, his diagrams
have had the widest and longest-lasting influence. Feynman diagrams have
revolutionized nearly every aspect of theoretical physics since the middle
of the twentieth century. Feynman first introduced his diagrams in the
late 1940s as a bookkeeping device for simplifying lengthy calculations
in one area of physics – quantum electrodynamics, physicist’s quantum-
mechanical description of electromagnetic forces. Soon the diagrams gained
adherents throughout the fields of nuclear and particle physics. Not long
thereafter, other theorists adopted – and subtly adapted – Feynman dia-
grams for many-body applications in solid-state physics. By the end of the
1960s, some physicists even wielded the line drawings for calculations in
gravitational physics. With the diagrams’ aid, entire new calculational vis-
tas opened for physicists; theorists learned to calculate things that many
had barely dreamed possible before World War II. With the list of dia-
grammatic applications growing ever longer, Feynman diagrams helped to
transform the way physicists saw the world, and their place within it.

There is no doubt that quantum electrodynamics is one of the most beauti-
ful theories in theoretical physics. The following quotation is taken from the
forthcoming article “Quantum Theory and Relativity” written by Arthur
Jaffe, Contemporary Mathematics, American Mathematical Society, Provi-
dence, Rhode Island, 2008, pp. 209–245 (reprinted with permission):26

Two major themes dominated twentieth century physics: quantum theory
and relativity. These two fundamental principles provide the cornerstones
upon which one might build the understanding of modern physics. And to-
day after one century of elaboration of the original discoveries by Poincaré,
Einstein, Bohr, Schrödinger, Heisenberg, Dirac – and many others – one
still dreams of describing the forces of nature within such an arena. Yet
we do not know the answer to the basic question:

Are quantum theory, relativity, and interaction mathematically compatible?

Even if one restricts relativity to special relativity, we do not know the
answer to this question about our four-dimensional world – much less about
other higher-dimensional worlds considered by string theorists.
Should quantum theory with relativity not qualify as logic? Physics sug-
gests that a natural way to combine quantum theory, special relativity and
interaction is through a nonlinear quantum field. Enormous progress on
this problem has been made over the past forty years. This includes show-
ing that theories exist in space-times of dimension two and three. Building
this new mathematical framework and finding these examples has become
known as the subject of constructive quantum field theory. . .
For centuries, the tradition in physics has been to describe natural phenom-
ena by mathematics. Eugene Wigner marveled on the relevance of mathe-
matics in his famous essay: “On the Unreasonable Effectiveness of Mathe-
matics in the Natural Sciences,” Comm. Pure Appl. Math. 13 (1960), 1–14.
Intuition can go a long way. But by endowing physics with a mathematical
foundation, one also bestows physical laws with longevity. For mathemat-
ical ideas can be understood and conveyed more easily than conjectures,
both from person to person, and also from generation to generation.

26 I would like to thank Arthur Jaffe for sending me the electronic version of this
beautiful article before publishing it.
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In recent years, we have witnessed enormous progress in another direction –
of transferring ideas from physics to mathematics: to play on Wigner’s title,
concepts from physics have had an unreasonable effectiveness in provid-
ing insight to formulate mathematical conjectures! The resulting infusion
of new perspectives has truly blossomed into a mathematical revolution,
which has been sufficiently robust to touch almost every mathematical
frontier. . .



1. Mathematical Principles of Modern Natural
Philosophy

The book of nature is written in the language of mathematics.
Galileo Galilei (1564–1642)

At the beginning of the seventeenth century, two great philosophers, Fran-
cis Bacon (1561–1626) in England and René Descartes (1596–1650) in
France, proclaimed the birth of modern science. Each of them described
his vision of the future. Their visions were very different. Bacon said, “All
depends on keeping the eye steadily fixed on the facts of nature.” Descartes
said, “I think, therefore I am.” According to Bacon, scientists should travel
over the earth collecting facts, until the accumulated facts reveal how Na-
ture works. The scientists will then induce from the facts the laws that
Nature obeys. According to Descartes, scientists should stay at home and
deduce the laws of Nature by pure thought. In order to deduce the laws
correctly, the scientists will need only the rules of logic and knowledge of
the existence of God. For four hundred years since Bacon and Descartes led
the way, science has raced ahead by following both paths simultaneously.
Neither Baconian empiricism nor Cartesian dogmatism has the power to
elucidate Nature’s secrets by itself, but both together have been amaz-
ingly successful. For four hundred years English scientists have tended to
be Baconian and French scientists Cartesian.
Faraday (1791–1867) and Darwin (1809–1882) and Rutherford (1871–
1937) were Baconians; Pascal (1623–1662) and Laplace (1749–1827) and
Poincaré (1854–1912) were Cartesians. Science was greatly enriched by the
cross-fertilization of the two contrasting national cultures. Both cultures
were always at work in both countries. Newton (1643–1727) was at heart
a Cartesian, using pure thought as Descartes intended, and using it to
demolish the Cartesian dogma of vortices. Marie Curie (1867–1934) was
at heart a Baconian, boiling tons of crude uranium ore to demolish the
dogma of the indestructibility of atoms.1

Freeman Dyson, 2004

It is important for him who wants to discover not to confine himself to a
chapter of science, but keep in touch with various others.2

Jacques Hadamard (1865–1963)

1 From Dyson’s foreword to the book by P. Odifreddi, The Mathematical Century:
The 30 Greatest Problems of the Last 100 Years, Princeton University Press,
2004. Reprinted by permission of Princeton University Press.

2 J. Hadamard, The Psychology of Invention, Princeton University Press, 1945.
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Mathematics takes us still further from what is human, into the region of
absolute necessity, to which not only the actual world, but every possible
world must conform.3

Bertrand Russel (1872–1972)

1.1 Basic Principles

There exist the following fundamental principles for the mathematical de-
scription of physical phenomena in nature.

(I) The infinitesimal principle due to Newton and Leibniz: The laws of nature
become simple on an infinitesimal level of space and time.4

(II) The optimality principle (or the principle of least action): Physical pro-
cesses proceed in such an optimal way that the action is minimal (or at
least critical). Such processes are governed by ordinary or partial differ-
ential equations called the Euler–Lagrange equations.

(III) Emmy Noether’s symmetry principle: Symmetries of the action func-
tional imply conservation laws for the corresponding Euler–Lagrange
equations (e.g., conservation of energy).

(IV) The gauge principle and Levi-Civita’s parallel transport: The funda-
mental forces in nature (gravitational, eletromagnetic, strong, and weak
interaction) are based on the symmetry of the action functional un-
der local gauge transformations. The corresponding parallel transport
of physical information generates the intrinsic Gauss–Riemann–Cartan–
Ehresmann curvature which, roughly speaking, corresponds to the acting
force (also called interaction). Briefly: force = curvature.

(V) Planck’s quantization principle: Nature jumps.
(VI) Einstein’s principle of special relativity: Physics does not depend on the

choice of the inertial system.
(VII) Einstein’s principle of general relativity: Physics does not depend on

the choice of the local space-time coordinates of an observer.
(VIII) Dirac’s unitarity principle: Quantum physics does not depend on the

choice of the measurement device (i.e., on the choice of an orthonormal
basis in the relevant Hilbert space). This corresponds to the invariance
under unitary transformations.5

3 The Earl of Russel was awarded the Nobel prize in literature in 1950. He worked
in philosophy, mathematical logic, social sciences, and politics.

4 I. Newton, Philosophiae naturalis principia mathematica (Mathematical princi-
ples of natural philosophy) (in Latin), 1687. Translated into English by A. Motte,
in 1729, edited by F. Cajori, University of California Press, Berkeley, California,
1946. See also S. Chandrasekhar, Newton’s Principia for the Common Reader,
Oxford University Press, Oxford, 1997.

5 Newton (1643–1727), Leibniz (1646–1716), Euler (1707–1783), Lagrange (1736–
1813), Laplace (1749–1828), Legendre (1752–1833), Fourier (1768–1830), Gauss
(1777–1855), Poisson (1781–1840), Faraday (1791–1867), Green (1793–1841),
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Geometrization of physics. In mathematics, the properties of geomet-
ric objects do not depend on the choice of the coordinate system. This is
similar to the principles (VI)–(VIII). Therefore, it is quite natural that geo-
metric methods play a fundamental role in modern physics.

Linearity and nonlinearity. We have to distinguish between

(i) linear processes, and
(ii) nonlinear processes.

In case (i), the superposition principle holds, that is, the superposition of
physical states yields again a physical state. Mathematically, such processes
are described by linear spaces and linear operator equations. The mathe-
matical analysis can be simplified by representing physical phenomena as
superposition of simpler phenomena. This is the method of harmonic analy-
sis (e.g., the Fourier method based on the Fourier series, the Fourier integral,
or the Fourier–Stieltjes integral).

In case (ii), the superposition principle is violated. As a rule, interactions
in nature are mathematically described by nonlinear operator equations (e.g.,
nonlinear differential or integral equations). The method of perturbation the-
ory allows us to reduce (ii) to (i), by using an iterative method.

Basic properties of physical effects. For the mathematical investiga-
tion of physical effects, one has to take the following into account.

(A) Faraday’s locality principle: Physical effects propagate locally in space
and time (law of proximity theory).

(B) Green’s locality principle: The response of a linear physical system can be
described by localizing the external forces in space and time and by con-
sidering the superposition of the corresponding special responses (method
of the Green’s function). Furthermore, this can be used for computing
nonlinear physical systems by iteration.

(C) Planck’s constant: The smallest action (energy × time) in nature is given
by the action quantum h = 6.626 0755 · 10−34Js.

(D) Einstein’s propagation principle: Physical effects travel at most with the
speed of light c in a vacuum. Explicitly, c = 2.997 92458 · 108m/s.

(E) Gauge invariance principle: Physical effects are invariant under local
gauge transformations. Physical experiments are only able to measure
quantities which do not depend on the choice of the gauge condition.

Riemann (1826–1866), Maxwell (1831–1879), Lie (1842–1899), Klein (1849–

1925), Poincaré (1854–1912), Planck (1858–1947), Élie Cartan (1859–1951),
Hilbert (1862–1943), Minkowski (1864–1909), Levi-Civita (1873–1941), Einstein
(1879–1955), Emmy Noether (1882–1935), Weyl (1885–1955), Schrödinger (1887–
1961), Heisenberg (1901–1976), Dirac (1902–1984), Ehresmann (1905–1979),
von Neumann (1903–1957), Tomonaga (1906–1979), Landau (1908–1968), Lau-
rent Schwartz (1915–2002), Feynman (1918–1988), Schwinger (1918–1994), Yang
(born 1922), Dyson (born 1923), Salam (1926–1996), Gell-Mann (born 1929),
Glashow (born 1932), Weinberg (born 1933), Fritzsch (born 1943).
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(F) The Planck scale hypothesis: Physics dramatically changes below the
Planck length given by l = 10−35m.

In what follows, let us discuss some basic ideas related to all of the principles
summarized above. To begin with, concerning Faraday’s locality principle,
Maxwell emphasized the following:6

Before I began the study of electricity I resolved to read no mathematics on
the subject till I had first read through Faraday’s 1832 paper Experimental
researches on electricity. I was aware that there was supposed to be a
difference between Faraday’s way of conceiving phenomena and that of
the mathematicians, so that neither he nor they were satisfied with each
other’s language. I had also the conviction that this discrepancy did not
arise from either party being wrong. For instance, Faraday, in his mind, saw
lines of force traversing all space where the mathematicians (e.g., Gauss)
saw centers of force attracting at a distance; Faraday saw a medium where
they saw nothing but distance; Faraday sought the seat of the phenomena
in real actions going on in the medium, where they were satisfied that they
had found it in a power of action at a distance impressed on the electric
fluids.
When I had translated what I considered to be Faraday’s ideas into a
mathematical form, I found that in general the results of the two methods
coincide. . . I also found that several of the most fertile methods of research
discovered by the mathematicians could be expressed much better in terms
of the ideas derived from Faraday than in their original form.

1.2 The Infinitesimal Strategy and Differential
Equations

Differential equations are the foundation of the natural scientific, mathe-
matical view of the world.

Vladimir Igorevich Arnold (born 1937)

The infinitesimal strategy due to Newton and Leibniz studies the behavior of
a physical system for infinitesimally small time intervals and infinitesimally
small distances. This leads to the encoding of physical processes into differen-
tial equations (e.g., Newton’s equations of motion in mechanics, or Maxwell’s
equations in electrodynamics).

The task of mathematics is to decode this information; that is, to
solve the fundamental differential equations.

1.3 The Optimality Principle

It is crucial that the class of possible differential equations is strongly re-
stricted by the optimality principle. This principle tells us that the funda-
mental differential equations are the Euler–Lagrange equations to variational
6 J. Maxwell, A Treatise on Electricity and Magnetism, Oxford University Press,

Oxford, 1873.
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problems. In 1918, Emmy Noether formulated her general symmetry princi-
ple in the calculus of variations. The famous Noether theorem combines Lie’s
theory of continuous groups with the calculus of variations due to Euler and
Lagrange. This will be studied in Section 6.6.

1.4 The Basic Notion of Action in Physics and the Idea
of Quantization

The most important physical quantity in physics is not the energy, but the
action which has the physical dimension energy times time. The following is
crucial.

(i) The fundamental processes in nature are governed by the principle of
least action

S = min!

where we have to add appropriate side conditions. In fact, one has to use
the more general principal S = critical! (principle of critical action). For
example, if we consider the motion q = q(t) of a particle of mass m on
the real line, then the action is given by

S[q] :=
∫ t1

t0

(
1
2mq̇(t)2 − U(q(t))

)
dt.

Here, the function U = U(q) is the potential, and the negative derivative,
−U ′, describes the acting force. In this case, the principle of critical action
reads as

S[q] = critical!, q(t0) = q0, q(t1) = q1 (1.1)

where we fix the following quantities: the initial time t0, the initial posi-
tion q0 of the particle, the final time t1, and the final position q1 of the
particle. The solutions of (1.1) satisfy the Euler–Lagrange equation

mq̈(t) = F (t), t ∈ R

with the force F (t) = −U ′(q(t)). This coincides with the Newtonian
equation of motion (see Sect. 6.5).

(ii) In 1900 Planck postulated that there do not exist arbitrarily small
amounts of action in nature. The smallest amount of action in nature
is equal to the Planck constant h. In ancient times, philosophers said:

Natura non facit saltus. (Nature does never make a jump.)
In his “Noveaux essais,” Leibniz wrote:

Tout va par degrés dans la nature et rien par saut. (In nature
everything proceeds little by little and not by jumping.)
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In contrast to this classical philosophy, Planck formulated the hypothesis
in 1900 that the energy levels of a harmonic oscillator form a discrete set.
He used this fact in order to derive his radiation law for black bodies (see
Sect. 2.3.1 of Vol. I). This was the birth of quantum physics. More gen-
erally, the energy levels of the bound states of an atom or a molecule are
discrete. The corresponding energy jumps cause the spectra of atoms and
molecules observed in physical experiments (e.g., the spectral analysis of
the light coming from stars). Nowadays, we say that:

Nature jumps.

This reflects a dramatic change in our philosophical understanding of
nature.

(iii) In order to mathematically describe quantum effects, one has to modify
classical theories. This is called the process of quantization, which we
will encounter in this series of monographs again and again. As an in-
troduction to this, we recommend reading Chapter 7. Now to the point.
Feynman discovered in the early 1940s in his dissertation in Princeton
that the process of quantization can be most elegantly described by path
integrals (also called functional integrals) of the form

∫
eiS[ψ]/� Dψ

where we sum over all classical fields ψ (with appropriate side conditions).
Here, � := h/2π. For example, the quantization of the classical particle
considered in (i) can be based on the formula

G(q0, t0; q1, t1) =
∫

eiS[q]/� Dq.

Here, we sum over all classical motions q = q(t) which satisfy the side
condition q(t0) = q0 and q(t1) = q1. The Green’s function G determines
the time-evolution of the wave function ψ, that is, if we know the wave
function ψ = ψ(x, t0) at the initial time t0, then we know the wave
function at the later time t by the formula

ψ(x, t) =
∫

R

G(x, t; y, t0)ψ(y, t0)dy.

Finally, the wave function ψ tells us the probability

∫ b

a

|ψ(x, t)|2dx

of finding the quantum particle in the interval [a, b] at time t.
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(iv) In quantum field theory, one uses the functional integral
∫

eiS[ψ]/� ei〈ψ|J〉 Dψ

with the additional external source J . Differentiation with respect to J
yields the moments of the quantum field. In turn, the moments deter-
mine the correlation functions (also called Green’s functions). The cor-
relation functions describe the correlations between different positions of
the quantum field at different points in time. These correlations are the
most important properties of the quantum field which can be related to
physical measurements.

Feynman’s functional integral approach to quantum physics clearly shows
that both classical and quantum physics are governed by the classical action
functional S. This approach can also be extended to the study of many-
particle systems at finite temperature, as we have discussed in Sect. 13.8 of
Vol. I. Summarizing, let us formulate the following general strategy:

The main task in modern physics is the mathematical description of
the propagation of physical effects caused by interactions and their
quantization.

In Sect. 1.9 we will show that in modern physics, interactions are described
by gauge theories based on local symmetries.

1.5 The Method of the Green’s Function

Basic ideas. As a prototype, consider the motion x = x(t) of a particle
of mass m > 0 on the real line under the action of the continuous force
F : R → R. The corresponding Newtonian equation of motion reads as

mẍ(t) = F (t) for all t ∈ R (1.2)

with the initial condition

x(0) = a, ẋ(0) = v.

We are given the initial position a and the initial velocity v at time t = 0.
For simplifying notation, we set m := 1. In order to discuss Green’s locality
principle in physics, let us summarize the following facts. The unique solution
of (1.2) reads as

x(t) = a + vt +
∫ t

0

(t − τ)F (τ)dτ for all t ∈ R.

Equivalently, this can be written as
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x(t) = a + vt +
∫ ∞

−∞
G(t, τ)F (τ)dτ for all t ∈ R. (1.3)

The function G is called the Green’s function of the differential equation
(1.2). Explicitly,

G(t, τ) :=

⎧⎪⎨
⎪⎩

t − τ if 0 ≤ τ ≤ t,

τ − t if t ≤ τ < 0,

0 otherwise.

Let us discuss the physical meaning of the Green’s function G. To this end,
for fixed positive number Δt and all times t ∈ R, we introduce the Dirac
Δt-delta function

δΔt(t) :=

{
1

Δt if 0 ≤ t ≤ Δt,

0 otherwise.

Obviously, we have

lim
Δt→+0

δΔt(t) =

{
+∞ if 0 ≤ t ≤ Δt,

0 otherwise,

and the normalization condition
∫ ∞
−∞ δΔt(t)dt = 1 is satisfied.

(i) Localized force. We are given the parameters Δt > 0 and F0 ∈ R. For
fixed time t0, we choose the special force

F (t) := F0 · δΔt(t − t0) for all t ∈ R.

By (1.3), the corresponding motion reads as

xΔt(t) = a + vt + F0 ·
1

Δt

∫ t0+Δt

t0

G(t, τ)dτ for all t ∈ R.

Letting Δt → +0, we get the motion7

x(t) = a + vt + F0 · G(t, t0) for all t ∈ R. (1.4)

This can be considered as the motion of the particle under the influence
of the kick force t �→ F0δΔt(t − t0) at time t0, as Δt → +0. For t0 ≥ 0,
the motion (1.4) looks like

7 In fact, it follows from limε→+0 G(t, t0 + ε) = G(t, t0) for all t, t0 ∈ R that

lim
Δ→+0

1

Δt

Z t0+Δt

t0

G(t, τ)dτ = G(t, t0).
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x(t) =

{
a + vt if t < t0,

a + vt + F0 · (t − t0) if t ≥ t0.
(1.5)

That is, the velocity jumps at time t0. For t0 < 0, (1.4) looks like

x(t) =

{
a + vt if t > t0,

a + vt + F0 · (t0 − t) if t ≤ t0.
(1.6)

(ii) Superposition of the original force by kick forces (physical interpretation
of the Green’s function). Fix Δt > 0. Consider the discrete points in time
nΔt where n = 0,±1,±2, . . . In terms of physics, let us approximate the
given force F = F (t) by a step function Fapprox. That is, we use the
superposition

Fapprox(t) :=
∞∑

n=−∞
Fn(t), t ∈ R

of the kick forces Fn(t) := F (nΔt)δΔt(t − nΔt)Δt. Explicitly,

Fn(t) =

{
F (nΔt) if nΔt ≤ t ≤ (n + 1)Δt,

0 otherwise.

If Δt is sufficiently small, then the kick force Fn generates the approxi-
mate motion

xn(t) = F (nΔt)G(t, nΔt)Δt, t ∈ R

with xn(0) = 0 and ẋn(0) = 0 for all n = ±1,±2, . . . That is, the particle
rests at the initial time t = 0. Consequently, by superposition, the force
Fapprox generates the approximate motion

xapprox(t) =
∞∑

n=−∞
xn(t) =

∞∑
n=−∞

G(t, nΔt)F (nΔt)Δt, t ∈ R.

As Δt → 0, we get the motion x(t) =
∫ ∞
−∞ G(t, τ)F (τ)dτ for all t ∈ R.

The motions (1.5) and (1.6) have the following properties:

(a) t �→ x(t) is continuous on R.
(b) t �→ x(t) is smooth on R \ {t0}, and ẍ(t) = 0 for all t �= t0.
(c) ẋ(t0 + 0) = ẋ(t0 − 0) + F0 (jump of the velocity at time t0).
(d) In the sense of distributions, we have the following equation of motion:8

mẍ(t) = F0δ(t − t0), t ∈ R.

8 We choose m := 1.
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Let us prove (d). We have to show that
∫ ∞

−∞
x(t)ϕ̈(t)dt = F0ϕ(t0) for all ϕ ∈ D(R).

Noting (b), integration by parts yields that
∫ ∞

t0
x(t)ϕ̈(t)dt is equal to

−x(t0)ϕ̇(t0) −
∫ ∞

t0

ẋ(t)ϕ̇(t)dt = −x(t0)ϕ̇(t0) + ẋ(t0 + 0)ϕ(t0).

Similarly,
∫ t0
−∞ x(t)ϕ̈(t)dt = x(t0)ϕ̇(t0) − ẋ(t0 − 0)ϕ(t0). Finally, use (c). �

Examples. Fix t0 := 0 and F0 := 1. If we choose a = v := 0, then the
motion (1.5) looks like

x(t) = θ(t)t for all t ∈ R.

Here, θ denotes the Heaviside function.9 If we choose a := 0 and v := −1,
then the motion (1.5) looks like

x(t) = −θ(−t)t for all t ∈ R.

Finally, if we choose a := 0, v := −1
2 , then the motion (1.5) looks like

x(t) = 1
2 (θ(t)t − θ(−t)t) = 1

2 |t| for all t ∈ R.

The relation between the theory of distributions and the method of averaging
will be discussed in Sect. 1.7.

Iterative solution of nonlinear problems. The experience of physi-
cists shows that

Interactions in nature lead to nonlinear terms in the corresponding
differential equations.

This explains the importance of nonlinear problems in physics. We want
to show that the Green’s function can also be used in order to investigate
nonlinear problems. As a prototype, consider the differential equation

mẍ(t) = −κx(t)3, t ∈ R (1.7)

with the positive parameter κ called coupling constant, and the initial con-
dition x(0) = a, ẋ(0) = v. This problem describes an anharmonic oscillator
(see page 370). By (1.3), the initial-value problem (1.7) is equivalent to the
nonlinear integral equation

x(t) = a + vt − κ

∫ ∞

−∞
G(t, τ)x(τ)3dτ for all t ∈ R, (1.8)

9 Recall that θ(t) := 1 if t ≥ 0 and θ(t) := 0 if t < 0.
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by setting F (t) := −κx(t)3. The corresponding iterative method reads as

xn+1(t) = a + vt − κ

∫ ∞

−∞
G(t, τ)xn(τ)3dτ, n = −1, 0, 1, . . .

with x−1(t) := 0 for all t ∈ R. This iterative method is also called the
bootstrap method by physicists. In particular, x0(t) = a + vt for all t ∈ R.
The first approximation,

x1(t) = a + vt − κ

∫ ∞

−∞
G(t, τ)x0(τ)3dτ for all t ∈ R

is called the Born approximation by physicists. If the coupling constant κ is
sufficiently small, then the iterative method converges to the solution of the
original integral equation (1.8), that is, limn→∞ xn(t) = x(t) for all t ∈ R.

The two problems (1.7) and (1.8) reflect a crucial duality between dif-
ferential equations and integral equations. The kernel G of the inte-
gral equation (1.8) is the Green’s function of the linearized differential
equation (1.2).

In this series of monographs, we will frequently use this duality. For example,
in Sect. 8.6 we will study stationary scattering processes in quantum mechan-
ics by replacing the Schrödinger differential equation by the dual Lippmann–
Schwinger integral equation.

Therefore, nonlinear problems can be iteratively solved if the Green’s
function is known.

This is the method of perturbation theory, which is basic for quantum field
theory. For the computation of the Green’s function, one can use Fourier’s
method. For the Newtonian motion (1.2), this will be studied in Sect. 2.2.14
in terms of the Fourier integral transform.

1.6 Harmonic Analysis and the Fourier Method

The superposition principle. In 1822 Fourier published his monograph
Théorie analytique de la chaleur (analytic heat theory) where he used both
the Fourier series and the Fourier integral in order to solve numerous problems
in heat conduction. Let us sketch the basic ideas. For given time period T > 0,
let us introduce the corresponding angular frequency

Δω :=
2π

T
.

Fourier’s method of harmonic analysis is the most important method for get-
ting explicit solutions of linear partial differential equations in mathematical
physics and for explicitly computing the corresponding Green’s functions.10

10 Much material can be found in P. Morse and H. Feshbach, Methods of Theoretical
Physics, Vols. 1, 2, McGraw-Hill, New York, 1953. Fourier’s method is intimately
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(i) Discrete Fourier transformation. Let f : R → C be a smooth function of
period T > 0. Then11

F (t) =
∞∑

k=−∞
a(k)eitkΔω, t ∈ R (1.9)

with the so-called Fourier coefficients

a(k) :=
1
T

∫ T/2

−T/2

F (t)e−itkΔωdt, k = 0,±1,±2, . . .

Rigorously, the Fourier series (1.9) converges uniformly on the real line.
Equation (1.9) tells us that the force function F can be represented by
a superposition of special oscillating forces t �→ a(k)eitkΔω of period T ,
angular frequency kΔω, and amplitude a(k) with k = 0,±1,±2, . . . The
map

F �→ {a(k)}k∈Z

is called the discrete Fourier transformation (with respect to the given
period T ).

(ii) Rescaling. Set F̂ (kΔω) := Ta(−k)/
√

2π where k = 0,±1,±2, . . . , and
choose the angular frequencies

ω := kΔω, k = 0,±1,±2, . . .

Then

F (t) =
1√
2π

∞∑
k=−∞

F̂ (kΔω)e−itkΔωΔω, t ∈ R

with

F̂ (ω) :=
1√
2π

∫ T/2

−T/2

F (t)eitωdt, k = 0,±1,±2, . . .

(iii) Continuous Fourier transformation. Suppose that the period T goes to
infinity, T → ∞. Then we formally obtain the integral

F (t) =
1√
2π

∫ ∞

−∞
F̂ (ω)e−itωdω, t ∈ R (1.10)

related to special functions in mathematical physics based on symmetries. We
refer to N. Vilenkin and A. Klimyk, Special Functions and Representations of
Lie Groups, Vols. 1–4, Kluwer, Dordrecht, 1991, and to A. Wawrzyńczyk, Group
Representations and Special Functions, Reidel, Dordrecht, 1984 (see also the
references for further reading about special functions in quantum mechanics on
page 762).

11 Recall that, by definition,
P∞

k=−∞ b(k) :=
P∞

k=0 b(k) +
P−∞

k=−1 b(k).
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with

F̂ (ω) :=
1√
2π

∫ ∞

−∞
F (t)eitωdt, ω ∈ R. (1.11)

Rigorously, if the function F : R → C is smooth and rapidly decreasing
at infinity, that is, F ∈ S(R),12 then the function F can be represented
by (1.10) where the function F̂ is given by (1.11). Moreover, we have
F̂ ∈ S(R). Equation (1.10) tells us that each function F ∈ S(R) is the
superposition of harmonic waves t �→ F̂ (ω)e−itω of angular frequency ω,
and the corresponding amplitude function ω �→ F̂ (ω) lies in S(R). The
map F �→ F̂ is called the continuous Fourier transformation (or, briefly,
the Fourier transformation) from the time space to the frequency space.

Terminology. Passing from frequency ω to energy E = �ω, we define the
Fourier transformation from the time space to the energy space by setting

F (t) =
1√
2π�

∫ ∞

−∞
F̂∗(E)e−iEt/�dE, t ∈ R (1.12)

with

F̂∗(E) :=
1√
2π�

∫ ∞

−∞
F (t)eiEt/� dt, E ∈ R. (1.13)

Here,
√

�F̂∗(�ω) = F̂ (ω). This is also called the rescaled Fourier transfor-
mation. Motivated by the Fourier-Minkowski transformation in the 4-dimen-
sional space-time (Minkowski space) in Einstein’s theory of special relativity,
we will distinguish between the Fourier transformation (1.12), (1.13) from
the time space to the energy space and the Fourier transformation from the
position space to the momentum space given by

F (x) =
1√
2π�

∫ ∞

−∞
F̂∗∗(p)eixp/� dp, x ∈ R (1.14)

with

F̂∗∗(p) :=
1√
2π�

∫ ∞

−∞
F (x)e−ixp/� dx, p ∈ R. (1.15)

Note that
√

�F̂∗∗(p) = F̂ (−p/�) for all momenta p ∈ R. This is discussed on
page 538 of Vol. I. To simplify notation, we will frequently write F̂ instead
of F̂∗ (resp. F̂∗∗) if any misunderstanding is excluded.13

12 The definition of the space S(R) can be found in Sect. 10.3.3 of Vol. I.
13 In the literature, one also uses the asymmetrical formulas

F (x) =

Z ∞

−∞
F̂asym(p)eixp/� dp, x ∈ R
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Prototype of the Fourier method. Consider the differential equation

ẍ(t) = −ω2
0x(t) + F (t), t ∈ R. (1.16)

We are given the parameter ω0 > 0 and the periodic smooth force function
F : R → R with the period T > 0. We are looking for a solution x : R → R. In
terms of physics, the function x = x(t) describes the motion of a particle with
mass m = 1 under the action of the external force F (t) and the reactive force
−ω2

0x(t) at time t. Physicists call this an harmonic oscillator. The angular
frequency of the force F is given by Δω := 2π/T.

We postulate that ω0 �= kΔω for all integers k.

In terms of physics, this crucial condition means that the external force F
is not in resonance with the eigenoscillations of the harmonic oscillator. The
general solution of (1.16) reads as

x(t) = 
(aeitω0 + be−itω0 + xspecial(t)), t ∈ R (1.17)

with arbitrary complex numbers a, b. Furthermore, we have the special solu-
tion

xspecial(t) :=
∫ T/2

−T/2

G(t, τ)F (τ)dτ, t ∈ R,

and the Green’s function

G(t, τ) :=
1
2π

∞∑
k=−∞

ei(t−τ)kΔω

ω2
0 − (kΔω)2

Δω. (1.18)

Let us prove this.
(I) Formal computation. In order to construct a special solution of (1.16),

we start with the ansatz

xspecial(t) :=
∞∑

k=−∞
b(k)eitkΔω.

Now insert this into (1.16) and use the Fourier series (1.9) for the force F .
From ẍ(t) + ω2

0x(t) − F (t) = 0 we get

with

F̂asym(p) =
1

2π�

Z ∞

−∞
F (x)e−ixp/� dx, p ∈ R.

However, whereas the transformations F �→ F̂ and F �→ F̂∗ generate unitary

operators on the Hilbert space L2(R), this is not the case for F �→ F̂asym. There-

fore, the choice of the transformation F �→ F̂asym has the disadvantage that it
violates the fundamental unitary symmetry between position and momentum in
quantum physics.
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∞∑
k=−∞

(
−(kΔω)2b(k) + ω2

0b(k) − a(k)
)
· eitkΔω = 0.

Hence −(kΔω)2b(k) + ω2
0b(k) − a(k) = 0. This implies

xspecial(t) =
∞∑

k=−∞

a(k)
ω2

0 − (kΔω)2
· eitkΔω. (1.19)

Noting that a(k) = Δω
2π

∫ T/2

−T/2
F (τ)e−iτkΔωdτ, we get the desired formula

(1.17), by formally interchanging summation and integration.
(II) Rigorous proof. Let N = 1, 2, . . . Since the function F is smooth, we

have

a(k) = O

(
1

kN

)
for all k ∈ Z.

The same is true for b(k). By the majorant criterion, all the Fourier series
involving a(k) and b(k) converge uniformly on the real line, and hence term-
by-term differentiation (resp. integration) is allowed. This shows that the
function xspecial given by (1.19) is indeed a special solution of the inhomoge-
neous differential equation (1.16). Finally, note that the general solution of the
homogeneous equation (1.16) with F = 0 is given by x(t) = aeitω0 + be−itω0

with arbitrary complex numbers a and b. This finishes the proof. �

Resonances and the singularities of the Green’s function. Suppose
that ω0 = k0Δω for some nonzero integer k0. Then it follows from (1.18) that
the Green’s function G has a singularity if we choose k = k0. In the case where
the function F satisfies the condition a(k0) �= 0, that is,

∫ T/2

−T/2

F (τ)e−iτω0dτ �= 0,

physicists say that the external force F is in resonance with the eigenfre-
quency ω0 of the harmonic oscillator.

Resonance effects cause singularities of the Green’s function.

In the present case, the difficulty disappears if we demand that a(k0) = 0.
Then the singularity drops out in (1.19).

Resonances are responsible for complicated physical effects.

For example, the observed chaotic motion of some asteroids is due to reso-
nance effects in celestial mechanics (the Kolmogorov–Arnold–Moser theory).
In quantum field theory, internal resonances of the quantum field cause spe-
cial quantum effects (e.g., the Lamb shift in the spectrum of the hydrogen
atom and the anomalous magnetic moment of the electron), which have to
be treated with the methods of renormalization theory (see Chap. 17 on
radiative corrections in quantum electrodynamics).
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1.7 The Method of Averaging and the Theory of
Distributions

In the early 20th century, mathematicians and physicists noticed that for
wave problems, the Green’s functions possess strong singularities such that
the solution formulas of the type (1.3) fail to exist as classical integrals.14 In
his classic monograph

The Principles of Quantum Mechanics,

Clarendon Press, Oxford, 1930, Dirac introduced a singular object δ(t) (the
Dirac delta function), which is very useful for the description of quantum
processes and the computation of Green’s functions. In the 1940s, Laurent
Schwartz gave all these approaches a sound basis by introducing the notion
of distribution (generalized function). In order to explain Laurent Schwartz’s
basic idea of averaging, consider the continuous motion

x(t) := |t| for all t ∈ R

of a particle on the real line. We want to compute the force F (t) = mẍ(t)
acting on the particle at time t. Classically, F (t) = 0 if t �= 0, and the force
does not exist at the point in time t = 0. We want to motivate that

F (t) = 2mδ(t) for all t ∈ R. (1.20)

(I) The language of Dirac. For the velocity, ẋ(t) = 1 if t > 0, and ẋ(t) = −1
if t < 0. For t = 0, the derivative ẋ(0) does not exist. We define ẋ(0) := 0.
Hence

ẋ(t) = θ(t) − θ(−t).

Since θ̇(t) = δ(t), we get

ẍ(t) = δ(t) + δ(−t) = 2δ(t) for all t ∈ R.

Formally, δ(t) = 0 if t �= 0, and δ(0) = ∞ with
∫ ∞
−∞ δ(t)dt = 1. Obviously,

there is no classical function δ which has such properties.15

(II) The language of Laurent Schwartz. Choose ε > 0. We first pass to the
regularized motion x = xε(t) for all t ∈ R. That is, the function xε : R → R

is smooth for all ε > 0 and
14 For example, see J. Hadamard, The Initial-Value Problem for Linear Hyperbolic

Partial Differential Equations, Hermann, Paris (in French). A modern version
of Hadamard’s theory can be found in P. Günther, Huygens’ Principle and Hy-
perbolic Differential Equations, Academic Press, San Diego, 1988. See also C.
Bär, N. Ginoux, and F. Pfäffle, Wave Equations on Lorentzian Manifolds and
Quantization, European Mathematical Society 2007.

15 See the detailed discussion of the formal Dirac calculus in Sect. 11.2 of Vol. I.
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lim
ε→+0

xε(t) = |t| for all t ∈ R,

where this convergence is uniform on all compact time intervals.16 We intro-
duce the averaged force

Fε(ϕ) :=
∫ ∞

−∞
mẍε(t)ϕ(t)dt

for all averaging functions ϕ ∈ D(R) (i.e., ϕ : R → C is smooth and vanishes
outside some bounded interval. In other words, ϕ has compact support.) Since
xε is smooth, integration by parts twice yields

Fε(ϕ) =
∫ ∞

−∞
mxε(t)ϕ̈(t)dt.

Letting ε → +0, we define the mean force by

F(ϕ) := lim
ε→+0

Fε(ϕ) =
∫ ∞

−∞
mx(t)ϕ̈(t)dt.

Integration by parts yields
∫ ∞
0

|t| ϕ̈(t)dt = −
∫ ∞
0

ϕ̇(t)dt = ϕ(0). Similarly,∫ 0

−∞ |t|ϕ̈(t)dt = −
∫ 0

−∞ ϕ̇(t)dt = ϕ(0). Summarizing, we obtain the averaged
force

F(ϕ) = 2mϕ(0) for all ϕ ∈ D(R). (1.21)

In the language of distributions, we have F = 2mδ, where δ denotes the
Dirac delta distribution. A detailed study of the theory of distributions and
its applications to physics can be found in Chaps. 11 and 12 of Vol. I. In
particular, equation (1.20) is equivalent to (1.21), in the sense of distribution
theory.

In terms of experimental physics, distributions correspond to the fact
that measurement devices only measure averaged values. It turns out that
classical functions can also be regarded as distributions. However, in contrast
to classical functions, the following is true:

Distributions possess derivatives of all orders.

Therefore, the theory of distributions is the quite natural completion of the
infinitesimal strategy due to Newton and Leibniz, who lived almost three
hundred years before Laurent Schwartz. This shows convincingly that the
development of mathematics needs time.
16 For example, choose xε(t) := rε(t)|t| for all t ∈ R, where the regularizing function

rε : R → [0, 1] is smooth, and rε(t) := 1 if t /∈ [−2ε, 2ε], as well as rε(t) := 0 if
t ∈ [−ε, ε].
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1.8 The Symbolic Method

The symbol of the operator d
dt . Consider again the Fourier transforma-

tion

F (t) =
1√
2π

∫ ∞

−∞
F̂ (ω)e−itωdω, t ∈ R (1.22)

with

F̂ (ω) :=
1√
2π

∫ ∞

−∞
F (t)eitωtdt, ω ∈ R. (1.23)

Let n = 1, 2, . . . Differentiation of (1.22) yields

dn

dtn
F (t) =

1√
2π

∫ ∞

−∞
(−iω)nF̂ (ω)eitωdω, t ∈ R. (1.24)

The function
s(ω) := −iω for all ω ∈ R

is called the symbol of the differential operator d
dt . For n = 0, 1, 2, . . . , we

have
dn

dtn
F ⇒ snF̂ .

This means that the action of the differential operator dn

dtn , with respect to
time t, can be described by the multiplication of the Fourier transform F̂ by
sn in the frequency space.

This corresponds to a convenient algebraization of derivatives.

Over the centuries, mathematicians and physicists tried to simplify compu-
tations. The relation

ln(ab) = ln a + ln b for all a, b > 0 (1.25)

allows us to reduce multiplication to addition. This fact was extensively used
by Kepler (1571–1630) in order to simplify his enormous computations in
celestial mechanics.

Similarly, the Fourier transformation allows us to reduce differenti-
ation to multiplication.

Furthermore, there exists a natural generalization of the logarithmic function
to Lie groups. Then the crucial formula (1.25) passes over to the transforma-
tion formula from the Lie group G to its Lie algebra LG. This transformation
is well defined for the group elements near the unit element (see Vol. III).

Pseudo-differential operators and Fourier integral operators. The
modern theory of pseudo-differential operators (e.g., differential and integral
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operators) and Fourier integral operators is based on the use of symbols of
the form

s = s(ω, t, τ),

which depend on frequency ω, time t, and time τ . The expressions

(AF )(t) :=
1
2π

∫
R2

s(ω, t, τ)F (τ)eiω(τ−t) dτdω, t ∈ R (1.26)

and

(BF )(t) :=
1
2π

∫
R2

s(ω, t, τ)F (τ)eiϕ(ω,t,τ) dτdω, t ∈ R (1.27)

correspond to the pseudo-differential operator A and the Fourier integral
operator B. If we choose the special phase function

ϕ(ω, t, τ) := ω(t − τ),

then the operator B passes over to A. If, in addition, the symbol s does not
depend on τ , then integration over τ yields

(AF )(t) =
1√
2π

∫ ∞

−∞
s(ω, t)F̂ (ω)e−iωt dω.

In the special case where the symbol s(ω, t) only depends on the frequency
ω, the pseudo-differential operator corresponds to the multiplication operator
ω �→ s(ω)F̂ (ω) in the frequency space (also called Fourier space).

Long before the foundation of the theory of pseudo-differential operators
and Fourier integral operators in the 1960s and 1970s, mathematicians and
physicists used integral expressions of the form (1.26) and (1.27) in order to
compute explicit solutions in electrodynamics (e.g., the Heaviside calculus
and the Laplace transform applied to the study of electric circuits17), elastic-
ity (singular integral equations), geometric optics (e.g., diffraction of light),
and quantum mechanics.

The point is that the symbols know a lot about the properties of the
corresponding operators, and an elegant algebraic calculus for opera-
tors can be based on algebraic operations for the symbols.

As an introduction, we recommend:

Yu. Egorov and M. Shubin, Foundations of the Classical Theory of Partial
Differential Equations, Springer, New York, 1998 (Encyclopedia of Math-
ematical Sciences).

Yu. Egorov, A. Komech, and M. Shubin, Elements of the Modern Theory
of Partial Differential Equations, Springer, New York, 1999 (Encyclopedia
of Mathematical Sciences).

17 See E. Zeidler (Ed.), Oxford Users’ Guide to Mathematics, Sect. 1.11, Oxford
University Press, 2004.
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F. Berezin and M. Shubin, The Schrödinger Equation, Kluwer, Dordrecht,
1991.

L. Faddeev and A. Slavnov, Gauge Fields, Benjamin, Reading, Mas-
sachusetts, 1980 (gauge theory, Weyl calculus, the Feynman path integral,
and the Faddeev–Popov ghost approach to the Standard Model in particle
physics).

We also refer to the following treatises:

L. Hörmander, The Analysis of Linear Partial Differential Operators.
Vol. 1: Distribution Theory and Fourier Analysis, Vol. 2: Differential Op-
erators with Constant Coefficients, Vol. 3: Pseudo-Differential Operators,
Vol. 4: Fourier Integral Operators, Springer, New York, 1993.

R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods
for Science and Technology, Vols. 1–6, Springer, New York, 1988.

Heaviside’s formal approach. Consider the differential equation

d

dt
x(t) − x(t) = f(t). (1.28)

We want to discuss the beauty, but also the shortcomings of the symbolic
method due to Heaviside (1850–1925). Formally, we get

(
d

dt
− 1

)
x(t) = f(t).

Hence

x(t) =
f(t)
d
dt − 1

.

For complex numbers z with |z| < 1, we have the convergent geometric series
1

z−1 = −1 − z − z2 − z3 + ... This motivates

x(t) =
(
−1 − d

dt
− d2

dt2
− . . .

)
f(t). (1.29)

If we choose f(t) := t2, then

x(t) = −t2 − 2t − 2. (1.30)

Surprisingly enough, we get ẋ(t) = −2t−2 = x(t)+t2. Therefore, the function
x(t) from (1.30) is a solution of (1.28). The same is true for all polynomials.
To prove this, let f be a polynomial of degree n = 0, 1, 2 . . . Set

x(t) := −
n∑

k=0

dk

dtk
f(t).

Then we get ẋ(t) = −
∑n

k=0
dk+1

dtk+1 f(t) = f(t) + x(t), since the (n + 1)th
derivative of f vanishes. However, the method above fails if we apply it to
the exponential function f(t) := et. Then
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x(t) = et + et + et + . . . ,

which is meaningless. There arises the problem of establishing a more pow-
erful method. In the history of mathematics and physics, formal (also called
symbolic) methods were rigorously justified by using the following tools:

• the Fourier transformation,
• the Laplace transformation (which can be reduced to the Fourier transfor-

mation),
• Mikusiński’s operational calculus based on the quotient field over a convo-

lution algebra,
• von Neumann’s operator calculus in Hilbert space,
• the theory of distributions,
• pseudo-differential operators and distributions (e.g., the Weyl calculus in

quantum mechanics), and
• Fourier integral operators and distributions.

Mikusiński’s elegant approach will be considered in Sect. 4.2 on page 191.
Motivation of the Laplace transformation via Fourier transfor-

mation. Consider the motion x = x(t) of a particle on the real line with
x(t) = 0 for all t ≤ 0. Suppose that the function x : R → R is continuous
and bounded. The Fourier transform from the time space to the energy space
reads as

x̂(E) =
1√
2π�

∫ ∞

−∞
x(t)eiEt/� dt =

1√
2π�

∫ ∞

0

x(t)eiEt/� dt.

As a rule, this integral does not exist. To improve the situation, we fix the
regularization parameter ε > 0, and we define the damped motion

xε(t) := x(t)e−εt for all t ∈ R.

This is also called the adiabatic regularization of the original motion. Obvi-
ously, limε→+0 xε(t) = x(t) for all t ∈ R. The Fourier transform looks like

x̂ε(E) =
1√
2π�

∫ ∞

0

x(t)e−εteiEt/� dt =
1√
2π�

∫ ∞

0

x(t)eiEt/� dt,

by introducing the complex energy E := E + iε. To simplify notation, we set
� := 1.

Complex energies, damped oscillations, and the Laplace trans-
form. The formal Heaviside calculus was justified by Doetsch in the 1930s by
using the Laplace transform.18 As a simple example, let us use the Laplace
transformation in order to solve the differential equation (1.28). In particular,
we will consider the case
18 G. Doetsch, Theory and Applications of the Laplace Transform, Springer, Berlin,

1937 (in German). See also D. Widder, The Laplace Transform, Princeton Uni-
versity Press, 1944.
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f(t) := et

where the Heaviside method above fails. Let x : [0,∞[→ R be a smooth
function with the growth condition

|x(t)| ≤ const · eγ1t for all t ≥ 0

and fixed real number γ1. The Laplace transform reads as

L(x)(E) :=
∫ ∞

0

x(t) eiEt dt, �(E) > γ1 (1.31)

with the inverse transform

x(t) =
1
2π

PV

∫
L

(Lx)(E)e−iEtdE , t > 0 (1.32)

on the real line L := {E + (γ1 + 1)i : E ∈ R} of the complex energy space.
Here, we choose a system of units with � = h/2π := 1 for Planck’s action
quantum.19 The Laplace transform sends the function t �→ x(t) on the time
space to the function E �→ (Lx)(E) on the complex energy space. Here, it is
crucial to use complex energies E = E − Γ i. In what follows, we will use the
standard properties of the Laplace transformation which are proved in Sect.
2.2.6 of Vol. I. Let us start with an example. Choose the complex energy
E0 := E0 − Γ0i with real values E0 and Γ0, and set20

x(t) := e−iE0t = e−iE0t · e−Γ0t, t ∈ R. (1.33)

Then, γ1 = −Γ0 = �(E0), and we get

(Lx)(E) =
i

E − E0
, �(E) > �(E0).

Now to the point. We are given the smooth function f : [0,∞[→ C with the
growth condition

|f(t)| ≤ const · eγ0t for all t ≥ 0.

In order to solve the differential equation (1.28), we proceed as follows.
(I) Suppose first that the differential equation (1.28) has a smooth solution

x : [0,∞[→ C with |x(t)| ≤ const · eγ1t for all t ≥ 0 with γ1 ≥ γ0. Then
19 Set γ2 := γ1 + 1. The principal value of the integral is defined by

PV

Z

L

g(E)dE := lim
E0→+∞

Z E0+γ2i

−E0+γ2i

g(E + γ2i)dE.

20 If E0 > 0 and Γ0 > 0 then (1.33) is a damped oscillation with angular frequency
ω0 := E0/� = E0 and mean lifetime Δt = Γ0/� = Γ0.
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the Laplace transforms Lx and Lf exist for all E ∈ C with �(E) > γ1.
Furthermore,

(Lẋ)(E) = −iE(L)(E) − x(+0),

that is, the Laplace transforms converts differentiation into multiplication
and translation in the complex energy space. By (1.28),

−iE(Lx)(E) − (Lx)(E) − x(+0) = (Lf)(E), �(E) > γ1.

This yields the Laplace transform of the solution t → x(t), namely,

(Lx)(E) =
ix(+0)
E − i

+
i(Lf)(E)
E − i

.

Setting g(t) := et, we get (Lg)(E) = i
E−i . Therefore,

Lx = (Lg)x(+0) + (Lg)(Lf).

The convolution rule from Sect. 2.2.6 of Vol. I tells us that

x = gx(+0) + g ∗ f.

Explicitly, this reads as

x(t) = etx(+0) +
∫ t

0

e(t−τ)f(τ)dτ. (1.34)

Our argument shows that a solution of (1.28) has necessarily the form (1.34).
(II) Conversely, differentiation yields

ẋ(t) = etx(+0) + f(t) +
∫ t

0

e(t−τ)f(τ)dτ = x(t) + f(t)

for all t ≥ 0. Consequently, the function x = x(t) given by (1.34) is indeed
a solution of the original differential equation (1.28) for all times t ≥ 0. For
example, if f(t) := et, then

x(t) = etx(+0) + tet.

This is a solution of (1.28) for all times t ∈ R.
The same method of the Laplace transformation can be applied to general

systems of ordinary differential equations with constant coefficients. Such
equations are basic for the investigation of electrical circuits. Therefore, the
Laplace transformation plays a key role in electrical engineering.
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1.9 Gauge Theory – Local Symmetry and the
Description of Interactions by Gauge Fields

As we have discussed in Chap. 2 of Vol. I, the Standard Model in particle
physics is based on

• 12 basic particles (6 quarks and 6 leptons), and
• 12 interacting particles (the photon, the 3 vector bosons W+, W−, Z0 and

8 gluons).

This model was formulated in the 1960s and early 1970s. Note the following
crucial fact about the structure of the fundamental interactions in nature.

The fields of the interacting particles can be obtained from the fields
of the basic particles by using the principle of local symmetry (also
called the gauge principle).

Prototype of a gauge theory. Let us explain the basic ideas by consid-
ering the following simple model. To this end, let us choose the unit square
Q := {(x, t) : 0 ≤ x, t ≤ 1}. We start with the principle of critical action

∫
Q

L(ψ, ψt, ψx; ψ†, ψ†
t , ψ

†
x) dxdt = critical! (1.35)

with the boundary condition ψ = ψ0 on ∂Q and the special Lagrangian

L := ψ†ψt + ψ†ψx. (1.36)

Here, ψt (resp. ψx) denotes the partial derivative of ψ with respect to time
t (resp. position x). We are given a fixed continuous function ψ0 : ∂Q → C

on the boundary of the square Q. We are looking for a smooth function
ψ : Q → C which solves the variational problem (1.35).

By a basic result from the calculus of variations, we get the following.
If the function ψ is a solution of (1.35), then it is a solution of the two
Euler–Lagrange equations

∂

∂t
Lψ†

t
+

∂

∂x
Lψ†

x
= Lψ† (1.37)

and

∂

∂t
Lψt +

∂

∂x
Lψx = Lψ. (1.38)

Here, the symbol Lψ (resp. Lψ†) denotes the partial derivative of L with
respect to the variable ψ (resp. ψ†). The proof can be found in Problem 14.7
of Vol. I. Explicitly, the two Euler–Lagrange equations read as

ψt + ψx = 0, ψ†
t + ψ†

x = 0. (1.39)
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If the function ψ is a solution of (1.39), then we have

(ψψ†)t + (ψψ†)x = 0, (1.40)

which is called a conservation law. In fact, ψtψ
† + ψ†

t ψ = −ψxψ† − ψ†
xψ.

This is equal to −(ψψ†)x. Conservation laws play a fundamental role in all
fields of physics, since they simplify the computation of solutions. In the 18th
and 19th century, astronomers unsuccessfully tried to find 6N conservation
laws for the motion of N bodies in celestial mechanics (N ≥ 3), in order to
compute the solution and to prove the stability of our solar system.21

Step by step, mathematicians and physicists discovered that

Conservation laws are intimately related to symmetries.

The precise formulation of this principle is the content of the Noether theorem
proved in 1918 (see Sect. 6.6). We want to show that the invariance of the
Lagrangian L (with respect to a global gauge transformation) is behind the
conservation law (1.40).

(i) Global symmetry and the Noether theorem. Let α be a fixed real number.
We consider the global symmetry transformation

ψ+(x, t) := eiαψ(x, t) for all x, t ∈ R, (1.41)

that is, the field ψ is multiplied by the constant phase factor eiα, where
α is called the phase. The transformation (1.41) is also called a global
gauge transformation, by physicists. We also define the infinitesimal
gauge transformation δψ by setting

δψ(x, t) :=
d

dα

(
eiαψ(x, t)

)
|α=0

= iψ(x, t).

This means that ψ+(x, t) = 1+α ·δψ(x, t)+O(α2) as α → 0. Noting that
ψ†

+ = e−iαψ†, the special Lagrangian L from (1.36) is invariant under the
global gauge transformation (1.41), that is,

ψ†
+(ψ+)t + ψ†

+(ψ+)x = ψ†ψt + ψ†ψx.

Generally, the Lagrangian L is invariant under the global gauge trans-
formation (1.41) iff

L(ψ+, (ψ+)t, (ψ+)x; ψ†
+, (ψ†

+)t, (ψ
†
+)x) = L(ψ, ψt, ψx; ψ†, ψ†

t , ψ
†
x).

21 See D. Boccaletti and G. Pucacco, Theory of Orbits, Vol 1: Integrable Systems
and Non-Perturbative Methods, Vol. 2: Perturbative and Geometrical Methods,
Springer, Berlin, 1996.
Y. Hagihara, Celestial Mechanics, Vols. 1–5, MIT Press, Cambridge, Mas-
sachusetts, 1976.
W. Neutsch and K. Scherer, Celestial Mechanics: An Introduction to Classical
and Contemporary Methods, Wissenschaftsverlag, Mannheim, 1992.
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Then a special case of the famous Noether theorem on page 387 tells us
the following: If the function ψ is a solution of the variational problem
(1.35), then

∂

∂t

(
Lψtδψ + Lψ†

t
δψ†

)
+

∂

∂x

(
Lψxδψ + Lψ†

x
δψ†

)
= 0.

If we choose the special Lagrangian L = ψ†ψt + ψ†ψx, then we obtain
the conservation law (1.40).

(ii) Local symmetry and the covariant derivative. We now replace the global
gauge transformation (1.40) by the following local gauge transformation

ψ+(x, t) := eiα(x,t)ψ(x, t) for all x, t ∈ R, (1.42)

where the phase α depends on space and time. We postulate the following
crucial local symmetry principle:

(P) The Lagrangian L is invariant under local gauge transforma-
tions.

It can be easily shown that the function L from (1.36) does not possess
this invariance property for arbitrary functions α = α(x, t). This follows
from

(ψ+)t = iαteiαψ + eiαψt.

Here, the appearance of the derivative αt of the phase function α destroys
the invariance property of L.
Our goal is to modify the function L in such a way that it is invariant
under (1.42). To this end, we introduce the so-called covariant partial
derivatives

∇t :=
∂

∂t
+ iU(x, t), ∇x :=

∂

∂x
+ iA(x, t), (1.43)

where U, A : R
2 → R are given smooth real-valued functions called gauge

fields. The local gauge transformation of U and A is defined by

U+ := U − αt, A+ := A − αx.

Furthermore, we define the following transformation law for the covariant
partial derivatives:

∇+
t :=

∂

∂t
+ iU+, ∇+

x :=
∂

∂x
+ iA+. (1.44)

The key relation is given by the following elegant transformation law for
the covariant partial derivatives:

∇+
t ψ+ = eiα∇tψ, ∇+

x ψ+ = eiα∇xψ. (1.45)
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Theorem 1.1 There holds (1.45).

This theorem tells us the crucial fact that, in contrast to the classical
partial derivatives, the covariant partial derivatives are transformed in
the same way as the field ψ itself. This property is typical for covariant
partial derivatives in mathematics. Indeed, our construction of covariant
partial derivatives has been chosen in such a way that (1.45) is valid.
Proof. By the product rule,

(
∂

∂t
+ iU+

)
ψ+ = eiα(iαtψ + ψt + iU+ψ) = eiα

(
∂

∂t
+ iU

)
ψ.

This yields ∇+
t ψ+ = eiα∇tψ. Similarly, we get ∇+

x ψ+ = eiα∇xψ. �

Now let us discuss the main idea of gauge theory:

We replace the classical partial derivatives ∂
∂t ,

∂
∂x by the covariant

partial derivatives ∇t,∇x, respectively.

This is the main trick of gauge theory. In particular, we replace the
Lagrangian

L = ψ† ∂

∂t
ψ + ψ† ∂

∂x
ψ

from the original variational problem (1.35) by the modified Lagrangian

L := ψ†∇tψ + ψ†∇xψ.

Explicitly, we have

L = ψ†ψt + ψ†ψx + iψ†Uψ + iψ†Aψ.

The corresponding Euler–Lagrange equations (1.37) and (1.38) read as

∇tψ + ∇xψ = 0, (1.46)

and (∇tψ + ∇xψ)† = 0, respectively.

The local symmetry principle (P) above is closely related to the Faraday–
Green locality principle, saying that physical interactions are localized in
space and time.

Summarizing, the local symmetry principle (P) enforces the existence
of additional gauge fields U, A which interact with the originally given
field ψ.

In the Standard Model in particle physics and in the theory of general rela-
tivity, the additional gauge fields are responsible for the interacting particles.

Consequently, the mathematical structure of the fundamental inter-
actions in nature is a consequence of the local symmetry principle.
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In his search of a unified theory for all interactions in nature, Einstein was
not successful, since he was not aware of the importance of the principle of
local symmetry. In our discussion below, the following notions will be crucial:

• local gauge transformation,
• gauge force F ,
• connection form A,
• curvature form F (gauge force form), and
• parallel transport of information.

Gauge force. Covariant partial derivatives can be used in order to in-
troduce the following notions:

(a) Gauge force (also called curvature): We define

iF := ∇x∇t −∇t∇x. (1.47)

In physics, the function F is called the force induced by the gauge fields
U, A. Explicitly, we get

F = Ux − At. (1.48)

Relation (1.47) tells us that:
The “gauge force” F measures the non-commutativity of the co-
variant partial derivatives.

In particular, the force F vanishes if the gauge fields U, A vanish. The
proof of (1.48) follows from

∇t(∇xψ) =
(

∂

∂t
+ iU

)
(ψx + iAψ)

= ψtx + iAtψ + iAψt + iUψx − UAψ

and

∇x(∇tψ) =
(

∂

∂x
+ iA

)
(ψt + iUψ)

= ψxt + iUxψ + iUψx + iAψt − AUψ.

Hence (∇x∇t −∇t∇x)ψ = i(Ux − At)ψ. �

The transformation of the force F with respect to the gauge transforma-
tion ψ+(x, t) = eiα(x,y)ψ(x, t) is defined by

iF+ := ∇+
x ∇+

t −∇+
t ∇+

x .

Theorem 1.2 F+ = eiαF e−iα.
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Proof. It follows from Theorem 1.1 on page 37 that

iF+ψ+ = (∇+
x ∇+

t −∇+
t ∇+

x )ψ+ = ∇+
x (eiα∇tψ) −∇+

t (eiα∇xψ)
= eiα(∇x∇tψ −∇t∇xψ) = eiαiFψ = (eiαiF e−iα)ψ+.

�

In the present case, we have the commutativity property F e−iα = e−iαF.
Hence

F+ = eiαe−iαF = F,

that is, the force F is gauge invariant. In more general gauge theories,
the phase factor eiα(x,t) is a matrix. In this case, the force F is not gauge
invariant anymore. However, it is possible to construct gauge invariants
which depend on F . This is the case for the Standard Model in particle
physics (see Vol. III).

(b) Covariant directional derivative: Consider the curve

C : x = x(σ), t = t(σ),

where the curve parameter σ varies in the interval [0, σ0]. The classical
directional derivative along the curve C is defined by

d

dσ
:=

dx(σ)
dσ

∂

∂x
+

dt(σ)
dσ

∂

∂t
.

Explicitly, we get

d

dσ
ψ(x(σ), t(σ)) =

dx(σ)
dσ

ψx(x(σ), t(σ)) +
dt(σ)
dσ

ψt(x(σ), t(σ)).

Similarly, the covariant directional derivative along the curve C is defined
by

D

dσ
:=

dx(σ)
dσ

∇x +
dt(σ)
dσ

∇t.

Explicitly,

D

dσ
ψ(x(σ), t(σ)) =

d

dσ
ψ(x(σ), t(σ)) + iA(x(σ)), t(σ))

dx(σ)
dσ

+iU(x(σ), t(σ))
dt(σ)
dσ

. (1.49)

(c) Parallel transport: We say that the field function ψ is parallel along the
curve C iff

D

dσ
ψ(x(σ), t(σ)) = 0, 0 ≤ σ ≤ σ0. (1.50)

By (1.49), this notion depends on the gauge fields U, A. In particular, if
the gauge fields U, A vanish, then parallel transport means that the field
ψ is constant along the curve C.
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The following observation is crucial. It follows from the key relation (1.45)
on page 36 that the equation (1.50) of parallel transport is invariant under
local gauge transformations. This means that (1.50) implies

D+

dσ
ψ+(x(σ), t(σ)) = 0, 0 ≤ σ ≤ σ0.

Consequently, in terms of mathematics, parallel transport possesses a geo-
metric meaning with respect to local symmetry transformations.

In terms of physics, parallel transport describes the transport of phys-
ical information in space and time.

This transport is local in space and time, which reflects the Faraday–Green
locality principle.

The Cartan differential. The most elegant formulation of gauge theo-
ries is based on the use of the covariant Cartan differential. As a preparation,
let us recall the classical Cartan calculus. We will use the following relations:

dx ∧ dt = −dt ∧ dx, dx ∧ dx = 0, dt ∧ dt = 0. (1.51)

Moreover, the wedge product of three factors of the form dx, dt is always
equal to zero. For example,

dx ∧ dt ∧ dt = 0, dt ∧ dx ∧ dt = 0. (1.52)

For the wedge product, both the distributive law and the associative law are
valid. Let ψ : R

2 → C be a smooth function. By definition,

• dψ := ψxdx + ψtdt.

The differential 1-form

A := iAdx + iUdt (1.53)

is called the Cartan connection form. By definition,

• dA := idA ∧ dx + idU ∧ dt,
• d(ψ dx ∧ dt) = dψ ∧ dx ∧ dt = 0 (Poincaré identity).

The Poincaré identity is a consequence of (1.52).
The covariant Cartan differential. We now replace the classical par-

tial derivatives by the corresponding covariant partial derivatives. Therefore,
we replace dψ by the definition

• Dψ := ∇xψ dx + ∇tψ dt.

Similarly, we define

• DA := iDA ∧ dx + iDU ∧ dt,
• D(ψ dx ∧ dt) = Dψ ∧ dx ∧ dt = 0 (Bianchi identity).
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The Bianchi identity is a consequence of (1.52). Let us introduce the Cartan
curvature form F by setting

F := DA. (1.54)

Theorem 1.3 (i) Dψ = dψ + Aψ.
(ii) F = dA + A ∧A (Cartan’s structural equation).
(iii) DF = 0 (Bianchi identity).

In addition, we have the following relations for the curvature form F :

• F = dA + [U, A]−.22

• F = iFdx ∧ dt, where iF = Ux − At.

Proof. Ad (i). Dψ = (ψx + iAψ)dx + (ψt + iUψ)dt.
Ad (ii). Note that

DA = i(Ax + A2)dx + i(At + iUA)dt,

DU = i(Ux + iAU)dx + (Ut + iU2)dt,

and

A ∧A = −(Adx + Udt) ∧ (Adx + Udt) = (UA − AU) dx ∧ dt.

Hence

DA = iDA ∧ dx + iDU ∧ dt

= i(At + iUA) dt ∧ dx + i(Ux + iAU) dx ∧ dt = dA + A ∧A.

This yields all the identities claimed above. �

The results concerning the curvature form F above show that Cartan’s
structural equation (1.54) is nothing else than a reformulation of the equation

iF = Ux − At,

which relates the force F to the potentials U, A. Furthermore, we will show
in Sect. 5.11 on page 333 that Cartan’s structural equation is closely related
to both

• Gauss’ theorema egregium on the computation of the Gaussian curvature of
a classic surfaces by means of the metric tensor and its partial derivatives,

• and the Riemann formula for the computation of the Riemann curvature
tensor of a Riemannian manifold by means of the metric tensor and its
partial derivatives.

In the present case, the formulas can be simplified in the following way. It
follows from the commutativity property AU = UA that:
22 Here, we use the Lie bracket [U,A]− := UA−AU.
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• F = dA,
• F = iF dx ∧ dt = i(Ux − At) dx ∧ dt.

A similar situation appears in Maxwell’s theory of electromagnetism. For
more general gauge theories, the symbols A and U represent matrices. Then
we obtain the additional nonzero terms [U, A]− and A ∧ A. This is the case
in the Standard Model of elementary particles (see Vol. III).

The mathematical language of fiber bundles. In mathematics, we
proceed as follows:

• We consider the field ψ : R
2 → C as a section of the line bundle R

2 × C

(with typical fiber C) (see Fig. 4.9 on page 208).
• The line bundle R

2×C is associated to the principal fiber bundle R
2×U(1)

(with structure group U(1) called the gauge group in physics).23

• As above, the differential 1-form A := iAdx+iUdt is called the connection
form on the base manifold R

2 of the principal fiber bundle R
2×U(1) , and

• the differential 2-form

F = dA + A ∧A

is called the curvature form on the base manifold R
2 of the principle fiber

bundle R
2 × U(1).

• Finally, we define

Dψ := dψ + Aψ. (1.55)

This is called the covariant differential of the section ψ of the line bundle
R

2 × C.

Observe that:

The values of the gauge field functions iU, iA are contained in the Lie
algebra u(1) of the Lie group U(1). Thus, the connection form A is
a differential 1-form with values in the Lie algebra u(1).

This can be generalized by replacing

• the special commutative Lie group U(1)
• by the the general Lie group G.

Then the values of the gauge fields iU, iA are contained in the Lie algebra LG
to G. If G is a noncommutative Lie group (e.g., SU(N) with N ≥ 2), then the
additional force term A∧A does not vanish identically, as in the special case
of the commutative group U(1).24 In Vol. III on gauge theory, we will show
that the Standard Model in particle physics corresponds to this approach by
choosing the gauge group U(1) × SU(2) × SU(3). Here,
23 Recall that the elements of the Lie group U(1) are the complex numbers eiα with

real parameter α. The elements of the Lie algebra u(1) are the purely imaginary
numbers αi.

24 The Lie group SU(N) consists of all the unitary (N ×N)-matrices whose deter-
minant is equal to one (special unitary group).
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• the electroweak interaction is the curvature of a (U(1) × SU(2))-bundle
(Glashow, Salam and Weinberg in the 1960s), and

• the strong interaction is the curvature of a SU(3)-bundle (Gell-Mann and
Fritzsch in the early 1970s).

Historical remarks. General gauge theory is equivalent to modern dif-
ferential geometry. This will be thoroughly studied in Vol. III. At this point
let us only make a few historical remarks.

In 1827 Gauss proved that the curvature of a 2-dimensional surface
in 3-dimensional Euclidean space is an intrinsic property of the man-
ifold.

This means that the curvature of the surface can be measured without using
the surrounding space. This is the content of Gauss’ theorema egregium. The
Gauss theory was generalized to higher-dimensional manifolds by Riemann
in 1854. Here, the Gaussian curvature has to be replaced by the Riemann
curvature tensor. In 1915 Einstein used this mathematical approach in or-
der to formulate his theory of gravitation (general theory of relativity). In
Einstein’s setting, the masses of celestial bodies (stars, planets, and so on)
determine the Riemann curvature tensor of the four-dimensional space-time
manifold which corresponds to the universe. Thus, Newton’s gravitational
force is replaced by the curvature of a four-dimensional pseudo-Riemannian
manifold M4. The motion of a celestial body (e.g., the motion of a planet
around the sun) is described by a geodesic curve C in M4. Therefore, Ein-
stein’s equation of motion tells us that the 4-dimensional velocity vector of
C is parallel along the curve C. Roughly speaking, this corresponds to (1.50)
where ψ has to be replaced by the velocity field of C. In the framework of
his theory of general relativity, Einstein established the principle

force = curvature

for gravitation. Nowadays, the Standard Model in particle physics is also
based on this beautiful principle which is the most profound connection be-
tween mathematics and physics.

In 1917 Levi-Civita introduced the notion of parallel transport, and he
showed that both the Gaussian curvature of 2-dimensional surfaces and the
Riemann curvature tensor of higher-dimensional manifolds can be computed
by using parallel transport of vector fields along small closed curves. In the
1920s, Élie Cartan invented the method of moving frames.25 In the 1950s,
Ehresmann generalized Cartan’s method of moving frames to the modern
curvature theory for principal fiber bundles (i.e., the fibers are Lie groups)
and their associated vector bundles (i.e., the fibers are linear spaces). In 1963,
Kobayashi and Nomizu published the classic monograph
25 For an introduction to this basic tool in modern differential geometry, we refer

to the textbook by T. Ivey and J. Landsberg, Cartan for Beginners: Differential
Geometry via Moving Frames and Exterior Differential Systems, Amer. Math.
Soc., Providence, Rhode Island, 2003. See also Vol. III.
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Foundations of Differential Geometry,

Vols. 1, 2, Wiley, New York. This finishes a longterm development in math-
ematics.

In 1954, the physicists Yang and Mills created the Yang–Mills theory. It
was their goal to generalize Maxwell’s electrodynamics. To this end, they
started with the observation that Maxwell’s electrodynamics can be formu-
lated as a gauge theory with the gauge group U(1). This was known from
Hermann Weyl’s paper: Elektron und Gravitation, Z. Phys. 56 (1929), 330–
352 (in German). Yang and Mills

• replaced the commutative group U(1)
• by the non-commutative group SU(2).

The group SU(2) consists of all the complex (2×2)-matrices A with AA† = I
and det A = 1. Interestingly enough, in 1954 Yang and Mills did not know
a striking physical application of their model. However, in the 1960s and
1970s, the Standard Model in particle physics was established as a modified
Yang–Mills theory with the gauge group

U(1) × SU(2) × SU(3).

The modification concerns the use of an additional field called Higgs field
in order to generate the masses of the three gauge bosons W+, W−, Z0. In
the early 1970s, Yang noticed that the Yang–Mills theory is a special case of
Ehresmann’s modern differential geometry in mathematics. For the history
of gauge theory, we refer to:

L. Brown et al. (Eds.), The Rise of the Standard Model, Cambridge Uni-
versity Press, 1995.

L. O’Raifeartaigh, The Dawning of Gauge Theory, Princeton University
Press, 1997.

C. Taylor (Ed.), Gauge Theories in the Twentieth Century, World Scien-
tific, Singapore, 2001 (a collection of fundamental articles).

Mathematics and physics. Arthur Jaffe writes the following in his
beautiful survey article Ordering the universe: the role of mathematics in the
Notices of the American Mathematical Society 236 (1984), 589–608:26

There is an exciting development taking place right now, reunification of
mathematics with theoretical physics. . . In the last ten or fifteen years
mathematicians and physicists realized that modern geometry is in fact
the natural framework for gauge theory. The gauge potential in gauge
theory is the connection of mathematics. The gauge field is the mathe-
matical curvature defined by the connection; certain charges in physics are
the topological invariants studied by mathematicians. While the mathe-
maticians and physicists worked separately on similar ideas, they did not

26 Reprinted by permission of the American Mathematical Society. This report was
originated by the National Academy of Sciences of the U.S.A.
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duplicate each other’s efforts. The mathematicians produced general, far-
reaching theories and investigated their ramifications. Physicists worked
out details of certain examples which turned out to describe nature beauti-
fully and elegantly. When the two met again, the results are more powerful
than either anticipated. . . In mathematics, we now have a new motivation
to use specific insights from the examples worked out by physicists. This
signals the return to an ancient tradition.

Felix Klein (1849–1925) writes about mathematics:
Our science, in contrast to others, is not founded on a single period of
human history, but has accompanied the development of culture through
all its stages. Mathematics is as much interwoven with Greek culture as
with the most modern problems in engineering. It not only lends a hand
to the progressive natural sciences but participates at the same time in
the abstract investigations of logicians and philosophers.

Hints for further reading:
S. Chandrasekhar, Truth and Beauty: Aesthetics and Motivations in Sci-
ence, Chicago University Press, Chicago, Illinois, 1990.

E. Wigner, Philosophical Reflections and Syntheses. Annotated by G.
Emch. Edited by J. Mehra and A. Wightman, Springer, New York, 1995.

G. ’t Hooft, In Search for the Ultimate Building Blocks, Cambridge Uni-
versity Press, 1996.

R. Brennan, Heisenberg Probably Slept Here: The Lives, Times, and Ideas
of the Great Physicists of the 20th Century, Wiley, New York, 1997.

J. Wheeler and K. Ford, Geons, Black Holes, and Quantum Foam: a Life
in Physics, Norton, New York, 1998.

B. Greene, The Elegant Universe: Supersymmetric Strings, Hidden Dimen-
sions, and the Quest for the Ultimate Theory, Norton, New York, 1999.

A. Zee, Fearful Symmetry: The Search for Beauty in Modern Physics,
Princeton University Press, 1999.

G. Johnson, Strange Beauty: Murray Gell-Mann and the Revolution in
Twentieth Century Physics, A. Knopf, New York, 2000.

G. Farmelo (Ed.), It Must be Beautiful: Great Equations of Modern Sci-
ence, Granta Publications, London, 2003.

M. Veltman, Facts and Mysteries in Elementary Particle Physics, World
Scientific, Singapore, 2003.
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1.10 The Challenge of Dark Matter

Although science teachers often tell their students that the periodic table
of the elements shows what the Universe is made of, this is not true. We
now know that most of the universe – about 96% of it – is made of dark
matter that defies brief description, and certainly is not represented by
Mendeleev’s periodic table. This unseen ‘dark matter’ is the subject of
this book. . .
Dark matter provides a further remainder that we humans are not essential
to the Universe. Ever since Copernicus (1473–1543) and others suggested
that the Earth was not the center of the Universe, humans have been on
a slide away from cosmic significance. At first we were not at the center of
the Solar System, and then the Sun became just another star in the Milky
Way, not even in the center of our host Galaxy. By this stage the Earth
and its inhabitants had vanished like a speck of dust in a storm. This was
a shock.
In the 1930s Edwin Hubble showed that the Milky Way, vast as it is, is a
mere ‘island Universe’ far removed from everywhere special; and even our
home galaxy was suddenly insignificant in a sea of galaxies, then clusters
of galaxies. Now astronomers have revealed that we are not even made of
the same stuff as most of the Universe. While our planet – our bodies, even
– are tangible and visible, most of the matter in the Universe is not. Our
Universe is made of darkness. How do we respond to that?

Ken Freeman and Geoff McNamarra, 2006

This quotation is taken from the monograph by K. Freemann and G. Mc-
Namarra, In Search of Dark Matter, Springer, Berlin and Praxis Publishing
Chichester, United Kingdom, 2006 (reprinted with permission). As an intro-
duction to modern cosmology we recommend the monograph by S. Weinberg,
Cosmology, Oxford University, 2008.



2. The Basic Strategy of Extracting Finite
Information from Infinities – Ariadne’s Thread
in Renormalization Theory

There is no doubt that renormalization is one of the most sophisticated
procedures for obtaining significant numerical quantities by starting from
meaningless mathematical expressions. This is fascinating for both physi-
cists and mathematicians.1

Alain Connes, 2003

Quantum field theory deals with fields ψ(x) that destroy and create parti-
cles at a spacetime point x. Earlier experience with classical electron theory
provided a warning that a point electron will have infinite electromagnetic
self-mass; this mass is

e2

6πac2

for a surface distribution of charge with radius a, and therefore blows
up for a → 0. Disappointingly this problem appeared with even greater
severity in the early days of quantum field theory, and although greatly
ameliorated by subsequent improvements in the theory, it remains with us
to the present day.
The problem of infinities in quantum field theory was apparently first
noted in the 1929–30 papers by Heisenberg and Pauli.2 Soon after, the
presence of infinities was confirmed by calculations of the electromagnetic
self-energy of a bound electron by Oppenheimer, and of a free electron by
Ivar Waller.3

Steven Weinberg, 1995

1 A. Connes, Symétries galoisiennes et renormalisation (in French). In: Poincaré
Seminar, Paris, 2002: Vacuum energy – renormalization, pp. 241–264. Edited by
B. Duplantier and V. Rivasseau, Birkhäuser, Basel, 2003.

2 W. Heisenberg and W. Pauli, On the quantum electrodynamics of wave fields,
Z. Phys. 56 (1929), 1–61; 59 (1930), 108–190 (in German).
J. Oppenheimer, Note on the theory of the interaction of field and matter, Phys.
Rev. 35 (1930), 461–477.
I. Waller, Remarks on the role of the self-energy of electrons in the quantum the-
ory of radiation, Z. Phys. 61 (1930), 721–730; 62 (1930), 673–676 (in German).

3 S. Weinberg, Quantum Field Theory, Vol. 1, Sect. 1.3, The Problem of Infini-
ties, Cambridge University Press, Cambridge, United Kingdom (reprinted with
permission).
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2.1 Renormalization Theory in a Nutshell

In renormalization theory, one has to clearly distinguish between

(I) mathematical regularization of infinities, and
(II) renormalization of physical parameters by introducing effective parameters

which relate the mathematical regularization to physical measurements.

In order to help the reader to find his/her way through the jungle of renormalization
theory, let us discuss a few basic ideas. (The details will be studied later on.) This
concerns:

• Bare and effective parameters – the effective frequency and the running coupling
constant of an anharmonic oscillator.

• The renormalized Green’s function and the renormalization group.
• The zeta function, Riemann’s idea of analytic continuation, and the Casimir

effect in quantum electrodynamics.
• Meromorphic functions and Mittag-Leffler’s idea of subtractions.
• Euler’s gamma function and the dimensional regularization of integrals.

Behind this there is the general strategy of extracting finite information from in-
finities. For example, we will consider the following examples:

• Regularization of divergent integrals (including the famous overlapping diver-
gences).

• Abel’s adiabatic regularization of infinite series.
• Adiabatic regularization of oscillating integrals (the prototype of the Feynman

path integral trick).
• Poincaré’s asymptotic series, the Landau singularity, and the Ritt theorem.
• The summation methods by Euler, Frobenius, Hölder, and Borel.
• Tikhonov regularization of ill-posed problems.

In modern renormalization theory, the combinatorics of Feynman diagrams plays
the crucial role. This is related to the mathematical notion of

• Hopf algebras and
• Rota–Baxter algebras.

The prototypes of these algebras appear in classical complex function theory in
connection with the inversion of holomorphic functions (the relation between La-
grange’s inversion formula and the coinverse (antipode) of a Hopf algebra) and
the regularization of Laurent series (Rota-Baxter algebras). This will be studied in
Chap. 3.

2.1.1 Effective Frequency and Running Coupling Constant of an
Anharmonic Oscillator

In quantum electrodynamics, physicists distinguish between

• the bare mass of the electron, and
• its effective mass (resp. the bare charge of the electron and its effective charge).

The effective mass and the effective charge of the electron coincide with the physical
quantities measured in physical experiments. In contrast to this, the bare parame-
ters are only introduced as auxiliary quantities in renormalization theory for con-
structing the effective quantities in terms of a mathematical algorithm. To illustrate
the crucial difference between bare parameters and effective physical parameters, let
us summarize the main features of a simple rigorous model which is studied in Sect.
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11. 5 of Vol. I in full detail. We consider the following nonlinear boundary-value
problem

ẍ(t) + ω2x(t) = −κx(t)3 + μ sin t, t ∈ R, x(0) = x(π) = 0. (2.1)

In terms of physics, this equation describes the motion x = x(t) of a point of mass
m = 1 on the real line. The positive parameters ω and κ are called the angular
frequency and the coupling constant, respectively. Moreover, the real parameter
μ measures the strength of the external force F (t) = μ sin t. The term −κx(t)3

describes the self-interaction of the particle. The sign convention of κ is chosen in
such a way that positive values of κ correspond to a repulsive force, by (6.16) on
page 370. Physicists call this an anharmonic oscillator. We will assume that the
coupling constant κ and the external force parameter μ are sufficiently small. Then
it is possible to apply the methods of perturbation theory. We are looking for a
smooth 2π-periodic odd solution x : R → R of (2.1). By the theory of Fourier
series, the function x(.) possesses the convergent representation

x(t) = b1 sin t + b2 sin 2t + . . . for all t ∈ R (2.2)

with the Fourier coefficients bk :=
q

2
π

R π

0
F (t) sin kt dt where k = 1, 2, . . . In what

follows, we will also write bk(x) instead of bk. For the mathematical analysis, it is
crucial first to study the homogeneous linearized problem

ẍ(t) + ω2x(t) = 0, t ∈ R, x(0) = x(π) = 0 (2.3)

and the inhomogeneous linearized problem

ẍ(t) + ω2x(t) = F (t), t ∈ R, x(0) = x(π) = 0 (2.4)

with the given smooth, 2π-periodic, odd force function F : R → R. Then the
function F allows the convergent representation

F (t) = β1 sin t + β2 sin 2t + . . . , t ∈ R

with the Fourier coefficients βk := bk(F ) =
q

2
π

R π

0
F (t) sin kt dt, k = 1, 2, . . . If

x(t) = b1 sin t + b2 sin 2t + . . . is a solution of (2.4), then

(ω2 − 12)b1 sin t + (ω2 − 22)b2 sin 2t + . . . = β1 sin t + β2 sin 2t + . . .

This implies the key condition

bk(ω2 − k2) = βk, k = 1, 2, . . . (2.5)

In particular, this tells us that the homogeneous linearized problem (2.3) (i.e.,
βk = 0 for all k) has precisely the following nontrivial solutions

ω = k, x(t) = C sin kt, t ∈ R, k = 1, 2, . . .

which are called eigenoscillations in physics. Here, C is a free complex parameter.
Let us now investigate the nonlinear problem (2.1). We have to distinguish

between two cases, namely,

• the regular non-resonance case and
• the singular resonance case which corresponds to renormalization in physics.
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We will show that the trouble comes from resonances between the external
forces and the eigenoscillations.

To illustrate this, consider problem (2.4) with ω := 1. By (2.5), we get β1 = 0.
Explicitly,

Z π

0

F (t) sin t dt = 0. (2.6)

This is a solvability condition for the external force F . The original problem (2.4)
has a solution iff (2.6) is satisfied. In terms of physics, condition (2.6) means that the
external force is not in resonance with the eigenoscillation t �→ sin t. In particular,
if we choose ω := 1 and F (t) := sin t, then the condition (2.6) is violated, and
problem (2.4) has no solution.

In contrast to this, if ω := 1 and F (t) = sin kt for fixed k = 2, 3, . . . , then it
follows from (2.5) that the original problem (2.4) has the general solution

x(t) = C sin t +
sin kt

1− k2
(2.7)

where C is an arbitrary complex parameter. The point is that, in this critical case,
the external force F does not uniquely determine the motion x = x(t) of the mass
point. Thus the mathematical theory does not determine the parameter C.

For a given motion x = x(t), the specific value of C has to be determined
by a physical experiment.

We expect that, in the singular resonance case, small perturbations of the external
force transform the one-parameter family (2.7) of motions into a perturbed one-
parameter family of motions. We will show below that this is true.

(i) Non-resonance case. Let ω > 0 with ω �= 1, 2, . . .. Then the inhomogeneous
linearized problem (2.4) has the unique solution

x(t) =

Z π

0

G(t, τ)F (τ)dτ, t ∈ R

with the Green’s function

G(t, τ) :=

r

2

π

∞
X

k=1

sin t sin τ

ω2 − k2
, t, τ ∈ R. (2.8)

This corresponds to bk(x) = bk(F )

ω2−k2 for all k = 1, 2, . . . by (2.5). Observe that the

singularities of the Green’s function correspond to the angular frequencies of
the eigenoscillations. Our assumption ω �= 1, 2, . . . guarantees that the Green’s
function G is well-defined. The original nonlinear problem (2.1) is equivalent
to the nonlinear integral equation

x(t) = −κ
Z π

0

G(t, τ)x(τ)3dτ + μ

Z π

0

G(t, τ) sin τ dτ. (2.9)

This equation can be solved by the iterative method

xn+1(t) = −κ
Z π

0

G(t, τ)xn(τ)3dτ + μ

Z π

0

G(t, τ) sin τ dτ (2.10)

for n = 0, 1, 2, . . . with x0 := 0. This iterative method converges uniformly
on the interval [0, π] to the solution x(.) of the original problem (2.1) if the
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parameters κ and μ are sufficiently small (see Sect. 11. 5 of Vol. I). The first
approximation

x1(t) = μ

Z π

0

G(t, τ) sin τ dτ =
μ sin t

ω2 − 1
, t ∈ R

is called the Born approximation by physicists.4 In mathematics, the conver-
gence of such iterative methods was systematically studied by Picard (1856–
1941) in 1890. The abstract setting is the Banach fixed-point theorem (also
called the contraction principle) which was formulated by Banach (1892–1945)
in 1922.5

(ii) Resonance case. Let ω = 1. If we formally use the integral equation (2.9) and
the iterative method (2.10), then the approach breaks down because of the
singularity of the Green’s function (2.8) with k = 1. For example, the Born
approximation x1(.) is infinite if ω = 1.

This is the typical trouble in physics if resonance occurs.

To overcome the difficulties in the resonance case, we will use the method of
the pseudo-resolvent introduced by Erhard Schmidt in 1908.6

Let us consider the anharmonic oscillator (2.1) in the case of the critical angular
frequency ω = 1. More precisely, we choose

ω2 = 1 + ε.

We also assume that the external force vanishes, that is, μ = 0. This means that
we want to study the problem

ẍ(t) + (1 + ε)x(t) = −κx(t)3, t ∈ R, x(0) = x(π) = 0. (2.11)

This problem has the trivial solution x = 0, ε= arbitrary. We are interested in a
nontrivial solution. We will show that, for small real parameters κ, s, there exists a
nontrivial solution given by

x(t;κ, s) = s · sin t + . . . , ω(κ, s)2 = 1− 3
4
κs + . . . (2.12)

The dots denote terms of higher order with respect to the small parameters κ, s. In
addition, we have the relation

s = b1(x(.;κ, s)) =

r

2

π

Z π

0

x(t;κ, s) sin t dt. (2.13)

The crucial point with respect to the interpretation in terms of renor-
malization theory. Before sketching the mathematical proof of (2.12), let us dis-
cuss the physical consequences.

4 M. Born, On collision processes in quantum theory, Z. Phys. 37 (1926), 863–867
(in German).

5 E. Picard, On partial differential equations and the method of successive approx-
imations, J. Math. Pures et Appl. 6 (1890), 145–219 (in French).
S. Banach, On operations in abstract sets and their applications to integral
equations, Fund. Math. 3 (1922), 133–181 (in French).

6 E. Schmidt, On the theory of linear and nonlinear integral equations III, Math.
Ann. 65 (1908), 370–399 (in German). Erhard Schmidt (1876–1959) was a Ph.D.
student of Hilbert (1862–1943) in Göttingen. A detailed study of Schmidt’s
pseudo-resolvent method in bifurcation theory can be found in Zeidler (1986),
Vol. I, quoted on page 1049.
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The point is that we do not get a unique solution, but a family of solu-
tions which depend on an additional parameter s. This parameter has to
be determined by a physical experiment.

To explain this, suppose that we measure the motion x = x(t) and the angular
frequency ω of the motion. Then x(t) = x(t;κ, s) and ω = ω(κ, s).

• By (2.13), we obtain the parameter s.
• By (2.12), we obtain the value of the coupling constant

κ =
4(1− ω2)

3s
.

This tells us that the coupling constant κ depends on s. Therefore, we call this
a running coupling constant.

This simple model corresponds to the (much more complicated) determination of
the electron charge, the electron mass, and the running coupling constant in quan-
tum electrodynamics. In particle physics, the running coupling constants of elec-
tromagnetic, weak, and strong interaction depend on energy and momentum of the
scattering process observed in a particle accelerator.

Sketch of the proof of (2.12). The following arguments are typical for a
branch of nonlinear analysis called bifurcation theory.7 First let us replace the
ill-posed linearized inhomogeneous problem (2.4) with ω = 1 by the well-posed
problem

ẍ(t) + x(t) + b1(x) sin t = F (t), t ∈ R, x(0) = x(π) = 0 (2.14)

where b1(x) :=
q

2
π

R π

0
x(t) sin t dt. The additional term b1(x) sin t is chosen in order

to guarantee that the homogeneous problem (2.14) has only the trivial solution
x = 0. The point is that the key relation (2.5) passes over to bk(1− k2 + δk1) = βk

for k = 1, 2, . . . Hence

b1(x) = b1(F ), bk(x) =
bk(F )

1− k2
, k = 2, 3, . . .

More precisely, for given smooth odd 2π-periodic function F : R → R, problem
(2.14) has the unique solution

x(t) =

Z π

0

Gpseudo(t, τ)F (τ) dτ, t ∈ R

with the so-called pseudo-resolvent

Gpseudo(t, τ) :=

r

2

π

 

sin t sin τ +

∞
X

k=2

sin t sin τ

1− k2

!

.

This represents a regularization of the Green’s function (2.8) with ω = 1. The
original problem (2.11) is equivalent to the equation

7 Bifurcation theory and its applications in astronomy, astrophysics, biology, chem-
istry, elasticity, fluid dynamics, and so on, are studied in Zeidler (1986), Vols.
I and IV, quoted on page 1049. We also recommend the monograph by H.
Kielhöfer, Bifurcation Theory: An Introduction with Applications to Partial Dif-
ferential Equations, Springer, New York, 2004.
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ẍ(t) + x(t) + b1(x) sin t = −κx(t)3 − εx(t) + s sin t, x(0) = x(π) = 0

with the side condition s = b1(x). Using the pseudo-resolvent, this problem is
equivalent to

x(t) =

Z π

0

Gpseudo(t, τ)(−κx(τ)3 − εx(τ) + s sin τ) dτ

with the side condition s = b1(x). This means that we have to solve the equation

x(t) = s sin t−
Z π

0

Gpseudo(t, τ)(κx(τ)3 + εx(τ)) dτ (2.15)

with the side condition s = b1(x). We will proceed as follows.

(a) First we solve the equation (2.15) by an iterative method. This way, we get the
function x = x(t;κ, s, ε) which depends on the small real parameters κ, s, ε.

(b) We solve the side condition

b1(x(.;κ, s, ε)) = s

by the implicit function theorem.8 This way, we get ε = ε(κ, s).
(c) The final solution reads as x = x(t;κ, s, ε(κ, s)).

This yields the desired solution (2.12). The complete proof can be found in Vol. I,
Sect. 11.5.

The renormalized Green’s function. In quantum field theory, physicists
use the notion of renormalized (or effective) Green’s function. Let us explain this
in the case of the present simple model. The solution x = x(t;κ, s), ω = ω(κ, s)
satisfies the original equation

ẍ(t;κ, s) + ω(κ, s)2x(t;κ, s) = −κx(t;κ, s)3

with the boundary condition x(0;κ, s) = x(π;κ, s) = 0. If κ and s are different
from zero and sufficiently small, then ω(κ, s) �= 1. That is, the angular frequency is
different from the angular eigenfrequency ω = 1. Therefore, we can use the Green’s
function G as in the non-resonance case (2.8). This yields the integral equation

x(t;κ, s) = −κ
Z π

0

G(t, τ)x(τ ;κ, s)3 dτ

with

G(t, τ) =

r

2

π

∞
X

k=1

sin t sin τ

ω(κ, s)2 − k2
, t, τ ∈ R.

This function depends on the effective angular frequency ω(κ, s) and is called the
effective (or renormalized) Green’s function. In the 1940s and 1950s, physicists in-
vented approximative methods for computing effective Green’s functions in quan-
tum electrodynamics and in more general quantum field theories.

The renormalization group. It turns out that the parameter s of the solution
is not fixed, but it can be rescaled (see Sect. 11.5.6 of Vol. I). This is the prototype
of the method of renormalization group.

8 In bifurcation theory, this side condition is called the bifurcation equation (see
(2.13)).
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2.1.2 The Zeta Function and Riemann’s Idea of Analytic
Continuation

For all complex numbers s with �(s) > 1, the definition

ζ(s) :=

∞
X

n=1

1

ns

of the zeta function makes sense, since the series is convergent.9 In 1750 Euler

proved that ζ(2) = π2

6
and

ζ(2n) = (−1)n−1 (2π)2n

2(2n)!
B2n, n = 1, 2, . . .

with the Bernoulli numbers Bk defined by the generating function

x

ex − 1
=

∞
X

k=0

Bk

k!
xk for all x ∈ R \ {0}.

Explicitly, B0 = 1, B1 = 1
2
, B2 = 1

6
, B3 = 0, B4 = − 1

30
, . . ., and B2k+1 = 0 for all

k = 1, 2, . . . For all complex numbers s with �(s) < 1, the series
P∞

n=1
1

ns is not

convergent. In particular, if s ≤ 1, then
P∞

n=1
1

ns =∞.

It is our goal to give this divergent series a well-defined finite meaning.

In 1859 Riemann proved that the zeta function can be analytically continued to a
meromorphic function on the complex plane. This function has precisely one pole
which is located at the point s = 1 with the Laurent series

ζ(s) =
1

s− 1
+ γ +

∞
X

k=1

ak(s− 1)k for all s ∈ C \ {1}

where γ is the famous Euler constant given by

γ := lim
n→∞

„

1 +
1

2
+ . . . +

1

n
− lnn

«

.

In particular, we have the Mellin transformation formula

ζ(x) =
1

Γ (x)

Z ∞

0

ux−1

eu − 1
du

for all real numbers x different from 1, 0,−1,−2, . . . Letting f(x) := 1
x
, the Euler–

Maclaurin summation formula tells us that for all n,m = 1, 2, . . . , we have

9 In what follows, we are going to discuss important results obtained by the fol-
lowing mathematicians: Maclaurin (1698–1746), Euler (1707–1783), Mascheroni
(1750–1800), Gauss (1777–1855), Cauchy (1789–1857), Abel (1802–1829), Liou-
ville (1809–1882), Riemann (1826–1866), Mittag-Leffler (1846–1927), Frobenius
(1849–1917), Poincaré (1854–1912), Otto Hölder (1859–1937), Hadamard (1865–
1963), Tauber (1866–1942), Borel (1871–1956), Fejér (1880–1959), Marcel Riesz
(1886–1969), Heinz Hopf (1894–1971), Rota (1933–1989).
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n
X

k=1

f(k) =

Z n

1

f(x)dx +
f(1) + f(n)

2

+

m
X

k=1

B2k

(2k)!

“

f (2k−1)(n)− f (2k−1)(0)
”

+ Rn,m

with the remainder estimate

|Rn,m| ≤
2

(2π)m

Z n

1

|f2m+1(x)| dx.

Here, f (k) denotes the kth derivative of the function f . Explicitly,

n
X

k=1

1

k
= lnn + γ +

1

2n
− 1

12n2
+

1

120n4
− 1

252n6
+ . . .

Euler used this series up to the term 1
n14 to compute the value

γ = 0.577 215 664 901 532 5 . . .

In 1790 Mascheroni published an approximation of γ to 32 decimal places (with
a mistake at the 20th decimal place). Therefore, the number γ is also called the
Euler–Mascheroni constant.10 Since

1 +
1

2
+ . . . +

1

n
= lnn + γ + o(1), n→∞,

the Euler constant γ is called the finite part of the divergent harmonic series
P∞

n=1
1
n
. Furthermore, we get

lim
s→1

„

ζ(s)− 1

s− 1

«

= γ.

This motivates to say that the Euler constant is the finite part of the Riemann zeta
function at the singular point s = 1. Motivated by these considerations, we define
the regularization of the Euler series

P∞
n=1

1
ns in the following way:

" ∞
X

n=1

1

ns

#

reg

:=

(

ζ(s) if s ∈ C \ {1},
γ if s = 1.

For example, we obtain

[1 + 1 + 1 + . . .]reg = ζ(0) = −1

2
,

and
ˆ

P∞
n=1 n

2
˜

reg
= ζ(−2) = 0, as well as

10 As standard texts on the Riemann zeta function, we recommend E. Titchmarsh
and D. Heath-Brown, The Theory of the Riemann Zeta Function, Cambridge
University Press, 1986, and H. Edwards, Riemann’s Zeta Function, Academic
Press, New York, 1974. The history of the Euler constant and its relation to
numerous important developments in mathematics can be found in J. Havil,
Gamma: Exploring Euler’s Constant, Princeton University Press, 2003.
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" ∞
X

n=1

n3

#

reg

= ζ(−3) =
1

120
.

We have shown in Sect. 6.6 of Vol. I how to apply the idea of analytic continuation
discussed above to the Epstein zeta function in order to compute the crucial Casimir
effect in quantum electrodynamics. In the case of the Casimir effect, the physical
experiment measures indeed the regularized mathematical quantity. This shows
that

Nature sees analytic continuation.

2.1.3 Meromorphic Functions and Mittag-Leffler’s Idea of
Subtractions

The method of subtractions plays a fundamental role in the renormalization of
quantum field theories according to Bogoliubov, Parasiuk, Hepp, and Zimmermann
(called BPHZ renormalization).

The basic idea is to enforce convergence by subtracting additional terms
called subtractions.

Let us explain the classical background which can be traced back to Mittag-Leffler
(1846–1927). The prototype of the Mittag-Leffler theorem is the Euler formula

π cot(πz) =
1

z
+

∞
X

k=1

„

1

z + k
− 1

k

«

+

−∞
X

k=−1

„

1

z + k
− 1

k

«

(2.16)

for all complex numbers z different from the integers 0,±1,±2, . . . More generally,
let f : C→ C∪{∞} be a meromorphic function. By definition, this means that the
function f is holomorphic on the complex plane C up to an at most countable set
of isolated poles p1, p2, . . . In the neighborhood of each pole p = pj , we have the
Laurent series expansion

f(z) = Pp(z) +

∞
X

k=0

ak(z − p)k (2.17)

with the so-called principal part

Pp(z) :=

n
X

k=1

a−k

(z − p)k
.

The formula (2.17) is valid in the largest pointed open disc

{z ∈ C : 0 < |z − p | < r}

in which the given function f is holomorphic. The complex number a−1 is called
the residue of the function f at the pole p. For example, the function cot(πz) is
meromorphic with poles at the points 0,±1,±2, . . . At the pole p = 0, the Laurent
series reads as

cot(πz) =
1

πz
−

∞
X

k=1

|4kB2k|
(2k)!

(πz)2k−1, 0 < |z| < 1

with the principal part P(z) = 1
πz

and the residue a−1 = 1
π

at the pole z = 0. Let
us distinguish the following three cases.
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(i) Entire function: If the function f is holomorphic on the complex plane, then it
is called an entire function. In this case, we have the power series expansion

f(z) =
∞
X

k=0

akz
k for all z ∈ C.

For example, the functions f(z) := ez, sin z, cos z are entire functions.
(ii) Finite number of poles. Suppose that the function f has the poles p1, . . . , pm.

Then there exists an entire function g such that

f(z) = g(z) +
m
X

k=1

Ppk (z)

for all z ∈ C \ {p1, . . . , pm}. Here, Pp1 , . . . ,Ppm are the principal parts of f at
the poles.

(iii) Infinite number of poles and subtractions. Suppose now that the function f
has the poles p1, p2, . . . We assume that |p1| ≤ |p2| ≤ . . . Motivated by (i), we
expect that

f(z) = g(z) +
∞
X

k=1

Ppk (z) (2.18)

where g is an entire function. Unfortunately, this is not always true. It may
happen that the series

P∞
k=1 Ppk (z) is not convergent.

The trouble with convergence frequently appears in physics when pass-
ing from a finite number of degrees of freedom to an infinite number
of degrees of freedom.

For example, in quantum field theory, this concerns the passage from lattice
approximations to the continuum of the space-time manifold. It was the idea
of Mittag-Leffler to enforce the convergence of (2.18) by using

f(z) = g(z) +
∞
X

k=1

(Ppk (z)− ck(z)) (2.19)

with suitable polynomials ck called subtractions.11 To discuss this, assume first
that p = 0 is not a pole of the function f . Then |pk| > 0 for all k. Introduce
the discs

Ck := {z ∈ C : |z| ≤ 1
2
|pk|}, k = 1, 2, . . .

By Taylor expansion,

Ppk (z) = bk0 + bk1z + . . . + bknkz
nk + . . . for all z ∈ Ck.

Now choose the subtraction as the truncated Taylor expansion, that is,

ck(z) := bk0 + bk1z + . . . + bknkz
nk .

The crucial Mittag-Leffler theorem tells us the following:

11 These subtractions are also called counterterms. However, in this volume we will
reserve the terminology “counterterm” for additional terms in the Lagrangian.
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There exist positive integers n1, n2, . . . and an entire function g such
that the relation (2.19) holds for all z ∈ C \ {p1, p2, . . .}.

This claim remains true if p = 0 is a pole of f . Then we choose c1 := 0. Let
us sketch the proof of the Mittag-Leffler theorem. The trick is to choose the
number nk in such a way that

|Ppk (z)− ck(z)| ≤ 1

2k
for all z ∈ Ck, k = 1, 2, . . .

Then the convergence of the series (2.19) follows from the convergence of
P∞

k=1
1
2k by applying the majorant criterion (see Problem 2.1).

In specific situations, the general Mittag-Leffler formula (2.19) can be simplified.
As an example, let us sketch the proof of the classical formula (2.16). We will use
Cauchy’s residue method. First introduce the function f(z) := π cot(πz) − 1

z
, and

choose the positively oriented circles

Cm := {z ∈ C : |z| = m + 1
2
}, m = 1, 2, . . .

The function f has the poles ±1, . . . ,±m inside the circle Cm. Let z be a point
inside the circle Cm which is not a pole of f . By Cauchy’s residue theorem,

1

2πi

Z

Cm

f(ζ)

ζ − z
dζ = f(z)−

m
X

k=1

1

z + k
−

−m
X

k=−1

1

z + k
.

In the special case where z = 0, we get

1

2πi

Z

Cm

f(ζ)

ζ
dζ = f(0)−

m
X

k=1

1

k
−

−m
X

k=−1

1

k
.

Subtracting this, we obtain

Jm = f(z)− f(0)−
m
X

k=1

„

1

z + k
+

1

k

«

−
−m
X

k=−1

„

1

z + k
+

1

k

«

with the integral Jm := z
2πi

R

Cm

f(ζ)
ζ(ζ−z)

. Finally, limm→∞ Jm = 0. This follows from

the fact that the function f is uniformly bounded on the circles C1, C2, . . . (see
Problem 2.2).

2.1.4 The Square of the Dirac Delta Function

Formal approach. Physicists use the following formal definition

δ(t)2 := Tδ(t) for all t ∈ R. (2.20)

Here, T is the length of a typical time interval which corresponds to the physical
experiment under consideration. Similarly, physicists use

δ(x, y, z)2 = V δ(x, y, z) for all x, y, z ∈ R.

Here, V is a typical volume. For scattering processes in particle physics, physicists
set δ(x, y, z, t) := δ(x, y, z)δ(t), and they write
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δ(x, y, z, t)2 = V T · δ(x, y, z, t) for all x, y, z, t ∈ R,

where the scattering process takes place in a box of volume V during the time
interval [−T

2
, T

2
]. Let us discuss (2.20) in rigorous terms. The remaining formulas

can be discussed analogously.
Rigorous discretization of time. Choose Δt > 0. Define

δΔt(t) :=

(

1
Δt

if t ∈ [0, Δt],

0 otherwise.

Proposition 2.1 In the sense of tempered distributions, we have the following two
limits:

(i) limΔt→+0 δΔt = δ.
(ii) limΔt→+0 Δt · (δΔt)

2 = δ.

Proof. Ad (i). For all test functions ϕ ∈ S(R),

lim
Δt→+0

δΔt(ϕ) = lim
Δt→+0

Z ∞

−∞
δΔt(t)ϕ(t)dt = lim

Δt→+0

1

Δt

Z Δt

0

ϕ(t)dt.

This is equal to ϕ(0). Finally, recall that δ(ϕ) = ϕ(0).
Ad (ii). For all Δt > 0,

(δΔt)
2 =

1

Δt
· δΔt.

This can be regarded as a motivation for (2.20) with T := 1/Δt. Furthermore,

lim
Δt→+0

Δt

Z ∞

−∞
δΔt(t)

2ϕ(t)dt = lim
Δt→+0

Z ∞

−∞
δΔt(t)ϕ(t)dt = ϕ(0).

�

This idea will be used in Chap. 15 in order to compute cross sections for scatter-
ing processes in quantum electrodynamics, by using limits of lattice approximations.

Rigorous extension. We are given a tempered distribution, F ∈ S ′(R), which
has the property that F (ϕ) = 0 for all test functions ϕ ∈ S(R) with ϕ(0) = 0.

Proposition 2.2 Then there exists a complex number C such that F = Cδ.

Proof. Choose a fixed test function χ ∈ S(R) such that χ(0) = 1. It follows from
the decomposition ϕ = ϕ− χϕ(0) + χϕ(0) for all test functions ϕ ∈ S(R) that

F (ϕ) = F (ϕ− χϕ(0)) + F (χϕ(0)) = F (χϕ(0)) = ϕ(0)F (χ) = F (χ)δ(ϕ).

�

This motivates the basic definition

δ2 := {Cδ : C ∈ C}.

By this definition, δ2 is not a single distribution, but a one-parameter family of
tempered distributions. This idea will be used in renormalization theory, in the
Epstein–Glaser approach to quantum field theory. From the physical point of view,
the constant C describes an additional degree of freedom which has to be fixed by
physical experiment.

Proposition 2.2 is a special case of the Steinmann extension theorem for distri-
butions (see Sect. 11.4.3 of Vol. I).
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2.2 Regularization of Divergent Integrals in Baby
Renormalization Theory

In order to distinguish between convergent and divergent integrals, we will use the
method of power-counting based on a cut-off of the domain of integration. In terms
of physics, this cut-off corresponds to the introduction of an upper bound for the
admissible energies (resp. momenta). For the regularization of divergent integrals,
we will discuss the following methods used by physicists in renormalization theory:

(i) the method of differentiating parameter integrals,
(ii) the method of subtractions (including the famous overlapping divergences),
(iii) Pauli–Villars regularization,
(iv) dimensional regularization by means of Euler’s Gamma function,
(v) analytic regularization via integrals of Riemann–Liouville type, and
(vi) distribution-valued analytic functions.

2.2.1 Momentum Cut-off and the Method of Power-Counting

The prototype. Let α be a real number. Then

Z ∞

1

dp

pα
:=

(

1
α−1

if α > 1

+∞ if α ≤ 1.
(2.21)

In fact, introducing the positive cut-off Pmax, we get

Z Pmax

1

dp

pα
=

(

P1−α
max −1

1−α
if α �= 1

lnPmax if α = 1.

Finally, note that

Z ∞

1

dp

pα
= lim

Pmax→+∞

Z Pmax

1

dp

pα
.

In particular, if α = 1, then we say that the integral (2.21) diverges logarithmically.
In terms of physics, the variable p can be regarded as momentum, and the cut-
off Pmax is an upper bound for momentum. The limit Pmax → +∞ is called the
ultraviolet limit in physics. In particular, if p is the momentum of a photon, then
it has the energy E = cp. If this energy is high, then the corresponding light wave
looks ultraviolet. Let f : [0,∞[→ R be a continuous function with the asymptotic
behavior12

f(p) � C

pα
, p→∞

for fixed real exponent α and fixed real nonzero constant C.

Proposition 2.3 The integral
R∞
1

f(p)dp is convergent if α > 1 (resp. divergent if
α ≤ 1).

12 This means that limp→+∞ f(p)pα = C.
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The proof follows from (2.21). This proposition tells us that we have to count the
power α. For example, let α > 0. The function

f(p) :=
1 + 4p2

1 + 2pα+2
, p ≥ 1

is asymptotically equal to 2
pα as p→ +∞. Thus, the integral

R∞
1

f(p)dp is conver-

gent if α > 1 (resp. divergent if α ≤ 1).
Order of divergence. Since

(a)
R∞
1

dp = limPmax→+∞
R Pmax
1

dp = limPmax→+∞(Pmax − 1) = +∞,

(b)
R∞
1

p dp = limPmax→+∞
1
2
(P 2

max − 1) = +∞,

(c)
R∞
1

dp
p

= limPmax→+∞ lnPmax = +∞,

we say that the integral (a), (b), (c) possesses linear, quadratic and logarithmic
divergence, respectively.

Higher dimensions. Let N = 1, 2, 3, . . . Suppose that the continuous function
f : R

N → R has the asymptotic behavior

f(p) � C

|p|α , |p| → +∞

with the fixed real exponent α and the fixed real nonzero constant C.

Proposition 2.4 The integral
R

RN f(p)dNp is convergent if α > N (resp. divergent
if α ≤ N).

This follows from Prop. 2.3 by using spherical coordinates. In fact, setting r := |p|,
we get

Z

RN

f(p)dNp =

Z ∞

0

Z

|p|=1

f(p)rN−1dr.

For example, let N = 2 and α > 0. Choose

f(p) :=
1 + 4|p|2

1 + 2|p|α+2
, p ∈ R

2

where p = (p1, p2) and |p| =
p

p2
1 + p2

2. Then the integral
R

R2 f(p)d2p is convergent
if α > 2 (resp. divergent if α ≤ 2).

A sophisticated refinement of the results above is given by Weinberg’s power-
counting theorem (see Sect. 11.6.3 of Vol. I).

Asymptotic expansions and regularization of divergent integrals by
subtraction. Let us consider two simple examples.

(i) First example (one subtraction): We want to regularize the divergent integral

J(P ) :=

Z ∞

1

dp

p + P
(2.22)

with the fixed parameter P > 0. In physics, the parameter P describes the momen-
tum of an incoming or outgoing particle of a scattering process. The integrand has
the following asymptotic behavior

1

p + P
� 1

p
, p→ +∞
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which is responsible for the divergence of the integral by power-counting. In order to
regularize the integral, we subtract some function from the integrand which cancels
the bad asymptotic behavior as p→ +∞. To this end, we replace 1

p+P
by

1

p + P
− 1

p
= − P

p(p + P )
.

Since this is asymptotically equal to − P
p2 as p→ +∞, the regularized integral

Jreg(P ) :=

Z ∞

1

„

1

p + P
− 1

p

«

dp

is convergent by power-counting. Mnemonically, we write

Jreg(P ) = J(P )− J(0). (2.23)

However, this is not a rigorous relation, since J(P ) = +∞ and J(0) = +∞.
(ii) Second example (two successive subtractions). The integral

J(P ) =

Z ∞

1

pdp

p + P
, P > 0

is divergent. Since p
p+P

� 1 as p→ +∞, we pass to the new integrand

g(p) :=
p

p + P
− 1 = − P

p + P

by subtraction. However, since g(p) � −P
p

as p → +∞, the integral
R∞
1

g(p)dp is

still divergent. Continuing the subtraction method, we pass to the integrand

g(p)−
„

−P

p

«

=
P 2

(p + P )p
.

This leads us to the definition of the regularized integral

Jreg(P ) :=

Z ∞

1

P 2dp

(p + P )p
, P > 0

which is convergent by power-counting. Using analytic continuation, the function
P �→ Jreg(P ) makes sense for all complex numbers P in the subset C\]−∞,−1] of
the complex plane. Mnemonically,

Jreg(P ) = J(P )− J(0)− PJ ′(0). (2.24)

In fact, this stands for the expression

Jreg(P ) =

Z ∞

1

„

p

p + P
− 1 +

P

p

«

dp.
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2.2.2 The Choice of the Normalization Momentum

The divergent integral J(P ) :=
R∞
1

dp
p+P

with P > 0 considered above can also be

regularized by fixing the parameter P0 > 0 and replacing (2.23) by the mnemonic
relation

Jreg(P ) = J(P )− J(P0).

Rigorously, we define

Jreg(P ) :=

Z ∞

1

„

1

p + P
− 1

p + P0

«

dp = (P0 − P )

Z ∞

1

dp

(p + P )(p + P0)
.

This integral is convergent by power-counting. Note that the regularized integral
Jreg(P ) depends on the choice of the momentum P0, which is called the normaliza-
tion momentum.

In terms of physics, the choice of P0 can be determined by the typical
momentum of the physical experiment under consideration.

For example, in particle accelerators the scattered particles have a fixed momentum,
and hence a fixed energy. It turns out that the physics changes if the particle energy
changes. This is the phenomenon of the running coupling constant in the Standard
Model of particle physics.

Summarizing, regularization (and hence renormalization) methods produce
additional parameters which have to be determined by physical experiments.

The role of the renormalization group in physics. The change of the
normalizing momentum is governed by a transformation which is described by the
so-called renormalization group. In particular, this is crucial for studying the high-
energy behavior of quantum field theories (see Chap. 3 of Vol. I on scale changes in
physics). For example, quarks behave like free particles at very high energies. This
is the so-called asymptotic freedom of quarks.13

Off-shell versus on-shell normalization. Recall that the 4-momentum p =
(p0, p1, p2, p3) of an elementary particle (in an inertial system) corresponds to the
momentum vector p = p1i+ p2j+ p3k and the energy E = cp0 where c denotes the
velocity of light in a vacuum. If the particle has the rest mass m0, then

|p0|2 − |p1|2 − |p2|2 − |p3|2 = c2m2
0. (2.25)

This corresponds to the energy relation E2 = (m0c
2)2 + c2p2. By definition, the 4-

momentum p is on-shell (resp. off-shell) iff the mass-shell relation (2.25) is satisfied
(resp. not satisfied).

2.2.3 The Method of Differentiating Parameter Integrals

Improve the convergence behavior of a parameter-depending integral by
differentiation with respect to the parameter.

Folklore

13 For the discovery of the asymptotic freedom of quarks, David Gross, David
Politzer and Frank Wilczek were awarded the Nobel prize in physics in 2004.
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Consider again the divergent integral

J(P ) =

Z ∞

1

dp

p + P
, P > 0.

Formal differentiation with respect to the parameter P yields the convergent inte-
gral

J ′(P ) = −
Z ∞

1

dp

(p + P )2
= − 1

1 + P
, P > 0.

The differential equation

J′(P ) = − 1

1 + P
, P > 0

has the general solution J(P ) = C − ln(1 + P ), with the arbitrary real constant C.
Therefore, we define the regularized integral by setting

Jreg(P ) := C − ln(1 + P ), P > 0.

Note that the function J represents a family of functions which depends on the real
parameter C.

In the general case, consider the divergent integral

J(P ) =

Z ∞

1

f(p, P )dp, P ∈ Π

where Π is an open interval. Let n = 1, 2, . . . The formal n-th derivative with
respect to the parameter P looks like

J(n)(P ) =

Z ∞

1

∂nf(p, P )

∂Pn
dp, P ∈ Π.

Suppose that the integrals are divergent for n = 1, 2, . . . , N−1, whereas the integral
JN)(P ) is convergent for all P ∈ Π. Then we define the regularized integral Jreg(P )
by means of the differential equation

J(N)
reg (P ) = J(N)(P ), P ∈ Π. (2.26)

Let J = J(P ) be a special solution of this differential equation. Then we use the
general solution of (2.26) in order to define

Jreg(P ) := C0 + C1P + . . . + CN−1P
N−1 + J(P ), P ∈ Π.

Here, C0, . . . , CN−1 are arbitrary real parameters. In physics, these free parameters
have to be determined by experiment.

2.2.4 The Method of Taylor Subtraction

Let us generalize (2.23) and (2.24). To this end, consider the divergent integral

J(P ) =

Z ∞

1

f(p, P ) dp, P ∈ Π.
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Choose the normalization point P0 in the open interval Π. Let n = 0, 1, 2, . . .
Mnemonically, we set

JregP ) = J(P )− J(P0)− (P − P0)J
′(P0)− . . .− (P − P0)

n

n!
J(n)(P0).

Here, we assume that, for fixed n, the corresponding integral is convergent for all
parameters P ∈ Π and that n is the smallest number with this property. This is
called the method of minimal (Taylor) subtraction. In terms of integrands, we get

Jreg(P ) =

Z ∞

1

 

f(p, P )−
n
X

k=0

(P − P0)
k

k!

∂kf(p, 0)

∂P k

!

dp.

2.2.5 Overlapping Divergences

Overlapping divergences caused a lot of trouble in the history of renormal-
ization theory.14

Folklore

As a prototype for an integral with overlapping divergences, consider the divergent
integral

J(P ) =

Z ∞

1

Z ∞

1

f(p, q, P )dpdq, P > 0

with the integrand

f(p, q, P ) :=
p

p + P
· 1

p + q
· q

q + P
.

Fix the parameter P > 0. The point is that

•
R∞
1

f(p, q, P )dp = +∞ for all q ≥ 1,

• and
R∞
1

f(p, q, P )dq = +∞ for all p ≥ 1

by power-counting. This means that the integral is divergent if either of the inte-
gration variables p and q is fixed. We call this an overlapping divergence. In order
to regularize the integral J(P ), we will use the following subtractions with respect
to the parameter P.

(i) Minimal subtraction concerning the one-dimensional p-integral.
(ii) Minimal subtraction concerning the one-dimensional q-integral.
(iii) Minimal subtraction of the result from (i) and (ii) concerning the two-

dimensional (p, q)-integral.

Ad (i). For fixed q ≥ 1, we have f(p, q, P ) � q
q+P
· 1

p
as p→ +∞. Therefore, we

replace f(p, q, P ) by

f(p, q, P )− q

q + P
· 1
p
.

Ad (ii). For fixed p ≥ 1, we have f(p, q, P ) � p
p+P

· 1
q

as q → +∞. Therefore,
we pass over to

g(p, q, P ) := f(p, q, P )− q

(q + P )p
− p

(p + P )q
.

14 See the quotation on page 974.
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This yields the integral

G(P ) =

Z ∞

1

Z ∞

1

g(p, q, P )dqdp, P > 0

with the integrand

g(p, q, P ) = −p2q2 + pq3 + p3q + P (p3 + p2q + pq2 + q3)

p(p + P )(p + q)(q + P )q
.

Power-counting shows that the integral G(P ) is still divergent. To show this, note
that for all p, q ≥ 1, we get

p2q2

p(p + P )(p + q)(q + P )q
≥ pq

(p + P ) · 2 · (q + P )
.

Furthermore, by power-counting,

Z ∞

1

Z ∞

1

pq dpdq

2(p + P )(q + P )
=

Z ∞

1

p dp

2(p + P )

Z ∞

1

q dq

(q + P )
= +∞.

Ad (iii). Mnemonically, we define Jreg(P ) := G(P )−G(0)−PG′(0) with P > 0.
Rigorously, this gives the definition of the regularized integral:

Jreg(P ) :=

Z ∞

1

Z ∞

1

greg(p, q, P )dpdq.

Here, the regularized integrand greg(p, q, P ) is equal to

g(p, q, P )− g(p, q, 0)− P
∂g(p, q, 0)

∂P
= − P 2pq + P 3(p + q)

p(p + P )(p + q)(q + P )q
.

Proposition 2.5 The regularized integral Jreg(P )is convergent.

Proof. For example, consider the subintegral

A :=

Z ∞

1

Z ∞

1

pq dpdq

p(p + P )(p + q)(q + P )q
.

From (
√
p−√q)2 ≥ 0, we get

√
p
√
q ≤ 1

2
(p + q) for all p, q ≥ 0. Hence

1

p + q
≤ 1

2
√
p
√
q

for all p, q > 0.

This implies

A ≤ 1

2

Z ∞

1

dp

(p + P )
√
p

Z ∞

1

dq

(q + P )
√
q
dq <∞

by power-counting. Analogously, we obtain the convergence of the remaining subin-
tegrals. �

The relation of this subtraction procedure and Zimmermann’s forest formula
will be discussed in Example 2 on page 985.
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2.2.6 The Role of Counterterms

The method of subtractions changes the integrands by subtracting regularizing
terms in order to enforce convergence of the integrals. Physicists try to connect the
subtraction terms with additional terms in the Lagrangian of the quantum field
theory under consideration. These additional terms of the Lagrangian are called
counterterms. It is one of the tasks of renormalization theory

• to study the structure of the necessary subtraction terms and
• to show that the subtraction terms can be generated by appropriate counterterms

of the classical Lagrangian (see Chap. 16).

The philosophy behind this approach is that the procedure of quantization adds
quantum effects to the classical field theory. These quantum effects can be described
by changing the classical Lagrangian by adding counterterms.

2.2.7 Euler’s Gamma Function

Let us summarize some classical formulas which will be used for the dimensional
regularization of divergent multi-dimensional integrals below. Recall that the facto-
rial symbol n! stands for the product 1 · 2 · · ·n. For example 3! = 6. By convention,
0! := 1. Hence

n! = n · (n− 1)!, n = 1, 2, . . .

In 1729 it was Euler’s aim to extrapolate the discrete values n! to a smooth function
Γ :]0,∞[→ R with the property Γ (1) = 1 and

Γ (x + 1) = xΓ (x) for all x > 0.

Euler constructed such a function by means of the convergent integral

Γ (x) :=

Z ∞

0

tx−1e−t dt for all x > 0.

In 1811 Gauss showed that this function can be extended to a meromorphic function
Γ : C→ C ∪ {∞}. He used the infinite product

Γ (z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)
for all z ∈ C \ {0,−1,−2, . . .}.

The gamma function has the following properties:15

• Γ (1) = 1 and Γ (z + 1) = zΓ (z) for all z ∈ C \ {0,−1,−2, . . .} (functional
equation). Hence Γ (n) = (n− 1)! if n = 1, 2, . . . Explicitly,

Γ (z) =
1

z
+ O(1), z → 0. (2.27)

15 The proofs can be found in R. Remmert, Classical Topics in Complex Function
Theory, Chap. 2, Springer, New York, 1998.
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• More generally, the gamma function is a meromorphic function on the complex
plane. It has precisely the poles 0,−1,−2, . . . . Each pole is simple and has the
residue

res−kΓ =
(−1)k

k!
, k = 0, 1, 2, . . .

Therefore,

Γ (z − k) =
(−1)k

k!(z + k)
+ O(1), z → 0, k = 0, 1, 2, . . .

We define the regularized value by

Γ (−k)reg := lim
z→0

„

Γ (z − k)− (−1)k

k!(z + k)

«

, k = 0, 1, 2, . . .

These limits are well defined.
• More precisely, in a neighborhood of the origin we have the Laurent series ex-

pansion

Γ (z) =
1

z
− γ +

„

γ2

2
+

π2

12

«

z + O(z2), z → 0 (2.28)

where γ = 0.577 . . . is the Euler constant. Truncating the singularity at the
point z = 0 and letting z → 0, we obtain Γreg(0) = −γ.

• In a neighborhood of the pole z = −1, we have the Laurent series expansion16

Γ (z − 1) = −1

z
+ γ − 1−

„

γ2

2
+

π2

12
+ γ

«

z + O(z2), (2.29)

as z → 0. Therefore, Γreg(−1) = γ − 1.
• The gamma function has no zeros. The reciprocal function 1/Γ is an entire

function with the Weierstrass product representation

1

Γ (z)
= zeγz

∞
Y

k=1

“

1 +
z

k

”

e−z/k for all z ∈ C.

• Γ (z) :=
R∞
0

tz−1e−tdt for all complex numbers z with �(z) > 0.
• Euler’s supplement: For all complex numbers z which are not integers, we have

Γ (z)Γ (1− z) =
π

sinπz
,

and Γ (z)Γ (−z) = − π
z sin πz

. In particular, Γ ( 1
2
) =
√
π.

• Legendre’s duplication formula:

Γ (2z) =
22z−1

√
π

Γ (z)Γ (z + 1
2
).

This is true for all complex numbers z different from 0,− 1
2
,−1,− 3

2
, . . .

• Special values: Γ (n + 1
2
) = (2n)!

4nn!

√
π for all n = 0, 1, 2, . . .

16 For the proof, see Problem 2.11.
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• The asymptotic Stirling formula for real arguments x:

Γ (x + 1) �
√

2πx
“x

e

”x

, x→ +∞.

The gamma function is uniquely determined by its functional equation. More pre-
cisely, Wielandt proved the following theorem in 1939: Consider the half-plane
H := {z ∈ C : �(z) > 0}. Suppose that the function F : H → C is holomorphic and
satisfies the functional equation

F (1) = 1, F (z + 1) = zF (z) for all z ∈ H.

Moreover, let |F (z)| be bounded on the strip {z ∈ C : 1 ≤ �(z) < 2}. Then F = Γ
on H.

Let p and q be complex numbers with positive real part, �(p),�(q) > 0. Then
the integral

B(p, q) :=

Z 1

0

xp−1(1− x)q−1 dx (2.30)

exists, and we have the famous Euler identity

B(p, q) =
Γ (p)Γ (q)

Γ (p + q)
. (2.31)

The function B is called the Euler beta function.
Finally, we want to show that the gamma function allows us to compute the

surface measure of the unit sphere S
N−1 in R

N . To fix the terminology, choose the
dimension N = 2, 3, . . . . For each point p ∈ R

N , we set |p| :=
p

(p1)2 + . . . + (pN )2.

Define the (N − 1)-dimensional unit sphere S
N−1 := {p ∈ R

N : |p| = 1}. Then the
surface measure of S

N−1 is given by the Jacobi formula

meas(SN−1) =
2π

N
2

Γ
`

N
2

´ . (2.32)

For example, we get meas(S1) = 2π and meas(S2) = 4π for the length of the
unit circle and the surface measure of the 2-dimensional unit sphere, respectively.
An elegant proof will be given in Problem 2.3. Moreover, for the volume of the
N -dimensional ball B

N
R := {x ∈ R

N : |x| ≤ R} of radius R, we get

V (BN
R ) = meas(SN−1)

RN

N
. (2.33)

In fact, we have V (BN
R ) =

R R

0

`R

SN−1 dS
´

rN−1dr.

2.2.8 Integration Tricks

Let us summarize some integration tricks which are frequently applied in quantum
field theory.

The sphere trick. Let f : [0,∞[→ C be a continuous function. Fix the dimen-
sion N = 2, 3, . . .. Moreover, suppose that sup0≤r<∞ rN−1+α|f(r)| < ∞ for fixed
α > 1. Then the following integral is absolutely convergent:
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Z

RN

f(|p|) dNp =
2π

N
2

Γ
`

N
2

´

Z ∞

0

f(r)rN−1dr. (2.34)

To prove this, set r := |p|, use spherical coordinates, and note that
Z

RN

f(|p|) dNp = meas(SN−1)

Z ∞

0

f(r)rN−1dr.

The Cauchy residue trick. We have

Z ∞

−∞

f(x)dx

g(x)
= 2πi

K
X

k=1

reszk

„

f

g

«

. (2.35)

Here, we assume that f and g are polynomials such that the degree condition
degree(g)-degree(f)≥ 2 is satisfied, and the function f

g
has no poles on the real

axis. In equation (2.35), we sum over all poles z1, . . . , zK of the function f
g

on the

upper half-plane. If there is no such pole, then the integral from (2.35) is equal
to zero. For computations, it is convenient to know that the following hold: If the
function f

g
has a pole of order n = 1, 2, . . . at the point zk, then the residue of this

pole is given by

reszk

„

f

g

«

= lim
z→zk

1

(n− 1)!

dn−1

dzn−1

„

(z − zk)nf(z)

g(z)

«

.

The proof of (2.35) proceeds as in Problem 12.1 of Vol. I.
(i) First example. Let a > 0 and ε > 0. We want to show that

Z ∞

−∞

dp

p2 − (a + iε)2
=

πi

a + iε
.

In fact, the equation p2 − (a + iε)2 = 0 has the simple zero p+ := a + iε on the
upper half-plane, and the simple zero p− := −a− iε on the lower half-plane. Hence

resp+

1

p2 − (a + iε)2
= lim

p→p+

p− p+

(p− p+)(p− p−)
=

1

2p+
.

This yields the claim. Similarly, we get
Z ∞

−∞

dp

p2 − (a− iε)2
= − πi

a− iε
.

This implies the limit

lim
ε→+0

Z ∞

−∞

dp

p2 − (a± iε)2
= ±πi

a
.

(ii) Second example. Analogously, we obtain
Z ∞

−∞

dp

p2 + (a± iε)2
=

π

a± iε
.

The Wick rotation trick. In addition to the assumptions formulated for
(2.35) above, assume that the function f

g
has no poles on the closed first quadrant
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�

�

�

�
pole (a− iε)

pole (−a + iε)

Fig. 2.1. Wick rotation

{x + iy : x, y ≥ 0} and on the close third quadrant {x + iy : x, y ≤ 0}. Then the
integral (2.35) is invariant under the transformation x �→ ix. That is,

Z ∞

−∞

f(x)dx

g(x)
=

Z ∞

−∞

f(ix) idx

g(ix)
.

Proof. Use the counter-clockwise rotation pictured in Fig. 2.1. Here, the real axis
is rotated into the imaginary axis. By assumption, the rotating real axis does not
cross poles of f

g
. Hence

Z ∞

−∞

f(x)dx

g(x)
=

Z i∞

−i∞

f(x)dx

g(x)
,

by the Cauchy theorem on the path-independence of integrals over holomorphic
functions. Finally, set x = iy and replace the real variable y by x. �

For example, let a > 0 and ε > 0. Then
Z

R

dp

p2 − (a− iε)2
=

Z

R

idp

−p2 − (a− iε)2
= −i

Z

R

dp

p2 + (a− iε)2
= − πi

a− iε
.

This coincides with the result obtained above. Physicists use this trick in order
to reduce algebraic Feynman integrals on Minkowski space to the corresponding
integrals on Euclidean space (see Sect. 2.2.12 on page 80). The goal of the following
three tricks due to Feynman, Schwinger and Pauli–Villars is to simplify the structure
of algebraic Feynman integrals.

The Feynman integration trick. For all nonzero real numbers a, b, we have
the identity

1

ab
=

Z 1

0

dx

(ax + b(1− x))2
, (2.36)

by elementary integration. Furthermore, for all nonzero real numbers a, b, c, d, we
obtain

1

abc
= 2

Z 1

0

dx

Z x

0

dy

(ay + b(x− y) + c(1− x))3
(2.37)

and

1

abcd
= 6

Z 1

0

dx

Z x

0

dy

Z y

0

dz

(az + b(y − z) + c(x− y) + d(1− x))4
.

The general case reads as follows.
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Proposition 2.6 Let n = 2, 3, . . . For all nonzero real numbers a1, . . . , an, we have

1

a1a2 · · · an
= (n− 1)!

Z 1

0

dx1

Z x1

0

dx2 · · ·
Z xn−2

0

dxn−1

f(x1, . . . , xn−1)n

where f(x1, . . . , xn−1) := a1xn−1 +
Pn−1

k=2 ak(xn−k − xn−k+1) + an(1− x1).

Proof. We will proceed by induction.
(I) The claim is true for n = 2.
(II) Suppose that the claim is true for the integer n where n ≥ 2. Set

J(a1, . . . , an+1) :=

Z 1

0

dx1

Z x1

0

· · ·
Z xn−1

0

dxn

f(x1, . . . , xn+1)n+1
.

Elementary integration yields

J(a1, . . . , an+1) =
1

a1 − a2
(J(a2, a3, a4, . . . , an+1)− J(a1, a3, a4, . . . , an+1)).

Hence

J(a1, . . . , an+1) =
1

a1 − a2

„

1

a2a3 · · · an+1
− 1

a1a3 · · · an+1

«

=
1

a1a2 · · · an+1
.

Thus, the claim is true for the integer n + 1. �

Differentiating the relation (2.36) with respect to the variable a, we obtain

1

a2b
= 2

Z 1

0

xdx

(ax + b(1− x))3
(2.38)

and

1

a3b
= 3

Z 1

0

x2dx

(ax + b(1− x))4
. (2.39)

These identities can be elegantly reformulated in terms of the Dirac delta func-
tion. Explicitly, we obtain

1

ab
=

Z 1

0

Z 1

0

δ(x + y − 1) dxdy

(ax + by)2
(2.40)

for all nonzero real numbers a, b.17 For n = 2, 3, . . . and all nonzero real numbers
a1, . . . , an, the general formula reads as

1

a1a2 · · · an
=

Z 1

0

· · ·
Z 1

0

δ(u1 + u2 + . . . + un − 1) du1du2 · · · dun

(a1u1 + a2u2 + . . . + anun)n
.

This follows from Prop. 2.6 after integrating over un and substituting

17 In fact, integrating over the variable y, we get

Z 1

0

Z 1

0

δ(x + y − 1) dxdy

(ax + by)2
=

Z 1

0

dx

(ax + b(1− x))2
=

1

ab
.
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u1 = xn−1, u2 = xn−2 − xn−1, . . . , un−1 = x1 − x2.

Note that u1 + u2 + . . . + un−1 = x1.
The Schwinger integration trick. For all real numbers x > 0 and all complex

numbers z with �(z) > 0, we have

1

xz
=

1

Γ (z)

Z ∞

0

yz−1e−xydy. (2.41)

This follows from applying the substitution t = xy to Γ (z) =
R∞
0

tz−1e−tdt. Physi-
cists call this the Schwinger integration trick.

The Pauli–Villars integration trick. For all real numbers P,m,M with
P �= m2 and P �= M2, we have

1

P −m2
− 1

P −M2
=

Z m2

M2

du

(u− P )2
. (2.42)

The Wick differentiation trick. Let a > 0 and J ∈ R. Then

Z ∞

−∞
xe−ax2

dx =
d

dJ

„

Z ∞

−∞
e−ax2

eJxdx

«

|J=0

. (2.43)

This is used in order to compute moments (e.g., correlation functions) in quantum
field theory). In physics, J corresponds to an external source.

2.2.9 Dimensional Regularization via Analytic Continuation

Consider the integral

Z R

0

dr√
1 + r2

= ln
“

p

1 + r2 + r
”

˛

˛

˛

R

0
= ln

“

p

1 + R2 + R
”

.

Consequently, we get
Z ∞

0

dr√
1 + r2

= lim
R→+∞

ln
“

p

1 + R2 + R
”

=∞. (2.44)

That is, the integral is divergent of logarithmic type. Such slowly divergent integrals
frequently occur in renormalization theory. In order to regularize the integral (2.44),
we will use the following key formula18

Z ∞

0

rαdr

(a + brβ)γ
=
“a

b

”

α+1
β

Γ
“

α+1
β

”

Γ
“

γ − α+1
β

”

aγβΓ (γ)
. (2.45)

18 This formula follows from (2.30) and (2.31) by using a simple substitution (see
Problem 2.4). Note that the two integrals

Z 1

0

rαdr and

Z ∞

1

rβdr

are finite if we have α > −1 and β < −1, respectively.
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In the classical sense, this so-called Liouville integral exists for all parameters

a, b, β, γ > 0, βγ − α > 1.

Using analytic continuation and the regularization of the gamma function, the
integral (2.45) can be easily extended to a larger parameter domain. For example,
we obtain the following two regularized integrals

»

Z ∞

0

dr√
1 + r2

–

reg

:= −γ

2
, (2.46)

and
»

Z ∞

0

(1 + r2)
1
4 dr

–

reg

:=
Γ ( 1

2
)Γ (− 3

4
)

2Γ (− 1
4
)

. (2.47)

In order to motivate the definition (2.46), choose the parameter ε > 0. Then we
have the classical integral

Z ∞

0

dr

(1 + r2)
1
2
+ε

=
Γ ( 1

2
)Γ (ε)

2Γ ( 1
2

+ ε)
.

By (2.28), this is equal to

Γ ( 1
2
)

2Γ ( 1
2

+ ε)

„

1

ε
− γ + O(ε)

«

, ε→ 0.

Truncating the singular term 1
ε

and letting ε→ 0, we get (2.46). Furthermore, the
definition (2.47) is motivated by using the key equation (2.45) with the parameter
values a = b := 1, α := 0, β := 2, and γ := − 1

4
. Note that the values Γ ( 1

2
), Γ (− 3

4
)

and Γ (− 1
4
) are well-defined, since the meromorphic gamma function has only poles

at the points 0,−1,−2, . . .
Dimensional regularization of integrals. Let N = 2, 3, . . . We want to

study the integral

JN (f) :=

Z

RN

f(|p|) dNp.

By the sphere trick (2.34) on page 70, we have the key formula

JN (f) =
2π

N
2

Γ
`

N
2

´

Z ∞

0

f(r)rN−1dr. (2.48)

The point is that the right-hand side of (2.48) is not only defined for the integer
dimensions N = 2, 3, . . ., but also for more general values of the parameter N . Ob-
serve that the interpolating gamma function is uniquely determined by Wielandt’s
uniqueness theorem considered above. Now the method of dimensional regulariza-
tion proceeds as follows. We want to regularize the divergent integral JN0(f) for
fixed N0 = 2, 3, . . .

• To this end, we choose the parameter N = N0− ε, and we compute JN0−ε(f) by
(2.48).

• We truncate the singularity of the function ε �→ JN0−ε at the point ε = 0. This
way, we get the regularized expression [JN0−ε(f)]reg.
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• Finally, we define the regularized integral

[JN0(f)]reg := lim
ε→+0

[JN0−ε(f)]reg.

Let us illustrate this with the integral

JN :=

Z

RN

dNp

(a2 + |p|2)2 , N = 2, 3, 4

for all parameters a > 0. This integral behaves like
R∞
1

rN−5dr. Consequently, if
N = 2, 3 (resp. N = 4), the integral is convergent (resp. divergent). We want to
motivate the regularization

»

Z

R4

d4p

(a2 + |p|2)2

–

reg

:= −π2γ. (2.49)

To begin with, we set N = 4− 2ε where ε > 0. By the key formula (2.48),

J4−2ε =
2π2−ε

Γ (2− ε)

Z ∞

0

r3−2εdr

(a2 + r2)2
.

Using the Liouville integral (2.45), we obtain

J4−2ε =
2π2−ε

Γ (2− ε)
· a

4−2εΓ (2− ε)Γ (ε)

2a4Γ (2)
=

π2−ε

a2ε
· Γ (ε).

The Laurent series (2.28) of the gamma function at the pole ε = 0 tells us that

J4−2ε =
π2−ε

a2ε

„

1

ε
− γ + O(ε)

«

, ε→ 0.

Truncating the singular term 1
ε
, we get the regularization

[J4−2ε]reg :=
π2−ε

a2ε
(−γ + O(ε)) , ε→ 0. (2.50)

Finally, letting ε→ +0, we obtain (2.49).
Historical remarks. Dimensional regularization was introduced by Gerardus

’t Hooft and Martinus Veltman in 1972.19 They showed that, in contrast to the 1938
Fermi model, the electroweak Standard Model in particle physics is renormalizable.
For this, ’t Hooft and Veltman were awarded the Nobel prize in physics in 1999.

Dimensional regularization is the standard method used by physicists in
modern renormalization theory.20

19 G. ’t Hooft and M. Veltman, Regularization and renormalization of gauge fields,
Nucl. Phys. B44 (1972), 189–213. See also the monograph by M. Veltman, Dia-
grammatica: the Path to Feynman Diagrams, Cambridge University Press, 1995.

20 Observe that dimensional regularization fails if the Dirac matrix γ5 is involved,
which corresponds to the appearance of chirality (processes with parity viola-
tion). In this case, one has to use other regularization methods like algebraic
renormalization (see the quotation in Sect. 19.6 on page 1019).
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2.2.10 Pauli–Villars Regularization

Regularize divergent integrals by introducing additional ghost particles of
large masses.

Folklore

Prototype. We regularize the divergent integral

J =

Z ∞

1

dp

p

by introducing the additional parameter PM > 0 and by setting

Jreg(PM ) :=

Z ∞

1

„

1

p
− 1

p + PM

«

dp =

Z ∞

1

PMdp

p(p + PM )
.

In terms of physics, PM = cM is the momentum of an additional (ghost) particle
of mass M .21 Explicitly,

Jreg(PM ) = lnPM .

In fact, the Pauli–Villars regularized integral Jreg(PM ) is equal to the limit

Z Pmax

1

„

1

p
− 1

p + PM

«

dp = lnPM + ln
Pmax

Pmax + PM
→ lnPM ,

as Pmax → +∞. Observe that

• the logarithmic divergence of the cut-off integral

Z Pmax

1

dp

p
= lnPmax, Pmax → +∞,

• corresponds to the logarithmic divergence Jreg(PM ) = lnPM of the regularized
integral as PM → +∞.

Higher dimension. Let m > 0,M > 0. We want to regularize the divergent
integral

J :=

Z

R4

d4p

(|p|2 + c2m2)2
,

in the sense of Pauli–Villars. To this end, we choose a parameter M > 0, and we
introduce the convergent integral

Jreg(M
2) :=

Z

R4

„

1

(|p|2 + c2m2)2
− 1

(|p|2 + c2M2)2

«

d4p.

Proposition 2.7 Jreg(M
2) = π2(lnM2 − lnm2).

Proof. Differentiation of Jreg(M
2) with respect to the parameter M2 yields

J ′
reg(M

2) = 2c2
Z

R4

d4p

(|p|2 + c2M2)3
=

π2

M2
,

21 As usual, c denotes the velocity of light in a vacuum.
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by Problem 2.10. This differentiation is admissible, since both Jreg(M
2) and the

derivative J ′
reg(M

2) are convergent integrals. Noting that Jreg(m
2) = 0, we get

Jreg(M
2) = π2(lnM2 − lnm2). �

Comparison of the Pauli–Villars method with dimensional regular-
ization. By (2.50), dimensional regularization of J yields

J4−2ε =
π2−ε

(cm)2ε

„

1

ε
− γ + O(ε)

«

, ε→ 0.

Comparing this with Prop. 2.7, we see that

• the logarithmic growth Jreg(M
2) = lnM2 − lnm2 as M → +∞ of the Pauli–

Villars regularization corresponds to
• the pole of the dimensional regularization J4−2ε at the point ε = 0.

The Pauli–Villars regularization preserves the relativistic invariance. However, the
introduction of additional masses may destroy the gauge invariance.

2.2.11 Analytic Regularization

Basic idea. Fix P0 > 0. Our goal is to regularize the divergent integral

J 1
2
(P0) =

Z ∞

0

dp

(p + P0)1/2
.

To this end, we start with the convergent integral

Jλ(P0) :=

Z ∞

0

dp

(p + P0)λ
, λ > 1.

Explicitly, we get22

Jλ(P0) =
P 1−λ

0

λ− 1
for all λ > 1.

Using analytic continuation, we define

Jλ(P0)|reg :=
P 1−λ

0

λ− 1

for all complex numbers λ with λ �= 1. In particular, this yields

J 1
2
(P0)|reg = −2P

1
2

0 .

Example 1. Fix the parameter m > 0. We want to study the integral

Jλ(m) =

Z ∞

−∞

dx

(x2 + m2)λ
.

Since 1
(x2+m2)λ � 1

x2λ as |x| → ∞, the integral is convergent if λ > 1
2
, by power-

counting. Using the Liouville integral formula (2.45) on page 73, we obtain

22 In fact, Jλ(P0) = limP→+∞
R P

0
dp

(P+P0)λ = 1
1−λ

limP→+∞(P + P0)
1−λ − P 1−λ

0 .



78 2. Basic Strategy of Extracting Information from Infinities

Jλ(m) :=
m1−2λ√π Γ

`

λ− 1
2

´

Γ (λ).
, λ > 1

2
. (2.51)

The gamma function z �→ Γ (z) has no zeros, and it has poles precisely at the points
z = 0,−1,−2, . . . Using analytic continuation, we define

Jλ(m)reg :=
m1−2λ√π Γ

`

λ− 1
2

´

Γ (λ)

for all complex numbers λ different from 1
2
− k, k = 0, 1, 2, . . . Here, we use the

convention m1−2λ := e(1−2λ) ln m. In particular,

Jn(m)reg =
m1−2nπ(2n− 2)!

4n−1(n− 1)!
, n = 1, 2, . . .

Example 2. Fix both the parameter m > 0 and the regularization parameter
ε > 0. Let us study the integral

Jλ(m, ε) =

Z ∞

−∞

dx

((m− iε)2 − x2)λ
.

We introduce the regularization parameter ε > 0 in order to avoid singularities
of the integrand on the real axis.23 Let λ > 1

2
. The integrand of the convergent

integral Jλ(m, ε) has singularities at the points x− := m − iε and x+ = −m + iε.
Set x = iy. By Wick rotation, we get

Jλ(m, ε) =

Z i∞

−i∞

dx

((m− iε)2 − x2)λ
=

Z ∞

−∞

idy

((m− iε)2 + y2)λ
, λ > 1

2

(see Fig. 2.1 on page 71). Using (2.51) and applying analytic continuation with
respect to m− iε, we obtain

Jλ(m, ε) =
i(m− iε)1−2λ√π Γ

`

λ− 1
2

´

Γ (λ)
, λ > 1

2
.

Here (m − iε)1−2λ = e(1−2λ) ln(m−iε), where ln(m − iε) denotes the principal value
of the logarithm (see page 480). Moreover, using analytic continuation with respect
to λ, we define the regularized integral

Jλ(m, ε)reg :=
i(m− iε)1−2λ√π Γ

`

λ− 1
2

´

Γ (λ)

for all complex numbers λ different from 1
2
− k with k = 0, 1, 2, . . . In particular,

since the gamma function Γ has poles at the points 0,−1,−2, . . . , we get

Jλ(m, ε)reg = 0, λ = 0,−1,−2, . . .

23 For example, because of the decomposition

1

m2 − x2
=

1

2m

„

1

x + m
− 1

x−m

«

,

the singularities at the points x+ = m and x− = −m are responsible for the
non-existence of the integral

R∞
−∞

dx
m2−x2 .
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Adiabatic limit. In order to free ourselves from the choice of the small regu-
larization parameter ε > 0, we consider the limit

Jλ(m, 0)reg := lim
ε→+0

Jλ(m, ε)reg =
im1−2λ√π Γ

`

λ− 1
2

´

Γ (λ)

for all complex numbers λ different from 1
2
− k with k = 0, 1, 2, . . .

Critical values. For λ = 1
2
− k with k = 0, 1, 2, . . . and ε > 0, we define

J 1
2
−k

(m, ε) :=
i(m− iε)2k√π Γreg(−k)

Γ ( 1
2
− k)

together with

J 1
2
−k

(m, 0)+ := lim
ε→+0

J 1
2
−k

(m, ε) =
im2k√π Γreg(−k)

Γ ( 1
2
− k)

.

Recall that Γreg(0) = −γ. Hence J 1
2
(m, 0)+ = −iγ.

The Feynman integration trick. Let a > 0 and b > 0. Consider the integral

J =

Z ∞

−∞

dx

(x2 + a)(x2 + b)
.

We want to show that J = π√
ab(

√
a+

√
b)
.

Proof. By the Feynman trick (2.36) on page 71,

J =

Z ∞

−∞
dx

Z 1

0

du

(x2 + au + b(1− u))2
.

Since the nonnegative integrand (x, u) �→ 1
(x2+au+b(1−u))2

is integrable over the

set R × [0, 1], the Fubini theorem tells us that the iterated integrations can be
interchanged. Hence

J =

Z 1

0

du

Z ∞

−∞

dx

(x2 + au + b(1− u))2
.

Using the Liouville integral (2.45) on page 73,

Z ∞

−∞

dx

(x2 + au + b(1− u))2
=

Γ
`

1
2

´

Γ
`

3
2

´

(au + b(1− u))3/2
.

Therefore,

J =
π

2

Z 1

0

du

(au + b(1− u))3/2
=

π√
ab (
√
a +
√
b)
.

�
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2.2.12 Application to Algebraic Feynman Integrals in Minkowski
Space

The important mathematical problem of evaluating (algebraic) Feynman
integrals arises quite naturally in elementary particle physics when one
treats various quantities (corresponding to Feynman diagrams) in the
framework of perturbation theory.24

Vladimir Smirnov, 2006

Fix the mass parameter m > 0 and the regularizing parameter ε > 0. Our goal is
to compute the integral

Jλ(m, ε) =

Z

R4

d4p

(c2(m− iε)2 − p2)λ
. (2.52)

Here, p = (p0, p1, p2, p3), and p2 := |p0|2 −
P3

j=1 |p
j |2. Introducing the energy

E := cp0 and the momentum vector p, we get

p2 :=
E2

c2
− p2 (2.53)

where c denotes the velocity of light in a vacuum. To simplify notation, we set
c := 1.

Wick rotation. Let λ > 3. By definition, the integral is to be understood as
the following iterated integral:

Jλ(m, ε) :=

Z

R3
d3p

Z ∞

−∞

dE

((m− iε)2 − E2 + p2)λ
.

By Wick rotation,25

Z ∞

−∞

dE

((m− iε)2 − E2 + p2)λ
=

Z i∞

−i∞

dE

((m− iε)2 − E2 + p2)λ
.

Replacing the variable E by iE, this integral is equal to

i

Z ∞

−∞

dE

((m− iε)2 + E2 + p2)λ
.

Hence

Jλ(m, ε) = i

Z

R4

d4p

((m− iε)2 + E2 + p2)λ
.

Using the sphere trick (2.34) on page 70, we get

Jλ(m, ε) = 2iπ2

Z ∞

0

r3dr

((m− iε)2 + r2)λ
.

The Liouville integral (2.45) on page 73 tells us that26

Jλ(m, ε) = iπ2(m− iε)4−2λ Γ (λ− 2)

Γ (λ)
=

iπ2(m− iε)4−2λ

(λ− 1)(λ− 2)
, λ > 3.

24 V. Smirnov, Feynman Integral Calculus, Springer, Berlin, 2006.
25 See Fig. 2.1 on page 71.
26 Note that Γ (λ) = (λ− 1)Γ (λ− 1) = (λ− 1)(λ− 2)Γ (λ− 2).
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Analytic continuation. For all complex numbers λ different from the singular
exponents λ = 1, 2, analytic continuation with respect to λ yields

Jλ(m, ε) =
iπ2(m− iε)4−2λ

(λ− 1)(λ− 2)
.

In a neighborhood of λ = 1, we have 1
(λ−1)(λ−2)

= − 1
λ−1
− 1 + O(λ− 1) as λ→ 1.

Therefore, we define the regularization

J1(m, ε)reg := lim
λ→1

„

Jλ(m, ε) +
1

λ− 1

«

= −iπ2(m− iε)2.

Similarly, since 1
(λ−1)(λ−2)

= 1
λ−2
− 1 + O(λ− 2) as λ→ 2, we define

J2(m, ε)reg := lim
λ→2

„

Jλ(m, ε)− 1

λ− 2

«

= −iπ2.

Adiabatic limit. The limit ε→ +0 yields

J1(m, 0)+ := lim
ε→+0

J1(m, ε)reg = −iπ2m2,

and J2(m, 0)+ := limε→+0 J2(m, ε)reg = −iπ2.

2.2.13 Distribution-Valued Meromorphic Functions

In quantum field theory, Green’s functions are closely related to distribu-
tion-valued meromorphic functions.

Folklore

The following considerations will be used in the next section in order to study
Newton’s equation of motion in terms of the Fourier transform of tempered distri-
butions. For the convenience of the reader, our approach will be chosen in such a
way that it serves as a prototype for the study of Green’s functions in quantum
field theory later on. The essential tool is given by families of tempered distribu-
tions which analytically depend on a complex parameter λ. This approach dates
back to a fundamental paper by Marcel Riesz in 1948.27

Basic idea. We want to study the integral
Z ∞

0

tλϕ(t)dt (2.54)

for all test functions ϕ ∈ S(R) and all complex numbers λ. If �(λ) > −1, then the
integral is convergent. However, if �(λ) ≤ −1 and ϕ(0) �= 0, then the integral is
divergent. The idea is to use analytic continuation with respect to λ. For example,
if −2 < �(λ) < −1, then we will show below that the analytic continuation of the
integral looks like

Z ∞

0

tλϕ(t)dt =
ϕ(0)

λ + 1
+

ϕ′(0)

λ + 2
+

Z 1

0

tλ(ϕ(t)− ϕ(0)− ϕ′(0)t) dt

+

Z ∞

1

tλϕ(t)dt. (2.55)

27 See the footnote on page 92.



82 2. Basic Strategy of Extracting Information from Infinities

Using the terminology to be introduced below, relation (2.55) can be written as

tλ+ =
δ

λ + 1
− δ′

λ + 2
+ (tλ+)reg,2, −2 < �(λ) < −1.

To begin with, we define t+ := θ(t)t for all t ∈ R. Hence

t+ =

(

t if t ≥ 0,

0 if t < 0.

The classical function t �→ t+ corresponds to a tempered distribution denoted by

t+(ϕ) :=

Z ∞

−∞
t+ϕ(t)dt for all ϕ ∈ S(R).

Observe the following crucial fact. If we set f(t) := (t+)−3/2, then the classical
function f is not defined for arguments t ≤ 0. However, the tempered distribution

t
−3/2
+ to be introduced below is well defined. But it cannot be represented by a

classical, locally integrable function.
The tempered distribution tλ+. For all complex numbers λ with positive real

part, �(λ) > 0, we define the tempered distribution tλ+ given by

tλ+(ϕ) :=

Z ∞

−∞
tλ+ϕ(t)dt for all ϕ ∈ S(R).

Hence tλ+(ϕ) :=
R∞
0

tλ+ϕ(t)dt for all ϕ ∈ S(R) where tλ+ = eλ ln t if t > 0.

Proposition 2.8 Let ϕ ∈ S(R). The function λ �→ tλ+(ϕ) defined on the open half-
plane {λ ∈ C : �(λ) > 0} can be analytically extended to a holomorphic function on
the punctured complex plane C \ {−1,−2, . . .}. Explicitly, choose k = 1, 2, . . . and
the complex number λ with �(λ) > −k and λ �= −1,−2, . . . ,−k + 1. Then

tλ+ =

k
X

r=1

(−1)r−1δ(r−1)

(λ + r)(r − 1)!
+ (tλ+)reg,k.

Here, for all test functions ϕ ∈ S(R), the regular part is defined by

(tλ+)reg,k(ϕ) :=

Z 1

0

tλ
 

ϕ(t)−
k−1
X

r=0

ϕ(r)(0)

r!
tr
!

dt +

Z ∞

1

tλϕ(t) dt.

We say that the map λ �→ tλ+ is a meromorphic function on the complex plane C

with values in the space S ′(R) of tempered distributions. This function has simple
poles at the points λ = −1,−2, . . . with the residues

resλ=−k(tλ+) =
(−1)k−1δ(k−1)

(k − 1)!
, k = 1, 2, . . .

Proof. Fix the test function ϕ ∈ S(R). We will proceed by induction.
(I) Let k = 1. We start with tλ+(ϕ) =

R∞
0

tλϕ(t) dt for �(λ) > 0. Obviously, if

�(λ) > 0, then tλ+(ϕ) is equal to
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yλ
+(ϕ) :=

Z 1

0

tλ(ϕ(t)− ϕ(0)) dt +

Z ∞

1

tλϕ(t) dt + A

where A := ϕ(0)
R 1

0
tλdt = 1

λ+1
. The point is that the function λ �→ yλ

+(ϕ) is

holomorphic for all complex numbers λ with �(λ) > −1. This follows from ϕ(t)−
ϕ(0) = O(t) as t→ 0. In fact, the Taylor expansion theorem tells us that

|tλ(ϕ(t)− ϕ(0))| ≤ tλ+1 sup
0≤τ≤t

|ϕ′(τ)|, t ∈ [0, 1].

Hence

yλ
+(ϕ) =

Z 1

0

tλ(ϕ(t)− ϕ(0)) dt +

Z ∞

1

tλϕ(t) dt +
ϕ(0)

λ + 1
, �(λ) > −1.

Thus, the function λ �→ yλ
+(ϕ) (defined for �(λ) > −1) is an analytic continuation

of the function λ �→ tλ+(ϕ) (defined for �(λ) > 0).

(II) Let k = 2. For all complex numbers λ with �(λ) > −1, the value yλ
+(ϕ) is

equal to

zλ
+(ϕ) :=

Z 1

0

tλ(ϕ(t)− ϕ(0)− ϕ′(0)t) dt +

Z ∞

1

tλϕ(t) dt + B

where

B := ϕ′(0)

Z 1

0

tλ+1 dt + ϕ(0)

Z 1

0

tλdt =
ϕ′(0)

λ + 2
+

ϕ(0)

λ + 1
.

By Taylor expansion, ϕ(t)−ϕ(0)−ϕ′(0)t = O(t2) as t→ 0. Thus, the function λ �→
zλ
+(ϕ) is holomorphic on {λ ∈ C : �(λ) > −2} \ {−1}. Consequently, the function

λ �→ zλ
+(ϕ) (defined for �(λ) > −2 with λ �= −1) is an analytic continuation of the

function λ �→ yλ
+(ϕ) (defined for �(λ) > −1).

(III) An induction argument for k = 1, 2, . . . yields the desired result. �

Fundamental solution. Each tempered distribution x ∈ S ′(R) which satisfies
the equation

d2x

dt2
= δ (2.56)

is called a tempered fundamental solution of the differential operator d2

dt2
.28

Proposition 2.9 The tempered distribution t+ has the following properties:
(i) ẗ+ = δ.
(ii) t+ = 0 on ]−∞, 0[.

(iii) The general tempered fundamental solution of the differential operator d2

dt2

looks like
x = t+ + H

where H corresponds to the linear function H(t) := a+bt for all t ∈ R with arbitrary
complex numbers a, b as coefficients.

(iv) The equation ẍ = δ, x ∈ S ′(R) with x = 0 on ] −∞, 0[ has precisely one
solution given by t+.

28 Recall that we also write ẍ or x′′ instead of d2x
dt2

.
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Because of (iv), t+ is called the retarded tempered fundamental solution of the

differential operator d2

dt2
.

Proof. Ad (i). For all test functions ϕ ∈ S(R), integration by parts yields

ẗ+(ϕ) = t+(ϕ̈) =

Z ∞

0

tϕ̈(t)dt = −
Z ∞

0

ϕ̇(t)dt = ϕ(0) = δ(ϕ).

Ad (ii). If the test function ϕ ∈ S(R) vanishes outside ] −∞, 0[, then t+(ϕ) =
R 0

−∞ t+ϕ(t)dt = 0.

Ad (iii). Let H ∈ S ′(R) with Ḧ = 0. Note that sing supp t+ = {0} (see page 704

of Vol. I). By Theorem 8.16 on page 745, the differential operator d2

dt2
is hypoelliptic,

that is, the tempered distribution H corresponds to a smooth function t �→ H(t).

From Ḧ(t) ≡ 0 it follows that H(t) = a + bt for all t ∈ R.

Finally, let x ∈ S ′(R) with ẍ = δ. Set H := x− t+. Then Ḧ = 0.
Ad (iv). If a + bt = 0 for all t < 0, then a = b = 0. �

According to the general theory of distributions, the following hold (see Sect.
11.7 of Vol. I). Let F ∈ D′(R) be a given distribution with compact support. Then
the equation

ẍ = F, x ∈ D′(R) (2.57)

has the special solution x = t+ ∗ F and the general solution

x = t+ ∗ F + H (2.58)

where H corresponds to the linear function H(t) = at+b for all t ∈ R with complex
coefficients a, b. In particular, if F : R → R is continuous with compact support,
then (2.58) looks like

x(t) =

Z ∞

−∞
(t− τ)+F (τ)dτ + H(t) =

Z t

−∞
(t− τ)F (τ)dτ + H(t) (2.59)

for all t ∈ R.
The tempered distribution tλ−. Parallel to t+ = θ(t)t, let us define the

function t− := −θ(−t)t for all t ∈ R. Then

t− =

(

0 if t ≥ 0,

|t| if t < 0.

The corresponding tempered distribution reads as

t−(ϕ) =

Z ∞

−∞
t−ϕ(t)dt =

Z 0

−∞
|t|ϕ(t)dt for all ϕ ∈ S(R).

As for t+, we get the following. The function λ �→ tλ−(ϕ) defined on the open half-
plane {λ ∈ C : �(λ) > 0} can be analytically extended to a holomorphic function
on the punctured complex plane C \ {−1,−2, . . .}. Explicitly, choose k = 1, 2, . . .
and the complex number λ with �(λ) > −k and λ �= −1,−2, . . . ,−k + 1. Then

tλ− =

k
X

r=1

δ(r−1)

(λ + r)(r − 1)!
+ (tλ−)reg,k.

Here, for all test functions ϕ ∈ S(R), the regular part is defined by
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(tλ−)reg,k(ϕ) :=

Z 0

−1

|t|λ
 

ϕ(t)−
k−1
X

r=0

ϕ(r)(0)

r!
tr
!

dt +

Z −1

−∞
|t|λϕ(t) dt.

Parallel to the proof of Prop. 2.9, we obtain the following result.

Proposition 2.10 The tempered distribution t− has the following properties:
(i) ẗ− = δ.
(ii) t− = 0 on ]0,∞[.

(iii) The general tempered fundamental solution of the differential operator d2

dt2

looks like
x = t− + H

where H corresponds to the linear function H(t) := a+bt for all t ∈ R with arbitrary
complex numbers a, b as coefficients.

(iv) The equation ẍ = δ, x ∈ S ′(R) with x = 0 on ]0,∞[ has precisely one
solution given by t−.

Because of (iv), t− is called the advanced tempered fundamental solution of the

differential operator d2

dt2
.

The tempered distribution |t|λ∗ . For all complex numbers λ with the prop-
erty λ �= −1,−3,−5, . . ., we define

|t|λ∗ := tλ+ + tλ−. (2.60)

Note that the common poles −2,−4, . . . of tλ+ and tλ− cancel each other. Explicitly,
for all complex numbers λ with �(λ) > 0, we have29

|t|λ∗ (ϕ) =

Z ∞

−∞
|t|λϕ(t)dt for all ϕ ∈ S(R).

The holomorphic function λ �→ |t|λ∗ (ϕ) on the half-plane {λ ∈ C : �(λ) > 0} can
be analytically continued to a holomorphic function on C \ {−1,−3, . . .} which has
simple poles at the points −1,−3, . . . with the residues

resλ=−k(|t|λ∗ ) =
2δ(k−1)

(k − 1)!
, k = 1, 3, 5, . . .

Proposition 2.11 The tempered distribution 1
2
|t|∗ = 1

2
(t+ + t−) is a fundamental

solution of the differential operator d2

dt2
.

This follows from ẗ+ = δ and ẗ− = δ. Naturally enough, 1
2
|t|∗ is called the

retarded-advanced fundamental solution of d2

dt2
.

The tempered distributions (t + 0+i)λ and (t − 0+i)λ. Fix ε > 0. For all
complex numbers λ and all real numbers t, we have30

(t± εi)λ = eλ ln |t±εi| eλi arg(t±εi).

Let λ ∈ C. For any test function ϕ ∈ S(R), we define

29 In this case, we also write |t|λ instead of |t|λ∗ .
30 Recall that any complex number z can be uniquely represented by z = |z|ei arg(z)

where −π < arg(z) ≤ π. For example, arg(−1) = π.
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(t + εi)λ(ϕ) :=

Z ∞

−∞
(t + εi)λϕ(t)dt.

This yields the tempered distributions (t + εi)λ and (t − εi)λ. The functions λ �→
(t + εi)λ(ϕ) and λ �→ (t− εi)λ(ϕ) are holomorphic functions on the complex plane
C.

Proposition 2.12 (i) For any complex number λ, the limits

(t + 0+i)λ := lim
ε→+0

(t + εi)λ

and (t− 0+i)λ := limε→+0(t− εi)λ exist in the sense of tempered distributions.
(ii) For any test function ϕ ∈ S(R), the functions λ �→ (t + 0+i)λ(ϕ) and

λ �→ (t − 0+i)λ(ϕ) are holomorphic on the complex plane C. Explicitly, for all
λ ∈ C \ {−1,−2,−3, . . .},

(t± 0+i)λ = tλ+ + e±iλπtλ−.

Moreover, if k = 1, 2, . . ., then we have the Sokhotski formula

(t± 0+i)−k = lim
λ→−k

“

tλ+ + (−1)ktλ−

”

± iπ(−1)k

(k − 1)!
δ(k−1).

Here, the limit is to be understood in the sense of tempered distributions.

Proof. Let �(λ) > 0. Then the following two classical limits

lim
ε→+0

(t± εi)λ =

(

tλ if t > 0,

e±iλπ|t|λ if t < 0

exist. Hence (t± 0+i)λ(ϕ) = tλ+(ϕ) + e±iλπtλ−(ϕ) for all ϕ ∈ S(R).
The proofs of the remaining statements can be found in Gelfand and Shilov

(1964), Vol. 1, Chap. 1. �

The Fourier transform of tempered fundamental solutions. For the
function x ∈ S(R), the Fourier transform F(x) from time t to energy E is given
by31

F(x)(E) :=
1√
2π

Z ∞

−∞
x(t)eiEtdt, E ∈ R.

By Sect. 11.3.4 of Vol. I, this can be extended to the Fourier transform of tempered
distributions.

Proposition 2.13 (i) F(t+) = − 1√
2π

(E + 0+i)−2.

(ii) F(t−) = − 1√
2π

(E − 0+i)−2.

(iii) F( 1
2
|t|) = − 1√

2π
|E|−2

∗ .

Proof. We will use the method of the adiabatic limit. Fix ε > 0.
Ad (i). Define t+,ε(t) := t+e−εt for all t ∈ R. Integration by parts yields

F(t+,ε)(E) =
1√
2π

Z ∞

0

te−εteiEt dt =

Z ∞

0

e−εteiEtdt√
2π(ε− iE)

= − (E + εi)−2

√
2π

.

31 We set � := 1. Then E = ω, that is, energy E and angular frequency ω coincide.
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The factor e−εt enforces the convergence of the integral for all E ∈ R. Letting
ε→ +0, we get the claim. Note that the Fourier transform is sequentially continuous
with respect of the convergence on the space S ′(R) of tempered distributions.

Ad (ii). Set t−,ε := t−eεt for all t ∈ R. Then

F(t−,ε)(E) =
1√
2π

Z 0

−∞
teεteiEt dt = − 1√

2π
(E − εi)−2.

Ad (iii). Recall that |t|∗ = t+ + t−. By the Sokhotski formula on page 86,

(E + 0+i)−2 + (E − 0+i)−2 = 2(E−2
+ + E−2

− ) = 2|E|−2
∗ . �

2.2.14 Application to Newton’s Equation of Motion

Consider the following initial-value problem

mẍ(t) = F (t), t ∈ R, x(0) = a, ẋ(0) = v. (2.61)

This describes the motion of a particle of mass m > 0 on the real line with the
initial position a and the initial velocity v at time t = 0. We want to discuss this
classical problem by using a language which can be generalized to quantum field
theory. To simplify notation, we set m := 1.

If F : R→ R is continuous, then the unique solution of (2.61) reads as

x(t) = a + vt +

Z t

0

(t− τ)F (τ)dτ for all t ∈ R.

This solution formula can be written as

x(t) = a + vt +

Z ∞

−∞
G(t, τ)F (τ)dτ, t ∈ R, (2.62)

with the Green’s function

G(t, τ) :=

(

(t− τ)+ if τ ≥ 0,

(t− τ)− if τ < 0.

Fundamental Solutions in the Time Space

Let F ∈ D′(R) be a distribution with compact support. If g ∈ D′(R) is a funda-

mental solution of d2

dt2
, that is, g̈ = δ, then the distribution

x = g ∗ F

is a solution of the Newtonian equation ẍ = F, by the general theory of distributions
(see Sect. 11.7 of Vol. I). In particular, suppose that the force function F : R→ F
is continuous with compact support. This means that there exists a compact time
interval [t1, t2] such that

F (t) = 0 for all t /∈ [t0, t1].

Choosing the fundamental solutions t+, t−,
1
2
|t|, we get the following special solu-

tions of the Newtonian equation for all t ∈ R:
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• Retarded solution xret = t+ ∗ F :

xret(t) =

Z ∞

−∞
(t− τ)+F (τ)dτ =

Z t

−∞
(t− τ)F (τ)dτ.

The retarded solution is the unique solution of the initial-value problem32

mẍ(t) = F (t), t ∈ R, x(t1) = 0, ẋ(t1) = 0.

Alternatively, the retarded solution is the unique solution of the Newtonian equa-
tion mẍ(t) = F (t), t ∈ R, which vanishes in a neighborhood of the point in time
t = −∞. This corresponds to the motion of a particle that rests in a neighbor-
hood of t = −∞. This motion is quite natural because the force vanishes near
time t = −∞ (remote past).

• Advanced solution xadv = t− ∗ F :

xadv(t) =

Z ∞

−∞
(t− τ)−F (τ)dτ = −

Z ∞

t

(t− τ)F (τ)dτ.

The advanced solution is the unique solution of the initial-value problem

mẍ(t) = F (t), t ∈ R, x(t2) = 0, ẋ(t2) = 0.

Alternatively, the advanced solution is the unique solution of the Newtonian
equation mẍ(t) = F (t), t ∈ R, which vanishes in a neighborhood of the point
in time t = +∞. This corresponds to the motion of a particle that rests in a
neighborhood of t = +∞. This motion is quite natural because the force vanishes
near time t = +∞ (far future).

• Retarded-advanced solution xret/adv(t) = 1
2
|t| ∗ F :

xret/adv = 1
2
(xret(t) + xadv(t)) =

Z ∞

−∞

1
2
|t− τ | F (τ)dτ.

Note that the retarded solution xret(t) at time t only depends on the values of the
force F on the time interval ] −∞, t] in the past. This motivates the terminology
‘retarded’.

The advanced solution xadv(t) at time t only depends on the values of the
force F on the time interval ]−∞, t] in the future. This motivates the terminology
‘advanced’. Moreover, the retarded-advanced solution is the arithmetical mean of
the retarded and the advanced solution.

Furthermore, this motivates why t+, t−,
1
2
|t| are called retarded, advanced,

retarded-advanced fundamental solution of d2

dt2
, respectively. The importance of

retarded-advanced fundamental solutions in quantum electrodynamics was empha-
sized by Wheeler and Feynman in 1945.33 The function

G+(t, τ) := (t− τ)+ for all t, τ ∈ R

is called the retarded Green’s function of the Newtonian equation mẍ = F (with
m := 1), and

G−(t, τ) := (t− τ)− for all t, τ ∈ R

32 Choose m := 1.
33 A. Wheeler and R. Feynman, Interaction with the absorber as the mechanism of

radiation, Rev. Mod. Phys. 17 (1945), 157–181. See the quotation on page 486.
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is called the advanced Green’s function. Fix τ ∈ R. Then, in the sense of tempered
distributions, for all t ∈ R we get:

∂2

∂t2
G+(t, τ) = δ(t− τ),

∂2

∂t2
G−(t, τ) = δ(t− τ),

∂2

∂t2
G(t, τ) = δ(t− τ).

Furthermore, we have:

• G+(t, τ) = 0 for all t ≤ τ.
• G−(t, τ) = 0 for all t ≥ τ.

The retarded and advanced Green’s functions determine the Green’s function. Ex-
plicitly, for all t, τ ∈ R,

G(t, τ) =

(

G+(t, τ) if τ ≥ 0,

G−(t, τ) if τ < 0.

The corresponding notions for the motion of a quantum particle on the real line
will be considered in Sect. 8.5 on page 729.

Fundamental Solutions in the Energy Space

Our next goal is to compute the fundamental solutions t+, t− and 1
2
|t| by using the

Fourier transform.
The formal Fourier transform. The Fourier transform reads as34

x̂(E) =
1√
2π

Z ∞

−∞
eiEtx(t)dt, E ∈ R

together with the inverse transform x(t) = 1√
2π

R∞
−∞ x̂(E)e−iEtdE for all t ∈ R.

This implies

d

dt
x(t) =

1√
2π

Z ∞

−∞
(−iE)x̂(E)e−iEtdt, t ∈ R.

Thus, the differentiation operator d
dt

is transformed into multiplication by the factor
−iE.

As in most textbooks in physics, we will start by using the Fourier transform in
a formal way. That is, we will use the usual rules for the classical Fourier transform
without worrying about the existence of the classical Fourier transform. However,
this will cause trouble. In a next step we will use the theory of tempered distribu-
tions in order to get the rigorous approach. This way we will understand why it is
important to consider retarded (resp. advanced) fundamental solutions.

(i) First method (formal fundamental solution): Applying the formal Fourier

transform to ẍ = F , we get −E2x̂(E) = F̂ (E). Hence

x̂(E) = − F̂ (E)

E2
for all E ∈ R.

If F̂ ∈ S(R) and F̂ (E) = O(E2) as E → +0, then the tempered distribution
corresponding to x̂ reads as

34 We write x̂ instead of F(x).
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x̂(ϕ) =

Z ∞

−∞
x̂(E)ϕ(E)dE for all ϕ ∈ S(R). (2.63)

In the special case where F = δ, we formally obtain

F̂ (E) =
1√
2π

Z ∞

−∞
eiEtδ(t)dt =

1√
2π

.

This yields the formal fundamental solution

x̂(E) = − 1√
2π E2

, E ∈ R (2.64)

of the differential operator d2

dt2
. However, this is not a tempered distribution in the

sense of (2.63). In fact, one has to add correction terms in order to get the rigorous
expression (2.67) below.

(ii) Second method (adiabatic regularization): Suppose that F (t) = 0 for all
t < 0, that is, the force F vanishes at all points in time t < 0. Fix ε > 0. Let
x = x(t) be a solution of ẍ = F. Set xε(t) := x(t)e−εt and Fε(t) := F (t)e−εt for all
t ∈ R. Then

„

d

dt
+ ε

«2

xε(t) = Fε(t) for all t ∈ R.

Formal Fourier transform yields (−iE + ε)2x̂ε(E) = F̂ε(E). Hence

x̂ε(E) = − F̂ε(E)

(E + iε)2
for all E ∈ R. (2.65)

Choosing Fε := δ, we get the formal fundamental solution

x̂ε(E) = − 1√
2π(E + iε)2

, E ∈ R (2.66)

of the differential operator ( d
dt

+ε)2. Note that, in contrast to (2.64), x̂ε is a tempered
distribution if ε > 0.

The rigorous Fourier transform. (i) First method: According to Prop. 2.13
on page 86, the tempered distribution

− 1√
2π
|E|−2

∗

is the Fourier transform of the fundamental solution 1
2
|t| of d2

dt2
. This is the rigorous

formulation of the formal expression (2.64). By (2.60), we get

− 1√
2π
|E|−2

∗ (ϕ) =

r

2

π
ϕ(0)− 1√

2π

Z 1

−1

ϕ(E)− ϕ(0)− ϕ′(0)E

E2
dE

− 1√
2π

Z ∞

1

ϕ(E)dE

E2
− 1√

2π

Z −1

−∞

ϕ(E)dE

E2
(2.67)

for all test functions ϕ ∈ S(R). Note that this distribution does not correspond to
a classical function, as in (2.63).

(ii) Second method: By Prop. 2.12 on page 86, the limit
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− 1√
2π

(E + 0+i)−2 = − lim
ε→+0

1√
2π

(E + εi)−2

exists, in the sense of tempered distributions. By Prop. 2.13 on page 86, this limit

is the Fourier transform of the retarded fundamental solution t+ of d2

dt2
. This is the

rigorous formulation of the adiabatic limit to the expression (2.66).
The rigorous Fourier transform of the advanced fundamental solution t− is given

by

− 1√
2π

(E − 0+i)−2 = − lim
ε→+0

1√
2π

(E − εi)−2.

The rigorous Laplace transform. Suppose that F ∈ S(R) together with
F (t) = 0 for all t < 0. Let x = x(t) be the classical solution of (2.61) with the
homogeneous initial condition a = v = 0. Then the function x = x(t) is at most of
polynomial growth. Therefore, the integral

x̂ε(E) =
1√
2π

Z ∞

−∞
x(t)e−εteiEtdt

exists for all E ∈ R, ε > 0. The damping factor e−εt enforces the convergence of the
integral. Since x(t) = 0 if t < 0, this is equal to the Laplace transform

√
2π x̂ε(E) =

Z ∞

0

x(t)e−εteiEtdt.

It follows from ẍ = F that
Z ∞

0

`

ẍ(t)− F (t)
´

e−εteiEtdt = 0.

Since x(0) = 0 and ẋ(0) = 0, integration by parts yields
Z ∞

0

`

(iE − ε)2x(t)− F (t)
´

e−εteiEtdt = 0.

Hence (iE − ε)2x̂ε(E)− F̂ε(E) = 0. This implies

x̂ε(E) = − F̂ε(E)

(E + εi)2
, E ∈ R

which coincides with (2.65).
Generalization to definite and indefinite quadratic forms. Let us fix the

integers m and n with 1 ≤ m ≤ n. For the quadratic form

P(x) := x2
1 + x2

2 + . . . + x2
m − x2

m+1 − . . .− x2
n,

we define

P+(x) :=

(

P(x) if P (x) ≥ 0,

0 if P (x) < 0

together with

Pλ
+(ϕ) :=

Z

Rn

Pλ
+(x)ϕ(x)dnx.

This way it is possible to generalize the considerations above to higher dimensions.
In particular, the special case where n = 4 and m = 3 corresponds to wave processes
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in the 3-dimensional (x1, x2, x3)-space with time t and x4 = ct (c denotes the
velocity of light in a vacuum).

In a fundamental paper from 1948, Marcel Riesz used Riemann–Liouville in-
tegrals and its higher-dimensional variants in order to construct Green’s functions
and the solution of the initial-value problem (also called Cauchy problem) for wave
equations.35 This approach represents a far-reaching generalization of the simple
considerations discussed above to quantum field theory. We will study this in a later
volume. At this point, we refer to:

I. Gelfand and G. Shilov, Generalized Functions, Vol. 1, Academic Press,
New York, 1964.

A. Komech, Linear Partial Differential Equations with Constant Coeffi-
cients. In: Yu. Egorov et al., Elements of the Modern Theory of Partial
Differential Equations, Springer, New York, 1999, pp. 121–256.

N. Ortner and P. Wagner, Distribution-Valued Analytic Functions: The-
ory and Applications, Lecture Notes 37/2008, Max Planck Institute for
Mathematics in the Sciences, Leipzig, 2008.
Internet: http://www.mis.de/preprints/ln/lecturenote-3708

2.2.15 Hints for Further Reading.

Many results on algebraic Feynman integrals can be found in

V. Smirnov, Feynman Integral Calculus, Springer, Berlin, 2006.

Furthermore, we recommend:

I. Gradshtein and I. Ryshik, Tables of Integrals, Series, and Products,
Academic Press, New York, 1980.

A. Prudnikov, Yu. Brychkov, O. Manichev, Integrals and Series, Vols. 1–5,
Gordon and Breach, New York, 1986.

L. Landau and E. Lifshitz, Course of Theoretical Physics, Vol. 4: Quantum
Electrodynamics, Butterworth–Heinemann, Oxford, 1982 (Chap. XII).

N. Bogoliubov and D. Shirkov, Quantum Fields. Lectures given at the
Moscow Lomonossov University, Benjamin, Reading, Massachusetts, 1983.

M. Veltman, Diagrammatica: the Path to Feynman Diagrams, Cambridge
University Press, 1995.

V. Radanovic, Problem Book in Quantum Field Theory, Springer, New
York, 2006.

A. Grozin, QED (Quantum Electrodynamics) and QCD (Quantum Chro-
modynamics): Practical Calculation and Renormalization of One-and Mul-
ti-Loop Feynman Diagrams, World Scientific Singapore, 2007.

W. McComb, Renormalization Methods: A Guide for Beginners, Oxford
University Press, 2007.

35 M. Riesz, The Riemann–Liouville integral and the Cauchy problem, Acta Math.
81 (1948), 1–223 (in French). See also C. Bär et al., Wave Equations on
Lorentzian Manifolds and Quantization, European Mathematical Society, 2007.
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2.3 Further Regularization Methods in Mathematics

In physical experiments, physicists measure finite numbers. In contrast to this, the
theory frequently generates infinite expressions.

The main task is to extract relevant finite information from infinite ex-
pressions.

In the history of mathematics, mathematicians frequently encountered this prob-
lem.36 Let us discuss some important approaches.

2.3.1 Euler’s Philosophy

One of the greatest masters in mathematics, Leonhard Euler, relied on formal an-
alytic identities. He used the principle that the sum of a divergent series is the
value of the function from which the series is derived. For example, consider the
geometric series

1 + x + x2 + . . . =
1

1− x
. (2.68)

According to Euler, we define

[1 + x + x2 + . . .]reg :=
1

1− x
for all x ∈ C \ {1}.

We call this the regularized value of the series 1 + x + x2 + . . .37. We have the
following consistency theorem:

If the series (2.68) is convergent, then its sum coincides with the regularized
value.

However, this method is also able to assign finite values to a divergent series. For
example, if we choose x = −1 and x = 2, then

[1− 1 + 1− 1 + . . .]reg = 1
2
,

and [1 + 2 + 22 + 23 + . . .]reg = −1. In the case where x = 1, this simple regu-
larization method fails. Then we have to use the more sophisticated zeta function
regularization discussed on page 55. By this method, we assign the value ζ(0) = − 1

2
to the divergent series 1 + 1 + 1 + . . .

As a second example for Euler’s philosophy, consider the formal power series
expansion

f(x) = x− 1!x2 + 2!x3 − 3!x4 + . . . , (2.69)

36 For the history of this topic full of errors and pitfalls, we refer to M. Kline,
Mathematical Thought from Ancient to Modern Times, Vol. 3, Sect. 47, Oxford
University Press, 1972. We also refer to the following classic monographs:
G. Hardy, Divergent Series, Clarendon Press, Oxford, 1949.
K. Knopp, Theory and Applications of Infinite Series, Dover, New York, 1989.

37 In modern language, the power series expansion (2.68) converges for all complex
numbers x with |x| < 1. This yields the holomorphic function f(x) := 1

1−x
on

the open unit disc. Finally, the function x �→ 1
1−x

on the pointed complex plane

C \ {1} is the analytic continuation of f .
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which is divergent for all nonzero complex numbers x. Formal differentiation yields

f ′(x) = 1− 2!x + 3!x2 − 4!x3 + . . .

Hence
x2f ′(x) + f(x) = x, f(0) = 0.

Surprisingly enough, this differential equation has the rigorous solution

f(x) = x

Z ∞

0

e−t

1 + xt
dt for all x ≥ 0. (2.70)

Note that this integral exists for all x ≥ 0. Therefore, Euler assigned the function
f to the divergent series (2.69). In particular, choosing x = 1, we get the finite
regularization

[2!− 3! + 4!− . . .]reg :=

Z ∞

0

e−t

1 + t
dt

of the divergent series 2!− 3! + 4!− . . .

2.3.2 Adiabatic Regularization of Divergent Series

Suppose we are given the series

a0 + a1 + a2 + . . . (2.71)

with complex coefficients a0, a1, a2, . . . We assign the perturbed series

a0 + a1x + a2x
2 + . . . , (2.72)

and we assume that there exists a number ε > 0 such that the perturbed series
(2.72) is convergent for all x ∈]1 − ε, 1[. Now we let the perturbation go to zero,
that is, x→ 1− 0. We define

" ∞
X

k=0

ak

#

reg

:= lim
x→1−0

∞
X

k=0

akx
k

if the limit exists. Physicists call this adiabatic regularization. The idea is to perturb
a given physical system and to study the limit when the perturbation goes to zero.
Mathematicians call this Abel summation. For example,

1− 1 + 1− . . . = lim
x→1−0

(1− x + x2 − . . .) = lim
x→1−0

1

1 + x
=

1

2
.

Abel proved the consistency of this method:

If the series
P∞

k=0 ak is convergent, then its sum is equal to the adiabatic
regularization.



2.3 Further Regularization Methods in Mathematics 95

2.3.3 Adiabatic Regularization of Oscillating Integrals

Fix the large angular frequency ωmax and the large time interval [−T
2
, T

2
]. Let us

consider the following three integrals:

(i) Almost white noise:

δωmax(t) :=
1

2π

Z ωmax

−ωmax

eiωtdω for all times t ∈ R.

(ii) White noise (Dirac’s delta function):

δ(t) :=
1

2π

Z ∞

−∞
eiωtdω for all times t ∈ R.

(iii) Time average of a harmonic oscillation with angular frequency ω:

m(ω) := lim
T→+∞

1

T

Z T
2

− T
2

eiωtdt =

(

1 if ω = 0,

0 if ω �= 0.

.

It follows from 1
2π

R a

−a
eiωtdω = 1

2πit
· eiωt|a−a = sin at

πt
for t �= 0 that

δωmax(t) =

(

sin ωmaxt
πt

if t �= 0,

ωmax ·
q

2
π

if t = 0.

The function δωmax represents the superposition of harmonic waves with angular
frequencies ω ∈ [−ωmax, ωmax], where each harmonic wave has the same amplitude.
Physicists and engineers call this an approximation of white noise. From the physical
point of view, it makes sense to consider the limit ωmax → +∞. If t = 0, then we
get

lim
ωmax→+∞

δωmax(0) = +∞.

However, if t �= 0, then the limit limωmax→+∞ δωmax(t) does not exist because of
strong oscillations. Therefore, it is necessary to regularize the situation. To this end,
fix the regularization parameter ε > 0, and consider the following two integrals.

(a) Adiabatic Dirac delta function:

δε(t) :=
1

2π

Z ∞

−∞
eiωte−εω2

dω for all t ∈ R.

(b) Adiabatic time average of a harmonic oscillation:

mε(ω) :=

R∞
−∞ eiωte−εt2dt
R∞
−∞ e−εt2dt

for all ω ∈ R.

In order to compute these integrals, we use the key formula

1√
2π

Z ∞

−∞
eiωte−t2/2dt = e−ω2/2,

telling us that the Gaussian function t �→ e−t2/2 is invariant under the Fourier
transformation. By rescaling, this implies
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δε(t) =
e−t2/4ε

√
4πε

for all t ∈ R,

and
mε(ω) = e−ω2/4ε for all ω ∈ R.

Letting ε→ +0, we obtain the adiabatic limits

lim
ε→+0

δε(t) =

(

+∞ if t = 0,

0 if t �= 0,

and limε→+0 mε(ω) = m(ω) for all ω ∈ R. Note the crucial fact that

Adiabatic averaging cancels infinities.

This is the secret behind the incredible success of path integral methods in quantum
physics.

The Feynman approach to quantum field theory via path integrals is based
on formal adiabatic averages.

The basic ideas are studied in Chap. 7 of Vol. I, in terms of a finite-dimensional
rigorous setting.

2.3.4 Regularization by Averaging

For a sequence (sn) of complex numbers, Cauchy proved that

lim
n→+∞

s0 + s1 + . . . + sn

n + 1
= lim

n→∞
sn

if the right-hand limit exists. This method can be successively applied to the
sequence (sn) of partial sums of an infinite series

P∞
k=0 ak with complex terms

a0, a1, . . . Here, sn := a0 + a1 + . . . an. As usual, we define

∞
X

k=0

ak := lim
n→∞

sn

if the right-hand limit exists. More generally, we define the averaged regularization

" ∞
X

k=0

ak

#

reg,average

:= lim
n→∞

s0 + s1 + . . . + sn

n + 1
. (2.73)

According to Cauchy, we have the following consistency theorem: If the series
P∞

k=0 ak is convergent, then its sum coincides with the regularization in the sense
of (2.73). This summation method and its iterations were studied by Otto Hölder
(1859–1937) in 1882. Mathematicians call this the Hölder summation. For example,
consider the formula

1

(1 + x)2
= 1− 2x + 3x2 − 4x3 + . . . ,

which follows from − 1
1+x

= −1 + x − x2 + . . . by formal differentiation. Setting

x = 1, Euler assigned the value 1
4

to the divergent series 1 − 2 + 3 − 4 + . . . . The
Hölder summation of 1− 2 + 3− 4 + . . . proceeds as follows. The partial sums are
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s0 = 1, s1 = −1, s2 = 2, s3 = −2, . . .

For the averaged partial sums s
(1)
n := 1

n+1
(s0 + ... + sn), we get

s
(1)
0 = 1, s

(1)
1 = 0, s

(1)
2 = 2

3
, s

(1)
3 = 0, . . .

The sequence (s
(1)
n ) is not convergent. Averaging this sequence again, we get

s
(2)
n :== 1

n+1
(s

(1)
0 + ... + s

(1)
n ) with

s
(2)
0 = 1, s

(2)
1 = 1

2
, s

(2)
2 = 5

9
, s

(2)
3 = 5

12
, . . .

It can be shown that the sequence (s
(2)
n ) converges to 1

4
, which coincides with the

Euler sum of the divergent series 1− 2 + 3− 4 + . . .
The reconstruction theorem for the Fourier series. In the 19th century,

mathematicians discovered that the convergence problem for the Fourier series is
highly sophisticated. This strongly influenced the development of analysis and func-
tional analysis in the 20th century. Let us describe the basic ideas.38 Suppose we
are given the 2π-periodic continuous function f : R→ C. We want to approximate
the function f by the simpler 2π-periodic functions x �→ einx with n = 0, 1, 2, . . . .
Motivated by Gauss’ method of least squares, we consider the following minimum
problem

Z π

−π

˛

˛f(x)−
N
X

n=−N

aneinx
˛

˛

2
dx = min!

for the unknown complex coefficients a0, a1, a−1, a2, a−2, . . . This problem has the
unique solution

an :=
1

2π

Z π

−π

f(x)e−inxdx, n = −N,−N + 1, . . . , N

for N = 0, 1, 2, . . . The complex numbers an are called the Fourier coefficients of
the function f . Since the function f is continuous, we expect that the Fourier series

f(x) =
∞
X

n=−∞
aneinx (2.74)

is convergent for all x ∈ R. Unfortunately, this is not true, as was shown by Du
Bois-Reymond in 1871. There arises the following question: How can we extract
the information about the function f from the knowledge of its Fourier coefficients?
There are two answers.

(i) Mean square convergence:

lim
N→∞

Z π

−π

|f(x)−
N
X

n=−N

aneinx|2dx = 0.

(ii) Averaging (Fejér 1904):
ˆ

P∞
n=−∞ aneinx

˜

reg,average
= f(x) for all x ∈ R.

38 The proofs can be found in Zeidler (1995a), quoted on page 1049.
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More generally, the mean square convergence (i) is true for all measurable func-
tions f :] − π, π[→ C with

R π

−π
|f(x)|2dx < ∞ because of the fact that the

family {einx/
√

2π}n∈Z forms a complete orthonormal system in the Hilbert space
L2(−π, π).

Tauberian theorems. Let us consider an arbitrary series
P∞

n=0 an with com-
plex terms a0, a1, a2, . . . Then the following implications hold:

classical convergence ⇒ regularization by averaging ⇒ adiabatic regular-
ization.

In particular, this tells us that if the series can be regularized by averaging, then
it can also be regularized in the adiabatic sense, and the regularized values are the
same. Conversely, we have the following convergence theorem:

The series
P∞

n=0 an is convergent if the series can be regularized in the
adiabatic sense (or by averaging in the sense of (2.73)) and we have the
relation |an| = O( 1

n
) as n→ +∞.

This was proved by Hardy and Littlewood in the 1910s by generalizing a weaker
theorem proved by Tauber in 1890.39 Combining the Tauberian theorem above with
the Fejér theorem, we get the following basic theorem:

If the 2π-periodic function f : R → C is continuous and its Fourier co-
efficients satisfy the condition |an| = O( 1

n
) as n → ∞, then the Fourier

series converges to f on the real line.

2.3.5 Borel Regularization

In 1899 Borel investigated the following summation method.40 Define
" ∞
X

n=0

an

#

reg,Borel

:=

Z ∞

0

dt e−t
∞
X

n=0

an

n!
tn (2.75)

if the series
P∞

n=0
an
n!
tn converges for all real numbers t and the integral exists. In

this case, we say that the series
P∞

n=0 an is Borel regularizable (or Borel summable).
We have the following consistency theorem:

If the series
P∞

n=0 an is convergent, then it is Borel regularizable and its
sum coincides with the regularized value.

For example, let −∞ < �(z) < 1. Set z := x + yi with x, y ∈ R. Then

[1 + z + z2 + . . .]reg,Borel =

Z ∞

0

dt e−t
∞
X

n=0

(zt)n

n!

=

Z ∞

0

e−(1−z)tdt =

Z ∞

0

e−(1−x)teiytdt =
1

1− z
.

This shows that Borel summability is able to construct analytic continuation. For
example, we have the following theorem:

39 Numerous theorems of this type can be found in the monograph by J. Korevaar,
Tauberian Theory: A Century of Developments, Springer, Berlin, 2004. In Sect.
6.5.1 of Vol. I, we have used a Tauberian theorem for the Laplace transformation
in order to give an elegant proof of the prime number theorem.

40 E. Borel, Mémoire sur les séries divergent, Ann. Sci. École Normale Superieur
16(3) (1899), 9–136 (in French).
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If the power series expansion f(z) :=
P∞

n=0 anz
n has a finite positive

radius of convergence and is Borel summable at the nonzero point z = 2z0,
then the function f has an analytic continuation to the open disc of radius
|z0| centered at the point z0.

This represents Borel’s circle method of analytic continuation. As another impor-
tant example, let us mention the Nevalinna–Sokal theorem:41 We are given the
positive numbers R and r. Let UR(R) denote the open disc of radius R centered at
the point R of the complex plane.

Suppose that the function f : UR(R) → C is holomorphic with the expan-

sion f(z) =
Pn−1

k=0 akz
k + Rn(z), n = 1, 2, . . . , for all z ∈ UR(R) and the

uniform remainder estimate

sup
z∈UR(R)

sup
n∈N

rn|Rn(z)|
|z|nn!

<∞.

Then we have the absolutely convergent integral representation

f(z) =
1

z

Z ∞

0

e−t/zF (t)dt for all z ∈ UR(R).

Here, we set42 F (t) :=
P∞

n=0
an
n!

tn.

Poincaré’s asymptotic series. We now want to study a class of divergent
series which is very useful for computing problems in mathematics and physics. Let
x > 0, and let a0, a1, . . . be complex numbers. We write

f(x) ∼ a0 +
a1

x
+

a2

x2
+ . . . , x→ +∞ (2.76)

iff the remainder |f(x) − (a0 + a1
x

+ . . . + an
xn )| has the order of magnitude o( 1

xn )
as x → +∞ for all indices n = 0, 1, 2, . . . In this case, we say that the function f
has the asymptotic series expansion a0 + a1

x
+ a2

x2 + . . . as x → +∞. This notion
was used by Poincaré in order to study the solutions of linear singular ordinary
differential equations of Fuchsian type and the perturbed motion of planets in
celestial mechanics.43

Let us study a simple example. Consider the integral

f(x) :=

Z ∞

x

ex−t

t
dt, x > 0.

We are interested in the behavior of this integral for large values of x. Repeated
integration by parts yields

41 A. Sokal, An improvement of Watson’s theorem on Borel summability, J. Math.
Phys. 21(2) (1980), 261–263.

42 In addition, we obtain that the function F is holomorphic on the open circle
Ur(0) (of radius r centered at the origin) and has an analytic continuation to the
open neighborhood {t ∈ C : dist(t,R+) < r} of the positive real axis.

43 H. Poincaré, Sur les intégrales irregulières des équations linéaires, Acta Mathe-
matica 8 (1886), 294–344 (in French). Analogously, we write the symbol

f(x) ∼ a0 + a1(x− a) + a2(x− a)2 + . . . , x→ a

iff the remainder |f(x) − (a0 + a1(x − a) + . . . + an(x − a)n)| has the order of
magnitude o(|x− a|n) as x→ a for all indices n = 0, 1, 2, . . . .
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f(x) =
1

x
− 1!

x2
+

2!

x2
− . . . +

(−1)nn!

xn+1
+ Rn+1(x), x > 0

with the remainder Rn+1(x) := (−1)n+1(n+ 1)!
R∞

x
ex−tt−n−2 dt. Obviously, since

x− t ≤ 0 implies ex−t ≤ 1, we have

|Rn+1(x)| ≤ (n + 1)!

Z ∞

x

dt

tn+2
≤ n!

xn+1
. (2.77)

Therefore, we have the asymptotic expansion

f(x) ∼ 1

x
− 1!

x2
+

2!

x2
− . . . , x→ +∞.

Observe that this series is divergent for all x > 0. Nevertheless, this expansion is
very useful for calculations. For example, if we take x ≥ 2n, then it follows from
(2.77) and the formula

n! =
√

2πn
“n

e

”n

eϑ(n)/12n, 0 < ϑ(n) < 1, n = 1, 2, . . . (2.78)

due to Stirling (1692–1770) that
˛

˛

˛

˛

f(x)−
„

1

x
− 1!

x2
+

2!

x2
− . . . +

(−1)nn!

xn+1

«

˛

˛

˛

˛

≤ 1

2n−1en−1
√
n

for all n = 1, 2, . . . Furthermore, let us mention that the Stirling formula (2.78) is
closely related to the following famous asymptotic series

lnΓ (x + 1)−
`

x + 1
2

´

lnx + x− ln
√

2π ∼
∞
X

k=0

B2k

(2k − 1)2k
· 1

x2k−1
, x→ +∞.

Here B2, B4, . . . denote the Bernoulli numbers. In particular, this implies

n! ∼ nne−n
√

2πn

„

1 +
1

12n
+

1

288n2
− 139

51840n3
+ . . .

«

, n→∞.

For example, the value n! for large n appears in the statistical mechanics of gases
where n is of the magnitude of Avogadro’s number (also called Loschmidt’s num-
ber).44 The Bernoulli numbers were introduced by Jakob Bernoulli (1654–1705) in
order to study combinatorial problems in the theory of probability.

2.3.6 Hadamard’s Finite Part of Divergent Integrals

Let f : R→ C be a smooth function. Choose a > 0. We define
»

Z a

0

f(x)

x
dx

–

reg,finite

:=

Z a

0

f(x)− f(0)

x
dx. (2.79)

This is called the finite part of the integral
R a

0

f(x)
x

dx. In order to motivate this
definition, note that

44 Two gram of hydrogen contain 6.022 · 1023 hydrogen atoms. This fundamental
number was first approximately computed by Loschmidt (1821–1895) in 1866.
Avogadro lived from 1776 until 1856.
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Z a

ε

dx

x
= ln a− ln ε, 0 < ε < a.

Hence
R a

0
dx
x

= limε→+0

R a

ε
dx
x

= +∞. However, by Taylor expansion,

f(x)− f(0) = O(x), x→ 0.

Therefore, the integral on the right-hand side of (2.79) exists. If f(0) = 0, then the
finite part of the integral coincides with the integral itself. Similarly, for n = 1, 2, . . . ,
we define

»

Z a

0

f(x)

xn+1
dx

–

reg,finite

:=

Z a

0

f(x)− f(0)−
Pn

k=1
f(k)(0)

k!
xk

xn+1
dx.

Hadamard used such regularized integrals in his monograph on hyperbolic partial
differential equations (e.g., wave equations) in order to represent the solutions by
integral formulas and to overcome the highly singular behavior of the corresponding
Green’s functions.45

2.3.7 Infinite-Dimensional Gaussian Integrals and the Zeta
Function Regularization

We want to show that the passage from a finite to an infinite number of degrees of
freedom may cause mathematical trouble. As a model, let us consider the Gaussian
integral and its infinite-dimensional limit which is called a functional integral (or
Feynman path integral). Let {λk} be a sequence of positive numbers with 0 < λ1 ≤
λ2 ≤ λ3 ≤ . . . , and let {Jk} be a sequence of real numbers. Let us choose the
dimension N = 1, 2, . . . By Sect. 7.23.3 of Vol. I, we have the formula

Z

RN

e−
1
2

PN
k=1 λkϕ2

kei
PN

k=1 Jkϕk

N
Y

k=1

dϕk√
2π

= e
1
2

ζ′
N,Λ(0)e−

1
2

PN
k=1 λ−1

k
J2

k

with the discrete zeta function

ζN,Λ(s) :=
1

λs
1

+ . . . +
1

λs
N

for all s ∈ C.

Furthermore, e−ζ′
N,Λ(0) =

QN
k=1 λk. Now we want to study the limit N → ∞.

Formally, we get

lim
N→∞

Z

RN

e−
1
2

PN
k=1 λkϕ2

kei
PN

k=1 Jkϕk

N
Y

k=1

dϕk√
2π

=

 ∞
Y

k=1

λk

!− 1
2

e−
1
2

P∞
k=1 λ−1

k
J2

k .

As a rule, the product Π∞
k=1λk is infinite. For example, this is true if we choose

λk = k for all k = 1, 2, . . . In this case, we have

ζN,Λ(s) =
1

1s
+

1

2s
+ . . . +

1

Ns
.

The limit

45 See the footnote on page 26.
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ζ(s) =

∞
X

k=1

1

ks

is divergent for all complex numbers s with �(s) < 1. Therefore, the value ζ(s)
is meaningless near s = 0, in the usual sense. However, there exists an analytical
extension of the Riemann zeta function to a meromorphic function ζ on C \ {0},
and we will use this extension. In this sense, we have46

ζ(0) = −1

2
and ζ′(0) = − ln 2π.

We now choose the following definition:

"

Z

R∞
e−

1
2

P∞
k=1 kϕ2

kei
P∞

k=1 Jkϕk

∞
Y

k=1

dϕk√
2π

#

reg

:= e
1
2

ζ′(0)e−
1
2

P∞
k=1 k−1J2

k .

Here, e
1
2

ζ′(0) = 1√
2π

, and we assume that the series
P∞

k=1 k
−1J2

k is convergent.

In the more general case where 0 < λ1 ≤ λ2 ≤ . . . , we introduce the Dirichlet
series

ζΛ(s) :=

∞
X

k=1

e−s ln λk , �(s) > σ0 (2.80)

where σ0 := lim supN→+∞
ln N
ln λN

, and we assume that σ0 is finite. Then the series

(2.80) is convergent (resp. divergent) for all the complex numbers s with �(s) > σ0

(resp. �(s) < σ0), and the function ζΛ has a singularity at the point s = σ0. Now we
assume that the function ζΛ can be analytically extended to a function ζΛ which is
holomorphic in a neighborhood of s = 0. We also assume that the series

P∞
k=1 λ

−1
k J2

k

is convergent. Then we define the regularized infinite-dimensional Gaussian integral
by

"

Z

R∞
e−

1
2

P∞
k=1 λkϕ2

kei
P∞

k=1 Jkϕk

∞
Y

k=1

dϕk√
2π

#

reg

:= e
1
2

ζ′
Λ(0)e−

1
2

P∞
k=1 λ−1

k
J2

k .

2.4 Trouble in Mathematics

Formal manipulations in mathematics can lead to completely wrong re-
sults. Folklore

2.4.1 Interchanging Limits

In the mathematics and physics literature, one frequently encounters the inter-
change of limits. By considering three simple examples, we want to illustrate the
crucial fact that the formal interchange of limits can lead to wrong results.

46 For the proofs of all the following statements, see H. Edwards, Riemann’s Zeta
Function, Academic Press, New York, 1974, and T. Apostol, Introduction to
Analytic Number Theory, Springer-Verlag, New York, 1986 (Dirichlet series).
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(i) We want to show that

lim
x→0

lim
n→+∞

n
X

k=1

x2

(1 + x2)k
�= lim

n→∞
lim
x→0

n
X

k=1

x2

(1 + x2)k
. (2.81)

To this end, we consider the infinite series

f(x) :=
∞
X

k=1

x2

(1 + x2)k
, x ∈ R.

If x = 0, then f(0) = 0. If x �= 0, then the geometric series tells us that

f(x) = x2

 

1

1− 1
1+x2

− 1

!

= 1.

Consequently, we obtain

lim
x→0

lim
n→+∞

n
X

k=1

x2

(1 + x2)k
= lim

x→0
f(x) = 1,

and limn→∞ limx→0

Pn
k=1

x2

(1+x2)k = 0. This implies (2.81).

(ii) Let x ∈ R. Set fn(x) := 1
n

arctan(n2x) for all positive integers n. Then
limn→∞ fn(x) = 0. Moreover,

f ′
n(x) :=

n

1 + n4x2
.

Hence limn→∞ f ′
n(0) =∞. Consequently,

d

dx
lim

n→∞
fn(x) �= lim

n→∞

d

dx
fn(x) at the point x = 0.

(iii) Set f(x, y) := (2− xy)xy · e−xy. We want to show that

Z 1

0

dy

Z ∞

0

dx f(x, y) �=
Z ∞

0

dx

Z 1

0

dy f(x, y). (2.82)

In fact, note that d
dz

`

z2e−z
´

= (2− z)ze−z. If y > 0, then
Z ∞

0

f(x, y)dx =
1

y
(xy)2e−xy

˛

˛

∞
0

= 0.

If x > 0, then
R 1

0
f(x, y)dy = 1

x
(xy)2e−xy

˛

˛

1

0
= xe−x. Integration by parts yields

Z ∞

0

xe−xdx = −xe−x
˛

˛

∞
0

+

Z ∞

0

e−xdx = 1.

This proves the claim (2.82).

In the mathematical literature, one proves theorems which guarantee the inter-
change of limits.

Roughly speaking, one needs uniform convergence.

As an introduction, we recommend the textbook by V. Zorich, Analysis I, II,
Springer, New York, 2003.
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2.4.2 The Ambiguity of Regularization Methods

Unfortunately, it is possible that different regularization methods yield different
results. As a simple example, consider the Euler series 1 − 1 + 1 − . . . . The two
functions

f1(x) :=
1

1 + x
= 1− x + x2 − x3 + . . . , |x| < 1

and

f2(x) :=
1− x2

1− x3
=

1 + x

1 + x + x2
= 1− x2 + x4 − . . . , |x| < 1

represent adiabatic regularization of the divergent series 1 − 1 + 1 − . . . As usual,
define

[1− 1 + 1− 1 + . . .]j,reg := fj(1), j = 1, 2.

Then we get the different values f1(1) = 1
2

and f2(1) = 2
3
.

2.4.3 Pseudo-Convergence

In quantum field theory, physicists use the method of perturbation theory in order
to compute physical quantities (e.g., the cross section of a scattering process) as
formal power series expansions of the type

σ(κ) = a0 + a1κ + a2κ
2 + . . . , κ > 0 (2.83)

where the positive parameter κ represents the so-called coupling constant, which
measures the strength of interaction. There arises the following question:

What can we say about the mathematical meaning of (2.83). Is this more
than a formal power series expansion?

In 1951 Dyson invented a heuristic physical argument in order to rule out the
convergence of (2.83) in a neighborhood of the point κ = 0. Roughly speaking,
he argued as follows: If the power series expansion (2.83) has a positive radius of
convergence around the origin, then it also converges for small negative values of
the coupling constant κ. However, such a negative coupling constant corresponds
to repelling forces which destroy the physical system.

An example of pseudo-convergence. Suppose that the methods of formal
perturbation theory produce the following quantity

σ(κ) = 1 + κ +
κ2

2!
+ . . . +

κ6

6!
+ κ7 − 1!κ8 + 2!κ9 − 3!κ10 + . . . , κ > 0.

If we compute the function f up to order six, then we get

σ(κ) = 1 + κ +
κ2

2!
+ . . . +

κ6

6!
.

However, if we compute higher-order terms, then we encounter the divergent series
κ7 − 1!κ8 + 2!κ9 − 3!κ10 + . . . We call this pseudo-convergence. According to (2.70)
on page 94, a possible regularization reads as

freg(κ) := 1 + κ +
κ2

2!
+ . . .

κ6

6!
+ κ7

Z ∞

0

e−t

1 + κt
dt for all κ ≥ 0.

The comparison with the results of physical experiments decides whether this reg-
ularization is meaningful from the physical point of view.
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Asymptotic series and the Ritt theorem. An interesting mathematical
result tells us that each formal power series expansion is the asymptotic series of
a function f with respect to small positive values. Moreover, the function f is
analytic on an appropriate open neighborhood of the positive real line, where the
neighborhood has the shape of an angular sector. The precise result reads as follows.
We are given the formal power series expansion

a0 + a1κ + a2κ
2 + . . .

with complex coefficients a0, a1, a2, . . . We choose the angular sector

S := {z ∈ C : z = reiϕ, −γ < ϕ < γ, r > 0}

where γ is an arbitrary, but fixed number in the open interval ]0, π
2
[.

Then there exists an analytic function σ : S → C such that
σ(κ) ∼ a0 + a1κ + a2κ

2 + . . . as κ→ 0 on S.
Explicitly, this means that for each index n = 0, 1, 2, . . . , we have

σ(κ) = a0 + a1κ + a2κ
2 + . . . + anκ

n + Rn(κ)

where the remainder Rn has the property κnRn(κ)→ 0 as κ→ 0 on S.
The Borel theorem. Suppose that we are given the formal power series ex-

pansion
a0 + a1κ + a2κ

2 + . . .

with real coefficients a0, a1, a2, . . . . Let r > 0.

Then there exists a smooth function σ :]− r, r[→ R such that

dnσ

dκn
(0) = an for all n = 0, 1, 2, . . .

In addition, the function σ is real-analytic.47 on the pointed interval ] −
r, r] \ {0}.

The proof of the Borel theorem based on the proof of the Ritt theorem can be found
in R. Remmert, Theory of Complex Functions, p. 300, Springer, New York, 1991.

2.4.4 Ill-Posed Problems

Distinguish carefully between well-posed and ill-posed problems.
Folklore

By using the simple example (2.88) below, we want to show that an uncritical use
of the method of perturbation theory may lead to wrong results if the problem
is ill-posed. This is a possible paradigm for quantum field theory. According to
Hadamard (1865–1863), a mathematical problem is called well-posed iff it has a
unique solution which depends continuously on the data of the problem. Otherwise,
the problem is called ill-posed.

Roughly speaking, ill-posed problems refer to incomplete information.

47 This means that the function σ can be represented as a local power series ex-
pansion in a sufficiently small neighborhood of each nonzero point in the interval
]− r, r[.
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For example, if we measure the gravitational field of earth by satellites, then the
determination of the mass distribution of the earth by the measured data repre-
sents an ill-posed problem. Other important applications are computer tomography
and inverse scattering problems in quantum mechanics (the determination of the
potential by using scattering data).48 As a prototype, let us consider the minimum
problem

||A(α)ψ − f ||2 = min!, ψ ∈ X (2.84)

which is motivated by the Gaussian method of least squares. Here, for any α ∈]0, 1[,
the operator A(α) : X → X is linear on the real Hilbert space X of finite dimension
m = 1, 2, . . . For fixed parameter α ∈]0, 1[, we are given f ∈ X. We are looking for
ψ ∈ X.

Well-posed problem. Let L(X,X) denote the space of linear operators B :
X → X equipped with the operator norm ||B|| := max||ψ||≤1 ||Bψ||.

Proposition 2.14 Suppose that the inverse operator A(α)−1 : X → X exists for
each parameter α ∈]0, 1[, and α �→ A(α) is a continuous map from ]0, 1[ into
L(X,X).49 Then the minimum problem (2.84) is well-posed. For each parameter
α ∈]0, 1[, the unique solution is given by ψ(α) = A(α)−1f.

Proof. (I) Existence. Note that ||A(α)ψ − f ||2 ≥ 0 for all ψ ∈ X, and we have
||A(α)ψ(α)− f ||2 = 0.

(II) Uniqueness. ||A(α)ψ − f ||2 = 0 implies A(α)ψ − f = 0, and hence ψ =
A(α)−1f.

(III) Continuity. The continuity of the map α→ A(α) from ]0, 1[ into L(X,X)
implies the continuity of the map α �→ A−1(α) from ]0, 1[ into L(X,X) (see Zeidler
(1995), Vol. 1, Sect. 1.23). Therefore, αn → α and fn → f on X as n → ∞ imply
A(αn)−1fn → A(α)−1f on X as n→∞, for the corresponding solutions. �

The generalized inverse operator. Let A : X → X be a linear operator on
the real Hilbert space X. The trick is to introduce the operator

C := A†A.

Because of C† = A†(A†)† = C, the operator C is self-adjoint. Therefore, it possesses
a complete orthonormal system ψ1, . . . ψm of eigenvectors with the eigenvalues
μ1, . . . , μm. Obviously, μk = 〈ψk|Cψk〉 = 〈Aψk|Aψk〉 ≥ 0. The values σk :=

√
μk

are called the singular values of the operator A.50 Let us choose the indices in such
a way that σj > 0 if j = 1, . . . , r, and σj = 0 if j = r + 1, . . . ,m. We will prove in
Problem 2.5 that

Aψ =
r
X

j=1

σj |ϕj〉〈ψj | for all ψ ∈ X (2.85)

where ϕj := σ−1
j Aψj . In particular, we will show that ψ1, . . . , ψr (resp. ϕ1, . . . , ϕr)

is an orthonormal basis of ker(A)⊥ (resp. im(A)). The operator

48 We refer to the textbook by G. Ramm, Inverse Problems: Mathematical and
Analytical Techniques in Engineering, Springer, New York, 2005.

49 This is equivalent to the continuity of the matrix elements of A(α) with respect
to a fixed basis.

50 If the operator A is self-adjoint with the eigenvalues λ1, . . . , λm, then σk = |λk|
for all k.
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Ainv :=

r
X

j=1

σ−1
j |ψj〉〈ϕj | (2.86)

is called the generalized inverse (or the Moore–Penrose inverse) of the operator A.
This generalized inverse plays a crucial role in the theory of ill-posed problems.
Consider again the minimum problem (2.84) for the fixed parameter α ∈]0, 1[. To
simplify notation, set A := A(α).

Proposition 2.15 The general solution of the minimum problem (2.84) is given
by the sum ψ = Ainvf +ϕ where ϕ is an arbitrary solution of the equation Aϕ = 0.

The proof will be given in Problem 2.7. This proof shows that Ainvf is the unique
solution of the modified minimum problem

||Aψ − f ||2 = min!, ψ ∈ ker(A)⊥

where the symbol ker(A)⊥ denotes the orthogonal complement to the null space
ker(A) := {ψ ∈ X : Aψ = 0} of the operator A. Since we have the orthogonality
relation ||Ainvf + ϕ||2 = ||Ainvf ||2 + ||ϕ||2 for all ϕ ∈ ker(A), the element Ainvf is
a solution of the problem

||Aψ − f ||2 = min!, ψ ∈ X

which has the smallest norm among all the solutions. This solution is uniquely
determined.

Note the following. Proposition 2.15 shows that the original minimum problem
(2.84) has a unique solution iff ker(A) = 0, that is, the operator is invertible. In
this case, we have A−1 = Ainv; this means that the inverse operator coincides with
the generalized inverse operator.

The Tikhonov regularization. Let us replace the original problem (2.84) by
the regularized problem

||Aψ − f ||2 + ε||ψ||2 = min!, ψ ∈ X. (2.87)

Let us introduce the so-called filter function Fε(σ) := σ2

σ2+ε
.

Proposition 2.16 For each parameter ε > 0, the regularized problem (2.87) has
the unique solution

ψ(ε) :=
r
X

j=1

Fε(σj) · σ−1
j 〈ϕj |f〉ψj .

Since Fε(σj)→ 1 as ε→ +0, the solution ψ(ε) goes to Ainvf as ε→ +0.

Recall that Ainvf is a distinguished solution of the minimum problem (2.87) with
ε = 0. The proof of Prop. 2.16 can be found in Problem 2.8. Fix ε > 0. For the
filter function, we get

lim
σ→+0

Fε(σ) = 0, lim
σ→∞

Fε(σ) = 1.

Therefore, the approximation of Ainvf by ψ(ε) critically depends on the behavior of
f and on the magnitude of the singular values σ1, . . . , σr. For example, let f = ϕ1.
Noting that ϕ1, . . . , ϕn forms an orthonormal system, we get
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ψ(ε) = Fε(σ1) · σ−1
1 ψ1 = Fε(σ1)Ainvf.

If σ1 � ε, then Fε(σ1) ∼ 1, and hence ψ(ε) ∼ Ainvf. In contrast to this, if σ � ε,
then Fε(σ1) ∼ 0, and ψ(ε) strongly differs from Ainvf. The method of regularization
plays a fundamental role in quantum field theory.

Special ill-posed problem. We want to study the problem (2.84) in the
special case where

A(α) :=

 

b(α) 0

0 1

!

, b(α) := η(1 + α + α2 + . . . + α100)− α101.

Let 0 < α, η < 1. Explicitly, the original problem (2.84) reads as

(b(α)ψ1 − f1)
2 + (ψ2 − f2)

2 = min!. (2.88)

If b(α) �= 0, then this problem has the unique solution

ψ1 =
f1

b(α)
, ψ2 = f2.

However, if b(α) = 0, then (2.84) has the general solution

ψ1 = arbitrary real number, ψ2 = f2.

In this case, the problem is ill-posed.
The pitfalls of formal perturbation theory. Let n = 1, 2, . . . , 100. Use the

nth order approximation bn(α) := η(1 + α + . . . + αn) of b(α), and replace the
original problem (2.88) by the approximate problem

(bn(α)ψ1 − f1)
2 + (ψ2 − f2)

2 = min!.

This problem has the unique solution

ψ1 =
f1

bn(α)
=

(1− α)f1

η(1− αn+1)
=

f1

η
(1− α)(1 + αn+1 + . . .),

and ψ2 = f2. If we only consider terms up to order n, then the solution reads as

ψ1 =
f1

η
(1− α), ψ2 = f2. (2.89)

Now consider the nth order case where n = 101. By Problem 2.9, there exists a
number η0 > 0 such that the nonlinear equation b101(α) = 0, that is,

α = η1/101(1 + α + . . . + α100)1/101, α ∈ [0, 1]

has a unique solution α(η) for each parameter η ∈]0, η0[. If we choose the critical
parameter α = α(η), then the original problem (2.88) has the general solution ψ1=
arbitrary real number, ψ2 = f2. This solution differs drastically from (2.89).

This means that, in the present example, a catastrophe occurs in very high
order of formal perturbation theory.

Therefore, if we use perturbation theory in a formal manner, we can never exclude
such a singular behavior. This tells us that
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The results obtained by formal perturbation theory have to be handled cau-
tiously.

Formal perturbation theory and quantum field theory. Until now, all of
the predictions made by quantum field theory are based on the method of formal
perturbation theory. Surprisingly, for small coupling constants in quantum electro-
dynamics and electroweak interaction, the theoretical predictions coincide with the
experimental results with very high accuracy. Physicists belief that this cannot hap-
pen by chance. There remains the task to create a mathematically rigorous theory
which explains the great success of formal perturbation theory.

2.5 Mathemagics

Euler truly did not sour his life with limiting value considerations, con-
vergence and continuity criteria and he could not and did not wish to
bother about the logical foundation of analysis, but rather he relied – only
on occasion unsuccessfully – on his astonishing certitude of instinct and
algorithmic power.51

Emil Fellmann, 1975

Seen statistically, Euler must have made a discovery every week. . . About
1911, Eneström published an almost complete (from today’s viewpoint) list
of works with 866 titles. Of the 72 volumes of Euler’s Collected Works all
but three have appeared as of today.52 Euler’s correspondence with nearly
300 colleagues is estimated to constitute 4500 to 5000 letters, of which
perhaps a third appear to have been lost. These letters are to appear in
13 Volumes.
Euler was not only one of the greatest mathematicians, but also in general
one of the most creative human beings.

Rüdiger Thiele, 1982

In the entire history of mathematics, aside from the golden age of Greek
mathematics, there has never been a better time than that of Leonhard
Euler. It was his privilege to leave mathematics with a completely changed
face, making it into a powerful machine that it is today.53

Andreas Speiser, 1934

Pierre Cartier writes the following in his beautiful article Mathemagics, A tribute to
L. Euler and R. Feynman, Séminaire Lotharingien 44, 1–71 from the year 2000:54

51 E. Fellmann, Leonhard Euler. In: Kindler Enzyklopädie. Die Großen der Welt-
geschichte (The great people in the history of mankind), Vol. IV, pp. 495–531.
Zürich, 1975. We also refer to E. Fellmann, Leonhard Euler, Birkhäuser, Basel
2007 (translated from German into English).

52 L. Euler, Opera omnia, Vols. 1–72, Leipzig–Berlin, later Basel–Zürich, 1911ff.
Edited by E. Fellmann.
Rüdiger Thiele, Leonhard Euler, Teubner, Leipzig, 1982 (in German) (reprinted
with permission).

53 A. Speiser, Leonhard Euler und die deutsche Philosophie (Euler and the German
philosophy), Zürich, 1934 (in German).

54 We also refer to V. Varadarajan, Euler through Time: A New Look at Old
Themes, Amer. Math. Soc., Providence, Rhode Island, 2006.
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The implicit philosophical belief of the working mathematician is today the
Hilbert–Bourbaki formalism. Ideally, one works within a closed system: the
basic principles are clearly enunciated once for all, including (that is an
addition of twentieth century science) the formal rules of logical reasoning
clothed in mathematical form. The basic principles include precise defini-
tions of all mathematical objects, and the coherence between the various
branches of mathematical sciences is achieved through reduction to basic
models in the universe of sets. A very important feature of the system is its
non-contradiction; after Gödel (1906–1978), we have lost the initial hopes
to establish the non-contradiction by a formal reasoning, but one can live
with a corresponding belief in non-contradiction. The whole structure is
certainly very appealing, but the illusion is that it is eternal, that it will
function for ever according to the same principles. What history of math-
ematics teaches us is that the principles of mathematical deduction, and
not simply the mathematical theories, have evolved over the centuries. In
modern times, theories like General Topology or Lebesgue’s Integration
Theory represent an almost perfect model of precision, flexibility, and har-
mony, and their applications, for instance to probability theory, have been
very successful. My thesis is:

There is another way of doing mathematics, equally successful, and the two
methods should supplement each other and not fight.

This other way bears various names: symbolic method, operational cal-
culus, operator theory. . . Euler was the first to use such methods in his
extensive study of infinite series, convergent as well as divergent. The cal-
culus of differences was developed by Boole (1815–1864) around 1860 in a
symbolic way, then Heaviside (1850–1925) created his own symbolic cal-
culus to deal with systems of differential equations in electric circuits. But
the modern master was Feynman (1918–1988) who used his diagrams, his
disentangling of operators, his path integrals. . .

The method consists in stretching the formulas to their extreme
consequences, resorting to some internal feeling of coherence and
harmony.

There are obviously pitfalls in such methods, and only experience can tell
you that for the Dirac delta function an expression like xδ(x) or δ′(x) is
lawful, but not δ(x)/x or δ(x)2. Very often, these so-called symbolic meth-
ods have been substantiated by later rigorous developments, for instance,
the Schwartz distribution theory gives a rigorous meaning to δ(x), but
physicists used sophisticated formulas in “momentum space” long before
Laurent Schwartz codified the Fourier transformation for distributions.
The Feynman “sums over histories” have been immensely successful in
many problems, coming from physics as well from mathematics, despite
the lack of a comprehensive rigorous theory.

Newton (1643–1727), Leibniz (1646–1716), Euler (1707–1783) and their successors
very successfully used infinitesimals, that is, quantities with the strange property

dx �= 0 and (dx)2 = 0. (2.90)

Such quantities are still frequently used in the physics literature. Obviously, classi-
cal numbers dx do not have the property (2.90). Based on the notion of ultra-filters,
we will show in Sect. 4.6 how to introduce rigorously such infinitesimals as equiv-
alence classes of real numbers. We will embed this into the discussion of a general
mathematical strategy called the strategy of equivalence classes.
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Problems

2.1 The Mittag-Leffler theorem. Use the sketch of the proof given on page 58 in
order to give a full proof. Hint: See Remmert (1998), p. 128.

2.2 The partial fraction series of the cotangent function. Use the sketch of the proof
given on page 58 in order to give a full proof of the relation (2.16).
Hint: See Smirnov (1964), Vol. 3, Sect. 65.

2.3 The surface measure of the (N − 1)-dimensional unit sphere. Prove formula
(2.32) on page 69. Solution: We start with the Gaussian integral

J := (
√
π)N =

„

Z ∞

−∞
e−x2

dx

«N

=

Z

RN

e−
PN

j=1 x2
j dNx.

Using spherical coordinates, we get

J =

Z ∞

0

„

Z

SN−1
dμ

«

e−r2
rN−1dr.

Finally, the substitution t = r2 yields

J =
1

2
meas(SN−1)

Z ∞

0

t
N
2 −1e−tdt =

1

2
meas(SN−1)Γ

„

N

2

«

.

2.4 Computation of Liouville integrals. Prove the integral formula (2.45) on page
73. Solution: For example, consider the integral

J := 2

Z ∞

0

dr

1 + r2
.

Using the substitution x := 1/(1 + r2), we get

J =

Z 1

0

x−1/2(1− x)−1/2dx = B( 1
2
, 1

2
) =

Γ ( 1
2
)Γ ( 1

2
)

Γ (1)
.

In the general case, the proof proceeds analogously.
2.5 Singular values of a linear operator. Prove (2.85) on page 106.

Solution: Using the completeness relation I =
Pm

k=1 |ψk〉〈ψk|, we get

A =

m
X

k=1

A|ψk〉〈ψk|. (2.91)

If k = r + 1, . . . ,m, then σk = 0. Hence

〈Aϕ|Aψk〉 = 〈ϕ|A†Aψk〉 = σ2
k〈ϕ|ψk〉 = 0 for all ϕ ∈ X.

Therefore, Aψk is perpendicular to the image im(A). Hence Aψk = 0. By (2.91),
A =

Pr
j=1 A|ψj〉〈ψj |. Finally, Aψj = σjϕj . In addition, as preparation for an

argument below, note that

〈ϕj |ϕk〉 = σ−2
j 〈Aψj |Aψk〉 = σ−2

j 〈ψj |A†Aψk〉 = 〈ψj |ψk〉 = δjk, j, k = 1, . . . , r.

Therefore, ϕ1, . . . , ϕr is an orthonormal basis of the linear space im(A), and

ψ1, . . . , ψr is an orthonormal basis of the linear space ker(A)⊥.
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2.6 Quadratic variational problem. Let B : X → X be a linear self-adjoint operator
on the real finite-dimensional Hilbert space X. Suppose that there is a number
c > 0 such that 〈ψ|Bψ〉 ≥ c||ψ||2 for all ψ ∈ X. Show that, for given f ∈ X,
the minimum problem

1

2
〈ψ|Bψ〉 − 〈f |ψ〉 = min!, ψ ∈ X

has the unique solution ψ = B−1f. (In particular, the inverse operator B−1

exists on X.) Hint: See Zeidler (1995), Vol. 2, Sect. 2.4.
2.7 Proof of Proposition 2.15 on page 107. Solution: The minimum problem

||f − f0||2 = min!, f0 ∈ im(A)

has a unique solution, by Problem 2.6. Geometrically, f0 is the orthogonal
projection of f onto the linear space im(A). The equation

Aψ = f0, ψ ∈ ker(A)⊥

has a unique solution ψ0. Since Aψ − f ∈ im(A) and f − f0 ∈ im(A)⊥, the
orthogonal decomposition of Aψ − f into the sum (Aψ − f0) + (f0 − f) yields

||Aψ − f ||2 = ||Aψ − f0||2 + ||f0 − f ||2.

Therefore, the original problem ||Aψ − f ||2 = min!, ψ ∈ X is equivalent to the
minimum problem

||Aψ − f0||2 = min!, ψ ∈ X

which has the general solution ψ = ψ0 + ϕ with an arbitrary element ϕ in
ker(A). By Problem 2.5, ϕ1, . . . , ϕr is an orthonormal basis of im(A), and
ψ1, . . . , ψr is an orthonormal basis of ker(A)⊥. By Fourier expansion,

f0 =

r
X

j=1

〈ϕj |f0〉ϕj =

r
X

j=1

〈ϕj |f〉ϕj .

Similarly, ψ0 =
Pr

j=1〈ψj |ψ0〉ψj . From Aψ0 = f0 and Aψj = σjϕj we get

Aψ0 =

r
X

j=1

〈ψj |ψ0〉σjϕj =

r
X

j=1

〈ϕj |f〉ϕj .

Hence 〈ψj |ψ0〉 = σ−1
j 〈ϕj |f〉, j = 1, . . . , r. By (2.86), this implies

ψ0 =
r
X

j=1

σ−1
j |ψj〉〈ϕj |f〉 = Ainvf.

2.8 Proof of Proposition 2.16 on page 107. Solution: Note that ||Aψ−f ||2 + ε||ψ||2
is equal to

〈Aψ − f |Aψ − f〉+ ε〈ψ|ψ〉 = 〈ψ|(εI + A†A)ψ〉 − 2〈A†f |ψ〉.

By Problem 2.6, the unique solution of the minimum problem (2.87) reads as

ψ(ε) = (εI + A†A)−1A†f.
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Since (εI + A†A)ψj = (ε + μj)ψj , Fourier expansion yields

ψ(ε) =

m
X

k=1

(ε + μk)−1〈ψk|A†f〉ψk.

Noting that 〈ψk|A†f〉 = 〈Aψk|f〉 and that Aψk = 0 if k ≥ r + 1, we get

ψ(ε) =

r
X

j=1

(ε + μj)
−1σj〈ϕj |f〉ψj =

r
X

j=1

σ2
j

σ2
j + ε

· σ−1
j 〈ϕj |f〉ψj .

2.9 A special nonlinear equation. Suppose that the function g : [0, 1]→ R is smooth.
Then there exists a number η0 > 0 such that, for each η ∈ [0, η0], the equation

α = ηg(α), 0 ≤ α ≤ 1

has a unique solution. This solution can be computed by the convergent itera-
tive method αn+1 = ηg(αn), n = 0, 1, . . ., with α0 := 0.
Solution: If α, β ∈ R, then |f(α)− f(β)| = |f ′(ξ)(α− β)| ≤ const |α− β|. Now
apply the Banach fixed point theorem to the interval [0, 1] (see Sect. 7.13 of
Vol. I).

2.10 Integration. Let a > 0. Show that
R

R4
d4p

(|p|2+a2)3
= π2

2a2 .

Solution: By the sphere trick (2.34), the integral is equal to

2π2

Z ∞

0

r3dr

(r2 + a2)3
.

Setting x = r2, we get

π2

Z ∞

0

xdx

(x + a2)3
= π2

Z ∞

0

„

1

(x + a2)2
− a2

(x + a2)3

«

dx =
π2

2a2
.

2.11 Gamma function. Prove the Laurent expansion (2.29) of the gamma function
near the pole z = −1.
Solution: By the functional equation, (z − 1)Γ (z − 1) = Γ (z). Hence

Γ (z − 1) = −(1 + z + z2 + O(z3))Γ (z), z → 0.

Finally, use the Laurent expansion (2.28) of Γ (z) near the pole z = 0.
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Hopf algebra is invading quantum field theory from both ends, both at
the foundational level and the computational level. . . The approach from
quantum theoretical first principle is still in its first infancy.1

Héctor Figueroa and José Gracia-Bondia, 2005

In this series of monographs, we will show that:

There are highly complex mathematical structures behind the idea of the
renormalization of quantum field theories.

The combinatorial structure of Feynman diagrams lies at the heart of renormaliza-
tion methods. In the standard Boguliubov–Parasiuk–Hepp–Zimmermann (BPHZ)
approach, the regularization of algebraic Feynman integrals is carried out by an
iterative method which was invented by Bogoliubov in the 1950s. It was shown by
Zimmermann in 1969 that Bogoliubov’s iterative method can be solved in a closed
form called the Zimmermann forest formula. Finally, it was discovered by Kreimer
in 1998 that Zimmermann’s forest formula can be formulated by using the coin-
verse of an appropriate Hopf algebra for Feynman graphs. This will be thoroughly
studied later on. In this chapter, we only want to discuss some basic ideas about
Hopf algebras and Rota–Baxter algebras.

3.1 Algebras

Products play a fundamental role in quantum field theory (e.g., normal
products, time-ordered products, retarded products). They are used in
order to construct correlation functions.

Folklore

Algebras are linear spaces equipped with a distributive multiplication. Let us discuss
this.

The algebra of smooth functions as a prototype. Fix n = 1, 2, . . . Recall
that E(RN ) denotes the set of all smooth complex-valued functions f : R

N → C.
We write A instead of E(RN ). For all functions f, g ∈ A and all complex numbers
α, β, we define the linear combination αf + βg and the product fg by setting for
all x ∈ R

N :

• (αf + βg)(x) := αf(x) + βg(x),
• (fg)(x) := f(x)g(x).

1 H. Figueroa and J. Gracia-Bondia, Combinatorial Hopf algebras in quantum field
theory I, Rev. Math. Phys. 17 (2005), 881–982.
Internet: http://arXiv:hep-th/0408145
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In addition, we define the so-called unit element 1 by setting

• 1(x) := 1 for all x ∈ R
N .

Then for all f, g, h ∈ A and all α, β ∈ C, the following hold:

(A1) Linearity: The set A is a complex linear space.
(A2) Consistency: fg ∈ A, and (αf)g = f(αg) = α(fg).
(A3) Distributivity: (αf + βg)h = αfh + βfh, and

h(αf + βg) = αhf + βhg.

(A4) Associativity: (fg)h = f(gh).
(A5) Commutativity: fg = gf .
(A6) Unitality: There exists precisely one element 1 in A such that

1f = f1 = f for all f ∈ A.

Here, 1 is called the unit element of A.
The definition of an algebra. As we will show later on, algebras play a fun-

damental role in the mathematical description of quantum processes. By definition,
the set A is called a complex algebra iff for all f, g ∈ A and all complex numbers
α and β, the linear combination αf + βg and the product fg are defined in such a
way that the conditions (A1), (A2), and (A3) are always satisfied.2 In addition, we
use the following terminology.

• The algebra A is called associative iff condition (A4) is always satisfied.
• The algebra A is called commutative iff condition (A5) is always satisfied.
• The algebra A is called unital iff condition (A6) is satisfied.

For example, the space D(RN ) of smooth test functions f : R
N → C with compact

support is a complex algebra. This algebra is associative and commutative. The
same is true for the spaces E(RN ) and S(RN ) of test functions.3 In addition, the
space E(RN ) is unital.

For fixed n = 2, 3, . . . , the set of complex (n × n)-matrices forms a complex
algebra which is associative, noncommutative, and unital. Here, the unit element
is given by the unit matrix I := diag(1, 1, . . . , 1).

A subset B of a complex algebra A is called a subalgebra iff it is an algebra
with respect to the operations induced by A. Explicitly, this means that if f, g ∈ B
and α, β ∈ C, then αf + βg ∈ B and fg ∈ B.

Algebra morphism. Let A and B be algebras over C. The map

χ : A → B

is called an algebra morphism iff it respects linear combinations and products, that
is, the map χ is linear and we have χ(fg) = χ(f)χ(g) for all f, g ∈ A. Bijective
algebra morphisms are also called algebra isomorphisms.

The map S : A → B is called an algebra anti-morphism iff it is linear and we
have S(fg) = S(g)S(f) for all f, g ∈ A.

Modification. Real algebras (also called algebras over R) are defined anal-
ogously. We only replace the field C of complex numbers by the field R of real
numbers.

Perspectives. In this series of monographs, algebras will be encountered quite
often. Let us mention the following examples:

2 Analogously, the definition of a real algebra is obtained by starting from a real
linear space A and by replacing complex numbers by real numbers.

3 The precise definition of the space S(RN ) of smooth, rapidly decreasing functions
f : R

N → C can be found in Sect. 10.3.3 of Vol. I.
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• the Hopf algebra of linear differential operators (Sect. 3.3.2);
• Hopf algebras, formal power series expansions, and renormalization (Sect. 3.4);
• symmetries and Lie groups; linearized symmetries and Lie algebras (Vols. I–VI);
• the algebra of multilinear functionals (Sect. 3.2);
• the tensor algebra of a linear space (Vol. III);
• the algebra of symmetric multilinear functionals and the symmetric algebra of a

linear space (Vol. III);
• the algebra of antisymmetric multilinear functionals and the Grassmann (or ex-

terior) algebra of a linear space (Vol. III);
• the Clifford (or inner) algebras of a linear space equipped with a bilinear form

(Vol. III);
• the enveloping algebra of a Lie algebra (Vol. III).

Concerning applications to physics, we mention the following:

• the convolution algebra and the Heaviside calculus for computing electric circuits
in electrical engineering (Sect. 4.2);

• Lie algebras in classical mechanics based on Poisson brackets (Sect. 6.9.2);
• Lie super algebras and the supersymmetry of elementary particles and strings

(Sect. 7.21 and Vols. III–VI);
• the ∗-algebra approach to physics (classical mechanics, statistical physics, quan-

tum physics) (Sect. 7.17);
• ∗-algebras, C∗-algebras, and von Neumann algebras (Sect. 7.18 and Vol. IV);
• Clifford algebras and the Dirac equation for fermions (Vol. III);
• C∗-algebras and quantum information (Vol. IV);
• local nets of operator algebras and the algebraic approach to quantum field theory

due to Haag and Kastler (Vols. IV–VI);
• operator algebras and spectral theory of observables in quantum physics (the

Gelfand theory) (Vol. IV);
• the Gelfand–Naimark theorem and noncommutative geometry (Vol. IV);
• the Connes–Kreimer–Moscovici Hopf algebra and renormalization (Vol. IV);
• operator algebras and quantum gravity (Vol. VI).

Roughly speaking, products and hence algebras are everywhere.

3.2 The Algebra of Multilinear Functionals

Multilinear algebra studies all kinds of products.
Folklore

In what follows we want to study the elements of multilinear algebra, which play
a crucial role in modern physics. The main tool are multilinear functionals. The
tensor product ⊗ and the Grassmann product ∧ correspond to special multilinear
functionals which are called decomposable. A special role is played by symmetric
and antisymmetric multilinear functionals, which is related to bosons and fermions
in elementary particle physics, respectively.

In this section, the symbols X,Y, Z,Xα denote linear spaces over K. Here, we
choose K = R and K = C; this corresponds to real and complex linear spaces,
respectively. The index α runs in the nonempty index set A. For the basic definitions
concerning linear spaces, we refer to Sect. 7.3 of Vol. I. Recall that:

Two finite-dimensional real (resp. complex) linear spaces are linear iso-
morphic iff they have the same dimension.
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This well-known theorem from the basic course in linear algebra essentially simpli-
fies the theory of finite-dimensional linear spaces. It shows that a finite-dimensional
linear space can be described by a single invariant, namely, its dimension. Note
that an analogous theorem for infinite-dimensional linear spaces is not true. If
b1, b2, . . . , bn (resp. c1, . . . , cn) is a basis of the linear space X (resp. Y ), then the
map χ : X → Y given by

χ

 

n
X

k=1

αkbk

!

:=

n
X

k=1

αkck for all α1, . . . , αn ∈ K

is a linear isomorphism. Furthermore, each isomorphism between n-dimensional
linear spaces can be obtained this way.

The Cartesian product. By definition, the product set X × Y is given by

X × Y := {(x, y) : x ∈ X, y ∈ Y }.

If A : X → X and B : Y → Y are linear operators, then the linear product operator
A×B : X × Y → X × Y is defined by

(A×B)(x, y) := (Ax,By) for all x ∈ X, y ∈ Y.

If A is a nonempty set, then the product
Q

α∈A Xα is defined to be the set of all
tuples

(xα)α∈A where xα ∈ Xα for all α ∈ A.
Explicitly, the symbol (xα) stands for a map α �→ xα from A into the union
S

α∈A Xα with xα ∈ Xα for all α ∈ Xα.4

The direct sum X⊕Y . The Cartesian product X×Y becomes a linear space
over K if we introduce the linear combination

λ(x, y) + μ(u, v) := (λx + μu, λy + μv), x, u ∈ X, y, v ∈ Y, λ, μ ∈ K.

This linear space is denoted by X ⊕ Y . If A : X → X and B : Y → Y are linear
operators, then the linear operator A⊕B : X ⊕ Y → X ⊕ Y is defined by

(A⊕B)(x, y) := (Ax,By) for all x ∈ X, y ∈ Y.

The product
Q

α∈A Xα becomes a linear space over K if we introduce the linear
combinations

λ(uα) + μ(vα) := (λuα + μvα)

for all (uα), (vα) ∈
Q

α∈A Xα and all λ, μ ∈ K. By definition, the direct sum

M

α∈A
Xα

is a linear subspace of the product space
Q

α∈A Xα which consists precisely of all

the tuples (xα) with xα �= 0 for at most a finite set of indices α.5

The coproduct X
‘

Y. We define

X
a

Y := {(1, x) : x ∈ X} ∪ {(2, y) : y ∈ Y }.

4 If one wants to be sure that the Cartesian product Πα∈A is not empty for infinite
index sets A of arbitrary cardinality, then one needs Zermelo’s axiom of choice
(see page 246).

5 If the index set A is finite, then
Q

α∈A Xα and
L

α∈A Xα coincide.
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If the spaces X and Y are disjoint, then we have X
‘

Y � X ∪ Y, in the sense of a
bijection. Therefore, the coproduct is also called the disjoint union of X and Y . If
A is an index set, then we define

a

α∈A
Xα := {(α, xα) : α ∈ A, xα ∈ Xα}.

The space L(X,Y ) of linear operators. The set of all linear operators
A : X → Y forms a linear space over K which is denoted by L(X,Y ). In par-
ticular, the space L(X,X) forms a complex algebra with respect to the usual linear
combinations

αA + βB

of linear operators A,B : X → X where α, β ∈ K. Furthermore, if X = Y , then
L(X,X) becomes an algebra over K with respect to the operator product AB.

The dual space Xd. Duality plays a fundamental role in quantum physics in
order to describe quantum fields (e.g., in perturbative quantum field theory). The
dual space Xd to the given linear space X is defined by

Xd := L(X,K).

This is a linear space over K. Let A : X → Y be a linear operator. Then the dual
operator Ad : Y d → Xd is defined by

(Adf)(x) := f(Adx) for all x ∈ X.

This refers to all linear functionals f ∈ Y d.
Cobasis. Let b1, . . . , bn be linearly independent elements of the linear space X.

Define

bk

 

n
X

s=1

αsbs

!

:= αk for all α1, . . . , αn ∈ K, k = 1, . . . , n.

In particular, bk(bl) = δk
l for k, l = 1, . . . , n. We call b1, . . . , bn the dual system to

b1, . . . , bn.

Proposition 3.1 The functionals b1, . . . , bn are linearly independent elements of
the dual space Xd.

Proof. Let
Pn

k=1 βkb
k = 0 Applying this to bl, we get

Pn
k=1 βkδ

k
l = 0. Hence

βl = 0 for l = 1, . . . , n. �

If b1, . . . , bn is a basis of the linear space X, then b1, . . . , bn is a basis of the dual
space Xd called the cobasis of X. Consequently, if X is a finite-dimensional linear
space, then we have the linear isomorphism

X � Xd.

Setting Xdd := (Xd)d, we get the linear isomorphism Xdd � X. In differential
geometry, one writes dxk instead of bk.

For an arbitrary linear space X, we have

X ⊆ Xdd

where X is a linear subspace of Xdd. This is to be understood in the following
sense. For fixed x ∈ X, define

Fx(f) := f(x) for all f ∈ Xd.

The map Fx : Xd → K is linear. Hence Fx ∈ Xdd.
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Proposition 3.2 The map x �→ Fx is a linear injective morphism from X to Xdd.

Therefore, the linear space X can be identified with a linear subspace of Xdd.
The proof will be given in Problem 4.11 on page 259 based on Zorn’s lemma.

The linear space M2(X,Y ) of bilinear functionals. Let the symbol
M2(X,Y ; K) denote the space of all bilinear functionals

B : X × Y → K.

Let B,C ∈M2(X,Y ; K) and β, γ ∈ K. We define βB + γC by setting

(βB + γC)(x, y) := βB(x, y) + γC(x, y) for all x ∈ X, y ∈ Y.

This way, M2(X,Y ; K) becomes a linear space over K. Let f ∈ Xd and g ∈ Y d. We
define the tensor product f ⊗ g of the linear functionals f and g by setting

(f ⊗ g)(x, y) := f(x)g(y) for all x ∈ X, y ∈ Y.

Obviously, we have (f ⊗ g) ∈ M2(X,Y ; K). If X is a finite-dimensional space with
the basis b1, . . . bn, then each B ∈M2(X,Y ; K) can be uniquely represented by

B =

n
X

k,l=1

B(bk, bl)b
k ⊗ bl. (3.1)

This will be proved in Problem 3.1 on page 167. For infinite-dimensional linear
spaces X and Y , the bilinear functional B : X ⊗ Y → K is called decomposable iff
it can be represented by a finite sum of the form

B = α1f1 ⊗ g1 + . . . + αnfn ⊗ gn

where fk ∈ Xd, gk ∈ Y d, αk ∈ K, and k = 1, 2, . . . The set of decomposable bi-
linear functionals forms a linear subspace of M2(X,Y ; K), and it coincides with
M2(X,Y ; K) if X and Y are finite-dimensional spaces. Let X = Y. For f, g ∈ Xd,
we define

f ∧ g := f ⊗ g − g ⊗ f.

The decomposable bilinear functionals

B = α1f1 ∧ g1 + . . . + αnfn ∧ gn

are antisymmetric, that is, B(x, y) = −B(y, x) for all x, y ∈ X.
The algebra M(X) of multilinear functionals. The symbol Mk(X) denotes

the set of all k-linear functionals

F : X × · · · ×X → K.

This means that the map (x1, . . . , xk) �→ F (x1, . . . , xk) is linear in each argument.
The space Mk(X) becomes a linear space over K in a natural way by using linear
combinations of k-linear functionals. If B ∈ Mk(X) and C ∈ Ml(X), then the
product B ⊗ C is defined by

(B ⊗ C)(x1, . . . xk, xk+1, . . . , xk+l) := B(x1, . . . , xk)C(xk+1, . . . , xk+l)

for all x1, . . . , xk+l ∈ X. Obviously, B ⊗ C is an element of Mk+l(X). In addition,
we set
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M0(X) := K and α⊗ F = F ⊗ α := αF

for all α ∈ K and F ∈Mk(X). With respect to the product ⊗, the direct sum

M(X) :=

∞
M

k=0

Mk(X)

becomes an associative algebra over K, which is called the algebra of multilinear
functionals on the linear space X. Explicitly, the elements of M(X) are finite sums
of the form

α + F1 + F2 + . . .

where α ∈ K, and Fk ∈ Mk(X) for k = 1, 2 . . . In particular, the space M1(X)
coincides with the dual space Xd. The algebra M(X) over K possesses an additional
structure, namely, it is graded. By definition, the elements of Mk(X) are called
homogeneous of degree k. This notion generalizes the degree of a polynomial.

The tensor product X ⊗ Y of two linear spaces. Let X and Y be linear
spaces over K where K = R,C. We want to construct a linear space X⊗Y equipped
with a product x ⊗ y for x ∈ X and y ∈ Y such that the following properties are
valid:

(P) Product property: For all u, x ∈ X, v, y ∈ Y , and α, β ∈ K, we have

(αu + βx)⊗ y = α(u⊗ y) + β(x⊗ y),

x⊗ (αv + βy) = α(x⊗ v) + β(x⊗ y). (3.2)

(B) Basis property: If x1, . . . , xn and y1, . . . , ym are linearly independent elements
in the linear spaces X and Y , respectively, then all the elements

xk ⊗ yl, k = 1, . . . , n, l = 1, . . . ,m

are linearly independent in the tensor product X ⊗ Y.

Property (B) excludes the trivial case where x⊗ y = 0 for all x ∈ X, y ∈ Y. Let us
now realize these properties by a specific model based on bilinear functionals. For
x ∈ X and y ∈ Y , we define the tensor product x⊗ y by setting

(x⊗ y)(f, g) := f(x)g(y) for all f ∈ Xd, g ∈ Y d.

This means that x ⊗ y : Xd × Y d → K is a bilinear functional on the product
space Xd × Y d. By definition, the tensor product X⊗Y is the linear hull of all the
products x⊗ y with x ∈ X and y ∈ Y. Explicitly, the elements of X ⊗ Y have the
form

α1(x1 ⊗ y1) + . . . + αn(xn ⊗ yn), n = 1, 2, . . . (3.3)

with x1, . . . , xn ∈ X, y1, . . . , yn ∈ Y , and α1, . . . , αn ∈ K. The space X ⊗ Y is a
linear subspace of the linear space of all bilinear functionals B : Xd × Y d → K.

Proposition 3.3 The basis property (B) above is valid for the tensor product X⊗Y.

The proof will be given in Problem 4.14 on page 260. Observe that different
expressions of the form (3.3) may describe the same element of the space X ⊗ Y.
The basis property (B) can be used in order to decide whether two expressions of
the form (3.3) represent the same element of X ⊗ Y or not. For example, consider
the equation
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x⊗ y = u⊗ v + w ⊗ z (3.4)

where x, u,w ∈ X and y, v, z ∈ Y. Set

X := span{x, u,w}, Y := span{y, v, z}.
Let b1, . . . , br (resp. c1, . . . , cs) be a basis of X (resp. Y). Then, by the product
property (P) above, we get

x⊗ y =

 

r
X

j=1

βjbj

!

⊗
 

s
X

k=1

γkck

!

=
X

j,k

βjγk(bj ⊗ ck).

Similarly, we obtain

u⊗ v + w ⊗ z =
X

j,k

αjk(bj ⊗ ck).

By Prop. 3.3, equation (3.4) is valid iff βjγk = αjk for all indices j, k. The general
case proceeds analogously. This argument shows that the following holds: If X and
Y are finite-dimensional linear spaces over K, then X⊗Y is also a finite-dimensional
linear space over K with the dimension

dim(X ⊗ Y ) = dimX · dimY.

On page 260, we will construct the tensor product X ⊗ Y in terms of equivalence
classes. The two constructions yield isomorphic linear spaces. Important are only
the properties (P), (B) above.

The tensor product A⊗B of two algebras. Let A and B be algebras over K

with K = R,C. Since A and B are linear spaces over K, we have the tensor product
A⊗ B at hand. In addition, we define the product

(a⊗ b)(c⊗ d) := ac⊗ bd

for all a, c ∈ A and all b, d ∈ B. In a natural way, this definition can be extended
to expressions of the form (3.3).

Proposition 3.4 The tensor product A⊗ B is an algebra over K.

The proof will be given in Problem 4.17 on page 261. We have to show that the
product on A × B does not depend on the choice of the representations (3.3). To
this end, we will use the language of equivalence classes.

Tensor products will be studied in greater detail in Vol. III. In terms of physics,
tensor products are used in order to describe composite particles. For example, the
tensor product ϕ ⊗ ψ of the two states ϕ and ψ of single particles is the state of
the composite particle. In terms of mathematics, tensor products are used in order
to reduce multilinear functionals to linear operators on tensor products.

3.3 Fusion, Splitting, and Hopf Algebras

In nature, one observes fusion and splitting of physical states. From the
mathematical point of view, this corresponds to products and coproducts
of Hopf algebras, respectively.

Folklore

In this section, we will use tensor products in order to define Hopf algebras. In
particular, the language of tensor products will tell us why coassociativity (CA)
and counitality (CU) are dual concepts to associativity (A) and unitality (U) of
algebras (see page 128).
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3.3.1 The Bialgebra of Linear Differential Operators

For a beginner, the definition of a Hopf algebra seems to be rather involved. To
help the reader, we start with the well-known algebra LE(RN ) of linear differen-
tial operators with respect to N arguments and constant coefficients. This is the
prototype of a Hopf algebra.

To begin with, fix the dimension N = 1, 2, . . . The points of the space R
N

are denoted by x = (x1, . . . , xN ). Recall that E(RN ) denotes the space of smooth
complex-valued functions

f : R
N → C.

We introduce the partial derivative ∂j := ∂
∂xj

. For smooth functions f , we have

∂j∂kf = ∂k∂jf. This means that we have the commutativity property

∂j∂k = ∂k∂j , j, k = 1, . . . , N.

Furthermore, we set
∂α := ∂α1

1 ∂α2
2 · · · ∂

αN
N

where α1, . . . , αN are nonnegative integers. Define |α| := α1 + . . .+αN . By a linear
differential operator with respect to N arguments and constant coefficients, we
understand the symbol

D := a0 +
X

0<|α|≤m

aα∂
α, m = 1, 2, . . .

Here, the coefficients aα are complex numbers. The positive integer m is called the
order of the differential operator. We set m := 0 if D := a0. We also introduce the
symbol

ε(D) := a0.

For example, if N = 2 we may choose

D := a0 + a1∂1 + a2∂2 + a11∂1∂1 + a12∂1∂2 + a22∂2∂2.

Obviously, if f : R
N → C is a smooth function, then so is Df. More precisely, the

operator
D : E(RN )→ E(RN )

is linear. The set of all these linear operators is denoted by LE(RN ). There exist
the following operations:

• Linear combination: αD + α′D′.
• Product: DD′.
• Coproduct (Leibniz rule): Δ(D)(f, g) := D(fg).
• Coinverse (integration by parts): For all functions f, g ∈ D(RN ), we have

Z

RN

(Df)g dNx =

Z

RN

fS(D)g dNx.

This way, the set LE(RN ) becomes a complex algebra, which is associative, com-
mutative, and unital. The unit element 1 is the constant operator D := 1. We
have

ε(1) = 1.

Summarizing, we obtain the following:

The algebra LE(RN ) of differential operators is a Hopf algebra.
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This will be discussed in the sequel.6 We will use the following terminology.

• The map D �→ Δ(D) is called the coproduct of the Hopf algebra LE(RN ), and
Δ(D) is called the coproduct applied to the differential operator D.

• The map D �→ ε(D) is called the counit of the Hopf algebra LE(RN ). The complex
number ε(D) = a0 is called the augmentation of the differential operator D.

• The map D �→ S(D) is called the coinverse (or the antipode) of the Hopf algebra
LE(RN ). The differential operator S(D) is called the coinverse of the differential
operator D.

The explicit form of Δ and S will be given below, by using the Leibniz rule and
integration by parts, respectively. In particular, we will see that the coproduct is a
map of the form

Δ : LE(RN )→ LE(RN )⊗ LE(RN ),

which describes a decomposition (splitting) of differential operators. In contrast to
this, the product (D,D′) �→ DD′ describes a fusion of the two differential operators
D and D′.

The tensor product of linear differential operators. We are given the
operators D,D′ ∈ LE(RN ). For all functions f, g ∈ E(RN ), we define the tensor
product D ⊗D′ by setting

(D ⊗D′)(f, g) := (Df)(D′g).

The Leibniz rule. For smooth functions f, g ∈ E(RN ), we have the product
rule

∂j(fg) = (∂jf)g + f∂jg, j = 1, . . . , N, (3.5)

which is also called the Leibniz rule. Iterated application yields

∂k∂j(fg) = (∂k∂jf)g + ∂jf∂kg + ∂kf∂jg + f∂k∂jg. (3.6)

The binomic formula tells us that (a+ b)n = an +
Pn−1

k=1

`

n
k

´

an−kbk + bn. Similarly,
for n = 2, 3, . . . , we get

∂n
j (fg) = ∂n

j f +

n−1
X

k=1

 

n

k

!

(∂n−k
j f)∂k

j g + ∂n
j g, j = 1, . . . , N.

The coproduct. Let D ∈ LE(RN ). We define the coproduct Δ(D) of the linear
differential operator D by setting

Δ(D)(f, g) := D(fg), for all f, g ∈ E(RN ). (3.7)

Let us first consider some examples. If D = 1, then Δ(1)(f, g) = fg. Hence

Δ(1) = 1⊗ 1.

By the Leibniz rule (3.5), Δ(∂j)(f, g) = (∂j ⊗ 1 + 1⊗ ∂j)(f, g). Hence

6 In 2004 Christian Brouder (Laboratoire de minéralogie-cristallographie, Paris)
gave a fascinating lecture at the Max Planck Institute for Mathematics in the
Sciences (Leipzig) entitled Hopf algebras and quantum field theory. I will follow
this lecture, and I am very grateful to Christian Brouder for sending me the
manuscript of his lecture.
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Δ(∂j) = ∂j ⊗ 1 + 1⊗ ∂j , j = 1, . . . , N.

By (3.6), we get

Δ(∂k∂j)(f, g) = (∂k∂j ⊗ 1)(f, g) + (∂j ⊗ ∂k)(f, g)

+(∂k ⊗ ∂j)(f, g) + (1⊗ ∂k∂j)(f, g).

Hence

Δ(∂k∂j) = ∂k∂j ⊗ 1 + ∂j ⊗ ∂k + ∂k ⊗ ∂j + 1⊗ ∂k∂j . (3.8)

This corresponds to the four possible splittings of the product ∂k∂j :

∂k∂j ⊗ 1, ∂j ⊗ ∂k, ∂k ⊗ ∂j , 1⊗ ∂k∂j .

To simplify notation, in what follows we will write ΔD instead of Δ(D).
The Sweedler notation. Let f, g ∈ E(RN ). In the general case, we obtain

(ΔD)(f, g) =

K
X

k=1

D1,kfD2,kg for all f, g ∈ E(RN ).

This means that (ΔD)(f, g) =
PK

k=1(D1,k ⊗D2,k)(f, g). Hence

ΔD =

K
X

k=1

D1,k ⊗D2,k.

To simplify notation, we briefly write

ΔD =
X

D

D(1) ⊗D(2). (3.9)

This is the so-called Sweedler notation. In what follows, we set A := LE(RN). Then
the coproduct represents a map of the type

Δ : A → A⊗A,

which is an algebra morphism. In fact, the map Δ is linear, and we have

Δ(D′D) = (ΔD′)(ΔD) for all D′, D ∈ A. (3.10)

The proof will be given in Problem 3.5 on page 169.
Coassociativity. It follows from the associative law f(gh) = (fg)h for func-

tions f, g, h ∈ E(RN ) and from the defining relation (3.7) that

(ΔD)(f, gh) = (ΔD)(fg, h).

This is called the coassociative law for the coproduct. We want to show that this
is equivalent to the following relation:

(Δ⊗ id)Δ = (id⊗Δ)Δ. (3.11)

To prove this, observe first that
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(ΔD)(f, gh) = D(f(gh)) =
X

D

D(1)fD(2)(gh)

and
D(2)(gh) =

X

D(2)

ˆ

D(2)

˜

(1)
g
ˆ

D(2)

˜

(2)
h.

Similarly, we get

(ΔD)((fg), h) = D((fg)h) =
X

D

D(1)(fg)D(2)h

and
D(1)(fg) =

X

D1

ˆ

D(1)

˜

(1)
f
ˆ

D(1)

˜

(2)
g.

To simplify notation, we write D(1)(2) instead of [D(1)](2). It follows from

D(f(gh)) = D((fg)h)

that
P

D D(1)f
P

D(2)
D(2)(1)gD(2)(2)h is equal to

X

D

X

D(1)

D(1)(1)fD(1)(2)gD(2)h.

This means that
“

P

D D(1) ⊗
P

D(2)
D(2)(1) ⊗D(2)(2)

”

(f, g, h) is equal to

0

@

X

D

X

D(1)

D(1)(1) ⊗D(1)(2) ⊗D(2)

1

A (f, g, h).

Hence

X

D

D(1) ⊗
X

D(2)

D(2)(1) ⊗D(2)(2) =
X

D

0

@

X

D(1)

D(1)(1) ⊗D(1)(2)

1

A⊗D(2).

This tells us that
X

D

D(1) ⊗ΔD(2) =
X

D

ΔD(1) ⊗D(2).

Recalling that ΔD =
P

D D(1) ⊗D(2) and (id⊗Δ)(a⊗ b) = a⊗Δb, we obtain

(id⊗Δ)ΔD = (Δ⊗ id)ΔD.

This proves the claim (3.11).
The counit. For the differential operator D = a0 +

P

0<|α|≤m ∂α, recall the

definition ε(D) := a0. The map
ε : A → C

is an algebra morphism, that is, the map ε is linear and ε(DD′) = ε(D)ε(D′) for
all D,D′ ∈ A. We want to show that

(ε⊗ id)Δ = (id⊗ ε)Δ = id, (3.12)
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where id : A → A denotes the identical operator on the algebra A. In fact, using
the relation

ΔD(1, g) = D(1g) = Dg

together with the Sweedler notation ΔD =
P

D D(1) ⊗D(2), we get

Dg =
X

D

(D(1) ⊗D(2))(1, g) =
X

D

D(1)(1)D(2)g =
X

D

ε(D(1))D(2)g.

Similarly, Dg =
P

D(D(1) ⊗D(2))(g, 1) =
P

D D(1)ε(D(2))g. Hence

D =
X

D

ε(D(1))D(2) =
X

D

D(1)ε(D(2)).

Furthermore,

(ε⊗ id)ΔD = (ε⊗ id)
X

D

D(1) ⊗D(2) =
X

D

ε(D(1))D(2) = D.

Similarly, (id⊗ ε)ΔD =
P

D D(1)ε(D(2)) = D. This yields the claim (3.12).
The coinverse. For the differential operator D = a0 +

P

0<|α|≤m aα∂α, we

define the coinverse S(D) by setting

S(D) := a0 +
X

0<|α|≤m

(−1)αaα∂
α.

For example, S(1) = 1, S(∂j) = −∂j , and S(∂j∂k) = ∂j∂k for j, k = 1, . . . , N. Using
the coinverse, the formula of integration by parts reads as

Z

RN

(Df)g dNx =

Z

RN

fS(D)g dxN for all f, g ∈ D(RN ).

Using the Sweedler notation ΔD =
P

D D(1) ⊗D(2), we obtain

X

D

S(D(1))D(2) =
X

D

D(1)S(D(2)) = ε(D)1. (3.13)

The proof will be given in Problem 3.6 on page 170. Define

η(z) := z1 for all z ∈ C.

Introducing the map μ : A⊗A → A by setting

μ(

r
X

j=1

fj ⊗ gj) :=

r
X

j=1

fjgj ,

the relation (3.13) can be written as

μ(S ⊗ id)Δ = μ(id⊗ S)Δ = ηε. (3.14)

In the sense of the general definition given next, the operator algebra LE(RN ) is a
Hopf algebra.
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3.3.2 The Definition of Hopf Algebras

The canonical morphisms of an associative unital algebra. Let A be an
associative unital complex algebra A with the unit element 1. For all a, b ∈ A and
all complex numbers z, we define the following maps:

(i) Multiplication map: μ(a⊗ b) := ab.
(ii) Unitality map: η(z) := z1.
(iii) Identical map: id(a) := a.

Using linear extension, we get the following three algebra morphisms:

μ : A⊗A �→ A, η : C→ A, id : A → A.

These so-called three canonical morphisms of the algebra A have the following
properties:

(A) Associativity: μ(μ⊗ id) = μ(id⊗ μ).
(U) Unitality: μ(η ⊗ id) = μ(id⊗ η) = id.

Let us prove this. Relation (A) follows from the associative law a(bc) = (ab)c for
all a, b, c ∈ A. In fact,

μ(id⊗ μ)(a⊗ b⊗ c) = μ(a⊗ μ(b⊗ c)) = μ(a⊗ bc) = a(bc).

Similarly, μ(μ⊗ id)(a⊗ b⊗ c) = (ab)c. This proves (A). Relation (U) follows from

μ(η ⊗ id)(1⊗ a) = μ(η(1)⊗ a) = μ(1⊗ a) = 1a = a.

Similarly, μ(id⊗ η)(a⊗ 1) = a1 = a. This yields (U) if we identify a⊗ 1 and 1⊗ a
with a. This corresponds to the isomorphisms A⊗ C = A = C⊗A.

Dualization and the definition of bialgebras. It is our goal to dualize the
relations (A) and (U) above by using the replacement

μ⇒ Δ, η ⇒ ε

and by commuting the factors. This way, we obtain the following two dual relations:

(CA) Coassociativity: (id⊗Δ)Δ = (Δ⊗ id)Δ.
(CU) Counitality: (id⊗ ε)Δ = (ε⊗ id)Δ = id.

Let A be an associative unital complex algebra. Such an algebra is called a complex
bialgebra iff there exist two algebra morphisms

(i) Δ : A → A⊗A (coproduct) and
(ii) ε : A → C (counit)

such that the conditions (CA) and (CU) are satisfied. The counitality map ε is also
called the augmentation map.

The definition of Hopf algebras. The complex bialgebra A is called a Hopf
algebra iff there exists a linear map S : A → A such that

μ(S ⊗ id)Δ = μ(id⊗ S)Δ = ηε. (3.15)

This condition looks strange at the first glance. However, we will show below that
this is a very natural condition in terms of both Sweedler’s notation and a convo-
lution on the space of linear operators L(A,A) on the algebra A.

Hopf algebra morphism. Let A and A′ be Hopf algebras. The map

χ : A → A′
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is called a Hopf algebra morphism iff it is an algebra morphism and the following
three diagrams are commutative:

A
χ ��

Δ

��

A′

Δ′

��
A⊗A

χ �� A′ ⊗A′

A
χ ��

ε
����

��
��

��
A′

ε′����
��

��
��

C

(3.16)

A
χ ��

S

��

A′

S′

��
A

χ �� A′

(3.17)

The map χ : A → A′ is called a Hopf algebra isomorphism iff it is a bijective
Hopf algebra morphism and the inverse map χ−1 : A′ → A is also a Hopf algebra
morphism.7

The Sweedler notation. For carrying out concrete computations, one fre-
quently uses the so-called Sweedler notation in bialgebras. Let a ∈ A. The co-
product Δa is contained in the tensor product A ⊗ A. Thus, there exist elements
a1, . . . , am, b1, . . . , bm ∈ A such that

Δa =

m
X

j=1

aj ⊗ bj .

According to Sweedler, we write this as

Δa =
X

a

a(1) ⊗ a(2). (3.18)

In this language, the basic relations of a Hopf algebra read as follows.

(i) Coassociativity:
P

a a(1)

P

a(2)
a(2)(1) ⊗ a(2)(2) is equal to

X

a

0

@

X

a(1)

a(1)(1) ⊗ a(1)(2)

1

A a(2).

For this, we simply write
P

a a(1) ⊗ a(2) ⊗ a(3). Intuitively, this reflects the
regular behavior of splittings.

(ii) Counit:
P

a ε(a(1))a(2) =
P

a a(1)ε(a(2)) = a.

(iii) Coinverse:
P

a a(1)Sa(2) =
P

a(Sa(1))a(2) = ε(a)1.

Condition (iii) refers to the product on the algebra A. The coinverse is also called
antipode.

As we will show later on, the coinverse lies at the heart of renormalization
in quantum field theory.

7 Bialgebra morphisms refer to (3.16), that is, the condition (3.17) on the coinverse
drops out.
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Commutative and cocommutative Hopf algebras. The Hopf algebra A is
called commutative iff ab = ba for all a, b ∈ A. Moreover, A is called cocommutative
iff the factors of the summands of the coproduct can be interchanged, that is,

Δa =
m
X

j=1

a1,j ⊗ a2,j =
m
X

j=1

a2,j ⊗ a1,j for all a ∈ A.

This means that
P

a a(1) ⊗ a(2) =
P

a a(2) ⊗ a(1) in Sweedler’s notation.
Convolution. Consider again an associative unital complex algebraA equipped

with the additional structure of a bialgebra. We want to introduce a convolution
on the space L(A,A) of linear operators B : A → A. Let B,C ∈ L(A,A) be given.
We define

(B ∗ C)a :=
X

a

Ba(1)Ca(2) for all a ∈ A.

Then B ∗ C ∈ L(A,A). In other words, B ∗ C = μ(B ⊗ C)Δ. This means that the
convolution B ∗ C is obtained by the following quite natural composition of maps:

A Δ �� A⊗A
B⊗C �� A⊗A

μ �� A.

Proposition 3.5 The convolution on L(A,A) is associative and has the unit ele-
ment ηε.

Explicitly, this means that, for all B,C,D ∈ L(A,A), we have

(B ∗ C) ∗D = B ∗ (C ∗D), B ∗ ηε = ηε ∗B = B.

The proof can be found in Problem 3.7 on page 170. Using this notion of convolution,
the defining relation (3.15) of the coinverse S can be elegantly written as

S ∗ id = id ∗ S = ηε

where id is the identical map on A. This means the following:

The complex bialgebra A is a Hopf algebra iff there exists a linear map
S : A → A which is the two-sided inverse of the identical map on A for
the convolution on L(A,A).

Historical remarks. Hopf algebras were studied first by Heinz Hopf (1894–
1971) in 1941 in order to compute the cohomology of Lie groups and more general
topological spaces.

H. Hopf, On the topology of group manifolds and its generalizations, Ann.
Math. 42 (1941), 22–52 (in German).

This can be found in

E. Spanier, Algebraic Topology, Springer, New York, 1989.

In what follows, we will study the relation of Hopf algebras to both

• power series expansions and
• symmetry.

Roughly speaking, Hopf algebras are frequently used in order to carry out sophisti-
cated computations for problems where a nontrivial symmetry is behind. Using the
language of commutative diagrams, it turns out that a bialgebra can be understood
best as a mathematical concept which combines the concept of algebra with its dual
concept. One only has to reinverse the arrows in the commutative diagrams of an
algebra. This will be thoroughly considered in Problem 3.4 on page 168. Hopf alge-
bras are bialgebras which carry the additional structure of a coinverse. Typically,
the coinverse comes from dualizing the inverse of a group structure (see Sect. 3.5.2).
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3.4 Power Series Expansion and Hopf Algebras

3.4.1 The Importance of Cancellations

The big surprise in renormalization theory is the appearance of unexpected
huge cancellations in the lengthy computations.

Folklore

It happens quite often in mathematics and physics that extremely complicated
long expressions dramatically simplify by rearranging them as alternating sums
and by cancelling the alternating terms. As the simplest example, let us mention
the product

(1−x)(1+x+x2 + . . .+x1000) = (1+x+x2 + . . .+x1000)− (x+x2 + . . .+x1001).

Rearranging this, we get

1 + x− x + x2 − x2 + . . . + x1000 − x1000 − x1001.

Thus, most of the terms cancel, and we finally get the simple expression

(1− x)(1 + x + x2 + . . . + x1000) = 1− x1001.

As a nontrivial example, let us mention that the elegant heat-kernel approach to
the sophisticated Atiyah–Singer index theorem for elliptic differential operators
on compact manifolds was discovered by Atiyah, Bott, and Patodi in 1973; they
noticed completely unexpected cancellations in long formulas related to the spectral
geometry on manifolds.8 It is typical for topology that topological invariants are
related to alternating sums. The prototype is the Euler characteristic (see Sect. 5.6.2
in Vol. I). Unexpected cancellations are also typical for quite lengthy computations
in renormalization theory.9 The experience of mathematicians and physicists shows
that symmetries are behind cancellations. It turns out that the cancellations in
renormalization theory can be based on Hopf algebras. As a prototype, we want to
study the Faà di Bruno Hopf algebra related to the local diffeomorphism group in
the complex plane. As a preparation for this, we need two classical formulas for the
coefficients of power series expansions, namely,

• the Lagrange inversion formula (3.20) related to the famous Kepler equation
(3.19) in celestial mechanics, and

• the Faà di Bruno composition formula (3.30).

Let us study these two formulas first.

8 M. Atiyah, R. Bott, and V. Patodi, On the heat equation and the index theorem,
Inventiones Math. 19 (1973), 279–330. See also P. Gilkey, Invariance Theory, the
Heat Equation, and the Atiyah–Singer Index Theorem, CRC Press, Boca Raton,
Florida, 1995.

9 We refer to V. Rivasseau, From Perturbative to Constructive Renormalization,
Princeton University Press, 1991. See also V. Rivasseau, An introduction to
renormalization. In: B. Duplantier and V. Rivasseau, Poincaré-Seminar 2002:
Vacuum Energy – Renormalization, pp. 213–240, Birkhäuser, Basel, 2003.
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3.4.2 The Kepler Equation and the Lagrange Inversion Formula

The Kepler equation and the implicit function theorem. Let x, y be Carte-
sian coordinates in the plane, and denote time by the parameter t. According to
Kepler (1571–1630), the motion x = x(t), y = y(t) of a planet of mass m around
the sun of mass msun is given by the equation

x = a cosu− ea, y = b sinu, t = τ ·
r

ma3

Gmsun

with the so-called Kepler equation

u = τ + e sinu. (3.19)

This equation relates the parameter τ to the Kepler parameter u. Here, we use the
following notation: G gravitational constant, e eccentricity of the ellipse (0 ≤ e < 1),
a major semi-axis, and b minor semi-axis. The difference τ := u− e sinu was called
the mean anomaly by Kepler.10 The orbit of the planet is given by the following
ellipse:

(x + ea)2

a2
+

y2

b2
= 1.

The sun is located at the focal point (x, y) = (−ea, 0). For the relation between the

major and minor semi-axis, we have b = a
√

1− e2.
Suppose we ware given the time t and we want to compute the position (x, y)

of the planet at the time t. Then we have to solve the Kepler equation in order to
get u = u(τ). Setting F (u, τ) := u− e sinu− τ , the Kepler equation (3.19) can be
written as

F (u, τ) = 0.

Here, we have F (0, 0) = 0 and Fu(0, 0) = 1− e. Since Fu(0, 0) �= 0 and the function
(u, τ) �→ F (u, τ) is analytic on the product space C × C, the implicit function
theorem11 tells us that there exists an open neighborhood U of the point (0, 0) in
the product space C×C such that the Kepler equation (3.19) has a unique solution
curve u = u(τ). This curve is analytic. In other words, there exists a positive
number τ0 such that, for each complex number τ with |τ | < τ0, equation (3.19) has
the solution

u = b0 + b1τ + b2τ
2 + . . . ,

where the power series is convergent. This solution can be computed by the following
iterative method

un+1 = τ + e sinun, n = 0, 1, 2, . . .

with u0 := 0. Then u1 = τ, u2 = τ + e sin τ, . . . More elegantly, one can use the
famous Lagrange inversion formula from 1771:

u = τ + e sin τ +
e2

2!

d

dτ
sin2 τ + . . . +

en

n!

dn−1

dτn−1
sinn τ + . . . . (3.20)

Laplace (1749–1827) proved that this power series is convergent if |τ | < τ0 with
τ0 := 0.6627.12 For computing the orbit of a planet, one needs the power series

10 In the special case where e = 0, the orbit is a circle of radius a = b and angular
variable u.

11 We refer to Zeidler (1986), Vol. 1, Sect. 4.7 (see the references on page 1049).
12 For the proof, see the standard textbook on celestial mechanics by Y. Hagihara,

Celestial Mechanics, Vol. I, Sect. 5.14, MIT Press, Cambridge, Massachusetts,
1970.
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expansions of sinu and cosu with respect to τ. Lagrange showed that the following
hold: If the function u �→ f(u) is holomorphic in a neighborhood of the point u = 0,
then

f(u(τ)) = f(τ) + ef ′(τ) sin τ +
e2

2!

d

dτ

`

f ′(τ) sin2 τ
´

+ . . .

+
en

n!

dn−1

dτn−1

`

f ′(τ) sinn−1 τ
´

+ . . .

for all complex numbers τ in a sufficiently small neighborhood of τ = 0.
The Lagrange equation. Starting from the Kepler equation, Lagrange (1736–

1813) studied in 1771 the more general equation13

u = τ + eϕ(u). (3.21)

Here, we assume that τ and e are complex parameters which vary in a neighborhood
of the origin in the Gaussian plane C, and that the function u �→ ϕ(u) is holomorphic
in a neighborhood of the origin u = 0 in C. By the implicit function theorem,
equation (3.21) has a solution u = u(τ, e) which is unique for all points (τ, e) in a
sufficiently small neighborhood V of the origin (0, 0) in the product space C × C.
Moreover, the function (τ, e) �→ u(τ, e) is holomorphic on V. Lagrange showed that

u(τ, e) = τ + eϕ(τ) +

∞
X

n=2

en

n!

dn−1

dτn−1
ϕ(τ)n. (3.22)

If the function u �→ f(u) is holomorphic in an open neighborhood of the origin in
C, then we have

f(u(τ, e)) = τ + ef ′(τ)ϕ(τ) +

∞
X

n=2

en

n!

dn−1

dτn−1
f ′(τ)ϕ(τ)n. (3.23)

The formulas (3.22) and (3.23) hold for all points (τ, e) in a sufficiently small open
neighborhood of the origin (0, 0) in C×C. The proof will be given in Problem 3.12.

The inversion of a convergent power series. Suppose that the power series

f(x) = f1x +
f2

2!
x2 +

f3

3!
x3 + . . . (3.24)

with complex coefficients f1, f2, f3, . . . is convergent in an open neighborhood of the
origin x = 0 in the Gaussian plane C. Assume that f1 �= 0. Then the map f is a
local diffeomorphism at the origin. This means that the equation

y = f(x), x ∈ U(0)

can be uniquely solved in an open neighborhood U(0) of the point y = 0 in C, and
the unique solution x = f−1(y) is holomorphic in an open neighborhood of y = 0
in C. We write

f−1(y) = g1 +
g2

2!
y2 + +

g3

3!
y3 + . . . (3.25)

13 L. de Lagrange, Sur le problème de Kepler, Mémoires de l’Académie royale des
Sciences et Belles-Lettres de Berlin 24 (1771). In: L. de Lagrange, Oeuvres (Col-
lected Works), Vol. 3, pp. 113–138, Georg Olms, Hildesheim (Germany)/New
York.



134 3. The Power of Combinatorics

To simplify the following formulas, let us assume that f1 := 1. Furthermore, we set

f(x) = x + bx2 + cx3 + dx4 + . . . , f−1(y) = Ay + By2 + Cy3 + Dy4 + . . .

The unknown coefficients A,B,C,D, . . . can be determined by using the substitu-
tion

y = f(x(y)) = (Ay + By2 + Cy3 + . . .) + b(Ay + By2 + Cy3 + . . .)2 + . . .

Then comparison of coefficients yields A = 1 and

B = −b, C = −c + 2b2, D = −d + 5bc− 15b3. (3.26)

For higher-order terms, the formulas become more and more complex.

The challenge is to understand this complicated combinatorics.

For getting the classical solution of this problem, we will follow Lagrange. To this
end, we set

ψ(x) := f1 +
f2

2!
x +

f3

3!
x2 + . . . ,

and we assume that f1 �= 0. Then we have to solve the equation y = f(x) with
f(x) = xψ(x), that is,

x = yϕ(x), x ∈ U(0)

with ϕ(x) := 1
ψ(x)

. By (3.22), this yields the famous Lagrange inversion formula

f−1(y) =
y

f1
+

∞
X

n=2

yn

n!

dn−1

dxn−1

„

1

ψ(x)n

«

|x=0

. (3.27)

This formula is valid for all complex numbers y in a sufficiently small open neigh-
borhood of the origin y = 0 in the complex plane.

3.4.3 The Composition Formula for Power Series

Francesco Faà di Bruno (1825–1888) (beatified in 1988) gave a formula
equivalent to (3.30) below about a hundred and fifty years ago.14

Héctor Figueroa and José Gracia–Bondia, 2005

The inversion of a formal power series. If the expression f(x) from (3.24) only
represents a formal power series, that it, the series is divergent for all x �= 0, then
we define the formal power series f−1(y) by the Lagrange formula (3.27), by using
formal differentiation. Then we have the key relations

f−1(f(x)) = x, f(f−1(y)) = y

for the symbols x and y. This is to be understood in the sense of formal substitution.
Our next goal is to understand the relation to combinatorics and Hopf algebras.
We start with the two formal power series expansions

f(x) = f1x +
f2

2!
x2 +

f3

3!
x3 + . . . =

∞
X

n=1

fn

n!
xn

14 Faà di Bruno, Annali di Scienze Matematiche e Fisiche di Tortolini 6 (1855),
479; Quart. J. Pure Appl. Math. 1 (1857), 359. See also the footnote on page
115.
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and

g(x) = g1x +
g2

2!
x2 +

g3

3!
x3 + . . . =

∞
X

n=1

gn

n!
xn

with complex coefficients f1, f2, f3 . . . and g1, g2, g3 . . . Consider the composed map
h := f◦g, that is, h(x) := f(g(x)). We want to compute the coefficients h1, h2, h3, . . .
of the formal power series

h(x) =
∞
X

n=1

hn

n!
xn.

Comparison of coefficients. By substitution,

h(x) =
∞
X

j=1

fj

j!

 ∞
X

k=1

gk

k!
xk

!j

=
∞
X

m=1

hm

m!
xm.

Comparison of coefficients yields

h1 = g1f1, h2 = g2f1 + g2
1f2, (3.28)

h3 = g3f1 + g3
1f3 + 3g1g2f2,

h4 = g4f1 + g4
1f4 + 6g2g

2
1f3 + (3g2

2 + 4g3g1)f2,

and so on. For computing an arbitrary coefficient hk, one only needs to carry out
a finite number of algebraic operations. However, the formulas become more and
more complex. It is our goal to obtain a formula which is valid for all h1, h2, h3, . . .
This is the Faà di Bruno formula (3.30) below.

Generalized binomial coefficients, partitions, and the Bell polynomi-
als. Let n = 1, 2, . . . and k = 1, . . . , n. Moreover, let λ := (λ1, . . . , λn) denote a
tuple of nonnegative integers with

λ1 + λ2 + . . . + λn = k, λ1 + 2λ2 + . . . + nλn = n. (3.29)

Define the generalized binomial coefficients
 

n

λ; k

!

:=
n!

λ1!λ2! · · ·λn! · (1!)λ1(2!)λ2 · · · (n!)λn
.

This coefficient allows a simple interpretation in terms of partitions. Suppose that
in a partition of the set {1, 2, . . . , n} into k blocks there are λ1 singletons, λ2 two
elements subsets, and so on. This means that (3.29) holds. Then the number of all
the partitions of this type is equal to

`

n
λ; k

´

. The polynomial

Bn,k(x1, x2, . . . , xn−k+1) :=
X

λ

 

n

λ; k

!

xλ1
1 xλ2

2 · · ·x
λn
n

is called the Bell polynomial of type n, k. Here, the sum runs over all the tuples
λ = (λ1, . . . , λn) of nonnegative integers such that condition (3.29) is satisfied.15

We are now ready to formulate the Faà di Bruno formula:

hn =

n
X

k=1

fkBn,k(g1, g2, . . . , gn+1−k). (3.30)

15 John Bell (1883–1960).
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The generating function for the Bell polynomials. For n = 1, 2, . . . and
k = 1, . . . , n, we obtain that the exponential function

exp

 

z
∞
X

m=1

xm
tm

m!

!

(3.31)

is equal to the sum

1 +

∞
X

n=1

tn

n!

n
X

k=1

zkBn,k(x1, x2, . . . , xn+1−k). (3.32)

The function (3.31) is called the Faà di Bruno generating function of the Bell
polynomials. Explicitly, Bn,1(x1, . . . , xn) = xn, Bn,n(x1) = xn

1 . Furthermore, we
have B2,1(x1, x2) = x2, B2,2(x1) = x2

1, and

B3,1(x1, x2, x3) = x3, B3,2(x1, x2) = 3x1x2, B3,3(x1) = x3
1,

as well as B4,1 = x4, B4,2 = 3x2
2 + 4x1x3, B4,3 = 6x2

1x2, B4,4 = x4
1. Each Bell

polynomial is homogeneous of degree k. For the proofs of these standard result in
combinatorics, we refer to the monograph

L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974,

and to Section II.7 of the following beautiful survey article:

H. Figueroa and J. Gracia-Bondia, Combinatorial Hopf algebras in quan-
tum field theory I, Rev. Math. Phys. 17 (2005), 881–982.
Internet: http://arxiv.org/hep-th/0408145

3.4.4 The Faà di Bruno Hopf Algebra for the Formal
Diffeomorphism Group of the Complex Plane

The Faà di Bruno Hopf algebras are of the same general type as the
Kreimer–Connes–Moscovici Hopf algebras; they are in fact Hopf subal-
gebras of the Connes–Moscovici Hopf algebras. The latter appeared in
connection with the index formula for transversally elliptic differential op-
erators on a foliation.16

Héctor Figueroa and José Gracia–Bondia, 2005

The formal diffeomorphism group. Let G be the set of al formal power series
expansions of the form

f(x) = x +
∞
X

k=2

fk

k!
xk

with complex coefficients f2, f3, . . . With respect to composition f ◦ g, the set G
becomes a group called the (formal) local diffeomorphism group of the Gaussian
plane C at the origin. The unit element 1 of G corresponds to the power series x.

The coordinate maps. We define the nth coordinate map χn : G → C by
setting

16 A. Connes and H. Moscovici, Hopf algebras, cyclic cohomology and the transverse
index theorem, Commun. Math. Phys. 198 (1988), 199–246.
A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative
geometry, Commun. Math. Phys. 199 (1998), 203–242. See also the footnote on
page 115.
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χn(f) := fn, n = 1, 2, . . .

This map sends the formal power series f to its nth coefficient fn. For all indices
n,m = 1, 2, all formal power series f, g ∈ G, and all complex numbers, we define
the following operations:

(i) Linear combination: (αχn + βχm)(f) := αχn(f) + βχm(f).
(ii) Product: (χnχm)(f) := χn(f)χm(f).
(iii) Coproduct: (Δχn)(g, f) := χn(f ◦ g).
(iv) Counit: ε(χn) := χn(1).
(v) Coinverse: (Sχn)(f) := χn(f−1).

Explicitly,

ε(χn) =

(

1 if n = 1,

0 otherwise.

By (3.28), special cases of the coproduct read as

Δχ1 = χ1 ⊗ χ1, Δχ2 = χ2 ⊗ χ1 + χ2
1 ⊗ χ2, (3.33)

Δχ3 = χ3 ⊗ χ1 + χ3
1 ⊗ χ3 + 3χ2χ1 ⊗ χ2,

Δχ4 = χ4 ⊗ χ1 + χ4
1 ⊗ χ4 + 6χ2χ

2
1 ⊗ χ3 + (3χ2

2 + 4χ3χ1)⊗ χ2.

For example, Δχ2(g, h) = χ2(g)χ1(f)+χ1(g)
2χ2(f) = g2f1 +g2

1f2, which coincides
with (3.28). More generally, it follows from Sect. 3.4.3 that

Δχn =

n
X

k=1

Bn.k(χ1, χ2, . . . , χn+1−k)⊗ χk, n = 1, 2, . . . (3.34)

For the coinverse, it follows from the inversion formulas (3.26) that Sχ1 = χ1, and
Sχ2 = −χ2, as well as

Sχ3 = −χ3 + 3χ2
2, Sχ4 = −χ4 + 10χ2χ3 − 15χ3

2. (3.35)

In the general case, the coinverse Sχn, n = 1, 2, . . . , is explicitly given by the La-
grange inversion formula for the power series coefficients of inverse functions. Dif-
ferent formulations will be considered in the next section (e.g., the generalized
Zimmermann forest formula).

The Hopf algebra. Let the symbol C[χ1, χ2, . . .] denote the complex algebra
generated by the coordinate functions χ1, χ2, . . . Explicitly, the elements of this
algebra are precisely all the polynomials

X

r

αγ1γ2...γrχ
γ1
1 χγ2

2 · · ·χ
γr
r

of arbitrary order with respect to the variables χ1, χ2, . . . and complex coefficients
α... . This algebra contains the complex numbers as polynomials of degree zero.
Equipped with the usual linear combinations and products of polynomials, the
algebra C[χ1, χ2, . . .] is a complex commutative algebra with the complex number
1 as unit element.17 By multilinearity, we extend the coproduct Δ, the counit ε
and the coinverse S to C[χ1, χ2, . . .]. For example, we define the coproduct of an
algebra element

17 This can be identified with the constant function χ1.
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Δ
“

X

αγ1γ2...γrχ
γ1
1 χγ2

2 · · ·χ
γr
r

”

by the expression

X

αγ1γ2...γr (Δχ1)
γ1(Δχ2)

γ2 · · · (Δχr)
γr .

The corresponding formulas for ε and S are obtained by replacing Δ by ε and S,
respectively. Note that Δχn : G × G �→ C is a function of two variables f, g ∈ G,
and the product ΔχnΔχm refers to the product of functions of two variables, that
is (ΔχnΔχm)(g, f) := (Δχn)(g, f) ·Δχm(g, f).

Proposition 3.6 The algebra C[χ1, χ2, . . .] is a commutative Hopf algebra.

The proof proceeds similarly to the proof given in Problem 3.10 on page 170.

3.4.5 The Generalized Zimmermann Forest Formula

The coinverse (also called antipode) of Hopf algebras allows us to elegantly
describe complicated inversion processes in mathematics and physics.

Folklore

It turned out that the whole iterative and intricate structure of renor-
malization theory could be mapped to the theory of Hopf algebras, with
Zimmermann’s forest formula for the counterterm coming along as an-
tipode.18

Dirk Kreimer, 1994

The iterative formula for the coinverse. The coinverse can be computed by
the following iterative formula:

Sχn = −χn −
“

X

a(1)Sa(2) − Sχn − χn

”

, n = 2, 3, . . . (3.36)

where we have
Δχn =

X

a(1) ⊗ a(2),

in the Sweedler notation. Moreover, Sχ1 = χ1, and χ1 = 1. Let us discuss formula
(3.36). Observe first that this is a trivial identity. In fact, since ε(χn) = 0 for
n = 2, 3, . . . and μ(id⊗ S)Δ = ηε, we get

μ(id⊗ S)Δ(χn) = ηε(χn) = 0, n = 2, 3, . . . .

This implies

μ(id⊗ S)
X

a(1) ⊗ a(2) = μ
“

X

a(1) ⊗ Sa(2)

”

=
X

a(1)Sa(2) = 0.

Secondly, the right-hand side of (3.36) does not explicitly contain the term Sχn.
This follows from Δ(χn) = χn ⊗ χ1 + χn

1 ⊗ χn + . . . and hence

X

a(1)Sa(2) = χnSχ1 + χn
1Sχn + . . . = χn + Sχn + . . . , n = 2, 3, . . .

Let us use (3.36) in order to successively compute Sχ2, Sχ3, and Sχ4.

18 D. Kreimer, Knots and Feynman Diagrams, Cambridge University Press, 1994.
See also Sect. 19.3 on page 990.
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(i) n = 2. It follows from the coproduct Δχ2 = χ2 ⊗ χ1 + χ2
1 ⊗ χ2 that

Sχ2 = −χ2 + (χ2Sχ1 + χ2
1Sχ2 − Sχ2 − χ2) = −χ2.

(ii) n = 3. By Δχ3 = χ3 ⊗ χ1 + χ3
1 ⊗ χ3 + 3χ2χ1 ⊗ χ2,

Sχ3 = −χ3 − 3χ2χ1Sχ2 = −χ3 + 3χ2
2.

(iii) n = 4. By Δχ4 = χ4 ⊗ χ1 + χ4
1 ⊗ χ4 + 6χ2χ

2
1 ⊗ χ3 + (3χ2

2 + 4χ3χ1)⊗ χ2,

Sχ4 = −χ4 − 6χ2Sχ3 − (3χ2
2 + 4χ3)Sχ2

= −χ4 − 6χ2(−χ3 + 3χ2
2) + (3χ2

2 + 4χ3)χ2

= −χ4 − 15χ3
2 + 10χ2χ3.

Next we want to get global explicit formulas for the coinverse which are not based
on an iterative process.

The alternating coinverse formula. We have Sχ1 = χ1, Sχ2 = −χ2, and

Sχn = −χn +

n−1
X

j=2

(−1)jB(χ1, . . . , χn−1), n = 3, 4, . . . (3.37)

Here, B(χ1, . . . , χn−1) is equal to

X

0<kj−1<···<k1<n

Bn,k1Bk1,k2 · · ·Bkj−2,kj−1χkj−1 .

To simplify notation, the arguments of the Bell polynomials are suppressed. For
example, we get Sχ3 = −χ3 + B32χ2 = −χ3 + 3χ2

2. Furthermore,

Sχ4 = −χ4 + B4,2χ2 + B4,3χ3 −B4,3B3,2χ2

= −χ4 + 3χ3
2 + 4χ2χ3 + 6χ2χ3 − 18χ3

2 = −χ4 + 10χ2χ3 − 15χ3
2.

Finally, let us compute

Sχ5 = −χ5 + (B5,2χ2 + B5,3χ3 + B5,4χ4)

−(B5,4B4,3χ3 + B5,4B4,2χ2 + B5,3B3,2χ2) + B5,4B4,3B3,2χ2

= −χ5 + 15χ2χ4 + 10χ2
3 + 25χ2

2χ3 − (130χ2
2χ3 + 75χ4

2) + 180χ4
2

= −χ5 + 15χ2χ4 + 10χ2
3 − 105χ2

2χ3 + 105χ4
2.

The sophisticated Zimmermann type cancellation formula. The com-
putations above are based on cancellations. Now we will formulate a formula for
the coinverse which works in a much simpler way. For n = 2, 3, . . . , this elegant
formula reads as

Sχn =

n−1
X

k=1

(−1)kn(n + 1) · · · (n− 1 + k)Bn−1,k

“χ2

2
,
χ3

3
, . . .

”

. (3.38)

This is also called the generalized Zimmermann forest formula. For example,
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Sχ4 = −4B3,1 + 20B3,2 − 120B3,3 = −χ4 + 10χ2χ3 − 15χ3
2.

Remark. The iterative formula (3.36) represents a model for the Bogoliubov it-
erative formula in the Bogoliubov–Parasiuk–Hepp–Zimmermann (BPHZ) approach
to the renormalization of quantum field theories. Similarly, the condensed coinverse
formula (3.38) represents a model for the famous Zimmermann forest formula in the
BPHZ approach. It is a general phenomenon observed in combinatorics that one
frequently encounters alternating sums. As a rule, such formulas are not optimal,
since huge cancellations occur.

It is the goal of combinatorics to get optimal formulas which contain a
minimal number of cancellations.

Such optimal formulas like (3.38) are not easy to get. The elementary proofs of the
coinverse formulas (3.37) and (3.36) above can be found in Figueroa and Gracia-
Bondia (2005) (see the reference on page 136). For the sophisticated proof of the
condensed coinverse formula (3.38), we refer to:

W. Schmitt, Antipodes and incidence Hopf coalgebras, J. Combinatorial
Theory A46 (1987), 264–290.

M. Haimann and W. Schmitt, Incidence algebra antipodes and Lagrange
inversion in one and several variables, J. Combinatorial Theory A50
(1989), 172–189.

This proof is based on the modern theory of incidence Hopf algebras in combina-
torics. The generalized Zimmermann forest formula (3.38) is a high-light in combi-
natorics.

3.4.6 The Logarithmic Function and Schur Polynomials

The basic formula. For the formal power series 1 +
P∞

n=1 cnx
n with complex

coefficients c1, c2, . . . , we get the following formal power series

ln

 

1 +

∞
X

n=1

cnx
n

!

=

∞
X

n=1

Sn(c1, . . . , cn)xn (3.39)

with the so-called Schur polynomials19 Sn(c1, . . . , cn) defined by

1

n!

n
X

k=1

(−1)k−1(k − 1)!Bn,k(c1, 2!c2, 3!c3, . . . , (n + 1− k)!cn+1−k).

Conversely, we have

exp

 ∞
X

n=1

Sn(c1, . . . , cn)xn

!

= 1 +

∞
X

n=1

cnx
n. (3.40)

Set g(x) :=
P∞

n=1
gn
n!
xn with gn := cnn! and

f(y) := ln(1 + y) =

∞
X

n=1

fn

n!
yn

19 Schur (1875–1941).
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with fn := (−1)n−1(n − 1)!. Then formula (3.39) follows from the Faà di Bruno
composition formula (3.30) applied to f ◦ g. �

Explicitly, the first Schur polynomials read as follows:

S1(c1) = c1, S2(c1, c2) = c2 −
c21
2
, S3(c1, c2, c3) = c3 − c1c2 +

c31
3
.

3.4.7 Correlation Functions in Quantum Field Theory

In the perturbative approach to quantum field theory, combinatorial for-
mulas are used for computing correlation functions of interacting quantum
fields by means of simpler correlation functions of free fields.

Folklore

Let us briefly discuss the relation between the Faà di Bruno Hopf algebra and several
types of correlation functions. Quantum field theories are described by correlation
functions

Cn(x1, x2, . . . , xn), n = 2, 3, . . .

which describe the correlations between the quantum field at the different space-
time points x1, x2, . . . , xn. As a rule, the correlation functions have strong singu-
larities if two space-time points coincide. In combinatorics, a basic tool is given by
generating functions. Motivated by this, let us set

Z[J ] := 1 +

∞
X

n=1

in

n!�n

Z

R4n

Cn(x1, . . . , xn)J(x1) · · · J(xn)d4x1 · · · d4xn

and

Zred[J ] :=
∞
X

n=1

in

n!�n

Z

R4n

Cn,red(x1, . . . , xn)J(x1) · · · J(xn)d4x1 · · · d4xn.

Here, Cn (resp. Cn,red) is called the n-correlation function (resp. the reduced n-
correlation function). We assume that the functions Cn and Cn,red with n = 1, 2, . . .
are symmetric with respect to all the arguments. The proof of the following propo-
sition will be given in Problem 3.14 on page 173.

Proposition 3.7 Let n = 1, 2, . . . Suppose that we have

Cn(x1, . . . , xn) =

n
X

k=1

X

p∈Πn,k

 

Y

p

Cred

!

(x1, . . . , xn)

for all arguments x1, . . . , xn ∈ R
4. Then, Z[J ] = eZred[J], in the sense of a formal

power series.

The symbol
P

p∈Πn,k

“

Q

p Cred)(x1, . . . xn

”

means that we sum over all possible

partitions p of the set {1, . . . , n} into k blocks. For each partition p, we consider
a product of reduced correlation functions whose arguments are given by p. For
example, we have C1(x1) = C1,red(x1). Furthermore,

C2(x1, x2) = C1,red(x1)C1,red(x2) + C2,red(x1, x2)

and
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C3(x1, x2, x3) = C1,red(x1)C1,red(x2)C1,red(x3) + C1,red(x1)C2,red(x2, x3)

+C1,red(x2)C2,red(x1, x3) + C1,red(x3)C2,red(x1, x2) + C3,red(x1, x2, x3).

If one knows the correlation functions C1, C2, . . ., then the reduced correlation func-
tions C1,red, C2,red, . . . can be computed by means of the basic formula

Zred[J ] = lnZ[J ]. (3.41)

In particular, if C1 = 0, then C1,red = 0 and

C2,red(x1, x2) = C2(x1, x2). (3.42)

Furthermore, C3,red = C3 and

C4,red(x1, x2, x3, x4) = C4(x1, x2, x3, x4)− C2(x1, x2)C2(x3, x4)

−C2(x1, x3)C2(x2, x4)− C2(x1, x4)C2(x2, x3) (3.43)

for all x1, x2, x3, x4 ∈ R
4. These formulas for the 2-correlation function and the

4-correlation function are encountered in the theory of interacting quantum fields.
In the special case of free quantum fields, we have C1,red = 0 and Cn,red = 0 for
all n = 3, 4, . . . All the information about a free quantum field is contained in the
2-point correlation function C2.

Physicists use this result in order to simplify the computation of correlation
functions for interacting quantum fields. It turns out that the reduced correlation
functions Cn,red correspond to connected Feynman graphs (also called Feynman
diagrams), whereas the general correlation functions Cn correspond to all kinds
of (connected or disconnected) Feynman graphs. Therefore, the functions Cn and
Cn,red are also called the n-Green’s function and the connected n-Green’s function,
respectively.

For interacting quantum fields, it is sufficient to investigate connected
Feynman graphs. The effects related to disconnected Feynman graphs can
be reduced to the corresponding effects coming from connected Feynman
graphs.

In other words, the reduced correlation functions form a (nonlinear) basis for gen-
eral correlation functions. This is closely related to the theory of cumulants in
probability theory to be studied in the next section.

It turns out that even the connected Feynman graphs can still have a certain
redundancy. Therefore physicists pass over to Feynman graphs with a nontrivial
topology (called one-particle irreducible graphs). This allows us to reduce the com-
putation of n-correlation functions Cn to both irreducible vertex functions and
2-correlation functions.

Finally, let us discuss the relation to the Faà di Bruno Hopf algebra. To this
end, set

Xn :=
in

�n

Z

R4n

Cn(x1, . . . , xn)J(x1) · · · J(xn)d4x1 · · · d4xn.

Using the Faà di Bruno formula (3.31), we obtain that the exponential function
exp(Zred[J ]) = exp

`

P∞
n=1

1
n!
·Xn

´

is equal to

1 +
∞
X

n=1

1

n!

n
X

k=1

X

λ∈Πn,k

n!

λ1!λ2! · · ·λn!(1!)λ1(2!)λ2 · · · (n!)λn
Xλ1

1 Xλ2
2 · · ·X

λn
n .

In turn, Proposition 3.7 above tells us that this is equal to Z[J ].



3.4 Power Series Expansion and Hopf Algebras 143

3.4.8 Random Variables, Moments, and Cumulants

Generating functions for the moments of random variables represent a
basic tool in quantum field theory.

Folklore

The following considerations are basic for the theory of random variables. Let X
and Y be two independent random variables. Then, for the mean values and the
mean fluctuations, we have the following additivity property

X + Y = X + Y , (ΔX + ΔY )2 = (ΔX)2 + (ΔY )2.

We want to generalize this to higher moments. The basic idea is to pass from the
multiplicative family of moments to the additive family of cumulants by using the
logarithmic function. In terms of algebra, the passage from cumulants to moments
is given by Schur polynomials. In quantum field theory, the passage from moments
to cumulants corresponds to the passage from correlation functions (i.e., Green’s
functions) to reduced correlation functions (i.e., connected Green’s functions). In
terms of Feynman diagrams, this corresponds to a passage from general Feynman
graphs to connected Feynman graphs (see (3.41)). The proofs for the following
statements can be found in Sect. II.12 of the textbook by A. Shiryaev, Probability,
Springer, New York, 1996.

Random variable on the real line. Let � : R→ R be a nonnegative smooth
function which rapidly decreases at infinity (i.e., � ∈ S(R)) and which satisfies
the normalization condition

R

R
�(x)dx = 1. The function � generates a probabil-

ity measure μ and a random variable X on the real line with the corresponding
Lebesgue-Stieljes integral

Z

B
fdμ =

Z

B
f(x)�(x)dx.

For each Borel subset B of the real line (e.g., intervals), the measure μ(B) is equal
to μ(B) =

R

B dμ. Moreover, we get

p(X ∈ B) = μ(B).

This means the following. Suppose that we measure the variable X in an experi-
ment. Then the probability of finding the measured value in the set B is equal to
μ(B). For a function f : R→ C, we define the mean value

f(X) :=

Z

R

f(x)dμ(x)

provided this integral exists.This is the case if the function f is smooth and the
function x �→ |f(x)| has at most polynomial growth at infinity.

Moments. The moments of the random variable X are defined by

mk := Xk =

Z

R

xkdμ, k = 1, 2, . . .

The characteristic function. The function

ϕX(ξ) := eiξx =

Z

R

eiξxdμ(x), ξ ∈ R
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is called the characteristic function to the random variable X. In other words,
this is the Fourier–Stieltjes transform with respect to the probability measure μ.
Differentiation yields ϕ′

X(0) = i
R

R
xdμ(x). Hence

ϕ
(k)
X (0) = ikmk k = 1, 2, . . .

By Taylor expansion,

ϕX(ξ) := 1 +
n
X

k=1

ikmk
ξk

k!
+ o(ξn), ξ → 0, n = 1, 2, . . .

This way, we obtain the formal power series expansion:

ϕX(ξ) := 1 +

∞
X

k=1

ikmk
ξk

k!
, ξ → 0.

Therefore, the characteristic function ϕX is called the generating function for the
moments of the random variable X. The Bochner theorem tells us the following:20

The continuous function χ : R → C with χ(0) = 1 is the characteristic
function of a probability measure on the real line iff it is positive definite,
that is,

n
X

i,j=1

χ(ξi − ξj)ηiη
†
j ≥ 0, n = 1, 2, . . .

for all real numbers ξ1, . . . , ξn and all complex numbers η1, . . . , ηn.

This theorem is a jewel in harmonic analysis; it allows important generalizations
concerning the spectral representation of kernels (in the sense of the theory of
distributions).21

Cumulants. We pass from the generating function ϕX to the generating func-
tion

lnϕX(ξ) =

∞
X

k=1

iksk
ξk

k!
. (3.44)

This is a formal power series. The coefficients s1, s2, . . . are called the cumulants of
the random variable X. There exists a one-to-one relation between moments and
cumulants. Explicitly, we get the rescaled Schur polynomials

m1 = s1, m2 = s2 + s2
1, m3 = s3 + 3s1s2 + s3

1.

Conversely, we obtain eln ϕX (ξ) = ϕX(ξ), and hence

s1 = m1 = X, s2 = m2 −m2
1 = (ΔX)2, s3 = m3 − 3m1m2 + 2m3

1.

The crucial additivity property of cumulants. Now consider two random
variables X,Y on the real line which are independent, that is,

p(X ∈ B, Y ∈ C) = p(X ∈ B) · p(Y ∈ C)
20 S. Bochner, Lectures on Fourier Integrals, Leipzig, 1932 (in German).
21 See K. Maurin, Generalized Eigenfunction Expansions and Unitary Representa-

tions of Topological Groups, Sect. II.5, PWN, Warsaw, 1968.
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for all Borel sets B, C on the real line. In other words, the probability measure of
the random vector (X,Y ) on the plane is the product measure of the measures
corresponding to X and Y . Then we have the product property

ϕX+Y = ϕXϕY

for the generating functions. This implies

ln(ϕX+Y ) = lnϕX + lnϕY .

Consequently, for two independent random variables X and Y , the cumulants are
additive quantities, that is,

sk,X+Y = sk,X + sk,Y , k = 1, 2, . . .

In particular, we get X + Y = X + Y , and {Δ(X + Y )}2 = (ΔX)2 + (ΔY )2 if we
choose k = 1, 2.

Solution of the moment problem. We want to reconstruct the probability
measure from its moments. This is the moment problem.

Suppose that we are given a sequence m1,m2, . . . of nonnegative numbers
with

lim sup
k→∞

m
1/k
k

k
<∞ and

∞
X

k=1

1

m
1/2k
2k

=∞.

Then there exists a uniquely determined probability measure μ on the real
line such that the numbers m1,m2, . . . are the moments of μ.

The moment problem played an important role in the development of measure
theory and functional analysis. In particular, the Riesz–Markov representation the-
orem (about linear continuous functionals on spaces of real continuous functions
defined on compact sets) and the Hahn–Banach theorem (on the extension of lin-
ear continuous functionals in Banach spaces) were proved for solving the moment
problem. This fascinating history can be found in J. Dieudonné, History of Func-
tional Analysis, 1900–1975, North-Holland, Amsterdam, 1983. We also refer to J.
Shohat and J. Tamarkin, The Problem of Moments, New York, 1950, and P. Lax,
Functional Analysis, Sect. 33.5, Wiley, New York, 2002.

Probability measures on the plane. Let � = �(x, y) be a nonnegative
smooth function on the plane with � ∈ S(R2) and

R

R2 �(x, y)dxdy = 1. The corre-
sponding moments of this probability measure are given by

mk,l :=

Z

R2
xkyl�(x, y)dxdy, k, l = 0, 1, 2, . . .

with the generating function

ϕ(ξ, η) :=

∞
X

k,l=0

ik+lmk,l
ξkηl

k!l!

given by ϕ(ξ, η) := ei(ξx+ηy). Here, m0,0 = 1. Finally, set

lnϕ(ξ, η) =

∞
X

k,l=0

ik+lskl
ξkηl

k!l!
.

Here, s0,0 = 0. Then there exists a one-to-one correspondence between the moments
mkl and the cumulants skl. The same is true if we pass to probability measures on
R

n with n = 3, 4, . . . The power series expansions for ϕ and lnϕ are to be understood
as formal power series expansions.
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3.5 Symmetry and Hopf Algebras

Whoever understands symmetries can understand everything in this world.
Folklore

Symmetries play a crucial role in mathematics and physics. As a rule, it is only
possible to explicitly solve a mathematical or physical problem if a certain symmetry
is available. In the history of sciences, mathematicians and physicists encountered
more and more complicated symmetries.

3.5.1 The Strategy of Coordinatization in Mathematics and
Physics

In what follows, we will show that appropriate complex-valued coordinate functions

χj : G→ C, j = 1, 2, . . . (3.45)

on a group G generate a Hopf algebra denoted by H(G). This is the so-called co-
ordinate algebra of G. In ancient times, mathematicians studied geometric objects.
The ‘coordinatization’ of geometric objects arose in analytic geometry founded by
Descartes (1596–1650).22 The physicist Galilei (1564–1642) wrote:

Measure everything that is measurable, and make measurable everything
that is not yet so.

In terms of physics,

(i) the group G above describes abstract physical quantities, and
(ii) the coordinate functions χ1, χ2, . . . correspond to measurements performed by

an observer.

Typically, the mathematical structure concerning (ii) looks more complicated (e.g.,
Hopf algebras appear) than the mathematical structure concerning (i).23 Further-
more, note the following:

The theory of Hopf algebras allows us to study symmetries which are not
necessarily related to the classical theory of Lie groups and Lie algebras.

For example, this leads to quantum groups. In the physics literature, roughly speak-
ing, Hopf algebras are also called quantum groups. Sometimes, only special Hopf
algebras are called quantum groups (e.g., one-parameter deformations of the en-
veloping algebras of semi-simple Lie algebras).

In (3.45), the translation of properties of the group G into properties of the
coordinate functions corresponds to a general strategy used in mathematics and
physics:

Investigate mathematical objects by studying families of maps defined on
the objects.

In topology, this leads to the crucial concept of cohomology. In physics, this means
that we investigate the properties of the space-time by studying physical fields
depending on space and time. For the convenience of the reader, let us summarize
mathematical and physical topics which are closely related to the concept of Hopf
algebra:

22 The general strategy of ’coordinatization’ in algebra and algebraic geometry is
studied in I. Shafarevich, Algebra I, Springer, Berlin, 1990 (Encyclopedia of
Mathematical Sciences).

23 For example, see Sect. 3.5.3 on the coordinate Hopf algebra of an operator alge-
bra.
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• factorization of the scattering matrix and the Yang–Baxter equation,
• integrable models in statistical physics and the Yang–Baxter equation,
• solutions of the Yang–Baxter equation by means of Hopf algebras and the braid

group,
• Artin’s braid group and braid group statistics of particles,
• integrable models in quantum field theory and quantum groups,
• conformal field theory, Virasora algebras, affine Lie algebras (Kac–Moody alge-

bras), Verma modules, vertex algebras, and operator products,
• vertex algebras, the completion of the classification of the finite simple groups by

discovering the monster group, which acts on the monstrous moonshine algebra,
• vertex algebras and algebraic curves in algebraic geometry,
• complex function theory, Riemann surfaces, conformal field theory, and strings,
• fusion rules for Feynman diagrams in conformal field theory and the Verlinde

formula,
• models in quantum gravitation, the Moyal product, and the Seiberg–Witten map,
• generalized differential calculi (with Leibniz rule) and noncommutative geometry,
• quantum groups and new topological invariants of knots and 3-dimensional man-

ifolds due to Jones (related to von Neumann algebras), Vassiliev, and Kontsevich,
• Witten’s topological quantum field theory and topological invariants of knots

and 3-dimensional manifolds,
• number theory (lattices, modular forms, and zeta functions),
• Frobenius manifolds, quantum cohomology and moduli spaces.

In mathematics and physics, one frequently encounters the solution of problems by
using iterative processes. The prototype of such processes is given by the equation

x−Ax = y

with the solution
x = (I −A)−1y = (I + A + A2 + . . .)y

and the corresponding iterative method

xn+1 = Axn + y, n = 0, 1, 2, . . .

with x0 := 0. This yields

x1 = y, x2 = y + Ay, . . . , xn = y + Ay + Ay2 + . . . An−1y.

However, there are more complicated problems where this simple method fails. As a
rule of thumb, complicated iteration methods are governed by Hopf algebras. Two
important examples are:

• the widely used implicit Runge–Kutta method for solving ordinary differential
equations in numerical mathematics (the use of Butcher series with respect to
the Hopf algebra of rooted trees for computing the coefficients of the higher-order
methods),

• Feynman diagrams and renormalization.

We refer to:

J. Butcher, An algebraic theory of integration methods, Math. Comp. 26
(1972), 79–106.

C. Brouder, Runge–Kutta methods and renormalization, Eur. J. Phys. C
12 (2000), 521–534. Internet: http://arxiv.org/hep-th/9904014

Hints for further reading can be found in Sect. 17.4 of Vol. I.
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3.5.2 The Coordinate Hopf Algebra of a Finite Group

Finite groups can equivalently described by incidence numbers.
Folklore

Let G be a finite group with the unit element e. Let H(G) denote the set of all
complex-valued functions

ϕ : G→ C

on the group G. For functions ϕ,ψ ∈ H(G), group elements g, h ∈ G, and complex
numbers α, β, we define the following operations:

(i) Linear combination: (αϕ + βψ)(g) := αϕ(g) + βψ(g).
(ii) Product: (ϕψ)(g) := ϕ(g)ψ(g).
(iii) Unit element: 1(g) := 1.
(iv) Coproduct: (Δϕ)(g, h) := ϕ(gh).
(v) Counit: ε(ϕ) := ϕ(e).
(vi) Coinverse: (Sϕ)(g) := ϕ(g−1).

Concerning the definition of αϕ+βψ, ϕψ,1, Δ(ϕ), ε(ϕ), and S(ϕ), note the follow-
ing:

• The coproduct Δ sends complex-valued functions g �→ ϕ(g) of one variable on
the group G to functions (g, h) �→ ϕ(gh) of two variables by using the group
product gh.

• The counit ε sends complex-valued functions g �→ ϕ(g) of one variable on the
group G to complex numbers ϕ(e) by using the unit element e of the group.

• The coinverse S sends complex-valued functions g �→ ϕ(g) of one variable on G
to functions g �→ ϕ(g−1) of one variable by using the inverse g−1 of the group
element g.

The maps Δ,S, and ε are linear and multiplicative. This means that, for all func-
tions ϕ,ψ : G→ C and all complex numbers α, β, we have

Δ(αϕ + βψ) := αΔϕ + βΔψ, Δ(ϕψ) = ΔϕΔψ.

The same is true if we replace Δ by S (resp. ε).
Recall the following definition. For given functions ϕ,ψ : G→ C, we define the

tensor product ϕ⊗ ψ by setting

(ϕ⊗ ψ)(g, h) := ϕ(g)ψ(h) for all g, h ∈ G.

This is a function of the form ϕ⊗ψ : G×G→ C. In other words, ϕ⊗ψ is a function
of two variables. Note the following peculiarity which follows from the finiteness of
the group G. The functions

χ : G×G→ C

of two variables are in one-to-one correspondence to the elements of the tensor
product H(G)⊗H(G). We will show this in (3.46) below by using a basis. In this
sense, the coproduct is a map of the form Δ : H(G)→ H(G)⊗H(G).

Proposition 3.8 The algebra H(G) is a commutative Hopf algebra. The dimen-
sion of H(G) is equal to the number of group elements. The Hopf algebra H(G) is
cocommutative iff the group G is commutative.
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The proof will be given in Problem 3.11 on page 172.

Basis. Let us formulate the operations of the algebra H(G) in terms of a basis.
Then the coproduct, the counit, and the coinverse can be expressed by using so-
called incidence numbers. Let g1, g2, . . . , gm denote the elements of the group G
where g1 is the unit element e. For j = 1, . . . ,m, we introduce the special coordinate
functions χj : G→ C by setting (k = 1, . . . ,m):

χj(gk) :=

(

1 if gk = gj ,

0 if gk �= gj .

Each function ϕ : G→ C can be uniquely represented by the formula

ϕ =

m
X

k=1

αkχk

where αk := ϕ(gk) for k = 1, . . . ,m. Thus, the functions χ1, . . . , χm form a basis of
the linear space H(G). Furthermore, each function ψ : G×G→ C of two variables,
ψ = ψ(g, h), can be uniquely represented as

ψ =
m
X

j,k=1

αjkχj ⊗ χk (3.46)

with αjk := ψ(gj , gk). This follows from

(χj ⊗ χk)(g, h) = χj(g)χk(h) for all g, h ∈ G.

Consequently, the functions ψ = ψ(g, h) of two variables can be identified with the
elements of the tensor product H(G)⊗H(G).

Coproduct. For the coproduct Δ : H(G)→ H(G)⊗H(G), we get

Δχj =

m
X

r,s=1

βjrsχr ⊗ χs, j = 1, . . . ,m

with the incidence numbers βjrs := χj(grgs). Explicitly,

βjrs =

(

1 if grgs = gj ,

0 otherwise.

Note that βjrs = (Δχj)(gr, gs). The linearity of the coproduct tells us that

Δ

 

m
X

j=1

αjχj

!

=

m
X

j=1

αjΔχj .

The counit. For the counit ε : G → C, we get the incidence numbers
ε(χ1), . . . , ε(χn). Explicitly,

ε(χj) =

(

1 if gj = e,

0 otherwise.

Moreover, ε(
Pm

j=1 αjχj) =
Pm

j=1 αjε(χj).

The coinverse. For the coinverse S : H(G)→ H(G), we get
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Sχj =

m
X

r=1

γjrχr, j = 1, . . . ,m

with the incidence numbers γjr := χj(g
−1
r ). Explicitly,

γjr :=

(

1 if g−1
r = gj ,

0 otherwise.

Note that γjs = (Sχj)(gs). Furthermore, for all complex numbers α1, . . . , αm, we
obtain

S

 

m
X

j=1

αjχj

!

=

m
X

j=1

αjSχj .

Summarizing, the Hopf algebra H(G) equivalently represents the finite group G in
terms of incidence numbers for the group operations. This way, the Hopf algebra
H(G) represents a ‘coordinatization’ of the group G.

3.5.3 The Coordinate Hopf Algebra of an Operator Group

Let X be a finite-dimensional complex Hilbert space with the complete orthonormal
system b1, b2, . . . , bn. We consider a group G of linear operators

A : X → X

with the unit operator id. In terms of physics, the operators A in G represent phys-
ical quantities independent of any measurement by observers. In order to describe
measurements, we have to assign real numbers to the operator A; these real numbers
are called the coordinates of A. We will proceed in two steps. First we will assign a
matrix A to the operator A. Then we will describe the matrix A = (ajk)j,k=1,...,n

by a family {χjk}j,k=1,...,n of coordinate functions. Moreover, we will pass to the
polynomial algebra generated by the coordinate functions. Finally, this polynomial
algebra can be equipped with the structure of a Hopf algebra.

(i) Matrix elements ajk (Dirac calculus): We set

ajk := 〈bj |Abk〉, j, k = 1, 2, . . . , n

with the corresponding matrix A := (ajk). By matrix calculus (called Dirac
calculus in physics), the map m : L(X,X)→ L(Cn,Cn) given by

m(A) := A for all A ∈ L(X,X)

is an algebra isomorphism. Explicitly, for all linear operators A,B : X → X
and all complex numbers α, β, we have

m(αA + βB) = α ·m(A) + β ·m(B), m(AB) = m(A)m(B).

This way, the operator group G is isomorphically transformed into the matrix
group G, which is a subgroup of the group GL(n,C) of invertible complex
(n× n)-matrices with the unit matrix I as unit element.
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(ii) Coordinate functions (Hopf algebra – quantum group): Let us make the addi-
tional assumption that det(A) = 1 for all A ∈ G. That is, G is a subgroup of
the Lie group SL(n,C). Let A ∈ G where A = (ajk). The key definitions reads
as follows:

χjk(A) := ajk, j, k = 1, . . . n.

This means that, for fixed indices j, k, the coordinate function χjk : G → C

assigns to each matrix A in the group G its matrix element ajk. Furthermore,
for all j, k = 1, . . . , n and all A,B ∈ G, we define the following:
• Coproduct: (Δχjk)(A,B) := χjk(AB).
• Counit: ε(χjk) := χjk(I).
• Coinverse (Sχjk)(A) := χjk(A−1).

Using the matrix product, we have

 

n
X

s=1

χjs ⊗ χsk

!

(A,B) =

n
X

s=1

χjs(A)χsk(B) =

n
X

s=1

ajsbsk = χjk(AB).

Thus, for the coproduct we get

Δχjk =
n
X

s=1

χjs ⊗ χsk.

Moreover, ε(χjk) = δjk. Since det(A) = 1, the elements of the inverse ma-
trix A−1 are polynomials in the elements of A. Thus, Sχjk is a polynomial
with respect to the functions χ11, . . . , χnn. Let us now introduce the algebra
C[χ11, . . . , χnn] of all polynomials

X

αγ11...γnn(χ11)
γ11(χ12)

γ12 · · · (χnn)γnn

in the variables χ11, . . . , χnn with complex coefficients α... . Here the exponents
γ11, . . . are nonnegative integers. The operations of this algebra are the usual
complex linear combinations and products. We extend the coproduct Δ above
to the algebra C[χ11, . . . , χnn] by multilinear extension, that is, we define

Δ
“

X

αγ11...γnn(χ11)
γ11(χ12)

γ12 · · · (χnn)γnn

”

by the expression

X

αγ11...γnn(Δχ11)
γ11(Δχ12)

γ12 · · · (Δχnn)γnn .

Analogous formulas are obtained by replacing Δ by ε (resp. S).

Proposition 3.9 The algebra C[χ11, . . . , χnn] is a commutative Hopf algebra. This
Hopf algebra is cocommutative iff the operator group G is commutative.

For the proof, we refer to Problem 3.11 on page 172. In modern mathematical
physics, one studies deformations of Hopf algebras. In the present case, deforma-
tions of the Hopf algebra C[χ11, . . . , χnn] can be described by deformations of the
coordinate functions χ11, . . . , χnn. The deformation of Hopf algebras is studied in
the theory of quantum groups (see Vol. IV).
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3.5.4 The Tannaka–Krein Duality for Compact Lie Groups

Try to dualize in mathematics as much as you can.
Folklore

We want to generalize the classical exponential function

χ(x) := eix, x ∈ R

in the setting of groups and C∗-algebras. The starting point is the functional equa-
tion

χ(x + y) = χ(x)χ(y) for all x, y ∈ R.

This means that the map χ : R → U(1) is a group morphism from the additive
group R of real numbers onto the multiplicative group U(1) of the unit circle in
the complex plane. Explicitly, U(1) := {z ∈ C : |z| = 1}. The group U(1) is the
prototype of a compact Lie group. Our goal is to use the group U(1) in order to
study the structure of more general objects, namely, groups and C∗-algebras. By
definition, the character of a group G is a group morphism χ : G→ U(1), that is,

χ(gh) = χ(g)χ(h) for all g, h ∈ G.

For example, the characters of the group U(1) are given by the following maps
χn : U(1)→ U(1), n = 0,±1,±2, . . . , where

χn(eiϕ) := einϕ, ϕ ∈ R. (3.47)

In terms of the angle variable ϕ, this corresponds to the map ϕ �→ nϕ. The integer
n is called the winding number (or the topological charge) of the map χn. In this
connection, let us discuss the following dualities:

• de Rham duality for manifolds and cohomology,
• Pontryagin duality for commutative compact groups,
• Tannaka–Krein duality for noncommutative compact groups,
• Gelfand–Naimark duality for commutative C∗-algebras and noncommutative ge-

ometry (see Vol. IV).

This fits into the following general strategy in mathematics:

Study the structure of a mathematical object X by investigating maps

χ : X → Y

that live on the object X. From the physical point of view, the prototype
for this strategy is given by physical fields χ that live on the space-time
manifold X.

De Rham duality. Let X be a manifold, and let χ : X → Y be a differential
form on X. Using the Cartan derivative dχ of the differential form χ with the crucial
property

d(dχ) = 0,

that is, d2 = 0, the topological properties of the manifold X can be studied by
de Rham cohomology which lies at the heart of modern differential topology. This
yields a powerful theory of topological invariants (called topological charges in
physics) including the theory of characteristic classes and Chern numbers (see Chap.
5 of Vol. I). Cohomology also lies at the heart of both the methods of BRST-
quantization and algebraic renormalization.
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Pontryagin duality. Let G be a commutative compact topological group24

(e.g., a finite group or the Lie group U(1)). Let G′ be the group of characters

χ : G→ U(1)

of the group G. This so-called dual group G′ of G is always discrete (e.g., for the
group G = U(1), the dual group G′ consists precisely of the maps χn introduced in
(3.47) above, where n = 0,±1,±2, . . .). Further dualization leads us to the bidual
group G′′ which consists of all the characters

� : G′ → U(1)

of the dual group G′. For each group element g ∈ G, we define

�g(χ) := χ(g) for all χ ∈ G′.

In 1934, Pontryagin proved the following theorem:25

The map g �→ �g is a group isomorphism from G onto the bidual
group G′′.

Tannaka–Krein duality. Let G be a compact Lie group with the unit el-
ement e. We do not assume that G is commutative (e.g., G is one of the groups
U(1), SU(2), SU(3) which arise in the Standard Model of particle physics). We want
to generalize the Pontryagin duality to this more general noncommutative situa-
tion. The trick is to pass from complex numbers to real numbers and to use real
Hopf algebras. The idea is to use the following objects:

• The orginal compact Lie group G.
• The dual real Hopf algebra G′ of all the continuous functions χ : G→ R of finite

type.
• The dual group G′′ to the Hopf algebra G′, which consists of all the algebra

morphisms μ : G′ → R equipped with the convolution product.

Explicitly, we proceed as follows. First consider the real linear space C(G,R) of
continuous real-valued functions

χ : G→ R. (3.48)

For each g ∈ G, we define the function

χg(h) := χ(hg) for all h ∈ G.

The function χ is called of finite type iff the linear hull of the set {χg : g ∈ G} is
finite-dimensional. By definition, the space G′ consists of all the continuous func-
tions (3.48) of finite type. Obviously, G′ is a linear subspace of C(G,R). Moreover,
defining

Δχ(g, h) := χ(gh), ε(χ) = χ(e), Sχ(g) := χ(g−1), g, h ∈ G,

the real linear space G′ becomes a real Hopf algebra. Furthermore, let G′′ denote
the set of all the algebra morphisms m : G′ → R. The set G′′ becomes a group with
respect to the convolution product

24 This means that G is a separated topological space, and the map (g, h) �→ gh−1

is a continuous map from G×G to G.
25 L. Pontryagin, The theory of topological commutative groups, Ann. Math. 35

(1934), 361–388. See L. Pontryagin, Topological Groups, Gordon and Breach,
1966.
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m ∗m′ := μ ◦ (m⊗m′) ◦Δ.

Explicitly, the map m ∗m′ is the composition of the maps

G′ Δ �� G′ ⊗ G′
m⊗m′

�� G′ ⊗ G′
μ �� G′,

where the multiplication map μ sends the tensor product ϕ⊗ψ of functions ϕ,ψ ∈ G′
to the product ϕψ. Finally, for each g ∈ G, we define the function �g : G′ → R by
setting

�g(χ) := χ(g) for all χ ∈ G′.

Then, �g ∈ G′′. Tannaka and Krein created a duality theory which culminates in
the following statement:26

The map g �→ �g is a group isomorphism from G onto G′′.

3.6 Regularization and Rota–Baxter Algebras

It was noted long ago by Tricomi, and later independently by Cotlar, that
the Hilbert transform

(Hf)(x) := lim
ε→+0

Z

|ξ|≥ε

f(ξ)

ξ − x
dξ, x ∈ R,

operating on a suitable function algebra, satisfies the identity

(Hf)2 = f2 + 2H(fHf).

Later on, Glen Baxter was the first to point out that the evaluation of
several functionals of sums of independent random variables depended on
a purely algebraic study of a closely related identity,

Pf · Pg = P (Pf · g + f · Pg − wfg).

Here, the fixed real parameter w is called the weight of the Rota–Baxter
operator P.27 The very same identity reappeared in the same guise in
various estimates involving the iteration of the maximum function

x �→ max(x, 0),

26 T. Tannaka, On the duality theorem for noncommutative topological groups (in
German), Tohoku math. 45 (1939), 1–12.
M. Krein, A principle of duality for compact groups and quadratic block algebras,
Dokl. Akad. Nauk (N.S.) 69 (1949), 725–728 (in Russian).

27 Idempotent Baxter operators (i. e., P 2 = P ) have been known for a long time,
often under the name of Wiener–Hopf operators. We refer to:
N. Wiener and E, Hopf, On a class of singular integral equations, Sitzber.
Deutsch. Akad. Wiss Berlin, Kl. Math.-Phys.-Techn. (1931), pp. 696–706 (classic
paper)(in German).
M. Krein, Integral equations on half line with kernel depending upon the differ-
ence of the arguments, Amer. Math. Soc. Transl. 22(2) (1962), pp. 163–288.
I. Gochberg, One-Dimensional Singular Integral Equations, Vols. 1, 2, Birkhäu-
ser, Basel, 1992.
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such as occur in the theory of almost-everywhere convergence. . . By look-
ing at the problem in the rarified atmosphere of universal algebra, we were
led to a systematic method for guessing and verifying identities for Bax-
ter operators, based upon reducing all computations to identities between
symmetric functions.28

Gian-Carlo Rota and David Smith, 1972

It is our goal to generalize the classical operations of

• differentiation and integration of smooth functions, and
• regularization of singular functions

by using deformations. This will lead us to the notion of Rota–Baxter operators
with weights. Hopf algebras and Rota–Baxter algebras play a crucial role in modern
renormalization theory, as we will study later on.

Let A be a complex algebra. Consider an operator P : A → A. One frequently
encounters the following special cases.

(i) Linear map: The operator P is called linear iff we have

P (αf + βg) = αPf + βPg

for all f, g ∈ A and all complex numbers α, β.
(ii) Antilinear map: The operator P is called antilinear iff

P (αf + βg) = α†Pf + β†Pg

for all f, g ∈ A and all complex numbers α, β.
(iii) Multiplicative map: The operator P is called multiplicative iff for all f, g ∈ A,

we have the product property

P (fg) = Pf · Pg.

The operator P is called an endomorphism of the algebra A iff it is linear and
multiplicative. Bijective endomorphisms are called automorphisms.

(iv) Anti-multiplicative map: The operator P is called anti-multiplicative iff for all
f, g ∈ A,

P (fg) = Pg · Pf.

The operator P is called an anti-endomorphism of the algebra A iff it is anti-
linear and anti-multiplicative. Bijective anti-endomorphisms are called anti-
automorphisms.

(v) Derivation: The operator P is called a derivation iff it is linear, and for all
f, g ∈ A, we have the following Leibniz (product) rule:

P (fg) = Pf · g + f · Pg. (3.49)

Derivations are also called infinitesimal endomorphisms (or generalized differ-
ential operators).

28 G. Rota and D. Smith, Fluctuation theory and Baxter algebras, Istituto
Nazionale di Alta Mathematica, Symposia matematica, Volume IX (1972), 179–
201. This article is reprinted in J. Kung (Ed.), Gian-Carlo Rota on Combina-
torics: Introductory Papers and Commentaries, pp. 481–201. Birkhäuser, Basel,
1995 (reprinted with permission).
G. Baxter, Combinatorial methods in fluctuation theory, Z. Wahrscheinlichkeits-
theorie (Journal of Probability Theory) 1 (1963), 263–270.
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(vi) Inverse derivation: The operator P is called an inverse derivation iff it is linear
and for all f, g ∈ A, we have the following rule:

Pf · Pg = P (Pf · g + f · Pg). (3.50)

As we will show below, this rule generalizes integration by parts. Inverse deriva-
tions are also called generalized integral operators.

(vii) Truncation operator: The operator P is called a truncation iff it is linear with
the projector property P 2 = P and with the truncation property, that is, for
all f, g ∈ A we have

Pf · Pg = P (Pf · g + f · Pg − fg). (3.51)

The operator R := I − P is called a regularization operator.
(viii) Rota–Baxter operator: Fix the real number w. The operator P is called a

Rota–Baxter operator of weight w iff it is linear and for all f, g ∈ A, we have
the relation

Pf · Pg = P (Pf · g + f · Pg − wfg). (3.52)

Obviously, the inverse derivation (vi) (resp. the truncation operator (vii)) is a
Rota–Baxter operator of weight w = 0 (resp. w = 1). If P is a Rota–Baxter
operator of nonzero weight w, then w−1P (resp. −w−1P ) is a Rota–Baxter
operator of weight 1 (resp. −1).

(ix) Rota–Baxter algebra: By definition, a Rota–Baxter algebra of weight w is a
complex commutative unital algebra A equipped with a fixed Rota–Baxter
operator of weight w.

Differentiation and integration. Set A := E(R), that is, the complex algebra
A consists of all the smooth functions f : R→ C.

• Fix n = 1, 2, . . . The operator

Pf := fn for all f ∈ A
is multiplicative. This operator is linear iff n = 1. In this special case, the operator
P is the trivial automorphism of the algebra A.

• The operator Pf := f† is anti-linear, anti-multiplicative, and bijective. Hence
it is an anti-automorphism of A. (Since f†g† = g†f†, the operator A is also
multiplicative.)

• For fixed real number q, set

(Pf)(x) := f(qx) for all x ∈ R.

Then the operator P : A → A is an endomorphism.
• The operator Pf := df

dx
is a derivation of A. In fact, the Leibniz rule of differen-

tiation tells us that
d(fg)

dx
=

df

dx
· g + f · dg

dx
.

This is precisely relation (3.49).
• Define the integral operator (Pf)(x) :=

R x

0
f(u)du for all f ∈ A. Choosing

arbitrary functions f, g ∈ A, we obtain

P (Pf · g + f · Pg) = Pf · Pg.

This means that the operator P : A → A is a Rota–Baxter operator of weight
w = 0. In fact, setting F (x) :=

R x

0
f(u)du and G(x) :=

R x

0
g(u)du, and noting

that G(0) = F (0) = 0, integration by parts yields
Z x

0

`

F (u)g(u) + f(u)G(u)
´

du =

Z x

0

d{F (u)G(u)}
du

du = F (x)G(x).
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3.6.1 Regularization of the Laurent Series

By a formal Laurent series with finite principal part, we understand a symbol of
the form

f(z) =
a−n

zn
+

a−n+1

zn−1
+ . . . +

a−1

z
+ a0 + a1z + a2z

2 + . . .

where a−n, a−n+1, . . . are complex numbers and n = 1, 2, . . . The truncation oper-
ator P : A → A is defined by

(Pf)(z) :=
a−n

zn
+

a−n+1

zn−1
+ . . . +

a−1

z
.

That is, the truncation operator P assigns the principal part to the Laurent series.
The operator R := I − P is called the regularization operator. Explicitly,

(Rf)(z) := a0 + a1z + a2z
2 + . . .

That is, the regularization operator assigns the regular part to the Laurent series.
The set of formal Laurent series with finite principal part forms a complex commuta-
tive unital algebra with respect to the usual linear combination and multiplication.
For example,

2

„

1

z
+ z

«

+ 3

„

2

z2
+ z2

«

=
2

z
+

6

z2
+ 2z + 3z2,

and
„

2

z
+ z

«„

3

z2
+ z2

«

=
6

z3
+

3

z
+ 2z + z3.

Obviously, the truncation operator is linear and a projection operator, that is,
P 2 = P.

Proposition 3.10 The truncation operator P : A → A is a Rota–Baxter operator
of weight w = 1.

Consequently, the algebra of formal Laurent series with finite principal part is a
Rota–Baxter algebra of weight w = 1 (with respect to the truncation operator P ).
Proof. Let f, g ∈ A. Since P + R = I, we have

Pf · g + (f · Pg − fg) = Pf · (Pg + Rg)− fRg

= Pf · (Pg + Rg)− (Pf + Rf)Rg = Pf · Pg −Rf ·Rg.

Summarizing, Pf · g + f · Pg − fg = Pf · Pg − Rf · Rg. Applying the operator
P to this equation and noting that Rg · Rf is a power series expansion and hence
P (Rg ·Rf) = 0, we get the desired relation

P (Pf · g + fPg − fg) = Pf · Pg.

�
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3.6.2 Projection Operators

The preceding result can immediately be generalized to projection operators onto
subalgebras of commutative algebras. This explains the importance of Rota–Baxter
operators for algebraic structures. Let A be a commutative (real or complex) alge-
bra. Suppose that we have the direct sum decomposition

A := A+ ⊕A−

where A+ and A− are subalgebras of A. This means that for each f ∈ A we have
the unique sum representation

f = f+ + f−, f+ ∈ A+, f− ∈ A−.

Now we set Pf := f− and Rf := f+.

Proposition 3.11 The projection operators P : A → A− and R : A → A+ are
Rota–Baxter operators of weight w = 1.

The proof proceeds analogously to the proof of Prop. 3.10.

3.6.3 The q-Integral

Let B be the complex algebra of all polynomials f : R→ C with f(0) = 0. Fix the
parameter q ∈]− 1, 1[. The Jackson integral (or q-integral) is defined by

(q)

Z x

0

f(x)dx := f(qx) + f(q2x) + f(q3x) + . . . , x ∈ R.

This series is always convergent. In particular, for k = 1, 2, . . ., we get

(q)

Z x

0

ukdu =
xkqk

1− qk
, x ∈ R.

Let n = 1, 2, . . . By linearity,

(q)

Z x

0

n
X

k=1

aku
kdu =

n
X

k=1

ak
xkqk

1− qk
.

This definition looks strange. However, the point is that, after setting

(Pf)(x) := (q)

Z x

0

f(u)du, u ∈ R, f ∈ B,

this notion of integral enjoys a formula of integration by parts, namely,

P (Pf · g + f · Pg − wfg) = Pf · Pg for all f, g ∈ B (3.53)

with w = −1. This is a deformation of the integration by parts formula

P (Pf · g + f · Pg) = Pf · Pg

for classical integrals (Pf)(x) :=
R x

0
f(u)du.
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Proposition 3.12 The q-integration operator P : B → B is a Rota–Baxter opera-
tor of weight w = −1.

Proof. We have to show that (3.53) is valid. To see this, set (Qf)(x) := f(qx) for
all x ∈ R. Then

Pf = Qf + Q2f + Q3f + . . .

Obviously, we have Q(f · g) = Qf · Qg. Hence Q2(f · g) = Q2f · Q2g, and so on.
Let ϕ,ψ ∈ B. Using the commutativity property ϕψ = ψϕ, we obtain the following
identity:

Q
`

(I −Q)ψ ·Qϕ
´

+ Q
`

(I −Q)ϕ ·Qψ
´

= Q(ψQϕ)−Q2(ψϕ) + Q(ϕQψ)−Q2(ϕψ)

= Q(ϕψ)−Q2(ϕψ) + Q
`

ψQϕ + ϕQψ − ϕψ −Q(ϕψ)
´

= (I −Q)Q(ϕψ)−Q
`

(I −Q)ϕ · (I −Q)ψ
´

. (3.54)

Setting Sf := f + Pf = f + Qf + Q2f + . . . , we get

S(I −Q)f = (I −Q)Sf = f for all f ∈ B.

Hence S = (I −Q)−1 and P = QS = SQ. Multiplying the first and last members
of (3.54) by S, we obtain

P
`

(I −Q)ψ ·Qϕ
´

+ P
`

(I −Q)ϕ ·Qψ
´

= Qϕ ·Qψ

−P
`

(I −Q)ϕ · (I −Q)ψ
´

. (3.55)

Finally, set f := (I −Q)ϕ and g := (I −Q)ψ. Then

Pf = QS(I −Q)ϕ = Qϕ, Pg = Qψ.

By (3.55), we get P (gPf)+P (fPg) = Pf ·Pg−P (fg). This is the claim (3.53). �

Hints for further reading. The q-deformation of special polynomials and the
q-integral were introduced by:

F. Jackson, On q-functions and a certain difference operator, Trans. Roy.
Soc. Edinburgh 46 (1908), 253–281.

F. Jackson, q-Integration, Proc. Durham Phil. Soc. 7 (1927), 182–189.

In the last twenty years, physicists used this approach in order to study deformations
of classical structures in order to get new approaches to the quantization of space
and time. We refer to:

M. Majid, Foundations of Quantum Group Theory, Cambridge University
Press, Cambridge, 1995.

M. Majid, A Quantum Groups Primer, Cambridge University Press, 2002.

J. Wess, Gauge theories on noncommutative space-time treated by the
Seiberg–Witten method. In: U. Carow-Watamura et al. (Eds.) (2005), 179–
192.

T. Kornwinder, Special functions and q-commuting variables, 1996.
Internet: http://www.q-alg/9608008

H. Wachter, q-Integration on quantum spaces, Eur. Phys. J. C 32 (2004),
281–297. Internet: http://www.hep-th/0206083

A. Schmidt and H. Wachter, q-deformed quantum Lie algebras, J. Geom-
etry and Physics, 56 (2006), 2289–2325.
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H. Wachter, Towards a q-deformed quantum field theory, 24 pages. In:
B. Fauser, J. Tolksdorf, and E. Zeidler (Eds.), Quantum Field Theory –
Competitive Methods, Birkhäuser, Basel, 2008.

A. Schmidt, Towards a q-deformed supersymmetric field theory, 18 pages.
In: B. Fauser, J. Tolksdorf, and E. Zeidler (Eds.) (2008) quoted above.

3.6.4 The Volterra–Spitzer Exponential Formula

The Volterra exponential formula. Consider the algebra E(R) of smooth func-
tions f : R→ C on the real line. Let P : E(R)→ E(R) be the integral operator

(Pf)(t) :=

Z t

0

f(u)du, t ∈ R,

and choose the fixed function a ∈ E(R). We will show below that, for all t ∈ R, we
have the Volterra exponential formula

exp

„

Z t

0

a(u)du

«

= 1 +

Z t

0

a(u)du +

Z t

0

dv a(v)

Z v

0

a(u)du

+

Z t

0

dw a(w)

Z w

0

dv a(v)

Z v

0

a(u)du + . . . (3.56)

Mnemonically, the right-hand side can be written as

1 + Pa + Pa ◦ Pa + Pa ◦ Pa ◦ Pa + . . .

:= 1 + Pa + P (aPa) + P (aP (aPa)) + . . .

Obviously, for all t ∈ R, there holds the simpler formula

exp

„

Z t

0

a(u)du

«

=

∞
X

k=0

1

k!

„

Z t

0

a(u)du

«k

. (3.57)

The two formulas (3.56) and (3.57) are trivial special cases of the Dyson series
which plays a fundamental role in quantum field theory (see Sect. 7.17.4 of Vol. I).
Proof. Let us prove (3.56). We start with the initial-value problem

ḟ(t) = a(t)f(t), t ∈ R, f(0) = 1. (3.58)

This is equivalent to the Volterra integral equation

f(t) = 1 +

Z t

0

a(u)f(u)du, t ∈ R. (3.59)

In turn, this is equivalent to the operator equation

f = 1 + P (af). (3.60)

The initial-value problem (3.56) has the unique solution f(t) = e
R t
0 a(u)du. In fact,

differentiation yields ḟ(t) = a(t)f(t). Furthermore, if

f = 1 + Pa + Pa ◦ Pa + Pa ◦ Pa ◦ Pa + . . . ,



3.6 Regularization and Rota–Baxter Algebras 161

then 1 + P (af) = 1 + Pa ◦ f = f. Thus, f is at least a formal solution of (3.60).
However, the argument from Sect. 7.17.3 of Vol. I shows that the infinite series
f = 1 +Pa+Pa ◦Pa+ . . . is uniformly convergent on each compact time interval.
This proves (3.56). �

The Spitzer exponential formula. It is our goal to solve equation (3.60) in
the case of Rota–Baxter algebras and to generalize the Volterra exponential formula
(3.56) to the following Spitzer exponential formula:29

eP (ln(1−az)−1) = 1 + zPa + z2Pa ◦ Pa + z3Pa ◦ Pa ◦ Pa + . . . (3.61)

Let A be a Rota–Baxter algebra of weight w = −1 with respect to the Rota–Baxter
operator P : A → A, and let a be a fixed element of A. Then the equation

f = 1 + zP (af), f ∈ A (3.62)

has a solution given by (3.61). The solution of (3.62) and the Spitzer identity (3.61)
are to be understood in the sense of formal power series expansions with respect to
the variable z. If P is a Rota–Baxter operator of weight w = 1, then the statements
above remain valid if we replace P by −P and a by −a in the Spitzer formula
(3.61). The non-trivial proof can be found in:

F. Spitzer, A combinatorial lemma and its application to probability the-
ory, Trans. Amer. Math. Soc. 82 (1965), 323–339.

See also J. Kung (Ed.), Gian-Carlo Rota on Combinatorics, p. 490, Birkhäuser,
Basel, 1995. A non-commutative version of Spitzer’s identity can be found in

K. Ebrahimi-Fard, Li Guo, and D. Kreimer, Spitzer’s identity and the
algebraic Birkhoff decomposition in perturbative quantum field theory, J.
Phys. A37 (2004), 11037–11052.

3.6.5 The Importance of the Exponential Function in
Mathematics and Physics

The exponential function is the most important function in mathematics.
Folklore

The following exponential and logarithmic formulas play a crucial role:

• The Dyson series via time-ordering operator (see Sect. 7.17.4 of Vol. I).
• The Trotter exponential formula (see Sect. 8.3 of Vol. I).
• The Baker–Campbell–Hausdorff exponential formula for Lie algebras (see Sect.

8.4 of Vol. I).
• The Faà di Bruno exponential formula for Bell polynomials (see (3.32) on page

136).
• The logarithmic formula for Schur polynomials (see (3.39) on page 140).
• The logarithmic formula for reduced correlation functions (or connected Green’s

functions) (see (3.41) on page 142).
• The logarithmic formula for cumulants (see (3.44) on page 144).
• Group characters (see Sect. 3.5.4 on page 152).
• The Volterra–Spitzer formula (see (3.57) on page 160).
• The Spitzer formula for Rota–Baxter algebras (see (3.61) on page 161).
• The perturbation formula (see (3.70) on page 167).

29 P
`

ln(1− az)−1
´

stands for the formal power series −
P∞

k=1
(−z)k

k!
P (ak).
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3.7 Partially Ordered Sets and Combinatorics

Modern combinatorics was strongly influenced by the work of Gian-Carlo
Rota (1933–1989) at the MIT (Massachusetts Institute of Technology)
beginning in 1967.

Folklore

3.7.1 Incidence Algebras and the Zeta Function

Let P be a partially ordered set. We define the closed interval

[x, z] := {y ∈ P : x ≤ y ≤ z},

and the half-open interval

[x, z[:= {y ∈ P : x ≤ y < z}.

The set P is called locally finite iff each closed interval only contains a finite number
of elements. The function

ζ(x, y) :=

(

1 if x ≤ y,

0 otherwise

is called the zeta function of P, and the function

δ(x, y) :=

(

1 if x = y,

0 otherwise

is called the Kronecker function of P. In terms of physics, we may regard the
elements x, y, . . . of P as events. The relation x ≤ y means that the event y is
caused by the event x.

Let P be a locally finite partially ordered set. By definition, the set A(P)
consists of all the functions

f : P × P → R

with f(x, y) = 0 if x �≤ y. For f, g ∈ A(P), we define the convolution

(f ∗ g)(x, z) :=
X

x≤y≤z

f(x, y)g(y, z).

Obviously, f ∗ δ = δ ∗ f = f .

The set A(P) is a real associative unital algebra with the convolution as
product and the Kronecker function as unit element.

The algebra A(P) is called the incidence algebra of P. We have to prove the asso-
ciative law for the convolution. In fact, ((f ∗ g) ∗ h)(x, z) is equal to

X

x≤y≤z

(f ∗ g)(x, y)h(y, z) =
X

x≤y≤z

X

x≤u≤y

f(x, u)g(u, y)h(y, z)

=
X

x≤u≤z

X

u≤y≤z

f(x, u)g(u, y)h(y, z) = (f ∗ (g ∗ h))(x, z).
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3.7.2 The Möbius Function as an Inverse Function

Proposition 3.13 There exists precisely one function μ ∈ A(P) which is a two-
sided inverse of the zeta function, that is, μ ∗ ζ = ζ ∗ μ = δ.

Proof. (I) Uniqueness. If μ′ ∗ ζ = ζ ∗ μ′ = δ, then the associative law states
μ = μ ∗ δ = μ ∗ (ζ ∗ μ′) = (μ ∗ ζ) ∗ μ′ = δ ∗ μ′ = μ′.

(II) Existence. If x �≤ z, then let μ(x, z) := 0. If x ≤ z, then we set μ(x, x) := 1,
and we use

μ(x, z) := −
X

x≤y<z

μ(x, y) (3.63)

as the basis for an inductive definition over the number of elements contained in
the interval [x, z]. For example, if [x, z] contains precisely two elements, then

μ(x, z) = −μ(x, x) = −1.

If [x, z] contains precisely the three elements x, y, z, then x < y < z. Hence

μ(x, z) = −μ(x, x)− μ(x, y) = −1 + 1 = 0.

Finally, let us prove the convolution formula
X

x≤y≤z

ζ(x, y)μ(y, z) = δ(x, z).

In fact, if z = x, then 1 = ζ(x, x)μ(x) = δ(x, x). If x < z, then the definition of the
Möbius function μ states

X

x≤y<z

ζ(x, y)μ(y, z) + μ(x, z) = 0.

This is the claim, since ζ(x, z) = 1 and δ(x, z) = 0. �

The Möbius inversion formula. The following inversion formula represents
the main property of the Möbius function.

Proposition 3.14 Let f : P → R be a function on the locally finite partially
ordered set P. Suppose that there exists an element x0 in P such that f(x) = 0 if
x0 �≤ x. Define F (x) :=

P

y≤x f(y). Then

f(x) =
X

y≤x

F (y)μ(y, x) for all x ∈ P. (3.64)

Proof. Since F (x) =
P

x0≤y≤x f(y), the sum F (x) is finite. By substitution,

X

y≤x

F (y)μ(y, x) =
X

y≤x

X

z≤y

f(z)μ(y, x).

This is equal to
P

y≤x

P

z f(z)ζ(z, y)μ(y, x). Interchanging the order of summation,
Prop. 3.13 tells us that this is equal to

X

z

f(z)
X

y≤x

ζ(z, y)μ(y, x) =
X

z

f(z)
X

z≤y≤x

ζ(z, y)μ(y, x)

=
X

z

f(z)δ(z, x) = f(x).
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This identity proves the validity of the inversion formula (3.64). �

The discrete version of the fundamental theorem of calculus. Consider
the continuous function f : R→ R. Set

F (x) :=

Z x

0

f(y)dy for all x ∈ R.

Then the fundamental theorem of calculus tells us that

f(x) = F ′(x) for all x ∈ R.

For an arbitrary function f : {1, 2, . . .} → R, the discrete version reads as

F (n) :=
X

1≤m≤n

f(m)

and

f(n) = F (n)− F (n− 1), n = 2, 3, . . . , f(1) = F (1). (3.65)

The proof is obvious. In order to see that this is a special case of the Möbius inversion
formula, consider the set P of positive integers. This is a partially ordered set
equipped with the usual ≤-relation. The corresponding Möbius function is defined
by μ(m,n) := 0 if m > n. Moreover, μ(m,m) := 1. For n = m + 1,m + 2, . . ., we
successively have

μ(m,n) := −
X

m≤k<n

μ(m, k).

Hence μ(m,m + 1) = −μ(m,m) = −1. This implies

μ(m,m + 2) = −μ(m,m)− μ(m,m + 1) = −1 + 1 = 0.

Furthermore, μ(m,m+3) = −μ(m,m)−μ(m,m+1)−μ(m,m+2) = −1+1+0 = 0.
Similarly, we get μ(m,m) := 1, μ(m,m + 1) = −1, and otherwise μ(m,n) = 0. For
the zeta function of P, we get ζ(m,n) = 1 if m ≤ n and otherwise ζ(m,n) = 0.
Therefore,

F (n) =
X

1≤m≤n

f(m)ζ(m,n).

By Prop. 3.14, f(n) =
P

1≤m≤n F (m)μ(m,n). This coincides with (3.65).
In what follows, we will apply the Möbius inversion formula to the inclusion-

exclusion principle in combinatorics, to the classical 1832 Möbius inversion formula
in number theory, and to the Riemann zeta function.

3.7.3 The Inclusion–Exclusion Principle in Combinatorics

Let S1 and S2 be finite sets, and let |Sj | denote the cardinality of the set Sj (i.e.,
the number of elements). Then

|S1 ∪ S2| = |S1|+ |S2| − |S1 ∩ S2|.

This is the simplest case of the so-called inclusion-exclusion principle. In general,
this principle states that the cardinality of the union of a finite family of finite sets
can be computed as an alternating sum of cardinalities of intersections of those
sets. Explicitly, let n = 2, 3, . . . If S1, . . . Sn are finite sets, then
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|S1 ∪ · · · ∪ Sn| =
X

1≤i≤n

|Si| −
X

1≤i<j≤n

|S1 ∩ Sj |+
X

1≤i<j<k≤n

|Si ∩ Sj ∩ Sk|

− . . . + (−1)n+1
X

1≤i1<...<in≤n

|Si1 ∩ · · · ∩ Sin |. (3.66)

Proof. We will use the Möbius inversion formula. To this end, let P be the collection
of all the finite subsets of the set

E := {S1, S2, . . . , Sn},

including the empty subset. For example, ∅, {S1}, {S1, S2}, . . . , {S1, . . . , Sn} are
elements of the set P, which becomes a partially ordered set with respect to the
usual ⊆-relation. For A,B ∈ P, the Möbius function of P reads as

μ(A,B) = (−1)|B\A|

if A ⊆ B. Otherwise μ(A,B) = 0. Set S := S1 ∪ · · · ∪ Sn. For each element A of P
different from ∅, define f(A) as the cardinality of the set

{x ∈ S : x ∈ Sj iff Sj ∈ A}.

Furthermore, set f(∅) := 0. For example, if A = {S1}, then

f(A) = |S1 \ {S2 ∪ · · · ∪ Sn}|.

Now introduce the function

F (A) :=
X

A⊆B
f(B).

For example, if E := {S1, S2} and A := ∅, then

F (∅) = 0 + |S1 \ S2|+ |S2 \ S1|+ |S1 ∩ S2| = |S1 ∪ S2|.

The summands correspond to B = ∅, {S1}, {S2}, {S1, S2}. If A is equal to {S1},
then

F (A) = |S1 \ S2|+ |S1 ∩ S2| = |S1|.
If A = {S1, S2}, then F (A) = |S1 ∪ S2|. In the general case where n = 1, 2, . . ., we
get F (∅) = |S|. Moreover, if A is different from ∅, then

F (A) =
\

Sj∈A
Sj .

By Möbius inversion, f(A) =
P

A⊆B F (B)μ(A,B). Using A = ∅, we obtain

f(∅) = F (∅) +
X

B=∅

(−1)|B|F (B).

Since f(∅) = 0, F (∅) = |S| and F (B) = |
T

Sj∈B Sj |, this is the claim. �
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3.7.4 Applications to Number Theory

The classical Möbius function. A positive integer n is called a prime number
iff n ≥ 2, and only the numbers 1 and n are divisors of n. Each positive integer
n ≥ 2 can be uniquely represented as

n = pα1
1 pα2

2 · · · p
αr
r

where p1 < p2 < . . . < pr are prime numbers and α1, α2, . . . , αr are positive
integers. Let n = 2, 3 . . . By definition,

μ(n) := (−1)r if α1 = α2 = . . . = αr = 1.

Otherwise μ(n) := 0. Furthermore, μ(1) := 1. For example, if p is a prime number,
then μ(p) = −1. If n = pq is the product of two different prime numbers p and q,
then μ(pq) = 1. Moreover, if n is divisible by a square of a prime number, then
μ(n) = 0. For example μ(12) = 0. Let P := {1, 2, . . .}. For m,n ∈ P, we write

m � n

iff m is a divisor of n. This way, P becomes a partially ordered set which is locally
finite. For given function f : P → R, we define

F (n) :=
X

m�n

f(m), n = 1, 2, . . .

In 1832, Möbius (1790–1868) discovered the inversion formula

f(n) =
X

m�n

F (m)μ
“ n

m

”

, n = 1, 2, . . . (3.67)

The relation to partially ordered sets. Formula (3.67) is a special case of
the Möbius inversion formula (3.64) (due to Rota) on P = {1, 2, . . .} with respect
to �. This follows from the formula

μ(m,n) = μ
“ n

m

”

(3.68)

for all m,n ∈ P with m � n. The proof of (3.68) will be given in Problem 3.15. For
the zeta function on P, we get ζ(m,n) := 1 if m � n. Otherwise ζ(m,n) = 0.

The inverse of the Riemann zeta function. If s is a complex number with
�(s) > 1, then the Riemann zeta function is given by

ζ(s) =

∞
X

n=1

ζ(1, n)

ns
.

For the inverse function, we obtain

1

ζ(s)
=

∞
X

n=1

μ(1, n)

ns
.

The proof can be found in H. Edwards, Riemann’s Zeta Function, Academic Press,
New York, 1974.
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3.8 Hints for Further Reading

As an introduction to combinatorics, we recommend the following monographs:

L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.

A. Tucker, Applied Combinatorics, Wiley, New York, 1980.

M. Aigner, Combinatorial Theory, Springer, Berlin, 1997.

M. Petkovsek, H. Wilf, and D. Zeilberger, A=B, Peters, Wellesley, Mas-
sachusetts, 1996.
Internet: http://www.cis.upenn.edu/ wilf/AequB.html

R. Stanley, Enumerative Combinatorics, Cambridge University Press, 1997.

J. Gross and J. Yellen (Eds.), Handbook of Graph Theory, CRC Press,
Boca Raton, Florida, 2004.

The contributions of Gian-Carlo Rota to modern combinatorics are collected in:

J. Kung (Ed.), Gian-Carlo Rota on Combinatorics: Introductory Papers
and Commentaries, Birkhäuser, Basel, 1995.

A detailed discussion of the Kepler equation can be found in W. Neutsch and
K. Scherer, Celestial Mechanics: An Introduction to Classical and Contemporary
Methods, Wissenschaftsverlag, Mannheim, 1992. Finally, we recommend:

M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.

P. Cartier, A primer of Hopf algebras. Preprint: l’Institut des Hautes

Études Scientifiques (IHES), Bures-sur-Yvette (France), 2006,
IHES/M/06/40. Internet: http://www.cartier@ihes.fr

Problems

3.1 Bilinear forms. Prove the identity (3.1) on page 120.
Solution: Let b1, . . . , bn be a basis of X. Since B is bilinear, we get

B

 

n
X

k=1

λkbk,

n
X

l=1

μlbl

!

=

n
X

k,l=1

λkμlB(bk, bl).

It follows from the generalized orthogonality relation br(bs) = δr
s that

B =

n
X

k,l=1

B(bk, bl)b
k ⊗ bl. (3.69)

3.2 Perturbation formula for the exponential function. Let A,B : X → X be linear
continuous operators on a complex Hilbert space X. Show that

ez(A+B) = ezA +

Z z

0

e(z−ζ)ABeζ(A+B)dζ for all z ∈ C. (3.70)

Solution: Set J(z) := e−zAez(A+B). Differentiating the relation

ez(A+B) = ezAJ(z)
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with respect to the complex variable z, we get

(A + B)ez(A+B) = AezAJ(z) + ezAJ ′(z).

Hence J ′(z) = e−zABezAJ(z). Since J(0) = I,

J(z) = I +

Z z

0

e−ζABeζAJ(ζ)dζ.

Multiplying this by ezA, we get the claim (3.70). Similarly, using the function

K(z) := ez(A+B)e−zA, we get

ez(A+B) = ezA +

Z z

0

eζ(A+B)Be(z−ζ)Adζ for all z ∈ C. (3.71)

3.3 Special perturbation formula. Let t ∈ C. Use (3.70), in order to prove that

deA+tB

dt
|t=0 =

Z 1

0

e(1−ζ)ABeζAdζ =

Z 1

0

eζABe(1−ζ)Adζ. (3.72)

Solution: Set z = 1, and replace B by tB in (3.70).
3.4 Hopf algebras and commutative diagrams. Reformulate the defining relations

(A), (U), (CA), (CU) of Hopf algebras on page 128 in the language of commu-
tative diagrams.
Solution: We will use the following algebra morphisms

μ : A⊗A → A, Δ : A → A⊗A, η : C→ A, ε : A → C

and the linear map S : A → A. Recall that μ(a⊗ b) = ab for all a, b ∈ A. The
commutativity of the diagrams

A⊗A
μ �� A

A⊗A⊗A
μ⊗id ��

id⊗μ

��

A⊗A

μ

��
(3.73)

and

C⊗A
η⊗id ��

id
������������ A⊗A

μ

��

A⊗ C
id⊗η��

id
		����������

A

(3.74)

is equivalent to (A) and (U) on page 128, respectively, that is,

μ(μ⊗ id) = μ(id⊗ μ) (associativity (A))

and

μ(η ⊗ id) = μ(id⊗ η) = id (unitality (U)),

respectively. Here, id is the identical map on A, that is id(a) := a for all a ∈ A.
To simplify notation, we also denote the natural isomorphisms i : A⊗ C→ A
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and j : C⊗A → A (as well as their inverses) by the symbol id. In this sense,
for example,

id(a⊗ z) := za for all a ∈ A, z ∈ C.

Let us now pass to the dual concepts. Reversing the arrows, we get the following
two commutative diagrams

A⊗A

id⊗Δ

��

AΔ��

Δ

��
A⊗A⊗A A⊗A

Δ⊗id��

(3.75)

and

C⊗A A⊗A
ε⊗id�� id⊗ε �� A⊗ C

A
id



����������
Δ

��

id

������������
(3.76)

which tell us that

(Δ⊗ id)Δ = (id⊗Δ)Δ (coassociativity (CA))

and

(ε⊗ id)Δ = (id⊗ ε)Δ = id (counitality (CU)),

respectively (see page 128). Finally, the commutative diagram

A⊗A

id⊗S

��

AΔ�� Δ �� A⊗A

S⊗id

��

C

η

��

A⊗A
μ �� A

ε

��

A⊗A
μ��

(3.77)

is equivalent to the relation

μ(id⊗ S)Δ = μ(S ⊗ id)Δ = ηε (coinverse).

3.5 The coproduct as an algebra morphism. Prove (3.10) on page 125. Solution: By
the Sweedler notation, we get

(ΔD′)(ΔD) =

 

X

D′

D′
(1) ⊗D′

(2)

! 

X

D

D(1) ⊗D(2)

!

with the product (D′
(1) ⊗D′

(2))(D(1) ⊗D(2)) = D′
(1)D(1) ⊗D′

(2)D(2) on A⊗A.
Applying the Leibniz rule to Δ(D′D)(f, g) = D′(D(fg)), we get the claim
Δ(D′D) = (ΔD′)(ΔD).
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3.6 The coinverse of a differential operator. Prove (3.13) on page 127.
Solution: Consider first D := ∂k∂j . By (3.8) on page 125, the Sweedler notation
ΔD =

P

D D(1) ⊗D(2) corresponds to

Δ(∂k∂j) = ∂k∂j ⊗ 1 + ∂j ⊗ ∂k + ∂k ⊗ ∂j + 1⊗ ∂k∂j .

Since S(1) = 1, S(∂j) = −∂j , and S(∂k∂j) = ∂k∂j , we get

X

D

S(D(1))⊗D(2) = S(∂k∂j)⊗ 1 + S(∂j)⊗ ∂k + S(∂k)⊗ ∂j + S(1)⊗ ∂k∂j

= ∂k∂j ⊗ 1− ∂j ⊗ ∂k − ∂k ⊗ ∂j + 1⊗ ∂k∂j .

Hence
X

D

S(D(1))D(2) = ∂k∂j − ∂j∂k − ∂k∂j + ∂k∂j = 0.

Analogously,
P

D D(1)S(D(2)) = 0. For D := ∂k1∂k2 · · · ∂km , proceed by induc-
tion.

3.7 Properties of the convolution. Prove Proposition 3.5 on page 130. Solution:
(I) Associativity. By definition of the convolution,

(B ∗ C) ∗D = μ((B ∗ C)⊗D)Δ = μ(μ⊗ id)(B ⊗ C ⊗D)(Δ⊗ id)Δ.

By coassociativity, (Δ ⊗ id)Δ = (id ⊗ Δ)Δ. Finally, the associativity of the
multiplication on A tells us that (B ∗ C) ∗D is equal to

μ(id⊗ μ)(B ⊗ C ⊗D))(id⊗Δ)Δ = μ(B ⊗ (C ∗D))Δ = B ∗ (C ∗D).

(II) Unit element. By definition of the convolution, B ∗ ηε = μ(B⊗ ηε)Δ. This
can be written as

B ∗ ηε = μ(id⊗ η)(B ⊗ idC)(id⊗ ε)Δ.

By unitality, μ(id⊗η)(B⊗idC) = B. Moreover, counitality yields (id⊗ε)Δ = id.
Hence B ∗ ηε = B. Similarly, we get ηε ∗B = B.

3.8 Uniqueness of the coinverse. Show that the coinverse of a Hopf algebra is
unique. Solution: Suppose that

id ∗ S = S ∗ id = ηε,

and id ∗ S′ = S′ ∗ id = ηε. By Prop. 3.5 on page 130,

S′ ∗ (id ∗ S) = S′ ∗ ηε = S′.

Similarly, (S′ ∗ id)∗S = ηε∗S = S. By associativity of the convolution, S′ = S.
3.9 Anti-multiplicativity of the coinverse. Show that the coinverse S : A → A of a

Hopf algebra A is an algebra anti-morphism, that is, S is linear and we have
S(ab) = S(b)S(a) for all a, b ∈ A.
Hint: See Lemma 1.26 of the monograph by J. Gracia-Bondia, J. Várilly, and H.
Figueroa, Elements of Noncommutative Geometry, Birkhäuser, Boston, 2001.

3.10 Hopf algebras and finite groups. Prove Proposition 3.8 on page 148.
Solution: Set A := H(G). For given functions ϕ,ψ ∈ A, the tensor product
ϕ⊗ ψ denotes a function of two variables given by

(ϕ⊗ ψ)(g, h) := ϕ(g)ψ(h) for all g, h ∈ G.
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The tensor algebra A⊗A consists of all the finite sums

ϕ1 ⊗ ψ1 + ... + ϕn ⊗ ψn, ϕj , ψj ∈ A, j = 1, ..., n, n = 1, 2, ...

Since the group G is finite, the tensor algebra A ⊗ A contains precisely all
complex functions ϕ : G×G→ C of two variables, ϕ = ϕ(g, h), where g, h ∈ G.
Similarly, A ⊗ A ⊗ A consists of all complex functions χ : G × G × G → C

of three variables, χ = χ(g, h, k), where g, h, k ∈ G. For all ϕ,ψ ∈ A and all
z ∈ C, we set

μ(ϕ⊗ ψ) := ϕψ, η(z) := z1, id(ϕ) := ϕ.

We have to show the following:
(CA) (id⊗Δ)Δ = (Δ⊗ id)Δ (coassociativity).
(CU) (ε⊗ id)Δ = (id⊗ ε)Δ = id (counitality).
(S) μ(S ⊗ id)Δ = μ(id⊗ S)Δ = ηε (coinverse).
These properties follow easily from the corresponding definitions of the maps
Δ, ε, and S on page 148. Let us show this. In what follows, the symbols g, h, k,m
are elements of the group G. The map Δ sends A to A⊗A, that is, functions
of one variable are transformed into functions of two variables. Explicitly, let

ψ := Δϕ, ϕ ∈ A.

Then ψ(g, h) = ϕ(gh). If τ ∈ A⊗A, then the function σ := μτ is given by

σ(g) = τ(g, g) for all g ∈ G.

This follows from τ =
P

jk αjkχj ⊗ χk and σ =
P

jk αjkχjχk (see (3.46) on

page 149).
Ad (CA). We will use g(hk) = (gh)k. The map id⊗Δ sends A⊗A to A⊗A⊗A.
Let χ := (id⊗Δ)ψ. Then

χ(g, h, k) = ψ(g, hk) = ϕ(g(hk)).

Similarly, let � := (Δ⊗ id)ψ. Then

�(g, h, k) = ψ(gh, k) = ϕ((gh)k).

Therefore, χ = �.
Ad (CU). We will use eg = ge = g. Let α := (ε⊗ id)ψ. Then

α(g) = ψ(e, g) = ϕ(eg).

Similarly, setting β := (id⊗ ε)ψ, we get

β(g) = ψ(g, e) = ϕ(ge).

Consequently, α = β.
Ad (S). We will use g−1g = gg−1 = e. Let σ := μτ with τ := (S ⊗ id)ψ. Then

σ(g) = τ(g, g) = ψ(g−1, g) = ϕ(g−1g) = ϕ(e).

Similarly, setting ν := μλ with λ := (id⊗ S)ψ, we obtain

ν(g) = λ(g, g) = ψ(g, g−1) = ϕ(gg−1) = ϕ(e).

Finally, let α := ηβ and β := ε(ϕ). Then β(g) = ϕ(e) and α(g) = ϕ(e).
Therefore, σ = ν = ηε.
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3.11 Hopf algebras and operator groups. Prove Proposition 3.9 on page 151.
Hint: Argue similarly to the solution of Problem 3.10.

3.12 Proof of the Lagrange inversion formulas. Prove the formulas (3.22) and (3.23)
on page 133. Solution:
Ad (3.22). Using an induction argument, we show first that we have the fol-
lowing key relation

∂nu

∂en
=

∂n−1

∂τn−1

„

ϕ(u)n ∂u

∂τ

«

, n = 1, 2, . . . (3.78)

Here, we briefly write u instead of u(τ, e).
(I) n = 1. Differentiating the Lagrange equation

u(τ, e) = τ + eϕ(u(τ, e)) (3.79)

with respect to the variables τ and e, we get

uτ = 1 + eϕ′(u)uτ , ue = ϕ(u) + eϕ′(u)ue.

Multiplying this by ue and uτ , respectively, we get ue = ϕ(u)uτ . This is the
claim (3.78) with n = 1.
(II) n⇒ n + 1. If the function F is smooth, then the chain rule tells us that

∂

∂e

„

F (u(τ, e))
∂u(τ, e)

∂τ

«

=
∂

∂τ

„

F (u(τ, e)ϕ(u(τ, e))
∂u(τ, e)

∂e

«

. (3.80)

Now suppose that equation (3.78) is true for n. Differentiating this with respect
to the variable e and noting (3.80), we get

∂n+1u

∂en+1
=

∂n−1

∂τn−1

∂

∂e

„

ϕ(u)n ∂u

∂τ

«

=
∂n

∂τn

„

ϕ(u)n+1 ∂u

∂e

«

.

This proves (3.78). Finally, by Taylor expansion we get

u(τ, e) = u(τ, 0) + e
∂u(τ, 0)

∂e
+

∞
X

n=2

en

n!

∂nu(τ, 0)

∂en
.

By the Lagrange equation (3.79), we have u(τ, 0) = τ and uτ (τ, 0) = 1. Thus,
it follows from the key relation (3.78) that

u(τ, e) = u(τ, 0) + eϕ(τ) +

∞
X

n=2

en

n!

dn−1

dτn−1
ϕ(τ)n.

Ad (3.23). Use a similar argument.
3.13 The first Bell polynomials. Let x1, x2, x3 be complex numbers. Compute the

exponential function

f(t) := ex1t+ 1
2 x2t2+ 1

6 x3t3

up to order three in order to compute the Bell polynomials B3,j , j = 1, 2, 3.

Solution: By the addition theorem, f(t) = ex1te
1
2 x2t2e

1
6 x3t3 . Hence f(t) is equal

to

(1 + x1t + 1
2
x2

1t
2 + 1

6
x3

1t
3 + . . .)(1 + 1

2
x2t

2 + . . .)(1 + 1
6
x3t

3 + . . .)

= 1 + x1t + 1
2
(x2 + x2

1)t
2 + 1

6
(x3 + 3x1x2 + x3

1)t
3.

Therefore, B1,1 = x1, B2,1 = x2, B2,2 = x2
1, and

B3,1 = x3, B3,2 = 3x1x2, B3,3 = x3
1.
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3.14 Reduced correlation functions. Prove Proposition 3.7 on page 141.
Solution: As in Problem 3.13, the addition theorem for the exponential formula
tells us that exp(Zred[J ]) is equal to the infinite product

∞
X

k1=0

1

k1!

„

i

�

Z

R4
C1,red(x1)J(x1)d

4x1

«k1

×
∞
X

k2=0

1

k2!

„

i2

2!�2

Z

R8
C2,red(x1, x2)J(x1)J(x2)d

4x1d
4x2

«k2

× · · ·

We want to show that this is equal to Z[J ]. To this end, we inspect the terms
of order m = 1, 2, . . . with respect to J.
(I) Let m = 1. We obtain

i

�

Z

R4
C1,red(x1)J(x1)d

4x1.

By assumption, C1(x1) = C1,red(x1).
(II) Let m = 2. We have to choose the two products with k1 = 2, k2 = 0 and
k1 = 0, k2 = 2. For k1 = 2, we get

„

Z

R4
C1,red(x1)J(x1)d

4x1

«2

=

Z

R8
C1,red(x1)J(x1)C1,red(x2)J(x2)d

4x1d
4x2,

up to the factor i2

2!�2 . Adding the product for k1 = 0, k2 = 2, we get

i2

2!�2

Z

R8

`

C1,red(x1)C1,red(x2) + C2,red(x1, x2)
´

J(x1)J(x2)d
4x1d

4x2.

By assumption, C2(x1, x2) = C1,red(x1)C1,red(x2) + C2,red(x1, x2).
(III) For m = 3, 4, . . ., the proof proceeds similarly.

3.15 The classical Möbius function. Prove (3.68) on page 166. Solution: Consider
first μ(1, n) for n = 2, 3, . . . The basic trick is the binomial formula

0 = (1− 1)n = 1−
 

n

1

!

+

 

n

2

!

+ . . . + (−1)n−1

 

n

n− 1

!

+ (−1)n. (3.81)

Let p, q, p1, . . . , pr be pairwise different prime numbers. Note that μ(1, 1) = 1
and

μ(1, n) = −
X

1�k≺n

μ(1, k).

(I) μ(1, p) = −1. In fact, μ(1, p) = −μ(1, 1) = −1. Moreover,

−μ(1, pq) = μ(1, 1)− μ(1, p)− μ(1, q) =

 

1−
 

2

1

!

+ 1

!

− 1 = −1.

By induction based on (3.81), the same argument shows that

μ(p1p2 · · · pr) = (−1)r.

(II) μ(1, p2)=0. In fact, μ(1, p2) = −μ(1, 1)− μ(1, p) = −1 + 1 = 0. Moreover,
we have
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−μ(1, p2q) = μ(1, 1) + μ(1, p) + μ(1, q) + μ(1, pq) + μ(1, p2)

=

 

1−
 

2

1

!

+ 1

!

+ 0 = 0.

By induction based on (3.81), the same argument shows that μ(1, n) = 0 if n
contains the square of a prime number as divisor.



4. The Strategy of Equivalence Classes in
Mathematics

Quantum states are equivalence classes. Global physical fields are sections
of bundles.

Folklore

One of the main strategies in the sciences consists in using classifications. This
means that we put single objects into classes. Instead of studying individual ob-
jects, we investigate the properties of classes. This is a simple, but extremely pow-
erful general strategy. For example, the first systematic classification of plants and
animals was developed by the Swedish biologist Carl von Linné (1707–1778). Baron
de la Brède et de Montesquieu (1689–1755) said:

Intelligence consists of this; that we recognize the similarity of different
things and the difference between similar ones.

In terms of mathematics, this corresponds to introducing operations for equivalence
classes. In this series of monographs, we will study the following topics:

(I) Simplifying mathematical theories or justifying formal approaches by introduc-
ing ideal elements:
• imaginary numbers (solution of algebraic equations, theory of analytic func-

tions, Fourier transform, quantum theory, conformal field theory, string the-
ory),

• infinite points in projective geometry (e.g., the compactification of algebraic
curves, compact Riemann surfaces, elliptic and Abelian integrals),

• generalized derivatives and distributions (e.g., the Dirac delta function),
• Mikusiński’s superfunctions (or operators) in electrical engineering (justifi-

cation of the Heaviside calculus),
• Sato’s hyperfunctions (generalized analytic functions, applications to partial

differential equations),
• cardinal and ordinal numbers, transfinite induction (Cantor’s structuring of

the infinite),
• justification of Leibniz’s infinitesimals in non-standard analysis via ultra-

filters.
(II) Equivalence classes in algebra:
• the Gaussian ring of integers modulo a fixed integer, and the quadratic reci-

procity law in number theory,
• the Gaussian ring, the Fermat–Euler theorem, and a modern coding algo-

rithm,
• the construction of algebraic objects that satisfy prescribed relations (e.g.,

complex numbers, quaternions, octions, tensor algebras, Grassmann alge-
bras, Clifford algebras, universal envelopping algebra of a Lie algebra, su-
persymmetric algebras, and quantum groups),

• quotient structures (e.g., quotien groups, quotient rings, quotient algebras,
quotient fields),
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• the quotient field over the convolution ring of continuous functions (Miku-
siński’s rigorous approach to the Heaviside calculus in electrical engineering),

• field extensions (e.g., algebraic equations and Galois theory, algebraic num-
bers, rational functions),

• central extensions of groups and Lie algebras (Bargmann’s theorem on the
projective representations of the Poincaré group, the Virasoro algebra and
conformal quantum field theory),

• exact sequences, chain complexes, homology groups, and homological alge-
bra,

• the cohomology of groups or Lie algebras,
• direct (resp. codirect) limits of sets, linear spaces, groups, function spaces,

spaces of generalized functions (distributions), and topological spaces (e.g.,

Ĉech cohomology),1

• the strategy of generalized physical fields (fiber bundles, sheaves, Grothen-
dieck’s schemes in algebraic geometry, algebraic K-theory),

• the strategy of coordinatization (duality, Hopf algebras, quantum groups),
• the strategy of motives in number theory,
• categories and functors as a general tool in order to describe mathematical

structures.
(III) Equivalence classes in analysis:
• Cantor’s construction of real numbers as equivalence classes of Cauchy se-

quences, the completion of metric spaces, and Hensel’s p-adic numbers,
• completion of a normed space to a Banach space: the Lebesgue integral,

Sobolev spaces and the energetic approach to both the partial differential
equations of mathematical physics and the calculus of variations (e.g., the
justification of the Dirichlet principle in electrostatics),

• the completion of a pre-Hilbert space and the Gelfand–Naimark–Segal
(GNS) construction for C∗-algebras in the algebraic approach to quantum
theory.

• The Riemann–Hilbert problem and the Birkhoff decomposition (the Connes–
Kreimer approach to renormalization and renormalization groups, the uni-
versal Connes–Kreimer–Moscovici Hopf algebra),

• the motivic Galois group in renormalization group theory due to Connes and
Marcolli.

(IV) Equivalence classes in geometry:
• homogeneous spaces and transformation groups (orbit spaces and orbit types

in gauge field theory),
• spaces of quantum states and projective geometry (e.g., the Hopf fibration

and the electron spin),
• curvature and fiber bundles (the Standard Model in elementary particle

physics),
• universal covering of a Lie group (e.g., the electron spin),
• universal covering of a Riemann surface; scattering of strings; global parame-

trization (uniformization) of Riemann surfaces and algebraic varieties, alge-
braic functions and Abelian integrals, Riemann’s moduli space of Riemann
surfaces,

• the Teichmüller space as a universal covering of Riemann’s moduli space,
• Riemann’s holonomy group of a differential equation (differential equations

of Fuchsian type and special functions like Gauss’ hypergeometric function),

1 Direct and codirect limits are also called inductive and projective limits, respec-
tively.
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• holonomy group of a principal fiber bundle (the Ashtekar approach to quan-
tum gravitation),

• lattices as quotient groups and special functions (periodic functions, elliptic
functions, automorphic functions, modular functions, theta functions, Jacobi
varieties),

• sheaf theory, cohomology with values in a sheaf, and the global construction
of analytic functions and differentials, divisors and line bundles (the Cousin
problems, Abelian integrals, the Riemann–Roch–Hirzebruch theorem),

• sheaves and Grothendieck’s schemes in algebraic geometry and number the-
ory (e.g., local rings, divisors),

• K-theory of operator algebras (noncommutative geometry and quantum field
theory).

• Quantization of gauge theories via the Faddeev–Popov method (pseudo-
measure on the orbit space induced by the gauge group, factorization of
the Feynman functional integral, ghosts).

(V) Equivalence classes in topology:
• bundles and cocycles (physical fields and observers),
• topological quotient spaces (e.g., the topology of projective spaces or the

spectrum of a quantum operator as the space of maximal ideals in the
Gelfand theory of C∗-algebras),

• fundamental group and higher homotopy groups of a topological space,
• homology groups of a topological space (e.g., the Lefschetz fixed-point the-

orem),
• cohomology groups of a topological space (e.g., electrical circuits, topolog-

ical charges of physical fields, de Rham cohomology, characteristic classes,
Chern class, Thom class, Stiefel–Whitney class, existence of the 4-potential
in Maxwell’s theory of electromagnetism),

• dynamical systems and Floer homology (generalized Morse theory),
• dynamical systems and the Conley index as the homotopy type of a topo-

logical space (generalized Morse theory),
• Grothendieck’s algebraic K-theory and the Riemann–Roch–Hirzebruch the-

orem,
• the Atiyah–Hirzebruch topological K-theory (generalized cohomology) of

topological spaces (index of Fredholm operators, Atiyah–Singer index theo-
rem, homotopy groups of the space of Fredholm operators of a Hilbert space,
vector fields on spheres, string theory),

• Frobenius manifolds, moduli spaces, and quantum cohomology.

This impressive list of deep tools in mathematics and its relations to physics shows
that:

Equivalence classes are everywhere in mathematics and physics.

The reader should note the following. One of the most important tools in modern
mathematics are bundles, which globalize classical notions like linear spaces, Lie
groups, and so on. We want to show that:

Bundles in mathematics are closely related to physical fields.

This helps to understand many deep relations between modern mathematics and
modern physics.

Classification. Suppose that a given nonempty set X is decomposed into pair-
wise disjoint nonempty sets Xα:

X =
[

α∈A
Xα.
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Here, A denotes an index set (e.g., A := {1, 2, . . . , N}). For two elements x and y,
we write

x ∼ y

iff there exists an index α such that x, y ∈ Xα. Obviously, for all x, y, z ∈ X, the
following hold:

(R) Reflexivity: x ∼ x.
(S) Symmetry: if x ∼ y, then y ∼ x.
(T) Transitivity: if x ∼ y and y ∼ z, then x ∼ z (transitivity).

Equivalence relation. We are given the set X. Suppose that, for certain
elements x and y of X, there exists a relation x ∼ y which has the properties
(R), (S), and (T) above. Then the relation ’∼’ is called an equivalence relation.
Introduce the equivalence class [x] of the element x by setting

[x] := {y ∈ X : x ∼ y}.

The elements of [x] are called the representatives of the equivalence class.

Proposition 4.1 The equivalence classes yield a partition of the set X into pair-
wise disjoint subsets [x].

The set of these equivalence classes is denoted by the symbol

X/ ∼ := { [x] : x ∈ X}.

This set is called the quotient space with respect to the equivalence relation ’∼’.
Proof. If z ∈ [x] and z ∈ [y], then x ∼ z, y ∼ z. Hence x ∼ y, by symmetry and
transitivity. This implies [x] = [y]. Conversely, if [x] = [y], then x ∼ y. Thus, either
two equivalence classes coincide or they are disjoint. �

We will show on page 199 that quantum states are equivalence classes.

4.1 Equivalence Classes in Algebra

Let us discuss the basic ideas about quotient structures in algebra.

4.1.1 The Gaussian Quotient Ring and the Quadratic Reciprocity
Law in Number Theory

Gauss is supposed to have discovered a proof of the law of quadratic reci-
procity in 1796 when he was nineteen. . . This law, which Gauss called the
gem of arithmetic, is a basic result on congruences. After Gauss gave his
six proofs, more than fifty others were given by later mathematicians.2.

Morris Kline, 1990

The ring Z of integers. Let R denote the set Z of integers 0,±1,±2, . . . Then,
for all a, b, c ∈ R, the following hold:

(R0) Consistency: a + b, ab ∈ R.

2 M. Kline, Mathematical Thought from Ancient to Modern Times, Vol. 2, Oxford
University Press, 1990.
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(R1) Additivity: R is an additive group.3

(R2) Distributivity: (a + b)c = ac + bc and c(a + b) = ca + cb.
(R3) Associativity: (ab)c = a(bc).
(R4) Commutativity: ab = ba.
(R5) Unitality: There exists an element 1 (called the unit element of R) such that

1a = a1 = a for all a ∈ R.

A set R is called a ring iff there exist an addition a+b and a multiplication ab for all
a, b ∈ R such that the properties (R0)–(R3) are satisfied. If, in addition, property
(R4) is also met, then the ring is called commutative. Using this terminology, the
ring Z of integers is a commutative ring with unit element 1.

• A ring R with unit element 1 is called a skew-field iff, for any given nonzero
element a, there exists an element in R denoted by a−1 such that we have the
relation4 aa−1 = a−1a = 1.

• A commutative skew-field is called a field.5

For example, the sets Q (rational numbers), R (real numbers), C (complex numbers)
are fields, whereas the set H of quaternions is only a skew-field.6

A subset S of the ring R is called a subring iff it is a ring with respect to the
operations on R. By definition, a two-sided ideal S of a ring R is a subring with

sr ∈ R and rs ∈ R for all s ∈ S, r ∈ R.

In a commutative ring, two-sided ideals are briefly called ideals.7 For a fixed integer
m, we set

mZ := {mk : k ∈ Z}.
Obviously, mZ is an ideal of Z. We call this the ideal generated by the integer m.
We also briefly write (m) instead of mZ.

By a ring morphism, we understand a map

χ : R→ T (4.1)

between the rings R and T which respects addition and multiplication, that is, for
all a, b ∈ R, we have

χ(a + b) = χ(a) + χ(b), χ(ab) = χ(a)χ(b). (4.2)

If R and T are fields, then the map (4.1) is called a field morphism iff (4.2) holds.
Bijective field morphisms are called field isomorphisms. Analogously, we define mor-
phisms and isomorphisms for skew-fields.

3 See Sect. 7.5 of Vol. I.
4 One easily shows that this inverse element a−1 is uniquely determined by a, and

the nonzero elements of R form a group. A ring with unit element is also called
a unital ring.

5 For skew-fields and fields, we always exclude the trivial case {0}, that is, we
assume that there exist two different elements, namely, the zero element 0 and
the unit element 1.

6 A quaternion is given by ai + bj + ck + d where a, b, c, d are real numbers, and
i2 = j2 = k2 = −1, as well as ij = −ji = k, jk = −kj = i, ki = −ik = j.

7 Ideals were introduced by Kummer (1810–1893) in order to prove a special case of
Fermat’s last theorem in number theory. The final proof of Fermat’s last theorem
was given by Wiles (born 1953) in 1994. Important contributions to the theory of
ideals were made by Dedekind (1831–1916), as well as by von Neumann (1903–
1957) and by Gelfand (born 1913) in the context of operator theory related to
quantum mechanics (von Neumann algebras and Gelfand’s C∗-algebras).



180 4. The Strategy of Equivalence Classes in Mathematics

The Gaussian ring Z/mod m of residue classes modulo m. Choose a fixed
integer m. Let x, y ∈ Z. Following Gauss we write

x ≡ y mod m iff x− y ∈ (m).

This is an equivalence relation (also called congruence relation). The equivalence
classes are denoted by [x]. They are also called residue classes. In other words, x is
congruent to y modulo m iff the difference x− y is divisible by the integer m. For
example, if m = 3, then 2 ≡ 5 mod 3, and there are precisely three equivalence
classes [0], [1], [2], namely,

[0] = (m), [1] = 1 + (m) = {1, 1± 3, 1± 6, 1± 9 . . .}, [2] = 2 + (m).

In particular, the representatives of [2] are 2, 5, 8, . . . ,−1,−4,−7 . . . Addition and
multiplication of residue classes are defined by

[x] + [y] := [x + y], [x][y] = [xy].

This definition does not depend on the choice of the representatives.8 For example, if
m = 2, then [2]+[1] = [3] = [1], and [2] = [4], [1] = [7], as well as [4]+[7] = [11] = [1].
The operations for the two elements of Z/mod 2 are given by

[1] + [1] = [0], [0] + [1] = [1] + [0] = [1], [0] + [0] = [0], (4.3)

and [0][1] = [1][0] = [0] and [1][1] = [1]. Thus, Z/mod 2 is a field (also briefly
denoted by Z2). The same result can be obtained by computing with integers and
by setting ’2 = 0’. For example,

5 + 8 = 13 = 1 + 6 · 2 = 1, 5 · 8 = 40 = 20 · 2 = 0.

This corresponds to [5] + [8] = [13] = [1] and [5][8] = [40] = [0]. In the following
proposition, assume that m = 1, 2, 3, . . . .

Proposition 4.2 (i) The quotient space Z/mod m is a commutative ring with the
unit element [1].

(ii) The quotient ring Z/mod m is a field iff m is a prime number.
(iii) The order of a finite field is a prime power.
(iv) Conversely, for any given prime power pn, there is a unique finite field of

order pn (up to isomorphism).
(v) Each finite skew-field is a field.

Finite fields are also called Galois fields. The proofs can be found in the standard
textbooks on algebra. We refer to:

B. van der Waerden, Moderne Algebra, Vols. 1, 2, Springer, Berlin, 1930,
8th edition, 1993 (in German). English edition: Modern Algebra, Frederyck
Ungar, New York, 1975.

S. Lang, Algebra, Springer, New York, 2002.

8 This follows from the fact that the equivalence relation respects addition and
multiplication. That is, if x ≡ y mod m and u ≡ v mod m, then

x + u ≡ y + v mod m and xu ≡ yv mod m.
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In the literature, one also writes Zm instead of Z/mod m. For example, the ad-
ditive group Z2 from (4.3) is isomorphic to the multiplicative group {1,−1}. The
isomorphism is given by

[0] �→ 1, [1] �→ −1.

The quadratic reciprocity law in number theory. In 1801, the young
Gauss (1777–1855) published his Disquisitiones arithmeticae (investigations on
arithmetic). This work founded modern number theory. In particular, Gauss proved
the following so-called quadratic reciprocity law. This law was empirically discov-
ered by Euler (1707–1783) and by Legendre (1752–1833). Gauss gave the first com-
plete proof. The goal is to study the quadratic equation

x2 ≡ q mod p (4.4)

and its dual equation x2 ≡ p mod q. If equation (4.4) has a solution, then we set
“

q
p

”

:= 1. Otherwise,
“

q
p

”

:= −1. This is called the Legendre symbol.

Theorem 4.3 If p and q are prime numbers greater than two, then
„

q

p

«

= (−1)(p−1)(q−1)/4

„

p

q

«

.

In addition,
“

p−1
p

”

= (−1)(p−1)/2 and
“

2
p

”

= (−1)(p
2−1)/8.

Example. The equation
x2 ≡ 4 mod 5

has a solution, namely, x = 2. The equation

x2 ≡ 2 mod 3

has no solution. In fact, if x = 0, 1, 2, then x2 ≡ a mod 3 with a = 0, 1, 1. Using
the quadratic reciprocity law, we have

`

4
5

´

= 1 and
`

2
3

´

= −1.

Hints for further reading. We refer to:

Carl Friedrich Gauß, Disquisitiones arithmeticae, 1801 (in Latin).
English edition: C. F. Gauss, Disquisitiones Arithmeticae, translated by
A. Clarke, Yale University, New Haven, Connecticut, 1965.
German edition: Untersuchungen über höhere Arithmetik (Investigations
on higher arithmetic), Springer, Berlin, 1986.

The tremendous influence of this masterpiece on the development of modern math-
ematics is described in:

C. Goldstein, N. Schappacher, and J. Schwermer, The Shaping of Arith-
metic after Gauss’ Disquisitiones Arithmeticae, Springer, Berlin, 2007.

In Chapter 5, we will discuss the enormous influence of another masterpiece of
Gauss on the development of modern mathematics and physics, namely:

Carl Friedrich Gauß, Disquisitiones generales circa superficies curvas (Gen-
eral theory of curved surfaces).
In: C. F. Gauß, Werke (Collected Works), Vol. 5, pp. 217–256; 341–347,
Göttingen 1863/1929 (in Latin).
German edition, C. F. Gauß, Allgemeine Flächentheorie, Ostwalds Klas-
siker, Vol. 5, Leipzig, 1889.
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This treatise founded differential geometry based on the crucial notion of curvature.
Nowadays we know that the fundamental forces in the universe are described by
curvature. We refer to:

P. Dombrowski, 150 years after Gauss’ ‘Disquisitiones generales circa su-
perficies curvas’, Astérisque 62 (1979).

G. Dunnington, Carl Friedrich Gauß, Titan of Science, New York, 1955.

4.1.2 Application of the Fermat–Euler Theorem in Coding Theory

More than 200 years the theorem of Fermat–Euler was considered to be only a result
in pure mathematics. In 1977 however, Rivest, Shamir and Adleman published a
bafflingly simple and yet extraordinarily secure code, which is based on the Fermat–
Euler theorem.

The Euler function. The positive integers k and m are called relatively prime
iff 1 is the only common divisor. For example, 3 and 5 are relatively prime, but 2
and 4 are not. Let m = 1, 2, . . . The Euler number ϕ(m) tells us how many of the
numbers 1, 2, . . . ,m are relatively prime to m. For example, 1, 3 are relatively prime
to 4, but 2, 4 are not. Hence ϕ(4) = 2. Furthermore,

ϕ(1) = ϕ(2) = 1, ϕ(3) = 2, ϕ(5) = 4, ϕ(6) = 2.

If m is a prime number, then ϕ(m) = m − 1. Alternatively, ϕ(m) is equal to the
invertible elements of the ring Z/mod m. The function ϕ : N

× → N
× is called the

Euler function.
The Fermat–Euler theorem. This theorem due to Fermat (1601–1665) and

Euler (1707–1783) tells us the following:

For positive integers a and m, which are assumed to be relatively prime,
one has aϕ(m) ≡ 1 mod m.

Fermat formulated this theorem in the special case where m is a prime number.
Then ϕ(m) = m − 1. For example, 24 ≡ 1 mod 5. Let us briefly discuss the
application of this theorem to the following sophisticated coding method.

Preparations by the operator. Step 1: Here two prime numbers p and q,
roughly of the size 10100, are chosen and kept secrete.

Step 2: One forms the product m = pq and calculates ϕ(m) = (p− 1)(q − 1).
Step 3: One chooses an additional positive integer s with 0 < s < ϕ(m).
Step 4: The person sending the message is given publicly the two numbers m

and s.
Encoding the message. The message is simply encoded in a single positive

integer n.9 The person sending the message computes the number r by the following
equation

ns ≡ r mod m.

The number r is the only information sent to the operator.
Decoding the message by the operator. Here one must reconstruct from

the remainder r the original number n. The operator proceeds as follows.
Step 1: He uses the two numbers m and s in order to compute a positive integer

t which satisfies the equation

9 For example, one associates to every letter a two-digit number 10, 11, 12, . . . and
replaces in the message all occurrences of the letter by that two-digit number.
Then forming the concatenation of all of these, one gets a big number n.
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ts ≡ 1 mod ϕ(m). (4.5)

This equation always has a solution, since ϕ(m) and s are relatively prime.
Step 2: He now just divides rt by the number m. The remainder is the sought

for number n which allows the operator to decode the message.
Justification of the procedure. The following fact is the key to this proce-

dure.

Proposition 4.4 rt ≡ n mod m.

Proof. By the Fermat–Euler theorem, one has

nϕ(m) ≡ 1 mod m.

By (4.5), there exists an integer k with ts = 1 + kϕ(m). It follows that

rt ≡ nst ≡ n1+kϕ(m) ≡ n · nkϕ(m) ≡ n mod m.

�

This proposition only determines the number n+ km for some natural number
k. However, since the chosen number m is huge and the message is assumed to have
a reasonable length, we always have n < m. Hence k = 0.

The security of this method. If an intruder wants to decode the message,
he needs the number t, that is, ϕ(m) = (p− 1)(q − 1).

To get this number he must determine the prime number decomposition of
number m, which is known to him.

The trick of this method is simply that because of the size of chosen for the prime
numbers p and q, no computer is as yet able to determine the factors p and q in a
reasonable amount of time. Since computers are becoming more and more powerful
all the time, the security of this method is only guaranteed if one chooses new,
larger numbers p and q from time to time. More sophisticated coding methods are
based on the theory of elliptic curves in algebraic geometry.

The importance of quantum computers. The theory of quantum comput-
ers shows that there exist methods in order to factorize huge prime numbers in a
reasonable amount of time. Shor’s famous algorithm provides a quantum-computer
method for factorizing an integer N in a number of steps which is polynomial (less
than cubic) in the number of digits (i.e., lnN ·N2). Up to now, the experimental re-
alization of quantum computers is missing and a challenge for the future. Problems
of quantum information will be studied in Volume IV. We recommend:

M. Nielsen and I. Chuang, Quantum Computation and Quantum Informa-
tion, Cambridge University Press, 2001.

D. Bouwmeester, A. Ekert, and A. Zeilinger (Eds.), The Physics of Quan-
tum Information: Quantum Cryptography, Quantum Teleportation, Quan-
tum Computation, Springer, Berlin, 2002.

Shor’s fundamental paper is published on the Internet:

http://arXiv.org/quant-ph/9508027

For his important contributions to quantum computing, Peter Shor was awarded
the Nevalinna prize in 1998.
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4.1.3 Quotient Rings, Quotient Groups, and Quotient Fields

In a straightforward manner, let us generalize the Gaussian quotient ring Z/mod m.
We recommend the reader to carry out the necessary proofs, which are easy conse-
quences of the relevant definitions. 10

Construction of quotient rings. Let J be a two-sided ideal of the ring R.
For elements x, y of R, we write

x ∼ y iff x− y ∈ J.

This is an equivalence relation. For the corresponding equivalence classes, we define
an addition and a multiplication by setting

[x] + [z] := [x + z], [x][z] := [xz].

The point is that this definition does not depend on the choice of the representatives.
This follows easily from the fact that J is a two-sided ideal. This way, the quotient
space R/ ∼ becomes a ring denoted by R/J. This ring is called the quotient ring
of R modulo J . Set π(x) := [x]. The map

π : R→ R/J

is a surjective ring morphism. Such morphisms are also called ring epimorphisms.
The morphism theorem for rings. Suppose that we are given the ring

morphism

f : R→ T (4.6)

between the two rings R and T . We introduce the kernel of f by setting

ker(f) := f−1(0)

where 0 denotes the zero element of the ring T . Explicitly, the set ker(f) is equal
to {r ∈ R : f(r) = 0}. We also introduce the image of the morphism f by setting
im(f) := f(R). Finally, we set f∗([r]) := f(r). This definition does not depend on
the choice of the representative.

Theorem 4.5 The map f∗ : R/ ker(f)→ im(f) is a ring isomorphism.

Simple rings. The ring morphism (4.6) is called trivial iff T is isomorphic to
R or T = {0}. The ring R is called simple iff all the ring epimorphisms (4.6) are
trivial. This is equivalent to the fact that the two-sided ideals of R are trivial (i.e.,
they are equal to {0} or to R).

Quotient groups. If one replaces two-sided ideals by normal subgroups, then
the construction of quotient rings can be immediately translated to the construction
of quotient groups. Let S be a subgroup of the group G. Then S is called a normal
subgroup of G iff g−1sg ∈ S for all s ∈ S and all g ∈ G.

Construction of quotient groups. Let S be a normal subgroup of the group
G. For elements x, y of G, we write

x ∼ y iff xy−1 ∈ S.

This is an equivalence relation. For the corresponding equivalence classes, we define
a multiplication by setting

10 These proofs can be found in the two standard textbooks on algebra by van der
Waerden (1930) and Lang (2002) quoted on page 180.
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[x][y] := [xy].

The point is that this definition does not depend on the choice of the representatives.
This follows easily from the fact that S is a normal subgroup. This way, the quotient
set G/ ∼ becomes a group denoted by G/S. This group is called the quotient group
of G modulo S. Set π(x) := [x]. The map

π : G→ G/S

is a surjective group morphism. Such morphisms are also called group epimor-
phisms.

The morphism theorem for groups. Suppose that we are given the group
morphism

f : G→ H (4.7)

between the two groups G and H. We introduce the kernel of f by setting

ker(f) := f−1(1)

where 1 denotes the unit element of the group H. Explicitly, the set ker(f) is equal
to {g ∈ G : f(g) = 1}. We also introduce the image of the morphism f by setting
im(f) := f(G). Finally, we set f∗([g]) := f(g). This definition does not depend on
the choice of the representative.

Theorem 4.6 The map f∗ : G/ ker(f)→ im(f) is a group isomorphism.

Simple groups. The group morphism (4.7) is called trivial iff H is isomorphic
to G or H = {1}. The group G is called simple iff all the group epimorphisms (4.7)
are trivial. This is equivalent to the fact that the normal subgroups of G are trivial
(i.e., they are equal to {1} or to G.)

The finite simple groups are completely classified. The mathematicians needed
more than 100 years for this classification. Note that the full proof comprehends
about 10 000 pages. We refer to:

D. Gorenstein, Classifying the finite simple groups, Bull. Amer. Math. Soc.
14 (1986), 1–98.

R. Solomon, A brief history of the classification of the finite simple groups.
Bull. Amer. Math. Soc. 38(3) (2001), 315–352.

The largest sporadic finite simple group has about 1064 elements. This group called
the Monster was discovered by using methods rooted in quantum field theory (see
Sect. 17.5 of Vol. I).

The permutation group. Fix the number n = 1, 2, . . . Let X be a finite set
with n elements. The set of all bijective maps

π : X → X

forms a group Aut(X) which is called the automorphism group of the set X. If
π, σ ∈ Aut(X), then the product πσ is given by the composition of maps, that is,

(πσ)(x) := π(σ(x)) for all x ∈ X.

If we denote the elements of X by 1, 2, . . . , n, then the elements π of Aut(X) can
be represented by the permutation

 

1 2 . . . n

x1 x2 . . . xn

!

. (4.8)
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The n! symbols (4.8) form a group called the symmetric group Sn. Obviously, we
have the group isomorphism Aut(X) � Sn. By definition, a transposition τ is an
element of Sn which transposes precisely two different elements. For example, the
transposition between 1 and 3 reads as

τ =

 

1 2 3 4 . . . n

3 2 1 4 . . . n

!

.

The proof of the following proposition can be found in the standard textbook on
algebra by Lang (2002), p. 31, quoted on page 180.

Proposition 4.7 There exists precisely one group morphism

sgn : Sn → {1,−1}

from the symmetric group Sn to the multiplicative group {1− 1} such that we have
sgn(τ) = −1 for all transpositions τ.

The number sgn(π) is called the sign (or the parity) of the permutation π. Here,
π is said to be even (resp. odd) iff sgn(π) = 1 (resp. =−1). Each permutation π ∈ Sn

can be represented as a product of transpositions:

π = τ1τ2 · · · τm.

Hence sgn(π) = sgn(τ1)sgn(τ2) · · · sgn(τn) = (−1)m. The even permutations consti-
tute the kernel of the map sgn: Sn → {1,−1}, which is called the alternating group
An. By the morphism theorem for groups, we have the isomorphism

Sn/An � {1,−1}.

The group An of order n!/2 is simple if n = 2, 3, or n ≥ 5. The group A4 is not
simple.

Quotient fields. The ring of integers Z is not a field, however, it can be
extended to the field of rational numbers which can be represented by fractions a

b
of

integers a, b where b �= 0. We want to generalize this idea. In the next section, we will
consider an elegant application to the Heaviside calculus in electrical engineering.
In what follows all of the necessary computations resemble the computations known
for rational numbers. However, our arguments only rely on the relations valid in
rings and fields.

Zero divisors. In the Gaussian ring Z/mod 6, the decomposition 2 · 3 = 6
implies

[2][3] = [0].

The non-zero elements [2] and [3] are called zero divisors of the ring Z/mod 6.
Similarly, let R be an arbitrary ring. An element a of R is called a zero divisor iff
a �= 0 and there exists a nonzero element of R such that ab = 0. Obviously, a field
has never zero divisors. The Gaussian ring Z/mod m has no zero divisors iff either
m = 1 or m is a prime number.

Fractions. Let F be a field. For a, b ∈ F with a �= 0, we define

a

b
:= ab−1.

It turns out that these fractions possess the usual properties known from rational
numbers. In fact, for all a, b, c, d ∈ F with a �= 0 and d �= 0 , the following hold:11

11 In (F4), we also assume that c �= 0.
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(F1) Equality: a
b

= c
d

iff ad = bc.

(F2) Addition: a
b

+ c
d

= ad+bc
bd

.

(F3) Multiplication:
`

a
b

´ `

c
d

´

= ac
cd
.

(F4) Division:
`

a
b

´ `

c
d

´−1
= ad

bc
.

Proof. In a field, we always have bb−1 = 1, and (bc)−1 = c−1b−1. Furthermore,
note that ac = ca because of commutativity.

Ad (F1). If a
b

= c
d
, then ab−1 = d−1c. Multiplying this by b, we get a = d−1cb.

Hence da = cb. This argument can be reversed.
Ad (F2). We have to show that

(ad + bc)(bd)−1 = ab−1 + cd−1.

In fact, this follows from (ab−1 + cd−1)bd = ad + bc.
Ad (F3), (F4). Argue similarly. �

The extension theorem. Let R be a commutative ring without zero divi-
sors.12 Then the following hold.

Theorem 4.8 (i) The ring R can be extended to a field F . The elements of F have
precisely the form ab−1 with a, b ∈ R and b �= 0.

(ii) The extension is universal, that is, each extension of R to a field F contains
a subfield which is isomorphic to F .

(iii) If R is a real (resp. complex) algebra, then so is F .

Proof. Ad (i). (I) Equivalence relation. Let a, b, c, d ∈ R with a �= 0 and c �= 0.
Our idea is to use symbols a

b
and to write

a

b
∼ c

d

iff ad = bc. This is an equivalence relation. For example, a
b
∼ a

b
follows from ab = ba.

The equivalence classes are denoted by [ a
b
].

(II) Multiplication of equivalence classes. We define

ha

b

i h c

d

i

:=
hac

bd

i

.

The point is that this definition does not depend on the choice of the representatives
of the equivalence classes. To see this, we have to show that

ha

b

i

=

»

a′

b′

–

and
h c

d

i

=

»

c′

d′

–

imply
ha

b

i h c

d

i

=

»

a′

b′

– »

c′

d′

–

.

In fact, if ab′ = ba′, cd′ = c′d, then ab′cd′ = ba′c′d. Hence (ac)(b′d′) = (bd)(a′c′).
(III) Addition: We define

ha

b

i

+
h c

d

i

:=

»

ad + bc

bd

–

.

Again one shows that this definition does not depend on the choice of the repre-
sentatives. Here, we need that b �= 0 and c �= 0 imply bc �= 0. This follows from our
assumption that the ring R has no zero divisors. Furthermore, one checks that the

12 We assume that R is not trivial, that is, it has at least one non-zero element.
But, we do not assume that R has a unit element.



188 4. The Strategy of Equivalence Classes in Mathematics

equivalence classes form a ring with the zero element 0 := [ 0
b
] and the unit element

1 := [ b
b
].

(IV) Invertibility: If a �= 0 and b �= 0, then

ha

b

i

»

b

a

–

=

»

ab

ab

–

= 1.

Consequently, the equivalence classes form a field F .
(V) Identification of the ring elements: For all nonzero elements b, b′ of R, we

have
ab

b
∼ ab′

b′
,

since (ab)b′ = b(ab′). Hence
ˆ

ab
b

˜

=
h

ab′

b′

i

. For each a ∈ R, define

χ(a) :=

»

ab

b

–

. (4.9)

The map χ : R → F does not depend on the choice of b. Thus, χ is well-defined.
One shows easily that χ respects addition and multiplication. Thus, χ is a ring
morphism. In addition, the map χ is injective. In fact, if

»

ab

b

–

=

»

a′b

b

–

,

then ab2 = a′b2, and hence (a− a′)b2 = 0. Since b �= 0, and the ring R has no zero
divisors, we get b2 �= 0, and hence a− a′ = 0. Summarizing, the map χ : R→ χ(R)
is a ring isomorphism. If we identify the subring χ(R) of F with R, then the field
F is an extension of R.

Ad (ii). Suppose that F is another field extension of R. Define

�
“ha

b

i”

:= ab−1.

This map does not depend on the representatives. One also shows that the map
� : F → F is an injective ring morphism. Thus, F is isomorphic to �(F).

Ad (iii) Suppose that, say, R is a real algebra. For each real number α, we define

α
ha

b

i

:=
hαa

b

i

.

This map does not depend on the choice of the representatives. This way, the field
F becomes a real algebra. �

4.1.4 Linear Quotient Spaces

Let X be a linear subspace of the linear space Z over K. For u, v ∈ Z, we write

u ∼ v iff u− v ∈ X.

This is an equivalence relation. The equivalence classes have the form

[u] = u + X = {u + x : x ∈ X}.
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�
� �

X

Y
x + y

x

y

Fig. 4.1. Direct sum

Intuitively, if Z = R
3 and X is a one-dimensional (resp. 2-dimensional) subspace of

Z, then u+X is a straight line (resp. plane) passing through the point u and being
parallel to the straight line (resp. plane) X. For all u, v ∈ Z and α, β ∈ K, we set

α[u] + β[v] := [αu + βv].

This definition does not depend on the choice of the representatives. This follows
from αX + βX = {αx + βy : x, y ∈ X} = X, and hence

α(u + X) + β(v + X) = (αu + βv) + X.

This way, the quotient space Z/ ∼ becomes a linear space over K which is denoted
by Z/X. From the geometric point of view, the quotient space Z/X operates with
straight lines or planes (i.e., linear manifolds).

Projection operator. Let X and Y be linear subspaces of the linear space Z
over K. Suppose that each element z of Z allows the following unique sum repre-
sentation

z = x + y, x ∈ X, y ∈ Y.

Define
Pz := x for all z ∈ Z.

The operator P : Z → X has the typical property that it is linear and P 2 = P
(Fig. 4.1). Precisely such operators are called projection operators. The operator

I − P : Z → Y

is also a projection operator. In fact, the operator I − P is linear, and (I − P )2 is
equal to I − 2P + P 2 = I − P. Hence (I − P )2 = I − P. We have

Z = X ⊕ Y, P (Z) = X, (I − P )(Z) = Y.

The mapping y �→ [y] yields the following isomorphism.

Proposition 4.9 The complementary linear subspace Y is linear isomorphic to the
quotient space Z/X.

Thus, for each linear subspace X of the linear space Z over K, we get the direct
sum decomposition

Z = X ⊕ Z/X.

Note that if Z = X ⊕ Y, then the quotient space Z/X is uniquely determined by
Z and X, in contrast to the space Y . The dimension of the quotient space Z/X is
called the codimension of the linear subspace X with respect to the linear space Z.
We write

codim(X) := dim(Z/X).
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The dimension of a linear space is an absolute invariant under linear isomorphisms.
In contrast to this, the codimension of a linear space is only a relative invariant. If
the dimension of Z is finite, then

codim(X) = dim(Z)− dim(X).

For example, in the 3-dimensional space of our intuition, a plane has the dimension
2 and the codimension 1. The morphism theorem for linear morphisms (i.e., linear
operators) L : X → Y between the two linear spaces X and Y over K reads as
follows.

Theorem 4.10 If L : X → Y is a linear morphism, then we have the linear
isomorphism X/ker(L) � im(L).

Here, the kernel ker(L) := L−1(0) is a linear subspace of X. The proof proceeds
as for rings on page 184.

4.1.5 Ideals and Quotient Algebras

Let A be an algebra over K. For subsets B and C of A, we define

B + C := {b + c : b ∈ B, c ∈ C}, BC := {bc : b ∈ B, c ∈ C}.

Using this convenient notation, we obtain the following:

• The subset B of A is a linear subspace iff αB + βB = B for all α, β ∈ K.
• The subset J of A is called a two-sided ideal iff JA = AJ = J.

Let J be a two-sided ideal of A. Since the algebra A is a linear space, the quotient
space A/J is a linear space. Additionally, A/J becomes an algebra over K if we
introduce the following multiplication

[u][v] := [uv].

This definition does not depend on the choice of representatives. In fact,

(u + J)(v + J) = uv + (uJ + vJ + JJ) = uv + J.

The morphism theorem for algebra morphisms χ : A→ B between the two algebras
A and B over K reads as follows.

Theorem 4.11 If χ : A → B is an algebra morphism, then we have the algebra
isomorphism A/ker(χ) � im(χ).

Here, the kernel ker(χ) := χ−1(0) is a two-sided ideal of A. The proof proceeds
as for rings on page 184.

Further constructions for linear spaces. In addition to the preceding ma-
terial, there exist the following constructions for linear spaces X,Y,Xα:

• the inductive (or direct) limit: lim indα∈AXα (Sect. 4.5.5);
• the projective (or inverse) limit: lim projα∈AXα (Sect. 4.5.5);
• the K-ring K(VectK) generated by the semi-ring of finite-dimensional vector

spaces over K (Sect. 4.4.9);
• the K-ring KK(X) generated by the semi-ring of vector bundles of finite rank on

the topological space X (Sect. 4.4.9);
• the tensor product X ⊗ Y , and the tensor algebra

N

(X) (Vol. III);
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• the algebra A(X) of antisymmetric multilinear functionals, and the Grassmann
(or exterior) algebra

V

(X) (Vol. III);
• the algebra S(X) of symmetric multilinear functionals, and the symmetric alge-

bra
J

(X) (Vol. III);
• the Clifford (or inner) algebra

W

(X) (Vol. III).

4.2 Superfunctions and the Heaviside Calculus in
Electrical Engineering

The historical experience of mathematicians shows that successful formal
approaches invented by physicists can be rigorously justified, possibly, after
large time delay. For example, this concerns Heaviside’s calculus in electri-
cal engineering (Laplace transform and Mikusiński’s operational calculus),
Dirac’s delta function in quantum mechanics (Laurent Schwartz’s theory
of distributions), Dirac’s operator calculus (Gelfand triplets and distribu-
tions), and Leibniz’s infinitesimals in calculus (Robinson’s non-standard
analysis). There is no reason why there should not emerge a rigorous jus-
tification of quantum field theory in the future.

Folklore

In this book, the operators of the Heaviside calculus in electrical engineer-
ing are represented by (abstract) fractions of continuous functions.13

Jan Mikusiński, 1959

The convolution algebra. Let R denote the set of all continuous functions

f : [0,∞[→ C.

For f, g ∈ R and α, β ∈ C, we define the usual linear combination αf + βg. As
product f ∗ g, we choose the convolution

(f ∗ g)(t) :=

Z ∞

0

f(t)g(t− τ)dτ for all t ≥ 0.

For example, set l(t) := 1 for all t ≥ 1. Let f ∈ R. Then

(l ∗ f)(t) =

Z t

0

f(τ)dτ for all t ≥ 0. (4.10)

If the function f : [0,∞[→ R is continuous and continuously differentiable, then
the fundamental theorem of calculus tells us that

(l ∗ f ′)(t) =

Z t

0

f ′(τ)dτ = f(t)− f(+0) for all t ≥ 0.

In terms of the convolution algebra R, this means l ∗ f ′ = f − f(+0)l. Elementary
properties of the convolution product tell us that R is a commutative ring and a
complex algebra. The following theorem due to Titchmarsh (1899–1963) formulates
a non-trivial property of the convolution product.

Theorem 4.12 The convolution algebra R has no zero divisors.

13 J. Mikusiński, Operational Calculus, Pergamon Press, Oxford, 1959.
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Explicitly, this means the following. Let f, g : [0,∞[→ C be two continuous
functions with (f ∗ g)(t) = 0 for all t ∈ R. Then at least one of the functions f
or g vanishes identically. The elegant proof can be found in K. Yosida, Functional
Analysis, Sect. VI.5, Springer, New York, 1995. The Titchmarsh theorem is one of
the jewels in harmonic analysis.

The field of superfunctions. By Theorem 4.8 on page 187, the convolution
algebra R can be extended to a field F which is uniquely determined (up to iso-
morphism). The field F is also a complex algebra. Here, F is called the Mikunsińki
field. To simplify notation, we write fg instead of f ∗ g. The elements of F are
called superfunctions. In the sense of (F1)–(F4) on page 186, the elements of F are
fractions of the form

f

g
, f, g ∈ R, g �= 0.

Observe the crucial fact that fractions refer to the product on the field F , but not
to the division of continuous functions in the usual sense. The unit element 1 of
the field F is given by

1 =
f

f
for all f ∈ R, f �= 0.

Let us consider some examples of superfunctions.

(i) Integration: Choose the element l of R defined by l(t) := 1 for all t ∈ R. For all
f ∈ R, set g := lf (in the sense of the multiplication on the field F ). By (4.10),

we have g ∈ R and g(t) =
R t

0
f(τ)dτ for all t ≥ 0.

(ii) The unit element 1. Suppose that there exists a unit element in the convolution
ring R. We denote this unit element by δ. It follows from f ∗δ = f for all f ∈ R
that

Z t

0

f(τ)δ(t− τ)dτ = f(t) for all t ≥ 0.

However, there is no continuous function δ : [0,∞[→ C which has this property.
Thus, the convolution ring R has no unit element. But the Minkusiński field
F has the unit element 1. This superfunction can be regarded as the rigorous
version of the Dirac delta function in the Mikusiński setting. In particular, note
that the element l of R is different from 1. We have 1 = l

l
.

(iii) Differentiation: Set s := l−1. For all continuous and continuously differentiable
functions f : [0,∞[→ C, we have the following key relation for the Heaviside
calculus:

f ′ = sf − f(+0)1. (4.11)

In fact, it follows from lf ′ = f − f(+0)l and sl = 1 that

f ′ = (sl)f ′ = sf − f(+0)
l

l
= sf − f(+0)1.

(iv) Exponential function: Fix the complex number α. Set h(t) := eαt for all t ≥ 0.
Then, in terms of the Mikusiński field F ,

h =
1

s− α1
.

In fact, h′ = αh. Hence αh = sh−h(+0)1 = sh−1, by (iii). Thus, (s−α1)h = 1.
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Application to the Heaviside calculus. As a simple example, consider the
initial-value problem

x′(t)− αx(t) = f(t), t ≥ 0, x(+0) = x0. (4.12)

We are given the continuous function f : [0,∞[→ C, and the complex numbers
α, x0. In the Mikusiński field F , equation (4.12) reads as

sx− x01− αx = f.

Hence (s− α1)x = x01 + f. By (iv),

x =
x01

s− α1
+

f

s− α1
= x0h + hf.

Recall that the product hf in the field F stands for the convolution product h ∗ f.
Therefore, the solution of our problem (4.12) is given by

x = x0h + h ∗ f.

Explicitly, noting that h ∗ f = f ∗ h, the solution of (4.12) reads as

x(t) = eαtx0 +

Z t

0

eα(t−τ)f(τ) dτ for all t ≥ 0.

This justifies rigorously the symbolic Heaviside method considered in (1.28) on page
30. The approach can be simplified by cancelling the (redundant) unit element 1
of the field F . Then

x =
x0

s− α
+

f

s− α
.

Many applications in engineering can be found in the classical monograph by

J. Mikusiński, Operational Calculus, Pergamon Press, Oxford, 1959.

The Polish engineer Jan Mikusiński founded this approach in the 1950s. Roughly
speaking, Mikusiński’s method is equivalent to the use of the Laplace transform
(see Sect. 1.31 on page 32). We also refer to: K. Yosida, Operational Calculus: A
Theory of Hyperfunctions, Springer, New York, 1984. In 1959 Sato introduced a
class of generalized functions which he called hyperfunctions:

M. Sato, Theory of hyperfunctions I, II, J. Fac. Sci. Univ. Tokyo 8 (1959),
139–193; (1969), 487–536.

P. Schapira, Mikio Sato – a visionary of mathematics, Notices Amer. Math.
Soc. 54(2) (2007), 243–245.

Roughly speaking, distributions in the sense of Laurent Schwartz are dual objects
to smooth functions. Similarly, roughly speaking, Sato’s hyperfunctions are dual
objects to analytic functions. The general theory together with applications to
partial differential equations is investigated in:

L. Hörmander, The Analysis of Linear Partial Differential Operators I,
Chap. 9, Springer, New York, 1983.

We also refer to M. Sato, T. Miwa, and M. Jimbo, Holonomic quantum fields, Parts
I–V, Publ. Res. Inst. Math. Sci. 14 (1978), 223–267; 15 (1979), 201–278; 577–629;
871–972; 16 (1980), 531–535.
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4.3 Equivalence Classes in Geometry

Geometry is the invariant theory of groups of transformations.
Felix Klein

Erlangen program 1872

4.3.1 The Basic Idea of Geometry Epitomized by Klein’s
Erlangen Program

The geometry known in ancient times was Euclidean geometry, and it dominated
mathematics for over 2000 years. The famous question as to the existence of non–
Euclidean geometries led in the nineteenth century to the description of a series
of different geometries. This being established, it was natural to consider the clas-
sification of possible geometries. Felix Klein (1849–1925) solved this problem and
showed in 1872 with his Erlangen program that geometries can be conveniently
classified by means of group theory. A geometry requires a group G of transfor-
mations. Every property or quantity remaining invariant under the action of the
group G is a property of the associated geometry, which is therefore also referred to
as a G-geometry. For example, the Euclidean geometry corresponds to invariants
under the Euclidean group of motions, which consists of translations and rotations.
In particular, the distance between two points is a property of Euclidean geometry.
For the modern version of Klein’s Erlangen program, we refer to:

R. Sharpe, Differential Geometry: Cartan’s Generalization of Klein’s Er-
langen Program, Springer, New York, 1997.

4.3.2 Symmetry Spaces, Orbit Spaces, and Homogeneous Spaces

A G-space (X,G) describes a geometry on the space X which possesses
the symmetry group G.

Folklore

In gauge theory, orbit spaces play a fundamental role. For example, in the Standard
Model in particle physics, the orbits under the action of the gauge group represent
the same physical state. Since the Feynman functional integral has to be taken over
physical states, this integral becomes an integral over an orbit space of the gauge
group. This is the idea of the method of Faddeev–Popov quantization in gauge
theory (see Chap. 16 of Vol. I). At this point, we want to discuss same basic ideas
of orbit spaces in geometry and theirs relations to quantum states and projective
spaces. Let n = 0, 1, 2, . . . To fix the terminology, the symbol

S
n := {x ∈ R

n+1 : x2
1 + x2

2 + . . . + x2
n+1 = 1}

denotes the n-dimensional unit sphere. Observe that this sphere is the boundary of
the (n + 1)-dimensional closed unit ball centered at the origin:

B
n+1 := {x ∈ R

n+1 : x2
1 + x2

2 + . . . + x2
n+1 ≤ 1}.

Let R > 0, and let a ∈ R
n+1, where a = (a1, . . . , an+1). The set

B
n+1
R (a) := {x ∈ R

n+1 : (x1 − a1)
2 + . . . + (xn+1 − an+1)

2 ≤ R2}
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P

z

S
2 N

S

0

Fig. 4.2. Riemann sphere

is called the (n+1)-dimensional closed ball of radius R centered at the point a. The
interior of B

n+1
R (a) is called the (n+ 1)-dimensional open ball of radius R centered

at the point a. Explicitly,

int B
n+1
R (a) = {x ∈ R

n+1 : (x1 − a1)
2 + . . . + (xn+1 − an+1)

2 < R2}.

The boundary ∂B
n+1
R (a) of the closed ball B

n+1
R (a) is given by

∂B
n+1
R (a) = {x ∈ R

n+1 : (x1 − a1)
2 + . . . + (xn+1 − an+1)

2 = R2}.

This is an n-dimensional sphere of radius R centered at the point a. We write S
n
R

instead of ∂B
n+1
R (0). Recall that the set C of all complex numbers is called the

Gaussian plane. If we add the point ∞, then we get the closed Gaussian plane

C := C ∪ {∞}.

By stereographic projection, the closed Gaussian plane C is bijective to the Riemann
sphere S

2 (Fig. 4.2). This stereographic projection preserves angles; thus, it is a
conformal map. We will show in Sect. 4.3.5 on page 203 that the Riemann sphere is
also bijective to the projective complex line P

1
C. The Riemann sphere S

2 is an arcwise
connected 1-dimensional complex manifold (i.e., it is a Riemann surface). To prove
this, we have to introduce local complex coordinates. Note that the stereographic
projection pictured in Fig. 4.2 sends the North Pole N (resp. the South Pole S ) to

the point ∞ (resp. to the origin 0) of the extended complex plane C.

• The points P of the punctured sphere S
2 \ {N} can be described by the local

complex coordinates z(P ) via stereographic projection.
• Now consider the points P on the punctured sphere S

2 \ {S}. If P �= N , then
stereographic projection assigns the complex number z(P ) to the point P. Finally,
we assign the local complex coordinate ζ(P ) to the point P by setting

ζ(P ) :=

(

1
z(P )

if P �= N,

0 if P = N.

• For a point P ∈ S
2 \ {N,S}, the change of local coordinates from z(P ) to ζ(P )

is described by the holomorphic map z �→ 1
z

on C \ {0}.
The space C/U(1) as the prototype of an orbit space. Let us consider

the group U(1) := {eiϕ : ϕ ∈ R}. Fix g ∈ U(1), and define

�(g)z := gz for all z ∈ C.

If g, h ∈ U(1), then �(h)(�(g)z) = �(hg)z for all z ∈ C. The map
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�
x

�
Ox

C/U(1)

Fig. 4.3. Action of the rotation group on the plane

�(g) : C→ C

represents a rotation of the Gaussian plane C about the origin z = 0. If g = eiϕ,
then ϕ is the rotation angle. We write

w ∼ z mod U(1)

iff there exists an element g of the group U(1) such that w = �(g)z. This means
that the point z can be moved to the point w by a rotation. This is an equivalence
relation because of the group property of U(1). The equivalence classes [z] are
called orbits of the action of the group U(1) on the Gaussian plane C. The set
of these orbits is denoted by C/U(1), and we call this the orbit space. Intuitively,
the orbits are concentric circles about the origin (Fig. 4.3). Obviously, the orbits
decompose the Gaussian plane into pairwise disjoint sets. Let us reformulate this in
the language of fiber bundles. To this end, we parametrize the orbit space C/U(1).
Let Ox denote that orbit which intersects the real line at the point x ≥ 0. Then

C =
[

x∈[0,∞[

Ox.

For each point z ∈ C, there is precisely one orbit Ox which passes through z. We
define π(z) := x. This way, we get the surjective map

π : C→ [0,∞[.

The pre-images of π are called fibers. Explicitly, π−1(x) = Ox, that is, the fibers
coincide with the orbits. The family of fibers

{Ox}x∈[0,∞[

is called an abstract fiber bundle. Obviously, C/U(1) � [0,∞[, in the sense of a
bijection. Thus, the orbit space C/U(1) can be identified with the interval [0,∞[,
which is not a manifold, but only a manifold with boundary.

Typically, orbit spaces are not manifolds, since they have singularities.

Klein spaces. Let X be a set, and let G be a group. The set of all bijections

A : X → X

forms a group which is called the automorphism group of X. This group is denoted
by Aut(X). The ordered pair

(X,G)

is called a Klein space (or G-space) iff there exists a group morphism

� : G→ Aut(X).



4.3 Equivalence Classes in Geometry 197

The map � is called a representation of the group G by a transformation group on
the space X. Explicitly, this means that, for all g, h ∈ G, the map �(g) : X → X is
a bijection with

�(hg) = �(h)�(g).

The set {�(g) : g ∈ G} forms a subgroup of Aut(G) which is called a transformation
group of X induced by the symmetry group G. We also say that the symmetry group
G acts on the space X. For two points x, y ∈ X, we write

x ∼ y mod G

iff there exists an element g of the symmetry group G such that

y = �(g)x.

This is an equivalence relation on the space X. The equivalence classes [x] are called
orbits of the action of the group G on the space X. The set of all orbits is denoted
by

X/G.

This is also called the orbit space induced by the action of the group G on the space
X. The stabilizer stab(x0) of the point x0 on the space X is defined by

stab(x0) := {g ∈ G : �(g)x0 = x0}.

This is a subgroup of G. In other words, an element g of the symmetry group G
belongs to the stabilizer stab(x0) iff the point x0 of the space X remains fixed under
the action of g. The stabilizer stab(x0) is called trivial iff it contains only the unit
element of G. In geometry, one uses the following terminology:

• The action of the group G on the space X is called transitive iff there is only one
orbit.

• The action of G on X is called effective iff the map � : G→ Aut(X) is injective.
• The action of G on X is called faithful iff the map � : G→ Aut(X) is bijective.
• The action of G on X is called free iff the stabilizer stab(x0) is trivial for all

points x0 ∈ X.

In the case of Fig. 4.3, the stabilizer stab(x0) is equal to U(1) if x0 = 0, and it is
trivial if x0 �= 0. The action of the rotation group U(1) on the Gaussian plane C is
faithful, but neither transitive nor free. In contrast to this, for all a ∈ C, the action
of the translation group z �→ z + a on C is transitive, faithful, and free.

Morphisms of Klein spaces. Let (X,G) and (Y,G) be Klein spaces with the
corresponding representations

� : G→ Aut(X) and σ : G→ Aut(Y )

of the group G on X and Y , respectively. By definition, a morphism (resp. isomor-
phism) from (X,G) to (Y,G) is a map (resp. a bijection) μ : X → Y such that the
following diagram is commutative for all elements g of the symmetry group G:

X
μ ��

�(g)

��

Y

σ(g)

��
X

μ �� Y.

(4.13)

Homogeneous spaces. By definition, a homogeneous space X under the ac-
tion of the symmetry group G is a Klein space (X,G) which has precisely one orbit
(i.e., the action is transitive). Let us consider some examples.
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• The unit circle S
1 is a homogeneous space under the action of the rotation group

in the plane.
• The 2-dimensional unit sphere S

2 is a homogeneous space under the action of
the rotation group. In fact, each given point of S

2 can be moved to an arbitrary
point of S

2 by using a rotation.
• The Euclidean plane (resp. the 3-dimensional Euclidean space) is homogeneous

under the action of the translation group.
• Let S be a subgroup of the group G. We want to show that the orbit space G/S

is homogeneous under the action of the group G.
To this end, we write g ∼ h iff g−1h ∈ S. This is an equivalence relation. The
corresponding equivalence classes [g] form the quotient space G/ ∼ . Explicitly,

[g] = {gs : s ∈ S} for all g ∈ G.

Briefly, [g] = gS. Fix s ∈ S, and define the map �(s) : G→ G by setting

�(s)g := sg for all g ∈ G.

This way, the subgroup S acts on the group G. The orbits of the Klein space
(G,S) are precisely the equivalence classes [g]. Thus,

G/S = G/ ∼ .

Now fix h ∈ G, and set
χ(h)([g]) := [hg]

for all equivalence classes [g]. The map χ(h) does not depend on the choice of
the representatives. Therefore, the group G acts on G/S by means of the maps
χ(h) : G/S → G/S. This way, we get the Klein space (G/S,G). The action
of G on G/S is transitive. In fact, for two equivalence classes [g], [r], we have
χ(rg−1)[g] = [r]. Consequently, the Klein space (G/S,G) has precisely one orbit,
that is, the orbit space G/S is a homogeneous space.

Classification of Klein spaces. Let (X,G) be a Klein space. Then X is the
disjoint union of the orbits O in X. For any orbit O, there is a Klein space (O,G),
and O is a homogeneous space under the action of G. Therefore, it is sufficient to
classify the Klein spaces (X,G) where the space X is homogeneous.

Theorem 4.13 We are given the homogeneous space X with the symmetry group
G. Then the following hold:

(i) If we fix a point x0 in X, then the Klein space (X,G) is isomorphic to the
Klein space (G/stab(x0), G).

(ii) If the stabilizer stab(x0) is a normal subgroup of the symmetry group G,
then the quotient space G/stab(x0) is a group.

(iii) If S and T are subgroups of G, then the Klein spaces (G/S,G) and (G/T,G)
are isomorphic iff S is conjugate to T.

Recall that, by definition, the subgroup S is conjugate to the subgroup T iff
there exists an element g of G such that S = {gtg−1 : t ∈ T}. For the proof of the
theorem, we refer to Problem 4.1.
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4.3.3 The Space of Quantum States

In contrast to the underlying complex Hilbert space, the space of quantum
states has a nontrivial topological structure.

Folklore

In the following sections of this chapter, the symbol A � B means that there exists
a bijective map from the set A onto the set B. In other words, the sets A and B
are equivalent, in the sense of set theory.

Complex Hilbert space. Let X be a complex Hilbert space. The symbol X×

denotes the nonzero elements of X.14 For ψ,ϕ ∈ X×, we write

ψ ∼ ϕ

iff there exists a number λ ∈ C
× such that ψ = λϕ. Obviously, this is an equivalence

relation. The corresponding equivalence classes

[ψ] = {λψ ∈ X : λ ∈ C
×}

are called quantum states (or rays). The set of all quantum states [ψ] of the Hilbert
space X is denoted by P(X). Thus,

P(X) = X×/ ∼ .

Equivalently, this is the orbit space X×/C
× of the Hilbert space X under the

action ψ �→ λψ of the multiplicative group C
×. The elements ψ ∈ X× are called

representatives of quantum states. The relation of P(X) to projective geometry
will be studied below. Let A : D(A) → X be a self-adjoint operator on X (e.g., a
complex self-adjoint (n × n)-matrix acting on X = C

n). For ψ ∈ X× ∩ D(A), we
define

ψ :=
〈ψ|Aψ〉
〈ψ|ψ〉 .

This complex number only depends on the quantum state [ψ]. We call ψ the mean
value of the observable A (e.g., energy) measured in the quantum state [ψ]. Let us
introduce the following notions:

• S(X) := {ψ ∈ X : ||ψ|| = 1} (unit sphere of X);
• B(X) := {ψ ∈ X : ||ψ|| ≤ 1} (closed unit ball in X);
• int

`

B(X)
´

:= {ψ ∈ X : ||ψ|| < 1} (open unit ball in X);15

• S(X)/U(1) (the orbit space of the sphere S(X) under the action ψ �→ λψ of the
group U(1) of complex numbers λ with |λ| = 1);

• Gm(X) is the space of all m-dimensional linear subspaces of the Hilbert space X
(m-Grassmann space of X).16

We have the following bijections:

P(X) � X×/C
× � G1(X) � S(X)/U(1). (4.14)

In fact, the maps
[ψ] �→ [ψ] ∪ {0}, [ψ] �→ [ψ] ∩ S(X)

14 In particular, the symbol R
× (resp. C

×) denotes the set of nonzero real (resp.
complex) numbers.

15 If X := R
n, then we use the symbols S

n := S(Rn) and B
n(S) := B(Rn).

16 Grassmann (1809–1877).
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yield the bijections P(X) � G1(X) and P(X) � S(X)/U(1), respectively.
Real Hilbert space. Let X be a real Hilbert space. Then we introduce the

same symbols as in the complex case above by using the following replacements:

C
× ⇒ R

×, U(1) �→ {1,−1}.

In particular, we obtain the following bijections:

P(X) � X×/R
× � G1(X) � S(X)/{1,−1}.

Here, the Grassmann space G1(X) is the set of all 1-dimensional linear subspaces of
the real Hilbert space X, and S(X)/{1,−1} is the set of all antipodal pairs (ψ,−ψ)
of the unit sphere S(X).

4.3.4 Real Projective Spaces

Algebraic geometry is undoubtedly the area of mathematics where the de-
viation is greatest between the intuitive ideas forming its starting point
and the abstract and complex concepts at the foundation of modern re-
search. . . The history of algebraic geometry has been divided into seven
epochs:
(i) 400 B.C.–1630 A.D.: Prehistory (theory of conics by Appolonius of

Perga).
(ii) 1630–1795: Exploration of plane curves (Descartes, Newton, Leibniz,

Euler, Maclaurin, Bézout).
(iii) 1795–1850: The golden age of projective geometry (Poncelet, Möbius,

Plücker).
(iv) 1850–1866: Riemann and conformal (birational) geometry.
(v) 1866–1920: Development and chaos.

(vi) 1920–1950: New structures in algebraic geometry (Poincaré, Élie Car-
tan, Hodge, de Rham, Lefschetz, Kähler, Weil, Kodaira).

(vii) 1950ff: Sheaves (Leray, Henri Cartan, Serre), the Riemann–Roch–
Hirzebruch theorem (Hirzebruch), and schemes (Grothendieck).

The fourth epoch is without any doubt the most important of all in the
history of algebraic geometry to this day. It is entirely stamped by the work
of one man, one of the greatest mathematicians who ever lived, and also
one of those who have had, most profoundly, the perception (or divination)
of the essential unity of mathematics.17

Jean Dieudonné, 1985

The real projective line P
1. By definition, the points of P

1 are the antipodal
pairs {P+, P−} of the unit sphere S

1. To each point P on the real line R
1, we assign

the antipodal pair {P+, P−} as pictured in Fig. 4.4. In particular, the origin x = 0
on the real line corresponds to {(0, 1), (0,−1)}. The equatorial pair {(1, 0), (−1, 0)}
represents the unique infinite point of the real line. We have the bijection

P
1 � S

1.

17 J. Dieudonné, History of Algebraic Geometry, Birkhäuser, Boston, 1985
(reprinted with permission).
See also K. Maurin, The Riemann Legacy: Riemannian Ideas in Mathematics
and Physics of the 20th Century, Kluwer, Dordrecht. 1997.
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�
R

1

�

P1
P−

P+

Fig. 4.4. Real projective line P
1

In fact, P
1 is bijective to the upper semi-circle where the two equatorial points (1, 0)

and (−1, 0) are identified with each other. Gluing the two endpoints together, we
get a circle. Consequently, the real projective line P

1 can be equipped with such a
topology that it is homeomorphic to the unit circle S

1.
The real projective plane P

2 and infinite points. In the Euclidean plane,
two different straight lines do not always intersect. This is an imperfect situation,
which prevents the formulation of an elegant duality between points and straight
lines in Euclidean geometry.

In mathematics, one always tries to cure imperfect situations by introduc-
ing ideal elements.

For example, the fact that the equation x2 + 1 = 0 has no real solution led to
the invention of the imaginary number

√
−1 in the 16th century. In geometry, one

introduces infinite points. Let us restrict to the situation of a plane. By definition,
an infinite point is the (non-oriented) direction of a straight line in the Euclidean
plane. We say that two different straight lines intersect each other in an infinite
point iff they have the same direction, that is, they are parallel. By definition, all
the infinite points form the infinite straight line. The projective plane P

2 is obtained
from the Euclidean plane by adding the set of all infinite points. Furthermore, we
add the infinite straight line to the set of all straight lines. For the projective plane,
the following hold:

• Two different straight lines always uniquely determine one specific point (i.e.,
the intersection point).

• Two different points uniquely determine one specific straight line (i.e., the con-
necting straight line).

For example, a finite point P and an infinite point (i.e., a direction) P∞ determine
uniquely one specific straight line which passes through the point P and has the
direction P∞.

In analytical terms, we start with the two equations for the given straight lines:

y − x + 1 = 0, y − x + 2 = 0, (x, y) ∈ R
2.

Using a fixed Cartesian coordinate system, we describe the Euclidean plane (resp.
the 3-dimensional Euclidean space) by R

2 (resp. R
3). The basic trick of pro-

jective geometry is to pass from coordinates (x, y) in R
2 to homogeneous coor-

dinates (x, y, z) which are contained in R
3. Explicitly, we use the replacement

x ⇒ x/z, y ⇒ y/z with the real nonzero number z. This yields the modified
homogeneous equations

y − x + z = 0, y − x + 2z = 0, (x, y, z) ∈ R
3, (x, y, z) �= (0, 0, 0).

The general solution (x, y, z) is given by the set {λ(1, 1, 0) : λ ∈ R
×}. By definition,

this is a point of the projective plane P
2. In general, for two nonzero tuples (x, y, z)

and (x′, y′, z′) in R
3, we write
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(a)

P+

P−

(b)

P+

P−

(c)

P+

P−

Fig. 4.5. The real projective plane P
2 where P+ is identified with P−

(x, y, z) ∼ (x′, y′, z′)

iff there exists a nonzero real number λ with (x, y, z) = λ(x′, y′, z′). This is an
equivalence relation. The equivalence classes

[(x, y, z)]

are called points of the projective plane P
2. Each point of P

2 has either the form
[(x, y, 1)] (finite point) or the form [(x, y, 0)] with x2 + y2 �= 0 (infinite point).

• The finite point [(x, y, 1)] of P
2 can be identified with the point (x, y) of R

2.
• The infinite point [(x, y, 0)] can be identified with a straight line in R

2 which
passes through the points (0, 0) and (x, y).

Using the real Hilbert space X := R
3 and the notation introduced in Sect. 4.3.3 on

page 199, we have the following bijections:

P
2 � (R3)×/R

× � G1(R
3) � S

2/{1,−1}. (4.15)

Let us discuss this. To begin with, note that the points of the real projective plane
P

2 can be identified with straight lines in R
3 which pass through the origin. This

yields the bijection P
2 � G1(R

3). Moreover, each of these straight lines intersects
the 2-dimensional unit sphere S

2 in precisely two points which are antipodal points
(Fig. 4.5(a)). Therefore, the points of P

2 can be identified with pairs of antipodal
points of S

2. This yields the bijection P
2 � S

2/{1,−1}. Precisely the antipodal
pairs of the equator of S

2 correspond to infinite points of the real projective plane
P

2. In addition, we have the following bijections:

P
2 � (S2

+/ ∼) � (B1/ ∼).

Here, S
2
+/ ∼ denotes the closed northern hemisphere of the sphere S

2, where an-
tipodal points P+, P− of the equator are identified with each other (Fig. 4.5(b)).
Projection of S

2
+/ ∼ onto the Euclidean (x, y)-plane yields the set B

1/ ∼ . Explic-
itly, B

1/ ∼ represents the closed unit disc where antipodal points P+, P− on the
boundary are identified with each other (Fig. 4.5(c)).

Finally, we want to consider a hyperbola in the setting of projective geometry.
Fix a > 0 and b > 0. Consider the hyperbola

x2

a2
− y2

b2
= 1, (x, y) ∈ R

2, (4.16)

with respect to Cartesian (x, y)-coordinates in the Euclidean plane. Using the re-
placement x⇒ x/z, y ⇒ y/z with the nonzero real number z, we get the equation
of the hyperbola,
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x2

a2
− y2

b2
= z2, (x, y, z) ∈ R

3, (x, y, z) �= (0, 0, 0), (4.17)

with respect to homogenous coordinates (x, y, z). This equation has the solutions

(x, y, z) = (a,±b, 0).

Note that the two infinite points [(a, b, 0)] and [(a,−b, 0)] on the projective hyper-
bola (4.17) correspond to the two asymptotes y = b

a
x and y = − b

a
x of the Euclidean

hyperbola (4.16), respectively.
The equation of the unit circle x2 + y2 = 1 passes over to the equation

x2 + y2 = z2, (x, y, z) ∈ R
3, (x, y, z) �= (0, 0, 0, 0),

in homogeneous coordinates. Letting z = 0, the equation x2 + y2 = 0 implies
x = y = 0. Consequently, the unit circle does not contain any infinite points, as
expected.

Generalization. Let n = 1, 2, . . . Using the real Hilbert space X := R
n+1 and

the notation introduced in Sect. 4.3.3, set P
n := P(Rn+1). Generalizing the relation

(4.15), we get the following bijections:

P
n � (Rn+1)×/R

× � G1(R
n+1) � S(Rn+1)/{1,−1}.

In algebraic geometry, one always uses projective spaces in order to get elegant
results of great generality for algebraic curves. As an example, we mention the
theorem of Max Noether (1844–1921) on the genus of an irreducible algebraic curve.
See the textbooks by:

G. Walker, Algebraic Curves, Princeton University Press, 1950.

G. Fischer, Plane algebraic curves, Vieweg, Braunschweig, 1994 (in Ger-
man).

E. Brieskorn and H. Knörrer, Plane Algebraic Curves, Birkhäuser, Basel,
1981 (in German).

4.3.5 Complex Projective Spaces

The projective complex line P
1
C. For two nonzero points (w, z) and (w′, z′) in

the space C
2, we write

(w, z) ∼ (w′, z′)

iff there exists a nonzero complex number λ such that (w, z) = λ(w′, z′). This is an
equivalence relation. The equivalence classes are denoted by P(C2) (or briefly by
P

1
C). The set P

1
C has the complex dimension one. Therefore, it is called the projective

complex line. The group U(1) acts on the unit sphere S(C2) by (w, z) �→ λ(w, z)
with λ ∈ U(1). There exists the bijection

P
1
C � S(C2)/U(1)

between P
1
C and the orbit space S(C2)/U(1). In 1931, Heinz Hopf discovered that

there exists a bijective map

h : S(C2)/U(1)→ S
2

which is called the Hopf map (or the Hopf fibration). This map allows an elegant
interpretation in terms of the electron spin (see Sect. 5.7.2 of Vol. I). In particu-
lar, the Hopf map tells us that the space of quantum states of a two-dimensional
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Hilbert space is bijective to the 2-dimensional sphere. By the Hopf map, we have
the bijection

P
1
C � S

2.

The n-dimensional complex projective space. For n = 1, 2, . . ., choose the
Hilbert space X := C

n+1. By (4.14), we have the bijections

P(Cn+1) � (Cn+1)×/C
× � S(Cn+1)/U(1).

The space P(Cn+1) is also briefly denoted by the symbol P
n
C , and it is called the

n-dimensional complex projective space.

4.3.6 The Shape of the Universe

The recent WMAP (Wilkinson Microwave Anisotropy Probe) experiment of NASA
measures the anisotropy of the radiation which was created in the universe 380 000
years after the Big Bang. Information about this experiment can be found on the
NASA homepage:

http://www.nasa.gov/home/

http://lambda.gsfc.nasa.gov

Furthermore, we refer to:

R. Aurich, S. Lustig, F. Steiner, and H. Then (2004), Indications about
the Shape of the Universe from the WMAP data, Phys. Rev. Lett. 94,
021301. Internet:http://arXiv.org/astro-ph/0412407

R. Aurich and F. Steiner (2004), Quintessence and the curvature of the
universe after WMAP, Int. J. Mod. Phys. D 13, 123–136.
Internet: http://arXiv.org/astro-ph/0302264

These papers are based on sophisticated mathematical methods from both spectral
geometry and analytic number theory, and they make use of huge computer calcu-
lations. For example, the available WMAP data exclude a completely flat universe
called quintessence. In fact, the WMAP data show that the curvature of our Uni-
verse is small, but the sign of the curvature is not known today. It is possible that
our Universe is not simply connected, but it is a homogenous space X/G which has
a complicated topological structure. In order to get better information about the
true structure of our Universe, one needs more precise experimental data. Such im-
proved experiments are planned for the near future by using the European Planck
satellite. The papers quoted above can be viewed as cosmological versions of the
following classical papers:

M. Kac, Can one hear the shape of a drum? Amer. Math. Monthly 73(4),
(1966), 1–23.

C. Gordon, D. Webb, and S. Volpert, You can’t hear the shape of a drum,
Bull. Amer. Math. Soc. 27(1) (1992), 134–138.

C. Gordon and D. Webb, You can’t here the shape of a drum, American
Scientist 84 (1996), 46–55.

The last two papers tell us that the observed eigenfrequencies of a drum (i.e., the
eigenvalues of the Laplacian on a compact Riemannian manifold) do not always
uniquely determine the manifold, up to isometries.

Hints for further reading. The 1872 Klein Erlangen program on the rela-
tion between geometry and symmetry was substantially generalized to differential

geometry by Élie Cartan (1859–1951) in the 1920s. We recommend the following
monographs:
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T. Ivey and J. Landsberg, Cartan for Beginners: Differential Geometry
via Moving Frames and Exterior Differential Systems, Amer. Math. Soc.,
Providence, Rhode Island, 2003.

R. Sharpe, Differential Geometry: Cartan’s Generalization of Klein’s Er-
langen Program, Springer, New York, 1997.

For the Ehresmann approach to modern differential geometry (based on symmetry
groups, principal fiber bundles, and connections on the associated vector bundles),
we refer to:

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols.
1, 2, Wiley, New York, 1963.

J. Jost, Riemannian Geometry and Geometric Analysis, Springer, Berlin,
2008.

The relations to gauge theory and the Standard Model in elementary particle
physics will be thoroughly studied in Vol. III.

4.4 Equivalence Classes in Topology

Though I travelled many different roads, I always encountered analysis
situs (topology).

Henri Poincaré (1854–1912)

Topology has its roots in geometric intuition, the theory of analytic func-
tions, the theory of Abelian integrals over algebraic functions, and in
physics.

Folklore

4.4.1 Topological Quotient Spaces

In this Section, we need the notions ‘topological space’ and ‘topology’ introduced
in Sect. 5.5 of Vol. I.

Quotient topology. Let X be a topological space. Suppose that we are given
an equivalence relation ∼ on X. We have the canonical projection

π : X → X/ ∼ (4.18)

given by π(x) := [x]. We want to equip the quotient space X/ ∼ of equivalence
classes [x] with a natural topology. To this end, we define:

A subset S of the quotient space X/ ∼ is called open iff the set of all the
corresponding representatives is open in the original space X.

In other words, a subset S of X/ ∼ is called open iff the set

π−1(S) is an open subset of X.

Then the map π from (4.18) has the obvious property that the pre-images of open
sets are again open. Thus, π is continuous.
Examples. Topological quotient spaces are everywhere in mathematics and physics.
Let us consider a few simple examples.
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A B
=⇒

A B

=⇒

A = B

Fig. 4.6. The circle as the quotient space of an interval

(i) The unit circle as a quotient space of the unit interval: Consider the unit interval
I := [0, 1]. We equip the set I with the subspace topology induced by the
topology on the real line R. Explicitly, a subset O′ of I is called open iff there
exists an open subset O of the real line such that

O′ = O ∩ I.

For example, the sets [0, ε[ and ]1 − ε, 1] are open in I if 0 < ε ≤ 1
2
. Now we

want to identify the endpoints A := {0} and B := {1} of the interval I with
each other (Fig. 4.6). Intuitively, we glue the points A and B together. This
yields a circle. In terms of mathematics, we start with the decomposition

I = {0, 1} ∪
[

0<x<1

{x}

of the interval I into pairwise disjoint sets. These sets are the equivalence
classes of the corresponding equivalence relation ∼. Explicitly, the equivalence
classes are the following subsets off the interval I:

[0] = [1] := {0, 1} and [x] := {x} for all x ∈]0, 1[.

Choose 0 < ε ≤ 1
2
, and set Uε := [0, ε[ ∪ ]1− ε, 1]. Then, for example, the set

Uε := {[x] : x ∈ Uε}

is an open neighborhood of the point [0] in the quotient space I/ ∼ . The
quotient space I/ ∼ is homeomorphic to the unit circle S

1.
(ii) The 2-dimensional sphere as a quotient space of the unit square: Consider the

unit square
S := {(x, y) ∈ R

2 : 0 ≤ x, y ≤ 1},
and identify all of the boundary points with each other. Intuitively, we glue all
of the boundary points together (Fig. 4.7). The corresponding quotient space
S/ ∼ is homeomorphic to the 2-dimensional unit sphere S

2.
(iii) The torus as the quotient space of a square: In contrast to example (ii), we

only identify opposite boundary points of the unit square S with each other.
The corresponding quotient space S/ ∼ is homeomorphic to a 2-dimensional
torus (Fig. 4.8).

(iv) The n-dimensional sphere as the quotient space of the n-dimensional cube: Let
n = 1, 2, . . . Consider the n-dimensional unit cube

In := {(x1, . . . , xn) ∈ R
n : 0 ≤ x1 ≤ . . . ≤ xn ≤ 1},

and identify all of the boundary points with each other. Then the corresponding
quotient space In/ ∼ is homeomorphic to the n-dimensional unit sphere S

n.
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∂S

S =⇒ S =⇒

∂S ∂S

S

Fig. 4.7. The two-dimensional sphere as the quotient space of a square

(v) The real n-dimensional projective space as the quotient space of the n-dimen-
sional sphere: Consider the sphere S

n, n = 1, 2, . . . , equipped with the equiva-
lence relation

x ∼ y iff x = ±y.
The corresponding quotient space S

n/{±I} becomes a topological space with
respect to the quotient topology. Since we have the bijection

S
n/{±I} � P

n,

the n-dimensional real projective space P
n also becomes a topological space.

(vi) Orbit spaces: Example (v) is a special case of the following more general sit-
uation. Let X be a topological space, and suppose that the symmetry group
G acts on X. By Sect. 4.3.2, there exists an equivalence relation on X such
that the quotient space X/ ∼ coincides with the orbit space X/G. Using the
quotient topology, the orbit space X/G becomes a topological space.

(vii) The Gaussian plane factorized by a lattice: Consider the lattice

L := {z ∈ C : z = m + ni, m, n ∈ Z}.
This lattice is generated from the origin z = 0 by repeating the following
translations: z �→ z + 1, z �→ z + i, z �→ z − 1, and z �→ z − i. For the points
z, w in the complex plane C, we write

z ∼ w iff z − w ∈ L.

The corresponding quotient space C/L is homeomorphic to the quotient space
S/ ∼ from (iii) above, and hence it is homeomorphic to a 2-dimensional torus

T . Let f : C→ C be a meromorphic function with the periods 1 and i, that is,

f(z + w) = f(z) for all w ∈ L.

Then the function f can be considered as a function of the form f : C/L→ C.
In turn, this induces a function

f : T → C

on the torus T. This was the basic idea of Riemann in order to reduce the
study of elliptic functions (and of the corresponding Abelian integrals) to the
investigation of the topological properties of a torus.

A A

A A

� �C C

B

B

=⇒ �A C B

Fig. 4.8. The torus as the quotient space of a square
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f

Fig. 4.9. Section of a fiber bundle

4.4.2 Physical Fields, Observers, Bundles, and Cocycles

Physical fields can be described by bundles in mathematics. The change
of the real values measured by different observers corresponds to cocyles.

Folklore

We want to show how the modern mathematical language of bundles fits physics
in a quite natural way. The point is that we have to model mathematically the
following situation:

• Three observers measure the same physical effect.
• The transformation laws between the measured quantities are governed by the

fact that physics has an invariant meaning; this means, that physics is indepen-
dent of the specific observers.

This corresponds to the situation in geometry where invariant geometric objects
(e.g., a sphere) are described by different local coordinate systems.

Prototype. Let y = f(x) be a real function as pictured in Fig. 4.9. The subset

graph(f) := {(x, f(x)) ∈ R
2 : x ∈ R}

of R
2 is called the graph of the map f : R → R. We want to reformulate f as the

section of a fiber bundle. To this end, we introduce the surjective map

π : R
2 → R

given by π(x, y) := x. The map π is called the projection from the bundle space R
2

onto the base space R. The pre-image π−1(x) is called the fiber Fx at the point x
of the base space R. Explicitly,

Fx = {(x, y) ∈ R
2 : y ∈ R}.

Therefore, Fx � R for all x ∈ R, in the sense of a bijection. Here, R is called the
typical fiber. If x �= x′, then Fx �= Fx′ . Thus, we have the disjoint decomposition

R
2 =

[

x∈R

Fx

of the bundle space R
2 into fibers. Set s(x) := (x, f(x)). The map

s : R→ R
2

has the property that s(x) ∈ Fx for all x ∈ R. This map is called a section of
the bundle. This is the desired equivalent formulation of the given function f . The
family {Fx}x∈R is called a pre-bundle.

Unstructured fiber bundle. By definition, each surjective map

π : B → X (4.19)

is called an unstructured fiber bundle, in contrast to topological and smooth fiber
bundles to be considered below. Here, we use the following terminology:
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• the set B is called the bundle space,
• the set X is called the base space,
• the map π is called the bundle projection, and
• the pre-image Fx := π−1(x) is called the fiber over the base point x.

The map s : X → B is called a section iff the diagram

B

π

��
X

id ��

s

���������
X

(4.20)

is commutative. Equivalently, π ◦ s = id (i.e., the map s is a right inverse of the
bundle projection π).

Bundle morphism. By definition, a morphism between the bundles

π : B → X and σ : C → Y

is a pair (f, g) of mappings such that the following diagram is commutative:

B

π

��

f �� C

σ

��
X

g �� Y.

(4.21)

This implies that fibers are preserved. Explicitly, we have the induced maps

f : Fx → Fg(x) for all x ∈ X.

The bundle morphism (4.21) is called a bundle isomorphism iff the maps f and g
are bijective.

Pre-bundles and physical fields. By definition, a pre-bundle is a family

{Fx}x∈X

of sets Fx (e.g., linear spaces, groups, rings) indexed by the set X. In terms of
physics, the points x are events which are elements of the space-time X (i.e., x
describes a position in space at a certain time). The points of the pre-fiber Fx

describe additional degrees of freedom of the physical system at the event x. The
family

{ψ(x)}x∈X

is called a pre-section iff ψ(x) ∈ Fx for all x ∈ X. In terms of physics, this describes
a physical field x �→ ψ(x) which depends on space and time.

Proposition 4.14 Each pre-bundle corresponds to a bundle. Here, the pre-fibers
are bijectively equivalent to the fibers of the bundle, and the pre-sections correspond
to sections of the bundle.

Proof. We define the bundle space B as the coproduct

B :=
a

x∈X

Fx
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of the pre-fibers Fx. Explicitly, B = {(x, y) : x ∈ X, y ∈ Fx}.18 The bundle
projection

π : B → X

is given by π(x, y) := x. The fiber Fx over the base point x is equal to

Fx = π−1(x) = {x} × Fx.

Set ix(y) := (x, y). For each base point x ∈ X, the map

ix : Fx → B

is injective with the image ix(Fx) = Fx. This induces the bijection

ix : Fx → Fx

between the pre-fiber Fx and the fiber Fx. Set s(x) := ix(ψ(x)). Then the map
s : X → B is a section of the bundle. �

Operations with pre-bundles. Our general strategy reads as follows:

Operations between pre-fiber bundles are performed with respect to fibers.

For example, let {Fx}x∈X and {Gx}x∈X be pre-fiber bundles where all the fibers Fx

and Gx are real finite-dimensional linear spaces. For linear spaces, we have the direct
sum Fx⊕Gx and the tensor product Fx⊗Gx at hand.19 This leads immediately to
the operations

{Fx}x∈X ⊕ {Gx}x∈X := {Fx ⊕ Gx}x∈X

and
{Fx}x∈X ⊗ {Gx}x∈X := {Fx ⊗ Gx}x∈X .

We call {Fx}x∈X a pre-subbundle of {Gx}x∈X iff each fiber Fx is a linear subspace
of the fiber Gx. Finally, a morphism from {Fx}x∈X to {Gy}y∈Y is defined to be
both a map g : X → Y and a family

{Lx}x∈X

of linear maps Lx : Fx → Gy with y = g(x) for all x ∈ X. This morphism is called
an isomorphism iff all the maps Lx are linear isomorphisms and g is bijective.

Next it is our goal to equip fiber bundles π : B → X with an additional
structure.

For example, π is a continuous or smooth map. This way, we will get topological
and smooth fiber bundles, respectively.

Product bundle. Let X and F be sets. The simplest bundle is a product
bundle which corresponds to the surjective map

π : X × F → X

where π(x, y) := x. The fiber over the base point x ∈ X is given by

Fx := π−1(x) = {x} × F.

The set F is called the typical fiber. Product bundles are called trivial bundles.
Now we want to construct nontrivial bundles.

Roughly speaking, the idea is to glue trivial bundles together.

18 The coproduct is also called the disjoint union.
19 For example, R

n ⊕ R
m = R

n+m and R
n ⊗ R

m = R
nm.
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P �v

S
2

TP S
2

Fig. 4.10. The tangent bundle of a sphere

Vector bundle. Let n = 1, 2, . . . Consider the following situation.

(V1) Topological bundle: The map π : B → X is surjective and continuous where
the bundle space B and the base space X are topological spaces.

(V2) Linear fibers: For each x ∈ X, the fiber Fx := π−1(x) carries the structure of
a real n-dimensional linear space.

(V3) Local triviality: The bundle behaves locally like a trivial product bundle

Uα × R
n.

More precisely, there exists a covering {Uα} of the base space X by open sets
Uα. For each index α, we have a homeomorphism

χα :
[

x∈Uα

Fx → Uα × R
n (4.22)

which preserves the linear fibers. That is, all the maps

Fx
χα−→ {x} × R

n p−→ R
n

are linear isomorphisms from Fx onto R
n. Here, p(x, y) := y.

If the conditions (V1)–(V3) are satisfied, then the bundle π : B → X is called a
real vector bundle of rank n. A map s : B → X is called a section of the vector
bundle iff the map s is continuous, and we have the commutative diagram (4.20).

By definition, a morphism (resp. isomorphism) from the vector bundle

π : B → X

to the vector bundle σ : C → Y is a pair (f, g) of continuous maps (resp. homeomor-
phisms) f : B → C and g : X → Y such that the diagram (4.21) is commutative.
Then the map f is fiber-preserving. In addition, we postulate that the linear struc-
ture of the fibers is respected. That is, all the induced fiber maps

f : Fx → Fg(x), x ∈ X

are linear morphisms (resp. linear isomorphisms).
Smooth vector bundle. The vector bundle introduced above is called smooth

iff we replace the topological spaces (resp. continuous maps) by manifolds (resp.
smooth maps). In other words, we replace the category of topological spaces by the
category of manifolds.

Standard example (velocity field on a sphere and the tangent bundle).
Consider the unit sphere S

2 (Fig. 4.10). In order to describe a continuous velocity
field

v = v(P )

on the sphere, we need the quite natural notion of the tangent bundle. Intuitively,
think of an ocean which covers a planet; the velocity field describes the velocity
vectors of the fluid particles. Note that the velocity vector v(P ) is an element of
the tangent space TP S

2 of the sphere S
2 at the point P. It is our goal to show that:
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A continuous velocity field on the sphere is a section of the tangent bundle
of the sphere.

By definition, the tangent bundle TS
2 of the sphere S

2 consists of all the pairs

{(P,v) : P ∈ S
2, v ∈ TP S

2}.

In other words, the tangent bundle TS
2 is the set of all pairs (P,v) where P is an

arbitrary point of the sphere, and v is an arbitrary tangent vector of the sphere at
the point P. Setting π(P,v) := P , we get the vector bundle

π : TS
2 → S

2.

The fiber FP over the point P ∈ S
2 is the tangent space TP S

2 at the point P.
In order to prove local triviality, we will introduce local coordinates in a natural

way. Let {Uα} be a covering of the sphere S
2 by nonempty open sets Uα which are

different from S
2. Fix the set Uα. Then there exist two continuous tangent vector

fields v1 = v1(P ) and v2 = v2(P ) on Uα such that v1(P ),v2(P ) is a basis of the
tangent space TP S

2 at each point P ∈ Uα. Therefore, each tangent vector v at the
point P ∈ Uα can be represented in the form

v = v1(P )v1(P ) + v2(P )v2(P ).

The tuple v1(P ), v2(P ) of real numbers represents the local coordinates of the
tangent vector v with respect to Uα. The map

χα :
[

P∈Uα

TP S
2 → Uα × R

2

from (V3) above is given by χα(P,v) := {P} × (v1(P ), v2(P )).
A section s : S

2 → TS
2 of the tangent bundle is nothing else than a continuous

tangent vector field on the sphere. Observe that it is not possible to introduce a
global coordinate system on the sphere. In fact, Poincaré proved the crucial fact in
1885 that:

Every continuous tangent vector field on the sphere S
2 vanishes at some

point.

For the proof based on the mapping degree, we refer to Zeidler (1986), Vol. I, p. 558
(see the references on page 1049). Let n = 1, 2, . . . A sphere S

n is called parallelizable
iff there exist n continuous tangent vector fields of the sphere S

2 which are linearly
independent at each point of the sphere. A fundamental theorem of topology tells
us the following:20

Precisely the spheres S
1, S3, S

7 are parallelizable.

This is a special case of the theorem of Adams on page 233. Tangent bundles play
a fundamental role in describing the mechanics of point particles by position and
velocity. This will be studied in Chap. 6.

The sphere is not only a topological space, but a 2-dimensional real manifold.
This means that it looks locally like an open subset of R

2, and the change of local
coordinates is given by diffeomorphisms (see Sect. 5.4 of Vol. I). Using local manifold
coordinates for the points of the sphere, and describing the tangent vectors in terms
of these local coordinates, the tangent bundle becomes a smooth vector bundle. The

20 The proof based on K-theory can be found in F. Hirzebruch (1995) quoted on
page 235.
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sections of the smooth tangent bundle TS
2 are precisely the smooth velocity fields

P �→ v(P ) on the sphere S
2.

Bundle charts, observers, and transition maps. Let us discuss the maps
(4.22) in terms of observers. We want to show that this is intimately related to the
notion of cocycle which is of fundamental importance for topology. The map

χα :
[

x∈Uα

Fx → Uα × R
n

is called a bundle chart. This map assigns to the point P ∈ Fx on the bundle space
B the local bundle coordinate

(x, yα(P )) with x ∈ Uα, yα(P ) ∈ R
n.

In terms of physics, an observer Oα (corresponding to Uα and χα) measures the
value yα(P ) at the space-time point x. Now suppose that

x ∈ Uα ∩ Uβ ,

and consider a second observer Oβ (corresponding to Uβ and χβ). Then the point
P ∈ Fx of the bundle space B is also described by the local bundle coordinate

(x, yβ(P )) with x ∈ Uβ , yβ(P ) ∈ R
n.

The change of local coordinates

yβ(P ) = Tβα(x)yα(P )

is given by the real invertible (n × n)-matrix Tβα(x), that is, Tβα(x) ∈ GL(n,R).
The map

Tβα : Uα ∪ Uβ → GL(n,R)

is called the transition map of the bundle from the observer Oα to the observer
Oβ (corresponding to the pair (Uα, Uβ) of open subsets of the base space X). The
change of observers corresponds to the following commutative diagram

Oβ

Tγβ

��

Oα

Tβα��

Tγα��
��

��
��

Oγ

(4.23)

For all indices α, β, γ, the following three conditions are satisfied:

(C1) Tαα(x) = id for all x ∈ Uα.
(C2) Tαβ(x) = Tβα(x)−1 for all x ∈ Uα ∩ Uβ .
(C3) Tγα(x) = Tγβ(x)Tβα(x) for all x ∈ Uα ∩ Uβ ∩ Uγ .

This allows the following quite natural interpretation in terms of observers. Condi-
tion (C2) tells us that yα(P ) = Tβα(x)−1yβ(P ). Furthermore, condition (C3) corre-
sponds to the commutativity of the diagram (4.23). Explicitly, if x ∈ Uα ∩Uβ ∩Uγ ,
then yγ(P ) = Tγα(x)yα(P ), and

yγ(P ) = Tγβ(x)yβ(P ) = Tγβ(x)Tβα(x)yα(P ).

This implies (C3).
Observers, cocycles, and the construction of bundles. By definition, a

cocycle on the topological space X with values in the group G consists of



214 4. The Strategy of Equivalence Classes in Mathematics

• a covering {Uα}α∈A of the space X by open subsets Uα and
• a family of continuous maps Tβα : Uα∩Uβ → such that the conditions (C1)–(C3)

are satisfied for all indices α, β, γ ∈ A.
The proof of the following theorem shows that cocycles play a decisive role in de-
scribing all kind of physical fields by observers. In mathematics, it was discovered by

Ĉech (1893–1960) in the 1930s that cocycles can be used in topology for constructing

the so-called Ĉech cohomology. In modern mathematics, one uses a generalization

of Ĉech cohomology on arbitrary topological spaces called cohomology with values
in a pre-sheaf. This general approach dates back to Leray (1906–1998) in the late
1940s.

Theorem 4.15 Suppose that we are given the topological space X and a cocycle
{Tβα} on X with values in the group GL(n,R), n = 1, 2, . . . Then there exists
a vector bundle π : B → X with typical fiber R

n which corresponds to the given
cocycle.

Proof. (I) The bundle space B. The proof is strongly motivated by the physical
picture of observers. We start with the coproduct

B :=
a

α∈A
Uα × R

n.

Explicitly, B := {(α, x; vα) : α ∈ A, x ∈ Uα, vα ∈ R
n}. For the elements of B, we

write
(α, x, vα) ∼ (β, y, vβ)

iff we have x ∈ Uα, y ∈ Uβ , x = y and vβ = Tβαvα. Because of the cocycle property,
this is an equivalence relation on B. By definition, the corresponding equivalence
classes [(α, x, vα)] form the bundle space B. Briefly,

B := B/ ∼ .

Naturally enough, the bundle projection π : B → X is defined by

π([α, x, vα]) := x.

Intuitively, the equivalence class [(α, x, vα)] describes the physical field v at the
event (space-time point) x by the values of the field measured by different observers.

(II) Topology of the bundle space B. We say that the subset O of B is open iff,
for each point [(α, x, vα)] of the set O, there exist

• an open subset Oα of the base space X with x ∈ Oα ⊆ Uα and
• an open subset V of the typical fiber R

n with vα ∈ V

such that
[(α, y, w)] ⊆ Oα for all (y, w) ∈ Oα × V.

One checks in a straightforward manner that this definition of the open set O does
not depend on the choice of the representatives in the bundle charts Uα×R

n. This
way, the bundle space B becomes a topological space, and the bundle projection
π : B → X is continuous. �

The preceding proof tells us that, for n = 1, 2, . . . , the following hold:

There exists a one-to-one correspondence between real vector bundles of
rank n on the topological space X and cocycles on X with values in the
group GL(n,R).
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In terms of physics, this corresponds to the relation between the invariant formula-
tion of physical fields and the coordinate formulation based on the transformation
laws between different observers.

Operations with vector bundles. In Sect. 3.2, we have studied operations
for linear spaces and linear operators. In a quite natural way, all of these operations
can be translated to vector bundles. Since the fibers are linear spaces, the simple
strategy is to perform the operations with respect to the fibers. This can be easily
done

• by using the corresponding operations for the typical fibers,
• by applying the corresponding operations to the cocycles, and
• by constructing the bundle space via Theorem 4.15.

Let us discuss this. We are given the two real vector bundles V and W of finite
rank with

• the bundle projections π : B → X and σ : C → X,
• the fibers Fx and Gx,
• the typical fibers R

m and R
n, and

• the cocycles Sαβ : Uα ∪ Uβ → GL(m,R) and Tαβ : Uα ∪ Uβ → GL(n,R),
respectively.

First we assume that the two vector bundles V and W refer to the same open
covering {Uα} of the base space X.

(i) Cartesian product: We want to construct the vector bundle V ×W with the
fibers Fx×Gx for all x ∈ X. To this end, we use the typical fiber R

m×R
n and

the cocycle Sαβ × Tαβ . Explicitly,

(Sαβ × Tαβ)(x)(v, w) = (Sαβ(x)v, Tαβ(x)w).

One checks easily that indeed the Cartesian product Sαβ × Tαβ of cocycles
yields again a cocycle.

(ii) Direct sum: In order to construct the vector bundle V ⊕ W with the fibers
Fx ⊕ Gx for all x ∈ X, we use the typical fiber R

m ⊕ R
n and the cocycle

Sαβ ⊕ Tαβ .
(iii) Tensor product: The tensor product V ⊗W with the fibers Fx ⊗ Gx for all

x ∈ X is obtained by using the typical fiber R
m⊗R

n and the cocycle Sαβ⊗Tαβ .

If the vector bundles V and W refer to the open coverings {Uα} and {Vβ} of the base
space X, then we apply the construction above to the common covering consisting
of all the intersections Uα ∩Vβ . Finally, it is not difficult to show that the following
hold where the symbol � stands for bundle isomorphims: If V � V and W � W,
then

V ×W � V ×W.

The same is true for V ⊕W and V ⊗W. Therefore, the constructions above do not
depend on the open coverings of the base space X, but only on the isomorphism
classes of the vector bundles.

Generalizations. We have restricted ourselves to real vector bundles. The
same arguments apply to complex vector bundles with the typical fiber C

n. If we
use the replacements

topological space ⇒ manifold,

continuous map ⇒ smooth map, (4.24)

then we get the notion of smooth vector bundles. The cocycles are then smooth
maps. The same arguments apply to more general bundles (e.g., principal fiber
bundles, where the fibers are Lie groups).
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Modern differential geometry is based on the idea of parallel transport in
bundles.

This allows us to introduce the notion of curvature. In fact, this represents the
mathematics of the Standard Model in elementary physics for describing the fun-
damental forces in nature. The prototype is the Levi-Civita parallel transport of
velocity fields on a sphere (see Vol. III).

4.4.3 Generalized Physical Fields and Sheaves

During World War II, the French mathematician Jean Leray (1906–1998)
was a prisoner of war from 1940 to 1945. He organized a university in
his prison camp and himself gave a course on algebraic topology, a field he
had become interested in connection with his collaboration with the Polish
mathematician Juliusz Schauder (1899–1943) on applications of degree
theory in nonlinear functional analysis.21 Leray became dissatisfied both
with the methods using triangulations and with those using inverse or
direct limits (introduced by Čech (1893-1960) in the 1930s). In 1942 he
published a series of four Notes in the Comptes rendus (of the French
Academy of Sciences) outlining a new and original way of defining and
studying cohomology . . .

In May 1946 Leray published two Notes in the Comptes rendus in which he
introduced for the first time the notions of sheaf, sheaf cohomology, and of
spectral sequence. In retrospect, it is difficult to exaggerate the importance
of these concepts, which very rapidly became not only powerful tools in
algebraic topology, but spread to many other parts of mathematics, some
of which seem very remote from topology, such as algebraic geometry,
number theory, and mathematical logic. These applications certainly went
far beyond the wildest dreams of the inventor of these notions, and they
undoubtedly rank at the same level in the history of mathematics as the
methods invented by Poincaré (1854–1912) and Brouwer (1881–1966) in
classical topology.22

Jean Dieudonné, 1989

Let X be an arbitrary set, and let R be a ring. In order to study the structure of
the set X, one can study the space of all the mappings

f : X → R.

In terms of physics, the mapping f can be regarded as a physical field on the space
X (e.g., a space-time manifold) with values in the ring R. For mathematics and

21 In 1930 Schauder published the famous Schauder fixed-point theorem: The fixed-
point theorem in function spaces, Studia Math. 2 (1930), 171–180 (in German).
In 1936, Leray and Schauder created the fundamental Leray–Schauder degree
theory for solving nonlinear operator equations (e.g., nonlinear partial differential
equations and integral equations) in infinite-dimensional Banach spaces. This is
thoroughly studied in Zeidler (1986), Vol. I (see the references on page 1049).
In 1943, Juliusz Schauder and his wife were killed by the German occupation
army in Poland.

22 J. Dieudonné, A History of Algebraic and Differential Topology 1900–1960,
Birkhäuser, Boston 1989 (reprinted with permission). See also the quotation
on the history of algebraic geometry to be found on page 200.
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physics, it is important to generalize this concept in the following way. Let X be a
topological space with topology T . Recall that T denotes the family of open subsets
of X.

We assign to each set U ∈ T a ring R(U).

This leads us to the concept of pre-sheaves and sheaves to be studied in later
volumes.

Analytic functions and sheaves. The prototype of a sheaf is given by ana-
lytic functions on open subsets of the Gaussian plane X := C. Let T (C) denote the
family of open subsets of C (e.g., an open disc). We assign to each U ∈ T (C) the
ring R(U) of all holomorphic functions

f : U → C.

Suppose that we are given arbitrary open sets

U, V,W ∈ T (C) with W ⊆ V ⊆ U.

By definition, the map rU,V : R(U) → R(V ) assigns to each holomorphic function
f : U → C its restriction rU,V (f) : V → C to the set V . Then the following hold:

(S1) The following diagram is commutative:

R(U)
rU,V ��

rU,W �����������
R(V )

rV,W

��
R(W ).

(4.25)

All of the mappings rU,V , rV,W , rU,W are ring morphisms.
(S2) rUU = id.

Moreover, we have the following stronger properties which are closely related to
analytic continuation. Let U be an open subset of X, and let U1, U2, . . . be a family
of open subsets of X with

U =
[

j∈J

Uj

where the index set J is a finite or infinite set of positive integers.

(S3) The local-global principle: If f, g ∈ R(U), then

rU,Uj (f) = rU,Uj (g) for all j ∈ J implies f = g on U.

(S4) The gluing condition: If fj ∈ R(Uj) for all j ∈ J and we have

rUj ,Uj∩Uk (fj) = rUk,Uj∩Uk(fk) for all j, k ∈ J,

then there exists precisely one f ∈ R(U) such that

r(U,Uj)(f) = fj for all j ∈ J.

The conditions (S1), (S2) (resp. (S1)–(S4)) are characteristic for pre-sheaves (resp.
sheaves).

Germs. Consider a fixed point x0 ∈ X. Let T (x0) be the set of all the open
subsets U of X which contain the point x0. For f ∈ R(U) and g ∈ R(V ) we write

f ∼ g
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iff f and g coincide on a sufficiently small neighborhood of the point x0. More
precisely, we assume that U, V ∈ T (x0) and that there exists a set W ∈ T (x0) with
W ⊆ U ∩ V and the property

rU,W (f) = rV,W (g).

This is an equivalence relation. The equivalence classes are called germs of the
pre-sheaf at the point x0.

Example. In the special case of the sheaf of holomorphic functions on the
Gaussian plane C, two holomorphic functions

f : U → C

and g : V → C belong to the same germ at the point z0 iff they have the same power
series expansion near the point z0. In this case, the famous local-global principle of
the theory of analytic functions tells us the crucial fact that the functions f and
g have the same global analytic continuation. In particular, they have the same
Riemann surface.

The pre-sheaf of smooth functions. Let X be a manifold (e.g., a real finite-
dimensional linear space or a sphere). We assign to each open subset of X the ring
R(U) of smooth functions f : U → R. Then the conditions (S1) and (S2) above are
satisfied. This way, we get the pre-sheaf C∞

sheaf(X) of smooth functions of X. Two
smooth functions

f : U → C

and g : V → C belong to the same germ at the point x0 ∈ X iff they have the
same values and the same derivatives of each order at the point x0. Let C∞

x0,germ(X)
denote the set of germs at the point x0.

In contrast to germs of holomorphic functions, germs of smooth functions
do not determine the global properties of smooth functions.

Historical remarks. It turns out that the language of pre-sheaves and sheaves
is of fundamental importance for mathematics. In the 1950s, Jean Leray (1906–
1998), Henri Cartan (born 1904), and Jean-Piere Serre (born 1926) showed that
the theory of holomorphic functions of several variables can elegantly be formulated
in terms of the cohomology of sheaves. In the 1950s and 1960s, Arthur Wightman
and Res Jost emphasized the importance of the theory of holomorphic functions
with several variables in axiomatic quantum field theory. In the 1960s, Alexandre
Grothendieck (born 1928) based algebraic geometry and number theory on the new
concept of schemes. Here, schemes are closely related to sheaf theory.

Hints for further reading. As an elementary introduction to sheaf theory
and its applications, we refer to Chapter 19 of the handbook edited by Zeidler,
Teubner-Taschenbuch der Mathematik II, 9th edition, Teubner, Wiesbaden, 2008
(in German) and to the following monographs:

K. Maurin, Methods of Hilbert Spaces, PWN, Warsaw, 1972.

K. Maurin, The Riemann Legacy: Riemannian Ideas in Mathematics and
Physics of the 20th Century, Kluwer, Dordrecht, 1997.

R. Streater and A. Wightman, PCT, Spin, Statistics, and All That, Ben-
jamin, New York, 1968.

For the relation between differential forms, de Rham cohomology, cohomology with
values in a pre-sheaf (Čech cohomology), fiber bundles, and characteristic classes
(e.g., Chern classes), we refer to:

R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer,
New York, 1982.
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As standard textbooks, we recommend:

O. Forster, Lectures on Riemann Surfaces, Springer, Berlin, 1981.

G. Bredon, Sheaf Theory, Springer, Berlin, 1997.

I. Shafarevich, Basic Algebraic Geometry, Vols. 1, 2, Springer, Berlin, 1994.

R. Hartshorne, Algebraic Geometry, Springer, New York, 1994.

D. Cox, J. Little, and D. O’Shea, Using Algebraic Geometry, Springer,
New York, 1998.

Furthermore, we recommend the classic monograph:

F. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd enlarged
edition, Springer, New York, 1966.

4.4.4 Deformations, Mapping Classes, and Topological Charges

Two continuous mappings are contained in the same mapping class iff
they can be continuously deformed into each other. In important special
cases, the space of mapping classes can be equipped with an additional
group structure. This leads to Poincaré’s fundamental group and the higher
homotopy groups of topological spaces.

Folklore

The space [X,Y ] of mapping classes. Let X and Y be topological spaces
(e.g., subsets of R

n). For two continuous maps f, g : X → Y , we write

f ∼ g

iff there exists a continuous map H : X × [0, 1]→ Y with

H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X.

This is an equivalence relation. The equivalence classes [f ] are called mapping
classes. They form the space [X,Y ] of mapping classes from X to Y .

It is an important task of topology to describe the structure of mapping
classes.

This structure is only known for a collection of special cases. Mathematicians are
looking for ever stronger tools in order to get new information about mapping
classes. The crucial map

(x, t) �→ H(x, t)

is called a homotopy between the mappings f and g. Intuitively, the mappings f
and g can be viewed as physical fields, and the homotopy H deforms

• the physical field f at the initial time t = 0
• into the physical field g at the final time t = 1.

The deformed value of f(x) at time t is equal to H(x, t). If f ∼ g, then we also say
that f is homotopically equivalent to g.

Examples. (i) The space [S1, S1]. For m = 0,±1,±2, . . . , define the continuous
map χm : S

1 → S
1 given by

χm(ϕ) := mϕ for all ϕ ∈ R,

with respect to angle coordinates. Using complex numbers, the map χm corresponds
to ϕ �→ eimϕ. The map χm winds the original unit circle m times around itself. If
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m > 0 (resp. m < 0), then we observe a clockwise (resp. counter-clockwise) winding.
Each continuous map f : S

1 → S
1 is homotopically equivalent precisely to one map

χm. The number m is called the mapping degree deg(f) (or the winding number)
of the map f .23 Therefore, the mapping f �→ deg(f) yields the bijection

[S1, S1] � Z.

(ii) The space [S2, S2]. Example (i) can be generalized to higher-dimensional
spheres. Using spherical coordinates, we define the continuous map f : S

2 → S
2 by

setting
χm(ϕ, ϑ) := (mϕ, ϑ) for all ϕ ∈ R, ϑ ∈ [−π

2
, π

2
].

Each continuous map f : S
2 → S

2 is homotopically equivalent precisely to one map
χm. The integer m is called the mapping degree deg(f) (or the winding number)
of the map f . The mapping f �→ deg(f) yields the bijection

[S2, S2] � Z.

More generally, there holds the bijection

[Sn, Sn] � Z, n = 1, 2, . . . (4.26)

This theorem is due to Heinz Hopf. In physics, the mapping degree deg(f) is called
the topological charge of the physical field f . Analytic formulas for computing the
mapping degree by means of the so-called Kronecker integral can be found in Sect.
5.7.3 of Vol. I.

(iii) We have the bijection

[S3, S2] � Z.

This famous theorem due to Heinz Hopf is closely related to both the electron spin
in physics and the Hopf fibration of the 3-dimensional sphere in mathematics (see
Sect. 5.7.2 of Vol. I).

(iv) The space [S0, X]: Two points x and y of a topological space X are called
arcwise connected iff there exists a continuous map c : [0, 1]→ X with

c(0) = x and c(1) = y.

Intuitively, the two points are connected by the continuous curve c. This is an
equivalence relation. The equivalence classes are called the path components of the
topological space X. Let S

0 denote the 0-dimensional sphere (i.e., the point 0 on the
real line). The topological space X is called arcwise connected iff it has precisely
one path component.

There exists a bijection between the space of mapping classes [S0, X] and
the set of path components of the topological space X.

For example, the interval [0, 1] is arcwise connected, but the set

[0, 1] ∪ [2, 3] ∪ [4, 5]

23 The general theory of mapping degree for mappings on finite-dimensional and
infinite-dimensional Banach spaces is thoroughly studied in the author’s mono-
graph on fixed-point theory, Zeidler (1986), Vol. I (see the references on page
1049), including the Hopf theorem (4.26).
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Fig. 4.11. Deformation retracts

has three path components. Furthermore, the space R
n is arcwise connected. Hence

we have the bijection

[S0,Rn] = {0}, n = 0, 1, 2, . . .

The set R
2 \ S

1 has two path components (namely, the interior and the exterior of
the unit circle). Therefore, we have the bijections

[S0,R2 \ S
1] � {0, 1} � Z2.

Let C be a Jordan curve in R
2 (i.e., C is a subset of R

2 which is homeomorphic to
S

1). The classical Jordan curve theorem tells us that the set R
2 \ C has two path

components.24 Therefore, we have the bijection

[S0,R2 \ C] � Z2.

Deformation retracts. Let Y be a subspace of the topological space X (i.e, Y
is a subset of X equipped with the subspace topology – see page 243). By definition,
Y is a retract of X iff there exists a continuous map

r : X → Y

with r(y) = y for all y ∈ Y. The map r is called a retraction. Furthermore, Y is
called a deformation retract of X iff there exists a continuous map

H : X × [0, 1]→ X

such that the following hold:

• H(x, 0) = x for all x ∈ X,
• H(x, 1) ∈ Y for all x ∈ X, and
• H(y, 1) = y for all y ∈ Y.

This means that the identity map on X (at time t = 0) can be continuously de-
formed into a retraction H(. , 1) : X → Y (at time t = 1). For example,

• the midpoint of a disc is a deformation retract of the disc,
• and a fixed boundary circle of an annulus is a deformation retract of the annulus

(Fig. 4.11).

Topologically equivalent topological spaces. Two topological spaces X and
Y are called topologically equivalent iff there exists a homoemorphism

f : X → Y.

Explicitly, this means that the map f : X → Y is continuous and bijective, and the
inverse map f−1 : Y → X is also continuous. We also say that X and Y have the
same topological type iff they are topologically equivalent.

24 Camille Jordan (1838–1922).
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Now let us introduce the weaker notion of homotopically equivalent topological
spaces. Observe that topologically equivalent topological spaces are also homotopi-
cally equivalent, but the conserve is not always true. For example, the interval [0, 1]
is topologically equivalent to any compact interval [a, b] of positive length, but it
is not topologically equivalent to the one-point interval {0}. However, the interval
[0, 1] is homotopically equivalent to {0}.

Homotopically equivalent topological spaces. For two topological spaces,
we write

X ∼ Y

iff there exist two continuous maps f : X → Y and g : Y → X such that we have
the homotopies

g ◦ f ∼ idX and f ◦ g ∼ idY ,

where idX and idY are the identity maps on X and Y , respectively. In other words,
the map g◦f (resp. f ◦g) can be continuously deformed into the identity map on X
(resp. Y ). We say that f and g are inverse up to homotopy. For topological spaces
X,Y, Z, we have X ∼ X. Moreover, X ∼ Y iff Y ∼ X, and

X ∼ Y, Y ∼ Z implies X ∼ Z.

Consequently, X ∼ Y is an equivalence relation. We say that the topological spaces
X and Y are homotopically equivalent (or the have the same homotopy type) iff
X ∼ Y. The following definitions will be frequently used:

• X is called contractible iff it is homotopically equivalent to a one-point space.
Intuitively, this means that the space X can be continuously contracted into a
point.

• X is called arcwise connected iff the space [S0, X] of mapping classes consists
precisely of one point. Intuitively, this means that two points of X can always
be connected by a continuous curve.

• X is called simply connected iff the space [S1, X] of mapping classes consists
precisely of one point. Intuitively, this means that each closed continuous curve
in X can be continuously contracted into a point.

Examples. (i) For n = 1, 2, . . ., each convex set of R
n is contractible (e.g., an

interval, a disc in R
2, or a ball in R

n).
(ii) A disc is arcwise connected and simply connected.
(iii) A circle (or an annulus) is arcwise connected, but not simply connected.
(iv) An annulus is homotopically equivalent to a circle (Fig. 4.11).
(v) If Y is a deformation retract of the topological space X, then Y and X are

homotopically equivalent.
Cyclic groups. The following notions will be used in the next section. The set

Z := {en : n = 0,±1,±2, . . .}

is a multiplicative group called the infinite cyclic group. We have the group isomor-
phism

Z � Z
from the additive group Z onto the multiplicative group Z. This isomorphism is
given by the map n �→ en. Let m = 1, 2, . . . The set

Zm := {e2πmi/k : k = 0, 1, . . . ,m− 1}

is a multiplicative group called the cyclic group of order m. We have the group
isomorphism

Zm � Zm
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from the additive group Zm onto the multiplicative group Zm. This isomorphism
is given by the map

[k] �→ e2πim/k

where the equivalence class [k] modulo m is equal to the set k+mZ. Explicitly, we
have [k] := {k + nm : n = 0,±1,±2, . . .}. For example, we get

Z1 = {1}, Z2 = {1,−1}, Z3 = {1, e2πi/3, e−2πi/3}, Z4 := {1, i,−1,−i}.

The direct product of two groups. If G and H are groups, then the Carte-
sian product

G×H := {(g, h) : g ∈ G,h ∈ H}
becomes a group if we use the multiplication (g, h)(g+, h+) := (gg+, hh+). The
group G×H is called the direct product between the groups G and H.

4.4.5 Poincaré’s Fundamental Group

Basic idea. Consider the unit circle S
1 := {z ∈ C : |z| = 1}. Let us recall the

definition χn(ϕ) := einϕ. The space of mapping classes [S1, S1] can be equipped
with a group structure by defining the multiplication

[χm][χk] := [χm+k] for all k,m ∈ Z.

This group denoted by π1(S
1) is Poincaré’s fundamental group of the unit circle.

We have
π1(S

1) = Z.
Using the group isomorphism Z � Z given by m �→ χm, we get

π1(S
1) � Z.

Here, π1(S
1) is regarded as an additive group. Let us generalize this. It turns out

that the fundamental group is a multiplicative group, which is not always commu-
tative. Therefore, the fundamental group is not always isomorphic to an additive
group.

The product of loops. Let X be an arbitrary topological space. Fix the point
x0 in X. Each continuous map

c : S
1 → X with c(1) = x0 (4.27)

is called a loop in X with the base point x0. By definition, the set of all such loops
forms the loop space Ωx0X. Intuitively, the space Ωx0X consists of all the closed
curves in the topological space X which pass through the point x0. For two loops
c, d ∈ Ωx0X, we define the product c×d by using the angular coordinate ϕ ∈ [0, 2π]
and by setting

(c× d)(ϕ) :=

(

c(2ϕ) if 0 ≤ ϕ ≤ π,

d(2ϕ− 2π) if π ≤ ϕ ≤ 2π.

Then, c × d ∈ Ωx0X. Intuitively, this means that we glue the two curves together
at the point x0 (Fig. 4.12).

The fundamental group π1(X,x0). Our next goal is to identify homotopic
loops with each other. To this end, for c, d ∈ Ωx0X, we write

c ∼ d mod x0 (4.28)
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Fig. 4.12. Multiplication of two loops

iff the two curves are homotopic modulo the point x0. Explicitly, this is defined in
the following way: we assume that there exists a continuous map H : S

1×[0, 1]→ X
such that we have

H(ϕ, 0) = c(ϕ) and H(ϕ, 1) = d(ϕ) for all ϕ ∈ [0, 2π]

together with H(0, t) = H(2π, t) = x0 for all times t ∈ [0, 1]. This is an equivalence
relation. Intuitively, during the time interval [0, 1], the closed curve c is continuously
deformed into the closed curve d in such a way that all of the deformed curves
pass through the point x0. By definition, the equivalence classes [c] form the set
π1(X,x0). It is crucial that the product of loops is compatible with the equivalence
relation (4.28). Explicitly, if c ∼ c+ mod x0 and d ∼ d+ mod x0, then

c× c+ ∼ d× d+ mod x0.

Therefore, the set π1(X,x0) of equivalence classes [c] forms a group with respect to
the following product:

[c][d] := [c× d].

The unit element of this group is given by the equivalence class [c] with c(ϕ) := x0

for all ϕ ∈ [0, 2π].
The group π1(X). If the group π1(X,x0) does not depend on the choice of

the base point x0, up to group isomorphism, then we simply write π1(X) instead
of π1(X,x0). In particular, this is the case if the topological space X is arcwise
connected.

The arcwise connected topological space X is simply connected iff the fun-
damental group π1(X) is trivial, that is, it consists of precisely one point.

In this case, we briefly write π1(X) = 0. In order to rigorously compute funda-
mental groups and higher homotopy groups, one uses exact sequences. This will be
investigated in Vol. IV. Let us mention three examples.

(i) For the circle S
1, we get π1(S

1) = Z. Regarded as an additive group, we obtain
π1(S

1) = Z.
(ii) The 2-dimensional sphere S

2 is simply connected, and hence π1(S
2) = 0.

(iii) The 2-dimensional torus T
2 = S

1 × S
1: Regarded as an additive group, we get

π1(T
2) = Z⊕ Z.

Let us heuristically discuss the situation (iii). We choose two circles on the torus,
namely, the equator e and a fixed meridian m. In Fig. 4.8 on page 207, the equa-
tor (resp. meridian) corresponds to the curve ABA (resp. ACA). Intuitively, the
homotopy equivalence classes of loops on the torus have the form

[e]r[m]s, r, s ∈ Z

together with [e][m] = [m][e]. In terms of an additive group, the equivalence classes
have the form

r[e] + s[m], r, s ∈ Z.
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This yields π1(T
2) = Z⊕ Z.

The homotopy group π0(X). If the topological space X is arcwise connected,
then we define

π0(X) := {0}.
We briefly write π0(X) = 0. If X has m + 1 path components, m = 0, 1, . . ., then
we define

π0(X) := Zm.

This is an additive group. Generally, the symbol π0(X) denotes the set of path
components of the topological space X.

4.4.6 Loop Spaces and Higher Homotopy Groups

The most intuitively evident topological invariant of a topological space
is the number of connected pieces into which it falls. Over the past one
hundred years or so we have come to realize that this primitive notion
admits in some sense two higher-dimensional analogues. These are the
homotopy and cohomology groups of the spaces in question25. . .
By some divine justice the homotopy groups of a finite polyhedron or a
manifold seem as difficult to compute as they are easy to define . . . To this
day not all the homotopy groups of say the 2-sphere have been computed.26

Raoul Bott and Loring Tu, 1982

We will base our approach to higher homotopy groups on the study of loop spaces.
Intuitively, loops are closed continuous curves. In terms of physics, the transport
of physical information along loops is crucial, since it is possible that the initial
information differs from the final information after one surrounding.

This gain (or loss) of physical information is caused by interactions.

Loops play a fundamental role in gauge theory (e.g., Wilson loops) and in the
Ashtekar program for quantum gravitation (called loop gravity).27

Loop spaces. Consider the loop space Ωx0X introduced on page 223. The set
Ωx0X becomes a topological space equipped with the compact-open topology. In
order to introduce this topology, let C be a compact subset of S

1, and let O be an
open subset of X. Let U(C,O) denote the set of all the maps of the form (4.27) on
page 223 with

c(C) ⊆ O.

All the sets U(C,O) form a subbasis of the compact-open topology on the loop
space Ωx0X. The definition of a subbasis of a topology can be found on page 241.
In what follows, loop spaces are always equipped with the compact-open topology.
Now, in order to get higher homotopy groups, our idea is to use the loop space of
the loop space Ωx0X, and so on.

The homotopy groups πk(X,x0), k ≥ 2. We define the second homotopy
group of X by setting

π2(X,x0) := π1(Ωx0X, c0).

25 The basic relation between potentials in physics and cohomology are discussed
in Sect. 16.8 of Vol. I.

26 R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer, New
York, 1982 (reprinted with permission).

27 A. Ashtekar, M. Bojewald, and J. Lewandowski, Mathematical structure of loop
quantum cosmology, Adv. Theor. Math. Phys. 7 (2003), 233–268.
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Here, the symbol c0 denotes the constant loop c0 : S
1 → {x0}. In the general case,

we proceed by induction. For k = 1, 2, . . . , we use the inductive definition

πk(X,x0) := πk−1(Ωx0X, c0), k = 2, 3, . . .

of the kth homotopy group of the topological space X.

The homotopy groups πk(X,x0) with k ≥ 2 are commutative.

The homotopy groups πk(X). If the groups πk(X,x0), k = 1, 2, . . . , do not
depend on the choice of the base point x0, up to group isomorphism, then we simply
write πk(X) instead of πk(X,x0). In particular, this is the case if the topological
space X is arcwise connected.

Mapping classes and homotopy groups. Let the topological space X be
arcwise connected. Then there exist the bijections

[Sk, X] � πk(X), k = 0, 1, 2, . . .

Invariance of homotopy groups. The following result is crucial.

Theorem 4.16 Homotopically equivalent topological spaces (e.g., homeomorphic
spaces) have the same homotopy groups.

This has the following consequence: Two topological spaces X and Y are not
homotopically equivalent (and hence not homeomorphic) if there exists an index
k = 0, 1, 2, . . . with πk(X) �= πk(Y ).
Examples. The following homotopy groups are written as additive groups.

(i) Point: If the topological space X consists of precisely one point, then

πk(X) = 0, k = 0, 1, 2, . . .

A contractible space X has the same homotopy groups, since such a space is
homotopically equivalent to a point.

(ii) Unit circle: π1(S
1) = Z, and πk(S1) = 0 if k = 0 or k ≥ 2. An annulus or the

surface of a cylinder have the same homotopy groups, since these topological
spaces are homotopically equivalent to the unit circle. It follows from π1(S

1) �= 0
that the unit circle is not contractible.

(iii) 2-dimensional sphere: π0(S
2) = π1(S

2) = 0 and π1(S
2) = π3(S

2) = Z. Further-
more, πk(S2) = Z2 if k = 4, 5, 7, 8, 11, and

π6(S
2) = Z12, π9(S

2) = Z3, π10(S
2) = Z15, π22(S

2) = Z132 ⊕ Z2.

(iv) n-dimensional sphere: For n = 1, 2, . . . , we have

πn(Sn) = Z, πk(Sn) = 0, k = 0, . . . , n− 1.

The product theorem. For the Cartesian product X × Y of two topological
spaces X and Y , we get

πk(X × Y, (x0, y0)) = πk(X,x0)× πk(Y, y0), k = 1, 2, . . . ,

in the sense of a direct group product.
Serre’s finiteness theorem. In his 1951 thesis, Serre proved the following

fundamental result: Let m = 0, 1, . . . and n = 1, 2, . . .

With the only exceptions πn(Sn) = Z and π4n−1(S
2n), all the homotopy

groups πm(Sn) of spheres are finite.
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The exceptional homotopy group π4n−1(S
2n) is the direct sum of Z with a finite

group.28 A list of known homotopy groups of spheres can be found in the Appendix
to:

C. Dodson and P. Parker, A Users’ Guide to Algebraic Topology, Kluwer,
Dordrecht, 1997.

Historical remark. The fundamental group dates back to Poincaré (1854–
1912). The higher homotopy groups were introduced by Hurewicz (1904–1956) in
the 1930s.

4.4.7 Homology, Cohomology, and Electrodynamics

The notions of homology and cohomology are deeply rooted in electrodynamics.
This will be thoroughly studied in Vol. IV. In particular, we will show that the
most simple approach to homology and cohomology groups is related to electrical
circuits. This generalizes then to the Maxwell equations in electrodynamics by using
differential forms and the de Rham cohomology.

4.4.8 Bott’s Periodicity Theorem

I was very fortunate to be the first to notice that the loop space of a Lie
group is very easily attacked with Morse-theoretic methods.29 It turns out
if you look at the loop space rather than at the group, then the so-called
diagram of the group on the universal covering of its maximal torus plays
an essential role. So you can read off topological properties of the loop
space much more easily from the diagram of the group than you can read
off things about the group itself. . .
During the period 1955–57 there was a controversy in homotopy theory.
The question concerned the homotopy group of the unitary group in di-
mension 10. The homotopy theorists said it was the cyclic group Z3. The
results of Borel and Hirzebruch predicted it to be 0. This contradiction in-
trigued me, and I thought I should be able to say something about it using
Morse-theoretic techniques that Samelson and I had discovered. Finally I
hit upon a very complicated method involving the exceptional Lie group
G2 to check the conundrum independently. My good friend Arnold Shapiro
and I spent all weekend computing. At the end we came out of the side of
Borel and Hirzebruch, so I was convinced that they were right. And if they
were right the table of homotopy groups started to look periodic for a long
stretch. In the odd dimensions they were Z up to nine dimensions, and in
the even dimensions they were 0. So I thought, “Maybe they are periodic
all the way.” And fairly soon after I saw my old ideas would actually do
the job. In this way the unitary group was then settled.
Then I started to think about the orthogonal group, and that was much
harder. But I do remember precisely when I suddenly saw how to deal

28 Jean-Pierre Serre (born 1926) was awarded both the Fields medal in 1954 and
the Abel prize in 2003.

29 R. Bott, On torsion in Lie groups, Proc. Nat. Academy Sci. U.S.A. 40 (1954),
586–588.
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with it. That occurred after we had left the Institute in Princeton and
were moving house. In a flash I saw how it all fitted together.30

Raoul Bott, 2001

Let U(n) be the group of complex unitary (n × n)-matrices. It is crucial that the
homotopy groups

πk(U(n)), k = 0, 1, 2, . . .

are independent of n if the natural number n is sufficiently large. Explicitly, we need
0 ≤ k < 2n. In this case, we briefly write πk(U). These stable homotopy groups are
completely known. In fact, the fundamental Bott periodicity theorem says that

π0(U) = 0, π1(U) = Z, πk+2(U) = πk(U), k = 0, 1, 2, . . .

This corresponds to the period 2.
Let O(n) be the group of real orthogonal (n × n)-matrices. If n is sufficiently

large, that is, 0 ≤ k < n− 1, then the homotopy groups

πk(O(n))

are independent of n. We briefly write πk(O). These stable homotopy groups are
also completely known. In this case, the Bott periodicity theorem says that

πk+8(O) = πk(O), k = 0, 1, 2, . . .

together with π0(O) = π1(O) = Z2, and

πj(O) = 0, j = 2, 4, 5, 6, πm(O) = Z, m = 3, 7.

This corresponds to the period 8.

4.4.9 K-Theory

K-theory was introduced by Grothendieck in his formulation of the Rie-
mann–Roch–Hirzebruch theorem in 1958.31 For each projective algebraic
variety, Grothendieck constructed a group from the category of coherent
algebraic sheaves, and showed that it had many nice properties. About
1960, Atiyah and Hirzebruch constructed a topological analog defined for
any compact space X, a group K(X) constructed from the category of
vector bundles on X. . . Topological K-theory has become an important
tool in topology. Using K-theory, Adams and Atiyah were able to give a
simple proof that the only spheres which can be provided with H-space
structures are the spheres of dimension 1, 3, and 7. Moreover, Adams was
able to derive a substantial part of stable homotopy theory from K-theory.
Further applications to analysis are found in the work of Atiyah–Singer
on the index theorem, Quillen, Bass, and others. A key factor in these
applications is the Bott periodicity for Lie groups.32

Max Karoubi, 1978.

30 Interview with Raoul Bott, Notices Amer. Math. Soc. 48(4) (2001), 374–382
(reprinted with permission); R. Bott, The stable homotopy of the classical
groups, Ann. of Math. 70 (1959), 313–337.

31 Alexandre Grothendieck (born 1928) was awarded the Fields medal in 1966.
32 M. Karoubi, K-Theory: An Introduction, Springer, Berlin, 1978 (reprinted with

permission).
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Semi-rings. Consider the set N of natural numbers 0, 1, 2, . . . Set S := N. Then,
for all m,n, s ∈ S, the following hold.

(S0) Consistency: m + n,mn ∈ S.
(S1) Associativity: (m + n) + s = m + (n + s) and (mn)s = m(ns).
(S2) Zero element: There exists a uniquely determined element 0 in S with the

property m + 0 = m for all m ∈ S.
(S3) Commutativity: m + n = n + m and mn = nm.
(S4) Regularity: It follows from m,n ∈ S and m + s = n + s for all s ∈ S that

m = n.

In general, a set S is called a semi-ring iff an addition m+n and a multiplication mn
exist for certain elements of S such that for all m,n, s ∈ S the conditions (S0)–(S2)
are satisfied. The semi-ring is called commutative (resp. regular) iff, in addition,
condition (S3) (resp. (S4)) is satisfied.

The map χ : S → S′ from the semi-ring S into the semi-ring S′ is called a
semi-ring morphism iff it respects sums and products, that is,

χ(m + n) = χ(m) + χ(n), χ(mn) = χ(m)χ(n) for all m,n ∈ S.

Bijective semi-ring morphisms are called semi-ring isomorphisms.
The universal ring extension K(S) of a regular semi-ring S. The com-

mutative semi-ring N of natural numbers 0, 1, 2, . . . can be extended to the com-
mutative ring Z of integers 0,±1,±2, . . . We want to generalize this. In terms of
integers, the idea of the following general construction is to identify, say, the integer
−2 with the following family of pairs:

(0, 2), (2, 4), (4, 6), . . .

Note that −2 = 0 − 2 = 2 − 4 = . . . Our approach will be based on the following
commutative diagram:

S
i ��

σ

��		
		

		
		

	 K(S)

�

��
R

(4.29)

Our goal is to extend the regular commutative semi-ring S to a ring K(S) in a
universal way. This means that all the ring morphisms � : K(S) → R generate all
possible semi-ring morphisms σ : S → R from the semi-ring S into the ring R.

Theorem 4.17 Let S be a regular commutative semi-ring. Then:
(i) There exist a commutative ring K(S) and an injective semi-ring morphism

i : S → K(S).
(ii) Each extension of the semi-ring S to a commutative ring R contains a

subring which is isomorphic to K(S).
(iii) Each ring morphism � : K(S) → R from the ring K(S) into the arbitrary

ring R generates the semi-ring morphism � ◦ i : S → R (i.e., the diagram (4.29) is
commutative).

(iv) Conversely, each semi-ring morphism σ : S → R from the semi-ring S into
the ring R can be obtained by (iii).

Proof. We sketch the proof, and we recommend the reader to complete the proof
by himself/herself.
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Ad (i). (I) Equivalence classes. For m,n, r, s ∈ S, we consider the symbols (m,n)
and (r, s).33 We write (m,n) ∼ (r, s) iff

m + s = r + n.

This is an equivalence relation. Let us prove the transitivity. Here, we will need the
regularity of S. Suppose that

[m,n] ∼ [r, s] and [r, s] ∼ [u, v].

Then m + s = r + n and r + v = u + s. Adding this, we get

(m + v) + (s + r) = (u + n) + (s + r).

Since the semi-ring S is assumed to be regular, we obtain m + v = u + n. Hence

[m,n] ∼ [u, v].

The corresponding equivalence classes [(m,n)] form the space K(S).
(II) Addition and multiplication of equivalence classes: We define

[(m,n)] + [(r, s)] := [(m + r, n + s)], [(m,n)][(r, s)] := [(mr + ns,ms + nr)].

These operations do not depend on the choice of the representatives. With respect
to these operations, K(S) becomes a commutative ring. For each m, define

i(m) := [(m, 0)].

The map i : S → K(S) is injective. In fact, if i(m) = 0, then [(m, 0)] = [(0, 0].
Hence m + 0 = 0 + 0. This implies m = 0.

Ad (ii). If the ring R is an extension of the semi-ring S, then we define the map
� : K(S)→ R given by

�([(m,n)]) := m− n.

This definition does not depend on the choice of the representatives (m,n). The
map � is injective. Therefore, we can identify the image �(S) with S.

Ad (iii). This is obvious.
Ad (iv). Define �([(m, 0)]) := σ(m). �

Example. Let S be the set of the linear spaces R
0,R1,R2, . . . Naturally enough,

R
0 := {0}. For all m,n ∈ N, we define the direct sum ⊕ and the tensor product ⊗

by setting
R

m ⊕ R
n := R

m+n, R
n ⊗ R

n := R
mn.

The set S is a semi-ring which is isomorphic to the semi-ring N, and the ring K(S) is
isomorphic to the ring Z of integers. Define the fiber dimension map j : K(S)→ Z

by setting

j : ([Rm,Rn)]) := m− n. (4.30)

This map does not depend on the choice of the representatives. In fact, if

[(Rm,Rn)] = [(Rr,Rs)],

then R
m ⊕ R

s = R
r ⊕ R

s. Hence m + s = r + n. This implies m− n = r − s.

33 Intuitively, if m and n are natural numbers, then (m,n) corresponds to the
integer m − n. We use equivalence classes, since different symbols (m,n) and
(r, s) may yield the same integer. Note that m− n = r − s iff m + s = r + n.
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Topological K-theory represents a highly non-trivial generalization of this
simple example.

Let us discuss this.
The universal Grothendieck ring K(S) for general commutative semi-

rings. Each ring is regular. Therefore, if a ring R contains a subset S which is a
semi-ring, then S is regular. Consequently, if the given semi-ring S is not regular,
then it cannot be extended to a ring. The following theorem yields the optimal
generalization of Theorem 4.17.

Theorem 4.18 For each commutative semi-ring S, the following universal state-
ments hold:

(i) There exist a ring K(S) and a semi-ring morphism i : S → K(S).
(ii) Each ring morphism � : K(S) → R from the ring K(S) into the arbitrary

ring R generates the semi-ring morphism � ◦ i : S → R (i.e., the diagram (4.29)
above is commutative).

(iii) Conversely, each semi-ring morphism σ : S → R from the semi-ring S into
the ring R can be obtained by (ii).

(iv) If the semi-ring S is regular, then the map i : S → K(S) is injective.

Proof. We have to modify the proof of Theorem 4.17 in the following way. For
m,n, r, s ∈ S, we write (m,n) ∼ (r, s) iff there exists an element p of S such that

m + n + p = r + s + p.

This modification is needed in order to guarantee the transitivity of the equivalence
relation in the case where the semi-ring S is not regular. �

Prototype. Choose K = R or K = C. Let VectK denote the semi-ring of all
finite-dimensional linear spaces X over K with respect to the direct sum ⊕ and
the tensor product ⊗. Here, isomorphic linear spaces are identified with each other.
One shows as above that the corresponding K-ring K(VectK) is isomorphic to the
ring Z.

Application to vector bundles on a compact manifold. Let M be a finite-
dimensional compact manifold (e.g., a sphere). Choose K

n with n = 0, 1, 2, . . . .
Here, K = R (real case) or (K = C) (complex case). Let VectK(M) be the space of
vector bundles over M with typical fiber K

n, where n = 0, 1, 2, . . . More precisely,
two isomorphic vector bundles are identified with each other. If V,W ∈ VectK(M),
then the direct sum and the tensor product

V ⊕W, V ⊗W

are well-defined by Sect. 4.4.2. This way, the space VectK(M) becomes a semi-ring.
The Grothendieck ring K(VectK(M)) is called the K-ring of the manifold M . To
simplify notation, we write KK(M)) instead of K(VectK(M)).

This way, we assign to each compact manifold M the ring KK(M).

It turns out that this is a sophisticated tool in modern topology. Each element of
KK(M) is an equivalence class [(V,W )] where V and W are vector bundles (up to
bundle isomorphisms) with typical fibers K

m and K
n, respectively. We define the

map j : KK(M)→ Z by setting

j([V,W ]) := m− n.

Similarly as in (4.30), this definition does not depend on the choice of the repre-
sentatives. For an arcwise connected manifold M , we define the reduced K-ring



232 4. The Strategy of Equivalence Classes in Mathematics

K(M) := j−1(0).

It turns out that the map j : KR(M) → Z is a ring epimorphism. If we introduce
the equivalence relation A ∼ B iff A − B ∈ K(M), then the K-ring KR(M) is
decomposed in the equivalence classes [A]. Each of these classes is bijective to the
reduced K-ring K(X). Furthermore,

KR(M)/K(M) � Z.

That is, the quotient ring of the ring KR(M) modulo the reduced ring K(M) is
isomorphic to the ring of integers. The following deep theorem tells us that the
additive group of the ring K(Sn) is known for all spheres S

n, n = 1, 2, . . .

Theorem 4.19 The additive groups K(Sn) are given by

K(S1) = K(S2) = Z/mod 2, K(S4) = K(S8) = Z,

and K(Sn) = 0 if n = 3, 5, 6, 7.
Moreover, we have the periodicity property K(Sn) = K(Sn+8) for all dimensions

n = 1, 2, . . .

The following result is a special case of the Atiyah–Jänich theorem which will
be considered on page 235. Let F (H) denote the space of all linear continuous
Fredholm operators A : H → H on the complex infinite-dimensional separable
Hilbert space H.

Theorem 4.20 For n = 1, 2, . . . , we have

KC(Sn) � πn(F (H)), n = 1, 2, . . . ,

in the sense of a bijection.

In particular, the K-ring KC(S1) of the unit circle S
1 is bijective to the fun-

damental group π1(F (H)) of the space of linear continuous Fredholm operators on
the complex infinite-dimensional separable Hilbert space H.

This shows that the sophisticated K-ring KC(S1) of the unit circle sees the
topological structure of the space F (H) of linear continuous Fredholm operators
on the Hilbert space H. The index of linear continuous Fredholm operators is the
crucial quantity in the formulation of the Atiyah–Singer index theorem. In fact, it
turns out that K-theory can be used in order to prove the Atiyah–Singer theorem
about the index of elliptic partial differential equations (or more general pseudo-
differential equations) on compact Riemannian manifolds. The prototype of this
result can be found in Sect. 5.6.9 of Vol. I (see the hints for further reading on page
235).

The theorem of Adams about vector fields on spheres. Choose the
number n = 1, 2, 3, . . . By definition, the number Span(Sn) is equal to the maximal
number of continuous tangent vector fields on the n-dimensional sphere S

n which
are linearly independent at every point of the sphere. Let k(n) be the number of
factors 2 in the prime number decomposition of the even natural number n + 1
(e.g., 48 = 23 · 32 implies k(48) = 3). Dividing k(n) by 4, we get

k(n) = 4m(n) + r(n)

where r(n) = 0, 1, 2, 3 and k(n) = 0, 1, 2, . . . (e.g., m(48) = 0 and r(48) = 3).



4.4 Equivalence Classes in Topology 233

Theorem 4.21 If n is even, then Span (Sn) = 0. If n is odd, then

Span(Sn) = 8m(n) + 2r(n) − 1.

Using K-theory, this famous theorem was proven by J. Adams, Vector fields on
spheres, Ann. of Math. 75 (1962), 603–632. For example,

Span(S1) = 1, Span(S3) = 3, Span(S5) = 1, Span(S7) = 7.

Furthermore, Span(S4k+1) = 1 and (S8k+3) = 3 if k = 0, 1, 2, . . . Finally,
Span(Sn) = n iff n = 1, 3, 7. In terms of physics, the theorem of Adams tells
us an important information about the velocity fields on n-dimensional spheres.

The theorem of Kervaire and Milnor on division algebras. A real finite-
dimensional nonzero algebra A is called a division algebra iff for given elements a, b
of A with a �= 0, the two equations

ax = b, ay = b

have unique solutions x and y in A. Examples for division algebras are R (the field
of real numbers), C (the field of complex numbers), H (the skew-field of quaternions,
O) (the non-associative algebra of octonions).34 The dimensions of these division
algebras are 1, 2, 4, 8, respectively.

Theorem 4.22 The dimension of an arbitrary division algebra is 1, 2, 4, 8.

This theorem was independently proven by Kervaire and Milnor in 1958 by
using Bott’s periodicity theorem from 1958.35 A proof based on K-theory can be
found in F. Hirzebruch (1995) quoted on page 235. Interestingly enough, so far only
topological proofs are known for this purely algebraic theorem.

4.4.10 Application to Fredholm Operators

In the winter semester 1900/01 Holmgren, who had come from Uppsala
(Sweden) to study under Hilbert in Göttingen (Germany), held a lecture
in Hilbert’s seminar on Fredholm’s work on linear integral equations which
had been published the previous year. This was a decisive day in Hilbert’s
life. He took up Fredholm’s discovery with great zeal, and combined it
with his variational method.

Otto Blumenthal, 193236

To explain the basic idea of Fredholm operators, consider the linear system

a11x1 + a12x2 = b1,

a21x1 + a22x2 = b2. (4.31)

We are given the complex numbers aij , bi with i, j = 1, 2. We are looking for the
complex numbers x1, x2. The homogeneous dual problem is given by

34 See H. Ebbinghaus et al., Numbers, Springer, New York, 1995.
35 J. Milnor, Some consequences of a theorem of Bott, Ann. of Math. 68 (1958),

444–449.
36 O. Blumenthal, Hilbert’s biography. In: D. Hilbert, Collected Works, Vol. 3, pp.

388–429, Springer, Berlin, 1932 (in German). Hilbert’s friend Otto Blumenthal
died in the German concentration camp Theresienstadt (Terežin) in 1944.
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a11y1 + a21y2 = 0,

a12y1 + a22y2 = 0. (4.32)

The classical Fredholm alternative reads as follows:

Equation (4.31) has a solution iff b1y1 + b2y2 = 0 for all solutions y1, y2

of the dual equation (4.32).
Uniqueness implies existence (i.e., if we know that equation (4.31) has at
most one solution, then there exists a unique solution).

The theory of linear Fredholm operators generalizes the Fredholm alternative to
infinite dimensions.

Linear Fredholm Operators. Let H be a complex separable Hilbert space,
and let L(H,H) be the space of all linear and continuous operators A : H → H.
Here, L(H,H) is a complex Banach space equipped with the operator norm

||A|| := sup
||x||≤1

||Ax||.

The operator A ∈ L(H,H) is called a Fredholm operator iff the two conditions
dim ker(A) < ∞ and codim im(A) < ∞ are fulfilled. Fredholm operators are dis-
tinguished by the fact that the solution set of the equation (4.34) below has finite
dimension, and we have only a finite number of linearly independent solvability
conditions. The finite number

ind(A) := dim ker(A)− codim im(A) (4.33)

is called the index of the operator A. If dimH <∞, then ind(A) = 0. For example,
set H := C

2. Then the operator A : H → H given by the equation (4.31) has
the index zero. The set of all Fredholm operators in L(H,H) is denoted by F (H).
Consider the equation

Ax = b, x ∈ H. (4.34)

We assume that A ∈ F (H). Let b ∈ H be given. Suppose that x is a solution of
(4.34). Then

(Adf)(x) = f(Ax) = f(b).

This implies that f(b) = 0 for all f ∈ Hd with Adf = 0. A linear Fredholm operator
A has the important property that this simple necessary solvability condition for
equation (4.34) is also sufficient for the existence of a solution. The following hold:

The equation (4.34) has a solution iff f(b) = 0 for all linear continuous

functionals f ∈ Hd with Adf = 0. The solution set of (4.34) is a linear
manifold of dimension dim ker(A). The number

dim(Ad) = dim ker(A)− ind(A)

is equal to the number of linearly independent solvability conditions for
(4.34). In particular, if ind(A) = 0, then equation (4.34) has the crucial
property that uniqueness implies existence.

Stability of the index of a Fredholm operator. The importance of the
index of a Fredholm operator relies on the fact that it is invariant under sufficiently
small perturbations with respect to the operator norm.
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The set F (H) of Fredholm operators is open in L(H,H), and the index
is locally constant. Hence the index is constant on each component (i.e.,
maximal connected subset) of F (H).

The Atiyah–Jänich theorem about the homotopic classification of
families of linear Fredholm operators. Let M be a compact connected sepa-
rated topological space (e.g., a sphere). We consider continuous maps of the form

μ : M → F (H).

More precisely, let us consider the space [M,F (H)] of mapping classes (with respect
to homotopies) introduced on page 219.

Theorem 4.23 If dimH =∞, then we have [M,F (H)] � KC(M), in the sense of
a bijection.

This important theorem due to Atiyah and Jänich relates the K-ring KC(M)
of a compact connected separated topological space M to the homotopic structure
of families of linear Fredholm operators parameterized by M . If we replace the set
of Fredholm operators F (H) by the set GL(H) of invertible linear operators on
L(H,H), then the following theorem due to Kuipers shows that the situation is
much simpler.

If dimH =∞, then the space [M,GL(H)] consists precisely of one point.

The proofs can be found in B. Booss and D. Bleecker, Topology and Analysis,
Springer, New York, 1985.

4.4.11 Hints for Further Reading

K-theory. The theory of linear and nonlinear Fredholm operators and its applica-
tions to differential and integral equations can be found in Zeidler (1995a), (1995b)
(see the references on page 1049). As an introduction to K-theory and its applica-
tions to the structure of the vector fields on spheres, we recommend:

F. Hirzebruch, Division algebras and topology. In: H. Ebbinghaus et al.
(Eds.), Numbers, pp. 281–301, Springer, New York, 1995.

Furthermore, we recommend:

B. Booss and D. Bleecker, Topology and Analysis, Springer, New York,
1985 (Fredholm operators, the Atiyah–Singer index theorem, and topolog-
ical gauge theory).

M. Atiyah, K-Theory, Benjamin, New York, 1967.

H. Bass, Algebraic K-Theory, Benjamin, 1968.

N. Karoubi, K-Theory: An Introduction, Springer, Berlin, 1978 (topolog-
ical K-theory).

P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer
Index Theorem, CRC Press, Boca Raton, Florida, 1995.

Introduction to topology:

S. Matveev, Lectures on Algebraic Topology, European Mathematical So-
ciety, 2006.

V. Guillemin and A. Pollack, Differential Topology, Prentice Hall, Engle-
wood Cliffs, New Jersey, 1974.
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G. Naber, Topological Methods in Euclidean Spaces, Cambridge University
Press, 1980.

R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer,
New York, 1982.

G. Bredon, Topology and Geometry, Springer, New York, 1993.

We also refer to Chapter 18 of the handbook edited by Zeidler, Teubner-Taschenbuch
der Mathematik II, 9th edition, Teubner, Wiesbaden, 2008 (in German), and to the
following two surveys:

C. Dodson and P. Parker, A Users’ Guide to Algebraic Topology, Kluwer,
Dordrecht, 1997.

S. Novikov, Topology I: General Survey (Encyclopedia of Mathematical
Sciences), Springer, New York, 1996.

Topology and Physics:

A. Schwarz, Topology for Physicists, Springer, Berlin, 1994.

A. Schwarz, Quantum Field Theory and Topology, Springer, Berlin, 1993.

K. Marathe and G. Martucci, The Mathematical Foundations of Gauge
Theories, North-Holland, Amsterdam, 1992.

G. Naber, Topology, Geometry, and Gauge Fields, Springer, New York,
1997.

G. Naber, Space-Time and Singularities, Cambridge University Press,
1988.
R. Hwa and V. Teplitz, Homology and Feynman Diagrams, Benjamin,
1966.

Standard references in topology:

A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
Internet: http://www.math.cornell.edu/∼hatcher
A. Hatcher, Spectral Sequences in Algebraic Topology, 2003ff.
Internet: http://www.math.cornell.edu/∼hatcher
A. Hatcher, Vector Bundles and K-Theory, 2003ff.
Internet: http://www.math.cornell.edu/∼hatcher
E. Spanier, Algebraic Topology, Springer, New York, 1989.

S. Hu, Homotopy Theory, Academic Press, New York, 1959.

F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, New
York, 1966.

D. Husemoller, Fiber Bundles, Springer, New York, 1994.

G. Bredon, Sheaf Theory, Springer, Berlin, 1997.

A. Pressley and G. Segal (1986), Loop Groups, Clarendon Press, Oxford.

H. Baues, Homotopy Type and Homology, Oxford University Press, 1996.

W. Lück, Algebraische Topologie, Vieweg, Wiesbaden, 2005 (in German).

Perspectives

In the following volumes of this monograph, we will study important applications
of topology to physics.

In quantum physics, one encounters quantum numbers.
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This means that crucial quantum phenomena are described by discrete numbers. In
mathematics, one knows two important methods in order to classify mathematical
structures by discrete numbers. This concerns

• symmetry (e.g., the representation theory of groups and algebras), and
• qualitative behavior (topological invariants).

In Vol. IV on quantum mathematics, we will show that these two approaches are
crucial for quantum physics.

4.5 The Strategy of Partial Ordering

Partially ordered sets occur quite often in mathematics.
Folklore

For natural numbers a, b, c, we have the following ordering relations:

(P1) Reflexivity: a ≤ a;
(P2) Symmetry: If a ≤ b and b ≤ a, then a = b.
(P3) Transitivity: a ≤ b and b ≤ c imply a ≤ c.

In general, a set N is called partially ordered iff there is a ≤-relation defined on
certain elements a, b of N such that (P1)–(P3) hold for all a, b, c ∈ N . We write
a < c iff a ≤ b and a �= b. Partially ordered sets are also called posets. In addition,
a set N is called totally ordered iff the following hold:

(O1) N is partially ordered;
(O2) we have a ≤ b or b ≤ a for all a, b ∈ N .

For example, both the set of natural numbers and the set of real numbers are totally
ordered. For all (a, b), (c, d) ∈ R

2, we define

(a, b) ≤ (c, d) iff a ≤ b and c ≤ d.

This way, R
2 becomes a partially ordered set, which is not totally ordered. In fact,

we have neither (1, 2) ≤ (2, 1) nor (2, 1) ≤ (1, 2). Furthermore, for a poset N and
its subsets S, we introduce the following terminology:

• Maximal element of N : An element m of N is called maximal iff there is no
element a in N with m < a. Similarly, an element m of N is called minimal iff
there is no element a in N with a < m.

• Greatest element of N : An element g of N is called greatest iff a ≤ g for all
a ∈ N .37 Similarly, an element s of N is called smallest iff s ≤ a for all a ∈ N .

• Upper bound of the subset S: The element b ∈ N is called an upper (resp. lower)
bound of the subset S of N iff a ≤ b (resp. b ≤ a) for all a ∈ S.

• Supremum sup(S) of the subset S: The supremum of S is the smallest upper
bound of S. We denote this by sup(S).

• Infimum inf(S) of the subset S: The infimum of S is the greatest lower bound of
S. We denote this by inf(S). If sup(S) (resp. inf(S)) exists, then it is unique.

• Well-ordering: The set N is well-ordered iff it is totally ordered and each
nonempty subset of N has a smallest element.

• Lattice: The set N is called a lattice iff it is partially ordered and the supremum
sup({a, b}) and the infimum inf({a, b}) exist for each two-point subset {a, b} of
the set N .

37 By symmetry, the greatest element is uniquely determined. In contrast to this,
maximal elements are not always unique.
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Fig. 4.13. Feynman diagram as a partially ordered set

• Complete lattice: The set N is called a complete lattice iff the supremum sup(S)
and the infimum inf(S) exist for each nonempty subset S of N .

For the theory of lattices, we refer to:

G. Birkhoff, Lattice Theory, Amer. Math. Soc., New York, 1968.

Examples. Each interval of the real line is an ordered set. The interval ]0, 1] has
the point x = 1 as greatest element, but this interval has no smallest element. As a
subset of the real line, the interval ]0, 1] has the point x = 1 as supremum and the
point x = 0 as infimum. The real line is a lattice, but not a complete lattice, since
the set R has neither a supremum nor an infimum.

4.5.1 Feynman Diagrams

Scattering processes between elementary particles can be represented by special
graphs called Feynman diagrams. This is a basic tool in elementary particle physics
and quantum field theory.38 Fig. 4.13 shows the prototype of a Feynman diagram.
We have vertices and oriented connecting lines. The basic idea is to write

a < c

if an arrow points from the vertex a to the vertex c (which is different from the
vertex a). In addition, we assume that this can be extended to a partially ordered
set by adding the reflexivity property (P1) above and by demanding the validity
of the transitivity property (P3) above. For example, Fig. 4.13 describes a set of
vertices a, b, c, d,m, n with the basic relations

a < c, b < c, c < d, d < m, d < n.

The other ≤-relations are obtained from this by using (P1) and (P3). For example,
we write a ≤ a, and

a < d, a < m, a < n.

Summarizing, all of the ≤-relations of the set N = {a, b, c, d,m, n} corresponding
to Fig. 4.13 are given by the following list:

• a ≤ a, a ≤ c, a ≤ d, a ≤ m, a ≤ n;
• b ≤ b, b ≤ c, b ≤ d, b ≤ m, b ≤ n;
• c ≤ c, c ≤ d, c ≤ m, c ≤ n;
• d ≤ d, d ≤ m, d ≤ n;
• m ≤ m,n ≤ n.

38 The history of Feynman diagrams can be found in D. Kaiser, Drawing Theories
Apart: The Dispersion of Feynman Diagrams in Postwar Physics, University of
Chicago Press, 2005.
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One checks easily that N is indeed a partially ordered set. Intuitively, for two
vertices s and r the relation s ≤ r means that either s = r or there exists a chain
of oriented arrows which points from the vertex s to the vertex r. In Fig. 4.13, the
six vertices a, b, c, d,m, n do not correspond to a totally ordered set, since we have
neither a ≤ b nor b ≤ a. But the three vertices a, c, d correspond to a totally ordered
set.

The Feynman diagrams used in quantum electrodynamics will be discussed in
Chap. 14. In contrast to the prototype depicted in Fig. 4.13, we will have different
types of connecting lines corresponding to electrons, positrons, and photons in
quantum electrodynamics. Moreover, we have to distinguish between internal lines
and external lines. To explain this, let us distinguish between the internal vertices
c, d and the external vertices a, b,m, n. Then the line cd is called an internal line and
ac, bc, dm, dn are called external lines. Now Fig. 4.13 describes the scattering of the
two incoming particles ac and bc resulting in the two outgoing particles dm and dn.
The external lines describe particles observed in scattering processes, whereas the
internal lines describe quantum fluctuations of the vacuum (ground state) which
strongly influence the scattering process.

Traditionally, for the sake of simplicity, physicists do not draw the external
vertices. We will do the same. Thus, using the convention of physicists, the dia-
gram depicted in Fig. 4.13 describes the five internal lines ac, bc, cd, dm, dn which
correspond to five virtual particles living in the vacuum. Much material about math-
ematical graph theory can be found in J. Gross and J. Yellen (Eds.), Handbook of
Graph Theory, CRC Press, Boca Raton, Florida, 2004.

4.5.2 The Abstract Entropy Principle in Thermodynamics

Our goal is an assertion of the form

s ≤ a implies S(s) = S(a). (4.35)

Theorem 4.24 Let S : X → [−∞,∞[ be a monotone increasing function on the
nonempty partially ordered set X, that is, a ≤ b implies S(a) ≤ S(b). In addition,
suppose that each monotone increasing sequence in X has an upper bound. Then
there exists an element s of X with the stability property (4.35) for all a ∈ X.

This theorem due to Brézis and Browder allows the following physical inter-
pretation:39 We regard the elements a of X as states of a many-particle system
in physics. The function S assigns to the state a the entropy S(a). The ordering
relation a ≤ b means that the state a may pass to the state b at later time. Thus,
a monotone increasing sequence a1 ≤ a2 ≤ . . . corresponds to a possible time de-
velopment of the physical system with the corresponding increasing entropy values

S(a1) ≤ S(a2) ≤ . . . ,

by the second law of thermodynamics. Theorem 4.24 tells us the existence of a
stable equilibrium state s in the following sense: If the system is in the state s, then
the entropy can no longer increase.

The proof of Theorem 4.24 can be found in Zeidler (1986), Vol. III, p. 163 (see
the references on page 1049).

39 H. Brézis and F. Browder, A general ordering principle in nonlinear functional
analysis, Advances in Math. 21 (1976), 355–364.
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4.5.3 Convergence of Generalized Sequences

In general topological spaces, classical sequences are not enough for the
characterization of closed sets by convergence.

Folklore

Directed index set. In classical analysis, a sequence (xn) is equipped with an
index n = 0, 1, 2, . . . which lies in the set N = {0, 1, 2, . . .} of natural numbers. In
modern analysis (e.g., the theory of von Neumann algebras), one needs sequences
(xν) where the index ν lies in a more general directed set N . By definition, a set
N is called directed (or a generalized index set) iff the following hold:

(D1) N is partially ordered.
(D2) If a, b ∈ N , then there exists an element d in N such that a ≤ d and b ≤ d.

For example, both the set of natural numbers and the set of real numbers are
directed. Moreover, let X be an arbitrary set. Then the family {U(x)} of all the
subsets U(x) of X which contain the given point x forms a directed set by the
convention

U(x) ≤ V (x) iff V (x) ⊆ U(x).

Note that U(x), V (x) ≤ U(x)∩V (x). We say that the family {U(x)} is directed by
inverse inclusion.

Generalized sequence. Let X be a separated topological space, and let N be
a directed set.40 By definition, a generalized sequence (xν) in the topological space
X is a map which assigns to each index ν in N an element xν in X. Obviously,
every classical sequence (xn) with natural numbers n as indices is a generalized
sequence. For a generalized sequence (xν), we write

lim
ν→∞

xν = x (4.36)

iff for each open neighborhood U(x) of the point x, there exists an index ν0 such
that xν ∈ U(x) for all indices ν with ν0 ≤ ν. The following statements hold:

(a) Fix the point x in X. Consider the sequence (xU(x)), where the index U(x) is
an arbitrary open neighborhood of the point x, and xU(x) is some point of the
set U(x). Then the point x is the limit of the sequence (xU(x)).

(b) A subset C of the topological space X is closed iff for each generalized sequence
(xν) in C it follows from (4.36) that x ∈ C.

(c) In particular, if X is a metric space (e.g., a subset of R
m or of a Hilbert space),

then statement (b) remains valid if we only use classical sequences.
(d) The generalized limit is unique (in a separated space).

For the proofs, see

J. Kelley, General Topology, van Nostrand, New York, 1955.

This monograph contains a systematic theory of generalized sequences. A sum-
mary (including the theory of metric and topological spaces, Hilbert spaces, Banach
spaces, and locally convex spaces) can be found in Zeidler (1986), Vol. I, Appendix
(see the references on page 1049). Generalized sequences are important for charac-
terizing von Neumann algebras in quantum mechanics (see Sect. 7.18 on page 654).
Generalized sequences are also called Moore–Smith sequences or nets.

40 The topological space X is called separated (or a Hausdorff space) iff for any two
different points x and y in X, there exist disjoint open neighborhoods U(x) and
V (y). Most topological spaces have this property. Hausdorff (1868–1942) wrote
the first textbook on set theory, and the theory of topological and metric spaces
in 1914: F. Hausdorff, Foundation of Set Theory, Teubner, Leipzig (in German).
In 1942 Hausdorff and his family committed suicide in order to escape the de-
portation into a German concentration camp.
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4.5.4 Inductive and Projective Topologies

The reader who is not familiar with the concept of topological space should look
at Sect. 5.5 of Vol. I. The prototype of a topological space is the real line R. The
terminology of set theory (e.g., images and pre-images of maps) is explained in the
Appendix to Vol. I.

Images and pre-images. Let f : X → Y be a map. Then, for all subsets A
and B of X and all subsets U and V of Y, the following hold:

• f(A ∪B) = f(A) ∪ f(B);
• f(A ∩B) ⊆ f(A) ∩ f(B);
• f−1(U ∪ V ) = f−1(U) ∪ f−1(V );
• f−1(U ∩ V ) = f−1(U) ∩ f−1(V ).

We will use this in order to construct topologies which change arbitrary maps into
continuous ones.

Topological spaces and continuous maps. Let X be a set. A family T of
subsets of X is called a topology on X iff the following hold:

(T1) X ∈ T and ∅ ∈ T ;
(T2) T is invariant under forming finite intersections (i.e., if X1, . . . , Xn ∈ T , then
∩n

k=1Xk ∈ T ); and
(T3) T is invariant under forming arbitrary unions (i.e., if Xα ∈ T for all α ∈ A,

then ∪α∈AXα ∈ T ).

The set X equipped with a fixed topology T is called a topological space. The
subsets of X belonging to T are called T -open (or briefly open).

A map f : X → Y between two topological spaces X and Y is continuous
iff the pre-images of open sets are open.

Basis of a topology. Let X be a topological space with the topology T . A
family B of open subsets of X is called a basis of the topology T iff any open subset
of X is the union of sets from B.

Subbasis of a topology. Again let X be a topological space with the topology
T . A family S of open subsets of the topological space X is called a subbasis of
the topology T iff all the finite intersections of the sets from S form a basis of the
topology T . We also say that the family S generates the topology T iff it forms a
subbasis of T .

As an example, consider the real line R equipped with the usual topology. Then
the family of all open intervals together with the empty set form a basis of the
topology on R. Moreover, the family of all open intervals of infinite length forms
a subbasis of the topology on R. This follows from the fact that each finite open
interval can be represented as the intersection of two open intervals of infinite
length.

Comparison of topologies. Let T and S be two topologies on the set X.
Suppose that

T ⊆ S.
Then the topology T is called weaker than the topology S, and S is called stronger
than T . Let F be a family of subsets of X with X ∈ F and ∅ ∈ F .

There exists a uniquely determined weakest topology T on X with the prop-
erty F ⊆ T .

Explicitly, a subset Y of X is contained in T iff it is the union of finite intersections
of sets from F . In other words, the family F is a subbasis of the topology T (i.e.,
the family F generates the topology T ).



242 4. The Strategy of Equivalence Classes in Mathematics

In addition, the family F is a basis of the topology T iff it is invariant under
finite intersections.

Inductive topology. We are given the family of maps

iα : Xα → Y, α ∈ A (4.37)

on the topological spaces Xα. We want to introduce a nontrivial topology on the
target space Y such that all the maps iα are continuous.41

There exists a uniquely determined strongest topology on the target space
Y such that all the maps (4.37) are continuous.

This topology is called the inductive topology on the target space Y with respect
to the family {iα}α∈A of maps. Explicitly, a subbasis S of the inductive topology is
given in the following way. By definition, the subset O of the target space Y belongs
to S iff the pre-image i−1

α (O) is open in Xα for all indices α. Let us consider two
typical examples.

(i) The coproduct topology: By definition, the coproduct
‘

α∈A Xα of the family
{Xα}α∈A of topological spaces Xα consists of all the pairs (α, x), where α ∈ A
and x ∈ Xα. The canonical maps

iα : Xα →
a

β∈A
Xβ , α ∈ A

are given by iα(x) := (α, x). The inductive topology with respect to {iα} is
called the coproduct topology on

‘

α∈A Xα. Naturally enough, the map

f :
a

α∈A
Xα → Z

is continuous iff all the composite maps f ◦iα : Xα → Z, α ∈ A, are continuous.
(ii) Quotient topology: Let ∼ be an equivalence relation on the topological space

X. Consider the canonical map

π : X → X/ ∼

given by π(x) := [x]. The quotient topology on X/ ∼ is the inductive topology
with respect to the map π. This is the strongest topology on X/ ∼ such that
the canonical map π is continuous. Explicitly, a subset S of X/ ∼ is open iff
the pre-image π−1(S) is open in the initial space X. Let Z be a topological
space. The map

f : X/ ∼ → Z

is continuous iff the composite map f ◦ π : X → Z is continuous.

Now we want to study the dual situation.
Projective topology. We are given the family of maps

πα : Y → Xα, α ∈ A, (4.38)

where Xα is a topological space for each index α. We want to introduce a nontrivial
topology on the initial space Y such that all the maps πα are continuous.42

41 If only the set Y and the empty set are open on Y , then we obtain the weakest
topology on the target space Y such that all the maps iα are continuous. We are
not interested in this trivial case.

42 If all the subsets of Y are open, then we obtain the strongest topology on the
initial space Y such that all the maps πα are continuous. We are not interested
in this trivial case.
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There exists a uniquely determined weakest topology on the initial space Y
such that all the maps (4.38) are continuous.

This topology is called the projective topology on the initial space Y with respect
to the family {πα}α∈A of maps. Explicitly, the projective topology is generated by
all the sets π−1

α (O) where O is an open set in Xα, and α is an arbitrary index. Let
us consider two typical examples.

(i) The product topology: By definition, the Cartesian product
Q

α∈A Xα consists
of all the tuples (xα)α∈A. The canonical map

πα :
Y

β∈A
Xβ → Xα, α ∈ A

is given by πα((xβ)) = xα. The projective topology with respect to {πα}α∈A
is called the product topology on

Q

α∈A Xα. Let Z be a topological space.
Naturally enough, the map

f : Z →
Y

β∈A
Xβ

is continuous iff all the composite maps πα◦f : Z → Xα, α ∈ A, are continuous.
(ii) The subspace topology: Let Y be a subset of the topological space X. The

canonical map
j : Y → X

is given by j(x) := x. By definition, the subspace topology on Y is the projective
topology with respect to the map j. This is the weakest topology on Y such
that the canonical map j is continuous. Explicitly, a subset S of Y is open iff
there exists an open set O in X such that S = O ∪ Y. Let Z be a topological
space. The map

f : Z → Y

is continuous iff the composite map j ◦ f : Z → X is continuous.

4.5.5 Inductive and Projective Limits

The notion of limit for sequences in a topological space can be general-
ized to the limit of mathematical structures (e.g., linear spaces, groups,
topological spaces).

Folklore

The prototype of an inductive limit is the union

∞
[

n=0

Xn = lim
n→∞

ind Xn (4.39)

of a sequence X0 ⊆ X1 ⊆ X2 ⊆ . . . of linear spaces X0, X1, . . . over K with the
additional property that Xk is a linear subspace of Xk+1 for all k = 0, 1, . . . Obvi-
ously, ∪∞

n=0Xn is again a linear space over K. The prototype of a projective limit
is the intersection

∞
\

n=0

Xn = lim
n→∞

proj Xn (4.40)

of a sequence X0 ⊇ X1 ⊇ X2 ⊇ . . . of linear spaces X0, X1, . . . over K with the addi-
tional property that Xk+1 is a linear subspace of Xk for all k = 0, 1, . . . Obviously,
∩∞

n=0Xn is again a linear space over K. We want to generalize this.
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• The inductive limit will be a quotient space of the coproduct.
• The projective limit will be a subspace of the Cartesian product.

The inductive (resp. projective) limit is also called the direct (resp. inverse) limit.
These limits were introduced in topology in about 1930. Let A be a directed set
(e.g., A = N).

Inductive limit. Our starting point is the commutative diagram

Xα

παβ ��

παγ
��













 Xβ

πβγ

��
Xγ

(4.41)

for all α, β, γ ∈ A with α ≤ β ≤ γ. In the special case of (4.39), we choose
παβ(x) := x for all α, β = 0, 1, 2, . . . with α ≤ β.

(i) Linear spaces: We are given the commutative diagrams (4.41) where Xα, Xβ , Xγ

are linear spaces over K, and παβ , πβγ , πβγ are linear morphisms. Furthermore,
we assume that παα = id for all α ∈ A. For the elements (α, x), (β, y) of the
coproduct

‘

α∈A Xα, we write

(α, x) ∼ (β, y)

iff there exists an index γ such that α, β ≤ γ, and παγ(x) = πβγ(y). This is an
equivalence relation on

‘

α∈A Xα. We write

lim
α∈A

ind Xα :=

 

a

α∈A
Xα

!

/ ∼,

and call this the inductive limit of the diagram (4.41). This inductive limit is
a linear space over K. The canonical maps

iα : Xα → lim
α∈A

ind Xα

are defined by iα(x) := [(α, x)]. Let Z be a linear space over K. The map

f : lim
α∈A

ind Xα → Z

is linear iff all the maps f ◦ iα : Xα → Z,α ∈ A, are linear.
(ii) Topological spaces: The situation (i) can be immediately generalized to the cat-

egory of topological spaces by replacing linear spaces (resp. linear morphisms)
by topological spaces (resp. continuous maps).

Now let us investigate the dual situation.
Projective limit. We start with the following commutative diagrams

Xα Xβ

παβ��

Xγ

πβγ

��

παγ

��








(4.42)

for all α, β, γ with α ≤ β ≤ γ. In the special case (4.40), we choose the maps
παβ(x) := x for all α, β = 0, 1, 2, . . . with α ≤ β.
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(a) Linear spaces. We are given the commutative diagrams (4.42) where Xα, Xβ , Xγ

are linear spaces over K, and παβ , πβγ , πβγ are linear morphisms. Furthermore,
we assume that παα = id for all α ∈ A. By definition, an element (xα) of the
product set

Q

α∈A Xα is called a thread iff β ≤ γ always implies xβ = πβγ(xγ).
The set of all threads is denoted by

lim
α∈A

proj Xα

and called the projective limit of the diagram (4.42). This is a linear subspace
of
Q

α∈A Xα. The canonical projections

πα :
Y

β∈A
Xβ → Xα, α ∈ A

are defined by πα((xβ)) := xα. Let Z be a linear space over K. The map

f : Z → lim
α∈A

proj Xα

is linear iff all the maps πα ◦ f : Z → Xα, α ∈ A, are linear.
(b) Topological spaces: The situation (a) can be immediately generalized to the cat-

egory of topological spaces by replacing linear spaces (resp. linear morphisms)
by topological spaces (resp. continuous maps).

4.5.6 Classes, Sets, and Non-Sets

A traveller who refuses to pass over a bridge until he has personally tested
the soundness of every part of it is not likely to go far; something must be
risked, even in mathematics.

Horace Lamb (1849–1934)

On the 7th of December 1873, the theory of sets left behind forever its
age of innocence, for on that day Georg Cantor (1845–1918) proved that
the set of real numbers is uncountable. . . In 1901 Bertrand Russel (1872–
1970) discovered the inconsistency of the comprehension axiom (Russel’s
antinomy). . . In 1908 Ernst Zermelo (1871–1953) proposed a system of
axioms for set theory which heralded a new approach. . .

By a theorem of mathematical logic, proved in 1931 by Kurt Gödel (1906–
1978), the consistency of the set-theoretic axiom systems cannot be proved
without methodological means beyond those they represent.43

Heinz-Dieter Ebbinghaus, 1995.

No one should ever drive us from the paradise which Cantor (1845–1918)
created for us.44

David Hilbert (1862–1943)

The theory of sets was created by Georg Cantor. This was motivated by the question
about the uniqueness of the trigonometric Fourier expansion in the case where
the convergence of the Fourier series is violated in an infinite number of points.45

43 H. Ebbinghaus, Set theory and mathematics. In: H. Ebbinghaus et al. (Eds.),
Numbers, Springer, New York, 1995, pp. 355–379 (reprinted with permission).

44 D. Hilbert, On the infinite, Math. Ann. 95 (1926), 161–190 (in German).
45 W. Purkert and H. Ilgauds, Georg Cantor, Teubner, Leipzig, 1985 (in German).

I. Grattan-Guiness, Towards a biography of Georg Cantor, Annals of Science 27
(1971), 345–391.
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This way, Cantor was led to the study of the structure of infinite sets. In about
1900 mathematicians were shocked by discovering contradictions in set theory. For
example, in 1901 Russel showed that the notion ‘set of all sets’ is contradictory. A
detailed discussion of this antinomy (and the different axiomatic ways of avoiding
this difficulty due to Zermelo–Fraenkel and von Neumann–Bernays–Gödel) can be
found in the article by Ebbinghaus (1995) quoted above.

Von Neumann’s idea of classes. In 1925, the young John von Neumann
(1903–1957) showed how to avoid such contradictions. He introduced the notion of
class. By definition, a class is a collection of objects.

• A class is called a set iff it can be the element of some class.
• A class is called a non-set iff it can never be an element of a class.

Thus, sets can be gathered into collections. Non-sets, intuitively speaking, are so
large that they cannot be gathered into larger collections. For example, the class U
of all sets is a non-set. This class is called the universe. Moreover, the class of all
linear spaces (or groups, rings, fields, Hilbert spaces, topological spaces) is a non-
set. Intuitively, the class of linear spaces cannot be a set, since there exist linear
spaces of arbitrarily high cardinality. The rigorous approach to classes has to be
based on axioms. A detailed study can be found in:

D. Klaua, General Set Theory, Akademie-Verlag, Berlin, 1964, Vols. 1, 2
(in German).

We also recommend the article on set theory by Ebbinghaus (1995) quoted above
and the following books:

A. Fraenkel, Y. Bar-Hillel, and A. Lévy, Foundations of Set Theory, North-
Holland, Amsterdam, 1973.

K. Devlin, The Joy of Sets: Fundamentals of Contemporary Set Theory,
Springer, New York, 1997.

The axioms are the starting point; they formulate formal terms like ‘class’, ‘set’,
and ‘non-set’ together with formal relations and operations between them. Pierre
Cartier writes:

A very important feature of an axiomatic system in mathematics is its non-
contradiction; after Gödel’s work in 1931, we have lost the initial hopes to
establish the non-contradiction of mathematics by a formal reasoning, but
one can live with a corresponding belief in non-contradiction.46

The outstanding philosopher and mathematician Bertrand Russel (1872–1970) re-
marked:

Thus mathematics may defined as the subject in which we never know
what we are talking about, nor whether what we are saying is true.

Zermelo’s axiom of choice. One of the cornerstones in the foundations of
class theory is the sophisticated axiom of choice, which reads as follows for the
universe U:

46 B. Russel and A. Whithead, Principia Mathematica, Vols. 1–3, Cambridge Uni-
versity Press, 1910.
K. Gödel, On formally undecidable theorems of the Principia Mathematica and
related systems, Monatshefte Math. und Physik 38 (1931), 173–198 (in German).
Yu. Manin, A Course in Mathematical Logic, Springer, New York, 1977.
H. Beckert, On the epistemology of the infinite. Abhandlungen der Sächsischen
Akademie der Wissenschaften zu Leipzig, Mathematisch-naturwissenschaftliche
Klasse, Bd. 59, Heft 3 (2001). Hirzel, Stuttgart/Leipzig (in German).
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There exists a map C : U→ U such that the image C(S) of any nonempty
set S is equal to some one-point set {s} where s is an element of S.

Intuitively, the map C selects precisely one element s from each nonempty set S.
Therefore, C is called a selection map. The axiom of choice first formulated by
Zermelo (1871–1953) in 1908 seems to be trivial, but it is not trivial at all. One of
the surprising results of set theory is the fact that the axiom of choice is independent
of the remaining axioms of set theory. That is, one can postulate either the validity
or the non-validity of the axiom of choice.47

In the present series of monographs, we will use classes, and we will always
assume that the axiom of choice is valid.

Most of mathematicians use this convention. As a consequence, we will have the
lemma of Zorn at hand, as a general existence principle in mathematics. A typical
application of Zorn’s lemma will be considered in Problem 4.10 on page 259. From
a pragmatic point of view, the lemma of Zorn is an extremely useful tool in math-
ematics. Therefore, we do not want to loose this gadget. The axiom of choice has
the following consequences which are very far from common sense:

(i) The existence of non-measurable sets: There exist an infinite number of subsets
of the real line which are not measurable in the sense of Lebesgue. In other
words, the elementary pre-measure for intervals on the real line cannot be
extended to a translation-invariant measure on the real line which allows us to
assign a measure to all subsets of the real line.

(ii) Cantor’s well-ordering principle: Any set can be well-ordered.
(iii) Obviously, the set of real numbers is not well-ordered with respect to the

usual ordering. For example, the open interval ]0, 1[ has no smallest element.
However, by (ii), there exists another (highly abstract) total ordering on the
real line for which the real line is well-ordered.

For the proof of (i), see E. Stein and R. Shakarchi, Princeton Lectures in Analysis
III: Measure Theory, p. 24, Princeton University Press, 2003. The proof of (ii) can
be based on Zorn’s lemma (see N. Dunford and J. Schwartz, Linear Operators, Vol.
I, Sect. I.2.9, Wiley, New York, 1958).

4.5.7 The Fixed-Point Theorem of Bourbaki–Kneser

Theorem 4.25 The map f : N → N on a nonempty partially ordered set N
has a fixed-point (i.e., the equation f(x) = x has a solution) if the following two
conditions are satisfied:

(i) x ≤ f(x) for all x ∈ N .
(ii) Each nonempty totally ordered subset of N has a supremum.

For the map f : [0, 1] → [0, 1], the simple intuitive meaning of this fixed-point
theorem is pictured in Fig. 4.14. This innocently looking theorem is one of the
cornerstones of set theory. The fairly sophisticated proof of this theorem can be
found in Zeidler (1986), Vol. I, Sect. 11.8 (see the references on page 1049). Observe
that the proof does not use the axiom of choice.

47 K. Gödel, The consistency of the axiom of choice and the generalized continuum
hypothesis, Proc. Nat. Acad. Sci. U.S.A. 24(1938), 556–557.
P. Cohen, Set Theory and the Continuum Hypothesis, Benjamin, New York,
1966. See also K. Devlin, The Joy of Sets, Springer, New York, 1997.
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Fig. 4.14. The Bourbaki–Kneser fixed-point theorem

4.5.8 Zorn’s Lemma

Theorem 4.26 A nonempty partially ordered set contains a maximal element if
each nonempty, totally ordered subset has an upper bound.

This is one of the most important existence principles in mathematics. The
proof of this theorem follows from the Bourbaki–Kneser theorem and the axiom
of choice. This proof can be found in Zeidler (1986), Vol. I, p. 511. Next we want
to show how non-standard analysis can be based on Zorn’s lemma by constructing
ultrafilters.

4.6 Leibniz’s Infinitesimals and Non-Standard Analysis

Extend the field R of classical real numbers to the field ∗R of generalized
real numbers in order to get infinitesimal numbers and infinite numbers.

Folklore

Non-standard analysis was introduced by Abraham Robinson (1918–1974) in 1960.
The goal of non-standard analysis is to rigorously justify the elegant Leibniz calculus
of infinitesimals. In particular, we will prove that a classical real function f : R→ R

has the classical derivative f ′(x) at the point x iff the difference

df(x)

dx
− f ′(x)

is an infinitesimal number for all nonzero infinitesimal numbers dx. Here, we use
the Leibniz differential

df(x) := f(x + dx)− f(x).

The point is that the differential quotient df(x)
dx

is indeed a quotient, in the strict
algebraic sense, between the generalized numbers df(x) and dx. In addition, we have
to show that the expression f(x + dx) makes sense. To this end, we will uniquely
extend the classical function f : R→ R to a function

f : ∗R → ∗R,

where ∗R contains the non-standard numbers x+ dx. The point is that the totally
ordered field ∗R is an extension of the classical totally ordered field R.

Main ideas. Let us first summarize the key properties. The rigorous justifica-
tion will be considered below.

• Generalized numbers: The classical set R of real numbers can be extended to a
larger set ∗R whose elements are called generalized numbers.
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• Operations: Sums a+ b, products ab and inequalities a ≤ b for real numbers can
be extended to generalized numbers by preserving the usual rules. In particular,
for each nonzero generalized number a, there exists a unique generalized number
a−1 such that

aa−1 = a−1a = 1.

Moreover, if a and b are generalized numbers, then

a ≤ b or b ≤ a.

For all generalized numbers a, we define the modulus by setting

|a| :=
(

a if a > 0,

0 if a ≤ 0.

• Infinite numbers: In contrast to the set R of real numbers, the extended set ∗R
contains both nonzero infinitesimal numbers and infinite numbers. By definition,
a generalized number ω is called a positive (resp. negative) infinite number iff

r ≤ ω for all real numbers r

(resp. ω ≤ r for all real numbers r). Naturally enough, a generalized number a
is called finite iff it is not an infinite number. This is equivalent to saying that
there exist real numbers r and s such that r ≤ a ≤ s.

• Infinitesimal numbers: A generalized number a is called an infinitesimal number
(or briefly an infinitesimal) iff

|a| < ε for all real numbers ε > 0.

Trivially, the real number a = 0 is an infinitesimal. Nonzero infinitesimals are
not contained in R, but in the extended set ∗R.

• The sum α+ β and the product αβ of infinitesimals α and β are again infinites-
imals.

• The inverse α−1 of a positive (resp. negative) infinitesimal is a positive (resp.
negative) infinite number.

• The product aα of a real number a with an infinitesimal α is an infinitesimal.48

Summarizing, for a generalized number a, only the following three alternatives are
possible:

(i) a is a real number;
(ii) a is an infinite number;
(iii) a = r + α, where r is a real number, and α is a nonzero infinitesimal.

In case (iii), r is called the standard part of the generalized number a. The standard
part is uniquely determined by a. Precisely the generalized numbers from (ii) and
(iii) are called non-standard numbers.

Now we are going to rigorously justify the notion of generalized numbers. To
this end, we need the following concepts:

• totally ordered field,
• ultrafilter,
• ultra-cofinite set.

48 Further rules can be found in Problem 4.8 on page 258.
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As an essential ingredient, we will use Zorn’s lemma (based on the axiom of choice)
in order to ensure the existence of ultrafilters. Let us discuss this. A totally ordered
field X is defined to be a field which has the following additional properties for all
a, b ∈ X:

• X is a totally ordered set.
• a ≤ b and c ≤ d imply a + c ≤ b + d.
• a ≤ b and 0 ≤ c ≤ d imply ac ≤ bd.

For example, the field R of real numbers is a totally ordered field. Our goal is to
extend R to the totally ordered field ∗R.

4.6.1 Filters and Ultrafilters

Filters. By a filter F of the nonempty set X, we understand a nonempty family
of subsets of X such that the following hold.

• If A,B ∈ F , then A ∩B ∈ F , and the intersection A ∩B is not empty.
• If A ∈ F and A ⊆ B ⊆ X, then B ∈ F .
For example, let x be a given point on the real line X := R. Then the set of all
open intervals J with x ∈ J forms a filter of the real line.

Ultrafilters. A filter U of X is called an ultrafilter iff it is maximal with respect
to inclusion. Explicitly, there is no filter F of X with U ⊆ F and F �= U .

Proposition 4.27 Each filter of a nonempty set X is contained in some ultrafilter
of X.

Proof. Let F(X) denote the set of all filters of X. Observe that F(X) is a partially
ordered set with respect to inclusion “⊆”. Let the family {Fα} of filters Fα be a
totally ordered subset of F(X), that is, we have Fα ⊆ Fβ or Fα ⊆ Fβ for all indices
α, β. Define the union

B :=
[

α

Fα

of the filters Fα. Then, the family B of subsets of X is a filter of X. In addition,
we have Fα ⊆ B for all indices α. Thus, B is an upper bound of the subset {Fα}
of the partially ordered set F(X). By the Zorn lemma on page 248, the set F(X)
contains a maximal element U . This is the desired ultrafilter. �

Proposition 4.28 Let U be an ultrafilter of the partially ordered set X. Then, for
each nonempty subset A of X, we have either A ∈ U or (X \A) ∈ U .

The proof of this complementarity principle for ultrafilters will be given in Problem
4.5 on page 258.

The role played by high abstraction. Ultrafilters are highly abstract objects
far away from our intuition. We only know the existence of such objects. But we
will see in the next section that ultrafilters are extremely useful in order to give the
Leibniz infinitesimals a sound mathematical basis.

This kind of high abstraction is typical for parts of modern mathematics, like the
theory of motives in both modern number theory and modern algebraic geometry.
For example, we refer to the survey article by

Y. André, Une introduction aux motives: motifs pures, motifs mixtes,
périodes, Panoramas et Sythèses 17 (2004) (in French).
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There are hints in recent research papers that possibly the rigorous justification
of quantum field theory has to be based on highly abstract objects. For example,
this concerns the motivic Galois group introduced by Connes and Marcolli, in the
framework of the Tannakian category. Roughly speaking, the motivic Galois group
contains the information about all possible one-dimensional renormalization groups
in quantum field theory. For details, we refer to the recent monograph by

A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields,
and Motives, Amer. Math. Soc., Providence, Rhode Island, 2008.
Internet: http://www.math.fsu.edu/∼marcolli/bookjune4.pdf

4.6.2 The Full-Rigged Real Line

Non-standard analysis adds infinitesimals and infinite numbers to the clas-
sical real line.

Folklore

Ultra-cofinite sets of natural numbers. Let N := {0, 1, 2, . . .} denote the set
of natural numbers. A subset of N is called cofinite iff its complement is finite. For
example, the sets N and {2, 3, 4, . . .} are cofinite. The family of cofinite sets forms
a filter F of N, which is called the Fréchet filter. By Prop. 4.27, there exists an
ultrafilter U which contains the Fréchet filter F . Explicitly, the family U of subsets
of natural numbers has the following four properties.

(i) Intersection property: If A,B ∈ U , then A ∩B ∈ U , and the intersection A ∩B
is not empty.

(ii) Extension property: If A ∈ U and A ⊆ B ⊆ N, then B ∈ U .
(iii) Cofinite sets: Each cofinite set of N is contained in U .
(iv) Complementarity: For each nonempty subset S of N, one has either S ∈ U or

(N \ S) ∈ U .
The set U is not uniquely determined. To show this, consider the two sets Neven and
Nodd of even and odd natural numbers, respectively. These two sets are not cofinite.
Suppose that the family U satisfies the conditions (i)–(iv). By (iv), U contains either
Neven or Nodd. Thus, U is different from the Fréchet filter. Furthermore, we will
show in Problem 4.6 that there exist two families Ueven and Uodd which satisfy the
conditions (i)–(iv) and contain the set Neven and Nodd, respectively.

In what follows, we will fix a family U which has the properties
(i)–(iv) above.

The elements of U are called ultra-cofinite subsets of N. In particular, cofinite sets
of natural numbers are always ultra-cofinite. By the complementarity principle for
ultrafilters (Prop. 4.28), finite sets of natural numbers are never ultra-cofinite.

The construction of generalized numbers. Let us consider sequences (an)
of real numbers, n = 1, 2, .... We write

an = bn a.e. (almost everywhere)

iff there is a cofinite set C such that an = bn for all n ∈ C. More generally, we use
the notation

an = bn u.a.e. (ultra-almost everywhere)

iff there is an ultra-cofinite set U such that an = bn for all n ∈ U. Since cofinite
sets are ultra-cofinite,

an = bn a.e. implies an = bn u.a.e.
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Let us now pass to the key definition of non-standard analysis. For two sequences
(an) and (bn) of real numbers, we write

(an) ∼ (bn) iff an = bn u.a.e.

The intersection property (i) of U guarantees that this is an equivalence relation.
Define

∗R := set of all equivalence classes [(an)].

The equivalence classes [(an)] are called generalized numbers. We equip the set ∗R
of generalized numbers with a sum, a product and a ≤-relation by setting

[(an)] + [(bn)] := [an + bn], [(an)][(bn)] := [anbn],

and
[(an)] ≤ [(bn)] iff an ≤ bn u.a.e.

We have to show that this definition does not depend on the choice of the repre-
sentatives. For example, this is true for sums. In fact,

an = cn and bn = dn u.a.e. imply an + bn = cn + dn u.a.e.,

by the intersection property (i) of U . Hence

an ∼ cn and bn ∼ dn imply (an + bn) ∼ (cn + dn).

The same argument applies to products. For inequalities, observe that if

an ≤ bn, an = cn bn = dn u.a.e.,

then cn ≤ dn u.a.e.

Theorem 4.29 The set ∗R is a totally ordered field.

Proof. From an + bn = bn + an we obtain the commutative law

[(an)] + [(bn)] = [(bn)] + [(an)].

Similarly, one obtains all of the other laws. Let us only consider two facts that are
not completely obvious.

(I) Ordering. Let us show that

[(an)] ≤ [(bn)] or [(bn)] ≤ [(an)].

In fact, if an ≤ bn u.a.e., then [(an)] ≤ [(bn)]. Suppose now that an ≤ bn u.a.e. is not
true. By the complementarity property of U , an > bn u.a.e. Hence [(bn)] ≤ [(an)].

(II) Inverse element. Let [(an)] �= 0. By (I), [(an)] > 0 or [(an)] < 0. Suppose
that [(an)] > 0, i.e., an > 0 u.a.e. Hence there exists a set A ∈ U such that an > 0
for all n ∈ A. Define

bn :=

(

a−1
n if n ∈ A,

0 if n �∈ A.

Then, anbn = 1 for all n ∈ A. In other words, anbn = 1 u.a.e., and hence
[(an)][(bn)] = [(1)]. �
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Observe that the arguments (I) and (II) above do not work if we restrict our-
selves to cofinite index sets. For example, suppose that we have

an > bn for all n = 2, 4, 6, . . .

and an < bn for all n = 1, 3, 5, . . . Then the relation an ≤ bn a.e. is not satisfied.
But this does not imply that an > bn a.e. This explains why we use the more
complicated concept of ultra-cofinite sets. A special role is played by equivalence
classes [(r)] of constant sequences (r).

We can identify real numbers r with generalized numbers [(r)].

This way, we regard ∗R as an extension of R. In particular, each real number is also
a generalized number. In what follows, we will frequently write r instead of [(r)].
To make this identification precise, define the map

ϕ(r) := [(r)] for all r ∈ R.

Obviously, from [(r)] + [(s)] = [(r + s)] and [(r)][(s)] = [(rs)] we get

ϕ(r + s) = ϕ(r) + ϕ(s) and ϕ(r)ϕ(s) = ϕ(rs).

This tells us that the map ϕ is an isomorphism from R onto ϕ(R) which also
preserves the ≤-relation. In particular,

s ≤ [(an)] ≤ r

means that s ≤ an ≤ r u.a.e.

Example 4.30 Let an := 1
n
. Obviously, −ε < 1

n
< ε a.e., and hence

−ε < [( 1
n
)] < ε for all real numbers ε > 0.

Thus, the generalized number [( 1
n
)] is a nonzero infinitesimal.

Let an := n. Obviously, r ≤ n a.e., and hence

r ≤ [(n)] for all real numbers r.

Thus, [(n)] is a positive infinite number.

Similarly, we obtain the following:

• ([(an)] is an infinitesimal if an → 0 as n→∞, and
• [(an)] is a positive infinite number if an → +∞ as n→∞.

The standard part of finite generalized numbers. For generalized num-
bers a, b, we write

a ≈ b

iff the difference a− b is an infinitesimal. In this case, we also say that a and b are
infinitesimal neighbors.

Proposition 4.31 For each finite generalized number a, there exists a unique real
number r such that a ≈ r.
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Proof. Uniqueness. If a ≈ r and a ≈ s, then the real number r−s is an infinitesimal,
and hence r = s.

Existence. Set a := [(an)]. Since the generalized number a is finite, there exist
real numbers r and s such that

s ≤ [(an)] ≤ r.

Hence s ≤ an ≤ r u.a.e. Construct the set A := {r ∈ R : an ≤ r u.a.e }. Since this
set of real numbers is bounded from below, there exists the infimum, inf(A). For
each real number ε > 0,

|an − inf (A)| < ε u.a.e.

This implies the desired relation [(an)] ≈ inf(A). �

Extension of functions. Naturally enough, each real function f : R→ R can
be uniquely extended to a function f : ∗R→ ∗R by letting

f([(an)]) := [f(an)].

This definition does not depend on the choice of the representative, since an = bn

u.a.e. implies f(an) = f(bn) u.a.e.

Theorem 4.32 (convergence). Let r and x0 be real numbers. For each real function
f : R→ R, the following two statements are equivalent:

(i) limx→x0 f(x) = r.
(ii) f(x0 + dx) ≈ r for all infinitesimals dx �= 0.

Proof. (i) ⇒ (ii). For each real number ε > 0, there exists a real number δ(ε) > 0
such that

0 < |x− x0| < δ(ε) implies |f(x)− r| < ε.

Let dx := [(an)]. Choose ε > 0. From 0 < |an| < δ(ε) u.a.e we get

|f(x0 + an)− r| < ε u.a.e.

This is true for all ε > 0. Hence the number

f([(x0 + an)])− r = [(f(x0 + an)− r)]

is an infinitesimal.
(ii)⇒ (i) (indirect argument). Suppose that limx→x0 f(x) = r is not true. Then

there exist a real number ε > 0 and a real sequence (an) such that

lim
n→∞

an = x0, an �= x0 and |f(an)− r| ≥ ε for all n ∈ N.

Set dx := [(an)]−x0. Then, dx is a nonzero infinitesimal. From the assumption (ii)
we get f(x0 + dx) ≈ r. Hence |f(an)− r| < ε u.a.e. This is a contradiction. �

Corollary 4.33 Let r ∈ R. For each real function f : R → R, the following two
statements are equivalent:

(i) limx→+∞ f(x) = r.
(ii) f(ω) ≈ r for all infinite numbers ω > 0.

This follows analogously to the proof of the preceding theorem.
Leibniz differentials and the differential quotient. We are given a real

function f : R → R. Define the Leibniz differential by the quite natural relation
df(x) := f(x + dx)− f(x).
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Theorem 4.34 The following two statements are equivalent:

(i) The classical derivative f ′(x) exists.

(ii) For all infinitesimals dx �= 0, we have df(x)
dx
≈ f ′(x).

Proof. Let dx = [(hn)]. Introduce the function g : R→ R by letting

g(h) :=
f(x + h)− f(x)

h
if h �= 0,

and g(0) := 0. According to Theorem 4.32 on convergence, the following two state-
ments are equivalent:

(i) limh→0 g(h) = f ′(x).
(ii) g(dx) ≈ f ′(x) for all infinitesimals dx �= 0.

Finally, observe that

df(x)

dx
=

f(x + dx)− f(x)

dx
=

[f(x + hn)− f(x)]

[(hn)]
= [g(hn)] = g(dx).

This finishes the proof. �

Example 4.35 (product rule). Consider two functions f, g : R → R which have
the derivatives f ′(x) and g′(x) at the point x. Then, the product function fg has
the deriviative (fg)′(x) = f ′(x)g(x) + f(x)g′(x).

In fact, for all infinitesimals dx �= 0, we obtain

d(fg)(x)

dx
=

f(x + dx)g(x + dx)− f(x)g(x)

dx

=
f(x + dx)− f(x)

dx
g(x + dx) +

g(x + dx)− g(x)

dx
f(x).

Since g(x + dx) ≈ g(x) + g′(x)dx, we get

d(fg)(x)

dx
≈ f ′(x)g(x) + g′(x)f(x) + f ′(x)g′(x)dx.

The product of an infinitesimal with a real number is again an infinitesimal. There-
fore, f ′(x)g′(x)dx is an infinitesimal. Hence

d(fg)(x)

dx
≈ f ′(x)g(x) + f(x)g′(x).

Finally, use Theorem 4.34. �

Infinite sums. Consider the sum

S(n) :=
n
X

j=1

cj , n = 1, 2, . . .

Extend the values S(n) to a piecewise constant function S : R→ R by letting

S(x) :=

(

S(n) if n ≤ x < n + 1, n = 1, 2, . . . ,

0 if x < 1.
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As we have shown above, the function S can be uniquely extended to a function
S : ∗R→ ∗R. Let ω > 0 be a positive infinite number. By convention, the symbol

ω
X

j=1

cj

stands for S(ω). Let r be a real number. In terms of classical convergence,

∞
X

j=1

cj = r iff lim
x→+∞

S(x) = r.

Thus, by Corollary 4.33, the following two statements are equivalent:

(i)
P∞

j=1 cj = r.

(ii)
Pω

j=1 cj ≈ r for all infinite numbers ω > 0.

Integrals. Let f : [a, b]→ R be a continuous function on the compact interval
[a, b]. Define the sum

S(n) :=
n
X

j=1

f(xj)Δx, n = 1, 2, . . . ,

where Δx := (b−a)/n and xj := a+ jΔx. Construct S(x) as above. It follows from
classical calculus that

lim
x→+∞

S(x) =

Z b

a

f(x)dx.

Thus, in terms of non-standard analysis,

S(ω) ≈
Z b

a

f(x)dx

for all infinite numbers ω > 0. Mnemonically, we write

ω
X

j=1

f(x + jdx)dx ≈
Z b

a

f(x)dx

for all infinite numbers ω > 0, where dx := (b− a)/ω.
Incompleteness of the extended totally ordered field ∗R. By definition,

a completely ordered set S is a totally ordered set with the following additional
property: If a subset of S has an upper bound, then it also has a supremum.

Proposition 4.36 The set of infinitesimals has an upper bound, but no supremum
in ∗R.

The proof will be given in Problem 4.9. Thus, in contrast to the completely
ordered set R, the extended set ∗R is not completely ordered.

Non-standard mathematics. The idea of non-standard analysis can be ex-
tended to all branches of mathematics. This leads to the so-called non-standard
mathematics. A fundamental result of non-standard mathematics tells us that:

For each non-standard proof of a mathematical theorem on standard ob-
jects, there exists a proof within standard mathematics.
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Hints for further reading. As an introduction to non-standard mathematics
and its applications, we recommend:

A. Prestel, Non-standard analysis. In: H. Ebbinghaus et al. (Eds.), Num-
bers, Springer, Berlin, 1995, pp. 305–327.

Furthermore, we refer to:

C. Edwards, The Historical Development of the Calculus, Springer, New
York, 1979.

A. Robinson, Non-Standard Analysis, North–Holland, London, 1966.

E. Keisler, Elementary Calculus, Prindle, Boston, 1976.

E. Nelson, Internal set theory: a new approach to non-standard analysis,
Bull. Amer. Math. Soc. 83 (1977), 1165–1198.

D. Landers and L. Rogge, Nichtstandardanalysis, Springer, Berlin, 1994
(in German).

K. Potthoff, Introduction to the Theory of Mathematical Models and
its Applications, Wissenschaftliche Buchgesellschaft, Darmstadt, 1981 (in
German).

Typical applications concern stochastic processes (e.g., Brownian motion). The ba-
sic idea is to consider Brownian motion as a random walk with respect to infintes-
imal time intervals: We refer to:

S. Albeverio, J. Fenstad, and R. Høegh-Krohn, Non-Standard Methods
in Stochastic Analysis and Mathematical Physics, Academic Press, New
York, 1986.

E. Nelson, Dynamical Theories of Brownian Motion, Princeton University
Press, 1967.

E. Nelson, Quantum Fluctuations, Princeton University Press, 1985.

The theory of topological spaces in terms of filters can be found in:

N. Bourbaki, The Elements of Mathematics, Vol. II, General Topology,
Springer, New York, 1990.

For partially ordered sets and lattices, we refer to:

G. Birkhoff, Lattice Theory, Amer. Math. Soc., New York, 1968.

Concerning the philosophical aspects of mathematics and physics, we recommend:

I. Kobzarev and Yu. Manin, Elementary Particles: Mathematics, Physics,
and Philosophy, Kluwer, Dordrecht, 1989.

Yu. Manin, A Course in Mathematical Logic, Springer, New York, 1977.

B. Russel, Introduction to Mathematical Philosophy, Dover, New York,
1993.

A. Tarski, An Introduction to Logic and to the Methodology of the De-
ductive Sciences, Oxford University Press, 1994.

K. Popper, A realistic view of logic, physics, and history. In: Physics, Logic,
and History, edited by W. Yourgrau and A. Breck, Plenum, New York,
1974.

S. Chandrasekhar, Truth and Beauty: Aesthetics and Motivations in Sci-
ence, Chicago University Press, Chicago, Illinois, 1990.

Tian Yu Cao, Conceptual Developments of 20th Century Field Theories,
Cambridge University Press, 1998.
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Tian Yu Cao (Ed.), Conceptual Foundations of Quantum Field Theory,
Cambridge University Press, 1999 (with contributions by leading physi-
cists).

The Cambridge Dictionary of Philosophy, edited by R. Audi, Cambridge
University Press, 2005.

Problems

4.1 The structure of homogeneous spaces. Prove Theorem 4.13 on page 198.
Hint: See B. Simon, Representations of Finite and Compact Groups, p. 4, Amer.
Math. Soc., Providence, Rhode Island, 1996.

4.2 Power sets. Denote by 2S the family of all subsets of the given set S. Show
that 2S becomes a totally ordered set with respect to the relation A ⊆ B, and
S is the only maximal element.

4.3 The Fréchet filter. Show that the family of all cofinite subsets of the set of
natural numbers is a filter.

4.4 Extension of filters. Let A be a subset of X that does not belong to the filter F
of X. Show that there exists a filter G of X such that F ⊆ G and (X \A) ∈ G.
Solution: Observe first that if F ∈ F , then

F ∩ (X \A) �= ∅.

Otherwise, F ⊆ A, and hence A ∈ F . This is a contradiction to our assumption
A /∈ F . Consider now the family G of all subsets C of X which have the following
property: F ∩ (X \A) ⊆ C for some F ∈ F . Then G is the desired filter.

4.5 The complementarity principle for ultrafilters. Prove Proposition 4.28 on page
250. Solution: If A ∈ U , then there exists a filter G such that U ⊆ G and
(X \A) ∈ G, by Problem 4.4. Since U is maximal, U = G. Hence (X \A) ∈ U .

4.6 Ultra-cofinite sets of natural numbers. Show the following:
(i) There exists an ultrafilter Ueven of the set N of natural numbers that contains
the cofinite sets and the set Neven of even natural numbers.
(ii) There exists an ultrafilter Uodd of the set N of natural numbers that contains
the cofinite sets and the set Nodd of odd natural numbers.
(iii) Neven /∈ Uodd and Nodd /∈ Ueven.
Solution: Ad (i), (iii). The set Neven is not cofinite. By Problem 4.4, there
exists a filter G which contains the cofinite sets and the set Neven. The filter
G is contained in some ultrafilter which will be denoted by Ueven. Obviously,
Neven ∈ Ueven. By the complementarity principle for ultrafilters on page 250,
the complement Nodd to the set Neven is not contained in the ultrafilter Ueven.
Ad (ii), (iii). Argue similarly.

4.7 Non-standard analysis. Show that ∗R is a totally ordered field by completing
the proof of Theorem 4.29 on page 252.

4.8 Computational rules. Show that the following hold true:
• The sum α+β and the product αβ of infinitesimals is again an infinitesimal.
• The product aα of a real number a with an infinitesimal α is an infinitesimal.
• The sum ω + μ of infinite numbers of the same sign is an infinite number.
• The product ωμ of infinite numbers is an infinite number.
• The product aω of a nonzero real number a with an infinite number ω is an

infinite number.



Problems 259

Hint: If [(an)] and [(bn)] are infinitesimals, then |an|, |bn| < ε u.a.e, and hence
|anbn| < ε2 for all ε > 0. Thus, the product [(an)][(bn)] is an infinitesimal.
Furthermore, note that

[(n−1)][(rn)] = r, [(n−2)][(n)] = [(n−1)], [(n−1)][(n2)] = [(n)].

This shows that products between infinitesimals and infinite numbers can be
real numbers, infinitesimals, or infinite numbers.

4.9 Incomplete ordering of ∗R. Prove Prop. 4.36 on page 256.
Solution: The set S of infinitesimals does not have a supremum. Otherwise, we
would have

α ≤ sup(S) ≤ r for all real numbers r and all infinitesimals α.

Thus, sup(S) is a nonzero infinitesimal. Since 2 · sup(S) is also an infinitesimal,
we obtain a contradiction.

4.10 A typical application of Zorn’s lemma. Let X be a linear subspace of the linear
space Z over K = R,C. Show that there exists a linear subspace Y of Z such
that Z = X ⊕ Y.
Solution: If X = Z, then choose Y := {0}. If X �= Z choose an element
z ∈ Z \X. Then, z �= 0, and we have

X ⊕ span(z) ⊆ Z.

In the case where the dimension of Z is finite, the proof follows easily by using
an induction argument with respect to the dimension of Z. In the case where
the space Z has an infinite dimension of arbitrary cardinality, one has to use
transfinite induction. However, the easiest proof is obtained by applying Zorn’s
lemma. To this end, consider the family F of all linear subspaces L of Z with
L ∩ X = {0}. With respect to inclusion ⊆, the set F is partially ordered.
Each nonempty, totally ordered subset of F has an upper bound, namely, the
union of the corresponding sets. By Zorn’s lemma, the set F has a maximal
element Y , which is the desired linear subspace. Otherwise, there would exist
an element z of Z with z /∈ X ⊕ Y , and the linear subspace span(Y, z) would
contradict the maximality of Y .

4.11 Proof of Proposition 3.2 on page 120. Solution:
(I) Auxiliary result. Let u ∈ X with u �= 0. By Problem 4.10, there exists a
linear subspace Y of X such that X = span(u)⊕ Y. Define f(αu + y) := α for
all α ∈ K, y ∈ Y. Then Fu(f) = f(u) = 1.
(II) To prove the claim, assume that Fx = Fz. Then Fx−z = Fx − Fz = 0. We
have to show that x = y. In fact, assume that x − z �= 0. By (I), Fx−z �= 0.
This is a contradiction.

4.12 Construction of linear functionals. Let X be a linear subspace of the linear
space Z over K = R,C. Show that any linear functional F : X → K defined on
the subspace X can be extended to a linear functional F : Z → K defined on
the total space Z.
Solution: Choose a linear subspace Y of Z such that Z = X ⊕ Y , and set
F (x + y) := F (x) for all x ∈ X, y ∈ Y.

4.13 Construction of a biorthogonal system. Let Z be a linear space over K = R,C.
Let b1, . . . , bn be linearly independent elements of Z. Show that there exist
elements b1, . . . , bn of the dual space Zd such that

bk(bl) = δk
l k, l = 1, . . . , n.

Solution: Let X := span{b1, . . . , bn}. Define
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F (α1b1 + . . . + αnbn) := α1 for all α1, . . . , αn ∈ K.

This is a linear functional on X. By Problem 4.12, this functional can be
extended to a linear functional on Z, which we call b1. Analogously, we get
b2, . . . , bn.

4.14 Proof of Proposition 3.3 on page 121. Solution: By Problem 4.13, we construct
linear functionals xj ∈ Xd and yk ∈ Y d such that

xj(xr) = δj
r, yk(ys) = δk

s , j, r = 1, . . . , n, k, s = 1, . . . ,m.

Hence
(xr ⊗ ys)(x

j , yk) = xj(xr)y
k(ys) = δj

rδ
k
s .

Now suppose that
X

r,s

αrsxr ⊗ ys = 0.

Applying this to (xj , yk), we get αjk = 0 for all indices j, k.
4.15 The tensor product of linear spaces. Let X and Y be linear spaces over K

where K = R,C. We want to construct the tensor product X ⊗ Y by using
equivalence classes. We start with the set Z of all formal finite sums of the
form

α1(x1, y1) + . . . + αn(xn, yn), n = 1, 2, . . . (4.43)

where x1, . . . , xn ∈ X, y1, . . . , yn ∈ Y , and α1, . . . , αn ∈ K. In a natural sense,
the set Z becomes a linear space. Let L be the smallest linear subspace of Z
which contains all the sums

(αu + βx, y)− α(u, y)− β(x, y), (x, αv + βy)− α(x, v)− β(x, y)

where u, x ∈ X, v, y ∈ Y , and α, β ∈ K. Consider the factor space Z/L. For
the equivalence class [(x, y)] in Z/L, we write

x⊗ y := [(x, y)].

The linear hull of all the elements x ⊗ y is called the tensor product X ⊗ Y.
Explicitly, the elements of X ⊗ Y have the form

α1(x1 ⊗ y1) + . . . + αn(xn ⊗ yn), n = 1, 2, . . . (4.44)

Show that the construction of L implies the typical product properties:
• (αu + βx)⊗ y = α(u⊗ y) + β(x⊗ y),
• x⊗ (αv + βy) = α(x⊗ v) + β(x⊗ y)
for all u, x ∈ X, v, y ∈ Y , and all α, β ∈ K.

4.16 The basis property of the tensor product. Let b1, . . . , bn (resp. c1, . . . , cm) be
linearly independent elements of X (resp. Y ). Show that the elements bj ⊗ ck

with j = 1, . . . , n and k = 1, . . . ,m are linearly independent.
Solution: Choose the element (4.43) and define

{α1(x1, y1) + . . . + αn(xn, yn)}(f, g) := α1f(x1)g(y1) + . . . + αnf(xn)g(yn)

for all f ∈ Xd and g ∈ Y d. This is a bilinear functional on Xd × Y d. For
the elements of the space L, this bilinear functional vanishes identically. For
example,

{(x, v + y)− (x, v)− (x, y)}(f, g) = f(x)g(v + y)− f(x)g(v)− f(x)g(y) = 0
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because of g(v + y) = g(v) + g(y). Thus, the definition

[α1(x1, y1) + . . . + αn(xn, yn)](f, g) := α1f(x1)g(y1) + . . . + αnf(xn)g(yn)

for all f ∈ Xd, g ∈ Y d does not depend on the choice of the representatives.
We write

(x⊗ y)(f, g) := [(x, y)](f, g) = f(x)g(y) for all f ∈ Xd, g ∈ Y d.

Similarly, {α1(x1 ⊗ y1) + . . . + αn(xn,⊗yn)}(f, g) is equal to

[α1(x1, y1) + . . . + αn(xn, yn)](f, g).

Now argue as in the proof of Problem 4.14.
Remark on some ismorphism. Both the tensor product constructed above and
the tensor product constructed on page 121 satisfy the properties (P) and (B)
formulated on page 121. Therefore, the two linear spaces are isomorphic in a
natural way, by writing the elements

α1(x1 ⊗ y1) + . . . + αn(xn ⊗ yn) (4.45)

in the form
P

j,k αjkbj ⊗ bk (see page 121). Because of the basis property (B),

the complex coefficients αjk are uniquely determined by the expression (4.45).
4.17 The tensor product of algebras. Let X and Y be algebras over K. Define the

product

(u, v)(x, y) := (ux, vy), u, x ∈ X, v, y ∈ Y. (4.46)

Show that the tensor product X ⊗ Y becomes an algebra by (4.46).
Solution: First of all, the set Z introduced in Problem 4.15 becomes an algebra
with respect to the product (4.46). Moreover, L is an ideal of Z. To see this,
note that

(w, z){(x, v + y)− (x, v)− (x, y)} = (wx, z(v + y))− (wx, zv)− (wx, zy).

The right-hand side is equal to (wx, zv+ zy)− (wx, zv)− (wx, zy), which lives
in L. Similar arguments show that if ζ ∈ Z and l ∈ L, then ζl, lζ ∈ L. Thus,
L is indeed an ideal of Z. Consequently, the quotient space Z/L is a quotient
algebra, and X ⊗ Y is a subalgebra of Z/L. This proves Prop. 3.4.
Simplification. First suppose that X and Y are linear spaces over K. Computa-
tions concerning the tensor product X⊗Y can be simply performed as follows.
Consider all the expressions (4.43) and add the following relations

(αu + βx, y)− α(u, y)− β(x, y) = 0, (x, αv + βy)− α(x, v)− β(x, y) = 0.

Finally, replace (x, y) by x ⊗ y. If X and Y are algebras over K, then we add
the product (u, v)(x, y) = (ux, vy).



5. Geometrical Optics

In order to understand classical mechanics and quantum mechanics, one
has to understand geometrical optics.
The Huygens principle is the first general principle in the history of physics,
which describes the propagation of physical effects.

Folklore

The philosophers of antiquity speculated about the nature of light, being
familiar with burning glasses, with the rectilinear propagation of light, and
with refraction and reflection. The first systematic writings on optics of
which we shave any definite knowledge are due to Greek philosophers and
mathematicians (Empedocles (490–430 B.C.) and Euclid (360–290 B.C.).1

Max Born and Emil Wolf, 1959

In 1636, the year in which Harvard College was founded, Réne Descartes
(1596–1650) was putting his last hand to his Discourse sur la méthode de
bien conduire sa raison which contained among others his geometry and
also his dioptrics. In 1637, this book came into the hands of Pierre de
Fermat (1601–1665). In 1657 Fermat received from the physician of King
Louis XIV and of Mazarin, Cureau de la Chambre, in his time a very
reputed man who was also a physicist of note, a treatise about optics. In
the letter in which he acknowledged the receipt of this book, he stated
for the first time his idea that the law of refraction might be deduced
from the minimum principle of shortest time, just like the Greek engineer
Heron of Alexandria (100 A.D.) had done for the reflection of light. . . In
a letter dated January 1, 1662, he announces to Cureau de la Chambre
that he found to his amazement that his principle was yielding a new
demonstration of Descartes’ refraction law . . .

Huygens (1629–1695) was working at the Paris Academy from 1666 until
1681. What Huygens did for optics is exactly the same thing which was
done two hundred years later by Maxwell (1831–1879) for electricity. Huy-
gens replaced Fermat’s long distance principle of least time by a ‘contact
principle’. The light waves of Huygens were exactly as hypothetical as the
atoms of Democritos (400 B.C.) . . .
The theory of Huygens was shortly afterwards killed by Newton (1643–
1727) who showed that it was inconsistent with the propagation of lon-
gitudinal waves and the possibility of the existence of transversal waves

1 M. Born and E. Wolf, Principles of Optics, Cambridge University Press, 1959.
This is the classic textbook on optics. The seventh (expanded) edition was pub-
lished in 1999.
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had not been devised at yet.2 In consequence the influence of Huygens was
delayed for one hundred and twenty-five years if we consider the progress
in optics and was lost altogether for the progress of the Calculus of Vari-
ations . . .
The very first solution for the brachistochrone problem which Johann
Bernoulli (1667–1748) found in 1696 contains the demonstration of the cru-
cial fact that the minimum is really attained for the cycloid . . . Bernoulli’s
method, in which something of the field theory of Weierstrass (1815–1897)
appears for the first time did not attract the attention even of Bernoulli’s
contemporaries and remained completely ignored for nearly two hundred
years. These two pages which I discovered by chance more than thirty
years ago, have had a very decisive influence on the work I myself did in
the Calculus of Variations. I succeeded gradually in simplifying the ex-
position of this theory and came finally to the point where I found to
my astonishment that the method to which I have directed through long
and hard work was contained, at least in principle, in the admirable book
Traité de la luminiére (Treatise on light) of Huygens from the year 1690.3

5.1 Ariadne’s Thread in Geometrical Optics

The following three equations describe light rays y = y(x), x ∈ R and wave fronts
S(x, y) = const of light in the plane.

(i) The Euler–Lagrange equation of light rays:

d

dx

 

n(x, y(x)) · y′(x)
p

1 + y′(x)2

!

= ny(x, y)
p

1 + y′(x)2, x ∈ R. (5.1)

The smooth function n : R
2 → R with inf(x,y)∈R2 n(x, y) > 0 is the refraction

index. This means that a light ray passing through the point (x0, y0) has the
velocity

c

n(x0, y0)

at (x0, y0). Here, c is the velocity of the light in a vacuum. The crucial function
L : R

3 → R given by

L(x, y, y′) :=
n(x, y)

c

p

1 + y′2

2 According to Maxwell’s theory, light corresponds to transversal electromagnetic
waves. This means that the oscillating electric and magnetic fields are perpen-
dicular to the direction of propagation of light.

3 C. Carathéodory, Beginning of research in the calculus of variations, Osiris, Vol.
III (1937), pp. 224–240. This lecture was given by Carathéodory (1873–1950)
at the tercentenary celebration of the Harvard University, Cambridge, Mas-
sachusetts, U.S.A. The complete article is reprinted in the collected works by
Carathéodory (1954), Vol. II, pp. 93–107 (see the references on page 1052).

Constantin Carathéodory, 1936
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(a) Linear wave front
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(b) Circular wave front
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Fig. 5.1. Light rays and wave fronts

is called the Lagrangian. In terms of the Lagrangian, the Euler–Lagrange equa-
tion (5.1) looks like

d

dx
Ly′(x, y(x), y′(x)) = Ly(x, y(x), y′(x)), x ∈ R. (5.2)

The real number y′(x) is called the slope of the light ray y = y(x) at the point
x. We also introduce the co-slope at x:

p(x) :=
y′(x) · n(x, y)

c
p

1 + y′(x)2
, x ∈ R. (5.3)

Conversely, we have

y′(x) =
p(x)

q

n(x,y)2

c2
− p(x)2

, x ∈ R.

(ii) The Hamilton canonical equations of light rays:

y′(x) = Hp(x, y(x), p(x)), p′(x) = −Hy(x, y(x), p(x)), x ∈ R. (5.4)

Here, H(x, y, p) := −
q

n(x,y)2

c2
− p2. The function H is called the Hamilto-

nian of geometrical optics. An elementary computation shows that the Euler–
Lagrange equation (5.1) is equivalent to (5.4). The crucial point is that a sym-
plectic geometry is behind (5.4). This will be discussed in Sect. 6.10.

(iii) The Hamilton–Jacobi equation (or eikonal equation):

Sx(x, y)2 + Sy(x, y)2 =
n(x, y)2

c2
, (x, y) ∈ R

2. (5.5)

The function S : R
2 → is called the eikonal. In terms of the Hamiltonian H,

the eikonal equation can be written as

Sx + H(x, y, Sy) = 0.

The three equations (5.1), (5.4), and (5.5) reflect the duality between light rays and
wave fronts, as we will show below (Fig. 5.1).

Prototypes of solutions. Let us consider the special case of a vacuum:
n(x, y) ≡ 1.
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(a) focal point (b) envelope (caustic)

Fig. 5.2. Singular points of light rays

(a) Linear waves: Equations (5.1) and (5.5) have the solutions

y(x) := const, S(x, y) :=
x

c
, x, y ∈ R.

This corresponds to the straight-line light rays y(x) = const and to the or-
thogonal straight-line wave fronts S(x, y) = const. If the light travels from the
point (x0, y0) to the point (x1, y1), then it needs the time

S(x1, y0)− S(x0, y0) =
x1 − x0

c
.

(b) Circular waves: Equations (5.1) and (5.5) also have the solutions

y(x) := vx, S(x, y) :=

p

x2 + y2

c
, x, y ∈ R

with fixed real parameter v �= 0. This corresponds to the straight-line light rays
y(x) = vx and to the circular wave fronts S(x, y) = const. If the light travels
from the point (0, 0) to the point (x1, y1), then it needs the time

S(x1, y1)− S(0, 0) =

p

x2
1 + y2

1

c
.

Relation to point mechanics. Let us use the following substitution:

x⇒ t, y ⇒ q.

Then the light ray y = y(x) passes over to the motion q = q(t) of a mass point on
the real line. Moreover, the slope y′(x) passes over to the velocity (time derivative)
q̇(t). This way, it is possible to pass from geometrical optics to classical mechanics,
by using the appropriate Lagrangian L. In particular, the eikonal S having the
physical dimension of time passes over to the action S having the physical dimension
of energy times time.

Regular and singular behavior of light rays. In the regular situation, two
different points are connected by a uniquely determined light ray. If the situation
is not regular (i.e., singular), light rays may intersect. We distinguish between

• isolated intersection points (focal points) and
• envelopes of light rays (caustics).

In real life, the light intensity of focal points and caustics is much larger than that of
regular configurations. In the second half of the 20th century, Arnold and his school
in Moscow thoroughly studied the classification of singular behavior in geometrical
optics. This is closely related to the sophisticated theory of singularities in algebraic
geometry (Fig. 5.2).



5.1 Ariadne’s Thread in Geometrical Optics 267

Gravitational lenses. Suppose that the light coming from a distant quasar Q
in the universe passes through a galaxy. According to Einstein’s theory of general
relativity, the gravitational forces related to the galaxy cause refraction of light. This
means that the galaxy acts like a lens called gravitational lens. Astronomers observe
the same caustic effects as for lenses in laboratories on earth. For example, there
exists one quasar which has four different images in the Hubble Space Telescope.
This is the so-called Einstein cross.

Perspectives. Geometrical optics is closely related to the following mathemat-
ical subjects:

• duality between systems of first-order ordinary differential equations (e.g., light
rays) and first-order partial differential equations (e.g., wave fronts) in analysis,

• symplectic geometry,
• contact geometry,
• light rays and non-Euclidean geometry (geodesics, Riemannian geometry and

curvature, Kähler geometry).

It was discovered by Hamilton (1805–1865) that geometrical optics and point me-
chanics can be described by the same mathematics.

Light in Maxwell’s theory of electrodynamics. In 1873 Maxwell (1831–
1879) published his Treatise on Electricity and Magnetism. For a fairly large class
of materials (without external charges and external currents), in an inertial system,
the Maxwell equations look like

curlE = −Bt, curlH = Dt, div D = 0, div B = 0 (5.6)

together with the constitutive laws D = εE and B = μH.
Here, we use a Cartesian (x, y, z)-coordinate system, and E,D,B,H, ε, μ de-

pend on the point (x, y, z). Moreover, ε (resp. μ) are material functions called the
dielectricity (resp. magnetic permeability) function.4 The velocity of light in the
material at the point (x, y, z) is given by

cmatter(x, y, z) =
c

n(x, y, z)
=

1
p

ε(x, y, z)μ(x, y, z)
,

where c is the velocity of light in a vacuum, and n(x, y, z) is the refraction index
at the point (x, y, z). The refraction index is caused by the interaction between
electromagnetic waves and the atoms of the material.

In Maxwell’s theory, light corresponds to electromagnetic waves.

Light rays are the streamlines of the energy flow caused by the electric field E and
the magnetic field B. More precisely, the velocity vector field of the energy flow is
given by

v(x, y, z, t) :=
E(x, y, z, t)×H(x, y, z, t)

η(x, y, z, t)
,

where η = 1
2
(ED+BH) is the electromagnetic energy density. Thus, the light rays

x = x(t) are the solutions of the differential equation

ẋ(t) = v(x(t), t), t ∈ R.

Now to the point. Geometrical optics represents the short-wavelength limit

λ→ 0

4 In a vacuum, we have ε(x, y, z) ≡ ε0 and μ(x, y, z) ≡ μ0.
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Fig. 5.3. Fermat’s principle

of the Maxwell theory, where λ denotes the wavelength. To this end, one makes the
ansatz

E(x, y, z, t) = E0(x, y, z) eiωS(x,y,z) · e−iωt + O(λ),

B(x, y, z, t) = B0(x, y, z) eiωS(x,y,z) · e−iωt + O(λ), λ→ 0,

where ω := 2πc/λ. More precisely, one has to take the real part of E and B. The
eikonal function S satisfies the first order partial differential equation

S2
x + S2

y + S2
z =

n2

c2

with the refraction index n = n(x, y, z). For the amplitude E0, we get the so-called
transport equation 2gradE0 · gradS + E0ΔS = 0.

5.2 Fermat’s Principle of Least Time

Fermat’s principle reads as follows:

Light rays move in such a way that the travelling time is minimal.

The variational problem. Let the refraction index n : R
2 → R be given as

on page 264. We are given the two points (x0, y0) and (x1, y1) in R
2 with x0 < x1.

We are looking for a smooth curve y = y(x), x0 ≤ x ≤ x1, which is a solution of
the following minimum problem:

Z x1

x0

n(x, y(x))

c

p

1 + y′(x)2 dx = min!, y(x0) = y0, y(x1) = y1. (5.7)

Here, the integral
R x1

x0

n(x,y(x))
c

p

1 + y′(x)2 dx represents the time needed by the

light ray for passing from the point (x0, y0) to (x1, y1). In order to motivate (5.7),
let us divide the light ray curve y = y(x) into small pieces of length Δs. For the
velocity of light at the point (x, y(x)), we get

lim
Δt→0

Δs

Δt
=

c

n(x, y(x))
.

Approximately, the time needed by the light ray is equal to

X

Δt =
X n

c
Δs =

X n

c

p

1 + y′2 Δx.

Letting Δt → 0, we obtain (5.7). In what follows, we will use the Lagrangian L
from (5.2). Then the Fermat principle (5.7) looks like
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(a)
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(b) (c)

� �

Fig. 5.4. Huygens’ principle for linear wave fronts

Z x1

x0

L(x, y(x), y′(x)) dx = min!, y(x0) = y0, y(x1) = y1.

Necessary condition for light rays. The following theorem is basic.

Theorem 5.1 Any smooth solution y = y(x) of Fermat’s minimum problem (5.7)
satisfies the Euler–Lagrange equation

d

dx
Ly′(x, y(x), y′(x)) = Ly(x, y(x), y′(x)), x0 ≤ x ≤ x1, (5.8)

which coincides with (5.1).

Proof. Fix the function h ∈ D(]x0, x1[) and the real parameter ε. Set

J(ε) :=

Z x1

x0

L(x, y(x) + εh(x), y′(x) + εh′(x)) dx.

This means that we replace the solution curve x→ y(x) by the perturbed curve

x �→ y(x) + εh(x).

Since h(x0) = h(x1) = 0, the perturbed curve also passes through the two points
(x0, y0) and (x1, y1) (Fig. 5.3). Consequently, the function J has a minimum at the
point ε = 0. Hence J ′(0) = 0. This implies

Z x1

x0

{Ly(x, y(x), y′(x)) · h(x) + Ly′(x, y(x), y′(x)) · h′(x))} dx = 0.

Integration by parts implies

Z x1

x0

{Ly(x, y(x), y′(x))− d

dx
Ly′(x, y(x), y′(x))} · h(x)dx = 0

(a)

�

�

(b) (c)

�

�

Fig. 5.5. Huygens’ principle for circular wave fronts in a vacuum
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Fig. 5.6. Huygens’ general principle

for all test functions h ∈ D(]x0, x1[). By the variational lemma (see Sect. 10.4.1 of
Vol. I), we get (5.8). �

Sufficient condition for light rays. The main problem is to decide whether
a given solution y = y(x) of the Euler–Lagrange equation (5.8) is a solution of the
minimum problem (5.7). This will be studied in Sect. 5.4.

5.3 Huygens’ Principle on Wave Fronts

Huygens’ principle reads as follows:

Wave fronts are the envelopes of elementary waves.

Intuitively, this means the following. Consider a wave front Wt at fixed time t. Each
point of Wt originates a family of elementary wave fronts. For any later time t+Δt,
the envelope of the elementary waves at time t + Δt forms the wave front at time
t + Δt.

For example, in a vacuum with refraction index n ≡ 1, the elementary wave
fronts are circles (Figs. 5.4 & 5.5). In the general case of an arbitrary refraction
index n, elementary waves are deformed circles (Fig. 5.6).

Heuristic motivation of Huygens’ principle. Let us investigate the regular
situation, that is, two different points P and Q in the plane can always be connected
by precisely one light ray. By definition, the optical distance

d(P,Q)

between the two points P and Q is the time needed by a light ray for passing from
P to Q. We will essentially use geometric arguments based on the optical distance.
Consider the situation pictured in Fig. 5.7.

(a)

P

Ws

WtQ0

P0

�

(b)

P

Ws

WtQ0

W

(c)

P1

P

Q0

Wτ

Ws

Wt
W

Fig. 5.7. Motivation of Huygens’ principle



5.4 Carathéodory’s Royal Road to Geometrical Optics 271

• Fix the point P0. Consider the wave front Wt := {P ∈ R
2 : d(P0, P ) = t} in the

plane.
• For 0 < t < s, the corresponding wave fronts Wt,Ws cannot intersect each other.

In fact, suppose that Q ∈ Wt ∩Ws. Then d(P0, Q) = t and d(P0, Q) = s with
t �= s, a contradiction.

• Choose a point P ∈Ws. The light ray connecting the point P0 with P intersects
the wave front Wt in the point Q0 (Fig. 5.7(a)). For the optical distance, we get
d(P0, P ) = s and d(P0, Q0) = t. Hence d(Q0, P ) = s− t.

• Consider the elementary wave front W := {Q ∈ R
2 : d(Q0, Q) = s− t} originated

at the point Q0.
• We claim that P is a contact point of the wave front Ws and the elementary wave

front W, as pictured in Fig. 5.7(b). To prove this, suppose that the claim is not
true. Then P is a proper intersection point between Ws and W . By Fig. 5.7(c),
there exists a point P1 ∈Wτ ∩W with τ > s. Naturally enough, we assume that
the triangle inequality is valid for the optical distance. Considering the triangle
P0Q0P1, we get

d(P0, P1) ≤ d(P0, Q0) + d(Q0, P1).

Hence τ ≤ t + (s− t) = s, a contradiction.

Short-range forces in nature. We distinguish between

• short-range forces and
• long-range forces.

The Huygens principle corresponds to a short-range force. In contrast to this, con-
sider the Newtonian equation

mẍ(t) = F (t), t ∈ R, x(0) = x0, ẋ(0) = v0

for the motion of a point with mass m > 0 on the real line. We are given the smooth
force F : R→ R and both the initial position x0 and the initial velocity v0 at time
t = 0. This problem has the unique solution

x(t) = x0 + v0t +
1

m

Z t

0

(t− τ)F (τ)dτ, t ∈ R.

If we change the initial position x0 at time t = 0, then the position x(t) of the
particle changes immediately at each time t > 0. Thus the force F has infinite
range. (See also the discussion on Faraday’s locality principle in physics on page
13).

5.4 Carathéodory’s Royal Road to Geometrical Optics

Once a day the Ptolemean king asked Euclid (ca. 360–290 B.C.) for show-
ing him an easy approach to mathematics. Euclid answered that there
is no ‘royal road’ to mathematics. The same anecdote is also told about
Alexander the Great (356–323 B.C.) and Aristotle (384–322 B.C.).

Folklore

Constantin Carathéodory (1873–1950), a student of Hilbert (1862–1943)
and the leading expert in the calculus of variations, instinctively felt that
there must be a simple ‘royal road’ to the calculus of variations. He was
obsessed by the question “Why extremals play such a distinguished role?”
They are being used and they function fabulously, but how can one reason
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out and show their necessity and simplicity? Carathéodory’s wonderful
paper Die Methode der geodätischen Äquidistanten, Acta Mathematica 47
(1925), 199–230, was the result of his investigations.5

Krystzof Maurin, 1997

Carathéodory’s fundamental equation reads as

Sx(x, y) = L(x, y, v(x, y))− v(x, y)Ly′(x, y, v(x, y)),

Sy(x, y) = Ly′(x, y, v(x, y)), (x, y) ∈ R.
(5.9)

We are given the smooth function L : R
3 → R,

L(x, y, v) :=
n(x, y)v(x, y)

c
√

1 + v2
, (x, y, v) ∈ R

3,

together with the smooth function n : R
2 → R, where inf(x,y)∈R2 n(x, y) > 0. We

are looking for smooth functions

• v = v(x, y) (slope function) and
• S = S(x, y) (eikonal)

from R
2 to R which satisfy (5.9). The smooth solutions y = y(x), x ∈ R of the

so-called slope equation

y′(x) = v(x, y(x)), x ∈ R (5.10)

are called the trajectories of (5.9). The set of all the solutions of (5.10) is called a
field of trajectories. Note that two different trajectories of the field do not intersect
each other, since the solution of the initial-value problem for the slope equation
(5.10) is unique.6 Again let us consider Fermat’s minimum problem

Z x1

x0

n(x, y(x))

c

p

1 + y′(x)2 dx = min!, y(x0) = y0, y(x1) = y1. (5.11)

The following main theorem in geometrical optics tells us that the trajectories of the
field are solutions of (5.11), that is, they are light rays. Furthermore, the equations
S(x, y) = const describe wave fronts.

Theorem 5.2 Let v, S : R
2 → R be a smooth solution of Carathéodory’s funda-

mental equation (5.9). Fix the points (x0, y0) and (x1, y1) in R
2. Then the following

hold.
(i) Let y = y(x), x0 ≤ x ≤ x1 be a trajectory which corresponds to the slope

equation (5.10) and satisfies the boundary condition y(x0) = y0, y(x1) = y1. Such a
trajectory is a solution of the minimum problem (5.11).

(ii) The difference S(x1, y1)−S(x0, y0) is the optical distance between the points
(x0, y0) and (x1, y1). In other words,

S(x1, y1)− S(x0, y0) =

Z x1

x0

n(x, y(x))

c

p

1 + y′(x)2 dx.

5 K. Maurin, Riemann’s Legacy: Riemann’s Ideas in Mathematics and Physics of
the 20th Century, Kluwer, Dordrecht, 1997 (reprinted with permission).

6 We assume that the solutions of the slope equation exist for all x ∈ R. Otherwise
the following results are only valid locally. Fig. 5.8 shows a field of trajectories
on the open set U .



5.4 Carathéodory’s Royal Road to Geometrical Optics 273

�

�

x

y

x0 x1

U
L

Fig. 5.8. Field of light rays

Proof. (I) Differentiating the Lagrangian L(x, y, y′) = n(x,y)
c

p

1 + y′2, we get

Ly′y′(x, y, y′) =
n(x, y)

c(
p

1 + y′2)3
≥ 0 for all x, y, y′ ∈ R.

(II) Let us introduce the Weierstrass excess function

E(x, y, v, w) := L(x, y, w)− L(x, y, v)− (w − v)Ly′(x, y, v).

By Taylor expansion, E(x, y, v, w) = Ly′y′(x, y, v∗) ≥ 0 for all x, y, v, w ∈ R.
(III) The integral trick. Let y = η(x) be a smooth function with η(x0) = y0 and

η(x1) = y1. Then the integral

Z x1

x0

“

Sx(x, η(x)) + Sy(x, η(x))η′(x)
”

dx =

Z x1

x0

dS(x, η(x))

dx
dx

is equal to the difference S(x1, y1)− S(x0, y0).
(IV) Using Carathéodory’s equation (5.9) and setting y := η(x), we get the key

relation

L(x, η(x), η′(x)) = Sx(x, η(x)) + Sy(x, η(x))η′(x) + E(x, η(x), v(x, η(x)), η′(x)).

By (II) and (III),

Z x1

x0

L(x, η(x), η′(x)) dx ≥ S(x1, y1)− S(x0, y0).

(V) Choosing η(x) := y(x), it follows from y′(x) = v(x, y(x)) that

E(x, y(x), v(x, y(x)), y′(x)) ≡ 0.

Hence
Z x1

x0

L(x, y(x), y′(x)) dx = S(x1, y1)− S(x0, y0).

�

Example (vacuum). Let n(x, y) ≡ 1. Then the functions

v(x, y) := 0, S(x, y) = x for all (x, y) ∈ R
2

are solutions of Carathéodory’s equation (5.9). This corresponds to the straight-line
light rays y(x) ≡ const and the wave fronts x = const.

Hilbert’s invariant integral. Let v, S be a smooth solution of Carathéodo-
ry’s equation (5.9). Then, for any smooth function y = η(x), the line integral
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Z (x1,y1)

(x0,y0)

{L(x, y, v(x, y))− v(x, y)Ly′(x, y, v(x, y))} dx + Ly′(x, y, v(x, y)) dy

(5.12)

along the curve x = x, y = η(x) is equal to the difference S(x1, y1) − S(x0, y0).
That is, the line integral does not depend on the path. This follows as in step
(III) of the proof of the theorem above, noting that dy = η′(x)dx. The integral
(5.12) is called Hilbert’s invariant integral. In fact, Carathéodory’s ‘royal road’
to geometrical optics and to the calculus of variations was strongly motivated by
Hilbert’s invariant integral, which is closely related to the Poincaré–Cartan integral
invariant (see page 423).

5.5 The Duality between Light Rays and Wave Fronts

Legendre transformation. Recall that L(x, y, v) := n(x,y)
c

√
1 + v2. In order to

simplify the approach considered above, we will use the Legendre transformation
(x, y, v) �→ (x, y, p) and L(x, y, v) �→ H(x, y, p) by setting

p := Lv(x, y, v), H := vp− L.

Explicitly, we get

p =
n(x, y)v

c
√

1 + v2
, v =

p

c
q

n(x,y)2

c2
− p2

, H(x, y, p) = −
r

n(x, y)2

c2
− p2.

The Hamilton–Jacobi equation for the wave fronts. Introducing the co-
slope function

p(x, y) :=
n(x, y)v(x, y)

c
p

1 + v(x, y)2
, (5.13)

Carathéodory’s fundamental equation (5.9) passes over to

Sy(x, y) = p(x, y), Sx(x, y) = −H(x, y, p(x, y)).

This implies the Hamilton–Jacobi equation

Sx(x, y) + H(x, y, Sy(x, y)) = 0. (5.14)

The Hamilton canonical equation for the light rays. As we have shown
on page 265, the Legendre transformation sends the Euler–Lagrange equation for
light rays to the Hamilton canonical equation (5.4) on page 265.

Contact transformation. The Legendre transformation satisfies the differen-
tial relation

dL− pdv = vdp− dH,

which is typical for contact transformations (see Sect. 5.7). In fact, by the product
rule for differentials, dH = d(pv)− dL = (dp)v + pdv − dL.

The classical maximum principle. Define

H(x, y, v, p) := pv − L(x, y, v) for all (x, y, v) ∈ R
3,
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where L(x, y, v) := n(x, y)(1 + v2)γ for all (x, y, v) ∈ R
3. Suppose first that γ > 1

2
.

Then, for any fixed (x, y, p) ∈ R
3, we define

H(x, y, p) := max
v∈R

H(x, y, v, p).

Note that the function v �→ H(x, y, v, p) is strictly concave and goes to −∞ as
v → ±∞. Thus, the global maximum problem

H(x, y, v, p) = max!, v ∈ R

has a unique solution given by Hv(x, y, v, p) = 0. Hence

p = Lv(x, y, v) = 2γn(x, y)v(1 + v2)γ−1.

The map v �→ p is invertible. Hence

H(x, y, p) = H(x, y, v(p), p). (5.15)

This corresponds to the Legendre transformation. In geometrical optics, we en-
counter the case where γ = 1

2
. Then we have to consider the local problem

H(x, y, v, p) = critical!, v ∈ R.

This yields Hv(x, y, v, p) = 0. Again this implies (5.15).
In the sense of duality in general optimization theory (in the framework of

nonlinear functional analysis), the Hamiltonian H is the conjugate function to the
Lagrangian L (see Zeidler (1986), Vol. III, quoted on page 1049).

5.5.1 From Wave Fronts to Light Rays

Suppose that we have a smooth solution S = S(x, y), (x, y) ∈ R, of the Hamilton–
Jacobi equation (5.14).7 Our goal is to construct a solution of Carathéodory’s fun-
damental equation (5.9) on page 272. To this end, we first define

p(x, y) := Sy(x, y), (x, y) ∈ R
2.

Then we use the inverse Legendre transformation in order to get

v(x, y) :=
n(x, y)p(x, y)

c
q

n(x,y)2

c2
− p(x, y)2

, (x, y) ∈ R
2.

This yields the solution S, v of (5.9). Light rays y = y(x) are obtained by using the
slope equation y′(x) = v(x, y(x)).

7 If S = S(x, y) is only a local solution, then the following argument is locally
valid.
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5.5.2 From Light Rays to Wave Fronts

Fix the point (x0, y0) ∈ R
2. Then the initial-value problem

Sx(x, y) + H(x, y, Sy(x, y)) = 0, S(x0, y) = 0 (5.16)

has always a smooth solution S = S(x, y) in a sufficiently small neighborhood of
the point (x0, y0). This is the special case of a general result for first-order partial
differential equations due to Cauchy (1789–1857).8 Let us sketch the proof. We use
Cauchy’s characteristic system, which is an extension of the Hamilton canonical
equations:

y′(x) = Hp(x, y(x), p(x)), y(x0) = η,

p′(x) = −Hy(x, y(x), p(x)), p(x0) = 0,

σ′(x) = p(x)y′(x)−H(x, y(x), p(x)), σ(x0) = 0. (5.17)

This system can be solved by first solving the Hamilton canonical equations for
getting y = y(x), p = p(x) and then computing

σ(x) =

Z x

x0

{p(x)y′(x)−H(x, y(x), p(x)}dx.

Varying the parameter η, we get the solutions y = y(x, η), σ = σ(x, η) of (5.17)
depending on η. Now the solution of (5.16) is obtained by setting

S(x, y(x, η)) := σ(x, η).

The solutions y = y(x), p = p(x), σ = σ(x) of (5.17) are called characteristics
of (5.16). The projections of the characteristics from the (x, p, σ)-space onto the
(y, p)-space are solutions of the Hamilton–Jacobi equations. Finally, the projections
y = y(x) are light rays starting at the wave front x0 = constant in the (x, y)-plane.
This shows that

In order to understand geometrical optics best, one has to pass to higher
dimensions.

The relation to Lagrangian submanifolds will be studied in Sect. 6.13 on page 419.

5.6 The Jacobi Approach to Focal Points

Jacobi’s sufficient criterium for a minimum. Let y = y(x), x ∈ R, be a smooth
solution of the Euler–Lagrange equation (5.1). The corresponding Jacobi equation
reads as

d

dx

`

α(x)h′(x)
´

+ β(x)h′(x) + γh(x) = λh(x), h(x0) = h(x1) = 0, (5.18)

where the coefficients look like

α(x) := Ly′y′(P ), β(x) := Lyy′(P ), γ(x) := β′(x)− Lyy(P )

8 See Zeidler (2004), p. 523, quoted on page 1049. We also refer to C. Carathéodory,
Calculus of Variations and Partial Differential Equations of First Order, Chelsea,
New York, 1982.



5.6 The Jacobi Approach to Focal Points 277

(a)

B

A QP

(b)

N

S

Fig. 5.9. Geodesics on earth

with P := (x, y(x), y′(x)). Explicitly, for L(x, y, y′) = n(x,y)
c

p

1 + y′2, we get

α(x) =
n(x, y(x))

c(
p

1 + y′(x)2)3
, β(x) =

ny(x, y(x)) · y′(x)

c
p

1 + y′(x)2
,

and γ(x) = β′(x)− nyy(x,y)

c

p

1 + y′(x)2.

Theorem 5.3 If the smallest eigenvalue of (5.18) is positive, then the given curve
y = y(x) is a solution of Fermat’s principle of least time (5.7).

The proof can be found in Zeidler (1986), Vol. III, p. 205, quoted on page 1049.
This proof generalizes the proof given on page 376 for the harmonic oscillator. Since

min
x0≤x≤x1

α(x) > 0,

the Jacobi eigenvalue problem (5.18) corresponds to a regular Sturm–Liouville prob-
lem.9 Such problems are special cases of the functional-analytic Hilbert–Schmidt
theory for compact self-adjoint operators in Hilbert space (see Zeidler (1995a),
Chap. 4, quoted on page 1049). The Sturm–Liouville problem (5.18) is called sin-
gular iff the finite interval [x0, x1] is replaced by an infinite interval, or the function
α = α(x) vanishes at least at one point of the interval. Typically, such singular
problems arise in quantum mechanics for investigating the spectrum of atoms or
molecules (e.g., the hydrogen atom). This will be studied in Vol. III. In terms
of functional analysis, singular Sturm–Liouville problems are treated by von Neu-
mann’s functional-analytic theory of unbounded self-adjoint operators in Hilbert
space (based on the spectral family).

Fermat’s principle of critical time and extremals. By definition, the
variational problem

Z x1

x0

L(x, y(x), y′(x)) dx = critical!, y(x0) = y0, y(x1) = y1 (5.19)

means that J ′(0) = 0 where

J(ε) :=

Z x1

x0

L(x, y(x) + εh(x), y′(x) + εh′(x)) dx

for any h ∈ D(]x0, x1[). By convention, the solutions y = y(x) of the Euler–Lagrange
equation (5.1) are called extremals.

9 Sturm (1803–1855), Jacobi (1804–1851), Liouville (1809–1882).
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Fig. 5.10. Focal points

Proposition 5.4 The smooth trajectory y = y(x) is a solution of Fermat’s princi-
ple of critical time (5.19) iff it is an extremal.

Proof. Use the critical condition J ′(0) = 0 and the same argument as in the proof
of Theorem 5.1. �

Intuitively, extremals are light rays which run locally in minimal time, but not
globally. To explain this, as a paradigm, replace light rays by curves of minimal
length on the surface of earth. Choose two points P and Q on the equator as
pictured in Fig. 5.9(a).

The segment PAQ of the equator is a curve of minimal length. However, the
segment PBQ of the equator is only locally a curve of minimal length, but not
globally. The North Pole N and the South Pole S are the prototypes of focal points,
that is, the uniqueness of the connecting curve of minimal length is violated (Fig.
5.9(b)).

Focal points and Jacobi fields. Fix the points (x0, y0) and (x1, y1). Consider
the family

y = y(x, ε), x0 ≤ x ≤ x1

of smooth extremals which pass through the focal points (x0, y0) and (x1, y1) for
all parameters ε ∈]− ε0, ε0[ (Fig. 5.10).

The function y = h(x) defined by

h(x) := yε(x, 0), x0 ≤ x ≤ x1

is called the Jacobi field of the family of extremals. By Taylor expansion,

y(x, ε) = y(x) + εh(x) + O(ε2), ε→ 0, x0 ≤ x ≤ x1,

where we set y(x) := y(x, 0). Thus the Jacobi field describes the first-order deviation
of the family of extremals from the special extremal x �→ y(x). If h(x) ≡ 0, then the
first-order deviation vanishes. In particular, if there is a unique extremal y = y(x)
which connects the point (x0, y0) with the point (x1, y1), then a nontrivial Jacobi
field does not exist.

Theorem 5.5 The Jacobi field h = h(x) satisfies the Jacobi equation

d

dx

`

α(x)h′(x)
´

+ β(x)h′(x) + γh(x) = 0, h(x0) = h(x1) = 0. . (5.20)

Proof. Differentiate the equation for the extremals,

d

dx
Ly′(x, y(x, ε), yx(x, ε)) = Ly(x, y(x, ε), yx(x, ε)),

with respect to the parameter ε. �
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The equation (5.20) is a special case of the Jacobi eigenvalue problem (5.18)
with λ = 0.

By definition, the point (x1, y1) is conjugate to the point (x0, y0) iff the Jacobi
equation (5.20) has a nontrivial solution, h(x) �≡ 0. In particular, the situation
considered in Theorem 5.3 corresponds to points (x0, y0) and (x1, y1) which are not
conjugate. Finally, consider a sphere of radius r as pictured in Fig. 5.9. It can be
shown that the points P and Q on the equator are conjugate iff their distance is
equal to πr. In particular, North Pole and South Pole are conjugate points.

5.7 Lie’s Contact Geometry

Contact geometry of dimension 2n + 1 (n = 1, 2, . . .) is based on contact
elements which are pairs (P,Π) of a point P and a 2n-dimensional plane
Π through the point P . Contact geometry is closely related to envelopes of
curves and surfaces (e.g., this concerns Huygens’ principle in geometrical
optics).
Contact transformations provide the general setting for transforming ordi-
nary and partial differential equations in such a way that solutions of the
original equation pass over to solutions of the transformed equation.

Folklore

Contact geometry does for geometric optics and the theory of wave prop-
agation what symplectic geometry does for mechanics. Both these geome-
tries and their isomorphisms were conceived by a single man – Sophus Lie
(1842–1899). The thesis that Lie is the father of both geometries is firmly
founded. . .
Lie regarded the theory of groups of contact transformations (founded in
1871) as his greatest discovery and achievement.10

Krystzof Maurin, 1997

5.7.1 Basic Ideas

Invariance of solutions of differential equations. In order to simplify the
solution of the differential equation

F (x, y(x), y′(x)) = 0, x ∈ R (5.21)

one can use the point transformation ξ = a(x, y), η = b(x, y). This yields

G(ξ, η(ξ), η′(ξ)) = 0, ξ ∈ R. (5.22)

However, it turns out that it is frequently convenient to use the more general
transformation

ξ = A(x, y, y′), η = B(x, y, y′), η′ = C(x, y, y′) (5.23)

from R
3 to R

3. Quite naturally, we postulate:

Solutions of the differential equation (5.21) are transformed into solutions
of the differential equation (5.22).

10 K. Maurin, Riemann’s Legacy: Riemann’s Ideas in Mathematics and Physics of
the 20th Century, Kluwer, Dordrecht, 1997 (reprinted with permission).
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This restricts the possible transformations of the form (5.23). It turns out that
contact transformations are the right setting. To discuss this, let us use the language
of differentials. We write (5.21) and (5.22) as

F (x, y, y′) = 0, dy − y′dx = 0 (5.24)

and

G(ξ, η, η′) = 0, dη − η′dξ = 0. (5.25)

Here, x, y, y′ and ξ, η, η′ are regarded as independent variables which are constrained
by the equations (5.24) and (5.25), respectively. The diffeomorphism (5.23) from
R

3 onto R
3 is called a contact transformation with respect to the contact forms

dy − y′dx and dη − η′dξ iff, for any point (x, y, y′), there exists a nonzero real
number �(x, y, y′) such that

dη − η′dξ = �(x, y, y′)(dy − y′dx) (5.26)

for all (x, y, y′) ∈ R
3.11 Observe that dy−y′dx = 0 implies dη−η′dξ = 0, by (5.26).

Prototype of a contact transformation. The Legendre transformation

ξ = y′, η = xy′ − y, η′ = x (5.27)

with the inverse transformation x = η′, y = ξη′ − η, y′ = ξ represents a contact
transformation. In fact,

dη − η′dξ = dx · y′ + xdy′ − dy − xdy′ = −(dy − y′dx).

The Legendre transformation sends solutions of the original differential equation
(5.21) to solutions of (5.22).

Example. Consider the Clairaut differential equation12

y − xy′ = g(y′). (5.28)

By Legendre transformation, we get −η = g(ξ). The inverse Legendre transforma-
tion yields the parameterized solution

x = −g′(ξ), y = −ξg′(ξ) + g(ξ), ξ ∈ R

of (5.28). Hence y = ξx+g(ξ), x ∈ R. This is a family of straight lines parameterized
by the real parameter ξ.

In particular, let g(y′) := − 1
2
y′2. Then the Clairaut differential equation (5.28)

has the family of straight lines

y = xξ − 1
2
ξ2, x ∈ R, (5.29)

as solutions where ξ is a parameter. Writing this family as F (x, y, ξ) = 0, the
envelope of this family is obtained from the equation

11 Expressing the differentials by partial derivatives, we get

Bxdx + Bydy + By′dy′ − C(Axdx + Aydy + Ay′dy′) = �(dy − y′dx).

Comparing the coefficients of dx, dy, dy′, we get the following system of first-order
partial differential equations: Bx−CAx = −�y′, By−CAy = �, By′−CAy′ = 0.

12 Clairaut (1713–1765), Legendre (1752–1832).
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Fig. 5.11. Legendre transformation

Fξ(x, y, ξ) = 0, F (x, y, ξ) = 0, (5.30)

by elementary differential geometry. Hence x− ξ = 0. This yields the parabola

y(x) = 1
2
x2, x ∈ R. (5.31)

Summarizing, the parabola (5.31) and the family (5.28) of its tangent lines form
solutions of the differential equation y − xy′ = − 1

2
y′2 (Fig. 5.11).

Geometric interpretation of the Legendre transformation. A smooth
curve C : y = (x) can be described in the following two ways, which are dual to
each other:

(i) The curve C is a set of points {(x, y(x)) : x ∈ R}.
(ii) The curve C is the envelope of the family of its tangent lines.

The Legendre transformation passes from (i) to (ii). To explain this, consider the
smooth curve C : y = y(x) pictured in Fig. 5.11. Fix x0 ∈ R, and set

y0 := f(x0), y′0 := f ′(x0).

The tangent line of the curve C at the point (x0, y0) is given by the equation
y = y′0(x− x0) + y0. Hence

y = y′0x + y0 − y′0x0.

This tangent line can be characterized by the two coordinates

ξ := y′0, η := y′0x0 − y0.

Thus, the equation of the tangent line reads as

y − ξx + η = 0, x ∈ R.

The intuitive meaning of the tangent line coordinates (ξ, η) is the following:

• the symbol ξ represents the slope of the tangent line, and
• (0,−η) represents the intersection point of the tangent line and the y-axis.

In the (ξ, η)-space, the family of tangent lines is given by an equation of the form

η = g(ξ).

Let us compute g′(ξ) by a general argument. For the envelope C of the family of
tangent lines y − ξx + g(ξ) = 0, we get the system

−x + g′(ξ) = 0, y − ξx + g(ξ) = 0,
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with x = x0, y = y0, by (5.30). Hence x0 = g′(ξ). Set η′ := g′(ξ). Summarizing, we
get

ξ := y′0, η := y′0x0 − y0, η′ = x0 for all (x0, y0) ∈ C.

Replacing (x0, y0, y
′
0) by (x, y, y′) ∈ R

3, we obtain the Legendre transformation
ξ := y′, η := y′x− y, η′ = x for all (x, y, y′) ∈ R

3.
Properties of the contact form. Consider the contact form

α := dz − ydx

on the manifold R
3 := {(x, y, z) : x, y, z ∈ R}. Fix the point P = (x0, y0, z0) in R

3.
Let

x = x(t), y = y(t), z = z(t), −1 < t < 1

be a smooth curve C on R
3 which passes through the point P at time t = 0. The

tangent vector (i.e., the velocity vector)

v := (ẋ(0), ẏ(0), ż(0))

of the trajectory C at the point P0 is called admissible iff αP (v) = 0. Since

dx(v) = ẋ(0), dy(v) = ẏ(0), dz(v) = ż(0),

this means that

ż(0)− y0ẋ(0) = 0. (5.32)

The set ΠP of all admissible velocity vectors at the point P forms a plane through
the point P which is given by the equation

ΠP : z − z0 − y0(x− x0) = 0 for all (x, y, z) ∈ R
3,

by (5.32). The pair (P,ΠP ) is called the contact element at the point P (with
respect to the contact form α). By definition, a strip is a family of contact elements
(planes) along a curve (Fig. 5.12).

As Cauchy (1789–1857) and Lie (1842–1899) observed, the initial-value problem
for general first-order partial equations can be elegantly handled by constructing
the solution with the help of strips (see M. Giaquinta and S. Hildebrandt, Calculus
of Variations, Vol. 2, Chap. 10, Springer, Berlin, 1995). This is one of the essential
sources of contact geometry.

(i) For the derivative of the contact form α, we get13

dα = d(dz)− dy ∧ dx = −dy ∧ dx = dx ∧ dy.

This is the so-called volume form on the (x, y)-plane.
(ii) We have α∧ dα = dz ∧ dx∧ dy = dx∧ dy ∧ dz. This is the volume form on R

3.

13 Note that dx∧dy = −dy∧dx and dx∧dx = 0. Similar relations are obtained by
the cyclic permutation x ⇒ y ⇒ z ⇒ x. Moreover, d(dx) = d(dy) = d(dz) = 0,
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5.7.2 Contact Manifolds and Contact Transformations

Contact form. Fix n = 1, 2, . . . Let M be a (2n + 1)-dimensional real manifold.
This is called a contact manifold iff there exists a smooth differential 1-form α on
M with14

α ∧ (dα)n �= on M.

The form α is called the contact form.
Contact elements. The tangent vector v at the point P of M is called ad-

missible iff
αP (v) = 0.

The set ΠP of all admissible tangent vectors at the point P forms a linear 2n-
dimensional subspace of the tangent space TPM of M at the point P. The pair
(P,ΠP ) is called the contact element at the point P.

Example. Let n = 1, 2, . . . . The (2n + 1)-dimensional manifold

R
2n+1 = {(q1, . . . , qn, p1, . . . , pn, z) : qj , pj , z ∈ R, j = 1, . . . , n}

is a contact manifold with respect to the contact form

α := dz −
n
X

j=1

pjdq
j .

In fact, dα = d(dz)−
Pn

j=1 dpj ∧ dqj =
Pn

j=1 dq
j ∧ dpj , and

α ∧ (dα)n = dz ∧ dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn.

This is called the volume form on R
2n+1. The differential 2-form

ω :=

n
X

j=1

dqj ∧ dpj

is called the symplectic form on the 2n-dimensional manifold

R
2n = {(q1, . . . , qn, p1, . . . , pn) : qj , pj ∈ R, j = 1, . . . , n}.

Contact transformation. LetM, α and N , β be (2n+1)-dimensional contact
manifolds.

A diffeomorphism f : M → N is called a contact transformation iff it
sends contact elements to contact elements.

Explicitly, this means the following. The diffeomorphism f sends smooth curves
passing through the point P to smooth curves passing through the image point
f(P ). Differentiating the curves with respect to the curve parameter, we get the
linearization f ′(P ) which sends tangent vectors at P to tangent vectors at f(P ).
The diffeomorphism f is a contact transformation iff

αP (v) = 0 implies βf(P )(f
′(P )v) = 0

for all tangent vectors v at the point P and all points P ∈M.

and
d(adx + bdy + cdz) = da ∧ dx + db ∧ dy + dc ∧ dz.

The theory of differential forms will be thoroughly studied in Vol. III. As an
introduction to differential forms, we recommend the two textbooks by V. Zorich,
Analysis, Vol. II, Springer, Berlin, 2003, and by I. Agricola and T. Friedrich,
Global Analysis: Differential Forms in Analysis, Geometry and Physics, Amer.
Math. Soc., Providence, Rhode Island, 2002.

14 The symbol (dα)n denotes the n-fold wedge product dα ∧ · · · ∧ dα.
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5.7.3 Applications to Geometrical Optics

Consider the manifold R
5
L := {(x, y, y′, p, L) : x, y, y′, p, L ∈ R}. Fixing (x, y) in

R
2, we obtain the 3-dimensional submanifold

R
3
L(x, y) := {(x, y, y′, p, L) : y′, p, L ∈ R},

which is a contact manifold with respect to the contact form

dL− pdy′.

Replacing the coordinate L by the symbol H, we obtain the manifold R
5
H and its

submanifold R
3
H(x, y), which is a 3-dimensional contact manifold with respect to

the contact form dH − y′dp. We claim that:

The Legendre transformation H = y′p−L is a contact transformation from
R

3
L(x, y) onto R

3
H(x, y).

Proof. Consider a curve

C : y′ = y′(τ), p = p(τ), L = L(τ)

which passes through the point P ∈ R
3
L(x, y) at time τ = 0. This curve has the

tangent vector v = (ẏ′(0), ṗ(0), L̇(0)) at the point P , where the dot denotes the
derivative with respect to the curve parameter τ. The Legendre transformation
sends the point P , the curve C, and the tangent vector v to P∗, C∗ and v∗, respec-
tively. Explicitly,

C∗ : y′ = y′(τ), p = p(τ), H = H(τ) = y′(τ)p(τ)− L(τ).

Hence v∗ = (ẏ′(0), ṗ(0), Ḣ(0)) with

Ḣ(0) = ẏ′(0)p(τ) + y′(0)ṗ(0))− L̇(0),

by the product rule of calculus. This yields15

(dH − y′(0)dp)(v∗) = −(dL− p(0)dy′)(v). (5.33)

Thus, (dL− p(0)dy′)(v) = 0 implies (dH − y′(0)dp)(v∗) = 0. This tells us that the
Legendre transformation sends admissible tangent vectors to admissible tangent
vectors. In other words, it sends the contact element at the point P to the contact
element at the image point P∗. Consequently, the Legendre transformation is a
contact transformation. �

Mnemonic approach. It follows from H = py′ − L that we obtain

dH = dp · y′ + pdy′ − dL.

Hence

dL− pdy′ = −(dH − y′dp). (5.34)

15 Note that −(dL− p(0)dy′)(v) = −L̇(0) + p(0)ẏ′(0) and

(dH − y′(0)dp)(v∗) = Ḣ(0)− y(0)ṗ(0) = −L̇(0) + p(0)ẏ′(0).
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Therefore, dL− pdy′ = 0 implies dH − y′dp = 0, and we are done.
Observe that the mnemonic argument works since Leibniz’s product rule

d(y′p) = dy′ · p + y′dp for differentials corresponds to the product rule

d(y′(τ)p(τ))

dτ
=

dy′(τ)

dτ
· p(τ) + y′(τ)

dp(τ)

dτ

for derivatives, which we have used in order to obtain the key relation (5.33) in our
proof above. For practical computations, physicists and mathematicians frequently
use the mnemonic argument. We will do this, too (see Problem 5.1).

Perspective. One can rigorously show that Fermat’s principle of least time is
equivalent to Huygens’ principle for the propagation of wave fronts. To this end,
one has to use one-parameter families of contact transformations in an appropriate
higher-dimensional space. This can be found in Giaquinta and Hildebrandt (1995),
Vol. 2, Sect. 3.4. In a general setting, we will study this in Vol. III by considering
the Cartan–Kähler theorem for systems of differential forms and its applications to
the following topics:

• differential geometry (e.g., the main theorem on the construction of surfaces by
means of the Gaussian invariants and its generalization to higher dimensions),

• the theory of Lie groups (the reconstruction of a Lie group from its Lie algebra),
• geometrical optics, and
• thermodynamics.

5.7.4 Equilibrium Thermodynamics and Legendre Submanifolds

Thermodynamical systems in equilibrium states (e.g., chemical substances)
can be described by the Gibbs contact form and its integral manifolds.

Folklore

Every mathematician knows that it is impossible to understand any ele-
mentary course in thermodynamics. The reason is that thermodynamics
is based – as Gibbs (1839–1903) has explicitly proclaimed – on the rather
complicated mathematical theory of contact geometry.16

Vladimir Arnold, 1990

Consider a chemical substance in thermodynamical equilibrium. The physics of this
substance is governed by the Gibbs contact form

Γ := dE − TdS + PdV − μdN. (5.35)

Here, the symbols have the following physical meaning:

• T (absolute temperature),
• V (volume), P (pressure), N (particle number),
• E (inner energy), S (entropy), μ (chemical potential).

Physicists also introduce the following quantities:

• F := E − TS (free energy),
• Ω := E − TS − μN (statistical potential or Gibbs potential),
• H := E + PV (enthalpy),

16 V. Arnold, Contact geometry: the geometrical method of Gibbs’ thermodynam-
ics, Proceedings of the Gibbs Symposium, Yale University, Connecticut (U.S.A),
1989, pp. 163–179, Amer. Math. Soc., Providence, Rhode Island, 1990.
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• G = F + PV (free enthalpy).

In physics, one has frequently to change the independent thermodynamical vari-
ables.

The following approach based on the Gibbs contact form is very flexible
with respect to changing variables.

The fundamental Gibbs equation. The 7-dimensional real manifold

R
7
Gibbs := {(E, T, S, P, V, μ,N) ∈ R

7}

is called the Gibbs manifold. This is a contact manifold with respect to the Gibbs
contact form (5.35). A submanifold M of the Gibbs manifold R

7
Gibbs is called an

integral manifold of the Gibbs contact form Γ iff the fundamental Gibbs equation

Γ = 0 on M (5.36)

is satisfied. This means that

ΓP(v) = 0 (5.37)

for all tangent vectors v at the point P and all points P in M. The maximal
dimension of an integral manifold for Γ is equal to three. Integral manifolds of
maximal dimension are called Legendre submanifolds.

Thermodynamical processes. Let us first consider one-dimensional integral
manifolds of the Gibbs contact form Γ . Consider the smooth curve

C : t �→ (E(t), T (t), S(t), P (t), V (t), μ(t), N(t)) (5.38)

on the open time interval U . By definition, the curve C describes a thermodynamical
process iff it is an one-dimensional integral manifold of Γ. The velocity vector looks
like

v(t) = (Ė(t), Ṫ (t), Ṡ(t), Ṗ (t), V̇ (t), μ̇(t), Ṅ(t)).

In order to get a submanifold C of the Gibbs manifold, we have to assume that
v(t) �= 0 for all t ∈ U . Note that dE is a linear functional at each point of the Gibbs

manifold with dE(v(t)) = Ė(t), as well as dS(v(t)) = Ṡ(t) and so on. The curve C
satisfies equation (5.37) iff

Ė(t)− T (t)Ṡ(t) + P (t)V̇ (t)− μ(t)Ṅ(t) = 0, t ∈ U . (5.39)

Suppose that we are given the smooth energy function

E = E(S, V,N) for all (S, V,N) ∈ V,

where V is a nonempty open subset of R
3. Choose E(t) := E(S(t), V (t), N(t)). Fix

the point P and suppose that the curve C passes through the point P at the fixed
time t. By the chain rule, it follows from (5.39) that

ES(P)Ṡ(t) + EV (P)V̇ (t) + EN (P)Ṅ(t) = T (t)Ṡ(t)− P (t)V̇ (t) + μ(t)Ṅ(t).

Since the curve C can be chosen in such a way that the derivatives Ė(t), Ṡ(t) and

Ṅ(t) attain arbitrary values, comparison of coefficients gives

T = ES(P), P = −EV (P), μ = EN (P), P ∈ V. (5.40)
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In terms of physics, this equation tells us the crucial fact that the energy function
E = E(S, V,N) allows us to compute all the remaining physical quantities T, P, μ
by merely using differentiation. This motivates why the function E = E(S, V,N) is
called a thermodynamical potential by physicists.

Reversibility and heat production. A process realized in nature is called
reversible iff the process obtained by time reflection can also be realized in nature.
Otherwise the process is called irreversible. Biological processes are irreversible. For
example, the life process of a human being cannot be reversed in time. Applying
time reflection t �→ −t to the process C from (5.38), we get

C− : t �→ (E(−t), T (−t), S(−t), P (−t), V (−t), μ(−t), N(−t)).

If the process equation (5.39) is satisfied for C, then it is also satisfied for C−. Thus,
the process C is reversible. The process C is called quasi-stationary. In terms of
physics, this means that the process runs very slowly in such a way that, approxi-
mately, the chemical substance is in a thermodynamical equilibrium state at each
point in time. This represents an idealization of real thermodynamical processes.
For quasi-stationary processes, the integral

Q([t0, t1]) =

Z t1

t0

T (t)Ṡ(t) dt

is the amount of heat energy produced by the process during the time interval
[t0, t1]. More general thermodynamical processes including irreversible processes
will be discussed in Sect. 7.17.9 in the setting of the second law in thermodynamics.
It turns out that entropy measures the complexity and the stored information of
many-particle systems in nature.

Coordinate transformation on the Gibbs manifold and the statistical
potential Ω. By setting

Ω := E − ST − μN

with the inverse transformation E = Ω+ST +μT , let us introduce the new coordi-
nates (Ω,T, S, P, V, μ,N) on the Gibbs manifold R

7
Gibbs. The process (5.38) yields

Ω(t) = E(t)− S(t)T (t)− μ(t)N(t). Differentiating this with respect to time t, the
product rule tells us that

Ė(t) = Ω̇(t) + Ṡ(t)T (t) + S(t)Ṫ (t) + μ̇(t)N(t) + μ(t)Ṅ(t).

From the process equation (5.39), we obtain

Ω̇(t) = −S(t)Ṫ (t)− P (t)V̇ (t)−N(t)μ̇(t), t ∈ U . (5.41)

Suppose that we are given the smooth function

Ω = Ω(T, V, μ), (T, V, μ) ∈ W

where W is a nonempty open subset of R
3. As above, equation (5.41) implies

S = −ΩT , P = −ΩV , N = −Ωμ. (5.42)

In addition, E = Ω − ST − μN. The statistical potential Ω introduced by Gibbs
is crucial in thermodynamics. We will show in Sect. 7.17.3 on page 638 that the
statistical potential Ω can be constructed by means of the method of statistical
physics. Then the other thermodynamical quantities can be obtained from (5.42).

Mnemonic approach. Dividing the equation Γ = 0, that is,
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dE = TdS − PdV + μdN (5.43)

by the symbol dt, we get the process equation

dE

dt
= T

dS

dt
− P

dV

dt
+ μ

dN

dt
.

This is (5.39). Let E = E(S, V,N). From (5.43), we get

ESdS + EV dV + ENdN = TdS − PdV + μdN.

Comparing the coefficients of dS, dV, dN , we obtain

ES = T, EV = −P, EN = μ.

Passing to Ω = E − ST − μN , we get dΩ = dE − dS · T − SdT − dμ · N + μdN.
Using (5.43),

dΩ = −SdT − PdV −Ndμ.

If Ω = Ω(T, V, μ), then

ΩT dT + ΩV dV + Ωμdμ = −SdT − PdV −Ndμ.

Hence ΩT = −S,ΩV = −P,Ωμ = −N. The rigorous justification of this mnemonic
approach can be based on Problem 5.1.

Thermodynamical potentials. Now we want to study Legendre submanifolds
of the Gibbs contact form Γ. Such submanifolds describe the physics of chemical
substances in terms of thermodynamical potentials.

(i) Basic variables S, V,N (inner energy E as thermodynamical potential): Set
P := (S, V,N). Let

P �→ (E, T, S, P, V, μ,N) (5.44)

be a smooth immersion from the nonempty open subset V of R
3 into the Gibbs

manifold R
7
Gibbs such that

T = ES , P = −EV , μ = EN on V.

Then the image of this map is a Legendre submanifold of the Gibbs contact
form Γ. The immersion property guarantees that the image of the map (5.44)
is a 3-dimensional submanifold of the Gibbs manifold.17

17 The smooth map (x, y) �→ (u(x, y), v(x, y), w(x, y)) from an open subset U of R
2

into R
3 is an immersion iff the linearization of this map is injective at each point

P = (x0, y0). That is, the matrix of the first-order partial derivatives

 

ux(P) vx(P), wx(P)

uy(P) vy(P) wy(P)

!

(5.45)

has maximal rank for all P ∈ U (i.e., rank = 2 in the present case).
An analogous result holds for general maps from (x1, . . . , xm) to

(u1(x1, . . . , xm), . . . , un(x1, . . . , xm)), where 1 ≤ m < n (see Zeidler (1986), Vol.
IV, p. 551ff, quoted on page 1049).
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(ii) Basic variables: T, V, μ (statistical potential Ω := E − ST − μN as thermody-
namical potential): Set P := (T, V, μ). Let

P �→ (Ω,T, S, P, V, μ,N)

be a smooth immersion from the nonempty open subset V of R
3 into the Gibbs

manifold R
7
Gibbs (equipped with new coordinates) such that

S = −ΩT , P = −ΩV , N = −Ωμ on V.

Then the image of this map is a Legendre submanifold of the contact form Γ
which is equal to dΩ + SdT + PdV + Ndμ.

(iii) Basic variables: T, V,N (free energy F := E− TS as thermodynamical poten-
tial): Set P := (T, V,N). Let

P �→ (F, T, S, P, V, μ,N)

be a smooth immersion from the nonempty open subset V of R
3 into the Gibbs

manifold R
7
Gibbs (equipped with new coordinates) such that

S = −FT , P = −FV , μ = FN on V.

Then the image of this map is a Legendre submanifold of the contact form Γ
which is equal to dF + SdT + PdV − μdN.

(iv) Basic variables: T, P,N (free enthalpy G := E−ST +PV as thermodynamical
potential). Set P := (T, P,N). Let

P �→ (G, T, S, P, V, μ,N)

be a smooth immersion from the nonempty open subset V of R
3 into the Gibbs

manifold R
7
Gibbs (equipped with new coordinates) such that

S = −GT , V = −GP , μ = GN on V.

Then the image of this map is a Legendre submanifold of the contact form Γ
which is equal to dG + SdT + V dP − μdN.

5.8 Light Rays and Non-Euclidean Geometry

Geometry is the essential of the beauty of the world.18

Johannes Kepler, Harmonies of the World, 1619

In humbleness we have to admit that if “number” is a product of our
imagination, “space” has a reality outside of our imagination, to which we
a priori cannot assign its laws.

Carl Friedrich Gauss in a letter to Bessel

18 The original Latin version in Kepler’s treatise Harmonices mundi reads as follows:
Geometria est archetypus pulcheritudinis mundi.
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An axiomatic approach to Euclidean geometry was formulated by the Greek math-
ematician Euclid (about 360 B.C.–290 B.C.) in his famous Elements. More than
2000 years later, three mathematicians proved independently that there exist log-
ically consistent non-Euclidean geometries for which Euclid’s parallel axiom does
not hold, namely, Gauss (1777–1855) in 1792ff, Lobachevsky (1792–1856) in 1826ff,
and Bólayi, Jr. (1802–1860) in 1832.19 Morris Kline writes in his history of mathe-
matics:20

Gauss said in a letter to Bessel of January 27, 1829, that he probably would
never publish his findings in non-Euclidean geometry, because he feared
ridicule, or, as he put it, the clamor of Boeotians, a figurative reference to
a dull-witted Greek tribe.

The reader should notice that in Gauss’ time the intellectual world at large was
dominated by the preeminent German philosopher Immanuel Kant (1742–1804)
who claimed in his 1781 major work Critique of Pure Reason that Euclidean geom-
etry is fixed a priori in all the human brains. Gauss did not share Kant’s opinion.
The development of Einstein’s theory of general relativity proved that Gauss was
right.

Models of non-Euclidean geometry (based on subsets of the Euclidean plane
equipped with a non-Euclidean metric) were given by Beltrami (1835–1900) in
1868, Klein (1842–1925) in 1871, and Poincaré (1854–1912) in 1902. The Poincaré
model was very influential because of his close relation to elementary geometric
and physical intuition.21 We will study this model and its relations to modern
mathematics and physics in Sect. 5.10. The modern axiomatic approach to geometry
was published by Hilbert in his 1899 monograph.22

The fascinating history of geometry is described by C. Scriba and P. Schreiber,
5000 Years of Geometry, Springer, Heidelberg, 2003 (in German). We also refer to
the monographs by F. Klein, Development of Mathematics in the 19th Century,
Math. Sci. Press, New York, 1979, and by E. Scholz, The History of the Idea of
Manifold, Birkhäuser, Basel, 1980 (in German).

19 The Hungarian mathematician Bólyai Farkas (1775–1856), a friend of Gauss,
published his textbook on geometry in Latin entitled Tentamen (Attempt at
explanation) in 1832. His son, Bólyai Janos, wrote an Appendix to this textbook,
where he represented his new hyperbolic non-Euclidean geometry.
N. Lobachevsky, The Elements of Geometry, Kasan, 1829 (in Russian); Geomet-
rical Investigations on the Theory of Parallel Lines, Berlin, 1840 (in German).
We recommend the following two collections of fundamental papers, which reflect
a fascinating part of the history of both mathematics and physics:
H. Reichhardt (Ed.), Gauss and the Beginnings of Non-Euclidean Geometry
(with articles by Bólayi, Lobachevsky, and Klein), Teubner, Leipzig, 1985 (in
German).
J. Böhm and H. Reichhardt (Eds.), Gauss’ Surface Theory, Riemannian Man-
ifolds, and the Minkowski Space-Time (with papers by Gauss, Riemann, and
Minkowski), Teubner, Leipzig, 1984 (in German).

20 M. Kline, Mathematics Thought from Ancient to Modern Times, Oxford Uni-
versity Press, New York, Vol. 3, 1972.

21 H. Poincaré, La science et l’hypothèse, Flamarion, Paris, 1902 (in French).
22 D. Hilbert, Foundations of Geometry, Teubner, Leipzig, 1899 (in German). The

12th edition appeared in 1977.
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5.8.1 Linear Symplectic Spaces

Symplectic forms. Let Y be a real linear space. By a symplectic form κ on Y , we
understand a bilinear map κ : Y × Y → R which has the following two properties:

• κ(v, w) = −κ(w, v) for all v, w ∈ Y (antisymmetry).
• If κ(v0, w) = 0 for all w ∈ Y and fixed v0 ∈ Y , then v0 = 0 (non-degeneracy).

The real linear space Y equipped with a symplectic form κ is called a symplectic
space.

Symplectic morphism. Let Y, Z be real, symplectic spaces with the symplec-
tic forms κ, σ, respectively. By definition, a symplectic morphism is a linear map
A : Y → Z with

σ(Av,Aw) = κ(v, w) for all v, w ∈ Y.

If, in addition, this map A is bijective, then it is called a symplectic isomorphism.
Almost complex space. The space Y is called almost complex iff it is a real

linear space and there exists a linear operator J : Y → Y with J2 = −I. Here, I
denotes the unit operator.

Example 1 (the space CR). Let z = x+iy and ζ = ξ+iη be complex numbers,
that is, x, y, ξ, η ∈ R. The set C of all complex numbers is a one-dimensional complex
Hilbert space equipped with the inner product

〈z|ζ〉 := z†ζ.

Explicitly,

〈z|ζ〉 = (x− iy)(ξ + iη) = (xξ + yη) + i(xη − yξ). (5.46)

Let z ∈ C. Restricting the multiplication αz to real numbers α, the set C becomes
a linear space denoted by CR.

• CR is a real 2-dimensional linear space. Setting

〈z|ζ〉R := �(〈z|ζ〉) and κ(z, ζ) := �(〈z|ζ〉) for all z, ζ ∈ CR,

we get the key decomposition

〈z|ζ〉 = 〈z|ζ〉R + iκ(z, ζ) for all z, ζ ∈ CR.

Explicitly, 〈z|ζ〉R = xξ + yη and κ(z, ζ) = xη − yξ. The following are met:
• CR is a real 2-dimensional Hilbert space equipped with the inner product 〈z|ζ〉R.

The elements 1 and i form an orthonormal basis of CR. The real space CR is
called the realification of the complex space C.

• CR is a symplectic space equipped with the symplectic form κ. The two complex
numbers z = x + iy and ζ = ξ + iζ span a parallelogram whose area is equal to
κ(z, ζ) (Fig. 5.13).

• CR is an almost complex space equipped with the operator Jz := iz for all z ∈ CR.

For all z, ζ ∈ CR, the following hold:

• 〈Jz|Jζ〉R = 〈z|ζ〉R (i.e., J is unitary on CR).
• κ(z, ζ) = 〈Jz|ζ〉R and κ(Jz, Jζ) = κ(z, ζ) (J is symplectic on CR).
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Fig. 5.13. Kähler form

This follows from the fact that 〈.|.〉 is an inner product on C. For example,

〈Jz|Jζ〉R = �(〈iz|iζ〉) = �(−i2〈z|ζ〉) = �(〈z|ζ〉) = 〈z|ζ〉R.

Furthermore, κ(Jz, Jζ) = �(〈Jz|Jζ〉) = �(〈z|ζ〉) = κ(z, ζ).
Example 2 (the space R

2). For real numbers x, y, ξ, η, set

v :=

 

x

y

!

, w :=

 

ξ

η

!

, J :=

 

0 1

−1 0

!

.

Note that J 2 = −I. The space R
2 consists of all matrices of the form v, w above.

Define 〈v|w〉R := vdw and σ(v, w) := vdJw. Explicitly, we obtain 〈v|w〉R = xξ+ yη
and

σ(v, w) = det(v, w) =

˛

˛

˛

˛

˛

x ξ

y η

˛

˛

˛

˛

˛

= xη − yξ.

The following hold:

• R
2 is a real 2-dimensional linear space.

• R
2 is a real Hilbert space equipped with the inner product 〈.|.〉R.

• R
2 is a symplectic space equipped with the symplectic form σ.

• R
2 is an almost complex space equipped with the operator J .

The two examples above are intimately related to each other. In fact, the map

x + iy �→ (x, y)

yields a linear isomorphism from the real space CR onto the real space R
2. This

map preserves both the Hilbert space structure and the symplectic structure (i.e.,
the map is unitary, and it is a symplectic isomorphism).

Matrix groups. The set of all real (2× 2)-matrices

A =

 

α β

γ δ

!

, α, β, γ, δ ∈ R

with detA �= 0 (i.e., αδ − βγ �= 0) forms a group with respect to matrix multipli-
cation. More precisely, this is a real 4-dimensional Lie group denoted by GL(2,R)
(general real linear group). The subgroup of GL(2,R) which consists of all real
(2 × 2)-matrices A with detA = 1 (i.e., αδ − βγ = 1) forms a real 3-dimensional
Lie group which is denoted by SL(2,R) (special real linear group).
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Proposition 5.6 For a linear operator A : R
2 → R

2, the following statements are
equivalent:

(i) A is a symplectic isomorphism.
(ii) AdJA = J .
(iii) A ∈ SL(2,R) (i.e., detA = 1).

Proof. (i) ⇔ (ii): Use σ(Av,Aw) = (Av)dJAw = vd(AdJA)w together with
σ(v,w) = vdJw.

(ii)⇔ (iii): Explicitly, AdJA = J means that

 

α γ

β δ

! 

0 1

−1 0

! 

α β

γ δ

!

=

 

0 1

−1 0

!

.

This is equivalent to αδ − βγ = 1. �

Symplectic geometry. The set of symplectic isomorphisms forms the group
SL(2,R) which is called the symplectic group. This is a Lie group. Precisely the
invariants of SL(2,R) are properties of the symplectic geometry on R

2. The most
important symplectic invariant is the area

σ(v,w) = det(v, w) =

˛

˛

˛

˛

˛

x ξ

y η

˛

˛

˛

˛

˛

spanned by the vectors v and w. In fact, if A ∈ SL(2,R), then σ(Av,Aw) is equal
to σ(v, w). That is, det(Av,Aw) = det(v, w) for all A ∈ SL(2,R). The symplectic
group SL(2,R) and its fundamental applications are studied in the monograph by
S. Lang, SL(2,R), Addison–Wesley, Reading, Massachusetts, 1975. In a straight-
forward way, the preceding examples can be generalized to complex Hilbert spaces,
as we will show in the next section.

The Lie algebra sl(2,R). The relation between Lie groups and Lie algebras
will be thoroughly studied in Vol. III. We will show that:

The theory of Lie groups and their Lie algebras represents a far-reaching
generalization of the exponential function and the logarithmic function.

At this point, we only make the following remark with a view to hyperbolic non-
Euclidean geometry below. The set of all real (2× 2)-matrices

A =

 

α β

γ δ

!

, α, β, γ, δ ∈ R (5.47)

with tr(A) = 0 (i.e., α+ δ = 0) forms a real 3-dimensional Lie algebra with respect
to the Lie product [A,B] := AB − BA. This Lie algebra is denoted by sl(2,R).
Setting

B := eA, A ∈ sl(2,R),

we get a map A �→ B from the Lie algebra sl(2,R) into the Lie group SL(2,R).
This so-called exponential map is a diffeomorphism from a sufficiently small open
neighborhood of the origin A = 0 in sl(2,R) onto a sufficiently small open neigh-
borhood of the unit element I in SL(2,R). Observe that the inverse map A = lnB
yields a parametrization of the real 3-dimensional manifold SL(2,R) near the unit
element I. The Lie algebra sl(2,R) represents the parameter space.

On page 317, we will introduce the symmetry group Sym(HC) of the hyperbolic
geometry on the hyperbolic plane. There exists a group epimorphism
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� : SL(2,R)→ Sym(HR)

with the kernel N = {I,−I}. Thus, we obtain the group isomorphism

Sym(HR) � SL(2,R)/N. (5.48)

In a sufficiently small neighborhood of the unit element I, the groups Sym(HR)
and SL(2,R) are locally isomorphic. Hence the Lie algebra of Sym(HR) is equal to
the Lie algebra of SL(2,R). Thus, Sym(HR) has the Lie algebra sl(2,R). This fact
will critically be used in Sect. 5.11 in order to display Ariadne’s thread to gauge
theory in terms of hyperbolic light-ray geometry.

The Lie group SL(2,C) and Einstein’s theory of special relativity. The
symbol SL(2,C) denotes the set of all complex (2× 2)-matrices

A =

 

α β

γ δ

!

, α, β, γ, δ ∈ C

with detA = 1, that is, αδ − βγ = 1. For complex (2× 2)-matrices, we have

A ∈ SL(2,C) iff AdJA = J .

Therefore, the group SL(2,C) is the symmetry group of the symplectic geometry
on the complex linear space C

2.

The group SL(2,C) plays the key role in special relativity.

More precisely, the change of inertial systems under preservation of the orientation
of both space and time is described by the proper Lorentz group SO+(3, 1). The
simply connected, real, 6-dimensional Lie group SL(2,C) is the universal covering
group of SO+(3, 1). Explicitly, we have the Lie group isomorphism

SO+(3, 1) � SL(2,C)/N (5.49)

with the normal subgroup N := {I,−I} of SL(2,C). From the mathematical point
of view, the Lie group epimorphism

χ : SL(2,C)→ SO+(3, 1)

with the kernel N is responsible for the appearance of the electron spin (intrinsic
angular momentum of the electron) in special relativity. We will thoroughly study
this in Vol. III. As an introduction, we recommend the classics by B. van der
Waerden, Group Theory and Quantum Mechanics, Springer, New York, 1974.

Comparing the group isomorphisms (5.48) and (5.49) with each other, one
discovers that Einstein’s theory of special relativity represents a quite nat-
ural generalization of non-Euclidean hyperbolic geometry, in terms of the
Lie groups SL(2,R) and SL(2,C).

The group SU(n). Let n = 1, 2, . . . Recall the following terminology.

• U(n): A complex (n × n)-matrix A is called unitary iff AA† = A†A = I. These
matrices form the group U(n) which is a real n2-dimensional Lie group.

• U(1): In particular, the real 1-dimensional Lie group U(1) consists of all complex
numbers z with |z| = 1.

• SU(n): The matrices A in U(n) with detA = 1 form a real Lie group of dimension
n2 − 1. In particular, SU(2) is a subgroup of SL(2,C).
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It is quite remarkable that the low-dimensional Lie groups

U(1), SU(2), SU(3), SL(2,C)

play a fundamental role in describing elementary particles in the setting of
the Standard Model.23

In contrast to this, the symmetry group for describing gravitation in the setting of
Einstein’s theory of general relativity is the complicated infinite-dimensional diffeo-
morphism group of the real 4-dimensional space-time manifold, which is a pseudo-
Riemannian manifold. In the search for a unified theory for the four fundamental
forces in nature, one has to combine the finite-dimensional Lie groups describing
elementary particles with infinite-dimensional groups related to gravitation. This
is an open problem.

5.8.2 The Kähler Form of a Complex Hilbert Space

The splitting of the inner product of a complex Hilbert space into real
part and complex part corresponds to a splitting of the unitary geometry
in Hilbert spaces into symplectic geometry and Kähler geometry. These
geometries are fundamental for both classical and modern physics.

Folklore

This section serves as a preparation for the theory of Kähler mannifolds to be
considered in the next section in the framework of non-Euclidean geometry.

From the complex Hilbert space X to the real Hilbert space XR. Let
X be a complex Hilbert space with the inner product 〈.|.〉. For all v, w ∈ X, define

〈v|w〉R := �(〈v|w〉), κ(v, w) := �(〈v|w〉).

Here, κ : X × X → R is called the Kähler form of the complex Hilbert space X.
Alternatively, observing that 〈v|w〉† = 〈w|v〉, we get

〈v|w〉R =
1

2

`

〈v|w〉+ 〈w|v〉
´

, κ(v, w) =
1

2i

`

〈v|w〉 − 〈w|v〉
´

for all v, w ∈ X. The following hold: Let v, w ∈ X. Considering only real linear
combinations αv+βw with α, β ∈ R, the set X becomes a real linear space denoted
by XR. Then:

• XR is a real Hilbert space equipped with the inner product 〈.|.〉R. The real Hilbert
space XR is called the realification of the original complex Hilbert space X.

• XR is a symplectic space equipped with the symplectic form κ.

Proof. Note that 〈v|v〉 is real for all v ∈ X. Therefore, 〈v|v〉R = 0 implies 〈v|v〉 = 0.
Hence v = 0. Furthermore, it follows from 〈w|v〉† = 〈v|w〉 that

κ(v, w) = �(〈v|w〉) = −�(〈w|v〉) = −κ(w, v).

Finally, suppose that κ(v0, v) = 0 for all v ∈ XR. Choose v := iv0. Then
�(〈v0|iv0〉) = 0. Thus, �(i〈v0|v0〉) = 0. This implies 〈v0|v0〉R = 0, and hence v0 = 0.
�

Define the operator Jv := iv for all v ∈ X. Then, J2 = −I. For all v, w ∈ XR,
we get:

23 Eugene Wigner (1902–1995) wrote a famous essay On the unreasonable effec-
tiveness of mathematics in the natural sciences, Comm. Pure Appl. Math. 13
(1960), 1–14.
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• 〈Jv|Jw〉R = 〈v|w〉R and
• 〈Jv|w〉R = −〈v|Jw〉R.
Thus, the operator J : XR → XR is unitary and skew-adjoint. In fact,

〈Jv|Jw〉R = 〈iv|iw〉R = �(−i2〈v|w〉) = 〈v|w〉R.

Moreover, 〈Jv|w〉R = �(−i〈v|w〉) = −�(〈v|iw〉) = −〈v|Jw〉R. This tells us that
J† = −J.

From the real Hilbert space Y to the complex Hilbert space YC. Let Y
be a real Hilbert space with the inner product 〈.|.〉R, and let Y be almost complex,
that is, there exists a linear operator J : Y → Y with

J 2 = −I.

Let v ∈ Y. Define the complex multiplication

(α + βi)v := αv + βJ v for all α, β ∈ R.

This way, the space Y becomes a complex linear space denoted by YC. One checks
this by direct computation. For example,

i(iv) = J (J v) = J 2v = −v for all v ∈ Y.

Similarly, one gets a(bv) = (ab)v for all a, b ∈ C. The complex space YC is called a
complexification of the real space Y.

Proposition 5.7 Let J : Y → Y be a unitary operator on the real Hilbert space
Y with J 2 = −I. Then:

(i) The real linear space Y becomes a symplectic space equipped with the sym-
plectic form κ(v, w) := 〈J v|w〉R for all v, w ∈ Y.

(ii) The complex linear space YC becomes a complex Hilbert space equipped with
the inner product 〈v|w〉 := 〈v|w〉R + iκ(v, w) for all v, w ∈ Y.

Proof. Ad (i). Since J is unitary, it follows from J−1 = J † and J 2 = −I that
J † = −J . Hence

κ(v, w) = 〈J v|w〉R = −〈v|Jw〉R = −κ(w, v).

Suppose that κ(v0, w) = 0 for all w ∈ Y . Choose w := J v0. Then we obtain

κ(v0,J v0) = 〈J v0|J v0〉R = 〈v0|v0〉R = 0.

Hence v0 = 0.
Ad (ii). 〈w|v〉 = 〈w|v〉R + iκ(w, v) = 〈v|w〉R − iκ(v, w) = 〈v|w〉†. Furthermore,

let us show that 〈v|iw〉 = i〈v|w〉. In fact, 〈v|iw〉 = 〈v|Jw〉. This is equal to

〈v|Jw〉R + iκ(v,Jw) = κ(w, v) + i〈v|w〉R = i(〈v|w〉R + iκ(v, w)) = i〈v|w〉.

Finally, 〈v|v〉 = 〈v|v〉R. Therefore, 〈v|v〉 > 0 if v �= 0. �
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5.8.3 The Refraction Index and Geodesics

The Poincaré model in non–Euclidean geometry is obtained by replacing straight
lines in Euclidean geometry by light rays in the upper half-plane equipped with an
appropriate refraction index.

• The light rays are called hyperbolic straight lines.
• The angles between the light rays are called hyperbolic angles.

In contrast to Euclidean geometry, the sum of angles of a hyperbolic triangle is not
equal to π, but less than π. The Poincaré model represents an extremely elegant
formulation of Lobachevsky’s sophisticated work on non-Euclidean geometry. For-

mulated in the right mathematical language due to Élie Cartan (i.e., based on both
the connection form and the curvature form), the Poincaré model is the prototype
of both the Einstein theory of general relativity on gravitation and the Standard
Model in elementary particle physics. In the following sections, we want to study
the Poincaré model and its relations to numerous important subjects in modern
mathematics and physics. In greater detail, we will investigate this in Vol. III on
gauge theory.24

Regard the open upper half-plane HR := {(x, y) ∈ R
2 : y > 0} as an optical

medium with the refraction index n(x, y) at the point (x, y). We assume that the
function (x, y) �→ n(x, y) is smooth and that n(x, y) > 0 for all (x, y) ∈ R. We also
define

HC := {z ∈ C : �(z) > 0}.
The map (x, y) �→ x + iy is a natural bijection from HR onto HC. We will use the
following notation:

• C : x = x(τ), y = y(τ), τ0 ≤ τ ≤ τ1 (smooth curve),

• Q(τ) := (x(τ), y(τ), ẋ(τ), ẏ(τ)),

• L(x, y, ẋ, ẏ) := n(x, y)2(ẋ2 + ẏ2) (energetic Lagrangian),

• L(x, y, ẋ, ẏ) :=
p

L(x, y, ẋ, ẏ) (metric Lagrangian),

• l(C) :=
R τ1

τ0
L(Q(τ)) dτ (length of the curve C),

• E(C) :=
R τ1

τ0
L(Q(τ)) dτ (geodesic energy of the curve C).

Here, [τ0, τ1] is a compact parameter interval.
Fermat’s principle of minimal arc length. The integral

T (C) :=

Z τ1

τ0

n(x(τ), y(τ))

c

p

ẋ(τ)2 + ẏ(τ)2 dτ

is equal to the time needed by a light ray to pass from the point (x(τ0), y(τ0)) to
the point (x(τ1), y(τ1)) along the curve C. We define l(C) := c · T (C). Then, l(C)
has the physical dimension of length, and we call l(C) the arc length of the curve
C (with respect to the refraction index n = n(x, y)). In particular, the arc length
between the points (x(τ0), y(τ0)) and (x(τ), y(τ)) is given by

24 Fermat (1601–1665), Huygens (1629–1695), Euler (1707–1783), Lagrange (1736–
1813), Gauss (1777–1855), Lobachevsky (1792–1856), Riemann (1826–1866), Bel-
trami (1835–1900), Lie (1842–1899), Klein (1849–1925), Poincaré (1854–1912),

Élie Cartan (1859–1951), Hilbert (1862–1943), Minkowski (1864–1909), Ein-
stein (1879–1955), Weyl (1885–1955), Hodge (1903–1975), de Rham (1903–1990),
Kähler (1906–2000), Chern (1911–2004).
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s(τ) =

Z τ

τ0

n(x(σ), y(σ))
p

ẋ(σ)2 + ẏ(σ)2 dσ, τ0 ≤ τ ≤ τ1.

Differentiating this with respect to the parameter τ , we get

„

ds(τ)

dτ

«2

= n(x(τ), y(τ))2
„

“dx(τ)

dτ

”2

+
“dy(τ)

dτ

”2
«

.

Mnemonically, we write

ds2 = n(x, y)2(dx2 + dy2).

This differs from the Euclidean expression ds2 = dx2 + dy2 by the conformal factor
n(x, y)2.

The Euler–Lagrange equations. Suppose that we are given the two points
(x0, y0) and (x1, y1) on the upper half-plane HR. Fermat’s problem of least arc
length reads as

l(C) = min!, (x(τk), y(τk)) = (xk, yk), k = 0, 1. (5.50)

Using the notation introduced above, this means:

Z τ1

τ0

L(Q(τ)) dτ = min!, (x(τk), y(τk)) = (xk, yk), k = 0, 1. (5.51)

Here, the initial point (x0, y0) and the final point (x1, y1) are fixed. The smooth
solutions of (5.51) satisfy the following Euler–Lagrange equations:

d

dτ
Lẋ(Q(τ)) = Lx(Q(τ)),

d

dτ
Lẏ(Q(τ)) = Ly(Q(τ)).

This follows as in the proof of Theorem 5.1 on page 269. Hence

d

dτ

„

Lẋ√
L

«

=
Lx√
L
,

d

dτ

„

Lẏ√
L

«

=
Ly√
L
. (5.52)

The failure of the Legendre transformation for the metric Lagrangian.
We set

p := Lẋ, q := Lẏ, H := ẋp + ẏq − L.

Obviously,

Lẋẋ + Lẏ ẏ = 2L. (5.53)

This yields

H =
Lẋẋ + Lẏ ẏ − 2L

2
√
L

≡ 0.

Thus, the Legendre transformation does not work. The reason for this degeneracy
is the homogeneity of the Lagrangian (with respect to ẋ and ẏ) which leads to the
Euler identity (5.53). This homogeneity of the Lagrangian allows us the rescaling
of the curve parameter without changing the integral

R τ1
τ0

Ldτ.

One possibility to overcome the trouble is to fix the parameter τ := x. This was
successfully done in Sect. 5.5. Now we want to use a general geometric method by
choosing the curve parameter τ as arc length.
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5.8.4 The Trick of Gauge Fixing

Many variational problems in mathematics and physics possess additional
degrees of freedom called gauge degrees of freedom (e.g., the choice of
parametrization or the choice of potentials). This concerns problems in
geometry (e.g., geodesics and minimal surfaces), in quantum electrody-
namics in terms of the 4-potential, in the Standard Model of elementary
particle physics, and in string theory based on the conformal invariance of
the action functional.25 The strategy for handling such problems is to fix
a special gauge. However, the introduction of additional constraints has to
be done with care. Moreover, one has to ensure that physical statements do
not depend on the choice of the gauge fixing. In quantum field theory this
is closely related to the Ward identities, the more general Slavnov–Taylor
identities, and the cohomological BRST-symmetry theory due to Becchi,
Rouet, Stora and Tyutin.

Folklore

Replace the Euler–Lagrange equations (5.52) by the new system

d

dτ
Lẋ(Q(τ)) = Lx(Q(τ)),

d

dτ
Lẏ(Q(τ)) = Ly(Q(τ)) (5.54)

L(Q(τ)) = 1, τ0 ≤ τ ≤ τ1. (5.55)

Here, we add the constraint (5.55), which tells us that

ṡ(τ) =
p

n(x(τ), y(τ))2(ẋ(τ)2 + ẏ(τ)2) =
p

L(Q(τ)) ≡ 1.

Consequently, the curve parameter τ equals arc length. Thus, we obtain the follow-
ing equivalence of equations.

Proposition 5.8 Each smooth solution of (5.54), (5.55) is a solution of the Euler–
Lagrange equations (5.52) parameterized by arc length.

Conversely, each solution of the Euler–Lagrange equations (5.52) parameterized
by arc length is a solution of (5.54), (5.55).

The basic trick is that the equation (5.54) has the function L as conserved quan-
tity, as we will show below via Legendre transformation. This means that for each
solution of (5.54) with the initial condition L(Q(τ0)) = 1, we get Q(τ) ≡ 1. That
is, the constraint equation (5.55) is automatically satisfied.

5.8.5 Geodesic Flow

First let us investigate the so-called geodesic flow equations:

d

dτ
Lẋ(Q(τ)) = Lx(Q(τ)),

d

dτ
Lẏ(Q(τ)) = Ly(Q(τ)). (5.56)

The precise relation to Fermat’s minimum principle will be studied below. This will
motivate the following basic definition.

Geodesics. The solutions x = x(τ), y = y(τ) of (5.56) in the open upper half-
plane HR with the real curve parameter τ are called geodesics with respect to the
metric ds2 = n(x, y)2(dx2 + dy2).

25 This will be studied in Vol. III.
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Intuitively, geodesics are light rays in the optical medium HR with the re-
fraction index n(x, y) at the point (x, y).

Explicitly, the equation (5.56) for geodesics reads as26

ẍ +
nx

n
ẋ2 +

2ny

n
ẋẏ − nx

n
ẏ2 = 0,

ÿ − ny

n
ẋ2 +

2nx

n
ẋẏ +

ny

n
ẏ2 = 0. (5.57)

This is a second-order system of ordinary differential equations for the geodesics.
We will show in Vol. III that Einstein’s equation of motion for light rays (and
celestial bodies) has the same structure. Setting z(τ) = x(τ) + iy(τ) and noting
that ∂zn := 1

2
(nx− iny), the equation for the geodesics can elegantly be written as

ẇ = −2∂zn(z)

n(z)
ż2, ẇ = z. (5.58)

This is the equation for a dynamical system called the geodesic flow. Explicitly, one
has to replace ż and n(z) by ż(τ) and n(z(τ)), respectively, and so on.

5.8.6 Hamilton’s Duality Trick and Cogeodesic Flow

Mathematicians and physicists enjoy Hamiltonian systems, since such dy-
namical systems allow the application of methods from symplectic geom-
etry. In particular, the Hamiltonian function of a Hamiltonian system is
always a conserved quantity.

Folklore

The cogeodesic flow equations read as follows:

ṗ = −Hx, q̇ = −Hy, ẋ = Hp, ẏ = Hq. (5.59)

Here, we use the Hamiltonian function

H(x, y, p, q) :=
p2

4n(x, y)2
+

q2

4n(x, y)2
,

which is dual to the energetic Lagrangian L(x, y, ẋ, ẏ) = n(x, y)2(ẋ + ẏ2). We are
looking for smooth trajectories τ �→ (x(τ), y(τ), p(τ), q(τ)) which satisfy equation
(5.59). Setting z = x + iy and u = p + iq, the cogeodesic flow equation can be
written as

u̇ = −∂z̄H, ż = ∂ūH. (5.60)

26 Note that L = n2(ẋ2 + ẏ2), and hence Lẋ = 2n2ẋ,Lx = 2nnx(ẋ2 + ẏ2). This
implies

d

dτ
Lẋ = (4nnxẋ + 4nny ẏ)ẋ + 2n2ẍ.
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Theorem 5.9 (i) The geodesic flow equation (5.56) is equivalent to the cogeodesic
flow equation (5.59) via Legendre transformation with respect to the energetic La-
grangian L.

(ii) The solutions of (5.59) are constant along the Hamiltonian function H (i.e.,
H is a conserved quantity).

(iii) The energetic Lagrangian L is a conserved quantity of the geodesic flow
equation (5.56).

(iv) Each solution of the geodesic flow equation (5.56) which satisfies the ini-
tial condition L(Q(τ0)) = 1 is a solution of the Euler–Lagrange equations (5.52)
parameterized by arc length.

Proof. Ad (i). The Legendre transformation with respect to the energetic La-
grangian L is given by

p := Lẋ, q := Lẏ, H = pẋ + ẏq − L.

This way, the Euler–Lagrange equations (5.56) with respect to L pass over to the
Hamiltonian canonical equations (5.59) with respect to H. Explicitly,

p = 2n(x, y)2ẋ, q = 2n(x, y)2ẏ, H = n(x, y)2(ẋ2 + ẏ2).

Ad (ii). For a solution of (5.59), we get

d

dτ
H(x(τ), y(τ), p(τ), q(τ)) = Hxẋ +Hy ẏ +Hpṗ +Hq q̇

= −ṗẋ− q̇ẏ + ẋṗ + ẏq̇ ≡ 0.

Ad (iii). This follows from (ii) by Legendre transformation.
Ad (iv). By (iii), the solutions of (5.59) satisfy (5.54), (5.55), and hence they

satisfy (5.52). �

5.8.7 The Principle of Minimal Geodesic Energy

Parallel to the Fermat problem (5.51) of least arc length, we formulate the problem
of least geodesic energy:

Z τ

τ0

L(Q(τ)) = min!, (x(τk), y(τk)) = (xk, yk), k = 0, 1. (5.61)

Here, the initial point (x0, y0) and the final point (x1, y1) are fixed. Observe that

the metric Lagrangian L =
√
L has been replaced by the energetic Lagrangian L.

There holds the following equivalence principle.

Theorem 5.10 (i) The smooth solutions of the energetic minimum problem (5.61)
satisfy the geodesic flow equations (5.56).

(ii) Each smooth solution of the energetic minimum problem (5.61) is also a
solution of the Fermat minimum problem (5.51).

(iii) Conversely, each solution of the Fermat minimum problem (5.51) parame-
terized by arc length is a solution of the energetic minimum problem (5.61).
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Fig. 5.14. Geodesic triangles

Proof. Ad (i). Equation (5.56) is the Euler–Lagrange equation to (5.61).
Ad (ii). By the Schwarz inequality,

Z τ1

τ0

p

L(Q(τ)) dτ ≤ (τ1 − τ0)
1/2

„

Z τ1

τ0

L(Q(τ)) dτ

«1/2

.

Equality holds iff L(Q(τ)) ≡ const, by Problem 5.4. If τ �→ (x(τ), y(τ)) is a smooth
solution of (5.61), then it is parameterized by arc length. Hence L(Q(τ)) ≡ 1.

Ad (iii). Argue as in (ii). �

5.9 Spherical Geometry

Spherical geometry is the geometry on the surface of earth.
Folklore

Geodesics. Consider the 2-dimensional sphere

S
2
r := {(x, y, ζ) ∈ R

3 : x2 + y2 + ζ2 = r2}

of radius r. The equator and the meridian circles passing through both North Pole
and South Pole are called geodesic lines of the sphere. More precisely, a curve
on the sphere is called a geodesic line (or a spherical straight line) iff it is the
intersection between the sphere S

2
r and a plane which passes through the origin

(0, 0, 0). Connected subarcs of geodesic lines are called geodesics.27 If a geodesic
connects the two points A and B on the sphere S

2
r and the length of the geodesic

is less or equal to πr, then it is a curve of shortest length. If an airplane wants to
fly from point A to point B by using a route of shortest distance, then it has to fly
along a geodesic of shortest length (see Fig. 5.9 on page 277).

Geodesic triangles. Consider a triangle ABC as pictured in Fig. 5.14(a). The
sides of the triangle are geodesics of shortest length. For the sum of the angles
α, β, γ, we have

α + β + γ = π + KA. (5.62)

Here, K = 1/r2 is the Gaussian curvature of the sphere S
2
r, and A is the spherical

area of the triangle. In contrast to this, for a triangle in Euclidean geometry, we

27 The term geodesic was introduced by Liouville (1809–1882) in 1850 and was
taken from geodesy.
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have α + β + γ = π. Formula (5.62) allows us to measure the radius of earth, by
measuring the angles and the surface area of a triangle on earth.

We will show below that equation (5.62) remains valid in hyperbolic geometry,
if we set K = −1 and A denotes the hyperbolic area of the hyperbolic triangle (Fig
5.14(b)). Formally, this is obtained by starting with K = 1/r2. Now replace the
radius r of the sphere by the imaginary radius ir. Finally, set r = 1. This way, we
get K = −1.

The Pythagorean theorem. For the spherical geodesic triangle ABC with
geodesic sides of shortest length, and angles α, β, γ together with the special choice
γ := π

2
(Fig. 5.14 ), we get the spherical Pythagorean theorem

cos
“a

r

”

= cos

„

b

r

«

cos
“ c

r

”

. (5.63)

Here, a, b, c is the length of the sides BC,CA,AB, respectively.
Now consider the geodesic triangle ABC in hyperbolic geometry pictured in Fig.

5.14(b). As we will show below, in hyperbolic geometry, geodesics are semicircles
centered at the x-axis. Formally, replacing r by ir and setting r = 1 and noting
that cos(iϕ) = coshϕ, we get the hyperbolic Pythagorean theorem

cosh a = cosh b cosh c.

This formula can be rigorously justified.
Finally, let us study the Euclidean limit case r → +∞. Since we have the

approximation formula cosϕ = 1− 1
2
ϕ2 +O(ϕ4) as ϕ→ +∞, it follows from (5.63)

that

a2 + b2 = c2 + O

„

1

r2

«

, r → +∞.

Letting r → +∞, we get
a2 + b2 = c2.

This is the classical Pythagorean theorem in Euclidean geometry.

5.9.1 The Global Gauss–Bonnet Theorem

There exists a deep relation between curvature and topology. The prototype is the
famous Gauss–Bonnet formula

Z

S2r

K

2π
dA = χ(S2

r), (5.64)

where χ(S2
r) = 2 is the Euler characteristic of the sphere S

2
r. In order to discuss this

formula, consider first the triangulation of the unit sphere (i.e., r = 1) pictured in
Fig. 5.15(a). Here, we have four geodesic triangles. For each triangle, we get

α + β + γ = π + A (5.65)

with α = β = π
2
, γ = π, and A = 1

4
meas(S2) = π. The Euler characteristic of this

triangulation is given by the following Euler polyhedron formula

χ = T − S + V. (5.66)

Here, T (resp. S and V ) is the number of triangles (resp. sides of triangles and
vertices). Explicitly, T = 4, S = 6, V = 4. Hence χ = 2. The Euler characteristic χ
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(a) T − S + V = 4− 6 + 4 = 2

α β

γ

(b) T − S + V = 8− 12 + 6 = 2

Fig. 5.15. The global Gauss–Bonnet theorem

does not depend on the choice of the triangulation. Consider, for example, the trian-
gulation pictured in Fig. 5.15(b). Then we have the numbers T = 8, S = 12, V = 6.
Again T −S +V = 2. The point is that the most important topological invariant –
the Euler characteristic – can be obtained in terms of analysis by integrating over

a density �(x, y) := K(x,y)
2π

. The integral (5.64) is called a topological charge in
physics.

The Gauss–Bonnet formula relates analysis and differential geometry (i.e.,
curvature) to topology.

For a long time, it was a famous open problem to find the generalization of the
Gauss–Bonnet theorem to higher dimension. This problem was solved by Chern
(1911–2004) in 1945.28 Motivated by this problem, Chern created the theory of
characteristic classes. Let us explain this for the sphere. If we use the volume form
υ(S2

r) with
Z

S2r

υ(S2
r) = meas(S2

r) = 4πr2,

then the form γ := K
2π

υ is called the Chern form, and we have

Z

Sr
2

γ = χ(S2
r).

If μ is a 1-form on S
2
r, then

Z

S2r

dμ = 0,

by the Poincaré–Stokes integral theorem for differential forms. Hence

Z

S2r

γ + dμ = χ(S2
r). (5.67)

This shows the relation to de Rham cohomology, as we will discuss next.

28 S. Chern, A simple intrinsic proof of the Gauss–Bonnet formula for closed Rie-
mannian manifolds, Ann. of Math. 45 (1945), 747–752.
S. Chern, Characteristic classes of Hermitean manifolds, Ann. Math. 47 (1946),
85–121.
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ϑ

N

S

Fig. 5.16. Geographic latitude ϑ

5.9.2 De Rham Cohomology and the Chern Class of the Sphere

Cohomology is deeply routed in the following topics: Gauss’ surface theory,
the Kirchhoff–Weyl theory of electrical networks, and Maxwell’s theory of
electromagnetism. Cohomology lies at the heart of both modern differential
topology and modern quantum field theory (the BRST approach).29

Folklore

Recall de Rham cohomology from Sect. 16.8.2 of Vol. I. Two smooth differential
2-forms ω and σ on S

2
r are called equivalent, ω ∼ σ, iff there exists a smooth 1-form

on S
2
r such that

ω = σ + dμ on S
2
r.

The equivalence class [ω] corresponding to ω is called the de Rham cohomology
class of ω. All the de Rham cohomology classes of 2-forms on S

2
r form a real 1-

dimensional linear space called the second cohomology group H2(S2
r) of the sphere

(in the sense of de Rham). By (5.67), the Euler characteristic of S
2
r only depends

on the cohomology class [γ] of the Chern form γ. This cohomology class is called
the first Chern class of the sphere S

2
r. We write c1(S

2
r) = [γ]. The Chern class [γ] is

a generator of the second cohomology group H2(S2
r) of the sphere.

Representing de Rham cohomology classes by harmonic forms (Hodge
theory). Riemann based his approach to complex analysis on the Laplacian. In the
1930s, Hodge generalized Riemann’s theory in a substantial way. We will study this
in Vol. IV on quantum mathematics. At this point, we would like to sketch the
following. To begin with, let us introduce spherical coordinates, namely,

• geographic length ϕ : −π < ϕ ≤ π, and
• geographic latitude ϑ: −π

2
≤ ϑ ≤ π

2
.

In particular, the points on the equator, the North Pole, the South Pole have the
geographic latitude ϑ = 0, π

2
,−π

2
, respectively (Fig. 5.16).30 Mnemonically, the

Riemannian metric on S
2
r is given by

ds2 = r2 cos2 ϑ · dϕ2 + r2dϑ2,

and the volume form reads as υ = r2 cos2 ϑ dϕ ∧ dϑ. Every smooth curve on the
sphere, C : ϕ = ϕ(τ), ϑ = ϑ(τ), τ0 ≤ τ ≤ τ1, has the length

l(C) =

Z τ1

τ0

ṡ(τ) dτ =

Z τ1

τ0

q

r2 cos2 ϑ(τ) · ϕ̇(τ)2 + r2ϑ̇(τ)2 dτ.

29 Both the classical roots and the modern extensions will be thoroughly studied
in Vol. III on gauge theory and in Vol. IV on quantum mathematics.

30 To avoid technicalities, we exclude the North Pole and the South Pole. The full
approach has to be based on this coordinate system and two local coordinate
systems at both the north and the south pole.
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Every open subset U of the sphere S
2
r has the surface area

meas(U) =

Z

U
υ =

Z

U
r2 cosϑ dϕdϑ.

Let C∞(S2
r) denote the set of all smooth functions f : S

2
r → R. This is a real linear

space. For f, g ∈ C
∞(S2

r), the Cartan derivative works as follows:

• df = fϕdϕ + fϑdϑ,
• d(fdϕ + gdϑ) = df ∧ dϕ + dg ∧ dϑ,
• d(fdϕ ∧ dϑ) = 0.

The Hodge star operator is defined as follows:

• ∗1 := υ, and ∗υ = 1,
• ∗f = fυ, and ∗(fυ) = f,
• ∗
`

f cosϑ dϕ + g dϑ
´

= −g cosϑ dϕ + fdϑ.

Let Ωp(S2
r) denote the set of all p-forms on the sphere S

2
r with smooth coefficients.

Introducing the inner product

〈ω|μ〉 :=

Z

S2r

ω ∧ ∗μ, for all ω, μ ∈ Ωp(S2
r),

the space Ωp(S2
r) becomes a real pre-Hilbert space for p = 0, 1, 2. In particular, for

p = 0, we have Ω0(S2
r) = C∞(S2

r), and

〈f |g〉 =

Z

S2r

f ∧ ∗g =

Z

S2r

fg · υ =

Z

S2r

fg · r2 cosϑ dϕdϑ.

This is the usual inner product on the sphere S
2
r with respect to the surface measure.

We define the operator
d∗ := − ∗ d ∗ .

Then, 〈ω|dμ〉 = 〈d∗ω|μ〉 for all ω, μ ∈ Ωp(S2
r) with p = 0, 1, 2. That is, the operator

d∗ is the adjoint operator to the Cartan operator d. Now to the point. The operator

Δ := dd∗ + d∗d (5.68)

is called the Laplacian (or the Laplace–Beltrami operator) of the sphere S
2
r. For

example, if f ∈ C∞(S2
r), then

Δf = − fϕϕ

r2 cos2 ϑ
− fϑϑ

r2
− tanϑ · fϑ

r2
.

This is the usual Laplacian written in spherical coordinates with constant radius
r. Let ω ∈ Ωp(S2

r) for fixed p = 0, 1, 2. Then the following two statements are
equivalent:

(i) Δω = 0 on S
2
r (Laplace equation on the sphere).

(ii) dω = 0 and d∗ω = 0 on S
2
r (Yang–Mills equation on the sphere).

The p-form ω is called harmonic iff (i) is satisfied. All the possible harmonic forms
on the sphere are given as follows:

• harmonic 0-forms: ω ≡ a with a ∈ R,
• harmonic 1-forms: ω ≡ 0,
• harmonic 2-forms: ω = a(∗1) with a ∈ R.
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The main result of Hodge theory is the following one:31

For a compact Riemannian manifoldM, every de Rham cohomology class
contains precisely one harmonic form.

Consequently, the de Rham cohomology class Hq(M) is isomorphic to the real
linear space of all harmonic q-forms. The dimension

βq := dimHq(M), q = 0, 1, . . . , n

is called the q-th Betti number of the n-dimensional manifold M. Moreover, the
alternating sum

χ(M) = β0 − β1 + β2 − . . . + (−1)nβn

is called the Euler characteristic of M. Note the following:

• The de Rham cohomology works for all compact manifolds. We do not need any
additional mathematical structure.

• In contrast to this, Hodge theory can only be applied to compact Riemannian
manifolds. We need the additional metric structure in order to introduce the
Hodge star operator, and hence the Laplacian.

In particular, for the sphere, we get H0(S2
r) = H2(S2

r) = R and H1(S2
r) = 0. Hence

β0 = β2 = 1, β1 = 0.

The relation β0 = β2 is called the Poincaré duality of the sphere. For the Euler
characteristic of the sphere, we get

χ(S2
r) = β0 − β1 + β2 = 1− 1 + 1 = 2.

In terms of topology, the following holds:

• β0 = 1 tells us that the sphere S
2
r is path-connected, that is, two points on the

sphere can always be connected by a continuous path.
• β1 = 0 tells us that the sphere is simply connected. That is, every closed contin-

uous curve on the sphere can be continuously contracted into a point.
• β2 = 1 tells us that the sphere is orientable.

Note the following:

• Cohomology: The definition of the Euler characteristic above in terms of differ-
ential forms, displays the analytic character of this quantity. This corresponds to
cohomology in topology.

• Homology: The Euler characteristic can also be characterized by the Euler poly-
hedron formula (5.66) in terms of triangulations of the basic manifolds. The Euler
polyhedron formula is the starting point for homology in topology.

Surprisingly enough, the two completely different approaches yield the same quan-
tity. This is the deep duality between homology and cohomology. In terms of physics,
this means that there exists a deep relation between the geometric structure of the
space-time manifold (homology) and the physical fields that live on the space-time
manifold (cohomology).

31 For the proof, see J. Jost, Riemannian Geometry and Geometric Analysis, Sect.
2.2, 5th edition, Springer, Berlin, 2008.
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�ζ

�
x1

N

Fig. 5.17. Stereographic projection

5.9.3 The Beltrami Model

Beltrami’s model of elliptic geometry. Choose the radius r = 1 of the sphere.
The stereographic projection pictured in Fig. 5.17 maps the unit sphere (minus
North Pole) S

2 \ {N} onto the complex plane C in a bijective manner. Explicitly,
the point (ξ, η, ζ) on the unit sphere corresponds to the point z = x + iy in the
complex plane C given by

z =
ξ + iη

1− ζ
.

In particular, the South Pole goes to the origin z = 0, and the equator is mapped
onto the unit circle. For a given smooth curve on the unit sphere,

ξ = ξ(τ), η = η(τ), ζ = ζ(τ), τ0 ≤ τ ≤ τ1,

we get the following transformation formulas:

ξ̇(τ)2 + η̇(τ)2 + ζ̇(τ)2 =
ẋ(τ)2 + ẏ(τ)2

(x(τ)2 + y(τ)2 + 1)2
.

This allows us to transplant the metric from the unit sphere to the complex plane
C. Explicitly,

ds2 =
dx2 + dy2

1 + x2 + y2
. (5.69)

By definition, the elliptic Beltrami model Bellip consists of the open unit disc

B := {(x, y) ∈ R
2 : x2 + y2 < 1}

equipped with the Riemannian metric (5.69).
Beltrami’s hyperbolic model. Using the rescaling x �→ rx and y �→ ry and

setting r := i, the Riemannian metric (5.69) passes over to the metric

ds2 =
dx2 + dy2

1− x2 − y2
(5.70)

on the open unit disc B. This yields the hyperbolic Beltrami model Bhyp. Published
in 1868, this was the first model in the history of mathematics which globally
realized Lobachevsky’s hyperbolic geometry on a subset of the Euclidean plane
equipped with a non-Euclidean Riemannian metric. We will show in Problem 5.6
that this model is equivalent to the 1881 Poincaré model on the open upper half-
plane to be considered in the next section. Next let us discuss the different local
and global properties of the hyperbolic Beltrami model.
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Fig. 5.18. Pseudosphere

The pseudosphere of Gauss. Consider the curve r = r(ζ) pictured in Fig.
5.18(a). This so-called tractrix was first studied by Leibniz (1646–1716). The trac-
trix has the following characteristic property: If we consider the tangent to the curve
through a point C, which intersects the ζ-axis at the point D, then the length of
the segment CD is constant. The name tractrix comes from the fact that the curve
arises when a dog at the point D pulls a cart at the point C in direction of the
ζ-axis. This is a situation which earlier often actually occurred in mining.32 The
pseudosphere Spseudo is obtained through rotation of the tractrix about the ζ-axis in
a Cartesian (ξ, η, ζ)-coordinate system (Fig. 5.18(b)). Introducing polar coordinates
ϕ, r we obtain

ξ = r cosϕ, η = r sinϕ, ζ = ±
Z r

1

p

1− �2

�
d�.

Naturally, the curves ϕ = const and r = const are called meridians and circles of
latitude. The element of arc is

ds2 = dξ2 + dη2 + dζ2 = r2dϕ2 +
dr2

r2
.

Letting x = ϕ, y = 1/r with −π < ϕ < π, 0 < r < 1 we obtain

ds2 =
dx2 + dy2

y2
, −π < x < π, y > 1.

The Gaussian curvature. Using local real coordinates u, v, Gauss describes
the local metric properties of a smooth surface by the first fundamental form:

ds2 = E(u, v)du2 + 2F (u, v)dudv + G(u, v)dv2.

Mnemonically, this means that the curve length of a given smooth curve on the
surface, C : u = u(τ), v = v(τ), τ0 ≤ τ ≤ τ1, is equal to

l(C) =

Z τ1

τ0

ṡ(τ)dτ

with ṡ2 = E(P )u̇2 + 2F (P )u̇v̇ + G(P )v̇2 dτ, and ṡ ≥ 0. Here, P, ṡ, u̇, v̇ depend on
the curve parameter τ. To introduce the Gaussian curvature K(P ) of the surface at
the point P , we choose a Cartesian (x, y, ζ)-coordinate system at the point, where
the (x, y)-plane is the tangent plane of the surface at the point P (Fig. 5.19).

32 The Latin word trahere means to pull.
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Fig. 5.19. Local coordinate system

Using Taylor expansion, the local equation of the surface near the point P with
the local coordinates (0, 0) looks like

ζ(x, y) = 1
2
(ax2 + by2) + . . .

The dots stand for terms of higher order (i.e., o(x2 + y2) as x2 + y2 → 0). The
principal axis theorem for quadratic forms tells us that this normal form is always
possible, after a suitable rotation of the (x, y, ζ-coordinate system about the ζ-axis.
Now we define the Gaussian curvature K(P ) of the surface at the point P by setting

K(P ) := ab. (5.71)

This means that curvature depends on the local quadratic terms of the Taylor
expansion. In particular, for a sphere of radius r, say, near the south pole, we get

ζ = r

 

1−
r

1− x2 + y2

r2

!

=
1

2
· x

2 + y2

r
+ . . .

Thus, a = b = 1
r

and hence K = 1/r2.
The theorema egregium of Gauss – a gem of mathematics and physics.

The Gaussian curvature is defined by using the surrounding space. Gauss posed the
following fundamental question:

Is it possible to compute the Gaussian curvature without using the sur-
rounding space, but only by using the functions E,F,G of the intrinsic
metric?

After tedious computations, Gauss found the answer. The theorema egregium tells
us that the Gaussian curvature K only depends on the metric functions E,F,G and
their partial derivatives up to second order. Explicitly, there holds the following
universal formula:33

K =
1

D

˛

˛

˛

˛

˛

˛

˛

`

− 1
2
Guu + Fuv − 1

2
Evv

´

1
2
Eu

`

Fu − 1
2
Ev

´

Fv − 1
2
Gu E F

1
2
Gv F G

˛

˛

˛

˛

˛

˛

˛

− 1

D

˛

˛

˛

˛

˛

˛

˛

0 1
2
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1
2
Gu

1
2
Ev E F

1
2
Gu F G

˛

˛

˛

˛

˛

˛

˛

.

(5.72)

On February 19, 1826 Gauss wrote to Olbers:

33 Here, we set D := (EG − F 2)2. The proof of this formula can be found in J.
Stoker, Differential Geometry, Sect. VI.7, Wiley, New York, 1989.
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I hardly know any period of my life, where I earned so little real gain for
truly exhausting work, as during this winter. I found many, many beautiful
things, but my work on other things has been unsuccessful for months.

Finally, on October 8, 1827, Gauss presented the general surface theory. The title of
his paper was Disquisitiones circa superficies curvas (Investigations about curved
surfaces) (in Latin). The most important result of this masterpiece of mathematics
is the theorema egregium. Gauss proved that

Curvature is an intrinsic property of a 2-dimensional manifold which is
equipped with the notion of arc length.

In particular, for the pseudosphere with pseudoradius r = 1, the theorema egregium
yields K ≡ −1 (outside the singular equator). Riemann generalized Gauss’ work to
higher dimensions. Erich Worbs writes:34

In 1854 Bernhard Riemann (1826–1866) presented three topics for his in-
augural lecture in Göttingen. Gauss (1777–1855), in recollection of his own
struggle with Euclid’s parallel axiom, chose – in breaking with tradition –
the third one: On the hypotheses which lie at the foundation of geometry.
In his lecture Riemann presented the fundamentals of a geometry for the
n-dimensional curved metric space (nowadays called Riemannian geome-
try). This must have made an extremely deep impression on Gauss, who
at that time was already very weak. Later, on his way home, he spoke with
unusual excitement to Wilhelm Weber about the depth of the presentation.

Riemann considered all the 2-dimensional submanifolds of an n-dimensional Rie-
mannian manifold and computed their Gauss curvature. This family of Gauss cur-
vatures forms the Riemann curvature tensor. Einstein used the Riemann curva-
ture tensor in order to intrinsically describe gravitation as the curvature of the
4-dimensional space-time manifold. In the Standard Model of elementary parti-
cle physics, strong interaction and electroweak interaction are intrinsically rep-
resented by the curvature of a principal fiber bundle with the structure group
U(1)× SU(2)× SU(3) (see Vol. III). Here, the structure group describes the pos-
sible gauge transformations.

Hilbert’s no-go theorem for the embedding of the global hyperbolic
Beltrami manifold into the 3-dimensional Euclidean space. Hilbert proved
in 1901 that the hyperbolic Beltrami manifold Bhyp (and hence also the hyperbolic
Poincaré planeHR) cannot be isometrically embedded into the space R

3. The precise
definition of an isometric embedding will be given on page 312. Intuitively, Hilbert
showed that the hyperbolic Beltrami model cannot be realized on a submanifold
of R

3 in such a way that the arc length of curves is preserved.35 Note that the
pseudosphere is not a submanifold of R

3, since there are no tangent planes at the
points of the equator. The hyperbolic Beltrami model can be locally realized on the
pseudosphere, but not globally. For a long time, it was an open problem whether
Riemannian manifolds can be isometrically embedded into a Euclidean space R

m

of sufficiently high dimension m. This problem was positively solved by John Nash
in 1956.

The Nash embedding theorem and the sophisticated regularization
method (hard implicit function theorem). Let n = 1, 2, . . . There are the
following two crucial embedding theorems:

34 E. Worbs, Carl Friedrich Gauß: Ein Lebensbild (A Biography), Koehler & Ame-
lang, Leipzig (in German).

35 The proof can be found in S. Novikov and T. Taimanov, Geometric Structures
and Fields, Sect. 4.3.4, Amer. Math. Soc., Providence, Rhode Island, 2006.
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(a) regular curve (b) singular curve

Fig. 5.20. Curves

(W) Every paracompact real n-dimensional manifold can be embedded into the Eu-
clidean space R

2n+1 (Whitney’s embedding theorem from 1936).36

(N) Every paracompact real n-dimensional Riemannian manifold can be isometri-
cally embedded into some Euclidean space R

m, where m = O(n3) as n → ∞
(Nash’s embedding theorem from 1956).

Here, we use the following terminology. In this series of monographs, manifolds are
always assumed to be smooth (see Sect. 5.4 of Vol. I). Moreover, a manifold is called
paracompact iff it possesses a finite or at most countable system of local coordinate
systems (i.e., charts). Compact manifolds are paracompact. But, the converse is not
true. For example, the real line R (or the space R

m with m ≥ 1 ) is paracompact,
but not compact. The map χ :M→N from the manifoldM into the manifold N
is called an embedding if and only if

• the image χ(M) is a submanifold of N , and
• the map χ :M→ χ(M) is a diffeomorphism.

We say that the manifoldM can be embedded into the manifold N iff there exists
an embedding χ :M→ N . This definition excludes certain pathologies (e.g., self-
intersections; see Fig. 5.20(b)).

A real manifold is called Riemannian (resp. pseudo-Riemannian) iff each tangent
space is equipped with the structure of a real Hilbert space (resp. indefinite Hilbert
space), and the inner product depends smoothly on the point (with respect to local
coordinates). Riemannian and pseudo-Riemannian manifolds will be thoroughly
studied in Vol. III (e.g., the 4-dimensional space-time in general relativity is pseudo-
Riemannian).

The map χ :M→ N between two Riemannian manifolds M and N is called
an isometry iff it is a length-preserving diffeomorphism fromM onto N . The map
χ :M→N is called an isometric embedding iff it is a length-preserving embedding.
Then the map χ is an isometry from M onto the image χ(M).

In order to formulate a typical theorem on embeddings, fix 1 ≤ m ≤ n. Let U
be a nonempty open subset of R

m.

The smooth, injective map F : U → R
n is an embedding iff the linearization

F ′(τ) =

„

∂F j(τ)

∂τk

«

, j = 1, . . . , n, k = 1, . . . ,m

36 For the proof, we refer to Zeidler (1986), Vol. IV, p. 588 (see the references on
page 1049). The reader might wonder why the dimension 2n + 1 appears. The
point is that one needs additional information about the tangent spaces in the
proof. Therefore, one has to use the tangent bundle TM of the manifoldM; the
tangent bundle consists of all the pairs (x, v) where x is an arbitrary point of the
manifold, and v is an arbitrary tangent vector at the point x ∈M. As Whitney
showed, one needs an extra dimension in order to realize the 2n-dimensional
tangent bundle TM in R

2n+1.
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has the rank=m for all parameter values τ ∈ U , and the inverse mapping
F−1 : F (U)→ U is continuous.

Then we say that the real m-dimensional submanifold F (U) of the target space R
n

is an embedded manifold of R
n. To illustrate this standard theorem in the theory

of manifolds, let us consider two simple examples:

(i) Curves in R
3 : Set F (t) := (x(t), y(t), z(t)). Let U be an open interval of the

real line R. The smooth injective map F : U → R
3 is an embedding iff

ẋ(t)2 + ẏ(t)2 + ż(t)2 �= 0 for all t ∈ U ,

and the inverse map F−1 : F (U) → U is continuous. Then the image F (U) is
called an embedded curve of R

3 (Fig. 5.20(a)).
In particular, choose x(t) :≡ t, z(t) :≡ 0. Then F (x) = (x, y(x), 0). Here, F (x)
lives in the (x, y)-plane. The smooth map

F : U → R
3,

corresponding to the plane curve y = y(x), is an embedding iff y′(x) �= 0 for
all x ∈ U .

(ii) Surfaces in R
3: Set F (x, y) := (f(x, y), g(x, y), z(x, y)). Let U be a nonempty

open subset of R
2. The smooth injective map F : U → R

3 is an embedding iff
the linearization

F ′(x, y) :=

 

fx(x, y) gx(x, y) zx(x, y)

fy(x, y) gy(x, y) zy(x, y)

!

has rank =2 for all (x, y) ∈ U , and F−1 : F (U) → U is continuous. Then the
set F (U) is called an embedded surface of R

3.

In particular, choose f(x, y) :≡ x, g(x, y) :≡ y. Hence F (x, y) = (x, y, z(x, y)).
Then the smooth map

F : U → R
3,

corresponding to the surface equation z = z(x, y), is an embedding iff

zx(x, y)2 + zy(x, y)2 �= 0 for all (x, y) ∈ U .

This condition means that the surface has the tangent plane

(x− x0)zx(x0, y0) + zy(x0, x0)(y − y0)− z(x0, y0) = 0

at every point (x0, y0, z(x0, y0)) with (x0, y0) ∈ U .
In order to prove his embedding theorem, John Nash had to solve a nonlinear system
(S) of partial differential equations. Unfortunately, the classical implicit function
theorem failed. The corresponding iterative method for (S) has the nasty property
that the functions loose smoothness in each iterative step. To cure this defect, Nash
invented a refined iteration technique:

The idea is to regularize the iterated functions in each step and to use the
fast convergence of the Newton method in order to compensate the effects
caused by the modifications.
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Fig. 5.21. Klein’s model of hyperbolic geometry

This approach was further developed by Jürgen Moser (1928–1999) in 1966. Nowa-
days there exists a well-established mathematical tool called the hard implicit func-
tion theorem, which allows many interesting applications to sophisticated problems
arising in celestial mechanics and the theory of partial differential equations (see the
papers by Moser and Hamilton, and the monograph by Krantz and Parker quoted
on page 352). There also exist interesting relations to problems arising in quantum
field theory (see the papers by Bricmont, Gawȩdzki, and Kupiainen quoted on page
353).37

The elegant method of gauge fixing. In 1989, Matthias Günther showed
that the proof of the Nash embedding theorem can be simplified substantially (see
the paper quoted on page 352). The basic idea is to add appropriate constraints
to the underdetermined system (S) of nonlinear first-order partial differential equa-
tions in order to enforce the application of the classical implicit function theorem.

Klein’s projective model of hyperbolic geometry. In 1871, the young
Felix Klein (1849–1925) published the following model. Consider the open unit
disc K := {z ∈ C : |z| < 1}. By definition, “straight lines” are subsets of K that
correspond to circles, which orthogonally intersect the unit circle (Fig. 5.21). The
points of the unit circle are the ”points of infinity.” For given two different points
z, w ∈ K, there exists a uniquely determined “straight line” which passes through
z and w. The “distance” between the points z and w is defined to be the positive
number

d(z, w) := ln

„

z − z∞
z − w∞

:
w − z∞
w − w∞

«

.

It turns out that this model based on the cross ratio is equivalent to Lobachevsky’s
hyperbolic geometry. Note that the cross ratio is the most important invariant in
projective geometry. In contrast to the Beltrami model, the elementary Klein model
does not use the theory of Riemannian manifolds.

5.10 The Poincaré Model of Hyperbolic Geometry

The Poincaré model is the most elegant formulation of hyperbolic non-
Euclidean geometry.

Folklore

Elements of the following model were introduced by Henri Poincaré (1854–1912) in
1881. After a long discussion with Felix Klein, Poincaré presented the final form of
this model in his famous monograph “La science et l’hypothèse,” Paris, 1902. In

37 For the creation of the theory of non-cooperative games based on Nash-
equilibrium states (Ann. of Math. 54 (1951), 286–295), John Nash (born 1928)
was awarded the Nobel prize in economics in 1994. His biography can be found
in the bestseller by S. Nasar, A Beautiful Mind, Simon and Schuster, New York,
1998, which was the basis for a Hollywood movie.



5.10 The Poincaré Model of Hyperbolic Geometry 315

�

�

x

y

Fig. 5.22. Hyperbolic geodesics (light rays)

what follows, we will specify the situation from Sect. 5.8.3 on page 297 by choosing
the special refraction index

n(x, y) :=
1

y
, x ∈ R, y > 0. (5.73)

Mnemonically, this corresponds to the metric

ds2 =
dx2 + dy2

y2
. (5.74)

Setting dz = dx + idz and dz̄ = dx− idy, mnemonically, we get38

ds2 =
dzdz̄

y2
. (5.75)

Hyperbolic plane. The upper half-plane HR equipped with the metric (5.74)
is called the real hyperbolic plane. Similarly, HC equipped with the metric (5.75)
is called the complex hyperbolic plane. Note that:

• The real hyperbolic plane HR is a real 2-dimensional manifold.
• The complex hyperbolic plane HC is a complex 1-dimensional manifold.

The geometry corresponding to the refraction index (5.73) is called hyperbolic ge-
ometry.

Hyperbolic geodesics. By (5.57) on page 300, the equation for geodesics
corresponding to the refraction index n(x, y) = 1

y
reads as

ẍ =
2ẋẏ

y
, ÿ =

ẏ2 − ẋ2

y
. (5.76)

Proposition 5.11 The geodesics of the hyperbolic plane are obtained as follows:
Consider all circles and straight lines of the complex plane which orthogonally in-
tersect the x-axis, and restrict them to the open upper half-plane.

The points of the x-axis are called the ”points of infinity” of the hyperbolic plane.
Maximal geodesics are called straight lines (Fig. 5.22).

Proof. (I) Let y ≡ const. The second equation of (5.76) yields x ≡ const. This
is a point, but not a curve. Thus, the curve y ≡ const is not a geodesic.

(II) We are looking for a geodesic of the form x = (y). Instead of using the
system (5.76), it is easier to use the variational problem

38 Rigorously, we have to use the metric tensors dx⊗dx+dy⊗dy
y2 and dz⊗dz̄

y2 .
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(a) Euclidean geometry
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(b) hyperbolic geometry
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Fig. 5.23. Parallel lines

Z y1

y0

p

x′(y)2 + 1

y
dy = min!, x(y0) = x0, x(y1) = x1.

The Euler–Lagrange equation reads as d
dy

„

x′(y)

y
√

x′(y)2+1

«

= 0. Hence

x′(y)

y
p

x′(y)2 + 1
≡ const = x∗.

This yields x ≡ const or x = x∗ ±
p

R2 − y2 with the constant R > 0. �

Geodesics. For an arbitrary smooth curve, x = x(y), y0 ≤ y ≤ y1, the hyper-
bolic arc length satisfies the following inequality:

Z y1

y0

p

x′(y)2 + 1

y
dy ≥

Z y1

y0

dy

y
= ln y1 − ln y0.

This goes to +∞ if y0 → +0. Therefore:

The hyperbolic arc length of hyperbolic straight lines is infinite.

Hyperbolic parallels and the violation of Euclid’s parallel axiom. In
Euclidean geometry, for any given point P0 outside a given straight line G, there
exists precisely one straight line which does not intersect G. This is called a parallel
straight line to G.

In the hyperbolic geometry of the real hyperbolic plane, geodesic lines are also
called hyperbolic straight lines. Then, for any given point P0 outside a given hyper-
bolic straight line G, there exist infinitely many hyperbolic straight lines through
the point P0 which do not intersect G. In other words, there exist infinitely many hy-
perbolic parallel straight lines to G which pass through the point P0 (Fig. 5.23(b)).

Consequently, the hyperbolic geometry of the real hyperbolic plane repre-
sents a non-Euclidean geometry.

The real (resp. and complex) hyperbolic plane is equipped with the following math-
ematical structures:

• complete metric space,
• Riemannian manifold,
• non-compact Riemann surface,
• Kähler manifold, and
• symplectic manifold.

In what follows we want to discuss this.
The hyperbolic plane as a complete metric space with respect to

geodesic distance. We are given the two points P,Q ∈ HC. Let the curve
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C : z = z(τ), τ0 ≤ τ ≤ τ1

be a geodesic which connects the point P with Q (see Fig. 5.22 on page 315). Using
the so-called geodesic distance defined by

d(P,Q) := l(C),

where l(C) is the hyperbolic arc length of the geodesic C, the complex hyperbolic
plane becomes a metric space. This means that, for arbitrary points P,Q, S ∈ HC,
the following hold:

(M1) d(P,Q) ≥ 0 and d(P,Q) = 0 iff P = Q,
[M2) d(P,Q) = d(Q,P ),
(M3) d(P,Q) ≤ d(P, S) + d(S,Q).

Moreover, the complex hyperbolic plane is a complete metric space. By definition,
this means that each Cauchy sequence is convergent.39

The symmetry group of the hyperbolic geometry. Consider the Möbius
transformation40

w =
αz + β

γz + δ

with real coefficients α, β, γ, δ and αδ − βγ �= 0. Each of these transformations
represents a conformal diffeomorphism from the complex hyperbolic plane HC onto
itself. The set of all these transformations

T : HC → HC

forms a group Sym(HC), which is called the symmetry group of the complex hyper-
bolic plane HC. By definition, precisely the invariants under this group are proper-
ties of hyperbolic geometry on HC . Examples are: arc length, angle, surface area,
geodesic line, geodesic distance, and Gaussian curvature.

The action of the real symplectic group SL(2,R) on the complex hy-
perbolic plane. The map

 

α β

γ δ

!

�→ αz + β

γz + δ
(5.77)

is a group morphism from the group SL(2,R) onto the group Sym(HC). Precisely
the unit matrix I and −I are mapped to the identical Möbius transformation with
α = δ = 1 and β = γ = 0 Consequently, we have the group isomorphism

Sym(HC) � SL(2,R)/{±I}.

Next we want to study the curvature properties of the hyperbolic plane. This
can be done most elegantly by using the notion of Kähler manifold.

39 A sequence (Pn) of points in HC is called Cauchy iff, for any ε > 0, there exists
an index n0 such that d(Pn, Pm) < ε for all n,m ≥ n0. Completeness means that,
for any Cauchy sequence (Pn), there exists a point P in the complex hyperbolic
plane such that limn→+∞ d(Pn, P ) = 0.

40 Möbius (1790–1868).
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5.10.1 Kähler Geometry and the Gaussian Curvature

Many important manifolds arising in mathematics and physics (e.g., Rie-
mann surfaces) can be equipped with an Hermitean Kähler metric.

Folklore

Erich Kähler’s seminal article On a remarkable Hermitean metric41 has
grown into a domain in itself. What is even more striking concerning this
article is that more or less every half page, Erich Kähler opens a new path
that has later turned out to be crucial for the development of the subject.

Jean-Piere Bourguignon, 2004

There are the following three fundamental geometries used in physics:

(i) symplectic geometry (geometrical optics and classical mechanics),
(ii) Riemannian und pseudo-Riemannian geometry (general theory of relativity on

gravitation),
(iii) unitary geometry and Hilbert spaces (quantum theory).

Kähler geometry combines these three essential mathematical structures with each
other. In fact, Kähler geometry plays a fundamental role in complex geometry,
algebraic geometry, and string theory. We will study this in later volumes. We refer
to the hints for further reading on Kähler geometry to be found on page 350. At
this point, we will only discuss a few basic ideas.

Our goal is to use the complexification HC of the real 2-dimensional hyper-
bolic plane HR in order to simplify computations, by using methods from complex
analysis. To this end, we introduce the following notation:

• z := x + iy and z̄ := x− iy (variables),
• dz := dx + idy and dz̄ := dx− idy (differentials),
• ∂x = ∂

∂x
and ∂y = ∂

∂y
(partial derivatives),

• ∂z := ∂x − i∂y and ∂z̄ := ∂x + i∂y,
• ∂ := ∂z · dz and ∂̄ := ∂z̄ · dz̄.
In particular, for the smooth function U : HC → C, we get the differential forms
∂̄U(z) = ∂z̄U(z) dz̄, and

∂∂̄U(z) = ∂z∂z̄U(z) dz ∧ dz̄, z ∈ HC. (5.78)

The function U is called the Kähler potential of the 2-form located on the right-hand
side of (5.78).

The Riemann surface. By definition, complex one-dimensional connected
manifolds are called Riemann surfaces. The complex hyperbolic plane HC is a (non-
compact) Riemann surface.42

Tangent space. Consider the complex hyperbolic plane HC. Fix the point
P := z0. Let z = z(τ), τ0 ≤ τ ≤ τ1, be a smooth curve on HC through the point
P , that is, say, z(0) = z0 and 0 ∈]τ0, τ1[. Then the derivative v := ż(0) is called a
tangent vector of HC at the point P. The set of all possible tangent vectors v at the
point P is called the tangent space TPHC of HC at the point P. For all v, w ∈ TPHC,
we will use the following definitions:

41 E. Kähler, Über eine bemerkenswerte Hermitesche Metrik, Abhandlungen des
Mathematischen Seminars der Universität Hamburg 9 (1932/33), 173–186.
J. Bourguignon, The unabated vitality of Kählerian geometry. In: E. Kähler,
Collected Works, de Gruyter, Berlin, 2004, pp. 737–766.

42 The relation of the complex hyperbolic plane to the general theory of Riemann
surfaces is studied in J. Jost, Compact Riemann Surfaces: An Introduction to
Contemporary Mathematics, 3rd edn., Springer, Berlin, 2006.
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• dxP (v) := �(v) and dyP (v) := �(v),
• dzP (v) := v and dz̄P (v) := v̄,
• (dz ⊗ dz̄)P (v, w) := dzP (v)dz̄P (w) = vw̄,
• (dz̄ ⊗ dz)P (v, w) = dz̄P (v)dzP (w) := v̄w.

Moreover, dz ∧ dz̄ := dz ⊗ dz̄ − dz̄ ⊗ dz. Hence

• (dz ∧ dz̄)P (v, w) = vw̄ − v̄w for all v, w ∈ TPHC.

The two fundamental bilinear tensor fields on the complex hyperbolic
plane. Let us introduce

• the complex-valued Hermitean metric tensor field h := n(z)2 dz ⊗ dz̄ and
• the real-valued Kähler 2-form κ := i

2
n(z)2 dz ∧ dz̄

on the complex manifold HC. Here, z → n(z) is a given smooth function with
positive values on HC.

43 Trivially, we have

dκ = 0,

since dκ = i
2
d(n(z)2) ∧ dz ∧ dz̄, and wedge products with three factors of the form

dx, dy vanish identically. However, in complex dimensions > 1, the condition dκ = 0
represents a crucial restriction on the structure of Kähler manifolds. The tensor field
h is called Hermitean, since the map (v, w) �→ h(v, w) represents an Hermitean form.
That is, the following conditions are satisfied for all points P ∈ HC and all tangent
vectors u, v, w ∈ TPHC, as well as all complex numbers α, β:

• hP (v, w) ∈ C and hP (v, w)† = hP (w, v),
• hP (αu + βv,w) = αhP (u,w) + βhP (v, w).

Define

〈v|w〉P := hP (v, w)† for all v, w ∈ TPHC

and all points P ∈ HC.

This way, the tangent space TP C becomes a one-dimensional complex
Hilbert space equipped with the inner product 〈.|.〉.

In particular, we have 〈w|αu+βv〉P = α〈w|u〉P +β〈w|v〉P for all complex numbers
α, β.44 Now we are able to apply the theory of complex Hilbert spaces. According
to Sect. 5.8.2, for all tangent vectors v, w ∈ TPHC, we define:45

〈v|w〉R := �(〈v|w〉) and κP (v, w) := �(〈v|w〉).

Note that the definition of κ coincides with the Kähler form introduced above. If
we regard the tangent space TPHC = C as a real 2-dimensional space CR, this space
becomes a real Hilbert space equipped with the inner product 〈v|w〉R. This corre-
sponds to the Riemannian structure on the real manifold HR, where the tangent
spaces TPHR are isomorphic to R

2, as real spaces.

43 Explicitly, for all v, w ∈ C, we have

hP (v, w) = n(z)2vw̄, κP (v, w) = i
2
n(z)2(vw̄ − wv̄).

Note that, in the present case, the tangent space TPHC coincides with C. How-
ever, we are going to use a language which prepares the generalization to arbi-
trary Kähler manifolds on page 323.

44 This is the convention used by physicists for inner products (in order to fit the
Dirac calculus). In this series of monographs, we adopt this convention.

45 All of the expressions depend on the choice of the point P in HC. To simplify
notation, we suppress the index P .
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Hermitean forms are named after Charles Hermite (1822–1901) who studied
the principal axis transformation for complex self-adjoint matrices. To this end,
he had to replace real quadratic forms by complex-valued expressions which are
called Hermitean forms nowadays. Henri Poincaré (1854–1912), one of the greatest
mathematicians of all times, was a student of Hermite at the Ecole Polytechnique
in Paris.

Hyperbolic geometry. In order to get the hyperbolic geometry, we choose
the refraction index function

n(z) :=
1

y
for all z ∈ HC.

Gauss based his theory of 2-dimensional surfaces on two symmetric bilinear tensor

fields (called the first and second fundamental form). Élie Cartan noticed that it
is very convenient to use antisymmetric bilinear forms, too. In modern differential
geometry, Cartan’s antisymmetric differential forms play a fundamental role (e.g.,
the curvature form to be considered below).

Hyperbolic arc length. Let C : z = z(τ), τ0 ≤ τ ≤ τ1, be a smooth curve on
HC. The hyperbolic arc length of C is equal to

l(C) =

Z τ1

τ0

||ż(τ)|| dτ =

Z τ1

τ0

p

ẋ(τ)2 + ẏ(τ)2

y(τ)
dτ.

Hyperbolic angle. Let z = zj(τ), τ0 ≤ τ ≤ τ1, j = 1, 2, be two smooth curves
passing through the point P , that is, say, zj(0) = z0 for j = 1, 2, and 0 ∈]τ0, τ1[. By
definition, the hyperbolic angle α between the two curves at the intersection point
P is defined by46

cosα =
�〈ż1|ż2〉
||ż1|| · ||ż2||

=
ẋ1ẋ2 + ẏ1ẏ2

p

ẋ2
1 + ẏ2

1 ·
p

ẋ2
2 + ẏ2

2

.

This coincides with the angle α defined in Euclidean geometry.
Hyperbolic area measure. For the Kähler form, we get

κ = i
2
n(z)2dz ∧ dz̄ = i

2
n(z)2(dx + idy) ∧ (dx− idy) = n(z)2dx ∧ dy

with n(z) = 1
y
. Let U be a bounded open subset of HC. The hyperbolic area of the

set U is defined by

meas(U) :=

Z

U
κ.

Hence meas(U) =
R

U
1

y2 dx ∧ dy =
R

U
1

y2 dxdy.

Orientation. Let v and w be two tangent vectors at the point P . Then:

• v and w are linearly independent iff κP (v, w) �= 0.
• The ordered pair (v, w) is positively oriented iff κP (v, w) > 0.

Kähler form and Kähler potential. Again fix the point P which corresponds
to z ∈ HC. Setting U(x, y) := −2i ln y, we obtain

κP = ∂z∂z̄U(z) dz ∧ dz̄.

46 Here, żj , ẋj , ẏj stand for żj(0), ẋj(0), ẏj(0), respectively.
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That is, the function U is the Kähler potential of κ.47 The use of potentials is crucial
in physics for simplifying the computation of forces and physical fields. For example,
in electrodynamics, the four-potential simplifies the computation of solutions of the
Maxwell equations. Similarly, the Kähler potential simplifies computations to be
performed in Kähler geometry.

Hyperbolic Gaussian curvature. By definition, the Gaussian curvature
K(P ) of the complex hyperbolic plane HC at the point P is equal to

K(P ) := − 4

n(z)2
∂z∂z̄ lnn(z). (5.79)

This definition refers to a general smooth refraction index n : HC → R with n(z) > 0
for all z ∈ HR. In the special case of hyperbolic geometry, we have n(x + iy) := y.
Then

K ≡ −1. (5.80)

Thus the hyperbolic plane has a negative constant Gauss curvature.
The Laplacian. The differential operator

Δ := − 4

n(z)2
∂2

∂z∂z̄
= − 1

n(x, y)2

„

∂2

∂x2
+

∂2

∂y2

«

is called the Laplacian (or the Laplace–Beltrami operator) related to the refraction
index n(x, y)). Formula (5.79) reads as

K(P ) = Δ lnn(z).

The Gauss–Bonnet theorem on hyperbolic triangles. Consider a hyper-
bolic geodesic triangle as pictured in Fig. 5.14(b) on page 302. Then

α + β + γ = π + KA (5.81)

with K = −1. For general refraction index n = n(x, y), we obtain

α + β + γ = π +

Z

T
K(x, y)n(x, y)2dxdy.

Here, we integrate over the triangle set T . If the Gaussian curvature is constant,
then we get (5.81). In particular, in the case of Euclidean geometry we have (5.81)
with K ≡ 0.

Sartorius von Waltershausen, a good friend of Gauss, reported that Gauss tried
to check the light-ray geometry of our universe by measuring the sum α+ β + γ of
the angles α, β, γ of a huge triangle established by three light rays running between
the tops of three mountains in Germany: Hoher Hagen, Brocken, and Inselsberg.
The distance between the mountains is about 150 km. Gauss measured

α + β + γ = π,

within the limits of accuracy. Nowadays we know that the sum α + β + γ is differ-
ent from π for sufficiently large light-ray triangles, by Einstein’s theory of general
relativity.

47 Explicitly, ∂z∂z̄U(y) = 1
4

∂2

∂y2U(y) = i
2y2 .
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The first Chern class of the complex hyperbolic plane. The differential
form

γP :=
iK(z)n(z)2

4π
dz ∧ dz̄ =

K(P )

2π
dx ∧ dy

is called the Chern form of both the complex manifold HC and the real manifold
HR (with respect to the refraction index n). In the special case where n(x+iy) := 1

y

for all z ∈ HC, we get the Chern form of both the complex and the real hyperbolic
plane. Here, K ≡ −1. The corresponding cohomology class [γ] is called the first
Chern class of both HC and HR.

The crucial point is that the first Chern class [γ] does not depend on the
choice of the refraction index n = n(x, y). The first Chern class reflects a
topological property of the real hyperbolic plane HR, namely, the orientabil-
ity of this manifold. The same is true for the complex hyperbolic plane HC.

The first Chern class of the real hyperbolic plane is the prototype of the modern
topological theory of characteristic classes created by Chern in about 1945. Note
that characteristic classes are important topological invariants, which are frequently
encountered in modern mathematics and physics. As an introduction, we refer to
J. Milnor and Stasheff, Characteristic Classes, Princeton University Press, 1974, as
well as to R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer,
New York, 1982.

Next we want to introduce the general notion of a Kähler manifold. For the
convenience of the reader, we start with local Kähler manifolds.

Local Kähler manifold. Fix n = 1, 2, . . . In what follows, we will use the
Einstein convention, that is, we sum over equal upper and lower indices from 1 to
n. The elements of the space C

n are the points z = (z1, . . . , zn) with zk ∈ C
n for

all k = 1, . . . , n. Let U be a nonempty open subset of C
n. The two key formulas

read as follows:

hz := hrs̄(z) dz
r ⊗ dz̄s̄, κz := i

2
hrs̄(z) dz

r ∧ dz̄s̄. (5.82)

Explicitly, for all v, w ∈ C
n, we have

h(v, w) = vrhrs̄w̄
s̄, κ(v, w) = i

2
(vrhrs̄w̄

s̄ − wrhrs̄v̄
s̄).

By definition, the open set U is a local Kähler manifold with respect to h, κ iff the
following hold:

• All the functions hrs̄ : U → C are smooth.
• The complex (n × n)-matrix (hrs̄) is self-adjoint (also called Hermitean). That

is, hrs̄(z)
† = hsr̄(z) for all r, s = 1, . . . , n.

• For any z ∈ U , all the eigenvalues of the matrix (hrs̄(z)) are positive.
• dκ = 0 on U .
If we define, 〈v|w〉†z := hz(v, w)† for all v, w ∈ C

n, then this is an inner product on
C

n. Moreover,
κ(v, w) = �(〈v|w〉) for all v, w ∈ C

n.

We also define 〈v|w〉R := �(〈v|w〉) for all v, w ∈ C
n. We have the following key

definitions:

• R := Δ ln det(hrs̄) (scalar curvature of U),

• Rrs̄ dzr ∧ dz̄s := −∂∂̄ ln det(hrs̄) (Ricci form),

• γ := i
2π

Rrs̄ dzr ∧ dz̄s̄ (Chern form),

• [γ] ∈ H2(U) (first Chern class of U),
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• υ := dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ · · · ∧ dzn ∧ dz̄n (volume form of U).

Here, we set ∂ := ∂
∂zk dzk and ∂̄ := ∂

∂z̄k dz̄k. The operator

Δ := −(det(hrs̄))
−1/2∂∂̄

is called the Laplace–Beltrami operator. For n = 1, the Gaussian curvature is given
by K = R/2.

Global Kähler manifold. Let M be a complex n-dimensional manifold
equipped with a smooth complex-valued 2-tensor field h on M. Set

〈v|w〉P := hP (v, w)† for all v, w ∈ TPM.

Then, M is called a Kähler manifold iff the following hold:

• Each tangent space TPM becomes a complex Hilbert space equipped with the
inner product 〈.|.〉.

• Define κP (v, w) := �(〈v|w〉P ) for all v, w ∈ TPM.
• dκ = 0 on M.

In other words, h and κ look like (5.82) in local coordinates. The condition dκ = 0
guarantees that the equivalence class [κ] is an element of the second (de Rham)
cohomology group H2(M) of the Kähler manifold M.

5.10.2 Kähler–Einstein Geometry

A Kähler manifold M is called a Kähler–Einstein manifold iff the Ricci form is
proportional to the Kähler form, that is there exists a complex constant λ such
that

Rjk̄dz
j ∧ dz̄k̄ = λhjk̄dz

j ∧ dz̄k̄ on M.

These manifolds are related to Einstein’s equations for curved space-time manifolds
with vanishing external energy-matter field. This models a universe where only
gravitation is acting (see (5.96) on page 330).

5.10.3 Symplectic Geometry

The real 2-dimensional manifold HR becomes a symplectic manifold equipped with
the symplectic form σ := 1

y2 dx∧ dy. The map F : HR → HR is called a symplectic

isomorphism iff

F ∗σ = σ on HR.

Recall that, for a diffeomorpism F : R
2 → R

2 of the form

ξ = ξ(x, y), η = η(x, y), (x, y) ∈ R
2,

the linearization F ′(P ) : R
2 → R

2 at the point P = (x, y) is given by the linear
map

 

α

β

!

=

 

ξx(x, y) ξy(x, y)

ηx(x, y) ηy(x, y)

! 

a

b

!

.
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The determinant of F ′(P ) is called the Jacobian of F at the point P . Synonymously,
we will use the following symbols:

detF ′(P ) =

˛

˛

˛

˛

˛

ξx(x, y) ξy(x, y)

ηx(x, y) ηy(x, y)

˛

˛

˛

˛

˛

=
∂(ξ(x, y), η(x, y))

∂(x, y)
.

Proposition 5.12 (i) The diffeomorphism F : R
2 → R

2 is a symplectic isomor-
phism with respect to the symplectic form dx∧dy iff F ′(P ) ∈ SL(2,R) for all points
P ∈ R

2, that is, F preserves both the Euclidean area measure and the orientation.
(ii) The diffeomorphism F : HR → HR is a symplectic isomorphism with respect

to the symplectic form σ iff

1

η(x, y)2
· ∂(ξ(x, y), η(x, y))

∂(x, y)
=

1

y2
for all (x, y) ∈ H2

R,

that is, F preserves both the hyperbolic area measure and the orientation of the real
hyperbolic plane HR.

Explicitly, F ′(P ) ∈ SL(2,R) means that
∂(ξ(x,y),η(x,y))

∂(x,y)
= 1. Concerning (ii), for

any bounded open subset of U , we get
Z

F (U)

dξdη

η2
=

Z

U

1

η2(x, y)

∂(ξ(x, y), η(x, y))

∂(x, y)
dxdy =

Z

U

dxdy

y2
.

This tells us that

• the hyperbolic area measure meas(F (U)) of the transformed set F (U)
• equals the hyperbolic area measure meas(U) of the original set U .

Using the elegant language of differential forms, one briefly writes

Z

F (U)

σ =

Z

U
F ∗σ. (5.83)

The proof of Prop. 5.12 will be given in Problem 5.3.

5.10.4 Riemannian Geometry

The doubts about what we may believe about the geometry of physical
space, raised by the work of Gauss, Lobachevsky and Bólayi, stimulated
one of the major creations of the 19th century, Riemannian geometry. The
creator was Bernhard Riemann (1826–1866) – the deepest philosopher of
geometry.48

Morris Kline, 1972

It was Riemann, who probably more than anyone else, enriched mathemat-
ics with new ideas. These ideas display an unusual degree of vitality and
impulse the whole of mathematics as well as many branches of physics.49

Krysztof Maurin, 1997

48 M. Kline, Mathematical Thought from Ancient to Modern Times, Vols. 1–3,
Oxford University Press, New York, 1972.

49 K. Maurin, The Riemann Legacy: Riemannian Ideas in Mathematics and Physics
of the 20th Century, Kluwer, Dordrecht, 1997.



5.10 The Poincaré Model of Hyperbolic Geometry 325

Hyperbolic straight lines (i.e., semi-circles centered at the x-axis or straight lines
parallel to the y-axis) are curved compared with Euclidean straight lines. Intuitively,
this is responsible for the nontrivial curvature of the real hyperbolic plane. The main
task of differential geometry is to measure this curvature of the manifold. This was

done by Gauss, Riemann, and Élie Cartan in different settings.50

Metric properties of the real hyperbolic plane. For all points P of the
real hyperbolic plane HR and all tangent vectors v, w ∈ HR, we set:

• gP := dx⊗dx+dy⊗dy
y2 (metric tensor of HR at the point P ),

• 〈v|w〉P := gP (v, w) (inner product on the tangent space TPHR of the real hyper-
bolic plane at the point P ),

• ||v|| :=
p

〈v|v〉P (length of the tangent vector v at the point P ),

• υP := dx∧dy
y2 (volume form of HR at the point P ).

These quantities can be used in order to introduce the following fundamental no-
tions for the real hyperbolic plane.

(i) Length l(C) of a smooth curve C: x = x(τ), y = y(τ), τ0 ≤ τ ≤ τ1 : We define

l(C) :=

Z τ1

τ0

||v(τ)|| dτ, (5.84)

where v(τ) := (ẋ(τ), ẏ(τ)) is the tangent vector of the curve C at the point P
corresponding to the curve parameter τ.

(ii) Angle α between two curves C and C∗ at the intersection point P :

cosα :=
〈v|v∗〉P

||v||P · ||v∗||P
. (5.85)

Here, v (resp. v∗) are tangent vectors of the smooth curve C (resp. C∗) at the
intersection point P.

(iii) Area of an open bounded subset U of HR :

meas(U) :=

Z

U
υ. (5.86)

This means that meas(U) =
R

U
dxdy
y2 .

Geodesics (generalized straight lines). For introducing curvature, our
starting point is the equation for geodesics. Set

v(τ) :=

 

ẋ(τ)

ẏ(τ)

!

.

By (5.57) on page 300, the equation for a geodesics x = x(τ), y = y(τ) can be
written as

50 Gauss (1777–1855), Betti (1823–1892), Riemann (1826–1866), Christoffel (1829–

1900), Ricci-Curbastro (1853–1925), Bianchi (1856–1928), Élie Cartan (1869–
1951), Levi-Civita (1873–1941), Einstein (1879–1955), Weyl (1885–1955), Ehres-
mann (1905–1979), Yang (born 1922).
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v̇ + (ẋA1(x, y) + ẏA2(x, y)) · v = 0, (5.87)

by introducing the so-called connection matrices

A1 :=

 

�x �y

−�y �x

!

, A2 :=

 

�y −�x

�x �y

!

.

Here, we set �(x, y) := lnn(x, y).
Curvature properties of the real hyperbolic plane. In what follows we

will use the Einstein convention, that is, we will sum over equal upper and lower
indices from 1 to 2. We set x1 := x, x2 := y, and

∂j :=
∂

∂xj
, j = 1, 2.

In Euclidean geometry, the equation for a geodesic (i.e., a straight line) reads as
dv(τ)

dτ
≡ 0. This motivates us to write the equation (5.87) of a geodesic on the

hyperbolic plane in the following form:

Dv(τ)

dτ
≡ 0 along γ = γ(τ). (5.88)

To this end, we introduce the following notation:

• ∇i := ∂i +Ai (Ricci’s covariant partial derivative),

• D
dτ

:= ẋi(τ)∇i (covariant directional derivative),

• A := Aidx
i (Cartan’s connection 1-form). In terms of Cartan’s connection 1-form

A, the equation (5.87) of geodesics reads as

v̇(τ) +Aγ(τ)(γ̇(τ)) · v(τ) = 0, τ0 ≤ τ ≤ τ1. (5.89)

Here, we write the curve C as γ(τ) := (x(τ), y(τ)), and we set v(τ) := γ̇(τ).

• F := 1
2
Fjk dxj ∧ dxk (Cartan’s curvature 2-form). Here,

Fjk := ∇j∇k −∇k∇j , j, k = 1, 2.

Using the Lie bracket [A,B]− := AB − BA, we get the fundamental structural
equation

Fjk = ∂jAk − ∂kAj + [Aj ,Ak]−, j, k = 1, 2.

Note that Fjk = −Fkj for j, k = 1, 2.
• RP (a, b, u, v) := −〈F(a, b)u|v〉P for all tangent vectors a, b, u, v ∈ TPHR at the

point P (Riemann’s curvature tensor).51

51 Unfortunately, the definition of the Riemann curvature tensor is not unique in
the literature; there appear modified definitions based on permutations of the
arguments a, b, u, v. Our definition is chosen in such a way that the Gaussian
curvature and the scalar curvature have the same sign. Our terminology coincides
with the terminology used in the following two modern textbooks on Riemannian
geometry:
J. Jost, Riemannian Geometry and Geometric Analysis, 5th edition, Springer,
Berlin, 2008.
S. Novikov and T. Taimanov, Geometric Structures and Fields, Amer. Math.
Soc., Providence, Rhode Island.



5.10 The Poincaré Model of Hyperbolic Geometry 327

The Riemann curvature tensor has the following symmetries for all arguments
a, b, u, v ∈ THR and all points p ∈ HR :

• RP (a, b, u, v) = −RP (b, a, u, v),
• RP (a, b, u, v) = −RP (a, b, v, u),
• RP (a, b, u, v) = RP (u, v, a, b).

That is, RP (a, b, u, v) is antisymmetric in the first and second pairs of indices, and
it is symmetric relative to permutations of these pairs of indices.

Components. Introducing the notation for the matrix elements, we write

Ai = (Γ r
is) =

 

Γ 1
i1 Γ 1

i2

Γ 2
i1 Γ 2

i2

!

, Fjk = (Rr
sjk) =

 

R1
1jk R1

2jk

R2
1jk R2

2jk

!

. (5.90)

Here, r (resp. s) is the row (resp. column) index. For the inner product on the
tangent space TPHR, we have

〈v|w〉P = vigijw
j

with gij(P ) := n(P )2δij ,and gij(P ) := n(P )−2δij for i, j = 1, 2. Note that

gisgsj = δi
j for all i, j = 1, 2.

Here, we use the notation δi
j := δij (Kronecker symbol). That is, δ11 = δ22 = 1 and

δ12 = δ21 = 0. The equation (5.87) for the geodesics reads as

ẍk + ẋiΓ k
ij ẋ

j = 0, k = 1, 2. (5.91)

Finally, setting Rijkl := girR
r
jkl, we get

RP (a, b, c, d) = −Rijkl(P ) · aibjukvl.

Thus, the real numbers Rijkl(P ) are the (negative) components of the Riemann
curvature tensor RP at the point P . Moreover, the real numbers Γ k

ij(P ) are called
the Christoffel symbols at the point P . For a smooth real-valued function U on the
hyperbolic plane HR, the Laplacian looks like

ΔU = −gij∇i∇jU.

The Ricci tensor is defined by

RicP (u, v) := ujRjlv
l for all u, v ∈ TPHR,

where Rjl := gikRijkl. Finally, the scalar curvature is defined by

R(P ) := gjlRjl(P ).

Explicitly, we get F21 = −F12,F11 ≡ F22 ≡ 0, and

F12 =

 

0 −�xx − �yy

�xx + �yy 0

!

.

Hence F = F12 dx1 ∧ dx2. Using (5.72), an explicit computation shows that
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Rijkl = K(gikgjl − gjkgil), i, j, k, l = 1, 2, (5.92)

where K is the Gaussian curvature. Moreover,52

Rij = Kgij , R = 2K.

This implies RicP = K(P )gP for all points P of HR. A real n-dimensional Rieman-
nian manifold M is called an Einstein manifold iff there is a real constant λ such
that

RicP = λgP for all P ∈M.

Therefore, a real 2-dimensional Riemannian manifold is an Einstein manifold iff it
has constant Gaussian curvature (e.g., the 2-dimensional sphere and the hyperbolic
plane).53 By (5.92), from the symmetry relation gij = gji it follows that

• Rijkl = −Rjikl (antisymmetry with respect to i, j),
• Rijkl = −Rijlk (antisymmetry with respect to the first pair of indices),
• Rijkl = −Rijlk (antisymmetry with respect to the second pair of indices),
• Rijkl = Rklij (symmetry between the first pair and the second pair of indices),
• Ri[jkl] = 0 (the antisymmetrization with respect to the last three indices vanishes

– first Bianchi identity). 54

• ∂[sRijk]l = 0 (antisymmetrization with respect to the first three indices vanishes
identically – second Bianchi identity).

Hence R1212 = −R2112 = −R1221 = R2121. The remaining components Rijkl

vanish identically, since Riikl = Rijkk = 0. Therefore, only the component
R1212 = K(g11g22 − g12g21) is essential.55

The theorema egregium of Gauss. Consider the energetic minimum prob-
lem

Z τ1

τ0

ẋi(τ)gij(P (τ))ẋj(τ) dτ = min!

with the fixed end points (x1(τ0), x
2(τ0)) and (x1(τ1), x

2(τ1)). Every smooth so-
lution of this minimum problem satisfies the Euler–Lagrange equation (5.91) with
the Christoffel symbols56

Γ k
ij = 1

2
gks (∂igsj + ∂jgis − ∂sgij) .

Mnemonically, observe the position of the summation index s. In terms of matrix
elements, the fundamental structural equation

Fkl = ∂kAl − ∂lAk +AkAl −AlAk, j, k = 1, 2 (5.93)

for the Cartan curvature 2-form F = 1
2
Fijdx

i ∧ dxj reads as

52 Note that Rjl = Rijklg
ik = K(2gjl − δk

l gjk) = Kgjl.
53 We refer to A. Besse, Einstein Manifolds, Springer, New York, 1987.
54 Since Rijkl = −Rijlk, we get Ri[jkl] = 2(Rijkl + Riklj + Rikjl).
55 The situation completely changes in higher dimensions. Consider a real n-

dimensional Riemannian manifold, n = 2, 3, . . . Then, the Riemann curvature
tensor has n2(n2 − 1)/12 essential components. In particular, if n = 4, then we
get 20 essential components. This is the case of Einstein’s theory of general rela-
tivity. As we will show in Vol. III, the scalar curvature R and its sign are crucial
for our universe, but not the 20 components of the Riemann curvature tensor.

56 We will prove this in Problem 5.7.
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Ri
jkl = ∂kΓ

i
lj − ∂lΓ

i
kj + Γ i

ksΓ
s
lj − Γ i

lsΓ
s
kj . (5.94)

This looks awkwardly compared with the elegant equation (5.93). In particular, we
have

K =
R1212

det(gij)
. (5.95)

This is the theorema egregium of Gauss in terms of the Riemann curvature tensor.
This theorem tells us that the Gaussian curvature can be computed by knowing
the components gij of the metric tensor and their partial derivatives up to order 2.
These quantities can be intrinsically measured on the manifold without using any
embedding of the manifold into a higher-dimensional surrounding space.

Cartan’s local curvature forms. We define:

• ωk
j := Γ k

ij dxi (local connection 1-form),

• Θk := 1
2
(Γ k

ij − Γ k
ji) dx

i ∧ dxj (local torsion 2-form),

• Ωi
j := 1

2
Ri

jkl dx
k ∧ dxl (local curvature 2-form).

Since Γ k
ij = Γ k

ji, we get Θk = 0, i.e., the connection is torsion-free. For i, j = 1, 2,
it follows from (5.94) that

• Θi = ωi
s ∧ dxs = 0 (torsion-free connection), and

• Ωi
j = dωi

j + ωi
s ∧ ωs

j (structural equation).

Using ddω = 0 and the product rule d(ω ∧ μ) = dω ∧ μ− ω ∧ dμ for 1-forms ω and
μ, we get the following:

• dΘi = dωi
s ∧ dxs = 0 (first Bianchi identity), and

• dΩj
i = dωi

s ∧ ωs
j − ωi

s ∧ dωs
j = 0 (second Bianchi identity).

This implies

• R[ijk]l = 0 (first Bianchi identity), and
• ∂[sFkl] = 0 (second Bianchi identity).

One can show that this is equivalent to the second Bianchi identity given above.57 In
Vol. III we will use Cartan’s structural equations in order to compute elegantly the
Schwarzschild solution of the Einstein equations in general relativity. This solution
describes the gravitational field of both the sun and black holes.

Killing the indices and the construction of invariants. The invariance
properties of the expressions above under changing local coordinates will be studied
in Vol. III based on a general approach. At this point let us only mention that the
theory will be designed in such a way that

Expressions without any free indices are invariants.

For example, A,F ,R,Ric, R, and the Gaussian curvature K are invariants, that
is, they do not depend on the choice of the local coordinate system. Hence they
possess a geometric meaning.

We briefly say that invariants are generated by killing the indices.

57 In the present 2-dimensional case, the argument is trivial. However, it can be
applied to higher dimensions. Then, the argument is crucial.
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This is a special case of the index principle to be studied in Vol. III.
Symmetry. Recall that �(x, y) := lnn(x, y), where n = n(x, y) is the refraction

index at the point. The equation (5.87) for the geodesics can be written as

ẍk + (ẋ1, ẋ2)Γ k(P )

 

ẋ1

ẋ2

!

= 0, k = 1, 2

with the symmetric matrices

Γ 1 := (Γ 1
ij) =

 

�x �y

�y −�x

!

, Γ 2 = (Γ 2
ij) =

 

−�y �x

�x �y

!

.

In addition, the matrices Γ 1, Γ 2 are traceless. Thus, they are contained in the Lie
algebra sl(2,R) of the symmetry group Sym(2,R) of the hyperbolic plane. This
means that the equations for the geodesics reflect the symmetry of the hyperbolic
plane on an infinitesimal level.

Example 1 (Euclidean geometry). Let n ≡ 1. Then the covariant partial deriva-
tive (resp. the covariant directional derivative) coincides with the classical partial
derivative (resp. directional derivative), that is, ∇j = ∂j , j = 1, 2 and D

dτ
= d

dτ
. The

Christoffel symbols vanish identically. Hence A,F ,R ≡ 0, and K ≡ 0. That is, all
the curvature quantities vanish identically.

Example 2 (hyperbolic geometry). Let n(x, y) := 1
y

for all x ∈ R, y > 0. Hence

�(x, y) = − ln y, and we have A = A1dx +A2dy with the connection matrices

A1 :=

 

0 − 1
y

1
y

0

!

, A2 :=

 

− 1
y

0

0 − 1
y

!

.

Moreover, we get F = F12dx
1 ∧ dx2 with

F12 =

 

R1
112 R1

212

R2
112 R1

212

!

=

 

0 − 1
y2

1
y2 0

!

.

For the metric tensor, we get

g11 = g22 =
1

y2
, g12 = g21 = 0, g11 = g22 = y2, g12 = g21 = 0.

Hence R1212 = g1sR
s
212 = g11R

1
212 = −y−4. By the theorema egregium (5.95),

K ≡ −1, R ≡ −2, Rkl ≡ −gkl, k, l = 1, 2.

The Einstein equations in general relativity. These fundamental equations
read as

Ric(g)− 1
2
Rg + Λg = κT. (5.96)

Here, g is the metric tensor of a 4-dimensional pseudo-Riemannian space-time man-
ifold with signature (1,−1,−1,−1). The Ricci tensor Ric(g) is responsible for grav-
itation in the universe. The geodesics describe the motion of both celestial bodies
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and light rays.58 Here, κ := 8πG/c4 where G is Newton’s gravitational constant,
and c is the velocity of light in a vacuum. Moreover, Λ is the so-called cosmological
constant, which acts as a negative pressure if Λ > 0. This constant is responsible
for the accelerated expansion of our universe observed by astronomers. The energy-
momentum tensor T describes the distribution of matter and energy in the universe.
If T ≡ 0, then we get Ric(g) = ( 1

2
R − Λ)g. If g is a solution of this equation, then

R = 4Λ. Hence
Ric(g) = Λg.

The Einstein equations will be studied in Vol. III. We refer to Zeidler (1986), Vol.
IV, and to Grøn and Hervik, Einstein’s Theory of General Relativity: with Modern
Applications in Cosmology, Springer, New York, 2007.

Historical remarks. In 1954, the young physicists Yang and Mills tried to
generalize the Maxwell equations. They used an idea of Hermann Weyl published
in 1929.59

• Weyl formulated the Maxwell equations as a gauge theory based on the commu-
tative Lie group U(1).

• The goal of Yang and Mills was to replace the commutative group U(1) by the
noncommutative Lie group SU(2).

To this end, they replaced the relation

Fjk = ∂jAk − ∂kAj , j = 1, 2, 3, 4

between the electromagnetic field tensor {Fij} and the 4-potential {Aj} by a mod-
ified relation of the type

Fjk = ∂jAk − ∂kAj +AjAk −AkAj , j, k = 1, 2, 3, 4, (5.98)

where the complex 2 × 2 matrices A1,A2,A3,A4 are elements of the Lie algebra
su(2) of the symmetry group SU(2). Dianzhou Zhang asked Professor Yang in
an interview:60 An interesting question is whether you understood in 1954 the
tremendous importance of your joint paper with Mills on noncommutative gauge
theory. Yang answered:

No. In the 1950s we felt our work was elegant. I realized its importance in
the 1960s and its great importance to physics in the 1970s. Its relationship
to deep mathematics became only clear to me after 1974.

In the 1960s and the early 1970s, equations of the type (5.98) above were used in
order to formulate the Standard Model in elementary particle physics. Here, the
symmetry group U(1)× SU(2)× SU(3) is used.

58 Using components, we have ds2 = gμνdx
μdxν and

Rμν − 1
2
Rgμν + Λgμν = κTμν , μ, ν = 0, 1, 2, 3. (5.97)

We sum over equal upper and lower indices from 0 to 3. Multiplying equation
(5.97) by gμν , we get R− 2R + 4Λ = κgμνTμν . Hence R = 4Λ− κ tr(T).

59 H. Weyl, Elektron and Gravitation, Z. Phys. 56 (1929), 330–352 (in German).
C. Yang, C. and R. Mills, Conservation of isotopic spin and isotopic spin invari-
ance, Phys. Rev. 96 (1954), 191–195.

60 D. Zhang, C.N. Yang and contemporary mathematics: An interview, Mathemat-
ical Intelligencer 15(4) (1993), 13–21. In 1957, Chen Ning Yang (born 1922) and
Tsung-Dao Lee (born 1926) were awarded the Nobel prize in physics for their
penetrating investigation of the so-called parity laws which has led to important
discoveries regarding the elementary particles.
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• The crucial field tensor {Fij} describes all the 12 particles (i.e., the photon, 8
gluons, and 3 vector bosons) which are responsible for the interaction

• between the 12 basic particles (i.e., 6 quarks and 6 leptons – the electron, 3
neutrinos, the muon, and the tau) and their antiparticles.

The typical difficulty of any gauge theory is the fact that the interacting particles
are massless at the very beginning. In contrast to this, the three vector bosons
observed in nature are quite heavy – their masses equal about 100 proton masses.
One needs an additional field – the Higgs field – in order to generate the masses
of the vector bosons. This so-called Higgs mechanism will be thoroughly studied in
Vol. III.

In the late 1960s, Yang discovered the relation between Yang–Mills theory and
Riemannian geometry. He reports in the same interview as quoted above:

In the late 1960s, I began a new formulation of gauge fields, through the
approach of non-integrable phase factors. It happend that one semester, I
was teaching general relativity, and I noticed that the formula (5.93) above
in gauge theory and the formula (5.94) above in Riemannian geometry
are not just similar – they are, in fact the same if one makes the right
identification of symbols.

Yang continues:

With an appreciation of the geometrical meaning of gauge theory, I con-
sulted Jim Simons, a distinguished geometer, who was then the chairman
of the Mathematics Department at Stony Brook (Long Island, New York).
He said gauge theory must be related to connections on fiber bundles. I
then tried to understand fiber bundle theory from such books as Steen-
rod’s The Topology of Fiber Bundles, Princeton University Press, 1951,
but I learned nothing. The language of modern mathematics is too cold
and abstract for a physicist.61

In 1975, Wu and Yang wrote a paper about global gauge theory. In this paper, they
published a quite interesting dictionary about the completely different terminology
of mathematicians and physicists concerning the same topic.62 For example:

connection in mathematics ⇔ potential in physics,

curvature in mathematics ⇔ field tensor (interaction) in physics,

structural equation ⇔ field tensor− potential relation,

change of bundle coordinates ⇔ gauge transformation,

structure group ⇔ gauge group.63

In a long historical process, mathematicians tried to understand curvature, but
physicists studied the forces acting in the universe. Nowadays we know that mathe-
maticians and physicists did the same from an abstract mathematical point of view.
Observe that

61 Based on Élie Cartan’s fundamental papers, the final form of modern differen-
tial geometry (to be presented in Vol. III) was created by Charles Ehresmann,
Les connexions infinitésimales dans un espace fibré differentiable, Colloque de
Topologie, Bruxelles, 1950, pp. 29–55. The first monograph on modern differ-
ential geometry was written by S. Kobayashi and K. Nomizu, Foundations of
Differential Geometry, Vols. 1, 2, Wiley, New York, 1963.

62 T. Wu and C. Yang, Concept of non-integrable phase factors and global formu-
lation of gauge fields, Phys. Rev. D12 (1975), 3845–3857.
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The Cartan curvature 2-form is more fundamental than the Riemann cur-
vature tensor.

In fact, since RP (a, b, u, v) := −〈F(a, b)u|v〉P for all a, b, u, v ∈ TPHR, the Riemann
curvature tensor only works if the tangent space of the manifold is equipped with the
additional structure of a Hilbert space (or an indefinite Hilbert space, as in general
relativity). However, the notion of curvature in the sense of Cartan is independent of
such an additional structure. In terms of mathematics, the notion of curvature can
be introduced without using a metric, one only needs what is called a connection.
In terms of physics, this corresponds to the transport of information.

5.11 Ariadne’s Thread in Gauge Theory

The prototype of a gauge transformation in physics is given by the formula

ψ+(x, y, z, t) = eiα(x,y,z,t)ψ(x, y, z, t), (x, y, z, t) ∈ R
4. (5.99)

Here ψ : R
4 → C is a complex-valued function depending on both Cartesian space

coordinates (x, y, z) ∈ R
3 and the time coordinate t ∈ R. The real-valued phase

function α : R
4 → R depends on space and time. The phase factor eiα is contained

in the group U(1) of all complex numbers ζ with |ζ| = 1. Linearization at the unit
element ζ = 1 of the group U(1) yields

eiα = 1 + iα + o(α), α→ 0.

The purely imaginary numbers iα form the Lie algebra u(1) of the Lie group U(1).
From the physical point of view, suppose that the function ψ is a solution of the
Schrödinger equation for a quantum particle moving in R

3, which satisfies the nor-
malization condition

R

R3 |ψ(x, y, z, t)|2 dxdydz = 1 for all times t ∈ R. The real
number

pt(U) :=

Z

U
|ψ(x, y, z, t)|2 dxdydz

equals the probability of finding the quantum particle in the open subset U of R
3

at time t. Observe the crucial fact that the probability pt(U) is invariant under the
gauge transformation (5.99). This follows from |eiα| = 1, and hence |ψ+(x, y, z, t)| =
|ψ(x, y, z, t)|.

In terms of physics, roughly speaking, gauge theory describes additional
internal degrees of freedom of physical systems which do not affect the
physics.

For example, the choice of the potential does not influence the forces in classical
Newtonian mechanics.

From the mathematical point of view, gauge theory studies invariants under
gauge transformations.

Only such gauge invariants can be observed in physical experiments. Therefore,
gauge theory is part of the theory of invariants. In order to explain the basic ideas
of gauge theory, let us return to the hyperbolic plane HR.



334 5. Geometrical Optics

5.11.1 Parallel Transport of Physical Information – the Key to
Modern Physics

In modern physics, the Huygens principle is replaced by the parallel trans-
port of physical information.64

Folklore

Again set x1 = x, x2 := y. Consider a smooth function ψ : HR → R
2. We write

ψ(x1, x1) =

 

ψ1(x1, x2)

ψ2(x1, x2)

!

. (5.100)

Intuitively, we regard ψ(x1, x2) as the value of a physical field at the point (x1, x2)
of the hyperbolic plane HR. Let GL(2,R) denote the Lie group of all real invertible
(2× 2)-matrices.

The equation of parallel transport. Let

C : x1 = x1(τ), x2 = x2(τ), τ0 ≤ τ ≤ τ1

be a smooth curve on the hyperbolic plane HR. Set γ(τ) := (x1(τ), x2(τ)). Further-
more, let ψ(τ) := ψ(γ(τ)). By definition, the field ψ is parallel along the curve C
iff the differential equation

ψ̇(τ) + ẋi(τ)Ai(γ(τ)) · ψ(τ) = 0 (5.101)

is satisfied for all τ ∈ [τ0, τ1]. This definition is motivated by (5.57) on page 300.65

In particular, as a consequence of our definition, the tangent vector field

τ �→ (ẋ1(τ), ẋ2(τ))

of a geodesic C is parallel along the curve C itself. This generalizes the elementary
intuitive fact that, in Euclidean geometry, the tangent vector of a straight line C
is parallel along the straight line C itself. The operator Πτ of parallel transport is
defined by

Πτψ0 := ψ(τ), τ ≥ 0,

where τ �→ ψ(τ) is the unique solution of the differential equation (5.101) with the
initial condition ψ(τ0) := ψ0.

Parallel transport and covariant directional derivative. The following
theorem shows that the covariant directional derivative along the curve C is related
to parallel transport in a quite natural way.

Theorem 5.13 For any τ ∈]τ0, τ1[, we have

Dψ(τ)

dτ
=

dΠ−σψ(τ + σ)

dσ |σ=0
. (5.102)

Proof. We have to distinguish between

64 The importance of parallel transport in differential geometry was emphasized
in a classical paper by T. Levi-Civita, Nozione di parallelismo in una varieta
qualunque e consequente specificazione geometrica della curvature Riemanniana,
Rend. Palermo 42 (1917), 73–205 (in Italian).

65 Using components, equation (5.101) reads as ψ̇k + ẋiΓ k
ijψ

j = 0, k = 1, 2.
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Fig. 5.24. Parallel transport and curvature

• the given physical field ψ(τ) = ψ(x1(τ), x2(τ)) and
• the parallel transport ψ∗ = ψ∗(τ) which satisfies equation (5.101).

Using (5.101), Taylor expansion at the point τ + σ yields

ψ∗(τ + σ)− ψ∗(τ) = −ẋi(τ + σ)Ai(x
1(τ + σ), x2(τ + σ)) ψ∗(τ + σ) + o(σ),

as σ → 0. Assuming that ψ∗(τ + σ) = ψ(τ + σ), we claim that

Dψ(τ)

dτ
= lim

σ→0

ψ∗(τ)− ψ(τ)

σ
.

That is, we compare

• the value ψ(τ) of the given physical field with
• the value obtained from ψ(τ + σ) by backward parallel transport.

The trick is to use the decomposition

ψ∗(τ)− ψ(τ)

σ
=

ψ∗(τ)− ψ∗(τ + σ)

σ
+

ψ(τ + σ)− ψ(τ)

σ
.

Letting σ → 0, we get ẋi(τ)Ai(x
1(τ), x2(τ)) ψ(τ)+ dψ(τ)

dτ
. This coincides with Dψ(τ)

dτ
defined above. �

Parallel transport and curvature. Consider the triangle T pictured in Fig.
5.24. The triangle is spanned by the vectors τa and τb with τ > 0. We are given
the field ψ(P ) at the point P in the hyperbolic plane HR. We carry out a clock-

wise parallel transport of the field ψ(P ) along the boundary ∂T = PABP of the
triangle T . We are starting at the initial point P and we are finishing at the final
point P after turning once around the triangle. The result of this parallel transport
is denoted by Π∂T ψ(P ). The following theorem tells us that, roughly speaking,
curvature measures the difference ψ(P )−Π∂T ψ(P ). This means that

Curvature measures the path-dependence of the parallel transport.

In particular, if this difference vanishes, then also the curvature vanishes at the
point P. Let meas(T ) = 1

2
det(τa, τb) be the Euclidean area measure of the triangle

T . Now we contract the triangle T to the point P by letting τ → 0.

Theorem 5.14 We have

FP (a, b)ψ(P ) = det(a, b) lim
T →P

ψ(P )−Π∂T ψ(P )

meas(T )
.

The proof based on the Poincaré–Stokes integral theorem will be given in Prob-
lem 5.8.

Cartan’s covariant differential. For the physical field ψ, the classical Cartan
calculus yields the following:
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• dψ = ∂kψ · dxk,
• d2ψ = d(∂jψ) ∧ dxk = ∂j∂kψ · dxj ∧ dxk ≡ 0 (Poincaré identity).

Now we replace the partial derivative ∂k by the covariant partial derivative ∇k.
This way, we get the following definitions:

• Dψ := ∇kψ · dxk (covariant differential),
• D2ψ := D(∇kψ) ∧ dxk = ∇j∇kψ · dxj ∧ dxk,
• D3ψ := D(∇j∇kψ) ∧ dxj ∧ dxk = ∇i∇j∇kψ · dxi ∧ dxj ∧ dxk ≡ 0 (Bianchi

identity).

Let us discuss this. For any real linear space X, the space L(X,X) of linear operators
A : X → X becomes a real Lie algebra with respect to the Lie bracket [A,B] :=
AB−BA for all A,B ∈ L(X,X). In particular, by cyclic permutation, we have the
Jacobi identity

[ [A,B], C] + [ [B,C], A] + [ [C,A], B] = 0.

Explicitly, (AB −BA)C −C(AB −BA) + (BC −CB)A−A(BC −CB) + (CA−
AC)B − B(CA− AC) = 0. Now we apply this to the covariant partial differential
operator ∇k. Hence

“

[ [∇i,∇j ],∇k] + [ [∇j ,∇k],∇i] + [ [∇k,∇i],∇j ]
”

ψ = 0. (5.103)

Since dxj ∧ dxj = −dxk ∧ dxj , we get

D2ψ = 1
2
(∇j∇k −∇k∇l)ψ · dxj ∧ dxk = 1

2
[∇j ,∇k] ψ · dxj ∧ dxk.

Therefore, we have the structural equation66

Fψ = D2ψ,

where Fψ = 1
2
Fjkψ · dxj ∧ dxk with

Fjkψ = [∇j ,∇k]ψ, j, k = 1, 2.

This tells us that the Cartan curvature 2-form measures the structure of the Lie
algebra generated by the covariant partial derivatives. From (5.103) we obtain the
Bianchi identity D3ψ = 0, which is equivalent to the relation

∇[rFkl] = 0. (5.104)

This means that antisymmetrization with respect to the indices r, k, l always van-
ishes identically.67 Alternatively, Dψ,D2ψ, and D3ψ = 0 can be written as follows:

• Dψ = dψ +Aψ (covariante differential),
• F = dA+A ∧A (structural equation),
• dF +A ∧ F − F ∧A = 0 (Bianchi identity).

For a detailed discussion, we refer to Vol. III. There we will also show that the ve-
locity vector fields on a manifold form a Lie algebra generated by the Lie derivative,
and that there exists a close relation between this Lie algebra and curvature.

66 Mnemonically, we write F = D2.
67 For 2-dimensional manifolds, the Bianchi identity is trivial, since 3-forms vanish

identically on a 2-dimensional manifold. However, the argument above also ap-
plies to n-dimensional manifolds, n = 3, 4, . . . Then we we get nontrivial results
(see Vol. III).
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5.11.2 The Phase Equation and Fiber Bundles

In a natural way, the global mathematical description of physical fields is
based on the language of bundles.

Folklore

The main trick due to Élie Cartan is to reduce the parallel transport of a physical
field to a dynamical system in a principal fiber bundle (Cartan’s method of moving
frame).68 To this end, we will replace the differential equation of parallel transport
by the phase equation (5.106) below. First let us introduce some bundles.

Tangent bundle. By definition, the tangent bundle THR of the hyperbolic
plane HR consists of all the pairs (P, v), where P is a point of the hyperbolic plane,
and v is a tangent vector at the point P. That is,

THR := {(P, v) : P ∈ HR, v ∈ TPHR}.
This is a real 4-dimensional manifold.

Cotangent bundle. By definition, the cotangent space T ∗
PHR of the hyperbolic

plane at the point P is the dual space to the tangent space TPHR. That is, the
elements of T ∗

PHR are linear functionals of the form ω : TPHR → R.
Principal fiber bundle. The product set

P := HR ×GL(2,R) = {(P,G) : P ∈ HR, G ∈ GL(2,R)}
is called the (trivial) principal fiber bundle over HR with the group GL(2,R) as
typical fiber.

The fundamental phase equation. Let C : P = P (τ), τ0 ≤ τ ≤ τ1 be
a smooth curve on the hyperbolic plane. Here, the point P corresponds to the
coordinates (x1, x2). The main idea is to replace the differential equation

ψ̇(τ) + ẋi(τ)Ai(P (τ)) · ψ(τ) = 0, τ0 ≤ τ ≤ τ1, ψ(τ0) = ψ0 (5.105)

of parallel transport along the curve by the phase equation

Ġ(τ) + ẋi(τ)Ai(P (τ)) G(τ) = 0, τ0 ≤ τ ≤ τ1 (5.106)

along the curve C.

Proposition 5.15 If G = G(τ) is a smooth solution of the phase equation (5.106),
then the function

ψ(τ) := G(τ)ψ0, τ0 ≤ τ ≤ τ1
is a solution of the equation (5.105) of parallel transport.

The proof follows by differentiation. This way the parallel transport along the
curve C corresponds to a curve

(P,G) = (P (τ), G(τ)), τ0 ≤ τ ≤ τ1

on the principal fiber bundle P.
Associated vector bundle. The (trivial) bundle

V := {(P, ψ) : P ∈ HR, ψ ∈ R
2}

is called the associated vector bundle to the principal fiber bundle P with the
typical fiber R

2. The parallel transport ψ = ψ(τ) of the physical field corresponds
to the curve

(P,ψ) = (P (τ), ψ(τ)), τ0 ≤ τ ≤ τ1
in the vector bundle V.
68 The intuitive background will be studied in Vol. III.
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5.11.3 Gauge Transformations and Gauge-Invariant Differential
Forms

Gauge transformations. Let P denote a point in the hyperbolic plane HR with
the coordinates (x1, x1). The transformation

ψ+(P ) = G(P )ψ(P ) (5.107)

is called a gauge transformation. More precisely, we assume that the transformation
matrix G(P ) is contained in the group GL(2,R) for all points P in HR and that the
map G : HR → GL(2,R) is smooth. We add the transformation law

(P,G) �→ (P,G+) G+ = G(P )G

for the coordinates of the principal fiber bundle P = HR ×GL(2,R). The standard
example of the gauge transformation of a velocity field will be investigated below.
We postulate:

Parallel transport is compatible with gauge transformations.

In order to reach this goal, we introduce the following transformed quantities for
all i, j = 1, 2 :

• A+
j := GAjG−1 − G−1∂jG (connection matrices),69

• ∇+
j := ∂j +A+

j (covariant partial derivative),

• D+

dτ
:= d

dτ
+ ẋiA+

i (covariant directional derivative),

• A+ = A+
i dx

i (connection 1-form),

• F+
ij := ∇+

i ∇+
j −∇+

j ∇+
i (curvature matrices),

• F+ := 1
2
F+

ij dxi ∧ dxj (curvature 2-form).

Theorem 5.16 If τ �→ ψ(τ) is parallel along the curve C, then so is ψ+ with
respect to the transformed connection matrices.

Proof. From I = GG−1, we get 0 = ∂j(GG−1) = ∂jG · G−1 + G∂j(G−1). Hence

∂jG · G−1 = −G∂j(G−1) = G · G−2∂jG = G−1∂jG.

Therefore,

A+
j = GAjG−1 − ∂jG · G−1. (5.108)

Differentiating ψ+(τ) = G(P (τ)) · ψ(τ) with respect to the curve parameter τ , we
get

ψ̇+ = (ẋi∂iG)ψ + Gψ̇.
Substituting ψ = G−1ψ+ and ψ̇ = −ẋiAiψ, we obtain ψ̇+ + ẋiA+

i ψ
+ = 0. �

We have the following transformation laws:

• ∇+
j ψ

+(P ) = G(P ) · ∇jψ(P ),

• D+ψ+(P )
dτ

= G(P )Dψ(P )
dτ

,

69 Explicitly, A+
j (P ) := G(P )Aj(P )G(P )−1 − G(P )−1∂jG(P ).
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• A+
P = G(P )APG(P )−1,

• F+
ij (P ) = G(P )Fij(P )G(P )−1,

• F+
P = G(P )FPG(P )−1.

This shows the crucial fact that:

Both the covariant partial derivative and the covariant directional deriva-
tive are transformed like the physical field ψ itself.

For the covariant partial derivative, by (5.108), this follows from

∇+
j ψ

+ = ∇+
j (Gψ) = ∂j(Gψ) +A+

j (Gψ)

= ∂jG · ψ + G∂jψ + GAjψ − ∂jG · ψ = G(∂j +Aj)ψ = G∇jψ.

A similar argument yields the transformation law for the covariant directional
derivative. For the curvature components Fij , observe that

∇+
i ∇+

j ψ
+ = ∇+

i (G∇jψ) = G(∇i∇j)ψ = G(∇i∇j)G−1ψ+.

Similarly,

F+
ijψ

+ = (∇+
i ∇+

j −∇+
j ∇+

i )ψ+ = G(∇i∇j −∇j∇i)G−1ψ+ = (GFijG−1)ψ+.

The Maurer–Cartan form. Let us consider the principal fiber bundle P :=
HR ×GL(2,R). The 1-form

M(P,G) := G−1dG for all (P,G) ∈ P

is called the Maurer–Cartan form on P.70 Explicitly, M(P,G) = G−1∂jG dxj . Con-

sider a smooth curve C : xj = xj(τ), τ0 ≤ τ ≤ τ1, j = 1, 2, on the base manifold

HR. Define G(τ) := G(x1(τ), x2(τ)). Then Ġ(τ) = ẋj(τ)∂jG(P (τ)). Hence, for all
τ ∈ [τ0, τ1],

M(P (τ),G(τ))(Ṗ (τ), Ġ(τ)) = G(τ)−1ẋj(τ)∂jG(P (τ)) = G−1(τ)Ġ(τ).

Fix G ∈ GL(2,R), and set fG(P,G) := (P,GG) for all (P,G) ∈ P.

Proposition 5.17 For any G ∈ GL(2,R), the Maurer–Cartan form M is invariant
under the gauge transformation fG : P → P.

Proof. We have to show that f∗
GM = M. In fact, the linearization

f ′
G(P,G) : T(P,G)P → T(P,GG)P

is given by f ′
G(v, V ) = (v,GV ) for all (v, V ) ∈ TPHR × TGGL(2,R).71 Hence

(f∗
GM)G(v, V ) = M(P,GG)(v,GV ) = (GG)−1GV = G−1V = MG(v, V ). �

Proposition 5.18 dM + M ∧M = 0 on P.

70 Maurer (1859–1927) worked on the theory of invariants at the University of
Tübingen (Germany).

71 To see this, note that differentiation of H(τ) := GG(τ) yields Ḣ(0) = GĠ(0).
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This is called the Maurer–Cartan structural equation of the Lie group GL(2,R).
As we will show in Vol. III, intuitively, this equation tells us that the curvature of
the Lie group GL(2,R) (with respect to left-translation on the group) vanishes
identically, and M is the corresponding connection 1-form. This is true for all Lie
groups.
Proof. It follows from GG−1 = I that dG ·G−1 + GdG−1 = 0. Hence

d(G−1dG) = dG−1 ∧ dG = (dG−1)G ∧G−1dG = −G−1dG ∧G−1dG. �

Gauge-invariant differential forms. For any point (P,G) of the principal
fiber bundle P = HR ×GL(2,R), we define:

• A(P,G) := G−1dG + G−1APG (global connection 1-form on P).

Proposition 5.19 The global connection form A on the principal fiber bundle P is
invariant under the gauge transformation (P,G) �→ (P,G+). Explicitly, this means
that, A+

(P,G+) = A(P,G).

Proof. By Prop. 5.17, G−1
+ dG+ = G−1dG. Hence

A+
(P,G+) = G−1

+ dG+ + G−1
+ A+

PG+

= G−1dG + (GG)−1GAPG−1(GG) = G−1dG + G−1APG = A(P,G).

�

The global phase equation. Using the global connection 1-form A, the equa-
tion

A(P (τ),G(τ))(Ṗ (τ), Ġ(τ)) = 0, τ0 ≤ τ ≤ τ1 (5.109)

is equivalent to the phase equation (5.106). In fact, equation (5.109) means that

G(τ)−1Ġ(τ) + G(τ)−1AP (τ)(Ṗ (τ))G(τ) = 0. This is equivalent to

Ġ(τ) +AP (τ)(Ṗ (τ))G(τ) = 0.

Explicitly, Ġ(τ) + ẋj(τ)Aj(P (τ))G(τ) = 0.
Cartan’s global structural equation. We define the global curvature form

F on the principal fiber bundle P = HR ×GL(2,R) by setting

F := dA + A ∧ A. (5.110)

Sections of the principal fiber bundle and gauge transformations. Let
s : HR → P be a section of the principal fiber bundle P := HR × GL(2,R). By
definition, this is a smooth map of the form

s(P ) := (P,G(P )) for all P ∈ HR.

In Vol. III, we will develop a calculus for differential forms on principal fiber bundles
with values in a Lie algebra. In this setting, we will show in Vol. III that

s∗F = F+.

Explicitly, (s∗F)P = G−1
+ (P )FPG+ where G+(P ) = G(P )G. Thus, the pull-back

s∗F of the global curvature form F is precisely the gauge transformation of the
Cartan curvature 2-form F . Similarly, the pull-back s∗A of the global connection
1-form A yields the gauge-transformation of the phase equation which implies the
equation of parallel transport for physical fields. Summarizing, we get the following:
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The global curvature form F (defined on the principal fiber bundle P =
HR × GL(2,R) with values in the Lie algebra gl(2,R)) represents an in-
variant mathematical object which carries all the information on the gauge
transformations of the Cartan curvature 2-form on the base manifold HR.

Standard example (velocity fields). Let

xj
+ = χj(x1, x2), j = 1, 2 (5.111)

be a diffeomorphism from the hyperbolic plane HR onto itself. This represents a
change of coordinates on the hyperbolic plane. Regard the parameter τ as time. In
terms of physics, the curve

C : xi = xi(τ), τ0 ≤ τ ≤ τ1, i = 1, 2

describes the motion of a point on the hyperbolic plane with the velocity vector

v(τ) :=

 

ẋ1(τ)

ẋ2(τ)

!

at time τ. After the coordinate change (5.111), the curve looks like

C : xi
+(τ) = χi(x1(τ), x2(τ)), τ0 ≤ τ ≤ τ1, i = 1, 2.

Differentiation with respect to time yields the transformation law of the velocities:

 

ẋ1
+(τ)

ẋ2
+(τ)

!

=

 

∂1χ
1(P (τ)) ∂2χ

1(P (τ))

∂1χ
2(P (τ)) ∂2χ

2(P (τ))

! 

ẋ1(τ)

ẋ2(τ)

!

.

This is a gauge transformation of the form v+ = G(P (τ)) v. Observe that, in this
example, a change of coordinates generates a transformation law for the velocity
vectors in the tangent space, which represents a gauge transformation.72

5.11.4 Perspectives

The approach above was chosen in order to display the historical development from
Gauss’ theorema egregium to Cartan’s structural equation. In modern differential
geometry, the axiomatic presentation reverses the historical order.

• The starting point is the fundamental phase equation, as a differential equation
on a principal fiber bundle P.

• More precisely, one starts with a velocity field on P which splits into horizontal
and vertical velocity vectors, with respect to the fibers.

• This velocity vector field generates the dynamical system of parallel transport.
The corresponding ordinary differential equation coincides with the equation of
parallel transport, which is based on the connection 1-form A on P.

• Projection onto horizontal vector fields is used in order to replace the differential
dω by the covariant differential Dω of differential forms ω on the principal fiber
bundle P.

72 The relation to the classical tensor calculus will be studied in Vol. III. We refer
to J. Schouten, Ricci Calculus, Springer, Berlin, 1954.
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(a) g = 1 (b) g = 2

Fig. 5.25. Oriented surface of genus g without boundary

• This yields the curvature form

F := DA, (5.112)

and the Bianchi identity DF = 0. It turns out that (5.112) is equivalent to
Cartan’s structural equation (5.110).

The extremely elegant formula (5.112) generalizes both the theorema egregium
of Gauss and the relation between the electromagnetic field tensor F and the 4-
potential A in Maxwell’s theory of electromagnetism. Moreover, formula (5.112) lies
at the heart of both the Standard Model in elementary physics and Einstein’s theory
of general relativity. In terms of mathematics, this approach effectively describes
all kinds of differential geometries:

• The typical Lie group of the principal fiber bundle P is the symmetry group of
the geometry under consideration.

• Physicists are interested in the study of partial differential equations for physical
fields. In this general setting, physical fields ψ are sections of a vector bundle V
associated to the principal fiber bundle P.

• There exists a natural way of transplanting the parallel transport from P to V.
• The parallel transport on V generates the corresponding covariant differentiation

for physical fields, which is used in order to formulate the basic partial differential
equations for the physical field under consideration.

The point is that one has to replace product bundles by general fiber bundles.
Observe that:

General fiber bundles are obtained by gluing local product bundles together,
with the aid of a cocycle.

In particular, the choice of arbitrary Lie groups allows us to take all kind of sym-
metries into account. In 1872 Felix Klein (1849–1925) formulated his Erlangen
program:

Geometry is the invariant theory of transformation groups (symmetry
groups).

Sophus Lie (1842–1899), Élie Cartan (1859–1951), and their successors realized
this program in differential geometry by investigating Lie groups and the invariant
calculus of differential forms. This is a fascinating chapter in the history of math-
ematics and physics. We will thoroughly study this in Vol. III. We also refer to
the standard textbook by S. Kobayashi and K. Nomizu, Foundations of Differential
Geometry, Vols. 1, 2, Wiley, New York, 1963.
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Fig. 5.26. Möbius strip

5.12 Classification of Two-Dimensional Compact
Manifolds

The notion of manifold is of fundamental importance for both mathematics
and physics. There arises the problem of classifying manifolds in terms
of topology. This has been one of the most important research topics in
topology in the last 150 years.

Folklore

In 1863 Möbius classified the compact orientable 2-manifolds.73 Some examples
are pictured in Fig. 5.25.74 In 1865 Möbius published a strange surface called the
Möbius strip nowadays. This twisted surface is obtained from a rectangle by gluing
together two opposite sides in a twisted manner (Fig. 5.26). If we walk along this
surface, then we reach both sides of the rectangle. Therefore, the Möbius strip is a
one-sided surface, and hence it is not possible to define an orientation. Intuitively,
a surface is oriented iff the movement of a small oriented circle along a closed
curve never changes the orientation of the circle. The main theorem on classical
topological surface theory reads as follows:75

The compact 2-manifoldsM and N (without or with boundary) are home-
omorphic iff the following three conditions hold:
(i) M and N have the same genus g,
(ii) M and N have the same number of boundaries, and
(iii) both M and N are either orientable or non-orientable.

The genus attains the values g = 0, 1, 2, . . . Let us first consider a few typical
examples. Recall that the Euler characteristic of the 2-manifold M is given by

χ(M) = β0 − β1 + β2,

73 Möbius (1790–1868) was director of the observatory in Leipzig from 1820 until
his death. Gauss recommended him for this position.

74 Let n = 1, 2, . . . By definition, an n-manifold is a real n-dimensional arcwise
connected manifold without boundary. Similarly, an n-manifold with boundary
is a real n-dimensional arcwise connected manifold with boundary (see Sects. 5.4
and 10.4.2 of Vol. I). An n-dimensional sphere S

n
r of radius r > 0 is described by

the equation x2
1 + . . . + x2

n+1 = r2 in R
n+1. The Betti numbers of an n-sphere

are given by β0 = βn = 1 and βk = 0 if k = 1, 2, . . . , n− 1. This yields the Euler
characteristic χ(Sn

r ) =
Pn

k=0(−1)kβk = 1 + (−1)n.
75 In 1907 the first complete proof of this theorem was given by M. Dehn and

P. Heegard, Analysis Situs (Topology), Enzyklopädie der mathematischen Wis-
senschaften, Vol. III, Nr. 3, pp. 153–220, Teubner, Leipzig, 1907 (in German).
We refer to the classic textbooks by Levi (1929) and Rinow (1975), Sect. XII.2,
and to the nicely written textbook by Kinsey (1993).
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Fig. 5.27. The torus T
2

where β0, β1, β2 are the Betti numbers of M. Since the 2-manifold M is arcwise
connected, we always have β0 = 1. Moreover, we have β2 = 1 (resp. β2 = 0) iff M
is orientable (resp. non-orientable).

• The 2-sphere S
2
r of radius r > 0 : This surface has the genus g = 0, the Betti

numbers
β0 = β2 = 1, β1 = 0

and the Euler characteristic χ(S2
r) = 2. The fundamental group is trivial,

π1(S
2
r) = 0, that is, the sphere S

2
r is simply connected.

• The 2-dimensional torus T
2 : This surface can be obtained by identifying the

opposite boundary points of a rectangle (Fig. 5.27). Alternatively, the torus is
homeomorphic to a sphere with one handle attached to it (Fig. 5.25(a)). This
surface has the genus g = 1, the Betti numbers

β0 = β2 = 2, β1 = 2,

and the Euler characteristic χ(T2) = 0. For the additive fundamental group, we
get

π1(T
2) = Z⊕ Z.

This reflects the fact that there exist two different types of closed curves on the
torus which cannot be contracted to one point. For example, in Fig. 5.27(c) this
concerns the equator ABA and the meridian circle PAP . Consequently, the torus
T

2 is not simply connected.
• The real 2-dimensional projective space P

2 : This space is obtained from the
closed unit disc by identifying diametrically opposed boundary points of the unit
disc with each other (Fig. 5.28). The topological space P

2 is compact, arcwise
connected, non-orientable, and it has the Betti numbers

β0 = 1, β1 = β2 = 0.

This yields the Euler characteristic χ(P2) = 1. The genus of P
2 is given by g = 1,

as we will discuss below. The additive fundamental group of P
2 is given by

	

�
Q Q

P

P

Fig. 5.28. The projective space P
2
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(a) g = 0, r = 2 (b) g = 1, r = 1

Fig. 5.29. Oriented surface of genus g with r boundaries

π1(P
2) = Z2.

This group consists of the two elements {0, 1} with 1+1 = 0. The element ”1” of
π1(P

2) corresponds to the boundary curve PQP (Fig. 5.28). This curve cannot be
continuously contracted to a point within P

2. Thus, the projective space P
2 is not

simply connected. In contrast to this, taking the identification of diametrically
opposed boundary points into account, the curve PQPQP can be continuously
contracted to the center of the unit disc. This corresponds to ”1+1=0.”

Let us now study the general case. We are given the compact 2-manifold M
of genus g. Let r = 0, 1, 2, . . . be the number of boundaries. Then there exists a
manifold N which is homeomorphic toM and which represents one of the following
normal forms:76

(I) Suppose that M is orientable.
(I-1) Let r = 0. Then the normal form N is obtained from the unit sphere S

2 by
taking 2g open discs away and by attaching g handles. The genus is also equal
to the number of ‘holes’ (Fig. 5.25).
• Betti numbers of M: β0 = β2 = 1, β1 = 2g.
• Euler characteristic of M: χ = 2− 2g.
• Additive fundamental group of M: π1 = Z⊕ . . .⊕ Z (2g summands).

(I-2) Let r > 0. The normal form N is obtained from (I-1) by taking r open discs
away (Fig. 5.29).
• Betti numbers of M: β0 = β2 = 1 and β1 = 2g + r − 1.
• Euler characteristic of M : χ = 3− 2g − r.

(II) Suppose thatM is non-orientable.
(II-1) Let r = 0. The normal form N is obtained from the unit sphere S

2 by taking
g open discs away, and by identifying diametral points of the boundary circles
with each other. The number g is the genus of M. For example, the surface
pictured in Fig. 5.30(a) is homeomorphic to the projective space P

2.
• Betti numbers of M: β0 = 1, β1 = g − 1, β2 = 0. Here, g = 1, 2, . . .
• Euler characteristic of M: χ = 2− g.

(II-2) Let r > 0. The normal form is obtained from (II-1) by taking r open discs
away. Again the number g is called the genus of M.
• Betti numbers of M: β1 = 1, β1 = g + r − 1, β2 = 0.
• Euler characteristic of M: χ = 2− g − r.
In particular, the Möbius strip corresponds to g = 1 and r = 1. Hence β1 = 1
and χ = 0.

76 Note that the Betti numbers, the Euler characteristic, and the fundamental
groups of M and N coincide.
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(a) g = 1, r = 0
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Fig. 5.30. Non-orientable surface of genus g with r boundaries

5.13 The Poincaré Conjecture and the Ricci Flow

The study of mathematics, like the Nil, begins in minuteness, but ends in
magnificence.

C.C. Colton, 1820

Friedman’s 1982 proof of the 4-dimensional Poincaré hypothesis was an
extraordinary tour de force. His methods were so sharp that as to actually
provide a complete classification of all compact simply connected topo-
logical 4-manifolds, yielding many previously unknown examples of such
manifolds.77

John Milnor, 1986

The Poincaré conjecture for 3-manifolds was one of the seven Millenium Prize Prob-
lems announced by the Clay Mathematics Institute in Cambridge, Massachusetts,
in the year 2000 (see Sect. 1.7 of Vol. I).

The topological characterization of the 2-sphere. The following result
was already known in the second half of the 19th century:

A compact simply connected 2-manifold is homeomorphic to
a 2-sphere.

This homeomorphism can be chosen as a diffeomorphism.
The topological characterization of the 3-sphere. The famous Poincaré

conjecture claims the following:

A compact simply connected 3-manifold is diffeomorphic to
a 3-sphere.

This conjecture was proven by Grigori Perelman (born 1966) in 2003. He invented
an ingenious approach for solving this outstanding problem. The main idea comes
from physics. Here, Perelman uses the physical picture of the flow of fluid particles
in order to deform the original 3-manifold into the final 3-sphere. More precisely,
he applies the so-called Ricci flow on manifolds which was thoroughly studied in
the pioneering papers by Richard Hamilton in the 1980s and 1990s. The Ricci flow
is governed by the partial differential equation

∂g(t)

∂t
= −2Ric(g(t)), t ≥ 0. (5.113)

Here, the parameter t can be regarded as time. This equation describes the time-
deformation of the metric tensor g of a Riemannian manifoldM. Equation (5.113)

77 J. Milnor, The work of M. H. Freedman. In: M. Atiyah and D. Iagolnitzer (Eds.),
Fields Medallists’ Lectures, World Scientific, Singapore, 2003, pp. 405–406.
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is of the type of a diffusion process (or heat conduction process). The main difficulty
is that there may appear singularities during the time evolution. One has to control
the possible types of singularities, and one has to regularize and renormalize them
(see the hints for further reading on page 351).

The generalization of the idea of the flow of fluid particles is also crucial for
quantum physics. In Sect. 7.11.5 we will show that the Feynman path integral
corresponds to a diffusion process in imaginary time (the Feynman–Kac formula).
Moreover, the modern approach to renormalization in quantum field theory is based
on the flow generated by the renormalization group (see Chap. 3 of Vol. I).

The homotopy type of a topological space. Recall from Vol. I the following
terminology. Let X and Y be topological spaces. Let idX denote the identity map
on X. The two continuous maps f, g : X → X are called homotopic iff there exists
a continuous map H : X × [0, 1]→ X such that

H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X.

We write f ∼ g. The map H is called a homotopy.
By definition, the space X has the same homotopy type as the space Y iff there

exist continuous maps F : X → Y and G : Y → X such that

GF ∼ idX and FG ∼ idY .

That is, the composite maps GF : X → X and FG : Y → Y are homotopic to the
corresponding identity maps. We also say that the space X is homotopy equivalent
to the space Y . For example, a topological space is called contractible iff it has the
same homotopy type as a single point (see Sect. 5.5 of Vol. I)..

By definition, the topological space X has the same topological type as the
topological space Y iff X is homeomorphic to Y . Explicitly, this means that there
exists a bijective continuous map F : X → Y such that the inverse map F−1 : Y →
X is also continuous. Setting G := F−1, we get GF = idX and FG = idY. Thus, if
X and Y have the same topological type, then they also have the same homotopy
type. However, the converse is not always true.

The topological characterization of the n-sphere. The generalized Poin-
caré conjecture reads as follows:

If an n-manifold has the same homotopy type as an n-sphere, then it has
actually the same topological type as an n-sphere.

Nowadays we know that this statement is true for all dimensions n = 1, 2, . . .
For n ≥ 5, the proof was given by Smale, and independently by Stallings and
Zeeman and by Wallace in 1960-61. For n = 4, Freedman gave the proof in 1982.
Perelman settled the most difficult case n = 3 in 2002. For their seminal results,
Smale, Freedman and Perelman were awarded the Fields medal in 1966, 1986, and
2006, respectively. Perelman refused the award. Another formulation of the Poincaré
conjecture reads as follows:

If an n-manifold has the same fundamental group and the same
homology as the n-sphere, then it is actually homeomorphic to the
n-sphere.78

This is true for all dimensions n = 1, 2, . . . The positive answer to the Poincaré
conjecture tells us the following highly nontrivial result:

Algebraic topology is able to detect spheres in all dimensions.

78 By definition, two topological spaces X and Y have the same homology iff they
have the same homology groups with integer coefficients. For an n-sphere, these
homology groups are given by H0 = Hn = Z and Hk = 0 if k = 1, 2, . . . , n − 1
(see Vol. IV).
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5.14 A Glance at Modern Optimization Theory

In the 1950s, modern control theory was founded by generalizing the duality be-
tween wave fronts and light rays.

(i) Dynamic programming (generalized wave fronts): Bellman created dynamic pro-
gramming by generalizing the Hamilton–Jacobi partial differential equation to
the Bellman functional equation. In geometrical optics, the eikonal function S
measures the time needed for the propagation of light. In dynamic program-
ming, the function S measures the quantity to be optimized (e.g., the costs of
a production process).

(ii) Pontryagin’s maximum principle (generalized light rays): Pontryagin general-
ized the Hamilton canonical equations for light rays (and the maximum princi-
ple in geometrical optics) to the computation of optimal trajectories in modern
technology. Let us discuss some important examples.
• For the return of a spaceship from moon to earth, one has to compute a

trajectory such that the heating of the spaceship remains minimal. Of in-
terest in the optimal solution is the fact that the spaceship penetrates the
earth’s atmosphere rather deeply (from 120 km altitude to 50 km) and then
it climbs again to the altitude of 75 km. On the other hand, the velocity falls
almost monotonically. The computation (performed by Roland Bulirsch for
the NASA in the 1960s) can be found in Stoer and Bulirsch, Introduction
to Numerical Analysis, Springer, New York, 1993.

• For the moon landing, one needs a feed-back control program which guaran-
tees minimal fuel consumption of the moon landing ferry. Here, the braking
process is controlled by measuring the distance between the ferry and the
moon surface.

• For the flight to Mars, one needs a trajectory of the spaceship which again
guarantees minimal fuel consumption, by taking the gravitational forces of
the planets in our solar system into account.

The proof for the validity of Pontryagin’s maximum principle is highly sophisti-
cated. For a detailed study of (i) and (ii) in the setting of nonlinear functional
analysis, we refer to Zeidler (1986), Vol. III, quoted on page 353.

5.15 Hints for Further Reading
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Crystals, Birkhäuser, Basel, 1990.

Caustics and singularities:

V. Arnold, Singularities of Caustics and Wave Fronts, Kluwer, Dordrecht,
1991.

Yu. Kravtsov and Yu. Orlov, Caustic, Catastrophes and Wave Fields,
Springer, Berlin, 1999.

V. Arnold, S. Gusein-Zade, and A. Varchenko, Singularities of Differen-
tiable Maps, Vols. 1, 2, Birkhäuser, Basel, 1985.
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Space: The Poincaré and Geometrization Conjectures, International Press,
Boston, 2006.

J. Morgan, G. Tian, Ricci Flow and the Poincaré Conjecture, Amer. Math.
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Problems

5.1 Leibniz’s product rule for differentials. Let x, h ∈ R
n with n = 1, 2, . . . We

write x := (x1, . . . , xn) and h = (h1, . . . , hn). Choose i = 1, . . . n. The basic
definition is given by

dxi(h) = hi, h ∈ R
n. (5.114)

This means that dxi is a linear functional on R
n. For each smooth function

f : R
n → R, we define80

df(x) :=
∂f(x)

∂xi
dxi. (5.115)

We sum over i = 1, . . . n. Explicitly, we get the linear functional df(x) : R
n → R

with

dfx(h) =
∂f(x)

∂xi
dxi(h) =

∂f(x)

∂xi
hi.

Prove that, for given smooth functions f, g : R
n → R, we have the Leibniz

product rule

d(fg) = (df)g + f(dg). (5.116)

Solution: d(fg) = (fg)xidxi = fxigdxi + fgxidxi.

80 To streamline notation, we sometimes write dfx instead of df(x).
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5.2 Leibniz’s chain rule and the pull-back of differentials. To the differential

df =
∂f

∂xi
dxi

we want to apply the transformation formula xi = xi(u1, . . . , um), i = 1, . . . , n.

(i) Elegant formal argument due to Leibniz: It follows from dxi = ∂xi

∂uj duj

that

df =
∂f

∂xi

∂xi

∂uj
duj . (5.117)

We sum over i = 1, . . . , n and j = 1, . . . ,m. This corresponds to the chain
rule

∂f

∂uj
=

∂f

∂xi

∂xi

∂uj
, j = 1, . . . ,m

where we sum over i = 1, . . . , n.
(ii) Rigorous argument: We write xi = F i(u1, . . . , um), and we define the pull-

back F ∗df of the functional df by setting

F ∗df := df ◦ F ′. (5.118)

This means that we use the linearized map F ′(u) : R
n → R

n in order to
transform the linear functional df into the linear functional F ∗df. Explic-
itly, this means that

(F ∗df)u(k) = dfx(F ′(u)k) for all k ∈ R
m,

where x = F (u). Show that (ii) corresponds to (i) because of the quite
natural relation

F ∗(df) = d(f ◦ F ). (5.119)

between the differential d(f ◦F ) of the transformed function f ◦F and the
pull-back F ∗df of the original differential df.

Solution: Set h := F ′(u)k. Then

hi =
∂F i(u)

∂uj
kj , i = 1, . . . , n

where we sum over j = 1, . . . ,m. Then

dfx(F ′(u)k) =
∂f(x)

∂xi

∂F i(u)

∂uj
kj

where x = x(u). Set g := f ◦ F. Then g(u) = f(F (u)). By the chain rule,

∂g(u)

∂uj
=

∂f(x)

∂xi

∂F i(u)

∂uj
.

Hence dgu(k) = ∂g(u)

∂uj kj = dfx(F ′(u)k). This finishes the proof.

In practical computation, we recommend the reader to use the elegant
Leibniz formula (i) above.
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Our proof justifies this.

The language of physicists. Let f : R
n → R be a smooth function. Set Δx := h

and Δf(x) := f(x + Δx)− f(x). By Taylor expansion,

Δf(x) = f ′(x)Δx + o(Δx), Δx→ 0.

Physicist frequently write df and dx instead of Δf and Δx, respectively, and
they cancel the remainder o(Δx). This is convenient for practical purposes.
However, from the mathematical point o view, one has to distinguish between
• the linear functional df(x) : R

n → R and
• the real number Δf(x).

5.3 Proof of Proposition 5.12 on page 324. Solution: Ad (i). Let ω := dx ∧ dy.
Consider the diffeomorphism F : R

2 → R
2 given by ξ = ξ(x, y), η = η(x, y).

We want to determine the map F in such a way that

F ∗ω = ω on R
2.

To this end, we will use the Leibniz method discussed in Problem 5.2. From

dξ = ξxdx + ξydy, dη = ηxdx + ηydy,

we get dξ ∧ dη = (ξxηy − ξyηx) dx ∧ dy. Therefore, the equation

dξ ∧ dη = dx ∧ dy on R
2

is equivalent to ξxηy − ξyηx = 1 on R
2.

Ad (ii). Use the same argument.
5.4 The real Schwarz inequality. Let f, g : [a, b] → R be two continuous functions

on the compact interval [a, b]. Show that

˛

˛

˛

˛

Z b

a

f(x)g(x)dx

˛

˛

˛

˛

≤
„

Z b

a

|f(x)|2dx
«1/2„Z b

a

|g(x)|2dx
«1/2

.

Equality holds iff f and g are linearly dependent, that is, there exist real
numbers α, β with α2 + β2 �= 0 and

αf(x) + βg(x) = 0 for all x ∈ [a, b].

Solution: Set 〈f |g〉 :=
R b

a
f(x)g(x)dx, and ||f ||2 =

p

〈f |f〉. By homogeneity, it

is sufficient to prove the claim for ||g|| = 1. Define F (t) := ||f + tg||2 for all
t ∈ R. Then

F (t) = 〈f + tg|f + tg〉 = 〈f |f〉+ 2t〈f |g〉+ t2.

The equation
F (t) = 0, t ∈ R

has the zeros t± = −〈f |g〉 ±
p

〈f |g〉2 − ||f ||2. Note that F (t) ≥ 0 for all t ∈ R.

• If F (t) > 0 for all t ∈ R, then 〈f |g〉2 − ||f ||2 < 0.
• If F (t) = 0 for some t, then 〈f |g〉2 − ||f ||2 = 0.

5.5 The complex Schwarz inequality. Let f, g : [a, b] → C be two continuous func-
tions on the compact interval [a, b]. Show that

˛

˛

˛

˛

Z b

a

f(x)†g(x)dx

˛

˛

˛

˛

≤
„

Z b

a

|f(x)|2dx
«1/2„Z b

a

|g(x)|2dx
«1/2

.
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Equality holds iff f and g are linearly dependent, that is, there exist complex
numbers α, β with |α|2 + |β|2 �= 0 and

αf(x) + βg(x) = 0 for all x ∈ [a, b].

Solution: Set 〈f |g〉 :=
R b

a
f(x)†g(x)dx. Replace g by eiαg, and choose the angle

α in such a way that 〈f |g〉 is real. Observe that ||eiαg|| = ||g||. Now use the
same argument as above.
Historical remark. The Schwarz inequality is named after Amandus Schwarz
(1843–1921) who published this inequality in 1884. However, this inequality
was obtained much earlier by Cauchy (1789–1857) in 1821 (for sequences of
numbers) and by Bunyakovskii (1804–1889) in 1859 (for integrals). Therefore,
the inequality is also called the Cauchy–Bunyakovskii inequality.

5.6 The Beltrami model in non-Euclidean geometry. Set z := x + iy. Let int(B1)
denote the open unit disc {z ∈ C : |z| < 1} in the complex plane C. for ε = 1
and ε = −1, study the following two metrics

ds2 =
4(dx2 + dy2)

(1 + ε|z|2)2 on int(B1).

For ε = −1 (resp. ε = 1), this metric represents the hyperbolic (resp. elliptic)
Beltrami model. Let ε = −1. Show that the function

w =

„

z + 1

z − 1

«2

, z ∈ int(B1)

maps conformally the open unit disc onto the open upper-half plane HC. Show
that the inverse map transforms the hyperbolic metric on HC into the metric
above with ε = −1. Prove that the hyperbolic straight lines on HC become
circles on int(B1) which orthogonally intersect the unit circle. The points on
the unit circle are regarded as ”points of infinity.” Use the corresponding Kähler
metric in order to compute the Gaussian curvature K ≡ 1 (resp. K ≡ −1) if
ε = 1 (resp. ε = −1).

5.7 Geodesics and the Christoffel symbols. Fix n = 1, 2, . . . Let U be a nonempty
set of R

n. Set x = (x1, . . . , xn). We are given a family of smooth functions

gij(x) : R
n → R, i, j = 1, . . . , n

with gij(x) = gji(x) for all points x ∈ U and all indices i, j = 1, . . . , n. Suppose
that the symmetric (n × n)-matrix G := (gij(x)) is invertible for all x ∈ U .
Denote the entries of the inverse matrix G(x)−1 by gij(x). Now consider the
energetic variational problem

Z τ1

τ0

gij(x(τ))ẋi(τ)ẋj(τ) dτ = critical! (5.120)

with fixed end points x(τ0) and x(τ1). We are looking for a smooth function
x : [τ0, τ1] → U on the compact interval [τ0, τ1]. In what follows we sum over
equal upper and lower indices from 1 to n. The meaning of variational problems
concerning critical values is explained on page 805 of Vol. I.
Show that every smooth solution of the variational problem satisfies the Euler–
Lagrange equation

ẍk(τ) + Γ k
ij(x(τ))ẋi(τ)ẋj(τ) = 0, τ0 ≤ τ ≤ τ1, k = 1, . . . , n
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Fig. 5.31. Special parallel transport

with the Christoffel symbols.

Γ k
ij := 1

2
gks(∂igsj + ∂jgis − ∂sgij).

Solution: Set L(x, ẋ) := gij(x)ẋiẋj . The solutions of the variational problem
are solutions of the following Euler–Lagrange equations:

d

dτ
Lẋs − Lxs = 0, s = 1, . . . , n.

Since Lẋs = gsj ẋ
j + gisẋ

i and Lxs = (∂sgij)ẋ
iẋj , we get

gsj ẍ
j + gisẍ

i + (∂rgsj)ẋ
rẋj + (∂rgis)ẋ

rẋi − (∂sgij)ẋ
iẋj = 0.

Because of the symmetry gij = gji, we obtain

2gsj ẍ
j + (∂igsj + ∂jgis − ∂sgij)ẋ

iẋj = 0.

Since gksgsj = δk
j (Kronecker symbol), we get

ẍk + 1
2
gks(∂igsj + ∂jgis − ∂sgij) ẋ

iẋj = 0.

5.8 Proof of Theorem 5.14 on page 335. Solution: (I) Special case: To display the
simple idea of the proof, let us first consider the special case pictured in Fig.
5.31. The differential equation for the clockwise parallel transport along the
boundary ∂T of the triangle T reads as

ψ̇(τ) = −ẋj(τ)Aj(P (τ))ψ(τ), 0 ≤ τ ≤ τ1, ψ(0) = ψ0. (5.121)

Hence

Π∂T ψ0 − ψ0 =

Z τ1

0

ψ̇(τ)dτ = −
Z

∂T
dxjAj(P )ψ(P ).

The basic trick of the proof is to extend the values of ψ on the boundary ∂T
to the triangle T in a smooth way. Set

ω := dxjAjψ.

By the Poincaré–Stokes integral theorem, we have
Z

∂T
ω =

Z

T
dω.

See Sect. 10.4.2 of Vol. I. Hence
Z

∂T
ω =

Z

T
∂k(Ajψ) dxk ∧ dxj =

Z

∂T
(∂1(A2ψ)− ∂2(A1ψ)) dx1dx2.
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Set

B := lim
τ→+0

R

∂T (∂1(A2ψ)− ∂2(A1ψ)) dx1dx2

meas(T )
.

Noting that ∂k(Ajψ) = ∂kAj · ψ +Aj∂kψ, we get

B = ∂1A2(P )ψ0 − ∂2A1(P )ψ0 +A2(P )∂1ψ(P )−A2(P )∂1ψ(P ).

By (5.121), ∂1ψ(P ) = −A2(P )ψ0 and ψ2(P ) = A2(P )ψ0. Hence

B = {∂1A2(P )− ∂2A1(P ) +A1(P )A2(P )−A2(P )A1(P )}ψ0 = F12(P )ψ0.

Finally, by Fig. 5.31, det(a, b) = a1b2. Hence

FP (a, b) = F12(dx
1 ∧ dx2)(a, b) = F12(P )(a1b2 − a2b1) = F12(P )a1b2.

(II) General case: Proceed similarly as in (I).



6. The Principle of Critical Action and the
Harmonic Oscillator – Ariadne’s Thread in
Classical Mechanics

Since the divine plan is the most perfect thing there is, there can be no
doubt that all actions in the universe can be determined by the calculus
of the minima and maxima from the corresponding causes.

Leonhard Euler

The history of the principle of least action has often been described. Yet
the matter is still controversial, and there seems to be no general agree-
ment who invented the principle, Leibniz (1646–1717), Euler (1707–1783),
or Maupertuis (1698–1759). . . We mention that the first mathematical
treatment of the action principle was given by Euler in the Additamentum
of his Methodus inveniendi.1

Mariano Giaquinta and Stefan Hildebrandt, 1996

By generalizing the method of Euler in the calculus of variations, Lagrange
(1736–1813) discovered, how one can write, in a single line, the basic equa-
tion for all problems in analytic mechanics.

Carl Gustav Jakob Jacobi (1804–1851)

When we quantize a classical theory, wave packets behave like particles. . .
A wave packet might decay into two wave packets. When two wave packets
come near to each other, they scatter and perhaps produce more wave
packets. This naturally suggests the physics of particles can be described
in these terms. . .
Quantum field theory grew out of essentially these sorts of physical ideas.
It struck me as limiting that even after some 75 years, the whole subject
of quantum field theory remains rooted in this harmonic paradigm, to use
a dreadfully pretentious word. We have not been able to get away from
the basic notions of oscillations and wave packets. Indeed, string theory,
the heir to quantum field theory, is still firmly founded on this harmonic

1 L. Euler, Methodus inveniendi lineas curvas maximi minimive proprietate gau-
dentes, sive solutio problematis isoperimetrici lattissimo sensu accepti (A method
for finding curves which have a minimal or maximal property or solutions of the
generalized isoperimetric problem), Bousquet, Lausannae et Genevae 1744 (see
Euler, Opera omnia, Ser. I, Vol. 24, quoted on page 1053).
M. Giaquinta and S. Hildebrandt, Calculus of Variations, Vols. 1, 2, Springer,
Berlin, 1996 (reprinted with permission). We recommend reading this standard
textbook, which also contains many illuminating historical comments.
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paradigm. Surely, a brilliant young physicist, perhaps a reader of this book,
will take us beyond.2

Anthony Zee, 2003

The aim of this and the following chapter is to explain the basic physical and
mathematical ideas of classical mechanics and quantum mechanics by considering
the so-called harmonic oscillator. In all fields of physics, one encounters oscillating
systems. Let us mention the following examples:

• electromagnetic waves and light (photons);
• laser beams (coherent states);
• oscillating molecules in a gas or a liquid;
• sound waves (phonons);
• oscillations of a crystal lattice (phonons);
• oscillations of a string (e.g., a violin string);
• waves in a plasma (plasmons);
• matter waves of elementary particles (e.g., electrons);
• gravitational waves (gravitons).

The harmonic oscillator represents the simplest oscillating system. The quantization
of the harmonic oscillator is the basis of quantum mechanics, quantum field theory,
and condensed matter physics.

System of physical units. In this chapter, we will use the international system
of units, SI (see the Appendix of Vol. I).

6.1 Prototypes of Extremal Problems

The calculus of variations has its roots in extremal problems for real-valued
functions.

Folklore

The one-dimensional problem. Let f : J → R be a smooth function on the
open interval J . Consider the minimum problem

f(x) = min!, x ∈ J. (6.1)

Let us recall some standard results from classical calculus.

(i) Necessary condition for a local minimum: If x0 is a solution of (6.1), then
f ′(x0) = 0 and f ′′(x0) ≥ 0.

(ii) Sufficient condition for a local minimum: If f ′(x0) = 0 and f ′′(x0) > 0, then
the function f has a local minimum at the point x0. This means that there
exists a sufficiently small positive number ε such that f(x) ≥ f(x0) for all
x ∈]x0 − ε, x0 + ε[.

(iii) Sufficient condition for a global minimum: If f ′(x0) = 0, f ′′(x0) > 0, and
f ′′(x) ≥ 0 on J , then the function f is convex on J, and the minimum problem
(6.1) has the unique solution x0.

2 A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press, 2003
(reprinted with permission).
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Fig. 6.1. Critical points

Now consider the more general problem

f(x) = critical!, x0 ∈ J. (6.2)

By definition, the point x0 is a solution of (6.2) iff f ′(x0) = 0. We say that x0 is
a critical point of f, and the function is critical (or stationary) at the point x0.
Intuitively, the function f is critical at the point x0 iff the tangent line of the graph
of the function f at the point x0 is horizontal (Fig. 6.1). For example, the function
f : R → R given by f(x) := x2 has a global minimum at the point x0 = 0. In
contrast to this, the function f(x) := x3 has the unique critical point x0 = 0,
but no minimal point. The function f(x) := sinx has precisely the critical points
x0 = ±π(n + 1

2
) with n = 0, 1, 2, . . .

Quadratic minimum problem. Set f(x, y) := αx2 + βy2, and assume that
β > α > 0. Then the free minimum problem

f(x, y) = min!, (x, y) ∈ R
2 (6.3)

has the unique solution (x0, y0) = (0, 0). The constrained minimum problem

f(x, y) = min!, x2 + y2 = 1, (x, y) ∈ R
2 (6.4)

has the unique solution (x0, y0) = (1, 0) with f(x0, y0) = α. Consider now the more
general quadratic function

f(x, y) := ax2 + 2bxy + cy2, (6.5)

where a, b, c are real numbers. Using the matrix A :=

 

a b

b c

!

, this can be written

as f(x, y) = (x, y)A

 

x

y

!

. Assume that the characteristic equation

det(λI −A) = 0, λ ∈ R,

that is, λ2 − (a + c)λ + ac− b2 = 0, has two solutions α and β with β > α > 0.

Then the free minimum problem (6.3) has the unique solution (0, 0), and
the constrained minimum problem (6.4) has a solution (x0, y0) with the
minimal value f(x0, y0) = α.

In fact, it follows from the principal axis theorem for symmetric matrices A that
the problems for the quadratic function f from (6.5) can be reduced to the corre-
sponding problems for the simpler function f(x, y) = αx2+βy2, by using a rotation
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(orthogonal transformation). The numbers α and β are the eigenvalues of the ma-
trix A. It can be shown that the unique solution (x0, y0) of (6.4) is precisely the
normalized eigenvector of the matrix A which belongs to the smallest eigenvalue α.

The Morse index. Let α �= 0 and β �= 0. By definition, the Morse index
if (0, 0) of the quadratic form f from (6.5) at the point (0, 0) is equal to the number
of negative eigenvalues of the matrix A. Then the following hold:

• If if (0, 0) = 0 (i.e., α > 0 and β > 0), then f has a global minimum at the point
(0, 0).

• If if (0, 0) = 2 (i.e., α < 0 and β < 0), then f has a global maximum at the point
(0, 0).

• If if (0, 0) = 1 (i.e., αβ < 0), then f has a saddle point at (0, 0).

For example, the function f(x, y) := 2x2 − y2 has a saddle point at (0, 0), whereas
f(x, y) := −x2 − y2 has a global maximum at (0, 0).

First and second variation. Let f : R
2 → R be a smooth function. For fixed

(h, k) ∈ R
2, we set

χ(σ) := f(x0 + σh, y0 + σk), σ ∈ R.

We define

δf(x0, y0;h, k) := χ′(0), (6.6)

and call this the first variation of the function f at the point (x0, y0) in direction
of (h, k). Similarly, we define the second variation of f by setting

δ2f(x0, y0;h, k) := χ′′(0).

It follows from the Taylor theorem that

χ(σ) = χ(0) + χ′(0)σ + 1
2
χ′′(0)σ2 + . . .

Hence

f(x0 + σh, y0 + σk) = f(x0, y0) + δf(x0, y0;h, k)σ + 1
2
δ2f(x0, y0;h, k)σ2 + . . .

Explicitly, in terms of partial derivatives,

δf(x0, y0;h, k) = fx(x0, y0)h + fy(x0, y0)k,

δ2f(x0, y0;h, k) = fxx(x0, y0)h
2 + 2fxy(x0, y0)hk + fyy(x0, y0)k

2.

Physicists use the notation δx := σh and δy := σk. Then

f(x0 + δx, y0 + δy) = f(x0, y0) + δf(x0, y0; δx, δy) + 1
2
δ2f(x0, y0; δx, δy) + . . .

If we introduce the two matrices f ′(x0, y0) := (fx(x0, y0), fy(x0, y0)), and

f ′′(x0, y0) :=

 

fxx(x0, y0) fxy(x0, y0)

fxy(x0, y0) fyy(x0, y0)

!

,

then δf(x0, y0; δx, δy) = f ′(x0, y0)

 

δx

δy

!

, and

δ2f(x0, y0; δx, δy) = (δx, δy)f ′′(x0, y0)

 

δx

δy

!

.
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Here, f ′(x0, y0) (resp. f ′′(x0, y0)) is called the first (resp. second) Fréchet derivative3

of the map f : R
2 → R. Furthermore, the matrix f ′′(x0, y0) (resp. the determinant

det f ′′(x0, y0)) is called the Hessian (resp. the Jacobian) of the map f at the point
(x0, y0).

Observe that the use of the function χ allows us to reduce extremal problems for
functions of several real variables to the inspection of functions of one real variable.

The same trick can be applied to variational problems.

This will be shown in Sect. 6.5.
Critical points. By definition, the function f has the critical point (x0, y0) iff

the function χ has the critical point σ = 0, for all choices h, k ∈ R. This means that

δf(x0, y0;h, k) = 0 for all (h, k) ∈ R
2.

Equivalently, f ′(x0, y0) = 0, that is, fx(x0, y0) = fy(x0, y0) = 0.
Nonlinear minimum problem. Again let f : J → R be a smooth function,

where J is a nonempty open subset of R
2. For the minimum problem

f(x, y) = min!, (x, y) ∈ J (6.7)

the following hold:

(i) Necessary condition for a local minimum. If (x0, y0) is a solution of (6.7), then
f ′(x0, y0) = 0.4 This is the prototype of the Euler–Lagrange equation in the
calculus of variations.

(ii) Sufficient condition for a local minimum. Suppose that f ′(x0, y0) = 0, and
suppose that Jacobi’s accessory minimum problem

δ2f(x0, y0;h, k) = min!, h2 + k2 = 1, (h, k) ∈ R
2

has a positive minimal value.5 Then f has a local minimum at the point (x0, y0).
This is the prototype of Jacobi’s eigenvalue method in the calculus of variations.

The Morse index. Suppose that f ′(x0, y0) = 0 together with

det f ′′(x0, y0) �= 0.

The Morse index if (x0, y0) of the map f : J → R at the point (x0, y0) is equal to
the number of negative eigenvalues of the matrix f ′′(x0, y0), by definition.

• If if (x0, y0) = 0, then f has a local minimum at the point (x0, y0).
• If if (x0, y0) = 2, then f has a local maximum at the point (x0, y0).
• If if (x0, y0) = 1, then f has a saddle point at (x0, y0).

Constrained minimum problem and Lagrange multipliers. We are given
the smooth functions f, g : R

2 → R. We consider the minimum problem

f(x, y) = min!, g(x, y) = 0, (x, y) ∈ R
2. (6.8)

3 Fréchet (1878–1973).
4 To prove this, note that, for fixed h, k ∈ R, the function χ has a minimum at the

point σ = 0. Hence χ′(0) = 0. This implies δf(x0, y0;h, k) = 0 for all h, k ∈ R.
Therefore, f ′(x0, y0) = 0.

5 This is equivalent to the fact that the eigenvalues of f ′′(x0, y0) are positive. In
turn, this is equivalent to fxx(x0, y0) > 0 together with det f ′′(x0, y0) > 0.
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Fig. 6.2. Cartesian coordinate system

• Necessary condition for a constrained local minimum: If (x0, y0) is a local solution
of (6.8) and g′(x0, y0) �= 0 , then there exists a real number λ such that

f ′(x0, y0)− λg′(x0, y0) = 0. (6.9)

The number λ is called a Lagrange multiplier.
• Sufficient condition for a constrained local minimum: Suppose that the point

(x0, y0) satisfies the side condition g(x0, y0) = 0. Furthermore, suppose that there
exists a real number λ such that the condition (6.9) holds and the definiteness
condition

δ2f(x0, y0;h, k)− λδ2g(x0, y0;h, k) > 0

is satisfied for all (h, k) ∈ R
2 with h2 + k2 > 0 and δg(x0, y0;h, k) = 0. Then the

point (x0, y0) is a local solution of (6.8).

For example, let f(x, y) := ax2 + 2bxy + cy2 with real numbers a, b, c, and let
g(x, y) := x2 + y2. Then each local solution (x0, y0) of (6.8) satisfies the eigen-
value equation (6.9), that is, fx(x0, y0) = λgx(x0, y0) and fy(x0, y0) = λgy(x0, y0).
Explicitly,

 

a b

b c

! 

x0

y0

!

= λ

 

x0

y0

!

.

Therefore, the Lagrange multiplier λ is an eigenvalue of the matrix A. All the proofs
can be found in Zeidler (1986), Vol. III (see the references on page 1049).

6.2 The Motion of a Particle

The Euclidean manifold E
3. We start with the motion

Q = Q(t), t ∈ R

of a particle (e.g., the motion of a planet around the sun) in the 3-dimensional space
of our intuition. Here, Q(t) is the position of the particle at time t. The set of all
positions Q is called the Euclidean manifold E

3. In what follows, it is convenient
to use the language of both the vector calculus and the theory of manifolds. First
fix a point O as origin (e.g., the position of the sun). Then the motion can also be
described by the vector equation

q = q(t), t ∈ R.

Here, the position vector q(t) points from the origin O to the point Q(t). We also

write q(t) = OQ(t). Let TOE
3 denote the space of all vectors with initial point at
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Fig. 6.3. Vector product

the origin O. This is a 3-dimensional real Hilbert space equipped with the inner
product

〈q|r〉O := qr for all q, r ∈ TOE
3.

Recall that qr := |q| · |r| · cosα. Here, |q| denotes the length of the vector q, and α
is the angle between the two vectors q and r. The angle α is chosen in such a way
that 0 ≤ α ≤ π (Fig. 6.3). Similarly, let TQE

3 denote the space of all vectors with
the initial point Q. The space TQE

3 is a real 3-dimensional Hilbert space equipped
with the inner product

〈v|w〉Q := vw for all v,w ∈ TQE
3.

At time t, the particle has the velocity vector

q̇(t) = lim
Δt→0

q(t + Δt)− q(t)

Δt

whose initial point coincides with the position Q(t) of the particle at time t, that
is, q̇(t) ∈ TQ(t)E

3 (Fig. 6.4). The space TQE
3 consists of all the possible velocity

vectors at the point Q. In the terminology of the theory of manifolds, the space
TQE

3 is called the tangent space of the Euclidean manifold E
3 at the point Q.

To simplify notation, we denote the 3-dimensional real Hilbert space TOE
3 by the

symbol E3. We then have the Hilbert space isomorphism

E3 � TQE
3 for all Q ∈ E

3.

The Lie algebra of the Hilbert space TQE
3. Let q, r ∈ TQE

3. Recall that,
by definition, the vector product

q× r

is a vector of length |q| · |r| · sinα, and the three vectors q, r,q × r form a right-
handed orthogonal system. The angle α between the vectors q and r is given as
pictured in Fig. 6.3, that is, 0 ≤ α ≤ π. Moreover, q × r ∈ TQE

3. The difference
between right-handed and left-handed systems of the three basis vectors b1,b2,b3

(a)

O

� �q(t)

Q(t)

v = q̇(t)

(b)

O

�q

Q

�
i

�k


j

(c)

Q
�v

�b3

�
b1



b2

Fig. 6.4. Motion of a particle
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(a) Right-handed

�

�



b1

b2

b3

(b) Left-handed

�

�




b1

b2

b3

Fig. 6.5. Orientation

is pictured in Fig. 6.5. For all vectors q,p, r ∈ TQE
3 and all real numbers a, b, the

vector product has the following properties:

(i) q× r ∈ TQE
3 (consistency).

(ii) q× r = −r× q (anticommutative law).
(iii) (aq + bp)× r = a(q× r) + b(p× r) (distributive law).
(iv) q× (p× r) + p× (r× q) + r× (q× p) = 0 (Jacobi identity).

Note that the vector product is not associative. The missing associativity is replaced
by the Jacobi identity, which is based on cyclic permutations. Thus, with respect to
the vector product q× r, the linear real linear 3-dimensional space TQE

3 becomes
a real Lie algebra. We will show in Sect. 6.12 that this Lie algebra is isomorphic to
the Lie algebra su(E3) of infinitesimal rotations.

6.3 Newtonian Mechanics

The rise of modern science was accompanied with the replacement of au-
thorities or traditions by causes in explaining phenomena. One of the ulti-
mate goals of science is to understand the world, and this is approached by
scientific explanation, that is, by finding out causes for various phenom-
ena. According to Aristotle, however, there are different kinds of cause:
material, formal, efficient, and final causes. Before the rise of modern sci-
ence, teleological explanation based on the notion of final cause was a
dominant mode of explanation. With the revival of Neoplatonism, Archi-
medianism and atomism in the Renaissance, there began a transformation
in basic assumptions of scientific explanation. Copernicus, Kepler, Galileo,
and Descartes, for example, believed that the underlying truth and univer-
sal harmony of the world can be perfectly represented by simple and exact
mathematical expressions. The mathematization of nature led to a certain
degree of popularity of formal cause. But the most popular and powerful
conception of causality, in fighting, against the teleological explanation,
was a mechanical one based on the notion of efficient cause. Different from
final and formal causes, the idea of efficient cause focuses on how the cause
is transmitted to the effect, that is, on the mode of transmission. Accord-
ing to the classical mechanical view, causality can be reduced to the laws
of motion of bodies in space and time. . .

Tian Yu Cao, 1998
Conceptual Developments of 20th Century Field Theories 6

6 Cambridge University Press, Cambridge, United Kingdom, 1998 (reprinted with
permission).
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�
q(t)

q

Fig. 6.6. Motion on the real line

So that we may say now that the door is opened, for the first time, to a
new method fraught with numerous and wonderful results which in future
years will command the attention of other minds.

Galileo Galilei (1564–1642)

Lex prima: A stationary body will remain motionless, and a moving body
will continue to move in the same direction with unchanging speed unless
it is acted on by some force.
Lex secunda: The time-rate-of-change of the momentum of a body is pro-
portional to the force.
Lex tertia: If any body exerts a force on another object, then the second
object also exerts an equal and opposite force on the first.
It remains that, from the same principles, I now demonstrate the frame of
the System of the World.

Isaac Newton (1643–1727)
Philosophiae Naturalis Principia Mathematica, London, 16877

Who, by a vigor of mind almost divine, the motions and figures of the
planets, the paths of comets, and the tides of the sea first demonstrated.8

Newton’s Epitaph, Westminster Abbey, London

When one considers all that Newton achieved, and the cultural and scien-
tific environment in which he achieved it, there is reason to regard him as
the greatest scientist – and perhaps the greatest genius – that ever lived.

Anthony Philip French

The motion q = q(t) of a classical point particle of mass m on the real line is
described by the Newtonian equation “time-derivative of momentum equals force,”

ṗ(t) = F (q(t)), (6.10)

together with the initial condition q(t0) = q0 and q̇(t0) = v0 (Fig. 6.6). Here, the
position q0 and the velocity v0 of the particle are prescribed at the initial time t0.
It turns out that many problems in physics can be essentially simplified by using
potentials. To explain this in the present situation, use the force function F in order
to define

W :=

Z q

q0

F (x)dx,

and U(q) := U(0)−W. Hence

F (q) = −U ′(q).

7 See the footnote on page 12.
8 Newton’s grave in Westminster Abbey is framed by five smaller gravestones

with famous names: Michael Faraday (1791–1867), George Green (1793–1841),
Sir William Thomson (Lord Kelvin of Largs) (1824–1907), James Clerk Maxwell
(1831–1879) and Paul Dirac (1902–1984).
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The function U is called a potential of the force F . Note that the normalization
constant U(0) of the potential can be chosen arbitrarily. A change of U(0) represents
the simplest gauge transformation in physics. We will show later on that gauge
transformations play a fundamental role in modern elementary particle physics
(gauge field theory). Using the trajectory q = q(t), we also define

E(t) := 1
2
mq̇(t)2 + U(q(t)).

In what follows, we will use the following terminology:

q(t) position of the particle at time t,

q̇(t) velocity at time t,

q̈(t) acceleration at time t,

p(t) := mq̇(t) momentum at time t,

F (q) force acting at the point q,

W work done by the force if the particle moves from
the initial point q0 to the final point q,

U(q) potential energy of the particle at position q,
1
2
mq̇(t)2 kinetic energy of the particle at time t,

E(t) total energy of the particle at time t.

Constant mass. Let us first consider mass points of constant positive mass
m. The Newtonian equation of motion reads then as

mq̈(t) = F (q(t)), t ∈ R, q(t0) = q0, q̇(t0) = v0. (6.11)

This corresponds to “force equals mass times acceleration”. For a smooth force
F : R → R, it follows from the general theory of ordinary differential equations
that there exists a maximal open time interval J containing the initial time t0 such
that the initial-value problem (6.11) has a unique solution q = q(t) on J . Such a
solution is called a trajectory of the particle. For example, the initial-value problem

ẍ(t) = 2x(t)ẋ(t), x(0) = 0, ẋ(0) = 1

has the unique solution x(t) = tan t,−π
2
< t < π

2
, which blows up as time t goes to

π
2

from the left. This example shows that the trajectories do not always exist for
all times.

Theorem 6.1 The total energy E of the particle is constant during the motion.

Proof. Differentiation with respect to time t yields

Ė(t) = mq̈(t)q̇(t) + U ′(q(t))q̇(t) =
`

mq̈(t)− F (q(t)
´

q̇(t) = 0.

Hence E(t) is constant on the time interval J. �

Example 6.2 (The falling stone). Consider the constant force F := −mg. Then,
the unique solution of the equation of motion (6.11) is given by

q(t) = q0 + v0t− 1
2
gt2 for all times t ∈ R. (6.12)
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This law of falling bodies was first discovered by Galilei in about 1600. If the initial
velocity is negative, v0 < 0, equation (6.12) describes a falling stone on earth of
mass m. Here, q(t) denotes the height of the stone at time t, and g = 9.81 m/s2

is the so-called acceleration constant on earth. The potential energy of the stone is
given by

U(q) = mgq,

provided we use the normalization condition U(0) := 0. If the stone is falling down
from the height q0 > 0 to the ground q = 0, then the stone looses the potential
energy mgq0. The stone possesses the constant total energy

E = 1
2
mv2

0 + mgq0

during the motion. If the stone hits the ground, then the total (mechanical) energy
E is converted into heat energy.

Loss of mass. If the mass m(t) changes in time, then we get the momentum
p(t) = m(t)q(t), and the Newtonian equation of motion reads as

d

dt

`

m(t)q(t)
´

= F (q(t)). (6.13)

This models a rocket loosing mass by burning fuel. Einstein discovered that the
mass of each moving body depends on its velocity,

m(t) =
m0

p

1− q̇(t)2/c2
.

Here, the symbols m0 and c denote the rest mass of the particle and the speed
of light in a vacuum, respectively. Equation (6.13) passes then over to the basic
equation of relativistic motion. In this chapter, we will only consider point particles
having time-independent constant positive mass m (non-relativistic motion).

The harmonic oscillator. The equation

q̈ + ω2q = 0, (6.14)

along with the initial condition q(0) = q0, q̇(0) = v0, describes the motion of a
so-called harmonic oscillator. We are given the positive constant ω. The unique
solution of this initial-value problem reads as

q = q0 cosωt +
v0

ω
sinωt, (6.15)

for all real times t. This motion has the time period T , where

T =
2π

ω
.

The quantities ω and ν := ω/2π are called angular frequency and frequency, re-
spectively. Hence T = 1/ν.

The harmonic oscillator represents the simplest oscillating system. Let us mo-
tivate this. Consider a point of constant positive mass m under the action of the
repulsive force

F (q) = −αq.
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Here, α is a positive constant. Introducing the constant ω := α/m, equation (6.14)
corresponds to the Newtonian equation, mq̈ = −αq. The universality of the har-
monic oscillator follows from the fact that each smooth force F , with F (0) = 0 and
the symmetry property F (−q) = −F (q) for all real q, allows the Taylor expansion

F (q) = −αq − βq3 + ... for small q ∈ R.

If the force F is repulsive, then q > 0 implies F (q) < 0. Hence α > 0 and β ≥ 0.
The first approximation reads as F (q) = −αq. If we set α := mω2, then we obtain
a force which precisely corresponds to the harmonic oscillator. This force has the
potential

U = 1
2
mω2q2.

For the motion of the harmonic oscillator, energy conservation means that the
function (6.15) satisfies the condition

1
2
mq̇(t)2 + 1

2
mω2q(t)2 = E,

for all times t, along with the constant total energy E := 1
2
mv2

0 + 1
2
mω2q2

0 .
Anharmonic oscillator. The second approximation of the force F reads as

F (q) = −αq − βq3

with the positive constant β. We set β = mκ, and call κ the coupling constant.
Now the equation of motion reads as

q̈(t) + ω2q(t) = −κq(t)3. (6.16)

The potential is given by U(q) := 1
2
mω2q2 + 1

4
mκq4 with the constant total energy

E := 1
2
mv2

0 + 1
2
mω2q2

0 + 1
4
mκq4

0 .

6.4 A Glance at the History of the Calculus of
Variations

Bees – by virtue of a certain geometrical forethought – know that the
hexagon is greater than the square and the triangle and will hold more
money for the same expenditure of material.

Pappus of Alexandria, 300 B.C.

Every process in nature will occur in the shortest possible way.
Leonardo da Vinci (1452–1519)

A light ray between two points needs the shortest possible time.
Pierre de Fermat (1601–1665)

Johann Bernoulli, professor of mathematics, greets the most sophisticated
mathematicians in the world. Experience shows that noble intellectuals
are driven to work for the pursuit of the knowledge by nothing more than
being confronted with difficult and useful problems.
Six months ago, in the June edition of the Leipzig Acta eruditorum (journal
of scientists), I presented such a problem. The allotted six-month deadline
has now gone by, but no trace of a solution has appeared. Only the famous
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Fig. 6.7. Johann Bernoulli’s brachistochrone

Leibniz informed me that he had unravelled the knot of this brilliant and
outstanding problem, and he kindly asked me to extend the deadline until
next Easter. I agreed to this honorable request. . . I will repeat the problem
here once more.
Two points, at different distances from the ground, and not in a vertical
line, should be connected by such a curve that a body under the influence
of gravitational forces passes in the shortest possible way from the upper
to the lower point (Fig. 6.7).9

Johann Bernoulli, January 1697

This paper solves my brother’s problem, to whom I will set other problems
in return.

Jakob Bernoulli, May 1697

The Euler Calculus of Variations (Methodus inveniendi) from the year
1744 is one of the most beautiful mathematical works that has ever been
written.

Constantin Carathéodory (1873–1950)

Read Euler, he is the master of us all.
Marquise de Pierre Simon Laplace (1749–1824)

One needs to have delved but little into the principles of differential cal-
culus to know the method of how to determine the greatest and least
ordinates of curves. But there are maxima or minima problems of a higher
order, which in fact depend on the same method, which however cannot
be subjected to this method. These are the problems where it is a matter
of finding the curves themselves.
The first problem of this type, which the geometers solved, is that of
the brachistochrone or the curve of fastest fall which Johann Bernoulli
proposed toward the end of the preceding century. One attained this only
in special ways, and it was only some time later and on the occasion of the
investigations concerning isoperimetric problems that the great geometer

9 We are given the initial point (0, h) and the final point (a, 0) of the unknown
curve. The solution is then the arc of a cycloid,

x = C(p− sin p), z = h + C(cos p− 1), 0 ≤ p ≤ p0,

where the constant C is determined by the final point. The proof can be found
in Zeidler (1995b), p. 132 (see the references on page 1049).
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of whom we just spoke and his extraordinary brother Jakob Bernoulli gave
some rules in order to solve several other problems of this type.
But since these rules were not of sufficient generality, the famous Euler
undertook to refer all investigations of this type to a general method. 10 But
even as sophisticated and fruitful as his method is, one must nevertheless
confess that it is not sufficiently simple. . . Now here one finds a method
which requires only a simple use of the principles of differential and integral
calculus.

Joseph Louis Lagrange, 1762

As I see, your analytic solution of the isoperimetric problem contains all
that one can wish for in this situation. I am very happy that this theory
which I have treated since the first attempts almost alone, has been brought
precisely by you to the highest degree of perfection.
The importance of the situation has occasioned me with the help of your
new insights to myself conceive of an analytic solution, but which I shall
not make known before you have published your deliberations, in order
not to deprive you of the least part of the fame due you.

Euler, in a letter to the young Lagrange11

6.5 Lagrangian Mechanics

The mathematician is perfect only in so far as he is a perfect being, in so
far as he perceives the beauty of truth; only then will his work be thorough,
transparent, comprehensive, pure, clear, attractive, and even elegant. All
this is necessary in order to resemble Lagrange.

Johann Wolfgang von Goethe (1749–1832)
Wilhelm Meisters Wanderjahre

We start with the variational problem

Z t1

t0

L(q(t), q̇(t), t) dt = critical ! (6.17)

along with the boundary condition q(t0) = q0 and q(t1) = q1. Here, the finite
interval [t0, t1] and the boundary positions q0 and q1 are given. The function

L := kinetic energy minus potential energy (6.18)

10 Euler used an involved difference method. He could merely apply his method to
one-dimensional variational problems.

11 Euler was born in Basel (Switzerland) in 1707, and he studied at the University
of Basel. In 1727 he moved to the newly founded Academy in St. Petersburg
(Russia). From 1741 until 1766 Euler worked at the Berlin Academy. In 1766, he
moved back to Saint Petersburg where he died in 1783.
The Prussian king Frederyck the Great (1712–1786) appointed Lagrange as Eu-
ler’s successor at the Berlin Academy. In 1786 Lagrange returned from Berlin to
Paris. In 1788 he published his famous treatise ”Méchanique analitique” about
the foundations of celestial mechanics. The title changed to “Mécanique ana-
lytique” in 1813, after the reform of the French orthography initiated by the
French Academy.
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is called the Lagrangian, and

S[q] :=

Z t1

t0

L(q(t), q̇(t), t) dt

is called the action of the motion along the given trajectory q = q(t) during the
fixed time interval [t0, t1]. The action S has the physical dimension of energy times
time.

6.5.1 The Harmonic Oscillator

As an example, let us consider the special case of the harmonic oscillator where

L(q, q̇) := 1
2
mq̇2 − 1

2
mω2q2.

The constants m and ω are assumed to be positive. The following theorem tells us
that the Euler–Lagrange equation to the variational problem (6.17) coincides with
the Newtonian equation of motion for the harmonic oscillator.

Proposition 6.3 Each smooth solution of (6.17) satisfies the Euler–Lagrange
equation q̈ + ω2q = 0.

Proof. To simplify notation, let us set m = ω := 1. The following argument is
typical for all kind of variational problems. Recall that D(t0, t1) denotes the set
of all smooth functions h :]t0, t1[→ R, which have compact support, that is, each
function h vanishes in some neighborhood of the boundary points. In particular,
h(t0) = h(t1) = 0. The functions h are called test functions.

(I) Minimum problem. Replace first “critical!” by “min!”. Suppose that the
function q = q(t) is a solution of (6.17). The basic idea due to Lagrange consists in
reducing the original variational problem to a simpler problem for a real function
χ. To this end, fix a function h ∈ D(t0, t1), and consider the following family of
functions,

r(t) := q(t) + σh(t), t0 ≤ t ≤ t1,

which depends on the real parameter σ. Since h(t0) = h(t1) = 0, the function
r = r(t) satisfies the boundary condition r(t0) = q0, r(t1) = q1 from (6.17). Set

χ(σ) :=
R t1

t0
L(r(t), ṙ(t)) dt. Explicitly,

χ(σ) :=

Z t1

t0

1
2
{(q̇(t) + σḣ(t))2 − (q(t) + σh(t))2} dt,

for all σ ∈ R. If σ = 0, then r = q. Since q is a solution of the minimum problem
(6.17) and the function r is admissible (i.e., r satisfies the boundary condition of
the variational problem), we get

χ(σ) ≥ χ(0) for all σ ∈ R.

Thus, the real function χ has a minimum at the point σ = 0. Hence we get the key
relation

χ′(0) = 0. (6.19)

Differentiation with respect to the parameter σ yields
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χ′(0) =

Z t1

t0

(q̇ḣ− qh)dt.

Integration by parts implies the so-called variational equation12

χ′(0) =

Z t1

t0

`

−q̈(t)− q(t)
´

h(t) dt = 0. (6.20)

This is true for all test functions h ∈ D(t0, t1). Therefore, the variational lemma
(see Sect. 7.20.2 of Vol. I) tells us that q̈(t) + q(t) = 0 on [t0, t1].

(II) Critical point. By definition, problem (6.17) means that each of the func-
tions χ introduced above is critical at the point σ = 0. This implies (6.19). We now
proceed as in (I). �

First variation. Motivated by Sect. 6.1, we set δS(q;h) := χ′(0). Explicitly,

δS(q, h) =

Z t1

t0

`

q̇(t)ḣ(t)− q(t)h(t)
´

dt for all h ∈ D(t0, t1).

This is called the first variation of the action functional S at the point q in direction
of h.

First functional derivative. After integrating by parts, we obtain

δS(q, h) =
δS[q]

δq
(h) for all h ∈ D(t0, t1) (6.21)

with δS[q]
δq

(h) :=
R t1

t0

δS[q]
δq(t)

h(t)dt and

δS[q]

δq(t)
:= −q̈(t)− q(t) for all t ∈ [t0, t1].

Here, the functional h �→ δS[q]
δq

(h) is called the functional derivative of the action

functional S at the point q, and the function t �→ δS[q]
δq(t)

is called the local functional

derivative of the action functional S at the point q and at time t. The Euler–
Lagrange equation can elegantly be written as

δS[q]

δq(t)
= 0, t0 ≤ t ≤ t1. (6.22)

Second variation. Define δ2S(q;h) := χ′′(0). Explicitly,

δ2S(q;h) =

Z t1

t0

`

ḣ(t)2 − h(t)2
´

dt.

This is called the second variation of the action functional S at the point q in
direction of h. Integration by parts yields

δ2S(q;h) = −
Z t1

t0

“

ḧ(t) + h(t)
”

h(t) dt for all h ∈ D(t0, t1).

It follows from χ(1) = χ(0) + χ′(0) + 1
2
χ′′(0) that

12 Note that the boundary term q̇(t1)h(t1)− q̇(t0)h(t0) vanishes, since the function
h vanishes at the boundary.
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S[q + h] = S[q] + δS(q, h) + 1
2
δ2S(q;h)

for all smooth functions q : [t0, t1] → R, and all test functions h ∈ D(t0, t1).
Physicists write δq := h. If q is a critical point of S (i.e., q is a solution of the
Euler–Lagrange equation), then δS(q;h) = 0. Hence

S[q + h] = S[q] + 1
2
δ2S(q;h) for all h ∈ D(t0, t1). (6.23)

Consequently, q is a minimum of S if

δ2S(q;h) ≥ 0

for all test functions h ∈ D(t0, t1). In the next section, we will use this observation
in order to prove the Jacobi eigenvalue criterion for the existence of a minimum.

Second functional derivative. Naturally enough, we define

δ2S[q]

δq2
(h, k) :=

d

dσ

δS[q + σk]

δq
(h)|σ=0 for all h, k ∈ D(t0, t1).

Explicitly, after integrating by parts,

δ2S[q]

δq2
(h, k) =

Z t1

t0

“

k̇(t)ḣ(t)− k(t)h(t)
”

dt =

Z t1

t0

“

− k̈(t) + k(t)
”

h(t) dt

for all h, k ∈ D(t0, t1). The bilinear functional (h, k) �→ δ2S[q]

δq2 (h, k) is called the

second functional derivative of the action functional S at the point q. In particular,
for the second variation we get

δ2S(q;h) =
δ2S[q]

δq2
(h, h) for all h ∈ D(t0, t1).

6.5.2 The Euler–Lagrange Equation

Suppose that the Lagrangian L is smooth. The same argument as in the proof of
Prop. 6.3 yields the following fundamental result due to Lagrange.

Theorem 6.4 Each smooth solution of the variational problem (6.17) satisfies the
Euler–Lagrange equation

d

dt
Lq̇ = Lq. (6.24)

Explicitly, this means

d

dt
Lq̇(q(t), q̇(t), t) = Lq(q(t), q̇(t), t).

If the trajectory q = q(t) has several components, q = (q1, ..., qM ), then we have to
write down the Euler–Lagrange equation for each component. Explicitly,

d

dt
Lq̇m = Lqm , m = 1, ...,M. (6.25)

Moreover, Lagrange’s elegant argument can be immediately generalized to multi-
dimensional integrals. Examples can be found in the problem section to Chap. 14
of Vol. I. As an introduction to the calculus of variations and optimization theory,
we recommend the author’s textbook Zeidler (1986), Vol. III (see the references on
page 1049).



376 6. Principle of Critical Action and the Harmonic Oscillator

6.5.3 Jacobi’s Accessory Eigenvalue Problem

Returning to the concepts of maximum and minimum, it is a nuisance that
there reigns such confusion in these words. One says that an expression
attains a maximum or a minimum if one simply wishes to say that it is
critical (or extremal) and hence its first variation vanishes, also in the case
when neither a minimum nor a maximum occurs.

Carl Gustav Jacobi (1804–1851)

Let us study the principle of least action for the harmonic oscillator

S[q] :=

Z t1

t0

1
2

“

q̇2(t)− ω2q2(t)
”

dt = min! (6.26)

together with the boundary condition q(t0) = q0, q(t1) = q1. Here, we set m := 1.
The corresponding Euler–Lagrange equation reads as

q̈(t) + ω2q(t) = 0, t ∈ [t0, t1], q(t0) = q0, q(t1) = q1. (6.27)

Following Jacobi, we add the accessory eigenvalue problem

− ḧ(t)− ω2h(t) = λh(t), t ∈ [t0, t1], h(t0) = h(t1) = 0. (6.28)

The eigensolutions are given by

hn(t) := sin
nπ(t− t0)

t1 − t0
, λn :=

n2π2

(t1 − t0)2
− ω2, n = 1, 2, . . . (6.29)

Proposition 6.5 Let q = q(t) be a solution of the Euler–Lagrange equation (6.27),
and let the smallest eigenvalue λ1 of (6.28) be positive. Then the function q is a
solution of the minimum problem (6.26).

For example, choose t0 := 0, t1 := π, q1 = q0 +1, and ω := 1
2
. Then, we have λ1 > 0,

and hence the function q = q0 + sinωt is a solution of (6.26).
Proof. Let us choose the real Hilbert space X := L2(t0, t1) with the inner product

〈h|k〉 :=

Z t1

t0

h(t)k(t) dt.

We will use the operator A : D(A)→ X defined by

Ah := −ḧ− ω2h for all h ∈ X.

Here, D(A) is defined to be the set of all twice continuously differentiable functions
h : [t0, t1] → R with h(t0) = h(t1) = 0. A classical result tells us13 that the
eigenfunctions h1, h2, . . . of the operator A form a complete orthonormal system in
the Hilbert space X, that is,

h =

∞
X

n=1

〈hn|h〉hn for all h ∈ X.

13 We refer to Zeidler (1995a), Sect. 4.5 (see the references on page 1049).
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Integration by parts shows that 〈Ah|k〉 = 〈h|Ak〉 for all h, k ∈ D(A), that is, the
operator A is symmetric. Hence 〈hn|Ah〉 = 〈Ahn|h〉 = λn〈hn|h〉. This implies

Ah =
∞
X

n=1

〈hn|Ah〉hn =
∞
X

n=1

λn〈hn|h〉hn for all h ∈ D(A).

Therefore, 〈Ah|h〉 =
P∞

n=1 λn〈hn|h〉2. This yields the key relation

δ2S(q;h) =

∞
X

n=1

λn〈hn|h〉2 for all h ∈ D(A). (6.30)

By (6.23),

S[q + h] = S[q] + 1
2
δ2S(q;h) for all h ∈ D(A).

If λ1 > 0, then δ2S(q;h) ≥ 0. Hence S[q + h] ≥ S[q] for all h ∈ D(A). �

6.5.4 The Morse Index

The Morse index describes the global behavior of the action functional of
the harmonic oscillator with respect to arbitrary time intervals. This global
behavior is governed by the appearance of focal points of the trajectories
of the harmonic oscillator, which correspond to focal points in geometric
optics.

Folklore

We are given the time interval [t0, t1]. Suppose that all of the eigenvalues λ1, λ2, . . .
introduced in (6.28) are different from zero. Motivated by Sect. 6.1 and the key
relation (6.30), the Morse index μ(t0, t1) of the second variation h �→ δ2S(q;h)
on the time interval [t0, t1] is defined to be the number of negative eigenvalues
λ1, λ2, . . .

14 Explicitly, for n = 0, 1, 2, . . . , we obtain

μ(t0, t1) = n for all t1 ∈
–

t0 +
nπ

ω
, t0 +

(n + 1)π

ω

»

. (6.31)

To discuss this, consider first the case where

t0 < t1 < t0 +
π

ω
.

Then 0 < λ1 < λ2 < . . . Thus, all the eigenvalues λ1, λ2, . . . are positive. Hence

μ(t0, t1) = 0.

Suppose that the function q = q(t) is a solution of the Euler–Lagrange equation
(6.27). By Prop. 6.5, the function q = q(t) is a solution of the minimum problem
(6.26).

Consider now the case where t0 + nπ
ω

< t1 < (n+1)π
ω

with n = 1, 2, . . . The we
have λ1 < 0. Hence

S[q + h1] = S[q] + 1
2
δ2S(q;h1) = S[q] + 1

2
λ1 < S[q].

14 Morse (1892–1977).
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In this case, the function q = q(t) is not a solution of the minimum problem (6.26)
on the time interval [t0, t1].

Observe that, by (6.29), the Morse index jumps at the critical time points

tcrit := t0 +
nπ

ω
, n = 1, 2, . . .

The Morse index plays a crucial role for the harmonic oscillator in quantum me-
chanics, where it is responsible for the jumps of the Feynman propagator (see Sect.
7.9.4 on page 576). In quantum mechanics, the Morse index is also called the Maslov
index.

6.5.5 The Anharmonic Oscillator

Let U : R→ R be a given smooth function. By definition, an anharmonic oscillator
has the potential

U(q) := 1
2
mω2q2 + 1

4
mκq4

with the positive constants m (mass), ω (angular frequency), and κ (coupling con-
stant). The action functional to the potential U is given by

S[q] :=

Z t1

t0

“

1
2
mq̇2(t)− U

`

q(t)
´

”

dt.

Setting χ(σ) := S[q + σh] with the real parameter σ, we get the nth variation

δnS(q, h) := χ(n)(0) where n = 1, 2, . . .

In what follows the function q : [t0, t1]→ R is assumed to be smooth.

Choose the test function h ∈ D(t0, t1). Explicitly, after integrating by parts, we get
the first variation

δS(q;h) =
δS[q]

δq
(h) :=

Z t1

t0

δS[q]

δq(t)
· h(t)dt

with the local first functional derivative δS[q]
δq(t)

:= −mq̈(t)−U ′(q(t)), and the second

variation

δ2S(q;h) =

Z t1

t0

“

mḣ(t)2 − U ′′`q(t)
´

h(t)2
”

dt

=

Z t1

t0

“

−mḧ(t)− U ′′`q(t)
´

h(t)
”

h(t)dt.

This is a quadratic form with respect to h. Introducing the second functional deriva-

tive δ2S[q]

δq2 (h, k) := d
dσ

δS[q+σk]
δq

(h)|σ=0, we obtain

δ2S[q]

δq2
(h, k) =

Z t1

t0

“

−mk̈(t)− U ′′`q(t)
´

k(t)
”

h(t)dt

for all k, h ∈ D(t0, t1). Furthermore, δ2S(q;h) = δ2S[q]

δq2 (h, h). It follows from the

Taylor expansion χ(1) = χ(0) + χ′(0) + 1
2
χ′′(ϑ) with 0 < ϑ < 1 that

S[q + h] = S[q] + δS(q;h) + δ2S(q + ϑh;h).
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The principle of critical action versus the principle of least action.
Following Jacobi, let us compare the principle of critical action

S[q] = critical!, q(t0) = q0, q(t1) = q1 (6.32)

with the principle of least action

S[q] = min!, q(t0) = q0, q(t1) = q1. (6.33)

We say that the function q : [t0, t1]→ R is a local minimum of the action functional
S (i.e., a local solution of (6.33)) iff it satisfies the boundary condition and, for each
test function h ∈ D(t0, t1), there exists a positive number σ0 such that

S[q + σh] ≥ S[q] for all σ ∈ [−σ0, σ0].

The accessory eigenvalue problem reads as

−mḧ(t)− U ′`q(t)
´

h(t) = λh(t), t ∈ [t0, t1], h(t0) = h(t1) = 0. (6.34)

This classical boundary-eigenvalue problem has a complete orthonormal system
h1, h2, . . . of eigenfunctions in the real Hilbert space L2(t0, t1) with the correspond-
ing simple eigenvalues λ1 < λ2 < . . . Moreover,

δS2(q;h) =
∞
X

n=1

λn〈hn|h〉2hn,

where 〈hn|h〉 =
R t1

t0
hn(t)h(t)dt. Suppose that all of the eigenvalues are different

from zero. By definition, the Morse index iS(q) is equal to the number of negative
eigenvalues. The smallest eigenvalue λ1 is the minimal value of the constrained
quadratic minimum problem

δ2S(q;h) = min,

Z t1

t0

h(t)2dt = 1, h ∈ C2
0 [t0, t1],

where C2
0 [t0, t1] denotes the set of all twice continuously differentiable functions

h : [t0, t1]→ R with h(t0) = h(t1) = 0.

(i) Necessary condition for a local minimum: If q is a solution of (6.32) (e.g., q is a
local solution of (6.33)), then q is a solution of the Euler–Lagrange equation

δS[q]

δq(t)
= 0, t0 ≤ t ≤ t1, q(t0) = q0, q(t1) = q1, (6.35)

that is, mq̈(t) = −U ′(q(t)).
(ii) Sufficient condition for a local minimum: Conversely, suppose that the function

q is a solution of (6.35) and the Morse index is(q) is equal to zero. Then the
function q is a local minimum of the action functional S. If the Morse index
iS(q) is positive, then q is not a local minimum of the action functional S.

The linearized Euler–Lagrange equation and Jacobi fields. Choose the
test function h ∈ D(t0, t1), and replace the Euler–Lagrange equation

mq̈ + U ′(q) = 0

by m(q̈+σḧ)+U ′(q+σh) = 0. Differentiation with respect to the real parameter σ at
σ = 0 yields the so-called linearized Euler–Lagrange equation (or Jacobi equation)
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mḧ(t) + U ′(q(t))h(t) = 0, t ∈ [t0, t1], h(t0) = h(t1) = 0. (6.36)

The solutions h of this equation are called Jacobi fields. By definition, the point t0
is conjugate to the point t1 iff problem (6.36) has a nontrivial solution (i.e., there
exists a nontrivial Jacobi field). Equivalently, the accessory eigenvalue problem
(6.34) has the eigenvalue λ = 0.

If the interval [t0, t1] contains an interior point which is conjugate to t0,
then each solution q of the Euler–Lagrange equation (6.35) is not a local
minimum of the action functional S.

For example, in the case of the harmonic oscillator, the conjugate points to t0 are
tn,conj = t0 +nπ/ω with n = 1, 2, . . . If t1 < t1,conj, then the Morse index iS is equal
to zero. If we steadily increase the interval [t0, t1] for fixed t0, then the Morse index
jumps each point t1,conj, t2,conj, . . . The jump is equal to one.

We will show in Sect. 7.10 that the appearance of conjugate points com-
plicates the computation of the Feynman path integral for the quantized
harmonic oscillator.

In turn, this complicates the most important approximation method in quantum
mechanics – the WKB method – which studies the singular limit � → 0 (i.e., the
Planck action quantum goes to zero). In geometric optics, conjugate points corre-
spond to focal points which represent singularities of the light ray configuration.

The classical results quoted above are special cases of a more general functional-
analytic result whose proof can be found in Zeidler (1986), Vol. III, p. 201 (see the
references on page 1049). Roughly speaking, the following hold:

The principle of least action is valid for sufficiently small time intervals.

6.5.6 The Ginzburg–Landau Potential and the Higgs Potential

Let us study the prototype of a phase transition by considering the Ginzburg–
Landau potential

U(q) := (q2 − a2)2, q ∈ R

for fixed positive parameter a. The principle of critical action

Z t1

t0

“

1
2
mq̇(t)2 − U

`

q(t)
´

”

dt = critical!

together with the boundary condition q(t0) = q0, q(t1) = q1 yields the equation of
motion

mq̈(t) = F (q(t)) t ∈ R (6.37)

with the force F (q) = −U ′(q) = 4(a2 − q2)q. The energy

E(t) = 1
2
mq̇2(t) + U(q(t))

is constant along the trajectories q = q(t) (solutions of (6.37)). Let us discuss the
qualitative behavior of the motion of a particle governed by (6.37). Since U(q) ≥ 0
for all q ∈ R, the energy E of the particle is always nonnegative.

• If E = 0, then q̇(t) = 0 for all times t ∈ R. Hence the particle rests either at the
point q = a or at the point q = −a.
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Fig. 6.8. The Ginzburg–Landau potential

• For fixed energy E ≥ 0, the particle is only located at positions which belong to
the set

{q ∈ R : E − U(q) ≥ 0}.
For example, if 0 ≤ E < U(0), then the particle never passes the origin q = 0.
In contrast to this, if E > U(0), then the particle is able to pass the origin (Fig.
6.8).

Taylor expansion of the force near the point q0 yields

F (q) = −U ′(q0)− U ′′(q0)(q − q0) + o(q − q0), q → q0,

where U ′(q) = 4(q2 − a2)q and U ′′(q) = 12q2 − 4a2. The critical equation

U ′(q0) = 0

has the solutions q0 = ±a, 0. The force vanishes precisely at these equilibrium
points. Since U ′′(±a) > 0 and U ′′(0) < 0,

• the force F (q) = −U ′′(a)(q − a) + . . . is attracting near the equilibrium point
q = a,

• the force F (q) = −U ′′(−a)(q + a) + . . . is attracting near the equilibrium point
q = −a, and

• the force F (q) = −U ′′(0)q + . . . is repelling near the equilibrium point q = 0.

Consequently, the Ginzburg–Landau potential describes the motion of a particle
that has the two stable equilibrium points q = ±a and one unstable equilibrium
point q = 0. A passage from q = a to q = −a models a phase transition.

Superconductivity. The Ginzburg–Landau potential was used by Ginzburg
and Landau in 1950 in order to study phase transitions in superconductivity.15

The Higgs particle. In the Standard Model of elementary particle physics,
Weinberg introduced the field of the so-called Higgs particle in order to generate
the large masses of the vector bosons W±, Z0. The potential of the Higgs field is
of the Landau–Ginzburg type. We refer to:

P. Higgs, Broken symmetry and the masses of gauge bosons, Phys. Rev.
Lett. 13 (1964), 508–509.

S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967), 1264–1266.

This will be thoroughly studied in Vol. III on gauge field theory.

15 B. Ginzburg and L. Landau, On the theory of superconductivity, J. Experimental
and Theoretical Physics 20 (1950), 1064–1082 (in Russian).
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6.5.7 Damped Oscillations, Stability, and Energy Dissipation

The damped oscillator equation

mq̈(t) = −αq(t)− βq̇(t), t ∈ R, q(0) = q0, q̇(0) = v0 (6.38)

with the positive constants α, β describes the motion of a particle on the real line
under the influence of the repulsive force −αq and the friction force −βq̇. Typically,
friction forces depend on the velocity of the particle. Letting ω :=

p

α/m and
γ := β/2m we get the equation

q̈(t) + 2γq̇(t) + ω2q(t) = 0, t ∈ R, q(0) = q0, q̇(0) = v0.

If the friction force is sufficiently small, 0 < γ < ω, then the unique motion is given
by

q = q0e
−γt cos

“

t
p

ω2 − γ2
”

+
v0 + γq0
p

ω2 − γ2
e−γt sin

“

t
p

ω2 − γ2
”

.

This corresponds to damped oscillations.
Asymptotic stability. As time goes to plus infinity, the motion passes to rest

at the origin, independently of the initial position and the initial velocity:

lim
t++∞

q(t) = 0.

We call this asymptotic stability of the motion.
Irreversibility. Obviously, the nontrivial process q = q(t) is irreversible; that

is, if q = q(t) is a nontrivial solution of the equation of motion (6.38), then the
time-reversed process q = q(−t) is not a solution of (6.38). Such a process would
correspond to oscillations with increasing amplitude as time goes to plus infinity.
For the mechanical energy

E(t) = 1
2
mq̇(t)2 + 1

2
mω2q(t)2

of the motion q = q(t), we get Ė(t) = mq̈q̇+mω2qq̇, and mq̈ = −mω2q−βq̇. Hence

Ė(t) = −βq̇(t)2 ≤ 0 for all times t ≥ 0.

If the initial velocity does not vanish, v0 �= 0, then energy conservation is violated
because of Ė(0) < 0. From the physical point of view, the mechanical energy is
partly converted into heat. Such processes are called dissipative. By the first law of
thermodynamics, the sum of mechanical energy and heat energy is conserved.

6.5.8 Resonance and Small Divisors

We consider an harmonic oscillator with angular eigenfrequency ω under the influ-
ence of an external periodic force F (t) := sinαt with the angular frequency α. This
corresponds to the following equation of motion:

mq̈(t) + mω2q(t) = sinαt, t ∈ R q(0) = q0, q̇(0) = v0. (6.39)

To simplify notation, we normalize the mass by setting m := 1.
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(N) Non-resonance case α �= ω (i.e., the angular frequency α of the external force
is different from the angular eigenfrequency ω of the harmonic oscillator): The
unique solution of (6.39) reads as

q(t) = q0 cosωt +
v0

ω
sinωt +

sinαt + sinωt

2(α + ω)ω
− sinαt− sinωt

2(α− ω)ω
, t ∈ R.

If the difference α− ω is small, then α− ω is called a small divisor.
(R) Resonance case α = ω (i.e., the angular frequency α of the external force is

equal to the angular eigenfrequency ω of the harmonic oscillator): The unique
solution of (6.39) reads as

q(t) = q0 cosωt +
v0

ω
sinωt +

sinωt

2ω2
− t

2ω
cosωt, t ∈ R.

The last term t cosωt corresponds to an oscillation of angular frequency ω.
The point is that this term is dangerous as its amplitude grows without bound
as time t goes to plus infinity. In real life, such resonance effects can lead to
the destruction of structures (e.g., vibrations of a bridge induced by wind or
traffic, or vibrations of a building caused by an earthquake). The occurrence
of the dangerous resonance term t cosωt is understandable, when one realizes
that the resonance solution (R) can be derived from the non-resonance solution
(N) by passing to the limit α→ ω. In fact, the classical Bernoulli–de l’Hospital
rule for limits tells us that

lim
α→ω

sinαt− sinωt

α− ω
= lim

α→ω
t cosαt = t cosωt.

Observe the following:

Many complicated phenomena in nature are caused by resonance effects
(e.g., the chaotic motion of some asteroids in celestial mechanics or inter-
nal resonances of quantum fields).

In terms of mathematics, resonances are related to singular situations which corre-
spond to small (or zero) divisors.

6.6 Symmetry and Conservation Laws

Newton and his successors noticed that there exist conservation laws that sim-
plify the integration of the equations of motion. For example, this concerns the
conservation of the following quantities: energy, momentum, angular momentum,
Runge–Lenz vector. In 1918, Emmy Noether (1882–1935) proved a general theorem
which shows that

The symmetries of the Lagrangian are responsible for conservation laws.

For example, invariance of the Lagrangian under time translations leads to conser-
vation of energy. More general, we will show in Sec. 6.6.2 that smooth continuous
symmetries of the action integral imply conservation laws.
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6.6.1 The Symmetries of the Harmonic Oscillator

Let q = q(t) be a solution of the harmonic oscillator equation

q̈(t) + ω2q(t) = 0, for all t ∈ R. (6.40)

This equation has the following symmetries.

(i) Time translation: q = q(t + t0) is a solution of (6.40) for each fixed t0 ∈ R.
(ii) Time reflection: q = q(−t) is a solution of (6.40).
(iii) Spatial reflection: q = −q(t) is a solution of (6.40).
(iv) Rescaling of the position: q = αq(t) is a solution of (6.40) for each fixed real

number α > 0.

Summarizing, we say that the harmonic oscillator equation is invariant under time
translations, time reflections, spatial reflections, and rescaling of position.

6.6.2 The Noether Theorem

The Noether theorem is one of the most important and most beautiful theorems in
mathematical physics. To begin with, consider the Euler–Lagrange equation

d

dt
Lq̇(q(t), q̇(t), t) = Lq(q(t), q̇(t), t) for all t ∈ R. (6.41)

Suppose that the Lagrangian L : R
3 → R is smooth. To simplify the argument, we

assume that all the solutions q = q(t) of the equation of motion (6.41) are smooth,
and they exist for all times t ∈ R. For such a solution, we define the momentum

p(t) := Lq̇(q(t), q̇(t), t),

and the energy
E(t) := p(t)q̇(t)− L(q(t), q̇(t), t).

The Euler–Lagrange equation (6.41) is then equivalent to the momentum equation:

ṗ(t) = Lq(q(t), q̇(t), t) for all t ∈ R. (6.42)

For the time derivative of the energy function, we get the energy equation:

Ė(t) = −Lt(q(t), q̇(t), t) for all t ∈ R. (6.43)

This follows from Ė = ṗq̇ + pq̈ − Lq q̇ − Lq̇ q̈ − Lt, and p = Lq̇, ṗ = Lq. From (6.42)
and (6.43), we obtain immediately the following two statements:

(i) Conservation of momentum: If the Lagrangian L = L(q̇, t) does not depend on
position q, then p(t) = const for all times t ∈ R.

(ii) Conservation of energy: If the Lagrangian L = L(q, q̇) does not depend on time
t, then E(t) = const for all times t ∈ R.

For example, choose the Lagrangian L := 1
2
mq̇2−U(q, t). The corresponding Euler–

Lagrange equation
mq̈(t) = −Uq(q(t), t)

describes the motion of a particle on the real line under the influence of the (time-
dependent) force −Uq(q, t) with the potential U. Momentum and energy are given
by p(t) := mq̇(t) and E(t) := 1

2
mq̇(t)2 + U(q(t), t), respectively. If the potential

U = U(q) does not depend on time, then we have the energy conservation
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1
2
mq̇(t)2 + U(q(t)) = const = E0 for all t ∈ R.

Moreover, if the potential U vanishes identically, U = 0, then we get the momentum
conservation

mq̇(t) = const = p0 for all t ∈ R.

Setting v0 := p0/m, the general solution is then given by the free motion

q = q0 + v0t for all t ∈ R

of constant velocity v0.
Special case of the Noether theorem. We want to show that momentum

conservation is a consequence of the invariance of the action integral

SΩ [q] :=

Z

Ω

L(q(t), q̇(t), t)dt

under spatial translations. To explain this, let us introduce the transformation
Tε : R

2 → R
2 by setting

Tε(t, q) := (t, q + ε) for all (t, q) ∈ R
2. (6.44)

In particular, this transformation sends each trajectory q to a new trajectory Tεq.
Explicitly, (Tεq)(t) := q(t) + ε for all times t ∈ R. Now we postulate the invariance
property

STεΩ [Tεq] = S[q] (6.45)

of the action integral. We assume that this relation is valid for all smooth functions
q : R → R, all compact intervals Ω := [t0, t1], and all real parameters ε in some
open neighborhood of ε = 0.

Proposition 6.6 (i) The invariance of the action integral under spatial transla-
tions implies conservation of momentum for each solution of the Euler–Lagrange
equation.

(ii) The invariance of the action integral under time translations implies con-
servation of energy for each solution of the Euler–Lagrange equation.

Proof. Let f : R→ R be a continuous function. If the interval Ω contracts to the
point t0, then

lim
Ω→t0

1

meas(Ω)

Z

Ω

f(t)dt = f(t0).

Consequently, if
R

Ω
f(t)dt = 0 for all compact intervals Ω, then f(t) = 0 for all

t ∈ R.
Ad (i). (I) General trajectory q = q(t). The transformation Tε from (6.44) sends

the trajectory t �→ q(t) to t �→ q(t)+ ε and leaves the time interval [t0, t1] invariant.
Thus, the invariance condition (6.45) tells us that

Z t1

t0

L(q(t) + ε, d
dt

(q(t) + ε), t)dt =

Z t1

t0

L(q(t), q̇(t), t)dt

for all ε ∈ R. Differentiation with respect to the parameter ε at ε = 0 yields

Z t1

t0

Lq(q(t), q̇(t), t)dt = 0
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for all intervals [t0, t1]. Hence Lq(q(t), q̇(t), t) = 0 for all t ∈ R.
(II) Motion q = q(t). If we choose a solution q = q(t) of the Euler–Lagrange

equation (6.41), then we obtain the momentum equation,

ṗ(t) = Lq(q(t), q̇(t), t),

by (6.42). Consequently, ṗ(t) = 0. This implies the desired momentum conservation,
namely, p(t) = const for all times t ∈ R.

Ad (ii). (I) General trajectory q = q(t). Now we use the time translation

τ := t + ε.

Set Tε(t, q) := (t + ε, q) for all (t, q) ∈ R
2. For fixed parameter ε, the trajectory

t �→ q(t)

is transformed into the trajectory τ �→ q(τ, ε) with q(τ, ε) := q(t). Moreover, the
time interval [t0, t1] is transformed into [t0 + ε, t1 + ε]. The invariance condition
(6.45) reads as

Z t1+ε

t0+ε

L(q(τ, ε), qτ (τ, ε), τ)dτ =

Z t1

t0

L(q(t), q̇(t), t)dt

for all ε ∈ R. Using the transformation τ = t + ε, we get

Z t1

t0

L(q(t), q̇(t), t + ε)dt =

Z t1

t0

L(q(t), q̇(t), t)dt.

Differentiation with respect to the real parameter ε at ε = 0 yields

Z t1

t0

Lt(q(t), q̇(t), t)dt = 0,

and hence Lt(q(t), q̇(t), t) = 0.
(II) Motion q = q(t). For a solution q = q(t) of the Euler-Lagrange equation

(6.41), we have the energy equation,

Ė(t) = −Lt(q(t), q̇(t), t),

by (6.43). Hence Ė(t) = 0. This implies energy conservation, E(t) = const for all
t ∈ R. �

General case of the Noether theorem. Let us now study a smooth change

τ = τ(t, ε), Q = Q(t, q, ε), t, q ∈ R (6.46)

from time t and position q to time τ and position Q, respectively. We assume that
this transformation depends on the small real parameter ε in such a way that the
value ε = 0 corresponds to the identical transformation, that is,

t = τ(t, 0), q = Q(t, q, 0), t, q ∈ R.

We also assume that, for each value of ε in some open neighborhood of ε = 0, the
time transformation t �→ τ(t, ε) is a diffeomorphism from R onto itself. Naturally
enough, for fixed parameter ε, the given trajectory q = q(t) is transformed into the
new trajectory q = q(τ, ε) given by
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τ = τ(t, ε), q(τ(t, ε), ε) = Q(t, q(t), ε), t ∈ R.

The linearization of the transformation of trajectories with respect to the small
parameter ε reads as

τ = t + δt + o(ε), q(τ, ε) = q(t) + δq(t) + o(ε), ε→ 0. (6.47)

Here, we set δt := ετε(t, 0) and

δq(t) := ε
∂

∂ε
q(τ(t, ε), ε)|ε=0.

In fact, Taylor expansion with respect to the small parameter ε yields

τ(t, ε) = τ(t, 0) + τε(t, 0)ε + o(ε), ε→ 0.

Hence τ = t + δt + o(ε). Similarly, we get q(τ(t, ε), ε) = q(t) + δq(t) + o(ε). To
streamline the notation, let us denote the smooth transformation (6.46) by

Tε : R
2 → R

2,

that is, Tε(t, q) = (τ,Q). In 1918, the following famous theorem was proven by
Emmy Noether.16

Theorem 6.7 Suppose that the action integral SΩ [q] :=

Z

Ω

L(q(t), q̇(t), t)dt has

the invariance property

STεΩ [Tεq] = SΩ [q] (6.48)

for all smooth trajectories q = q(t) on R, all compact time intervals Ω, and all
real parameters ε in some open neighborhood of ε = 0. Then each smooth solution
q = q(t) of the Euler-Lagrange equation

d

dt
Lq̇(q(t), q̇(t), t) = Lq(q(t), q̇(t), t), for all t ∈ R

satisfies the conservation law

d

dt
(Lδt + (δq − q̇δt)Lq̇) = 0 for all t ∈ R. (6.49)

Before proving this, let us make some comments.
Local symmetry condition. The conservation law (6.49) reads explicitly as

d

dt

`

L(P )δt + (δq(t)− q̇(t)δt)Lq̇(P )
´

= 0 for all t ∈ R,

where P := (q(t), q̇(t), t). This holds for all ε ∈ R. Note that δt and δq linearly
depend on ε. The invariance condition (6.48) for the action integral can be replaced
by the following local symmetry condition

L
`

q(τ, ε), qτ (τ, ε), τ
´

)|τ=τ(t,ε)
· τt(t, ε) = L

`

q(t), q̇(t), t
´

. (6.50)

We assume that this is true for all times t ∈ R, all smooth trajectories q = q(t) on
R, and all real parameters ε in some open neighborhood of ε = 0. The proof to be
given below shows that

16 E. Noether, Invariant variational problems, Göttinger Nachrichten, Math.-phys.
Klasse 1918, 235–257 (in German).
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The Noether theorem remains valid if we use trajectories q = q(t) with
n degrees of freedom, that is, we have q(t) ∈ R

n for all t ∈ R, where17

n = 1, 2, . . .

The point is that we will carry out the proof below in such a way that it can be gen-
eralized immediately to variational problems for multi-dimensional integrals. This
will be considered in Vol. III in connection with the investigation of physical field
theories (e.g., the theory of general relativity, the Standard Model in elementary
particle physics, and the string theory). In particular, we will show that the energy-
momentum tensor for physical fields follows from the relativistic invariance of the
action integral together with the Noether theorem.

Example. For the motion q = q(t) on the real line, the conservation law (6.49)
reads as

d

dt

`

p(t)δq(t)−E(t)δt
´

= 0 for all t ∈ R. (6.51)

(i) Conservation of momentum: For the translation of position,

τ = t, Q = q + ε,

we obtain δt = 0 and δq = ε, by (6.47). Then q(τ, ε) = q(t)+ε. If the Lagrangian
L = L(q, q̇, t) does not depend on position q, then

L(q(t) + ε, q̇(t), t) = L(q(t), q̇(t), t) for all t, ε ∈ R.

This is the local symmetry condition (6.50). By (6.51), εṗ(t) = 0 for all t, ε.
Hence p(t) = const for all t ∈ R.

(ii) Conservation of energy: For the time translation

τ = t + ε, Q = q,

we get δt = ε and δq = 0, by (6.47). Then q(τ, ε) = q(t). If the given Lagrangian
L = L(q, q̇, t) does not depend on time t, then

L(q(t), q̇(t), t + ε) = L(q(t), q̇(t), t) for all t, ε ∈ R.

This is the local symmetry condition (6.50). By (6.51), εĖ(t) = 0 for all t, ε.
Hence E(t) = const for all t ∈ R.

Proof of Theorem 6.7. In what follows, the primed quantity q′ denotes the
derivative of the function q = q(t) with respect to time t.

(I) General trajectories. The global symmetry condition (6.48) reads explicitly
as

Z

TεΩ

L(q(τ, ε), qτ (τ, ε), τ)dτ =

Z

Ω

L(q(t), q′(t), t)dt.

Using the transformation τ = τ(t, ε), we get

Z

Ω

L(q(τ, ε), qτ (τ, ε), τ)|τ=τ(t,ε)
· τt(t, ε)dt =

Z

Ω

L(q(t), q′(t), t)dt,

by the substitution rule for integrals. Contracting the interval Ω to the point t, we
obtain the local symmetry condition

17 Here, q̇(t)Lq̇(P ) =
Pn

k=1 q̇
k(t) ∂L

∂q̇k (P ) .
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L(q(τ, ε), qτ (τ, ε), τ)|τ=τ(t,ε)
· τt(t, ε) = L(q(t), q′(t), t), (6.52)

which coincides with (6.50). Since τ(t, 0) = t and q(t, 0) = q(t), we get

τt(t, 0) = 1, qτ (t, 0) = q′(t), qττ (t, 0) = q′′(t).

Differentiating the local symmetry condition (6.52) with respect to the real param-
eter ε at ε = 0, the chain rule yields

Lq(P )
`

qτ (t, 0)τε(t, 0) + qε(t, 0)
´

τt(t, 0)

+Lq′(P )
`

qττ (t, 0)τε(t, 0) + qετ (t, 0) + Lt(P )τε(t, 0)
´

τt(t, 0)

+L(P )τεt(t, 0) = 0.

Here, we set P :=
`

q(t), q′(t), t
´

. Introducing α(t) := εqε(t, 0), we obtain

Lq(P )(q′δt + α) + Lq′(P )(q′′δt + α′) + Lt(P )δt + L(P )(δt)′ = 0.

Setting L′(t) := d
dt
L(P ), the chain rule tells us that

L′ = Lqq
′ + Lq′q′′ + Lt.

This implies the following equation

L′δt + Lqα + Lq′α′ + L(δt)′ = 0. (6.53)

Explicitly, L′(P )δt + Lq(P )α(t) + Lq′(P )α′(t) + L(P )(δt)′(t) = 0. To compute the
function α = α(t), differentiate q(τ(t, ε), ε) with respect to the parameter ε at ε = 0.
Then

δq(t) = εqτ (τ(t, 0), 0)τε(t, 0) + εqε(τ(t, 0), 0).

Noting that τ(t, 0) = t, we get

δq(t) = q′(t)δt + α(t).

Now the key relation (6.53) reads as

L′δt + L(δt)′ + Lq(δq − q′δt) + Lq′(δq − q′δt)′ = 0. (6.54)

This is valid for each trajectory q = q(t).
(II) Motion. Now consider the special case where the trajectory q = q(t) satisfies

the Euler-Lagrange equation. Then

(Lq′(P ))′ = Lq(P ).

Therefore, using the product rule, the key relation (6.54) passes over to the equation

(Lδt)′ + (Lq′
`

δq − q′δt)
´′

= 0.

This is the desired conservation law (6.49). �
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Fig. 6.9. Motion of a pendulum

6.7 The Pendulum and Dynamical Systems

Henri Poincaré (1854–1912) originated not only new theories, but com-
pletely new branches of mathematics like the theory of dynamical sys-
tems, differential topology, and algebraic topology. His ideas are so great,
his way of thinking of and looking at mathematical reality has been so
widely accepted that to us, his descendants, it seems strange that people
have thought differently, for example, that dynamical systems should be
considered on manifolds, and not only on R

n – because indeed a plane
pendulum is a motion on the circle, and a spherical pendulum is a motion
on a sphere.18

Krysztof Maurin, 1999

Motions of mass point systems are frequently governed by constraints (e.g., the
oscillations of molecules). Whereas the free motion of N mass points in Euclidean
space has 3N degrees of freedom, constrained motions possess less than 3N degrees
of freedom. The Lagrangian approach to mechanics allows an elegant reduction to
the true number of degrees of freedom by considering the motion with respect to
appropriately chosen local coordinates. This corresponds to the theory of dynamical
systems on manifolds. In order to illustrate this, let us consider the motion x = x(t)
of a pendulum of mass m and length l.

In a right-handed Cartesian coordinate system, we set x = xi + yj + zk (Fig.
6.9). The gravitational force

F = −mgk

acts on a particle of mass m. Here, g = 9.81m/s2 is the acceleration of gravity.
Letting U(x) := mgz, we get F = −grad U . Therefore, the force F has the
potential U .

6.7.1 The Equation of Motion

For the Lagrangian, we get

L := kinetic energy minus potential energy = 1
2
mẋ2 − U(x).

18 K. Maurin, The Riemann Legacy, Kluwer, Dordrecht, 1999 (reprinted with per-
mission).
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The principle of critical action reads as

Z t1

t0

“

1
2
mẋ(t)2 −mgz(t)

”

dt = critical !, x(t0) = x0, x(t1) = x1,

together with the side condition x(t)2 = l2 for all times t ∈ [t0, t1]. The side
condition tells us that the motion proceeds on a circle of radius l. In order to
eliminate the side condition, we make the ansatz

x(t) = l(sinϕ(t) i− cosϕ(t) k),

where ϕ denotes the elongation angle (Fig. 6.9). For the velocity vector, we then
get ẋ(t) = l(cosϕ(t) i + sinϕ(t) k)ϕ̇(t). Therefore, the principle of critical action
passes over to

Z t1

t0

“

1
2
ml2ϕ̇2(t) + mgl cosϕ(t)

”

dt = critical!, ϕ(t0) = ϕ0, ϕ(t1) = ϕ1.

Each smooth solution ϕ = ϕ(t) of the action principle satisfies the Euler–Lagrange
equation d

dt
Lϕ̇ = Lϕ with the Lagrangian L := 1

2
ml2ϕ̇2 +mgl cosϕ. This yields the

nonlinear equation of motion for the pendulum,

ϕ̈ + ω2 sinϕ = 0, (6.55)

together with the angular frequency parameter ω :=
p

g/l. Equation (6.55) is also
called the one-dimensional sin-Gordon equation. Let us study the situation where
the pendulum rests at the initial time t0 := 0. Then we have to add the initial
condition

ϕ(0) = ϕ0, ϕ̇(0) = 0.

We assume that −π < ϕ0 < π.

6.7.2 Elliptic Integrals and Elliptic Functions

The linearized pendulum and the classical sinus function. Let us first con-
sider the special case where the elongation angle ϕ is small. Using the approximation
sinϕ = ϕ+ ..., we obtain the harmonic oscillator equation, ϕ̈+ω2ϕ = 0, which has
the solution

ϕ = ϕ0 sin

„

r

g

l
t +

π

2

«

, t ∈ R, T = 2π

s

l

g
, (6.56)

where T is the time period of the pendulum.
The nonlinear pendulum and the Jacobi sinus function. Now let us pass

over to the general case.

From the practical point of view, the main task consists in computing the
time period T of the pendulum.
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It turns out that this problem leads to the theory of elliptic integrals and elliptic
functions created by Euler, Gauss, Legendre, Jacobi, Riemann, and Weierstrass in
the 18th and 19th century. We will show that

T = 4

s

l

g
K(k), k := sin

ϕ0

2
.

To this end, let us start with Legendre’s normal form of the elliptic integral of the
first kind,

F (ψ; k) :=

Z ψ

0

dχ
p

1− k2 sin2 χ
.

For ψ = π
2
, Legendre introduced the symbol K(k) := F (π

2
, k). The inverse function

to x = F (ψ; k) is called the amplitudinis function, ψ = am (x; k). Moreover, the
function

y = sin am(x; k)

is called the sinus amplitudinis function. This Jacobian sinus function is also de-
noted by y = sn(x; k). Analytic continuation of this function yields a meromorphic
function on the complex plane, which is double-periodic (i.e., elliptic) with the real

period 4K(k) and the imaginary period 2K(
√

1− k2)i. In the limit case k = 0, we
get the classical sinus function,

sin am(x; 0) = sinx for all x ∈ C.

Using Newton’s binomial formula (1 + z)α = 1 + αz + ... for α = − 1
2

and Walli’s

integral formula19

Z π/2

0

sin2n ψ dψ =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · 2n · π
2
,

we obtain the convergent power series expansion

K(k) =
π

2

“

1 + 4k2 +

„

1 · 3
2 · 4

«2

k4 + ...
”

, 0 ≤ k < 1.

Proposition 6.8 The unique solution ϕ = ϕ(t) of the nonlinear pendulum equa-
tion (6.55) together with the initial condition ϕ(0) = ϕ0, ϕ̇(0) = 0 reads as

sin
ϕ(t)

2
= k sin am

„

r

g

l
t + K(k); k

«

, t ∈ R, (6.57)

where k = sin ϕ0
2
. This is a periodic motion of time period T = 4

p

l/g K(k) between
the elongation angles ϕ0 and −ϕ0 at time t = 0 and t = T/2, respectively.

For small angles ϕ0, we obtain the classical first-order approximation formula
(6.56). The second-order approximation of the time period reads as

T = 2π

s

l

g

„

1 +
ϕ2

0

16

«

+ O(ϕ4
0), as ϕ0 → 0.

19 Wallis (1616–1703).
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Proof. (I) Energy conservation. Recall that ω :=
p

g/l. If ϕ = ϕ(t) is a solution of
(6.55), then

1
2
ml2ϕ̇(t)2 −mgl cosϕ(t) = const = E for all t ∈ R. (6.58)

In fact, differentiation with respect to time t yields ml2ϕ̈ + mgl sinϕ = 0. Here,
E = 1

2
mẋ2 + U(x) equals the total energy. Equation (6.58) describes conservation

of energy. The initial condition ϕ(0) = ϕ0, ϕ̇(0) = 0 tells us that E = −mgl cosϕ0.
Using the identity cosϕ = 1− 2 sin2 ϕ

2
, from (6.58) we obtain

„

dϕ

dt

«2

= 4ω2
“

sin2 ϕ0

2
− sin2 ϕ

2

”

.

Since ϕ̇(t)2 ≥ 0, the motion of the pendulum satisfies −ϕ0 ≤ ϕ(t) ≤ ϕ0 for all times
t. Integrating dt = ...dϕ, we get

t =
1

2ω

Z ϕ

0

dχ
q

sin2 ϕ0
2
− sin2 χ

2

− const. (6.59)

The constant follows from the initial condition t(ϕ0) = 0.
(II) Legendre’s normal form. We want to transform the elliptic integral (6.59)

into F (ψ; k). To this end, we introduce the new parameter ψ by letting

sin
ϕ

2
= k sinψ, −π

2
≤ ψ ≤ π

2
.

In particular, we assume that ψ = π/2 corresponds to ϕ = ϕ0. Note that

r

sin2 ϕ0

2
− sin2 ϕ

2
= k

q

1− sin2 ψ = k cosψ,

and cos ϕ
2

=
q

1− sin2 ϕ
2

=
p

1− k2 sin2 ψ. It follows from

1

2
cos

ϕ

2
dϕ = k cosψ dψ

that

ωt =

Z ψ

0

dψ
p

1− k2 sin2 ψ
− const.

By the initial condition t(π
2
) = 0, the constant is equal to F (π

2
; k) = K(k). There-

fore, ψ = am (ωt + K(k); k), and hence we obtain the desired motion (6.57) of the
pendulum.

(III) Approximation. If the maximal angle ϕ0 is small, then the parameter k is
also small. In first order, as k → 0,

sin
ϕ

2
= k sin am (ωt + K(0); 0) + o(k) = k sin

“

ωt +
π

2

”

+ o(k).

Hence sin ϕ
2

= k cosωt. If t = 0, then sin ϕ0
2

= k. Finally, from sinϕ = ϕ + ... we
obtain the approximative solution ϕ = ϕ0 cosωt, which coincides with (6.56). �

The Jacobi theta functions. Fix a complex number τ with positive imaginary
part, that is, �(τ) > 0. For each complex number z and each parameter q := eiπτ ,
Jacobi introduced the following functions:



394 6. Principle of Critical Action and the Harmonic Oscillator

ϑ0(z; q) :=

∞
X

n=−∞
(−1)nqn2

e2πinz

and ϑ1(z; q) := 2
P∞

n=0(−1)nq(n+ 1
2 )2 sin(2n + 1)πz, as well as

ϑ2(z; q) := 2
∞
X

n=0

q(n+ 1
2 )2 cos(2n + 1)πz, ϑ3(z; q) := 1 + 2

∞
X

n=1

qn2
cos 2nπz.

These functions are entire functions of period one with respect to the variable z.
Now choose

τ :=
K(
√

1− k2)

K(k)
i, q := eiπτ .

For the Jacobi sinus function, we get

sn(z; q) = sin am(z; k) = 2K(k)
ϑ0(0; q) ϑ1

`

z
2K(k)

; q
´

ϑ′
1(0, ; q) ϑ0

`

z
2K(k)

; q
´ , z ∈ C.

The function z �→ sn(z; q) has poles precisely at the points

2mK(k) + (2n + 1)K
“

p

1− k2
”

i,

where m and n are arbitrary integers. Fix k with 0 ≤ k < 1. Observe that

x =

Z sn (x;k)

0

dy
p

(1− y2)(1− k2y2)
for all x ∈]− 1, 1[.

In the special case where k = 0, we have sn(x; 0) = sinx. The map x �→ sn(x; k)
is one-to-one on the interval ] − 1, 1[. The values of sn(z; k) for arbitrary complex
numbers are then obtained by analytic continuation.

Gauss’ lemniscatic sinus function. Jakob Bernoulli (1654–1705) introduced
the curve

(x2 + y2)2 − (x2 − y2)2 = 0, (x, y) ∈ R
2 (6.60)

in the Leipzig Acta eruditorum (journal of scientists) in 1694. This is an algebraic
curve of fourth order called the lemniscate. This curve is obtained in the following
way. Start with the hyperbola

x2 − y2 = 1.

Using polar coordinates x = r cosϕ, y = r sinϕ, x2 − y2 = r2 cos 2ϕ = 1. Hence

r =
1√

cos 2ϕ
, −π

4
< ϕ < π

4
, 3π

4
< ϕ < 5π

4
.

By inversion with respect to unit circle, r �→ 1
r
, we obtain

r =
p

cos 2ϕ, −π
4
≤ ϕ ≤ π

4
, 3π

4
≤ ϕ ≤ 5π

4
.

This is the lemniscate (6.60) (Fig. 6.10). In about 1800, the young Gauss studied
the arc length

s(r) =

Z r

0

d�
p

1− �4
(6.61)
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Fig. 6.10. Jakob Bernoulli’s lemniscate

of the lemniscate. The inverse function, r = sl(s), was called the lemniscatic sinus
function by Gauss. Using analytic continuation, Gauss observed that the function
r = sl(s) has both a real and a purely imaginary period, namely, l, and li. Explicitly,

sl(z + l) = sl z sl(z + li) = sl z for all z ∈ C.

This way, for the first time, Gauss discovered the existence of double-periodic func-
tions, which are also called elliptic functions. Explicitly, the period is the total
length

l = 4

Z 1

0

d�
p

1− �4

of the lemniscate. Moreover, by numerical experiments, Gauss discovered that

l =
2π

M(1,
√

2)
.

Furthermore, for the Legendre elliptic integral, we have

K(k) =

Z π/2

0

dχ
p

1− k2 sin2 χ
=

1

2M(1,
√

1− k2)
, 0 < k < 1.

Here, M(a0, b0) denotes the Gaussian arithmetic-geometric mean of the positive real
numbers a0 and b0. By definition, M(a0, b0) is the limit of the rapidly convergent
iterative method

an+1 = 1
2
(an + bn), bn+1 =

√
anbn, n = 0, 1, 2, ...

That is, M(a0, b0) = limn→∞ an = limn→∞ bn.

Bernoulli’s lemniscate was one of the starting points of algebraic geometry.

The essential step was made by Riemann (1826–1866) who noticed that algebraic
curves in the plane R

2 can be understood best by extending them to complex values.
This way we obtain a curve in the complex space C

2 which can be described by a
compact Riemann surface of real dimension two (and complex dimension one). For
the theory of elliptic functions, we refer to:

A. Hurwitz and R. Courant, Lectures on Complex Function Theory and
Elliptic Integrals, Springer, Berlin, 1964 (in German).

V. Armitage, Elliptic Functions, Cambridge University Press, 2006.

Hints for further reading on plane algebraic curves can be found on page 203.
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6.7.3 The Phase Space of the Pendulum and Bundles

It was a great achievement of Poincaré (1854–1912) to show that the proper

domain of analytic dynamics is the cotangent bundle TMd of the position
space M – this discovery was so fundamental that nowadays it seems to
be natural and obvious.20

Krysztof Maurin, 1996

The categories of differentiable manifolds and vector bundles provide a
useful context for the mathematics needed in mechanics, especially the
new topological and qualitative results.21

Ralph Abraham and Jerrold Marsden, 1978

Too often in the physical sciences, the space of states is postulated to be a
linear space when the basic problem is essentially nonlinear; this confuses
the mathematical development.22

Stephen Smale, 1980

This section should help the reader to understand the intuitive roots of the language
of bundle theory in modern mathematics and physics. In mechanics, one has to
distinguish the following crucial notions:

• position space M ;
• state space TM (tangent bundle of the manifold M);
• phase space TMd (cotangent bundle of M).

Let us discuss this for the prototype of a mechanical system with nontrivial topology
– the circular pendulum.

Our strategy is to introduce only such quantities which have a geometrical
meaning, that is, they are independent of the choice of local coordinates.

The position space. The position of the circular pendulum is described by a
point P of the circle S

1
R of radius R. We set

M := S
1
R.

This is the set of all positions. Naturally enough, the circle M is called the position
space of the pendulum.

The tangent space. By definition, the symbol

TPM

denotes the tangent space of the circle M at the point P . In terms of physics, the
vector v is contained in the tangent space TPM iff there exists a motion x = x(t)
on the circle M such that, at time t = 0, the particle is at the point P and has the
velocity vector

ẋ(0) = v.

The motion of the particle on the circle M is uniquely determined by knowing the
tuple (P,v) at the initial time t = 0. Here, P is the initial position, and v is the
initial velocity vector (Fig. 6.11(a)). Let x = x(t) be the counter-clockwise motion

20 K. Maurin, The Riemann Legacy, Kluwer, Dordrecht, 1997.
21 R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley, Read-

ing, Massachusetts, 1978.
22 S. Smale, The Mathematics of Time: Essays on Dynamical Systems, Economic

Processes, and Related Topics, Springer, New York, 1980.
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(a) position space M
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(b) tangent bundle TM
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Fig. 6.11. The tangent bundle of the pendulum

of a particle on the circle M with angular velocity one. Set e := ẋ(t). This way,
we obtain a unit tangent vector eP at each point P of the circle. Moreover, the
velocity vectors v ∈ TPM can be uniquely represented as

v = v · eP , v ∈ R.

The real number v is called the coordinate of the velocity vector v at the point P.
The state space (tangent bundle). All the tuples (P,v) are called states of

the particle. The set of all possible states

TM := {(P,v) : P ∈M, v ∈ TPM}

is called the state space of the pendulum. In mathematics, TM is called the tangent
bundle of the circle M . For fixed P , the set

FP := {(P,v) : v ∈ TPM}

is called a fiber of TM with respect to the base point P . This fiber can be identified
with the tangent space TPM at the point P. The Lagrangian of the pendulum can
be written as

L(P,v) = 1
2
mv2 − U(P )

where 1
2
mv2 is the kinetic energy, and U(P ) is the potential energy of the pendulum

at the point P of the circle M . Consequently, the Lagrangian

L : TM → R

is a real-valued function on the state space TM (tangent bundle of the position space
M). In order to get an intuitive geometric interpretation of the tangent bundle TM ,
let us assign to the vector v the coordinate v. The map

(P,v) �→ (P, v)

is a bijection from TM onto the product set M × R. In terms of geometry, the
product set can be regarded as a cylindrical surface with the circle M as equator.
The fibers {(P, v) : v ∈ R} of the cylindrical surface are generating straight lines
perpendicular to the equator.

The motion x = x(t) of the circular pendulum corresponds to a curve C
in the tangent bundle TM (Fig. 6.11(b)).
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From the point of view of the theory of bundles, product bundles like M × R are
trivial. For general mechanical systems, as a rule, the tangent bundle is not a trivial
product, but it is obtained by gluing together local products.

This gluing procedure generates nontrivial topological properties.

The tangent bundle TM can be synonymously written as the coproduct (or disjoint
union) of all the tangent spaces TMP of the base manifold M :

TM =
a

P∈M

TPM.

One also writes TM = {TPM}P∈M (bundle of the tangent spaces).
Duality and the costate space (phase space). Duality plays a crucial role

in mathematics in order to substantially simplify investigations. Let us dualize the
concept of the tangent bundle. To begin with, define the differential form dϕP at
the point P by setting

dϕP (v) = v for all v ∈ TPM.

In particular, dϕP (eP ) = 1. In terms of physics, the linear functional

dϕP : TPM → R

describes a special measurement process, which assigns to the velocity vector v the
real number v (velocity component). By definition, the dual tangent space (TPM)d

consists of all linear functionals F : TPM → R. The elements of (TPM)d are called
cotangent vectors (or covelocity vectors), and (TPM)d itself is called the cotangent
space of the circle M at the point P. Each cotangent vector F ∈ (TPM)d can be
represented by

F = p · dϕP .

The real number p is called the coordinate of F at the point P. Then

F (v) = F (veP ) = v · dϕP (eP ) = vp.

The tuple (P, F ) is called a costate. The set of costates

TMd := {(P, F ) : P ∈M, F ∈ (TPM)d}

is called the costate space (or the phase space) of the pendulum. In mathematics,
TM is called the cotangent bundle of the circle M . Assigning the coordinate p to
the covector F , the map

(P, F ) �→ (P, p)

is a bijection from TMd onto the product set M × R. Using the notion of disjoint
union, the cotangent bundle can be synonymously written as

TMd =
a

P∈M

(TPM)d.

One also writes TMd = {(TPM)d}P∈M (bundle of the dual tangent spaces). As we
will show later on, there exists a quite natural diffeomorphism

L : TM → TMd
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Fig. 6.12. Local coordinates of a circle

from the tangent bundle TM onto the cotangent bundle TMd of the position space
(manifold) M . This diffeomorphism L is called Legendre transformation, which is
a contact transformation in the sense of Sophus Lie.

Local coordinates. By definition, an n-dimensional manifold looks locally like
an open set in R

n; the points in R
n represent local coordinates of the manifold.23

In this setting, the angle variable ϕ is not an admissible coordinate for the global
circle. In fact, it is impossible to map homeomorphically the circle M onto an open
subset Ω of the real line R, since the first Betti numbers are different. Explicitly,
we have β1(M) = 1 and β1(Ω) = 0. In fact, for the circle, we need at least two
local coordinate systems with coordinates denoted by ϕ and ψ (Fig. 6.12(b)). For
example,

• ϕ varies in the open interval ]− π, π[;
• ψ varies in the open interval, say, ]π − π

4
, π + π

4
[ ;

• the point (x, y) = (R, 0) on the circle has the local coordinate ϕ = 0, and the
point (−R, 0) on the circle has the local coordinate ψ = π.

It is the goal of the analysis on manifolds to introduce such quantities which do
not depend on the choice of local coordinates. Such properties possess an invariant
geometric (or physical) meaning. This will be thoroughly studied in Vol. III. The
general theory of invariants is a vivid branch of mathematics with many applications
to physics; it was created by Cayley (1821–1895), and further developed by Weyl
(1885–1955). We refer to:

H. Weyl, The Classical Groups: Their Invariants and Representations,
Princeton University Press, 1946.

P. Olver, Classical Invariant Theory, Cambridge University Press, 1999.

The covering space of the position space. The true topological character
of the global angle variable ϕ becomes clear if we consider the surjective map
χ : R→M given by

χ(ϕ) := Reiϕ for all ϕ ∈ R. (6.62)

This is called a covering map of the circle M , and the real line R is called a covering
space of M (Fig. 6.13). Since the real line is simply connected, it is called a universal
covering space of the circle M . The map χ is smooth and has the period 2π.

A deep mathematical result tells us that all Lie groups and all compact
Riemann surfaces have universal covering spaces.

23 The precise definition of manifolds and diffeomorphisms, as well as topological
spaces and homeomorphisms can be found in Sects. 5.4ff of Vol. I.
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(a) tangent Lie algebra u(1)
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1
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(b) universal covering group R
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Fig. 6.13. The Lie group U(1)

Equivalently, this tells us that there exist global parametrizations of algebraic
curves, by the famous 1907 uniformization theorem due to Koebe (1882–1945) and
Poincaré (1854–1912). For example, elliptic functions are global parametrizations
of elliptic curves. As an introduction to uniformization, we recommend:

L. Pontryagin, Topological Groups, Gordon and Breach, New York, 1966.

J. Jost, Compact Riemann Surfaces: An Introduction to Contemporary
Mathematics, 3rd edition, Springer, Berlin, 2006.

R. Narasimhan, Compact Riemann Surfaces, 2nd edition, Birkhäuser,
Basel, 1996.

The position space as a Lie group. Choose R = 1, that is, the pendulum
has the length one. Then the position space M can be identified with the Lie group

U(1) := {z ∈ C : |z| = 1}.

Note that the elements of U(1) can be represented by z = eϕi with ϕ ∈ R.
The additive (simply connected) Lie group R is called the universal covering

group of the Lie group U(1) (Fig 6.13). In a Cartesian (x, y)-coordinate system with
the right-handed orthonormal basis i, j, the tangent space of the unit circle U(1) at
the unit element 1 is given by

T1U(1) = {vj : v ∈ R}.

By definition, this tangent space is called the Lie algebra u(1) of the Lie group
U(1). In terms of complex numbers, this can be written as

u(1) = {vi : v ∈ R}.

This is the space of purely imaginary numbers. The passage

U(1)⇒ u(1) (6.63)

from the Lie group U(1) to the Lie algebra u(1) is given by the Taylor expansion

eϕi = 1 + ϕi + o(ϕ), ϕ→ 0.

Therefore, the passage (6.63) from the Lie group to the Lie algebra is nothing else
than an application of the linearization principle to Lie groups.
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First-order differential operators. Let C∞(M) be the space of all smooth
2π-periodic functions f : R → R. These functions can be regarded as smooth
functions on the circle M . By definition, a first-order differential operator

D : C∞(M)→ C∞(M)

on the circle M has the form

D := v(ϕ)
d

dϕ
, ϕ ∈ R

with the fixed function v ∈ C∞(M). Explicitly, for all f ∈ C∞(M), we get

(Df)(ϕ) = v(ϕ)
df(ϕ)

dϕ
, ϕ ∈ R.

Furthermore, let Vec(M) denote the space of all smooth velocity vector fields v on
the circle M . Explicitly, the velocity vector field v is given by

v(ϕ)eP (ϕ) for all ϕ ∈ R,

where v ∈ C∞(M). Define

v[f ] := Df for all f ∈ C∞(M). (6.64)

This way, we obtain a one-to-one map

v �→ D

between the smooth velocity vector fields v on the circle M and the first-order
differential operators D on M (with smooth coefficients). The identification v �→ D
between velocity vector fields and first-order differential operators dates back to
Sophus Lie (1842–1899); it is frequently used in the modern mathematical literature
on finite-dimensional manifolds. However, such an identification does not exist on
infinite-dimensional manifolds. Therefore, in this series of monographs, we will use
an approach to velocity vectors on manifolds which fits both the finite-dimensional
case and the infinite-dimensional case.

Sections and physical fields. We want to show that the modern notion of
the section of a bundle comprehends

• vector fields on M (sections of the tangent bundle TM),
• first-order differential operators (sections of the tangent bundle TM),
• differential forms on M (sections of the cotangent bundle TMd).

The map

s : M → TM (6.65)

given by s(P ) := v(P ) with v(P ) ∈ TPM is called a section of the tangent bundle
TM. In terms of physics, this is a velocity field

P �→ v(P )

on the circle M . We will show in Vol. III that physical fields are sections of vec-
tor bundles or sections of more general fiber bundles (vector fields, tensor fields,
spinor fields, and so on). If we identify the velocity vector field v = v(P ) with the
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differential operator D, then the section (6.65) equivalently describes a first-order
differential operator P → v(P ) d

ϕ
on the circle. Dually, the map

s : M → TMd (6.66)

given by s(P ) := FP with FP ∈ TPM is called a section of the cotangent bundle
TMd. This is a differential form P �→ p(P )dϕP on the circle M .

The notion of section generalizes the notion of function in classical anal-
ysis.

In fact, the real function f : R→ R can be identified with the map

s : R→ TR

given by s(x) := (x, f(x)). Here, the tangent bundle of the real line R is defined by

TR := {(x, v) : x ∈ R, v ∈ R}.

In other words, TR = R
2. The map s is a section of the tangent bundle TR of the

real line.
Perspective. For a general mechanical system of n degrees of freedom with

n = 1, 2, . . ., the following hold:

• the position space M is a real n-dimensional manifold,
• the state space TM (tangent bundle of M) is a 2n-dimensional manifold, and
• the phase space TMd (cotangent bundle) is a 2n-dimensional symplectic mani-

fold.

The Lagrangian formulation of mechanics is based on the Lagrangian

L : TM → R,

whereas the dual Hamiltonian formulation of mechanics is based on the Hamiltonian

H : TMd → R,

which represents the energy function of the mechanical system, as a rule. In contrast
to the cotangent bundle TMd, the tangent bundle TM is not always a symplectic
manifold. Therefore, the Hamiltonian formulation of mechanics has advantages over
the Lagrangian formulation. In statistical mechanics, the Hamiltonian approach will
allow us to use the volume measure of the phase space in order to construct the key
probability measure (see Sect. 7.17.5 on page 645). Summarizing, the language of
manifolds allows us to study the global aspects of the motion of mechanical systems.

The complexity of a mechanical system is reflected by the complex topology
of the tangent bundle and the cotangent bundle.

6.8 Hamiltonian Mechanics

The Hamiltonian approach to mechanics is centered at the concept of energy. In
this setting, the following two important results are quite natural:

• Conservation of energy, and
• conservation of phase volume.
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The latter property is crucial for classical statistical physics (Gibbs measure). From
the geometric point of view, the passage from Lagrangian mechanics to Hamiltonian
mechanics corresponds to a passage

• from the tangent bundle TM of the position space M (position, velocity vector)
• to the dual cotangent bundle TMd of M (position, differential form).

This transformation is called the Legendre transformation which is a contact trans-
formation in the sense of Lie. The cotangent bundle TMd always carries a natural
symplectic structure. Note the following:

• Lagrangian mechanics corresponds to Riemannian geometry (the metric is given
by the kinetic energy).

• Hamiltonian mechanics corresponds to symplectic geometry.

One of the great problems of mathematics and physics in the 19th century consisted
in solving the N -body problem in celestial mechanics.

The aim was to investigate the stability of our solar system.

To simplify considerations, Jacobi and his successors used transformations of time
and position which preserve the form of the canonical equations.

Such transformations are called canonical transformations.

It turns out that canonical transformations coincide with symplectic transforma-
tions. That is, canonical transformations preserve the symplectic structure, and
hence they present the symmetry transformations of symplectic geometry. When
creating his mechanics, Hamilton (1805–1865) was motivated by an analogy be-
tween mechanics and Huygens’ geometrical optics created in the 17th century:

• The trajectories q = q(t), p = p(t) of a particle in mechanics correspond to light
rays (solutions of the canonical ordinary differential equations), and

• the action function S = S(q, t) in mechanics corresponds to the eikonal function
in geometric optics, which determines the wave fronts (solutions of the Hamilton–
Jacobi partial differential equation).

• The duality between trajectories and wave fronts was fully established by
Carathéodory in the framework of his ’royal road to the calculus of variations’
in 1925. This is based on the fundamental notion of geodesic fields.

The relation between geometric optics and wave optics plays a fundamental role
for understanding Schrödinger’s quantum mechanics which he discovered in 1926.
In the 1950s, optimal control theory was invented independently by Bellman and
Pontryagin. This theory allows many applications in technology (e.g., moon landing
and return of a spaceship to earth):

• Pontryagin’s theory generalizes Hamilton’s canonical equations (Pontryagin’s
maximum principle and light rays), whereas

• Bellman’s theory of dynamic programming generalizes the Hamilton–Jacobi par-
tial equation (the Hamilton–Jacobi–Bellman equation and wave fronts).

In the Bellman approach, the action function S corresponds to the cost function.
A detailed study can be found in Zeidler (1986), Vol. III (see the references on
page 1049). In what follows, let us study the main ideas on an elementary level by
considering the harmonic oscillator as a prototype.
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6.8.1 The Canonical Equation

In Hamiltonian mechanics, we pass from position and velocity to position
and momentum.

Folklore

The Newtonian equation mq̈ = −mω2q for the motion of the harmonic oscillator
can be written as a first order system

q̇ =
p

m
, ṗ = −mω2q. (6.67)

Here, the variable p is called momentum. Introducing the so-called Hamiltonian

H(q, p) :=
p2

2m
+

mω2q2

2
,

equation (6.67) is identical with the so-called canonical equation

q̇ = Hp, ṗ = −Hq. (6.68)

Explicitly, for all times t ∈ R,

q̇(t) = Hp(q(t), p(t)), ṗ(t) = −Hq(q(t), p(t)).

Note that H represents the energy function of the harmonic oscillator. In terms of
the Lagrangian

L =
mq̇2

2
− mω2q2

2
,

we obtain
p = Lq̇, H = pq̇ − L.

The transformation from the variables q, q̇ to q, p and from the Lagrangian

L = L(q, q̇)

to the Hamiltonian H = H(q, p) is called Legendre transformation.

6.8.2 The Hamiltonian Flow

The Hamiltonian formulation (6.68) possesses the advantage over the Newtonian
formulation that we can apply the well-elaborated methods of the theory of dy-
namical systems to mechanics. Let us consider this. The unique solution of the
initial-value problem

q(0) = q0, p(0) = p0

to the canonical equation (6.67) is given by

q(t) := q0 cosωt +
p0

mω
sinωt, (6.69)

p(t) := −mωq0 sinωt + p0 cosωt.

Define
Ft(q0, p0) := (q(t), p(t)), t ∈ R.

This way, we get a flow on the phase space {(q, p) ∈ R
2} which is called the

Hamiltonian flow corresponding to H (Fig. 6.14). The trajectories are ellipses. The
flow transports the point (q0, p0) at time t = 0 to the point (q(t), p(t)) at time t.
The flow can be interpreted as

• the motion of fluid particles, or
• the propagation of light rays.24

24 In the case of light rays, the symbol t denotes a curve parameter, but not time.
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�
q

�p

�
�
�

Fig. 6.14. Hamiltonian flow on phase space

Proposition 6.9 The Hamiltonian flow {Ft} has the following two properties.

(i) The energy H(q(t),p(t)) is constant along each trajectory.
(ii) The flow is volume preserving.

Proof. Ad (i). This follows from energy conservation.
Ad (ii). The flow transports the domain G in phase space at time t = 0 to the

domain Gt at time t. Observe

meas Gt =

Z

Gt

dqdp =

Z

G

D(t)dq0dp0 =

Z

G

dq0dp0 = meas G.

Setting α := q0, β := p0, observe that (6.69) implies

D(t) :=
∂(q(t), p(t))

∂(α, β)
=

 

∂q(t)
∂α

∂p(t)
∂α

∂q(t)
∂β

∂p(t)
∂β

!

=

 

cosωt −mω sinωt
1

mω
sinωt cosωt

!

= 1.

�

6.8.3 The Hamilton–Jacobi Partial Differential Equation

The action. The quantity

S[q] :=

Z t1

t0

L(q(t), q̇(t)) dt

is called the action along the trajectory q = q(t), a ≤ t ≤ b. The action is the most
fundamental quantity in physics. Let us study the action along trajectories of the
harmonic oscillator. For given real values T,Q, consider the following boundary-
value problem for the Newtonian equation

mq̈(t) + ω2q(t) = 0, t ∈ R, (6.70)

q(0) = 0, q(T ) = Q.

To simplify notation, let m = ω = 1. If 0 < T < π, problem (6.70) has the unique
solution

q = v sin t, v :=
Q

sinT
. (6.71)

Varying the parameters T,Q, we obtain a family of trajectories through the origin
(Fig. 6.15(a)). The action along the trajectory (6.71) is given by

S(T,Q) :=

Z T

0

1
2
(q̇(t)2 − q(t)2) dt = 1

2
Q2 cotT.
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Fig. 6.15. Trajectories and focal points

Introducing the momentum p(T ) = q̇(T ) = v cosT and the energy

H(q(T ), p(T )) = 1
2

`

p(T )2 + q(T )2
´

= 1
2
v2,

we obtain
SQ(T,Q) = p(T ) and ST (T,Q) = −H(q(T ), p(T )).

This implies the so-called Hamilton–Jacobi partial differential equation

ST (T,Q) + H(Q,SQ(T,Q)) = 0. (6.72)

Focal points. If Q = 0 and T = π, the trajectory from (6.70), (6.71) is not
uniquely determined by the boundary condition. Each function q(t) := v sin t, t ∈ R

satisfies the condition q(π) = 0. In this critical case, a focal point occurs (Fig.
6.15(b)). In fact, the action S(T,Q) = 1

2
Q2 cotT is singular at the point T = π.

Such singularities are responsible for typical difficulties which arise in the theory of
the Hamilton–Jacobi equation. In geometric optics, such singularities correspond
to focal points and caustics of lenses, which are caused by the intersection and the
envelops of families of light rays, respectively.

6.9 Poissonian Mechanics

The Poissonian formulation of mechanics has the following two advantages:

• Conservation laws can be expressed in terms of Poisson brackets.25

• Quantum mechanics can be obtained from classical mechanics by replacing the
Poisson bracket {A,B} with the commutator

1

i�
· [A,B]−

where the Lie bracket [A,B]− is equal to AB−BA. This was implicitly discovered
by Heisenberg in 1925. The general quantization rule was formulated by Dirac
in 1926.

25 Poisson (1781–1840).
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6.9.1 Poisson Brackets and the Equation of Motion

Consider the space C∞(R2) of smooth real functions F = F (q, p). Define the Poisson
bracket

{A,B} := AqBp −BqAp,

where Aq = ∂A/∂q, and so on. In particular,

{q, p} = 1, {q, q} = {p, p} = 0.

Let q = q(t), p = p(t) be the motion of a particle which satisfies the canonical
equations

ṗ = −Hq, q̇ = Hp

for a given Hamiltonian H = H(q, p). Then

Ḟ = {F,H} (6.73)

for each F ∈ C∞(R2). Explicitly,

dF

dt
(q(t), p(t)) = {F,H}(q(t), p(t)).

In fact,
dF

dt
= Fq q̇ + Fpṗ = FqHp − FpHq = {F,H}.

6.9.2 Conservation Laws

Proposition 6.10 If {F,H} ≡ 0, then F is a conserved quantity.

Proof. By (6.73), d
dt
F (q(t), p(t)) = 0. Hence F (q(t), p(t)) = const for all t.

�

For example, the Hamiltonian H is a conserved quantity, since obviously
{H,H} = 0. This corresponds to conservation of energy.

The space C∞(R2) forms a real Lie algebra with respect to the Poisson
brackets.

Proof. For all functions A,B,C ∈ C∞(R2) and all real numbers α and β, we have
to show that:

(i) {A,B} = −{B,A},
(ii) {αA + βB,C} = α{A,C}+ β{B,C},
(iii) {A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0 (Jacobi identity).

For example, {A,B} = AqBp−BqAp = −{B,A}. Similarly, we get the other claims.
�

If A and B are conserved quantities, then so is {A,B}.
Proof. Set C := {A,B}. By the Jacobi identity, {H,A} = {H,B} = 0 implies
{H,C} = {H, {A,B}} = −{A, {B,H}} − {B, {H,A}} = 0. �

6.10 Symplectic Geometry

A deeper understanding of classical mechanics is based on symplectic geometry.
By definition, a quantity belongs to symplectic geometry iff it is invariant under
symplectic transformations. Let us explain the basic ideas.
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6.10.1 The Canonical Equations

Set q(t) := (q(t), p(t)) and q̇(t) := (q̇(t), ṗ(t)). We want to consider the motion
q = q(t), p = p(t) of a particle which satisfies the canonical equations

ṗ(t) = −Hq(q(t)), q̇(t) = Hp(q(t)). (6.74)

Using the language of differential forms, this equation can elegantly be written as

q̇ # ω = dH (6.75)

along the trajectory q = q(t), where

ω := dq ∧ dp

is called the symplectic form of R
2. To show this, recall the definitions

dq(w) := a and dp(w) := b

for all w = (a, b) in R
2. Furthermore,

(dq ∧ dp)(v,w) := dq(v)dp(w)− dq(w)dp(v)

for all v,w ∈ R
2. Finally, the inner product v # ω is defined by

(v # ω)(w) := ω(v,w).

It follows from dH = Hq(q(t)) dq + Hp(q(t)) dp that

dH(w) = Hq(q(t)) a + Hp(q(t)) b.

On the other hand,

(q̇ # ω)(w) := (dq ∧ dp)(q̇,w) = dq(q̇)dp(w)− dq(w)dp(q̇).

Thus, the equation
(q̇ # ω)(w) = dH(w)

for all w = (a, b) in R
2 is equivalent to

q̇(t)b− ṗ(t)a = Hq(q(t)) a + Hp(q(t)) b for all a, b ∈ R.

In turn, this is equivalent to the canonical equations (6.74).

Proposition 6.11 For all A,B ∈ C∞(R2),

dA ∧ dB = {A,B} dq ∧ dp.

Proof. Note that dq ∧ dq = dp ∧ dp = 0. Therefore, it follows from

dA = Aqdq + Apdp and dB = Bqdq + Bpdp

that dA ∧ dB = (AqBp −BqAp) dq ∧ dp. This completes the proof. �
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6.10.2 Symplectic Transformations

Consider a diffeomorphism

Q = Q(q, p), P = P (q, p), (q, p) ∈ Ω (6.76)

from an open set Ω in R
2 onto another open set in R

2. Such a diffeomorphism is
called a symplectic transformation iff

dQ ∧ dP = dq ∧ dp on Ω.

This is equivalent to the condition

∂(Q,P )

∂(q, p)
≡ 1 on Ω.

That is, each symplectic transformation is volume preserving. In fact, this follows
from

dQ ∧ dP = {Q,P} dq ∧ dp

along with {Q,P} = ∂(Q,P )/∂(q, p).

Proposition 6.12 Poisson brackets are invariant under symplectic transforma-
tions.

Proof. Define the transformed functions

A(Q,P ) := A(q, p) and B(Q,P ) := B(q, p),

where (q, p) and (Q,P ) are related to each other through (6.76). Then

dA ∧ dB = {A,B} dq ∧ dp and dA ∧ dB = {A,B} dQ ∧ dP.

Since the ∧-product is invariant under diffeomorphisms,

dA ∧ dB = dA ∧ dB.

Therefore, dQ ∧ dP = dq ∧ dp implies {A,B}(q, p) = {A,B}(Q,P ). �

Proposition 6.13 Symplectic transformations preserve the structure of the Hamil-
tonian canonical equations.

In classical mechanics, such transformations are called canonical transforma-
tions. They were introduced by Jacobi in order to simplify the solution of compli-
cated problems in celestial mechanics.26

Proof. We are given the Hamiltonian H = H(q, p). The canonical equations

q̇ = Hp, ṗ = −Hp

can be written as
q̇ = {q,H}, ṗ = {p,H}.

For the transformed motion Q(t) := Q(q(t), p(t)), P (t) := P (q(t), p(t)), we get

26 The classical theory of canonical transformations can be found in C. Cara-
théodory, Calculus of Variations and Partial Differential Equations of First Or-
der, Chap. 6, Chelsea, New York, 1982.
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Q̇ = Qq q̇ + Qpṗ = QqHp −QpHq.

Hence
Q̇ = {Q,H}, Ṗ = {P,H}.

Define the transformed Hamiltonian H(Q,P ) := H(q, p). By Prop. 6.12 above, we
obtain

Q̇ = {Q,H}, Ṗ = {P,H}.
Hence Q̇ = HP , Ṗ = −HQ. �

Now consider the trajectories

q = q(t;Q,P ), p = p(t;Q,P ) (6.77)

of the canonical equations with respect to the Hamiltonian H = H(q, p) together
with the initial conditions q(0) = Q, p(0) = P . Define

Ft(Q,P ) := (q(t), p(t)).

This way, for each time t, we get a transformation (Q,P ) �→ (q(t), p(t)).

Theorem 6.14 The flow operator Ft is symplectic for each time t.

Proof. We have to show that

∂(q, p)

∂(Q,P )
= 1 for all t,

where q and p are given through (6.77). This is identical with

{p, q}(Q,P ) = 1 for all t.

At the initial time t = 0, we have q(0;Q,P ) = Q and p(0;Q,P ) = P. This implies

{q, p}(Q,P ) = 1 for t = 0.

Therefore, it remains to show that

d

dt
{q, p} = 0 for all t.

To this end, consider the canonical equations

qt = {q,H}, pt = {p,H}.

By the product rule of calculus, we obtain

d

dt
{q, p} = {qt, p}+ {q, pt} = {{q,H}, p}+ {q, {p,H}}.

Thus, the Jacobi identity yields
d

dt
{q, p} = {{q, p}, H} = 0, since {q, p} = 1. �
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Fig. 6.16. Motion of a particle on a sphere M = S
2
R

6.11 The Spherical Pendulum

Two-dimensional spheres are the simplest curved surfaces. They serve as
prototypes for the geometry and analysis of manifolds.

Folklore

We want to study the motion of a point of mass m on a sphere S
2
R of radius R

under the influence of the gravitational force. This is called a spherical pendulum
(Fig. 6.16). In a Cartesian (x, y, z)-coordinate system, the position of a point of the
sphere is described by the vector

q = xi + yj + zk (6.78)

with initial point at the center of the ball. The equation of the sphere reads as

x2 + y2 + z2 = R2.

The point (0, 0, R) (resp. (0, 0,−R)) is called the North Pole (resp. South Pole).

6.11.1 The Gaussian Principle of Critical Constraint

The Newtonian equation of motion for the spherical pendulum reads as

mq̈(t) = −mgk + Fc(q(t), q̇(t)), t ∈ R. (6.79)

Here, the vector −gmk describes the gravitational force on the surface of earth.
This force acts in direction of the negative z-axis. The additional constraining
force Fc keeps the particle on the sphere. In order to compute the constraining
force, let us use the most general principle in classical mechanics, namely, the
Gaussian principle of critical constraint (see Sect. 7.28 of Vol. I). We have to solve
the following extremal principle:

(mq̈− F)2 = critical! (6.80)

with the gravitational force F = −gmk and the constraint q2 = R2. As we have
shown on page 492 of Vol. I, this leads to the constraining force

Fc(q, q̇) = λ(q, q̇) · q

which is a normal force depending on position and velocity. Explicitly,

λ(q, q̇) :=
mg · qk− q̇2

R2
.

Using this, the equation of motion (6.79) looks rather complicated. It is our goal
to simplify the approach.
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In order to eliminate the constraining force Fc, we will use the principle
of critical action in terms of spherical coordinates.

The gravitational force on the surface of earth has the potential U(z) := mgz. In
fact, the gravitational force −mgk is equal to −U ′(z)k. Therefore, the Lagrangian,
L : = kinetic energy minus potential energy, reads as

L(q, q̇) := 1
2
mq̇2 −mgz. (6.81)

This Lagrangian is basic for the following approach.

6.11.2 The Lagrangian Approach

In mechanics it is important to use the appropriate coordinates.
Folklore

Spherical coordinates. Let ϕ be the geographic length of the sphere, and let
ϑ be the geographic latitude with −π ≤ ϕ ≤ π and −π

2
≤ ϑ ≤ π

2
. The equator

is described by the equation ϑ = 0 (see Fig. 5.16 on page 305). For the relation
between Cartesian coordinates x, y, z and spherical coordinates, we get

x = R cosϕ cosϑ, y = R sinϕ cosϑ, z = R sinϑ. (6.82)

The coordinate line ϑ = const is a parallel line of latitude; it has the tangent vector

b1(P ) :=
∂q

∂ϕ
(P ) = R(− sinϕ cosϑ i + cosϕ cosϑ j)

at the point P = (ϕ, ϑ), by (6.78). Similarly, the meridian ϕ = const has the tangent
vector

b2(P ) :=
∂q

∂ϑ
(P ) = R(− cosϕ sinϑ i− sinϕ sinϑ j + cosϑ k)

at the point P . The two vectors b1,b2 form an orthogonal basis of the tangent
plane TP S

2
R of the sphere at the point P .27 The exterior unit normal vector N of

the sphere at the point P is given by

N := e1 × e2, where ej :=
bj(P )

|bj(P )| , j = 1, 2.

The three vectors e1, e2,N form a right-handed orthonormal system at the point
P of the sphere S

2
R.

Velocity vector (tangent vector). The motion of a point on the sphere is
described by the position vector

q(t) = x(t)i + y(t)j + z(t)k, t ∈ R.

Differentiating the functions

x(t) = R cosϕ(t) sinϑ(t), y(t) = R sinϕ(t) cosϑ(t), z(t) = R sinϑ(t)

with respect to time t, we obtain

27 The point P has to be different from the North Pole and the South Pole, since
the spherical coordinates are singular at the two poles. This can be cured by
introducing new local coordinates near the two poles (e.g., the coordinates (x, y)).
To simplify the approach, we restrict ourselves to spherical coordinates.
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ẋ(t) = −Rϕ̇(t) sinϕ(t) cosϑ(t)−Rϑ̇(t) cosϕ(t) sinϑ(t).

Furthermore, ż(t) = Rϑ̇(t) cosϑ(t), and

ẏ(t) = Rϕ̇(t) cosϕ(t) cosϑ(t)−Rϑ̇(t) sinϕ(t) sinϑ(t).

Since cos2 α + sin2 α = 1, we get

|q̇(t)|2 = ẋ(t)2 + ẏ(t)2 + ż(t)2 = R2(ϕ̇(t)2 cos2 ϑ(t) + ϑ̇(t)2).

The transformed Lagrangian. In terms of spherical coordinates, the La-
grangian reads as

L(ϕ, ϑ, ϕ̇, ϑ̇) = 1
2
mR2(ϕ̇2 cos2 ϑ + ϑ̇2)−mgR sinϑ.

The principle of critical action postulates that

Z t1

t0

L(ϕ(t), ϑ(t), ϕ̇(t), ϑ̇(t)) dt = critical! (6.83)

with (ϕ(t0), ϑ(t0)) = (ϕ0, ϑ0) and (ϕ(t1), ϑ(t1)) = (ϕ1, ϑ1) (boundary condition).
The Euler–Lagrange equation. Each smooth solution of (6.83) satisfies

d
dt
Lϕ̇ = Lϕ and d

dt
Lϑ̇ = Lϑ. Explicitly, the Euler–Lagrange equation for the motion

of the spherical pendulum looks like

d

dt

`

ϕ̇(t) cos2 ϑ(t)
´

= 0, ϑ̈(t) + ω2 cosϑ(t) = 0 (6.84)

with ω :=
p

g
R
. Setting ϑ = −π

2
+ α, the second equation passes over to

α̈ + ω2 sinα = 0.

This is the equation of a circular pendulum. The first equation of (6.84) can be
written as

ϕ̈(t)− 2ϕ̇(t)ϑ̇(t) sinϑ(t) = 0. (6.85)

Geodesics. If the gravitational force vanishes (i.e., g = 0), then the spherical
pendulum is called free. The trajectories of the free pendulum are called geodesics
of the sphere. A piece of the equator (ϕ(t) = t, ϑ(t) = 0) is always a geodesic. By
definition, a great circle of the sphere is obtained by the intersection between the
sphere and a plane passing through the center of the sphere. After a rotation, if
necessary, we can assume that the great circle is the equator. Consequently, pieces
of great circles are geodesics.

For the motion q = q(t) of the free pendulum, it follows from equation (6.79)
that the tangential component of the acceleration vector q̈(t) vanishes. According
to Levi-Civita, we say that the vector q̈(t) is parallel along the trajectory. As we
will show in Vol. III on gauge theory, the parallel transport of physical quantities
is crucial for modern mathematics and physics. This corresponds to the transport
of physical information.
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6.11.3 The Hamiltonian Approach

Introduce the generalized momenta

pϕ := Lϕ̇ = mR2ϕ̇ cos2 ϑ, pϑ := Lϑ̇ = mR2ϑ̇,

and the Hamiltonian, H := pϕϕ̇ + pϑϑ̇− L. That is,

H(ϕ, pϕ, ϑ, pϑ) =
p2

ϕ

2mR2 cos2 ϑ
+

p2
ϑ

2mR2
+ mgR sinϑ.

Then the canonical equations read as

ṗϕ = −Hϕ = 0, ϕ̇ = Hpϕ , ṗϑ = −Hϑ, ϑ̇ = Hpϑ .

In particular, pϕ (z-component of the angular momentum) and H (energy) are
conserved. Set

z0 := R sinϑ(0), pϕ := mR2ϕ̇(0) cos2 ϑ(0),

E :=
mR2

2

`

ϕ̇(0)2 cos2 ϑ(0) + ϑ̇(0)2 + mgR sinϑ(0)
´

,

and V (z) := 2
`

E
m
− gz

´

(R2 − z2)−
` pϕ

m

´2
.

Proposition 6.15 For given data ϕ(0), ϕ̇(0), ϑ(0), ϑ̇(0) with ϑ(0) ∈]− π
2
, π

2
[, there

exists a unique motion ϕ = ϕ(t), ϑ = ϑ(t) of the spherical pendulum given by the
following elliptic integrals:

t(z) = R

Z z

z0

dζ
p

V (ζ)
, ϕ(z) = ϕ(0) +

pϕR

m

Z z

z0

dζ

(R2 − ζ2)
p

V (ζ))
.

Moreover, z(t) = R sinϑ(t).

Proof. We have the two conservation laws

mR2ϕ̇(t) cos2 ϑ(t) = pϕ,
p2

ϕ

2mR2 cos2 ϑ(t)
+

mR2ϑ̇(t)2

2
+ mgR sinϑ(t) = E,

where pϕ and E (energy) are constants. The substitution z = R sinϑ yields

ϕ̇ =
pϕ

m(R2 − z2)
, ϑ̇ =

dϑ

dz
· dz
dt

=
1

R cosϑ

dz

dt
=

1√
R2 − z2

dz

dt
.

Therefore, by the energy conservation law, we obtain

mR2

R2 − z2

„

dz

dt

«2

+
p2

ϕ

m(R2 − z2)
+ 2mgz = 2E.

Hence

R2

„

dz

dt

«2

= V (z).

This implies
dt

dz
=

R
p

V (z)
.

Moreover,
dϕ

dt
=

dϕ

dz
· dz
dt

=
dϕ

dz
· 1

R

p

V (z) =
pϕ

m(R2 − z2)
.

Finally, integrating this over z, we obtain t = t(z) and ϕ = ϕ(z). �
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6.11.4 Geodesics of Shortest Length

Arc length. Let q = q(t), t0 ≤ t ≤ t1, be a curve on the sphere S
2
R. By definition,

the arc length of this curve between the points q0 and q(t) is given by

s(t) :=

Z t

t0

|q̇(τ)| dτ =

Z t

t0

R

q

ϕ̇(τ)2 cos2 ϑ(τ) + ϑ̇(τ)2 dτ.

Differentiating this with respect to time t, we get

ṡ(t) = R

q

ϕ̇(t)2 cos2 ϑ(t) + ϑ̇(t)2.

Hence
„

ds(t)

dt

«2

= R2 cos2 ϑ(t)

„

dϕ(t)

dt

«2

+ R2

„

dϑ(t)

dt

«2

.

Mnemonically, we write

ds2 = R2 cos2 ϑ · dϕ2 + R2dϑ2. (6.86)

Curves of shortest length. Now we are looking for a smooth curve

q = q(t), t0 ≤ t ≤ t1

on the sphere S
2
R which connects the two point q0 and q1, and which has minimal

length. This is the optimal route for an aircraft which is flying from the city q0 to
the city q1. We have to solve the variational problem

Z t1

t0

R

q

ϕ̇(t)2 cos2 ϑ(t) + ϑ̇(t)2 dt = min! (6.87)

with the side condition (ϕ(t0), ϑ(t0)) = (ϕ0, ϑ0) and (ϕ(t1), ϑ(t1)) = (ϕ1, ϑ1).

Theorem 6.16 If the arc length s is chosen as parameter, then every solution of
the variational problem (6.87) satisfies the following system of equations:

ϕ̈(s)− 2ϕ̇(s)ϑ̇(s) sin 2ϑ(s) = 0, ϑ̈(s) = 0. (6.88)

Proof. The variational problem (6.87) can be written as

Z t1

t0

L dt = min!

with L :=
√
L where L is the Lagrangian of the spherical pendulum (6.83) with

mass m = 2 and vanishing gravitational force (i.e., g = 0). The Euler–Lagrange
equations

d

ds
Lϕ̇ = Lϕ = 0,

d

ds
Lϑ̇ = Lϑ = 0

read as d
ds

“

Lϕ̇

2
√

L

”

= 0 and d
ds

“

L
ϑ̇

2
√

L

”

= 0. The variational integral is invariant

under reparametrizations. Therefore, we can choose the arc length as parameter
(i.e., t = s). Then L = 1. Hence

d

ds
Lϕ̇ = 0,

d

ds
Lϑ̇ = 0.



416 6. Principle of Critical Action and the Harmonic Oscillator

By (6.84), we obtain the claim (6.88). �

Suppose we are given two points q0 and q1 on the sphere S
2
R. After a rotation,

if necessary, we always can assume that the two points lie on the equator of the
sphere. Then there are two arcs of the equator which connect the two given points.
The smaller arc is a geodesic of shortest length between q0 and q1. Observe that two
points do not always uniquely determine the connecting geodesic. For example, if the
given points q0 and q1 represent the North Pole and the South Pole, respectively,
then each meridian is a connecting geodesic (see Fig. 5.9 on page 277).

6.12 The Lie Group SU(E3) of Rotations

Invariance under rotations leads to conservation of angular momentum.
Folklore

For the motion q = q(t) of a particle in the 3-dimensional space, the time-dependent
vector p(t) := mq̇(t) (mass times velocity) is called the momentum of the particle
at time t. The angular momentum at time t is defined by

a(t) := q(t)× p(t). (6.89)

In this section, we study the motion q = q(t) of a particle given by the Newtonian
equation

mq̈(t) = −U ′(q(t)), t ∈ R (6.90)

under the assumption that the potential U = U(q) only depends on the distance
|q|. In other words, the potential U is invariant under rotations about the origin.

6.12.1 Conservation of Angular Momentum

Proposition 6.17 The angular momentum is conserved for the motion (6.90).

Proof. The trick is that b × b = 0 holds for all vectors b. Let us use Cartesian
(x, y, z)-coordinates. Set r :=

p

x2 + y2 + z2. Then U(q) = V (r). It follows from

∂

∂x
V (r) = V ′(r)

∂r

∂x
= V ′(r)

x

r

and analogous formulas for y and z that

U ′(q) = V ′(r)
q

r
.

Let q = q(t) be a solution of (6.90). By the product rule,

d

dt
a(t) = q̇(t)×mq̇(t) + q(t)×mq̈(t) = −q(t)× V ′(r(t))

q(t)

r(t)
= 0.

�

Next we want to discuss the relation between the symmetry group of rotations
and angular momentum.

The Lie group SU(E3) of rotations. In the 3-dimensional space, all the
rotations about the origin form a Lie group denoted by SU(E3). Each such rotation
q �→ q+ can be represented by the Euler formula
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Fig. 6.17. Rotation

q+ = q cosϕ + (n× q) sinϕ + (qn)n(1− cosϕ). (6.91)

This formula describes the counterclockwise rotation of the position vector q at the
origin about the axis unit vector n with the rotation angle ϕ (Fig. 6.17). We write
q+ = Rn,ϕq.

The Lie algebra su(3) of infinitesimal rotations. Linearization of (6.91)
with respect to the angle ϕ yields

q+ = q + (ϕn× q). (6.92)

We call the transformation Rb given by Rbq := b × q an infinitesimal rotation.
Using the the usual linear combination of maps and the Lie product

[Ra,Rb]− := RaRb −RbRa,

the following hold:

The set of infinitesimal rotations forms a real 3-dimensional Lie algebra
denoted by su(E3).

To prove this, we have to show that Ra,Rb ∈ su(E3) implies

[Ra,Rb]− ∈ su(E3).

This follows from the general theory of Lie groups. However, in order to display
the geometric meaning behind the Lie algebra property of su(E3), let us use the
following argument based on the well-known geometric properties of the vector
product. In fact, it follows from the cyclic Jacobi identity for the vector product

a× (b× c) + b× (c× a) + c× (a× b) = 0

and from a× b = −b× a that

a× (b× c)− b× (a× c) = (a× b)× c.

Hence

RaRbc−RbRac = Ra×bc. (6.93)

In addition, we have the exponential formula Rn,ϕ = eϕRn .
Conservation of angular momentum and the Noether theorem. We

want to show that the conservation of angular momentum is a consequence of the
Noether theorem with respect to the rotation group. To this end, suppose that
U(q) = V (|q|). Then the Lagrangian

L(q, q̇) = 1
2
mq̇2 − U(q) (6.94)
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is invariant under rotations, and hence the action

S :=

Z t1

t0

L(q(t), q̇(t)) dt

is invariant under rotations. Each rotation q+ = Rn,ϕq about the origin can be
represented by the Euler formula (6.91). Hence

δq := ε
d

dε
Rn,εq|ε=0 = ε(n× q).

Applying the Noether theorem (6.49) on page 387 to the three components of the
vector function t �→ q(t), we get

d

dτ
(Lδt− (δq− q̇δt)Lq̇) = 0 (6.95)

for each solution t �→ q(t) of (6.90). Here, δt = 0. Therefore, δq · Lq̇ is conserved.
Consequently,

δq(t) · p(t) = ε(n× q(t)) p(t) = εn(q(t)× p(t)) = const, t ∈ R

for all parameters ε > 0 and all unit vectors n. Hence q(t)× p(t) = const.
Conservation of angular momentum and Poisson brackets. Now we

want to describe an alternative approach for proving the conservation of angular
momentum. This will be based on the use of Poisson brackets. In fact, this approach
will correspond to Lie’s momentum map to be defined in (6.97) below.

The Lagrangian L from (6.94) yields the momentum p = Lq̇ = mq̇ and the
Hamiltonian

H(q,p) := pq̇− L(q, q̇) =
p2

2m
+ V (|q|).

This implies the partial derivatives Hp = p/m and Hq = V ′(|q|) q
|q| .

Let a(q,p) := q× p. For fixed vector n, set A(q,p) := a(q,p)n, that is,

A(q,p) := (q× p)n.

This way, the vector-valued function a = a(q,p) is replaced by the real-valued
function A = A(q,p). To simplify notation, we do not indicate that the function A
depends on the vector n. Our goal is to show that, for the Poisson bracket, we have

{A,H} = 0. (6.96)

Then the function A is conserved. Hence

d

dt
(q(t)× p(t)) n = 0 for all t.

This is true for all vectors n. Consequently, we get

d

dt
(q(t)× p(t)) = 0 for all t.

This tells us that the angular momentum is conserved.
It remains to prove (6.96). Using cyclic permutation, we obtain the well-known

vector identity (a× b)c = (b× c)a. Hence A(q,p) = (p× n)q. Then
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∂A

∂q
(q,p)h =

d

dσ
A(q + σh,p)|σ=0 = (p× n)h.

Analogously, ∂A
∂p

(q,p)h = (n × q)h. Finally, note that (a × b)c = 0 iff the three

vectors a,b, c are not linearly independent. Since Hp is parallel to p, and Hq is
parallel to q, we get

{A,H} = AqHp −ApHq = (p× n)Hp − (n× q)Hp = 0.

6.12.2 Lie’s Momentum Map

For all vectors q,p and all vectors n, define

M(q,p)Rn := (q× p)n.

This is Lie’s momentum map related to the Lie algebra su(E3). More precisely, this
is a map of the form

M : (TE
3)d → su(E3)d. (6.97)

Let us briefly discuss this. If we fix the tuple (q,p), then the map

Rn �→M(q,p)Rn (6.98)

assigns to each infinitesimal rotation Rn a real number. This map is a linear func-
tional on the Lie algebra su(E3). Hence the map (6.98) is an element of the dual
space su(E3)d to the Lie algebra su(E3). Consequently, the map

(q,p) �→M(q,p)

assigns to each point (q,p) of the phase space an element of the dual space su(E3)d.
Finally, the points (q,p) of the phase space form the cotangent bundle (TE

3)d of
the Euclidean manifold E

3. This yields the map (6.97).

6.13 Carathéodory’s Royal Road to the Calculus of
Variations

6.13.1 The Fundamental Equation

Field of trajectories. Fix n = 1, 2, . . . Caratheodory’s fundamental equation
reads as

St(q, t) = L(q, v(q, t), t)− v(q, t)Lq̇(q, v(q, t), t),

Sq(q, t) = Lq̇(q, v(q, t), t), (q, t) ∈ R
n+1.

(6.99)

We are given the smooth Lagrangian L : R
2n+1 → R, where L depends on the vari-

ables q, q̇ ∈ R
n and t ∈ R. We set q = (q1, . . . , qn), as well as Lq = (Lq1 , . . . , Lqn).

(H) We assume that all the eigenvalues of the matrix Lq̇q̇(q, q̇, t) of the
second-order partial derivatives of L (with respect to q̇1, . . . , q̇n) are positive
for any fixed argument (q, q̇, t) ∈ R

2n+1.
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This means that the function q̇ �→ L(q, q̇, t) is strictly convex on R
n for any fixed

(q, t) ∈ R
n+1. We are looking for smooth functions v : R

n+1 → R and

S : R
n+1 → R,

which are called velocity field and action function, respectively. The smooth solu-
tions q = q(t), t ∈ R of the so-called velocity equation

q̇(t) = v(q(t), t), x ∈ R (6.100)

are called trajectories of (6.99). The set of all the solutions of (6.100) is called a field
of trajectories. Note that different trajectories of the field do not intersect, since
the solution of the initial-value problem for the velocity equation (6.100) is unique.
This generalizes the situation pictured in Fig. 5.8 on page 273.28 In addition, let us
consider the principle of least action:

Z t1

t0

L(t, q(t), q̇(t)) dt = min!, q(t0) = q0, q(t1) = q1. (6.101)

Theorem 6.18 Let v, S be a smooth solution of Carathéodory’s fundamental equa-
tion (6.99). Fix the points (t0, q0) and (t1, q1) in R

n+1. Then the following hold:
(i) Let q = q∗(t), t0 ≤ t ≤ t1, be a trajectory of (6.99) which satisfies the bound-

ary condition q∗(t0) = q0 and q∗(t1) = q1. Then q∗ is a solution of the minimum
problem (6.101).

(ii) The difference S(q1, t1)− S(t0, q0) is equal to the integral
Z t1

t0

L(q∗(t), q̇∗(t), t) dt.

The proof proceeds analogously to the proof of Theorem 5.2 on page 272.
Extremals. By definition, precisely the solutions q = q(t) of the Euler–

Lagrange equation
d

dt
Lq̇(q(t), q̇(t), t) = Lq(q(t), q̇(t), t)

are called extremals of the Lagrangian L. In particular, the solutions of the mini-
mum problem (6.101) are extremals. Theorem 6.18 shows that

The trajectories of (6.99) are extremals.

This statement remains true if the convexity assumption (H) above is not satisfied.
Then, for the proof, one has to use the Carathéodory equation (6.99) together with
the integrability condition Stq = Sqt. Therefore, the field of trajectories related to
(6.100) is also called a field of extremals.

Legendre transformation. We define the co-velocity (or momentum)

p := Lq̇(q, q̇, t).

Because of assumption (H) above, this equation is locally invertible, by the im-
plicit function theorem. To simplify the formulation, we assume that the Legendre
transformation (q, q̇, t) �→ (q, p, t) is a diffeomorphism from R

2n+1 onto R
2n+1. This

yields the smooth Hamiltonian H : R
2n+1 → R given by

H(q, p, t) := pq̇(q, p, t)− L(q, q̇(q, p, t), t) for all (q, p, t) ∈ R
2n+1.

The proof of the following theorem proceeds as on page 274.

28 We assume that the solutions of the velocity equation exist for all times t ∈ R.
Otherwise, the following results are only valid locally.
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Theorem 6.19 If v, S is a smooth solution of Carthéodory’s fundamental equation
(6.99), then the action function S is a solution of the Hamilton–Jacobi equation
St(q, t) + H(q, Sq(q, t), t) = 0.

6.13.2 Lagrangian Submanifolds in Symplectic Geometry

In geometrical optics, one wants to construct wave fronts by means of families of
light rays. The point is that only special families of light rays allow this construction.
This is intimately related to the notion of Lagrange brackets, which were introduced
by Lagrange in the 18th century in order to simplify computations in celestial me-
chanics in the framework of perturbation theory.29 The point is that the Lagrange
brackets of a family of light rays are constant in time along the light rays (i.e.,
they are first integrals of the Hamilton canonical equations). In modern symplectic
geometry, the Lagrange brackets are reformulated as Lagrangian submanifolds of
a symplectic manifold. Replacing light rays by trajectories of particles in classical
mechanics, we will study

• the construction of a solution of the Hamilton–Jacobi partial differential equation
• by the help of suitable families of trajectories which satisfy the Hamilton canon-

ical system of ordinary differential equations.

The following general approach contains geometrical optics in the 3-dimensional
(x, y, z)-space as a special case. To this end, we consider the light rays

y = y(x), z = z(x),

and we choose x := t, y := q1, z := q2, y′ := q̇1, z′ := q̇2, as well as

L(x, y, z, y′, z′) :=
n(x, y, z)

c

p

1 + y′2 + z′2.

The Lagrange brackets. Consider the smooth map

q = q(u), p = p(u), u ∈ U (6.102)

from the nonempty open subset U of R
n into R

2n. The target space R
2n is a

symplectic manifold equipped with the symplectic 2-form

ω :=

n
X

k=1

dqk ∧ dpk.

Since dqk =
Pn

r=1 q
k
urdur and dpk =

Pn
s=1(pk)usdus, it follows from the antisym-

metry relation dur ∧ dus = −dus ∧ dur that

ω =
X

r<s

[ur, us] dur ∧ dus.

Here, we introduce the so-called Lagrange brackets

29 We have shown in Sect. 17.17.4 of Vol. I that the fundamental Dyson series in
quantum electrodynamics is closely related to the method of the variation of
the parameter. Lagrange invented this method in order to compute the secular
perturbations of the orbits of planets.
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[ur, us](u) :=

n
X

k=1

∂qk(u)

∂ur

∂pk(u)

∂us
− ∂qk(u)

∂us

∂pk(u)

∂ur
.

Lagrangian submanifolds. Let (6.102) be an immersion. Then the image set
is an n-dimensional submanifold of the symplectic manifold R

2n. This submanifold
is called a Lagrangian submanifold iff all the Lagrange brackets vanish identically
on the parameter space U .

The general definition in symplectic geometry reads as follows:

• Fix the number n = 1, 2, . . . Let M be a 2n-dimensional symplectic manifold
with the symplectic 2-form ω, that is, dω = 0 onM and ω is non-degenerated.30

• An n-dimensional isotropic submanifold L ofM is called a Lagrangian subman-
ifold. That is, for any point P on the submanifold L, we have

ωP (v, w) = 0 for all v, w ∈ TPL.

The main theorem on Lagrangian manifolds in the calculus of vari-
ations. We want to construct a local solution of the Hamilton–Jacobi partial dif-
ferential equation by using a suitable n-parameter family of trajectories of the
Hamilton canonical system of ordinary differential equations. To this end, fix the
point (u0, t0) ∈ R

n+1. Consider the smooth functions

q = q(t, u), p = p(t, u), u ∈ J, u ∈ U, (6.103)

where J is an open interval, and U is an arcwise connected open subset of R
n+1

with (t0, u0) ∈ J × U. Suppose that the following assumptions are met:

(H1) For any fixed parameter u ∈ U , the trajectories from (6.103) are solutions of
the Hamilton canonical equations ṗ = −Hq, q̇ = Hp on the time interval J .

(H2) det qu(u, t) �= 0 for all (u, t) ∈ U × J.
(H3) [uj , uk](t0, u) = 0 for all u ∈ U and all j, k = 1, . . . , n.

By hypothesis (H1), for any time t ∈ J , the map (6.103) is an immersion, and hence
its image is a submanifold of the (q, p)-phase space R

2n. Moreover, by the crucial
hypothesis (H3), the image of the map (6.103) at the initial time t0 is a Lagrangian
submanifold of the phase space R

2n. By (H2), the implicit function theorem tells
us that the equation q = q(t, u) is uniquely solvable in a sufficiently small open
neighborhood of the point (t0, u0). This yields the smooth function u = u(t, q) in a
sufficiently small open neighborhood of the point (t0, q0) with q0 := q(t0, u0). Now
to the point. For any fixed parameter u ∈ U, compute the curve integral

S∗(t1, u1) :=

Z (t1,u1)

(t0,u0)

(pq̇ −H(q, p, t))dt + qqu du. (6.104)

Here, we replace the symbols q and p by (6.103), and we choose a fixed smooth
curve t = t(τ), u = u(τ), τ0 ≤ τ ≤ τ1, which connects the points (t0, u0) and (t1, u1)
in the set J × U. Explicitly,

qqu du =
n
X

k=1

qpukdu
k.

The proof of the following theorem will show that the integral (6.104) does not
depend on the choice of the path.

30 Explicitly, for any point P ∈ M, it follows from ωP (v0, v) = 0 for all tangent
vectors v ∈ TPM and fixed v0 ∈ TPM that v0 = 0. Here, TPM denotes the
tangent space of the manifold M at the point P.
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The integral (6.104) is called the Poincaré–Cartan integral invariant.

Finally, let us introduce the desired function S by setting

S(q, t) := S∗(t, u(t, q)).

Theorem 6.20 For any fixed time t ∈ J , the image of the map (6.103) is a La-
grangian submanifold of the phase space R

2n.
The function S = S(q, t) is a smooth solution of the Hamilton–Jacobi equation

St(q, t) +H(q, Sq(q, t), t) = 0 on a sufficiently small open neighborhood of the point
(q0, t0).

The proof of this theorem can be found in Zeidler (1986), Vol. IV, p. 85 (see
the references on page 1049). The basic idea is to show that the Lagrange brackets
of (6.103) are constant in time. Thus, by (H3), the Lagrange brackets vanish iden-
tically on J×U. This implies that the integral (6.104) is path-independent. Finally,
differentiating (6.104) with respect to both the time t1 and the parameter u1, we
get the Hamilton–Jacobi differential equation for the function S.

6.13.3 The Initial-Value Problem for the Hamilton–Jacobi
Equation

Fix the point (q0, t0) in R
n+1, n = 1, 2, . . . We are given the smooth real-valued

function S0 on an open neighborhood of the point (q0, t0) in R
n+1.

Theorem 6.21 The initial-value problem for the Hamilton–Jacobi partial differ-
ential equation,

St(q, t) + H(q, Sq(q, t), t) = 0, S(q, t0) = S0(q),

has a unique smooth local solution at the point (q0, t0).

The full proof can be found in Zeidler (1986), Vol. IV, p. 88 (see the references
on page 1049). The basic idea reads as follows. Fix the parameter u ∈ R

n. Consider
the Hamilton canonical system

q̇(t) = Hp(q(t), p(t), t), ṗ(t) = −Hq(q(t), p(t), t)

with the initial condition q(t0, u) = S0(u), p(t0, u) = 0. This yields the family
q = q(t, u), p = p(t, u). Trivially, all the Lagrange brackets [uj , uk](t0, u) vanish at
the initial time t0. By Theorem 6.20, we obtain the desired solution. Uniqueness
follows by reduction to the unique solvability of the initial-value problem for the
Hamilton canonical ordinary differential equations.

6.13.4 Solution of Carathéodory’s Fundamental Equation

Consider the solution S = S(q, t) of the Hamilton–Jacobi equation from Theorem
6.21.

Theorem 6.22 There exists a smooth velocity field v = v(q, t) such that S, v is
a smooth local solution of Carathéodory’s fundamental equation (6.99) at the point
(q0, t0).

Proof. Set p(q, t) := Sq(q, t). Local inversion of the Legendre transformation
p(q, t) = Lq̇(q, v(q, t), t) yields the desired function v = v(q, t) (compare the proof
given in Sect. 5.5.1 on page 275). �
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6.14 Hints for Further Reading

As an introduction to classical mechanics, we recommend:

F. Scheck, Mechanics: From Newton’s Law to Deterministic Chaos, Sprin-
ger, Berlin, 2000.

V. Arnold, Mathematical Theory of Classical Mechanics, Springer, Berlin,
1978.

W. Thirring, Classical Mathematical Physics: Dynamical Systems and
Fields, Springer, New York, 1997.

H. Goldstein, Classical Mechanics, Addison-Wesley, Reading Massachu-
setts, 2002.

Standard textbook on classical mechanics:

R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley,
Reading, Massachusetts, 1978.

Furthermore, we recommend:

J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry,
Springer, New York, 1999.

V. Arnold, Geometrical Methods in the Theory of Ordinary Differential
Equations, Springer, New York, 1983.

V. Arnold et al. (Eds.), Dynamical Systems, Vols. 1–10, Encyclopedia of
Mathematical Sciences, Springer, Berlin, 1987–2003.

For monographs on the fascinating field of celestial mechanics, we refer to:

C. Siegel and J. Moser, Lectures on Celestial Mechanics, Springer, Berlin,
1971.

W. Neutsch and K. Scherer, Celestial Mechanics: An Introduction to Clas-
sical and Contemporary Methods, Wissenschaftsverlag, Mannheim, 1992.

D. Boccaletti and G. Pucacco, Theory of Orbits. Vol 1: Integrable Sys-
tems and Non-Perturbative Methods, Vol. 2: Perturbative and Geometrical
Methods, Springer, Berlin, 1996.

Y. Hagihara, Celestial Mechanics, Vols. 1–6, MIT Press, Cambridge, Mas-
sachusetts, and Japan Society for the Promotion of Sciences, Tokyo, 1970–
1976.

Applications to the modern mathematical theory in material sciences can be found
in:

S. Müller, Variational Models for Microstructure and Phase Transitions. In:
F. Bethuel, S. Hildebrandt, and M. Struwe (Eds.), Calculus of Variations
and Geometric Evolution Problems, Cetraro 1996, pp. 85-210, Springer,
Berlin, 1999.
Internet: http://www.mis.mpg.de/preprints/ln/lecturenote-0298

B. Ben Belgacem, S. Conti, A. DeSimone, and S. Müller, Energy scal-
ing of compressed elastic films – three-dimensional elasticity and reduced
theories, Arch. Rat. Mech. Anal. 164 (2002), 1–37.

G. Dolzmann, Variational Methods for Crystalline Microstructure: Anal-
ysis and Computation, Springer, Berlin, 2003.

G. Friesecke, R. James, and S. Müller, A hierarchy of plate models derived
from nonlinear elasticity by gamma-convergence, Arch. Rat. Mech. Anal.
180 (2006), 183–236.
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F. Schuricht, A new mathematical foundation for contact interactions in
continuum physics, Arch. Rat. Mech. Anal. 184 (2007), 495–551.

There are close relations between the theory of microstructures and the renormal-
ization techniques in quantum field theory. In both cases one has to master highly
singular limits with respect to the relevant scales.

Problems

Much material on the Euler–Lagrange equations for important variational problems
in physics can be found in the problem section to Chap. 14 of Vol. I.

6.1 Trajectory of a stone thrown. Compute the trajectory of a stone of mass m
which has the initial position q0 = 0 and the initial velocity v at time t = 0.
Solution: The Newtonian equation of motion mq̈(t) = −mgk has the solution
q = vt − 1

2
gt2k. This is a parabola if v is not parallel to k. If v = −vk, then

z(t) = −vt− 1
2
gt2.

6.2 Further problems. Numerous exercises with solutions can be found in the text-
book by F. Scheck, Mechanics: From Newton’s Law to Deterministic Chaos,
Springer, Berlin, 1999, pp. 417–516.



7. Quantization of the Harmonic Oscillator –
Ariadne’s Thread in Quantization

Whoever understands the quantization of the harmonic oscillator can un-
derstand everything in quantum physics.

Folklore

Almost all of physics now relies upon quantum physics. This theory was
discovered around the beginning of this century. Since then, it has known
a progress with no analogue in the history of science, finally reaching a
status of universal applicability.
The radical novelty of quantum mechanics almost immediately brought a
conflict with the previously admitted corpus of classical physics, and this
went as far as rejecting the age-old representation of physical reality by
visual intuition and common sense. The abstract formalism of the theory
had almost no direct counterpart in the ordinary features around us, as,
for instance, nobody will ever see a wave function when looking at a car
or a chair. An ever-present randomness also came to contradict classical
determinism.1

Roland Omnès, 1994

Quantum mechanics deserves the interest of mathematicians not only be-
cause it is a very important physical theory, which governs all microphysics,
that is, the physical phenomena at the microscopic scale of 10−10m, but
also because it turned out to be at the root of important developments of
modern mathematics.2

Franco Strocchi, 2005

In this chapter, we will study the following quantization methods:

• Heisenberg quantization (matrix mechanics; creation and annihilation operators),
• Schrödinger quantization (wave mechanics; the Schrödinger partial differential

equation),
• Feynman quantization (integral representation of the wave function by means of

the propagator kernel, the formal Feynman path integral, the rigorous infinite-
dimensional Gaussian integral, and the rigorous Wiener path integral),

• Weyl quantization (deformation of Poisson structures),

1 From the Preface to R. Omnès, The Interpretation of Quantum Mechanics,
Princeton University Press, Princeton, New Jersey, 1994. Reprinted by permis-
sion of Princeton University Press. We recommend this monograph as an intro-
duction to the philosophical interpretation of quantum mechanics.

2 F. Strocchi, An Introduction to the Mathematical Structure of Quantum Me-
chanics: A Short Course for Mathematicians, Lecture Notes, Scuola Normale,
Pisa (Italy). Reprinted by permission of World Scientific Publishing Co. Pte.
Ltd. Singapore, 2005.
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• Weyl quantization functor from symplectic linear spaces to C∗-algebras,
• Bargmann quantization (holomorphic quantization),
• supersymmetric quantization (fermions and bosons).

We will choose the presentation of the material in such a way that the
reader is well prepared for the generalizations to quantum field theory to
be considered later on.

Formally self-adjoint operators. The operator A : D(A) → X on the complex
Hilbert space X is called formally self-adjoint iff the operator is linear, the domain
of definition D(A) is a linear dense subspace of the Hilbert space X, and we have
the symmetry condition

〈χ|Aϕ〉 = 〈Aχ|ϕ〉 for all χ, ψ ∈ D(A).

Formally self-adjoint operators are also called symmetric operators. The following
two observations are crucial for quantum mechanics:

• If the complex number λ is an eigenvalue of A, that is, there exists a nonzero
element ϕ ∈ D(A) such that Aϕ = λϕ, then λ is a real number. This follows
from λ = 〈ϕ|Aϕ〉 = 〈Aϕ|ϕ〉 = λ†.

• If λ1 and λ2 are two different eigenvalues of the operator A with eigenvectors ϕ1

and ϕ2, then ϕ1 is orthogonal to ϕ2. This follows from

(λ1 − λ2)〈ϕ1|ϕ2〉 = 〈Aϕ1|ϕ2〉 − 〈ϕ1|Aϕ2〉 = 0.

In quantum mechanics, formally self-adjoint operators represent formal observables.

For a deeper mathematical analysis, we need self-adjoint operators, which
are called observables in quantum mechanics.

Each self-adjoint operator is formally self-adjoint. But, the converse is not true. For
the convenience of the reader, on page 683 we summarize basic material from func-
tional analysis which will be frequently encountered in this chapter. This concerns
the following notions: formally adjoint operator, adjoint operator, self-adjoint oper-
ator, essentially self-adjoint operator, closed operator, and the closure of a formally
self-adjoint operator. The reader, who is not familiar with this material, should
have a look at page 683. Observe that, as a rule, in the physics literature one does
not distinguish between formally self-adjoint operators and self-adjoint operators.
Peter Lax writes:3

The theory of self-adjoint operators was created by John von Neumann to
fashion a framework for quantum mechanics. The operators in Schrödin-
ger’s theory from 1926 that are associated with atoms and molecules
are partial differential operators whose coefficients are singular at certain
points; these singularities correspond to the unbounded growth of the force
between two electrons that approach each other. . . I recall in the summer
of 1951 the excitement and elation of von Neumann when he learned that
Kato (born 1917) has proved the self-adjointness of the Schrödinger oper-
ator associated with the helium atom.4

3 P. Lax, Functional Analysis, Wiley, New York, 2003 (reprinted with permis-
sion). This is the best modern textbook on functional analysis, written by a
master of this field who works at the Courant Institute in New York City. For
his fundamental contributions to the theory of partial differential equations in
mathematical physics (e.g., scattering theory, solitons, and shock waves), Peter
Lax (born 1926) was awarded the Abel prize in 2005.

4 J. von Neumann, General spectral theory of Hermitean operators, Math. Ann.
102 (1929), 49–131 (in German).
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And what do the physicists think of these matters? In the 1960s Friedrichs5

met Heisenberg and used the occasion to express to him the deep gratitude
of the community of mathematicians for having created quantum mechan-
ics, which gave birth to the beautiful theory of operators in Hilbert space.
Heisenberg allowed that this was so; Friedrichs then added that the math-
ematicians have, in some measure, returned the favor. Heisenberg looked
noncommittal, so Friedrichs pointed out that it was a mathematician, von
Neumann, who clarified the difference between a self-adjoint operator and
one that is merely symmetric.“What’s the difference,” said Heisenberg.

As a rule of thumb, a formally self-adjoint (also called symmetric) differential op-
erator can be extended to a self-adjoint operator if we add appropriate boundary
conditions. The situation is not dramatic for physicists, since physics dictates the
‘right’ boundary conditions in regular situations. However, one has to be careful.
In Problem 7.19, we will consider a formally self-adjoint differential operator which
cannot be extended to a self-adjoint operator.

The point is that self-adjoint operators possess a spectral family which al-
lows us to construct both the probability measure for physical observables
and the functions of observables (e.g., the propagator for the quantum dy-
namics).

In general terms, this is not possible for merely formally self-adjoint operators.
The following proposition displays the difference between formally self-adjoint and
self-adjoint operators.

Proposition 7.1 The linear, densely defined operator A : D(A)→ X on the com-
plex Hilbert space X is self-adjoint iff it is formally self-adjoint and it always follows
from

〈ψ|Aϕ〉 = 〈χ|ϕ〉
for fixed ψ, χ ∈ X and all ϕ ∈ D(A) that ψ ∈ D(A).

Therefore, the domain of definition D(A) of the operator A plays a critical role.
The proof will be given in Problem 7.7.

Unitary operators. As we will see later on, for the quantum dynamics, unitary
operators play the decisive role. Recall that the operator U : X → X is called
unitary iff it is linear, bijective, and it preserves the inner product, that is,

〈Uχ|Uϕ〉 = 〈χ|ϕ〉 for all χ, ϕ ∈ X.

This implies ||Uϕ|| = ||ϕ|| for all ϕ ∈ X. Hence

||U || := sup
||ϕ||≤1

||Uϕ|| = 1

if we exclude the trivial case X = {0}.
The shortcoming of the language of matrices noticed by von Neu-

mann. Let A : D(A)→ X and B : D(B)→ X be linear, densely defined, formally

J. von Neumann, Mathematical Foundations of Quantum Mechanics (in Ger-
man), Springer, Berlin, 1932. English edition: Princeton University Press, 1955.
T. Kato, Fundamental properties of the Hamiltonian operators of Schrödinger
type, Trans. Amer. Math. Soc. 70 (1951), 195–211.

5 Schrödinger (1887–1961), Heisenberg (1901–1976), Friedrichs (1902–1982), von
Neumann (1903–1957), Kato (born 1917).
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self-adjoint operators on the infinite-dimensional Hilbert space X. Let ϕ0, ϕ1, ϕ2, . . .
be a complete orthonormal system in X with ϕk ∈ D(A) for all k. Set

ajk := 〈ϕj |Aϕk〉 j, k = 0, 1, 2, . . .

The way, we assign to the operator A the infinite matrix (ajk). Similarly, for the
operator B, we define

bjk := 〈ϕj |Bϕk〉 j, k = 0, 1, 2, . . .

Suppose that the operator B is a proper extension of the operator A. Then

ajk = bjk for all j, k = 0, 1, 2, . . . ,

but A �= B. Thus, the matrix (ajk) does not completely reflect the properties of
the operator A. In particular, the matrix (ajk) does not see the crucial domain of
definition D(A) of the operator A. Jean Dieudonné writes:6

Von Neumann took pains, in a special paper, to investigate how Hermitean
(i.e., formally self-adjoint) operators might be represented by infinite ma-
trices (to which many mathematicians and even more physicists were sen-
timentally attached) . . . Von Neumann showed in great detail how the lack
of “one-to-oneness” in the correspondence of matrices and operators led to
their weirdest pathology, convincing once for all the analysts that matrices
were a totally inadequate tool in spectral theory.

7.1 Complete Orthonormal Systems

A complete orthonormal system of eigenstates of an observable (e.g., the
energy operator) cannot be extended to a larger orthonormal system of
eigenstates.

Folklore

Basic question. Let H : D(H) → X be a formally self-adjoint operator on the
infinite-dimensional separable complex Hilbert space X. Physicists have invented
algebraic methods for computing eigensolutions of the form

Hϕn = Enϕn, n = 0, 1, 2, . . . (7.1)

The idea is to apply so-called ladder operators which are based on the use of com-
mutation relations (related to Lie algebras or super Lie algebras). We will encounter
this method several times. In terms of physics, the operator H describes the energy
of the quantum system under consideration. Here, the real numbers E0, E1, E2, . . .
are the energy values, and ϕ0, ϕ1, ϕ2, . . . are the corresponding energy eigenstates.
Suppose that ϕ0, ϕ1, ϕ2, . . . is an orthonormal system, that is,

〈ϕk|ϕn〉 = δkn, k, n = 0, 1, 2, . . .

There arises the following crucial question.

6 J. Dieudonné, History of Functional Analysis, 1900–1975, North-Holland, Ams-
terdam, 1983 (reprinted with permission).
J. von Neumann, On the theory of unbounded matrices, J. reine und angew.
Mathematik 161 (1929), 208–236 (in German).
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Is the system of the computed energy eigenvalues E0, E1, E2 . . . complete?

The following theorem gives us the answer in terms of analysis.

Theorem 7.2 If the orthonormal system ϕ0, ϕ1, . . . is complete in the Hilbert space
X, then there are no other energy eigenvalues than E0, E1, E2, . . ., and the system
ϕ0, ϕ1, ϕ2, . . . cannot be extended to a larger orthonormal system of eigenstates.

Before giving the proof, we need some analytical tools.
Completeness. By definition, the orthonormal system ϕ0, ϕ1, ϕ2 . . . is com-

plete iff, for any ϕ ∈ X, the Fourier series

ϕ =
∞
X

n=0

〈ϕn|ϕ〉ϕn

is convergent in X, that is, limN→∞ ||ϕ −
PN

n=0〈ϕn|ϕ〉ϕn|| = 0. The proof of the
following proposition can be found in Zeidler (1995a), Chap. 3 (see the references
on page 1049).

Proposition 7.3 Let ϕ0, ϕ1, ϕ2 . . . be an orthonormal system in the infinite-di-
mensional separable complex Hilbert space X. Then the following statements are
equivalent.

(i) The system ϕ0, ϕ1, ϕ2, . . . is complete.
(ii) For all ϕ,ψ ∈ X, we have the convergent series

〈ψ|ϕ〉 =

∞
X

n=0

〈ψ|ϕn〉〈ϕn|ϕ〉, (7.2)

which is called the Parseval equation.
(iii) I =

P∞
n=0 ϕn ⊗ ϕn (completeness relation).7

(iv) For all ϕ ∈ X, we have the convergent series ||ϕ||2 =
P∞

n=0 |〈ϕn|ϕ〉|2.
(v) Let ϕ ∈ X. If all the Fourier coefficients of ϕ vanish, that is, we have

〈ϕn|ϕ〉 = 0 for all n, then ϕ = 0.
(vi) The linear hull of the set {ϕ0, ϕ1, ϕ2, . . .} is dense in the Hilbert space X.

Explicitly, for any ϕ ∈ X and any number ε > 0, there exist complex numbers
a0, . . . , an such that ||ϕ− (a1ϕ1 + . . . + anϕn)|| < ε.

Proof of Theorem 7.2. Suppose that Hϕ = Eϕ with ϕ �= 0 and that the eigen-
value E is different from E0, E1, E2, . . . . Since the eigenvectors for different eigen-
values are orthogonal to each other, we get 〈ϕn|ϕ〉 = 0 for all indices n. By Prop.
7.3(v), ϕ = 0. This is a contradiction. �

The Dirac calculus. According to Dirac, we write equation (7.1) as

H|En〉 = En|En〉, n = 0, 1, 2, . . .

Moreover, the completeness relation from Prop. 7.3(iii) reads as

I =

∞
X

n=0

|ϕn〉〈ϕn|. (7.3)

7 This means that ϕ = limN→∞
PN

n=0(ϕn ⊗ ϕn)ϕ for all ϕ ∈ X. Here, we use the
convention (ϕn ⊗ ϕn)ϕ := ϕn〈ϕn|ϕ〉.
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Mnemonically, from (7.3) we obtain |ϕ〉 =
P∞

n=0 |ϕn〉〈ϕn|ϕ〉 and

〈ψ|ϕ〉 = 〈ψ| · |ϕ〉 = 〈ψ| · I|ϕ〉 =

∞
X

n=0

〈ψ|ϕn〉〈ϕn|ϕ〉.

This coincides with the Fourier series expansion ϕ =
P∞

n=0〈ϕn|ϕ〉ϕn and the Par-
seval equation (7.2).

The following investigations serve as a preparation for the quantization of the
harmonic oscillator in the sections to follow.

7.2 Bosonic Creation and Annihilation Operators

Whoever understands creation and annihilation operators can understand
everything in quantum physics.

Folklore

The Hilbert space L2(R). We consider the space L2(R) of complex-valued (mea-
surable) functions ψ : R → C with

R∞
−∞ |ψ(x)|2dx < ∞. This becomes a complex

Hilbert space equipped with the inner product

〈ϕ|ψ〉 :=

Z ∞

−∞
ϕ(x)†ψ(x)dx for all ϕ,ψ ∈ L2(R).

Moreover, ||ψ|| :=
p

〈ψ|ψ〉. The precise definition of L2(R) can be found in Vol. I,
Sect. 10.2.4. Recall that the Hilbert space L2(R) is infinite-dimensional and sepa-
rable. For example, the complex-valued function ψ on the real line is contained in
L2(R) if we have the growth restriction at infinity,

|ψ(x)| ≤ const

1 + |x| for all x ∈ R,

and ψ is either continuous or discontinuous in a reasonable way (e.g., ψ is continuous
up to a finite or a countable subset of the real line). Furthermore, we will use the
space S(R) of smooth functions ψ : R→ C which rapidly decrease at infinity (e.g.,

ψ(x) := e−x2
). The space S(R) is a linear subspace of the Hilbert space L2(R).

Moreover, S(R) is dense in L2(R). The precise definition of S(R) can be found in
Vol. I, Sect. 2.7.4.

The operators a and a†. Fix the positive number x0. Let us study the operator

a :=
1√
2

„

x

x0
+ x0

d

dx

«

.

More precisely, for each function ψ ∈ S(R), we define

(aψ)(x) :=
1√
2

„

xψ(x)

x0
+ x0

dψ(x)

dx

«

for all x ∈ R. (7.4)

This way, we get the operator a : S(R) → S(R). We also define the operator
a† : S(R)→ S(R) by setting

a† :=
1√
2

„

x

x0
− x0

d

dx

«

. (7.5)
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Explicitly, for each function ψ ∈ S(R), we set8

(a†ψ)(x) :=
1√
2

„

xψ(x)

x0
− x0

dψ(x)

dx

«

for all x ∈ R.

The operators a and a† have the following properties:

(i) The operator a† : S(R)→ S(R) is the formally adjoint operator to the operator
a : S(R)→ S(R) on the Hilbert space L2(R).9 This means that

〈ϕ|aψ〉 = 〈a†ϕ|ψ〉 for all ϕ,ψ ∈ S(R).

(ii) We have the commutation relation

[a, a†]− = I

where I denotes the identity operator on the Hilbert space L2(R). Recall that
[A,B]− := AB −BA.

(iii) Set ϕ0(x) := c0e
−x2/2x2

0 with the normalization constant c0 := 1√
x0

√
π
. Then

aϕ0 = 0.
(iv) The operator N : S(R)→ S(R) given by N := a†a is formally self-adjoint, and

it has the eigensolutions

Nϕn = nϕn, n = 0, 1, 2, . . .

where we set

ϕn :=
(a†)n

√
n!

ϕ0. (7.6)

(v) For n = 0, 1, 2, . . ., we have

a†ϕn =
√
n + 1 ϕn+1, aϕn+1 =

√
n + 1 ϕn.

Because of these relations, the operators a and a† are called ladder operators.10

(vi) The functions ϕ0, ϕ1, . . . form a complete orthonormal system of the complex
Hilbert space L2(R). This means that

〈ϕn|ϕm〉 =

Z ∞

−∞
ϕn(x)†ϕm(x) dx = δnm, n,m = 0, 1, 2, . . .

8 In applications to the harmonic oscillator later on, the quantity x has the phys-
ical dimension of length. We introduce the typical length scale x0 in order to
guarantee that the operators a and a† are dimensionless.

9 In functional analysis, one has to distinguish between the formally adjoint oper-
ator a† : S(R)→ S(R) and the adjoint operator a∗ : D(a∗)→ L2(R) which is an

extension of a†, that is, S(R) ⊆ D(a∗) ⊆ L2(R) and a∗ϕ = a†ϕ for all ϕ ∈ S(R)
(see Problem 7.4).

10 Ladder operators are frequently used in the theory of Lie algebras and in quantum
physics in order to compute eigenvectors and eigenvalues. Many examples can be
found in H. Green, Matrix Mechanics, Noordhoff, Groningen, 1965, and in Shi-
Hai Dong, Factorization Method in Quantum Mechanics, Springer, Dordrecht,
2007 (including supersymmetry). We will encounter this several times later on.
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Moreover, for each function ψ in the complex Hilbert space L2(R), the Fourier
series

ψ =

∞
X

n=0

〈ϕn|ψ〉ϕn

is convergent in L2(R). Explicitly,

lim
k→∞

||ψ −
k
X

n=0

〈ϕn|ψ〉ϕn|| = 0.

Recall that ||f ||2 = 〈f |f〉 =
R∞
−∞ |f(x)|2 dx.

(vii) The matrix elements amn of the operator a with respect to the basis ϕ0, ϕ1, . . .
are defined by

amn := 〈ϕm|aϕn〉, m, n = 0, 1, 2, . . .

Explicitly, amn =
√
n δm,n−1. Therefore,

(amn) =

0

B

B

B

B

@

0
√

1 0 0 0 ...

0 0
√

2 0 0 ...

0 0 0
√

3 0 ...
...

1

C

C

C

C

A

.

Similarly, we introduce the matrix elements (a†)mn of the operator a† by setting

(a†)mn := 〈ϕm|a†ϕn〉, m, n = 0, 1, 2, . . .

Then (a†)mn = a†nm. Thus, the matrix to the operator a† is the adjoint matrix
to the matrix (amn).

Let us prove these statements. To simplify notation, we set x0 := 1.
Ad (i). For all functions ϕ,ψ ∈ S(R), integration by parts yields

Z ∞

−∞
ϕ(x)†

„

x +
d

dx

«

ψ(x)dx =

Z ∞

−∞

„

x− d

dx

«

ϕ(x)† · ψ(x)dx.

Hence 〈ϕ|aψ〉 = 〈a†ϕ|ψ〉.
Ad (ii). Obviously, 2aa†ψ = (x + d

dx
)(x− d

dx
)ψ = x2ψ + ψ − ψ′′. Similarly,

2a†aψ =

„

x− d

dx

«„

x +
d

dx

«

ψ = x2ψ − ψ − ψ′′.

Hence (aa† − a†a)ψ = ψ.

Ad (iii). Note that
√

2 ae−x2/2 = (x + d
dx

)e−x2/2 = 0.
Ad (iv). For all ϕ,ψ ∈ S(R),

〈ϕ|a†aψ〉 = 〈aϕ|aψ〉 = 〈a†aϕ|ψ〉.

Hence 〈ϕ|Nψ〉 = 〈Nϕ|ψ〉. Thus, the operator N is formally self-adjoint. We now
proceed by induction. Obviously, Nϕ0 = a†(aϕ0) = 0. Suppose that Nϕn = nϕn.
Then, by (ii),

N(a†ϕn) = a†aa†ϕn = a†(a†a + I)ϕn.

This implies
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N(a†ϕn) = a†(N + I)ϕn = (n + 1)a†ϕn.

Thus, Nϕn+1 = (n + 1)ϕn+1.
Ad (v). By definition of the state ϕn,

a†ϕn =
(a†)n+1

√
n!

ϕ0 =
√
n + 1

(a†)n+1

p

(n + 1)!
ϕ0 =

√
n + 1 ϕn+1.

Moreover, by (ii) and (iv),

√
n + 1 aϕn+1 = aa†ϕn = (a†a + I)ϕn = (n + 1)ϕn.

Ad (vi). We first show that the functions ϕ0, ϕ1, ... form an orthonormal system.
In fact, by the Gaussian integral,

〈ϕ0|ϕ0〉 =

Z ∞

−∞

e−x2

√
π

dx = 1.

We now proceed by induction. Suppose that 〈ϕn|ϕn〉 = 1. Then

(n + 1)〈ϕn+1|ϕn+1〉 = 〈a†ϕn|a†ϕn〉 = 〈ϕn|aa†ϕn〉 = 〈ϕn|(N + I)ϕn〉.

By (iv), this is equal to (n + 1)〈ϕn|ϕn〉. Hence 〈ϕn+1|ϕn+1〉 = 1.
Since the operator N is formally self-adjoint, eigenvectors of N to different

eigenvalues are orthogonal to each other. Explicitly, it follows from

n〈ϕn|ϕm〉 = 〈Nϕn|ϕm〉 = 〈ϕn|Nϕm〉 = m〈ϕn|ϕm〉

that 〈ϕn|ϕm〉 = 0 if n �= m. Finally, we will show below that the functions ϕ0, ϕ1, ...
coincide with the Hermite functions which form a complete orthonormal system in
L2(R).

Ad (vii). By (v),

〈ϕm|aϕn〉 =
√
n〈ϕm|ϕn−1〉 =

√
n δm,n−1.

Moreover, (a†)mn = 〈ϕm|a†ϕn〉 = 〈aϕm|ϕn〉 = (anm)†. �

Physical interpretation. In quantum field theory, the results above allow the
following physical interpretation.

• The function ϕn represents a normalized n-particle state.
• Since Nϕn = nϕn and the state ϕn consists of n particles, the operator N is

called the particle number operator.
• Since Nϕ0 = 0, the state ϕ0 is called the (normalized) vacuum state; there are

no particles in the state ϕ0.
• By (v) above, the operator a† sends the n-particle state ϕn to the (n+1)-particle

state ϕn+1. Naturally enough, the operator a† is called the particle creation
operator. In particular, the n-particle state

ϕn =
(a†)n

√
n!

ϕ0

is obtained from the vacuum state ϕ0 by an n-fold application of the particle
creation operator a.11

11 For the vacuum state ϕ0, physicists also use the notation |0〉.
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• Similarly, by (v) above, the operator a sends the (n+1)-particle state ϕn+1 to the
n-particle state ϕn. Therefore, the operator a is called the particle annihilation
operator.

The position operator Q and the momentum operator P. We set

Q :=
x0√

2
(a† + a), P :=

i�

x0

√
2
(a† − a).

This way, we obtain the two linear operators Q,P : S(R) → S(R) along with the
commutation relation

[Q,P ]− = i�I.

This follows from [a, a†]− = I. In fact,

[Q,P ]− = 1
2
[a† + a, i�(a† − a)]−.

Hence 2[Q,P ]− = i�[a, a†]− − i�[a†, a]− = 2i�[a, a†]− = 2i�I. Explicitly, for all
functions ψ ∈ S(R) and all x ∈ R,

(Qψ)(x) = xψ(x), (Pψ)(x) = −i�
dψ(x)

dx
.

Hence P = −i� d
dx

. The operators Q,P are formally self-adjoint, that is,

〈ϕ|Qψ〉 = 〈Qϕ|ψ〉, 〈ϕ|Pψ〉 = 〈Pϕ|ψ〉

for all functions ϕ,ψ ∈ S(R). In fact,

〈ϕ|Qψ〉 =

Z ∞

−∞
ϕ(x)†xψ(x) dx =

Z ∞

−∞
(xϕ(x))†ψ(x) dx = 〈Qϕ|ψ〉.

Furthermore, noting that (iϕ(x))† = −iϕ(x)†, integration by parts yields

〈ϕ|Pψ〉 =

Z ∞

−∞
ϕ(x)†(−i�ψ′(x))dx =

Z ∞

−∞
(−i�ϕ′(x))†ψ(x) dx = 〈Pϕ|ψ〉.

The Hermite functions. To simplify notation, we set x0 := 1. We will show
that the functions ϕ0, ϕ1, ... introduced above coincide with the classical Hermite
functions.12 To this end, for n = 0, 1, 2, ..., we introduce the Hermite polynomials

Hn(x) := (−1)nex2 dne−x2

dxn
(7.7)

along with the Hermite functions

ψn(x) :=
e−x2/2Hn(x)
p

2nn!
√
π

, x ∈ R. (7.8)

Explicitly, H0(x) = 1, H1(x) = 2x, and H2(x) = 4x2 − 2. For n = 0, 1, 2, ..., the
following hold:

12 Hermite (1822–1901).
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(a) For all complex numbers t and x,

e−t2+2xt =

∞
X

n=0

Hn(x)
tn

n!
.

Therefore, the function (t, x) �→ e−t2+2xt is called the generating function of
the Hermite polynomials.

(b) The polynomial Hn of nth degree has precisely n real zeros. These zeros are
simple.

(c) First recursive formula:

Hn+1(x) = 2xHn(x)− 2nHn−1(x), x ∈ R.

(d) H2n+1(0) = 0, and H2n(0) = (−1)n · 2n · 1 · 3 · 5 · · · (2n− 1).
(e) Hn(x) = 2nxn + an−1x

n−1 + ... + a1x + 1 for all x ∈ R.
(f) Second recursive formula:

Hn(x) = Hn(0) + 2n

Z x

0

Hn−1(y)dy, x ∈ R.

(g) The Hermite functions ψ0, ψ1, ... form a complete orthonormal system in the
complex Hilbert space L2(R).

(h) a†ψn =
√
n + 1 ψn for n = 0, 1, 2, ...

(j) ψn = ϕn for n = 0, 1, 2...
(k) x2ψn(x)− ψ′′

n(x) = (2n + 1)ψn(x) for all x ∈ R.

Let us prove this.
Ad (a). By the Cauchy formula,

f (n)(x) =
n!

2πi

Z

C

f(z)

(z − x)n+1
dz, x ∈ C.

Here, we assume that the function f is holomorphic on the complex plane C. More-
over, C is a counter-clockwise oriented circle centered at the point x. Hence

(−1)ne−x2
Hn(x) =

n!

2πi

Z

C

e−z2

(z − x)n+1
dz.

Substituting z = t + x,

Hn(x) =
n!

2πi

Z

C0

e−t2+2tx

tn+1
dt.

Here, the circle C0 is centered at the origin. Using again the Cauchy formula along
with Taylor expansion, we get the claim (a).

Ad (b). The proof will be given in Problem 7.26.
Ad (c). Differentiate relation (a) with respect to t, and use comparison of coef-

ficients.
Ad (d). Use an induction argument based on (c).
Ad (e). Use the definition (7.7) of Hn along with an induction argument.
Ad (f). Differentiate relation (a) by x, and use comparison of coefficients. Then,

H ′
n = 2nHn−1.

Ad (g). The proof can be found in Zeidler (1995a), p. 210 (see the references
on page 1049).
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Ad (h). Use the definition of ψn and the relation
√

2 a† = x− d
dx

.
Ad (j). Obviously, ϕ0 = ψ0. By (h), both ψ1 and ϕ1 are generated from ϕ0 the

same way. Hence ϕ1 = ψ1. Similarly, ϕ2 = ψ2, and so on.
Ad (k). This follows from a†aϕn = nϕn together with ϕn = ψn and

a†aψn =
1

2

„

x− d

dx

«„

x +
d

dx

«

ψn.

�

The normal product. Let n = 1, 2, . . . . Again choose x0 := 1. Consider

Qn =
1√
2n

(a + a†)n =
1√
2n

(a + a†) · · · (a + a†).

This is a polynomial with respect to a and a†. By definition, the normal product
: Qn : is obtained from Qn by rearranging the factors in such a way that a† (resp.
a) stands left (resp. right). Explicitly, by the binomial formula,

: Qn :=
1√
2n

n
X

k=0

 

n

k

!

(a†)kan−k.

We get the key relation

〈ϕ0| : Qn : ϕ0〉 = 0, n = 1, 2, . . . ,

telling us that the vacuum expectation value of the normal product is equal to
zero. This follows from aϕ0 = 0, which implies 〈ϕ0| . . . aϕ0〉 = 0 together with
〈ϕ0|a† . . .〉 = 〈aϕ0| . . .〉 = 0. Finally, we set : Q0 := I if n = 0.

For example, Q2 = 1
2
(a+a†)(a+a†) is equal to 1

2
(a2 +aa† +a†a+(a†)2). Hence

: Q2 := 1
2
a2 + a†a + 1

2
(a†)2.

This implies : Q2 : ψ = (x2 − 1
2
)ψ. Hence : Q2 := x2 − 1

2
. It turns out that

Qn = xn + . . . is a polynomial of degree n. Explicitly,

: Qn :=
Hn(x)

2n
, n = 0, 1, 2, . . . .

For the proof, we refer to Problem 7.27.
Coherent states. For each complex number α, we define

ϕα := e−|α|2/2
∞
X

n=0

αn

√
n!

ϕn. (7.9)

By the Parseval equation,

||ϕα||2 = e−|α|2
∞
X

n=0

|α|2n

n!
= 1 for all α ∈ C.

Therefore, the infinite series (7.9) is convergent in the Hilbert space L2(R). On page
478, we will prove that
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aϕα = αϕα for all α ∈ C. (7.10)

This tells us that the so-called coherent state ϕα is an eigenstate of the annihi-
lation operator a. There exists a continuous family {ϕα}α∈C of eigenstates of the
operator a. In terms of physics, the coherent state ϕα is the superposition of states
ϕ0, ϕ1, ϕ2, . . . with the fixed particle number 0, 1, 2, . . ., respectively, and it is stable
under particle annihilation, by (7.10).

Coherent states are frequently used as a nice tool for studying special physical
situations in quantum optics, quantum statistics, and quantum field theory (e.g.,
the mathematical modelling of laser beams).

A finite family of bosonic creation and annihilation operators. The
normal product and the following considerations are crucial for quantum field the-
ory. Let n = 1, 2, .. On the complex Hilbert space L2(R

n) equipped with the inner
product13

〈ϕ|ψ〉 :=

Z

Rn

ϕ(x)†ψ(x)dx

for all ϕ,ψ ∈ L2(R
n), we define the operators

aj , a
†
j : S(Rn)→ S(Rn), j = 1, ..., n

given by

aj :=
1√
2

„

xj +
∂

∂xj

«

, a†j :=
1√
2

„

xj −
∂

∂xj

«

.

Explicitly, for all functions ψ ∈ S(Rn),

(ajψ)(x) :=
1√
2

„

xjψ(x) +
∂ψ(x)

∂xj

«

, x ∈ R
n.

For all functions ϕ,ψ ∈ S(Rn), we have

〈ϕ|ajψ〉 = 〈a†jϕ|ψ〉, j = 1, ..., n,

that is, the operator a†j is the formally adjoint operator to the operator aj on S(Rn).
For j, k = 1, ..., n, we have the following commutation relations

[aj , a
†
k]− = δjkI, (7.11)

and

[aj , ak]− = [a†j , a
†
k]− = 0. (7.12)

A special role is played by the state

ϕ0(x) := c0e
−x2

, x ∈ R
n

with x2 := x2
1 + ... + x2

n and the normalization constant c0 := π−n/4. Then

〈ϕ0|ϕ0〉 =

Z

Rn

e−
1
2

x2
1−...− 1

2
x2

n

(
√
π)n

dx1 · · · dxn =

0

@

Z

R

e−
1
2

y2

√
π

dy

1

A

n

= 1.

13 The definition of the spaces S(Rn) and L2(R
n) can be found in Vol. I, Sects.

2.7.4 and 10.2.4, respectively.
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The operator N : S(Rn)→ S(Rn) given by

N :=

n
X

j=1

a†jaj

has the eigensolutions

N |k1k2 . . . kn〉 = (k1 + k2 + ... + kn)|k1k2...kn〉 (7.13)

with k1, k2, . . . , kn = 0, 1, 2, . . . Here, we set

|k1k2 . . . kn〉 :=
(a†1)

k1

√
k1!

(a†)k2

√
k2!
· · · (a

†)kn

√
kn!

ϕ0.

The system of states |k1k2 . . . kn〉 forms a complete orthonormal system in the
complex Hilbert space L2(R

n). The operator N is formally self-adjoint, that is,

〈ϕ|Nψ〉 = 〈Nϕ|ψ〉 for all ϕ,ψ ∈ S(Rn).

The proofs for the claims above proceed analogously as for the operators a and a†.
We use the following terminology. There are n types of elementary particles called
bosons.

• The state |k1k2 . . . kn〉 corresponds to k1 bosons of type 1, k2 bosons of type
2,. . . , and kn bosons of type n.

• The operator a†j is called the creation operator for bosons of type j.
• The operator aj is called the annihilation operator for bosons of type j.
• The operator N is called the particle number operator.
• Since Nϕ0 = 0, the state ϕ0 is called the (normalized) vacuum state. Instead of

ϕ0, physicists also write |0〉.

7.3 Heisenberg’s Quantum Mechanics

Quantum mechanics was born on December 14, 1900, when Max Planck
delivered his famous lecture before the German Physical Society in Berlin
which was printed afterwards under the title “On the law of energy distri-
bution in the normal spectrum.” In this paper, Planck assumed that the
emission and absorption of radiation always takes place in discrete portions
of energy or energy quanta hν, where ν is the frequency of the emitted or
absorbed radiation. Starting with this assumption, Planck arrived at his
famous formula

� =
αν3

ehν/kT − 1

for the energy density � of black-body radiation at temperature T .14

Barthel Leendert van der Waerden, 1967

14 B. van der Waerden, Sources of Quantum Mechanics, North-Holland, Amster-
dam, 1967 (reprinted with permission).
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The present paper seeks to establish a basis for theoretical quantum me-
chanics founded exclusively upon relationships between quantities which
in principle are observable.15

Werner Heisenberg, 1925

The recently published theoretical approach of Heisenberg is here devel-
oped into a systematic theory of quantum mechanics with the aid of math-
ematical matrix theory. After a brief survey of the latter, the mechanical
equations of motions are derived from a variational principle and it is
shown that using Heisenberg’s quantum condition, the principle of energy
conservation and Bohr’s frequency condition follow from the mechanical
equations. Using the anharmonic oscillator as example, the question of
uniqueness of the solution and of the significance of the phases of the
partial vibrations is raised. The paper concludes with an attempt to in-
corporate electromagnetic field laws into the new theory.16

Max Born and Pascal Jordan, 1925

There exist three different, but equivalent approaches to quantum mechanics,
namely,

(i) Heisenberg’s particle quantization from the year 1925 and its refinement by
Born, Dirac, and Jordan in 1926,

(ii) Schrödinger’s wave quantization from 1926, and
(iii) Feynman’s statistics over classical paths via path integral from 1942.

In what follows we will thoroughly discuss these three approaches in terms of the
harmonic oscillator. Let us start with (i).

The classical harmonic oscillator. Recall that the differential equation

q̈(t) + ω2q(t) = 0, t ∈ R (7.14)

describes the motion q = q(t) of a point of mass m on the real line which oscillates
with the positive angular frequency ω. We add the initial condition q(0) = q0 and
q̇(0) = v0. Let us introduce the momentum p := mq̇ and the Hamiltonian

H(q, p) :=
p2

2m
+

mω2q2

2

which represents the energy of the particle. Recall that the equation of motion
(7.14) is equivalent to the canonical equations ṗ = −Hq, q̇ = Hq. Explicitly,

ṗ(t) = −mω2q(t), mq̇(t) = p(t), t ∈ R,

along with the initial conditions q(0) = q0 and p(0) = p0. Note that p0 = mv0

where v0 is the initial velocity of the particle. Let us introduce the typical length
scale

x0 :=

r

�

mω

which can be formed by using the parameters m,ω and �. Let a be an arbitrary
complex number. The general solution of (7.14) is given by

15 W. Heisenberg, Quantum-theoretical re-interpretation of kinematic and mechan-
ical relations, Z. Physik 33 (1925), 879–893 (in German).

16 M. Born and P. Jordan, On Quantum Mechanics, Z. Physik 34 (1925), 858–888
(in German).
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q(t) =
x0√

2
(a†eiωt + ae−iω), t ∈ R. (7.15)

For the momentum, we get

p(t) = mq̇(t) =
i�

x0

√
2

(a†eiωt − ae−iω), t ∈ R.

Letting t = 0, we obtain

a =
1√
2

„

q(0)

x0
+

ix0p(0)

�

«

for the relation between the Fourier coefficient a and the real initial values q(0) and
p(0). Hence, for the conjugate complex Fourier coefficient,

a† =
1√
2

„

q(0)

x0
− ix0p(0)

�

«

.

For the Hamiltonian,

H(q(t), p(t)) = �ω(a†a + 1
2
), t ∈ R.

This expression does not depend on time t which reflects conservation of energy for
the motion of the harmonic oscillator. Note that

q(t)† = q(t), p(t)† = p(t) for all t ∈ R,

and that a, a† are dimensionless. In quantum mechanics, this classical reality con-
dition will be replaced by the formal self-adjointness of the operators q(t) and p(t).

The classical uncertainty relation. The motion q = q(t) has the time period
T = 2π/ω. Let us now study the time means of the classical motion. For a T -periodic
function f : R→ R, we define the mean value

f̄ =
1

T

Z T/2

−T/2

f(t)dt,

and the mean fluctuation Δf by

(Δf)2 = (f − f̄)2 =
1

T

Z T/2

−T/2

(f(t)− f̄)2dt.

To simplify computations, let us restrict ourselves to the special case where the
initial velocity of the particle vanishes, p0 = 0. Then we get the energy E =
mω2q(0)2/2, along with17

q̄ = p̄ = 0, Δp = mωΔq, Δq =

r

E

mω2
.

This implies the so-called classical uncertainty relation:

ΔqΔp =
E

ω
. (7.16)

17 Note that
R T/2

−T/2
eikωtdt =

R T/2

−T/2
ei2πkt/T dt = 0 if k = 1, 2, . . .



7.3 Heisenberg’s Quantum Mechanics 443

Poisson brackets. In order to quantize the classical harmonic oscillator, it is
convenient to write the classical equation of motion in terms of Poisson brackets.
Recall that

{A(q, p), B(q, p)} :=
∂A(q, p)

∂q

∂B(q, p)

∂p
− ∂B(q, p)

∂q

∂A(q, p)

∂p
.

For example, {q, p} := 1, {q,H} = Hp = p/m, and {p,H} = −Hq = −mω2q. Thus,
for all times t ∈ R, the equations of motion for the harmonic oscillator read as

q̇(t) = {q(t),H(q(t), p(t))}, ṗ(t) = {p(t), H(q(t)), p(t)}, (7.17)

together with {q(t), p(t)} = 1.

7.3.1 Heisenberg’s Equation of Motion

In a recent paper, Heisenberg puts forward a new theory which suggests
that it is not the equations of classical mechanics that are in any way at
fault, but that the mathematical operations by which physical results are
deduced from them require modification. All the information supplied by
the classical theory can thus be made use of in the new theory . . . We make
the fundamental assumption that the difference between the Heisenberg
products is equal to i� times their Poison bracket

xy − yx = i�{x, y}. (7.18)

It seems reasonable to take (7.18) as constituting the general quantum
conditions.18

Paul Dirac, 1925

The general quantization principle. We are looking for a simple principle which
allows us to pass from classical mechanics to quantum mechanics. This principle
reads as follows:

• position q(t) and momentum p(t) of the particle at time t become operators,
• and Poisson brackets are replaced by Lie brackets,

{A(q, p), B(q, p)} ⇒ 1

i�
[A(q, p), B(q, p)]−.

Recall that [A,B]− := AB − BA. Using this quantization principle, the classical
equation of motion (7.17) passes over to the equation of motion for the quantum
harmonic oscillator

i�q̇(t) = [q(t),H(q(t), p(t))]−,

i�ṗ(t) = [p(t), H(q(t), p(t))]−
(7.19)

together with

18 P. Dirac, The fundamental equations of quantum mechanics, Proc. Royal Soc.
London Ser. A 109 (1925), no. 752, 642–653.
A far-reaching generalization of Dirac’s principle to the quantization of general
Poisson structures was proven by Kontsevich. In 1998, he was awarded the Fields
medal for this (see the papers by Kontsevich (2003) and by Cattaneo and Felder
(2000) quoted on page 676).
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[q(t), p(t)]− = i�I. (7.20)

The latter equation is called the Heisenberg–Born–Jordan commutation relation.
The method of Fourier quantization. In order to solve the equations of

motion (7.19), (7.20), we use the classical solution formula

q(t) =
x0√

2
(a†eiωt + ae−iωt),

p(t) = mq̇(t) =
i�

x0

√
2

(a†eiωt − ae−iωt) (7.21)

for all times t ∈ R. But we replace the classical Fourier coefficients a and a† by
operators a and a† which satisfy the commutation relation

[a, a†]− = I.

These operators can be found in Sect. 7.2. Let us check that indeed we obtain a
solution. First of all note that

[q(t), p(t)]− = 1
2
i�[a†eiωt + ae−iωt, a†eiωt − ae−iωt]−

= 1
2
i�([a, a†]− − [a†, a]−) = i�[a, a†]− = i�I.

As in the classical case, one checks easily that

mq̇(t) = p(t), ṗ(t) = −mω2q(t).

Moreover, it follows from [q, p]− = i� that

[q, p2]− = ([q, p]−)p + p[q, p]− = 2i�p.

Similarly, for n = 1, 2, ...,

[q, pn]− = i�npn−1, [p, qn]− = −i�nqn−1,

by induction. Hence

2m[q(t), H(q(t), p(t))]− = [q(t), p(t)2]− = 2i�p(t) = 2mi�q̇(t).

This is the first equation of motion. Similarly, we get the second equation of motion

[p(t), H(q(t), p(t))]− = 1
2
[p(t),mω2q2(t)]− = −i�mω2q(t) = i�ṗ(t).

For the Hamiltonian, it follows from [a, a†]− = I that

H(q(t), p(t)) = �ω(a†a + 1
2
). (7.22)

Matrix elements. Let us use the results from Sect. 7.2. Recall that the states

ϕn :=
(a†)n

√
n!

ϕ0, n = 0, 1, 2, ...

form a complete orthonormal system of the complex Hilbert space L2(R). In addi-
tion, ϕn ∈ S(R) for all n. For the physical interpretation of Heisenberg’s quantum



7.3 Heisenberg’s Quantum Mechanics 445

mechanics, infinite-dimensional matrices play a crucial role. Let us discuss this. We
assign to each linear operator A : S(R)→ S(R) the matrix elements

Amn := 〈ϕm|Aϕn〉, m, n = 0, 1, 2, . . .

For two linear formally self-adjoint operators A,B : S(R) → S(R), we get the
product rule

(AB)mn =
∞
X

k=0

AmkBkn, m, n = 0, 1, 2, ... (7.23)

In fact, by the Parseval equation (7.2), this follows from

〈ϕm|ABϕn〉 = 〈Aϕm|Bϕn〉 =
∞
X

k=0

〈Aϕm|ϕk〉〈ϕk|Bϕn〉

along with 〈Aϕm|ϕk〉 = 〈ϕm|Aϕk〉.
Examples. Let us now compute the matrix elements of H, q(t), and p(t). It

follows from Nϕn = nϕn that

Hϕn = �ω(N + 1
2
I)ϕn = �ω(n + 1

2
)ϕn.

Hence Hmn = 〈ϕm|Hϕn〉 = En〈ϕm|ϕn〉 = Enδnm with En = �ω(n+ 1
2
). This yields

the diagonal matrix

(Hmn) =

0

B

B

@

E0 0 0 0 ...

0 E1 0 0 ...
...

1

C

C

A

.

It follows from Sect. 7.2 that akn =
√
n δk,n−1. Thus, by (7.21),

qkn(t) =
x0√

2
(ankeiωt + akne−iωt). (7.24)

This way, we get the self-adjoint matrix

(qkn(t)) =
x0√

2

0

B

B

B

B

@

0
√

1 e−iωt 0 0 ...√
1 eiωt 0

√
2 e−iωt 0 ...

0
√

2 eiωt 0 0 ...
...

1

C

C

C

C

A

for all times t ∈ R. Similarly,

pkn(t) = mq̇kn(t), k, n = 0, 1, 2, ...

By the product rule (7.23), for the square of the position matrix (qkn) we get

(qkn)2 =
x2

0

2

0

B

B

B

B

@

1 0 0 0 ...

0 3 0 0 ...

0 0 5 0 ...
...

1

C

C

C

C

A

. (7.25)
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Similarly,

(pkn)2 =
�

2

2x2
0

0

B

B

B

B

@

1 0 0 0 ...

0 3 0 0 ...

0 0 5 0 ...
...

1

C

C

C

C

A

.

7.3.2 Heisenberg’s Uncertainty Inequality for the Harmonic
Oscillator

In order to discuss the physical meaning of the matrices introduced above, we will
use the following terminology:

• The elements ψ of the complex Hilbert space L2(R) normalized by the condition
〈ψ|ψ〉 = 1 are called normalized states of the quantum harmonic oscillator,

• whereas the linear, formally self-adjoint operators A : S(R) → S(R) are called
formal observables.

Two normalized states ψ and ϕ are called equivalent iff

ϕ = eiαψ

for some real number α. We say that ϕ and ψ differ by phase. Consider some
normalized state ψ and some formal observable A. The number

Ā := 〈ψ|Aψ〉

is interpreted as the mean value of the observable A measured in the state ψ.19

Moreover, the nonnegative number ΔA given by

(ΔA)2 := 〈ψ|(A− Ā)2ψ〉

is interpreted as the fluctuation of the measured mean value Ā. Let us choose
n = 0, 1, 2, . . . For the state ϕn of the quantum harmonic oscillator, we get the
following measured values for all times t ∈ R.

(i) Energy: Ē = En = �ω(n + 1
2
) and ΔE = 0.

(ii) Position: q̄(t) = qnn(t) = 0 and Δq(t) = x0

q

n + 1
2
.

(iii) Momentum: p̄(t) = pnn(t) = 0 and Δp(t) = �

x0

q

n + 1
2
.

(iv) Heisenberg’s uncertainty inequality:

Δq(t)Δp(t) ≥ �

2
.

Let us prove this.
Ad (i). For the energy, it follows from the eigensolution Hϕn = Enϕn that

Ē = 〈ϕn|Hϕn〉 = En〈ϕn|ϕn〉 = En,

and ΔE = ||(H − EnI)ϕn|| = 0.

19 Since the operator A is formally self-adjoint, the number Ā is real. Furthermore,
note that 〈ψ|(A− Ā)2ψ〉 = 〈(A− Ā)ψ|(A− Ā)ψ〉 = ||(A− ĀI)ψ||2 ≥ 0.
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Ad (ii). Note that

(Δq)2 = 〈ϕn|q(t)2ϕn〉.
Therefore, (Δq)2 is the nth diagonal element of the product matrix (qkn)2 which
can be found in (7.25). Analogously, we get (iii). The uncertainty inequality is an
immediate consequence of (ii) and (iii). �

The famous Heisenberg uncertainty inequality for the quantum harmonic os-
cillator tells us that the state ϕn has the sharp energy En, but it is impossible
to measure sharply both position and momentum of the quantum particle at the
same time. Thus, there exists a substantial difference between classical particles
and quantum particles.

It is impossible to speak of the trajectory of a quantum particle.

7.3.3 Quantization of Energy

I have the best of reasons for being an admirer of Werner Heisenberg.
He and I were young research students at the same time, about the same
age, working on the same problem. Heisenberg succeeded where I failed. . .
Heisenberg - a graduate student of Sommerfeld - was working from the
experimental basis, using the results of spectroscopy, which by 1925 had
accumulated an enormous amount of data20. . .

Paul Dirac, 1968

The measured spectrum of an atom or a molecule is characterized by two quantities,
namely,

• the wave length λnm of the emitted spectral lines (where n,m = 0, 1, 2, . . . with
n > m), and

• the intensity of the spectral lines.

In Bohr’s and Sommerfeld’s semi-classical approach to the spectra of atoms and
molecules from the years 1913 and 1916, respectively, the spectral lines correspond
to photons which are emitted by jumps of an electron from one orbit of the atom or
molecule to another orbit. If E0 < E1 < E2 < . . . are the (discrete) energies of the
electron corresponding to the different orbits, then a jump of the electron from the
higher energy level En to the lower energy level Em produces the emission of one
photon of energy En − Em. According to Einstein’s light quanta hypothesis from
1905, this yields the frequency

νnm =
En − Em

h
, n > m (7.26)

of the emitted photon, and hence the wave length λnm = c/νnm of the corresponding
spectral line is obtained. The intensity of the spectral lines depends on the transition
probabilities for the jumps of the electrons. In 1925 it was Heisenberg’s philosophy
to base his new quantum mechanics only on quantities which can be measured in
physical experiments, namely,

• the energies E0, E1, . . . of bound states and

20 In: A. Salam (Ed.), From a Life of Physics. Evening Lectures at the International
Center for Theoretical Physics, Trieste (Italy), with outstanding contributions
by Abdus Salam, Hans Bethe, Paul Dirac, Werner Heisenberg, Eugene Wigner,
Oscar Klein, and Eugen Lifshitz, International Atomic Energy Agency, Vienna,
Austria, 1968.
A. Sommerfeld, Atomic Structure and Spectral Lines, Methuen, London, 1923.
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• the transition probabilities for changing bound states.21

Explicitly, Heisenberg replaced the trajectory q = q(t), t ∈ R of a particle in classical
mechanics by the following family (qnm(t)) of functions

qnm(t) = qnm(0)eiωnmt, n,m = 0, 1, 2, . . .

where ωnm = 2πνnm, and the frequencies νnm are given by (7.26). It follows from
(7.26) that

νnk + νkm = νnm, n < k < m.

In physics, this is called the Ritz combination principle for frequencies.22 In terms
of mathematics, this tells us that the family {νnm} of frequencies represents a
cocycle generated by the family {En} of energies. Thus, this approach is based on a
simple variant of cohomology.23 In order to compute the intensities of spectral lines,
Heisenberg was looking for a suitable quadratic expression in the amplitudes qnm(0).
Using physical arguments and analogies with the product formula for Fourier series
expansions, Heisenberg invented the composition rule

(q2(0))nm :=

∞
X

k=0

qnk(0)qkm(0) (7.27)

for defining the square (qnm(0))2 of the scheme (qnm(0)). Applying this to the har-
monic oscillator (and the anharmonic oscillator as a perturbed harmonic oscillator),
Heisenberg obtained the energies

En = ω�(n + 1
2
), n = 0, 1, 2, . . .

for the quantized harmonic oscillator.
After getting Heisenberg’s manuscript, Born (1882–1970) noticed that the com-

position rule (7.27) resembled the product for matrices q(t) = (qnm(t)), which he
learned as a student in the mathematics course. He guessed the validity of the rule

qp− pq = i�. (7.28)

But he was only able to verify this for the diagonal elements. After a few days of
joint work with his pupil Pascal Jordan (1902–1980), Born finished a joint paper
with Jordan on the new quantum mechanics including the commutation rule (7.28);
nowadays this is called the Heisenberg–Born–Jordan commutation rule (or briefly
the Heisenberg commutation rule). At that time, Heisenberg was not in Göttingen,
but on the island Helgoland (North Sea) in order to cure a severe attack of hay
fever. After coming back to Göttingen, Heisenberg wrote together with Born and
Jordan a fundamental paper on the principles of quantum mechanics. The English
translation of the following three papers can be found in van der Waerden (1968):

21 Heisenberg’s thinking was strongly influenced by the Greek philosopher Plato
(428–347 B.C.). Nowadays one uses the Latin version ‘Plato’. The correct Greek
name is ‘Platon’. Plato’s Academy in Athens had unparalleled importance for
Greek thought. The greatest philosophers, mathematicians, and astronomers
worked there. For example, Aristotle (384–322 B.C.) studied there. In 529 A.D.,
the Academy was closed by the Roman emperor Justitian.

22 Ritz (1878–1909) worked in Göttingen.
23 The importance of cohomology for classical and quantum physics will be studied

in Vol. IV on quantum mathematics.
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W. Heisenberg, Quantum-theoretical re-interpretation of kinematics and
mechanical relations), Z. Physik 33 (1925), 879–893.

M. Born, P. Jordan, On quantum mechanics, Z. Physik 35 (1925), 858–888.

M. Born, W. Heisenberg, and P. Jordan, On quantum mechanics II, Z.
Physik 36 (1926), 557–523.

At the same time, Dirac formulated his general approach to quantum mechanics:

P. Dirac, The fundamental equations of quantum mechanics, Proc. Royal
Soc. London Ser. A 109 (1926), no. 752, 642–653.

Heisenberg, himself, pointed out the following at the Trieste Evening Lectures in
1968:

It turned out that one could replace the quantum conditions of Bohr’s
theory by a formula which was essentially equivalent to the sum-rule in
spectroscopy by Thomas and Kuhn. . . I was however not able to get a
neat mathematical scheme out of it. Very soon afterwards both Born and
Jordan in Göttingen and Dirac in Cambridge were able to invent a perfectly
closed mathematical scheme: Dirac with very ingenious new methods on
abstract noncommutative q-numbers (i.e., quantum-theoretical numbers),
and Born and Jordan with more conventional methods of matrices.

7.3.4 The Transition Probabilities

Let us discuss the meaning of the entries qkn of the position matrix on page 445.
Suppose that the quantum particle is an electron of electric charge −e and mass
m. Let ε0 and c be the electric field constant and the velocity of light of a vacuum,
respectively. Furthermore, let h be the Planck action quantum, and set � := h/2π.24

According to Heisenberg, the real number

γkn :=
ω3

kne
2(t2 − t1)

3πε0�c3
|qkn(0)|2, n, k = 0, 1, 2, . . . , n �= k (7.29)

is the transition probability for the quantum particle to pass from the state ϕk to
the state ϕn during the time interval [t1, t2]. Here, ωkn := (Ek − En)/�. This will
be motivated below. Note that γkn = γnk. Explicitly,

γkn :=
ω2e2(t2 − t1)

6πε0c3m
(nδk,n−1 + kδn,k−1).

This means the following.

• Forbidden spectral lines: The transition of the quantum particle from the state
ϕn of energy En to the state ϕk of energy Ek is forbidden, i.e., γkn = 0, if the
energy difference En − Ek is equal to ±2�ω,±3�ω, ...

• Emission of radiation: The transition probability from the energy En+1 to the
energy En during the time interval [t1, t2] is equal to

γn+1,n =
ω2e2(t2 − t1)

6πε0c3m
(n + 1), n = 0, 1, 2, ... (7.30)

In this case, a photon of energy E = �ω is emitted. The meaning of transition
probability is the following. Suppose that we have N oscillating electrons in the

24 The numerical values can be found on page 949 of Vol. I.
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state ϕn. Then the number of electrons which jump to the state ϕn+1 during the
time interval [t1, t − 2] is equal to Nγn,n+1. Then the emitted mean energy E,
which passes through a sufficiently large sphere during the time interval [t1, t2],
is equal to

E = Nγn+1,n · �ω.
This quantity determines the intensity of the emitted spectral line.

• Absorption of radiation: The transition probability from the energy En to the
energy En+1 during the time interval [t1, t2] is equal to

γn,n+1 = γn+1,n, n = 0, 1, 2, ...

In this case, a photon of energy En+1 − En = �ω is absorbed.

Motivation of the transition probability. We want to motivate formula
(7.29).

Step 1: Classical particle. Let q = q(t) describe the motion of a classical particle
of mass m and electric charge −e on the real line. This particle emits the mean
electromagnetic energy E through a sufficiently large sphere during the time interval
[t1, t2]. Explicitly,

E =
e2(t2 − t1)

6πε0c3
mean(q̈2(t))

(see Landau and Lifshitz (1982), Sect. 67). We assume that the smooth motion of
the particle has the time period T . Then we have the Fourier expansion

q(t) =

∞
X

r=−∞
qre

iωrt, t ∈ R

with the angular frequency ω := 2π/T and ωr := rω. Since the function t �→ q(t) is
real, we get qr(t)

† = q−r(t) for all r = 0,±1,±2, . . . Hence

q̈2(t) =
∞
X

r,s=−∞
ω2

rqrω
2
sqse

i(ωr+ωs)t.

Since mean
“

ei(ωr+ωs)t
”

= 1
T

R T

0
ei(ωr+ωs)tdt = δ0,r+s, we get

mean(q̈2(t)) =

∞
X

r=−∞
ω4

rqrq−r = 2

∞
X

r=1

ω4
r |qr|2.

This yields E =
P∞

r=1 Er with

Er :=
e2(t2 − t1)

3πε0c3
· ω4

r |qr|2.

Step 2: Quantum particle. In 1925 Heisenberg postulated that, for the har-
monic oscillator, the passage from the classical particle to the quantum particle
corresponds to the two replacements

(i) ωr ⇒ ωkn := (Ek − En)/�, and
(ii) qr ⇒ qkn(0).
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Let k > n. If the quantum particle jumps from the energy level Ek to the lower
energy level En, then a photon of energy Ek − En = �ωkn is emitted. Using the
replacements (i) and (ii) above, we get E =

P

k≥1

Pk−1
n=0 Ekn with

Ekn :=
e2(t2 − t1)

3πε0c3
· ω4

kn|qkn(0)|2.

By definition, the real number

γkn :=
Ekn

�ωkn
, k > n

is the transition probability for a passage of the quantum particle from the energy
level Ek to the lower energy level En during the time interval [t1, t2]. From (7.24)
we get |qkn(0)|2 = �

2mω
kδn,k−1. Hence γkn = 0 for the choice k = n + 2, n + 3, . . .

Moreover,

γn+1,n =
En+1,n

�ω
=

e2(t2 − t1)

6πε0c3m
· ω2(n + 1), n = 0, 1, 2, . . .

This motivates the claim (7.30).

7.3.5 The Wightman Functions

Both the Wightman functions and the correlation functions of the quan-
tized harmonic oscillator are the prototypes of general constructions used
in quantum field theory.

Folklore

As we have shown, the motion of the quantum particle corresponding to the quan-
tized harmonic oscillator is described by the time-depending operator function

q(t) =
x0√

2
(a†eiωt + ae−iωt), t ∈ R (7.31)

with the initial condition q(0) = Q and p(0) = P. Using this, we define the n-point
Wightman function of the quantized harmonic oscillator by setting

Wn(t1, t2, . . . , tn) := 〈0|q(t1)q(t2) · · · q(tn)|0〉 (7.32)

for all times t1, t2, . . . , tn ∈ R. This is the vacuum expectation value of the op-
erator product q(t1)q(t2) · · · q(tn). In contrast to the operator function (7.31), the
Wightman functions are classical complex-valued functions. It turns out that

The Wightman functions know all about the quantized harmonic oscillator.

Using the Wightman functions, we avoid the use of operator theory in Hilbert space.
This is the main idea behind the introduction of the Wightman functions.

Proposition 7.4 (i) W2(t, s) =
x2
0
2
· e−iω(t−s) for all t, s ∈ R.

(ii) Wn ≡ 0 if n is odd. For example, W1 ≡ 0 and W3 ≡ 0.
(iii) W4(t1, t2, t3, t4) = W2(t1, t2)W2(t3, t4) + 2W2(t1, t3)W2(t2, t4) for all time

points t1, t2, t3, t4 ∈ R.
(iv) Wn(t1, t2, . . . , tn)† = W (tn, . . . , t2, t1) for all times t1, t2, . . . tn and all pos-

itive integers n.
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Proof. We will systematically use the orthonormal system ϕ0, ϕ1, . . . introduced
on page 433 together with aϕ0 = 0, a†ϕ0 = ϕ1 and

aϕn =
√
n ϕn−1, a†ϕn =

√
n + 1 ϕn+1, n = 1, 2, . . .

Recall that the vacuum state ϕ0 is also denoted by |0〉. The computation of vacuum
expectation values becomes extremely simple when using the intuitive meaning of
the operator a (resp. a†) as a particle creation (resp. annihilation) operator. Let us
explain this by considering a few typical examples. First let us show that most of
the vacuum expectation values vanish.

• The state a†a†ϕ0 contains two particles. Hence

〈ϕ0|a†a†ϕ0〉 = const · 〈ϕ0|ϕ2〉 = 0,

by orthogonality.
• The state aa†a†ϕ0 contains one particle. Hence

〈ϕ0|aa†a†ϕ0〉 = const · 〈ϕ0|ϕ1〉 = 0.

• Aaϕ0 = 0 for arbitrary expressions A, since aϕ0 = 0.
• Analogously, aaaa†a†ϕ0 = 0. In fact,

aaaa†a†ϕ0 = a(aaa†a†)ϕ0 = const · aϕ0 = 0.

Formally, the state aaaa†a†ϕ0 contains “2 minus 3” particles. In general, states
with a ‘negative’ number of particles are equal to zero.

Therefore, it only remains to compute vacuum expectation values 〈ϕ0|Aϕ0〉 where
the state Aϕ0 contains no particle.

This means that A is a product of creation and annihilation operators
where the number of creation operators equals the number of annihilation
operators.

The following examples will be used below.

• The state aa†ϕ0 contains no particle. Here,

aa†ϕ0 = aϕ1 = ϕ0. (7.33)

Hence 〈ϕ0|aa†ϕ0〉 = ϕ0|ϕ0〉 = 1.
• The state aaa†a†ϕ0 contains no particle. Explicitly,

aaa†a†ϕ0 = aaa†ϕ1 =
√

2 aaϕ2 = 2aϕ1 = 2ϕ0. (7.34)

Hence 〈ϕ0|aaa†a†ϕ0〉 = 2.
• Similarly,

aa†aa†ϕ0 = aa†aϕ1 = aa†ϕ0 = aϕ1 = ϕ0. (7.35)

Hence 〈aa†aa†ϕ0〉 = 1.
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Ad (i). To simplify notation, set

aj :=
x0e

−iωtj

√
2

a, a†
j :=

x0e
iωtj

√
2

a†.

We have W2(t1, t2) = 〈ϕ0|Aϕ0〉 with the state

Aϕ0 = (a†1 + a1)(a
†
2 + a2)ϕ0.

Only the state a1a
†
2ϕ0 gives a non-vanishing contribution to the Wightman function

W2. By (7.33), W2(t1, t2) is equal to

〈ϕ0|a1a
†
2ϕ0〉 =

x2
0

2
· e−iωt1eiωt2〈ϕ0|aa†ϕ0〉 =

x2
0

2
· e−iω(t1−t2).

Ad (ii). First note that 〈ϕ0|(a† + a)ϕ0〉 = 〈ϕ0|ϕ1〉 = 0. The state

Aϕ0 := (a†1 + a1)(a
†
2 + a2)(a

†
3 + a3)ϕ0

is the sum of particle states with an odd number of particles. Hence we obtain
〈ϕ0|Aϕ0〉 = 0, by orthogonality. The same is true for an odd number of factors

(a†j + aj).

Ad (iii). We have W4(t1, t2, t3, t4) = 〈ϕ0|Aϕ0〉 with the state

Aϕ0 := (a†1 + a1)(a
†
2 + a2)(a

†
3 + a3)(a

†
4 + a4) = a1a2a

†
3a

†
4 + a1a

†
2a3a

†
4 + . . .

The dots denote terms whose contribution to W4 vanishes. By (7.34) and (7.35),
W4(t1, t2, t3, t4) is equal to

〈ϕ0|a1a2a
†
3a

†
4ϕ0〉+ 〈ϕ0|a1a

†
2a3a

†
4ϕ0〉 = 2W2(t1, t3)W2(t2, t4)

+W2(t1, t2)W2(t3, t4).

Ad (iv). Since the operator Q(t) is formally self-adjoint,

〈ϕ0|Q(s)Q(t)ϕ0〉 = 〈Q(t)Q(s)ϕ0|ϕ0〉 = 〈ϕ0|Q(t)Q(s)ϕ0〉†.

Hence W2(s, t) = W2(t, s)
†. The general case proceeds analogously. �

Similar arguments for computing vacuum expectation values via creation
and annihilation operators are frequently used in quantum field theory.

Theorem 7.5 (i) Equation of motion: For any s ∈ R, the 2-point Wightman func-
tion t �→ W2(t, s) satisfies the classical equation of motion for the harmonic oscil-
lator, that is,

∂2W2(t, s)

∂t2
+ ω2W2(t, s) = 0, t ∈ R.

(ii) Reconstruction property: For all times t, s ∈ R,

q(t− s) =

√
2

x0
(W2(t, s)a + W2(s, t)a

†). (7.36)
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Relation (7.5) tells us that the knowledge of the 2-point Wightman function
W2 allows us to reconstruct the quantum dynamics of the harmonic oscillator.
Proof. Note that q̈(t) + ω2q(t) = 0, and hence

∂2W (t, s)

∂2t
+ ω2W (t, s) = 〈ϕ0|(q̈(t) + ω2q(t))q(s)ϕ0〉 = 0.

�

Perspectives. In 1956 Wightman showed that it is possible to base quantum
field theory on the investigation of the vacuum expectation values of the products of
quantum fields. These vacuum expectation values are called Wightman functions.
The crucial point is that the Wightman functions are highly singular objects in
quantum field theory. In fact, they are generalized functions.25 However, they are
also boundary values of holomorphic functions of several complex variables. This
simplifies the mathematical theory. Using a similar construction as in the proof

of the Gelfand–Naimark–Segal (GNS) representation theorem for C∗-algebras in
Hilbert spaces, Wightman proved a reconstruction theorem which shows that the
quantum field (as a Hilbert-space valued distribution) can be reconstructed from
its Wightman distributions. Basic papers are:

A. Wightman, Quantum field theories in terms of vacuum expectation
values, Phys. Rev. 101 (1956), 860–866.

R. Jost, A remark on the CPT-theorem, Helv. Phys. Acta 30 (1957), 409–
416 (in German).

F. Dyson, Integral representations of causal commutators, Phys. Rev.
110(6) (1958), 1460–1464.

A. Wightman, Quantum field theory and analytic functions of several com-
plex variables, J. Indian Math. Soc. 24 (1960), 625–677.

H. Borchers, On the structure of the algebra of field operators, Nuovo
Cimento 24 (1962), 214–236.

A. Uhlmann, Über die Definition der Quantenfelder nach Wightman und
Haag (On the definition of quantum fields according to Wightman and
Haag), Wissenschaftliche Zeitschrift der Karl-Marx-Universität Leipzig
11(1962), 213–217 (in German).

A. Wightman and L. G̊arding, Fields as operator-valued distributions in
relativistic quantum theory, Arkiv för Fysik 28 (1964), 129–189.

R. Haag and D. Kastler, An algebraic approach to quantum field theory,
J. Math. Phys. 5 (1964), 848–861.

K. Hepp, On the connection between the LSZ formalism and the Wightman
field theory, Commun. Math. Phys. 1 (1965)(2), 95–111.

H. Araki and R. Haag, Collision cross sections in terms of local observables,
Commun. Math. Phys. 4(2) (1967), 7–91.

O. Steinmann, A rigorous formulation of LSZ field theory, Commun. Math.
Phys. 10 (1968), 245–268.

R. Seiler, Quantum theory of particles with spin zero and one half in
external fields, Commun. Math. Phys. 25 (1972), 127–151.

H. Epstein and V. Glaser, The role of locality in perturbation theory, Ann.
Inst. Poincaré A 19(3) (1973), 211–295.

25 See Sect. 15.6 of Vol. I.
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K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions
I, II, Commun. Math. Phys. 31 (1973), 83–112; 42 (1975), 281–305.

D. Buchholz, The physical state space of quantum electrodynamics, Com-
mun. Math. Phys. 85 (1982), 49–71.

J. Glimm and A. Jaffe, Quantum Field Theory and Statistical Mechanics:
Expositions, Birkhäuser, Boston, 1985.

D. Buchholz, On quantum fields that generate local algebras, J. Math.
Phys. 31 (1990), 1839–1846.

D. Buchholz, M. Porrmann, and U. Stein (1991), Dirac versus Wigner:
towards a universal particle concept in local quantum field theory, Phys.
Lett. 267 B(39 (1991), 377–381.

J. Fröhlich, Non-Perturbative Quantum Field Theory: Mathematical As-
pects and Applications, Selected Papers, World Scientific, Singapore, 1992.

D. Buchholz and R. Verch, Scaling algebras and renormalization group in
algebraic quantum field theory, Rev. Math. Phys. 7 (1995), 1195–2040.

S. Doplicher, K. Fredenhagen, and J. Roberts, The structure of space-time
at the Planck scale and quantum fields, Commun. Math. Phys. 172 (1995),
187–220.

As an introduction to axiomatic quantum field theory, we recommend the following
monographs:

N. Bogoliubov et al., Introduction to Axiomatic Quantum Field Theory,
Benjamin, Reading, Massachusetts, 1975.

R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer,
Berlin, 1996.

H. Araki, Mathematical Theory of Quantum Fields, Oxford University
Press, New York, 1999.

C. Bär, N. Ginoux, and F. Pfäffle, Wave Equations on Lorentzian Mani-
folds and Quantization, European Mathematical Society, 2007.

We also recommend:

R. Streater and R. Wightman, PCT, Spin, Statistics, and All That, Ben-
jamin, New York, 1968.

M. Reed and B. Simon, Methods of Modern Mathematical Physics. Vol.
2 (the mathematical structure of Wightman distributions), Vol. 3 (the
Haag–Ruelle scattering theory), Academic Press, New York, 1972.

B. Simon, The P (ϕ)2-Euclidean Quantum Field Theory, Princeton Univer-
sity Press, 1974 (constructive quantum field theory for a special nontrivial
model in a 2-dimensional space-time).

J. Glimm and A. Jaffe, Mathematical Methods of Quantum Physics,
Springer, New York, 1981 (constructive quantum field theory based on
the use of functional integrals).

N. Bogoliubov et al., General Principles of Quantum Field Theory, Kluwer,
Dordrecht, 1990.

In recent years, Klaus Fredenhagen (Hamburg University) has written a series of im-
portant papers together with his collaborators. The idea is to combine the operator-
algebra methods of axiomatic quantum field theory (due to G̊arding–Wightman and
Haag–Kastler) with the methods of perturbation theory, by using formal power se-
ries expansions. We refer to:
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M. Dütsch and K. Fredenhagen, A local perturbative construction of ob-
servables in gauge theories: The example of QED (quantum electrodynam-
ics), Commun. Math. Phys. 203 (1999), 71–105.

R. Brunetti and K. Fredenhagen, Micro-local analysis and interacting
quantum field theories: renormalization on physical backgrounds, Com-
mun. Math. Phys. 208 (2000), 623–661.

M. Dütsch and K. Fredenhagen, Algebraic quantum field theory, perturba-
tion theory, and the loop expansion, Commun. Math. Phys. 219(1) (2001),
5–30.

M. Dütsch and K. Fredenhagen, The master Ward identity and the gener-
alized Schwinger–Dyson equation in classical field theory, Commun. Math.
Phys. 243 (2003), 275–314.

R. Brunetti, K. Fredenhagen, and R. Verch, The generally covariant local-
ity principle – a new paradigm for local quantum field theory, Commun.
Math. Phys. 237 (2003), 31–68.

R. Brunetti and K. Fredenhagen, Towards a background-independent for-
mulation of perturbative quantum gravity, pp. 151–157. In: B. Fauser, J.
Tolksdorf, and E, Zeidler (Eds.), Quantum Gravity: Mathematical Models
and Experimental Bounds, Birkhäuser, Basel, 2006.

K. Fredenhagen, K. Rehren, and E. Seiler, Quantum field theory: where
we are. Lecture Notes in Physics 721 (2007), 61–87
Internet 2006: http://arxiv.org/hep-th/0603155

We also recommend the lectures given by Klaus Fredenhagen at Hamburg Univer-
sity. These lectures are available on the Internet:

http://unith.desy.de/research/aqft/lecture-notes

Furthermore, we recommend the lectures on quantum field theory given by Arthur
Jaffe at Harvard University:

A. Jaffe, Introduction to Quantum Field Theory. Lecture Notes, partially
available at: www.rathurjaffe.com/Assets/pdf/IntroQFT.pdf

7.3.6 The Correlation Functions

In contrast to the Wightman functions, the correlation functions reflect
causality.

Folklore

Parallel to (7.32), we now define the n-point correlation function (also called the
n-point Green’s function) by setting

Cn(t1, t2, . . . , tn) := 〈0|T (q(t1)q(t2) · · · q(tn))|0〉 (7.37)

for all times t1, t2, . . . , tn ∈ R. Here, the symbol T denotes the time-ordering oper-
ator, that is, we define

T (q(t1)q(t2) · · · q(tn)) := q(tπ(1))q(tπ(2)) · · · q(tπ(n))

where the permutation π of the indices 1, 2, . . . , n is chosen in such a way that
tπ(1) ≥ tπ(2) ≥ . . . ≥ tπ(n). For example, using the slightly modified Heaviside

function θ∗, we obtain26

26 We set θ∗(t) := 1 if t > 0, θ∗(t) := 0 if t < 0, and θ∗(0) := 1
2
.
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C2(t, s) = θ∗(t− s)W2(t, s) + θ∗(s− t)W2(s, t)) =
x2

0

2
· e−iω|t−s| (7.38)

for all t, s ∈ R. This relates the 2-point correlation function C2 to the 2-point
Wightman function W2 by taking causality into account. In particular, we have
C2(t, s) = W2(t, s) if t ≥ s.

Theorem 7.6 For any s ∈ R, the 2-point correlation function t �→ C2(t, s) satisfies
the inhomogeneous classical equation of motion for the harmonic oscillator, that is,

∂2C2(t, s)

∂t2
+ ω2C2(t, s) =

�

mi
· δ(t− s), t ∈ R, (7.39)

in the sense of tempered distributions on the real line.

This theorem tells us that the function F (t) := mi
�
·C2(t, 0) satisfies the differential

equation
F̈ (t) + ω2F (t) = δ(t), t ∈ R.

In terms of mathematics, the function F is a fundamental solution of the differential

operator d2

dt2
+ ω2, in the sense of tempered distributions (see Sect. 11.7 of Vol. I).

The language of mathematicians. In order to prove Theorem 7.6, we will
use the theory of generalized functions (distributions) introduced in Chap. 11 of
Vol. I. Let ψ ∈ S(R). Integrating by parts twice, we get

Z ∞

s

e−iω(t−s)ψ̈(t)dt = −ψ̇(s) +

Z ∞

s

iωe−iω(t−s)ψ̇(t)dt

= −ψ̇(s)− iωψ(s)− ω2

Z ∞

s

e−iω(t−s)ψ(t)dt.

Similarly,
Z s

−∞
e−iω(s−t)ψ̈(t)dt = ψ̇(s)− iωψ(s)− ω2

Z s

−∞
e−iω(s−t)ψ(t)dt.

Hence
Z ∞

−∞
e−iω|t−s| ψ̈(t)dt = −2iωψ(s)− ω2

Z ∞

−∞
e−iω|t−s| ψ(t)dt.

In terms of distribution theory, this is equivalent to

∂2e−iω|t−s|

∂t2
+ ω2e−iω|t−s| = −2iωδ(t− s), t ∈ R.

�

The language of physicists. We want to show how to obtain the claim of
Theorem 7.6 by using Dirac’s delta function in a formal setting.27 For fixed s ∈ R,
consider

C(t) := θ∗(t− s)W (t) + θ∗(s− t)Z(t), t ∈ R.

Differentiating this with respect to time t by means of the product rule and noting
that θ̇∗(t) = δ(t), we get

Ċ(t) = δ(t− s)W (t)− δ(s− t)Z(t) + θ∗(t− s)Ẇ (t) + θ∗(s− t)Ż(t).

27 Both the formal Dirac calculus and its relations to the rigorous theory are thor-
oughly investigated in Sect. 11.2ff of Vol. I.
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Using δ(t− s) = δ(s− t) and δ(t) = 0 if t �= 0, we obtain

Ċ(t) = δ(t− s)(W (s)− Z(s)) + θ∗(t− s)Ẇ (t) + θ∗(s− t)Ż(t).

Hence

C̈(t) = δ̇(t− s)(W (s)− Z(s)) + δ(t− s)(Ẇ (s)− Ż(s))

+θ∗(t− s)Ẅ (t) + θ∗(s− t)Z̈(t).

Choosing C(t) := C2(t) and

W (t) := W2(t, s) =
x2

0

2
e−iω(t−s)

together with Z(t) := W2(s, t), we get the differential equation (7.39) above.
The physical meaning of correlation functions for the harmonic os-

cillator. Let ϕ ∈ L2(R) with 〈ϕ|ϕ〉 = 1. We regard ϕ as a physical state of the
quantized harmonic oscillator on the real line. The operator function q = q(t), t ∈ R

from (7.31) on page 451 describes the motion of the quantum particle. According
to the general approach introduced in Sect. 7.9 of Vol. I, we assign to the state ϕ
the following real numbers:

(i) Mean position of the particle in the state ϕ at time t: q̄(t) := 〈ϕ|q(t)|ϕ〉.
(ii) Mean fluctuation of the particle position at time t:

Δq(t) :=
p

〈ϕ|(q(t)− q̄(t))2ϕ〉.

(iii) Correlation coefficient: For t, s ∈ R, we define

γ(t, s) :=
(q(t)− q̄(t))(q(s)− q̄(s))

Δq(t)Δq(s)
.

By the Schwarz inequality, |γ(t, s)| ≤ 1. If |γ(t, s)| = 1 (resp. γ(t, s) = 0), then
the position of the particle in the state ϕ at time t is strongly correlated (resp.
not correlated) to the position in the state ϕ at time s.

(iv) Causal correlation coefficient:

γcausal(t, s) := γ(t, s) if t ≥ s.

Furthermore, γcausal(t, s) := γ(s, t) if s ≥ t.
(v) Transition amplitude: Let ϕ,ψ ∈ L2(R) with 〈ϕ|ϕ〉 = 〈ψ|ψ〉 = 1. The complex

number 〈ψ|q(t)ϕ〉 is called the transition amplitude (for the position) from the
state ϕ to the state ψ at time t.

To illustrate this, consider the ground state ϕ0 of the harmonic oscillator. Then
W2(t, s) = �

2mω
e−iω(t−s). Thus, in the ground state, we have:

• Mean position q̄(t) = 0.

• Mean fluctuation: Δq(t) =
p

〈ϕ0|q(t)q(t)ϕ0〉 =
p

W2(t, t) =
q

�

2mω
.

• Correlation coefficient:

γ(t, s) =
W2(t, s)

p

W2(t, t)
p

W2(s, s)
= e−iω(t−s), t ≥ s,

and γcausal(t, s) = e−iω|t−s|. Hence |γ(t, s)| = 1. This means that, in the ground
state, the position of the quantum particle at time t is strongly correlated to the
position at time s.
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• Transition amplitude from the state ϕ0 to the state ϕn:

〈ϕ1|q(t)ϕ0〉 = eiωt, 〈ϕn|q(t)ϕ0〉 = 0, n = 2, 3, 2, . . .

By (7.29), the transition probability γn0 for passing from the state ϕ0 to the state
ϕn during the time interval [t1, t2] is proportional to |〈ϕn|q(0)ϕ0〉|2. Explicitly,

γ10 = ω2e2(t2−t1)

6πε0c3m
and γn0 = 0 if n = 2, 3, . . .

7.4 Schrödinger’s Quantum Mechanics

In particular, I would like to mention that I was mainly inspired by the
thoughtful dissertation of Mr. Louis de Broglie (Paris, 1924). The main
difference here lies in the following. De Broglie thinks of travelling waves,
while, in the case of the atom, we are led to standing waves. . . I am most
thankful to Hermann Weyl with regard to the mathematical treatment of
the equation of the hydrogen atom.28

Erwin Schrödinger, 1926

7.4.1 The Schrödinger Equation

In 1926 Schrödinger invented wave quantum mechanics based on a wave function
ψ = ψ(x, t). The Schrödinger equation for the motion of a quantum particle of mass
m on the real line is given by

i�ψt = − �
2

2m
ψxx + Uψ. (7.40)

Explicitly, the Schrödinger equation reads as

i�
∂ψ(x, t)

∂t
= − �

2

2m

∂2ψ(x, t)

∂2x
+ U(x)ψ(x, t).

Schrödinger’s quantization. The Schrödinger equation (7.40) is obtained by
applying Schrödinger quantization to the classical energy equation

E =
p2

2m
+ U. (7.41)

This means that we replace the classical momentum p and the classical energy E
by differential operators. Explicitly,

E ⇒ i�
∂

∂t
, p⇒ −i�

∂

∂x
.

From (7.41) we get

i�
∂

∂t
= − �

2

2m

∂2

∂x2
+ U.

28 E.Schrödinger, Quantization as an eigenvalue problem (in German), Ann. Phys.
9 (1926), 361–376. See also E. Schrödinger, Collected Papers on Wave Mechanics,
Blackie, London, 1928.
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Applying this to the function ψ, we obtain the one-dimensional Schrödinger equa-
tion (7.40). Schrödinger generalized this in a straightforward manner to three di-
mensions, and he computed the spectrum of the hydrogen atom.

The physical interpretation of the wave function ψ. If the potential U
vanishes, U ≡ 0, then the function

ψ0(x, t) := Ce−iE(p)t/�eipx/�

is a solution of the Schrödinger equation (7.40). Here, C is a fixed complex number,

p is a fixed real number, and E(p) := p2

2m
. The function ψ0 corresponds to a stream

of freely moving electrons on the real line with momentum p and energy E(p).
There arises the following question:

What is the physical meaning of the function ψ = ψ(x, t) in the general
case?

Interestingly enough, Schrödinger did not know the answer when publishing his
paper in 1926. The answer was found by Born a few months later.

By applying the Schrödinger equation to scattering processes, Born discov-
ered the random character of quantum processes.

According to Born, we have to distinguish the following two cases:

(i) Single quantum particle: Suppose that 0 <
R

R
|ψ(x)|2dx <∞. Then, the value

�(x, t) :=
|ψ(x, t)|2

R

R
|ψ(x, t)|2dx

represents the particle probability density at position x at time t. That is, the
value

Z

J

�(x, t)dx

is equal to the probability of finding the particle in the interval J at time t.
Naturally enough,

R

R
�(x, t)dx = 1. If we measure the position x of the quantum

particle, then the mean position x̄ and the fluctuation Δx of the position at
time t are given by

x̄(t) =

Z

R

x�(x, t)dx

and

(Δx)2 = (x− x̄)2 =

Z

R

(x− x̄)2�(x, t)dx.

By definition, Δx is non-negative. In the theory of probability, a fundamental
inequality due to Chebyshev (1821–1894) tells us that

P (x̄− rΔx ≤ x ≤ x̄ + rΔx) ≥ 1− 1

r2

for all r > 0. In particular, choose r = 4. Then this inequality tells us that the
probability of measuring the position x of the quantum particle in the interval
[x̄− 4Δx, x̄ + 4Δx] is larger than 1− 1

16
= 0.93.
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(ii) Stream of quantum particles: Suppose that
R

R
|ψ(x, t))|2dx = ∞. Then, the

function ψ corresponds to a stream of particles on the real line with the particle
density

�(x, t) := |ψ(x, t)|2, x ∈ R, t ∈ R,

and the current density vector

J(x, t) = J (x, t)e, x ∈ R, t ∈ R

at the point x at time t. Here, the unit vector e points in direction of the
positive x-axis, and we define

J :=
i�

2m
(ψψ†

x − ψ†ψx).

This definition is motivated by the fact that each smooth solution ψ of the
Schrödinger equation (7.40) satisfies the following conservation law29

�t + div J = 0. (7.42)

Explicitly, div J = Jx. For a < b, this implies the relation

Z b

a

�(x, t)dx = J (a, t)− J (b, t)

which describes the change of the particle number on the interval [a, b] by the
particle stream. For example, the function

ψ0(x, t) = Ce−iE(p)t/�eipx/�

corresponds to a stream of quantum particles with the constant particle density
�(x, t) = |C|2, the velocity v = p/m, and the current density vector

J = v�e.

There exist fascinating long-term developments in mathematics. In his books “Ge-
ometry“ and “Algebra” from 1550 and 1572, respectively, Bombielli (1526–1572)
systematically used the symbol

√
−1 in order to solve algebraic equations of third

and fourth order. Almost 400 years later, the physicist Schrödinger used the number
i =
√
−1 in order to formulate the basic equations of quantum mechanics. We are

going to show that the use of complex numbers is substantial for quantum physics.
Freeman Dyson writes in his foreword to Odifreddi’s book:30

One of the most profound jokes of nature is the square root of −1 that the
physicist Erwin Schrödinger put into his wave equation in 1926 . . . The
Schrödinger equation describes correctly everything we know about the be-
havior of atoms. It is the basis of all of chemistry and most of physics. And
that square root of −1 means that nature works with complex numbers.
This discovery came as a complete surprise, to Schrödinger as well as to
everybody else. According to Schrödinger, his fourteen-year-old girlfriend
Itha Junger said to him at the time: “Hey, you never even thought when

29 In fact, �t = (ψψ†)t = ψtψ
† + ψψ†

t . By (7.40), �t = −Jx.
30 P. Odifreddi, The Mathematical Century: The 30 Greatest Problems of the Last

100 Years, Princeton University Press, Princeton, New Jersey, 2004. Reprinted
by permission of Princeton University Press.
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you began that so much sensible stuff would come out of it.” All through
the nineteenth century, mathematicians from Abel to Riemann and Weier-
strass had been creating a magnificent theory of functions of complex vari-
ables. They had discovered that the theory of functions became far deeper
and more powerful if it was extended from real to complex numbers. But
they always thought of complex numbers as an artificial construction, in-
vented by human mathematicians as a useful and elegant abstraction from
real life. It never entered their heads that they had invented was in fact
the ground on which atoms move. They never imagined that nature had
got there first.

In what follows, we want to show that the notion of Hilbert space is an appropriate
setting for describing quantum mechanics in terms of mathematics. Originally, the
special Hilbert space l2 (as an infinite-dimensional variant of R

n) was introduced by
Hilbert in the beginning of the 20th century in order to study eigenvalue problems
for integral equations.

7.4.2 States, Observables, and Measurements

The Hilbert space approach. In 1926, the young Hungarian mathematician von
Neumann Janos came to Göttingen as Hilbert’s assistant.31 In Göttingen, von Neu-
mann learned about the new quantum mechanics of physicists. It was his goal to
give quantum mechanics a rigorous mathematical basis. As a mathematical frame-
work, he used the notion of Hilbert space. For example, in the present case of the
motion of a quantum particle on the real line, we choose the Hilbert space L2(R)
with the inner product

〈ψ|χ〉 =

Z

R

ψ(x)†χ(x)dx for all ψ, χ ∈ L2(R),

and the norm ||ψ|| :=
p

〈ψ|ψ〉. The general terminology reads as follows.

(S) States: Each nonzero element ψ of L2(R) is called a state. In terms of physics,
this describes a state of a single quantum particle on the real line. Two nonzero
elements ψ, χ of L2(R) represent equivalent states iff there exists a nonzero
complex number μ with

ψ = μχ.

In terms of physics, equivalent states represent the same physical state of the
particle. The state ψ is called normalized iff ||ψ|| = 1.

(O) Observables: The linear, formally self-adjoint operators

A : D(A) ⊆ X → X

are called formal observables. Explicitly, this means that the domain of defi-
nition D(A) is a linear subspace of X. Moreover, for all ψ, χ ∈ D(A) and all
complex numbers α, β, we have

31 Von Neumann (1903–1957) was born in Budapest (Hungary). He studied math-
ematics and chemistry in Berlin, Budapest, and Zurich. The German (resp. En-
glish) translation of the Hungarian name ‘Janos’ is Johann (resp. John). Von
Neumann was an extraordinarily gifted mathematician. He was known for his
ability to understand mathematical subjects and to solve mathematical prob-
lems extremely fast. In 1933, von Neumann got a professorship at the newly
founded Institute for Advanced Study in Princeton, New Jersey (U.S.A.).
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A(αψ + βχ) = αAψ + βAχ

together with the symmetry condition 〈ψ|Aχ〉 = 〈Aψ|χ〉.32
(M) Measurements: If we measure the formal observable A in the normalized state

ψ, then we get the mean value

Ā := 〈ψ|Aψ〉,

and the mean fluctuation33

ΔA := ||(A− ĀI)ψ||.

(C) Correlation coefficient: Let A,B : S(R) → S(R) be two formal observables.
The correlation coefficient between A and B in the state ψ is defined by

γ :=
Cov(A,B)

ΔA ·ΔB

together with the covariance

Cov(A,B) := (A− ĀI)(B − B̄I) = 〈ψ|(A− ĀI)(B − B̄I)ψ〉.

Hence Cov(A,B) = 〈(A− ĀI)ψ|(B − B̄I)ψ〉.
By the Schwarz inequality, |γ| ≤ 1.

• If γ = 0, then there is no correlation between the formal observables A and B.
In other words, A and B are independent formal observables.

• If |γ| = 1, then the correlation between A and B is large. That is, the formal
observable A depends strongly on the formal observable B.

Proposition 7.7 The mean value is a real number.

This is a consequence of 〈ψ|Aψ〉† = 〈Aψ|ψ〉 = 〈ψ|Aψ〉. �

The following result underlines the importance of eigenvalue problems in quan-
tum mechanics.

Proposition 7.8 Suppose that the normalized state ψ is an eigenvector of the for-
mal observable A with eigenvalue λ,

Aψ = λψ.

Then, the measurement of A in the state ψ yields Ā = λ and ΔA = 0.

32 For a deeper mathematical analysis, von Neumann introduced the stronger no-
tion of an observable. By definition, an observable is an essentially self-adjoint
operator (see Vol. I, p. 677).

33 Explicitly, (ΔA)2 = 〈Aψ − Āψ|Aψ − Āψ〉. If Aψ ∈ D(A), then

(ΔA)2 = 〈ψ|(A− ĀI)2ψ〉 = (A− ĀI)2.
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In this case, we say that λ is a sharp value of the formal observable A. For the
proof, 〈ψ|Aψ〉 = λ〈ψ|ψ〉 = λ, and Aψ − Āψ = Aψ − λψ = 0. �

Examples. The operators Q,P,H : S(R)→ S(R) are defined by

(Qψ)(x) := xψ(x), (Pψ)(x) = −i�ψ′(x), x ∈ R,

for all functions ψ ∈ S(R). We call Q and P the position operator and the momen-
tum operator, respectively. Moreover, we introduce the energy operator (Hamilto-
nian)

H :=
P 2

2m
+ U,

where we assume that U ∈ S(R). Then the fundamental operator equation

i�ψ̇ = Hψ

coincides with the Schrödinger equation (7.40).

Proposition 7.9 The operators Q,P,H : S(R) → S(R) are formally self-adjoint
on the Hilbert space L2(R), and there holds the commutation relation

QP − PQ = i�I on S(R). (7.43)

Proof. The formal self-adjointness of Q and P together with (7.43) are proved on
page 436. Let ψ ∈ S(R). The formal self-adjointness of H follows from

〈ψ|P 2ψ〉 = 〈Pψ|Pψ〉 = 〈P 2ψ|ψ〉.

Hence 〈ψ|Hψ〉 = 〈Hψ|ψ〉. �

7.4.3 The Free Motion of a Quantum Particle

The classical motion of a particle of mass m on the real line is governed by the

Hamiltonian H := p2

2m
together with the canonical equations

q̇ = Hp =
p

m
, ṗ = −Hq = 0.

For given initial position q(0) = q0 and initial velocity q̇(0) = v, the unique solution
reads as q(t) = q0 + vt for all times t ∈ R with the total energy

E(p) :=
p2

2m
=

mv2

2
.

The free motion of a quantum particle on the real line is governed by the Hamilto-
nian operator

H :=
P 2

2m
. (7.44)

Recall that P = −i� d
dx

, and hence

H = − �
2

2m

d2

dx2
.
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At this point, we regard the operators P and H as differential operators which act
on smooth functions (or on generalized functions).34 For the functional-analytic
approach to quantum mechanics, it is important to appropriately specify the domain
of definition of the operators under consideration. This will be discussed below. For
fixed nonzero complex number C, define the functions

ϕp(x) := Ceipx/� , ψp(x, t) = ϕp(x)e−itE(p))/� , x, t ∈ R.

Then the function ψp satisfies the Schrödinger equation

i�ψ̇p = Hψp.

Moreover, for all parameters p ∈ R, we have

Pϕp = pϕp, Hϕp = E(p)ϕp.

These equations remain valid if we replace ϕp by ψp. From the physical point of
view, the function ψp describes a homogeneous stream of quantum particles (e.g.,
electrons) with particle density � = |C|2 and velocity v. Note that the functions ϕp

and x �→ ψp(x, t) do not live in the Hilbert space L2(R).
Let ϕ, χ ∈ S(R). Normalizing the function ϕp above by C := 1√

2π�
, we get the

Fourier transform

ϕ̂(p) =

Z

R

ϕp(x)†ϕ(x)dx, p ∈ R

together with the inverse transform

ϕ(x) =

Z

R

ϕp(x)ϕ̂(p)dp, x ∈ R.

The operator F : S(R) → S(R) is bijective (see Vol. I, p. 87). We write ϕ̂ = Fϕ.
This Fourier transform can be uniquely extended to a unitary operator of the form
F : L2(R)→ L2(R),s that is, we have

〈ϕ|χ〉 = 〈ϕ̂|χ̂〉, for all ϕ, χ ∈ L2(R),

which is called the Parseval equation of the Fourier transform.
The quantum dynamics of a freely moving particle. Let us now study

the three operators

• P : S(R)→ S(R) (momentum operator),
• Q : S(R)→ S(R) position operator), and
• H : S(R)→ S(R) (Hamiltonian).

These operators are formally self-adjoint on the Hilbert space L2(R). In the Fourier
space, the operators P and H correspond to the following multiplication operators

(P̂ ϕ̂)(p) = pϕ̂(p), (Ĥϕ̂)(p) = E(p)ϕ̂(p), p ∈ R.

This holds for all ϕ ∈ S(R), and hence for all ϕ̂ ∈ S(R). For given ϕ0 ∈ S(R), the
quantum dynamics

ψ(t) = e−iHt/�ϕ0, t ∈ R

is given in the Fourier space by the equation

34 The Schwartz S ′(R) of tempered distributions and the Schwartz space D′(R) of
distributions are investigated in Sect. 11.3 of Vol. I. Here, S ′(R) ⊂ D′(R).
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ψ̂(p, t) = e−iE(p)t/�ϕ̂0(p), p ∈ R

for each time t ∈ R. Transforming this back to the original Hilbert space L2(R) by
using the Fourier transform, we get the quantum dynamics

e−itH0/�ϕ0 = F−1ψ̂(t) for all t ∈ R. (7.45)

We have ψ(t) ∈ S(R) for all times t ∈ R, and this function satisfies the Schrödinger
equation for all times.35

The full quantum dynamics. Consider equation (7.45). Observe the fol-
lowing peculiarity. The right-hand side of (7.45) is well-defined for initial states
ϕ0 ∈ L2(R) if we do not use the classical Fourier transform, but the extended
Fourier transform F : L2(R)→ L2(R). In this sense, we understand the dynamics

ψ(t) = e−itH/�ϕ0, t ∈ R

for all initial states ϕ0 ∈ L2(R). In terms of functional analysis, for any fixed time

t, the operator e−itH/� : L2(R) → L2(R) is unitary. Therefore, e−itH/�ϕ0 makes
sense for all ϕ0 ∈ L2(R). In this general setting, the function

ψ : [0,+∞[→ L2(R)

is continuous, but not necessarily differentiable. Therefore, it can be regarded as a
generalized solution of the Schrödinger equation i�ψ̇(t) = Hψ(t), t ∈ R.

Measurement of observables. Suppose that we are given a normalized state
ϕ ∈ S(R), that is,

||ϕ||2 =

Z

R

|ϕ(x)|2dx = 1.

By the Parseval equation,

||ϕ̂||2 =

Z

R

|ϕ̂(p)|2dp = ||ϕ||2 = 1.

Let us now measure the position, the momentum, and the energy of a quantum
particle on the real line where the particle is in the normalized state ϕ ∈ S(R).

(i) Measurement of position: For the mean value x̄ and the mean fluctuation Δx ≥ 0
of the particle position, we get

x̄ = 〈ϕ|Qϕ〉 =

Z

R

x|ϕ(x)|2dx

and

(Δx)2 = 〈ϕ|(Q− x̄I)2ϕ〉 =

Z

R

(x− x̄)2|ϕ(x)|2dx.

The number
R

J
|ϕ(x)|2dx is the probability for measuring the particle position

in the interval J.

35 Fix t ∈ R. The symbol ψ(t) (resp. ψ̂(t)) stands for the function x �→ ψ(x, t)

(resp. p �→ ψ̂(p, t)) on R.
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(ii) Measurement of momentum: For the mean value p̄ and the mean fluctuation
Δp of the particle momentum, we get

p̄ = 〈ϕ|Pϕ〉 = 〈ϕ̂|P̂ ϕ̂〉 =

Z

R

p |ϕ̂(p)|2dp

and

Δp = 〈ϕ|(P − p̄I)2ϕ〉 =

Z

R

(p− p̄)2|ϕ̂(p)|2dp.

The number
R

J
|ϕ̂(p)|2dp is the probability for measuring the particle momen-

tum in the interval J.
(iii) Measurement of energy: Suppose we are given a measuring instrument which

analyzes the energy of freely moving particles. The measured energy corre-
sponds to the observable H. For the mean value Ē and the mean fluctuation
ΔE of the energy in the normalized state ϕ ∈ S(R), we get

Ē = 〈ϕ|Hϕ〉 = 〈ϕ̂|Ĥϕ̂〉 =

Z

R

E(p)|ϕ̂(p)|2dp

and

ΔE = 〈ϕ|(H − ĒI)2ϕ〉 =

Z

R

(E(p)− Ē)2|ϕ̂(p)|2dp.

The number
Z

E(p)∈J

|ϕ̂(p)|2dp

is the probability for measuring the particle energy in the given energy interval
J. Recall that E(p) = p2/2m. Fix the positive real number E. Then we have
E(p) ≤ E iff |p|2 ≤ 2mE. Thus, the number

Z

|p|≤
√

2mE

|ϕ̂(p)|2dp

is equal to the probability for measuring the energy E(p) of the particle in the
interval [0, E].

The full functional-analytic approach to the free quantum particle will be studied
in Sect. 7.6.4 on page 509.

7.4.4 The Harmonic Oscillator

Let us quantize the classical harmonic oscillator in the sense of Schrödinger’s quan-
tum mechanics. We will see that we obtain the same results as in Heisenberg’s
version of quantum mechanics. In Sect. 7.4.5, we will explain why Schrödinger’s
quantum mechanics is equivalent to Heisenberg’s quantum mechanics. Choosing
ϕ ∈ S(R), recall the definition of the position operator Q and the momentum
operator P ,

(Qϕ)(x) := xϕ(x), (Pϕ)(x) := −i�ϕ′(x) for all x ∈ R.

Quantization means that we replace the classical Hamiltonian function

H(q, p) =
p2

2m
+

mω2q2

2
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by the Hamiltonian operator

H :=
P 2

2m
+

mω2Q2

2
.

The Schrödinger equation for the wave function ψ = ψ(x, t), x, t ∈ R, reads as

i�ψ̇ = Hψ (7.46)

along with the prescribed initial condition ψ(x, 0) = ψ0(x) for all x ∈ R. Explicitly,

i�ψt(x, t) = − �
2

2m
ψxx(x, t) +

mω2x2

2
ψ(x, t), x, t ∈ R.

We are going to show that

The Hamiltonian operator H knows all about the quantized harmonic os-
cillator.

This is a typical feature for all quantum systems. Making the classic Fourier ansatz

ψ(x, t) := ϕ(x)e−iEt/� , x, t ∈ R,

we get the stationary Schrödinger equation

Eϕ = Hϕ (7.47)

for the time-independent function ϕ. Explicitly,

Eϕ(x) = − �
2

2m
ϕ′′(x) +

mω2

2
x2ϕ(x), x ∈ R.

Again let us use the typical length x0 :=
q

�

ωm
.

The eigensolutions of the Hamiltonian. Our mathematical investigation of
the quantized harmonic oscillator will be based on the eigensolutions of the Hamil-
tonian. Motivated by Sect. 7.2, the basic trick is to introduce the two operators
a, a† : S(R)→ S(R) by letting

a :=
1√
2

„

Q

x0
+

ix0P

�

«

, a† :=
1√
2

„

Q

x0
− ix0P

�

«

. (7.48)

This forces the crucial factorization

H = �ω(a†a + 1
2
)

of the Hamiltonian operator. Starting from the Gaussian probability density,

�(x) :=
e−x2/2σ2

σ
√

2π
,

with the mean value x̄ = 0 and the mean fluctuation σ := x0√
2
, we define

ϕ0(x) :=
p

�(x) for all x ∈ R.

The following theorem is basic for quantum physics.
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Theorem 7.10 The Hamiltonian H of the quantized harmonic oscillator has the
eigensolutions Hϕn = Enϕn, n = 0, 1, 2, , ... with the energy eigenvalues

En := �ω(n + 1
2
) (7.49)

and the eigenstates

ϕn :=
(a†)n

√
n!

ϕ0.

The system ϕ0, ϕ1, ... forms a complete orthonormal system in the Hilbert space
L2(R).

Proof. To simplify notation, let x0 = 1 by the rescaling x �→ x/x0. The proof
follows then from Sect. 7.2 on page 432. �

Explicitly, for all x ∈ R and n = 0, 1, 2, ..., we have

ϕn(x) =
1

p

2nn!x0
√
π

Hn

„

x

x0

«

exp

(

−1

2

„

x

x0

«2
)

.

Mnemonically, physicists write |En〉 instead of ϕn.

Corollary 7.11 For n = 0, 1, 2, ...,
(i) x̄ = 〈ϕn|Qϕn〉 = 0;
(ii) (Δx)2 = 〈ϕn|(Q− x̄I)2ϕn〉 = x2

0(n + 1
2
);

(iii) p̄ = 〈ϕn|Pϕn〉 = 0;

(iv) (Δp)2 = 〈ϕn|(P − p̄I)2ϕn〉 = �
2

x2
0
(n + 1

2
).

Proof. Let x0 = 1 by the rescaling x �→ x/x0.
Ad (i), (iii). Note that the Hermite functions ϕn are odd or even by (7.8). Hence

Z

R

x|ϕn(x)|2dx = 0,

Z

R

ϕn(x)†ϕ′
n(x)dx = 0.

Ad (ii). Let n = 0, 1, 2, ... By Sect. 7.2,

aϕn+1 =
√
n + 1 ϕn, a†ϕn =

√
n + 1 ϕn+1, a†aϕn = nϕn.

From 2〈ϕn|Q2ϕn〉 = 〈ϕn|(a + a†)2ϕn〉 we get

2〈ϕn|Q2ϕn〉 = 〈ϕn|(a2 + aa† + a†a + a†a†)ϕn〉 = 2n + 1.

In fact, because of 〈ϕn+1|ϕn−1〉 = 0, we obtain

〈ϕn|a2ϕn〉 = 〈a†ϕn|aϕn〉 = 0.

Moreover, 〈ϕn|aa†ϕn〉 = 〈a†ϕn|a†ϕn〉 = n + 1.
Ad (iv). Similarly, 2〈ϕn|P 2ϕn〉 = −�

2〈ϕn|(a− a†)2ϕn〉 = �
2(2n + 1). �

Physical interpretation. Let us discuss some physical consequences.
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(i) Ground state: The state

ψ(x, t) := e−iE0t/�ϕ0(x), t, x ∈ R

represents the lowest-energy state of the harmonic oscillator called ground state
(or vacuum state). The sharp energy of the ground state equals E0 = �/2. For
the mean position x̄ and the mean fluctuation Δx of the particle position in
the ground state, it follows from Corollary 7.11 that

x̄ = 0, Δx = σ =
x0√

2
.

For the mean momentum p̄ and the mean fluctuation Δp of the particle mo-
mentum in the ground state, we get p̄ = 0 and ΔxΔp = �

2
.

(ii) The uncertainty inequality: In the normalized state

ψ(x, t) := e−iEnt/�ϕn(x), n = 0, 1, . . . ,

the particle has the sharp energy En = �ω(n + 1
2
), and

x̄ = 0, Δx = x0

q

n + 1
2

as well as

p̄ = 0, ΔxΔp =
En

ω
= �

`

n + 1
2

´

.

From this we get

ΔxΔp ≥ �

2
.

In 1927 Heisenberg discovered that this inequality is the special case of a fun-
damental law in nature called the uncertainty of position and momentum (see
Sect. 7.4.6 on page 475).

(iii) Measurement of energy: The energy states ϕ0, ϕ1, ... form a complete orthonor-
mal system in the Hilbert space L2(R).36 This means that we have the orthog-
onality relation

〈ϕn|ϕm〉 =

Z

R

ϕn(x)†ϕm(x)dx = δnm, n,m = 0, 1, 2, . . . .

Completeness means that for each χ ∈ L2(R), the Fourier series

χ =

∞
X

n=0

〈ϕn|χ〉ϕn

converges in the Hilbert space L2(R). In other words,

lim
N→+∞

Z

R

˛

˛

˛

˛

χ(x)−
N
X

n=0

〈ϕn|χ〉ϕn(x)

˛

˛

˛

˛

2

dx = 0.

Moreover, for given complex numbers an, the series
P∞

n=0 anϕn converges in
L2(R) iff

36 The properties of complete orthonormal systems in Hilbert spaces are thoroughly
studied in Zeidler (1995a), Sect. 3.1 (see the references on page 1049).
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∞
X

n=0

|an|2 <∞. (7.50)

In addition, for all χ, ϕ ∈ L2(R), we have the Parseval equation

〈χ|ϕ〉 =
∞
X

n=0

〈χ|ϕn〉〈ϕn|ϕ〉. (7.51)

Suppose now that 〈χ|χ〉 = 1. Then

∞
X

n=0

|〈χ|ϕn〉|2 = 1.

This motivates the following definition. If the particle is in the normalized state
χ, then the number

X

En∈J

|〈ϕn|χ〉|2

is equal to the probability of measuring the energy value E of the particle in
the interval J. In particular, choosing the open interval J :=]−∞, E[, we obtain
the energy distribution function

F(E) :=
X

En<E

|〈ϕn|χ〉|2. (7.52)

In particular, in the state χ we measure the mean energy

Ē =

Z

R

E dF(E) =

∞
X

n=0

En|〈ϕn|χ〉|2

and the mean energy fluctuation

(ΔE)2 =

Z

R

(E − Ē)2dF(E) =

∞
X

n=0

(En − Ē)2|〈ϕn|χ〉|2.

(iv) Self-adjoint extension of the formally self-adjoint Hamiltonian H: Let us define
an operator H : D(H) ⊆ L2(R)→ L2(R) by setting

Hψ :=

∞
X

n=0

En〈ϕn|ψ〉ϕn.

Naturally enough, an element ψ ∈ L2(R) belongs to the domain of definition,
D(H), of the operator H iff the infinite series converges. This means that
P∞

n=0 E
2
n|〈ϕn|ψ〉|2 < ∞. The operator H : D(H) → L2(R) is an extension

of the operator H : S(R) → L2(R). In fact, if ψ ∈ S(R), then we obtain
〈ϕn|Hψ〉 = 〈Hϕn|ψ〉 = En〈ϕn|ψ〉. Hence

Hψ =
∞
X

n=0

〈ϕn|Hψ〉ϕn =
∞
X

n=0

En〈ϕn|ψ〉ϕn.
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The quantum dynamics of the harmonic oscillator. For each initial state
ψ0 in L2(R) and each time t ∈ R, we define

e−iHt/�ψ0 :=

∞
X

n=0

e−iEnt/�〈ϕn|ψ0〉ϕn.

This series is convergent because of

∞
X

n=0

|e−iEnt/�〈ϕn|ψ0〉|2 =

∞
X

n=0

|〈ϕn|ψ0〉|2 = ||ψ0||2 <∞.

By definition, the equation

ψ(t) = e−iHt/�ψ0 for all t ∈ R

describes the dynamics of the quantum harmonic oscillator on the real line. The
following theorem motivates this definition.

Theorem 7.12 For each time t ∈ R, the operator e−iHt/� : L2(R) → L2(R) is
unitary.

For given initial value ψ0 ∈ D(H), the function ψ(t) := e−iHt/�ψ0 satisfies the

Schrödinger equation i�ψ̇(t) = Hψ(t) for all times t ∈ R.

Proof. For each ψ0 ∈ L2(R) and all t, s ∈ R,

e−iHs/�(e−i�Ht/�ψ0) =
∞
X

n=0

e−iEns/�e−iEnt/�〈ϕn|ψ0〉ϕn = e−iH(t+s)/�ψ0.

Choosing s = −t, this implies

eiHt/�(e−iHt/�ψ0) = ψ0.

Thus, the operator eitH/� is the inverse operator to the operator e−itH/� on the
Hilbert space L2(R). Moreover, because of |e−iEnt/� | = 1 it follows from the Par-
seval equation that

||e−itH/�ψ0||2 =

∞
X

n=0

|e−itEn/� |2|〈ϕn|ψ0〉|2 = ||ψ0||2.

Therefore, the operator e−iHt/� : L2(R)→ L2(R) is bijective and norm preserving,
i.e., this operator is unitary. In particular, if the initial state ψ0 is normalized, then
so is e−iHt/�ψ0 for each time t ∈ R.

Choose now ψ0 ∈ D(H). Formal differentiation with respect to time t yields

i�ψ̇(t) =

∞
X

n=0

Ene−iEnt/�〈ϕn|ψ0〉ϕn.

To justify this formal differentiation, it is sufficient to use the following majorant
series37

37 We refer to Zeidler (1995a), Sect. 5.8 (see the references on page 1049).
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∞
X

n=0

|Ene−iEnt/�〈ϕn|ψ0〉|2 ≤
∞
X

n=0

|En〈ϕn|ψ0〉|2 = ||Hψ0||2 <∞. �

Transition probabilities. Let ψ0 and ψ1 be two normalized states in the
Hilbert space L2(R). By definition, the real number

τ := |〈ψ1|e−iHt/�ψ0〉|2

represents the transition probability from the initial state ψ0 to the final state ψ1

during the time interval [0, t]. In order to motivate this definition, observe that

• 0 ≤ τ ≤ 1;
• τ = 1 for the final state ψ1 := e−itH/�ψ0;
•
P∞

n=0 τn = 1 if τn corresponds to the final energy state ϕn, i.e.,

τn := |〈ϕn|e−iHt/�ψ0〉|2.

In fact, it follows from the Schwarz inequality that

τ ≤ ||ψ1|| · ||e−itH/�ψ0|| = ||ψ1|| · ||ψ0|| = 1.

Moreover, 〈e−iHt/�ψ0|e−iHt/�ψ0〉 = 〈ψ0|ψ0〉 = 1. Finally,

∞
X

n=0

|〈ϕn|e−iHt/�ψ0〉|2 = ||e−iHt/�ψ0||2 = ||ψ0||2 = 1.

7.4.5 The Passage to the Heisenberg Picture

Using the harmonic oscillator, we want to discuss in which sense the Heisenberg
approach to quantum mechanics is equivalent to the Schrödinger approach.

Formal approach. The basic transformation from the Schrödinger picture to
the Heisenberg picture reads as

ψ(t) �→ ψ(0), A �→ A(t) := eiHt/�Ae−iHt/�

for all times t ∈ R.

(S) Schrödinger picture: In this setting, the states ψ(t) of the quantum harmonic
oscillator on the real line are elements of the Hilbert space L2(R) which depend
on time t,

ψ(t) = e−iHt/�ψ(0), t ∈ R.

The formal observables are formally self-adjoint operators

A : D(A) ⊆ L2(R)→ L2(R)

which do not depend on time t. Differentiating the state function t �→ ψ(t)
with respect to time t, we get the Schrödinger equation

i�ψ̇(t) = Hψ(t), t ∈ R.
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(H) Heisenberg picture: Here, the states ψ(0) of the quantum harmonic oscillator
are elements of the Hilbert space L2(R) which do not depend on time t. The
formal observables A(t) are operators on the Hilbert space L2(R) which depend
on time t. Differentiating the function t �→ A(t) with respect to time, we get
the Heisenberg equation

i�Ȧ(t) = A(t)H −HA(t), t ∈ R.

From the physical point of view, we are interested in measurements of quantities
in physical experiments. The point is that both the Schrödinger picture and the
Heisenberg picture yield the same mean values. Explicitly,

Ā(t) = 〈ψ(t)|Aψ(t)〉 = 〈ψ(0)|A(t)ψ(0)〉.

Rigorous approach. Let us start with the Schrödinger picture for the quantum
harmonic oscillator on the real line. Consider the self-adjoint Hamiltonian H :
D(H) ⊆ L2(R)→ L2(R) introduced in Sect. 7.4.4. Explicitly,

Hϕ =

∞
X

n=0

En〈ϕn|ϕ〉ϕn.

Here, we have ϕ ∈ D(H) iff this series is convergent in the Hilbert space L2(R).
Define

D0(H) := span{ϕ0, ϕ1, ϕ2, ...},
i.e., D0(H) is the set of finite linear combinations of the eigenfunctions ϕ0, ϕ1, ...
with complex coefficients.

Theorem 7.13 Let A : S(R) → L2(R) be a formally self-adjoint operator which
maps D0(H) into itself. Then, for each ϕ ∈ D0(H) and all times t ∈ R, the expres-
sion

A(t)ϕ := eiHt/�Ae−iHt/�ϕ

is well-defined, and we have the differential equation

i�
d

dt
(A(t)ϕ) = (A(t)H −HA(t))ϕ.

Proof. All of the expressions are well-defined, since they refer to finite linear combi-
nations of the eigenfunctions ϕ0, ϕ1, ... Note that e−iHt/�ϕn is equal to e−iEnt/�ϕn,
and we have Aϕn ∈ D0(H) for all n. �

Example. The transformation of the formal observables

Q,P : S(R)→ L2(R)

from the Schrödinger picture to the Heisenberg picture yields

Q(t)ϕ =
x0√

2
(a†eiωt + ae−iωt)ϕ

and

P (t)ϕ =
i�

x0

√
2

(a†eiωt − ae−iωt)ϕ

for all ϕ ∈ D0(H) and all times t ∈ R.
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Proof. To simplify notation, let x0 = � = 1. It follows from the basic relations
eiHtϕn = eiEntϕn and aϕn =

√
n ϕn−1 that

eiHtaϕn = eiEn−1taϕn.

Noting that En = ω(n + 1
2
),

eiHtae−iHtϕn = eiEn−1te−iEntaϕn = e−iωtaϕn.

Similarly, a†ϕn =
√
n + 1 ϕn+1 implies

eiHta†e−iHtϕn = eiEn+1teiEnta†ϕn = eiωta†ϕn.

Summarizing,

eiHtQe−iHtϕn =
1√
2ω

eiHt(a† + a)e−iHtϕn = Q(t)ϕn.

The proof for P proceeds similarly. �

7.4.6 Heisenberg’s Uncertainty Principle

In 1927 Heisenberg discovered that there exists a deep difference between classical
mechanics and quantum mechanics.38 He derived the following fundamental result
in quantum physics:

The classical notion of the trajectory of a particle, which has a precise
position and a precise velocity at the same time, is not meaningful anymore
in quantum mechanics.

Explicitly, for the operators Q,P : S(R) → L2(R) called position operator Q and
momentum operator P , we have the Heisenberg commutation relation

(QP − PQ)ϕ = i�ϕ for all ϕ ∈ S(R). (7.53)

Let ϕ ∈ S(R) be a normalized state in the Hilbert space L2(R). We claim that

ΔxΔp ≥ �

2
. (7.54)

This means that it is impossible to measure precisely the position and the mo-
mentum of the quantum particle in the state ϕ at the same time. The uncertainty
inequality (7.54) follows from (7.53) as a special case of Theorem 10.4 on page 524
of Vol. I.

38 W. Heisenberg, The intuitive meaning of kinematics in quantum mechanics, Z.
Physik 43 (1927), 172–199 (in German).
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7.4.7 Unstable Quantum States and the Energy-Time
Uncertainty Relation

In particle accelerators, many particles are unstable; such so-called reso-
nances only live a very short time.

Folklore

We are going to show that wave packets are unstable in quantum mechanics. There
exists a fundamental inequality between the life-time of the wave packet and its
mean energy fluctuation which is called the energy–time uncertainty relation.

Wave packets and the Fourier transformation. Let E(p) := p2/2m de-
note the energy of a freely moving classical particle on the real line with mass m,
momentum p ∈ R, and velocity v = p/m. For each nonzero complex number C, the
standing plane wave

ψ(x, t) := Ce−itE(p)/� eipx/� , x, t ∈ R

describes a stream of particles with mass m, momentum p, velocity v = p/m, energy
E(p), and particle density � = |C|2. Since |ψ(x, t)|2 = |C|2, the wave function ψ
does not live in the Hilbert space L2(R). However, using the superposition

ψ(x, t) =
1√
2π�

Z ∞

−∞
A(p)e−itE(p)/� eipx/�dp (7.55)

of standing plane waves with different momenta, we can construct so-called wave
packets which live in the Hilbert space L2(R) if the amplitude function A = A(p)
lives in the space S(R). The Fourier transformation yields

A(p)e−iE(p)t/� =
1√
2π�

Z ∞

−∞
ψ(x, t)e−ixp/�dx.

Let us consider a typical example. Choose the Gauss distribution

A(p) =
1

q

Δp
√

2π
exp

„

− (p− p̄)2

4(Δp)2

«

, (7.56)

where the real numbers p̄ and Δp > 0 are given. In order to understand the physics
of wave packets, let us introduce the following quantities

Δx0 :=
�

2Δp
, ΔE :=

(Δp)2

2m
, Δt :=

�

2ΔE
,

and v̄ := p̄/m, x̄ := v̄t, , Ē := p̄2/2m, as well as

Δx = Δx0

s

1 +

„

t

Δt

«2

. (7.57)

The following proposition summarizes the properties of the wave packet.

Proposition 7.14 The absolute value of the wave function ψ from (7.55), (7.56)
is a Gauss function,

|ψ(x, t)|2 =
1

Δx
√

2π
exp

„

− (x− x̄)2

2(Δx)2

«

.

The mean values and mean fluctuations of the position operator Q and the momen-
tum operator P in the state ψ at time t are x̄, Δx, p̄,Δp, respectively.
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This follows by using classical formulas for Gauss–Fresnel integrals. �

This result allows the following physical interpretation. The wave function ψ
lives in the Hilbert space L2(R). It represents a particle with mean momentum p̄,
mean energy Ē, mean fluctuation of momentum Δp and mean fluctuation of energy
ΔE. Moreover, the mean position x̄ = v̄t of the particle moves with the velocity
v̄ = p̄/m called the group velocity of the wave packet. It is quite remarkable that

The wave packet is unstable.

In fact, by (7.57), the mean fluctuations Δx of the position of the particle go to
infinity as time goes to infinity, that is, the particle is spread over the whole real
line after a sufficiently long time. The lifetime of the particle can be measured by
the quantity Δt. According to (7.57), the position fluctuations Δx increase in the

time interval [0, Δt] by the factor
√

2.
The energy-time uncertainty principle. The equation

ΔpΔx =
�

2

for the ground state of a harmonic oscillator represents a special case of the general
momentum-position uncertainty inequality ΔpΔx ≥ �

2
. It shows that the Heisen-

berg uncertainty inequality cannot be improved. Furthermore, we have the equation

ΔEΔt =
�

2

for the Gaussian wave packet. In general, physicists assume that for all unstable
particles, there holds the energy-time uncertainty inequality

ΔEΔt ≥ �

2
(7.58)

for the lifetime Δt of the particle and its energy fluctuation ΔE. In high-energy
particle accelerators, physicists observe frequently so-called resonances. These are
unstable particles of mass Δm which decay after the time Δt. By Einstein’s mass-
energy equivalence, we have

ΔE = c2Δm

where c denotes the speed of light in a vacuum. From (7.58) we get the following
fundamental inequality in particle physics

ΔmΔt ≥ �

2c2

between the mass Δm of a resonance and its lifetime Δt.
The energy-time uncertainty principle is motivated by Einstein’s theory of spe-

cial relativity. Let us explain this. In special relativity, an event corresponds to a
four-vector

(x, y, z, ct)

in Minkowski space. This is a combination of space and time. Similarly, there exists
a combination of momentum (px, py, pz) and energy E described by the four-vector

(px, py, pz,
E

c
).

The momentum-energy uncertainty principle yields
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ΔpxΔx ≥ �

2
, ΔpyΔy ≥ �

2
, ΔpzΔz ≥ �

2
.

Postulating complete relativistic symmetry in nature, we can replace px and x by
E/c and ct, respectively. This yields (7.58).

The energy-time uncertainty inequality represents one of the basic principles
of modern physics. Physicists call the ground state of our world the vacuum. This
ground state cannot be observed in a straight-forward way. However, there exist
quantum fluctuations of the vacuum which can be observed as physical effects; for
example, this concerns the fine structure of the energy spectrum of the hydrogen
atom, the anomalous magnetic moment of the electron, and the vaporization of
black holes in the universe. To understand this, one needs the methods of quantum
field theory.

7.4.8 Schrödinger’s Coherent States

There arises the following question: Is it possible to construct a stable time-
dependent wave packet by the superposition of time-dependent eigenstates of the
quantum harmonic oscillator? The positive answer was found by Schrödinger in
1926.39 For each complex number α = |α|eiδ, we define the coherent state

ψα(x, t) := e−|α|2/2
∞
X

n=0

e−iEnt/�ϕn(x)
αn

√
n!

, x, t ∈ R

where the pair ϕn, En = �ω(n+ 1
2
) is the nth eigensolution of the Hamiltonian for

the quantum harmonic oscillator. For each α ∈ C, the function ψα possesses the
following properties:

(i) Schrödinger equation: ψα is a solution of the time-dependent Schrödinger equa-
tion for the harmonic oscillator.

(ii) Normalization: x �→ ψα(x, t) is a normalized state in the Hilbert space L2(R)
for each time t ∈ R.

(iii) Mean position: x̄(t) = 〈ψα(t)|Qψα〉 =
√

2 x0|α| cos(ωt− δ) for all times t ∈ R.

Recall that x0 :=
p

�/mω.
(iv) Probability density: For all x, t ∈ R,

|ψα(x, t)|2 =
1

σ
√

2π
e−(x−x̄(t))2/2σ2

.

This is a Gaussian distribution where the mean value x̄(t) oscillates with the
angular frequency ω, and the time-independent mean fluctuation is given by
σ = x0/

√
2.

(v) Eigenvectors of the annihilation operator: aψα(x, 0) = αψα(x, 0) for all x ∈ R.

Let us prove this. Explicitly, for all x, t ∈ R,

ψα(x, t) =
1

p

x02n
√
π

e−|α|2/2 e−x2/2x2
0 e−iωt/2

∞
X

n=0

αne−inωt

n!
Hn

„

x

x0

«

.

The generating function for the Hermite polynomials reads as

39 E. Schrödinger, The continuous passage from micromechanics to macrome-
chanics, Naturwissenschaften 44 (1926), 664–666 (in German).
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Ae−ξ2+2ξη = A

∞
X

n=0

ξn

n!
Hn(η).

Choosing the quantities

ξ :=
αe−iωt

√
2

, η :=
x

x0
, A :=

1
p

x0
√
π

e−|α|2/2 e−x2/2x2
0 e−iωt/2,

we get ψα(x, t) = Ae−ξ2+2ξη. The claims follow now easily by using standard cal-
culus formulas along with eiz = cos z + i sin z. For (v), note that aϕ0 = 0 and
aϕn =

√
n ϕn−1 if n = 1, 2, ... �

In the 1960s, coherent states were used in laser optics for the representation of
coherent light waves. As a standard textbook on coherent states and laser optics,
we recommend the monograph by L. Mandel and E. Wolf, Optical Coherence and
Quantum Optics, Cambridge University Press, 1995.

7.5 Feynman’s Quantum Mechanics

It is a curious historical fact that quantum mechanics began with two
quite different mathematical formulations: the differential equation of
Schrödinger, and the matrix algebra of Heisenberg. The two, apparently
dissimilar approaches, were proved to be mathematically equivalent. These
two points of view were destined to complement one another and to be ul-
timately synthesized in Dirac’s transformation theory.

This paper will describe what is essentially a third formulation of non-
relativistic quantum theory. This formulation was suggested by some of
Dirac’s remarks concerning the relation of classical action to quantum
mechanics. A probability amplitude is associated with an entire motion of
a particle as a function of time, rather than simply with a position of the
particle at a particular time.

The formulation is mathematically equivalent to the more usual formula-
tions. There are, therefore, no fundamentally new results. However, there
is a pleasure in recognizing old things from a new point of view. Also, there
are problems for which the new point of view offers a distinct advantage.40

Richard Feynman, 1948

The calculations that I did for Hans Bethe, using the Schrödinger equa-
tion, took me several months of work and several hundred sheets of paper.
Dick Feynman (1918–1988) could get the same answer, calculating on a
blackboard, in half an hour.41

Freeman Dyson, 1979

Convention. Let z be a nonzero complex number with

z = |z|eiϕ, −π < ϕ < π,

that is, we exclude the non-positive real values, z ≤ 0. In the following sections,
√
z

denotes the principal value of the square root defined by

40 R. Feynman, Space-time approach to nonrelativistic quantum mechanics, Phys.
Rev. 20 (1948), 367–387.

41 F. Dyson, Disturbing the Universe, Harper & Row, New York, 1979.
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√
z :=

p

|z| eiϕ/2. (7.59)

For example,
√

i = eiπ/4. If we use the principal values, then the function

z �→
√
z (7.60)

is holomorphic on the set C\] − ∞, 0] (the complex plane cut along the negative
real axis). Thus, analytic continuation of the function f(x) :=

√
x, x > 0 yields the

function (7.60). This fact will be frequently used in what follows. The idea is to
pass from time t to imaginary time it and to use analytic continuation in order to
translate well-known results from diffusion processes to quantum processes. This is
called the Euclidean strategy in quantum physics. The following golden rule holds:

Apply analytic continuation only to such quantities that you can measure
in physical experiments.

Analytic continuation of functions depending on energy plays a crucial role in study-
ing the following subjects:

• scattering processes,
• the energies energies of bound states, and
• the energies of unstable particles having finite lifetime (called resonances).

For this, we refer to Sect. 8.3.5 on page 713. In terms of the double-sheeted Riemann
surface R of the multi-valued square-root function (used by physicists in quantum
physics), the principal value of

√
z in the open upper (resp. lower) half-plane cor-

responds to the first (resp. second sheet) of R (see Fig. 8.6 on page 714).
Similarly, as for the square root, the value ln z := ln |z|+iϕ is called the principal

value of the logarithm, where the argument ϕ of the square root is uniquely defined
as above by the condition −π < ϕ < π. The function z �→ ln z is holomorphic on
C\]−∞, 0].

7.5.1 Main Ideas

The basic idea of Feynman’s approach to quantum mechanics is

• to describe the time-evolution of a quantum system by an integral formula, which
is equivalent to the Schrödinger differential equation,

• and to represent the kernel K(x, t; y, t0) of the integral formula by a path integral.

From the physical point of view, Feynman emphasized that

The description of quantum particles becomes easier if we use probability
amplitudes as basic quantities, but not transition probabilities.

The reason is that, in contrast to transition probabilities, probability amplitudes
satisfy a simple composition rule (also called product rule) which is at the heart
of Feynman’s approach to quantum theory. In terms of finite-dimensional Hilbert
spaces, the following hold:

• Feynman’s probability amplitudes are precisely the complex-valued Fourier co-
efficients c1, c2, . . . , cn of a state vector.

• Feynman’s composition rule for probability amplitudes coincides with the Par-
seval equation (7.81) for Fourier coefficients in mathematics.42

42 Parseval des Chénes (1755–1836), Fourier (1768–1830), Dirac (1902–1984), von
Neumann (1903–1957), Laurent Schwartz (1915–2004), Feynman (1918–1988),
Gelfand (born 1913).
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• The transition probabilities correspond to the quadratic quantities

|c1|2, |c2|2, . . . , |cn|2,

which do not linearly depend on the corresponding state vector, in contrast to
the Fourier coefficients c1, c2, . . . , cn.

In infinite-dimensional Hilbert spaces, one has to replace Fourier series by Fourier
integrals and their generalizations (e.g., Fourier–Stieltjes integrals). In physics, this
corresponds to the formal Dirac calculus. In terms of mathematics, one has to
use von Neumann’s spectral theory for self-adjoint operators and the more general
Gelfand theory of generalized eigenfunctions based on Laurent Schwartz’s language
of distributions (generalized functions).

Feynman’s integral formula. According to Schrödinger, the motion of a
quantum particle of mass m > 0 on the real line is described by the differential
equation

i�ψt(x, t) = − �
2

2m
ψxx(x, t) + U(x)ψ(x, t), ψ(x, t0) = ψ0(x), (7.61)

for all positions x ∈ R and all times t > t0. Feynman used the fact that the solution
of this initial-value problem can be represented by the integral formula

ψ(x, t) =

Z

R

K(x, t;x0, t0)ψ0(x0)dx0, x ∈ R, t > t0. (7.62)

The main task is to compute the kernel K, which is called the (retarded) Feynman
propagator kernel. There exist two different methods.43

(i) The Fourier method: Following Fourier’s approach to the heat conduction equa-
tion, one can use eigenfunction expansions (e.g., Fourier series or Fourier inte-
grals) in order to get the kernel K. For the heat kernel, we will discuss this in
(7.77) below.44

(ii) The path integral method: In his 1942 Princeton dissertation, Feynman (1918–
1988) invented the path integral representation

K(x, t;x0, t0) =

Z

C{t0,t}
eiS[q]/� Dq. (7.63)

Here, we sum over all possible classical paths q : [t0, t] → R on the real line
with fixed endpoints: q(t0) = x0 and q(t) = x. The symbol S[q] denotes the
classical action of the path q = q(τ), t0 < τ < t.

According to Feynman, the passage from classical mechanics to quan-
tum mechanics corresponds to a statistics over all possible classical
paths where the statistical weight eiS[q]/� depends on the classical ac-
tion.

43 In terms of finite-dimensional Hilbert spaces, the two methods are thoroughly
investigated in Volume I. For the Fourier method (resp. the Feynman path inte-
gral method), see formula (7.82) on page 421 of Vol. I (resp. formula (7.78) on
page 417 of Vol. I).

44 J. Fourier, La théorie de la chaleur (heat theory), Paris, 1822. Interestingly
enough, Fourier (1768–1830) was obsessed with heat, keeping his rooms ex-
tremely hot.
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This is a highly intuitive interpretation of the quantization of classical pro-
cesses. Let us discuss the intuitive background.

Causality and the product rule for the Feynman propagator. The Feyn-
man propagator kernel satisfies the following product rule:

K(x, t;x0, t0) =

Z

R

K(x, t; y, τ)K(y, τ ;x0, t0) dy, t > τ > t0. (7.64)

It follows from (7.62) that this relation reflects causality. To explain this, choose
t0 < τ < t. We start with a wave function ψ = ψ(x0, t0) at the initial time t0. For
the wave function at the intermediate time τ and at the final time t, we get

ψ(y, τ) =

Z

R

K(y, τ ;x0, t0)ψ(x0, t0)dx0 (7.65)

and

ψ(x, t) =

Z

R

K(x, t; y, τ)ψ(y, τ)dy, (7.66)

respectively. By causality, we expect that ψ(x, t) at the final time t can also be
generated by the wave function at the initial time t0, that is,

ψ(x, t) =

Z

R

K(x, t;x0, t0)ψ(x0, t0)dx0. (7.67)

Now the product formula (7.64) tells us that indeed the composition of the two
formulas (7.65) and (7.66) yields (7.67).

The infinitesimal Feynman propagator kernel. In order to obtain his
path integral, Feynman used the causality condition (7.64) and the following magic
approximation formula:

K(x + Δx, t + Δt;x, t) = eiΔS/� · Kfluct(t + Δt; t). (7.68)

This is an approximation formula for small position differences Δx and small time
differences Δt. Explicitly, we use

• the classical action difference

ΔS :=

„

m

2

“Δx

Δt

”2

− U(x)

«

Δt

with the discrete velocity Δx
Δt

and the discrete energy ΔE := ΔS/Δt, and
• the infinitesimal quantum fluctuation term

Kfluct(t + Δt; t) :=

r

m

2π�iΔt
.

Here, ΔS is an approximation of the classical action

S[q] :=

Z t+Δt

t

nm

2
q̇(τ)2 − U(q(τ))

o

dτ

for a classical trajectory q = q(τ) which connects the two points x and x+Δx, that
is, q(t) = x and q(t + Δt) = x + Δx. Here, the symbol m denotes the mass of the
particle on the real line. The magic formula (7.68) tells us that
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The passage from classical mechanics to quantum mechanics is obtained
by adding quantum fluctuations.

The magic formula (7.68) combines the infinitesimal strategy due to Newton (1643–
1727) and Leibniz (1646–1616) with the principle of least action due to Leibniz,
Maupertuis (1698–1759) and Euler (1707–1783). Introducing the (complex) char-
acteristic length45

l :=
1

Kfluct(t + Δt; t)
=

r

2π�iΔt

m
,

the magic Feynman formula (7.68) reads as

K(x + Δx, t + Δt;x, t) =
eiΔS/�

l
.

This reflects the fact that the Feynman propagator kernel K has the physical di-
mension (length)−1 for the motion of a quantum particle on the real line.

The global Feynman propagator kernel. Combining the causality princi-
ple (7.64) with the magic formula (7.68) for the infinitesimal propagator kernel,
Feynman arrived at the following global kernel formula:

K(x, t;x0, t0) = lim
N→∞

1

l

Z

RN−1
ei
P

ΔS/� dq1
l
· · · dqN−1

l
(7.69)

with the discretized action

X

ΔS :=

N−1
X

n=0

j

m

2

“qn+1 − qn

Δt

”2

− U(qn)

ff

Δt.

Here, we add the boundary conditions: q0 := x0 and qN := x. The crucial Feynman
formula (7.69) tells us that the global Feynman propagator kernel K(x, t;x0, t0)
is obtained by summing over all possible time-ordered products of infinitesimal
Feynman propagator kernels. This is a special case of the following general principle
in natural philosophy:

In nature, interactions are obtained by the superposition of all possible
infinitesimal interactions taking causality into account.

Introducing the path-integral notation, we briefly write

Z

C{t0,t}
eiS[q]/�Dq := lim

N→∞

1

l

Z

RN−1
ei
P

ΔS/� dq1
l
· · · dqN−1

l
. (7.70)

Physicists use the following two methods for computing path integrals:

(i) the limit formula (7.70) and
(ii) infinite-dimensional Gaussian integrals.

Method (i) corresponds to an approximation of continuous paths by polygons.
Method (ii) generalizes the finite-dimensional formula

Z

RN

e−
1
2 〈x|Ax〉 e〈b|x〉

dx1√
2π

. . .
dxN√

2π
=

e〈b|A
−1b〉

√
detA

45 The square root is to be understood as principal value: l = eiπ/4
q

2π�Δt
m

.
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to infinite dimensions. In this context, one has to define the determinant detA of
an infinite-dimensional operator A by generalizing the finite-dimensional formula

detA =

N
Y

n=1

λn

for the eigenvalues λ1, . . . , λN of the operator A. Here, we will use the analytic con-
tinuation of the Riemann zeta function and its generalization to elliptic differential
operators on Riemannian manifolds (see Sect. 7.9). Summarizing, we will get the
following key formula:

K(x, t;x0, t0) =

Z

C{t0,t}
eiS[q]/�Dq = N

Z

C{t0,t}
eiS[q]/� DGq (7.71)

which is basic for modern physics. This formuula tells us that the Feynman path
integral differs from the normalized infinite-dimensional Gaussian integral by a
normalization factor N . Fortunately enough, the explicit knowledge of the normal-
ization factor N is not necessary in many applications to quantum field theory. In
terms of mathematics, formula (7.71) connects different subjects of mathematics
with each other: spectral theory of elliptic differential operators on Riemannian
manifolds, harmonic analysis, analytic number theory, distributions and pseudo-
differential operators, Fourier integral operators, random walks and stochastic pro-
cesses (Brownian motion), topological quantum field theory (topological invariants
of knots, manifolds and algebraic varieties). This concerns the following mathemati-
cal branches: analysis, differential geometry, algebraic topology, algebraic geometry,
and theory of probability.

The innocently looking formula (7.71) emphasizes the unity of mathemat-
ics.

The WKB (Wentzel, Kramers, Brioullin) method. The passage from
Maxwell’s wave optics to geometric optics corresponds to the limit λ → 0 (i.e.,
the wavelength λ goes to zero). Similarly, the passage from quantum mechanics to
classical mechanics corresponds to the limit

�→ 0

called the classical limit. More precisely, this means that quantum effects occur
if the quotient �/Sdaily is sufficiently small. Here, Sdaily is the action of processes
in daily life. Explicitly, � ∼ 10−34Js and Sdaily ∼ 1Js. Shortly after Schrödinger’s
publication of his wave mechanics in 1926, Wentzel, Kramers, and Brioullin inde-
pendently investigated the limit � → 0 parallel to geometric optics.46 In terms of
the Feynman path integral, the refined WKB method yields the following elegant
key formula

K(x, t;x0, t0) = eiS[qclass]/� Kfluct(x, t;x0, t0) (7.72)

46 G. Wentzel, A generalization of the quantum condition in wave mechanics, Z.
Physik 38 (1926), 518–529 (in German).
H. Kramers, Wave mechanics and half-integer quantization, Z. Physik 39 (1927),
828–840 (in German).
M. Brioullin, La méchanique ondulatoire de Schrödinger; une méthode générale
de résolution par approximations successives, Comptes Rendus Acad. Sci. (Paris)
183 (1926), 24–44 (in French).
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where S[qclass] is the action along the classical path with the boundary condition
qclass(t0) = x0 and qclass(t) = x. The factor Kfluct describes quantum fluctuations
(see Sect. 7.10 on page 580).

Diffusion processes and the Euclidean strategy in quantum mechan-
ics. The diffusion equation

∂ψ(x, t)

∂t
= κψxx − V (x), ψ(x, t0) = ψ0(x) (7.73)

for all x ∈ R and all t > t0 describes the diffusion of particles on the real line, where
ψ(x, t) denotes the particle density at the position x at time t, and κ > 0 is the
diffusion constant. Using the replacement

t⇒ it, (7.74)

and setting κ := �/2m, U(x) := −�V (x), the diffusion equation (7.73) passes over
to the Schrödinger equation (7.61).47 We expect that, by the replacement (7.74),
each result on the classical diffusion equation (7.73) generates a result in quantum
mechanics. This is called the Euclidean strategy. For example, let V (x) ≡ 0. We
will show below that the classical diffusion kernel

P(x, t;x0, t0) =

r

m

2π�(t− t0)
· e−m(x−x0)2/2�(t−t0) (7.75)

passes over to the Feynman propagator kernel K(x, t;x0, t0) := P(x, it;x0, it0). Ex-
plicitly,

K(x, t;x0, t0) =

r

m

2πi�(t− t0)
· eim(x−x0)2/2�(t−t0) (7.76)

for all positions x, x0 ∈ R and all times t > t0.
Brownian motion. In 1905 Einstein studied the Brownian motion of tiny par-

ticles suspended in a liquid. This was the beginning of the theory of stochastic
processes, which was developed as a mathematical theory by Wiener and Kol-
mogorov in the early 1920s and in the early 1930s, respectively.48 Comparing the
Schrödinger equation (7.61) with the diffusion equation (7.73), we arrive at the
following intuitive interpretation of quantum mechanics emphasized by Feynman:

The motion of a quantum particle on the real line can be regarded as Brow-
nian motion (i.e., a random walk) in imaginary time.

This formal analogy motivated Mark Kac in 1949 to prove the famous Feynman–
Kac formula49 which represents the diffusion kernel (7.75) as a path integral, in
rigorous mathematical terms see Sect. 7.11.5 on page 588.

Historical remarks on Feynman’s discovery. The following quotation is
taken from the comprehensive handbook on Feynman path integrals in quantum
mechanics written by Christian Grosche and Frank Steiner:50

47 Alternatively, if we regard ψ(x, t) as the temperature at the point x at time t,
then the equation (7.73) describes the heat conduction on the real line.

48 Robert Brown (1773–1858), Einstein (1879–1955), Schrödinger (1887–1961),
Wiener (1894–1964), Kolmogorov (1903–1987), Mark Kac (1914–1984), Feyn-
man (1918–1988).

49 M. Kac, On distributions of certain Wiener functionals, Trans. Amer. Math. Soc.
65 (1949), 1–13.

50 C. Grosche and F. Steiner, Handbook of Feynman Path Integrals, Springer,
Berlin, 1998 (reprinted with permission).



486 7. Quantization of the Harmonic Oscillator

Feynman was working as a research assistant at Princeton during 1940–41.
In the course of his graduate studies he discovered with Wheeler an action
principle using half advanced and half retarded potentials.51 The problem
was the infinite self-energy of the electron, and it turned out that the new
“action principle” could deal successfully with the infinity arising in the
application of classical electrodynamics.
The problem then became one of applying this action principle to quantum
mechanics in such a way that classical mechanics could arise naturally as
a special case of quantum mechanics when the Planck quantum of action
h was allowed to go to zero.
Feynman searched for any ideas which might have been previously worked
out in connecting quantum-mechanical behavior with such classical ideas
as the Lagrangian and Hamilton’s action integral . . . At a Princeton beer
party Richard Feynman learned from Herbert Jehle, a former student of
Schrödinger in Berlin, who had newly arrived from Europe, of Dirac’s
paper.52 Dirac showed that

〈q(t)|q(t0)〉 corresponds to e
i
�

R t
t0

Ldt
,

where L is the Lagrangian. The natural question that then arose was what
Dirac had meant by the phrase “corresponds to.” Feynman found that
Dirac’s statement actually means “proportionally to”, that is,

K(x + Δx, t + Δt;x, t) = const(Δt) · eiΔS/� .

Based on this result and the causality composition law (7.64) in the limit
N → ∞, Feynman interpreted the multiple-integral construction (7.70)
as an “integral over all paths” and wrote this down in his Ph. D. thesis
presented to the Faculty of Princeton University on May 4, 1942.53 During
the war Feynman worked at Los Alamos (New Mexico), and after the war
his primary direction of work was towards quantum electrodynamics. So it
happened that a complete theory of the path integral approach to quantum
mechanics was worked out only in 1947. Feynman submitted his paper to
the Physical Review, but the editors rejected it! Thus he rewrote it and
sent it to Reviews of Modern Physics, where it finally appeared in spring
1948 under the title “Space-time approach to non-relativistic quantum
mechanics.”54 Feynman’s paper is one of the most beautiful and most
influential papers in physics written during the last fifty years.55

51 J. Wheeler and R. Feynman, Interaction with the absorber as the mechanism of
radiation, Rev. Mod. Phys. 17 (1945), 157–181.

52 P. Dirac, The Lagrangian in quantum mechanics, Soviet Union Journal of Physics
(in German). Reprinted in J. Schwinger (Ed.) (1958), pp. 312–320.

53 R. Feynman, The principle of least action in quantum mechanics, Ph.D. thesis,
Princeton, New Jersey, 1942.

54 Rev. Mod. Phys. 20 (1948), 367–387.
55 Feynman’s approach to quantum mechanics has a forerunner. In 1924 Wentzel

published a paper where one can find the basic formulae and their interpretation
as they were adopted twenty years later by Feynman. In fact, Wentzel’s paper was
published before the fundamental papers by Heisenberg (1925) and Schrödinger
(1926). See G. Wentzel, Zur Quantenoptik (On quantum optics), Z. Physik 22
(1924), 193–199. This is discussed in: S. Antoci and D. Liebscher, The third
way to quantum mechanics is the forgotten first, Annales de Fondation Louis de
Broglie 21 (1996), 349–368 (see also S. Antoci and D. Liebscher, Wentzel’s path
integrals, Int. J. Math. Phys. 37 (1998), 531–535).
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7.5.2 The Diffusion Kernel and the Euclidean Strategy in
Quantum Physics

Formal motivation of the diffusion kernel. In order to discuss the basic idea
of the Euclidean strategy in quantum mechanics, let us start with considering the
classical diffusion equation

ψt(x, t) = κψxx(x, t), x ∈ R, t > t0, ψ(x, t0) = ψ(x) (7.77)

where κ := �/2m. We want to obtain the kernel P from (7.75), by using the Fourier
method in a formal way. We start with the following two conditions

(C1) Pt(x, t) = κPxx(x, t), x ∈ R, t > 0, and
(C2) limt→+0 P (x, t) = δ(x), x ∈ R.

Taking the existence of P for granted, set P(x, t;x0, t0) := P (x − x0; t − t0). We
want to show that the function

ψ(x, t) :=

Z

R

P(x, t;x0, t0)ψ0(x0)dx0, x ∈ R, t > t0

is a solution of (7.77). In fact, it follows from (C1) that

ψt(x, t)− κψxx(x, t) =

Z

R

(Pt − Pxx)ψ0(x0)dx0 = 0, x ∈ R, t > 0.

By (C2), limt→t0+0 ψ(x, t) =
R

R
limt→t0+0 P(x, t;x0, t0)ψ0(x0)dx0, and hence

lim
t→t0+0

ψ(x, t) =

Z

R

δ(x− x0)ψ0(x0)dx0 = ψ0(x).

It remains to determine the function P. Let p �→ P̂ (p, t) be the Fourier transform
of x �→ P (x, t). By (C1) and (C2),

P̂t(p, t) = −κp2P̂ (p, t), t > 0, P̂ (p, 0) =
1√
2π

.

Hence P̂ (p, t) = 1√
2π

e−κp2t. By Fourier transform,

P (x, t) =
1

2π

Z

R

eipx e−κp2t dp, x ∈ R, t > 0.

Hence P (x, t) = 1√
4πκt

e−x2/4κt (see the Gaussian integral (7.182) on page 560).

This finishes the classical motivation for the diffusion kernel (7.75).
The classical existence theorem for the diffusion equation. The proof

of the following standard result in the theory of partial differential equations can
be found in H. Triebel, Higher Analysis, Sect. 42, Barth, Leipzig, 1989.

Theorem 7.15 We are given the initial function ψ0 ∈ D(R). Choose the kernel P
as in (7.75). Then the function

ψ(x, t) :=

Z

R

P(x, t;x0, t0)ψ0(x0) dx0, x ∈ R, t > t0 (7.78)

is a classical solution of the diffusion equation (7.77). In addition, we have the
initial condition limt→t0+0 ψ(x, t) = ψ0(x) for all x ∈ R.
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The classical existence theorem for the free quantum particle on the
real line. Consider the Schrödinger equation

i�ψt(x, t) = − �
2

2m
ψxx(x, t), x ∈ R, t > t0, ψ(x, t0) = ψ0(x) (7.79)

for the motion of a free quantum particle of mass m on the real line. Let D denote

the set of all Gaussian functions e−β(x−α)2 , x ∈ R with real parameter α and positive
parameter β. The complex linear hull, spanD, is a dense subset of the Hilbert space
L2(R).

Theorem 7.16 We are given the initial function ψ0 ∈ spanD. Choose the kernel
K as in (7.75). Then the function

ψ(x, t) :=

Z

R

K(x, t;x0, t0)ψ0(x0) dx0, x ∈ R, t > t0 (7.80)

is a classical solution of the Schrödinger equation (7.79). In addition, we have the
initial condition limt→t0+0 ψ(x, t) = ψ0(x), in the sense of the convergence on the
Hilbert space L2(R).

The proof can be found in Zeidler (1995a), Sect. 5.22.2 (see the references on page
1049).

Formal perspectives. In the next sections, we will study the following topics
in a formal manner:

• Propagator theory via the formal Dirac calculus (Sect. 7.5.3).
• Formal motivation of the definition of the Feynman path integral (Sect. 7.7.6).

Rigorous perspectives. Furthermore, we will rigorously investigate the fol-
lowing mathematical topics:

• Von Neumann’s operator calculus and the functional-analytic approach to both
the Feynman propagator and the Euclidean Feynman propagator (Sect. 7.6.3).

• Functional-analytic theory of the motion of a free quantum particle on the real
line (Sect. 7.6.4).

• Functional-analytic theory of the motion of a harmonic oscillator on the real line
and the Maslov index (Sect. 7.6.7).

• The Euclidean Feynman propagator and von Neumann’s density matrix in quan-
tum statistics (Sect. 7.6.8).

• Computation of the Feynman path integral for both the free quantum particle
and the quantized harmonic oscillator (Sects. 7.7.3 and 7.7.4).

• The relation between infinite-dimensional Gaussian integrals and the Feynman
propagator kernel including applications to the free quantum particle and the
quantized harmonic oscillator (Sect. 7.9).

• The semi-classical WKB method (Sect. 7.10).
• Brownian motion, the Wiener integral, and the Feynman–Kac formula for diffu-

sion processes (Sect. 7.11).

7.5.3 Probability Amplitudes and the Formal Propagator Theory

Feynman’s approach to quantum theory can be understood best by using
Dirac’s formal calculus; this can be generalized straightforward to quantum
field theory.

Folklore
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The Parseval equation. Let ϕ1, . . . , ϕN be an orthonormal basis of the complex
N -dimensional Hilbert space Y . This means that the orthonormality condition

〈ϕk|ϕl〉 = δkl, k, l = 1, . . . , N

is satisfied. The basis property tells us that, for all ϕ,ψ ∈ Y, we have

(F) the Fourier expansion |ψ〉 =
PN

k=1 |ϕk〉〈ϕk|ψ〉,
(C) the completeness relation I =

PN
k=1 |ϕk〉〈ϕk|, and56

(P) the Parseval equation

〈ψ|ϕ〉 =

n
X

k=1

〈ψ|ϕk〉〈ϕk|ϕ〉. (7.81)

These classical properties of Fourier expansions are discussed in Sect. 7.10 of Vol.
I. The complex numbers c1 := 〈ψ|ϕ1〉, . . . , cN := 〈ψ|ϕN 〉 are called the Fourier
coefficients. Suppose that ||ψ|| = 1. By the Parseval equation,

||ψ||2 =

N
X

k=1

|ck|2 = 1.

If ψ is the state of a quantum particle, then |ck|2 is the probability for observing the
particle in the state ϕk; the Fourier coefficients c1, . . . , cN are called the probability
amplitudes of the particle state ψ.

The Schrödinger equation. Consider again the Schrödinger equation

i�ψt = − �
2

2m

∂2ψ

∂x2
+ Uψ (7.82)

for the motion of a quantum particle on the real line. Here, m > 0 is the mass of the
particle. We assume that the smooth potential function U : R → R has compact
support, that is, U ∈ D(R). In terms of physics, the potential U describes the force
acting on the quantum particle. If U ≡ 0, then the quantum particle is called free.
Set

H0ϕ := − �
2

2m

∂2ϕ

∂x2
+ Uϕ for all ϕ ∈ S(R).

Then the operator H0 : D(R) → L2(R) is essentially self-adjoint on the Hilbert
space L2(R). Let H : W 2

2 (R) → L2(R) be the self-adjoint extension of H0. Then
the Schrödinger equation reads as

i�ψ̇(t) = Hψ(t), t > t0, ψ(t0) = ψ0

with the unique solution ψ(t) = e−iH(t−t0)/�ψ0 (see Theorem 7.25 on page 507).
The formal Dirac calculus. It is our goal to study the Schrödinger equation

(7.82) by means of the formal Dirac calculus on the real line.57 In particular, we
will use

• the orthonormality condition 〈x|x0〉 = δ(x− x0) for all x, x0 ∈ R, and

56 In mathematics, one also writes ψ =
PN

k=1〈ϕk|ψ〉ϕk and I =
PN

k=1 ϕk ⊗ ϕk.
57 This formal calculus is thoroughly discussed in Sect. 11.2.5 of Vol. I. The rigorous

justification of the Dirac calculus can be found in Sect. 12.2 of Vol. I.
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• the completeness relation

I =

Z

R

|x〉〈x| dx, (7.83)

where I denotes the unit operator. Using the trivial identity 〈ψ|ϕ〉 = 〈ψ|Iϕ〉 and
the completeness relation (7.83), we formally get the Parseval equation

〈ψ|ϕ〉 =

Z

R

〈ψ|x〉〈x|ϕ〉dx. (7.84)

This elegant formal argument is called Dirac’s substitution trick.58

Formal operator kernel. The operator equation ϕ = Aψ is equivalent to the
integral relation

〈x|ϕ〉 =

Z

R

〈x|A|x0〉〈x0|ψ〉 dx0, x ∈ R,

by using the completeness relation. Setting A(x, x0) := 〈x|A|x0〉 for all positions
x, x0 ∈ R, we get

ϕ(x) =

Z

R

A(x, x0)ψ(x0)dx0, x, x0 ∈ R.

The function (x, x0) �→ A(x, x0) is called the kernel of the operator A. In rigorous
terms, this is not always a classical function. For example, the identical operator
A = I has the kernel

A(x, x0) = 〈x|x0〉 = δ(x− x0).

If we choose the Hamiltonian H, then the stationary Schrödinger equation

− �
2

2m
ψ′′(x) + U(x)ψ(x) = ϕ(x), x ∈ R (7.85)

means that ϕ = Hψ. Formally, this is equivalent to the integral relation

〈x|ϕ〉 =

Z

R

〈x|H|x0〉〈x0|ψ〉dx0, x ∈ R, (7.86)

by using the completeness relation (7.83). Now we want to study the kernels K
and G to the Feynman propagator e−i(t−t0)H/� and the negative resolvent operator
(H − EI)−1, respectively. Here, K and G is called the Feynman propagator kernel
and the energetic Green’s function, respectively.

In terms of modern mathematics, the Dirac calculus is a forerunner of
the theory of pseudo-differential operators, where differential operators and
integral operators are treated on equal footing.

58 Writing 〈x|ϕ〉 = ϕ(x) and 〈ψ|x〉 = 〈x|ψ〉† = ψ(x)†, equation (7.84) reads as

〈ψ|ϕ〉 =

Z

R

ψ(x)†ϕ(x)dx.

This is the inner product on the Hilbert space L2(R).
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We refer to the treatise by L. Hörmander, The Analysis of Linear Partial Differential
Operators, Vols. 1–4, Springer, New York, 1983.

The key formulas. The Feynman approach to quantum physics is based on
the following formal arguments.

(i) The Feynman propagator kernel K: For all positions x, x0 ∈ R and all times
t > t0, we define the Feynman propagator kernel

K(x, t;x0, t0) := 〈x|e−iH(t−t0)/� |x0〉. (7.87)

• Integral representation for the dynamics of the quantum particle: For the
solution ψ(t) = e−iH(t−t0)/�ψ0 of the Schrödinger equation (7.82), we have

ψ(x, t) =

Z

R

K(x, t;x0, t0)ψ(x0, t0)dx0, x ∈ R, t > t0. (7.88)

• Schrödinger equation for the Feynman propagator kernel: For all positions
x, x0 ∈ R and all times t > t0,

i�Kt(x, t;x0, t0) = − �
2

2m
Kxx(x, t;x0, t0) + U(x)K(x, t;x0, t0).

• Singularity at the initial time t0 :

lim
t→t0+0

K(x, t;x0, t0) = δ(x− x0), x, x0 ∈ R. (7.89)

• Causality relation: For all positions x, x0 ∈ R and all times t > τ > t0,

K(x, t;x0, t0) =

Z

R

K(x, t; y, τ)K(y, τ ;x0, t0) dy. (7.90)

This is the product rule for the Feynman propagator kernel.

Formal proof. By the completeness relation
R

R
|x0〉〈x0| dx0 = I,

〈x|ψ〉 = 〈x|e−iH(t−t0)/� |ψ0〉 =

Z

R

〈x|e−iH(t−t0)/� |x0〉〈x0|ψ0〉dx0.

This is (7.88). The differential equation for K follows from the fact that the
two expressions

i�ψt(x, t) =

Z

R

i�Kt(x, t;x0, t0)ψ0(x0) dx0,

Hψ(x, t) =

Z

R

HK(x, t;x0, t0)ψ0(x0) dx0

are equal to each other for all initial functions ψ0. Hence i�Kt = HK. Fur-
thermore,

lim
t→t0+0

〈x|e−iH(t−t0)|x0〉 = 〈x|x0〉 = δ(x− x0).

From the group property eu+v = euev, u, v ∈ C of the exponential function,
we get
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e−iH(t−t0)/� = e−iH(t−τ)�e−iH(τ−t0)/� , t0 < τ < t.

This implies

〈x|e−iH(t−t0)/� |x0〉 =

Z

R

〈x|e−iH(t−τ)/� |y〉〈y|e−iH(τ−t0)/� |x0〉 dy, (7.91)

which is the causality relation (7.90). �

(ii) The resolvent kernel R: Let �(H) be the resolvent set of the Hamiltonian H
on the Hilbert space L2(R). By definition, the complex number E is contained
in �(H) iff the inverse operator

(EI −H)−1 : L2(R)→ L2(R)

exists, and it is continuous. This operator is called the resolvent59 of the Hamil-
tonian H at the point E . We briefly write RE := (EI −H)−1. The complement
σ(E) := C \ �(H) is called the spectrum of H.

The spectrum σ(H) is a closed subset of the real line; the complemen-
tary resolvent set �(H) is an open subset of the complex plane.

The points E in the spectrum σ(H) are the energy values of the quantum
particle described by the Hamiltonian H. For all positions x, x0 ∈ R and all
complex numbers E ∈ �(H), we define the resolvent kernel

R(x, x0; E) := 〈x|(EI −H)−1|x0〉.

This kernel has the following properties.
• Integral representation of the resolvent: For each given complex number
E ∈ �(H), the equation

(EI −H)ψ = χ

has the unique solution ψ = (EI −H)−1χ. This is equivalent to the integral
relation

ψ(x) =

Z

R

R(x, x0; E)χ(x0)dx0, x ∈ R. (7.92)

This follows from

〈x|ψ〉 = 〈x|(EI −H)−1ϕ〉 =

Z

R

〈x|(EI −H)−1|x0〉〈x0|ϕ〉 dx0.

• The resolvent equation: For all E , E ′ ∈ �(H), we have Hilbert’s resolvent
equation RE −RE′ = (E ′ − E)RE′RE . This implies

R(x, x0; E)−R(x, x0; E ′) = (E ′ − E)
Z

R

R(x, y; E ′)R(y, x0; E) dy.

In fact, Hilbert’s resolvent equation implies

〈x|REx0〉 − 〈x|RE′x0〉 = (E ′ − E)
Z

R

〈x|RE′y〉〈y|REx0〉 dy.

59 Physicists frequently use the negative resolvent operator −(EI −H)−1 which is
equal to (H − EI)−1.
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(iii) The energetic Green’s function G: For all positions x, x0 ∈ R and all complex
numbers E ∈ �(H), we define

G(x, x0; E) := −R(x, x0; E).

For each complex number E ∈ �(H), the inhomogeneous stationary equation
(H − EI)ψ = ϕ, that is,

− �
2

2m
ψ′′(x) + (U(x)− E)ψ(x) = ϕ(x), x ∈ R,

has the solution ψ = −(EI −H)−1ϕ. By (7.92),

ψ(x) =

Z

R

G(x, y; E)ϕ(y)dy, x ∈ R.

Choosing ϕ(x) := δ(x − x0), we obtain ψ(x) = G(x, x0; E). This implies that,
for all E ∈ �(H), we get

− �
2

2m
Gxx(x, x0; E) + (U(x)− E)G(x, x0; E) = δ(x− x0), x, x0 ∈ R.

Therefore, the function (x, x0) �→ G(x, x0; E) is called the energetic Green’s
function (or the energetic 2-point function ) with respect to the complex num-
ber E /∈ σ(H). Now let us show that the energetic Green’s function has sin-
gularities at the spectral points E ∈ σ(H), which correspond to the physical
energy values of the quantum particle described by the Hamiltonian H.

(iv) The energetic Fourier transform: Let {|Ek〉}k∈N be the complete orthonormal
system of (generalized) eigenstates of the Hamiltonian H with the index set
N . That is, we have
• the (generalized) eigenvalue equation H|Ek〉 = Ek|Ek〉,
• the completeness relation

R

N |Ek〉〈Ek| dμ(k) = I, and
• the orthonormality relation 〈Ek|El〉 = δμ(k − l) for all k, l ∈ N .
Here, μ is a measure on the set N . This measure is called the energy measure
of the Hamiltonian H. The Dirac delta function δμ with respect to the measure
μ has the characteristic property that60

Z

N
δμ(k − k0)f(k) dμ(k) = f(k0).

Thus, the Dirac delta function δμ generalizes the Kronecker symbol. Now let us
assign to each energy state |Ek〉 the so-called energy function χk(x) := 〈x|Ek〉
for all x ∈ R.
• The Fourier–Stieltjes transform:

ψ̂(k) =

Z

R

χk(x)†ψ(x)dx, k ∈ N . (7.93)

• The inverse Fourier–Stieltjes transform:

ψ(x) =

Z

N
χk(x)ψ̂(k)dμ(k), x ∈ R. (7.94)

60 Mnemonically, this follows from
R

N 〈Ek0 |Ek〉〈Ek|f〉dμ(k) = 〈Ek0 |f〉, by using the
completeness relation.
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• The stationary Schrödinger equation: For all indices k ∈ N ,

− �
2

2m
χ′′

k(x) + U(x)χk(x) = Ekχk(x), x ∈ R. (7.95)

This tells us that the function χk is an eigenfunction corresponding to the
energy eigenvalue Ek.

• The function ψk(x, t) := e−iEkt/�χk(x) satisfies the instationary Schrödinger
equation:

i�
∂ψk(x, t)

∂t
= − �

2

2m

∂2ψk(x, t)

∂x2
+ U(x)ψk(x, t) = Ekψ(x, t), x, t ∈ R.

Formal proof. Ad (7.93). By the completeness relation,

〈Ek|ψ〉 =

Z

R

〈Ek|x〉〈x|ψ〉 dx.

Ad (7.94). Similarly, 〈x|ψ〉 =
R

N 〈x|Ek〉〈Ek|ψ〉dμ(k).
Ad (7.95). From H|Ek〉 = Ek|Ek〉, we get

〈x|Ek〉 = 〈x|H|Ek〉 =

Z

R

〈x|H|x0〉〈x0|Ek〉dx0.

Now use the formal equivalence between (7.85) and (7.86). �

(v) The energetic representation of the Feynman propagator kernel: For all posi-
tions x, x0 ∈ R and all times t > t0, we have

K(x, t;x0, t0) =

Z

N
e−iEk(t−t0)/�χk(x)χk(x0)

†dμ(k) (7.96)

and

G(x, x0;E + iε) =

Z

N

χk(x)χk(x0)
†

Ek − E − iε
dμ(k). (7.97)

Formal proof. Ad (7.96). To simplify notation, we set � := 1 and t0 := 0. By
the completeness relation,

〈x|e−itH |x0〉 =

Z

N
〈x|Ek〉〈Ek|e−itH |x0〉dμ(k).

Moreover, e−itH |Ek〉 = e−itEk |Ek〉. Hence

〈Ek|e−itH |x0〉 = 〈x0|eitH |Ek〉† = e−itEkt〈x0|Ek〉† = e−itEktχk(x0)
†.

Ad (7.97). Replace e−itH by (H − (E + iε)I)−1. �

(vi) The passage from time to energy: For all positions x, x0 ∈ R, all times t > t0,
all energies E ∈ R, and all energy damping parameters ε > 0, the following
transformation formulas are valid.
• The Fourier–Laplace transform of the Feynman propagator kernel:

G(x, x0;E + iε) =
i

�

Z ∞

t0

ei(E+iε)(t−t0)/� K(x, t;x0, t0)dt.
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• The Fourier–Laplace transform of the energetic Green’s function:

K(x, t;x0, t0) =
1

2πi
· PV

Z ∞

−∞
e−i(E+iε)(t−t0)/� G(x, x0;E + iε) dE.

Recall that the symbol PV
R∞
−∞ . . . stands for the limit limR→+∞

R R

−R
. . . (principal

value of the integral).
Formal proof. This follows immediately from (7.96) and (7.97) combined with

the two classical formulas

i

�

Z ∞

−∞
ei(E+iε)(t−t0)/�e−iEk(t−t0)/�θ(t− t0)dt =

1

Ek − E − iε

and

θ(t− t0)e
−iEk(t−t0)/� =

1

2πi
· PV

Z ∞

−∞

e−i(E+iε)(t−t0)/�

Ek − E − iε
dE,

which are valid for the following quantities: all energies E,Ek ∈ R, all times t, t0 ∈ R

with t �= t0, and all damping parameters ε > 0. The proof of the latter two formulas
can be found in Problem 7.35. �

The preceding formal propagator theory is very convenient from the mnemonical
point of view. Our next goal is to show how this formal approach can be translated
into a rigorous approach. To this end, we will use

• the von Neumann operator calculus in Hilbert spaces,
• tempered distributions, Gelfand triplets, and the theory of generalized eigenfunc-

tions, and
• tempered distributions and the Schwartz kernel theorem.

We will apply this to:

• the free quantum particle (Sect. 7.6.4),
• the harmonic oscillator (Sect. 7.6.7), and
• ideal gases (Sect. 7.6.8).

7.6 Von Neumann’s Rigorous Approach

Rigorous propagator theory is based on von Neumann’s operator calculus
for functions of self-adjoint operators.

Folklore

As a preparation for the rigorous propagator theory to be considered in the next
section, let us summarize von Neumann’s operator calculus. In this section, we con-
sider an arbitrary complex separable Hilbert space X of finite or infinite dimension.
The inner product on X is denoted by 〈ψ|ϕ〉 for all ϕ,ψ ∈ X. For fixed initial time
t0, the given function ψ : [t0,∞[→ X with values in the Hilbert space X is called
continuously differentiable iff the following is met:

• For all t > t0, the derivative ψ̇(t) := limh→0 h
−1(ψ(t + h) − ψ(t)) exists (in the

sense of the convergence on the Hilbert space X).
• The function t �→ ψ(t) is continuous on the closed interval [0,∞[.

• The function t �→ ψ̇(t) is continuous on the open interval ]t0,∞[, and the limit

limt→t0+0 ψ̇(t) exists.

It is our goal to construct continuously differentiable solutions of the Schrödin-
ger equation i�ψ̇ = Hψ in the form ψ(t) = e−itH/�ψ0. To this end, we need the

construction of the operator e−itH/� .
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7.6.1 The Prototype of the Operator Calculus

The basic idea is to use a complete orthonormal system ϕ0, ϕ1, . . . in the infinite-
dimensional Hilbert space X.61 The two key formulas are given by the series ex-
pansions

Hϕ =
∞
X

k=0

Ek · 〈ϕk|ϕ〉ϕk for all ϕ ∈ D(H) (7.98)

and

F(H)ϕ =
∞
X

k=0

F (Ek) · 〈ϕk|ϕ〉ϕk for all ϕ ∈ D. (7.99)

To discuss this, observe first that

• the infinite series
P∞

k=0 akϕk with complex numbers a0, a1, a2, . . . is convergent
iff

•
P∞

k=0 |ak|2 <∞.

In particular, the completeness of ϕ0, ϕ1, . . . guarantees that

ϕ =

∞
X

k=0

〈ϕ|ϕk〉 ϕk for all ϕ ∈ X.

(i) The operator H: We are given the real numbers E0, E1, . . . We define

Hϕk := Ekϕk, k = 0, 1, . . .

In a natural way, we want to extend the operator H to a linear subspace D(H)
of X. To this end, we define

D(H) := {ϕ ∈ X :

∞
X

k=0

|Ek|2|〈ϕ|ϕk〉|2 <∞}.

In other words, we have ϕ ∈ D(H) iff the infinite series from (7.98) is convergent
in X. Now, for all ϕ ∈ D(H), we define Hϕ by the convergent series (7.98). In
particular, ϕk ∈ D(H) for all k.

The operator H : D(H)→ X is self-adjoint.
The spectrum σ(H) of H is the closure of the set {E0, E1, . . .}. The resolvent
set �(H) of the operator H is the largest open subset of the complex plane
which does not contain the energy values E0, E1, . . .

(ii) The operator F(H) : D → X: We are given the function F : R → C. Let D
be the set of all elements ϕ of X such that the series (7.99) is convergent.
Explicitly,

D := {ϕ ∈ X :

∞
X

k=0

|F (Ek)|2|〈ϕk|ϕ〉|2 <∞}.

Finally, for any ϕ ∈ D, define F(H)ϕ by the convergent series (7.99). The
operator F(H) : D → X is self-adjoint if the function F is real-valued.

61 If the Hilbert space X is finite-dimensional with dimension N = 1, 2, . . ., then all
of the following formulas remain valid if we replace the symbol

P∞
k=0 by

PN−1
k=0 .
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(iii) The spectral family {Eλ(H)}λ∈R of the self-adjoint operator H. Fix the real
number λ and consider the function

eλ(E) :=

(

1 if E < λ,

0 if E ≥ λ.
(7.100)

In other words, eλ is the characteristic function of the open interval ]−∞, λ[.
Define

Eλ(H)ϕ :=

∞
X

k=1

eλ(Ek)〈ϕk|ϕ〉ϕk.

This series is convergent for all ϕ ∈ X. The operator Eλ(H) : X → X is
the orthogonal projection onto the closed linear subspace spanned by all the
eigenvectors ϕk with Ek ∈]−∞, λ[.

(iv) The propagator e−i(t−t0)H/� : Let t, t0 ∈ R. Since |e−i(t−t0)/� | ≤ 1, the operator

e−i(t−t0)H/�ϕ :=

∞
X

k=0

e−i(t−t0)Ek/�〈ϕk|ϕ〉ϕk

is defined for all ϕ ∈ X. In addition, the operator e−i(t−t0)H/� : X → X is
unitary. For given ψ0 ∈ D(H), set

ψ(t) := e−i(t−t0)H/�ψ0 for all t ∈ R.

Then the function ψ : R→ X is continuously differentiable, and it is a solution
of the Schrödinger equation.

i�ψ̇(t) = Hψ(t), t ∈ R, ψ(t0) = ψ0.

Proof. First use formal differentiation. This yields

i�ψ̇(t) =

∞
X

k=0

Eke−i(t−t0)Ek/�〈ϕk|ϕ〉ϕk = Hψ(t).

Since we have the convergent majorant series

∞
X

k=0

|Eke−i(t−t0)Ek/�〈ϕk|ϕ〉|2 ≤
∞
X

k=0

|Ek|2|〈ϕk|ϕ〉|2 <∞,

the formal differentiation can be rigorously justified in the same way as for
classical infinite series (see Sect. 5.8, Zeidler (1995a), quoted on page 1049).�

(v) The Euclidean propagator e−(t−t0)H/� : Suppose that Ek ≥ 0 for all k. Fix the

real number t0. Let t ≥ t0. Since 0 ≤ e−(t−t0)Ek/� ≤ 1, the operator

e−(t−t0)H/�ϕ :=
∞
X

k=0

e−(t−t0)Ek/�〈ϕk|ϕ〉ϕk

is defined for all ϕ ∈ X. We have ||e−(t−t0)H/�ϕ|| ≤ ||ϕ|| for all ϕ ∈ X, that is,

the operator e−(t−t0)H/� : X → X is non-expansive.62 For given ψ0 ∈ D(H),
set

62 Note that ||e−(t−t0)H/�ϕ||2 =
P∞

k=0 |e
−(t−t0)Ek/�〈ϕk|ϕ〉|2. Thus, for all t ≥ t0,

||e−(t−t0)H/�ϕ||2 ≤
∞
X

k=0

|〈ϕk|ϕ〉|2 = ||ϕ||2.
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ψ(t) := e−(t−t0)H/�ψ0 for all t ≥ t0.

Then the function ψ : R → X is continuously differentiable on [t0,∞[, and it
is a solution of the Euclidean Schrödinger equation

�ψ̇(t) = −Hψ(t), t ≥ t0, ψ(t0) = ψ0.

(vi) The resolvent (EI −H)−1: Let E be a non-real complex number. The series

REϕ :=
∞
X

k=0

〈ϕk|ϕ〉
E − Ek

ϕk

is convergent for all ϕ ∈ X. This follows from

˛

˛

˛

˛

1

E − Ek

˛

˛

˛

˛

2

=
1

(�E)2 + (Ek −�E)2
≤ 1

(�E)2 .

Hence ||RE ||2 ≤ const(E)·||ϕ||2. Thus, the operator RE is linear and continuous.
In addition, it can be easily shown that RE = (EI −H)−1.

(vii) The Fourier–Laplace transform of the propagator from time to energy: The
integral

Z ∞

−∞
eiEtf(t)dt

does not exist (in the classical sense) if E is a real number and f(t) ≡ 1.
However, if we choose both the complex energy E := E + iε (with ε > 0) and
the truncation function f(t) := θ(t− t0), then the integral63

Z ∞

t0

eiEte−εtdt

exists because of the damping factor e−εt. This is the basic idea behind the use
of both truncated propagators and complex energies in quantum physics. In
order to explain this, choose the linear self-adjoint operator H : D(H)→ X as
in (i) above. Let t, t0 be arbitrary real time parameters, and let E be a non-real
complex parameter called energy. It is convenient to introduce the following
operators, which we will frequently encounter in this treatise:

• P (t, t0) := e−i(t−t0)H/� (propagator),

• P+(t, t0) := θ(t− t0)P (t, t0) (retarded propagator or Feynman propagator),

• P−(t, t0) := −θ(t0 − t)P (t, t0) (advanced propagator),

• G(E) := (H − EI)−1 (Green’s operator),64

• G+(E) := G(E) if �(E) > 0 (retarded!Green’s operator),
• G−(E) := G(E) if �(E) < 0 (advanced!Green’s operator).

Proposition 7.17 Let t, t0 ∈ R and ϕ, χ ∈ X. Then:
(i) For all energies E in the open upper half-plane (i.e., �(E) > 0), we have the
Fourier–Laplace transformation

63 Recall that θ(t− t0) = 1 if t ≥ t0 and θ(t− t0) = 0 if t < t0 (Heaviside function).
64 Since the operator G(E) depends on the choice of the complex energy E , we also

call it the energetic Green’s operator.
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〈χ|G+(E)ϕ〉 =
i

�

Z

R

eiE(t−t0)/�〈χ|P+(t, t0)ϕ〉 dt (7.101)

together with the inverse transformation

〈χ|P+(t, t0)ϕ〉 =
1

2πi
· PV

Z

R

e−iE(t−t0)/�〈χ|G+(E)ϕ〉 d�(E)

where we assume that t �= t0.
(ii) For all energies E in the open lower half-plane (i.e., �(E) < 0), we have
the Fourier–Laplace transformation

〈χ|G−(E)ϕ〉 =
i

�

Z

R

eiE(t−t0)/�〈χ|P−(t, t0)ϕ〉 dt (7.102)

together with the inverse transformation

〈χ|P−(t, t0)ϕ〉 =
1

2πi
· PV

Z

R

e−iE(t−t0)/�〈χ|G−(E)ϕ〉 d�(E)

where we assume that t �= t0.

Complete proofs for this prototype of operator calculus including the statements
above can be found in Zeidler (1995a), Chap. 5 (see the references on page 1049).
For the proof of Prop. 7.17 above, we refer to Problem 7.36. The Fourier–Laplace
transform is also briefly called the Laplace transform.65

Interestingly enough, both retarded (i.e., causal) propagators and advanced
(i.e., non-causal) propagators play a crucial role in quantum field theory.

From the mathematical point of view, the reason is that the relevant perturbation
theory depends on quantities which are constructed by using both retarded and
advanced propagators. Physicists interpret this by saying that

• the interaction between elementary particles is governed by virtual particles
(which are graphically represented by the internal lines of the Feynman dia-
grams), and

• the virtual particles violate basic laws of physics (e.g., the relation between energy
and momentum or causality).

7.6.2 The General Operator Calculus

The observation which comes closest to an explanation of the mathematical
concepts cropping up in physics which I know is Einstein’s statement that
the only physical theories which we are willing to accept are the beautiful
ones. It stands to argue that the concepts of mathematics, which invite
the exercise of much a wit, have the quality of beauty.66

Eugene Wigner, 1959

65 Laplace (1749–1827), Fourier (1768–1830).
66 E. Wigner, The unreasonable effectiveness of mathematics in the natural sciences,

Richard Courant Lecture in Mathematical Sciences delivered at New York Uni-
versity, May 11, 1959. In: E. Wigner, Philosophical Reflections and Syntheses.
Annotated by G. Emch. Edited by J. Mehra and A. Wightman, Springer, New
York, 1995, pp. 534–549.
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Let X be a complex separable finite-dimensional or infinite-dimensional Hilbert
space. We make the following assumption:

(A) The linear operator H : D(H)→ X is self-adjoint.

This includes tacitly that the domain of definition D(H) is a linear dense subspace
of X. Von Neumann’s famous spectral theorem tells us the following.

Theorem 7.18 For each pair ϕ ∈ D(H), χ ∈ X, there exists a (complex-valued)
measure μχ,ϕ on the real line such that

〈χ|Hϕ〉 =

Z

R

E · dμχ,ϕ(E).

We have ϕ ∈ D(H) iff
R

R
|E|2dμϕ,ϕ(E) <∞.

Furthermore, if ||ϕ|| = 1, then μϕ,ϕ is a classical probability measure, that is,
R

R
dμϕ,ϕ = 1. In order to get a physical interpretation, assume that the operator

H is the Hamiltonian of a quantum system. Let ϕ be a unit vector in the Hilbert
space X, that is, ||ϕ|| = 1, and let Ω be an interval on the real line. Then the real
number

Z

Ω

dμϕ,ϕ(E)

is the probability of finding the quantum system in the state ϕ. Moreover,

Ē :=

Z

R

E · dμϕ,ϕ(E)

is the mean energy value measured in the state ϕ of the quantum system. Note
that this spectral theorem depends on the self-adjointness of the operator H, but
it fails for formally self-adjoint operators which are not self-adjoint. Therefore, as
it was discovered by von Neumann in 1929, the full probabilistic interpretation of
observables in quantum mechanics is only valid for self-adjoint operators.

Let F : R → C be a continuous function (or, more generally, a piecewise con-
tinuous and bounded function like the Heaviside function). Let D be the set of
all elements ϕ in X with

R

R
|F (E)|2dμϕ,ϕ(E) < ∞. The von Neumann operator

calculus is based on the following fact.

Theorem 7.19 There exists a uniquely determined self-adjoint operator denoted
by F(H) : D → X such that, for all ϕ ∈ D, χ ∈ X, there holds the key relation
〈χ|F(H)ϕ〉 =

R

R
F (E) · dμχ,ϕ(E).

For example, if F (E) ≡ 1, then F(H) = I (unit operator), and for all χ, ϕ in X we
get 〈χ|ϕ〉 =

R

R
dμχ,ϕ.

Sketch of the proof. An elegant short proof of Theorems 7.18 and 7.19 can be
found in I. Sigal, Scattering Theory for Many-Body Quantum Mechanical Systems:
Rigorous Results, Springer, New York, 1983. In the spirit of the Dirac calculus, the
idea of Sigal’s proof is to use the regularized (rescaled) resolvent

δε(EI −H) :=
1

2π
· (H − (E + iε)I)−1, E ∈ R, ε > 0

with the typical property

w − lim
E0→+∞

Z E0

−E0

δε(EI −H)dE = I, ε > 0. (7.103)
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This justifies the designation as a (regularized) operator delta function. Note that
we use the weak limit in (7.103).67

Step 1: The operator F(H) in the regular case: Let F → C be a smooth function
with compact support, that is, F ∈ D(R). We use the key formula

Fε(H) := w − lim
E0→+∞

Z E0

−E0

δε(EI −H)F (E)dE

and the limit formula
F(H) := w − lim

ε→+0
Fε(H)

in order to introduce the operator F(H) on the Hilbert space X. It can be shown
that the limits exist.

Step 2: The spectral family {Eλ}λ∈R of the operator H: We extend the definition
of the operator F(H) to more general (discontinuous) bounded functions F : R→ C

which are the pointwise limit

F (E) = lim
n→∞

Fn(E), E ∈ R

of an increasing sequence (Fn) of nonnegative functions Fn ∈ D(R). In particular,
choosing the characteristic function eλ of the open interval ] − ∞, λ[, we get the
operator Eλ(H).

Step 3: The spectral measure μ: For given ϕ ∈ X with ||ϕ|| = 1, we define the
probability measure μϕ,ϕ on the real line by setting

Z

]−∞,λ[

dμϕ,ϕ(E) := 〈ϕ|Eλϕ〉.

This is the measure of the open interval ] − ∞, λ[; the function λ �→ 〈ϕ|Eλϕ〉
represents the distribution function of the measure μϕ,ϕ, in terms of the theory of
probability. More generally, for given ϕ, χ ∈ X, we construct the (complex-valued)
measure μχ,ϕ on the real line by setting

Z

]−∞,λ[

dμχ,ϕ(E) = 〈χ|Eλϕ〉. (7.105)

The spectral family of H has the following properties for all real numbers λ, λ0 and
all ϕ ∈ X:

(S1) The operator Eλ : X → X is an orthogonal projection (i.e., the operator Eλ

is linear, continuous, self-adjoint, and E2
λ = Eλ).

(S2) The function λ �→ 〈ϕ|Eλϕ〉 is nondecreasing on the real line.
(S3) limλ→−∞ Eλϕ = 0 and limλ→∞ Eλϕ = ϕ.
(S4) limλ→λ0−0 Eλϕ = Eλ0ϕ. �

67 Recall that, by definition, the weak limit

w − lim
n→∞

ψn = ψ (7.104)

exists on the Hilbert space X iff limn→∞〈ϕ|ψn〉 = 〈ϕ|ψ〉 for all ϕ ∈ X. In
particular, let ϕ1, ϕ2, . . . be a complete orthonormal system in X. Then the weak
convergence (7.104) is equivalent to the boundedness of the sequence (ψn) and
the convergence of all the Fourier coefficients, that is, limn→∞〈ϕk|ψn〉 = 〈ϕk|ψ〉
for all k.
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The spectral family {Eλ} of H is also called the spectral resolution of H.

Corollary 7.20 For any self-adjoint operator H : D(H) → X, there exists pre-
cisely one spectral family {Eλ} with the properties (S1)–(S4) such that Theorem
7.18 holds with (7.105). Explictly, the spectral family is given by the limit

〈ψ|Eλϕ〉 = lim
δ→+0

lim
ε→+0

Z λ+δ

−∞
〈ψ|(Rs−iε −Rs+iε)ϕ〉ds

for all ψ,ϕ ∈ X. Here, Rμ := (μI −H)−1 is the resolvent of H.

In terms of physics, the spectral family of the observable H uniquely determines the
probability measure of H. The proof of the Corollary can be found in K. Jörgens
and F. Rellich, Eigenvalue Problems for Ordinary Differential Equations, p. 113,
Springer, Berlin, 1976 (in German). For other proofs of the crucial spectral theorem,
we refer to the following monographs:

E. Nelson, Topics in Dynamics: Flows, Princeton University Press, 1969.

K. Maurin, Methods of Hilbert Spaces, Polish Scientific Publishers, War-
saw, 1972.

M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Func-
tional Analysis, Academic Press, New York, 1972.

F. Riesz and B. Nagy, Functional Analysis, Frederyck Ungar, New York,
1978.

F. Berezin and M. Shubin, The Schrödinger Equation, Kluwer, Dordrecht,
1991.

K. Yosida, Functional Analysis, Springer, New York, 1995.

P. Lax, Functional Analysis, Wiley, New York, 2002.

Von Neumann’s generalized Fourier transform. Alternatively, von Neu-
mann’s spectral theorem above can be obtained from von Neumann’s diagonaliza-
tion theorem:

Each linear self-adjoint operator is unitarily equivalent to a multiplication

operator f̂(λ) �→ λf̂(λ) on an appropriate function space.

This represents a far-reaching generalization of the classical Fourier transformation

f �→ f̂ . The precise formulation can be found in Sect. 12.2.3 of Vol. I in the setting
of the rigorous justification of the Dirac calculus.

Gelfand’s theory of C∗-algebras. It was discovered by Gelfand in the 1940s
that one can use the theory of C∗ algebras in order to construct von Neumann’s
operator calculus (see the monographs Maurin (1972) and Yosida (1995) quoted
above). Note that C∗-algebras play a fundamental role in quantum mechanics,
quantum field theory, statistical physics, the Standard Model in particle physics,
quantum gravity, and quantum information. The point is that C∗-algebras allow us
to describe states and observables in a general setting. We will thoroughly study
this in Vol. IV on quantum mathematics (see also Sect. 7.16.3ff for the definition
of C∗-algebras together with the construction of the Weyl quantization functor).

The Rellich–Kato perturbation theorem. The operator

H + C : D(H)→ X

is self-adjoint if the following conditions are satisfied:

• The operator H : D(H)→ X is self-adjoint.
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• The perturbation C : D(C) → X is linear and symmetric, and the domain of
definition D(C) contains the set D(H).

• There are fixed real numbers 0 ≤ a < 1 and b ≥ 0 such that

||Cϕ|| ≤ a||Hϕ||+ b||ϕ|| for all ϕ ∈ D(H).

In particular, the assumptions are satisfied if the operator C : X → X is linear,
symmetric, and continuous. The proof can be found in Zeidler (1995a), p. 417 (see
the references on page 1049). In 1951, this criterion was used by Kato in order to
prove that the Hamiltonian operators of molecules are essentially self-adjoint.

Classification of the spectrum. As we will discuss below, every self-adjoint
operator H : D(H)→ X generates a unique decomposition

X = Xbound ⊕Xscatt ⊕Xsing (7.106)

of the Hilbert space X into pairwise orthogonal closed linear subspaces. It turns
out that, in terms of quantum mechanics,

• the elements of Xbound correspond to bound states of the quantum system,
• and the elements of Xscatt correspond to scattering states.

The elements of Xsing are called singular states. In regular situations, the singular
space Xsing is trivial, that is, it only consists of the zero element.68

(i) Bound states: The element ϕ of X is called an eigenstate of the Hamiltonian H
iff there exists a real number E such that

Hϕ = Eϕ, ϕ �= 0.

The number E is called the eigenvalue to the eigenstate ϕ.69 By definition, the
space Xbound is the closed linear hull of the eigenstates of H. The eigenstates
of H form a complete orthonormal system of Xbound.

(ii) Classification of states by means of the spectral measure: Let the nonzero state
ϕ ∈ X be given. Consider the spectral measure μϕ on the real line.70 Then:
• ϕ ∈ Xbound iff μϕ is a point measure, that is, there exists a finite or countable

set Ω = {x1, x2, . . .} such that μϕ({xk}) > 0 for all k and μϕ(R \Ω) = 0.
• ϕ ∈ Xscatt iff the measure μϕ has a density, that is, there exists a nonnegative

integrable function � : R→ R such that μϕ(Ω) =
R

Ω
�(x)dx for all intervals

Ω.71

• ϕ ∈ Xsing iff the measure μϕ is singular, that is, there exists a set Ω of
Lebesgue measure zero such that μϕ(Ω) > 0 and μϕ(R \Ω) = 0.

The operator H maps each of the three Hilbert spaces Xbound, Xscatt and Xsing

into itself.

68 The importance of both the absolutely continuous spectrum and the subspace
Xscatt for the functional-analytic scattering theory will be discussed in Sect. 9
on page 747.

69 On page 526 we will introduce eigencostates (or generalized eigenfunctions). Such
costates do not always live in the infinite-dimensional Hilbert space X, but in
an extension of X. Observe that each eigenstate is an eigencostate, but the con-
verse is not always true. The eigenvalues of eigencostates are called generalized
eigenvalues.

70 To simplify notation, we write μϕ instead of μϕ,ϕ.
71 Equivalently, the monotone function λ �→ 〈ϕ|Eλϕ〉 is differentiable almost every-

where on R, and the first derivative is integrable over R.
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• The spectrum of the restriction H : D(H) ∩Xbound → Xbound is called the
pure point spectrum σpp(H).

• The spectrum of the restriction H : D(H) ∩ Xscatt → Xscatt is called the
absolutely continuous spectrum σac(H).

• The spectrum of the restriction H : D(H) ∩ Xsing → Xsing is called the
singular spectrum σsing(H).

We have the following representation of the spectrum of the operator H:

σ(H) = σpp(H) ∪ σac(H) ∪ σsing(H).

The union σc(H) := σac(H)∪σsing(H) of the disjoint sets σac(H) and σsing(H)
is called the continuous spectrum of H.
Recall that σ(H) is a closed subset of the real line, and the open complement
�(H) := C \ σ(H) is the resolvent set of H. We have E ∈ �(H) iff the inverse
operator (EI − H)−1 : X → X (i.e., the resolvent) exists as a linear contin-
uous operator. We say that σpp(H) is empty iff Xbound = {0}. An analogous
terminology will be used for σac(H) and σsing(H).

The discrete spectrum. By definition, the discrete spectrum σdisc of the
operator H is the set of all eigenvalues of finite multiplicity which are isolated
points of the spectrum σ(H).

The Weyl stability theorem for the essential spectrum. By definition,
the essential spectrum σess(H) of the operator H is the complement to the discrete
spectrum. That is, we have the disjoint decomposition

σ(H) = σdisc(H) ∪ σess(H).

Explicitly, the essential spectrum contains precisely the following points:

• the eigenvalues of infinite multiplicity,
• the accumulation points of the set of eigenvalues,
• the points of the continuous spectrum.

Weyl proved that we have E ∈ σess(H) iff there exists a sequence (ϕn) in the
domain of definition D(H) with

• limn→∞ ||Hϕn − Eϕn|| = 0;
• ||ϕn|| = 1 for all n and w − limn→∞ ϕn = 0;
• the sequence (ϕn) has no convergent subsequence.

Such sequences are called Weyl sequences. The following theorem tells us that the
essential spectrum of the self-adjoint operator H is invariant under compact pertur-
bations. The linear operator C : X → X is called compact iff it is continuous and
each sequence (Cϕn) contains a convergent subsequence provided (ϕn) is bounded.

Theorem 7.21 Let H : D(H) → X be a self-adjoint operator, and let C be a
linear compact self-adjoint operator. Then the operator H + C is self-adjoint and
σess(H + C) = σess(H).

A variant of this theorem was proven by Weyl in 1909.72

Characterization of the spectrum by means of the spectral family. Let
H : D(H) → X be a linear self-adjoint operator on the complex Hilbert space X.
Set Pλ0ψ := limλ→λ0+0(Eλ − Eλ0)ψ for all ψ ∈ X.

72 H. Weyl, On the completely continuous difference of two bounded quadratic
forms, Rend. Circ. Mat. Palermo 27 (1909), 373–392 (in German).
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Theorem 7.22 (i) The real number λ0 is not contained in the spectrum σ(H) of
the operator H iff the spectral family {Eλ}λ∈R is constant in some open neighborhood
of the point λ0.

(ii) The real number λ0 is an eigenvalue of H iff the spectral family jumps at the
point λ0. That is, Pλ0 �= 0. The operator Pλ0 : X → X is the orthogonal projection
operator onto the eigenspace of H to the eigenvector λ0.

(iii) The real number λ0 is contained in the essential spectrum σess(H) iff
dim(Eλ0+ε − Eλ0−ε)(X) =∞ for all ε > 0.

A comprehensive summary of spectral theory, measure theory, and other tools of
modern analysis together with applications can be found in the Appendix to Zeidler,
Nonlinear Functional Analysis and its Applications, Vol. IIB, Springer, New York,
1986. We also refer to Reed and Simon, Methods of Modern Mathematical Physics,
Vols. 1–4, Academic Press, New York, 1972–1979.

7.6.3 Rigorous Propagator Theory

The function ψ(t) = e−i(t−t0)H/�ψ(t0), for all times t ∈ R, describes the
dynamics of a quantum system corresponding to the self-adjoint Hamilto-
nian H.

Folklore

It is our goal to translate the formal propagator theory from Sect. 7.5.3 into a
rigorous mathematical setting.

Quantum Dynamics

The abstract Schrödinger equation. Consider the initial-value problem

i�ψ̇(t) = Hψ(t), t > t0, ψ(t0) = ψ0. (7.107)

This is the basic equation in quantum mechanics.

Theorem 7.23 Let H : D(H) → X be a linear self-adjoint operator on the com-
plex separable Hilbert space X. For given initial state ψ0 ∈ D(H), the Schrödinger
equation (7.107) has a unique, continuously differentiable solution ψ : [t0,∞[→ R.
Explicitly,

ψ(t) := e−i(t−t0)H/�ψ0, t ≥ t0. (7.108)

The operator e−i(t−t0)H/� : X → X is unitary for all times t ∈ X.

The proof can be found in H. Triebel, Higher Analysis, Sect. 22, Barth, Leipzig,
1989.

Generalized solution. For given initial value ψ0 ∈ X, the function ψ = ψ(t)
is well-defined by (7.108). This function is continuous on [0,∞[. In contrast to this,

if ψ0 /∈ D(H), then as a rule, it is not true that the derivative ψ̇(t) exists. Therefore,

we call ψ(t) = e−i(t−t0)H/�ψ0 with ψ0 ∈ X a generalized solution of the Schrödinger
equation (7.107). This solution is defined for all times t ∈ R.

One-parameter unitary groups. By definition, a one-parameter unitary
group on the Hilbert space X is a family {U(t)}t∈R of operators with the following
properties:
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• U(t) : X → X is unitary for all times t ∈ R.
• U(t + s) = U(t)U(s) for all t, s ∈ R, and U(0) = I.

Such a group is called strongly continuous iff the function t �→ U(t)ϕ0 is continuous
on the real line for all ϕ0 ∈ X. The following classical result was proven by Stone
(1903–1989) in 1932. 73

Theorem 7.24 Let X be a complex separable Hilbert space.
(i) If {U(t)}t∈R is a strongly continuous, one-parameter unitary group on X,

then there exists a unique self-adjoint operator H : D(H)→ X such that

U(t) = e−itH/�ϕ0 for all t ∈ R. (7.109)

We have Hϕ0 = limt→0
U(t)ϕ0−ϕ0

t
. This limit exists precisely iff ϕ0 ∈ D(H). The

operator H is called the generator of the one-parameter unitary group.
(ii) Conversely, if H : D(H) → X is a self-adjoint operator, then formula

(7.109) defines a strongly continuous, one-parameter unitary group on X.

The proof can be found in Zeidler, Nonlinear Functional Analysis and its Applica-
tions, Vol. II/A, Sect. 19.21, Springer, New York, 1986.

The Feynman propagator. Let t, t0 ∈ R. In terms of Theorem 7.23, the
unitary operator

P (t, t0) := e−i(t−t0)H/�

on the Hilbert space X is called the propagator at time t (generated by the Hamil-
tonian H with respect to the initial time t0). The truncated operator74

P+(t, t0) := P (t, t0)θ(t− t0), t ∈ R

is called the retarded propagator (or the Feynman propagator) at time t (with
respect to the initial time t0.) Obviously, P (t0, t0) = I. We get

P (t, t0) = P (t, τ)P (τ, t0) for all t, τ, t0 ∈ R.

This so-called reversible propagator equation (or group equation) follows from

U(t− τ)U(τ − t0) = U(t− τ + τ − t0) = U(t− t0),

which is the consequence of the fact that {U(t)}t∈R forms a group.

Euclidean Quantum Dynamics

The Euclidean Schrödinger equation. Consider the initial-value problem

ψ̇(t) = −Hψ(t), t > t0, ψ(t0) = ψ0. (7.110)

We assume that the linear self-adjoint operator H : D(H) → X is nonnegative,
that is, 〈ϕ|Hϕ〉 ≥ 0 for all ϕ ∈ D(H). Observe that both the diffusion equation
and the heat conduction equation are of this type. Since diffusion is an irreversible
process, we expect that the initial condition ψ0 does not uniquely determine the
state ψ(t) in the past t < t0. Mathematically, this is reflected by the fact that the
solution (7.111) below is not defined for t < t0.

73 M. Stone, On one-parameter unitary groups in Hilbert space, Ann. Math. 33
(1932), 643–648.

74 Recall that θ(t−t0) := 1 if t ≥ t0, and θ(t−t0) := 0 if t < t0 (Heaviside function).
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Theorem 7.25 For given ψ0 ∈ D(H), the Euclidean Schrödinger equation (7.110)
has a unique, continuously differentiable solution ψ : [t0,∞[→ R. This solution is
given by

ψ(t) = e−(t−t0)Hψ0, t ≥ t0. (7.111)

The operator family {e−tH}t≥0 forms a non-expansive semigroup, that is, the linear

self-adjoint operators e−tH : X → X satisfy

e−tHe−sH = e−(t+s)H for all t, s ≥ 0,

as well as e−tH
|t=0 = I, and supt≥0 ||e−tH || ≤ 1.

The proof can be found in H. Triebel, Higher Analysis, Sect. 22, Barth, Leipzig,
1989. In order to understand the specifics of the Euclidean quantum dynamics,
suppose that the nonnegative self-adjoint operator H : D(H)→ X has a complete
orthonormal system ϕ0, ϕ1, ϕ2, . . . of eigenvectors with Hϕk = Ekϕk for all k. Then
Ek = Ek〈ϕk|ϕk〉 = 〈ϕk|Hϕk〉 ≥ 0 for all k. For ψ0 ∈ X, the Parseval equation tells
us that ||ψ0||2 =

P∞
k=1 |〈ϕk|ψ〉|2. The series

e−tHψ0 =
∞
X

k=1

e−Ekt〈ϕk|ψ〉ϕk (7.112)

is convergent iff
P∞

k=0 e−2tEk |〈ϕk|ψ〉|2 < ∞. This is true if t ≥ 0 because of 0 ≤
e−Ekt ≤ 1. However, if t < 0, then the convergence of (7.112) can be violated. This
reflects the irreversibility of diffusion and heat conduction processes.

The Euclidean propagator. Let t ≥ t0. The operator

P (t, t0) := e−(t−t0)H

is non-expansive on the Hilbert space X, that is supt≥t0
||e−(t−t0)H || ≤ 1. This

operator is called the Euclidean propagator at time t (generated by the Hamiltonian
H with respect to the initial time t0). Obviously, P (t0, t0) = I. Furthermore, we
have

P (t, t0) = P (t, τ)P (τ, t0) for all t ≥ τ ≥ t0.

This so-called irreversible propagator equation (or semi-group equation) follows

from e−(t−τ)He−(τ−t0)H = e−(t−τ+τ−t0)H = e−(t−t0)H , by Theorem 7.25.
Historical remarks. In the 19th century, mathematicians and physicists (e.g.,

Gauss, Green, Fourier, Riemann and Maxwell) discovered that one can use integral
formulas of the type

u(x) =

Z

G(x, y)f(y)dy

in order to represent the solutions u of partial differential equations of the form
Lu = f which appear in hydrodynamics, gas-dynamics, elasticity, heat conduction,
diffusion, and electrodynamics. The integral kernel G is called the Green’s function.

Functional analysis was founded by Hilbert in the early 1910s in order to gen-
eralize Fredholm’s theory of integral equations. At this time, differential equations
were reduced to integral equations with Green’s functions as integral kernels. In
von Neumann’s approach to quantum mechanics in the late 1920s, differential op-
erators were regarded as independent mathematical objects, namely, as self-adjoint
operators in a Hilbert space. In contrast to this, in his monograph
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Principles of Quantum Mechanics,

Clarendon Press, Oxford, 1930, Dirac used his calculus in order to construct (gener-
alized) integral kernels like the Dirac delta function. In the preface to his monograph

Mathematical Foundations of Quantum Mechanics,

Springer, Berlin 1932, von Neumann pointed out that he did not use Dirac’s method
because of lack of mathematical rigor.

In the 1940s, Feynman was strongly influenced by Dirac’s approach. The Feyn-
man propagators are nothing other than special Green’s functions. In the 1950s, the
two approaches due to Dirac and von Neumann were combined with each other by
Gelfand; he used Laurent Schwartz’s theory of generalized functions founded in the
1940s and Grothendieck’s theory of nuclear spaces. As a typical example, we will
consider the free quantum particle in Sect. 7.6.4. In the 1960s, the theory of pseudo-
differential operators was created by Kohn and Nirenberg; this approach represents
a further generalization of the theory of operator kernels. In quantum mechanics,
this is related to the Weyl calculus introduced in the late 1920s by Hermann Weyl
(see Sect. 7.12 on Weyl quantization).

Rigorous Operator Kernel

The operator kernel knows all about the operator.
Folklore

Let N = 1, 2, . . ., and let D be a dense subset of L2(R
N ). The linear continuous

operator A : L2(R
N )→ L2(R

N ) is said to have a continuous kernel iff there exists
a continuous function A : R

2N → C such that75

〈χ|Aϕ〉 =

Z

R2N

χ(x)†A(x, y)ϕ(y)dxNdyN (7.113)

for all ϕ, χ ∈ D. This kernel is unique. In fact, if A and B are two continuous kernels
corresponding to the operator A, then

Z

R2N

(χ(x)ϕ(y)†)†(A(x, y)− B(x, y))dxNdyN = 0

for all ϕ, χ ∈ D. Since the set of functions (x, y) �→ χ(x)ϕ(y)† with ϕ, χ ∈ D is
dense in the complex Hilbert space L2(R

2N ), we obtain the desired result A(x, y) =
B(x, y) on R

2N .
More generally, if relation (7.113) is true for a function A ∈ L2(R

2N ), then this
function is uniquely determined (as an element of the Hilbert space L2(R

2N ) by
the operator A. The function A is called the L2-kernel of the operator A. Equation
(7.113) generalizes the matrix equation

χ†Aϕ =

n
X

j,k=1

χ†
jAjkϕk.

75 In classical mathematics, one uses (Aϕ)(x) =
R

RN A(x, y)ϕ(y)dyN . This is equiv-
alent to (7.113). However, the bilinear formulation (7.113) is crucial for defining
the notion of kernel for generalized functions.
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Therefore, the kernel (x, y) �→ A(x, y) can be regarded as a continuous version of
the complex (n× n)-matrix (Ajk). The kernel A is called self-adjoint iff

A(x, y)† = A(y, x) for all x, y ∈ R
N .

This generalizes self-adjoint matrices. In 1904 Hilbert discovered the importance of
self-adjoint integral kernels for both

• the spectral theory of integral operators and
• the Fourier expansions to regular boundary-value problems for second-order or-

dinary differential equations (i.e., the regular Sturm–Liouville problems).

In 1910, Weyl generalized this to singular Sturm–Liouville problems which are
typical for computing the spectra of atoms and molecules in quantum mechanics.76

7.6.4 The Free Quantum Particle as a Paradigm of Functional
Analysis

Extend the pre-Hamiltonian to a self-adjoint operator on an appropriate
Hilbert space X of quantum states, and use costates related to a Gelfand
triplet with respect to X.

The golden rule

The modern theory of differential and integral equations is based on functional
analysis, which was created by Hilbert (1862–1943) in the beginning of the 20th
century.77 The development of functional analysis was strongly influenced by the
questions arising in quantum mechanics and quantum field theory. In this section,
we want to study thoroughly how the motion of a free quantum particle on the real
line is related to fundamental notions in functional analysis.

This is Ariadne’s thread in functional analysis.

This way, the formal considerations from Sect. 7.5.3 will obtain a sound basis for
the free quantum particle.

The main idea of the modern strategy in mathematics and physics consists in
describing differential operators and integral operators by abstract operators related
to generalized integral kernels.

(i) In the language used by physicists, this concerns the Dirac calculus based on
Dirac’s delta function and Green’s functions (also called Feynman propaga-
tors).

(ii) In the language used by mathematicians this is closely related to:
• Lebesgue’s passage from the Riemann integral to the Lebesgue integral based

on measure theory in about 1900;
• von Neumann’s passage from formally self-adjoint operators to self-adjoint

operators and his generalization of the classical Fourier transform via spec-
tral theory in the late 1920s;

• Laurent Schwartz’s theory of generalized functions including the kernel the-
orem in the 1940s;

76 Weyl used methods on singular integral equations. These methods were devel-
oped in Weyl’s Ph.D. thesis advised by Hilbert in Göttingen in 1908.

77 As an introduction, we recommend P. Lax, Functional Analysis, Wiley, New
York, 2002, and E. Zeidler, Applied Functional Analysis, Vols. 1, 2, Springer,
New York, 1995.
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• the generalization of von Neumann’s spectral theory by Gelfand and Kost-
yuchenko in 1955 (based on quantum costates as generalized functions and
the corresponding Gelfand triplets);

• the extension of the Gelfand–Kostyuchenko approach to general nuclear
spaces by Maurin in 1959.78

Tempered Distributions

In order to translate the very elegant, but formal Dirac calculus into math-
ematics, one has to leave the Hilbert space of states used by von Neumann
in about 1930. Folklore

In what follows, we will use

• the space S(R) of smooth test functions ϕ : R → C which decrease rapidly at
infinity,

• and the space S ′(R) of tempered distributions introduced on page 615 of Vol. I.

Our basic tools will be

• the Fourier transform and
• the language of tempered distributions, and Gelfand triplets.

The main idea of our functional-analytic approach to the free quantum particle on
the real line is to study the three energy operators

Hpre ⊆ Hfree ⊆ Hd
pre.

Here, we start with Hpreϕ := − �
2

2m
d2ϕ
dx2 for all ϕ ∈ S(R). This is the one-dimensional

Laplacian. We first extend the (self-dual and formally self-adjoint) pre-Hamiltonian
Hpre : S(R)→ S(R) on the space of test functions S(R) to the dual Hamiltonian

Hd
pre : S ′(R)→ S ′(R)

on the space of tempered distributions. The restriction of the operator Hd
pre to the

Hilbert space L2(R) yields the self-adjoint Hamiltonian

Hfree : D(Hfree)→ L2(R)

used by von Neumann. Here, S(R) ⊆ D(Hfree) ⊆ L2(R) where the domain D(Hfree)
of the free Hamiltonian Hfree is the Sobolev space W 2

2 (R). In general, Sobolev spaces
play a crucial role in the modern theory of linear and nonlinear partial differential
equations. We recommend:

L. Evans, Partial Differential Equations, Amer. Math. Soc., Providence,
Rhode Island, 1998.

Yu. Egorov and M. Shubin, Foundations of the Classical Theory of Partial
Differential Equations, Springer, New York, 1998.

78 I. Gelfand and A. Kostyuchenkov, On the expansion in eigenfunctions of differ-
ential operators and other operators, Doklady Akad. Nauk 103 (1955), 349–352
(in Russian).
K. Maurin, General eigenfunction expansion and the spectral representation of
general kernels: a generalization of distribution theory to Lie groups, Bull. Acad.
Sci. Polon. Sér. math. astr. et phys. 7 (1959), 471–479 (in German).
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Yu. Egorov, A. Komech, and M. Shubin, Elements of the Modern Theory
of Partial Differential Equations, Springer, New York, 1999.

P. Lax, Hyperbolic Partial Differential Equations, Courant Institute, New
York, 2007.

R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods
for Science and Technology, Vols. 1–6, Springer, New York, 1988.

H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1992.

We also refer to the author’s monographs: Zeidler (1986), Vols. 1–4, and Zeidler
(1995a), (1995b) (see the references on page 1049).

The Schrödinger Equation

The instationary Schrödinger equation. The motion of a free quantum particle
of mass m > 0 on the real line is governed by the following initial-value problem

i�ψt(x, t) = − �
2

2m
ψxx(x, t), x, t ∈ R, ψ(0, x) = ψ0(x). (7.114)

Here, the wave function ψ0 is given at the initial time t = 0.
The stationary Schrödinger equation. Using the classical Fourier ansatz

ψ(x, t) := e−itE/�ϕ(x), equation (7.114) implies the eigenvalue problem

− �
2

2m
ϕ′′(x) = Eϕ(x), x ∈ R. (7.115)

We are looking for a nonzero function ϕ and a complex number E.

The Weyl lemma tells us that each solution of (7.115), in the sense of
distributions, is a classical smooth function.79

Explicitly, all the solutions of (7.115) are given by

ϕp(x) :=
eipx/�

√
2π�

, x ∈ R

with the energy E(p) := p2

2m
. Here, p is an arbitrary real number. For any p ∈ R,

we have

−i�
dϕp

dx
= pϕp.

The normalization factor of ϕp is chosen in such a way that we obtain the Parseval
equation (7.118) below.

The wave number. To simplify notation, physicists introduce the wave num-
ber k := p/�, which has the physical dimension of inverse length. Furthermore, for
fixed k ∈ R, let

χk(x) :=
eikx

√
2π

for all x ∈ R.

79 H. Weyl, The method of orthogonal projection in potential theory, Duke Math.
J. 7 (1940), 414–444. An elementary proof of the Weyl lemma for the Laplacian
can be found in Zeidler (1986), Vol. IIA, p. 78 (see the references on page 1049).
This is the origin of Hörmander’s theory of hypoelliptic differential operators
(see Sect. 8.6.3).
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Then − �
2

2m
χ′′

k = Ekχk for all k ∈ R with the energy

Ek =
�

2k2

2m
.

Hence |k| =
√

2mEk

�
.

Particle stream. If k > 0 (resp. k < 0), then the function

ψ(x, t) := e−itEk/�χk(x), x, t ∈ R

describes a homogeneous stream of free particles which moves from left to right
(resp. right to left). The particles of the stream have the momentum p = �k, the
velocity

v =
�k

m
,

and the particle density � = |χk|2 = 1
2π

(see Sect. 7.4.1 on page 459).
The main trouble. The plane-wave functions χk possess a well-defined physi-

cal meaning, but they do not live in the Hilbert space L2(R), since |χk(x)| = const
and hence

R

R
|χk(x)|2dx =∞.

Thus, the Hilbert space setting is not enough for studying quantum me-
chanics.

In order to overcome this difficulty, one has to introduce the concept of costates and
eigencostates (generalized eigenfunctions). This will be done below. Before study-
ing the Schrödinger equation (7.114) and its Hamiltonian Hfree, we will investigate
Gelfand triplets, the extended Fourier transform, Sobolev spaces, the position op-
erator, and the momentum operator.

The Extended Fourier Transform

We want to study the operators Fpre ⊆ F ⊆ Fd
pre, where F : L2(R) → L2(R) is

unitary (i.e., F is a Hilbert space isomorphism). This is the key property of the
Fourier transform. As we will show below, in terms of physics the Fourier transform
describes the duality between position and momentum.

The classical Fourier transform. Recall that χk(x) := eikx
√

2π
for all x ∈ R

and all wave numbers k ∈ R. In terms of the function χk, the Fourier transform ϕ̂
of the test function ϕ ∈ S(R) reads as

ϕ̂(k) =

Z

R

χk(x)†ϕ(x) dx, for all k ∈ R. (7.116)

The inverse Fourier transform is given by

ϕ(x) :=

Z

R

χk(x)ϕ̂(k) dk for all x ∈ R. (7.117)

Here, the function ϕ is represented as a superposition of plane waves χk. For all
test functions ψ,ϕ ∈ S(R), we have the crucial Parseval equation

Z

R

ψ(x)†ϕ(x) dx =

Z

R

ψ̂(k)†ϕ̂(k) dk, (7.118)
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which shows that the Fourier transform respects the inner product on the Hilbert
space L2(R). Setting (Fpreϕ)(k) := ϕ̂(k) for all k ∈ R, we obtain the operator

Fpre : S(R)→ S(R)

called the classical Fourier transform (or the pre-Fourier transform). This operator
is linear, bijective, and sequentially continuous (see Vol. I, p. 614). Moreover, for
all ϕ,ψ ∈ R, we have the following two relations:

(U) 〈ψ|ϕ〉 = 〈Fpreψ|Fpreϕ〉 (pre-unitary), and

(S)
R

R
ψ(x) · (Fpreϕ)(x) dx =

R

R
(Fpreψ)(x) · ϕ(x) dx (self-duality).

Relation (U) coincides with the Parseval equation (7.118), whereas relation (S)
follows from interchanging integration. Explicitly,

Z

R

ψ(x)

„

Z

R

e−ikxϕ(k)dk

«

dx =

Z

R

ϕ(k)

„

Z

R

e−ikxψ(x)dx

«

dk.

Finally, use the replacement k ⇔ x.
The Gelfand triplet. It is crucial to leave the Hilbert space L2(R) and to use

the extension S ′(R) of L2(R) by considering the functions in L2(R) as tempered
distributions. To this end, we introduce the Gelfand triplet (also called the rigged
Hilbert space L2(R)):

S(R) ⊆ L2(R) ⊆ S ′(R).

The elements of L2(R) (resp. S ′(R)) are called states (resp. costates). Recall that
the inner product on the complex separable Hilbert space L2(R) is given by

〈ψ|ϕ〉 =

Z

R

ψ(x)†ϕ(x)dx for all ϕ,ψ ∈ L2(R).

The linear space S(R) of test functions is dense in L2(R). For any given function
ψ ∈ L2(R), we define

Tψ(ϕ) :=

Z

R

ψ(x)ϕ(x)dx for all ϕ ∈ S(R).

Then, Tψ is a tempered distribution. The map ψ �→ Tψ is an injective map from
L2(R) into S ′(R). Therefore, we may identify ψ with Tψ. This will frequently be
done in the future, by using the symbol ψ instead of Tψ. In addition, if ψ ∈ L2(R),
then we define the costate 〈ψ| by setting

〈ψ|(ϕ) :=

Z

R

ψ(x)†ϕ(x)dx for all ϕ ∈ S(R).

Here, the costate 〈ψ| is a tempered distribution. Obviously, 〈ψ|(ϕ) = 〈ψ|ϕ〉. Finally,
for k ∈ R, let us define the costate 〈k| by setting

〈k|(ϕ) :=

Z

R

χ†
k(x)ϕ(x)dx for all ϕ ∈ S(R).

Motivated by the Dirac calculus, we will write 〈k|ϕ〉 instead of 〈k|(ϕ). Let ϕ ∈ S(R).
The relation to the Fourier transform is given by

〈k|ϕ〉 = ϕ̂(k) for all k ∈ R.
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The extended Fourier transform. Recall that Fpreϕ := ϕ̂ for all test func-
tions ϕ ∈ S(R). For any tempered distribution T ∈ S ′(R), define

(Fd
preT )(ϕ) := T (Fpreϕ) for all ϕ ∈ S(R).

The operator Fd
pre : S ′(R) → S ′(R) is linear and bijective. Next we want to show

that

Fd
preψ = Fpreψ for all ψ ∈ S(R). (7.119)

Hence Fpre ⊆ Fd
pre. For the proof, fix ψ ∈ S(R). By the self-duality of the Fourier

transform considered on page 513,

Fd
preTψ = TFpreψ.

Thus, identifying ψ with Tψ, we get the claim (7.119). Our key definition reads as

Fψ := Fd
preψ for all ψ ∈ L2(R).

In other words, the operator F is the restriction of the operator Fd
rm to the Hilbert

space L2(R). The Plancherel theorem tells us that the operator

F : L2(R)→ L2(R)

is unitary. That is, we have the Parseval equation 〈Fψ|Fϕ〉 = 〈ψ|ϕ〉 for all functions
ψ,ϕ ∈ L2(R). Explicitly,

(Fψ)(k) = lim
R→+∞

1√
2π

Z R

−R

e−ikxψ(x)dx for all k ∈ R.

The convergence is to be understood in the sense of the Hilbert space L2(R).
Simplifying notation. Motivated by Fpre ⊆ F ⊆ Fd

pre, we write F instead of

Fd
pre (and Fpre). This way, we get the extended Fourier transform

F : S ′(R)→ S ′(R)

with (FT )(ϕ) = T (Fϕ) for all T ∈ S ′(R) and all ϕ ∈ S(R).
The Sobolev space Wm

2 (R). Let m = 1, 2, . . . By definition,

Wm
2 (R) := {ϕ ∈ L2(R) : ϕ(j) ∈ L2(R), j = 1, . . . ,m}. (7.120)

Here, the function ϕ and its jth derivatives ϕ(j), j = 1, 2, . . . , are to be understood
in the sense of tempered distributions (see (7.121)). Thus, Wm

2 (R) ⊆ S ′(R). The
space Wm

2 (R) becomes a complex separable Hilbert space equipped with the inner
product

〈ψ|ϕ〉 :=
m
X

j=0

Z

R

ψ(j)(x)†ϕ(j)(x)dx.

In 1936, spaces of this type were introduced by Sobolev (1885–1967) in order to
study singular solutions of wave equations. The Fourier transform allows the fol-
lowing useful characterization of Sobolev spaces. Let m = 1, 2, . . .

Proposition 7.26 ψ ∈Wm
2 (R) iff ψ ∈ L2(R) and

R

R
|k|2m|ψ̂(k)|2dp <∞.
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Costates and Dual Operators

The theory of distributions is based on duality. Costates are dual states.
Folklore

Our goal is to construct eigencostates for the following observables: position, mo-
mentum, and energy of a free particle. The following investigations serve as prepa-
ration for this. Fix the state ψ ∈ L2(R). There are two possibilities for assigning a
costate to ψ, namely,

• Tψ (i.e., Tψ(ϕ) :=
R

R
ψ(x)ϕ(x)dx) for all ϕ ∈ S(R)) , and

• Tψ† (i.e., Tψ†(ϕ) :=
R

R
ψ(x)†ϕ(x)dx for all ϕ ∈ S(R)).

The map ψ �→ Tψ (resp. ψ �→ Tψ†) is injective and linear (resp. antilinear). Accord-
ing to Dirac, we set

〈ψ| := Tψ† .

Moreover, we write |ψ〉 instead of ψ. In particular, for all ϕ ∈ S(R),

〈ψ|(ϕ) = Tψ†(ϕ) =

Z

R

ψ(x)†ϕ(x)dx = 〈ψ|ϕ〉.

Dual operators. In what follows, duality plays the crucial role. Let us assume
that

(H) The linear operator A : S(R)→ S(R) is sequentially continuous.

This means that limn→∞ ϕn = ϕ in S(R) implies limn→∞ Aϕn = Aϕ in S(R) (see
Vol. I, p. 537). We want to construct the dual operator

Ad : S ′(R)→ S ′(R).

To this end, choose T ∈ S ′(R), and define

(AdT )(ϕ) := T (Aϕ) for all ϕ ∈ R.

Then AdT ∈ S ′(R). In fact, limn→∞ ϕn = ϕ in S(R) implies

lim
n→∞

(AdT )(ϕn) = lim
n→∞

T (Aϕn) = T ( lim
n→∞

Aϕn) = T (Aϕ) = (AdT )(ϕ).

Obviously, the operator Ad is linear.
Formally self-adjoint operators and pre-observables. Suppose that there

exists a formally adjoint operator A† : S(R) → S(R) to the operator A from (H)
above (see Problem 7.4). Then

Ad〈ψ| = 〈A†ψ| for all ψ ∈ S(R).

Indeed, for all ϕ ∈ S(R), we obtain

(Ad〈ψ|)(ϕ) = 〈ψ|(Aϕ) = 〈ψ|Aϕ〉 = 〈A†ψ|ϕ〉 = 〈A†ψ|(ϕ).

In particular, if the operator A is formally self-adjoint (i.e., A = A†), then we obtain
Ad〈ψ| = 〈Aψ| for all ψ ∈ S(R).

Self-dual operators and the Fourier transform. The operator A from (H)
above is called self-dual iff
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Z

R

ψ(x) · (Aϕ)(x)dx =

Z

R

(Aψ)(x) · ϕ(x)dx for all ϕ,ψ ∈ S(R).

Then (AdTψ) = TAψ for all ψ ∈ S(R). Identifying ψ with Tψ, we obtain

Adψ = Aψ for all ψ ∈ S(R).

Hence A ⊆ Ad. To simplify notation, we frequently denote the dual operator Ad by
the symbol

A : S ′(R)→ S ′(R),

and we regard this as an extension of the operator A : S(R) → S(R). A typical
example is the Fourier transform considered on page 512.

Antiself-dual operators and the derivative operator. The operator A
from (H) above is called antiself-dual iff

Z

R

ψ(x) · (Aϕ)(x)dx = −
Z

R

(Aψ)(x) · ϕ(x)dx for all ϕ,ψ ∈ S(R).

Then −AdTψ = TAψ for all ψ ∈ S(R). Identifying ψ with Tψ, we obtain

−Adψ = Aψ for all ψ ∈ S(R).

Hence A ⊆ (−Ad). To simplify notation, we frequently denote the operator −Ad

by the symbol
A : S ′(R)→ S ′(R),

and we regard this as an extension of A : S(R) → S(R). As a typical example, let
us consider the derivative operator A := d

dx
. Integration by parts shows that this

operator is antiself-dual.80 This way, we obtain the extension

d

dx
: S ′(R)→ S ′(R).

Let T ∈ S ′(R). Then ( d
dx
T )(ϕ) = T (− dϕ

dx
) for all ϕ ∈ S(R). This is the usual

definition of the derivative of a tempered distribution. More generally, let T ∈ S ′(R).
The nth derivative of T is defined by

„

dnT

dxn

«

(ϕ) := (−1)nT

„

dnϕ

dxn

«

, n = 1, 2, . . . (7.121)

for all test functions ϕ ∈ S(R). This definition is based on the fact that the operator
dn

dxn : S(R)→ S(R) is self-dual (resp. antiself-dual) if n is even (resp odd).

Each tempered distribution has derivatives of arbitrary order, which are
again tempered distributions.

80 For n = 1, 2, . . . and all ϕ,ψ ∈ S(R), integration by parts yields

Z

R

dnψ(x)

dxn
ϕ(x) dx = (−1)n

Z

R

ψ(x)
dnϕ(x)

dxn
dx.
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Eigencostates

For quantum mechanics, it is crucial to replace eigenvectors by eigen-
costates.

Folklore

Let A : S(R)→ S(R) be a linear operator, and let {Tγ}γ∈Γ be a system of nonzero
tempered distributions Tγ ∈ S ′(R) with

AdTγ = λγTγ for all γ ∈ Γ, (7.122)

where λγ ∈ C for all γ ∈ Γ. Explicitly, this means that

Tγ(Aϕ) = λγT (ϕ) for all ϕ ∈ S(R), γ ∈ Γ.

Then all the distributions Tγ are called eigencostates (or generalized eigenfunctions)
of the operator A. The system {Tγ} is called complete iff, for any given test function
ϕ ∈ S(R),

Tγ(ϕ) = 0 for all γ ∈ Γ implies ϕ = 0.

In addition, if there exists a measure μ on the index set Γ with the generalized
Parseval equation

Z

R

ψ(x)†ϕ(x)dx =

Z

Γ

Tγ(ψ)†Tγ(ϕ) dμ(γ) (7.123)

for all ϕ,ψ ∈ S(R), then the system {Tγ}γ∈Γ is called a complete orthonormal
system of eigencostates of the operator A. Obviously, the latter property is stronger
than completeness. In fact, if Tγ(ϕ) = 0 for all γ, then 〈ϕ|ϕ〉 = 0, and hence ϕ = 0.
The complex numbers Tγ(ϕ) are called the generalized Fourier coefficients of the
test function ϕ ∈ S(R). The function

γ �→ Tγ(ϕ)

is called the generalized Fourier transform of the function ϕ ∈ S(R) with respect
to the operator A.

The Dirac calculus. It turns out that the Dirac calculus represents a very
elegant method in order to formulate quantum mechanics and quantum field theory
in a very elegant way. For ϕ ∈ S(R), we use the following notation:

• Tγ ⇒ 〈γ|,
• Tγ(ϕ)⇒ 〈γ|ϕ〉, and
• 〈ϕ|γ〉 := 〈γ|ϕ〉†.
Then, the generalized Parseval equation (7.123) reads as

〈ψ|ϕ〉 =

Z

Γ

〈ψ|γ〉〈γ|ϕ〉 dμ(γ) for all ϕ,ψ ∈ S(R). (7.124)

Mnemonically, in order to obtain (7.124) we write 〈ψ|ϕ〉 = 〈ψ| · I · |ϕ〉 together with

I =

Z

Γ

|γ〉〈γ| dμ(γ).

This is Dirac’s formal completeness relation.
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The Position Operator

We want to study the following three operators Qpre ⊆ Q ⊆ Qd
pre.

• Let ϕ ∈ S(R). The pre-position operator Qpre : S(R) → S(R) is defined by
(Qpreϕ)(x) := xϕ(x) for all x ∈ R. The operator Qpre is formally self-adjoint and
self-dual. 81

• Let T ∈ S ′(R). The dual position operator Qd
pre : S ′(R) → S ′(R) is defined by

(Qd
preT )(ϕ) := T (Qpreϕ) for all ϕ ∈ S(R). This means that

(Qd
preT )(ϕ) := T (Qpreϕ) for all ϕ ∈ S(R).

• The operator Q : D(Q) → L2(R) is the restriction of Qd
pre to L2(R). Explicitly,

we set

D(Q) := {ϕ ∈ L2(R) :

Z

R

|xϕ(x)|2dx <∞},

and (Qϕ)(x) := xϕ(x) for all x ∈ R and all ϕ ∈ D(Q).

The spectral family of the position operator. Fix λ ∈ R, and choose
ϕ ∈ L2(R). Define the operator Eλ : L2(R)→ L2(R) by setting

(Eλϕ)(x) := eλ(x)ϕ(x) for all x ∈ R, (7.125)

where eλ is the characteristic function of the open interval ]−∞, λ[ (see (7.100) on
page 497).

Proposition 7.27 The operator family {Eλ}λ∈R is the spectral family of the self-
adjoint position operator Q : D(Q)→ L2(R).

Proof. The self-adjointness of Q will be proved in Problem 7.15. For all functions
ϕ,ψ ∈ L2(R),

〈ψ|Eλϕ〉 =

Z ∞

−∞
ψ(x)†eλ(x)ϕ(x)dx =

Z λ

−∞
ψ(x)†ϕ(x)dx.

Hence d
dλ
〈ψ|Eλϕ〉 = ψ(λ)†ϕ(λ). This implies d〈ψ|Eλϕ〉 = ψ(λ)†ϕ(λ)dλ. Therefore,

〈ψ|Qϕ〉 =

Z ∞

−∞
ψ(x)†xϕ(x) =

Z ∞

−∞
λ · d〈ψ|Eλϕ〉.

Finally, one checks easily that the conditions (S1)–(S4) for a spectral family (for-
mulated on page 502) are satisfied. By the uniqueness statement from Corollary
7.20 on page 502, {Eλ}λ∈R is the spectral family of Q. �

Let the function f : R → C be measurable (e.g., piecewise continuous) and
bounded on all compact intervals. Define

D(f(Q)) := {ϕ ∈ L2(R) :

Z

R

|f(x)|2|ϕ(x)|2dx <∞}.

81 In fact, for all ϕ,ψ ∈ S(R), we have
R

R
ψ(x)† · xϕ(x)dx =

R

R
(xψ(x))†ϕ(x)dx and

Z

R

ψ(x) · xϕ(x) dx =

Z

R

xψ(x) · ϕ(x) dx.
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For all ϕ ∈ D(f(Q)) and all ψ ∈ L2(R), set

〈ψ|f(Q)ϕ〉 :=

Z

R

f(λ) · d〈ψ|Eλϕ〉 =

Z

R

ψ(x)†f(x)ϕ(x)dx.

This way, we uniquely obtain the linear operator f(Q) : D(f(Q)) → L2(R). This
operator is self-adjoint (resp. continuous on L2(R)) if the function f is real-valued
(resp. bounded on R).

Measurement of position. Let ψ ∈ L2(R) with
R

R
|ψ(x)|2dx = 1. According

to the general approach, the spectral family of the observable Q uniquely determines
the measurements of Q in the normalized state ψ.

• Distribution function F: The probability of measuring the observable Q in the
open interval ]−∞, λ[ is given by

F(λ) := 〈ψ|Eλψ〉 =

Z λ

−∞
|ψ(x)|2dx.

This is the probability of measuring the position of the particle in the interval
]−∞, λ[.

• The probability for measuring the position of the particle in the interval [x0, x1]
is equal to

R

[x0,x1]
dF(λ) =

R x1
x0
|ψ(x)|2dx.

• Mean position of the particle: x̄ =
R

R
x dF(x) =

R

R
x|ψ(x)|2dx.

• Square of the position fluctuation:

(Δx)2 =

Z

R

(x− x̄)2 dF(x) =

Z

R

(x− x̄)2|ψ(x)|2dx.

The complete orthonormal system of eigencostates of the position
operator.

Proposition 7.28 (i) The operator Q : D(Q)→ L2(R) has no eigenvectors in the
Hilbert space L2(R).

(ii) For the spectrum, σ(Q) = σess(Q) = ]−∞,∞[.
(iii) Xscatt = L2(R), and σac(Q) = σ(Q).

Proof. Ad (i). Suppose that Qψ = λψ, where ψ ∈ L2(R) and λ ∈ R. Then we
obtain (x− λ)ψ(x) = 0 for almost all x ∈ R. Hence ψ(x) = 0 for almost all x ∈ R.
Thus, ψ = 0 in L2(R).

Ad (ii). Use Theorem 7.22 on page 505 and (7.125).
Ad (iii). For any ϕ ∈ L2(R), the function λ �→ 〈ϕ|Eλϕ〉 is differentiable almost

everywhere on R, and the first derivative is integrable over R. Thus, ϕ ∈ Xscatt (see
page 503). �

Fix x ∈ R. Let us consider the Dirac delta distribution δx ∈ S ′(R) defined by
δx(ϕ) := ϕ(x) for all ϕ ∈ S(R).

Proposition 7.29 The system {δx}x∈R represents a complete orthonormal system
of eigencostates of the position operator Qpre.

Proof. Let ϕ,ψ ∈ S(R). For any parameter x ∈ R,

Qd
preδx = xδx.

In fact, δx(Qpreϕ) = xϕ(x) = xδx(ϕ). Furthermore, we have the generalized Parse-

val equation 〈ψ|ϕ〉 =
R

R
ψ(x)†ϕ(x)dx =

R

R
δx(ψ)†δx(ϕ)dx. �
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In the setting of the Dirac calculus, physicists write 〈x| instead of δx. Then

〈ψ|ϕ〉 =

Z

R

〈ψ|x〉〈x|ϕ〉 dx for all ϕ,ψ ∈ S(R).

Mnemonically, this remains true for all ψ,ϕ ∈ L2(R). Dirac’s formal completeness
relation reads as

I =

Z

R

|x〉〈x| dx.

The relation between eigencostates and the spectral family. Set

ψ0(x) := e−x2/2 for all x ∈ R.

Then ψ0 ∈ S(R). This function generates the (not normalized) Gaussian measure

μ(J) :=

Z

J

|ψ0(x)|2dx =

Z

J

e−x2
dx

for all intervals J on the real line. Fix λ ∈ R. For all test functions ϕ ∈ S(R), define

Tλ(ϕ) :=
d〈ψ0|Eλϕ〉
d〈ψ0|Eλψ0〉

.

Proposition 7.30 The family {Tx}x∈R of tempered distributions with

Tx =
δx

ψ0(x)

represents a complete orthonormal system of eigencostates of the position opera-
tor Qpre. Using the Gaussian measure dμ(x) = ψ0(x)2dx, we have the generalized
Parseval equation

Z

R

ψ(x)†ϕ(x)dx =

Z

R

Tx(ψ)†Tx(ϕ) dμ(x) for all ϕ,ψ ∈ S(R).

Proof. By the proof of Prop. 7.27, d〈ψ0|Eλϕ〉 = ψ0(λ)ϕ(λ)dλ. Hence

Tλ(ϕ) =
ψ0(λ)ϕ(λ)

ψ0(λ)2
=

ϕ(λ)

ψ0(λ)
.

Finally, use δx(ϕ) = ϕ(x). �

The square Q2 of the position operator. By von Neumann’s functional
calculus, the self-adjoint operator Q2 : D(Q2)→ L2(R) has the domain of definition

D(Q2) = {ψ ∈ L2(R) :

Z

R

x4|ψ(x)|2dx <∞}.

For λ ∈ R, we get (λI −Q2)ψ(x) = f(x). If λ < 0 and f ∈ L2(R) then the function

(λI −Q2)−1f(x) =
f(x)

λ− x2
, x ∈ R

is contained in L2(R). If λ ≥ 0, this is not the case for special choice of f. Hence
the spectrum of Q2 is equal to [0,∞[. Let us compute the spectral family of Q2.
For all ϕ,ψ ∈ L2(R),
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〈ψ|Q2ϕ〉 =

Z ∞

−∞
ψ(x)†x2ϕ(x)dx.

Setting λ = x2, we get 〈ψ|Q2ϕ〉 =
R∞
0

λ�ψ,ϕ(λ)dλ with the spectral density

�ψ,ϕ(λ) :=
1

2
√
λ

“

ψ(
√
λ)†ϕ(

√
λ) + ψ(−

√
λ)†ϕ(−

√
λ)
”

.

Thus, we get 〈ψ|Eλ0(Q
2)ϕ〉 =

R∞
0

eλ0(E)�ψ,ϕ(λ)dλ for all λ0 ∈ R. The definition
of the function eλ can be found in (7.100) on page 497. In particular, Eλ0 = 0 if
λ0 ≤ 0.

Proposition 7.31 (i) The operator Q2 has no eigenvectors in the Hilbert space
L2(R).

(ii) For the spectrum σ(Q2) = σess(Q
2) = σac(Q

2) = [0,∞[.

Proof. Ad (i). Use the same argument as for the operator Q above.
Ad (ii). Use the spectral family together with Theorem 7.22 on page 505. �

The Momentum Operator

We want to study the following three operators Ppre ⊆ P ⊆ (−P d
pre).

• Let ϕ ∈ S(R). The pre-momentum operator Ppre : S(R) → S(R) is defined by
(Ppreϕ)(x) := −i� d

dx
ϕ(x) for all x ∈ R. The operator Ppre is formally self-adjoint

and antiself-dual.82

• Let T ∈ S ′(R). The dual momentum operator P d
pre : S ′(R)→ S ′(R) is defined by

(P d
preT )(ϕ) := T (Ppreϕ) for all ϕ ∈ S(R). In the sense of tempered distributions,

we have

P d
pre = i�

d

dx
.

This follows from i� dT
dx

(ϕ) = −i�T (ϕ′) = T (Ppreϕ) for all ϕ ∈ S(R).
• The operator P : D(P ) → L2(R) is the natural extension of the operator Ppre.

Explicitly, we set D(P ) := {ϕ ∈ L2(R) : ϕ′ ∈ L2(R)}, and

Pϕ := −i�
dϕ

dx
for all ϕ ∈ D(P ).

Here, the derivative is to be understood in the sense of tempered distributions.
In other words, D(P ) = W 1

2 (R).

The Fourier transform, and the duality between position and mo-
mentum. Choose χ := Ppreϕ where ϕ ∈ S(R). For the Fourier transform, we get
χ̂(k) = �kϕ̂(k) for all k ∈ R. Thus, the operator �

−1Ppre corresponds to the multi-
plication operator Qpre in the Fourier space. This means that the following diagram
is commutative:

82 In fact, for all ϕ,ψ ∈ S(R), we have
R

R
ψ†(x)(−iϕ′(x))dx =

R

R
(−iψ′(x))†ϕ(x)dx

and
Z

R

ψ(x)(−iϕ′(x))dx = −
Z

R

(−iψ′(x))ϕ(x)dx.
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S(R)

F
��

�
−1Ppre�� S(R)

F
��

S(R)
Qpre �� S(R).

Passing to the extended unitary Fourier transform F : L2(R) → L2(R), we obtain
the following commutative diagram:

D(P )

F
��

�
−1P �� L2(R)

F
��

D(Q)
Q �� L2(R).

Since the operator Q : D(Q) → L2(R) is self-adjoint and the property of self-
adjointness is invariant under unitary transformations, the position operator P :
D(P )→ L2(R) is self-adjoint (see Problem 7.14).

The spectral family of the wave number operator. Recall that the
momentum p corresponds to the wave number k = �

−1p. Therefore, the oper-
ator K := �

−1P is called the wave number operator. Since the spectral family
of a self-adjoint operator is invariant under unitary transformations, we obtain
the spectral family {Eλ}λ∈R of the wave number operator K from the spectral
family {Eλ(Q)}λ∈R of the position operator Q in the Fourier space. Explicitly,
Eλ = F−1Eλ(Q)F for all λ ∈ R. This means that, for all functions ϕ,ψ ∈ L2(R)
and all real numbers λ, we get

〈ψ|Eλϕ〉 =

Z λ

−∞
ψ̂(k)†ϕ̂(k)dk.

Proposition 7.32 The operator family {Eλ}λ∈R is the spectral family of the self-
adjoint wave number operator �

−1P : D(P )→ L2(R).

Let the function f : R→ C be measurable (e.g., piecewise continuous) and bounded
on all compact intervals. Define

D(f(K)) := {ϕ ∈ L2(R) :

Z

R

|f(k)|2|ϕ̂(k)|2dk <∞}.

For all ϕ ∈ D(f(K)) and all ψ ∈ L2(R), set

〈ψ|f(K)ϕ〉 :=

Z

R

f(λ) · d〈ψ|Eλϕ〉 =

Z

R

f(k)ψ̂(k)†ϕ̂(k)dk.

This way, we obtain the linear operator f(K) : D(f(K)) → L2(R). This operator
is self-adjoint (resp. continuous on L2(R)) if the function f is real-valued (resp.
bounded on R).

Measurement of the wave number. Let ψ ∈ L2(R) with the normalization
condition

R

R
|ψ(x)|2dx = 1. According to the general approach, the spectral family

of the observable K = �
−1P uniquely determines the measurements of the wave

number k = �
−1p in the normalized state ψ.
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• Distribution function F: The probability of measuring the wave number observ-
able K in the open interval ]−∞, λ[ is given by

F(λ) := 〈ψ|Eλψ〉 =

Z λ

−∞
|ψ̂(k)|2dk.

This is the probability of measuring the wave number k = �
−1p of the particle

in the open interval ]−∞, λ[.
• The probability of measuring the wave number of the particle in the interval

[k0, k1] is equal to
Z

[k0,k1]

dF(k) =

Z k1

k0

|ψ̂(k)|2dk.

• Mean wave number of the particle: k̄ =
R

R
k dF(k) =

R

R
k|ψ̂(k)|2dk.

• Square of the wave number fluctuation:

(Δk)2 =

Z

R

(k − k̄)2 dF(k) =

Z

R

(k − k̄)2|ψ̂(k)|2dk.

Moreover, we get the mean momentum p̄ = �k̄ and the mean momentum fluctuation
Δp = �Δk.

The complete orthonormal system of eigencostates of the momentum
operator.

Proposition 7.33 (i) The operator P : D(P )→ L2(R) has no eigenvectors in the
Hilbert space L2(R).

(ii) For the spectrum, σ(P ) = σess(P ) = ]−∞,∞[.
(iii) Xscatt = L2(R), and σac(P ) = σ(P ).

This follows from Prop. 7.28 on page 519 and from the fact that the wave number
operator �

−1P is unitarily equivalent to the position operator Q.

Proposition 7.34 The system {〈k|}k∈R represents a complete orthonormal system
of eigencostates of the momentum operator Ppre.

Proof. Let ϕ,ψ ∈ S(R). For any parameter k ∈ R,

P d
pre〈k| = �k 〈k|.

In fact, using Ppreχk = �kχk, we get

〈k|Ppreϕ〉 =

Z

R

χ†
kPpreϕ dx =

Z

R

(Ppreχk)†ϕdx = �k

Z

R

χ†
kϕdx = �k 〈k|ϕ〉.

Furthermore, we have the generalized Parseval equation

〈ψ|ϕ〉 =

Z

R

ψ̂(k)†ϕ̂(k)dk =

Z

R

〈ψ|k〉〈k|ϕ〉 dk.

Thus, 〈k|ϕ〉 = 0 for all k ∈ R implies 〈ϕ|ϕ〉 = 0, and hence ϕ = 0. �

Dirac’s formal completeness relation reads as

I =

Z

R

|k〉〈k| dk.
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The relation between eigencostates and the spectral family. Set

ψ0(x) :=
√

� e−x2
�
2/2 for all x ∈ R.

Then ψ0 ∈ S(R), and ψ̂0(k) = e−k2/2. This function generates the (not normalized)
Gaussian measure

μ(J) :=

Z

J

ψ̂0(k)2dk =

Z

J

e−k2
dk

for all intervals J on the real line. Fix λ ∈ R. For all test functions ϕ ∈ S(R), define

Tλ(ϕ) :=
d〈ψ0|Eλϕ〉
d〈ψ0|Eλψ0〉

.

Proposition 7.35 The family {Tk}k∈R of tempered distributions with

Tk =
〈k|

ψ̂0(k)

represents a complete orthonormal system of eigencostates of the wave number op-
erator �

−1Ppre. Using the Gaussian measure dμ(k) = |ψ0(k)|2dk, we have the gen-
eralized Parseval equation

Z

R

ψ(x)†ϕ(x)dx =

Z

R

Tk(ψ)†Tk(ϕ) dμ(k) for all ϕ,ψ ∈ S(R).

Proof. By the proof of Prop. 7.34, d〈ψ0|Eλϕ〉 = ψ̂0(λ)ϕ̂(λ)dλ. Hence

Tλ(ϕ) =
ψ̂0(λ)ϕ̂(λ)

ψ̂0(λ)2
=

ϕ̂(λ)

ψ̂0(λ)
.

Finally, use the Parseval equation for the Fourier transform. �

7.6.5 The Free Hamiltonian

The free Hamiltonian is a paradigm for general Hamiltonians in quantum
mechanics and quantum field theory.

Folklore

The functional-analytic approach to quantum dynamics is based on the study of the
energy operator (also called the Hamiltonian). In this section, we want to investigate
thoroughly the Hamiltonian Hfree of the free quantum particle on the real line, which
is called the free Hamiltonian. The two key operator equations are the instationary
Schrödinger equation

i�ψ̇(t) = Hfreeψ(t), t > t0, ψ(t0) = ψ0 (7.126)

with the solution ψ(t) = e−i(t−t0)Hfree/�ψ0 (the Feynman propagator) and the in-
homogeneous stationary Schrödinger equation

Hfreeϕ = Eϕ + f (7.127)

with the solution ϕ = (Hfree − EI)−1f (the energetic Green’s operator). Here, we
have to assume that the complex energy E is not contained in the spectrum σ(Hfree)
of the free Hamiltonian. We will show that:
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• The Feynman propagator kernel K describes the solution of the initial-value
problem for the instationary Schrödinger equation (7.126),

i�ψt(x, t) = − �
2

2m
ψxx(x, t), ψ(t0, x) = ψ0(x),

by means of the integral formula

ψ(x, t) =

Z

R

K(x, t;x0, t0)ψ0(x0)dx0, t > t0, x ∈ R.

• The energetic Green’s function G describes the solution of the inhomogeneous
stationary Schrödinger equation (7.126),

− �
2

2m
ϕ′′(x) = Eϕ(x) + f(x), x ∈ R, E ∈ C,

by means of the integral formula

ϕ(x) =

Z

R

G(x, x0; E)f(x0)dx0, x ∈ R, E ∈ C \ σ(Hfree)

where σ(Hfree) = [0,∞[.

The energetic Green’s function carries the information on the energy spectrum of
the particle.

The Feynman propagator kernel K and the energetic Green’s function G
are related to each other by the Laplace transform.

This corresponds to

• the duality between energy and time, and
• the duality between causality and analyticity,

which is crucial for both quantum mechanics and quantum field theory.
Using the results on the momentum operators Ppre ⊆ P ⊆ P d

pre obtained on

page 521, we want to study the energy operators Hpre ⊆ Hfree ⊆ Hd
pre.

• The pre-Hamiltonian Hpre : S(R)→ S(R) is defined by

Hpre :=
P 2

pre

2m
.

Explicitly, Hpreϕ = − �
2

2m
ϕ′′ for all ϕ ∈ S(R). The operator Hpre is formally

self-adjoint and self-dual.

• The operator Hd
pre : S ′(R) → S ′(R) is defined by Hd

pre :=
(P d

pre)
2

2m
. For any

tempered distribution T ∈ S ′(R),

Hd
preT = − �

2m

d2T

dx2
.

• By von Neumann’s functional calculus, the operator P 2 : D(P 2) → L2(R) is

self-adjoint, and D(P 2) = {ψ ∈ L2(R) :
R

R
|k2ψ̂(k)|2dk < ∞}. By Prop. 7.26,

D(P 2) = W 2
2 (R).

• We define the self-adjoint free Hamiltonian Hfree : D(Hfree)→ L2(R) by setting

Hfree := P2

2m
. Hence D(Hfree) = W 2

2 (R).
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Eigencostates. Recall that 〈k|ϕ〉 = ϕ̂(k) for all ϕ ∈ S(R), where ϕ̂ is the
Fourier transform of ϕ. Moreover, following Dirac, we set 〈ϕ|k〉 := 〈k|ϕ〉†. Recall

that Ek := �
2k2

2m
is the energy of a classical free particle on the real line which has

the momentum p = �k.

Proposition 7.36 The system {〈k|}k∈R is a complete orthonormal system of
eigencostates of the energy operator Hpre. Explicitly,

(a) Hd
pre〈k| = Ek〈k| for all wave numbers k ∈ R.

(b) 〈ψ|ϕ〉 =
R

R
〈ψ|k〉〈k|ϕ〉 dk for all ψ,ϕ ∈ L2(R).

Proof. Since P d
pre〈k| = �k〈k|, we get Hd

pre〈k| =
(P d

pre)
2

2m
〈k| = (�k)2

2m
〈k|. This is (a).

Claim (b) coincides with the Parseval equation for the Fourier transform.
�

In terms of distribution theory, the costate 〈k| corresponds to the function

χ†
k(x) = e−ikx

√
2π

for all x ∈ R. Passing from k to −k, claim (a) is equivalent to

− �
2

2m

d2χk

dx2
=

�
2k2

2m
· χk for all k ∈ R.

The elements of the Hilbert space L2(R) correspond to states of a single particle.
The function χk is not a state, but it describes a particle stream, as discussed on
page 512.

The spectrum of the free Hamiltonian Hfree acting in the Hilbert
space X of states. We have Xscatt = L2(R) and

σ(Hfree) = σac(Hfree) = σess(Hfree) = [0,+∞[.

That is, the spectrum of the free Hamiltonian Hfree contains all the energy values
E ≥ 0. The spectrum coincides with both the absolutely continuous spectrum and
the essential spectrum. The pure point spectrum is empty, that is, there is no state
of the free quantum particle on the real line which has a sharp energy. In other
words, there are no bound states. In addition, the singular spectrum is empty. The
resolvent set of the operator Hfree is given by �(Hfree) = C \ [0,+∞[.

The proof follows from the corresponding properties of the operator Q2 and the
fact that the operator �

−2P 2 is unitarily equivalent to Q2, by Fourier transform
(see page 520).

The quantum dynamics: We will use Theorem 7.23 together with the Stone
theorem on page 505ff. Set P (t, t0) := e−i(t−t0)Hfree/� . For all times t, t0 ∈ R, the
operator

P (t, t0) : L2(R)→ L2(R)

is unitary. For each given initial state ψ0 ∈ L2(R) at time t0, we set

ψ(t) := P (t, t0)ψ0, t ∈ R.

The function t �→ ψ(t) describes the motion of the free quantum particle on the
real line with the initial condition ψ(t0) = ψ0. If ψ0 ∈ D(Hfree) (e.g., we choose
ψ0 ∈ S(R)), then the function ψ : [0,∞[→ L2(R) is continuously differentiable, and
we have the Schrödinger equation

i�ψ̇(t) = Hfreeψ(t), t ∈ R, ψ(t0) = ψ0.
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The operator P (t, t0) is called the propagator of the free quantum particle at time
t (with respect to the initial time t0). In terms of the unitary Fourier transform
F : L2(R) → L2(R), the propagator P (t, t0) corresponds to the multiplication

with the function k �→ e−i(t−t0)Ek/� in the Fourier space. This means that, for all
ψ0 ∈ L2(R), we get

P (t, t0)ψ0 = F−1MFψ0, t, t0 ∈ R

with the multiplication operator (Mψ̂0)(k) := e−i(t−t0)Ek/�ψ̂0(k) for all wave num-
bers k ∈ R.

The spectral measure of the free Hamiltonian Hfree. Let the function
F : [0,∞[→ C be continuous (or piecewise continuous) and bounded. Then, for all
χ, ϕ ∈ S(R),

〈χ|F(Hfree)ϕ〉 =

Z ∞

0

F (E) �χ,ϕ(E)dE (7.128)

with the smooth density function

�χ,ϕ(E) :=

r

m

2�2E

“

χ̂(k)†ϕ̂(k) + χ̂(−k)†ϕ̂(−k)
”

, E > 0.

Here, k :=
√

2mE/�. Moreover, χ̂ (resp. ϕ̂) is the Fourier transform of χ (resp.
ϕ) from (7.116). Formula (7.128) can be uniquely extended to all χ, ϕ ∈ L2(R).
The operator F(Hfree) : X → X is linear and continuous. Formula (7.128) remains
valid if we replace the function F by its complex-conjugate function F † and the
operator F(Hfree) by its adjoint operator F(Hfree)

†, respectively. If the function F
is real-valued, then the operator F(Hfree) is self-adjoint. Furthermore,

〈χ|Hfreeϕ〉 =

Z ∞

0

E�χ,ϕ(E)dE for all χ, ϕ ∈ S(R).

Proof. We have 〈χ|F(H)ϕ〉 =
R∞
−∞ F

“

�
2k2

2m

”

χ̂†(k)ϕ̂(k)dk. This is equal to

Z ∞

0

F

„

�
2k2

2m

«

“

χ̂†(k)ϕ̂(k) + χ̂†(−k)ϕ̂(−k)
”

dk =

Z ∞

0

F (E)�χ,ϕ(E)dE.

�

The spectral family of the free Hamiltonian Hfree. Let λ ∈ R. Choosing
the characteristic function eλ of the interval ]−∞, λ[ (see (7.100) on page 497), we
get

〈χ|Eλ(Hfree)ϕ〉 =

Z ∞

0

eλ(E)�χ,ϕ(E)dE for all χ, ϕ ∈ S(R).

In particular, if λ ≤ 0, then Eλ(Hfree) = 0.
Measurements of the energy. Let ϕ ∈ S(R) be a normalized state in the

Hilbert space L2(R) (i.e.,
R

R
|ϕ(x)|2dx = 1). This state describes a free quantum

particle on the real line. Let 0 ≤ E0 < E1 ≤ ∞. Then:

• Probability of measuring the energy of the particle in the interval[E0, E1] :
Z E1

E0

�ϕ,ϕ(E)dE.

• Mean energy of the particle: Ē =
R∞
0

E�ϕ,ϕ(E)dE.

• Square of the energy fluctuation: (ΔE)2 =
R∞
0

(E − Ē)2�ϕ,ϕ(E)dE.
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The Feynman Propagator Kernel

For all positions x, x0 ∈ R and times t > t0, define

K(x, t;x0, t0) :=

r

m

2πi�(t− t0)
· eim(x−x0)2/2�(t−t0).

Let ψ0 ∈ S(R). Then we have the following integral representation of the quantum
dynamics:

`

P (t, t0)ψ0

´

(x) =

Z

R

K(x, t;x0, t0)ψ0(x0)dx0, x ∈ R, t > t0.

This is the key formula for solving the initial-value problem for the instationary
Schrödinger equation (7.126) on page 524. For all χ, ϕ ∈ S(R), we obtain the kernel
formula

〈χ|P (t− t0)ϕ〉 =

Z

R2
χ(x)†K(x, t;x0, t0)ϕ(x0)dxdx0, t > t0.

For t > t0, the function (x, y) �→ K(x, t; y, t0) is called the Feynman propagator
kernel of the free quantum particle.

The Euclidean Propagator Kernel

Set PEuclid(t, t0) := e−(t−t0)Hfree/� . The operator

PEuclid(t, t0) : L2(R)→ L2(R), t ≥ t0

is linear, continuous, and nonexpansive, that is, ||PEuclid(t, t0)|| ≤ 1 for all t ≥ t0.
For each given initial state ψ0 ∈ L2(R) at time t0, we set

ψ(t) := PEuclid(t, t0)ψ0, t ≥ t0.

If ψ0 ∈ S(R), then the function ψ : [0,∞[→ L2(R) is continuously differentiable,
and we have the Euclidean Schrödinger equation

�ψ̇(t) = −Hfreeψ(t), t > t0, ψ(t0) = ψ0. (7.129)

The operator PEuclid(t, t0) is called the Euclidean propagator of the free quantum
particle at time t (with respect to the initial time t0). In terms of the unitary Fourier
transform F : L2(R) → L2(R), the Euclidean propagator P (t, t0) corresponds to

the multiplication with the function k �→ e−(t−t0)Ek/� in the Fourier space. This
means that, for all initial states ψ0 ∈ L2(R), we get

PEuclid(t, t0)ψ0 = F−1MFψ0, t ≥ t0

with the multiplication operator (Mψ̂0)(k) := e−(t−t0)Ek/�ψ̂0(k) for all k ∈ R. For
all positions x, x0 ∈ R and all times t > t0, define

P(x, t;x0, t0) =

r

m

2π�(t− t0)
· e−m(x−x0)2/2�(t−t0).

Then we have the following integral representation:
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`

PEuclid(t, t0)ψ0

´

(x) =

Z

R

P(x, t;x0, t0)ψ0(x0)dx0, x ∈ R, t > t0.

This is the key formula for solving the initial-value problem for the Euclidean
Schrödinger equation (7.129). For all χ, ϕ ∈ L2(R), we obtain the kernel formula

〈χ|PEuclid(t, t0)ϕ〉 =

Z

R2
χ(x)†P(x, t;x0, t0)ϕ(x0)dxdx0, t > t0.

For t > t0, the function (x, x0) �→ P(x, t;x0, t0) is called the Euclidean propagator
kernel of the free quantum particle.

The Energetic Green’s Function

The inhomogeneous stationary Schrödinger equation. Consider the inho-
mogeneous equation.

− �
2

2m
ϕ′′(x) = Eϕ(x) + f(x), x ∈ R, (7.130)

which passes over to the stationary Schrödinger equation (7.115) if f(x) ≡ 0. Equa-
tion (7.130) corresponds to the operator equation

Hfreeϕ− Eϕ = f, ϕ ∈ D(Hfree). (7.131)

We want to solve this equation. Let E ∈ �(Hfree) (i.e., E ∈ C \ [0,∞[). Then the
resolvent

(EI −Hfree)
−1 : L2(R)→ L2(R)

exists as a linear continuous operator. For given f ∈ L2(R), the equation (7.131)
has the unique solution

ϕ = (Hfree − EI)−1f.

Von Neumann’s operator calculus tells us that for all χ, f ∈ L2(R), we have

〈χ|(Hfree − EI)−1f〉 =

Z ∞

0

�χ,f (E)

E − E dE.

The retarded Green’s function. Our goal is to represent the solution of the
inhomogeneous Schrödinger equation (7.130) by an integral formula. To this end,
we introduce the function

G+(x, y; E) :=
im · eik|x−y|

�2k
, x, y ∈ R. (7.132)

Here, k :=
√

2mE/�. We assume that �(E) > 0. The square root is to be understood
as principal value. This choice of the complex energy E guarantees that the function
G+ decays exponentially as |x− y| → ∞.

Proposition 7.37 Let �(E) > 0. For given f ∈ S(R), the unique solution of the
inhomogeneous Schrödinger equation (7.130) reads as

ϕ(x) =

Z

R

G+(x, y; E)f(y)dy, x ∈ R. (7.133)
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The proof will be given in Sect. 8.5.2 on page 731. By Prop. 7.37, we get

〈χ|(Hfree − EI)−1ϕ〉 =

Z

R2
χ(x)†G+(x, y; E)ϕ(y)dxdy, �(E) > 0

for all χ, ϕ ∈ S(R). Therefore the function (x, y) �→ G+(x, y; E) is the kernel of the
(negative) resolvent (Hfree − EI)−1; this kernel is called the retarded (energetic)
Green’s function of the Hamiltonian Hfree. Note that, for fixed y ∈ R, the retarded
Green’s function behaves like

• eikx as x→ +∞, and
• e−ikx as x→ −∞ where k > 0.

This corresponds to outgoing waves at infinity, x = ±∞.

The advanced Green’s function. Now we pass from the positive wave num-
ber k to the negative wave number −k, that is, we change outgoing waves into
ingoing waves at infinity. To this end, define

G−(x, y; E) := − im · e−ik|x−y|

�2k
, x, y ∈ R. (7.134)

Here, k := −
√

2mE/�. We assume that �(E) < 0. The square root is to be under-
stood as principal value. This choice of the complex energy E guarantees that the
function G− decays exponentially as |x− y| → ∞.

Proposition 7.38 Let �(E) < 0. For given f ∈ S(R), the unique solution of the
inhomogeneous Schrödinger equation (7.130) reads as

ϕ(x) =

Z

R

G−(x, y; E)f(y)dy, x ∈ R.

Thus, for all χ, ϕ ∈ S(R) we obtain

〈χ|(Hfree − EI)−1ϕ〉 =

Z

R2
χ(x)†G−(x, y; E)ϕ(y)dxdy.

This means that the function (x, y) �→ G−(x, y; E) is the kernel of the (negative)
resolvent (Hfree − EI)−1; this kernel is called the advanced (energetic) Green’s
function of the Hamiltonian Hfree. Note that, for fixed y ∈ R, the advanced Green’s
function behaves like

• e−ikx as x→ +∞ and
• eikx as x→ −∞ where k > 0.

This corresponds to incoming waves at infinity, x = ±∞.

The Fourier–Laplace transform of the Feynman propagator kernel.
Fix the initial-time t0. Then, for all times t > t0, all positions x, y ∈ R, and all
complex energies E in the open upper half-pane (i.e., �(E) > 0), we have

G+(x, y; E) :=
i

�

Z ∞

t0

eiE(t−t0)/� K(x, t; y, t0) dt

together with the inverse formula

K(x, t; y, t0) =
1

2πi
· PV

Z ∞

−∞
e−iE(t−t0)/� G+(x, y; E) d�(E).
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The global energetic Green’s function. The retarded Green’s function
is holomorphic in the open upper half-plane. This function can be analytically
continued to a global analytic function on a double-sheeted Riemann surface. This
global Green’s function is given by

Gglobal(x, y; E) =
im · eik(E)|x−y|

�2k(E)

where k(E) :=
√

2m
�
·
√
E . Here, the function E �→ k(E) has to be regarded as

a global analytic function defined on the Riemann surface R of the square-root
function

√
: R → C. This Riemann surface will be studied in Sect. 8.3.5 on page

713. In terms of R, the retarded (resp. advanced) Green’s function is defined on
the open upper (resp. lower) half-plane of the first sheet of the Riemann surface R.
The two functions jump along the positive real axis (see Fig. 8.6 on page 714).

Perturbation of the Free Quantum Dynamics

If the motion of the free particle on the real line is perturbed by the potential U ,
then we get the perturbed Schrödinger equation

i�ψt(x, t) = − �
2

2m
ψxx(x, t) + U(x)ψ(x, t), x ∈ R, t > t0, ψ(x, t0) = ψ0.

(7.135)

This is the prototype of a quantum system under interaction. Let us introduce the
Hamiltonian

Hϕ := − �
2

2m

d2ϕ

dx2
+ Uϕ for all ϕ ∈W 2

2 (R).

In other words, H = Hfree + U.

Theorem 7.39 If the function U : R → R is smooth and has compact support,
then the Hamiltonian H : W 2

2 (R)→ L2(R) is self-adjoint.

Proof. Let x ∈ R. Define the operator C : L2(R)→ L2(R) by setting

(Cϕ)(x) := U(x)ϕ(x) for all ϕ ∈ L2(R).

Then ||Cϕ|| ≤ const · ||ϕ|| for all ϕ ∈ L2(R). In fact,

〈Uϕ|Uϕ〉 =

Z

R

ϕ(x)†U(x)2ϕ(x)dx ≤ const

Z

R

|ϕ(x)|2dx.

Since the operator Hfree : W 2
2 (R) → L2(R) is self-adjoint, it follows from the

Rellich–Kato perturbation theorem on page 502, that the perturbed operator
H = Hfree + C is also self-adjoint on W 2

2 (R). �

A detailed study of equation (7.135) can be found in Chap. 8. This concerns
the relation between scattering processes and bound states.
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The Beauty of Harmonic Analysis

The motion of a free quantum particle is governed by the Fourier transform. Let us
explain the relation to the translation group on the real line. For each a ∈ R, the
transformation

Tax := x + a for all x ∈ R

represents a translation of the real line. For each smooth function ψ : R → C, we
define the operator

(Taψ)(x) := ψ(T−1
a x).

Explicitly, Taψ(x) = ψ(x− a). The operator D defined by

Dψ(x) := lim
a→0

Taψ(x)− ψ(x)

a
= −ψ′(x) for all x ∈ R

is called the infinitesimal translation. By Taylor expansion,

Taψ(x) = ψ(x) + Dψ(x) + 1
2
D2ψ(x) + 1

3!
D3ψ(x) + . . .

The Fourier transform is related to the eigenfunctions χk(x) := eikx
√

2π
of the infinites-

imal operator D. Explicitly,

i�Dχk = �kχk, k ∈ R.

Note that i�D corresponds to the momentum operator on the real line. If we replace
the translation group by another Lie group, then we get a generalization of the
preceding situation which leads to

• more general infinitesimal transformations (differential operators),
• more general eigenfunctions (special functions of mathematical physics),
• and a generalization of the Fourier transform.

This is the subject of a beautiful branch in mathematics called harmonic analysis,
which will be encountered quite often in this treatise. In the 20th century, the
protagonist of harmonic analysis was Hermann Weyl (1885–1955). We recommend:

G. Mackey, The Scope and History of Commutative and Noncommutative
Harmonic Analysis, Amer. Math. Soc., Providence, Rhode Island, 1992.

G. Mackey, Induced Representations of Groups and Quantum Mechanics,
Benjamin, New York, 1968.

G. Mackey, Unitary Group Representations in Physics, Probability, and
Number Theory, Benjamin, Reading, Massachusetts, 1978.

7.6.6 The Rescaled Fourier Transform

The rescaled Fourier transform fits best the duality between position and
momentum of quantum particles in the setting of the Dirac calculus.

Folklore

Introducing the function ϕp(x) := eipx/�

√
2π�

for all x ∈ R, we obtain the key relation

−i�
dϕp

dx
= pϕp for all p ∈ R.

That is, the function ϕp is a generalized eigenfunction of the momentum operator
with the momentum p as eigenvalue. The normalization is dictated by the Parseval
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equation (7.138) below. Let ϕ,ψ ∈ S(R). The rescaled Fourier transform is given
by the following two formulas

ϕ̃(p) =

Z

R

ϕ†
p(x)ϕ(x)dx for all p ∈ R (7.136)

and

ϕ(x) =

Z

R

ϕp(x)ϕ̃(p)dp for all x ∈ R (7.137)

together with the Parseval equation
Z

R

ψ(x)†ϕ(x)dx =

Z

R

ψ̃(p)†ϕ̃(p) dp. (7.138)

The classical Fourier transform is obtained by choosing � := 1. Setting F�ϕ := ϕ̃,
we obtain the linear, bijective, sequentially continuous operator

F� : S(R)→ S(R)

which is called the rescaled Fourier transform. As in Sect. 7.6.4, this operator can
be extended to a linear bijective operator

F� : S ′(R)→ S ′(R)

such that the restriction F� : L2(R)→ L2(R) is unitary. The commutative diagram

D(P )

F�

��

P �� L2(R)

F�

��
D(Q)

Q �� L2(R)

tells us that the momentum operator P and the position operator Q are unitar-
ily equivalent. According to Dirac, for fixed momentum p ∈ R, we introduce the
momentum costate 〈p| by setting

〈p|(ϕ) :=

Z

R

ϕ†
p(x)ϕ(x)dx, for all ϕ ∈ S(R).

Mnemonically, we write this as 〈p|ϕ〉. Replacing the wave number costate 〈k| from
Sect. 7.6.4 by the momentum costate 〈p|, we get the following formulas of the Dirac
calculus:

• 〈p|ϕ〉 = ϕ̃(p),
• I =

R

R
|p〉〈p| dp,

• P d
pre〈p| = p 〈p|,

• Hd
pre〈p| = E(p) 〈p| with the energy value E(p) := p2

2m
.

The system {〈p|}p∈R forms a complete orthonormal system of costates for both the
momentum operator Ppre and the free Hamiltonian Hpre. Adding the mnemonical
formulas

• 〈x|ϕ〉 = ϕ(x) and 〈x|p〉 = ϕp(x),
• I =

R

R
|x〉〈x| dx,
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as well as 〈a|b〉† = 〈b|a〉, we automatically obtain

〈p|ϕ〉 =

Z

R

〈p|x〉〈x|ϕ〉 dx, 〈x|ϕ〉 =

Z

R

〈x|p〉〈p|ϕ〉 dp

which is the rescaled Fourier transform (7.136), (7.137) above. Similarly, the Par-
seval equation (7.138) above is obtained by

〈ψ|ϕ〉 =

Z

R

〈ψ|x〉〈x|ϕ〉 dx =

Z

R

〈ψ|p〉〈p|ϕ〉 dp.

This shows that the rescaled Fourier transform is nothing else than a change from
the position coordinate x to the momentum coordinate p which respects “inner
products.”

Note that, as a rule, physicists use the wave number costates 〈k| in scattering
theory, and the momentum costates 〈p| in the Feynman path integral approach. We
will follow this convention.

7.6.7 The Quantized Harmonic Oscillator and the Maslov Index

The global behavior of the quantized harmonic oscillator is governed by
the Morse indices (also called Maslov indices) of the classical harmonic
oscillator.

Folklore

Let us continue the study of the quantized harmonic oscillator on the real line
started in Sect. 7.4.4 on page 467. The initial-value problem for the corresponding
Schrödinger equation reads as

i�ψt(x, t) = − �
2

2m
ψxx(x, t) +

mω2x2

2
ψ(x, t), ψ(x, t0) = ψ0(x) (7.139)

for all position coordinates x ∈ R and all times t > t0. Let us introduce the pre-
Hamiltonian Hpre : S(R)→ S(R) by setting

`

Hpreϕ
´

(x) := − �
2

2m

d2ϕ(x)

dx2
+

mω2x2

2
ϕ(x), x ∈ R.

By Sect. 7.4.4, the equation Hpreϕ = Eϕ has the eigensolutions (ϕn, En) with the
energy eigenvalues En = �ω(n + 1

2
) and the eigenfunctions

ϕn(x) =
1

p

2nn!x0
√
π

Hn

„

x

x0

«

exp

(

−1

2

„

x

x0

«2
)

, n = 0, 1, 2, . . . ,

where x0 :=
q

�

mω
. Here, H0,H1,H2, . . . are the Hermite polynomials introduced

on page 436. Furthermore, ϕn ∈ S(R) for all n. We will use the Hilbert space L2(R)
with the inner product

〈χ|ϕ〉 :=

Z

R

χ†(x)ϕ(x)dx, χ, ϕ ∈ L2(R).

For introducing operator kernels, we will also use the Hilbert space L2(R
2) equipped

with the inner product

〈A|B〉L2(R2) :=

Z

R2
A(x, y)†B(x, y)dxdy, A,B ∈ L2(R

2).
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(i) The self-adjoint Hamiltonian H: The point is that the eigenfunctions ϕ0, ϕ1, . . .
form a complete orthonormal system in the Hilbert space. The pre-Hamiltonian
Hpre can be extended to the self-adjoint operator H : D(H)→ L2(R) given by

Hϕ :=
∞
X

n=0

En〈ϕn|ϕ〉ϕn.

Here, ϕ ∈ D(H) iff this series is convergent in the Hilbert space L2(R), that
is,
P∞

n=0 E
2
n|〈ϕn|ϕ〉|2 < ∞. The operator H is called the Hamiltonian of the

quantized harmonic oscillator.
(ii) The spectrum of the Hamiltonian H: The spectrum σ(H) consists of the energy

values E0, E1, E2, . . . of the quantized harmonic oscillator. This is a pure point
spectrum; the absolutely continuous spectrum, the essential spectrum, and the
singular spectrum of H are empty.

(iii) The kernel theorem: Let λ0, λ1, . . . be complex numbers. Consider the operator
A : D(A)→ L2(R) given by

Aϕ =

∞
X

n=0

λn〈ϕn|ϕ〉ϕn. (7.140)

We assume that the domain of definition D(A) consists of all the functions
ϕ ∈ L2(R) for which the series on the right-hand side of (7.140) is convergent
in L2(R), that is, ϕ ∈ D(A) iff

P∞
k=0 |λn〈ϕn|ϕ〉|2 <∞.

Theorem 7.40 (a) Hilbert–Schmidt operator with L2(R
2)-kernel: If

∞
X

n=0

|λn|2 <∞,

then the operator A : X → X defined by (7.140) is linear, continuous, and
compact. The series

A(x, y) :=

∞
X

n=0

λnϕn(x)ϕn(y)†, (x, y) ∈ R
2 (7.141)

is convergent in the Hilbert space L2(R
2), and the operator A has the L2(R

2)-
kernel A. That is, for all ϕ, χ ∈ L2(R), we have

(Aϕ)(x) =

Z

R

A(x, y)ϕ(y)dy, x ∈ R,

together with the bilinear form

〈χ|Aϕ〉 =

Z

R2
χ(x)†A(x, y)ϕ(y)dxdy. (7.142)

If all the numbers λ0, λ1, . . . are real, then the operator A is self-adjoint.
(b) Trace-class operator: If

P∞
n=0 |λn| < ∞, then (i) is valid. The operator

A : L2(R) → L2(R) is called a trace class (or nuclear) operator; its trace is
given by tr(A) =

P∞
n=0 λn.

83

83 The general definition of Hilbert–Schmidt operators and trace-class operators
will be given in Sect. 7.16.4 on page 629.
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(c) The Schwartz kernel T : If the condition supn |λn| <∞ is satisfied, then
the operator A : X → X is linear and continuous. There exists a uniquely
determined tempered distribution T ∈ S ′(R2) such that

〈χ|Aϕ〉 = T (χ† ⊗ ϕ) for all χ, ϕ ∈ S(R).

More precisely, there exist a continuous function A : R
2 → C of polynomial

growth and nonnegative integers r and s such that

T (χ† ⊗ ϕ) =

Z

R2
χ(r)(x)†A(x, y)ϕ(s)(y)dxdy for all χ, ϕ ∈ S(R).

Proof. Ad (a). Since the functions ϕ0, ϕ1, . . . form a complete orthonormal
system in the Hilbert space L2(R), the tensor products

(ϕ†
k ⊗ ϕl)(x, y) := ϕk(x)†ϕ(y), (x, y) ∈ R

2, k, l = 0, 1, . . .

represent a complete orthonormal system in the Hilbert space L2(R
2) (see Zei-

dler (1995a), p. 224). Consequently, the series (7.141) is convergent in L2(R
2)

iff
P∞

n=0 |λn|2 < ∞. The remaining claims are standard results in functional
analysis (see Zeidler (1995a), Sect. 4.4).
Ad (b). If

P∞
n=0 |λn| < ∞, the limn→∞ λn = 0. Consequently, there exists a

natural number n0 such that
P∞

n=n0
|λn|2 ≤

P∞
n=n0

|λn|.
Ad (c). This is the Schwartz kernel theorem. The proof can be found in I.
Gelfand and N. Vilenkin, Generalized Functions, Vol. 4, Sect. I.1.3, Academic
Press, New York, 1964. �

(iv) The resolvent and the energetic Green’s function of the Hamiltonian H: Let the
complex number E be different from all the eigenvalues E0, E1, . . . Introduce
G(E) := (H − EI)−1. Then the energetic Green’s operator

G(E) : L2(R)→ L2(R)

is linear and continuous. Explicitly,

G(E)ϕ =

∞
X

n=0

〈ϕn|ϕ〉
En − E

ϕn, ϕ ∈ L2(R).

The operator G(E) has an L2(R
2)-kernel called the energetic Green’s function

of the quantized harmonic oscillator. Explicitly,

G(x, y; E) =

∞
X

n=0

ϕn(x)ϕn(y)†

En − E
, x, y ∈ R.

This series is convergent in L2(R
2). For all x ∈ R, we have

(G(E)ϕ)(x) =

Z

R

G(x, y; E)ϕ(y)dy.

The operator R(E) := −G(E) is called the resolvent of H.
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(v) The Euclidean propagator kernel: Let t > t0. Set β := (t−t0)/�. Since the series
P∞

n=0 e−βEn is convergent, it follows from Theorem 7.40(ii) that the Euclidean

propagator PEuclid(t, t0) := e−βH is a trace-class operator on L2(R), and it has
an L2(R

2)-kernel given by the series

P(x, t; y, t0) :=

∞
X

n=0

e−βEnϕn(x)ϕn(y)†,

which is convergent in the Hilbert space L2(R
2).

Proposition 7.41 For all positions x, y ∈ R and all times t > 0, the Euclidean
propagator kernel reads as

P(x, t; y, 0) =
1

x0

√
2π sinhωt

exp

j

− (x2 + y2) coshωt− 2xy

2x2
0 sinhωt

ff

.

For t > t0, we get P(x, t; y, t0) = P(x, t− t0; y, 0).

Proof. This is the classical Mehler formula for Hermite polynomials which can
be found in A. Erdéley et al. (Eds.), Higher Transcendental Functions, Vol. III,
McGraw-Hill, New York, 2006. Explicitly, the Mehler formula reads as

1√
1− z2

exp

j

− 1

2(1− z2)
[(x2 + y2)(1 + z2)− 4xyz]

ff

= exp

„

−x2

2
− y2

2

« ∞
X

n=0

zn

2nn!
Hn(x)Hn(y) (7.143)

for all x, y ∈ R and all complex numbers z with |z| < 1. �

We will see in Sect. 7.6.8 that the Euclidean propagator of a single harmonic
oscillator governs the thermodynamics of an ideal gas if we set β := 1/kT
where T is the temperature and k is the Boltzmann constant.

(vi) The generalized Feynman propagator kernel and the Maslov indices: We want
to show that analytic continuation of the Euclidean propagator kernel yields
the function

K(x, t; y, 0) :=
e−iπ/4 e−iπμ(0,t)/2

x0

p

2π| sinωt|
exp

„

i
(x2 + y2) cosωt− 2xy

2x2
0 sinωt

«

.

(7.144)

This so-called Feynman–Souriau formula is valid for both
• all positions x, y ∈ R and
• all non-critical times t ∈]tn,crit, tn+1,crit[ with n = 0, 1, 2, ...
Here, the critical times are given by tn,crit := nπ

ω
. The Maslov index is defined

by

μ(0, t) := n for all t ∈ ]tn,crit, tn+1,crit[ . (7.145)

For all t > t0, we set K(x, t; y, t0) := K(x, t− t0; y, 0). The function K is called
the generalized Feynman propagator kernel (or briefly the Feynman propagator
kernel) of the quantized harmonic oscillator. The additional factors

e−iπ/4 e−iπμ(0,t)/2 (7.146)
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appearing in (7.144) are called the critical Maslov phase factors. In terms of
mathematics, in the following proof we will show that these phase factors
are obtained in a natural way by means of analytic continuation. In terms
of physics, we will show below that the Maslov phase factors are closely related
to causality.

Proof. To simplify notation, we set ω := 1. In order to find the analytic
continuation, we replace the real variable t by the complex variable z. This
way, using Prop. 7.41 we get

P(x, z; y, 0) =
1

x0

√
2π sinh z

exp

j

− (x2 + y2) cosh z − 2xy

2x2
0 sinh z

ff

.

Now set z := it. Then sinh z = i sin t and cosh z = cos t for all t ∈ C. Suppose
that

tn,crit < t < tn+1,crit, n = 0, 1, 2, . . .

Then sin t = (−1)n| sin t|. Considering the square-root function on its Riemann
surface (see Fig. 8.6 on page 714), we obtain

√
i sin t =

p

(−1)ni| sin t| =
q

einπeiπ/2| sin t| = einπ/2eiπ/4
p

| sin t|.

This yields the claim (7.144). �

Focal points and the Morse index (Maslov index). We want to show
that the singularities of the Feynman propagator kernel K(x, t; y, t0) are related to
the Morse indices of focal points in classical mechanics. To this end, consider a
harmonic oscillator of mass m > 0 and angular frequency ω > 0 on the real line.
The classical equation of motion reads as

mq̈(τ) + ω2q(τ) = 0, τ ∈ R, q(0) = q0, q̇(0) = q1

with the characteristic length x0 :=
p

�/mω. In Sect. 6.5.4, we have introduced
the crucial Morse (or Maslov) index which coincides with (7.145) above. Explicitly,
the critical points in time are characterized by the fact that the boundary value
problem

q̈(t) + ω2q(t) = 0, 0 < t < tn,crit, q(0) = q(tn,crit) = 0

has not only the trivial solution q(t) ≡ 0, but also a nontrivial solution, namely,
q(t) := sinωt. Observe that the function P has singularities precisely at the critical
points in time, since sinωtn,crit = 0. Moreover, the Morse index μ(0, t) jumps at
the critical points in time.

The Feynman propagator kernel K(x, t; y, t0) of the quantized harmonic
oscillator contains information about the global behavior of the classical
harmonic oscillator.

This phenomenon is typical for the quantization of classical dynamical systems.84

Causality and the motivation of the Maslov phase factors. Using the
Dirac delta function in a formal way, we want to motivate formula (7.146) above in
terms of physics. To simplify notation, let us use the convention ω = � = m := 1.
Hence x0 = 1. The starting point is the product formula (7.90) for the propagator
kernel, that is,

84 See M. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New
York, 1990.
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K(x, t; y, 0) =

Z

R

K(x, t− τ ; z, 0)K(z, τ ; y, 0) dz (7.147)

which is based on the causality relation e−itH = e−i(t−τ)He−iτH .
(I) Consider the first critical time interval 0 < t < t1,crit with t1,crit = π. Then

, then analytic continuation of the Euclidean propagator P from Prop. 7.41 yields
the regular Feynman propagator kernel

K(x, t; y, 0) =
e−iπ/4

√
2π sin t

exp

„

i
(x2 + y2) cos t− 2xy

2 sin t

«

, 0 < t < π.

Let us now study the limit t→ π − 0. If t = π
2
, then

K
“

x,
π

2
; y, 0

”

=
e−iπ/4e−ixy

√
2π

.

By the product rule (7.147), we get

lim
t→π−0

K(x, t; y, 0) : =

Z

R

K
“

x,
π

2
; z, 0

”

K
“

z,
π

2
; y, 0

”

dz

= e−iπ/2 · 1

2π

Z

R

e−i(x+y)zdz = e−iπ/2δ(x + y).

(II) Now consider the second critical time interval π < t < 2π. We want to
define the propagator kernel on the interval ]π, 2π[ in such a way that

lim
t→π+0

K(x, t; y, 0) = lim
t→π−0

K(x, t; y, 0) = e−iπδ(x + y).

The appropriate definition looks like

K(x, t; y, 0) :=
e−iπ/4e−iπ/2

p

2π| sin t|
exp

„

i
(x2 + y2) cos t− 2xy

2 sin t

«

, π < t < 2π.

To see this, set t := π+τ. Using sin(π+τ) = − sin τ together with limτ→0
sin τ

τ
= 1,

we obtain

lim
τ→+0

K(x, π + τ ; y, 0) = e−iπ/2 lim
τ→+0

e−iπ/4ei(x+y)2/2τ

√
2πτ

= e−iπ/2δ(x + y).

The latter limit follows from

lim
τ→+0

Kfree(z, τ ; 0, 0) = δ(z)

for the propagator kernel Kfree(z, τ ; 0, 0) = e−iπ/4 · eiz
2/2τ

√
2πτ

of a free quantum particle

on the real line.
(III) Similarly, we extend the definition of the propagator kernel K to the other

critical time intervals. �

Using the theory of distributions, the formal argument above can be reformu-
lated in terms of rigorous mathematics.
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7.6.8 Ideal Gases and von Neumann’s Density Operator

The statistical physics of the multi-particle system of N harmonic os-
cillators is governed by the Euclidean propagator of a single harmonic
oscillator.

Folklore

We want to explain the following fundamental principle in physics:

In order to pass from quantum mechanics to statistical physics, apply the
replacement

it

�
�→ 1

kT
.

Here, we use the following notation: t time, T absolute temperature, h
Planck’s quantum of action, � = h/2π, and k Boltzmann constant.

It turns out that the computation methods in statistical physics are frequently easier
to handle than the corresponding methods in quantum mechanics. The reason is
that, for T > 0 and t > 0, the integral

Z ∞

0

e−E/kT dE

is well-defined whereas the oscillating integral
Z ∞

0

e−iEt/�dE

does not exist. The Euclidean trick in physics is to start with imaginary time
t = −iτ. Then it = τ is real. At the end of the computation, one performs an
analytic continuation to real time t, if possible. Fortunately enough, this trick works
well in many cases.

A gas of quantum particles on the real line. The following situation is
the prototype of quantum statistics. Consider a large fixed number of N identical
quantum particles (bosons) on the real line which are harmonic oscillators of mass
m and fixed angular frequency ω > 0. To simplify notation, physicists introduce
the quantity

β :=
1

kT

in statistical physics. Here, T is the absolute temperature of the gas, and k is the
universal Boltzmann constant. The physical dimension of kT is energy. For studying
the physics of the gas, the following two quantities

x0 :=

r

�

mω
, β�ω =

�ω

kT

are important. Here, x0 has the physical dimension of length, and β�ω is dimen-
sionless. It is our aim to compute the following physical quantities of the gas at the
temperature T > 0.

(i) Total energy of the gas:

E = NĒ = N�ω

„

1

2
+

1

eβ�ω − 1

«

.
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(ii) Relative energy fluctuations:

ΔE

E
=

ΔĒ

Ē
√
N

=
1√

N cosh β�ω
2

.

For large particle number N , the relative energy fluctuations are small, as
expected by experience for gases in daily life.

(iii) Mass density of the gas:

μ(x, T ) = Nm�(x, T ) =
Nm

x0

s

tanh βω�

2

π
exp

j

x2(1− coshβ�ω)

x2
0 sinhβ�ω

ff

.

Here, the density function �(x, T ) := 〈x|�(T )|x〉 is related to von Neumann’s density
operator �(T ). The derivative of energy with respect to temperature,

C(T ) = ET (T,N),

is called the heat capacity of the gas. A small change ΔT of temperature produces
the following amount of heat,

ΔQ = C(T )ΔT.

The heat capacity can be measured in physical experiments. We will compute below
the mean energy Ē and the mean energy fluctuation ΔĒ of one particle. For the
total energy, this yields E = NĒ. Moreover, we assume that the single particles be-
have independently. Then, by the theory of probability, the total energy dispersion
is additive,

(ΔE)2 = (ΔĒ)2 + ... + (ΔĒ)2 = N(ΔĒ)2.

Hence ΔE/E = ΔĒ/Ē
√
N.

Bose–Einstein condensation. To understand the physics of our gas, let us
consider the two important special cases of high temperature and low temperature.

(H) For high temperature T (i.e., β is small), we get up to terms of lower order:85

E = NkT,
ΔE

E
=

1√
N

, μ(x, T ) =
Nm

σ
√

2π
e−x2/2σ2

.

The mass density function μ is a Gaussian distribution with mean fluctuation
σ := x0/

√
β�ω. The energy law, E = N · kT , is a special case of the classical

Boltzmann law of energy equipartition. This law tells us that, for many-particle
systems at high temperature, each degree of freedom contributes the amount
of mean energy kT to the total energy of the system. For the heat capacity of
the gas, we get C = Nk.

(L) For low temperature T , we obtain:

lim
T→+0

E = 1
2
�ωN, lim

T→+0

ΔE

E
= 0.

As expected, the particle energy is equal to the ground state energy of the har-
monic oscillator. Physicists say that the excited energy states are frozen at low
temperatures. This crucial phenomenon is called Bose-Einstein condensation.86

85 Note that sinhβ�ω = β�ω+O(β2) and coshβ�ω = 1+β2
�

2ω2+O(β4) as β → 0.
86 In 2001, Eric Cornell, Wolfgang Ketterle, and Carl Wieman were awarded the

Nobel prize in physics for the experimental achievement of Bose–Einstein con-
densation in dilute gases of alkali atoms, and for fundamental studies of the
properties of the condensates.
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Note that the behavior of the gas at low temperatures is governed by typical quan-
tum effects.

The partition function. The possible energies of the gas particles are given
by

En = �ω(n + 1
2
), n = 0, 1, 2, , ...

By statistical physics, the physical properties of this many-particle system follow
from the partition function

Z(β) :=

∞
X

n=0

e−βEn .

Recall that β := 1/kT . For a single particle, the probability of having the energy
En is equal to

pn :=
e−βEn

Z(β)
.

This yields the mean energy Ē and the mean energy fluctuation ΔĒ ≥ 0 of a single
particle, namely,

Ē =

∞
X

n=0

Enpn, (ΔĒ)2 =

∞
X

n=0

(En − Ē)2pn.

We claim that

Ē = �ω

„

1

2
+

1

eβ�ω − 1

«

,
ΔĒ

Ē
=

1

cosh β�ω
2

. (7.148)

Proof. By the geometric series 1 + q + q2 + ... = 1
1−q

for |q| < 1, we get

Z(β) =
∞
X

n=0

e−βEn =
e−β�ω/2

1− e−β�ω
=

1

2 sinh β�ω
2

.

Observe now that

Ē = −Z′(β)

Z(β)
, E2 =

Z′′(β)

Z(β)
, (ΔE)2 = E2 − Ē2.

This yields the claim (7.148) after an elementary computation. �

The Wick trick (source trick). Alternatively, define the modified partition
function

Z(β, J) :=
∞
X

n=0

e−En(β−J) =
1

2 sinh (β−J)ω�

2

where J is an additional small real parameter. Then Z(β, 0) = Z(β), and

Ē =
ZJ(β, 0)

Z(β, 0)
, E2 =

ZJJ(β, 0)

Z(β, 0)
.

Tricks of this kind frequently appear while computing path integrals in quantum
field theory; those tricks are also closely related to the Wick theorem in quantum
field theory published in 1950. Therefore, we will briefly speak of the Wick trick.
Behind this trick, there is the following general strategy in physics which was in-
troduced by Schwinger: Add some source term to the physical system, and study
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the change of the physical system under a change of the source J (see Chap. 14 of
Vol. I).

Von Neumann’s density operator. Let H : D(H) → L2(R) be the self-
adjoint Hamiltonian operator of the quantum harmonic oscillator on the real line,

H =
P 2

2m
+

mω2Q2

2
.

Let ϕ0, ϕ1, ... be the eigensolutions of H with

Hϕn = Enϕn, n = 0, 1, 2, ...

For any state ϕ ∈ L2(R) and any temperature T > 0, define

e−βHϕ :=

∞
X

n=0

e−βEn〈ϕn|ϕ〉ϕn. (7.149)

Note that

||e−βHϕ||2 =

∞
X

n=0

|e−βEn〈ϕn|ϕ〉|2 ≤
∞
X

n=0

|〈ϕn|ϕ〉|2 = ||ϕ||2.

Therefore, the operator e−βH : L2(R) → L2(R) is linear and continuous. For the
trace, we get

tr e−βH =

∞
X

n=0

〈ϕn|e−βHϕn〉 =

∞
X

n=0

e−βEn .

This is precisely the partition function Z. Therefore, the operator e−βH is of trace
class. In order to pass to the language of physicists, denote the vector ϕn by |En〉.
Mnemonically, we write

e−βH =

∞
X

n=0

e−βEn |En〉〈En|.

In fact, this implies e−βH |ϕ〉 =
P∞

n=0 e−βEn |En〉〈En|ϕ〉 which coincides with
(7.149). If χ0, χ1, ... is an arbitrary complete orthonormal system in the Hilbert
space L2(R), then

tr e−βH =

∞
X

n=0

〈χn|e−βHχn〉 =

∞
X

n=0

e−βEn〈χn|En〉〈En|χn〉.

The relation between the propagator P (t, 0) := e−iHt/� and the operator e−βH is
given by

e−βH = P (−iβ�, 0) .

Now to the point. The linear bounded operator � : L2(R)→ L2(R) defined by

� :=
e−βH

tr e−βH

is called the density operator for our many-particle system of quantum harmonic
oscillators on the real line. Explicitly,
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� =

∞
X

n=0

pn|En〉〈En|

where pn = e−βEn/Z(β). The real numbers

�ij := 〈χi|�χj〉, i, j = 0, 1, 2, ...

are called the entries of the density matrix with respect to the complete orthonormal
system χ0, χ1, ... For the mean energy value Ē and the mean energy fluctuation ΔĒ
of a particle, we get

Ē = tr(�H), (ΔE)2 = tr(�(H − Ē)2).

In fact, since �|En〉 = pn|En〉 for all n,

tr(�H) =

∞
X

n=0

〈En|�H|En〉 =

∞
X

n=0

pnEn〈En|En〉 =

∞
X

n=0

pnEn = Ē.

A similar argument applies to ΔĒ. Using the language of physicists, define87

�(x, T ) :=
〈x|e−βH |x〉

tr e−βH
.

Since ϕn(x) = 〈x|En〉,

�(x, T ) =
X

n=0

pn〈x|En〉〈En|x〉 =
∞
X

n=0

pn|ϕn(x)|2.

Recall that the function x �→ |ϕn(x)|2 is the particle density of the nth energy state
of the harmonic oscillator. Moreover,

Z

R

�(x, T )dx =
∞
X

n=0

pn = 1.

Therefore, it is reasonable to regard �(x, T ) as the (normalized) particle density of
the gas at the point x at the temperature T .

Semiclassical quantum statistics and the Dirac calculus (formal ap-
proach). We want to explain how the Dirac calculus allows us to formally pass
from the density operator � to the semiclassical Gibbs statistics for high tempera-
tures. Let A : L2(R)→ L2(R) be a linear continuous operator of trace class. For a
complete orthonormal system χ0, χ1, ... of the complex Hilbert space L2(R), we get

trA =

∞
X

n=0

〈χn|Aχn〉. (7.150)

The point is that this number is finite, and it does not depend on the choice of the
complete orthonormal system χ0, χ1, ... The trick of the Dirac calculus is to formally
extend the trace formula (7.150) to complete orthonormal systems of generalized
eigenfunctions. For example, using the system {〈x|}x∈R, we get

87 See the formal Dirac calculus on page 596 of Vol. I.
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trA =

Z

R

〈x|A|x〉dx. (7.151)

Applying this formal approach, we are going to show that for high temperatures T ,
we obtain the following approximative formulas.88

(i) Mean value of energy:

Ē =

Z

R2
H(x, p)�(x, p;T )

dxdp

h
.

(ii) Mean energy fluctuation: (ΔĒ)2 =
R

R2(H(x, p)− Ē)2�(x, p;T ) dxdp
h

.

Here, H(x, p) := p2

2m
+ mω2x2

2
. For the density function in the phase space,

�(x, p;T ) :=
e−βH(x,p)

R

R2 e−βH(x,p) dxdp
h

. (7.152)

For a given function A = A(x, p), the mean value Ā is defined by

Ā =

Z

R2
A(x, p)�(x, p;T )

dxdp

h
.

If the function A = A(x) only depends on the position variable x, then

Ā =

Z

R

A(x)�(x, T )dx

where we define

�(x, T ) :=

Z

R

�(x, p;T )
dp

h
.

Let us prove (i) and (ii) above in a formal way. To begin with, observe that
〈x|P 2|p〉 = p2〈x|p〉 and

〈x|Q2|p〉 = 〈Q2x|p〉 = x2〈x|p〉.

Hence

〈x|H|p〉 = 〈x| P
2

2m
+

mω2Q2

2
|p〉 = H(x, p)〈x|p〉.

Up to terms of order O(β2) as β → 0, we get

〈x|e−βH |p〉 = 〈x| (I − βH) |p〉.

Hence
〈x|e−βH |p〉 = (1− βH(x, p)) 〈x|p〉 = e−βH(x,p)〈x|p〉.

For the trace, we obtain tr e−βH =
R

R
〈x|e−βH |x〉dx. Using Dirac’s completeness

relation
R

R
|p〉〈p| dp = I, we obtain

tr e−βH =

Z

R2
〈x|e−βH |p〉〈p|x〉dxdp.

88 Note that dxdp/h and �(x, p;T ) are dimensionless.
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Since 〈x|p〉 = eipx/
√
h and 〈p|x〉 = 〈x|p〉†, we get

tr e−βH =

Z

R2
e−βH(x,p) dxdp

h
.

Summarizing, from � = e−βH/ tr e−βH it follows that

〈x|�|p〉 = �(x, p;T )〈x|p〉
where �(x, p;T ) is defined by (7.152). Finally,

Ē = tr(�H) =

Z

R

〈x|�H|x〉dx =

Z

R2
〈x|�|p〉〈p|H|x〉dxdp.

Hence Ē =
R

R2 �(x, p;T )H(x, p) dxdp
h

. Similarly, we argue for ΔĒ.
Rigorous justification. To begin with, observe that the formal Dirac calculus

tells us that

〈x|e−βH |x〉 =

∞
X

n=0

e−βEn〈x|En〉〈En|x〉 =

∞
X

n=0

e−βEn |〈x|En〉|2,

and tr e−β/kT =
R

R
〈x|e−βH |x〉dx. In order to obtain a rigorous formulation, let us

write this as

tr e−βH = lim
m→∞

Z

R

m
X

n=0

e−βEn |ϕn(x)|2dx. (7.153)

Proposition 7.42 The trace formula (7.153) holds. Explicitly, the trace tr e−βH is
the partition function of the quantum harmonic oscillator.

Proof. The trace class operator e−βH has the complete orthonormal system of
eigenvectors ϕ0, ϕ1, ... with e−βHϕn = e−βEnϕn for all n. The trace is the sum of
the eigenvalues. Hence

tr e−βH =
∞
X

n=0

e−βEn .

On the other hand, it follows from ||ϕn||2 =
R

R
|ϕn(x)|2dx = 1 that

lim
m→∞

Z

R

m
X

n=0

e−βEn |ϕn(x)|2dx = lim
m→∞

m
X

n=0

e−βEn .

�

Introduce the kernel to the operator e−βH by setting

P(x, y;T ) = 〈x|e−βH |y〉 =

∞
X

n=0

e−βEn〈x|En〉〈En|y〉,

in the language of the Dirac calculus. This means that we define

P(x, y;T ) :=

∞
X

n=0

e−βEnϕn(x)ϕn(y)†.

Recall that β := 1/kT and x0 :=
p

�/mω. The Mehler formula (7.143) tells us the
following.
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Proposition 7.43 For all positions x, y ∈ R and all temperatures T > 0, we get

P(x, y;T ) =
1

x0

√
2π sinhβ�ω

exp

j

− (x2 + y2) coshβ�ω − 2xy

2x2
0 sinhβ�ω

ff

.

Moreover, for the partition function of the quantum harmonic oscillator, we have
the trace formula

Z

R

P(x, x;T )dx =
∞
X

n=0

e−En/kT = tr e−H/kT .

For the density function �(x, T ) := 〈x|�|x〉, this implies

�(x, T ) =
P(x, x;T )

Z(β)
=

1

x0

s

tanh βω�

2

π
exp

j

x2(1− coshβ�ω)

x2
0 sinh β�ω

ff

.

Von Neumann’s equation of motion for general density operators. We
are given real numbers p0, p1, ... with 0 ≤ pn ≤ 1 and p0 + p1 + ... = 1. Choose a
complete orthonormal system 〈0|, 〈1|, ... in the Hilbert space L2(R). Define

�0 :=
∞
X

n=0

pn|n〉〈n|.

Moreover, for each time t ∈ R, we define

�(t) := eiHt/��0e
−iHt/� .

This is the equation of motion for an arbitrary density operator in the Hilbert
space L2(R). This equation corresponds to the time-dependence of observables in
the Heisenberg picture. For an observable A : D(A) → L2(R), we define the mean
value

Ā(t) := tr(�(t)A), t ∈ R

if this trace exists. In the special case where �0 =
P∞

n=0 pn|En〉〈En|, we obtain
�(t) = �0 for all times t ∈ R.

7.7 The Feynman Path Integral

The history of mathematics shows that every well-working formal calcu-
lus used in physics can be rigorously justified once a day, by finding the
appropriate rigorous tools.

Folklore

7.7.1 The Basic Strategy

In Chap. 7 of Vol. I, we studied discrete path integrals in a rigorous setting for N
degrees of freedom. In this section, we will study the limit N →∞. Our plan is the
following one:
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(i) We start with the definition of the Feynman path integral (7.156) below as a
limit in position space, where N →∞.

(ii) We rigorously show that this limit exists (in a generalized sense) in the two
special cases of
• the free quantum particle on the real line (Sect. 7.7.3) and
• the harmonic oscillator (Sect. 7.7.4).
It turns out that these limits coincide with the propagator kernel introduced in
Sects. 7.6.4 and 7.6.7 by using the rigorous method of Fourier analysis combined
with analytic continuation.

(iii) This brings us to the formulation of the propagator hypothesis saying that the
Feynman path integral always represents the Feynman propagator kernel of
the Schrödinger equation. We motivate this propagator hypothesis by using
the Dirac calculus in a formal sense (Sect. 7.7.6).

(iv) In Sect. 7.8, we will rigorously study finite-dimensional Gaussian integrals
with N degrees of freedom. Motivated by this, in Sect. 7.9 we will give the
definition of normalized infinite-dimensional Gaussian integrals by using the
spectral theory of quadratic forms and the determinant of infinite-dimensional
operators based on the analytic continuation of the corresponding zeta function.

(v) For the free quantum particle and the harmonic oscillator, we rigorously show
that the normalized infinite-dimensional Gaussian integral represents the Feyn-
man propagator kernel, up to a normalization factor (Sects. 7.9.3 and 7.9.4).

(vi) This brings us to the spectral hypothesis saying that the Feynman path integral
can be computed by means of infinite-dimensional Gaussian integrals, up to a
normalization factor. This is the basic method successfully used by physicists
in quantum field theory. Fortunately enough, the normalization factor does
not play any role, as a rule, since it drops out by considering quotients of path
integrals.

The following remarks are in order:

• The concrete calculations performed by physicists show that the propagator hy-
pothesis above is right in quantum mechanics.89 Many concrete examples can be
found in the following two standard references:

C. Grosche and F. Steiner, Handbook of Feynman Path Integrals, Springer,
Berlin, 1998 (950 references).

H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer
Physics, World Scientific, River Edge, New York, 2004.

• In Sect. 7.11, we will study the rigorous Wiener path integral for Brownian motion
together with Cameron’s no-go theorem for the Feynman path integral.

• In Sect. 7.12, we will investigate the relation between the Weyl calculus and the
Feynman path integral (method of pseudo-differential operators).

Detailed hints to both the mathematical and physical literature concerning the
Feynman path integral can be found in Sect. 7.22 on page 667.

The creation of a comprehensive rigorous mathematical theory for Feyn-
man path integrals (also called functional integrals) in quantum field theory
is a challenge for the mathematics of the future.

89 However, observe the following peculiarity: If caustics appear in classical mechan-
ics, then one has to handle carefully the Maslov indices in quantum mechanics,
as in the case of the harmonic oscillator in Sect. 7.6.7.
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7.7.2 The Basic Definition

Let us consider the Schrödinger equation

i�ψt(x, t) = − �
2

2m
ψxx(x, t) + U(x)ψ(x, t), x ∈ R, t > s (7.154)

together with the corresponding classical action

S[q] :=

Z t

s

˘

1
2
mq̇(τ)2 − U

`

q(τ)
´¯

dτ. (7.155)

We assume that the potential U : R→ R is smooth. Choose N = 1, 2, . . . , and divide
the time interval [s, t] into the subintervals t0 = s < t1 < . . . < tN−1 < tN = t,
where

tj := s + jΔt, j = 0, 1, . . . , N, Δt :=
t− s

N
.

Fix the positions x, y ∈ R on the real line. Let the symbol C{s, t} denote the set of
all continuous functions q : [s, t]→ R with the boundary condition

q(s) := x, q(t) := y.

For each path q ∈ C{s, t}, we set qj := q(tj), where j = 0, 1, . . . , N. By definition,
the discrete action of this path reads as

SN :=

N−1
X

n=0

j

m

2

“qn+1 − qn

Δt

”2

− U(qn)

ff

Δt.

Finally, let us introduce the characteristic length l :=
q

2π�iΔt
m

. Here, the square

root is to be understood in the sense of the principal value.
Basic definition. Our definition of the Feynman path integral reads as

Z

C{s,t}
eiS[q]/� Dq := lim

N→∞

1

l

Z

RN−1
eiSN /� dq1

l
· · · dqN−1

l
. (7.156)

Since the boundary values q0 = y and qN = x are fixed, the integrals on the
right-hand side of (7.156) are well-defined (N − 1)-dimensional integrals of the real
variables q1, . . . , qN−1. We assume that the limit N →∞ exists.

Intuitive interpretation. We regard
R

C{s,t} eiS[q]/�Dq as an integral over the

paths in the space C{s, t}. The definition (7.156) will be motivated in great detail
in Sect. 7.7.6 on page 555. The path integral depends on x, t, y, s. We write

K(x, t; y, s) =

Z

C{s,t}
eiS[q]/� Dq.

In the following two sections, we will show that, for the free quantum particle and
the harmonic oscillator on the real line, the function K is nothing else than the
Feynman propagator kernel K.
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7.7.3 Application to the Free Quantum Particle

Let us consider the Schrödinger equation (7.154) above with vanishing potential,
U(x) ≡ 0. The corresponding classical action reads as

S[q] :=

Z t

s

1
2
mq̇(τ)2dτ.

In Sect. 7.5.1, we have computed the corresponding Feynman propagator kernel

K(x, t; y, s) =

r

m

2π�i(t− s)
eim(x−y)2/2�(t−s) (7.157)

for a freely moving quantum particle on the real line (see Theorem 7.16 on page
488).

Proposition 7.44 For the free quantum particle, the Feynman path integral coin-
cides with the Feynman propagator kernel, that is, we have

K(x, t; y, s) =

Z

C{s,t}
eiS[q]/� Dq (7.158)

for all positions x, y ∈ R and all times t > s.

In the following proof, we will use a slight modification (7.160) of the original
definition (7.156) of the path integral. In terms of physics, we separate the classical
contribution from the quantum fluctuations. In terms of mathematics, we pass to
homogeneous boundary conditions.
Proof. To simplify notation, set � := 1 and s := 0.

(I) The classical trajectory. The action of a classical free particle of mass m on
the real line is given by

S[q] :=

Z t

0

1
2
mq̇(τ)2 dτ.

Recall that the boundary-value problem

mq̈(τ) = 0, 0 < τ < t, q(0) = y, q(t) = x

corresponds to the motion of the particle with given endpoints. The unique solution
is qclass(τ) = y + τ

t
(x− y) with the classical action

S[qclass] =

Z t

0

1
2
mq̇class(τ)2dτ =

m(x− y)2

2t
.

(II) Decomposition of trajectories. In order to study perturbations of the clas-
sical trajectory, we consider the trajectories

q(τ) = qclass(τ) + r(τ), τ ∈ [0, t]

where r ∈ C2
0 [0, t], that is, the function r : [0, t]→ R is twice continuously differen-

tiable and satisfies the boundary condition r(0) = r(t) = 0. Then

S[q] = S[qclass] + S[r]. (7.159)

In fact, integration by parts yields
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Z t

0

q̇class(τ)ṙ(τ)dτ = −
Z t

0

q̈class(τ)r(τ)dτ = 0,

since qclass satisfies the classical equation of motion, mq̈class(τ) = 0. Motivated by
(7.159), let us slightly modify the definition (7.156) of the path integral by setting

Z

C{0,t}
eiS[q]/� Dq := eiS[qclass]/� lim

N→∞

1

l

Z

RN−1
eiSN /� dr1

l
· · · drN−1

l

(7.160)

with the discrete action

SN :=

N−1
X

n=0

j

m

2

“rn+1 − rn

Δt

”2
ff

Δt

and the boundary values r0 = rN := 0.
(III) The generalized Gaussian integral. Let a > 0 or a < 0 and let β ∈ R.

According to (7.183) on page 561, we have the crucial Gaussian integral formula

Z

R

e−
1
2 iap2

eiβp dp√
2π

:=
e−β2/2ia

√
ia

. (7.161)

Here, the square root is to be understood as principal value. As we will discuss in
Sect. 7.8, this definition has to be understood in the sense of analytic continuation.

(IV) Computation of the integrals from (7.160). Let us first integrate over the
variable r1. This yields the integral

1

l2

Z

R

exp

„

im

2Δt

`

(r2 − r1)
2 + (r1 − r0)

2´
«

dr1

which is equal to

1

l2
exp

„

imr2
2

4Δt

«

Z

R

exp

j

im

Δt

“

r1 −
r2
2

”2
ff

dr1 =

r

m

2πi(2Δt)
exp

„

imr2
2

4Δt

«

.

Similarly, by induction, integrating over r1 · · · rn we get

r

m

2πi(n + 1)Δt
exp

„

imr2
n+1

2(n + 1)Δt

«

.

Choosing n = N − 1 and observing that r0 = rN = 0, we obtain

r

m

2πiNΔt
=

r

m

2πit
.

This expression does not depend on N . Thus, the limit N → ∞ yields the same
value. �
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7.7.4 Application to the Harmonic Oscillator

The path integral for the harmonic oscillator is closely related to the dif-
ference method for the classical harmonic oscillator in numerical analysis.

Folklore

Consider the Schrödinger equation (7.154) above for the harmonic oscillator with
mass m and angular frequency ω > 0. This corresponds to the potential U(x) =
mω2

2
x2. The classical action is given by

S[q] =

Z t

s

1
2
mq̇(τ)2 − 1

2
mω2q(τ)2 dτ. (7.162)

In Sect. 7.6.7 on page 537, we have computed the corresponding Feynman propa-
gator kernel

K(x, t; y, s) =
1

x0

p

2πi sinω(t− s)
exp

„

i
(x2 + y2) cosω(t− s)− 2xy

2x2
0 sinω(t− s)

«

for the harmonic oscillator. Here, we restrict ourselves to the first critical time

interval s < t < s + t1,crit, where t1,crit = π
ω
. Furthermore, x0 =

q

�

mω
.

Proposition 7.45 For the quantized harmonic oscillator, the Feynman path inte-
gral coincides with the Feynman propagator kernel on the first critical time interval,
that is, for all positions x, y ∈ R, and all times t ∈]s, s + t1,crit[, we have

K(x, t; y, s) =

Z

C{s,t}
eiS[q]/� Dq. (7.163)

This proposition is to be understood in a generalized sense which will be made
precise in the following proof. First the Gaussian integrals have to be understood in
a generalized sense by using analytic continuation. Secondly the limit N →∞ from
(7.156) does not exist in the classical sense. Therefore, we will use a summation
method.
Proof. (I) The classical trajectory. The boundary-value problem

q̈(τ) + ω2q(τ) = 0, s < τ < t, q(s) = y, q(t) = x (7.164)

has the unique solution qclass(τ) = y cosω(τ − s) +
`

x − y cosω(τ − s)
´ sin ω(τ−s)

sin ω(t−s)
.

This is a trajectory of the classical harmonic oscillator with the action

S[qclass] = � · (x
2 + y2) cosω(t− s)− 2xy

2x2
0 sinω(t− s))

.

(II) Decomposition of trajectories. Now we consider perturbations of the clas-
sical trajectory, by setting

q(τ) := qclass(τ) + r(τ)

where r ∈ C2
0 [s, t]. By definition, this notation means that the function r : [s, t]→ R

is twice continuously differentiable and satisfies the following boundary condition
r(s) = r(t) = 0. We have

S[q] = S[qclass] + S[r] for all r ∈ C2
0 [s, t]. (7.165)
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In fact, integration by parts yields

Z t

0

q̇classṙ − ω2qclassr dτ = −
Z t

0

(q̈class + ω2qclass)r dτ = 0,

since qclass satisfies the classical equation of motion (7.164). Motivated by (7.165),
let us slightly modify the definition (7.156) of the path integral by setting

Z

C{s,t}
eiS[q]/� Dq := eiS[qclass]/� lim

N→∞

1

l

Z

RN−1
eiSN /� dr1

l
· · · drN−1

l

with the discrete action

SN :=

N−1
X

n=0

j

m

2

“rn+1 − rn

Δt

”2

− mω2

2
r2

n

ff

Δt (7.166)

and the boundary values r0 = rN := 0.
(III) The discrete action. To simplify notation, we set s := 0. The function SN

is a quadratic form. Explicitly,

iSN

�
=

imΔt

2�
· 〈r|ANr〉. (7.167)

Here, we set 〈r|ANr〉 := rdANr with the symmetric matrix

AN :=
1

(Δt)2

0

B

B

B

B

B

B

@

a −1 0 . . . 0 0

−1 a 0 . . . 0 0
...

...
... . . . 0 0

0 0 0 . . . a −1

0 0 0 . . . −1 a

1

C

C

C

C

C

C

A

and rd := (r1, . . . , rN−1). Furthermore, a := 2− (ωΔt)2.
(IV) The discrete eigenvalue problem. The matrix equation ANr = λr reads as

− rj+1 − 2rj + rj−1

(Δt)2
− ω2rj = λjrj , r0 = rN = 0, (7.168)

where j = 1, . . . , N − 1. This equation has the eigensolutions

λn =
n2π2

t2

„

sinα(n)

α(n)

«2

− ω2, n = 1, . . . , N − 1,

rd
n =

„

sin
nπΔt

t
, sin

2nπΔt

t
, . . . , sin

(N − 1)nπΔt

t

«

,

where α(n) := nπΔt
2t

. Using the limit N → +∞ (i.e., Δt→ 0), these eigensolutions

go to the eigensolutions λn = n2π2

t2
− ω2 and q(τ) = sin nπτ

t
of the boundary-

eigenvalue

−r̈(τ)− ω2r(τ) = λr(τ), 0 < τ < t, r(0) = r(t) = 0

for the classical harmonic oscillator.
(IV) The Gaussian integral. By (7.167), we get
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Z

RN−1
eiSN /� dr1

l
· · · drN−1

l
= (
√
γ)N−1

Z

RN−1
e−

1
2 γ〈r|AN r〉 dr1√

2π
· · · drN−1√

2π
,

where γ := mΔt
�i

and l =
q

2πi�Δt
m

. By the key formula (7.190) for Gaussian integrals

on page 564 (based on analytic continuation), we obtain

1

l

Z

RN−1
eiSN /� dr1

l
· · · drN−1

l
=

1

l
√

detAN

.

(V) The problem of convergence. It remains to compute the limit

lim
N→∞

1

l
√

detAN

.

Unfortunately, this limit does not exist in the classical sense. This follows immedi-
ately from

detAN = λ1λ2 · · ·λN−1 =

N−1
Y

n=1

(

n2π2

t2

„

sinα(n)

α(n)

«2

− ω2

)

and 1
l

=
p

m
2π�iΔt

=
√
N ·

p

m
2π�it

.

(VI) Summation method (generalized limit). We set a(nΔt) := Δt · detAn for
the indices n = 1, 2, . . . , N. Recall that NΔt = t. In addition let a(0) := Δt. By the
definition of the matrix AN , the Laplace expansion for determinants tells us that

a((n + 1)Δt)− 2a(nΔt) + a((n− 1)Δt)

(Δt)2
+ ω2a(nΔt) = 0

for all n = 1, 2, . . . , N − 1. Letting Δt → 0, we obtain the ordinary differential
equation

ä(τ) + ω2a(τ) = 0, 0 < τ < t

with the initial condition a(0) = 0 and ȧ(0) = 1.90 This initial-value problem has
the unique solution

a(τ) =
sinωτ

ω
.

This motivates the definition

lim
N→∞

Δt · detAN :=
sinωt

ω
,

as generalized limit. Therefore, we get

lim
N→∞

1

l
√

detAN

=

r

m

2π�i
lim

N→∞

1√
Δt · detAN

=

r

mω

2π�i sinωt
.

�

The proof of Prop. 7.45 shows that the computation of the Feynman path
integral for the harmonic oscillator is closely related to the eigenvalues of the cor-
responding classical boundary-value problem. Indeed, this is a crucial method for
computing Feynman path integrals. We will study this in Sect. 7.9 on page 570
by means of the zeta-function regularization for infinite-dimensional Gaussian in-
tegrals.

90 In fact, a(0) = limΔt→0 Δt = 0 and

ȧ(0) = lim
Δt→0

a(Δt)− a(0)

Δt
= lim

Δt→0
A1 − 1 = 2− 1 = 1.



7.7 The Feynman Path Integral 555

7.7.5 The Propagator Hypothesis

Motivated by Props. 7.44 and 7.45, let us formulate the following so-called propa-
gator hypothesis:

(H) For the Schrödinger equation (7.154) on the real line, the Feynman
propagator kernel is given by the Feynman path integral, that is,

K(x, t; y, s) =

Z

C{s,t}
eimS[q]/� Dq.

Here, S[q] is the classical action given by (7.155) on page 549.

7.7.6 Motivation of Feynman’s Path Integral

It is our goal to motivate the propagator hypothesis (H) by using the formal Dirac
calculus.

The classical Liouville measure in phase space. Consider a gas on the real
line at high temperature T > 0. Let x and p denote the position and the momentum
of a gas particle, respectively. In semi-classical statistical physics, the mean value
Ā of a physical quantity A = A(x, p) is given by

Ā =

Z

R

A(x, p)�(x, p;T )dμ(x, p).

Here, � = �(x, p;T ) denotes the density function from (7.152) on page 545. Further-
more, dμ := dxdp/h denotes the Liouville measure. This means that the Liouville
measure μ(Ω) of a compact subset Ω of the (x, p)-phase space is given by

μ(Ω) =

Z

Ω

dμ =

Z

Ω

dxdp

h
.

If the function A = A(x) does not depend on the momentum, then we separately
integrate with respect to the variable p. This yields

Ā =

Z

R

A(x)�(x;T )dx

with �(x, T ) :=
R

R
�(x, p;T ) dp

h
. Note that the appearance of the Planck constant h

as denominator guarantees that the Liouville measure dxdp/h is dimensionless. We
now want to show that the formal Feynman path integral is nothing else than an in-
tegral with respect to a formal infinite-dimensional Liouville measure. Alternatively,
the Feynman path integral can also be viewed as a modified infinite-dimensional
Gaussian integral.

The path integral in the phase space. Consider the motion x = q(t) of a
classical particle with mass m on the real line. For the momentum, p(t) = mq̇(t).
The Hamiltonian function reads as

H(q, p) :=
p2

2m
+ U(q), q, p ∈ R

with the potential U. The action along a trajectory during the time interval [s, t] is
given by
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S[q, p] :=

Z t

s

p(τ)2

2m
− U(q(τ)) dτ. (7.169)

Here, p(τ)2/2m is the kinetic energy and U(q(τ)) is the potential energy of the
classical particle at time τ. Equivalently,

S[q, p] :=

Z t

s

p(τ)q̇(τ)−H(q(τ), p(τ)) dτ.

We now pass to the Schrödinger equation for the corresponding quantum particle
on the real line,

i�ψt(x, t) = Hψ(x, t), (7.170)

with the Hamiltonian operator H = P2

2m
+ U(Q). Recall from (7.88) on page 491

that the initial-value problem for the Schrödinger equation (7.170) has the solution

ψ(x, t) =

Z

R

K(x, t; y, s)ψ0(y)dy, t > s, x ∈ R

with ψ(x, s) = ψ0(x) for all positions x ∈ R at the initial time s. The kernel K has
the physical dimension of [length]−1. In the elegant formal language of the Dirac
calculus,

K(x, t; y, s) = 〈x|e−iH(t−s)/� |y〉.
Our goal is to motivate Feynman’s magic formula

K(x, t; y, s) =

Z

C{s,t}
eiS[q,p]/� DqDp, (7.171)

which tells us that the propagator kernel K can be represented by a path integral.
Here, we integrate over the space C{s, t} of all continuous paths q, p : [s, t] → R

with
q(s) = y, q(t) = x.

That is, we fix the initial time s, the initial point y, the final time t, and the
final point x. Note that both the initial value p(s) and the final value p(t) of the
momentum variable are unconstrained. Moreover, we use the classical action

S[q, p] :=

Z t

s

p(τ)q̇(τ)−H(q(τ), p(τ)) dτ

along the path q = q(τ), p = p(τ), s ≤ τ ≤ t. The symbol D[q, p] represents a
formal infinite-dimensional Liouville measure on the space C[s, t] of curves in the
phase space. Formally,

D[q, p] :=
dp(s)

h

Y

s<τ≤t

dq(τ)dp(τ)

h
.

Since dq(τ)dp(τ)/h is dimensionless, both the measure D[q, p] and the kernel from
(7.171) have the same physical dimension of [length]−1, as expected. The motivation
given below will show that the magic formula (7.171) stands for the following formal
limit
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K(x, t; y, s) = lim
N→∞

Z

R2N−1
eiSN /� dp0

h

N−1
Y

n=1

dqndpn

h
(7.172)

along with the discrete action

SN :=

N−1
X

n=0

“

pn
qn+1 − qn

Δt
−H(qn, pn)

”

Δt.

Here, q0 := y and qN := x.
Applying the Dirac calculus. We want to motivate formula (7.172). To

simplify notation, set � = 1. Then h = 2π. Let us decompose the time interval [s, t]
into N pieces of equal length by setting

s = t0 < t1 < ... < tN−1 < tN = t

along with tn := s+nΔt and Δt := (t−s)/N. Recall the propagator kernel formula:
K(x, t; y, s) := 〈x|e−iNHΔt|y〉.
(i) Causality and the product property of the propagator kernel: For all interme-

diate times τ with s ≤ τ ≤ t, we get the following product formula

K(x, t; y, s) =

Z

R

K(x, t; q, τ)K(q, τ ; y, s)dq. (7.173)

In fact, by the addition theorem for the exponential function,

e−iH(t−s) = e−iH(t−τ)e−iH(τ−s).

Using the completeness relation
R

R
|q〉〈q| dq = I, we obtain

〈x|e−iH(t−s)|y〉 =

Z

R

〈x|e−iH(t−τ)|q〉〈q|e−iH(τ−s)|y〉dq

which proves (7.173). From the physical point of view, the product formula
(7.173) reflects nothing other than causality (see page 482).

(ii) The propagator kernel for small time intervals: We want to show that the
propagator kernel K for the small time interval [s, s+Δt] can be approximately
represented by the following simple key formula

K(x, s + Δt; y, s) =

Z

R

e−iH(y,p)Δt eip(x−y) dp

2π
, (7.174)

up to terms of order (Δt)2. To get this, note that the following is true, up to
terms of order (Δt)2. By Taylor expansion,

e−iHΔt = I − iHΔt.

Recall that H = P2

2m
+ mω2Q2

2
. For the position operator, Q|y〉 = y|y〉. Hence,

by the completeness relation
R

R
|p〉〈p| dp = I, we get

〈x|Q2|y〉 = y2〈x|y〉 = y2

Z

R

〈x|p〉〈p|y〉dp.
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Since 〈x|p〉 = eixp
√

2π
, we obtain

〈x|Q2|y〉 =

Z

R

y2eixpe−iyp dp

2π
.

For the momentum operator, P |p〉 = p|p〉. Therefore,

〈x|P 2|y〉 =

Z

〈x|P 2p〉〈p|y〉dp =

Z

R

p2〈x|p〉〈p|y〉 dp
2π

.

Hence 〈x|P 2|y〉 =
R

R
p2eip(x−y) dp

2π
. Summarizing,

〈x|H|y〉 =

Z

R

„

p2

2m
+

mω2y2

2

«

eip(x−y) dp

2π
=

Z

R

H(y, p)eip(x−y) dp

2π
.

Thus

〈x|I − iHΔt|y〉 =

Z

R

(1− iH(y, p)Δt) eip(x−y) dp

2π
.

Finally,

〈x|e−iHΔt|y〉 =

Z

R

e−iH(y,p)Δt eip(x−y) dp

2π
,

up to terms of order (Δt)2. This finishes the formal proof of the claim.
(iii) The path integral: Consider first the case where N = 2. Set q0 := y and

q2 := x. By the product formula (7.173),

K(q2, t2; q0, t0) =

Z

R

K(q2, t2; q1, t1)K(q1, t1; q0, t0)dq1.

Using (7.174), we get the approximative formula

K(q2, t2; q0, t0) =

Z

R3
eiS2 dq1 ·

dp1

2π
· dp0

2π
(7.175)

with the discrete action

S2 :=
“

p1
q2 − q1
Δt

+ p0
q1 − q0
Δt

−H(q1, p1)−H(q0, p0)
”

Δt.

Now let N = 2, 3, . . .. Similarly, the product formula (7.173) yields

K(qN , tN ; q0, t0) =

Z

RN−1
dqN−1 · · · dq1

N
Y

n=1

K(qn, tn; qn−1, tn−1).

By (7.174), we obtain the approximative formula

K(qN , tN ; q0, t0) =

Z

R2N−1
eiSN

dp0

2π

N−1
Y

n=1

dqndpn

2π
(7.176)

with the discrete action

SN :=

N−1
X

n=0

“

pn
qn+1 − qn

Δt
−H(qn, pn)

”

Δt.

Finally, carry out the formal limit N → ∞ which implies Δt → 0. This way,
we get Feynman’s magic limit formula (7.171) which we mnemonically write
as (7.172).



7.8 Finite-Dimensional Gaussian Integrals 559

The path integral in the position space. Feynman’s magic formula (7.171)
can be simplified by integrating over the momentum variables p0, p1, ... This yields
the following modified magic formula

K(x, t; y, s) =

Z

C{s,t}
eiS[q]/� Dq. (7.177)

Here, we integrate over all continuous paths q = q(τ), s ≤ τ ≤ t, in the position
space with

q(s) = y, q(t) = x

for given initial time s, initial point y, final time t, and final point x. Along this
path, we use the classical action

S[q] :=

Z t

s

˘

1
2
mq̇(τ)2 − U(q(τ))

¯

dτ.

Mnemonically, the magic formula (7.177) stands for the following formal limit

K(x, t; y, s) = lim
N→∞

1

l

Z

RN−1
eiSN /� dq1

l
· · · dqN−1

l
(7.178)

along with the discrete action

SN :=

N−1
X

n=0

j

m

2

“qn+1 − qn

Δt

”2

− U(qn)

ff

Δt,

and the characteristic length l :=
q

2π�iΔt
m

. Now let us motivate formula (7.178).

Set � := 1. Proceeding as above, formula (7.178) follows from the product formula

K(qN , tN ; q0, t0) =

Z

RN−1
dqN−1 · · · dq1

N
Y

n=1

K(qn, tn; qn−1, tn−1)

along with the approximation

K(x, s + Δt; y, s) = l−1eim(x−y)2/2Δt e−iU(y)Δt, (7.179)

up to terms of order (Δt)2. It remains to justify formula (7.179). To this end, use

K(x, s + Δt; y, s) = e−iU(y)Δt

Z

R

e−ip2Δt/2m eip(x−y) dp

2π
, (7.180)

by (7.174). Applying the Gaussian integral formula (7.161) on page 551 to (7.180),
we get the desired formula (7.179).

7.8 Finite-Dimensional Gaussian Integrals

The rigorous theory of finite-dimensional Gaussian integrals in classical
probability theory represents the prototype of the formal theory of infinite-
dimensional Gaussian integrals, which play a crucial role for describing
correlations in quantum field theory.
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In order to understand the formal properties of infinite-dimensional Gaus-
sian integrals, write the well-defined N -dimensional Gaussian integrals in
such a way that the formal limit N →∞ can be easily performed.

Folklore

Path integrals (or more general functional integrals) can be computed by regarding
them as infinite-dimensional Gaussian integrals. To discuss this, in the present
section we are going to study finite-dimensional Gaussian integrals. In the next
section, we will generalize this to the infinite-dimensional case. Note that

• free systems (i.e., systems without any interaction) correspond to standard Gaus-
sian integrals, whereas

• interacting systems are described by the perturbation of standard Gaussian in-
tegrals.

In the framework of perturbation theory, the computation of perturbed Gaussian
integrals can be reduced to the computation of moments for standard Gaussian
integrals. Analytically, this can be based on the Wick theorem. Graphically, this
corresponds to Feynman diagrams.

7.8.1 Basic Formulas

One-dimensional Gaussian integrals. The starting point is the integral

Z

R

e−x2
dx =

√
π. (7.181)

This formula elegantly follows from
R

R
e−x2

dx
R

R
e−y2

dy =
R

R2 e−x2−y2
dxdy. Pass-

ing to polar coordinates, the latter integral is equal to

2π

Z ∞

0

e−r2
rdr = −πe−r2

|∞0 = π.

(i) Rescaling: Using translation and rescaling, for all a > 0 and x0 ∈ R , we get

Z

R

e−
1
2

a(x−x0)2 dx√
2π

=
1√
a
.

(ii) Quadratic supplement: Using (i) and setting b := ax0, we obtain

Z

R

e−
1
2

ax2
ebx dx√

2π
=

eb2/2a

√
a

(7.182)

for all a > 0 and b ∈ R. The reduction process from (7.182) to (i) is called the
method of the quadratic supplement.

(iii) Analytic continuation: Introduce the set

Ω := {(a, b) ∈ C
2 : a = reiϕ, r > 0, −π < ϕ < π}.

For all (a, b) ∈ Ω, the function

F (a, b) :=
eb2/2a

√
a
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is well defined. Here, the square root is to be understood in the sense of the
principal value, that is,

√
a :=

√
r eiϕ/2. In fact, the function F : Ω → C is

holomorphic. We define

Z

R

e−
1
2

ax2
ebx dx√

2π
:= F (a, b) for all (a, b) ∈ Ω. (7.183)

This definition is based on the idea of analytic continuation. For example,

Z

R

eix2 dx√
2π

:=
1√
−2i

=
eiπ/4

√
2

=
1 + i

2
. (7.184)

This Fresnel integral exists in the classical sense.91 In the special case where
�(a) > 0 and b ∈ C, relation (7.183) is always valid in the classical sense (i.e.,
the integral exists).92

(iv) Fourier transform: Let a > 0. Then it follows from (iii) that

1√
2π

Z

R

e−ax2/2 e−ipx dx =
e−p2/2a

√
a

for all p ∈ R.

In the special case where a = 1, this relation shows that the Gaussian function

x �→ e−x2/2 is a fixed point of the Fourier transform.
(v) The method of stationary phase: Let us introduce the so-called phase function

Φ(x) := − 1
2
ax2 + bx. The equation

Φ′(x) = −ax + b = 0

has the unique solution xcrit := b/a. For this point, the phase function Φ
becomes stationary. Relation (7.183) can be written as

Z

R

eΦ(x) dx√
2π

=
eΦ(xcrit)

√
a

for all (a, b) ∈ Ω.

This so-called method of stationary phase tells us that the integral is deter-
mined by the integrand at the stationary point xcrit, up to a normalization
constant.

(vi) Adiabatic regularization: Let f : R → C be a bounded function, that is,
supx∈R

|f(x)| <∞, which is continuous (or continuous up to a set of Lebesgue
measure zero). Then the integral

Z

R

f(x)e−
1
2

εx2
dx, ε > 0

exists, which is called the adiabatic regularization of the integral
R

R
f(x)dx.

For example, let α ∈ R, b ∈ C, and let ε > 0. Then the integral

91 For the computation of this integral by using Cauchy’s residue method, we refer
to page 734 of Vol. I.

92 Here, |e−
1
2

ax2
ebx| = e−

1
2
�(a)x2

e�(b)x for all x ∈ R. Both the existence of the
integral from (7.183) and its analytic dependence on the parameters a and b
follow then from the majorant criterion for integrals (see Vol. I, p. 493).
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Z

R

„

e−
1
2

αix2
ebx

«

e−
1
2

εx2 dx√
2π

=
eb2/2(ε+αi)

√
ε + αi

exists. If α �= 0, then we have the limit relation

lim
ε→+0

Z

R

e−
1
2

αix2
ebxe−

1
2

εx2 dx√
2π

=

Z

R

e−
1
2

αix2
ebx dx√

2π
=

eb2/2αi

√
αi

.

(vii) Moments and the Wick trick: Let a > 0. We want to compute the moments

〈xk〉 :=

R

R
xke−

1
2

ax2 dx√
2π

R

R
e−

1
2

ax2 dx√
2π

, k = 0, 1, 2, . . .

To this end, for J ∈ C, we introduce the so-called generating function

Z(J) :=

R

R
e−

1
2

ax2
eJx dx√

2π

R

R
e−

1
2

ax2 dx√
2π

= eJ2/2a.

Differentiation yields Z′(0) = 〈x〉. More generally,

〈xk〉 =
dkZ(0)

dJk
, k = 0, 1, 2 . . . (7.185)

For example,
〈x〉 = Z′(0) = 0, 〈x2〉 = Z′′(0) = a−1.

Note that if �(a) > 0, then the integrals M0,M1,M2, . . . exist, and the Wick
trick formula (7.185) holds true, by the majorant criterion (see Vol. I, p. 493).
The entire function Z : C→ C has the power series expansion

Z(J) = M0 + M1J +
M2J

2

2!
+

M3J
3

3!
+ . . .

N-dimensional Gaussian integrals. In what follows, we choose the dimen-
sions N = 1, 2, . . . All the square roots are to be understood as principal values.
Let (λk, bk) ∈ Ω be given for k = 1, . . . , N. The prototype is the definition

Z

RN

N
Y

k=1

e−
1
2

λkx2
k+bkxk

dxk√
2π

:=

N
Y

k=1

Z

R

e−
1
2

λkx2+bkx dx√
2π

=

N
Y

k=1

eb2k/2λk

√
λk

.

(7.186)

The integrals are to be understood in the generalized sense. However, if �(λk) > 0
for k = 1, . . . , N , then the integrals exist, and relation (7.186) is to be understood
in the classical sense. We make the following assumption.

(H) All the eigenvalues of the real symmetric (N×N)-matrix A = (akl) are positive,
that is, λ1 > 0, . . . , λN > 0.
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Then detA = λ1λ2 · · ·λN . By definition, the zeta function of the matrix A reads
as

ζA(s) :=
N
X

k=1

1

λs
k

for all s ∈ C.

For all x, y ∈ R
N and all b ∈ C

N , we set

〈y|Ax〉 :=
N
X

k,l=1

ykaklxl, 〈b|x〉 :=
N
X

k=1

bkxk.

Since λ−s
k = e−s ln λk , we obtain the derivative

ζ′A(s) = −
N
X

k=1

lnλk

λs
k

, s ∈ C.

This implies the key formula

detA =

N
Y

k=1

λk = e−ζ′
A(0). (7.187)

The following properties of finite-dimensional Gaussian integrals are crucial for the
theory of infinite-dimensional Gaussian integrals.

(i) The standard Gaussian integral: For all y ∈ R
N , we have

Z

RN

e−
1
2
〈(x−y)|A(x−y)〉 dx1√

2π
· · · dxN√

2π
=

1√
detA

.

Proof. After a translation, we can choose y = 0. By the principal axis theorem
on the real Hilbert space R

N , there exists an orthogonal transformation which
sends the integral to the normal form (7.186) with bk = 0 for all k. �

(ii) Quadratic supplement: For all b ∈ R
N , we have

Z

RN

e−
1
2
〈x|Ax〉 e〈b|x〉

dx1√
2π
· · · dxN√

2π
=

e
1
2
〈b|A−1b〉
√

detA
. (7.188)

This can be written as
Z

RN

e−
1
2
〈x|Ax〉 e〈b|x〉

dx1√
2π
· · · dxN√

2π
= e

1
2
〈b|A−1b〉 e

1
2

ζ′
A(0). (7.189)

Proof. This is an easy consequence of (i) above. Since A is symmetric, we get

〈(x− y)|A(x− y)〉 = 〈x|Ax〉 − 〈y|Ax〉 − 〈x|Ay〉+ 〈y|Ay〉
= 〈x|Ax〉 − 2〈Ay|x〉+ 〈Ay|y〉.

Finally, set b := Ay. By (i), the integral on the left-hand side of (7.188) is equal
to

e
1
2
〈Ay|y〉
√

detA
.

Finally, observe that y = A−1b. Hence 〈Ay|y〉 = 〈b|A−1b〉. �
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(iii) Analytic continuation: Let γ be a nonzero complex number with the argument
−π < arg(γ) < π (e.g., γ = ±i). Then, for all b ∈ C

N , we define

Z

RN

e−
1
2

γ〈x|Ax〉 e〈b|x〉
dx1√
2π
· · · dxN√

2π
:=

e
1
2
〈b|(γA)−1b〉
p

det(γA)
. (7.190)

Here, the square root is to be understood as

p

det(γA) := (
√
γ)N
√

detA

where
√
γ is the principal value of the square root. Note that equation is valid

for all γ > 0, and the integral exists in the classical sense. Then we use analytic
continuation.

(iv) Adiabatic regularization: Let A and b be given as in (iii) above. Furthermore,
let α ∈ R and ε > 0. Then the integral

Z

RN

„

e−
1
2

αi〈x|Ax〉 e〈b|x〉
«

e−
1
2

ε〈x|x〉 dx1√
2π
· · · dxN√

2π
:=

e
1
2
〈b|(αiA+εI)−1b〉

p

det(αiA + εI)

exists. If α �= 0, then we have the limit relation

lim
ε→+0

Z

RN

„

e−
1
2

αi〈x|Ax〉 e〈b|x〉
«

e−
1
2

ε〈x|x〉 dx1√
2π
· · · dxN√

2π
=

e
1
2
〈b|(αiA)−1b〉
p

det(αiA)
.

(v) The method of stationary phase: Let A and b be given as in (iii) above. Intro-
duce the phase function Φ(x) := − 1

2
γ〈x|Ax〉+ 〈b|x〉. The equation

Φ′(x) = −γAx + b = 0

has the unique solution xcrit := (γA)−1b. Then relation (7.190) can be written
as

Z

Rn

eΦ(x) dx1

√
2π
· · · dx

N

√
2π

=
eΦ(xcrit)

p

det(γA)
.

7.8.2 Free Moments, the Wick Theorem, and Feynman Diagrams

In what follows, we will use a terminology which fits best the needs of quantum
field theory. Our approach can be viewed as a discrete variant of quantum field
theory. The basic notions are:

• free probability distribution (also called the Gaussian distribution in mathemat-
ics),

• free moments (free n-correlation functions or, briefly, called free n-point func-
tions),

• generating function of the free moments,
• Feynman diagrams (i.e., graphic representation of free moments).

In the next section, we will generalize this to full probability distributions and full
moments.
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In terms of discrete quantum field theory, full moments (resp. free mo-
ments) describe particles under interaction (resp. free particles without any
interaction).

Moments are fundamental quantities. The theory of moments in probability theory
tells us that, roughly speaking, a probability distribution is uniquely determined
by the knowledge of its moments (see Vol. I, page 751). Our main task is to reduce
the computation of full moments to the computation of free moments. This is the
basic trick of perturbation theory in quantum field theory.

The free probability distribution. Assume that the matrix A has the prop-
erty (H) formulated on page 562. Introduce the key quantity

�(x) :=
e−

1
2
〈x|Ax〉

R

RN e−
1
2
〈x|Ax〉dx1 · · · dxN

, x ∈ R
N .

This is called the free probability density. The function F : R
N → R given by

F (x) :=

Z x

−∞
�(y)dy

is called the free probability distribution (or Gaussian distribution).
Free Moments. Choose the indices k1, k2, . . . , kn = 1, 2, . . ., and fix the posi-

tive integer n = 1, 2, . . . Define

〈xk1xk2 · · ·xkn〉 :=

Z

RN

xk1xk2 · · ·xkn · �(x)dx1 · · · dxN .

These expectation values are called the moments of the probability density � (or,
briefly, the free moments). We also use the notation93

Cn,free(xk1 , xk2 , . . . , xkn) := 〈xk1xk2 · · ·xkn〉,

and we call Cn,free a free discrete n-correlation function (or a free n-point function).
Explicitly, we get94

〈xk1xk2 · · ·xkn〉 :=

R

RN xk1xk2 · · ·xkne−
1
2
〈x|Ax〉 dx1√

2π
· · · dxN√

2π

R

RN e−
1
2
〈x|Ax〉 dx1√

2π
· · · dxN√

2π

.

The trick of the generating function. For all J ∈ R
N , introduce the so-

called generating function

Zfree(J) :=

Z

RN

�(x)e〈J|x〉 dx1 · · · dxN .

Explicitly, we get

93 The value Cn,free(xk1 , xk2 , . . . , xkn) only depends on the indices k1, k2, . . . , kn.
However, mnemonically, our notation is convenient for the passage to quantum
field theory. Then we can use the same notation for the continuously varying
variables xk1 , xk2 , . . . , xkn .

94 We introduce the rescaled differential dxk√
2π

in order to prepare the limit N →∞
to path integrals (infinite-dimensional Gaussian integrals) later on.
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Zfree(J) :=

R

RN e−
1
2
〈x|Ax〉 e〈J|x〉 dx1√

2π
· · · dxN√

2π

R

RN e−
1
2
〈x|Ax〉 dx1√

2π
· · · dxN√

2π

= e
1
2
〈J|A−1J〉.

Differentiation with respect to J yields

〈xk1xk2 · · ·xkn〉 =
∂n

∂Jk1∂Jk2 · · · ∂Jkn

e
1
2
〈J|A−1J〉, (7.191)

by setting J = 0 after differentiation. In particular, for the free 2-point function we
get

〈xkxl〉 = (A−1)kl, k, l = 1, . . . , N

where (A−1)kl is the entry of the inverse matrix A−1 located in the kth row and in
the lth column.

Theorem 7.46 Let k1, . . . , kn = 1, 2, . . . N. If n is even, then

〈xk1xk2 · · ·xkn〉 =
X

〈xi1xi2〉〈xi3xi4〉 · · · 〈xin−1xin〉.

Here, we sum over all possible pairings of the indices k1, k2, . . . , kn. If n is odd, then
〈xk1xk2 · · ·xkn〉 = 0.

This so-called Wick theorem tells us that the Gaussian distribution has the
following important property: the 2-point function determines all the other n-point
functions.
Proof. Observe that the function J �→ 〈J |A−1J〉 is quadratic. If n is even, then
use (7.191) together with the chain rule. If n is odd, then note that the function
(x1, x2, x3) �→ x1x2x3 is odd, and so on. �

Feynman diagrams. For example, the Wick theorem tells us that

〈x1x2x3x4〉 = 〈x1x2x3x4〉+ 〈x1x2x3x4 〉+ 〈x1x2x3x4〉. (7.192)

That is, we sum over all possible fully contracted symbols. Explicitly, this means

〈x1x2x3x4〉 = 〈x1x2〉〈x3x4〉+ 〈x1x3〉〈x2x4〉+ 〈x1x4〉〈x2x3〉.

This is graphically represented in Table 7.1(c) by using so-called Feynman diagrams.
Here, the contractions correspond to connections of the vertices. Similarly, we get

〈x1x1x3x4〉 = 〈x1x1x3x4〉+ 〈x1x1x3x4 〉+ 〈x1x1x3x4〉. (7.193)

This is graphically represented in Table 7.1(d). Naturally enough, the diagram
corresponding to 〈x1x1〉 is called a loop. Analogously,

〈x4
1x

2
2〉 = 3〈x2

1〉2〈x2
2〉+ 12〈x2

1〉〈x1x2〉2. (7.194)

This is computed in Problem 7.33 (see Table 7.1(e)).
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Table 7.1. Feynman diagrams

(a) 〈x1x2〉 (b) 〈x1x1〉

x1 x2

x1

(c) 〈x1x2x3x4〉

x1 x2 x3 x4
+

x1 x3 x2 x4
+

x1 x4 x2 x3

(d) 〈x1x1x3x4〉

x1

+ 2
x1

x3

x4

(e) 〈x1x1x1x1x2x2〉

3
x1 x2

+ 12
x1

x2

x2

7.8.3 Full Moments and Perturbation Theory

Distinguish strictly between free moments and full moments.
Folklore

Now we pass to probability distributions which are perturbations of Gaussian dis-
tributions. The strength of perturbation is measured by the coupling constant κ.
This way, free moments (resp. free n-point functions) are replaced by full moments
(resp. full n-point functions).

The full probability distribution under interaction. Assume that the
matrix A has the property (H) formulated on page 562. Let

U : R
N → R

be a polynomial with respect to the real variables x1, . . . , xN (e.g., we choose
U(x) := −〈x|x〉2). We are given the real nonnegative number κ called coupling
constant. Introduce

�κ(x) :=
e−

1
2
〈x|Ax〉eκU(x)

R

RN e−
1
2
〈x|Ax〉eκU(x)dx1 · · · dxN

, x ∈ R
N . (7.195)

This is called the full probability density, which depends on the coupling constant
κ. The function Fκ : R

N → R given by
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Fκ(x) :=

Z x

−∞
�κ(y)dy, x ∈ R

N

is called the full probability distribution (or perturbed Gaussian distribution). The
function κU measures the strength of the perturbation. As a rule, we will consider
the case where the coupling constant κ is small. We assume that the function �κ is
well defined, that is, the denominator of �κ in (7.195) is a finite integral. Note that
the free probability density corresponds to the case where the coupling constant
vanishes, κ = 0. Define

〈xk1xk2 · · ·xkn〉full :=

Z

RN

xk1xk2 · · ·xkn · �κ(x)dx1 · · · dxN .

These expectation values are called the full moments. We also use the notation

Cn,full(xk1 , xk2 , . . . , xkn) := 〈xk1xk2 · · ·xkn〉full,

and we call Cn,full a full discrete n-correlation function (or a full n-point function).
Explicitly, we get

〈xk1xk2 · · ·xkn〉full :=

R

RN xk1xk2 · · ·xkne−
1
2
〈x|Ax〉 eκU(x) dx1√

2π
· · · dxN√

2π

R

RN e−
1
2
〈x|Ax〉eκU(x) dx1√

2π
· · · dxN√

2π

.

For all J ∈ R
N , introduce the full generating function

Zfull(J) :=

Z

RN

�κ(x) e〈J|x〉 dx1 · · · dxN .

Explicitly,

Zfull(J) =

R

RN e−
1
2
〈x|Ax〉 eκU(x) e〈J|x〉 dx1√

2π
· · · dxN√

2π

R

RN e−
1
2
〈x|Ax〉 eκU(x) dx1√

2π
· · · dxN√

2π

.

Differentiation with respect to J yields

〈xk1xk2 · · ·xkn〉full =
∂nZfull(0)

∂Jk1∂Jk2 · · · ∂Jkn

. (7.196)

By Taylor expansion,

Zfull(J) = 1 +

∞
X

n=1

X

r1+r2+...+rN=n

〈xr1
1 xr2

2 · · ·x
rN
N 〉full

r1!r2! · · · rN !
Jr1

1 Jr2
2 · · · J

rN
N .

Perturbation theory. We want to compute the following full moment:

〈xk1xk2 · · ·xkn〉full =

R

RN xk1xk2 · · ·xkne−
1
2
〈x|Ax〉 eκU(x) dx1√

2π
· · · dxN√

2π

R

RN e−
1
2
〈x|Ax〉eκU(x) dx1√

2π
· · · dxN√

2π

where U is a polynomial.To this end, we start with the Taylor expansion

eκU = 1 + κU + 1
2
κ2U2 + . . .
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Setting a :=
R

RN e−
1
2
〈x|Ax〉 dx1√

2π
· · · dxN√

2π
, we get

Z

RN

e−
1
2
〈x|Ax〉eκU(x) dx1√

2π
· · · dxN√

2π
= a

`

1 + κ〈U(x)〉+ 1
2
κ2〈U(x)2〉+ . . .

´

.

Similarly, the integral
Z

RN

xk1 · · ·xkne−
1
2
〈x|Ax〉eκU(x) dx1√

2π
· · · dxN√

2π

is equal to

a(〈xk1 · · ·xkn〉+ κ〈xk1 · · ·xknU(x)〉+ 1
2
κ2〈xk1 · · ·xknU(x)2〉+ . . .).

Hence

〈xk1 · · ·xkn〉full = 〈xk1 · · ·xkn〉+ κ
`

〈xk1 · · ·xknU(x)〉 − 〈U(x)〉
´

. . .

Here, the dots stand for terms of order O(κ2) as κ → 0. Since U(x) is a polyno-
mial with respect to x1, . . . , xn, the right-hand side only contains free moments.
Therefore the Wick theorem tells us that

The computation of full moments can be reduced to the computation of the
special free moments 〈xixj〉.

This is the secret behind the success of perturbation theory in quantum field theory.
For example, let N ≥ 2. Choose U(x) := x4

1. Then 〈U(x)〉 = 3〈x2
1〉2. By (7.194), we

get
〈x2

2〉full = 〈x2〉2 + κ
`

3〈x2
1〉2〈x2

2〉+ 12〈x2
1〉〈x1x2〉2 − 3〈x2

1〉2
´

+ O(κ2)

as κ→ 0.
The reduced full moments (cumulants). In order to avoid redundant ex-

pressions, let us introduce the reduced full generating function

Zfull,red(J) := lnZfull(J).

Then

Zfull(J) = eZfull,red(J). (7.197)

By definition, Zfull,red is the generating function for the so-called reduced full mo-
ments:95

〈xk1xk2 . . . xkn〉full,red :=
∂nZfull,red(0)

∂Jk1∂Jk2 · · · ∂Jkn

.

Hence

Zfull,red(J) = 1 +

∞
X

n=1

X

r1+r2+...+rN=n

〈xr1
1 xr2

2 · · ·x
rN
N 〉full,red

r1!r2! · · · rN !
Jr1

1 Jr2
2 · · · J

rN
N .

Using Taylor expansion with respect to κ, it follows from (7.197) that

The full moments can be uniquely computed by means of the reduced full
moments.

95 In mathematics, reduced moments are also called cumulants.
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In the special free case where κ = 0, we obtain

Zfree,red(J) = lnZfree(J) = ln e
1
2
〈J|A−1J〉 = 1

2
〈J |A−1J〉.

Hence
〈xkxl〉free red = 〈xkxl〉, k, l = 1, . . . , N.

The remaining reduced free moments are equal to zero. This implies the following
result.

The reduced full generating function satisfies the relation

Zfull,red(J) = Zfree,red(J) + O(κ) = 1 +

N
X

i,k=1

1
2
〈xixk〉JiJk + O(κ)

as κ→ 0. Therefore, the function Zfull,red describes the perturbation of the second
free moments, under the influence of the coupling constant κ. In contrast to this,
the formula

Zfull(J) = Zfree(J) + O(κ), κ→ 0

is full of redundance, since the function Zfree is redundant compared with Zfree,red.
This is why physicists use reduced full correlation (or n-point) functions in quantum
field theory.

7.9 Rigorous Infinite-Dimensional Gaussian Integrals

The definition of infinite-dimensional Gaussian integrals depends on the
spectrum of the linear symmetric dispersion operator.

Folklore

In order to explain the basic idea, let us start with the finite-dimensional key formula
Z

RN

e−
1
2 (λ1x2

1+...+λ2
N x2

N )eb1x1+...+bN xN
dx1√
2π

. . .
dxN√

2π
= BN

where

BN :=
e

1
2
PN

k=1 b2kλ−1
k

“

QN
k=1 λk

”1/2
.

Here, N = 1, 2, . . .. Furthermore, we assume that λ1, λ2, . . . are positive numbers,
and b1, b2 . . . are real numbers. Now we want to study the limit N →∞. Obviously,
we have the following result.

Proposition 7.47 Suppose that
P∞

k=1 b
2
kλ

−1
k < ∞ and 0 <

Q∞
k=1 λk < ∞. Then

the following limit

lim
N→∞

Z

RN

e−
1
2 (λ1x2

1+...+λ2
N x2

N ) eb1x1+...+bN xN
dx1√
2π

. . .
dxN√

2π
=

e
1
2
P∞

k=1 b2kλ−1
k

`

Q∞
k=1 λk

´1/2

exists in the classical sense. We briefly write

Z

R∞
e−

1
2
P∞

k=1 λkx2
k e

P∞
k=1 bkxk

∞
Y

k=1

dxk√
2π

:=
e

1
2

P∞
k=1 b2kλ−1

k

`

Q∞
k=1 λk

´1/2
.

We call this a normalized infinite-dimensional Gaussian integral.
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7.9.1 The Infinite-Dimensional Dispersion Operator

We want to generalize the preceding formulas. To this end, we are given the linear
symmetric operator

A : D(A)→ X

defined on the linear dense subspace D(A) of the real infinite-dimensional separable
Hilbert space X. Assume that we have the eigenvector equation

Aϕk = λkϕk, k = 1, 2, . . .

where λk > 0 for all k, and the eigenvectors ϕ1, ϕ2 . . . form a complete orthonormal
system of the Hilbert space X (together with ϕk ∈ D(A) for all k). Then we obtain
b =

P∞
k=1〈b|ϕk〉ϕk for all b ∈ X, and

Aϕ =

∞
X

k=1

λk〈ϕ|ϕk〉ϕk for all ϕ ∈ D(A).

This implies 〈ϕ|Aϕ〉 =
P∞

k=1 λk〈ϕk|ϕ〉2. If Aϕ = 0, then ϕ = 0. Thus the operator

A is injective, and the inverse operator A−1 : D(A−1)→ X exists with

A−1ϕk = λ−1
k ϕk, k = 1, 2, . . .

In particular, we get D(A−1) ⊆ D(A), and

〈b|A−1b〉 =
∞
X

k=1

λ−1
k 〈b|ϕk〉2 for all b ∈ D(A).

Furthermore, for the dispersion operator A, we define

• the trace tr A :=
P∞

k=1 λk,
• the determinant detA :=

Q∞
k=1 λk, and

• the zeta function ζA(s) =
P∞

k=1 λ
−s
k for suitable complex numbers s.

If the trace is finite, that is tr(A) <∞, then

detA = etr A.

In what follows, we are given b ∈ D(A). We have to distinguish the following two
cases.

(C1) Regular case: 0 < detA <∞ (the determinant exists).
(C2) Singular case: detA =∞ (the determinant does not exist in the usual sense).

Regular case. Here, we define the normalized infinite-dimensional Gaussian
integral by setting

Z

D(A)

e−
1
2 〈ϕ|Aϕ〉e〈b|ϕ〉DGϕ :=

e
1
2 〈b|A−1b〉
√

detA
. (7.198)

Observe that in concrete situations, the domain of definition D(A) of the operator A
describes boundary conditions. Changing the boundary conditions means changing
the operator A and its eigenvalues. Since the determinant detA depends on the
eigenvalues, the integral depends on the domain of definition D(A). Now let us
study the singular case which is typically encountered in quantum physics.
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7.9.2 Zeta Function Regularization and Infinite-Dimensional
Determinants

The definition ln detA := −ζ′A(0) was first used by the mathemati-
cians Ray and Singer (1971), when they tried to give a definition of the
Reidemeister–Franz torsion in analytic terms. . . Later zeta function regu-
larization was used by physicists in the context of dimensional regulariza-
tion when applied to quantum field theory in curved space-time.96

Klaus Kirsten, 2002

It is our goal to use (7.198) and to redefine the determinant detA by means of the
zeta function ζA together with analytic continuation.

Singular case. Motivated by (7.187), the key formula reads as

detA = e−ζ′
A(0). (7.199)

Let us assume the following:

(H) The zeta function ζA(s) =
P∞

n=1 λ
−s
n converges for all sufficiently

large positive real numbers s, and it can be analytically continued to some
neighborhood of the point s = 0 in the complex plane.

Here, we define the determinant detA of the operator A by (7.199). This gener-
ates the definition of the normalized infinite-dimensional Gaussian integral in the
singular case:

Z

D(A)

e−
1
2 〈ϕ|Aϕ〉e〈b|ϕ〉DGϕ := e

1
2 〈b|A−1b〉 e

1
2 ζ′

A(0). (7.200)

The rescaling trick. Let γ be a nonzero complex number with the property
−π < arg(γ) < π, and assume (H). We define the normalized infinite-dimensional
Gaussian integral by setting

Z

D(A)

e−
1
2 γ〈ϕ|Aϕ〉e〈b|ϕ〉DGϕ := e−

1
2 ζA(0) ln γ · e

1
2 γ−1〈b|A−1b〉
√

detA
(7.201)

with
√

detA := e−
1
2 ζ′

A(0), and ln γ is the principal value of the logarithm. Definition
(7.201) is crucial for quantum physics, as we will show in the next section. In order
to motivate (7.201), observe first that the following hold.

Proposition 7.48 Let γ > 0. Assume that the hypothesis (H) above is valid. Then

det(γA) = γζA(0) detA.

96 K. Kirsten, Spectral Functions in Mathematics and Physics, Chapman, Boca
Raton, Florida, 2002 (see also the hints for further reading on page 671).
D. Ray and I. Singer, Reidemeister torsion and the Laplacian on Riemann man-
ifolds, Advances in Math. 7, (1971) 145–210.

It was independently proven by Werner Müller and Jeff Cheeger that the original
combinatorial definition of the Reidemeister–Franz torsion is equivalent to the
analytic definition:
W. Müller, Analytic torsion and Reidemeister torsion of Riemannian manifolds,
Advances in Math. 28 (1978), 233–305.
J. Cheeger (1979), Analytic torsion and the heat equation, Ann. Math. 109,
259–322.
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This generalizes the classical relation det(γA) = γN detA which is valid in
the N -dimensional Euclidean space with N = 1, 2, . . . The proof will be given in
Problem 7.34 by using Euler’s gamma function. Replacing A by γA it follows from
(7.200) that

Z

D(A)

e−
1
2 〈ϕ|(γA)ϕ〉e〈b|ϕ〉DGϕ :=

e
1
2 〈b|(γA)−1b〉
p

det(γA)
, γ > 0.

This yields (7.201) if γ > 0. For general complex numbers γ (outside the negative
real axis), the right-hand side of (7.201) makes sense after analytic continuation.

The quotient trick. Fortunately enough, in quantum field theory one fre-
quently encounters quotients of Gaussian integrals which dramatically simplifies
the approach. To illustrate this, note that, in the regular case, it follows from
(7.198) that

R

D(A)
e−

1
2 〈ϕ|Aϕ〉e〈b|ϕ〉DGϕ

R

D(A)
e−

1
2 〈ϕ|Aϕ〉DGϕ

:= e
1
2 〈b|A−1b〉. (7.202)

This expression is independent of the determinant detA. Therefore, we use this as
a definition for all dispersion operators A and all b ∈ D(A). This way, the use of
the critical determinant detA is completely avoided.

Example. Let m > 0. The following example will be used below in order to
study the free quantum particle on the real line. Consider the quadratic form

S[r] := 1
2
m〈r|Ar〉, r ∈ D(A)

with the linear differential operator A : D(A)→ X given by

Ar := − d2r

dτ2
, r ∈ D(A).

Here, X is the real Hilbert space L2(R), and the domain of definition D(A) consists
of all twice continuously differentiable functions r : [s, t]→ R with r(s) = r(t) = 0.
We write C2

0 [s, t] instead of D(A). Integration by parts yields

S[r] = −
Z t

s

1
2
mr(τ)r̈(τ)dτ =

Z t

s

1
2
mṙ(τ)2 dτ

for all r ∈ C2
0 [s, t]. This is the action of a free quantum particle on the real line

with the boundary condition r(s) = r(t) = 0.

Proposition 7.49 There holds
R

C2
0 [s,t]

eiS[r]/� DGr = 1√
2(t−s)

`

m
�

´1/4
e−iπ/8.

Proof. To simplify notation, set s := 0. The crucial eigenvalue problem

Aϕ = λϕ, ϕ ∈ D(A)

corresponds to the equation −ϕ̈(τ) = λϕ(τ), 0 < τ < t with the boundary condition
ϕ(0) = ϕ(t) = 0. The solutions are

ϕn(τ) := const · sin
√
λnτ, λn :=

“nπ

t

”2

, n = 1, 2, . . .
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For all complex numbers z with �(z) > 1
2
, the zeta function ζA of the operator A

is given by the convergent series

ζA(z) =
∞
X

n=1

1

λz
n

=

„

t

π

«2z ∞
X

n=1

1

n2z
=

„

t

π

«2z

ζ(2z).

Here, ζ denotes the Riemann zeta function. Note that ζ can be analytically contin-
ued to a holomorphic function on the pointed plane C \ {1}. Here, ζ(0) = − 1

2
and

ζ′(0) = − 1
2

ln 2π. Hence ζA(0) = − 1
2

and

ζ′A(0) = 2ζ(0)(ln t− lnπ) + 2ζ′(0) = − ln 2t.

This implies detA = e−ζ′
A(0) = 2t. Set γ := m

�i
. By (7.201), the integral

R

C2
0 [0,t]

eiS[r]/� DGr is equal to

Z

C2
0 [0,t]

e−
1
2 γ〈r|Ar〉DGr =

e−
1
2 ζA(0) ln γ

√
detA

=
1√
2t

“m

�i

”1/4

.

This is the desired result. �

7.9.3 Application to the Free Quantum Particle

Consider the motion of a free quantum particle on the real line. In Theorem 7.16
on page 488, we have computed the corresponding Feynman propagator kernel

K(x, t; y, s) =

r

m

2π�i(t− s)
eim(x−y)2/2�(t−s) (7.203)

for all positions x, y ∈ R and all times t > s.97 In addition, we have shown that the
dynamics of the free quantum particle is governed by the formula

ψ(x, t) :=

Z

R

K(x, t; y, s)ψ(y, s) dy, x ∈ R, t > s. (7.204)

If we know the Schrödinger wave function ψ of the free particle at time s, then the
kernel formula (7.204) tells us how to obtain the wave function at the later time t.
This explains the importance of the Feynman propagator kernel. In Prop. 7.44 on
page 550, we have proved that

K(x, t; y, s) =

Z

C{s,t}
eiS[q]/� Dq.

That is, the Feynman propagator kernel can be represented by a Feynman path
integral. In this section, it is our goal to prove that

97 Recall that the square root is to be understood as principal value. Explicitly,

r

m

2π�i(t− s)
= e−iπ/4

r

m

2π�(t− s)
.
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K(x, t; y, s) = N
Z

C{s,t}
eiS[q]/� DGq.

This implies the key formula

K(x, t; y, s) =

Z

C{s,t}
eiS[q]/� Dq = N

Z

C{s,t}
eiS[q]/� DGq (7.205)

for all positions x, y ∈ R and all times t > s. This formula tells us the crucial
fact that the Feynman path integral coincides with the corresponding normalized
infinite-dimensional Gaussian integral, up to some normalization factor N . Explic-

itly, N =
`

m
π2�

´1/4
e−iπ/8.

The classical trajectory. The action of a classical free particle of mass m on
the real line is given by

S[q] :=

Z t

s

1
2
mq̇(τ)2 dτ.

The boundary-value problem

mq̈(τ) = 0, s < τ < t, q(s) = y, q(t) = x

corresponds to the motion of the particle with given endpoints. The unique solution
is qclass(τ) = y + τ−s

t−s
(x− y) with the classical action

S[qclass] =

Z t

s

1
2
mq̇class(τ)2dτ =

m(x− y)2

2(t− s)
.

Quantum fluctuations and the WKB relation. In order to study pertur-
bations of the classical trajectory, we consider the trajectories

q(τ) = qclass(τ) + r(τ), τ ∈ [s, t]

where r ∈ C2
0 [s, t], that is, the function r : [s, t] → R is twice continuously differ-

entiable and satisfies the boundary condition r(s) = r(t) = 0. By (7.159) on page
550,

S[q] = S[qclass] + S[r]. (7.206)

For the Feynman propagator kernel, it follows from (7.203) that

K(x, t; y, s) = eiS[qclass]/� Kfluct(t; s) (7.207)

for all positions x, y ∈ R and all times t > s, with the fluctuation term

Kfluct(t; s) :=

r

m

2π�i(t− s)
.

Equation (7.207) is called the WKB relation for the free quantum particle. It shows

that the Feynman propagator is the product of the purely classical factor eiS[qclass]/�

with a factor caused by quantum fluctuations.
The key relation. Motivated by the decomposition formula (7.206), we define

Z

C{s,t}
eiS[q]/� DGq := eiS[qclass]/�

Z

C2
0 [s,t]

eiS[r]/� DGr.
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Prop. 7.49 on page 573 tells us that

Z

C2
0 [s,t]

eiS[r]/� DGr =
Kfluct(t; s)

N

with the normalization constant N =
`

m
π2�

´1/4
e−iπ/8. This implies the key formula

(7.205).

7.9.4 Application to the Quantized Harmonic Oscillator

Parallel to the free quantum particle in the preceding section, let us now study
the harmonic oscillator of mass m > 0 and angular frequency ω > 0 on the real

line. Introduce the characteristic length x0 :=
q

�

mω
. Furthermore, choose the time

parameter in such a way that

t ∈ ]s + tn,crit, s + tn+1,crit[, n = 0, 1, 2, ... (7.208)

Here, the critical points of time are defined by tn,crit := nπ
ω
. In addition, we intro-

duce the Maslov index by μ(s, t) := n. By formula (7.144) on page 537, we have
computed the Feynman propagator kernel for the quantized harmonic oscillator:

K(x, t; y, s) =
e−iπ/4 e−iπμ(s,t)/2

x0

p

2π| sinω(t− s)|
exp

„

i
(x2 + y2) cosω(t− s)− 2xy

2x2
0 sinω(t− s)

«

.

This formula is valid for all all positions x, y ∈ R and all non-critical times t > s
from (7.208).

The classical trajectory. The action of the classical harmonic oscillator is
given by

S[q] :=

Z t

s

1
2
mq̇(τ)2 − 1

2
mω2q(τ)2 dτ.

The boundary-value problem

q̈(τ) + ω2q(τ) = 0, s < τ < t, q(s) = y, q(t) = x (7.209)

has the solution qclass(τ) = y cosω(τ − s) +
`

x − y cosω(τ − s)
´ sin ω(τ−s)

sin ω(t−s)
. This is

a classical trajectory with the action

S[qclass] = � · (x
2 + y2) cosω(t− s)− 2xy

2x2
0 sinω(t− s)

.

Note that the trajectory qclass is the unique solution of (7.209) if t is a non-critical
point of time. The uniqueness is violated for critical points of time. In what follows,
we only consider non-critical points of time (7.208).

Quantum fluctuations and the WKB relation. Now use the perturbed
trajectory

q(t) = qclass(τ) + r(τ), τ ∈ [s, t],

where r ∈ C2
0 [s, t], that is, the function r : [s, t] → R is twice continuously differ-

entiable and satisfies the boundary condition r(s) = r(t) = 0. By (7.165) on page
552, we get
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S[q] = S[qclass] + S[r]. (7.210)

The Feynman propagator kernel for the quantized harmonic oscillator can be writ-
ten as

K(x, t; y, s) = eiS[qclass]/� Kfluct(t; s) (7.211)

with the quantum fluctuation term

Kfluct(t; s) :=
e−iπ/4 e−iπμ(s,t)/2

x0

p

2π| sinω(t− s)|
.

This is a special case of the WKB method (see (7.216) on page 581). Observe that
the fluctuation term is independent of the position coordinates x and y.

Now we restrict ourselves to the first critical time interval, that is, we
assume that t ∈ ]s, s + t1,crit[.

Our goal is the key relation (7.214) below. Let us first compute the following nor-
malized infinite-dimensional Gaussian integral.

Proposition 7.50 For all times t ∈]s, s + t1,crit[, we have

Z

C2
0 [s,t]

eiS[r]/� DGr =
Kfluct(t; s)

N (ω)
. (7.212)

The complex non-zero constant N (ω) will be determined below.

Proof. We will proceed as in the proof of Prop. 7.49 on page 573. To simplify
notation, set s := 0. For r ∈ C2

0 [0, t], integration by parts yields

iS[r]

�
=

im

2�

Z t

0

r(τ)
`

−r̈(τ)− ω2r(τ)
´

dτ = − 1
2
γ〈r|Br〉

with γ := m
�i
. Here, we introduce the differential operator B : D(B)→ L2(R) with

Br := − d2r

dτ2
− ω2r2

and the domain of definition D(B) := C2
0 [0, t].

(I) The infinite-dimensional Gaussian integral. By (7.201) on page 572, we get

Z

C2
0 [0,t]

e−
1
2 γ〈r|Br〉DGr :=

e−
1
2 ζB(0) ln γ

√
detB

. (7.213)

We have to compute the determinant detB = e−ζ′
B(0).

(II) The eigenvalues. The crucial eigenvalue problem

Bϕ = λϕ, ϕ ∈ D(B)

corresponds to the equation −ϕ̈(τ)−ω2q(τ) = λϕ(τ), 0 < τ < t with the boundary
condition ϕ(0) = ϕ(t) = 0. The solutions are

ϕn(τ) := const · sin
√
λnτ, λn :=

“nπ

t

”2

− ω2, n = 1, 2, . . .
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Let us also introduce μn :=
`

nπ
t

´2
which is obtained from λn by setting ω = 0.

(III) The zeta function: For all complex numbers z with �(z) > 1
2
, the zeta

function ζB of the operator B is given by the convergent series

ζB(z) =
∞
X

n=1

1

λz
n

=

„

t

π

«2z ∞
X

n=1

1
“

n2 − t2ω2

π2

”z .

Because of the boundary condition r(0) = r(t) = 0, the differential operator B can
be regarded as an elliptic differential operator on a circle, which is the simplest ex-
ample of a compact Riemannian manifold. There exists a general theory of elliptic
operators on compact Riemannian manifolds which tells us that the correspond-
ing zeta function can be analytically extended to a meromorphic function on the
complex plane, and this extension is holomorphic at the origin z = 0 (see Gilkey
(1995) and Kirsten (2002)). Therefore, ζB(0) and ζ′B(0) are well-defined, and we can
use the method of zeta-function regularization. In order to get quickly an explicit
result, we will introduce a modified method which is used by physicists.

(IV) The determinant detB. Formally, we get

detB =

∞
Y

n=1

λn =

∞
Y

n=1

μn

∞
Y

n=1

„

1− ω2

μn

«

.

By the classical Euler formula, we have the following convergent product

sin z = z
∞
Y

n=1

„

1− z2

n2π2

«

, z ∈ C.

Hence detB = sin ωt
ωt

Q∞
n=1 μn. The product

Q∞
n=1 μn is divergent. In order to reg-

ularize detB it is sufficient to regularize
Q∞

n=1 μn. However, this product is the
determinant of the operator B with ω = 0 which coincides with the operator A
from the proof of Prop. 7.49 on page 573. By this proof, detA = 2t. Therefore, we
define

detB :=

 ∞
Y

n=1

μn

!

reg

∞
Y

n=1

„

1− ω2

μn

«

= 2t · sinωt

ωt
=

2 sinωt

ω
.

(V) The constant N (ω). By (7.213), the integral
R

C2
0 [0,t]

eiS[r]/�DGr is equal to

e−
1
2 ζB(0) ln γ√ω√

2 sinωt
=
Kfluct(t; 0)

N (ω)
=

e−iπ/4

N (ω)x0

√
2π sinωt

,

where γ = m
�i

and x0 =
q

�

mω
. This yields N (ω) = e−iπ/4e

1
2 ζB(0) ln γ

p

m
π�

. �

The key relation. Motivated by the decomposition formula (7.210), we define

Z

C{s,t}
eiS[q]/� DGq := eiS[qclass]/�

Z

C2
0 [s,t]

eiS[r]/� DGr.

It follows from Prop. 7.50 together with (7.211) that

K(x, t; y, s) = N (ω)

Z

C{s,t}
eiS[q]/� DGq
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for all x, y ∈ R and all t ∈]s, s + t1,crit[. By Prop. 7.45 on page 552,

K(x, t; y, s) =

Z

C{s,t}
eiS[q]/� Dq.

This implies the desired key relation

K(x, t; y, s) =

Z

C{s,t}
eiS[q]/� Dq = N (ω)

Z

C{s,t}
eiS[q]/� DGq (7.214)

for all positions x, y ∈ R and all times t ∈ ]s, s+ t1,crit[. Observe that for ω = 0, the

normalization factor N (0) =
`

m
π2�

´1/4
e−iπ/8 is the same as for the free quantum

particle.
The free quantum particle as a limit. For all times t ∈]s, s+ t1,crit[ and all

positions x, y ∈ R, we have

K(x, t; y, s) =
1

x0

p

2πi sinω(t− s)
exp

„

i
(x2 + y2) cosω(t− s)− 2xy

2x2
0 sinω(t− s)

«

.

Noting that limω→+0 x
2
0 sinω(t− s) = �(t−s)

m
limω→+0

sin ω(t−s)
ω(t−s)

= �(t−s)
m

, we obtain

the limit relation

lim
ω→+0

K(x, t; y, s) = Kfree(x, t; y, s) =

r

m

2π�i(t− s)
eim(x−y)2/2�(t−s).

This tells us the quite natural fact that the Feynman propagator kernel of the
quantized harmonic oscillator passes over to the Feynman propagator kernel of the
free quantum particle if the angular frequency ω goes to zero.

7.9.5 The Spectral Hypothesis

Motivated by the rigorous results above for the free quantum particle and the quan-
tized harmonic oscillator, we formulate the following general spectral hypothesis:

Z

C{s,t}
eiS[q]/� Dq = N

Z

C{s,t}
eiS[q]/� DGq. (7.215)

This hypothesis tells us that the Feynman path integral coincides with the corre-
sponding normalized infinite-dimensional Gaussian integral, up to a normalization
factor N which depends on the action functional S. Physicists take this spectral
hypothesis for granted in both quantum mechanics and quantum field theory. The
experience of physicists shows that this hypothesis works well as a universal tool.
In terms of mathematics, it turns out that this heuristic tool also works well for
conjecturing new topological invariants in the setting of topological quantum field
theory and string theory. For example, this concerns knot theory, smooth manifolds
in differential geometry, and algebraic varieties (generalized manifolds including sin-
gularities) in algebraic geometry.
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7.10 The Semi-Classical WKB Method

The WKB method in physics is the prototype of singular perturbation
theory in mathematics.

Folklore

To the best of our knowledge, the first paper on path integrals, apart from
Feynman’s, written by a physicist was submitted by Cécile Morette in
1950.98

During Pauli’s stay at the Institute for Advanced Study in 1949, Morette
and Van Hove presented to Pauli at the occasion of an appointment with
him a semiclassical formula (S) for quantum mechanics based on Morette’s
approach to path integrals. . . Pauli wrote a number of research notes . . . In
these notes Pauli corrected a sign factor, and he obtained the important
(exact) result that for small time intervals, the semiclassical propagator
kernel from (S) satisfies the Schrödinger equation up to order �

2 . . .
Pauli was, to the best of our knowledge, the first of the older generation,
having laid the foundations of quantum mechanics, who fully appreciated
the new approach developed by Feynman.99

Christian Grosche and Frank Steiner, 1998

Approximation methods play an important role in physics in order to simplify
computation and to get insight. Let us study an important approximation method
in quantum mechanics called the WKB method.100 The dynamics of a particle in
quantum mechanics is governed by the equation

ψ(t) = e−iH(t−s)/�ψ(s), t ≥ s.

The quantum particle behaves approximately like a classical particle if Planck’s
quantum of action is small, � → 0. More precisely, we have to assume that the
dimensionless quotient S/� is large where S is the action (energy times t− s). The
WKB method investigates the semi-classical approximation of quantum processes
with respect to the limit

�→ 0.

The two key formulas for the motion of quantum particles in the 3-dimensional
Euclidean space read as follows:

(K) Time evolution of Schrödinger’s wave function:

ψ(x, t) =

Z

R3
K(x, t;y, s)ψ(y, s)d3y, x ∈ R

3, t > s.

We assume that the function y �→ ψ(y, s) is smooth with compact support (at
the initial time s).

98 C. Morette, On the definition and approximation of Feynman’s path integral,
Phys. Rev. 81 (1951), 848–852.

99 This slightly modified quotation is taken from C. Grosche and F. Steiner, Hand-
book of Feynman Path Integrals, Springer, Berlin, 1998 (reprinted with permis-
sion).

100 The three letters ‘WKB’ refer to the physicists ‘Wentzel, Kramers, and Brioullin’.
The basic papers are quoted on page 484.
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(a)

τ = s

y

�

τ = t

x

(b)

y

� x

�

	

Fig. 7.1. Classical trajectories

(A) Approximation of the propagator kernel as �→ 0:

K(x, t;y, s) = eiS[q]/� e−3iπ/4 e−iπμ(s,t)/2

h3/2| det J(t)|1/2
(1 + O(�)). (7.216)

Here, S[q] is the action of the classical trajectory q = q(τ) which connects the
point y at the initial time s with the point x at the final time t (Fig. 7.1(a)).101

Furthermore, μ(s, t) denotes the Morse index (or Maslov index) of the trajectory
q = q(τ) on the time interval [s, t]. Roughly speaking, the Morse index measures
the number and the structure of the focal points on the trajectory. The use of the
Morse index allows us to obtain a global formula for large times. As a rule, the
Morse index jumps at focal points of the trajectory. Now let us discuss this more
precisely.102

Classical particle. We start with the Newtonian equation of motion

mq̈(τ) = −U ′(q), s ≤ τ ≤ t (7.217)

for the trajectory
C : q = q(τ), s ≤ τ ≤ t

of a classical particle of mass m in the 3-dimensional Euclidean space. The potential
U = U(q) is assumed to be a smooth real-valued function. The action along the
trajectory C is given by

S[q] :=

Z t

s

( 1
2
mq̇(τ)2 − U(q(τ))dτ.

For the trajectory C, we also study the corresponding Jacobi equation,

mJ̈(τ) + U ′′(q(τ))J(τ) = 0, s ≤ τ ≤ t,

along with the initial conditions J(s) = 0 and J̇(s) = m−1I.103

101 The case where several trajectories connect the point y with the point x will be
considered in (7.218) below. This corresponds to Fig. 7.1(b).

102 The WKB method is always used in physics if a typical physical parameter goes
to zero. For example, this concerns the following limits: T → 0 (low temperature),
λ→ 0 (short wavelength), 1/c→ 0 (low velocity), ν → 0 (low viscosity). In terms
of mathematics, the WKB method is part of singular perturbation theory.

103 Explicitly, for the real symmetric (3× 3)-matrix J = (Jkl), we get

mJ̈kl(τ) +
3
X

r=1

∂2U

∂xk∂xr
(q(τ))Jrl(τ) = 0, k, l = 1, 2, 3.
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Morse index. By definition, the Morse index of the trajectory C is equal to
the number of negative eigenvalues λ of the Jacobi eigenvalue problem

−mḧ(τ)− U ′′(q(τ))h(τ) = λh(τ), s ≤ τ ≤ t

along with the boundary condition h(s) = h(t) = 0.
Quantum particle. The Schrödinger equation for the corresponding quantum

particle reads as

i�ψt(x, t) = − �
2

2m
Δψ(x, t) + U(x)ψ(x, t).

Semi-classical approximation. The approximation formula (7.216) is valid
under the following assumptions.104

(H1) Uniqueness: There exists a unique solution q = q(τ), s ≤ τ ≤ t, of the
classical equation of motion (7.217) which satisfies the boundary condition

q(s) = y, q(t) = x

for given y, t,x, s (Fig. 7.1(a) on page 581).
(H2) Regularity of the trajectory: At the final time t, the matrix J(t) is invertible.

Here, τ �→ J(τ) is the solution of the Jacobi equation with respect to the
trajectory from (H1).

Modifications. Replace (H1) by the assumption that the boundary value
problem has not a unique solution, but at most a finite number of trajectories
q = qn(τ), n = 1, . . . , N (Fig. 7.1(b) on page 581). In addition, assume that all of
these trajectories are regular in the sense of (H2). Then, the formula (7.216) has to
be replaced by the following sum formula as �→ 0:

K(x, t;y, s) =

N
X

n=1

eiS[qn]/� e−diπ/4 e−iπμn(s,t)/2

hd/2| det Jn(t)|1/2
(1 + O(�)) (7.218)

with d = 3. For motions of the particles on the real line and in the Euclidean plane,
we have to choose d = 1 and d = 2, respectively. The formula (7.218) is precise
(i.e., O(�) = 0) if the potential U is a quadratic function.

Small time intervals. If the time interval [s, t] is sufficiently small, then it
follows from

Jn(t) =
t− s

m
I + O((t− s)2)

that detJn(t) �= 1. Moreover, μn(s, t) = 0. This simplifies the key formula (7.218).
The quantized harmonic oscillator. To get insight, let us consider the equa-

tion of motion
q̈(τ) = −ω2q(τ), 0 ≤ τ ≤ t

for a classical harmonic oscillator on the real line. Here, t > 0. Add the boundary
condition105 q(0) = y, q(t) = x. This problem has the unique solution

104 A sketch of the proof based on the path integral can be found in C. Grosche and
F. Steiner, Handbook of Feynman Path Integrals, Sect. 5.2, Springer, Berlin,
1998. For the full proof embedded into a general setting, see the monograph by
V. Guillemin and S. Sternberg, Geometric Asymptotics, Sect. II.7, Amer. Math.
Soc., Providence, Rhode Island, 1989.

105 To simplify notation, we set s = 0.
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q(τ) = y cosωτ + (x− y cosωt)
sinωτ

sinωt

if the given time t is different from the critical time points tn,crit := nπ/ω with
n = 1, 2, ... This yields the action

S[q] =

Z t

0

( 1
2
mq̇(τ)2 − 1

2
mω2q(τ)2)dτ =

(x2 + y2) cosωt− 2xy

2x2
0 sinωt

.

The Jacobi equation reads as

J̈(τ) + ω2J(τ) = 0, 0 ≤ τ ≤ t, J(0) = 0, J̇(0) =
1

m
.

Hence

J(t) =
sinωt

m
.

If t �= tn,crit, then J(t) �= 0. To compute the Morse index, consider the Jacobi
eigenvalue problem

−ḧ(τ)− ω2h(τ) = λh(τ), 0 ≤ τ ≤ t, h(0) = h(t) = 0.

If 0 < tω < π, then there is no negative eigenvalue. Hence μ(0, t) = 0. However, if
nπ < tω < (n+1)π with n = 1, 2, ... then there are precisely n negative eigenvalues,

λk =
k2π2

t2
− ω2, k = 1, . . . , n

along with the eigenfunctions q = sin τ
√
λk + ω2, k = 1, ..., n. This way, for the

harmonic oscillator, formula (7.218) reads as

K(x, t; y, 0) =
e−iπ/4 e−iπn/2

x0

p

2π| sinωt|
exp

„

i
(x2 + y2) cosωt− 2xy

2x2
0 sinωt

«

(7.219)

for all times t with nπ < tω < (n + 1)π, n = 0, 1, 2, ... Here, we introduce the

characteristic length x0 :=
p

�/mω. This is a precise formula for K; it coincides
with formula (7.144) on page 537.

The freely moving quantum particle on the real line. Let t > 0. We
start with the classical equation of motion

q̈(τ) = 0, 0 ≤ τ ≤ t.

Adding the boundary condition q(0) = y, q(t) = x, we get the unique solution
q(τ) = y + τ(x− y)/t. This yields the classical action

S[q] =

Z t

0

1
2
mq̇(τ)2dτ =

m(x− y)2

2t
.

The Jacobi equation

J̈(τ) = 0, 0 ≤ τ ≤ t, J(0) = 0, J̇(0) =
1

m

yields J(t) = t/m. The Jacobi eigenvalue problem

−ḧ(τ) = λh(τ), 0 ≤ τ ≤ t, h(0) = h(t) = 0

has no negative eigenvalues. Hence μ(0, t) = 0. By (7.218) with d = 1, we obtain

K(x, t; y, 0) = e−iπ/4 ·
r

m

2π�t
eim(x−y)2/2�t.

This coincides with the Feynman propagator kernel (7.157) on page 550.
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7.11 Brownian Motion

In order to understand the beauty of Feynman’s approach to quantum me-
chanics, one has to understand the Brownian motion of immersed particles
and its relation to diffusion processes.

Folklore

7.11.1 The Macroscopic Diffusion Law

We want to consider the diffusion of particles of mass m > 0 on the real line. Let
�(x, t) > 0 denote the mass density of the particles at the position x at time t.
Then the basic diffusion equation reads as

�t(x, t) = κ�xx(x, t), x ∈ R, t ∈ R. (7.220)

Here, the positive number κ is called the diffusion coefficient. Let us motivate this.
Conservation of mass. Let v(x, t) = v(x, t)i denote the velocity vector of the

particles at the point x at time t. Here, the unit vector i points in direction of the
positive x-axis. Furthermore, we introduce the mass current density vector

J(x, t) := �(x, t)v(x, t).

We have J(x, t) = J(x, t)i where

J(x, t) = lim
Δt→0

M(x; t, t + Δt)

Δt
.

Here, M(x; t, t+Δt) is the mass which flows through the point x from left to right
during the time interval [t, t+Δt]. Conservation of mass tells us that the change of
mass on the compact interval [a, b] during the time interval [t, t+Δt] is equal to the
mass which flows through the boundary points during the time interval [t, t + Δt].
Explicitly, for small Δt, we obtain

Z b

a

(�(x, t + Δt)− �(x, t))dt = J(a, t)Δt− J(b, t)Δt,

up to terms of order o(Δt) as Δt→ 0. Letting Δt→ 0, we get

Z b

a

�t(x, t)dx = J(a, t)− J(b, t) = −
Z b

a

Jx(x, t)dx.

Contracting the interval [a, b] to the point x, we obtain

�t(x, t) = −Jx(x, t). (7.221)

Fick’s empirical diffusion law. Motivated by physical experiments, we as-
sume that

J(x, t) = −κ�x(x, t).

That is, the mass current density is proportional to the (negative) spatial derivative
of the mass density. By (7.221), we get the diffusion equation (7.220).

In the three-dimensional case, the one-dimensional diffusion equation (7.220)
passes over to the three-dimensional diffusion equation

�t(x, t) = −κΔ�(x, t) (7.222)

with the position vector x and time t. Furthermore, Δ� = −�xx − �yy − �zz.
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7.11.2 Einstein’s Key Formulas for the Brownian Motion

We are going to consider the three-dimensional motion of particles of mass m > 0
suspended in a resting fluid. We assume that the suspended particles have a much
greater mass than the molecules of the ambient fluid. The irregular motion of the
suspended particles is caused by a large number of collisions with the molecules of
the ambient fluid. In 1828 the botanist Robert Brown (1773–1858) observed first
such an irregular motion under the microscope, which is called Brownian motion
nowadays. In his famous 1905 paper, the young Einstein (1879–1955) derived the
following two key formulas for the random Brownian motion.106

(i) Fluctuation of the position vector x of a single suspended particle:

(Δx)2 = 6κt. (7.223)

(ii) The Stokes–Einstein relation between the diffusion coefficient D of the sus-
pended particles and the viscosity η of the ambient fluid:

κ =
kT

6πηr
. (7.224)

Here, T is the absolute temperature, k is the Boltzmann constant, and r is the
radius of the suspended particles.

The physical motivation of the Einstein formulas can be found in Chap. 4 of the
monograph by R. Mazo, Brownian Motion: Fluctuations, Dynamics, and Applica-
tions, Oxford University Press, 2002.

7.11.3 The Random Walk of Particles

The random model. We want to investigate the random walk of a particle on
the real line. To this end, we set

xj := jΔx, j = 0,±1,±2, . . . and tk := kΔt, k = 0, 1, 2, . . .

We define

P (xj , tk) := probability of finding the particle at the point xj at time tk.

We assume the following.

(i) The initial condition: The particle is at the origin x0 = 0 at the initial time
t0 = 0. That is, P (0, 0) = 1. Moreover, P (xj , tk) = 0 if xj �= 0 or tk > 0.

(ii) The transition condition: Suppose that the particle is at the point xj at time
tk. Then it will be at the point xj+1 (resp. xj−1) at time tk+1 with probability
1
2
. Applying this to the motion from xj−1 to xj and from xj+1 to xj , we obtain

that, for all j, k,

P (xj , tk+1) = 1
2
P (xj−1, tk) + 1

2
P (xj+1, tk). (7.225)

106 A. Einstein, Die von der molekular-kinetischen Theorie der Wärme geforderte
Behandlung von in ruhenden Flüssigkeiten suspendierten Teilchen (On the mo-
tion of suspended particles in a resting fluid by using the methods of molecular
kinetics), Ann. Phys. 17 (1905), 549–560 (in German). English translation: J.
Stachel (Ed.), Einstein’s Miraculous Year 1905: Five Papers that Changed the
Universe, Princeton University Press, 1998.
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The probability for the particle position. Set p(x, t) := e−x2/4κt
√

4πκt
. We claim

that the number
Z b

a

p(x, t)dx (7.226)

equals the probability of finding the particle in the interval [a, b] at time t.
Motivation. In order to motivate (7.226), let us introduce the (discrete) prob-

ability density

p(xj , tk) :=
P (xj , tk)

Δx
.

Then the number
jb
X

j=0

p(xj , tk)Δx

equals the probability of finding the particle in the interval [0, b] at time tk. Here,
we choose jb := b/Δx. By (7.225),

P (xj , tk+1)− P (xj , tk) = 1
2
(P (xj+1, tk)− 2P (xj , tk) + P (xj−1, tk)).

This implies

p(x, t + Δt)− p(x, t) = 1
2
(p(x + Δx, t)− 2p(x, t) + p(x−Δx, t)).

Hence

p(x, t + Δt)− p(x, t)

Δt
=

p(x + Δx, t)− 2p(x, t) + p(x−Δx, t)

(Δx)2
· (Δx)2

2Δt
.

Letting Δx→ 0 and Δt→ 0 such that the quotient (Δx)2/2Δt goes to the positive
number κ, then

pt(x, t) = κpxx(x, t), x ∈ R, t > 0. (7.227)

In addition, we obtain the formal initial condition p(x, 0) = δ(x) for all points
x ∈ R.107 By the study of the diffusion equation on page 487, the solution of

(7.227) reads as p(x, t) = e−x2/4κt
√

4πκt
.

7.11.4 The Rigorous Wiener Path Integral

Probabilities of a continuous random walk. Let us consider the random walk
of a particle on the real line with diffusion coefficient κ > 0. Choose the function

p(x, t) :=
e−x2/4κt

√
4πκt

,

and choose the points of time 0 < t1 < . . . < tN := T. Suppose that the particle is
at the point x0 := 0 at time t0 := 0.

• The real number
R

J1
p(x1−x0, t1−t0)dx1 is the probability of finding the particle

on the interval J1 at time t1.

107 This follows from the discrete initial condition p(xj , 0) =
P (xj ,0)

Δx
=

δj0
Δx

by letting
Δx→ 0.
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• The real number
R

J1

R

J2
p(x1−x0, t1−t0)p(x2−x1, t2−t1)dx1dx2 is the probability

of finding the particle on the interval J1 and J2 at time t1 and t2, respectively.
• The real number

Z

J1

. . .

Z

JN

N
Y

j=1

p(xj − xj−1, tj − tj−1) dx1 · · · dxN (7.228)

is the probability of finding the particle on the interval J1, . . . , JN at time
t1, . . . , tN , respectively.

The Wiener measure. We want to translate the preceding probabilities into
the language of measure theory. Fix the time T > 0. By definition, the function
space C0[0, T ] consists of all continuous functions

q : [0, T ]→ R

with q(0) = 0. Intuitively, x = q(t), 0 ≤ t ≤ T , describes the trajectory of a
Brownian particle on the real line. We want to construct a measure W on the space
C0[0, T ] of trajectories such that, for each measurable subset Ω of C0[0, T ], the real
number

W (Ω)

equals the probability of finding the trajectory q ∈ C0[0, T ] in the set Ω. We will
proceed in two steps.

Step 1: Pre-measure on cylindrical subsets. Let

Ωcyl := {q ∈ C0[0, T ] : q(tk) ∈ Jk, k = 1, . . . , N}

where 0 < t1 < . . . < tN := T , N = 1, 2, . . . , and J1, . . . JN are intervals on the real
line. We define the number W (Ωcyl) by (7.228). This number is called the Wiener
pre-measure of the cylindrical set Ωcyl.

Step 2: Extension of the pre-measure to the Wiener measure. The Wiener pre-
measure on cylindrical sets can be extended to a measure on the function space
C0[0, T ]. This measure (called the Wiener measure) is uniquely determined on the
smallest σ-algebra of C0[0, T ] which contains all the cylindrical sets. For general
measure theory and measure integrals, see Sec. 10.2.1 of Vol. I. Furthermore, we
refer to:

H. Amann and J. Escher, Analysis, Vol. 3, Birkhäuser, Basel, 2001 (in
German). (English edition in preparation.)

E. Stein and R. Shakarchi, Princeton Lectures in Analysis, Vol. III: Mea-
sure Theory, Princeton University Press, 2003.

A detailed summary can be found in the Appendix to Zeidler (1986), Vol. IIB (see
the references on page 1049).

Example. If C10 [0, T ] denotes the set of all continuously differentiable functions
q : [0, T ]→ R with q(0) = 0, then

W (C10 [0, T ]) = 0.

This tells us that the trajectory of a Brownian particle is continuously differentiable
with probability zero. In fact, under the microscope one observes zigzag trajectories
of Brownian motion.

The Wiener path integral. General measure theory tells us that the Wiener
measure W on the function space C0[0, T ] induces the measure integral
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Z

C0[0,T ]

F (q) dW (q)

for appropriate functions F : C0[0, T ]→ R. This integral is called the Wiener path
integral. Here, we integrate over a set of trajectories. In particular, we have

Z

C0[0,T ]

F (q) dW (q) =

N
X

n=1

FnW (Ωn)

if Ω1, . . . , ΩN is a collection of pairwise disjoint cylindrical sets of the function
space C0[0, T ], and the real-valued function F has the constant values F1, . . . , FN

on Ω1, . . . , ΩN , respectively, and it vanishes outside these sets. If Ω is a measur-
able subset of the function space C0[0, T ] (e.g., a cylindrical set), then the Wiener
measure of Ω is given by

W (Ω) =

Z

Ω

dW =

Z

C0[0,T ]

χ(q) dW (q)

where χ(q) := 1 for all q ∈ Ω and χ(q) := 0 for all q /∈ Ω.

7.11.5 The Feynman–Kac Formula

In 1947, Marc Kac (1914–1984) attended a lecture given by the young Richard
Feynman (1918–1988) at Cornell University. He was amazed about the fact that
Feynman’s formula related the quantum mechanical propagator to classical mechan-
ics in a very elegant way. He also noticed that Feynman’s idea of the path integral
was close to his own ideas about stochastic processes based on the Wiener integral
due to Norbert Wiener (1894–1964). A few days later Kac rigorously proved a for-
mula which is known nowadays as the Feynman–Kac formula. In his autobiography
Enigmas of Chance, Harper & Row, New York, 1985, Marc Kac writes:

It is only fair to say that I had Wiener’s shoulders to stand on. Feynman
as in everything else he has done, stood on its own, a trick of intellectual
contortion that he alone is capable of.

In order to discuss the Feynman–Kac formula, let us consider the one-dimensional
diffusion equation

�t(x, t) = κ�xx(x, t)− U(x)�(x, t), x ∈ R, t > 0 (7.229)

with the initial condition �(x, 0) = �0(x) for all x ∈ R. We are given the positive
diffusion constant κ, the real-valued potential U ∈ C∞

0 (R), and the real-valued
initial mass density �0 ∈ C∞

0 (R). Define

H� := −κ�xx + U� for all � ∈ C∞
0 (R).

The operator H : C∞
0 (R) → L2(R) can be uniquely extended to a self-adjoint

operator H : D(H)→ L2(R) on the real Hilbert space L2(R). In terms of functional
analysis, the solution of (7.229), that is, �t = −H�, reads as

�(t) = e−tH�0, t > 0. (7.230)

The famous Feynman–Kac formula tells us the following.
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Theorem 7.51 For all times T > 0 and all positions x ∈ R, the solution (7.230)
of the diffusion equation (7.229) is given by

�(x, T ) =

Z

C0[0,T ]

�0(x + q(t)) e−
R T
0 U(x+q(t))dt dW (q).

Intuitively, this is a statistics over all possible continuous trajectories of a par-
ticle which starts at the point x at time t = 0. The statistical weight is related
to both the Wiener measure and an exponential function which depends on the
potential U. The proof can be found in:

G. Johnson and M. Lapidus, The Feynman Integral and Feynman’s Oper-
ational Calculus, Chap. 12, Clarendon Press, Oxford, 2000.

We also refer to:

M. Reed and B. Simon, Methods of Modern Mathematical Physics II:
Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.

B. Simon, Functional Integration and Quantum Physics, Academic Press,
New York, 1979.

In terms of the limit of classical N -dimensional integrals, the solution �(t) = e−tH�0

of the diffusion equation (7.229) can be represented as

�(x, T ) = lim
N→∞

 

r

1

4πκΔt

!N

PV

Z ∞

−∞
. . . PV

Z ∞

−∞
�0(qN )eS−

N dq1 . . . dqN

(7.231)

with S−
N :=

PN−1
j=0 −

m
2

“

qj+1−qj

Δt

”2

− U(qj), as well as Δt := T/N , κ = 1/2m, and
q0 := x.

Corollary 7.52 For all times T > 0 and all positions x ∈ R, we have (7.231).

Note that the principal value PV
R∞
−∞ . . . means limr→∞

R r

−r
. . ., and the limit

N →∞ refers to the convergence on the real Hilbert space L2(R). The proof based
on the Trotter product formula (see Sect. 8.3 of Vol. I) can be found in Reed and
Simon (1975), Vol. II, Sect. X.11, quoted above.

The passage to the Schrödinger equation. We replace the diffusion equa-
tion (7.229) by the Schrödinger equation

i��t(x, t) = H�(x, t), x ∈ R, t > 0 (7.232)

with the initial condition �(x, 0) = �0(x) for all x ∈ R. Here, we use the differential

operator H� := −κ�xx + U� with κ := �
2

2m
. In terms of the limit of classical N -

dimensional integrals, the solution �(t) = e−itH/��0 of the Schrödinger equation
(7.232) can be represented as follows: the function �(x, T ) at the point x at time T
is equal to the limit

lim
N→∞

 

r

�

4πiκΔt

!N

PV

Z ∞

−∞
. . . PV

Z ∞

−∞
�0(qN )eiSN /�dq1 . . . dqN

(7.233)

with the discrete action
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SN :=

N−1
X

j=0

m

2

“qj+1 − qj

Δt

”2

− U(qj),

as well as Δt := T/N and q0 := x. The square root is to be understood as principal
value.

Corollary 7.53 For all times T > 0 and all positions x ∈ R, we have (7.233).

Here, the limits are to be understood as in Corollary 7.52. Naturally enough,
formula (7.233) is obtained from (7.231) by rescaling. The proof of Corollary 7.53
can be found in Reed and Simon (1975), Vol. II, Sect. X.11, quoted on page 589.

Unfortunately, the Feynman–Kac formula from Theorem 7.51 cannot be rigor-
ously extended to the Schrödinger equation, since the corresponding complex-valued
measure does not exist. This is the statement of the famous Cameron non-existence
theorem which can be found in Johnson and Lapidus (2000), Sect. 4.6, quoted on
page 589.108

7.12 Weyl Quantization

The use of the Moyal product for smooth functions avoids the use of
Hilbert-space operators in quantum mechanics.

Folklore

We can say that quantum mechanics is a deformation of classical mechan-
ics. The Planck constant h is the corresponding deformation parameter.
This is for me the most concise formulation of the correspondence principle
and explains what is meant by quantization.
Beautiful results, which I learned from A. Lichnerowicz, M. Flato, and
D. Sternheimer, allow one to say that classical mechanics is unstable and
that quantum mechanics is essentially a unique deformation of it into a
nonequivalent stable structure.109

Ludwig Faddeev, 1999

108 R. Cameron, A family of integrals serving to connect the Wiener and Feynman
integrals. J. of Math. and Phys. Sci. of MIT 39 (1960), 126–140.

109 L. Faddeev, Elementary introduction to quantum field theory, Vol. 1, pp. 513–
552. In: P. Deligne, P. Etingof, D. Freed, L. Jeffrey, D. Kazhdan, J. Morgan, D.
Morrison, and E. Witten (Eds.), Lectures on Quantum Field Theory: A course
for mathematicians given at the Institute for Advanced Study in Princeton in
1996/97, Vols. 1, 2, Amer. Math. Soc., Providence, Rhode Island, 1999 (reprinted
with permission).
We also refer to the beautiful book by L. Faddeev and A. Slavnov, Gauge Fields,
Benjamin, Reading, Massachusetts, 1980. This book is based on the use of Feyn-
man functional integrals; it represents the Faddeev–Popov approach to gauge
theory which was a breakthrough in the quantization of the Standard Model
in particle physics. See L. Faddeev and V. Popov, Feynman diagrams for the
Yang–Mills field, Phys. Lett. 25B (1967), 29–30.
Ludwig Faddeev made seminal contributions to mathematical physics. This is
described in the book by L. Faddeev, 40 Years in Mathematical Physics, World
Scientific, Singapore, 1995.
F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Defor-
mation theory and quantization I, II, Annals of Physics 111 (1978), 61–110;
111–151.
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The elegant method of deformation quantization is based on the use of classical
smooth functions equipped with the Moyal star product. This star product repre-
sents a deformation of the classical product of functions. The deformation depends
on the Planck constant h. The first quantum correction of the classical product is
related to the Poisson bracket in classical mechanics. The relation between defor-
mation quantization and the operator-theoretic approach to quantum mechanics in
Hilbert spaces is given by the Weyl calculus.

In the following sections, we will only sketch the basic ideas. We will start with
the formal language used by physicists. From the mnemonic point of view, the
language of physicists is very convenient. Unfortunately, rigorous mathematical ar-
guments are more involved. The rigorous Weyl calculus will be considered in Sect.
7.12.6; this represents a special case of the modern theory of pseudo-differential op-
erators, which combines differential operators with integral operators in the setting
of generalized functions. We would like to encourage the reader to learn both the
language of physicists and the language of mathematicians.

7.12.1 The Formal Moyal Star Product

Let C∞(R2) be the space of smooth functions f : R
2 → C. For f, g ∈ C∞(R2), the

formal Moyal star product is defined by

f ∗ g := fe
i�
2 (∂′

q∂p−∂′
p∂q)g.

Here, the functions f and g depend on the real variables q and p, and we set
∂q := ∂/∂q and ∂p := ∂/∂p. In addition, the prime of ∂′

q indicates that the partial
derivative acts on the left factor f . Explicitly,

f ∗ g =
∞
X

m,n=0

„

i�

2

«m+n
(−1)m

m!n!
(∂m

p ∂n
q f)(∂n

p ∂
m
q g). (7.234)

This is to be understood as a formal power series with respect to the variable �.
The Moyal star product has the following properties.

(i) The correspondence principle: For all f, g ∈ C∞(R2),

f ∗ g = fg +
i�

2
{f, g}+ O(�2), �→ 0.

Here, we use the Poisson bracket {f, g} := fqgp − gqfp. Hence

f ∗ g − g ∗ f = i�{f, g}+ O(�2), �→ 0.

Therefore, the star product f ∗ g represents a deformation of the classical
product fg. This deformation depends on the Planck constant �. In terms of
physics, the difference f ∗ g− fg describes quantum fluctuations which depend
on �. For example, if we choose f(q, p) := q and g(q, p) := p, then q∗p = qp+ 1

2
i�

and p ∗ q = pq − 1
2
i�. Hence

q ∗ p− p ∗ q = i�.

This commutation rule (for the Moyal star product of classical smooth func-
tions) corresponds to the Born–Heisenberg–Jordan commutation relation QP−
PQ = i�I (in the operator-theoretic formulation of quantum mechanics on
Hilbert spaces). As we will show below, the use of the Moyal star product
avoids the use of operators.
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(ii) Associativity: For all f, g, k ∈ C∞(R2), we have

(f ∗ g) ∗ k = f ∗ (g ∗ k).

7.12.2 Deformation Quantization of the Harmonic Oscillator

The basic equations of deformation quantization. We want to apply the
method of deformation quantization to the motion of a particle on the real line.
The classical trajectory q = q(t) is described by the canonical equations

ṗ(t) = −Hq(q(t), p(t)), q̇(t) = Hp(q(t), p(t)), t ∈ R.

We are given the Hamiltonian H ∈ C∞(R2).
The corresponding quantum motion is obtained by solving the following prob-

lem. We are looking for

• a nonempty index set M,
• a measure μ on the set M,
• functions �m = �m(q, p) on the phase space R

2 for each index m ∈M, and
• real values Em for each index m ∈M
such that the following equations hold.

(E) Quantized energy levels Em:

H ∗ �m = Em�m for all m ∈M.

(D) Distribution function �m: For all indices m,n ∈M, we have the orthogonality
relation

�m ∗ �n = 0, m �= n,

along with the idempotent law

�m ∗ �m = �m,

and the normalization relation on the phase space,
Z

R2
�m(q, p)

dqdp

h
= 1.

(Q) Quantized energy decomposition of the classical Hamiltonian function:110

H(q, p) =

Z

M
Em�m(q, p)dμ(m) for all q, p ∈ R.

(M) Mean value of energy: For all m ∈M,

Em =

Z

R2
H(q, p)�m(q, p)

dqdp

h
.

In terms of physics, this means that each of the functions �m = �m(q, p) is
a probability distribution on the phase space which has the quantized energy
level Em as energy mean value.

110 In the special case whereM := {0, 1, , 2 . . .}, the integral
R

M Em�m(q, p)dμ(m) is
equal to the infinite series

P∞
m=0 Em�m(q, p)μm. Here, the nonnegative number

μm is the measure of the point {m} for all m = 0, 1, . . .
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Suppose that we know a solution of the equations (E) through (M) above. Then,
to a given complex-valued function F : R → C we can assign the star function F∗
defined by

F∗(q, p) :=

Z

M
F (Em)�m(q, p)dμ(m) for all q, p ∈ R.

For example, we may formally define the exponential star function

Exp∗(αtH)(q, p) :=

Z

m∈M
eαtH(q,p)�m(q, p)dμ(m)

for all q, p ∈ R, all times t ∈ R, and fixed complex number α. Formally, it follows
from (E) above that

d

dt
Exp∗ (αtH) = αH ∗ Exp∗ (αtH) .

This equation is called the Schrödinger equation in quantum deformation. In con-
crete models, one has to check that all of the equations formulated above possess a
rigorous meaning, in the sense of well-defined formal expansions with respect to �.
Let us show how quantum deformation works for the harmonic oscillator. In this
case, we choose M = {0, 1, 2, , ...} and μm := 1 for all m.

Application to the harmonic oscillator. The classical function

H(q, p) :=
p2

2m
+

mω2q2

2

is the Hamiltonian for a harmonic oscillator of mass m and angular frequency ω
on the real line. To simplify the computation, it is useful to introduce the new
dimensionless variable

a :=

r

mω

2�

„

q +
ip

mω

«

(7.235)

and the conjugate complex variable

a† =

r

mω

2�

„

q − ip

mω

«

. (7.236)

Hence

H = �ωaa†.

By the chain rule, the Moyal star product reads as

f ∗ g = fe
1
2 (∂′

a∂
a†−∂′

a†∂a)
g

with respect to the new variables a and a†. Here, we set ∂a := ∂/∂a, as well
as ∂a† := ∂/∂a†, and we regard f and g as functions of the variables a and a†.
Explicitly, we obtain111

111 If one wants to see the dependence on the parameter �, then one has to replace
a by

√
� · b. This yields b ∗ b† − b† ∗ b = �, and

f ∗ g =
∞
X

m,n=0

„

�

2

«m+n
(−1)m

m!n!
(∂m

b†∂
n
b f)(∂n

b†∂
m
b g).
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f ∗ g =

∞
X

m,n=0

(−1)m

2m+nm!n!
(∂m

a†∂
n
a f)(∂n

a†∂
m
a g). (7.237)

For example, a ∗ a† = aa† + 1
2

and a† ∗ a = aa† − 1
2
. This implies

a ∗ a† − a† ∗ a = 1. (7.238)

For m = 1, 2, , .., define

• E0 := 1
2
ω�, �0 := 2e−2aa†

;

• Em := ω�(m + 1
2
);

• �m := 1
m!

(a†)m ∗ �0 ∗ am.

Theorem 7.54 For all m,n = 0, 1, , 2, ..., the following hold.
(E) Quantized energy levels: H ∗ �m = Em�m.
(D) Distribution functions: �m ∗ �n = δnm�m.
(Q) Quantized energy decomposition of the classical Hamiltonian function:

H(q, p) =

∞
X

m=0

Em�m(q, p) for all q, p ∈ R.

For the proof, see Problem 7.29.
The relation to the Laguerre polynomials. For all w, z ∈ R with |w| < 1,

the Laguerre polynomials L0, L1, ... are generated by the function

1

1 + w
exp

„

wz

1 + w

«

=

∞
X

n=0

(−1)nwnLn(z).

Explicitly, for n = 0, 1, 2, ...,

Ln(z) =
ez

n!

dn(zne−z)

dzn
=

n
X

m=0

(−1)m n!

(n−m)! m! n!
zm.

The functions

Ln(x) := e−x/2Ln(x) x ∈ R, n = 0, 1, 2, ...

form a complete orthonormal system of the Hilbert space L2(0,∞).

Theorem 7.55 For all m,n = 0, 1, , 2, ..., the following hold.
(L) Laguerre polynomials:

�m = 2(−1)me−2H/�ωLm

„

4H

�ω

«

with the normalization condition
R

R2 �m(q, p) dqdp
h

= 1.

(M) Mean value: Em =
R

R2 H(q, p)�m(q, p) dqdp
h

.
(S) The Schrödinger equation

i�Ft(q, p, t) = H(q, p) ∗ F (q, p, t), q, p, t ∈ R

has the solution

F (q, p, t) =
1

cos ωt
2

exp

„

2H

i�ω
tan

ωt

2

«

for all t ∈ R with ωt �= 2nπ, n = 0,±1,±2, ...
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For the proof, see Problem 7.30.
Motivation for the deformation quantization of the harmonic oscil-

lator. We want to show how the method of deformation quantization considered
above is related to Schrödinger’s operator-theoretic treatment of the harmonic os-
cillator studied on page 534. Consider the operators

Qpre, Ppre, Hpre : S(R)→ S(R)

with Qpreϕ(q) := qϕ(q) and Ppreϕ(q) = −i�ϕ′(q) for all q ∈ R, as well as

Hpre :=
P 2

pre

2m
+

mω2Qpre

2
.

Using the Dirac calculus, let |ϕ0〉, |ϕ1〉, . . . denote the complete orthonormal system
of eigenvectors of the Hamiltonian Hpre. That is,

Hpre|ϕm〉 = Em|ϕm〉, m = 0, 1, 2, . . .

with Em := �ω(m + 1
2
). In addition, let us introduce the operator

�m := |ϕm〉〈ϕm|, m = 0, 1, . . .

This is the von Neumann density operator corresponding to the eigenstate |ϕm〉.
Then, for all indices m,n = 0, 1, . . . and all times t ∈ R, the following hold:112

(a) Hpre�m = Em�m;
(b) Hpre =

P∞
m=0 Em�m;

(c) �m�n = δmn�m;

(d) i� d
dt

e−itHpre/� = Hpree
−itHpre/� .

Relation (a) follows from

(Hpre�m)|ϕm〉 = Hpre|ϕm〉〈ϕm|ϕ〉 = Em|ϕm〉〈ϕm|ϕ〉 = Em�m|ϕ〉.

Relations (b) and (d) are a consequence of

f(Hpre)ϕ =
∞
X

m=0

f(Em)|ϕm〉〈ϕm|ϕ〉

for all ϕ ∈ S(R), where f(x) := x or f(x) := e−ixt/� for all x ∈ R. Finally, relation
(c) follows from

|ϕm〉〈ϕm|ϕn〉〈ϕm|ϕ〉 = Emδmn|ϕm〉〈ϕm|ϕ〉 for all ϕ ∈ S(R).

This finishes the proof of (a)–(d). In the following sections, we will introduce the
Weyl calculus. Here,

112 Explicitly, condition (b) means that Hpreϕ =
P∞

m=0 Em�mϕ for all ϕ ∈ S(R),
and condition (d) is a short-hand writing for the equation

i�
d

dt

∞
X

m=0

e−iEmt/��mϕ =

∞
X

m=0

Eme−iEmt/��mϕ,

which is valid for all ϕ ∈ S(R). The limits are to be understood in the sense of
the convergence on the Hilbert space L2(R).
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• operators have to be replaced by their symbols, and
• operator products have to be replaced by the Moyal star product of the corre-

sponding symbols.

Replacing the operators Hpre,�m, e−iHpre/� by their symbols H, �m, F , the formulas
(a)–(d) pass over to the following formulas:

(a∗) H ∗ �m = Em�m;
(b∗) H =

P∞
m=0 Em�m;

(c∗) �m�n = δmn�m;
(d∗) i�Ft = H ∗ F.
This corresponds to Theorems 7.54 and 7.55 above. For the annihilation operator
a and the creation operator a† given by

a :=

r

mω

2�

„

Qpre +
iPpre

mω

«

and a† :=

r

mω

2�

„

Qpre −
iPpre

mω

«

,

the symbols a and a† are given by (7.235) and (7.236), respectively. The operator
commutation relation aa†−a†a = I corresponds to the Moyal-star-product relation
a∗a†−a† ∗a = 1 for the symbols in the Weyl calculus. This coincides with (7.238).

7.12.3 Weyl Ordering

The Moyal star product of classical symbols passes over to the operator
product of the corresponding Weyl operators.

Folklore

As a preparation for the general Weyl calculus, let us start with the rigorous theory
of Weyl polynomials. In the quantum mechanics of particles on the real line, we
encounter both113

• the position operator Q : S(R)→ S(R) given by (Qψ)(q) := qψ(q) and
• the momentum operator P : S(R)→ S(R) given by (Pψ)(q) := −i�ψ′(q)

for all ψ ∈ S(R) and all q ∈ R. These two basic operators are formally self-adjoint
on the Hilbert space L2(R), that is,

〈Qψ|ϕ〉 = 〈ψ|Qϕ〉 and 〈Pψ|ϕ〉 = 〈ψ|Pϕ〉 for all ψ,ϕ ∈ S(R).

Here, we use the inner product 〈ψ|χ〉 :=
R

R
ψ†(q)χ(q)dq on L2(R). In other words,

Q† = Q and P † = P.114

Weyl polynomials with respect to the operators Q and P on the linear
function space S(R). Consider an arbitrary polynomial

a(q, p) :=

N
X

k,m=0

ckmqkpm for all q, p ∈ R (7.239)

with respect to the real variables q and p. Here, the coefficients ckm are complex
numbers. It is our goal to assign to each polynomial a a linear operator

113 To simplify notation, we write the operator symbol Q (resp. P ) instead of Qpre

(resp. Ppre).
114 In addition, the operators Q,P : S(R)→ S(R) are essentially self-adjoint on the

Hilbert space L2(R).
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A(a) : S(R)→ S(R),

which is a polynomial with respect to Q and P , such that the following properties
hold.

(W1) Linearity: For all polynomials a, b and all complex numbers α, β, we get

A(αa + βb) = αA(a) + βA(b).

In particular, if a(q, p) := q and b(q, p) := p, then A(a) := Q and A(b) := P.
Furthermore, A(1) = I (identity operator).

(W2) Weyl ordering: If a(q, p) := qp, then115

A(a) = 1
2
(QP + PQ).

(W3) Formal self-adjointness: If the coefficients of the polynomial a are real, then
the Weyl operator A(a) is formally self-adjoint. Explicitly,

〈A(a)ψ|ϕ〉 = 〈ψ|A(a)ϕ〉 for all ψ,ϕ ∈ S(R).

In other words, the Weyl polynomials A(a) to real polynomials a are formal
observables in quantum mechanics.

(W4) Composition rule: If a and b are polynomials, then116

A(a ∗ b) = A(a)B(b).

This means that the Moyal star product of polynomials is translated into the
operator product of Weyl polynomials on the space S(R). This is the charac-
teristic property of the Moyal star product.

In about 1930, it was the idea of Weyl to introduce the symmetric Weyl polynomials
(qkpm)W by setting

• (qk)W := Qk and (pm)W := Pm, where m, k = 0, 1, . . .;
• (qp)W := 1

2
(QP + PQ);

• (q2p)W := 1
3
(Q2P + PQ2 + QPQ);

• (q2p2)W := 1
6
(Q2P 2 + P 2Q2 + QP 2Q + PQ2P + QPQP + PQPQ).

In the general case, we proceed as follows. In order to obtain (qkpm)W , we start
with the symmetrized expression

(A1A2 · · ·Ak+m)sym :=
1

(k + m)!

X

π

Aπ(1)Aπ(2) · · ·Aπ(k+m)

where we sum over all possible permutations π of 1, 2, . . . , k + m. Finally, we set
A1 = . . . = Ak := Q and Ak+1 = . . . = Ak+m := P. For each polynomial a from
(7.239), we now define the Weyl polynomial

115 This expression is symmetric with respect to Q and P . Furthermore, the operator
A(a) : S(R)→ S(R) is formally self-adjoint, that is,

A(a)† := 1
2
(P †Q† + Q†P †) = 1

2
(PQ + QP ) = A(a).

These properties would fail if we would assign to qp the operators QP or PQ .
116 Note that the Moyal star product a ∗ b from (7.234) on page 591 is a finite sum

if a = a(q, p) and b = b(q, p) are polynomials.
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A(a) :=

N
X

k,m=0

ckm(qkpm)W . (7.240)

The polynomial a is called the symbol of the Weyl polynomial A(a).

Proposition 7.56 The Weyl correspondence (7.240) possesses the properties (W1)
through (W4) formulated above.

In particular, it follows from (W4) above that the symbol of the operator prod-
uct A(a)A(b) is the Moyal star product a∗b of the symbols a and b of the operators
A(a) and B(a), respectively.

The proof of Prop. 7.56 is elementary. For the Moyal star product one has to
use an induction argument. For example, it follows from relation (7.237) on page
594 that q ∗ p = qp + 1

2
i�. Hence

A(q ∗ p) = A(qp) + 1
2
i�A(1) = 1

2
(QP + PQ) + 1

2
i�I.

Using the commutation relation QP − PQ = i�I, we obtain

A(q ∗ p) = QP = A(q)A(p).

Proposition 7.57 Let k = 0, 1, 2, . . . and r, s ∈ C. The operator (rQ+ sP )k is the
Weyl operator to the polynomial a(q, p) := (rq + sp)k.

The proof is elementary. For example, we have

(rq + sp)2 = r2q2 + 2rsqp + s2p2

and (rQ + sP )2 = (rQ + sP )(rQ + sP ) = r2Q2 + rs(QP + PQ) + s2P 2. Hence

(rQ + sP )2 = r2(q2)W + 2rs(qp)W + s2(p2)W .

Standard example. Let â ∈ S(R2), and N = 0, 1, . . .117 Then the polynomial

a(q, p) =
1

2π�

Z

R2

N
X

k=0

ik(rq + sp)k

�kk!
â(r, s)drds,

with respect to the real variables q and p, is well-defined. By Prop. 7.57, the Weyl
operator to the symbol a reads as

A(a) =
1

2π�

Z

R2

N
X

k=0

ik(rQ + sP )k

�kk!
â(r, s)drds.

Formal generalization. Now consider the well-defined integral

a(q, p) =
1

2π�

Z

R2
ei(rq+sp)/� â(r, s)drds.

Here, a ∈ S(R2). Explicitly, â is the Fourier transform of a. Using the formal limit
N →∞, we get

117 The definition of both the Schwartz function space S(Rn) and the space of tem-
pered distributions S ′(Rn) can be found on pages 537 and 615 of Volume I.
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A(a) =
1

2π�

Z

R2
ei(rQ+sP )/� â(r, s)drds. (7.241)

This formal expression is frequently used by physicists.
Inductive construction of the Weyl operators. One can show that, for all

polynomials a of the form (7.239), the following rigorous formulas hold:

QA(a) = A(qa + 1
2
i�ap), A(a)Q = A(qa− 1

2
i�aq),

PA(a) = A(pa− 1
2
i�ap), A(a)P = A(pa + 1

2
i�ap).

For example, if a(q, p) := p, then we get QP = QA(p) = A(qp) + 1
2
i�I. In addition,

we have PQ = A(p)Q = A(qp)− 1
2
�iI. Hence QP + PQ = 2A(qp).

7.12.4 Operator Kernels

Operator kernels generalize matrix elements; they relate differential oper-
ators to integral operators, in a generalized sense. The formal approach
was introduced by Paul Dirac in the late 1920s (Dirac calculus). The rig-
orous theory is based on the kernel theorem which was proved by Laurent
Schwartz in the late 1940s (theory of tempered distributions).118

Folklore

Classical kernels. For given function A ∈ S(R2), we define

(Aψ)(x) :=

Z

R2
A(x, y)ψ(y)dy, x ∈ R

for all functions ψ ∈ S(R). The function A is called the kernel of the linear, sequen-
tially continuous operator

A : S(R)→ S(R). (7.242)

Each function ϕ ∈ S(R) corresponds to a tempered distribution Tϕ ∈ S(R) given
by

Tϕ(χ) :=

Z

R

ϕ(x)χ(x)dx for all χ ∈ S(R).

The map ϕ �→ Tϕ is an injective, linear, sequentially continuous map from S(R)
into S ′(R). Identifying ϕ with Tϕ, we get S(R) ⊆ S ′(R). In this sense, the map
ψ �→ Aψ �→ TAψ yields the linear, sequentially continuous operator

A : S(R)→ S ′(R).

Explicitly, we obtain

(Aψ)(χ) =

Z

R2
A(x, y)χ(x)ψ(y)dxdy for all ψ, χ ∈ S(R). (7.243)

118 L. Schwartz, Théorie des noyaux (Theory of kernels) (in French), Proceed-
ings of the 1950 International Congress of Mathematicians in Cambridge, Mas-
sachusetts, Vol. I, pp. 220–230, Amer. Math. Soc., Providence, Rhode Island,
1952. At this congress, Laurent Schwartz (1915–2002) was awarded the Fields
medal for creating the theory of distributions in about 1945.
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Here, we briefly write (Aψ)(χ) instead of TAψ(χ). Introducing the tempered distri-
bution A ∈ S ′(R2) by setting

A(�) :=

Z

R2
A(x, y)�(x, y)dxdy for all � ∈ S(R2),

equation (7.243) tells us that

(Aψ)(χ) = A(χ⊗ ψ) for all ψ, χ ∈ S(R). (7.244)

The product property of kernels. If the kernels A,B ∈ S(R2) correspond
to the operators A,B : S(R) → S(R), respectively, then the product operator AB
has the kernel C given by the product formula

C(x, y) :=

Z

R

A(x, z)B(z, y)dz for all x, y ∈ R. (7.245)

This relation generalizes the matrix product. To prove (7.245), set χ := Aψ and
ψ := Bϕ. Then χ = (AB)ϕ. Hence

χ(x) =

Z

R

A(x, z)(Bϕ)(z)dz =

Z

R

„

Z

R

A(x, z)B(z, y)dz

«

ϕ(y)dy.

The kernel of the position operator Q. For all χ, ψ ∈ S(R),

(Qψ)(χ) =

Z

R2
χ(x)xψ(x)dx. (7.246)

Using the Dirac delta function, the equation (Qψ)(x) = xψ(x) can formally be
written as

(Qψ)(x) =

Z

R

xδ(x− y)ψ(y)dy for all x ∈ R.

Thus, the function Q(x, y) := xδ(x−y) is the formal kernel of the position operator
Q. Using the Dirac calculus119, the formal kernel of the position operator Q can
also be obtained by

Q(x, y) = 〈x|Q|y〉 = y〈x|y〉 = yδ(x− y) = xδ(x− y).

The kernel of the momentum operator P . For all χ, ψ ∈ S(R),

(Pψ)(χ) =

Z

R2
(−i�ψ′(x))χ(x)dx. (7.247)

In order to get the formal kernel P of the operator P used by physicists, we start
with the (rescaled) Fourier transformation

(Fϕ)(p) :=
1√
2π�

Z

R

e−ixp/�ϕ(x)dx, ϕ(x) =
1√
2π�

Z

R

eixp/�(Fϕ)(p)dp.

Here, the operator F : S(R)→ S(R) is bijective, linear, and sequentially continuous,
and the inverse operator F−1 has the same properties. It follows from

119 See page 596 of Volume I.
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F(Pψ)(p) = p(Fψ)(p)

that we have the formal relation

F(Pψ)(p) =

Z

R

pδ(p− r)(Fψ)(r)dr for all p ∈ R.

This implies (Pψ)(x) =
R

R
P(x, y)ψ(y)dy with the formal kernel

P(x, y) : =
1

2π�

Z

R2
ei(xp−yr)/�pδ(p− r)dpdr

=
1

2π�

Z

R

eip(x−y)/�p dp for all x, y ∈ R. (7.248)

Using the Dirac calculus (i.e., the completeness relation
R

R
dp |p〉〈p| = I), the formal

kernel can also be obtained by

P(x, y) = 〈x|P |y〉 =

Z

R

dp

Z

R

dr 〈x|p〉〈p|P |r〉〈r|y〉.

Noting that 〈p|P |r〉 = r〈p|r〉 = rδ(p − r) = pδ(p − r) and 〈x|p〉 = eixp/�/
√

2π�,
again we get (7.248).

The Schwartz kernel theorem. Let A : S(R) → S ′(R) be a linear, sequen-
tially continuous operator (e.g., the Weyl operator A(a) to the polynomial symbol
a). Then there exists precisely one tempered distribution A ∈ S ′(R2) such that

(Aψ)(χ) = A(χ⊗ ψ) for all ψ, χ ∈ S(R). (7.249)

The tempered distribution A is called the kernel of the operator A.
This theorem generalizes (7.244). The kernels of the operators Q and P are

given by (7.246) and (7.247), respectively.
Nuclear spaces. The Schwartz kernel theorem is the special case of a func-

tional-analytic theorem about bilinear forms on nuclear spaces. A Hilbert space
is nuclear iff its dimension is finite. Furthermore, the infinite-dimensional spaces
D(Rn) and S(Rn) are nuclear for n = 1, 2, . . . For the theory of nuclear spaces
and their important applications in harmonic analysis, we refer to the following
monographs:

A. Pietsch, Nuclear locally convex spaces, Springer, Berlin, 1972.

A. Pietsch, Operator Ideals, Deutscher Verlag der Wissenschaften, Berlin,
1978.

A. Pietsch, History of Banach Spaces and Linear Operators, Birkhäuser,
Boston, 2007.

I. Gelfand, G. Shilov, and N. Vilenkin, Generalized Functions, Vols. 1–5,
Academic Press, New York, 1964.

K. Maurin, Generalized Eigenfunction Expansions and Unitary Represen-
tations of Topological Groups, Polish Scientific Publishers, Warsaw, 1968.

K. Maurin, Methods of Hilbert Spaces, Polish Scientific Publishers, War-
saw, 1972.

The theory of nuclear spaces was created by Grothendieck in the 1950s. In the
1955s, Grothendieck left analysis, and he moved to algebra and geometry. For his
seminal contributions to algebraic geometry, homological algebra, and functional
analysis, Alexandre Grothendieck (born 1928 in Berlin) was awarded the Fields
medal in 1966. His childhood and youth was overshadowed by German fascism. His
father died in the German concentration camp Auschwitz in 1942. We refer to:
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A. Grothendieck, Récoltes et Semailles: réflexions et témoignage sur un
passé de mathématicien, 1986 (ca. 1000 pages) (in French).(Reaping and
Sowing: the life of a mathematician – reflections and bearing witness).
Internet: http://www.fermentmagazine.org/rands/recoltes1.html
Translations into English, Russian, and Spanish are ongoing.

P. Cartier, A mad day’s work: from Grothendieck to Connes and Kontse-
vich. The evolution of concepts of space and symmetry. Bull. Amer. Math.
Soc. 38(4) (2001), 389–408.

W. Scharlau, Who is Alexander Grothendieck? Part I, 2007 (in German).
Internet: http://www.Scharlau-online.de/DOKS/ag

7.12.5 The Formal Weyl Calculus

Our goal is to extend the relation between polynomial symbols a = a(q, p) and
Weyl operators A(a) to more general symbols a. In order to motivate the rigorous
approach to be considered in Sect. 7.12.6, let us start with purely formal arguments
used by physicists. The key formulas read as follows.

(i) Superposition: For the symbol

a(q, p) =
1

2π�

Z

R2
ei(xq+yp)/� â(x, y)dxdy, q, p ∈ R,

the Weyl operator is given by

A(a) :=
1

2π�

Z

R2
ei(xQ+yP )/� â(x, y)dxdy. (7.250)

Here, â = â(x, y) is the (rescaled) Fourier transform of a = (q, p).
(ii) The kernel formula: We have

(Aψ)(x) =

Z

R

A(x, y)ψ(y)dy, x ∈ R

with the formal kernel

A(x, y) =
1

2π�

Z

R

eip(x−y)/� a
“x + y

2
, p
”

dp, x, y ∈ R. (7.251)

The inverse Fourier transformation yields

a(q, p) =

Z

R

eirp/�A(q − 1
2
r, q + 1

2
r)dr, q, p ∈ R. (7.252)

(iii) Formal self-adjointness: For the formally adjoint operator of the Weyl operator
A(a) on the Hilbert space L2(R), we get

A(a)† = A(a†).

In particular, if the function a is real-valued, then the corresponding Weyl
operator A(a) is formally self-adjoint on the Hilbert space L2(R).
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(iv) The composition formula: If the symbols a = a(q, p) and b = b(q, p) correspond
to the Weyl operators A(a) and A(b), then the operator product is given by

A(a)A(b) = A(a ∗ b)

with the star product

(a ∗ b)(q, p) :=
1

π2�2

Z

R4
e2� i/� a(q1, p1)b(q2, p2) dq1dp1dq2dp2

for all q, p ∈ R. Here, the function � = �(q, p, q1, p1, q2, p2) is defined by

� :=

˛

˛

˛

˛

˛

˛

˛

q p 1

q1 p1 1

q2 p2 1

˛

˛

˛

˛

˛

˛

˛

= q(p1 − p2) + p(q2 − q1) + (q1p2 − p1q2).

If b̂ denotes the (rescaled) Fourier transform of b, that is,

b̂(ξ, η) =
1

2π�

Z

R2
e−i(qξ+pη)/� b(q, p) dqdp, (7.253)

then

(a ∗ b)(q, p) =
1

2π�

Z

R2
ei(qξ+pη)/� a

„

q − η

2
, p +

ξ

2

«

b̂(ξ, η) dξdη.

As we will show below by using the Fourier transform together with the Taylor
expansion, this implies

(a ∗ b)(q, p) = a

„

q +
i�

2

∂

∂p2
, p− i�

2

∂

∂q2

«

b(q2, p2)|q2=q,p2=p.

Here, we have to assume that a is a polynomial (or a formal power series
expansions with respect to q and p). Finally, note that the star product a ∗ b
coincides with the formal Moyal star product, that is,

a ∗ b =

∞
X

m,n=0

„

i�

2

«m+n
(−1)m

m!n!

∂m+na

∂pm∂qn

∂m+nb

∂pn∂qm
. (7.254)

Let us motivate this in a formal manner. To simplify notation, we set � := 1.
Ad (i) See formula (7.241) on page 599.
Ad (ii). (I) Commutation relation. It follows from QP − PQ = iI that

QnP − PQn = inQn−1, n = 1, 2, . . .

by induction. If F (Q) = a0I + a1Q + a2Q
2 + . . . , then we formally get

F (Q)P − PF (Q) = iF ′(Q).

In particular, e−itrQP − P e−itrQ = tr · e−itrQ for all t, r ∈ R.
(II) Let us prove the key relation

eit(rQ+sP ) = eit2rs/2 · eitrQeitsP , r, s ∈ R. (7.255)



604 7. Quantization of the Harmonic Oscillator

To this end, we set U(t) := e−itsP e−itrQeit(rQ+sP ) for all t ∈ R. Differentiating with
respect to time t and using (I), we obtain

U ′(t) = −ise−itsP
“

P e−itrQ − e−itrQP
”

eit(rQ+sP ) = itrsU(t).

Since U(0) = I, we get U(t) = eit2rs/2I. This implies (7.255).
(III) Setting t = 1, we obtain

ei(rQ+sP ) = eirs/2 · eirQeisP , r, s ∈ R.

Recall that iPψ = ψ′. By Taylor expansion,

(eisPψ)(x) = ψ(x) + sψ′(x) + s2

2!
ψ′′(x) + . . . = ψ(x + s).

Similarly,

(eirQψ)(x) = ψ(x) + irxψ(x) +
(irx)2

2!
ψ(x) + . . . = eirxψ(x).

Hence (ei(rQ+sP )ψ)(x) = eirs/2eirxψ(x + s) for all x ∈ R.
(IV) We briefly write A instead of A(a). By (7.250),

(Aψ)(x) =
1

2π

Z

R2
eirxeirs/2ψ(x + s) â(r, s)drds.

Inserting â(r, s) = 1
2π

R

R2 e−i(rq+sp) a(q, p)dqdp, we get

(Aψ)(x) =
1

(2π)2

Z

R2
eir(x−q+

1
2

s)e−isp a(q, p)ψ(x + s)drdsdqdp.

Since
R

R
eir(x−q+

1
2

s)dr = 2πδ(x− q + 1
2
s), we obtain

(Aψ)(x) =
1

2π

Z

R2
e−isp a(x + 1

2
s, p)ψ(x + s)dpds.

Finally, the substitution y = x + s yields the desired result

(Aψ)(x) =
1

2π

Z

R2
ei(x−y)p a

“x + y

2
, p
”

ψ(y)dpdy.

Ad (iii). By (ii), the operator A(a†) has the kernel

B(x, y) =
1

2π

Z

R

eip(x−y)/� a
“x + y

2
, p
”†

dp, x, y ∈ R.

Again by (ii), this is equal to A(y, x)†. Hence A(a†) = A(a)†.
Ad (iv). (I) The kernel C of the operator product C := A(a)A(b) is given by

C(x, y) =

Z

R

A(x, z)B(z, y)dz.

By (ii), we have the following relations between the symbols a, b and the kernels
A,B, respectively:
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A(x, z) =
1

2π

Z

R

eip1(x−z) a
“x + z

2
, p1

”

dp1,

B(z, y) =
1

2π

Z

R

eip2(z−y) a
“z + y

2
, p2

”

dp2.

Hence

C(x, y) =
1

4π2

Z

R3
eip1(x−z)eip2(z−y)a

“x + z

2
, p1

”

b
“z + y

2
, p2

”

dp1dp2dz.

Let c be the symbol of the operator C. Again by (ii), after the rescaling η = 1
2
r, we

get

c(q, p) = 2

Z

R

e2ipη C(q − η, q + η)dη.

Therefore,

c(q, p) =
1

2π2

Z

R4
eiσ a

“q + z − η

2
, p1

”

b
“q + z + η

2
, p2

”

dp1dp2dzdη

with σ := (q − z − η)p1 + (z − q − η)p2 + 2pη. Using the substitution

q1 = 1
2
(q + z − η), q2 = 1

2
(q + z + η)

and setting � := (q − q2)p1 + (q1 − q)p2 + (q2 − q1)p, we obtain

c(q, p) =
1

π2

Z

R4
e2i� a(q1, p1)b(q2, p2)dp1dp2dq1dq2. (7.256)

(II) Moyal product. Using the substitution q1 = q − 1
2
η, p1 = p + 1

2
ξ, we get

c(q, p) =
1

4π2

Z

R4
ei(q−q2)ξei(p−p2)η a

„

q − η

2
, p +

ξ

2

«

b (q2, p2) dq2dp2dξdη.

If b̂ denotes the (rescaled) Fourier transform (7.253) of the function b, then

c(q, p) =
1

2π

Z

R2
ei(qξ+pη) a

„

q − η

2
, p +

ξ

2

«

b̂(ξ, η) dξdη. (7.257)

Suppose now that the symbol a is a polynomial (or a formal power series ex-
pansion). By Fourier transform, we get the formal expression

c(q, p) = a

„

q +
i

2

∂

∂p2
, p− i

2

∂

∂q2

«

b(q2, p2)|q2=q,p2=p. (7.258)

Finally, using Taylor expansion, we obtain

c(q, p) =

∞
X

m,n=0

„

i

2

«m+n
(−1)m

m!n!

∂m+na

∂pm∂qn

∂m+nb

∂pn∂qm
. (7.259)

(III) Motivation of (7.258). First let a(q, p) := q. It follows from

b(q2, p2) =
1

2π

Z

R2
ei(q2ξ+p2η) b̂(ξ, η) dξdη

that
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„

q +
i

2

∂

∂p2

«

b(q2, p2) =
1

2π

Z

R2
ei(q2ξ+p2η)

“

q − η

2

”

b̂(ξ, η) dξdη.

Setting q2 = q and p2 = p and using (7.257), we obtain (7.258).
Similarly, if a(q, p) := p, then

„

p− i

2

∂

∂q2

«

b(q2, p2) =
1

2π

Z

R2
ei(q2ξ+p2η)

„

p +
ξ

2

«

b̂(ξ, η) dξdη.

Again this yields (7.258).
(IV) Motivation of (7.259). This follows from

a(q + α, p + β) =
∞
X

m,n=0

∂m+na(q, p)

∂pm∂qn
· β

mαn

m!n!
,

by setting β := − i
2

∂
∂q

and α := i
2

∂
∂p

. �

7.12.6 The Rigorous Weyl Calculus

It is possible to translate the formal Weyl calculus into a rigorous mathematical
approach by using the language of generalized functions. It is our goal to assign to
a general class of symbols Weyl operators in such a way that

• the theory of Weyl polynomials from Sect. 7.12.3 is generalized and
• the formal Weyl calculus from Sect. 7.12.5 gets a rigorous mathematical basis.

The proofs of the following statements can be found in the monographs by L.
Hörmander, The Analysis of Linear Partial Differential Operators, Vol. 3, Springer,
New York, 1983, and by M. de Gosson, Symplectic Geometry and Quantum Me-
chanics, Birkhäuser, Basel, 2006.

Smooth, rapidly decreasing symbols. Let a, b ∈ S(R). The functions a and
b are called symbols. Then the following hold.

(i) Weyl operator: For given symbol a, define the Weyl operator

(A(a)ψ)(x) :=

Z

R

A(x, y)ψ(y)dy, x ∈ R

for all ψ ∈ S(R) with the kernel

A(x, y) :=
1

2π�

Z

R

eip(x−y)/� a
“x + y

2
, p
”

dp, x, y ∈ R.

Then A ∈ S(R2), and the operator A(a) : S(R) → S(R) is linear and sequen-
tially continuous.

(ii) Bilinear form: Let χ, ψ ∈ S(R2). Then

(A(a)ψ)(χ) =

Z

R2
A(x, y)ϕ(x)ψ(y)dy, x, y ∈ R.

Hence

(A(a)ψ)(χ) =
1

2π�

Z

R2
eip(x−y)/� a

“x + y

2
, p
”

χ(x)ψ(y)dxdydp.

Using the substitution y = 2q − x, x = x, we get
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(A(a)ψ)(χ) =
1

π�

Z

R2
e2ip(x−q)/� a (q, p)χ(x)ψ(2q − x)dxdqdp.

This implies

(A(a)ψ)(χ) =

Z

R2
a(q, p)�χ,ψ(q, p)dqdp (7.260)

with �χ,ψ(q, p) := 1
π�

R

R
e2ip(x−q)/�χ(x)ψ(2q − x)dx.

(ii) Formal self-adjointnes: We get

A(a)† = A(a†).

This means that 〈A(a†)ϕ|ψ〉 = 〈ϕ|A(a)ψ〉 for all ψ,ϕ ∈ S(R), where 〈.|.〉 is the
inner product on the Hilbert space L2(R).

(iii) The composition formula and the rigorous Moyal star product: For the oper-
ator product, we have

A(a)A(b) = A(a ∗ b)
together with the rigorous Moyal star product120

(a ∗ b)(q, p) :=
1

π2�2

Z

R4
e2�i/� a(q1, p1) · b(q2, p2) dq1dp1dq2dp2

for all q, p ∈ R. Here, we use the determinant

� :=

˛

˛

˛

˛

˛

˛

˛

q p 1

q1 p1 1

q2 p2 1

˛

˛

˛

˛

˛

˛

˛

= q(p1 − p2) + p(q2 − q1) + (q1p2 − p1q2). (7.261)

This coincides with (7.256).
(iv) Associativity of the Moyal star product: For all a, b, c ∈ S(R), we have

(a ∗ b) ∗ c = a ∗ (b ∗ c).

Tempered distributions as symbols. Let a ∈ S ′(R2). Motivated by (7.260),
define

(A(a)ψ)(χ) := a(�χ,ψ) χ, ψ ∈ S(R).

Then A(a)ψ ∈ S ′(R), and the linear operator A(a) : S(R) → S ′(R) is sequen-
tially continuous. In particular, if a = a(q, p) is a polynomial with respect to
the variables q and p, then the corresponding tempered distribution is given by
a(�) =

R

R2 a(q, p)�(q, p)dqdp for all � ∈ S(R2).

120 In the general case, the rigorous Moyal star product (7.261) differs from the
formal Moyal star product (7.254). This is discussed in G. Piacitelli, Nonlocal
theories: new rules for old diagrams, 2004. Internet: arXiv: hep-th/0403055
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7.13 Two Magic Formulas

According to one view, the Feynman path integral is simple a suitable
hierolglyphic shorthand for an algorithm of perturbation theory. On the
other hand, the traditional (Wiener) view of the path integral as an inte-
gral with respect to a measure in the function space runs into practically
insurmountable difficulties here and is thus also imperfect. Our own view
is that the Feynman path integral should be understood as the limit of
finite-dimensional approximations. But which approximations? The path
integral proves to be very sensitive to the choice of its approximations,
the resulting ambiguity being of the same nature as the non-uniqueness of
quantization.121

Feliks Berezin and Mikhail Shubin, 1991

It is our goal to use the Weyl calculus in order to get the two magic formulas (7.274)
on page 614 and (7.277) on page 615 for the kernel of the Feynman propagator
operator and the kernel of the Heisenberg scattering operator, respectively. It turns
out that the Weyl calculus relates the Feynman propagator kernel to the Feynman
path integral in a quite natural manner.

Basic ideas. Consider the motion q = q(t) of a classical particle on the real
line with the equation of motion

ṗ(t) = −aq(q(t), p(t)), q̇(t) = ap(q(t), p(t)), t ∈ R.

Here, the given classical Hamiltonian a : R
2 → R is assumed to be smooth. Now we

pass to the corresponding quantum particle. Then we have to study the Schrödinger
equation

i�ψt = Hψ, ψ(t0) = ψ0 (7.262)

for the wave function ψ = ψ(x, t) of the quantum particle on the Hilbert space
L2(R).

In terms of Weyl quantization, the operator H = A(a) is the Weyl operator
related to the symbol a = a(q, p). This operator is called the Hamiltonian (or
energy operator) of the quantum particle. It is our goal to study both

• the full dynamics of the quantum particle (i.e., the Feynman propagator operator

P (t, t0) := e−i(t−t0)H/�), and
• scattering processes for the quantum particle (i.e., the Heisenberg scattering

operator S(t, t0) := eitHfree/�e−i(t−t0)H/�e−it0Hfree/�). Here, we assume that the
Hamiltonian H is a perturbation of the free Hamiltonian Hfree. Explicitly,

H = Hfree + κU. (7.263)

A scattering process is characterized by the property that the motion of the
quantum particle is free in the remote past (t0 → −∞) and in the far future
(t → +∞). The free Hamiltonian Hfree = P 2/2m is the Weyl operator to the
symbol afree(p) := p2/2m, and the operator U is the Weyl operator to the symbol
q �→ U(q). The real number κ is called coupling constant. Summarizing, the
Hamiltonian operator H has the symbol

a(q, p) =
p2

2m
+ κU(q).

121 F. Berezin and M. Shubin, The Schrödinger Equation, Kluwer, Dordrecht, 1991
(reprinted with permission).
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We will proceed in the following manner.

(a) Evolution operators: We start with time-dependent operators in the Hilbert
space L2(R) (i.e., the Feynman propagator and the Heisenberg scattering op-
erator).

(b) Kernels: The evolution operators can be described by kernels depending on
space and time coordinates.

(c) Causality: The kernel on a finite time interval is the superposition of kernels
on small time intervals.

(d) Reduction to operator symbols: The kernel of a small time interval can be
computed by using the kernel formula of the Weyl calculus, which depends on
the symbol of the evolution operator.

(e) Limit: If the small time interval goes to zero, then the kernel of the evolution
operator can be expressed by a Feynman path integral, which depends on the
symbol a of the Hamiltonian operator.

This way, we obtain an elegant relation between classical mechanics described by
the classical Hamiltonian a and

• the kernel K of the Feynman propagator operator (called the Feynman propaga-
tor kernel), and

• the kernel S of the Heisenberg scattering operator (called the scattering kernel).

In what follows, we will only use formal arguments. Let us first discuss the physical
meaning of both the Feynman propagator operator and the Heisenberg scattering
operator.

The Feynman propagator operator. The operator

P (t, t0) := e−i(t−t0)H/� , t ≥ t0

is called the Feynman propagator. For given initial state ψ0 ∈ L2(R), the state

ψ(t) = P (t, t0)ψ0

is a solution of the Schrödinger equation (7.262). From the physical point of view,
the propagator P (t, t0) sends the particle state ψ0 at the initial time t0 to the
particle state ψ(t) at time t. Therefore, the propagator describes the dynamics of
the quantum particle. Let

−∞ < t0 < t1 < · · · < tN−1 < tN <∞.

Then the addition theorem for the exponential function tells us that we have the
following operator product

P (tN , t0) = P (tN , tN−1) · · ·P (t2, t1)P (t1, t0). (7.264)

This product property reflects causality. To understand this, note that it follows
from ψ(t1) = P (t1, t0)ψ0 and ψ(t2) = P (t2, t1)ψ(t1) that

ψ(t2) = P (t2, t1)P (t1, t0)ψ0 = P (t2, t0)ψ0.

The propagator t �→ P (t, t0) satisfies the following equation

i�Pt(t, t0) = HP (t, t0), t ≥ t0, P (t0, t0) = I, (7.265)

which is called the propagator differential equation.
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The Heisenberg scattering operator. Suppose that the Hamiltonian oper-
ator H is the perturbation of the free Hamiltonian Hfree according to (7.263). Let
us investigate scattering processes. The operator

S(t, t0) := eitHfree/�P (t, t0)e
−it0Hfree/� , t ≥ t0

with P (t, t0) := e−i(t−t0)H/� is called the Heisenberg scattering operator (or the
S-matrix operator). In order to understand the physical meaning of the scattering
operator, consider the free motion

ψfree,in(t) := e−itHfree/�ϕin, t ∈ R

with the initial state ϕin at time t = 0, and

ψfree,out(t) := e−itHfree/�ϕout, t ∈ R

with the initial state ϕout at time t = 0. The transition amplitude

τ := 〈ψfree,out(t)|P (t, t0)ψfree,in(t0)〉, t > t0

is equal to

τ = 〈ϕout|
“

e−itHfree/�

”†
P (t, t0)e

−it0Hfree/�ϕin〉 = 〈ϕout|S(t, t0)ϕin〉.

The real number

|τ |2 = |〈ϕout|S(t, t0)ϕin〉|2, t > t0 (7.266)

is the transition probability from the incoming free state ψfree,in(t0) at time t0 to
the outgoing free state ψfree,out(t) at time t.

The transition probability (7.266)indexscattering matrix (S-matrix)!transition
probability is the key for computing cross sections of scattering processes
in particle accelerators.

We also define

〈ϕout|Sϕin〉 := lim
t→+∞

lim
t0→−∞

= 〈ϕout|S(t, t0)ϕin〉

if this limit exists. Here, the complex number 〈ϕout|Sϕin〉 is called an S-matrix
element. Parallel to (7.264), we get the causal product relation

S(tN , t0) = S(tN , tN−1) · · · S(t2, t1)S(t1, t0). (7.267)

Furthermore, we have the differential equation

i�St(t, t0) = κU(t)S(t, t0), t ≥ t0, S(t0, t0) = I (7.268)

for the scattering operator. Here, we introduce the transformed perturbation

U(t) := eitHfree/�Ue−it0Hfree/� .

Let us motivate (7.268). To simplify notation, choose � := 1. Then
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iSt(t, t0) = −eitHfreeHfreeP (t, t0)e
−it0Hfree + ieitHfreePt(t, t0)e

−it0Hfree ,

which is equal to

eitHfree(H −Hfree)P (t, t0)e
−it0Hfree = κeitHfreeUe−it0HfreeS(t, t0).

Dyson’s magic S-matrix formula. Let us pass from differential equations to
integral equations. From the differential equation (7.268) for the scattering operator,
we get the equivalent Volterra integral equation

S(t, t0) = I − iκ

�

Z t

t0

U(τ)S(τ, t0)dτ, t ≥ t0. (7.269)

We have shown in Sect. 7.17.4 of Vol. I that the integral equation (7.269) has the
unique solution

S(t, t0) = T e
− iκ

�

R t
t0

U(τ)dτ
, t ≥ t0 (7.270)

where T is the chronological operator (see page 382 of Vol. I). This is Dyson’s magic
S-matrix formula which plays the decisive role in the operator-theoretic approach to
quantum field theory. Comparing the propagator equation (7.265) with the equation
(7.268) for the scattering operator, we get the following:

The scattering operator S(t, t0) coincides with the Feynman propagator
P(t, t0) in the Dirac interaction picture (with respect to the transformed
perturbation κU(t) of the Hamiltonian operator).122

This fact is of fundamental importance for understanding the S-matrix theory in
quantum field theory.

The integral equation for states. For given ϕin ∈ L2(R), introduce the
function ϕ(t) := S(t, t0)ϕin. By (7.269), we obtain the integral equation

ϕ(t) = ϕin −
iκ

�

Z t

t0

U(τ)ϕ(τ)dτ, t ≥ t0.

Let ϕ = ϕ(t) be a solution of this integral equation. Set ψ(t) := e−itHfree/�ϕ(t) for
all t ≥ t0. Then

ψ(t) = P (t, t0)e
−it0Hfree/�ϕin, t ≥ t0.

By the propagator equation (7.265), this is a solution of the Schrödinger equation

(7.262) with the initial condition ψ(t0) = ψfree,in = e−it0Hfree/�ϕin.

7.13.1 The Formal Feynman Path Integral for the Propagator
Kernel

The dynamics of a quantum system is described by a time-dependent op-
erator called the Feynman propagator. The kernel of the propagator can
be formally represented by a Feynman path integral which depends on the
classical Hamiltonian (i.e., the symbol of the Hamiltonian operator). This
is the first magic formula in quantum physics.

Folklore

122 The Schrödinger picture, the Heisenberg picture, and the Dirac (or interaction)
picture are thoroughly discussed on page 393 of Vol. I.
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Euler’s polygon method. Set tk := t0 + kΔt, k = 1, . . . , N and tN := t. This
way, we get the decomposition

t0 < t1 < . . . < tN−1 < tN

of the time interval [t0, t]. Let b : R → R be a given smooth function. We want to
solve the ordinary differential equation

ψ′(t) = b(t)ψ(t), t ≥ t0, ψ(t0) = ψ0.

We are looking for a smooth solution ψ : R→ R. This uniquely determined solution
is denoted by ψ(t) = P (t, t0)ψ0. Then

P (t, t0)ψ0 = P (tN , tN−1) · · ·P (t2, t1)P (t1, t0)ψ0,

and Pt(t, t0)ψ0 = b(t)P (t, t0)ψ0 for all ψ0 ∈ R. Hence Pt(t, t) = b(t). By Taylor
expansion, linearization of the propagator yields

P (tk+1, tk) = P (tk, tk) + Δt · Pt(tk, tk) + O((Δt)2), Δt→ 0

with P (tk, tk) = 1 and Pt(tk, tk) = b(tk). Replacing the propagator by its lineariza-
tion, we obtain the approximate solution

ψΔt(t) = (1 + b(tN−1Δt)) · · · (1 + b(t1)Δt)(1 + b(t0)Δt)ψ0.

A standard result in numerical analysis tells us that this approximation method is
convergent, that is,

lim
Δt→0

ψΔt(t) = ψ(t), t ≥ t0.

For example, fix the real number B, and set b(t) := B for all t. Then we get the
well-known classical formula for Euler’s exponential function:

lim
Δt→0

(1 + BΔt)N ψ0 = eB(t−t0)ψ0, (7.271)

which is valid for all times t ∈ R and all ψ0 ∈ R.
A general approximation principle for the propagators of time-

depending processes. The argument above can be generalized to fairly general
time-depending processes. For example, the limit (7.271) exists on a Banach space X
for all ψ0 ∈ X if B : X → X is a linear bounded operator. More general functional-
analytic results can be found in P. Lax, Functional Analysis, Sect. 34.3, Wiley, New
York, 2002.123 The situation is more subtle if B is an unbounded operator, as in
quantum mechanics. In what follows, we will only use formal arguments.

From the propagator to the kernel. Let K be the kernel of the Feynman
propagator operator P (t, t0) = e−i(t−t0)H/� . Then the unique solution

ψ(t) = P (t, t0)ψ0

of the Schrödinger equation (7.262) on page 608 can be represented by the integral
formula

ψ(x, t) =

Z

R

K(x, t; y, t0)ψ0(y)dy, x ∈ R, t ≥ t0.

It remains to compute the propagator kernel K. Our goal is the key formula (7.274)
below. The propagator possesses the linearization

123 The proof uses the uniform boundedness theorem in functional analysis.
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P (tk+1, tk) = I − iΔt

�
H + O((Δt))2, Δt→ 0.

We set PΔt(tk+1, tk) := I− iΔt
�
H. It follows from the causal product formula (7.264)

on page 609 together with the approximation principle above that

P (t, t0) = lim
Δt→0

PΔt(tN , tN−1) · · ·PΔt(t1, t0).

Thus, we obtain

P (t, t0) = lim
Δt→0

„

I − iΔt

�
H

«N

.

The kernel product formula (7.245) on page 600 tells us that

K(x, t;x0, t0) =

Z

RN−1
K(x, t; qN−1, tN−1)× · · ·

×K(q2, t2; q1, t1)K(q1, t1;x0, t0)dqN−1 · · · dq2dq1. (7.272)

From the kernel to the symbol. The Hamiltonian operator H has the symbol
a(q, p). Thus, the operator PΔt(tk+1, tk) has the symbol 1− iΔt

�
a(q, p). By the kernel

formula (7.251) of the Weyl calculus on page 602, we obtain

KΔt(x, t0 + Δt; y, t0) =

Z

R

eip(x−y)/�

»

1− iΔt

�
a
“x + y

2
, p
”

–

dp

h
.

Up to terms of order O(Δt)2) as Δt→ 0, this yields

KΔt(x, t0 + Δt; y, t0) =

Z

R

eip(x−y)/� exp

»

− iΔt

�
a
“x + y

2
, p
”

–

dp

h
.

Since tk+1 = tk + Δt, we also get the approximation KΔt(qk+1, tk+1; qk, tk) being
equal to

Z

R

eipk+1(qk+1−qk)/� exp

»

− iΔt

�
a
“qk+1 + qk

2
, pk+1

”

–

dpk+1

h

where k = 0, 1, . . . , N − 1.
The Feynman path integral. Using (7.272) and replacing K by KΔ , we

obtain the approximation

KΔt(x, t; y, t0) =

Z

R2N−1
eiSN /� dpN

h

N−1
Y

k=1

dqkdpk

h

with

SN :=
h

pN
qN − qN−1

Δt
+ . . . + p1

q1 − q0
Δt

−a( 1
2
(qN + qN−1), pN ) + . . . + a( 1

2
(q1 + q0), p1)

i

·Δt.

Since the mid-point 1
2
(qk + qk−1) of the interval [qk, qk−1] appears, we call this the

mid-point approximation.
Now we pass over to the limit Δt→ 0 (i.e., N →∞) in a formal way. Let S[q, p]

denote the formal limit limN→∞ SN . Then
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S[q, p] =

Z t

t0

[p(τ)q̇(τ)− a(q(τ), p(τ))]dτ. (7.273)

This is the action along the classical path q = q(τ), p = p(τ) in the phase space on
the time interval t0 ≤ τ ≤ t. Furthermore, we write the limit limΔt→0KΔt(x, t; y, t0)
in the following symbolic form:124

K(x, t; y, t0) =

Z

C{t0,t}
eiS[q,p]/� · dp(t0)

h

Y

t0<τ≤t

dq(τ)dp(τ)

h
(7.274)

for all points x, y ∈ R and all time intervals [t0, t]. Here, we formally sum over
all continuous paths q = q(τ), p = p(τ), t0 ≤ τ ≤ t, which satisfy the boundary
condition

q(t0) = y, q(t) = x.

The magic formula (7.274) relates classical mechanics to quantum mechanics by
means of the classical action.

The crux with differentiable paths. The reader should note that the action
S[q, p] from (7.273) only makes sense if the path q = q(t), p = p(t) is sufficiently
smooth. However, our formal argument above also takes highly irregular paths into
account, which are not differentiable at all. Such irregular paths are typical for
the Brownian motion of tiny particles immersed in a liquid. In fact, in Wiener’s
theory of Brownian motion, the probability is equal to one for the realization of
continuous, but not differentiable paths (see Sect. 7.11.4). Then the action S[q, p]
does not make any sense, in terms of classical analysis. This indicates that our
formal approach is not well defined. Fortunately enough, it turns out that the main
contribution to the Feynman path integral (7.274) comes from the paths which
satisfy the classical equation of motion in mechanics. This is the main idea behind
the WKB approximation method (see Sect. 7.10).

The symbol of the Feynman propagator. Let symP (q, p ; t, t0) denote the
symbol of the propagator operator P (t, t0). By the kernel formula (7.252) of the
Weyl calculus on page 602, we get

symP (q, p ; t, t0) =

Z

R

eirp/� K(q − 1
2
r, q + 1

2
r)dr (7.275)

for all q, p ∈ R and all t ≥ t0. Recall that the propagator kernel K(x, t; y, t0) can be
represented by the Feynman path integral (7.274) above.

7.13.2 The Relation between the Scattering Kernel and the
Propagator Kernel

In perturbation theory, the scattering of free quantum particles under the
action of a force is described by the Heisenberg scattering operator. The
kernel of the scattering operator can be represented by the propagator
kernel. This is the second magic formula in quantum physics.

Folklore

Let S be the kernel of the propagator operator S(t, t0). This means that the function
ϕ(t) := S(t, t0)ϕin can be represented by the integral formula

124 We also briefly write K(x, t; y, t0) =
R

C{t0,t} eiS[q,p]/� DqDp.
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ϕ(x, t) =

Z

R

S(x, t; y, t0)ϕin(y)dy, x ∈ R, t ≥ t0.

This yields the transition amplitude

〈ϕout|S(t, t0)ϕin〉 =

Z

R2
ϕout(x)S(x, t; y, t0)ϕin(y)dxdy,

which generates the crucial transition probability |〈ϕout|S(t, t0)ϕin〉|2 from (7.266).
It remains to compute the kernel S(x, t; y, t0). Our goal is the key formula (7.276)
below which relates the scattering kernel to the propagator kernel computed in the
preceding section. The point is that there exists a simple relation between the sym-
bol of the scattering operator and the symbol of the Feynman propagator operator.
By the Weyl calculus, this implies the desired relation between the scattering kernel
S(x, t; y, t0) and the Feynman propagator kernel K(x, t; y, t0).

The symbol of the scattering operator. Let symS(q, p ; t, t0) denote the
symbol of the scattering operator

S(t, t0) := eitHfree/�P (t, t0)e
−it0Hfree/� , t ≥ t0.

By the Weyl calculus, we have to replace this operator product by the Moyal star

product for the corresponding symbols. Note that e−itp2/2m� is the symbol of the
free propagator e−itHfree/� . Hence

symS(q, p ; t, t0) = eitp2/2m� ∗ symP (q, p ; t, t0) ∗ e−it0p2/2m� .

Using formula (7.261) for the Moyal star product on page 607 together with the
associativity of the Moyal star product, we obtain the key relation for the symbols:

symS(q, p ; t, t0) =

Z

R2
A(q, p ; t, t0; q1, p1) symP (q1, p ; t, t0) dq1dp1.

(7.276)

Here, the kernel A(q, p ; t, t0; q1, p1) is given by the following formula:

1

π�
exp

»

it(p1 − 2p)2

2m�
− it0p

2
1

2m�
+

2i(q − q1)(p− p1)

�

–

.

The explicit computation of (7.276) will be performed in Problem 7.32. According
to (7.275), the symbol symP is given by a Feynman path integral which depends
on the classical action.

The kernel of the scattering operator. Finally, it follows from the kernel
formula (7.251) of the Weyl calculus on page 602 that

S(x, t; y, t0) =
1

2π�

Z

R

eip(x−y)/� symS

“x + y

2
, p
”

dp (7.277)

for all x, y ∈ R and all t ≥ t0. This is the magic formula for the kernel of the
scattering operator.
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7.14 The Poincaré–Wirtinger Calculus

The Poincaré–Wirtinger calculus reformulates real analysis in terms of the
language of complex analysis. This is very useful for modern quantum
theory. Folklore

Let f : R
2 → C be a smooth complex-valued function on the real plane R

2. We set

z := x + iy, z̄ := x− iy,

and we write f(x, y) := u(x, y) + iv(x, y) where u : R
2 → R is the real part and

v : R
2 → R is the imaginary part of f . The main idea of the Poincaré–Wirtinger

calculus is to introduce the following two differential operators:

∂

∂z
:=

1

2

„

∂

∂x
− i

∂

∂y

«

,
∂

∂z̄
:=

1

2

„

∂

∂x
+ i

∂

∂y

«

. (7.278)

This yields

∂f(x, y)

∂z
=

1

2
(ux(x, y) + vy(x, y)) +

i

2
(vx(x, y)− uy(x, y)),

∂f(x, y)

∂z̄
=

1

2
(ux(x, y)− vy(x, y)) +

i

2
(vx(x, y) + uy(x, y)).

Therefore, the following two conditions are equivalent:

(i) ∂f
∂z̄

= 0 on R
2.

(ii) ux = vy and uy = −vx on R
2 (Cauchy–Riemann differential equations).

In this case, we say that the function f is holomorphic on R
2. In terms of complex

function theory, this means that the function z �→ f(x, y) is holomorphic on the
complex plane C, in the classical sense. Similarly, the following two conditions are
equivalent:

(i) ∂f
∂z

= 0 on R
2.

(ii) ux = −vy and uy = vx on R
2 (anti-Cauchy–Riemann differential equations).

In this case, we say that the function f is anti-holomorphic on R
2. This is equivalent

to the fact that the function z �→ f(x, y)† is holomorphic on C.
Example. (a) For f(x, y) := x2 + y2, we get

∂f(x, y)

∂z
= x− iy,

∂f(x, y)

∂z̄
= x + iy.

The function f is neither holomorphic nor anti-holomorphic on R
2.

(b) For f(x, y) := (x + iy)2, we get

∂f(x, y)

∂z
= 2(x + iy),

∂f(x, y)

∂z̄
= 0.

The function f is holomorphic on R
2.

(c) For f(x, y) := (x− iy)2, we get

∂f(x, y)

∂z̄
= 2(x− iy),

∂f(x, y)

∂z
= 0.

The function f is anti-holomorphic on R
2.
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Mnemonic elegance. The results (a)–(c) above can be reformulated as follows.
(a) For f(x, y) = x2 + y2 = zz̄, we get

∂f(x, y)

∂z
= z̄ = x− iy,

∂f(x, y)

∂z̄
= z = x + iy.

(b) For f(x, y) := (x + iy)2 = z2, we get

∂f(x, y)

∂z
= 2z = 2(x + iy),

∂f(x, y)

∂z̄
= 0.

(c) For f(x, y) := (x− iy)2 = z̄2, we get

∂f(x, y)

∂z̄
= 2z̄ = 2(x− iy),

∂f(x, y)

∂z
= 0.

These results are formally obtained by considering f as a function of the two inde-
pendent variables z and z̄ and by using formal partial differentiation with respect
to z and z̄.

For a general smooth function f : R
2 → C, we proceed as follows. Using the

representations x = (z + z̄)/2 and y = (z − z̄)/2i, we define

F (z, z̄) := f
“z + z̄

2
,
z − z̄

2i

”

. (7.279)

Considering formally the function F as a function of the independent variables z
and z̄, the chain rule tells us that

∂F (z, z̄)

∂z
=

1

2
fx

“z + z̄

2
,
z − z̄

2i

”

+
1

2i
fy

“z + z̄

2
,
z − z̄

2i

”

=
1

2
fx(x, y)− i

2
fy(x, y),

and
∂F (z, z̄)

∂z̄
=

1

2
fx(x, y) +

i

2
fy(x, y).

This coincides with definition (7.278). The following observation is useful.

• The function f is holomorphic on R
2 iff F is independent of z̄ and z �→ F (z) is

holomorphic on C
2. Then ∂f(x,y)

∂z
= F ′(z) for all z = x + iy on C.

• The function f is anti-holomorphic on R
2 iff F is independent of z and ζ �→ F (ζ)

is holomorphic on C
2. Then ∂f(x,y)

∂z̄
= F ′(z̄) for all z̄ = x − iy on the complex

plane C.

In later volumes, the Poincaré–Wirtinger calculus will play a crucial role in studying
the following subjects: Kähler geometry, conformal field theory, and string theory.

7.15 Bargmann’s Holomorphic Quantization

Our goal is to realize the commutation relation

a−a+ − a+a− = I (7.280)

together with (a−)† = a+ by elementary operators on a Hilbert space B(C) of
holomorphic functions. The precise formulation will be given in Theorem 7.58 below.
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In terms of physics, the operator a+ (resp. a−) is a creation (resp. annihilation)
operator.125

The Bargmann–Fock space B(C). We start with the inner product

〈F |G〉 :=
1

π

Z

R2
F (z)†G(z)e−zz†

dxdy. (7.281)

By definition, the space B(C) consists of all holomorphic functions F : C→ C with
〈F |F 〉 < ∞. This is a complex Hilbert space with respect to the inner product
(7.281). The set of polynomials z �→ F (z) is a dense subset of B(C). We define the
operators a± : D(a±)→ B(C) by setting

(a+F )(z) := zF (z) for all z ∈ C,

and

(a−F )(z) :=
d

dz
F (z) for all z ∈ C.

More precisely, the domain of definition D(a±) of the operator a± consists of all
functions F ∈ B(C) with a±F ∈ B(C). For example, this is satisfied for all polyno-
mials F . Setting F0(z) := 1 for all z ∈ C, we get 〈F0|F0〉 = 1 and

a−F0 = 0.

In terms of physics, the function F0 is called the ground state (or the vacuum state).
This state does not contain any particles.

Theorem 7.58 (i) For all polynomials F ∈ B(C), we get

(a−a+ − a+a−)F = F.

This is the precise formulation of the commutation relation (7.280) .
(ii) For all polynomials F,G ∈ B(C), we get

〈a−F |G〉 = 〈F |a+G〉.

This means that (a−)† = a+, in the sense of a formally adjoint operator.

Proof. Ad (i). Note that (a+a−F )(z) = zF ′(z) and

(a−a+F )(z) = (zF (z))′ = F (z) + zF ′(z).

Ad (ii). We will use the Poincaré–Wirtinger calculus introduced on page 616. Recall

that z̄ := z†. Since G is holomorphic, ∂G(z)
∂z̄

= 0. By the product rule,

∂

∂z̄

`

G(z)e−zz̄´ =
∂G(z)

∂z̄
e−zz̄ −G(z)ze−zz̄ = −G(z)ze−zz̄.

125 The proofs can be found in the classical paper by V. Bargmann, On a Hilbert
space of analytic functions and an associated integral transform, Commun. Pure
and Appl. Math. 14 (1961), 187–214. See also the last chapter of the monograph
by F. Berezin and M. Shubin, The Schrödinger Equation, Kluwer, Dordrecht,
1991.
The basic idea goes back to V. Fock, Generalizing and solving Dirac’s statistical
equation, Z. Phys. 49 (1928), 339–357 (in German).
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Hence

∂

∂z̄

“

F (z)†G(z)e−zz̄
”

=

„

∂

∂z̄
F (z)†

«

G(z)e−zz̄ − F (z)†G(z)ze−zz̄

=

„

∂

∂z
F (z)

«†
G(z)e−zz̄ − F (z)†(zG(z))e−zz̄.

Because of the polynomial growth of F and G at infinity, we get126

lim
R→∞

Z

x2+y2≤R2

∂

∂z̄

“

F (z)†G(z)e−zz̄
”

dxdy = 0.

This yields the claim. �

Orthonormal basis. The functions

Fn :=
(a+)nF0√

n!
, n = 0, 1, . . .

form an orthonormal basis of the Hilbert space B(C). Explicitly, Fn(z) = zn/
√
n!

for all z ∈ C. In terms of physics, Fn represents a (normalized) state of n particles.
Intuitively, this state is generated from the vacuum state F0 by n-fold application
of the creation operator a+ to F0.

Wick operators. Let αkn be complex numbers for k, n = 0, . . . ,m, where
m = 0, 1, . . . . For all polynomials z �→ F (z), define

AF :=
m
X

k,n=0

αkn(a+)k(a−)nF.

Note that the powers of the annihilation operator a− stand on the right. In particu-
lar, αkn(a+)k(a−)nF0 = 0 if n = 1, 2, . . .. The operators A are called Wick operators
on the Hilbert space B(C) (or normally ordered operators). The polynomial

symA(z, ζ) :=
m
X

k,n=0

αknz
kζn

with respect to the complex variables z and ζ is called the symbol of the Wick
operator A. As we will show later on, Wick operators play a crucial role for de-
scribing physical quantities in quantum field theory (e.g., collision processes) and
in quantum statistics (e.g., superfluidity and superconductivity).

The Bargmann–Fock space B(Cs). We want to apply the preceding con-
struction to s species of particles. To this end, we define 〈F |G〉 by

1

πs

Z

R2s

F (z1, . . . , zs)
†G(z1, . . . , zs)e

−
Ps

k=1 zkz
†
kdx1 · · · dxsdy1 · · · dys,

where zk := xk + iyk, and xk, yk ∈ R for all k = 1, . . . , s. By definition, the Fock–
Bargmann space B(Cs) consists of all holomorphic functions127

126 Note the following. Since ∂
∂z

= 1
2

“

∂
∂x
− i ∂

∂y

”

, the Gaussian integral theorem

transforms this integral into a boundary integral (over the sphere of radius R),
which goes to zero as R→∞.

127 This means that F : C
s → C is a power series expansion (with complex coeffi-

cients) which is absolutely convergent for all complex numbers z1, . . . , zs.
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F : C
s → C

with 〈F |F 〉 < ∞. The space B(Cs) is a complex Hilbert space equipped with the
inner product 〈F |G〉. The set of polynomials (z1, . . . , zs) �→ F (z1, . . . , zs) (with com-
plex coefficients) is a dense subset of B(Cs). Let k = 1, . . . , s. For all polynomials
F , define

(a+
k F )(z1, . . . , zs) := zkF (z1, . . . , zs), (a−k F )(z1, . . . , zs) :=

∂F (z1, . . . , zs)

∂zk
,

where z1, . . . , zs ∈ C. Then, for all polynomials F and all j, k = 1, . . . , s, we have
the commutation relations

(a−j a
+
k − a+

k a
−
j )F = δjkF

together with (a−j a
−
k − a−k a−j )F = (a+

j a
+
k − a+

k a
+
j )F = 0. We briefly write

[a−j , a+
k ]− = δjkI, [a−j , a−k ]− = [a+

j , a
+
k ]− = 0, j, k = 1, . . . , s.

Moreover, for all polynomials F,G, we have

〈a−k F |G〉 = 〈F |a+
k G〉, k = 1, . . . , s.

Hence (a−k )† = a+
k for k = 1, . . . , s in the sense of formal adjoint operators.

In the monograph by L. Faddeev and A. Slavnov, Gauge Fields, Benjamin,
Reading, Massachusetts, 1980, it is emphasized that the Feynman path integral
based on Bargmann quantization is very convenient for studying the quantization
of the Standard Model in particle physics (Faddev–Popov quantization of gauge
theories). We will investigate this in Vol. V.

Application to the quantized harmonic oscillator. We want to show that
the use of Bargmann’s holomorphic quantization allows us immediately to obtain
the energy spectrum of the quantized harmonic oscillator. Motivated by Sect. 7.3.1
on page 443, we use the Hamiltonian

H =
P 2

2m
+

mω2Q2

2

of the harmonic oscillator, and we set

Q :=
x0√

2
(a+ + a−), P :=

i�

x0

√
2
(a+ − a−)

with x0 :=
q

�

mω
. It follows from a−a+ − a+a− = I that QP − PQ = i�I and

H = �ω(a+a− + 1
2
).

Setting Fn(z) := zn, we get a+a−Fn = z d
dz
Fn = nFn. Therefore, introducing

En := �ω(n + 1
2
), we obtain

HFn = EnFn, n = 0, 1, . . .
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7.16 The Stone–Von Neumann Uniqueness Theorem

The name “Heisenberg commutation relation” is a bit of a misnomer; the
relations were in fact first formulated in their modern form not by Heisen-
berg (1925), but by Born and Jordan (1925) and by Dirac (1925) in the
one-dimensional case and in the “Dreimännerarbeit” (three-man work) by
Born, Heisenberg and Jordan (1926) and by Dirac (1926) in the multi-
dimensional case. However, it is true that they grew out of the original
ground-breaking work of Heisenberg (1925), though one would have to
examine Heisenberg’s paper very carefully to find anything remotely sug-
gesting the commutation relations.128

Jonathan Rosenberg, 2004

In this chapter, we have based quantum mechanics on the Born–Heisenberg–Jordan
commutation relation

QP − PQ = i�I. (7.282)

We want to show that, in an appropriate sense, the construction of the the-
ory is unique. That is, each realization of quantum mechanics is equivalent to
Schrödinger’s approach. This follows from the Stone–von Neumann uniqueness the-
orem below. Moreover, we want to show that this problem is closely related to
the following mathematical topics: functional analysis (operator theory on Hilbert
spaces), symplectic geometry, C∗-algebras, functors between categories (the Weyl
quantization functor), Lie algebras (the Heisenberg algebra) and Lie groups (the
Heisenberg group). The main trick is to replace (7.282) by the Weyl relation (7.283)
below. This way, we circumvent the technical subtlety related to the fact that the
operators Q and P are not defined on the total Hilbert space. The Weyl relation
refers to the unitary operators U(a) = eiaP/� and V (b) = eibQ defined on the to-
tal Hilbert space. Here, a and b are real parameters. This exponentiation is an
infinite-dimensional variant of the passage from Lie algebras to Lie groups.

7.16.1 The Prototype of the Weyl Relation

Prototype. Consider the motion of a quantum particle on the real line. Choose the
real numbers a and b. For each wave function ψ ∈ L2(R), we define the translation
operator

(U(a)ψ)(x) := ψ(x + a), x ∈ R,

and the phase operator

(V (b)ψ)(x) := eibxψ(x), x ∈ R.

Then, we have the so-called Weyl relation129

128 See the references given on page 673ff. The fascinating (and surprising) discov-
ery of the commutation relation by Born after reading Heisenberg’s paper is
described on page 64 of Vol. I.
J. Rosenberg, A selective history of the Stone–von Neumann Theorem. In: Opera-
tor algebras, quantization, and noncommutative geometry, Contemporary Math-
ematics 365, pp. 123–158, Amer. Math. Soc., Providence, Rhode Island, 2004
(reprinted with permission).

129 H. Weyl, Quantum mechanics and group theory, Z. Physik 46 (1928), 1–47 (in
German).
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U(a)V (b) = eiabV (b)U(a) for all a, b ∈ R. (7.283)

In fact, (U(a)V (b)ψ)(x) = U(a)(eibxψ(x)). This is equal to

eib(x+a)ψ(x + a) = eiabV (b)U(a)ψ(x).

Using the notion of strongly continuous one-parameter unitary group introduced
on page 506, the following holds:

{U(a)}a∈R and {V (b)}b∈R are strongly continuous one-parameter unitary
groups on the Hilbert space L2(R).

The Born–Heisenberg–Jordan commutation relation. Let the operators
Q : D(Q) → L2(R) and P : D(P ) → L2(R) be the self-adjoint position and
momentum operator, respectively, introduced in Sect. 7.6.4 on page 518. Then, for
any test function ψ ∈ S(R), we get

Pψ(x) = −i�
d

dx
ψ(x) = −i�

d

da
U(a)ψ(x)|a=0

and

Qψ(x) = xψ(x) = −i
d

db
V (b)ψ(x)|b=0.

Differentiating successively the Weyl relation

(U(a)V (b)− eiabV (b)U(a))ψ(x) = 0

with respect to the parameter a at the point a = 0 and with respect to b at b = 0,
we get

(QP − PQ)ψ = i�ψ. (7.284)

Therefore, the Born–Heisenberg–Jordan commutation relation (7.284) can be re-
garded as the infinitesimal variant of the Weyl relation (7.283). In terms of the
Stone theorem on page 506,

U(a) = eiaP/� , V (b) = eibQ, a, b ∈ R.

The Heisenberg algebra AHeis. Consider the linear operators

Q,P, �iI : S(R)→ S(R).

Explicitly, (Qψ)(x) := xψ(x), (Pψ)(x) := −i� d
dx
ψ(x), and �iIψ(x) := �iψ(x) for

all x ∈ R and all ψ ∈ S(R). Set

AHeis := {aQ + bP + c�iI : a, b, c ∈ R}.

This is a 3-dimensional real Lie algebra with respect to the following Lie products130

[Q,P ]− = �iI, [Q, �iI]− = [P, �iI]− = 0.

Trivially, we have [Q,Q]− = [P, P ]− = [�iI, �iI]− = 0. This Lie algebra is called
the Heisenberg Lie algebra (or briefly the Heisenberg algebra).

The realization of the Heisenberg algebra as a matrix Lie algebra. Let
us introduce the matrices

130 Recall that [A,B]− := AB −BA.
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A :=

0

B

@

0 1 0

0 0 0

0 0 0

1

C

A

, B :=

0

B

@

0 0 0

0 0 1

0 0 0

1

C

A

, C :=

0

B

@

0 0 1

0 0 0

0 0 0

1

C

A

.

Then, we have the Lie products

[A,B]− = C, [A,C]− = [B,C]− = 0.

Consequently, the set of all matrices

aA + bB + cC =

0

B

@

0 a c

0 0 b

0 0 0

1

C

A

, a, b, c ∈ R

forms a real 3-dimensional Lie algebra denoted by sut(3,R).

The Heisenberg Lie algebra AHeis is isomorphic to the Lie algebra sut(3).

This isomorphism is given by the map aQ + bP + c�iI �→ aA + bB + cC. All the
matrices

0

B

@

1 a c

0 1 b

0 0 1

1

C

A

, a, b, c ∈ R

form a group (with respect to matrix multiplication). This Lie group is denoted by
SUT (3,R) (group of special upper triangular real (3× 3)-matrices).

The Lie algebra of the Lie group SUT (3,R) is equal to sut(3,R).

For more details, we refer to both Sec. 7.6ff of Vol. I and to Baker (2002).
The universal enveloping algebra of the Heisenberg algebra. Again

consider the operators Q,P, �iI : S(R) → S(R). Let E(AHeis) denote the set of all
polynomials in Q,P and �iI with complex coefficients. For example, the operator

a�iI + bP 3 + cP 2Q + dQP

with complex coefficients a, b, c, d is an element of E(AHeis).

• The set E(AHeis) is a complex algebra (with respect to the sum and the product
of operators).

• If A,B ∈ AHeis, then A,B ∈ E(AHeis) and [A,B]− = AB −BA.

That is, the Lie product [., .]− on AHeis can be represented by using the product
on E(AHeis). In terms of the general theory of Lie algebras, the algebra E(AHeis) is
called the universal enveloping algebra of the Heisenberg Lie algebra AHeis.

The Weyl system with respect to the symplectic form ω on the plane
R

2. For all (a, b) ∈ R
2, define

W (a, b) := e−
i
2 abU(a)V (b). (7.285)

Then, for all (a, b), (c, d) ∈ R
2, the following hold:

(i) W (a, b)W (b, c) = e
i
2 ω(a,b;c,d)W (a + c, b + d). Here, we set

ω(a, b; c, d) := (a, b)

 

0 1

−1 0

! 

c

d

!

= det

 

a b

c d

!

= ad− bc.

Note that ω is the symplectic form on the plane R
2.
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(ii) W (a, b)† = W (−a,−b) and W (0, 0) = I.

The operator family {W (a, b)}(a,b)∈R2 is called the Weyl system of R
2. One checks

easily that (7.283), (7.285) imply (i) and (ii). For example, we have

W (a, b)† = e
i
2 abV (b)†U(a)† = e

i
2 abV (−b)U(−a)

= e−
i
2 abU(−a)V (−b) = W (−a,−b).

Conversely, if W is given, then we set U(a) := W (a, 0) and V (b) := W (0, b). Then
(i), (ii) imply (7.283), (7.285).

The Weyl algebra of the Hilbert space L2(R). The linear continuous oper-
ators A : L2(R)→ L2(R) form a C∗-algebra A. The C∗-subalgebra of A generated
by {W (a, b) : (a, b) ∈ R

2} is called the Weyl algebra of the Hilbert space L2(R) (see
page 628).

The Heisenberg group GHeis. For all a, b, λ ∈ R, modify the Weyl system by
setting

H(a, b, λ) := eiλW (a, b), a, b, λ ∈ R.

Then, for all a, b, c, d, λ, μ ∈ R, we have the product formula

H(a, b, λ)H(c, d, μ) = H
`

a + c, b + d, λ + μ + 1
2
ω(a, b; c, d)

´

.

This means that the set {H(a, b, λ)}a,b,λ∈R forms a group H. The space R
3 is a

group with respect to the product

(a, b, λ)(c, d, μ) := (a + c, b + d, λ + μ)

for all (a, b, λ), (c, d, μ) ∈ R
3. If we modify this product by setting

(a, b, λ)(c, d, μ) :=
`

a + c, b + d, λ + μ + 1
2
ω(a, b; c, d)

´

,

then R
3 becomes a group which is called the Heisenberg group GHeis.

131 The addi-
tional term 1

2
ω(a, b; c, d) is called a twist. There exists a group epimorphism132

χ : GHeis → H

given by the map (a, b, λ) �→ H(a, b, λ).

The Heisenberg group GHeis is a 3-dimensional Lie group whose Lie algebra
is the Heisenberg algebra AHeis.

Since the Heisenberg group GHeis is arcwise connected and simply connected, it
represents the universal covering Lie group of the Heisenberg Lie algebra AHeis.
By the general theory of Lie groups, the universal covering Lie group Guniversal of
a given Lie algebra L knows everything about all of the Lie groups G whose Lie
algebra is equal to L.

The Heisenberg group is isomorphic to the group SUT (3,R).

131 The definition of the Heisenberg group is not unique in the literature. The Heisen-
berg group is also called the Weyl group in the physical literature. In fact, the
Heisenberg group never appears in the papers written by Heisenberg; this group
was introduced by Weyl.

132 A surjective (resp. injective) group morphism is called group epimorphism (resp.
group monomorphism). The same is true for rings. The general definition of
epimorphisms and monomorphisms in terms of category theory will be considered
in Vol. IV.
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This Lie group isomorphism is given by the map
0

B

@

1 a c

0 1 b

0 0 1

1

C

A

�→ (a, b, c− 1
2
ab).

Central extensions of groups. Let G be a group. The set of all elements A
of G with the property that

AB = BA for all B ∈ G

is called the center C(G) of the group G. The center C(G) is a normal subgroup of
G. The group G is said to be a central extension of the quotient group G/C(G).133
For the Heisenberg group,

C(GHeis) := {(0, 0, λ) : λ ∈ R}.

This center is isomorphic to the additive group R. The map

(a, b, λ) �→ (a, b)

is a group morphism from the Heisenberg group GHeis onto the additive group R
2.

The kernel of the unit element (0, 0) of R
2 is the center C(GHeis). Therefore, we

have the group isomorphism

GHeis/C(GHeis) � R
2.

Consequently, the Heisenberg group GHeis is a central extension of the additive
group R

2.
Central extensions of Lie algebras. Let X be a linear space. Introducing

the Lie product [A,B] := 0 for all A,B ∈ X, we obtain the trivial Lie algebra X.
In this sense, the linear spaces R

n (n = 1, 2, . . .) become trivial Lie algebras.
Let L be a Lie algebra. The set of all elements A of L with the property that

[A,B] = 0 for all B ∈ L

is called the center C(L) of L. The center C(L) is an ideal of L. The Lie algebra L is
said to be a central extension of the quotient Lie algebra L/C(L).134 For example,
the center of the Heisenberg algebra is given by

C(AHeis) = {c�iI : c ∈ R}.

This center is isomorphic to R. The map

aQ + bP + c�iI �→ (a, b)

is a Lie algebra morphism from the Heisenberg algebra AHeis onto the trivial Lie
algebra R

2. The kernel of the zero element (0, 0) of R
2 is the center C(AHeis).

Therefore, we have the Lie algebra isomorphism

AHeis/C(AHeis) � R
2.

133 More general, if H is a subgroup of C(G), then the quotient group G/H is called
a central extension of the group G by the group H.

134 More general, if J is a subalgebra of C(L), then the Lie algebra L is called a
central extension of the Lie algebra L/J by the Lie algebra J .
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Consequently, the Heisenberg algebra AHeis is a central extension of the trivial Lie
algebra R

2.
Central extensions of Lie groups and Lie algebras play an important role in

quantum physics (e.g., the Bargmann theorem on the lifting of projective quantum
symmetries to unitary symmetries, and the Virasoro algebra in both conformal
quantum field theory and string theory). As an introduction, we recommend M.
Schottenloher, A Mathematical Introduction to Conformal Field Theory, Springer,
Berlin, 1997.

7.16.2 The Main Theorem

Theorem 7.59 Let {U(a)}a∈R and {V(b)}b∈R be strongly continuous one-parame-
ter unitary groups on the complex separable non-trivial Hilbert space X.135 Suppose
that the Weyl relation

U(a)V(b) = eiabV(b)U(a) for all a, b ∈ R

is satisfied. Then the operators U(a) (resp. V(b)) are unitarily equivalent to direct
sums of translation (resp. phase) operators on L2(R).

More precisely, the following hold.
(i) Invariant subspaces: There exists a finite or countable family X1, X2, . . . of

pairwise orthogonal, closed, linear subspaces of the Hilbert space X with the direct
sum decomposition

X =
M

k

Xk.

All of the spaces X1, X2, . . . are invariant under the operators U(a) and V(b).
(ii) Unitary equivalence: For all a, b ∈ R, the operator U(a) (resp. V(b)) is

unitarily equivalent to the translation operator U(a) (resp. the phase operator V (b))
on the Hilbert space L2(R) introduced on page 622. This means that there exist
unitary operators Uk : Xk → L2(R) such that, for all k, the following diagram is
commutative:

Xk

Uk

��

U(a) �� Xk

Uk

��
L2(R)

U(a) �� L2(R).

The same is true if we replace U(a) and U(a) by V(b) and V (b), respectively.
The proof can be found in Putnam (1967), p. 65. Theorem 7.59 is called the

Stone–von Neumann uniqueness theorem. This theorem was announced by Stone
in 1930. The first proof was given by

J. von Neumann, On the uniqueness of the Schrödinger operators, Math.
Ann. 104 (1931), 570–578 (in German).

135 A Hilbert space X is called trivial iff X = {0}.
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7.16.3 C∗-Algebras

A crucial strategy in modern mathematical physics consists in using
C∗-algebras.

Folklore

The simplest case of a C∗-algebra is the set C of complex numbers equipped with
the operations z + w, zw, z†, and |z|. Since zw = wz, this C∗-algebra is called
commutative.

Let n = 2, 3, . . . The prototype of a (noncommutative) C∗-algebra is the set of
complex (n × n)-matrices equipped with the operations A + B, AB, A† (adjoint

matrix), αA (α ∈ C), and ||A|| :=
p

tr(AA†) (norm). The unit matrix I is the unit

element. Traditionally, instead of A† and z† we write A∗ and z∗, respectively.
Definition of C∗-algebra. Let A be a complex associative algebra which is

also a complex Banach space. In addition, suppose that there exists a map A �→ A∗

(called the ∗-map) such that the following hold for all A,B ∈ A and all complex
numbers α, β:

(i) A∗ ∈ A (adjoint element);
(ii) (αA + βB)∗ = α†A∗ + β†B∗ (the ∗-map is antilinear);
(iii) (A∗)∗ = A (the ∗-map is an involution);
(iv) (AB)∗ = B∗A∗;
(iv) ||AB|| ≤ ||A|| · ||B||;
(v) ||A∗|| = ||A|| and ||A∗A|| = ||A||2.
Then A is called a C∗-algebra.

The C∗-algebra is called commutative iff AB = BA for all A,B ∈ A. Further-
more, the C∗-algebra is called unital iff there exists a unit element I of A with
||I|| = 1.

C∗-subalgebra. A subset S of a C∗-algebra A is called a C∗-subalgebra of A
iff it is a C∗-algebra with respect to the operations on A.

If S is a subset of a C∗-algebra A, then there exists a (uniquely determined)
smallest C∗-subalgebra B of A which contains the set S. Explicitly, B is the in-
tersection of all C∗-subalgebras of A which contain the set S. We say that B is
generated by S.

By definition, a C∗-ideal of the C∗-algebra A is a C∗-subalgebra I of A which
has the additional property that AB ∈ I and BA ∈ I for all A ∈ A, B ∈ I.

Examples. (a) The function space C(M). Let M be a nonempty compact
separated topological space (e.g. M = [0, 1] or, more generally, M is a compact
subset of R

n, n = 1, 2, . . . ). The space C(M) of all continuous functions

f : M → C

is a unital C∗-algebra with respect to the norm

||f || := max
x∈M

|f(x)|.

Moreover, we set f∗(x) := f(x)† for all x ∈ M (complex-conjugate function). The
function f(x) := 1 for all x ∈M is the unit element of C(M).

(b) The operator space L(X,X). Let X be a complex Hilbert space. The space
L(X,X) of all linear continuous operators

A : X → X

is a C∗-algebra with respect to the operator norm
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||A|| := sup
||ψ||≤1

||Aψ||

and A∗ := A† (adjoint operator). If X �= {0}, then the C∗-algebra L(X,X) is
unital, where the unit operator I is the unit element.

(c) The Weyl algebra of the Hilbert space L2(R). Let X := L2(R). The smallest
C∗-subalgebra of L(X,X), which contains the Weyl operators W (a, b), a, b ∈ R, is
called the Weyl algebra of L2(R). Explicitly, this is the closure of the set

span{W (A,B) : a, b ∈ R}.

The closure is to be understood in the sense of the Banach space L(X,X).
The Gelfand–Naimark theorem below shows that examples (a) and (b) above

are typical for C∗-algebras and commutative C∗-algebras, respectively.
C∗-morphism. Let A and B be C∗-algebras. The map

χ : A → B

is called a C∗- morphism iff it respects the algebra structure, the ∗-operation, and
the norm structure, that is, for all A,B ∈ A and all complex numbers α, β, we have

• χ(αA + βB) = αχ(A) + βχ(B),
• χ(AB) = χ(A)χ(B),
• χ(A)∗ = χ(A), and
• ||χ(A)|| = ||A||.
Bijective C∗-morphisms are called C∗-isomorphisms. Moreover, C∗-isomorphisms
χ : A → A from a C∗-algebra A onto itself, are called C∗-automorphisms.

The category of C∗-algebras. In order to describe the common features of
mathematical structures, one uses categories in mathematics. A category consists
of objects and morphisms.

• The objects of the category of C∗-algebras are the C∗-algebras,
• and the morphisms of the category of C∗-algebras are the C∗-morphisms.

The general setting of category theory will be investigated in Vol. IV on quantum
mathematics.

The Gelfand–Naimark structure theorem. In 1943, Gelfand (born 1913)
and Naimark (1909–1978) proved the following crucial result.

Theorem 7.60 (i) Each C∗-algebra is C∗-isomorphic to some C∗-subalgebra of
L(X,X), where X is some Hilbert space.

(ii) Each commutative unital C∗-algebra A is C∗-isomorphic to a C∗-algebra
C(M) of continuous functions on some nonempty compact separated topological
space M . Here, M is the space of maximal ideals of the algebra A equipped with an
appropriate topology.

The proof is based on the so-called Gelfand–Naimark–Segal (GNS) construction,
which is basic for algebraic quantum field theory and quantum statistics.136 This
will be considered in Vol. IV. There, we will also show that (ii) above is crucial for
the spectral theory of unitary and self-adjoint operators. For the proofs, we refer

136 I. Gelfand, Normed rings of operators, Mat. Sbornik 9 (1941), 3–24 (in German).
I. Gelfand and M. Naimark, On the embedding of normed rings into the ring of
operators in Hilbert space, Mat. Sbornik 12 (1943), 197–213.
I. Segal, Postulates for general quantum mechanics, Ann. Math. 48 (1947), 930–
948.
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to P. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras,
Vols. 1, Academic Press, New York, 1983.
∗-Algebras. Sometimes it is convenient to replace C∗-algebras by the weaker

notion of ∗-algebra (star algebra). Here, all the properties of a C∗-algebra drop out
which refer to the norm. For example, the complex associative algebra A is called a
∗-algebra iff conditions (i)–(iv) on page 627 are satisfied. Analogously, one obtains
the following terms: ∗-subalgebra, ∗-morphism, ∗-isomorphism, ∗-automorphism,
category of ∗-algebras.

7.16.4 Operator Ideals

In order to give the proof for special cases of Fermat’s last theorem in number
theory, Kummer (1810–1891) introduced so-called ideal numbers.137 Generalizing
this, Dedekind (1831–1916) created the theory of ideals in ring theory. The theory
of operator ideals generalizes this to operator algebras.

Compact operators. Let C : X → X be a linear compact self-adjoint operator
on the complex separable non-trivial Hilbert space X. Then the eigenvectors of C
form a complete orthonormal system in X. Let λ1, λ2, . . . denote the eigenvalues of
C. Then:

• The spectrum of C is a pure point spectrum.
• The operator C is called of trace class iff

P

n |λn| < ∞. In this case, the trace
tr(C) :=

P

n λn is finite. Operators of trace class are also called nuclear operators.

• The operator C is called a Hilbert–Schmidt operator iff
P

n λ2
n <∞.

Let us generalize this. The linear compact operator A : X → X is called a trace
class (resp. Hilbert–Schmidt) operator iff tr(

√
A∗A) <∞ (resp. tr(A∗A) <∞).138

Every trace class operator is a Hilbert–Schmidt operator. If the linear operator
A : X → X is compact on the complex separable Hilbert space X, then there
exist orthogonal systems ϕ1, ϕ2, . . . and ψ1, ψ2, . . . together with positive numbers
μ1, μ2, . . . (called the singular values of the operator A) such that

Aϕ =
X

n

μn〈ϕn|ϕ〉ψn for all ϕn ∈ X.

Explicitly, we choose a complete orthonormal system ϕ1, ϕ2, . . . of eigenvectors of
the self-adjoint compact operator A∗A, that is, A∗Aϕn = λnϕn. Here, λn ≥ for all
n. Moreover, throw away the eigenvectors ϕm with λm = 0, and set μn :=

√
λn, as

well as ψn := λ−1
n Aϕn. Equivalently, we write

A =
X

n

μnψn ⊗ ϕn.

C∗-operator ideals. Consider the C∗-algebra L(X,X) of the linear continuous
operators A : X → X on the complex separable Hilbert space X.

(i) The set of linear compact operators A : X → X forms a C∗-ideal of L(X,X).
This ideal is denoted by Icompact.

137 The famous complete proof of Fermat’s last theorem was given by Wiles in 1994
(see page 17 of the Prologue to Vol. I; we also refer to F. Diamond and J.
Shurman, A First Course in Modular Forms, Springer, Berlin, 2005).

138 Note that the operator A∗A is self-adjoint and compact, and its eigenvalues are
nonnegative.
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(ii) The trace-class operators A : X → X form a C∗-ideal of L(X,X). This ideal
is denoted by Itrace class.

(iii) The Hilbert–Schmidt operators of A : X → X form a C∗-ideal of L(X,X).
This ideal is denoted by IHilbert−Schmidt. We have the inclusions Itrace class ⊆
IHilbert−Schmidt ⊆ Icompact ⊆ L(X,X).

(iv) A ∈ Itrace class iff A = BC with B,C ∈ IHilbert−Schmidt.

For more details, we refer to M. Reed and B. Simon, Methods of Modern Math-
ematical Physics, Vol. I, Sects. VI.5ff, Academic Press, 1972, as well as to the
monographs by R. Schatten, Norm Ideals of Completely Continuous Operators,
Springer, Berlin, 1960, and by A. Pietsch (1978), (2007) quoted on page 601.

7.16.5 Symplectic Geometry and the Weyl Quantization Functor

Functors play a crucial role in modern mathematics and physics.
Folklore

Symplectic linear spaces. A symplectic linear space X is a real linear space
equipped with a symplectic form

ω : X ×X → R.

That is, for all a,b, c ∈ X and all real numbers α, β, the following hold:

• ω(a,b) = −ω(b, a) (antisymmetry);
• ω(αa + βb, c) = αω(a, c) + βω(b, c) (bilinearity);
• ω(a,v) = 0 for all v ∈ X implies a = 0 (non-degeneracy).

For example, the space R
2 is a symplectic linear space with respect to the symplectic

form

ω((a, b), (c, d)) :=

˛

˛

˛

˛

˛

a b

c d

˛

˛

˛

˛

˛

= ad− bc, (a, b), (c, d) ∈ R
2. (7.286)

Symplectic morphism. Let X and Y be symplectic linear spaces with the
symplectic forms ω and μ, respectively. The map

χ : X → Y

is called a symplectic morphism iff it is linear and respects the symplectic forms,
that is,

μ(χ(a), χ(b)) = ω(a,b) for all a,b ∈ X.

Bijective symplectic morphisms are called symplectic isomorphisms. Then the in-
verse map is also a symplectic morphism. For example, a symplectic isomorphism
of the plane R

2 onto itself (with respect to the symplectic form (7.286)) is a linear
area-preserving map from R

2 onto itself. The category of symplectic linear spaces
is defined in the following way:

• The objects are symplectic linear spaces,
• and the morphisms are symplectic morphisms.

Weyl algebras. We want to generalize the Weyl algebra of the Hilbert space
L2(R). Let X be a linear symplectic space, and let A be a C∗-algebra with unit
element. The map

W : X → A
is called a Weyl map iff the following hold for all a,b ∈ X:
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(i) W (a)W (b) = e
i
2 ω(a,b)W (a + b);

(ii) W (0) = I;
(iii) W (a)∗ = W (−a).

The subset {W (a) : a ∈ X} of the C∗-algebra A is called a Weyl system. The
smallest C∗-algebra of A which contains a Weyl system is called a Weyl algebra
W(X). This algebra is also called the CCR-algebra of the linear symplectic space
X with the symplectic form ω. Here, ‘CCR’ stands for ‘canonical commutation
relation’.

The existence and uniqueness theorem for Weyl algebras. The following
theorem generalizes the Stone–von Neumann uniqueness theorem.

Theorem 7.61 For each symplectic linear space X, there exists a Weyl algebra
W(X) which is unique, up to C∗-isomorphisms.

Proof. (I) Existence. Let l2(X) denote the space of all functions f : X → C with
at most countable support139 and the property that

X

a∈X

|f(a)|2 <∞.

The complex linear space l2(X) becomes a complex Hilbert space equipped with

the inner product 〈f |g〉 :=
P

a∈X f(a)†g(a).
Now let us choose the C∗-algebra A consisting of all the linear continuous

operators A : l2(X)→ l2(X). For all f ∈ l2(X), we define

(W (a)f)(b) := e−
i
2 ω(a,b)f(a + b), a,b ∈ X.

One checks directly that W (a) ∈ A and that W : X → A is a Weyl map. To
finish the argument, let W(X) be the C∗-subalgebra of A generated by the set
{W (a) : a ∈ X}.

(II) Uniqueness. See Bär et al (2007), p. 121 (see the reference on page 632). �

Theorem 7.62 If σ : X → Y is a symplectic morphism between the symplectic lin-
ear spaces X and Y , then there exists a uniquely determined injective C∗-morphism
W(σ) :W(X)→W(Y ) such that the following diagram is commutative:

X

��

σ �� Y

��
W(X)

W(σ) �� W(Y ).

For the proof, we refer to Bär et al. (2007), p. 122.
The Weyl quantization functor. We have the following two properties:

(F1) W(τ ◦ σ) =W(τ) ◦W(σ);
(F2) W(id) = id.

139 This means that the function f vanishes outside an at most countable subset of
the linear space X.
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More precisely, this means the following. If

X
σ−→ Y

τ−→ Z

is the composition of two symplectic morphisms σ and τ , then this is transformed
into the composition

W(X)
W(σ)−→ W(Y )

W(τ)−→ W(Z)

of the corresponding C∗-morphisms W(σ) and W(τ). Furthermore, the identical
symplectomorphism

X
id−→ X

is transformed into the identical map

W(X)
id−→W(X)

of the C∗-algebra W(X). In terms of mathematics, the situation (F1), (F2) above
describes a functor W between the category of symplectic linear spaces and the
category of C∗-algebras. This functor is called the Weyl quantization functor.

Perspectives. In general, functors between categories map objects to objects
and morphisms to morphisms such that the two properties (F1), (F2) above are
satisfied. Functors play a fundamental role in the modern theory of mathematical
structures. Typical examples are:

• the homology functor which sends continuous maps between topological spaces
to group morphisms between homology groups,

• and the de Rham cohomology cofunctor140 which sends smooth maps between
manifolds to group morphisms between cohomology groups (i.e. linear maps be-
tween real linear spaces).

This will be studied in later volumes.
It was discovered recently, that functors are the right tool in order to gener-

alize Einstein’s principle of general relativity (also called the covariance principle)
to quantum field theories on curved space-times. This principle postulates that
physics does not depend on the choice of observers. Roughly speaking, the basic
idea is to assign C∗-algebras to the open subsets of globally hyperbolic space-time
manifolds (realization of the Haag–Kastler axioms). The point is that the change
of the space-time manifolds induces a natural change of the assigned C∗-algebras.
Furthermore, two different quantization functors are related to each other by a
natural transformation. We refer to:

R. Brunetti, K. Fredenhagen, and R. Verch, The generally covariant local-
ity principle – a new paradigm for local quantum field theory, Commun.
Math. Phys. 237 (2003), 31–68.

C. Bär, N. Ginoux, and F. Pfäffle, Wave Equations on Lorentzian Mani-
folds and Quantization, European Mathematical Society 2007.

J. Baez and J. Dolan, Categorification, Contemporary Mathematics 230
(1998), 1–36.

The monograph by Bär, Ginoux, and Pfäffle contains a detailed study of the initial-
value problem for normally hyperbolic differential equations on globally hyperbolic
manifolds, together with applications to quantum field theory. This sophisticated
global theory due to Jacques Hadamard (1865–1963), Marcel Riesz (1886–1969) and
Jean Leray (1906–1998) is based on modern differential geometry (the language of
bundles) and the theory of distributions on manifolds. Distributions are needed in
order to handle the strong singularities of the Green’s functions.

140 In contrast to the composition rule (F2) above, a cofunctor F is characterized
by the reverse composition rule F(τ ◦ σ) = F(σ) ◦ F(τ).
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7.17 A Glance at the Algebraic Approach to Quantum
Physics

In this section, we want to discuss a few basic ideas about the algebraic approach
to non-relativistic quantum physics. Further material can be found in the volumes
to follow. The Haag–Kastler theory, that is, the relativistic approach based on local
operator algebras will be studied in Vol. IV on quantum mathematics.

7.17.1 States and Observables

The states and the observables are basic concepts in the description of a
physical system and their description has undergone a drastic fundamental
change in the transition from the classical theory to the quantum theory.141

Huzihiro Araki, 1999

The prototypes of pure states and mixed states. Consider a complex non-
trivial Hilbert space X.

(a) Pure state: Fix ψ ∈ X with ||ψ|| = 1. Define

χ(A) := 〈ψ|Aψ〉 for all A ∈ L(X,X).

Then χ(I) = 1, and χ(A∗A) = 〈ψ|A∗Aψ〉 = 〈Aψ|Aψ〉 ≥ 0. Moreover, we have

χ(A)† = 〈Aψ|ψ〉 = 〈ψ|A∗ψ〉 = χ(A∗).

We call the linear continuous functional χ : L(X,X)→ C a vector state (or a
pure state).

(b) Mixed state: Let ψ0, ψ1, . . . be a complete orthonormal system of the Hilbert
space X, and let p0, p1, . . . be real numbers contained in the unit interval [0, 1[
such that

P

k pk = 1. Define142

χ(A) :=
X

k

pk〈ψk|Aψk〉 for all A ∈ L(X,X).

Again, χ(I) = 1 and χ(A∗A) ≥ 0 together with χ(A)† = χ(A∗) for all op-
erators A ∈ L(X,X). The linear continuous functional χ : L(X,X) → C is
called a mixed state. In terms of physics, the pure state ψk is realized with the
probability pk.

(c) Dynamics. If H : D(H) → X is a linear self-adjoint Hamiltonian operator,
then the dynamics of the initial state ψ0 is given by ψ(t) = U(t)ψ0 for all times
t ∈ R, where we set

U(t) := e−itH/� , t ∈ R.

Motivated by 〈U(t)ψ0|AU(t)ψ0〉 = 〈ψ0|U(t)−1AU(t)ψ0〉, we define the operator
Ut : L(X,X)→ L(X,X) for all t ∈ R by setting

UtA := U(t)−1AU(t).

141 H. Araki, Mathematical Theory of Quantum Fields, Oxford University Press,
1999.

142 Since |〈ψk|Aψk〉| ≤ ||ψk|| · ||Aψk|| ≤ ||ψk|| · ||A|| · ||ψk|| ≤ ||A||, the series for χ(A)
is convergent.
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The operator Ut is a C∗-isomorphism from the C∗-algebra L(X,X) onto itself.
As usual, such C∗-isomorphisms are also called C∗-automorphisms. Define

χt(A) := χ(UtA) for all A ∈ L(X,X), t ∈ R.

Then the map t→ χt corresponds to the map t �→ U(t)ψ0, which describes the
time evolution of the state ψ0.

The general definition in terms of C∗-algebras. Suppose that we are given
a C∗-algebra A with unit element I.

(i) Observables: The self-adjoint elements A of A (i.e., A∗ = A) are called observ-
ables. The C∗-algebra A is called the extended algebra of observables.143

(ii) States: The linear functionals χ : A → C with the normalization condition
χ(I) = 1 and the positivity condition

χ(A∗A) ≥ 0 for all A ∈ A

are called states.144 A state is called mixed iff there exist two different states
χ1 and χ2 such that

χ = λχ1 + (1− λ)χ2 for some number λ ∈]0, 1[.

Otherwise the state is called pure.
(iii) Measurements of an observable. Let A be an observable, and let χ be a state.

The real number

Ā := χ(A)

is called the measured mean value of the observable A in the state χ. Similarly,
the nonnegative number ΔA given by

(ΔA)2 := χ((A− Ā)2)

is the measured fluctuation of the observable A in the state χ.145 If A and B
are two observables, then the complex number

γ :=
χ
`

(A− Ā)(B − B̄)
´

ΔA ΔB

is called the correlation coefficient in the state χ.146

(iv) Dynamics: By definition, a dynamics on A is a one-parameter group {Ut}t∈R of
C∗-automorphisms of the algebra A. Explicitly, this means that, for all times
t, s ∈ R, the map Ut : A → A is a C∗-automorphism and

Ut+s = UtUs, U0 = id.

This yields the time evolution t �→ χt of a state χ, namely, we define

χt(A) := χ(UtA)) for all A ∈ A, t ∈ R.

143 Note that the algebra A also contains elements which are not observables, in the
sense of the definition given above.

144 It can be shown that states are always continuous. We also have χ(A)† = χ(A∗)
for all A ∈ A. In particular, if A is an observable, then χ(A) is real.

145 Since (A− Ā)∗ = A− Ā, we get χ
`

(A− Ā
´2

) ≥ 0, by (ii).
146 The Schwarz inequality for C∗-algebras tells us that |γ| ≤ 1.
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(v) Thermodynamical equilibrium states (KMS-states): Let β := 1/kT, where k is
the Boltzmann constant, and T is the absolute temperature. By definition, the
state χ is called a KMS-state of temperature T with respect to the dynamics
{Ut}t∈R iff it satisfies the β-KMS condition

χ(AUt(B)) = χ(Ut−iβ�(B)A) for all A,B ∈ A, t ∈ R.

One of the main problems in thermodynamics is the characterization of thermody-
namic equilibrium states. The C∗-algebra approach to thermodynamics is able to
do this. The three letters KMS stand for the names of the physicists Kubo, Martin,
and Schwinger. For the historical background, see the discussion on page 659.

The following is crucial for distinguishing between classical physics and quantum
physics.

The passage from classical physics to quantum physics corresponds to the
passage from commutative algebras to noncommutative algebras.

For example, this also corresponds to the passage from classical information to
quantum information, which represents the theoretical framework for the intended
construction of quantum computers in the future. This will be studied in Vol. IV.
We refer to N. Nielsen and M. Chuang, Quantum Computation and Quantum
Information, Cambridge University Press, 2001.

Orthogonal projections as fundamental observables related to ques-
tions posed by physical experiments. The simplest observables in L(X,X) are
orthogonal projection operators. Let us summarize elementary properties.147 We
set

A := L(X,X).

We assume that X is a complex separable non-trivial Hilbert space. We will use
such a language that later on we can replace L(X,X) by a von Neumann algebra
A which is a factor (see page 657). In the language of von Neumann algebras, the
following properties of orthogonal projections will tell us that L(X,X) is a von
Neumann algebra (more precisely, a factor) of type I.

(i) Orthogonal projections: By definition, an orthogonal projection is an element
of A with P ∗ = P and P 2 = P. Let P(A) denote the set of all orthogonal
projections in A.
Geometrically, this means the following. For any ψ ∈ X, we have the decom-
position

ψ = Pψ + (I − P )ψ

where Pψ is contained in the closed linear subspace P (X) of X, and (I −P )ψ
is contained in the orthogonal complement P (X)⊥.148 By the Pythagorean
theorem,

||ψ||2 = ||Pψ||2 + ||(I − P )ψ||2.
Hence if P �= 0, then ||P || = 1. Conversely, let Y be a linear closed subspace
Y of X. For given ψ ∈ X, the variational problem

||ψ − ϕ|| = min!, ϕ ∈ Y

has a unique solution denoted by Pψ. Then P : X → Y is an orthogonal
projection onto the subspace Y .

147 For the missing proofs, we refer to Zeidler (1995a) (see the references on page
1049), and to F. Riesz and B. Nagy, Functional Analysis, Frederyck Ungar, New
York, 1978.

148 Recall that, for a subset L of the Hilbert space X, the orthogonal complement
is given by L⊥ := {ψ ∈ X : 〈ψ|ϕ〉 = 0 for all ϕ ∈ L}.
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(ii) Partial ordering on P(A): Let Q,P ∈ P(A). We write

Q ≤ P iff PQ = Q.

This is a partial ordering on P(A). Geometrically, this is equivalent to the
inclusion Q(X) ⊆ P (X).

(iii) Expectation values: Let P,Q ∈ P(A). Then,
• 0 ≤ 〈ψ|Pψ〉 ≤ ||ψ||2 for all ψ ∈ X,149 and
• Q ≤ P iff 〈ψ|Qψ〉 ≤ 〈ψ|Pψ〉 for all ψ ∈ X.
In terms of expectation values in physics, this means

0 ≤ P̄ ≤ 1 and Q ≤ P ⇒ Q̄ ≤ P̄ .

Here, we exclude the trivial case X = {0}.
(iv) Eigenvalues: Let P ∈ P(A) with P �= 0. If

Pψ = λψ

with ||ψ|| = 1, then either λ = 1 or λ = 0. The eigenspace to the eigenvalue
λ = 1 (resp. λ = 0) is P (X) (resp. the orthogonal complement P (X)⊥). In
terms of mathematical logic, we regard the observable P as a question and the
eigenvalues λ = 1 (resp. λ = 0) correspond to the answers “yes” (resp. “no”).

(v) Orthogonality: Let P,Q ∈ P(A). We say that P is orthogonal to Q iff PQ = 0.
Geometrically, this means that P (X) is orthogonal to Q(X).

(vi) Partial isometry: The linear continuous operator U : X → X is called a partial
isometry iff we have

||Uψ|| = ||ψ|| for all ψ ∈ ker(U)⊥.

That is, if we use the orthogonal composition, X = Y ⊕ Y ⊥ with respect
to the subspace Y := ker(U), then U = 0 on Y , and U : Y ⊥ → im(U)
is an isometry. More precisely, it follows from the Fredholm alternative that
im(U) = ker(U∗)⊥, and hence the operator

U : ker(U)⊥ → ker(U∗)⊥

is a unitary operator.
(vii) The Murray–von Neumann equivalence relation: Let Q,P ∈ P(A). We write

Q ∼ P

iff there exists an operator U ∈ A with Q = UU∗ and P = U∗U. This is a
equivalence relation.
Geometrically, this means that U is a partial isometry whose restriction

U : P (X)→ Q(X)

to the space P (X) is a unitary operator onto the space Q(X). Similarly, U∗ is a
partial isometry whose restriction U∗ : Q(X)→ P (X) is a unitary operator.150

If Q,P ∈ P(A), then

||Q− P || < 1 implies Q ∼ P.

149 Note that 〈ψ|Pψ〉 = 〈ψ|P 2ψ〉 = 〈Pψ|Pψ〉 = ||Pψ||2 ≤ ||ψ||2.
150 To prove this, note that ||Pψ||2 = 〈ψ|Pψ〉 = 〈Uψ|Uψ〉 = ||Uψ||2. Thus, we

obtain ker(U) = P (X)⊥. Similarly, ker(U∗) = Q(X)⊥.
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(viii) The trivial center: The algebra A has a trivial center. This means that if
B ∈ A and AB = BA for all A ∈ A, then B is a multiple of the unit operator
(i.e., B = λI for some complex number λ). This is called the Schur lemma. 151

(ix) Invariant linear subspaces of X. The linear subspace Y of X is called invariant
under A iff A(Y ) ⊆ Y for all A ∈ A.

(x) The dimension function: Let P,Q ∈ P(A). Define d(P ) := dimP (X). Then:
• d(P ) = d(Q) iff P ∼ Q.
• If P (X) is orthogonal to Q(X), then d(P + Q) = d(P ) + d(Q).

In what follows, we will show that orthogonal projections play a crucial role con-
cerning

• the Gleason theorem and
• the Murray–von Neumann classification of factors of von Neumann algebras (see

page 657).

7.17.2 Gleason’s Extension Theorem – the Main Theorem of
Quantum Logic

Among other features, the Gleason theorem means that:
• Probabilities provide a tool for constructing the language of physics long

before they can be considered as empirically meaningful quantities.
• The expression for the probabilities first proposed by Max Born (in

1926) is an unavoidable part of an interpretation. If any probability
should ever play a part in the theory, it can be only this one.

• The density operator (introduced by von Neumann) is the basic notion
one must associate with a quantum state and not simply a pure state
represented by a wave function.152

Roland Omnès, 1994

Let X be a complex separable Hilbert space. Let P denote the set of all orthogonal
projections P : X → X. By definition, a pre-state of the C∗-algebra L(X,X) is a
function s : P → [0, 1] with the property that we have

s(P1 + . . . + Pn) = s(P1) + . . . + s(Pn)

for each finite family of orthogonal projections P1, . . . , Pn ∈ P with the additional
property that Pi(X) is orthogonal to Pj(X) if i �= j. Such a pre-state is also called
a finitely additive measure on P.

Theorem 7.63 If the dimension of the Hilbert space X is 3 or larger, then each
pre-state can be uniquely extended to a state of the C∗-algebra L(X,X).

Conversely, the restriction of any state on L(X,X) to the space of orthogonal
projections P is a pre-state.

From the philosophical point of view, roughly speaking, Gleason’s theorem tells us
the following: 153

151 Schur (1875–1941).
152 R. Omnès, The Interpretation of Quantum Mechanics, Princeton University

Press, Princeton, New Jersey, 1994. Reprinted by permission of Princeton Uni-
versity Press.

153 J. von Neumann and G. Birkhoff, The logic of quantum mechanics, Ann. Math.
37 (1936), 823–843.
A. Gleason, Measures on the closed subspaces of a Hilbert space, J. Math. Mech.
6 (1957), 885–893.
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A quantum state is completely determined by only knowing the answers to
all of the possible yes/no questions.

The Gleason theorem was generalized to von Neumann algebras by Christensen
and Yeadon.154

7.17.3 The Finite Standard Model in Statistical Physics as a
Paradigm

The partition function knows all about the thermodynamic system. The
Feynman path integral can be viewed as a generalized partition function.

Folklore

The mean value. Let us consider a physical system S which can be in the finite
number of states

S1, ..., SM

with the probabilities p1, . . . , pM , respectively. Suppose that the physical quantity
A (e.g., energy) attains the value Am in the state Sm. By definition, if we measure
the physical quantity A of the system S, then we get the mean value

χ(A) :=

M
X

m=1

pmAm. (7.287)

We also write Ā instead of χ(A).

Fluctuations and correlations can be described by mean values.

In fact, the fluctuation ΔA ≥ 0 of the physical quantity A is defined by

(ΔA)2 = (A− Ā)2 =

M
X

m=1

pm(A− Ā)2.

Obviously, (ΔA)2 = A2−(Ā)2. For two physical quantities A and B, the correlation
coefficient is defined by

cor(A,B) :=
(A− Ā)(B − B̄)

ΔA ·ΔB
=

PM
k=1 pm(A− Ā)(B − B̄)

ΔA ·ΔB
.

The fundamental quantity

S := −k
M
X

k=1

pm ln pm

is called the entropy of the physical system S. If 0 < p1, . . . , pM < 1, then Ā is
called the mean value of the physical quantity A with respect to the mixed state
(S1, p1; . . . , SM , pM ). If pm0 = 1 and pm = 0 for all indices m �= m0, then Ā is called
the mean value of A with respect to the pure state Sm0 .

The language of C∗-algebras. The set {S1, . . . , SM} is called the state space
S. The set of functions

154 S. Maeda, Probability measures on projections in von Neumann algebras, Rev.
Math. Phys. 1 (1989), 235–290 (survey article).
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A : S→ C

is denoted by A. We write Am := A(Sm), and A∗(Sm) := A(Sm)†. If A,B ∈ A and
α, β ∈ C, then

αA + βB, AB, A∗
are also contained in A. In addition, we introduce the norm

||A|| := sup
m=1,...,M

|A(Sm)|.

The set A is a commutative unital C∗-algebra which is called the extended algebra
of observables.

• Observables: The real-valued functions in A (i.e., A∗ = A) are called observables.
• States: Let 0 ≤ p1, . . . , pM ≤ 1 and p1 + . . . + pM = 1. Define the function

χ : A → C

by the key relation (7.287) above. Precisely all such functions are called states
of the C∗-algebra A. These functions have the following positivity property
χ(AA∗) =

PM
m=1 pmAmA†

m ≥ 0.
• Mean value: The value χ(A) is called the mean value of the observable A in the

state χ.

The grand canonical ensemble. Now let us consider special physical systems
whose states are characterized by energy and particle number. This is typical for
statistical physics. More precisely, assume that the physical system S can be in the
finite number of states S1, . . . , SM ; each state Sm is characterized by the energy
Em and the particle number Nm. We will motivate below that it is reasonable to
assume that the number

pm =
e(μNm−Em)/kT

PM
m=1 e(μNm−Em)/kT

, m = 1, . . . ,M (7.288)

is the probability for finding the physical system in the state Sm. Here, the param-
eter T > 0 is called the (absolute) temperature, the real parameter μ is called the
chemical potential, and k is the Boltzmann constant. The mean energy Ē and the
energy fluctuation ΔE ≥ 0 are given by

Ē =
M
X

m=1

pmEm, (ΔE)2 =
M
X

m=1

pm(E − Ē)2.

Similarly, the mean particle number N̄ and the particle number fluctuation ΔN ≥ 0
are given by

N̄ =

M
X

m=1

pmNm, (ΔN)2 =

M
X

m=1

pm(N − N̄)2.

Physical interpretation. The grand canonical ensemble describes a (large)
many-particle system which is able to exchange energy and particles with its envi-
ronment. However, we assume that this exchange is so weak that one can attribute a
mean energy and a mean particle number to the system S. Moreover, this exchange
is governed by two macroscopic parameters, namely, the absolute temperature T
and the chemical potential μ. This tells us that the many-particle system does not
behave wildly, but regularly. Physicists say that the system is in thermodynamic
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equilibrium. For example, the sun radiates photons into the universe at the fixed
surface temperature of about 6000 K. The change of the particle number can be
caused by chemical reactions. This motivates the designation ‘chemical potential’
for μ.

The special case where μ = 0 corresponds to a fixed particle number (i.e., there
are no chemical reactions or no particle exchange with the environment). The grand
canonical ensemble with μ = 0 is called canonical ensemble.

The importance of the partition function. The main trick of statistical
physics is to introduce the function

Z(T, μ) :=

M
X

m=1

e(μNm−Em)/kT (7.289)

which is called the partition function of the grand canonical ensemble. The following
proposition tells us that

The knowledge of the partition function allows us to compute all of the
crucial thermodynamic quantities in statistical physics.

To this end, we introduce the so-called statistical potential

Ω(T, μ) := −kT lnZ(T, μ). (7.290)

This function is also called the Gibbs potential. An elementary computation shows
that the following relations hold for the partial derivatives of the statistical poten-
tial.

(i) Entropy: S = −ΩT .
(ii) Mean particle number: N̄ = −Ωμ.
(iii) Particle number fluctuation: (ΔN)2 = kTN̄μ.
(iv) Free energy: By definition, F := Ω + μN̄.
(v) Mean energy: Ē = F + TS.155

(vi) Energy fluctuation: If the particle number is fixed (i.e., μ = 0), then we obtain
(ΔE)2 = kT 2ĒT .

(vii) Pressure: Suppose that the energies E1, . . . , EM and the particle numbers
N1, . . . , NM depend on the volume V of the physical system. Then the statis-
tical potential Ω(T, μ, V ) also depends on the volume V , and the pressure of
the physical system is defined by P := −ΩV .

The reader should observe that the Feynman functional integral

Z =

Z

eiS[ψ]/�Dψ

can be regarded as a (formal) continuous variant of the partition function.

7.17.4 Information, Entropy, and the Measure of Disorder

Many-particle systems in nature are able to store information. This is
equivalent to both the measure of disorder and the notion of entropy in
physics. Folklore

155 The mean energy is also called the inner energy.
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Information and words. In order to get some information in daily life, it is useful
to ask L questions which have to be answered by ‘yes’ or ‘no’. Then the typical
answer looks like

Y N . . .NN. (7.291)

This is a word of length L with the two letters Y (yes) and N (no). Intuitively,
the minimal number L of questions measures information. For example, suppose
we have n balls of different weight. We want to know the heaviest ball. Using a
balance, if n = 2, then we need one experiment (question). If n = 3, then we need
two experiments. Generally, it follows by induction that we need n− 1 experiments
for n balls in order to find out the heaviest ball. After knowing this, we gain the
information I = n− 1.

Observe that in computers, we use words of the type (7.291) in order to trans-
port information. It is our goal to generalize this simple approach to more general
situations. Interestingly enough, it turns out that one has to use the methods of
probability theory.

General definition of information. Let M = 1, 2, . . . . Consider a random
experiment which has the possible M outcomes

O1, O2, . . . , OM (7.292)

where Om appears with the probability pm. Here, 0 ≤ p1, p2, . . . , pM ≤ 1 and
p1 + p2 + . . . + pM = 1. The nonnegative number

I := −
M
X

m=1

pm log2 pm (7.293)

is called the information of the random experiment (7.292).156 The unit of I is
called bit. Moreover, 1 byte = 8 bits. Intuitively, we gain the information I after
performing the random experiment and after knowing the outcome. For example,
let us throw a coin L times. The outcome corresponds to a word of the form (7.291),
where Y and N stand for head and tail, respectively. The number of words of type
(7.291) is equal to 2L. Thus, the probability for a single outcome of the random
coin experiment is equal to

pm =
1

2L
, m = 1, . . . , 2L.

After performing the coin experiment, we gain the information

I = −
2L
X

m=1

pm log2 pm = log2 2L = L.

This coincides with the intuitive information introduced above in terms of answering
yes/no questions. The number 2L is called the statistical weight of the event (7.291).

Suppose that we have p1 = 1 and p2 = . . . = pM = 0. Then we know the
outcome O1 of our random experiment in advance. This means that we do not

156 By convention, if pm := 0 for some index m, then we set pm log2 pm = 0.
Information theory was created by Claude Shannon (1916–2001) in his paper:
A mathematical theory of communication, Bell System Techn. J. 27 (1948),
379–423; 623–656.
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gain any information after knowing the outcome. In fact, by (7.293) we get I =
− log2 1 = 0.

The genetic code. The DNA (desoxyribonucleic acid) encodes the genetic
information. This is a double-stranded molecule held together by weak bounds
between base pairs of nucleotides. The four nucleotides in DNA contain the bases:
adenine (A), cytosine (C), guanine (G), and thymine (T). A single strand can be
formally described by a word

AGCT . . .G (7.294)

of length L with the four letters A,C,G, T. There are 4L such words. Introducing
the weight pm := 1/4L, the word (7.294) contains the information

I = −
4L
X

m=1

pm log2 pm = log2 4L = 2L.

In nature, base pairs are only formed between A and T and between C and G.
Thus, the base sequence (7.294) of each single strand can be deduced from that
of its partner. The crucial protein synthesis in a biological cell is encoded into the
messenger RNA (ribonucleic acid). This can be formally described by a word

Cm1Cm2 . . . CmL (7.295)

of length L with the twenty letters C1, C2, . . . , C20. These letters are called codons.
Each codon is a word of length 3 with the letters A,C,G, T. Consequently, there
are 43 = 64 codons. However, by redundance, only 20 codons are essential. This
corresponds to the multiplicity of spectral lines in the spectroscopy of molecules.
This analogy combined with supersymmetry can be used in order to model math-
ematically the redundance of codons.157 The information encoded into the word
(7.295) is equal to I = log2 20L = L log2 20.

The properties of the information function. Let

σM := {(p1, . . . , pM ) : 0 ≤ p1 + . . . + pM ≤ 1, p1 + . . . + pM = 1}

be an (M − 1)-dimensional simplex in R
M . This is the closed convex hull of the M

extremal points (vertices) (1, 0, . . . , 0), . . . , (0, . . . , 0, 1). The proof of the following
statement will be given in Problem 7.37.

Proposition 7.64 The function I : σM → R given by (7.293) is continuous and
concave.158 The minimal value I = 0 is attained at the extremal points of σM .
Furthermore, the maximal value I = log2 M is attained at the point pk = 1

M
for all

k = 1, . . . ,M.

Measure of disorder. Consider the following experiment. We are given N
particles, and we want to distribute them into M boxes B1, . . . ,BM . Each possible
distribution can be described by the symbol

157 See M. Forger and S. Sachse, Lie super-algebras and the multiplet structure of
the genetic code, I. Codon representations, II. Branching rules, J. Math. Phys.
41 (2000), 5407–5422; 5423–5444.
F. Antonelli, L. Braggion, M. Forger, et al., Extending the search for symmetries
in the genetic code, Intern. J. Modern Physics B 17 (2003), 3135–3204.

158 Explicitly, I(λq+ (1−λ)p) ≥ λI(q)+ (1−λ)I(p) for all q, p ∈ σM and λ ∈ [0, 1].
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N1N2 . . . NM (7.296)

where Nm is the number of particles in the box Bm. Then N1 + . . .+NM = N. Set
pm := Nm

N
. By definition, the number

I := −
M
X

m=1

pm log2 pm

is called the measure of disorder of the distribution (7.296). In order to show that
this definition is reasonable, consider the following special cases.

• By Prop. 7.64, 0 ≤ I ≤ log2 M.
• If all of the particles are in the same box, say, B1, then we have p1 = 1 and

p2 = . . . = pM = 0 Hence I = −p1 log2 p1 = 0. This corresponds to minimal
disorder.

• If each box contains the same number of particles, then Nm = N
M
. Hence pm = 1

M
for m = 1, . . . ,M . Therefore, I = log2 M. This corresponds to maximal disorder.

Entropy. For historical reasons, physicists replace the information I from
(7.293) by the quantity

S = −k
M
X

m=1

pm ln pm.

Here, we use the Boltzmann constant k = 1.380 · 10−23 J/K. This implies that
the entropy S has the physical dimension (heat) energy per temperature (see Sect.
7.17.11 on page 654). Since ln pm = ln 2 · log2 pm, the relation between entropy and
information is given by

S = I · k ln 2.

Intuitively, the entropy S measures the disorder of a many-particle system in
physics. We have 0 ≤ S ≤ k lnM. Recent astronomical observations show that
our universe is expanding in an accelerated manner. This means that stars and
black holes decay after a long time.159 Hence the disorder of the universe increases,
that is, the entropy increases. This was postulated by Clausius (1822–1888) in 1865.
He called this the heat death of the universe.

Temperature and chemical potential as Lagrange multipliers. In order
to motivate the grand canonical ensemble, let us study the following maximum
problem:

S = −k
M
X

m=1

pm ln pm = max!, p ∈ C (7.297)

with the unit cube C := {(p1, . . . , pM} : 0 ≤ p1, . . . , pM ≤ 1} and the constraints

Ē =

M
X

m=1

pmEm, N̄ =

M
X

m=1

pmNm, p1 + . . . + pM = 1. (7.298)

Let M ≥ 2. We are given the positive numbers E1, . . . EM , N1, . . . , NM and Ē, N̄ .
We are looking for a solution (p1, . . . , pM ).

159 F. Adams and G. Laughlin, A dying universe: the long-term fate and evolution
of astrophysical objects, Rev. Mod. Phys. 69 (1997), 337–372.
F. Adams and G. Laughlin, The Five Ages of the Universe: Inside the Physics
of Eternity, Simon and Schuster, New York, 1999.
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Theorem 7.65 Consider (p1, . . . , pM ) given by (7.288) on page 639. Suppose that
the real parameter μ and the positive parameter T are fixed in such a way that the
constraints (7.298) are satisfied. In addition, assume that 0 < p1, . . . , pM < 1 and
that the matrix

0

B

@

E1 . . . EM

N1 . . . NM

1 . . . 1

1

C

A

has rank three. Then (p1, . . . , pM ) is the unique solution of the maximum problem
(7.297), (7.298).

Proof. (I) Local existence. We will use the sufficient solvability condition for the
Lagrangian multiplier rule (see Prop. 43.23 of Zeidler (1986), Vol. III (see the ref-
erences on page 1049). To this end, set

L := S + α

 

Ē −
X

m

pmEm

!

+ β

 

N̄ −
X

m

pmNm

!

+ γ

 

1−
X

m

pm

!

.

That is, we add the constraints (7.298) to the function S which has to be maximized.
The real numbers α, β, γ (called Lagrange multipliers) will be chosen below. For the
partial derivatives, we get

Lpm = −k ln pm − k − αEm − βNm − γ,

and

Lpjpm = −kδjm

pm
.

By (7.288), we choose μ, T and (p1, . . . , pM ) in such a way that the constraints
(7.298) are satisfied. Moreover, we set

α :=
1

T
, β := − μ

T
, γ := −k + k ln

X

m

e(μNm−Em)/kT .

Then Lpm = 0 for all m, and the matrix (−Lpjpm) is positive definite. This guar-
antees that our choice (p1, . . . , pM ) represents a local maximum of the entropy
function S under the constraints (7.298).

(II) Global existence. Since the entropy function S is concave, each local max-
imum of S on a convex set is always a global maximum. (We refer to Prop. 42.3
of Zeidler (1986), Vol. III (see the references on page 1049), and note that −S is
convex.)

(III) Uniqueness. On the boundary of the cube C, the entropy function S van-
ishes. Therefore, any solution of (7.297), (7.298) lies in the interior of C. Since the
matrix (−Spjpm) is positive definite, the function S is strictly concave on the inte-
rior of C. This implies the uniqueness of the solution (see Theorem 38.C. of Zeidler
(1986), Vol. III). �

In the special case where the particle numbers are fixed, we use the choice
N1 = . . . = NM = N̄ , and μ = 0. Then we have merely to assume that the matrix

 

E1 . . . EM

1 . . . 1

!

has rank two, that is, there exist at least two different energies.
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7.17.5 Semiclassical Statistical Physics

In semiclassical statistical physics, the extended algebra of observables is a
commutative ∗-algebra of functions, and the states are generated by some
probability measure.

Folklore

The key relation reads as

Ā :=

Z

M

A(q, p)�(q, p)
dqdp

h
.

Here, we use the product set M := B × R, where B is a closed interval on the real
line. We are given the bounded continuous function A : M → C and the bounded
continuous function � : M → [0,∞[ with the normalization condition

Z

M

�(q, p)
dqdp

h
= 1.

Then the function � represents a probability density on the phase space M , and Ā
is the mean value of the function A = A(q, p). Traditionally, this function is called
a (physical) observable iff it is real-valued.160 The square of the mean fluctuation
is given by

(ΔA)2 =

Z

M

(A(q, p)− Ā)2�(q, p)
dqdp

h
.

In terms of physics, we consider an ideal gas161 on the interval B, that is, the position
coordinate q of a single gas particle lives on the interval B, and the momentum
coordinate p lives on the real line R. If H = H(q, p) is the Hamiltonian function of
a single gas particle, then we choose the function

�(q, p) :=
e−H(q,p)/kT

R

M
e−H(q,p)/kT dqdp

h

.

This function generates the semiclassical Gibbs statistics.162 Here, T is the absolute
temperature, k is the Boltzmann constant, and h is Planck’s quantum of action.
For example, if the gas particles behave like harmonic oscillators, then we choose

H(q, p) = p2

2m
+ mω2q2

2
. We need the physical constants k and h in order to guarantee

that both the quantities H(q,p)
kT

and dqdp
h

are dimensionless. This implies that the

function e−H(q,p)/kT makes sense, the probability density � is dimensionless, and
the mean value Ā has the same dimension as the physical observable A(q, p). For
example, if we choose A(q, p) := H(q, p), then NH̄ is the mean energy of the ideal
gas at the temperature T , where N is the number of gas particles. The function

S(q, p) = −k�(q, p) ln �(q, p)

160 Note that the algebra of observables to be introduced below is not only based on
real-valued functions, but on complex-valued functions in order to get a complex
∗-algebra.

161 An ideal gas is characterized by the property that there are no interactions
between the gas particles, that is, the single gas particles behave like independent
random objects.

162 Gibbs (1839–1903).
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corresponds to the entropy, and NS̄ is the entropy of the ideal gas at the temper-
ature T . If C is a compact subset of the phase space M , then the integral

Z

C

�(q, p)
dqdp

h

is the probability for finding the position-momentum coordinate (q, p) of a single
gas particle in the set C. Let us translate this into the language of ∗-algebras.

The extended ∗-algebra A of observables. Let A denote the set of all
bounded continuous functions A : M → C. With respect to the star operation
A∗(q, p) := A(q, p)† for all (q, p) ∈ M , the set A is a commutative ∗-algebra with
unit element 1.163 The ∗-algebra A is called the extended ∗-algebra of observables
(of the gas). Precisely the real-valued functions A in A are called observables. In
addition, equipped with the norm

||A|| := sup
(q,p)∈M

|A(q, p)|,

the ∗-algebra A becomes a normed space with

• ||A∗|| = ||A|| and ||A∗A|| = ||A||2 for all A ∈ A;
• ||1|| = 1.

Since the phase space M is an unbounded closed subset of R
2 (i.e., M is not

compact), the normed space A is not a Banach space. We call A an incomplete
C∗-algebra (or a pre-C∗-algebra).

States. Generally, states are functionals χ which assign a real number χ(A) to
each observable A. We define

χ(A) :=

Z

M

A(q, p)�(q, p)
dqdp

h
for all A ∈ A.

Then, for all A ∈ A, we have:

• χ(A∗A) =
R

M
A(q, p)†A(q, p)�(q, p) dqdp

h
≥ 0;

• χ(I) =
R

M
1 · �(q, p) dqdp

h
= 1.

• The map χ : A → C is linear.
• |χ(A)| ≤ sup(q,p)∈R2 |A(q, p)| = ||A||.
We call χ a state on the ∗-algebra A. This state corresponds to the probability
measure ν generated by the probability density � (i.e., dν = � dqdp

h
).

Dynamics. To avoid technicalities, choose J := R, that is, M = R
2. Motivated

by the classical equation of motion

q̇(t) = Hp(q(t), p(t)), ṗ(t) = −Hq(q(t), p(t)), t ∈ R (7.299)

with the initial condition q(0) = q0, p(0) = p0, we define

(UtA)(q0, p0) := A(q(t), p(t))

for all times t ∈ R and all initial points (q0, p0) ∈ R
2. We assume that, as for the

harmonic oscillator, the trajectories q = q(t), p = p(t) exist for all times. Then, for
each time t ∈ R, the map

Ut : A → A
163 Here, 1 is given by the function A(q, p) ≡ 1.
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is a ∗-automorphism. Thus, {Ut}t∈R is a one-parameter group of ∗-automorphisms
of the ∗-algebra A.

Our next goal is to prove that the dynamics of the gas corresponds to a family
{Ut}t∈R of unitary operators Ut on the Hilbert space L2(R

2). To this end, let
Apre denote the set of all smooth functions A : R

2 → C with compact support.
Obviously, Apre is a ∗-subalgebra of the ∗-algebra A of observables. In addition,
Apre is a dense subset of the Hilbert space L2(R

2) equipped with the inner product
〈A|B〉 :=

R

R2 A(q, p)†B(q, p)dqdp.

Proposition 7.66 Let A,B ∈ Apre. Then 〈UtA|UtB〉 = 〈A|B〉 for all t ∈ R.

This tells us that the dynamics of the gas respects the inner product on the
Hilbert space L2(R

2). Using this result and the extension theorem from Problem
7.21, we get the following.

Corollary 7.67 For any time t ∈ R, the operator Ut : Apre → A can be uniquely
extended to a unitary operator Ut : L2(R)→ L2(R).

It remains to prove Prop. 7.66. Using the equation (7.299) of motion, we get

d

dt
(UtA)(q0, p0) = Aq(q(t), p(t))Hp(q(t), p(t))−Ap(q(t), p(t))Hq(q(t), p(t)).

Noting that Hqp = Hpq, integration by parts yields
Z

R2
(A†

qHp −A†
pHq)Bdqdp = −

Z

R2
A†(BqHp −BpHq)dqdp.

This implies d
dt
〈UtA|UtB〉 = 〈 d

dt
UtA|UtB〉+ 〈UtA| d

dt
UtB〉 = 0. �

Generalization. The simple special case considered above can be generalized
to 2s-dimensional phase space manifolds M by starting from the key formula

Ā :=

Z

M

A(q, p)dν(q, p)

with
R

M
dν = 1. Here, (q, p) = (q1, . . . , qs; p1, . . . , ps). As a rule, the Hamiltonian

H = H(q, p) describes interactions between the particles; this corresponds to so-
called real gases.

For example, consider a gas consisting of N molecules in a box B of finite volume
V in the 3-dimensional space. Then s = 3N , and M = BN × R

3N . Moreover,

dν := �(q, p)
dq3Ndp3N

h3NN !
with �(q, p) :=

e−H(q,p)/kT

R

M
e−H(q,p)/kT dq3N dp3N

h3N N !

.

We assume that the function � is invariant under permutations of the particles. The
factorial N ! takes the Pauli principle into account (principle of indistinguishable
particles). If we introduce the partition function

Z(T, V ) :=

Z

M

e−H(q,p)/kT dq3Ndp3N

h3NN !
,

then we obtain the following thermodynamic quantities:

• Free energy: F (T, V ) := −kT lnZ(T, V ).
• Entropy: S(T, V ) = −FT (T, V ).
• Pressure: P (T, V ) = −FV (T, V ).
• Mean energy: Ē(T, V ) = F (T, V ) + TS(T, V ).
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7.17.6 The Classical Ideal Gas

Let us consider an ideal gas which consists of N freely moving molecules of mass
m. The fixed particle number N is assumed to be large (of magnitude 1023). We
assume that the molecules move in a 3-dimensional box B of volume V . Then the
following hold:

(i) Free energy: F = −NkT (1 + ln V (2πmkT )3/2

Nh3 ).

(ii) Entropy: S = Nk
“

5
2

+ ln V (2πmkT )3/2

Nh3

”

.

(iii) Energy: E = 3
2
NkT.

(iv) Energy fluctuation: ΔE
E

=
q

2
3N

.

(v) Pressure: P = NkT/V.
(vi) Maxwell’s velocity distribution: Fix the origin O and consider the velocity

vector v = OP. The probability of finding the endpoint P of the velocity
vector v of a single molecule in the open subset C of R

3 is given by the Gaussian
integral

“ m

2πkT

”3/2
Z

C

e−mv2/2kT d3v. (7.300)

Here, mv2/2 is the kinetic energy of the freely moving molecule, and the nor-
malization factor guarantees that the probability is equal to one if C = R

3.

The experience of physicists shows that these formulas are valid if the temperature
T is sufficiently high.164 Let us compute (i) through (vi). We start with the energy

function H =
PN

j=1

p2
j

2m
. The partition function reads as

Z =

Z

BN×R3N

e−H(P)/kT d3Nq d3Np

h3NN !
=

V N

h3NN !

„

Z

R

e−p2/2mkT dp

«3N

=
V N (2πmkT )3N/2

h3NN !
∼
„

eV (2πmkT )3/2

Nh3

«N

.

Here, to simplify computations, we use the approximation165 1
N !
∼
`

e
N

´N
. Parallel

to (i)–(vii) on page 640 with μ = 0, we get the following formulas

F = −kT lnZ, S = −FT , E = F + TS, P = −FV

and (ΔE)2 = kT 2ET . By straightforward computations, we obtain the desired
formulas (i) through (v). To get (vi), we start with the Gibbs distribution

164 More precisely, we asssume that V (2πmkT )3/2

Nh3 is small. This means that the de

Broglie wave length λ := h/(2πmkT )1/2 is small compared with the mean dis-

tance (V/N)1/3 of the molecules.
165 This can be motivated by the Stirling formula

1

N !
=
“ e

N

”N

· 1

eϑ(N)/12N
√

2πN
, N = 1, 2, . . .

where 0 < ϑ(N) < 1. Hence 1
N !

= eN(1+o(N))

NN as N →∞.
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�(p1, . . . ,pn) =
e−

Pn
j=1 p2

j /2mkT

R

BN×R3N e−
PN

j=1 p2
j /2mkT d3N q d3N p

h3N N !

=

N
Y

j=1

ν(pj)

where

ν(p) :=
e−p2/2mkT

V
R

R3 e−p2/2mkT d3p

h3(N !)1/N

=
h3(N !)1/Ne−p2/2mkT

V (2πkT )3/2
.

We assume that the single molecules move independently. Thus, it is reasonable
to regard the function ν as the distribution function for a single molecule. For the
mean momentum of a single molecule, we obtain

p̄ =

Z

B×R3
ν(p)p

d3q d3p

h3(N !)1/N
.

Using p = mv, we get the mean velocity v̄ =
R

R3 ve−mv2/2kT
`

m
2πkT

´3/2
d3v which

motivates (vi).

7.17.7 Bose–Einstein Statistics

Let us consider the following situation which frequently arises in quantum statis-
tics. Suppose that the system Γ (e.g., a gas of photons) consists of particles that
may assume one of the energy values ε0, . . . , εM . By definition, a state of Γ is
characterized by

ε0, ε1, . . . , εJ ; n0, n1, . . . , nJ . (7.301)

This means that precisely nj particles of Γ have the energy εj , where the index j
runs from 0 to J . For each such state, the particle number N and the energy E are
given by

N =

J
X

j=0

nj , E =

J
X

j=0

njεj .

Therefore, the partition function is given by

Z(T, μ) :=
X

Γ

e(μN−E)/kT =

J
Y

j=0

X

nj

e(μnj−njεj)/kT .

Furthermore, we introduce the statistical potential

Ω(T, μ) := −kT lnZ(T, μ) = −kT
J
X

j=0

ln
X

nj

“

e(μ−εj)/kT
”nj

. (7.302)

We now make the crucial assumption that

Each occupation number nj may assume the values 0, 1, . . . , n.

This corresponds to bosons (that is, particles with integer spin, e.g., photons). Using
the geometric series, Ω(T, μ) is equal to

−kT
J
X

j=0

ln

n
X

nj=0

“

e(μ−εj)/kT
”nj

= −kT
J
X

j=0

ln
1− e(n+1)(μ−εj)/kT

1− e(μ−εj)/kT
.
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Furthermore, assume that the maximal occupation number n is very large and
μ− εj < 0 for all j. Letting n→∞, we get the final statistical potential

Ω(T, μ) = kT
J
X

j=0

ln
“

1− e(μ−εj)/kT
”

.

By (7.290) on page 640, N = −Ωμ, S = −ΩT , F = Ω +μN , and E = F +TS. This
yields the following.

(i) Mean particle number: N =
PJ

j=0 Nj where Nj := e
(μ−εj)/kT

1−e
(μ−εj)/kT .

(ii) Mean energy: E =
PJ

j=0 Njεj .

(iii) Free energy: F = Ω + μN.
(iv) Entropy: S = E−F

T
.

In particular, if each particle behaves like a quantum harmonic oscillator of angular
frequency ω, then εj = �ω(j + 1

2
). We have shown in Sect. 2.3.2 of Vol. I that

Planck’s radiation law is a consequence of the mean energy formula (ii) for the
quantum harmonic oscillator.

The Maxwell–Boltzmann statistics as a limit case for high tempera-
ture. In the special case where e(μ−εj)/kT � 1 (e.g., μ− εj < 0 and T is large), we
approximately obtain

Nj = e(μ−εj)/kT . (7.303)

This is called the classical Maxwell–Boltzmann statistics. which generalizes the
Maxwell velocity distribution (7.300) on page 648.

Bose–Einstein condensation as a limit case at low temperature. Sup-
pose that 0 ≤ ε0 < ε1 < ε2 < . . . . We expect that at low temperatures most of the
bosons are located in the ground state. In fact, by (i), for the particle numbers we
get

lim
T→+0

lim
μ→ε0−0

Nj(T, μ) =

(

+∞ if j = 0,

0 if j = 1, 2, . . .

This phenomenon is called Bose–Einstein condensation.

7.17.8 Fermi–Dirac Statistics

In contrast to the preceding section, we now assume that

Each occupation number nj may only assume the values 0, 1.

This corresponds to the Pauli exclusion principle for fermions (that is, particles
with half-integer spin, e.g., electrons).166 This yields

Ω(T, μ) = −kT
J
X

j=0

ln(1 + e(μ−εj)/kT ).

As in Sect. 7.17.7, we now obtain the following:s

166 More precisely, if s is the spin of the particles, then each energy value εj has to
be counted with the multiplicity 2s + 1.



7.17 A Glance at the Algebraic Approach to Quantum Physics 651

(i) Mean particle number: N =
PJ

j=0 Nj where Nj := e
(μ−εj)/kT

1+e
(μ−εj)/kT .

(ii) Mean energy: E =
PJ

j=0 Njεj .

(iii) Free energy: F = Ω + μN.
(iv) Entropy: S = E−F

T
.

If e(μ−εj)/kT � 1 (e.g., μ − εj < 0 and T is large), then we obtain the classical
Maxwell–Boltzmann statistics (7.303).

The Fermi ball as a limit case at low temperature. For the particle
numbers, we get

lim
T→+0

Nj(T, μ) =

(

1 if εj < μ,

0 if μ < εj .

This means that at low temperature each of the lowest energy levels is occupied
by precisely one particle. In contrast to Bose–Einstein condensation, by the Pauli
principle it is impossible that all of the particles are in the ground state. For ex-
ample, consider a gas of N electrons in a box of volume V in the limit case of
temperature T = 0. Since the electron has spin s = 1

2
, each cell of volume h3 in

the phase space contains two electrons with different spin orientations. Thus, if P
denotes the maximal momentum of the electrons at T = 0, then the phase space
volume 4

3
πP 3 · V contains N particles where

N =
2

h3
· 4
3
πP 3V.

The ball of radius P is called the Fermi ball of the N -particle electron gas at zero
temperature, and the surface of the Fermi ball is called the Fermi surface.

Applications of the Bose–Einstein statistics and the Fermi–Dirac statistics to
interesting physical phenomena can be found in Zeidler (1986), Vol. IV, Chap. 68
(see the references on page 1049). For example, this concerns Planck’s radiation
law for photon gases, as well as the Fermi ball which is crucial for computing
the critical Chandrasekhar mass of special stars called white dwarfs (see also N.
Straumann, General Relativity with Applications to Astrophysics, Springer, New
York, 2004). Using the methods of quantum field theory, the structure of Fermi
surfaces for electrons in a crystal is studied in M. Salmhofer, Renormalization: An
Introduction, Springer, Berlin, 1999.

7.17.9 Thermodynamic Equilibrium and KMS-States

The grand canonical example in finite quantum statistics. Let X be a
finite-dimensional complex Hilbert space, X �= {0}. Choose the density operator

�0 :=
eβ(μN−H)

tr eβ(μN−H)
.

Here, H,N : X → X are self-adjoint operators, and β > 0 and μ are real parame-
ters, with the temperature T , the Boltzmann constant k, the chemical potential μ,
and β = 1/kT. In the language of C∗-algebras, the following hold.

• The extended C∗-algebra A = L(X,X) of observables consists of all linear oper-

ators A : X → X equipped with the norm ||A|| :=
p

tr(A∗A).
• The states are defined by χ0(A) := tr(�0A) for all A ∈ A.
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• The dynamics of the state χ0 is given by

χt(A) := tr(�0UtA)

for all A ∈ A and all times t ∈ R. Here, Ut(A) := eitH/�Ae−itH/� .

Proposition 7.68 The state χ0 corresponding to the density operator �0 and the
dynamics {χt}t∈R is a KMS-state of temperature T .

Proof. Set Z := tr(eβ(μN−H)). To simplify notation, choose μ := 0 and � := 1.
Then

χ0(A) = tr(�0A) = Z−1 tr(e−βHA).

Noting the commutativity property of the trace, tr(CD) = tr(DC), we get

Zχ0(Ut−iβ(B)A) = tr(e−βHei(t−iβ)HBe−i(t−iβ)HA) = tr(eitHBe−itHe−βHA)

= tr(e−βHAeitHBe−itH) = Zχ0(AUt(B)).

�

Example. As a typical example, choose the operators H and N in such a way
that

Hψj = Ejψj , Nψj = Njψj , j = 1, . . . , n

where ψ1, . . . , ψn is an orthonormal basis of X, and Ej , Nj are nonnegative numbers
for all j. Then �0ψj = pjψj with

pj =
eβ(μNj−Ej)

Pn
j=1 eβ(μNj−Ej)

.

The operator H (resp. N) is called the Hamiltonian with the energy levels
E1, . . . , En (resp. the particle operator with the particle numbers N1, . . . , Nn.)

7.17.10 Quasi-Stationary Thermodynamic Processes and
Irreversibility

In the huge factory of natural processes, the principle of entropy occu-
pies the position of manager, for it dictates the manner and method of
the whole business, whilst the principle of energy merely does the book-
keeping, balancing debits and credits. . .
Life on the earth needs the radiation of the sun. Our conditions of existence
require a determinate degree of temperature, and for the maintenance of
this there is needed not addition of energy, but addition of entropy.167

Robert Emden, 1938

Let us study the sufficiently regular time-evolution of the grand canonical ensem-
ble. By a quasi-stationary process of the grand canonical ensemble, we understand
smooth time-depending functions of temperature, chemical potential, and volume:

T = T (t), μ = μ(T ), V = V (t), t0 ≤ t ≤ t1. (7.304)

By (7.290) on page 640, this yields the following quantities:

E = E(t), N = N(t), S = S(t), P = P (t), t0 ≤ t ≤ t1.

167 R. Emden, Why do we have winter heating? Nature 14 (1938), 908–909.
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Here, E is the mean energy, N is the mean particle number, S is the entropy, and
P is the pressure.168 From the physical point of view, this is an idealization. We
assume that the physical system is in thermodynamic equilibrium at each time t. In
reality, a certain relaxation time is needed in order to pass from a thermodynamic
equilibrium state to a new one. Let Q(t) be the heat added to the physical system
during the time interval [t0, t]. We postulate that, for all times t in the interval
[t0, t1], the process (7.304) has the following properties.

(i) The first law of thermodynamics: Ė(t) = Q̇(t)− P (t)V̇ (t) + μ(t)Ṅ(t).

(ii) The second law of thermodynamics: T (t)Ṡ(t) ≥ Q̇(t).

(iii) The third law of thermodynamics. Suppose that the temperature T (t) goes
to zero as t → t1 − 0. Then so do the entropy S(t) and its partial derivatives
ST (t), Sμ(t), SV (t).

The first law describes conservation of energy. To discuss the second law, let us
introduce the external entropy

Se(t) := S(t0) +

Z t

t0

Q̇(τ)

T (τ)
dτ, t0 ≤ t ≤ t1,

which depends on the heat added to the system. In addition, we introduce the
remaining internal entropy Si(t) := S(t)− Se(t). Then

Ṡe(t) =
Q̇(t)

T (t)
, Ṡi(t) ≥ 0, t0 ≤ t ≤ t1.

Assume that t0 = −t1 where t1 > 0. If the quasi-stationary process (7.304) has the
property that also the time-reflected process

T = T (−t), μ = μ(−T ), V = V (−t), t0 ≤ t ≤ t1

is quasi-stationary, then the process is called reversible. In this case, because of
d
dt
S(−t) = −( d

dt
S)(−t), the second law tells us that

−T (−t)Ṡ(−t) ≥ Q̇(−t), −t1 ≤ t ≤ t1.

This implies

T (t)Ṡ(t) ≥ Q̇(t), −T (t)Ṡ(t) ≥ Q̇(t), −t1 ≤ t ≤ t1.

Hence T (t)Ṡ(t) = Q̇(t) for all t ∈ [−t1, t1]. This means that the internal entropy
Si vanishes on the time interval [−t1, t1]. Processes are called irreversible iff they
are not reversible. Typically, the time-evolution of living beings is irreversible. A
more detailed discussion can be found in Zeidler (1986), Vol. IV, Chap. 67 (see the
references on page 1049).

The thermodynamic limit and phase transitions. If the volume V of
the physical system goes to infinity, V → ∞, then this limit is called the thermo-
dynamic limit by physicists. Then it may happen that important thermodynamic
quantities become singular for appropriate parameters (e.g., temperature T ). These
singularities correspond to phase transitions (e.g., the transition from water to ice).
Phase transitions play a fundamental role for understanding critical phenomena in
nature (e.g., the inflation of the very early universe and the emergence of the three
fundamental forces during the cooling process of the hot universe after the Big

168 To simplify notation, we write E and N instead of Ē and N̄ , respectively.
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Bang).169 In terms of statistical physics, phase transitions correspond to a strong
increase of fluctuations. We will encounter this in later volumes. As an introduc-
tion to the rigorous theory of phase transitions, we recommend the classical survey
article by Griffith.170

7.17.11 The Photon Mill on Earth

Living objects store a lot of information related to the genetic code. There arises the
following question in physics: where does this information come from? The solution
of this interesting problem is given by the entropy relation

ΔSe =
ΔQ

Tin
− ΔQ

Tout
,

which is called the photon mill on earth. In fact, the sun sends photons to the earth
at the temperature Tin = 5800 K, which is the high surface temperature of the sun.
Most of these photons are reflected by the surface of earth, and they are sent to
the universe at the lower temperature Tout = 260 K. Since Tin > Tout, the earth
radiates the amount of entropy ΔSe into the universe. More precisely, during one
second, the surface of earth gets the heat energy ΔQ = 1017 J from the sun. Hence
the entropy loss of earth during one second is equal to

ΔSe = −4 · 1014 J/K.

This means that one square meter of the surface of earth radiates the entropy of
about 1 J/K during one second into the universe. The radiated entropy decreases
the disorder on earth, that is, the earth gains order. This is mainly the informa-
tion stored in living objects. Physicists describe this by saying that energy at a
higher temperature has a higher quality than the same amount of energy at a lower
temperature.

7.18 Von Neumann Algebras

In order to deeply understand the mathematical structure of quantum
mechanics, John von Neumann studied a special class of operator algebras.
Nowadays these algebras are called von Neumann algebras.171

Each von Neumann algebra is a C∗-algebra. But the converse is seldom
true.

Folklore

169 See G. Börner, The Early Universe: Facts and Fiction, Springer, Berlin, 2003.
Ø. Grøn and S. Hervik, Einstein’s Theory of General Relativity: with Modern
Applications in Cosmology, Springer, New York, 2007.
S. Weinberg, Cosmology, Oxford University Press, 2008.

170 R. Griffith, Rigorous results and theorems. In: C. Domb and M. Green (Eds.),
Phase transitions and critical phenomena, Academic Press, New York, 1970, pp.
9–108.

171 F. Murray and J. von Neumann, On rings of operators, Ann. Math. 37 (1936),
116–229.
J. von Neumann, On rings of operators: reduction theory, Ann. Math. 50 (1949),
401–485.
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The theory of von Neumann algebras has been growing in leaps and bounds
in the last 20 years. It has always had strong connections with ergodic the-
ory and mathematical physics. It is now beginning to make contact with
other areas such as differential geometry and K-theory. . . The book com-
mences with the Murray–von Neumann classification of factors, proceeds
through the basic modular theory (the Tomita–Takesaki theory) to the
Connes classification of von Neumann algebras of type IIIλ, and con-
cludes with a discussion of crossed-products, Krieger’s ratio set, examples
of factors, and Takesaki’s duality theorem.172

Viakalathur Sunder, 1987

In what follows, X is a complex separable non-trivial Hilbert space (i.e., X �= {0}).

7.18.1 Von Neumann’s Bicommutant Theorem

Commutant. Commutation relations play a crucial role in quantum mechanics. In
particular, if two observables commute, then it is possible that they have common
eigenvectors, that is, they can be sharply measured at the same time. This motivated
John von Neumann to investigate commutants of algebras. Consider the C∗-algebra
L(X,X) of the linear continuous operators

A : X → X.

Let S be a subset of L(X,X). By definition, the operator A ∈ L(X,X) belongs to
the commutant S ′ of the set S iff

AS = SA for all S ∈ S.

Naturally enough, we set S ′′ := (S ′)′ and call this the bicommutant of the set S.
Obviously, S ⊆ S ′′. Von Neumann studied the special case where S = S ′′. A subset
A of L(X,X) is called a ∗-subalgebra iff A,B ∈ L(X,X) and α, β ∈ C imply that
the operators αA + βB,AB,A∗ are also contained in L(X,X).

By definition, a von Neumann algebra is a ∗-subalgebra A of L(X,X) with
unit element and A′′ = A.

This definition is purely algebraic. Equivalently, one can characterize von Neumann
algebras in topological terms by using weak convergence. Let us discuss this.

Weak operator convergence. Let (An) be a sequence of linear operators
An : X → X in L(X,X), n = 1, 2, . . . We write

w − lim
n→∞

An = A

iff A ∈ L(X,X) and limn→∞〈ψ|Anϕ〉 = 〈ψ|Aϕ〉 for all ψ,ϕ ∈ X. This is called
the weak operator convergence. This corresponds to the convergence of matrix
elements. In terms of physics, this guarantees the convergence of expectation values.
Generalizing this, let (Aν)ν∈N be a generalized sequence in L(X,X) with a directed
index set N (see page 240). We write

w − lim
ν→∞

Aν = A (7.305)

iff A ∈ L(X,X) and limν→∞〈ψ|Aνϕ〉 = 〈ψ|Aϕ〉 for all ψ,ϕ ∈ X, in the sense of
generalized convergence. In addition, let us introduce the following two notions of
convergence.

172 V. Sunder, An Invitation to von Neumann Algebras, Springer, Berlin, 1987
(reprinted with permission).
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• s− limν→∞ Aν = A iff limν→∞ ||(A−Aν)ϕ|| = 0 for all ϕ ∈ X (strong operator
convergence);

• u− limν→∞ Aν = A iff limν→∞ ||Aν −A|| = 0 (uniform operator convergence).

Recall that ||Aν−A|| = sup||ϕ||≤1 ||(Aν−A)ϕ||. This justifies the notion of uniform
operator convergence.

Semi-norms. A map p : L → R on the complex (resp. real) linear space L is
called a semi-norm iff for all A,B ∈ L and all complex (resp. real) numbers α the
following hold:

• p(A) ≥ 0,
• p(αA) = |α|p(A), and
• p(A + B) ≤ p(A) + p(B).

If, in addition, p(A) = 0 implies A = 0, then p is a norm.
Topologies on L(X,X). (i) Weak operator topology. For fixed ψ,ϕ ∈ X, define

pψ,ϕ(A) := |〈ψ|Aϕ〉| for all A ∈ L(X,X).

This is a semi-norm on L(X,X). A subset S of L(X,X) is called weakly open iff,
for each operator A0 ∈ S, there exist a finite family ψ1, ϕ1, . . . , ψn, ϕn of elements
in X and a number ε > 0 such that the set

{A ∈ L(X,X) : pψj ,ϕj (A−A0) < ε, j = 1, . . . , n}

is contained in S. This generates a topology on L(X,X) called the weak operator
topology. A subset of L(X,X) is called weakly closed iff its complement in L(X,X)
is weakly open.

A subset S of L(X,X) is weakly closed iff, for all generalized sequences
(Aν) in S, it follows from w − limν→∞ Aν = A that A ∈ S.
(ii) Strong operator topology. Similarly, we obtain the strong operator topology

by replacing pψ,ϕ by the semi-norm pϕ(A) := ||Aϕ||. A subset S of L(X,X) is called
strongly open iff, for each operator A0 ∈ S, there exist a finite family ϕ1, . . . , ϕn of
elements in X and a number ε > 0 such that the set

{A ∈ L(X,X) : pϕj (A−A0)} < ε, j = 1, . . . , n}

is contained in S. This generates a topology on L(X,X) called the strong operator
topology. A subset of L(X,X) is called strongly closed iff its complement in L(X,X)
is strongly open.

A subset S of L(X,X) is strongly closed iff, for all generalized sequences
(Aν) in S, it follows from s− limν→∞ Aν = A that A ∈ S.
(iii) Uniform operator topology. This topology is obtained by replacing pϕ by

the norm p(A) := ||A||. A subset S of L(X,X) is called uniformly open iff, for each
operator A0 ∈ S, there exists a number ε > 0 such that the set

{A ∈ L(X,X) : p(A−A0) < ε}

is contained in S. This generates a topology on L(X,X) called the uniform operator
topology.173 A subset of L(X,X) is called uniformly closed iff its complement in
L(X,X) is uniformly open.

173 This topology coincides with the topology induced by the Banach space structure
on L(X,X).
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A subset S of L(X,X) is uniformly closed iff, for all classical sequences
(An)n∈N in S, it follows from u− limn→∞ An = A that A ∈ S.
The bicommutant theorem. The topological characterization of von Neu-

mann algebras reads as follows.

Theorem 7.69 Let X be a complex separable non-trivial Hilbert space. For a given
∗-subalgebra A of L(X,X) with unit element, the following three statements are
equivalent:

(i) A is a von Neumann algebra (i.e., A′′ = A).
(ii) A is weakly closed in L(X,X).
(iii) A is strongly closed in L(X,X).

More general, the following hold: If A is a ∗-subalgebra of L(X,X) with unit
element, then the closure of A in the weak (resp. strong) topology on L(X,X)
coincides with the bicommutant A′′.

Corollary 7.70 A ∗-subalgebra algebra of L(X,X) is a C∗-algebra iff it is uni-
formly closed in L(X,X).

Consequently, each von Neumann algebra is a C∗-algebra. But the converse is sel-
dom true. For the proofs, we refer to P. Kadison and J. Ringrose, Fundamentals of
the Theory of Operator Algebras, Vol. 1, Academic Press, New York, 1983. Many
beautiful applications of von Neumann algebras to harmonic analysis can be found
in

K. Maurin, Generalized Eigenfunction Expansions and Unitary Represen-
tations of Topological Groups, PWN, Warsaw, 1968.

Examples. Suppose that the operator A ∈ L(X,X) is self-adjoint (i.e.,
A∗ = A). The bicommutant A′′ of the one-point set A := {A} is the smallest
von Neumann algebra in L(X,X) containing the self-adjoint operator A.

Let S be a subset of L(X,X) with the property that A ∈ S implies A∗ ∈ S.
Then:

(i) The commutant S ′ is a von Neumann algebra.
(ii) The bicommutant S ′′ is the smallest von Neumann algebra in L(X,X) con-

taining the set S.
(iii) S ′ = S ′′′.

By induction, this implies S ′ = S2n+1 and S ′′ = S2n+2 for all n = 1, 2, . . . That is,
all of the higher commutants are determined by S ′ and S ′′.

A von Neumann algebra is called a factor iff its center A ∩A′ is trivial (i.e., it
consists of the multiples of the unit operator, A ∩A′ = {αI : α ∈ C}).

The classification problem for von Neumann algebras. By von Neu-
mann’s spectral theory, a self-adjoint operator A ∈ L(X,X) on the Hilbert space
X can be represented by orthogonal projection operators Eλ (λ ∈ R) called the
spectral family of A. Now we consider the following generalization:

• self-adjoint operator ⇒ von Neumann algebra,
• spectral family ⇒ factors.

The building blocks of factors are orthogonal projections.

In contrast to general C∗-algebras, von Neumann algebras possess a rich
structure of orthogonal projections.
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Since orthogonal projections are observables corresponding to “questions,” von Neu-
mann algebras represent a nice tool for describing physical processes in quantum
theory. Murray and von Neumann showed that each von Neumann algebra can
be represented as a direct sum (or, more general, as a direct integral) of factors.
Therefore it remains to classify the factors.174

7.18.2 The Murray–von Neumann Classification of Factors

Let X be a complex separable non-trivial Hilbert space, and let the subset A of
L(X,X) be a von Neumann algebra which is a factor. The factor A is said to be of
type I, II, III iff it satisfies the following conditions, respectively:

Type I: A contains a minimal projection.
Type II: A contains no minimal projection, but does contain a non-zero projection.
Type III: A contains no non-zero finite projection.

Here, we use the following terminology. Let P(A) be the set of all orthogonal
projections P ∈ A. For P,Q ∈ A, we write Q ∼ P iff there exists an operator
U ∈ A such that Q = UU∗ and P = U∗U . This is an equivalence relation on P(A).

• The orthogonal projection P is called finite iff it follows from Q(X) ⊆ P (X) and
Q ∼ P that Q = P.

• The orthogonal projection P is called minimal iff the following three conditions
are satisfied:
(α) P �= 0.
(β) P (X) is invariant under A′.
(γ) If a linear subspace Y of P (X) is invariant under A′, then Y is trivial (i.e.,
Y = {0} or Y = P (X)).
Minimal projections are always finite (and non-zero).

For example, if A = L(X,X), then P is finite iff the projection space P (X) is finite-
dimensional. Moreover, precisely the orthogonal projections onto one-dimensional
linear subspaces are minimal.

The generalized dimension function of factors. For each factor A, there
exists a function d : P(A)→ [0,∞] which has the following properties:

(i) Q ∼ P iff d(Q) = d(P ).
(ii) If P (X) is orthogonal to Q(X), then d(P + Q) = d(P ) + d(Q).
(iii) P is finite iff d(P ) <∞, and d(P ) = 0 iff P = 0.

The function d is uniquely determined, up to a positive multiplicative constant. For
a suitable choice of this constant, the function d has the following range:

Type In : {0, 1, . . . , n}, where n = 1, 2, . . . or n =∞.
Type II1: [0, 1].
Type II∞: [0,∞].
Type III: {0,∞}.
A factor A is of type In iff A = L(X,X) where dimX = n. In this simple case,
d(Q) = dimP (X).

174 Direct integrals of Hilbert spaces generalize direct sums of Hilbert spaces by
summing over general index sets with respect to a measure. This will be con-
sidered in Vol. IV on quantum mathematics (see also K. Maurin, Generalized
Eigenfunction Expansions and Unitary Representations of Topological Groups,
PWN, Warsaw, 1968).
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7.18.3 The Tomita–Takesaki Theory and KMS-States

The Tomita–Takesaki theorem is a beautiful example of “prestabilized
harmony” between physics and mathematics.175

On the one hand, it is intimately related to the Kubo–Martin–Schwinger
(KMS) condition. On the other hand it initiated a significant advance in
the classification theory of von Neumann algebras and led to powerful
computational techniques.

Rudolph Haag, 1996

KMS-states in thermodynamic equilibrium. The physicists Kubo, Martin and
Schwinger discovered in the late 1950s that states of thermodynamic equilibrium
can be characterized by special analyticity properties of the Green’s function.176

In 1967 it was shown by Haag, Hugenholtz, and Winnink that this can be for-
mulated in terms of von Neumann algebras. In fact, it turned out that this was
closely related to the so-called Tomita–Takesaki theory for von Neumann algebras,
which was created by the Japanese mathematician Tomita in the 1960s, by purely
mathematical motivation.177 Roughly speaking, the Tomita–Takesaki theory for-
mulates conditions which guarantee the existence of a dynamics on a von Neumann
algebra that can be used in order to describe the dynamics of a physical state in
thermodynamic equilibrium.

The basic mathematical idea of the Tomita–Takesaki theory. Let A be
a von Neumann algebra of operators on the complex separable non-trivial Hilbert
space X. Suppose that there is a vector ψ0 in X which has the following two
properties:

• ψ0 is cyclic, that is, the set {Aψ0 : A ∈ A} is dense in X.
• ψ0 is separating, that is, if A,B ∈ A and A �= B, then Aψ0 �= Bψ0.

Define the operator S : dom(S)→ X by setting178

S(Aψ0) := A∗ψ0 for all A ∈ A.

Then, the operator S has a closure S̄. By Problem 7.24, there exists the unique
polar decomposition

S = JΔ1/2

with the following properties:

• The so-called modular operator Δ := S̄∗S̄ is self-adjoint and 〈ψ|Δψ〉 ≥ 0 for all
ψ ∈ dom(Δ).

175 The term “prestabilized harmony” was introduced by Leibniz (1646–1716) in his
philosophy of monads (which are ultimate units of being).
R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer, Berlin,
1996 (reprinted with permission).

176 R. Kubo, Statistical mechanical theory of irreversible processes, J. Math. Soc.
Japan 12 (1957), 570–586.
P. Martin and J. Schwinger, Theory of many-particle systems. Phys. Rev. 115
(1959), 1342–1373.

177 R. Haag, N. Hugenholtz, and M. Winnink, On the equilibrium states in quantum
statistical mechanics, Commun. Math. Phys. 5 (1967), 215–236.
M. Takesaki, Tomita’s Theory of Modular Hilbert Algebras and Its Applications,
Springer, Berlin, 1970.

178 Since A∗(αϕ) = α†A∗ϕ for all complex numbers α, the operator S is antilinear,
that is, A(αϕ + βψ) = α†A + β†B for all ϕ,ψ ∈ X and all α, β ∈ C.
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• The so-called modular conjugation operatorJ : X → X is antiunitary, and it has
the property J2 = I.179

For all times t ∈ R, we have

ΔitAΔ−it = A,

and JAJ = A.180 Setting Ut(A) := ΔitAΔ−it for all A ∈ A, the map

Ut : A → A

is a C∗-automorphism of the von Neumann algebra A, and the family {Ut}t∈R

forms a one-parameter group of C∗-automorphisms on A (see page 634). These
C∗-automorphisms are called modular automorphisms.

For the general mathematical theory of von Neumann algebras together with
numerous applications to quantum physics, see the hints for further reading on page
677. We will come back to this in Vol. IV on quantum mathematics.

7.19 Connes’ Noncommutative Geometry

The abstract theory of commutative Banach algebras was initiated by
Mazur (1905–1981) in 1936, but it blossomed in the hands of Gelfand
(born 1913), who in one brilliant study gave it the final perfect shape.
This was the Gelfand theory of maximal ideals, or the Gelfand spectral
theory looking at it the other way. . . The Gelfand spectral theory soon
became a powerful tool and a bonanza of new ideas. Gelfand himself,
Naimark (1909–1978), and others of his co-workers found a multitude of
models and applications.181

Krysztof Maurin, 1968

Noncommutative geometry amounts to a program of unification of math-
ematics under the aegis of the quantum apparatus, that is, the theory of
operators and of C∗-algebras. Largely the creation of a single person, Alain
Connes, noncommutative geometry is just coming of age as the new century
opens.182 The bible of the subject is, and will remain, Connes’ Noncommu-
tative Geometry (1994), itself the “3.8 expansion” of the French Géométrie
non commutative from 1990. These are extraordinary books, a “tapestry”
of physics and mathematics, in the words of Vaughan Jones, and the work
of a “poet of modern science,” according to Daniel Kastler, replete with
subtle knowledge and insights apt to inspire several generations.

179 That is, for all ϕ,ψ ∈ X and all complex numbers, we have 〈Jψ|Jϕ〉 = 〈ψ|ϕ〉†,
and the operator J is antilinear.

180 By definition, BAC := {BAC : A ∈ A.}.
181 K. Maurin, Generalized Eigenfunction Expansions and Unitary Representations

of Topological Groups, Polish Scientific Publishers, Warsaw, 1968 (reprinted with
permission). See also the footnote on page 628.

182 Alain Connes (born 1947) works at the Collège de France, Paris, and at the

l’Institut des Hautes Études Scientifiques (IHES) (Institute of Advanced Scien-
tific Studies), Bures-sur-Yvette (near Paris). For his contributions to the theory
of von Neumann algebras of type III, Connes was awarded the Fields medal in
1983. See A. Connes, Une classification des facteurs de type III, Ann. Scient.

École Norm. Sup. 6 (1973), 133–252 (in French).
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Despite an explosion of research by some of the world’s leading mathe-
maticians, and a bouquet of applications – to the reinterpretation of the
phenomenological Standard Model of particle physics as a new space-time
geometry, the quantum Hall effect, strings, renormalization and more in
quantum field theory – the six years that have elapsed since the publica-
tion of Noncommutative Geometry have seen no sizeable book returning
to the subject. This volume aspires to fit snugly in that gap, but does not
pretend to fill it. It is rather meant to be an introduction to some of the
core topics of Noncommutative Geometry.183

José Gracia-Bondia, Joseph Várilly, and Héctor Figueroa, 2001

If M is a nonempty compact separated topological space (e.g., a bounded closed
subset of R

n), then the C∗-algebra C(M) knows a lot about the geometry of M.
For example, for a given point P , the set JP of all continuous functions

f : M → C

with f(P ) = 0 forms a maximal C∗-ideal of C(M).184 Conversely, each maximal
C∗-ideal of C(M) can be obtained this way. Thus,

P �→ JP

is a bijective map between the space M and the set of maximal ideals of the function
algebra C(M). Furthermore, the Gelfand–Naimark structure theorem tells us that,
for each commutative C∗-algebra A, we have the C∗-isomorphism

A � C(M)

where M is the set of maximal C∗-ideals of A.
The basic idea of Connes’ noncommutative geometry is to replace commu-
tative C∗-algebras by noncommutative C∗-algebras.

In this setting, properties of noncommutative geometry are identified with prop-
erties of noncommutative C∗-algebras. This identification is motivated by the cor-
responding identification between classical geometric properties and properties of
commutative C∗-algebras. From the physical point of view, the idea is that states
and observables are primary, but space and time are secondary. For example, physi-
cists assume that space and time did not exist shortly after the Big Bang of our
universe, but only physical states existed. The familiar structure of our space-time
was only created later on by a stochastic process. Furthermore, below the Planck
length it is assumed that space and time loose their classical properties in the
setting of quantum gravity. Therefore, noncommutative geometry is one of the can-
didates for creating a mathematical theory of quantum gravity. Noncommutative
geometry is based on so-called spectral triplets for elliptic Dirac operators. As an
introduction to noncommutative geometry, we recommend:

J. Várilly, Lectures on Noncommutative Geometry, European Mathemat-
ical Society 2006.

M. Paschke, An essay on the spectral action principle and its relation to
quantum gravity, pp. 127–150. In: B. Fauser, J. Tolksdorf, and E. Zeid-
ler (Eds.), Quantum Gravity: Mathematical Models and Experimental
Bounds, Birkhäuser, Basel, 2006.

183 J. Gracia-Bondia, J. Várilly, and H. Figueroa, Elements of Noncommutative
Geometry, Birkhäuser, Boston, 2001 (reprinted with permission).

184 This means that the C∗-ideal JP cannot be extended to a larger C∗-ideal of
C(M) which is different from the trivial ideal C(M).
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We also refer to the comprehensive monograph:

M. Gracia-Bondia, J. Várilly, and H. Figueroa, Elements of Noncommuta-
tive Geometry, Birkhäuser, Boston, 2001.

A detailed study of the applications of noncommutative geometry to the Standard
Model in particle physics can be found in the comprehensive monograph:

A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields,
and Motives, Amer. Math. Soc., Rhode Island, 2008.
Internet: http://www.math.fsu.edu/∼marcolli/bookjune4.pdf

In the 1930s, John von Neumann discovered that operator algebras play a funda-
mental role in the mathematical formulation of quantum mechanics. Noncommu-
tative geometry stands in this tradition and allows us to approach the Standard
Model in elementary particle physics.

In 2006 the first volume of the Journal of Noncommutative Geometry appeared.
The editor-in-chief is Alain Connes. The following list of topics covered by the
journal shows the scope of modern noncommutative geometry:

• operator algebras,
• Hochschild and cyclic cohomology,
• K-theory and index theory,
• measure theory and topology of noncommutative spaces,
• spectral geometry of noncommutative spaces,
• noncommutative algebraic geometry,
• Hopf algebras and quantum groups,
• foliations, gruppoids, stacks, gerbes,
• deformations and quantizations,
• noncommutative spaces in number theory and arithmetic geometry,
• noncommutative geometry in physics: quantum field theory, renormalization,

gauge theory, string theory, gravity, mirror symmetry, solid state physics, sta-
tistical mechanics.

7.20 Jordan Algebras

Let O(X) denote the set of all observables in L(X,X) (i.e., the set of all linear
continuous self-adjoint operators A : X → X), where X is a complex Hilbert space.
If A,B ∈ O(X), then the usual operator product AB is contained in O(X) iff
AB = BA. This follows from

(AB)∗ = B∗A∗ = BA.

Thus, as a rule, O(X) is not an algebra with respect to the operator product. In
order to cure this defect, Pascal Jordan (1902–1980) introduced the product

A ◦B := 1
2
(AB + BA).

Then the set O(X) becomes a real algebra with respect to the real linear com-
binations αA + βB and the Jordan product A ◦ B. This commutative algebra of
observables is called the real Jordan algebra of the Hilbert space X. As a rule,
Jordan algebras are not associative.185 The theory of Jordan algebras is a branch

185 P. Jordan, On the multiplication of quantum-mechanical quantities I, II, Z. Phys.
80 (1933), 285–291; 87 (1934), 505–512 (in German).
P. Jordan, J. von Neumann, and N. Wigner, On an algebraic generalization of
the quantum mechanical formalism, Ann. Math. 35 (1934), 29–64.
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of modern mathematics.186 In 1994, Zelmanov was awarded the Fields medal for
his contributions to Jordan algebras.

7.21 The Supersymmetric Harmonic Oscillator

The foundations of the theory of commuting and anticommuting variables
were laid by Schwinger in 1953, who presented the analysis for commuting
and anticommuting variables on the physical level of strictness187. . .
The first mathematical formalism that made it possible to operate with
commuting and anticommuting coordinates was Martin’s algebraic formal-
ism proposed in 1959188. . .
In 1974, Salam and Strathdee proposed a very apt name for a set of su-
perpoints.189 After this work and the work by Wess and Zumino190 were
published, the superspace became a foundation for the most important
physical theories.191

Andrei Khrennikov, 1997

In contrast to Heisenberg’s harmonic quantum oscillator, the ground state
energy of the supersymmetric harmonic oscillator is equal to zero.

The golden rule of supersymmetry

Supersymmetry is a relativistic symmetry between bosons and fermions.
This is the only known way available at the present to unify the four-
dimensional space-time and internal symmetries of the S-matrix in rela-
tivistic particle theory. 192

Prem Srivasta, 1985

Supersymmetry describes bosons and fermions in a unified way. Recall that the
bosonic harmonic oscillator has the energy values

186 H. Upmeier, Jordan Algebras in Analysis, Operator Theory, and Quantum Me-
chanics, Amer. Math. Soc., Rhode Island, 1987.
T. Springer and F. Veldkamp, Octonions, Jordan Algebras, and Exceptional
Groups, Springer, Berlin, 2000.
K. McCrimmon, A Taste of Jordan Algebras, Springer, New York, 2004.

187 J. Schwinger, Note on the quantum dynamical principle, Phil. Mag. 44 (1953),
1171–1193.

188 J. Martin, Generalized classical analysis and “classical” analogue of a Fermi
oscillator, Proc. Royal Soc. A251 (1959), 536–542; The Feynman principle for a
Fermi system, Proc. Royal Soc. A251 (1959), 543–549.

189 A. Salam and J. Strathdee, Supergauge transformations, Nucl. Phys. B76 (1974),
477–483; Feynman rules for superfields, Nucl. Phys. B86 (1975), 142–152.

190 J. Wess and B. Zumino, Supergauge transformations in four dimensions, Nucl.
Phys. B70 (1974), 39–50.

191 A. Khrennikov, Superanalysis, Kluwer, Dordrecht, 1997 (reprinted with permis-
sion).

192 R. Haag, J. Lopuszanski, and M. Sohnius, All possible generators of supersym-
metries of the S-matrix, Nucl. Phys. B88 (1975), 257–274.
The supersymmetric Standard Model in particle physics is studied in S. Wein-
berg, Quantum Field Theory, Vol. 3, Cambridge University Press, 1995.
P. Srivasta, Supersymmetry, Superfields and Supergravity, Adam Hilger, Bristol,
1985.



664 7. Quantization of the Harmonic Oscillator

En = �ω(n + 1
2
), n = 0, 1, 2, . . . (7.306)

As we will show below, the energy levels of the supersymmetric harmonic oscillator
are given by

Enb,nf = �ω(nb + nf ), nb = 0, 1, 2, . . . , nf = 0, 1.

In terms of physics, this is the energy of nb bosons and nf fermions. The point is
that an infinite number of bosonic harmonic oscillators has the ground state energy

∞
X

k=0

1
2
�ω = +∞.

This causes the main trouble in quantum field theory. In contrast to this patholog-
ical situation, the ground state energy of an arbitrary number of supersymmetric
harmonic oscillators is equal to zero, since E0,0 = 0.

A supersymmetric harmonic oscillator is the superposition of a bosonic
harmonic oscillator and a fermionic harmonic oscillator. The nonzero
ground state energies of the two harmonic oscillators compensate each
other.

Because of the Pauli principle, it is not possible that two fermions are in the same
energy state of a harmonic oscillator. This motivates why the number nf of fermions
in an energy eigenstate only attains the values nf = 0, 1.

The supersymmetric Hamiltonian. Let us introduce the following Hamil-
tonians:

(B) Bosonic Hamiltonian: Hbosonic := �ω(a†a + 1
2
).

(F) Fermionic Hamiltonian: Hfermionic := �ω(b†b− 1
2
).

(S) Supersymmetric Hamiltonian:

Hsuper := �ω(a†a⊗ I + I ⊗ b†b). (7.307)

As a rule, physicists briefly write Hsuper = �ω(a†a + b†b).
Hilbert spaces. The bosonic Hamiltonian acts on the so-called bosonic Hilbert

space Xbosonic := L2(R) with the energy eigenstates

Hbosonic|nb〉 = Enb |nb〉, nb = 0, 1, 2, . . .

where Enb := �ω(nb + 1
2
). The bosonic eigenstates

|nb〉, nb = 0, 1, 2, . . .

form a complete orthonormal system on the Hilbert space Xbosonic. In terms of
physics, the state |nb〉 describes nb bosons.

The fermionic Hamiltonian acts on the Hilbert space Xfermionic := C
2 with the

energy eigenstates

Hfermionic|nf 〉 = Enf |nf 〉, nf = 0, 1

where Enf := �ω(nf − 1
2
). The explicit form of the states |0〉 and |1〉 will be given

below. The state |nf 〉 corresponds to nf fermions.
Bosonic-fermionic states. Let us now introduce the Hilbert space
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Xsuper := Xbosonic ⊗Xfermionic.

The states
|nb〉 ⊗ |nf 〉, nb = 0, 1, 2, . . . , nf = 0, 1

form a complete orthonormal system of Xsuper. In terms of physics, the state
|nb〉 ⊗ |nf 〉 corresponds to nb bosons and nf fermions.193 For the supersymmet-
ric Hamiltonian, we get

Hsuper = Hbosonic ⊗Hfermionic.

This operator acts on the Hilbert space Xsuper. Explicitly,

Hsuper(|nb〉 ⊗ |nf 〉) = Hbosonic|nb〉 ⊗ |nf 〉+ |nb〉 ⊗Hfermionic|nf 〉.

Hence
Hsuper(|nb〉 ⊗ |nf 〉) = Enb,nf (|nb〉 ⊗ |nf 〉)

along with the energies

Enb,nf := �ω(nb + nf )

where nb = 0, 1, 2, . . . and nf = 0, 1. This implies that the ground state |0〉 ⊗ |0〉 of
the supersymmetric harmonic oscillator has zero energy, that is,

Hsuper(|0〉 ⊗ |0〉) = 0.

Bosonic creation and annihilation operators. Set a− := a and a+ := a†.
For the bosonic annihilation operator a− and the bosonic creation operator a+, we
have194

[a−, a+]− = I, [a−, a−]− = [a+, a+]− = 0.

Furthermore, by Sect. 7.2 on page 432, for n = 0, 1, 2, . . . we have

a−|n + 1〉 =
√
n + 1 |n〉, a+|n〉 =

√
n + 1 |n + 1〉.

Fermionic creation and annihilation operators. For the fermionic anni-
hilation operator b− and the fermionic creation operator b+, we get

[b−, b+]+ = I, [b−, b−]+ = [b+, b+]+ = 0.

In particular, (b+)2 = (b−)2 = 0. Furthermore,

b−|0〉 = 0, b−|1〉 = |0〉, b+|0〉 = |1〉, b+|1〉 = 0.

Explicitly, we set

|0〉 :=

 

1

0

!

, |1〉 :=

 

0

1

!

.

The states |0〉 and |1〉 form a complete orthonormal system of the Hilbert space
Xfermionic. That is, each element χ ∈ Xfermionic can be uniquely represented as

χ = α|0〉+ β|1〉, α, β ∈ C.

193 Physicists briefly write |nb〉|nf 〉.
194 Recall that [A,B]± := AB ±BA.
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In the language of matrices, χ =

 

α

β

!

. Moreover, we define

b− :=

 

0 1

0 0

!

, b+ :=

 

0 0

1 0

!

, N := b+b− =

 

0 0

0 1

!

.

Since N |0〉 = 0 and N |1〉 = |1〉, the operator N is called the fermionic particle
number operator. Obviously, b+ is the adjoint matrix to b−, i.e., b+ = (b−)†.

Supersymmetric creation and annihilation operators. We want to write
the supersymmetric Hamiltonian in the form

Hsuper = �ω(Q+Q− + Q−Q+). (7.308)

To this end, we introduce the operators

Q+ := a− ⊗ b+, Q− := a+ ⊗ b−

called the supersymmetric creation operator Q+ and the supersymmetric annihila-
tion operator Q−. Explicitly,

Q+(|nb〉 ⊗ |nf 〉) = a−|nb〉 ⊗ b+|nf 〉

and
Q−(|nb〉 ⊗ |nf 〉) = a+|nb〉 ⊗ b−|nf 〉.

For example,

Q+(|1〉 ⊗ |0〉) = |0〉 ⊗ |1〉, Q−(|0〉 ⊗ |1〉) = |1〉 ⊗ |0〉.

Thus, the operator Q+ sends one boson to one fermion (resp. the operator Q− sends
one fermion to one boson). We have

[Q+, Q+]+ = [Q−, Q−]+ = 0.

This is equivalent to (Q+)2 = (Q−)2 = 0. In fact,

Q+Q+ = (a− ⊗ b+)(a− ⊗ b+) = a−a− ⊗ b+b+ = 0,

since (b+)2 = 0. Similarly, we get (Q−)2 = 0.
Let us now prove (7.308). It follows from

Q+Q− = (a− ⊗ b+)(a+ ⊗ b−) = a−a+ ⊗ b+b−

together with a−a+ = I + a+a− that

Q+Q− = (I + a+a−)⊗ b+b−.

Similarly,

Q−Q+ = (a+ ⊗ b−)(a− ⊗ b+) = a+a− ⊗ b−b+ = a+a− ⊗ (I − b+b−).

Therefore,
Q+Q− + Q−Q+ = I ⊗ b+b− + a+a− ⊗ I.

This yields (7.307), (7.308).
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Supersymmetric invariance of the supersymmetric Hamiltonian. We
claim that

[Hsuper, Q
+]− = [Hsuper, Q

−]− = 0.

To prove this, observe that Q+Q+ = 0. Hence

(Q+Q− + Q−Q+)Q+ −Q+(Q+Q− + Q−Q+) = Q+Q−Q+ −Q+Q−Q+ = 0.

This implies [Hsuper, Q
+]− = 0. Similarly, [Hsuper, Q

−]− = 0.
Perspective. Supersymmetry plays an important role in modern quantum field

theory. We will come back to this in later volumes. There exists a huge amount of
literature on supersymmetric models in quantum theory. Some hints for further
reading can be found on page 679.

7.22 Hints for Further Reading

Textbooks on Quantum Mechanics

We refer to the following classic textbooks which use the language of physicists:

P. Dirac, The Principles of Quantum Mechanics, Clarendon Press, Oxford,
1930.

V. Fock, Fundamentals of Quantum Mechanics, Nauka, Moscow, 1931 (in
Russian). (English edition: Mir, Moscow, 1978.)

R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures in
Physics, Addison-Wesley, Reading, Massachusetts, 1963.

L. Landau and E. Lifschitz, Course of Theoretical Physics, Vol. 3: Non-
Relativistic Quantum Mechanics, Butterworth-Heinemann, Oxford, 1982.

J. Schwinger, Quantum Mechanics, Springer, New York, 2001.

F. Dyson, Advanced Quantum Mechanics, Dyson’s 1951 Cornell Lecture
Notes on Quantum Electrodynamics, Cornell University, Ithaca, New York.
World Scientific, Singapore, 2007.

Much material can be found in the following handbooks:

G. Drake (Ed.), Springer Handbook of Atomic, Molecular, and Optical
Physics, Springer, Berlin, 2005.

Encyclopedia of Mathematical Physics, Vols. 1–5. Edited by J. Françoise,
G. Naber, and T. Tsun, Elsevier, Amsterdam, 2006.

Modern Encyclopedia of Mathematical Physics, Vols. 1, 2. Edited by I.
Araf’eva and D. Sternheimer, Springer, Berlin, 2009 (to appear).

Furthermore, we recommend:

A. Messiah, Quantum Mechanics, Vols. 1, 2, North-Holland, Amsterdam,
1961.

J. Sakurai, Advanced Quantum Mechanics, Reading, Massachusetts, 1967.

L. Schiff, Quantum Mechanics, McGraw-Hill, New York, 1968.

M. Mizushima, Quantum Mechanics of Atomic Spectra and Atomic Struc-
ture, Benjamin, New York, 1970.

A. Galindo and P. Pascual, Quantum Mechanics, Vols. 1, 2, Springer,
Berlin, 1990.
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A. Bohm, Quantum Mechanics: Foundations and Applications, Springer,
Berlin, 1994.

J. Sakurai and San Fu Tuan, Modern Quantum Mechanics, Benjamin and
Cummings, New York, 1994.

E. Merzbacher, Quantum Mechanics, Wiley, New York, 1998.

J. Basdevant and J. Dalibard, Quantum Mechanics, Springer, Berlin, 2002.

F. Schwabl, Quantum Mechanics, Springer, Berlin, 2002.

F. Schwabl, Advanced Quantum Mechanics, Springer, Berlin, 2003.

N. Straumann, A Basic Course on Non-relativistic Quantum Mechanics,
Springer, Berlin, 2002 (in German).

K. Gottfried and Tung-Mow Yan, Quantum Mechanics: Fundamentals,
Springer, New York, 2003.

F. Scheck, Quantum Physics, Springer, Berlin, 2007.

Exercises can be found in:

S. Flügge, Practical Quantum Mechanics, Vols. 1, 2, Springer, Berlin, 1979.

J. Basdevant, The Quantum-Mechanics Solver: How to Apply Quantum
Theory to Modern Physics, Springer, Berlin, 2000.

V. Radanovic, Problem Book in Quantum Field Theory, Springer, New
York, 2006.

Visualizations of solutions in quantum mechanics are represented in:

S. Brandt and H. Dahmen, The Picture Book of Quantum Mechanics,
Springer, New York, 1995.

B. Thaller, Visual Quantum Mechanics, Springer, New York, 2000.

B. Thaller, Advanced Visual Quantum Mechanics, Springer, New York,
2005.

Mathematical Methods in Quantum Mechanics

The classic monograph was written by

J. von Neumann, Mathematical Foundations of Quantum Mechanics (in
German), Springer, Berlin, 1932. (English edition: Princeton University
Press, 1955.)

Furthermore, we recommend:

M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vols.
1–4, Academic Press, New York, 1972ff.

M. Schechter, Operator Methods in Quantum Mechanics, North-Holland,
Amsterdam, 1982.

H. Triebel, Higher Analysis, Barth, Leipzig, 1989.

F. Berezin and M. Shubin, The Schrödinger Equation, Kluwer, Dordrecht,
1991.

E. Zeidler, Applied Functional Analysis: Applications to Mathematical
Physics, Springer, New York, 1995.

W. Steeb, Hilbert Spaces, Wavelets, Generalized Functions and Modern
Quantum Mechanics, Kluwer, Dordrecht, 1998.
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W. Thirring, Quantum Mathematical Physics: Atoms, Molecules, and
Large Systems, Springer, New York, 2002.

S. Gustafson and I. Sigal, Mathematical Concepts of Quantum Mechanics,
Springer, Berlin, 2003.

A. Komech, Lectures on Quantum Mechanics (nonlinear PDE point of
view), Lecture Notes No. 25 of the Max Planck Institute for Mathematics
in the Sciences, Leipzig. Internet: http://mis.mpg.de/preprints/ln/

F. Strocchi, An Introduction to the Mathematical Structure of Quantum
Mechanics: A Short Course for Mathematicians, Lecture Notes, Scuola
Normale Superiore, Pisa (Italy), World Scientific, Singapore, 2005.

V. Varadarajan, Geometry of Quantum Theory, Springer, New York, 2007.

For the applications of Lie group theory to the spectra of atoms and molecules, we
refer to the following classic monographs:

H. Weyl, The Theory of Groups and Quantum Mechanics, Springer, Berlin,
1929 (in German). (English edition: Dover, New York, 1931.)

B. van der Waerden, Group Theory and Quantum Mechanics, Springer,
Berlin, 1932 (in German). (English edition: Springer, New York, 1974.)

See also the hints for further reading on axiomatic quantum field theory given on
page 454. We also refer to a series of fundamental papers on the mathematical
foundations of quantum mechanics and statistical physics written by

E. Lieb, The Stability of Matter: From Atoms to Stars, Selecta of Elliott
Lieb. Edited by W. Thirring, Springer, New York, 2002.

E. Lieb, Inequalities: Selecta of Elliott Lieb. Edited by M. Loss, Springer,
New York, 2002.

The Path Integral

It is crucial that there exist specific methods for the explicit computation of path
integrals. This way, it is possible to obtain all of the explicitly known propagator
kernels in quantum mechanics. We especially recommend

C. Grosche and F. Steiner, Handbook of Feynman Path Integrals, Springer,
Berlin, 1998.

This comprehensive handbook contains a large list of known path integrals (200
pages), about 1000 references, and a detailed discussion of the historical back-
ground. Much material about the computation of path integrals can also be found
in:

D. Khandekar, S. Lawande, and K. Bhagwat, Path-Integral Methods and
their Applications, World Scientific, Singapore, 1993.

H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer
Physics, World Scientific, River Edge, New York, 2004.

W. Dittrich and M. Reutter, Classical and Quantum Dynamics, Springer,
Berlin, 1999.

M. Chaichian and A. Demichev, Path Integrals in Physics. Vol. 1: Stochas-
tic Processes and Quantum Mechanics; Vol. 2: Quantum Field Theory,
Statistical Physics, and other Modern Applications, Institute of Physics
Publishing, Bristol, 2001.
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For the language used in physics, we recommend:

R. Feynman and R. Hibbs, Quantum Mechanics and Path Integrals,
McGraw-Hill, New York, 1965.

R. Feynman, Statistical Mechanics: A Set of Lectures, 14th edn., Addison
Wesley, Reading, Massachusetts, 1998.

A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press,
2003.

L. Faddeev and A. Slavnov, Gauge Fields, Benjamin, Reading, Mas-
sachusetts, 1980.

L. Faddeev, Elementary Introduction to Quantum Field Theory, Vol. 1, pp.
513–552. In: P. Deligne et al. (Eds.), Lectures on Quantum Field Theory,
Vols. 1, 2, Amer. Math. Soc., Providence, Rhode Island, 1999.

M. Masujima, Path Integral Quantization and Stochastic Quantization,
Springer, Berlin, 2000.

M. Marinov, Path integrals in quantum theory: an outlook of basic con-
cepts, Phys. Rep. 60 (1) (1980), 1–57.

L. Schulman, Techniques and Applications of Path Integrals, Wiley, New
York, 1981.

G. Roepstorff, Path Integral Approach to Quantum Physics, Springer-
Verlag, New York, 1996.

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th edn.,
Clarendon Press, Oxford, 2003 (extensive presentation of about 1000 pages
based on the path-integral technique).

K. Fujikawa and H. Suzuki, Path Integrals and Quantum Anomalies, Ox-
ford University Press, Oxford 2004.

For the language used in mathematics, we recommend:

B. Simon, Functional Integration and Quantum Physics, Academic Press,
New York, 1979.

J. Glimm and A. Jaffe, Mathematical Methods of Quantum Physics: A
Functional Integral Point of View, Springer, New York, 1981.

G. Johnson and M. Lapidus, M., The Feynman Integral and Feynman’s
Operational Calculus, Clarendon Press, Oxford, 2000.

S. Albeverio, R. Høegh-Krohn, and S. Mazzucchi, Mathematical Theory
of the Feynman Path Integral: An Introduction, Springer, Berlin, 2006.

P. Cartier and C. DeWitt-Morette, Functional Integration: Action and
Symmetries, Cambridge University Press, 2006

M. Freidlin, Functional Integration and Partial Differential Equations,
Princeton University Press, 1985

together with

M. Kac, Wiener and integration in function spaces, Bull. Amer. Math. Soc.
72 (1966), 52–68.

I. Daubechies and J. Klauder, Constructing measures for path integrals,
J. Math. Phys. 23 (1982), 1806–1822.

I. Daubechies and J. Klauder, Quantum-mechanical path integrals with
Wiener measure for all polynomial Hamiltonians, Math. Phys. 26 (1985),
2239–2256.
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J. Klauder, Beyond Conventional Quantization, Cambridge University
Press, 2000.

For the application of spectral methods in physics, we refer to:

K. Kirsten, Spectral Functions in Mathematics and Physics, Chapman,
Boca Raton, Florida, 2002

together with

E. Elizalde, Ten Physical Applications of Spectral Zeta Functions, Springer,
Berlin, 1995.

A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti, and S. Zerbini, Analytic
Aspects of Quantum Fields, World Scientific, Singapore, 2003.

D. Vassilievich, Heat Kernel Expansion: Users’ Manual, Physics Reports
388 (2003), 279-360.

In terms of mathematics, we recommend:

H. Edwards, Riemann’s Zeta Function, Academic Press, New York, 1974.

P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer
Index Theorem, CRC Press, Boca Raton, Florida, 1995.

P. Gilkey, P., Asymptotic Formulae in Spectral Geometry, Chapman, CRC
Press, Boca Raton, Florida, 2003.

P. Gilkey, The spectral geometry of Dirac and Laplace type, pp. 289–326.
In: Handbook of Global Analysis. Edited by D. Krupka and D. Saunders,
Elsevier, Amsterdam, 2008.

Brownian Motion and the Wiener Integral

As an introduction, we recommend:

M. Mazo, Brownian Motion: Fluctuations, Dynamics, and Applications,
Oxford University Press, 2002.

Y. Rozanov, Introductory Probability Theory, Prentice-Hall, Englewood
Cliffs, New Jersey 1969.

L. Arnold, Stochastic Differential Equations, Krieger, Malabar, Florida,
1992.

L. Evans, An Introduction to Stochastic Differential Equations, Lectures
held at the University of California at Berkeley, 2005.
Internet: http://math.berkeley.edu/∼evans/SDE.course.pdf

Furthermore, we recommend the following books:

W. Hakenbroch and A. Thalmaier, Stochastische Analysis, Teubner, Stutt-
gart, 1994 (in German).

B. Øksendal, Stochastic Differential Equations, Springer, Berlin, 2003.

E. Nelson, Dynamical Theories of Brownian Motion, Princeton University
Press, Princeton, New Jersey, 1967.

K. Chung and Z. Zhao, From Brownian Motion to Schrödinger’s Equation,
Springer, New York, 1995.

B. Hughes, Random Walks and Random Environments, Vols. 1, 2, Claren-
don Press, Oxford, 1995.
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A. Borodin and P. Salminen, Handbook of Brownian Motion: Facts and
Formulas, Birkhäuser, Basel, 2002.

P. Del Moral, Feynman–Kac Formulae, Springer, New York, 2004.

The history of the Feynman–Kac formula is described in:

M. Kac, Enigmas of Chance: An Autobiography, Harper & Row, New York,
1985.

We also refer to the following classic survey article:

S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev.
Mod. Phys. 15 (1943), 1–89.

The WKB Method

As an introduction to singular perturbation theory, we recommend:

W. Eckhaus, Asymptotic Analysis of Singular Perturbation, North-Hol-
land, Amsterdam, 1979.

J. Kevorkian and J. Cole, Perturbation Methods in Applied Mathematics,
Springer, New York, 1981.

A. Nayfeh, Perturbation Methods, Wiley, New York, 1973.

A. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics: Analytical,
Computational, and Experimental Methods, Wiley, New York, 1995.

Simple variants of the WKB method can be found in most textbooks on quantum
mechanics (see page 667). As an introduction to the relation between classical
mechanics and quantum mechanics, we refer to

W. Dittrich and M. Reutter, Classical and Quantum Dynamics, Springer,
Berlin, 1999.

This concerns the explicit computation of numerous physical examples related to
Schwinger’s action principle, the Kolmogorov–Arnold–Moser (KAM) theory, the
Maslov index, the Berry phase, and the Feynman path integral. As an introduction
to the mathematics of the WKB method, we recommend the monographs by

V. Guillemin and S. Sternberg, Geometric Asymptotics, Amer. Math. Soc.,
Providence, Rhode Island, 1989.

V. Maslov and M. Fedoryuk, Semiclassical Approximation in Quantum
Mechanics, Reidel, Dordrecht, 1981.

B. Helffer, Semiclassical Analysis, World Scientific, Singapore, 2003.

V. Nazaikinskii, B. Schulze, and B. Sternin, Quantization Methods in Dif-
ferential Equations, Taylor & Francis, London, 2002.

The relation between the path integral and the WKB method is studied in the
following monographs:

L. Schulmann, Techniques and Applications of Path Integrals, Wiley, New
York, 1981.

C. Grosche and F. Steiner, Handbook of Feynman Path Integrals, Springer,
Berlin, 1998.

H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer
Physics, World Scientific, River Edge, New York, 2004.
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The intellectual father of the global WKB method is Victor Maslov (born 1930).
We refer to the following monographs:

V. Maslov, Théorie des perturbations et méthodes asymptotiques, Dunod,
Paris, 1972 (in French).

J. Leray, Analyse Lagrangien et mécanique quantique: une structure
mathématique apparantée aux développements asymtotiques et à l’indice
de Maslov, Strasbourgh, France, 1978 (in French). (English edition: MIT
Press, Cambridge, Massachusetts, 1981.)

Quantum chaos. Observe that the WKB method can also be applied to quan-
tum chaos. This means that the corresponding classical dynamical system is chaotic.
Here, Choquardt’s expansion formula and Gutzwiller’s trace formula are crucial.195

This can be found in:

M. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New
York, 1990.

C. Grosche and F. Steiner, Handbook of Feynman Path Integrals, Springer,
New York, 1998.

Commutation Relations and the Stone–von Neumann Uniqueness
Theorem

We recommend:

J. Rosenberg, A selective history of the Stone–von Neumann Theorem,
Contemporary Mathematics 365 (2004), 123–158.

S. Summers, On the Stone–von Neumann uniqueness theorem and its ram-
ifications, pp. 135–172. In: M. Rédei and M. Stöltzner (Eds.), John von
Neumann and the Foundations of Quantum Physics, Kluwer, Dordrecht,
2000.

C. Putnam, Commutation Properties of Hilbert Space Operators and Re-
lated Topics, Springer, Berlin, 1967.

D. Petz, An Invitation to the Algebra of Canonical Commutation Rela-
tions, Leuven University Press, Leuven (Belgium), 1990.

V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cam-
bridge University Press, 1990.

N. Woodhouse, Geometric Quantization, Oxford University Press, 1997.

F. Berezin, The Method of Second Quantization, Academic Press, New
York, 1966. (Second Russian edition: Nauka, Moscow, 1986.)

N. Bogoliubov et al., General Principles of Quantum Field Theory, Kluwer,
Dordrecht, 1990.

Yu. Berezansky and V. Kondratiev, Spectral Methods in Infinite-Dimen-
sional Analysis, Vols. 1, 2, Kluwer Dordrecht, 1995.

C. Bratelli and D. Robinson, Operator Algebras and Quantum Statistical
Mechanics, Vols. 1, 2, Springer, New York, 2002.

The relations between classical mechanics and geometric quantization are studied
in:

195 P. Choquardt, Semi-classical approach to general forces in the setting of Feyn-
man’s path integral, Helv. Phys. Acta 28 (1955), 89–157 (in French).
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R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley,
Reading, Massachusetts, 1978.

Classical papers on commutation relations for a finite and an infinite number of
operators are:

W. Heisenberg, Quantum-theoretical re-interpretation of kinematics and
mechanical relations, Z. Physik 33 (1925), 879–893 (in German).196

M. Born and P. Jordan, On quantum mechanics, Z. Phys. 35 (1925), 858–
888 (in German).

P. Dirac, The fundamental equations of quantum mechanics, Proc. Royal
Soc. London Ser. A 109 (1926), no. 752, 642–653.

M. Born, P. Jordan, and W. Heisenberg, On quantum mechanics II, Z.
Physik 35 (1926), 557–615 (in German).

W. Pauli, On the hydrogen spectrum from the standpoint of the new quan-
tum mechanics, Z. Phys. 36 (1926), 336–365 (in German).

P. Jordan and E. Wigner, On the Pauli exclusion principle, Z. Phys. 47
(1928), 631–651 (in German).

H. Weyl, Quantum mechanics and group theory, Z. Phys. 46 (1928), 1–47
(in German).

M. Stone, Linear transformations in Hilbert space III, Proc. Nat. Acad.
Sci. U.S.A. 16 (1930), 172–175.

J. von Neumann, The uniqueness of the Schrödinger operators, Math. Ann.
104 (1931), 570–578 (in German).

V. Fock, Configuration space and second quantization, Z. Phys. 75 (1932),
622–647 (in German).

H. Groenewold, On the principles of elementary quantum mechanics, Phys-
ica 12 (1946), 405–460.

A. Wintner, The unboundedness of quantum-mechanical matrices, Phys.
Rev. 71 (2) (1947), 738–739.

H. Wielandt, On the unboundedness of the operators in quantum mechan-
ics, Math. Ann. 121 (1949), 21–23 (in German).

G. Mackey, A theorem of Stone and von Neumann, Duke Math. J. 16
(1949), 313–326.

L. van Hove, Sur certaines representations unitaires d’un groupe infini de
transformations. Mem. Acad. Royal Belgium (1951), 61–102.

J. Cook, The mathematics of second quantization, Trans. Amer. Math.
Soc. 74 (1953)(2), 222–245.

K. Friedrichs, Mathematical Aspects of the Quantum Theory of Fields,
Interscience Publishers, New York, 1953.

L. G̊arding and A. Wightman, Representations of the anticommutation
relations, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 617–621.

L. G̊arding and A. Wightman, Representations of the commutation rela-
tions, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 622–625.

196 The English translation of the classical papers by Born, Dirac, Jordan, Heisen-
berg, and Pauli can be found in B. van der Waerden (Ed.), Sources of Quantum
Mechanics (1917–1926), Dover, New York, 1968.



7.22 Hints for Further Reading 675

I. Segal, Distributions in Hilbert space and canonical systems of operators,
Trans. Amer. Math. Soc. 88 (1958), 12–42.

I. Segal, Quantization of nonlinear systems, J. Math. Phys. 1 (1960), 468–
488.

I. Segal, Mathematical Problems of Relativistic Physics, Amer. Math. Soc.
Providence, Rhode Island, 1963.

V. Bargmann, On a Hilbert space of analytic functions and an associated
integral transform, Commun. Pure and Appl. Math. 14 (1961), 187–214.

G. Mackey, The Mathematical Foundations of Quantum Mechanics, Ben-
jamin, New York, 1963.

A. Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111
(1964), 143–211 (in French).

D. Kastler, The C∗-algebras of a free Boson field, Commun. Math. Phys.
1 (1965), 14–48.

G. Mackey, Induced Representations of Groups and Quantum Mechanics,
Benjamin, New York, 1968.

M. Rieffel, On the uniqueness of the Heisenberg commutation relations,
Duke Math. J. 39 (1972), 745–752.

G. Mackey, Unitary Group Representations in Physics, Probability, and
Number Theory, Benjamin, Reading, Massachusetts, 1978.

R. Howe, On the role of the Heisenberg group in harmonic analysis, Bull.
Amer. Math. Soc. (N.S.) 3(2) (1980), 821–843.

H. Grosse and L. Pittner, A supersymmetric generalization of von Neu-
mann’s theorem, J. Math. Phys. 29(1) (1988), 110–118.

G. Mackey, The Scope and History of Commutative and Noncommutative
Harmonic Analysis, Amer. Math. Soc., Providence, Rhode Island, 1992.

A generalized version of the Stone–von Neumann uniqueness theorem plays a funda-
mental role in Ashtekhar’s loop gravity (which represents an approach to quantum
gravity). We refer to:

C. Fleischhack, Kinematical uniqueness of loop gravity, pp. 203–218. In: B.
Fauser, J. Tolksdorf, and E. Zeidler (Eds.), Quantum Gravity, Birkhäuser,
Basel, 2006.

Weyl Quantization

As a comprehensive introduction to deformation quantization in mathematics and
physics, we recommend the following textbook which is based on the language of
modern differential geometry (vector bundles, symplectic geometry, Poisson geom-
etry, pseudo-differential operators):

S. Waldmann, Poisson Geometry and Deformation Quantization, Springer,
Berlin, 2007 (in German).

For formal proofs based on the language of physicists, we refer to:

A. Hirshfeld and P. Henselder, Deformation quantization in the teaching
of quantum mechanics, Am. J. Phys. 70 (2002), 537–547.

A. Hirshfeld and P. Henselder, Star products and perturbative quantum
field theory, Ann. Phys. 298 (2002), 352–393.

F. Berezin and M. Shubin, The Schrödinger Equation, Kluwer, Dordrecht,
1991.
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For rigorous proofs based on the language of mathematicians, we refer to:

L. Hörmander, The Weyl calculus of pseudo-differential operators, Com-
mun. Pure Appl. Math. 32 (1979), 359–443.

M. de Gosson, Symplectic Geometry and Quantum Mechanics, Birkhäuser,
Basel, 2006.

V. Nazaikinskii, B. Schulze, and B. Sternin, Quantization Methods in Dif-
ferential Equations, Taylor & Francis, London, 2002.

Kontsevich proved the fundamental result that each Poisson manifold can be
equipped with a formal Moyal star product. We refer to:

M. Kontsevich, Deformation quantization of Poisson manifolds, Lett.
Math. Phys. 66(3) (2003), 157–216.

A. Cattaneo and G. Felder, A path integral approach to the Kontsevich
quantization formula, Commun. Math. Phys. 212 (2000), 591–611.

Concerning deformation quantization, we recommend the following books:

B. Fedosov, Deformation Quantization and Index Theory, Akademie-
Verlag, Berlin, 1996.

A. Perelomov, Generalized Coherent States and Their Applications, Sprin-
ger, Berlin, 1986.

M. Majid, Foundations of Quantum Group Theory, Cambridge University
Press, 1995.

J. Madore, An Introduction to Noncommutative Differential Geometry and
Its Applications, Cambridge University Press, 1995.

In addition, we recommend:

S. Podleś and S. Woronowicz, Quantum deformation of Lorentz group,
Commun. Math. Phys. 130 (1990), 381–453.

M. Rieffel, Deformation quantization for actions of R
d, Mem. Amer. Math.

Soc. 106 (1993).

J. Wess, Gauge theories on noncommutative space-time treated by the
Seiberg–Witten method, pp. 179–192. In: U. Carow-Watamura et al.
(Eds.), Quantum Field Theory and Noncommutative Geometry, Springer,
Berlin, 2005.

H. Grosse and R. Wulkenhaar, Renormalisation of ϕ4-theory on noncom-
mutative R

4 in the matrix base, Commun. Math. Phys. 256 (2005), 305–
374.

A survey on different quantization methods can be found in:

P. Bandyopadhyay, Geometry, Topology, and Quantization, Kluwer, Dor-
drecht, 1996.

S. Ali and M. Englǐs, Quantization methods: a guide for physicists and
analysts, 2004. Internet: http://arxiv.org/math-ph/0405065

N. Woodhouse, Geometric Quantization, Oxford University Press, 1997.

We also recommend:

J. Śniatycki, Geometric Quantization and Quantum Mechanics, Springer,
New York, 1980.

N. Hurt, Geometric Quantization in Action, Reidel, Dordrecht, 1983.

S. Bates and A. Weinstein, Lectures on the Geometry of Quantization,
Amer. Math. Soc., Providence, Rhode Island, 1997.
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Furthermore, we refer to the following classic papers:

H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New
York, 1931.

H. Groenewold, On the principles of elementary quantum mechanics, Phys-
ica 12 (1946), 405–460.

J. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge
Phil. Soc. 45 (1949), 99–124.

M. Gerstenhaber, On the deformation of rings and algebras, Ann. Math.
79 (1964), 59–103.

F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer,
Deformation theory and quantization I, II, Annals of Physics 111 (1978),
61–110; 111–151.

D. Sternheimer, Deformation quantization: twenty years after, pp. 107–
145. In: Particles, Fields, and Gravitation, AIP Conf. Proc. vol. 453, Amer-
ican Institute of Physics, Woodbury, 1998.

F. Berezin, General concept of quantization, Commun. Math. Phys. 40
(1975), 153–174.

Statistical Physics

As an introduction to the vast literature on statistical physics, we recommend:

O. Bühler, A Brief Introduction to Classical, Statistical, and Quantum
Mechanics, Courant Lecture Notes, Amer. Math. Soc., Providence, Rhode
Island, 2006.

K. Huang, Statistical Physics, Wiley, New York, 1987.

R. Feynman, Statistical Mechanics: A Set of Lectures, 14th edn., Addison
Wesley, Reading, Massachusetts, 1998.

A. Fetter and J. Walecka, Quantum Theory of Many-Particle Systems,
McGraw-Hill, New York, 1971.

G. Mahan, Many-Particle Physics, Plenum Press, New York, 1990.

P. Martin and F. Rothen, Many-Body Problems and Quantum Field The-
ory, Springer, Berlin, 2002.

For the second law of thermodynamics, we refer to:

E. Lieb and J. Yngvason, A guide to entropy and the second law of ther-
modynamics, Notices Amer. Math. Soc. 45 (1998), 571–581.

E. Lieb and J. Yngvason, The physics and mathematics of the second law
of thermodynamics, Physics Reports 310(1) (1999), 1–96.

C∗-Algebras and von Neumann Algebras

Much material can be found in:

C. Bratelli and D. Robinson, Operator Algebras and Quantum Statistical
Mechanics, Vols. 1, 2, Springer, New York, 2002.

B. Blackadar, Operator Algebras: C∗-Algebras and von Neumann Alge-
bras. Springer, Berlin, 2005.
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As an introduction, we recommend:

R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer,
New York, 1996.

H. Araki, Mathematical Theory of Quantum Fields, Oxford University
Press, New York, 1999.

W. Thirring, Quantum Mathematical Physics: Atoms, Molecules, and
Large Systems, Springer, New York, 2002.

Further applications to physics can be found in:

R. Streater and R. Wightman, PCT, Spin, Statistics, and All That, Ben-
jamin, New York, 1968.

G. Emch, Algebraic Methods in Statistical Physics and Quantum Field
Theory, Wiley, New York, 1972.

J. Glimm and A. Jaffe, Quantum Field Theory and Statistical Mechanics:
Expositions, Birkhäuser, Boston, 1985.

B. Simon, The Statistical Theory of Lattice Gases, Princeton University
Press, 1993.

F. Strocchi, An Introduction to the Mathematical Structure of Quantum
Mechanics: A Short Course for Mathematicians, Lecture Notes, Scuola
Normale Superiore, Pisa (Italy), World Scientific, Singapore, 2005.

K. Fredenhagen, K. Rehren, and E. Seiler, Quantum field theory: where
we are. Lecture Notes in Physics 721 (2007), 61–87.
Internet: http://arxiv.org/hep-th/0603155

For the mathematical theory, we refer to:

K. Maurin, Generalized Eigenfunction Expansions and Unitary Represen-
tations of Topological Groups, PWN, Warsaw, 1968.

K. Maurin, Methods of Hilbert Spaces, PWN, Warsaw, 1972.

V. Sunder, An Invitation to von Neumann Algebras, Springer, New York,
1987.

J. Diximier, Von Neumann Algebras, North Holland, Amsterdam, 1981.

J. Diximier, C∗-Algebras, North-Holland, Amsterdam, 1982.

P. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Al-
gebras, Vols. 1–4, Academic Press, New York, 1983.

M. Takesaki, Tomita’s Theory of Modular Hilbert Algebras and Its Appli-
cations, Springer, Berlin, 1970.

M. Takesaki, Theory of Operator Algebras, Vols. 1–3, Springer, New York,
1979.

M. Karoubi, K-Theory: An Introduction, Springer, Berlin, 1978.

For applications to noncommutative geometry, we recommend:

J. Várilly, Lectures on Noncommutative Geometry, European Mathemat-
ical Society, 2006.

M. Gracia-Bondia, J. Várilly, and H. Figueroa, Elements of Noncommuta-
tive Geometry, Birkhäuser, Boston, 2001.

Connes, A., Marcolli, M., Noncommutative Geometry, Quantum Fields,
and Motives, Amer. Math. Soc., Providence, Rhode Island, 2008.
Internet: http://www.math.fsu.edu/∼ marcolli/bookjune4.pdf
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There exist close relations between operator algebras and the realization of quantum
groups (i.e., deformations of classical groups and symmetries). We refer to:

M. Majid, A Quantum Groups Primer, Cambridge University Press, 2002.

M. Majid, Foundations of Quantum Group Theory, Cambridge University
Press, 1995.

Applications to quantum information can be found in:

M. Nielsen and I. Chuang, Quantum Computation and Quantum Informa-
tion, Cambridge University Press, 2001.

Supersymmetry

As an introduction to supersymmetry including the Wess–Zumino model, we rec-
ommend:

P. Srivasta, Supersymmetry, Superfields, and Supergravity: An Introduc-
tion, Adam Hilger, Bristol, 1985.

H. Kalka and G. Soff, Supersymmetrie, Teubner-Verlag, Stuttgart, 1997
(in German).

L. Ryder, Quantum Field Theory, Cambridge University Press, 1999.

Shi-Hai Dong, Factorization Method in Quantum Mechanics, Springer,
Dordrecht, 2007 (700 references).

Furthermore, we refer to:

J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton Uni-
versity Press, 1991.

G. Juncker, Supersymmetric Methods in Quantum and Statistical Physics,
Springer, Berlin, 1996.

A. Khrennikov, Superanalysis, Kluwer, Dordrecht, 1997.

I. Buchbinder and S. Kuzenko, Ideas and Methods of Supersymmetry and
Supergravity or a Walk Through Superspace, Institute of Physics, Bristol,
1998.

D. Freed, Five Lectures on Supersymmetry, Amer. Math. Soc., Providence,
Rhode Island, 1999.

P. Deligne et al. (Eds.), Lectures on Quantum Field Theory: A Course for
Mathematicians Given at the Institute for Advanced Study in Princeton,
Vols. 1, 2, Amer. Math. Soc., Providence, Rhode Island, 1999.

V. Varadarajan, Supersymmetry for Mathematicians, Courant Lecture
Notes, Amer. Math. Soc., Providence, Rhode Island, 2004.

J. Jost, Geometry and Physics, Springer, Berlin, 2008.

The supersymmetric Standard Model in particle physics can be found in:

S. Weinberg, Quantum Field Theory, Vol. 3, Cambridge University Press,
1995.

Applications of supersymmetry to cosmology:

P. Binétruy, Supersymmetry: Theory, Experiment, and Cosmology, Oxford
University Press, 2006.

Applications of supersymmetry to solid state physics:
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K. Efetov, Supersymmetry in Disorder and Chaos, Cambridge University
Press, 1997.

Applications of supersymmetry to the genetic code in biology:

M. Forger and S. Sachse, Lie superalgebras and the multiplet structure of
the genetic code, I. Codon representations, II. Branching rules, J. Math.
Phys. 41 (2000), 5407–5422; 5423–5444.

History of Quantum Mechanics

B. van der Waerden (Ed.), Sources of Quantum Mechanics (1917–1926),
Dover, New York, 1968.

P. Dirac, The Development of Quantum Mechanics, Gordon and Breach,
New York, 1970.

J. Dieudonné, History of Functional Analysis, 1900–1975, North-Holland,
Amsterdam, 1983.

J. Mehra and H. Rechenberg, The Historical Development of Quantum
Mechanics, Vols. 1–6, Springer, New York, 2002.

S. Antoci and D. Liebscher, The third way to quantum mechanics (due to
Feynman) is the forgotten first, Annales de Fondation Louis de Broglie 21
(1996), 349–368.

The Philosophy of Quantum Physics

R. Omnès, The Interpretation of Quantum Mechanics, Princeton Univer-
sity Press, 1994.

W. Heisenberg, Physics and Beyond: Encounters and Conversations, Har-
per and Row, New York, 1970.

P. Dirac, Directions in Physics, Wiley, New York, 1978.

Tian Yu Cao, Conceptual Developments of 20th Century Field Theories,
Cambridge University Press, 1998.

Tian Yu Cao (Ed.), Conceptual Foundations of Quantum Field Theory,
Cambridge University Press, 1999.

R. Penrose, The Road to Reality: A Complete Guide to the Laws of the
Universe, Jonathan Cape, London, 2004.

The Cambridge Dictionary of Philosophy. Edited by R. Audi, Cambridge
University Press, 2005.

Problems

In the first group of problems we want to show how to apply von Neumann’s theory
of self-adjoint (and essentially self-adjoint) operators to quantum mechanics. As
prototypes, we will study the position operator Q, the momentum operator P , and
the Hamiltonian Hfree of a free quantum particle on the real line in Problems 7.5
and 7.15–7.17. Further typical examples can be found in Problem 7.19. Observe
that in Problem 7.5, we will show that
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The basic idea behind the notion of self-adjoint operator is the integration-
by-parts formula and the extension of the classical derivative for functions
to distributions (generalized functions).

The key observation is that the classical integration-by-parts formula for smooth
functions with compact support,

Z

R

ψ(x)ϕ′(x)dx = −
Z

R

ψ′(x)ϕ(x)dx for all ϕ,ψ ∈ D(R), (7.309)

remains valid if the derivatives ϕ′, ψ′ are to be understood in the sense of tempered
distributions and the functions ϕ,ψ, as well as ϕ′, ψ′ are contained in the Hilbert
space L2(R) of square-integrable functions (see Problem 7.3). This can be written
as

Z

R

ψ(x)ϕ′(x)dx = −
Z

R

ψ′(x)ϕ(x)dx for all ϕ,ψ ∈W 1
2 (R). (7.310)

Let us introduce the two operators Apreϕ := ϕ′ for all ϕ ∈ S(R) and

Aϕ := ϕ′ for all ϕ ∈W 1
2 (R).

Using the inner product 〈f |g〉 :=
R

R
f(x)†g(x)dx on the Hilbert space L2(R), we

get

〈ψ|Apreϕ〉 = −〈Aψ|ϕ〉 for all ϕ ∈ S(R), ψ ∈W 1
2 (R). (7.311)

Setting Ppre := −i�Apre and P := −i�A, formula (7.311) implies

(i) 〈ψ|Ppreϕ〉 = 〈Ppreψ|ϕ〉 for all ϕ,ψ ∈ S(R),
(ii) 〈ψ|Ppreϕ〉 = 〈Pψ|ϕ〉 for all ϕ ∈ S(R), ψ ∈W 1

2 (R), and
(iii) 〈ψ|Pϕ〉 = 〈Pψ|ϕ〉 for all ϕ,ψ ∈W 1

2 (R).

The three formulas (i)–(iii) display the basic ideas of von Neumann’s functional-
analytic theory for self-adjoint operators. We will show in Problem 7.5 that the
formulas (i)–(iii) imply that P ∗

pre = P = P ∗. In the general case, let us consider the
linear operator

A : D(A)→ X (7.312)

whose domain of definition D(A) is a linear dense subspace of the complex Hilbert
space X. The linearity of A means that

A(αϕ + βψ) = αAϕ + βAψ for all ϕ,ψ ∈ D(A), α, β ∈ C.

The density of the set D(A) in the Hilbert space X means that, for any element
ϕ ∈ X, there exists a sequence (ϕn) in D(A) such that limn→∞ ϕn = ϕ in X.
Suppose that we are given two operators B : D(B) → X and C : D(C) → X,
where D(B) and D(C) are subsets of the space X.

• We write B = C iff D(B) = D(C) and Aϕ = Bϕ for all ϕ ∈ D(A).
• We write B ⊆ C iff the operator B : D(B)→ X is an extension of the operator

C, that is, we have D(A) ⊆ D(B) ⊆ X and Aϕ = Bϕ for all ϕ ∈ D(A).
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7.1 The smoothing technique (Friedrichs’ mollification). Let ϕ ∈ L2(R). For any
positive real number ε > 0, we define

ϕε(x) :=
1

ε

Z

R

K
“x− y

ε

”

ϕ(y)dy, x ∈ R.

Here, we choose K(x) := c · e−(1−x2)−1
if |x| < 1 and K(x) := 0 if |x| ≥ 1. The

positive constant c is chosen in such a way that
R

R
K(x)dx = 1. Prove that, for

all ε > 0, the following hold:
(i) The smooth function ϕε is contained in the Hilbert space L2(R).
(ii) limε→+0

R

R
|ϕε(x)− ϕ(x)|2dx = 0.

Hint: We refer to Zeidler (1995a), p. 186 (see the references on page 1049).
7.2 The Sobolev space W 1

2 (R). By definition, the function ϕ : R → C is contained
in the space W 1

2 (R) iff ϕ ∈ L2(R), and the derivative ϕ′ (in the sense of
distributions) is also contained in L2(R). This means that

Z

R

ϕ′(x)χ(x)dx = −
Z

ϕ(x)χ′(x)dx

for all test functions χ ∈ D(R). Prove the following:
(i) The Sobolev space W 1

2 (R) is a Hilbert space equipped with the inner prod-
uct

〈χ|ϕ〉1,2 := 〈χ|ϕ〉+ 〈χ′|ϕ′〉 =

Z

R

χ(x)†ϕ(x)dx +

Z

R

χ′(x)†ϕ′(x)dx

for all functions χ, ϕ ∈W 1
2 (R).197

(ii) The sets D(R) and S(R) are dense in W 1
2 (R).

(iii) The sets D(R) and S(R) are proper linear subspaces of the Sobolev space
W 1

2 (R).
(iv) The function ϕ : R → C is contained in W 1

2 (R) iff ϕ ∈ L2(R) and the
Fourier transform ϕ̂ satisfies the condition198

Z

R

`

|ϕ̂(p)|2 + |pϕ̂(p)|2
´

dp <∞.

(v) If ϕ, χ ∈W 1
2 (R), then 〈χ|ϕ〉1,2 =

R

R
χ̂(p)†ϕ̂(p) + p2χ̂(p)†ϕ̂(p) dp.

Hint: Use Problem 7.1. Concerning (iii), note that the function ϕ(x) := |x|e−x2

has a derivative on the pointed set R \ {0} which is square integrable. Hence
ϕ ∈ W 1

2 (R), but ϕ /∈ S(R). The proofs can be found in Zeidler (1986), Vol.
IIA, Chap. 21 (see the references on page 1049), together with much additional
material.

7.3 Integration by parts. Prove that the generalized integration-by-parts formula
(7.310) holds true.
Solution: Let ϕ,ψ ∈ W 1

2 (R). Since D(R) is dense in the Hilbert space W 1
2 (R),

there exist sequences (ϕn) and (ψn) in D(R) such that ϕn → ϕ and ψn → ψ
in W 1

2 (R) as n→∞. This means that

197 Two functions ϕ and ψ are considered as the same element of the Hilbert space
W 1

2 (R) iff ϕ(x) = ψ(x) and ϕ′(x) = ψ′(x) for all x ∈ R, up to a set of Lebesgue
measure zero.

198 Recall that the Fourier transform of the derivative ϕ′ is the product function
p �→ ipϕ̂(p).
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ϕn → ϕ, ϕ′
n → ϕ′, ψn → ψ, ψ′

n → ψ′ in L2(R) as n→∞.

Letting n→∞, it follows from
Z

R

ψn(x)ϕ′
n(x)dx = −

Z

R

ψ′
n(x)ϕn(x)dx

that
R

R
ψ(x)ϕ′(x)dx = −

R

R
ψ′(x)ϕ(x)dx.

7.4 The adjoint operator. The linear operator A† : D(A)→ X is called the formally
adjoint operator to the linear operator A from (7.312) iff

〈ψ|Aϕ〉 = 〈A†ψ|ϕ〉 for all ϕ,ψ ∈ D(A).

The operator A : D(A)→ X is called formally self-adjoint (or symmetric) iff

〈ψ|Aϕ〉 = 〈Aψ|ϕ〉 for all ϕ,ψ ∈ D(A).

The more sophisticated definition of the adjoint operator A∗ : D(A∗) → X is
based on the formula

〈ψ|Aϕ〉 = 〈A∗ψ|ϕ〉 for all ϕ ∈ D(A), ψ ∈ D(A∗). (7.313)

More precisely, we first define the set D(A∗). The element ψ is contained in
D(A∗) iff there exists an element χ in X such that

〈ψ|Aϕ〉 = 〈χ|ϕ〉 for all ϕ ∈ D(A).

We then define A∗ψ := χ. This yields (7.313). The following two definitions
are basic for quantum mechanics. Let A : D(A)→ X be a formally self-adjoint
operator of the form (7.312).
• The operator A is called self-adjoint iff A = A∗.
• The operator A is called essentially self-adjoint iff it has precisely one self-

adjoint extension.
Show that the following hold:
(i) Both the formally adjoint operator A† and the adjoint operator A∗ are

uniquely determined by the given operator A.
(ii) The adjoint operator A∗ is linear.
(iii) If the formally adjoint operator A† exists, then A† ⊆ A∗, that is, the

operator A∗ is an extension of A†.
(iv) The operator A is formally self-adjoint iff A ⊆ A∗.
Hint: We refer to Zeidler (1995a), Sect. 5.2 (see the references on page 1049).

7.5 The prototype of a self-adjoint differential operator. Define

Ppreϕ := −i�ϕ′ for all ϕ ∈ S(R),

and
Pϕ := −i�ϕ′ for all ϕ ∈W 1

2 (R).

In the latter equation, the derivative is to be understood in the sense of tem-
pered distributions. Note that ϕ ∈ W 1

2 (R) implies Pϕ ∈ L2(R). Prove the
following:
(i) The operator Ppre : S(R)→ L2(R) is formally self-adjoint.
(ii) The adjoint operator P ∗

pre coincides with P .

(iii) The operator P : W 1
2 (R)→ L2(R) is self-adjoint.

(iv) Ppre ⊆ P ∗∗
pre = P ∗

pre = P.
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(v) The closure P pre of Ppre coincides with P ∗∗
pre (see Problem 7.9).

Solution: Set � := 1. By Problem 7.3,
Z

R

ψ†(−iϕ′)dx =

Z

R

(−iψ′)†ϕdx for all ϕ,ψ ∈W 1
2 (R). (7.314)

Ad (i). By (7.314), 〈ψ|Ppreϕ〉 = 〈Ppreψ|ϕ〉 for all ϕ,ψ ∈ S(R).
Ad (ii). By definition of the adjoint operator P ∗

pre, we have χ = P ∗
preψ iff

ψ, χ ∈ L2(R) and

〈ψ|Ppreϕ〉 = 〈χ|ϕ〉 for all ϕ ∈ S(R).

Equivalently,

Z

R

ψ†(−iϕ′)dx =

Z

R

χ†ϕdx for all ϕ ∈ S(R).

Passing over to conjugate complex values and setting � := −iϕ†, we get
Z

R

ψ(−�′)dx =

Z

R

(iχ)�dx for all � ∈ S(R).

This means that d
dx

ψ = iχ, in the sense of tempered distributions. Hence

ψ ∈W 1
2 (R), and χ = −i d

dx
ψ. Therefore, χ = Pψ.

Ad (iii). By (7.314), 〈ψ|Pϕ〉 = 〈Pψ|ϕ〉 for all ϕ,ψ ∈W 1
2 (R). Hence the operator

P is formally self-adjoint. Suppose that, for fixed ψ, χ ∈ L2(R), we have

〈ψ|Pϕ〉 = 〈χ|ϕ〉 for all ϕ ∈W 1
2 (R).

The same argument as in (ii) above shows that Pψ = χ. Hence P ∗ψ = Pψ for
all ψ ∈W 1

2 (R).
Ad (iv). By definition, Ppre ⊆ P. By (ii), (iii), we get P ∗

pre = P and P ∗ = P.
Ad (v). Let (ϕn) be a sequence in D(Ppre) with

lim
n→∞

ϕn = ϕ, lim
n→∞

Ppreϕn = χ. (7.315)

Then P preψ = χ. Letting n→∞, it follows from

〈�|Ppreϕn〉 = 〈P�|ϕn〉 for all � ∈ S(R)

that 〈�|χ〉 = 〈P�|ϕ〉 for all � ∈ S(R). Hence χ = Pϕ.
Conversely, if χ = Pϕ, then there exists a sequence (ϕn) in S(R) with (7.315),

by Problem 7.2(ii). Summarizing, Pϕ = Pϕ for all ϕ ∈W 1
2 (R).

7.6 Closed operators. The subset

graph(A) := {(ϕ,Aϕ) : ϕ ∈ D(A)}

of the product space X×X is called the graph of the operator A from (7.312).
The operator A is defined to be closed iff the set graph(A) is closed in X ×X.
This means that if there exists a sequence (ϕn) in D(A) with the convergence
property

lim
n→∞

ϕn = ϕ and lim
n→∞

Aϕn = ψ,
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then ϕ ∈ D(A) and Aϕ = ψ. This generalizes the notion of continuity.199 Show
that the adjoint operator A∗ : D(A)→ X from Problem 7.4 is closed.
Solution: Let ϕn ∈ D(A∗) for all n, and let

lim
n→∞

ϕn = ϕ and lim
n→∞

A∗ϕn = ψ.

Then 〈A∗ϕn|χ〉 = 〈ϕn|Aχ〉. Letting n→∞, we get

〈ψ|χ〉 = 〈ϕ|Aχ〉 for all χ ∈ D(A).

Hence ϕ ∈ D(A∗) and ψ = A∗ϕ.
7.7 The crucial symmetry criterion for self-adjoint operators. Prove that the linear,

densely defined operator A : D(A) → X on the complex Hilbert space X is
self-adjoint iff the following two conditions are satisfied:
(i) 〈ψ|Aϕ〉 = 〈Aψ|ϕ〉 for all ϕ,ψ ∈ D(A).
(ii) If 〈ψ|Aϕ〉 = 〈χ|ϕ〉 for fixed ψ, χ ∈ X and all ϕ ∈ D(A), then ψ ∈ D(A).
Solution: (I) ⇒: Assume that A is self-adjoint. Then A = A∗. This implies (i).
If 〈ψ|Aϕ〉 = 〈χ|ϕ〉 for all ϕ ∈ D(A), then ψ ∈ D(A∗). Hence ψ ∈ D(A).
(II)⇐: Assume that (i) and (ii) hold. By (i), A ⊆ A∗. In order to show A∗ ⊆ A,
let ψ ∈ D(A∗). Then

〈ψ|Aϕ〉 = 〈A∗ψ|ϕ〉 for all ϕ ∈ D(A).

By (ii), ψ ∈ D(A). It follows from (i) that 〈A∗ψ|ϕ〉 = 〈Aψ|ϕ〉. Hence

〈A∗ψ −Aψ|ϕ〉 = 0 for all ϕ ∈ D(A).

Since D(A) is dense in X, we get A∗ψ = Aψ. �

In the following problems we want to show that

The properties of self-adjointness and essential self-adjointness are
closely related to natural extension properties of formally self-adjoint
operators A based on the inclusions A ⊆ A ⊆ A∗, where A denotes the
closure of A. In addition, A = A∗∗.

7.8 Maximal extension and the adjoint operator. Let A : D(A)→ X be a formally
self-adjoint operator of the form (7.312). Show the following:
(i) There exists a maximal linear extension B : D(B)→ X of A with

〈ψ|Aϕ〉 = 〈Bψ|ϕ〉 for all ϕ ∈ D(A), ψ ∈ D(B).

This maximal extension B is equal to the adjoint operator A∗.
(ii) The operator A is self-adjoint iff the maximal extension B coincides with

A, that is, B = A.
Hint: Convince yourself that this is merely a reformulation of the basic defini-
tions.

7.9 Minimal extension and the closure. Let A : D(A) → X be a formally self-
adjoint operator of the form (7.312). Show that the operator A can be mini-
mally extended to a linear, closed, formally self-adjoint operator. This operator
is denoted by A : D(A)→ X, and it is called the closure of A.
Hint: Let Dcl be the set of all ϕ ∈ X for which a sequence (ϕn) exists in D(A)
such that

199 Banach’s closed graph theorem tells us the crucial fact that a linear closed opera-
tor A : X → X defined on the total Hilbert space X is continuous. However, the
self-adjoint Hamiltonian operators arising in quantum mechanics are not defined
on the total Hilbert space; as a rule, they are not continuous, but they are closed.
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• limn→∞ ϕn = ϕ and
• (Aϕn) is convergent, that is, limn→∞ Aϕn = ψ.
Letting n→∞, it follows from 〈χ|Aϕn〉 = 〈Aχ|ϕn〉 that

〈χ|ψ〉 = 〈Aχ|ϕ〉 for all χ ∈ D(A).

Since D(A) is dense in X, the element ψ of X is uniquely determined by ϕ.

Now we set Aϕ := ψ and D(A) := Dcl. Since

〈χ|Aϕ〉 = 〈Aχ|ϕ〉 for all χ ∈ D(A), ϕ ∈ D(A), (7.316)

we get A ⊆ A ⊆ A∗. Let � ∈ D(A). Then there exists a sequence (�n) in
D(A) such that limn→∞ χn = �. Considering (7.316) with χ := �n and letting
n→∞, we obtain

〈�|Aϕ〉 = 〈A�|ϕ〉 for all �, ϕ ∈ D(A).

Thus, the operator A is formally self-adjoint. Finally, it remains to show that
the operator A is closed (see H. Triebel, Higher Analysis, Sect. 17, Barth,
Leipzig, 1989).

7.10 Properties of the closure. Let A : D(A)→ X and B : D(B)→ X be formally
self-adjoint operators of the form (7.312) on page 681. Show the following:

(i) A ⊆ B implies A ⊆ B and B∗ ⊆ A∗.

(ii) A ⊆ A ⊆ A∗.

(iii) A = A∗∗ and (A)∗ = A∗.

(iii) The operator A is essentially self-adjoint iff the closure A is self-adjoint.
Hint: We refer to Zeidler (1995a), p. 415ff (see the references on page 1049).

7.11 General properties of self-adjoint operators. For the formally self-adjoint op-
erator A of the form (7.312), the following statements are equivalent:
(i) The operator A is self-adjoint.
(ii) All the non-real numbers z belong to the resolvent set �(A).
(iv) im(±iI −A) = X.
(iv) The operator A is closed and ker(±iI −A∗) = {0}.
(v) The operator A is essentially self-adjoint and closed.
Hint: See Zeidler (1995a), p. 416.

7.12 General properties of essentially self-adjoint operators. For the formally self-
adjoint operator operator A of the form (7.312), the following statements are
equivalent:
(i) The operator A is essentially self-adjoint.

(ii) The closure A is self-adjoint.
(iv) The two sets im(±iI −A) are dense in X.
(iii) ker(±iI −A∗) = {0}.
Hint: See Zeidler (1995a), p. 424.

7.13 Further properties of essentially self-adjoint operators. Let A : D(A) → X
be a linear, formally self-adjoint, and densely defined operator on the complex
Hilbert space X. Assume that the operator A is essentially self-adjoint, and let
B : D(B) → X be the uniquely determined self-adjoint extension of A. Prove
that

A∗ = A = A∗∗ = B. (7.317)

Solution: By Problem 7.10, B = A. Moreover, A = A∗∗ and A∗ = (A)∗ = A.
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7.14 Unitary invariance. The linear operator A : D(A)→ X is said to be unitarily
equivalent to the linear operator B : D(B) → X iff there exists a unitary
operator U : X → Y from the complex Hilbert space X onto the complex
Hilbert space Y such that the diagram

D(A)

U

��

A �� X

U

��
D(B)

B �� Y

is commutative. This means that D(B) = UD(A) and B = UAU−1. Show
that the following notions are invariant under this transformation: formally
self-adjoint, self-adjoint, essentially self-adjoint, and closed.
Hint: Use the corresponding definitions.

7.15 The position operator on the real line. Set

D(Q) := {ϕ ∈ L2(R) :

Z

R

|xϕ(x)|2dx <∞}.

Fix x ∈ R. Define (Qpreϕ)(x) := xϕ(x) for all ϕ ∈ S(R), and (Qϕ)(x) := xϕ(x)
for all ϕ ∈ D(Q). Prove the following:
(i) The operator Qpre : S(R)→ L2(R) is formally self-adjoint.
(ii) The operator Q : D(Q)→ L2(R) is self-adjoint.
(iii) The operator Qpre : S(R) → L2(R) is essentially self-adjoint, but not

self-adjoint.
(iv) Q∗

pre = Qpre = Q∗∗
pre = Q.

Solution: Ad (i). For all ϕ,ψ ∈ S(R),
Z

R

(xψ(x))†ϕ(x)dx =

Z

ψ(x)†xϕ(x)dx.

Ad(ii), (iii). For given function f ∈ L2(R), the equation

± iϕ−Qϕ = f, ϕ ∈ D(Q) (7.318)

has the unique solution ϕ(x) := f(x)
±i−x

for all x ∈ R. In fact, |ϕ(x)| ≤ const|f(x)|
for all x ∈ R. This implies ϕ ∈ L2(R). Hence ϕ ∈ D(Q). Thus, we get the key
relation im(±iI −Q) = L2(R), that is, Q is self-adjoint.
In particular, if f ∈ S(R), then the solution of equation (7.318) is contained in
S(R). Since the set S(R) is dense in L2(R), the sets im(±I − Qpre) are dense
in L2(R). Therefore, the operator Qpre is essentially self-adjoint.
Finally, note that the set D(Qpre) = S(R) differs from D(Q). For example,

choose ψ(x) := |x|e−x2
. Then ψ ∈ D(Q), but ψ /∈ S(R).

Ad (iv). Use Problem 7.13.
7.16 The momentum operator on the real line. As in Problem 7.5, define

Ppreϕ := −i�ϕ′ for all ϕ ∈ S(R),

and Pϕ := −i�ϕ′ for all ϕ ∈W 1
2 (R). Use the Weyl equation

±iϕ− Pϕ = f, ϕ ∈ S(R) (7.319)

in order to prove the following:
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(i) The operator Ppre : S(R)→ L2(R) is formally self-adjoint.
(ii) The operator P : W 1

2 (R)→ L2(R) is self-adjoint.
(iii) The operator Ppre : S(R) → L2(R) is essentially self-adjoint, but not

self-adjoint.
(iv) P ∗

pre = P pre = P ∗∗
pre = P.

Solution: Ad (i). See Problem 7.5.
Ad (ii), (iii). For given f ∈ S(R), the equation (7.319) has a unique solution
ϕ ∈ S(R). In fact, Fourier transformation yields

±iϕ̂(p)− �pϕ̂(p) = f̂(p), p ∈ R.

This yields ϕ̂(p) = f̂(p)
±i−�p

which is contained in S(R). Then the inverse Fourier

transform yields the desired solution ϕ of (7.319). Since the set S(R) is dense
in L2(R), the image set im(±I − Ppre) is dense in L2(R). Consequently, the
operator Ppre : S(R)→ L2(R) is essentially self-adjoint. Thus, it has a unique
self-adjoint extension.
Using the extended Fourier transform F : L2(R) → L2(R) together with
Problem 7.2(iv), the same argument as above shows that, for given function
f ∈ L2(R), the equation

±iϕ− Pϕ = f, ϕ ∈W 1
2 (R)

has a (unique) solution ϕ. Hence im(±iI − P ) = L2(R). Consequently, the
operator P : W 1

2 (R) → L2(R) is self-adjoint. Furthermore, the operator P is
the unique self-adjoint extension of the operator Ppre. Since S(R) �= W 1

2 (R),
the operator Ppre differs from P.
Ad (iv). Use Problem 7.13.
Historical remarks. The importance of equations of the type (7.319) for the
study of the spectral properties of ordinary differential equations was discovered
by Weyl in 1910 and developed by von Neumann in his 1929 theory of deficiency
indices.
• H. Weyl, On ordinary differential equations with singularities, Math. Ann.

68 (1910), 220–269 (in German).
• J. von Neumann, General spectral theory of Hermitean operators, Math.

Ann. 102 (1929), 49–131 (in German).
• K. Kodaira, The eigenvalue problem for ordinary differential equations of

the second order and Heisenberg’s theory of S-matrices. Amer. J. Math. 71
(1949), 921–945.

• K. Jörgens and F. Rellich, Eigenvalue problems for ordinary differential equa-
tions, Springer, Berlin, 1976 (in German).

The Weyl–Kodaira theory will be studied in Vol. III, together with interesting
physical applications.

7.17 The Hamiltonian of the free quantum particle on the real line. Define

Hpreϕ := − �
2

2m
ϕ′′ for all ϕ ∈ S(R),

and

Hfreeϕ := − �
2

2m
ϕ′′ for all ϕ ∈W 2

2 (R).

In the latter equation, the derivatives are to be understood in the sense of tem-
pered distributions. If ϕ ∈W 2

2 (R), then Hfreeϕ ∈ L2(R). Prove the following:
(i) The operator Hpre : S(R)→ L2(R) is formally self-adjoint.
(ii) The operator Hfree : W 2

2 (R)→ L2(R) is self-adjoint.
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(iii) Hpre = H∗
pre = Hfree.

(iv) The operator Hpre is essentially self-adjoint, but not self-adjoint.
Hint: Apply integration by parts twice, and use analogous arguments as in
Problem 7.7.

7.18 Deficiency indices and von Neumann’s extension theorem for self-adjoint op-
erators. Let A : D(A) → X be a linear, formally self-adjoint, densely defined,
and closed operator on the complex Hilbert space X. The numbers

d± := dim (±iI −A)⊥

are called the deficiency indices of the operator A.200 Prove the following:
(i) The operator A has a self-adjoint extension iff d+ = d−.
(ii) The operator A is self-adjoint iff d+ = d− = 0.
Hint: Use the Cayley transform in order to reduce this to the extension problem
for isometric operators (see Problems 7.22 and 7.23).

7.19 Formally self-adjoint operators which have no self-adjoint extension or in-
finitely many self-adjoint extensions. Consider the operator

Aϕ := −i�
dϕ

dx
for all ϕ ∈ D(A)

where D(A) is a linear dense subspace of the complex Hilbert space X. We will
choose X := L2(0,∞) or X := L2(0, 1). We want to show that the properties
of the operator A critically depend on the choice of the domain of definition
D(A). In turn, this depends on the choice of boundary conditions. Show that
the following hold:
(i) Choose D(A) := D(0,∞) and X := L2(0,∞). 201 Then the operator A is

formally self-adjoint, but it cannot be extended to a self-adjoint operator.
(ii) Fix the complex number α with |α| = 1 and α �= 1. Choose202

D(A) := {ϕ ∈ C1[0, 1] : ϕ(0) = αϕ(1)}

and X = L2(0, 1). Then the operator A is essentially self-adjoint.
(iii) Choose D(A) := {ϕ ∈ C1[0, 1] : ϕ(0) = ϕ(1) = 0} and X := L2(0, 1).

Then the operator A is formally self-adjoint, but its closure A is not self-
adjoint. However, the operator has an infinite number of self-adjoint ex-
tensions given by the operators from (ii).

Hint: Ad (i). Set � := 1. Integration by parts yields

〈χ|Aϕ〉 =

Z ∞

0

χ†(−iϕ′)dx =

Z ∞

0

(−iχ′)†ϕdx = 〈Aχ|ϕ〉

for all χ, ϕ ∈ D(0,∞). Thus, the operator A is formally self-adjoint. Now fix
the non-real complex number z and study the equation A− zI = f , that is

− iϕ′ − zϕ = f, ϕ ∈ D(0,∞). (7.320)

200 If L is a linear subspace of X, then the orthogonal complement L⊥ consists of
all the elements ϕ of X which are orthogonal to L.

201 Recall that ϕ ∈ D(0,∞) iff the function ϕ :]0,∞[→ C is smooth with compact
support (i.e., it vanishes outside some interval [a, b] with 0 < a < b <∞). Then
the function ϕ satisfies the boundary condition ϕ(0) = ϕ(+∞) = 0.

202 The space Ck[0, 1], k = 1, 2, . . . consists of all continuous functions ϕ : [0, 1]→ C

which have continuous derivatives on the open interval ]0, 1[ up to order k, and
all of these derivatives can be continuously extended to the closed interval [0, 1].
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We are given f ∈ L2(0,∞). If ϕ is a solution of (7.320), then

e−izxf(x) = −i
d

dx

“

ϕ(x)e−izx
”

.

Integration by parts tells us that
Z ∞

0

e−izxf(x)dx = 0. (7.321)

Choosing z := −i, we get e−izx = e−x. Then condition (7.321) is satisfied for
all f ∈ L2(0,∞). In contrast to this, if z := i, then e−izx = ex, and condition
(7.321) is not valid for all f ∈ L2(0,∞). Use this observation in order to show
that the deficiency indices of A are given by d− = 0 and d+ �= 0. By von
Neumann’s deficiency-index criterion (see Problem 7.18), the operator A has
no self-adjoint extension.
For the complete proof of (i)–(iii), see P. Lax, Functional Analysis, Chap. 33,
Wiley, New York, 2002.

7.20 Continuity and boundedness. Show that, for the linear operator A : X → X on
the (real or complex) Hilbert space X, the following statements are equivalent:
(i) The operator A is continuous, that is, for any fixed element ϕ0 ∈ X and

any number ε > 0, there exists a number δ(ε, ϕ0) > 0 such that

||ϕ− ϕ0|| < δ(ε, ϕ0) implies ||Aϕ−Aϕ0|| < ε.

(ii) The operator is sequentially continuous, that is, limn→∞ ϕn = ϕ implies
limn→∞ Aϕn = Aϕ.

(iii) The operator A is bounded, that is, ||A|| := sup||ϕ||≤1 ||Aϕ|| <∞.

Hint: We refer to Zeidler (1995a), Sect. 1.9 (see the references on page 1049).
7.21 Extension of a linear, densely defined, bounded operator. Let A : D(A) → Y

be a linear operator, where D(A) is a linear dense subspace of the complex
(resp. real) Hilbert space X, and Y is also a complex (resp. real) Hilbert space.
Suppose that

||Aψ|| ≤ const ||ψ|| for all ψ ∈ D(A).

Show that the operator A can be uniquely extended to a linear bounded oper-
ator A : X → Y. This statement remains true if X and Y are complex (resp.
real) Banach spaces.
Hint: Let ψ ∈ X. Choose a sequence (ψn) in D(A) with ψ = limn→∞ ψn.
Using the Cauchy criterion, show that the sequence (Aψn) is convergent. Set
Aψ := limn→∞ Aψn. Finally, show that Aψ is independent of the choice of the
sequence (ψn). We refer to Zeidler (1995a), Sect. 3.6 (see the references on page
1049).

7.22 Extension of isometric operators. Let A : D(A) → X be a linear isometric
operator on the linear subspace D(A) of the complex Hilbert space X, that
is, 〈Aψ|Aϕ〉 = 〈ψ|ϕ〉 for all ϕ,ψ ∈ D(A). Show that the operator A can be

extended to a unitary operator U : X → X iff dimD(A)⊥ = dim im(A)⊥.
Hint: (I) Assume first that D(A) is a closed linear subspace of the separable
Hilbert space X. Let dimD(A)⊥ = dim im(A)⊥. Set

Uϕj := ψj for all j,

where ϕ1, ϕ2, . . . (resp. ψ1, ψ2, . . . ) is an orthonormal basis in D(A)⊥ (resp.

im(A)⊥).
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(II) If D(A) is not closed, then consider the closure Dcl of D(A). This is a
closed linear subspace of X. By Problem 7.21, the operator A can be uniquely
extended to a linear isometric operator B : Dcl → X. Now apply argument (I)
to the extension B.
(III) If the Hilbert space X is not separable, then replace ϕ1, ϕ2, . . . (resp.
ψ1, ψ2, . . . ) by a generalized orthonormal basis, by using the Zorn lemma. As
in Problem 7.19, see Lax (2002), Sect. 6.4.

7.23 The Cayley transform. The classical Möbius transformation

f(z) :=
z − i

z + i
, z ∈ R

generates a conformal map from the real line onto the unit circle. Generalizing
this, we obtain the Cayley transformation

CA := (A− iI)(A + iI)−1

which was used for matrices A by Cayley.203 In the late 1920s, von Neumann
generalized this to operators in Hilbert spaces in order to solve the extension
problem for self-adjoint operators (see Problem 7.18). Let A : D(A) → X
be a linear, formally self-adjoint operator on the linear subspace D(A) of the
complex Hilbert space X. Show the following:
(i) dom(CA) = im(A + iI) and im(CA) = im(A− iI).
(ii) The operator CA is isometric.
(iii) CA is unitary on X iff A is self-adjoint.
(iv) CA is closed iff A is closed.
(v) Let B : D(B) → X be linear and formally self-adjoint. Then, A ⊆ B iff

CA ⊆ CB .
(vi) If A is closed, then dom(CA) and im(CA) are closed linear subspaces of

the Hilbert space X.
Hint: See F. Riesz and B. Nagy, Functional Analysis, Sect. 123, Frederyck
Ungar, New York, 1978.

7.24 Polar decomposition. Each complex number z allows the polar decomposition
z = ur with r := |z| and u = eiϕ. Here, |u| = 1. We want to generalize this to
operators. Let A : D(A) → X be a linear (resp. antilinear), densely defined,
closed operator on the complex Hilbert space X (e.g., a linear continuous op-
erator A : X → X.) Show the following:
(i) There exists a factorization

A = UR

where R : D(R)→ X is a linear self-adjoint operator with D(R) = D(A), and
〈ψ|Rψ〉 ≥ 0 for all ψ ∈ D(R). In addition, ker(R) = ker(A). Moreover, the
operator U : X → X is linear (resp. antilinear) and the restriction

U : ker(A)⊥ → cl(im(A))

is unitary (resp. antiunitary), whereas ker(U) = ker(A). Explicitly, R =
√
A∗A.

The operator R is also called the absolute value of A (denoted by |A|). In
particular, if the operator A : X → X is linear (resp. antilinear), continuous,
and bijective, then the operator U : X → X is unitary (resp. antiunitary).
(ii) The operators R and U are uniquely determined by the properties formu-
lated in (i).

203 Möbius (1790–1868), Cayley (1821–1895).
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(iii) If the linear operator A : X → X is continuous and normal, that is,
AA∗ = A∗A, then the operator R : X → X is linear, continuous, and self-
adjoint, and the operator U : X → X is unitary. In addition, UR = RU.
Hint: See Reed and Simon, Methods of Modern Mathematical Physics, Vol.
1, Sect. VIII.9, Academic Press, as well as F. Riesz and B. Nagy, Functional
Analysis, Sect. 110, Frederyck Ungar, New York, 1978.

7.25 The theorem of Rolle on the zeros of functions. Show the following for smooth
functions f : R→ R:204

(i) If f(a) = f(c) = 0 with a < c, then there exists a number b with a < b < c
such that f ′(b) = 0.

(ii) If f(c) = 0 and limx→+∞ f(x) = 0, then there exists a number d > c such
that f ′(d) = 0.

(iii) Let n ≥ 1. If the function f has at least n zeros on the compact interval
J , then the derivative f ′ has at least n− 1 zeros on J. If, in addition, the
function f goes to zero as x → +∞ and x → −∞, then f ′ has at least
n + 1 zeros on R.

Solution: Ad (i). By the classical mean theorem in calculus,

f(c)− f(a) = f ′(b)(c− a) for some b ∈]a, c[.

Ad (ii). Since f(x) =
R x

c
f ′(y)dy, we get

Z ∞

c

f ′(y)dy = lim
x→+∞

f(x) = 0.

Suppose that the function f ′ has no zeros on the interval ]c,∞[. Then, f ′ has
constant sign on this interval, by the Bolzano theorem. Hence the integral of
f ′ over [c,∞[ does not vanish, a contradiction.
Ad (iii). For n = 1 the statement is trivial. Let n ≥ 2. Suppose that f(xj) = 0
for j = 1, 2, ..., n with

x1 < x2 < ... < xn.

By (ii), there exist numbers y1, y2, ... with

x1 < y1 < x2 < ... < xn−1 < yn−1 < xn

such that f ′(yk) = 0 for k = 1, ..., n− 1. In addition, if f(x)→ 0 as x→ +∞,
then there exists a number yn > xn such that f ′(yn) = 0, by (ii). Similarly, it
follows from f(x) → 0 as x → −∞ that there exists a number y−1 < x1 such
that f ′(y−1) = 0.

7.26 The zeros of the Hermite polynomials. Show that, for n = 0, 1, 2, ..., the Her-
mite polynomial Hn of order n has precisely n zeros.205

Solution: Set Hn(x) := (−1)ne−x2
Hn(x). By (7.7) on page 436,

Hn(x) =
dne−x2

dxn
, n = 0, 1, 2, ...

Note that Hn is a polynomial of degree n. Thus, the maximal number of real
zeros of Hn is equal to n. Moreover, Hn(x)→ 0 as x→ ±∞ for n = 0, 1, 2, , ...
Using the recursive formula

204 The French mathematician Michel Rolle (1652–1719) investigated the zeros of
polynomials in his 1690 treatise Traité d’algèbre.

205 This implies that the n zeros of Hn are simple.
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Hn+1(x) = H′
n(x), n = 0, 1, 2, ...

and Problem 7.25, we proceed by induction. The function H0(x) = 1 has no
zeros. The polynomial H1 of first order has precisely one zero. Now suppose
that the polynomial Hn has n real zeros. Then, the function Hn has also n
zeros. By Problem 7.25(iii), Hn+1 has n+1 zeros. In turn, Hn+1 has n+1 real
zeros.

7.27 The normal product : Qn :. Fix x0 := 1 as on page 436. Let m,n = 0, 1, 2, . . .
Define

Pn(x) :=

[n/2]
X

k=0

(−1)kcn,kx
n−2k

where cn,k := n!/k!(n − 2k)!2k. Here, [n/2] denotes the largest integer j with
j ≤ n/2. Using the normal product : Qn : introduced on page 438, prove the
following:
(i) Hn(x) = 2n/2Pn(

√
2 x).

(ii)
R

R
Hn(x)Hm(x)e−x2

dx = 2nn!
√
π δnm.

(iii) xn =
P[n/2]

k=0 cn,kPn−2k(x).

(iv) : Qn := 2−nHn(x).
Hint: See J. Glimm and A. Jaffe, Mathematical Methods of Quantum Physics,
Sect. 1.5, Springer, New York, 1981.

7.28 The modified Moyal star product. For all functions f, g ∈ C∞(R2), define the
modified Moyal product

f  g := fe∂′
a∂

a† g =

∞
X

m,n=0

1

m!n!
(∂m

a f)(∂n
a†g).

Moreover, set π0 := e−aa†
along with

πn :=
1

n!
(a†)n  π0  a

n, n = 0, 1, 2, ...

Recall that H := �ωaa† by page 593. Show that the following hold:
(i) a†  a = aa†, a  a† = aa† + 1.
(ii) πn = π0(a

†)nan/n!, n = 1, 2, . . .
(iii) a  π0 = 0.
(iv) H  πn = n�ωπn, n = 0, 1, 2, . . .
(v) The generalized Schrödinger equation

i�Ft(a, a
†, t) = H  F (a, a†, t), t ∈ R, a ∈ C

is equivalent to the equation i�Ft(a, a
†, t) = (H +�ωa†∂a†)F (a, a†, t). The

solution is given by

F (a, a†, t) =

∞
X

n=0

πn(a, a†)e−inωt.

Hint: See A. Hirshfeld and P. Henselder, Deformation quantization in the teach-
ing of quantum mechanics, Am. J. Phys. 70 (2002), 537–547.
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7.29 Proof of Theorem 7.54 on page 594. Hint: Proceed similarly to Problem 7.28.
See A. Hirshfeld and P. Henselder (2002), as above.

7.30 Proof of Theorem 7.55 on page 594. Hint: See A. Hirshfeld and P. Henselder
(2002), as above.

7.31 Weyl polynomials. Prove Proposition 7.56 on page 598. Hint: Generalize the
special argument given on page 598.

7.32 The symbol of the scattering operator. Motivate relation (7.276) on page 615,
by using the Dirac delta function.
Solution: To simplify notation, we set � = m := 1. Furthermore, choose

a(q, p) := eitp2/2, b(q, p) := symP (q, p ; t, t0), c(q, p) := e−it0p2/2.

Because of the associativity of the Moyal star product, we have to compute
(a ∗ b) ∗ c.
(I) Computation of a ∗ b. Set f(q, p) := (a ∗ b)(q, p). Choose the new notation
u := q1, v := p1, w := q2, and z := p2. By definition of the Moyal star product
(7.261) on page 607, we get

f(q, p) =
1

π2

Z

R4
e2ip(w−u)e2iv(q−w)e2iz(u−q) · eitv2/2 b(w, z) dudvdwdz.

Note that the substitution x = 2u yields

1

π

Z

R

e2iu(z−p)du =
1

2π

Z

R

eix(z−p)dx = δ(z − p).

Therefore, integration over the variable u yields

f(q, p) =
1

π

Z

R3
δ(z − p)e2ipwe2iv(q−w)e−2izq · eitv2/2 b(w, z) dvdwdz.

Using
R

R
F (z)δ(z − p)dz = F (p), we get

f(q, p) =
1

π

Z

R2
e2ipwe2iv(q−w)e−2ipq · eitv2/2 b(w, p) dvdw.

Changing the integration variables, w �→ ξ, v �→ η, we obtain

f(q, p) =
1

π

Z

R2
e2i(p−η)(ξ−q) · eitη2/2 b(ξ, p) dξdη. (7.322)

(II) Computation of f ∗ c. Set g := f ∗ c. Again by (7.261) on page 607,

g(q, p) =
1

π2

Z

R4
e2ip(w−u)e2iv(q−w)e2iz(u−q) · f(u, v)e−it0z2/2 dudvdwdz

=
1

π

Z

R3
δ(p− v)e−2ipue2ivqe2iz(u−q) · f(u, v)e−it0z2/2 dudvdz,

after integrating over w. Integration over v implies

g(q, p) =
1

π

Z

R2
e−2ipue2ipqe2iz(u−q) f(u, p)e−it0z2/2 dudz.

(III) Inserting f(u, p) from (7.322), we obtain that g(q, p) is equal to the integral
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1

π2

Z

R4
e2i(p−z)(q−u)e2i(p−η)(ξ−u)eitη2/2e−it0z2/2 b(ξ, p) dξdηdudz.

After integrating over u, we get

1

π

Z

R3
δ(z + η − 2p) e2i(p−z)q e2i(p−η)ξ eitη2/2 e−it0z2/2 b(ξ, p) dξdηdz.

Consequently, integrating over η, we obtain

g(q, p) =
1

π

Z

R2
e2i(p−z)(q−ξ) eit(z−2p)2/2 e−it0z2/2 b(ξ, p) dξdz.

This is the claim (7.276) on page 615.
7.33 The Wick theorem. Compute the moment 〈x4

1x
2
2〉 by using the Wick theorem.

Solution: To simplify notation, we write (ij) instead of 〈yiyj〉. We first compute
〈y1y2y3y4y5y6〉. This is equal to

(12)(34)(56) + (12)(35)(46) + (12)(36)(45)

+ (13)(24)(56) + (13)(25)(46) + (13)(26)(45)

+ (14)(23)(56) + (14)(25)(36) + (14)(26)(35)

+ (15)(23)(46) + (15)(24)(36) + (15)(26)(34)

+ (16)(23)(45) + (16)(24)(35) + (16)(25)(34).

Setting y1 = y2 = y3 = y4 := x1 and y5 = y6 := x2, we get

〈x4
1x

2
2〉 = 3〈x2

1〉2〈x2
2〉+ 12〈x2

1〉〈x1x2〉2.

By induction, we obtain that 〈x1x2 · · ·x2n〉 contains s(2n) summands where
s(0) := 1 and

s(2n) = (2n− 1)s(2n− 2), n = 1, 2, 3, . . .

For example, s(2) = 1, s(4) = 3, s(6) = 15, s(8) = 7 · 15 = 105.
7.34 The rescaling trick. Prove Prop. 7.48 on page 572.

Solution: Let s ≥ s0. By assumption, there exists a number s0 > 1 such that
the series ζA(s) =

P∞
n=1 λ

−s
n converges. Using Euler’s gamma function

Γ (s) =

Z ∞

0

ts−1e−tdt,

we get

Γ (s)ζA(s) =

Z ∞

0

ts−1et
∞
X

n=1

λ−s
n dt.

Here, it is allowed to interchange summation with integration, by the majorant
criterion for integrals (see page 493 of Vol. I). The substitution t = λnu yields

ζA(s) =
1

Γ (s)

Z ∞

0

us−1
∞
X

n=1

e−λnudu.

Let γ > 0. Replacing A �→ γA and λn �→ γλn, we obtain

ζγA(s) =
1

Γ (s)

Z ∞

0

us−1
∞
X

n=1

e−γλnudu.
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The substitution v = γu yields

ζγA(s) =
γ−s

Γ (s)

Z ∞

0

vs−1
∞
X

n=1

e−λnvdv = γ−sζA(s).

Differentiating this with respect to s, we obtain

ζγA(s) = − ln γ · γ−sζA(s) + γ−sζ′A(s).

After analytic continuation of the zeta function ζA, we get

ζ′γA(0) = −ζA(0) ln γ + ζ′A(0).

This implies the desired result

det(γA) = e−ζ′
γA(0) = γζA(0)e−ζ′

A(0) = γζA(0) detA.

7.35 Special Fourier–Laplace integrals. Let E,H ∈ R, and ε > 0. Prove the follow-
ing:

(i)
R∞
−∞ ei(E+iε)t/�e−iHt/�θ(t)dt = i�

E+iε−H
.

(ii) θ(t)e−iHt/� = i
2π

PV
R∞
−∞

e−i(E+iε)t/�

E+iε−H
dE for all t ∈ R \ {0}.

Solution: To simplify notation, set � := 1. Since limt→+∞ e−εt = 0,

Z ∞

0

eiEte−εte−iHtdt = lim
N→∞

eiEt e−εte−iHt

i(E + iε)− iH

˛

˛

˛

N

0
=

i

E + iε−H
.

In order to get the inverse transformation, we formally apply the Fourier trans-
form to (i). This yields

θ(t)e−εt e−iHt =
1

2π

Z ∞

−∞
e−iEt · i

E + iε−H
dE, t ∈ R. (7.323)

However, the crux is that this integral does not exist because of too slow decay
at infinity. Therefore, we have to argue more carefully. Observe first that the
function

f(t) := θ(t)e−εte−iHt, t ∈ R

is not smooth. This is the reason for the failing of the Fourier transform, in
the classical sense. However, since |f | is bounded, the function f is a tempered
distribution, and its Fourier transform is well defined. Thus, we may regard
equation (7.323) as a short-hand notation for the Fourier transform in the sense
of tempered distributions. To refine this argument, note that

R

R
|f(t)|2dt <∞,

that is, f ∈ L2(R). The Plancherel theorem tells us that the Fourier transform

f(t) = lim
R→+∞

Z R

−R

e−iEt · i

E + iε−H
dE, t ∈ R

is valid in the sense of the convergence in the Hilbert space L2(R) (see page 514).
More precisely, applying the residue theorem, Cauchy’s integration method
implies that (ii) is valid for all t �= 0. Argue as in Problem 12.1 of Vol. I.
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7.36 The Fourier–Laplace transform. Prove Prop. 7.17 on page 498.
Hint: Use Problem 7.35. For interchanging limits, construct absolutely conver-
gent majorant series. To this end, observe that the inequality 2ab ≤ a2 + b2

(for real numbers a, b) yields

2|〈χ|ϕk〉〈ϕk|ϕ〉| ≤ |〈χ|ϕk〉|2 + |〈χ|ϕk〉|2.

Finally, use the Parseval equation.
7.37 Proof of Proposition 7.64 on page 642. Solution: It is convenient to use the

function

J := −
M
X

k=1

pm ln pm

which differs from I by a positive factor. (Note that log2 a = ln a · log2 e.) Since
limx→+0 x lnx = 0, the function J is continuous on the closed simplex σM . For
the partial derivatives of J on the interior of σM , we get Jpm = − ln pm − 1
and

Jpmpn = −δmn

pm
, m, n = 1, . . . ,M.

Thus, the symmetric matrix (−Jpmpn) is positive definite on the interior of
σM , and hence the function −J is convex, that is, J is concave on the interior
of σM . By continuity, this remains true on σM . One checks easily that the
maximal value of J is attained at an inner point of σM . From Jpm = 0 for
m = 1, . . . ,M , we get p1 = . . . = pM .



8. Quantum Particles on the Real Line –
Ariadne’s Thread in Scattering Theory

The S-Matrix knows all about scattering processes and bound states of
quantum particles.

Folklore

The S-Matrix is the most important quantity in elementary particle physics. The
fundamental role played by the S-matrix was emphasized by Heisenberg in 1943.1

He was motivated by the following philosophy:

Use only such quantities in quantum physics which are closely related to
physical experiments.

In fact, the S-matrix encodes transition probabilities in scattering experiments. This
way, one obtains the cross sections for scattering processes which can be measured
in particle accelerators. Interestingly enough, scattering experiments also give in-
formation about bound states by using the poles of the S-matrix. It is also possible
to detect unstable particles (also called resonances in particle physics) by carrying
out scattering experiments. In the present chapter, we will explain the basic ideas
of scattering theory by studying very simple models.

8.1 Classical Dynamics Versus Quantum Dynamics

In our solar system, there exist two different types of motions:

(a) Planets (and some comets) move on bounded orbits (Fig. 8.1(a)).
(b) In addition, there exist comets which move on unbounded orbits (Fig. 8.1(b)).

Concerning (b), the motion is asymptotically free in the remote past (i.e., t→ −∞)
and in the distant future (i.e., t→ +∞). We speak of bound states (a) and scatter-
ing states (b). It turns out that the distinction between bound states and asymp-
totically free states (also called scattering states) is of fundamental importance in
elementary particle physics. For example, consider the electron of a hydrogen atom
which moves around the proton.

• The planets correspond to bound states of the electron. In contrast to celestial
mechanics, the energies E1, E2, . . . of bound states are discrete. More precisely,
−∞ < E1 < E2 < . . . < 0.

• The asymptotically free moving comets correspond to the scattering of electrons
by the proton. The possible energies of the scattered electrons fill the infinite
interval [0,∞[.

1 W. Heisenberg, The observable quantities in particle physics, Z. Phys. 120
(1943), 513–538, 673–702; 123 (1944), 93–112 (in German).
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Fig. 8.1. Classification of states

The distinction between bound states and scattering states is closely related to the
spectral theory of self-adjoint operators in Hilbert spaces. Roughly speaking, we
have the following situation:

• The possible energy values of a quantum particle form the spectrum of the Hamil-
tonian H : D(H)→ X in the Hilbert space X. Here, H is a self-adjoint operator
in X.

• The energy values of the bound states form the discrete spectrum of H.
• The energy values of the scattering states form the absolutely continuous spec-

trum of H.

The Hilbert space X allows the following orthogonal decomposition

X = X1 ⊕X2.

The closed subspace X1 of X has an orthonormal basis ϕ1, ϕ2, . . . with

Hϕj = Ejϕj for all j.

The elements of X1 (resp. X2) are called bound states (resp. scattering states). In
particular, each eigenvector ϕj represents a bound state with energy Ej . For given
initial state ψ(0) ∈ X, the dynamics of the particle is given by

ψ(t) = e−itH/�ψ(0) for all t ∈ R.

For the dynamics, we have the following situation:

• If ψ(0) ∈ X1, then ψ = ψ(t) represents a bound motion of the quantum particle.
• If ψ(0) ∈ X2, then the motion ψ = ψ(t) represents a scattering process for

the quantum particle. Intuitively, this is the motion of a wave packet which is
asymptotically free as time goes to +∞ and −∞.

In particle accelerators, the incoming particles form a homogeneous stream of fixed
particle energy E. Such a particle stream is described by a current density vector.
Note the following:

• Current densities do not live in the Hilbert space X, but they are costates of X
(i.e., they are functionals on X).

• In terms of the Schrödinger equation, bound states ϕj of energy Ej are normal-
ized functions, that is,

Z

R3
|ϕj(x)|2d3x = 1.



8.1 Classical Dynamics Versus Quantum Dynamics 701

• The current densities ϕ are described by eigenfunctions of the Schrödinger equa-
tion which cannot be normalized, that is, Hϕ = Eϕ, and

Z

R3
|ϕ(x)|2d3x =∞.

Such eigenfunctions are called generalized eigenfunctions.

Motion of a classical particle. Let us study a simple example. Consider the
motion x = x(t) of a classical particle of mass m on the real line governed by the
following equation of motion

mẍ(t) = −U ′(x(t)). (8.1)

Assume first that the potential U : R → R is smooth. Then, for each solution of
(8.1), there exists a real number E such that

mẋ(t)2

2
+ U(x(t)) = E for all times t ∈ R. (8.2)

The number E represents the energy of the motion. Hence

U(x(t)) ≤ E for all t ∈ R.

This restricts the possible motions of the particle. In fact, for given energy E, the
motion of the particle is only possible in the subset

{x ∈ R : U(x) ≤ E}

of the real line. Now we consider the special case where the potential is given by
the following function

U(x) :=

(

U0 if − r ≤ x ≤ r,

0 otherwise.
(8.3)

Here, r > 0. In this case, the potential U is piecewise continuous. By a solution
x = x(t) of the equation of motion (8.1), we understand a solution in the sense of
distributions.2 In addition, we assume that x = x(t) is continuous and piecewise
continuously differentiable on the time interval ]−∞,∞[, and it satisfies equation
(8.2) for fixed real energy E and all points in time where the velocity function
t → ẋ(t) is continuous. It turns out that the velocity v of the particle is piecewise
constant. If v > 0 (resp. v < 0), then the particle moves from left to right (resp.
from right to left). We have to distinguish the following cases.

(i) Free motion: U0 = 0. For given energy E > 0, the particle moves on the real

line with the velocity v given by mv2

2
= E. For E = 0, the particle rests.

(ii) Potential well: U0 < 0 (Fig. 8.2).
• For given energy E > 0, the particle moves with piecewise constant velocity

on the real line.

2 Explicitly, this means that
R

R
mx(t)ϕ̈(t)dt = −

R

R
U ′(x(t))ϕ(t)dt for all smooth

test functions ϕ : R→ R with compact support.
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(a) Asymptotically free motion

r−r
�

�

x

��

U0

E

(b) Bound motion

�

�
x

U0

E

Fig. 8.2. Motion of a classical particle of energy E on the real line

• For given energy E ∈]U0, 0[, the particle moves inside the interval [−r, r]
with the constant velocity v given by

mv2

2
+ U0 = E. (8.4)

If the particle hits one of the boundary points x = ±r, then it will be
reflected and it changes the direction of motion.

• For E = U0, the particle rests on the interval [−r, r].
(iii) Potential barrier: U0 > 0 (Fig. 8.8 on page 728).
• For given energy E > U0, the particle moves with piecewise constant velocity

on the real line.
• For given energy E ∈]0, U0[, the particle moves either on the interval ] −
∞,−r] or on [r,∞[. If the particle hits one of the boundary points x = −r
or x = r, then it is reflected.

Motion of a quantum particle. The quantum motion with respect to the
potential U from (8.3) will be explicitly computed in the next section. Roughly
speaking, there appear the following quantum modifications which are crucial from
the physical point of view.

• In the case of the potential well, there exists only a finite number of bound-state
energies. The corresponding wave functions are not concentrated on the interval
[−r, r]. However, they are decaying exponentially as x→ −∞ and x→ +∞ (Fig.
8.3).

• In the case of the potential barrier, the quantum particle is able to pass through
the interval [−r, r]. This means that quantum particles are able to reach regions
which are forbidden by classical mechanics. This quantum effect is called tun-
nelling. For example, the radioactive decay of molecules is based on tunnelling
(Fig. 8.9 on page 728).

(a) Scattering state

r−r
�

�

x

�

U0

E

(b) Bound state

�

�
x

U0

E

Fig. 8.3. Motion of a quantum particle of energy E on the real line
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8.2 The Stationary Schrödinger Equation

The motion of a quantum particle of mass m on the real line is governed by the
Schrödinger equation

i�ψt(x, t) = − �
2

2m
ψxx(x, t) + U(x)ψ(x, t), x, t ∈ R. (8.5)

Choosing the real number E and setting

ψ(x, t) = e−iEt/�ϕ(x), (8.6)

we get the stationary Schrödinger equation

− �
2

2m
ϕxx(x, t) + U(x)ϕ(x) = Eϕ(x), x ∈ R. (8.7)

If ϕ is a smooth solution of (8.7), then the function ψ from (8.6) satisfies the
equation (8.5) and describes a quantum state of energy E. Furthermore, we have
the conservation law

�t(x, t) + Jx(x, t) = 0 for all x, t ∈ R (8.8)

with the particle number density � := |ψ|2 and the particle current density3

J := �
„

ψ† P

m
ψ

«

(8.9)

along with the momentum operator Pψ := −i� ∂
∂x

ψ. Hence

�(x) = |ϕ(x)|2, J(x) = �
„

ϕ(x)†
P

m
ϕ(x)

«

.

By (8.8), J ′(x) = 0 for all x ∈ R. This implies the conservation of the particle
current density:

J(x) = const for all x ∈ R. (8.10)

Let us formulate a second important conservation law. If ϕ1 and ϕ2 are smooth solu-
tions of (8.7), then a simple computation shows that the derivative of the Wronskian

W(x) :=

˛

˛

˛

˛

˛

ϕ1(x) ϕ2(x)

ϕ′
1(x) ϕ′

2(x)

˛

˛

˛

˛

˛

vanishes. Hence

W(x) = const for all x ∈ R. (8.11)

Classification of solutions of the stationary Schrödinger equation. Let
ϕ be a solution of (8.7).

3 The current density J has the dimension “(particle number/length) × velocity”.
In the SI system, this corresponds to s−1.
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• If
R

R
|ϕ(x)|2dx = 1, then the function ϕ describes a single quantum particle on

the real line, and the integral

Z b

a

|ϕ(x)|2dx

is equal to the probability of finding the particle in the interval [a, b]. This prob-
ability does not depend on time.

• If
R

R
|ϕ(x)|2dx =∞, then the function ϕ describes a homogeneous particle stream

on the real line with the constant particle current density

J = �
„

ϕ† P

m
ϕ

«

.

If J > 0 (resp. J < 0), then the particles move from left to right (resp. from
right to left). The number of particles that passes through a fixed, but otherwise
arbitrary point x during the time interval [t0, t1] is equal to |J | · (t1 − t0).

8.3 One-Dimensional Quantum Motion in a Square-Well
Potential

We are going to show that the motion of a quantum particle on the real line, under
the action of a square-well potential, can be explicitly computed (Fig. 8.4). Our
investigations serve as a prototype for typical phenomena arising in elementary
particle physics. This concerns the following:

• the appearance of both bound states and unbound states (scattering states),
• scattering states are described by eigenfunctions of the energy operator which are

not normalizable (i.e., generalized eigenfunctions in the Hilbert space setting),
• the physical and mathematical importance of the S-matrix,
• conservation of probability and the unitarity of the S-matrix,
• the relation between bound-state energies and singularities of the S-matrix,
• the Fourier–Stieltjes transform with respect to (normalized and non-normali-

zable) eigenfunctions of the energy operator,
• wave packets and wave operators,
• the dynamical meaning of the S-matrix and the relation to wave operators,
• the duality between partial differential equations (the Schrödinger equation) and

integral equations (the Lippmann–Schwinger equation),
• the method of the Green’s function in scattering theory (the Lippmann–Schwinger

equation),
• the energetic Riemann surface and the existence of unstable particles (resonances

and the Breit–Wigner formula).

To begin with, let us switch off the potential. That is, we want to study the free
motion.

8.3.1 Free Motion

For vanishing potential, U ≡ 0, the stationary Schrödinger equation reads as

− �
2

2m
ϕ′′(x) = Eϕ(x), x ∈ R. (8.12)
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(a) Scattering state

r−r
�

�

x

�

U0
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(b) Bound state
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Fig. 8.4. Square-well potential in quantum mechanics

For fixed parameter k > 0, introduce the so-called free Jost functions

ϕk,free(x) := eikx, ϕ−k,free(x) := e−ikx, x ∈ R.

Then

Pϕ±k,free = ±�kϕ±k,free

and

J± = �
„

ϕ†
±k,free

P

m
ϕ±k,free

«

= ±�k

m
, E =

�
2k2

2m
.

Consequently, for the given parameter k > 0, the free Jost function ϕk,free describes
a stream of particles where each particle has the momentum �k and the energy

E = �
2k2

2m
. The particle current density is given by J+ = �k

m
. Since J+ > 0, the

particles move from left to right.
Similarly, the free Jost function ϕ−k,free describes a stream of particles with

particle momentum −�k, particle energy E = �
2k2

2m
, and particle current density

J− = − �k
m
. Since J− < 0, the particles move from right to left.

General solution. For given E > 0, chose k :=
q

2mE
�2 . Then the general

solution of the stationary Schrödinger equation (8.12) reads as

ϕ(x) = αϕk,free(x) + βϕ−k,free(x)

where α and β are arbitrary complex numbers. This shows the importance of the
free Jost functions.

Convention. In order to simplify the notation, we will set � := 1 and m := 1
in the remaining part of this chapter.

8.3.2 Scattering States and the S-Matrix

Square-well potential. As a typical case, let us now choose the square-well
potential U : R → R from (8.3) with U0 < 0 (Fig. 8.4 on page 705). We want to
solve explicitly the stationary Schrödinger equation (8.7) with respect to U .

The scattering function ϕk. Fix the parameter k > 0. By definition, the
scattering function ϕk has the form

ϕk(x) :=

8

>

<

>

:

eikx + �←(k)e−ikx if x < −r,
AeiKx + Be−iKx if −r ≤ x ≤ r,

τ→(k)eikx if x > r.

(8.13)
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We have to match the complex coefficients �←, A,B, τ→ such that

ϕk ∈ C1(R),

that is, we get a continuous and continuously differentiable function ϕk on the
real line. We will show below that the coefficients can be uniquely determined in
such a way that we obtain a continuously differentiable solution (in the sense of
distributions) of the stationary Schrödinger equation (8.7) with energy E. From the
physical point of view, the scattering function ϕk describes the following situation:

• The function x �→ eikx on ]−∞,−r[ represents an incoming stream of particles
of particle momentum p = k, particle energy E = k2/2, and particle current
density

Jin = k.

The particles move from left to right.
• Reflection. The function x �→ �←(k)e−ikx on ] − ∞,−r[ represents a particle

stream which is reflected at the point x = −r. The reflected particles have the
momentum p = −k and the energy E = k2/2. The current density is given by

Jrefl = −|�←(k)|2Jin.

The reflected particles move from x = −r to x = −∞.
• Transmission. The function x �→ τ→(k)eikx on ]r,∞[ represents the transmitted

particle stream. These particles have the momentum p = k and the corresponding

energy E = k2

2
. The particle current density is given by

Jtrans = |τ→(k)|2Jin.

The transmitted particles move from x = −r to x = +∞.

Naturally enough, the complex number �←(k) is called the reflection amplitude,
and τ→(k) is called the transmission amplitude.

Using �(z − z†) = 0, a simple computation shows that the scattering function
ϕk corresponds to the particle current density Jin + Jrefl on ] − ∞,−r[ and the
particle current density Jtrans on ]r,∞[. Conservation of particle current density
tells us that we have Jin + Jrefl = Jtrans. Hence

|�←(k)|2 + |τ→(k)|2 = 1 for all k > 0. (8.14)

For an incoming particle of momentum k, note that

• |�←(k)|2 is the probability for reflection at the point x = −r where the potential
well starts, and

• |τ→(k)|2 is the probability for transmission at the point x = −r.
Naturally enough, the sum of the two probabilities is equal to 1 by (8.14). We
will show below that the crucial relation (8.14) between reflection probability and
transmission probability is closely connected with the unitarity of the S-matrix.

The scattering function ϕ−k. Let us now reverse the direction of scattering.
This scattering process from right to left is described by the scattering function
ϕ−k of the form

ϕ−k(x) :=

8

>

<

>

:

e−ikx + �→(k)eikx if x > r,

AeiKx + Be−iKx if −r ≤ x ≤ r,

τ←(k)e−ikx if x < −r.
(8.15)
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Because of the symmetry of the potential well U , we have ϕ−k(x) = ϕk(−x) for all
points x ∈ R and all wave numbers k > 0.

Proposition 8.1 Let k > 0. For the reflection and transmission amplitude of the
scattering function ϕk with respect to the potential well U from Fig. 8.4 on page
705, we get

�←(k) =
i
2

`

K
k
− k

K

´

e−2ikr sin2 2Kr

cos 2Kr − i
2

`

K
k

+ k
K

´

sin 2Kr
,

τ→(k) =
e−2ikr

cos 2Kr − i
2

`

K
k

+ k
K

´

sin 2Kr
.

Here, E = k2

2
and K =

p

2(E + |U0|). For the transmission probability, we have

|τ→(k)|2 =

0

@1 +
sin2 2Kr

4E
|U0|

“

1 + E
|U0|

”

1

A

−1

.

This yields the reflection probability |�←(k)|2 = 1− |τ→(k)|2.

For the scattering function ϕ−k, we obtain

�→(k) = �←(k), τ←(k) = τ→(k). (8.16)

This follows from the symmetry of the potential well U .
Proof. Consider the scattering function ϕk. We have to determine the coefficients
�←, A,B, τ→ along with K. To this end, let us insert the ansatz for ϕk into the
stationary Schrödinger equation (8.7).

Considering the intervals ]−∞,−r[ and ]r,∞[, we get E = k2

2
. On the interval

[−r, r], we obtain

E =
K2

2
+ U0.

Hence K =
p

2(E − U0). The function ϕk is continuous at the points x = −r and
x = r iff

e−ikr + �←eikr = Ae−iKr + BeiKr,

AeiKr + Be−iKr = τ→eikr.

The derivative of ϕk is continuous at the points x = −r and x = r iff

k(e−ikr − �←eikr) = K(Ae−iKr −BeiKr),

K(AeiKr −Be−iKr) = τ→keikr.

To simplify notation, we set R := �←e2ikr, D := τ→, A := Aei(k−K)r, as well as
B := Bei(k+K)r. Then

1 +R = A+ B, k(1−R) = K(A− B),

De2ikr = Ae2iKr + Be−2iKr, kDe2ikr = K(Ae2iKr − Be−2iKr).

Hence
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1 +R+
k

K
(1−R) = 2A, D

„

1 +
k

K

«

e2i(k−K)r = 2A,

1 +R− k

K
(1−R) = 2B, D

„

1− k

K

«

e2i(k+K)r = 2B.

Eliminating A and B, we get

1 +R+
k

K
(1−R) = D

„

1 +
k

K

«

e2i(k−K)r,

1 +R− k

K
(1−R) = D

„

1− k

K

«

e2i(k−K)r.

Computing the solution D,R of this system, we obtain the claim. �

The scattering matrix (S-matrix). Fix the parameter k > 0 called wave
number. The scattering process is characterized by the four transition amplitudes

• τ←(k), �→(k) (scattering from right to left),
• �←(k), τ→(k) (scattering from left to right).

Define the matrix

Ŝ(k) :=

 

τ←(k) �→(k)

�←(k) τ→(k)

!

. (8.17)

This is called the S-matrix with respect to the wave number k. We will show

below that the matrix Ŝ(k) is unitary because of the conservation of the particle
number. The crucial relation between the S-matrix and the quantum dynamics will
be discussed in Sec. 8.3.9 on page 722.

Unitarity of the S-matrix. Let us prove that

For each wave number k > 0, the S-matrix Ŝ(k) is unitary.

We have to show that Ŝ(k)Ŝ(k)† = I (see Problem 9.5). Explicitly,

 

τ←(k) �→(k)

�←(k) τ→(k)

! 

τ←(k)† �←(k)†

�→(k)† τ→(k)†

!

=

 

1 0

0 1

!

.

In fact, by (8.14), |�←(k)|2 + |τ→(k)|2 = 1 (conservation of the particle number
current). Because of (8.16), it remains to show that

�←(k)τ←(k)† + τ→(k)�→(k)† = 0. (8.18)

To this end, note that the scattering functions ϕk and ϕ−k are solutions of the
stationary Schrödinger equation (8.7). Since E and U(x) are real, the conjugate

complex scattering functions ϕ†
±k are also solutions of (8.7). Therefore, the Wron-

skian
˛

˛

˛

˛

˛

ϕk(x) ϕ−k(x)†

d
dx
ϕk(x) d

dx
ϕ−k(x)†

˛

˛

˛

˛

˛

is constant on the real line. Considering the Wronskian at the two points x = −r
and x = r, we obtain (8.18), after an elementary computation. �

The transfer matrix. Let us consider a solution ϕ of the stationary Schrö-
dinger equation (8.7) on page 703 which has the following form:
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ϕ(x) =

8

>

<

>

:

A−eikx + B−e−ikx if x < −r,
AeiKx + Be−iKx if −r ≤ x ≤ r,

A+eikx + B+e−ikx if x > r.

(8.19)

We are looking for a function ϕ ∈ C1(R). The function ϕ is continuous at the points
x = −r and x = r iff

A−e−ikr + B−eikr = Ae−iKr + BeiKr,

AeiKr + Be−iKr = A+eikr + B+e−ikr.

The derivative ϕ′ is continuous at the points x = −r and x = r iff

k(A−e−ikr −B−eikr) = K(Ae−iKr −BeiKr),

K(AeiKr −Be−iKr) = k(A+eikr −B+e−ikr).

This is a linear system for the complex coefficients A±, B±.

Proposition 8.2 Let k > 0. For given complex numbers A+ and B+, the coeffi-
cients A− and B− are uniquely determined. Explicitly,

 

A−

B−

!

=

 

α(k) β(k)

β(k)† α(k)†

!

=

 

A+

B+

!

(8.20)

where

α(k) : =
1

τ→(k)
, β(k) := −�→(k)

τ→(k)
. (8.21)

For the square-well potential U from Fig. 8.4 on page 705, the transition ampli-
tude τ→(k) and the reflection amplitude �→(k) are given by Prop. 8.1. The complex
(2× 2)-matrix from (8.20) is called the transfer matrix of the potential well U.
Proof. We start with the ansatz

 

A−

B−

!

=

 

α(k) β(k)

γ(k) δ(k)

!

=

 

A+

B+

!

. (8.22)

In particular, for the scattering function ϕk introduced in (8.13) on page 705, we
obtain

A− = 1, B− = �←(k) and A+ = τ→(k), B+ = 0.

Hence
 

1

�←(k)

!

=

 

α(k) β(k)

γ(k) δ(k)

!

=

 

τ→(k)

0

!

.

Similarly, the scattering function ϕ−k from (8.15) on page 706 tells us that

 

0

τ←(k)

!

=

 

α(k) β(k)

γ(k) δ(k)

!

=

 

�→(k)

1

!

.

This implies 1 = ατ→ and 0 = α�→ +β. Passing to the conjugate complex equation
of (8.19), we have to replace A−, B− by B†

−, A
†
−, respectively, and so on. This

implies
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B†
−

A†
−

!

=

 

α(k) β(k)

γ(k) δ(k)

!

=

 

B†
+

A†
+

!

. (8.23)

Comparing this with the first line of (8.22), we get γ(k) = β(k)†, and δ(k) = α(k)†.
�

The transfer matrix plays a crucial role for the approximative computation of
quantum scattering processes on the computer. This can be found in R. Gilmore,
Elementary Quantum Mechanics in One Dimension, John Hopkins University Press,
Baltimore, Maryland, 2004. The idea is to approximate general potentials by step
functions and to compute the transfer matrix for each step.

8.3.3 Bound States

Consider again the square-well potential U from Fig. 8.4 on page 705. A solution ϕ
of the stationary Schrödinger equation (8.7) on page 703 represents a bound state
iff

Z

R

|ϕ(x)|2dx = 1. (8.24)

For the energy E of the quantum particle, we have to distinguish the following three
cases.

• Case 1: E > 0. Since U = 0 on the interval ] −∞,−r[, the general solution of
equation (8.7) on the interval ]−∞,−r[ has the form

A−eikx + B−e−ikx (8.25)

with complex coefficients A−, B− and E = k2

2
.

• Case 2: E = 0. The general solution of equation (8.7) on ]−∞,−r[ is given by

A− + B−x.

Thus, bound states are impossible in cases 1 and 2.
• Case 3: U0 ≤ E < 0. Let κ > 0. The general solution of (8.7) on ]−∞,−r[ reads

as

A−e−κx + B−eκx (8.26)

where E = −κ2

2
. If this represents a bound state on the interval ]−∞,−r[, then

A− = 0. That is, the term A−e−κx (with the exponential growth as x → −∞)
vanishes.

Note that the solution (8.26) is obtained from (8.25) by choosing the imaginary
wave number k := iκ.

The bound-state energies. In order to compute all of the bound states ϕ,
let us start with the ansatz

ϕ(x) =

8

>

<

>

:

B−eκx if x < −r,
AeiKx + Be−iKx if −r ≤ x ≤ r,

A+e−κx if x > r.

(8.27)

Here, we choose κ :=
√
−2E and K :=

p

2(E − U0).
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Proposition 8.3 (i) There exists precisely a finite number of bound-state energies
E1, . . . En with n = 1, 2, . . . Here,

U0 < E1 < E2 < . . . < En < 0.

All of the energy eigenvalues E1, . . . , En are simple. The bound states ϕ are C1(R)-
functions. They are either even or odd functions with respect to the variable x.

(ii) The even bound states ϕ are given by

ϕ(x) =

8

>

<

>

:

eκx if x < −r,
A cosKx if −r ≤ x ≤ r,

e−κx if x > r,

(8.28)

up to a multiplicative constant. The corresponding energy E satisfies the transcen-
dental equation

tanKr =
κ

K
.

There exists at least one even bound state. The bound state of least energy (i.e., the
ground state) is always even.

(iii) The odd bound states ϕ are given by

ϕ(x) =

8

>

<

>

:

eκx if x < −r,
B sinKx if −r ≤ x ≤ r,

−e−κx if x > r,

(8.29)

up to a multiplicative constant. The energy E satisfies the transcendental equation

cotKr = − κ

K
.

Proof. (I) Simplicity of the bound-state eigenfunctions. Let ϕ1, ϕ2 ∈ C1(R). Sup-
pose that ϕ1 and ϕ2 are bound-state solutions of the stationary Schrödinger equa-
tion (8.7) for fixed energy E < 0. Consider the interval ]−∞,−r[. By (8.27), there
exists a complex number μ such that

ϕ1(x) = μϕ2(x) for all x ∈]−∞,−r[.

Hence ϕ′
1(x) = μϕ′

2(x) for all x ∈]−∞,−r[. By continuity,

ϕ1(−r) = μϕ2(−r), ϕ′
1(−r) = μϕ′

2(−r).

Solving the Schrödinger equation (8.7) on the interval [−r, r] for given initial values
ϕj(−r), ϕ′

j(−r), we get ϕ1(x) = μϕ2(x) for all x ∈ [−r, r]. The same argument
shows that ϕ1 = μϕ2 on R.

(II) Symmetry of the bound-state eigenfunctions. Choose the function ϕ1 as in
(I). Define the reflection operator

Rϕ1(x) := ϕ1(−x) for all x ∈ R.

Since U(−x) = U(x) for all x ∈ R, the function Rϕ1 is also a solution of (8.7).
Hence Rϕ1 = μϕ1 for some complex number μ. Therefore,

ϕ1 = R2ϕ1 = R(Rϕ1) = μ2ϕ1.

If ϕ1 �= 0, then μ2 = 1. This implies either μ = 1 or μ = −1.
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Fig. 8.5. Computation of bound-state energies

(III) Computation of the even bound-state eigenfunctions. Use the ansatz for
the function ϕ from (8.27). Suppose that the function ϕ is even. Hence A = B.
This yields (8.28). Then ϕ and ϕ′ are continuous at the point x = r iff

A cosKr = e−κr, AK sinKr = κe−κr.

Hence tanKr = κ/K. This is the claim (ii). Analogously, we get (iii). �

The equation tanKr = κ
K

with κ =
√
−2E and K =

p

2(E − U0) can be solved
graphically. To this end, setting x := Kr we get the equation

tanx =

p

ξ2 − x2

x
, 0 < x < ξ.

Here, ξ := r
p

2|U0|. The solutions x of this equation are the intersection points
between the two curves plotted in Fig. 8.5. There exists at least one intersection
point, and the number of intersection points is finite. For the intersection point x,
the corresponding bound-state energy is given by

E = U0 +
K2

2
= U0

„

1− x2

ξ2

«

.

The corresponding state function ϕ is even. It can be shown that the number of
intersection points in Fig. 8.5 increases if the parameter ξ increases. In particular,
if the width 2r or the depth |U0| of the potential well goes to infinity (i.e., ξ →∞),
then the number of bound-state energies goes to infinity as well.

Similarly, we can treat the equation cotKr = − κ
K

which yields the bound-state
energies for odd state functions ϕ. It turns out that the ground state of energy E1

is always even with Kr ∈ [0, π
2
]. The first excited state of energy E2 is always odd

with Kr ∈ [π
2
, π].

8.3.4 Bound-State Energies and the Singularities of the S-Matrix

We now want to compute the bound-state energies by using analyticity properties
of the S-matrix. Set

k := iκ

with κ > 0. Consider the function ϕ from (8.27) with B− = 1. Since Prop. 8.2 on
page 709 remains valid by using analytic continuation, we obtain

 

0

1

!

=

 

α(iκ) β(iκ)

γ(iκ) δ(iκ)

!

=

 

A+

0

!

. (8.30)

For a bound state ϕ, we have A+ �= 0. Therefore, it follows from (8.30) that ϕ is a
bound state iff α(iκ) = 0. Since τ→ = 1/α, we get the following.
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Proposition 8.4 There exists a bound state for the energy Eb < 0 iff the function
κ �→ τ→(iκ) has a pole at the point κ =

√
−2Eb.

Recall from (8.16) and (8.17) that the S-matrix is given by

Ŝ(iκ) :=

 

τ→(iκ) �→(iκ)

�→(iκ) τ→(iκ)

!

.

Thus, Proposition 8.4 tells us the crucial fact that the energies of the bound states
are related to the singularities of the S-matrix. Explicitly, by Prop. 8.1 on page
707,

τ→(iκ) =
e2κr

cos 2Kr + 1
2

`

κ
K
− K

κ

´

sin 2Kr
(8.31)

along with κ =
√
−2E and K =

p

2(E + |U0|). Consequently, we obtain the equa-
tion

cos 2Kr +
1

2

„

κ

K
− K

κ

«

sin 2Kr = 0 (8.32)

for determing the bound-state energy E. Using the well-known addition theorem
cot 2x = 1

2
(cotx− tanx), equation (8.32) is equivalent to

tanKr − cotKr =
κ

K
− K

κ
.

This is satisfied iff 4

tanKr =
κ

K
or cotKr = − κ

K
.

By Prop. 8.3 on page 711, these two equations determine precisely the bound-state
energies.

8.3.5 The Energetic Riemann Surface, Resonances, and the
Breit–Wigner Formula

Again let us consider the motion of a homogeneous stream of quantum particles
on the real line from left to right under the action of the square-well potential U
pictured in Fig. 8.4 on page 705. We are given the particle energy E > 0. According
to Prop. 8.1 on page 707, the transmission probability is given by

|τ→(k)|2 =

0

@1 +
sin2 2Kr

4E
|U0|

“

1 + E
|U0|

”

1

A

−1

where E = k2

2
and K =

p

2(E + |U0|). This yields the reflection probability

|�←(k)|2 = 1− |τ→(k)|2.
4 Observe that an inspection of the graph of the function f(x) := x− 1

x
tells us that

for given ξ > 0, the equation f(x) = f(ξ) has precisely two solutions. Explicitly,
the solutions are x = ξ and x = − 1

ξ
.
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(a) first sheet

�

�
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V

(b) second sheet

�

�
ER

V
ER − iΓ

Fig. 8.6. The energetic Riemann surface

Resonances. Physicists say that the particle stream is in resonance at the
energy ER iff the transmission probability is equal to one, that is,

|τ→(k)|2 = 1

with ER = k2

2
. Consequently, the reflection probability is equal to zero,

|�→(k)|2 = 0.

Explicitly, we have |τ→(k)|2 = 1 iff sin2 2Kr = 0. Hence 2Kr = nπ where n is a
positive integer. Therefore, the resonance energies are given by

ER =
K2

2
+ U0 =

n2π2

8r2
− |U0|, n = n0, n0 + 1, n0 + 2, . . .

Here, n0 is the smallest positive integer with
n2
0π2

8r2 ≥ |U0|.
The energetic Riemann surface. Transmission amplitudes depend on the

wave number k =
√

2E. In order to allow complex parameters k via analytic con-
tinuation, we have to study the function E �→

√
E on its Riemann surface (Fig.

8.6). Explicitly, we consider the first sheet

Σ1 := {E ∈ C : E = |E| · eiα, 0 ≤ α < 2π}

and the second sheet

Σ2 := {E ∈ C : E = |E| · eiβ , 2π ≤ β < 4π}.

Observe that the arguments α and β of E are different on the first and second
sheet. Intuitively, we cut two exemplars of the complex plane along the positive
real axis, and we glue together the two sheets in such a way that the set V pictured
in Fig. 8.6 represents a neighborhood of the point ER on the Riemann surface. To
illustrate this, define

E(t) := �eit, 0 ≤ t ≤ 4π, � > 0.

Consider this as a motion E = E(t) on the two sheets Σ1 and Σ2. Here, we move
counterclockwise along the circle of radius � around the origin. More precisely,

• we start at the point E(0) = � on the first sheet at time t = 0;
• we pass through the point E(π) = −� on the first sheet at time t = π;
• we then arrive at the point E(2π) = � on the second sheet at time t = 2π,
• and we finish the trip at the point E(4π) = � on the first sheet at time t = 4π.
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We now define

√
E :=

(

p

|E| · eiα/2 if E ∈ Σ1,
p

|E| · eiβ/2 if E ∈ Σ2.

Similarly,
√

2E :=
√

2
√
E. In particular, this definition is chosen in such a way that

the function E �→
√
E is continuous on the Riemann surface. Note that the values

of
√
E on the two sheets differ by the sign. For example, if we consider the point

E = 1 on the first (resp. second) sheet, then
√
E = 1 (resp.

√
E = −1).

Analytic continuation of the transmission amplitude. From Prop. 8.1,
we get

τ→(
√

2E) =
e−2ik(E)r

cos 2K(E)r − i
2

“

K(E)
k(E)

+ k(E)
K(E)

”

sin 2K(E)r
(8.33)

for all E > 0. Here, we set k(E) :=
√

2E and K(E) :=
p

2(E + |U0|). However,
by analytic continuation, this formula makes sense for all complex numbers E on
the Riemann surface of the function E �→

√
E. The singularities of the function

E �→ τ→(
√

2E) encode important properties of the quantum particle on the real
line.

(i) The transmission amplitude E �→ τ→(
√

2E) has poles at the points

E1 < E2 < . . . < En < 0

on the negative real axis of the first sheet of the energetic Riemann surface.
These poles are the energies of bound states of the particle.

(ii) The transmission probability function E �→ |τ→(
√

2E)|2 is equal to one at the
points

ERn =
n2π2

8r2
− |U0|, n = n0, n0 + 1, n0 + 2, . . .

where n0 is the smallest positive integer with
n2
0π2

8r2 ≥ |U0|. The points
ER1 , ER2 , . . . correspond to the energies of so-called resonances.

(iii) The transmission amplitude τ→(
√

2E) allows the following approximation

τ→(
√

2E) =
i(−1)nΓne−2ik(ERn )r

E − (ERn − iΓn)
, n = n0, n0 + 1, . . . (8.34)

for all complex energies E in some open neighborhood V of the real resonance
energy ER = ERn on the energetic Riemann surface (see Fig. 8.6 on page 714).
Here,

Γn :=

p

2ERn

r

„

1 +
ERn

ERn + |U0|

«−1

.

This will be proved below. Thus, the transmission amplitude has poles at the
energy points

ERn − iΓn, n = n0, n0 + 1, n0 + 2, . . .

which lie on the second sheet of the energetic Riemann surface, by the construc-
tion of the open neighborhood V in Fig. 8.6. In terms of elementary particle
physics, this serves as a model for an unstable particle of energy ERn and mean
lifetime Γn. For the transmission probability, we get
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�
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�
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2Γ1
2

1 |τ→(
√

2E)|2

Fig. 8.7. The Breit–Wigner formula

|τ→(
√

2E)|2 =
Γ 2

n

(E − ERn)2 + Γ 2
n

. (8.35)

This is the famous Breit–Wigner formula. The function E �→ |τ→(
√

2E)|2 is
pictured in Fig. 8.7 with ER = ERn and Γ = Γn.
Observe that resonances can be measured in particle accelerator experiments.
As a rule, physicists measure curves of the type pictured in Fig. 8.7. Such
curves are used in order to determine the energy, ER, and the mean lifetime Γ
of unstable particles.

The Breit–Wigner formula. Let us motivate relation (8.34). By equation
(8.33),

τ→(
√

2E) =
1

cos 2K(E)r
· e−2ik(E)r

1− i
2

“

K(E)
k(E)

+ k(E)
K(E)

”

tan 2K(E)r
(8.36)

where k(E) :=
√

2E and K(E) :=
p

2(E + |U0|). Consider the point ER on the
positive real axis of the first sheet Σ1 of the energetic Riemann surface, and choose
an open neighborhood V of the point ER on the energetic Riemann surface as
pictured in Fig. 8.6 on page 714.

Now to the point. The function E �→
√
E is holomorphic on the open set V.

Consequently, the function E �→ τ→(
√

2E) is holomorphic on V. For the points
E ∈ V, Taylor expansion yields

τ→(
√

2E) = τ→(
√

2ER) +
dτ→(

√
2E)

dE |E=ER

(E − ER) + o(E − ER),

as E → ER. Let us compute this. Recalling that 2K(ER)r = nπ, we get

cos 2K(ER)r = (−1)n, tan 2K(ER)r = 0

and
d(2K(E)r)

dE |E=ER

=
2r

K(ER)
.

Therefore, up to terms of order o(E −ER) as E → ER, we obtain

tan 2K(E)r =
2r

K(ER)
· (E − ER),

and hence
1

2

„

K(E)

k(E)
+

k(E)

K(E)

«

tan 2K(E)r =
E − ER

Γ (ER)
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with

1

Γ (ER)
:=

1

2

„

K(ER)

k(ER)
+

k(ER)

K(ER)

«

2r

K(ER)
=

r√
2ER

„

1 +
ER

ER + |U0|

«

.

By (8.36), this implies

τ→(
√

2E) =
(−1)ne−2ik(ER)r

1− i(E−ER)
Γ (ER)

=
i(−1)nΓ (ER)e−2ik(ER)r

E − ER + iΓ (ER)
,

up to terms of order o(E − ER) as E → ER. This yields the claim (8.34).
The relation between energy operators, non-real energy eigenvalues, and reso-

nances (unstable particles) is studied in

P. Hislop and I. Sigal, Introduction to Spectral Theory: with Applications
to Schrödinger Operators, Springer, New York, 1996.

This monograph uses the functional-analytic approach to operators which are not
self-adjoint. We also refer to

S. Gustafson and I. Sigal, Mathematical Concepts of Quantum Mechanics,
Springer, Berlin, 2003.

Our discussion above shows that scattering processes are closely related to analyt-
icity properties of the S-matrix elements with respect to the wave number. There
exist far-reaching generalizations in the context of analytic S-matrix theory. We
recommend the monograph by

A. Barut, The Theory of the Scattering Matrix, MacMillan, New York,
1967.

Summary. Let us summarize the results on the motion of a quantum particle
on the real line under the action of the square-well potential U introduced in (8.3)
on page 701 with U0 < 0. The stationary Schrödinger equation

− 1
2
ϕxx(x) + U(x)ϕ(x) = Eϕ(x), x ∈ R (8.37)

has the following solutions.

(i) Bound states. There exist the eigenfunctions χj , j = 1, . . . , n, with the corre-
sponding energies Ej , j = 1, . . . n, where

U0 < E1 < . . . < En < 0.

The eigenvalues are simple. The eigenfunctions χ1, . . . , χn form an orthonormal
system in the Hilbert space L2(R). Explicitly,

〈χj |χk〉2 = δjk, j, k = 1, . . . , n.

Here, we use the inner product

〈ϕ|χ〉2 :=

Z

R

ϕ(x)†χ(x)dx (8.38)

for all functions ϕ, χ ∈ L2(R). In what follows, we will also use the symbol
〈ϕ|χ〉2 in the case where at least one of the functions ϕ, χ does not lie in the
Hilbert space L2(R), but only the integral

R

R
ϕ(x)†χ(x)dx exists. For example,

if ϕ(x) := 1 and χ(x) := e−x2/2 for all x ∈ R, then

〈ϕ|χ〉2 =

Z

R

ϕ(x)†χ(x)dx =

Z

R

χ(x)dx =
√

2π.
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(ii) Scattering eigenfunctions. For each wave number k > 0, there exist the two

scattering eigenfunctions ϕk and ϕ−k with the energy E = k2

2
. The eigenfunc-

tions ϕ±k do not lie in the Hilbert space L2(R). In fact, we have

〈ϕ±k|ϕ±k〉2 =

Z

R

|ϕ±k(x)|2dx =∞ for all k > 0.

The explicit form of the eigenfunctions ϕ±k can be found in Prop. 8.1 on page
707. The scattering eigenfunctions ϕ±k have the following asymptotic behavior

ϕ±k(x) � τ→(k) e±ikx as x→ ±∞.

8.3.6 The Jost Functions

Fix the wave number k > 0 and choose the square-well potential U from (8.3) on
page 701 with U0 ≤ 0. Consider the stationary Schrödinger equation (8.37) on page
717 with the energy

E :=
k2

2
.

Observe that we have the following general solution principle.

(P) If two C1(R)-solutions ϕ and χ of equation (8.37) (in the sense of
distributions) coincide on some open interval, then they coincide on the
real line.

This follows from the unique solvability of the initial-value problem for (8.37). Since
the square-well potential U vanishes outside the interval [−r, r], the equation (8.37)
has the special solutions

Jk(x) := eikx for all x > r

and
J−k(x) := e−ikx for all x < −r.

These functions can be uniquely extended to solutions of the stationary Schrödinger
equation (8.37) on the real line. Explicitly,

J±k(x) =
ϕ±k(x)

τ→(k)
for all x ∈ R.

The functions Jk and J−k are called the Jost functions.5

Proposition 8.5 Let k > 0. For all x ∈ R, we have
 

J−k(x)

J−k(x)†

!

=

 

a(k) b(k)

b(k)† a(k)†

! 

Jk(x)†

Jk(x)

!

where

a(k) :=
1

τ→(k)
, b(k) :=

�→(k)

τ→(k)
.

5 If the potential vanishes identically, U ≡ 0, then we get the free Jost functions
J±k(x) = e±ikx for all x ∈ R.
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Therefore, if we know the Jost functions, then we also know the coefficients
a(k), b(k) which imply the reflection and transmission amplitudes. This tells us
that

The Jost functions know all about the S-matrix.

Proof. Let x > r. Then Jk(x) = eikx. By (8.15) on page 706, we get

J−k(x) =
ϕ−k(x)

τ→(k)
=

e−ikx + �→(k)eikx

τ→(k)
.

Hence a(k) = 1/τ→(k) and b(k) = �→(k)/τ→(k). �

8.3.7 The Fourier–Stieltjes Transformation

The Fourier transformation and its generalizations lie at the heart of math-
ematics.

Folklore

Let us again consider the square-well potential U from (8.3) on page 701 with
U0 < 0. Let us use the notation summarized on page 717. The key formula reads as

ϕ(x) =
n
X

j=1

cjχj(x) +
1√
2π

Z ∞

−∞
c(k)ϕk(x)dk (8.39)

for all x ∈ R. For the so-called Fourier–Stieltjes coefficients cj , c(k), we will get

cj :=

Z ∞

−∞
χj(x)†ϕ(x)dx, c(k) :=

1√
2π

Z ∞

−∞
ϕk(x)†ϕ(x)dx

where j = 1, . . . , n and k ∈ R \ {0}. Moreover, in the special case where k = 0, we
set ϕ0(x) := 0 for all x ∈ R, and c(0) := 0. Let us add the Parseval equation6

Z ∞

−∞
ϕ(x)†χ(x)dx =

n
X

j=1

c†jdj +

Z ∞

−∞
c(k)†d(k)dk. (8.40)

Here, cj , c(k) and dj , d(k) are the Fourier–Stieltjes coefficients of the functions ϕ and
χ, respectively. We now use the space S(R) of smooth, rapidly decreasing functions
ϕ : R→ C.7

Theorem 8.6 For all functions ϕ, χ ∈ S(R), we have the Fourier–Stieltjes expan-
sion formula (8.39) and the Parseval equation (8.40).

For the proof, we refer to Berezin and Shubin (1991), p. 126. This theorem is
the prototype of general expansion theorems in mathematics which date back to
Hermann Weyl’s 1908 dissertation in Göttingen on singular integral operators and
his 1910 habilitation thesis in Göttingen on singular differential operators.8 Weyl’s

6 Parseval des Chénes (1755–1836), Fourier (1768–1830), Stieltjes (1856–1894).
7 The precise definition of S(R) can be found in Vol. I, Sec. 10.3.3.
8 H. Weyl, On ordinary differential equations with singularities, Math. Ann. 68

(1910), 220–269 (in German). Weyl’s theory was completed by the following
fundamental paper:
K. Kodaira, The eigenvalue problem for ordinary differential equations of the
second order and Heisenberg’s theory of S-matrices. Amer. J. Math. 71 (1949),
921–945.
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dissertation was supervised by Hilbert. If the potential vanishes identically, U ≡ 0,
then the eigenfunctions χj drop out and we have ϕk(x) = eikx for all x ∈ R. In this
special case, equation (8.39) passes over to the classical Fourier transform. Let us
now discuss the relation to both the theory of unitary operators and the theory of
generalized eigenfunctions in Hilbert spaces.

Unitary extension. Motivated by the Fourier–Stieljes expansion formula
(8.39), we set

Uϕ := (c1, . . . , cn; c(k))k∈R.

This defines a linear operator U : S(R) → Y from the space S(R) of rapidly
decreasing test functions into the product Hilbert space

Y := C
n × L2(R)

equipped with the inner product

n
X

j=1

c†jdj +

Z ∞

−∞
c(k)†d(k)dk.

The Parseval equation (8.40) tells us that

〈Uϕ|Uχ〉Y = 〈ϕ|χ〉2 for all ϕ, χ ∈ S(R).

Since the set S(R) is dense in the Hilbert space L2(R), the operator U can be
uniquely extended to a unitary operator9

U : L2(R)→ Y. (8.41)

This operator is called the Fourier–Stieltjes transform generated by the stationary
Schrödinger equation (8.37).

8.3.8 Generalized Eigenfunctions of the Hamiltonian

Motivated by the stationary Schrödinger equation (8.37), we introduce the Hamil-
tonian

Hϕ := −1

2

d2ϕ

dx2
+ Uϕ

for all test functions ϕ ∈ S(R). Moreover, for any test function ϕ ∈ S(R), we define
the functionals

• Fj(ϕ) := 〈χj |ϕ〉2 for j = 1, . . . , n, and
• Gk(ϕ) := 1√

2π
〈ϕk|ϕ〉2 for all k ∈ R. 10

In terms of the Fourier–Stieltjes transformation, this means that we assign the
Fourier–Stieltjes coefficients to the test function ϕ. Briefly,

Fj(ϕ) = cj , Gk(ϕ) = c(k), j = 1, . . . , n, k ∈ R.

This way, we obtain linear, sequentially continuous functionals

9 See Zeidler (1995a), Sec. 3.6, quoted on page 1049.
10 Note that the integral 〈ϕk|ϕ〉2 =

R

R
ϕk(x)†ϕ(x)dx exists for all ϕ ∈ S(R) because

of the boundedness of the functions ϕk.



8.3 One-Dimensional Quantum Motion in a Square-Well potential 721

Fj , Gk : S(R)→ C.

In other words, Fj and Gk are tempered distributions11 which lie in the space S ′(R),
and we have

Fj(Hϕ) = EjFj(ϕ), Gk(Hϕ) = E(k)Gk(ϕ) (8.42)

for all ϕ ∈ S(R) with the energies Ej and E(k) := k2

2
. Here, j = 1, . . . , n and k ∈ R.

In fact, since Ej is real, we get

〈χj |Hϕ〉2 = 〈Hχj |ϕ〉2 = Ej〈χj |ϕ〉 for all ϕ ∈ S(R).

Furthermore, note that Hϕk = E(k)ϕk for all k ∈ R. Thus, for all ϕ ∈ S(R),
integration by parts yields

〈ϕk|Hϕ〉2 = 〈Hϕk|ϕ〉2 = E(k)〈ϕk|ϕ〉2.

Note that the boundary terms of the integration-by-parts formula vanish, since the
function ϕ decreases rapidly at ±∞.

Theorem 8.7 The family {F1, . . . , Fn, Gk}k∈R represents a complete orthonormal
system of generalized eigenfunctions of the Hamiltonian H.

Explicitly, this means that the following three conditions are satisfied.

(i) Generalized eigenfunctions. In terms of the theory of tempered distributions,
we have

Hχj = Ejχj , HGk = E(k)Gk, j = 1, . . . , n, k ∈ R.

(ii) Completeness. For any given ϕ ∈ S(R), it follows from

Fj(ϕ) = Gk(ϕ) = 0

for all indices j = 1, . . . , n, k ∈ R that ϕ = 0.
(iii) Orthonormality. The operator U : S(R)→ Y given by

U(ϕ) := (F1(ϕ), . . . , Fn(ϕ);Gk(ϕ))k∈R

can be uniquely extended to a unitary operator U : L2(R)→ Y.

Proof. Ad (i). This is a reformulation of (8.42).
Ad (ii). This follows from the Parseval equation (8.40),

Z ∞

−∞
|ϕ(x)|2dx =

n
X

j=1

|cj |2 +

Z ∞

−∞
|c(k)|2dk,

with cj = 0 and c(k) = 0 for all indices j = 1, . . . , n, k ∈ R.
Ad (iii). See (8.41). �

11 See Sec. 10.3.3 of Vol. I.
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8.3.9 Quantum Dynamics and the Scattering Operator

Wave operators describe the motion of wave packets; the scattering oper-
ator is closely related to the S-matrix.

Folklore

Again let U denote the square-well potential from (8.3) with U0 < 0 (see Fig. 8.4
on page 705). The preceding results admit the following physical interpretation.
Consider again the Hamiltonian H given by

(Hϕ)(x) :=

„

−1

2

d2

dx2
+ U(x)

«

ϕ(x), x ∈ R

for all ϕ ∈ S(R). The operator H : S(R) → L2(R) is an essentially self-adjoint
operator on the Hilbert space L2(R), which can be extended to the self-adjoint
operator

H : D(H)→ L2(R)

on the Hilbert space L2(R). By definition, the free Hamiltonian Hfree is obtained
from H by switching off the potential, U ≡ 0.

(i) Dynamics: For each given initial state ψ0 ∈ L2(R), the motion of the quantum
particle is given by

ψ(t) = e−iHtψ0 for all t ∈ R. (8.43)

(ii) Bound states. We have the eigensolutions

Hχj = Ejχj , j = 1, . . . , n

with U0 < E1 < . . . < En < 0. The energy eigenstates χ1, . . . , χn form an
orthonormal system in L2(R). For given initial state χj with j = 1, . . . , n, the
corresponding dynamics is given by ψj(t) = e−iEjtχj for all t ∈ R.

(iii) Scattering states. Let B be the linear hull of the energy eigenstates χ1, . . . , χn.
The elements of B are called bound states. We have the orthogonal decompo-
sition

L2(R) = B ⊕B⊥.

By definition, ϕ ∈ B⊥ iff 〈ϕ|χj〉2 = 0 for all j = 1, . . . , n. The elements
of the orthogonal complement B⊥ to the space B of bound states are called
scattering states of the stationary Schrödinger equation (8.37). It turns out
that the following holds.

If the initial state ψ0 is a scattering state, then the dynamics (8.43) is
asymptotically free in both the distant future and the remote past.

Explicitly, there exist states ϕout and ϕin in L2(R) such that

lim
t→+∞

||e−itHψ0 − e−itHfreeϕout|| = 0

and
lim

t→−∞
||e−itHψ0 − e−itHfreeϕin|| = 0.

This justifies the designation ‘scattering states’ for the states in B⊥.
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(iv) Wave operators. Setting

Woutϕout := ψ0, Winϕin := ψ0,

we get the wave operators Wout,Win : L2(R)→ B⊥ which are unitary from the
original Hilbert space L2(R) onto the space B⊥ of scattering states. In terms
of limits,12

Woutϕout = lim
t→+∞

eitHe−itHfreeϕout.

Similarly, we get Winϕin = limt→−∞ eitHe−itHfreeϕin.
(v) The scattering operator S. Set

Sϕin := ϕout.

In other words, the scattering operator connects the initial state of the free
motion in the remote past with the initial state of the free motion in the
distant future. This way, the time-dependent scattering process is reduced to
the investigation of initial states at time t = 0 for free motions. In terms of the
wave operators, the scattering operator is given by

S = W−1
outWin. (8.44)

This means that WoutS = Win. In other words, the following diagram

L2(R)
S ��

Win �����������
L2(R)

Wout

��
L2(R)

(8.45)

is commutative.13 It follows from the unitarity of the wave operators that

The scattering operator S : L2(R)→ L2(R) is unitary.

Summarizing, we get the following.
• Suppose that we are given the scattering state ψ0 ∈ B⊥ at the initial time

t = 0.
• The dynamics ψ(t) = e−itHψ0 of the quantum particle under the action of

the potential U behaves like the free dynamics

ψ−(t) = e−itHfreeϕin as t→ −∞.

Here, ϕin = W−1
in ψ(0).

12 Note that ||e−itHψ0 − e−itHfreeϕout|| is equal to

||e−itH(ψ0 − eitHe−itHfreeϕout)|| = ||ψ0 − eitHe−itHfreeϕout||,

by the unitarity of the operator eitH for all t ∈ R. This remains true if we replace
ϕout by ϕin.

13 In order to prove (8.44), note that ϕout = Sϕin is equivalent to

W−1
outψ0 = SW−1

in ψ0 for all ψ0 ∈ B⊥.

Hence W−1
out = SW−1

in . This implies W−1
outWin = S.
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• The dynamics ψ(t) = e−itHψ0 of the quantum particle under the action of
the potential U behaves like the free dynamics

ψ+(t) = e−itHfreeϕout as t→ +∞.

Here, ϕout = Sϕin.
(vi) The relation between wave operators and the motion of wave packets. The

harmonic wave function x �→ eikx does not lie in the Hilbert space L2(R).

In order to improve the situation, the trick is to construct wave packets
which lie in L2(R).

More precisely, by a free wave packet we understand a function of the form

ϕfree(x) :=

Z ∞

−∞
A(k)eikxdk for all x ∈ R

where the smooth amplitude function A : R → C has compact support. In
terms of physics, this is a superposition of harmonic waves. Since A ∈ S(R), the
theory of the Fourier transform tells us that ϕfree ∈ S(R). Hence ϕfree ∈ L2(R).
Moreover, for each wave number k ∈ R, we have

Hfreee
ikx = E(k)eikx, x ∈ R

with the energy E(k) = k2

2
.

Now switch on the potential U . For each wave number k ∈ R \ {0}, let us pass
to the function ϕk with

Hϕk(x) = E(k)ϕk(x), x ∈ R.

By a wave packet induced by the potential U , we understand a function of the
form

ϕU (x) :=

Z ∞

−∞
A(k)ϕk(x)dk for all x ∈ R.

That is, we replace the harmonic wave by the solution ϕk of the stationary
Schrödinger equation (8.37) on page 717. The proofs of the following statements
can be found in Berezin and Shubin (1991).
It turns out that the wave operator Wout sends the free wave packet ϕfree to
the wave packet ϕU . Explicitly, for all amplitude functions A ∈ D(R), we get

Wout

„

Z ∞

−∞
A(k)eikxdk

«

=

Z ∞

−∞
A(k)ϕk(x)dk.

Similarly, for the wave operator Win, we get

Win

„

Z ∞

−∞
A(k)e−ikxdk

«

=

Z ∞

−∞
A(k)ϕk(x)†dk.

This yields the scattering operator S = W−1
outWin.

(vii) The relation between the scattering operator S and the S-matrix Ŝ. Fix the
wave number k > 0. Recall that the functions ϕk and ϕ−k have the following
asymptotical behavior

ϕk(x) :=

(

eikx + �←(k)e−ikx if x < −r,
τ→(k)eikx if x > r
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and

ϕ−k(x) :=

(

e−ikx + �→(k)eikx if x > r,

τ←(k)e−ikx if x < −r.

For the unitary scattering operator S : L2(R)→ L2(R), set

χ := Sϕ for all ϕ ∈ S(R).

If ϕ̂ (resp. χ̂) denotes the Fourier transform of ϕ (resp. χ), then

 

χ̂(k)

χ̂(−k)

!

= Ŝ(k)

 

ϕ̂(k)

ϕ̂(−k)

!

for all k > 0

with the S-matrix

Ŝ(k) :=

 

τ←(k) �→(k)

�←(k) τ→(k)

!

.

The explicit form of the S-matrix elements can be found in Prop. 8.1 on page
707. It turns out that, for all A ∈ D(R), the scattering operator S sends the
free wave packet

Z ∞

0

A(k)eikx + A(−k)e−ikx dk

to the free wave packet
Z ∞

0

B(k)eikx + B(−k)e−ikx dk

with the transformed amplitudes

 

B(k)

B(−k)

!

:= Ŝ(k)

 

A(k)

A(−k)

!

.

In Problem 9.7, we will prove that for all wave numbers k > 0, we have

 

ϕ−k(x)

ϕk(x)

!

= Ŝ(k)

 

ϕk(x)†

ϕ−k(x)†

!

, x ∈ R. (8.46)

Finally, let us introduce the global S-matrix Ŝ by setting

Ŝ := {Ŝ(k)}k>0. (8.47)

Here, Ŝ(k) is called the k-component of the global S-matrix with respect to
the wave number k.

The formulas above show that one has to distinguish between the scattering oper-

ator S and the scattering matrix Ŝ. However, for historical reasons and by abuse of
language, the two notions ‘scattering operator’ and ‘S-matrix’ are frequently used
in a synonymous manner.
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8.3.10 The Feynman Propagator

It is our goal to describe the quantum dynamics in terms of the Fourier–Stieltjes
transformation. Recall that Y := C

n × L2(R). The key formulas read as follows:

• Uϕ := (cj , c(k)) and Uχ := (dj , d(k)) for all ϕ, χ ∈ L2(R).

• Ĥ(cj , c(k)) := (Ejcj , E(k)c(k)) on D(Ĥ).
• For all times t ∈ R and all (cj , c(k)) ∈ Y , we have

e−itĤ(cj , c(k)) := (e−itEj cj , e
−itE(k)c(k)).

More precisely, (cj , c(k)) stands for (cj , c(k))j=1,...,n,k∈R, and so on. By definition,

the set D(Ĥ) consists of all (cj , c(k)) ∈ Y with the property

n
X

j=1

E2
j |cj |2 +

Z ∞

−∞
E(k)2|c(k)|2dk <∞

where E(k) := k2

2
. We also set D(H) := U−1D(Ĥ). Then the following hold true:

(i) The operator Ĥ : D(Ĥ)→ Y is self-adjoint on the Hilbert space Y, and it is the
Fourier–Stieltjes transform of the self-adjoint Hamiltonian H : D(H)→ L2(R)
on the Hilbert space L2(R). This means that the following diagram

L2(R)

U
��

H �� L2(R)

U
��

Y
Ĥ �� Y

(8.48)

is commutative. In other words, UH = ĤU on D(H). Equivalenty, we have

H = U−1ĤU on D(H).

(ii) For each time t ∈ R, the unitary operator e−itĤ : Y → Y is the Fourier–
Stieltjes transform of the unitary operator e−itH : L2(R) → L2(R). Explicitly,

e−itH = U−1e−itĤU .
The propagator. Set P (t) := e−itH for all t ∈ R. The operator P (t) is called

the propagator of the Hamiltonian H at time t. Since the operator H is self-adjoint,
the Stone theorem tells us that the operator

P (t) : L2(R)→ L2(R)

is a well-defined unitary operator. For all given functions ϕ, χ ∈ S(R) and each
time t ∈ R, we have

〈ϕ|P (t)χ〉2 =
n
X

j=1

e−itEj c†jdj +

Z ∞

−∞
e−itE(k)c(k)†d(k)dk. (8.49)

Using the Heaviside function, define

P+(t) := θ(t)P (t) for all t ∈ R

and P−(t) := −θ(−t)P (t).14 This implies the splitting

14 Recall that θ(t) := 1 if t ≥ 0 and θ(t) := 0 if t < 0. .
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P (t) = P+(t)− P−(t) for all t ∈ R

of the propagator into the retarded propagator P+ and the advanced propagator
P−. In the literature, the retarded propagator P+(t) is also called the Feynman
propagator at time t.

Formal approach. Physicists formally write

〈ϕ|P (t)χ〉2 =

Z

R2
ϕ(x)†P(x, y; t)χ(y)dxdy (8.50)

with the propagator kernel

P(x, y; t) :=
n
X

j=1

e−itEjχj(x)χj(y)
† +

1

2π

Z ∞

−∞
e−itE(k)ϕk(x)ϕk(y)†dk.

Here, the functions χj and ϕk are taken from (8.39) on page 719. In physics text-
books, formula (8.50) is formally motivated in the following way. The integral

Z

R2
ϕ(x)†P(x, y; t)χ(y)dxdy

is equal to

n
X

j=1

e−itEj

Z

R

ϕ(x)†χj(x)dx

Z

R

χj(y)
†χ(y)dy

+
1

2π

Z ∞

−∞
e−itE(k)

„

Z

R

ϕ†(x)ϕk(x)dx

Z

R

ϕk(y)†χ(y)dy

«

dk.

This coincides with
n
X

j=1

e−itEj c†jdj +

Z ∞

−∞
e−itE(k)c(k)†d(k)dk.

In turn, this is equal to 〈ϕ|P (t)χ〉2.
The kernel strategy of physicists. The mathematical approach to quantum

physics is based on the language of self-adjoint operators. In order to get more
information about the operators, it is useful to pass to the representation of opera-
tors by kernels which depend on space and time. The kernels are closely related to
Green’s functions. In mathematics, the operator approach was introduced by von
Neumann in the late 1920s. In physics, the formal kernel approach was invented by
Dirac in the late 1920s and further developed by Feynman in the early 1940s (rep-
resentation of the kernels by path integrals). In the late 1940s, Laurent Schwartz
proved his kernel theorem which gives the kernel approach of physicists a rigorous
basis (see Vol. I, Sec. 12.2.7). It was shown by Grothendieck in the 1950s that the
kernel approach is closely related to the theory of nuclear spaces.

8.4 Tunnelling of Quantum Particles and Radioactive
Decay

Radioactive decay. It was discovered in about 1900 that there exist atoms which
decay. This is the phenomenon of radioactive decay under the action of the weak
force. We distinguish between
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(a)

r−r
�

�

x

U0

E
−→
←−

(b)

r−r
�

�

x

U0

E
←−
−→

Fig. 8.8. Classical motion on the real line

(i) α-decay (emission of α-particles consisting of two protons and two neutrons)
and

(ii) β-decay (emission of electrons).

In terms of classical mechanics, the α-particles cannot leave the atom because of a
high potential barrier. However, in contrast to the classical situation, the α-particles
can leave the atom by means of the tunnelling effect in quantum mechanics. Let us
discuss this by considering a one-dimensional model.

Classical motion. We consider the potential barrier

U(x) :=

(

U0 if − r ≤ x ≤ r,

0 otherwise
(8.51)

where U0 > 0. For a classical particle of energy E, we have E ≥ U(x) for all
positions x of the particle. Let 0 ≤ E < U0. Then the particle is able to move on

the interval ]r,∞[ or on ] −∞,−r[ with the constant velocity v where E = v2

2
. If

the particle reaches the potential barrier at the point x = r or x = −r, then it is
reflected (Fig. 8.8).

Motion of a quantum particle. In contrast to the classical motion, a quan-
tum particle is able to pass the potential barrier (Fig. 8.9). This quantum effect is
called tunnelling. Let us study this. For the given energy E of the quantum particle,
let us distinguish the following two cases.

Case 1: E > U0. We set k :=
√

2E and K :=
p

2(E − U0). Moreover, for the
state function, we make the ansatz

ϕk(x) =

8

>

<

>

:

eikx + �←(k)e−ikx if x < −r,
AeiKx + Be−iKx if −r ≤ x ≤ r,

τ→(k)eikx if x > r.

(8.52)

From Prop. 8.1 on page 707 we obtain the following formulas for the coefficients

r−r
�

�

x

���
U0

E
←−

Fig. 8.9. Tunnelling of a quantum particle on the real line
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�←(k) =
i
2

`

K
k
− k

K

´

e−2ikr sin2 2Kr

cos 2Kr − i
2

`

K
k

+ k
K

´

sin 2Kr
,

τ→(k) =
e−2ikr

cos 2Kr − i
2

`

K
k

+ k
K

´

sin 2Kr
. (8.53)

Case 2: 0 < E < U0. We now set

ϕk(x) =

8

>

<

>

:

eikx + �←(k)e−ikx if x < −r,
Ae−Kx + BeKx if −r ≤ x ≤ r,

τ→(k)eikx if x > r.

Recall that sin iz = i sinh z and cos iz = cosh z for all z ∈ C. Letting k =
√

2E and
K = iK with K :=

p

2(U0 − E), it follows from (8.53) that

�←(k) =

`K
k

+ k
K
´

e−2ikr sinh2 2K
cosh 2Kr + i

2

`K
k
− k

K
´

sinh 2Kr
,

τ→(k) =
e−2ikr

cosh 2Kr + i
2

`K
k
− k

K
´

sinh 2Kr
. (8.54)

This is an analytic continuation of the solution (8.53) of the stationary Schrödinger
equation (8.37), and hence it is also a solution of (8.37).

8.5 The Method of the Green’s Function in a Nutshell

The universal method of the Green’s function is based on integration by
parts, which corresponds to the fundamental theorem of calculus due to
Newton and Leibniz in one dimension and to the Gauss integral theorem in
higher dimensions.15 This method allows us the passage from differential
equations to integral equations.
In particular, the Schrödinger differential equation from the year 1926
passes over to the Lippmann–Schwinger integral equation from the year
1950. In contrast to the Schrödinger differential equation, the Lippmann–
Schwinger integral equation automatically yields the right asymptotic be-
havior of the wave function for scattering processes and allows us to com-
pute approximations, like the Born approximation in lowest order. This
is related to Picard’s method of successive iterations and Banach’s fixed
point theorem.
The two approaches of Feynman and Schwinger to quantum field theory
from the 1940s are based on Green’s method combined with the Dirac
delta function. The modern version of Green’s method uses the theory of
distributions created by Laurent Schwartz in the 1940s.16

Folklore

Let us now replace the square-well potential and the potential barrier by a more
general potential U. To simplify the considerations, we assume that the following
hold true.

15 Newton (1743–1727), Leibniz (1746–1716), Gauss (1777–1855), George Green
(1793–1843), Picard (1856–1941), Banach (1892–1945), Dirac (1902–1984), Feyn-
man (1918–1988), Schwinger (1918–1994), Laurent Schwartz (1915–2004).

16 For the theory of distributions, we refer to Chap. 11 of Vol. I.
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�
x

� U

Fig. 8.10. Potential of a quantum particle on the real line

(A) The function U : R → R is smooth and has compact support, that is, there
exists a number r > 0 such that U(x) = 0 if |x| > r (Fig. 8.10).

The corresponding Schrödinger equation reads as

i�ψt(x, t) = − �
2

2m
ψxx(x, t) + κU(x)ψ(x, t), x, t ∈ R (8.55)

where κ ≥ 0 is called the coupling constant. The time-dependent wave function
ψ = ψ(x, t) describes the motion of a quantum particle on the real line under the
action of the potential U .

8.5.1 The Inhomogeneous Helmholtz Equation

Fix the wave number k > 0, and set E(k) := �k2

2m
. According to the classical Fourier

method, we make the ansatz

ψ(x, t) := e−iE(k)t/�ϕ(x), x, t ∈ R.

To simplify notation, we set � := 1 and m := 1
2

(mass of the particle). This way,
we obtain the stationary Schrödinger equation

−d2ϕ(x)

dx2
− k2ϕ(x) = −κU(x)ϕ(x), x ∈ R. (8.56)

Our goal is to reduce the stationary Schrödinger equation to the following inhomo-
geneous Helmholtz equation17

−d2ϕ(x)

dx2
− k2ϕ(x) = f(x), x ∈ R. (8.57)

Again the parameter k > 0 is fixed. We are given the smooth function

f : R→ C

with compact support, that is, f ∈ D(R). We are looking for the most general
smooth solution ϕ : R→ C of (8.57).

In what follows, we will explain the relation between the formal language
of physicists and the rigorous language of mathematicians.

17 Helmholtz (1821–1894).
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Note that the formal language used by physicists is distinguished by mnemonic
elegance. For a mathematician it is very useful to know both the formal and the
rigorous language.

Our plan. In the next section, we will introduce the retarded fundamental
solution F+ and the retarded Green’s function G+(x, y) = F+(x − y), and we will
use this function in order to solve the Helmholtz equation (8.57).

In Section 8.6, we will use the retarded Green’s function in order to replace
the stationary Schrödinger equation (8.56) by the following Lippmann–Schwinger
integral equation

ϕ(x) = eikx − κ

Z

R

G+(x, y)U(y)ϕ(y)dy, x ∈ R (8.58)

for the unknown function ϕ. Setting ϕ = 0 on the right-hand side of (8.58), we get
the zeroth approximation ϕ0(x) := eikx. Replacing ϕ by ϕ0 on the right-hand side
of (8.58), we obtain the first approximation

ϕ1(x) := ϕ0(x)− κ

Z

R

G+(x, y)U(y)ϕ0(y)dy

which is called the Born approximation by physicists.18 This is a good approxima-
tion if the coupling constant κ is sufficiently small.

The solutions of the stationary Schrödinger equation (8.56) may possess differ-
ent asymptotics at infinity, x→ ±∞.

The advantage of the Lippmann–Schwinger equation is that the solutions
of this integral equation (8.58) are solutions of the Schrödinger equation
which possess the right asymptotic behavior with respect to a scattering
process from left to right.

This is guaranteed by the appropriate choice of the retarded Green’s function G+.

8.5.2 The Retarded Green’s Function, and the Existence and
Uniqueness Theorem

In order to simplify the notation, let us introduce the Helmholtz operator

L := − d2

dx2
− k2

for fixed k > 0. Thus, the Helmholtz equation (8.57) reads as Lϕ = f.
Retarded fundamental solution. To begin with, let us study the equation

Lϕ = f in the special case where f(x) := δ(x). This means that we want to solve
the special inhomogeneous Helmholtz equation

Lϕ(x) = δ(x), x ∈ R, (8.59)

in the sense of tempered distributions on the real line. To this end, set

F+(x) :=
iei|x|k

2k
for all x ∈ R.

18 M. Born, On collision processes in quantum theory, Z. Physik 37 (1926), 863-867
(in German).
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The corresponding tempered distribution reads as F+(χ) :=
R

R
F+(x)χ(x)dx for

all test functions χ ∈ S(R). The function F+ satisfies the following asymptotic
condition

lim
x→±∞

(F ′
+(x)∓ ikF+(x)) = 0.

This is a special case of the Sommerfeld radiation condition19 to be discussed below
on page 734.

Proposition 8.8 For fixed k > 0, the function F+ is a solution of equation (8.59).

The function F+ is called the retarded fundamental solution of the Helmholtz op-
erator L.
Proof. We have to show that

Z

R

F+(x)Lχ(x)dx = χ(0) for all χ ∈ S(R).

To this end, we will use integration by parts, that is,

Z b

a

u′vdx = −
Z b

a

uv′dx + uv|ba

for smooth functions u, v : [a, b]→ C where −∞ < a < b <∞.
(I) Green’s key formula. Let χ ∈ D(R). Fix η > 0, and set Uη(0) :=] − η, η[.

Integration by parts yields Green’s key formula
Z

R\Uη(0)

(F+Lχ− χLF+)dx = (F+χ
′ − χF ′

+)|η−η. (8.60)

Note that the smooth function χ vanishes outside some bounded interval. Thus,
the additional boundary terms vanish.

(II) The limit η → +0. For the classical derivative of F+ outside the origin, we
get

F ′
+(x) =

(

− 1
2
eixk if x > 0,

1
2
e−ixk if x < 0.

Consequently, the function F+ has the following three crucial properties:

(i) Solution of the differential equation outside the origin: LF+(x) = 0 for all
x ∈ R \ {0}.

(ii) Continuity: The function F+ : R→ C is continuous.
(iii) Jump of the first derivative at the origin: F ′

+(−0)− F ′
+(+0) = 1.20

Applying this to the key formula (8.60), we get
Z

R\Uη(0)

F+Lχdx = (F+χ
′ − χF ′

+|η−η.

Letting η → +0, we obtain
Z

R

F+Lχdx = χ(0)(F ′
+(−0)− F ′

+(+0)) = χ(0).

19 Sommerfeld (1868–1951).
20 As usually, we write F (x0 ± 0) := limε→+0 F (x0 ± ε).



8.5 The Method of the Green’s Function in a Nutshell 733

This is the desired relation.
The same argument applies to each test function χ ∈ S(R). In fact, the function

χ vanishes rapidly as x → ±∞. Thus, applying integration by parts to the large
interval [−K,K], we obtain boundary terms at the points ±K which vanish as
K → +∞. �

Formal approach to the Helmholtz equation via the Dirac delta func-
tion. We now want to use the fundamental solution F+ in order to construct a
special solution of the inhomogeneous Helmholtz equation (8.57). We will use a
general formal method which is always applied by physicists to linear, inhomoge-
neous differential equations. The idea is to elegantly use the convolution

ϕspecial = F+ ∗ f.

Explicitly, we obtain

ϕspecial(x) =

Z

R

F+(x− y)f(y)dy for all x ∈ R. (8.61)

In fact, formally applying the relation LF+(x) = δ(x), we get

Lϕspecial(x) =

Z

R

LxF+(x− y)f(y)dy =

Z

R

δ(x− y)f(y)dy = f(x).

That is, the function ϕspecial is a special solution of the Helmholtz equation
Lϕ = f. The general solution of the homogeneous equation Lψ = 0 reads as
ψ(x) := a+eikx + a−e−ikx where a± are arbitrary complex numbers. Consequently,
the general solution of the Helmholtz equation Lϕ = f is given by

ϕ(x) = a+eikx + a−e−ikx + ϕspecial(x).

Rigorous approach. We now want to show how the preceding elegant, but
formal argument can be turned into a rigorous proof. To this end, we have to
carefully compute the operator Lϕ by using the limit from the difference quotient
to the differential quotient. The point is that the first derivative of F+ jumps at
the origin. Naively, one expects that

Lx

Z

R

F+(x− y)f(y)dy =

Z

R

LxF+(x− y)f(y)dy.

However, observe that this formula is only valid if the derivatives of the function
x �→ F+(x− y) behave regularly (see Problem 9.2). The discontinuities of LF+ are
responsible for the modified formula

Lx

Z

R

F+(x− y)f(y)dy =

Z

R

LxF+(x− y)f(y)dy + C(x)

with an additional non-vanishing term C(x). Let us define the retarded Green’s
function G+(x, y) := F+(x− y). Explicitly,

G+(x, y) =
ieik|x−y|

2k
for all x, y ∈ R.
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Theorem 8.9 Fix k > 0. We are given the smooth function f : R → C with
compact support. Then the following hold.

(i) General solution: The smooth solutions of the inhomogeneous Helmholtz
equation (8.57) are given by

ϕ(x) = a+eikx + a−e−ikx +

Z

R

G+(x, y)f(y)dy, x ∈ R (8.62)

with the retarded Green’s function G+ and arbitrary complex numbers a+ and a−.
(ii) Unique solution: If we add the Sommerfeld radiation condition for outgoing

waves
dϕ(x)

dx
= ±ikϕ(x) + o(1), x→ ±∞,

then the inhomogeneous Helmholtz equation (8.57) has the unique smooth solution
(8.62) with a+ = a− = 0.

Proof. Ad (i). It remains to show that the function

ϕspecial(x) :=

Z ∞

−∞
G+(x, y)f(y)dy, x ∈ R

is a special solution of Lϕ = f.
(I) By the proof of Prop. 8.8, we know that

Z

R

F+(y)Lχ(y)dy = χ(0) for all χ ∈ D(R).

Replacing the origin x = 0 by the point x ∈ R, the same argument tells us that

Z

R

F+(y − x)Lχ(y)dy = χ(x) for all χ ∈ D(R).

Because of F+(x− y) = F+(y − x) and f ∈ D(R), we get

Z

R

F+(x− y)Lf(y)dy = f(x).

This is true for all x ∈ R.
(II) Thus, it remains to show that

Lϕspecial(x) =

Z

R

F+(x− y)Lf(y)dy.

To prove this, fix x ∈ R.
(III) First let us prove that

ϕ′
special(x) =

Z

R

F+(x− y)f ′(y)dy. (8.63)

In other words, we have to show that

lim
h→0

ϕspecial(x + h)− ϕspecial(x)

h
=

Z

R

F+(x− y)f ′(y)dy.

To this end, we set
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ϕspecial(x + h)− ϕspecial(x)

h
= A + B

along with

A : =

Z

]x−η,x+η[

F+(x + h− y)− F+(x− y)

h
f(y)dy,

B : =

Z

R\]x−η,x+η[

F+(x + h− y)− F+(x− y)

h
f(y)dy

where η > 0.
(III-1) Inspection of A. We are given ε > 0. We want to show that there exist

numbers h0 > 0 and η0 > 0 such that

|A| < ε for all h ∈]− h0, h0[ and η ∈]− η0, η0[. (8.64)

This follows from the triangle inequality | |x+h−y|− |x−y| | ≤ |h| and the Taylor
expansion

eik|x+h−y| − eik|x−y| = ik(|x + h− y| − |x− y|) + remainder.

Hence
˛

˛

˛

˛

eik|x+h−y| − eik|x−y|

h

˛

˛

˛

˛

≤ k + . . .

The dots denote terms which go to zero if y → x and h → 0. Thus, we obtain
|A| ≤ 2ηk + . . . This implies (8.64).

(III-2) Inspection of B. Since the point x lies outside the domain of integration
R\]x− η, x+ η[, we can use the classical rule for differentiating parameter integrals
(see Problem 9.2). Therefore,

lim
h→0

B =

Z

R\]x−η,x+η[

∂

∂x
F+(x− y) f(y)dy.

Since ∂
∂x

F+(x− y) = − ∂
∂y

F+(x− y), integration by parts yields

lim
h→0

B =

Z

R\]x−η,x+η[

F+(x− y) f ′(y)dy + C(η),

where R(η) := F+(−η)f(x − η) − F+(η)f(x + η). Letting η → 0 and noting that
limη→+0 R(η) = 0, we get the claim (8.63), up to some term whose modulus is less
than ε. Since the number ε can be chosen arbitrarily small, we obtain the claim
(8.63).

(IV) Repeating the argument from (III), we get

ϕ′′
special(x) =

Z

R

F+(x− y)f ′′(y)dy.

This yields immediately the desired result (II).
Ad (ii). Observe that the function ϕ(x) := eikx (resp. e−ikx) violates the Som-

merfeld radiation condition at x = −∞ (resp. x = +∞). However, the argument
from the proof of Prop. 8.10 below shows that the function x �→

R

R
G+(x, y)f(y)dy

satisfies the Sommerfeld radiation condition. �

Asymptotic behavior. Fix the parameter k > 0. For given function f ∈ D(R),
set
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ϕ(x) := eikx +

Z

R

G+(x, y)f(y)dy for all x ∈ R.

The function ϕ satisfies the Helmholtz equation Lϕ = f on R, and it has the
following asymptotic behavior.

Proposition 8.10 (i) ϕ(x) � eikx + �+(k)e−ikx as x → −∞ with the reflection
coefficient

�+(k) :=
i

2k

Z

R

f(y)eikydy.

(ii) ϕ(x) � τ+(k)eikx as x→ +∞ with the transmission coefficient

τ+(k) := 1 +
i

2k

Z

R

f(y)e−ikydy.

This means that the solution asymptotically behaves like

• an incoming wave of wave number k > 0 at x = −∞, and
• an outgoing wave of wave number k > 0 at x = +∞.

This wave is reflected under the influence of the external source f .
Proof. For each x ∈ R, we have the following decomposition

ϕ(x) = eikx +
ieikx

2k

Z x

−∞
f(y)e−ikydy +

ie−ikx

2k

Z ∞

x

f(y)eikydy.

Now consider the limits x→ +∞ and x→ −∞. �

8.5.3 The Advanced Green’s Function

Let k > 0. If the function ϕ is a solution of the Helmholtz equation

„

− d2

dx2
− k2

«

ϕ(x) = f(x), x ∈ R,

then the substitution k �→ −k generates a new solution of the Helmholtz equation.

For example, the retarded fundamental solution F+(x) := ieik|x|

2k
passes over to F−

where

F−(x) := − ie−ik|x|

2k
, x ∈ R

is called the advanced fundamental solution. We have

LF±(x) = δ(x), x ∈ R.

In terms of physics,

• the retarded fundamental function F+ describes an outgoing wave at the infinite
points x = −∞ and x = +∞;

• the advanced fundamental solution F− describes an incoming wave at the infinite
points x = −∞ and x = +∞.
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Suppose that we are given the function f ∈ D(R). Replacing the retarded Green’s
function G+(x, y) := F+(x− y) by the advanced Green’s function

G−(x, y) := F−(x− y) x, y ∈ R,

the most general smooth solution of the Helmholtz equation Lϕ = f on R reads as

ϕ(x) = a+eikx + a−e−ikx +

Z ∞

−∞
G−(x, y)f(y)dy, x ∈ R

where a± are arbitrary complex numbers. If we add the Sommerfeld radiation
condition for incoming waves

dϕ(x)

dx
= ∓ikϕ(x) + o(1), x→ ±∞,

then we obtain the unique smooth solution of the Helmholtz equation Lϕ = f
by setting a± = 0. The retarded Green’s function G+ and the advanced Green’s
function satisfy G− satisfy the following equation

„

− ∂2

∂x2
− k2

«

G±(x, y) = δ(x− y), x, y ∈ R.

8.5.4 Perturbation of the Retarded and Advanced Green’s
Function

Fix k > 0. We know that the equation

−
„

d2

dx2
+ k2

«

F (x) = δ(x), x ∈ R (8.65)

has the two solutions

F±(x) := ± ie±i|x|k

2k
, x ∈ R,

in the sense of tempered distributions. We want to obtain F+ and F− by using two
different perturbation methods with respect to the small parameter ε > 0, and by
carrying out the limit ε→ +0.

The perturbed retarded fundamental solution. Let us replace the original
problem (8.65) by the perturbed problem

−
„

d2

dx2
+ k2 + εi

«

F+,ε(x) = δ(x), x ∈ R (8.66)

for fixed parameter ε > 0.

Proposition 8.11 In the sense of tempered distributions, equation (8.66) has the
solution

F+,ε(x) :=
iei|x|
√

k2+εi

2
√
k2 + εi

, x ∈ R,

and we have the limit limε→+0 F+,ε = F+.
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Here, we use the principal value of the square root. The perturbed retarded
Green’s function is defined by

G+
ε (x, y) := F+,ε(x− y), x, y ∈ R.

Proof. Replacing k by
√
k2 + εi and using the same argument as in the proof of

Prop. 8.8, we obtain F+,ε. It remains to show that

lim
ε→+0

Z

R

F+,ε(x)χ(x)dx =

Z

R

F+(x)χ(x)dx (8.67)

for all test functions χ ∈ S(R). Because of

p

k2 + εi =

s

k2

„

1 +
εi

k2

«

= k

„

1 +
εi

2k2
+ O(ε2)

«

, ε→ +0, (8.68)

we obtain

F+,ε(x) =
ieik|x|e−

1
2

ε|x|/2k

2k
+ O(ε), ε→ +0.

Note that the damping factor e−
1
2

ε|x|/2k appears if ε > 0. This implies

lim
ε→+0

F+,ε(x) = F+(x) for all x ∈ R.

Finally, we get (8.67). �

The perturbed advanced fundamental solution. Again fix k > 0 and
choose the parameter ε > 0. Consider now the perturbed equation

−
„

d2

dx2
+ k2 − εi

«

F−,ε(x) = δ(x), x ∈ R (8.69)

which differs from (8.66) by changing the sign of the perturbation term.

Proposition 8.12 In the sense of tempered distributions, equation (8.69) has the
solution

F−,ε(x) := − ie−i|x|
√

k2−εi

2
√
k2 − εi

, x ∈ R,

and we have the limit limε→+0 F−,ε = F−.

The proof proceeds as above. The perturbed advanced Green’s function is defined
by

G−ε (x, y) := F−,ε(x− y), x, y ∈ R.

Damped time-depending waves and the principle of limiting absorp-
tion. Let ε > 0. We want to discuss the physics behind the perturbation method
above.

(i) The distant future. Suppose that the function ϕε satisfies the perturbed
Helmholtz equation

−
„

d2

dx2
+ k2 + εi

«

ϕε(x) = 0.
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Then the time-dependent function

ψ(x, t) = eit
√

k2+iεϕε(x), x, t ∈ R

satisfies the wave equation ψtt − ψxx = 0. Because of (8.68), the function ψ is
approximated by the wave

ψ+(x, t) := eikte−
1
2

εt/2kϕε(x), x ∈ R

which is damped as time t goes to +∞. Furthermore, we have the following
asymptotic behavior: limt→+∞ ψ(x, t) = ϕε(x) for all x ∈ R.

(ii) The remote past. Similarly, suppose that the function ϕε satisfies the perturbed
Helmholtz equation

−
„

d2

dx2
+ k2 − εi

«

ϕε(x) = 0.

Then, the time-dependent function

ψ(x, t) = eit
√

k2−iεϕε(x), x, t ∈ R

satisfies the wave equation ψtt − ψxx = 0. Because of

p

k2 − εi = k

„

1− εi

2k2
+ O(ε2)

«

, ε→ +0,

the function ψ is approximated by the wave

ψ−(x, t) := eikte
1
2

εt/2kϕε(x), x, t ∈ R

which is damped as time t goes to −∞. Furthermore, we have the following
asymptotic behavior: limt→−∞ ψ(x, t) = ϕε(x) for all x ∈ R.

This shows that the perturbation terms ±εi arising in (8.66) and (8.69) correspond
to damping (or absorption) effects.

This motivates the choice of the sign of the perturbation terms.

The limit ε→ +0 describes the vanishing of absorption. This explains why Propo-
sitions 8.11 and 8.12 are called the limiting absorption principle in mathematics.
In physics, the limit ε→ +0 is also called the adiabatic limit.

8.5.5 Feynman’s Regularized Fourier Method

Formal approach. The following method is due to Feynman. This method and
its straightforward generalization to higher dimensions is frequently used in the
physics textbooks on quantum field theory. The basic idea is to use the Fourier
method in order to compute fundamental solutions of the Helmholtz equation. To

begin with, recall that the Fourier transform f̂ of the function f is given by

f̂(p) =
1√
2π

Z

R

f(x)e−ipxdx, p ∈ R, (8.70)

and we have the inversion formula
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f(x) =
1√
2π

Z

R

f̂(p)eipxdx, x ∈ R. (8.71)

It follows from
d

dx
f(x) =

1√
2π

Z

R

ipf̂(p)eipx dx, x ∈ R

that

• the operation of differentiation f(x) �→ d
dx
f(x) is transformed into

• the operation of multiplication f̂(p) �→ ipf̂(p).

The function p �→ ip is called the symbol of the differential operator d
dx

. Finally,
using the Dirac delta function, we formally get

δ̂(p) =
1√
2π

Z

R

δ(x)e−ipxdx =
1√
2π

, p ∈ R.

Formal inversion yields s

δ(x) =
1

2π

Z

R

eipxdp, x ∈ R.

Instead of f̂ , we also write the symbol Ff.21 After these preparations, let us start
with the equation

−
„

d2

dx2
+ k2

«

F (x) = δ(x), x ∈ R. (8.72)

Using the Fourier transform, we get

(p2 − k2)F̂ (p) = δ̂(p) =
1√
2π

.

Hence

F̂ (p) =
1√

2π (p2 − k2)
.

This implies

F (x) =
1

2π

Z

R

eipx

p2 − k2
dp. (8.73)

Unfortunately, this approach completely fails. In fact, the integral (8.73) does not
exist because of the singularity at the points p = ±k.

To cure this defect by regularization, let us pass to the perturbed equations

−
„

d2

dx2
+ k2 ± εi

«

F±,ε(x) = δ(x), x ∈ R (8.74)

where ε > 0 is sufficiently small. Replacing k2 by k2±εi, the Fourier method yields

F±,ε(x) =
1

2π

Z

R

eipx

p2 − k2 ∓ εi
dp. (8.75)

Rigorous approach. We now want to investigate the properties of the integrals
(8.75) in rigorous terms.

21 The rigorous Fourier transformation for both functions and tempered distribu-
tions is thoroughly studied in Chap. 11 of Vol. I.
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Theorem 8.13 Let ε > 0 be sufficiently small. Then the integrals (8.75) are equal
to

F±,ε(x) = ± ie±i|x|
√

k2±εi

2
√
k2 ± εi

, x ∈ R.

Surprisingly enough, this coincides with the functions obtained in Sect. 8.5.4 by
using a completely different method. Before giving the proof, let us discuss this
result. By Sect. 8.5.4, the following are true in the sense of tempered distributions.

(i) Adiabatic limit: limε→+0 F±,ε = F±.
(ii) Fundamental solution: F+ and F− are solutions of the equation (8.72).
(iii) Fourier transform: limε→+0 F(F±,ε) = F(F±).22

Statement (ii) can be written as

lim
ε→+0

1

2π

Z

R

eipx

p2 − k2 ∓ εi
dp = F±(x), x ∈ R. (8.76)

This is a rigorous statement in the language of tempered distributions. If we for-
mally interchange the limit with the integration, then we get

F±(x) =
1

2π

Z

R

lim
ε→+0

eipx

p2 − k2 ∓ εi
dp =

1

2π

Z

R

eipx

p2 − k2
dp.

In contrast to (8.76), this is only a mnemonic formula.
Proof of Theorem 8.13. We will use Cauchy’s residue method from Section 4.4
of Volume I. Let k > 0 and ε > 0.

(I) Retarded case: Fix the real number x and consider the integral

F+,ε(x) :=

Z ∞

−∞
f(p)dp

with the integrand

f(p) :=
1

2π
· eixp

p2 − (k2 + εi)
.

We have to study the poles of the function f on the complex plane. Setting p+ :=√
k2 + εi and p− := −p+, we get

f(p) =
eixp

2π
· 1

(p− p+)(p− p−)
=

eixp

4πp+

„

1

p− p+
− 1

p− p−

«

.

(I-1) Let x ≥ 0. Choosing the curve C+ as pictured in Fig. 8.11(a), Cauchy’s
residue theorem tells us that

Z

C+

f(p)dp = 2πi · resp+(f) =
ieixp+

2p+
.

Since the oriented curve C+ is the union of the interval [−R,R] with the semicircle
S+

R in the upper half-plane, we have

Z R

−R

f(p)dp +

Z

S+
R

f(p)dp =
ieixp+

2p+
.

22 Since the Fourier transform F : S ′(R)→ S ′(R) is sequentially continuous, state-
ment (iii) is an immediate consequence of (ii).
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(a)

�

�

−R R
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(b)

�
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S−
R

p−

�

Fig. 8.11. Cauchy’s residue method

Letting R→ +∞, we obtain
Z ∞

−∞
f(p)dp + lim

R→+∞

Z

S
R+

f(p)dp =
ieixp+

2p+
.

It remains to show that limR→+∞
R

S+
R
f(p)dp = 0. In fact, the semicircle S+

R can

be parameterized by p = Reiγ , 0 ≤ γ ≤ π. Hence
Z

S+
R

f(p)dp =
1

2π

Z π

0

eixR cos γe−xR sin γ

R2e2iγ − (k2 + εi)
· iReiγdγ.

Since sin γ ≥ 0 if 0 ≤ γ ≤ π, we get |eixR cos γe−xR sin γeiγ | = e−xR sin γ ≤ 1. This
implies

Z

S+
R

f(p)dp = O

„

1

R

«

, R→ +∞.

(I-2) Let x < 0. Use now the same argument with respect to the curve C− as
pictured in Fig. 8.11(b). Observing the negative orientation of the curve C−, we
get

Z

C−

f(p)dp = −2πi resp−(f) =
ieixp−

2p+
.

Recall that p+ = −p−. Since x < 0, we have e−xR sin γ ≥ 1 if −π ≤ γ ≤ 0. Hence
limR→+∞

R

S−
R
f(p)dp = 0. Letting R→ +∞, we obtain

Z ∞

−∞
f(p)dp =

ieixp−

2p+
=

ie−ixp+

2p+
.

(II) Advanced case: We now consider the integral F−,ε(x) =
R∞
−∞ f(p)dp with

the integrand

f(p) :=
1

2π
· eixp

p2 − (k2 − εi)
.

Setting p− :=
√
k2 − εi and p+ := −p−, we get

f(p) =
eixp

2π
· 1

(p− p+)(p− p−)
=

eixp

4πp+

„

1

p− p+
− 1

p− p−

«

.

Let x ≥ 0 (resp. x < 0). Choosing the curve C+ (resp. C−) as pictured in Fig. 8.11,
we obtain

Z ∞

−∞
f(p)dp =

ieixp+

2p+
= − ie−ixp−

2p−

(resp.
R∞
−∞ f(p)dp = ie

ixp−
2p+

= − ie
ixp−
2p−

). �
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8.6 The Lippmann–Schwinger Integral Equation

We are given the smooth potential U : R → R with compact support. For fixed
k > 0 and all real values x, set ϕfree(x) := eikx. The Lippmann–Schwinger integral
equation

ϕ(x) = ϕfree(x)− κ

Z

R

G+(x, y)U(y)ϕ(y)dy, x ∈ R (8.77)

plays a crucial role for studying scattering processes of a quantum particle on the
real line under the influence of the potential U. Recall that G+(x, y) is equal to
i

2k
eik|x−y|.

Proposition 8.14 If ϕ : R → C is a smooth solution of the integral equation
(8.77), then it is a solution of the stationary Schrödinger equation23

−ϕ′′(x)− k2ϕ(x) + κU(x)ϕ(x) = 0, x ∈ R.

Furthermore, the solution ϕ of (8.77) has the following asymptotics:
(i) ϕ(x) � eikx + �+(k)e−ikx as x→ −∞ with the reflection coefficient

�+(k) :=
1

2ki

Z

R

U(y)ϕ(y)eikydy.

(ii) ϕ(x) � τ+(k)eikx as x→ +∞ with the transmission coefficient

τ+(k) := 1 +
1

2ki

Z

R

U(y)ϕ(y)e−ikydy.

This follows immediately from Propositions 8.9 and 8.10.

8.6.1 The Born Approximation

Recall that ϕfree(x) := eikx for fixed k > 0 and all x ∈ R. Replacing ϕ by ϕfree, we
obtain the following approximative solution

ϕ(x) = ϕfree(x)− κ

Z

R

G+(x, y)U(y)ϕfree(y)dy, x ∈ R

of the Lippmann–Schwinger integral equation (8.77). Furthermore, the reflection
and transition coefficients of ϕ read as

�+(k) =
1

2ki

Z

R

U(y)e2ikydy, τ+(k) = 1 +
1

2ki

Z

R

U(y)dy.

This is called the Born approximation of the scattering process under the action
of the potential U . As we will show in the next section, the Born approximation
works well if the coupling constant κ > 0 is sufficiently small.

23 Recall that we set � := 1 and m := 1
2
.
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8.6.2 The Existence and Uniqueness Theorem via Banach’s Fixed
Point Theorem

Define the norm ||ϕ||∞ := supx∈R
|ϕ(x)|. By definition, the space Cb(R) consists

of all continuous functions ϕ : R → C with ||ϕ||∞ < ∞. This space is a complex
Banach space equipped with the norm ||.||∞.24

Theorem 8.15 There exists a number κ0 > 0 such that, for each given coupling
constant κ ∈]0, κ0[, the Lippmann–Schwinger integral equation (8.77) has a unique
solution ϕ in the Banach space Cb(R). This solution can be obtained by the iterative
method

ϕn+1(x) = ϕ0(x)− κ

Z ∞

∞
G+(x, y)U(y)ϕn(y)dy, x ∈ R, n = 0, 1, . . .

with ϕ0 := ϕfree. The sequence (ϕn) converges to ϕ in the Banach space Cb(R), that
is,

lim
n→∞

||ϕn − ϕ||∞ = 0.

The first approximation ϕ1 coincides with the Born approximation.

Proof. Define

(Bϕ)(x) := −
Z ∞

−∞
G+(x, y)U(y)ϕ(y)dy for all x ∈ R.

Set X := Cb(R). We have to solve the operator equation

ϕ = ϕfree + κBϕ, ϕ ∈ X. (8.78)

The operator B : X → X is linear and bounded. In fact, since |G+(x, y)| is uniformly
bounded and

R∞
−∞ |U(y)|dy <∞, we get

|(Bϕ)(x)| ≤ C · sup
y∈R

|ϕ(y)| for all x ∈ R

where C denotes some constant. Hence ||Bϕ||∞ ≤ C||ϕ||∞ for all ϕ ∈ X. This
implies ||B|| ≤ C. If ||κB|| = |κ| · ||B|| < 1, then the inverse operator

(I − κB)−1 : X → X

exists and is bounded. Thus, the equation (8.78) has the unique solution

ϕ = (I − κB)−1ϕfree.

Here, (I − κB)−1 = I + κB + κ2B2 + . . . This geometric series (also called Neu-
mann series)25 is convergent with respect to the norm on the Banach space X.
Consequently, the infinite series

ϕ = lim
n→∞

 

ϕfree +
n
X

m=1

κmBmϕfree

!

24 This follows from the fact that the uniform limit of a sequence of continuous
functions is again a continuous function.

25 Carl Neumann (1832–1925), Stefan Banach (1892–1945).
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is convergent in the Banach space X. This corresponds to the convergence

ϕ = lim
n→∞

ϕn+1

of the iterative method ϕn+1 = ϕ0 + κBϕn, n = 1, 2, . . . with ϕ0 := ϕfree.
This argument is a special case of the Banach fixed-point theorem (also called

the contraction principle) (see Zeidler (1995a), Sect. 1.6, quoted on page 1049). �

8.6.3 Hypoellipticity

Let N = 1, 2, . . . We want to study the smoothness properties of the distributive
solutions ϕ of the linear differential equation

Lϕ = f on R
N . (8.79)

Here, we assume that the symbol L denotes a general linear differential operator of
order m = 1, 2, . . . with constant complex coefficients26

L :=
X

|α|≤m

aα∂
α.

We are given the distribution f ∈ D′(RN ), and we are looking for a distribution
ϕ ∈ D′(RN ) such that equation (8.79) is valid. Recall from Volume I that the
solutions F ∈ D′(RN ) of the equation

LF = δ

are called fundamental solutions of the differential operator L. Here, the symbol
δ denotes the Dirac delta distribution given by δ(χ) := χ(0) for all test functions

χ ∈ D(RN ). The symbol L̂ of the differential operator L is defined by

L̂(p) :=
X

|α|≤m

aαi|α|pα for all p ∈ R
N .

This is obtained from the operator L by replacing the differential operator ∂
∂xj

by

the complex variable ipj . In terms of the Fourier transform, we get

F(Lϕ) = L̂F(ϕ) for all ϕ ∈ S(RN ).

Here, F(ϕ) denotes the Fourier transform of the function ϕ. In other words, the

symbol L̂ tells us how the differential operator L acts in the Fourier space (momen-
tum space) by multiplication.

Theorem 8.16 The following three statements are equivalent.
(i) Hypoellipticity: The differential operator L is hypoelliptic. By definition, this

means that

sing supp ϕ = sing supp Lϕ for all ϕ ∈ D′(Ω)

and all open subsets Ω of R
N .

26 We exclude the trivial case where L = 0.
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(ii) Fundamental solution: The differential operator L has a fundamental solu-
tion F with trivial singular support, that is, sing supp F = {0}.

(iii) Symbol: The partial derivatives ∂βL̂ of order 1, 2, . . . of the symbol have the
asymptotic behavior

lim
|p|→∞

˛

˛

˛

˛

˛

∂βL̂(p)

L̂(p)

˛

˛

˛

˛

˛

= 0, p ∈ R
N .

The proof can be found in Hörmander (1983), Vol. 2, Sect. 11.1. Hypoelliptic differ-
ential operators were characterized by Hörmander in 1955.27 For his contributions
to the theory of differential operators, Hörmander was awarded the Fields medal in
1962.

Recall from Sect. 11.5.1 of Vol. I that the singular support of the distribution
ϕ ∈ D′(RN ) is the largest open subset Ω of R

N such that ϕ is smooth on Ω. In
particular, if condition (ii) is met, then the smoothness of the function f : R

N → C

implies the smoothness of all the solutions ϕ : R
N → C of equation (8.79). In terms

of the wavefront set,28 the linear differential operator L is hypoelliptic iff

WF (ϕ) = WF (Lϕ) for all ϕ ∈ D′(Ω)

and all open subsets Ω of R
N .

Example. Consider the Helmholtz equation

„

− d2

dx2
− k2

«

ϕ = f on R (8.80)

for fixed k > 0. The symbol of the Helmholtz operator L = − d2

dx2 − k2 is obtained

by the substitution d
dx
⇒ ip. Hence

L̂(p) = p2 − k2.

Obviously,

lim
p→±∞

L̂(n)(p)

L̂(p)
= 0, n = 1, 2, . . .

The fundamental solution F+(x) = ieik|x|

2k
of the Helmholtz operator is smooth on

R \ {0}. Hence sing supp F+ = {0}. Thus, the Helmholtz operator is hypoelliptic.
This means that all of the solutions ϕ ∈ D′(R) of equation (8.80) are smooth
functions on R if the given right-hand side f : R→ C is smooth.

Further examples of hypoelliptic differential operators are given by the Laplace
equation and the heat equation (resp. diffusion equation) in R

N with N = 1, 2, . . .
In contrast to this, the wave equation is not hypoelliptic. This reflects the typical
fact that the wave equation describes the propagation of waves which may possess
discontinuities (e.g. jumps of the electromagnetic field).

27 L. Hörmander, On the theory of general linear differential operators, Acta Math.
94 (1955), 161–248.

28 See Section 11.5.2 of Volume I.



9. A Glance at General Scattering Theory

The time-dependent picture of the scattering process has been described
in 1945 by Christian Møller (1902–1980). A stationary picture has been
formulated by John Wheeler (born 1911) in 1937. It was elaborated by
Werner Heisenberg (1901–1976) in 1943.1

In 1930 Heisenberg lectured at the University of Chicago on the new quan-
tum mathematics. His assistant there was the young American physicist
Frank Hoyt, who helped prepare the English lecture notes. During the Sec-
ond World War, Hoyt joined the Manhattan project for building nuclear
weapons; one of his assignments was to scrutinize every wartime publica-
tion of Heisenberg and see if it could be a by-product of bomb research.
Hoyt studied very thoroughly the two papers Heisenberg published in 1943
on scattering theory, and as he told me later, concluded that they had no
bearing on nuclear weapon. This may have saved Heisenberg’s life, for the
OSS, the wartime precursor of the CIA, had been training an agent to
assassinate him.2

Peter Lax, 2003

The main tool for studying experimentally the properties of elementary particles
are scattering processes performed in particle accelerators. Physicists measure cross
sections and the mathematical theory has to develop methods for computing cross
sections.

The computation of cross sections for scattering processes is based on the
computation of transition probabilities.

In turn, the transition probabilities are encoded into a specific unitary operator,
which is called the scattering operator (or the Heisenberg S-matrix). The mathe-
matics of scattering processes in quantum mechanics and quantum field theory is
sophisticated. Until now, there exists a complete mathematical scattering theory
for the scattering of N particles in quantum mechanics (i.e., the scattering of atoms
and molecules), but such a complete theory is missing in quantum field theory.

The reason for the mathematical difficulties is the physical phenomenon of
clustering in scattering processes.

1 J. Wheeler, On the mathematical description of light nuclei by the method of
resonating group structure, Phys. Rev. 52 (1937), 107–122.
W. Heisenberg, The observable quantities in particle physics I–III, Z. Phys. 120
(1943), 513–538, 673–702; 123 (1944), 93–112 (in German).
C. Møller, General properties of the characteristic matrix in the theory of ele-
mentary particles I,II, Det. Kgl. Danske Videnskab. Selskab. Mat.-Phys. Medd.
22 (1945), 1–48; 23 (1946), 1–46.

2 P. Lax, Functional Analysis, Wiley, New York, 2003 (reprinted with permission).
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In a particle accelerator, the incoming free particles might form bound states for
a finite time by clustering. At the end of the process, the particles are again free
particles. The intermediate cluster states of finite lifetime are also called resonances
in physics. In the quantum-mechanical scattering of N particles, the complexity of
the cluster states and the number of different scattering channels becomes more and
more complex if N increases. Here the critical case N ≥ 4 is much more complicated
than the case N = 3.

The rigorous scattering theory for quantum N-particle systems is a high-
light in mathematical physics.

From the mathematical point of view, scattering theory studies the perturbation of
the absolutely continuous spectrum of self-adjoint operators on Hilbert spaces. In
what follows, we make the following hypotheses.

(H1) The perturbed Hamiltonian: The operator H : D(H) → X is self-adjoint on
the dense subset D(H) of the complex infinite-dimensional separable Hilbert
space X. The domain of definition D(H) is dense in X. We have the splitting

H = Hfree + U.

(H2) The free Hamiltonian: The operator Hfree : D(Hfree) → X is self-adjoint
on the dense subset D(Hfree) of X. The spectrum of Hfree coincides with its
absolutely continuous spectrum (i.e., both the pure point spectrum and the
singular spectrum of Hfree are empty).

(H3) The perturbation: The operator U : D(U) → X is symmetric on the dense
subset D(U) of X. The singular spectrum of the perturbed Hamiltonian H
is empty. We distinguish between short-range potentials U (e.g., the Yukawa
potential) and long-range potentials (e.g., the Coulomb potential).3

From the physical point of view, the free Hamiltonian Hfree describes the unper-
turbed free motion in the absence of bound states. This corresponds to the missing
pure point spectrum of Hfree. Our goal is to study the perturbed motion governed
by the perturbation potential U (e.g., the perturbed motion on the real line as
investigated below). We have the decomposition

X = Xbound ⊕Xscatt

into two orthogonal closed subspaces of the Hilbert space X, where Xbound and
Xscatt correspond to the pure point spectrum and the absolutely continuous spec-
trum of the perturbed Hamiltonian H, respectively (see (7.106) on page 503). Recall
that if ϕ ∈ Xscatt, then the corresponding spectral measure has a density �, that
is, the expectation value of the energy measured in the normalized state ϕ can be
represented as

Ē = 〈ϕ|Hϕ〉 =

Z

R

�(E)dE.

In terms of physics, the elements ψ(0) of the subspace Xbound (resp. Xscatt) are the
initial states of bound motion (resp. scattering motion) (see Fig. 8.1 on page 700).

The perturbed dynamics. Let us introduce

• the free Feynman propagator Pfree(t, t0) := e−i(t−t0)Hfree/� , t ≥ t0, and

• the perturbed Feynman propagator P (t, t0) := e−it(t−t0)H/� , t ≥ t0.

3 The mathematical scattering theory for long-range potentials is much more com-
plicated than for short-range potentials.
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In order to understand scattering processes, one has to study the following motions
of the quantum system under consideration.

• Free motion in the future: ψout(t) = Pfree(t, 0)ϕout for all times t ≥ 0.
• Free motion in the past: ψin(s) = Pfree(0, s)ϕin for all times s ≤ 0.
• Perturbed motion: ψ(t) = P (t, t0)ψ(t0) for all times t ≥ t0.

The transition probability. Let t > 0. The real number

a(t,−t) := 〈ψout(t)|P (t,−t)ψin(−t)〉 (9.1)

is called the transition amplitude with respect to the time interval [−t, t]. Further-
more, the real number

p(t,−t) = |a(t,−t)|2

is called the transition probability with respect to the time interval [−t, t]. This
allows the following physical interpretation:

• Fix the time t > 0. Suppose that the physical system is in the free motion state
ψin(−t) = Pfree(0,−t)ϕin at the negative time −t.

• Then the system is in the state P (t,−t)ψin(−t) at the positive time t.
• Suppose that we measure the system at the positive time t, and we observe the

free motion state ψout(t) = P (t, 0)ϕout at time t.

Then the number p(t,−t) is the probability for this measurement. To be precise,
we assume that ψin(−t) and ψout(t) are normalized quantum states, that is,

||ψin(−t)|| = ||ψout(t)|| = 1 for all t ≥ 0. (9.2)

Since the propagators are unitary operators, it is sufficient to assume that the
condition (9.2) is satisfied, say, at time t = 0 (i.e., ||ϕin|| = ||ϕout|| = 1). This
implies ||P (t,−t)ψin(−t)|| = 1 for all t ≥ 0. Our goal is to compute the limit

a(+∞,−∞) := lim
t→+∞

a(t,−t)

which yields the desired transition probability

p(+∞,−∞) := |a(+∞,−∞)|2

over the infinite time interval [−∞,+∞]. In particle accelerators, this corresponds
to the transition probability over a fairly ‘long’ time interval.

9.1 The Formal Basic Idea

The scattering operator. We have (e−itHfree/�)† = eitHfree/� for the adjoint
operator. This implies

a(t,−t) = 〈ϕout|eitHfreet/�P (t,−t)eitHfree/�ϕin〉.

Motivated by this expression, we define

S(t,−t) := eitHfreet/�P (t,−t)eitHfree/� .

This is called the scattering operator with respect to the time interval [−t, t]. Sup-
pose that the limit
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Sformal := lim
t→+∞

S(t,−t) (9.3)

exists. Then we get

a(+∞,−∞) := lim
t→+∞

a(t,−t) = 〈ϕout|Sformalϕin〉,

which is called the S-matrix element with respect to the states ϕin and ϕout. This
yields the transition probability

p(+∞,−∞) = |〈ϕin|Sformalϕout〉|2.
The main problem is that

The limit (9.3) does not exist, as a rule.

To overcome this difficulty, we will introduce the notion of wave operators.
The trick of Møller’s wave operators. Observe that P (t,−t) is equal to

the product P (t, 0)P (0,−t). Therefore, the transition amplitude can be written as

a(t,−t) = 〈e−itHfree/�ϕout|P (t, 0)P (0,−t)eitHfree/�ϕin〉.
Hence

a(t,−t) = 〈eitH/�e−itHfree/�ϕout|eisH/�e−isHfree/�ϕin〉,
where we set s := −t. Suppose that the following limits exist:

• Woutϕout := limt→+∞ eitH/�e−itHfree/�ϕout.
• Winϕout := lims→−∞ eisH/�e−isHfree/�ϕin.

Letting t→ +∞, we obtain

a(+∞,−∞) = 〈Woutϕout|Winϕin〉.
Finally, suppose that the element Winϕin is contained in the domain of the adjoint
operator W †

out. Then

a(+∞,∞) = 〈ϕout|W †
outWinϕin〉.

Introducing the scattering operator

Sϕin := W †
outWinϕin, (9.4)

we obtain a(+∞,∞) = 〈ϕout|Sϕin〉. Finally, we get the transition probability

p(+∞,−∞) := |〈ϕout|Sϕin〉|2. (9.5)

In particular, this procedure replaces the formal limit (9.3) by the rigorous limit

a(+∞,−∞) = lim
t→∞
〈ϕout|S(t,−t)ϕin〉 = 〈ϕout|Sϕin〉. (9.6)

This is the limit of the corresponding matrix elements. We will show below that for
complete wave operators, the scattering operator

S : X → X

is unitary, and the limit (9.6) exists for all ϕin, ϕout ∈ X. In terms of weak conver-
gence, this means that

w − lim
t→+∞

S(t,−t)ϕin = Sϕin for all ϕin ∈ X. (9.7)

Rigorous scattering theory studies the properties of the Møller wave operators and
uses the two key relations (9.4) and (9.5). Let us summarize some crucial results.
The proofs can be found in:



9.2 The Rigorous Time-Dependent Approach 751

S. Gustafson and I. Sigal, Mathematical Concepts of Quantum Mechanics,
Springer, Berlin, 2003.

I. Sigal, Scattering Theory for Many-Body Quantum Mechanical Systems:
Rigorous Results, Springer, New York, 1983.

M. Schechter, Operator Methods in Quantum Mechanics, North-Holland,
Amsterdam, 1982,

and in the standard textbook on mathematical scattering theory by M. Reed and
B. Simon, Methods of Modern Mathematical Physics, Vol. III, Academic Press,
1979. The language used by physicists in scattering theory can be found in:

R. Newton, Scattering Theory of Waves and Particles, Springer, New York,
1982.

A. Bohm, Quantum Mechanics: Foundations and Applications, Springer,
Berlin, 1994.

9.2 The Rigorous Time-Dependent Approach

A mathematical basis for the quantum-mechanical scattering theory was
laid out in terms of wave operators about 30 years ago. For instance the
scattering operator was expressed as a product of wave operators. As a
result, the main mathematical problem of the mathematical quantum-
mechanical scattering theory was defined as the proof of establishing their
properties, the latter being
(i) isometry,
(ii) mutual orthogonality, and
(iii) completeness.
The existence proof was found very fast by Cook.4 At the same time it
was shown by Jauch that the existence implies readily the isometry and
mutual orthogonality. . . The completeness however proved, from the very
beginning, to be a hard nut and required a certain mathematical sophisti-
cation in tackling it. . . These notes are devoted to the mathematical foun-
dations of the quantum N -body problem. A small part of them describes
essentially known results in the field, while the rest is concentrated on the
crux of the problem; the N -body asymptotic completeness.5

Israel Michael Sigal, 1983

Our monograph would be much simpler, shorter and less interesting if we
restricted ourselves to short range potentials. In fact, long-range scattering
(including the Coulomb potential) is the central subject of our monograph.
We study it under very general conditions, which are motivated by the
mathematical structure of the problem.6

Jan Dereziński and Christian Gérard, 1997

4 J. Cook, Convergence of the Møller wave matrix, J. Math. Phys. 36 (1957), 82–
87. J. Jauch, Theory of the scattering operator, Helv. Phys. Acta 31 (1958), I,
II (multichannel scattering), 31 (1958), 127–158, 661–684.

5 I. Sigal, Scattering Theory for Many-Body Quantum Mechanical Systems: Rig-
orous Results, Springer, New York, 1983 (reprinted with permission).

6 J. Dereziński, C. Gérard, Scattering Theory of Classical and Quantum N -Particle
Systems, Springer, New York, 1997 (reprinted with permission).
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Asymptotically free motion in the distant future. The theory of Møller’s
wave operators is based on the following simple observation.

Proposition 9.1 For the perturbed dynamics ψ(t) = e−itH/�ψ(0), the following
two conditions are equivalent:

(i) There exists a state ϕout ∈ X such that

lim
t→+∞

(e−itH/�ψ(0)− e−itHfree/�ϕout) = 0.

(ii) The limit ψ(0) = limt→+∞ eitH/�e−itHfree/�ϕout exists.

Proof. We have the identity

e−itH/�ψ(0)− e−itHfree/�ϕout = e−itH/�(ψ(0)− eitH/�e−itHfree/�ϕout).

Since the operator e−itH/� : X → X is unitary, we get

||e−itH/�ψ(0)− e−itHfree/�ϕout|| = ||ψ(0)− eitH/�e−itHfree/�ϕout||.

Letting t→ +∞, we get the claim. �

By definition, the motion ψ(t) = e−itH/�ψ(0), t ∈ R is asymptotically free at
time t = +∞ iff condition (i) is satisfied. We say that the wave operator Wout exists
iff the limit

Woutϕout := lim
t→+∞

eitH/�e−itHfree/�ϕout

exists for all ϕout ∈ X.
Asymptotically free motion in the remote past. We now replace t = +∞

by t = −∞. For the perturbed dynamics ψ(t) = e−itH/�ψ(0), the following two
conditions are equivalent:

(i) There exists a state ϕin ∈ X such that

lim
t→−∞

(e−itH/�ψ(0)− e−itHfree/�ϕin) = 0.

(ii) The limit ψ(0) = limt→+∞ eitH/�e−itHfree/�ϕint exists.

By definition, the motion ψ(t) = e−itH/�ψ(0), t ∈ R is asymptotically free at time
t = −∞ iff condition (i) is satisfied. We say that the wave operator Win exists iff
the limit

Winϕin := lim
t→−∞

eitH/�e−itHfree/�ϕin

exists for all ϕin ∈ X.
The motion ψ(t) = e−itH/�ψ(0), t ∈ R is called a scattering process iff it is

asymptotically free at times t = −∞ and t = +∞, that is, we have ψ(0) ∈ im(Win)∩
im(Wout).

Completeness of the wave operators. The wave operators Win and Wout

are called complete iff these wave operators exist and

im(Wout) = im(Win) = Xscatt.

In this case, the following hold: The Hilbert space X = Xbound ⊕Xscatt is decom-
posed into the orthogonal closed subspaces Xbound and Xscatt. Consider the motion
ψ(t) := e−itH/�ψ(0) for all times t ∈ R.
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• If ψ(0) ∈ Xbound, then ψ(t) ∈ Xbound for all t ∈ R. This is called a bound motion.
• The motion t �→ ψ(t) is a scattering process iff ψ(0) ∈ Xscatt.

The main theorem on the scattering operator. We set S := W †
outWin

provided this operator exists. Furthermore, set S(t, s) := e−i(t−s)H/� for all t, s ∈ R.

Theorem 9.2 If the wave operators Win and Wout are complete, then the following
hold:

(i) The two wave operators Win,Wout : X → Xscatt are unitary. That is, the
Hilbert spaces X and Xscatt are unitarily equivalent.

(ii). The scattering operator S : X → X is unitary. Explicitly, we have the
relation S = W−1

outWin.
(iii) We have the weak limit

Sϕin = w − lim
t→+∞

S(t,−t)ϕin for all ϕin ∈ X.

This implies the limit of the corresponding matrix elements, that is,

lim
t→+∞

〈ϕout|S(t,−t)ϕin〉 = 〈ϕout|Sϕin〉 for all ϕin, ϕout ∈ X.

(iv) The one-parameter unitary groups generated by the Hamiltonians H and
Hfree on Xscatt and X, respectively, are unitarily equivalent. Explicitly,

e−itH/�ϕ = Wine
−itHfree/�W−1

in ϕ for all ϕ ∈ Xscatt, t ∈ R.

The same is true if we replace Win by Wout.

The proof of this theorem together with the proof of the following Theorem 9.3
can be found in M. Reed and B. Simon (1979), Methods of Modern Mathematical
Physics, Vol. III, Sect. XI.3, Academic Press, New York, 1979.

The completeness theorem for wave operators. The following theorem
relates the completeness of wave operators to compact perturbations.

Theorem 9.3 The wave operators Win and Wout are complete if one of the fol-
lowing two conditions is satisfied:

(i) The difference H −Hfree is of trace class (Kato–Rosenblum condition).
(ii) The difference (H +iI)−1− (Hfree +iI)−1 is of trace class (Kuroda–Birman

condition).

9.3 The Rigorous Time-Independent Approach

The definition of the wave operators above has been based on the time limits
t → +∞ and t → −∞. This is the time-dependent approach to scattering theory
(also called instationary scattering theory). In mathematics and physics, one also
uses the time-independent (or stationary) approach. The following theorem shows
that the wave operators can be computed by the time-independent formulas

Woutϕ = lim
ε→+0

Z

R

R(E − iε)Rfree(E + iε)ϕ dE,

Winϕ = lim
ε→−0

Z

R

R(E − iε)Rfree(E + iε)ϕ dE. (9.8)

Here, R(λ) := (λI −H)−1 and Rfree(λ) := (λI −Hfree)
−1 are the resolvents of the

Hamiltonian H and the free Hamiltonian Hfree.
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Theorem 9.4 If the wave operators exist, then we have the formulas (9.8) for all
elements ϕ of the complex Hilbert space X.

The proof can be found in Sigal (1983), p. 16, quoted on page 751. The proof
essentially uses the operator-valued Dirac delta function and the Abel limit

A− lim
t→+∞

f(t) := lim
ε→+0

Z ∞

0

εe−εtf(t)dt

dating back to Abel (1802–1829). The Abel limit generalizes the classical limit
limt→+∞ f(t). In fact, if this classical limit exists for the given continuous function
f : [0,∞[→ X, then

A− lim
t→+∞

f(t) = lim
t→+∞

f(t). (9.9)

For the proof, see Problem 9.10.7 The discrete variant of the Abel limit reads as

A− lim
n→+∞

sn := lim
ε→+0

∞
X

n=0

εe−εnsn.

If the sequence (sn) is bounded in the Hilbert space X and the limit limn→∞ sn

exists, then
A− lim

n→∞
sn = lim

n→∞
sn.

In particular, for an infinite series
P∞

k=0 ak, we set sn :=
Pn

k=0 ak, and we define
the Abel summation

A−
∞
X

k=0

ak := A− lim
n→∞

sn.

If the series
P∞

k=0 ak is convergent, then A−
P∞

k=0 ak =
P∞

k=0 ak.
Theorem 9.4 indicates that scattering theory is closely related to analytic func-

tions with values in a Banach space and their boundary values.

9.4 Applications to Quantum Mechanics

Let us consider the Schrödinger equation

i�ψt(x, t) = − �
2

2m
ψxx(x, t) + U(x)ψ(x, t), x, t ∈ R (9.10)

for the motion of a quantum particle of mass m > 0 on the real line. We assume
that the potential function U : R→ R is smooth. We set

U0 := inf
x∈R

U(x),

and we postulate that U0 > −∞.8

7 Far reaching generalizations of the Abel limit and their applications to scatter-
ing theory can be found in H. Baumgärtel and M. Wollenberg, Mathematical
Scattering Theory, Birkhäuser, Basel, 1983.

8 For the energy Eclass := 1
2
mẋ2 + U(x) of a classical particle on the real line, we

have Eclass ≥ U0.
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We are interested in getting information on the possible energy values of
the quantum particle.

As we will see below, the structure of the energy spectrum of (9.10) strongly depends
on the shape of the potential U. For any function ϕ ∈ D(R), define

(Hpreϕ)(x) := − �
2

2m
ϕ′′(x) + U(x)ϕ(x) for all x ∈ R.

The linear operator Hpre : D(R) → L2(R) on the complex Hilbert space L2(R) is
called the pre-Hamiltonian for the motion of the quantum particle. We have9

〈ϕ|Hpreϕ〉 ≥ U0〈ϕ|ϕ〉 for all ϕ ∈ D(R).

That is, the symmetric operator Hpre is semi-bounded from below, in the sense of
Friedrichs. Let us summarize some important results. The proofs can be found in
the textbooks by M. Schechter, Operator Methods in Quantum Mechanics, North-
Holland, Amsterdam, 1982, and F. Berezin and M. Shubin, The Schrödinger Equa-
tion, Kluwer, Dordrecht, 1991. The operator Hpre is essentially self-adjoint on the
Hilbert space L2(R). This means that the operator Hpre has a unique self-adjoint
extension

H : D(H)→ L2(R)

which is called the Hamiltonian of the quantum dynamics. Observe that we have
the following inclusions: D(Hpre) = D(R) ⊆ D(H) ⊆ L2(R). Our goal is

• to characterize the domain of definition D(H) and
• the spectrum σ(H) of H. Recall that precisely the points E in the spectrum σ(H)

represent the possible energy values of the quantum particle. In particular, we
will get

E ≥ U0 for all E ∈ σ(H).

That is, the lower bound U0 for the energies of the classical particle is also a
lower bound for the energies of the quantum particle.

In what follows we will use the classification of the spectrum σ(H) introduced
on page 504. In all the situations considered below, the singular spectrum of the
Hamiltonian H is empty, and we have the orthogonal decomposition

X = Xbound ⊕Xscatt

of the Hilbert space X := L2(R).

• If the Hamiltonian H has no eigenvectors in the Hilbert space X, then we obtain
Xbound = {0} and Xscatt = X.

9 In fact, let ϕ ∈ D(R). Then integration by parts tells us that the inner product

〈ϕ|Hpreϕ〉 =

Z

R

ϕ(x)†
“

− �
2

2m
ϕ′′(x) + U(x)ϕ(x)

”

dx

is equal to the integral J :=
R

R

`

�
2

2m
ϕ′(x)†ϕ′(x) + ϕ(x)†U(x)ϕ(x)

´

dx, and

J ≥
Z

R

ϕ(x)†U(x)ϕ(x)dx ≥
Z

R

U0ϕ(x)†ϕ(x)dx = 〈ϕ|ϕ〉.
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• If the Hamiltonian H has at least one eigenvector in X, then the space Xbound

is the closed linear hull of the set of eigenvectors of H, and the linear subspace
space Xscatt = X⊥

bound of X is the orthogonal complement to Xbound.

For any ϕ0 ∈ Xscatt, the dynamics ψ(t) = e−itH/�ϕ0 for all t ∈ R corresponds to
a scattering motion (i.e., asymptotically free motion as t → ±∞). The pure point
spectrum σpp(H) of the Hamiltonian H is the closure of the set of eigenvalues of H.
The absolutely continuous spectrum σac(H) of H is the spectrum of the restriction
H : Xscatt → Xscatt.

Free motion. Let U ≡ 0. The unique self-adjoint extension of the pre-
Hamiltonian Hpre is given by Hfree : W 2

2 (R) → L2(R). Here, for any element ϕ
of W 2

2 (R), we have

(Hfreeϕ)(x) = − �
2

2m
ϕ′′(x), x ∈ R

in the sense of distributions.10 The operator Hfree is called the free Hamiltonian.
For the spectrum, we have Xbound = {0}, as well as X = Xscatt and

σ(Hfree) = σac(Hfree) = σess(Hfree) = [0,+∞[, σpp(H) = ∅,

where σess(H) denotes the essential spectrum of H.
Bound states. Suppose that U(x) → +∞ as |x| → +∞. For the spectrum of

the Hamiltonian H, we have X = Xbound and Xscatt = {0}, as well as

σ(H) = σpp(H) = {E0, E1, . . .}, σac(H) = σess(H) = ∅.

The operator H has the eigenvalues E0, E1, . . . with limn→+∞ Ej = +∞ and

Hϕj = Ejϕj , j = 0, 1, 2, . . .

All the eigenvalues E0, E1, . . . are simple. The smooth functions ϕ0, ϕ1, . . . form a
complete orthonormal system in X = L2(R). The function ϕ0 has no zeros, and
ϕn has precisely n zeros if n = 1, 2, . . . We have ϕ ∈ D(H) iff ϕ ∈ L2(R) and
P∞

j=0 E
2
j |〈ϕj |ϕ〉|2 <∞.

The special case where U(x) := 1
2
ω2x2 for all x ∈ R describes the harmonic

quantum oscillator.
Short-range potential. Let U ∈ D(R). Then the operator Hpre has the unique

self-adjoint extension H : W 2
2 (R)→ L2(R). For any ϕ ∈W 2

2 (R), we have

(Hpreϕ)(x) := − �
2

2m
ϕ′′(x) + U(x)ϕ(x) for all x ∈ R,

in the sense of distributions.

(i) Spectrum: σ(H) ⊆ [U0,+∞[, and σac(H) = σess(H) = [0,∞[. The pure point
spectrum σpp(H) is either empty or finite with

σpp(H) = {E0, . . . , EN}

and U0 ≤ E0 ≤ E1 ≤ . . . ≤ EN < 0. The finite-dimensional space Xbound is the
linear hull of the eigenvectors of H, and Xscatt is the orthogonal complement
to Xbound.

10 The definition of the Sobolev space Wm
2 (R),m = 1, 2, . . . can be found in (7.120)

on page 514.
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• If U(x) ≥ 0 for all x ∈ R, then Xbound = {0}. That is, σpp(H) is empty, and
σ(H) = σac(H) = σess(H) = [0,∞[.

• If
R

R
U(x)dx < 0, then σpp(H) is not empty.

(ii) Scattering processes: The wave operators Win,Wout with respect to H,Hfree

are complete. In particular, the operators

Win : X → Xscatt, Wout : X → Xscatt

are unitary. If ϕ0 ∈ Xscatt, then

e−itH/�ϕ0 = Wine−itHfree/�W−1
in ϕ0 for all t ∈ R.

This tells us that the scattering dynamics under the influence of the potential
U is unitarily equivalent to the free motion with vanishing potential.

Long-range potential. Suppose that
R

R
U(x)dx = −∞ and U ≤ 0 outside a

compact interval.11 Then the Hamiltonian H has an infinite number of negative
eigenvalues with U0 ≤ E0 ≤ E1 ≤ . . . < 0.

9.5 A Glance at Quantum Field Theory

In quantum field theory, one encounters the crucial situation where

• the free Hamiltonian Hfree : D(Hfree)→ Xfree and
• the Hamiltonian H : D(H)→ X of interaction

are defined on different Hilbert spaces Xfree and X, respectively. The corresponding
Haag–Ruelle theory is studied in the monograph by Reed and Simon (1979), Vol.
III, Sect. XI.16, quoted on page 759.12 We also refer to the monograph by Iagolnitzer
(1993), quoted on page 759. Let us briefly discuss the basic idea of the modified
wave operators. We consider the following motions of the quantum system:

• ψ(t) := e−itH/�ψ(0) (scattering process on the Hilbert space X of interaction).

• ψout(t) := e−itHfree/�ϕout, t ≥ 0 (free motion on the Hilbert space Xfree in the
future).

• ψin(t) := e−itHfree/�ϕin, t ≤ 0 (free motion on the Hilbert space Xfree in the past).

We also need a linear continuous operator J : Xfree → X which intertwines the
two Hilbert spaces. In this case, we replace the transition amplitude (9.1) by the
expression

a(t,−t) := 〈Jψout(t)|P (t,−t)Jψin(−t)〉 (9.11)

where P (t, t0) := e−i(t−t0)H/� . Hence

a(t,−t) = 〈eitH/�Je−itHfree/�ϕout|eitH/�JeitHfree�ϕin〉.

Introducing the wave operators

11 For example, U(x) = − 1
|x|+1

for all x ∈ R.
12 R. Haag, Quantum field theories with particles and asymptotic conditions, Phys.

Rev. 112 (1958), 669–673.
D. Ruelle, On the asymptotic condition in quantum field theory, Helv. Phys.
Acta 35 (1962), 147–163.
J. Dereziński and C. Gérard, Asymptotic completeness in quantum field theory.
Massive Pauli–Fierz Hamiltonians, Rev. Math. Phys. 11 (4) (1999), 383–450.
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• Woutϕout := limt→+∞ eitH/�Je−itHfree/�ϕout,
• Winϕin := lims→−∞ eisH/�Je−isHfree/�ϕin,

we get a(+∞,−∞) = limt→+∞〈Woutϕout|Winϕin〉. Finally, introducing the scat-

tering operator S := W †
outWin, we obtain

a(+∞,−∞) = 〈ϕout|Sϕin〉.

This yields the transition probability p(+∞,−∞) = |〈ϕout|Sϕin〉|2.

9.6 Hints for Further Reading

As an introduction to the relations between quantum mechanics and mathematics
we recommend:

G. Gustafson and I. Sigal, Mathematical Concepts of Quantum Mechanics,
Springer, New York, 2003;

P. Hislop and I. Sigal, Introduction to Spectral Theory With Applications
to Schrödinger Operators, Springer, New York, 1996 (including the spectral
theory of non-self-adjoint operators for describing resonances)

together with:

M. Schechter, Operator Methods in Quantum Mechanics, North-Holland,
Amsterdam, 1982.

L. Faddeev and O. Yakubovskii, Lectures on Quantum Mechanics for Stu-
dents of Mathematics, Springer, New York, 1986.

A. Komech, Lectures on Quantum Mechanics (nonlinear PDE – partial
differential equation – point of view), Lecture Notes no. 25 of the Max
Planck Institute for Mathematics in the Sciences, Leipzig, 2005.
Internet: http://mis.mpg.de/preprints/ln/

Numerous explicit computations for concrete problems in quantum mechanics can
be found in:

S. Flügge, Practical Quantum Mechanics, Vols. 1, 2, Springer, Berlin, 1979.

Mathematical Scattering theory

,
We refer to the standard textbook:

M. Reed and B. Simon, Methods of Mathematical Physics III: Scattering
Theory, Academic Press, New York, 1979

together with:

T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.

P. Lax and R. Phillips, Scattering Theory, Academic Press, New York,
1967.

B. Simon, Quantum Mechanics for Hamiltonians Defined on Quadratic
Forms, Princeton University Press, 1971.
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P. Lax and R. Phillips, Scattering Theory for Automorphic Functions,
Princeton University Press, 1976.

W. Amrein, J. Jauch, and K. Sinha, Scattering Theory in Quantum Me-
chanics, Benjamin, Reading, Massachusetts, 1977.

H. Baumgärtel and M. Wollenberg, Mathematical Scattering Theory, Birk-
häuser, Basel, 1983.

A. Galindo and P. Pascual, Quantum Mechanics, Vols. 1, 2, Springer,
Berlin, 1990.

P. Lax, Functional Analysis, Wiley, New York, 2002.

The mathematics of scattering processes in quantum field theory is studied in:

M. Reed and B. Simon, Methods of Modern Mathematical Physics III:
Scattering Theory, Academic Press, New York, 1978 (Haag–Ruelle theory).

N. Bogoliubov, A. Logunov, and I. Todorov, I. (1975), Introduction to Ax-
iomatic Quantum Field Theory, Benjamin, Reading, Massachusetts, 1975.

N. Bogoliubov et al., General Principles of Quantum Field Theory, Kluwer,
Dordrecht, 1990 (1200 references).

D. Iagolnitzer, Scattering in Quantum Field Theory, Princeton University
Press, 1993.

The Physics of Scattering Processes

M. Goldberger and K. Watson, Collision Theory, Wiley, New York. 1964.

J. Taylor, Scattering Theory, Wiley, New York, 1972.

R. Newton, Scattering Theory of Waves and Particles, Springer, New York,
1982.

A. Bohm, Quantum Mechanics: Foundations and Applications, Springer,
Berlin, 1994.

F. Schwabl, Quantum Mechanics, Springer, Berlin, 2000.

K. Gottfried and Tung-Mow Yan, Quantum Mechanics: Fundamentals,
Springer, New York, 2003.

Analytic S-matrix theory: In the late 1950s, Chew emphasized the importance of
the analyticity properties of the S-matrix for understanding the strong interaction
in particle accelerators. For this analytic S-matrix theory, we refer to:

G. Chew, S-Matrix Theory of Strong Interaction, Benjamin, New York,
1962.

G. Chew, The Analytic S-Matrix: A Basis for Nuclear Democracy, Ben-
jamin, New York, 1966.

A. Barut, The Theory of the Scattering Matrix, MacMillan, New York,
1967 (symmetry and analytic continuation properties of the S-matrix, dis-
persion relations and Mandelstam theory, complex angular momentum and
Regge poles).

Analytic S-matrix theory is a mixture of rigorous mathematical results and formal
argumentations which are strongly motivated by physical intuition. We also refer
to:
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N. Bogolyubov, B. Medvedev, and M. Polivanov, Problems of the Theory
of Dispersion Relations, Fizmatgiz, Moscow, 1958 (in Russian).13

R. Eden et al., The Analytic S-Matrix Theory, Cambridge University Press,
1966.

R. Eden, High Energy Collisions of Elementary Particles, Cambridge Uni-
versity Press, 1967.

I. Todorov, Analytic Properties of Feynman Diagrams in Quantum Field
Theory, Pergamon Press, London, 1971.

Explicit Solutions

W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer,
Berlin, 1993 (classical dynamical systems and chaos).

M. Takahashi, Thermodynamics of One-dimensional Solvable Models,
Cambridge University Press, 1999.

S. Brandt and H. Dahmen, The Picture Book of Quantum Mechanics,
Springer, New York, 1995.

E. Lieb and D. Mattis, Mathematical Physics in One Dimension: Exactly
Soluble Models of Interacting Particles (a collection of reprints), Academic
Press, New York, 1986.

D. Mattis, The Many-Body Problem: An Encyclopedia of Exactly Solved
One-Dimensional Models, World Scientific, Singapore, 1993.

R. Gilmore, Elementary Quantum Mechanics in One Dimension, John
Hopkins University Press, Baltimore, Maryland, 2004 (numerical compu-
tations).

Concerning explicitly solvable models, we also refer to:

Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press,
New York, 1982.

L. Faddeev, Integrable models in 1 + 1-dimensional quantum field theory.
Les Houches, session XXXIX, pp. 561–608, Elsevier, Amsterdam, 1984.

M. Berry, Riemann’s Zeta Function: a Model of Quantum Chaos, Lecture
Notes in Physics 263, Springer, Berlin, 1986.

S. Albeverio, Solvable Models in Quantum Mechanics, Springer, New York,
1988.

H. Grosse, Models in Statistical Physics and Quantum Field Theory,
Springer, New York, 1988.

B. Hughes, Random Walks and Random Environments, Vols. 1, 2, Claren-
don Press, Oxford, 1995.

B. Felsager, Geometry, Particles, and Fields, Springer, New York, 1997.

B. McCoy and Tai-Tsu Wu, The Two-Dimensional Ising Model, Harvard
University Press, Cambridge, Massachusetts, 1997.

13 See also H. Bremmermann, R. Oehme, and J. Taylor, Proof of dispersion relations
in quantized field theories, Phys. Rev. 109 (1958), 2178–2190.
N. Bogolyubov and D. Shirkov, Introduction to Quantum Field Theory, Inter-
science, New York, 1980 (Chap. IX studies dispersion relations).
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D. Thouless, (Ed.), Topological Quantum Numbers in Non-Relativistic
Physics, World Scientific, Singapore, 1998 (collection of 40 important ar-
ticles on superfluidity, quantum Hall effect, phase transitions, etc.)

W. Dittrich and M. Reutter, Classical and Quantum Dynamics, Springer,
Berlin, 1999.

S. Ketov, Quantum Non-Linear Sigma Models: From Quantum Field The-
ory to Supersymmetry, Conformal Field Theory, Black Holes and Strings,
Springer, Berlin, 2000.

E. Abdalla, M. Abdalla, and K. Rothe, Non-perturbative Methods in Two-
Dimensional Quantum Field Theory, World Scientific, Singapore, 2001.

A. Tsvelik, Quantum Field Theory in Condensed Matter Physics, Cam-
bridge University Press, 2003 (many applications, e.g., Fermi liquids,
Tomonaga–Luttinger liquids, electrodynamics in metals, quantum Hall ef-
fect, the Schwinger model in (1+1)-quantum electrodynamics, spin models,
nonlinear sigma models, and the Wess–Zumino–Novikov–Witten model).

G. Volovik, The Universum in a Helium Droplet, Clarendon Press, Oxford,
2003.

T. Asselmeyer and C. Brans, Exotic Structures and Physics: Differential
Topology and Space-Time Models, World Scientific, Singapore, 2004.

B. Sutherland, Beautiful Models: 70 Years of Exactly Solved Quantum
Many-Body Problems, World Scientific, Singapore, 2004.

S. Bellucci, S. Ferrara, and A. Marrani, Supersymmetric Mechanics, Vol.
1: Supersymmetry, Noncommutativity and Matrix Models, Vol. 2: The
Attractor Mechanism and Space Time Singularities, Springer, Berlin, 2006.

T. Dauxois and M. Peyrard, Physics of Solitons, Cambridge University
Press, 2006 (very stable nonlinear waves).

G. Mussardo, Il Modello di Ising: Introduzioni alla Teoria dei Campi e telle
Tranzioni di Fase (The Ising model: an introduction to (quantum) field
theory and phase transitions), Torino, Bollati–Bozinglieri, Italia, 2007 (in
Italian).

In 1983 Subramanyan Chandrasekhar was awarded the Nobel prize in physics for
his theoretical studies of the physical processes of importance to the structure and
evolution of stars. Chandrasekhar (1910–1995) was a master of computing explicit
solutions in physics. We recommend the reader to have a look at the following
classic survey article

S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev.
Mod. Phys. 15 (1943), 1–89,

and at the following classic books:

S. Chandrasekhar, An Introduction to the Study of Stellar Structure,
Dover, New York, 1939. Reprinted in 1957.

S. Chandrasekhar, Principles of Stellar Dynamics, University of Chicago
Press, 1943. Reprinted by Dover, New York, 1960.

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford
University Press, 1961.

S. Chandrasekhar, Ellipsoidal Figures of Equilibrium, Yale University
Press, New Haven, Connecticut, 1969.

S. Chandrasekhar, The Mathematical Theory of Black Holes, Clarendon
Press, Oxford, 1983.
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Special Functions

Singular ordinary differential operators and the Fourier–Stieltjes transformation:

N. Dunford and J. Schwartz, Linear Operators, Vol. II, Wiley, New York,
1958.

K. Yosida, Lectures on Differential- and Integral Equations, Interscience,
New York, 1960.

M. Naimark, Linear Differential Operators, Frederyck Ungar, New York,
1967.
K. Jörgens and F. Rellich, Eigenvalue Problems for Ordinary Differential
Equations, Springer, Berlin, 1976 (in German).

G. Rozenblum, M. Solomiak, and M. Shubin, Spectral Theory of Differ-
ential Operators, Springer, Berlin, 1991 (Encyclopedia of Mathematical
Sciences).

Special functions in quantum mechanics:

E. Whittaker and G. Watson, A Course of Modern Analysis, Cambridge
University Press, 1944. (The first edition of the American Mathematical
Society was published in 1979.)

A. Sommerfeld, Lectures on Theoretical Physics VI: Partial Differential
Equations in Mathematical Physics, Academic Press, New York, 1949.

P. Morse and H. Feshbach, Methods of Theoretical Physics, Vols. 1, 2,
McGraw-Hill, New York, 1953.

V. Smirnov, A Course of Higher Mathematics, Vol. III/2, Pergamon Press,
New York, 1964.

H. Jeffreys and B. Jeffreys, Methods of Mathematical Physics, Cambridge
University Press, 1972.

A. Wawrzyńczyk, Group Representations and Special Functions, Reidel,
Dordrecht, 1984.

H. Triebel, Higher Analysis, Barth, Leipzig, 1989.

N. Vilenkin and A. Klimyk, Special Functions and Representations of Lie
Groups, Vols. I–IV, Kluwer, Dordrecht, 1991.

Handbooks of special functions:

M. Abramowitz and I. Stegun (Eds.), Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables. Wiley, New York,
and National Bureau of Standards, Washington, DC, 1984 (see also NIST
Digital Library of Mathematical Functions (2007) below).

I. Gradshtein and I. Ryshik, Tables of Integrals, Series, and Products,
Academic Press, New York, 1980.

A. Prudnikov, Yu. Brychkov, and O. Manichev, Integrals and Series, Vols.
I–V, Gordon and Breach, New York, 1986.

A. Erdély et al., Higher Transcendental Functions, Vols. I–III, McGraw-
Hill, New York, 2006.

NIST Digital Library of Mathematical Functions (2007).
Internet: http://dlmf.nist.gov
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Sophisticated N-Particle Scattering in Quantum Mechanics

L. Faddeev and S. Merkuryev, Quantum Scattering Theory for Several
Particle Systems, Kluwer, Dordrecht, 1996. (In 1963 Faddeev solved the
quantum three-body problem.)14

I. Sigal, Scattering Theory for Many-Body Quantum Mechanical Systems:
Rigorous Results, Springer, New York, 1983. (Sigal solved the quantum
N -particle problem for short-range potentials.)

J. Dereziński and C. Gérard, Scattering Theory of Classical and Quantum
N -Particle Systems, Springer, New York, 1997. (In 1993 Dereziński solved
the quantum N -particle problem for the most difficult case of long-range
potentials.)

Problems

9.1 Continuity of parameter integrals. We consider the function

F (p) :=

Z

M

f(x, p)dx (9.12)

for all parameters p ∈ P. We are given the function

f : M × P → C

where M is a nonempty Lebesgue measurable subset of R
N (e.g., an open set)

with N = 1, 2, . . . , and the parameter space P is a nonempty open subset of
the real line R. Show that the function F : P → C is continuous if the following
conditions are satisfied.
(i) For each parameter p ∈ P , the function x �→ f(x, p) is measurable on M

(e.g., x �→ f(x, p) is continuous for almost all x ∈ M).15 For the elements
of measure theory and integration theory, we refer to Zeidler (1995a), Vol.
1, Appendix (see the references on page 1049.

(ii) There exists an integrable function g : M → R such that

|f(x, p)| ≤ g(x) for all p ∈ P

and almost all x ∈M .
(iii) The function p �→ f(x, p) is continuous on P for almost all x ∈M.

14 L. Faddev, Mathematical Aspects of the Three-Body Problem in Quantum Me-
chanics, Steklov-Institute, Leningrad, 1963 (in Russian). English edition: Israel
Program for Scientific Translation, 1965.
J. Dereziński, Asymptotic completeness for N -particle long-range quantum sys-
tems, Ann. Math. 138 (1993), 427–476.

15 This means that there exists a subset S of M which has the N -dimensional
Lebesgue measure zero such that x �→ f(x, p) is continuous for all x ∈M \S. The
definition of sets of measure zero can be found in Vol. I, Sec. 10.2.3. Note that,
roughly speaking, each set of dimension < N has the N -dimensional Lebesgue
measure zero. The prototype of a set of N -dimensional Lebesgue measure in R

N

is a finite or countable set of points.
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Solution: Let pn → p as n→∞. Then, we get

|f(x, pn)| ≤ g(x) for all n = 1, 2, . . .

and almost all x ∈ M. By (ii), the principle of dominated convergence16 tells
us that

lim
n→∞

F (pn) =

Z

M

lim
n→∞

f(x, pn)dx.

Hence limn→∞ F (pn) =
R

M
f(x, p)dx = F (p).

9.2 Differentiability of parameter integrals. Show that the function F : P → R is
differentiable and

F ′(p) =

Z

M

fp(x, p)dx for all p ∈ P

if the following additional conditions are satisfied.
(iv) For each parameter p ∈ P , the partial derivative fp(x, p) exists for almost

all x ∈M.
(v) There exists an integrable function h : M → R such that

|fp(x, p)| ≤ h(x) for all p ∈ P

and almost all x ∈M.
Solution: Observe that

lim
h→0

F (p + h)− F (p)

h
=

Z

M

lim
h→0

f(x, p + h)− f(x, p)

h
dx =

Z

M

fp(x, p)dx.

This is justified by the principle of dominated convergence. In fact, by the mean
value theorem, there exists a number ϑ ∈]0, 1[ such that

˛

˛

˛

˛

f(x, p + h)− f(x, p)

h

˛

˛

˛

˛

= |fp(x, p + ϑh)| ≤ h(x).

9.3 Dispersion relation. Recall that the subset

C> := {z ∈ C : �(z) > 0}

of the complex plane C is called the open upper-half plane. Moreover, the set

C≥ := {z ∈ C : �(z) ≥ 0}

is called the closed upper-half plane. Let us make the following assumptions.
• The function f : C≥ → C is continuous on the closed upper-half-plane, up

to a finite number of points on the real axis.
• The function f is holomorphic on the open upper-half plane C>.
• The function f has precisely the zeros z1, . . . , zn on C> and no zeros on the

real axis. All of the zeros zj are simple.

• supy≥0

R

R

˛

˛ln |f(x + iy)|
˛

˛

2
dy <∞.

16 See Zeidler (1995a), Vol. 1, p. 437, quoted on page 1049
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Show that for all points x ∈ R on the real line, we have

arg f(x) =
1

i

n
X

j=1

ln
x− zj

x− z†j
+

1

π
PV

Z

R

ln |f(ξ)|
x− ξ

dξ. (9.13)

The symbol 1
π
PV

R

R
. . . is to be understood in the sense of H(ln |f |) with the

Hilbert transform H : L2(R)→ L2(R) (see Sec. 11.9.3 of Volume I). Equation
(9.13) shows that there exists a relation between the modulus |f(x)| and the
argument arg f(x) of the boundary values of the function f on the real line.
Relations of this type play a fundamental role in elementary particle physics.
They are called dispersion relations.
Solution: The trick is to introduce the auxiliary function

g(z) := f(z)

n
Y

j=1

z − z†j
z − zj

for all z ∈ C≥.

We will reduce the proof to the Hilbert transform of g. The function g has no
zeros on C≥. Therefore,

f(z) := g(z)
n
Y

j=1

z − zj

z − z†j
for all z ∈ C≥. (9.14)

Recall that for all z ∈ C \ {0}, we have

ln z := ln |z|+ i arg z where − π < arg z ≤ π.

It follows from

˛

˛

˛

˛

x−zj

x−z
†
j

˛

˛

˛

˛

= 1 for all x ∈ R that |f(x)| = |g(x)| on the real line.

By (9.14),

ln f(x) := ln g(x) + ln

n
Y

j=1

x− zj

x− z†j
for all x ∈ R.

Noting that ln
Qn

j=1

˛

˛

˛

˛

x−zj

x−z
†
j

˛

˛

˛

˛

= ln 1 = 0, this implies

i arg f(x) = i arg g(x) + ln

n
Y

j=1

x− zj

x− z†j
= i arg g(x) +

n
X

j=1

ln
x− zj

x− z†j
.

By the Hilbert transform, �(ln g) = H�(ln g) on the real line. That is,

arg g(x) =
1

π
PV

Z

R

ln |g(ξ)|
x− ξ

dξ for all x ∈ R.

9.4 Ariadne’s thread in matrix theory. We want to study the complex (2×2)-matrix

S =

 

s11 s12

s21 s22

!

.
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Recall that by definition, the dual (or transposed) matrix Sd, the adjoint matrix
S†, and the conjugate-complex matrix Sc read as17

Sd =

 

s11 s21

s12 s22

!

, S† =

 

s†11 s†21
s†12 s†22

!

, Sc =

 

s†11 s†12
s†21 s†22

!

. (9.15)

Here, s†11 denotes the conjugate-complex number to s11, and so on. In par-

ticular, Sc = (S†)d and S† = (Sc)d. Furthermore, the unit matrix I and the
diagonal matrix diag(μ, ν) are given by

I =

 

1 0

0 1

!

, diag(μ, ν) =

 

μ 0

0 ν

!

.

Finally, the determinant detS and the trace trS of the matrix S are defined
by

detS :=

˛

˛

˛

˛

˛

s11 s12

s21 s22

˛

˛

˛

˛

˛

= s11s22 − s12s21, trS := s11 + s22. (9.16)

The matrix S is called self-adjoint (resp. skew-adjoint) iff we have S† = S
(resp. S† = −S). The matrix S is invertible iff detS �= 0. Explicitly,

S−1 =
1

detS

 

s22 −s12

−s21 s11

!

. (9.17)

Then SS−1 = S−1S = I. The complex number λ is an eigenvalue of the matrix
S iff the equation

Sx = λx, x ∈ C
2, x �= 0

has a solution. This is equivalent to the fact that the matrix λI − S is not
invertible. Thus, the eigenvalues λ1, λ2 of the matrix S are the solutions of the
equation det(λI − S) = 0, λ ∈ C. Explicitly,

λ2 − λ trS + detS = 0, λ ∈ C.

This so-called characteristic equation of S is equal to (λ − λ1)(λ − λ2) = 0.18

Hence

trS = λ1 + λ2, detS = λ1λ2. (9.18)

The set of eigenvalues λ1, λ2 is called the spectrum σ(S) of the matrix S. The
complement �(S) := C \ σ(S) is called the resolvent set of the matrix S. Let λ
be a complex number. The inverse matrix

R(λ) = (λI − S)−1

17 Instead of Sd one also writes St or tS. In terms of functional analysis, dual
matrices correspond to dual operators Ad on dual spaces Xd. Therefore, we use
the symbol ‘d’ which refers to ‘duality’.

18 In celestial mechanics, the characteristic equation is also called the secular equa-
tion.



Problems 767

exists iff λ ∈ �(λ). The matrix R(λ) is called the resolvent of the matrix S at
the point λ. By definition, the space C

2 consists of all matrices of the form

x =

 

x1

x2

!

where x1 and x2 are complex numbers. The space C
2 becomes a 2-dimensional

complex Hilbert space equipped with the inner product

〈x|y〉 := x†y, x, y ∈ C
2.

Explicitly, 〈x|y〉 = (x†
1, x

†
2)

 

y1

y2

!

= x†
1y1 + x†

2y2. If S is self-adjoint, then

〈x|Sy〉 = 〈Sx|y〉 for all x, y ∈ C
2. (9.19)

In fact, x†Sy = x†S†y = (Sx)†y. Conversely, the symmetry condition (9.19)
implies that the matrix S is self-adjoint.

9.5 Unitary matrices. By definition, the matrix S is called unitary iff it is invertible
and it preserves the inner product, that is,

〈Sx|Sy〉 = 〈x|y〉 for all x, y ∈ C
2. (9.20)

Show that the following hold true.
(i) The matrix S is unitary iff S†S = I. This is equivalent to

s11s
†
11 + s21s

†
21 = 1, s12s

†
12 + s22s

†
22 = 1,

s11s
†
12 + s21s

†
22 = 0, s12s

†
11 + s22s

†
21 = 0. (9.21)

This means that the two columns of the matrix S form an orthonormal
basis of C

2.
(ii) The matrix S is unitary iff SS† = I. This is equivalent to

s11s
†
11 + s12s

†
12 = 1, s21s

†
21 + s22s

†
22 = 1,

s11s
†
21 + s12s

†
22 = 0, s21s

†
11 + s22s

†
12 = 0. (9.22)

This means that the two rows of the matrix S form an orthonormal basis
of C

2.
(iii) The matrix S is unitary iff it is invertible and S−1 = S†.
(iv) The matrix S is unitary iff the adjoint matrix S† is unitary.
(v) If the matrix S is unitary, then | detS| = 1.
(vi) If the matrix S is unitary, then the eigenvalues of S lie on the unit circle.

This tells us that there exist real numbers δ1, δ2 ∈]− π, π] with

λj = eiδj , j = 1, 2.

In quantum physics, the numbers δ1, δ2 are called the phases of the unitary
matrix S.

(vii) If the matrix S is self-adjoint, then its eigenvalues lie on the real axis.
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(viii) Cayley transform. If the complex (2 × 2)-matrix H is self-adjoint, then
the matrix

S := (H − iI)(H + iI)−1 (9.23)

is well-defined and unitary. Conversely,

H = i(I − S)−1(I + S).

The matrix S is called the Cayley transform of H.19 The Cayley transform
H �→ S is a bijective map from the set of self-adjoint matrices onto the set
of unitary matrices which do not have the eigenvalue λ = 1.

Solution: Ad (i)–(v). The condition (9.20) is equivalent to

(Sx)†(Sy) = x†S†Sy = x†y for all x, y ∈ C
2.

Thus, the matrix S is unitary iff S†S = I and S is invertible. However, the
relation S†S = I implies the invertibility of S. In fact,

1 = det I = det(S†S) = detS† · detS = (detS)† detS = |detS|2.

Finally, note that (9.21) is equivalent to the equation

S†S =

 

s†11 s†21
s†12 s†22

! 

s11 s12

s21 s22

!

=

 

1 0

0 1

!

.

Ad (vi). If Sx = λx with x �= 0, then the relation (9.20) tells us that |λ|2 = 1.
In fact,

〈x|x〉 = 〈Sx|Sx〉 = λ†λ〈x|x〉 = |λ|2〈x|x〉.
Ad (vii). If Sx = λx with x �= 0, then

λ〈x|x〉 = 〈x|Sx〉 = 〈Sx|x〉† = λ†〈x|x〉.

Ad (viii). Since the eigenvalues of the self-adjoint matrix H are real, we have
±i ∈ �(H). Thus, the matrices H±iI are invertible. The commutativity relation

(H − iI)(H + iI) = (H + iI)(H − iI)

implies (H+iI)−1(H− iI) = (H− iI)(H+iI)−1. It follows from (AB)† = B†A†

and (A−1)† = (A†)−1 along with (H ± iI)† = H† ∓ iI† = H ∓ iI that

S† = (H − iI)−1(H + iI).

Hence S†S = (H − iI)−1(H + iI)(H + iI)−1(H − iI) = I. Let us now study
the inverse Cayley transform. It follows from (9.23) that S(H + iI) = H − iI.
Hence

(I − S)H = i(I + S).

It remains to show that λ = 1 is not an eigenvalue of the Cayley transform S.
In fact, suppose that Sx = x. By (9.23),

(H + iI)x = (H − iI)x.

Hence x = 0. This implies 1 /∈ σ(H). Consequently, the matrix I − S is invert-
ible. This yields H = i(I − S)−1(I + S).

19 Cayley (1821–1895)
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9.6 Factorization of unitary matrices. If the complex (2 × 2)-matrix S = (sij) is
unitary and s11 �= 0, then

S =

 

1 s12

0 s22

! 

s†11 0

s†12 1

!−1

.

It turns out that this factorization of the S-matrix lurks behind the factoriza-
tion S = W−1

outWin of the scattering operator.
Solution: It follows from the unitarity condition

SS† =

 

s11 s12

s21 s22

! 

s†11 s†21
s†12 s†22

!

=

 

1 0

0 1

!

that
 

1 s12

0 s22

! 

1 0

−s†12 s†11

!

1

s†11
=

 

s11 s12

s21 s22

!

.

9.7 The S-matrix. Prove that
 

ϕ−k(x)

ϕk(x)

!

= Ŝ(k)

 

ϕk(x)†

ϕ−k(x)†

!

for all x ∈ R.

Solution: For the S-matrix Ŝ(k) = (sij), we have

s11 = τ←(k), s12 = �→(k), s21 = �←(k), s22 = τ→(k),

and s11 = s22. For the square-well potential, we also get s12 = s21. However,
this symmetry property is not needed for our argument. For all real numbers
x with x > r,
 

ϕ−k(x)

ϕk(x)

!

=

 

1 �→(k)

0 τ→(k)

! 

e−ikx

eikx

!

,

 

ϕk(x)†

ϕ−k(x)†

!

=

 

τ→(k)† 0

�→(k)† 1

! 

e−ikx

eikx

!

.

Finally, use Problem 9.6 and the solution principle (P) on page 718.
9.8 Matrix functions. The space X of all complex (2× 2)-matrices S is a complex

linear space of dimension four with the basis
 

1 0

0 0

!

,

 

0 1

0 0

!

,

 

0 0

1 0

!

,

 

0 0

0 1

!

.

For all matrices S, T ∈ X, define

〈S|T 〉 := tr(S†T ), (9.24)

and ||S|| :=
p

〈S|S〉. Furthermore, define

eS :=
∞
X

n=0

Sn

n!
= I + S +

S2

2
+ . . . , (9.25)

and

ln(I + S) :=
∞
X

n=0

(−1)n Sn

n
= I − S +

S2

2
+ . . . (9.26)

Show the following:
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(a) The space X is a Hilbert space equipped with the inner product (9.24).
(b) ||ST || ≤ ||S|| · ||T || for all S, T ∈ X.
(c) The series (9.25) converges in the Hilbert space X, and hence the corre-

sponding series for each matrix element converges. That is,

eS =

 

a11 a12

a21 a22

!

= I + S +
S2

2!
+ . . . =

 

1 0

0 1

!

+

 

s11 s12

s21 s22

!

+ . . .

Hence a11 = 1 + s11 + . . ., and so on.
(d) If ||S|| < 1, then the series (9.26) converges in the Hilbert space X, and

hence the corresponding series for each matrix element converges.
Hint: For proving (c), use (b) and the majorant criterion for classical power
series expansions. See Zeidler (1995a), Sec. 1.23, quoted on page 1049.

Matrix calculus shows that the elementary results for (2× 2)-matrices summa-
rized above can be generalized to complex (n× n)-matrices with n = 2, 3, . . .

9.9 Operator-valued approximate delta function. Let H : D(H) → X be a self-
adjoint operator defined on the dense subset D(H) of the complex separable
infinite-dimensional Hilbert space X. Prove that

w − lim
R→+∞

Z R

−R

δε(EI −H)dE = I for all ε > 0

where δε(EI −H) := ε
π
(H − EI + iεI)−1(H − EI − iεI)−1.

Hint: See I. Sigal, Scattering Theory for Many-Body Quantum Mechanical
Systems, p. 8, Springer, New York, 1983.

9.10 The Abel limit. Prove the Abel theorem (9.9).
Solution: The key to the proof is the simple formula

Z ∞

0

εe−εtf(t)dt = 1.

Let a := limt→+∞ f(t). Then supt≥0 ||f(t)|| <∞. For all ε > 0, set

Jε :=

Z ∞

0

εe−εtf(t)dt− a =

Z T

0

εe−εt (f(t)− a)dt +

Z ∞

T

εe−εt (f(t)− a)dt.

We have to show that limε→+0 Jε = 0. In fact,

||Jε|| ≤ εT · (||a||+ sup
t≥0
||f(t)||) + sup

t≥T
||f(t)− a||.

Finally, choose T := 1/
√
ε.

9.11 The time-independent approach to wave operators. Use Problems 9.9 and 9.10
in order to prove Theorem 9.4.
Hint: As in Problem 9.9, see Sigal (1983), p. 16.



10. Creation and Annihilation Operators

Use tensor products and Fock spaces for describing mathematically the
states of many-particle systems.

Folklore

We want to study a mathematical formalism which describes creation and annihi-
lation operators for many-particle systems. We have to distinguish between

• bosons (particles with integer spin like photons, gluons, vector bosons, and gravi-
tons) and

• fermions (particles with half-integer spin like electrons, neutrinos, and quarks).

The point is that the possible number of identical bosons being in the same physical
state is unlimited. In contrast to this, the behavior of fermions is governed by the
Pauli exclusion principle. This principle tells us that:

Two identical fermions cannot be in the same physical state.

Furthermore, we have the following general principle of indistinguishability for both
bosons and fermions:

It is impossible to distinguish between n identical particles.

Roughly speaking, in contrast to planets, elementary particles do not possess any
individuality. Fock spaces were introduced by Vladimir Fock (1898–1974) in 1932.1

10.1 The Bosonic Fock Space

The elements of the bosonic Fock space X are infinite tuples of physical fields.
To display the main idea, we restrict ourselves to the prototype of complex-valued
fields2

ψ : R
4 → C.

1 V. Fock, Configuration space and second quantization, Z. Phys. 75 (1932), 622–
647 (in German). See also P. Jordan and E. Wigner, On the Pauli equivalence
principle, Z. Phys. 47 (1928), 631–658 (in German).

2 Important generalizations will be studied later on in connection with quantum
electrodynamics. This refers to fields

ψ : R
4 → C

m

with m components. For describing photons, it will be necessary to pass from
Hilbert spaces to indefinite inner product spaces.
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The point x = (x0, x1, x2, x3) describes space and time in an inertial system, that
is, the position coordinates x1, x2, x3 are right-handed Cartesian coordinates. More-
over, we introduce the time-like coordinate

x0 := ct

where t is time, and c is the velocity of light in a vacuum. The position vector
x = x1i + x2j + x3k refers to the right-handed orthonormal system i, j,k.

The Hilbert space L2(R
4n). Choose n = 1, 2, . . . Let us introduce the inner

product

〈ψ|ϕ〉n :=

Z

R4n

ψ(x1, . . . , xn)†ϕ(x1, . . . , xn) d4x1 · · · d4xn

along with the corresponding norm ||ψ||n :=
p

〈ψ|ψ〉n. Hence

||ψ||2n =

Z

R4n

|ψ(x1, . . . , xn)|2 d4x1 · · · d4xn.

Here, the arguments x1, . . . , xn live in R
4. By definition, the space L2(R

4n) consists
of all the functions3

ψ : R
4n → C

with ||ψ||n < ∞. The space L2(R
4n) becomes a complex Hilbert space equipped

with the inner product 〈ψ|ϕ〉n. We have the direct sum decomposition

L2(R
4n) = L2,sym(R4n)⊕ L2,antisym(R4n)

where the space L2,sym(R4n) (resp. L2, antisym(R4n)) contains all the functions

ψ = ψ(x1, . . . , xn), x1, . . . , xn ∈ R
4

from L2(R
4n) which are symmetric (resp. antisymmetric) with respect to the argu-

ments x1, . . . , xn.
Tensor products of fields. Suppose that the two functions ψ,ϕ : R

4 → C

live in the Hilbert space L2(R
4). Set

(ψ ⊗ ϕ)(x1, x2) := ψ(x1)ϕ(x2) for all x1, x2 ∈ R
4.

Then, the tensor product ψ ⊗ ϕ lives in the Hilbert space L2(R
8). Introducing the

symmetrization
sym(ψ ⊗ ϕ) := 1

2
(ψ ⊗ ϕ + ϕ⊗ ψ)

and the antisymmetrization

antisym(ψ ⊗ ϕ) := 1
2
(ψ ⊗ ϕ− ϕ⊗ ψ) = 1

2
(ψ ∧ ϕ)

of the tensor product ψ ⊗ ϕ, we get the decomposition

3 We tacitly assume that the functions ψ are measurable with respect to the
Lebesgue measure on R

4n. This only excludes highly pathological functions
having extremely wild discontinuities. In addition, observe that two functions
ψ,ϕ : R

4n → C are identified with each other if they only differ on a subset of
R

4n which has the 4n-dimensional Lebesgue measure zero.
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ψ ⊗ ϕ = sym(ψ ⊗ ϕ) + antisym(ψ ⊗ ϕ)

with sym(ψ⊗ϕ) ∈ L2,sym(R8) and antisym(ψ⊗ϕ) ∈ L2,antisym(R8). Moreover, the
set of all the finite linear combinations

α1ψ1 ⊗ ϕ1 + . . . + αnψn ⊗ ϕn, n = 1, 2, . . .

with ψ1, ϕ1, . . . ∈ L2(R
4) and complex numbers α1, α2, . . . is dense in the Hilbert

space L2(R
8). We write

L2(R
8) = L2(R

4)⊗ L2(R
4) = L2(R

4)⊗2.

This is the prototype of the tensor product of two Hilbert spaces. We also write

L2,antisym(R8) = L2(R
4) ∧ L2(R

4) = L2(R
4)∧2.

For the inner product, we have4

〈ϕ1 ⊗ ϕ2|ψ1 ⊗ ψ2〉 = 〈ϕ1|ψ1〉〈ϕ2|ψ2〉.

Finally, for two given linear operators A,B : L2(R
4)→ L2(R

4), we define the tensor
product A⊗B by setting

(A⊗B)(ψ ⊗ ϕ) := Aψ ⊗ ϕ + ψ ⊗Bϕ

for all ϕ,ψ ∈ L2(R
4).

Definition of the bosonic Fock space. The bosonic Fock space X is defined
to be the direct sum

X =

∞
M

n=0

Xn

of the complex Hilbert spaces X0 := C, X1 := L2(R
4), and

Xn := L2,sym(R4n), n = 2, 3, . . .

Explicitly, this means the following. The bosonic Fock space X consists of all the
infinite sequences

(ψ0, ψ1, ψ2, . . .)

with
P∞

n=1 ||ψn||2n <∞. The function ψn is called an n-particle function. Here,

• ψ0 is an arbitrary complex number,
• the one-particle functions ψ1 : R

4 → C are of the form ψ1 = ψ1(x) with x ∈ R
4,

and they live in the complex Hilbert space L2(R
4),

• the n-particle functions ψn : R
4n → C,

ψn = ψn(x1, x2, . . . , xn), n = 2, 3, . . . ,

are symmetric with respect to the n arguments x1, x2, ..., xn ∈ R
4, and they live

in the complex Hilbert space L2,sym(R4n).

4 Explicitly, the integral
R

(ϕ1(x1)ϕ2(x2))
†ψ1(x1)ψ2(x2)d

4x1d
4x2 is equal to

Z

ϕ1(x1)
†ψ1(x1)d

4x1

Z

ϕ2(x2)
†ψ2(x2)d

4x2.
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The symmetry of the n-particle functions ψn reflects the principle of indistinguisha-
bility for n bosons. The bosonic Fock space X is an infinite-dimensional complex
Hilbert space equipped with the inner product

〈ψ|ϕ〉 := ψ†
0ϕ0 +

∞
X

n=1

〈ψn|ϕn〉n.

10.1.1 The Particle Number Operator

For ψ := (ψ0, ψ1, ψ2, ...), set

Nψ := (0, ψ1, 2ψ2, . . . , nψn, . . .).

More precisely, the linear operator N : D(N) → X is defined for all states ψ ∈ X
of the bosonic Fock space X with

∞
X

n=1

n2||ψn||2n <∞.

For example, choose ψn ∈ Xn for fixed index n with ||ψn||n = 1. Define

Ψn := (0, . . . , 0, ψn, 0, 0, . . .)

where ψn stands at the nth place. Then, Ψn is a normalized state in the bosonic
Fock space X with

NΨn = nΨn.

In terms of physics, the state Ψn describes n bosons.

10.1.2 The Ground State

The state |0〉 := (1, 0, 0, . . .) is a normalized state in the bosonic Fock space X with

N |0〉 = 0.

The state |0〉 is called the normalized vacuum state (or briefly the vacuum), since
the number of bosons is equal to zero in this state.

Dense linear subspace Xfin of the bosonic Fock space X. Let Xfin denote
the set of all the states

ψ = (ψ0, ψ1, . . .)

in the bosonic Fock space X for which at most a finite number of the functions
ψ1, ψ2, . . . does not vanish identically. For example, the state

ψ = (ψ0, ψ1, . . . , ψ4, 0, 0, . . .)

with ψ0 ∈ C and ψj ∈ L2(R
4) for j = 1, ..., 4 lies in the subspace Xfin.

Composition of particle functions. We are given the one-particle function
f ∈ L2(R

4). For each n-particle function

ψn ∈ L2,sym(R4n),
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the symmetrization of the tensor product f⊗ψn yields the (n+1)-particle function5

�n+1 :=
√
n + 1 · sym(f ⊗ ψn). (10.1)

Intuitively, this is the composition of the one-particle state f with the n-particle
state ψn. Explicitly,

�n+1(x1, . . . , xn+1) =

√
n + 1

(n + 1)!

X

π

f(x1)ψn(x2, . . . , xn+1)

where we sum over all permutations π of the arguments x1, . . . , xn+1.
Creation operator a+(f). Fix again the one-particle function f ∈ L2(R

4).
We want to construct a linear operator

a+(f) : Xfin → X

which describes the creation of particles. Explicitly, for each sequence

ψ := (ψ0, ψ1, ψ2, . . .)

in the linear subspace Xfin of the bosonic Fock space X, we define

a+(f)ψ := (0, ρ1, ρ2, . . .) (10.2)

where the functions �1, �2, . . . are given by (10.1). In particular,

�1(x1) := f(x1)ψ0 �2(x1, x2) =
f(x1)ψ1(x2) + f(x2)ψ1(x1)√

2
.

Annihilation operator a−(f). We want to construct a linear operator

a−(f) : Xfin → X

which is formally adjoint to the creation operator a+(f), that is,

〈a−(f)ϕ|ϕ〉 = 〈ϕ|a+(f)ψ〉 for all ϕ,ψ ∈ Xfin.

In other words, we want to get a−(f) = (a+(f))† on Xfin. To this end, for each
sequence ϕ := (ϕ0, ϕ1, ϕ2, . . .) in Xfin we define

a−(f)ϕ := (χ0, χ1, χ2, . . .) (10.3)

along with

χn(x1, . . . , xn) :=
√
n + 1

Z

R4
f(x)†ϕn+1(x, x1, . . . , xn)d4x

for all indices n = 0, 1, 2, . . . In particular, we have

χ0 :=

Z

R4
f(x)†ϕ1(x)d4x, χ1(x1) :=

√
2

Z

R4
f(x)†ϕ2(x, x1)d

4x.

5 It is convenient to add the normalization factor
√
n + 1 (see Theorem 10.1(iii)

below).
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For the vacuum state, we get

a−(f)|0〉 = 0 for all f ∈ L2(R
4).

Fundamental commutation relations. Fix f, g ∈ L2(R
4). Recall that

[A,B]− := AB − BA. In particular, [A,B]− = 0 is equivalent to AB = BA.

Theorem 10.1 For all states ψ,ϕ in the linear subspace Xfin of the bosonic Fock
space X, the following relations hold:
(i) Creation operators: [a+(f), a+(g)]− ψ = 0.
(ii) Annihilation operators: [a−(f), a−(g)]− ψ = 0.
(iii) Creation and annihilation operators:

[a−(f), a+(g)]− ψ = 〈f |g〉1ψ. (10.4)

(iv) Duality: 〈a−(f)ϕ|ψ〉 = 〈ϕ|a+(f)ψ〉.

Proof. To display the main ideas of the proof, we restrict ourselves to some special
cases. Then the proof of the general case proceeds similarly by induction.

Ad (i)–(iii). Choose the functions f, g ∈ L2(R
4) with ||f ||1 = ||g||1 = 1. Since

a+(g)|0〉 = (0, g, 0, . . .), we have

a+(f)a+(g)|0〉 =
1√
2

(0, 0, f(x1)g(x2) + f(x2)g(x1), 0, . . .).

Using symmetry, a+(f)a+(g)|0〉 − a+(g)a+(f)|0〉 = 0.
By a−(f)|0〉 = a−(g)|0〉 = 0, we get a−(f)a−(g)|0〉−a−(g)a−(f)|0〉 = 0. Finally,

it follows from

a−(f)a+(g)|0〉 =

„

Z

R4
f(x)†g(x)d4x, 0, 0, . . .

«

and a+(g)a−(f)|0〉 = 0 that

a−(f)a+(g)|0〉 − a+(g)a−(f)|0〉 = 〈f |g〉1|0〉.

Ad (iv). Choosing the two special states

ψ := (0, ψ1, 0, . . .), ϕ := (0, 0, ϕ2, 0, . . .),

we obtain

a+(f)ψ =
1√
2

(0, 0, f(x1)ψ1(x2) + f(x2)ψ1(x1), 0, . . .)

and

a−(f)ϕ = (0,
√

2

Z

R4
f†(x1)ϕ2(x1, x2) d

4x1, 0, . . .).

Therefore, the inner product 〈ϕ|a+(f)ψ〉 is equal to

1√
2

Z

R8
ϕ2(x1, x2)

†{f(x1)ψ1(x2) + f(x2)ψ1(x1)} d4x1d
4x2.

Since the function ϕ2 is symmetric,

〈ϕ|a+(f)ψ〉 =
√

2

Z

R8
ϕ2(x1, x2)

†f(x1)ψ1(x2) d
4x1d

4x2.



10.1 The Bosonic Fock Space 777

Furthermore,

〈a−(f)ϕ|ψ〉 =
√

2

„

Z

R8
f†(x1)ϕ2(x1, x2) d

4x1

«†
ψ1(x2) d

4x2.

Consequently, 〈a−(f)ϕ|ψ〉 = 〈ϕ|a+(f)ψ〉. �

Physical interpretation. Choose one-particle functions f1, . . . , fs in the space
L2(R

4) such that ||fj ||1 = 1 for j = 1, . . . , s. Set

ψ := a+(f1)a
+(f2) · · · a+(fs)|0〉. (10.5)

This is a state in the bosonic Fock space X. Observe that

a+(fj)|0〉 = (0, fj , 0, . . .)

and Na+(fj)|0〉 = a+(fj)|0〉. We say that

• the function fj represents a normalized one-particle state of a boson, and
• the operator a+(fj) generates the normalized one-particle state a+(fj)|0〉 from

the vacuum |0〉.
Note that the state ψ from (10.5) has the form (ψ0, ψ1, . . .) where ψj = 0 if j �= s.
Hence

Nψ = sψ.

This tells us that if ψ �= 0, then the state ψ from (10.5) represents s bosons being
in one-particle states corresponding to f1, . . . , fs. Because of Theorem 10.1, the
state ψ from (10.5) is invariant under permutations of f1, . . . , fs. This reflects the
principle of indistinguishability for s bosons.

Important special case. Consider a system of functions

f1, f2, f3, . . .

from R
4 to C which forms an orthonormal system in the Hilbert space L2(R

4), that
is, 〈fk|fl〉1 = δkl for all k, l = 1, 2, . . . Define

a+
j := a+(fj), a−j := a−(fj), j = 1, 2, ...

For all ψ ∈ Xfin with j, k = 1, 2, . . ., we then have the following commutation
relations:

ˆ

a+
j , a

+
k

˜

− ψ =
ˆ

a−j , a−k
˜

− ψ = 0,
ˆ

a−j , a+
k

˜

− ψ = δjkψ.
(10.6)

This follows immediately from Theorem 10.1. Moreover, for j, k = 1, 2, . . ., the
following states are normalized in the bosonic Fock space X:

(i) a+
j |0〉;

(ii) a+
j a

+
k |0〉 if j �= k;

(iii) 1√
2
(a+

j )2|0〉.
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Proof. Ad (i). Note that a+
j |0〉 = (0, fj , 0, . . .).

Ad (ii). We have a+
j a

+
k |0〉 = (0, 0, ϕ2, 0, . . .) with

ϕ2(x1, x2) :=
fj(x1)fk(x2) + fj(x2)fk(x1)√

2
.

Since j �= k,
R

R4 fj(x)†fk(x)d4x = 0. Hence 〈ϕ2|ϕ2〉2 is equal to

Z

R8
ϕ2(x, y)

†ϕ2(x, y)d
4xd4y =

Z

R4
|fj(x)|2d4x

Z

R4
|fk(y)|2d4y = 1.

Ad (iii). Since j = k, we obtain

〈ϕ2|ϕ2〉2 = 2

Z

R4
|fj(x)|2d4x

Z

R4
|fj(y)|2d4y = 2.

This argument finishes the proof. �

More generally, if 1 ≤ j1 < ... < jk and m1, . . . ,mk = 1, 2, . . . , then

(a+
j1

)m1

√
m1!

(a+
j2

)m2

√
m2!

· · ·
(a+

jk
)mk

√
mk!

|0〉

is a normalized state in the bosonic Fock space X. States of this form are basic

• in the scattering theory for elementary particles,
• in the theory of many-particle systems in solid state physics, and in
• quantum optics (laser beams).

The rigorous language of operator-valued distributions in quantum
field theory. The space of linear operators

A : Xfin → X

is denoted by L(Xfin, X). Set6

A+(f) := a+(f) for all f ∈ D(R4).

Then, A+ : D(R4) → L(Xfin, X) is a linear map from the space D(R4) of test
functions to the operator space L(Xfin, X). That is,

A+(αf + βg) = αA+(f) + βA+(g)

for all f, g ∈ D(R4) and all complex numbers α and β. We call A+ a distribution
with values in the operator space L(Xfin, X). Similarly, we define

A−(f) := a−(f) for all f ∈ D(R4).

The map A− : D(R4)→ L(Xfin, X) is antilinear, that is,

A−(αf + βg) = α†A−(f) + β†A−(g)

6 Recall that the space D(R4) consists of all the smooth functions f : R
4 → C

which vanish outside some ball, which depends on f . Such functions are called
test functions. The space D(R4) is also denoted by C∞

0 (R4).
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for all f, g ∈ D(R4) and all complex numbers α and β. We call A− an antidistribu-
tion with values in the operator space L(Xfin, X).

The formal language of physicists. Physicists introduce the formal creation
operators a−(x) and the formal annihilation operators a−(x) along with the formal
commutation relations

ˆ

a+(x), a+(y)
˜

− =
ˆ

a−(x), a−(y)
˜

− = 0,
ˆ

a−(x), a+(y)
˜

− = δ(x− y)I (10.7)

and the duality relations

(a+(x))† = a−(x), (a−(x))† = a+(x).

These relations are assumed to be valid for all x, y ∈ R
4. Intuitively, the operator

a+(x) describes the creation of a boson at the given space-time point x = (ct,x).
This corresponds to the creation of a boson at the position x at time t. Similarly,
the operator a−(x) describes the annihilation of a boson at the position x at time
t. Furthermore, we formally write

a+(f) :=

Z

R4
f(x)a+(x)d4x,

and a−(f) :=
R

R4 f(x)†a−(x)dx along with

a−(f)a+(g) :=

Z

R8
f(x)†g(y)a−(x)a+(y)d4xd4y,

and so on. Mnemonically, this yields the rigorous approach introduced above. For
example,

a−(f)a+(g) − a+(g)a−(f) =

Z

R8
f(x)†g(y)

ˆ

a−(x), a+(y)
˜

− d4xd4y

=

Z

R8
f(x)g(y)δ(x− y)I · d4xd4y =

„

Z

R4
f(x)†g(x)d4x

«

I.

Furthermore,

a+(f)a+(g)− a+(g)a+(f) =

Z

R8
f(x)†g(y)[a+(x), a+(y)]− d4xd4y = 0.

Similarly, a−(f)a−(g)− a−(g)a−(f) = 0. Finally, we formally get

(a+(f))† =

„

Z

R4
f(x)a+(x)d4x

«†
=

Z

R4
f(x)†a−(x)d4x = a−(f).

10.2 The Fermionic Fock Space and the Pauli Principle

In contrast to the bosonic Fock space, the components ψ2, ψ3, ... of a state in the
fermionic Fock space are not symmetric, but antisymmetric functions. As we will
see below, this forces the Pauli exclusion principle principle. Let us consider the
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prototype of a fermionic Fock space based on the one-particle function ψ : R
4 → C.

The fermionic Fock space Y is defined to be the direct sum

Y =

∞
M

n=0

Yn

of the complex Hilbert spaces Y0 := C, Y1 := L2(R
4), and

Yn := L2, antisym(R4n), n = 2, 3, . . .

Explicitly, the fermionic Fock space Y consists of all the infinite sequences

(ψ0, ψ1, ψ2, . . .)

with
P∞

n=1 ||ψn||2n <∞. More precisely,

• ψ0 is an arbitrary complex number,
• the one-particle functions ψ1 : R

4 → C are of the form ψ1 = ψ1(x) with x ∈ R
4,

and they live in the complex Hilbert space L2(R
4),

• the n-particle functions ψn : R
4n → C,

ψn = ψn(x1, x2, . . . , xn), n = 2, 3, . . . ,

are antisymmetric with respect to the n arguments x1, x2, . . . , xn ∈ R
4, and they

live in the complex Hilbert space L2,antisym(R4n).

The antisymmetry of the functions ψn reflects the principle of indistinguishability
for fermions. The fermionic Fock space Y is an infinite-dimensional complex Hilbert
space equipped with the inner product

〈ψ|ϕ〉 := ψ†
0ϕ0 +

∞
X

n=1

〈ψn|ϕn〉n.

Recall that 〈ψ|ϕ〉n :=
R

R4n ψ(x1, . . . , xn)†ϕ(x1, . . . , xn) dx1 · · · dxn.
Particle number operator N . For ψ := (ψ0, ψ1, ψ2, . . .), set

Nψ := (0, ψ1, 2ψ2, . . . , nψn, . . .).

More precisely, the linear operator N : D(N) → Y is defined for all states ψ ∈ Y
of the fermionic Fock space Y with

∞
X

n=1

n2||ψn||2n <∞.

For example, let ψn ∈ Yn for fixed index n with ||ψn||n = 1. Choose

Ψn := (0, . . . , 0, ψn, 0, 0, . . .)

where ψn stands at the nth place. Then, Ψn is a normalized state in the fermionic
Fock space Y with

NΨn = nΨn.

In terms of physics, the state Ψn describes n fermions.
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Vacuum. The state |0〉 := (1, 0, 0, . . .) is a normalized state in the fermionic
Fock space Y with

N |0〉 = 0.

The state |0〉 is called the normalized vacuum state (or briefly vacuum), since the
number of fermions is equal to zero in this state.

Dense linear subspace Yfin of the fermionic Fock space Y . Let Yfin denote
the set of all states ψ = (ψ0, ψ1, . . .) in the fermionic Fock space Y for which at
most a finite number of the functions ψ1, ψ2, . . . does not vanish identically.

Composition of particle functions. We are given the one-particle function
f ∈ L2(R

4). For each n-particle function

ψn ∈ L2,antisym(R4n),

the antisymmetrization of the tensor product f ⊗ ψn yields the (n + 1)-particle
function

�n+1 :=
√
n + 1 · antisym(f ⊗ ψn). (10.8)

Intuitively, this is the composition of the one-particle state f with the n-particle
state ψn. Explicitly,

�n+1(x1, . . . , xn+1) =

√
n + 1

(n + 1)!

X

π

sgnπ · f(x1)ψn(x2, . . . , xn+1)

where we sum over all permutations π of the arguments x1, ..., xn+1, and sgnπ
denotes the sign of the permutation π.

Creation operator b+(f). Fix again the one-particle function f ∈ L2(R
4).

We want to construct a linear operator

b+(f) : Yfin → Y

which describes the creation of particles. Explicitly, for each sequence

ψ := (ψ0, ψ1, ψ2, . . .)

in the linear subspace Yfin of the fermionic Fock space Y , we define

b+(f)ψ := (0, ρ1, ρ2, . . .) (10.9)

where the functions �1, �2, . . . are given by (10.8). In particular, we have

�1(x1) := f(x1)ψ0, �2(x1, x2) =
f(x1)ψ1(x2)− f(x2)ψ1(x1)√

2
.

Annihilation operator b−(f). We want to construct a linear operator

b−(f) : Yfin → Y

which is formally adjoint to the creation operator b+(f), that is,

〈b−(f)ϕ|ψ〉 = 〈ϕ|b+(f)ψ〉 for all ϕ,ψ ∈ Yfin.

In other words, we want to get b−(f) = (b+(f))† on Yfin. To this end, for each
sequence ϕ := (ϕ0, ϕ1, ϕ2, . . .) in Yfin, we define
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b−(f)ϕ := (χ0, χ1, χ2, . . .) (10.10)

along with

χn(x1, . . . , xn) :=
√
n + 1

Z

R4
f(x)†ϕn+1(x, x1, . . . , xn)d4x

for all indices n = 0, 1, 2, . . . In particular, we have

χ0 :=

Z

R4
f(x)†ϕ1(x)d4x, χ1(x1) :=

√
2

Z

R4
f(x)†ϕ2(x, x1)d

4x.

For the vacuum state, we get

b−(f)|0〉 = 0 for all f ∈ L2(R
4).

Fundamental anticommutation relations. Fix f, g ∈ L2(R
4). Recall that

[A,B]+ := AB + BA. In particular, [A,B]+ = 0 is equivalent to the anticommuta-
tivity relation AB = −BA.

Theorem 10.2 For all states ψ,ϕ in the linear subspace Yfin of the fermionic Fock
space Y, the following relations hold:
(i) Creation operators: [b+(f), b+(g)]+ ψ = 0.
(ii) Annihilation operators: [b−(f), b−(g)]+ ψ = 0.
(iii) Creation and annihilation operators:

[b−(f), b+(g)]+ ψ = 〈f |g〉1ψ. (10.11)

(iv) Duality: 〈b−(f)ϕ|ψ〉 = 〈ϕ|b+(f)ψ〉.

Proof. Let us start with a special case. Choose functions f, g ∈ L2(R
4) with

||f ||1 = ||g||1 = 1. Since b+(g)|0〉 = (0, g, 0, ...), we get

b+(f)b+(g)|0〉 =
1√
2

(0, 0, f(x1)g(x2)− f(x2)g(x1), 0, . . .).

By antisymmetry, b+(f)b+(g)|0〉+ b+(g)b+(f)|0〉 = 0.
From b−(f)|0〉 = b−(g)|0〉 = 0 we get b−(f)b−(g)|0〉 + b−(g)b−(f)|0〉 = 0.

Finally, it follows from

b−(f)b+(g)|0〉 =

„

Z

R4
f(x)†g(x)d4x, 0, 0, . . .

«

and b+(g)b−(f)|0〉 = 0 that

b−(f)b+(g)|0〉+ b+(g)b−(f)|0〉 = 〈f |g〉1|0〉.

The proof of the general case proceeds similarly by induction. �

Physical interpretation. Choose functions f1, . . . , fs ∈ L2(R
4) with the nor-

malization condition ||fj ||1 = 1 for j = 1, . . . , s. Set

ψ := b+(f1)b
+(f2) · · · b+(fs)|0〉. (10.12)

This is a state in the fermionic Fock space Y. Observe that

b+(fj)|0〉 = (0, fj , 0, . . .)

and Nb+(fj)|0〉 = b+(fj)|0〉. We say that
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• the function fj represents a normalized one-particle state of one fermion, and
• the operator b+(fj) generates the normalized one-particle state b+(fj)|0〉 from

the vacuum state |0〉.
In the general case, we get

Nψ = sψ.

Therefore, if ψ �= 0, then the state ψ from (10.12) represents s fermions which are
in one-particle states corresponding to f1, . . . , fs.

The Pauli exclusion principle. Because of Theorem 10.2 above, the state ψ
from (10.12) changes sign under odd permutations of f1, . . . , fs. Thus, we get

b+(f1)b
+(f2) · · · b+(fs)|0〉 = 0

if two one-particle states fj and fk coincide. For example,

b+(f)b+(f)|0〉 = 0.

Important special case. Consider a system of functions f1, f2, f3, . . . which
form an orthonormal system in the Hilbert space L2(R

4), that is,

〈fk|fl〉1 = δkl, k, l = 1, 2, . . .

Define
b+j := b+(fj), b−j := b−(fj), j = 1, 2, . . .

For all ψ ∈ Yfin and all j, k = 1, 2, . . ., we then have the following anticommutation
relations:

ˆ

b+j , b
+
k

˜

+
ψ =

ˆ

b−j , b−k
˜

+
ψ = 0,

ˆ

b−j , b+k
˜

+
ψ = δjkψ.

(10.13)

If 1 ≤ j1 < ... < jk, then the symbol

b+j1b
+
j2
· · · b+jk

|0〉

represents a normalized state in the fermionic Fock space Y .
The rigorous language of operator-valued distributions. The space of

linear operators B : Yfin → Y is denoted by L(Yfin, Y ). Set

B+(f) := b+(f) for all f ∈ D(R4).

Then, B+ : D(R4) → L(Xfin, X) is a linear map from the space D(R4) of test
functions to the operator space L(Yfin, Y ). We call B+ a distribution with values
in the operator space L(Yfin, Y ). Similarly, we define

B−(f) := b−(f) for all f ∈ D(R4).

The map B− : D(R4) → L(Yfin, Y ) is antilinear. We call B− an antidistribution
with values in the operator space L(Yfin, Y ).

The formal language of physicists. Physicists introduce the formal fermionic
creation operators b+(x) and the formal fermionic annihilation operators b−(x)
along with the formal commutation relations
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ˆ

b+(x), b+(y)
˜

+
=
ˆ

b−(x), b−(y)
˜

+
= 0,

ˆ

b−(x), b+(y)
˜

+
= δ(x− y)I (10.14)

and the duality relations

(b+(x))† = b−(x), (b−(x))† = b+(x).

These relations are assumed to be valid for all x, y ∈ R
4. Intuitively, the operator

b+(x) describes the creation of a fermion at the space-time point x (resp. the oper-
ator b−(x) describes the annihilation of a fermion at x). Furthermore, we formally
write

b−(f) :=

Z

R4
f(x)†b−(x)d4x, b+(f) :=

Z

R4
f(x)b+(x)d4x

along with

b−(f)b+(g) :=

Z

R8
f(x)†g(y)b−(x)b+(y)d4xd4y,

and so on. Mnemonically, this yields the rigorous approach introduced above. For
example,

b−(f)b+(g) + b+(g)b−(f) =

Z

R8
f(x)†g(y)

ˆ

b−(x), b+(y)
˜

+
d4xd4y

=

Z

R8
f(x)†g(y)δ(x− y)I · d4xd4y =

„

Z

R4
f(x)†g(x)d4x

«

I.

Furthermore,

b+(f)b+(g) + b+(g)b+(f) =

Z

R8
f(x)g(y)[b+(x), b+(y)]+ d4xd4y = 0.

Similarly, b−(f)b−(g) + b−(g)b−(f) = 0. Finally, we formally get

(b−(f))† =

„

Z

R4
f(x)†b−(x)d4x

«†
=

Z

R4
f(x)b+(x)d4x = b+(f).

10.3 General Construction

In a straightforward manner, we now want to generalize the construction of bosonic
and fermionic Fock spaces to one–particle functions ψ : R

4 → C
d which possess d

degrees of freedom:

ψ(x) =

0

B

B

@

ψ1(x)
...

ψd(x)

1

C

C

A

, x ∈ R
4.

We briefly write ψ(x) = (ψj(x)). The desired generalization can be easily obtained
by using systematically the language of tensor products.

The one-particle Hilbert space L2(R
4,Cd). To begin with, let us introduce

the following inner product:
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〈ψ|ϕ〉1 :=

Z

R4

d
X

j=1

ψj(x)†ϕj(x) d4x.

By definition, the space L2(R
4,Cd) consists of all the functions ψ : R

4 → C
d with

〈ψ|ψ〉1 < ∞.7 The space L2(R
4,Cd) becomes a complex Hilbert space equipped

with the inner product 〈ψ|ϕ〉1.
Bosonic two-particle functions. Let ψ,ϕ ∈ L2(R

4,Cd) be one-particle func-
tions. The prototype of a two-particle function is the tensor product ψ⊗ϕ. Explic-
itly, this is the tuple

(ψ ⊗ ϕ)(x1, x2) := (ψi(x1)ϕ
j(x2))i,j=1,...,d, x1, x2 ∈ R

4.

Naturally enough, the inner product is defined by

〈ψ ⊗ ϕ|ψ∗ ⊗ ϕ∗〉2 :=

Z

R8

d
X

i,j=1

Ψ ij(x1, x2)
†Ψ ij

∗ (x1, x2) d
4x1d

4x2

where Ψ ij(x1, x2) := ψi(x1)ϕ
j(x2), and Ψ ij

∗ (x1, x2) := ψi
∗(x1)ϕ

j
∗(x2), and

In order to get a bosonic two-particle function, we have to symmetrize. This
means that we have to pass from ψ ⊗ ϕ to

sym(ψ ⊗ ϕ) := 1
2
(ψ ⊗ ϕ + ϕ⊗ ψ).

In general, by a bosonic two-particle function we understand a tuple

Ψ(x1, x2) = (Ψ ij(x1, x2))i,j=1,...,d, x1, x2 ∈ R
4,

which is symmetric with respect to both the indices i, j and the arguments x1, x2.
Explicitly, we obtain

Ψ ij(x1, x2) = Ψ ji(x2, x1), i, j = 1, . . . , d, x1, x2 ∈ R
4.

In addition, we assume that all the components Ψ ij live in the space L2(R
8). We

briefly write

Ψ ∈ L2,sym(R8,Cd2
).

In particular, for the bosonic two-particle functions Ψ, Φ ∈ L2,sym(R8,Cd2
), the

inner product is given by

〈Ψ |Φ〉2 :=

Z

R8

d
X

i,j=1

Ψ ij(x1, x2)
†Φij(x1, x2) d

4x1d
4x2.

Fermionic two-particle functions. We now replace symmetry by antisymme-
try. For given one-particle functions ψ,ϕ ∈ L2(R

4,Cd), antisymmetrization yields
the special fermionic two-particle function

antisym(ψ ⊗ ϕ) = 1
2
(ψ ⊗ ϕ− ϕ⊗ ψ) = 1

2
(ψ ∧ ϕ).

7 We tacitly assume that the components of the functions ψ are measurable with
respect to the Lebesgue measure on R

4. In addition, observe that two functions
ψ,ϕ : R

4 → C
d are identified with each other if they only differ on a subset of

R
4 which has the 4-dimensional Lebesgue measure zero.
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Generally, by a fermionic two-particle function we understand a tuple

Ψ(x1, x2) = (Ψ ij(x1, x2)), i, j = 1, ..., d, x1, x2 ∈ R
4

which is antisymmetric with respect to both the indices i, j and the arguments
x1, x2. Explicitly,

Ψ ij(x1, x2) = −Ψ ji(x2, x1), i, j = 1, ..., d, x1, x2 ∈ R
4.

In addition, we assume that all the components Ψ ij live in the space L2(R
8). We

briefly write Ψ ∈ L2,antisym(R8,Cd2
). Next we want to introduce

• the bosonic Fock space, and
• the fermionic Fock space.

The bosonic Fock space. The direct sum

X =

∞
M

n=0

Xn

of the Hilbert spaces X0 := C, X1 := L2(R
4,C), and

Xn := L2,sym(R4n,Cdn

), n = 2, 3, . . .

is called the bosonic Fock space to the one-particle Hilbert space L2(R
4,Cd). Let

i1, . . . , in = 1, . . . , d and x1, . . . , xn ∈ R
4. By definition, the elements of the space

Xn are tuples
Ψ(x1, . . . , xn) = (Ψ i1...in(x1, . . . , xn))

which are symmetric with respect to both the indices i1, . . . , in = 1, . . . , n and the
n space-time variables x1, . . . , xn. Moreover, all of the components Ψ i1...in live in
the space L2(R

4n). The elements of the bosonic Fock space X are infinite tuples

Ψ = (Ψ0, Ψ1, . . .)

where Ψ0 is a complex number, and Ψn ∈ Xn for n = 1, 2, . . . In addition, we
postulate that

P∞
n=1〈Ψn|Ψn〉n <∞ where we define

〈Ψn|Φn〉n :=

Z

R4n

d
X

i1,...,in=1

(Ψ i1...in)†Φi1...in d4x1 · · · d4xn.

The bosonic Fock space X becomes a complex Hilbert space equipped with the
inner product

〈Ψ |Φ〉 := Ψ†
0Φ0 +

∞
X

n=1

〈Ψn|Φn〉n.

The linear subspace Xfin and the vacuum state |0〉 := (1, 0, 0, . . .) are defined as in
Sect. 10.1. For each given one-particle function f ∈ X1, the creation operator

a+(f) : Xfin → X

is defined by a+(f)Ψ := (0, ρ1, ρ2, . . .) where

ρn+1 :=
√
n + 1 · sym(f ⊗ Ψn), n = 0, 1, 2, . . .
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Explicitly, �
i1...in+1
n+1 (x1, . . . xn+1) is equal to

√
n + 1

(n + 1)!

X

π

π
`

f i1(x1)Ψ
i2...in+1
n (x2, . . . , xn+1)

´

where we sum over all permutations π of 1, . . . , n + 1. The operation π(. . .) refers
to permutations of both the indices i1, . . . , in+1 and the arguments x1, . . . , xn+1.
The annihilation operator

a−(f) : Xfin → X

is the formally adjoint operator to the creation operator a+(f), that is,

〈a−(f)Φ|Ψ〉 = 〈Φ|a+(f)Ψ〉 for all Φ, Ψ ∈ Xfin.

In other words, a−(f) = (a+(f))† on Xfin. Explicitly, for each given sequence
Φ := (Φ0, Φ1, Φ2, . . .) in Xfin, we define

a−(f)ψ := (χ0, χ1, χ2, . . .)

where χi1...in
n (x1, . . . , xn) is given by

√
n + 1

Z

R4

d
X

i=1

f i(x)†Φii1...in
n+1 (x, x1, . . . , xn)d4x.

In particular, χ0 =
R

R4

Pd
i=1 f

i(x)†Ψ i(x) d4x.

The fermionic Fock space. The direct sum

Y =
∞
M

n=0

Yn

of the Hilbert spaces Y0 := C, Y1 := L2(R
4,C), and

Yn := L2,antisym(R4n,Cdn

), n = 2, 3, ...

is called the fermionic Fock space to the one-particle Hilbert space L2(R
4,Cd). Let

i1, . . . , in = 1, . . . , d and x1, . . . , xn ∈ R
4. By definition, the elements of the space

Yn are tuples
Ψ(x1, . . . , xn) = (Ψ i1...in(x1, . . . , xn))

which are antisymmetric with respect to both the indices i1, . . . , in and the n
space-time variables x1, . . . , xn. Moreover, the components Ψ i1...in live in the space
L2(R

4n). Explicitly, the elements of the fermionic Fock space Y are infinite tuples

Ψ = (Ψ0, Ψ1, . . .)

where Ψ0 is a complex number, and Ψn ∈ Yn for n = 1, 2, . . . In addition, we
postulate that

P∞
n=1〈Ψn|Ψn〉n <∞. The space Y becomes a complex Hilbert space

equipped with the inner product

〈Ψ |Φ〉 := Ψ†
0Φ0 +

∞
X

n=1

〈Ψn|Φn〉n.
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For each given one-particle function f ∈ Y1, the creation operator

b+(f) : Yfin → Y

is defined by b+(f)Ψ := (0, ρ1, ρ2, . . .) where

ρn+1 :=
√
n + 1 · antisym(f ⊗ Ψn), n = 0, 1, 2, . . .

Explicitly, �
i1...,in+1
n+1 (x1, . . . , xn+1) is equal to

√
n + 1

(n + 1)!

X

π

sgnπ · π
`

f i1(x1)Ψ
i2...in+1
n (x2, . . . , xn+1)

´

where we sum over all permutations π of 1, . . . , n + 1. The operation π(. . .) refers
to permutations of both the indices i1, . . . , in+1 and the arguments x1, . . . , xn+1.
The annihilation operator

b−(f) : Yfin → Y

is the formally adjoint operator to the creation operator b+(f), that is,

〈b−(f)Φ|Ψ〉 = 〈Φ|b+(f)Ψ〉 for all Φ, Ψ ∈ Yfin.

In other words, b−(f) = (b+(f))† on Yfin. Explicitly, for each sequence

Φ := (Φ0, Φ1, Φ2, . . .)

in the space Yfin, we define

b−(f)Φ := (χ0, χ1, χ2, . . .)

where χi1...in
n (x1, . . . , xn) is equal to

√
n + 1

Z

R4

d
X

i=1

f i(x)†Φii1...in
n+1 (x, x1, . . . , xn) d4x.

10.4 The Main Strategy of Quantum Electrodynamics

The most important experiments in elementary particle physics are scattering ex-
periments carried out in huge high-energy particle accelerators. Physicists charac-
terize the outcome of such experiments by cross sections. If J = �v is the current
density of the incoming particle stream with velocity v and particle density �, then

N = σT · J

is the number of scattered particles observed during the time interval [−T
2
, T

2
]. In

the SI system of physical units, J has the physical dimension of particle density
times velocity, 1/m2s. Therefore, the quantity σ has the physical dimension of area,
m2, and σ is called the cross section of the scattering process. Observe the following:

• Cross sections follow from transition probabilities.
• Transition probabilities result from transition amplitudes.
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• Transition amplitudes can be computed by using Feynman diagrams and the
corresponding Feynman rules.

Our goal is to motivate the Feynman rules in quantum electrodynamics and to
apply them to the computation of cross sections.

The Feynman rules represent the hard core of quantum field theory.

For quantum electrodynamics, the Feynman rules will be summarized in Sect. 14.3.
Applications to scattering processes can be found in Chap. 15.

Quantum electrodynamics studies the interaction between the following parti-
cles: electrons, positrons, and photons. Here, photons represent quantized electro-
magnetic waves. Note that:

• The electron is called the basic particle of quantum electrodynamics.
• The positron is the antiparticle to the electron.
• The massless photon is responsible for the interaction between electrons and

positrons. Therefore, photons are called the interacting particles of quantum
electrodynamics.

In order to understand quantum field theory, one has to start with quantum elec-
trodynamics. Let us discuss the main ideas of quantum electrodynamics. We will
proceed in the following four steps:

(C) Classical field theory: We first consider the classical principle of critical ac-
tion for the Maxwell–Dirac field which is obtained by coupling the classical
electromagnetic field to the Dirac field for the relativistic electron.

(F) The free quantum field: For the free electromagnetic field and the free Dirac
field of the electron, we find solutions in the form of finite Fourier series. Re-
placing Fourier coefficients by creation and annihilation operators, we get the
corresponding free quantum fields for electrons, positrons, and photons (the
method of Fourier quantization).

These free quantum fields depend on the choice of both a finite box in
position space and a finite lattice in momentum space.

(I) The interacting quantum field: We use the interaction term between the elec-
trodynamic field and the Dirac field for the electron in order to formulate the
Dyson series for the S-matrix of quantum electrodynamics. The S-matrix is
a formal power series expansion with respect to the dimensionless coupling
constant in the SI system of physical units:

κ :=
√

4πα. (10.15)

Here, α denotes the so-called fine structure constant in quantum electrody-
namics:

α =
1

137.04
= 0.007297 (10.16)

which is dimensionless. In addition, −e is the negative electric charge of the
electron.8 In the SI system, we have

α =
e2

4πε0�c
.

8 If we want to emphasize that κ and α refer to quantum electrodynamics, but
not to strong and weak interaction in the Standard Model, then we write κQED

and αQED, respectively.
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The point is that the Dyson series for the S-matrix depends nonlinearly on
the free quantum fields for electrons, positrons, and photons. Using the ap-
proximation of the S-matrix in lowest nontrivial order, we are able to compute
approximately scattering processes for electrons, positrons, and photons.

(R) Renormalization: Using higher-order approximations of the S-matrix together
with the high-energy limit (resp. the low-energy limit), we get divergent ex-
pressions for scattering processes. In order to extract physical information from
those divergent expressions, we have to use the crucial method of renormaliza-
tion. The final results are cross sections for scattering processes of the form

σ = σ1κ + σ2κ
2 + . . .

This is a power series expansion with respect to the small dimensionless cou-
pling constant κ given by (10.15). The coefficients σ1, σ2, . . . are real numbers
(equipped with the physical dimension of area) coming from divergent inte-
grals by using a regularization procedure. The coincidence between theory and
physical experiment is extremely precise in quantum electrodynamics.

The smallness of the dimensionless (electromagnetic) fine structure
constant α is responsible for the incredible success of perturbation the-
ory in quantum electrodynamics.

The situation changes completely in strong interaction where the coupling con-
stant is approximately equal to one, κ = 1. Then the results of perturbation
theory are only crude approximations of reality.
In string theory, there exists a duality transformation between certain models
which allows us to transform some models having large coupling constant into
dual models having small coupling constant. In the future, physicists hope to
establish such a beautiful duality method for strong interaction in nature.

Convention for the choice of the system of physical units. To simplify
notation, in the following chapters we will use the energetic system of units, that
is, we set

� = c = ε0 = μ0 = k := 1. (10.17)

Then, the dimension of an arbitrary physical quantity is some power of energy (see
the Appendix A.2 of Vol. I). In particular, the electric charge −e of the electron is
dimensionless, and we have

e =
√

4πα.

The gauge condition. It is a typical feature of quantum electrodynamics that we
do not start with the electromagnetic field E,B, but with the four-potential U,A.
The electromagnetic field is then given by

E = −gradU − Ȧ, B = curlA.

The point is that the four-potential is only determined up to a gauge transformation
of the form

U �→ U − ∂f

∂t
, A �→ A + grad f

where f is a smooth function. This causes some trouble. We will overcome the
difficulties in the following sections by using the following trick:

(i) We first destroy the gauge invariance by passing to a modified Lagrangian.
(ii) The corresponding free quantum fields include virtual photons which do not

possess an obvious physical meaning.
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(iii) In classical theory, virtual photons are eliminated by adding the Lorenz gauge
condition.

(iv) In quantum field theory, virtual photons are eliminated by adding a weak
Lorenz gauge condition (Gupta–Bleuler quantization).

Nevertheless, we will see that virtual photons essentially influence physical processes
proceeding in our real world. The point is that there arise terms in perturbation the-
ory which depend on the photon propagator, and this photon propagator contains
contributions coming from virtual photons. In general, quantum electrodynamics
adds new physical effects to classical electrodynamics which can be summarized
under the sketch word quantum fluctuations of the ground state (also called the
vacuum). In particular, this concerns the so-called vacuum polarization.



11. The Basic Equations in Quantum
Electrodynamics

Quantum electrodynamics couples the Maxwell equation for the photon to
the Dirac equation for the electron.

Folklore

11.1 The Classical Lagrangian

The Einstein convention. Let us choose a fixed inertial system with

x = (x0, x1, x2, x3).

Here, x = x1i + x2j + x3k is the position vector of a Cartesian coordinate system
with the right-handed orthonormal basis i, j,k. We also set x0 := t where t denotes
time. For the indices μ, ν = 0, 1, 2, 3, we set

η00 := 1, η11 = η22 = η33 := −1, ημν := 0 if μ �= ν

along with ημν := ημν . As usual, we use the η-symbol for lifting and lowering of
indices.

By the Einstein convention, we sum over equal lower and upper Greek
indices from 0 to 3.

For example, according to the Einstein convention we write

Aμ := ημνAν =

3
X

ν=0

ημνAν , Aμ = ημνA
ν =

3
X

ν=0

ημνA
ν .

Introducing the partial derivative ∂μ := ∂/∂xμ, we get

(∂μAν)(∂μAν) =
3
X

μ,ν=0

(∂μAν)(∂μAν) =
3
X

μ,ν,α,β=0

∂μAνη
μαηνβ∂αAβ .

The Dirac–Pauli matrices γ0, γ1, γ2, γ3 satisfy the following fundamental Clifford
anticommutation rules:

γμγν + γνγμ = 2ημνI, μ, ν = 0, 1, 2, 3. (11.1)

Explicitly, the Dirac–Pauli matrices are given by

γ0 :=

 

σ0 0

0 −σ0

!

, γj :=

 

0 σj

−σj 0

!

, j = 1, 2, 3, (11.2)
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along with the Pauli matrices

σ0 :=

 

1 0

0 1

!

, σ1 :=

 

0 1

1 0

!

, σ2 :=

 

0 −i

i 0

!

, σ3 :=

 

1 0

0 −1

!

.

Furthermore, we introduce the chiral matrix

γ5 := iγ0γ1γ2γ3 =

 

0 σ0

σ0 0

!

.

The choice of the Dirac–Pauli matrices is called the standard representation of
the Clifford anticommutation relations (11.1). The chiral representation via Weyl
matrices can be found in Problem 15.6 on page 936.

The principle of critical action in quantum electrodynamics. Let Ω be
a nonempty bounded open subset of R

4 with the closure cl(Ω). Introduce the Dirac
bispinor function ψ = ψ(x) with the components

ψ(x) :=

0

B

B

B

@

ψ0(x)

ψ1(x)

ψ2(x)

ψ3(x)

1

C

C

C

A

,

and the electromagnetic four-potential A(x) := (A0(x), A1(x), A2(x), A3(x)). Fur-
thermore, we introduce the Dirac adjoint

ψ(x) := ψ†(x)γ0 = (ψ0(x)†, ψ1(x)†,−ψ2(x)†,−ψ3(x)†).

For example,
ψψ = (ψ0)†ψ0 + (ψ1)†ψ1 − (ψ2)†ψ2 − (ψ3)†ψ3.

The principle of critical action in quantum electrodynamics reads as follows. We
are looking for smooth functions A : cl(Ω)→ R

4 and ψ : cl(Ω)→ C
4 such that

Z

Ω

L(A(x), ψ(x), ψ†(x)) d4x = critical! (11.3)

along with the boundary condition “A = fixed and ψ = fixed on ∂Ω”. Here, the
Lagrangian density

L = Lfree + Lint

decomposes into the free Lagrangian density1

Lfree : = − 1
2
(∂μAν)(∂μAν) + 1

2

„

1− 1

ξ

«

(∂μA
μ)2

+iψγμ∂μψ −meψψ

and the Lagrangian density of interaction

Lint := −Jμ
QEDAμ

1 The fixed real nonzero parameter ξ is called the gauge parameter of quantum
electrodynamics. This terminology will be explained in Sect. 11.2. As a rule, we
will choose the value ξ = 1 which is called the Feynman gauge.
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along with the electric 4-current density vector

Jμ
QED := −eψγμψ.

Recall that −e is the negative electric charge of the electron, and me is the positive
rest mass of the electron. We will show in Chap. 13 that:

The interaction Lagrangian, Lint is crucial for the construction of Dyson’s
S-matrix, and hence for the computation of scattering processes between
electrons, positrons, and photons.

The Euler–Lagrange equations in quantum electrodynamics. Let us
introduce the wave operator

� := ∂μ∂
μ =

∂2

∂t2
−

3
X

j=1

∂2

∂xj∂xj
,

and the covariant derivative ∇μ := ∂μ − ieAμ.

Theorem 11.1 Each smooth solution A,ψ of the critical action problem (11.3)
satisfies the following system of partial differential equations:
(i) Wave equations: For μ = 0, 1, 2, 3,

�Aμ +

„

1

ξ
− 1

«

∂μ(∂νA
ν) = Jμ

QED. (11.4)

(ii) Dirac equation: iγν∇νψ = meψ.

The proof can be found in Problem 15.5 on page 935. The relation to the
electromagnetic field E,B will be studied in Sect. 11.2. We will also show in Problem
15.1 on page 932 that each solution of the Dirac equation (ii) satisfies the adjoint
Dirac equation

−i∇−
μ ψγμ = meψ

where we introduce ∇−
μ := ∂μ + ieAμ. In particular, if we choose the Feynman

gauge, ξ = 1, then the system of wave equations (11.4) passes over to the following
system of classical wave equations:

�Aμ = Jμ
QED, μ = 0, 1, 2, 3. (11.5)

The total energy. Choose the Feynman gauge, ξ = 1. Recall that, in classical
mechanics, the energy H is given by

H := pq̇ − L

with the conjugate momentum p := Lq̇. We want to generalize this to quantum
electrodynamics. To this end, we replace q by A = (A0, A1, A2, A3) and ψ. Moreover,

we replace the time derivative q̇ by the partial time derivatives Ȧ0, Ȧ1, Ȧ2, Ȧ3 and
ψ̇. Finally, instead of p we introduce the quantities

Πμ :=
∂L
∂Ȧμ

, π :=
∂L
∂ψ̇

, μ = 0, 1, 2, 3.

This motivates the following definition of the energy density:

H := ΠμȦμ + πψ̇ − L.
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From this we obtain the field energy

H :=

Z

G

H d3x

contained in the bounded open subset G of the position space R
3. Let us introduce

the operator

H := meγ
0 +

3
X

j=1

γ0γj(−i∂j).

Theorem 11.2 For the energy density H of the classical Dirac–Maxwell field, we
get the decomposition

H = Hphot +Hel +Hint

with the photon energy density Hphot := − 1
2

P3
μ,ν=0(∂νAμ)2, the electron energy

density
Hel := ψ†Hψ,

and the interaction energy density Hint := −e(ψγμψ)Aμ = Jμ
QEDAμ.

Proof. Recall that the Lagrangian density is given by

L := − 1
2
(∂μAν)(∂μAν) + ψ(iγμ∂μ −me)ψ + e(ψγμψ)Aμ.

Noting that L = − 1
2
Ȧ2

0 + 1
2

P3
j=1 Ȧ

2
j + . . . and A0 = A0, Aj = −Aj for j = 1, 2, 3,

we obtain

Πμ =
∂L
∂Ȧμ

= −Ȧμ, μ = 0, 1, 2, 3.

Moreover, it follows from ψ = ψ†γ0 and (γ0)2 = I that

L = iψγ0∂0ψ + . . . = iψ†ψ̇ + . . .

Hence π = ∂L
∂ψ̇

= iψ†. �

Next we want to study the relation between the solutions of the Euler–Lagrange
equations from Theorem 11.1 and the electromagnetic field.

11.2 The Gauge Condition

The Danish physicist Ludvig Valentin Lorenz (1829–1891) is perhaps best
known for his pairing with the more famous Dutch physicist Hendrik An-
toon Lorentz (1853–1928) in the Lorenz–Lorentz relation between index of
refraction and density. In fact, Lorenz was a pioneer in the theory of light
and in electrodynamics, contemporaneous with Maxwell (1831–1879). In
1862 he developed a mathematical theory of light, using the basic known
facts (transversality of vibrations, Fresnel’s law), but avoiding the (un-
necessary to him) physical modelling of a mechanistic ether in favor of a
purely phenomenological model.2 . . .

2 L. Lorenz, On the theory of light, Philos. Mag. Ser. 4, 26 (1863), pp. 81–93,
205–219.
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Lorenz proposed the condition (11.6) below in the mid-1860s, but this
constraint is generally misattributed to the better known Lorentz.3

John Jackson and Lev Okun, 2001

Let ξ be a fixed nonzero real gauge parameter. Assume that the four-potential
A0, A1, A2, A3 is a solution of the wave equations from Theorem 11.1,

�Aμ +

„

1

ξ
− 1)

«

∂μ(∂νA
ν) = Jμ

QED, μ = 0, 1, 2, 3,

and that it satisfies the Lorenz gauge condition

∂νA
ν = 0. (11.6)

This implies the following.

Theorem 11.3 The electromagnetic field

Fμν := ∂μAν − ∂νAμ (11.7)

satisfies the Maxwell equations

∂μF
μν = Jν

QED, ∂αFβγ + ∂βFγα + ∂γFαβ = 0 (11.8)

for all ν, α, β, γ = 0, 1, 2, 3.

Proof. Because of the Lorenz gauge condition, we get

�Aμ = Jμ
QED, μ = 0, 1, 2, 3.

Again by the Lorenz gauge condition, we have

∂μF
μν = ∂μ(∂μAν − ∂νAμ) = �Aν − ∂ν(∂μA

μ) = �Aν = Jν
QED.

The equation ∂αFβγ + ∂βFγα + ∂γFαβ = 0 follows easily from (11.7). �

Explicitly, set U := A0 and A := A1i + A2j + A3k, as well as

� := J0
QED, JQED := J1

QEDi + J2
QEDj + J3

QEDk.

For the Feynman gauge ξ = 1, the following hold true. If the wave equations

�A = JQED, �U = �

are fulfilled and the Lorenz gauge condition

3 In 1902 Hendrik Antoon Lorentz and Pieter Zeeman were awarded the Nobel
prize in physics, in recognition of the extraordinary service they rendered by
their research into the influence of magnetism upon radiation phenomena.
H. Lorentz, Theory of Electrons, Teubner, Leipzig, and Stechert, New York, 1909.
Second edition 1916. Reprinted by Dover, New York, in 1952.
J. Jackson and L. Okun, Historical roots of gauge invariance, Rev. Mod. Phys. 73
(2001), 663–680 (reprinted with permission; copyright by the Amer. Phys. Soc.).
I would like to thank Christoph Dehne for drawing my attention to the necessary
distinction between Lorenz (e.g., the Lorenz gauge condition) and Lorentz (e.g.,
the Lorentz transformation in the theory of special relativity).
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U̇ + div A = 0

is satisfied, then the electromagnetic field

E = −gradU − Ȧ, B = curlA

is a solution of the Maxwell equations

div E = �, div B = 0,

curlB = JQED + Ė, curlE = −Ḃ.

Summarizing, the solutions of the Euler–Lagrange equations from Theorem 11.1 on
page 795 do not always possess a physical meaning, since the Maxwell equations
are violated. This situation changes if we add the Lorenz gauge condition. Then we
obtain an electromagnetic field which satisfies the Maxwell equations.

Relativistic invariance. In this chapter, the basic equations of quantum elec-
trodynamics were formulated in a fixed inertial system. It remains to show that
these equations have the same form in any inertial system. From the mathemat-
ical point of view, we have to indicate the transformation laws for the physical
quantities under a change of the inertial system via a Poincaré transformation, and
we have to show the invariance of the basic equations of quantum electrodynam-
ics under the Poincaré group. This will be thoroughly studied in Vol. III by using
both classical tensor analysis (including van der Waerden’s spinor calculus) and
Cartan’s exterior calculus of differential forms (including Kähler’s interior calculus
of differential forms).



12. The Free Quantum Field of Electrons,
Positrons, and Photons

Quantum fields possess an infinite number of degrees of freedom. However,
in order to overcome serious difficulties, it is wise to start with a finite
number of degrees of freedom and to study the lattice limit (continuum
limit) for such quantities which can be measured in physical experiments.

Folklore

12.1 Classical Free Fields

For vanishing coupling constant, κQED = 0 (free fields), we want to consider solu-
tions of the classical field equations in the form of a finite Fourier series.

Plane electromagnetic waves. Let ωp := |p|. For the field

U(x, t) := U0e
ipx e−iωpt, A(x, t) := A0e

ipx e−iωpt, (12.1)

the following are true.

(W) Wave equations: �U = 0 and �A = 0 on R
4.

(G) Lorenz gauge condition: If ωpU0 = pA0, then

U̇ + div A = 0 on R
4.

In fact, this implies ΔU = −Uxx − Uyy − Uzz = p2U . Hence

�U = Ü + ΔU = (−ω2
p + p2)U = 0.

The statements (W) and (G) remain true if we replace U,A by the conjugate-
complex fields U†,A†. Explicitly,

U(x, t)† := U†
0 e−ipx eiωpt, A(x, t)† := A†

0e
−ipx eiωpt.

Our next goal is to consider finite sums of such plane wave solutions. To this end,
we need some preparations.

12.1.1 The Lattice Strategy in Quantum Electrodynamics

Our basic strategy reads as follows:

(i) Periodicity of free fields: Classical free fields are represented by finite Fourier
series. To this end, we put the free fields of photons and electrons in a box of
length L and volume V := L3, and we assume that the fields have the period
L with respect to the position variables. Moreover, we introduce a lattice in
momentum space. This yields finite Fourier series.
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(ii) The crucial method of Fourier quantization:
We replace the Fourier coefficients of the finite Fourier series by cre-
ation and annihilation operators.

The advantage of this construction is the fact that a fixed finite number of
creation and annihilation operators can be uniquely realized, up to unitary
equivalence. For bosons (i.e., photons), this follows from the Stone–von Neu-
mann theorem on the realization of a finite number of commutation relations
(see Sect. 7.16).1

(iii) The Dyson series for the S-matrix: Concerning a finite number of creation and
annihilation operators, the S-matrix is a well-defined finite series in each order
of perturbation theory. This leads to well-defined discrete Feynman propagators
in the form of discrete integrals (i.e., finite sums) (see Chap. 13).

(iv) Feynman rules: The Wick theorem provides us with well-defined discrete in-
tegrals. This way, for example, we get well-defined cross sections in each order
of perturbation theory.

(v) Continuum limit for the cross sections: Finally, we have to carry out the delicate
limit

L→ +∞,

that is, the period L goes to infinity. As a typical example, we will study this
limit for the cross section of Compton scattering in order to get the Klein–
Nishina formula (see Sects. 14.4 and 15.1).

(vi) Renormalization: In general, that is, in higher order of perturbation theory,
an immediate computation of the continuum limit is not possible, since the
corresponding limit integrals are divergent. Therefore, we have to apply the
procedure of renormalization theory (see Chap. 16).

(vii) Relativistic invariance: The choice of the lattice in momentum space destroys
the relativistic invariance of the approach. Therefore, we have to check that the
final cross sections are relativistically invariant, that is, the final formulas for
the cross sections do not depend on the choice of the inertial system. Roughly
speaking, this can be ensured by using discrete formulas which are obtained
by discretizing relativistically invariant formulas. We will proceed this way.

(viii) Gauge invariance: Our computations will be based on a fixed choice of the
gauge condition for the four-potential of the electromagnetic field. A perfect
theory has to show that the physically relevant quantities measured in physical
experiments (e.g., the cross section) are gauge invariant, that is, they do not
depend on the choice of the gauge condition. We will come back to this problem
in later volumes in connection with the study of the Standard Model in particle
physics.

Our mathematical language will be close to the language used by physicists. To
this end, we will use the discrete Dirac calculus introduced in Sect. 12.1 of Vol. I.
Let us recall some basic definitions.

The normalization volume V. Choose a fixed inertial system. The point
x = (x0, x1, x2, x3) describes space and time in the inertial system. That is, the

1 Note that, for an infinite number of commutation relations, the uniqueness state-
ment fails. There exist unitarily inequivalent representations, as was shown by
G̊arding and Wightman.
L. G̊arding and A. Wightman, Representations of the anticommutation relations,
Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 617–621.
L. G̊arding and A. Wightman, Representations of the commutation relations,
Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 622–625.
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position coordinates x1, x2, x3 are right-handed Cartesian coordinates.2 Moreover,
we introduce the time coordinate x0 := t. The position vector

x = x1i + x2j + x3k

refers to the right-handed orthonormal system i, j,k. The same is true for the
momentum vector

p = p1i + p2j + p3k.

We fix the length parameter L > 0, and we introduce the cube

C(L) :=
˘

(x1, x2, x3) ∈ R
3 : −L

2
≤ x1, x2, x3 ≤ L

2

¯

(12.2)

of side length L. The volume of the cube, V := L3, is called the normalization
volume.

The truncated lattice G(N) in momentum space. Fix the natural number
N = 1, 2, . . . Let m1,m2,m3 be integers. By definition, the symbol G(N) denotes
the set of all lattice momentum vectors

p :=
2π

L
· (m1i + m2j + m3k)

with |mj | ≤ N , j = 1, 2, 3. Moreover, we set

Δ3p := Δp1Δp2Δp3, Δpj :=
2π

L
, j = 1, 2, 3.

The crucial limit
L→ +∞, N → +∞

sends the truncated grid G(N) to R
3. Therefore, we call this the continuum limit.

Discrete Fourier series. For given complex numbers ap, the function

f(x) :=
1

p

(2π)3

X

p∈G(N)

ap eipx (12.3)

has the period L with respect to the variables x1, x2, x3. The Fourier coefficients
are related to the function f by

ap =
1

p

(2π)3

Z

C(L)

f(x) e−ipx d3x, p ∈ G(N).

The map f �→ {ap}p∈G(N) is called the discrete Fourier transform of the given
function f .

The discrete Dirac delta function in position space. Define

δC(L)(y − x) :=
1

(2π)3

X

p∈G(N)

ei(y−x)p Δ3p

for all position vectors x and y. This is called the discrete Dirac delta function in
position space. To simplify notation, we do not indicate that δC(L) also depends on
N (the size of the grid G(N) in momentum space). For each function f of the form
(12.3), we obtain the following integral formula:

2 By our general convention (10.17) for the choice of the physical units, we set
c = 1 and � = 1.
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f(y) =

Z

C(L)

δC(L)(y − x)f(x) d3x.

Here, y denotes an arbitrary position vector.
The discrete Dirac delta function in 3-dimensional momentum space.

Define

δG(N)(p− q) :=
δpq

Δ3p

for all lattice vectors p,q ∈ G(N). This is a rescaled Kronecker symbol. For all
functions g : G(N)→ C, we get

g(q) =
X

p∈G(N)

δG(N)(q− p)g(p) Δ3p.

The definition and the properties of the 4-dimensional discrete Dirac delta function
δdis can be found in Sect. 12.1.2 of Vol. I.

12.1.2 The High-Energy Limit and the Low-Energy Limit

The classical limit. Fix the position vector y.

Proposition 12.1 For all test functions ϕ ∈ D(R3), we have the classical limit

lim
N→∞

lim
L→+∞

Z

C(L)

δC(L)(y − x) ϕ(x) d3x := ϕ(y). (12.4)

Proof. Since the function ϕ vanishes outside a sufficiently large ball, we obtain
Z

C(L)

δC(L)(y − x) ϕ(x) d3x :=

Z

R3
δC(L)(y − x) ϕ(x) d3x

if L is sufficiently large. Since the function ϕ lives in the space S(R3) of rapidly
decreasing smooth functions at infinity, the same is true for the classical Fourier
transform ϕ̂ of ϕ. By Fourier transformation, we get

Z

R3
δC(L)(y − x)ϕ(x)d3x =

1

(2π)3

X

p∈G(N)

Δ3p

Z

R3
ei(y−x)pϕ(x) d3x

=
1

p

(2π)3

X

p∈G(N)

eiyp ϕ̂(p) Δ3p.

The limit L→ +∞ implies Δ3p→ 0. Hence

lim
L→+∞

Z

R3
δC(L)(y − x)ϕ(x)d3x =

1
p

(2π)3

Z

|p|≤N

eiypϕ̂(p) d3p.

Consequently,

lim
N→∞

lim
L→+∞

Z

R3
δC(L)(y − x)ϕ(x)d3x =

1
p

(2π)3

Z

R3
eiypϕ̂(p) d3p.

Using the inverse Fourier transformation, we obtain



12.1 Classical Free Fields 803

lim
N→∞

lim
L→+∞

Z

R3
δC(L)(y − x)ϕ(x)d3x = ϕ(y). (12.5)

for all test functions ϕ ∈ D(R3). This finishes the proof. �

The key relation (12.5) tells us that, for fixed position vector y, we have

lim
N→+∞

lim
L→+∞

δC(L)(y − x) = δ(y − x),

in the sense of the distribution space D′(R3).
The generalized limit in scattering theory. Again fix the position vector

y. For all continuous functions ϕ : R
3 → C, we define the following generalized

limit:

lim
N→∞

lim
L→+∞

Z

C(L)

δC(L)(y − x) ϕ(x) d3x := ϕ(y). (12.6)

This definition is motivated by Prop. 12.1. Mnemonically, in the spirit of physicists,
we use the following formal argument: L→ +∞ implies Δ3p→ 0. Hence

lim
N→∞

lim
L→+∞

δC(L)(y − x) =
1

(2π)3

Z

R3
ei(y−x)d3p = δ(y − x).

Note that the Dirac delta function is even, that is, δ(y− x) = δ(x− x). Therefore,

lim
N→∞

lim
L→+∞

Z

C(L)

δC(L)(y − x)ϕ(x) d3x =

Z

R3
δ(y − x)ϕ(x)d3x = ϕ(y).

This is the key formula (12.6).
We will use similar arguments for computing the following physical effects in

Chap. 15 via the continuum limit L→ +∞ and N → +∞:

• the Klein–Nishina cross section formula for Compton scattering,
• the cross section for Cherenkov scattering,
• the scattering of electrons in the Yukawa potential,
• the scattering of electrons in the Coulomb potential,
• the emission rate formula for the spontaneous emission of photons by atoms, and
• the Heisenberg radiation formula for the intensity of spectral lines of atoms.

In physics, one uses the following terminology:

• The limit N → +∞ is called the large-momenta limit (or the high-energy limit).
• The limit L → +∞ (i.e., the normalization volume V goes to infinity) is called

the small-momenta limit, Δp→ 0 (or the low-energy limit).

This will be studied in Chap 16.

12.1.3 The Free Electromagnetic Field

Let us start with the special free electromagnetic field (12.1) on page 799. Our goal
is to use the superposition principle in order to construct more general free fields in
the form of finite Fourier series. To this end, for given momentum vector p, choose
three vectors

e3(p) :=
p

|p| , e1(p), e2(p)

which form a right-handed orthonormal system (Fig. 12.1). Fix N = 1, 2, . . ., and
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�
e1(p)

�p

�e3(p) �e2(p)

Fig. 12.1. Polarization of photons

choose the grid G(N) in momentum space. Define the real field U,A given by

U(x, t) :=
X

p∈G(N)

(ap,0 ei(px−ωpt) + a†p,0 e−i(px−ωpt)) Np, (12.7)

and

A(x, t) :=
X

p∈G(N)

3
X

s=1

(ap,s ei(px−ωpt) + a†p,s e−i(px−ωpt)) Np es(p)

where ap,s are given complex numbers. The index s refers to the polarization of the
plane waves. We use the normalization factor

Np :=

s

1

2L3ωp
for all p �= 0

in order to simplify the formulas of quantized free fields to be considered in Sect.
12.2.1. For p = 0, we set N0 := 0.

Theorem 12.2 The field U,A satisfies the wave equations

�U = 0, �A = 0 on R
4.

If ap,0 = ap,3 for all momentum vectors p ∈ G(N), then the Lorenz gauge condition

U̇ + div A = 0 is satisfied on R
4.

Proof. Concerning the Lorenz gauge condition, note that

∂

∂t
ei(px−ωpt) = −iωp ei(px−ωpt),

divx es(p)ei(px−ωpt) = ies(p)p ei(px−ωpt)

along with e3(p)p = |p| = ωp, and e1(p)p = e2(p)p = 0. �

Introducing the components

es(p) := e1
s(p)i + e2

s(p)j + e3
s(p)k, s = 1, 2, 3,

and A = A1i + A2j + A3k, we get

Aj(x, t) :=
X

p∈G(N)

3
X

s=1

(ap,s ei(px−ωpt) + a†p,s e−i(px−ωpt)) Np ej
s(p)
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for j = 1, 2, 3. In order to obtain a 4-dimensional formulation, we define

e0
0(p) := 1, ej

0(p) = e0
j (p) := 0, j = 1, 2, 3.

Letting A0 := U , we get

Aμ(x, t) :=
X

p∈G(N)

3
X

s=0

(ap,s ei(px−ωpt) + a†p,s e−i(px−ωpt)) Np eμ
s (p)

for μ = 0, 1, 2, 3. From the orthogonality relation, er(p)es(p) = δrs, we obtain the
so-called completeness relation:

3
X

s=0

eμ
s e

ν
s = δμν , μ, ν = 0, 1, 2, 3. (12.8)

The importance of virtual photons. The index s indicates the polarization
of the field A0, A1, A2, A3. We have to distinguish the following three cases.

• For s = 1, 2, the field A is transversal to the direction p of the propagation of
the plane wave (Fig. 12.1). Therefore, we speak of transversal polarization. For
s = 3, the field A is parallel to the direction p of the propagation of the plane
wave. We speak of longitudinal polarization.

• For s = 0, we speak of scalar polarization.

After quantization to be carried out below, plane electromagnetic waves pass over
to photons (i.e, light particles).

Transversal (resp. longitudinal, scalar) polarization will then correspond to
transversal (resp. longitudinal, scalar) photons.

Longitudinal and scalar photons are also called virtual photons. Observe that vir-
tual photons are nonphysical objects. They have to be eliminated by the Gupta–
Bleuler procedure which will be considered in Sect. 12.4.4 on page 831.

The introduction of virtual physical states, also called ghosts, is typical for
the quantization of gauge field theories like quantum electrodynamics and
the more general Standard Model in particle physics.

Note that this is more than a mathematical trick. It will be shown below that

• virtual particles do never appear as incoming and outgoing particles in scattering
processes;

• nevertheless, virtual particles are responsible for real physical effects in quantum
field theory via quantum fluctuations.

Mathematically, this depends on the fact that virtual particles contribute to the
Feynman propagators which govern the computations of physical effects in pertur-
bation theory (see Sect. 13.4.1). Intuitively, virtual particles correspond to internal
lines of Feynman diagrams (see Chap. 14).
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12.1.4 The Free Electron Field

Plane wave solutions of the Dirac equation for the free electron. The
following explicit solutions ψ±

p,s of the Dirac equation play a fundamental role for
computing scattering processes in quantum electrodynamics and, more generally,
in the Standard model in particle physics. For fixed momentum vector p, define

ψ+
p,s(x, t) := up,s eipxe−iEpt

and

ψ−
p,s(x, t) := vp,s e−ipxeiEpt.

Here, the energy is given by Ep :=
p

p2 + m2
e where me denotes the mass of the

electron. Furthermore,

χ 1
2

:=

 

1

0

!

, χ
− 1

2

:=

 

0

1

!

along with

up,s := N
 

χs
pσ

Ep+me
χs

!

, vp,s := N
 

pσ
Ep+me

χ−s

χ−s

!

, (12.9)

and the normalization factor N :=
p

Ep + me. We also set p = p1i + p2j + p3k,
and

pσ =

3
X

j=1

pjσj =

 

p3 p1 − ip2

p1 + ip2 −p3

!

.

Explicitly, we obtain the following four matrices:3

up, 1
2

:= N

0

B

B

B

B

B

B

B

B

@

1

0

p3

Ep + me

p1 + ip2

Ep + me

1

C

C

C

C

C

C

C

C

A

, up,− 1
2

:= N

0

B

B

B

B

B

B

B

B

@

0

1

p1 − ip2

Ep + me

− p3

Ep + me

1

C

C

C

C

C

C

C

C

A

,

vp, 1
2

:= N

0

B

B

B

B

B

B

B

B

@

p1 − ip2

Ep + me

− p3

Ep + me

0

1

1

C

C

C

C

C

C

C

C

A

, vp,− 1
2

:= N

0

B

B

B

B

B

B

B

B

@

p3

Ep + me

p1 + ip2

Ep + me

1

0

1

C

C

C

C

C

C

C

C

A

.

3 Alternatively, the modified normalization factor N :=
p

Ep + me/
√

2me is used
in the literature. Since this normalization becomes meaningless for neutrinos
with vanishing mass, me = 0, we do not use this modified normalization.
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The Dirac equation iγα∂αψ = meψ can equivalently be written in the form of
the following Schrödinger equation

iψ̇ = Hψ (12.10)

with the Hamiltonian

H := γ0me +
3
X

j=1

γ0γj(−i∂j) = me

 

σ0 0

0 −σ0

!

− i

 

0 σ∂

σ∂ 0

!

where σ∂ :=
P3

j=1 σ
j∂j . To this end, multiply the Dirac equation by γ0 from left

and use (γ0)2 = I.4 Analogously, introduce the operator

Hp := γ0me +

3
X

j=1

γ0γjpj = me

 

σ0 0

0 −σ0

!

+

 

0 pσ

pσ 0

!

.

For ϕp(x) := eipx and the constant column matrix u ∈ C
4, note that

H(uϕp) = (Hpu)ϕp.

In Problem 15.9 on page 938, we will prove the following result which is valid for
all momentum vectors p,q, and all spin numbers r, s = ± 1

2
.

Theorem 12.3 (i) The functions ψ+
p,s and ψ−

p,s are solutions of the Dirac equation
(12.10) above. Furthermore, we have

Hψ±
p,s = ±Epψ

±
p,s

along with
Hpup,s = Epup,s, Hpv−p,s = −Epv−p,s.

(ii) The four column matrices

u
p,

1
2
, u

p,− 1
2
, v

−p,
1
2
, v

−p,− 1
2

form an orthogonal basis of eigenvectors of the self-adjoint matrix Hp with respect to
the inner product u†u on the complex Hilbert space C

4. The normalization conditions
read as

u†
p,sup,s = v†−p,sv−p,s = 2Ep, s = ± 1

2
.

There holds the following completeness relation:
X

s=± 1
2

up,su
†
p,s + v−p,sv

†
−p,s = 2EpI.

(iii) Additionally, we have the generalized orthogonality relations

up,rvp,s = vp,rup,s = 0, up,rup,s = −vp,rvp,s = 2meδrs,

along with the spin sum formulas 5

X

s=± 1
2

up,sup,s =�p + me,
X

s=± 1
2

vp,svp,s =�p−me.

4 Briefly, H = meγ
0 − iγ0γ∂.

5 We use Feynman’s slash symbol, �p := γμpμ.
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Physical properties of plane electron waves. Consider first the wave func-
tion

ψ+
p,s(x, t) = up,se

ipxe−iEpt, s = ± 1
2
.

The physics of plane electron waves can be described in terms of the following four
operators:

(M) Momentum operator: P := −i∂.
(E) Energy operator: H = meγ

0 + γ0γP.
(S) Spin operator: S = S1i + S2j + S3k. Here,

Sj :=
1

2

 

σj 0

0 σj

!

, j = 1, 2, 3.

(H) Helicity operator (spin projection): For nonzero momentum vector p, we define
the helicity operator in direction of p by

Sp :=
pS

|p| =
1

2|p|

 

pσ 0

0 pσ

!

.

Using the Dirac–Pauli matrices, we set

σαβ :=
i

2
[γα, γβ ]−, α, β = 0, 1, 2, 3.

Then, S1 = 1
2
σ23, S2 = 1

2
σ31, and S3 = 1

2
σ12. Note that

Pψ+
p,s = pψ+

p,s, Hψ+
p,s = Epψ

+
p,s, s = ± 1

2
.

In terms of physics, the field ψ+
p,s possesses the momentum vector p and the energy

Ep. For example, suppose that the momentum vector p points in direction of the
z-axis, that is, p = p3k with p3 > 0. Then

Sψ+
p,s = (sk)ψ+

p,s, Spψ
+
p,s = sψ+

p,s, s = ± 1
2
.

We say that the electron state ψ+
p,s with p = p3k, p3 > 0 has the spin vector sk and

the helicity s. For s = 1
2

(resp. s = − 1
2
) we speak of a spin-up (resp. spin-down)

state.
The trouble with negative energies. Consider now the wave function

ψ−
p,s(x, t) = vp,se

−ipxeiEpt.

From the mathematical point of view, this is a solution of the Dirac equation
iψ̇ = Hψ with

Pψ−
p,s = −pψ−

p,s, Hψ−
p,s = −Epψ

−
p,s, s = 1

2
.

Suppose that the momentum vector p points in direction of the z-axis, i.e., p = p3k
with p3 > 0. Then

Sψ−
p,s = −(sk)ψ−

p,s, Spψ
−
p,s = −sψ−

p,s, s = ± 1
2
.
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From the physical point of view, we encounter the trouble that because of

Hψ−
p,s = −Epψ

−
p,s,

the function ψ−
p,s corresponds to the negative energy −Ep. In 1928, Dirac did over-

come this difficulty by postulating that there exists an antiparticle to the electron
which is called the positron nowadays.

The function ψ−
p,s corresponds to a positron of positive energy Ep and

momentum vector p.

In the case where p = p3k with p3 > 0, the function ψ−
p,s describes a positron of

spin vector sk and helicity s with s = ± 1
2
. In the 1940s, Stueckelberg (1905–1984)

emphasized the following point of view:

The positron is an electron running backwards in time.

This refers to the following mathematical fact. For given positron function ψ−
p,s,

define
ψ(x, t) := ψ−

p,s(x,−t), t ∈ R.

Then, the function ψ is a solution of the Dirac equation iψ̇ = Hψ along with

Hψ = Epψ, Pψ = −pψ.

In the case where p = p3k with p3 > 0, we get

Sψ = (−sk)ψ, Spψ = −sψ.

The passage p �→ −p and s �→ −s is motivated by the fact that under the time
reflection t �→ −t, the velocity vector changes sign, and hence both the momentum
vector p and the angular momentum vector (spin) a of a classical particle change
sign, i.e., p �→ −p and a �→ −a. On the classical level, the approach to positrons
sounds artificially. The natural setting for positrons is the passage to quantum field
theory via creation and annihilation operators. This will be studied in Sect. 12.2.1
on page 812.

Orthogonality relations. Recall the definition of the cube

C(L) :=
˘

(x1, x2, x3) ∈ R
3 : −L

2
≤ x1, x2, x3 ≤ L

2

¯

of side length L. Introduce the inner product

〈ψ|ϕ〉C(L) :=

Z

C(L)

ψ(x)†ϕ(x) d3x.

Let L2, per(C(L),C4) denote the space of all of the functions ψ : C(L) → C
4 which

have the following properties:

• 〈ψ|ψ〉C(L) <∞;

• the function ψ has the period L with respect to the variables x1, x2, x3;
• the components of ψ are measurable with respect to the Lebesgue measure on

R
3;

• two functions ψ and ϕ in L2, per(C(L),C4) are identified with each other iff they
differ on a subset of Lebesgue measure zero on R

3.

The space L2, per(C(L),C4) is a complex Hilbert space with respect to the inner
product 〈ψ|ϕ〉C(L).
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Theorem 12.4 For all lattice momentum vectors p ∈ G(N) and all spin num-
bers s = ± 1

2
, the fields ψ±

p,s form an orthogonal system in the Hilbert space

L2, per(C(L),C4) with the normalization condition

〈ψ±
p,s|ψ±

p,s〉C(L) = 2EpL
3.

Explicitly, the orthogonality relations read as

〈ψ±
p,r|ψ±

q,s〉C(L) = 2δpq δrsEpL
3, 〈ψ±

p,r|ψ∓
q,s〉C(L) = 0

for all p,q ∈ G(N) and all r, s = ± 1
2
.

Proof. This follows by using an explicit computation based on the orthogonality
relation

1

L3

Z

C(L)

ei(p−q)xd3x = δpq, p,q ∈ G(N),

along with the matrix orthogonality relations

u†
p,

1
2

u
p,− 1

2

= v†
p,

1
2

v
p,− 1

2

= 0, u†
p,sv−p,s = 0

for all p ∈ G(N) and all s, r = ± 1
2
.

Alternatively, we can use the following standard argument from functional anal-
ysis. Let ψ,ϕ ∈ L2, per(C(L),C4) be smooth functions. Observing the periodicity of
ψ and ϕ, integration by parts yields

Z

C(L)

ψ(x)†∂jϕ(x)d3x = −
Z

C(L)

∂jψ(x)†ϕ(x)d3x

for j = 1, 2, 3. Hence

〈ψ|Hϕ〉C(L) = 〈Hψ|ϕ〉C(L).

This shows that the differential operator H is formally self-adjoint on the set of
smooth functions in the Hilbert space L2, per(C(L),C4). Consequently, the eigen-
functions of the operator H with respect to different eigenvalues are orthogonal to
each other. Finally, note that Hψ±

p,s = ±Epψ
±
p,s. �

The free Dirac field. We want to construct more general solutions of the Dirac
equation by superposition. Fix N = 1, 2, 3, . . . If bp,s, cp,s are arbitrary complex
numbers, then the field

ψ :=
X

p∈G(N)

X

s=± 1
2

(bp,sψ
+
p,s + c†p,sψ

−
p,s)Np

with the normalization factor

Np :=

s

1

2L3Ep

is a solution of the Dirac equation iψ̇ = Hψ. Explicitly,

ψ(x, t) :=
X

p∈G(N)

X

s=± 1
2

(bp,sup,s ei(px−Ept)+

+c†p,svp,s e−i(px−Ept)) Np.

(12.11)
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The adjoint Dirac field. Recall that ψ := ψ†γ0. Therefore, it follows from
(12.11) that

ψ(x, t) :=
X

p∈G(N)

X

s=± 1
2

(b†p,sup,s e−i(px−Ept)+

+cp,svp,s ei(px−Ept)) Np.

(12.12)

After quantization, the fields ψ and ψ will describe free electrons and positrons.

12.2 Quantization

Quantization is not a handicraft, but an art.
Folklore

We now use the method of Fourier quantization in order to describe free quantum
fields of photons, electrons, and positrons which are the basic particles in quantum
electrodynamics. The idea is to consider

• the Maxwell equations in classical electrodynamics with vanishing external elec-
tric charge density and vanishing electric current, and

• the Dirac equation for the classical relativistic electron with vanishing external
electromagnetic field.

It turns out that there exist solutions in the form of Fourier series. The correspond-
ing free quantum fields are then obtained by replacing

• the Fourier coefficients ap by annihilation operators a−p , and

• the conjugate-complex Fourier coefficients a†p by creation operators a+
p .

The normalization factors are chosen in such a way that we obtain the appropriate
expression for the energy operator. The classical free fields concern plane electro-
magnetic waves and plane waves for the classical relativistic electron.

The procedure of Fourier quantization leads quite naturally to the antipar-
ticle of the electron called positron.

The existence of the positron was conjectured by Dirac in 1928. Experimentally,
the positron was discovered in cosmic rays by Anderson in 1932.

As we will show in Chap. 13 on the Dyson series for the S-matrix, the
knowledge of the free quantum fields for photons, electrons, and positrons
is basic for computing the interaction between photons, electrons, and
positrons in terms of perturbation theory.

Observe the following peculiarity. In order to simplify the approach, we first include
photons which violate the Lorenz gauge condition. In Sect. 12.4.4, we will add the
Gupta–Bleuler quantization condition,

a−p,0|Ψ〉 = 0, a−p,3|Ψ〉 = 0,

for characterizing physical states Ψ. This condition eliminates nonphysical photons
which do not possess transversal polarization. The Gupta–Bleuler method is the
prototype for the quantization of gauge theories by eliminating nonphysical quan-
tum states via the BRST quantization methods based on cohomology.
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12.2.1 The Free Photon Quantum Field

Fix N = 1, 2, 3, . . . Let μ = 0, 1, 2, 3. Motivated by the free electromagnetic field
in Sect. 12.1.3 on page 805, we define the free quantum fields of photons in the
following way:

Aμ(x, t) :=
X

p∈G(N)

3
X

s=0

(a−p,s ei(px−ωpt) + a+
p,s e−i(px−ωpt)) Npe

μ
s (p)

along with the following normalization factor

Np :=

s

1

2L3ωp
for all p �= 0.

For p = 0, we set N0 := 0. We postulate that for all given lattice momentum vectors
p,q ∈ G(N) and all polarization indices s, r = 0, 1, 2, 3,

• the photon creation operators a+
p,s, and

• the photon annihilation operators a−p,s

satisfy the following commutation relations which will be used frequently:6

(P1) [a−p,s, a
+
p,s]− = I if s = 1, 2, 3.

(P2) [a−p,0, a
+
p,0]− = −I.

(P3) [a−p,s, a
+
q,r]− = 0 if p �= q or s �= r.

(P4) [a−p,s, a
−
q,r]− = [a+

p,s, a
+
q,r]− = 0.

(P5) a−p,s|0〉 = 0.

(P6) (a−p,s)
† = a+

p,s.

To motivate these commutation relations, we will show next that (P1)–(P6) imply

• reasonable commutation relations for the free quantum field Aμ of photons and
its conjugate field Πμ = −Ȧμ, and

• a reasonable expression for the energy operator.

The crucial realization of the commutation relations (P1)–(P6) will be studied in
Sect. 12.4.3 on page 826. Note the following:

• The polarization index s = 1, 2 corresponds to transversal photons.
• The polarization index s = 0 (resp. s = 3) corresponds to scalar (resp. longitu-

dinal photons.

Transversal photons are called real photons (or physical photons). Both scalar and
longitudinal physical photons are called virtual photons (or unphysical photons).

The canonical commutation relations for the free quantum field of
photons. Fix time t. For μ, ν = 0, 1, 2, 3 and all position vectors x and y, we
obtain

[Aμ(x, t),Πν(y, t)]− = iδC(L)(x− y) · ημνI (12.13)

and

[Aμ(x, t), Aν(y, t)]− = 0, [Πμ(x, t), Πν(y, t)]− = 0. (12.14)

6 Recall that [A,B]− := AB −BA.
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Naturally enough, the commutation relations (12.13) for the free quantum field Aμ

of photons and its conjugate field Πμ = −Ȧμ generalize the Heisenberg commuta-
tion relation

[q, p]− = iI

for position q and and the conjugate momentum p in quantum mechanics. Observe
the crucial fact that the appearance of the symbol ημν guarantees the appropriate
behavior under Lorentz transformations (relativistic invariance). In order to obtain
the symbol ημν , but not δμν , we postulate different signs for the commutation
relations in (P1) and (P2) above.
Proof. Let us prove (12.13). The key is the completeness relation

3
X

s=0

ηsse
μ
s e

ν
s = ημν , μ, ν = 0, 1, 2, 3

which follows from (12.8). By the commutation relation [a−p,s, a
+
p,s]− = −ηssI for

s = 0, 1, 2, 3, we obtain the following equation:

[Aμ(x, t), Πν(y, t)]− =
X

p∈G(N)

−iωp

3
X

s=0

2[a−p,s, a
+
p,s]− eip(x−y) eμ

s e
ν
s N 2

p

=
iημν

(2π)3

0

@

X

p∈G(N)

eip(x−y)Δ3p

1

A I.

This yields the desired relation (12.13). Analogously, we get (12.14). �

The energy operator for the free quantum field of photons. The energy
operator Hphot of the free quantum field for photons is given by

Hphot =
X

p∈G(N)

3
X

s=1

ωp(a+
p,sa

−
p,s + 1

2
I) + ωp( 1

2
I − a+

p,0a
−
p,0).

Let us motivate this. By Theorem 11.2 on page 796, we define

Hphot :=

Z

C(L)

Hphot d
3x = − 1

2

Z

C(L)

3
X

μ,ν=0

(∂νAμ)2d3x.

This means that7

Hphot = − 1
2

Z

C(L)

 

U̇2 + (∂U)2 +

3
X

j=1

Ȧ2
j + (∂Aj)

2

!

d3x.

The time derivative of U = A0 reads as

U̇ =
X

p∈G(N)

(−a−p,0 ei(px−ωpt) + a+
p,0e

−i(px−ωpt)) iωpNp.

By the orthogonality relations on page 810, we get

7 Explicitly, (∂U)2 = U2
x + U2

y + U2
z .
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Z

C(L)

U̇2 d3x =
X

p∈G(N)

(a−p,0a
+
p,0 + a+

p,0a
−
p,0) ω

2
pN 2

pL
3. (12.15)

Since a−p,0a
+
p,0 = a+

p,0a
−
p,0 − I, we have

Z

C(L)

U̇2 d3x =
X

p∈G(N)

ωp(a+
p,0a

−
p,0 − 1

2
I).

Furthermore, set p = p1i+ p2j+ p2k. The partial derivative of U with respect to x
reads as

Ux =
X

p∈G(N)

(a−p,0e
i(px−ωpt) − a+

p,0e
−i(px−ωpt)) ip1Np.

Hence
Z

C(L)

U2
x d3x =

X

p∈G(N)

(a+
p,0a

−
p,0 + a−p,0a

+
p,0)(p

1)2N 2
pL

3.

Similarly, noting that
P3

j=1(p
j)2 = p2 = ω2

p, we obtain

− 1
2

Z

C(L)

(U̇2 + (∂U)2) d3x =
X

p∈G(N)

ωp(−a+
p,0a

−
p,0 + 1

2
I).

Analogously, we get

− 1
2

Z

C(L)

(Ȧ
2

+

3
X

j=1

(∂Aj)
2) d3x =

X

p∈G(N)

3
X

s=1

ωp(a+
p,sa

−
p,s + 1

2
I).

This finishes the motivation of Hphot. For physical reasons, the energy operator
Hphot will be redefined below by setting

Hphot :=
X

p∈G(N)

3
X

s=1

ωpa
+
p,sa

−
p,s − ωpa

+
p,0a

−
p,0.

That is, we separate the vacuum energy. In addition, by the Gupta–Bleuler quanti-
zation condition below, we will eliminate the contributions of nonphysical longitu-
dinal and scalar photons. More precisely, for all physical states |Ψ〉, we will obtain
the following crucial energy relation:

Hphot|Ψ〉 =

0

@

X

p∈G(N)

2
X

s=1

ωpa
+
p,sa

−
p,s

1

A |Ψ〉.

12.2.2 The Free Electron Quantum Field and Antiparticles

Recall that the energy of an electron of mass me and momentum vector p is given
by

Ep :=
p

m2
e + p2.
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The positron is the antiparticle to the electron. The positron has the same mass as
the electron. But, in contrast to the negative electric charge −e of the electron, the
positron has the positive electric charge e.8

The quantum field of free electrons and positrons. Consider now the
classical solution ψ of the free Dirac equation from (12.11) on page 810.

• Replace the Fourier coefficient bp,s by the annihilation operator b−p,s of an electron

with momentum vector p and spin s = ± 1
2

in direction of p.9

• Replace the Fourier coefficient cp,s by the annihilation operator c−p,s of a positron

with momentum vector p and spin s = ± 1
2

in direction of p.

• Replace the conjugate-complex Fourier coefficient b†p,s by the creation operator

b+p,s of an electron with momentum vector p and spin s = ± 1
2

in direction of p.

• Replace the conjugate-complex Fourier coefficient c†p,s by the creation operator

c+p,s of a positron with momentum vector p and spin s = ± 1
2

in direction of p.

This way, from (12.11) we get the following free electron-positron quantum field

ψ(x, t) :=
X

p∈G(N)

X

s=± 1
2

(b−p,sup,s ei(px−Ept)+

+c+p,svp,s e−i(px−Ept)) Np

(12.16)

with the normalization factor

Np :=

s

1

2L3Ep
.

For the adjoint field from (12.12), we obtain

ψ(x, t) :=
X

p∈G(N)

X

s=± 1
2

(b+p,sup,s e−i(px−Ept)+

+c−p,svp,s ei(px−Ept)) Np.

(12.17)

The anticommutation relations for the electron. For the creation and
annihilation operators of a free electron we postulate the following anticommutation
relations for all p,q ∈ G(N) and all s, r = ± 1

2
:

(E1) [b−p,s, b
+
p,s]+ = I.10

(E2) [b−p,s, b
+
q,r]+ = 0 if p �= q or s �= r.

(E3) [b−p,s, b
−
q,r]+ = [b+p,s, b

+
q,r]+ = 0.

(E4) b−p,s|0〉 = 0.

8 Observe that we work in the energetic system. In the SI system, the electron
energy (resp. the positron energy) is given by

Ep :=
p

m2
ec4 + p2c2,

and the photon energy is given by Ephot := �ωp.
9 In the SI system, the electron has the spin �s in direction of the momentum

vector p, where s = ± 1
2
.

10 Recall that [A,B]+ := AB + BA.
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(E5) (b−p,s)
† = b+p,s.

The anticommutation relations for the positron. Similarly, for the cre-
ation and annihilation operators of a free positron, we postulate the following an-
ticommutation relations:

(E+1) [c−p,s, c
+
p,s]+ = I.

(E+2) [c−p,s, c
+
q,r]+ = 0 if p �= q or s �= r.

(E+3) [c−p,s, c
−
q,r]+ = [c+p,s, c

+
q,r]+ = 0.

(E+4) c−p,s|0〉 = 0.

(E+5) (c−p,s)
† = c+p,s.

Since photons, electrons, and positrons are independent particles, we assume that
the corresponding creation and annihilation operators always commute. Explicitly,
we postulate that for all momentum vectors p,q ∈ G(N) and all polarizations
s = 0, 1, 2, 3 and r, r′ = ± 1

2
, the following are true:

(F1) [a±p,s, b
±
q,r]− = [a±p,s, b

∓
q,r]− = 0.

(F2) [a±p,s, c
±
q,r]− = [a±p,s, c

∓
q,r]− = 0.

(F3) [b±p,r, c
±
q,r′ ]− = [b±p,r, c

∓
q,r′ ]− = 0.

The realization of the anticommutation relations (E1)–(E5) and (E+1)–(E+5) for
electrons and positrons along with (F1)–(F3) will be discussed in Sect. 12.4.3 on
page 826.

The canonical anticommutation relations for the free quantum field
of electrons and positrons. Fix time t. For j, k = 1, ..., 4 and all position vectors
x and y, we obtain

[ψj(x, t), πk(y, t)]+ = iδC(L)(x− y) · δjkI (12.18)

and

[ψj(x, t), ψk(y, t)]+ = 0, [πj(x, t), πk(y, t)]+ = 0. (12.19)

Here, π = Lψ̇ = iψ† denotes the conjugate field to ψ. Using the anticommutation

relations for the creation and annihilation operators b±, c±, this follows analogously
as in the proof of (12.13) on page 812.

The energy of the free quantum field for electrons and positrons. The
energy operator of the free quantum field for electrons is given by

Hel :=
X

p∈G(N)

X

s=± 1
2

Ep(b+p,sb
−
p,s − 1

2
I).

Similarly, the energy operator of the free quantum field for positrons is given by

Hpos :=
X

p∈G(N)

X

s=± 1
2

Ep(c+p,sc
−
p,s − 1

2
I).

Let us motivate this. By Theorem 11.2, we start with the energy operator

Hel/pos :=

Z

Ω

ψ†(x, t)Hψ(x, t) d3x.
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According to (12.16), we choose the free electron-positron quantum field

ψ(x, t) :=
X

p∈G(N)

X

s=± 1
2

(b−p,sψ
+
p,s + c+p,sψ

−
p,s) Np.

Noting that (b−p,s)
† = b+p,s and (c+p,s)

† = c−p,s, the adjoint fields reads as

ψ†(x, t) :=
X

p∈G(N)

X

s=± 1
2

(b+p,sψ
+†
p,s + c−p,sψ

−†
p,s) Np.

Since Hψ±
p,s = ±Epψ

±
p,s, we get

Hψ =
X

p∈G(N)

X

s=± 1
2

Ep(b−p,sψ
+
p,s − c+p,sψ

−
p,s) Np.

The orthogonality relation from Theorem 12.4 tells us that

Hel/pos =
X

p∈G(N)

X

s=± 1
2

Ep(b+p,sb
−
p,s 〈ψ+

p,s|ψ+
p,s〉C(L)

−c−p,sc
+
p,s 〈ψ−

p,s|ψ−
p,s〉C(L)) N

2
p.

By c−p,sc
+
p,s = −c+p,sc

−
p,s + I, we get

Hel/pos =
X

p∈G(N)

X

s=± 1
2

2E2
p(b+p,sb

−
p,s + c+p,sc

−
p,s − I)N2

pL
3. (12.20)

Finally, it follows from 2E2
pN

2
pL

3 = 2Ep that Hel/pos = Hel + Hpos.
The total energy operator of free quantum fields in quantum electro-

dynamics. Using the superposition principle, we define the total energy operator
of the free quantum field in quantum electrodynamics by

Hfree := Hphot + Hel + Hpos. (12.21)

For further investigations, it is useful to separate the vacuum energy. To this end,
we redefine Hphot,Hel,Hpos by setting

Hfree := Hphot + Hel + Hpos + Hvac.

Here, we define the photon energy operator

Hphot := Hreal photons + Hvirtual photons

where
Hreal photons :=

X

p∈G(N)

X

s=1,2

ωpa
+
p,sa

−
p,s

and
Hvirtual photons =

X

p∈G(N)

ωpa
+
p,3a

−
p,3 − ωpa

+
p,0a

−
p,0.

We will show in Sect. 12.4.4 that only the energy operator Hreal photons of transversal
photons possesses a physical meaning, whereas the energy operator Hvirtual photons
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of virtual photons drops out in Gupta–Bleuler quantization. Furthermore, let us
introduce the following three operators: the electron energy operator

Hel :=
X

p∈G(N)

X

s=± 1
2

Epb
+
p,sb

−
p,s,

the positron energy operator

Hpos :=
X

p∈G(N)

X

s=± 1
2

Epc
+
p,sc

−
p,s,

and the vacuum energy operator

Hvac :=
X

p∈G(N)

(2ωp − 2Ep)I. (12.22)

Recall that Ep =
p

m2
e + p2 and ωp = |p|.

Pauli’s spin-statistics principle. In order to explain the basic idea behind
this fundamental principle in elementary particle physics, consider the state

ψ := c+q,r |0〉

which corresponds to one positron of momentum vector q and spin r = ± 1
2

in
direction of q. Then

Hposψ = Eqψ, (12.23)

that is, the positron state ψ has the energy Eq. To prove this note the following.
Letting ε := 1 it follows from the anticommutation relation

c−q,rc
+
q,r = I − εc+q,rc

−
q,r (12.24)

and c−p,r|0〉 = 0 that

c+q,rc
−
q,rc

+
q,r|0〉 = c+q,r|0〉 − ε(c+q,r)

2c−q,r|0〉 = c+q,r|0〉.

Moreover, if p �= q or s �= r, then

c+p,sc
−
p,sc

+
q,r|0〉 = −εc+p,sc

+
q,rc

−
p,s|0〉 = 0.

In order to get insight, let us replace the anticommutation relations [. , .]+
for the creation and annihilation operators of electrons and positrons by analogous
commutation relations [. , .]−. We want to show that this leads to a contradiction
in physics (i.e., electron states and positron states of negative energy). In fact, if
we assume that

[c−p,r, c
+
p,r]− = I,

then equation (12.24) holds with ε = −1. According to (12.20) above, we get

Hpos :=
X

p∈G(N)

X

s=± 1
2

εEpc
+
p,sc

−
p,s

with ε := −1. The same argument as above yields
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Hposψ = −Eqψ.

This negative energy −Eq of the positron is a nonphysical result. Summarizing,
positivity of energy forces the anticommutation relations for electrons and positrons.
In Sect. 10.2 on page 779, we have shown that anticommutation relations in the
Fock space are responsible for the Pauli exclusion principle. Pauli formulated the
following general spin-statistics principle for quantum fields in 1955:11

• Particles with integer spin (bosons) have to be quantized by commutation rela-
tions. The number of identical bosons in a fixed physical state is unlimited.

• Particles with half-integer spin (fermions) have to be quantized by anticommu-
tation relations. Two identical fermions cannot be in the same physical state.

In terms of statistical physics, one has to use

• the Bose–Einstein statistics for bosons (e.g., photons), and
• the Fermi–Dirac statistics for fermions (e.g., electrons and positrons).

We refer to :

R. Streater and A. Wightman, PCT, Spin, Statistics, and All That, Ben-
jamin, New York, 1968.

I. Duck and E. Sudarshan, Pauli and the Spin-Statistics Theorem, World
Scientific, Singapore, 1997.

12.2.3 The Spin of Photons

The spin of elementary particles is related to infinitesimal rotations.
Folklore

Classical electromagnetic waves possess a polarization. Motivated by the electron
spin, we want to reformulate this by introducing the photon spin.

Infinitesimal rotation. Consider a rotation

x′ = Ux, x ∈ V3,

about the origin in the 3-dimensional Euclidean vector space V3.
12 In particular,

consider a right-handed (x, y, z)-Cartesian coordinate with the right-handed or-
thonormal basis i, j,k. The position vector reads as

x = xi + yj + zk.

Let n = n1i + n2j + n3k be a unit vector. The symbol Un(ϕ) denotes a counter-
clockwise rotation about the axis n of the angle ϕ. In particular, Uk(ϕ) represents
a rotation about the z-axis. For small angle ϕ, we have the approximation formula

Un(ϕ)x = x + ϕ(n× x) + O(ϕ2), ϕ→ 0.

Set Inx := n×x. The operator In is called an infinitesimal rotation about the axis
n. Each rotation U induces the following transformation TU :

(i) Schrödinger’s wave function: TUψ(x) = ψ(U−1x).
(ii) Photon wave function: TUA(x) := UA(U−1x).

11 W. Pauli, On the connection between spin and statistics, Progr. Theor. Phys. 5
(1955), 526–543.

12 All of these rotations form a group called the special unitary group, SU(V3), of
the space V3.
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(iii) Electron wave function: TUψ(x) = TUψ(U−1x).

Naturally enough, we postulate that the operator TU possesses the following product
property TUTV = TUV for all U, V ∈ SU(V3). Concerning (i)–(iii), this implies13

TUV = TUTV for all U, V ∈ SU(V3).

We say that the family of operators {TU} forms a representation of the group
SU(V3).

Angular momentum of the Schrödinger wave function. Consider first
the case (i) above. For smooth functions ψ, define the operator In by the following
approximation formula

TUn(ϕ)ψ(x) = ψ(x) + ϕInψ(x) + O(ϕ2), ϕ→ 0.

The Taylor formula tells us that

In = n(x× ∂).

Explicitly, Inψ(x) = n(x × ∂ψ(x)). To prove this, consider first the special case
where n := k. Then, up to terms of order O(ϕ2) as ϕ→ 0, we get

Uk(ϕ)−1x = Uk(−ϕ)x = x− ϕ · (k× x) + . . . = x + ϕ · (yi− xj) + . . .

This implies

ψ(Uk(ϕ)−1x) = ψ(x) + ϕ · (yψx(x)− xψy(x)) + . . .

Hence Ikψ(x) = k(x× ∂ψ(x)). The case for general unit vectors n proceeds simi-
larly. Using the infinitesimal operator In, we define the angular momentum operator
Ln in direction of the unit vector n by setting

Ln := −iIn.

Specializing n = i, j,k, we define

L1 := −iIi, L2 := −iIj, L3 := −iIk = i(y∂x − x∂y).

Thus, for the operator L := L1i + L2j + L3k, we get14

L = −i(x× ∂).

Explicitly, Lψ(x) = −i(x × ∂ψ(x)). This is the angular momentum operator in
quantum mechanics.

Spin of the photon wave function. Consider now the case (ii) above. Up to
terms of order O(ϕ2) as ϕ→ 0, we get

13 For example, consider (iii). Then

(TUV ψ)(x) = TUV ψ((UV )−1x) = TUTV ψ(U−1V −1x) = TU (TV ψ)(x).

14 Recall that we work in the energetic system. In the SI system, Ln := −i�In.
Hence L := −i�(x× ∂).
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TUn(ϕ)A(x) = A(x′) + ϕ · n×A(x′) + . . .

with x′ = x− ϕ · (n× x) + . . . Hence

TUn(ϕ)A(x) = A(x) + ϕInA(x) + O(ϕ2), ϕ→ 0

with the infinitesimal operator

InA(x) := n×A(x) + LnA(x).

We now introduce the total angular momentum operator15

Jn := −iIn

in direction of the unit vector n. Note that we obtain the decomposition

Jn = Sn + Ln. (12.25)

Here, the operator Ln = n(x×∂) is called the orbital angular momentum operator,
and the operator Sn given by

SnA := −i(n×A)

is called the spin operator of the vector field A in direction of n. For given nonzero
momentum vector p, introduce the unit vector n := p/|p|. Choose the three vectors

e1(p), e2(p), e3(p) := n

in such a way that they form a right-handed orthonormal system. Then, the vectors

e±(p) :=
e1(p)∓ ie2(p)√

2

are eigenvectors of the spin operator Sn. Explicitly,16

Sne±(p) = ±e±(p).

Therefore, we assign the spin s = ±1 to the vector e±(p), respectively. Let ap,± be
complex numbers. For the following photon wave functions

A±(x, t) := ap,±(p) e±(p) e±i(px−Ept),

we get the wave equation �A = 0 and

SnA± = ±A±.

We say that the photon wave function A± has the spin s = ±1 in direction of the
momentum vector p, respectively.

Spin of the electron wave function. Consider the case (iii) above. Let
U := Un(ϕ). According to the representation theory for the Lorentz group, we
get17

15 In the SI system of units, Jn := −i�In and SnA := −i�(n×A).
16 Note that n× (e1 + ie2) = e2 − ie1.
17 The representation theory of the Lorentz group will be thoroughly studied in

Vol. III.
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TUψ(x) = eiϕnSψ(U−1x).

Here, nS =
P3

j=1 n
jSj and S = S1i + S2j + S3k along with

S3 := 1
2
iγ1γ2 = 1

2

 

σ3 0

0 σ3

!

.

The remaining operators S1, S2 are obtained from this by using the cyclic permu-
tation 1 �→ 2 �→ 3 �→ 1. Therefore,

TUψ(x) = ψ(x) + Inψ(x) + O(ϕ2), ϕ→ 0

with In = i(nS+Ln). Similarly as in (12.25) above, we introduce the total angular
momentum operator Jn = −iIn. Hence

Jn = nS + Ln.

The operator Sn (resp. Ln) is called the spin operator (resp. the orbital angular
momentum operator) of the electron.

Perspectives in representation theory. We will show in Vol. III that the
irreducible representations of the rotation group SU(V3) can be classified by a
number s = 0, 1

2
, 1, 3

2
, 2, ... For the rotation group SU(V3) itself, we get s = 1. Each

elementary particle corresponds to such an irreducible representation of SU(V3). In
particular, the following are true:

• s = 0: gluons, mesons π+, π0, π−;
• s = 1

2
: electron, positron, neutrinos, muon, tau, quarks, proton, neutron;

• s = 1: photon, vector bosons W+,W−, Z0;
• s = 2: graviton.

The number s is called the spin number of the elementary particle. For given spin
number s and given unit vector n, there always exist states of the elementary
particle where the spin attains either the value s or −s in direction of the vector
n.18

The spin quantum number is the prototype for the mathematical construction of
quantum numbers in elementary particle physics. This will be thoroughly studied
in Vols. IIIff. For example, the group SU(3) is responsible for the fact that the
proton consists of three quarks. Moreover, mesons are quark-antiquark pairs. The
representation theory of the compact Lie group SU(3) due to Hermann Weyl helps
to classify the possible reactions between elementary particles.

12.3 The Ground State Energy and the Normal Product

In formal terms, the ground state energy (vacuum energy) of the electro-
magnetic quantum field is infinite. This causes mathematical trouble in
quantum electrodynamics.

Folklore

It is typical for quantum field theory that the ground state of a quantum field
has nonzero energy. This so-called vacuum energy is responsible for physical effects
which can be measured in physical experiments. The prototype for such a vacuum
effect is the Casimir effect considered in Sect. 2.23.1 of Vol. I.

18 In the SI system, the values are s� and −s�.
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From the mathematical point of view, the vacuum energy is a nontrivial
phenomenon related to infinities.

This can be seen by increasing the number of grid points N . In fact, it follows from
(12.22) that

lim
N→∞

Hvac = −∞.

Therefore, the vacuum energy becomes infinite in the continuum limit. In quantum
electrodynamics, the simplest method is to ignore the vacuum term Hvac by using
normal products of creation and annihilation operators. Let us discuss this.

The normal product of creation and annihilation operators. For photon
creation and annihilation operators, we define the so-called normal product by
setting

: a−p,sa
+
q,r : = a+

q,ra
−
p,s

along with the following additional conventions:

• : a+
p,sa

−
q,r : = a+

p,sa
−
q,r,

• : a+
p,sa

+
q,r : = a+

p,sa
+
q,r,

• : a−p,sa
−
q,r : = a−p,sa

−
q,r.

Mnemonically, annihilation operators act first. The normal product can be extended
to linear combinations in a natural way. For example,

: αa−p,sa
+
q,r + βa+

p,sa
+
q,r := αa+

q,ra
−
p,s + βa+

p,sa
+
q,r.

For electron creation and annihilation operators, there appears a sign change. Ex-
plicitly, we define

: b−p,sb
+
q,r : = −b+q,rb

−
p,s

along with the following conventions:

• : b+p,sb
−
q,r : = b+p,sb

−
q,r,

• : b+p,sb
+
q,r : = b+p,sb

+
q,r,

• : b−p,sb
−
q,r : = b−p,sb

−
q,r.

The same relations are true if we replace b±p,s by c±p,s, respectively.
The modified energy operator. We replace the operator Hfree by the normal

product : Hfree : . The linearity of the normal product yields

: Hfree : = : Hphot : + : Hel : + : Hpos : .

We claim that

: Hfree : = Hphot + Hel + Hpos. (12.26)

This means that the modified energy operator : Hfree : does not contain the vacuum
energy anymore. In the future, we will use the energy operator : Hfree : instead of
the operator Hfree. This means that the normal product is part of the quantization
procedure.
Proof. By Sect. 12.2.1 on page 812, the normal product : Hphot : is equal to

− 1
2

Z

C(L)

:

 

U̇2 + (∂U)2 +
3
X

j=1

Ȧ2
j + (∂Aj)

2

!

: d3x.

We now proceed as in Sect. 12.2.1. The normal product replaces the original product
a−p,sa

+
p,s by a+

p,sa
−
p,s. It follows from (12.15) that
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Z

C(L)

: U̇2 : d3x =
X

p∈G(N)

2a+
p,0a

−
p,0 ω2

pN 2
pL

3.

This is equal to
P

p ωpa
+
p,0a

−
p,0. Similarly,

: Hphot :=
X

p∈G(N)

 

−ωpa
+
p,0a

−
p,0 +

3
X

s=1

ωpa
+
p,sa

−
p,s

!

= Hphot.

Furthermore,

: Hel/pos :=

Z

C(L)

: ψ†Hψ : d3x.

Applying the same argument as in Sect. 12.2.2 on page 814, we get

: Hel/pos :=
X

p∈G(N)

X

s=± 1
2

Ep(: b+p,sb
−
p,s : 〈ψ+

p,s|ψ+
p,s〉C(L) −

− : c−p,sc
+
p,s : 〈ψ−

p,s|ψ−
p,s〉C(L)) N

2
p.

This implies

: Hel/pos :=
X

p∈G(N)

X

s=± 1
2

2E2
p(b+p,sb

−
p,s + c+p,sc

−
p,s)N

2
pL

3.

Hence

: Hel/pos :=
X

p∈G(N)

X

s=± 1
2

Epb
+
p,sb

−
p,s + Epc

+
p,sc

−
p,s = Hel + Hpos.

This finishes the proof of (12.26). �

12.4 The Importance of Mathematical Models

Quantize carefully.
Folklore

In the history of quantum field theory, physicists have encountered mathematical
contradictions several times. The trouble comes from the quantization procedure.
In order to quantize a classical field theory, there exist several possibilities. In any
case, one has to pass from classical physical quantities to operators by adding
commutation and anticommutation relations as well as appropriate side conditions.
It may happen that all of these relations cannot be realized without producing
contradictions. Let us consider a simple example. Suppose that we want to quantize
the motion q = q(t) of a classical particle on the real line. To this end, we add the
commutation relation

qp− pq = iI, (12.27)

and we regard q and p as (n× n)-matrices, n = 1, 2, ... However, this postulate can
never be realized. In fact, using the trace of matrices, it follows from (12.27) that

tr(qp)− tr(pq) = i tr(I) = in.

Since tr(qp) = tr(pq), we get n = 0. This is a contradiction.
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In order to avoid contradictions, one has to construct mathematical models.

Those mathematical models are also called representations of the abstractly given
quantities. In the case of the commutation relation (12.27), the standard model
reads as follows. We construct the complex linear space S(R), and we choose the
operators q, p : S(R)→ S(R) defined by

(qψ)(x) := xψ(x), (pψ)(x) = −i
dψ(x)

dx
, x ∈ R

for all functions ψ ∈ S(R). Summarizing, the commutation relation (12.27)
can never be realized in a finite-dimensional linear space, but only in infinite-
dimensional linear spaces. The same argument shows that the commutation relation

aa† − a†a = I

cannot be realized by a finite-dimensional (n× n)-matrix. An infinite-dimensional
model can be obtained by setting

a :=
q + ip√

2
, a† :=

q − ip√
2

,

and by using the linear operators a, a† : S(R)→ S(R).

12.4.1 The Trouble with Virtual Photons

Scalar photons can never exist in a Hilbert space.
Folklore

We want to show that the commutation relations (P1)–(P6) concerning creation
operators and annihilation operators a±p,s for photons from Sect. 12.2.1 cannot be
realized within a Hilbert space structure. To this end, consider the state

Ψ := a+
p,3 |0〉.

Let us assume the following:

(i) The commutation relations

a−p,0a
+
p,0 − a+

p,0a
−
p,0 = −I

can be realized by operators living in some Hilbert space X.
(ii) There exists a unit vector |0〉 such that a−p,0|0〉 = 0.

(iii) (a−p,0)
† = a+

p,0.

We want to prove that this implies

〈Ψ |Ψ〉 < 0.

This is the desired contradiction. For simplifying notation, write a± instead of a±p,0.
Then,

a−a+|0〉 = a+a−|0〉 − |0〉 = −|0〉.
Hence 〈Ψ |Ψ〉 = 〈0|(a+)†a+|0〉 = 〈0|a−a+|0〉 = −〈0|0〉 = −1.

This argument tells us that the commutation relations for scalar photons force
the use of indefinite inner product spaces.
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12.4.2 Indefinite Inner Product Spaces

Relativistic invariance forces the use of indefinite inner products.
Folklore

Definition. A complex linear space X is called a generalized inner product
space iff there exists a symbol 〈ψ|ϕ〉 such that for all ψ,ϕ, χ ∈ X and all complex
numbers α, β, the following are met:

(i) 〈ψ|ϕ〉 ∈ C.
(ii) 〈ψ|αϕ + βχ〉 = α〈ψ|ϕ〉+ β〈ψ|χ〉.
(iii) 〈ψ|ϕ〉† = 〈ϕ|ψ〉.
(iv) 〈ψ|ϕ〉 = 0 for all ϕ ∈ X implies ψ = 0.

We speak of an inner product space (or pre-Hilbert space) iff the inner product is
definite, i.e., 〈ψ|ψ〉 > 0 for all nonzero elements ψ in X. Otherwise, we speak of an
indefinite inner product space.19

Standard example. Let X = C
n. For all ψ,ϕ ∈ C

n, we set

〈ψ|ϕ〉 := λ1(ψ
1)†ϕ1 + . . . + λn(ψn)†ϕn

where λ1, ..., λn are nonzero real numbers. This inner product is definite iff all the
numbers λ1, ..., λn are positive. Otherwise the inner product is indefinite.

Minkowski space. The linear space R
4 equipped with the indefinite inner

product
〈x|y〉 := x0y0 − x1y1 − x2y2 − x3y3, x, y ∈ R

4,

is called Minkowski space. Introducing the definite inner product

〈x|y〉 = x0y0 + x1y1 + x2y2 + x3y3, x, y ∈ R
4,

on the linear space R
4, we obtain the 4-dimensional Euclidean space.

12.4.3 Representation of the Creation and Annihilation Operators
in QED

Photons, electrons, and positrons are described by the tensor product of
the corresponding indefinite and definite Fock spaces.

Folklore

In Sects. 12.2.1 and 12.2.2, we have introduced creation and annihilation operators
for photons, electrons, and positrons by postulating commutation and anticommu-
tation relations along with additional properties concerning both the vacuum and
adjoint operators. Motivated by the discussion in Sect. 12.4, we want to show that
all of these relations can be realized by an infinite-dimensional mathematical model.
To this end, we will use a modification of the Fock space introduced in Chap. 10.

The idea is to replace definite inner products by indefinite inner products.

In what follows, let us fix

• the cube C(L) of side length L > 0 in position space,
• the time interval [−T

2
, T

2
] of length T > 0, and

• the finite lattice G(N) in momentum space.

19 If X is a real linear space, then we assume that 〈ψ|ϕ〉 is always real, and α, β
are real numbers in (i).
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Choose the space-time point x = (x, t) along with x = x1i+ x2j+ x3k, t = x0, and

−L

2
≤ x1, x2, x3 ≤ L

2
, −T

2
≤ x0 ≤ T

2
.

Set Ω := C(L)× [−T
2
, T

2
]. By Ωn, we understand the product set Ω × · · · ×Ω with

n factors.
The photon Fock space. A one-photon function A : Ω → C

4 has the form

A(x) :=

0

B

B

B

@

A0(x)

A1(x)

A2(x)

A3(x)

1

C

C

C

A

where each of the components Aμ : Ω → C lives in the complex Hilbert space
L2(Ω), that is,

Z

Ω

|Aμ(x)|2d4x <∞, μ = 0, 1, 2, 3.

We also introduce the indefinite inner product20

〈A|B〉1 := −
Z

Ω

ημνA
μ(x)†Bν(x)d4x.

More precisely, Xphot is a bosonic Fock space. This means that, by definition, the
elements of Xphot are infinite sequences

A = (A0,A1,A2, . . .)

where A0 ∈ C. Moreover, A1 ∈ L2(Ω,C4) along with

An ∈ L2,sym(Ωn,C4n

), n = 2, 3, . . .

This means the following. The photon functions

An(x1, . . . , xn) = (Aμ1...μn(x1, . . . , xn))

are symmetric with respect to both the indices μ1, . . . , μn = 0, 1, 2, 3 and the n
arguments x1, . . . , xn ∈ Ω, and the components Aμ1...μn

n live in L2(Ω). We equip
the space Xphot with the following indefinite inner product:

〈A|B〉 := A†
0B0 +

∞
X

n=1

〈An|Bn〉n

where

〈An|Bn〉n := (−1)n

Z

Ωn

ημ1ν1 · · · ημnνn(Aμ1...μn
n )†Bν1...νn

n d4x1 · · · d4xn.

More precisely, we only consider such tuples (An) and (Bn) of Xphot for which the
indefinite inner product 〈A|B〉 is finite. In particular, the symbol Xphot,fin contains
all the elements (A0,A1, . . .) of Xphot where at most a finite number of elements
A0,A1, . . . is different from zero. The state

20 Recall that −ημνA
μ†Bν = −(A0)†B0 +

P3
j=1(A

j)†Bj .
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|0〉phot := (1, 0, 0, . . .)

is called the photon vacuum. For the given momentum vector p ∈ G(N) and the
given polarization index s = 0, 1, 2, 3, we define special photon functions

Aμ
p,s(x, t) :=

ei(px−ωpt)

√
TL3

eμ
s , μ = 0, 1, 2, 3.

From the orthogonality relation and the orthogonality relations for the polarization
vectors es introduced in Sect. 12.2.1 on page 812, we get the key relation

〈Ap,s|Aq,r〉1 = −ηsrδpq (12.28)

for all momentum vectors p,q ∈ G(N) and all polarization indices s, r = 0, 1, 2, 3.
Creation operators and annihilation operators for photons. We now

proceed similarly as in Sect. 10.3 on page 784. For each given one-photon function
Ap,s ∈ X1, the creation operator

a+
p,s : Xphot,fin → Xphot

is defined by a+
p,sA := (0,B1,B2, . . .) where

Bn+1 :=
√
n + 1 · sym(Ap,s ⊗An), n = 0, 1, 2, . . .

Explicitly, Bμ1...μn+1
n+1 (x1, . . . xn+1) is equal to

√
n + 1

(n + 1)!

X

π

π
`

Aμ1
p,s(x1)Aμ2...μn+1

n (x2, . . . , xn+1)
´

where we sum over all permutations π of 1, . . . , n + 1. The operation π(. . .) refers
to permutations of both the indices μ1, . . . , μn+1 and the arguments x1, . . . , xn+1.
The annihilation operator

a−p,s : Xphot,fin → Xphot

is the formally adjoint operator to the creation operator a+
p,s, that is,

〈a−p,sA|B〉 = 〈A|a+
p,sB〉 for all A,B ∈ Xphot,fin.

In other words, a−p,s = (a+
p,s)

† on Xphot,fin. Explicitly, for each given sequence
A := (A0,A1,A2, . . .) in Xphot,fin we define

a−p,sA := (C0, C1, C2, . . .)

where Cμ1...μn
n (x1, . . . , xn) is given by

−
√
n + 1

Z

Ω

ημνA
μ
p,s(x)†Aνμ1...μn

n+1 (x, x1, . . . , xn)d4x.

In particular, C0 = −
R

Ω
ημνAμ

p,s(x)†Aν
1(x) dx. For allA ∈ Xphot and all momentum

vectors p,q ∈ G(N) as well as s, r = 0, 1, 2, 3, it follows analogously to Theorem
10.1 on page 776 that
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[a−p,s, a
+
q,r]−A = 〈Ap,s|Aq,r〉1A = −ηsrδpqA.

Similarly,
[a+

p,s, a
+
q,r]−A = [a−p,s, a

−
q,r]−A = 0.

Finally, a+
p,s|0〉phot = 0.

The electron-positron Fock space. By an electron-positron function, we
understand a function ψ : Ω → C

4 of the form

ψ(x) :=

0

B

B

B

@

ψ1(x)

ψ2(x)

ψ3(x)

ψ4(x)

1

C

C

C

A

where each component ψj : Ω → C lives in the complex Hilbert space L2(Ω), i.e.,

Z

Ω

|ψj(x)|2d4x <∞, j = 1, 2, 3, 4.

We also introduce the inner product

〈ψ|ϕ〉1 :=

Z

Ω

ψ(x)†ϕ(x)d4x.

More precisely, Yel is a fermionic Fock space. This means that, by definition, the
elements of Yel are infinite sequences

Ψ = (Ψ0, Ψ1, Ψ2, . . .)

where Ψ0 ∈ C. Moreover, Ψ1 ∈ L2(Ω,C4) along with

Ψn ∈ L2,antisym(Ωn,C4n

), n = 2, 3, . . .

This means the following. The electron-positron functions

Ψn(x1, . . . , xn) = (Ψ j1...jn
n (x1, . . . , xn))

are antisymmetric with respect to both the indices j1, . . . , jn = 1, 2, 3, 4 and the n
arguments x1, . . . , xn ∈ Ω, and the components Ψ j1...jn

n live in L2(Ω). We equip
the space Yel with the following inner product

〈Ψ |Φ〉 := Ψ†
0Φ0 +

∞
X

n=1

〈Ψn|Φn〉n

where

〈Ψn|Φn〉n :=

Z

Ωn

4
X

j1,...,jn=1

(Ψ j1...jn
n )†Φj1...jn

n d4x1 · · · d4xn.

More precisely, we only consider such tuples (Ψn) and (Φn) of Yel for which the inner
product 〈Ψ |Φ〉 is finite. In particular, the symbol Yel,fin contains all the elements
(Ψ0, Ψ1, . . .) of Yel where at most a finite number of elements Ψ0, Ψ1, . . . is different
from zero. The state

|0〉el := (1, 0, 0, . . .)
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is called the electron-positron vacuum. For the momentum vector p ∈ G(N) and
the spin index s = ± 1

2
, we define the following special electron-positron functions:21

ψ+
p,s(x, t) : =

1
p

2EpL3T
up,se

ipxe−iEpt,

ψ−
p,s(x, t) : =

1
p

2EpL3T
vp,se

−ipxeiEpt.

From Theorem 12.4 on page 810 we get the key orthogonality relations

〈ψ±
p,s|ψ±

q,r〉1 = δsrδpq, 〈ψ±
p,s|ψ∓

q,r〉1 = 0 (12.29)

for all momentum vectors p,q ∈ G(N) and all spin numbers s, r = ± 1
2
.

Creation and annihilation operators for electrons. We proceed as in Sect.
10.3. For each given one-electron function ψ+

p,s ∈ X1, the creation operator

b+p,s : Xel,fin → Xel

is defined by b+p,sΨ := (0, Φ1, Φ2, . . .) where

Φn+1 :=
√
n + 1 · antisym(ψ+

p,s ⊗ Ψn), n = 0, 1, 2, . . .

Explicitly, Φ
j1...jn+1
n+1 (x1, . . . xn+1) is equal to

√
n + 1

(n + 1)!

X

π

sgnπ · π
`

ψj1
p,s(x1)Ψ

j2...jn+1
n (x2, . . . , xn+1)

´

where we sum over all permutations π of 1, . . . , n + 1. The operation π(. . .) refers
to permutations of both the indices j1, . . . , jn+1 and the arguments x1, . . . , xn+1.
The annihilation operator

b−p,s : Xel,fin → Xel

is the formally adjoint operator to the creation operator b+p,s, that is,

〈b−p,sΨ |Φ〉 = 〈Ψ |b+p,sΦ〉 for all Ψ,Φ ∈ Xel,fin.

Explicitly, for each given sequence Ψ := (Ψ0, Ψ1, Ψ2, . . .) in Xel,fin we define

b−p,sΨ := (Λ0, Λ1, Λ2, . . .)

where Λj1...jn
n (x1, . . . , xn) is given by

√
n + 1

Z

Ω

n
X

j=1

ψ+j
p,s(x)†Ψ jj1...jn

n+1 (x, x1, . . . , xn) d4x.

In particular, Λ0 =
R

Ω
ψ+

p,s(x)†Ψ(x) d4x. For all Ψ ∈ Xel and all momentum vectors

p,q ∈ G(N) as well as r, s = ± 1
2
, it follows analogously to Theorem 10.2 that

[b−p,s, b
+
q,r]−Ψ = 〈ψ+

p,s|ψ+
q,r〉1Ψ = δsrδpqΨ.

21 Recall that Ep =
p

m2
e + p2.
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Similarly,
[b+p,s, b

+
q,r]−Ψ = [b−p,s, b

−
q,r]−Ψ = 0.

Finally, b−p,s|0〉el = 0.

Creation and annihilation operators for positrons. Replacing ψ+
p,s by

ψ−
p,s, we obtain the operators c±p,s instead of b±p,s.

The combined Fock space. In order to describe combined states of photons,
electrons, and positrons, we introduce the combined Fock space

X := Xphot ⊗Xel.

The elements of X are tuples of the form

(Am ⊗ Ψn)m,n=0,1,...

Here, the tensor product (Am ⊗ Ψn)(x1, . . . , xm, y1, . . . , yn) is equal to the tuple

(Aμ1...μm
m (x1, . . . , xm) Ψ j1...jn

n (y1, . . . , yn))

where Am ∈ L2,sym(Ωm,C4m

) and Ψn ∈ L2,antisym(Ωn,C4n

). The state

|0〉 := |0〉phot ⊗ |0〉el

is called the total vacuum state of X. In a natural way, the creation and annihilation
operators for photons can be extended from the photon Fock space Xphot to the
combined Fock space X by setting

a±p,s(Am ⊗ Ψn) := (a±p,sAm)⊗ Ψn.

For the creation and annihilation operators of electrons and positrons, we obtain

b±p,s(Am ⊗ Ψn) := Am ⊗ (b±p,sΨn)

and c±p,s(Am ⊗ Ψn) := Am ⊗ (c±p,sΨn), respectively.

12.4.4 Gupta–Bleuler Quantization

Eliminate virtual photons as external particles.
Folklore

The Gupta-Bleuler approach to quantum electrodynamics was invented in 1950.22

The basic idea reads as follows. For states with negative norm 〈Ψ |Ψ〉 < 0, there
fails the usual probabilistic interpretation of states in quantum theory. Such states
are called ghost states.

(i) Introduction of ghosts: To simplify the formulation, besides real transversal
photons we introduce virtual photons (i.e., scalar and longitudinal photons)
which are related to ghost states.

22 N. Gupta, Theory of longitudinal photons in quantum electrodynamics, Proc.
Phys. Soc. (London) A63 (1950), 681–691.
K. Bleuler, A new method for treating longitudinal and scalar photons, Helv.
Phys. Acta 23 (1950), 567–586 (in German).
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(ii) Elimination of explicit ghosts: We distinguish between physical and nonphysi-
cal states. The restriction to physical states eliminates processes with virtual
photons as incoming or outgoing particles.

(iii) The implicit influence of ghosts: Observe the crucial fact that the influence
of the ghosts cannot be completely neglected. Interestingly enough, the cross
sections measured in scattering processes do not only depend on the ghost-free
incoming and out-going states, but also on the photon Feynman propagator
which depends on both real and virtual photons.

The Gupta-Bleuler method is the prototype for quantizing gauge theories in the
BRST setting. This will be considered in Vol. IV.

The trouble with the gauge condition. Consider first the classical plane
wave

Aμ(x, t) :=
X

p∈G(N)

3
X

s=0

(a−p,s ei(px−ωpt) + a+
p,s e−i(px−ωpt) Npe

μ
s (p)

for μ = 0, 1, 2, 3. Here, a−p,s are complex numbers, and a+
p,s is the conjugate complex

number to a−p,s. By Sect. 12.2.1 on page 812, the gauge condition

a−p,0 = a−p,3 (12.30)

for all vectors p ∈ G(N) implies that the electromagnetic field

E := −gradU − Ȧ, B := curlA (12.31)

satisfies the Maxwell equations. We now pass to the corresponding free quantum
field Aμ(x) by using creation operators a+

p,s and annihilation operators a−p,s. Sup-
pose that the gauge condition (12.30) remains valid on the operator level. Then, the
same computation as for the classical field shows that the field operators (12.31)
satisfy the Maxwell equations.

Unfortunately, the gauge condition (12.30) contradicts the commutation
relations for the creation and annihilation operators.

In fact, according to Sect. 12.2.1, we have

a−p,3a
+
p,3 − a+

p,3a
−
p,3 = I, a−p,0a

+
p,0 − a+

p,0a
−
p,0 = −I

along with a+
p,s = (a−p,s)

† for s = 0, 1, 2, 3. Thus, setting a−p,3 = a−p,0, we get the
contradiction I = −I. Therefore, we have to replace the gauge condition (12.30) by
a weaker condition. This problem was solved by Gupta and Bleuler in the following
way.

The physical space. By definition, the physical space Xphys is a linear sub-
space of the state space X which consists of all the states Ψ in X with the property

a−p,0Ψ = 0, a−p,3Ψ = 0

along with 〈Ψ |Ψ〉 ≥ 0. By a physical state Ψ , we understand an element of Xphys

with 〈Ψ |Ψ〉 > 0. Two elements Ψ and Φ of Xphys are called equivalent iff

〈Ψ − Φ|Ψ − Φ〉 = 0.

We write Ψ ∼ Φ. In particular, Ψ ∼ 0 iff 〈Ψ |Ψ〉 = 0.
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Examples of physical states. Recall that a photon is called transversal iff
its polarization index s attains the values s = 1 or s = 2. We are given the vectors
p,q, r ∈ G(N), the polarization indices

s, s1, s2 = 1, 2,

and the spin indices σ, τ = ± 1
2
. Then the following states are physical states, and

they form an orthonormal system in the linear subspace Xphys of the combined
Fock space X:

(i) Vacuum: |0〉.
(ii) One-particle states of transversal photons, electrons, and positrons:

a+
p,s|0〉, b+q,σ |0〉, c+r,τ |0〉.

For example, a+
p,s|0〉 describes a photon of momentum vector p and transversal

polarization s = 1, 2.
(iii) Two identical transversal photons:

(a+
p,s)

2 |0〉√
2

.

(iv) Two different transversal photons: a+
p,s1a

+
q,s2 |0〉.

23

(v) Two different electrons: b+p,σb
+
q,τ |0〉.

(vi) Two different positrons: c+p,σc
+
q,τ |0〉.

(vii) Mixed two-particle states: a+
p,sb

+
q,σ |0〉, a+

p,sc
+
q,τ |0〉, and b+p,σc

+
q,τ |0〉.

(viii) Three identical transversal photons:

(a+
p,s)

3 |0〉√
3

.

Proof. Ad (i). Set Ψ0 := |0〉. Observe that 〈Ψ0|Ψ0〉 = 1, and a−p,0Ψ0 = a−p,3Ψ0 = 0.
Ad (ii). For s = 1, 2, the commutation rule yields

(a−p,sa
+
p,s − a+

p,sa
−
p,s)Ψ0 = IΨ0 = Ψ0.

Since a−p,sΨ0 = 0, we obtain

〈a+
p,sΨ0|a+

p,sΨ0〉 = 〈Ψ0|a−p,sa
+
p,sΨ0〉 = 〈Ψ0|Ψ0〉 = 1.

Moreover, we get a−p,0(a
+
p,sΨ0) = a+

p,sa
−
p,0Ψ0 = 0. Similarly, a−p,3(a

+
p,sΨ0) = 0. An

analogous argument yields

(b−p,σb
+
p,σ + b+p,σb

−
p,σ)Ψ0 = Ψ0.

Since b−p,σΨ0 = 0, we get

〈b+p,σΨ0|b+p,σΨ0〉 = 〈Ψ0|b−p,σb
+
p,σΨ0〉 = 〈Ψ0|Ψ0〉 = 1.

Moreover, a−p,r(b
+
p,σΨ0) = b+p,σa

−
p,rΨ0 = 0 for r = 0, 3.

Ad (iii). It follows from the commutation rule

23 Naturally enough, we exclude the case where p = q and s1 = s2. In (v) and (vi),
we exclude the case where p = q and σ = τ.
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(a−p,sa
+
p,s − a+

p,sa
−
p,s)Ψ = Ψ

and a−p,sΨ0 = 0 that a−p,sa
+
p,sΨ0 = Ψ0. Hence

a−p,s(a
+
p,s)

2Ψ0 = a+
p,sΨ0 + a+

p,s(a
−
p,sa

+
p,s)Ψ0 = 2a+

p,sΨ0.

This implies

〈(a+
p,s)

2Ψ0|(a+
p,s)

2Ψ0〉 = 〈a+
p,sΨ0|a−p,s(a

+
p,s)

2Ψ0〉 = 2〈a+
p,sΨ0|a+

p,sΨ0〉 = 2.

Finally, a−p,r(a
+
p,r)

2Ψ0 = (a+
p,s)

2a−p,rΨ0 = 0 for r = 0, 3. The remaining proofs
proceed analogously. �

Examples of nonphysical states (ghost states). Let

s, s1, s2 = 0, 3

and σ, τ = ± 1
2
. The following states are not physical states:

(a) One-particle state of virtual photons: a+
p,3 |0〉, a+

p,0 |0〉.
(b) Two identical electrons: (b+p,σ)2 |0〉.
(c) Two identical positrons: (c+p,σ)2 |0〉.
(d) Two-particle states including one virtual photon: a+

p,sb
+
q,σ|0〉.

(e) Two virtual photons: a+
p,s1a

+
q,s2 |0〉.

Proof. Ad (a). Again let Ψ0 := |0〉. Note that

a−p,0(a
+
p,0Ψ0) = −Ψ0 − a+

p,0a
−
p,0Ψ0 = −Ψ0.

Since this is different from zero, a+
p,0Ψ0 is not a physical state. Similarly, we obtain

a−p,3(a
+
p,3Ψ0) = Ψ0.

Ad (b), (c). We have (b+p,σ)2Ψ0 = 0. This follows from the anticommutation rule

2(b+p,σ)2 = [b+p,σ, b
+
p,σ]+ = 0.

Similarly, (c+p,σ)2Ψ0 = 0.
Ad (d), (e). Noting that

a−p,0a
+
p,0 = −I + a+

p,0a
−
p,0

along with a−p,0b
+
q,σ = b+q,σa

−
p,0 and a−p,0Ψ0 = 0, we obtain

a−p,0(a
+
p,0b

+
q,σΨ0) = −b+q,σΨ0.

This is different from zero. The remaining cases are treated similarly. �



13. The Interacting Quantum Field, and the
Magic Dyson Series for the S-Matrix

Whoever understands the S-matrix (scattering matrix) can understand
everything in the theory of scattering processes for elementary particles.1

Folklore

Both Kaiser’s admirable Drawing Theories Apart and Schweber’s QED and
the Men Who Made It refer frequently to the famous lectures on quantum
electrodynamics given by Freeman Dyson at Cornell University (Ithaca,
New York) in 1951.2 Two generations ago, graduate students and their
professors wishing to learn the new techniques of QED passed around
copies of Dyson’s Cornell lectures, then the best and fullest treatment
available.3

David Derbes, 2007

Let us first summarize the two key formulas (13.1) and (13.6). The motivation will
be given below.

13.1 Dyson’s Key Formula

Fix the time interval [−T
2
, T

2
] of length T > 0. By definition, Dyson’s S-matrix

operator reads as

S(T ) := T exp

 

−i

Z T/2

−T/2

Hint(t)dt

!

(13.1)

with Hint(t) :=
R

C(L)
: Hint,free(x, t) : d3x, and

Hint,free := −eψfree �Afreeψfree.

1 For the fascinating history of Dyson’s discovery, we refer to the beginning of Sec-
tion 1.2 in Volume I where we quote from Dyson’s book Disturbing the Universe,
Harper and Row, New York, 1979. See also F. Dyson, The S-matrix in quantum
electrodynamics, Phys. Rev. 75 (1949), 1736–1755.

2 D. Kaiser, Drawing Theories Apart: The Dispersion of Feynman Diagrams in
Postwar Physics, University of Chicago Press, 2005.
S. Schweber, QED (Quantum Electrodynamics) and the Men Who Made It:
Dyson, Feynman, Schwinger, and Tomonaga, Princeton University Press, 1994.

3 From the preface to: F. Dyson, Advanced Quantum Mechanics. Reprinted by
permission of World Scientific Publishing Co. Pte. Ltd. Singapore, 2007.
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Explicitly, we have4

Hint,free(x, t) = −eψfree(x, t)γμA
μ
free(x, t)ψfree(x, t).

The meaning of the time ordering operator T will be explained in (T) below.5

The magic Dyson formula (13.1) represents the key formula of quantum
electrodynamics.

Using the classical power series expansion exp x = 1+x+ 1
2
x2 + . . ., formula (13.1)

reads explicitly as

S(T ) = I − i

Z T/2

−T/2

Hint(t)dt

−1

2

Z T/2

−T/2

dt

Z T/2

−T/2

ds T (Hint(t)Hint(s)) + . . . (13.2)

Since Hint = e . . ., this is an expansion with respect to the small parameter e. In
general, S(T ) is equal to

∞
X

n=0

(−i)n

n!

Z T/2

−T/2

· · ·
Z T/2

−T/2

T (Hint(t1) · · ·Hint(tn)) dt1 · · · dtn.

This is the magic Dyson series in quantum electrodynamics. Unfortunately, the con-
vergence of the Dyson series is an open problem, and there exist heuristic arguments
which indicate the divergence of this series. The finite series

m
X

n=0

(−i)n

n!

Z T/2

−T/2

· · ·
Z T/2

−T/2

T (Hint(t1) · · ·Hint(tn)) dt1 · · · dtn

is called the finite Dyson series of order m. Setting Hint := −eVint, we obtain

m
X

n=0

κnin

n!

Z T/2

−T/2

· · ·
Z T/2

−T/2

T (Vint(t1) · · ·Vint(tn)) dt1 · · · dtn

with the small coupling constant κ := e =
√

4παQED.

The graphical representation of the S-matrix operator S(T ) in terms of
Feynman diagrams will be considered in Chap. 14.

It is crucial that the formula (13.1) above for Dyson’s S-matrix operator is explicitly
known, since Hint,free refers to the interaction term in quantum electrodynamics
expressed by free fields of electrons, positrons, and photons. In fact, Afree denotes
the free photon quantum field from Sect. 12.2.1:

4 Recall that γμA
μ = γμAμ =

P3
μ=0 γ

μAμ, where A0 := A0, and Aj := −Aj for
j = 1, 2, 3.

5 According to our convention (10.17), we work in the energetic system, that is,
� = c = ε0 = μ0 = k := 1. Hence e =

√
4παQED with the electromagnetic

fine structure constant αQED = 1/137.04. This means that e and αQED are small
dimensionless quantities. In order to obtain the formula for S(T ) in the SI system,
we have to replace −i by the quotient −i/�, and e by the product ec.
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Aμ
free(x, t) : =

X

p∈G(N)

3
X

s=0

(a−p,s ei(px−ωpt) +

+a+
p,s e−i(px−ωpt)) Npe

μ
s (p) (13.3)

along with the normalization factor Np := 1/
p

2L3ωp, and the photon energy
ωp = |p|. We set Np := 0 if p = 0. Furthermore, ψfree denotes the free electron-
positron quantum field from (12.11), that is,

ψfree(x, t) :=
X

p∈G(N)

X

s=± 1
2

(b−p,sup,s ei(px−Ept) +

+c+p,svp,s e−i(px−Ept)) Np (13.4)

with the normalization factor Np := 1/
p

2L3Ep, and the particle energy

Ep =
p

m2
e + p2.

For the adjoint free field, we obtain

ψfree(x, t) :=
X

p∈G(N)

X

s=± 1
2

(b+p,sup,s e−i(px−Ept) +

+c−p,svp,s ei(px−Ept)) Np. (13.5)

Furthermore, observe the following:

(N) Normal operator product: The symbol : Hint,free : denotes the normal operator
product. By definition, the factors are reordered in such a way that all of the
creation operators stand to the left of the annihilation operators. For fermionic
operators, we add a sign factor which is the sign of the permutation needed for
obtaining the desired reordering. For example, in the case of photons we get

: a+
p,sa

−
q,r : = : a−q,ra

+
p,s : = a+

p,sa
−
q,r,

whereas we obtain

: b+p,σb
−
q,τ : = − : b−q,τ b

+
p,σ : = b+p,σb

−
q,τ

in the case of electrons (or positrons).6

(T) Time ordering: The symbol T refers to time-ordering. By definition, the time-
depending operators are reordered in such way that the time arguments in-
crease from right to left. For fermionic operators, we add a sign factor which
is the sign of the permutation needed for obtaining the desired reordering. For
example, if t > s, then

T (B(x, t)B(y, s)) = T (B(y, s)B(x, t)) = B(x, t)B(y, s)

for bosonic operators (e.g., the photon field), and

T (F (x, t)F (y, s)) = −T (F (y, s)F (x, t)) = F (x, t)F (y, s)

for fermionic operators (e.g., electron fields or positron fields). For equal times,
t = s, the T -product coincides with the usual product. The symbol T is also
called the chronological operator.

6 The general definition of the normal product can be found on page 823.
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The key formula for the transition probability in scattering processes
between electrons, positrons, and photons. Consider a scattering process
where Φint and Φout are unit vectors which correspond to the incoming and outgoing
particles, respectively. By definition, the number

W(T ) := |〈Φin|S(T )Φout〉|2 (13.6)

represents the transition probability from the incoming particles to the outgoing
particles during the time-interval [−T

2
, T

2
]. For example, the symbol

Φin := a+
p,sb

+
q,σ|0〉

describes two incoming particles, namely,

• one incoming photon of momentum vector p and polarization s = 1, 2, and
• one incoming electron of momentum vector q and spin number σ = ± 1

2
.

Similarly, the symbol
Φout := a+

p′,s′b
+
q′,σ′ |0〉

corresponds to one outgoing photon and one outgoing electron. The scattering
process described by Φin and Φout is called Compton scattering in physics. The
transition probability and the related cross section for Compton scattering will be
computed in Sect. 15.1. In general, for scattering processes in quantum electrody-
namics, we will use the normalized states

Φin =
(a+

p1,s1)
n1

√
n1!

· · ·
(a+

pA,sA
)nA

√
nA!

b+q1,σ1 · · · b
+
qB ,σB

c+r1,τ1 · · · c
+
rC ,τC

|0〉

which correspond to photons, electrons, and positrons. The particles live in the cubic
box C(L) of volume V := L3. The particle density � of the photons corresponding
to a+

p1,s1 is equal to

� =
n1

V ,

and so on. Similar expressions are used for Φout.
Observe that Φin and Φout do not depend on time t. This is motivated by formula

(13.13) below.
Motivation for Dyson’s S-matrix operator. Let us motivate the key for-

mula (13.1) above. The idea is the following:

• First consider rigorously the finite-dimensional situation.
• Then pass to the infinite-dimensional case by using a formal argument in a

straightforward manner. This motivates the definition (13.1).

To begin with, let us start with the rigorous Schrödinger equation

iΨ̇(t) = (Hfree + Hint)Ψ(t), t ∈ R, (13.7)

in the n-dimensional complex Hilbert space C
n. Here,

Ψ(t) =

0

B

B

@

Ψ1(t)
...

Ψn(t)

1

C

C

A

.

The given complex (n × n)-matrices Hfree and Hint are self-adjoint; they do not
depend on time t. Now we use the following rigorous arguments:
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(i) The propagator of the Schrödinger equation: For given initial state Ψ(t0), the
unique solution of the Schrödinger equation (13.7) reads as

Ψ(t) = P (t, t0)Ψ(t0), t ∈ R, (13.8)

with the propagator P (t, t0) := exp (−iHfree − iHint)(t− t0)) . It is our goal to
separate the free dynamics. We want to show that

P (t, t0) = e−itHfreeS(t, t0)e
it0Hfree (13.9)

along with

S(t, t0) := T exp

„

−i

Z t

t0

Hint(τ)dτ

«

(13.10)

where Hint(t) := eitHfreeHinte
−itHfree .

(ii) The propagator of the transformed Schrödinger equation (the S-matrix): The
key idea is to use the transformation

Ψ(t) = e−itHfree Φ(t). (13.11)

It follows from the Schrödinger equation (13.7) that

Hfreee
−itHfreeΦ(t) + ie−itHfree Φ̇(t) = (Hfree + Hint)e

−itHfreeΦ(t).

Hence
ie−itHfree Φ̇(t) = Hinte

−itHfreeΦ(t).

This way, we get the transformed Schrödinger equation

iΦ̇(t) = Hint(t)Φ(t), t ∈ R.

For given initial state Φ(t0), the unique solution reads as

Φ(t) = S(t, t0)Φ(t0)

along with (13.10). This follows from Sect. 7.17.4 of Vol. I. By (13.8), we have
Ψ(t) = P (t, t0)Ψ(t0). Using (13.11), we obtain

Φ(t) = eitHfreeP (t, t0)e
−it0HfreeΦ(t0).

This tells us the validity of (13.9).
(iii) The transition probability: According to the rules of quantum mechanics, the

real number

W(t, t0) := |〈Ψout(t)|P (t, t0)Ψin(t0)〉|2 (13.12)

is the transition probability from the state Ψin at time t0 to the state Ψout at
time t provided ||Ψin(t0)|| = 1 and ||Ψout(t)|| = 1. Let us consider the special
case where

Ψin(t) := e−itHfreeΨin(0), Ψout(t) := e−itHfreeΨout(0)

with ||Ψin(0)|| = ||Ψout(0)|| = 1. The functions t �→ Ψin(t) and t �→ Ψout(t)
are solutions of the Schrödinger equation (13.7) with vanishing interaction,
Hint = 0. Furthermore,
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||Ψin(t)|| = ||Ψout(t)|| = 1 for all t ∈ R,

since the operator e−itHfree is unitary for any time t. Intuitively, the functions
t �→ Ψin(t) and t �→ Ψout(t) represent an incoming and outgoing free particle,
respectively. Using (13.9), we get

W(t, t0) = |〈Ψout(0)|S(t, t0)Ψin(0)〉|2.

We are given the time interval [−T
2
, T

2
]. Choosing the initial time t0 := −T

2
and

the final time t := T
2
, and setting S(T ) := S(t, t0), we obtain the key formula

W(T ) := |〈Ψout(0)|S(T )Ψin(0)〉|2. (13.13)

Now let us use the rigorous finite-dimensional approach (i)–(iii) above in order to
motivate the definition of Dyson’s S-matrix operator S(T ) from (13.1) on page 835.

Step 1: The Schrödinger equation for states in quantum electrodynamics: Let Ψ(t)
denote the state of a system of electrons, positrons, and photons at time t.
Then the Schrödinger equation reads as

iΨ̇(t) = (Hfree + Hint)Ψ(t), t ∈ R. (13.14)

Here, the Hamiltonian Hfree of the interaction-free situation is given by (12.21)
on page 817. Furthermore, motivated by Theorem 11.2 on page 796, the inter-
action term of the Hamiltonian is given by

Hint :=

Z

C(L)

Hint(x)d3x

with

Hint(x) := −eψ(x) �A(x)ψ(x).

Recall Feynman’s slash symbol �A(x) := γμA
μ(x). In this connection, observe

the following crucial fact. In the Schrödinger approach to quantum physics, the
state vectors Ψ(t) depend on time t whereas the observables (i.e., the physical
quantities) B do not depend on time t. This motivates our assumption that
Hint depends on the time-independent quantum field ψ,A.

Step 2: The free Schrödinger equation: Consider the special case where the inter-
action vanishes, Hint = 0. Then, the dynamics of the state vectors is given
by

Ψ(t) = e−itHfreeΨ(0), t ∈ R.

If we define

B(t) := eitHfreeBe−itHfree , t ∈ R, (13.15)

then we obtain

〈Ψ(t)|BΨ(t)〉 = 〈Ψ(0)|B(t)Ψ(0)〉, t ∈ R.

This shows the invariance of the inner product, and hence the invariance
of expectation values. Physicists call the time-dependent operator function
B = B(t) the Heisenberg picture of the observable B with respect to the
free Hamiltonian.



13.2 The Basic Strategy of Reduction Formulas 841

Step 3: The transformed Schrödinger equation: As in (ii) above, the transforma-
tion Ψ(t) = e−itHfreeΦ(t) sends the Schrödinger equation (13.14) of quantum
electrodynamics to the equation

iΦ̇(t) = Hint(t)Φ(t), t ∈ R

with Hint(t) := eitHfreeHinte
−itHfree . Explicitly,

Hint(t) :=

Z

C(L)

eitHfreeHint(x)e−itHfreed3x.

Now to the point. Observe that eitHfreeHint(x)e−itHfree is equal to the product

−e(eitHfreeψ(x)e−itHfree) · (eitHfree �A(x)e−itHfree) · (eitHfreeψ(x)e−itHfree).

Motivated by the Heisenberg picture (13.15), we define

eitHfreeHint(x)e−itHfree := −eψfree(x, t) �Afree(x, t)ψfree(x, t)

where ψfree(x, t) and Afree(x, t) describe the dynamics of free quantum fields
in quantum electrodynamics.

Step 4: Dyson’s S-matrix operator: Using (13.10), we obtain the S-matrix operator
S(T ) from (13.1) on page 835. More precisely, additionally, we have to replace
the operator product by the normal operator product.

Step 5: The normal operator product: Motivated by Sect. 12.2.2 on page 814, we
replace the Hamiltonian operator of quantum electrodynamics by its normal
product. This way we obtain the modified Schrödinger equation

iΨ̇(t) = (: Hfree : + : Hint :)Ψ(t), t ∈ R (13.16)

in quantum electrodynamics. With respect to Dyson’s S-matrix operator S(T ),
this means that we have to replace the operator Hint by the normal product
: Hint : in (13.1).

This finishes the motivation of the key definition (13.1) of Dyson’s S-matrix.

13.2 The Basic Strategy of Reduction Formulas

The computation of scattering processes in quantum field theory can be
elegantly reduced to the computation of propagators by using the Wick
theorem.

Folklore

For scattering processes during the time-interval [−T
2
, T

2
], our goal is to compute

the transition probability

W(T ) := |〈Ψout(0)|S(T )Ψin(0)〉|2

based on Dyson’s S-operator S. According to Feynman, the inner product

〈Ψout(0)|S(T ))Ψin(0)〉
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is called the transition amplitude. We will show that the transition amplitudes can
be reduced to vacuum expectation values

〈0|T (A1A2 · · ·An)|0〉

where A1, ..., An are linear combinations of creation and annihilation operators,
and T denotes the operator of time-ordering. In turn, by reduction formulas, these
vacuum expectation values can be reduced to the simpler vacuum expectation values

〈0|T (AB)|0〉

of two factors. These expressions are called propagators.

Therefore, it remains to compute the propagators.

The reduction formulas can be represented graphically by using Feynman diagrams.
This will be studied in Chap. 14. In this chapter, we emphasize the algebraic as-
pects of the approach. This should help the reader to understand that the elegant
language of Feynman diagrams has a sound mathematical basis in terms of combi-
natorics. In particular, the algebraic approach clearly justifies the appearance and
the specific values of the symmetry factors attributed to Feynman diagrams.

For the computation of propagators, there exist the following two different uni-
versal methods:

(i) The Fourier method based on Fourier series for classical free fields.
(ii) The method of Feynman functional integrals (or path integrals) based on Gaus-

sian integrals.

In what follows, we will use method (i) in quantum electrodynamics, whereas
method (ii) will be thoroughly studied in Vol. IV on quantum mathematics.

Prototype of the Wick theorem. To explain the simple basic idea, let us
consider the typical transition amplitude

τ := 〈b+Ω|ABa+Ω〉

where Ω := |0〉 denotes the vacuum state, and a+, b+ are two (bosonic) creation
operators with the corresponding annihilation operators a−, b−, respectively. Fur-
thermore, A,B are complex linear combinations of creation and annihilation op-
erators. First let us represent the transition amplitude τ as a vacuum expectation
value. Since we have the key relation (b+)† = b− between creation and annihilation
operators, we get

τ = 〈0|b−ABa+|0〉.
The main trick is to define the so-called contraction

C(AB) := 〈0|AB|0〉 (13.17)

between the operators A and B. We claim the validity of the following reduction
formula for vacuum expectation values:

〈0|b−ABa+|0〉 = C(b−A)C(Ba+) + C(b−B)C(Aa+). (13.18)

As another example, we mention the following reduction formula:

〈0|a−ABa+|0〉 = C(a−A)C(Ba+) + C(a−B)C(Aa+) + C(AB). (13.19)

Before proving this, we need some preparations. Decompose
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A = A+ + A−, B = B+ + B−.

Here, A+, B+ (resp. A−, B−) are linear combinations of creation (resp. annihilation)
operators.

Special contractions for creation and annihilation operators. For the
creation operators a+, b+ and the annihilation operators a−, b−, we have the fol-
lowing commutation relations:

[a−, a+]− = I, [b−, b+]− = I, (13.20)

where I denotes the identical operator. In addition, we get

[a−, b±]− = 0, [a+, b±]− = 0.

Furthermore, (a±)† = (a∓)† and (b±)† = (b∓)†. Finally, we have

a−|0〉 = 0, b−|0〉 = 0. (13.21)

Proposition 13.1 There hold C(a+a−) = C(a+a+) = C(a−a−) = 0, and

C(a−a+) = 1,

as well as C(a±b±) = C(a±b∓) = 0.

Proof. Set Ω := |0〉. It follows from a−Ω = 0 that

C(a±a−) = 〈Ω|a±a−Ω〉 = 0.

Moreover, noting that (a+)† = a−, we get

C(a+a±) = 〈Ω|a+a±Ω〉 = 〈a−Ω|a±Ω〉 = 0.

In addition, it follows from a−a+ = a+a− + I and C(I) = 〈Ω|IΩ〉 = 〈Ω|Ω〉 = 1
that

C(a−a+) = C(a+a−) + C(I) = 1.

Since a−b± = b±a−, we obtain

C(a−b±) = C(b±a−) = 〈Ω|b±a−Ω〉 = 0.

Finally, C(a+b±) = 〈Ω|a+b±Ω〉 = 〈a−Ω|b±Ω〉 = 0. �

Further relations. We claim that Prop. 13.1 implies the following key rela-
tions:

[A−, B+]− = C(AB)I (13.22)

and
[A−, a+]− = C(Aa+)I, [b−, A+] = C(b−A)I.

Furthermore, [A+, B+]− = [A−, B−]− = 0. Finally, we have

[c+, C+]− = [c−, C−]− = 0

for C = A,B and c = a, b.
Proof of (13.22). By the commutation relations for creation and annihilation
operators, there exists a complex number A such that
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[A−, B+]− = AI.

Moreover, A−|0〉 = 0. This implies

〈0|A+|0〉 = 0.

In fact, if A+ is a creation operator, then (A+)† = A−. Set Ω := |0〉. Then

〈Ω|A+Ω〉 = 〈A−Ω|Ω〉 = 0.

The same argument tells us that 〈0|A+A1A2 · · ·An|0〉 = 0. Hence

A = 〈0| [A−, B+]−|0〉 = 〈0|A−B+ −B+A−|0〉 = 〈0|A−B+|0〉
= 〈0|(A− + A+)(B+ + B−)|0〉 = 〈0|AB|0〉 = C(AB).

�

Proof of (13.18). We will use a brute force method. The more elegant approach
via the Wick theorem will be considered in the next section. The idea is to use the
operator identity7

CD = [C,D]− + DC

for moving the annihilation operators a−, A−, B− to the right. Finally, we will apply
the relations A−|0〉 = B−|0〉 = a−|0〉 = b−|0〉 = 0. This implies

〈0| · · ·C−|0〉 = 0 (13.23)

for C = A,B, a, b. Furthermore, since (C+)† = C−, we also get

〈0|C+ · · · |0〉 = 0. (13.24)

The point is that this procedure cancels a lot of terms.
In what follows, the two key relations (13.23) and (13.24) will be used again

and again. In particular, we get

C(A+B) = C(AB−) = 0.

This implies C(AB) = C((A+ +A−)(B+ +B−)) = C(A−B+). To begin with, let us
use the following decomposition:

b−ABa+ = b−(A+ + A−)(B+ + B−)a+

= b−A+B+a+ + b−A+B−a+ + b−A−B+a+ + b−A−B−a+.

For example, consider the product b−A+B−a+. From the identity

B−a+ = [B−, a+]− + a+B− = C(Ba+)I + a+B−

we get
b−A+B−a+ = C(Ba+)b−A+ + b−A+a+B−.

Since 〈0|b−A+a+B−|0〉 = 0, it remains to consider the term C(Ba+)b−A+. From

C(Ba+)b−A+ = C(Ba+)C(b−A)I + C(Ba+)A+b−

7 Recall that [C,D]− := CD −DC and [C,D]+ := CD + DC.
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(a) C(AB)

A B

(b) C(b−A)C(Ba+)

b 	
A B

	 a

(c) C(Aa+)C(b−B)

A
	 a 	b

B

Fig. 13.1. Feynman diagrams

and 〈0| · · · b−|0〉 = 0 we get

〈0|b−A+B−a+|0〉 = C(Ba+)C(b−A)〈0|I|0〉 = C(Ba+)C(b−A).

The other products are handled similarly. �

In an analogous manner, one obtains the reduction formula (13.19). Using the
Wick theorem, a more elegant proof will be given on page 849.

Feynman diagrams. The terms from the reduction formulas (13.18) and
(13.19) can be represented graphically as pictured in Fig. 13.1. These graphs are
prototypes of Feynman diagrams containing both

• external lines corresponding to incoming and outgoing particles (also called legs),
• and internal lines (also called propagators).

In contrast to external lines, internal lines connect two nodes. We distinguish be-
tween

• connected Feynman graphs (Fig. 13.1(a)), and
• disconnected Feynman graphs (Fig. 13.1(b),(c)).

The Feynman graphs of quantum electrodynamics will be considered in Chap. 14.
A Feynman graph without external lines is called an amputated graph.

Propagators, Wightman’s functions, Green’s functions, and reduc-
tion formulas. The reduction formulas (13.18) and (13.19) on page 842 can be
equivalently written as

〈0|b−ABa+|0〉 = 〈0|b−A|0〉 · 〈0|Ba+|0〉+ 〈0|b−B|0〉 · 〈0|Aa+|0〉 (13.25)

and

〈0|a−ABa+|0〉 = 〈0|a−A|0〉 · 〈0|Ba+|0〉+ 〈0|a−B|0〉 · 〈0|Aa+|0〉
+〈0|AB|0〉. (13.26)

Physicists use the following terminology:

• C(AB) = 〈0|AB|0〉 (Wightman propagator or 2-point Wightman function).
• C(b−A) = 〈0|b−A|0〉 and C(Ba+) = 〈0|Ba+|0〉 (external legs).
• If the operators A and B depend on time, and if the symbol T denotes the

time-ordering operator, then
〈0|T (AB)|0〉

is called the 2-point Green’s function (or the Feynman propagator). This crucial
quantity describes correlations in quantum field theory.

Formulas (13.25) and (13.26) are prototypes of reduction formulas in quantum field
theory.8 These formulas tells us that:

8 Important reduction formulas were introduced by H. Lehmann, K. Symanzik,
and W. Zimmermann, On the formulation of quantized field theories, Nuovo
Cimento 1 (1955), 205–225; 6 (1957), 319–333. They are called the LSZ reduction
formulas.
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The transition amplitudes of the S-matrix can be reduced to propagators
and external legs.

The external legs correspond to the free classical fields of incoming and outgoing
particles. Propagators describe the interactions of the particles during the scattering
process.The symmetry of general reduction formulas will be revealed in the next
section.

13.3 The Wick Theorem

Wick’s main theorem is a simple consequence of the algebraic relation

CD = [C,D]∓ ±DC.

This allows the effective computation of transition probabilities in per-
turbative scattering theory for all kinds of quantum field theories includ-
ing quantum electrodynamics and the Standard Model in particle physics.
Feynman diagrams graphically represent Wick’s main theorem.

Folklore

Wick’s main theorem on vacuum expectation values. Consider the vacuum
expectation value

τ := 〈0|T (A1A2 · · ·An)|0〉, n = 1, 2, . . .

of a time-ordered operator product. We assume that each time-dependent oper-
ator function Aj = Aj(t) is either bosonic or fermionic. By definition, a bosonic
(resp. fermionic) operator is a finite complex linear combination of bosonic (resp.
fermionic) creation and annihilation operators. Wick’s main theorem on general
reduction formulas reads as follows.

Theorem 13.2 If n is odd, then τ = 0. If n is even, then τ is equal to the sum of
all the products

η · 〈0|T (Ai1Ai2)|0〉 · 〈0|T (Ai3Ai4)|0〉 · · · 〈0|T (Ain−1Ain)|0〉

where i1, . . . , in is a permutation of 1, . . . , n, and η is the sign of this permuta-
tion by taking only the fermionic factors Aj into account. Moreover, the sequence
i1, i3, . . . , in−1 is increasing, and i1 < i2, i3 < i4, . . . , in−1 < in.

Let us first consider a few examples. To simplify notation, set A1 := A, . . . For
n = 3, Theorem 13.2 tells us that

〈0|T (ABC)|0〉 = 0.

Now let us consider the case where n = 4. Set T (AB)0 := 〈0|T (AB)|0〉. Theorem
13.2 yields the following:

(i) Bosonic case: Let A,B,C,D be bosonic operators. Then, we get the following
reduction formula:

T (ABCD)0 = T (AB)0T (CD)0 + T (AC)0T (BD)0 + T (AD)0T (BC)0.
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(ii) Fermionic case: Let A,B,C,D be fermionic operators. Then

T (ABCD)0 = T (AB)0T (CD)0 − T (AC)0T (BD)0 + T (AD)0T (BC)0.

Note that ACBD is an odd permutation of ABCD.
(iii) Mixed case: Let A,B,C be fermionic, and let D be bosonic. Then

T (ABCD)0 = T (AB)0T (CD)0 − T (AC)0T (BD)0 + T (AD)0T (BC)0.

Observe that ACBD is an odd permutation of the fermionic operators A,B,C.

Before giving the proof of Theorem 13.2 on page 851 (bosonic case) and page 855
(fermionic case and bosonic-fermionic case), we need some preparations concerning
paired normal products and time-ordered products. This leads to the first and
second Wick theorem below. We have to distinguish between bosonic and fermionic
operators.

Bosonic Operators

Suppose that A1, . . . , An, A,B, . . . are bosonic operators. Decompose

Aj = A+
j + A−

j , j = 1, . . . , n

where A+
j (resp. A−

j ) contains creation (resp. annihilation) operators. By Sect. 13.2,

· · ·A−|0〉 = 0 and 〈0|A+ · · · |0〉 = 0.

Consequently, for the computation of vacuum expectation values, normal operator
products play a fundamental role. Recall that the normal operator product

: A1A2 · · ·An :

represents a reordering of the operators such that the annihilation operators stand
to the right of the creation operators. For example, consider the product

AB = (A+ + A−)(B+ + B−) = A+B+ + A+B− + A−B− + A−B+.

Only the product A−B+ has to be reordered to B+A−. Hence

: AB := A+B+ + A+B− + A−B− + B+A−. (13.27)

By (13.22) on page 843, A−B+ = B+A− + C(AB) · I. Therefore,

AB = : AB : +C(AB) · I. (13.28)

This is the prototype of the first Wick theorem below. The normal product principle
tells us that:

Vacuum expectation values of normal operator products vanish.

For example, 〈0| : AB : |0〉 = 0, since 〈· · ·A−|0〉 = 〈0|A+ · · ·〉 = 0, and so on. The
idea of the first Wick theorem is to reduce operator products to both normal oper-
ator products and multiples of the unit operator. By the normal product principle,
only the multiples of the unit operator contribute to vacuum expectation values. To
formulate the first Wick theorem, it is convenient to introduce the notion of paired
normal product:
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• One pairing: We define : AB := C(AB) · I, and

: ABC := C(AB) · C, : ABC := C(AC) ·B, : ABC := C(BC) ·A.

Furthermore, we define

: ABCD := C(AB) : CD :, : ABCD := C(AC) : BD :,

and so on.
• Two pairings: We define : ABCD := C(AB)C(CD) · I, and

: ABCD := C(AC)C(BD) · I, : ABCD := C(AD)C(BC) · I.

Analogously, we define three pairings, four pairings, and so on. Let us now formulate
the first Wick theorem.

Theorem 13.3 The operator product A1A2 · · ·An is equal to the sum over all pos-
sible paired normal operator products:

: A1A2A3 · · ·An : + : A1A2A3 · · ·An : + . . .

+ : A1A2A3 · · ·An : + : A1A2A3A4 · · ·An : + . . .

Examples. Before proving Theorem 13.3, let us consider some examples:

(i) One factor: : A := A, and 〈0|A|0〉 = 〈0|A+|0〉+ 〈0|A−|0〉 = 0.
(ii) Two factors:

AB = : AB : + : AB : . (13.29)

This stands for AB = : AB : +C(AB) · I which was proved in (13.28).
(iii) Three factors:

ABC = : ABC : + : ABC : + : ABC : + : ABC : .

This stands for

ABC = : ABC : +C(AB)C + C(AC)B + C(BC)A.

By the normal product principle, we get

〈0|ABC|0〉 = 0.

(iv) Four factors:

ABCD = : ABCD : + : ABCD : + : ABCD : + : ABCD :

+ : ABCD : + : ABCD : + : ABCD :

+ : ABCD : + : ABCD : + : ABCD : .
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By the normal product principle, only the totally paired normal products, namely,

: ABCD := C(AB)C(CD) · I, : ABCD := C(AC)C(BD) · I,

and : ABCD := C(AD)C(BC) contribute to the vacuum expectation value. Hence

〈0|ABCD|0〉 = C(AB)C(CD) + C(AC)C(BD) + C(AD)C(BC).

In particular, noting that C(b−a+) = 0, we get

〈0|b−BCa+|0〉 = C(b−B)C(Ca+) + C(b−C)C(Ba+).

This is the reduction formula (13.18) on page 842. Noting that C(a−a+) = 1, we
also obtain the following reduction formula:

〈0|a−BCa+|0〉 = C(a−B)C(Ca+) + C(a−C)C(Ba+) + C(BC) (13.30)

which coincides with (13.19).
Proof of the first Wick Theorem 13.3 in the bosonic case.
Step 1: For n = 2, we get the statement from (ii) above.
Step 2: Consider now the case where n = 3. We will reduce this to the statement
for n = 2.

(I) To this end, we start with the decomposition

ABC = A+(BC) + A−(BC).

Moving A− to the right, we obtain9

(A−B)C = [A−, B]+C − (BA−)C = C(AB)C − (BA−)C.

Analogously, B(A−C) = C(AC)B + B(CA−). Hence

A−(BC) = (BC)A− + C(AB)C + C(AC)B.

This implies

ABC = A+(BC) + (BC)A− + C(AB)C + C(AC)B.

(II) Using the known case (13.29) for two factors, n = 2, we get

A+(BC) = A+ : BC : +A+ : BC :,

and (BC)A− = : BC : A−+ : BC : A−. Hence

ABC = (A+ : BC : + : BC : A−) + A+ : BC : + : BC : A−

+ : ABC : + : ABC : .

9 Note that [A−, B−]− = 0. Thus, by (13.22), we get

[A−, B+ + B−]− = [A−, B+]− = C(AB) · I.
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(III) By definition of the normal operator product, we have

A+ : BC := : A+BC : and : BC : A− = : BCA− : .

Note that the bosononic normal product is invariant under permutations of the
factors. Hence : BC : A− = : BCA− : = : A−BC : . Consequently,

A+ : BC : + : BC : A− = : (A+ + A−)BC : = : ABC : .

Finally, this yields

ABC = : ABC : + : ABC : + : ABC : + : ABC : .

This is precisely the claim for n = 3. The general case n = 4, 5, . . . follows analo-
gously by induction. �

Time-ordered operator products. Now we want to replace operator prod-
ucts by time-ordered operator products. To this end, we assume that the bosonic
operators A1, A2, . . . , A,B, . . . depend on time t. Recall that time-ordering of an
operator product refers to a reordering of the factors such that time increases from
right to left. This is motivated by causality. In what follows, time-ordered prod-
ucts always refer to points in time t1, t2, . . . , tn which are pairwise different. By
definition, we have

T (A1(t1)A2(t2) · · ·An(tn)) := Ai1(ti1)Ai2(ti2) · · ·Ain(tin)

where i1, i2, . . . , in is a permutation of 1, 2, . . . , n such that ti1 > ti2 > . . . > tin .
For example, if t > s, then

T (A(t)B(s)) = T (B(s)A(t)) := A(t)B(s).

Let us introduce the time-ordered contraction

CT (A(t)B(s)) := 〈0|T (A(t)B(s))|0〉.

Time-ordered paired normal products are defined as above by replacing C(AB) by
CT (AB). For example, we define:

• : AB : = CT (AB) · I,
• : ABCD : = CT (AB)CT (CD) · I.

Let us first consider the prototype of two factors. We claim that there holds

T (A(t)B(s)) = : A(t)B(s) : + : A(t)B(s) : . (13.31)

This stands for

T (A(t)B(s)) = : A(t)B(s) : + CT (A(t)B(s)) · I.

To prove (13.31), let us start with the case where t > s. Then

A(t)B(s) = : A(t)B(s) : + : A(t)B(s) : .

This is identical with (13.31). Observe now that both the left-hand side and the
right-hand side of (13.31) are invariant under a permutation of t and s. Therefore,
equation (13.31) remains valid if s > t. The same argument yields the following
second Wick theorem.
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Theorem 13.4 The time-ordered operator product T (A1A2 · · ·An) is equal to the
sum over the normal product and all the possible time-ordered pairings of the normal
product,

: A1A2A3 · · ·An : + : A1A2A3 · · ·An : + . . .

+ : A1A2A3 · · ·An : + : A1A2A3A4 · · ·An : + . . .

Proof of Wick’s Main Theorem 13.2 in the bosonic case. Using the normal
product principle, we obtain that the vacuum expectation value

〈0|T (A1...An)|0〉
is equal to the sum over all vacuum expectation values of totally paired normal
products. For example, we get

T (ABCD) = : ABCD : + : ABCD : + : ABCD : + : ABCD :

+ : ABCD : + : ABCD : + : ABCD :

+ : ABCD : + : ABCD : + : ABCD : .

The totally paired normal products stand in the last line. This is equal to

CT (AB)CT (CD) · I + CT (AC)CT (BD) · I + CT (AD)CT (BC) · I.
By the normal product principle, the vacuum expectation value

〈0|T (ABCD)|0〉
is equal to

CT (AB)CT (CD) + CT (AC)CT (BD) + CT (AD)CT (BC).

Since CT (AB) = 〈0|T (AB)|0〉, we get the claim of Theorem 13.2. The general case
proceeds analogously. �

Fermionic Operators

Now assume that A,B are fermionic operators. As in the bosonic case, we define
the contraction C(AB) by setting

C(AB) := 〈0|AB|0〉. (13.32)

Special contractions for fermionic creation and annihilation opera-
tors. For two fermionic creation operators a+, b+ and the corresponding fermionic
annihilation operators a−, b−, we have the following anticommutation relations:

[a−, a+]+ = I, [b−, b+]+ = I, (13.33)

where I denotes the identical operator. In addition, we get

[a−, b±]+ = 0, [a+, b±]+ = 0.

Furthermore, (a±)† = (a∓)† and (b±)† = (b∓)†. Finally, we have

a−|0〉 = 0, b−|0〉 = 0. (13.34)
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Proposition 13.5 There hold C(a+a−) = C(a+a+) = C(a−a−) = 0, and

C(a−a+) = 1,

as well as C(a±b±) = C(a±b∓) = 0.

Proof. Set Ω := |0〉. It follows from a−Ω = 0 that

C(a±a−) = 〈Ω|a±a−Ω〉 = 0.

Moreover, noting that (a+)† = a−, we get

C(a+a±) = 〈Ω|a+a±Ω〉 = 〈a−Ω|a±Ω〉 = 0.

In addition, it follows from a−a+ = −a+a− + I and C(I) = 〈Ω|IΩ〉 = 〈Ω|Ω〉 = 1
that

C(a−a+) = −C(a+a−) + C(I) = 1.

Since a−b± = −b±a−, we obtain

C(a−b±) = −C(b±a−) = −〈Ω|b±a−Ω〉 = 0.

Finally, C(a+b±) = 〈Ω|a+b±Ω〉 = 〈a−Ω|b±Ω〉 = 0. �

General construction. Suppose that the operators A1, . . . , An, A,B, . . . are
fermionic.

The first Wick Theorem 13.3 and the second Wick Theorem 13.4 remain
valid for fermionic operators.

Let us discuss this. The point is that we have to modify the definition of normal
products, paired normal products, and time-ordered products. The reason for that
is the relation

CD = [C,D]+ −DC

which forces us to introduce additional signs related to the sign of permutations of
fermionic operators. The modified notions read as follows:

(a) Normal product: The normal operator product

: A1A2 · · ·An :

represents a reordering of the fermionic operators such that the annihilation
operators stand to the right of the creation operators. In contrast to the bosonic
case, there appears an additional sign which is the sign of the necessary per-
mutation of factors. For example, : A := A, and

: A+B− := A+B−, : B−A+ := −A+B−.

From the product formula

AB = (A+ + A−)(B+ + B−) = A+B+ + A+B− + A−B− + A−B+

we get

: AB := A+B+ + A+B− + A−B− −B+A−. (13.35)

This implies

AB = : AB : +[A−, B+]+. (13.36)
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Furthermore, for three factors, we obtain

: A+B+C− := A+B+C−, : A+C−B+ := −A+B+C−.

In general, the normal product remains unchanged (resp. changes sign) under
even (resp. odd) permutations of the fermionic factors. The normal product
principle remains valid, that is, the vacuum expectation values of normal prod-
ucts vanish.

(b) Contraction: Using (13.32), we get10

[A−, B+]+ = C(AB) · I. (13.37)

Moreover, [A−, B−]+ = 0, by Prop. 13.5. Hence

[A−, B]+ = [A−, B+ + B−]+ = C(AB) · I. (13.38)

(c) Paired normal product: Defining

: AB : = C(AB) · I,

we obtain the following key relation:

AB = : AB : + : AB : . (13.39)

This formula follows immediately from (13.36) and (13.37). More generally, we
define

: ABC : = C(AB) ·C, : ABC : = −C(AC) ·B, : ABC : = C(BC) ·A.

Furthermore, : ABCD : = C(AB)C(CD) · I, and

: ABCD : = −C(AC)C(BD) · I, : ABCD : = C(AD)C(BC) · I.

The general definition goes like this:
• For one pairing, set

: A1 · · ·Ai · ·Aj · · ·An : = (−1)j−i+1C(AiAj) : A1 · · · Ȧi · ·Ȧj · · ·An :

where the dotted factors have to be cancelled.
• The same definition will be used for several pairings where we assume that

Ai stands to the left of all the other pairings.

10 To prove this, note that the anticommutation relations tell us that [A−, B+]+
is equal to AI with a real number A. Hence 〈0| [A−, B+]+|0〉 = 〈0|AI|0〉 = A.
Therefore, A is equal to

〈0|A−B+ + B+A−|0〉 = 〈0|A−B+|0〉 = 〈0|(A− + A+)(B+ + B−)|0〉 = C(AB).
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This allows us to define paired normal products in an inductive way. For ex-
ample,

: ABCD : = −C(AC) : BD := −C(AC)C(BD) · I,

and

: ABCD : = C(AD) : BC := C(AD)C(BC) · I.

Observe that the following hold:
The paired normal product remains unchanged (resp. changes sign)
under even (resp. odd) permutations of the fermionic factors.

Note that, in the bosonic case, the paired normal product is invariant under
all kind of permutations of the bosonic factors.

(d) Time-ordered product: For t > s, we define

T (A(t)B(s)) = −T (B(s)A(t)) := A(t)B(s).

In general, let t1, ..., tn be n pairwise different time points. By definition, the
time-ordered product

T (A1(t1) · · ·An(tn))

is equal to
η ·Ai1(ti1) · · ·Ain(tin)

such that ti1 > ti2 > . . . > tin , and η is the sign of the permutation from 1 . . . n
to i1 . . . in. As in the bosonic case, we define the time-ordered contraction by

CT (A(t)B(s)) := 〈0|T (A(t)B(s))|0〉.

(e) Time-ordered paired normal product: This product is defined parallel to the
paired normal product by replacing each contraction C(AjAk) by CT (AjAk).
For example, we define

: ABCD : = CT (AD)CT (BC) · I.

As another example, consider

: ABCDE : = −CT (AC) : BDE : = CT (AC)CT (BE) ·D.

Proof of the first Wick Theorem 13.3 in the fermionic case. We will pro-
ceed as in the bosonic case. The only difference is that we replace commutation
relations [A,B]− by anticommutation relations [A,B]+, and that we observe the
sign convention for the permutations of the fermionic factors of normal products.
Step 1: For n = 2, the statement follows from (13.39).
Step 2: Consider now the case where n = 3. We will reduce this to the statement
for n = 2.

(I) To this end, we start with the decomposition

ABC = A+(BC) + A−(BC).

Moving A− to the right, it follows from (13.38) that

(A−B)C = [A−, B]+C − (BA−)C = C(AB)C − (BA−)C.
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Analogously, B(A−C) = C(AC)B −B(CA−). Hence

A−(BC) = (BC)A− + C(AB)C − C(AC)B.

This implies

ABC = A+(BC) + (BC)A− + C(AB)C − C(AC)B.

(II) Using the known case (13.39) for two factors, n = 2, we get

A+(BC) = A+ : BC : +A+ : BC :,

and (BC)A− = : BC : A−+ : BC : A−. Hence

ABC = (A+ : BC : + : BC : A−) + A+ : BC : + : BC : A−

+ : ABC : + : ABC : .

(III) By definition of the normal operator product, we have

A+ : BC := : A+BC : and : BC : A− = : BCA− : .

Note that the fermionic normal product is invariant under even permutations of
the factors. Hence : BC : A− = : BCA− : = : A−BC : . Consequently,

A+ : BC : + : BC : A− = : (A+ + A−)BC : = : ABC : .

Finally, this yields

ABC = : ABC : + : ABC : + : ABC : + : ABC : .

This is precisely the claim for n = 3. The general case n = 4, 5, . . . follows analo-
gously by induction. �

Proof of Wick’s Main Theorem 13.2 in the fermionic case. The proofs
of both the second Wick Theorem 13.4 and the Main Wick Theorem 13.2 in the
fermionic case proceed analogously to the bosonic case above.

The Bosonic-Fermionic Case

We now consider mixed operator products

A1A2 · · ·An

where each factor is either bosonic or fermionic. Such products occur in quantum
electrodynamics.

The first Wick theorem 13.3 and the second Wick Theorem 13.4 remain
valid for operator products of mixed type.

This follows from the fact that bosonic operators commute with fermionic operators.
This implies that:

Pairings between bosonic and fermionic operators drop out.
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For example, if A is bosonic and B is fermionic, then C(AB) = 0. In fact,

C(AB) = 〈0|AB|0〉 = 〈0|(A+ + A−)(B+ + B−)|0〉
= 〈0|(A+B+ + A+B− + B+A− + A−B−)|0〉 = 0.

This follows from A−B+ = B+A−.
Internal normal products. Suppose that AB is a normal operator product.

By the normal product principle, we get

C(AB) = 〈0|AB|0〉 = 0.

This implies that pairings drop out if the factors belong to a normal product. For
example, the product A : BCDE : FG is equal to

A : BCDE : FG =: A : BCDE : FG : + : A : BCDE : FG : + . . .

This corresponds to the formula for A : BCDE : FG where the pairings between
the operators B,C,D,E drop out. This fact will simplify the Feynman diagrams in
quantum electrodynamics.

Invariance properties of products. Note that the following hold true:

• Normal products or paired normal products are invariant under both permuta-
tions of bosonic operators and even permutations of fermionic operators.

• Normal products or paired normal products change sign under odd permutations
of fermionic operators.

• Time-ordered products or time-ordered paired normal products are invariant
under both permutations of bosonic operators and even permutations of fermionic
operators.

• Time-ordered products or time-ordered paired normal products change sign un-
der odd permutations of fermionic operators.

13.4 Feynman Propagators

In terms of physics, Feynman propagators describe the propagation of
physical effects in quantum field theory by taking both causality and an-
tiparticles into account.
In terms of mathematics, Feynman propagators are distinguished funda-
mental solutions of the wave equation, the Klein–Gordon equation, and
the Dirac equation. In the Fourier space, Feynman propagators are inverse
differential operators, after regularization.

Folklore

It was discovered by Feynman in the 1940s that the propagation of quantum effects
is governed by specific functions called propagators. From the modern point of view,
propagators arise in a natural way from the Wick technique in perturbation theory.

13.4.1 Discrete Feynman Propagators for Photons and Electrons

As a typical example, let us compute the Feynman propagators of quantum elec-
trodynamics, namely,

• the Feynman photon propagator Dμν
F (x− y), and
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Table 13.1. Feynman propagators on the lattice

Regularized Feynman photon propagator
(mph virtual photon mass, ε > 0)

Dμν
F,ε,mph

(x) :=

Z

R

dp0
X

p∈G(N)

Δ3p Dμν(p)e−ipx

Dμν(p) := − iημν

(2π)4
· 1

(p0)2 − (Ep − εi)2

Regularized Feynman electron propagator
(me bare electron mass, ε > 0)

SF,ε(x) :=

Z

R

dp0
X

p∈G(N)

Δ3p S(p)e−ipx

S(p) :=
i

(2π)4
· �p + meI

(p0)2 − (Ep − εi)2

p := (p0,p), x := (t,x), px := p0t− px, �p := γμp
μ,

Ep :=
q

p2 + m2
ph , Ep :=

p

p2 + m2
e

• the Feynman electron propagator Sαβ
F (x− y).

Here, μ, ν, α, β = 0, 1, 2, 3. As we are going to show, these propagators are related
to the Feynman functions GF and GF,me by the crucial formulas

Dμν
F (x) = −ημνGF (x), SF (x) = (iγμ∂μ + me)GF,me(x)

for all space-time points x ∈ R
4. Explicitly, for positive mass me, we define

GF,me(x) :=
X

p∈G(N)

Δ3p

2(2π)3Ep
(θ(t)e−ipx + θ(−t)eipx).

In this connection, we use the standard notation11

px := Ept− px, Ep :=
p

p2 + m2
e, Δ3p :=

(2π)3

L3
.

This refers to the truncated lattice G(N) in momentum space introduced in Sect.
12.1.1 on page 799. Recall that Ep is the energy of a particle having momentum
vector p and mass me, and recall that the cubic cells of the lattice G(N) have the
volume L3. For vanishing mass, m = 0, we define

GF (x) :=
X′

p∈G(N)

Δ3p

2(2π)3ωp
(θ(t)e−ipx + θ(−t)eipx)

11 Recall that θ(t) = 1 (resp. =0) if t ≥ 0 (resp. t < 0).
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with the photon energy ωp := |p|. The symbol Σ′ indicates that we do not sum
over p = 0. The reader, who wants to become familiar with the Feynman rules in
quantum electrodynamics, may immediately pass to Chap. 14.

The discrete Feynman propagators are finite Fourier series.

The regularized discrete Feynman propagators and the continuum limit of Feynman
propagators will be studied in Sects. 13.4.2 and 13.4.3, respectively. The continuum
limit of Feynman propagators leads to well-defined mathematical objects, namely,
tempered distributions. Applications to interesting physical processes can be found
in Chap. 15.

As a preparation for the definition of the photon propagator below, recall the
free photon quantum field

Aμ
free(x, t) : =

X′

p∈G(N)

3
X

s=0

(a−p,s ei(px−ωpt) +

+a+
p,s e−i(px−ωpt)) Npe

μ
s (p) (13.40)

along with the normalization factor Np := 1/
p

2L3ωp, and the photon energy
ωp = |p|. Furthermore, recall the free electron-positron quantum field

ψfree(x, t) :=
X

p∈G(N)

X

s=± 1
2

(b−p,sup,s ei(px−Ept) +

+c+p,svp,s e−i(px−Ept)) Np (13.41)

with the normalization factor Np := 1/
p

2L3Ep, and the particle energy

Ep =
p

m2
e + p2.

For the adjoint free field, we obtain

ψfree(x, t) :=
X

p∈G(N)

X

s=± 1
2

(b+p,sup,s e−i(px−Ept) +

+c−p,svp,s ei(px−Ept)) Np. (13.42)

Definition of the discrete Feynman photon propagator. Choose the
space-time points x = (x, t) and y = (y, s). Let μ, ν = 0, 1, 2, 3. The most im-
portant quantity for describing photons in quantum electrodynamics is defined by

Dμν
F (x, y) := 〈0|T (Aμ

free(x)Aν
free(y))|0〉

for all times t and s with t �= s. This vacuum expectation value of the time-ordered
operator product

Aμ
free(x)Aν

free(y)

is called the discrete Feynman photon propagator Dμν
F (x, y) of the free photon field.

Synonymously, we also speak of the discrete free 2-point Green function Dμν
F of the

photon field.12 Intuitively,

12 The relation to classical Green’s functions (fundamental solutions of partial dif-
ferential equations) will be studied below.
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• the Feynman propagator Dμν
F (x, y) measures the correlation between the com-

ponents
Aμ

free(x, t) and Aν
free(y, s)

of the free photon field if Aν
free acts first, that is, t > s.

• If t < s, then the Feynman propagator Dμν
F (x, y) measures the correlation be-

tween the components

Aν
free(y, s) and Aμ

free(x, t)

of the free photon field. Here, Aμ
free acts first.

• If t = s and x �= y, we define

Dμν
F (x, t;y, t) := 0.

This is motivated by the fact that, in the theory of special relativity, physical
effects propagate maximally with the speed of light. This implies that there are
no correlations between the free photon field at different space points, x �= y, at
equal time, t = s.

• In the singular case where x = y and t = s, there does not exist a generic
definition for the correlations between Aμ

free(x) and Aν
free(x).13

Theorem 13.6 For all space-time points x, y ∈ R
4 corresponding to different

times, t �= s, the discrete Feynman propagator of the free photon field reads as

Dμν
F (x, y) = −ημνGF (x− y), μ, ν = 0, 1, 2, 3.

This tells us that the propagator Dμν
F (x, y) only depends on the difference x−y.

In what follows, we will write Dμν
F (x− y) instead of Dμν

F (x, y). Before proving this
theorem, let us discuss the physical interpretation. In terms of physics, the function

θ(t)e−ipx =

(

0 if t < 0,

eipxe−iωpt if t > 0

describes the creation of one photon at the initial time t = 0. This photon has the
momentum vector p and the energy ωp = |p|. Furthermore, the function

θ(−t)eipx =

(

e−ipxeiωpt if t < 0,

0 if t > 0

describes the annihilation of one incoming photon at time t = 0. This photon has
the momentum vector −p and the energy ωp. This tells us that:

13 For example, we could use one of the following definitions

〈0|Aμ(x)Aν(x)|0〉, 〈0|Aν(x)Aμ(x)|0〉

or the mean value 1
2
〈0| (Aμ(x)Aν(x) + Aν(x)Aμ(x)) |0〉. This element of arbi-

trariness is always related to substantial trouble caused in quantum field theory
by the operator T of time-ordering. From the mathematical point of view, the
Epstein–Glaser approach to quantum field theory overcomes this difficulty in
rigorous terms by using the modern theory of tempered distributions (gener-
alized functions). This will be thoroughly studied in Vol. IV. We also refer to
the monograph by G. Scharf, Finite Quantum Electrodynamics: the Causal Ap-
proach, Springer, Berlin, 1995.
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The discrete Feynman photon propagator Dμν
F (x− y) describes the super-

position of creation and annihilation processes for photons.

Proof. Let us introduce the discrete Wightman function

Wμν(x, y) := 〈0|Aμ
free(x)Aν

free(y)|0〉.

Obviously, if t �= s, then

Dμν
F (x, y) = θ(t− s)Wμν(x, y) + θ(s− t)Wνμ(y, x).

It remains to show that

Wμν(x, y) = −ημν
X′

p∈G(N)

Δ3p

2(2π)3ωp
e−ip(x−y).

In fact, it follows from a−p,s|0〉 = 0 and the commutation relation

a−p,sa
+
p,s = −ηssI + a+

p,sa
−
p,s

that 〈0|a−p,sa
+
p,s|0〉 = −ηss. Furthermore, let us use the completeness relation

3
X

s=0

ηsse
μ
s (p)eν

s (p) = ημν

for the polarization 4-vectors. By (13.40), Wμν is equal to

−
X′

p∈G(N)

3
X

s=0

ηssN 2
pe

μ
s (p)eν

p,s(p) e−iωp(t−s) eip(x−y).

Finally, recall that N 2
p = 1/2L3ωp = Δ3p/2(2π)3ωp. �

Definition of the discrete Feynman electron propagator. Choose the
space-time points x = (x, t) and y = (y, s). Let α, β = 0, 1, 2, 3. The most impor-
tant quantity for describing electrons and positrons in quantum electrodynamics is
defined by

Sαβ
F (x, y) := 〈0|T (ψα

free(x)ψ
β

free(y))|0〉

for all times t and s with t �= s. This vacuum expectation value of the time-ordered

operator product ψα
free(x)ψ

β

free(y) is called the discrete Feynman electron propaga-

tor Sαβ
F (x, y) of the free electron-positron field. Synonymously, we also speak of the

discrete free 2-point Green function Sαβ
F of the electron-positron field. Interestingly

enough, it turns out that Sαβ
F is closely related to the Feynman function GF via the

Dirac equation. To discuss this, define the matrix function

SF (x) := (iγμ∂μ + me)GF,me(x)

where me denotes the electron mass. To simplify the notation, we use the same
symbol for the two different functions (x, y) �→ SF (x, y) and x �→ SF (x). This is
justified by the following result.

Theorem 13.7 For all space-time points x, y ∈ R
4 corresponding to different

times, t �= s, the discrete Feynman electron propagator reads as

Sαβ
F (x, y) = Sαβ

F (x− y), α, β = 0, 1, 2, 3.
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Proof. The key to the proof are the two matrix relations
X

s=± 1
2

up,sup,s =�p + me,
X

s=± 1
2

vp,svp,s =�p−me

for the solutions of the Dirac equation considered in Theorem 12.3 on page 807. Fur-
thermore, we will use the anticommutation relations for creation and annihilation
operators of electrons and positrons. For example,

b−p,sb
+
p,s = I − b+p,sb

−
p,s

along with b−p,s|0〉 = 0.
(I) Consider first the case where t > s. By definition of the time-ordering

operator T , we obtain

Sαβ
F (x, y) = 〈0|ψα

free(x)|ψ β

free(y)|0〉.
It follows from the expression (13.41) for free fields that

Sαβ
F (x, y) =

X

p∈G(N)

N2
p

X

s=± 1
2

uα
p,su

β
p,se

−ip(x−y).

Hence

SF (x, y) =
X

p∈G(N)

N2
p(�p + me)e

−ip(x−y).

This implies the following representation formula

SF (x, y) =
X

p∈G(N)

N2
p(iγμ∂μ + me)e

−ip(x−y)

where the derivative ∂μ refers to the variable x. Since N2
p = Δ3p/2(2π)3Ep, we

finally obtain

SF (x, y) = (iγμ∂μ + me)GF,me(x− y).

(II) Now assume that t < s. Then

Sαβ
F (x, y) = −〈0|ψβ

free(y)|ψ
α
free(x)|0〉 = −

X

p∈G(N)

N2
p

X

s=± 1
2

vα
p,sv

β
p,se

ip(x−y).

Therefore, we get

SF (x, y) = −
X

p∈G(N)

N2
p(�p−me)e

ip(x−y),

telling us that SF (x, y) = (iγμ∂μ + me)GF,me(x− y). �

Definition of the discrete Feynman positron propagator. Let us inter-
change the role of ψfree and ψfree by defining

Pαβ
F (x, y) := 〈0|T (ψ

α

free(x)ψβ
free(y))|0〉, α, β = 0, 1, 2, 3.

This is called the discrete Feynman positron propagator. Using the definition of the
time-ordering operator T for fermionic fields, we immediately get

Pαβ
F (x, y) = −Sβα

F (y − x)

for all space-time points x, y ∈ R
4 with different times t �= s, and all indices

α, β = 0, 1, 2, 3.
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13.4.2 Regularized Discrete Propagators

Definition of the regularized discrete photon propagator. For computing
scattering processes in quantum electrodynamics, it is crucial to replace the discrete
photon propagator Dμν

F by the regularized version

Dμν
F,ε,mph

(x− y) := −ημνGF,ε,mph(x− y)

with the regularized Feynman function

GF,ε,mph(x) :=
X

p∈G(N)

Δ3p

2(2π)3Ep
(θ(t)e−ipx e−εt + θ(−t)eipx eεt).

Here, we use the lattice G(N) introduced in Sect. 12.1.1 on page 799. Furthermore,

we set px := Ept− px, and Ep :=
q

p2 + m2
ph with mph > 0. This means that

• we replace the photon energy ωp =
p

p2 by the regularized photon energy Ep
where mph represents a small (artificial) photon mass, and

• we introduce the small damping coefficient ε > 0.

Note that the photon energy ωp vanishes if the momentum vector of the photon
vanishes, p = 0. In contrast to this, the regularized photon energy Ep never vanishes.
Thus, the denominator Ep appearing in the regularized Feynman function is well
defined for all momentum vectors p. In addition, the oscillations e∓iωpt are replaced
by damped oscillations which vanish if time goes to infinity. Explicitly,

lim
t→±∞

e∓iEpte∓εt = 0.

The damping coefficient ε arises by shifting the photon energy E(p) to the complex
value

Ep − iε, ε > 0

which lives in the upper complex plane.14

Feynman’s integral trick for propagators. Let us simplify the expressions
for the Feynman propagators by passing over to the 4-dimensional Fourier space.

Theorem 13.8 The regularized discrete Feynman propagator for photons allows
the following integral representation

Dμν
F,ε,mph

(x) = − iημν

(2π)4

Z

R

dp0
X

p∈G(N)

Δ3p
e−ipx

p2 −m2
ph + εpi

for all space-time points x = (x, t) with nonzero time, t �= 0, and all parameters
ε > 0,mph > 0.

Here, we set p2 := (p0)2 − p2, and px := p0t− px, along with

εp := 2Epε− iε2.

The proof given below will be based on the following key relation:

14 To simplify computations, physicists frequently use complex energy values.
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�
�

(a) t < 0

−R R

C+

−iε

�

�

(b) t > 0

−R R

C−

Fig. 13.2. The Feynman trick

Z

R

e−itz

z + εi
dz = −2πiθ(t)e−εt (13.43)

which is valid for all parameters ε > 0 and all times t �= 0. In fact, suppose first
that t > 0. The function

e−itz

z + εi
, z ∈ C, z �= −εi

is holomorphic on the complex plane except for the simple pole at the point z = −iε.
Using the closed curve C− pictured in Fig. 13.2(b) below, Cauchy’s residue theorem
tells us that

Z

C−

e−itz

z + εi
dz = −2πie−εt.

This integral is equal to the sum A + B with

A :=

Z R

−R

e−itz

z + εi
dz and B :=

Z

C−

e−itz

z + εi
dz

where C− denotes the semicircle {z = Reiϕ : −π < ϕ < 0}. In order to get the
claim (13.43) for t > 0, it remains to show that B → 0 as R → ∞. Indeed, noting
the Euler formula eiϕ = cosϕ + i sinϕ, we get

B =

Z −π

0

eRt sin ϕ · e
−iRt cos ϕ

Reiϕ + εi
ieiϕdϕ.

Using the decomposition
R −π

0
=
R −δ

0
+
R −π+δ

−δ
+
R −π

−π+δ
for sufficiently small δ > 0

and
˛

˛

˛

˛

Z −π+δ

δ

eRt sin ϕdϕ

˛

˛

˛

˛

≤ πe−Rt sin δ,

we obtain B → 0 as R→ +∞. For proving (13.43) in the case where t < 0, we use
a similar argument based on

Z

C+

e−itz

z + εi
dz = 0.

Proof. Let t �= 0. In order to prove Theorem 13.8, we start with the decomposition

1

(p0)2 − (Ep − εi)2
=

1

2Ep

„

1

p0 − Ep + εi
− 1

p0 + Ep − εi

«

.
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By the key formula (13.43) along with the substitution z = p0 − Ep, we get

Z

R

e−iEpt

p0 − Ep + εi
dp0 = −2πiθ(t)e−iEpt e−εt.

Similarly, we obtain

−
Z

R

eiEpt

p0 + Ep − εi
= 2πiθ(−t)eiEpteεt.

Hence the regularized Feynman function reads as

GF,ε,mph(x) =
i

(2π)4

Z

R

dp0
X

p∈G(N)

Δ3p
e−ipx

(p0)2 − (Ep − εi)2
.

Finally, note that (p0)2 − (Ep − εi)2 = p2 −m2
ph + εpi. �

Definition of the regularized discrete electron propagator. Let ε > 0.
Motivated by Sect. 13.4.1, we define the regularized discrete electron propagator
by setting SF,ε(x, y) := SF,ε(x− y) where

SF,ε(x) := (iγμ∂μ + me)GF,ε,me(x)

for all space-time points x, y with different times t �= s.
Definition of the regularized discrete positron propagator. Similarly,

we set

Pαβ
F,ε(x, y) := −Sβα

F,ε(y − x), α, β = 0, 1, 2, 3.

13.4.3 The Continuum Limit of Feynman Propagators

Physics does not depend on the choice of the discretization method.
The golden heuristic rule

The regularized discrete photon propagator Dμν
F,ε,mph

and the regularized discrete

electron propagator Sμν
F,ε will enter the Feynman rules in Chap. 14.

This way, we will obtain well-defined expressions in each order of pertur-
bation theory.

However, observe that these propagators depend on the choice of the grid G(N) in
the momentum space introduced in Sect. 12.1.1. From the physical point of view,
it is quite natural to study the limit

G(N)→ R
3 (13.44)

where the grid G(N) passes over to the 3-dimensional continuous momentum space
R

3. It is our goal to obtain the formulas

Dμν
F = −ημνGF ,

and

SF = (iγμ∂μ + me)GF,me
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for the Feynman photon propagator distributions Dμν
F and the Feynman electron

propagator distribution SF . Here, GF and GF,me denote the Feynman propagator
distribution for the wave equation and the Klein–Gordon equation, respectively,
defined in (13.51) on page 868. All of these distributions are tempered distributions
on the space-time manifold R

4, that is, they live in the space S ′(R4). Let us discuss
the basic ideas.

Step 1 : Low-energy limit Δ3p→ 0. Fix the maximal momentum Pmax of the grid
G(N), and let the volume of the grid cells go to zero, L→ 0. This corresponds to
the limit Δ3p→ 0. Motivated by Theorem 13.8, the definition of the truncated
Feynman propagator Dμν

F,ε,mph,Pmax
(x) reads as

Dμν
F,ε,mph,Pmax

(x) := − iημν

(2π)4

Z

R

dp0

Z

|p|≤Pmax

d3p
e−ipx

p2 −m2
ph + εpi

.

This integral exists for all space-time points x ∈ R
4.

Step 2 : High-energy limit Pmax → +∞. Formally, we get

Dμν
F,ε,mph,∞(x) := − iημν

(2π)4

Z

R

dp0

Z

R3
d3p

e−ipx

p2 −m2
ph + εpi

. (13.45)

This tells us that the Fourier–Minkowski transform of DF,ε,mph,∞ is given by

(FMDF,ε,mph,∞)(p) = − iημν

(2π)2(p2 −m2
ph + εpi)

(13.46)

for all p ∈ R
4. However, this is only a formal argument, since the Fourier

integral (13.45) does not exist, in the classical sense. The trouble is that the
integrand decays too slowly for large energies, |p| → ∞.

To overcome this difficulty in a quite natural way, we will use the theory of tempered
distributions together with the Fourier–Minkowski transform (see Sects. 11.3 and
14.1 of Vol. I). Let us discuss this. Recall first that, for each function g ∈ S(R4),
the Fourier–Minkowski transform FMg is given by

(FMg)(p) :=
1

(2π)2

Z

R4
eipxg(x) d4x, p ∈ R

4 (13.47)

with px := p0t− px. The inverse Fourier–Minkowski transformation reads as

g(x) :=
1

(2π)2

Z

R4
e−ipx(FMg)(p) d4p, x ∈ R

4.

The map FM : S(R4)→ S(R4) is linear and bijective. For each tempered distribu-
tion T ∈ S ′(R4), the Fourier–Minkowski transform is defined by

(FMT)(ϕ) = T(FMϕ)

for all test functions ϕ ∈ S(R4). The induced map FM : S ′(R4) → S ′(R4) is
linear and bijective. The function from (13.46) is locally integrable. Therefore, it
represents a tempered distribution T given by

T(ϕ) := − iημν

(2π)2

Z

R4

ϕ(p)

p2 −m2
ph + εpi

d4p
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for all test functions ϕ ∈ S(R4). Using the inverse Fourier–Minkowski transforma-
tion for tempered distributions, we define

Dμν
F,ε,mph,∞ := F−1

M (T) (13.48)

for all test functions ϕ ∈ S(R4). The tempered distribution Dμν
F,ε,mph,∞ is called the

regularized Feynman propagator distribution for photons. It follows from (13.48)
that

Dμν
F,ε,mph,∞(ϕ) = − iημν

(2π)4

Z

R4

 

Z

R4

e−ipx

p2 −m2
ph + εpi

d4p

!

ϕ(x)d4x

for all test functions ϕ ∈ S(R4), and all indices μ, ν = 0, 1, 2, 3.

Proposition 13.9 In the sense of tempered distributions on R
4, we have the limit

relation
lim

(ε,mph)→+(0,0)
� Dμν

F,ε,mph,∞ = iημνδ,

where δ denotes the Dirac delta distribution.

The limit refers to sequences of pairs (ε,mph) with ε > 0 and mph > 0. We
will show below that the much stronger result holds: it is possible to define the
Feynman propagator distribution for photons, Dμν

F , in such a way that

� Dμν
F = iημνδ,

and the definition of Dμν
F is independent of the choice of the regularization method.

Proof of Proposition 13.9. By definition, for a sequence (Tn), of tempered dis-
tributions Tn, the convergence

lim
n→∞

Tn = T

is equivalent to limn→∞ Tn(ϕ) = T(ϕ) for all test functions ϕ ∈ S(R4). Since the
Fourier–Minkowski transform respects the convergence of tempered distributions,
we have to show that

lim
(ε,mph→+(0,0)

FM (� DF,ε,mph,∞) = iημνFM (δ).

Note that, in the Fourier space, the wave operator � corresponds to the multiplica-
tion with the factor −p2 = −(p0)2 +p2, and δ corresponds to the function 1/(2π)2.
Therefore, it remains to show that

lim
(ε,mph)→+(0,0)

Z

R4

p2ϕ(p)d4p

p2 −m2
ph + εpi

=

Z

R4
ϕ(p)d4p.

Obviously, this is true. In this connection recall that E2
p := p2 + m2

ph, and observe
that the denominator

(p0)2 − (Ep − εi)2 = p2 −m2
ph + εpi

is different from zero if ε > 0 and mph > 0. �
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The importance of the Feynman propagator as an inverse differential
operator. For quantum field theory, it is crucial that the Feynman propagator
represents an inverse differential operator, in some sense. This is responsible for
the surprising success of the Feynman functional integral method in quantum field
theory, as we will show in Vol. IV. The classical background is the Gaussian integral
formula

Z

Rn

e−
1
2
〈x|Ax〉e〈J|x〉 dnx

(2π)n/2
= e

1
2
〈J|A−1J〉 (detA−1)1/2 (13.49)

where A denotes a real nonsingular symmetric (n×n)-matrix, and J ∈ R
n. Explic-

itly,

〈x|Ax〉 =

n
X

j,k=1

ajkx
jxk, 〈J |x〉 =

n
X

k=1

Jkxk.

Note that the value of the integral (13.49) depends essentially on the inverse opera-
tor A−1. The Feynman functional integral can be viewed as an infinite-dimensional
version of (13.49) where

• 〈x|Ax〉 corresponds to the action integral of the classical field, and
• the differential operator A corresponds to the Euler–Lagrange equation of the

classical field.

Consider first a simple finite-dimensional model. For the diagonal matrix

A =

 

p1 0

0 p2

!

with nonzero numbers p1, p2, the inverse matrix is given by

A−1 =

 

1
p1

0

0 1
p2

!

.

In the singular case where p1 = 0 and , say, p2 �= 0, we can regularize the situation
by replacing p1 = 0 with the small positive number ε.

In the infinite-dimensional case of differential operators, this method can be
generalized by using the Fourier–Minkowski transform. Let us discuss this.

Step 1 : Formal Fourier–Minkowski transformation. Consider the wave equation

� GF = −iδ

on the 4-dimensional space-time manifold. By Fourier–Minkowski transforma-
tion, we obtain the relation FM (� GF ) = −iFM (δ). Hence

((p0)2 − p2)FM (GF ) =
i

(2π)2
.

This yields

FM (GF )(p) =
i

(2π)2p2
.

Formally, in the Fourier space the differential operator � corresponds to the
multiplication by −p2, and the Feynman function GF corresponds to the inverse
operation. Hence
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GF (x) =
1

(2π)2

Z

R4

i

(2π)2p2
e−ipx d4p. (13.50)

Symbolically, let us write

GF = (�)−1(−iδ).

However, there arises the following serious problem. The equation p2 = 0, that
is,

(p0)2 − p2 = 0

has the real solutions p0 = ±|p| which correspond to the photon energy. There-
fore, the Fourier–Minkowski transform FM (GF ) has singularities. In addition,
the Fourier integral (13.50) does not exist in the classical sense, since the in-
tegrand decays too slowly at infinity. This is related to the fact that, for given
smooth function f , the classical wave equation

� G = f

has an infinite number of solutions which depend on both the initial values of
G and the partial time derivative Gt at the initial time t = 0.

Step 2 : Regularization. As discussed above, to overcome the trouble we replace the
Fourier–Minkowski transform FM (GF ) by the regularized Fourier–Minkowski
transform

i

(2π)2
· 1

(p0)2 − (Ep − εi)2

with Ep :=
q

p2 + m2
ph and ε > 0,mph > 0. In addition, the inverse Fourier–

Minkowski transform is to be understood in the sense of tempered distributions.

Observe that there exist many possibilities for choosing the regularization of the
Fourier–Minkowski transform. There arises the question whether it is possible to
define the Feynman propagator in such a way that it is independent of the special
choice of the regularization procedure. This is possible, as we will show in Vol. IV.
At this point, let us only sketch the basic ideas.

The Feynman propagator distributions. We define the following tempered
distributions:

(i) The Feynman propagator distribution for the wave equation:

GF (x) :=
i

(2π)2

Z

R4

1

(2π)2(p2 + 0+i)
e−ipx d4p. (13.51)

(ii) The Feynman propagator distribution for the Klein-Gordon equation with mass
m > 0:

GF,m(x) :=
i

(2π)2

Z

R4

1

(2π)2(p2 −m2 + 0+i)
e−ipx d4p. (13.52)

(ii) The Feynman propagator distribution for photons: For μ, ν = 0, 1, 2, 3, we set

Dμν
F := −ημνGF . (13.53)
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(iii) The Feynman propagator distribution for electrons: We set

SF := (iγμ∂μ + me)GF,me . (13.54)

Explicitly, we have

SF =
i

(2π)2

Z

R4

γμpμ + meI

(2π)2(p2 −m2
e + 0+i)

e−ipx d4p.

These mnemonical formulas are to be understood in the following sense. The tem-
pered distribution GF is the inverse Fourier–Minkowski transform of the tempered
distribution

1

(2π)2(p2 + 0+i)
. (13.55)

This distribution is defined by combining regularization, analytic continuation, and
limits of tempered distributions. More generally, our goal is to construct tempered
distributions denoted by

Tλ =
1

(p2 −m2 + 0+i)λ
(13.56)

for each mass parameter m ≥ 0 and each complex exponent λ different from
−2,−3, . . . To this end, fix the regularization parameter ε > 0, and the positive
exponent λ > 0. For each complex point z in the open upper half-plane, �z > 0,
we choose the argument 0 < arg z < π, and we set

zλ := eλ(ln |z|+i arg z).

In this sense, for each test function ϕ ∈ S(R4), the integral

Tλ,ε(ϕ) :=

Z

R4
(p2 + εi

4
X

j=1

(pj)2)λϕ(p)d4p

is well-defined. The function
λ �→ Tλ,ε(ϕ)

can be analytically continued to a function which is holomorphic on the punctured
complex plane C \ {−2,−3,−4, ...}. For these λ-values, the limit

Tλ(ϕ) := lim
ε→+0

Tε,λ(ϕ)

exists for all ϕ ∈ S(R4). This way, we obtain the desired tempered distributions
from (13.56). Let us summarize the Fourier–Minkowski transform of propagators:

(i) Feynman propagator of the wave equation:

(FMGF )(p) =
i

(2π)2(p2 + 0+i)
.
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(ii) Feynman propagator of the Klein–Gordon equation with mass m > 0 :

(FMGF,m)(p) =
i

(2π)2(p2 −m2 + 0+i)
.

(iii) Feynman propagator of photons:

(FMDμν
F )(p) = − iημν

(2π)2(p2 + 0+i)
, μ, ν = 0, 1, 2, 3.

(iv) Feynman propagator of electrons:

(FMSF )(p) =
i(γμpμ + meI)

(2π)2(p2 −m2
e + 0+i)

.

Using the inverse Fourier–Minkowski transform, it can be shown that the Feynman
propagator distribution for photons has the following form:

Dμν
F = −ημν

4π2
· 1

x2 + 0+i
, μ, ν = 0, 1, 2, 3.

This is a tempered distribution on the space-time R
4 which is defined as (13.56).

Here, we have to replace p2 = (p0)2 − p2 by x2 = t2 − x2.
Fundamental solutions. For a linear differential operator L with constant

coefficients, consider the equation

LU = δ

in the sense of tempered distributions. Each solution U is called a tempered funda-
mental solution of L. Interestingly enough, the Feynman propagators for photons
and electrons are tempered fundamental solutions of the wave equation and the
Dirac equation, up to normalization factors. Explicitly, we get the following:

(i) The Feynman propagator distribution for the wave equation: � GF = −iδ.
(ii) The Feynman propagator distribution for the Klein-Gordon equation with mass

m > 0: (� + m2) GF,m = −iδ.
(iii) The Feynman propagator distribution for photons: � Dμν

F = iημνδ. Here, the
indices μ, ν run from 0 to 3.

(iv) The Feynman propagator distribution for electrons:

(iγμ∂μ −me)SF = iIδ.

13.4.4 Classical Wave Propagation versus Feynman Propagator

Propagation of quantum effects differs substantially from classical physics.
Folklore

The Feynman propagator distribution GF for the wave equation allows the following
representation:

GF = Gret − G− = Gadv + G+.

This shows that the Feynman propagator distribution differs from both the clas-
sical retarded propagator distribution Gret and the classical advanced propagator
distribution Gadv of the wave equation. This tells us that
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Quantum wave propagation governed by the Feynman propagator distribu-
tion differs from classical wave propagation.

Let us discuss this. The tempered distributions Gret,Gadv,G
± can be characterized

by their Fourier–Minkowski transforms:

FMGret =
1

4π2
lim

ε→+0

i

(p0 + iε)2 − p2
,

FMGadv =
1

4π2
lim

ε→+0

i

(p0 − iε)2 − p2

and

FMG± = ±θ(±p0)

2π
δ(p2). (13.57)

These symbols are to be understood in the following way. The limit ε→ +0 refers
to the convergence of tempered distributions. Explicitly, for all test functions ψ in
the function space S(R4), we get

FMGret(ψ) =
1

4π2
lim

ε→+0

Z

R4

iψ(p)

(p0 + iε)2 − p2
d4p, (13.58)

and

FMG+(ψ) : =

Z ∞

0

Mp0(ψ)p0dp0,

FMG−(ψ) : =

Z 0

−∞
M−p0(ψ)(−p0)dp0

along with the spherical mean value

Mr(ψ) :=

Z

|p|=r

ψ(p, p0)dSr.

Here, dSr refers to the surface measure on the sphere of radius r in the p-space. Let
us discuss in which sense the symbol (13.57) (taken from the language of physicists)
implies mnemonically the formula (13.58). To begin with, let a > 0. Recall the
formula

δ(a2 − x2) =
δ(x− a)

2a
+

δ(x + a)

2a
, x ∈ R

(see Sect. 11.2.4 of Vol. I). Hence

δ(p2) = δ((p0)2 − |p|2) =
p0 − |p|

2p0
+

p0 + |p|
2p0

.

To compute the integral

Gret(ψ) =

Z

R4

θ(p0)

2π
δ(p2)ψ(p) d4p,

we use spherical coordinates, that is, d4p = dp0(r2drdΩ) with r := |p| and the solid
angle Ω. Then, Gret(ψ) is equal to
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�
x

�t

L+

L−

C+

C−

Fig. 13.3. Light cone

Z ∞

0

dp0

4πp0

Z

|p|<∞
δ(p0 − |p|)ψ(p, p0)|p|2d|p|dΩ

=

Z ∞

0

dp0

4πp0

Z

|p|=p0
ψ(p, p0)(p0)2dΩ =

Z ∞

0

Mp0(ψ)p0dp0.

For the following, let us change the notation. Replace the momentum 4-vector
p = (p, p0) by the space-time point x = (x, t). In terms of mathematics, the symbol
1
2π

δ(x2) is a tempered distribution on R
4 which corresponds to a measure μ on the

light cone
L = L+ ∪ L−

with the forward light cone L+ := {(x, t) ∈ R
4 : |x| = t, t ≥ 0} (Fig. 13.3) and

the backward light cone

L− := {(x, t) ∈ R
4 : |x| = −t, t ≤ 0}.

Explicitly,
Z

L

ψdμ :=

Z ∞

0

Mt(ψ)tdt +

Z 0

−∞
M−t(ψ)(−t)dt.

Instead of
R

L
ψdμ we also write

R

R4
1
2π

δ(x2)d4x. Mnemonically, physicists use the
following formulas for the Fourier–Minkowski transform considered above:

Gret(x) =
i

(2π)4

Z

R4

e−ipx

(p0 + 0+i)2 − p2
d4p,

Gadv(x) =
i

(2π)4

Z

R4

e−ipx

(p0 − 0+i)2 − p2
d4p,

and

G±(x) = ± 1

(2π)3

Z

R4
θ(±p0)δ(p2)e−ipx d4p.

Let us now explain the meaning of the tempered distributions Gret,Gadv,G
± in

terms of fundamental solutions of the wave equation.

(i) The retarded propagator distribution: There exists precisely one tempered dis-
tribution Gret ∈ S ′(R4) such that the wave equation

� Gret = −iδ on R
4

is satisfied, and the support of Gret is contained in the forward light cone L+.
Explicitly,

Gret =
θ(t)

2πi
δ(x2).
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This means that

Gret(ψ) =
1

i

Z ∞

0

Mt(ψ)tdt, ψ ∈ S(R).

(ii) The advanced propagator distribution: By the time reflection t �→ −t, the
retarded propagator distribution, Gret, is transformed into the advanced prop-
agator distribution, Gadv ∈ S ′(R4). This tempered distribution is uniquely
determined by the fact that the wave equation

� Gadv = −iδ on R
4

is satisfied, and the support of Gadv is contained in the backward light cone
L−. Explicitly,

Gadv =
θ(−t)
2πi

δ(x2).

This means that

Gadv(ψ) =
1

i

Z 0

−∞
M−t(ψ)(−t)dt, ψ ∈ S(R).

(iii) The Jordan–Pauli distribution: The tempered distribution

G := Gret − Gadv (13.59)

is called the Jordan–Pauli distribution. Explicitly, we obtain

G =
sgn t

2πi
δ(x2).

Using the tempered distributions G+ and G−, it turns out that

G = G+ + G−. (13.60)

Furthermore, �G± = �G = 0 on R
4. The two decompositions (13.59) and

(13.60) of the Jordan–Pauli function G are dual to each other in terms of the
Fourier–Minkowski transform. This is to be understood in the sense of the
formulas

Gret =
θ(t)

2πi
δ(x2), Gadv =

θ(−t)
2πi

δ(x2)

and the following formulas for the Fourier–Minkowski transform

FMG± = ±θ(±p0)

2π
δ(p2).

We are speaking of propagator duality. The decomposition

GF = Gret − G− = Gadv + G+

shows that the Feynman propagator GF is obtained by mixing of propagator
duality.

Perspectives. The Feynman propagators play a fundamental role in the ap-
proaches to quantum field theory by using

• the Dyson S-matrix operator,
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• the method of moments (Green’s functions and the LSZ reduction formalism),
and

• the Feynman functional integral.

These three apparently different methods are indeed equivalent. This will be thor-
oughly studied in Vol. IV on quantum mathematics.

Historical remarks The role of highly singular Green functions for linear
hyperbolic partial differential equations was systematically studied by Hadamard
(regularization of divergent integrals) and Marcel Riesz (method of analytic con-
tinuation). For this, we recommend:

J. Hadamard, The Initial-Value Problem for Linear Hyperbolic Partial
Differential Equations, Hermann, Paris, 1932 (in French).

M. Riesz, The Riemann–Liouville integral and the initial-value problem,
Acta Math. 81 (1948), 1–223 (in French).

Hints for further reading. The modern formulation of Hadamard’s theory in
terms of tempered distributions and its applications can be found in the following
monographs:

I. Gelfand and G. Shilov, Generalized Functions, Vol. I, Chap. 3, Academic
Press, New York, 1964.

Yu. Egorov, A. Komech, and M. Shubin, Elements of the Modern Theory
of Partial Differential Equations, Springer, New York, 1999.

P. Günther, Huygens’ Principle and Hyperbolic Differential Equations,
Academic Press, San Diego, 1988.

C. Bär, N. Ginoux, and F. Pfäffle, Wave Equations on Lorentzian Mani-
folds and Quantization, European Mathematical Society, 2007.

The latter monograph emphasizes the relations between the classical theory and
modern applications to quantum field theory. We also recommend:

P. Günther, Huygens’ principle and Hadamard’s conjecture, Math. Intel-
ligencer 13 (1991), 56–63.

R. Radzikowski, Micro-local approach to the Hadamard condition in quan-
tum field theory on curved space-time. Commun. Math. Phys. 179 (1996),
529–553.

The explicit relations between Green’s functions (Feynman propagators) and quan-
tum field theory in terms of tempered distributions are studied in:

N. Bogoliubov and D. Shirkov, Introduction to Quantum Field Theory,
Interscience, New York, 1980.

N. Bogoliubov and D. Shirkov, Quantum Fields. Lectures given at the
Moscow Lomonosov University, Benjamin, Reading, Massachusetts, 1983.

G. Scharf, Finite Quantum Electrodynamics: the Causal Approach, Sprin-
ger, Berlin, 1995.

See also Gelfand and Shilov (1964), Vol. 1, above, and A. Komech, Linear Partial
Differential Equations with Constant Coefficients, pp. 121–256. In: Egorov, Komech,
and Shubin (1999) above. Much material can be found in:

N. Ortner and P. Wagner, A survey on explicit representation formulas for
fundamental solutions of partial differential operators, Acta Applicandae
Mathematicae 47 (1997), 101–124.

N. Ortner and P. Wagner, Distribution-Valued Analytic Functions: The-
ory and Applications, Lecture Notes 37/2008, Max Planck Institute for
Mathematics in the Sciences, Leipzig, 2008.
Internet: http://www.mis.de/preprints



14. The Beauty of Feynman Diagrams in QED

Whoever understands Feynman diagrams can understand everything in
quantum field theory.

Folklore

In elementary particle physics, physicists use the highly intuitive language of Feyn-
man diagrams as a universal tool. It is crucial to know that the geometric Feynman
diagrams come from well-defined analytic expressions generated by applying the
Wick theorem to the Dyson series.

The Feynman rules translate the Feynman diagrams into the corresponding
analytic expressions and vice versa.

The following section is crucial for understanding the language of physicists used in
elementary particle physics. The simple basic idea behind Feynman diagrams can
be found in Sect. 13.2. We are going now to consider the general case.

For the convenience of the reader, we will only use expressions which are
well-defined in terms of mathematics.

However, the notation is chosen in such a way that our language is very close to
the language used by physicists. For mnemonical reasons, physicists do not hesitate
to use ill-defined formulas like divergent integrals and the square, δ(x)2, of Dirac’s
delta function. In Sect. 12.6.1 of Vol. I, we have shown that it is impossible to define
a reasonable product for all distributions (the counterexample of Laurent Schwartz).
However, based on the principle of causality and the notion of the wave front set,
there exists a subclass of distributions for which the product is well defined. This
is the starting point of the Epstein–Glaser approach to quantum electrodynamics.
The computation of scattering processes on the time interval [−T

2
, T

2
] is governed

by the transition probabilities

W(T ) := |〈Φout|S(T )Φin〉|2. (14.1)

To this end, we have to compute the transition amplitude

〈Φout|S(T )Φin〉.

Recall from Sect. 13.1 that, in Nth order approximation, Dyson’s S-matrix

S(T ) = I +
N
X

n=1

Sn(T )

is given by S1(T ) :=
R T/2

−T/2
V(t)dt and
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Sn(T ) :=
1

n!

Z T/2

−T/2

· · ·
Z T/2

−T/2

T (V(t1) · · ·V(tn)) dt1 · · · dtn

for n = 2, 3, . . . together with

V(t) :=

Z

C(L)

: V(x, t) : d3x

and

V(x) := ieψ(x)γμA
μ(x)ψ(x).

Here, ψ,Aμ denote free fields, and x = (x, t). Moreover, the electron has the electric
charge −e.1 In general, incoming particles are described by the following normalized
states

Φin =
(a+

p1,s1)
n1

√
n1!

· · ·
(a+

pA,sA
)nA

√
nA!

b+q1,σ1 · · · b
+
qB ,σB

c+r1,τ1 · · · c
+
rC ,τC

|0〉

which correspond to photons, electrons, and positrons. Similar expressions are used
for Φout. For the transition amplitude, we get

〈0| . . . S(T ) . . . |0〉 (14.2)

where . . . represent products of creation operators for incoming and outgoing par-
ticles.

Perturbation theory uses the approximation I+S1+. . .+SN of the S-matrix
S in N th order.

For computing physical processes via Feynman diagrams, the crucial Feynman rules
are summarized in Table 14.5 on page 897. In this chapter, we explain how these
very convenient Feynman rules arise from the Dyson series by applying the Wick
theorem. For example, this should help the reader to understand the appearance
and the size of the appropriate symmetry factors.

14.1 Compton Effect and Feynman Rules in Position
Space

The transition amplitudes (14.2) are computed by means of the Main Wick Theorem
13.2 on page 846. This leads to the Feynman rules from Table 14.5 on page 897.
To illustrate this, let us consider a typical example, namely, the scattering process
between one photon and one electron (Compton scattering) in second order. In this
case, the normalized incoming state

Φin := a+
p,sb

+
q,σ|0〉

consists of one photon having the momentum vector p and the polarization number
s = 1, 2, along with one electron having the momentum vector q and the spin
number σ = ± 1

2
. Similarly, the normalized outgoing state

1 Recall that, by our convention (10.17), we work in the energetic system of phys-
ical units, that is, c = � = ε0 = μ0 = 1. Using the notation introduced in Sect.
13.1, we have V(t) = −iHint.
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Φout := a+
p′,s′b

+
q′,σ′ |0〉

consists of one photon having the momentum vector p′ and the polarization num-
ber s′ = 1, 2, along with one electron having the momentum vector q′ and the
spin number σ′ = ± 1

2
. In order to simplify notation in the following, we suppress

polarization and spin indices, that is, we write

a+
p , a

−
p′ , b

+
q , b

−
q′

instead of a+
p,s, a

−
p′,s′ , b

+
q,σ, b

−
q′,σ′ , respectively. We also write S instead of S(T ). It is

our goal to compute the following transition amplitude

τ := 〈Φout|SΦin〉 = 〈0|a−p′b
−
q′Sa

+
p b

+
q |0〉.

In second-order approximation, we get

τ = 〈0|a−p′b
−
q′(I + S1 + S2)a

+
p b

+
q |0〉.

Here, we set S0 := I along with

S1 :=

Z

Ω

d4x : ieψ(x)γμA
μ(x)ψ(x) :

and

S2 := 1
2
T
Z

Ω×Ω

d4xd4y : ieψ(x)γμA
μ(x)ψ(x) : : ieψ(y)γνA

ν(y)ψ(y) : .

Here, Ω := [−T
2
, T

2
]×C(L), and x = (t,x). Furthermore, d4x = dt d3x. The operator

T organizes the time ordering of the integrand. Let us compute the single terms.

(i) Zero-order approximation: Naturally enough, we assume that the incoming par-
ticles are different from the outgoing particles. Hence

〈Φout|Φin〉 = 0.

This implies τ0 := 〈0|a−p′b
−
q′S0a

+
p b

+
q |0〉 = 0.

(ii) First-order approximation: Since S1 represents an operator product of three

factors ψ,Aμ, ψ, the transition amplitude

τ1 := 〈0|a−p′b
−
q′S1a

+
p b

+
q |0〉

contains an operator product of 2 + 3 + 2 factors. This is an odd number.
Therefore, τ1 = 0, by the Main Wick Theorem 13.2 on page 846.

(iii) Second-order approximation: Again by the Main Wick Theorem 13.2, the tran-
sition amplitude

τ2 := 〈0|a−p′b
−
q′S2a

+
p b

+
q |0〉

can be represented as the sum

τ2 = 1
2
(τ21 + τ22 + τ23 + τ24)

on pairings. This is represented graphically in Table 14.1(a)–(d) on page 879
by using the conventions introduced in Table 14.5 on page 897.
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Let us discuss this. Using the formula

τ2j := −e2

Z

Ω×Ω

ρ2j(x, y)d
4xd4y, j = 1, 2, 3, 4, (14.3)

we get the following expressions:

(a) Transition amplitude τ21 (Table 14.1(a)):

�21 := 〈0|a−p′b
−
q′ : ψ(x)γμA

μ(x)ψ(x) : : ψ(y)γνA
ν(y)ψ(y) : a+

p b
+
q |0〉.

(b) Transition amplitude τ22 (Table 14.1(b)):

�22 := 〈0|a−p′b
−
q′ : ψ(x)γμA

μ(x)ψ(x) : : ψ(y)γνA
ν(y)ψ(y) : a+

p b
+
q |0〉.

(c) Transition amplitude τ23 (Table 14.1(c)):

�23 := 〈0|a−p′b
−
q′ : ψ(x)γμA

μ(x)ψ(x) : : ψ(y)γνA
ν(y)ψ(y) : a+

p b
+
q |0〉.

(d) Transition amplitude τ24 (Table 14.1(d)):

�24 := 〈0|a−p′b
−
q′ : ψ(x)γμA

μ(x)ψ(x) : : ψ(y)γνA
ν(y)ψ(y) : a+

p b
+
q |0〉.

The symbols from (a)–(d) above are obtained systematically in the following way:

• Use only the pairings ψψ, ψψ, a−A, Aa+, and b−ψ, ψb+ (see page 880).

• Consider all completely paired expressions.

The Feynman graphs from Table 14.1(a)–(d) on page 879 are in one-to-one cor-
respondence to the analytical expressions (a)–(d) above. This method is a universal
one. It applies to all kinds of Feynman diagrams in quantum electrodynamics.

Justification. The key result is the Main Wick Theorem 13.2 on page 846.
The pairings of �21 are to be understood in the following sense:

�21(x, y) = b−q′ψ(x)γμa
−
p′A

μ(x)ψ(x)ψ(y)γνA
ν(y)a+

pψ(y)b+q .

Here, we use the time-ordered contractions defined by

B(x)D(y) = B(x)D(y) := CT (B(x)D(y)) = 〈0|T (B(x)D(y))|0〉.

Furthermore, we obtain the following product of time-ordered contractions:
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Table 14.1. Electron-photon scattering (Compton scattering)

Vertex diagrams

x
		

y
		

Composition of vertex diagrams:

τ2 = 1
2
(τ21 + τ22 + τ23 + τ24)

(a) τ21

	
�� x y

(b) τ22

x y
	

��

(c) τ23 = τ21

x y�

� �

(d) τ24 = τ22

x y�

� �

Normal forms: τ = τ21 + τ22

(a) τ21

	
�� x y

(b) τ22

x y
	

��

�22(x, y) = b−q′ψ(x)γμA
μ(x)a+

pψ(x)ψ(y)ψ(y)b+q γνa
−
p′A

ν(y).

Similarly,

�23(x, y) = −b−q′ψ(y)γμA
μ(x)a+

pψ(x)ψ(y)γνa
−
p′A

ν(y)ψ(x)b+q

where the sign is generated by an odd permutation of fermionic operators ψ,ψ.
Finally,

�24(x, y) = −b−q′ψ(y)γμa
−
p′A

μ(x)ψ(x)ψ(y)ψ(x)b+q γνA
ν(y)a+

p .

Since γμ, ψ, ψ are matrices, one has to read these equations with care. In fact, in
order to get the explicit expressions one has to use components. This will be done
below.

Furthermore, note that symmetry substantially simplifies the computation of
Feynman diagrams. As we will show below, we have
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τ23 = τ12, τ24 = τ22. (14.4)

Hence
τ = τ21 + τ22.

Thus, one has only to consider the Feynman diagrams (a) and (b) in Table 14.1 on
page 879. This is the basic idea behind normal forms of Feynman diagrams. The
proof of (14.4) is an immediate consequence of the symmetry relations

�23(x, y) = �21(y, x), �23(x, y) = �22(y, x). (14.5)

Mnemonically, this follows from interchanging x with y and using

ψ(x)ψ(y) = −ψ(y)ψ(x).

Intuitively, this reflects symmetry properties of the graphs from Table 14.1 on page
879, as will be discussed below.

Time-ordered pairings. It remains to discuss Table 14.5 on page 897. As a
typical example, let us show that

ψβ(x)b+q,s = 〈0|ψβ(x)b+q,s|0〉 = Nquq,se
i(qx−Eqt).

Proof. For the free electron field, we have the expression

ψ(x) :=
X′

q∈G(N),s=± 1
2

(b−q,suq,s ei(qx−Eqt) + c+q,svq,s e−i(qx−Eqt)) Nq

with x = (x, t). It follows from the anticommutation relation

b−q,sb
+
q,s = I − b+q,sb

−
q,s

along with b−q,s|0〉 = 0 that

〈0|b−q,sb
+
q,s|0〉 = 〈0|I|0〉〈0|0〉 = 1.

If (q′, s′) �= (q, s), then

b−q′,s′b
+
q,s = −b+q,sb

−
q′,s′ .

Hence 〈0|b−q′,s′b
+
q,s|0〉 = 0. Finally, c−q′,s′ |0〉 = 0 and (c+)†q′,s′ = c−q′,s for all q′, s′

implies that
〈0|c+q′,s′b

+
q,s|0〉 = 〈(c−q′,s′ |0〉)|b

+
q,s|0〉 = 0.

�

Similarly, we obtain the other expressions from Table 14.5 on 897. In addition,
observe the following peculiarities. By the Main Wick Theorem 13.2 on page 846,
we have to take all the completely paired expressions into account. However, some
of them vanish. In particular, the following pairings drop out:

• pairings between bosons and fermions, ψA, Aψ, ψA, Aψ;

• pairings inside a normal product, ψ(x)ψ(x);

• the pairings ψ(x)ψ(y) and ψ(x)ψ(y);

• pairings between creation and annihilation operators corresponding to different
particles.

Therefore, only the time-ordered pairings listed in Table 14.5 on page 897 have to
be taken into account.
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14.2 Symmetry Properties

It happens quite naturally that different graphs yield the same transition ampli-
tudes, by symmetry. This simplifies the computation of transition amplitudes. To
explain this, let us show that

τ23 = τ21. (14.6)

This is a consequence of the symmetry property (14.5) and the fact that the integral
(14.3) is invariant under a permutation of x and y. To prove (14.5), observe that
�21(x, y) is equal to

−b−q′ψ
α(x)(γμ)αβa

−
p′A

μ(x)ψβ(x)ψκ(y)(γν)κλA
ν(y)a+

pψ
λ(y)b+q .

By Table 14.5 on page 897, we get the following key relation

ψβ(x)ψκ(y) = −ψκ(y)ψβ(x).

On the other hand, �23(x, y) is equal to

−b−q′ψ
λ(y)(γμ)αβA

μ(x)a+
pψ

α(x)ψλ(y)(γν)κλa
−
p′A

ν(y)ψβ(x)b+q .

Changing variables,

x⇔ y, μ⇔ ν, α⇔ κ, β ⇔ λ,

we get the desired relation �21(x, y) = �23(y, x). Similarly, we obtain

τ24 = τ21.

Physical intuition. Table 14.1(a) on page 879 represents

• an incoming photon and an incoming electron at the vertex y,
• an outgoing photon and an outgoing electron at the vertex x, and
• a virtual electron moving from y to x.

Furthermore, Table 14.1(c) on page 879 describes

• an incoming photon and an incoming electron at the vertex x,
• an outgoing photon and an outgoing electron at the vertex y, and
• a virtual electron moving from x to y.

This is precisely Table 14.1(a) on page 879 by interchanging the role of the vertices
x and y. Since the two Feynman diagrams from Table 14.1(a) and Table 14.1(c)
describe the same physical situation, we expect that the corresponding transition
amplitudes coincide. Our rigorous proof for τ23 = τ12 given above shows that this
is indeed true.

Similarly, the two Feynman diagrams from Table 14.1(b) and Table 14.1(d)
represent the same physical situation. Therefore, we may restrict ourselves to the
normal forms from Table 14.1(a) and Table 14.1(b) by counting them twice.

The positron trick for Feynman diagrams. If we replace creation and anni-
hilation operators for electrons by creation and annihilation operators for positrons,
that is, if we use the substitution
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Table 14.2. Positron-photon scattering

Vertex diagrams

x
		

y
		

Composition of vertex diagrams:

τ2 = 1
2
(τ21 + τ22 + τ23 + τ24)

(a) τ21

�
�� x y

(b) τ22

x y
�

��

(c) τ23 = τ21

x y	

��

(d) τ24 = τ22

x y	

��

Normal forms: τ = τ21 + τ22

(a)

�
�� x y

(b)

x y
�

��

b±q,σ ⇒ c±q,σ,

then electron-photon scattering passes over to positron-photon scattering. From Ta-
ble 14.1 on page 879 we obtain Table 14.2. Here, the external electrons are replaced
by external positrons, by simply reversing the arrows. Mnemonically, physicists say
that:

Positrons are electrons running backward in time.

This very fruitful idea was introduced by Stueckelberg in the 1940s and extensively
used by Feynman in connection with Feynman diagrams.

In order to avoid any ambiguities, we always read Feynman diagrams from
right to left corresponding to increasing time.

14.3 Summary of the Feynman Rules in Momentum
Space

It is worth noting that the notation facilitates discovery. This, in a most
wonderful way, reduces the mind’s labors.

Gottfried Wilhelm Leibniz (1646-1717)
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Let us consider the Feynman diagrams of quantum electrodynamics in nth order
of perturbation theory. We want to study a fixed scattering process for given in-
coming and outgoing particles. As a prototype think of electron-photon scattering
(Compton effect) from Table 14.1 on page 879. To fix the terminology, we put the
physical system into a finite cubic box C(L) of side length L and volume2

V = L3.

The discrete volume element of the 3-dimensional momentum space is equal to

Δ3p =
(2π)3

V .

Let us observe the given scattering process during the time interval [−T
2
, T

2
] of

length T .

(i) Composition rule for vertex diagrams: Consider n numbered vertices

x1
q′

1
q1		

p1

· · ·
xn

q′
n

qn.		

pn

(14.7)

Construct all possible combinations in such a way that all the processes are
generated which fit the situation given by the prescribed incoming and outgoing
particles. This construction corresponds to all possible complete pairings of the
form

〈0|a−b−... : ψ(x1) �A(x1)ψ(x1) : · · · : ψ(xn) �A(xn)ψ(xn) : a+b+... |0〉,

similarly as in (14.3). By convention, the diagrams have to be read from right
to left for increasing time.

(ii) Normal forms: Two Feynman diagrams from (i) are called equivalent iff they
represent the same physical situation (up to a permutation of the vertices).
Select a complete family of inequivalent Feynman diagrams in a fixed, but
otherwise arbitrary manner. The members of this family are called the normal
forms of the Feynman diagrams from (i). To each normal form, assign the factor

m

n!
,

where m is the multiplicity of the normal form (i.e., the number of correspond-
ing equivalent Feynman diagrams). As a rule, m = n!. If there exist internal
symmetries of the normal form, than the multiplicity m can be less than n!.

2 Explicitly, the cube C(L) in 3-dimensional position space consists of all the points
(x1, x2, x3) ∈ R

3 with |xj | ≤ L for j = 1, 2, 3. The grid G(N) in 3-dimensional
momentum space consists of all the momentum vectors

p = p1i + p2j + p3k, pj = mjΔp, j = 1, 2, 3

where m1,m2,m3 are integers with |mj | ≤ N for j = 1, 2, 3, and Δp := 2π/L.
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(iii) Vertex x: Assign the factor3

ie(γμ)αβ · (2π)4 δdis(q
′ − q ± p)

where +p (resp. −p) refers to an outgoing (resp. incoming) photon at the vertex
x. Moreover, we use the following notation:
• 4-momentum vector q = (Eq,q) of the incoming fermion with the given

3-momentum vector q and the energy Eq :=
p

q2 + m2
e;

• 4-momentum vector q′ of the outgoing fermion;
• 4-momentum vector p = (ωp,p) of the incoming (resp. outgoing) photon

with the 3-momentum vector p and the energy ωp := |p|.
The properties of discrete Dirac functions are studied in Sect. 15.1.1 of Vol. I.
As we will discuss below, the appearance of the discrete Dirac delta function
ensures conservation of energy and momentum at each vertex.

(vi) External lines at the vertex x: Assign the following factors:4

Npe
μ
r (incoming or outgoing photon)

Nqu
β
q,s (incoming electron)

Nq′uα
q′,s′ (outgoing electron)

Nq′vα
q′,s′ (incoming positron)

Nqv
β
q,s (outgoing positron).

The normalization factors are given by

Np :=

s

1

2ωpV
, Nq :=

s

1

2EqV
.

(vi) Internal fermion line pointing from the vertex xk to the vertex xj : Assign the
semi-discrete integral

Z

R

dq0
X

q∈G(N)

Δ3q Sβjαk (q)

where

S(q) :=
i

(2π)4
· �q + meI

(q0)2 − (Eq − εi)2
(14.8)

along with �q := γμq
μ, the regularization parameter ε > 0, and the fermion

energy Eq :=
p

q2 + m2
e.

3 To simplify notation, we write x instead of xj . Similarly, we write p, q, μ, α, β, ...
instead of pj , qj , μj , αj , βj , ..., respectively.

4 For the definition of the Dirac spinors uq,s, vq,s with the spin number s = ± 1
2
, we

refer to (12.10) on page 807. Furthermore, recall that uq,s := u†
q,sγ

0. Analogously,
the symbol vq,s is related to vq,s. For the polarization vectors, we have s

er = e1
ri + e2

rj + e3
rk, e0

r = 0, r = 1, 2.

Here, the three vectors e1, e2, and p/|p| form a right-handed orthonormal sys-
tem.
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x
p′ p		

Fig. 14.1. Electron in an external electromagnetic field

(vii) Internal photon line connecting the two vertices xj and xk: Assign the semi-
discrete integral

Z

R

dp0
X

p∈G(N)

Δ3p Dμjμk(p)

where

Dμjμk (p) := − iημjμk

(2π)4
· 1

(p0)2 − (Ep − εi)2
(14.9)

along with the virtual photon mass mph > 0, the regularization parameter

ε > 0, and the regularized photon energy Ep :=
q

p2 + m2
ph.

(viii) External electromagnetic field at the vertex x: Assign the factor Aμ. Graph-
ically, an external electromagnetic field is represented by an external photon
line equipped with a cross. Fig. 14.1 shows the motion of an electron un-
der the influence of an external electromagnetic field with the four-potential
(A1, A2, A3, A0). The cross section for this process will be computed in Sect.
15.2 on page 914.

(ix) Furry’s rule: Consider a fermion loop consisting of l fermion lines. If l is even,
assign the factor (−1)l. If l is odd, the Feynman diagram can be cancelled,
since it does not contribute to the transition amplitude.

Justification of the Feynman rules. These rules are a simple consequence
of the rules from Table 14.5 on page 897 by carrying out the integrations in position
space. These integrations produce the discrete Dirac delta functions at the vertices.
The typical argument can be found in the proof of Example 14.3 on page 888.

Furry’s rule allows us to reduce positron lines to electron lines (plus an ad-
ditional sign). This rule depends on both the main Wick theorem and symmetry
properties for the trace of products of Dirac matrices. The proof of Fury’s rule will
be given in Problem 15.13.

14.4 Typical Examples

In terms of physics, Feynman propagators describe the propagation of
physical effects in quantum field theory by taking both causality and an-
tiparticles into account.
In terms of mathematics, Feynman propagators are distinguished funda-
mental solutions of the wave equation, the Klein–Gordon equation, and
the Dirac equation. In the Fourier space, Feynman propagators are inverse
differential operators, after regularization.

Folklore

Let us illustrate the Feynman rules by considering some examples.
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(a) τ21

	q
′′

��
q′ q

p′

x y

p

(b) τ22

q′′

q′ q

x y	

��

p′ p

Fig. 14.2. Crossing symmetry of Compton scattering

Example 14.1 (electron-photon scattering – Compton scattering). We are given

• an incoming photon with momentum vector p and polarization number r = 1, 2,
• an incoming electron with momentum vector q and spin number s = ± 1

2
,

• an outgoing photon with momentum vector p and polarization number r′ = 1, 2,
• and an outgoing electron with momentum vector q′ and spin number s′ = ± 1

2
.

We assume that the incoming particles are different from the outgoing particles.
By momentum conservation and energy conservation, we get

p′ + q′ = p + q, ωp′ + Eq′ = ωp + Eq.

The normal forms of the corresponding Feynman diagrams are pictured in Fig. 14.2.
Following the convention introduced by Dirac, the symbol

〈p′, r′;q′, s′|S(T )|p, r;q, s〉

stands for the following transition amplitude:

〈0|a−p′,r′b
−
q′,s′S(T ) a+

p,rb
+
q,s|0〉.

In second-order approximation, the transition amplitude

τ := 〈p′, r′;q′, s′|I + S1(T ) + S2(T ) |p, r;q, s〉

of Compton scattering is given by τ = τ21 + τ22 where

τ2j :=

Z

R

dq′′0
X

q′′∈G(N)

Δ3q′′ f2j(q
′′), j = 1, 2.

The integrand f21(q
′′) is equal to

− (2π)8e2

2V2√ωp′ωp
δdis(p

′ + q′ − q′′) δdis(q
′′ − p− q)

× uq′,s′
p

2Ep′
�er′ S(q′′) �er

uq,s
p

2Ep

.

Here, we set � er := eμ
r γμ. The matrix S(q′′) can be found in (14.8). Recall that

S0 = I and S1 do not contribute to the scattering amplitude. Hence

τ := 〈p′, r′;q′, s′|S2(T ) |p, r;q, s〉.

The integrand f22 is obtained from f21 by using the transformation
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(p, r)⇒ (−p′, r′), (p′, r′)⇒ (−p, r).

Intuitively, the incoming (resp. outgoing) photon is interchanged with an outgoing
(resp. incoming) photon. This symmetry property of the Feynman diagram depicted
in Fig. 14.2 above is called crossing symmetry.

Proof. Consider first τ21. Using the Feynman diagram from Fig. 14.2(a) above, it
follows from the Feynman rules in momentum space that

τ21 =

Z

R

dq′′0
X

q′′∈G(N)

Δ3q′′ f21(q
′′).

Here, the integrand f21(q
′′) is equal to

−e2Np′Nq′eμ1
r′ u

α1
q′,s′(γμ1)α1β1S

β1α2(q′′)(γμ2)α2β2u
β2
q,se

μ2
r NpNqg(q

′′)

along with

g(q′′) := (2π)8 δdiscrete(q
′′ − p′ − p′) · δdiscrete(p + q − q′′).

Argue similarly for τ22 related to Fig. 14.2(b) above. �

The following observation is crucial for the computation of the cross section in
Sect. 14.6. For large time intervals [−T

2
, T

2
] and vanishing regularization parameter,

ε = 0, the transition amplitude has the following asymptotic form, as T → +∞:

τ = − (2π)4ie2

4V2(ωp′ωpEq′Eq)1/2
· δdis(p

′ + q′ − p− q)×

×up′,s′Mu0,s · (1 + o(1))

with the matrix

M := es′
�q+ �p + me

(q + p)2 −m2
e

es + es
�q− �p ′ + me

(q − p′)2 −m2
e

es′ .

Furthermore, as T → +∞,

|τ |2
T

=
(2π)4e4

16V3ωp′ωpEq′Eq
· δdis(p

′ + q′ − p− q)×

×|uq′,s′Mu0,s|2 · (1 + o(1)).

(14.10)

Proof. We will critically use the properties of the discrete Dirac delta function (see
Sect. 12.1.2 of Vol. I). Obviously, the sum

X

q′∈G(N)

Δ3q′′ δG(N)(p
′ + q′ − q′′) · δG(N)(q

′′ − p− q)

is equal to δG(N)(p
′ +q′−p−q). By Prop. 12.1 on page 672 of Vol. I, as T → +∞,

we get
Z

R

dq′′0 δT (p′0 + q′0 − q′′0 ) · δT (q′′0 − p0 − q0) = δT (p′0 + q′0 − p0 − q0)(1 + o(1)),

and δdis(p)
2 = TV

(2π)4
· δdis(p)(1 + o(1)). �
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Table 14.3. Self-interaction of a photon

Vertex diagrams

x
		

y
		

Composition of vertex diagrams:

τ2 = 1
2
(τ21 + τ22)

(a) τ21

�

	x y

(b) τ22 = τ21

�

	x y

Normal form: τ2 = τ21

�

	x y

p′ pq

q′

Example 14.2 (positron-photon scattering). Replace the incoming and outgoing
electron in Example 14.1 by positrons. Then, we get the transition amplitudes τ21
and τ22 as above by using the replacement

uq,s ⇒ vq,s, uq′,s′ ⇒ vq′,s′ .

Example 14.3 (Self-interaction of a photon). Consider the interaction between

• one photon of momentum vector p and polarization number r and
• another photon of momentum vector p′ and polarization number r′ (see Table

14.3).

For the transition amplitude in second-order approximation, we are going to show
that

〈p′, r′|I + S1 + S2|p, r〉 = δp′p + τ2

along with

τ2 =

Z

R2
dq0dq

′
0

X

q,q′∈G(N)

Δ3qΔ3q′ f(q, q′).

The integrand f(q, q′) is given by

e2

2V

s

1

ωp′ωp
· δdis(p

′ + q′ − q) δdis(q − q′ − p)×

× tr(�es′S(q′) �esS(q)).
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The matrix S(q) can be found in (14.8) on page 884.

Proof. We will similarly argue as for the Compton scattering in Example 14.1. In
terms of creation and annihilation operators,

τ = 〈0|a−p′(S0 + S1 + S2)a
+
p |0〉

with S0 := I. Set τj := 〈0|a−p′Sja
+
p |0〉. Since the particle states a+

p,s|0〉 and a+
p′,s′ |0〉

are normalized, τ0 = δp′p. By the Wick Theorem 13.2, we get τ1 = 0, since there
appear five (i.e., an odd number) of factors. Again by Theorem 13.2 on page 846,
we obtain τ2 = 1

2
(τ21 + τ22) with

τ2j = −e2

Z

Ω×Ω

�2j(x, y)d
4xd4y.

Here,

�21(x, y) := 〈0|a−p′ : ψ(x)γμA
μ(x)ψ(x) : : ψ(y)γνA

ν(y)ψ(y) : a+
p |0〉,

and

�22(x, y) := 〈0|a−p′ : ψ(x)γμA
μ(x)ψ(x) : : ψ(y)γνA

ν(y)ψ(y) : a+
p |0〉.

�22(x, y) := 〈0|a−p′ : ψ(x)γμA
μ(x)ψ(x) : : ψ(y)γνA

ν(y)ψ(y) : a+
p |0〉.

Hence

�21(x, y) = a−p′A
μ(x)Aν(y)a+

p (γμ)αβ(γν)κλψ
α(x)ψλ(y)ψβ(x)ψλ(y)

and

�22(x, y) = a−p′A
ν(y)Aμ(x)a+

p (γμ)αβ(γν)κλψ
α(x)ψλ(y)ψβ(x)ψλ(y).

By Table 14.5 on 897, ψα(x)ψλ(y) = − ψλ(y)ψα(x). Hence

ψα(x)ψλ(y)ψβ(x)ψκ(y) = ψλ(y)ψα(x)ψκ(y)ψβ(x).

Using the replacement x⇔ y, μ⇔ ν, α, β ⇔ κ, λ, we get �21(x, y) = �22(y, x). This
implies τ12 = τ22. Consequently,

τ2 = τ21.

From Table 14.5 on page 897, we obtain5

5 The minus sign of −Sλα(y − x) is responsible for Furry’s rule in the present
situation.
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�21(x, y) = −e2Np′eip′xeμ
r′(γμ)αβ ×

×Sβκ(x− y)(γν)κλ(−Sλα(y − x))Npe
ν
re−ipy

along with the matrix

S(x) :=

Z

R

dq0
X

q∈G(N)

Δ3q S(q)e−iqx.

Using the trace of matrices, this can be elegantly written as

�21(x, y) = e2Np′Npeip′xe−ipy · tr(�er′S(x− y) �erS(y − x)).

The point is that the integration over x and y can be carried out explicitly in terms
of the discrete Dirac delta function. In fact, it follows from

Z T/2

−T/2

eip0tdt

Z

C(L)

e−ipxd3x = (2π)4δT (p0) · δG(N)(p)

that
1

(2π)4

Z

Ω

eipxd4x = δdis(p).

Hence the integral τ21 =
R

Ω×Ω
�21(x, y)d

4xd4y is equal to

Z

Ω×Ω

ei(p′+q′−q)x ei(q−q′−p)yf(q, q′, p, p′)d4xd4y

= (2π)8δdis(p
′ + q − q′) · δdis(q

′ − q + p)f(q, q′, p, p′). (14.11)

�

14.5 The Formal Language of Physicists

The Feynman rules summarized above pass over to the language used in physics in
the following way.

(D) Dirac delta function: Replace the discrete Dirac functions δT , δG(N), and

δdis(p) = δT (E) · δG(N)

by the corresponding formal Dirac functions E �→ δ(E), p �→ δ(p), and

δ(p) = δ(E) · δ(p).

(I) Integrals: Replace the discrete integral
P

p∈G(N) Δ
3p... by the integral

Z

R3
d3p...,

and replace the integral
R T

−T
dt... by the limit

R∞
−∞ dt... for T → +∞.

(S) Squares of the Dirac delta function:

δ(p)2 =
TV

(2π)4
· δ(p) for all p ∈ R

4. (14.12)
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electronϑ

photon

�er

�e′
r′

	
�

�

p
q′

p′

Fig. 14.3. Compton scattering

The point is that this formal translation is nice from the mnemonical point of view,
but it leads frequently to meaningless expressions. Physicists repair this defect by
using the method of renormalization theory.

Concerning (14.12), the following comment is in order. Laurent Schwartz proved
in 1954 that the square of the Dirac delta function does not exist as a distribution.
As a standard tool in scattering theory, formula (14.12) is used by physicists in a
mnemonic manner. We will show below that this formula is a consequence of our
rigorous lattice approach.

14.6 Transition Probabilities and Cross Sections of
Scattering Processes

Physicists measure real numbers in experiments. The theory has to predict
these numbers.

Folklore

In particle accelerators, physicists measure cross sections of scattering processes.
We want to show how cross sections can be computed by using Feynman diagrams.
The idea is to compute first the transition amplitudes by means of the Feynman
rules. This way, we get the transition probabilities which imply the cross sections
in a quite natural manner. Let us illustrate this by investigating electron-photon
scattering (Compton effect).

We consider a fixed inertial system with the right-handed orthonormal basis
i, j,k.

Compton effect. Let us consider electron-photon scattering in the following
special situation (Fig. 14.3):

• We work in the rest system of the incoming electron, i.e., we set q = 0. We
assume that the resting electron has the spin vector s�k with the spin number
s = ± 1

2
. The rest energy of the electron is equal to mec

2. Since we work in the
energetic system, � = c = 1.

• The incoming photon moves with the velocity c from right to left along the x-axis.
The photon has the momentum vector p = −pi with p > 0, the energy ωp = p,
and the transversal polarization vector er with r = 1, 2. Here, the vectors e1, e2,
and p/|p| form a right-handed orthonormal system.

• The incoming photon scatters the resting electron. The scattered (outgoing) elec-
tron has the momentum vector q′, the energy

Eq′ =
p

q′2 + m2
e,

and the spin vector s′�k with the spin number s′ = ± 1
2
.
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• The outgoing photon has the momentum vector p′, the energy ωp′ , and the po-
larization vector e′

r′ with the polarization number r′ = 1, 2. The vectors e′
1′ , e

′
2′ ,

and p′/|p′| form a right-handed orthonormal system. By definition, the scatter-
ing angle ϑ is the angle between the momentum vector p of the incoming photon
and the momentum vector p′ of the outgoing photon where −π

2
≤ ϑ ≤ π

2
(Fig.

14.3 above). Our final goal is the Klein–Nishina formula for the cross section of
the Compton scattering to be considered in (15.1) on page 899.

By conservation of momentum and energy, we get

p′ + q′ = p, Eq′ + ωp′ = me + ωp. (14.13)

For the energy ωp′ of the scattered photon, we obtain the key relation

ωp′ =
ωp

1 + η(1− cosϑ)
(14.14)

with η := (ωp/me). Here, ϑ denotes the scattering angle of the photon (Fig. 14.3
above). Indeed, for the energy of the scattered electron, we obtain

E2
q′ = (me + ωp − ωp′)2 = m2

e + 2me(ωp − ωp′) + (ωp − ωp′)2

and
E2

q′ = m2
e + q′2 = m2

e(p− p′)2 = m2
e + ω2

p + ω2
p′ − 2ωpωp′ cosϑ.

Hence ωpωp′(1− cosϑ) = me(ωp − ωp′).
Note that we investigate the scattering process in a cubic box C(L) of length

L and volume V = L3 during the time interval [−T
2
, T

2
].6 Moreover, the lattice in

momentum space is chosen in such a way that there exists a maximal momentum
Pmax with

|p| ≤ Pmax for all p ∈ G(N).

Recall that in Sect. 12.4.3 the construction of the creation operators

a+
p,r, b

+
q,s, a

+
p′,r′ , b

+
q′,s′

for the photons and electrons depends on the choice of the box C(L). By definition,
the state

a+
p,r|0〉

represents precisely the situation where one photon of momentum vector p and
polarization number r is in the box C(L).

Cross section. In a physical experiment, we consider a fixed resting electron
and a homogeneous stream of identical incoming photons described by the current
density

jin := c�

with the velocity of light, c = 1, and the particle density

� :=
Nin

V .

That is, there are Nin identical photons with momentum vector p and polarization
number r in the box C(L). Let Nout be the number of scattered photons during the
time interval [−T

2
, T

2
]. Define

6 The volume V of the box is called the normalization volume.
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σ(V, T, Pmax) :=
Nout

TVjin
.

This number has the physical dimension of area (in the SI system); it is called
the cross section of the scattering process, by physicists. This yields the mnemonic
formula

Nout = σ(V, T, Pmax) · TVjin.

Transition probability. By definition, the real number

W(T ) := |〈p′, r′;q′, s′|I + S1(T ) + S2(T )|p, s;0, s〉|2

is called the transition probability of the scattering process during the time interval
[−T

2
, T

2
]. Since the contributions of I and S1 drop out, we get

W(T ) := |〈p′, r′;q′, s′|S2(T )|p, r;0, s〉|2.

For the number of outgoing photons, we obtain

Nout =
X

p′,q′

1

2

X

s=± 1
2

W(T )Nin.

Here, we sum over all final particle states and we average over the two possible spin
positions s = ± 1

2
of the resting electron. More precisely, we use the summation

X

p′,q′

. . . =
X

p′,q′∈G(N)

VΔ3p′

h3
· VΔ

3q′

h3
. . . (14.15)

This is motivated by the following physical argument from quantum statistics. The
quantity

X

p′∈G(N)

VΔ3p′

h3

is a dimensionless real number; this normalized volume of the phase space is equal
to the number of particle states in the corresponding region of the phase space. In
addition, note that, in the case of Nout, we have to take both the outgoing photons
and electrons into account. Recall that h = 2π� = 2π in the energetic system.
Summarizing,

Nout =
X

p′,q′∈G(N)

VΔ3p′

h3
· VΔ

3q′

h3
· 1
2

X

s=
1
2

W(T )Nin.

This implies the following key formula for the cross section:

σ(V, T, Pmax) =
V3

(2π)6

X

p′,q′∈G(N)

a ·Δ3p′Δ3q′ (14.16)

with

a :=
1

2

X

s=± 1
2

|〈p′, r′;q′, s′|S2(T )|p, r;0, s〉|2
T

.
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14.7 The Crucial Limits

Naturally enough, we consider the following three limits:

L→ +∞, Pmax → +∞, T → +∞. (14.17)

That is, the box C(L) becomes the 3-dimensional space R
3 (i.e., the normalization

volume V = L3 becomes infinite), the maximal momentum Pmax becomes infinite,
and we observe the scattering process over the infinite time interval ]−∞,∞[. From
the physical point of view, we will regard the following three limits:

(H) High-energy limit: Pmax → +∞.

(L) Low-energy-limit: Δ3p = (2π)3

V → 0.
(T) Long-time limit: T → +∞.

In addition, we will carry out the following two limits:

(RE) Regularization of the electron propagator: ε→ +0.
(RP) Regularization of the photon propagator: mph → +0 (the virtual photon

mass goes to zero).

The asymptotic cross section. The cross section σ(V, T, Pmax) depends on
the volume V of the box, the time interval [−T

2
, T

2
], and the maximal momentum

Pmax. To free ourselves from this arbitrary choice, we consider the limit (14.17),
and we define the asymptotic cross section by

σ := lim
V,T,Pmax→+∞

σ(V, T, Pmax)

VT .

For physical reasons, we expect that this limit exists, at least in some generalized
sense.

Example 14.4 For the cross section of the Compton effect, we have

σ =
α2

8m2
e

Z

|p′|=1

„

ωp′

ωp

«2
X

s,s′=± 1
2

|uq′,s′Mu0,s|2 dΩp′ . (14.18)

Here, we introduce the surface measure differential dΩp′ = 2π cosϑ dϑ of the unit

sphere, the fine structure constant α = e2/4π = 1/137.04, and the matrix

M := es′
�q+ �p + me

(q + p)2 −m2
e

es + es
�q− �p ′ + me

(q − p′)2 −m2
e

es′ .

Naturally enough, we average over the two possible spin positions, s = ± 1
2
, of the

resting electron, and we sum over the two possible spin positions, s′ = ± 1
2
, of the

scattered electron. Observe that the asymptotic cross section, σ, s is independent
of both the time interval [−T

2
, T

2
] and the normalization volume V, as expected by

physicists.

Motivation. We will use conservation of energy and momentum from (14.13)
along with formal arguments based on the calculus for Dirac’s delta function. By
(14.10) and (14.16), as T → +∞, we get
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σ(V, T, Pmax) =
α2

2

X

p′,q′∈G(N)

Δ3p′Δ3q′

ωp′ωpEq′Eq
×

× δdis(p
′ + q′ − p− q) · |uq′,s′Muq,s|(1 + o(1)).

The three limits V, Pmax, T → +∞ send sums to integrals (resp. discrete Dirac
functions to Dirac functions). Formally, we obtain

σ =
α2

2

Z

p′,q′∈R3

d3p′d3q′

ωp′ωpEq′Eq
×

× δ(p′ + q′ − p− q) · |uq′,s′Muq,s|2.

Starting with the decomposition

δ(p′ + q′ − p− q) = δ(p′ + q′ − p− q) · δ(ωp′ + Eq′ − ωp − Eq),

where q = 0 and Eq = me, and carrying out the integration over the variable q′,
we get

σ =
α2

2

Z

R3

d3p′

ωp′ωpEq′me
· δ(ωp′ + Eq′ − ωp −me) · |uq′,s′Muq,s|2.

Here, q′ = p−p′. Using spherical coordinates and noting that ωp′ = |p′|, we obtain

d3p′ = ωp′dΩp′dωp′ . Hence

σ =
α2

2

Z ∞

0

dωp′

Z

|p′|=1

dΩp′

ωp′ωpEq′me
· δ(f(ωp)) · |up−p′,s′Muq,s|2

along with the function

f(ωp′) := ωp′ + Eq′ − ωp −me.

Furthermore, Eq′ =
p

m2
e + (p− p′)2 =

q

m2
e + ω2

p′ + ω2
p − ωp′ωp cosϑ. We now

use the following key relation for the Dirac delta function:

Z ∞

0

δ(f(x))g(x)dx =
g(x0)

|f ′(x0)|
. (14.19)

Here, the functions f, g : [0,∞] → R are smooth, and we assume that the positive
number x0 is the only zero of the function f (see Sect. 11.2.4 of Vol. I). By (14.14),
the equation f(ωp′) = 0 has the unique solution

ωp′ =
1

1 + (ωp/me)(1− cosϑ)
.

For the derivative,

f ′(ωp′) =
Eq′ + ωp′ − ωp cosϑ

Eq′
=

ωp + me − ωp cosϑ

Eq′
=

ωpme

Eq′ωp′
.

Now the claim (14.18) follows from (14.19).
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14.8 Appendix: Table of Feynman Rules

In the following two tables, we summarize both the Feynman rules and the formulas
for the discrete propagators. The details are explained in Sect. 14.3 on page 882.
The reader should note that we will use these tables again and again. In later
volumes we will use similar rules for computing processes in the Standard Model
in particle physics.

Table 14.4. Feynman propagators (lattice setting)

Regularized Feynman photon propagator
(mph virtual photon mass, ε > 0)

Dμν
F,ε,mph

(x) :=

Z

R

dp0
X

p∈G(N)

Δ3p Dμν(p)e−ipx

Dμν(p) := − iημν

(2π)4
· 1

(p0)2 − (Ep − εi)2

Regularized Feynman electron propagator
(me bare electron mass, ε > 0)

SF,ε(x) :=

Z

R

dp0
X

p∈G(N)

Δ3p S(p)e−ipx

S(p) :=
i

(2π)4
· �p + meI

(p0)2 − (Ep − εi)2

p := (p0,p), x := (t,x), px := p0t− px, �p := γμp
μ,

Ep :=
q

p2 + m2
ph , Ep :=

p

p2 + m2
e



Table 14.5. Feynman rules for Feynman diagrams (lattice setting)

particle pairing AB factor CT (AB) symbols

ie(γμ)αβ

Z

Ω

d4x... •x

vertex ie(γν)κλ

Z

Ω

d4x... • y

x := (t,x), Ω := [−T, T ]× C(L)

incoming photon Aν(y)a+
p,r Npe−ipy

y

y

outgoing photon a−
p,rA

μ(x) Npeipxeμ
r (p)

x

x

px := ωpt− px, ωp := |p|, Np :=
q

1
2L3ωp

, s = 1, 2

incoming electron ψλ(y)b+q,s Nqu
λ
q,se

−iqy � �
y

y

outgoing electron b−q,sψ
α(x) Nqu

α
q,se

iqx

� �
x

x

incoming positron ψκ(y)c+q,s Nqv
κ
q,se

−iqy

� �
y

y

outgoing positron c−q,sψ
β(x) Nqv

β
q,se

iqx � �
x

x

qx := Eqt− qx, Eq :=
p

q2 + m2
e, Nq =

q

1
2L3Eq

, σ = ± 1
2

virtual photon Aμ(x)Aν(y) Dμν
F,ε,mph

(x− y) x y

virtual electron ψβ(x)ψκ(y) Sβκ
F,ε(x− y)

	x y

virtual positron ψα(x)ψλ(y) −Sλα
F,ε(y − x)

�x y

global factor
for n vertices

1

n!
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We want to apply the method of Feynman diagrams to the following problems:

• the scattering of electrons and photons (Compton effect);
• scattering of particles in an external electromagnetic field;
• the spontaneous emission of photons by atoms, and
• the Cherenkov effect.

According to our convention formulated on page 790, we will work in the energetic
system with c = � = ε0 = μ0 := 1.

15.1 Compton Effect

The Compton effect lies at the heart of modern physics.
Folklore

Let us consider the scattering process between a resting electron and a homogenous
stream of incoming photons. We use the notation introduced in Sect. 14.6. The
goal is to compute the relation between the (asymptotic) cross section σ and the
scattering angle ϑ for the photon (see Fig. 14.3 on page 891). By convention, we
choose −π

2
≤ ϑ ≤ π

2
. Then

dΩ = 2π cosϑ dϑ

represents the surface measure differential on the unit sphere.
The Klein–Nishina formula. For the (asymptotic) cross section of the Comp-

ton effect in second order of perturbation theory, we get

σ =

Z

|p′|=1

f(ϑ)dΩp′ . (15.1)

Here,

f(ϑ) :=
r2

e

2

„

ωp′

ωp

«2„ωp′

ωp
+

ωp

ωp′
− sin2 ϑ

«

.

This 1929 Klein–Nishina formula is one of the most beautiful formulas in quantum
electrodynamics which goes beyond the classical theory of electromagnetism based
on the Maxwell equations. In particular, α = 1/137.04 is the fine structure constant,
me is the electron mass, and re = α/me is the so-called classical electron radius
which will be discussed below. The relation between the energies ωp and ωp′ of the
incoming and outgoing photons, respectively, is given by

ωp′ =
ωp

1 + η(1− cosϑ)
.
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�
η =

�ωp

mec2

�

1

σ
σclass

10−2 10−1 1 10 102 103

Fig. 15.1. Cross section for the Compton effect

Here, the dimensionless parameter η := ωp/me is the ratio between the energy of
the incoming photon and the energy of the resting electron. By convention, the total
cross section σ averages over both the spin of the electrons and the polarization of
the photons. Naturally enough, we write

dσ

dΩ
= f(ϑ).

The differential dσ = f(ϑ)dΩ is called the differential cross section of the Compton
effect. Explicitly,

σ =
8

3
· πr2

e

j„

3

8η
− 3

4η2
− 3

4η3

«

ln(1 + 2η) +
3(1 + η)

4(1 + 2η)2
+

6

4η2

ff

.

For small photon energies (i.e., small parameters η = ωp/me), we get the asymp-
totic formula1

σ =
8

3
· πr2

e

„

1− 2η +
312

60
η2 + . . .

«

, η → 0.

The zeroth approximation

σclass =
8

3
· πr2

e

is a classical formula which was obtained by John Thompson (1856–1940) at the
end of the 19th century based on the Maxwell equations.2 For the scattering of
a photon stream, this formula tells us the fundamental result that the electron
behaves approximately like a disc of radius re given by

re :=
α

me
= αλC =

αλC

2π
.

Therefore, about 1900, the quantity re was coined the classical electron radius.
Moreover, λC := 2π/m (resp. λC = 1/me) is called the Compton wavelength (resp.
the reduced Compton wavelength) of the electron. In the SI system,

α =
e2

4πε0�c
, λC =

h

mec
, λC =

�

mec
, re = αλC , η =

�ωp

mec2
.

1 For visible light, η ∼ 10−5.
2 See J. Jackson, Classical Electrodynamics, Wiley, 1975, Sect. 14.7.
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Explicitly, re = 2.818 · 10−15 m, λC = 2.426 · 10−12 m, and α = 1/137.04. For large
photon energies, that is, large η, we obtain the asymptotic formula

σ =
πr2

e

2
· 1 + 2 ln 2η

η
+ o

„

1

η

«

, η → +∞.

The cross section is pictured in Fig. 15.1.
Proof. (I) Key identity. In Sect. 15.1.2, we will prove the following matrix identity:

X

s,s′=± 1
2

|uq′,s′Mu0,s|2 = 2

„

(ωp′ − ωp)2

ωp′ωp
+ 4(ep′,r′ep,r)

2

«

. (15.2)

Here, q′ = p−p′ is the momentum vector of the scattered electron. Explicitly, the
left-hand side of (15.2) contains thousands of terms. Therefore, we need a clever
method for computing this expression. In this connection, physicists invented the
elegant trace method for Dirac matrices.

(II) Cross section. Define

σr′,r =
α2

m2
e

Z

|p′|=1

dΩp′

„

ωp′

ωp

«2„ (ωp′ − ωp)2

4ωp′ωp
+ (ep′,r′ep,r)

2

«

.

It follows from (14.18) that the total cross section σ is given by

σ =
1

2

X

r,r′=± 1
2

σr,r′ . (15.3)

(II) Polarization averaging. In (15.3) we average over the two polarization states
of the incoming photon. In addition, we sum over the two polarization states of the
outgoing photon. Explicitly, we choose

ep′,1 = ep,1 =
p′ × p

|p′ × p| , ep,2 = ep,1 ×
p

|p| , ep′,2 := ep′,1 ×
p′

|p′| .

An elementary computation yields
P

s,s′=± 1
2
(ep′,s′ep,s)

2 = 1 + cos2 ϑ. Hence

σ =
α2

2me

Z

|p′|=1

dΩp′

„

ωp′

ωp

«2„

1 + cos2 ϑ +
(ωp′ − ωp)2

ωp′ωp

«

.

(III) The basic integral. In order to compute the cross section σ, we set

η :=
ωp

me
, ζ := cosϑ, u := η(1− ζ).

By (14.14), we get
ωp′

ωp
=

1

1 + u
, dΩp′ = 2πdζ.

Hence

σ =
πα2

m2
e

Z 1

−1

dζ

„

1

1 + u
+

1

(1 + u)3
− 1− ζ2

(1 + u)2

«

.

Passing over to the variable u, we obtain σ =
R 2η

0
f(u)du with
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f(u) : =
πα2

ηm2
e

h 1

η2
+

1

1 + u

„

1− 2

η
− 2

η2

«

+
1

(1 + u)2

„

2

η
+

1

η2

«

+
1

(1 + u)3

i

.

Elementary integration yields then the desired cross section formula for σ in terms
of the dimensionless parameter η. �

15.1.1 Duality between Light Waves and Light Particles in the
History of Physics

Light represents the most important physical phenomenon. The experimental and
theoretical investigation of light has played a fundamental role in the historical
development of physics and mathematics. The light of our sun is also fundamental
for the existence of life on earth. Laser light helps in medicine and high technology.
For studying the properties of our universe, we rely on analyzing the spectrum of
the light coming from stars, galaxies, and distant quasars.

The principle of least action. The reflection law of light was deduced by
Heron of Alexandria (100 B.C.). In 1636, there appeared the seminal book Discourse
sur la méthode de bien conduire sa raison by Descartes (1596–1650).3 Among other
subjects, Descartes’ Discourse treated analytic geometry and dioptrics. Motivated
by Descartes’ book, Fermat (1601–1665) invented his principle of shortest time for
light rays; he used this principle in order to derive Descartes’ principle for the
refraction of light.

(i) Light as a wave: In his book on the foundations of optics, Traité de la lumière,
Huygens (1629–1695) had the ingenious idea of replacing Fermat’s long-range
principle for the propagation of light by a contact principle. In particular,
Huygens postulated that light consists of waves.4

(ii) Light as particles: Newton (1643–1727) showed that Huygens’ wave concept
contradicts physical experiments. Therefore, Newton postulated that light con-
sists of particles.5

(iii) Diffraction of light: Experimentally, if light passes through a small slit, interfer-
ence patterns are observed on a screen behind the slit (i.e., the light intensity
on the screen varies from point to point). The diffraction of light was thor-
oughly studied from the experimental and theoretical point of view by Fresnel
(1788–1827). He convinced physicists that light possesses a wave character.

(iv) The duality between waves and particles: From the modern point of view,
light is a quantum phenomenon. Light quanta are quantum states described
by vectors in an appropriate Hilbert space. Quanta possess features of both
waves and particles. This is the final answer to the question about the nature
of light. In quantum electrodynamics, we start with a classical wave theory
based on the Maxwell equations. We add the particle picture by quantizing the
classical wave theory with the help of creation and annihilation operators.

3 In the same year, 1636, the oldest university of the United States of America,
the Harvard University, was founded in Cambridge near Boston, Massachusetts.

4 In about 1870, Lie (1842–1899) created the mathematical theory of contact trans-
formations which represents a far-reaching generalization of Huygens’ ideas in
terms of mathematics.

5 At Newton’s time, the concept of transversal vector waves was not known to
physicists. Newton’s argument only excluded longitudinal waves.
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In 1744, Euler (1707–1783) founded the calculus of variations as a far-reaching
mathematical generalization of Fermat’s principle of shortest time for light. La-
grange (1736–1813) extended this to multidimensional integrals. Based on the work
of Fermat, Leibniz, Maupertius, Euler, and Lagrange, the final form of the principle
of least action was formulated by Hamilton (1805–1865).

The idea of physical fields. Gauss (1777–1855) based his theory of mag-
netism on long-range forces, similarly to Newton’s long-range forces in gravitation.
Faraday (1791–1867) created the ingenious idea of an electromagnetic field; this
way, he replaced Gauss’ long-range electromagnetic forces by a contact principle.6

Faraday’s notion of physical fields is crucial for modern physics.

Based on his fundamental equations for electromagnetism from 1864, Maxwell
(1831–1879) postulated that light consists of transversal waves of the electromag-
netic field. Electromagnetic waves were experimentally established by Heinrich
Hertz (1857–1894), shortly after Maxwell’s death. In the second half of the 19th
century, John Thomson (1856–1940) experimentally proved the existence of the
electron, and he computed the classical cross section for the scattering of electro-
magnetic waves (light) based on Maxwell’s equations.

Light quanta. In 1900, Planck (1858–1947) formulated his famous law for the
energy spectrum of black-body radiation. To this end, Planck postulated that the
energy of light is quantized. In 1905, Einstein (1879–1955) explained the photoelec-
tric effect by postulating the existence of light quanta;7 this way, Einstein could
derive Planck’s radiation law by the methods of statistical physics. In 1917, Ein-
stein formulated his stochastic theory for the emission of light quanta in molecules;
this is the basis for modern laser physics.8 In 1922, the Compton effect was ex-
perimentally discovered by Compton (1892–1962). The Klein–Nishina cross section
formula for the Compton effect was obtained in 1929.9 For their contributions to
the physics of electrons and light, John Thomson, Planck, Einstein, and Compton
were awarded the Nobel prize in physics in the years 1906, 1918, 1921, and 1927,
respectively.

Quantum electrodynamics was founded in the late 1940s by Feynman (1918–
1979), Schwinger (1918–1994), and Tomonaga (1906–1979); these three physicists
were awarded the Nobel prize in physics in 1965.

15.1.2 The Trace Method for Computing Cross Sections

Computation of cross sections means computation of traces for products
of Dirac matrices.

Folklore

Trace properties. Let A = (aij) be a complex-valued (n×n)-matrix. The complex
number

6 In 1915, Einstein replaced Newton’s long-range gravitational forces by a contact
principle, in the framework of his theory of general relativity.

7 The notion of photon was coined by the physical chemist Gilbert Lewis in 1926.
8 LASER stands for Light Amplification by Stimulated Emission of Radiation.

Laser beams were experimentally produced in about 1960. For their fundamental
work in the field of quantum electronics (laser physics), Basov, Prokhorov, and
Townes were awarded the Nobel prize in physics in 1964.

9 O. Klein and Y. Nishina, Z. Phys. 52 (1929), pp. 853ff; pp. 869ff. I. Tamm, Z.
Phys. 62 (1930), pp. 545ff.
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tr(A) :=

n
X

i=1

aii

is called the trace of the matrix A. In particular, for the (n × n)-unit matrix,
tr(I) = n. Let n = 1, 2, . . .

Proposition 15.1 For complex-valued (n × n) matrices A,B,A1, A2, . . ., the fol-
lowing properties are valid:

(i) Homogeneity: tr(αA) = α trA for all complex numbers α.
(ii) Product property: tr(AB) = tr(BA).

(iii) Duality: (tr(A))† = tr(A†). The trace of a self-adjoint matrix is real.
(iv) Cyclic permutations: The trace of a matrix product is invariant under cyclic

permutations of the factors:

tr(A1A2A3 · · ·AN ) = tr(A2A3 · · ·ANA1).

Moreover, (tr(A1A2A3 · · ·AN ))† = tr(A†
NA†

N−1 · · ·A
†
1).

(v) Invariance: tr(SAS−1) = tr(A) for each invertible (n× n)-matrix S.

Trace rules for Dirac matrices. Let A,B,A1, A2 . . . be arbitrary complex
(4×4)-matrices, and let γ0, γ1 . . . γ5 be the Dirac matrices introduced in Sect. 11.1
on page 793. For j = 1, 2, 3, we have

γ0 = γ0, γj = −γj , �A := γμA
μ, A := γ0A

†γ0.

In contrast to this definition, we set ψ := ψ†γ0 for each complex column matrix ψ
which has four rows. The matrices A and ψ are called the Dirac adjoint of A and
ψ, respectively. Recall that γ5 := iγ0γ1γ2γ3.

Example 15.2 For all the indices μ, ν, κ, λ, μ1, μ2, . . . = 0, 1, 2, 3, the following are
met:

(a) (γ0)† = γ0 and (γj)† = −γj for j = 1, 2, 3.
(b) (γ)μ = γμ.
(c) We have the crucial Clifford relation γμγν + γνγμ = 2ημν .
(d) γ5γμ = −γμγ5 and γ5γ5 = I.
(e) For N = 1, 2, 3, .., the following two Furry relations hold:10

tr(γμ1γμ2 · · · γμN ) = tr(γμN · · · γμ2γμ1),

and
tr(γμ1γμ2 · · · γμN ) = tr((−γμ1)(−γμ2) · · · (−γμN )).

(f) For odd N = 1, 3, 5, . . ., we have

tr(γμ1 · · · γμN ) = 0.

This key relation critically simplifies the computation of cross sections.
(g) tr(γμγν) = 4ημν .
(h) For even N = 4, 6, . . ., the computation of the trace can be based on the

following recursive formula:

10 We will show in Problem 15.13 that the Furry relations are responsible for the
Furry rule.
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tr(γμ1 · · · γμN ) =

N
X

r=2

(−1)r tr(γμ1γμr ) · tr(γμ1 · · · γμr−1γμr+1 · · · γμN ).

For example, this yields

tr(γμγνγκγλ) = 4(ημνηκλ − ημκηνλ + ημληνκ).

(i) tr(γμγ5) = tr(γμγνγ5) = 0.
(j) For N = 3, 4, . . ., the computation of the trace can be based on the product

formula
γμγνγκ = ημνγκ − ημκγν + γνκγμ − iεμνκσγσγ

5.

For example, tr(γμγνγκγ5) = 0, and

tr(γμγνγκγλγ5) = −4iεμνκλ.

In particular, tr(γ0γ1γ2γ3γ5) = −i tr(γ5γ5) = −i tr I = −4i.

(k) (trA)† = trA† = trA.
(l) For N = 1, 2, ..., we get

(tr(A1A2 · · ·AN ))† = tr(A†
NA†

N−1 · · ·A
†
1) = tr(ANAN−1 · · ·A1).

(m) AB = B ·A.

The proof can be found in Problem 15.12 on page 942.
Trace rules for Feynman’s slash matrices. Let a = (a0, a1, a2, a3) and

b = (b0, b1, b2, b3) where all the numbers aμ, bν are real. We define11

�a := aμγ
μ, ab := aμb

μ.

The following rules are critically used for computing cross sections in quantum field
theory.

Proposition 15.3 (T1) Dirac duality: �a =�a and �a �b =�b �a.
(T2) Anticommutativity: We have the key relation12

�a �b = 2ab− �b �a.

(T3) Reversion and cyclic permutation: For N = 2, 3, . . . , we get

tr(�a1 · · · �aN ) = tr(�aN · · · �a1).

In addition, the trace is invariant under cyclic permutations, that is,

tr(�a1 · · · �aN−1 �aN ) = tr(�aN �a1 · · · �aN−1).

11 We sum over equal lower and upper indices from 0 to 3. For example,

ab =
3
X

μ=0

aμb
μ = a0b0 −

3
X

j=1

ajbj .

12 To simplify notation, the symbol ab stands for the multiple, (ab)I, of the unit
matrix, I. Note that tr(I) = 4.
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(T4) Odd number of factors: For odd N = 1, 3, 5, . . .,

tr(�a1 · · · �aN ) = 0.

In particular, tr �a = tr(�a �b �c) = 0.
(T5) Even number of factors: For two and four factors,

tr(�a �b) = 4ab,

1

4
tr(�a �b �c �d) = (ab)(cd)− (ac)(bd) + (ad)(bc).

Generally, for even N = 4, 6, 8, . . ., the trace tr(� a1 � a2 · · · � aN ) is given by the key
reduction formula

N
X

r=2

(−1)r(�a1 �ar) · tr(�a2 · · · �ar−1 �ar+1 · · · �aN ).

(T6) Square trick: If �ar =�ar+1 for fixed index r, then

tr(�a1 · · · �ar �ar+1 · · · �aN ) = a2
r tr(�a1 · · · �ar−1 �ar+2 · · · �aN ).

In particular, this trace vanishes if a2
r = 0.

(T7) Special reduction formula: For even N = 4, 6, 8, . . ., transposition of the
two neighbored factors �ar and �ar+1 yields

tr(�a1 · · · �ar �ar+1 · · · �aN ) = − tr(�a1 · · · �ar+1 �ar · · · �aN ) +

+2(arar+1) · tr(�a1 · · · �ar−1 �ar+2 · · · �aN ).

(T8) Chirality: tr(�a · γ5) = tr(�a �b · γ5) = 0, and

i

4
tr(�a �b �c �d · γ5) = a ∧ b ∧ c ∧ d = εμνκλaμbνcκdλ.

Proof. Ad (T1). �a = aμγ
μ = aμγ

μ.
Ad (T2). By the Clifford relation,

�a �b+ �b �a = aμbν [γμ, γν ]+ = 2aμbνη
μν = 2ab.

Hence �a �b = 2ab− �b �a.
Ad (T3), (T4). Apply Prop. 15.2.
Ad(T5). By the Clifford relation,

tr(�a �b) = aμbν tr(γμγν) = 4aμbνη
μν = 4aμb

μ = 4ab.

The proof of the general recursive formula can be found in Problem 1.12.
Ad (T6). Note that �a2

r = 1
2
[ �ar, �ar]+ = a2

rI.
Ad (T7). Use (T2). �

The key reduction formula (T5) above allows us to reduce the computation of
traces to the computation of inner products. This can be done by using computer
algebra, since (T5) represents a universal algorithm. For doing computations by
hand, the special reduction formula (T7) above is usefully combined with the square
trick. For example,

tr(�a �b �c �d) = 2(ab) · tr(�c �d)− tr(�b �a �c �d).

If a = c and c2 = 0, then the last term vanishes, by the square trick. Thus,
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tr(�a �b �c �d) = 8(ab)(cd).

This argument will be frequently used in the proof of Prop. 15.4 below.
The key identity. Using the preceding trace relations, we are going to prove

the following identity:

Proposition 15.4 There holds the following matrix identity:

X

s,s′=± 1
2

|uq′,s′Mu0,s|2 = 2

„

ωp′

ωp
+

ωp

ωp′
− 2 + 4(ep′,r′ep,r)

2

«

.

Here, q′ = p− p′ is the momentum vector of the outgoing electron.

Proof. (I) Reduction to trace. Observe that the complex number

`

a1 a2´

 

a11 a12

a21 a22

! 

b1

b2

!

is equal to the trace of the matrix
 

a11 a12

a21 a22

! 

b1

b2

!

`

a1 a2´.

Let us suppose that

• A is an (n× n)-matrix,
• a is a (1× n)-row matrix, and
• b is an (n× 1)-column matrix.

Then
aAb = tr(Aba). (15.4)

This is the decisive trick. In fact, aiaijb
j = aijb

jai.13 By (15.4), we obtain the key
relation

˛

˛uq′,s′Muq,s

˛

˛

2
= tr

`

Muq,suq,sMuq′,s′uq′,s′
´

. (15.5)

This follows from (uq′,s′)
† = (u†

q′,s′γ0)
† = γ0u

†
q′,s′ along with

`

uq′,s′Muq,s

´†
= u†

q,sM
†γ0uq′,s′ = u†

q,sγ0(γ0M
†γ0)uq′,s′ = uq,sMuq′,s′ ,

as well as
˛

˛uq′,s′Muq,s

˛

˛

2
=
`

uq′,s′Muq,s

´`

uq′,s′Muq,s

´†
.

By Theorem 12.3 on page 807,

X

s=± 1
2

uq,suq,s =�q + me.

Consequently, we get
X

s,s′=± 1
2

˛

˛uq′,s′Muq,s

˛

˛

2
= T

13 We sum over equal lower and upper indices from 1 to n.



908 15. Applications to Physical Effects

with the trace
T := tr

`

M(�q + me)M(�q′ + me)
´

and q′ = q + p− p′. To simplify notation, set

m := me, ω := ωp,r, ω′ := ωp′,r′ ,

and e := er, e
′ := er′ for r, r′ = 1, 2.14 Moreover, choose

P := �p, Q := �q, E =�e, E′ =�e′.

In terms of this notation, it is our goal to compute the trace

T = tr
`

M(Q + m)M(Q′ + m)
´

with Q′ = Q + P − P ′, and

M = E′ Q + P + m

(q + p)2 −m2
E + E

Q− P ′ + m

(q − p′)2 −m2
E′.

The trace T can be computed systematically by using the general reduction formula
from Prop. 15.3 on page 905. This is the brute force method.

We are going to simplify critically this approach by using symmetry prop-
erties.

(II) Inner products. We want to compute the inner products between the given
4-vectors p, q, p′, q′, e, and e′:

(i) p2 = p′
2

= 0.

(ii) q2 = q′
2

= m2.
(iii) pq = mω and p′q = mω′.
(iv) pp′ = m(ω − ω′).
(v) (p + q)2 −m2 = 2mω and (q − p′)2 −m2 = −2mω′.

(vi) e2 = e′
2

= −1 and ee′ = −ee′.
(vii) eq = ep = e′q = 0 and e′p′ = 0.
(viii) e′q′ = e′p and q′p = qp′ = mω′.

Let us prove this.
Ad (i). By photon energy, p2 = (ω,p)(ω,p) = ω2 − p2 = 0.
Ad (ii). By electron energy, q2 = (m,0)(m,0) = m2.
Ad (iii). pq = (ω,p)(m,0) = mω.
Ad (iv). It follows from

0 = q′
2 −m2 = (q + p− p′)2 −m2 = q2 + 2qp− 2qp′ − 2pp′ −m2

that pp′ = qp− qp′ = m(ω − ω′).
Ad (v). (p + q)2 −m2 = p2 + 2pq + q2 −m2 = 2pq = 2mω.
Ad (vi). e2 = (0, e)(0, e) = −e2 = −1, and

ee′ = (0, e)(0, e′) = −ee′.

Ad (vii). We have eq = (0, e)(m, 0) = 0. Hence, by transversality,

ep = (0, e)(ω,p) = −ep = 0.

14 Only in this proof, the symbol e represents a polarization 4-vector, but not the
electron charge.
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Ad (viii). We have e′q′ = e′(q + p − p′) = e′q. Using momentum conservation,
we get p + q = p′ + q′. Hence

(p− q′)2 = (q − p′)2.

Thus, p2 + q′
2 − 2pq′ = q2 − 2qp′ + p′

2
. �

(III) Anticommutation relations. We claim that the following relations hold:

(a) [E,Q]+ = [E′, Q]+ = [E,P ]+ = [E′, P ′]+ = 0.
(b) (Q + m)E(Q + m) = (Q + m)E′(Q + m) = 0.
(c) (Q + m)EPE′(Q + m) = 2(pq)E(Q−m)E′.

Let us prove this.
Ad (a). [E,Q]+ = 2eq = 0.
Ad (b). By (a), EQ = −QE. Hence (Q + m)E(Q + m) ist equal to

−E(Q−m)(Q + m) = Q2 −m2 = 1
2
[Q,Q]+ −m2 = q2 −m2 = 0.

Ad (c). The matrix (Q + m)EPE′(Q + m) is equal to

A := −E(Q−m)PE′(Q + m).

Using QP = 2qp− PQ, we get

A = −E
`

2qp− P (Q + m)
´

E′(Q + m)

= −2(qp)EE′(Q + m) = 2(qp)E(Q−m)E′.

�

(IV) Matrix M . By (II),

M = E′Q + P + m

2mω
E + E

Q− P ′ + m

2mω′ E′.

Setting A,B = E,E′, Q,Q′, P, P ′ and using AB = B ·A = B ·A, we obtain

M = E
Q + P + m

2mω
E′ + E′Q− P ′ + m

2mω′ E.

(V) Matrix N . Define

N :=
E′PE

2mω
+

EP ′E′

2mω′ .

Then

N =
EPE′

2mω
+

E′P ′E

2mω′ .

By (III)(b), we get

T = tr
`

N(Q + m)N(Q′ + m)
´

with Q′ = Q + P − P ′. This tells us that the matrix M can be replaced by the
simpler matrix N .

(VI) Decomposition of the trace. Set

T =
1

4m2

„

T11

ω2
+

T22

ω′2 +
T12 + T21

ωω′

«
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along with
T11 := trE′PE(Q + m)EPE′(Q′ + m),

T22 := trEP ′E′(Q + m)E′P ′E(Q′ + m),

T12 := trE′PE(Q + m)E′P ′E(Q′ + m),

T21 := trEP ′E′(Q + m)EPE′(Q′ + m).

Here, we set Q′ := Q + P − P ′.
(VII) Computation of T11. We use the following decomposition:

T11 = T110 + mT111 + m2T112.

Here, we set
T110 := tr(E′PEQEPE′Q′),

T112 := tr(E′PEEPE′).

Now we use the trace rules (T1ff) from Prop. 15.3 on page 905. Since T111 contains
an odd number of factors, T111 = 0.

By the square trick (T6) along with p2 = 0,

T112 = e2 tr(E′P 2E′) = e2p2 tr(E′2) = 0.

By the special reduction formula (T7) on page 905 along with qe = 0, we get

T110 = − tr(E′PQE2PE′Q′).

By the square trick along with e2 = −1,

T110 = tr(E′PQPE′Q′).

By the special reduction formula,

T110 = 2pq tr(E′PE′Q′)− tr(E′PQP 2E′Q′).

Since p2 = 0, the last term vanishes. By Prop. 15.3(T5) on page 905,

T110 = 8pq
`

2(e′p)(e′q′)− e′
2
(pq′)

´

.

By (II)(viii),

T11 = T110 = 16mω(pe′)2 + 8m2ωω′.

(VIII) Crossing symmetry. The transformation

p ⇔ −p′, e ⇔ e′

induces P ⇔ −P ′, E ⇔ E′. Thus, T11 is transformed into T22. Hence

T22 = −16mω′(p′e)2 + 8m2ωω′.

(IX) Reversion symmetry. We want to show that

T12 = T21.

Indeed, by Prop. 15.3(T3), the trace of a product of Feynman slash matrices does
not change if we reverse the order of the factors. Hence
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T21 = tr(Q′ + m)E′PE(Q + m)E′P ′E.

By cyclic permutation,

T21 = tr
`

E′PE(Q + m)E′P ′E(Q′ + m)
´

= T12.

(X) Computation of T12. Using Q′ = Q + P − P ′, we obtain

T12 = trEP ′E′(Q + m)EPE′(Q + m)

+ trEP ′E′(Q + m)EPE′P − trEP ′E′(Q + m)EPE′P ′.

In the last two summands, the mass term drops out because of an odd number of
factors. Therefore, we get the decomposition

T12 = T120 + T121 + T122.

Here, we set
T120 := trEP ′E′(Q + m)EPE′(Q + m),

T121 := trEP ′E′QEPE′P,

T122 := −trEP ′E′QEPE′P ′.

(XI) Computation of T120. By (III)(c),

(Q + m)EPE′(Q + m) = 2mωE(Q−m)E′.

Hence
T120 = 2mω trEP ′E′E(Q−m)E′.

The mass terms drops out because of an odd number of factors. Using the relation
EP ′ = −P ′E, and so on, we get

T120 = 2mω tr(EE′P ′QEE′).

Hence
T120 = 2mω tr

`

(2ee′ − E′E)P ′QEE′´.

By the square trick (T6), we obtain

trE′EP ′QEE′ = trP ′QE′E2E′ = e2e′
2
trP ′Q = 4p′q = 4mω′.

Since qe′ = qe = 0, we get

tr(P ′QEE′) = 4(p′q)(ee′) = −4mω′(ee′).

This implies

T120 = 8m2ωω′`2(ee′)2 − 1
´

.

(XII) Computation of T121. Using the special reduction formula (T7) on page
905, we obtain

T121 = 2(e′p) tr(EP ′E′QEP )− tr(EP ′E′QEP 2E′).

Since p2 = 0, the last term drops out. Using EP = −PE along with cyclic permu-
tation,

T121 = −2(e′p) tr(EP ′E′QPE)

= −2(e′p) tr(P ′E′QPE2) = 2(e′p) tr(P ′E′QP ).
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Since e′p′ = e′q = 0,

T121 = −8(e′p)2(p′q) = −8mω′(e′p)2.

Similarly, we obtain
T122 = −8mω(p′e)2.

This implies the final relation

T12 = T21 = 8m2ωω′`2(ee′)2 − 1
´

− 8mω′(pe′)2 + 8mω(p′e)2.

Summarizing, we get the claim

T = 2

„

ω′

ω
+

ω

ω′ − 2 + 4(ee′)2
«

. (15.6)

�

This finishes our computation of the cross section for the Compton effect in
second order. Despite the use of symmetry, the argument has been lengthy.

It is typical for elementary particle physics that the computations of phys-
ical effects are rather involved.

Nowadays sophisticated computer programs are used by physicists (see Sect. 18.4
on page 977).

15.1.3 Relativistic Invariance

Physical processes proceed the same way in each inertial system.
Einstein’s 1905 principle of special relativity

Our computation for the cross section of the Compton effect has been carried out
in the resting system of the electron. We now want to compute the cross section in
an arbitrary inertial system. Analyzing the preceding proof, it turns out that it can
be carried out in an relativistically invariant manner by only using inner products
between 4-vectors. The trace formula (15.6) can be written as

T = 2

„

p′q

pq
+

pq

p′q
− 2 + 4(erer′)2

«

.

This is a relativistically invariant formula which coincides with our result in the rest
frame. This formula is valid in each inertial system. Here, e and m is the charge and
the rest mass of the electron. Moreover, re = α/m is the classical electron radius.15

The Mandelstam variables. We set

s := (p + q)2, t = (p′ − p)2, u := (p′ − q)2.

Conservation of 4-momentum tells us that p + q = p′ + q′. Hence

s = (p′ + q′)2 = m2 + 2pq = m2 + 2p′q′,

t = (q′ − q)2 = 2m2 − 2pp′ = −2q′q,

u = (q′ − p)2 = m2 − 2qp′ = m2 − 2q′p.

15 To simplify notation, we denote the electron mass me by m.
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The variables s, t, u are called Mandelstam variables. We have

u = 2m2 − s− t.

Thus, the variable u depends on s and t. However, in order to get symmetric
formulas, it is convenient to use the three variables u, s, t. The crossing symmetry
transformation p⇔ −p′ corresponds to

s⇔ u, t⇔ t. (15.7)

The relativistically invariant cross section. In second order, the differential
cross section for the Compton effect is given by

dσ = 8πr2
e ·

m2dt

(s−m2)2

„

m2

s−m2
+

m2

u−m2

«2

×

×
„

m2

s−m2
+

m2

u−m2
− s−m2

4(u−m2)
− u−m2

4(s−m2)

«

dΩ.

This formula is invariant under the crossing symmetry transformation (15.7). The
corresponding total cross section reads as

σ =

Z

S2

dσ

dΩ
· dΩ.

This relativistically invariant formula is valid in each inertial system. In the rest
frame of the electron, we get

s = m2 + 2mω, u = m2 − 2mω′, t = 2ωω′(cosϑ− 1).

This yields the famous Klein–Nishina formula:16

dσ

dΩ
=

r2
e

2

„

ω′

ω

«2„
ω′

ω
+

ω

ω′ − sin2 ϑ

«

.

Equivalently,

dσ

dΩ
=

r2
e

2

„

ω′

ω

«2„

1 + cos2 ϑ +
(w′ − w)2

ωω′

«

.

Here, the incoming (resp. outgoing) photon has the frequency ω (resp. ω′). More-
over, ϑ is the angle between the incoming and the outgoing photon. Explicitly,
introducing the dimensionless parameter η := ω/m, we get

ω′ =
ω

1 + η cosϑ
.

Recall that the Klein–Nishina formula above averages over both the spin of the
electrons and the polarization of the photons. Physicists speak of the cross section
for the scattering of an electron with unpolarized light.

The classical Thomson scattering as an approximation. For visible light,
we have η ∼ 10−5. In this case, the frequency relation ω′ = ω is a good approxima-
tion, and we get the following differential cross section formula:

16 This formula was obtained in 1929, long before the foundation of quantum elec-
trodynamics in the late 1940s.
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dσ

dΩ
=

r2
e

2

`

1 + cos2 ϑ
´

.

For the total cross section, we obtain

σ =

Z

S2

dσ

dΩ
· dΩ =

8

3
· πr2

e .

This is the classical Thomson scattering formula obtained at the end of the 19th
century. Recall that re is the classical electron radius with re = 2.8 · 10−15 m in the
SI system.

15.2 Asymptotically Free Electrons in an External
Electromagnetic Field

15.2.1 The Key Formula for the Cross Section

In this section, we work again in the energetic system. Consider a right-handed
Cartesian (x, y, z)-coordinate system with right-handed orthonormal basis vectors
i, j,k. Suppose a particle P0 of electric charge Q0 rests at the origin. This particle
generates the electrostatic potential U = U(x) with the Fourier representation

U(x) =
1

(2π)3

Z

R3
U(p)eipxd3p.

We want to study the situation where a homogenous stream of incoming particles
is scattered at the particle P0 with the charge Q0. (Fig. 15.2). We assume that the
incoming particles have the rest mass m, the electric charge Q, the velocity vector
v := vi with v > 0, the momentum vector p = pi with p = mv/

√
1− v2. Moreover,

suppose that the incoming particle stream possesses the current density vector

Jin = �v

with the particle density

�in :=
Nin

V .

That is, the number of incoming particles is equal to Nin in a box of volume V. The
momentum vector of the outgoing particles has the form

p′ = p′ cosϑ · (cosϕ i + sinϕ j) + p′ sinϑ k,

with respect to spherical coordinates π ∈] − π, π] and ϑ ∈ [−π
2
, π

2
]. Let Ω0 be a

subset of the unit sphere. We will motivate below that the cross section with respect
to the solid angle Ω0 is given by the formula

σ(Ω0) =

Z

p′
|p′|∈Ω0

dσ

dΩ
· dΩ

along with the differential cross section

dσ

dΩ
=

Q2

8π2
·
˛

˛U
`

p− p′´˛
˛

2
(2m2 + p2 + pp′). (15.8)

Let Nout denote the number of scattered particles during the time interval [t0, t1]
such that the unit vector p′/|p′| lives in the set Ω0. Then

Nout = σ(Ω0)Jin(t1 − t0).
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Fig. 15.2. Scattering of a charged homogeneous particle stream

15.2.2 Application to Yukawa Scattering

Let us first choose the Yukawa potential

U(x) :=
Q0

4π
· e

−κr

r
.

Here, r0 = 1/κ is the typical range of the Yukawa potential. For the Fourier trans-
form of the Yukawa potential, we get

U(p) =
Q0

p2 + κ2
.

This yields the following differential cross section:

dσ

dΩ
=

„

QQ0m

2π

«2

·
1 + p2+pp′

4m2

(κ2 + (p− p′)2)2
.

15.2.3 Application to Coulomb Scattering

The Coulomb potential corresponds to the parameter κ = 0. In the non-relativistic
case, the momentum vector is given by p = mv (resp. p′ = mv′) and p� m (resp.
p′ � m).17 Moreover, conservation of kinetic energy tells us that 1

2
m0v

2 = 1
2
m0v

′2.

Hence p2 = p′2, and

(p− p′)2 = p2 + p′2 − 2pp′ = 2p2(1− cosϑ) = 4p2 sin2 ϑ

2
.

This implies the following classical Rutherford formula for Coulomb scattering:

dσ

dΩ
=

„

QQ0m

2π

«2

· 1

(p− p′)4
=

„

QQ0

8πmv2

«2

· 1

sin4 ϑ
2

.

In particular, for the scattering of a stream of electrons at a proton,

dσ

dΩ
=

„

α

4Ekin

«2

· 1

sin4 ϑ
2

.

Here α = e2/4π = 1/137.04 denotes the fine structure constant. Furthermore,
Ekin = 1

2
mv2 represents the kinetic energy of an incoming electron. This differential

cross section has a singularity at the angle ϑ = 0 (no scattering). This is responsible
for the divergence of the following integral

σ =

Z

S2

dσ

dΩ
· dΩ = +∞

which represents the total cross section of Coulomb scattering.

17 Note that, in the SI system, the momentum is small compared with mc.
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15.2.4 Motivation of the Key Formula via S-Matrix

The transition amplitude. The idea is to use the transition amplitude from
(14.1) by replacing the photon field by the 4-potential A0, A1, A2, A3 of an external
electromagnetic field. The incoming particle is described by the normalized state

Φin := b+p,s|0〉,

and the outgoing particle corresponds to the normalized state

Φout := b+p′,s′ |0〉.

The transition probability from the state Φin to the state Φout during the time
interval [−T

2
, T

2
] is given by

W(T ) := |〈p′|SN (T )|p〉|2 (15.9)

along with the transition amplitude

〈p′|SN (T )|p〉 := 〈Φout|SN (T )Φin〉 = 〈0|b−p′,s′ |SN (T )b+p,s|0〉.

In Nth order approximation, Dyson’s S-matrix reads as

S(T ) = S0 +
N
X

n=1

Sn(T ) (15.10)

with S0 := I. Explicitly, we obtain

S1(T ) := −i

Z T/2

−T/2

Hint(t)dt.

For n = 2, 3, . . . , we get

Sn(T ) :=
(−i)n

n!

Z T/2

−T/2

· · ·
Z T/2

−T/2

T (Hint(t1) · · ·Hint(tn))dt1 · · · dtn,

along with

Hint(t) :=

Z

C(L)

: H(x, t) : d3x

and

H(x) := Qψ(x)γμA
μ(x)ψ(x). (15.11)

Here, Aμ = Aμ(x), μ = 0, 1, 2, 3, denotes the 4-potential of the external electromag-
netic field, and ψ = ψ(x) denotes the free electron-positron field with x = (x, t).

This setting is obtained by completely replacing the photon quantum field
by the external electromagnetic field.

Note that this is only an approximation of reality. This approach completely ignores
the possible quantum effects caused by photons (see Sect. 15.2.5).

Concerning (15.11), the electron has the electric charge Q = −e. However, this
expression is also valid for incoming particles with arbitrary electric charge Q. For
example, the case Q = e corresponds to incoming protons. Let us discuss some
approximations.
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x
p′ p		

Fig. 15.3. First-order Feynman diagram for an external electromagnetic field

(i) Zero-order approximation: We assume that the incoming state Φin is different
from the outgoing state Φout. Hence

〈p′|S0|p〉 = 〈Φout|Φin〉 = 0.

(ii) First-order approximation: By the Main Wick Theorem 13.2 on page 846, we
have

〈p′|S1|p〉 =

Z T/2

−T/2

dt

Z

C(L)

d3x �1(x, t)

with
�1(x, t) := iQ〈0|b−p′,s′ : ψ(x)γμA

μ(x)ψ(x) : b+p,s|0〉.

Table 14.5 on page 897 tells us that

�1(x) = Np′up,sγμA
μ(x, t)Npup,se

i(p−p′)x. (15.12)

The normalization factors are given by

Np′ :=

s

1

2Ep′V , Np :=

s

1

2EpV
, Ep :=

p

p2 + m2.

(iii) Second order: Again by the Wick theorem, we get

〈p′|S2|p〉 =
1

2

Z T/2

−T/2

Z T/2

−T/2

dtds

Z

C(L)×C(L)

d3xd3y �2(x, t,y, s)

with �2 = �21 + �22. Here, �21(x, y) is equal to

−Q2〈0|b−p′,s′ : ψ(x)γμA
μ(x)ψ(x) :: ψ(y)γμA

μ(x)ψ(x) : b+p,s|0〉.

Moreover, �22(x, y) is equal to

−Q2〈0|b−p′,s′ : ψ(x)γμA
μ(x)ψ(x) : ψ(y)γνA

ν(y)ψ(y) : b+p,s|0〉.

By Table 14.5 on page 897, the quantity �21(x, y) reads explicitly as

− Q2

NpNp′
· uα

p′,s′(γμ)αβA
μ(x)Sβκ

F,ε(x− y)(γν)κλA
ν(y)uλ

p,s ei(p′x−py).
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(a) �21

x yp′′
p′ p			

(b) �22

x yp′′
p p′� ��

Fig. 15.4. Second-order Feynman diagrams for an external electromagnetic field

In the language of matrices, we obtain

�21(x, y) = − Q2

NpNp′
· up′,s′γμA

μ(x)SF,ε(x− y)γνA
ν(y)up,se

i(p′x−py).

Moreover, �22(x, y) reads explicitly as

− Q2

NpNp′
· uκ

p′,s′(γμ)αβA
μ(x)Sλα

F,ε(y − x)uβ
p′,s′(γν)κλA

ν(y)uβ
p,s ei(p′y−px).

The transformation x, μ, α, β ⇔ y, ν, κ, λ shows us that

�21(x, y) = �22(y, x). (15.13)

The corresponding Feynman diagrams can be found in Figs. 15.3 and 15.4.

The cross section. Let us compute the cross section in first-order approxi-
mation. This is related to �1 computed in (15.12).We will proceed similarly to the
Compton effect above. The cross section σ is given by

Nout = σJinT

with Jin = �v = v/V. Here, Nout is the number of outgoing particles during the
time interval [−T

2
, T

2
]. Explicitly,

Nout =
X

p′∈G(N)

VΔ3p′

(2π)3
· 1
2

X

s,s′=± 1
2

|〈p′|S1|p〉|2.

Here, we count the number of outgoing particles by using the cell quantization of
the phase space, as explained in (14.15) on page 893. Furthermore, we average over
the spin states of the incoming particles, and we sum over the spin states of the
outgoing particles. For the total cross section, we get

σ =
X

p′∈G(N)

V2Δ3p′

2(2π)3 vT

X

s,s′=± 1
2

|〈p′|S1|p〉|2. (15.14)

It remains to compute the square |〈p′|S1|p〉|2.
The transition amplitude. Assume that the external electromagnetic field

has the period L with respect to the Cartesian variables x, y, z, and it does not
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depend on time t. Then, the four-potential allows the representation in terms of
the following Fourier series:

Aμ(x) =
1

(2π)3

X

q∈G(N)

Δ3q Aμ(q) eiqx, μ = 0, 1, 2, 3.

For the transition amplitude, this implies the following formula:

〈p′|S1|p〉 = − iQ

(2π)3Np′Np

Z T/2

−T/2

dt ei(Ep′−Ep)t ×

×
Z

C(L)

d3x ei(q+p−p′)x
X

q∈G(N)

Δ3q · up′,s′ �A(q)up,s.

By definition of the discrete Dirac delta function δG(N), we have18

1

(2π)3

Z

C(L)

d3x ei(q+p−p′)x = δG(N)(q + p− p′).

Therefore, the transition amplitude 〈p′|S1|p〉 is equal to

− 2πiQ

Np′Np
· δT (Ep′ − Ep)

X

q∈G(N)

Δ3q · δG(N)(q + p− p′) · up′,s′ �A(q)up,s.

Hence

〈p′|S1|p〉 = − 2πiQ

Np′Np
· δT (Ep′ − Ep) · up′,s′ �A(p′ − p)up,s.

For large time T it follows from Sect. 12.1.2 of Vol. I that

δT (Ep′ − Ep)2 =
T

2π
· δT (Ep′ − Ep) + o(T ), T → +∞.

Therefore,

|〈p′|S1|p〉|2 =
Q2T

2V2Ep′Ep
· |up′,s′ �A(p′ − p)up,s|2 + o(T ), T → +∞.

The trace trick. Introduce the sum

a(p′,p) :=
X

s,s′=± 1
2

|up′,s′ �A(p′ − p)up,s|2.

By the trace trick from the proof to Prop. 15.4 on page 907, we obtain

a(p′,p) =
X

s,s′=± 1
2

tr(�A(p′ − p)up,sup,s �A(p′ − p)up′,s′up′,s′

= tr(�A(p′ − p)(�p + m) �A(p′ − p)(�p ′ + m)).

18 In what follows, we will use the properties of the discrete Dirac delta functions
δG(N) and δT proved in Sect. 12.1.2 of Vol. I.
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The Dirac delta function and energy conservation. Set ℘ := |p| and
℘′ := |p′|. It follows from

p =
mv√
1− v2

, Ep =
p

℘2 + m2

that ℘2(1− v2) = m2v2. Hence ℘2 = E2
pv

2. This implies

dEp

d℘
=

℘

Ep
= v.

Similarly,
dEp′

d℘′ =
℘′

Ep′
= v′.

By (15.14), we obtain

σ =
Q2

8π2

X

p′∈G(N)

Δ3p′

vEp′Ep
· δT (Ep′ − Ep)a(p′,p).

Carrying out the limits T → +∞ and L→ +∞, both the box C(L) and the lattice
G(N) go to R

3. Thus, we formally obtain

σ =
Q2

8π2

Z

R3

d3p′

vEp′Ep
· δ(Ep′ − Ep) a(p′,p).

Using spherical coordinates, we get

d3p = dΩp′℘′2d℘′ = ℘′Ep′dΩp′dEp′ .

This implies
d3p

vEp′Ep
=

℘′

℘
· dΩp′dEp.

Hence

σ =
Q2

8π2

Z ∞

0

dEp′δ(Ep′ − Ep)

Z

|p′|=1

℘′dΩp′

℘
a(p′,p).

By definition of the Dirac delta function, we have to set

Ep′ = Ep

which corresponds to energy conservation. This implies ℘′ = ℘. Hence

σ =
Q2

8π2

Z

|p′|=1

dΩp′ a(p′,p).

The final cross section formula. Summarizing, for the total cross section,
we obtain

σ =
Q2

8π2

Z

S2
dΩp′ tr(�A(p′ − p)(�p + m) �A(p′ − p)(�p ′ + m)).

Similarly, the cross section with respect to the solid angle Ω0 reads as
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σ(Ω0) =
Q2

8π2

Z

Ω0

dΩp′ tr(�A(p′ − p)(�p + m) �A(p′ − p)(�p ′ + m)).

The trace can be computed by using the rules (T3), (T4) from Prop. 15.3 on page
905. Explicitly,

σ(Ω0) =
Q2

8π2

Z

Ω0

dΩp′(m2AA† + (pA†)p′A+ (pA)p′A† − (p′p)AA†).

Here, the four-vector A depends on p′ −p, and we integrate over p′. Furthermore,

pA = EpU(p′ − p)− pA(p′ − p).

Special case. Let us consider the special case where A = (U ,0). This corre-
sponds to an electric field with the potential U. By energy conservation, Ep = Ep′ .
Then

(pA)p′A† = E2
p · |U(p′ − p)|2 = (m2 + p2) · |U(p′ − p)|2.

This way, we get the desired cross section:

σ(Ω0) =
Q2

8π2

Z

Ω0

dΩp′ · |U(p′ − p)|2(2m2 + p2 + pp′).

15.2.5 Perspectives

External electromagnetic fields and Hilbert–Schmidt operators. An ex-
tensive rigorous functional analytic investigation of electrons and positrons in an
external electromagnetic field can be found in

G. Scharf, Finite Quantum Electrodynamics: the Causal Approach, Sprin-
ger, Berlin, 1995, Sect. 2.4.

Here, the theory makes essentially use of compact Hilbert–Schmidt operators in
Hilbert spaces. We also refer to:

R. Seiler, Quantum theory of particles with spin zero and one half in
external fields, Commun. Math. Phys. 25 (1972), 127–151.

The reader should observe that this nice functional-analytic approach fails for gen-
eral photon fields in quantum electrodynamics.

Radiative corrections. The S-matrix introduced in (15.10) on page 916 only
incompletely describes the electron in an external electromagnetic field. In the lan-
guage of physicists, the full description in terms of quantum electrodynamics has
to take into account the interaction of the electron with virtual photons, virtual
electrons, and virtual positrons (vacuum fluctuations). This means that, besides
the Feynman graphs depicted in Figs. 15.3 and 15.4 on page 917, there appear
additional crucial Feyman graphs as depicted in Fig. 17.8 on page 960. This leads
to so-called radiative corrections based on renormalization theory. Such processes
are responsible for the anomalous magnetic moment of the electron (see Chap. 17).
Here, theory and experiment coincide with extremely high accuracy. In the next
section, we will use first-order perturbation theory in order to compute a physi-
cal effect which is well known from quantum mechanics. In this connection, the
methods of renormalization theory are not necessary.
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15.3 Bound Electrons in an External Electromagnetic
Field

We shall consider the transitions produced in an atomic system by an ar-
bitrary perturbation. The method we shall adopt will be that previously
given by the author, which leads in a simple way to equations which de-
termine the probability of the system being in any stationary state of the
unperturbed system at any time. This, of course, gives immediately the
probable number of systems in that state at that time for an assembly of
the systems that are independent of one another and are all perturbed in
the same way.

Paul Dirac, 1927
The quantum theory of the emission and absorption of radiation19

Bound states of an electron in an atom. In an arbitrary, but fixed inertial
system, set x = (x, t). Let us start with the Dirac equation

γμ(i∂μ + eAμ)ψ = meψ (15.15)

for an electron of electric charge −e and mass me which is bound in an atom under
the influence of the time-independent electrostatic potential

U = U(x).

The function U describes the electric forces caused by the atomic nucleus and the
remaining electrons. This corresponds to the 4-potential A0 := U and Aj := 0 for
j = 1, 2, 3. Suppose that there exist solutions

ψ(x, t) = ϕn(x)e−iEnt, n = 1, 2, . . . (15.16)

of the Dirac equation (15.15). These solutions describe bound states of the electron
having the energy En. We postulate that the following normalization condition is
satisfied:

Z

R3
|ϕn(x)|2 d3x = 1.

15.3.1 The Spontaneous Emission of Photons by the Atom

The physical experiment shows that atoms radiate photons. This is caused by ran-
dom jumps of the electrons of the atom. Such jumps represent typical quantum
processes. Explicitly, if the electron jumps from the energy level En to the lower
energy level En′ , then one photon is emitted which has the energy

ω′ = En − En′ .

Suppose that there are N atoms in a cubic box C(L) of volume V. Let Nout (resp.
Eout) be the number of spontaneously emitted photons (resp. the emitted energy)
during the time interval [−T

2
, T

2
]. Then

19 Proceedings of the Royal Society of London, Series A, Vol. 114 (1927), 243–265.
This is the first paper reprinted in a collection of 34 fundamental papers on
quantum electrodynamics edited by J. Schwinger, Quantum Electrodynamics,
Dover, New York, 1958.
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Nout = τNT,

and

Eout = ω′Nout.

Here, we introduce the coefficient τ which is called the emission rate of the spon-
taneous radiation. We will motivate below that

τ =
e2

8π2

Z

|p′|=1

dΩp′ · (En − En′)
2
X

r=1

|(ϕn′ |γ0γμe
μ
r e−ip′x|ϕn)|2 (15.17)

along with

(ϕn′ |γ0γμe
μ
r e−ip′x|ϕn) :=

Z

R3
d3x ϕn′(x)† · γ0γμe

μ
r e−ip′x · ϕn(x).

In this connection, note that the 4-potential

Aμ
ph(x) :=

eμ
r

Np′
· eip′x, μ = 0, 1, 2, 3, r = 1, 2

describes one photon in the box C(L). The photon has the momentum vector p′,
the energy ωp′ = |p′|, and the polarization vector er with

er = e1
ri + e2

rj + e3
rk, r = 1, 2.

Here, the three vectors e1, e2, and p′/|p′| form a right-handed orthonormal basis.
Moreover, e0

r := 0. We set p′x := ωp′ t− p′x. The normalization factor reads as

Np′ :=

s

1

2Vωp′
.

15.3.2 Motivation of the Key Formula

The trick is to replace the free photon quantum field by the wave functions
of bound electrons.

Folklore

We define the transition amplitude from the bound electron state ψn with energy
En to the bound electron state ψn′ with energy En′ and the photon state Aph with
4-momentum p′ by setting

〈En′p′|S1(T )|En〉 := −i

Z T/2

−T/2

dt Hint(t),

where

Hint(t) := −e
Z

C(L)

d3x ψ(x, t)γμAph(x, t)ψ(x, t).

Here, the function ψ is taken from (15.16). This ansatz for Hint is motivated by
(15.11) on page 916. For the total transition probability during the time interval
[−T

2
, T

2
], we get
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W (T ) =
X

p′∈G(N)

VΔ3p′

(2π)3

X

r=1,2

|〈En′p′|S1(T )|En〉|2.

As usual, the states of the outgoing photons are counted according to the cell
quantization of the phase space, as explained in Sect. 14.15 on page 893. This
implies the emission rate

τ = lim
T→+∞

W (T )

T
.

Our goal is to compute this limit. To simplify notation, let us introduce the following
symbols:

αn′n,r : =

Z

C(L)

d3x ϕn′(x)†γ0γμe
μ
r e−ip′xϕn(x),

and

an′n,r : =

Z

R3
d3x ϕn′(x)†γ0γμe

μ
r e−ip′xϕn(x).

Thus, the transition amplitude 〈En′p′|S1(T )|En〉 is equal to

ie

Z T/2

−T/2

dt ei(En′−En+ω′)t αn′n,r√
2Vω′

= 2πie δT (En′ −En + ω′)
αn′n,r√
2Vω′

.

Since 2πδT (En′ − En + ω′)2 = T δT (En′ − En + ω′) by Sect. 12.1.2 of Vol. I, we
obtain

W (T )

T
=

e2

8π2

X

p′∈G(N)

Δ3p′

ω′ δT (En′ − En + ω′)

2
X

r=1

|αn′n,r|2.

Carrying out the limits T → +∞ and L→ +∞, both the box C(L) and the lattice
G(N) go to the total space R

3. Formally, we obtain

τ =
e2

8π2

Z

R3

d3p′

ω′ δ(En′ − En + ω′)
2
X

r=1

|an′n,r|2.

Using spherical coordinates, we have d3p′ = dΩp′ω′2dω′. Hence

τ =
e2

8π2

Z ∞

0

dω′ ω′ δ(En′ − En + ω′)

Z

|p′|=1

dΩp′

2
X

r=1

|an′n,r|2.

The Dirac delta function forces us to set ω′ = En−En′ which corresponds to energy
conservation. Explicitly,

τ =
e2

8π2

Z

|p′|=1

dΩp′(En −En′)

2
X

r=1

|an′n,r|2.

This is the claim.
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15.3.3 Intensity of Spectral Lines

The emitted mean energy power. The intensity of a spectral line depends on
the radiated energy Eout. Suppose that there are N atoms in a sufficiently large
box C(L). Physicists introduce the quantity

η :=
Eout

T
· 1

N
= τω′.

This is the emitted photon power of angular frequency ω′ = En − En′ per atom.
Recall that

τ =
e2

8π2

Z

|p′|=1

dΩp′ ω′
2
X

r=1

|〈ϕn′ |αer · ϕn〉|2.

By definition, α := γ0γ
1i + γ0γ

2i + γ0γ
3k.

Heisenberg’s famous radiation formula. As an approximation, we get

η =
e2

3π
· ω′4 · |xn′n|2 (15.18)

along with the dipol moment xn′n := 〈ϕn′ |xϕn〉 =
R

R3 d
3x ϕn′(x)†xϕn(x).

Motivation. We want to motivate (15.18). The wave functions ϕn and ϕ′
n of

a bound electron in an atom are concentrated approximately in a ball about the
origin of Bohr radius r0 = 10−8 cm. The basic idea of our approximation is the
fact that the wave length λ ∼ 10−4 cm of visible light is much larger than the Bohr
radius r0. Since |p′| = 2π/λ is small compared with r0, the integral

〈ϕn′ |αer · e−ip′xϕn〉 =

Z

R3
d3x ϕn′(x)†αer · e−ip′xϕn(x)

can be approximately computed by setting e−ip′x � 1. Hence

〈ϕn′ |αer · e−ip′xϕn〉 � 〈ϕn′ |αer · ϕn〉.

To compute this, we introduce the momentum operator P = −i∂ and the Hamil-
tonian

H := γ0me + αP− eU.

Then, the Dirac equation for the electron can be written as

iψ̇ = Hψ.

In particular, Hϕn = Enϕn and Hϕn′ = En′ϕn′ . By Heisenberg’s commutation
relation, [xj ,−i∂k]− = iδjk. Hence

[x,H]− = [x,αP]− = iα.

Consequently, the inner product i〈ϕn′ |erα · ϕn〉 is equal to

〈ϕn′ |er[x, H]−ϕn〉 = 〈ϕn′ |erx ·Hϕn − erH(xϕn)〉
= 〈ϕn′ |erx ·Hϕn〉 − 〈Hϕn′ |erx · ϕn〉 = (En − En′)〈ϕn′ |erx · ϕn〉.

Therefore,

|〈ϕn′ |erα · ϕn〉|2 = ω′2 |〈ϕn′ |erx · ϕn〉|2.
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This implies the decomposition τ = τ1 + τ2 by setting

τr :=
e2ω′3

8π2

Z

|p′|=1

dΩp′ |〈ϕn′ |erx · ϕn〉|2.

Now we want to average over the polarization vector e1. To this end, fix the mo-
mentum vector p′, and choose the vector e1 in such a way that it is perpendicular
to p′. Using spherical coordinates, we have

e1 = cosϑ(cosϕ i + sinϕ j) + sinϑ k.

Define the special transition amplitudes

ax := 〈ϕn′ |xϕn〉, ay := 〈ϕn′ |yϕn〉, az := 〈ϕn′ |zϕn〉,

and set bxy := axa
†
y + a†xay. Then

|〈ϕn′ |xϕn〉|2 = |ax|2 + |ay|2 + |az|2.

Moreover,
e1x = x cosϑ cosϕ + y cosϑ sinϕ + z sinϑ.

Thus, |(ϕn′ |〈e1x)ϕn〉|2 is equal to

|ax|2 cos2 ϑ cos2 ϕ + |ay|2 cos2 ϑ sin2 ϕ + |az|2 sin2 ϑ

+bxy cos2 ϑ cosϕ sinϕ + bxz cosϑ sinϑ cosϕ + byz cosϑ sinϑ sinϕ.

Noting that
Z

|p′|=1

dΩp′ . . . =

Z π/2

−π/2

dϑ cosϑ

Z π

−π

dϕ . . .

and using the orthogonality relations for trigonometric functions like
Z π

−π

cosϕ dϕ = 0,

Z π

−π

cos2 ϕdϕ = π,

we get the key relation

τ1 =
e2ω′3

8π2
· 4π

3
(|ax|2 + |ay|2 + |az|2) =

e2ω′3

6π
|〈ϕn′ |xϕn〉|2.

Interchanging the polarization vector e1 with e2, we obtain τ2 = τ1. Finally, we get
η = τω′ = 2τ1ω

′.

15.4 Cherenkov Radiation

In 1934, Pavel Cherenkov discovered a new kind of radiation called Cherenkov
radiation.20 This is a radiation in the form of bluish light, produced by charged
particles moving in a transparent medium.

Einstein’s principle of special relativity postulates that, in a vacuum, the
speed of massive particles is less than the speed of light.

20 For the discovery and the interpretation of the Cherenkov effect, Cherenkov,
Frank, and Tamm were awarded the Noble prize in physics in 1958.
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Fig. 15.5. Cherenkov effect

The point is that the situation may change if we replace the vacuum by special
media. In fact, there exist media where cm < c, i.e., the speed of light, cm, in the
medium is less than the speed of light, c, in a vacuum. In this case, it is possible
that massive particles (e.g., electrons) move with a velocity v which satisfies the
key inequality

cm < v < c. (15.19)

The condition v < c is forced by Einstein’s principle of special relativity. The point
is that the particle speed v is greater than the speed of light cm in the medium. If the
inequality (15.19) is satisfied, then the Cherenkov effect appears. The Cherenkov
radiation is emitted in a cone around the direction in which the particle is travelling
(Fig. 15.5(a)).

Let us work in the energetic system of units, i.e., we set c = � = ε0 := 1. We
will use the following notation:

(i) Medium
• velocity of light in the medium: 0 < cm < 1;
• refraction index of the medium: n := 1/cm > 1.

(ii) Incoming electron
• rest mass me;
• velocity vector: v = −vi with cm < v < 1;
• momentum vector: q = mev/

√
1− v2; moreover, v = |q|/Eq;

• energy: Eq =
p

m2
e + q2;

• 4-momentum vector: q = (q, Eq).
(iii) Emitted photon
• momentum vector p′;
• energy (frequency): ωp′ = cm|p′|;
• 4-momentum: p′ = (p′, ωp′);
• the angle between the incoming electron and the emitted photon is denoted

by ϑ.
(iv) Outgoing electron after the emission of the photon
• momentum vector: q′ = q− p′;

• energy: Eq′ =
p

m2
e + q′2 = Eq − ωp′ ;

• 4-momentum vector: q′ = (q′, Eq′).

The emission angle ϑ of the photon is restricted by the following inequality:

0 ≤ ϑ < ϑmax.

Here, the maximal angle is determined by the equation
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cosϑmax =
cm

v
, 0 < ϑmax <

π

2
.

If there are N incoming electrons, then the total energy of the emitted photons
during the sufficiently large time interval [−T

2
, T

2
] is equal to

Eemission = τNT.

The emission rate is given by

τ = α · 2mev
2cm

(1− c2m)
√

1− v2

Z ϑmax

0

dϑ sinϑ

„

sin2 ϑ +
2(cosϑ− cosϑmax)

2

1− c2m

«

where α = e2/4π = 1/137.04 denotes the fine structure constant. This formula for
τ shows the angle distribution of the emitted photon energy, too. Computation of
the integral yields

τ = α · 2mecm(v − cm)2

(1− c2m)
√

1− v2

„

1 +
v − cm

3v
· 1 + c2m
1− c2m

«

. (15.20)

Motivation for the emission angle. By energy-momentum conservation,

q′ + p′ = q.

Thus, q′ + p′ = q and Eq′ + ωp′ = Eq. It follows from E2
q′ = (Eq − ωp′)2 that

m2
e + (p′ − q)2 = E2

q − 2ωp′Eq + ω2
p′ .

This implies p′2 − 2p′q = −2cm|p′|Eq + c2mp′2. Consequently,

|p′|(|p′| − 2|q| cosϑ + 2cmEq − c2m|p′|) = 0.

Assuming that the momentum vector p′ of the photon is nontrivial, we get

|p′|(1− c2m)− 2|q| cosϑ + 2cmEq = 0.

This yields the key relation

|p′| = 2(|q| cosϑ− cmEq)

1− c2m
. (15.21)

Since |p′| > 0, the angle ϑ satisfies the following condition

cosϑ >
cmEq

|q| =
cm

v
.

This shows that 0 ≤ ϑ < ϑmax along with cosϑmax = cm/v.
Motivation for the emission rate. We will use similar arguments as in the

preceding examples. Set x := (x, t). The Cherenkov effect corresponds to a passage
from the incoming electron state

Φin := b+q,s|0〉

to the outgoing electron-photon state
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Φout := b+q′s′a
+
p′,r′ |0〉.

In first-order approximation, the corresponding transition amplitude during the
time interval [−T

2
, T

2
] is given by

〈q′p′|I + S1(T )|q〉 := 〈Φout|I + S1(T )|Φin〉

along with

S1(T ) := ie

Z T/2

−T/2

dt

Z

C(L)

d3x : ψ(x) �A(x)ψ(x) : .

Here ψ (resp. �A = γμA
μ) corresponds to the free electron-positron field (resp.

the free photon field) contained in the box C(L) with the volume V. Our goal is
to compute explicitly the transition amplitude. Note that 〈Φout|Φin〉 = 0. By the
Main Wick Theorem 13.2 on page 846,

〈Φout|S1(T )|Φin〉 = 〈0|a−p′,r′b
−
q′,s′S1(T )b+q,s|0〉 =

Z T/2

−T/2

dt

Z

C(L)

d3x�(x)

with the function

�(x) := ie〈0|a−
p′,r′b

−
q′,s′ : ψ(x)�A(x)ψ(x) : b+q,s|0〉. (15.22)

Now we use Table 14.5 on 897 which summarizes the Feynman rules. Introducing
the Feynman slash symbol �er′ := γμe

μ
r′ , we obtain

�(x) = ieNp′Nq′Nq · uq′,s′ �er′uq,s · ei(p′+q′−q)x

with the normalization factors21

Np′ := cm

s

1

2Vωp′
, Nq′ :=

s

1

2VEq′
, Nq :=

s

1

2VEq
.

The Feynman diagram corresponding to (15.22) is pictured in Fig. 15.5(b) above.
The integration over space and time generates discrete Dirac delta functions.

Explicitly,

〈q′p′|S1(T )|q〉 = (2π)4δdis(p
′ + q′ − q) · ieNp′Nq′Nq · uq′,s′ �er′uq,s.

For the transition probability during the time interval [−T
2
, T

2
], we get

W (T ) =
X

p′,q′∈G(N)

V2Δ3p′Δ3q′

(2π)6
· 1
2

X

r′,s′,s

|〈q′p′|S1(T )|q〉|2.

Here, we sum over r′ = 1, 2 and s′, s = ± 1
2
. As usual, we are counting the outgoing

states by using a cell decomposition of the phase space. In addition, we average
over the two spin states of the incoming electron. Recall that

21 In the SI system, Np′ = c/
p

2Vωp′ . Now we have to replace the velocity of light
in a vacuum, c, by the velocity of light in the medium, cm.
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δdis(p
′ + q′ − q)2 =

VT
(2π)4

δdis(p
′ + q′ − q).

To simplify notation, we set

U(q′,q) :=
1

8

X

r′=1,2

X

s′,s=± 1
2

|uq′,s′ �er′uq,s|2.

Then

W (T )

T
=

e2

8π2

X

p′,q′∈G(N)

c2mΔ3p′Δ3q′

ωp′Eq′Eq
δdis(p

′ + q′ − q) U(q′,q).

Consider now the limits
T → +∞, L→ +∞.

This means that the time interval becomes infinite, and the box C(L) converges to
the total space R

3. The quantity

τ := lim
T→+∞

W (T )

T

is called the emission rate for the photon. Our goal is to compute τ. The formal
limit from the lattice to the continuum yields the key formula

τ =
e2

8π2

Z

R3×R3

d3p′d3q′

ωp′Eq′Eq
δ(p′ + q′ − q) U(q′,q).

Step 1: Computation of the spin sum U(q′,q) : As in the proof to Prop. 15.4 on
page 907 concerning Compton scattering, we use the trace trick in order to get
the key formula

U(q′,q) =
1

8

X

r′=1,2

tr(
X

s=± 1
2

uq,suq,s �er′
X

s′=± 1
2

uq′,s′uq′,s′ �er′)

=
1

8

X

r′=1,2

tr((�q + me) �er′(�q ′ + me) �er′).

In addition, we have to set q′ = q − p′. This implies

U(q′,q) =
1

8
tr(m2

e �e2
r′+ �q �er′ �q �er′− �q �er′ �p ′ �er′).

By the trace property (T4) from Prop. 15.3 on page 905, we get

U(q′,q) =
1

2

X

r′=1,2

m2
ee

2
r′ + 2(qer′)2 − q2e2

r′ − 2(qer′)(p′er′) + (qp′)e2
r′ .

Noting that q2 = m2
e and p′er′ = −p′er′ = 0, we obtain

U(q′,q) = (qe1′)
2 + (qe2′)

2 + p′q− Eqωp′ .
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Step 2: Integration over the momentum of the outgoing electron: Recall that, for
the 4-dimensional Dirac delta function, we have the factorization

δ(p′ + q′ − q) = δ(ωp′ + Eq′ − Eq) · δ(p′ + q′ − q).

Integrating over q′, we get

τ =
e2

8π2

Z

R3

c2md3p′

ωp′Ep′−qEq
δ(ωp′ + Eq′ − Eq) · U(p′ − q,q).

Step 3: Integration over the energy of the outgoing photon: To simplify notation,
let us set

n :=
1

cm
, ω :=

|p′|
n

, ζ := cosϑ.

Then, ωp′ = n|p′|, and

Ep′−q(ω, ϑ) =
p

m2
e + (p′ − q)2

=
p

m2
e + n2ω2 − nω|q|ζ + q2.

Choose the following polarization vectors

e1′ :=
p′ × q

|p′ × q| , e2′ :=
p′

|p′| × e1′ .

From qe1′ = 0 and qe2′ = −nω sinϑ we obtain

U(ω, ϑ) := U(p′ − q,q) = n2ω2(1− ζ2) + 2nωζ − Eqω.

Using spherical coordinates, we have

d3p′ = dΩp′p′2d|p′| = n3dΩp′ω2dω.

This yields

τ =
e2

8π2

Z

|p′|=1

dΩp′

Z ∞

0

dω δ(f(ω, ϑ)) · F (ω, ϑ).

Here, we set

F (ω, ϑ) :=
nωU(ω, ϑ)

Ep′−q(ω, ϑ)Eq
,

and f(ω, ϑ) := Ep′−q(ω, ϑ)+ω−Eq. The momentum vector q of the incoming
electron is fixed. Let us also fix the direction of the momentum vector p′, i.e.,
let us fix the angle ϑ. We want to integrate over the photon energy, ω. By
(15.21), the equation

f(ω, ϑ) = 0

has the solution ω = ωp′ along with

ωp′ =
2(n|q|ζ − Eq)

n2 − 1
. (15.23)

This corresponds to Ep′−q(ωp′ , ϑ) = Eq − ωp′ which describes conservation of
energy for the outgoing photon. Consider the integral
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J(ϑ) :=

Z ∞

0

dω δ(f(ω, ϑ)) · F (ω, ϑ)

over all possible photon energies, ω. The integrand is concentrated at the en-
ergy, ωp′ , which corresponds to energy conservation for the Cherenkov process.
A standard property of the Dirac delta function (see (14.19)) tells us that

J(ϑ) =
F (ωp′ , ϑ)

|fω(ωp′ , ϑ)|.

For the partial derivative, we get

fω(ω, ϑ) = 1 +
n2ω − n|q|ζ
Ep′−q(ω, ϑ)

.

By (15.23), we obtain

fω(ωp′ , ϑ) =
Eq − ωp′ + n2ωp′ − n|q|ζ

Eq′
=

ωp′(n2 − 1)

2Eq′
.

Hence

J(ϑ) =
2Eq′F (ωp′ , ϑ)

ωp′(n2 − 1)
.

Since dΩp′ = sinϑ dϑdϕ, we finally obtain

τ =
e2

4π

Z ϑmax

0

dϑ sinϑ
2n

Eq(n2 − 1)

„

q2 sin2 ϑ +
2(|q|n cosϑ− Eq)2

n2 − 1

«

.

Naturally enough, we only sum over those angles ϑ which are admissible for
outgoing photons. This finishes the motivation for the emission rate, τ, of the
Cherenkov radiation.

Problems

15.1 The principle of critical action for the Dirac equation of the relativistic elec-
tron. Let Ω be a nonempty bounded open subset of R

4. We are given the
continuous functions A0, A1, A2, A3 : cl(Ω) → R. Introduce the Lagrangian
density

LDirac(ψ, ∂ψ, ψ) := ψ(iγα∇α −me)ψ

with the covariant derivative ∇α := ∂α − ieAα, and ∇−
α := ∂α + ieAα. Recall

the definition of the Dirac adjoint ψ := ψ†γ0. Show that each smooth solution
ψ : cl(Ω)→ C

4 of the variational problem

Z

Ω

LDirac(ψ, ∂ψ, ψ) d4x = critical!

along with the boundary condition “ψ = fixed on ∂Ω” satisfies the Dirac
equation

iγα∇αψ = meψ on Ω (15.24)
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and the adjoint equation

− i∇−
α ψγα = meψ on Ω. (15.25)

Prove that (15.25) is a consequence of (15.24).
Solution: Choose smooth test functions hμ : Ω → C which have compact
support, i.e., hμ ∈ C∞

0 (Ω) for μ = 0, 1, 2, 3. Replacing ψμ by ψμ + τhμ, we get

J (τ) :=

Z

Ω

L(ψ + τh, ψ† + τh†) d4x, τ ∈ R.

Suppose that ψ is a solution of the variational problem. Then J̇ (0) = 0. Hence
Z

Ω

{h†γ0(iγα∇α −me)ψ + ψ(iγα∇α −me)h} d4x = 0.

Integration by parts yields
Z

Ω

{h†γ0(iγα∇α −me)ψ + (−i∂αψγ
α + eAαψγ

α − ψme)h} d4x = 0.

By the complex variational lemma (see Sect. 10.4.1 of Vol. I), we obtain

γ0(iγα∇α −me)ψ = 0, −i∂αψγ
α + eAαψγ

α −meψ = 0.

Since the inverse matrix to γ0 exists, we get the Dirac equation (15.24) and its
adjoint equation (15.25). Finally, let us show that (15.25) is a consequence of
(15.24). In fact, equation (15.24) reads as

γα(i∂αψ + eAα)ψ = meψ.

Applying the operator † to (15.24), we get

(−i∂αψ
† + eAαψ

†)γα† = meψ
†.

Multiplying this by γ0 from the right and using

γ0† = γ0, γj† = −γj , γjγ0 = −γjγ0, j = 1, 2, 3,

we obtain
(−i∂αψ

†γ0 + eAαψ
†γ0)γα = meψ

†γ0.

This is the desired relation (15.25).
15.2 The principle of critical action for the Maxwell equations in classical electro-

dynamics. Let Ω be a nonempty bounded open subset of R
4. We are given

the continuous functions J0, J1, J2, J3 : cl(Ω)→ R. Introduce the Lagrangian
density

LMaxwell(A, ∂A) := − 1
4
FαβF

αβ − JαAα

where the components of the electromagnetic field tensor Fαβ are given by

Fαβ := ∂αAβ − ∂βAα (15.26)

in terms of the four-potential Aα, α = 0, 1, 2, 3. Show that each smooth solution
A0, A1, A2, A3 : cl(Ω)→ R of the variational problem

Z

Ω

LMaxwell(A, ∂A) d4x = critical!
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with fixed values of A0, A1, A2, A3 on the boundary ∂Ω satisfies the Maxwell
equations

∂αF
αβ = Jβ on Ω, β = 0, 1, 2, 3.

In addition, we have the Bianchi identity

∂αFβγ + ∂βFγα + ∂γFαβ = 0, α, β, γ = 0, 1, 2, 3

which follows immediately from (15.26) by antisymmetry.
Solution: Choose smooth test functions hα : Ω → R, α = 0, 1, 2, 3, which have
compact support on the open set Ω. Replacing Aα by Aα + τhα, we get

J (τ) :=

Z

Ω

− 1
4
(∂αAβ + τ∂αhβ − ∂βAα − τ∂βhα)×

×(∂αAβ + τ∂αhβ − ∂βAα − τ∂βhα)− Jβ(Aβ + τhβ)) d4x

for τ ∈ R. Suppose that A0, A1, A2, A3 is a solution of the variational problem.
Then J̇ (0) = 0. Hence

Z

Ω

{− 1
4
(∂αhβ − ∂βhα)Fαβ − 1

4
Fαβ(∂αhβ − ∂βhα)− Jβhβ} d4x = 0.

It follows from Fαβ = −Fβα and Fαβh
αβ = Fαβhαβ that

Z

Ω

(−Fαβ∂αhβ − Jβhβ) d4x = 0.

Integration by parts yields

Z

Ω

(∂αF
αβ − Jβ)hβ d4x = 0.

By the variational lemma, ∂αF
αβ − Jβ = 0 (see Sect. 7.20.2 of Vol. I).

15.3 First approach to quantum electrodynamics. Let Ω be a bounded open subset
of R

4. Introduce the Lagrangian density

L = − 1
4
FαβF

αβ + ψ(i∇αγ
α −me)ψ + Lint

with Lint := −Jα
QEDAα and Jα

QED := −eψγαψ. Show that each smooth solution

tuple A0, A1, A2, A3 : cl(Ω)→ R and ψ : cl(Ω)→ C
4 of the variational problem

Z

Ω

L d4x = critical!

with fixed boundary values of A0, A1, A2, A3 and ψ satisfies the Maxwell–Dirac
system

∂αF
αβ = Jβ

QED, i∇βψ = meψ on Ω, β = 0, 1, 2, 3.

Solution: Use Problems 15.1 and 15.2.
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15.4 Wave system for the four-potential. Fix the nonzero real gauge parameter ξ.
Let Ω be a bounded open subset of R

4. We are given the continuous functions
Jα : cl(Ω)→ R, α = 0, 1, 2, 3. Introduce the Lagrangian density

L := − 1
2
(∂αAβ)(∂βAα) + 1

2
(1− ξ−1)(∂αA

α)2 − Jβhβ .

Show that each smooth solution A0, A1, A2, A3 : cl(Ω) → R of the variational
problem

Z

Ω

L d4x = critical!

with the boundary conditions “Aα = fixed on ∂Ω for α = 0, 1, 2, 3” satisfies
the equations

�Aβ + (ξ−1 − 1)∂β(∂αA
α) = Jβ , β = 0, 1, 2, 3.

Solution: Choose smooth test functions hα : Ω → R, α = 0, 1, 2, 3, which have
compact support on the open set. Replacing Aα by Aα + τhα, we get

J (τ) : =

Z

Ω

{− 1
2
(∂αAβ + τ∂αhβ)(∂αAβ + τ∂αhβ) +

+ 1
2
(1− ξ−1)(∂αA

α + τ∂αh
α)2 − Jβ(Aβ + τhβ)} d4x

for τ ∈ R. Suppose that A0, A1, A2, A3 is a solution of the variational problem.
Then J̇ (0) = 0. Hence

Z

Ω

{− 1
2

∂αAβ∂
αhβ − 1

2
∂αhβ∂

αAβ +

+(1− ξ−1)(∂αA
α)(∂βh

β)− Jβhβ} d4x = 0.

Hence
Z

Ω

{−∂αhβ∂
αAβ + (1− ξ−1)(∂αA

α)(∂βhβ)− Jβhβ} d4x = 0.

Integration by parts yields
Z

Ω

{∂α∂
αAβ + (ξ−1 − 1)∂β(∂αA

α)− Jβ}hβ d4x = 0.

By the variational lemma, ∂α∂
αAβ + (ξ−1 − 1)∂β(∂αA

α)− Jβ = 0.
15.5 Second approach to quantum electrodynamics. Fix the real nonzero gauge pa-

rameter ξ. Let Ω be a bounded open subset of R
4. Introduce the Lagrangian

density

L = − 1
2
(∂αAβ)(∂αAβ) + 1

2
(1− ξ−1)(∂αA

α)2

+ψ(iγα∇α −me)ψ + Lint

with Lint := −Jα
QEDAα and Jα

QED := −eψγαψ. Show that each smooth solution

A0, A1, A2, A3 : cl(Ω)→ R and ψ : cl(Ω)→ C
4 of the variational problem

Z

Ω

L d4x = critical!

with fixed boundary values of A0, A1, A2, A3 and ψ satisfies the system
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�Aβ + (ξ−1 − 1)∂β(∂αA
α) = Jβ

QED, iγα∇αψ = meψ on Ω

for all indices β = 0, 1, 2, 3.
Solution: Use Problems 15.1 and 15.4.
Remark: It turns out that the second approach to quantum electrodynamics is
more convenient than the first approach discussed in Problem 15.3. The reason
is that the wave equation appears for the four-potential in the second approach.
This simplifies the method of Fourier quantization also called Gupta–Bleuler
quantization in quantum electrodynamics (see Sects. 11.2 and 12.4.4).

15.6 The Weyl matrices. Define the (4× 4)-Weyl matrices γα
W by

γα
W := UγαU−1, α = 0, 1, 2, 3

where

γ0 :=

 

σ0 0

0 −σ0

!

, γj :=

 

0 σj

−σj 0

!

, j = 1, 2, 3

are called the Dirac–Pauli matrices along with the (2× 2)-Pauli matrices

σ0 :=

 

1 0

0 1

!

, σ1 :=

 

0 1

1 0

!

, σ2 :=

 

0 −i

i 0

!

, σ3 :=

 

1 0

0 −1

!

.

In addition, we introduce the matrix

U :=
1√
2

 

σ0 σ0

−σ0 σ0

!

.

Show the following:
(i) The matrix U is unitary, i.e., U† = U−1.
(ii) The Weyl matrices read as

γ0
W =

 

0 σ0

σ0 0

!

, γj
W = γj , j = 1, 2, 3.

(iii) Introducing the chiral Dirac–Pauli matrix

γ5 := iγ0γ1γ2γ3 =

 

0 σ0

σ0 0

!

,

the chiral Weyl matrix reads as

γ5
W := iγ0

W γ1
W γ2

W γ3
W =

 

−σ0 0

0 σ0

!

.

(iv) The Clifford anticommutation relations for the Dirac–Pauli matrices,

γαγβ + γβγα = 2ηαβI, α, β = 0, 1, 2, 3,

pass over to γα
W γβ

W + γβ
W γα

W = 2ηαβI.
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(v) The Dirac equation
iγα∂αψ = meψ

passes over to iγα
W ∂αψW = meψW where ψW := Uψ.

15.7 The Majorana matrices. Define the (4× 4)-Majorana matrices γα
M by setting

γα
M := UγαU−1, α = 0, 1, 2, 3,

where

U :=
1√
2

 

σ0 σ2

σ2 −σ0

!

.

Show the following:
(i) The matrix U is unitary, i.e., U† = U−1. In addition, U = U†.
(ii) The Majorana matrices read as22

γ0
M =

 

0 σ2

σ2 0

!

, γ1
M =

 

iσ3 0

0 iσ3

!

, γ2
M =

 

0 −σ2

σ2 0

!

, γ3
M =

 

−iσ1 0

0 −iσ1

!

.

(iii) The chiral Majorana matrix reads as

γ5
M := iγ0

Mγ1
Mγ2

Mγ3
M =

 

σ2 0

0 −σ2

!

.

(iv) The Clifford anticommutation relations for the Dirac–Pauli matrices pass
over to

γα
Mγβ

M + γβ
Mγα

M = 2ηαβI, α, β = 0, 1, 2, 3.

(v) The Dirac equation iγα∂αψ = meψ is transformed into

iγα
M∂αψM = meψM

where we set ψM := Uψ. The choice of the Majorana matrices has the
advantage that the coefficients of the transformed Dirac equation become
real numbers.

15.8 Pauli matrices. Choose the momentum vector p = p1i+ p2j+ p3k. Determine
the eigensolutions of the self-adjoint matrix

pσ =
3
X

j=1

pjσj =

 

p3 p1 − ip2

p1 + ip2 −p3

!

,

and show that (pσ)2 = p2I.
Solution: The eigenvalues of the matrix pσ are λ = ±|p|. This follows from

22 In terms of the Kronecker product for matrices, we get

γ0
M = σ1 ⊗ σ2 =

 

0 1

1 0

!

⊗ σ2 =

 

0 σ2

σ2 0

!

,

and γ1
M = iσ0 ⊗ σ3, γ2

M = −iσ2 ⊗ σ2, γ3
M = −iσ0 ⊗ σ1, γ5

M = σ3 ⊗ σ2.
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det(pσ − λI) =

˛

˛

˛

˛

˛

p3 − λ p1 − ip2

p1 + ip2 −p3 − λ

˛

˛

˛

˛

˛

= λ2 − p2 = 0.

Let p �= 0. Then

(pσ)χ
± 1

2
(p) = ±|p| χ

± 1
2
(p). (15.27)

Here, for p �= −k, we introduce the eigenvectors

χ 1
2
(p) := 1

2

 

p3 + |p|
p1 + ip2

!

, χ
− 1

2
(p) := 1

2

 

ip2 − p1

p3 + |p|

!

.

For p = −k, we get

χ
− 1

2

(−k) = χ 1
2

(k) =

 

1

0

!

, χ 1
2

(−k) = χ
− 1

2

(k) =

 

0

1

!

.

15.9 Plane wave solutions of the Dirac equation. Prove Theorem 12.3 on page 807.
Solution: Recall that the Dirac equation iγα∂αψ = meψ is equivalent to

iψ̇ = Hψ

with the Hamiltonian

H := γ0me +
3
X

j=1

γ0γj(−i∂j) = me

 

σ0 0

0 −σ0

!

− i

 

0 ∂σ

∂σ 0

!

.

Analogously, introduce the operator

Hp := γ0me +

3
X

j=1

γ0γjpj = me

 

σ0 0

0 −σ0

!

+

 

0 pσ

pσ 0

!

.

Setting px := pαx
α = Ept− px, we make the ansatz

ψ±(x) := e∓ipx

 

χ

ϕ

!

. (15.28)

Inserting this into the Dirac equation iψ̇± = Hψ±, we get ±Epψ
± = Hpψ

±.
Therefore, we obtain the following system:

(Ep ±me)ϕ = (pσ)χ,

(Ep ∓me)χ = (pσ)ϕ. (15.29)

Consider first this equation equipped with the upper sign. Choose χ arbitrarily.
By the first equation from (15.29), we obtain

ϕ =
pσ

Ep + me
χ.

The second equation from (15.29) is then satisfied automatically. In fact,

(pσ)ϕ =
|p|2

Ep + me
χ.
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Choosing χ := χs(k), we get the two solutions
 

χ

ϕ

!

= N
 

χs(k)
pσ

Ep+me
χs(k)

!

, s = ± 1
2

with the normalization constant N . For example, choose N :=
p

Ep + me.
Consider now the system (15.29) equipped with the lower sign. We then get
the solution

 

χ

ϕ

!

= N
 

pσ
Ep+me

χs(k)

χs(k)

!

, s = ± 1
2
.

15.10 Helicity of free electrons. For given nonzero momentum vector p, the helicity
operator (or spin projection operator) is given by

Sp :=
pS

|p|

with the spin operator S := S1i + S2j + S3k where

S1 := 1
2
σ23, S2 := 1

2
σ31, S3 := 1

2
σ12

along with σαβ := i
2
[γα, γβ ]−. Explicitly,

Sj := 1
2

 

σj 0

0 σj

!

, j = 1, 2, 3, pS = 1
2

 

pσ 0

0 pσ

!

.

By (pσ)2 = p2I, we get S2
p = 1

4
I, and we have the commutation relation

[Hp,Sp]− = 0.

Show that there exist solutions of the Dirac equation iγα∂αψ = meψ of the
form (15.29) which are also eigensolutions of the helicity operator Sp.
Solution: For s = ± 1

2
, define

ϕ+
p,s(x, t) := N

 

χs(p)
2s|p|

Ep+me
χs(p)

!

eipxe−iEpt

and

ϕ−
p,s(x, t) := N

 

−2s|p|
Ep+me

χ−s(p)

χ−s(p)

!

e−ipxeiEpt.

Using the key relation (15.27) for pσ, it follows from Problem 15.9 that the
Dirac equation

iγα∂αϕ
±
p,s = meϕ

±
p,s, s = ± 1

2

is satisfied. Equivalently,

iϕ̇±
p,s = Hϕ±

p,s, s = ± 1
2
.

Finally, for each fixed nonzero momentum vector p, we get

Hϕ±
p,s = ±Epϕ

±
p,s, Spϕ

±
p,s = ±sϕ±

p,s, s = ± 1
2
.
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15.11 Relativistically invariant projection operators for electron-positron waves. We
want to construct plane wave solutions of the Dirac equation

i �∂ψ = meψ

which are relativistically invariant. Here, we use Feynman’s slash symbol23

�∂ := γα∂α, �p := pαγ
α, �Π := Παγ

α.

The idea is to introduce first projection operators Pα(p,Π), α = 0, 1, 2, 3.
Then, the eigenvectors of these operators to the eigenvalue λ = 1 generate the
plane wave solutions

ψ+
p,Π(x) = u(p,Π)e−ipx, ψ−

p,Π(x) = v(p,Π)eipx (15.30)

of the Dirac equation where px := Ept − px. These solutions depend on the
momentum 4-vector p, the polarization 4-vector Π, and the sign ± of energy.
To fix notation, let p = (p0, p1, p2, p3) and Π = (Π0,Π1, Π2, Π3) be 4-vectors
with

p2 = m2
e, Π2 = −1, pΠ = 0.

The general form of p,Π can be parameterized by the arbitrary momentum
vector p = p1i + p2j + p3k. Explicitly, for p �= 0 let

p := (Ep, p), Ep :=
p

m2
e + p2, Π :=

„

|p|
me

,
Ep

me
· p

|p|

«

. (15.31)

Then, p2 = pαpβηαβ = E2
p − p2 = m2

e. Moreover,

Π2 = ΠαΠβηαβ = (Π0)2 −Π2 =
p2

m2
e

− E2
p

m2
e

= −1.

Finally, we obtain

pΠ = pαΠβηαβ = p0Π0 − pΠ =
Ep|p|
me

− Epp
2

me|p|
= 0.

For p = 0, let
p := (me, 0), Π := (0, Π)

where Π is an arbitrary unit vector. This corresponds to a resting particle
having the spin vector Π . Now to the point. Define the two key operators

Λ±(p) :=
meI ± � p

2me
, Σ(Π) :=

I + γ5 � Π
2

.

Using this, let us introduce the following four operators:

P0(p,Π) : = Λ+(p)Σ(Π), P1(p,Π) := Λ+(p)Σ(−Π),

P2(p,Π) : = Λ−(p)Σ(Π), P3(p,Π) := Λ−(p)Σ(−Π).

Show that the following hold:
(i) Commutation rules: [Λ±(p), Σ(Π)]− = 0.

23 Recall that γα∂α =
P3

α=0 γ
α∂α by the Einstein convention.



Problems 941

(ii) Projection operators: The operators Λ±(p), Σ(Π), Pα(p,Π) are projection
operators. That is, for α = 0, 1, 2, 3, we have

Λ±(p)2 = Λ±(p), Σ(Π)2 = Σ(Π), Pα(p,Π)2 = Pα(p,Π).

Moreover, Λ−(p) = I − Λ+(p), and

3
X

α=0

Pα(p,Π) = I,

as well as Pα(p,Π)Pβ(p,Π) = 0 if α �= β, and α, β = 0, 1, 2, 3.
(iii) For each α = 0, 1, 2, 3, the image space of the operator

Pα(p,Π) : C
4 → C

4

is one-dimensional. Thus, there exists an eigenvector wα(p,Π) of the form

Pαwα(p,Π) = wα(p,Π), α = 0, 1, 2, 3.

This eigenvector is uniquely determined up to a nonzero complex factor.
(iv) Plane wave solutions: Set

u(p,Π) := w0(p,Π), u(p,−Π) := w1(p,Π),

v(p,Π) := w2(p,−Π), v(p,−Π) := w3(p,Π).

Then, the four functions ψ+
p,Π , ψ+

p,−Π , ψ−
p,Π , ψ−

p,−Π introduced in (15.30)
are solutions of the Dirac equation i �∂ψ = meψ. Furthermore,

Hψ±
p,Π = ±Epψ

±
p,Π , Σ(Π)ψ±

p,Π = ψ±
p,Π .

In terms of the amplitudes u and v, we get

(i� p−me)ψ
±
p,Π = 0, (i� p + me)ψ

±
p,Π = 0,

Λ±(p)u(p,Π) = u(p,Π), Λ±(p)v(p,Π) = v(p,Π),

Σ(Π)u(p,Π) = u(p,Π), Σ(Π)v(p,Π) = v(p,Π).

Naturally enough, all of these relations remain true if we replace the po-
larization 4-vector Π by −Π.
Explicitly, for given nonzero momentum vector p, choose p and Π as in
(15.31). Using the helicity solutions, ϕ±, from Problem 15.10, we obtain

ψ±
p,Π = ϕ±

p,
1
2

, ψ±
p,−Π = ϕ±

p,− 1
2

.

This corresponds to particles which possess the spin vector p/|p| in the
rest system.

(v) The rest system: Introduce the following basis column matrices:

e0 :=

0

B

B

B

@

1

0

0

0

1

C

C

C

A

, e1 :=

0

B

B

B

@

0

1

0

0

1

C

C

C

A

, e2 :=

0

B

B

B

@

0

0

1

0

1

C

C

C

A

, e3 :=

0

B

B

B

@

0

0

0

1

1

C

C

C

A



942 15. Application to Physical Effects

in the space C
4. For a given particle, consider its rest system, that is, we

have p = (me,0) and Π = (0,k. Here, the unit vector k in direction of the
z-axis represents the spin vector of the resting particle. Then

u(p,Π) =
√
me e0, u(p,−Σ) =

√
me e1

v(p,Σ) =
√
me e2, v(p,−Π) =

√
me e3.

(vi) Lorentz transformation: Consider a fixed inertial system Σ and suppose
that the particle has the momentum vector p in Σ. In addition, let Σrest

denote that rotated rest system in which the momentum vector of the
particle points in direction of the z-axis. Then, the two inertial systems
Σrest and Σ are related to each other by a Lorentz transformation

 

t

x

!

= L

 

trest
xrest

!

.

For the corresponding momentum vectors, we get
 

Ep

p

!

= L

 

me

0

!

.

Finally, set Πz = Le3. Then, the plane wave solution to the polarization
4-vector Πz is given by

ψ+
p, ±Πz

= u
p, ± 1

2

e−ipx, ψ−
p, ±Πz

= v
p, ± 1

2

eipx.

Here, the explicit form of up,s, vp,s can be found in Sect. 12.1 on page
799. In the language of matrices, we get

(u
p,

1
2

, u
p, − 1

2

, v
p,

1
2

, v
p, − 1

2

) =
√

2me exp

„

−ω

2
· αp

|p|

«

(e0, e1, e2, e3).

Here, αp =
P3

j=1 p
jγ0γj , and tanh ω

2
= −|p|/(Ep + me). Explicitly,

exp

„

−ω

2
· αp

|p|

«

= cosh
ω

2
− αp

|p| sinh
ω

2
.

Hint: See Bjorken and Drell, Relativistic Quantum Mechanics, McGraw-Hill,
New York, 1964. See also W. Greiner, Relativistic Quantum Mechanics, Sprin-
ger, Berlin, 1997.

15.12 Proof of Example 15.2. Solution:
Ad (a)–(d). This follows from the definition of the Dirac matrices.
Ad (e), (f), (n). Obviously, tr γμ = 0. Now the trick is to use the matrix γ5. By
property (d),

γ5γμγνγκγ5 = −γ5γ5(γμγνγκ) = −γμγνγκ.

Since (γ5)−1 = γ5,

tr(γμγνγκ) = tr(γ5γμγνγκγ5) = − tr(γμγνγκ).

Taking (g)–(l) for granted, the trace tr(γμ1 · · · γμN ) is real, by (h). Thus, it
follows from (b) and (l) that
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tr(γμ1 · · · γμN ) = tr(γμN · · · γμ1) = tr(γμN · · · γμ1).

Ad (g). By the Clifford relation (c),

2 tr(γμγν) = 2ημν tr I = 8ημν .

Ad (h), (n), (o). To simplify notation, we set A := aμγ
μ, B := bνγ

ν ,. . . By (g),

tr(AB) = aμbν tr(γμγν) = 4aμbνη
μν = 4aμb

μ.

By the Clifford relation (c),

tr(ABCD) + tr(BACD) = tr(AB + BA) tr(CD).

By permutation,

tr(ABCD) = 2 tr(AB) tr(CD)− tr(BACD),

− tr(BACD) = −2 tr(AC) tr(BD) + tr(BCAD),

tr(BCAD) = 2 tr(AD) tr(BC)− tr(BCDA).

Adding this, we obtain24

tr(ABCD) = tr(AB) tr(CD)− tr(AC) tr(BD) + tr(AD) tr(BC).

This is the claim for N = 4. The general case can be treated similarly.
Ad (i). By the Clifford relation (c),

tr(γμγνγ5) + tr(γνγμγ5) = 2ημν tr(γ5) = 0.

Thus, tr(γμγνγ5) is antisymmetric with respect to the indices μ, ν. Finally, for
(μ, ν) = (0, 1), (0, 2), . . ., an explicit computation yields tr(γμγνγ5) = 0.
Ad (j). An explicit computation yields the following key relation

γμγνγκ = ημνγκ − ημκγν + γνκγμ − iεμνκσγσγ
5.

Using (γ5)2 = I and statement (i), we get

tr(γμγνγκγλγ5) = −iεμνκσ tr(γσγ
λ) = −4iεμνκσηλ

σ = −4iεμνκλ.

Ad (k). Since γ−1
0 = γ0, we have tr(γ0A

†γ0) = trA† = (trA)†.
Ad (l). Note that

tr(AN · · ·A1) = tr(γ0A
†
NA†

N−1 · · ·A
†
1γ0) = tr(A†

N · · ·A
†
1) =

`

tr(A1 · · ·AN )
´†
.

Ad (m). The matrix AB is equal to

γ0(AB)†γ0γ0B
†A†γ0 = (γ0B

†γ0)(γ0A
†γ0) = B ·A.

15.13 Proof of Furry’s rule. Solution: Let us start with a 2-vertex electron loop (see
Table 14.3(a), (b) on page 888). By the Wick theorem, we have to consider the
pairing25

ψ(x)ψ(x)ψ(y)ψ(y).

24 Note that tr(BCDA) = tr(ABCD) by cyclic permutation.
25 To simplify notation, the pairings for the photon are not indicated.
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(a)

x y

z

	
� �

(b)

x y

z

�
�  

Fig. 15.6. Furry’s rule

After an even permutation of the factors, we get

ψ(x)ψ(y)ψ(x)ψ(y).

Since ψ(x)ψ(y) = −ψ(y)ψ(x), we obtain

−ψ(x)ψ(y)ψ(y)ψ(x).

Graphically, this represents two electron lines from y to x and from x to y,
along with a minus sign.

This way, positron lines can be reduced to electron lines (plus an ad-
ditional minus sign).

This is the simplest form of Furry’s rule.
Now consider the case of a 3-vertex electron loop. The idea is that the con-
tributions coming from the two graphs from Fig. 15.6 compensate each other
after carrying out the substitution γμ �→ −γμ for the Dirac matrices. In fact,
the graphs (a) and (b) of Fig. 15.6 yield the transition amplitude L+R. Sym-
bolically,

L = tr
`

A(x)S(x, y)A(y)S(y, z)A(z)S(z, x)
´

and
R = tr

`

A(x)S(x, z)A(z)S(z, y)A(y)S(y, x)
´

.

Now consider the term R and use the following identities:
(i) tr(γμγνγλ) = tr(γλγνγμ);
(ii) tr(γμγνγλ) = tr

`

(−γμ)(−γν)(−γλ)
´

;
(iii) A(x;−γ) = −A(x; γ) and S(x, y;−γ) = S(x, y; γ).
Replacing the Dirac matrix γμ by −γμ and applying cyclic permutations, we
get

R = (−1)3 tr
`

A(x)S(z, x)A(z)S(y, z)A(y)S(x, y)
´

= − tr
`

S(x, y)A(y)S(y, z)A(z)S(z, x)A(x)
´

= − tr
`

A(x)S(x, y)A(y)S(y, z)A(z)S(z, x)
´

.

Hence L + R = 0. In the general case, we argue similarly.



16. The Continuum Limit

Scattering processes for elementary particles are based on the long-time
limit, the high-energy limit, and the low-energy limit. Try to compute these
limits only for quantities which are measurable in physical experiments
(e.g., cross sections).

The golden rule of quantum field theory

In Sect. 14.7 we applied this golden rule to the cross section of the Compton scatter-
ing between photons and electrons. This way, we obtained the famous Klein–Nishina
formula in lowest order of perturbation theory. This formula can be established by
physical experiments. In this connection, we argued as follows: We started with a
lattice. Then we studied the three fundamental limits: Pmax → +∞ (high-energy
limit), V → +∞, Δp → 0 (low-energy limit), and T → +∞ (long-time limit), by
using the language of distributions. In addition, we included the two limits ε→ +0
(electron propagator regularization) and mph → +0 (photon propagator regular-
ization – the virtual photon mass goes to zero). In this chapter, we want to discuss
how this approach can be applied to general problems in quantum electrodynamics.

16.1 The Fundamental Limits

Choice of the lattice. Recall that we put the physical system in a cubic box
of side length L and finite volume V = L3. Furthermore, we observe the physical
system during the finite time interval [−T

2
, T

2
]. In addition, as in Sect. 12.1.1 on page

799, we consider a finite lattice G(N) in momentum space with minimal momentum
Δp := 2π/L and maximal momentum

Pmax := N ·Δp.

Feynman rules. Suppose that we have computed the transition probability
W(T ) for a specific process in fixed order of perturbation theory by using the
Feynman rules for a lattice in momentum space, as formulated in Table 14.5 on
page 897. The analytic expressions are well defined, but the transition probability
depends on

• the choice of the finite lattice G(N) characterized by the minimal momentum Δp
and the maximal momentum Pmax,

• the regularization parameter ε for the electron propagator,
• the artificial photon mass mph, and
• the length of the time interval [−T

2
, T

2
].

The limits. Note that the limit L→ +∞ yields the infinite box R
3 in position

space, that is, the normalization volume V goes to infinity, V → ∞. Moreover,
Δp→ 0.
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The limit N → +∞ yields Pmax → +∞. In a specific physical experiment, the
parameters Δp,Pmax and T are fixed. However, in order to get universal formulas,
we are interested in performing the following three fundamental limits: L → +∞,
N →∞, and T → +∞. In terms of physics, this means the following:

(H) High-energy limit: Pmax → +∞ and ε→ +0.
(L) Low-energy limit: Δp→ 0 and mph → +0.
(T) Large-time limit: T → +∞.

Recall that p = (E,p) denotes the 4-momentum, that is, E (resp. p) denotes the
energy (resp. the momentum vector) of the particles. Thus, the high-energy limit
concerns the physical behavior at large 4-momenta, p → +∞. In contrast to this,
the low-energy limit refers to small 4-momenta, p→ 0.

16.2 The Formal Limits Fail

It turns out that the limits (H), (L), (T) above do not always exist for higher-order
terms in perturbation theory. In particular, the high-energy limit causes trouble.
Here, the discrete algebraic Feynman integrals may pass to divergent integrals. To
cure this defect, physicists invented the method of renormalization.

There exist several approaches to renormalization theory. Physicists prefer com-
putations which are based on the regularization of divergent algebraic Feynman
integrals. For a mathematician, it is important to understand this approach. Oth-
erwise, he is lost in the physics literature, and he does not understand the language
of physicists. In Chap. 19 we will discuss different approaches to renormalization
theory. We want to emphasize that there exists a very elegant approach which at-
tacks the high-energy limit by using the modern theory of tempered distributions.
This is the Epstein–Glaser approach which completely avoids the use of lattices
and divergent integrals (see Sect. 19.2 ).

In order to master complicated problems in both mathematics and physics,
one tries to discover symmetries behind the problems and to use simplifications
based on symmetry arguments. Concerning renormalization theory, there are two
fundamental symmetries, namely,

• the gauge invariance and
• the Hopf algebra structure of the set of Feynman graphs.

The gauge invariance leads to crucial symmetry relations called the Slavnov–Taylor
identities in gauge theory. In quantum electrodynamics, the Ward identity (and the
more general Ward–Takahashi identities) are special cases of the Slavnov–Taylor
identities. The Hopf algebra structure behind Feynman graphs helps to master the
complicated combinatorics of renormalization theory in higher-order perturbation
theory (also called multi-loop perturbation theory).

The procedure of renormalization depends on the choice of appropriate normal-
ization conditions. A change of these normalization conditions is governed by an
additional internal symmetry which is described by the renormalization group. This
group is used by physicists in order to extrapolate the computations to high ener-
gies. This leads to effective coupling constants which depend on the energy of the
elementary particles colliding in particle accelerators (so-called running coupling
constants).

The beginner in renormalization theory is confronted with an ocean of messy
formulas. We want to help the beginner to understand renormalization theory by
first discussing the basic ideas. The unavoidable lengthy computations will be post-
poned to Vol. III.
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16.3 Basic Ideas of Renormalization

Nature is not embarrassed by difficulties of mathematical analysis.
Augustin Fresnel (1788–1827)

Our goal is to discuss the following crucial notions:

• effective electron mass meff ,
• bare electron mass me,
• effective electron charge −eeff ,
• bare electron charge −e,
• counterterms of the Lagrangian (additional quantum fluctuations),
• the compensation principle,
• the invariance principles,
• dimensional regularization of discrete algebraic Feynman integrals, and
• multiplicative renormalization constants.

16.3.1 The Effective Mass and the Effective Charge of the
Electron

For the electron, physicists measure the mass meff and the electric charge −eeff .
Explicitly, the measurements yield the following values in the SI system:

meff = 0.511 MeV/c2, eeff =
√

4πε0�cα = 1.602 · 10−19 As (16.1)

with the dimensionless (electromagnetic) fine structure constant α = 1/137.04.
Physicists call meff (resp. eeff) the effective electron mass (resp. the effective electron
charge). In the energetic system with � = c = ε0 = 1, we get

meff = 0.511 MeV, e =
√

4πα.

Physicists assume that these two quantities are the result of complicated interac-
tions between parts of the quantum field in quantum electrodynamics. Nowadays
nobody knows how to compute these values from first principles. Renormalization
theory only provides us with finite expressions in each order of perturbation theory,
and these expressions depend on two free parameters meff and eeff which have to
be measured by physical experiments.

16.3.2 The Counterterms of the Modified Lagrangian

The bare Lagrangian. In (11.3) on page 794 we introduced the following La-
grangian density of quantum electrodynamics:

L = −1

2
(∂μAν)(∂μAν) +

1

2

„

1− 1

ξ

«

(∂μA
μ)2

+iψ �∂ψ −meψψ + eψ �Aψ.

Here, we use the Feynman slash symbols �∂ := γμ∂μ and �A = γμA
μ. The real

parameter ξ is a fixed nonzero real number called the gauge parameter. The choice
ξ = 1 is called the Feynman gauge. The parameter me is called the bare mass of
the electron, and the parameter −e is called the bare electric charge of the electron.
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Additive renormalization. Physicists assume that the bare quantities me and
e cannot be measured in physical experiments. One has to add contributions coming
from complicated interaction processes. Therefore, we introduce the following two
parameters:

meff := me + δm, eeff := e + δe.

Hence
me = meff − δm, e = eeff − δe.

This way we get the new Lagrangian density:

Lren := −1

2
(∂μAν)(∂μAν) +

1

2

„

1− 1

ξ

«

(∂μA
μ)2

+iψ �∂ψ −meffψψ + eeffψ �Aψ + Lcounter

along with
Lcounter := δm ψψ − δe ψ �Aψ.

Counterterms. The additional terms of Lcounter are called counterterms. Now
if one uses the modified Lagrangian density, then the S-matrix S(T ) changes. Ap-
plying the Wick theorem to the new S-matrix, we get modified Feynman rules.

16.3.3 The Compensation Principle

The main idea is to choose the parameters δm and δe in such a way that the
continuum limit exists in an appropriate sense. The prototype for this technique
is the proof of the Mittag-Leffler theorem for the representation of meromorphic
functions (see Sect. 2.1.3 on page 56). In this classical mathematical proof from
the 19th century, Mittag-Leffler used additional subtraction terms in order to force
the convergence from a finite sum approximation to an infinite series. In general
terms, this corresponds to a passage from a finite number of degrees of freedom
to an infinite number of degrees of freedom. In renormalization theory, physicists
try to give the subtraction terms a physical meaning by using additional terms of
the Lagrangian density called counterterms. The philosophy of physicists reads as
follows:

• The Feynman rules are based on the classical Lagrangian density of quantum
electrodynamics.

• This classical Lagrangian density does not see all of the complicated physical in-
teractions between electrons, positrons, and photons. In particular, this concerns
the so-called radiative corrections (e.g., the Lamb shift in the spectrum of the
hydrogen atom and the anomalous magnetic moment of the electron).

• Therefore, we have to supplement systematically the classical Lagrangian density
by adding so-called counterterms.

• From the physical point of view, the counterterms describe additional quantum
fluctuations.

• From the mathematical point of view, the counterterms enforce the convergence
of the expressions with respect to the limits (H), (L), and (T) above.

It turns out that this procedure is quite reasonable from the physical point of view.
The crucial point is that:

• After finishing the procedure of renormalization, the quantities δm and δe com-
pletely disappear.

• We get well-defined expressions for physical quantities which depend on the two
free real parameters meff and eeff .
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• These two parameters cannot be determined by the theory. They have to be
measured by physical experiments.

The reader should have in mind that, in contrast to the proof of the Mittag-
Leffler theorem in complex function theory, a direct attack of the continuum limit by
means of subtraction terms is extremely clumsy. For simplifying the computations,
we will modify the approach by using the method of dimensional regularization (see
Sects. 16.3.5 and 17.4).

16.3.4 Fundamental Invariance Principles

In quantum field theory, one has to realize the following three fundamental postu-
lates:

(R) relativistic invariance,
(U) unitarity of the S-matrix, and
(G) gauge invariance.

Condition (R) guarantees that the theory does not depend on the choice of the in-
ertial system. The property (U) ensures that the elements of the S-matrix allow a
reasonable probabilistic interpretation, and hence the computed cross sections pos-
sess a well-defined physical meaning for scattering processes. The gauge invariance
postulates that the theory is invariant under gauge transformations (generalized
phase transitions). In electrodynamics, gauge invariance means that electromag-
netic phenomena only depend on the electromagnetic field E,B, but not on the
different choices of the four-potential U,A.

Unfortunately, the compatibility between (R), (U), and (G) causes trouble.

In order to avoid this trouble, a careful approach to quantum field theory is needed.
In particular, it turns out that the postulate of gauge invariance leads to the so-
called Ward identities which are crucial for the process of renormalization.

16.3.5 Dimensional Regularization of Discrete Algebraic Feynman
Integrals

Let us sketch how the modern method of dimensional regularization is used in
renormalization theory. The Feynman rules from Table 14.8 on page 896 generate
discrete algebraic Feynman integrals denoted by

J(T,V, Δp, Pmax; ε,mph).

In order to compute cross sections, as a rule, we are interested in time averages of
the form

J(T,V, Δp, Pmax; ε,mph)

T
.

We now proceed in the following steps:

Step 1: The continuum limit: The limits L → ∞, N → ∞, T → ∞ correspond to
the limits V → ∞,Δp → 0, Pmax → ∞, and T → ∞. Performing these limits,
we get the integral

Jn(ε,mph) =

Z

Rn

. . .

Note that this integral may diverge, that is, our limit is regarded as a for-
mal limit. However, this procedure yields a uniquely determined convergent or
divergent integral.
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Step 2: Dimensional regularization: If the integral J is divergent, then we replace
the dimension n by n− ν, and we apply the method of dimensional regulariza-
tion (see Sect. 2.2.9 on page 73). This way, we get

Jn−ν(ε,mph) =

∞
X

k=−r

ak

νk
.

Here, the natural number r = 1, 2, . . . tells us the order of the pole at the point
ν = 0.

Step 3: Truncation of the singular part (Rota–Baxter projection operator): Define

P

 ∞
X

k=−r

ak

νk

!

:=
a−1

ν
+

a−2

ν2
+ . . . +

a−r

νr
. (16.2)

This yields the regularization

(1− P)
∞
X

k=−r

ak

νk
:= a0 + a1ν + a2ν

2 + . . . .

Letting ν → +0, we get the regularized value

Jreg(ε,mph) = lim
ν→+0

(1− P)Jn−ν(ε,mph) = a0.

Step 4: Choice of the counterterms via compensation principle: We try to choose
δm and δe as functions of the small parameter ν in such a way that the terms
containing δm(ν) and δe(ν) replace the action of the operator 1 − P, that is,
these terms cancel the singular terms with respect to the parameter ν. After
that we carry out the limit ν → +0.

This way, we obtain a final result which only depends on the regularization parame-
ter ε (shift of the electron rest energy to the upper half-plane) and the virtual photon
mass mph. It remains to study the limits ε→ +0 and mph → +0. Roughly speaking,
this is a problem of the theory of generalized functions (including Cauchy’s residue
calculus, Wick rotation, and so on). Moreover, it turns out that the existence of the
limit mph → 0 is related to special physical effects. Roughly speaking, for a fixed
order of perturbation theory, one has to take all possible Feynman diagrams into
account. Then surprising cancellations appear (in particular, see the discussion of
braking radiation on page 976).

16.3.6 Multiplicative Renormalization

As noticed by Dyson in his fundamental paper on renormalization theory,1 it is
convenient to replace the additive relation me = meff − δm by the multiplicative
relation me := Zmmeff . We will also change ψ,A, and ξ. To this end, we choose five
real parameters Zm, Ze, Zξ, Zψ, and ZA. We set

me = Zmmeff , e = Zeeeff ,

1 F. Dyson, The S-matrix in quantum electrodynamics, Phys. Rev. 75 (1949),
1736–1755.
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and we are going to use the replacement

Aμ �→ Z
1/2
A Aμ, ψ �→ Z

1/2
ψ ψ, ξ �→ Zξ ξ.

We then get the following new Lagrangian density:

Lren : = −1

2
ZA(∂μAν)(∂μAν) +

1

2

„

ZA −
ZA

Zξ ξ

«

(∂μA
μ)2

+iZψψ �∂ψ − ZmZψmeffψψ + ZeZψZ
1/2
A eeffψ �Aψ.

This can be written as

Lren : = −1

2
(∂μAν)(∂μAν) +

1

2

„

1− 1

ξ

«

(∂μA
μ)2

+iψ �∂ψ −meffψψ + eeffψ �Aψ + Lcounter

along with the counterterms

Lcounter : = − 1
2
(ZA − 1)∂μAν)(∂μAν) + 1

2

„

ZA − 1− ZA

Zξξ
+

1

ξ

«

(∂μA
μ)2

+i(Zψ − 1)ψ �∂ψ − (ZmZψ − 1) meffψψ

+(ZeZψZ
1/2
A − 1) eeffψ �Aψ.

We postulate that

Ze = Z
−1/2
A , Zξ = ZA. (16.3)

In Vol. III we will show that this postulate can be motivated by the postulate of
gauge invariance via the crucial Ward identities. In fact, the postulate (16.3) ensures
the renormalizability of quantum electrodynamics (see the quotation on page 997).

16.4 The Theory of Approximation Schemes in
Mathematics

Consider the operator equation

Ax = b, x ∈ X. (16.4)

We are given the linear or nonlinear operator A : X → Y, where X and Y are, say,
Hilbert spaces or Banach spaces. For given b ∈ Y , we are looking for a solution x
of the equation (16.4). In order to get approximate solutions of (16.4), we add the
equations

Anxn = bn, xn ∈ Xn, n = 1, , 2 . . . (16.5)

There arises the following question: Which general class of operators has the fol-
lowing property: It is possible to construct an approximation scheme (16.5) such
that the approximate solutions converge against the unique solution of the original
equation (16.4), that is, we have the convergence
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lim
n→∞

xn = x

in an appropriate sense. There exists a nontrivial answer in terms of the class of so-
called A-proper operators introduced by Browder and Petryshyn in the late 1960s
by summarizing a long development in numerical analysis. This theory can be found
in the last three chapters of the author’s monograph:

E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. IIB:
Monotone Operators, Springer, New York, 1990.

We also refer to the survey article by W. Petryshyn, On the approximation-
solvability of equations involving A-proper and pseudo-A-proper mappings, Bull.
Amer. Math. Soc. 81 (1975), 223–312.

The situation completely changes in renormalization theory. Here, we have a
sophisticated approximation scheme in perturbed quantum field theory, but we do
not know the correct global operator equation for the quantum field. It is a task
for the future to clarify this situation.
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Unfortunately, the computations of radiative corrections in quantum elec-
trodynamics are rather lengthy. For getting high accuracy by including
multi-loop corrections, one needs sophisticated supercomputer programs.

Folklore

In Chap. 15 we have studied some applications to physical processes by using the
lowest order of perturbation theory. The next step is to compute corrections in
higher order of perturbation theory. Such so-called radiative corrections suffer under
the appearance of divergent algebraic Feynman integrals. Therefore, we have to use
the method of renormalization in order to get finite expressions which depend on
the free parameters meff and eeff . These parameters must be determined by physical
experiments. Typical radiative corrections in lowest possible order (so-called one-
loop corrections) are:

• the radiative correction of the Coulomb potential (Uehling 1935);
• the Lamb shift of the spectrum of the hydrogen atom (Bethe 1947);
• the anomalous magnetic moment of the electron (Schwinger 1947);
• scattering of photons by photons (Euler 1936, Karpus and Neumann 1950).

For these physical effects, theoretical and experimental values are in extremely good
agreement. The rather lengthy computations will be postponed to Vol. III. In this
chapter, we will only discuss the main ideas.

17.1 Primitive Divergent Feynman Graphs

A Feynman graph is called divergent iff the corresponding algebraic Feynman in-
tegral is divergent. In quantum electrodynamics, the following divergent Feynman
graphs play a special role:

• the primitive divergent self-energy graph of the photon (Fig. 17.1),
• the primitive divergent self-energy graph of the electron (Fig. 17.2),
• the primitive divergent vertex graph (Fig. 17.3), and

k k′

�

	

Fig. 17.1. Primitive divergent self-energy graph of the photon (vacuum polariza-
tion)
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p p′

Fig. 17.2. Primitive self-energy graph of the electron

• the primitive divergent photon-photon scattering graph (see Fig. 17.9 on page
964).

These Feynman graphs are called primitive divergent graphs, since they are sub-
graphs of more complicated divergent Feynman graphs in quantum electrodynam-
ics. Observe that these Feynman graphs have the following important property:

They are connected, and they remain connected after cutting any internal
line.

Such graphs are called one-particle irreducible graphs.

17.2 Vacuum Polarization

Quantum theory so perfectly illustrates the fact that one might have un-
derstood a certain subject with complete clarity, yet at the same time
knows that one can speak of it only allegorically and in pictures.

Werner Heisenberg (1901–1976)

Physicists use Feynman diagrams in order to formulate the processes of quantum
electrodynamics in a highly intuitive manner. Such pictures are very helpful for un-
derstanding typical quantum field effects in a heuristic way. The intuitive language
used by physicists tells us the following:

• The internal lines of Feynman graphs correspond to virtual particles, since the
Feynman rules tell us that conservation of energy and momentum are not valid
for the integration over the functions corresponding to internal lines.

• The self-energy graph of the photon pictured in Fig. 17.1 describes the inter-
action of a photon with a virtual electron-positron pair. The existence of vir-
tual electron-positron pairs is called vacuum polarization by physicists. Using an
analogy with classical electrodynamics, physicists assume heuristically that the
vacuum is filled with virtual electron-positron dipoles which cause a polarization
of the vacuum.1 We cannot directly observe the vacuum (i.e., the ground state
of the quantum field); this is a virtual world. But, by quantum fluctuations, the
virtual electron-positron dipoles of the vacuum may jump for a short time to our
real world; this way, they add quantum corrections to real physical processes.

• The self-energy graph of the electron pictured in Fig. 17.2 describes the inter-
action of an electron with itself by emitting virtual photons “for a short time”
and absorbing them again. Intuitively, this process is mainly responsible for the
“electromagnetic mass” of the electron described by mass renormalization. This

1 In classical electrodynamics, a pair of two charges, namely, a negative charge
−Q at the point x and a positive charge Q at the point x + Δx is called a
dipole if the distance |Δx| between the two charges is small. The polarization of
macroscopic material used in technology corresponds to the existence of many
molecular dipoles.
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Fig. 17.3. Primitive divergent vertex graph

mass renormalization was first computed by Kramers in 1938 and by Weisskopf
in 1939.2

17.3 Radiative Corrections of the Propagators

In 1949 Dyson discovered that both the regularized perturbed photon propagator
and the regularized perturbed electron propagator possess a special multiplicative
structure. This, together with the Ward identity for the vertex diagram, is responsi-
ble for the success of the renormalization of mass and electric charge of the electron
in quantum electrodynamics. From the computational point of view, dimensional
regularization is the most elegant regularization method. We have to distinguish
between

• free Feynman propagators and
• full Feynman propagators.

Feynman propagators are also called 2-point correlation functions (or 2-point
Green’s functions). The free propagators describe the free quantum fields for pho-
tons, electrons, and positrons. These free propagators are basic ingredients of the
Feynman rules summarized in Table 14.8 on page 896. The corresponding full prop-
agators take interactions into account. This leads to corrections of the free propaga-
tors which are responsible for important physical effects called radiative corrections.

The basic formula for full propagators is the Gell-Mann–Low formula.

This formula, which we already encountered in Vol. I, expresses the full propaga-
tor by means of the S-matrix. Applying the Wick theorem to the Gell-Mann–Low
formula, one obtains Feynman diagrams which graphically describe the full prop-
agator. This will be studied in Vol. III. At this point, we will only indicate the
Feynman diagrams for the corrections. More precisely, we will picture the perturbed
propagators in lowest possible order, namely:

• the perturbed photon propagator (Fig. 17.4),
• the perturbed electron propagator (Fig. 17.5), and
• the perturbed vertex graph (Fig. 17.6).

2 H. Kramers, The interaction between charged particles and the radiation field,
Nuovo Cimento 15 (1938), 108–114 (in German).
V. Weisskopf, On the self-energy and the electromagnetic field of the electron,
Phys. Rev. 56 (1939), 72–81.
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Fig. 17.4. Perturbed photon propagator

17.3.1 The Photon Propagator

According to the Feynman rules summarized in Table 14.8 on page 896, the free
photon propagator is based on the family of functions

Dαβ(p) := − iηαβ

(2π)4
· 1

(p0)2 − (Ep − εi)2
, α, β = 0, 1, 2, 3,

with the photon energy Ep :=
p

p2 + mph. Here, mph is the virtual photon mass,
and ε > 0 is the regularization parameter. The perturbed photon propagator cor-
responds to the Feynman diagram depicted in Fig. 17.4. Applying the Feynman
rules to the Feynman diagram and using dimensional regularization for the corre-
sponding algebraic Feynman integrals, a lengthy computation shows that we have
to replace Dαβ by the functions

Dαβ
pert(p) = ZD(ν)Dαβ

ren(p;α), α, β = 0, 1, 2, 3.

Here, the so-called renormalized propagator function Dαβ
ren is a first-order perturba-

tion of Dαβ (with respect to the fine structure constant α). The explicit computation
can be found in Vol. III.

From the physical point of view, the functions Dαβ
ren take the vacuum polar-

ization into account.

Observe that the real number ZD depends on the parameter ν of dimensional
regularization. We have the limit

lim
ν→+0

ZD(ν) =∞. (17.1)

The point is that the divergent behavior of the Feynman diagram is concentrated in
the factor ZD(ν). We will discuss in Sect. 17.4 that this infinite limit can be compen-
sated by counterterms of the Lagrangian density. In other words, the infinite limit
(17.1) does not effect quantities which can be measured in physical experiments.

17.3.2 The Electron Propagator

Parallel to the preceding section, the free electron propagator is based on the func-
tion

S(p) :=
i

(2π)4
· �p + meI

(p0)2 − (Ep − εi)2

by Table 14.8 on page 896. Here, Ep :=
p

p2 + m2
e is the electron energy with re-

spect to the bare electron mass me, and ε is the positive regularization parameter.
The perturbed electron propagator corresponds to the Feynman diagram depicted
in Fig. 17.5. Applying the Feynman rules to the Feynman diagram and using dimen-
sional regularization for the corresponding algebraic Feynman integrals, a lengthy
computation shows that we have to replace S(p) by the function
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+

Fig. 17.5. Perturbed electron propagator

Spert(p) = ZS(ν)Sren(p;meff , α).

Here, Sren is a first-order perturbation of S (with respect to the fine structure
constant α). Note that:

The renormalized propagator function Sren does not depend on the bare
electron mass me, but on the new mass parameter meff .

This fact is called mass renormalization. The explicit computation can be found in
Vol. III. There holds the limit

lim
ν→+0

ZS(ν) =∞. (17.2)

17.3.3 The Vertex Correction and the Ward Identity

The approach to quantum electrodynamics is substantially simplified by the fact
that there exists a relation between the algebraic Feynman integrals corresponding
to the perturbed electron propagator (Fig. 17.5) and the perturbed vertex graph
(Fig. 17.6). This crucial relation is called the Ward identity. The explicit form will
be given in Vol. III.

The Ward identity is closely related to the gauge invariance of quantum
electrodynamics.

In particular, the Ward identity implies the crucial relation (17.3) below concerning
the multiplicative renormalization constants.

17.4 The Counterterms of the Lagrangian and the
Compensation Principle

In Sect.16.3.6 we have introduced the multiplicative renormalization constants

�  
+

�  

Fig. 17.6. Perturbed vertex graph
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Fig. 17.7. Radiative correction of the external electromagnetic field

Ze, Zm, ZA, Zψ

related to counterterms of the Lagrangian density in quantum electrodynamics.

The crucial point is that these renormalization constants can be used to
compensate the factors ZD(ν) and ZS(ν) related to the perturbed photon
propagator and the perturbed electron propagator, respectively.

In addition, the Ward identity yields the following crucial relation:

Ze = Z
−1/2
A . (17.3)

Observe the following two key points:

(i) The transition amplitudes and hence the transition probabilities for real phys-
ical processes do not depend on the multiplicative renormalization constants
Ze, Zm, ZA, Zψ, ZD, ZS ; they cancel each other

(ii) The renormalization constants go to infinity as the parameter ν of dimensional
regularization goes to zero. However, because of the cancellation of the multi-
plicative renormalization constants, the limit ν → 0 yields finite values of the
transition amplitudes.

Computations in quantum electrodynamics are frequently simplified by surprising
cancellations. As a rule, the Ward identity (and the more general Ward–Takahashi
identities) are responsible for these cancellations.

17.5 Application to Physical Problems

The ways of people to the laws of nature are not less admirable than the
laws themselves.

Johannes Kepler (1571–1630)

17.5.1 Radiative Correction of the Coulomb Potential

Consider the primitive divergent self-energy graph of the photon concerning vac-
uum polarization depicted in Fig. 17.1. Replacing the photon line by an external
electromagnetic field described by the 4-potential U,A, we get the Feynman graph
depicted in Fig. 17.7. This diagram describes the radiative correction of an external
electromagnetic field by vacuum polarization. Using the Coulomb potential of an
electric charge Q,

U(x) =
Q

4π|x| ,

the perturbed potential under the influence of vacuum polarization reads as
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Upert(x) =
Q

4π|x|

 

1 +
2α

3π

Z ∞

1

p

ξ2 − 1

ξ2

“

1 +
1

2ξ2

”

e−2meff |x|·ξ dξ

!

.

This is the so-called Uehling potential.3 The corresponding electric field is given by
E(x) = −gradU(x). Let us assume that the point x is far away from the origin,
that is, meff |x| � 1. Then we obtain the following approximation of the Uehling
potential:

Upert(x) =
Q

4π|x|

„

1 +
α

4
√
π

e−2meff |x|

(meff |x|)3/2

«

.

The correction term decays exponentially as |x| → ∞. The detailed computation
of Upert will be given in Vol. III.

17.5.2 The Anomalous Magnetic Moment of the Electron

The most spectacular experiment for the anomalous magnetic moment of
the electron is based on measurements performed on a single electron,
caught in an electromagnetic trap.4

Martinus Veltman, 2003

The relativistic Dirac equation implies that the electron possesses an internal an-
gular momentum called spin (see Vol. III). This leads to a magnetic moment of
the electron, which can be measured if the electron moves in an external mag-
netic field. Explicitly, the magnetic moment vector of the electron is given by the
following formula in the SI system:

M = − eeff

2meff
· geS

with the so-called gyromagnetic factor

ge = 2(1 + a).

Here, meff (resp. −eeff) is the effective mass (resp. effective charge) of the electron.
The spin vector S has the length �/2.

As we will show in Vol. III, the relativistic Dirac equation yields the value a = 0.
In 1947, using sophisticated arguments in the setting of quantum electrodynamics,
Schwinger computed the value

a =
α

2π
. (17.4)

The deviation of the gyromagnetic factor ge from Dirac’s value ge = 2 is called the
anomalous magnetic moment of the electron.

3 We use the energetic system of physical units.
4 For trapping single atoms, Hans Dehmelt (born 1922) and Wolfgang Paul (1913–

1993) were awarded the Nobel prize in physics in 1989.
M. Veltman, Facts and Mysteries in Elementary Particle Physics, World Scien-
tific, Singapore, 2003.
In 1999, Gerardus ’t Hooft (born 1946) and Martinus Veltman (born 1931) were
awarded the Nobel prize in physics for elucidating the quantum structure of
electroweak interaction in physics via renormalization theory.
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external magnetic field

vacuum polarization��

	 	

outgoing electron incoming electron

Fig. 17.8. Electron in an external magnetic field

The theoretical value via renormalization. As we will explicitly show
in Vol. III, Schwinger’s famous correction term (17.4) can be obtained by using
the techniques of renormalization theory. The idea is to study the motion of an
electron in an external magnetic field. One has to use Feynman graphs of the type
schematically pictured in Fig. 17.8.

Using renormalization theory in higher orders of perturbation theory, one gets
the following value:

atheor =
α

2π
− 0.328 478 965

“α

π

”2

+ (1.175 62± 0.000 56)
“α

π

”3

−(1.472± 0.152)
“α

π

”4

.

For computing such a high-accuracy result based on about 900 complicated Feyn-
man diagrams, one needs sophisticated computer programs and years of supercom-
puter time (see Sect. 18.4).

The experimental value. In 1947 Kusch, working at Columbia University,
New York, measured the following value:5

aexp = 0.001.

In 2006 the following unbelievable precise value was measured:

aexp = 0.001 159 652 180 85(±76).

See the references Odom et al. (2006) and Gabrielse et al. (2006) quoted on page 961.
The American Institute of Physics called this “the outstanding physics achievement
of 2006.”

There is a fantastic coincidence between the experimental value aexp and
the theoretical value atheo.

This is a highlight in quantum electrodynamics.

5 In 1955, Polykarp Kusch (1911–1993) was awarded the Nobel prize in physics for
his precision determination of the magnetic moment of the electron.
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17.5.3 The Anomalous Magnetic Moment of the Muon

The sophistication in both theory and experiment for the anomalous mag-
netic moment of the muon is mind boggling. The computation of the coeffi-
cient of α2 has taken some 20 years, involving some 72 Feynman diagrams,
while the computation of the α4 term (891 Feynman diagrams) has been
done mainly by numerical approximation methods, using up years of su-
percomputer time.6

Martinus Veltman, 2003

For the magnetic moment vector of the muon, renormalized perturbation theory
yields the value

Mμ = − eeff

2mμ,eff
· gμS

along with the gyromagnetic factor gμ = 2(1 + a) with

a = 0.001 165 920 500 ± 0.000 000 000 460 .

Here, eeff is the effective charge of the electron, and mμ,eff is the effective mass
of the muon. The necessary huge computations take all of the interactions of the
Standard Model in particle physics into account. The main contribution comes from
quantum electrodynamics. Corrections are due to strong and weak interaction. The
experimental value reads as

aexp = 0.001 165 915 97 ± 0.000 000 000 67 .

Therefore, the experimental and the theoretical result agree within 9 significant
digits. This serves as a high-precision test for the Standard Model in particle physics
and the method of renormalized Feynman diagrams. This is a highlight in the
Standard Model in particle physics.

Hints for further reading. For high-precision tests in quantum electrody-
namics and in the Standard Model of particle physics, we refer to:

F. Scheck, Radiative corrections confronted with experiment: a survey, 15
pages. In: F. Scheck (Ed.), Theory of Renormalization and Regularization,
Lecture Notes, Hesselberg Workshop 2002 (Germany).
Internet: http://www.thep.physik.uni.mainz.de∼scheck/Hessbg
T. Kinoshita, Quantum Electrodynamics, World Scientific, Singapore,
1990.

B. Odom, D. Hanneke, B. D’Urso, and G. Gabrielse, New measurement
of the electron magnetic moment using a one-electron quantum cyclotron,
Phys. Rev. Lett. 97 (2006), 030801.

G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, New de-
termination of the fine structure constant from the electron g value and
QED, Phys. Rev. Lett. 97 (2006), 030802, and Erratum (2007).

M. Knecht, The anomalous moment of the electron and the muon. In:
Poincaré Seminar 2002: Vacuum Energy – Renormalization. Edited by B.
Duplantier and V. Rivasseau, Birkhäuser, Basel, 2003, pp. 265–310.

W. Hollik and G. Duckeck, Electroweak Precision Tests at LEP, Springer,
Berlin, 2000.

6 M. Veltman, Facts and Mysteries in Elementary Particle Physics. Reprinted by
permission of World Scientific Publishing Co. Pte. Ltd., Singapore, 2003.
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S. Narison, QCD (Quantum Chromodynamics) as a Theory of Hadrons:
From Partons to Confinement, Cambridge University Press, 2004. (Chap-
ter 14 is devoted to high-precision tests in QED.)

M. Awramik and M. Czakon, Complete two-loop electroweak contributions
to the muon lifetime in the standard model, Phys. Lett. B568 (2003), p.
48.

17.5.4 The Lamb Shift

On April 26, 1947, Lamb and Retherford experimentally discovered some fine struc-
ture in the spectrum of the hydrogen atom, which is called the Lamb shift nowadays;
they used microwave technique.7 This spectacular experimental result was reported
at the famous Shelter Island Conference in 1947 (Long Island, New York State).
A few days after the conference, Hans Bethe (1906–2005), who was amazed by
the discovery, did the nonrelativistic computation of the Lamb shift during a train
ride from New York to Schenectady. Bethe used second-order perturbation theory
for the Schrödinger equation. In order to master divergent integrals, Bethe applied
Kramers’ approach of mass renormalization to the electron of the hydrogen atom.8

In his beautiful book on the history of quantum electrodynamics, Silvan Schweber
reports the following on Bethe’s computation of the Lamb shift:9

Bethe was not quite confident of the accuracy of his formula, because he
was not quite sure of the correctness of a factor of

√
2 in his expansion

of the radiation operator in terms of creation and annihilation operators.
This he checked on Monday morning in Heitler’s book.10 He also got Miss
Steward and Dr. Stehn to evaluate numerically the missing mean excitation
energy for the 2s state of the electron of the hydrogen atom. It was found
to be 17.5 R (Rydberg constant), “an amazingly high value.” Inserting this
in his formula, Bethe found

ΔELamb = 1040 MHz

for the Lamb shift ”in excellent agreement with the observed 1000 MHz
(Mega Hertz)”. . .
On the occasion of Lamb’s sixtieth birthday in 1973, Freeman Dyson wrote
to congratulate him. He noted: “Your work on the hydrogen fine structure
led directly to the wave of progress in quantum electrodynamics on which
I took a ride to fame and fortune. You did the hard, tedious, exploratory
work. . . Those years, when the Lamb shift was the central theme of physics,
were golden years for the physicists of my generation. You were the first

7 In 1955, Willis Eugene Lamb (born 1913) was awarded the Nobel prize in physics
for his discoveries concerning the fine structure of the hydrogen spectrum.

8 See the paper by Kramer (1938) quoted on page 955. Bethe’s argument can be
found in F. Gross, Relativistic Quantum Mechanics and Field Theory, Wiley,
New York, 1993.

9 Schweber, Silvan, QED and the Men Who Made It: Dyson, Feynman, Schwinger,
and Tomonaga, Princeton University Press, Princeton, New Jersey, 1994.
Reprinted by permission of Princeton University Press.

10 W. Heitler, The Theory of Radiation, Clarendon Press, Oxford, 1936. For one
generation of physicists, Heitler’s book was the bible in radiation theory. The
modern version of Heitler’s classics is represented by E. Pike and S. Sarkar, The
Quantum Theory of Radiation, Clarendon Press, Oxford, 1995.
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to see that that tiny shift, so elusive and hard to measure, would clarify
in a fundamental way our thinking about particles and fields.”

Using the relativistic renormalization technique in quantum electrodynamics, Weiss-
kopf and French obtained the value 1051.13 MHZ in 1948, whereas Feynman and
Schwinger computed a slightly smaller (incorrect) value. Today, the theoretical
value is equal to

ΔELamb,theor = (1057.855± 0.014) MHz.

Here, vacuum polarization contributes the value of −27.1 MHz.11 The modern
experimental value is equal to

ΔELamb,exp = (1057.845± 0.009)) MHz.

Welton’s semiclassical model on vacuum effects and pseudo-Brownian
motion. It is quite interesting that the Lamb shift can be intuitively understood
as a kind of Brownian motion of the electron. Using some heuristic model, Welton
argued as follows:12 The electron moves stochastically in the sea of virtual photons
of the vacuum under the influence of quantum fluctuations (like the classical Brow-
nian particle moves under the influence of the collisions with the fluid particles).
Using the energy of the photon quantum field, the computation shows that the
averaged square of the position fluctuation of the pseudo-Brownian motion of the
electron is given by the following formula:13

(Δx)2 =
2

π

„

eeff

meff

«2 Z ∞

0

dE

E
.

Note that the energy integral is divergent. In order to get a finite result, we use an
energy cut-off, that is, we replace the integral by

(Δx)2 =
2

π

„

eeff

meff

«2 Z Emax

Emin

dE

E
.

We argue that the energy of the electron is actually limited by the specific physical
situation. As upper bound, we choose the rest energy of the electron, Emax := meff ,
and as lower bound we choose the lowest possible energy of the electron in the
hydrogen atom on the nth orbit,

Emin =
meffe

4
eff

2n2
, n = 1, 2, . . .

The position fluctuation changes the potential energy of the electron; this energy
change is responsible for the Lamb shift. The explicit computation for n = 2 and the
s-state of the electron (i.e., the angular momentum vanishes, l = 0) yields indeed
Bethe’s value of 1040 MHz (see Vol. III for details).

Perspectives. In Vol. III we will thoroughly study the spectrum of the hydro-
gen atom including the Lamb shift. This is a fascinating story in both physics and
mathematics. We will study the following approaches:

• the classical Kepler motion based on the rotational symmetry of the gravitational
field of the sun (the SO(3)-Poisson algebra);

11 We refer to W. Greiner and J. Reinhardt, Quantum Electrodynamics, Springer,
Berlin, 1996.

12 T. Welton, Some observable effects of the quantum-mechanical fluctuations of
the electromagnetic field, Phys. Rev. 74 (1948), 1157–1167.

13 We use the energetic system of physical units.



964 17. Radiative Corrections of Lowest Order

��

��

�
�

	

�

Fig. 17.9. The primitive divergent photon-photon scattering graph

• the classical Kepler motion and the Runge–Lenz vector as conserved quantity
(the SO(4)-Poisson algebra);

• the classical Rutherford scattering formula from 1911,
• the semiclassical approach via the Bohr–Sommerfeld quantization rule in the

phase space from 1916;
• Pauli’s nonrelativistic quantum approach to the bound states of the hydrogen

atom from 1926 based on the commutation relations for the SO(4)-Lie algebra;
• the Weyl–Kodaira spectral theory for singular differential operators and Schrö-

dinger’s nonrelativistic approach to both bound states and scattering states of
the hydrogen atom from 1926 via the Schrödinger equation;

• Darwin’s and Gordon’s relativistic approach to the hydrogen atom via the Dirac
equation from 1928;

• von Neumann’s spectral theory for self-adjoint operators and the Hamiltonian of
both the nonrelativistic and the relativistic hydrogen atom;

• Gelfand’s theory of generalized eigenfunctions (distributions) for self-adjoint op-
erators and the nonrelativistic hydrogen atom;

• Schwinger’s Green’s function for the nonrelativistic hydrogen atom from 1951
(including both bound states and scattering states), and the cross section for
electron scattering processes;

• the Duru–Kleinert approach to the Feynman path integral for the nonrelativistic
hydrogen atom from 1979 (including both bound states and scattering states);

• the Steiner approach to the Feynman path integral for the nonrelativistic hydro-
gen atom from 1984;

• the tricky supersymmetric approach to the bound states of the nonrelativistic
hydrogen atom;

• Welton’s semiclassical vacuum-energy model for the Lamb shift;
• renormalization theory in relativistic quantum electrodynamics and the Lamb

shift.

Interestingly enough, Feynman, himself, did not succeed in computing the path in-
tegral for the nonrelativistic hydrogen atom; he gave this task to the young physicist
Hagen Kleinert in 1972. To solve this problem, the main trick of Kleinert was to
use a pseudo-time and a canonical transformation known in celestial mechanics in
order to get a Hamiltonian of quadratic type which leads to a Gaussian integral.

17.5.5 Photon-Photon Scattering

The Maxwell equations represent a linear system of partial differential equations
for the electromagnetic field. In this classical setting, the superposition principle
is valid for electromagnetic waves; therefore, light-light scattering is impossible.
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Light-light scattering (i.e., photon-photon scattering) is a typical quantum effect
which can be described by quantum electrodynamics. A typical Feynman graph
is pictured in Fig. 17.9. Since the corresponding algebraic Feynman integral is
divergent, we have to apply the methods of renormalization theory. For a detailed
study, we refer to L. Landau and M. Lifshitz, Course of Theoretical Physics, Vol 4:
Quantum Electrodynamics, Sect. 124, Butterworth–Heinemann, Oxford, 1982. The
cross section for photon-photon scattering is given by

σ = 10−72 cm2.

This is an extremely small value; therefore, an experimental verification of photon-
photon scattering is still missing.



18. A Glance at Renormalization to all Orders
of Perturbation Theory

The devil rides high on detail.
Folklore

In this chapter, we will sketch the basic ideas of general renormalization theory. A
detailed study will be postponed to Vol. IV on quantum mathematics. Renormal-
ization theory cannot be understood without knowing its long and strange history.
At this point we merely restrict ourselves to a few quotations and comments. In
the next chapter, we will sketch some basic ideas together with detailed hints for
further reading.

The following quotation is taken from the famous article Orientation written
by Arthur Wightman as an introduction to the volume Renormalization Theory
edited by G. Velo and A. Wightman, Reidel, Dordrecht, pp. 1–24 (reprinted with
permission). This volume describes the state of the art in renormalization theory
in 1976.

Renormalization theory is a notoriously complicated and technical sub-
ject. . . The prudent student would do well to distinguish sharply between
what has been proved and what has been plausible, and in general he
should watch out!
My first cautionary tale has to do with the early days of renormalization
theory. When Freeman Dyson analyzed the renormalization theory of the
S-matrix for the quantum electrodynamics of spin one-half particles in his
two great papers,1 he laid the foundations for most later work on the sub-
ject, but this treatment of one phenomenon, overlapping divergences, was
incomplete. Among the methods offered to clarify the situation, that of
John Ward2 seemed outstandingly simple, so much so that it was adopted
in Jauch and Rohrlich’s standard textbook.3 Several years later, Mills and
Yang noticed that unless further refinements are introduced the method
does not work for the photon self-energy.4 The lowest order for which the
trouble manifests itself is the fourteenth (e.g., this concerns the graph de-
picted in Fig. 18.1). Mills and Yang repaired the method and sketched

1 F. Dyson, The radiation theories of Tomonaga, Schwinger, and Feynman, Phys.
Rev. 75 (1949), 406–502.
F. Dyson, The S-matrix in quantum electrodynamics, Phys. Rev. 75 (1949),
1736–1755.

2 J. Ward, On the renormalization of quantum electrodynamics, Proc. Phys. Soc.
London A64 (1951), 54–56.

3 J. Jauch and F. Rohrlich, The Theory of Photons and Electrons, Addison Wesley,
New York, 1955.

4 See T. Wu, Theory of pion-pion interaction. I. Renormalization, Phys. Rev. 125
(1962), 1436–1450.
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Fig. 18.1. Critical self-energy graph of the photon

some of the steps in a proof that it would actually yield a finite renormal-
ized amplitude.5 An innocent, reading the book by Jauch and Rohrlich,
would never suspect that such refinements are necessary.
Another attempt to cope with the overlapping divergences was made by
Salam.6 I will not describe it, if for no other reason that I never have suc-
ceeded in understanding it. . . The belief is widespread that when Salam’s
work is combined with significant work by Steven Weinberg,7 the result
should be a mathematically coherent version of renormalization theory.
At least that is what one reads in the textbook by Bjorken and Drell for
quantum electrodynamics8. . .
Another foundation for renormalization theory with a rather different
starting point was put forward by Stueckelberg and Green.9 It was re-
founded and brought to a certain stage of completion in the standard
textbook of Bogoliubov and Shirkov in 1957.10 The mathematical nut that
had to be cracked is in the paper of Bogoliubov and Parasiuk11 (amazingly,
not quoted in the 1959 English translation of the 1957 monograph by Bo-
goliubov and Shirkov). This paper introduces a systematical and analytic
scheme for overcoming the overlapping divergence problem. This paper
is very important for later developments. Unfortunately, it was found by
Klaus Hepp12 that Theorem 4 of the Bogoliubov/Parasiuk paper is false,
and that consequently the proof of the main result is incomplete as it
stands. However, Hepp showed that Theorem 4 is not essential to derive
the main result and he could fill all the gaps. Thus, it is appropriate to
introduce the initials BPH to stand for the renormalization method de-
scribed in Bogoliubov/Parasiuk (1957) and Hepp (1966).13

5 R. Mills and C. Yang, Progr. Theor. Phys. Supp. 37 (1966), 507–511.
6 A. Salam, Phys. Rev. 82 (1951), 217–227; 84 (1951), 426–431.
7 S. Weinberg, High energy behavior in quantum field theory, Phys. Rev. 118

(1960), 838–849.
8 J. Bjorken and S. Drell, Relativistic Quantum Fields, McGraw-Hill, New York,

1965.
9 E. Stueckelberg and T. Green, Helv. Phys. Acta 24 (1951), 153–174.

10 N. Bogoliubov and D. Shirkov, Introduction to Quantum Field Theory, Nauka,
Moscow, 1957. Fourth expanded Russian edition 1984. English translation: In-
terscience, New York, 1980 (translation of the third Russian edition published
in 1973).

11 N. Bogoliubov and O. Parasiuk, On the multiplication of propagators in quantum
field theory, Acta Math. 97 (1957), 227–326 (in German).

12 K. Hepp, Proof of the Bogoliubov–Parasiuk theorem on renormalization, Com-
mun. Math. Phys. 2 (1966), 301–326.

13 In 1969 Wolfhart Zimmermann discovered an explicit formula for Bogoliubov’s
iterative method called the Zimmermann forest formula (see page 984). There-
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An alternative method to BPHZ is analytic renormalization due to Eugene
Speer.14. . . Analytic renormalization was later shown to be equivalent to
BPHZ renormalization.15 . . .
To make the Feynman history integral rigorous,16 Gelfand and Yaglom
proposed to regard it as the limit of integrals in which Planck’s constant h
has −iδ. They argued that this gives rise to a complex measure on paths:
. . . “It is natural that such a complex measure for arbitrary δ > 0 will
be just as ’good’ as Wiener measure, that is, it will have just a precise a
meaning as measure in the space of continuous functions, and it will allow
integration over it of a wide class of functionals including all continuous
and bounded functionals”17. . . It turned out, alas, that this statement is
wrong. It was shown by Cameron18 that this proposal defines a completely
additive complex measure only when h = iδ is purely imaginary (δ > 0),
that is, for the case considered by Wiener.19 From a practical point of view
this means that one does not have available all the powerful analytical
devices of the theory of integration.

Arthur Wightman, 1976

The following quotation is taken from J. Collins, Renormalization, Cambridge Uni-
versity Press, New York, 1984 (reprinted with permission). We recommend this
book as an introduction to renormalization theory (see also the hints for further
reading on page 1029). However, the reader should note that this book was written
before Kreimer’s Hopf algebra revolution in renormalization theory in 1998 (see
Sect. 19.3).

The structure of a quantum field theory often simplifies when one considers
processes involving large momenta (i.e., large energies) or short distances.
These simplifications are important in improving one’s ability to calculate
predictions from the theory, and in essence form the subject of this book. . .
The subjects of renormalization, the renormalization group, and the op-
erator product expansion are intimately linked, and we will treat them
all in this book. The aim will be to explain the general methods that are
not only applicable to the examples we will examine but in many other
situations. We will not aim at complete rigor. However, there are many
pitfalls and traps ready to ensnare an unwary physicist. Thus, a precise
set of concepts and notations is necessary, for many of the dangers are es-

fore, nowadays the approach is characterized by the initials BPHZ (Bogoliubov,
Parasiuk, Hepp, Zimmermann). See W. Zimmermann, Convergence of Bogoli-
ubov’s method of renormalization in momentum space, Commun. Math. Phys.
15 (1969), 208–234.

14 E. Speer, Generalized Feynman Amplitudes, Annals of Mathematical Studies 62,
Princeton University Press (see Sect. 19.7).

15 K. Hepp, Commun. Math. Phys. 14 (1969), 67–69.
16 This integral is also called the Feynman path integral or the Feynman functional

integral.
17 I. Gelfand and A. Yaglom, Integration in functional spaces and its applications

in quantum physics, J. Math. Phys. 1 (1960), 48–69 (translated from Uspekhi
Mat. Nauk 11 (1956), 77–114 (in Russian).

18 R. Cameron, A family of integrals serving to connect the Wiener and Feynman
integrals, J. of Math. and Phys. Sci. of MIT 39 (1960), 126–140 (see also G.
Johnson and M. Lapidus, The Feynman Integral and Feynman’s Operational
Calculus, Clarendon Press, Oxford, 2000).

19 N. Wiener, Differential space, J. Math. and Phys. of MIT 2 (1923), 131–174.
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sentially combinatorial. The appropriate basis is then that of Zimmermann
(1969)/(1973).20

One other problem is that of choice of an ultra-violet (i.e., high-energy)
cut-off. From a fundamental point of view, the lattice cut-off seems best as
it appears in nonperturbative treatment using the functional integral.21 In
perturbation theory one can arrange to use no regulator whatsoever.22 In
practice, dimensional regularization has deservedly become very popular.
This consists of replacing the physical space-time dimensionality 4 by an
arbitrary complex number d. The main attraction of this method is that
virtually no violence is done to the structure of a Feynman graph; a second
attraction is that it also regulates infra-red (i.e., low-energy) divergences. . .
The disadvantage is that this method has not been formulated outside
of perturbation theory (at least not yet). Much of the treatment in this
book, especially the examples, will be based on the use of dimensional
regularization. However, it cannot be emphasized too strongly that none
of the fundamental results depend on this choice.

John Collins, 1984

18.1 One-Particle Irreducible Feynman Graphs and
Divergences

Divergences in quantum field theory are only caused by one-particle irre-
ducible Feynman subgraphs.

The rule of thumb

Intuitively, a Feynman graph in quantum electrodynamics (also called Feynman
diagram) consists of a finite number of vertices and connecting internal lines, as
well as external lines. The electron and positron lines are oriented, whereas the
photon lines are not oriented:

• external lines describe incoming and outgoing real particles;
• internal lines describe virtual particles.

In contrast to internal lines, external lines have only one vertex. The graph is called
amputated iff it has no external lines. Such graphs describe processes for virtual
particles in the vacuum (ground state). Intuitively, such processes correspond to
quantum fluctuations of the vacuum which essentially influence the behavior of
elementary particles in our real world. Analytically, correlation functions (also called

20 W. Zimmermann, Convergence of Bogoliubov’s method of renormalization in
momentum space, Commun. Math. Phys. 15 (1969), 208–234.
W. Zimmermann, Local operator products and renormalization in quantum field
theory. In: S. Deser et al. (Eds.), Lectures on Elementary Particles and Quantum
Field Theory, Proceedings of the 1970 Brandeis Summer Institute in Theoretical
Physics, MIT Press, Cambridge, Massachusetts, pp. 399–589.
W. Zimmermann, Normal products and the short-distance expansion in the per-
turbation theory of renormalizable interactions, Annals of Physics 77 (1973),
536–569; 570–601.

21 See J. Glimm and A. Jaffe, Mathematical Methods of Quantum Physics: A Func-
tional Integral Point of View, Springer, New York, 1981.

22 See O. Piguet and A. Rouet, Symmetries in perturbative quantum field theory
(pQFT), Phys. Rep. 76 (1981), 1–77.
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(a) connected (b) disconnected

Fig. 18.2. Connectedness of graphs

Green’s functions) correspond to amputated graphs. Furthermore, for two Feynman
graphs Γ1 and Γ2, we write

Γ1 ⊆ Γ2

iff Γ1 is a subgraph of Γ2, that is, the vertices and lines of Γ1 are also vertices and
lines of Γ2 (by taking the orientation of the lines into account). Moreover, we write

Γ1 ∩ Γ2 = ∅

iff Γ1 and Γ2 have no common vertices and lines.
Connectedness of Feynman graphs. One has to distinguish between the fol-
lowing types of Feynman graphs:

(i) Connectedness: connected or disconnected.
(ii) Irreducibility: one-particle irreducible or reducible.
(iii) Overlapping subgraphs.

Let us discuss this. The graph is called disconnected iff it consists of at least two
disjoint parts (Fig. 18.2(b)). Otherwise the graph is called connected (Fig. 18.2 (a)).

The graph is called one-particle irreducible iff it remains connected after cutting
any internal line. Otherwise the graph is called reducible. Let us consider some
examples:

(R) The graph depicted in Fig. 18.3(b) is reducible.
(I) The graph depicted in Fig. 18.3(a) is one-particle irreducible. The same property

have the following Feynman graphs in quantum electrodynamics:
• the primitive divergent photon self-energy graph (vacuum polarization) (Fig.

17.1 on page 953),
• the primitive divergent electron self-energy graph (Fig. 17.2 on page 954),
• the primitive divergent vertex graph (Fig. 17.3 on page 955),
• the primitive divergent photon-photon scattering graph (Fig. 17.9 on page

964),
• the critical photon self-energy graph depicted in Fig. 18.1 on page 968 is

one-particle irreducible.

(a) one-particle irreducible (b) one-particle reducible

Fig. 18.3. Irreducibility of graphs
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(a) graph Γ

� � � � �

(b) subgraph Γ1

� �

(c) subgraph Γ2

� �

Fig. 18.4. Overlapping subgraphs Γ1 and Γ2

The importance of one-particle irreducible graphs for quantum field theory will be
explained in Sect. 19.6. Roughly speaking, the following hold:

• The one-particle irreducible graphs form the basis elements of the quantum field
theory under consideration.

• Intuitively, these basis elements represent the basic correlations of the quantum
fluctuations.

• If we know these basis elements, all the important information for the quantum
processes can be obtained from them.

• This concerns the correlation functions (i.e., the Green’s functions) and the tran-
sition amplitudes of the S-matrix for computing scattering processes of quantum
particles.

• Only the algebraic Feynman integrals corresponding to these basic graphs have
to be renormalized.

Two subgraphs Γ1 and Γ2 of the graph Γ are called overlapping iff the following
three situations are excluded:

Γ1 ⊆ Γ2, Γ2 ⊆ Γ1, Γ1 ∩ Γ2 = ∅.

The prototype of a graph Γ with overlapping subgraphs Γ1 and Γ2 is depicted in
Fig. 18.4. Furthermore, the subgraphs Γ1 and Γ2 of Γ depicted in Fig 18.5 are also
overlapping subgraphs of Γ. Overlapping subgraphs caused a lot of trouble in the
history of renormalization theory. In what follows we want to explain this.

18.2 Overlapping Divergences and Manoukian’s
Equivalence Principle

The following three quotations should help the reader to understand the difficul-
ties that physicists encountered in the past in order to understand the concept of
renormalization. The first quotation is taken from the beautiful history of quan-
tum field theory written by S. Schweber, QED and the Men Who Made It: Dyson,
Feynman, Schwinger, and Tomonaga, Princeton University Press, 1994 (reprinted
by permission of both Princeton University Press and World Scientific Publishing
Co. Pte. Ltd. Singapore).

Overlapping divergences had reared their ugly head in Dyson’s QED pa-
per.23 He had noted that a general self-energy graph could be regarded
as an insertion of a modified vertex at either end of the lowest order self-
energy graph. Insertion of modified vertices at both ends would correspond

23 F. Dyson, The S-matrix in quantum electrodynamics, Phys. Rev. 75 (1949),
1736–1755.
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(a) graph Γ
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(b) subgraph Γ1
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Fig. 18.5. Overlapping subgraphs Γ1 and Γ2

to double-counting. “In his paper, while discussing these, Dyson had rec-
ommended precisely this – that one should subtract the vertex-part sub-
infinities twice before subtracting the final self-energy infinity.”24 But no
proof of his assertion was given.
Salam decided to make the overlapping divergences his problem.25 He
thought that the best way to solve the problem “would be to ask Dyson’s
direct help.”26 So he rang Dyson up and said: “I am a beginning research
student; I would like to talk with you. I am trying to renormalize meson
theories, and there is the problem of overlapping divergences which you
have solved. Could you give me some time?” Dyson indicated that he was
leaving for the United States on the next day, so if Salam wanted to talk
to him he had to come to Birmingham “tonight.” This Salam did. The
two of them got together the next morning. This was the first time that
Salam met Dyson. He asked him “What is your solution of the overlapping
infinity problem?” Dyson answered, “But, I have no solution. I only made
a conjecture. Salam recalled that for a young student who had just started
on research, “this was a terrible shock. Dyson was our hero. His papers
were classics. For him to say that he had only made a conjecture made
me feel that my support of certainty in the subject was slipping away.”
But Salam notes that “Dyson was being characteristically modest about
his own work. He explained to me what the basis of his conjecture was.
What he told me was enough to build on and show that he was absolutely
right.”
During the summer of 1950, Salam tackled the overlapping divergences
problem and “using a generalization of Dyson’s remarks,” was able to
show that QED and spin zero meson theories were indeed renormalizable
to all orders.

Silvan Schweber, 1994

The following quotation is taken from the foreword and the introduction of the
monograph by E. Manoukian, Renormalization, Academic Press, New York, 1983
(reprinted with permission). This monograph emphasizes the mathematical aspects
of renormalization theory. It is based on the sophisticated proof of a general version
of Weinberg’s famous power-counting theorem (see Sect. 11.6.3 of Vol. I). This

24 A. Salam, Overlapping divergences and the S-matrix, Phys. Rev. 82 (1951),
217–227.

25 In 1979, Sheldon Glashow (born 1932), Abdus Salam (1926–1996) and Steven
Weinberg (born 1933) were awarded the Nobel prize in physics for their contri-
butions to the theory of electroweak interaction in the 1960s.

26 A. Salam, Physics and the excellence of the life it brings, pp. 291–303. In: A.
Salam, Ideals and Realities: Selected Essays of Abdus Salam. Edited by C. Lai,
World Scientific, Singapore, 1987.
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ensures the crucial convergence of the algebraic Feynman integrals which appear
during the renormalization procedure.

Renormalization theory is still with us and very much alive since its birth
over three decades ago. It has reached such a high level of sophistica-
tion that any book on the subject has to be mathematically rigorous to
do any justice on it. . . The first systematic study of renormalization his-
torically was carried out by Salam in 1951 in a classic paper where the
subtraction scheme of renormalization, in a general form, was formally
sketched.27 Surprisingly, this classic paper was not carefully reexamined
until much later. In 1960 Weinberg established and proved one of the most
important theorems in field theory. This theorem, popularly known as the
“power-counting theorem” embodied a power-counting criterion to estab-
lish the absolute convergence of (algebraic) Feynman integrals.28 Salam’s
work was first reexamined and brought to a mathematically consistent
form in Manoukian (1976).29 The absolute convergence of correspond-
ing renormalized Feynman amplitudes was then proved by the author30

by explicitly verifying in the process that the power-counting criterion of
Weinberg was satisfied, thus completing the Dyson–Salam program:

(DS) : Dyson→ Salam→Weinberg→ Manoukian (completion).

Shortly, after the appearance of Salam’s work, Bogoliubov, together with
Parasiuk (1957),31 in a classic paper developed a subtraction scheme and
outlined a proof of its convergence. In 1966 Hepp32 gave a convergence
proof of the Bogoliubov–Parasiuk scheme by using in the intermediate
stages ultraviolet cutoffs, and in 1969 Zimmermann33 formulated the Bo-
goliubov scheme in momentum space with no ultraviolet cutoffs and gave
a convergence proof of this subtraction scheme. Thus, these two latter
authors completed the Bogoliubov–Parasiuk (BP) program:

(BP) : Bogoliubov/Parasiuk→ Hepp/Zimmermann (completion).

Finally, the equivalence of the Bogoliubov scheme, in the Zimmermann
form, and our scheme was then proved, after some systematic cancellations
in the subtractions, by the author (see Manoukian (1976)) in a theorem
that we have called the “unifying theorem of renormalization.” Since the
Zimmermann form grew out of Bogoliubov’s work and our form grew out

27 A. Salam, Overlapping divergences and the S-matrix, Phys. Rev. 82 (1951),
217–227.

28 S. Weinberg, High energy behavior in quantum field theory, Phys. Rev. 118
(1960), 838–849.

29 E. Manoukian, Generalization and improvement of the Dyson–Salam scheme and
equivalence with other schemes, Phys. Rev. D14 (1976), 966–971, 2202(E).

30 E. Manoukian, Convergence of the generalized and improved Dyson–Salam renor-
malization scheme, Phys. Rev. D15 (1977), 535–537; D25 (1982), 1157(E).
E. Manoukian, Class Bn-functions: Convergence of subtractions, Nuovo Cimento
A67 (1982), 101–120.

31 N. Bogoliubov and O. Parasiuk, On the multiplication of propagators in quantum
field theory, Acta Math. 97 (1957), 227–326 (in German).

32 K. Hepp, Proof of the Bogoliubov–Parasiuk theorem on renormalization, Com-
mun. Math. Phys. 2 (1966), 301–326.

33 W. Zimmermann, Convergence of Bogoliubov’s method of renormalization in
momentum space, Commun. Math. Phys. 15 (1969), 208–234.
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of Salam’s work, this theorem establishes the long-standing problem of the
equivalence between the paths taken in the ingenious approaches of Salam
and Bogoliubov (in momentum space):

(DS) program⇐⇒ (BP) program (Manoukian).

This book deals with a mathematically rigorous formulation of renormal-
ization presented in a unified manner and a model independent way.

From the analytical point of view, the prototype of a divergent integral with over-
lapping divergences can be found in Sect. 2.2.5 on page 65. In terms of Feynman
graphs, Fig. 18.4 on page 972 shows the prototype of an overlapping divergence.
Bogoliubov’s key recursion formula for the handling of overlapping divergences in
the BPHZ approach can be found on page 982.

Unfortunately, it is hard to read papers and books on renormalization theory,
since the Salam criterion is violated, as a rule: The following quotation describes
this rule:

In 1951 Matthews and Salam formulated a requirement for renormaliza-
tion procedures that has become popularly known as the Salam criterion:34

“The difficulty, as in all this work, is to find a notation which is both concise
and intelligible to at least two persons, of whom one may be an author.”
Possibly there are many proofs of the renormalizability of quantum elec-
trodynamics which satisfy the Salam criterion. But we must confess that
none of us has yet qualified as that other person who is the guarantor of
the criterion. While there are today many standard texts which discuss
the renormalizability of quantum electrodynamics, we are not aware of
any which represents a complete proof and in particular justifies the claim
that only gauge invariant counterterms are required. We here submit to
you a direct and complete proof and we invite you to judge whether you
can vouch for the Salam criterion.35

Joel Feldman, Thomas Hurd, Lon Rosen, and Jill Wright, 1988

18.3 The Renormalizability of Quantum
Electrodynamics

Quantum electrodynamics is renormalizable by a passage to both the ef-
fective mass and the effective charge of the electron.36

Freemann Dyson, 1949

Renormalization is the readjustment of the higher order terms of the formal
power series of quantum field theory so that the resulting quantities satisfy
the axioms of quantum field theory in every order of perturbation theory

34 P. Matthews and A. Salam, Renormalization, Rev. Mod. Phys. 23 (1951), 311–
314.

35 J. Feldman, T. Hurd, L. Rosen, and J. Wright, QED: A Proof of Renormaliz-
ability, Springer, Berlin 1988 (reprinted with permission).

36 F. Dyson, The S-matrix in quantum electrodynamics, Phys. Rev. 75 (1949),
1736–1755.
F. Dyson, Advanced Quantum Mechanics. Dyson’s Cornell Lecture Notes from
1951, Cornell University, Ithaca, New York. Transcribed by D. Derbes, World
Scientific, Singapore, 2007.
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or, more ambitiously in constructive quantum field theory, in the exact,
non-perturbative solution.37

Klaus Hepp, 1971

The main goal of the renormalization of quantum electrodynamics reads as follows:

Show that there exists a general algorithm such that, in each order of per-
turbation theory, one gets finite S-matrix elements which only depend on
two free parameters, namely,
• meff (effective mass of the electron) and
• −eeff (effective charge of the electron).

These effective values cannot be determined by theoretical arguments. They have
to be determined by physical experiments. Roughly speaking, the main goal for-
mulated above can be realized. There exist algorithms used by physicists on super-
computers in order to compute high-precision results (e.g., the anomalous magnetic
moment of the electron). However, the arguments for justifying the algorithms are
highly technical and full of mathematical pitfalls. In particular, one has to show
that

• the choice of the gauge condition doesn’t matter (gauge invariance),
• the S-matrix elements generate transition probabilities (unitarity of the renor-

malized S-matrix), and
• the choice of the inertial system doesn’t matter (relativistic covariance).

Note that there exist different approaches to renormalization theory. In the set-
ting of the lattice approach, the main idea is to choose the free parameters of the
counterterms of the Lagrangian in such a way that the continuum limit exists. For
example, physicists have shown that the mathematical trick of introducing an arti-
ficial photon mass does not influence the computation of important physical effects.
In fact, the artificial mass terms cancel each other if one takes all of the essential
physical effects into account. For example, the additional production of low-energy
(soft) photons compensates infrared divergences of the algebraic Feynman integrals.
For example, when electrons scatter at protons or in the field of a nucleus, they
can emit real photons. This physical phenomenon is called Bremsstrahlung. This
German word means breaking radiation. In 1931 this effect was first studied by
Sommerfeld in a non-relativistic setting. In 1934 Bethe and Heitler computed the
relativistic cross section for breaking radiation related to the incoming stream of
electrons in the Coulomb field of an atom and the outgoing photons. We refer to
the study of breaking radiation in:

L. Landau and E. Lifshitz, Course of Theoretical Physics, Vol 4: Quantum
Electrodynamics, Butterworth–Heinemann, Oxford, 1982.

C. Itzykson and J. Zuber, Quantum Field Theory, MacGraw-Hill, New
York, 1908.

A detailed modern study can be found in Sect. 3.11 of the monograph by

G. Scharf, Finite Quantum Electrodynamics: the Causal Approach, Sprin-
ger, Berlin, 1995.

Here, the causal Epstein–Glaser approach for constructing the S-matrix is used in
order to show that the adiabatic limit (i.e., the infrared limit) exists. This is based
on surprising cancellations of singularities by taking Feynman graphs into account
which correspond to soft photons of breaking radiation.

37 K. Hepp, Renormalization theory, pp. 429–500. In: C. DeWitt and R. Stora
(Eds.), Statistical Mechanics and Quantum Field Theory, Les Houches 1970,
Gordon and Breach, New York, 1971.
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Ambiguity of renormalization schemes. Fortunately enough, it seems that
the mathematical ambiguity of the choice of renormalization schemes does not
matter the physics.

The computational experience of physicists shows that different mathemat-
ical renormalization schemes yield the same results for the crucial values
measured in physical experiments.

This miracle is closely related to both

• Hepp’s axiomatic approach to renormalization theory (including the equivalence
of renormalization schemes) (see Hepp (1971) quoted on page 976)

• and the method of the renormalization group.

Here, we refer to:

N. Bogoliubov and D. Shirkov, Introduction to Quantum Field Theory,
Interscience, New York, 1980.

V. Rivasseau, From Perturbative to Constructive Renormalization, Prince-
ton University Press, Princeton, New Jersey, 1991.

L. Brown, Quantum Field Theory, Cambridge University Press, New York,
1996.

W. McComb, Renormalization Methods: A Guide for Beginners, Oxford
University Press, Oxford, 2007.

Additional hints for further reading can be found on page 1029ff.

18.4 Automated Multi-Loop Computations in
Perturbation Theory

In the near future, the most spectacular experiments in elementary particle physics
will be performed at the LHC (Large Hadron Collider) of CERN (European Or-
ganization for Nuclear Research at Geneva, Switzerland). The maximal energy per
particle of the LHC will be near 10 TeV. This corresponds to the rest energy of 104

protons. For mastering theoretically the experiments, one needs extremely compli-
cated computations in the framework of multi-loop perturbation theory. This can
only be done with the help of

• highly sophisticated computer programs
• based on deep theoretical insight into the procedure of renormalization.

We recommend the following references:38

(i) Software package (Max Planck Institute for Physics, Werner Heisenberg, in
Munich): Internet http://www.feynarts.de

(ii) Classic review article from 1998: http://arxiv.org/abs/hep-ph/9812357
together with

http://www-ttp.particle.uni-karlsruhe.de/Links/algprog.html

(iii) Recent review article from 2008 emphasizing supersymmetric computations
which are crucial for the LHC: http://arxiv.org/abs/0805.2088

38 The author would like to thank Thomas Hahn from the Max Planck Institute for
Physics, Werner Heisenberg, in Munich for informing him about the references
quoted above.
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(iv) Computation of cross sections for a given Lagrangian:
• GRACE: http://minami-home.kek.jp
• Amegic++/Sherpa: projects.hepforge.org/sherpa/dokuwiki/doku.php
• MadGraph: http://madgraph.hep.uiuc.edu
• CompHEP: http://comphep.sinp.msu.ru/
• Pythia: http://home.thep.lu.se/∼ torbjorn/Pythia.html
• Feynarts: see (i) above.

(v) Computer algebra system FORM: http://www.nikhef.nl/∼ form/
(vi) The solution of the outstanding problem of finding a basis of N -loop integrals

by the Laporta algorithm (55 pages): arxiv.org/abs/hep-ph/0102033
(vii) Highly effective computation of transition amplitudes by using the pole struc-

ture of Feynman diagrams and the Cauchy residue calculus (33 pages):

http.://arxiv.org/abs/hep-th/0410179

In algebraic geometry, one has to solve systems of polynomial equations. For do-
ing this, one uses a so-called Gröbner basis. The most popular algorithm for solving
polynomial equations and other problems in computer algebra is the Buchberger
algorithm (see Cox et al., Using Algebraic Geometry, Springer, New York, 1998).
The Laporta algorithm in renormalization theory works similarly as the Buchberger
algorithm.



19. Perspectives

Before doing the hard work of climbing a high mountain, go to the top
by cable railway and enjoy looking at the beautiful landscape. This will
motivate the later efforts.

Folklore

In this chapter we will take the cable railway. We postpone the mountain climbing
to Vol. IV on quantum mathematics. There exist the following two basic approaches
to quantum field theory:

(S) the S-matrix approach (scattering matrix), and
(G) the Green’s function approach (correlation functions).

The main ideas are discussed in Chaps. 14 and 15 of Vol. I. A detailed study will
be carried out in Vol. IV. Roughly speaking, the two approaches (S) and (G) are
equivalent to each other.

In the present volume, we use the S-matrix approach based on the Dyson se-
ries. The Epstein–Glaser approach (also called the causal approach) represents a
refinement of the Dyson series in terms of tempered distributions (see Sect. 19.2).

The Green’s function approach (G) uses the generating functional Z(J) (with
the source J) for the Green’s functions of the interacting quantum field. Alterna-
tively, one can describe Z(J) by either

• some Feynman functional integral Z(J) = N
R

e−iS[ψ,J]/� Dψ (depending on the
classical action S) or

• some functional-differential equation in terms of the functional derivative δZ
δJ

(the
quantum action principle).

Here, the quantum action principle (QA) represents a functional-differential equa-
tion for a fundamental basis of Green’s functions of the interacting quantum field
theory (the so-called vertex functions which correspond to one-particle irreducible
Feynman graphs). The functional-differential equation (QA) is also called the
Dyson–Schwinger equation, which can be regarded as the fundamental equation
of motion for the Green’s functions.

All the information on the interacting quantum field can be obtained from either
the S-matrix or the generating functional Z(J). In fact, Z(J) can be replaced by
the simpler generating functional V (J) for the vertex functions.

• The passage from the S-matrix to the generating functional Z(J) is obtained by
the magic Gell-Mann–Low formula.

• Conversely, the passage from Z(J) to the S-matrix is obtained by the magic LSZ
(Lehmann, Szymanzik, Zimmermann) reduction formula.

In fact, it is possible to introduce a generating functional for the S-matrix (e.g.,
in terms of some Feynman functional integral which is related to Z(J)). Besides
the S-matrix approach and the Green’s function approach, there exist different
approaches by using the following functions:
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• the Wightman functions in axiomatic quantum field theory, and
• the retarded functions in the GLZ (Glaser, Lehmann, and Zimmermann) setting.1

For a detailed study, we refer to Vol. IV.
Symmetries of the classical action functional lead to both conservation laws

and the fundamental Slavnov–Taylor identities for the Green’s functions in gauge
theories; these identities represent constraints for the generating functional Z(J).
Note that the Slavnov–Taylor identities generalize the Ward–Takahashi identities in
quantum electrodynamics. These constraints can be handled by methods which are
similar to Hilbert’s theory of syzygies in commutative algebra (theory of invariants
and algebraic geometry).2 It is possible that classical symmetries do not survive
the process of quantization. We call this an anomaly.

In renormalization theory, one has to distinguish between the following notions:

(i) regularization,
(ii) renormalization,
(iii) renormalizability, and
(iv) super-renormalizability.

By (i), we understand mathematical methods which replace divergent integrals by
convergent integrals or which modify sums by subtracting terms such that, say, the
lattice limit exists. Typical regularization methods for integrals are:

• truncation of the domain of integration (e.g., momentum cut-off),
• Pauli–Villars regularization,
• dimensional regularization, and
• analytic regularization.

This is discussed in Sect. 2.1. If the regularization method (i) leads to a reasonable
S-matrix, which describes transition probabilities for scattering processes in terms
of physics, then we speak of renormalization. This includes that, in each order
of perturbation theory, all the S-matrix elements are finite, and they depend on
a finite number of parameters which can be determined by physical experiments.
In addition, the S-matrix has to be unitary. Otherwise, the interpretation of the
S-matrix elements as transition probabilities fails.

In the important special case where the number of free parameters is bounded
by a fixed integer in each order of perturbation theory, the quantum field theory
is called renormalizable. For example, quantum electrodynamics is renormalizable;
in each order of perturbation theory, the (renormalized) S-matrix depends on two
free parameters, namely, the effective mass meff and the effective charge −eeff of
the electron. These free parameters have to be measured by physical experiment.

Furthermore, the theory is called super-renormalizable iff there exists only a
finite number of Feynman graphs which generate divergent integrals (e.g., in the
lattice limit). For example, quantum electrodynamics is not super-renormalizable.

For gauge theories it is crucial that the renormalization procedure survives
the symmetries of the classical action functional. For handling this in an elegant
manner, the following three approaches exist:

1 See O. Steinmann, Perturbative Quantum Electrodynamics and Axiomatic Field
Theory, Springer, Berlin, 2000. See also the recent papers by Fredenhagen and
his collaborators quoted on page 455.

2 See. D. Eisenbud, Commutative Algebra with a View to Algebraic Geometry,
Springer, New York, 1994.
D. Eisenbud, The Geometry of Syzygies: A Second Course in Commutative Al-
gebra and Algebraic Geometry, Springer, New York, 2005.
M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton
University Press, 1993.
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• the Faddeev–Popov method by using the orbit space of the gauge group in order
to factorize the “measure” of the Feynman functional integral (see Sect. 16.6 of
Vol. I),

• algebraic renormalization – the BRST (Becchi, Rouet, Stora, Tyutin) symmetry
(see both Sect. 16.7 of Vol. I and Sect. 19.6 of the present volume), and

• the recent Master Ward identity due to Boas and Dütsch (see Sect. 19.9).

Detailed hints for further reading concerning the huge field of renormalization the-
ory will be given in Sect. 19.11 on page 1029.

19.1 BPHZ Renormalization

19.1.1 Bogoliubov’s Iterative R-Method

Dimensional regularization. Recall that a Feynman graph Γ is called divergent
iff the corresponding n-dimensional algebraic Feynman integral Jn(Γ ) is divergent.
Divergent graphs are one-particle irreducible. Replacing n by n− ν, the method of
dimensional regularization yields

Jn−ν(Γ ) =
∞
X

k=−r

akν
k

where r = 1, 2, . . . (see Sect. 2.2.9). In the special case where the algebraic Feynman
integral is convergent, we have a−1 = . . . = a−r = 0, and we get

Jn(Γ ) = lim
ν→+0

Jn−ν(Γ ).

In the divergent case, we introduce the following Rota–Baxter truncation operator:

PΓJn−ν(Γ ) :=

−1
X

k=−r

ak

νk
. (19.1)

This yields the regularization

(1− PΓ )Jn−ν(Γ ) :=
∞
X

k=0

ak

νk
.

Hence
lim

ν→+0
(1− PΓ )Jn−ν(Γ ) = a0.

This is the regularized value of the divergent integral Jn(Γ ). In what follows we
will briefly write the symbol (1− PΓ )J(Γ ) instead of (1− PΓ )J(Γ )n−ν . All of the
following expressions depend on the small real parameter ν in a regular way. The
limit ν → +0 will be carried out at the end of Bogoliubov’s iterative method. In
what follows we will only consider one-particle irreducible graphs (briefly called 1PI
graphs). This class comprehends the divergent graphs.

Example 1 (no proper 1PI subgraph). Consider a 1PI graph Γ which has
no proper 1PI subgraph. We define the regularization R(Γ ) of the corresponding
Feynman integral J(Γ ) by adding the subtraction term S(Γ ).3 Explicitly,

3 The subtraction term is also called counterterm in the literature. However, in
order to avoid misunderstandings, we will use the designation ’counterterm’ only
for the corresponding terms of the Lagrangian density.
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(a) graph Γ (b) subgraph γ

Fig. 19.1. Two-loop vertex diagram

R(Γ ) := J(Γ ) + S(Γ )

along with S(Γ ) := −PΓJ(Γ ). Hence

R(Γ ) = (1− PΓ )J(Γ ). (19.2)

This is the usual regularization procedure of the overall integral J(Γ ). In order
to handle graphs with an arbitrary number of divergent subgraphs, Bogoliubov
invented the following general algorithm.

Bogoliubov’s iterative method. We will proceed in two steps.

Step 1: The preparation of the algebraic Feynman integral. We replace the algebraic
Feynman integral J(Γ ) by the so-called preparation integral R(Γ ). Explicitly,
we set

R(Γ ) := J(Γ ) +
X

γ

J(Γ/γ) · S(γ). (19.3)

Here, we sum over all families

γ := {γ1, . . . , γs}, s = 1, 2, . . . ,

of pairwise disjoint, proper 1PI subgraphs γ1, . . . , γs of the given graph Γ . In
addition, we use the product rule

S(γ) := S(γ1)S(γ2) · · ·S(γs).

Finally, the symbol Γ/γ denotes a special subgraph of Γ. More precisely, Γ/γ
is obtained from the graph Γ by shrinking the subgraph γ to a point. We also
assume the validity of the following product rule:

J(Γ/γ) · J(γ) = J(Γ ), (19.4)

which is a consequence of the Feynman rules.
Step 2: The subtraction term: The regularization of the Feynman integral J(Γ ) is

given by

R(Γ ) := R(Γ ) + S(Γ ) (19.5)

with the subtraction term S(Γ ) := −PΓR(Γ ). Hence R(Γ ) = (1− PΓ )R(Γ ).
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This is a recursive procedure. Starting with the given graph Γ , Bogoliubov’s method
reduces the computation to proper 1PI subgraphs of Γ . After a finite number of
steps, one arrives at some 1PI subgraph which has no proper 1PI subgraphs any-
more. In this favorite case, we can apply Example 1.

Example 2 (one proper 1PI subgraph). Consider the two-loop vertex graph Γ
depicted in Fig. 19.1 together with the proper 1PI subgraph γ. We claim that

R(Γ ) = (1− PΓ )(1− Pγ)J(Γ ). (19.6)

Proof. By (19.3), we get

R(Γ ) = J(Γ ) + J(Γ/γ) · S(γ).

By Example 1, S(γ) = −PγJ(γ). Hence

R(Γ ) = J(Γ )− J(Γ/γ)PγJ(γ)

= J(Γ )− Pγ

`

J(Γ/γ) · J(γ)
´

= J(Γ )− PγJ(Γ ).

Therefore,
R(Γ ) = (1− Pγ)J(Γ ).

This means that the preparation of the integral J(Γ ) consists in regularizing the
subintegral which corresponds to the subgraph γ. By (19.5),

R(Γ ) = R(Γ ) + S(Γ ) = (I − PΓ )R(Γ ) = (I − PΓ ))(I − PΓ ).

�

Observe that formula (19.6) corresponds to a nested regularization. First we regu-
larize the subintegral with respect to the subgraph γ, then we regularize the overall
integral.

Example 3 (two proper 1PI subgraphs). Consider the two-loop vacuum po-
larization graph Γ depicted in Fig. 19.2 together with the two overlapping 1PI
subgraphs γ1 and γ2. We claim that

R(Γ ) = (1− PΓ )(1− Pγ1 − Pγ2)J(Γ ). (19.7)

Proof. By (19.3), we get

R(Γ ) = J(Γ )− J(Γ/γ1)S(γ1)− J(Γ/γ2)S(γ2)

with S(γj) = −PγjJ(γj), j = 1, 2. Hence

R(Γ ) = J(Γ )− Pγ1(J(Γ/γ1)J(γ1))− Pγ2(J(Γ/γ2)J(γ2) = (1− Pγ1 − Pγ1)J(Γ ).

�

Note that formula (19.7) differs from the naive regularization formula

R(Γ ) = (1− SΓ )(1− Sγ1)(1− Sγ2)J(Γ ).

This is related to the fact that overlapping 1PI subgraphs complicate the regular-
ization procedure.
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(a) graph Γ




�

�

�

(b) subgraph γ1




�

(c) subgraph γ2

�

�

Fig. 19.2. Overlapping subgraphs γ1 and γ2

19.1.2 Zimmermann’s Forest Formula

Our goal is to replace the iterative Bogoliubov formula (19.3) by a global formula.
To this end, we need the concept of a forest.

Forest. Let Γ be a 1PI graph, and let Γ1, . . . , Γn be proper 1PI subgraphs of
Γ.4 By definition, a forest F of the graph Γ is a nonempty subset of the set

{Γ, Γ1, . . . , Γn}

which does not contain overlapping graphs. The symbol F(Γ ) denotes the family
of all the forests F of the graph Γ. Let us consider three examples.

(i) The graph pictured in Fig. 19.3: We have the 1PI graph Γ and the proper 1PI
subgraphs Γ1 and Γ2. Therefore, the corresponding family of forests consists of
the following five sets:

{Γ}, {Γ1}, {Γ2}, {Γ, Γ1}, {Γ, Γ2}. (19.8)

These five sets form the forest family F(Γ ) of the graph Γ. Observe that the
sets {Γ1, Γ2} and {Γ, Γ1, Γ2} are not forests, since Γ1 and Γ2 are overlapping
subgraphs.

(ii) The two-loop vertex graph pictured in Fig. 19.1: The graphs Γ and γ are 1PI.
Since γ ⊆ Γ , the graphs Γ and γ are not overlapping. The family F(Γ ) of
forests consists of the following three sets:

{Γ}, {γ}, {Γ, γ}. (19.9)

(iii) The two-loop vacuum polarization graph pictured in Fig. 19.2: We have the 1PI
graphs Γ, γ1, γ2. The corresponding family of forests consists of the following
five sets:

{Γ}, {γ1}, {γ2}, {Γ, γ1}, {Γ, γ2}. (19.10)

The forest formula. Zimmermann discovered in 1969 that Bogoliubov’s for-
mula (19.3) can be obtained by the following simpler formula called Zimmermann’s
forest formula:

R(Γ ) = J(Γ ) +
X

F∈F(Γ )

Y

γ∈F

−PγJ(Γ ). (19.11)

The sum is taken over all forests F of the graph Γ , whereas the product is taken over
all subgraphs γ of the forest F . For nested subgraphs γ, the operator P should be

4 We tacitly assume that Γ and Γ1, . . . , Γn are not empty.
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(a) graph Γ

� � � � �

(b) subgraph Γ1

� �

(c) subgraph Γ2

� �

Fig. 19.3. Overlapping subgraphs Γ1 and Γ2

applied inside to outside. This formula displays clearly that the subtraction terms
depend on the forests F of the original graph Γ .

Example 1. Consider the two-loop vertex graph Γ depicted in Fig. 19.1 on
page 982. The forests are the following sets: {Γ}, {γ}, {Γ, γ}. By the forest formula
(19.11), we get

R(Γ ) = J(Γ )− PΓJ(Γ )− PγJ(Γ ) + PΓ PγJ(Γ ).

Equivalently, R(Γ ) = (1 − PΓ )(1 − Pγ)J(Γ ). This is identical with Bogoliubov’s
formula (19.6).

Example 2. Consider the two-loop vacuum polarization graph Γ depicted in
Fig. 19.2. Here, the forests are {Γ}, {γ1}, {γ2}, {Γ, γ1}, {Γ, γ2}. By the forest for-
mula (19.11), we obtain

R(Γ ) = J(Γ )−
`

PΓ + Pγ1 + Pγ2

´

J(Γ ) +
`

PΓ Pγ1 + PΓ Pγ2

´

J(Γ ).

Equivalently,
R(Γ ) = (1− PΓ )(1− Pγ1 − Pγ2)J(Γ ).

This is identical with Bogoliubov’s formula (19.7).

19.1.3 The Classical BPHZ Method

The main problem of the BPHZ method is the convergence of the algebraic
Feynman integrals after applying the forest formula.

Folklore

In his classical paper from 1969, Zimmermann did not use the method of dimen-
sional regularization, but the method of Taylor subtraction in momentum space
(see Sect. 2.2.4).5 Let us sketch the basic ideas.

Superficial degree of divergence of an algebraic Feynman integral. Fix
the real numbers a, b, and ε > 0. Let m = 0, 1, 2, . . ., and n = 1, 2, . . . The integral

J(a, b, ε) :=

Z

R

qm + a

qn + b + iε
dq

is convergent if n −m > 1. This is the simplest model for an algebraic Feynman
integral. Here, the parameters a and b model the momenta of the external particles,
and the parameter ε > 0 regularizes the integral by cancelling the possible zeros of
the denominator on the real line. Introducing the degree of divergence,

d := m− n + 1, (19.12)

5 W. Zimmermann, Convergence of Bogoliubov’s method of renormalization in
momentum space, Commun. Math. Phys. 15 (1969), 208–234.
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the integral J is convergent if d < 0. Fix N = 1, 2, . . . , and let us consider the
N -dimensional integral

J (a, b; ε) :=

Z

RN

f(q1, . . . , qN ; a, b)

g(q1, . . . , qN ; a, b, ε)
dq1dq2 · · · dqN . (19.13)

Suppose that f (resp. g) is a real polynomial of degree m (resp. n) with respect to
the real variables q1, . . . , qN . In addition, suppose that the denominator g does not
vanish on R

N . This goal can be reached, if necessary, by replacing g(q) by g(q)+ iε
(or by similar expressions). The number

d := m− n + N

is called the superficial degree of divergence of the integral J . It turns out that, for
higher dimensions N > 1, the global degree d does not contain enough information
about the convergence or divergence of the integral J ; it is possible that nested sub-
divergences appear. However, Weinberg’s famous, highly nontrivial power-counting
theorem tells us, roughly speaking, the following:

The algebraic Feynman integral J(Γ ) corresponding to a given Feynman
graph Γ is absolutely convergent if the superficial degree of divergence of the
integral J(Γ ) itself is negative, and the same is true for all the subintegrals
corresponding to subgraphs of Γ.

The main idea is to reach this favorite situation by adding counterterms to the orig-
inal Lagrangian density in order to get additional Feynman graphs, which improve
the superficial degrees of divergence.6

Zimmermann’s fundamental convergence result. Let m > 0 be the par-
ticle mass. In order to avoid singularities caused by zeros of the denominator, Zim-
mermann used the following replacement:

1

(p2
0 − p2 −m2)r

⇒ 1

(p2
0 − p2 −m2 + iε(p2 + m2))r

. (19.14)

Here, ε > 0 is a fixed regularization parameter which cancels the zeros of the
denominator on R

4. Zimmermann’s convergence result reads as follows:

(i) For fixed ε > 0, the Taylor subtraction method in the momentum space together
with the forest formula (19.11) yields convergent algebraic Feynman integrals.
These integrals are parameter integrals with respect to the regularization pa-
rameter ε and the external momenta.

(ii) As ε→ +0, the limit of the parameter integrals exists in the sense of tempered
distributions.

In addition, the limit tempered distributions are relativistically invariant.
Lowenstein’s fundamental convergence result. Lowenstein proved that

Zimmermann’s result can be generalized to the case of vanishing particle mass,
m = 0. This extension of the BPHZ method is called the BPHZL (Bogoliubov,
Parasiuk, Hepp, Zimmermann, Lowenstein) method.7

6 S. Weinberg, High energy behavior in quantum field theory, Phys. Rev. 118
(1960), 838–849. This classical paper studies both the convergence of algebraic
Feynman integrals and the asymptotic behavior of such integrals if the momenta
of the external particles go to infinity.
For the Weinberg power-counting theorem, we refer to Sect. 11.6.3 of Vol. I. In a
general setting, detailed proofs can be found in the monograph by E. Manoukian,
Renormalization, Academic Press, New York, 1983.

7 See J. Lowenstein, Convergence theorems for renormalized Feynman integrals
with zero-mass propagators, Commun. Math. Phys. 47 (1976), 53–68.
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19.2 The Causal Epstein–Glaser S-Matrix Approach

A brilliant example of the creation and application of new mathematical
methods was the development of an axiomatic approach to quantum field
theory undertaken by Bogoliubov in the 1950s. He always strove to work
on the latest and hottest topics of theoretical physics. At that time, the
ultraviolet divergence was an important problem in quantum field theory
when using the Hamiltonian formalism (canonical quantization). Bogoli-
ubov proposed a new approach to this problem.8 First of all, he abandoned
the Hamiltonian formalism and took as a basis of the theory the S-matrix
introduced by Heisenberg in 1943. . .
Bogoliubov required that the S-matrix satisfies the following fundamental
postulates: it must be relativistically covariant, unitary, causal (local) and
spectral.9

Vasilii Vladimirov, 2005

It is shown how an inductive construction of the renormalized perturbation
series of quantum field theory automatically yields, at each order, finite
terms satisfying the requirement of locality. This method whose result
is equivalent to the Bogoliubov–Parasiuk–Hepp prescriptions, also estab-
lishes the usual classification between renormalizable and non-renormali-
zable theories.10

Henri Epstein and Vladimir Glaser, 1973

The latter is one of the most important papers in quantum field theory. However,
for a long time, only a few specialists noticed this important approach to quan-
tum field theory. Quantum electrodynamics in terms of the elegant Epstein–Glaser
approach is thoroughly studied in the monograph by G. Scharf, Finite Quantum
Electrodynamics: the Causal Approach, Springer, Berlin, 1995. The S-matrix is a
formal power series whose terms are operator-valued tempered distributions. The
starting point is the representation of the S-matrix by a formal series expansion

S(g) = 1 +

∞
X

n=1

1

n!

Z

R4n

Sn(x1, x2, . . . , xn)

n
Y

k=1

g(xk) dx1dx2 · · · dxn, (19.15)

where g is a test function living in the space S(R4) of smooth functions which
are rapidly decreasing at infinity. This symbolic notation means that the terms of

J. Lowenstein and E. Speer, Distributional limits of renormalized integrals with
zero-mass denominator, Commun. Math. Phys. 47 (1976), 43–51.
J. Lowenstein, BPHZ Renormalization, pp. 95–160. In: G. Velo and A. Wightman
(Eds.), Renormalization Theory, Reidel, Dordrecht, 1976.

8 See N. Bogoliubov and D. Shirkov, Introduction to Quantum Field Theory,
Nauka, Moscow, 1957 (in Russian). Fourth Russian edition, 1984. English edi-
tion: Interscience, New York, 1959/1980.
A similar approach was formulated by E. Stueckelberg and D. Rivier, Causalité
et structure de la matrice S, Helv. Phys. Acta 23 (1950), 215–222 (in French).

9 V. Vladimirov, Nikolai Nikolaevich Bogoliubov (1909–1992) – Mathematician by
the Grace of God. In: A. Bolibruch, Yu. Osipov, and Ya. Sinai (Eds.), Mathemat-
ical Events in the 20th Century, Springer, Berlin, and PHASIS, Moscow, 2006
(reprinted with permission).

10 H. Epstein and V. Glaser, The role of locality in perturbation theory, Ann. Inst.
Poincaré A19(3) (1973), 211–295.
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(19.15) are tempered distributions. The Epstein–Glaser approach to quantum field
theory is based on the following axioms:11 (L) locality, (R) relativistic invariance,
(U) unitarity of the S-matrix, and (C) causality. Let us sketch the basic ideas. Since
S(g) introduced in (19.15) is only a formal power series expansion, the following
conditions only serve as a rough orientation. The precise formulation will be given
in Vol. IV.

Locality. In terms of physics, locality means that physical interactions are
localized in space and time. In the Epstein–Glaser setting, this locality is realized
by the fact that the S-matrix is an operator-valued tempered distribution which
depends on test functions. In particular, if the support of the test function g is
concentrated on a small region of the four-dimensional space-time manifold, then
the interaction is localized. More precisely, there exists a complex Hilbert space X
such that, for any test function g ∈ S(R4), we have the linear operator

S(g) : X → X. (19.16)

Relativistic invariance. According to Einstein’s principle of special relativity,
physics is independent of the choice of the inertial system. A change between two
inertial systems Σ and Σ+ is given by a Poincaré transformation

x+ = Λx + a,

where x = (x, t) and x+ = (x+, t+) are the space-time coordinates in Σ and Σ+,
respectively. We postulate that

S(g+) = U(Λ, a) · S(g) · U(Λ, a)−1

for all test functions g ∈ S(R4), and all Poincaré transformations (Λ, a). Here, g+ is
defined by the condition g+(x+) := g(x) for all space-time points x in Σ. Moreover,
we assume that the map

(Λ, a) �→ U(Λ, a)

is a unitary representation of the Poincaré group in the Hilbert space X (see Vol.
III). In 1939 Wigner showed that such (nontrivial) representations only exist in
infinite-dimensional Hilbert spaces.12

Intuitively, this tells us that quantum field must possess an infinite number of
degrees of freedom. From the mathematical point, this is related to the fact that the
Lorentz group is not a compact Lie group, but only a locally compact Lie group.

Unitarity of the S-matrix. We assume that the operator (19.16) is unitary.
Causality. Two test functions f and g are called separated by causality iff

there exist both an inertial system and a real number t0 such that the following
hold: If f(x, t) �= 0 (resp. g(x, t) �= 0), then t < t0 (resp. t > t0). The key causality
axiom demands that this causal property of the test functions f and g implies the
following crucial product property of the S-matrix:

S(f + g) = S(f)S(g). (19.17)

11 This theory should be called the Stueckelberg–Bogoliubov–Epstein–Glaser the-
ory. For brevity, we speak of the Epstein–Glaser theory.

12 E. Wigner, On unitary representations of the inhomogeneous Lorentz group,
Ann. Math. 40 (1939), 149–204. In 1963 Eugene Wigner (1902–1995) was
awarded the Nobel prize in physics for his contributions to the theory of the
atomic nucleus and the elementary particles, particularly through the discovery
and application of fundamental symmetry principles.
The importance of symmetry in physics and the corresponding mathematical
approach will be thoroughly studied in Vols. IIIff.
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It can be shown that this functional equation for the S-matrix allows the construc-
tion of an iterative method which yields the tempered distributions corresponding
to Sn(x1, . . . , xn) for n = 1, 2, . . . This method starts with the classical Lagrangian
density of the field theory. The most delicate step is the separation of tempered
distributions with causal support into retarded and advanced parts.

The Dyson series is based on the time ordered-product T (ψ(t)ψ(s)) of a quan-
tum field. It turns out that, in quantum field theory, typical difficulties arise from
the fact that the time-ordered product is undetermined for equal time, t = s, since
serious singularities appear for equal time points. The Epstein–Glaser approach
overcomes this difficulty by using the sophisticated splitting technique for tempered
distributions with causal support.

Renormalization and the Hahn–Banach theorem. Observe the following
key point:

The Epstein–Glaser approach completely avoids the regularization of di-
vergent integrals as in the BPHZ approach.

The main idea reads as follows:

• We start with a special class of test functions which vanish on critical subsets of
the space-time manifold.

• With respect to these special test functions g, the functional g �→ S(g) behaves
nicely, that is, no singularities appear.

• Finally, we extend the restricted functional S to the full space of test functions.
This way, we obtain additional real parameters which have to be identified with
physical parameters (see Sect. 15.4.4 of Vol. I).

Surprisingly enough, in this setting, renormalization becomes a quite natural vari-
ant of the Hahn–Banach extension theorem for functionals, which is standard in
functional analysis.13

Low-energy limit. The low-energy limit corresponds to limits of tempered
distributions where the test functions go to the constant function, g ≡ 1. The latter
function is not a test function anymore. This means that, in the low-energy limit,
we have to leave the space of rapidly decreasing test functions.

Curved space-time manifold. It turns out that a variant of the Epstein–
Glaser approach can also be applied to models in quantum field theory on special
curved space-time manifolds (i.e., globally hyperbolic pseudo-Riemannian mani-
folds).14

The relation to the classical exponential function. What is the secret
behind the great success of the Epstein–Glaser approach? In order to answer this
question, consider Euler’s classical exponential function

f(t) = eAt, t ∈ R. (19.18)

Here, A is a fixed real number. There exist two different approaches to this function
in classical analysis, namely:

13 Many applications of the Hahn–Banach theorem to optimization and optimal
control can be found in E. Zeidler, Nonlinear Functional Analysis and its Ap-
plications, Vol. III: Variational Methods and Optimization, Springer, New York,
1986.

14 See R. Brunetti and K. Fredenhagen, Micro-local analysis and interacting quan-
tum field theories: renormalization on physical backgrounds, Commun. Math.
Phys. 208 (2000), 623–661.
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(ODE) the use of the ordinary differential equation

df(t)

dt
= Af(t), t ∈ R, f(0) = 1; (19.19)

(FE) the use of the functional equation

f(t + s) = f(t)f(s) for all t, s ∈ R. (19.20)

Let us discuss this.
Ad (ODE). Equation (19.19) has a unique smooth solution given by the ex-

ponential function (19.18). Replacing the real number A by a linear operator, the
exponential function (19.18) describes

• one-parameter groups (reversible causal processes in nature), and
• semi-groups (irreversible causal processes in nature)

in terms of functional analysis.15 In particular, the fundamental Dyson series for
the S-matrix is related to this setting; in fact, the Dyson series is a generalization of
Lagrange’s variation-of-parameter method in celestial mechanics (see Sect. 7.17.4
of Vol. I).

Ad (FE). If the continuous function f : R→ R satisfies the functional equation
(19.20), then it is given by (19.18). Consequently, causal processes in nature can
be described by equations of the form (19.20). In particular, the Epstein–Glaser
approach is of this type: the functional equation (19.20) corresponds to the causality
axiom (19.17).

In Chap. 7 we have studied the following approaches to quantum mechanics:

• Heisenberg’s method (commutation relations, creation and annihilation opera-
tors),

• Schrödinger’s method (partial differential equations),
• Feynman’s method (path integral and Brownian motion in imaginary time),
• Weyl’s method (pseudo-differential operators and deformation quantization),
• von Neumann’s method (spectral theory of self-adjoint operators, and von Neu-

mann operator algebras),
• the Gelfand–Naimark–Segal method (C∗-operator algebras).

There exists an additional approach to quantum mechanics based on the
functional equation (19.20).

This is the causal Epstein–Glaser approach which can be generalized to quantum
field theory. This will be thoroughly studied in Vol. IV on quantum mathematics.

19.3 Kreimer’s Hopf Algebra Revolution

The symmetry behind renormalization theory can be described by Hopf
algebras.

Folklore

15 See E. Zeidler, Nonlinear Functional Analysis, Vol. IIA: Linear Monotone Oper-
ators, Springer, New York, 1997.
P. Lax, Functional Analysis, Wiley, New York, 2002.
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19.3.1 The History of the Hopf Algebra Approach

The following quotation is taken from the survey article by K. Ebrahimi-Fard and
D. Kreimer, The Hopf algebra approach to Feynman diagram calculations. Topical
Review. J. Phys. A: Mathematical and General 38 (2005), R385–R407:16

Quantum field theory (QFT) has a long and outstandingly successful his-
tory in all theories of physics. Merging the two major revolutionary achieve-
ments of the early twentieth century physics, quantum mechanics and spe-
cial relativity, the founding fathers of QFT were setting out for a unified
description of elementary particles phenomena. Its ideas and techniques
found far reaching applications in different and very distinct areas of the-
oretical physics and pure and applied mathematics. Several approaches to
QFT have been developed so far. We mention
• Wightman’s early axiomatic setting leading to constructive QFT,17

• together with Haag’s mathematically elegant and rigorous algebraic for-
mulation of QFT in terms of von Neumann algebras,18

These two approaches describe best the nowadays common belief of what
should be the general physical principles underlying any QFT. Still, despite
the enormous and mathematically rigorous progress which has been made
using these formulations, both approaches have several problems in making
fruitful contact with experimental results, whilst they give a crucial insight
into the structure of free quantum fields.

The perturbative approach to quantum field theory is the most successful.
Theoretical predictions of physical quantities made by using their expan-
sion in terms of renormalized Feynman graphs match experimental results
with a vertiginous high precision. Nevertheless, in most, if not all, of the in-
teresting and relevant four-dimensional quantum field theories, performing
even simple perturbative calculations one cannot avoid facing ill-defined
integrals. The removal of these divergences in a sound way is the process of
renormalization, better known by the illustrative description as ‘sweeping
under the carpet’. The basic idea of perturbative renormalization goes back
to Kramers in 1938,19 and was successfully applied for the first time in a
1947 seminal paper by Bethe (Phys. Rev. 72 (1947), 339–341) dealing with
the concrete problem of the self-energy contribution for the Lamb shift in
perturbative quantum electrodynamics (QED). The latter can nowadays
be regarded as one of the best tested physics theories. Its modern extension
to the Standard Model of elementary particles represents one of the cor-
nerstones of our present understanding of the physical world. Here again

16 Reprinted by permission of IOP Publishing, Bristol, United Kingdom.
Internet: www.iop.org/journals/jphysa

17 R. Streater and A. Wightman, PCT, Spin and Statistics, and All That, Addison-
Wesley, Redwood City, California, 1968.
J. Glimm and A. Jaffe, Mathematical Methods of Quantum Physics: A Func-
tional Integral Point of View, Springer, New York, 1981.
J. Glimm and A. Jaffe, Quantum Field Theory and Statistical Mechanics: Ex-
positions, Birkhäuser, Boston, 1985.

18 R. Haag, Local Quantum Physics, Springer, Berlin, 1996.
19 See H. Kramers, Collected Scientific Papers, North-Holland, Amsterdam, 1956.

The fascinating history of classical renormalization theory, including Kramers
contributions, is described in detail by the collection of survey articles edited by
L. Brown, Renormalization, Springer, New York, 1993.
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the perturbative treatment together with renormalization is the bread and
butter of the practitioner in high energy physics.

Maintaining the physical principles of locality, unitarity and Lorentz in-
variance, renormalization theory may be summed up by the statement that
to all orders in perturbation theory the (ultraviolet) divergencies can be
absorbed in a redefinition of the parameters defining the QFT. Here two
distinct concepts enter,
• that of renormalizability, and
• the process of renormalization.
The former distinguishes those theories with only a finite number of pa-
rameters, lending them considerably more predictive power. The process
of renormalization instead, works indifferently of the number of parame-
ters.20

Soon after Bethe’s paper on perturbative QED, there were several ap-
proaches to establish that quantum field theories are renomalizable in
general.
(i) Dyson was the first to do so, using integral equations and skeleton

expansions for Green’s functions (Phys. Rev. 75 (1949), 1736–1755).
His work was then continued by Salam and Weinberg. Unfortunately,
this attempt failed in the first instance, due to a problem related to a
particular 14th order QED graph, but could be cured later (see Fig.
18.1 on page 968).

(ii) The second approach, based on earlier work of Stueckelberg and Green
(Helv. Phys. Acta 24 (1951), 153–174) was taken by Bogoliubov and
Parasiuk (Acta Math. 97 (1957), 227–326) using a recursive subtrac-
tion method, Bogoliubov’s R-method. Also their proof contained a
loop-hole, but eventually found its final and satisfying form with
the work of Hepp (Commun. Math. Phys. 2 (1966), 301–326) and
later Zimmermann (Commun. Math. Phys. 15 (1969), 208–234). This
standard result is nowadays well known under the name Bogoliubov–
Parasiuk–Hepp–Zimmermann (BPHZ) renormalization.

(iii) Later, Epstein and Glaser presented a rigorous proof of renormaliz-
ability in the realm of the axiomatic treatment of QFT (Ann. Inst.
Poincaré A19(3) (1973), 211–295).

(iv) A fourth approach was taken by Blaer and Young (Nucl. Phys. B63
(1974), 493–514) using the Callan–Szymanzik renormalization group
equations, going back to a suggestion by Callan.

Unfortunately, despite its accomplishments, renormalization theory was
stigmatized, especially for its lack of a firm mathematical underpinning.
Indeed, examining the current introductory and advanced literature on
renormalization, as it is used in every day applications in many branches
of physics, one feels the need for a more conceptual picture unifying math-
ematical and computational aspects. A possible reason for this situation
might have been the fact that the building blocks, the (one-particle ir-
reducible) Feynman graphs in itself appeared to be unrelated to a sound
mathematical structure that may underlie the renormalization prescription
in perturbative QFT.

20 In any order n of perturbation theory, the procedure of renormalization yields an
expression which only depends on a finite number m(n) of parameters. However,
it may happen that limn→+∞ m(n) =∞. In this case, we say that the quantum
field theory is not renormalizable.
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Almost five decades after Bethe’s work, this changed to a great extent with
the original paper by Kreimer introducing the notion of Hopf algebra.21

The ensuing work by Kreimer and his collaborators,22 especially Broad-
hurst and Connes, explored this new approach both in terms of its math-
ematical and physical content, as well as its computational aspects. The
Hopf algebraic approach captures the combinatorial and algebraic aspects
of the process for renormalization by organizing the Feynman graphs into a
combinatorial Hopf algebra,HF , which is a connected graded commutative
bialgebra, essentially characterized by its non-cocommutative coproduct
structure map. The Hopf algebra formulation of renormalization was com-
pleted in the work by Connes and Kreimer. It gives rise to an elegant and
useful disentanglement of analytic and algebraic aspects of perturbative
renormalization in general QFT, affirming the remark that Few physicists
object nowadays to the idea that diagrams contain more truth than the un-
derlying formalism by Veltman and ’t Hooft (Diagrammar, CERN, Report
1973/9).

19.3.2 Renormalization and the Iterative Birkhoff Factorization
for Complex Lie Groups

The program of obtaining a characterization of a function in simple de-
scriptive terms, which are independent of the equations of definition of
the function, is a familiar one. To Riemann is due the formulation of this
characterization for the algebraic functions and for the functions defined
by ordinary differential equations without irregular points. In both of these
instances the characterization involves a certain number of characteristic
constants – the monodromic group constants in the last mentioned in-
stances. Riemann also proposed the associated problem of assigning these
constants at pleasure.
During the last few years I have discovered that the program admits of
extension in a number of directions. The aim of the present paper is to
solve the generalized problem of Riemann for ordinary linear differential

21 D. Kreimer, On the Hopf algebra structure of perturbative quantum field theo-
ries, Adv. Theor. Math. Phys. 2 (1999), 303–334.

22 D. Kreimer, Chen’s iterated integral represents the operator product expansion,
Adv. Theor. Math. Phys. 3 (1999), 627–670.
D. Kreimer, On overlapping divergences, Commun. Math. Phys. 204 (1999),
669–698.
D. Broadhurst and D. Kreimer, Combinatorial explosion of renormalization
tamed by Hopf algebra. 30-loop Padé–Borel resummation, Phys. Lett B475,
63–70.
D. Broadhurst and D. Kreimer, Towards cohomology of renormalization: bigrad-
ing the combinatorial Hopf algebra of rooted trees, Commun. Math. Phys. 215
(2000), 217–236.
D. Broadhurst and D. Kreimer, Exact solutions of Dyson–Schwinger equations
for iterated one-loop integrals and propagator-coupling duality, Nucl. Phys.
B600 (2001), 403–422.
A. Connes and H. Moscovici, Hopf algebras, cyclic cohomology, and the trans-
verse index theorem, Commun. Math. Phys. 198 (1998), 199–246.
A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative
geometry, Commun. Math. Phys. 119 (1998), 203–242. See also the footnote on
page 995.
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equations with irregular singular points, and the analogous problem for
linear difference equations and for linear q-difference equations. . . The
problem of Riemann for linear differential equations in its classic form
was first solved by Hilbert in 1905.23 His treatment and Plemel’s elegant
completion thereof reposed alike upon a certain theorem whose proof was
made by means of the Fredholm theory for linear integral equations. Owing
to the deep-seated analogy between linear differential and difference and
q-difference equations, I have been able to apply a convenient extension of
the same theorem in all cases; my proof is based on a method of successive
approximations.24

George Birkhoff, 1913

It turned out that the whole iterative and intricate structure of renor-
malization theory could be mapped to the theory of Hopf algebras, with
Zimmermann’s forest formula for the counterterm coming along as the an-
tipode (coinverse). This will be the starting point of our tour through the
realms of perturbative quantum field theory (pQFT). While the next chap-
ter summarizes some basics about pQFT, in Chapter 3 we will progress
towards the introduction of this Hopf algebra. This Hopf algebra succinctly
summarizes the combinatorics imposed on pQFT by the desire to obtain
local counterterms. Meanwhile it turned out that this Hopf algebra is the
classifying space for Hopf algebras of this kind,25 a result emphasizing the
beauty and naturalness of local point particle quantum field theories.26

Dirk Kreimer, 2000

This paper gives a complete self-contained proof of our result announced
in 199927 showing that renormalization in quantum field theory is a special
instance of a mathematical procedure of extraction of finite values based on
the Riemann–Hilbert problem. We shall first show that for any quantum
field theory, the combinatorics of Feynman graphs gives rise to a Hopf
algebraH which is commutative as an algebra. It is the dual Hopf algebra of
the enveloping algebra of a Lie algebra G whose basis is labelled by the one-
particle irreducible Feynman graphs. The Lie bracket of two such graphs
is computed from insertions of one graph in the other and vice versa. The
corresponding Lie group G is the group of characters of H. We shall then
show that, using dimensional regularization, the bare (unrenormalized)
theory gives rise to a loop

γ(z) ∈ G, z ∈ C

23 D. Hilbert, Foundations of the general theory of linear integral equations, Part
III, Göttinger Nachr. Ges. Wiss. Göttingen, 1905, 307–338 (in German).
J. Plemelj, Riemann’s families of functions for given monodromy group, Monats-
hefte für Math. und Physik 19 (1908), 205–246 (in German). Plemelj’s solution
of Hilbert’s 21th problem was incomplete, as we will discuss on page 1006.

24 G. Birkhoff, The generalized Riemann problem for linear differential equations
and the allied problems for linear difference and q-difference equations, Proc.
Amer. Math. Acad. Arts and Sci. 49 (1913), 521–568.

25 A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative
geometry, Commun. Math. Phys. 119 (1998), 203–242.

26 D. Kreimer, Knots and Feynman Diagrams, Cambridge University Press, 2000
(reprinted with permission).

27 A. Connes and D. Kreimer, J. High Energy Phys. 9 (1999), 024.
Internet: http://arxiv.org/hep-th/9909126
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where C is a a small circle of complex dimensions around the integer di-
mension D of space-time. Our main result is that the renormalized theory
is just the evaluation at the point z = D of the holomorphic part γ+ of the
Birkhoff decomposition of γ. We begin to analyze the group G and show
that it is a semi-direct product of an easily understood Abelian group
by a highly non-trivial group closely tied up with groups of diffeomor-
phisms. The analysis of this latter group as well as the interpretation of
the renormalization group and of anomalous dimensions are the content
of our second paper with the same overall title.28

Alain Connes and Dirk Kreimer, 2000

This is one of the most beautiful papers ever written in mathematical physics. For
a comprehensive representation, we refer to the monograph by A. Connes and M.
Marcolli, Noncommutative Geometry, Quantum Fields, and Motives, Amer. Math.
Soc., Providence, Rhode Island, 2008. In what follows let us sketch the basic ideas
of this new approach to renormalization theory.

Freely generated commutative algebras. Let x be a symbol. By definition,
the commutative algebra C[x] freely generated by x (over the field of complex
numbers C) consists of all the symbols

a0 + a1x + a2x
2 + . . .

where a0, a1, . . . are complex numbers, and only a finite number of these coefficients
is different form zero. Similarly, let x and y be symbols. Then the commutative
algebra C[x, y] freely generated by x and y (over C) consists of all the symbols

a00 + a10x + a01y + a20x
2 + a12xy + a02y

2 + . . . ,

where only a finite number of the complex coefficient a00, a10, . . . is different from
zero. Multiplying such symbols, we use the relation xy = yx. Analogously, we can
define the commutative algebra C[x1, x2, . . .] freely generated by the countable set
of symbols x1, x2, . . .

The Hopf algebra of Feynman graphs. We consider one-particle irreducible
(1PI) Feynman graphs related to a fixed quantum field theory. Consider the set of
all the symbols

(Γ, χ(Γ ))

where χ(Γ ) is the number of external lines of the Feynman graph Γ. Let H be the
commutative algebra freely generated by these symbols (over C). The crucial point
is the definition of the coproduct by setting

Δ(Γ ) := 1⊗ Γ + Γ ⊗ 1 +
X

γ

γ ⊗ Γ/γ. (19.21)

Here, we sum over all proper subgraphs γ of the given graph Γ , which are the union
of pairwise disjoint 1PI graphs. In the setting of the algebra H, formula (19.21) is
to be understood in the following sense: we briefly write Γ instead of (Γ, χ(Γ )),
and γ is the algebra product of the pairwise disjoint 1PI components of the graph
γ. The graph Γ/γ is obtained from Γ by shrinking the subgraph γ to a point.

28 A. Connes and D. Kreimer, Renormalization in quantum field theory and the
Riemann–Hilbert problem I: The Hopf algebra structure of graphs and the main
theorem. II: The beta function, diffeomorphisms, and the renormalization group.
Commun. Math. Phys. 210 (2000), 249–273; 216 (2001), 215–241 (reprinted with
permission).
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Fig. 19.4. Birkhoff factorization

It turns out that H is a Hopf algebra.

The definition (19.21) resembles the Bogoliubov iterative formula (19.3). In fact,
the definition of Δ(Γ ) is motivated by (19.3) on page 982.

The Birkhoff factorization for complex Lie groups and the general
Riemann–Hilbert problem. Consider the decomposition

P
1
C = C+ ∪ C ∪ C−

of the Riemann sphere P
1
C (Fig. 19.4). Here, by stereographic projection,

• the set C+ corresponds to an open disc centered at the origin z = 0 in the
complex plane C;

• the curve C is the boundary of C+, and
• the open set C− is the complement to C+ ∪ C on the Riemann sphere.

Let G be a connected complex Lie group. We are given a smooth map

l : C → G.

We say that the loop l admits a Birkhoff factorization iff it can be written as a
product

l(z) = l−(z)−1l+(z) for all z ∈ C. (19.22)

Here, l+ and l− are the boundary values of holomorphic functions l± : C± → G
with the normalization condition l−(∞) = 1. This factorization problem is not
always solvable. The Riemann–Hilbert problem for ordinary differential equations
and more general problems can be reduced to the Birkhoff factorization problem. In
1913 Birkhoff invented an iterative method for solving such factorization problems
(see the quotation on page 993).

Renormalization and Birkhoff factorization. Connes and Kreimer proved
that Bogoliubov’s iterative R-method (19.3) on page 982 can be reformulated as
the Birkhoff iterative method for a factorization problem with respect to the group
G := Hom(H,C). This group consists of algebra morphisms μ : H → C with the
normalization condition μ(1) = 1. The product on G is chosen in such a way that it
is dual to the coproduct on the Hopf algebra H of Feynman graphs. In this setting,
the renormalization group is a one-parameter subgroup of G.

19.3.3 The Renormalization of Quantum Electrodynamics

The relation between renormalization theory and the Birkhoff factorization was
proven by Connes and Kreimer for a scalar field theory (see Sect. 19.3.2). This
approach was applied to quantum electrodynamics in the paper by
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D. Volovich and I. Prokhorenko, Renormalizations in quantum electrody-
namics, and Hopf algebras, Trudy Mat. Inst. Steklova 245 (2004), 288–295.
Internet: http://arxiv.org/hep-th/0611178

The authors proved the renormalizability of quantum electrodynamics by solving a
Riemann–Hilbert problem. This research was extended by Suiljekom. Let us quote
from his papers:

We report on the Hopf algebraic description of renormalization theory of
quantum electrodynamics. The Ward–Takahashi (WT) identities are im-
plemented as linear relations on the (commutative) Hopf algebra of Feyn-
man graphs of quantum electrodynamics. Compatibility of these relations
with the Hopf algebra structure is the formulation of the physical fact that
WT identities are compatible with renormalization. As a result, the coun-
terterms and the renormalized Feynman amplitudes automatically satisfy
the WT identities, which leads in particular to the well-known Ward iden-

tity Ze = Z
−1/2
A .29

Walter van Suijlekom, 2006

We study the Connes–Kreimer Hopf algebra of renormalization in the case
of gauge theories. We show that the Ward–Takahashi identities and the
Slavnov–Taylor identities (in the Abelian and Non-Abelian case respec-
tively) are compatible with the Hopf algebra structure, in that they gen-
erate a Hopf ideal. Consequently, the quotient Hopf algebra is well-defined
and has those identities built in. This provides a purely combinatorial
and rigorous proof of compatibility of the Slavnov–Taylor identities with
renormalization.30

Walter van Suijlekom, 2006

19.4 The Scope of the Riemann–Hilbert Problem

The Riemann–Hilbert problem is related to the following important problems in
mathematical physics:

• renormalization (see Sect. 19.3.2 above),
• Fuchsian differential equations (generalizations of the Gauss hypergeometric dif-

ferential equation) and the 21th Hilbert problem,
• solitons.

The point is that the solution of the Riemann–Hilbert problem allows us to con-
struct analytic functions. Moreover, Riemann–Hilbert problems are closely related
to singular integral equations and to holomorphic vector bundles. Let us briefly dis-
cuss some important applications. This fascinating line of historical development
connects the Gaussian hypergeometric differential equation with modern complex
function theory, modern algebraic geometry, and renormalization theory.

29 W. van Suijlekom, The Hopf algebra of Feynman graphs in quantum electro-
dynamics, Letters in Mathematical Physics 77 (2006), 265–281 (reprinted with
permission). Internet: http://arxiv.org/hep-th/0602126

30 W. van Suijlekom, Renormalization of gauge fields: the Hopf algebra approach,
2006. Internet: http://arxiv.org/hep-th/0610137.
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19.4.1 The Gaussian Hypergeometric Differential Equation

Let us introduce the so-called hypergeometric series

F (a, b, c; z) := 1 +
ab

c
z +

a(a + 1)b(b + 1)

2! c(c + 1)
z2

+
a(a + 1)(a + 2)b(b + 1)(b + 2)

3! c(c + 1)(c + 2)
z3 + . . . (19.23)

We assume that a, b, c are complex numbers with c �= 0,−1,−2, . . . In the special
case where a = b = c = 1, this is the geometric series. In 1769 Euler studied the
second-order differential equation

w′′(z) +
c− (a + b + 1)z

z(z − 1)
w′(z)− ab

z − 1
w(z) = 0 (19.24)

for real values z, and he found that (19.23) is a solution of (19.24), in the sense of a
formal power series expansion.31 In 1813 Gauss published his paper Disquisitiones
generales circa seriem infinitam (On infinite series). He proved the following:

• If |z| < 1, then the series F (a, b, c; z) is absolutely convergent. This was the first
convergence proof for a power series expansion in the history of mathematics.

• If a or b is equal to one of the integers 0,−1,−2, . . ., then F (a, b, c; z) is a poly-
nomial. Otherwise the series F (a, b, c; z) is divergent if |z| > 1.

• If |z| = 1 and the real part of a+ b− c is negative, then F (a, b, c; z) is absolutely
convergent.

Gauss noticed that many of the functions known at his time were special cases of
the hypergeometric function F . For example,

• (1 + z)n = F (−n, 1, 1;−z) for all z ∈ C;
• ln(1 + z) = zF (1, 1, 2;−z) for all complex numbers z with |z| < 1;
• ez = limm→+∞ F (1,m, 1, z/m) for all complex numbers z.

Moreover, Gauss discovered the limiting formula

lim
x→1−0

F (a, b, c;x) = F (a, b, c; 1) =
Γ (c)Γ (c− a− b)

Γ (c− a)Γ (c− b)
(19.25)

for all real numbers a, b, c with a + b − c < 0 and c �= 0,−1,−2, . . . Furthermore,
Gauss proved the integral formula

Z x

0

tλ−1(1− tμ)νdt =
xλ

λ
F

„

−ν, λ

ν
,
λ

μ
+ 1; xμ

«

, 0 < x < 1

for all real numbers λ > 0, μ > 0, ν �= 0. Letting x→ 1−0 and using (19.25), Gauss
obtained the key integral formula

Z 1

0

tλ−1(1− tμ)νdt =
Γ (λ

μ
+ 1)Γ (ν + 1)

λΓ
“

λ
μ

+ nu + 1
” . (19.26)

31 Euler (1707–1783), Gauss (1777–1855), Kummer (1810–1893), Riemann (1826–
1866), Fuchs (1839–1902), Klein (1842–1925), Poincaré (1854–1912), Painlevé
(1863–1933), Hilbert (1862–1943), Koebe (1882–1945), Birkhoff (1884–1944).
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provided the limit exists as indicated above. In particular, this yields the (lemnis-
catic) elliptic integral

Z 1

0

dt

(1− t4)1/2
= F

`

− 1
2
, 2, 5

4
; 1
´

=
Γ
`

5
4

´

Γ
`

− 1
4

´

Γ
`

3
4

´ .

Using analytic continuation, formula (19.26) remains true as a generalized integral
formula if the right-hand side of (19.26) makes sense (i.e., the gamma function has
no poles). Explicitly, we assume that λ, μ, ν are complex numbers with the property
ν �= −1,−2, . . . and μ �= 0, as well as λ

μ
+ν+1 �= 0,−1,−2, . . . If λ > 0 and ν > −1,

formula (19.26) yields the Euler beta function B(λ, ν + 1).
Finally, let us mention that the two functions w1, w2 given by

w1(z) := F (a, b, c; z), w2(z) := z1−cF (1 + a− c, 1 + b− c, 2− c; z), |z| < 1

form a basis for the solutions of the Gauss hypergeometric differential equation
(19.24) on the open unit disc. In other words, each solution of (19.24) can be
represented by the formula

w(z) = C1w1(z) + C2w2(z), |z| < 1

where C1 and C2 are complex constants. In 1836, using symmetry transformations
of the hypergeometric function F , Kummer found 24 different local solutions in
different regions of the complex plane outside the singular points z = 0, 1,∞.32

Analytic Continuation and Riemann’s monodromy method. In 1857
Riemann wrote a famous paper on the global solution of the Gaussian hypergeo-
metric differential equation. In modern terminology, Riemann studied second-order
Fuchsian differential equations which have three singular points, say z = 0, 1,∞.
The Riemann surface of this global solution has two sheets and the three branch
points z = 0, 1,∞. Riemann introduced the symbol

P

0

B

@

0 1 ∞
α1 α2 α3

β1 β2 β3

1

C

A

, (19.27)

which characterizes the local behavior of the global solution near the branch points
(see (19.32) below). For example, the Gaussian equation (19.29) has the symbol

P

0

B

@

0 1 ∞
0 0 a

1− c c− a− b b

1

C

A

. (19.28)

Riemann used analytic continuation in order to construct the Riemann surface of
the global solution. This way, Riemann invented the monodromy method which
studies the analytic continuation of local solutions along loops around the singular
points (see Sect. 19.4.3 below.) In particular, Riemann showed that, roughly speak-
ing, Kummer’s 24 local solutions represent all possible local elements of the global

32 R. Prosser, On the Kummer solutions of the hypergeometric equation, Amer.
Math. Monthly 101 (1994), 535–543.
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solution of the hypergeometric equation.33 Riemann used a minimum of informa-
tion on the singular points of the differential equation in order to get a maximum
of information. Hilbert said:

Riemann has shown us that proofs are better achieved through ideas than
through long calculations.

Fuchsian Differential Equations

Singular points. In the late 1860s Fuchs generalized Riemann’s approach to or-
dinary differential equations of nth order with a finite number of singular points.
For example, consider the second-order differential equation

w′′(z) + p(z)w′(z) + q(z) = 0. (19.29)

We assume that the coefficient functions p and q are holomorphic on the complex
plane up to a finite number of points. The point z0 is called a regular point of
(19.29) iff p and q are holomorphic at z0. Otherwise the point z0 is called a singular
point of (19.29). To classify the point z =∞, we use the coordinate transformation
z = 1/ζ. The point z = ∞ is called a regular (resp. singular) point of (19.29) iff
ζ = 0 is a regular (resp. singular) point of the transformed differential equation. By
definition, the equation (19.29) is of Fuchsian type iff there exists a finite number
of points z1, . . . , zn in the complex plane C such that

p(z) =

n
X

k=1

Ak

z − zk
, q(z) =

n
X

k=1

Bk

(z − zk)2
+

Ck

z − zk
. (19.30)

Here, Ak, Bk, Ck (k = 1, . . . , n) are complex numbers with
Pn

k=1 Ck = 0. Let us
consider two examples:

• n = 1 : Using the Euler transformation u = ln(z − z1), the Euler equation

w′′(z) +
A1

z − z1
w(z) +

B1

(z − z1)2
w(z) = 0

passes over to a differential equation with constant coefficients. This is a trivial
case from the point of view of singularities.

• n = 2 : The Gaussian hypergeometric equation (19.23) is of Fuchsian type with
the three singular points z1 = 0, z2 = 1 and z =∞.

Local solutions at singular points. Let us motivate the notion of Fuch-
sian differential equation.34 Suppose that the point z0 ∈ C is a singular point of
the differential equation (19.29). Then the general solution of (19.29) in an open
neighborhood of z0 can be written in the form

w(z) = C1w1(z) + C2w2(z), 0 < |z − z0| < r,

33 Much material can be found in the classic textbook by E. Whittaker and G.
Watson, A Course of Modern Analysis: An Introduction to the General Theory
of Infinite Processes and of Analytic Functions; with an Account of the Principal
Transcendental Functions, Cambridge University Press, 1944.

34 A detailed motivation can be found in V. Smirnov, A Course of Higher Mathe-
matics, Vol. 3, Pergamon Press, New York, 1964.
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with complex constants C1 and C2 and a positive number r.
Case 1: The functions w1 and w2 have the form

w1(z) = (z − z0)
αL1(z − z0), w2(z) = (z − z0)

βL2(z − z0)

with real coefficients α and β.
Case 2: The function w1 is given by Case 1, while the function w2 has the following
form:

w2(z) = (z − z0)
αL3(z − z0) + w1(z) ln(z − z0).

Here, Lj(z − z0) =
P∞

k=−∞ ajk(z − z0)
k denotes a Laurent series at the point z0.

The singular point z0 is called weakly singular iff L1,L2,L3 are power
series expansions at the point z0.

35

This is the case if and only if

• p has a pole of order at most one at z0, and
• q has a pole of order at most two at z0.

By definition, the differential equation (19.29) is of Fuchsian type iff it has a finite
number of singular points and all of them are weakly singular. This definition
includes the point z =∞.

Construction of local solutions. The local solutions of the Fuchsian differen-
tial equation (19.29), (19.30) at the point z0 := zj(j = 1, . . . , n) can be constructed
in the following way: The ansatz

w(z) = (z − z0)
�(a0 + a1(z − z0) + a2(z − z0)

2 + . . .) (19.31)

leads in (19.29) to the so-called index equation

�2 + �(A− 1) + B = 0

with the two solutions � = α and � = β.
Case A: The difference α− β is not an integer. Then one gets the solutions w1 and
w2 by using the ansatz (19.29) with � = α, β and comparing coefficients.
Case B: The difference α−β is an integer. Then we get w1 as in the first case, while
the second solution w2 is obtained through integration, applying the formula

d

dz

„

w2

w1

«

(z) =
1

w1(z)2
exp

„

−
Z z

z0

p(t)dt

«

.

The local solutions at the point z = ∞ are obtained by using the transformation
z = 1/ζ and applying the method above to the transformed differential equation at
the point ζ = 0. The symbol

P

0

B

@

z1 z2 . . . zn ∞
α1 α2 . . . αn α∞

β1 β2 . . . βn β∞

1

C

A

, (19.32)

introduced by Riemann in his fundamental 1857 paper, tells us that z1, . . . , zn,∞
are singular points with the indices αj , βj at the point zj . If z = ∞ is a regular
point, then the last row of (19.32) drops out.

35 Otherwise it is called strongly singular.
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Poincaré’s Automorphic Functions and the Uniformization Theo-
rem for Compact Riemann Surfaces

The development starting with Gauss culminated in Poincaré’s creation of
the theory of Fuchsian groups and automorphic functions.

Folklore

One of the high-lights in mathematics is the uniformization theorem. Let us briefly
discuss this.

Real algebraic curves. To begin with, let K = R. In order to explain the
basic idea, consider the curve

x2 + y2 = 1, (x, y) ∈ K
2. (19.33)

This is the unit circle which has the global parametrization

x = cos t, y = sin t. (19.34)

Here, the parameter t varies on the real line R. Algebraic geometry studies curves
which are given by algebraic equations of the form

P (x, y) = 0, (x, y) ∈ K
2,

where P is a polynomial with respect to the variables x and y in K and coefficients
in K.

Complex algebraic curves. Riemann emphasized that one should study al-
gebraic curves in terms of complex variables, that is, we set K = C. Then equa-
tion (19.34) describes a one-dimensional complex manifold. Such manifolds are also
called Riemann surfaces. The global parametrization (19.34) remains valid if the
parameter t varies on C.

The uniformization theorem. In 1907 Poincaré and Koebe proved indepen-
dently that every compact Riemann surface allows a global parametrization, which
can be obtained by automorphic functions. This is the famous uniformization the-
orem.

Automorphic functions. Recall that transformations of the form

w =
az + b

cz + d

are called Möbius transformations iff the complex coefficients a, b, c, d satisfy the
condition ad − bc �= 0. Every Möbius transformation generates a conformal dif-
feomorphism of the Riemann sphere P

1
C onto itself. These transformations form a

group called the automorphic group Aut(P1
C). Meromorphic functions which are in-

variant under a discrete subgroup of the automorphic group are called automorphic
functions. This generalizes periodic and double-periodic (i.e., elliptic) functions. The
theory of automorphic functions was created by Klein and Poincaré. The latter used
solutions of Fuchsian differential equations and series of (Poincaré) theta functions
in order to construct automorphic functions. We refer to:

L. Ford, Automorphic Functions, Chelsea, New York, 1972.

M. Farkas and I. Kra, Riemann Surfaces, Springer, New York, 1992.

M. Waldschmidt et al. (Eds.), From Number Theory to Physics, Springer,
New York, 1995 (e.g., see the article by Bost on compact Riemann surfaces
and algebraic curves, Jacobians, and Abelian varieties).
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The Six Nonlinear Painlevé Equations

Consider the second-order ordinary differential equation

w′′(z) = P (z, w(z), w′(z)),

where we assume that the function P is meromorphic in the complex variable z
and rational in the complex variables w and w′. This equation is said to have the
Painlevé property iff every solution w = w(z) has a meromorphic continuation to
the universal covering of a punctured Riemann sphere which is determined by the
equation only. In about 1900 Painlevé and Gambier determined the complete list of
all the equations which possess the Painlevé property, up to proper transformations
of the independent and dependent variables. This complete list of 50 equations can
be found in E. Ince, Ordinary Differential Equations, Dover, New York, 1956. There
are six distinguished nonlinear equations among the list. The solutions of these six
equations are called the Painlevé transcendents. The first (resp. second) Painlevé
equation reads as

w′′(z) = 6w2(z) + z (resp. w′′(z) = 2w3(z) + zw(z) + a),

where a is a parameter.
Hints for further reading. The history of the theory of ordinary differential

equations in the sense of Fuchs and Painlevé together with a discussion of the main
results including the relations to algebraic geometry and Galois theory can be found
in:

J. Gray, Linear Differential Equations and Group Theory: From Riemann
to Poincaré, Birkhäuser, Boston, 2000.

K. Iwasaki, From Gauss to Painlevé: A Modern Theory of Special Func-
tions. Vieweg, Wiesbaden, 1991.

S. Kichenassamy, Fuchsian Reduction: Applications to Geometry, Cosmol-
ogy, and Mathematical Physics, Birkhäuser, Boston, 2007 (applications to
nonlinear partial differential equations).

We also recommend:

F. Klein, Development of Mathematics in the 19th Century, Math. Sci.
Press, New York, 1979.

The further development of these topics in the 20th century is described in:

J. Dieudonné, History of Functional Analysis, 1900–1975, North-Holland,
Amsterdam, 1983.

J. Dieudonné, History of Algebraic Geometry, 400 B.C.-1985 A.C., Chap-
man, New York.

J. Dieudonnè, A History of Algebraic and Differential Topology, 1900–1960,
Birkhäuser, Boston, 1989.

We also refer to:

E. Zeidler, Reflections on the future of mathematics, 25pp. In: H. Wußing,
6000 Years of Mathematics: a Cultural Journey through Time, Vol. II,
Springer, Heidelberg, 2008 (in German).

The development of mathematics in the 20th century was strongly influenced by
Hilbert’s 23 problems which he formulated in 1900. We refer to:
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B. Yandell, The Honors Class: Hilbert’s Problems and Their Solvers, Peters
Ltd, Natick, Massachusetts, 2001.

J. Gray, The Hilbert Challenge: A Perspective on 20th Century Mathe-
matics, Oxford University Press, Oxford, 2002.

P. Odifreddi, The Mathematical Century: The 30 Greatest Problems of
the Last 100 Years, Princeton University Press, 2004.

Hilbert’s 21th problem will be discussed in Sect. 19.4.3.

19.4.2 The Confluent Hypergeometric Function and the Spectrum
of the Hydrogen Atom

The confluent hypergeometric function. Parallel to the hypergeometric series
(19.23), we define the so-called confluent hypergeometric series

F(a, c; z) := 1 +
a

c
z +

a(a + 1)

2! c(c + 1)
z2 +

a(a + 1)(a + 2))

3! c(c + 1)(c + 2)
z3 + . . . , (19.35)

which was studied by Kummer in the 1830s. We assume that a and c are complex
numbers with c �= 0,−1,−2, . . . The series (19.35) is convergent for all z. The
function z �→ F(a, c; z) satisfies the differential equation

w′′(z) +
“ c

z
− 1
”

w′(z)− aw(z) = 0, z ∈ C, (19.36)

which is called the confluent hypergeometric equation. Replacing z by z/b in the
Gaussian hypergeometric equation (19.23) and letting b→ +∞, we obtain (19.36).
In contrast to the three singular points 0, 1,∞ for the hypergeometric equation
(19.23), the confluent hypergeometric differential equation (19.36) has only the two
singular points 0 and ∞. In addition, this equation is not of Fuchsian type. The
singular point z = 0 is weak, but the singular point z =∞ is strong.

The spectrum of the hydrogen atom. In Vol. III we will thoroughly study
the spectrum of the hydrogen atom (both bound and scattering states). The corre-
sponding solutions of the Schrödinger equation are closely related to the confluent
hypergeometric function. To compute these solutions in 1926, Erwin Schrödinger
asked his colleague Hermann Weyl in Zurich for help; Weyl had created the spec-
tral theory of singular differential equations in 1910. This theory was perfected by
von Neumann in 1929 (general spectral theory of self-adjoint operators), and by
Kodaira in 1949.36

19.4.3 Hilbert’s 21th Problem

Linear Fuchsian systems of ordinary differential equations. Fix the di-
mension n = 2, 3, . . . Let z1, . . . , zk be a family of k different complex numbers,
k = 1, 2 . . . Consider the linear system

dw(z)

dz
= A(z)w(z), z ∈ C, z �= z1, . . . , zk (19.37)

36 K. Kodaira, The eigenvalue problem for ordinary differential equations of the
second order and Heisenberg’s theory of S-matrices. Amer. J. Math. 71 (1949),
921–945.
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(a) γ = 1

	 z0

C 0

(b) γ = −1

�

z0

C 0

(c) γ = 2

	
z0

C
0 �

Fig. 19.5. Monodromy

of ordinary differential equations. We assume that the complex (n×n)-matrix A(z)
has the form

A(z) =

k
X

j=1

Aj

z − zj

where A1, . . . , Ak are constant complex nonzero (n × n)-matrices. The points
z1, . . . , zk are called singular, whereas the complementary points z ∈ C\{z1, . . . zk}
are called regular. The point z = ∞ is called regular iff

Pk
j=1 Aj = 0. Otherwise,

z =∞ is called singular. The system (19.37) is called a Fuchsian system.37

For example, if we write the Gaussian hypergeometric differential equation
(19.24) as a first-order system, then this is a Fuchsian system with the three singu-
lar points z = 0, 1,∞. In what follows, we assume that z =∞ is a regular point of
(19.37).38

Riemann’s monodromy group. Choose a regular point z0 ∈ C. Then there
exist n linearly independent local solutions w1, . . . , wn of (19.37) which are holomor-
phic on some open neighborhood of the point z0. Consider the punctured Riemann
sphere

R := P
1
C \ {z1, . . . , zk},

and choose a loop C on R. Fig. 19.5 shows some loops that wind around the origin
(γ is the winding number). The point is that

• analytic continuation of the functions w1, . . . , wn along the loop C yields
• the new local solutions w+

1 , . . . , w
+
n in some open neighborhood of the point z0.

• Since the functions w1, . . . , wn form a local solution basis, there exists a constant
(n× n)-matrix (aij) such that

w+
i (z) =

n
X

j=1

aijwj(z), i = 1, . . . , n

for all complex numbers z on some open neighborhood of the point z0.

One can show that the map C �→ (aij) has the following two crucial properties:

37 Alternatively, such system can be characterized in the following way: The entries
of the matrix function z �→ A(z) are rational functions with weak singularities
(i.e., the poles have order one), and the coordinate transformation ζ = 1/z yields
a differential equation which has at most a weak singularity at the point ζ = 0.
The latter property describes the behavior of the differential equation at infinity.
Finally, we exclude the case of constant coefficients.

38 This situation can always be arranged by using a suitable Möbius transformation
ζ = az+b

cz+d
with ad− bc �= 0.
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• The matrix (aij) remains unchanged under deformations of the loop in the man-
ifold R.

• The composition of loops corresponds to the matrix product.

This way we obtain a group morphism

χ : π1(P)→ GL(n,C) (19.38)

from the fundamental group π1(R) of the manifold R onto a subgroup of the group
GL(n,C).39 If we change the regular point z0 or the local basis w1, . . . , wn, then
the corresponding map χ changes in a natural way. Therefore, the monodromy map
(19.37) describes the global solutions of the Fuchsian differential system (19.37).

The Riemann–Hilbert problem. We are given the k points z1, . . . , zk ∈ C

with k ≥ 3. Let n ≥ 2. The 21th Hilbert problem reads as follows:

Is it true that every group morphism (19.37) is the monodromy morphism
of an (n× n)-Fuchsian system with the singularities z1, . . . , zk?

In 1956 Krylow proved that the answer is ’yes’ for (2 × 2)-Fuchsian systems and
three singular points. In 1989 Bolibruch proved that the answer is ’no’ in the general
case. However, the answer is ’yes’ if we pass to a larger class of first-order differential
systems with a finite number of singularities called regular systems. The proofs can
be found in:

D. Anosov and A. Bolibruch, The Riemann–Hilbert Problem, Vieweg,
Wiesbaden, 1994.

The history of this problem is thoroughly discussed in:

A. Bolibruch, Inverse monodromy problems of the analytic theory of dif-
ferential equations, pp. 49–74. In: A. Bolibruch, Yu. Osipov, and Ya.
Sinai (Eds.), Mathematical Events of the Twentieth Century, Springer,
Berlin/Phasis, Moscow, 2006.

In 1908 Plemelj proved that the answer is ’yes’ for regular systems. He reduced the
monodromy problem to a Riemann–Hilbert problem and solved this by using singu-
lar integral equations. Plemelj also claimed that his argument could be translated
to Fuchsian systems. However, this claim is not true; Bolibruch constructed a coun-
terexample. In 1957 Röhrl generalized Plemelj’s results from the Riemann sphere
to more general Riemann surfaces by using the modern theory of fiber bundles. For
further results, we refer to:

N. Muskhelishvili, Singular Integral Equations: Boundary Problems of
Function Theory and Their Applications to Mathematical Physics, Nord-
hoff, Groningen, 1953.

P. Deligne, Équations différentielles á point singuliers réguliers. Lecture
Notes in Math. 163, Springer, Berlin, 1970.

A. Beauville, Monodromie des systèmes différentiels linéaire à pôles simple
sur la sphère de Riemann, Séminaire de Bourbaki, n. 765, 1992/93, pp. 1–
17 (in French).

39 Recall that the group GL(n,C) consists of all complex invertible (n×n)-matrices.
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19.4.4 The Transport of Information in Nature

The philosophy of modern physics is that the transport of physical information is
carried out by transport along paths in the space-time manifold.

Monodromy and holonomy in mathematics model the transport of infor-
mation along loops and the possible gain of information. This allows us to
describe the strength of interactions.

In fact, in gauge theory the parallel transport along small loops yields the curvature,
and hence the strength of the fundamental forces in nature. This concerns

• the Standard Model in particle physics for the strong and electroweak force, and
• Einstein’s theory of general relativity for gravitation.

Monodromy also plays the decisive role in Ashtekar’s loop gravity (see Vol. VI on
quantum gravity). For a survey, we refer to:

A. Ashtekar and J. Lewandowski, Background independent quantum grav-
ity: a status report, Class. Quant. Grav. 21 (2004), R53–R152.

A. Ashtekar, M. Bojewald, and J. Lewandowski, Mathematical structure
of loop quantum cosmology, Adv. Theor. Math. Phys. 7 (2003), 233–268.

C. Fleischhack, Kinematical uniqueness of loop gravity, pp. 203–218. In: B.
Fauser, J. Tolksdorf, and E. Zeidler (Eds.), Quantum Gravitation: Math-
ematical Models and Experimental Bounds, Birkhäuser, Basel, 2006.

19.4.5 Stable Transport of Energy and Solitons

Waves are used in nature in order to transport energy and information.
Folklore

Solitons are particle-like very stable waves. Such solitons appear in many fields of
physics (e.g., water waves – catastrophic ocean waves called tsunami, laser optics,
waves in optical fibers, plasma physics, conducting polymers, dislocations and plas-
tic deformation of crystals, ferromagnetic and anti-ferromagnetic material, Bose–
Einstein condensates, energy localization and energy transfer in proteins (DNA),
blood pressure waves). Many beautiful applications in physics, chemistry, and bi-
ology can be found in:

T. Dauxois and M. Peyrard, Physics of Solitons, Cambridge University
Press, 2006.

The mathematical theory is based on inverse scattering theory, Lax pairs, the
Riemann–Hilbert problem, Riemann surfaces, the Painlevé equation, the Lie–
Bäcklund transformation, and Frobenius manifolds.

This combines sophisticated tools from algebra, analysis, and geometry with
physics in a fascinating way.

For example, this concerns spectral theory in functional analysis, algebraic geome-
try, and algebraic topology. We refer to the following two survey articles:

B. Dubrovin, V. Matveev, and S. Novikov, Nonlinear equations of Kor-
teweg–de Vries type, finite-zone linear operators, and Abelian varieties,
Russian Mathematical Surveys 31(1) (1976), 59–146.

A. Its, The Riemann–Hilbert problem and integrable systems, Notices
Amer. Math. Soc. 50(11) (2003), 1389–1400.
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A collection of reprints of 76 important articles on both classical solitons and quan-
tized solitons (quantum field theory, elementary particles, superconductivity, mag-
netic monopoles in ccosmology) can be found in:

C. Rebbi and G. Soliani (Eds.), Solitons and Particles, World Scientific,
Singapore, 1984.

We also refer to the following monographs:

S. Novikov, S. Manakov, L. Pitaevskii, and V. Zakharov, Solitons: The
Inverse Scattering Method, Consultant Bureau, New York, 1984 (including
the Riemann–Hilbert method).

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer, New
York, 2001.

M. Toda, Theory of Nonlinear Lattices, Springer, New York, 1978.

M. Toda, Nonlinear Waves and Solitons, Kluwer, Dordrecht, 1989.

P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann–
Hilbert Approach, Courant Lecture Notes in Mathematics, vol. 3, CIMS,
New York, 1999.

A. Scott, Nonlinear Science, Oxford University Press, 1999.

The crucial point is that:

The mathematical methods used in soliton theory can be regarded as a
generalization of the classical Fourier transform to nonlinear problems de-
scribing interactions in physics (nonlinear harmonic analysis).

This allows us to compute explicit solutions for complicated nonlinear problems
in physics. As an introduction to the computational aspects of soliton theory, we
recommend:

R. Kaushal and D. Parashar, Advanced Methods of Mathematical Physics,
Alpha Science, Pangbourne, India, 2000.

B. Felsager, Geometry, Particles, and Fields, Springer, New York, 1997.

G. Lamb, Elements of Soliton Theory, Wiley, New York, 1980.

G. Eilenberger, Solitons: Mathematical Methods for Physicists, Springer,
New York, 1981.

As high-lights, we mention

• the construction of instantons (models for elementary particles) by using the
Penrose twistor theory,

• magnetic monopoles generalizing the classic Dirac magnetic monopole, and
• the construction of solutions for the Einstein equations in general relativity (re-

duced to the Ernst equation), which describe thin rotating galaxies in the uni-
verse:

In this connection, we refer to:

M. Atiyah, V. Drinfeld, M. Hitchin, and Yu. Manin, Construction of in-
stantons, Phys. Letters 65A (1978), 185–187.

M. Atiyah, Geometry of Yang–Mills Fields, Lezioni Fermiani, Academia
Nazionale dei Lincei Scuola Normale Superiore, Pisa, Italia, 1979 (instan-
tons).

A. Jaffe and C. Taubes, Vortices and Monopoles: Structure of Static Gauge
Theories, Birkhäuser, Boston, 1980.

C. Klein and O. Richter, Ernst Equation and Riemann Surfaces: Analyti-
cal and Numerical Methods, Springer, Berlin, 2006 (thin discs of rotating
galaxies).



19.4 The Scope of the Riemann–Hilbert Problem 1009

�
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h

Fig. 19.6. Solitary water wave in a channel

In the latter monograph, the solutions are represented by Poincaré theta series.
The parameters are obtained from the structure of hyperelliptic Riemann surfaces
of genus g > 1. The difficulties are caused by collapsing pairs of branching points
of the Riemann surfaces. Further material can be found on page 1015.

19.4.6 Ariadne’s Thread in Soliton Theory

We want to sketch some basic ideas by following the line of historical development.
Solitary water waves. In nature, solitary waves were observed first by John

Scott Russel at the Edinburgh–Glasgow channel in the United Kingdom in 1834. He
published his observations in 1844 (Fig. 19.6). We will use the following terminology:

• h (depth of the channel),

• a (amplitude of the solitary wave), g = 9.81m/s2 (acceleration constant on earth),
• c0 =

√
gh (basic velocity of the solitary wave),

• L (typical length of the solitary wave in the experimental situation),
• T (typical time of the observation),
• ε = L/h (dimensionless parameter).

We assume that ε is sufficiently small, that is, 0 < ε � 1. This corresponds to
shallow water. In 1895, Korteweg and de Vries studied this problem. They started
with the nonlinear Euler equation together with the nonlinear Bernoulli boundary
condition for water waves.40 Using the approximation for small ε in lowest order,
Korteweg and de Vries obtained the nonlinear shallow water approximation

yt

c0
+ yx +

3(y − h)yx

2h
+

h2yxxx

6
= 0 (19.39)

for the surface y = y(x, t) of the water wave, and they found the following solution

y(x, t) = h + a · sech2

 

r

3a

4h3

“

x− c
h

1 +
a

2h

i

t
”

!

(19.40)

of the nonlinear partial differential equation (19.39). This solution describes a trav-
elling solitary wave as pictured in Fig. 19.6 with y(0, 0) = h + a.41 Observe that
the propagation speed

40 These equations can be found in E. Zeidler, Nonlinear Functional Analysis, Vol.
IV: Applications to Mathematical Physics, Sect. 71.1, Springer, New York, 1995.
The point is that the boundary is not known; it has to be determined together
with the velocity field of the fluid and the pressure. This is a so-called free
boundary-value problem.

41 Here, we use the notation sech x := 1
cosh x

= 2
ex+e−x .
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−→ ←−

Fig. 19.7. Interaction between two solitary waves

c0
h

1 +
a

2h

i

is larger than the basic speed parameter c0 =
√
gh. We would like to emphasize

again that the solitary wave (19.40) only represents a solution of the approximative
problem.42 The full problem was solved by Lavrentev in 1946 and later by

K. Friedrichs and D. Hyers, The existence of solitary waves, Comm. Pure
Appl. Math. 7 (1954), 517–550.

Friedrichs and Hyers used methods from nonlinear functional analysis (i.e., the
implicit function theorem). The rigorous solution for the surface of the solitary
wave has the form

y(x, t) = y0(x, t) + εy1(x, t) + ε2y2(x, t) + . . . ,

with respect to the small parameter ε. Here, the first approximation y0 is given by
(19.40).

The normalized Korteweg–de Vries equation. If we introduce dimension-
less quantities by using the rescaling

ξ :=
x− c0t

L
, τ :=

t

T
, U := 1− y

h
,

then we get the standard form

Uτ − 6UUξ + Uξξξ = 0 (19.41)

of the Korteweg–de Vries (KDV) equation.
The discovery of the stability of solitons in 1964. By computer ex-

periments, Kruskal and Zabusky found out that two colliding solitary waves are
extremely stable, that is, both the shape and the velocity of the waves remain
unchanged after the collision (Fig. 19.7).43

The discovery of the inverse scattering method in 1967. Gardner,
Greene, Kruskal, and Miura made the pioneering discovery that the computation
of the solutions of the nonlinear Korteweg–de Vries equation (19.41) can be re-
duced to the solution of an inverse scattering problem for the linear Schrödinger
equation.44 Peter Lax noticed quickly that a general functional-analytic principle is
behind the inverse spectral method by introducing appropriate ‘Lax pairs’ {S,K}
of differential operators K and S. Here,

42 A detailed derivation of this subtle approximation can be found in Dauxois and
Peyrard (2006), quoted on page 1007.

43 N. Zabusky and M. Kruskal, Interaction of solitons in a collisionless plasma and
the recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243.

44 C. Gardner, J. Greene, M. Kruskal, and R. Miura, Method for solving the
Korteweg–de Vries equation, Phys. Rev. Lett. 19 (1967), 1095–1097.
C. Gardner, J. Greene, M. Kruskal, and R. Miura, Korteweg–de Vries equations
and generalizations: methods for exact solutions, Comm. Pure Appl. Math. 27
(1974), 97–133.
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• S is the linear Schrödinger operator, and K is a nonlinear operator chosen in
such a way that the Korteweg–de Vries equsation (or another nonlinear evolution
equation) can be written in the modified Heisenberg form45

Ṡ = SK −KS.

Let us sketch the main ideas. We will proceed in the following steps:

• inverse scattering theory and the Gelfand–Levitan–Marchenko integral equation
introduced in the 1950s,

• the inverse scattering method, and
• Lax pairs.

Inverse scattering theory. We consider the stationary Schrödinger equation

− ψ′′(x) + U(x)ψ(x) = k2ψ(x), −∞ < x <∞. (19.42)

We assume that the smooth potential U : R → R vanishes sufficiently fast at
infinity, that is,

Z

R

|U(x)|(1 + |x|) dx <∞.

We are looking for complex eigenfunctions ψ of (19.42). The spectrum of (19.42)
has the following structure:

(i) Continuous spectrum: For each nonzero real number k (i.e., k ∈ R
×), the num-

ber k is a double eigenvalue of (19.42) with two linearly independent eigenfunc-
tions ψ1 and ψ2, which are uniquely characterized by the following asymptotic
behavior as x→ −∞:

ψ1(x) = e−ikx + o(1), ψ2(x) = eikx + o(1).

Additionally, as x→ +∞, we obtain the following asymptotic behavior:

ψ1(x) = a(k)e−ikx + b(k)eikx + o(1),

ψ2(x) = b(k)†e−ikx + a(k)†eikx + o(1).

(ii) Discrete spectrum: Equation (19.42) has either no negative eigenvalues or a
finite number of negative eigenvalues

−∞ < k2
1 < k2

2 < · · · < k2
N <∞.

All these eigenvalues are simple. Letting kj = iqj with qj > 0, the correspond-

ing eigenfunction ψ[j] is uniquely characterized by the following asymptotic
behavior as x→ −∞:

ψ[j](x) = eqjx + o(eqjx), j = 1, . . . , N.

Additionally, as x→ +∞, we have

ψ[j](x) = cje
qjx + o(e−qjx), j = 1, . . . , N,

where cj is a real number.

45 P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm.
Pure and Appl. Math. 21 (1967), 467–490.
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In terms of quantum mechanics, (i) and (ii) correspond to scattered particles and
to bound states of particles, respectively. We call

a(k), b(k), qj , cj , k ∈ R
×, j = 1, . . . , N (19.43)

the spectral data of the potential U . The mapping

U �→ (a(k), b(k), qj , cj)

from the potential U to the spectral data is called the spectral transform (generated
by the one-dimensional Schrödinger equation). We call this a nonlinear Fourier
transform.

Let the spectral data (19.43) be given. The main task of inverse scattering
theory consists in constructing the potential U . This can be done as follows. We
introduce the kernel function

K(x) :=

N
X

j=1

cje
−qjx

ia′(iqj)
+

1

2π

Z ∞

−∞

b(k)

a(k)
eikxdk, x ∈ R,

and we consider the Gelfand–Levitan–Marchenko integral equation

W (x, y) + K(x + y) +

Z ∞

x

W (x, z)K(z, y) dz = 0, x, y ∈ R.

If we know a solution W of this linear integral equation, then we obtain the unknown
potential U by the relation

U(x) = −2
d

dx
W (x, x), x ∈ R.

The proof can be found in F. Berezin and M. Shubin, The Schrödinger Equation,
Kluwer, Dordrecht, 1991.

Inverse scattering method (nonlinear Fourier transform). We want to
solve the initial-value problem for the Korteweg–de Vries equation:

Ut − 6UUx + Uxxx = 0, x ∈ R, t > 0, U(x, 0) = U0(x). (19.44)

We are given the initial function U0.
46 The following result due to Gardner, Greene,

Kruskal, and Miura is crucial.

Theorem 19.1 If the potential function U = U(x, t), x ∈ R, t ≥ 0, is a smooth
solution of the Korteweg–de Vries equation (19.44) which vanishes sufficiently fast
as |x| → ∞, then the spectral transform of U at time t > 0 is uniquely determined
by the spectral transform of U at the initial time t = 0. Explicitly, we have

a(k, t) = a(k, 0), b(k, t) = b(k, 0)e8ik3t,

qj(t) = qj(0), cj(t) = cj(0)e8qj(0)3t (19.45)

for all times t > 0 and all parameters k ∈ R
×, j = 1, . . . , N.

46 The initial condition is to be understood in the sense of the limit
limt→+0 U(x, t) = U0(x) for all x ∈ R.
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For the proof, we refer to S. Novikov et al., Solitons, Consultant Bureau, New
York, 1984. The proof is based on the use of the Lax pair {S,K} of differential
operators to be introduced below. Using this theorem, the solution of the initial-
value problem (19.44) can be computed as follows:

• Step 1: We compute the spectral data of the initial function U0.
• Step 2: We compute the spectral data at time t > 0 by (19.45).
• Step 3: By using the Gelfand–Levitan–Marchenko integral equation, we construct

U(., t) at time t > 0. This is the desired solution of (19.44).

The Lax pair {S,K}. Introducing the differential operator D := ∂
∂x

, we define
the following two differential operators:

• S(t)ψ := −D2ψ + Uψ (Schrödinger operator),
• K(t)ψ := 4D3ψ − 3U ·Dψ −D(Uψ) (Korteweg–de Vries operator)

Here, the wave function ψ = ψ(x) depends on position x, whereas the potential
function U = U(x, t) depends on position x and time t.

We assume that the fixed potential function U = U(x, t) is a solution of
the Korteweg–de Vries equation (19.43).

Differentiating the operators S and K with respect to time t, we get the key relation

Ṡ(t) = S(t)K(t)−K(t)S(t), t ≥ 0. (19.46)

The proof of Theorem 19.1 can be based on this equation, which is typical for Lax
pairs. Let us only sketch one typical argument. Set

K(t) := e
R t
0 K(τ)dτ , t ≥ 0.

Defining the operators on suitable dense subsets of the Hilbert space L2(R), it turns
out that the operator K(t) : L2(R)→ L2(R) is unitary for any t ≥ 0 with K(0) = I,
and the unique solution of the linear differential equation (19.46) is given by

S(t) = K(t)−1S(0)K(t), t ≥ 0.

Consequently, the operator S(t) is unitarily equivalent to the operator S(0). In
particular, the two operators S(t) and S(0) have the same eigenvalues. In other
words, the eigenvalues of the Schrödinger operator S(t) with the time-dependent
potential U = U(x, t) are independent of time t.

The reduction of inverse scattering problems to Riemann–Hilbert
problems. In the 1970s it was discovered that the inverse scattering method can
be reduced to the solution of Riemann–Hilbert problems. Roughly speaking, the
Gelfand–Levitan–Marchenko integral equation is replaced by a suitable Riemann–
Hilbert problem. This universal modern approach to integrable systems can be
found in the following monographs: Novikov et al., Solitons, New York, 1984, Beals
et al. (1988), and Ablowitz and Clarkson (1991) (see the hints for further reading
on page 1015).

We also refer to C. Klein and O. Richter, Ernst Equation and Riemann Surfaces,
Springer, Berlin, 2005. Here, the Ernst equation is obtained as the integrability
condition for an overdetermined linear system of ordinary differential equations
for some matrix-valued function ψ. The point is that the matrix ψ depends on
an additional spectral parameter (e.g., k2 in the case of the Korteweg–de Vries
equation). The main idea is to solve an appropriate Riemann–Hilbert problem for
ψ with respect to the spectral parameter. Then the function ψ is used in order
to construct the desired solutions of the Ernst equation. These solutions of the
Ernst equation allow us to construct solutions of the Einstein equations in general
relativity for describing thin discs of rotating galaxies in the universe.
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19.4.7 Resonances

The mathematical analysis of standing water waves represents a difficult problem
because of the appearance of resonances between an infinite number of eigenmodes
of oscillations. This problem was solved in the following two papers by:

P. Plotnikov and J. Toland, Nash–Moser theory for standing water waves,
Arch. Rat. Mech. Anal. 159 (2001), 1–83.

G. Iooss, P. Plotnikov, and J. Toland, Standing waves on an infinitely
deep perfect fluid under gravity, Arch. Rat. Mech. Anal. 177(3) (2005),
367–478.

The authors used the Moser–Nash technique (the hard implicit function theorem –
see page 314). We expect that similar phenomena appear for quantum fields, which
represent an infinite number of coupled harmonic oscillators, too.

19.4.8 The Role of Integrable Systems in Nature

Integrable systems are only approximations of realistic systems in nature.
Folklore

Classical integrable systems of ordinary differential equations. Consider
the Hamiltonian canonical system

ṗk(t) = −Hqk (q1(t), . . . , qn(t), p1(t), . . . , pn(t)),

q̇k(t) = Hpk (q1(t), . . . , qn(t), p1(t), . . . , pn(t)), k = 1, . . . , n (19.47)

with n degrees of freedom. This system is called integrable iff there exists a canonical
transformation

qk = A(Q1, . . . , Qn, P1, . . . , Pn), pk = B(Q1, . . . , Qn, P1, . . . , Pn) (19.48)

with k = 1, . . . , n such that the transformed system with respect to the new vari-
ables has the following simple normal form:

Ṗk(t) = 0, Q̇k(t) = const = ωk, k = 1, . . . , n.

This system has the solution

Qk(t) = ωkt + Q0k, Pk(t) = P0k, k = 1, . . . , n, t ∈ R.

Here, Q0k, P0k with k = 1, . . . , n are real constants. Using the transformation
(19.48), we obtain the solution

qk(t) = A(P(t)), pk(t) = B(P(t)), k = 1, . . . , n, t ∈ R (19.49)

of the original problem (19.47). Here, we set

P(t) := (ω1t + Q01, . . . , ωnt + Q0n, P01, . . . , P0n).

We assume that Q1, . . . , Qn are angle variables, that is, the functions A and B
have the period 2π with respect to each of the variables Q1, . . . , Qn. The solution
(19.49) depends on 2n real constants. In other words, this is the general solution of
the original problem (19.47).

General integrable systems. For general physical systems in nature with a
finite or infinite number of degrees of freedom, we will not give a technical definition
of integrability, but only a heuristic definition. The system Σ is called integrable iff
the following hold: There exists a transformation such that
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• the transformed system Σ′ is decomposed into subsystems Σ′
1, Σ

′
2, . . . which do

not interact with each other, and
• the dynamics of the subsystems Σ′

1, Σ
′
2, . . . is fairly simple and explicitly known.

The experience of physicists shows that realistic systems in nature are never in-
tegrable, since there always exist interactions between the subsystems. As typical
examples, let us consider the following two prototypes:

(i) Our solar system: Consider the motion of n celestial bodies (e.g., planets and
asteroids) around the sun. If we switch off the gravitational forces between
the celestial bodies, then we obtain the superposition of Kepler motions of
the celestial bodies. This is an integrable system. If we switch on the small
gravitational forces between the celestial bodies, then the system looses its
integrability. It is possible that resonances appear between the celestial bodies
which cause chaotic motions. In fact, chaotic motions of asteroids have been
observed by astronomers.

(ii) Quantum electrodynamics: The system of the free fields of electrons, positrons,
and photons is integrable. If we switch on the interaction between the free fields,
then the system looses its integrability. Physicists use the method of renormal-
ization in order to handle the complexities of the quantized electromagnetic
interaction.

Let us formulate the following principle as a rule of thumb:

• Integrable systems are merely (reasonable) approximations of interacting systems
in nature.

• The interaction may cause resonances which are responsible for highly compli-
cated behavior of the realistic system.

One possibility of handling resonances is the Moser–Nash technique in mathematics.
We refer to:

J. Feldman and E. Trubowitz, Renormalization in classical mechanics and
many-body quantum field theory, Jerusalem J. d’Analyse Mathématique
52 (1992), 213–247.
Internet: http://www.math.ubc.ca.∼feldman/research.html
J. Bricmont and A. Kupiainen, Renormalizing of partial differential equa-
tions, pp. 83–115. In: V. Rivasseau (Ed.), Constructive Physics, Springer,
Berlin, 1995.

J. Bricmont, K. Gawȩdzki, and A. Kupiainen, Kolmogorov–Arnold–Moser
(KAM) theorem and quantum field theory, Commun. Math. Phys. 201(3)
(1999), 699–727.

Hints for Further Reading

Ordinary differential equations of Fuchsian type:

E. Coddington and N. Levinson, The Theory of Ordinary Differential
Equations, McGraw-Hill, New York, 1955.

P. Hartmann, Ordinary Differential Equations, Wiley, New York, 1964.

V. Smirnov, A Course of Higher Mathematics, Vols. I–V, Pergamon Press,
New York, 1964 (applications to special functions can be found in Vol. III).

The six nonlinear Painlevé equations and the Painlevé transcendences:
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E. Ince, Ordinary Differential Equations, Dover, New York, 1956.

K. Iwasaki et al., From Gauss to Painlevé: A Modern Theory of Special
Functions, Vieweg, Wiesbaden, 1991.

Solitons:

G. Lamb, Elements of Soliton Theory, Wiley, New York, 1980.

R. Dodd et al., Solitons and Nonlinear Wave Equations, Academic Press,
New York, 1982.

A. Its and V. Novorshenov, The Isomonodromic Deformation Method in
the Theory of the Painlevé Equations, Springer, Berlin, 1986.

L. Faddeev and L. Takhtadzhian, Hamiltonian Method in the Theory of
Solitons, Springer, New York, 1987.

R. Beals, P. Deift, and C. Tomei, Direct and Inverse Scattering on the
Line, Amer. Math. Soc., Providence, Rhode Island, 1988.

J. Ablowitz and P. Clarkson, Solitons, Nonlinear Evolution Equations and
Inverse Scattering, Cambridge University Press, 1991.

V. Zakharov, What is Integrability? Springer, Berlin, 1991.

D. Levi and P. Winternitz (Eds.), Painlevé Transcendents: Their Asymp-
totics and Physical Applications, Plenum Press, New York, 1992.

V. Korepin, N. Bogoliubov jr., and A. Izergin, Quantum Inverse Scattering
Method and Correlation Functions, Cambridge University Press, 1993.

V. Matveev, Algebro-Geometrical Approach to Nonlinear Evolution Equa-
tions, Springer, New York, 1994.

R. Donagi et al. (Eds.), Integrable Systems and Quantum Groups, Springer,
Berlin, 1993.

B. Dubrovin, Geometry of two-dimensional field theories. In: Donagi et al.
(1993), pp. 120–348 (solitons and the foundations of the theory of Frobe-
nius manifolds).

N. Manton and P. Sutcliffe, Topological Solitons, Cambridge University
Press, 2004.

The reprints of important articles can be found in:

C. Rebbi and G. Soliani (Eds.), Solitons and Particles, World Scientific,
Singapore, 1984.

D. Thouless (Ed.), Topological Quantum Numbers in Non-Relativistic
Physics, World Scientific, Singapore, 1998 (collection of 40 articles on su-
perfluidity, quantum Hall effect, phase transitions, and so on).

Nonlinear Riemann–Hilbert problems:

E. Wegert, Nonlinear Boundary Value Problems for Holomorphic Func-
tions and Singular Integral Equations, Akademie-Verlag, Berlin, 1992.

19.5 The BFFO Hopf Superalgebra Approach

Let us summarize the main ideas of the BFFO (Brouder, Fauser, Frabetti, Oeckl)
approach to quantum field theory.47

47 C. Brouder, B. Fauser, A. Frabetti, and R. Oeckl, Quantum field theory and
Hopf algebra cohomology, J. Phys. A: Mathematical and General 37 (2004),
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We exhibit a Hopf superalgebra structure of the algebra of field operators
of quantum field theory (QFT) with the normal product. Based on this we
construct the operator product and the time-ordered product as a twist
deformation in the sense of Drinfeld.48

The purpose of this paper is to present a new approach to the algebraic
and combinatorial structures at the heart of quantum field theory (QFT).
This approach has merits on the practical as well on the conceptual side.
On the practical side, it allows for a major computational enhancement
based on an efficient description of the combinatorics and on non-recursive
closed formulae. On the conceptual side, it gives new insights into the
algebraic structure of the QFT. We evidence this through applications to
non-perturbative QFT and non-trivial vacua.

The starting point is the identification of a Hopf algebraic structure at the
core of QFT. That is, the algebra of field operators with the

normal product

is a Hopf superalgebra. This means that besides the product there is a co-
product that describes, intuitively speaking, the different ways in which a
product of field operators might be partitioned into two sets. Indeed it is
this coproduct that plays the key role in a closed description of combina-
torial structures and that allows for computationally efficient algorithms.
Another key structure of the Hopf superalgebra is the counit. This turns
out to describe the standard

vacuum expectation value.

Algebraically, the Hopf superalgebra is the graded symmetric Hopf algebra.
The conceptional origin of this is rather simple. Identifying the normal
ordered products with functionals on field configurations, the coproduct is
induced by the linear addition of fields.

The second main step consists in identifying the standard canonical quan-
tization with a twist in the sense of Drinfeld. More precisely,

the operator product

emerges as a twist deformation of the normal product. As is common we
deal here at first with the free QFT. The twist is induced by a Laplace
pairing which in turn is determined by a suitable propagator. Furthermore,
the

time-ordered product

can be obtained similarly as a direct twist deformation of the normal prod-
uct. In this case, the Laplace pairing is determined by the Feynman prop-
agator. Since vacuum expectation values of time-ordered products are the
main ingredients of physical scattering amplitudes, this allows the use of
our methods in actual calculations of physical quantities. . .
It is one of the basic facts in quantum field theory that Wick’s theorem
relates normal and time-ordered correlation functions. It was only recently
noted by Fauser that this transformation can be advantageously described
in Hopf algebraic terms.49. . . While the twisted products described so far

5895–5927. Reprinted by permission of IOP Publishing, Bristol, UK.
Internet: www.iop.org/journals/jphysa

48 V. Drinfeld, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), 1419–1457.
49 B. Fauser, On the Hopf algebraic origin of Wick normal-ordering, J. Phys. A:

Math. Gen. 34 (2001), 105–116.
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are the products of the free quantum field theory, our framework is nat-
urally compatible with the usual perturbation theory and thus applicable
to it. This implies that the computational advantages directly apply to
perturbative quantum field theory.

The third step consists in exploiting the Hopf algebra cohomology due to
Sweedler, which underlies the twisted product.50 Besides affording con-
ceptual insight this yields immediate practical benefits. Among these is
the realization of the time-ordering prescription of the QFT as an algebra
isomorphism. This in turn can be used on the computational side. . .

A quantum field theory is free iff the 2-cocycle is a Laplace pairing.

A further application of the cohomology that we develop is to non-trivial
vacua. We show that changing the choice of the vacuum can also be en-
coded through a twist. Indeed, it turns out that there is a ‘duality’ or
correspondence between the choice of vacuum and that of product. We ex-
emplify this result by solving a problem posed by Kutzelnigg and Mukher-
jee regarding ‘adapted normal products’ in quantum chemistry.51 While
they were able to give only examples for low orders, our framework yields
closed formulas for all orders. Our method is capable of describing con-
densates, too.52. . .
A twist in the sense used here is automatically an (equivariant) defor-
mation quantization. Indeed, this was one of the original motivations for
Drinfeld to introduce this concept. This means that our approach is thus in-
herently connected to the deformation quantization approach to quantum
field theory. This approach starts also with the normal ordered product
and views the other products as deformations.53

The following primer in quantum field theory shows that the basic concepts in
quantum field theory are intimately related to Hopf algebras. We will thoroughly
study this in Vol. IV on quantum mathematics.

This paper provides a primer in quantum field theory (QFT) based on
Hopf algebra and describes new Hopf algebraic constructions inspired by
QFT concepts. The following concepts are introduced: time-ordered prod-
ucts, S-matrix, Feynman diagrams, connected diagrams, Green functions,
renormalization. The use of Hopf algebra for their definition allows for sim-
ple recursive derivations and leads to a correspondence between Feynman
diagrams and semi-standard Young-tableaux.54

Christian Brouder, 2006

B. Fauser, A treatise on quantum Clifford algebras, postdoctoral thesis, Univer-
sity of Konstanz (Germany), 2002.
Internet: http://arxiv.org/math.QA/0202059

50 M. Sweedler, Cohomology of algebras over Hopf algebras, Trans. Amer. Math.
Soc. 133 (1968), 204–239.

51 W. Kutzelnigg and D. Mukherjee, Normal order and extended Wick theorem
for a multiconfiguration reference wave function, J. Chem. Phys. 107 (1997),
432–449.

52 B. Fauser, Clifford geometric parametrization of inequivalent vacua, Math. Meth-
ods Appl. Sci. 24 (2001), 885–912.

53 A. Hirshfeld and P. Henselder, Star products and perturbative quantum field
theory, Annals of Physics 298 (2002), 382–393.

54 C. Brouder, Quantum field theory meets Hopf algebra: A Primer, 2006.
Internet: http:// arxiv:hep-th/0611153
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19.6 The BRST Approach and Algebraic
Renormalization

The Standard Model of electroweak interactions has been tested to high
accuracy with the precision experiments at the Z-resonance at LEP (Large
Electron-Positron Collider at CERN, Geneva, Switzerland). The degree of
precision enforces to take into account also contributions beyond the tree
approximation in the perturbative renormalization. For this reason, an
extensive calculation of 1-loop processes and also 2-loop processes has been
carried out in the past years and compared to the experimental results. A
careful analysis shows that the theoretical predictions and the experiments
are in excellent agreement with each other.55

A necessary prerequisite for carrying out precision tests of the Standard
Model is the consistent mathematical and physical formulation of the Stan-
dard Model in the framework of its perturbative construction. Explicitly,
one has to prove the following properties in order to bring it into the
predictive power, which the Standard Model is expected to have:
• The (renormalized) Green’s functions of the theory are uniquely deter-

mined as functions of a finite number of free parameters to all orders of
perturbation theory. This property is called renormalizability.

• The physical scattering matrix constructed from the Green’s functions
is unitary and gauge parameter independent. In particular, these prop-
erties ensure a probability interpretation of S-matrix elements and guar-
antee at the same time that unphysical particles (i.e., ghosts) are can-
celled in physical scattering processes. Only then the theory has indeed
a physical interpretation.

• It has to be shown that the theory is in agreement with the experiments
by calculating different processes as accurately as possible.

In the present lecture we only treat the first point, the unique construction
of the Green’s function to all orders of perturbation theory. We want to
point out that the crucial unitarity and gauge parameter independence of
the S-matrix are not rigorously derived in the Standard Model by now, but
are commonly assumed to hold. However, its analysis includes the impor-
tant problem of unstable particles, whose solution will have far-reaching
consequences in phenomenological applications.

Renormalizability of gauge theories was first shown in the framework of
dimensional regularization.56 Dimensional regularization can be used as
an invariant scheme for gauge and BRST (Becchi, Rouet, Stora, Tyutin)
invariance, respectively, as long as parity is conserved. In this scheme it has

55 Reports of the Working Group on precision calculations for the Z-resonance,
CERN, Yellow Report, 1995, CERN 95-03. Edited by D. Bardin, W. Hollik, and
G. Passarino.
W. Hollik and G. Duckeck, Electroweak Precision Tests at LEP, Springer, Berlin,
2000.

56 L. Faddeev and V. Popov, Feynman diagrams for the Yang–Mills field, Phys.
Lett. 25B (1967), 29–30.
G. ’t Hooft, Renormalizable Lagrangians for massive Yang–Mills fields, Nucl.
Phys. B35 (1971), 167–188.
G. ’t Hooft and M. Veltman, Regularization and renormalization of gauge fields,
Nucl. Phys. B44 (1972), 189–213 (dimensional regularization).
G. ’t Hooft and M. Veltman, Combinatorics of gauge fields, Nucl. Phys. B50
(1972), 318–353 (the S-matrix is independent of the choice of the gauge).
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been proven that all the divergencies can be absorbed into gauge-invariant
counterterms to the coupling, the field redefinitions and the masses of
the classical action. This method implies the unique construction of the
(renormalized) Green’s functions. These proofs are not applicable to the
Standard Model, since there parity is broken. It is also well-known that the
group structure of the Standard Model allows the presence of anomalies.57

The algebraic method of renormalization provides a proof of renor-
malizability also in such cases where a gauge-invariant regulariza-
tion scheme does not exist.

In a scheme-independent way, the algebraic method of renormalization
gives the symmetry relations of finite Green’s functions to all orders. . .
Necessary prerequisite for the algebraic method to work was the discovery
of the BRST symmetry. In its functional form BRST symmetry is called the
Slavnov–Taylor identity. This identity is the defining symmetry of gauge
theories and Lorentz invariant gauges and includes the gauge-fixing action
and the action of the Faddeev–Popov ghosts.58

Elisabeth Kraus, 1997

Let us sketch the main philosophy of algebraic renormalization theory in very rough
terms. We will thoroughly study this in Vol. IV on quantum mathematics. Let us
restrict ourselves to a scalar interacting quantum field ϕ.

(i) Correlation functions: We start with the correlation functions

Cn = Cn(x1, . . . , xn)

as fundamental quantities. Intuitively, they describe the correlations of the
fluctuations of the quantum field with respect to different space-time points.
The correlation functions are also called the Green’s functions of the quantum
field. Define the generating functional by setting

Z(J) =

∞
X

n=0

(−1)n

�nn!

Z

C(x1, x2, . . . , xn)

n
Y

k=1

J(xk) dx1 · · · dxn.

The correlation functions can be computed by means of the Gell-Mann–Low
formula which relates Cn to the correlation functions of the free quantum
field. Alternatively, one can describe Z(J) by a Feynman functional integral
which depends on the classic action. The computation formulas for correlation
functions can be depicted by Feynman graphs.
Our next goal is to simplify the computation of correlation functions by show-
ing that one has only to compute special correlation functions called vertex
functions. First let us restrict to correlation functions Cn,c which correspond
to connected graphs. This yields

Zc(J) =

∞
X

n=0

(−1)n

�nn!

Z

Cn,c(x1, x2, . . . , xn)

n
Y

k=1

J(xk) dx1dx2 · · · dxn.

It turns out that Z(J) = e−iZc(J)/� .

57 Anomalies are symmetries of the classical field theory which do not survive the
procedure of quantization.

58 E. Kraus, Renormalization of the electroweak standard model, Lectures given at
the Saalburg summer school (Germany) in 1997.
Internet: http://ariv.org/hep-th/9809069.
E. Kraus, Renormalization of the electroweak standard model to all orders, An-
nals of Physics 262 (1998), 155–259.
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(ii) Vertex functions as a basis of correlation functions: Recall that a connected
graph is called one-particle irreducible iff it remains connected after cutting any
internal line. The correlation functions corresponding to one-particle irreducible
graphs are called vertex functions and denoted by Vn. The functional

V (J) =

∞
X

n=0

(−1)n

�nn!

Z

R4n

Vn(x1, x2, . . . , xn)

n
Y

k=1

J(xk) dx1 · · · dxn

is called the vertex functional. It turns out that V is related to Zc by a Legendre
transformation (see Sect. 7.24.12 of Vol. I). Furthermore, we have the power
series expansion

V (ϕ) = S(ϕ) +

∞
X

n=1

�
nVn(ϕ)

in terms of the Planck constant �. Here, ϕ is a classical field, which satisfies
the Euler–Lagrange equation, and S(ϕ) is the classical action of the field ϕ.
We call V (ϕ) the effective quantum action of the classical ϕ. Intuitively, V (ϕ)
adds quantum fluctuations to the classical action. The reader should have the
following general principle in mind:

The crucial vertex functional V knows all about the quantum field.
In particular, if we know the vertex functional V , then we know all the corre-
lation functions, and all the S-matrix elements (see Vol. IV).59

(iv) The fundamental quantum action principle: In physics, one always formulates
basic equations for the fundamental quantities. In the present approach to
quantum field theory, the fundamental equation is the quantum action prin-

ciple which represents an equation for the functional derivative δV (J)
δJ

of the
vertex functional V with respect to the source function J (or other external
parameters).

Intuitively, the quantum action principle tells us the response of quan-
tum fluctuations to external influences.

This principle generalizes the classical Dyson–Schwinger equation.60

(v) Symmetries: If the classical field theory possesses symmetries (e.g., gauge sym-
metries), then there exist symmetry relations between the correlation functions,
which we call general Ward identities.61 Roughly speaking, these identities fol-
low from invariance properties of the effective quantum action under infinites-
imal BRST (Becchi, Rouet, Stora, Tyutin) transformations.

(vi) Renormalization: In order to renormalize the theory, one critically uses the
general Ward identities. The idea is to construct an iterative method in order to
renormalize the vertex functions in such a way that the general Ward identities

59 The effective quantum action was introduced by J. Goldstone, A. Salam, and S.
Weinberg, Broken symmetry, Phys. Rev. 127 (1962), 965–970.
The fact that the vertex functional V is the Legendre transformation of Zc was
discovered by G. Jona-Lasinio, Relativistic field theories with symmetry-breaking
solutions, Nuovo Cimento 34 (1964), 1790–1795.

60 The quantum action principle was formulated by:
J. Lowenstein, Differential vertex operations in Lagrangian field theory, Com-
mun. Math. Phys. 24 (1971), 1–21.
Y. Lam, Perturbation Lagrangian theory for scalar fields: Ward–Takahashi iden-
tity and current algebra, Phys. Rev. D6 (1972), 2145–2161.

61 This comprehends the classical Ward identities in quantum electrodynamics and
the Slavnov–Taylor identities in general gauge theories.
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remain valid. This is a purely algebraic procedure which is closely related to
cohomology.

(vii) Renormalization group: The renormalization procedure depends on normal-
ization conditions. The change of the normalization constants is governed by
the renormalization group. The change of the constants leads to a change of
the renormalized vertex functional. The quantum action principle tells us that
this change can be described by an equation which is called the renormalization
group equation for the vertex functional.

(viii) Anomalies: It is possible that some symmetry of the classical field theory does
not survive the passage from the classical action to the effective quantum ac-
tion. This is called an anomaly of the quantization procedure. Here, topological
invariants play a crucial role.

(ix) Energies of bound states: Considering models in quantum mechanics, Heisen-
berg conjectured that the S-matrix knows all about both scattering processes
and bound states. In particular, the energies of bound states correspond to
singularities of the S-matrix in the energy space. This heuristic principle is
very useful for computing bound states of elementary particles. However, the
reader should note that this principle may fail. This was shown by R. Jost, On
the false zeros of the eigenvalues of the S-matrix, Helv. Phys. Acta 20 (1947),
256–266 (in German).

We recommend the following references:

O. Piguet and S. Sorella, Algebraic Renormalization: Perturbative Renor-
malization, Symmetries, and Anomalies, Springer, Berlin, 1995.

V. Parameswaran Nair, Quantum Field Theory: A Modern Perspective,
Springer, New York, 2005 (Green’s functions, the iterative construction of
the S-matrix by using vertex functions, anomalies).

O. Piguet, Rénormalisation en théorie quantique des champs (Renormal-
ization in quantum field theory), Lecture Notes I, Department of Theoret-
ical Physics, University of Geneva, Switzerland, 1982 (in French).

O. Piguet, Rénormalisation des théories de jauge (Renormalization in
gauge theory), Lecture Notes II, Department of Theoretical Physics, Uni-
versity of Geneva, Switzerland, 1983 (in French) (algebraic renormalization
of quantum electrodynamics in terms of Ward identities).

A. Barut, The Theory of the Scattering Matrix, MacMillan, New York,
1967.

19.7 Analytic Renormalization and Distribution-Valued
Analytic Functions

The ideas of analytic renormalization go back to Marcel Riesz’ generaliza-
tion62 of the Riemann–Liouville definition of fractional differentiation to
treat the relativistic wave equation.63 Riesz proposed to his physics col-
leagues that they try to use his technique to obtain finite answers in the
quantum theory of fields. After some initial successes, it was found that

62 Marcel Riesz (1886–1969).
63 M. Riesz, L’intégrale de Riemann–Liouville et le problème de Cauchy, Acta Math.

81 (1948), 1–223.



19.8 Computational Strategies 1023

the method did not work.64 It was pointed out by G. Källén that if instead
of trying to use the method to calculate the values of quantities like self-
energies one calculates Green’s functions, the Riesz method should yield a
convenient method of doing renormalization calculations. . . A version of
the method for general graphs was worked out by E. Speer.65

Arthur Wightman, 197666

The basic ideas of analytic regularization are discussed in Sect. 2.2.11ff on page
77ff.

19.8 Computational Strategies

19.8.1 The Renormalization Group

It was correctly realized by Wilson (born 1935) and his followers that in a
quantum theory with many scales involved, the change of parameters from
bare to renormalized values is a phenomenon too complex to be described
in a single step.
Just like the trajectory of a complicated dynamical system, it must be
instead studied step by step through a local evolution rule. The change of
scale in the renormalization group plays the role of time in dynamical sys-
tems. This analogy is deep. There is a natural arrow of time, related to the
second principle of thermodynamics, and there is similarly a natural arrow
for the renormalization group evolution: microscopic laws are expected to
determine macroscopic laws, not the converse. The renormalization group
erases unnecessary detailed short scale information. . .
If we consider the universal character of the action principle both at the
classical and quantum level, and observe that the relation between micro-
scopic and macroscopic laws is perhaps the most central of all physical
questions, it is probably not an exaggeration to conclude that the renor-
malization group is in some deep sense the “soul” of physics.67

Vincent Rivasseau, 2002

About twenty years ago Wilson and his collaborators published their ideas
on the renormalization group and effective Lagrangians,68 which have stim-
ulated quantum field theory and statistical mechanics ever since. In 1984

64 S. Nilson, Interaction of electrons and an electromagnetic field treated by analytic
continuation, Arkiv Fysik 1 (1950), 369–423.

65 E. Speer, Generalized Feynman Amplitudes, Princeton University Press, 1969.
E. Speer, Dimensional and analytic renormalization. In: G. Velo and A. Wight-
man (Eds.), Renormalization Theory, Reidel, Dordrecht, 1976, pp. 25–94.

66 A. Wightman, Orientation, pp. 1–24 . In: G. Velo and A. Wightman (Eds.),
Renormalization Theory, Reidel, Dordrecht, 1976 (reprinted with permission).

67 V. Rivasseau, An introduction to renormalization. In: B. Duplantier and V.
Rivasseau (Eds.), Poincaré Seminar 2002: Vacuum Energy – Renormalization.
Birkhäuser, Basel, 2003, pp. 139–177 (reprinted with permission).

68 K. Wilson and and J. Kogut, The renormalization group and the ε-expansion,
Phys. Rep. 12C (1974), 75–199.
J. Polchinski, Renormalization and effective Lagrangians, Nucl. Phys. B231
(1984), 269–295.
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Polchinski showed that these ideas are suited for a treatment of the renor-
malization problem of perturbative field theory which does not make any
use of Feynman diagrams and in particular sidesteps the complicated anal-
ysis of the divergence/convergence properties of the general bare or renor-
malized Feynman diagram. Instead he showed that the problem can be
solved by bounding the solutions of a system of first order partial differ-
ential equations, the flow equations, which are a reduction of the Wilson
flow equations to their perturbative content. . .
We prove the perturbative renormalizability of the Euclidean quantum
electrodynamics in four dimensions using flow equations. As compared to
the ϕ4-model, the additional difficulty to overcome is that the regulariza-
tion violates gauge invariance. We prove that there exists a class of renor-
malization conditions such that the renormalized Green’s functions satisfy
the Ward identities and such that they are infrared finite at nonexcep-
tional momenta. We give bounds on the singular behavior at exceptional
momenta (due to the massless photon).69

Georg Keller and Christoph Kopper, 1996

The original basic idea of renormalization group theory is the fact that the classical
renormalization procedure leads to additional degrees of freedom which have to be
fixed in a concrete calculation of a physical process (e.g., see Sect. 2.1.1 on page
48). Naturally enough, we expect that the physics is independent of this fixing. The
renormalization group describes the change of fixings. Indeed, it turns out that the
physics is invariant under the renormalization group. This allows us to extrapolate
the behavior of physical processes from low to high energies (see Chap. 3 of Vol. I
on scale changing). As a rule, one considers two equations:

(CS) the Callan–Szymanzik equation (change of scale), and
(RG) the renormalization group equation (e.g., change of the normalization energy

in the renormalization procedure).

In particular, equation (RG) tells us the dependence, κ = κ(E), of the coupling
constant on the energy of the physical experiment under consideration (running
coupling constant – see Sect. 3.2.2 of Vol. I). We will study this in Vol. IV on
quantum mathematics.

19.8.2 Operator Product Expansions

The Wilson operator product expansion (OPE) states that a product of n
local quantum fields can be expanded at short distances as an asymptotic
series, each term of which is given by a model dependent coefficient func-
tion Ck

i1...in
of the n space-time arguments, x1, . . . , xn, times a local field

at a nearby reference point y:

Ai1(x1)Ai2(x2) · · ·Ain(xn) ∼
X

k

Ck
i1i2...in

(x1, x2, . . . , xn)Ak(y)

69 G. Keller and C. Kopper, Renormalizability proof of quantum electrodynamics
based on flow equations, Commun. Math. Phys. 176 (1996), 193–226 (reprinted
with permission).
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as x1, . . . , xn → y.70 This expansion has been established in perturbative
quantum field theory on Minkowski space-time71 and is by now a stan-
dard tool, for example, in the analysis of quantum gauge theories such as
quantum chromodynamics. . .
We present an algorithm for constructing the operator product expansion
for perturbative interacting quantum field theory in general Lorentzian
curved space-time, to arbitrary orders in perturbation theory. The remain-
der in this expansion is shown to go to zero at short distances in the sense
of expectation values in arbitray Hadamard states.72

Stefan Hollands, 2007

Singularities of operator products. The point is that the operator product

A1(x1)A2(x2) · · ·An(xn)

of interacting quantum field becomes singular if two arguments coincide (e.g.,
x1 = x2). Intuitively, these singularities describe the short-distance behavior of
the correlations corresponding to the fluctuations of the interacting quantum fields
under consideration. In order to regularize (and to renormalize) local operator prod-
ucts, one has to understand the structure of the singular limits when two arguments
approach each other (e.g., x1 → x2). Hollands studies systematically such limits
by applying a recent result from algebraic geometry. This concerns the following
paper:

W. Fulton and R. MacPherson, A compactification of configuration spaces,
Ann. of Math. 139 (1994), 183–225.

Let us briefly discuss the basic idea behind the sophisticated mathematical ap-
proach.

One-point compactification of the complex plane. The complex plane C

is not a compact topological space. However, adding the point ∞ to the complex
plane, the extended complex plane

C := C ∪ {∞}

can be equipped with the topology of a compact topological space. To this end, we
use the stereographic projection

χ : P
1
C \N → C

from the Riemann sphere minus North Pole onto the complex plane (Fig. 5.17
on page 308). Adding the North Pole N to the punctured sphere, we obtain the
compact Riemann sphere P

1
C which is in one-to-one correspondence to the extended

complex plane C. Here, the North Pole N corresponds to the point ∞. Finally, a
subset of C is called open iff the corresponding set on the Riemann sphere is open.
This way, the extended plane C becomes a compact topological space.

70 K. Wilson, On products of field operators at short distances, Cornell Report
1964.
K. Wilson, Non-Lagrangian models of current algebra, Phys. Rev. 179 (1969),
1499–1512.

71 W. Zimmermann, Normal products and the short-distance expansion in the per-
turbation theory of renormalizable interactions, Annals of Physics 77 (1973),
536–601.

72 S. Hollands, The operator product expansion for perturbative quantum field
theory in curved space-time, Commun. Math. Phys. 273 (2007), 1–36 (reprinted
with permission).
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n-point compactification. Let X denote a nonsingular algebraic variety (e.g.,
the complex plane). Let us label n distinct points z1, . . . , zn of X. As usual, let Xn

denote the n-fold Cartesian product X × · · · ×X. Finally, introduce the set

Δjk := {(x1, x2, . . . , xn) ∈ Xn : xj = xk}

for fixed indices j and k with j �= k (e.g., j = 1 and k = 2). The paper by Fulton
and MacPherson mentioned above studies all the possible compactifications of the
set

Xn \
[

j =k

Δjk.

The coefficient functions of an operator product expansion as funda-
mental quantities. Passing from flat space-time manifolds to curved space-time
manifolds M, the following two serious difficulties arise:

• the lack of space-time translations on M, and
• the lack of vacuum states (in contrast to the Minkowski space-time manifold).

To overcome these difficulties, in the paper quoted above, Hollands makes the pro-
posal that quantum field theories on curved space-time manifolds should be based
on axioms for the coefficient functions Ck

i1...in
of operator product expansions.

19.8.3 Binary Planar Graphs and the Renormalization of
Quantum Electrodynamics

Quantum electrodynamics was renormalized to all orders by Dyson in
1949.73. . . It is standard to define free, bare, and renormalized propa-
gators.
• The free electron propagator is the 2-point Green’s function for an elec-

tron without electromagnetic interaction.
• The bare electron propagator is the 2-point Green’s function (or the

2-point correlation function) for an electron with electromagnetic inter-
action, but without renormalization. In the perturbation expansion of
the bare electron propagator, all terms (except the first one) are infinite.

• The renormalized electron propagator is the 2-point Green’s function
for an electron with electromagnetic interaction, after renormalization.

Similarly, we define the free, bare, and renormalized photon propagator.
When practitioners of quantum electrodynamics calculate multi-loop con-
tributions to renormalized propagators, they are often struck by the many
cancellations in the calculation. These cancellations are partly due to the
existence of the Ward identity, which provides a relation between self-
energy and vertex counterterms. In this paper, we derive recursive equa-
tions for the renormalized electron and photon propagators that take full
account of the Ward identity. . . In this paper, the Dyson relations between
renormalized and bare photon and electron propagators are expanded over
planar binary trees. This yields explicit recursive relations for the terms
of the expansions. When all the trees corresponding to a given power of
the expansion parameter (i.e., the fine structure constant) are summed, re-
cursive relations are obtained for the finite coefficients of the renormalized
electron and photon propagators. These relations significantly decrease the

73 F. Dyson, The S-matrix in quantum electrodynamics, Phys. Rev. 75 (1949),
1736–1755.
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number of integrals to carry out, as compared to the standard Feynman
diagram technique.

Christian Brouder and Alessandra Frabetti, 2001

This quotation is taken from C. Brouder and A. Frabetti, Renormalization of QED
with planar binary trees, Eur. Phys. J. C19 (2001), 715–741 (reprinted with per-
mission).

19.9 The Master Ward Identity

The following crucial question is not yet satisfactorily answered for quan-
tum field theories: Can the symmetries of the underlying classical the-
ory be maintained in the process of renormalization? The difficulties are
connected with the singular character of quantized fields which forbids a
straightforward transfer of the arguments valid for the classical theory.
In this paper we attack this question in a model independent way:
The Master Ward Identity (MWI) is a universal formulation of all sym-
metries which follow in classical field theory from the field equations. It is
formulated in such a way that
• it is well defined in perturbative quantum field theory, and
• we impose it there as a renormalization condition.
If this condition is fulfilled, the validity of e.g. the following symmetries is
maintained in quantization:
• the field equations,
• conservation of the energy-momentum tensor,
• charge conservation, and
• ghost number conservation (in case of a non-Abelian gauge theory).
The MWI implies also a rigorous substitute for equal-time commutation
relations of quark currents, and the master BRST identity. The latter is
a model independent equation which expresses the BRST symmetry of
the time-ordered products. Applied to a classical BRST invariant (gauge)
model, it implies the full BRST symmetry of the corresponding perturba-
tive quantum field theory. . . The MWI can nearly always be satisfied. . .
The only counter-examples we know are the usual, well-known anomalies
of perturbative quantum field theory.

Michael Dütsch, 2002

We refer to the lecture given by M. Dütsch, The Master Ward Identity: a universal
formulation of classical symmetries. Can they be realized in perturbative quan-
tum field theory? 17 pages. In: F. Scheck (Ed.), Theory of Renormalization and
Regularization. Lecture Notes, 2002.
Internet: http://www.thep.physik.uni.mainz.de∼scheck/Hessbg
See also the hints (XII) for further reading on page 1036.

19.10 Trouble in Quantum Electrodynamics

19.10.1 The Landau Inconsistency Problem in Quantum
Electrodynamics

In 1954 Lev Landau noted that, by calculating the renormalized electron
charge using a plausible partial summation of Feynman graphs, one arrives
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at the conclusion that it vanishes in the limit of infinite cut-off.74 He
concluded that this absurd result invalidates quantum field theory which
should be “buried with due honors.”75

Kerson Huang, 1998

The investigations of the high-energy behavior of quantum electrodynam-
ics by Källén, Landau, and especially that by Gell-Mann and Low76 showed
that the perturbative approach in quantum electrodynamics unavoidably
breaks down, ironically, as a necessity of charge renormalization. Landau
and his collaborators argued further that remaining within the pertur-
bative framework would lead either to no interaction (zero renormalized
electron charge) or to the occurrence of ghost states rendering the theory
apparently inconsistent. . .
The attitude of theoretical physicists toward the issue of consistency dif-
fered sharply. For most practicing physicists, consistency is just a pedantic
problem. As pragmatists, they are guided only by their scientific experience
and have little interest in speculating about the ultimate consistency of a
theory. For Dirac, however, renormalization theory with the cut-off going
to infinity was illogical and nonsensically physically.77 In his opinion, what
was required were new forms of interactions and new mathematics such as
possibly the use of an indefinite metric, or of non-associative algebra, or
perhaps something even more esoteric.
The positions adapted by Landau and Chew were more radical and drastic.
What they rejected were not merely particular forms of interactions and
perturbative versions of quantum field theory, but the general framework
of quantum field theory itself. For them the very concept of a local field
operator and the postulation of any detailed mechanism for interactions
in microscopic space-time region were unacceptable because these were
too speculative to be observable, even in principle. Their position was
supported by the presence of divergences in quantum field theory and
by the lack of a proof of the consistency of renormalization theory, even
though Landau’s argument for the inconsistency of renormalized quantum
electrodynamics could not claim to be conclusive.78

Silvan Schweber, 1994

In terms of a simplified mathematical toy model, it is discussed in the monograph
by V. Rivasseau, From Perturbative to Constructive Renormalization, Princeton

74 L. Landau, On the quantum theory of fields, pp. 52–69. In: W. Pauli (Ed.),
Niels Bohr and the Development of Physics, Pergamon Press, New York, 1955.
The textbook version can be found in L. Landau and M. Lifshitz, Course of
Theoretical Physics, Vol 4: Quantum Electrodynamics, Sect. 128. Butterworth–
Heinemann, Oxford, 1982.
Landau (1908–1968) worked in Moscow. In 1962 he was awarded the Nobel prize
in physics for his pioneering theories for condensed matter, especially liquid he-
lium.

75 K. Huang, Quantum Field Theory: From Operators to Path Integrals, Wiley,
New York, 1998.

76 M. Gell-Mann and F. Low, Quantum electrodynamics at small distances, Rev.
Phys. 95(5) (1954), 1300–1317 (see Sect. 3.2.2 of Vol. I).

77 P. Dirac, The origin of quantum field theory, pp. 39–55. In: L. Brown and L.
Hoddeson, The Birth of Particle Physics, Cambridge University, 1983.

78 Schweber, Silvan, QED and the Men Who Made It: Dyson, Feynman, Schwinger,
and Tomonaga, Princeton University Press, Princeton, New Jersey, 1994.
Reprinted by permission of Princeton University Press.
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University Press, 1991, that the Landau inconsistency problem is a global problem of
the renormalization procedure called the “renormalon problem.” Roughly speaking,
in each order n of perturbation theory, the expressions behave consistently. The
inconsistency only appears by studying the limit n→∞.

19.10.2 The Lack of Asymptotic Freedom in Quantum
Electrodynamics

A quantum field theory is called asymptotically free iff the high-energy limit
E → +∞ corresponds to free particles. For example, in quantum chromodynamics,
quarks move freely if the energy goes to infinity. Unfortunately, quantum electrody-
namics is not asymptotically free (see Sect. 3.2.3 of Vol. I). Many physicists expect
that the renormalization of quantum electrodynamics to all orders leads to a trivial
theory with vanishing coupling constant. If this was true, then we would have the
following strange situation in quantum electrodynamics:

• Low-order perturbation theory yields nontrivial results which are in fantastic
coincidence with the physical experiment.

• High-order perturbation theory yields a trivial result.

This means that quantum electrodynamics represents an incomplete (and possibly
ill-posed) theory (see Sect. 2.4.4). One has to study the Standard Model in particle
physics which possibly completes quantum electrodynamics.

The renormalization of quantum electrodynamics to all orders is not the
end of the story.

19.11 Hints for Further Reading

As an introduction to renormalization, we recommend the following two mono-
graphs:

L. Brown, Quantum Field Theory, Cambridge University Press, New York,
1996 (generating functionals, Feynman functional integrals, dimensional
regularization, applications to the scalar ϕ4-model and to quantum elec-
trodynamics).

W. McComb, Renormalization Methods: A Guide for Beginners, Oxford
University Press, 2007 (the renormalization group method).

Furthermore, we recommend:

J. Collins, Renormalization: An Introduction to Renormalization, the
Renormalization Group, and the Operator-Product Expansion, Cambridge
University Press, 1984 (BPHZ renormalization).

O. Piguet and S. Sorella, Algebraic Renormalization: Perturbative Renor-
malization, Symmetries, and Anomalies, Springer, Berlin, 1995 (the quan-
tum action principle for the effective action and the BRST symmetry).

T. Kugo, Gauge Field Theory, Springer, Berlin, 1997 (in German).

K. Hepp, Renormalization theory. In: C. DeWitt and R. Stora (Eds.), Sta-
tistical Mechanics and Quantum Field Theory, Gordon and Breach, New
York, 1971, pp. 429–500 (axiomatic approach to renormalization theory).

L. Faddeev and A. Slavnov, Gauge Fields, Benjamin, Reading, Mas-
sachusetts, 1980 (Feynman’s functional integrals, Faddeev–Popov ghosts,
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Bogoliubov’s R-iterative method and the renormalization of gauge theo-
ries).

J. Feldman, T. Hurd, L. Rosen, and J. Wright: QED (quantum electrody-
namics): A Proof of Renormalizability, Springer, Berlin, 1988.

M. Veltman, Diagrammatica: the Path to Feynman Diagrams, Cambridge
University Press, 1995 (dimensional renormalization).

A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields,
and Motives, Amer. Math. Soc., Providence, Rhode Island, 2008 (BPHZ
renormalization, Hopf algebras of Feynman graphs and the Riemann–
Hilbert method in renormalization theory, the universal motivic Galois
group in renormalization group theory, noncommutative geometry and the
Standard Model in particle physics – relations between the constants of
the Standard Model – noncommutative geometry and the Riemann zeta
function, statistical physics, KMS states, and number theory).
Internet: http://www.math.fsu.edu/∼marcolli/bookjune4.pdf

We also recommend:

E. Manoukian, Renormalization, Academic Press, New York, 1983 (proof
of a general version of Weinberg’s power-counting theorem and general
principles in renormalization theory; the relation between the Dyson–
Salam renormalization and the BPHZ renormalization).

O. Zavialov, Renormalized Quantum Field Theory, Kluwer, Dordrecht,
1989 (BPHZ renormalization, and the equivalence between BPHZ and
other methods – dimensional regularization and analytical renormaliza-
tion).

V. Smirnov, Feynman Integral Calculus, Springer, Berlin, 2006 (computa-
tion of algebraic Feynman integrals).

A. Grozin, QED (Quantum Electrodynamics) and QCD (Quantum Chro-
modynamics): Practical Calculation and Renormalization of One-and Mul-
ti-Loop Feynman Diagrams, World Scientific Singapore, 2007.

Standard textbooks in physics are:

J. Bjorken and S. Drell, Relativistic Quantum Fields, McGraw-Hill, New
York, 1965.

C. Itzykson and J. Zuber, Quantum Field Theory, MacGraw-Hill, New
York, 1980.

L. Landau and E. Lifshitz, Course of Theoretical Physics, Vol 4: Quantum
Electrodynamics. Edited by W. Berestetzkii, E. Lifshitz, and L. Pitaevskii,
Butterworth–Heinemann, Oxford, 1982 (much material on concrete phys-
ical effects).

M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory,
Addison-Wesley, Reading, Massachusetts, 1995.

S. Weinberg, Quantum Field Theory, Vols. 1–3, Cambridge University
Press, 1995.

S. Weinberg, Cosmology, Oxford University Press, 2008.

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon
Press, Oxford, 2003.

S. Narison, QCD (Quantum Chromodynamics) as a Theory of Hadrons:
From Partons to Confinement, Cambridge University Press, 2004.

Furthermore, we recommend the following introductory material:
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• Pedagogical lectures on classical approaches:
G. Velo and A. Wightman (Eds.), Renormalization Theory, Reidel, Dor-
drecht, 1976.

E. Speer, Lectures on Analytic Renormalisation, Seminars on Renormalisa-
tion Theory Volume I: Technical Report No. 73–067, Center for Theoretical
Physics of the Department of Physics and Astronomy, University of Mary-
land, College Park, 1973.

J. Lowenstein, Normal Product Methods in Renormalised Perturbation The-
ory, Seminars on Renormalisation Theory Volume II: Technical Report No.
73–068, Center for Theoretical Physics of the Department of Physics and
Astronomy, University of Maryland, College Park, 1973.

G. ’t Hooft and M. Veltman, Diagrammar, Lecture Notes, CERN, 1973,
Report 73/9 (renormalization of gauge theories).
Internet: http://doc.cern.ch/yellowrep/1973/1973-009/p1.pdf

• Pedagogical lectures on modern approaches:

F. Scheck (Ed.), Theory of Renormalization and Regularization. School held
at the Hesselberg Academy (Germany), 2002, Lecture Notes.
Internet: http://www.thep.physik.uni.mainz.de∼scheck/Hessbg
K. Sibold, Perturbative Renormalization – Quantization of Gauge Theo-
ries, Lecture Notes MPI-Ph/93-1, Max Planck Institute for Physics, Werner
Heisenberg, Munich, 1993 (in German).

R. Wulkenhaar, Euclidean quantum field theory and commutative and non-
commutative spaces, Lecture Notes, pp. 59–100. In: H. Ocampo, S. Paycha,
and A. Vargas (Eds.), Geometric and Topological Methods for Quantum
Theory, Springer, Berlin, 2005.

E. Kraus, Renormalization of the electroweak standard model, Lectures
given at the Saalburg Summer School (Germany), 1997.
Internet: http://arxiv.org/hep-th/9809069

• Poincaré Seminar:
Poincaré Seminar 2002: Vacuum Energy – Renormalization. Edited by B.
Duplantier and V. Rivasseau, Birkhäuser, Basel, 2003.

Poincaré Seminar 2007: Quantum Spaces. Edited by B. Duplantier and V.
Rivasseau, Birkhäuser, Basel, 2007 (noncommutative geometry and elemen-
tary particle physics).

• Axioms of renormalization:
K. Hepp, Renormalization theory, pp. 429–500. In: C. DeWitt and R.
Stora (Eds.), Statistical Mechanics and Quantum Field Theory, Gordon
and Breach, New York, 1971.

• State of the art in rigorous quantum field theory:
K. Fredenhagen, K. Rehren, and E. Seiler, Quantum field theory: where we
are, pp. 61–87. In: Lecture Notes in Physics 721, Springer, Berlin, 2007.

In what follows we will summarize important approaches to renormalization theory
together with hints for further reading. These approaches will be studied in the
volumes to come.

(I) The Epstein–Glaser approach (also called the causal approach) based on tem-
pered distributions: As a basic monograph, we recommend:

G. Scharf, Finite Quantum Electrodynamics: the Causal Approach,
Springer, Berlin, 1995.

Furthermore, we refer to:
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J. Gracia-Bondia, The Epstein–Glaser Approach to Quantum Field
Theory, Lecture Notes, AIP Conference Proceedings 809 (2005),
American Institute of Physics, New York, pp. 24–43.

M. Dütsch and K. Fredenhagen, A local perturbative construction of
observables in gauge theories: The example of QED, Commun. Math.
Phys. 203 (1999), 71–105.

R. Brunetti and K. Fredenhagen, Micro-local analysis and interact-
ing quantum field theories: renormalization on physical backgrounds,
Commun. Math. Phys. 208 (2000), 623–661.

C. Bergbauer and D. Kreimer, The Hopf algebra of rooted trees in
Epstein–Glaser renormalization, Ann. H. Poincaré 6 (2005), 343–367.

The classic paper is:
H. Epstein and V. Glaser, The role of locality in perturbation theory,
Ann. Inst. Poincaré A 19(3) (1973), 211–295.

See also (XII) page 1036 concerning the Master Ward Identity on
(II) The Bogoliubov–Parasiuk–Hepp–Zimmermann (BPHZ) renormalization ap-

proach: As an introduction, we recommend:
J. Collins, Renormalization, Cambridge University Press, 1984.

T. Kugo, Gauge Field Theory, Springer, Berlin, 1997 (in German).
Furthermore, we refer to:

N. Bogoliubov and D. Shirkov, Introduction to Quantum Field Theory,
3rd edn., Wiley, New York, 1980 (translated from the 1957 Russian
edition into English).

N. Bogoliubov and D. Shirkov, Quantum Fields: Lectures held at the
Moscow Lomonosov University, Reading, Massachusetts, 1983.

O. Zavialov, Renormalized Quantum Field Theory, Kluwer, Dor-
drecht, 1989.

The classic papers of the BPHZ approach are:
N. Bogoliubov and O. Parasiuk, On the multiplication of propagators
in quantum field theory, Acta Math. 97 (1957), 227–326 (in German).

K. Hepp, Proof of the Bogoliubov–Parasiuk theorem on renormaliza-
tion, Commun. Math. Phys. 2 (1966), 301–326.

W. Zimmermann, Convergence of Bogoliubov’s method of renormal-
ization in momentum space, Commun. Math. Phys. 15 (1969), 208–
234.

In addition, we refer to the following classic papers:
S. Weinberg, High energy behavior in quantum field theory, Phys.
Rev. 118 (1960), 838–849 (the power-counting theorem).

J. Lowenstein and W. Zimmermann, The power-counting theorem for
Feynman integrals with massless propagators, Commun. Math. Phys.
44 (1975), 73.

J. Lowenstein and E. Speer, Distributional limits of renormalized inte-
grals with zero-mass denominator, Commun. Math. Phys. 47 (1976),
43–51.

P. Breitenlohner and D. Maison, Dimensional renormalization and ac-
tion principle, Commun. Math. Phys. 52 (1977), 11–39 (equivalence
between BPHZ renormalization and dimensional renormalization).

P. Breitenlohner and D. Maison, Dimensional renormalized Green’s
functions for theories with massless particles, Commun. Math. Phys.
52(1) (1977), 39–75.
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A. Connes and D. Kreimer, Renormalization in quantum field theory
and the Riemann–Hilbert problem I: The Hopf algebra structure of
graphs and the main theorem. II: The beta function, diffeomorphisms,
and the renormalization group. Commun. Math. Phys. 210 (2000),
249–273; 216 (2001), 215–241.

(III) Technical tools for the effective computation and renormalization of algebraic
Feynman integrals: A general setting can be found in:

E. Manoukian, Renormalization, Academic Press, New York.

This concerns the following basic topics:
• the Weinberg power-counting theorem;
• the adiabatic limit of regularized algebraic Feynman integrals in the sense

of tempered distributions;
• the construction of subtraction terms for algebraic Feynman integrals by

means of counterterms in the Lagrangian.
Furthermore, we refer to:

V. Radanovic, Problem Book in Quantum Field Theory, Springer,
New York, 2006 (e.g., exercises for the renormalization of quantum
field models along with their solutions).

M. Veltman, Diagrammatica: The Path to Feynman Diagrams, Cam-
bridge University Press, 1995 (dimensional renormalization).

N. Nakanishi, Graph Theory and Feynman Integrals, Gordon and
Breach, New York, 1971.

E. Speer, Dimensional and Analytic Renormalization, pp. 25–94. In:
G. Velo and A. Wightman (Eds.), Renormalization, Reidel, Dordrecht,
1976.

P. Pascual and R. Tarrach, QCD (Quantum Chromodynamics): Renor-
malization for Practitioners, Springer, Berlin, 1984.

A. Grozin, QED (Quantum Electrodynamics) and QCD (Quantum
Chromodynamics): Practical Calculation and Renormalization of One-
and Multi-Loop Feynman Diagrams, World Scientific Singapore, 2007.

V. Smirnov, Renormalization and Asymptotic Expansions, Birkhäu-
ser, Basel, 1991.

V. Smirnov, Feynman Integral Calculus, Springer, Berlin, 2006.

See also (XX) on page 1042. Software systems for computing algebraic Feynman
integrals in higher orders of perturbation theory (multi-loop computations) can
be found on page 977.
The method of analytic regularization of algebraic Feynman integrals leads
to the study of meromorphic functions with values in the space of tempered
distributions. This can be found in:

I. Gelfand and G. Shilov, Generalized Functions, Vol. 1 (last chapter),
Academic Press, New York, 1964.

N. Ortner and P. Wagner, Distribution-Valued Analytic Functions:
Theory and Applications, Lecture Notes 37/2008, Max Planck Insti-
tute for Mathematics in the Sciences, Leipzig, 2008.
Internet: http://www.mis.de/preprints

The Epstein–Glaser approach is based on Hörmander’s causal product for spe-
cial classes of tempered distributions where the (causal) wave front condition
is satisfied (see Sect. 12.6.2 of Vol. I). It is also possible to use the Colombeau
product of distributions. Here, we refer to:
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J. Colombeau, New Generalized Functions and Multiplication of Dis-
tributions, North-Holland, Amsterdam, 1984.

J. Colombeau, Multiplication of Distributions, North-Holland, Ams-
terdam, 1992.

H. Embacher, G. Grüble, and M. Oberguggenberger, Products of dis-
tributions in several variables and applications to zero-mass quantum
electrodynamics in two-dimensional space-time, Zeitschrift für Analy-
sis und ihre Anwendungen 11 (1992), 437–454. (This approach avoids
the occurence of renormalization ambiguities from the very begin-
ning.)

É. Charpentier, The cancellation of infinities in quantum field theory:
a comparison of zeta regularization and the Colombeau interpretation,
Dissertationes Mathematicae 383 (1999), 56 pages (in French).

The relation between Feynman diagrams, topology and algebraic geometry (the
Picard–Lefschetz theory) is studied in:

R. Hwa and V. Teplitz, Homology and Feynman Diagrams, Benjamin,
Reading, Massachusetts, 1966 (singularities of Feynman amplitudes
and the Picard–Lefschetz theorem).
S. Lefschetz, Applications of Algebraic Topology: Graphs, and Net-
works, the Picard–Lefschetz Theory, and Feynman Algorithms, Sprin-
ger, New York, 1975.

(IV) Compendium of important relations frequently used in quantum field theory:

V. Borodulin, R. Rogalyov, and S. Slabopitsky (1995), Compendium
of Relations, 1995. Internet: http://arxiv.org/hep-th/9507456

S. Narison, QCD (Quantum Chromodynamics) as a Theory of Had-
rons: From Partons to Confinement, Cambridge University Press, 2004
(appendix).

V. Smirnov, Feynman Integral Calculus, Springer, Berlin, 2006.

(V) BPHZ renormalization, Hopf algebras, and Rota–Baxter algebras:

K. Ebrahimi-Fard and D. Kreimer, The Hopf algebra approach to
Feynman diagram calculations. Topical Review. J. Phys. A: Mathe-
matical and General 38 (2005), R385–R407.

D. Kreimer, Knots and Feynman Diagrams, Cambridge University
Press, 2000.

A. Connes and D. Kreimer, Renormalization in quantum field theory
and the Riemann–Hilbert problem I: The Hopf algebra structure of
graphs and the main theorem. II: The beta function, diffeomorphisms,
and the renormalization group, Commun. Math. Phys. 210 (2000),
249–273; 216 (2001), 215–241.

B. Fauser, On the Hopf algebraic origin of Wick normal-ordering, J.
Phys. A: Mathematical and General 34 (2001), 105–116.

C. Brouder, B. Fauser, A. Frabetti, and R. Oeckl, Quantum field the-
ory and Hopf algebra cohomology, J. Phys. A: Mathematical and Gen-
eral 37 (2004), 5895–5927 (Hopf superalgebras).

C. Brouder, Quantum field theory meets Hopf algebra, 2006.
Internet: http://arxiv.org/hep-th/0611153

K. Ebrahimi-Fard, L. Guo, and D. Kreimer, Spitzer’s identity and the
algebraic Birkhoff decomposition in perturbative quantum field the-
ory, J. Phys. A: Mathematical and General 37 (2004), 11037–11052.
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C. Bergbauer and D. Kreimer, Hopf algebras in renormalization the-
ory: locality and Dyson–Schwinger equations from Hochschild coho-
mology, pp. 133–164. In: L. Nyssen (Ed.), Physics and Number Theory,
European Mathematical Society, 2006.

S. Bloch, H. Esnault, and D. Kreimer, Motives associated to graph
polynomials, Commun. Math. Phys. 267(1) (2006), 181–225 (applica-
tions in number theory).

A. Connes and M. Marcolli, Noncommutative Geometry, Quantum
Fields, and Motives, Amer. Math. Soc., Providence, Rhode Island,
2008 (applications to the Standard Model in particle physics and to
the Riemann zeta function).

(VI) Quantum electrodynamics (QED) and Hopf algebras:

D. Volovich and I. Prokhorenko, Renormalization in quantum electro-
dynamics, and Hopf algebras, Trudy Mat. Inst. Steklova 245 (2004),
288–295.

W. van Suijlekom, The Hopf algebra of Feynman graphs in quantum
electrodynamics, Letters in Mathematical Physics 77 (2006), 265–318.

W. van Suijlekom, Renormalization of gauge fields: the Hopf algebra
approach, 2006. Internet: http://arxiv.org/hep-th/0610137

(VII) Quantum electrodynamics, the Dyson–Schwinger equation, and planar bi-
nary trees:

C. Brouder, Runge–Kutta methods and renormalization, Eur. J. Phys.
C12 (2000), 521–534.

C. Brouder, On the trees of quantum fields, Eur. J. Phys. C12 (2000),
535–549.

C. Brouder and A. Frabetti, Renormalization of QED with planar
binary trees, Eur. Phys. J. C19 (2001), 715–741.

C. Brouder and A. Frabetti, QED and Hopf algebras on planar binary
trees, J. Alg. 267 (2003), 298–322.

For the properties of the ground state of quantum fields (also called the vac-
uum), we refer to:

W. Dittrich and M. Gies, Probing the Quantum Vacuum: Effective
Action Approach in Quantum Electrodynamics and its Applications,
Springer, Berlin, 2003.

H. Genz, Nichts als das Nichts (The vacuum energy), Wiley–VCH,
Weinheim, 2004 (in German).

(VIII) The Polchinski renormalization group approach in renormalization theory:
J. Polchinski, Renormalization and effective Lagrangians, Nucl. Phys.
B231 (1984), 269–295.

G. Keller and C. Kopper, Renormalizability proof for QED based on
flow equations, Commun. Math. Phys. 176 (1996), 193–226.

G. Keller, C. Kopper, and C. Schophaus, Renormalization with flow
equations in Minkowski space, Helv. Phys. Acta 70 (1997), 247–274.

M. Salmhofer, Perturbative renormalizability of ϕ3 in six dimen-
sions by renormalization group differential equations, 26 pages. In:
F. Scheck, Theory of Renormalization and Regularization, 2002.
Internet: http://www.thep.physik.uni.mainz.de∼ scheck/Hessbg

M. Salmhofer, Renormalization: An Introduction, Springer, Berlin,
1999.
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(IX) Perturbative quantum electrodynamics and axiomatic quantum field theory:
O. Steinmann, Perturbative Quantum Electrodynamics and Axiomatic
Field Theory, Springer, Berlin, 2000.

(X) The Faddeev–Popov approach to gauge theory (Feynman functional integrals
and ghosts):

L. Faddeev and A. Slavnov, Gauge Fields, Benjamin, Reading, Mas-
sachusetts, 1980.

(XI) The fundamental role of symmetry in the renormalization of quantum field
theories (algebraic renormalization theory): For the BRST (Becchi, Rouet,
Stora, Tyutin) approach to renormalization theory via cohomology, we refer
to:

C. Becchi, A. Rouet, and R. Stora, Renormalization of the Abelian
Higgs–Kible model, Commun. Math. Phys. 52 (1975), 127–162.

C. Becchi, A. Rouet, and R. Stora, Renormalization of gauge theories,
Annals of Physics 98 (1976), 287–321.

O. Piguet, Renormalization in Quantum Field Theory, Lecture Notes
I, Department of Theoretical Physics, University of Geneva, Switzer-
land, 1982 (in French).

O. Piguet, Renormalization of Gauge Theory, Lecture Notes II, De-
partment of Theoretical Physics, University of Geneva, Switzerland,
1983 (in French).

O. Piguet and S. Sorella, Algebraic Renormalization: Perturbative
Renormalization, Symmetries, and Anomalies. Springer, Berlin, 1995.

K. Sibold, Perturbative Renormalization – Quantization of Gauge
Theories, Lecture Notes MPI-Ph/93-1, Max Planck Institute for Phy-
sics, Werner Heisenberg, Munich, 1993 (in German).

E. Kraus, Renormalization of the electroweak standard model to all
orders, Annals of Physics 262 (1998), 155–259.

As an introduction to the connection between symmetries and generalized Ward
identities (Slavnov–Taylor identities), we recommend the Lecture Notes by K.
Sibold (1993) and Piguet, Sorella (1995) above. Furthermore, we refer to:

M. Böhm, A. Denner, and H. Joos, Gauge Theories of the Strong and
Electroweak Interaction, Teubner, Stuttgart, 2001.

T. Kugo, Gauge Field Theory, Springer, Berlin, 1997 (in German).
(XII) Symmetry, the Master Ward Identity (MWI), and renormalization: It has re-

cently been discovered that there exists a so-called Master Ward Identity which
governs the symmetries of quantized theories. In addition, the Master Ward
Identity can be used as a general principle for constructing the renormalization
of quantum field theories. As an introduction, we recommend:

M. Dütsch, The Master Ward Identity: a universal formulation of clas-
sical symmetries. Can they be realized in perturbative quantum field
theory (pQFT)? 17 pages. In: F. Scheck (Ed.), Theory of Renormal-
ization and Regularization. Lecture Notes, 2002.
Internet: http://www.thep.physik.uni.mainz.de∼scheck/Hessbg

Furthermore, we refer to:
M. Dütsch and F. Boas, The Master Ward Identity, Rev. Mod. Phys.
14 (2002), 977–1049.

M. Dütsch and F. Brennecke, Removal of violations of the Master
Ward Identity in perturbative quantum field theory (pQFT), 2007.
Internet: http://www.mis.mpg.de/preprints/2007
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There exist crucial relations between the following topics:
• retarded functions in quantum field theory – the GLZ (Glaser, Lehmann,

Zimmermann) approach as an alternative to the LSZ (Lehmann, Szymanzik,
Zimmermann) approach via Green’s functions,

• the retarded product of classical fields via classical retarded Green’s func-
tions,

• the Poisson–Peierls brackets in classical relativistic field theory defined by
retarded products,

• the time-ordered product and the Epstein–Glaser approach,
• the Action Ward Identity (AWI),
• the Master Ward Identity (MWI),
• the quantum action principle and the Dyson–Schwinger equation,
• the BRST (Becchi, Rouet, Stora, Tyutin) approach in gauge theory,
• quantum deformation,
• renormalization group.
These relations can be found in:

M. Dütsch and K. Fredenhagen, The Master Ward Identity and the
generalized Schwinger–Dyson equation in classical field theory, Com-
mun. Math. Phys. 243 (2003), 275–314.

M. Dütsch and K. Fredenhagen, Causal perturbation theory in terms
of retarded products, and a proof of the Action Ward Identity, Rev.
Math. Phys. 16(10) (2004), 1291–1348.

M. Dütsch and K. Fredenhagen, Action Ward Identity and the Stue-
ckelberg–Petermann renormalization group, pp. 113–123. In: A. Boutet
de Monvel et al. (Eds.), Rigorous Quantum Field Theory, Birkhäuser,
Basel, 2006.

The classic papers are:
R. Peierls, The commutation laws of relativistic field theory, Proc.
Royal Soc. London A214 (1952), 143–157.

E. Stueckelberg and D. Rivier, Causalité et structure de la matrice S,
Helv. Phys. Acta 23 (1950), 215–222 (in French).

E. Stueckelberg and T. Green, T. (1951), Elimination des constantes
arbitraires dans la théorie relativiste des quanta, Helv. Phys. Acta 24
(1951), 153–174 (in French).

E. Stueckelberg and A. Petermann, La normalisation des constantes
dans la théorie des quanta, Helv. Phys. Acta 26 (1953), 215–222 (in
French).

H. Lehmann, K. Symanzik, and W. Zimmermann, On the formula-
tion of quantized field theories, Nuovo Cimento 1 (1955), 205–225; 6
(1957), 319–333 (the LSZ approach via Green’s functions).

V. Glaser, H. Lehmann, and W. Zimmermann, Field operators and
retarded functions, Nuovo Cimento 6 (1957), 1122–1128 (the GLZ
approach via retarded functions).

O. Steinmann, On the definition of retarded and time-ordered prod-
ucts), Helv. Phys. Acta 36 (1963), 90–112 (in German).

O. Steinmann, Perturbation Expansions in Axiomatic Field Theory,
Springer, Berlin, 1971 (retarded functions).

The quantum action principle represents the fundamental dynamical principle
in quantum field theory. This principle describes the changing of the Green’s
functions (correlation functions) under a change of the following quantities:
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• external parameters (e.g., external sources) and
• quantum fields (e.g., symmetry transformations like global symmetries or

local gauge symmetries).
As an introduction, we refer to:

K. Sibold, Perturbative Renormalization – Quantization of Gauge
Theories, Lecture Notes MPI-Ph/93-1, Max Planck Institute for Phy-
sics, Werner Heisenberg, Munich, 1993 (in German).

O. Piguet and S. Sorella, Algebraic Renormalization: Perturbative
Renormalization, Symmetries, and Anomalies. Springer, Berlin, 1995.

Classic papers are:
J. Schwinger, A note on the quantum dynamical principle, Phil. Mag.
44 (1953), 1171–1193.

J. Schwinger, Relativistic quantum field theory, pp. 140–154. In:
Nobel Lectures 1963–1970 in Physics, World Scientific, Singapore.
(Schwinger’s Nobel lecture is mainly devoted to his quantum action
principle.)

J. Schwinger, Quantum Mechanics, Springer, New York, 2001.

J. Lowenstein, Differential vertex operations in Lagrangian field the-
ory, Commun. Math. Phys. 24 (1971), 1–21.

Y. Lam, Perturbation Lagrangian theory for scalar fields: Ward–
Takahashi identity and current algebra, Phys. Rev. D6 (1972), 2145–
2161.

The fundamental role played by hierarchies of functions in quantum field theory
is discussed in:

R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer,
Berlin, 1996 (Chap. II.2).

S. Narison, QCD (Quantum Chromodynamics) as a Theory of Ha-
drons: From Partons to Confinement, Cambridge University Press,
2004 (Chap. 4).

This concerns the following functions:
• Wightman functions (axiomatic quantum field theory),
• Green’s functions (LSZ approach), and
• retarded functions (GLZ approach).
Intuitively, if ϕ = ϕ(x) is a (naive) scalar quantum field (i.e, ϕ(x) is a linear
operator in a Hilbert space for each space-time point x), then we have the
following complex-valued functions at hand, which describe the quantum field
ϕ by means of vacuum expectation values:
• W (x, y) := 〈0| ϕ(x)ϕ(y) |0〉 (2-point Wightman function);
• G(x, y) := 〈0|T (ϕ(x)ϕ(y))|0〉 (2-point Green’s function also called the 2-

point correlation function);
• R(x, y) := −iθ(x− y)〈0| [ϕ(x), ϕ(y)] |0〉 (2-point retarded function).
Here, x = (x, t) and y = (y, s) are arbitrary points of the Minkowski space
(i.e., x and y are position vectors; t and s are time variables). The symbol
T (ϕ(x)ϕ(y)) denotes the time-ordered product, that is,

T (ϕ(x)ϕ(y)) :=

(

ϕ(x)ϕ(y) if t > s,

ϕ(y)ϕ(x) if s > t.

Furthermore, we set

θ(x) :=

(

1 if t ≥ 0

0 if t < 0.



19.11 Hints for Further Reading 1039

Finally, we use the commutator

[ϕ(x), ϕ(y)] := ϕ(x)ϕ(y)− ϕ(y)ϕ(x).

The corresponding n-point functions are defined similarly. For example, we get:
• W (x, y, z) := 〈0| ϕ(x)ϕ(y)ϕ(z) |0〉 (3-point Wightman function);

• G(x, y, z) := 〈0| T (ϕ(x)ϕ(y)ϕ(z)) |0〉 (3-point Green’s function also called
3-point correlation function);

• R(x, y, z) (3-point retarded function) is equal to

−θ(x− y)θ(x− z) 〈0| [ [ϕ(x), ϕ(y)], ϕ(z)] |0〉
−θ(x− z)θ(x− y) 〈0| [ [ϕ(x), ϕ(z)], ϕ(y)] |0〉.

Here, the variable x is distinguished, and we use a permutation of the re-
maining variables y and z.

This way we obtain the following three hierarchies of functions:
• n-point Wightman functions,
• n-point Green’s functions, and
• n-point retarded functions.
Here, n = 1, 2, . . . Formulated naively, each of these hierarchies determines the
quantum field ϕ. It turns out that this heuristic approach has to be modified
by passing to tempered distributions, and so on. The elegant idea of describing
a quantum field by a hierarchy of functions (i.e., vacuum expectation values of
appropriate operator products) was created in the 1950s by Wightman, Glaser,
Lehmann, Szymanzik, and Zimmermann. In axiomatic quantum field theory,
a fixed hierarchy of functions is characterized by axioms. The goal is to prove a
so-called reconstruction theorem which shows the existence of a corresponding
quantum field as an operator-valued tempered distribution (see Sect. 15.6.1 of
Vol. I and (IX) on page 1036 above).

(XIII) Anomalies: The violation of classical symmetries after quantization corre-
sponds to so-called anomalies. We recommend:

A. Zee, Quantum Field Theory in a Nutshell, Princeton University
Press, 2003.

O. Piguet and S. Sorella, Algebraic Renormalization: Perturbative
Renormalization, Symmetries, and Anomalies. Springer, Berlin, 1995.

K. Fujikawa and H. Suzuki, Path Integrals and Quantum Anomalies,
Oxford University Press, 2004.

V. Parameswaran Nair, Quantum Field Theory: A Modern Perspec-
tive, Springer, New York, 2005.

S. Adler, Perturbation theory anomalies, pp. 1–164. In: S. Deser et al.
(Eds.), Lectures on Elementary Particles and Quantum Field Theory,
MIT Press, Cambridge, Massachusetts, 1970.

S. Adler, Adventures in Theoretical Physics, Selected Papers with
Commentaries, World Scientific, Singapore, 2006.

(XIV) Operator product expansion (OPE):

J. Collins, Renormalization: An Introduction to Renormalization, the
Renormalization Group, and the Operator-Product Expansion, Cam-
bridge University Press, 1984.

T. Kugo, Gauge Field Theory, Springer, Berlin, 1997 (in German).

M. Peskin and D. Schroeder, An Introduction to Quantum Field The-
ory, Addison-Wesley, Reading, Massachusetts, 1995.
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The classic papers on operator product expansions are:
K. Wilson, On products of field operators at short distances, Cornell
Report, 1964.

K. Wilson, Non-Lagrangian models of current algebra, Phys. Rev. 179
(1969), 1499–1512.

W. Zimmermann, Normal products and the short-distance expansion
in the perturbation theory of renormalizable interactions, Annals of
Physics 77 (1973), 536–601.

(XV) Renormalization in curved space-time:

R. Brunetti and K. Fredenhagen, Micro-local analysis and interact-
ing quantum field theories: renormalization on physical backgrounds,
Commun. Math. Phys. 208 (2000), 623–661.

S. Hollands and R. Wald, On the renormalization group in curved
space-time, Commun. Math. Phys. 237 (2003), 123–160.

S. Hollands, The operator product expansion for perturbative quan-
tum field theory in curved space-time, Commun. Math. Phys. 273
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Epilogue

The organic unit of mathematics is inherent in the nature of this science,
for mathematics is the foundation of all exact knowledge of natural phe-
nomena.

David Hilbert, 1900

In 1900 Hilbert formulated twenty three open problems. The quotation is taken
from the end of his speech at the Second International Congress of Mathematicians
in Paris. Most of the problems were solved in the 20th century. This is discussed
in B. Yandell, The Honors Class: Hilbert’s Problems and Their Solvers, Peters,
Natick, Massachusetts, 2001.

A completely new branch of science has taken shape before our eyes in
recent years, a branch that should properly be called modern mathematical
physics.
It has the same genetic origins as classical mathematical physics. But
whereas the theory of partial differential equations was generated by prob-
lems of classical physics (potential theory, theory of propagation of elec-
tromagnetic waves and such), it turns out that modern theoretical physics
– quantum field theory with an infinite number of degrees of freedom – re-
quires different, more abstract and modern mathematical methods. These
methods consist primarily of the theory of distributions (generalized func-
tions), functional analysis and operator theory, the representation theory
of groups and algebras, topological algebra, and the like.
The solution of the new physical problems of quantum field theory was
first sought through perfecting the usual methods of quantum mechanics.
At that time physicists managed to realize that in order to obtain reason-
able answers to their questions they needed a deeper understanding of the
mathematical nature of the objects they were studying, such as distribu-
tions or unbounded operators, and they needed to raise the standard of
proof in their arguments.
Subsequently, to liberate themselves from excessive and sometimes mean-
ingless details, they began to seek out axiomatic routes for construct-
ing theories. It then became obvious that modern mathematical methods
sometimes make it possible to obtain very strong results. In this connec-
tion we might mention the theory of functions of several complex variables
or the concept of weak equivalence of representations.
We note, finally, that several specific quantum phenomena provide a direct
physical illustration of the famous theorem on the existence of inequivalent
representations in the case of an infinite number of of degrees of freedom.
The examples just mentioned come from quantum electrodynamics, the
theory of strong interaction at high energies, and problems of statistical
physics. In particular, in the physics of strong interactions, due to the
complexity of the dynamical picture, dispersion methods based on the
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general analytic properties of the amplitude of the process turned out to
be especially useful. They now have immediate applications to the needs
of experimental research.
We are at the very beginning of the route. It suffices to recall that as
not a single nontrivial example of quantum field theory has so far been
constructed outside of perturbation theory that is in any way close to the
real physical world of four dimensions.
The attention of physicists to the methods of modern mathematics and
the interest of mathematicians in the problems of quantum physics are
mutually productive.

Nikolai Nikolaevich Bogoliubov, 1981

This quotation is taken from an introductory speech given by Bogoliubov at the
conference on quantum field theory in Alushta (Crimea/Black Sea) in 1981. See

V. Vladimirov, Nikolai Nikolaevich Bogoliubov (1909–1992) – Mathemati-
cian by the Grace of God. In: A. Bolibruch, Yu. Osipov, and Ya. Sinai
(Eds.), Mathematical Events in the 20th Century, Springer, Berlin, and
PHASIS, Moscow, 2006 (reprinted with permission).

The name Bogoliubov consists of the two Russian words: Bog – God, and liubov
– love. Bogoliubov was born in 1909 in Nishnii Novgorod (Russia). His father was
a prominent clergyman. The Bogoliubovs soon moved to Kiev (Ukraine). After
World War II, Bogoliubov moved to Moscow. From that time he was closely related
with the Steklov Mathematical Institute, the Moscow State University, and the
Nuclear Research Center in Dubna (near Moscow). The monograph written by N.
Bogoliubov, A. Logunov, A. Orsak, and I. Todorov, General Principles of Quantum
Field Theory, Kluwer 1990, is the most comprehensive presentation of mathematical
quantum field theory. We also refer to N. Bogoliubov, Selected Works. Part I:
Dynamical Theory. Part II: Quantum and Classical Statistical Mechanics. Part
III: Nonlinear Mechanics and Pure Mathematics. Part IV: Quantum Field Theory.
Gordon and Breach, London, 1990–1995.

The organic fusion of mathematics and physics in the work of Bogoliubov
enabled him to make a decisive contribution to the development of theo-
retical physics, and in fact to lay the foundations of modern mathematical
physics, continuing the tradition of Hilbert (1962–1943), Poincaré (1845–
1912), and Einstein (1879–1955).

Vasilii Vladimirov, 2005

The following quotation is taken from the beautiful article by M. Atiyah, Mathe-
matics in the 20th Century, Bulletin of the London Mathematical Society 34 (2002),
1–15 (reprinted with permission):

The 21st century might be the era of quantum mathematics or, if you
like, of infinite-dimensional mathematics. What could this mean? Quan-
tum mathematics could mean, if we get that far, ‘understanding properly
the analysis, geometry, topology, algebra, of various non-linear function
spaces’, and ‘by understanding properly’ I mean understanding it in such
a way that as to get quite rigorous proofs of all the beautiful things the
physicists have been speculating about.
One should say that, if you go at infinite dimensions in a näıve way and
ask näıve questions, you usually get the wrong answers, or the answers are
dull. Physical application, insight, and motivation has enabled physicists
to ask intelligent questions about infinite dimensions, and to do very subtle
things where sensible answers do come out, and therefore doing infinite-
dimensional analysis in this way is by no means a simple task. You have



Epilogue 1047

to go about it in the right way. We have a lot of clues. The map is laid
out; this is what should be done, but there is a long way to go yet.
What else might happen in the 21st century? I would like to empha-
size Connes’ non-commutative differential geometry. Alain Connes has his
rather magnificent unified theory. Again, it combines everything. It com-
bines analysis, algebra, geometry, topology, physics, and number theory,
all of which combine to parts of it. It is a framework which enables us to
do what differential geometers normally do, including its relationship with
topology, in the context of non-commutative analysis. There are good rea-
sons for wanting to do this, applications (potential or otherwise) in number
theory, discrete groups, and so on, and in physics. An interesting link with
physics is just being worked out (see the monograph by Connes and Mar-
colli (2008)). How far this will go, what it will achieve, remains to be seen.
It certainly is something which I expect will be significantly developed in
the first decade at least of the next century, and it is possible it could have
a link with the as-yet-undeveloped (rigorous) quantum field theory.
Moving in another direction, there is what is called ‘arithmetic geometry’
or Arakelov geometry, which tries to unify as much as possible algebraic
geometry and parts of number theory. It is a very successful theory. It has
made a nice start, but has a long way to go. Who knows?
Of course, all of these have strands in common. I expect physics to have its
impact spread all the way through, even to number theory; Andrew Wiles
disagrees, and only time will tell. . .

Sir Michael Atiyah, 2002
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We also recommend the Lectures of the Poincaré Seminar “Bourbaphy” organized
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Leffler, Malmö (Sweden), 1955.
Kurt-Otto Friedrichs (1901–1982), Selecta, 2 vol., edited by Cathleen S. Morawetz,
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Kurt Gödel (1906–1978), Collected Works, Oxford University Press, 1986/2003.
Hermann Grassmann (1809–1877), Mathematische und physikalische Werke, 3

vol., Leipzig, 1894/1911.
George Green (1793–1841), Mathematical Papers, Hermann, Paris, 1903.
Brian Greene, The Elegant Universe: Supersymmetric Strings, Hidden Dimen-

sions, and the Quest for the Ultimate Theory, Norton, New York, 1999.
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1971/73.
Gottfried Wilhelm Leibniz (1646–1716), Sämtliche Schriften und Briefe (Collected

works and letters), Parts I–XIII, 35 vol., Berlin 1923ff.
Gottfried Wilhelm Leibniz, Mathematische Schriften, 3 vol., Akademie-Verlag,

Berlin, 1990/2003.
Leonardo da Vinci (1452–1519), Il manoscritti di Leonardo da Vinci e le loro edi-

zioni. Edited by A. Marinoni. In: Comitato Nazionale per le orance a Leonardo
da Vinci nel quinto centenario della nascita, Roma (Italia), 1952.

Jean Leray (1906–1998), Oeuvres scientifiques, 3 vol., edited by A. Borel, Springer,
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the class of all things which have
the property P)

U ∪ V (the union of two given sets
U and V )

U ∩V (the intersection of two given sets
U and V )

U \ V (the difference of two sets U and
V , i.e., the set of elements of U not
belonging to V )

∂U (boundary of the set U)
int(U) (interior of U)
cl(U) ≡ U ∪ ∂U (closure of U)
∅ (empty set)
2S (power set of S), 258
sup(S) (supremum of the set S), 237
inf(S) (infimum of the set S), 237
S

α∈A Xα (union of a family of sets Xα)
T

α∈A Xα (intersection)
Q

α∈A Xα (product of sets), 118
‘

α∈A Xα (coproduct of sets), 119
meas(S) (measure of the set S)
meas(SN ), 69
lim indn→∞ Xn (inductive limit), 243
lim projn→∞ Xn (projective limit), 243
limn→∞ ϕn = ϕ (limit in a Hilbert

space), Vol. I, p. 337

w − limϕn = ϕ (weak limit), 501
f(+0) (limit from the right), 732
f(−0) (limit from the left), 732
A− limt→+∞ f(t) (Abel limit), 754
w − limn→∞ An = A (weak operator

limit), 655
s− limn→∞ An = A (strong operator

limit), 656
u− limn→∞ An = A (uniform operator

limit), 656

z = x + yi (complex number)
�(z) := x (real part of z)
�(z) := y (imaginary part of z)
z† := x− yi (conjugate complex

number) (synonymously, z̄ ≡ z†)
|z| (modulus of z), Vol. I, p. 209
arg(z) (principal argument of z),
−π < arg(z) ≤ π, Vol. I, p. 209

arg∗(z) (argument of z), Vol. I, p. 209√
z :=

p

|z| e 1
2 i arg(z) (principal value

of the square root of z), 480
ln z := ln |z|+ i arg(z) (principal value

of the logarithm of z), 764
zλ (principal value), 85
∂x := ∂

∂x
, ∂y := ∂

∂y
, 318

∂z = ∂
∂z

:= 1
2
(∂x − i∂y),

∂z̄ = ∂
∂z̄

:= 1
2
(∂x + i∂y), 318, 616

dz, dz̄, 318
∂ := ∂z · dz, ∂̄ := ∂z̄ · dz̄, 318, 323
resz(f) (residue of the function f at the

point z), Vol. I, p. 213

R (set of real numbers)
C (set of complex numbers; Gaussian

plane)

C (closed Gaussian plane), 195
C> (open upper half-plane), 764
C≥ (closed upper half-plane), 764
K = R,C (set of real or complex

numbers)
Z (set of integers, 0,±1,±2, . . .)
N (set of natural numbers, 0, 1, 2, . . .)
Q (set of rational numbers)
R

N ,CN ,KN (N = 1, 2, . . .),
Vol. I, p. 328

H (skew-field of quaternions), 179
Z/mod m (or Zm) (Gaussian ring of

integers modulo m), 180
E3 (3-dimensional real Hilbert space)
E

3 (Euclidean manifold) 364
TP E

3 (tangent space of the Euclidean
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manifold at the point P , which is
isomorphic to E3), 364

M4 (4-dimensional real linear
Minkowski space with indefinite
inner product) (see Vol. III)

M
4 (Minkowski manifold), Vol. I, p. 769

TP M
4 (tangent space of the Minkowski

manifold at the point P , which is
isomorphic to M4)

R
× (set of nonzero real numbers)

N
× (set of nonzero natural numbers,

1, 2, 3, . . .)
C

× (set of nonzero complex numbers)
K

× (set of nonzero numbers in K)
R≥ (set of nonnegative real numbers,

x ≥ 0)
R> (set of positive real numbers, x > 0)
R≤ (set of non-positive real numbers,

x ≤ 0)
R< (set of negative real numbers, x < 0)
R+ (additive semigroup of nonnegative

real numbers)
R

×
+ (multiplicative group of positive

real numbers)
∗R (set of generalized real numbers), 248

B
2 (closed unit disc)

int(B2) (open unit disc)
S

1 ≡ ∂B
2 (unit circle)

B
n+1 ((n + 1)-dimensional closed

unit ball), 194
int(Bn+1) ( (n + 1)-dimensional open

unit ball), 194
S

n (n-dimensional unit sphere), 194
B

n+1
R (a) ( (n + 1)-dimensional closed

unit
sphere of radius R centered at the
point a), 194

S
n
R ≡ ∂B

n+1
R (0) (n-dimensional sphere

of radius R), 194
P

n (n-dimensional real projective
space), 203

P
n
C (n-dimensional complex projective

space), 204
X× (set of nonzero elements of

the Hilbert space X)
B(X) (closed unit ball in X), 199
int(B(X)) (open unit ball in X), 199
S(X) (unit sphere of X), 199
Gm(X) (space of m-dimensional linear

subspaces of X), 199

P(X) (projective space generated by the
Hilbert space X), 199

L⊥ (orthogonal complement to L in a
Hilbert space), 635

[x] (equivalence class of the represen-
tative x), 199

X/ ∼ (space of equivalence classes), 199
X/G (orbit space), 197
stab(x0) (stabilizer), 197

Ā (mean value), Vol. I, p. 351
ΔA (mean fluctuation), Vol. I, p. 351

dimX (dimension of the linear
space X), Vol. I, p. 330

codim(X) (codimension), 189
span(S) (linear hull of the set S),

Vol. I, p. 329
〈x|y〉 (inner product), Vol. I, p. 336
〈ϕ|, |ψ〉 (Dirac calculus), Vol. I, p. 359
||ϕ|| (norm), Vol. I, p. 336
L(X,Y ) (space of linear operators from

X into Y )
Xd (dual space), 119

A† (adjoint operator on a linear space),
Vol. I, p. 341

A† (formally adjoint operator on
a Hilbert space), 683

A∗ (adjoint operator on a Hilbert space),
683

Ad (dual operator), 119
A−1 (inverse operator), Vol. I, p. 931
Ac (conjugate complex operator); this

means (A†)d

I (unit matrix), 766
diag(a, b) (diagonal matrix), 766

A† (adjoint matrix), 766
Ad (dual or transposed matrix), 766
Ac (conjugate complex matrix), 766
A−1 (inverse matrix), 766
[A,B]− := AB −BA,
[A,B]+ := AB + BA,
tr(A) (trace), 629, 766
det(A) (determinant), 563,766
eA (exponential function), 769
lnA (logarithmic function), 769
σ(A) (spectrum), 766
�(A) = C \ σ(A) (resolvent set), 766
b1, . . . , bn (cobasis to the basis

b1, . . . bn), 119

dxk ≡ bk

Mk(X) (linear space of k-linear
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functionals), 120
M(X) (algebra of multilinear

functionals), 120,
X ⊕ Y,

L

α Xα (direct sum of linear
spaces), 118

X ⊗Y (tensor product of linear spaces),
121

A⊗ B (tensor product of algebras), 121
VectK (the semi-ring of finite-dimen-

sional linear spaces over K), 231
VectK(M) (semi-ring of finite-dimen-

sional linear spaces on the
topological space M), 231

K(VectK) (the K-ring related to the
semi-ring VectK), 231

KK(M) (the K-ring of the topological
space M), 231

S + T (sum of two subsets of linear
spaces), 190

ST (product of two subsets of algebras),
190

S × T (Cartesian product of two sets),
118

ϕ× ψ (Cartesian product of two maps),
118

ϕ⊗ψ (tensor product of two maps), 148

TPM (tangent space of the
manifold M at the point P ), 398

TM (tangent bundle of the
manifold M), 398

TPM
d (cotangent space of the

manifold M at the point P ), 398
TMd (cotangent bundle of the

manifold M), 398
Ωx0X (loop space of X with the base

point x0), 223
π1(X) (fundamental group of the topo-

logical space X), 223
πk(X) (homotopy group of order k), 223

U(1) = {z ∈ C : |z| = 1} (Lie group of
rotations of the unit circle), 152

SU(E3) (Lie group of rotations of the
3-dimensional Euclidean space), 417

su(E3) (Lie algebra of infinitesimal
rotations), 417

GL(X), SL(X), U(X), SU(X)
(Lie groups), Vol. I, p. 341

U(n), SU(n), O(n), SO(n),
GL(n,R), SL(n,R), GL(n,C), SL(n,C)

(matrix Lie groups), Vol. I, p. 341

gl(X), sl(X), u(X), su(X)
(Lie algebras), Vol. I, p. 342

u(n), su(n), o(n), so(n), gl(n,R),
sl(n,R), gl(n,C), sl(n,C)
(matrix Lie algebras) Vol. I, p. 343

curlE (curl of the vector field E),
Vol. I, p. 170

div E (divergence of E), Vol. I, p. 170
gradU (gradient of the scalar

field U), Vol. I, p. 170
∂ (vector differential operator), Vol. I,

p. 170
Δ = −∂2 (Laplacian), Vol. I, p. 542
Δ (Laplace–Beltrami operator), 306, 321
Δ (coproduct of a Hopf algebra) 123, 128
� (wave operator), Vol. I, p. 794
Vec(M) (space of smooth vector fields

on the manifold M), 401
{A,B} (Poisson bracket), 407
Ft (flow), 408
v[f ] Lie derivation, 401

v# ω = dH (canonical equation), 408
dω (Cartan’s differential), 408
dq ∧ dp (Cartan’s wedge product), 408
∗ω (Hodge’s star operator), 306
d∗ (Hodge’s adjoint operator), 306
Δ := d∗d + dd∗ (Laplace–Beltrami op-

erator), 306

ψ̇(t) ≡ dψ(t)
dt

(time derivative) f ′(x) ≡
df(x)

dx
(derivative)

∂μf ≡ ∂f
∂xμ (partial derivative)

∂αf (partial derivative of the
function f of order |α|), 123

∂αF (partial derivative of the
distribution F ), Vol. I, p. 610

α = (α1, . . . , αN ) (multi-index), 123
|α| = α1 + . . . + αN (order of α)
α! = α1!α2! · · ·αN ! (factorial)
∇α (covariant derivative), 36
δF (ψ;h) (variation of the functional F

at the point ψ in direction of h),
Vol. I, p. 396

F ′(ψ) ≡ δF (ψ)
δψ

(functional derivative of

F at the point ψ), Vol. I, p. 396
δZ(J)
δJ(x)

, δF (ψ)
δψ(x)

(local functional derivative

at the point x),
Vol. I, p. 403, p. 442, p. 750, p. 761

R

f(x) dx (Lebesgue integral),
Vol. I, p. 529

R

f(x) dμ(x) (measure integral),
Vol. I, p. 529
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R

f(λ) dEλ (Hilbert–von Neumann,
spectral integral),
Vol. I, p. 37, p. 369

PV
R∞
−∞ f(x) dx (principal value),

495
R

F (q) dμ(q),
R

F (ϕ) Dϕ (functional
integral), Vol. I, p. 416, p. 442,
p. 753

R

eiS[q]/� Dq (Feynman path integral in
the position space), 559,

R

eS[q,p]/� DqDp (Feynman path
integral in the phase space),
556

R

D(A)
e−

1
2 〈ϕ|Aϕ〉 DGϕ (normalized

infinite-dimensional Gaussian
integral), 572

R

eiS[q]/� DGq (normalized infinite-
dimensional Gaussian integral), 575

ΠΔt(qin, qout) (space of curves),
Vol. I, p. 420

zero(f) (set of zeros of the function f),
Vol. I, p. 608

supp(f) (support of the function f),
Vol. I, p. 608

supp(F ) (support of the distribution F ),
Vol. I, p. 610

supp(μ) (support of the measure μ),
Vol. I, p. 602

sing supp(F ) (singular support of the
distribution F ), Vol. I, p. 705

Char(L) (characteristic set of the differ-
ential operator L), Vol. I, p. 711

WF (G) (wave front set of the distribu-
tion G), Vol. I, p. 710

Fg, ĝ (Fourier transform of the
function g), 512, 514

FG (Fourier transform of the distribu-
tion G), 514

F�g, g̃ (rescaled Fourier transform), 533
FMg (Fourier–Minkowski transform of

the function g), 865 (see Vol. I,
p. 772)

Lg (Laplace transform of g),
Vol. I, p. 92

f ∗ g (convolution of two functions),
Vol. I, p. 93, p. 534

F ∗G (convolution of two distributions),
Vol. I, p. 616

f ⊗ g (tensor product of two functions),
Vol. I, p. 616

F ⊗G (tensor product of two distribu-
tions), Vol. I, p. 616

x⊗ y (tensor product of two elements of
linear spaces or algebras), 121

a ∗ b (Moyal star product of two func-
tions), 591, 607

LE(Rn) (Hopf algebra of linear differen-
tial operators), 123

1 (unit element of an algebra), 116
Δa =

P

a a(1) ⊗ a(2) (Sweedler notation
for the coproduct Δ), 129

μ (multiplication map), 128
η (unitality map), 128
ε (counitality map), 128

C[a, b] (space of continuous functions),
Vol. I, p. 366

C1[a, b] (space of continuously differen-
tiable functions), Vol. I, p. 550

C∞(Ω) ≡ E(Ω) (space of smooth
functions), Vol. I, p. 543

C∞(Ω), Vol. I, p. 543
C∞

0 (Ω) ≡ D(Ω), Vol. I, p. 543
C∞(Rn,R) (space of smooth functions

f : R
n → R),

Cα(Ω), Ck,α(Ω) (Hölder spaces),
Vol. I, p. 554

C0,1(Ω), Ck,1(Ω) (Lipschitz spaces),
Vol. I, p. 554

Ck[0, 1] (function space), 689
C{s, t} (function space), 549
C2

0 [s, t] (function space), 550
L2(R), L2(Ω) (Lebesgue spaces), 432

(see also Vol. I, p. 531)
L2(−π, π), Vol. I, p. 533
Lloc(R

N ), Vol. I, p. 609
l2 (classical Hilbert space), Vol. I, p. 534
L2(M) (discrete Lebesgue space)

Vol. I, p. 441

W 1
2 (Ω),

◦
W 1

2 (Ω) (Sobolev spaces),
Vol. I, p. 557

W k
2 (Ω), Vol. I, p. 557

W
1/2
2 (Ω) (fractional Sobolev space),

Vol. I, p. 557
W 1

2 (R),W 2
2 (R) (Sobolev spaces), 514

D(Ω) ≡ C∞
0 (Ω) (space of smooth

test functions with compact
support), Vol. I, p. 543

S(RN ) (space of rapidly decreasing
test functions), Vol. I, p. 537

E(RN ) ≡ C∞(RN ) (space of smooth
test functions), Vol. I, p. 614

D′(RN ) (space of distributions),
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Vol. I, p. 608
S ′(RN ) (space of tempered distribu-

tions), Vol. I, p. 615
E ′(RN ) (space of distributions with

compact support), Vol. I, p. 614

σ1, σ2, σ3 (Pauli matrices), 793
γ0, γ1, γ2, γ3 (Dirac–Pauli matrices),

793
γ5 (chiral matrix) 793
γ0 = γ0, γj = −γj , j = 1, 2, 3, 904

γ0
W , γ1

W , γ2
W , γ3

W (Weyl matrices), 936

γ5
W (chiral Weyl matrix), 936

γ0
M , γ1

M , γ2
M , γ3

M (Majorana matrices),
937

γ5
M (chiral Majorana matrix), 937

ψ ≡ ψ†γ0

�∂ ≡ ∂μγ
μ, �∇ ≡ ∇μγ

μ, �A(x) := γμA
μ(x)

(Feynman’s slash symbols), 807, 840

S[q] = min! (minimum problem),
361, 374

S[q] = critical! (critical point problem),
361, 374

δS(q;h) (first variation), 362, 374
δ2S(q;h) (second variation), 361, 374
δS[q]

δq
(first functional derivative), 374

δS[q]
δq(t)

(local functional derivative), 374

δ2S[q]

δq2 (second functional derivative), 375

D(t0, t1) (or C∞
0 (t0, t1)) (space of test

functions), 373
σ(H) (spectrum of the operator H), 504
σpp(H) (pure point spectrum), 504
σac(H), σsing(H), σc(H), σess(H) (abso-

lutely continuous, singular, continu-
ous, essential spectrum), 504

Xbound (space of bound states), 504
Xscatt (space of scattering states), 504
Xsing (space of singular states), 504
�(H) (resolvent set of the operator H),

504
RE = (EI −H)−1 (resolvent), 504

P (t, s) (propagator), Vol. I, p. 383
P+(t, s) (retarded propagator), Vol. I,

p. 384
P−(t, s) (advanced propagator), Vol. I,

p. 384
� (density operator), 543, 651
ζA (zeta function of the operator A),

563, 571

|0〉, Φ0 (ground state of a free quantum
field)

|0int〉, Φint (ground state of a quantum
field under interactions)

T (chronological operator), 837
: AB : (normal product), 823
C(AB) ≡ 〈0|AB|0〉 (contraction), 842
CT (AB) ≡ 〈0|T (AB)|0〉 (time-ordered

contraction), 850
: AB : ≡ C(AB) · I (paired normal

product)
: AB : ≡ CT (AB) · I (time-ordered

paired normal product)
: ABCD : (bosonic case), 848,

(fermionic case), 853
: ABCD (bosonic case), 850,

(fermionic case), 854

K(x, t; y, t0) (Feynman propagator
kernel), 491

R(x, y;E) (resolvent kernel), 492
G(x, y;E) (energetic Green’s function),

493
S(t, t0) (scattering operator with

respect to the time interval [t0, t]),
610, 749, 835, 839

S(T ) ≡ S(T
2
,−T

2
),

S (scattering operator S(+∞,−∞)), 749
W(T ) (transition probability), 838
〈Φin|S(T )Φout〉 (transition amplitude),

838
up,s (free electron function), 806
vp,s (free positron function), 806
up,s ≡ u†

p,sγ
0, vp,s ≡ v†p,sγ

0

eμ
s (photon polarization 4-vector with

polarization index s = 0, 1, 2, 3), 805
Aμ

p,s (free photon function), 828,
Aμ

free (free photon quantum field), 837,
ψfree (free electron-positron quantum

field), 837

ψfree ≡ ψ†
freeγ

0 (Dirac’s adjoint electron-
positron quantum field), 837

a+
p,s (creation operator for a photon with

momentum vector p and polari-
zation number s = 0, 1, 2, 3), 812

a−p,s (annihilation operator for a
photon), 812

b+p,s (creation operator for an electron
with momentum vector p and
spin number s = ± 1

2
), 815

b−p,s (annihilation operator for an
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electron), 815
c+p,s (creation operator for a positron

with momentum vector p and
spin number s = ± 1

2
), 815

c−p,s (annihilation operator for a
positron), 815

Dμ,ν
F (x) (discrete photon propagator),

857
Dμν

F,ε,mph
(x), Dμν(p) (regularized

discrete photon propagator),
857, 862

SF (x) (discrete electron propagator),
857

SF,ε(x), S(p) (regularized discrete
electron propagator), 857, 862

GF ,GF,me , 857

Ep =
p

p2 + m2
e (electron energy in

the energetic system), 857
ωp = |p| (photon energy in the energetic

system)

Ep =
p

p2 + mϕ (regularized photon
energy), 857

Dμν
F (tempered photon propagator dis-

tribution),
868

SF (tempered electron propagator dis-
tribution),

868
GF (tempered propagator distribution
for the

wave equation), 868
GF,m (tempered propagator distribution
for the

Klein–Gordon equation), 868
1

p2−m2
0+0+i

(special distribution),

Vol. I, p. 780
α (fine structure constant), 789
−e (bare negative electric charge of the

electron) 947
−eeff (effective negative electric charge

of the electron), 947
me (bare electron mass), 947
meff (effective mass of the electron),

947
mph (virtual photon mass), 857
Zm, Ze, ZA, Zψ, Zξ (multiplicative re-

normalization constants), 951
δm, δe (counterterm constants), 948
c (velocity of light in a vacuum),

Vol. I, p. 949
h (Planck’s quantum of action),
� ≡ h/2π (reduced Planck’s quantum

of action), Vol. I, p. 949

k (Boltzmann constant), Vol. I, p. 949
β ≡ 1/kT , 540
G (gravitational constant), Vol. I, p. 949
ε0 (electric field constant of a vacuum),

Vol. I, p. 949
μ0 (magnetic field constant of a

vacuum), Vol. I, p. 949
λC (Compton wave length),

Vol. I, p. 142
λC ≡ λC/2π (reduced Compton wave

length), Vol. I, p. 142
m (meter), Vol. I, p. 934
s (second), Vol. I, p. 934
J (Joule), Vol. I, p. 934
C (Coulomb), Vol. I, p. 934
K (Kelvin), Vol. I, p. 934
m, s,J,C,K (Planck units),

Vol. I, p. 937
eV (electron volt), Vol. I, p. 937
MeV (mega electron volt,

1MeV = 106 eV), Vol. I, p. 937
GeV (giga electron volt,

1GeV = 109 eV), Vol. I, p. 937
TeV (tera electron volt,

1TeV = 1012 eV)
Z(J), Cn, Cn, Gn (discrete model of a

quantum field), Vol. I, p. 444
Z(J, ϕ), Zfree(J, ϕ), Vol. I, p. 448
Sn, Vol. I, p. 450
ϕmean, Vol. I, p. 456
Zred, Vol. I, p. 457
Vn, Vol. I, p. 458
Cn,free, Vol. I, p. 464
Z(J) (full generating functional),

Vol. I, p. 749
Zfree(J) (free generating functional),

Vol. I, p. 749
Cn (full n-point correlation function),

Vol. I, p. 744
Cn,free (free n-point correlation func-

tion), Vol. I, p. 743
Gn (full n-point Green’s function),

Vol. I, p. 744
Gn,free (free n-point Green’s function),

Vol. I, p. 744
Γ, γ (Feynman graphs), 970, 982
Γ/γ (shrinking of the subgraph γ to a

point), 982,
J(Γ ) (algebraic Feynman integral

related to Γ ), 982
R(Γ ) (regularization of J(Γ )), 982

R(Γ ) (preparation of J(Γ )), 982,
S(Γ ) (subtraction term), 982,
PΓ (truncation operator), 981
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Abel, 54, 754, 1051
– limit, 754
– summation, 94
acceleration, 368
– constant on earth, 369
– of gravity, 390
accessory
– eigenvalue problem, 376, 379
– minimum problem, 379
Acta eruditorum, 370, 394
action, 13, 373, 378, 405
– and quantization, 15
– importance, 15
– of a group
– – effective, 197
– – faithful, 197
– – free, 197
– – transitive, 197
additive
– group, 179
– renormalization, 948
adiabatic
– average, 95
– Dirac delta function, 95
– limit, 96, 739
– regularization, 753
– – divergent series, 93
– – oscillating integral, 94
adjoint
– matrix, 434
– operator, 683, 684
– – formally, 683
Adler, 1051
advanced
– fundamental solution, 85, 88
– – Fourier transform, 91
– Green’s function, 89, 736
– propagator, 498, 726
– – distribution, 873
Alexander the Great, 271
algebra, 116

– ∗-algebra, 629
– C∗-algebra, 627
– anti-automorphism, 155
– anti-endomorphism, 155
– anti-morphism, 116, 170
– associative, 116
– automorphism, 155
– bialgebra, 123
– canonical morphisms, 128
– commutative, 116
– – freely generated, 995
– endomorphism, 155
– Hopf algebra, 128
– isomorphism, 116
– morphism, 116
– multiplication map, 128
– of observables, 634, 639, 646
– pre-C∗-algebra, 646
– subalgebra, 116
– unital, 116
– unitality map, 128
algebraic
– curve, 203
– – complex, 1002
– – real, 1002
– geometry, 395
– – history, 200
– renormalization
– – advantage, 1020
– – main philosophy, 1020
almost all, 763
almost complex space, 291
Alten, 1051
alternating group, 186
amplitudinis function, 392
amputated Feynman graph, 845, 970
analytic continuation, 56
angular
– frequency, 21, 369
– momentum, 416
anharmonic oscillator, 20, 49, 370, 378
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– non-resonance case, 50
– resonance case, 51
annihilation operator, 432, 436, 440,

775, 781
– electron, 815
– formal, 779
– photon, 812
– positron, 815
anomalous magnetic moment
– electron, 959
– muon, 961
anomaly, 980, 1020, 1022, 1039
anti-holomorphic, 617
anti-morphism, 116
anti-multiplicative operator, 155
anticommutation relation, 782
antidistribution, 779
– with values in an operator space, 783
antilinear, 155, 659, 778
antipode (coinverse), XII, 129
antiself-dual operator, 516
antisymmetrization, 772
antiunitary, 660
Appolonius, 200
approximation schemes in mathematics,

951, 952
arc length, 415
Archimedes, 1051
arcwise connected (see Vol. I), 220, 343
Ariadne’s thread in
– classical mechanics, 359
– contact geometry, 279
– differential geometry, 341
– functional analysis, 509
– gauge theory, 333, 341
– geometrical optics, 264
– matrix theory, 765
– quantization, 427
– renormalization, 48
– scattering theory, 699
– soliton theory, 1009
Aristotle, 271, 1051
arithmetic-geometric mean, 395
Arnold, 266, 285, 1051
Ashtekar program, 225
associative law, 116, 128
asymptotic
– freedom, 63, 1029
– stability, 382
asymptotically free motion, 752
Atiyah, 1047, 1051
augmentation map, 128

automated multi-loop computations in
perturbation theory, XXII, 978

automorphic function, 1002
automorphism, 155
– ∗-automorphism, 629
– C∗-automorphism, 628
– infinitesimal, 155
Avogadro, 100
AWI (action Ward identity), 1037
axiom of choice, 246

Bacon, 11
– Francis, 1051
– Roger, 1051
Baconian empiricism, 11
Banach, 729, 744, 1051
– fixed-point theorem (see Vol. I), 113,

745
– space (see Vol. I), 234, 744
bare
– electron charge, XX, 947
– electron mass, XX, 947
Bargmann, 618
– holomorphic quantization, 617
Bargmann–Fock space, 618
Barrow, 45
base
– point, 223
– space, 208, 209
Basov, 903
Baxter
– Glen, 154
– Rodney, 147
Beckert, 246
Bell (John)
– polynomial, 135
Bellman, 348
– dynamic programming, 348
Beltrami, 297
– elliptic model, 308, 356
– hyperbolic model, 308, 356
Bernoulli (Jakob), 371, 1051
– lemniscate, 392
– number, 54, 100
– probability theory, 100
Bernoulli (Johann), 264, 1051
– brachistochrone, 371
– calculus of variations, 371
beta function, 69
Bethe, 3, 6, 1051
– Lamb shift computation, 962
Betti, 325
– number, 307, 343–345
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Bézout, 200
BFFO (Brouder, Fauser, Frabetti,

Oeckl), 1016
bialgebra, 128
– morphism, 129
Bianchi, 325
– identity, 40, 328, 329, 336, 933
bicommutant, 655
– theorem, 655
bifurcation
– equation, 53
– theory, 52
bilinear functional, 120
binary planar graph, 1026
Birkhoff (Garrett), 1051
– lattice theory, 238
Birkhoff (George), 998
– decomposition, 161
– dynamical systems, 1051
– factorization, 994, 996
– generalized Riemann–Hilbert

problem, 994
– iterative method, 994, 996
bit, 641
Blumenthal, 233
Bochner theorem, 144
Bogoliubov, XI, 115, 987, 1046, 1051
– R-operation, XI, 981
– axiomatic S-matrix method, 987
– iterative R-method in renormaliza-

tion theory, 982
Bogolyubov (see Bogoliubov), 1051
Bohr, 1051
Boltzmann, 1052
– constant, 639, 643
– equipartition law, 541
Bólyai
– Farkas, 290
– Janos, 290
Bombielli, 461
Boole, 110
bootstrap method, 21
Borel (Armand), 227, 1052

Borel (Émile), 54
– circle method, 99
– regularization (summation), 98
Born, 263, 441, 448, 1052
– approximation, 21, 51, 731, 743
Born–Heisenberg–Jordan commutation

relation, 621, 622
Bose–Einstein
– condensation, 541, 650, 651
– statistics, 649, 819

boson (see Vol. I), 771
bosonic operator, 846
bosonic-fermionic states, 664
Bott, 228, 1052
– periodicity theorem, 228
bound state, 700, 710, 722, 1022
bounded operator, 690
Bourbaki, 110, 1052
Bourbaphy, 1050
Bourguignon, 318
BPHZ (Bogoliubov, Parasiuk, Hepp,

Zimmermann), XI
– renormalization, XI, 56, 115, 981
BPHZL (Bogoliubov, Parasiuk, Hepp,

Zimmermann, Lowenstein), 986
brachistochrone, 371
Breit–Wigner formula, 716
Brennan, 1052
Brouder, XXII, 124, 1016, 1018, 1027
Brouwer, 216
Brown, Robert, 485, 585
Brownian motion, 585, 614
BRS (see BRST), 1019
BRST (Becchi, Rouet, Stora, Tyutin)
– quantization (see Vols. I, IV), 832
– renormalization, 1019
Brunetti, XXII
Buchberger algorithm, 978
Buchholz, XXII
bundle, 208
– chart, 213
– isomorphism, 209
– morphism, 209
– projection, 209
– space, 208, 209
bundles in physics, 208
– observers and cocycles, 208
– prototypes, 395
Bunyakovskii, 356
Buschhorn, 1050

C∗-Algebras, 626
Callan–Szymanzik equation, 1024
cancellations, 131
canonical
– equation, 404
– transformation, 403
Cantor, 245, 1052
Cao, 366
Carathéodory, 264, 271, 371, 1052
– fundamental equation, 272, 419
– royal road to
– – geometrical optics, 271
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– – the calculus of variations, 419
cardinality, 164

Cartan (Élie), 13, 43, 200, 204, 297,
1052

– connection form, 40, 42, 326
– covariant differential, 40, 335
– curvature form, 41, 326, 333
– differential, 40
– structural equation, 41, 326, 341, 342
– – local, 329
Cartan (Henri), 200, 218, 1052
Cartan–Kähler theorem (see Vol. III),

285
Cartesian
– dogmatism, 11
– product, 118
Cartier, 109, 246
Casimir effect (see Vol. I), 56, 818
category, 628, 630
– theory, XIV
Cauchy, 54, 276, 356, 1052
– characteristic system, 276
– residue
– – method (see Vol. I), 58
– – trick, 70
– sequence, 317
Cauchy–Bunyakovskii inequality (see

Schwarz inequality), 356
causal propagator, 499
causality, 482, 609
– relation, 491, 492
caustic, 266, 349
Cayley, 399, 691, 768, 1052
– transform, 691, 768
CCR-algebra, 631
Čech, 216
center of a
– group, 625
– Lie algebra, 625
central extension, 625, 626
CERN (European Organization for

Nuclear Research at Geneva,
Switzerland), 978

Chambre, 263
Chandrasekhar, 761, 1052
– mass, 651
character, 152
characteristic
– equation, 766
– function, 143
– – of an interval, 497
characteristics (see Vol. III), 276
Chebyshev, 1052

– inequality, 460
Cheeger, 572
chemical
– potential, 639
– substance, 285
Cherenkov, 926
– radiation, 926
Chern, 297, 304, 1052
– class, 305, 322
chiral
– Dirac–Pauli matrix, 936
– matrix, 794, 936
– Weyl matrix, 936
Christoffel, 325
– symbol, 327, 328, 357
chronological operator, 837, 1038
Clairaut, 280
– differential equation, 280
clamor of Boeotians, 290
class, 246
classical electron radius, 901
classification in science
– equivalence classes, 177
Clausius, 643
Clifford
– quantum algebra, 1017
– relation, 904
closed operator, 684
closure, 685
cluster, 748
co-slope, 265, 274
co-velocity, 420
coassociativity, 128
cobasis, 119
cocommutative, 130
– Hopf algebra, 130
cocycle, 213, 342, 448
codimension, 189
coding theory, 182
codon, 642
cofinite subset, 251
cofunctor, 632
coherent state, 438, 478
cohomology, 305, 307
coinverse, XII
Collected Works of great scientists,

1051
Collins, 969
Colombeau product of distributions,

1034
combinatorics, 115
commutant, 655
commutation relation, 464, 776
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commutative
– diagram, 168, 723, 726
– Hopf algebra, 130
– law, 116
compact
– manifold, 343
– operator, 504, 629
– set (see Vol. I), 343
– support (see Vol. I), 27
compact-open topology, 225
compactification
– n-point, 1026
– one-point, 1025
complete
– orthonormal system (see Vol. I), 700
– – of generalized eigenfunctions, 721
– wave operators, 752
completely ordered set, 256
completeness, 317
– of energy eigenstates, 431
– relation, 432, 491, 517, 805
complexification, 296
Compton, 903
– effect (see Compton scattering), 886
– scattering, 886, 892, 899, 903
– – asymptotic cross section, 894
– – continuum limit, 894
– – cross section, 891, 899
– – crossing symmetry, 885
– – Feynman diagrams, 876, 886
– – Klein–Nishina formula, 899
– wavelength, 901
– – reduced, 900
confluent hypergeometric function,

1004
conformal
– map, 195
– quantum field theory, 626
congruence, 180
conjugate points, 279, 380
connected
– arcwise connected, 222
– Feynman graph, 845
– simply connected, 222
connection, 332, 340
– form, 297, 326
– – local, 329
– matrices, 326, 330
– torsion-free, 329
Connes, 47, 660, 662, 1047
conservation law, 387
– energy, 384
– momentum, 384

– Noether theorem, 384
constraining force, 412
contact
– element, 279, 282
– form, 283
– geometry, 279
– transformation, 283
– – mnemonic approach, 285
continuously differentiable, 495
continuum limit, 801
– in quantum electrodynamics, 945
contractible (see Vol. I), 222, 347
contraction, 566, 842
– and the Wick theorem, 842
– principle, 745
convergence (see Vol. I)
– weak, 655
coordinatization
– in mathematics and physics, 146
– of a finite group, 150
– of an operator group, 150
coproduct
– of a Hopf algebra, XII, 129, 1017,

1064
– of sets (disjoint union), 118, 210, 214,

1062
correlation
– coefficient, 458, 463, 634, 638
– function, 141, 456, 1020, 1039
– – free, 565
– – full, 568, 570
cosmology, 204
– quintessence, 204
costate, 398, 509, 513, 515
cotangent
– bundle, 337, 396, 398, 403
– vector, 398
counit, 128, 1017
counitality, 128
counterterm, 57, 67, 947, 948, 950, 957
coupling constant, 20, 52, 370, 567, 730
– running, 52
covariance, 463
covariant
– differential, 40, 335, 341
– directional derivative, 39, 334, 339
– partial derivative, 36, 326, 339
covelocity vector, 398
covering
– group, 400
– space, 399
– – universal, 399
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creation operator, 432, 435, 440, 774,
781

– electron, 815
– formal, 779
– photon, 812
– positron, 815
critical
– action, 360
– point, 361, 374
cross section, 788, 892, 894
– fundamental lattice limit, 894
crossing symmetry, 887, 913
C∗-algebra, 502, 627
– incomplete, 646
C∗-automorphism, 628, 634
C∗-morphism, 628
C∗-subalgebra, 627
C∗-isomorphism, 628
cumulant, 143, 144, 569
curvature, 12
– and force, 43
– Gauss–Riemann–Cartan, 12
cyclic, 659
– group, 222
cylindrical set, 587

da Vinci (see Leonardo da Vinci), 370
dark matter, 46
de Giorgi, 1054
de Rham, 200, 297
– cohomology, 305
– – cofunctor, 632
de Vries, 1009
decomposable, 120
Dedekind, 179, 629, 1052
deficiency index, 689
deformation
– map, 219
– quantization, 591
– retract, 221
degree, 121
Dehmelt, 959
Democritos, 263
dense set (see Vol. I), 432, 488, 681
density
– matrix, 540, 544
– operator, 540, 543, 651
Dereziński, 751, 763
derivation, 155
– inverse, 156
derivative
– algebraization, 28
– covariant, 36, 326

Descartes, 11, 146, 263, 902, 1052
determinant, 766
– of an infinite-dimensional operator,

571
Devlin, 1052
diagonal matrix, 766
dielectricity constant
– in a vacuum, 267
– in matter, 267
Dieudonné, 430, 1052
diffeomorphism (see Vol. I), 399
– group, 136
– – formal, 136
– – local, 136
differential
– covariant, 40, 335
– cross section, 900
– geometry
– – basic ideas, 297
– operator
– – generalized, 155
differential equation
– Fuchsian type, 1001
– Painlevé type, 1003
– strongly singular point, 1001
– weakly singular point, 1001
differential form, 283, 398
– classical differential, 40
– covariant differential, 40
– elementary rules, 40, 283, 354
– gauge-invariant, 338
– on a principal fiber bundle, 340
– pull-back, 354
diffusion law
– Brownian motion, 485
– macroscopic, 584
dimensional regularization, 74, 981,

1019
– discrete algebraic Feynman integral,

949
Diophantus, 1052
dipole, 954
Dirac, 13, 26, 443, 447, 480, 729, 1053
– adjoint matrix, 904
– calculus (see Vol. I), 431, 489, 513,

517, 533, 544, 601
– completeness relation, 432
– delta distribution, 27
– delta function, 26, 95
– – adiabatic, 95
– – approximation, 18, 95
– – discrete (see Vol. I), 802, 884, 887
– – square, 58
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– equation, 932, 959
– picture (or interaction picture), 611
– space, 826
– substitution trick, 490
– unitarity principle, 12
Dirac–Pauli matrices, 793
– trace rules, 904
direct sum, 118
directed set, 240
directional derivative
– classical, 39
– covariant, 39, 334
disconnected Feynman graph, 845
discrete
– Feynman propagator, 858
– free n-point function (correlation

function), 565
– full n-point function (correlation

function), 568
– Wightman function, 860
disjoint union (coproduct), 119, 210,

398
disorder, 642
– measure, 643
dispersion
– operator
– – infinite-dimensional, 571
– relation, 764
dissipative, 382
distribution (generalized function) (see

Vol. I), 26
– tempered, 510
– with values in an operator space,

779, 783
distribution function, 501
distributive law, 116
divergence
– linear, 61
– logarithmic, 61
– quadratic, 61
divergent series, 93
division algebra, 233
DNA (desoxyribonucleic acid), 642
Du Bois-Reymond, 97
dual
– matrix, 766
– operator, 515
duality, 152
– de Rham, 152
– Pontryagin, 153
– Tannaka–Krein, 153
duality between
– causality and analyticity, 525

– differential and integral equations, 21
– energy and time, 525
– position and momentum, 521
Duplantier, XXI
Dütsch, XXII, 455
dynamic programming, 348
dynamical system, 389
Dyson, 3, 5–7, 11, 461, 479, 962, 973,

1053
– magic S-matrix formula, 611, 836
– series, 160, 421, 836
Dyson–Schwinger equation (see Vol. I),

979

Ebbinghaus, 245
Ebrahimi-Fard, XXII, 991
eccentricity, 132
effective
– electron charge, XX, 947
– electron mass, XX, 947
– parameter, 48
Ehresmann, 13, 43, 325
eigencostate, 515, 517, 519, 523, 526
eigenfunction, 711
– generalized, 720
eigensolution, 49
eigenstate, 503
– generalized, 526
eigenvalue, 503
– generalized, 503
– of a matrix, 766
eikonal, 265, 272
– equation, 265
Einstein, 1, 13, 43, 297, 325, 485, 585,

1053
– convention, 326, 793
– cross, 267
– equations in general relativity, 330
– manifold, 328
– principle of
– – general relativity, 12
– – special relativity, 12
– propagation principle, 13
electron
– propagator, 858
– radius
– – classical, 901
elliptic
– function, 391
– integral, 391
embedding, 312
– theorem
– – Nash, 311
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– – Whitney, 311
Emden, 652
emission rate, 923, 930
Empedocles, 263
endomorphism, 155
energetic
– Riemann surface, 714
– system of units (see Vol. I), 790
energetic system of units (see Vol. I),

XXI
energy, 368
– dissipation, 382
– fluctuation, 640
– free, 285, 640, 647
– heat, 369
– inner, 285, 640
– kinetic, 368
– mean, 640, 647
– potential, 368
– statistics, 639, 649
– total, 368
energy-time uncertainty principle, 477
ensemble
– canonical, 640
– grand canonical, 639, 640
enthalpy, 286
– free, 286
entire function, 57
entropy, 638, 640, 643, 647
– external, 653
envelope, 266, 280
epimorphism, 184, 185, 624
Epstein, 987
Epstein–Glaser approach, 987
equipartition law, 541
equivalence
– class, 178
– relation, 178
Erdös, 1053
Erlangen program due to Felix Klein,

194, 342
Ernst equation, 1009
essentially self-adjoint operator, 463,

683, 686, 755
Euclid, 263, 271, 290, 1053
– parallel axiom, 290
Euclidean
– propagator, 528
– – kernel, 529
– strategy, 485
– – golden rule, 480
– trick, 540

Euler, 12, 54, 109, 200, 297, 359, 371,
372, 392, 483, 903, 998, 1053

– beta function, 69
– characteristic, 131, 303, 307, 344, 345
– – of a sphere, 343
– constant, 55
– function, 182
– gamma function, 67
– mathemagics, 109
– philosophy in mathematics, 93
– polyhedron formula, 304
Euler–Lagrange equation, 34
– geometrical optics, 265
– linearized, 379
Euler–Maclaurin summation formula,

54
eV (electron volt), 1067
exclusion principle of Pauli, 771
exponential
– function for matrices, 769
– map, 293
extended algebra of observables, 634,

639
extension of
– a linear operator, 681
– a linear, densely defined, bounded

operator, 690
– formally self-adjoint operators, 689
– isometric operators, 690
external
– fermion line, 884
– line, 239, 970
– photon line, 884
extremal, 277, 420

Faà di Bruno, XI, 134
– Hopf algebra, XI, 136
factor of a von Neumann algebra, 657
Faddeev, 590, 763, 1053
Faraday, 12, 14, 903, 1053
Faraday–Green
– locality principle, 13, 37, 40
Fauser, XXI, 1016, 1050
Fejér, 54
Feldman, XXII, 975
Fermat, 263, 297, 370
– last theorem, 629
– principle of critical time, 277
– principle of least time, 268
Fermat–Euler theorem, 182
Fermi, 1053
– ball, 651
– surface, 651
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Fermi–Dirac statistics, 650, 819
fermion (see Vol. I), 771
fermionic operator, 846
Feynman, 4–6, 8, 13, 109, 479–481, 485,

508, 729, 903, 1053
– and mathemagics, 110
– gauge, 794, 947
– integration trick, 71, 862
– rules, 789
– slash matrix
– – trace rules, 905
– slash symbol, 807, 840, 1066
– – differential operator, 940
– symbol, 929
Feynman diagram (see also Feynman

graph), 7, 845, 875
– external line (leg), 845
– history in postwar physics, 238
– internal line (propagator), 845
– reduction formulas, 841
– Wick theorem
– – contractions, 842
– – Gaussian integrals, 566
Feynman functional integral (see

Feynman path integral), 16
Feynman graph, 238, 845, 875, 878
– 1PI (see one-particle irreducible), 954
– amputated, 845, 970
– analytic justification of the Feynman

rules, 877
– connected, 845, 970
– continuum limit, 894
– cross section of the scattering

process, 892
– disconnected, 845, 970
– divergent, 953, 981
– external line, 239, 970
– formal language of physicists, 890
– internal line, 239, 970
– – virtual particle, 970
– one-particle irreducible, 954, 970,

972, 981, 994, 1021
– overlapping subgraphs, 970, 972
– positron trick, 881
– primitive divergent, 954
– reducible, 970
– reduction formulas, 841
– symmetry properties, 881
– table of Feynman rules, 896
– transition amplitude, 841
– transition probability, 893
– Wick theorem
– – contractions, 842

– – Gaussian integrals, 566
Feynman path integral, 481
– basic definition, 549
– Brownian motion, 614
– Cameron’s non-existence theorem,

590, 969
– free quantum particle, 550, 574
– harmonic oscillator, 554, 576
– key formula, 614
– propagator hypothesis, 555
– spectral hypothesis, 579
– Weyl calculus, 611
Feynman propagator, 506, 508, 528,

609, 726
– and infinite-dimensional Gaussian

integrals, 576
– and its path integral, 547, 555, 579,

611
– discrete, 856
– – table, 896
– distribution, 866, 868
– free, 955
– full, 955
Feynman propagator kernel, 481, 488,

491, 508, 528, 537, 550, 552, 555,
574, 576, 611

– global, 483
– infinitesimal, 482
– magic infinitesimal formula, 482, 483
Feynman quantum mechanics, 479, 491
– main ideas, 480
Feynman rules, 876
– in momentum space space, 883
– table, 878
Feynman–Kac formula, 485, 589
Feynman–Souriau formula, 537
fiber, 208, 209, 397
– bundle, 196, 337
– – and gauge theory, 42
– – unstructured, 209
– typical, 208
field, 179
– isomorphism, 179
– morphism, 179
field of extremals, 420
Figueroa, 115, 661
filter, 250
– function, 107
finite part, 55
Finster, XXII
first
– law of thermodynamics, 382
– variation, 362
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fixed point, 561
Fleischhack, XXII
fluctuation, 463, 634, 638
focal point, 266, 278, 406
Fock, 771, 1053
– space, 619
– – bosonic, 771, 786
– – fermionic, 779, 787
Fok (see Fock), 1053
force, 12, 368
– and curvature, 43
– long-range, 271
– short-range, 271
forest, 984
– formula, 984
– – generalized, 138
formal
– annihilation operator, 779
– creation operator, 779
formally
– adjoint operator, 683
– self-adjoint operator, 428, 440, 683
Fourier, 12, 480, 481, 499, 507, 719,

1053
– coefficient, 22, 489
– integral, 21
– – operator, 30
– quantization, 444
– series, 21
– – discrete, 801
– – in a Hilbert space, 431
Fourier method, 13, 21, 730, 739
– for computing
– – fundamental solutions, 89, 739
– – Green’s functions, 89, 739
– prototype, 24
– renormalization in a nutshell, 48
Fourier transform, 21, 465, 512
– continuous, 22
– discrete, 22, 801
– from position to momentum, 23
– from time to energy, 23
– from time to frequency, 23
– generalized, 517
– in Minkowski space, 23, 865
– nonlinear, 1012
– of fundamental solutions, 86
– of tempered distributions (see Vol.

I), 86
– rescaled, 23, 532
– terminology, 23
Fourier–Laplace transform, 498

Fourier–Minkowski transform (see Vol.
I), 865

Fourier–Stieltjes
– coefficients, 719
– transform, 144, 493, 719
– – inverse, 493
Fréchet, 363
– derivative
– – first, 363
– – second, 363
– filter, 251
Frabetti, XXII, 1016, 1027
Frank, 926
Fredenhagen, XXII, 455
– lectures given at Hamburg University

and DESY, 456
Fredholm, 233, 1053
– operator, 234
free
– energy, 640
– Hamiltonian, 756
– motion, 755
– quantum particle, 464
– – functional-analytic approach, 509
Freedman, 347
French, 367, 963
frequency, 369
Fresnel, 947
– integral, 561
friction force, 382
Friedrichs, 429, 1053
– mollification, 682
Fritzsch, Harald, 13, 43, 1053
Frobenius, 54, 1053
– manifold, 1016
Fröhlich, 1053
Fučik, XXIII
Fuchs, 998
Fuchsian type, 1001
Fulton, 1025
function spaces (see Vol. I), 116
functional derivative
– first, 374, 378
– local, 374, 378
– second, 375, 378
functional integral (see Feynman path

integral), 16
functor, 632
fundamental
– forces in nature, 12
– group, 223, 344
– solution, 83, 457
– – advanced, 85, 88, 736
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– – in energy space, 89
– – in time space, 87
– – retarded, 84, 88, 732
– – retarded-advanced, 85, 88
– – rigorous Fourier transform, 90
– – rigorous Laplace transform, 91
– – tempered, 83
Furry rule, 885, 904
– proof, 943
fusion of physical states, 122

galaxy
– rotating thin disc, 1009
Galilei, 11, 146, 367, 1053
Galois, 1053
– field, 180
gamma function, 67
– regularized, 68
gauge
– condition, 797
– Feynman, 794
– field, 36
– fixing, 299
– force (curvature), 38
– invariance principle, 12, 13, 949
– invariant, 39
– – differential forms, 338
– parameter, 794, 947
– theory, 39, 368
– – and local symmetry, 34
– – basic ideas, 34, 333
– – history, 44, 332
– – main trick, 37
– – prototype, 34
– transformation, 333, 338, 368
– – global, 35
– – local, 36
Gauss, XIII, 14, 43, 178, 181, 290, 297,

325, 392, 394, 507, 729, 903, 998,
1053

– arithmetic-geometric mean, 395
– disquisitiones arithmeticae, 182
– disquisitiones generales circa seriem

infinitam, 998
– disquisitiones generales circa

superficies curvas, 182, 352
– lemniscatic sinus function, 394
– princple of critical constraint, 411
– theorema egregium, 310, 311, 328,

329, 341
Gaussian
– curvature, 310, 321, 328
– integral, 560

– – finite-dimensional, 562
– – normalized infinite-dimensional,

571
– – one-dimensional, 560
– – regularized infinite-dimensional,

102
– – Wick theorem, 566
– plane, 195, 217
– – closed, 195
– probability distribution, 565
– – perturbed, 568
Gelfand, 179, 480, 508, 660, 1054
– triplet, 513
Gelfand–Levitan–Marchenko integral

equation, 1011
Gelfand–Naimark structure theorem on

C∗-algebras, 628
– noncommutative geometry, 661
Gelfand–Naimark–Segal (GNS)
– algebraic quantum field theory, 628
– axiomatic quantum field theory, 454
Gell-Mann, 13, 43, 1054
Gell-Mann–Low formula (see Vol. I),

955, 979, 1020
general linear group, 292
generalized
– number, 252
– sequence, 240
generalized function
– distribution in the sense of Schwartz

(see Vol. I), 26, 193, 457
– hyperfunction
– – in the sense of Mikusiński, 193
– – in the sense of Sato, 193
generating function, 144, 562, 565, 568
genetic code, 642
genus, 343
geodesic, 278, 299, 356
– hyperbolic, 315
– on earth, 278
geographic
– latitude, 305
– length, 305
geometrical optics
– basic ideas, 264
– fundamental equation, 272
geometrization conjecture in the theory

of 3-dimensional manifolds, 352
geometry in physics, 13, 350
Gérard, 751
germ, 217
GeV (giga electron volt), 1067
ghost (see Vol. I), 834, 1020
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Giaquinta, 359
Gibbs, 285, 645
– equation, 286
– fundamental contact form, 285
– potential, 286, 640
– statistics, 285, 645
– thermodynamics, 285
Ginzburg–Landau potential, 381
Glaser, 987
Glashow, 13
Gleason’s theorem in quantum logic,

637
Glimm, 1054
GLZ (Glaser, Lehmann, Zimmermann)

approach (see Vol. IV), 980, 1037
GNS (Gelfand, Naimark, Segal)
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Koebe, 400, 998
Kohn, 508
Kolmogorov, 485, 1055
Kontsevich, 443, 676
Kopper, 1024
Korteweg, 1009
Korteweg–de Vries (KDV) equation,

1010
– inverse scattering method, 1010
Kramers, 955, 1055
Kraus, Elisabeth, XXII, 1019
Kreimer, XXII, 115, 991
Kronecker, 1055
– function, 162
– integral, 220
– product of matrices, 937
K-theory, 228
Kummer, 179, 629, 998

ladder operator, 430, 433
Lagrange, 12, 297, 372, 903, 1055

– bracket, 422
– inversion formula, 134
– multiplier, 363, 644
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overlapping
– divergence, 65, 967, 972
– subgraphs, 970, 972
– – trouble, 983
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719
– generalized, 517
partial isometry, 636
particle number
– fluctuation, 640
– mean, 640
– operator, 435, 440, 774
partition function, 638, 647
Paschke, XXII
path
– component, 220
– integral (see also Feynman path

integral), 547
– – Brownian motion, 671
– – Wiener integral, 671
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perturbation theory, 566, 568
phase
– equation, 337

– – associated fiber bundle, 337
– – gauge transformation, 338
– – parallel transport of physical fields,

337
– – principal fiber bundle, 341
– function
– – global gauge, 35
– – local gauge, 36
– of a unitary matrix, 767
– space
– – flow, 404
– – in statistical physics, 555
– – Liouville measure, 555
– – of the pendulum, 395
– state, 398
– transition, 381, 654
– – Ginzburg–Landau potential, 380
– – Higgs potential, 380
– – material sciences, 424
– – prototype, 380
phonon, 360
photon, 360
– breaking radiation, 976
– longitudinal, 805, 812
– mill on earth, 654
– propagator, 858
– scalar, 805, 825
– transversal, 812, 833
– virtual, 812, 825, 834
physical field
– language of
– – bundles, 208
– – sheaves, 216
– section of a bundle
– – prototype, 208, 401
Picard, 729
picture (see Vol. I)
– Dirac, 611
– Heisenberg, 611
– interaction, 611
– Schrödinger, 611
Pietsch, 601
Plancherel theorem, 514
Planck, 13, 903, 1056
– action quantum, 13, 449
– constant, 13, 449
– length, 14
– quantization principle, 12
– radiation law, 650
– scale hypothesis, 14
plasmon, 360
Plato, 448, 1057
Plemelj, 1006
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Plücker, 200
Poincaré, 13, 54, 200, 216, 227, 297,

314, 390, 400, 998, 1002, 1057
– conjecture, 346, 352
– – generalized, 347
– duality, 307
– identity, 40
– model of hyperbolic geometry, 297,

314
– Seminar, XXI, 1050
Poincaré–Cartan integral invariant (or

the Hilbert invariant integral), 423
Poincaré–Stokes integral theorem (see

Vol. I), 304, 357
Poincaré–Wirtinger calculus, 318, 616
point
– measure, 503
– of infinity, 314
Poisson, 12, 406
– bracket, 407, 443, 591
Poisson–Peierls bracket, 1037
polar decomposition, 691
polarization, 805, 954
– longitudinal, 805
– scalar, 805
– transversal, 805
Polchinski, 1024
– renormalization group approach,

1023
Politzer, 63
Poncelet, 200
Pontryagin, 348, 1057
– duality, 152
– maximum principle, 348
poset, 237
position
– operator, 436, 518
– space, 396
potential, 332, 368
– barrier, 701
– long-range, 757
– short-range, 756
– statistical, 640
– well, 701
power-counting theorem, 60, 974, 986
pQFT (perturbative quantum field

theory), XVIII, 970, 994, 1018, 1027,
1036

– in curved space-time, 1025
pre-bundle, 208
pre-fiber, 209
pre-Hamiltonian, 755
pre-Hilbert space (see Vol. I), 306

pre-image (see Vol. I), 241
pre-sheaf, 217
– of smooth functions, 218
pre-state, 637
precision tests of the Standard Model,

1019
pressure, 285, 640, 647
prestabilized harmony, 659
prime number, 166
primitive divergent Feynman graph,

954
principal
– argument, 85
– fiber bundle, 42, 337
– part, 56
– value of, 32
– – an integral, 495
– – the logarithm, 480
– – the square root, 479
principle of
– averaging due to Laurent Schwartz,

26
– coordinatization due to Descartes,

146
– critical action, 15, 360, 374, 379
– general relativity due to Einstein, 12
– geometrization in physics, 13
– harmonic analysis due to Fourier, 21
– Huygens, 270
– indistinguishable particles, 647, 771
– infinitesimals due to Newton and

Leibniz, 12
– least action, 15, 379, 903
– least time due to Fermat, 268
– limiting absorption, 738
– linearity (superposition), 13
– linearization (from Lie groups to Lie

algebras), 400
– locality due to Faraday, 13
– locality due to Huygens, 270
– nonlinearity, 13
– optimality, 12
– parallel transport of information, 334
– Pauli
– – exclusion, 771, 783
– – spin-statistics, 818
– propagation of physical effects due to

Einstein, 13
– quantization due to Planck, 12
– special relativity due to Einstein, 12
– symmetry
– – global, 12
– – local, 36



1092 Index

– the Green’s function, 17
– the Planck scale, 14
– unitarity in quantum physics due to

Dirac, 12
principles of modern natural philosophy,

11
probability
– amplitude, 480, 489
– density
– – free, 565
– – full, 567
– distribution
– – free, 565
– – full (under interaction), 567
– measure, 143
– of transition, 480
process
– dissipative, 382
– irreversible, 653
– linear, 13
– nonlinear, 13
– quasi-stationary, 653
– reversible, 653
product
– bundle, 210
– group, 223
– rule, 124
– – for the Feynman propagator, 491
– topology, 243
projection
– of a fiber bundle, 208
– operator, 189
projective
– space
– – complex, 203
– – real, 200
– topology, 243
Prokhorov, 903
propagator, 498, 506, 527, 528, 726,

845, 856
– advanced, 498, 726
– and the path integral, 611
– differential equation, 609
– equation, 507
– – irreversible, 507
– – reversible, 506
– Euclidean, 507
– Feynman (see Feynman propagator),

955
– hypothesis, 548, 555
– kernel
– – global, 483
– – infinitesimal, 483

– retarded, 498, 506, 727
– theory
– – formal, 488
– – rigorous, 505
protein synthesis, 642
pseudo-convergence, 104
pseudo-differential operator, 30, 490,

591
pseudo-resolvent, 51, 52
pseudo-Riemannian manifold, 312
pull-back
– of differential form, 354
Pythagorean theorem, 635
– Euclidean, 303
– hyperbolic, 303
– spherical, 303

QED (see quantum electrodynamics),
789

QFT (see quantum field theory), 1036
q-integral, 158
quadratic
– reciprocity law, 178, 181
– supplement, 560
quantization, 15, 676
– and action, 15
– Bargmann, 617
– deformation, 590
– Epstein–Glaser, 990
– Feynman, 479
– Fourier, 444
– free
– – electron field, 814
– – particle, 465, 509
– – photon field, 812
– – positron field, 815
– general principle, 443
– harmonic oscillator, 427, 534
– Heisenberg, 440
– operator algebras, 633
– perturbed free particle, 699
– quantum electrodynamics, 811
– – Dyson series, 835
– – free quantum field, 811
– – Gupta–Bleuler, 831
– quantum field
– – free, 811
– – interacting, 835
– Schrödinger, 459
– von Neumann, 495
– – algebra, 635
– Weyl, 590
quantum
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– action principle, 979, 1037
– chaos, 673
– computer, 183
– dynamics, 466, 505, 526, 699, 722
– – Euclidean, 506
– fluctuation, 485, 577
– gravity, 675
– group, XII, 146, 151
– logic (see Vol. IV), 637
– – Gleason’s theorem, 637
– mathematics, XIV
– state, 199
quantum electrodynamics (QED), 789
– application to physical effects, 899
– continuum limit, 945
– Dyson series and S-matrix, 835
– Feynman
– – diagrams, 875
– – rules, 895
– free quantum field, 811
– history, 2, 1043
– interacting quantum field, 835
– lattice strategy, 799
– main strategy, 788, 799
– radiative corrections, 953
– renormalization, 967
quantum field theory
– axiomatic, 1039
– basic ideas, 359
– discrete, 564
– harmonic oscillator, 360
– hierachy of functions, 1038
quantum mechanics
– energy and spectrum, 754
– Feynman, 479
– Heisenberg, 440
– Schrödinger, 459
– via deformation, 592
– von Neumann
– – rigorous approach, 495
– Weyl, 590
quasi-stationary thermodynamical

process, 287, 652
quaternion, 179
quintessence in cosmology, 204
quotient
– algebra, 190
– group, 185
– ring, 184
– space, 178
– topology, 242

radioactive decay, 727

Ramanujan, 7, 1057
random
– variable, 143
– walk, 585
Ray, 572
ray, 199
real line
– full-rigged, 251
– motion of a classical particle, 367
– motion of a quantum particle, 459
realification, 291, 295
reduced Compton wavelength, 901
reduction formula, 841, 842
references
– biographies of mathematicians on the

Internet, 1059
– Collected Works, 1051
– complete list on the Internet, 1059
reflection
– amplitude, 706
– probability, 706
refraction index, 264, 927
Regis, 1057
regularization, 48, 93, 107, 561, 980
– adiabatic, 31, 93
– – divergent series, 94
– – oscillating integral, 94
– analytic, 77
– averaging, 96
– Borel, 98
– counterterm, 67
– dimensional, 73, 74
– divergent integrals, 73
– Hadamard’s finite part, 100
– method
– – ambiguity, 63
– minimal subtraction, 65
– operator, 156
– overlapping divergence, 65
– Taylor subtraction, 64
– zeta function, 101
regularized
– Feynman function, 862
– photon propagator, 862
Rehren, XXII
Reid, 1057
relatively prime, 182
relativistic invariance, 912, 949
renormalizable quantum field theory,

980, 992
renormalization, 47, 48
– additive, 948
– algebraic, 1019
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– – advantage, 1020
– ambiguity of renormalization

schemes, 977
– analytic, 1022
– automated multi-loop computation,

978
– – computer algebra system FORM,

978
– – Laporta algorithm, 978
– – software package Feynarts, 978
– axiomatic approach, 977
– basic ideas, 47, 48, 60, 979, 1018,

1021
– BPHZ (Bogoliubov, Parasiuk, Hepp,

Zimmermann), 981
– BRST (Becchi, Rouet, Stora, Tyutin)

symmetry, 1019, 1020
– compensation principle, 948, 957
– continuum limit, 945
– counterterms, 947, 957
– dimensional regularization, 74, 981,

1019
– electroweak Standard Model, 1019
– equivalent schemes, 977
– fundamental limits, 945
– group (see Vol. I), 53, 63, 352, 977,

1022, 1023
– – equation, 1022, 1024
– hints for further reading, 1029
– Hopf algebra revolution, 990
– importance of Ward identities, 957,

1022
– multiplicative, 950, 957
– of partial differential equations, 353
– of quantum electrodynamics, 975
– OPE (operator product expansion),

1024
– parity violation, 1020
– perspectives, 1029
– Polchinski approach, 1024
– quantum electrodynamics, 996, 1026
– radiative correction
– – in lowest order, 953
– vertex function, 1020
renormalized (or effective) Green’s

function, 53
renormalon problem, 1029
representation of a group, 820
representative, 178
residue, 56
– method (see Vol. I), 58
resolvent, 492, 498, 504
– equation, 492

– of a matrix, 766
– set, 492, 504
– – of a matrix, 766
resonance, 25, 383, 748, 1014
– case of the anharmonic oscillator, 51
– complicated phenomena, 383
– scattering state, 714
– small divisor, 383
retarded
– function, 980, 1037, 1039
– fundamental solution, 84, 88
– – Fourier transform, 91
– Green’s function, 88, 731
– product, 1037
– propagator, 498, 727
– – distribution, 873
retract, 221
retraction, 221
return of a spaceship, 348
reversible, 287, 653
Ricci
– calculus, 341
– flow, 346, 352
– tensor, 327
– – in general relativity, 330
Ricci-Curbastro, 325
Riemann, 13, 43, 54, 200, 297, 311, 324,

325, 392, 507, 998, 1000, 1057
– curvature tensor (see Vol. III), 43,

327
– – essential components, 328
– hypergeometric equation, 1000
– legacy, 272, 279, 324
– monodromy, 1005
– sphere, 195
– surface, 195, 318, 480, 531, 714
– – energetic, 714
– symbol, 1001
– zeta function, 574
Riemann–Hilbert problem, 997, 1006
Riemann–Liouville integral, 92
Riemann–Roch–Hirzebruch theorem,

200
Riemannian
– geometry, 324
– manifold, 312
Riesz
– Frédéric (Fryges), 1057
– Marcel, 54, 92, 1057
ring
– isomorphism, 179
– morphism, 179
Ritz, 448
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– combination principle, 448
Rivasseau, XXI, 1023
RNA (ribonucleic acid), 642
rocket, 369
Rolle, 692
– theorem, 692
Rosen, 975
Rosenberg, Jonathan, 621
Rota, XI, 54, 1057
Rota–Baxter
– algebra, XI, 48
– operator, 156, 950
rotation, 416, 820
– infinitesimal, 417
royal road to
– geometrical optics, 271
– the calculus of variations, 419
Rudolph, XXII
Runge–Kutta method, 147, 1042
running coupling constant, 52, 63
Russel, 12, 245, 246
Rutherford scattering formula, 915

saddle point, 362
Salam, 973, 1057
– criterion, 975
– criterion in renormalization theory,

975
Salmhofer, XXII
Sato, 193
– hyperfunctions, 193
SBEG (Stueckelberg, Bogoliubov,

Epstein, Glaser) approach (see
Epstein–Glaser approach), 988

scalar
– curvature, 327
– photon, 805, 812
– polarization, 805
scattering
– long-range, 751
– process, 699
– Rutherford formula, 915
– short-range, 751
– state, 700, 722
– theory
– – basic ideas, 747
– – inverse, 1011
– – stationary, 753
– – time-dependent, 751
scattering matrix (S-matrix), 5, 699,

708, 718, 723, 747, 749
– and its Feynman path integral, 614
– bound states, 1022

– element, 610, 750
– global, 725
– k-component with respect to the

wave number k, 725
– magic Dyson series, 835
– unitarity, 949
scattering operator (see scattering

matrix), 609
Schauder, 1057
Schmidt
– Alexander, XXII, 159
– Erhard, 51
Schrödinger, 13, 428, 429, 459, 485,

1057
– equation, 459, 489, 730
– – abstract, 505
– – stationary, 468, 703, 717
– picture, 473, 474, 611
Schreiber, 1057
Schur, 140, 637, 1057
– lemma, 637
– polynomial, 140, 144
Schwartz (Laurent), 13, 480, 508, 599,

729, 1057
– distributions, 26
– function space, 598
– kernel theorem, 601
Schwarz (Amandus), 1057
– inequality, 355, 356, 634
Schwarz (John)
– superstring theory, 1057
Schweber, 6, 962, 973, 1028, 1057
Schwinger, 2, 5, 6, 13, 542, 729, 903,

1057
– integration trick, 73
Scriba, 1057
section, 402
– of a fiber bundle, 208
– – physical field, 209
– – prototype, 208
– of a principal fiber bundle, 340
– of the tangent bundle, 212
– – velocity vector field, 212
– physical fields
– – prototype, 401
secular equation, 766
self-adjoint, 755
– essentially, 755
– matrix, 766
– operator, 465, 500, 683, 686
– – essentially, 465
– – formally, 433, 440, 465
self-dual operator, 513, 515
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self-energy
– electron, 954
– photon, 954
semi-axis, 132
semi-bounded from below, 755
semi-norm, 656
semi-ring, 229
– commutative, 229
– isomorphism, 229
– morphism, 229
– regular, 229
semiclassical
– statistical physics, 544
– WKB method, 580
semigroup, 507
– non-expansive, 507
Séminaire
– Bourbaki, XXI
– Bourbaphy, XXI
separable Hilbert space (see Vol. I), 432
separated topological space, 240
sequentially continuous (see Vol. I),

515, 599
Serre, 218, 226, 227, 1057
– finiteness theorem, 227
set, 246
– completely ordered, 256
– of measure zero, 763
– partially ordered, 237
– totally ordered, 237
– well-ordered, 237
Severi, 1057
Shafarevich, 1057
Shannon, 641
sheaf, 217
– of holomorphic functions, 217
Shor, 183
short-range force, 271
SI (international system of units) (see

Vol. I), XXI, 360
Sibold, XXII
– lectures given at the Max Planck

Institute for Physics, Werner
Heisenberg, Munich, 1036

Sigal, 751, 763
Simons, Jim, 332
simple
– group, 185
– ring, 184
simply connected (see Vol. I), 222, 307,

343
sin-Gordon equation, 391
Singer, Isadore, 572

singular
– support (see Vol. I), 746
– value, 106, 111, 629
singularity, 349
– strong, 1001
– weak, 1001
sinus
– amplitudinis function, 392
– function
– – classical, 391, 392
– – lemniscatic, 394
skew-adjoint matrix, 766
skew-field, 179
– isomorphism, 179
– morphism, 179
slash
– matrix, 905
– symbols, 1066
Slavnov–Taylor identities, 6, 980, 997,

1020
slope, 265
– function, 272
Smale, 347, 396, 1057
small divisor and resonance, 383
S-matrix (see scattering matrix), 5
Sobolev, 514, 1057
– space, 510, 514
Sokhotski formula, 86
soliton, 1007
Sommerfeld, 732, 1058
– radiation condition, 732, 734
South Pole, 412
spaces of
– distributions (see Vol. I), 116
– functions (see Vol. I), 116
spectral
– family, 429, 501
– – and measurements, 518, 522
– hypothesis, 548, 579
– line
– – forbidden, 449
– – intensity, 447
– – wave length, 447
– measure, 501
– theorem, 500
– – proof, 502
– transform (inverse scattering theory),

1012
– triplet, 661
spectrum, 492, 504, 535, 755
– absolutely continuous, 504, 756
– discrete, 504
– essential, 504, 756
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– of a matrix, 766
– pure point, 504, 756
– singular, 504
Speiser, 109
sphere, 343
– topological properties, 344
spherical
– coordinates, 412
– pendulum
– – free, 413
spin, 294, 959
– and infinitesimal rotations, 820
– of a photon, 820
– of an electron, 820
spin-down state, 808
spin-statistics principle of Pauli, 819
spin-up state, 808
Spitzer exponential formula, 161
splitting of physical states, 122
square-well potential, 704
Srivasta, 663
St. Andrews, 1059
stability, 382
stabilizer, 197
standard model in
– gauge theory, 34
– particle physics (see Vols. I, III–VI),

34
– – historical remarks, 43, 331
– – renormalization, IX, 1020
– quantum mechanics on the real line,

459
– scattering theory on the real line, 699
– statistical physics, 638
– – semiclassical, 644
state, 446, 462, 513, 634, 639
– bound, 503
– classification, 699
– eigenstate, 503
– in Gibbs statistics, 646
– mixed, 634, 638
– pure, 634, 638
– scattering, 503
– singular, 503
– space, 397
stationary phase method, 561, 564
statistical
– physics
– – finite standard model, 638
– – language of C∗-algebras, 634, 638
– – semiclassical, 645
– weight, 641
statistics

– Bose–Einstein, 649
– Fermi–Dirac, 650
– Maxwell–Boltzmann, 650
Steenrod, 332
Steinmann, 980
– extension theorem (see Vol. I), 59
Stieltjes, 719
Stirling, 100
– asymptotic series, 100
– formula, 69, 648
Stone, 506
– theorem, 506
Stone–von Neumann uniqueness

theorem, 621, 626
strip, 282
Strocchi, 427
strongly
– closed, 656
– open, 656
– singular, 1001
structural equation, 326, 328, 341
– local, 329
Stueckelberg, 809, 968, 1037
Sturm, 277
Sturm–Liouville problem, 509
– regular, 277
– singular, 277
subgraph, 970
subring, 179
subtraction terms, XI
– Laurent series method, 56
– Mittag-Leffler theorem, 57
– Taylor series method, 64
Suijlekom, 997
summation of a divergent series, 93
Sunder, 655
super-renormalizable, 980
superfunction, 192
superposition principle, 13
supersymmetry, 663, 666, 679
– harmonic oscillator, 663
– in genetics, 642
surface
– classification theorem, 343
Sweedler notation, 125, 129
symbol of an operator, 28, 598, 740, 745
symbolic method, 28, 110
symmetric operator, 683
symmetrization, 772
symmetry, XII, 384, 988
– and conservation laws
– – Noether theorem, 383
– and geometry
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– – Erlangen program due to Felix
Klein, 194

– and group theory, 399
– and Hopf algebras, 146
– and theory of invariants, 399
– local principle, 36
symplectic, 623
– form, 283, 291, 624, 630
– geometry, 403, 409
– isomorphism, 291
– linear space, 630
– morphism, 291
– space, 291
– transformation, 409
symplectomorphism, 630
syzygies
– gauge theory, 980
– Hilbert’s theory, 980

Tamm, 926
tangent
– bundle, 337, 397, 398, 403
– space, 318, 396
– vector, 318
Tannaka–Krein duality, 152
Tauber, 98
– theorem, 98
Taylor
– expansion, 378, 381
– subtraction method, 64, 985
temperature, 639
– absolute, 285
tempered distribution (see Vol. I), 510,

598, 731
– derivative, 516
tensor product
– algebras, 122, 261
– antisymmetrization, 772
– Hilbert spaces, 773
– linear
– – differential operators, 124
– – functionals, 120
– – operators, 773
– – spaces, 121, 260
– multilinear functionals, 120
– particle states, 785
– physical fields, 772
– symmetrization, 772
test function, 373, 778
TeV (tera electron volt), 1067
theorema egregium, 311, 328, 329, 341
theory of invariants, 399
thermodynamic

– equilibrium, 635, 640
– limit, 653
– potential, 287
– process, 652
thermodynamics, 285
– first law, 653
– second law, 653
– third law, 653
theta function, 393
Thikonov regularization, 107
Thirring, Walter, 1058
Thom, 1058
Thomson, Joseph John, 903
– scattering formula, 914
’t Hooft, XVIII, 959, 993, 1058
thread, 245
time-ordered
– contraction, 850, 854
– product, 1017, 1038
Titchmarsh, 191
– theorem, 192
Tolksdorf, XXI, 1050
Tomita–Takesaki theory, 659
Tomonaga, 4–6, 13, 903, 1058
topological
– charge, 152, 220
– space (see Vol. I), 205
– – separated, 240
– type, 221
topologically equivalent, 221
topology, 205, 241
– coproduct, 242
– inductive, 242
– product, 243
– projective, 243
– quotient, 242
– stronger, 241
– weaker, 241
totally ordered set, 237
Townes, 903
trace, 535, 543, 629, 766, 903
– class operator, 543, 629
– method in quantum electrodynamics,

903
– of a matrix, 904
– of an infinite-dimensional operator,

571
– rules, 904
transfer matrix, 708
transition
– amplitude, 749, 842
– map, 213
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– probability, 449, 473, 480, 610, 749,
893

transmission
– amplitude, 706
– – analytic continuation, 715
– probability, 706
transport equation, 268
transport of
– energy in nature, 1007
– information in nature, 1007
transposed matrix, 766
transversal
– photon, 805, 812
– polarization, 805
trouble with
– divergent
– – integrals, 73, 100
– – series, 94
– formal perturbation theory, 109
– gauge condition in QED, 832
– ill-posed problems, 105
– infinitely many degrees of freedom,

101
– interchanging limits, 102
– oscillating integrals, 95
– pseudo-convergence, 104
– the ambiguity of regularization

methods, 104
– virtual photons, 825
tunnelling, 702, 727
Turing, 1058

Uehling potential, 959
ultra-cofinite subset, 251
ultrafilter, 250
uncertainty
– inequality for
– – energy and time, 477
– – position and momentum, 446
– relation, 446
– – classical, 442
uniformization theorem, 400
uniformly
– closed, 656
– open, 656
unit ball, 69
– measure, 69
unit matrix, 766
unit sphere, 69
– surface measure, 69, 111
unital, 116, 179, 627
unitality, 128
– map, 128

unitarity of the S-matrix, 949, 988
unitary, 294
– extension, 720
– group, 505
– invariance, 687
– matrix, 767
– operator, 429
unity of mathematics, 484
universal
– covering group, 294, 400
– covering space, 399
– enveloping algebra, 623
universe (in set theory), 246
unreasonable effectiveness of math-

ematics in the natural sciences,
295

unstable quantum states, 476
upper
– bound, 237
– half-plane
– – closed, 764
– – hyperbolic geometry, 314
– – open, 297, 764
– – Poincaré model, 314

vacuum (ground state), 2, 435, 469,
618, 774, 780

– energy, 818
– nontrivial, 1018
– polarization, 954
van der Waerden, 440, 1058
Varadarajan, 1058
variation, 362
– first, 362, 374, 378
– of nth order, 378
– second, 362, 374, 378
variational lemma (see Vol. I), 270, 374,

934
– complex, 933
variety, 579
Várilly, 661
vector
– bundle, 211
– – associated, 337
– – smooth, 211
– product, 365
velocity, 368
Veltman, 959, 961, 993, 1058
Verch, XXII
vertex function, 142, 1020
Virasoro algebra, 626
virtual
– electron, 881
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– particle, 970
– photon, 805, 812, 832
– – mass limit, 894
Vladimirov, 987
Volterra, 1058
– exponential formula, 160
– integral equation, 160
volume form, 283
von Neumann, 13, 179, 246, 428–430,

480, 508, 543, 654, 1058
– algebra, 654
– – type I, II, III, 635
– spectral theorem, 500
– theory of classes, 246

Wachter, XXII, 159
Waerden (see van der Waerden), 1058
Wallis, 392
Ward, 5
– identity, 6, 957, 958
Ward–Takahashi identities, 6, 958, 980,

997
water waves, 1014
wave
– front, 265
– – set (see Vol. I), 746
– number, 511, 708
– – operator, 522
– operator, 723, 750, 753
– – completeness, 752
– packet, 477, 724
weak
– convergence, 655, 750
– limit, 501
weakly
– closed, 656
– open, 656
– singular, 1001
wedge product, 120
Weierstrass, 264, 392, 1058
– excess function, 273
Weil, 200, 1058
Weinberg, 13, 47, 1058
– power-counting theorem (see Vol. I),

61, 974, 986
Weisskopf, 955, 963
well-ordered set, 238
well-ordering principle, 247
well-posed problem, 105
Wentzel, 3
Wess, XXII, 1050
Wess–Zumino model, 679
Weyl, 13, 297, 325, 331, 399, 504, 508,

509, 532, 719, 1058

– algebra, 628
– calculus
– – formal, 602
– – rigorous, 596, 606
– group, 624
– map, 630
– ordering, 596
– quantization, 590
– – functor, 632
– relation, 621
– sequence, 504
– system, 623
Weyl–Kodaira theory (see Vol. III),

XVI
Wheeler, 747, 1058
white
– dwarf, 651
– noise, 95
Wick
– differentiation trick, 73
– operator, 619
– rotation trick, 70
– symbol, 619
– theorem, 560, 564, 566, 848
– – first, 848
– – Gaussian integrals, 566
– – main, 846
– – prototype, 842
– – second, 851
– – vacuum expectation values and

contractions, 846
– trick, 542, 562
Wielandt theorem, 69
Wiener, 154, 485, 1058
– measure, 587
– path integral, 587
– pre-measure, 587
Wiener–Hopf
– integral equation, 154
– operator, 154
Wightman, XVIII, 218, 454, 967
– function, 451, 845, 860, 1038, 1039
Wigner, 295, 499, 988, 1058
Wilczek, 63
Wiles, 179
Wilson, 1023
– loop, 225
– operator product expansion (OPE),
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– renormalization group, 1023
winding number, 152, 220, 1005
WKB (Wentzel, Kramers, Brioullin)
– method, 380, 484, 575, 576, 580
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– potential, 915
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zero divisor, 186
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– regularization, 101, 572
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