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Preface

The aim of this book is to offer a self-consistent overview of a series of is-
sues relating entropy, information and dynamics in classical and quantum
physics. My personal point of view regarding these matters is the result of
what I had the good fortune to learn in the course of the years from various
scientists: Heide Narnhofer in the first place, who introduced me to quan-
tum dynamical entropies and was a precious guide ever since, then Robert
Alicki, Mark Fannes, Giancarlo Ghirardi, Andreas Knauf, John Lewis, Ge-
offrey Sewell, Franco Strocchi, Walter Thirring, Armin Uhlmann. To me, all
of them have been a constant example of rigorous mathematics and physical
intuition jointly at work.

Last but not least, my deep gratitude goes to my family and to the many
friends on whom I could always count for support and encouragement with
a special thought for Traude and Wolfgang Georgiades.

Trieste, 6 August 2008 Fabio Benatti
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1 Introduction

This book focusses upon quantum dynamics from various points of view which
are connected by the notion of dynamical entropy as a measure of information
production during the course of time.

For classical dynamical systems, the notion of dynamical entropy was in-
troduced by Kolmogorov and developed by Sinai (KS entropy) and provided
a link among different fields of mathematics and physics. In fact, in the light
of the first theorem of Shannon, the KS entropy gives the mazimal com-
pression rate of the information emitted by ergodic information sources. A
theorem of Pesin relates it to the positive Lyapounov exponents and thus to
the exponential amplification of initial small errors, in a word to classical
chaos. Finally, a theorem of Brudno links the KS entropy to the compress-
ibility of classical trajectories by means of computer programs, namely to
their algorithmic complexity, a notion introduced, independently and almost
simultaneously by Kolmogorov, Solomonoff and Chaitin.

In a previous book by the author, the notion of quantum dynamical en-
tropy elaborated by A. Connes, H. Narnhofer and W. Thirring (CNT entropy)
was presented within the context of quantum ergodicity and chaos. The CNT
entropy is a particular proposal of how the KS entropy might be extended
from classical to quantum dynamical systems.

After the appearance of the CNT entropy, other proposals of quantum dy-
namical entropies appeared which in general assign different entropy produc-
tions to the same quantum dynamics. The basic reason is that each proposal
is built according to a different view about what information in quantum
systems should mean. Concretely, it is a general fact that, in order to gain
information about a system and its time-evolution, one has to observe it and
a quantum fact that observations may be invasive and perturbing. Should this
fact be considered inescapable and thus incorporated in any good quantum
dynamical entropy or, rather, should it be avoided as a source of spurious
effects that have nothing to do with the actual quantum dynamics?

This is an unavoidable question and, based on the possible answers, one
is led to different notions of quantum dynamical entropies. These will be
sensitive to different aspects of the quantum dynamics and thus, not unex-
pectedly, not equivalent: the real issue is which these aspects are and what
kind of informational meaning they do posses.

F. Benatti, Dynamics, Information and Complexity in Quantum Systems, 1
Theoretical and Mathematical Physics, DOI 10.1007/978-1-4020-9306-7_1,
(© Springer Science+Business Media B.V. 2009



2 1 Introduction

In view of the role of the KS entropy in classical chaos, one of the prin-
cipal applications of the quantum dynamical entropies has been to the phe-
nomenology of quantum chaos. The scope has now become wider: quantum
compression theorems and recent attempts at formulating a non-commutative
algorithmic complexity theory motivate the study of whether and how the
different quantum dynamical entropies are related to these new concepts. In
particular, a better understanding of the many facets of information in quan-
tum systems may come from clarifying the relations of the various quantum
dynamical entropies among themselves and their bearing on quantum com-
pression schemes and the algorithmic reproducibility of quantum dynamics.

The issue at stake can be conveniently conveyed by an example: the sim-
plest classical ergodic information source emits bits independently of each
other with probabilities 1/2 for both 0 and 1. The KS entropy is log2 and
represents

1. the information rate of a classical source emitting independent bits;

2. the Lyapounov exponent of the classical dynamical system consisting in
throwing a fair coin;

3. the algorithmic complexity of almost every resulting sequence of tails and
heads.

The quantum counterpart of such an information source is a so-called quan-
tum spin chain, that is a one-dimensional lattice carrying a 2 x 2 matrix
algebra at each of its infinitely many sites: each site carries a so-called qubit .
The dynamics of such a system is just the shift from one site to the other and
the infinite dimensional algebra of operators is equipped with a translation-
invariant state. These non-commutative structures have recently become of
primary importance in the boosting field of quantum information. What is
relevant is that one can construct subalgebras of quantum spin chains char-
acterized by varying degrees of non-commutativity between their operators.
Depending on that degree, the CNT entropy, varies between zero and log 2,
while another quantum dynamical entropy, the AFL entropy of Alicki, Fannes
and Lindblad, is always log 2. The CNT entropy thus appears to be sensitive
to the amount of non-commutativity between operators, whereas the AFL
entropy is apparently independent of that structural algebraic property.

Because of its unifying properties, the KS entropy can be taken as a
good indicator of classical randomness and complexity; one would then like
to assign a similar role to the quantum dynamical entropies. Does this mean
that, in accordance with the CNT entropy behavior, quantum dynamical
systems have varying degrees of complexity or randomness depending on
the degree of non-commutativity ? Or, according to the AFL entropy, the
algebraic structural properties have no bearing on dynamical randomness or
complexity, which are rather related to the statistics of such systems, namely
to their shift-invariant state?

More concretely, one may ask which one of the two quantum dynamical
entropies is closer to the actual quantum informational structure of these
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quantum sources. Regarding this issue, of particular interest are the yet un-
explored relations of the quantum dynamical entropies to the quantum algo-
rithmic complexities.

Indeed, as there inequivalent generalizations of the KS entropy, so there
are different extensions of the classical algorithmic complexity. These exten-
sions have been motivated by the possibility of a model of computation based
on the laws of quantum mechanics and on the theoretical formulation of the
notion of Quantum Turing Machines (QTMs ). Like Classical Turing Ma-
chines (TMs ), QTMs consist of a read/write head moving on tapes with,
say, binary programs written on them. Only, the tapes of QTMs can occur in
linear superpositions of the classical configurations of 0’s and 1’s. In a word,
inputs and outputs of QTMs are qubits.

Since the various quantum dynamical entropies were proposed, indepen-
dently of quantum information, as tools to better study the long-time dy-
namical features of infinite quantum systems, one may doubt that relations
should exist between them and quantum information. One notices, however,
that the CNT entropy was developed using the notion of entropy of a sub-
algebra which, years later, independently appeared in quantum information
theory as a measure of entanglement known as entanglement of formation.
Also, the AFL entropy is based on techniques that in quantum information
theory are fundamental tools to describe quantum channels and, more in
general, all quantum operations that may affect quantum systems.

The book is organized in three parts.

In the first part, the first chapter presents basic notions of ergodic theory,
the second gives an overview of entropy in information theory, the third
addresses the notion of KS entropy and the classical compression theorems,
while algorithmic complexity is the subject of the fourth chapter.

The second part consists of three chapters; the first offers an overview
of algebraic quantum mechanics with particular emphasis on the notions
of positivity and complete positivity of quantum maps and quantum time-
evolutions, both reversible and irreversible. The second chapter introduces
the fundamentals of quantum information, the relations between positive
and completely positive maps and quantum entanglement, the entropy of
a subalgebra, the entanglement of formation and the accessible information
of a quantum channel. The third concerns infinite quantum dynamical sys-
tems and quantum ergodicity, quantum chains as quantum sources and the
quantum counterparts to Shannon’s theorems.

In the first chapter of the third part, a detailed introduction is given to
the CNT and AFL entropies and to their use in the study of dynamical infor-
mation production in quantum systems. Finally, the second and last chapter
of the book focusses on some recent extensions of algorithmic complexity to
quantum systems, starting with a discussion of quantum Turing machines
and quantum computers and concluding with an exploration of the possible
role played in this context by the quantum dynamical entropies.



4 1 Introduction

The topics addressed come from rather different fields that only recently,
because of the birth and rapid development of quantum information, quantum
communication and computation have started to overlap. This book has been
written not as an introduction to any of these topics (of which exhaustive
presentations do exist in plenty), rather as an attempt to provide readers with
expertise in some, but not in all of the topics, with a self-consistent overview
of these many subjects. Therefore, care has been taken to give proofs of
almost all of the results that have been used, apart from basic and standard
facts, and to illustrate them by means of selected examples.
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Classical Dynamical Systems
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In the first part of the book classical dynamical systems are presented
from the points of view of ergodic, information and algorithmic complexity
theory.

Ergodic theory studies the clustering properties of equilibrium states; in
information theory the central notion of entropy is used to quantify the de-
gree of predictability of phase-space trajectories, while algorithmic complex-
ity theory quantifies their randomness in terms of how easily they can be
described by algorithms.

The purpose of this presentation is to set up a suitable algebraic frame-
work that makes easier the extension of these three points of view to quantum
dynamical systems.



2 Classical Dynamics and Ergodic Theory

In this chapter the term classical dynamical system will broadly refer to one-
parameter families of transformations, or dynamical maps, T; acting on a
phase space X whose points x describe the system degrees of freedom. In
physical applications, x identifies an initial state, or configuration, T;x the
resulting state or configuration after a span of time of length ¢. If ¢ is dis-
crete, t € Z, one speaks of a reversible time-evolution through discrete time
steps with trajectories {Tix}tez consisting of countably many configurations
at negative and positive integer times. If ¢ € N, this means that the dynam-
ics can only develop forward in time and is thus irreversible. In the case of
a continuous-time dynamics, trajectories through x € X at t = 0 are contin-
uous sets {Tyx}ier of configurations if the dynamics is reversible, otherwise
trajectories are only forward in time, {Tix};cpr+.

Once the description of a system by means of a phase-space A has been
chosen, any phase-point x € X contains all possible information about the
system state. When all this information is not available, the state of a system
amounts to a normalized positive measure on X, a probability distribution,
such that the volume of a measurable subset gives the probability that z
belong to it. Entropy quantifies the amount of information corresponding to
such probability distribution, that is how informative the measure is about
the actual state of the system.

Beside the knowledge of the state of classical systems, information can
also concern how states change in time, in particular, as regards foreseeing
their behavior; the degree of predictability of dynamical systems is measured
by dynamical entropies. Intuitively, regular time-evolutions should allow for
reliable predictions, which are instead hardly possible for irregular dynamics;
roughly speaking, irregularity is expected to correspond to the fact that the
past does not completely contain the future.

Information about the state or the time-evolution of physical systems can
be obtained by measuring suitable quantities accessible to experiments. These
quantities, called observables for short, correspond to functions on &'. Unlike
for quantum dynamical systems, for classical ones any measuring protocol
can in principle be assumed not to interfere with the system observed, the
basic reason being that classical descriptions involve commuting objects, as
functions on the phase-space X indeed are.

F. Benatti, Dynamics, Information and Complexity in Quantum Systems, 9
Theoretical and Mathematical Physics, DOI 10.1007/978-1-4020-9306-7-2,
(© Springer Science+Business Media B.V. 2009



10 2 Classical Dynamics and Ergodic Theory

Which observables are appropriate to describe a dynamical system de-
pends on the structure of the chosen phase-space X’; for instance, statistical
descriptions require that X be endowed with a measure-structure, whereby
measurable functions constitute appropriate observables. On the other hand,
X might be provided with a topology and typical observables would then
correspond to continuous functions.

2.1 Classical Dynamical Systems

In this section we review some basic facts relative to classical dynamical
systems mainly adopting a measure-theoretic point of view; in this way a
minimum of constraints is put on the mathematical properties of states, ob-
servables and dynamical maps and the emerging technical context is broad
enough to describe a large variety of physical phenomena, from those typical
of Hamiltonian mechanics to those better understood in terms of discrete
dynamical systems.

Definition 2.1.1. Classical dynamical systems are triplets (X, T, u), where

1. X is a measure space with an assigned o-algebra X of measurable sets;
2. T is measurable, that is A € X = T71(A) € ¥;
3. X is endowed with a T-invariant, positive normalized measure p, such

that 1(X) =1 and poT~! = p.

Remarks 2.1.1.

1. A collection X of subsets S C X is called a measure-algebra if 1) X € X,
2) S € X implies X'\ S € X, where S; \ Sy denotes the complement of
the subset S relative to the subset S7, and 3) S; € ¥ fori =1,2,...,n,
implies |J;_, S; € X. A measure-algebra X is a measure o-algebra if it
is closed not only with respect to finite unions of its elements, but also
with respect to countable unions, that is if | J;~, S, € X for all {S,,}22,
S, € Y. Since the complements of unions of sets are the intersections of
the complements of the sets, namely X \ (AU B) = (¥ \ A) U (X \ B),
o-algebras contains infinite intersections of their elements, too.

2. Let Xy be a measure-algebra, by adding to Y infinite unions and inter-
sections of elements of Xy one obtains a g-algebra X' which is the smallest
one containing Xy; such X' is called the o-algebra generated by Y. If the
measure space X is endowed with a topology, then, the o-algebra gener-
ated by the open subsets is known as Borel o-algebra and its elements as
Borel sets [258].

3. A positive function p : X +— RT, such that u(X) = 1 is a probability
measure on X relative to a o-algebra X if it is o-additive, namely if
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2o {8}, Smsqu):w(U Sn> = p(Sa) .
n=1

n=1

Notice that p is automatically monotone under inclusion, namely
ACB=— A=(A\B)UB = u(A) = u(A\ B) + u(B) = u(B) .

. The following criterion is rather useful: an additive positive finite map
p: X — R is g-additive if and only if lim,, pu(B,) = 0 for any collec-
tion {B,}52, of sets B, € ¥ such that B,41 C B, and (), B, = 0.
Indeed, suppose p is o-additive and {B,}52; has decreasing properties
and empty intersection; then, the sets C,, := B, \ By41 are disjoint and
B, = Uy, Ck- It thus follows that pu(B;1) = >"p—; u(Ck), whence

(o)

lim u(B,) = lim Z w(Cr) =0.

k=n

Vice versa, let p be positive, finite and additive on X' and take any col-
lection {C),}2°; of disjoint subsets of X; because of additivity

U(Qlck> :kZ:u(Ck-) + u( D Ck) :

k=n-+1

Since By, := Up—,41 Ck € Bn-1 and ), B, = 0, o-additivity follows. If
1 is o-additive over a measure algebra Y it can be extended in an unique
way to the o-algebra X' generated by Y. In other words, given a .S € X,
for any € > 0, there exists S" € X such that pu(S AS") < e, where

SAS =(S\S) U (S\S)=(SUS)\(SNS) . (2.1)

. A regular Borel measure on X is a measure on the Borel o-algebra such
that, for any measurable subset B and € > 0, there exists an open, U., and
a closed subset, C., with C. C B C U, such that u(U-\C:) < & [258, 313].

Definition 2.1.1 provides an appropriate framework for irreversible dy-

namical systems in discrete time whereby the time-evolution of phase-points
x € X consists in successively applying the dynamical map T to = so that
trajectories are given by countable sets {T"z},en. For reversible, discrete-
time dynamics, also 7! is assumed measurable, that is T(A) € X if A€ ¥
with g o T = p; trajectories are then of the form {T"x},¢cz.

The measure u defines a probability distribution over X: if f : X — R is

a measurable function (an observable of the system), its mean value is

u() = [ anta) @) (2:2)
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In particular, if A C X is a measurable subset and 14(x) its characteristic
function !, the volume

p(A) = [ du(o)xala). (2.3)

has a natural interpretation as the probability that z € X belong to A.
We shall as well refer to these probability distributions as to the states of
a classical dynamical system. In fact, in the case of a continuous phase-
space, access to phase-points is practically never achievable; thus, one has to
content oneself with the knowledge of how phase-points are distributed over
X. From a physical point of view, the fact that states y are assumed to be T-
invariant means that the statistical description of dynamical systems refers
to equilibrium states. Interestingly, a measure-theoretical dynamical triplet
can be represented in terms of a unitary operator on a Hilbert space [17, 61].

Example 2.1.1 (Koopmann-von Neumann Formalism). [175]

Let (X, T, 1) be a measure-theoretic dynamical triplet. Finite additions
and multiplications of characteristic functions of measurable subsets 4; C X
give the algebra &(X) of simple functions s =), ¢; 14, over X. Lebesgue-
integration with respect to p defines a scalar product (s |s2), over &(X),

(s1ls2)ui= ()¢} /Xdu(x)lAg (@)Laz(2) = Y ()" G (A7 N AT,

2] 2]

for 14(x)1p(x) = 1anp (). Further, by linearly extending the map defined
by 14+ Ur 14 :=140T = 1p-1(4), one gets a linear operator Ur on &(X).
Since o T~ = pu, U preserves scalar products

(Ursi|Ursa), = Z (c)” C?M(T_l(A% N A?)) = (s1]s2)p -
4]
Therefore, the Koopman operator Ur can be extended to an isometric im-

plementation of the dynamics (invertible and thus unitary in the reversible
case) on the Hilbert space L2 (X) of square-summable functions on X,

(Ury)(z) =¢(Tz) VY eLi(X), Vo e X . (2.4)

The spectral properties of Ur will turn out to be of particular relevance for
ergodic theory (see Section 2.3). Using a bra-ket quantum like notation, we
observe that:

1. the identity function 1(x) = 1 almost everywhere with respect to pu, is
always an eigenvector of Ur with eigenvalue 1, Up|1) = [1oT) = |T);

Y14(x) =1ifz € A, 1a(z) = 0 otherwise
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2.if 1 is a degenerate eigenvalue, then there exist constants of the motion
144 € L2(X), Ur|$) = |doT) = |):
. mean values are scalar products, pu(¢) = (1]¢), for all ¢ € L2(X);
4. products of mean values amount to the matrix elements of the orthogonal
projection | 1)( 1|

p(@)u(9) = (v*[1)(1]) , Yo, o€ LX), (2.5)

where " is the complex conjugate of .

w

Hamiltonian Mechanics

Hamiltonian mechanics is an important source of classical dynamical sys-
tems [16, 17, 299]. Systems with f degrees of freedom are described by
a phase-space which is a 2f-dimensional manifold M; C R/ x Rf whose
points 7 = (g,p) consist of positions ¢ = (q1,...,q¢) € RY and momenta
p=(p1,....ps) € R/. The phase-space inherits a symplectic geometry from
(D)]{ (gl))f> where Oy and 1; are the
A !

f x f zero and identity matrices, respectively. Via the symplectic matrix one
defines the Poisson brackets of two (differentiable) functions F,G : My — R,

the symplectic matriz J := [J;;] = (

F. . =3 2 oL, (26)

i,j=1

With respect to them, g and p are canonical coordinates: {g; , p;} = 0;; and
the time-evolution is generated by the Hamilton equations
dg dp

—_— = a H 'S , _ = _a H r 5

where H = H(r) is a (time-independent) Hamiltonian or energy function of
the system. They are solved by the Hamiltonian flur v — r(t) = &H(r),
t € R 2. The time-evolution of functions F on My then amounts to a group
of dynamical maps F + F; := Fo®¥ that solves the time-evolution equation

dFt (T’)
dt

={F, H}(r) . (2.7)

Suppose My = R2f; then, a natural o-algebra for the phase-space M ¥
is the Borel o-algebra (see Remark 2.1.1.2) containing all open subsets of

2One can always extract a discrete time-evolution {T"},ez from it by fixing
t =1 and setting T := &%
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the topology of My given by the Euclidean distance. The Liouville mea-
sure dr = H{:l dg;dp; is invariant under the Hamiltonian flux ¢ ; however,
S M, dr diverges and cannot be normalized to a probability distribution. A
way out typically occurs when there are constants of the motion, that is func-
tions F' on My, like the Hamiltonian itself, such that {F', H} = 0. By fixing
their values, the dynamics is restricted to time-invariant submanifolds that
usually have finite volumes. Instances of equilibrium states leading to descrip-
tions of Hamiltonian systems as measure-theoretical triplets (M, &1, 1)
(discrete time), or (M, {®H }icr, i) (continuous time), are in general pro-
vided by probability distributions dug (r) = f(r)dr, where f : My — R is
a normalized, positive functions such that {f, H} = 0. Prominent instances
of such probability measures are the micro-canonical, canonical and grand-
canonical states of classical statistical mechanics [300].

The time-invariance of states as the previous ones deserves to be exam-
ined in some more detail as it follows from a duality argument which we
shall frequently encounter in the following. Duality is essentially the obser-
vation that the mean value of a function F' at time ¢, Fy, with respect to a
state p equals the mean value of F' with respect to the state p; at time ¢,
w(Fy) = p(F). This defines the time-evolution of states as the dual of the
time-evolution of observables (functions); indeed, from time-invariance of the
Liouville measure it follows that

J(Fy) = /M dr u(r) F(@F (r)) = /M dr W@ r) F(r) = (F) . (2.8)

whence j1; := p o &, solves the time-evolution equation

AT) (a1, ) 29)

Example 2.1.2 (Regular Motion). Consider two uncoupled harmonic
one-dimensional oscillators described by r = (q1,q2,p1,p2) € My = R* and
by the Hamiltonian

R N ST

H(r)= 2L P2 .
(r) = 5 g Tyt TR

Hy(r) Hx(r)

By fixing the single oscillator energies H;(r) = E;, i = 1,2, the motion
develops on the 2-torus T? := {6 = (61,02) : 0; € [0,27)}, where it amounts
to a two-dimensional rotation. Indeed, setting

2
D; m;w;i o Di
Ji = Hl P = R 91 =
(r) (r)/w 2mw; + 2 4 an mw;q

2J; .
¢ = cost; , p; = 2myw;J; sinb; ,

m;wsi

whence
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one gets angle-action variables (0,1I), 0 = (01,05), I := (I3, I5).

These are canonical coordinates, with Poisson brackets {6;, Ji} = 0ix;
moreover, H(r) = K(J) = wyJ1 + waJa. Thus, the corresponding Hamilton
equations,

de dJ
oY 5207 w = (w1, ws) ,
are solved by the Hamiltonian flux
T,:0—0(t):=T,(0) =0+ wt . (2.10)

By varying Ei, E, and thus I, the phase-space R* is covered by non-
intersecting 2-dimensional tori. On each fixed torus, d@/(2m)? gives a prob-
ability measure which is invariant under the Hamiltonian flux. The triplet
(T2, T := Ty,d0/(2m)?) fulfils the requirements in Definition 2.1.1.

In the Koopman-von Neumann formalism, the unitary operator Ur im-
plementing T on H := L%*(T? d6/(27)?) has the exponential functions
en(0) = exp(in - 0), n € Z?, as eigenfunctions ,

(Uren)(0) = en (8 +w) = e Zi=militws) — ot Dioimsws ¢ (9) . (2.11)
Therefore, the time-evolution of H> [¢) =3 » ¥(n)|en ) is given by

(W)= UF[6) = 3 dln)e™ =i ey ), keZ.  (212)
nez?
Remarks 2.1.2.
LI 2 = E, p,q € N, trajectories close since (2¢gm/w1) = 6 mod 2.
w1 q
2. If there are no 0 # nj2 € Z such that njw; + naws = 0, then, every
trajectory {0(t)}ier fills the 2-torus T? densely. Namely, for any € > 0,
@,0 € T?, there is t € R such that ||0(t) — ¢)|| < e, where the norm is
the Euclidean norm computed mod 27. Indeed, using (2.10),

te = (¢1 — 01) /w1 = 01 (Lt + 2n7/wy1) = ¢1 mod 27 |

for all n € Z. Since T is compact, the sequence {03 (t. + 2n7/w1)}nez has
accumulation points; thus, for any € > 0 there exist n,p € N such that

‘Gg(t* +2(n+p)m/wy) — Oa(t. + 2n77/w1)‘ = 2;07Tg mod 27 < e,
w1

whence the sequence {0s(t. + 2npm/wi)}nen subdivides the circle into
disjoint intervals A,, of length

’02(25* + 2(n+ Dpr/wy) — O3(te + anﬂ/wl)’ <e.
Therefore,

62 € Ap = 8(t. + 2mpr /1) = S| = [0 (t. + 2pmm/jwr) - da| < e
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3. A similar argument as before shows that, in discrete time, trajectories
{6(n)}nez fill T? densely if and only if there are no integers njo # 0
such that njwy + nows = 2p with Z 3 p # 0 [91].

4. Example 2.1.2 is a particular instance of the Liouville-Arnold theo-
rem [16, 17, 299] on integrable Hamiltonian systems. Suppose a canonical
system with f degrees of freedom possesses f global constants of the mo-
tion K;, K1 := H in involution, that is {K;, K;} =0, ¢,j =1,2,..., f.
If the subset Ny = {K;(r) =k; :i=1,2,..., f} C My is compact and
connected and the differential 1-forms dK; are linearly independent on it,
then Ny, is isomorphic to the f-torus TY. Moreover, there exists a canon-
ical transformation from r € N to angle-action variables (6, J) such
that the Hamiltonian flux @/ is isomorphic to an f-dimensional rotation
on Tf with J-dependent frequencies: 8(t) = 6 + w(J)t. Accordingly, the
phase-space M foliates into disjoint f-tori which are filled densely by the
trajectories {0(t) }rer when Z{:l nw;(J) =0, n; € Z, only if all n; = 0.
Tori such that ZLI n;w;(J) = 0 for 0 # n; € Z are called resonant and
on them trajectories close. The independence of the oscillation frequen-
cies w from the actions J in Example 2.1.2 is an exception due to the
linearity of the Hamilton equations.

Integrable Hamiltonian systems cannot behave too irregularly as their
motion amounts to a multi-dimensional rotation over invariant tori. In order
to increase the degree of irregularity, some constants of the motion must
disappear in order to let the trajectories wander around according to less
predictable patterns. In the following example, a constant of the motion is
eliminated by means of a folding condition.

Example 2.1.3 (Hyperbolic Behavior). [17, 271]

Let 6, (t) denote the periodic delta function ) ., d(n—t) with unit period
and consider a free one-dimensional motion with periodic quadratic kicks,
occurring with strength 8 € R, according to the pulsed Hamiltonian

H= %(pQ + 5p(t)ﬁq2) .

A natural dynamical map 7' consists in updating the vector » = (¢,p) on
phase space from immediately after the n-th kick to immediately after the
n — i-th one; namely T : r,, — 7,11, where r,, := (¢, pn) and

e—0t

Gn = lim g(n+¢e), p,:= lirgl+ g(n+e) .

Integrating the Hamilton equations

dg _ - dp
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first between Tn + ¢ and T(n + 1) — ¢ and then between T'(n 4+ 1) — ¢ and
T(n+ 1)+ ¢, yields

n+1l+e

gn+1+¢e)—qn+e) p(n+€)+/+1 dsp(s)

pn+1+e)—pn+e)=—-0Gqn+1).

By letting e — 0T, the integral is of order € and vanishes; thus, the dynamical
map T reduces to a 2 x 2 matrix acting on R?:

r—<Z>»—>Ar, A—(_lﬁ 1iﬁ>. (2.13)

Since det(A) = 1, the Liouville measure dr = dgdp is T-invariant. The
eigenvalues of A,

1 _2-B+/BB-4) _2-p+ /(2714
2 2 ’

are real with |a] > 1 when 8 < 0 or 8 > 4. The corresponding eigenvector
|ay ) identifies a direction in R? along which lengths increase exponentially
for n > 0, while they contract exponentially along the direction of the eigen-
vector |a_ ) relative to the other eigenvalue |o|~! < 1. This motion is called
hyperbolic.

For g = -1, A =
|7) =7lay) +dla-),

1 ;) is symmetric thus (a_ |a4 ) = 0 and, writing

||,,,nH2 _ |7|262nloga + |5|2672n10ga , (214)
where r,, := A"r. Therefore, the norms of all vectors r # 0 increase ex-
ponentially while remaining on the hyperbolae selected by fixing a value of
F(r) := ¢*> — p? + qp. Indeed, one can directly check that F(r, 1) = F(r,),
whence this function is a constant of the motion [118]. This is no longer true
if one imposes a folding condition that forces the dynamics to develop on the
two-dimensional torus T? := {R? 3 r = (¢, p) mod (1)}, namely if one defines
the dynamical map

Tp:T? 571, :=(A"rmod1) € T? . (2.15)

Then, the resulting triplet (T?, Ty, dr) is as in Definition 2.1.1 and the map
T is known as Arnold Cat Map [17].

More in general, one may consider the dynamics on the 2-dimensional torus
T? generated as in (2.15) by a matrix

A:(i Z) , a,be,deZ : ad—be=1, la+d >2, (2.16)
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+1 ¢ R. Since A need not be Hermitian, its normalized

with eigenvalues o
eigenvectors |ax ) = (Zli) are in general only linearly independent; one
24

explicitly computes

1
a1y =bAy | asy = (™' —a)AL where A = ,
1+ +, Gt = ( )AL + R pEap—
(2.17)
and expands R? > |r) = (Za;) =Cy(r)|ay)+C_(r)|a—) with
Laz— — Yai— Yyai4 — Xagz4
= _ e S— .1
Ci(r) A - (2.18)
where
A := Det (‘“* ‘“) =b(1-a’)ALA_ . (2.19)
a2+ A2—
Then, the hyperbolic behavior shows up since
Aflr) =a"Ci(r)|as) + a™FC_(r)|a-) (2.20)

and the absolute value of one of the eigenvalues a4 =

a+d+/(a+d)?—4
2

is larger than 1.
Consider now the Koopman operator Uy on H := L3, (T?); the orthogonal

exponential functions
en(r) :=exp(2min - r) (2.21)

are such that (AT denotes the transposed of A)
(Up eq)(r) = e2mim(hr) — g2mi ATn)r earn(T) , (2.22)
whence, setting ¥(n) := (ey | 1) for all ¢ € H, it turns out that
(Ust)(n) = (en|Unlv) = (ea-rn|¥) = ¥(A™Tn) .

Therefore, Uy has no other eigenvector but eg = 1: if Up|tp) = p|ep) for
¢ € H with |/”" - 11 then7 with |¢> = ZneZ2 Tﬁ(n)‘ En >a

(em | UR) = Y (1) (em | enon ) = $(APm) = pP(m) |

nez?

for any fixed m € Z2. Since ¢(n) — 0 with ||n| — oo, if 1(m) # 0, then
lim, ¥»(A™Pm) = 0 because of hyperbolicity, while P (m) oscillates.

The exponential amplification of small errors that results from (2.14)
(or form (2.20)) cannot hold for arbitrarily large n: In fact, ||r,| < V2
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so that the expansion is eventually counteracted by the folding condition
in (2.15). Suppose |7) = ¢|a ), then |r,| = ce”!°8® < /2 increases until
n < log(e~*v/2)/(log a).

This argument applies to any pair of initial conditions r'+2; their distance
|7t — 72| increases exponentially due to the expanding contribution from the
component of 7! — 72 along |a, ) until the folding condition affects one of
the two cartesian components of 7! — r2. Notice however that the smaller
is [} — 2||, the longer the amplification lasts. This observation allows the
introduction of the notion of asymptotic divergence rate of initially close
trajectories even when they develop on compact phase-spaces: these rates are
known as Lyapounov exponents and are a measure of dynamical instability.

Definition 2.1.2 (Mazimal Lyapounov Exponent). [199, 106] The
maximal positive Lyapounov exponent of a dynamical triplet (X, T, ) equipped
with a distance d(x,y) is defined by

.1 d(T™x, T™y)
A = lim = 1 log —————*
() oo 1 d(z,lgglﬂ() 8 d(z,y)

Of course X may be a multi-dimensional space and thus there might be
more directions along which distances expand exponentially fast with ex-
ponents A(z) > 0; the intuitive picture behind the definition is that, for
sufficiently small d(z,y), the distance at time n is such that

AT, T"y) = "0 d(a, y) (14 0(e O @=20)) |
where A\(z) < Ay () [62].

Remarks 2.1.3.

1. A rigorous approach to Lyapounov exponents can be found in [199]; here,
we sketch a few basic facts (see [106, 313]). Assume the phase-space X
to be a compact manifold with a C., differentiable structure, a Borel o-
algebra and a Riemannian metric such that the tangent spaces 7, (X) at
x € X are isomorphic to R* equipped with an Euclidean structure. The
dynamics T : X +— X is assumed to be continuous with continuous first
derivatives, so that one can focus upon its linearization 7, (7") that maps
the tangent space 7,(X) into the tangent space 7r,(X). In particular,
one is interested in the asymptotic behavior of |7, (T™)|| where, by the
chain rule,

To(T") = Tpn-14(T) 0 Tpn—25 0+ -7, (T) .

Let X be equipped with a T-invariant regular Borel measure p (see
Remark 2.1.1.5); then, there exists a measurable subset B C X with
w#(B) =1 and a positive measurable function s : B — R such that, given
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x € B, there are real numbers {)\(j)(z)}j(:wl), A0 (z) < AUHD (), and lin-
ear subspaces of RF, {V(j)(:v)};f07 VO = {0}, VU(z) ¢ VU (z),
V@) = RF for which
1 . )

a) lim —log|m(T™)r| = A9 (z) for all » € W;(z) = VU(z) o

n—oo N
V=D (z);
b) AU (z)is defined, measurable and T-invariant on the subset of z € B
such that s(z) > j, that is A\ (Tz) = A0 (z);
¢) (VU (z) c VU(Tz) for all j < s(z).
It thus follows that, if AU)(z) < 0, the norms of all » € VU)(z) go to 0

exponentially fast with n — +o0. On the other hand, if A4)(x) > 0, the
norms of all vectors r € V) (z) © VU~1(z) diverge exponentially fast.

. There can be more than one positive Lyapounov exponent thus more than

one amplifying direction in space. In volume-preserving dynamical sys-
tems to any amplifying direction there corresponds a shrinking direction
(amplifying in the past).

. On compact manifolds, the two limits in Definition 2.1.2 do not commute:

the numerator is limited by compactness, whence the 1/n limit vanishes
if performed before letting d(z,y) — 0.

. If there is an intrinsic smallest distance § > 0 between points x,y € X and

the largest possible distance A is finite, then the Lyapounov exponent is
zero. This means that exponential separation or amplification cannot be
extended beyond the logarithmic time-scale set by § e < A. This gives

1 A
a so-called breaking-time [118] tp := X log 5

. When the motion develops on a compact phase-space, the existence of

positive Lyapounov exponents is known as extreme sensitivity to initial
conditions and provides a widely accepted definition of classical chaotic
motion [271, 228]. Notice that without the folding condition, also an
inverted harmonic oscillator with Hamiltonian H (r) = p?/(2m)—mwq? /2
would show an exponentially fast separation of initial conditions, though
far less irregular and interesting than one on a compact manifold.

2.1.1 Shift Dynamical Systems

Phase-spaces with a finite or a countable number of states are typical either
of systems which arise from suitable discretizations of otherwise continuous
phase-spaces or of intrinsically discrete systems as cellular automata [62]. The
first possibility arises in particular when the observations aimed at identifying
the system state as a point of phase-space have a finite accuracy; then, one
performs a coarse-graining of phase space into a certain number of regions
whose volume is determined by the given accuracy and whose interior points
are accessible only through observations of higher accuracy. As we shall see
in later sections, in such a case, the system states are identifiable with the
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labels of the regions where the system state is localized and the dynamics
corresponds to jumping from label to label rather than from point to point
of the phase-space.

Instead, the phase-space of cellular automata [62, 18] is discrete from the
start as they consist of copies of a same system (automaton) described by
a d-valued function 4, for instance, in the binary case i = 0 may be used to
signal when an automaton is deactivated, ¢ = 1 when it is activated.

The phase-space X of a cellular automaton with N systems comprises dV
configurations (states) corresponding to finite strings i) = (i1,19,...,iN) €
QC(IN) = {1,2,...,d}". The dynamics is given in discrete time by a map
T: QC(ZN) — Q&N) that updates the configurations from time n to time n + 1:
i™(n) — i™) (n41). The state i, (n+1) of the k-th automaton at time n+1
in general depends on the states of some or all other automata at time n. In
the following, we shall focus upon a most simple class of cellular automata,
that is shift dynamical systems [17, 61, 164, 313].

Let the space X be the collection 2; := {0,1,...,d}" of all sequences
i = {i;}jen of symbols from a finite alphabet i; = 1,2,...,d. Each ¢ can be
interpreted as a configuration of a countable network of cellular automata,
each of them being indexed by an integer j € N, with 2; denoting its actual
state among the d possible ones. Let T, : 25 — (2; be the left shift along
sequences,

(To4); = tj41 , (2.23)
and set ¢(n) := T'4: T,, amounts to a rather trivial dynamics, namely to a
deterministic updating whereby the state i;(n + 1) of the j-th automaton at
time n 4 1 depends only on (is equal to) that of its right nearest neighbor at
time n:

ij(n+ 1) 1= (T274); = (L), (n) = 41 (n) -

From the point of view of a fixed automaton, say the 0-th one, this kind of
dynamics is typically like tossing a coin. Indeed, suppose the initial configu-
ration ¢(0) of the network is to be chosen randomly, according to a probabil-
ity distribution where all automaton states occur with the same probability
2~V Because of the dynamics, this property is then inherited by the sequence
{ig(n)}nen of successive states of the 0-th automaton.

In order to provide the shift along binary sequences with a measure-
theoretic formulation as in Definition 2.1.1, the set {24 of infinite sequences
has to be equipped with a o-algebra of measurable sets. The standard way
to do this is by means of the so-called cylinders [61, 164, 91, 17]; they consist
of all sequences whose entries have fixed values within chosen intervals:

C%[ZZ]H% - {z €y i ijap=ije, = O,l,...,kfj} L (2.24)
~——

i(k—j+1)

They are labeled by the interval [j, k] and by the binary string i*=7+1 of
length k — j 4+ 1 of assigned digits within that interval; each one of them can
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be obtained as a finite intersection of simple cylinders C’;{f} ,

k—

cUH L = ﬂ et ot = {z €0y iy = ig} . (2.25)
/=0

We shall denote by Cj;) the sets consisting of the 2(k=i+1) cylinders

Cz[](kk,] ;+1,- The o-algebra X' is obtained from all possible unions and intersec-

tions of simple cylinders. Further, pre-images of cylinders under 7! remain
cylinders: in fact

—1(03}) = {7, €0y Tyic cz.{j}} - {7, €y ¢ ig(1) = gy = ig}
= ol (2.26)

whence T, is measurable with respect to 3.

Remark 2.1.4. The left shift on unilateral sequences is not invertible; it be-
comes so by choosing instead of {2; the set Qg of all doubly infinite sequences
i = {ij}jcz. Then, the same result as in (2.26) holds for the pre-images of

cylinders under 7T,,, Ta(Ci{f}) = C’i{f_l} , whence T, ! is also measurable.

We shall refer to any probability measure p on X as to a global state
on (24; to any such p there correspond local states pp; ;) on the cylinder
sets Cjjx)- As cylinders in Cj; ;) are in one-to-one correspondence with strings

gkt ¢ .Q(glk_jﬂ) of length k& — j + 1, these local states are probability

distributions on Q((jk_j +1),

4 (k—=3+1)
Hijk) = {P[ I )}i(k_m)eg(wl)
d

pm (7T >0, > Py EFTITYy = 1. (2.27)

(o (k—j+1)
k=it et

Consider the sequence of local states {u(™},en,

ﬂ(n) = {p(n) (in)}i(n)egé") s p(n) (zn) = Pl1,n] ('Ln) ) (228)
on the cylinder sets C[y,,}; since C’Z[IQZ] . U C’}LZT ;» from the additivity

of the measure the following compatibility condltlon follows

p(n)(2122 e Zn) - M( ’L[ilz Zn) Zp(n-‘rl) le2 ) : (229)
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Particularly important global states over (24 correspond to shift-invariant
probability measures j, o T; ! = p. From

p(CBD) = n(T el ) = n(ehi )

it then follows that
d d
n)-- . 1,n n — =
> oM iz ein) = Son(Ch ) = w(CE ) = u(TClm )
i=1 i=1

u(Ch ) =D i) (2.30)

As a consequence, if y is shift-invariant the probabilities assigned to cylinders
Cl[jllilw depend only on the values i;i;4; ..., defining the cylinder, but
not on the interval [j, k].

Remark 2.1.5. Interestingly, the conditions (2.29) and (2.30) defines a dy-
namical triplet (£24, T, 1) in the sense of Definition 2.1.1. This is the content
of Kolmogorov representation theorem [266]: if X = {1,2,...,d}, the set {24,
as the infinite Cartesian product X'*°° of countably many copies of X can be
equipped with the product topology which is the coarsest one with respect to
which the projection maps 7; : ¢ — %; are continuous, namely the one gener-
ated by union and intersections of preimages 7r;1(B) of sets B € X that are
open with respect to the discrete topology of X'. Then, {2, is a compact set by
Tychonoff theorem [251]. Namely, any open cover of {2 also contains a finite
subcover, whence in any collection of closed sets in {2 with empty intersection
there also exists a finite sub-collection with empty intersection [251].

Suppose one is given a collection of numbers p(”)(i(n)) as in (2.28) sat-
isfying (2.27); they assign volumes u(Cﬂﬁ) = p() (i(")), and define local
states on the measure algebras generated by these cylinders. If the quantities
p(™) (i(”)) fulfil (2.29), the local states extend to a positive, finite and addi-
tive function p on the o-algebra X' generated by cylinders. In order to show
that p is also o-additive and thus a measure, one uses Remark 2.1.1.4 and
that each set in X' the o-algebra is closed in the product topology. Therefore,
given any decreasing sequence X D {C,}>2; with empty intersection, com-
pactness ensures that there exists a finite sub-collection {C,,, };?:1 such that
ﬂ?zl Cp, =0, whence lim,, o (Cy) = 0.

Further, suppose that the quantities p(™ (:(™) also fulfil (2.30), then it
turns out that

i1i2..‘ij,1

= 3 PR Gy i)

Gg.lj—1
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for all £ =1,2,...,7 — 1. Therefore, M(Cl[jk]lk) = p(k_j+1)(ij ...1x) whence
M(Tgl(cgi’.ﬂik)) = M(Oz[jk]zJ and the measure y is shift-invariant.

Example 2.1.4 (Bernoulli shifts). Consider a shift dynamical system
(24, T,, 1t); the simplest choice of local states ;™ corresponds to product

n
measures on .Qé ).

n

d
P (ineein) = [T pGs) o pG) 20, 3 p@) =1. (2.31)

j=1

These dynamical triplets are known as Bernoulli-shifts; if d = 2 and X =
{0,1}, (22, T,, 1) amounts to repeatedly tossing a coin, possibly biased if the
probabilities of head (0) and tail (1) are different.

Example 2.1.5 (Markov Chains). Shift dynamical systems slightly more
correlated than Bernoulli shifts are the so-called Markov shifts. Given the

local states (™ = {p(n)(i(n)}ﬁ")e(zin)’ the ratios

(M) (G140 - q

. . p (2112 Zn)

Plip|i1te - tp_1) = — - 2.32
( | v 1) p(n_l)(ZIZQ e "Lnfl) ( )

define conditional probabilities for the n-th symbol to be i, if the previous
n — 1 ones are iy - -i,_1. The global state u is said to possess the Markov
property if and only if the following conditions occur:

p(in|i1i2 e in—l) = p(in‘in—l) (233)
S plilj) = 1 (2:34)
i=1

) plili)p(s) =p(i) - (2.35)

Condition (2.33) means that the conditional probabilities (2.32) depend only
on 7,, and on i,_1 and not on the previous symbols, so that

P ivia i) = (T plicenlio)) plin) (2.36)
(=1

Therefore, local states u(™) are completely specified by the d x d matrix
P = [p(inin—1)] and the probability vector [p) = {p(j)}}—;.
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Because of (2.34), the matrix P is a stochastic matriz, namely its entries
p(il7) are positive and qualify as transition probabilities as they express the
fact that the system cannot but remain in the same state or change into
another one. It follows that condition (2.29) is satisfied, indeed from (2.36)

d d
S iy vinad) =Y p(ilina (Hp Ze+1|le) 1)
i=1 i=1

(H (ie41lie) ) (i) = p" P (inig - +in—1) .

Further, because of (2.35), the probability vector is an eigenvector with eigen-
value 1 of the matrix P and (2.30) is also satisfied, whence the local states
1™ generate a global shift-invariant states on §24. In fact,

d
> P iy - (H plies1]ie) ) Zp (i2]d)p
i=1
n—1

= (TT plizsalio)) pliz) = p" i -+-)
=2

Notice that Bernoulli shifts are particular instances of Markov chains with
transition probabilities p(i|j) = p(i) for all j = 1,2,...,d.

2.2 Symbolic Dynamics

As already remarked, states corresponding to a continuous phase-space can
only be identified with finite precision that is they can be located within
subsets of small, but finite size, and cannot be further resolved. A typical
case is when the finite accuracy available corresponds to the subdivision of
the phase-space in a finite number of non-overlapping measurable subsets,
namely to a coarse-graining of the phase-space X by means of a so-called
finite partition [7, 167].

Definition 2.2.1 (Partitions).

1. A finite, measurable partition (partition for short) P of (X,T,u) is any
collection of measurable subsets P; C X, i € Ip, Ip an index set of finite
cardinality, such that PN P; =0 fori # j and |J P; = X The subsets
P; are called atoms.

2. A partition P = {P;}ic;, is finer than a partition Q = {Q;}i<;, (Q
coarser than P), symbolically Q < P, if the atoms of Q are unions of
atoms of P: Q; = Uz‘eljgp P, forallj € Ig.

iclp
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3. Given two partitions P = {Pi}ielp and Q = {Qj}jelg, the partition
PV Q={P,NQ;j}icip,jcio s the coarsest refinement of P and Q.

Example 2.2.1. [61] Quite often, X is endowed with a o-algebra X' which is
generated by a measure-algebra Yj; it is then possible to approximate within
¢ any finite Y-measurable partition P = {P;}¢, by a finite X-measurable
partition @ = {Q,;}%_, with atoms Q; € X, in the sense that (see (2.1))
WP, AQ;) < e, i =1,2,...,d. Indeed, because of Remark 2.1.1.4, given
d > 0, for any P; € P one can find Q; € Xy such that u(P; AQ)) < J; notice
that P, N P; =0, thus z € Q; N Qj and z ¢ P; yield z € Q; A P;, whence

QINQCQIAPUQ; AP — n(Q;NQ;) <25 .

The sets @} need not form a partition; however, let Q' := U” 1 Qi N QY
which is such that p(Q’) < d(d—1)6 and set

d—1
(Qi:::CQQ\(Q/7 i::1a2w"7d‘7 17 ng;::ﬂf\ LJ‘Qj.

j=1

These are atoms of a partition Q C 3. Consider first the symmetric differ-
ences Q; AP;, i =1,2,...,d — 1; one has that, if z € Q; and = ¢ P;, then
x € Q, AP, while, if x € P, and © ¢ Q;, then z € Q; AP, or x € P,NQ’,
whence

QAP CQ U (QIAP) = u(Q;AP) < (d(d— 1) +1)5 .

Since Py =X\ J{Z| P and (X \ A) A(X\ B) = AAB,

d—1 d—1 d—1
Quari=(U@)a(Ur)cUwanp
J=1 J=1 J=1

yields p(Qq A Py) < (d — 1)(d(d — 1) + 1) 0, whence the result follows by
choosing § = (d — 1)~ (d(d — 1) +1)~*

The volumes u(P;) =: p(i) of the atoms of any partition P provide a
discrete probability measure pp = {(P;) }ier, on P. While atoms in general
change under the dynamics T,

P T (P):={zecX: TVeeP} Vj>0, (2.37)

their volumes do not for 7' is assumed to preserve .
Further, if P, N P;, = 0, then T—7(P;,)NT~7(P;,) = 0. Therefore, for all
j € N (j € Z if T has a measurable inverse)
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Pl =T (P) = {T7(P)}icr, (2.38)

are partitions with the same probability distribution of P: pup; = pup. Further,
partitions at successive times are all refined by the partition

n—1
P = \/ P =PVIT(P)V--- VT (P). (2.39)
j=0

If p := card(Ip), the atoms

P =P nTYP)N---T P, ) (2.40)

i(n)

of P are labeled by strings i 1= igi1 - in_1 € .Q]()"). We shall denote by
) = {p(m (i) = ,L(pi<(71>)>}i(n)eg(n) , (2.41)

the probability distribution associated with P and consisting of the vol-
umes of its atoms with respect to the given probability measure p.

Remark 2.2.1. Notice that a phase-point x € X belongs to the atom FP;,
of P if and only if Tz € P, for all 0 < j < n — 1. As a conse-
quence, the atoms of P(™ contain all phase-points z € X whose trajectories
{17 x}jez successively intercept the atoms P;; of P identified by the string
i) = 191+ lp_1 € QI(,n). As an effect of the coarse-graining, segments of dif-
ferent trajectories {Tj z}z:ol may correspond to a same i e Q,(,”); thus, as
normalized volumes, the probabilities p(™ (i(")) quantify how likely is it that

different initial conditions give rise to a same segment of trajectory between
(discrete) time j =0 and j =n — 1.

Lemma 2.2.1. Given a reversible dynamical system (X, T, 1) and a partition
P = {Pi}ictp, card(Ip) = p, the dynamics T : X — X corresponds to the
left-shift (2.23) on sequences i € 25 (see Remark 2.1.4).

Proof: Let i(x) € Qf be the sequence of atom labels corresponding to the
trajectory {T7(z)};ez with initial point z € X. According to section 2.1.1
and to (2.37), ¢j(z) = 4; if and only if 792 € P;,. Then, from (2.23),

’LJ(TI) = ij o Tty S Pij ~ ij+1($) = (Tg’i)j(l‘) = ij .
(I

Therefore, any coarse-graining of X by means of a partition P provides
a description of the dynamical triplet (X,7T,u) in terms of the left shift
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on the sequences in Qg . The segments of trajectories up to time n — 1 are
in one-to-one correspondence with the sets of strings i e QI(,n) and the
probability distribution ,ugf ) provides states over the cylinder sets Cl%" 11, By
means of (2.40) and of the T-invariance of p, one shows that conditions (2.29)
and (2.30) are fulfilled, whence the local states ,ugl ) define a global shift-

invariant state up over _Q%. By varying x € X, the trajectories {ij}jez

gets in general encoded by a subset f?% C .Q%.

Definition 2.2.2 (Symbolic Models). Given a partition P of X, the triplet

(_(NZIZ),T(,, up) provides a symbolic model for the dynamical system (X, T, u).

Example 2.2.2 (Baker Map). The Baker map (see Figure 2.1) is the in-
vertible map of the two-dimensional torus T? = {x = (x1,73) , mod 1} into
itself given by

1
(21‘1, @) 0<r < =
Trax — 2 2
BL = 1+ 2o 1
2z — 1, 5 §§171<1
g 1
(2,21-2) 0< a9 < =~
Tp'w = 1+2 1 ’
T
,2x9 — 1 - < <1
( g 2 > g =2
1 1 1
T5? Ts L
A—— —»5
0% 1 0 % 1 0 1
|75 |7
1 1
1
4
01 1 0 1

Fig. 2.1. Baker Map
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The map T is measurable with respect to the Borel o-algebra of T?
and preserves the Lebesgue measure du(x) = dajdas: altogether, one has a
dynamical system described by the measure-theoretic triplet (T2, Tg,dx ).
It is evident that, when n — 400, a sufficiently small distance between
two points & and x + § increases as 2" along the horizontal direction until
it gets of order 1. Therefore, Definition 2.1.2 gives log2 > 0 as maximal
Lyapounov exponent of the Baker map; instead, small distances decrease
exponentially along the vertical direction with the same speed so that volumes
are conserved.

Let wy(z1) = {wi}izo and w_(x2) = {w—_;};>1 be the half-sequences
consisting of the coefficients of the binary expansions of x1, respectively xs:

. s
J J
! 2i+1 7 2 27

=0 j=1

Setting w(x) = (w_(z1),w4(22)) = {w;(x)}jez € 2 and using the mod1
folding condition defining T?, it turns out that 75 is isomorphic to the left
shift T, on {2, namely w;(Trx) = wji1(x).

Further, the Lebesgue measure on T? corresponds to the uniform product
measure (2.31) on the o-algebra generated by cylinders. This can be seen
as follows. According to Remark 2.25, cylinders are intersections of simple
cylinders as Céo} and C’fo} that correspond to the vertical rectangles Py =
{x: 0< 2 <1/2}and P, = {x : 1/2 < 21 < 1} and their images
Ci{_]} = ng(Ci{p}), j € Z (see (2.26)). Under Tz' they get rotated into
horizontal rectaljlgles; successive applications of the Baker’s map split them
into horizontal rectangles of half height, each one of them having as neighbors
halved rectangles coming from the other initial rectangle.

_1]

It turns out that Ci[llf.,in,l is a horizontal rectangle of width 1 and height

con-1)
20,215--3tn—1
corresponding to a horizontal rectangle of width 1/2 and height 2=+ whose

area is 27". These areas may only come from a product measure,

2+l a further intersection with CZT{OO} provides the cylinder

n—1
n ,n— J j 1 .
up =TT e, wfehH=5 .
j=0

Therefore, the coarse-graining of T? given by P = {P,, Pi} provides the
symbolic model (25,7, ug) for (T? Tg,dx).

2.2.1 Algebraic Formulations

In this section, instead of referring to phase-space trajectories, we shall con-
sider classical dynamical systems from the point of view of their observables
and of their time-evolution. By observables we mean suitable functions over
the phase-space.
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It is convenient to consider complex-valued functions f : X +— C; their
values f(z) can be inferred by measuring real, (f), and imaginary parts,
S(f). Further, it is reasonable to assume that functions f, g in a suitably
chosen class of observables give observables in the same class under addition,
(f,9) — (f+9)(z) = f(x)+g(x), and multiplication either by scalars « € C,
(o, f) — (af)(x)af(x), or by another observable, (f, g) — fg(x) = f(x)g(x).

In other words, it is a reasonable physical assumption to require that ob-
servables constitute algebras of functions on X': these algebras are commuta-
tive for fg = gf. Physically speaking, there are no fundamental obstructions
to the fact that classical measuring processes can, in line of principle, be per-
formed without effects on the state of the measured system. As the measured
values depend on the system state, it follows that measuring ¢g and then f
yields the same results as measuring f and then g.

Also, it is practically convenient to approximate certain observables in
the algebra by means of other observables that are in a certain sense close to
them; we shall thus assume these commutative algebras of observables to be
endowed with topologies and to be closed with respect to them; in particu-
lar, we shall consider algebras of observables where converging sequences of
functions do converge to observables in the algebra.

Like in Examples 2.1.2, 2.1.3, in the following we shall assume X to be
compact in a metric topology and measurable with respect to the Borel o-
algebra that contains all its open and closed sets. Then, a natural algebra of
observables is provided by the continuous functions on X [258].

Definition 2.2.3. Let X' be a compact metric space; C(X) will denote the
Banach *-algebra (with identity) of continuous functions f : X — C endowed
with the uniform topology given by the norm

C(X) > f=|fl =suwpflf(z)| : € X} . (2.42)

Remarks 2.2.2.

1.If f,g € C(X) and a € C then f+ ag € C(X) as well as fg € C(X).
Sums, multiplications by complex scalars, by continuous functions and
complex conjugation * : f(z) — f*(x) all map C(X) into itself. These
facts make C'(X) a *-algebra with a norm f — || f]|; indeed,

Ifll=0sf=0, lafl=lallfl, If+gl<Irl+lgl,
for all f,g € C(X), o € C. This norm defines the uniform neighborhoods
U(f) ={9eCX) : |f—ygllse}, feC(X), (2.43)

and equips C(X) with a metric and a corresponding topology called uni-
form topology, T,.
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2. A sequence {fp}tnen C C(X) is a Cauchy sequence if, for any ¢ > 0
there exists N € N such that n,m > N = ||f, — fml < &; since
all Cauchy sequences in C(X) converge uniformly to f € C(X), that is
lim, ||f — fall = 0 or lim, f,, = f, C(X) is termed a Banach algebra.
Also, 1771 = IFIB. 171 = 1] and gl < 11 lgl for all £.g € C(x);
this makes C(X) a C* algebra (see Definition 5.2.1).

3. Because of assumed compactness of X, the identity function 1(z) = 1
belongs to C(X). When X is not compact, one considers the *-algebra
Cy(X) consisting of the complex continuous functions on X’ vanishing at
infinity. When equipped with the norm (2.42), Cy(X) is a Banach algebra,
but the identity function does not belong to it.

A description of dynamical systems by means of continuous functions
is, however, too restrictive, in general. For instance, the corresponding C*
algebras cannot contain observables related to yes/no questions like

is the state localized within a measurable subset (region) A € X’ or not?

as these correspond to characteristic functions 14 of A which are only mea-
surable and not continuous. The Koopman-von Neumann formulation of Ex-
ample 2.1.1 offers a natural way to enlarge the algebra of observables. In a
quantum-like notation, we shall denote by |¢) any function in L2 (X) and by
(x|1) its value ¢(x) at € X'. Functions f € C(X) can then be represented
on 1.2 (X) as multiplication operators Mj:

(x| Mylp) = fl)p(x) , Ve Lp(X). (2.44)

In the following, we shall identify, C'(X) and its representation by multipli-
cation operators, that is we shall identify M and f.

Remarks 2.2.3.

1. The maps C(X) 3 f — Ly(f) := ||f|¢ )] are semi-norms. They define
strong-neighborhoods on C(X), that is neighborhoods in the so called
strong topology, Ty,

(g ={gec@) gl e, 1< <0} (245)

Since [[(f — 9} < If - gl ¥l 9 € Usppy(H) = g € U
therefore, every strong-neighborhood contains a uniform neighborhood
and is thus a uniform neighborhood itself; in general, however, there
can be uniform neighborhoods which are not strong-neighborhoods, so
that the uniform topology is finer than the strong topology, 75 < 7;
namely, 7, has more neighborhoods. Practically speaking, a sequence
fn € C(X) converges strongly to f € C(X), s — lim, f,, = f, if
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lim, oo [|(f = fu)|¥)]| =0 V¢ € L2(X), and, while all uniformly con-
vergent sequences converge strongly, there can be strongly converging
sequences which do not converge uniformly.

If {fn}nen converges with respect to 7., it converges also with respect

to 75, but not vice versa; it follows that the strong closure of C(X),
that is C(X) together with all its possible strong limit points, is strictly
larger than C(X). Indeed, it contains C'(X), simple functions and discon-
tinuous functions f that may jump arbitrarily but only on sets of zero
measure [258]. Equip X with a o-algebra and a measure pu; then,

£l = inf{a>0: u(fe: |f(@)] > a}) =0} .

where f is a measurable function on X, defines a norm | - || called
essential norm. If || f]|ec < 00, then |f(x)] > ||f||cc only on a set of zero
measure; further, the following collection of measurable functions,

Li(x) = {f: Iflloo < o0} ,

is a C™ algebra with respect to the essential norm known as the algebra
of essentially bounded functions.

. There is another topology on C'(X) which is inherited by its multiplicative

action on ]Li(X ) and which is coarser than the strong topology, namely
the weak topology, T, = T, < T,. It is generated by the semi-norms
Loy(f) =1(¢|My|t)| which defines the weak neighborhoods
(O (1) = {g € C(X) « Loy, (F—g) e, 1S5 <n} .

(2.46)
A sequence f,, € C(X) converges weakly to f € C(X), w—1lim f, = f, if
and only ifnllngo K| (f—fnlp)] =0forally,¢e ]Li(X). As we shall see
in the more general non-commutative context, the strong and the weak
closures coincide. In the case of C'(X) they give rise to L7°(X') which has
the structure of a so-called von Neumann algebra.

. Actually, L7°(X) can be generated as the strong closure on L2 (&) of the

algebra containing the characteristic functions of finer and finer partitions
of X. More precisely, one may consider a refining sequence {P,}n>0,
Pn = Ppi1, that generates the o-algebra of X when n — +o00. Each P,
is a finite dimensional commutative algebra A4,, whose elements are the
step functions that are linear combinations of the characteristic functions
of the finitely many atoms of P, ; then,

weak—closure

]LZO(X) = UAn
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In order to complete the formulation of measure-theoretic triplets (X, T, i)
into an algebraic framework, one has to endow C(X) with a time-evolution
corresponding to 7" and a map C(X) — C that play the role of u by assigning
mean values to continuous functions.

We shall consider invertible continuous dynamical maps 7" on X and
discrete-time dynamics. As in Example 2.1.2, any f € C(X) changes in time
according to

f(x) = f(T'z) = fo T (x) =: fy(x), tE€Z.

The map Or : C(X) — C(X), defined by O1(f) = foT is an automorphism
of C'(X); namely, it is invertible and

Or(af + Bg)=aOr(f)+B0r(9), Or(fg)=06r(f)Or(g) . (2.47)

Moreover, @ preserves the uniform norm.

Example 2.2.3. In the Koopman-von Neumann formalism where functions
f € C(X) are represented as multiplication operators, the Koopman operator
Ur implements unitarily the automorphism Or; indeed, using (2.4), for all
Y eL}(X) and x € X,

(x| Up fULp) = f(Ta) (Tx|Ulp) = f(Tx) (T~ o Tx|4)
= (2|67 (f)V).

Notice that Ur cannot belong to C'(X), otherwise it would commute with all
f € C(X) which would then be constant in time.

Concerning the possible states over C(X) (see (2.2)), we shall consider
the space M(X) of regular Borel measures over X (see Remark 2.1.1.5).
The simplest instances of elements of M (X') are the evaluation functionals
0y : C(X) — C, defined by 6,(f) := f(z), for all z € X and f € C(X). These
functionals can be seen as integration with respect to Dirac delta distribu-
tions and embody the fact that phase-space points are the simplest physical

states: 0, (f) = / dy f(y) §(y — x). By making convex combinations of eval-
x

uation functionals one obtains more general positive, normalized expectation
functionals over C(X).

Actually, a theorem of Riesz [258] asserts that the action of any such
functional is representable by integration with respect to a regular Borel
measure in M (X). In view of the physical interpretation of states as positive
functionals that assign mean values to observables, it makes sense to identify
measures p € M(X) and states w,, : C(X) — C such that 3

3For sake of notational convenience, we shall sometime employ the notation

() for wu (f).
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Az frw(n= [ @ r@). viecw).  (2a)

Remarks 2.2.4.

1. With two measures j1 2 on a measure space X all conver combinations
pp1+ (1 —p)ug with p € [0, 1] provide other measures; therefore, the space
of states of classical systems is a convex set.

2. Given two measures 112 on X equipped with a o-algebra X, p1; is said
to be absolutely continuous with respect to ua, p1 =< po, if for any B € X
p2(B) = 0 = p1(B) = 0. Then, there exists a positive f € L} (X)
such that py(B) = [ dpa(z) f(z) for all B € X. The density f(x) is

called Radon-Nikodym derivative and denoted by %/% If also po < w1
then 1 and ps are said to be equivalent. Differently, 11 and ps are called
mutually singular, puy L ueo, if there exists B € X such that pi(B) = 0
while ps(X\B) = 0.

3. According to Lebesgue decomposition theorem, given two measures p and
m on X, there exists a unique choice of measures u1 2 and of p € [0,1]
such that u = puy + (1 — p)us with p3 < m and ps L m.

4.If X = T? as in Example 2.1.3, then any LY (T?) 3> p(r) > 0 with
Jp2 dr p(r) = 1 is the Radon-Nikodym derivative of a measure which is
absolutely continuous with respect to dr. Vice versa, evaluation func-
tionals 0,.(f) = f(r) are singular measures with respect to dr.

Finally, a measure p € M(X) is T-invariant if the corresponding mean
values are time-independent, w,(O7(f)) = w(f) or w, = w,0O7. Notice that
(2.48) and (2.47) allows one to extend the state w, and the automorphism
Or to the von Neumann algebra of essentially bounded functions L5°(X).

Definition 2.2.4. To any measure-theoretic triplet (X, T, u), where X is a
compact metric space equipped with the Borel o-algebra and p € M(X) is a
T-invariant reqular Borel measure, one can associate a C* algebraic triplet
(C(X),Or,w,) and a von Neumann triplet (L7°(X), Or,w,) where state w,
and automorphism O are defined as in (2.48), respectively (2.47).

2.2.2 Conditional Probabilities and Expectations

Given a measure space (X, ) with o-algebra X, a finite partition P = {P;}7_;
such that p(P;) > 0 for all ¢, and X € X, consider the following function
w(X NF)
n(F;)
such that /P dp () (X |P)(z) = (X N Fy) . (2.50)

7

€ X — u(X|P)(x) = it xep;, (2.49)
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It is the conditional probability of X € X given the partition P and repre-
sents the probability of the subset X once it is known that x belongs to one
of the atoms of P. This notion can be extended to the case of partitions with
atoms P such that u(P) = 0 by assigning a same fixed, arbitrary real value
to u(X|P)(x) when x € P: in such a way one gets a family of versions of
the conditional probability each of which satisfies (2.50) [61]. One can ex-
tend (2.49) and (2.50) and define probability distributions conditioned upon
o-subalgebras 7 C Y.

Consider an integrable function f € L} (&), the functional on 7 defined

/ dp (z , T € T, is bounded, o-additive and absolutely

continuous with respect to p (see Remarks 2.1.1.3 and 2.2.4.1); its Radon-

Nikodym derivative ccil—F(a:) E(f|T)(x) such that

/du E(f|T)(x /dM (r) VTeT, (2.51)

is 7-measurable and integrable and is called the conditional expectation of f
with respect to the o-algebra 7.

By choosing as f the characteristic function 1x of a subset X € X its
conditional probability given 7 is thus defined by u(X|7)(x) := E(1x|7T)(x)
and is such that

/ dp (@) (X |T)(z) = p(XNT) VXeX,  TeT. (2.52)
T

Given a o-subalgebra 7 C X consider the Abelian von Neumann al-
gebra L°(X,T) consisting of the essentially bounded 7-measurable func-
tions on X (see Remark 2.2.3.2). This is a subalgebra of the Abelian von
Neumann algebra L5°(X) of the Y-measurable essentially bounded func-
tions on X. Then, (2.51) makes the conditional expectation a linear map
E(|T) : Lip(X) = Li2(X,T) which is linear, positive and a measure pre-
serving projection, that is po E(-|7) = p and E(E(f|T)|T) = E(f|T). The
first three assertions are evident, while idempotency is a corollary of the fol-
lowing more general property. Suppose 773 = 73 are two o-subalgebras of
X} such that Ty € 7; = 11 € 75 but not vice versa, in general. Then, if
[ ey (X), (2.51) yields

/T dp (2) E(E(f|T)|Ts) = /T dp (2) E(f|Ta) = /T du (z) f ()
- /T du () E(f|T3) .

for all Ty € Ty, whence Ty < T, = E(E(f|72)|Th) = E(f|T1).
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Proposition 2.2.1. If f € Ly°(X) and g € L2 (X, T), where T C X, then
E(gfIT)=9E(fIT) . (2.53)

Proof:  Suppose g = 17, the characteristic function of a subset T' € T;
then, for all To € 7, TNTy € 7 and (2.51) yields

[ @B in)@ = [ au@) @) = [ 1@ EUT@)

Ty TNTo To

Then, one concludes the proof by approximating g € L;° (X, 7) with respect
to the essential norm by means of simple functions. O

Given a refining sequence {7, },ez, that isn < m — 7,, C 7, C X,
we shall set 7, := \/, ., the smallest o-subalgebra containing all the 7,’s
(T, 1 T,), respectively denote by 7_ := A ., 7, the largest o-subalgebra
contained in all the 7,, (7, | 7). The proof of the following continuity
properties can be found in [61] and [101].

Theorem 2.2.1. Let X be a measure space equipped with a o-algebra X and
a measure p; given a refining sequence of o-subalgebras 7T,,, then

lim_E(f|T,) = E(f|IT.) . lm_B(f|T,) = E(fIT.) .

n—-—+00

for all f € Lip(X).

Examples 2.2.4.

1.If ¥ D T := N, the trivial o-algebra consisting of the empty set () and
the whole of X; then, E(f|N) = u(f) 1. On the other hand, if 7 = X,
then E(f|X) = f
2. By inserting characteristic functions f = 1x, X € X, in the above theo-
rem, one gets the following continuity properties of the conditional prob-
abilities:
im (X T) (@) = w(X[Te)(2) , p—ae.

for all¥-measurable subsets of X.

3. Consider the unit interval [0,1) with the Borel o-algebra X and the
Lebesgue measure du (z) = da ; construct the measure algebra 7,, gener-
ated by the partition P, of [0,1) into 2" atoms P, = [k27", (k+1)27™).
Then, 7,, 1 X and [61]

(k+1)27*
E(fIT)( Z 1 (@)2" at f(t)
k2—n

for all f € L[o 1) (dt). For n — oo the summand containing = tends to the
derivative of the integral at x and thus to f(x) p-a.e..
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2.2.3 Dynamical Shifts and Classical Spin Chains

Dynamical shifts and symbolic models can be given an algebraic formulation
in terms of classical spin chains. Consider a triplet (.Qg , T, 1), that is a shift-
dynamical system over doubly infinite sequences of symbols from an alphabet
with p elements that leaves invariant a measure p.

Let us associate to each symbol j € {1,2,...,p} a p x p matrix of the
form

0 0 0 o 0 0
0 0 0 e 0 0
P] = . . . ]_
~~
(j,j) —thentry

0 0 0 o 0 0
Varying 1 < j < p, we obtain an orthonormal family of orthogonal projec-
tions such that P;P; = d;; P; and Zle P; = 1,, where 1, denotes the p x p
identity matrix; these projectors generate the diagonal p X p matrixz algebra

D,(C) * with elements

dy 0 0 0 0
0 dy 0 0 0 ,

D=| | =db (2.54)
. . . DRI . . ]:1
0 0 0 -~ 0 d

To each label j in a sequence ¢ = {i;};cz one thus associates the diagonal

matrix algebra D, (C): each of its minimal projectors thus corresponds to a
O([O,n—l]

simple cylinder. Extending the construction to generic cylinders b0 111 im 1

as in (2.24), these correspond to tensor products of projectors

PO =P, i =gy, i (2.55)

()

Then, the natural matricial description that one associates to strings of
length n is the diagonal matrix algebra D™ = D®" .= ®;L:_01 (D,(C));,
namely the tensor product of n copies of D, (C) whose elements are diagonal
p" x p™ matrices of the form

D™= 3" d@™) P (2.56)
imen™

4These commutative matrix algebras are also called Abelian and projections as
the P; are known as minimal projectors.
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A suggestive physical picture is as follows: each matrix algebra D, (C)
describes a classical spin, with p possible states, in an infinite classical fer-
romagnet. Spins located at the lattice sites —n < j < n are described by
tensor products of the form Dj_,, ,, := ®?:7n(Dp((C))j. These matrix alge-
bras can be interpreted as algebras of observables for finite portions of the
infinite ferromagnet by the embedding D|_,, ) — 1, 1] @ D[_p, ) @ Ljpyq
into Deo := U, >0 P[-n.n), where 1_,,_yj and 1, ; denote the tensor products
of infinitely many identity matrices 1 € D,(C) located along the two-sided
chain at sites from —oo up to —n — 1, respectively from n 4+ 1 up to +oo.

Each D|_,,,) can be equipped with the standard sup-norm of matrix

algebras (see (5.3)) °. The sup-norm inductively extends to Dy, and allows
—————uniform
to consider the uniform closure Dz := {J, ey Di=n,n] . This procedure

is known as C*-inductive limit [64] as it involves an increasing sequence of
local algebras D|_,, ,; Dz provides a C* algebraic description of a classical
spin chain.

Using (2.26), the left-shift along sequences gives rise to an algebraic shift
map O, : Dz — Dy such that

@O'(D[f’n,n]) - D[,n+1’n+1} . (2.57)

Further, the local probability measures pu(™ := {p(i(”))}i(")egm) that

yield the global T, -invariant state p over Qf can be associated with diagonal

matrices 0]

pi =" pEM) Pl (2.58)

imeni™
by means of the trace operation (see (5.19)) which acting on any matrix re-
turns the sum of its diagonal entries. In fact, multiplying p,(fl) with matrices as
in (2.56), gives another matrix in D) with diagonal elements p(i(™) d(i™),
and one gets
(p D) = 3w dE™) .
imenim

whence p(i™) = Tr (p,&n) Pi[?,;?_l]). Therefore, conditions (2.29)- (2.30)

translate into the following algebraic relations to be satisfied by {prn)}neN:
e (pf”) = Tra () = o™V (2.59)

where Tr; denotes the trace with respect to j-th factor. These conditions
allows to consistently define a global state w,, on the spin chain Dz; this state

5The sup-norm of a diagonal matrix D is the square root of the largest diagonal
element of DT D.
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is specified by its values as a positive expectation functional over local spin
arrays where it coincides with the local states an) (which we shall encounter

in the quantum setting as density matrices).

Definition 2.2.5 (Classical Spin Chains).
The C* algebraic triplet (Dz, Oy, w,,) associated with a measure-theoretic
triplet (2, T,, 1) will be referred to as a classical spin chain.

Remark 2.2.5. In Section 5.3.2, it will be proved that to all classical spin
chains as defined above, there correspond algebraic triplets as in Defini-
tion 2.2.4. In particular, the von Neumann algebraic triplets arise when the
C* triplets (Dz,0,,w,,) are represented on a Hilbert space and enlarged by
adding to them their weak-limit points.

Example 2.2.5. [113] Consider a Markov chain as in Example 2.1.5. Let

p(1) 0 0

d 0 2 0
p=Ywn-| o YT
- 0 0 - pd)

correspond to the probability measure 1 = {p(i)},. Define on the tensor
product D4(C) ® Dy(C) a linear map E : Dy(C) ® Dg(C) — Dy(C) by linear
extension of the following action on tensor products of minimal projectors
P; € D4(C),

P @ Py — E[P; ®@ Py := p(jli) i ,

where P(j]i) are the transition probabilities of the Markov chain. From (2.34)
and (2.35) and using that ZZ=1 P, =1,

d d d
Elel= Y EFRePl=Y p@liip=Y P=1
ij=1 i,j=1 i=1

Tr (pE[I ® Py]) = zd:Tr(pE[Pi ® Pl) = zd: p(kld) Tr(p P)

Zl =1
- Z p(kli) p(i) = p(k) = Tr(p Pr)

forall k =1,2,...,d. Furthermore, higher order probabilities as in (2.36) are
iteratively obtained as:

pliin -+ in_1) = Tr(p]E[PZ-O QE[P, ® --E[P,  ® ﬂm) .
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For instance, to evaluate Tr(pIE[PiO ®E[P, ® ]1]]) use 22:1 P, = 1, then

i:Tr(pE[Pio ®E[P;, ® Pk”) = Xd:P(klil)Tr(pE[Pio ® Pza])
k=1 k=1

= T(pEIP;, @ P]) = plirlio) Tr(p Py,)

= p(ilio) p(io) = p(ioi1) -
Therefore, the local density matrices pL") are the local restrictions w, {D(”) of
a global state w,, on the classical spin chain Dy such that, for all D; € Dy(C),

w#<D1®D2®~~Dn> :Tr(pE[Dl®E[D2®~.1E[Dn®]1m) .

2.3 Ergodicity and Mixing

The two uncoupled harmonic oscillators of Example 2.1.2 whose orbits fill
the phase-space densely (see Remarks 2.1.2.2 and 2.1.2.3) are typical ergodic
systems. Ergodic theory developed [167] from the attempt to explain why in
thermodynamic systems time-averages of typical observables coincide with
their mean values p(f) with respect to equilibrium distributions. Intuitively,
if an orbit fills the energy shell densely, evaluating the time-average of a
function along such an orbit should indeed amount to integrating with respect
to the Liouville measure restricted to the energy shell.

Definition 2.3.1. Let f : X — C be a complex function associated to a
dynamical system (X, T, u); time-averages are defined by

f(z):= lim z:fTS . f(z):= lim f/dszx

t——+oo t t——4oo t

in discrete, respectively continuous time.

Example 2.3.1. Consider the uncoupled oscillators of Example 2.1.2 and
a continuous function f : T? +— R. By means of (2.12), the discrete and
continuous time averages yield

_ ) . eitZ?:l wing _ .
f(O)=lim > T Ty (@) = Y. el

nez? nez?

Y2, win;€27L

respectively
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eitZ?zl wini _ 1

~

?(0) = t—lg-noo Z f(n)ZtE:Q—W”L €n(0) = Z f(n) €n(0) .
necz? =1 Willi =
TFo wini=0

Then, besides ensuring that orbits fill T2 densely, the conditions in Re-
mark 2.1.2.2 and 2.1.2.3 also imply that time-averages coincide with their

mean values: f(8) = f(0) = [, d6 f(0) = u(f).

A considerable break-through in ergodic theory was Birkhoff’s theorem ©.

Theorem 2.3.1. Given (X,T, ,u), let f € IL}L(X) be a complex p-summable

function on X. Then,

1. the time-average E(w) exists p-a.e. on X;

2. the time-average [ is T-invariant: foT = f p-a.e.;
3. the time-average f € L (X) and p(f) = p(f).

The proof [91, 61] of these important results hinges on the following lemma
known as maximal ergodic theorem.

Lemma 2.3.1. Given the dynamical triplet (X,T, u), for any f € ]L}L(X),

k—1
1 .
set Slf(:ﬂ) = f(T7z) and AS := {x € X @ supy>g S’,f(ac) > O}; then,
=0
| dute) f@) 20
AT

Proof: Set V) (z) := max{O, S{(x), 8 (x)} and split X into the sub-
set Al = {x s oM (x) > 0} and its complement where @%”(ﬁ) = 0. Further,
o2 (z) = max{S{(x), e Si(m)} = @1 () on Af; also,

2
o) (x)

max{ f(@), f(@) + J(T2), ... f(z) + [(Tw) + - {(T"2)}

f@) + max{0, f(Ta), ..., f(Tw) + - f(T")}
flz) + o (Tz) .

Thus, since 45%1)@) is non-negative, u is T-invariant and @f_&l(aﬁ) > o2 (z),

5Though the results presented below can be extended to dynamical systems in
continuous time, we shall concentrate on discrete time dynamical systems.
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du(@) f@) = [ du(@) (02 @) — o) (Ta))
An An
) () (T
> [ o) - /du()@ (Tx)
— (1)
Afdu x) Py /d,u () =0.

Then, the result follows for, when n — +o00, the points in Ay that are not in
Af form a set of vanishingly small measure . O

Proof of Theorem 2.3.1 Let a < b € R and, using the notations of the
previous lemma, set

1
Eab::{xGX lim inf — Sf()<a<b<limsup75£(x)}.

n—+toon n—-00

Let g(l)( ) := f(x) — b when x € E,;, otherwise ggé) (x) = 0; consider the set
1 40 1
{x € X : sup —Sp* (x) > O} = {x € X :sup—S/(z) > b} .
n N n N

This set not only coincides with the set A9 as defined in Lemma 2.3.1, but
it also equals E,;; while the first property is contained in the definition of
the set, the second one follows from the fact that, on one hand,

. Loy L s (€
limsup =S/ (z) >b = sup —S)(x) >b = Eg C A% .

n—+oo T n—+oo T

On the other hand, by definition of E,y, if ¢ E,p also T"x ¢ E,;, for all n,
&
whence g( )(T" ) =0, Sy (z) =0 and z ¢ Ada. Thus, Lemma 2.3.1 yields

[ an@a@ = [ au@ (@) - 0.
A Eab

ab

) i=a—f(z)if v € Ea,
otherwise g((lb) (x) =0, gives / dp (2) (a — f(x)) > 0, whence
b

a

The same argument applied to the function g b (

bulEw) < [ du(@) f(o) < aplEu)

Eap
Since a < b this can only be possible if u(E,,) = 0; therefore, the limit
a 1 .
flx) = 1irJIrl — 87 (x) exists p-a.e. on X. Namely, outside the union of all
n—+oo n

E,;, with rational a, b, which is still a set of zero measure, the sequence SJ ()
converges pointwise to f(z) which can however be +oo.
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The limit function is T-invariant by construction; moreover, f € L, (X).

Indeed,
[ @ lzsiels [ @i

therefore, Fatou’s lemma 7 yields

/ dpe () | f () |<hm1nf/ dp (x ‘
X n—-4oo

1
Finally, choose A > 0, let g»(z) := ’ES,i(m)

L@ < [ @)@ <+oc.

— A, and consider the set A9 as

in Lemma 2.3.1 ; then,

[an) 251 - i) < Lot - f

/X o dy (x)

1 .
[ duw \—sﬂx)
A9x n

dp (@) | ()] -

AIX

1. -
Consider the third integral, Lemma 2.3.1 yields p(A9) < X Il fl1; as to the
second one, it can be estimated as follows

[ ) |1t

n—1

<=y dpa (@) |F(T*2)| + o p(A™)

=0 IF(TF) >0

- /| o, @U@ +an(an)

for some fixed a > 0. Now, pu(A9) and thus the third integral can be made
arbitrarily small by choosing an appropriate A, as well as the second one by
setting o large enough. Further, Lebesque dominated convergence theorem 8,

1 .
can be applied to / dp () ’—sz(:c) — f(x)| which becomes negligibly
n

X\ A9
small when n — 400, whence
. 1
[ dute) fa) =t [ auta) 2t =ngglwnz/ dyu (2) F(T*)

- /X dpi (z) f(z)

"Fatou’s lemma [258] asserts that if f, is a sequence of measurable functions on
a measure space X, then / dp liminf f, <liminf [ dp fn.
x n—-+oo n—-+oo x
8 Lebesgue Dominated Convergence Theorem [258] asserts that if {f,}nen is
a sequence of measurable functions on X such that the limit f(z) = hT fn(x)
n—-—+oo

exists for all z € X and |fa.(z)| < g(z) for all z € X with g € L,(X), then
feLi@) and [ du@) @) = tm [ dule) fulo)
X n— OO' X
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O

In the light of Birkhoff’s ergodic theorem, we first give a general measure-
theoretic definition of ergodicity and then consider its physical consequences.

Definition 2.3.2. A dynamical system (X, T, ) is ergodic if for all measur-
able subsets T~Y(B) = B implies n(B) =0 or u(B) = 1.

Remarks 2.3.1.

1. The first conclusion to be drawn from this definition is that ergodic sys-
tems cannot possess non-trivial T-invariant measurable functions (con-
stants of the motion). Indeed, if f : X — R is such that f o T = f then
N, :={r € X : f(x) = a} C X is measurable; moreover, as x € T~ 1(N,)
implies Tw € N,, then f(x) = f(Tx) = a. Thus, T"Y(N,) C N, and er-
godicity forces N, to equal either X or () p-a.e. for all a € R, whence
f(x) = ¢y p-ae. on X.

2.1f f e ]LllJ (X), its time-average f is T-invariant by point 2 in Birkhoff’s
theorem. If (X, T, u) is ergodic, from the previous remark and point 3 in
Birkhoff’s theorem, f(z) = o5 p— a.e; thus, p(f) = cg = f(x) p—ae.
on X. Namely, ergodicity implies that time-averages and phase-averages
(mean-values) of (summable) observables coincide. Vice versa, dynami-
cal systems where time-averages and phase-averages coincide are ergodic
because of Proposition 2.3.1 below.

3. If the only T-invariant measurable functions are constant almost every-
where on X, then (X, T, 1) is ergodic: in fact, the characteristic functions
of T-invariant measurable subsets are T-invariant and must then be con-
stant almost everywhere, namely equal either to 0 or to 1 p-a.e.

4. The average time spent within B by almost all phase-points of an ergodic

t—1
— 1
system equals the volume of B. Indeed, let 12(33) =3 ZlB(Trf«x);
s=0

count the mean number of times B is crossed by the trajector;/ {T"x}nen
during a span of time of length ¢. Then, ergodicity yields

Tg(z)= lim Ig(2)=pu(B) p—ae. . (2.60)

t—+o00

Proposition 2.3.1. A dynamical system (X, T, ) is ergodic if and only if
for all measurable A, B it holds that

t—o0

lim % z_: W ANT*(B)) = u(A)u(B) . (2.61)
s=0
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Proof: Consider 14(z)1 Z 14n7-+(B)(7), by Birkhoff’s theorem

and Lebesgue dominated convergence theorem (see footnote 8) it follows that

t—1

p(1aT5) = Jim - >oHANT(B).

follows from (2.60). If (2.61) holds, then

If the system is ergodic, then (2.61)
wu(B), whence p(B) equals either 0 or 1. [

A=B=T""B) = u(B)? =

Definition 2.3.3 (Mixing). 4 dynamical system (X, T, ) is mixing if and
only if for all measurable subsets A, B C X it holds that

lim u(ANT YB)) = u(A)u(B) . (2.62)

t——+oo

The subsets A NT~"(B) consist of those points of A that visit B at time
t; thus, (2.62) asserts that relative to the volume of any measurable subset
A, the volume of points of A that will eventually be in another measurable
subset B equals the volume of B. In other words, mixing dynamical systems
are in the long run characterized by the uniform spreading of their measurable
subsets; on the other hand (2.61) states that ergodicity amounts to a uniform
spreading on average.

From a physical point of view, quantities like u(A N T~*(B)) are two-point
correlation functions; thus, mixing characterizes dynamical systems whose
two-point correlation functions factorize asymptotically, whereas ergodicity
corresponds to two-point correlation functions factorizing in the mean.

Remarks 2.3.2.

n—1

1
1.If lim a, = a, a, € R, then, hm Zak = a, whence (2.62) im-

n—-+4oo n—+4+oo N

plies (2.61) and mixing implies ergodicity. The opposite is not in general
true as the time-average can get rid of those s for which u(ANT—*(B)) #
w(A)pu(B). There is a third asymptotic behavior, intermediate between
ergodicity and mixing, known as weak mizing [313] and related to the
fact that

1n—1
nlgn lan, —a| =0= hm EZ|an—a|=O
7=0

— lim ZO
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Weak mixing amounts to the request that

t—1
1 s
Jim = u(ANT™(B) — p(A)u(B))| =0 ; (2.63)
s=0
it is implied by mixing and implies ergodicity.
2. Given an invertible map 7', a stronger notion of mixing is formulated
as follows [91]. Given any finite collection S, := {S;}/_4, S; € X, of
measurable subsets of X', denote by

IS = <7 Tﬁk(Sr)

k>n

the o-algebra generated by all possible atoms of the form T7%(S;) for
k>nand S; € S,. Then, (X, T, n) is said to be K-mizing if

lim sup |u(So N B) — u(So)u(B)| =0, (264)
n—oo BeX(S,)

for all Sy, S, € X. Observe that z € X°°(S,) implies T %z € S; at
some time k > n for some atom S; € S,; therefore, K-mixing amounts
to the uniform statistical independence of any given measurable subset
from the trajectories of any finite family of subsets if these are considered
sufficiently far away in the past.

By using the density of the algebra of simple functions &(X) in the
Hilbert space L2 (X) as in Example 2.1.1, it is convenient to reformulate (2.61)
and (2.62) in terms of square-summable functions. It is thus possible to study
how those properties constrain the spectrum of the Koopman operator Ur.

Proposition 2.3.2. A dynamical system (X, T, ) is
1. ergodic if and only if for all 1, ¢ € ]Li(X)

i, % i p(p ¢ oT?) = p()u(9) ; (2.65)
s=0

2. mazing if and only if for all ¥, ¢ € Li()()

Jim p(éoT) = p(v)u(@) - (2.66)

According to the Koopman-von Neumann formalism of Example 2.1.1, us-
ing (2.5), it turns out that u(y¢ o T") = (¢* |UL |¢). Therefore, ergodicity
and mixing can conveniently be expressed as weak-limits, that is as limits with
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respect to the weak topology (see Remark 2.2.3.3). Then (2.65) and (2.66)
are equivalent to

w— lim ZUT =1 (2.67)
w—thm Up =|1)(1]. (2.68)

The constant function |1) is such that Up|1) = |1); if there exists
[¥) # | 1) such that Ur|y) = |9 ), then one can orthogonally decompose
[Y) =a|l)+ 38|¢) with (¢|1) =0, ||¢|| =1 and Ur|¢) = | ¢). Thus,

L= lim (¢|Ur]¢) # (¢ 1) =

whence (2.68) cannot hold. If (2.68) holds, a similar argument excludes the
presence of eigenvectors |1y ) such that Uz, ) = |1, ). Therefore,

Proposition 2.3.3. A dynamical system (X, T, ) is mizing only if 1 is the
only eigenvalue of its Koopman operator and it is not degenerate.

In order to see the impact of ergodicity as expressed by (2.67) on the
spectrum of Uy, we use [313]

Proposition 2.3.4 (von Neumann Ergodic Theorem). Let Ur be the
unitary Koopman operator acting on the Hilbert space H := Li(éf) of a

dynamical triplet (X,T,u), with T invertible. Let A; : H — H be defined
t—1

1
by Al ) ZUT|w ), ¥ € H, and let P project onto the subspace K

of vectors such that Ur|vy) = |¥). Then, thg_n I(A;y — P)y|| = 0; in other

words, P is the strong limit (see Remark 2.2.3.1) of the sequence of operators
At; P=s— limt_)+oo At'

Proof: The subspace orthogonal to K is (Ur — 1)H; thus, for any ¢ € H,

|¥) = PlY)+ (A= P)|¢) =Ply)+ (Ur —1)|¢) ,
Ut

for some ¢ € H. Since A;(Ur — 1) = , the result follows from

1Tz D) _ 209l

(A = P)[9)] < : <=
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Corollary 2.3.1. A dynamical system (X, T, p) is ergodic if and only if 1 is
a non-degenerate eigenvalue of the Koopman operator Up.

Proof: Since strong convergence implies weak convergence, condition (2.67)
means that ergodicity is equivalent to P = | 1)({1]. O

Remarks 2.3.3.

1.

By substituting 1, ¢ € L2 2 (X) with ¢ — p(3p) and ¢ — p(¢) (they also
belong to L2 (X ), ergodlclty, respectively mixing amount to

lim — ZN poT*) =0, tEIEOOM(¢¢oTt):O, (2.69)

t—oo t

for all ¢, ¢ € LZ(X) with u(¢) = pu(é) = 0.

. In case T is not invertible, the Koopman operator is not unitary, but just

an isometry, that is UTU = 1, while UUT # 1. If T is invertible, time
averages can be extended from —oo to +00 and, because of T-invariance
of u, it does not matter which one of ¥ and ¢ is the time-evolving function
n (2.65) and (2.66).

Examples 2.3.2.

1.

2.

Ergodic rotations as in Example 2.1.2 are never mixing for the Koopman
operator has the exponential functions e, (0) as eigenfunctions.

The system in Example 2.1.3 is mixing. Given ¢,¢ € L2 (T?) with
() = u(¢) =0, let € > 0 and choose L > 0 such that ||i) — 'Q[}EH < ¢ and
¢ — ¢l < e, where . = Z|\m\|<L w( Jem and ¢ = ZI\nI\SL ¢( Jen
Then, using (2.22),

(e o TP < e (9]l + lldell) + [n(vhe de o TP)]
<e(lgl+lgl) + D [m)lloA™n).

Il <L
[A=Pn| <L

When p — oo, hyperbolicity permits ||n|| < L and ||[A"Pn| < L only if
n = 0; since pu(¢) = ¢(0) = 0, the Arnold Cat Map satisfies (2.66).

. Conditions for the Markov chain in Example 2.1.5 to be mixing can be

derived by considering two-point correlation functions involving cylinders,
of the form

(CZ[OO plpl 1 m T CJ[S q]ql 1)) (Cl[l()) plpl 1 ﬂ C][f)’]tjq;ql—]l) '

By means of the matrix P = [p(i|j)] of transition probabilities and
of (2.36), one writes
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0,p—1 1] . . . .
ACESNALe =) END DEFTIRUSTARTST SN

kpa"'kt—l
d t—2
= E (H 7a+1ja) Jokt—1 E : H Pkb+17€b X
kp,ki—1=1 a=0 kptise.ki—2 b=p
p—2
X Pkpip—1 ( H Ijic-uic) p(ZO)
c=0

Z (H P]a+1]a) Jokt—1 (Pt+p71)kt—1k:p Pkpip—1 p(io e ip—l) .
—_————

kp,ki—1=1 a=0
. m(Cig-viyy 1)

Using (2.34) and (2.35), it follows that (see [61, 313])
[0,p—1] [tt+qg—1]\ [0,p—1] [0,g—1]
tllglooﬂ(clo plp 1 m C]O JZ 1 ) 'U'(CZO plp 1) (Cjo q]q 1) ?

is achieved if and only if , ligl (P");; = p(i) for all j = 1,2,...,d; while

factorization in the mean (and thus ergodicity) holds if and only if, for
all j=1,2,....,d,

4. The condition for mixing in the previous example is certainly satisfied by
Bernoulli dynamical systems whose matrix of transition probabilities is
P= [p(z')]f’j:1 (see Example 2.1.5).

2.3.1 K-Systems

Consider an invertible Bernoulli system ( .Qg, T,, 1), where the space of p-adic

doubly infinite sequences ¢ € Q% is equipped with the o-algebra generated
by cylinder sets and p is a translation invariant product measure on Y. Let

Cioy = {C]{O} }?zl be the finite partition consisting of simple cylinders as
in (2.25) and consider the o-algebras

= \/ T;j(C{o}) = \/ C{j} (2.70)
>0 7>0

Cop =T Co) =\ Cy (2.71)

j>—-n

generated by union and intersections of cylinders of the form (see (2.26))
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Ol[z();qpﬂ) — ﬂ ;7 C{J}) sla—p+1) _ iplipr1 - ig € Q}()q*pﬂ) ,
j=p

for any ¢ > p > —n. From Section 2.1.1 and Examples 2.3.2.3-4, one deduces
that:

i) Co) C Cogyy» 00) \[ Coy=2, iii) \ C_y=N, (2.72)

n>0 n>0

where N is the trivial o-algebra consisting only of the empty set () and of
Qg, all equalities being understood up to sets of zero measure. Condition i)
expresses the fact that cylinder sets C, ,) with p,q € Z generate X, while in

condition i),
A Cm= N\ VT (Cpp)

n>0 n>0j5>n

denotes the largest o-algebra, called tail of Cyoy (Tail (C{O})) contained in all
C_ n] with n > 0.

Cylinders in C_,,) are of the form C' Zjﬁ)q] with p > n, ¢ > 0; they become
subsets of Tail (C{O}) when t — +o0. Then, from the mixing relation in
Remark 2.3.2.3, one deduces that the characteristic functions of these atoms
go into the constant functions pu(C [(q +]1>) 1, asymptotically, whence condition
i4i). Bernoulli shifts are particular instances of Kolmogorov (K -)systems [91]
and Cg) a particular example of K -partition.

Definition 2.3.4 (Classical K-systems). A discrete-time dynamical sys-
tem (X, T, p) with o-algebra X' is a K-system if there exists a o-subalgebra
(a so-called K-partition) Yo C X that gives rise to a nested K-sequence of
o-subalgebras Xy := T*(Xg) such that

1. Et = Tt(EO) C Et+1 fO’f' all t € Z,’

2. N ez X =%
3. /\tEZ Et - N

For Bernoulli shifts, the partition Cyoy is such that \/, ., T7(Cioy) = ¥
and Tail (C{o}) =N Cioy is a generating partition with a trivial tail.

Definition 2.3.5. Let (X, T, 1) a measure theoretic dynamical triplet with X
as o-algebra.

1. A finite, measurable partition P of X is called generating if (apart from
sets of zero measure fi)

+00 +oo
\/ T/(P)=% (T invertible) or \/T7(P)=X (otherwise) .

j=—o00
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2. The tail of a finite measurable partition P is defined by
Tail (P) := A\ \/ T, *(P) (2.73)
n>0k>n

and will be said to be trivial if Tail (P) = N, that is if all its subsets equal
0 or X up to sets of zero measure .

Remark 2.3.4. A generating partition P = {P; };cs consists of X-measurable
atoms P; such that unions and intersections of their images T"(F;), in the
past, n < 0, and in the future, n > 0, generate Y. Instead, the refinements

P_p = :::l T~*(P) are the o-subalgebras generated by the atoms in the
past of P up to a discrete time ¢t = —n. Since P_,,_;; € P_,,, one can also

loosely write Tail (P) = liI_ir_l P_y) to indicate that the tail of P contains
n—-—1+0oo

all measurable subsets generated by the remote past of P. As such, tails are
T-invariant.

From the preceding discussion concerning Bernoulli shifts, there clearly
appears a relation between the triviality of the tails of partitions and the
dynamical system mixing properties.

Proposition 2.3.5. A dynamical system (X,T,pn) is K-mizing (see Re-
mark 2.3.2.2) if and only if all its finite partitions have trivial tails.

Proof: Counsider a finite partition P and its tail. By definition, Tail (P) is
mapped into itself by T'; thus, if in (2.64) Sy € Tail (P), then Sy belongs to
P_n):=V;sn T=J(P) for all n and thus to the o-algebra X°°(P), generated
by P_,). Therefore, one can choose B = Sy in (2.64) which then yields
w(So N Sp) = u(Sp)? and, in turn, Tail (P) = N.

Vice versa, let us choose as S, in (2.64) a finite partition P ? and con-
sider the o-subalgebras P_,; C X' generated by the infinite refinements
Vjsn T7F(P). The corresponding conditional probabilities 1i(S|P_,)(z),
S e X (see (2.49) and (2.50)) are such that, for any A9 € ¥ and B € P_,,

(4011 B)(@) = e Aa)(B)] < [ (@) (AP} (2) = i Ao)

Because of Theorem 2.2.1 and Examples 2.2.4.1,3, from P_,,; | N it follows
that pu(Ao|P—_p)(xz) — p(Ao) p-a.e. when n — oo, whence K-mixing follows
from Lebesgue dominated convergence theorem. O

In the next chapter, by using entropic tools, we shall show that all finite
partitions of K-systems have trivial tails and are thus K-mixing; at this point
it suffices to observe that

“Starting from the finite set S, of measurable subsets {S;}7_;, one constructs
the partition of X' consisting of Sp := (;_, Si, S; := Si\Sp and S;. 5 = X\U|_, Si-
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Proposition 2.3.6. If a dynamical triplet (X,T,u) has a generating parti-
tion P with trivial tail, Tail (P) = N, then it is a K -system.

Proof:  The o-algebra Py :=\/, 5,7 "(P) is a K-partition. O

Examples 2.3.3.

1. As for Bernoulli shifts, also for the Markov shifts in Example 2.1.5,
the partition P = {Pp1} consisting of simple cylinders as in (2.25)
satisfies condition i) and i) in (2.72). However, the argument used
when discussing the triviality of the tail for Bernoulli shifts shows that
Tail (P) = N if and only if the Markov shifts are mixing in which case
by Proposition 2.3.6 they are K-systems.

2. Consider Example 2.1.2 with the frequencies w; 2 such that the system
is ergodic (see Remarks 2.1.2.2 and 2.1.2.3). As a partition of T2, choose
the Cartesian product C of the partitions of the 1-dimensional torus T
into atoms Cy = {0 < 0 < 7}, Cy = {m < 0 < 27}. Because of ergodicity,
the trajectories of the end points of the atoms C; x C; fill T? densely and
the intersections of their images T*(C; x C;) under the dynamics become
finer and finer and approximate better and better the Borel o-algebras
of T2. Actually, this already occurs if one restricts to T=7(C) with j > 0,
namely ;;08 T=7(C) = X. This also means that Tail (C) = X.

3. The partition in Example 2.2.2 of the two-torus into the vertical half-
rectangles gives thinner and thinner vertical rectangles while moving into
the past, and thinner and thinner horizontal rectangles into the future.
Their intersections are squares of increasingly small side, by means of
which one can approximate better and better every Borel subset of T2.
The tail of such a partition is trivial due to the fact that the Baker map
acts as a Bernoulli shift with respect to it.

In order to set the ground for a quantum extension of the notion of
K-system (see Section 7.1.4), we operate a reformulation of the conditions
in Definition (2.3.4) in terms of algebras of functions. Given a K-sequence
{3 == T*(X0) }+ez of o-subalgebras, consider the Abelian von Neumann sub-
algebras M, := IL°(X, X;) = OF[Mo] consisting of the essentially bounded
Yi-measurable functions on X' (see Section 2.2.2). Then, one has

My C Mgy, \f My=M, A\ M, ={A1},

teZ

where the generation of M by \/ is by strong-operator closure on the Hilbert
space L2 (X), while /\ denotes set-theoretic intersection.

We shall see in Section 5.3.2 that unital Abelian von Neumann algebras
M can always be identified with suitable L.7°(X’) and represented as multipli-
cation operators on the Hilbert space Li()( ). It thus makes sense to provide
an algebraic reformulation of Definition 2.3.4 (see Definition 2.2.4).
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Definition 2.3.6 (Classical Algebraic K-Systems).
A classical von Neumann algebraic triplet (M, Orp,w) is an algebraic K-
system, if there exists a von Neumann subalgebra Ny C M such that, setting

./\/t = @51(./\/’()), tez,

1. Ny C Nyyq forallt € Z;
2. \/tez-/vt =M;
3. Ay No = {AL}.

Any such sequence {N;}iez of von Neumann subalgebras of M will be called
a classical K-sequence.

Remark 2.3.5. The above definition can also be formulated in an Abelian
C™ algebraic context; there, M will be a C* algebra as well as the subalgebras
of the K-sequence and \/teZJ\/t will denote the algebra generated by norm
closure. The classical spin chains discussed in Section 2.2.3 are instances of
classical C* K-systems: with M = Dz, Ny will be the left half-spin chain Dy
generated by the diagonal matrix algebras Dy, ;) with p < ¢ < 0. Then, the
algebraic K-sequence will consist of the subalgebras Dy = 6, (D)) generated
by the diagonal matrix algebras Dy, ,j with p < ¢ <.

Given a measure-theoretic K-system with a K-sequence of o-algebras
{X, }nez, instead of considering the von Neumann algebras M,,, one may
focus upon the Hilbert spaces H,, := ]Li()( , X)) of square-summable X,,-
measurable functions on X. From the conditions ), i) and #i¢) in Defini-
tion 2.3.4, it follows that

1. Hy C Hyyq for all t € Z;
2. UtEZ Ht = IHI7
3. Nz Hy =C1,

where H := L7, (X) and C 1 stands for the Hilbert space consisting of constant
functions on X’ (p-a.e.). Since, according to the construction of the unitary
Koopman operator in (2.4), 1p(s,)(z) = 1s, (T "'z) = (Uz '1g,)(z), it follows
that H; = U;tHo; whence, setting K, := H;+; © H,,,

t#s=—K, L H,, H:@Kt. (2.74)
teZ

By choosing an orthonormal basis {| f; ) }jes in Ko, one gets an orthonormal
basis for H, of the form {|e;;) := Ur'| f; )};jes and thus one for H of the
form {|e;+)}jestez. Any unitary operator U on a separable Hilbert space H
which generates an orthonormal basis of the previous form is said to have a
Lebesgue spectrum of multiplicity J.

Proposition 2.3.7. [91] For a K-system (X,T,u), J is countably infinite.
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Proof: Since Hy C H; there surely exists f € Hy with g := f — E(f|X0),
where E(f|X0) is the conditional expectation of f with respect to Xy, such
that E(|g|?|X0) # 0 on a Yp-measurable subset Sy with () > 0. Consider

the function G € H; defined by G(x) := %
E(lg[?|X0)(x)

properties of the conditional expectation it follows that

1s,(2); from the

B o
BEI5) () = 16,0 =0 (1)
BUGPIZ0) (@) = P 1, ) = 15,60) ().

Let {| €2 ) }ren be an orthonormal basis in the Hilbert space L2 (SO) of square
summable functions supported within Sy and set | f ) := Mg| e? ) where Mg
denotes the multiplication by G, namely f2(z) = G(z)el(z). Notice that
| f2) € Hy; further, by using (2.51) and (2.53), it follows that | £2) L Hy,
whence | f0) € Ko = H; © Hy as defined in (2.74). Indeed, let | ho) € Hy,
then () yields

(ol 8) = [ dn(e) i) Gy o) = [ (o) B G 1) 0
-/ @) i) BIGIT) @) @) = 0.
Also, the set {| £ ) }nen is an orthonormal basis for
(1) = [ @ @) @) Iow) d)
= [ du(@) B((e)" |G e} %0 ) ()

So

= [ du(z) () (@) B(GP|Z0)(w) eg(w) = (ef [ek) = G -

So

Therefore, K; must be an infinite dimensional separable Hilbert space. [

2.3.2 Ergodicity and Convexity

We conclude this section by considering some aspects of ergodicity and mixing
in relation to continuous dynamics on compact, metric spaces and to the
convex space M (X, T) of their regular, T-invariant Borel measures. The first
result [313] states that ergodic measures are eztremal in M (X,T), namely
they cannot be decomposed into convex combinations of other measures in
M(X,T). We shall make use of the algebraic setting of Definition 2.2.4.
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Proposition 2.3.8. An algebraic triplet (C(X),Or,w,) is ergodic if and
only if M(X,T) 5 w, = A1+ (1 —=XNws, 0 < XA <1, wio € M(X,T)
implies w, = w1 2.

Proof: Suppose a T-invariant Borel measurable subset E exists such that
0 < uw(E) <1 and let E¢ := X\E. With 1g and lgc their characteristic
functions and wy, (1) = u(E), the two states

C(X)Bwal(f)ZM, O(X)awaQ(f)_M

n(E) 1= u(E)
are different and both in M(X,T); furthermore, they decompose w,,. for
= i(B)wr + (1 - p(E)) ws.

Suppose w,, can be decomposed as stated in the proposition, then the
measure 1 € M(X,T) corresponding to wy is absolutely continuous with
respect to p (see Remark 2.2.4.2). Let fi(xz) > 0 be its Radon-Nikodym
derivative. Consider the measurable subset E = {x € X' : f(z) < 1}. Observe
that one can decompose E = (EN T-Y(E)) U (E\T 1(E)) by means of
disjoint subsets and, analogously, T-*(E) = (T-Y(E)N E) U (T"YE)\ E).
As poT™ =y,

ar(ig) = [ g ) 10 /| sy B @) =)

_ / du(z) fr(z) + / du(x) fi(a) .
T-Y(E)NE

T-YE)\E
Therefore, as fi < 1 on F while f; > 1 outside it, it follows that

WE\T\(E)) > /

E\T-1(E)
> (T~ H(E)\E).

du(z) filx) = / du(z) fi(z)

T-1(E)\ E

Then, u(E\TY(E)) = u(T~Y(E)\ E) = 0 since

W(E) = w(EN T7\(E)) + p(E\T~(E))
— W(T7(E)) = w(T"(E)N E) + u(T~"(E)\ E).

Thus, FE is T-invariant apart from sets of 0 measure p; if the system is ergodic,
this implies either u(E) = 0 or pu(E) = 1. The latter equality cannot hold,
otherwise 1 = wi (1) = wi(1g) < p(E) = 1; thus, p(E) = 0. The same
argument applied to F':= {x € X' : f1(z) > 1}, leads to u(F') = 0 whence to
fi(z) =1 p-a.e. on X which implies w, = w; and thus extremality. a

The second result is a refinement [313] of Proposition 2.3.2.
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Proposition 2.3.9. The triplet (C(X),Or,w,) is ergodic, respectively mix-
ing if and only if, for all f € C(X) and g € L, (X),

t—1

Jim =3 wu(f 0 03.9) = wu(Fenlo) (2.75)
s=0

tlfgo wu(f 007 9) = wu(flwu(g) - (2.76)

Proof: If (2.75) holds, it implies (2.65) by the fact that any ¢ € L2 (X) is
also summable and can be approximated in LZ (X) by continuous functions.
Vice versa (2.65) implies (2.75) as any f € C(X) also belongs to L2 (X) and
any [ € ]Lb(X ) can be approximated in ]Lb(X ) by square-summable func-
tions. The same considerations can be used to prove that (2.76) is equivalent
to (2.66). O

Example 2.3.4. Given the algebraic triplet (C(X),Or,w,), let v be an-
other state on C'(X) absolutely continuous with respect to w,,, but not Op-
invariant, that is, for all f € C(X),

v(f) = /X du (2) (@) flz) , v(D) = /X A () g (2) = walo) = 1,

with Radon-Nikodym derivative g, # g, o Op € L}L(X ). From a physical
point of view, w, can be considered as a perturbation of the equilibrium
state w,. By duality (see (2.8)), for all f € C(X), vi(f) = v(f o ©F) where
v :=voOL If (O(X),Or,w,) is mixing, then (2.76) implies

Jim v (f) = wul o) = walf) . ¥ eO(X) .

Physical instances of measures that are absolutely continuous with respect
to an invariant one are local perturbations of equilibrium states; then, being
mixing guarantees that these perturbations fade away in time and provides
a mathematical explanation of relaxation to equilibrium.

2.4 Information and Entropy

At its simplest, information theory is concerned with the description of two
parties transmitting information to each other. Information is physical as it
is encoded into physical carriers, e.g. electromagnetic waves, that undergo
physical processes, e.g. interactions with an optical fiber. As long as the
laws that describe these processes are those of classical physics, one talks of
classical information theory.
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ORI IO
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Source
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Receiver |« :decoder; | —

Fig. 2.2. Classical Transmission Channel

2.4.1 Transmission Channels

In the following, we shall consider two parties A and B exchanging signals
according to the following typical scheme (see Figure 2.2):

1. At each use, a classical source emits symbols ¢ from an alphabet consist-
ing, say, of integers T4 = {1,2,...,a}: symbols are emitted with proba-
bilities 74 = {pa (i)} ;.

2. After ¢ successive uses of the source, the source outputs are strings of
length £, i) := iyiy---ip € .Qc(f), emitted with probabilities p 4 (i(e)).
These strings can be interpreted as outcomes of a random wvariable
A0 = \/f:1 A; which is the join of ¢ successive random variables from
the stochastic process {4; }ien (A1 := A) associated with countably suc-
cessive uses of the source. The random variable A®) is distributed accord-

ing to the probabilities T4 = { pacw (3) © e o that ¢ subsequent
i0en

uses have actually emitted a given string of symbols.

3. The sender encodes the emitted strings i into strings of fixed length
n, ™ = zia9---x, € .Q(g"), consisting of symbols z; from another
alphabet Ix := {1,2,...d}. The encoding procedure amounts to a map

FAQN (2((12) — Qc(ln),
M 1 540 gm0y = (M) ¢ Q) (2.77)

4. The code-words (™ are then sent to a receiver via a transmission chan-
nel, C'") = C x C x ---C, which transforms an input string (™ into an
output string y™ = C(x(™) = yyy -y, € Q,i”), consisting of sym-
bols y; from, possibly, another alphabet Iy := {1,2,..., k}, according to
a set of transition probabilities (compare Example 2.1.5)

Py >0, 3 py™E)=1. (278
ymen™
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These latter quantities take into account the possibility that the trans-
mission channel be noisy and thus might randomly associate different
outputs y™ to a same input z(™.

. The channel inputs and outputs are thus random variables X (") and

Y™ with outcomes (™ and y™. If the code-words (™) occur with in-

put probabilities Ty m) = {px ) (m("))}mmeg(w, the transition probabil-
d

ities provide joint probability distributions for the joint random variables

X Y™ given by
TX vy (n) = {me)vwn) @™,y ™) : (2™, y™) e QY x Qf(en)}

Px vy () (m(n)7y(n)) =DPxm (w(n))P(y(n)|m(n)) . (2.79)

Consequently the output random variables Y (") are distributed according
to the marginal probability distributions mym) = {pym (y(n)}yW)eQS”
where
pyw)(y(")) = Z Dx )y (n) (:B(n),y(n)) . (2.80)
s el

. At the receiving end of the transmission channel, the output string y()

goes through a decoding procedure whose aim is to retrieve the actual
source output ¥ that has been encoded into (™ = 5(”)(1'(@) from the
received string y(™ = C(") (:c(")). Decoding amounts to a map

0

Q0 5y Dy™) =7 e QO (2.81)

The whole procedure comprises the following steps

e e (O N < () B A G

14 n n 0
e lel) e M e Y

The efficiency of the transmission is related to how much the decoded word

~(0)
7

differs from the word ¥ that, after being encoded into (™, has been sent

through the noisy channel and received as y(™. The task is thus to minimize

decoding errors while keeping a non-vanishing number of bits transmitted
per use of the channel.

In Section 3.2.2, we shall consider the class of memoryless channels with-

out feedback; they act on input symbols in a way which is statistically in-
dependent from previous inputs and outputs. As such, they are completely
specified by factorized transition probabilities:

n

’p(y(n)\w(n)) = H p(yilz:) - (2.82)

i=1
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Examples 2.4.1 (Channels).

1. Noiseless Binary Channel: two classical bits (bits) 0,1 are emitted
with probabilities p4(0), pa(1) and sent through a noiseless channel:

p(00) =p(1[1) =1, p(0]1) = p(1]0) =0

2. Binary Symmetric Channel: two bits are emitted with probabilities
pa(0), pa(l) and sent through a channel which flips them according to

p(010) =p(11) =1—-p>0, p(10)=p(11)=p>0.

3. Binary Erasure Channel: two bits are emitted with probabilities
p4(0), pa(1) and sent through a channel which does not flip them, but
may erase anyone of them with a same probability 0 < a < 1. This ac-
tion is described by a map C from the two-letter alphabet {0, 1} onto the
three-symbol alphabet {0, 1,2}, where 2 stays for a junk symbol, and by
transition probabilities

p(0[0) =p(11) =1—a, p(2(0) =p(21) =a.

A noiseless channel is characterized by transition probabilities that equal
1 in correspondence to specific pairs of input and output strings otherwise
they vanish. There are then no distortions in transmitting or storing infor-
mation by means of these channels. In such cases, the question is whether
the source information can be compressed and retrieved with negligible prob-
ability of error, the possibility of compression depending upon the presence
of redundancies and regularities in the source.

More precisely, if the source emits binary strings of length n, one asks 1)
whether for each bit from the source one can store h < 1 bits , still being able
to reliably reconstruct the information emitted by the source from the 27*™
bit strings effectively retained and 2) which is the optimal compression rate
h achievable. This problem is addressed by Shannon’s first theorem which
asserts that, for stationary sources, the optimal rate is the their entropy-rate.

In the presence of noise in the transmission channel, the strategy is some-
how the reverse with respect to noiseless transmission; in order to reduce the
possibility of noise-induced errors, one introduces redundancies by multiple
uses of the channel. The aim is to optimize the number of signals that can
faithfully be transmitted by n uses of the channel. Shannon’s second theo-
rem proves that this number can be made increase exponentially with n at
an optimal rate R, the channel capacity.

2.4.2 Stationary Information Sources

In most informational contexts, stationary sources are a reasonable descrip-
tion of the actual physical processes taking place. Stationarity means that the
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probability of a string i does not depend on when the source had emitted
it, but only on the letters emitted. This is equivalent to (compare (2.30))

ZPAW (ivig -~ -ig) = pac— (iais - -ip) -
i1

This condition goes together with the fact that the probability of a string of
length ¢ —1 must be the sum of the probabilities of all words of length ¢ with
the same first £ — 1 symbols (compare (2.29)),

> pace (ivia - -ie) = pac-v (iniz - -ig1) -
ig
The similarities with shift dynamical systems now are apparent.

Lemma 2.4.1. A classical, stationary information source corresponds to a
stationary stochastic process {A;}inen, where the random variables A; take
on values in an alphabet T4 = {1,2,...,a} and the joint random variables
AM) = Vi, A; are distributed with probability distributions T 4 satisfying
appropriate compatibility and stationarity conditions.

FEquivalently, a stationary classical source can be described by the measure-
theoretic triplet (24, Ty, 11a), where pa = fia © Tg_1 18 a state on the set 2,
of semi-infinite strings © = {i;}jen, i; € La, equipped with the left shift T, .
The restrictions uff) of pa to the sets of finite strings (Z((ln) are given by the
probability distributions m 4 -

Finally, a stationary source can be described as a C* triplet (Da, Oy, Wa)
as in Definition 2.2.5, namely by a semi-infinite classical spin-chain con-
sisting of a lattice of a-valued spins described, locally, by tensor products

n—1
DM = ® D, (C) of diagonal a x a matriz algebras D,(C), equipped with an
j=0

automorphism G, which amounts to the left shift along the chain and with a
Oy -tnvariant state W4 such that (compare (2.56))

waD™ = S ™) PO
’l:(")EQ((;,n)

Examples 2.4.2.
1. Bernoulli Sources (see Example 2.1.4): the probabilities of strings are
products of the probabilities of their symbols, p4m) (i(")) = HpA(ij),
j=1

that are statistically independent from each other.
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2. Markov Sources (see Example 2.1.5): the probability of emission of the
n-th symbol depends only on the n — 1-th one, namely

Pacw (E™) = plinlit, iz, in_1) Pacn—n (iriz - in_1)
= p(in|in—1)p,4(n—l) (iliQ ce Z-n—l)
p(in|in—1)p(in—1‘in—2) te 'pA(i2|i1)pA(i1) )

where p(iy|i1, 2, - i,—1) are the conditional probabilities for the occur-
rence of the i,-th symbol if the symbols iy,is,...,7,_1 have already
occurred. Using (2.30), it follows that stationarity is equivalent to the
probability vector |74 ) = {pa(i)}icr, being eigenvector, relative to the
eigenvalue 1, of the matrix of transition probabilities.

2.4.3 Shannon Entropy

Like an information source A that emits symbols j € {1,2,...,a} with proba-
bilities pa(j), also a partition P = {P;}¥_; of the phase-space of a dynamical
system (X, T, ) into atoms with volumes p(P;), can be interpreted as a clas-
sical random variable. In the latter case, randomness is related to the fact
that the phase-point or state of the system is localized within the atom P;
with probability p(F;).

The notion of entropy measures the amount of uncertainty about the out-
comes of a random variable like P before the phase-point has been localized
within a definite atom, for instance as a consequence of an observation or
a measurement process of sort. Equivalently, entropy measures the amount
of information, relative to the partition P, that has been gained after the
phase-point of the system has indeed been localized in one of its atoms.

Definition 2.4.1 (Shannon Entropy). The Shannon entropy of a discrete
random variable A with probability distribution T4 = {pa(j)}j_; is given by

H(A) = - ZPA(j)logpA(j) = Zﬂ(m(j)) ; (2.83)

where

0 =0
n(w) = {xlogz 0<z<1 (2.84)

Remark 2.4.1. The Shannon entropy plays for discrete dynamical systems
the role played by Gibbs entropy for continuous systems which is defined
as [167, 300]

Halp) = /X dz p(x) log p(z) |

for a state on the phase-space X with probability density p(z).
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The Shannon entropy is such that H(A) = 0 if and only if one outcome,
say j*, occurs with probability pa(j*) = 1, while pa(j) = 0 for j # j*; it
reaches its maximum H(A) = loga, when all outcomes are equiprobable,
pa(j) = 1/a. Indeed, the function n(z) is concave, whence

z(logz — logy) >z —y, VYx,yel0,1], (2.85)

with equality holding if and only if z = y.
Let then E be a random variable with 7 = {pg(j) = 1/a}j_;, then
H(E) =loga and

a

H(A) - ZPA (10gpA )+1oga>)§Z(pA j)—1/a)=0.

j=1

Given two random variables A and B, we shall keep the notation used for the
join of two partitions and denote by A V B the random variable with joint
probability distribution

TAVB ‘= {pA\/B(ivj)}iGIA,jEIB 9 IA = {1727' .. aa} 3 IB = {172a e 7b} .
(2.86)

By summing over the outcomes of A, respectively B, one obtains the marginal
probability distributions ma = {pa(i)}icr, and w5 := {pp(j)} er,, where

ZPA\/B i, 7) ZpAvB i, ) (2.87)

Lemma 2.4.2 (Subadditivity). Given two random variables A and B,

H(AV B) < H(A) + H(B) . (2.88)

Proof: Given mayp as in (2.86) and w4 and 7p as in (2.87), use (2.85)
with @ = pavp(i,j) and y = pa(i)ps(j),

H(A)+ H(B) - H(AVB)= Y pavs(ij) gpA\/B(,])

i€la,j€IB pA( ) (])
> S (pavsli.j) —pa(ipe(j) = 0.
i€la,jelp
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Remarks 2.4.2.

1. As already observed, any finite (measurable) partition P = {P;}, of
(X, T, n) is a random variable P whose outcomes correspond to the labels
of the atoms to which the system phase-point happens to belong. The
volumes of the atoms give the probabilities of such occurrences, so that
a finite partition P also attributes to the random variable P the natural
probability distribution mp = pup = {u(P;}icrp-

2. In analogy with Definition 2.2.1.2, a random variable A is finer than
a random variable B (B = A) if each outcome j € Ip of B is deter-
mined by a subset If4 C I of outcomes of A. It follows that, if A has
probability distribution 74 = {pa(i)}icr, and B probability distribution
78 = {pB(j)}iers, B = Aimplies pp(j) = 3 ;s pa(i).

3. According to Definition 2.2.1.3, the refinement P V Q of two partitions
P ={Pi}ict, and Q = {Q,}jec1,, is a random variable PV @ with joint
probability distribution pupyo = {p(P; N Q;)}tierp. jery- PV Q is finer
than both random variables P and Q; also, @ <P — PV Q = P.

2.4.4 Conditional Entropy

Because of possible statistical correlations, the knowledge of a random vari-
able A may decrease the uncertainty about another random variable B; the
less so, the more A and B are statistically independent. These intuitive ar-
guments are formalized by introducing the notions of conditional probability,
conditional entropy and mutual information.

Consider two random variables A and B with probability distributions
ma = {pa(i)}ier,, respectively mp = {pp(J)} cr,, and joint probability
Tave = {pavp(i,J) Yicla jers- The quantity

. pPAvVB (Za J)
pay;i(ilj) i= ——=—= 2.89
|7 | ) pB(]) ( )
represents the probability of the outcome A = i conditioned upon the out-
come B = j. Altogether, map—=; = {pa);(i[7)}i=, is the conditional probabil-
ity distribution of A conditioned upon the outcome B = j. The conditional
probabilities are such that

paB=;(ilj) >0, ZPA\B:j(iU) =1 Vj=12,...0.
i1

The notion of conditional probability is naturally associated to that of
conditional entropy which measures the amount of uncertainty about a ran-
dom variable A which is left once that relative to another one, B, has been
removed.
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Definition 2.4.2 (Conditional Entropy).

Given two random variables A and B with probabilities T4, mp as in (2.87)
and joint probability wayp as in (2.86), the conditional entropy of A with re-
spect to B is

b
H(A|B) = Zps(j) H(A|B = j) (2.90)
e * pave(i,j) | paveli,j)
= —;pB(J); o5 %5 om0
= H(AVB) — H(B), (2.91)

where H(A|B = j) is the Shannon entropy corresponding to the conditional
probability w4 p—;-

Lemma 2.4.3. The conditional entropy fulfils
0< H(A|B) < H(A)
H(AV B|C)=H(A|C)+ H(BJAv (C) < H(A|C) + H(B|C) .

Proof: The lower bound follows since the left hand side of (2.90) is positive,
while the first upper bound is a consequence of (2.88) applied to (2.91).
Further, using the latter relation one gets

H(AVB|C)=H(AvBVC)—-H(C)
=HAVC)—H(C)+HAVvBVC)—H(AVC(C)
= H(A|C)+H(B|AVC),

while (2.88) applied to H(A V B|C = k) gives the second upper bound. O
Corollary 2.4.1. B< A= H(B) < H(A).
Proof: From Remark 2.4.2.3 it follows that B < A = AV B = A; thus,

H(A)=H(AvB)=H(A|B)+ H(B)> H(B) .
O
Example 2.4.3. If N denotes the (trivial) random variable with only one

certain outcome, then H(A|N) = H(A) for any other random variable A.
By the definition of conditional entropy, H(A|B) = 0 implies that in (2.90)

ZpAvB(m) log PAvB1I) _ oy
~  pp(j) p5(j)
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Therefore, for fixed j, pavp(i,7) = pp(j) for only one i € I4; thus, for each
fixed i € 14, the index set I can be subdivided into disjoint subsets I iB such

that
pa(i) = pavs(i,j) =Y ps(j) -
jery Jjely
That is (see Remark 2.4.2.2) A < B; indeed, the outcomes of A are deter-

mined by those of B. In other words, when knowing B means knowing A,
then A < B. Viceversa, if B is finer than A, then H(A|B) = 0; in fact,

AVB=B= H(AB)=H(AVB)—H(B)=0.

Remarks 2.4.3.

1. Conditioning can be extended to random variables A;, i = 1,2,...,n.
The probability of the events A; = a;, i = p+1,...,n conditioned on the
events A; = a;, 1 =1,...,p is given by

p(al...apap+1 ...an)
pa 1...a al...a =
(ap+ | ») plaps1---an) ’

where explicit reference to the random variables in p(- - -) has been omit-
ted, for sake of simplicity. It follows that also the notion of conditional
entropy can be extended to

H(APTEy APT2.y A AL v A%V AP) = — Z plar,az, ..., ap)

ai,...ap

X Z p(ap+1...an|a1...ap)logp(ap+1...an|a1...ap) .

Ap41;--50n

2. A sequence of random variables {A7},cy form a Markov process as in
Example 2.4.2.2 if p(ap|ay -+ apn—1) = p(an|a,—1) for all n € N. In such
a case H(A"| Al v .-  An71) = H(A"| A1),

3. Since the conditional entropy is positive, it follows that

H(AV B) > max{H(A),H(B)} ;

Both this observation and subadditivity (2.88) agree with the interpre-
tation of the entropy as a measure of uncertainty. The latter is in fact
greater about AV B than about either A or B, while, due to possible sta-
tistical correlations between A and B, the uncertainty of AV B is smaller
than the sum of the uncertainties of A and B independently. Further,
due to (2.85),

H(AV B)=H(A)+ H(B)

if and only if 74y p factorizes into the product of the probabilities, namely
if and only if A and B are statistically independent.
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4. The second upper bound in Lemma 2.4.3 yields H(B|AV C) < H(B|C);
as C' < AV (C, this inequality is a particular instance of the more general
monotonicity property of the conditional entropy established in Corol-
lary 2.4.2.

Example 2.4.4. Suppose a random variable is given by a finite partition
= {P;}%_, with atoms that are measurable with respect to a o-algebra
Z‘ generated by a measure-algebra Y, as in Example 2.2.1. Then, for any
£ > 0, there exists a partition @ = {Q;}¢_, with atoms Q; € X, such that
H(P| Q) < e. In fact, as showed in the example, one can always construct Q
such that, for all i = 1,2,...,d, one has

o ()
u(PZAQZ)S(?lrSn%ld 5 0<do<1.

Now, P; C Q; U (P AQ;) and P, AQ; = (P, U Q) \ (PN Q) yield
()
2

w(P) < pu(Qi) +6 and  p(PAQ;) > pu(Qi) — (PN Q) -

Ths, 1(@) > PP and 50(Q0) = w(Q0) — n(P. Q). whenee
P i
prioni(ili) = MO 21 .

Since mp|o—; is a conditional probability, it follows that pp|g—;(j|i) < 0 for
J # i. Finally, choosing ¢ so that the continuous function n(x) in (2.84) be
such that n(z) < e/d when 0 <z <dand 1 —0 < <1, (2.91) yields

d
H(P|Q) = Z ZU pPplo=i )<e.
i=1 j=1

Proposition 2.4.1 (Strong Subadditivity).
Given three discrete random variables A, B and C, the following inequality
holds,
HAVBVC)+H(B)<H(AvVB)+H(BVC(C), (2.92)

together with those obtained by cyclic permutations of A, B and C.

Proof: Similarly to the proof of Lemma 2.88, the result follows by apply-
ing (2.85) as follows:
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H(AVBVC)+H(B)—H(AVvB)—-H(BVC(C)=

. . 7;’ .7 k j
= - Z pA\/B\/C(Z7 I k) log pA\/B\/‘C(. J )pB (j)
pave(i,j)reve(d, k)

i€la,je€lp,ke€lc

D I R e e L
i€la,jEIRB,KEIC pBUI

IN

O

As a consequence of strong subadditivity, the conditional entropy mono-
tonically decreases upon refinement of its second argument.

Corollary 2.4.2. B < C = H(A|C) < H(A|B).

Proof: From (2.92) and (2.91),
HAvBvV(C)-H(BVC)=H(A|IBVC)<H(AVB)—H(B)=H(A|B) .

The result follows since B<C = BVv(C =C. O

2.4.5 Mutual Information

A notion related to the conditional entropy is that of mutual information: it
measures the amount of information about a random observable A that can
be achieved by knowing another random variable B.

Definition 2.4.3 (Mutual Information).
Given two random variables A and B, their mutual information is given

by
I(A;B) := H(A) + H(B) — H(AV B)
H(A) — H(A|B) = H(B) — H(B|A) . (2.93)

The mutual information amounts to the relative entropy (also known as
Kullback-Leibler distance or information divergence) of the joint probabil-
ity distribution mayp with respect to the product probability distribution
Tave = {pa())pB(J) }iera,jer, obtained from the marginal ones (see (2.87)):

pavi(i,j)

palps) - 2

S(7~TAVBa 7TAvB) = ZpAVB(ivj) log
iJ

Since H(A) measures the unconditioned uncertainty about A and H(A|B)
the uncertainty about A if one knows B, their difference amounts to the
knowledge of A given by B. If A and B are statistically independent, know-
ing B does not give any information about A, whence H(A|B) = H(A),



68 2 Classical Dynamics and Ergodic Theory

and I(A; B) = 0. On the other hand, if A is finer than B, then knowing A
means knowing B, thus B < A = H(B|A) = 0 and I(A; B) = H(B). Vice
versa, I(A; B) < H(B) means that H(B|A) > 0 or, in other words, that the
knowledge of B is unable to remove all the uncertainty about A.

An interesting inequality involves the mutual information in connection
with three random variables A, B and C that form a so-called Markov chain
A — B — C [92]; namely (see Remark 2.4.3.2)

o pa i)k . pBvc(i,k
pClA\/B:(i,j)(k|Z’]) = % :pC‘B:](klj) = BZ\)/;:((J)) :

pA\/B(ia ])
Notice that C', B and A form a Markovian chain C — B — A, too; indeed,
as povie(k,j) = pvc(J, k) it turns pout that

. . pA\/BVC(imjuk) . pAVB(Z'aj)
:-'Zk, === :4]{ _
pAjovB=(k.j)(ilk, J) povs(k, 7) po|B=4( Ij)pCvB(k,J)
pave(i,j) 0
= Y = — 1 .

Using the latter property one can prove the so-called data processing inequal-
ity [92].

Proposition 2.4.2. A - B — C = I(4;C) < I(4; B).

Proof:  From Definition 2.4.3, I(A;B) — I(A;C) = H(A|C) — H(A|B)
while the Markovianity assumption yields H(A|B) = H(A|B V C) (see Re-
mark 2.4.3.2), whence, from (2.4.1),

I(A; B) — I(A;C) = H(A|C) — H(A|BV C)
— H(AVC)+ H(BVC)—HAVBVC)—H(C)>0.

O

The meaning of the data processing inequality is that the mutual infor-
mation of two random variables A and B cannot be increased by any further
processing of B by a function C = ¢(B), for this yields a Markov chain
A— B—C.

Example 2.4.5. When dealing with noisy transmission channels, signals a
from a source described by a random variable A are encoded into code-words
b(a) that give rise to another random variable B = B(A). Then, the code-
words are sent through the channel which outputs signals ¢ = ¢(b), providing
a third random variable C(B). Altogether, A, B(A) and C(B) form a Marko-
vian chain A — B(A) — C(B), as well as C(B) — B(A) — A; thus, we get
the data-processing inequalities

I(A;C(B)) < I(A; B(A)), I(A;C(B)) < I(B(A):C(B)).  (2.95)
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314].



3 Dynamical Entropy and Information

Repeated uses of an information source or successive localizations of a tra-
jectory with respect to a partition of phase-space, give rise to stochastic pro-
cesses. Since equilibrium states p give rise to shift-invariant probability distri-
butions, the Shannon entropy is a constant of the motion: for instance, given
the time-evolved partition 777 (P) in (2.38), one has H, (T~ (P)) = H,(P).
Therefore, it is not the Shannon entropy, rather the entropy rate that is useful
to quantify the degree of irregularity of the dynamics. Since its introduction
as a mathematical tool, the notion of entropy rate or, more generally, of
dynamical entropy, has been playing a major role in the theory of classical
dynamical systems for it provides links among as different properties as dy-
namical instability, informational compressibility and algorithmic complexity.

3.1 Dynamical Entropy

As in Section 2.4.3, given a dynamical system corresponding to a measure-
theoretic triplet (X, T, u), we will consider a coarse-graining of X by means
of a finite, measurable partition P = {P;}/”_; and identify P with the random
variable (denoted by the same symbol) corresponding to the process of lo-
calization of the system phase-point (state) within one of the disjoint atoms
P; that cover X. The outcomes of P are the labels of the atoms and occur
according to the discrete probability distribution up = {p,(i) = p(P;)}_;.
Further, the time-evolved partition P? := T~7(P) at time j in (2.38) is iden-
tified with the j-th random variable of a stochastic process {P7},cz. Thus,

the refined partitions P with atoms Pi((ﬁ)) as in (2.40) correspond to joint

random variables with discrete probability distributions as in (2.41),

(n) _ n)(;(n)y ._ (n)
i) = {6 = D}

and Shannon entropies (comparing with (2.83), we explicitly indicate the
dependence of the entropy from the measure and the partition)

Hy(P™) == 37 piP (™) logp) (i) . (3.1)
imenl™
F. Benatti, Dynamics, Information and Complexity in Quantum Systems, 71

Theoretical and Mathematical Physics, DOI 10.1007/978-1-4020-9306-7_3,
(© Springer Science+Business Media B.V. 2009
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Definition 3.1.1 (Entropy Rate). The entropy rate of (X, T, ) with re-
spect to a finite, measurable partition P is given by

WS (T, P) == lim n L(PM)) = 19;51{”(79( ). (3.2)

n—oo N

The above limit exists because of the stationarity of p,
H,(P¥)=H,P) Vk=>0, (3.3)

and because of the subadditivity of the Shannon entropy [313]. Together,
they yield, forall 0 < p <n—1,

n—1

Hu(P™) < H,(PP) + H,(\/ P*)
k=p

n—p—1

= HN(P(p)) + HM(T_p( \/ Pk)) =yt Hoyp
k=0

where H,, := H,(P™). Fix m € N and set n = km +r, 0 < r < m; then,

from (2.88)
H, - H,, H,

n - m km+r

Since m is fixed, when n goes to infinity, k& goes to infinity as well, whence

H, H
limsup — < —2 .
n—oo N m

Since m is arbitrary, it follows that

limsup — < inf == < liminf — .
n—oo M m m n—oo n

The entropy rate can be expressed by means of the conditional en-
tropy (2.91) of two partitions H,(P|Q) in such a way that h(up, T,) measures
to which extent the knowledge of the past of P may help to predict its future
outcomes. Recursively using (2.91) and (3.3), one gets

H, (P = M(P'\/PJ>+H (Pr=1) ZH(P‘\/P])+H)

n—2

Hy(P™) = H, (P! [\/ P7) + H, (P )
=0

n—1 1—1
- ZHu(Pi \/ Pj) + H(P) .
i=1 §=0
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Because of Corollary 2.4.2, the positive terms in the sums are monotonically
decreasing with increasing n, thus, arguing as in Remark 2.3.2.1,

WS (7, P) = Jim inz:;lH, (P[\_/_:Pj) = lim H, (P'j\z pi) (3.4)
v Pj) . (3.5)
=0

Consider the first equality in (3.5): P? is the random variable whose outcomes
depend on which atom of P the system state is in at time ¢, while \/;;%J PI
is the joint random variable relative to the atoms visited at previous times
0,1,...,% — 1. Thus, the entropy rate corresponding to P is the average in-
formation about the next localization provided by the knowledge of all the
previous ones.

n

—1

o1 ;

hES (T,P) = nh_)rrgo - E H, (P
i=1

i—1
J‘\:/o PJ) = H, (pn

Remarks 3.1.1.

1. Let (£24, Ty, ma) describe a stationary information source. Then, the prob-
abilities 74y, A = \/;’;01 Aj, together with the corresponding en-
tropies H(A(™) refer to the statistical ensembles of strings of length n
emitted by the source A. As discussed in Section 2.4.3, repeated uses
of the source A can be described as a stochastic process {A4,},ez where
A; is the random variable associated to the j-th use of the source. The
entropy rate of the source A is thus given by

h(A) = Tim ~H(A®™) . (3.6)
n—oo N,
The entropy rate h(A) of a stationary source is the entropy per symbol
of the stationary stochastic process {A47};cz generated by A.
2. Because of subadditivity (2.88), the entropy rate of a partition is always
bounded by its Shannon entropy

WS (T, P) < Hy(P) . (3.7)
Furthermore, since Zﬂ")e(z(") M(Pz((z))) =1, from (3.1), one gets the lower
bound
Hy(P™) == > pi@E™) logpl” (™) > —log sup pu(P),
i(">erz,(,") pPep(n)
whence [164]
1
KS -
h,;” (T,P) > —limsup —log sup pu(P). (3.8)

n—+oo N Pepn)
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3.1f @ < P, Corollary 2.4.1 implies hyt5 (T, Q) < hj® (T, P).
4. Since p is T-invariant, the conditional entropy is stationary, namely

HM(T_l(P)|T_1(Q)) = HM(P|Q) :

Thus, if T is invertible (3.5) can be rewritten as

hES (7, P) = lim H, (P‘n\_/lp—f) .
j=1

n—0o0

. Let P and Q be two partitions; then, using Corollary 2.4.1, the rela-

tion (2.91), Lemma 2.4.3, Corollary 2.4.2 and the previous remark, one
derives

H,(P") < Hu(P™) v @) = H(QW) + H,(P™|Q")

n—1 n—1
< H,(QM™) + Y Hu(P'|Q™) < H,(Q™) + Y HL(P'|Q'),
=0 =0

whence H,(P™) < H,(Q™) + n H,(P|Q) implies

WS (T,P) < hES(T,Q) + H,(P|Q) . (3.9)

. Given a partition P, set P, 5 := \/;ZT PI, where r < s and r > 0 if T is

not invertible. Notice that
n—1 n—1 s s+n—1 s+n—r—1
VPL,=\\Pt=\ P‘T’“( \/ 7>4> ;
£=0 ¢=0 j=r l=r =0

then, since p is T-invariant, from

1 n—1 n+s—r 1 n+s—r—1
(Vi) - n(V'7)
n Z\:/OPT’S no nt+s—r " >:/() P

it follows that h}fs (T, Prs) = hffs (T,P). For instance, s = —r = n gives

ST, \/ P =hS(T,P), Vn>0. (3.10)

- As before, set Q = \/*_)P7, k > 1; then, P < \/{—y Q¥ = \/;X 1 P!

and (3.9) yield

1
2 (T8, P) < 20 (T, Q) = hi™ (T, P) (3.11)

T =
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8. After regrouping \/k" TP = Vi, V T—ki=(P), from subaddi-
tivity and T-invariance of y it follows that

1 kn—1 ‘ 1 n—1 ‘ n—1 4 1 n—1 .
#,(V )< S m (1o (V P)) = () (PY)) |
=0 i=0 =0 :

Jj=0

whence letting n — 400 obtains hl° (T,P) < hi° (T*,P).

The entropy rate relative to a given partition P of (X,T,pu) strongly
depends on the latter; for instance, if A/ is the trivial partition consisting
only of X itself and the empty set, then T=7(N') = N for all j > 0, whence
hffs (T,N') = 0. The obvious way of achieving an absolute entropy rate is
to look for the greatest possible one; this leads to the notion of dynamical
entropy also known as Kolmogorov-Sinai entropy (KS -entropy) or metric
entropy [171, 172].

Definition 3.1.2 (KS Entropy). The dynamical entropy of a classical dy-
namical system (X, T, u) is defined as

KS ._ KS
h,u (T) T Sl;ph,u (T7P) ’

where P is any finite, measurable partition.

Remark 3.1.2. The dynamical entropy provides a quantity that remains
invariant under isomorphisms between dynamical systems [61]. Two dynam-
ical systems (X4 2,712, ft1,2) with o-algebra Xy o are isomorphic if there ex-
ist subsets X1(,02) C X2 of measure ,U/LQ(XI(T;)) = 1 and a one-to-one map

@ X% — x{% such that

1.if Sy = &(S1) with S; € Xl(o), then S; € X if and only if Sy € Y5 and

p1(S1) = pa(Sz2), that is g 0 @ = py and pg = py o @~ relative to Xl(,%);

2. Xl(o) C 1Ty, (Xl(o)); namely, the specially selected subsets Xl(o) must be
mapped into themselves by the dynamics;

3. d(Thz1) = Tod(x1), that is Too® = o Ty and ¢~ LoTy =Ty o7t
relative to Xl(?z).

Because of these properties, it turns out that, if (X} 2,77 2, pt1,2) are isomor-
phic, then h%S (T7) = hES(T3). The proof is as follows: if X1(,02) = X, to

25} H2
any partition P; of X; there corresponds a partition 732 := @(P1) and vice

versa, the same being true of the reﬁned partitions 771 ") that are mapped
n—1

into partitions \/ @ o T, (Py) \/ Ty = Pén). The result thus
7=0

follows since i1 {731(") = Lo {7)2(") — Hul(P(n)) H,, (77(”)).
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If Xl(’OQ) C X 2, consider a finite, measurable partition P; = {Pz-(l)}f:l of
X and construct the partition Py of X5 with atoms Pi(2) = @(Pi(l) N Xl(o)),

1 =1,2,...,p and Pﬁ_)l = X\ X2(0)_ Since the latter atom has measure
,ug(Plgi)l) = 0, from the properties of Xl(?z) and the isomorphism @, it turns

out that H,, (732(")) =H,, (731(")). This gives hii> (Tp) > hio (T1); indeed, Py
is a generic partition of X7, but Py is not so for Xy; the result thus follows
by exchanging the roles of the two dynamical systems.

Concluding, two isomorphic dynamical systems must have the same dy-
namical entropy; since dynamical systems with the same dynamical entropy
need not be isomorphic, the latter is not a complete invariant [61, 91].

Example 3.1.1. [61] Suppose the discrete-time dynamics of (X, T, u) is
sampled by observing the time-evolving system not at each tick of the clock,
rather every k ticks; then

hS (T%) = khyS(T) . (3.12)

Indeed, consider Remark 3.1.1.7: since @ depends on P in a specific way, by
varying P, one does not in general exhaust the whole class of finite measurable
partitions of X. Then,

WS (TF) > sup WS (T%, Q) = khyy® (T) .

On the other hand, Remark 3.1.1.3 and P < Q yield

kS (1, P) = hES (1%, Q) > 1S (1%, P) = k bIS (T) > hES (7F)

The technical difficulty of computing the sup in Definition 3.1.2 is over-
come when there does exist a generating partition P (see Definition 2.3.5)
such that, together with its images at different times P/ = T~7(P), it pro-
vides refined partitions P(") that generate the o-algebra X of X when n — co.

Theorem 3.1.1 (Kolmogorov-Sinai Theorem). If the partition P is gen-
erating for (X, T, ), then hffs (T) = hffs (T,P).

Proof:  Consider T invertible (for T not invertible the argument is the
same) and a generic finite, measurable partition Q; because of the assump-
tion, using Example 2.4.4, for any € > 0 one can find an n > 0 and a finite

partition P < P_, ,, := \/'__, PJ, that is a partition generated by finite

j: ~
unions of atoms of P_,, ,,, such that the conditional entropy H,(Q|P) < e.
Therefore, from (3.9) and (3.10) together with Corollary 2.4.2, one derives
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hS (T,Q) < hyt® (T, P_pn) + HM(QIP—n,n) < WIS (T,P) + H.(QP)
<hWS(T,P) + e,

whence, choosing Q such that hs® (T') < h, (T, Q) + ¢, it follows that
KS KS KS
h/l, (T) —e=< hu (Tv Q) < hp, (Ta P) +e

with € > 0 arbitrary. (|

The following corollaries are often useful for concretely computing the
dynamical entropy.

Corollary 3.1.1. Suppose {Pnlnen is a sequence of finite partitions for
(X, T, ) of increasing finesse, Pp = Ppy1, such that \/,, P, = X. Then,

KS _ KS
h, > (T) = lim h;> (T, Pn) -

n—o0

Proof: Given ¢ > 0, let Q be a finite, measurable partition such that
WS (T) < hES (T, Q) + &; from the assumption and Corollary 2.4.2 it follows

that there exist n € N and é < P,, such that

WS (T) — e <05 (T, Q) = ™ (T, Py) + Hyu(Q|Pn)
<0 (T, Pn) + H,u(Q|Q)
<SS (T, Pp) + e <hiS(T) + €.

A similar argument as in the previous proof can be used to show

Corollary 3.1.2. Given (X, T, u), suppose Xy is a measure algebra that gen-
erates the o-algebra X of X. Then,

KS
h> (T) = sup hffs (T,P) .
PCE,

Examples 3.1.2.

1. Given two dynamical systems (X;,T;, u;), ¢ = 1,2, their direct product
(X1 X Xo, Ty X Ty, pu1 X ps) provides a new dynamical system (X, T, u)
consisting of two statistically and dynamically independent components.
Concretely, X := X} x X5 is the phase-space consisting of points = =
(x1,22), x1,2 € X1 2 and the dynamics T is such that Tz = (Tyx1, Toxs).
Furthermore, if 21 5 are the o-algebras of X », then X’ remains equipped
with the o-algebra X = Yy x Y5 of measurable sets of the form S; x Ss,
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Si,2 € Y12 and with the T-invariant measure on X, pt = 11 X 2, defined
by pu(S1 x S2) = p11(S1)p2(S2). Then, [61]

WS, (Ty x Tp) =05 (Ty) + by (Ty) .

1 X 2

Indeed, X' is generated by the measure algebra U73 P1 x Py where Py 2
are generic finite, measurable partitions in X »; thus, from Corollary 3.1.2
and statistical independence,

hffs (T) = sup hKS (T, P1 x P2)
P1XP2

= S7l)1p hffls (Ty,P1) + sup hffzs (T2, P2)
2

_ hKS ( ) hKS (Tg) )

. Bernoulli Systems: (see Example 2.1.4) let u be a product measure such

n—1

that p(™ (i(")) = H p(i;). As seen in Example 2.3.3.1, the partition C of
j=0

{2, into CO {z €, i;€{L,2,... } is generating for the o-algebra

of cylinders. Therefore,

WS (T,) = hiS (T,,C) = lim H(C(”))

n—oo 1
1 = é
=— lim — (i log p(i;
neooni(ng);n) ]1;](:) (J ; 2 J
P
== p(i)logp(i) = H,(C) .
i=1

. Markov Processes: Let the measure in (QZ”TJ,;L) be given, as in

Example 2.4.2.2, by p™(GE™) = p(io)Hp(inj,l) on Q,(,n). Again,
j=1
the partition C of the previous example is generating. Therefore, since

?:1 p(Z‘]) =1,

WS (1,) = i8S (T,,¢) = lim H(C("))

n—oo n

—m LY p<i0>Hp<ij|z;fl>(p<z‘o>ﬁlogzpwkfl))
; j=1 k=1

== > p(i)p(jli)logs p(jli) -

ij=1
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4. Ergodic Rotations: Consider the irrational rotations on the T? de-
scribed by the triplets (TQ, T, d0>. As seen in Example 2.3.3.2, there is

a generating partition C such that

Ve AR

where the last two equalities follow from the invertibility of the dynamics
T. Then, as in Example 2.4.4, for any € > 0, one can find an n € N and
a partition C < \/ L T79(C) such that H, (C|C) < e. It thus follows from
Corollary 2.4.2 that

H, (c’\n/ T (C)) < H,(CI0) <«

whence, from (3.4), hffs (T)) = 0. This very same argument holds for all
reversible dynamical systems (X , T, u) that possess a partition P which

generates the o-algebra of X as X = \/;’i0 P

5. Non-ergodic Rotations: Unlike in the previous example, there exists
k € N such that T% = 1, the trivial dynamics with hffs (1) = 0. Then,
from Example 3.1.1, 0 = hL{S (1) = hlIfS (T*) = khﬁs (7).

KS entropy and Lyapounov Exponents

In Section 2.2, Lyapounov exponents (see Definition 2.1.2) have been in-
troduced as indicators of hyperbolic behavior, that is of exponential sepa-
ration of initially close trajectories. In Example 2.2.2 this has been calcu-
lated to be log 2 for the Baker map, which is isomorphic to a Bernoulli shift
(£2,T,, 1) with a balanced probability measure ppg; therefore, according
to Example 3.1.2.2, the Lyapounov exponent equals the KS entropy for this
system.

From an informational point of view this fact can be understood as being
due to the loss of information along the direction where distances and thus
errors increase exponentially fast [62, 271]. It is therefore plausible to ex-
pect that all possible expanding directions contribute with their Lyapounov
exponents to the loss of information and thus to the KS entropy (see Re-
mark 2.1.3.1). This is indeed the content of the following theorem [199]:

Theorem 3.1.2 (Pesin Theorem). Let (X,T,pu) be a smooth dynamical
systems as in Remark 2.1.3.1; set A(x) := Z A9 () dimW; () ; then,
JAO ()20

hKS / dp (z
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When the dynamical triplet (X, T, u) is ergodic, the Lyapounov expo-
nents, which are constants of the motion, are constant almost everywhere on
X, whence Pesin’s equality assumes the simpler expression

KS j
WS (1) = Y A0

7:AG)>0

A particular instance of Pesin’s result applied to hyperbolic dynamical
systems [313, 164] is provided by Example 8.2.4.

Proposition 3.1.1. The KS entropy of the hyperbolic automorphisms of the
torus with positive eigenvalues o' of the matriz A is

hffs (Ty) =loga .

Standard proofs of this result can be found in [164, 279]; here, we prefer
to defer it to Chapter 8, where it will be obtained by means of a quantum
dynamical entropy (see Proposition 8.2.7 and Remark 8.2.4).

3.1.1 Entropic K-systems

In Section 2.3.1, K-systems have been defined in terms of the existence of
a K-sequence {X},cz of nested o-subalgebras (see Definition 2.3.4) or of
an algebraic K-sequence of nested Abelian von Neumann subalgebras (see
Definition 2.3.6). We will now show that the algebraic characterization is
equivalent to the following entropic properties, the link being the triviality
of the tails of all finite partitions (see (2.73)).

Theorem 3.1.3. [91, 216] Let (X, T, ) be a dynamical triplet, the following
ones are equivalent properties:

1. there exists a K-sequence {Pp}nez based upon a finite generating parti-
tion P (see Definition 2.5.5);

2. Tail (Q) = N for any finite measurable partition, where N is the trivial
partition of X ;

3. for all finite measurable partitions Q of X,

KS .
h,”(T,Q) >0 (3.13)
4. for all finite measurable partitions Q of X
Jlim 1S (T7,Q) = Hy(Q) ; (3.14)

5. for any two finite measurable partitions Q; o,

i m(elV @) =m@): G

k>n
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6. for any two finite measurable partitions Q; 2,

lim Hu(Ql\ \/ T—’“(QQ)) —0= Q=N . (3.16)

n—-+00
k>n

From the characterization of K-mixing by the triviality of the tails of all
their finite partitions (condition (2) above), Proposition 2.3.5 gives

Corollary 3.1.3. A dynamical triplet (X, T mu) with a finite generating par-
tition is a K-system if and only if it is K-mizing.

The key observation in the proof of Theorem 3.1.3 is the continuity of
the conditional probabilities as stated in Theorem 2.2.1 and the continuity
of entropies and conditional entropies with respect to their arguments. This
fact allows us to recast (3.4) in the more suggestive form

hKS (7,P) = lim HM(P‘J\ZPj) —H, (73[\_7?793') . (3.17)

n—oo

where P/ = T~J(P). Also, by means of (2.73), in (3.15) and (3.16) one
rewrites

im 1,(0)] \ TH0y) = 7,(Q1] tim_\/ TH(@y)
k>n

k>n

= H,(QiTail () . (3.18)
We shall also need the following two results [91].

Lemma 3.1.1. Given two finite partitions Qi 2,
+oo
HH(91| \/ T"(Q1) v Tail (Q2)> — 1S (T, Q1) . (3.19)
n=1

Proof: As a first step, observe that, given a finite partition Q, repeatedly
using (2.91) and (3.3) yield

n—1

m,(\/ Tk(Q)‘VT‘j(Q))ZZHN(Tk(Q)‘ V 1)
k=1 j=1 k=0

j=—k+1

:nHM<QR7T_j(Q)) — nh5S(T, Q) .
j=1
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Then, for fixed ¢ > 0 and sufficiently large n, using Corollary 2.4.2 and
Definition 3.1.1 one gets

hES(T7Q1\/Q2): (\/Tk Ql\/QZ‘\/TJ Ql\/QQ))
J=1
Li(n)
1 n—1 “+oo )
<~ i,V TH@iv )|\ 17(Q)
k=0 j=1
La(n)
n—1
< A, (V THQIV @) <HSS(1,Q1v Qy) 46
k=0
Thus, lim M = lim L27(n) Further, Lemma 2.91 yields
n—-+4oo n n—-+o0o n
n—1 “+o00
Lin) = H,(\/ THQ)|\/ T/ (@1 v 22))
k=0 j=1
Lii(n)
n—1
(\/T’“ (Q) ]\/Tﬂ (Q2) v \/ T(Q))
j=—n+1
Li2(n)
+oo
La(n) = (ka Q1]VTJ Q1)+H(\/Tk o)V Q).
k=0 k=0 j=—n+1
L2 (n) Lao(n)

Corollary 2.4.1 implies L11(n) < Lo1(n) and Li1(n) < Lo (n), then

Loitn Liin
DES(T,Q)) = lim 2 = gy T

n—-+oo n n—-+oo n

By applying (2.91) and then the argument that led to (3.4) one gets

L n
WSS (7,Q)) = lim 2

n—-+4oo n

=n£f£oonZH(T’“Ql\\/TjQ2 V i)
r=—k+1

n—1

:HEIEMZH(QJ\/TJQQ \/T (@)

Jj=k+1
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= 1l _H, (Ql\VT-J‘(%) v +\7T-T(Ql>) R ACIHD.
j=n r=1

n>0

Cn

+oo
< Hu(Qu|Tail (@2) v \/ T77(Q1)) < BES (T, Q1) -
r=1

The last equality follows from the fact that the partitions C,, (not finite in
general) are such that C, = C,_1, whereas for the last but one inequality
Corollary 2.4.2 has been used and the fact that

+oo
Tail (Q2) Vv \/T )= A VI ¥ Q)| vVIT(Q)=ACc

n>0k>n r=1 n>0
a
Lemma 3.1.2. Given two finite partitions Q; o,
Qp = \/ T™(Q1) = Tail (Q2) < Tail (Q1) - (3.20)

ne”Z

Proof: We shall show that all partitions @ < Tail (Qy) are such that
Q =< Tail (Qy), too. Notice that @ <'\/, ., T"(Q1), by hypothesis. If

H, (P’Tail (Q1) Vv Q) —H, (P(Tail (Ql)) ()
for all finite partitions P < \/}__ T%(Q;), then by approximating Q arbi-
trarily well by \/;__, T%(Q1), continuity allows one to substitute Q for P in
(*). Then, (2.91) implies
H,L(Q‘Tail(Ql) v Q) - HH(Q’Tail(Ql)) — Q< Tail(Q)) .

Equality (x) is proved as follows: a repeated use of (2.91), together with the
T-invariance of Q (see Remark 2.3.4) and Remark 3.1.1.4, yield

m(\/ Q)| VST (Q)v Q)=

k=—n j=n+1
Li(n)
- Z H, (T*(Q0)| +\7 Tj(Ql)vQ>:2nHu<Ql‘VTj(Ql)\/Q)
k=—n j=—k+1 k=1

as well as
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1V @] V) — (o] 1)
k=—n j k=1

j=n+1

La(n)
=2nh 5 (T, Q) .
Since Q is T-invariant, it coincides with Tail (Q), whence Lemma 3.1.2 ensures

that Li(n) = La(n). Furthermore, since

P < \/ TF(Q)) = PV \/ TH(Qy) = \/ Q1) ,

k=—n k=—n k=—n

by using (2.91) one gets

Li(n) = HH(P‘ +\7 T779(Qy) Vv Q)

Jj=n+1

Lll(n)

+ \n/ TH(Q)|PV +\7 (@) v Q)

k=—n Jj=n+1
Li2(n)
La(n) = H, (P| +\7 T(Qn)) + Hy \n/ THQu)[P v +\O/O T(Q)) -
j=n+1 k=-n j=n+1

L21(n) Laa(n)

Since L11(n) < Loy (n) and Lia(n) < Laa(n), Li(n) = La(n) gives
+00 Foo
(Pl ) @) ve) = H.(P| \/ T (Q)
Jj=n+1 j=n+1
for all n > 0. Therefore (see the proof of the previous lemma),
+o00o
(P A (V 777(Q0) v Q) = i, (P|mail (@) -
n>0 j=n

The equality (x) thus follows from Corollary 2.4.2 and

+o0o
Tail (Q1) vV Q < /\ (\/ T=9(Q1) v Q) so that

n>0 j=n

H,,(P|Tail (1)) = H, (P|Tail (Q1) v Q)

> H, (P‘ A (+\7 T(Q)V Q)) = H, (P‘Tail(Ql)) .

n>0 j=n

]
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Proof of Theorem 3.1.3 The equivalences will be proved according to the
following scheme:

(5) = (4)

) U

(1) <= (2) <= (3)

T

(6)
(1) = (2): take Q; has the K-partition P, then Lemma 3.1.2 implies
Tail (Q) < Tail (P) = N for all finite partitions Q.
(2) = (1): this is the content of Proposition 2.3.6.
(2) = (3): if hffs (T, Q) = 0 for a finite partition Q, by means of (3.17) and
the argument of Example 2.4.3 extended by contlnulty to non-finite contexts,
one gets Q < \/,'° T7(Q). Then, T75(Q) < /1%, , T~"(Q), for all k > 0,
whence

“+o0
Tail(Q = A\ \/T7(Q=\VT"Q=Qo=0Q=N.
n=0

k>0 n>k

(3) = (2): let Qs be a finite partition with Tail (Q2) # A; Lemma 3.1.2
applied to Q1 < Tail (Q2) yields hffs (T, Q1) =0, whence Q; = N.
(2) = (5): using (3.18) one gets

1, (QuTail (Q2)) = H,(QuIN) = H,(Q)

for all finite partitions Q; o (see Example 2.4.3).
(2) (6): follows from (2) = (5).
( = (2): suppose Qs is a finite partition; if Q; < Tail (Q2), (3.18) yields
=H, Q1|Ta11 (Q2) ) Thus, Q; = N from (6), whence Tail (Q)
(

(5 = (4): consider a finite partition Q and notice that

+o0 400 .
V1r9 =\ 1709
k=n Jj=1

Then, Corollary 2.4.2, (3.17) and (3.7) imply

n—-+4oo

H,(Q)= lim H (Q‘T/OT}C(Q))
k=n

+oo

< Jm (oY 177(@) =1 (17 Q) < 1,(Q).
j=1

(4) = (3): given a finite partition Q # N, choose € > 0 in such a way that

H,(Q) —e& > 0 and n large enough to have h® (T, Q) > H,,(Q) — &. Then,

from (3.11) one derives
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Hu(Q)_E

n

1 mn
hffS(T,Q)ZEhES(T,Q)Z >0.

3.2 Codes and Shannon Theorems

As seen in Section 2.4 communication channels usually comprise a preliminary
encoding of the source signals. In the following, we shall review some basic
facts concerning the role of entropy in this context, with particular reference
to compression of information and its transmission through noisy channels.

Definitions 3.2.1 (Codes).

1. A code & : 14— §2 for a source A with alphabet I = {1,2,...,a} is any
map which associates source symbols i € iy with strings of any lengths
consisting of symbols x € Ix ={1,2,...,d}:

InsimEG@)=2™ =x29---2, € 25, x;€{1,2,...,d},

where 2} denotes the set |, ~, Qc(ln).

2. A code is non-singular if any two different source symbols i,j € 14 are
mapped into different code-words E(i) # E(j) € 2. In this way, any
code-word corresponds to a unique source-symbol.

3. The extension of a code € : 14 — (2 to strings i) = i1lg -1y € Qf(f) of
length £ is defined by concatenation:

0O 3540 gOGEOY = £(i1)E (i) - - E(i) € 125 .

4. A code & is uniquely decodable if its extensions Y are non-singular.

5. A code £ is a prefix or an instantaneous code if no code-word prefixes
another code-word, that is if no code-word consists in code-symbols added
to a code-word.

Examples 3.2.1. [92]

1. Prefix-codes are uniquely decodable and uniquely decodable codes are
non-singular.

2. Let T4 ={1,2,3}, Ix = {0,1}; £(1) =0, £(2) = 00, £(3) = 01 is a non-
singular code, but not an uniquely decodable one for £(11) = £(2) = 00.

3. The code £(1) = 0, £(2) = 01, £(3) = 11, is not a prefix-code as £(1)
prefixes £(2). However, it is uniquely decodable for the following reason.
Suppose £(iY) = £(*P) = 2™ if z; = 1 then z, = 1 and iy = j; = 3;
if 11 = o = 0, then i3 = j; = 1. Finally, if 1 = 0 and x5 = 1 then
i1 = j1 = 1 when x3 = 1, otherwise i; = j; = 2. In this way every string
of code-words encodes a unique source-word.
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4. The code £(1) = 0, £(2) = 10, £(3) = 11 is such that no string can
be prefix to another. Unlike in the previous one, in this case one need
not check the next symbol in order to identify the corresponding source-
symbol.

Prefix-codes are particularly important because the lengths of their code-
words satisfy the following inequality.

Proposition 3.2.1 (Kraft’s Inequality). [92] If £ : 14 — 2 is a prefiz-
code over the alphabet Ix = {1,...,d} for a source alphabet T4 = {1,2,...,a}
and ¢; denotes the length of the code-word E(i), then

doat<t. (3.21)
i=1

This inequality is known as Kraft inequality; vice versa, if a set of lengths (;,
i=1,2,...,a satisfies (3.21), then there exists a prefiz-code € : [4 — (2.

Proof: The lengths ¢; need not be all different; let them be ordered such
that {1 < /ly < --- < /{y,, m < a and let N; be the number of source-symbols
with code-words of length ¢;. Necessarily, N; < d’, otherwise there would
be more source-symbols than words of length ¢; that encode them and the
code would be singular. The prefix condition means that none of the Ny code-
words can prefix code-words of length £5, whence N; d®2~% code-words are no
more available and non-singularity implies No < d*> — N, d2~% . Continuing,
Ny d 2 and Ny d*—% cannot be used as code-words of length /3, whence

N3 <d — Ny d® " — Npd== .

Iterating the argument one gets a set of inequalities

j—1
N; < db —Zde@_Z’“ , 1<ji<m,
k=1

the last one (j = m) resulting in (3.21). Vice versa, if a set of m different
lengths /¢; satisfy the Kraft inequality, then they also satisfy the inequalities

J a J—1
S ONpd™ <y dh <1= N; <dY — Y Npdi T
k=1 =1 k=1

for 1 < j < m. Therefore, the source-symbols i € [ can always be regrouped
into subsets 14(j), each with N; elements, such that there are sufficiently
many code-words to construct a prefix-code I4(j) 37— E(i) € 2. O
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Example 3.2.2. [92] Inequality (3.21) extends to countable prefix codes.

Indeed, any (™ = (x1,22,...,2,) € _Ql(i") can be associated with the in-
terval Ay = [0.zq29-- 2y, Omqae @, +d~ ™) C [0,1] by means of the

d-nary expansion x = =: 0.x122 - - - x,. Therefore, if a countable set

dJ

j=1
{x;}ien of code-words :cl(»m € (2% with lengths ¢; have the prefix property,
the corresponding intervals A; of lengths d=% are all disjoint and the sum
of their lengths cannot exceed 1. Viceversa, given a countable set of lengths

satisfying the extended Kraft inequality

dati<t,

€N
these can be assigned to disjoint dyadic intervals whose left ends can be used
as code-words of a prefix-code.

Given a source A some codes will prove more adapted to its statistical
properties than others; for instance, it is convenient to assign shorter code-
words to the symbols emitted with higher probability. In this context, a useful
parameter is the following one.

Definition 3.2.1 (Average Code Length). [92] Let A be a source emit-
ting symbols from the alphabet T4 with probabilities m = {p(i)}icr,, the av-
erage length of a code € : In — 2 is defined by Lr(E) = > i, p(i)l;,
where £; = ((E(i)) is the length of the code-word E(i) assigned to the i-th
source-symbol.

A way to optimize a code relative to a fixed source probability distribution
is to try to achieve the shortest average length. If £ is a prefix-code for
which (3.21) becomes an equality, the optimal lengths are found by imposing
that the quantity L. (E) + )\(Zle d—t — 1) be stationary upon variation of
the lengths and of the Lagrange multiplier A. Since Y, p(i) = 1, one gets
A* = —logd and ¢ = —log,p(i), whence the corresponding average length
equals the Shannon entropy in base d, L* = Hy(A). This is the smallest one
achievable by a prefix code; indeed, with D := Y7 | d~% < 1, by means of
the relative entropy (2.94) and of (2.85), one estimates

Le(€) = 1* = 3 p00) (6 + Togap(i)) = S pli)oga (i) 357 ) o8 D
i=1 i=1

=S(m,m) —loggD >0, (3.22)

where 7 = {d~%/D}%_,. Since £} is not generally an integer, it cannot be
directly used to construct an optimal code; however, set ¢; := [—1log, p(i)] *,

so that ¢ < ¢; < £¥ +1 and

'] denotes the smallest integer larger than x € Ry
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a _ a a
YSURED SRS SO
i=1 i=1 i=1

According to Proposition 3.2.1, one can thus construct a prefix-code £ with

average length L, (€) such that

Hy(A)=L* < L,(§) = ip(i)zi <L*+1=HyA)+1.

These upper and lower bounds also characterize the average code length

L (Eopt) of any optimal code for L (E) > L (Epp) > L*.

Example 3.2.3 (Shannon-Fano-Elias Code). Let A be a source that
emits symbols ¢ € T4 = {1,2,...,a} with probabilities 7 = {p(i)}?_, and
assume, without loss of generality that p(i) > 0. Let P(i) := >'_; p(j);
then, to each symbol ¢ there corresponds a jump from P(i — 1) to P(i) and
the value Q(i) := P(i — 1) 4+ p(i)/2 belonging to the corresponding step can
be used to identify the i-th symbol. Since a code-word must contain a finite
number of symbols, a suitable truncation of Q(¢) is necessary; for this the
binary expansion of Q(i) is used. Concretely, one assigns to the i-th symbol
the code-word £(i) = 1 (4)x2(i) - - - 2y, (i), where

—logop(i) +1 <4 :=[—1logyp(i)] +1 < —logy p(i) + 2, (3.23)

and x;(i) € {0,1} are the binary coefficients of the expansion of Q(i) trun-
cated at the ¢;-th digit:

Q)=S0 5 B )4 < + A < )
j=1 j=tit1
Q1)

Since P(i — 1) < Q(i) < P(i), Q(i) provides a code-word £(i) for the symbol
i of length ¢; < —log, p(i) 4+ 2. Also, with the notation of Example 3.2.2, the
binary intervals

[0.21 (1) 22(3) - 24, (1), 0.1 (1) w2(3) -+ 2, () + 275 ]
lie within the steps corresponding to different 7’s and are thus disjoint. Then,

£ is a prefix-code with average length satisfying

a a

Hy(4) < La(€) = > p(i) & = Y p(i) ([ ~loga p(i)] + 1) < Ha(4) +2.

i=1 i=1
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Remark 3.2.1. The difference between the average code-length and the en-
tropy Hi(A) in the case of the assignment ¢; = [ —log,p(i)], can be elimi-
nated asymptotically by coding not single source-symbols but whole blocks
of them. In this case, given a stationary source A and a prefix-code &£, one
encodes strings of length n, i € 20", with code-words £(™) (™) € 2% of

lengths ﬁim)) and average code-length per symbol

A(n) (g(n) Z pA(") g(,'(ln)) .
z(")G.Q(n)

Then, the same argument developed for codings of single source-symbols
yields the bounds

Hd(A("))

n

Hy(A™) 1
< Lo a(gm) < B AT 1
ATL k) n

n

Taking the limit n — oo, one sees that the average code-length per symbol
tends to the entropy rate (in base d) hq(A) of the source (see Remark 3.1.1.1).
This simple result motivates the following interpretation:

The entropy rate of a stationary source represents the expected number
of code-symbols needed to optimally describe the whole stochastic process
corresponding to the source.

3.2.1 Source Compression

Storing or transmitting information consumes a certain amount of resources,
like the number of uses of a channel or the allocation of memory. In order
to minimize the costs, the strategy is to compress information as much as
possible in such a way that it could be efficiently retrieved, that is with small
probability of errors. We shall start with the case of binary Bernoulli sources
A emitting statistically independent signals (see (2.31)).

In such a case, the source amounts to a stochastic process {A7 }jez con-
sisting of independent and identically distributed random variables, each with
discrete probability distribution w4 = {p(¢)}?_,. Then, the mean value of the
random variable

A) = _% Z log p(A7) (3.24)

is the Shannon entropy H(A) = Z p(i™) L, (™), while the variance
imen(™

cauals Vo (4) i= ((La(4) ~ H(A)?) = —{log? p(4)) — H*(4).

Lemma 3.2.1 (Tschebitcheff Inequality). Let X be a random variable

with outcomes i = 1,2,...,d, probability = = {p(i)}¢_,, mean value M =
2

\%4
(X)) and variance V := (X?) — M?, then Prob{|X — M| > ¢} < =
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Proof: The upper bound follows from

Prob{|X — M| >e}:= > pli) gé > p() i — M)
it —M [ >e itli — M|>e

With X := L, (A) as in (3.24), the previous Lemma yields
1
Prob {|Ly(A) = H(A)| > €} < —5—(log® p(4) — H*(A)) .
€

Therefore, chosen € > 0 and § > 0, for n sufficiently large, one can select high
probability subsets

ALY = {i™ e o ‘—%bgp(")(i(”)) — H(A)| <}, (3.25)

such that
Prob(Agfg)) >1-4, Prob((Agf?)C) <9, (3.26)

where (Ag?)c = an) \AS? is the corresponding low probability subset.

Proposition 3.2.2 (Asymptotic Equipartition Property (AEP)).
For any € > 0 and § > 0, there exists N s such that, for alln > N, s, the

high probability subsets Ag? - _Qén) are such that, for all i € AEZ;),
e MHAW+e) < p(i(")) < e nHA)=e) (3.27)
while, their cardinalities #(Ag?) satisfy

(1—8)e" D= < (AlY)) < enHW+ | (3.28)

Proof: The first statement follows from (3.25), while the second one is a
consequence of (3.26) and of

1= Z p(i(”)) > Z p(i(")) > #(Agn))e_”(H(AH‘G)

ASOFY o imeal™
1-5< > pi™) < #AM)eH D=
imeal™

O

Roughly speaking, the AEP states that, for large n, the binary strings of
length n can be subdivided into a high probability subspace .Ag? containing
~ e"(4) strings each one of them occurring with probability ~ e~"H(4),

Also, the closer the source entropy to 1, the closer Aing) gets to Qén).
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1
For Bernoulli sources, the AEP amounts to —log p(i™) — H(A) in
n

probability. In fact, the AEP extends to ergodic sources and, more in gen-
eral, to symbolic modeling of ergodic dynamical systems, with the Shannon
entropy replaced by the entropy rate.

Let P = {P;}¥_, denote a finite, measurable partition of a reversible
ergodic triplet (X, T, u) and set Py :=\/;_, PI, P/ := T~I(P). Further, for
any x € X let P2(z) denote the atom of the partition P? that contains z: for
p-almost all « there is one and only one such atom. Notice that each P; is a
random variable on A such that

Pi(x) = ﬂ T (P,) < TizeP, Vj=rr+1,...s.
j=r
Consider now the random variable

() =~ log u(Py ' (x)) ; (3.29)

with the notation of Section 3.1, its expectation is

pi) = [ dn@ i@ == 3 [ dn @) os Py @)

i("?EQI(,") P,;((T:L))
1 (n) (n) 1 (n)
- > WP log (P = EHM(P ). (3.30)

i en

n—1

: 1 pPi(x) 1

Rewrite h,(z) = —— log ——="— — —log u(P(x)), P§ = P, and ob-
n ; w(Pg ()

serve that PF(z) = PO, (T*z) and Py~ (z) = P=(T*x), then

n—1
1
ho(z) = - Z gr(T*z)  where (3.31)
k=0

PPy ()

T (3.32)

go(z) := —log u(P(x)) , gr(x) :=log

All these functions are positive; furthermore, 0 < g := limy, g5 exists almost
everywhere and is integrable. In fact, let f} := gj, | P;, that is

ix — _1o M(P:é(m)mpl) .
KA T

then, the conditional probability (2.52) of the random variable P conditioned
on the measure algebra generated by 77:; reads
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M(P = zHP:é)(m) = e fi@)

Since, from Theorem 2.2.1, limy, f{ exists p-almost everywhere, the same is
true of g = limy, gx. Now, fix a € R and define the following disjoint subsets
of X:

— . <
B {o | o 0,(0) <0 < su(o)]

Fi = {x max fj(z) <a< f,i(a:)} :

1<j<k—1

Using the defining property (2.52) of conditional probabilities, one estimates

whence g and g are both integrable.

Example 3.2.4. Consider the case of a bilateral Bernoulli shift as in Exam-
ple 3.1.2.2. Then, x =t € §2,, and, choosing as P the generating partition
C, one gets gi (i) = go(2) = —log u(C(2)). Therefore, the sum in (3.31) yields
the time-average of gy, whence one can apply Birkhoff’s Theorem 2.3.1 and
ergodicity to deduce that
lim h, (i) = H,(C) = Wi (T,)  p—ace.

and that the asymptotic behavior p(i(”)) ~ e~ (To) holds almost every-
where and not only in probability.

Despite the fact that, in general, the functions in (3.31) are different for
different k’s and thus (3.31) is not a time-average as in Birkhoff’s theorem,
none the less the following result holds.

Theorem 3.2.1 (Shannon-Mc Millan-Breiman Theorem).
Let (X, T, ) be a reversible, ergodic dynamical system, then, for all finite,
measurable partitions P = {P;}!_,,

lim h,(z) = hES (T,P) iw—a.e.

n—oo
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Proof:  [61, 199] With the notation introduced in the preceding discussion,
dominated convergence, T-invariance of p and (3.30) together with (3.31)
yield

1 n—1 ' 1 n—1
ulg) = lim p(gn) = lim — > " pu(ge) = lim —> p(groT")
k=0 k=0
= lim p(h,) =h}> (T, P) .
1 n—1
On the other hand, from ergodicity, h}fs (T,P) = pu(g) = lim — Z g(T"z)

1 — a.e., whence the theorem is proved by showing that

n—1

nlin;o % Z(gk —g)(TFz) =0 w—ae. (*)

k=0

Consider G'n () := supy> x |gx(7) — g(z)]; these functions are integrable and
limy Gn = 0 p-a.e., thus, from ergodicity,

n—1

1% 1
limsup |— (g — < lim bup E— Tk
1 n—1
<limsup = > Gy (T*z) = n(Gy)
n—ee M
p-a.e. and for all N € N whence (). O

Remark 3.2.2. The Shannon-Mc Millan-Breiman theorem applied to an er-
godic source allows a reformulation of the AEP in terms of the KS entropy.
Indeed, choosing as P the standard generating partition as in Example 3.2.4,
almost everywhere convergence of pff)(i(")) to e M4 ensures that, given
€ >0, and § > 0, for n sufficiently large, the ensemble of strings of length n
can be subdivided into a high probability subspace Ag") of probability ~ 1
containing ~ e"(4) strings.

The AEP allows the implementation of the following compression scheme
of an ergodic binary source: one considers strings of length n, makes a list
of those contained in a high probability subset .AE") and assign them as
a code their position in the list. Since Aé”) contains less than 27(R(A)+e)
strings (entropies being conveniently computed with logarithms in base 2),
the number of bits needed for the encoding is at the most

[log, 2"MA+9 ] 41 = [h(A) +€e]+1,
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while the strings belonging to the complementary set ( E"))C may be encoded

by a same integer, say #( En)) + 1. Upon retrieval, the strings belonging to

A™ are exactly identified by their code, but not those in ( En))c; however,

since Prob((AEn))c) < ¢ and § — 0 with n — oo, the larger n gets, the lower
is their probability of occurring. Therefore, the probability of error can be
made vanishingly small by increasing n.

Theorem 3.2.2 (Noiseless Coding Theorem). Let A be an ergodic bi-
nary source with entropy rate h(A): binary strings of length n can be encoded
by using n R < n bits and vanishing probability of error if R > h(A). If
R < h(A), then the probability of error goes to 1 with n — oo.

Proof: The first part of the theorem follows from the previous discussion
by applying the equipartition theorem with R = h(A) + €.
For the second part, let R = h(A) — € and consider the high probability

(n)
€/2

strings can be estimated as follows,

subset Ai% together with its complement (A ;). The probability of any

subset B of 2" containing [2"%| 2

Prob(B) < Prob( B (A))°) + Prob(Bn.AY)
<5+ 2nR2—n(h(A)—e/2) =6 + 2—716/2

where ¢ is a vanishingly small quantity given by the AEP . Thus, listing the
strings belonging to a subset as B, one uses less than h(A) bit per bit , but,
when n gets larger, the probability that an emitted string belong to B gets
vanishingly small and the probability of error close to 1. (I

Universal Source Codings

The compression protocols discussed in the previous section depends on
the knowledge of the source statistics. Interestingly, encoding and decoding
schemes exist which work equally well, namely with a same compression rate
R, for all ergodic sources A with an entropy rate h(A) < R, whatever their
overall stationary probability distribution: these protocols provide universal
source codings.

In the following, we shall consider Bernoulli sources [92], while the general
case can be found discussed in [325, 168]. The method used is based on the
concept of type.

Let A be a stationary Bernoulli source emitting strings i = iyiy iy €
Q,(ln), ij € In = {1,2,...,a} according to compatible probability distribu-

tions Ty = {pi{l)(i(”)) = H?:l pA(ij)}. We shall denote

2| x| denotes the largest integer smaller than z € R.
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1. by N(j]i") the number of times j € I4 occurs in the string i™;

;(n)
2. by p(j|i™) := NGET) the so-called empirical probability generated by
n

the string i) and by IT;(.) := {p(j\i("))}?zl the corresponding empirical
distribution. The latter is known as the type of i strings i whose

symbols occur with same frequencies belong to a same type H(n);
3. by P, the set of all types I1(");

4. by T(IT™) the subset of all strings i™ e O with a same type 1",

The construction of universal codings is based on the following two
bounds; of particular importance is the second one which states that the
number of different types increases at most polynomially with n.

Lemma 3.2.2. Let II™ € P, be a type of O and let H(II™) be its
Shannon entropy. The number of strings in T(II™) and the number of all
possible types fulfil

#OM) <22 (P < (n+ 1)
Furthermore, the a-priori probability of T(II™) is such that
Ty < g SUT )

where S(IT™ | w4) is the classical relative entropy (see (2.94)).

Proof: Let P(™ be the following empirical probability distribution on Q((l")7

P () H p(jlaMNGE™) = H onp(jli™) logy p(j1i™) _ og—nH(I,n))
j=1

The probability of the type class T(IT(™) is certainly smaller than 1; thus,

12 PO (2(I)) = Y PIEM) = ()2 )

M eT(I1m)

yields the first estimate.

The second is a very loose upper bound: each type II;() is entirely char-
acterized by how many times each symbol ¢ € I4 occurs in i . Without
constraints (that can only decrease the number of types) there are n + 1
choices for each ¢ = 1,2,...,a, namely 0, 1,..., n, whence the result.

Finally, the last bound is derived as follows: first, notice that
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n
n)+(n (™ np(£i™) 1o j
pfq)(z( )) = HpA(ZJ HpA QN — H gnp(£]it")) logy pa(4)
j =1

” ” (n)
_ i l(pwm V) log, p(€]i™) — p(£]i™)) log, 2 >>)

— o= n(HT () + ST (n) ,7a))

Then, using the first upper bound,

)y = 3 PP aEm)

i(")eT(H(">)
#( (H(n )) (H(H("))+S(H(") .,TI'A)) < 2—715(17(") ,TA) .

O

Because of the first bound in Lemma 3.2.2, at most nR+1 bits are needed
to encode the label of a string i of type IT(™ with H(IT™) < R, while at
most alogy(n + 1) + 1 bits ensures the encoding of the label specifying the
type P to which the string belongs (the +1 accounts for R and log,(n+1) not
being integers). Therefore, in the limit n — oo, one expects a compression
rate R for all Bernoulli sources with H(A) < R.

Definition 3.2.2 (Universal Codings). Let R > 0 and consider an en-
coding of a Bernoulli source A into binary strings of length |nR], given by

g Q((ln) — QQL”RJ, followed by a decoding procedure D : Q%nRJ — Q((Ln).
This gives a universal (n,2"%)-code if the probability of error

P = ({i™ : Drogna™) #i™})

goes to 0 when n — oo and E™, D™ do not depend on the Bernoulli source
probability 7 4.

Proposition 3.2.3. There exist universal source codings (n,2") for every
Bernoulli source with H(A) < R.

1 1
a ogy(n +1)

Proof: Given R > 0,let R, := R— ; using the first two bounds

n
in Lemma 3.2.2, the subsets A™ := {i(") e 2 . H(IIywm) < Rn} have
cardinalities such that

#(A(n)> _ Z #(T(ﬂ("))) < Z 2nH(17(">)

n(mep, nmep,
H(11(M)) <Ry H(I1(")<Rp
S 2 2an S (n+ 1)a 2an — 2nR .
() ep,

H(T(M))<R,
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Let £" associate to strings in A their label in the list of such strings
expressed in bits and let D™ be its inverse map. If H(A) < R, then, using
the third bound in the previous lemma,

P =1 7 (AW) = 3 (T(m")))

o) ep,
HIT(M))> R,

< (n+1)° max{ﬂj(f) (T(H("))) c H(IT™) > Rn}

—nminq S(II™ ,ma) + H il Rn}
<(n+1)02 { ( A) ( )> .

Since lim,, R, = R and H(A) < R, and the relative entropy S(my, m2)

=0
iff 1y = m, P, gets exponentially small for n sufficiently large. ]

3.2.2 Channel Capacity

Noiseless channels are an exception; usually, during transmission signals get
distorted. It can thus happen that a channel outputs a same string y(
when presented with different input strings af;(l") and a:é") which cannot then
be decoded without errors. Like in compression, to counteract distortion one
resorts to suitable encoding and decoding procedures of longer and longer
strings; however, unlike in compression where redundancies are eliminated,
in the presence of noise, the strategy is to introduce redundancies in order to
lower the possibility that different input strings give rise to a same channel

output.

Example 3.2.5. In Example 2.4.1, bits 0 and 1 can be converted into one
another with probability 0 < p < 1/2 by a binary symmetric channel C. The
probability of a wrong decoding can be lowered by encoding

EO0)= 00---0 , &1)= 11---1

2n+1 times 2n+1 times

Then, 2n + 1 uses of the channel output strings 42"V := C(2n*+1) o £(;) that
can be decoded by a majority rule: let N;(n41)(0) denote the number of Os
in §2"*Y | then

.(2n41)y _ 0 if Ni(2n+1)(0) >n
’D(l ) o { 1 if Ni(2n+1)(0) S n

By such an encoding-decoding procedure one transmits one bit at the cost
of 2n + 1 bits; an error occurs, that is D o 2"+ o £(i) # i, if > n + 1
bits of £(i) are flipped by the channel C. The probability of such an event,
<2n +1

1 ) p" T (1—p)", vanishes with n — oo; unfortunately, the transmission
n
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1
rate, that is the number of bits transmitted per use of the channel, 1
n
vanishes, too.

In the following we shall consider channels C without memory and without
feedback such that each of their uses is independent of the previous inputs
and outputs. Further, n uses of the channel C amount to a single use of a
channel ) which maps input strings (™ € 1% consisting of n symbols from
an alphabet Iy = {1,2,...,nx} into output strings y™ € I consisting of
symbols from an alphabet Iy = {1,2,...,ny }. Input and output strings are
conveniently described as realizations of stochastic processes {X;}ien and
{Yi}ien with join random variables X (™) := \/7_, X; and Y™ := \/"_ V}.
The transitions (™) +— y(™ occur with probabilities p(y(™|x(™) that fac-
torize (see (2.82)) and are thus completely characterized by the single-use
transition probabilities p(y;|x;).

One of the great achievements of early information theory was obtained
by Shannon who proved that codes exist such that the number M(n) of
distinguishable strings (™ increases with n at a non-zero exponential rate
R: M(n) =~ 2",

Definition 3.2.3 (Channel Codes and Capacity). [92/
A code (M,n), for a channel C consists of

1. asetIc:={1,2,...M};

2. an encoding £ : Ic +— I associating a code-word x™ (w) = £(w) to any
of the indices w € I¢o;

3. a decoding procedure D : I} + Io, D(y"™ (w)) =: 0 € I, that returns
W € Io given a channel output y™ (w) = C™(x™ (w)).

logo M
The rate of the code is defined by R := % 3. The probability of an error,

W =D(y™ (w)) # w, is

e, (w) = Z P(y(n) Ea (w)) :

y(M e Q) D(y(m)#w
The rate is said achievable if there exists a sequence of codes (2%, n) with
vanishing maximal probability of error e, = maxyecr. €,(w).

The capacity C of the channel C is the largest of its achievable rates.

Remark 3.2.3. For a memoryless channel, (2.82) holds; thus, if the probabil-
ities of the input stochastic process {X; };cn factorize, so do the probabilities
of the output stochastic process {Y;}ien:

3For sake of simplicity, in the following M = 2™® will be identified with [2"%],
the smallest integer larger than M.
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pyor@™) = > py™x™) pxe (™)
m(n)eln

= HZP yjlz;) px (25) pr y;) - (3.33)

Jj=1 z;

Shannon’s result is that the mutual information (2.93) I(X;Y) is an achiev-
able rate and that the channel capacity is given by

C=maxI(X;Y). (3.34)

Examples 3.2.6.

1. Example 2.4.1.1: pp(i) = pa(i), i = 0,1, implies I(A; B) = H(A), whence
capacity, C = 1, is attained at mq = {1/2,1/2}.
2. Example 2.4.1.2: with H(p) := —plog, p — (1 — p) logy(1 — p),

I(A; B) = H(B) Z ZP i) log, p(jli) = H(B) — H(p) ,

whence capacity C =1 — H(p) is attained at m4 = {1/2,1/2}, since
1
2 i

3. Example 2.4.1.3: pp(1) = pa(0)(1—a), pp(2) = pa(l)(1—a) and pp(3) =
a(pa(0) +pa(l)) = a yield

pB(0) =pa(0)(1-p)+pa(l)p = pB(1) = pa(0)p+pa(l)(1-p) = 5

I(4; B) = H(B) - (pa(0) + pa(1))H(a) = H(B) — H(a)
— (1-)H(4) ,

whence capacity C' = (1 — «) is attained at 74 = {1/2,1/2}.

4. The capacity in (3.2.3) refers to only one use of the channel C; consider
now the channel C™ acting on (™ € I with outputs y™ e I3+. The
mutual information I(X ;Y (™) of the corresponding random variables
X and Y™ can be controlled by repeatedly using (2.93). From (2.82),

H(Y(”)|X(")) - H(X(") vV y(n)> _ H(X("))
H(Y, | X™ vy =Dy 4 g(x™ v y®=1) _ g(x®)

n
H(Y;| X" vyU=b) =3 " H(Y;|X;)

I

1

J

Further, from (2.88),
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[(X(n);y(")) - H(y(n)) _ H(Y(")\X("))

<Y (HY) - HEIX)) <00 (339
j=1

Therefore, if C™ denotes the capacity of the channel (™), the supremum

over all input probability distributions gets C™ < nC. Actually, from

Remark 3.2.3, equality is achieved by choosing a factorizing 7y ) such
n

that pxm) (:c(")) = pr(ffj), with mx the one achieving capacity C.
j=1
Then, the output probabilities factorize too and thus H(Y (™) = nH(Y).

The above relation between capacity and mutual information can be un-
derstood as follows. As showed in the last example, if X consists of n
independent, identically distributed repetitions of X, then the same is true
of Y and X (™ vY (") with respect to Y and X VY. With H(X), H(Y) and
H(X,Y) the corresponding entropies, based on the AEP , for large n there are
roughly 27 (X) 7+ _typical inputs, 27 ) 7y -typical outputs and 277 (X:Y)
jointly typical pairs (z(™,y™), that is typical with respect to mxyvy. Of
course, not all input-output pairs (w("),y(")) with (™ 7x-typical and y(™
my-typical are jointly typical: this happens with probability roughly equal to

2nH(X,Y)

_ 9-nI(XY)
onH(X) gnH(Y) :

Therefore, in order to encounter a jointly typical pair with fixed output y(™
one needs at least 27/ (X3Y) inputs; in other words, one expects that encoding a
number of input strings smaller than 27/(X3Y) none of them should be jointly
typical with respect to a same y(™. Vice versa, more than 2"/(X3Y) inputs
would start having a same jointly typical output and thus being not exactly
identifiable. Memoryless channels with independent, identically distributed
inputs are thus expected to have achievable rates R ~ I(X;Y).

In order to give a mathematical proof of the above intuitive argument,
we start by extending the notion of typical strings.

Definition 3.2.4 (Jointly-typical Strings).
Two strings =™ € I% and y™ e I3 are jointly typical if they belong to
the subset AE”) C Iy x Iy such that
1
|~ logy pxn (@) — H(X)| < ¢
1
|~ logy py (y™) — H(Y)| < ¢
! (1) (™)
‘_ﬁlogZPX"Y"(m Y )_H(X\/Y)‘<E7

where 0 < e < 1.
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Since (2.82) holds, the argument of the proof of Proposition 3.2.2 gives
rise to a jointly typical AEP. Namely, let € > 0, for sufficiently large n’s the
probability carried by subsets of strings violating any of the inequalities in the
previous definition can be made smaller than ¢/3 so that Prob(.Agn)) >1—e
Moreover, its cardinality fulfils

while the probabilities of strings (™, y(™ and (w("),y(”)) satisfying the
inequalities in Definition 3.2.4 fulfil

9~ n(HX)4e) < o (M) < 9 HX)=9) (3.37)

9= HY)+) < g (y() < 2 HY) =) (3.38)

9 HXVY)t) < pl) () gy < o= nHXVY)=0) (3 39)

Then, Prob({(:c("), y™) € Ag")}> = Z pxn (™) pyn (y™)
() )AL
can be bounded from below and above as follows:
(1 — )2 nIEY)+39) < Prob({(w(n)7y(n)) c Agn)}) < 9 n(X;Y)=3¢)
(3.40)

Theorem 3.2.3 (Shannon Noisy-Channel Theorem).
All rates R < C, C as in (3.34), are achievable and any sequence of codes
(nR,n) with the maximal error probability e, — 0 must have R < C.

Proof that e, — 0 = R < C : Suppose the signals w € {1,2,..., M},
M = [2"7], encoded by (nR,n) into £(w) = (™ € I}, are equidistributed;
let W denote the random variable with outcomes w. Using (2.93), (2.95) with
C(B) = E(W) = X and (3.35), it follows that

nR <log, M = HW) = H(W\Y(”)) + [(W;y(n)>

< H(W|Y(”)) n I(X(”);Y(")) < H(W|Y(")) +nC.

We need now connect H (W|Y(”)) to the error probability: this is done by
means of the so-called Fano’s inequality. By assumption the maximal error
probability in Definition 3.2.3 goes to zero with n, so does the average error

1 U =
probability e}’ := i g e,(w). Let E := {(1) 37& 3; E is a random
welc

variable determined by W and Y ("), Thus, using 2.91,
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H(WIY®) = H(EW,Y ™) + H (WY )

= H(WIEY™) + H(BY®™) .

Now, from Remark 2.4.3.4, H(E|Y(”)) < H(FE) < 1. Further, E = 0 implies

that W is determined by Y () so that H(W|E = O,Y(”)) = 0, whereas if
E =1 then the cardinality of possible values of W is M — 1. Therefore,

H(W|E,Y ™) = Z Prob(E = i) H(W|E =1,Y™)
€ logy (M — 1) < €%’ nR = H(W|Y<”>) <1+ enR.

The result follows since nR < 1 + egrf)) nR 4+ nC implies e,(;{;) >1-— % — %
(n ) 0

which in turn implies that eq,,’ cannot vanish with n — oo if R > C.

The proof of the first part of Theorem 3.2.3 relies on the following steps:

1. for w € {1,2,...,M = 2"F}  choose the code-word =™ (w) at random
with probability pg?) (™) =TI\, pin(z;). This gives a random code of
M
type (nR,n) with overall probability Prob(€) = H H Din(xi(w))
w=11i=1
. choose the symbols w at random with the same probability p(w) = M ~1;
3. if ¢ (2(™) =y and there is only one @ such that £() = (™ (1) is
jointly typical with y(™, then associate with y(™) the symbol @, otherwise
declare an error. This gives a decoding map y™ — D(y™) = w;
4. an error is also declared if D(y(™) = @ # w and C™(E(w)) = y™.

[\

Proof that (nR,n) is achievable when R < C : Let 65 ( ) be the

probability of an error relative to a random code £ and e( )(S ) the corre-
sponding average error probability. Further, let

z Prob(&) e(™ =17 Z Z Prob(€ (") (w) :

w=1 &

this is the average error probability over all randomly generated codes. Then,
every w gives the same contribution to the error, so P(e) = > Prob(é')e(gn) (1)
with fixed w = 1. Let F,, := {(a:(”)(w), y™) e A }, where A™ is a jointly-
typical subspace. According to the rules of the game, if y™ = ¢"(z(™) (1)),

a decoding error occurs when

1 (@™ (1),y™) ¢ A" that is when the input corresponding to w = 1
and the relative output are not jointly typical;
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2. (2™ (i),y"™) € F; for i # 1, that is when the output corresponding to
w = 1 is jointly-typical with code-words associated to w # 1.

The overall average error probability can thus be estimated as follows:
M
P(e) = Prob((Fl)C u U Fz) < Prob((F1)) + ZProb
i=2

By the jointly-typical AEP , F} C A™ — Prob((F1)¢) < € for n large
enough. Further, because of randomness of the code the input :1:(")(2'), i # 1,
are statistically independent from (™ (1) and y™ = C™(2(™)(1)). Then, the
jointly-typical AEP also yields

ZPI‘Ob(Fj) S (M _ 1) 2—7L(I(X;Y)—36) S 2—n(I(X;Y)—R—3e) .

If R < I(X;Y) — 3¢, the latter quantity gets < e for n sufficiently large

and thus P(e) < 2e. This implies that there exists at least one code £* with

el < 2e. By choosing for X the distribution 7* attaining capacity in (3.34),

the condition for achieving the rate R becomes R < C. Finally, at least half
of the code-words (™) (w) of £* must have e(™ (w) < 4e otherwise ) > 2e.
Keeping only these ones, changes the rate from R to R(n) := R — 1/n. The
procedure thus yields a sequence of codes (nR(n),n) such that e — 0 and
R(n) — Rfor all R < C. O
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One of the intuitive notions which is most elusive from a mathematical point
of view is that of randomness. Consider a string i e 25 emitted by a
Bernoulli source with probabilities pg 1; suppose that n >> 1 and that the
number of 0s, n(0), is nearly half the number of 1s, n(1) ~ 2n(0). One expects
that, generically, the relative frequencies n(i)/n tend to the probabilities p;
with increasing n; indeed, only special, that is intuitively non-random, strings
should fail such a statistical test. Therefore, one would call i random only
if pg = 1/3 [305]. Of course, passing the frequency test is not enough; indeed,
if pg = 1/2, both i consisting of n/2 subsequent pairs 0, 1 and a string j(”)
of Os and 1s distributed without any evident pattern occur with probability
27", However, because of its regularity, i would be called non-random and,
vice versa, because of the absence of regular structures, j(”) would be called
random [92, 310].

Presence and absence of patterns seems to be a useful clue to defining
which strings or sequences are random and which are not so; this property
should somehow be related to the degree of compressibility so that one might
wonder whether the entropy rate introduced in Section 3 could provide a
natural measure of randomness. Also, by replacing the entropy rate with the
dynamical KS entropy, one could define a classical dynamical system to be
random or not on the basis of the compressibility of the best ones amongst
its symbolic models. However, entropy rate and the KS entropy describe the
average behavior of sources or of dynamical systems and say nothing about
individual strings or individual trajectories.

Various attempts have been undertaken to tackle the problem of formal-
izing the intuitive notion of randomness of individual sequences i € 2.
In [305], three relevant approaches are discussed: in the first one, randomness
is identified with stochasticness, that is with the impossibility of devising a
winning strategy when bets on the value of the next symbol i,, of 2 € 25 are
based on the knowledge of #;is - - - 7,—1. In the second approach, randomness
is identified with chaoticness that is with the absence of regular patterns in
i € (25. In the third approach, randomness in a sequence ¢ € (25 is identi-

F. Benatti, Dynamics, Information and Complexity in Quantum Systems, 105
Theoretical and Mathematical Physics, DOI 10.1007/978-1-4020-9306-7_4,
(© Springer Science+Business Media B.V. 2009
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fied with its typicalness, that is with the fact that it does not belong to any
effectively null subset of 25 1

In the following we shall focus on the second approach which is also
known as algorithmic complexity theory, and was developed independently
and almost at the same time by Kolmogorov [173, 174], Chaitin [77] and
Solomonoff [283, 284] in the early sixties. Algorithmic complexity theory
involves as many subjects as mathematics, logics, computer science and
physics [310, 73, 254]: we shall give a short overview of some of its aspects that
are relevant for an extension of this notion to quantum dynamical systems.

4.1 Effective Descriptions

The main step towards a theory of randomness of individual strings was the
observation that regular strings admit short effective descriptions, whereas
irregular strings do not. By effective description of a (binary) target string
it is meant any algorithm (binary program) that is computed by a suitable
computer and makes it halt with the target string as output.

Example 4.1.1. Any string i = iyiy iy consisting of n bits can always
be reproduced by processing the program

PRINT iyig--iy ,

which specifies the bits to print, one after the other.

This program amounts to the literal transcription of the target string.
Clearly, one has to seek more clever ways to describe i("), that is shorter
programs. In doing so, one is much helped by the presence of patterns; if
i; =0 for all 1 < j < n, the following simple program could be used:

! Let 023, the set of all binary sequences, be equipped with the o-algebra gener-
ated by cylinder sets and with the uniform product probability distribution so that
any cylinder C; indexed by a string ¢ € 25 of length length ¢(7) has probability
7(C;) = 27@ A subset A C (23 is a null subset if for any & > 0 there are cylinders
Ci;, i; € £25 such that A C (J; Cs; and 3, 27%5) < e, A subset A C §25 is an
effectively null subset if the previous inequality is satisfied with the strings ¢; that
index the cylinders and € > 0 (any rational number) both effectively computable
by a suitable algorithm (for instance by a program processed by a computer) [305].
Intuitively, random sequences cannot be effectively reproducible and thus cannot
belong to effectively null sets. Concretely, these latter sets consist of non-typical
strings and correspond to effective statistical tests or Martin-Lof tests that, when
failed, identify these non-random strings (an example is the frequency test men-
tioned in the discussion prior to this remark) [310]. In other words, a sequence is
random according to the typicalness criterion if it passes all Martin-Lof tests. On
the other hand, if typicalness were defined with reference to all possible null sub-
sets, then there would be no typical sequences; indeed, any @ € {22 belongs to the
null subset of {25 consisting of the sequence itself.
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PRINT 0 n TIMES.

For large n, the length of such a program goes as log, n, that is as the number
of bits necessary to specify the length of the string E(i(")) = n. This is also
the case if, less trivially, the string i consists of a same pattern, i that
repeats itself ~ n/q times. Indeed, what is to be specified is the length of
the pattern at the cost of a fixed number, log, ¢, of bits and the number of
repetitions at the cost of ~ log, n/q ~ log, n bits for n > gq.

On the other hand, if i shows no pattern, there is no shorter effective
description than literal transcription. In this case, the length of the effective
description grows as n and not as log, n.

In the previous example, it is clear that one is interested in the shortest
possible effective descriptions s(i(™) of a given string i™: let C(3(™) denote
the length of any of these shortest description, that is £(s(i™)) = C(a™).

The map ™ — s(i) is code for the ensemble of strings of length n.
In Section 4.3, it will be showed that, by processing the effective descriptions
by means of particular computing devices called prefiz machines (in which
case C(i™) is denoted by K(i(™)), the code becomes a prefix code (see
Definition 3.2.1), so that the extended Kraft inequality (see Example 3.2.2)

applies
y oK<, (4.1)
i€

Example 4.1.2 (Payoff Functions). [120, 310] Suppose the government
of a country claims that in the j-th one of n successive elections it won with
0.99¢; percent of the votes, i; being any decimal digit for j odd and the
j/2 digit in the decimal expansion of m for j even. To defend itself from
the accuse of fabricating the electoral results, the government replies that
the probability Q(i(")) = 107" of such a string of decimal digits i) =
1149+ - - iy, 18 equal to that of any other string randomly obtained according
to the uniform probability distribution over 10 symbols. This defense can be
defeated by using the regularity of i™ to construct a suitable payoff function
£(i"|Q) > 0, namely a non-negative function whose mean value is such that

> 1w0mE™Me) <1,

imen(

Its meaning is as follows: the accuser proposes the government to be payed
t(i(")\Q) upon betting 1 on the outcome ™. This is a fair proposal for, if
the outcomes 3™ are distributed according to the uniform probability @, the
accuser average gain cannot be higher than 1.

However, if there is a pattern in i(”), the accuser can construct a payoff
function #(3(™|Q) that assumes high values on the strings with such a pat-
tern. Concretely, for the half of the decimal digits of i that are randomly
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distributed according to @, one needs n/2log, 10 bits for its description; in-
stead, for the remaining half that comes from an algorithm that computes
suiccessive approximations to 7, a finite number, C, of bits 2 suffice. Then,
one gets the following upper bound to the length of the shortest effective
description computed by a prefix machine (see previous remark),

K(i™) < glog2 10+ C .

Setting t(i(”) |Q) := 27 lo82 QE™) —KGE™) — 1on 2_K(i(n)), one defines a payoff
function; indeed, because of (4.1),

S QM) 2 om QU SKE™) _ SN 9o KG™) <

i en imenn

While any fair Casino’s owner should accept bets based on such a payoff
function, the government cannot; indeed, by betting 1 on the digit of each
one of n successive elections, the accuser will pay n to the government but
receive 10"/22C from it, quite an amount of money for large n. As the
payoff function does depend only on the presence of a pattern, but not on its
particular form, the accuser strategy does not require any a priori knowledge.

The aim of algorithmic complexity theory is an objective characterization
of the randomness of individual strings in terms of the lengths of their shortest
effective descriptions. It is thus necessary to eliminate the dependence of such
lengths on the computers that process the corresponding programs. Indeed,
given a same target string i two different computers U; o will in general
provide shortest descriptions s; »(2™) with different lengths C; 5(i™). As
explained in Proposition 4.1.1, this problem is overcome by resorting to ef-
fective descriptions processed by universal computers, namely by computers
that are able to simulate the action of any other computing machine. The
universal computers on which classical algorithmic complexity theory is based
are the so-called Universal Turing Machines (UTMs ).

4.1.1 Classical Turing Machines

A Turing Machine (TM ) is a very basic (and abstract) model of computing
device (see [310]) consisting of

1. a bi-infinite tape T subdivided into cells labeled by integers i € Z, each
cell containing either a blank symbol # or a symbol o from a given
alphabet Y. We shall set X = X U #;

2This number becomes negligible when n increases.
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2. a reading/write head H moving along the tape that, when positioned on
the i-th cell, reads the symbol o; € X, leaves it unchanged or changes it
into o} € X and then proceeds to either the cell i + 1 to the right (R) or
to the cell ¢ — 1 to the left (L);

3. a central processing unit C (CPU) capable of a finite number of control
states ¢; € Q := {qo,q2 - .., qg|—1}: at each computational step, the CPU
state ¢ € Q may remain the same or change into ¢’ € Q.

The list of possible moves defines a program for the TM ; formally, it
amounts to a transition function

§:QxX—QxXx{L R}, 6&qo)=(¢,0",d),de{L,R}. (4.2)

As a consequence, any TM can be identified by the set of rules defining §. Each
set of rules, that is any TM , corresponds to a certain task, a computation,
to be performed on an input data string. Any computation can be assumed
to start with the CPU control state in a chosen ready state ¢, the head
positioned on a chosen 0-th cell and the input written on a finite number
of cells extending from the 0-th one to its left, while all other cells to the
left and to the right contain blank symbols. The computation then proceeds
through a sequence of steps dictated by the transition function J, each one of
them corresponding to a certain configuration of the TM that performs it.

Definition 4.1.1 (TM configurations). At each step of a computation
a classical configuration ¢ of a TM U is a triplet

Co>c:= (q,{ai}iez,k) ceQxXtx7,

where in the infinite sequence {o;}icz of cell symbols only finitely many of
them are such that o; # #, while q, k denote the state of the control unit and
of the head position and C' the set of all configurations.

In order to determine when a computation terminates, we assume that
among the control states there is a special state, gr, such that when the
control unit is in the state gy, then the output is read off from the position
of the head to its right until the last o; # #.

Because they consist of a finite set of rules involving finite sets of symbols,
transition functions (and thus TMs ) can be encoded and numbered. Given a
program p (or the TM which computes it), its number (p) in the enumeration
of all programs (or TMs ) is known as Gadel number of p [93]. A universal
Turing machine is any TM 4 which, upon receiving the code of a TM U, is
able to simulate U on any input string.

Example 4.1.3. There are many possible ways to encode a transition func-
tion d; a simple one is as follows [128]: the control states ¢; and the symbols
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o; are identified by giving their positions 7, j in the respective lists Q) and X
These are then encoded as strings of as many 0’s:

gi— 0°:=00---0, oj—0/:=00---0 .
S—— N——
i times j times

Thus, the rule §(gi, ;) = (qk, 04, d) can be encoded as 0° 107 10 10¢1 0™,
where the 1s are used to separate the various entries (only sequences of Os
are entries corresponding to labels). These appear one after the other as they
do in the given rule, while n(d) = 1if d = L, n(d) = 2 if d = R. Then,
the transition function (or, equivalently, the TM 4 that performs the task
specified by it) can be encoded as

10911 0* 11 01070 108 10 10" 11

1st rule
021072 10%2 10 10™4) 11

ond rule

0% 107 10%m 108 1074m) 111

last rule

where the first two strings of Os encode the total number of control states
and of symbols, the pairs of 1s separate the rules, while the first and last 1
mark the beginning and the end of the list.

Suppose f : N — N is a function from the integers to the integers; by
passing to the binary representation of n € N, f becomes a function from
25 — (25. It is called total if its domain of definition is the whole of (25
(symbolically, f (i(")) | for all s™ € 23), partial otherwise, namely if there
exist strings 4™ on which f is not defined (symbolically, f (i(")) 1 on these
strings). The existence of an algorithm or an effective procedure which allows
one to compute f provides an intuitive and informal definition of computable
functions; among others, a possible formalization of computability is as fol-
lows [93].

Definition 4.1.2. A partial function f : (25 — (23 is said to be computable
if there is a Turing machine that on input © € (25 outputs f(3).

The so-called Church-Turing thesis asserts that the intuitively and in-
formally defined set of computable functions coincides with those that are
computable according to the previous definition [93, 128]. It is not a theo-
rem, yet it could not be disproved as a conjecture; therefore, it is commonly
accepted that the TMs provide a computational model which computes all
what can be thought of being intuitively computable.
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Remark 4.1.1. Given a computable partial function f, if p; is one of the
(infinitely many) programs which compute it, one can assign f the Godel
number v(ps) of py which is one of the (infinitely) many Gddel numbers of
1 193]. Tt follows that the computable functions form a countable set; this fact
allows the use of Cantor’s diagonal argument to construct a total function
f 1§25 — (25 which is not computable. In order to show this, consider the
enumeration as ¢; : N +— N of all computable partial functions f : N — N
that can be constructed by choosing a definite Gédel number for each one of
them. Then, the function defined by

S dn(n)+1 if @p(n) |
¢(")_{ 0 it pn(n) 1

is total as ¢ | on all inputs. Furthermore, it cannot coincide with any ¢; for,
if ¢; is defined on j, then ¢(j) = ¢;(j) + 1 # ¢;(J).

Example 4.1.4. An important class of TMs are the Probabilistic TMs
(PTMs ) which provide a more powerful classical model of computation than
TMs [128]. They are defined by transition functions of the form

§:QxXxQxXx{L R}~ [0,1] (4.3)

(¢,0:¢,0",d) = 6(g,0:¢', 0, d) € 0,1, > d(g,0i¢ 0", d)=1. (4.4)

q'0',d

Namely, PTMs are defined by assigning the probabilities §(q,0;q’,0’,d) with
which the machine goes from a CPU control state ¢ € @ and symbol read
o € X to a new control state ¢/, new symbol ¢’ together with a subsequent
head move d € {L, R}. Therefore, given a starting configuration ¢; € C' the
machine will move to a new configuration ¢; € C' with a certain transition
probability p;; := p(c; — c¢;), the successors of ¢; being all those ¢; with
pij 7 0. The transition probabilities satisfy Zj pij = 1; indeed, given a
starting configuration c¢;, the PTM will surely move to a subsequent one
among those available to it. Each step performed by a PTM will then be
described by a transition matriz m = [p;;].

Any computation performed by a PTM on an initial configuration cg
can be seen as a tree whose nodes are the successor configurations and the
branches connecting the leaves carry the relative non-zero transition proba-
bilities. Each run of the machine defines a tree-level with its corresponding
nodes; if a successor configuration at level j appears more than once then the
probability of its occurrence at that level is the sum of the probabilities lead-
ing to it through the various branches. As a simple instance of such a mech-
anism [128], consider an initial configuration ¢y branching into two different
configurations c¢1; and c¢12 at level 1 with probabilities pg1 := p(co — ¢11)
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and pp2 := p(co — ¢12): Po1 + po2 = 1. During the second step of the com-
putation, the two configurations at level 1 branch into two configurations
each: ¢11 into co1 and coo with probabilities p11 := p(c11 — ¢21), respectively
P12 := p(c11 — ca2), such that py; + pi2 = 1, while ¢;2 branches into cz3 and
o4 with probabilities pas := p(c12 — ca3), respectively pay := p(c12 — ca4),
such that pa3 + pog = 1 (see Figure 4.1). Thus the probabilities of the four
configurations are

p(C21) = Po1 P11 p(022) = Po1 P12, p(023) = Po2 P23 p(C24) = Po2P24 -

If coo = o3 = ¢* then the probability of ¢* is p(c*) = p(ca2) + p(cas).

Co

C21 C22 C23 C24

Fig. 4.1. Probabilistic Turing Machines: Level Tree

Remark 4.1.2. Within the class of PTMs , TMs are deterministic in the
sense that the corresponding probabilities (g, 0;¢’,0’,d) equal 1 when the
couples (g, o) and triplets (¢’, o/, d) are connected by the rules (4.2), otherwise
5(q,0;¢',0’,d) = 0. The computations performed by TMs correspond to de-
terministic classical processes, while those of PTMs correspond to stochastic
classical processes (compare the ballistic and Brownian computers discussed
in [51]); in other words, it is the laws of classical physics upon which the
models of computations embodied by TMs and PTMs are based.

PTMs are important from the point of view of the so-called computational
complexity 3 [128, 165]. All computational tasks need a certain amount of
time to be performed and use a certain amount of memory (space); roughly
speaking, computational complexity theory estimates how the amount of time
and/or space required to perform a computation involving n bits scales with
n: if the time required to process n bits goes as n®, a > 0, one says that the
computation has polynomial computational complexity, otherwise superpoly-
nomial or exponential. When a computer 4 simulates another computer U
that performs a certain task, there is an unavoidable overhead in space/time

3To be distinguished from the descriptional complexity.
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resources due to the simulation. The latter is then called efficient if the over-
head scales polynomially with respect to the space/time resources used by
0. The Classical Strong Church-Turing Thesis [165] states that:

Any realistic computational model can be efficiently simulated by a PTM .

Namely, any computational model which is consistent with the laws of
classical physics and which accounts for all necessary computational re-
sources * only requires a polynomial space/time overhead to be simulated
by a PTM . As the Church-Turing thesis (see Remark 4.1.1), also the strong
Church-Turing thesis has survived all attempts to disprove it; however, as
observed by Feynamn [116], this paradigm does not seem to be extendible to
computational models based on quantum mechanics, for then classical physics
appears unable to simulate their performances as efficiently.

4.1.2 Kolmogorov Complexity

In the following we shall restrict to the effective description of binary strings;
using the notation of the previous section, we shall therefore consider TMs
with the alphabet X' = {0, 1} U #. Further, ¢(p) will denote the length, that
is the number of bits, of a program p written as a binary string and $4(p) the
result of p being processed by a TM L.

Definition 4.1.3 (Kolmogorov Complexity). The Kolmogorov complex-
ity [92, 310] or plain algorithmic complexity of i e Qén) is the length of the
shortest binary program p such that U(p) = i s

Cy (1) = min{ﬂ(p) s HU(p) = i(”)} .

Plain algorithmic complexity is thus seemingly related to the most efficient
way individual strings can be compressed; indeed, by the previous definition,
no effective description of a given string i can be shorter than programs
with length equal to its algorithmic complexity C(i(”)).

Remark 4.1.3. Unlike computational complexity (see Remark 4.1.2), algo-
rithmic complexity is not concerned with the space/time resources needed to
process certain programs, but only with their lengths, without restrictions on
time and memory. ; From the algorithmic point of view, only random strings
are interesting, while those with simple effective descriptions are somewhat

4The adjective realistic refers to the fact that the time and space resources
effectively needed should be explicitly declared [165].

SWe shall conform to the notation of [310] which uses the letter C' for the
Kolmogorov complexity and K for the prefix complexity (see Section 4.3).
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dull, despite the large amount of resources that may be needed to compute
them. Indeed, there might be short effective descriptions that require a very
long time to yield their targets, as for instance the DNA-encoding of human
beings [310]. The attempts to fill this gap by considering algorithmic and com-
putational complexity together has led to the notion of logical depth [310].

Proposition 4.1.1. The following properties hold:

1. The plain algorithmic complezities of a same string i) with respect to
two different UTMs 4, o differ by a constant which does not depend on
the string, but only on the UTMs .

2. The plain algorithmic complexity is upper bounded as follows

Cy(i™) < A+ 0™y =A+n , (4.5)

where A is a constant which does not depend on i
3. The number of strings i e M) with plain algorithmic complexity
strictly smaller than ¢ > 0 ¢ is bounded by

#{i® e Q™ ou(™) < cf <2 -1 (4.6)

Proof: The proof of the first statement follows from the fact that i; can
simulate Uy and vice versa, for both are assumed to be universal. Given ("),
let p; be such that Cy, (:™) = £(p}) and let P15 be the program, of length
£(Py2) = Ly2, which allows s to simulate ;. In order to make iy simulate
#; on the input p], the programs P2 and p] must be put together in way that
3y knows when the simulation instructions end and the string to be processed
starts. This is achieved by concatenating P and pi as ¢ = pi[(Py2), where

i = iqig i o BE™) = iqivigin - - inin01

is the encoding of a string obtained by repeating each of its bits twice and
marking the end with a the pair of different bits 01: for this encoding one
needs ¢(3(Pi12)) = 2 (L12+ 1) bits. In this way LUy will first read S(Pi2) being
thus able to simulate l; on the subsequent portion pj of the program gq.
Therefore, from the definition of plain complexity, it follows that

Cyu, (1) < l(q) + A< (") +2 (L1 +1) + A< Cy, ™) + Ays .

Reversing the roles of ;5 one gets Cy, (i) < Cy, (i) + Agy; thus,
|Cy, (20) — Cy, (i) < A, where A is a suitable constant which does not
depend on the input (™).

STf ¢ is not integer, c is to be understood as |c], the largest integer not larger
than ¢: [¢] <e< || +1.
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The first upper bound follows as in Example 4.1.1, from the effective
description which tells 4 to print the bits of i one after the other.

The second upper bound follows because the number of binary programs
with length smaller than ¢ equals the number of binary strings with |¢] — 1
digits at the most, whence

le]—1
#pillp)<ch= Y Y=2el-1<2°-1.
j=1

O

Example 4.1.5. In order to improve the loose upper bound (4.5), given
i e Qén), let k£ be the number of 1s among its bits; there are (Z) strings in
.Qén) sharing this feature. They can be listed and each of them identified by
its number N (i™) in the list; notice that no more than [log, ()] bits are
required to specify Ny (i(”)). One can thus construct an effective description
of i, by specifying k and Nk(i(”)) in such a way that the UTM must be
able to detach the specification of k, py, from that of Ny (i(")). For this, one
may do as in the proof of Proposition 4.1.1, by encoding py as ((pk), the
binary string obtained from pj by repeating each of its bits twice and mark-
ing the end by 01. Since, ¢(8(pr)) < 2(logy k + 1), from Definition 4.1.3 it

follows that
n

C(i™) < log, (k

The following upper bound holds [92],

n k
< onH2(3)
R

k k k k k .
where HQ(E) =— log, - log, —(1 — - log,) log, (1 — - log,), which can be

>+2(log2k +1).

derived by setting p = k/n in
n N\ 7 LN\ n—J
ny (J J ny n—k
1= = 1—= > 1-— 0<k<1.
S)G) (-2) = (prammrr oses

1 k logo k + 1
Thus, EC@(”)) < HQ(E) ) loga b 4 1

prefixes, that is the initial n bits, of infinite binary sequences ¢ € (2. Let
0 < p <1 be the probability of the bit 1; if k/n — p, then

. Consider now the strings i to be

lim sup CG™) < Hy(m) . (4.7

n— 00 n

where Hy () is the (log,) entropy rate of a Bernoulli binary source with
probability # = (p,1 — p). The upper bound in (4.5) is thus not a loose one
for p close to 1/2.
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Example 4.1.6. One would expect the algorithmic complexity of a pair (2, 5)
of strings ¢,j € {25 to be smaller (apart from the usual additive constant
independent of them) than the sum of the algorithmic complexities of ¢ and
7, namely:

C((4,4)) <C@E) + C(H) + C.

Intuitively, this should be so because one can always put together the shortest
programs p, respectively ¢ for ¢, respectively 7, in a program pg which is an
effective description of (2, 7). Unfortunately, the plain algorithmic complexity
cannot enjoy the form of subadditivity expressed by the previous inequality.

Indeed, if p, q are two programs such that C(2) = ¢(p) and C(j) = £(q),
then any program using p and ¢ to output the pair (¢,7) must separate p
from p, for instance by prefixing p with its length ¢(p) encoded by B(£(p))
(see the proof of Proposition 4.1.1) at the cost of 2(log ¢(p) + 1) extra bits. In
this way, the reference UTM U first computes p generating ¢, then computes
q, generating j and finally outputs (4, 7). Thus, one estimates:

C((4,7)) < LBL(p))p) + €a) + Co
< C(2) + C(j) + 2logy £(p) + C1

where Cj; are additive constants independent of the strings considered.

The log, £(p) extra bits cannot in general be avoided by reducing it to
an additive constant independent of the input string. Indeed [120, 310], let
{(i) = n, £(j) = m and set k := n + m; there are (k + 1)2" pairs (4, 5) such
that the concatenated string 5 € Qék). By setting ¢ = (k+1)2% in (4.6), one
gets that at least one pair (i, 7) of such strings satisfies

C((¢,7)) > k + logy(k+1) .
Then, using (4.5), from k =n+m = £(i) + ¢(j) it follows that

C(i.3)) = C&) + C() + logy(k+1) — C .

Remarks 4.1.4.

1. Since the algorithmic complexities of i with respect to two UTMs is
a constant independent of the string, one can fix a UT'M U once and for
all and drop the reference to it in Cpy (™).

2. The additive constant A in (4.5) can in line of principle be very large;
however, since it is the same for all target strings i("), it becomes less
and less important with increasing n. The additive constant can even be
got rid of if, as in Example 4.1.5, one considers infinite strings ¢ € (2o,
their prefixes i e an) and let n — oo in the algorithmic complexity

;(n)
per symbol M .
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3. The bound (4.6) shows that the one in (4.5) is not too loose for large n.
In fact, the fraction of strings (™) with complexity smaller than n — ¢,
0 < ¢ < n, can be estimated by

# {M e . CE™M)y<n— c}

5 < 21—0 .

Therefore, when n gets large, the number of strings with complexity sig-
nificantly smaller than n gets small.

4. In view of the previous remark, it is suggestive to define random those
sequences i € (2, such their initial prefixes ™ fulfil C(i(™) > n — ¢
for all n € N, where ¢ is a constant independent of n. Unfortunately,
the vary same reason why the plain complexity is not subadditive (see
Example 4.1.6 makes this definition not very useful [310]. Fortunately, as
we shall see in Section 4.3, by using prefix TMs to compute programs
one replaces the algorithmic complexity C(i(”)) with the so-called prefix
complezity K(i(")) and, in so doing, restores subadditivity and makes

K(™) > n—cfor all n € N a good definition of random sequences
i € 2 [310].

Non-Computability of C(:(™)

Algorithmic complexity is not computable; namely, there cannot exist an
algorithm 7 able to compute the C(¢™) for all strings. Indeed [254], if such a
program ¢ of length ¢(q) < oo existed, then, one could construct the following
program p:

e Step 1: let ip equal the empty string;

e Step 2: generate the k-string 75 in the lexicographically ordered set of
all binary strings, call for ¢ and compute C(iy);

e Step 3: if C(¢r) > {(p) write i, and halt else set k =k + 1 and
go to Step 2.

Since ¢, the program which computes the plain complexity of any input
string, is assumed to exists, p also exists. Moreover, it has finite length ¢(p)
and halts with the first binary string, say i+ in lexicographical order, as out-
put. Since the its plain complexity exceeds ¢(p), p is an effective description
of 4y~ that is strictly shorter than its shortest possible effective description,
which is a contradiction.

Remark 4.1.5. [268] The non-computability of C((™) implies the undecid-
ability of the halting problem, namely that there cannot exist an algorithm
able to decide whether a UTM 4 halts when processing a generic program

"A TM according to the Church-Turing thesis.
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p. Indeed, if such an algorithm existed, then one could compute C(i(™) for
all i), Effectively, one would proceed by generating the binary strings in
lexicographical order (each one of them is a program) and subsequently pro-
cessing them in dovetailed fashion [310, 92]. That is, at stage 1, step 1 of
program 1 is effected, at stage 2, step 2 of program 1 and step 1 of program
2, at stage k, step k of program 1, step k — j + 1 of program j, 1 < j <k,
and so on. At the N-th step, there will be three groups of programs,

those that have halted with 4(p) = i(™);
those that have halted with $i(p) # 3(™);
those that are still being processed.

Notice that in the third group there might be shorter programs than those
which have already halted. Let p* be one of the shortest in the first group.
One cannot set C(:™) = ¢(p*) because it cannot be excluded that a program
p in the third group, shorter than p, will halt later with L(p) = i, However,
if the halting problem could be decided, then one would exactly have this vital
piece of information and, waiting long enough, would have a means to find
the shortest one among those programs such that $(p) = (™.

In spite of the fact that the plain complexity is not computable, the
previous remark provides a means to effectively approximate it from above;
namely, one can construct a sequence of functions C; that can be computed
by a UTM 4 on any binary input string ¢ and get closer to C(i(")) with
increasing n [120]. Let $;(p) denote the output of the computation by &l
of a program p that halts in ¢ steps. By processing in dovetailed fashion
the programs of length ¢(p) < ¢, one can check whether during the first ¢
computational steps some of them has halted with output i("), in which case
one sets

Cy(™) := min{l(p) < t: Y(p) =™}, Ci(i™) = 400  otherwise .
Finally, with reference to the loose upperbound (4.5), let
Cy(i™) := min{C, (™), n + A} .

The function ét(i(")) can only decrease with increasing t; moreover, from
Definition 4.1.3, C;(i") > C(:™) so that it tends to the plain complex-
ity of i monotonically from above. One says that the plain complexity is
semi-computable from above. Notice that, although we know that the approx-
imating values C;(i™) tend to C(i™) from above, yet we do not know how
far from the actual value C(™) any given Cy(:™) might be.

Definition 4.1.4. A real function f on (25 is called semi-computable from
above if there exists a non-increasing sequence of functions { fi}tren on (23
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with rational values 8 such that they are computable in the sense of Def-
inition 4.1.2 and limy_ o fr(3™) = f(&"). A real function f on 2§ is
called semi-computable from below if —f is semi-computable from above. A
real function f on (25 is computable if it is semi-computable both from above
and below.

Remarks 4.1.6.

1. The difference from semi-computable and computable functions can be
understood as follows. If f is computable then there exist two mono-
tone sequences of rational-valued computable functions {f; ’b}k€N7 e
non-increasing and f? non-decreasing, such that

)y — ab(z(n)
FE™) = T fG)
It follows that one can always estimate, for any ¢ € (25, the distance
between the computed values f; () and the actual value f(i) by means
of the computable difference f{(3) — f2(3).

2. The approximations f;(¢) of a function f(4) semi-computable from below
can be seen as the result of a same program (binary string) py. When a
reference UTM U is presented with py, together with the binary repre-
sentation i(k) of k and an input string ¢ € (2%, it computes fi(¢), that
is U((py,i(k), %)) = fr(¢), where (py,i(k),4) is the binary string which
encodes and separates the various inputs. Consequently, as well as com-
putable functions also semi-computable functions can be enumerated.

An interesting class of lower semi-computable functions consists of the
so-called constructive semi-measures [120, 310].

Definition 4.1.5. A positive function p : 25 +— R is called a semi-measure
if Zie(); w(t) < 1 and a constructive semi-measure if it is semi-computable
from below. A constructive semi-measure m : 25 — R is called a universal
semi-measure if for any constructive semi-measure | there exists a constant
C\, such that

Cy () <mf(i) Vie (25 .

Working with semi-measures p instead of measures allows for more free-
dom; for instance constructive measures turn out to be automatically com-
putable. Namely, if f; is a non-decreasing sequence of rational-valued com-
putable functions that approximate y from below and } ;. o3 u(i(”)) =1,
one can construct a computable approximation 0 < u < p such that, given
e >0, Zien; (i) > 1 — . Then, for all i € 25 it holds that

8Any p/q, p,q € N, can be written as a binary string (p,q) € £25.
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(@) = (@) < Y (uli) — (@) <.

ie;

Example 4.1.7. [120, 310] Constructive semi-measures can be enumerated
(see Remark 4.1.6.2); let {u,} denote their list and let {«(n)},en be lower
semi-computable positive numbers such that ) «(n) < 1. Then

m:= Za(n) tn > (k) e Y g

n

m is thus a dominating semi-measure, it is also constructive and thus uni-
versal in the sense of Definition 4.1.5; indeed, there exists a two-argument
lower semi-computable function ,u(i("),n) that reproduces all constructive
semi-measure by varying n € N. The idea of the proof is as follows. Given a
lower semi-computable function f and a non-decreasing sequence of rational-
valued approximations fy, let p; the binary program that allows a reference
UTM Y to compute them as outlined in Remark 4.1.6.2 and let {¢,},en be
the lexicographically ordered list of all binary strings. By computing them in
dovetailed fashion, let then U; be the computable function defined by

o= {400 14512

Notice that U}’f — f when k — +o00; then, consider the recursive effective
procedure consisting of the following steps:

1. set ugf (4;) = 0;

2.set k=k+1;

3. compute 21, 22, . . ., ¢ in dovetailed fashion; if some U;ff (4;) has not halted
go to Step 5, else compute Z?Zl U;ff (25);
g .

4. if ZFl U;ff(zj) <1, set ,u’;f = U;ff, and go to Step 2, else

5. set ul;f = ,u’lff_l and stop.

By construction, the function u(i™, py) == limy_, 4 o I (™) is lower semi-
computable and a semi-measure; further, it coincides with f if the latter is
itself a constructive semi-measure.

Algorithmic Complexity and Thermodynamics

Beside its many mathematical applications, algorithmic complexity has also
been used to explore the relations between computation and thermodynam-
ics [54, 51, 52, 268, 310]. As already remarked in this section, computing is a
physical process and questions about its thermodynamic cost is surely of prac-
tical importance, but also of general interest as they amount to asking which
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computational steps are intrinsically irreversible and which ones can instead
be performed reversibly [51]. As nicely illustrated in [268], trying to answer
these questions brings together thermodynamics, computability theory and
Gadel incompleteness theorem.

The starting step is the observation [187, 51, 116] that the only irreversible
computer operations are intrinsically logically irreversible, namely those with
outputs that do not uniquely identify the input. The most obvious instance
of such operations is erasure and, as an oversimplified case, consider one
molecule of gas contained in a cubic box of volume V' in which a freely
moving piston can be used to confine the molecule on the left side of the box,
a case which is read as a bit 1. The flip operation which turns 1 into 0 can
be effected reversibly by slowly rotating the box around its vertical axis and
thus exchanging its right and left sides.

In order to erase these two bits of information, the piston can be let
loose so that free expansion (of one molecule) allows the molecule, which was
confined in a volume V/2 before, to wander later within the whole volume V.
If the process occurs isothermally at temperature 7', the loss of information
corresponding to the increase of the space at disposal corresponds to an
increase in thermodynamical entropy and decrease of free energy (the internal
energy does not change in isothermal processes):

AS=klog2, AF =AU — TAS=—-kTlog2.

By extrapolating this simple observation, one is naturally led to the identifi-
cation of free energy and free memory: one can consume free memory to store
data instead of erasing them and in this wave saves free energy, or, vice versa,
by consuming free energy in erasure processes one saves free memory [268].

Differently from erasure which can in no way be turned into a reversible
operation, all other operations are only superficially irreversible and can be
made reversible by adding enough supplementary information [51]. For in-
stance binary addition maps the pairs (0,0) and (1,1) into 0 and pairs (0, 1)
and (1,0) into 1. Therefore, by reading off 0 (1) one cannot decide which cou-
ple of bits was the input; however, conserving the inputs and writing them
together with their outputs turns the binary addition (é) into a reversible
operation:

0®0=0 (0,0) — (0,0,0)
0pl=1 (0,1) — (0,1,1)
le0=1 " (1,0)+— (1,0,1)
161=0 (1,1) — (1,1,0)
—— ~—_—————
irreversible reversible

Unfortunately, the redundant information that is used in order to make op-
erations reversible has to be stored and this occupies free memory so that
massive erasure operations are eventually needed, free energy consumed and
heat waste generated. In order to minimize free energy consumption, one can



122 4 Algorithmic Complexity

first proceed to reversibly compress as much as possible the stored informa-
tion to be erased. For instance, in the case of the binary addition, one can
use only the first input bit since the second one can be recovered by binary
subtraction (©) from the output bit:

(0,0)— (0,0) , 080=0
(0,1)— (0,1) , 100=1
(1,0)— (1,1) , 161=0
(1,1) — (1,0) , 0el=1

still reversible

Suppose the occupied memory consists of a binary string i(")7 then the best
compression achievable is given by the shortest binary program p* such that
U(p*) = i™ whose length is the Kolmogorov complexity C (™). Reversibly
encoding i into p* and erasing the latter entails the optimal loss of free
energy AopeF' = *KJTC((i(n)) log 2 to be compared with AF = —nkx T log 2.

These considerations suggest [326] that, when dealing with the thermo-
dynamics of computation, the notion of entropy should be improved by the
addition to the standard thermal contribution, S, of the one coming from
the optimal erasure of the memory

Scomp = Stn + kC(M) log2

where C(M) is the algorithmic complexity of the computer memory. For in-
stance, by using Scomp, the Maxwell’s demon paradox [190] can be solved by
observing [326] that Siperm can indeed be diminished by the demon collect-
ing together all fastest particles and transferring heath from lower to higher
temperatures. However, storing all the information necessary to comparing
particle velocities rapidly consumes free memory and asks for erasure thus
restoring the second law of thermodynamics.

Unfortunately, the main problem with optimal compression is that it is
based on the knowledge of the algorithmic complexity of the occupied memory
which cannot always be computed. In few words, performing an optimal
compression of the memory content before erasure is not always possible
and there will always be an excess of free energy consumption. As this is
ultimately due to the undecidability of the halting problem, this effect can
be suggestively and not unduly called Gadel friction [268].

4.2 Algorithmic Complexity and Entropy Rate

Despite Remark 4.1.4.4, there is a sense in which the Kolmogorov complexity
can be used to look at the individual trajectories of a classical dynamical
system (X, T, ) and at their randomness, namely through their asymptotic
complexity rate. As explained in Section 2.2, a partition P of X provides a
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symbolic model (.@,,Ta7 up) whereby trajectories are reduced to sequences
S (~2p C 2, of symbols from an alphabet with p letters of which one can
study the complexity of the prefixes i) € Qz(,") 9.

As for the Shannon entropy, when dealing with sequences, one may decide
to focus not on the Kolmogorov complexity which generically diverges, rather
upon its rate or complexity per symbol 7, 69].

Definition 4.2.1. The complezity rate of a sequence i € (~2p s given by

1
c¢(2) := limsup EC('L'(")) ,

n—oo

(n

where i) is the initial prefix of © of length n.

Given a dynamical system (X,T,u) and a finite, measurable partition
P of X, let i(x) € £2, denote the symbolic trajectory that P associates to
the trajectory {T"x},>0 issuing from x € X. Then, the complexity rate of
{T™x} >0 with respect to P is c(z, P) := c(i(x)).

To start with, we shall consider the case of a dynamical system which
is itself already a symbolic model, namely a binary information source. An
important result is that, typically, for sequences emitted by ergodic sources,
the bound (4.7) becomes an equality in the limit.

Theorem 4.2.1 (Brudno’s Theorem). Let (22, T,,m) be a binary ergodic
source with entropy rate h(w). Then,

c(i) = lim %C(z‘(”)) = h(r) , (4.8)

for almost all © € 25 with respect to .

The proof [69, 318, 166] consists 1) in using the counting argument (4.6)
and the AEP (Proposition 3.2.2) to show that

lim inf lC(z) > h(m) T —a.e (4.9)

n—oo N

and 2) in providing, for the initial prefixes i of r-almost all 4 € 2%, an
L(pi(n
appropriate binary program p;(n) € {25 such that lim M < h(r) and
n— o0 n
U(pi(n)) = i™ whence
9In order to do this, one has to extend Definition 4.1.3 to the case of strings of

symbols from generic finite alphabets. This is straightforward and will always be
understood in the following.
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1
limsup —C(E™) < h(n) T—ae. (4.10)

n—oo T

Proof of the lower bound : Because of the assumption of ergodicity, The-
orem 3.2.1 allows us to use the AEP with the entropy rate h(w) in place of

the Shannon entropy H(A). Let A ¢ an) be the set in (3.27) consisting
of binary strings i such that

g—n(h(m)+e) < w(i(")) < g n(h(m)=e)
and AE”) C {25 the set of sequences whose initial prefixes of length n, i

belong to A™ and have complexity C(i"™) < n(h(r) — 2¢). From (4.6), it
follows that

w(40) = =({i® € A : ¢ < n(h(m) ~ 29}
< #(AE")) - max ﬂ(i("))

imeal™
< 2n(h(7r)—2€)+1 . 2—n(h(7r)—e) _ 2—n6+1 )

Since strings i ¢ A may also have complexity C("™) < n(h(r) - 2e), it
is necessary to control their overall probability. Set (AE’“))C = QQ\AE’“) and

A = {1, e (AD)e . ™) < k(h(r) — 26)} , BM .= [JA®
k>n

Since AM (AE’“))C implies W(BE(”)) < 71'( U (/Algk))c) =1- 71'( ﬂ AE’“)),
k>n k>n

it follows that the probability of the set of sequences whose initial prefixes
have complexity C(3™) > n(h(r) — 2¢) is estimated from above by

W<U {4 Ugga}) < r(U 49 +2(50)

k>n
ket m) o 27 i(k)
—RKRE n
<32 +x(BM) < T5= + 1-x(( AD) .
k>n k>n

The set (s, AE’“) consists of sequences ¢ € {2 whose initial prefixes are

typical for all lengths & > n; therefore nhf;o 71-( m Agk)) = 1. It thus follows
k>n

C(i(n))

> n

lower bound follows. O

that igf > h(m) — 2e m-almost everywhere. Since ¢ is arbitrary the
n-n
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Proof of the upper bound : Given .an) 5™ = iyiy- - in, ix0< L <n
and consider all strings of length L made of consecutive bits of i("); there are
n — L+ 1 of them:

Sk = Akl2 UL 4k—1 1<k<n—-—L+1. (*)

Let QE(LH)) denote their set and let N(s) be the number of occurrences of the
string s € QE({'L)); N (s) can be expressed as follows. Let ¢ € 25 be any sequence
with initial prefix of length n equal to ™, then

n—L+1

Ns)= Y xs(Ti@) . (x)

j=0
where T, is the left shift and ys(72()) is 1 if the initial prefix of length L in
Ti (i) equals s, 0 otherwise.
Given the N(s), s € Q((Ln)), one can thus construct a so-called empirical

probability distribution ﬂ'((Ln)) on Q((n)>

(L) (L) L)y . N
— e D)=
with corresponding Shannon entropy
L
H(Wg(n)))::— Z ') (s5)1logy ptH(s) .

(L)
sef ()

Notice that the set of lengths £(s) := [—log, ple)(sﬂ is such that

—log, pi(s) < U(s) < —logy pF)(s) +1;  (x%%)

therefore, they satisfy the Kraft inequality

Yoot < N ps) =1,

(L) (L)
sef2 L(n) sef2 ()

Because of Proposition 3.2.1, there thus exists a binary prefix code over the
strings s € QE(LH)) consisting of codewords w(s) of lengths £(s) := £(w(s)).

With s; as defined in (x) above, for a given 1 < j < L — 1, consider the
adjacent strings of length L of the form s;1p, 1, 0 < p; < pi***. Since the first
bit of s; is i; and the last bit of sj+pmazL is ZJ+(pmar+1)L 1, then the bit not
belonging to any s;i,,1 are iyig---i; and Z]+(pmaw+1)LZJ+(pmam+1)L+1 i,
whence

n—j—L+1

J+ @ +1)L-1<n=p"** < T :
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for a total of no more than 2(L — 1) bits. Also, since any 1 < k < n can be
k
written as k = j + pL with 1 < L —1 and 0 < [L—‘ uniquely determined,

m,aa‘

then, for different 1 < j < L — 1, the sets S; := {SJ+P]L}p1—O do not overlap
L1 &)
and J;_; S; =

250
C0n51der a program (; that reconstructs i by specifying the codewords
w(8j4p,2) plus the bits uncovered by them; its length can be bounded from
above as follows:

max
J

UQj) SCH2AL—-1)+ Y Usjip,L)

p; =0

where C'is a constant independent of j and of L. Further, (x  *) entails the
following bound for the plain algorithmic complexity of i

CE™) < min Q) <7 Z_:

1<j<L-1
1 Lilp;na‘t
S C+2(L— 1)+ﬁ ‘g(sj+pL)
T 7 =1 p=0
1
=C+2AL-1)+3— > N(s)i(s)
56!2('(%2)

§C+2(L—1)+”_7L+1 > ;L)(s)( log, p(L)()+1)~

H(x'())+1

From ergodicity and (xx), it follows that, when n — oo,

N(s)

ot e = ()

for m-almost all bequenceb 2 € (29, where Cs 0L s the cylinder set containing

all ¢ € (25 with s € 'k (m as initial prefix. Thus, when n — oo 77((")) tends to

the probability distribution 7() over the partition C%) = {C[o L(Ll)]} of (2

indexed by the strings s € QéL); then, by continuity,
(L) 1
sy <« HCP) + _
hTerLSo%pnC( ) < T 1 , m—ae.

By taking L — oo, the upper bound follows (see Remark 3.1.1.1). O



4.3 Prefix Algorithmic Complexity 127

The previous result that holds for ergodic binary information sources can
easily be extended to generic ergodic sources and then to ergodic dynamical
systems via Definition 4.2.1.

Proposition 4.2.1. Let (X, T, u) be an ergodic dynamical system and P a
finite, measurable partition of X; then

c(z,P) =hf5 (T, P) p—a.e .

Proof: The partition P defines a symbolic model ((NZP, T,, up) which is an
ergodic shift-dynamical system. The result follows since Brudno’s theorem
ensures that for pp-almost all ¢ € (2, hence for p-almost all € X, it holds
that c(i) = h(up) = b5 (T, P). O

Corollary 4.2.1. Let (X, T, ) be an ergodic dynamical system and P a fi-
nite, measurable generating partition of X'; then

c(z,P) = hL{S (T) w—a.e .

4.3 Prefix Algorithmic Complexity

A way to eliminate the logarithmic correction that spoils the subadditivity of
the plain algorithmic complexity (see Example 4.1.6) is to ask that the only
acceptable programs for the UTM U are the so-called self-delimiting ones,
namely those containing the specification of their lengths, so that the UTM
always knows when its input programs end. These programs have the prefix
property that if 4 halts on one of them, say p, then p cannot be the prefix of
any other halting program for 4. Any TM that accepts only programs with
the prefix property is called a prefix TM ; it can be showed [78] that there
exist prefiz UTMs capable of simulating the behavior of any other prefix TM .
The consequences of the prefix constraint are far reaching. One first proceeds
to define an adapted version of algorithmic complexity of binary strings (the
extension to strings from different alphabets is straightforward).

Definition 4.3.1 (Prefix Algorithmic Complexity). The prefix algorith-
mic complexity ofi(") € Qén) is the length of the shortest program p such that
U(p) = i where U is any chosen reference prefix UTM :

K(,‘(ﬂ)) — min {g(p) : U(p) = i , M a prefix UTM } .
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Remarks 4.3.1.

1. A prefix TM can be figured out [78] as a TM with a control unit, two tapes
and two reading-write heads. The first tape, the program tape, is entirely
occupied by the program which is written as a binary string between two
blank symbols marking its beginning and its end; the program is read by
a head that can only read, halt and move right. The second tape, the work
tape, is, as in the case of an ordinary TM , two-way infinite and the head
on it can read, write 0,1, leave a blank #, halt or move both right and
left. The computation starts with the head on the program tape scanning
the first blank symbol, the other head on the 0-th cell of the work tape,
only finitely many of its cells possibly carrying non-blank symbols, and
with the control unit in its initial ready state g,.. Then, in agreement
with the symbols read by the two heads and the control unit internal
state, the head on the working tape erases and writes or does nothing
and then moves left, right or stays, the head on the program tape either
moves right or stays, while the control unit updates its internal state. The
computation terminates if the reading head on the program tape reaches
the end of the program, in which case, the output is what is written on
the work tape to the right of the cell being scanned by the head until
only cells with blank symbols are found. The program halts if and only
if the head on the program tape reaches the end of the tape.

2. Since the set of programs with the prefix property is smaller than the set

of all programs, then
CE™) <K@E™) .

On the other hand, if p is such that C(i(")) = {(p), then, considering its
self-delimiting encoding p* := B(£(p))p, it follows that

K(i™) < ((p*) < C(E™) + 2log (p) + C .

3. The prefix complexity is subadditive; in fact, if p and ¢ are programs such
that K(¢2) = £(p) and K(j) = £(q), with 4,7 € 2%, then, since p and ¢ are
now, by definition, self-delimiting, one has

K(i,7) <K@) + K(G) + C .

4. Unlike for the plain complexity (see Remark 4.1.4.4), one can rightly
define random those sequences ¢ € {25 for which

K@GE™)>n—c,
for all their prefixes i, that is all those sequences whose prefixes (™)
have prefix complexity that increases at least as n. Indeed [310], it turns
out that these sequences are those and only those passing all constructive
statistical Martin-Lof tests checking whether they belong to effectively
null sets (see footnote 1). In this sense, relative to the prefix definition
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of algorithmic complexity, Levin’s chaoticness and typicalness mentioned
in the introduction to this section are equivalent characterization of ran-
domness.

One of the most important consequences of working with prefix UTMs 4 is
that their halting programs p form a set of prefix codes for the output strings
HU(p) = 4 € 25 and their lengths satisfy the extended Kraft inequality (3.2.2).

Example 4.3.1. Consider a prefix UTM 4 and the so-called Chaitin magic
number [80, 92, 50] defined by 2 = Z 2=P) where the sum runs over
p:i(p)l
all halting programs p; because of the prefix property, 2 < 1.
Let us consider the binary expansion of {2 which has infinitely many Os if
it is rational and suppose an algorithm exists that calculates the digits of (2.

W
Then, the n-digit approximation (2, := Z 2—5 is such that 2,, > 2 — 27",
j=1
Then, one knows whether 4 halts on programs of length < n.
Indeed, by listing them in lexicographical order and by processing them
in dovetailed fashion, one can collect all programs p1, po, ... that halt until,
after T'(n) computational steps,

m(n)
Sy = Z 2= tP) > .
i=1

If p is any program halting in more than T'(n) computational steps, one gets
N>8,+27P >0 4270 5 4 97t _ 97

Therefore, £(p) > n so that if a program of length shorter than n has not
halted in T'(n) computational steps it will never halt.

Let G(n) be the set of strings 2; := U(p,), j = 1,2,...,m(n), correspond-
ing to the outputs of the programs that have halted in T'(n) computational
steps and let ¢ denote the first string (in a suitable order) not in G(n). Such
string must have prefix complexity K(z) > n: indeed, if K(¢) < n, there
would exist a program p of length < n such that {(p) = 4. However, from
the previous discussion one deduces that also p must have halted in T'(n)
computational steps so that ¢ € G(n), too. Further, let p* be any shortest
effective description of the string QM) = wiws - wy consisting of the first
n bits of £2, namely K(£2(™")) = £(p*). Then, by means of a fixed number ¢ of
extra bits, one can use the knowledge of the 2(") to recover ¢, whence

n<K@@) <lp*) + c=K0RM) + ¢ = KQM)>n-—c Vn.

Then (2 is a random sequence in the sense of Remark 4.3.1.4.
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Definition 4.3.2. Given a prefic UTM AU, the map 25 > i — Py(i), where

y o2t (4.11)

p:i(p)=1

defines a so-called the universal probability on (25.

This definition makes sense, for, as a consequence of the prefix property,
not only (4.1) holds, but it also turns out that

S Am-Y > rws

i€ 2; i€925 p:il(p)=

Remarks 4.3.2.

1. If a prefix TM 2 halts on p = 0 and ¢ = 1 with the strings ¢ and j as
outputs, then Py (i) = Py(j) = 1/2 since no other program can halt.
Without the prefix restriction the sum in (4.11) would diverge simply
because all programs preﬁxed by p and ¢ would also output ¢ and j.

2. After division by ) ;.. Pu(i), Pu(é) represents the probability that 4
be the output of 4 running a binary program p of length ¢(p) randomly
chosen according to the Bernoulli uniform probability distribution that
assigns probability 27¢(®) to anyone of them. Since short programs have
higher probabilities, random strings have smaller algorithmic probabili-
ties than regular ones.

3. The probability Py is called universal (see Example 4.1.7) for the fol-
lowing reason. Let 20 be any prefix TM and ¢ a program such that
A(q) = i € §25; further, let ¢’ be a self-delimiting program of fixed length
L that makes U simulate 2 so that (q’q) = A(¢) = ¢. Then,

Z 9—t0) > Z 9~ UO=td) — 2=L py(3) . (4.12)

p:U(p)=1 q:4U(q’ q)=1

Suppose now 7 = {p(2) };¢ 3 to be a computable probability distribution

over (25 (see Definition 4.1.2). Consider a prefix TM 2 that does the

following:

— it computes the probability distribution ;

— it encodes the strings ¢ € (25 by means of the Shannon-Fano-Elias
code corresponding to the computed 7 (see Example 3.2.3);

— given a program ¢q € (25, it checks whether ¢ is the Shannon-Fano-
Elias code for any % € (23; if so, it outputs 2.

Since the lengths of the code-words are as in (3.23), then, for all 2 € (25,

Z 2749 > 4p(s) .

A(q)=
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For the prefix UTM 4 to work as 2, it is necessary to compute the
probability distribution 7, whence the program ¢’ in (4.12) is such that
L = K(m) + L', where K(r) is the prefix complexity of 7, where it is
understood that the computable probability distribution 7 is written as
a binary string (denoted by the same symbol). Then, for all computable
probability distributions 7 on (23,

Py (i) > C 27K p(d) (4.13)

with C' > 0 a constant independent of ¢ and .

Universal probability, prefix complexity and Shannon entropy of com-
putable probability distributions are intimately related. Given a prefix UTM
8L, the programs p* such that U(p*) = i € 25 with £(p*) = K(¢) provide a
prefix code such that

Py(i)= » 2710 > KO (4.14)
U(p)=i

Further, if the strings ¢ are chosen at random with respect to a computable
probability distribution 7, then (3.22) implies that the corresponding average
length, namely the average prefix complexity, satisfies

> p(§)K(6) > Ha(r) = = Y p(i)logy p(i) - (4.15)

ie; i€

There might be infinitely many programs such that i(p) = 4, yet the lower
bound in (4.14) is surprisingly good as the sum is actually dominated by the
shortest programs for 7.

Proposition 4.3.1. For all i € 25, Py(i) < C27%® where C > 0 is a
constant independent of ©.

Together with (4.14), this result permits the identification (up to an ad-
ditive constant) of the prefix complexity of a string with minus the logarithm
of its universal probability.

Corollary 4.3.1. K(z) = —log, Py(2) + O(1).

There thus appears a similarity between the fact that the optimal code-
word lengths with respect to a probability distribution m = {p(i)};es are of
the form £ = —log, p(7) and the fact that the lengths of the shortest descrip-
tions of binary strings practically amount to the logarithm of their universal
probabilities. This similarity can be carried even further by examining the
average complexity.
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Corollary 4.3.2. Given a computable probability distribution m on (25, the
corresponding average prefix complexity satisfies

Hy(m) < Y p(i)K(i) < Hy(m) + K(m) + C .
€82}

Proof: From Proposition 4.3.1 and (4.13)
K(z) < —logy Py(z) + C' < —log,p(¢) + K(mr) + C .

Multiplying by p(2) and summing over ¢ € (25 yields the upper bound,
while (4.15) gives the lower bound. O

Proof of Proposition 4.3.1 : The idea is to construct, for each ¢ € (25, a
set of programs p of length ¢(p) < —log, Py (%) + C’ with the prefix property
such that LU(p) = <, so that K(7) < ¢(p) would end the proof. Unfortunately,
the argument of Remark 4.3.2.3 is not viable as the universal probability is
not computable. However, as much as for the plain algorithmic complexity,
the prefix complexity is semi-computable from above whence the universal
probability results lower semi-computable because of Corollary 4.3.1; this
turns out to be sufficient for constructing a prefix code with the desired
property. Let all the programs (listed in lexicographical order) be run by 4
in dovetail fashion and collect them in pairs (py, x) where py, is the program
which halts at the k step of the dovetailed computation with x; € 25 as
output. The quantity

Py(k,x = x) := Z 24P < Py (x)
(9@ =m)
i<k
is computable and tends to Py(x) along the subsequence {(pg,Tr = @)}x;
set ng := [—logy Py(k, zy, = x)]. Since

276*(19) < Pil(kamk = m) < 276*(k)+1 )

where £, (k) is the smallest length in the sum, it follows that ny = £, (k). Given
(pk, Tk, nk ), this triplet is assigned to the first non-occupied node at the (nj+
1)-th level of a binary tree; further, in order to enforce the prefix condition, all
nodes stemming from it are made unavailable to further assignments. Since
ny is not strictly monotonic, it may happen that different pairs (p;, z; = xy),
i < k, have the same ny; by eliminating all but the first pair with that value
of nj, no more than one node will be occupied by a triplet with the same x;,
at level ny. Therefore,

ng > —logy Py(k, xy, = &) > —logy Py(x) = ny = [—logy Py(x)| + 71

with 7, > 0 and r # r; for j # k. To each x € (25 there correspond many
assignments of triplets (pg,r = x,ni) each one of them to one and only
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one node at level ny + 1. The nodes thus provide binary code-words of length
ng + 1 for the triplets. In order to see that there are sufficiently many nodes
to accommodate all triplets, we check that the lengths ng+1 satisfy the Kraft
inequality (3.21). That this is indeed so follows from the fact that

Z 9=k — 9—[—log, Pu(a)] Z 27" <2 Py(x) ,

L= XTp=x

for all & € (25, whence

S et Y Py(x) <1

xre) Tr=x e

The above algorithm allows the construction of a binary tree whereby any
@ € 25 can be identified with the binary string é(x) € 25 corresponding to
the lowest depth node assigned to its triplets (py, xr = @, ny). The length of
the code-word i(x) € (25 is the smallest ny + 1:

Ui(2)) < [~log, Pu(@)] + 1 < —log, Pu(x) + 2.

Finally, let ¢ be a program of fixed length L that makes the prefix UT'M i
generate the binary tree by dovetailed computation as specified above and
let ¢’ be another program of fixed length L’ with the necessary instructions
to 4 such that, when presented with the code-word ¢’qi(x), 4l computes the
program in the triplet assigned to the node marked by i(x), writes the result
and halts. By construction, the program p in the triplet at the node i(x) is
such that {(p) = @; then

K(z) < l(d'qi(x)) = —logy Py(x) + L+ L + 2.

O

Remark 4.3.3. Because of its construction the universal probability is a
lower semi-computable semi-measure (see Definition 4.1.5), thus there exists
a constant Cp such that C'p Py < m, where m is the universal semi-measure
constructed in Example 4.3.2. Furthermore, an argument similar to the one
in the previous proof, extends the result in Corollary 4.3.1 to

K(2) = —logy Py(2) + O(1) = —logym(z) + O(1) .
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In the second part of the book quantum dynamical systems with finite
and infinite degrees of freedom are presented by using the algebraic approach
to quantum statistical mechanics. The corresponding technical framework
proves convenient for the extension of ergodic and information theory to
non-commutative contexts.



5 Quantum Mechanics of Finite Degrees of
Freedom

Quantum dynamical systems are described by means of non-commutative
algebras of observables, by means of their time-evolution and by means of
the expectation functionals that assign mean values to them. Classical dy-
namical systems can always be described in terms of phase-points and phase-
trajectories; however, an algebraic formulation is always possible and has two
advantages: on one hand, similarities and differences with respect to quan-
tum dynamical systems become more evident and, on the other hand, one
can infer from the algebraic reformulation of classical notions how to possibly
extend them to the quantum setting.

With reference to information, the most important difference that one
encounters passing from the commutative to the non-commutative setting is
that the disturbances exerted on quantum systems by measurement processes
cannot in general be made negligible, not even in line of principle.

5.1 Hilbert Space and Operator Algebras

In standard quantum mechanics, physical states are usually described by
normalized vectors in separable Hilbert spaces, and the observables by self-
adjoint linear operators acting on them. Here follows some notations and
basic facts.

1. [¥), | ), or ¥, ¢, and | i), with ¢ running on a suitable index set I, will
denote (normalized) vectors in Hilbert spaces H and Py = |9 )( ¢ | the
associated orthogonal projectors.

2. The scalar product on H, denoted by (v |¢), linear in the second ar-
gument and anti-linear in the first one, satisfies the Cauchy-Schwartz
inequality

Ko le) < vl el - (5.1)

Any finite or countable set {¥;};e; C H such that (¥;|¥;) = §;; and
|) = > e (Wi ¥) | ¥;) for all ¢ € H, is an orthonormal basis (ONB)
in H. The corresponding projectors P; := |¥; ){¥; | fulfil

DR =D T =1, (5:2)
i€l iel
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where 1 denotes the identity operator on H, 1| ) = |¢) for all ¢p € H.
Given any linear operator X on H, its matrix elements with respect to
¥, ¢ € H will be denoted either as (1| X¢) or as (¢ | X |¢), depending
on notational convenience.

X7 and X* will denote transposition and complex conjugation with re-
spect to a given ONB {¥;};:

(0 | X705 = (W | X)), (0 | X0 ) = (0 | X0 )" .

Instead, Xt = (X7)* = (X*)T will represent the basis-independent ad-
joint of X:

(V|XTo)=(Xy|o)=(o|Xp)" Vi ¢pcH.

Physical observables correspond to self-adjoint operators X = X,
The uniform norm, || X||, of a linear operator X on H is defined by

1 X1 = sup [IX[4)]] . (5-3)
llll=1

X is bounded if || X || < oo, in which case

XTI < 1IX Nl s Kol Xl < IX[Hol [ - (5:4)

Linear combinations of bounded operators are again bounded; their lin-
ear span will be denoted by B(H). The product of bounded operators is
bounded, for [|XY| )| < | X||||IY]] ||| Therefore, B(H) is a so-called
x-algebra.

An operator U € B(H) such that UTU = 1 is called an isometry; in
general, UUT = (U UT)(U U") is a projection, if also U UT = 1, then U is
a unitary operator. Isometries have ||U| = /||[UTU|| = ||1]| = 1.

. The uniform norm defines on B(H) uniform neighborhoods of the form

U(X) ={Y e BH) ; [X Y| <e}, 20, (5.5)

whence a sequence X, € B(H) converges uniformly to X € B(H),
lim,, 00 X5, = X, if lim,, 0 || X — X,]| = 0. The corresponding topology
on B(H), 7., is called uniform topology.

B(H) is complete with respect to the uniform topology, namely all se-
quences of operators which are of Cauchy type with respect to the uni-
form norm converge to an element of B(H). Therefore, B(H) is a so-called
Banach x-algebra. Moreover, since the uniform norm fulfils

IXf=lxy, 1xtx|=x)?, (5.6)

B(H) is a C*-algebra (see Section 5.2).



5.1 Hilbert Space and Operator Algebras 141

10. In the case of n < oo degrees of freedom, each one of them is described

11.

12.

13.

14.

by a Hilbert space Hj;, 1 < j < n. Altogether, their Hilbert space is
the tensor product H(™ = ®?:1 H;, denoted by H®"™ when the Hilbert
spaces H; are copies of a same H. Depending on notational convenience,
its vectors will be denoted either by |1 ) = |11 ) ® |13 ) & --- |1, ) or by
[9) = [¢1 @by @ - - -1y, ), with scalar products (¢ [¢) = [T}, (@5 [¥;).
Bounded operators on H(™ are linear combinations of tensor products of
the form X7 ® Xo ® --- X,,, X; € B(H,); the associated C* algebra of
bounded operators on H™ is B(H™) := @7_, B(H,).

The strong topology on B(H), 75, is the smallest topology with respect
to which all semi-norms of the form Ly (X) = || X|¢)|, v € H, are
continuous; its strong neighborhoods are of the form

US(X):={Y €B(H) : Ly, (Y —X)<e,1<j<n}, (5.7)

for ; € H, n € N and € > 0. A sequence X,, € B(H) converges strongly
to X € B(H), s — lim, oo X, = X, if im0 |(Xy, — X)[ )| = 0 for
all ¢ € H.

The weak topology on B(H), 7, is the smallest topology with respect to
which all semi-norms of the form L4 (X) = [(¢|X¢)|, ¢, ¢ € H are
continuous; its weak-neighborhoods are of the form

UM(X) = {Y €BH) : Lo, 4,(Y ~X)<c. 1<j<n}, (58)

for 1;,¢; € H,n € Nand € > 0. A sequence X,, € B(H) converges weakly
to X € B(H), w—lim, 0o X5, = X, if limy, 00 [( | (X, — X)) )| = 0 for
all ¢, € H.

Since strong neighborhoods are uniform neighborhoods, but the reverse
is not true when H is infinite dimensional, the uniform topology is in
general finer than the strong one, that is 7, has more neighborhoods
than 74: 74 = 7,. The weak topology is in general coarser than the strong
one; every weak neighborhood is also a strong neighborhood, but the
reverse fails to be true in infinite dimensional H. The norm, strong and
weak topologies are equivalent in finite dimension.

Among other topologies on B(H) [64], one of some use in the following is
the o-weak topology, Ty.,; it is finer than the weak topology for it is the
smallest one that makes continuous the following semi-norms,

LY 3ty (X) =D [ (n | X [en)] (5.9)

where {¢, }, {¢,,} C H are such that > ||1,[> < ccand Y, [[¢n]|? < oo.

Most of the previous assertions are standard facts [64, 251, 300]; however,

the various topologies on B(H) deserve a closer look.
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Remarks 5.1.1.

1. That the uniform topology is finer than the strong topology can be seen as
follows. Given any strong neighborhood U?(X), let o := maxi<;<n ||,
then UY, (X) CUZ(X); indeed,

e/a

Y €Ule(X) = (X = V)| < Sl S e = Y €Uz (X)
whence U?(X) is a uniform neighborhood, too. In order to show that 7,
is in general strictly finer than 7y, it is sufficient to exhibit a sequence of
operators in B(H) which converges strongly, but not uniformly. To this
end, suppose H to be infinite dimensional, choose a ONB {%, };cn with
associated orthonormal projectors P, and construct Qn := ZkN:1 P;.
Then, (5.2) reads s—limy Qn = 1; namely, if € Hand ¢y (i) = (¥ | ),
then

o0

Jim (@~ D)2 = Jim 3 fey(m)P =0
n>N+1

On the other hand, @n — 1 cannot hold in the uniform sense, otherwise
for any ¢ > 0 there would exist Ny(e) such that, if N > Ny(e), then
1(Qy — )| )] < & uniformly in ¢ € H, while [[(Qx — 1)|%)|| = [[¢]] for
all ¢ in the subspace orthogonal to that projected out by Qn.
2. In like manner, the weak topology cannot have more neighborhoods than
the strong topology. Given U (X) as in (5.8), set § := maxi<;<n ||¢:;
then 242, 5(X) € U (X); indeed, using (5.1),

Y €U (X) = [(¢| (X —Y)|thi)] < gn@n <e—=YeU’(x).

In general, 7, is strictly finer than 7,,. Let H be infinite dimensional and,
given an ONB {¥}, } ren, consider the operator X : H — H defined as the
right shift along the ONB :

Note that XTX | ) = |¥,) for all k € N so that XTX = 1; X is an
isometry with X XT projecting onto the subspace orthogonal to ¥;. Fur-
thermore, by expanding H > [9) = 3727, ¢y (k)| Wk ), cy(k) :== (T ),
it turns out that

X" ))? = (p [(XT)" X" ) = [0,

whereas
w— lim X" =0.

n—oo
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Indeed, given ¢, € H, ¢ > 0 and |¢g ) = Zfilcw(i)lwﬁ such that
[4) = [vr)l <e, (5.1) yields

K
((o1X™ [w)| < (o1 X" )| + elwll =[S s enti+m)| + e ]
=1
K K+n
<\ le@P | Do lew(@)? + e vl
i=1 1=n—+1

where the second square-root becomes negligibly small for sufficiently
large n.

3. By adding to a subalgebra A C B(H) its limit points with respect to a
given topology 7, one obtains its closure AT 1If of two topologies 71 2 on
A C B(H), 71 is coarser than 7 (71 < 72), 71 has less neighborhoods
than 7 and thus more convergent sequences; therefore, A" D A" In
particular, A ™ is a C*-subalgebra of B(H); further, since 7, = 75 = Ty
it follows that A™ C 4™ C A™.

4. Given a #-subalgebra A C B(H), consider the linear functionals F' :
A ™ — C, respectively F' : A™ +— C, that are continuous with re-
spect to two topologies 71 < 7»; more precisely, the preimages F~1(V) of
open sets V' C C are open sets in A ™, respectively A ™. Then, since not
all open sets in .4 ™ are open sets in A ™, a o-continuous F', that is con-
tinuous with respect to the finer topology, may fail to be 7 -continuous,
that is continuous with respect to the coarser topology. For instance, all
weakly continuous linear functionals on .4 C B(H) are strongly continu-
ous but strong continuity does not in general ensure that a functional is
also weakly continuous.

5. If A is a generic Banach algebra, its topological dual, A* is the linear space
A* consisting of all linear functionals F' : A — C that are continuous on
A. Then, A* can be equipped with the so-called w*-topology, namely with
the coarsest topology that makes continuous all semi-norms of the form

LY(F)=|F(X)] VXeA. (5.10)
Its neighborhoods are of the form
U (F)={GeA : LY (G-F)<e,1<j<n}, (5.11)

for any X; € A, n € Nand € > 0. A sequence F,, € A" w*-converges to
F e A", w* —limp.oc F = F, if limpy_.o0 |[Fu(X) — F(X)| = 0 for all
X e A

5.2 C* Algebras

The bounded operators on a Hilbert space H form a Banach x-algebra with
respect to the uniform norm (5.3); this norm fulfils the two equalities (5.6).
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While the first one follows at once from (5.3) and the definition of adjoint,
the second one is proved by using (5.1):

IX* = ||Zl|1‘131<¢|XTXw> < XX = 1) < 1X7 5

thus, exchanging X and X, yields || X||? = || XT|? = || XT X||. From the fact
that || XY|| < || X|||Y] (an inequality that follows at once from (5.3)), one
gets || XT| = || X||; in fact,

IX112 = XX < X[ X = 1x) < X"

while [ XT|* = | XXT|| < | X|||XT| = I XT|| < [IX].
More in general, let A be an algebra with an involution { : A — A such
that
(aA+BB) =a* AT+ 5* Bt | (AB)! = BT Al

for all a, 8 € C and A, B € A. Let A be complete with respect to a norm
|- | : A Ry such that

lecAll = lel 1A, 1A+ Bl <[lA[ +[IBI,  [ABI < [A[ B

and [[A] =0 <= A =0for all @« € C and A, B € A. If the norm further
satisfes (5.6) it is called a C* norm.

Definition 5.2.1. Any Banach x-algebra A with respect to a C* norm is
called a C* algebra. A is called unital if it possesses an identity 1 such that
Al=1A=A forall A e A.

Examples 5.2.1.

1. The commutative algebras C(X), respectively L.;°(X') of continuous, re-
spectively essentially bounded functions over a compact phase-space X
discussed in Section 2.2.1 are C* algebras with respect to the uniform,
respectively essentially bounded norms.

2. Many instances of quantum systems are N-level systems; their Hilbert
space is finite dimensional and thus can be taken as H = CV, while
their observables are Hermitian N x N matrices with complex entries. In
such cases, the C* algebra of bounded operators B(H) is the full matrix
algebra My (C). Given an ONB {%;}., in CV, set Ej; := |¥; )(¥; ],
1,7 =1,...,N; then,

N
Eijl¢) = (W |¢) | W), EyBw=03Ey, Y Ei=1. (512)

i=1
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Any set of matrices with these properties constitutes a set of matriz units,
E;; being a complete set of orthogonal projections. Any X € My (C) can
be thus expressed as a linear combination of the matrix units:

N N
X=> E;XEj;=)Y XjEj;.

ij=1 ij=1
In the standard representation where the basis vectors have the form
|&;)=(0 0 --- 1 -~ 0 0)",

with 1 in the j-th entry, the matrix units F;; are /N x N matrices whose
entries are all 0, but for the i¢j-th one which is equal to 1.

. A typical scenario often encountered in quantum physics is as fol-
lows: a quantum system described by a generic (not necessarily finite-
dimensional) Hilbert space H is coupled to an N-level system, the corre-
sponding algebra being the tensor product My (B(H)) := My (C) @ B(H)
consisting of operators of the form

X o Xan

N . Ce .
ig=1 . .

Xn1 - XnwN

where X;; are operators in B(H) and FE;; are matrix units in standard

form. The tensor product My (B(H)) is a *-algebra of operators acting

on the Hilbert space H:=CNgH consisting of vectors

N [1)
H9|¢>:Z|i>®|¢i>: : ~ (5.14)
=t N )

A uniform norm on My (B(H)) is defined by

IX]1> = sup (¥ | XTX [4))

ll]l=1
N N

=0 > (e | XX lwy) D llwlP=1p . (5.15)
i,5,k=1 i=1

Indeed, it turns out that it satisfies (5.6); beside, My (B(H)) is a complete
x-algebra with respect to it, thence a C* algebra.

. Given X, Y € B(H), B(H) > [X, ,Y] := XY — Y X denotes their commu-
tator. Let V C B(H) be a linear self-adjoint subset, that is it contains the
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adjoint of any of its elements. The commutant of V, denoted by V', con-
sists of all bounded operators that commute with all X € V. If X' € V'
also (X')T € V'; further, if X', Y’ € V', then

XY X]=X'[Y, X] + [X',X]Y' =0 VXEV.

Therefore, X'Y’" € V' and V' is a -algebra,; also, if a sequence of X/ € V'
uniformly converges to X € B(H), then,

I X =X = X5, X < 21X = X, [HIX]

implies that V'’ is uniformly closed and thus a C* subalgebra of B(H).

5.If A C B(H) is a C* subalgebra with commutant A", the center of A,
Z4 = ANA', contains all those A € A that commute among themselves
and is thus an Abelian C* subalgebra of B(H).

Given a bounded operator A in a unital C* algebra A, a — A is invertible
in A (a stands for all) if there exists B := (a—B)~! € A for which (a—A)B =
B(a—A) = 1. The set of such a € C is called the resolvent set of A (Res(A4)).
Its complement is the spectrum of A (Sp(A)).

Examples 5.2.2. [64]

1. Let A € A and a € C such that ||A]| < |a|, then by Taylor expansion

1 1= /A\"
a2 (3)

n=0

the series converges in norm and gives rise to a well-defined operator in A.
Therefore, Sp(A) is contained in the subset of a € C such that |a| < ||4]|.
Furthermore, if ag € Res(A) so that (a — A)~! exists in A4, choose a € C
such that |a — ag| < ||(ap — A)7t||; then,

I 1 1 i ap—a\"
a—A_(a—a0)+ao—A_a0—An:O ag— A

exists as well, whence Res(A) is an open subset of C and Sp(A) a closed
subset of C.

2. For a,b € Cand A € A, a— (b— A) is invertible if and only if (b—a) — A
is invertible. Thus Sp(b — A) = b — Sp(A4).

3. Fora € Cand A € A; a— A is invertible if and only if * — A" is invertible,
whence Sp(AT) = Sp(A)", the conjugate set of Sp(A).

4. If A is invertible, using A~! one writes

a—A=aA(A —ah, oAt =a1ATHA—a).



=]

9.

5.2 C* Algebras 147

Therefore, if a — A is invertible, then a~* — A~! turns out to be invertible
too and vice versa; therefore, Sp(A~1) = (Sp(4))~!, the set consisting
of the inverse of each element of Sp(A~!) (notice that 0 ¢ Sp(A) and
a € Sp(A) = [a]* < [[A~] < +o00).

. The spectral radius R(A) of A € A is [64]

R(A) :=sup{[A| : A€ Sp(A)} = lim |A™ |t

An operator A € A is normal if AT A = A AT; then, R(A) = ||A]|. Indeed,
the C* properties of the norm yield

A2 = [[(AT)2" A" || = |[(AT A)%" || = (AT 4)>" (AT 4)" |
= (AT A2 = AT A" = | AI*""",  whence
R(A) = lim A% =A] .

. Self-adjoint A > A = AT are normal and hence R(A) = || A
JIf U is unitary (UTU = U UT = 1) or isometric (UTU = 1), then

I = whHr v = |whvtvon Tt = whrtun T
=llutu) = =1.
Therefore, Sp(U) is contained within the unit circle {z € C : |z|| < 1}.

On the other hand, if U is invertible, U~ = UT and the preceding point
3 implies that Sp(U) ={z € C : |z| = 1}.

If A2 A= AT and |a|~' > ||A|, then from point 1 above one deduces

that —ija| =t — A = —i|a|(1 — i|a]A) is invertible so that
A3 U := (1 +ilalA)(1 —i]a]A)~*

is a well defined unitary operator; moreover, the last point ensures that

1 —ilalz 2ilal ) 1
— —U=———"-(A-2)(1 A
1+ilalz 1+z’|a|z( 2)(1 +ilal4)
—_———

is invertible whenever |w| # 1, namely whenever (z) # 0. Therefore,
A — z is invertible and Sp(A4) C [—|| 4], ||A]|] because of points 3 and 6.
Let P(z) be a polynomial of degree n on C, A € A and for a € C write

P(z)—a:aH(zfai), a, aeC
i=1

P(A)—a:aH(A—ozi) .
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The operators A — «; commute, thus P(A) — a is not invertible if and
only if at least one of them is not invertible, that is a € Sp(P(A)) if
and only if at least one a; € Sp(A). Since P(«a;) = a, it follows that
Sp(P(A)) = P(Sp(A)), the set of values attained by P(z) on Sp(A).

10. Suppose A 3 A = A', from the previous result and point 8 it turns out
that Sp(A%) = (Sp(4)?) C [0, | ]2

Remark 5.2.1. If A € A is self-adjoint, then by the density of the polyno-
mials in the commutative C* algebra of continuous functions f over R, one
can extend Example 5.2.2.8 to f(Sp(4)) = Sp(f(A4)). This is the spectral
mapping theorem [64, 324].

5.2.1 Positive Operators

Particularly important bounded self-adjoint operators are the positive ones,
that is those whose spectrum consists of non-negative values; from a physical
point of view, they represent observables that, when measured, always returns
a positive outcome.

Definition 5.2.2. An operator A of a unital C* algebra A is positive (A > 0)
if A = A" and Sp(A) C Ry. Given A,B € A, one sets A > B whenever
A—-DB>0.

Remark 5.2.2. Positive operators A 3 A > 0 are characterized by being
of the form A = B' B, for some B € A and by having a unique positive
square-root /A such that A = v/AV/A [64] (see also Example 5.3.4.2).
When A = B(H), the positivity of a self-adjoint operator X € B(H)
amounts to (¢ | X1 ) > 0 for all ¢y € H, which corresponds to the positivity
of all its eigenvalues z; € R such that (X — z;)|¢) = 0 for some |¢) € H.
Denote by |X| := VX' X the unique square-root of the positive operator
XTX. The map V : Ran(|X|) — Ran(X) defined by V|X||¢) = X|),
where Ran(X) denotes the range of X € B(H), ! is a partial isometry,

IVIXT9)1? = (o | XTX [9)l] = [[1X]]9)] -

Let U denote the partial isometry which equals the extension of V' on the
closure of Ran(X) and 0 on Ker(|X|) = (Ran(|X|))*, then X = U|X| is the
so-called polar decomposition of X [64]. It is unique; namely, if X = V B with
B >0 and V is a partial isometry with V' = 0 on Ker(B), then

'The range of X € B(H) is the linear subset of vectors of the form |+ ) = X|¢)
for some ¢ € H. Ran(XT) L Ker(X), where Ker(X) is the kernel of X that is the
closed subspace of vectors ¥ € H such that X|v¢) = 0.
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X'X =BV'VB=B?—= B=|X|

by the uniqueness of the square-root; further, U = V for both annihilate
Ran(|X|)t. The projection p := UTU is called the initial projection of U,
while ¢ = UU" its final projection.

In the simplest cases B(H) = My (C), then |X| = vV XTX can be spectral-
ized, | X| =3, xi| ¥; ) (¥; |. The eigenvalues z; > 0 of | X| are the so-called
singular values of X, while its eigenvectors ¥; form an ONB in C”. Using the
polar decomposition, it turns out that any matrix can always be represented
in terms of its singular values and of two, generally different, ONBs ,

N
X =UX|=> a|®; (|, [®;):=U|F). (5.16)
j=1

Also, if V' is the unitary matrix that diagonalizes the Hermitian matrix | X]|,
|X| =V DV then X = W DV with W := UV unitary.

Examples 5.2.3. [10, 296]

1. From Example 5.2.2.10 it turns out that the spectrum of the positive
elements A > 0 of a C* algebra A is such that Sp(A) C [0, ||A]]].

2. Suppose A > B > 0 for A,B € A; then, from the previous remark,
A— B =C"C, whence

D'(A—B)D=(CD)' (CD)>0= D'AD > D'BD,

for all D € A. A typical situation is when A = P, an orthogonal projec-
tion which is always < 1, then DY PD < Dt D.

3.Let BH) > X := Py — Py = |Y)(¢¥]| —|¢)(@], ¥ # ¢ € H. One can
always write

[¢) =aly) +BlYT) (Y]9T) =0, a:=(¢]d), B=+1—]af?.
Then, on the subspace K spanned by 1 and 11, X is represented by the

2 X 2 matrix )
_( B —fa
MX - (—ﬂoz* _52 ) :

Thus X has eigenvalues +3 and eigenprojectors
1£5 o 178
|£) =y |¥) F e TWH,

where e*¥ is the phase of . Therefore,

X =B+ +I=1=-X=D, XI=6Ck,

where Qg = |+ ){(+| + | —){—| projects onto K. Further, U = 71X is
an isometry on K that vanishes on K*.
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4. If X = U|X| then XT =|X|U" whence
XXT=U|XPUt=UX"XxUT.

Therefore, XT X and X XT have the same eigenvalues with the same
degeneracies apart, possibly, from the eigenvalue 0.

5. Suppose 0 < X <Y, X,Y € B(H), then Y1 < X! Indeed, X! and
Y1 exist; thus one can set Z := Y~ /2XY /2 Then, Z < 1. In fact,
(see Definition 5.2.2) for all ¢ € H

(Y TRXY T2 ) = (Y720 X Y1 2)
(YWY Y 2e) = (¢y)

By the same argument, multiplication of both sides of the inequality
Z <1 first by Z7! = YV2X~1YV2 yields 1 < Y/2X~1Y1/2; one then
multiplies both sides of this inequality by ¥ /2.

6. Let X <Y € B(H) be such that log X exists (see Remark 5.2.1 and
Remark 5.3.4), then log X < log Y. This follows from the spectral calculus
and the previous point, for t + X < ¢ +Y for all ¢ > 0 and the fact that

“+oo 1 +oo 1
1ogf:/ dt —/ dt—— 1, VYa,y>0.
Y 0 l+uo 0 t+y
+oo +oo
Th log X —logY = dt—f dt—<0
en, log og /0 X /

7. Consider the setting of Example 5.2.1.3, that is the C’* algebra My (B(H));
X > 0if and only if (| X [1)) = S0 (¥ | Xyj [1h;) > 0 for all 9 eH
By arbitrarily choosing Y; € B(H), ¢ € H and setting | ¢; ) := Y;|¢), i
follows that X > 0 if and only if

N X - Xin Y
VXY =(y vl ] =0
=1 Xyt -+ Xnn Yy

for all Y; € B(H).
8. Also, X >0 if and only if X = Y1Y, ¥ € My(B(H)). Then,

X = Z E;jiE ® Yi;‘YM = Z Z Eji® YIJjYM

[;1 k=1 j,@:l

Therefore, X > 0 if and only if it is a sum of matrices of the form [Y;TYJ],
Y; € B(H).

9. Consider the N x N matrix E := [Eij] € Mn(My(C)) whose entries are
matrix units E;; € My (C). According to the previous point, E>0;
indeed,
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N N
E‘:ZEijQ@Eij:ZEij@EliiEkj Vk=1,2,...,N .

ij=1 ij=1

Let {|)}Y, be the ONB such that E;; = |i )(]\ then, E turns out to
be proportional to the orthogonal projector PN i

SEnE =L S nule G- L8 e

1,j=1

onto the totally symmetric state

CNoCN 3 o) = Z lii) . (5.18)

Finite Dimensional algebras

A C* algebra A is finite dimensional if its dimension as a linear space is finite;
as such it has an identity 1. In particular, its center Z 4 (see Example 5.2.1.5)
is a finite dimensional algebra whose elements all commute: such an algebra
is called Abelian. It is generated by minimal projections {P;}_; (see Exam-
ple 5.3.4). Due to their orthogonality, A = @, A;, where A; := A P;, with
P; its identity operator, whence their centers are trivial and the A; simple
algebras. In fact, A; cannot contain any non trivial ideal i C A, for, like
A, also i has an identity E [296]; then, XF € i = EXFE = XF so that
E commutes with all self-adjoint X € A; and thus belongs to its center:
EX=(XE)Y!'=EXE=XE.

We shall set A = A; and show that it is isomorphic to a matrix algebra
by constructing an appropriate system of matrix units {F; ;}¢ =1

Let B C A be a maximally Abelian subalgebra with minimal projectors
{Q; 31:1 such that Q;Qr = 0;,Q; and Z;l:l Q; = 1. For each Q;, one can
always choose X; € A such that Y} := Q;X;Q1 # 0; indeed, for all X € A,
ix ={>, X; XY, : X;,Y;i € A} is an ideal of A which, as A is simple,
must coincide with it.

Observe that YTY QlX Q;X;Q1 and YYJr Q;X; QlX Q] commute

with B; since B is maxnnally Abelian, they belong to it. Thus, Yj Y; =\
and ;Y = ;Q;. Further, \; = y1; > 0, for ||V 'V;|| = [|Y;Y]||. By setting
Zj = Y;/\/A; and Ej; = Z;Z] it follows that Z]Z; = Q, while Ej; =
ZjZ;r = (@; for all j. Moreover,

oo QiXiQ1X]Q;QpX,Q1X}Qq

- VAN A A

E

j
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Ty,
v, v]

—N—

,_/\‘r—/%
_ 5 QXiQI@iX]Q;X;01 1 X[Q,
" VA A

Thus, the E;; are the required set of matrix units as they linearly span A: for
all X € A, Z) X Z; = (1 X) Qi X Q;X;Q1)//AiN; = pij(X) Q1, whence

Yi

= 0jpLiq -

d
> QiXQ= ZZZ*XZZT Zu” ) 2 2]

i,7=1 i,j=1 i,j=1

d
=Y (X)) E

ij=1

X

Therefore, any finite dimensional C* algebra is isomorphic to the orthogonal
sum of full matrix algebras: A ~ @;_, My, (C).

Compact Operators

If H is infinite dimensional, the matricial structure of My (C) carries over to
the so-called compact operators, Boo(H). These are all X € B(H) such that
| X | has a discrete spectrum of finitely degenerate eigenvalues that accumulate
to 0, the only eigenvalue with possibly infinite degeneracy 2. It turns out that
these spectral properties are preserved by linear combinations and operator
multiplication [251, 270].

Practically speaking, compact operators are obtained by closing with re-
spect to the uniform norm the *-algebra of finite rank operators, that is of
the linear span of all possible X on H that are non-zero on finite dimensional
subspaces, only, where they can be represented as usual matrices. As such the
algebra of compact operators is a Banach %-algebra without identity operator
for the only eigenvalue of 1 is infinitely degenerate.

Trace-Class Operators

Consider a matrix algebra My (C), the functional Tr : My (C) — C,

N
My(C) 3 X — Tr(X) = > (%] X ), (5.19)
i=1

where {¥;}2 is any ONB in CV, defines a so-called trace on My (C).
2The simplest example of compact operator is any projector P = |4 ) (1| which

vanishes on the orthogonal complement of ¢, whence its zero eigenvalues is infinitely
degenerate when H is infinite dimensional.
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The trace is basis-independent; indeed, because of (5.2); given any two
ONBs {9, };VZI and {@ }Y_,,

N N
DX |D;) = > (D | W ) (W | X | ) (0| D))
Jj=1 g,k 0=1
N N N
> (Do @5)(@5 190)) (B X W) = S ( | X |)
k=1 j=1 k=1
Ore

The trace of a matrix amounts to the sum of its diagonal entries, so Tr(X) > 0
if X > 0. Further, it is cyclic; namely, for all X, Y € My (C), (5.2) yields

N N
Tr(XY) = ZWIXYIW _Z<%|XI%><%\YI%>
= (G| Y7 %| X %) =Tr(YX) . (5.20)

1,j=1

Using the trace, one constructs the following map from My (C) onto R,
N
-l s X = [ X = Tl X] = (5.21)

where x; are the singular values of X (see (5.16)). This map vanishes only if
X = 0; also, from (5.4) and (5.16) it follows that

N
ITe(YX)| < Y il (| YU )] < Y] (5.22)
i=1
TeX| = [Te(UIX]] < [[ X[l (5.23)
IX + Z|ly = Te(UN X + 2)) < | X[+ 11Z])s - (5.24)
Therefore, || - ||1 is a norm on My (C) called trace-norm.

If extended to B(H) with H infinite dimensional, the trace selects the
linear subspace By (H) C B(H) of trace-class operators:

Bi(H) := {X eBH): |X|: < oo} .

If X € By (H) then, by the polar decomposition X =" x| dy ) {1y |, where

{¢n} and {1, } are two ONB in H, z,, are the eigenvalues of |X| = VXX
and the sum converges in trace-norm; also, || X|; = >, ;.
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Then, inequality (5.22) holds with Y € B(H), X € B;(H), (5.23) and
(5.24) with X, Z € By (H). The trace-class operators thus form a *-algebra 3;
By (H) is also closed with respect to the trace-norm and thus a Banach x-
algebra, without identity in infinite dimension for Tr(1) diverges [251, 270] .

Example 5.2.4. [64] Any X € B(H) defines a linear functional
Fx :By(H) — C, p— Fx(p) :=Tr(X p) Vpe B (H),

on By (H) which is bounded for |Fx (p)| < || X]| ||p|l1. Therefore, B(H) can be
identified with a subspace of By (H)*, the topological dual of By (H), that is
the (Banach) space consisting of all continuous linear functionals on B (H).
Actually, B(H) = By (H)*. Indeed, let F' € By (H)* and consider the bounded
operator | ¢ )(1 | with ¢, ¢ € H not necessarily normalized. It is also trace-
class; indeed, set Py := |9 ) {4 |/|[¢|?%; then,

1)l =Te(y/Iol 912 P ) = gl 9]

It thus follows that |F'(| ) (¥ |)| < ||F|| ||l ||¢|| for all ¢, € H. Therefore,
each F' € B (H)* defines a so-called sesquilinear form on H x H, linear in
the first argument, antilinear in the second one and continuous with respect
to both. Consequently, there exists an unique operator Xz € B(H) such
that F(|¢)(v]) = (¢ | XFp|¢) for all ¢,¢ € H. Before proving this fact,
we draw the conclusion; as already noticed, any p € By (H) can be written as
p =, Tn|&n) {1y | with the possibly infinite sum converging in trace-norm;
thus, By (H)* C B(H) for

Z F(| ¢n )( n|)zzrn<¢n|XF|¢n>:Tr(XFp)-

n n

The property of sesquilinear forms used above comes as follows: if f: H+— C
is a continuous linear functional on H, that is | f(¢)| < ||f]| ||#||, then Ker(f)
is closed. Assume Ker(f) # H; if ¢ € Ker(f)*, ||¢|| = 1, then f(¢) # 0 and

Ker(f) 3 |x) = f(®)|v) — f()|¢) = f(¥) = (d]¥),

where | ¢) := f(¢)| ¢). It is easily seen that this vector is unique and that
IfIl = 1f(¢)|. Given a continuous sesquilinear form f : H x H — C, for each
fixed ¢ € H it defines a continuous linear functional fy : H +— H; therefore,
there exists a unique |y, ) € H such that f(¢,¢) = fyu(éd) = (x| ¢). This
allows to define a linear operator X} € B(H) such that X}| Y)=|xy) and,

whence f(¢,9) = (Y| Xyl¢).

3By (H) is a two-sided ideal, namely Y X,Y X € By (H) whenever X € B, (H) and
Y € B(H).
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Remark 5.2.3. As B(H) is the dual of By (H) it can be equipped with the
corresponding w*-topology (see Remark 5.1.1.5); namely, any p € B, (H)
defines a linear functional B(H) > X — E,(X) := Tr(Xp). The wx-topology
on B(H) is the coarsest one with respect to which all semi-norms £,(X) :=
|Tr(p X)| are continuous. By comparing these semi-norms with those in (5.9),
it turns out that the w* topology coincides with the o-weak topology.

Hilbert-Schmidt Operators

A second norm on My (C), also based on the trace, is given by

[z s X = 1 X2 = /T X2 =

(5.25)

It is called Hilbert-Schmidt norm; unlike the trace-norm, it originates from a
(Hilbert-Schmidt) scalar product

Mpy(C) x My (C) > (Y, X) — Tr(YTX) . (5.26)

that satisfies |Tr(YTX)| < ||V 2]/ X|2- In fact, using (5.16) and (5.1),

=

S YTU || <

ITr(VTX)| Z

N N
>oa? | U YU ;)2
i=1 j=1

N
< X2 | D AT YU W& [UTY 1) < X2 V]2, (5.27)
j=1

for U|¥; )(¥; [UT < 1. When defined on B(H) with H infinite-dimensional,
the Hilbert-Schmidt norm singles out the linear subspace Bo(H) of Hilbert-
Schmidt operators

Bo(H) := {X e B(H) : ||X]2 < oo} .

If X € Bo(H), || X|2 = /> 1oy 27, with z; the singular values of X. Then,
inequality (5.27) holds with X,Y € By(H), respectively YV € B(H), X €
Bo (H). By (H) is also close with respect to ||-||2 and thus a Banach x-subalgebra
of B(H) (actually also a two-sided ideal as B;(H)) without identity in the
infinite dimensional case for ||1]]2 diverges [251, 270].

Example 5.2.5. Let F}, 7 =1,2,..., N?. be aset of N x N matrices, orthog-
onal with respect to (5.26), Tr(FJT Fi) = 0;%: they form an ONB in My(C).
Indeed, as a Hilbert space equipped with (5.26), My (C) has dimension N2,
therefore, for all X € My (C),
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N2
My(C) 3> X =Y T(XF)F;. (5.28)
j=1
Consider the linear map Try : My (C) — My (C) defined by
Mpy(C) 3 X — Try[X] :=Tr(X) 1y . (5.29)

We shall refer to it as trace map. Choose an ONB {|a)}Y_; in CV; the

a=1

N? matrix units E,g := |a)(3] also form an ONB in My (C). Thus, there

2
must exist a unitary matrix U € My=(C) such that E,g = ZZ]\LI Uag,i Fi.
Therefore, the trace-map can be recast as

N N? N
Ten[X] = > Epa X Eap= Y > Uiy, Uap; F} X Fj
a,f=1 ij=1 21
N2
=Y F/XF. (5.30)
i=1

Remark 5.2.4. The uniform, trace and Hilbert-Schmidt norms are all equiv-
alent on finite-dimensional H and thus define equivalent topologies with the
same converging sequences. Indeed, given X € My(C) its norm coincides
with its largest singular values, || X || = max;<;,<n x;, then

X[ < IX s IX I < NIXT 1X0 < X2, 1X)2 < VNIX]]

Also, || X||2 < ||X]|1 for the sum of squares of positive numbers is smaller

that the square of their sum; while from (5.1),

However, the trace and Hilbert-Schmidt norms are not C* norms; indeed, for
any N € N,

N N
IXTX| = | D a? # > i, [XTX|l2 =
i=1 i=1

Therefore, the trace-class and Hilbert-Schmidt operators form Banach *-
algebras but not C'* algebras.
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5.2.2 Positive and Completely Positive Maps

Physical transformations of quantum systems are described by linear maps
acting either on their observables or on their states. As already seen in the
classical case, these two possibilities are dual to each other; in the first case
states are not affected, in the second one, states change while the observables
do not. The physically relevant request is that mean values do not depend
on which of the two ways they are calculated.

In the classical setting, states must change while preserving their ultimate
characteristic of being probability distributions; the maps which describe clas-
sical state transformations must thus be positivity preserving. In quantum
mechanics things are more complicated and intriguing; it is indeed neces-
sary to sharpen the notion of positive linear transformation. This latter is as
follows.

Definition 5.2.1 (Positive Maps). A linear map A : B(H) — B(H) is
positive if and only if B(H) > X >0 = B(H) > A[X] > 0.

Given a positive linear map /A, one can always lift it to act on the operator-
valued algebras My (B(H)) as

A[X1]- - A[XN]

A Xn1] - AXwN]
One may then ask whether idy ® A is positive, too.
Definition 5.2.2 (Completely Positive Maps).

A linear map A : B(H) — B(H) is N-positive if and only if
idy ® A: My (B(H)) — My (B(H))

is positive; A is completely positive (CP) if and only if it is N-positive for all

N. A linear map A : B(H) — B(H) is called a CPU map when it is CP and
also unital, that is A[1] = 1.

Examples 5.2.6.

1. Positive maps are hermiticity-preserving, for A[Xt] = A[X]. Indeed,
any X € B(H) can be decomposed into Hermitian components, X =
X+Xx1  X-XI

5 +1 5 In turn, X » can be decomposed into positive com-
h\}_/

——
X, X»
X102 X
ponents X; o = le2 - Xy, Xf2 = me Thus,

AX]T = AIXT) = AXT] — i AXS] + i A[X5 ] = A[X) —i Xo] = A[XT] .
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Positivity corresponds to 1-positivity; complete positivity is stronger for
there are positive maps which are not 2-positive, a renown example being
transposition Ty : Ma(C) — My(C), To[X] = X7T, with respect to a
fixed ONB. We shall consider the N-dimensional case: T is positive for
transposition does not affect the spectrum of a matrix, but the partial
transposition idy ® Ty is not positive, whence Ty is not N-positive
and thus not CP . This can be seen by considering the positive matrix
E = [E;j] of Example 5.2.3.9. Then,

N
Vi=idy @ Ty[E] = Nidy @ Ty[PY] = D [i)(j|®[5)(i] (5.32)

ij=1

acts as a flip operator on CN ® CV| that is V(|w>®|¢>> =[¢)®|Y).

Since V has eigenvalue 1 on the N(N + 1)/2 dimensional subspace of
symmetric states and —1 on the N(N — 1)/2 dimensional subspace of
anti-symmetric states, it is not positive and Ty not N-positive, hence
not completely positive.

. CPU maps satisfy the inequality

AXTX] > AXT|A[X] > 0. (5.33)

In fact, from Example 5.2.3.8 it turns out that

10X 10\ (1 X
<XT XU{)(X* 0> <0 0)20’ vX € B(H) .

Since A is CPU , it follows that

a0 (g ) = (ady aling) 20

whence, because of the previous point, and using Example 5.2.3.7,

(axr - (e ik ) (1)) = A - Axan

>0.

. CPU maps are contractions: since B(H) > XTX < | X]?, positiv-

ity, unitality and (5.33) yield A[X]TA[X] < A[XTX] < ||X||?, whence
[ALX]] < {1 XY]-

.Let B C A a C* subalgebra of a C* algebra A, both assumed with

identity, the map 154 : B — A denotes the natural embedding of B into
A; according to Examples 5.2.3.7 and 8, embeddings are CPU maps.
Indeed, for all A; € A, B; € Band N € N,

N
> AlwpalBI BjJA; =272 >0.

ij=1
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6. If A and B are C* algebras (with identity) and A is Abelian, then
any positive map A : A +— B is CP . In order to check whether
ST YIAXTXG)Y; > 0 forall X;; € A, Y;; € Band n € N we
use that Y; ; and A[X] X;] can be identified with functions f(z) € C(X)

over a compact topological space X. Then

(Z YIAIXTX,)Y, ) Z Y7 (2)A[X] X,)(2)Y;(2)

i,j=1 i,j=1

= A2} Z,](x) > 0,

where Z, :==>"" | Yi(z) X; € Afor all z € X.

7.1f A and B are C* algebras with identity and B is Abelian, then any
positive map A : A +— B is CP . We take B = B(H) and check whether
S (0 [AIX]X;) i) > 0 for all ¥; € H, n € N and X; € A identi-
fied with functions in C(X). By duality, AT [|v;)(¢;|] gives a complex
measure on X such that

n

> [ AIXTXG) ;) = Z/du” (z)X;(x) >0 .

,j=1 7,j=1

Indeed, for all ¢; € C and |¥) :=>"" | ¢ ¢ ),

TL

32 ciey [ o) = 3wl AWlv,) = (2141 20

i,j=1 1,j=1

In order to ascertain whether a linear map is completely positive, it seems
necessary to check N-positivity for all N € N. Luckily, the following result [82,
83] shows that N-positive maps A : My (C) — B(H) are automatically CP .

Theorem 5.2.1 (Choi). A linear map A : My(C) — B(H) s CP if and
only if id N ®/1[E] > 0, where E is the matriz introduced in Ezxample 5.2.5.9.

Proof: As seen in Example 5.2.3.9, E > 0; thus the “only” if part follows
from the fact that if A is CP it is N-positive (see Definition 5.2.2).

As regards the “if” part, in order to check that A N-positive implies A
CP , we choose M € N arbitrary and show that idy ® A[X] > 0 for all
M) (C) @ B(H) 5 X > 0. Using Example 5.2.3.8, it is sufficient to show that

S YIAIXTX)Y; > 0 for all choices of ¥; € B(H) and X; € My(C).

Then, by writing X; = ZkN,e:1 zt, Exe € My(C), from the assumed positiv-
ity of [A[E;;]]);—; and Example 5.2.3.7 it turns out that
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N Mo f Mo
3 (z mM) MBS ALY,
i—1

M
> Y AXIxY;

i,j=1 k,s=1 \i=1
———
Zks
N N
DI WESERSS
k=1/0,s=1
whence A is M-positive for all M € N and thus CP . O

Remark 5.2.5. The matrix X, := idy ® A[E] € My (M (C)) associated
with any linear map A : My (C) — M/ (C) is known as Choi matriz. Theo-
rem 5.2.1 can then be rephrased as: A : My (C) — My,(C) is CP if and only
if its Choi matrix is positive.

Vice versa, let X = >, Xis jir E(N) ® Eﬁiw) be an NM x NM ma-

trix, where EZ-(N) and E%M denote the matrix units in My (C), respectively
M (C). The map Ax : My(C) — My, (C) defined by linear extension of

1,7;8,T

M

r,s=1
is such that its Choi matrix is X. Denoting by L(NN, M) the linear space of
linear maps A : My (C) — My;(C), the one-to-one relation
LN, M)>A+— X € Myyn(C)

is known as Jamiotkowski isomorphism [158].

If a map A : My(C) — B(H) is only positive, its Choi matrix cannot be
positive, but only block positive, namely only its mean values relative to
product states in CV ® H are surely non-negative.

Proposition 5.2.1. A linear map A : My (C) — B(H) is positive if and only
if (Y@ ¢|idy @ A[E] [ @ ¢) >0 for all 1y € CV and ¢ € H.

Proof: Positive matrices can be written as sums of projectors with positive
coefficients, thus, according to Definition 5.2.1, A : My (C) — B(H) is positive
if and only if (¢ | A[|v) (9 []|¢) >0 for all ¢ € H and 1 € CV. But,

<¢|A[|¢><¢H|¢>=Zw ) (@[ A[Ei;]|¢2)

3,j=1

N
= (" ®¢| > Ei @ A[E;] )" ®¢)

ij=1

= (v* ®¢|idy ® A[E][¥* ® ¢) ,
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where [¢*) = SN 4% ()] i) with respect to the fixed ONB in CN such that
Eij =1i)(Jjl- O

In finite dimension the structure of CP maps can be made explicit by
means of the Hilbert-structure inherited by My (C) from the Hilbert-Schmidt
scalar product (5.26).

Examples 5.2.7.

1. Consider the linear space L(N, N) of linear maps A : My(C) — My(C);
it can be given a Hilbert space structure by means of the Hilbert-Schmidt
scalar product of their Choi matrices,

<< Al‘/lg >>= Tl“(idN ® Al[E]T idy ® AQ[E]) .

Consider an ONB {F,;}", in My (C) and the maps ®;; € L(N,N), de-
fined by @;;[X] := FiTXFj. They satisfy << &;; | Pre >>= 0;0,¢ and
therefore form an ONB in L(N, N), whence

NZ
A= Z Lij FlT XFJ R Lij =< @Z‘j |A >>= T‘I‘(F',L.r A[FJ]) s (535)
ij=1
for all A € L(N, N). If A preserves hermiticity, the N2 x N matrix of co-

2
efficients A;; is Hermitian and can be diagonalized, L;; = Zgﬂ L Vi Vi
Suppose the eigenvalues /}, are positive, then

N? N2
AX|=Y GLXGr, Gr=\0> VijF;. (5.36)
k=1 j=1

Using Example 5.2.3.8, maps I' € L(N, N) of the form I''X] = Gt X G
are easily proved to be CP . Therefore, linear maps A : My (C) — My (C)
of the form (5.36) are CP and CPU if Zg=1 Gsz = 1. Notice that the
decomposition (5.36) is highly non-unique; another possible decomposi-
tion is indeed provided by (5.35) if the matrix [L;;] is positive.

2. Let Try : Mn(C) — My(C) be the trace map of Example 5.2.5 and
consider the reduction map [151] A: My (C) — My(C),

A[X] = Try[X] - X . (5.37)

A is positive, but not CP ; positivity follows since, if X > 0, Try[X] is not
smaller than any of the eigenvalues of X. On the other hand, using (5.17),
the Choi matrix of A turns out to be idy @ A[E] = ly2 — Nﬁf; it has
a negative eigenvalue 1 — N, whence A cannot be CP .
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3. The transposition Ty : My(C) — Mpy(C) is the paradigm of a map
which is positive but not CP (as it is not N-positive); by combining Ty

with A in (5.37), A := Ao Ty : My(C) — My(C) is CP . Indeed,
using (5.32), idy @ A[E] = idy @ A[V] = Ly2 —V > 0, for the eigenvalues

of the flip operator are £1.

The next two results [287, 180] show that the CP maps are completely char-
acterized by a structure as in (5.36).

Theorem 5.2.2 (Stinespring Dilation). A wunital map A : B(H) — B(K)
is CPU if and only if there exists a triplet (Ka,ma(B(K)),Va), where K,
is a Hilbert space, V4 : K — K, an isometry and 7, : B(H) — B(K,) a
representation of B(H) on K, such that

AX]=VIiaa(X)Vy . (5.38)
The triplet (Ka, mA(B(K)), Va) is unique up to unitary equivalences.
Proof: If A has the form (5.38) with V;{VA = 1g, Example 5.2.3.8 shows

that A is CPU . To prove the converse, consider the linear span of all elements
of the form X ® ¢, X € B(H) and ¢ € H,

B = {Zxﬂgw : Xie]Ba(H),q,y,-eH}

and the bilinear form (-|-)4 : B x B +— C defined by
(X ey, Y@ (Xov|Yae):=(p[4XY]).  (539)
If Ais CP, this bilinear form is positive on B x B (see Example 5.2.3.7),

N

> (i [AIXT X [y)

i,j=1

N N
<ZX¢®1/%| ZX]' ®Yj)a
i=1 =1

N
($] Y E;@AE;)[$)>0 VNeN.

1,j=1

By considering the quotient of B by the kernel of the bilinear form, (5.39)
gives a scalar product on the linear span B, := B/Kern((-|-)4) of the
equivalence classes [X ® 1] (see the discussion after Definition 5.3.5). Set K,
equal to the closure of 9B 4 with respect to the scalar product (-|-)4 and let
w4 represent B(H) on K, by mA(X)[Y ® ¢] = [XY ® ¢|. Then, the linear
maps V4 : K— K, and V/J{ : Kp — K,

Valo)=[Mo¢], VIX®¢ =AX]9),

define an isometry (A is CPU) and VATTF(X)VA| Q) = V/J{ (X ® ¢] = A[X]| 0)
for all ¢ € H. O
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Example 5.2.8. That CPU maps are contractions (see Example 5.2.6.4)
comes easily from Stinespring dilation. In fact, V, is an isometry, thus
VAV/J{ < 1, whence

AXTX] = VIima [ XTma [ X Va > Vima[XTIVa Viea[X]Va = A[X]TA[X]

Proposition 5.2.1 (Kraus Representation). A : B(H) — B(K)) is
CPU if and only if it admits a Kraus representation of the form

=Y Gixa;, (5.40)
J
where the Kraus operators G : K — H are such that, if infinite, the sum
converges in the strong-operator topology.

Proof: The Stinespring representation is of the form IB%(H) ® 1z on H® H~{

for a finite dimensional or countably infinite Hilbert space K. leen an ONB
{|7)} in K, the isometry V : K — H® K and its adjoint VA H® K — K
read

Vale) =D Gile)y®li),  Vivwes)d (ile)Gjlv),
J J
with G, : K — Hand 3, GIG; = Ik O

Remarks 5.2.6.
1. Using (5.36), the composition of CPU maps results in a CPU map. Indeed,
let Ay : B(Hy) — B(Ha), A1o[X] = 32, G15(j) X G12(j), X € B(H,), and
Ags - B(Hy) — B(Hs), Ags[Y] = 3, Gis(k)Y Gaz(k), Y € B(Hy), then,

Aoz 0 A1a[X ZG (jk) X G1s(jk) ,

with new Kraus operators G13(jk) := G12(j)Gas (k).
2. Let A : B(H) — B(H) be CPU and T the transposition with respect to a
fixed ONB in H; while Ao T need not be CPU, ToAoT surely is; indeed,

TodoT[X] = ¥, T[GT X7 G } Y, GTXG*, with T[X] = X7,
X € B(H), the transposed of X and X* := (X7 its conjugate.
3. In full generality, a CPU map A : B(H) — B(K) has the form

X|=> CyLIXL;,
4,J

with 37, . C'UL L; = Ik and C = [C};] a positive matrix, from which
the dlagonal Kraus representation is achieved by diagonalization as in
Example 5.2.7.
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4. While the structure of completely positive maps is fully under control, it
is not so for positive maps which are still somewhat elusive. For instance,
if the coefficients matrix C' = [Cy;] is Hermitian but not positive, by
grouping together its positive and negative eigenvalues, ci, A can always
be written as the difference of two CP maps,

AX] = > aGLXGr = > |l GLX Gy (5.41)

¢k >0 cr <0

For instance, let {Fi}f\fl be a Hilbert-Schmidt ONB in My (C) with
Fy = 1y /N; using (5.30), the reduction map in Example 5.2.7.2, which

N2
1
is positive, but not CP , reads A[X] = (ﬁ — 1) X + ZF;XFZ-.
=2

If there are no negative ¢, then A is completely positive; if not, no general
rule exists to deduce from the ¢, whether A is a positive map.

Conditional Expectations

Particularly important CPU maps are the so-called conditional expectations
which are the non-commutative counterparts of the Radon-Nikodym deriva-
tive in (2.51).

Definition 5.2.3. [117] A positive, unital linear map E : A — B C A where
A and B are C* algebras with identity is a conditional expectation of A onto
B if E[AB] = E[A]B for all A€ A and B € B.

Proposition 5.2.2. Conditional expectations enjoy the following properties:
E[A]T =E[AT] VAcA (5.42)

E[BA] = BE|[A] VAe A BeB ( )

EoE=E (5.44)

E[ATA] > E[A]'E[4] VAcA (5.45)

B[ =1. (5.46)

Further, E is a CPU map.

Proof: Property (5.42) comes from positivity as in Example 5.2.6.1; prop-
erty (5.43) is a consequence of (5.42):

E[BA] = E[(BA)']T = E[ATBT|! = (E[AT]|BT)! = BE[4] .

Property (5.44) follows from E[1E[A]] = E[A] for all A € A; in order to prove
property (5.45) consider A — E[A] and use positivity and (5.43), then
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0 < E[(A — E[A])'(A— E[4))] = E[A! 4] — E[4]'E[4] .
Property (5.46) results from the previous property and positivity:
At A < 1A = E[A] E[4] < E[AT 4] < [[4]” .
Complete positivity is a consequence of (5.43) which yields
E[B1ABs] = B1E[A] B VBi,eB, AcA.

Therefore, from Examples 5.2.3.7 and 8,

N N
> BIEA] A B; = ) E[BIA[A4;B) =E[Z' Z] > 0,
ij=1 ij=1
for all B; € B, Aj € Aand N € N, where Z := Y% | A;B;. O

Because of the properties 3 and 5, conditional expectations are also called
projections of norm one.

Remark 5.2.7. In case A is a von Neumann algebra and 4y C A a von Neu-
mann subalgebra, one call conditional expectations all projections of norm
one which are also normal. This latter property of linear maps A : A; — As
between von Neumann algebras amounts to the following [64]. Let {A,},
be an increasing net of operators in A, that is a set of operators indexed
by a set of indexes pu € M equipped with a partial ordering < such that
= pe = A, < A,,. If the net {A,}, has an upper bound, then
it has a least upper bound A € A to which the net converges strongly:
s —lim, A, = A. Then, A is normal if for all nets {A,}, with an upper
bound lim, A[A,] = Allim, A,].

Examples 5.2.9.

1. Let {P;}icr € B(H) be orthogonal projections P;P; = §;;P; such that
Y icr Pi = 1, then E[X] := }".., P, X P; is a conditional expectation
from B(H) onto the Abelian subalgebra P generated by the P;. Indeed,

it is positive, linear and writing P o P = Zjelijj, it turns out that
E[XP] = Z p;PiXP;P; = ZpiPiXPi =E[X]P .
i,jel i€l

2. Consider two finite-level systems A and B described by matrix algebras
M,,, (C), respectively M, (C); let Try denote the normalized trace map
performed with respect to party A, namely

Tra(Xa) i= ——Tra(Xa) 1y . (5.47)

Ng
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A linear map from the matrix algebra M,  (C)® M, (C) of the compound
system A + B onto the subalgebra 14 ® M,, (C) is obtained by defining

E[X4® Xp] :=Tra(XA)® X VA€M, (C) BeM,,(C)

on tensor products and then by extending it by linearity and continuity
to the whole of M, (C) ® M,,(C). Any 0 < X € M, (C) ® M,,(C) can
be written as >_,(X%)T X ® Eg by means of a system of matrix units
{Eg 2t in M, (C) (see Examples 5.2.3.7 and 8). Thus, one verifies

b
4,J
that [E is a positive linear map; indeed,

(s [BX)05) = S Toa (X)) X7) (95 B2 0

1
TTTI"A((YA)T YA) >0,

where Yy := 2521 ¥, X9 with ¥}, the j-th component of |¥p) € C™
along the ONB associated with the chosen matrix units. By writing the
identity matrix Layp = > ;% D200 Ef ® EF where {E}; P4y is a sys-
tem of matrix units in M, (C), one shows that E[144p5] = 144, whence
E is unital. Furthermore, as any X € M, (C)® M,, (C) can be written

in the form X =3, X ® X§, it turns out that
E[X Xp] =Y Tra(X4) ® X5Xp = E[X]X5 ,
¢

whence E is a conditional expectation from M, (C)® M,, (C) onto 14 ®
M, (C).

5.3 von Neumann Algebras

In this section, we consider in detail some techniques proper to von Neumann
algebras which are C* subalgebras of B(H) that are also closed with respect
to the strong and weak topologies [64, 293, 300].

Definition 5.3.1. The commutant of a C* algebra A C B(H) is the C* al-
gebra B(H) D A’ := {X’ eEBM) : [X', X]=0VX € A}, the bicommutant

the C* algebra B(H) 3 A" = {X" eBH) : X", X']=0VX € A’}.

Remark 5.3.1. Beside being C* algebras, commutants and bicommutants
are also closed with respect to both the strong and weak topology. Indeed, if
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X' = (s,w) — lim, o X, with [X], X] =0 for all X € A, then, because of
the continuity of the scalar product,

(0] (X, X]]6) = lim (] [X', X,]|6) =0

for all v, ¢ € H, whence X' € A’. Therefore, A" and A" contain all those
operators that can be constructed from operators in A via strong-limits and
weak-limits. In particular, A’ and A” contain the spectral projectors of any
of their self-adjoint and unitary elements.

Examples 5.3.1.

1.

If AC A, all its elements commute with each other and A is an Abelian
C* algebra, mazrimally Abelian if A= A'.

. The center of A is the Abelian C* algebra Z := AN A’.
. Of the commutative algebras of section 2.2.1, the C'* algebra of continuous

functions, C'(X), is not maximally Abelian since it is properly contained
within the C* algebra of essentially bounded functions, L7°(X); the latter
is instead maximally Abelian [293].

.If A = B(H), only multiples of the identity operator can commute with

all bounded operators on H, that is B(H) = {1}, the trivial algebra. On
the contrary, {1} = B(H)” = B(H). The same is true for the C* algebra
of compact operators A = B, (H), A" = {1} for the identity is the only
operator on H which commute with all finite-rank ones; however, unlike
for B(H), Boo (H) C B(H) = Boo (H)” in infinite dimension.

. Consider the operator-valued matrix algebra My (.A) consisting of N x N

matrices with entries from a C* algebra A C B(H). Let Iy ®.A C My (A)
be the subalgebra whose elements have the form Iy ® X, X € A. The

request that |:]1N ® X, 25:1 Eij ® le:| = ZZ:1 Eij ® [X, X’J] =0
for all X € A with X;; € B(H), implies (1y ® A) = Mn(A’). The
bicommutant (1y®.4)" can be identified by imposing that, for all X’ € A’
and 1 <k <N,

[Ekmx', Y] - Z(Ek] © X' Xy — jk®Xij') =0,

J=1

where Y = 8| E;; ® X;; € My(B(H)). This forces Y to be of the
form Y = YN | By, ® Xgp with Xp, € A”. Finally, [Eij ®1, Y} -
E,;®(X;; —X;)=0foralij=12,...,N,yields X;; = X for all i,
whence (1® A)" =1y @ A”.

. Given ¢ € H, let Hﬁ C H be the closure of the linear span of vectors of the

form X|¢), X € A, with A C B(H) a C* algebra, and by PJ)“ cH — H;ﬁ
the corresponding orthogonal projector. Since AHﬁ C Hﬁ, it follows
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that P! X P;' = X P! for all X € A, whence, by taking the adjoint
X PA = PAX P = (PAXT P = (XTPA)! = PAX for all X € A
Therefore, P(f € A" and Pf € A” for all ¢ € H.

Definition 5.3.2. A vector ¢ € H is cyclic for a C* algebra A C B(H) if
Hﬁ = H, separating if X|¢) =0<= X =0 for all X € A.

Being cyclic and separating are related properties; indeed, suppose ¢ € H
to be cyclic for a C* algebra with identity A C B(H) and X’[¢) = 0 for
X" e A. Then, 0 = AX'|Y) = X'A|vY), whence X' = 0 for cyclicity
of ¢ € H amounts to A|¢) being dense in H. Vice versa, suppose % to
be separating for A’, but not cyclic for A; then, A" > 1 — Pf # 0, but
P$| ) = |1) since we assumed 1 € A, which is a contradiction.

Lemma 5.3.1. Let A C B(H) be a C* algebra with identity; then ¢ € H is
cyclic for A if and only if it is separating for A’.

Cyclicity refers to the possibility that, by acting on some vectors with all
the operators of a given algebra, one gets a dense subspace whose closure is
the whole Hilbert space. This is the case with the vector |1) € L2(X) in
the Koopman-von Neumann formulation of classical mechanics (see Exam-
ple 2.1.1). By acting on | 1) with the simple functions, one gets a dense linear
span, whose closure is the whole of Li(?c' ). The same is true using continuous
functions f € C(X) or essentially bounded functions g € Li°(X).

Differently, if a vector 1 € H is not cyclic for A C B(H), then P@“ projects
onto a proper A-invariant subspace Hé C H. The absence of proper invariant
subspaces with respect to A is related to the triviality of the commutant A’.

Definition 5.3.3 (Irreducible Algebras). A C* algebra A C B(H) is ir-
reducible if only H if all ¢ € H are cyclic for it.

Lemma 5.3.2. A C* algebra A C B(H) is irreducible if and only if A’ = {1}.

Proof: If A’ = {1} then P;;‘ = 1 for all ¢ € H. If all ¢p € H are cyclic for
A and A" # {1}, then, according to Remark 5.3.1, there exists a projection
A’ > Q # 1. Therefore, if Q|v) = |¢), then QA|vY) = A|v); thus, the
closure of A| %)) cannot equal H. O

Given the commutant and bicommutant of a C* algebra A C B(H), we
can continue and consider the commutant of the bicommutant and so on.
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Notice that, if A C B are two C* algebras acting on H, then B’ C A’. Thus,
from A C A" it follows that A" C A’; however, A" C (A")" = A", whence

ACA =AY = A% =... | AN =A"=A" =A% =...  (548)

The closure properties of commutants and bicommutants discussed in
Remark 5.3.1 are typical of

Definition 5.3.4 (von Neumann Algebras). A C* algebra A C B(H) is
called a von Neumann algebra if A = A”. In the following, we shall employ the
symbol M to denote von Neumann algebras, while keeping A for C* algebras
which are not von Neumann algebras. von Neumann algebras M with center
(see Example 5.3.1.2) Z = M N M’ = {\1} consisting of multiples of the
identity are called factors.

Theorem 5.3.1 (von Neumann Bicommutant Theorem). A C* al-
gebra A C B(H) with identity 1, is a von Neumann algebra if and only if it
1s strongly and weakly closed.

Proof: As the bicommutant A" is the commutant of the commutant it is
strongly and weakly closed. Let A", A® denote the weak and strong closures
of A; the strong topology is finer than the weak one, thus A* C A% C A"
(see Remark 5.1.1.3). Therefore, we need only show that if A = A® then
A = A”; in other words, we have to prove that A is strongly dense in A",
namely that in any strong neighborhood U?(X"), X" € A", of the form (5.7),
there is an X € A. In order to do so, as a first step, note that, according
to Example 5.3.1.6, given ¢ € H, Pf € A and P$|17D) = |¢) for 1 € A;
thus, PJLA"|¢) = A"Pl|¢) = A”|¢) C H;; this implies that for any
e > 0and X” € A” there exists X € A such that [|[(X — X")|¢)| < e.
The second step is to extend this result to generic strong neighborhoods; for
this we use (5.15), Example 5.3.1.5 and the previous arguments with 1, ® A,
M, (A), (I, ® A) = 1, ® A” and 1) replacing A, A’, A", respectively 1.
Then, for any ¢ > 0, X" € A” and ¢ = S i) @), there exists X € A
such that Y0 | (X" — X)| ;)| <e. O

Examples 5.3.2.

1. The previous proof shows that by considering the strong closure of a C'*
algebra A C B(H) one obtains the bicommutant 4" C B(H).

2. Since M C M’ = Z = M, Abelian von Neumann algebras can be
factors only if trivial.

3. In the Koopman-von Neumann formalism, C'(X) is a C* but not a von
Neumann algebra; actually C(X)" = L;° (&) for the algebra of essentially
bounded functions on ]Li()( ) is strongly closed by construction.
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4. If M is an irreducible von Neumann Algebra (see Definition 5.3.3), then
it is a factor, whereas the opposite is not true in general. However, if M
contains a maximally Abelian von Neumann algebra N' = N’ C M, then
M C N and Z = M’, whence, if M is a factor it is also irreducible (see
Lemma 5.3.2).

5. B(H) is a von Neumann algebra since any bounded operator can be con-
structed by closing the x algebra of finite-rank operators on H in either
the weak or strong topology. Their uniform closure instead yields the C*
algebra B (H) of compact operators which is not a von Neumann algebra
for Boo (H)” = B(H) D B (H), in infinite dimension.

6. Let M C B(H) be a von Neumann algebra, £ € M an orthogonal pro-
jector and consider F M FEj; this is a von Neumann algebra acting on EH
with commutant (EM E) = EM’' E(= EM’ = M’ E). Indeed, for all
X € Mand X' €¢ M,

(EXE)(EX'E) = EXEX' = X'EXE = (EX'E)(EXE) ,

thus EME C (EM'E). On the other hand, if X = XE € (EM' E)
it commutes with £ and, for any X’ € M/,

XX'=XEX'=XEX'E=EX'EX =X'X,

whence (EM'E) C EME.

7. Suppose M C B(H) is a factor von Neumann algebra and consider the
algebra M U M’ consisting of operators of the form Zj X; X} with X; €
M and X} € M. Then,  MUM') = M' 0N M" = M N M" = {Al},
whence (M UM")” = B(H).

5.3.1 States and GNS Representation

The C* algebras so far considered had concrete representations by means of
bounded operators on given Hilbert spaces H; more in general, the notion of
C* algebra in Definition 5.2.1 can be formulated in purely algebraic terms.
What one needs is the abstract setting at the beginning of Section 5.2 and an
abstract definition of states, along the lines developed for classical systems
in Section 2.2.1.

Definition 5.3.5. A state on a C* algebra A is any positive, normalized
linear map w : A — C; namely, (YY) >0 for all Y € A and w(1) = 1.
States are also known as expectation functionals.

A state w is pure on A if the only positive, not necessarily normalized,
functionals p : A — C such that p < w have the form p = Aw for some
0<A<1.

States w such that w(XTX) =0<+= X =0, X € A, are called faithful.
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From positivity it follows that states are automatically continuous function-
als; indeed, if w is a state on A, then

(WXTY)* =w(YTX), |[wXY)?<wXTX)wYTY). (5.49)
In order to prove this, one chooses A € C and consider
0 < w((XHAY)H(XHAY)) = w(XTX) A0 (XTY) X w(YTX) +H A w(YTY) .

Then, the equality comes from setting A\ = 1,4, while the inequality from
choosing \ equal to the conjugate of the phase of w(XTY).

The bilinear map A x A > (X,Y) — w(XTY) would be a scalar product
on A as a linear space, were it not for the fact that, in general, w(XTX) =
0 even if X # 0. In order to circumvent this difficulty, one considers the
set 7 = {X €A wXX) = 0}. Because of (5.49), 7 is a linear set
and also close; therefore, one can consider the quotient A/Z consisting of
the equivalence classes [X], := {X +1:1c¢ I}, X € A. Since (5.49)

gives w((X + I)T(Y + 1)) = w(XTY) for all I; 5 € Z, each class can be
identified with a vector |¥% ), Z corresponding to the null vector. It thus
follows that (5.49) defines a true scalar product over the linear span of these
vectors, (W | ¥4 ) := w(XTY). Consequently, by closing the linear span with
respect to the corresponding norm, one gets a Hilbert space H,,.

Further, it is immediate to represent operators X € A as linear operators
7, (X) acting multiplicatively on H,,,

X = mo(X), m(X)|¥y) = [y ) - (5.50)

Since 7 is a two-sided ideal in A, the null vector is mapped into the null
vector and 7, (X) is a well-defined linear operator on H,; it is also bounded,
for (5.49) and XX < || X|?1 imply

[ (X)) | = w(YTXTXY) < | X[Pw(YTY) = | X7 || &) .
Further, m,, is a so-called * morphism, that is
To(XT) =1, (X)), 7, (XY)=m,(X)m,(Y) VX,YcA.

Therefore, 7, represents A as a subalgebra of the bounded operators on H,:

A — 7,(A) CB(H,)).

Definition 5.3.6 (Representations). A xhomomorphism (homomorphism
for short) between two C* algebras A 2 is a linear map 7 : Ay — Ay that
preserves the algebraic relations and the adjoint operation:

W(AI) = 71—(141)"- 3 W(AlB2) = W(Al)'/T(Bl) VAl,Bl S ./41 .
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When a homomorphism is invertible, it is called an isomorphism, automor-
phism if it maps A invertibly onto itself.

If Ay = A and Ay = B(H), then m gives a representation (w(A),H) as
a C* (sub)algebra of bounded operators on a Hilbert space H. Two represen-
tations of (m1,2(A),Hy2) of A on two Hilbert spaces Hy o are equivalent if
there exists an isometry U : Hy — Hy such that m(A) = Ut my (A)U.

According to Definition 5.3.2, the state | 7§ ) is cyclic for 7, (A) on H,; in
fact, 7, (X)| &y ) = | % ) and the linear span of the vectors of the form | #¥ ),
X € A, is dense in H,,, by construction. Also, the expectation associated with
w takes the form

w(X)=(T7 |m,(X)¥7), XeA. (5.51)
We shall set |2, ) := |¥§ ); from Definition 5.3.2 it also follows that |2, )
is separating for the commutant ,,(A)" C B(H,)

The previous approach is due to Gelfand, Naimark and Segal and is known
as GNS construction. [64].

Definition 5.3.7. Given the GNS triplet (H,,, 7y, 2,), H,, 7, and 2 will
be called GNS Hilbert space, GNS representation and GNS vector, respectively.

Remarks 5.3.2.

1. Any triplet (H,,m,, 2,) with the GNS properties of (H,,, 7, {2,,) is uni-
tarily equivalent to it. Namely, there exists an isometry U : H, — H,,
such that U|2,) = |§2,) and 7,(X) = Ul 7, (X)U for all X € A.
Indeed, because of (5.51) that holds for both representations, the map
U :H, — H, defined by Un,(X)|2) = 7, (X)| 2, ) is such that

W(XTY) = ({2 |7TW(X)T7Tw(Y) 2,) = ($2 | WV(X)TUTUWV(Y) 192,)
= <~Qu |7TV(X)T7TV(Y) ‘-QV>
on the dense subsets 7, (A)|2) C H, and m,(A)| 2, ) C H,. Then, U

extends to an isometry U : H,, — H,; furthermore, on the dense subset
of m,(Y)|2,),Y € A,

Ulr,(X)Um, (V)| 2,) = Ul (X) 7, (V)| 2,) = Uln,(XY)| 2,)
=UUn,(XY)|2,) =7m,(X)m,(Y)| 2),

that is UTm, (X)U = 7, (X) for all X € A.

2. As a x-homomorphism, the GNS representation 7., preserves the C* prop-
erties of A. Therefore 7, (A) is a C* algebra, as well as its commutant
7w (A). The latter is also a von Neumann algebra, this need not be true
of m,(A), but it is certainly so of the bicommutant 7, (A)”, that is of the
strong closure of 7, (A) on H,. If the center Z, := 7,(A)" N 7, (A) is
trivial, that is it consists of the multiples of the identity only, then w is
called a factor or primary state.
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3.If w is a state on A and v is a linear positive functional on it, ma-
jorized by w, ¥ < w, then also v satisfies a Cauchy-Schwartz inequality as
win (5.49) 4, [p(XTY)]?2 < v(XTX)w(YTY) < w(XTX)w(YTY). Conse-
quently, v defines a continuous sesquilinear form on H,, x H,, so that, from
Example 5.2.4, v(XTY) = (2|7, (X)T T 7,(Y) |22), with T" € B(H,,).
Further, from 0 < v(XTX) < w(XTX), for all X € A, one deduces that
0 <T" < 1. Moreover, T" € 7, (.A)’; indeed,

XTY Z) = (@] 7u(X) T'mu(Y)mu(2) |2

| r(Y1X)12)
= (2] 7 (X) 7, (V)T'm(2) |2

)=
)
whence [T7, m,(Y)] =0 for all Y € A since 7, (A)| £2) is dense in H,.
4. From the previous result, it turns out that m,(A) is an irreducible C*
algebra (see Definition 5.3.3) if and only if w is a pure state (see Def-
inition 5.3.5). In fact, according to Lemma 5.3.2, 7, (A) is irreducible
if and only if 7, (A) = {A1}. If m,(A)" is trivial then v < w implies
T" = M, hence w is pure. On the other hand, if 7,(A) is not triv-
ial, then there exists some 1 # X’ € m,(A)’, so that also X’ + (X')T
and its spectral projectors belong to the von Neumann algebra m,,(A)".
Therefore, there must be at least one non-trivial projector P’ € 7, (A)";

also, 1 — P' = Q' € 7, (A)’, so that one can decompose w into a convex
combination w = Awpr + (1 — AN)wgr, where X := (2| P'|2) while

&p/ = )\wp/(X) = <Q|PI7TW(X)|Q> (552)
So = (1 - Nwg (X) = (2] Qmu(X) 12) (5.53)

are positive, normalized linear functionals over A which are both ma-
jorized by w but are not of the form Aw (compare the analogous argument
in the proof of Proposition 2.3.8).

5. The previous point is an example of the convex structure [20] of the space
of states S(A) on a C* algebra A. In more formal terms [64]: given a C*
algebra A with identity, the set S(A) of its states is compact in the w*
topology generated by the semi-norms S(A) 3 w — Lx(w) = |w(X)].
Moreover, its extremal points are the pure states and S(A) is the w*
closure of their convex hull.

5.3.2 C* and von Neumann Abelian algebras

Let A be an Abelian unital C* or von Neumann algebra. As discussed in
Remarks 2.2.2.2,3, the algebra C(X') of the continuous functions over a com-
pact topological space X is a typical example of the first case, while the
algebra L7° (&) of the essentially bounded functions is an instance of the sec-
ond case. In this section we shall show that these two cases do in fact exhaust

*What matters in the derivation of (5.49) is positivity and not normalization.
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all the possibilities: the main technique we shall use is the so-called Gelfand
transform.
All multiplicative functionals x : A — C such that

X(AB) = x(A)x(B), x(A)=x(A)* VABecA

are known as characters and their set will be denoted by X 4. It turns out
that characters are states on A; indeed,

X(A) = x(14) = x(M)x(4) = x(1) =1,
while, if A > A >0 then A = B B (see Remark 5.2.2), whence
X(4) = x(B'B) = |x(B)]* > 0.

Further, A—a, with a € C and A € A, is invertible if there exists B € A such
that B(A—a) = 1; since, for any x € X4, x(B)(x(A) —a) = 1, it follows that
if A — a is invertible then x(A) # a for all y € X 4. Therefore, the spectrum
of A € A contains the values assumed on A by the characters on A:

Sp(4) 2 {x(4) : x € Xa} . (5.54)

Examples 5.3.3.

1. Let A = C(X), then X4 consists of the evaluation functionals (Dirac
deltas) 0,(f) = f(z) for all z € X, f € C(X).
2. Let A = Dy (C) the algebra of all diagonal matrices on CV with respect

to a given ONB {|i)}¥ |, namely A > A = Zf\il A; E;;, where {E;;} is
the associated family of matrix units. Then, X 4 consists of the maps

xj(A) == Tr(AEj;) = (j|Alj) = 4; .

Indeed, AB = ZN AiBjEyE;; = Zf\il A;B;E;; implies x;(AB) =

i,j=1
A;jB; = x;(A) Xj(é) for all A,B € A. Notice that the multiplicative
property cannot be true of any pure state |9 )( ¢ | € My (C); in fact, for

[9) = ali)+6l7)

(V| ABY) = |a*A;B; + |B|*A;B;  while
(V| Alp) (Y| Bl) = |al* 4B + |BI*A; Bj + |af?|B]*(AiB; + A;B;) .

3. Characters behave as tracial states over A, namely x(AB) = x(BA).
However, the only tracial state on My (C) is given by

H(X) = Tr(% X), sothat T(XY)=r(YX), (5.55)
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for all X, Y € My(C). It thus follows that there cannot be characters on
My (C). Indeed,

1 1
2y — ) = . ) = .

T(E;) = 7(Ey) = N’ 7(Eii)T(Ei) = N2

therefore the tracial state can be multiplicative only if N = 1. In order to

show that the only tracial state on My (C) is 7, let us assume that there

exists another state w such that w(XY) = w(Y X) for all X, Y € My(C).

Let X = E;j and Y = Ejy; because of (5.12), it turns out that

w(EijEkz) = jkw(Eig) = w(EkgEij) = 5Mw(Ekj) .

Thus, w(E;;) = 01if i # j and w(Ey) = a for all i = 1,2,..., N so that
w(l) =1 = a=1/N. In conclusion, w acts as 7 on a system of matrix
units and must thus coincide with it.

The set of characters is a subset of the unit ball of the topological dual
of A (X4 C (A*)1); moreover, X4 coincides with the set of pure states over
A. In fact, if w is a pure state on A, then in the GNS representation 7, (A)
is irreducible (7, (A) = {A1}), but then m,(A) = A4l for all A € A for
Abelianness implies 7, (A4) C 7, (A)". Then, w(A) = (2, |71,(A) |[£2,) = Aa
and

W(AB) = (2, | 70w (A)7,(B) |20 ) = Aadp = w(A)w(B) ,

whence w € X 4.

Let A* be endowed with the w*-topology (see Remark 5.1.1.5), then X4
is a w*-closed subset of (A*);. In fact, if x,, € X4 w*-converges to y, that is
if xn(A) — x(A) for all A € A, x is linear and also multiplicative; indeed,

IX(AB) = x(A)x(B)| < [x(AB) — xn(AB)|
+ ALl [xn(B) = x(B)| + 1Bl [xn(A) = x(A)| .

Therefore, by choosing n large enough the left hand side of the inequality can
be made arbitrarily small.

Remark 5.3.3. Once the topological dual A* is equipped with the w*-
topology, its unit ball (A*); is compact by the Banach-Alaoglu theorem [324].
As X4 is a closed subset, it is also compact [324]; further, since the space of
states is Hausdorff, so is X 4. One can thus consider the C* algebra C'(X4) of
continuous functions over the set of characters and the corresponding prop-
erties. For instance, in the proof of Theorem 5.3.2, we shall profit from a
theorem of Stone and Weierstrass [259] which states that the norm-closure
of any algebra of complex functions on a compact Haussdorf space X that
separates points and contains the identity coincides with C(X).
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Definition 5.3.8 (Gelfand transform). The Gelfand transform is the map
I': A— C(Xy) from an Abelian C* algebra to the continuous functions over
its characters, defined by

A3 A= TAl(x) =x(4) VxeXa.

Notice that I'[A](x) is automatically continuous on X4 equipped with
the w* topology inherited from A*. In full generality, the following property
holds [64, 300, 324]

Theorem 5.3.2. Any Abelian unital C* algebra A is isomorphic to C(X4).

Proof: The Gelfand transform is a *-homomorphism: linearity is evident,
also I'[AT](x) = x(AT) = x(4)* = (I'[A](x))*. Moreover,

I'[AB](x) = x(AB) = x(A)x(B) = (I'A]I'[B])(x) -
It also preserves the norm; in fact,

IP[AN? = sup [T[AJQOP = sup [x(A)* = [|A]*
XEXA XEXA

for all A € A. The latter equality is a consequence of the fact that X4
coincides with the set of pure states over A and that [64, 300], for any A € A
one can always construct a pure state w such that w(A) = || AJ.

It thus follows that I'[A] = 0 only if A = 0. Furthermore, I'[1] = 1 and,
if x1 # X2, then x1(4) = I'[A](x1) # x2(A) = I'[A](x2) for some A € A.
One says that I'[A] separates points of X 4; thus, the theorem of Stone and
Weierstrass (see Remark 5.3.3) applies to I'[A] so that I'[A] = C(X4). O

Remark 5.3.4. [324] If A is a generic C* algebra and X one of its normal
elements (X X' = X' X), then one can consider the Abelian C* algebra
A[X] generated by the norm closure of the #-algebra of polynomials in the
commuting operators 1, X and XT. Let us consider the Gelfand transform
I': A[X] — C(X4x)); to any function f € C'(X4)x)) one associates a unique
element f(X) := I'"![f] € A[X]. This is known as continuous functional
calculus. Consider, for instance, the function f(z) := (x(X) — 2)~!; then, by
using a power series expansion and the isomorphic properties of I and its
inverse, one obtains

F[Xl_z]—f(z), F(X)=T7'f] =

X -z’

whenever z > [|X|| = sup,cx, ., [X(X)|. Thus, from Example 5.2.2.5 it fol-
lows that the spectrum of a normal X € A coincides with the values assumed
on X by the characters of X 41x): Sp(X) = {x(X) : x € Xux1}-
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Examples 5.3.4.

1. If Ais a finite-dimensional Abelian algebra, then X4 contains finitely
many points (characters) X4 = {x;}{_;. The maps J; : X4 — C defined
by gj (xi) = 0;5, are continuous with respect to the discrete topology on
X4. By inverting the Gelfand isomorphism, the corresponding elements
p; = ['"1[0;] € A are orthogonal projections:

DiPk = F_l[gigk] = Oik F_l[gk] = Ok Dk -

These are minimal projections of 4; namely, the only projections in A
majorized by p; are the trivial one p = 0 and p; itself. Indeed, consider
two projections ¢, p in a generic unital C* algebra and suppose ¢ < p;
then, writing p = ¢ + (p — ¢), Example 5.2.3.2 yields

¢>qpe=q+qp—qq >q for p—qg>0.

Therefore, ¢(p — q)g = XT X = 0 with X = \/p — qq whence X = 0 and
pg=q=qp.Ifp=p;, € Aand A> q < p,;, write I'[g] = > | mi(q) &
with m;(¢) € Ry; it follows that

I'lg) = Ilapi] = Tlg)llpi] = mi(q)d; -

Since I'[g] = I'[q]?, one concludes that I'[q] = 8; whence ¢ = p;.

2. Consider X > 0, and the function f(t) = v/£, t > 0. Since the spec-
trum of X is contained in [0, [|X|]] and thus also X4x; € [0, [ X][];
from Remark 5.3.4 it thus follows that YV := f[X] = I'"'[Vt] > 0
and Y? = I'"![t] = X. We now show that the square-root of X is
unique; let A > Z > 0 be such that Z2 = X and let P,(t) be a
sequence of polynomials on [0,]|X]|] converging uniformly to v/%. Set
Qn(t) == Py (t?): lim,— 4 oo @, (t) = ¢t uniformly on [0, || X ||]. Furthermore,
from Remark 5.3.4 and Remark 5.2.1,

Xupx) = Sp(X) = Sp(Z2°) = (Sp(2))? = {t* : t € Sp(Z)} ,
whence

Z= lim Q.(Z)= lim P, (Z?) = lim f(X) = VX .
3. The Gelfand isomorphism maps the von Neumann algebra L;°(X) into
C(Y) where Y is a so-called extremely disconnected Hausdorff space whose
open sets have open closures [324].

The preceding considerations can be extended to Abelian von Neumann
algebras M C B(H) on a separable Hilbert space H [324]. Since M is also a C*
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algebra, one considers the Gelfand isomorphism I' : M +— C(Xa4); suppose
1 € H to be cyclic for M and define the linear functional F' : C(Xx) — C,

F(f) = (| T f]|) .

This functional is positive since I"~! is an isomorphism and preserves positiv-
ity; then, Riesz representation theorem [258] (see (2.48)) ensures that there
exists a positive Borel measure p on X'y such that

(61T f) ) = /X du (x) f(x) = u(f)

The support of p is the whole of Xy, otherwise there would exist YV C X
and a positive continuous f, non-zero on ), such that

w(f) =0= (/T fl| /T flv) .

Since v is cyclic for M, it is separating for M’ and for M C M’; then
VT 1f]|¥) = 0 implies I'"[f] = 0 whence f = 0. For all X € M,

/X dp () [P[X)(@)* = (@ [ PTHPIXTOX ) = | X] )

Then, one can construct a unitary operator U : H — K := Li(XM) by
extending to the L?-closures of M| 1) and C(X)y) the linear operator defined
on the latter spaces by U : X|v) +— I'[X]. It turns out that

UXUY(IY))=UXY =I[XY]=T[X]|(I[Y]),

for all X € M, whence U X U is represented by a multiplication operator on
C(Xaq). This relation can be used to prove that U MU' is a von Neumann
subalgebra of B(K) and since the algebra of multiplication by continuous
functions is weakly dense in the von Neumann algebra of multiplication op-
erators by functions in L7° (Xr) it follows that this latter is isomorphic to
UMUT.

Even when a cyclic vector for the von Neumann algebra M does not exist,
one can prove a similar result [324].

Theorem 5.3.3. Fvery Abelian von Neumann algebra M acting on a sepa-
rable Hilbert space H is isomorphic to some Lzo(/'\f), where X is a compact
Hausdorff space and p is a finite, positive Borel measure on X supported by
the whole of X.

5.4 Quantum Systems with Finite Degrees of Freedom

The simplest quantum systems are 2-level systems (the qubits of quantum
information): their states and observables are 2 x 2 matrices from Ms(C)
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acting on the Hilbert space C2. Though simple, the 2 dimensional framework
is sufficient to accommodate a variety of rather successful phenomenological
descriptions as for spin 1/2 particles in magnetic contexts [248, 273, 280],
for atoms whose ground and first excited states can be treated as isolated
from the rest of the energy eigenvalues [87], for the polarization degree of
freedom of photons [272, 312] and for the strangeness degree of freedom of
neutral K mesons [30, 31]. Recently, even macroscopic systems in particular
ultracold atoms [191] have been started to be studied as spin 1/2 particles;
this is the case for the low-lying energy states of Bose-Einstein condensates
in double well potentials and superconducting boxes near resonance [197,
316]. The latest advances in the experimental manipulation of atomic systems
have indeed provided concrete realizations of 2-level quantum systems and
made them available for the actual verification of central issues of quantum
information theory [6, 63].

The observables of 2-level systems are self-adjoint 2 x 2 matrices acting on
the 2-dimensional Hilbert space C?; particularly important are the unitary
and self-adjoint Pauli matrices 01 23 that satisfy the algebraic relations

00} =5jk]12+’i8jk40'z , (5.56)

where €;1¢ is the antisymmetric 3-tensor, and 1, denotes the 2 x 2 identity
matrix.

When normalized, 0, := UH/\/Z they become an ONB with respect to
the Hilbert-Schmidt scalar product (5.26), that is Tr(5,0,) = 0,,. Thus, it
turns out that any X € M3(C) can be written as (see Example 5.2.5)

3

X =) (Tr(6,X))5, - (5.57)
pn=0

It is customary to work within the representation of the eigenvectors of o3,
1 . . . o
[0) = (O) and |1) = (?) (the states of a particle with spin 1/2 pointing

down, respectively up along the z direction in space). Then, the Pauli matrices
have the standard form

0 1 0 —i 10
Gl O KLl V) R (O

so that 01]0) =|1), 01]1) =|0) and 02|0) = —i|1), 02| 1) =14|0).

The action of o7 on the standard ONB amounts to a spin flip; if 0 and 1
were classical spin states encoding bits, then o7 would implement the NOT
logical operation: 0 — 1, 1 +— 0 or ¢ — i @ 1, where @ denotes the binary
addition (addition mod 2). The ONB associated with o consists of

_J0)£[1) 1 (1

+) == = il), o1l £) =+ +) .
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Their ONB is unitarily related to the standard one by the Hadamard rotation

1

__1 1 1 T ”
UH._ﬁ(1 _1)—UH—UH Unli) = ; 15) . (5.58)

A system consisting of n spins 1 / 2 is described by the matrix algebra
M3n(C) = (M3(C))®"; denoting by o}, u = 0,1,2,3, the Pauli matrices of
the i-th spin, the elements of Man ((C) are linear combinations of operators
of the form @;_, o}, acting on (C*)®". The so-called computational basis of
quantum information consists of tensor products of eigenvectors of o3,

150 ) = Jiyig - in) = i) @ [i2) @+ |in) , 5 €{0,1},

that are in one-to-one correspondence with bit-strings 4™ e Qén).

One may interpret them as orthogonal configurations of quantum spins
located at the integer sites 0 < ¢ < n of an infinite 1-dimensional lattice.
Of course, unlike for classical spins, in this case linear combinations of these
configurations are also possible physical states. Thus, a one dimensional array
of n spins 1/2 provide a non-commutative counterpart to classical spin-chains
of finite length n. Interestingly, their algebra Ma» (C) also describes n degrees
of freedom satisfying Canonical Anticommutation Relations (CAR).

Example 5.4.1 (Finite Spin Systems: CAR). From (5.56) it follows that
different Pauli matrices anticommute,

{O'j , O’k} =00 + 0,0 =205, 1.

__oi1tioce (0 1 __o1—i02 (0 0 .
Set o4 = — = |o O) and o_ = — = <1 O)' These
matrices fulfil the following algebraic relations
{a+, a_} =1, {a+ , O'_:| =03 (5.59)
o2 =0, {03, 04 =20, , {03, U,} = —20_ . (5.60)

With |0), | 1) the eigenvectors of o3, o_|1) =0, while 04.|1) =]0).

In the case of n-spin 1/2 systems, let o’y = 0%, 0%, 1; denote the spin
operators relative to the i-th spin. They are identified as elements of M. (C)
by embedding them as

MQ(C) > O';& — ]1[171'_1] ® O';/: ® ]l[i+1,n] s (561)

where 1j; ;) := 1; ® 1;41 ® - -+ 1 is the tensor product of as many identity
matrices 1 € M3(C) as the sites in the subset [j, k]. Then, setting
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i—1 i—1
0= (Qo}) © 0L @ N » af = (@ 03) © ot © T v

Jj=1 J=1

one obtains operators that obey the CAR of n Fermionic degrees of freedom:
{ai, a}} = aia;r- + a;r- a; = 6;j , {ai, aj} = {a;r , a}} =0. (5.62)

Further, the vector state |1)®" := [1)® |1) ®---|1) consisting of n spins

n times
all pointing down, behaves as the vacuum state for it is annihilated by all a;,

while a;r , acting on it, creates the vector state with the i-th spin pointing up,

a1 =0, al[1)®"=[1---1 0 1---1).
ithsite

There cannot be more than one Fermion for each ¢ as from (5.62) (a;-r)2 =0.
Thus, products of the form 1_[§L:1(cz;r-)iﬂ'7 where i; = 0,1 and (a;)o =1, create
the computational basis,

n

[T@hue)em = jiviy---in)

j=1
where @ denotes summation mod 2. Since

[AB,C] = ABC — CAB = A(BC + CB) — (AC + CA)B
= A{C,B} + {A,C}B, (5.63)

the number operator

R ST T o PP
=1

i=1

" 1; + ot
= Z I,y ® D) 2 ® Djiy1m) (5.64)
i=1
satisfies ]\Af| 1)®" =0 and

N, a]=-a;, [N,ad]=a], (5.65)
whence N|i(™) = (>i=1is) | i), Therefore, terle basis vectors |i™ ) are
occupation number states that is eigenstates of N; they span the so-called
Fock space H;?) = |vac)® @Hk, where |vac) = |1)®" is the vacuum state

k=1
and Hj, is the Hilbert space corresponding to k Fermi degrees of freedom.
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As much as one can construct n Fermi creation and annihilation operators
satisfying the CAR out of n spin 1/2 operators, so one can obtain the n spin
algebra Man (C) out of the creation and annihilation operators of n Fermi
degrees of freedom. Indeed, from (5.64) one derives o’ = 2a;rai — 1 and

ol = (ﬁ(?alai — ]1)) a, ot = (ﬁ(?a;rai — ]1)) a;r .
Jj=1 j=1

These relations are known as Jordan- Wigner transformations [295]. They
show that the algebra of n Fermi degrees of freedom is isomorphic to that
of n spins 1/2, Man(C). It is important to notice that one Fermi degree of
freedom correspond to a totally delocalized spin operator.

Remark 5.4.1. [290, 291] The kinematical description of n Fermionic de-
grees of freedom is abstractly provided by a set of n operators a;, a;r- satisfying
the CAR (5.62) together with the algebra Ag comprising all polynomials
P(aj, alL-) constructed with them. The Fock one is a concrete representation
of the a;, a;r- as annihilation and creation operators on a Hilbert space with a
distinguished vector |vac), the vacuum state, such that a;|vac) = 0 for all
j=12,...,n.

Because of the CAR relations, in any representation 7 on a Hilbert space
H, 7(a;) and W(a;) are bounded operators with respect to uniform norm:

m(ala;) +m(ajal) = 1 > w(ala;) = ||m(a;)] < 1. (5.66)

Also, any two irreducible representations (m 2(Ar),Hi o) of the CAR of
finitely many Fermions are unitarily equivalent to the Fock one (see Defini-
tion 5.3.6). Indeed, from the previous example, we know that both represen-
tations are isomorphic to Maa (C) for n Fermions; so, the positive operators

mi(N) = > m;(a;)Tm(a;) have discrete integer spectrum with an eigen-
value 0. In fact, if m;(N)[1b; ) = A|¢>), then (5.65) implies
[Na an} = a; [

7

so that
mi(Nym(a)" 62 ) = Mrlad)" )} + [m(N) , m(as)"]|9)
= (A —n)m(a)"[¢}) .

Thus the spectrum is discrete with 0 as its smallest eigenvalue; the cor-
responding eigenvector |1{) is annihilated by all m;(a;) and is unique as
implied by the assumed irreducibility of the representation m;. In fact, the



5.4 Quantum Systems with Finite Degrees of Freedom 183

linear span m;(Ag)|¢?) is dense in H; (see Definition 5.3.3); therefore, if
mi(a;)| ¢;) =0 for all j =1,2,...,n, then the same should hold for its com-
ponent | ¢3 ) orthogonal to | ); therefore, (¢;- |7r,-(P(aj,a}) |99 = 0 for
all polynomials in annihilation and creator operators, whence | ¢ ) = 0 as
it would be orthogonal to a dense subset in H;. The eigenvector | 4? ) is the
vacuum for the Fock representation 7;; let U : Hy +— Hs be such that

Ulf) = [43), Um(P(aj,a})|vf) = ma(P(aj,a))|45) .

Since the scalar products (¢ | 7;(P")Tm;(P") |49 ), with P’ and P” arbitrary
polynomials, are completely determined by the CAR relations, their values
do not depend on the representation chosen; that is

() [ (P ey (P7) [0 ) = (8 | ma(P) o (P [49)
= (] | m(P)TUTUmy (P") [4)

on a dense set, whence U extends to an isometry from H; to Hs.

Of course, not all quantum systems with finite degrees of freedom are finite
level systems. A free quantum particle in one dimension or a one-dimensional
quantum harmonic oscillator are systems with one degree of freedom, but
they are described by means of the infinite dimensional Hilbert space of
square-summable complex functions over R. In quantum information, these
systems are sometimes referred to as continuous variable systems in contrast
to spin-like systems whose variables (observables) are instead discrete (N x N
matrices).

For continuous variable systems the standard kinematics is more appro-
priately given in terms of unitary groups of translations in position and mo-
mentum. The algebraic relations between them are known as Canonical Com-
mutation Relations (CCR).

Consider a Hamiltonian classical system with f degrees of freedom and
canonical coordinates R* > (q,p), ¢ = (¢1,92,---,q7), P = (P1,P2,---,Df)-
In standard quantization, one introduces unbounded, densely defined, self-
adjoint position and momentum operators (g;,p;) on H = qu (R) defined,
in the so-called position representation, by

(@v)(q) =av(a), (PiY)(q) =—i0,¢(q), YeH. (5.67)

On a common dense domain, they satisfy the standard commutation relations
(with A =1)

[@-,@} = id;; | [a : q;} - [@,@} —0. (5.68)

Unlike, Fermionic annihilation and creation operators, the operators g;
and p; have continuous spectrum and cannot be bounded. Indeed, from (5.68),
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(@ 57] = ini™ = 20@0 15l = n, (5.69)

for all integer n. Because of unboudedness, one introduces the one-parameter
groups of unitary operators {U;(q) }4er and {V;(p)}per,

(V@)@ =va+a). (VW)@ =" v, (670

where (g;); = 0i; ¢, in position representation, while

(i@w) @) = vp) . (Viow) @) =ve-p). (6T

in momentum representation, with (p,); = d;; p.

These semi-groups are continuous with respect to the strong-operator
topology, whence, by Stone theorem [300], they are generated by self-adjoint
operators ¢; and p;

Ui(q) :=exp(iqp;) , Vi(p) :=exp(ipq;) . (5.72)

By writing them as formal series, it can be checked that they implement
translations in position, respectively momentum:

U)@ U (@) =@ +a, Vio)piU0) =5 —p. (5.73)
The CCR can thus be recast as
Ui(q) Vi(p) =Vi(p)Uilq) i#3j

‘ (5.74)
Ui(q) Vi(p) = €' Vi(p) Ui(q)
Set a = (ala (/]\27 v 7&})7 1/5 = (ﬁlaﬁ?a v 7ﬁf)7 ri= (a7ﬁ)a and
W(r) = ot (@P+pa) _ ir(2h7) , (5.75)
where - denotes the usual scalar product and Yy := <]? ]10f ) with 1y is
f

the f x f identity matrix. These operators are known as Weyl operators; by
the Campbell-Hausdorff formula,

exp (A + B) = exp (—%[A, B]) exp (A) exp (B) , (5.76)

that holds when [A, B] is a multiple of the identity, they can be recast in
the form _ o
W(r)=e 29P 9P iPq (5.77)

The Weyl operators satisfy W (r)" = W(—r) and the composition law
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W (r) W(ry) = e27m2) W(p, + 1) | (5.78)
where
o(ri,m2) ==¢q Po—pr-g =71 -yr), Jy= (—?lf ]%)f> . (5.79)

is the symplectic form characteristic of the Weyl relations. It thus follows
that the * algebra VW generated by linear combinations and products of Weyl
operators coincides with their linear span.

Remark 5.4.2. Given the * algebra W, one looks for its closure with respect
to a suitable topology; it turns out that the C* algebra that arises from
the uniform norm is too small for physical purposes [300]. For instance, one
would like that two Weyl operators W (r;2) be close to each other when
|lr1 — r2|| — 0; however, whenever 71 # 7,

[W(ry) = W(r)|| = [1— W r)W(rs)|| =2,

since unitary operators have norm 1.

The fact that the translation groups {U;(q) }qer, {Vi(p)}per are strongly
continuous, makes it a natural choice to consider the closure W of W with
respect to the strong-operator topology. Similarly to the CAR , also for the
CCR of finitely many degrees of freedom all irreducible (strongly continuous)
representations are unitarily equivalent. In order to show this, one uses the
so-called Weyl-transform of a function f € L}, (R?/) [300, 142],

f=W3W(f):= /dr fr)W(—r). (5.80)

The Weyl transform is such that WT(f) = W(f1), where f(r) := f*(—7r)
and, by using (5.78), W (f1)W (f2) = W(f1 x f2) where

(fl X fQ)(’I") = /dw fl('w)fz(’l’ _ ,w) e%a(w,r) '
Let P := W (g) where g(r) := (v2m)~f exp(—1[|r[|?), then,

P=P', PWr)P=cill’p,

whence P is a projection for P # 0. Indeed, if W(f) = 0, choose ¢, ¢ € H
such that Iy, 4 := (¢ | P|¢) # 0; then, for all r € R?/,

0= (¢|PWI(r)W (/)W (r)P|p) = / dw f(w) e (¢ | PW(w)P|¢)

=1y /dw f(w)efillwl\2 gio(rw)



186 5 Quantum Mechanics of Finite Degrees of Freedom

Since the integral is the Fourier transform of f(w) exp(—21||wl?), it follows
that f(r) = 0 almost everywhere, which is not true of g(r).

Let K C H denote the subspace projected out by P and consider an ONB
{¢s} in K; since

(W(r1)ga | W(rs)gn) = (Péa | W)W (ra) | Pey )
= (ga|p)e2rzm) emilmoral o (5.81)

the closures K, of the linear spans of vectors of the form W(r)| ¢, ), r €
R2f, are mutually orthogonal. Each vector in K, is cyclic for YW which is
then irreducibly represented on it. Further, K = H; in fact, the orthogonal
complement K is also invariant under J. Restricting W onto K, yields
another representation, W, , such that the maps f — W, (f) :== W(f) K.
are injective. But this contradicts the fact that W, (¢g) = PJK, = 0.

Therefore, every strongly continuous representation of the CCR decom-
poses into an orthogonal sum of irreducible representations. Further, the re-
lation

PW(r)|¢a) = PW(r)P|¢,) = e 1171 4, )

extends linearly to the whole of K,, whence P acts as a multiple of the
identity on each of the invariant subspaces K,. Consider any two irreducible
representations Wa,b with their orthogonal projections P, ;, = W, (g) onto
the cyclic vectors P, p| ¢ap) = | ¢a,p ) and their representation Hilbert spaces
Kg,p. By linear extension, define the operator Uy, : K, — K such that
U Wa(r)| da ) := Wi(r)| ¢ ), for all r € R?f: from (5.81)

(Walr1)ga | Wal(ra)da) = (Wi(r1)ow | We(ra)ds )
= (W(r1)¢a | UL Uah W (r2)a ).

This relation extends to K, whence Uy, is an isometry such that
U;b Wa(r)Usp = Wy(7) , vr e R? |

so that the two irreducible representations W, ; are unitarily equivalent.

As we shall see in Chapter 7, for infinitely many degrees of freedom there
are inequivalent irreducible representations of the CCR ; this is true also for
finitely many degrees of freedom when the symplectic manifold is not R?7,
rather a torus [300, 291] or when strong continuity is relaxed. This is the
case for a discrete formulation of the Weyl relations that holds for discrete
variable quantum systems and turns out to be extremely useful for quantizing
hyperbolic dynamics of the kind studied in Example 2.1.3.

Example 5.4.2 (Weyl Relations: Finite Dimension).
Actions similar to translations in position and momentum can also be
defined for finite level systems, that is on Hilbert space H = C¥. Let
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{| k)N be an ONB | fix v, € [0,1] and consider the following matri-
ces UN,VN S MN(C)

N )
Uy i=e®ion S eR bk (K|, Vi :=eRio 3 [R)(k-1],

k=0 k=0

together with the identification |j) = | jmod N ). These operators are uni-
tary and

Un|t) = e Rt gy - yy|e) =¥ iow

0+1) . (5.82)

Thus, setting n = (n1,n2) € Z2, Uy and Vy satisfy the discrete Weyl
relations

Ui yne = oFimnzymymne (5.83)
Further, like in the continuous case, it is convenient to introduce the discrete
Weyl operators

Wy(n) =e tNmnzygltyne (5.84)

They satisfy W;,(n) = W (—n) and the composition law
Wy (m)Wy(m) = ¥ 7™ Wy (n+m) , (5.85)
with o(n, m) := nyma—namy. Since || [Uy , V||| = 2|sin &|, letting N — oo

one expects to recover the commutative structure of Example 2.1.3.

In order to be compatible with a finite dimensional Hilbert space CV,
powers as UY and V3 must be proportional to the N x N identity matrix
1; in particular,

Uy =™y, Vil =™y (5.86)

O, v

Different choices of a,,, label different irreducible representations Wy
they play a role in the quantization of classical discrete maps as in Exam-
ple 2.1.3 [98] (see Example 5.6.1). These representations cannot be equivalent,
otherwise, for a, # o), there would exist an isometry T such that

N 2T i« 2mi o
TTUN’auT:e u UNa, =e v,

where Uy o, denotes the operator Uy fulfilling a specific rule (5.86).
When normalized, the discrete Weyl operators form an ONB in My (C).
Indeed, using (5.84) and (5.82), it turns out that

2

Te(Wa(n)) = 3 e Fmme (e UR vie o)
0
-1

ol

—7 =

e i W(n1n2+2n1(au+f)72n2av)< Y | f+ na >

=00 »_ e N (FD) = NG, (5.87)
=0
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This in turn yields
TI.(WJ]:T(TL)WN(m)) = Nonm , (5.88)

whence (see Example 5.2.5)

X = legzj (e(Wh(n) X)) Win) VX eMN(©).  (5.89)
where Z% := {n = (n1,n2) : 0 <n; <N —1}.

Returning to continuous variable systems, a particular vector state in
H = L2(R/) is given by the Gaussian function

o) = en-L), @riple) =0, (90

foralli =1,2,..., f. Notice that in momentum representation §(p), obtained
from g(q) by Fourier transform, has the same Gaussian form as the latter. For
reasons which will become immediately clear we shall refer to the Gaussian
state as to the vacuum and set |vac) :=|g).

Example 5.4.3 (CCR : Annihilation and Creation Operators).
Given f canonical pairs (g;, p;), using (5.68) one shows that the operators

4i +ip; t G —ip;

a; = , a; = , 5.91
7 7 (5.91)
satisfy the CCR that describe Bosonic degrees of freedom,
[a ] =9 {a- a-} = [aT at] =0 (5.92)
(3] 7 19 Yy i %y . .

The Gaussian function |vac) plays thus the role of the vacuum for the CCR
as it is annihilated by all a;, a;| vac) = 0. Since

ala; (a})™ | vac) = af[a, (a})™ ]| vac) = ny (a})™| vac) ,

f[ aT)ki
the vectors | k) := | k1, k2, ..., ks u
o vk

ail k) = Vkilk—=1;), al|k)= ki +1L|k+1), (5.93)

where k£1; := (k1,...,ki—1,k; £1,kiy1,...,ks). They are the orthonormal
eigenvectors of the number operator,

|vac are such that
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f f
Z ala;,  Nk)=(_ki)lk). (5.94)
i=1 =1

The occupation number states | k) span the Fock space for the f Bosonic
f

modes (degrees of freedom), Hg) = |vac) ® @Hn, where H,, is the Hilbert
n=1
space of n modes. Unlike for Fermions, the number operator is unbounded

and the Bosonic Fock space is infinite dimensional for such is the Hilbert
space of each mode.
By introducing the 2 f-dimensional operator valued vectors

A= (ah...,af;aJ{?...,a}) , Al = (aJ{,...7a}-;a17...,af) , (5.95)

the Weyl operators (5.75) can be rewritten as

" / ajtirg 95~ iPj
W(r)=e?4= H R (5.96)
j=1
Z= (-2, =3P s, (5.97)

V2
while the CCR relations (5.78) become

ZlAZIA _ 32 (DZ;) o(Z1425)A

where X3 = (llof (])1 ) and (5.97) yields
-
ZT . (23Z2) - —QZ'C\\S(ZT . Z2) = —2i0’(’!‘1,’l"2) . (598)

Of particular interest are the so-called displacement operators

D(z) = ezal —z"a _ =15 gzal o—z"a , (5.99)

where z := {zl} _, € Cf and (5.76) has been used. Their action is as follows,

— 1
D(z)f Zk_ ajl=a; + 2z, j=12,....,n, (5.100)

where d’;j denotes the map d,[-] = [~z al + z7 aj, -| applied k; times.
Given z € C/ and the corresponding displacement operator D(z), us-

ing (5.96) and (5.97), one finds that it corresponds to the Weyl operator

W(r(z)) with 7(z) = vV2(=R(2), 3(2z)), whence, via (5.78), one computes

D(z1) D(z2) = e~ 23(Z1:(5s22) D(z1 + z2) . (5.101)
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5.5 Quantum States

Hilbert space vectors as those encountered in the previous sections are
the simplest possible instances of quantum states: once it is known that
a quantum system is in a physical state described by 1 € H, then the
system observables X = X' € B(H) have mean-values, or expectations,
(X)) == (Y| X |¢). With B(H) > P, := |[¢)(%] the orthogonal projec-
tor onto | 1), using the trace (5.19), one writes ( X )y = Tr(Py X).

One-dimensional projections P, are known as pure states and are the most
informative about the system they describe; they are quantum counterparts
to the classical evaluation functionals 0, (f) = f(x) of section 2.2.1. Also in
quantum mechanics, however, what is often practically achievable is not the
specification of a precise vector state, but only that the system physical state
corresponds to a projector P; occurring with a certain weight 0 < A; <1
within a statistical ensemble J of projectors such that jed A; = 1. In such
a case, the state of the system is a mized state, namely a mixture of pure
states; relatively to them, observables have mean-values that are linear convex
combinations of pure state mean-values:

(XD, =D N [ X ) =Te(pX), pr= Nl )(ey]. (5.102)

jeJ jeJ

As a linear convex combination (weighted sum) of projectors, p is a positive
operator of trace 1, known as density matriz.

Definition 5.5.1 (Density Matrices). Any positive trace-class operator
p € Bi(H) with Trp = 1 describes a mized state; let p = 3, rj[r;)(r;|
be its spectral representation with 1 > r; > 0, Zj r; = 1. Then, p defines a
positive, linear and normalized functional on B(H):

B(H) 5 X = w,(X) = Tr(p X) = Y 1y (6 X[6;) . (5.109)
J
The set of all density matrices over the Hilbert space H of a quantum system
S will be denoted by S(S) or by B (H) and called state-space.
Its extremal points, those which cannot be decomposed into convex combi-
nations of other states, are called pure states.

Remark 5.5.1. The eigenvalue r; of p in (5.103) represents the probability
to find the system in the state |r;) once it is known that it is described by
the density matrix p. However, a mixture as in (5.102) can correspond to a
convex combination of non-orthogonal projectors P; = |; )( 1, |; this fact
points to two crucial aspects that mark a substantial difference with respect
to classical phase-space probability distributions: 1) a same p corresponds to
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different mixtures and 2) the weights \; of the mixture are interpretable as
probabilities if and only if

Me= (Wl pln) = DN 1y 1) P = (v | ¥n) = 8

jeJ

that is if and only if the vector states corresponding to a given physical
mixture are the eigenvectors of the associated density matrix.

Examples 5.5.1.

1. The geometry of the state-space of two level systems can be simply visu-
alized. Using (5.57), the density matrices p € M»(C) read

r s 1 L 14p3 p1—ip2
= = (1+p- o)== . 5.104
P (s* 1—r> 2( +p-0) 5 <p1+2p2 1— py , ( )

with 0 <7 <1 and 7(1 —r) > |s|? for p > 0. Thus, p € R? has length
0< ol = 1~ 4Det(p) < 1.

Thus, the density matrices of two-level systems are identified by the vec-
tor p, the so-called Bloch vector, inside the 3-dimensional sphere. The
pure states are uniquely associated with points on its surface, while or-
thogonal states are connected by a diameter.

2. By expanding the exponential operators in (5.99) as power series and
acting on the vacuum state, the resulting pure state,

e L2 oo Lk
|z>::D(z)|va(z>:e*%ez'“wva@:67I2I HZ —|k),
J=1k;=0

VEk;!

(5.105)
is a so-called coherent state [312], that is an eigenstate of the annihilation
operators

ailz) = z|z) Vi=1,2,...,n. (5.106)

It thus follows that the squared-moduli of the components of z are mean-
occupation numbers: (z| N |z) = Z]f':1 |z;|?. Coherent states cannot be
orthogonal to each other for there are uncountably many of them, indeed,
from (5.101), one derives

(z'|22) = (0| DI (=2")D(22)[0) = &3N3l == (5107)

Nevertheless, with z; = r; exp (i9;) and dz = [[j_, r;dr; dv;,
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1 |pi){a;l p+q
o dz|z)( |—H Z 'qj ?"Jdrj ity

!
R j=1p;,q;=0

f o

1 27 )
= d9. e?ilai—pi) — . l=1. 5.108
Ay H2|pj><p]| (5.108)

Jj=1p;=0
Namely, coherent states form an overcomplete set in the Fock space Hg).
Let a' represent the creation operator of a photon in a single mode;
o0

n
.12 z .
a coherent state |z) = e”1*I"/2 E —'|n) corresponds to a Poisson

|2 _ ‘Z|2nef\z|2.

distribution over the mode number states, |(n|z) ;
n!

. Passing from annihilation and creation operators to position and momen-

tum ones, by inverting (5.97) the complex parameters z € C/ correspond
to points » = (g,p) € R?/ in phase-space, where q := v/2R(z) and
p = v23(z). Coherent states are then characterized by gaussian lo-
calization both in q and p; indeed, if v/2z¢ = q, + ipy, then from the
discussion preceding equation (5.101), using (5.77), (5.70) and (5.90) one
gets, in position representation,

o~ lla—aoll/2

(a]20) = (a|W((=q0,py)) [vac) = e @0/2) ——— (5.109)
while, in momentum representation (see (5.71)),
, ~llp=pol*/2
(plzo) =ei@oPrpo/2E 2 " (5.110)

wf/4

The phase-space localization properties of coherent states make them use-
ful tools for studying the quasi-classical behavior of quantum states [138].
In particular, given a density matrix p for a continuous variable system
with f degrees of freedom, one can compare its statistical properties with
those of the function R,(q,p) := (z|p|z) [300] which is positive, since
p > 0, and normalized because of (5.108), thence a well-defined phase-
space probability density. Viceversa, given a phase-space density R(q,p)
one can naturally associate to it a density matrix, pr, which is diagonal
with respect to the overcomplete set of coherent states:

pn= [ @z B 2)x] = [ S Ry ot i) iy
res (2m)7
(5.111)
Most density matrices p admit a so-called P-representation [121] as above
in terms of a function R(x,vy) that is summable and normalized, but, in
general, not positive and thus not a phase-space density.
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The classical character of coherent states stands in sharp contrast with
that of number eigenstates: this behavior shows up most evidently when
photons interact with beam-splitters [123].

Beamsplitters

A beam splitter is an optical device that is used to divide an incoming classical
light beam of intensity I along a spatial direction 1 into a reflected beam of
intensity R x I, with reflection coefficient R along an orthogonal direction
2, and a transmitted beam of intensity 7" x I, with transmission coefficient
T along the incoming direction 1. In absence of absorption and dissipation,
R+T=1.

Quantum mechanically, one associates photon modes to the two spatial
directions; in an effective two-dimensional description, a generic single photon
state | ¢ ) incident upon the beam splitter is a superposition of single-photon
basis states | 1), |2) describing photons impinging on the beam-splitter along
the directions 1 and 2.

a
BS
a/]_ T2 bl
—_— e >
Az
1 E t2

¥

b2

Fig. 5.1. Beam Splitter

In absence of dissipation, the interaction with the beam splitter produces
outgoing photon states according to the rules

1) :=U|1) =t1]1) +712|2), |27):=U|2) =r|1) +t2]2),

where 71 2,%1,2 € C are the reflection and transmission amplitudes along the
ty

directions 1, 2. Therefore, a natural matrix U = <r
1

;2) appears which is
2

unitary. In fact, by using creation operators a;r for the two modes, one writes
|i) = a;r| vac), where the vacuum |vac) is the state with no photons. Setting
|1') := bl vac) and |2') = b}| vac), yields bl = tyal +road, b = rial +tyal
and the Hermitian conjugate linear relations. As the bj# create and annihilate
new photon states, they must comply with the CCR (5.92), whence
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(b1, b1] = [t1 P +[ra] = 1= [br, Bl] = [ta*+|ral*, (b1, D] = tir1 475t = 0.,

The whole physical process can thus be characterized by the matrix

U— ti ro\ te’Vr  peit:
T\ ta ) T \ret?r tez ) 0
where r? + ¢? = 1 and (¢1 + ¢2) — (¢1 + 1) = 7. For sake of simplicity, we

shall set t =7 = 1/4/2, 91 = 1 = 0 and ¢; = ¢, so that ¢p = 7 — ¢; in this
case, the matrix U reads

o tl T2 o L 1 ew
U= <7“1 t2> =7 (_e_m5 e (5.112)

It describes a so-called 50 : 50 beam-splitter that rotates by ¢ and © — ¢
the reflected and transmitted beams. The transformation a; 2 +— by 2 can be

unitarily implemented, namely we can explicitly construct the operator U
that sends |1), |2) into |1"), |2"). Since the beam-splitter does nothing to

the vacuum, namely U\ vac) = Utlvac) = |vac), the action of U must be
such that by o = Ual 2 Ut. Let us consider the operator

fj(z) — ezalag—z* alas , 2= |Z|eio¢ :

it is unitary and its action can be computed as for the displacement operators
n (5.100). Namely

~ ~ > 1
U(=)al0(2) =" o), dof] = [zara} - 2" alas, -]

Since d.[al] = zal and d.[a}] = —z* al, the infinite sums can be explicitly
computed, the result being
U(2)

al U(2)" = (cos|2]) a] — e (sin|z) a}
U(z)ad U

(2)t = e~ (sin|z|) al + (cos|z|)al .

Therefore, the matrix (5.112) corresponds to |z| = 7/4 and a = 7 + ¢; set
U :=U(—mn/4exp (i¢)). In terms of U it is now easy to check that an incoming
photon along direction 1 emerges in a superposition of states,

ai + cay, 1) +¢]2)

N, A, T

Instead, for a coherent state |«) = D(«)|vac), a € C, one has

|1") = bl|vac) = UtalU|vac) =

fj|a):ﬁD(a)ﬁT|vac>:e“ﬁalfﬂ_o‘*ﬁalﬁfwac)
9l _a =it i Q

“|lvac) = | 7 1 ®|e Eb
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This means that an incoming coherent state gets split into a transmitted co-
herent state | % )1 of intensity |a|?/2 and a reflected /phase-shifted coherent

state |ei¢% )o of intensity |a|?/2, exactly as with classical light.

On the other hand, a purely quantum effect results from a beam splitter
acting on a state | 1115 ) consisting of two photons coming from the orthogonal
directions 1,2. It is transformed into | 1715 ) = bl bl | vac); explicitly,

~ ~ o~ ~ 1 . .
11015) = UalU U ad U T vac) = §(aJ{ + eal)(—e ?al + al)|vac)

_ ig (T2 7T 7T ig( T)2 _ -1 2
= - € a + ajay — asaq + € a vac) = .
2( (1) 122 291 (2) )| > \/§

The outgoing state thus consists in a superposition of states with both pho-
tons moving along a same direction; then, photons will always be found to-
gether either along direction 1, | 2; ), or along direction 2, | 25 ), with the same
probability. On the contrary, no experiment can reveal one photon along di-
rection 1 and the other photon along direction 2. This is because the ampli-
tude for | 1712 ) is the sum of the amplitudes of all processes leading to this
state; in the present case these are reflections along either directions 1 and
2 with amplitudes r1ry = —1/2 and transmissions along either directions 1
and 2 with amplitudes t1t5 = 1/2. These processes interfere destructively.

The same kind of effect appears in single photon experiments with Mach-
Zender interferometers.

BS
1 t \ M
\ \
1
BS,
to
M N P D,
L)
w
D,

Fig. 5.2. Mach-Zender Interferometer

In a configuration as in Figure 5.2, an incoming photon is either reflected
or transmitted at a beam-splitter B.S; with amplitudes r; and ¢, reflected by
perfectly reflecting mirrors M and then either reflected or transmitted with
amplitudes 79 and t9 at a second beam-splitter BSs. The outgoing photons
are then counted by detectors Dj . The probability P, of a photon being
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detected at Dy is determined by the amplitude at Dy which is the sum of those
of the processes “reflection at B.SS; + transmission at BS5” and “transmission
at BS; + reflection at BSy”, that is P, = |rity + t172|%. Analogously, the
processes “transmission at B.S7 + transmission at B.S;” and “reflection at BS}
+ reflection at B.S;” contribute to the detection probability at Dy, Py =
|t1ta + r172]%. One can visualize the entire process by means of a binary tree
with one level for each beam-splitter.

BS;

D, D,y D D,

Fig. 5.3. Mach-Zender Interferometer: Binary Tree

If both beam-splitters act through a same operator U as before, then,
taking into account the impinging directions,

2

1 N 1 :
P1:‘2<—e_z¢+ez¢)’ =sin? ¢, P2:‘2(1+e2“1’> =cos?¢ .

An interference pattern thus emerges which depends on the phase-shift ¢ and
can then be experimentally controlled.

Uncertainty Relations

Beside being necessary for the consistency of the statistical interpretation
of quantum mechanics, the positivity of quantum states is, together with
non-commutativity, at the origin of the Heisenberg uncertainty relations.
Consider the CCR for f degrees of freedom; with the notation of (5.75),
let p € B (H) be a density matrix such that all first moments r; := Tr(p7;)
and all second moments Tr(p7;7;) are finite. Then, the 2f x 2f real matrices

2f 2f

G [Tr(p(ﬂ—n)(?j—rj))] . (OAYT = [Tr(p(?j—rj)(ﬂ—n))]

ij=1 ij=1

are both positive. In fact,

2f
(ulCu) = > ufus Te(p (7 — )75 —75)) = Tr(p X' X) 20,

i,7=1
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for all u € C* | where X := "2 w;(7; — r;). Using commutators (|-, -]) and
anti-commutators ({-, -}), one finds

(i =)@ =) = 5{ @ =), G =)} + 5 [7i, 7]
7 =) Fi—r) = 3 Fimr), )} — 5[F 7]

With J¢ as in (5.79), the CCR (5.68) read [?i, ?J} =1 (Jf)i;; it thus turns

out that the correlation matrix

Cr + (CP)T 1 N N
— 2f —
Cr = [Chli— = 5 , Cf = 5Tr(p{(n -ry), (75 — r]-)} ,

beside being positive, must also satisfy
1 PO Jy
Py = o —Cr =f
or + Q[Tr(p [rl,rjm cr+itzo. (5.113)
Let f =1 and choose p = | ¥ )( 4 |; then,
i (0 1) _
5 (—1 0) -
(V] (A9 |v) (VI{@, p}v)/2+1i/2
(v{g, pY)/2Fi/2 (¢ ](Ap)?¥)
where AG :=¢— (¢ |q|¢) and Ap := p— (¢ | p|tp ). Therefore, (5.113) implies

_ ~ (v[{g.pHv)* 1
(] A%qh) (o] A%ply) 2 LALHES 4 2
These are the uncertainty relations for conjugate position and momentum.
In terms of Bosonic annihilation and creation operators, using (5.91)
and (5.95), the correlation matrix reads
2

ve=Ulcru, = %[Tr(p{Ai —(Ai),, Al — <A}>p})} T 1

i,j=1

1
where U; = 7 (_12 1) ® 1y and (Af),) = Tr(pAf). Notice that the

matrices V7,

and the transposed

7o) = L1 (4]~ A, ) (4 - (40,)]
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are also positive. Since {Ai, AH =0;; if 1 <i < f, while {An AH = —0; if
1+ f<i<2f, and

%{Ai, A}} — A AL - %{Ai, AH —AlA+ %[Ai, Aj] ,

it follows that

1 1 0
P> e > 3 1= f .
VPZO0, VPS>0, S (0 —llf)' (5.115)
The correlation matrix of a coherent state p = |z){z| as in (5.105) is par-

ticularly simple; indeed, by virtue of a;| z) = z;| ), it turns out that

<z|a;raj|z>:z:‘zj, (zlaia;lz) = 2iz; , <z‘aia;|z>:5ij+ziz;v

1 /1 0
p_ = f
whence V? = 5 < 0 ]1f>'

Gaussian States

In classical probability theory, continuous probability distributions p on R™
can be described in terms of their Fourier transforms or characteristic func-
tions [157]

Fu©) = [ dula) €

In this way, the moments of the probability distribution can be obtained by
differentiating F),(€) at & = 0. Similarly, let p be a state of a continuous vari-
able system with f degrees of freedom equipped with a strongly continuous
representation of the CCR in the form (5.96), then the characteristic function
of p is given by

ch(r) = Tr(pW(’l")) = Tr(peZ*‘A) =: va(z) , (5.116)

where (5.96) and (5.97) have been used.

Remark 5.5.2. The characteristic function S’ (r) is the inverse of the Weyl-
transform (5.80); indeed,

o= [ G FE W)

where the convergence of the integral is understood with respect to the weak-
operator topology on the representation Hilbert space. The easiest way to see
this is to call X the right hand side of the previous equality and calculate its
matrix elements in the position representation (5.67) using (5.70):
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(011X 1a2) = [ 57 FE ) (| W) la2)

dgd .
B / TP FO(r)6(q — qy + gp)e P30+

@)

dp i
B / (2m)f ch(‘h —qy,p)e 5P (q1+q2)

By computing the trace in position representation, one gets
F(qy — g,p) = Tr(p Wi(q, — qzvp))
a1 —492

:/dw<$|plw*q1+q2>e’i’"( 2

dp

199

whence, from the representation / —=_¢"P'9 = §(q) of the Dirac delta,

@n)?

dp p-(g—=x
<q1|X|q2>=/dx/Wep<q Nalple—aqi+a2) = (a1 plas) -

Taking derivatives of F pC (r) at » = 0 with respect to the real variables

i, Pi, respectively of F pv (z) at z = 0 with respect to the complex variables z;,
z;, one gets the expectation values of all products of position and momentum

coordinates, respectively of annihilation and creation operators.
For instance, the first moments arise as follows,

9., FY (2) = —Tr(pal) ,

zit'p

=Tr(pa;) , 8z;<F,Y(z)

z=0 z=0

while second moments can be extracted from

= {one) = o 4]

for 1 <i< f, 1+ f<j<2f,

o= o) = S )

for 14+ f<i<2f 1<j<f,

L O B )

for 1+ f<i<2f 1+ f<j<2f,

o= o) = -n(ofa )

for1<i< f,1<j<f.

02 FpV(z)

ZiZj

02 va(z)

* .
Zi %]

(5.117)

(5.118)

(5.119)

(5.120)

(5.121)
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The link with the correlation matrix (5.114) is apparent; indeed, the pre-
vious moments arise from a gaussian characteristic function of the form

FY(z)=eZ (A =327(V'2) (5.122)

where (A), := {Tr(p 4;)}27, and the vectors Z, A are as in (5.97) and (5.95).
Notice that (5.114) implies that the sesquilinear form

(Z1,Z2) — Z7 - (VP Zy)

is symmetric and positive.

Taking into account (5.91) and (5.97), one passes from the complex vector
Z = (2*,—z) € C* to the vector » = (q,p) of canonical position and
momentum coordinates by means of

1 1 —i
Z—UQ'I", U2_\/§<1 Z)®]lf
0 1
1; 0
FY(z) becomes the following Gaussian function of r € R?/,

Since U;Ul = X = —i( ), where U; is the matrix in (5.114),

ch(r) _ eir.(&(?)p —ir(Z1CP3r) , (5.123)

where (7), = {Tr(p7,)}2.

As in classical probability, the Gaussian form of the characteristic function
is such that higher moments are determined by first and second moments.
Obviously, not all quantum states have this property, if they do have it, they
are called Gaussian states.

Example 5.5.2. Coherent states p = |u){u|= D(u)|0)(0|D(u), u € Cf
are Gaussian; indeed, using (5.100),
Viy i zZA _ Z*-(A+U
F)(2) = (0] D' (w)e® AD(u) [0) = (0] # A+ 0)
_ eZ".U <O|eZ*.A |0> _ eZ*'U*%HZHQ U= (u,u*) c (C2f )

The first moments are w = (u|a|u), u* = (u|a’ |u), the correlation matrix

1 0
p— 1"
v 2(0 ]lf)

From its characteristic function, one can easily determine whether a given
Gaussian state p is pure; indeed, by using Remark 5.5.2, one computes

Tr(p?) = / % FE () FE (r) Te(W (—ri)W (—r2)

_ dir Clp) FC(—p) = dr o (CPT) 1
= [y R = [ o T

Therefore, p is pure if and only if Det(C?) = 477,
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A part from their first moments which can always be set equal to 0 by a
suitable shift operated by a displacement operator D(z) in (5.99), Gaussian
states are completely determined by their correlation matrix. An interesting
question is the following one: given a Gaussian function

F(z)=eZ Me=327(VZ) (5.124)

with M € C?f an assigned complex vector and V' an assigned (2f) x (2f)
positive matrix such that the associated sesquilinear form is symmetric,

Z1-(VZy) =2, (VZy) (5.125)

is F'(z) the characteristic function of Gaussian state p with correlation matrix
V' and first moments given by the components of M?

The answer is that it is so if and only if V' satisfies the conditions (5.115).
While necessity descends from the uncertainty relations, sufficiency comes
instead from the following general result [143].

Proposition 5.5.1. A function R* > r — FY(r) (C*/ 3 z — FY(2))
s the characteristic function of a quantum state p of f degrees of freedom
satisfying the CCR if and only if 1) FE(0) = 1 (FV(0) = 1), 2) F(r)
(FV(z)) is continuous at 7 = 0 (z = 0) and 3) for any n-tuple {r;}*,,
r; € RS ({2} ,) the n x n matriz F€ (FV') with entries (see (5.98))

fg _ e*%O’(rif"j) FC(Tj _ Ti) (fz‘g/ _ e%z;‘.(Z‘aZ,-) FC(Zj _ Zz))
18 positive definite.

We postpone the proof of the proposition and instead show that if the
positive (2f) x (2f) matrix V in (5.124) satisfies V & X3 > 0, then there is
a (Gaussian) state p with F(z) as characteristic function.

We just need to consider condition 3) and prove that

n
*_Z*). _1 k7. 7. 1 gx*, .
3wty o ZmEDM o= (Z = ZIV(Z,20) 32122 >

i,j=1

for all choices of n complex vectors z; € C/ in Z;, = (zF,—z;). Because
of (5.125), we shall thus show that

n
* 1 . *, _ 1z .
E wiw; e (V43%5)Z5) >0, where w; :=eZiM—3Z:(VZi)

ij=1

Since V + %Eg is positive, the same is true of the n x n Hermitian, positive
definite matrix A := [A;;], with entries A;; := Z}-((V+1X5)Z;). Then, con-
sider the spectral decomposition of A with eigenvalues ay > 0,£=1,2,... n,
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so that A;; = Z?:l agwiw;j, where 1p; is the i-th component of the ¢-th
eigenvector of A; then,

2
n

n oo 1 k
ST SLD S| O

ij=1 k=0 """ 01,09, Lp=1j=1

n k

i=1 r=1

Proof of Proposition 5.5.1 If FV(z) = F)/(z) in (5.116), then condition
1) in the statement of the proposition is satisfied because Tr(p) = 1, while
condition 2) is fulfilled since we assumed a strongly-continuous representation
of the CCR and p is a trace-class operator, so that

V()= 1] < 3 [ 14~ 1)

J

)

where 7; and | r; ) are eigenvalues and eigenvectors of p. As regards condition
3), observe that using (5.116) and (5.78), it turns out that

i u;‘ujfi‘]/- = Tr(pXT X) >0,

i,j=1

where X := Y"1 u; exp(Z; - A).

The sufficiency of conditions 1), 2) and 3) is shown by using them to
construct a strongly continuous representation of the CCR by Weyl operators
W (r) on a Hilbert space H and a density matrix p on H such that F'¢(r) is
of the form (5.116) [143]. One starts by defining the operators

<W0(r)¢) (w) = e 3" Wy(w 7)), reR, (5.126)
on the functions on R%/; these operators satisfy the CCR (5.78):
(Wolr1) Wo(ra)o ) (w) = e~ 5727 (Wo(ry +72)9 ) (w) -

Then, one considers the linear span K of all functions on R/ of the form
n Z
Ve (w) = ;Ck eXp(—QU("‘k,w)) ;

for all finite n € N, and defines on it the sesquilinear form

ny n2 )
i

(Te, [Woy )= Y ()] FO(r; —ri) e 20momi) |

i=1j=1

where z;; are related to 7;; via (5.97). Because of the positive semi-
definiteness of ¢, (Ve |We ) > 0; thus, in analogy to the GNS construction,
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one takes the quotient of Ky by the kernel consisting of those ¥ such that
(Yo |Pe)p = 0 and then its completion with respect to the scalar product
defined on the quotient by (-|-)r. This gives a Hilbert space K containing
the constant function 1(r) = 1 on R?/ for (1|1)r = 1; similarly to the GNS
vector, | 1) is cyclic for the family of operators Wy (r) since

n

w) = ch exp(—%a(rk,w)) = ch (Wo(rk) Il) (w) ,
k=1

k=1

and .
(1 Wo(r) [1)r = (1] ™37 ) = F(z) . (5.127)

Further, (5.126) yields

(Wo(r)e, ) () zcke o) o ruinw)
whence
(Wo(r)We, | Wo(r)e, )r =Y (c})*c; eso(rim) g=3o(rjm)
]

i 1 2
% FC(’I"? _ ,’,’}) 6_5‘7(""11"""'77']'""’")

- Sl PO et

= <wcl ‘wCQ >F

The operators Wy (r) can thus be extended to unitary operators on K where
they provide a representation of the CCR . If the latter is strongly continu-
ous, then, from Remark 5.4.2, it reduces to an orthogonal sum of unitarily
equivalent irreducible representations. Namely, there exists an irreducible rep-
resentation of the CCR on a Hilbert space H by Weyl operators W (r) and
an isometry U : K — H := @, H such that

Wo(r) = Ul W(r)U ~Dwe)

Also, U 1) = @, |1n ) is a normalized vector in H, namely Y7 [[¢o ]2 = 1,
so that p := > A, P, is a density matrix on H, where )\, := ||¢),,||* and
Py, i= |y ) (W | with ¢, := 1, /||t ]|. Now, from (5.127) it follows that

Te(pW(r)) = (v [ W) ) = (U1 W(r) [UT)

= (L[ Wo(r)[T) = F(z) ,

which concludes the proof. In order to show that the representation of the
CCR by the Weyl operators Wy(r) on K is strongly continuous, we shall first
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show that the condition 1), 2) and 3) ensure uniform continuity of F¢(r) at
any r. Indeed, choosing vectors r1 = 0, ro = u and r3 = w, it turns out that

1 FC(u) FC(w)
FC¢ = FC(~u) I FC(w — u)e_%”(“’“’) ;
FC(—w) FC(u—w)esoww) 1

its positivity implies FC(—u) = F(u)*, |F(u)| < 1 and
2
FO ()~ FO(w)| < 1= |[FO(u - w)
— 2R { (FO)" (w)FC (w) [1 = F(u - w) et }
g4ﬁ—F%u—wm%Www.

Then, the strong continuity of the representation is a consequence of the fact
that, for all ¥ € Kq, the contribution

(e [ Wo(r) Yo ) r = Zc;‘cj e~ s(o(rjm)tolrir+r) Fc(rj +r—r;)
,J

goes to (Yo | e ) p when  — 0 in the equality

|(Wolr) - DI Ze)li3 = 2((We | o )r — R{To | Wolr) [¥c ) r )

and that this result can be extended to the whole of K. O

Examples 5.5.3 (Two-Mode Gaussian States).

1. Consider two bosonic modes (7 = (g1, ¢2, p1,D2)) in a state p with Gaus-
sian characteristic function,

Ff(r) = ¢ 2T (21075 R = (q1,95,P1,P2) - (5.128)

With respect to (5.123) (7), = 0, a case which can always be attained by
suitably translating p. This is more easily ascertained in terms of creation
and annihilation operators as in (5.122); indeed, if p is such that

(A), = {Tr(pA)Y, = U = (") £ 0.,
consider p := Df(u)pD(u), with D(u) as in (5.99) (see also Exam-
ple 5.5.2). Using (5.100) and (5.116),
Fb‘/(z) = Tr(pD(u) eZ A DT(u)) =e 2"V Fﬁv(z)

— o= Z"U ZU-427(VPZ) _ —32°(V’2Z)
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It is convenient to rearrange 7 as R = M7, M = M~' = M7T,

a1 1 0 0 O 01
= |p| (00 10 Q2
R=|20=10100ll2]- (5.129)
D2 0 0 01 Da
| S —
M
As a consequence, the CCR (5.68) now read
0 1 0 0
s 5 . -1 0 0 0
Ri, Rj) =iy, 2:=MLM=| " o | | (130
0 0 -1 0
and the characteristic function (5.128) becomes
FO(r) = G(R) = e~ 3R (1 VIR) (5.131)
0 0 0 1 .
= 00 10 1 ~ =
where Y := 010 0 and V = [QTr(p{Ri,Rj})]“ 1. More

1 0 0 0
explicitly, a same argument as the one that led to (5.113) shows that C
is a positive real 4 x 4 of the form

V= (Cf‘T g) (5.132)
R S I R I
0= 8= (it i) e

0= (Rt Tonn) (3.139)

By multiplying (5.113) on both sides by M, the necessary and sufficient
conditions for V to be the correlation matrix of a gaussian state are

Vi%(zzo. (5.136)

. Every 2 x 2 real matrix S of determinant 1 such that SJ,S7 = Jo,
0 1
-1 0
of freedom, can be used to define new one-mode canonical operators,

. ~ A
¥ =577 = (%), 7= (%,), [, R}] = i(J2):;. This fact allows for

where Jo = is the symplectic matrix (2.6) for one degree
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a greatly simplification of the basic structure of the correlation matrix
V [278, 115]. As a first step, consider a positive, real symmetric 2 x 2
matrix X with a := y/det(X) and define S := y/X/a; it turns out that
X =57 (g 2) S. Furthermore, since v X is symmetric and Jy anti-
symmetric, v X Jo v X is antisymmetric and thus proportional to Js. Its
determinant is o whence vV X Jo VX = aJs and SJ5 ST = J °. As a sec-
ond step, use this result and let S p effect the symplectic diagonalization
of the positive, real matrices A, B in V), then

po(Sa 0 (aly C\ (S 0
0 Sp cT B, 0 S%L) -
As a third and last step, notice that the real matrix C can be written as
C=U <001 CO ) VT where ¢ 5 are its singular values (see (5.16)) and
2

U,V are two orthogonal matrices. If their determinant is 1 then they also
preserves Jo, otherwise set U := Uos, V := Vo3 and

Y1 0 L C1 0
(3 5) == (5 2)»

where now ;2 need not be both positive. Therefore, any two-mode cor-
relation matrix can be written as [278; 103]

a 0 v 0
_(Usa O 0 a 0 Ug 0
V(O UB> w0 B 0 (O Ug , (5.137)
0 » 0 8
Vo

by means of matrices Ua, g such that Uy g J2 UXB = J5. In conclusion,
by suitably changing canonical coordinates, one can always reduce V to

the standard form V, = (é% g()), where Ay =: aly, By := (1,
0 0

and Cy := (701 ,3 ) Then, for Vy, by imposing the positivity of the
2

principal minors of Vy £ %(), the condition (5.136) amounts to
1
1 + I, >0L + 1+ 215, (5.138)

where I} = a? = Det(Ay), Io = 3% = Det(By), I3 = 1172 = Det(Cp) and

5The above argument is the simplest formulation of a more general theorem of
Williamson on the symplectic diagonalization of positive, real 2 f x 2 f matrices [115]
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Iy = (aff = 77) (af = 73) = det(W) -

As the determinants I; are invariant under transformations as those lead-
ing from V to Vy, that is Iy = Det(A), Iy = Det(B), I3 = Det(C) and
I, = Det(V), inequality (5.138) is necessary and sufficient to ensure that
a positive, real 4 x 4 matrix V as in (5.132)— (5.135) be the correlation
matrix of a two-mode Gaussian state.

3. Consider a two-mode Gaussian state p as in (5.111); a necessary and
sufficient condition such that R,(q1,g2;p1,p2) > 0 is that the correlation
matrix V satisfy

1y

+ —=>0.
1% 5 =

Indeed, using the argument at the end of Example 5.4.3, from the CCR
relations (5.78) and (5.107) the characteristic function of pg results

Boalr) = [ Gt Rlaw)
x (vac| W (V2(z,—y)) W(q,p) W(V2(—z,y)) [vac)

= / w R(w) y) eiﬁ @ytp=) <UG/C ‘ W(q7p) ‘Ua/c>
R4 (27T)2

— o tUaP ) [ dzdy V2 (@ ytpa) 1
e /]R‘l )2 R(x,y)e . (5.139)

Because of the argument developed in the first one of the above ex-
amples, we can assume pr to be a Gaussian function with (7),, = 0;
thus, by Fourier transform and using (5.131) the result follows from
IR|* = [I7]* = llq|* + [Ip||* and

IR|I2

R(u):/ ﬁe_i 2u(MMB) (R e
R

471'2

:/ ﬁeﬂ‘ 2u- (X1 MR) eféR-(i‘l(Vféh)ﬁ‘lR) :
R

471'2

where R := (q1,p;,q,P2) € RY My(C) > 3y = (](1) %2> and
2
M,(C) > M is the matrix in (5.129).

Remark 5.5.3. Matrices as those in the second example above form the so-
called symplectic group for f = 1 degrees of freedom [265]; the symplectic
group for f > 1 degrees of freedom consists of real matrices S € M, (R) of de-
terminant 1 such that preserve the symplectic matrix J ¢, that is S J¢ ST = J.
Setting as before 7' := S7, the CCR are respected, namely [, i =i(Jg)ij-
Therefore, because of the unitary equivalence of the CCR representations
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(see Remark 5.4.2), there exists a unitary operator U(S) on the representa-
tion Hilbert space H = L3, (R/) such that 7 = UT(S)7U(S). From (5.75),
the Weyl operators transform as

UT(S) W (r) U(S) = e ™ (5157) = oi (5"m)-(31%) — (5T (5.140)
where, if § = ((34T g with A, B,C € M;(R), then S = (g i) while
- DT OT
T
the transposed S* equals ( C AT>'

Let p € B (H) be a density matrix for the f Bosonic degrees of freedom
and consider the state pg := U(S) pUT(S) obtained by operating the sym-
plectic transformation of the canonical operators; because of (5.140), their
characteristic functions (5.116) of p and pg are related by E,¢ (1) = Ep(ngr).
With r = (g,p),u = (x,y) € R*, (5.139) generalizes to

_ o lrlP/a du VEu(S17)
E)(r)=e /]sz ) R,(u)e i)

where Y := (El))f ((I]l)f ), whence the corresponding functions R, (u) and
! !

R,(u) in the P-representation (5.111) are related by

d ,
e—”'r“|2/4 /RQf (27:;f Rps(u) ez\/§u~(21r) _

_ d A
— e*HSTT‘|2/4 /RQf ﬁRP(Sflu) ezﬁUn(El'r‘) ) (5141)

5.5.1 States in the Algebraic Approach

As we have seen in Example 5.2.4 and Remark 5.2.3, expectations as in Defi-
nition 5.5.1 provide semi-norms that equip B(H) with a w* topology which is
equivalent to the o-weak topology. On the other hand, in Section 5.3.1, states
have been defined as positive, normalized linear functionals on C* algebras
which are continuous with respect to the uniform topology of B(H). Since
this topology is finer and thus has more open subsets than the o-weak one,
in general expectations need not be also o-weak continuous. The following
result [64] characterizes the space of density matrices within the more general
space of states on B(H).

Proposition 5.5.2. If M C B(H) is a von Neumann algebra with identity,
all o-weakly continuous expectations on M have the form M > X — Tr(p X),
with p € By (H) a density matriz.
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Proof: From Example 5.2.4, any o-weak functional F': M +— C takes the
form F(X) =", (¢n| X ¢, ) where {1/, } and {¢,} are sequences of vectors
in H such that Y [|¢||*> < oo and Y, [|¢]]* < oo.

Set |¢) = D, |vn), |§) = D, | (bn) and consider the following represen-
tation of B(H) on their Hilbert space H, m(X)|¢) = D, (X)), X € B(H).
Then, F(X) = (¢ |7(X)|¢). If F is positive and M 3 X > 0, then

FX) = ({84 31m(X) 15+ 8) — (F - 6| x(X) [F - 5))
< (T +3In(X) T +3) .

By considering the GNS construction based on the vector state | V+) (once
normalized), Remark 5.3.2.3 implies the existence of 0 < T" = (§")1S" < 1/4
in the commutant of 7(M). Since S” maps H into itself,

F(X) = (¥ + | T'n(X) [0 +¢) = (S' (W + ) | 7(X) |S' (&) + )
=D (xalXxn), VXeEM.

Set p:= >, | Xn){Xn |; this operator is positive. If F(1) = 1, then Tr(p) =
whence p € B} (H) and F(X) = Tr(p X) for all X € M. O

Remark 5.5.4. [64] As functionals, density matrices are normal as their o-
weak continuity is equivalent to the property of normal linear maps outlined
in Remark 5.2.7.

Because of the convexity of the space of states (see Remark 5.3.2.5), one
has that

Proposition 5.5.1. The space of states S(S) of a quantum system S is con-
vex and a same density matriz can in general be decomposed into infinitely
many different convex combinations of other density matrices, unless it is a
pure state which is thus extremal in S(S).

Proof: Take any set of 0 < X; € B(H), j € J, such that ZjeJ X;j=1; as
p > 0, in terms of its spectral decomposition p = >, ri| ¥ ) (1 |, its unique
(positive) square-root is given by \/p = >, \/Tk| ¢x ){ ¢ |- Then,

X;
p=Sohn = A ampx). e
JjeJ
Thus the same density matrix p describes mixtures whose components are

described by density matrices p;; in turn, these can also be decomposed unless
they are projectors, as, in this case, p = | ¢ )( ¢ | implies
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VoXi/p = (Y| X5 [¢) [¢) (]

so that p; = p for all choices of X; > 0. O

Example 5.5.4. [156] Consider two generic decompositions of a same den-
sity matrix p € S(S) into non-orthogonal one-dimensional projectors,

Q
p= mep (Dol VE, p= \Blog) el VD,

q=1

[ wp ) (wp | | 24 ) 2q |

with 25:1 [ ) {1y | =1 and Zq 1| #¢){dq| = 1. By means of the spectral
representation p = ZNzl ;|75 ) (7|, setting |v; ) == \/rj|7; ), one gets

N N

|wy ) Z TJ|¢p |v;) B Z Tj|¢q |v; ) -

T T
The Px N matrix W : CV - CF with entries W,; := (¢, | r; ) and the Qx N
matrix Z : CV +— C@ with entries Z,; := (¢, |r; ) are such that WIW =1y
and Z7Z = 1y. Then |ve) = Y0 Wyelwy ) and |z) = 3207 Viglwy ),
where V. = WZt : C? — CP. Thus, any two decompositions of p into
projections are related by a P x @ matrix V such that VVT = WV and
VIV = ZZ1; therefore, if P = @ = rank(p), then W, Z and hence V are

unitary matrices on the support of p. Also, if P = rank(p), but @ is arbitrary,
then V is an isometry such that VIV = 1.

In Section 5.3.1, states on C* algebras have been used to construct Hilbert
space representations; in the present setting, a representation on a concrete
Hilbert space H is a priori given, it is nevertheless instructive to consider pure
and mixed states of a finite dimensional quantum system S. In such cases,
the GNS representation amounts to what in quantum information is known
as mized state purification.

Let p € My(C) be a density matrix and consider its spectral representa-
tion p = Zjvzl ri| ;) (r;|, some eigenvalues possibly being equal to zero. To
p one associates the state vector | \/p) € CN ® CN given by

N

IVP) =Y il elr) . (5.143)

j=1
Given X € MN((C) let it be represented by 7T(X) =X®IlyonCN®CV,

X @ ly|p) Z\FXm ®|r;) = Zfrk|X|Ty>\7‘k>®|Ty>

7,k=1

_|Xf> (5.144)
whence (/p| X @ Iy [\/p) = (V| X/p) = Tr(p X).
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Pure States

If p = [¥)(¢], v € CV, then | /p) = |¢) @ |¢) € CVN @ CN and
7(X)|/p) = X|¢) ®@[¢), for all X € My(C), whence the GNS Hilbert
space is (isomorphic to) CV. Indeed, by taking the quotient of My (C) with
respect to the set

Ti={X € My(C) : (| XTX[$) =0},

the equivalence classes |¥% ) are identified with operators of the form
X|¢)(¢|. By varying X, the GNS Hilbert space H, is generated by vec-
tors | ¢ ) (1| for all ¢ € CV and is thus isomorphic to CV. Tt follows that the
GNS representation 7,(My(C)) is unitarily equivalent to My (C) and thus
irreducible in agreement with Remark 5.3.2.

Faithful Density Matrices

At the opposite end with respect to pure states, let us consider a den-
sity matrix p € My (C) with eigenvalues r; all different from zero, so that
Tr(p X' X) = 0 <= X = 0. According to Definition 5.3.5, p is faithful.

Matrices X € My(C) becomes NZ2-dimensional vectors whose compo-
nents are their matrix elements with respect to the ONB consisting of the
eigenvectors of p, | X) = Ef\fj:l (ri| X |r;)|ri) @ |r;). Also, by varying
X € My(C), the linear span of vectors of the form [X,/p) is dense in
CYN@CN. Let v = S0 il ri) @ [r;) € CY @ CN and X = |, )(ry|,
then (¢ | X ®@ Iyx|/p) - »qy/Tq- Therefore, if ¢ is orthogonal to the linear
span of | X\/p) then, Yy, = 0 for all p, g as p is faithful.

Because of Remark 5.3.2.1, the triplet (CV @ CV,,|/p)) is unitarily
equivalent to the GNS triplet (H,,n,, {2,) corresponding to the expectation
functional w, : My (C) 3 X — w,(X) := Tr(p X).

The matrix algebra My (C) is represented by My (C) @ 1y on H,; so, its
commutant is 7,(My (C))" = Iy @ My (C), m,(Mn(C)) has trivial center and
is thus a factor. The action of the commutant is given by

Iy ©X|Vp) =) Vijlr)® (X|r;)) =1 vpXT) (5.145)

j=1

where X7 denotes the transposition of X with respect to the eigenbasis of p.

We can now look at the decomposers in (5.142) from the point of view
of Remark 5.3.2.3. Given a convex decomposition p = Zje.] Ajoj, every o
corresponds to a unique 0 < X7 in the commutant m(My(C))’, thence to a
unique 0 < X; € My(C), such that XJ’- =1y ® X and

Xjoy(X) = (/B | m(X)X] 1V/5) = (V5 | X © X; | /p)
(VPIXVAX)) = Tr(Vp X, VA X) (5.146)
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whence \; = Tr(p X;) and o; = (\/p X; \/P)/A;

Example 5.5.5. Consider a two-level system equipped with the density ma-
. 1/1-s 0 .
= — < < 1
trix p 5 ( 0 1+s>’ 0 < s < 1; as GNS vector we can take its
purification (5.143)

VP) =\ 510y @ [0) +

where |0), | 1) are the eigenstates of p. The corresponding GNS representa-
tion is 7,(M(C)) = M5(C) ® 1 with GNS Hilbert space C*,

%)

(VAIX @ 11yp) = 501X 10) + 2 (11X |1) = Te(p X)

for all X € M5(C). The commutant is 7,(M2(C))’ = 1 ® M>(C) so that 7,
is reducible and a factor since m,(Mz(C))” = m,(M>(C)) whence its center
(see Definition 5.3.4) is trivial, Z, = 7,(M2(C))"” N 7,(M2(C)) = {A1}.

Modular Theory

The GNS state of any faithful density matrix is separating for m,(My(C)),
namely 7,(X)|,/p) = 0 <= X = 0, and thus cyclic for the commutant
T,(Mpy(C))’ (see Lemma 5.3.1).

We shall now give the fundamentals of the so-called modular theory that
looks particularly simple for finite-level systems.

Let p be a faithful states and identify its GNS triplet (H,,,w,, {2,) with
(CY @ CN,My(C) ® 1n,|/p)). The so-called modular conjugation is the
antilinear map J, : CV @ C¥ — CN @ CV such that

Z%lﬁ ®|rj) = Jolh) = Z%W ®|ri) . (5.147)

i,7=1 i,5=1

It satisfies J2 = 1 and J,|/p) = | \/p); furthermore,

N
T\ X\/p) =T, (X @UN) Tl vp) =D i ((ri]| X |ri))* |re) @ | i)

ik=1
— 1y © X*|5) = | VAX') | (5.148)
where X* is the conjugate of X with respect to the ONB {|r;)}}L,, that

is (rp | X*|r;) = ({(ri| X |r;))*. Given X,Y,Z € My(C), one explicitly
computes
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[J(X @13}, Y ©1y]| 2y5) =

= J,(X @ 1N)T,|YZ/p) = (Y @ In)J,(X @ Iy)| V/pZT)
=TI XVp(YZ)') = (Y @ Iy)| Z/pXT)
=|YZ/pX")—|YZ/pXT)=0.

Thus, J,(X ® 1n)J, belongs to the commutant Iy ® My (C) = 7,(My(C))’
of My(C) ® Iy = m,(Mp(C)); since the GNS vector |,/p) is cyclic for
7, (Mn(C)) it is separating for 7,(My(C))’. Therefore, from (5.148),

J, X@lyJ, =1y X", (5.149)

!

whence J, antilinearly embeds 7,(My(C)) into its commutant 7,(My(C))’.
Actually, the embedding is an anti-isomorphism,

Jpmp(Mn(C))J, = m,(Mn(C))" . (5.150)
Indeed, using (5.145), for any S” € 7,(Mn(C))" and Z € My(C), it holds
SIVP) = 1¥srB) = VB YE =) = Jp (5 YE V) © I ol )

where the first inequality is due to the fact that S’|\/p) is a vector in H,
which can be obtained by acting on the GNS vector with some 7,(Ys:). Then,

1
NG

A related notion is that of modular operator

' =, (=Y V) @1y, .

Ayi=p@p 1, (5.151)

which, according to (5.148), is such that,

T AV X \/p) = T /p® ;ﬁlXﬁ> = JplvpX ) =|X"/p) . (5.152)

5.5.2 Density Matrices and von Neumann Entropy

From the point of view of the GNS construction, pure states can be dis-
tinguished from mixed states because their GNS representations are non-
irreducible factors for the latter, while they are irreducible factors for the
former. There are however handier ways to sort these states out; perhaps the
easiest is to consider p?: if more than one eigenvalue of p is non zero, then
p is mixed since then p? # p. Indeed, the spectrum of a mixed state p has a
richer structure than that of any one-dimensional projection.
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The possibility of comparing, in some cases, the eigenvalues of two density
matrices p; o € B (H) comes form the so-called minmaz principle of which
we give a short sketch (for a general formulation and proof see [252]). We
shall consider the eigenvalues listed in decreasing order; namely, in the spec-
tral decompositions Bf (H) 3 p = Y, r; |7 )(r; |, with eigenvalues repeated
according to their multiplicities, we shall take r; > r; 41, for all . Because of
the ordering, it turns out that

rio=sup{(1pl6) 16l =1, 19) L{lra)lra)esmon)l ) (5.158)

Indeed, for a 1 specified as above, (¢ |p|Y) = >, <. re[(¢ |7 )* < r; and
r; is achieved by choosing |1 ) = |r; ). The minmaz principle asserts that

= it s (W1pl9) =1, 19) L{I6) 06201610}
{#5}

i j=1
(5.154)
where {9, };;11 is any set of vectors in H.

In order to prove this relation, we denote by U,({¢; Z4_1) the argument
of the inf and show that U, ({(bj} 1) > r;, whence the result follows for r; is
achieved by choosing | ¢, ) = |7} ) j=1,2,...,i—1. Now there surely exists
a normalized vector |¥) = 22:1 crlry) L {(bJ}J 1; indeed, if P projects
onto the linear span of {|7;)}’_,, the vectors {P] ¢, )}4Z] span at most an
(i — 1)-dimensional subspace. But then,

Up({6;}20) = (@[ p ) Zm lex[? >T12|Ck|2

From the minmax principle, it follows that p1 > ps = e;(p1) > ei(p2),
where ¢;(p) is the i-th one in the ordered list of eigenvalues of p. Further, for
generic p1 2 € IB%;r (H), the minmax principle provides an upper bound to the
differences |e;(p1) — ei(p2)| in terms of the trace-norm (5.21).

Example 5.5.6. Given p; » € B (H), decompose p; —pa = Ry — R_, where
R are positive orthogonal operators, so that

llpr — palli = Tr(Ry + R-) = Tr(2R — p1 — p2) ,

where R := py + R_ = pa + Ry > pi2. Let r;, respectively r 2 be the
eigenvalues of R, respectively pj o listed in decreasing order; then by the
minmax principle, r; > 7 for all i. Thus, 2r; — 7} — 72 > |r} — 12| =
Silri =il < llpr = pall-

The spectrum of a density matrix is a classical probability distribution:
this hints at the possibility of quantifying its information content of by means
of the Shannon entropy of such a distribution. This leads to the notion of
von Neumann entropy of a state p € By (H) [226].
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Definition 5.5.2 (von Neumann Entropy).

Given p € S(S) with spectral decomposition (degenerate eigenvalues are
repeated according with their multiplicity and with chosen orthogonal one-
dimensional eigenprojectors) p =3, r;|rj){(r;|, the von Neumann entropy
of p is the Shannon entropy of the probability distribution corresponding to

its spectrum: S(p) = —Tr(plogp) = — >, rjlogr;.

The following are some of the properties of the von Neumann entropy:
they show that it plays a role similar to that of the Shannon entropy in a
classical context. Other properties more related to composite systems will be
discussed in Section 5.5.3.

Proposition 5.5.3. Let p € B (H) be a density matriz. If H = CV, then
the von Neumann entropy is bounded by the entropy of the state Iy /N :

0<S(p) <logN . (5.155)

The von Neumann entropy is concave; that is, given weights \; > 0, i € 1,
> icr Ai = 1 and density matrices p; € B (H),

> XS (p) <8 (Z Am) <D NS () + Y n) . (5.156)

i€l iel iel iel

where 1 is the concave function (2.84). If . = CV, the von Neumann entropy
is continuous on Bi (H) with respect to the trace-norm; namely, if p12 €
B (H) are such that ||p1 — pa|l1 < 1/e; then they satisfy the so-called Fannes
inequality

1S(p1) = S(p2)| < [lp1 — pllilog N + n([lp1 — pall1) - (5.157)

Proof: Since S(p) —logN = — Zf\; ri(logr; — log1/N), boundedness
follows from (2.85). The lower bound in (5.156) comes from the concavity
of 7(z); indeed, let r; and |r; ), respectively r% and |7 ) be eigenvalues and

eigenvectors of p := ., \ips, respectively p;. Then,

TJZZ)‘i<Tj|pi|r] Z)‘Zrk‘ relri)l?

el el

with 37, . Xi [(74, |75 )[* = 1. Therefore,

ZZH(T] Z Ail( rk‘T] |2 rk Z)‘ ank ZAiS(pi)'

i€l k i€l 1€1

On the other hand, from Example (5.2.3).9,
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Aipi < p = Nipilog(Nipi) = Nipilog pi —n(Ai) < Xipilogp .

Fannes inequality follows from the fact that |n(u) — n(v)] < n(ju — v|) if
|u —v| < 1/e and from Example 5.5.6 which implies that

N

Sk = |T’I£—T]2€| < Zsk =95< ||;01 _p2H1 < 1/6 s
k=1

1,2 .
where 7,7 are the ordered eigenvalues of p; . Then,

N N N
1S (p1) = S(p2)] <D |n(rd) =n(2)| <D nlsk) = S Zn(%k) +n(S)
k=1 k=1 k=1

< lpr = p2llilog N + n(|[p1 — p2ll1) ,

for n(z) increases when x € [0,1/e]. We complete the proof by showing that
[n(u) — n(v)] < n(ju — v|) indeed holds when |u —v| < 1/e (see [222]). The
function f(x) := n(x + (v — v)) — n(z) decreases for u — v > 0, thus f(0) =
n(u—wv) > f(v) =n) —nl). Hu—v<1/e, n(u—v) > u— v, while the
increasing function g(t) := t+n(t) gives g(u) = u+n(u) > v+n(v) and thus
n(u) —n(v) > v —u which implies n(u — v) > n(v) — n(u). O

Remarks 5.5.5. 1. The second inequality in (5.156) becomes an equality
if and only if the ranges of the matrices p; are orthogonal to each other;
indeed, in such a case the eigenvectors of different p;’s are orthogonal so
that their spectral decompositions give the spectral decomposition of p,

p= Z)\lrﬂrf)(rf | = S(p) = Z)\irflog()\irf) :
ik ik

2. In the case of an infinite dimensional Hilbert space, the von Neumann
entropy is only lower semicontinuous: if a sequence of density matrices
oy, tends to a density matrix o in trace norm, then S (o) < lim, S (¢,,),

in general. As an example [300], take o, := (1 — —)p + — p,, where
n
S (p) =0 and S (p,) increases like n. Then, |0, — p|l1 < 2/n — 0 when

n — +o0; also, by (5.156),

1 1 1
S(on) = (1==)S(p) + =S (pn) = =S (pn) = c>0=5(p) .
n n n
The least mixed states, the pure states, are 1-dimensional projectors for
which 1 = 1 while all other states have r; < 1. This suggests the following

Definition 5.5.1. [300] A density matriz p1 € S(S) is said to be more mixed
than another density matriz ps € S(S), p1 = pe, if their decreasingly ordered
eigenvalues e;(p12), 7 =1,2,...,d, satisfy
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k k
Zel 01) 3261 , =1,2,...,d.
i=1 i=1

The relation = is a total ordering among density matrices of two level
systems; this is because eq(p1,2) +e2(p1,2) = 1 for any pair of density matrices
p1,2 € Ma(C). Therefore, p1 = p2 <= e1(p1) < e1(p2).

Unfortunately, for higher dimensional systems > is only a partial ordering;
for instance, consider the following density matrices py 2 € M3(C),

/2 0 0 2/3 0 0
pr=( 0 12 0|, po=| 0 1/6 0
0 0 0 0 0 1/6

Then, e1(p1) = 1/2 < e1(p2) = 2/3, but e1(p1) + e2(p1) > e1(p2) + e2(p2).
The following proposition provides a helpful tool that allows, in some
cases, to establish whether two density matrices are in the = order.

Proposition 5.5.4 (Ky Fan Inequality). Given p € B (H), it holds that

k
S eilp) = maX{Tr(Pp) . P2=P =P, dim(PH) = k} . (5.158)

j=1

Proof: Let {|¢;) ;‘?:1 be an orthonormal set in H, K the subspace they

generate and P := Z?Zl | ¢, Y{¢; | the corresponding orthogonal projector. If
k k

{|4: )}F_, is any other ONB in K, then Z (djlploj) = Z(%— |pl;). Let

Jj=1 Jj=1
| ;) be the eigenprojectors of p corresponding to the eigenvalues e;(p) =: r;
listed in decreasing order and consider the subspace spanned by {| r; >}f;11. A
same argument as in the proof of the minmax principle (5.154), ensures the
existence of some |y ) € K orthogonal to it; analogously, there must exist

| r-1) €K LA{]ri) 1= U o)}
and so on. Thus, one collects {|;)}¥_; € K such that
(95 ) LAl i) [0 ) o [9r)

and (5.154) yields Tr(P p) = S5 (¢ | p i) < 28 eilp). 0
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Examples 5.5.7.

1. Given any p € S(S) and unitary matrices U; € Mn(C), j € J, together
with weights 0 < A; < 1, 37,0, A = 1, set p = 3. ;A UijjT. If
p = Zf\il ri| 7 )(r; |, the unitarily rotated matrices Uj pU; have the

N
same spectrum for Uij;-r = Zmﬂﬂiﬂ and |7;) := U|r; ) form an
i=1
ONB . Further, their convex combination p = p; indeed, let P be the
projector achieving the maximum in (5.158), Zle ei(p) = Tr(Pp); then

k k
Zei( Z)\ Tr UTPUJ,D Z)\ Zei(p):Zei(p)

i=1 jeJ jEJ i=1 i=1

for the projectors U ; PU; need not achieve the maximum in (5.158).

2. Consider the convex set B} (H) of all density matrices of a system S
described by a Hilbert space H, not necessarily finite dimensional, and
let Sora(S) be totally ordered: the most mixed p € S,.q(S) have the
largest entropy [300, 314]. Indeed, p1 = pa = S(p1) > S(p2). In order
to show this, set o := e;(p1); then, for all N > 1 and ay > 0,

N-1 N

(Z az) (log oy, — log ag11) + logany = Zak log o, -
k=1 i= k=1

Set B; := e;i(p2); since p; = ps = Zle a; < Zle G; for all k > 1,
using (2.85), one finds

N

2

-1 k

Z —aglogag > — (Z 52) (log o, — log ae11) + logan
k=1 k=1 i=1
= - Bulogay, >~ Zﬂklogﬁk + Z Bi — o)
k=1

for all N > 1, whence S (p1) > S (p2), for >, B = >, o = 1.

5.5.3 Composite Systems

In quantum information, physical systems S consisting of several subsystems,
S =8;+ 853+ ---85,, are called multi-partite.

If each of the constituent subsystems is described by a Hilbert space Hj,
the Hilbert space of S is H(™ = @, H; and its observables are Hermitian
elements of the C* algebra B(H(”)) R, B(H,).
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Given a multi-partite state p € S(S), marginal states p;,i,...;, for all pos-
sible choices of subsystems S;, +5;, +. ..+, are obtained by partial tracing
over the Hilbert spaces H, whose indices are different from the selected ones
11,12, ..,1k, namely

pi1i2"'ik :TrleI'j2 ~~«Trjn7k(p) s j[ %il,ig,...,ik s éi 1,2,...,77,7]9 s

where Tr;(p) = Zk<1/),(€j ) | p \1/1,(; )> denotes the trace computed with respect
to any ONB {| 1/),(63 ) )} € H; and yields a density matrix acting on the Hilbert

U= ®7ll=i;ﬁj H
In particular, the states of bipartite systems S = S; + S5, are described
by density matrices pia € B} (H®)) with marginal states

p1 = Trapig = ZWJ;z) | p12 Wém )5 p2 = Tripia = Z<¢J('1) | p12 |7/1§1) ) -

J J

Proposition 5.5.5. The marginal states of any pure state p12 € S(S1 + S2)
have the same eigenvalues with the same multiplicity, apart from the zero
eigenvalue, and thus the same von Neumann entropy.

Proof: Let |12 ) € H be the vector onto which the pure state pi2 projects

and r§1), | r;l) ), the non-zero eigenvalues (repeated according to their multi-
plicities) and eigenvectors of the marginal density matrix p; = Trop. Using

the corresponding ONB {| 7"§1) )} in Hy and any other ONB {| qbf) )} in Ho,

one can expand

[¥12) ZQW“@W%=Zw%®M%,
J

where |¢;-2) ) =2 Cinl ¢,(€2) ) need not be either orthogonal or normalized.
Then,

= > Pl = 36 16 (]
J

Jik

whence (¢\7 |67 ) = 6;uriV). Setting | {7 ) := |\ ) /1 /7 yields

| 12) Z\/ ) |7 (1) ) ® | (2)> (5.159)

It thus follows that po =3, (1)‘7,,(2) )(r](-2) |, whence S (p1) = S (p2). O
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Remark 5.5.6. The expression (5.159) yields the so-called Schmidt decom-
position of bipartite pure states |¥;2) € Hy ® Hp into a linear combination
with positive coefficients of tensor products of equally indexed states from two
ONBs of the two subsystems. The degeneracy of the 0 eigenvalue accounts
for the possibly different dimensions of the Hilbert spaces Hj 5.

Example 5.5.8. Let a bipartite system S = S; + S5 consist of a 2-level
system S; and an N-levl system Sa. Let { X}, € M3(C) be a set of matrices
such that Zi:l X; X; = 1, consider a fixed vector ¢ € (C2 and the vector
state C2@ CN > |¥) :=>" | X;|¢) ®|i), where {|i)}Y, is an ONB for
Sa. The normalized vector | ¥ ) yields marginal states

M5(C) > py = Trs(| ¥ ) wa Kb
N

My(C) 2 po =T (TN ) = > (Y[ XIXi ) |i) (4]
i,j=1

Let rq, |a), a = 1,2, be the eigenvalues, respectively elgenvectors of p1; by
expanding X;|v¢) = 23:1 Ciq | @), it turns out that |¥) = Za 1 la)® | da ),
where | ¢g ) := Ziil Cia |1). The vectors | ¢q ) := | ¢ )/||dal| are orthonormal
and the 0 eigenvalue of pa = r1| @1 ){(P1 |+ 72| P2 ){ P2 | is (N — 2)-degenerate.

We end this section with a list of properties of the von Neumann entropy
which pertain to composite systems.

Proposition 5.5.6. Let S = S1+.55 be a composite system with Hilbert space
H =H,; ® Hy, H; 2 of dimension dy 2. The von Neumann entropy is additive
on product states BT (H) 3 p12 = p1 ® pa,

S(p12) =S (p1) + S (p2) - (5.160)

Given p12 € B (H), let BY (Hy) > p1 := Tropiz and B (Hy) 3 py := Trip1a
be the marginal states. Then

|S(p1) — S(p2)| < S(p12) < S(p1) + S(p2) 3 (5.161)

The second inequality expresses that von Neumann entropy is subaddzi-
tive; more in general, the von Neumann entropy is strongly subadditive.
Namely, let S = S; + Sy + S3 be a tripartite system described by a state
p123 € BT(H) with H = Hy; ® Hy ® Hs. For any cyclic permutation (i, j, k)
Of (1,2,3) let ]BT(IHIz ®Hj) =) Pij ‘= Trkp123, BT(HZ) S pi = Trjkp123 be
marginal states. Then [192, 314]

S(p123) + S(p;) < S(pij) + S(pjk) - (5.162)
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Furthermore, the differences between the von Neumann entropies of p12 and
of the marginal states p1 2, S (p12) — S (p1,2), are concave:

SIS e | =S [D e ] = 30N (5 (p(fé)) -5 (pﬁf%) , (5.163)
J J J
where A\; >0 and 3, \; = 1.

Proof: Additivity comes from the fact that the spectrum of p15 = p1 ® po
consists of the products of the eigenvalues of p; and pa.

Assume strong subadditivity holds and let pag = Y, rAB|rA8 ) (rAP | be
a density matrix on Hy ® Hp and

|Voag) = > \JriB |8 ) @ |r{P) € (Ha © Hp) ® (Ha © Hp)

the corresponding GNS state. Set H; := H 4, Hs := Hp, in the first factor,
Hs3 := Hy ® Hp in the second one and

pros = | pas ){Vpas | = ) ([P P [P (rP @ |r P ) (e P ]
i

Then, p3 = Tri2p123 = pap = Trzpiaz = p12, therefore, py = Trazpia3 = pa,
p2 = Tri3p1as = pp. Also, because of purity, S(pi23) = 0, thus (5.162) and
Proposition 5.5.5 yield

S(pag) = S(ps) < S(p13) + S(p23) = S(p2) + S(p1) = S(pa) + S(pB)
which implies subadditivity. The lower bound in (5.161) follows instead from

S(pa) = S(p1) < S(p13) + S(pr2) = S(p2) + S(p3) = S(pr) + S(pan)
S(pp) = S(p2) < S(p12) + S(pas) = S(p3) + S(p1) = S(pap) + S(pa) -

In order to prove strong subadditivity, we introduce the quantum relative
entropy of two density matrices p and o (see Definition 6.3.1)

S(p,o):= Tr(p logp — p loga)

which is well defined when o|¢) =0 = p|¢) = 0.
We shall prove in Section 6.3 that S (p, o) does not increase under maps
like the partial traces, thence

1y 1, 1,
S — =S (Tr Tra( — <SS — .
<P127 4 ®,02> ( 30123, Ts(dl ®P23)> < (P123’ 4 ®P23)

On the other hand,
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1
S (P12, df ® pz) = =S (p12) + S (p2) + logd;y and

1
S <P123 ) df ® P23) = =5 (p123) + S (p23) + logdy ,

whence (S (pr2s) = S (p23) ) = (S (p12) = S (p2) ) < 0.

The concavity (5.163) follows from another property of the relative en-
tropy which shall be discussed in Section 6.3, namely its joint convexity:

S A9, S a0 | <3N (pm 7 0(1‘)) :
J J J

: ; ; !
where \; > 0 and 3_;\; = 1. Let pl) = pgjz) and o) = pgj) ® di’ with
2

p( D = TI'2,012 ; then,

) 1
Dol Y e e 2| =
j j 2

-9 Z)‘JPEJ; +5 Z)‘]pgj) + log dy

<D S(p12,p§” ) Z/\ (5 (p) =5 (p12)) + t0gdz .

J

5.5.4 Entangled States

One of the most puzzling and fascinating aspects of quantum mechanics is its
non-locality embodied by the concept of quantum entanglement [152]. This
is a property of certain quantum states of composite systems, called entan-
gled, which are such that their constituting subsystems cannot be attributed
properties of their own, not even with a certain probability. As a paradigm
of such states, consider the following vector state of two spin 1/2 particles
(the simplest instance of the vector states (5.18) in Example 5.2.3.9),

100) + |11)

vz
where |0) and |1) are eigenstates of the Pauli matrix 3. By looking at the
corresponding projector,

| Woo ) == (5.164)
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(1001 10)0]+ 1)1 @ 1)(1])

(1001031 +1)0]@]1)0]) |

| Yoo ) (W0 | =

one sees that, while the first line is the density matrix of an equally distributed
mixture of both spins pointing up and down along the z direction, the in-
terference term in the second line forbids to attribute these two properties
with probability 1/2 to the component spins. By rotating the orthonormal
projectors (1+03)/2 into any two other orthonormal pairs (1+mn,-0)/2 and
(1+ng - 0)/2, the same obstruction occurs along any two directions mq o.

Example 5.5.9 (Bell States). [224] The symmetric vector (5.164) is the
first one in the so-called Bell basis of C?> @ C? of which the others read

. |or)y+10) - . 00)—[11) . . |00)—|11)
|W01>—T,|W10>—T7‘W11>—T.

In quantum information 2-level systems are called qubits, unitary actions on
them quantum gates and nets of unitary gates quantum circuits. The Bell
states can be created out of a separable pure state of two qubits by means
of local and non-local operations, according to the quantum circuit in Figure
5.4.

Un

)

ly) g

L3

|\Ija:y>

) 4

Ucnor
Fig. 5.4. Bell States

The input vectors |z ) and |y ), z,y = 0,1, are members of the so-called
computational basis; |z ), called control qubit, is subjected to a Hadamard
unitary rotation (see (5.58)), Uy, and then, together with |y ), called target
qubit, to a so-called Control-Not unitary gate, Ucnyor. The first transforma-
tion affects one of the two qubits only via the matrix My(C) 3 Uy ® 1y and
is thus local; the second one involves both qubits in a non-local way. Indeed,
the unitary matrix Ucyor € My(C) implements the classical CNOT gate,
CNOT (z,y) = (z,y®x), that acting on pairs (x,y) of bits leaves the control
bit unchanged and adds it to the target bit:
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CNOT(00) = (00) CNOT(01) = (01)
CNOT(10) = (11) CNOT(11) = (10)

If we substitute pairs of bits with tensor products of computational basis
vectors, the Pauli matrix o flips the |2 ) so that the same relations are
implemented on C? ® C? by

1 0
UCNOTI_|0><O|®]1+|1><1|®0’1_(0 Ul) . (5.165)

|z) —t ¢ - |z)

ly) — T OF—yS)

Ucnor
Fig. 5.5. CNOT Gate
Let |¢xy> :=UcnorH ® 1] 2y ); by a Hadamard rotation (5.58), one gets

Ly e 10+ (CDf Ly e 1)
WM—ﬁgeanw— 7 ,

and, by varying z,y € {0,1}, one obtains the Bell basis.

Entanglement is a purely quantum phenomenon, with no classical coun-
terpart; it has from the start attracted a lot of scientific and, unfortunately,
also pseudo-scientific interest; one of the great merits of quantum informa-
tion is to have promoted entanglement to the status of a physical resource
for performing informational and computational tasks otherwise impossible
in a purely commutative context.

In the following, we shall mainly focus upon bipartite discrete quantum
systems consisting of two parties described by means of finite dimensional
Hilbert spaces C% and C92, respectively. Within the state-space S(S; + Sb),
one distinguishes separable from entangled states.

Definition 5.5.3 (Separable and Entangled States). A density matriz
p € S(S1 + S2) is separable if and only if it can be approzimated in trace
norm by a linear convexr combination of tensor products of density matrices:
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P = Z )‘iliz pzll ® pz22 ) Ai1i2 > 0 ) Z )‘i1i2 =1. (5166)

(il,ig)ellXIQ (il,iz)EIIXIZ

Those p € S(S1 + S2) which cannot be written in a factorized form as
in (5.166) are called entangled or non-separable states.

Remark 5.5.7. Pure separable states are of the form |9 ) = |91 ) ® |2 ) for
some 11 o € C%:2 otherwise they are entangled. The set S, (S) of separable
states of the bipartite system S is the closure of the convex hull of its separable
pure states (see Remark 5.3.2.5).

In order to judge whether a pure bipartite state is entangled or separable
is sufficient to look at its marginal density matrices.

Proposition 5.5.7. A vector state |W15) € Ch @ C% of a bipartite system
S1 + S2 is separable if and only if its the marginal states p1 2 are pure.

Proof: If |¥,) is separable, its projector is the tensor product of two
projectors and partial tracing yields one of them. Vice versa, if the marginal
density matrices are not projectors, then the Hilbert-Schmidt decomposi-
tion (5.159) contains more than one pair and | P12 ) is entangled. O

The structure of separable states is apparent from (5.166): they can be
obtained by mixing with weights A;,;, otherwise independent states of Sy
and Sy, the only possible correlations between them being those relative to
the probability distribution {);,;,} associated with the weights and thus of
purely classical nature. Instead, pure entangled states carry correlations that
are purely quantum mechanical.

Examples 5.5.10.

1. Consider a bipartite system consisting of two d-level systems in the
state (5.18) which generalizes the two qubit symmetric state (5.164).
From partial tracing the projector P?¢ = |Wi)<¢i|, one gets

d
. 1
>olidil=7.

namely the totally mixed state for both parties. Thus, the von Neu-
mann entropy of the bipartite state Pﬂ is smaller than that of either

p1=p2 =

Ul

its components, 0 = S (ﬁjﬁ) < S(p1,2) = logd, which is maximal, in-
stead. In other terms, the information content of the entangled pure
state P_ﬁ is smaller than that of its constituent parties. This holds for
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all entangled pure states. In order to see this, one uses the Schmidt-
decomposition (5.159) and Proposition 5.5.5: if p1a = | W12 )( P12, then
S(p12) = 0, and S(p1) = S(p2) = —Zl (7ilogy i > 0 unless py o are
pure states and thus p;2 separable.

. The previous observation makes the statistical properties of pure entan-

gled states incompatible with classical ones; indeed, by (2.88) one knows
that the Shannon entropy of a bipartite classical system (described by
two random variables) cannot be less than that of any of its marginal dis-
tributions. This classical behavior is characteristic of all separable states;
namely, the von Neumann entropy of all separable bipartite states cannot
be smaller than the von Neumann entropy of their marginal states. This
fact follows from (5.163); in fact, consider a separable state

P12 = Z /\Upz 6 B+ (H; ® Hy)

sothat p1 =3, /\(1) (1) )\(1) >_j Aijs then, by applying (5.163), (5.160)
and the positwlty of the von Neumann entropy (see (5.155)), one gets

S (p12) — S (p1) > Z)‘w( ( Pe ( )) —S(pl(-l)))
:Z)\ijS(pj ) >0

. The so-called GHZ states are entangled pure states of tripartite systems

1000) +]111) .

consisting of 3 qubits : |Py) = in the computational

basis. Though entangled as tripartite states, all their two qubit marginal
states are separable, for instance

1 1

1 i
piy = 3T ( D (1) i) (g ) = 5 Dl (il @)l -

i,7=0 i=0

w\»—‘

From | &, ) one obtains an ONB in H®) = (C?)®3 by acting locally with
the Pauli matrices,

| Yape ) = ‘f®a§’®a§|¢+> , a,b,c=0,1

(o
1 1
(Waey | Ware) = 5 Y (il 15) (il of*"13) (il af*1i)
w N————
O(&ij

(=1)7*e(ilof ™ [i) (i 07" |i) = daadbedes -
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5.6 Dynamics and State-Transformations

The standard time-evolution of quantum systems is typically described by
a strongly continuous one-parameter family of unitary operators {U; };cr on
a Hilbert space H, fulfilling the group composition law U Us; = Uy, for all
t,s € R. By Stone’s theorem [300], the group is generated by a self-adjoint
operator H on H, the Hamiltonian, such that, for all ¢» € H, (A = 1)

Ol e) = =i H| ), |gr) =Udlp), Up=e M. (5.167)

This type of time-evolution equation is proper to the so-called closed quan-
tum systems. As any other physical system, also closed systems S are in
contact with the environment E which contains them; however their mutual
interactions are negligible and the dynamics of S is independent of E and
is reversible. When the interactions between S and E cannot be neglected,
it may nevertheless be possible to derive a closed dynamics for the system
S alone which nevertheless accounts for the presence of the environment. In
such cases, S is known as an open quantum system and its so-called reduced
dynamics is irreversible and incorporates noisy and dissipative effects due to
the presence of F.

The Schrodinger time-evolution easily extends from vector states to mix-
tures. Since pure states | ) (4| evolve into pure states Uy| 1 ) (1) |U/, exten-
sion to convex combinations of pure states yields the Liouville equation

Bups = —i {H pt] , (5.168)

with formal solution p; = Uy p U} for any initial state p € B} (H). By duality
(compare (2.9) and (2.7)), if X € B(H) then Tr(p: X) = Tr(p X;) and one
gets the Heisenberg time-evolution equation for the operators

9, X, =i {H Xt] . (5.169)
This gives rise to a one parameter family {U; }+er of automorphisms of B(H),
X —UlX] =X, =U XU, , (5.170)
that preserve hermiticity and products of operators,
UXT =U[X])T, UIXY]=U[XIU]Y] VXY cBH).

As automorphisms, these linear maps are positive, and also completely
positive as their action is of the Kraus-type discussed in Proposition 5.2.1.
By duality the action of f; is transferred to the action of the dual ;" on
B (H): U [p] = UwpU]; Uy preserves the trace, Tr(U[p]) = 1, and sends
projectors into projectors,
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P?=P =Pl = U} [P)?=U" [P =U[P]" .

A state p is an equilibrium state if and only if it commutes with the Hamil-
tonian that generates the dynamics, U, (p) = p < [H, p] = 0. However,
if a state p changes in the course of time under a time-evolution imple-
mented by unitary operators, its spectrum does not. As a consequence, as
much as the Gibbs entropy of classical probability distributions evolving
under a Hamiltonian flux on phase-space is a constant of the motion, the
von Neumann entropy is always preserved by the Schrédinger-Liouville time-
evolution, S(U; [p]) = S(p).

Examples 5.6.1.

1. We have seen that density matrices p of 2-level systems are identified
by their Bloch vectors p € R®. By denoting them as kets | p), the linear
action of the commutator on the right hand side of (5.168) corresponds to
a 3 X 3 matrix acting on | p ), whence the Liouville equation can be recast
in the form 9| p) = —2H|p). Since [1, p] = 0, it is no restriction to
take the Hamiltonian of the form H = w - o with w = (w1, ws,w3) € R3,
o = (01,09,03). Then, the algebraic relations (5.56) yield

dp ] 3 0 w3 —Wa
(2
1 =2 Z gijkwipy = H=| —ws 0 w1
G.k=1 0 Wy  —wq
Thus, Bloch vectors rotate with angular velocity w = |jw| around the

direction of w; their lengths are then constant, pure states remain pure
and the surface of the Bloch sphere is mapped into itself.
Suppose w = (0,0,w), then, by series expansion,

U, = e 9 = coswt + io3sinwt ;
thus, o5(t) := U o5 Uy = o5, while
o4 (t) = Ul 04 Uy = 0 (cos 2wt + i sin2wt) = o e>™
The same result more directly follows from the fact that
oo, =t o053 + 20, =0, (03 +2)"

and that this relation extends to functions f(o3) that can be expanded
as power series, namely f(03)o = oy f(o3 + 2).
2. Consider an array of N spins 1/2 equipped with the Hamiltonian [300]

N N N-1 N
Hy = Z Bujo? + e(i) o’ oI = Z(HJ + H™)

j=1 j=1 i=1 j=1
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where, as in Example 5.4.1, ¢/ denotes the Pauli matrix o3 at site j
and products of Pauli matrices at different sites denote tensor products
of commuting operators. The single sum corresponds to the spins being
coupled to a vertical constant magnetic field B, while the double sum
describes spin-spin interactions whose range is regulated by the coupling
constants ¢(7) which only depend on the distance between spins.

Let the array be provided with periodic boundary conditions a%g = a;fN
(04 = 03,4); then, the j-th spin interacts with the same strength with
those symmetrically placed on its left and right hand side. Suppose N
odd, it follows that Hjmt can be recast as

(N-1)/2
H;"t = Z e(4) (Uj_i(fj + ajaj'”) .
i=1
Using the previous example and the fact that U;ZE commutes with all spin
operators from sites different from &, one obtains
ol (t) = N gl g 7HHN — i (5.171)
o (1) i= Y o @ IHN = U HHS™) o ity ™)
= ol o2t (Buj+ Y (X2 (i) (07 407 T)
(N=1)/2
= o’ P H ((cos 2te(i) + 077" sin 25(2’)) X
i=1

X (cos 2te(i) 4 o7 sin 2€(i)> ) (5.172)

while o7 (t) is obtained by taking the adjoint of ai (t). Let the spin system
be endowed with a state which is the tensor product of equal pure states
as in (5.104) each of them for each one of the sites

N .
v Gn L[ ks VT
~ ’ T2\ V1= g2 1—s ’

This state is not invariant under the time-automorphism in (5.171)
and (5.172): indeed, p®V (¢ (t)) = s for all j, but

(N-1)/2

PN (o) = P p(eh) ] ((cos 2te(i) + p(o? ™) sin 25(1’)) x

X (cos 2te(i) + p(o? ™) sin 25(2)))

T2

= P T R(s.t)
(N—-1)/2

In(s,t) = H (Cos25(i)t +is sin25(i)t) .

i=1
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If the coupling constants decrease exponentially with the spin distance,
(i) =270+D and s = 0, then

N-n2
fn(0,t) = Z1;[1 c08 o

and the observables o, show a recurrence time that increases as 20V =1)/2,

PPN (o (1)) = P L F(0,1) (5.173)

. Consider f uncoupled harmonic oscillators of masses m = 1 and fre-

quencies w; described by the algebra of Weyl operators (5.75) W(r),
r = (q,p) € R?/ and by the Hamiltonian operator

Using (5.68), the Heisenberg equations of motion (5.169) for position and
momentum operators 7 = (g, p) read
dg . dp 9
& L __p
dt p, dt q,

where 22 is the diagonal f x f matrix 12? = diag(w?, w3, ... ,wj%). They
are solved by

S g itH o —itH 4 _ cosf2t 27 'sin 02t
Pe= U] =T Te AT, A= (—Qsinﬁt cos 2t ‘

Because of linearity, it turns out that the time-evolution maps Weyl op-
erators into Weyl operators,
W(r) = o™ ) L U [W(r)] = Wi(r) = ¢ (5170 — i(Aer) (517)
= W(ry), (5.174)
where 7r; solves the Hamilton equations for f classical harmonic oscilla-

tors. Using the notation (5.95), one passes to annihilation and creation
operators via the relations

A 1 91/2 iQ_1/2 R
_E 0y o2 )T

f
1
The Hamiltonian then reads H = 3 Zwi a;rai7 so that
i=1

a;(t) = Usla;] = a; e iwit aT(t) =U, [al] = al-t elwit

i
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4. Example 5.4.2 provides the right algebraic setting for quantizing classical
dynamical systems as those studied in Example 2.1.3. As much as in that
case, the quantum time-evolution will be described by a one-parameter
group {O% }icz consisting of integer powers of an automorphism Oy :
Let A = Z Z of Example 2.1.3 be an evolution matrix with integer
components and determinant equal to one. According to (2.22), the time-

evolution of the exponential functions reads

(UAen)(’l") = 627'ri'n,~(Ar) - QQﬂi(AT’n).T = GAT'n,(T) ) AT = (Z 2) .

If one identifies e, with Wy(m), then the discrete Weyl relations (5.85)
can be read as a non-commutative deformation of the fact that the ex-
ponential functions commute:

It is thus natural to define the automorphism as
QN[WN<TL)] = WN(AT’I’I,) s (5176)

and extend it linearly to the whole of My (C).
In order to be an automorphism, © has to fulfil Oy [1y]; then, from (5.84)
and (5.86),

On[UN] = e*™" % = Wiy (NA(1,0)) = Wi (N(a,b))

_ eQﬂ' i(acy, +ba, — %ab)

On[VY] =™ = Wx(NA(0,1)) = Wi (N(c,d))

_ eQﬂ’i(caquda,Ufgcd) )

It thus follows that a discrete representation Wﬁ”’v of the CCR has to
be chosen such that

() () 5 e

For instance, when in Example 2.1.3 o = —1, then A = (i ;) = AT

and the choice o, = N/2 mod 1 yields a finite-dimensional quantization
of the Arnold Cat Map [98, 135, 135].

Furthermore, the automorphism @y is implemented by a unitary opera-
tor Sy : CN +— CV which can be determined by means of the equation

(5.89) once it is represented with respect to the chosen basis {|j) évz_ol:
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N-1
(k[ Sx16) = 37 Sepa(alSn )
P,q=0
Siepg = O (I Wa(=m)la) (k| Wx((-m) |t}
nezi

Thermal States

In the following, we shall focus upon states of quantum systems that are
left invariant by the dynamics, namely we shall be interested in equilibrium
states. A well-known class of such states is represented by the thermal or
Gibbs states:

e P H

Zg

pg = . Zgi= Tr(efﬁH> , (5.177)

at inverse temperature 7! = 3 relative to a Hamiltonian H. Let us consider
a finite level system and the two-point time-correlation functions

Fxy(t) = Tr(pg U, [ X] Y) . Gxy(t):=Tr (pﬁ Y U, [X]) (5.178)

for all X, Y € My(C), where the dynamical maps U, t € R, are generated
by (5.169). Simple manipulations based on the cyclicity of the trace show
that

Fxy (t) = Tx(Y path[X]) = Tr(ps Y palhlX] p5")

_ Tr(pﬁeiH(tﬂﬂ)Xe—z‘H(tJri,B)) =Gxy(t+if) . (5.179)

The above equality expresses the Kubo-Marting-Schwinger (KMS ) condi-
tions in their simplest form [183, 203] and Gibbs states as in (5.177) are the
simplest instances of KMS states.

Remarks 5.6.1.

1. Only the Gibbs state pg € Mn(C) can have two-point correlation func-
tions satisfying (5.179); in fact,

Tr(pXY) - Tr(pYUw[X]) - Tr(Z/{w[X]pY>
for all Y € My(C) yields
pX =e PHXSPH ) — [eﬂHp,X] =0

for all X € My(C) whence p oc e #H . If the KMS condition are taken
as a signature of thermal equilibrium, the conclusion to be drawn from
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this example is that for finite degrees of freedom there can be only one
equilibrium state at a given temperature. Therefore, in order to mathe-
matically describe phase-transitions one needs infinitely many degrees of
freedom [300].

. At infinite temperature § = 0 and the Gibbs states reduce to a tracial
state (see Example 5.3.3.3): 7(X) = Tr(+ X).

. We have seen that faithful density matrices p > 0 are naturally associated
with the modular operator (5.151). The modular operator defines the
modular automorphisms o : 7,(Mn(C)) — 7,(Mn(C)), t € R, given by

ol fo(X)] = AL 7 (X) A = p @ p  m,(X) gt @ p it L (5.180)

They from a group, the modular group, and preserve the GNS state,
all/p) =1+/p), so that (5.152) reads

o’ T (XNIVP) = Jmo (X)) Vo) = [VPX) -

Further, it turns out that p is a KMS state at inverse temperature g = 1
with respect to o’ ,,

(Voo mp (X (YV) [V/p) = T (o' X p" Y )
=Tr(pY o~ 0 X D) = (I mp(V)o? () [mp (X 1V -

By means of the modular group, when a faithful p is decomposed into a
linear convex combination of other density matrices oj, p =" j Aoy, its
decomposers in (5.146) can be recast as follows,

N (X) = (VB mp(X) WBX; ) = (VB | 7p(X) 0, ol (X))] [V/7)
(VP02 almo(X))] 70 (X) 11/5) - (5.181)

The two-point correlation functions Fxy (t), respectively Gxy (t) can be

analytically extended to the strip {t + iy : = < y < 0}, respectively to the
strip {t + iy : 0 < y < B} where they are continuous and bounded, including
the boundaries where they satisfy the KMS conditions (5.179). When the
Gibbs state (5.177) is a density matrix, ps € B (H), these properties which
are almost obvious in the case of finite-level systems, can be extended to
systems with an infinite dimensional Hilbert space H [107, 300].

Examples 5.6.2.

1. Spin 1/2: The density matrix in Example 5.5.5 corresponds to Gibbs
states with Hamiltonian H = w 03 and temperature 3~! such that

1 1—s 0 1 —Bwos
pzf = ——¢ 9
2 0 1+s 2 cosh Bw
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with s = tanh Sw. Therefore, the modular group consists of

A; _ pit ®p7it — efitﬁwcr_g ® eitﬁwa3 — efitﬁw(03®llgfll2®c73) )

Fermions: Let N Fermionic modes, described by creation and annihi-
lation operators afﬁ, i=1,2,..., N, satisfying the CAR {a;, a;r-} = 0ij,

be equipped with a Hamiltonian operator

N
f§: T
H = g;a; ajg .
i=1

This can be regarded as the second quantization of an N-level, one-
particle Hamiltonian h = Zf\; gili)(i| € My(C) and a;r as the creation
operator of a Fermion in the eigenstate | i) with energy ;.

The partition function Zg is easily calculated since for each mode the
occupation number states are |0) and |1) (see Example 5.4.1):

N 1 N
Zﬁ — Tr(e*/BH) _ H Z e*ﬁei ng _ H(l +efﬁsi) 7
1

=1 T =0 1=

whence the Gibbs state of N non-interacting Fermions read

N -1
pPe = H(l —|—e7ﬁ€i> e PH

i=1

In thermodynamics, Gibbs states are canonical equilibrium states, pg,
while gran-canonical states have the form

N
-1
pSC = H(l n e—ﬁ(ei—m) e BH=pN)
=1

where p is the chemical potential and N = Y oic1 a;r a; is the number
operator. Two-point expectations read

lelel I i
Tr(pﬁ a; aj) = (52']' m 5 (5182)
where z = e#P is the so called fugacity. As regards higher order correlation
functions, by means of the CCR anyone of them can be reduced to sums
of expectations with equal numbers of annihilation and creation operators
matching in pairs:

N
Tr(ps aj»p - a;[l aj, ---aj,) = 5quet<{Tr(p azk ajz)} . 221) . (5.183)

By suitably shifting the one-particle Hamiltonian, one may always assume
the lowest eigenvalue (ground state energy) to be 0, whence
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z
<
1+2 "~

)

0 S T‘I‘(pgc a'{ a‘l) =

for the CAR imply |lafal| < 1, so that z > 0.
. Bosons: Let afﬁ, i =1,2,...,N, satisfy the CCR la;, a}] = 0;; of a
system of N Bosonic modes with a second-quantized Hamiltonian

N
HzZsia;{ai, g, >0.
i=1

The partition function reads

N N 1
Zy=Tr(ePH) =[] Y et =T[(1-eP)
;=1

i=1 ng =0 1=

and the canonical and gran-canonical equilibrium states have the form

N N
5 = H(l _ e—ﬁei) e PH | G0 H(l _ e—ﬁ(ei—m) e BUH—uN)

i=1 i=1
The Bose two-point correlation functions read

z

fele,
Tr(e aja;) = b efei — 5

(5.184)

while 2N-point ones are of the form

N

Tr(ps asz - a; aj, ---aj,) = 5quer< {Tr(p ajk ajz)] . 621) . (5.185)
where, unlike for Fermions, 2 N-point correlation functions do not assign
different signs to different permutations whence a permanent appears
instead of a determinant. Furthermore, with the ground state energy set

equal to 0,
Tr (pgc a]{ a1> =

The fact that when z — 1, the ground level can be infinitely popu-
lated is the source of the phenomenon of Bose-Finstein condensation.
Canonical and gran-canonical N Bose states as p©¢ are Gaussian (see
Example 5.5.2); indeed, the characteristic functions (5.116) of pg equals

—0< z<1.
1—2z

N
(o W) = [1(1 - o) (oot evgmn=siel)

1=

In order to compute the trace, it is convenient to split W (z) as in (5.77),
and to use the overcomplete basis of coherent states (5.108) expressed as
in (5.105); this yields



236

5.6.

5 Quantum Mechanics of Finite Degrees of Freedom
Tr (e—ﬂs,y (L;r a; eziai—z;a;r) _ e—|zi\2/2,I\r (eziaie—ﬁsjalm e_z*a‘r)

_ e*|zi|2/2 / dw; <wi |eziaiefﬁeia1aiefzfaz
™

12 dw; was  —Berata; — (2 —wal
= eIl /2/ e~ wil® (pac | elzitwilaig=feiaias o= (=i —wiay e |
T

Taking into account that (see (5.100)), for any o € C,

x  _k
eaeaTa —aeata Za_ ”.[H’a]]_”]:efaea
k! %,_/
k=0
ktimes
T _ T
e¥ea aaTe aca' a :e(xeaT
and that (5.76) yields
e(xae'yaT _ ea'y/Zeaa-‘r'yaT _ ea'ye'yaT e a , «a E(C,

one obtains, by Gaussian integration,

dwi a2 ) oo Beala, — (2% —apn)al
/ e~ 1wl (pac | eFitwilaigmheia aig= (=l —wia; |yqc) =
7T

, e omlmilPe i (e
_ [ AW ) (o —wiye e € _
T 1 — e Pei

Therefore, one derives the form of the correlation matrix (5.122) from

1 Be;
Tr (pg W(z)) = exp(—§ Z | 2] coth Tl)
i=1

7=

1 . coth &1 0 z*
= exp (—Z(z,—z ) < 0 2 cothﬁQ—h) (—z)) , (5.186)

where h = Zf\; g;]1)(i| (¢1 = 0) has been used.

. The relation (5.87) in Example 5.4.2, allows to equip the quantized hy-

perbolic automorphisms of the torus T? with the © y-invariant state wy
defined by

i (Wi(m)) = - T(W (m)) = G (5.187)

on the Weyl operators and extended by linearity to their linear span,
where it amounts to the normalized trace.

1 Quantum Operations

A major departure from classical mechanics is represented by the role played
in quantum mechanics by the measurement processes where a microscopic
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system, S, on which the measurement is performed, interacts with a (usually)
macroscopic system, F, the measuring apparatus.

In a classical, commutative context it is always possible, at least in line
of principle, to make negligible the effects on S due to its interaction with F;
instead, in quantum mechanics states are generically unavoidably perturbed
when undergoing a measurement process. The standard way the quantum
mechanical perturbations are taken into account is via the so-called wave-
packet reduction postulate; in its simplest formulation it goes as follows. Let
X = X' be an observable with discrete, finite and non-degenerate spectrum,
say X = Z?Zl xj Pj, P; = [v;)(¢;|. Upon measuring X on a system
S, the outcomes are the eigenvalues x;; the measurement process can be
schematized as follows: a beam of copies of a same system S, all prepared
so as to be described by a same state p, are sent through an apparatus that
measures the eigenvalues x; leaving the system state in the corresponding
eigenprojections P; and direct them towards a screen with d slits. By opening
the jth slit, the others being kept closed, only those systems on which the
eigenvalue ; has been measured are collected. Suppose N; of the N systems
that interacted with the apparatus reach the screen through the j-th slit;
then, the ratio N;/N approximates the quantity

pj = Tr(p Py) = ([ plbj)

when N becomes sufficiently large. If no selection is operated, that is if all the
d slits are left open, after sufficiently many repetitions of the experiment with
the same state preparation, the collected mixture of systems is described by
the projections P; weighted with the corresponding mean values pg . Thus, a
typical non-selective measurement process changes the state as follows:

d d d
szpgpj:Z|¢j><¢j|p|¢j><¢j|:ZPijj. (5.188)
j=1 j=1 j=1
Fplp]

The map Fp is linear on the state-space S(S) and transforms states into
states: indeed, Fp[p] > 0 and Tr(Fp[p] = Tr(p) = 1, as one can check by using
the cyclicity of the trace and the fact that the P;’s constitute a resolution of
the identity, >, P; = 1.

In general, the instantaneous change from p into Fp[p|] transforms pure
states into mixtures and may intuitively be associated with the loss of in-
formation due to the interaction with the many degrees of freedom of the
macroscopic measuring apparatus. As a consequence, contrary to classical
mechanics, quantum mechanics distinguishes between two state-changes, a
reversible one due to the Liouville time-evolution and an irreversible one, the
wave-packet reduction, describing the action of measurement processes.
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Remark 5.6.2. Effectively, while being subjected to a measurement, any
quantum micro-system is to be considered as an open quantum system dy-
namically and statistically correlated with the (infinitely) many, degrees of
freedom of the measure instrument. This many-body interaction is usually
not controllable and the phenomenological description of its overall effects
is via maps as in (5.188). In particular, a measurement process of an ob-
servable on a system whose state |¢) is a coherent superposition of the

observable eigenstates, |1¢) = 2?21 ¢j|j ), transforms it into a mixture

p= ijl lej 2] 45 ) {(4; |, with consequent loss of coherence.

The existence of two basic quantum time-evolutions, one reversible typical
of closed quantum systems, the other one irreversible and related to measure-
ment processes, is unsatisfactory from an epistemological point of view. All
the more so, since the irreversible macroscopic behavior of system plus appa-
ratus should be deducible from the reversible dynamics of their constituent
microsystems. Alongside with the problem of reconciling thermodynamical
irreversibility with microscopic reversibility, quantum mechanics raises the
question of how to reconcile a reversible microscopic dynamics which pre-
serves the purity of states with an irreversible macroscopic one which trans-
forms pure states into mixtures. A number of approaches have been developed
to attack this problem, for a thorough review of one of them which is based
on a modification of microscopic dynamics by the insertion of a decoherent
mechanism with negligible effects on microsystems, but substantial ones on
macrosystems see [21].

It is convenient to extend the notion of wave-packet reduction to that of
positive operator-valued measures (POVM).
The key property of a map as in (5.188) is its structure and the use on

the right and left of p of operators such that >, P? (: > Pj) = 1. The

generalization is quite natural.

Definition 5.6.1 (Partitions of Unity). Let E; € B(H), j € J, be a

selection of operators such that ZjEJ E;Ej = 1: it is usually referred to
as a POVM or a partition of unity. One associates to it the linear map
Fe : S(5) = S(5),

Felpl = > Ejp El . (5.189)
jeJ

In Example 5.6.4, we shall discuss the interpretation of generic POVMs in
relation to measurement processes; for the moment, it suffices to stress that
the operators forming POVMs need neither be self-adjoint nor orthogonal
projections. While the von Neumann entropy is constant under the Liouville
time-evolution; on the contrary, under a generic POVM, it can increase or
decrease.
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Example 5.6.3. If p = @ is a pure state (one-dimensional projection), then
S(Q) = 0, while under the action of a wave-packet reduction, F¢[Q] gets
mixed and S(Fg[Q]) > 0. However, if one starts with a mixed p, S(Fg[p]) can
be smaller than S(p): take for instance Fy = [1)(0], E; = |1)(1], where
|0), | 1) are a basis in C2, then, Bl By + EJE, = 1 and, for all p € S(5),

Felp] = [1)C01p[0)(1]+[1)(1|p[1)(1]=[1)(1|Tr(p) = |1)(1].
Thus, for any given mixed p, S(p) > S(Fe[p]) = 0.

As we shall see in Section 6.1, the use of generic POV Ms , that is not made
of orthogonal projections, is practically useful when one wants to distinguish
between non-orthogonal quantum states. However, consider the statement

measuring the (orthonormal) POVM P := {P;};c; € B(H) on the system
S in the state p corresponds to the irreversible map p — Fp(p] = >_.c ; PjpP;.

This has an acceptable interpretation in physical terms for the orthogo-
nality of the P;’s reduces the experimental measure of P to an experiment
with #(J) slits. The same argument does not directly work when projec-
tive POVMSs P are substituted with generic £ := {E;};cs, > EJTE]- =1
Consider the statement

=

measuring a generic POVM & := {E;};c; € B(H) on the system S in the
state p corresponds to the irreversible map p — Felp] =3, ; EjpE;..

In order to give it a meaning, one has to specify what is measured and
on which system; indeed, the non-orthogonality of the E;’s makes untenable
the straightforward interpretation accorded to projective measurements. An
answer to the above question is given in terms of couplings to ancillas and
partial tracing.

Example 5.6.4. [224] Let £ := {E; }jc; € B(H) be a POVM for a system S.
Let R be an auxiliary system described by a Hilbert space K which provides
an abstract quantum description of an instrument to which S is coupled
during a measurement. A schematic description of a measurement process
associated with & is as follows:

1. there exist orthonormal bases, {|¢; )} € H and {|k)}x>0 € K, with [0)
corresponding to the ready-state of the measurement apparatus;

2. there is a unitary time-evolution operator U; on H ® K such that, at the
end of the process, at time t = T say, for any initial ¢ € H, one has

Urly)®10) =) Ejlv)®l|j)=|¥).

jeJ

The unitary operator Ur is well-defined: indeed, the right hand side of
the above equality can be taken as a definition of Urp as a linear operator
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from H® [0) into H® K. Since >_,.; E}Ej = 1lg, where g denotes the
identity operator on H, scalar products of vectors in the subspace H® |0)
are preserved and the isometry Ur can be extended to a unitary operator
on H ® K. Let the compound system S + R be in the state ¥, according
to the postulate of wave-packet reduction, by measuring the eigenprojectors
1s ® Py, P :=|k)(k|, k € J, the outcoming (not-normalized) states

Is @ P9 )( |15 ® P = (Bl 9)(¢|F]) @ Pe
are obtained with probabilities

(W) == (¥ | 1s ® P, |) = (4| BBy [¢) .

By disregarding the ”instrument” R, the overall effect of the entire process
on the system S alone is as follows:

— by measuring the projections g ® P on S + R after the action of U on
[4)®]0), the state |1 ) changes into the normalized states

By ) (¢ |B]

[y ) = DTk
V(W ELE] |[v)

with probabilities 7 (1));
— without selection, the overall effect is

(W)=Y m @) [0 Wy | =Y B [¢) (v | Bl =Fel|v)(w]] .

jeJ jeJ

—  The process described by (5.189) is obtained by linear extension of the
action of Fg from projectors to mixtures of projectors.

Remark 5.6.3. The previous one is an example of dilation of a CP map to
a unitary evolution on a larger system from which the former is obtained by
partial tracing [109]. In general, any POVM & := {E;}jc; C B(H) can be
dilated to a projective POVM P = {P;};c s consisting of orthogonal projec-
tors P; on a larger Hilbert space K [143]. For POVMs such that card(J) = d,
the proof goes as follows: consider the Hilbert space K¢ = H ® C? linearly
spanned by vectors of the form

d
|0)e = Ejl) @15)
j=1
where |¢;) € H and {|j)}9_, is an ONB in the auxiliary Hilbert space C*.

Let |¢) € H and set |y )s := Z?Zl E;|¢)®|j). The operators P; on K¢
defined by
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Bj|w) = Ej[¢;) @15)

are orthogonal projections such that Z?Zl P; = 1 on K¢ and the projective
POVM P = {P; }?:1 C B(Kg) is such that

d d
S P Wy )ee(Ws| Py =Y Ejlé)(o|El@]5)(5]

j=1 j=1

whence (5.189) results by tracing over the auxiliary Hilbert pace C.

5.6.2 Open Quantum Dynamics

Despite the practical impossibility of describing the interaction between
a micro-system and a macro-system during a measurement process, it is
not without hope to try a dynamical derivation of the wave-packet reduc-
tion (5.189). The idea is that the latter is a time asymptotic effect of a
many-body interaction whose time-scale is much shorter than the duration
of the process. The phenomenological description of the process cannot be
given in terms of an automorphism U;: on one hand, U; is reversible, while
the wave-packet reduction is not, on the other hand U, cannot transform pure
into mixed states.

A straightforward way to extend the quantum time-evolution beyond the
reversible one generated by the unitary Liouville equation is to add some
extra structure to (5.168). One observes that the commutator corresponds to
a linear action on the state-space S(S), and that the generated dynamical
maps U, satisfy the composition law U o Us = U4 for all s,t € R.

A sensible step is to modify (5.168) by adding to the commutator a linear
term that breaks time-reversibility and generates a semi-group I3, t > 0, of
linear maps obeying a forward-in-time composition law I;o0l's = Iy, where
now s,t > 0. Namely, one tries to substitute (5.168) with a time-evolution
equation of the form

Op(t) = Lulp(t)] + Dip(t)] . (5.190)

Formally, the semi-group of linear maps {I}};>0, solutions of (5.190), is ob-
tained by exponentiating the generator:

p—pt)=Tp], TIi:=¢*, L=Lyg + D. (5.191)
Not all linear maps D lead to physically consistent irreversible time-evolutions
I'y; the following conditions result necessary:

1. Tr(D[p]) = 0: since Tr([H, p;]) = 0, this implies trace-conservation
9 Tr(p) = 0;
2. D[p]" = D[p]: this guarantees preservation of hermiticity;
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3. the positivity I'i[p] must be preserved at all times ¢ > 0.

While the first condition can be relaxed, for instance in the case of de-
caying systems [11], which we shall not consider, the other two conditions
are instead necessary to ensure that [} map density matrices into density
matrices. However, positivity-preservation alone does not suffice for the full
physical consistency of I}, the stronger property of complete positivity dis-
cussed in Section 5.2.2 turns out to be necessary. Despite its mathematical
origin, this notion is deeply rooted in quantum physics. Its importance was
firstly appreciated in the theory of open quantum systems [11, 96, 181].

Equations of the form (5.190) that lead to semi-groups of dynamical maps
that break time-reversibility are usually derived when one thinks of S as a
subsystem immersed in a large (infinite) reservoir, or heat bath, R. Practi-
cally, one deals with a situation similar to the one in Example 5.6.4 and uses
a partial tracing technique: the system S is not closed, but coupled to a large
system R. The system S+ R is described by the tensor product Hilbert space
H ® K, its states psypr are density matrices on such a space and evolve in
time according to the unitary time-evolution

= UtSJrR[

ps+Rr — ps+r(t) ps+r] = Usyr(t) pstr U;+R(t)a

generated through (5.168) by a Hamiltonian of the form
H= Hs + Hgp + \Hy (5.192)

where Hg r are the Hamiltonian operators describing the reversible time-
evolutions of system and reservoir alone, while H; takes into account their
interactions with A an adimensional coupling constant.

The interaction Hamiltonian is such that there are practically no hopes
to arrive at an explicit unitary time-evolution Ugy (t). On the other hand,
one is interested in the dynamics of the open system S alone. Furthermore, in
many situations of physical interest, one may reasonably assume that there
are no statistical correlations between system and reservoir at t = 0; namely,
the initial state of the compound system can be taken of the factorized form
ps+r = ps®pr of the initial condition. Then, by tracing over the environment
degrees of freedom, one obtains a one-parameter family of dynamical maps

ps + ps(t) = Trx(ps+r(t)) (5.193)

on the state-space of S which is called reduced dynamics.

Together with the fixed form of the initial condition, the elimination of the
environment degrees of freedom by means of the partial trace Trx makes the
evolution irreversible. The factorized initial condition does get entangled in
the course of time, so that, in general, the family {pg () }:>0 of states satisfies
a highly complicated integro-differential evolution equation of the form

ostt) = [ dsLlps(t =) (5.194)
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in which the linear operator L2 on the state space S(5) of the system exhibits
memory effects that account for the entanglement of the system with the
reservoir from time ¢ = 0 to time ¢ > 0. Before dealing with how one can
eliminate the memory effects and get an evolution equation that generate
a semi-group of maps on §(.9), it is convenient to examine (5.193) in some
more detail.

Let for sake of simplicity assume that the initial state of the reservoir
is described by a density matrix be pgp = Zj Dy wfﬂwf |, where p; > 0,
Zj p; = 1, and the %R form an orthonormal basis in K. We use them to
calculate the partial trace Trk:

= 0 (U | Ustr®) 18] ps (0 | UL, m(1) [ -
ij

Notice that the matrix elements provide operators

Vij(t) == /5 (U | Usr(t) [F) + H—H,

so that the reduced dynamics corresponds to maps

ps — Adps] : Zvu ) ps V(1) - (5.195)

According to Proposition 5.2.1, the resulting dynamical maps are CPU with
the V;;(t) as Kraus operators. However, they do not form a semi-group be-
cause of the memory effects built in the integro-differential equation they sat-
isfy. Under the hypothesis of a very weak coupling between S and R (A << 1),
a semi-group reduced dynamics is obtained by performing suitable Markov
approzimations, the most straightforward being the substitution

/ot ds L{ps(t = )] = Lps(t)] = (/Om 22 st

Since the memory effects have been eliminated, L is a generator corresponding
to a Liouville equation or master equation as in (5.191).

In the so-called weak-coupling limit [105], the Markov approximation
sketched above can be understood as follows: an expansion to second order
in the small coupling constant A shows that (5.194) becomes

Oips(t) = —i[Hs + N> Hy, ps(t)] + N2 /Ot ds D(s)[ps(t —s)] ,

where D[] acts linearly on the state space S(S). The effects due to the
presence of the reservoir are thus visible on a time-scale 7 = tA2 which is
slow as A < 1; by rescaling the evolution equation reads

TAT?
Brps(TA™?) = —iA?Hg + Hi, ps(TA™?)] + /0 ds D(s)[ps(TA™* = 9)] .
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Then, by letting A — 0 one replaces the upper integration limit by +oco and
neglects s in comparison with 7A~2 in the argument of the state appearing in
the integral. The problem with too naive Markovian approximations as this
one is that very rarely they lead to irreversible evolutions that are positivity
preserving [105]: most derivations provide time-evolutions that are not posi-
tive and generate physically inconsistent negative probabilities. For instance,
the wild oscillations due to the system Hamiltonian term A~2Hg when A\ — 0
makes intuitively plausible using an ergodic average to smooth away too fast
effects [95].

Irreversible Dynamics within the Bloch Sphere

With respect to Example 5.6.1.1, it proves convenient to represent density
matrices p € M2(C) by Bloch vectors with one more component correspond-
ing to the coefficient of o in the expansion (5.104).

We shall identify p as a 4-dimensional ket R* > | p) := (1, p1, pa, p3). As
a consequence, the linear action of the generator L : p — L[p] in (5.191)
corresponds to a 4 x 4 matrix £ = [£,,,] acting on | p). The Liouville equa-
tion (5.168) thus becomes

dlp)=—-2H+ D),

with —2H and —2D 4 x 4 matrices corresponding to the commutator Ly
and the added term D in (5.190) (—2 has been inserted for convenience).
Concerning the matrix D, the request of trace and hermiticity preservation
imposes Dy; =0, j = 1,2,3, and D, € R. By splitting D into the sum of a
symmetric and antisymmetric matrix, the latter corresponds to a Hamilto-
nian contribution that can be incorporated into H. Thus, one remains with
a purely dissipative matrix

0 0 0 O
u a b c

D= v b oa B (5.196)
w ¢ [ v

with 9 real parameters which depends on the phenomenology of the system-
environment interaction and can, in line of principle, be tested in dedicated
experiments [32].

By exponentiating £, one gets a one-parameter semi-group of 4 x 4 matri-
ces, {Gi }1>0, such that G, = e~ 2(H+D) which corresponds to the semi-group
{I}+>0 on the state-space S(S) given by

3
pp) =Ll =) pult)ou, pult) = (Gep)y -
pn=0

Since the trace is preserved at all times, checking positivity preservation
amounts to checking whether Det[p(t)] > 0 for all ¢ > 0 and for all initial p.
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Since the contributions of the anti-symmetric H cancel out, the time-
derivative of the determinant reads

. dDet[p(t 2 2

1,j=1

1 .
= #, then Det[P(n)] = 0. Therefore,
I,[P(n)] > 0 asks for D[P(n)] > 0 and the same must also be true for the
orthogonal projector P(—n). By summing D[P(n)] > 0 and D[P(—n)] > 0
and varying mn in the unit sphere, positivity is preserved only if

Let p be a pure state P(n) :

a b c
DO =|b a ] >0. (5.197)
c B v

The positivity of D®) is necessary for positivity preservation, but not suf-

ficient, the reason being that D[P(n)] < 0 can follow because of the extra

term Z?:1 Djop;. However, it becomes also sufficient when we ask that I}

increase the von Neumann entropy of any initial state, as this is equivalent

tou =v=w=0in D. Indeed, given any initial p, let it be spectralized as
1+n-o 1-n-o

Pyt

with 0 <712 <1, n € R3 and Z?Zl n? = 1. Then, one explicitly computes

- z{m —ra)(n|D® |n) + ijonj} m% .

j=1

If Djo = 0 for j = 1,2,3, then the time-derivative is positive because of the
positivity of D and due to the fact that (14 — ro)Inry/ro > 0; if not, one can
always find a p for which S (p) < 0: 1t suffices to choose r; —r9 sufficiently small
and adjust n to make negative the second term in the previous expression.

Example 5.6.5. Let us consider the following simple master equation for a
2-level system S,

Op(t 1
%zi(olpal — o9pog + o3pos — p) .

Using (5.56), L[1] = L{o1] = L[os] = 0, while L]os] = —209; therefore, the
generated semi-group ¢ = exp(t L) is such that

1 _
Yelp] = 5(114'0101 +e *pyoy +P3U3> :
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0 00
Since the matrix in (5.197) is now D = [ 0 1 0 |, the necessary con-
0 0 O

dition for positivity preservation is satisfied. Further, the Bloch vector at
time t, p(t), is such that ||p(t)|| < ||p||; therefore, any initial density matrix
remains a density matrix.

Suppose the 2-level S system evolving under ~; is statistically coupled to
another 2-level system S’ that has no evolution of its own. Then, one has to
consider states of the composite system S’ 4+ S that evolve in time under the
semi-group of maps of the form I} = ids ® 4, that is I} lifts the action of
from M3(C) to M2 (M2(C)) = M3(C) @ M3(C) as in Section 5.2.2.

Among the possible initial conditions for I} there is the Bell state |@00)
in (5.164); we know from (5.17) that the corresponding projector ﬁi is pro-

portional to the matrix E = [E;;] € M(M2(C)) whose entries are matrix
units in M(C). By writing E11 = (14 03)/2, E12 = (01 + i02)/2 and
Es; = (1 — 03)/2 in terms of the Pauli matrices, it turns out that

= 1

P+ = Z(ﬂ®ﬂ+al®al —O'2®O'2+O'3®O'3) .

Then, setting \; := exp(—2t), under the time-evolution I%, ﬁi evolves into

~ 1
Ft[P_%_] = 1(]1@]1—1—0'1 ®0’1—/\t0'2®0'2+0'3®03)

2 0 0 1+X

_1 1+ o3 o1+ iMoo _1 0 0 11—\ 0

_4<01—Mt02 1-o03 )‘4 0 1-Xx O 0 ’
I+X 0 0 2

which is not positive definite for any ¢ > 0, for it always shows a negative
eigenvalue (A\; — 1)/4.

The physical meaning of the previous example is that, though ~; is a
meaningful time-evolution for one 2-level system, I} is not so for two 2-level
system as there exists a state of the two together which does not remain
positive definite. Notice that the state which exposes the problem is entan-
gled; indeed, any separable state, as in Definition 5.5.3 would remain positive
under I: as y[p] > 0 for all p € S(9),

LoD Xgsi@pi| =D Xiipi @ nlps] 2 0.
ij ij
The importance of Theorem 5.2.1 is now apparent: physical transformations

of an N-level system S cannot be described by linear maps A that are only
positivity preserving, they must also be completely positive. Otherwise, by
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coupling S with another N-level system S’, one would obtain a map idy ® A
which would map the initial entangled state P_{_V into a non-positive definite
matrix.

The standard quantum time-evolution U, is automatically in Kraus form,
thus completely positive and free from inconsistencies with respect to statis-
tical couplings to ancillas. It is only when performing a Markovian approx-
imation that one must check that complete positivity be guaranteed by the
procedure [95, 96, 105, 285].

5.6.3 Quantum Dynamical Semigroups

Positivity and complete positivity depend on the dissipative term D|p] added
to the commutator in (5.190): it turns out that when one asks that the
generated semi-group consist of completely positive maps, then the form of
the generator is completely fixed.

Theorem 5.6.1. [126] Let {~;}1>0 be a one-parameter semi-group of her-
miticity preserving, unital linear maps v : My(C) — My(C) such that
lim; gy = idg with respect to the norm-topology. Then,

1. the semi-group has the form ~; = exp(tL) with generator

LX) :z[H, X} + dil Cab(FgXFb - %{Fng, X}) :

a,b=1

where the matrices Fy, form an ONB in M4(C) with respect to the Hilbert-
Schmidt scalar product with Fpp = 14/v/d (Tr(F,) = 0 if a # d*> — 1))
and the (d* — 1) x (d?> — 1) matriz C := [Cyy), called Kossakowski matriz,
1s Hermitian.

2. The maps v are completely positive if and only if [Cup] is a positive
matriz.

Proof: From Example 5.2.7.1, the linear maps Fgu, : My(C) — My(C)
defined by Fup[X] := Ff X Fy,, a,b=1,2,...,d?, form an orthonormal basis
in the d? dimensional linear space of all linear operators on My(C) equipped
with the Hilbert-Schmidt scalar product of the associated Choi matrices. It
follows that the generator L can be expanded as L = Zszl Loy Fap- Then,
the request that the generated semi-group preserve hermiticity implies that
LIX]t = LIX] for all X € M(C) which in turn yields L, = Ly,. Now, after
rewriting

d?—1 42
1
LIX|=FX + XF' + Y Ly Flaga X F,, F:= WE Lo F}
a=1

a,b=1
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and separating F' into its Hermitian components, F' = K + ¢H, where

d? d?
1 1
K;:-§ Log2 FI + Ly, F, H::—E:La F! — Ly, F,
2 a=1( ot e " o ) , 2i a:l( e - ) ’

one concludes that

d’-1
LIX|=i[H,X] + (KX + XK)+ > Ly FIXF,.
a,b=1

The first statement of the theorem follows by further imposing unitality, that
is that 4¢[1] = 1 for all ¢ > 0. One thus gets that L[1] = 0, which further
d>—1
imposes K = —— Z Ly FJr Fy.
a,b=1
According to Theorem 5.2.1, ; is a CPU map on My(C) if and only if
I :=idy ® 4 is a positive, unital map on M,;(C) ® M4(C). Notice that the
maps I} form a norm-continuous semi-group with generator Ly := idy ® L;
then, according to [177, 178] (see also [64]), the maps idy ® 7 are positive if
and only if

I(h,¢) = (Y| Lia[| @) (@] [¢) =0
for all orthogonal 9, ¢ € C? @ C?. Since (¢ |¢) = 0, it follows that

d?—1

= > Car (¥ 112 Fl16)(0| 1@ Fylw)) -

a,b=1

Then, it proves convenient to define the d? x d* matrices ¥ = [¢;;] and & =
[¢i;] where ;; and ¢;; are the components of the vectors ¢ and ¢ with respect
to a fixed ONB {|4,7)}¢,_, in C* @ C?. Notice that (¢|¢) = Tr(¥1®). By

introducing the vectors |v) € C%°~1 with components given by
= (6|14 ® Fa ) = Tr(Fa(2'0)") ,

d’—1

one then rewrites (1), ¢) = Z Copvivy = (v|C|v). If C = [Cyp) > 0, then
a,b=1

I(3p, $) > 0 for all orthogonal v, ¢ € C? @ C?, whence I} is positive.

Vice versa, given a generic vector |v) € C4 =1 the traceless matrix
M4(C) > ¥ .= ZGQE v, F, corresponds to a vector ¢ € C? ® C? that is or-
thogonal to the non-normalized totally symmetric vector |¥{) = Z?:l |ii).
If I} is positive, then I(y,¥¢) = (v|Clv) > 0 for all |v) € C%¥~1 whence
C>0. O
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Remarks 5.6.4.

1.

If {v}+>0 is a norm-continuous one-parameter semi-group of positive
maps 7; : My(C) — My(C) with generator L and 9, ¢ € C? are orthogo-
nal vectors, then

0<{¢[vlle)olllp) = t(L|Ll¢) )

to first order in ¢. This yields the only if part of the theorem used in the
previous proof; it turns out that this condition is also sufficient for the
maps y; to be positive [177, 178, 64].

. The extension of Theorem 5.6.1 from My(C) to B(H) with H an infinite

dimensional Hilbert space, has been provided by [193] under the assump-
tion that ||L[X]|| < || L] || X|| for all X € B(H), namely that the generator
L be bounded on B(H).

. By duality, one gets the following time-evolution equation for the states

of the open quantum system S:

d>—1

L*Uﬂ::fipy,p]A% 3 czb(ﬁgpfj - %{fjfg,p}).
a,b=1

Since the v; are unital, their dual maps 7,  preserve the trace of p.
d?—1

.If v, is CP , the expression Z Cuw Fpr;r can be put in Kraus form

a,b+1
as in (5.36). Such a term corresponds to what in the classical Brownian
motion is the diffusive effect due to the presence of a white-noise. It is
indeed sometimes called quantum noise which is also in agreement with
the effects of generic POVMs on quantum states [121].

. Beside the noise contribution, the remaining part of the generator has
the form
i i T
—i(H - =K ip(H+ =K K= Loy Fl Fy .
WH=5K)p+ip(H+5K), 2;1 b I Fo

This expression corresponds to the typical phenomenological description
of the time-evolution of decaying systems; in particular, K is a damping
term due to probability that goes irreversibly from the system S to its
decay products.

. Regarding the generated maps 7; = exp(tL), there are no general results

on the form of the Kossakowski matrix C' = [C};] able to ensure that the
v be positive; the only available general expression is for d = 2 [178].

Semigroups consisting of completely positive maps are called quantum

dynamical semi-groups. Their derivation as Markovian approximations of an
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underlying reversible many-body dynamics mainly follows three schemes, the
already mentioned weak-coupling limit, the singular-coupling limit [126, 125,
230] and the low density limit [104]. All of them work when the time scales
of the system S and of the reservoir R are clearly distinguishable. The weak-
coupling limit is the one most frequently encountered in the literature since
the beginning of the theory of open quantum systems and also the one which,
if not performed with due accuracy [96], leads to semi-groups of maps which
are not completely positive and thus to physical inconsistencies in relation to
entanglement.

Example 5.6.6. [27] Let d = 2; in such a case, by choosing the orthonormal
basis of Pauli matrices F; = o/ V/2’s, j = 1,2, 3, the dissipative contribution
to the semi-group generator reads

Lplp] = 23: Cij [OiPUj - %{Ujo'i ; PH :

4,J=0

For sake of simplicity, we shall restrict to entropy-increasing semi-groups.
Then, we can consider the matrix D in (5.196) whose entries read

a=Cp+Cs3, a=C11+Cs3, 7v=Ci1 +Cxn
b=—-Cio, c=—-Ciz, f=—-Ca .

Thus, the positivity of [C;;], which, according to the previous theorem, is nec-
essary and sufficient for the complete positivity of I}, results in the necessary
and sufficient inequalities for a, b, ¢, a, 3, 7:

2R=a+vy—-a>0, RS>0
2S=a+~v—a >0, RT > &2
M=a+a—y>0, ST>f?
RST > 2bcf + RB? + Sc* + Th* .

These constraints are much stronger than those coming from positivity alone,
that is from D) > 0 in (5.197) which yields

a>0,a>0,7>0, aa>b*, ay>c, ay> (>

and DetD®) > 0. As a concrete example, take a = o and f =b = ¢ = 0; so
that the Kossakowski-Lindblad generator reads

20 —
Llp] = %(Ulﬂgl -p) + %(Ungz —p) + 5 7(U3P03 -p),
whence Loy 2] = —a 012 and L{og] = —yos. It follows that, when o,y > 0,

the generated semi-group ~; describes a decay process towards po, = 1/2
with different rates for the diagonal and off-diagonal elements of ~;[p].
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Indeed, setting p; := exp(—vt) and \; := exp(—at), it turns out that

L+peps  Me(p1 — ipz)) .

01 = 5 (14 Mlpr01 + p20) + peos) 1(
= - o o o3) == .
YelP B t\P101 T P202 Ht03 B /\t(/h —I—sz) 1— peps

On the other hand, consider I} = ids ® ¢ and ]342_ as in Example 5.6.5, it
turns out that

~ 1
L[P?] = Z<]1®]1+/\t(0'1®01—02®02)+Mt03®03>

T+u 0 0 2\
1 0 1—pm O 0
T4 0 0 1—p O

2\ 0 0 1+

This matrix is positive definite if and only if 1 4+ g, > 2A;. This is implied
by the complete positivity condition v < 2«a;, whereas if v > 2a, when t — 0
one gets

T4 p — 2N 2 t(2a—7) < 0.

In conclusion, only complete positivity guarantees full physical consistency
with respect to statistical couplings with other systems. However, this im-
poses a hierarchy, v < 2a, upon the decay rates of the entries of the dissipa-
tively evolving state y:[p], which should otherwise only be positive.

5.6.4 Physical Operations and Positive Maps

The argument behind the request of complete positivity on state transfor-
mations is that one can never exclude that the system S undergoing the
transformation is indeed entangled with an ancilla system S’, even without
any effective sign of statistical correlations. Though plausible, this point of
view is not always accepted [235]; after all, the mere possibility of entan-
glement with an uncontrollable ancilla would then, via complete positivity,
constrain the decay properties. Consider, for instance, an actual experiments
where optically active molecules interact weakly with a heat bath; they can
effectively be described as 2-level systems. The relaxation to equilibrium of
their optical activity can accordingly be predicted by an appropriate master
equation. Clearly, the fact that the optical activity may depend on whether
the molecules are entangled with some other system out of any experimental
control sounds admittedly weird [72, 185, 186, 292].

However, most of the objections to complete positivity do not consider
the entanglement issue for they all focus upon single open quantum systems
in heat baths. If, however, two optically active molecules in a same environ-
ment are considered, the entanglement issue comes to the fore. If the two
molecules do not interact between themselves, but are weakly coupled to
their environment, it is sensible to describe their open dynamics by a semi-
group of dynamical maps of the form I} = v ® 4, where ; is the reduced
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dynamics of a single molecule. These dynamical maps differ from ids ® 4 in
Examples 5.6.5 and 5.6.6.

Notice that in going from idg ® v; to I} = v ® 7 one effectively goes
from the possible existence of statistical correlations between the system Sy
and another system of the same type which is somewhat uncontrollable, to a
concrete scenario when one has two statistically coupled systems in a same
environment. The following result on one hand extends Theorem 5.6.1 and
on the other stresses once more the fact that complete positivity is not just a
mathematical option without physical meaning, rather an unavoidable con-
straint on all sensible Markovian approximations.

Proposition 5.6.1. [37] Let {v;}¢+> be a norm-continuous semi-group of
dynamical maps v : Mq(C) — My(C) with generator as in Theorem 5.6.1.
Then, the linear maps Iy = ¢ ® v form a norm-continuous semi-group on
M4(C) @ My(C) and preserve positivity if and only if v is a CPU map for
all t > 0.

Proof: One implication is straightforward: if ~; is a CPU map, then v, ®ids
and id; ® ¢ are positive and such is I3.

For the other implication, notice that, in view of the assumptions, the one-
parameter family {I}};>0 is a norm-continuous semi-group with generator
Lis = L®idg +idg ® L. Then we argue as in the proof of the second part of
Theorem 5.6.1 and show that

I(h,¢) := (Y| Lia[| @) (@] [) =0
for all orthogonal v, ¢ € C? ® C?. Since (1) |¢) = 0, it follows that

d?—1

1(,6) = > Car (0| Ff @ Lal6)(6| Fy @ T 0)

a,b=1
RCARPE AR AT
By means of the matrices ¥ = [¢;;] and @ = [¢;;] associated to the vectors

P, ¢ € C*® C? as explairzled in the proof of Theorem 5.6.1, one introduces
the vectors |w),|v) € C4 ~! with components given by

wy = (| @ |¢) = Tr(F(W@Y)) , vy := (¢ | 1@ F, [¢) = Tr(F(2T9)7)

and rewrites

d?—1

I($,6) = Y Cap (wiwy + vivy) = (w|Clw) + (v[Clo) (%) .

a,b=1



5.6 Dynamics and State-Transformations 253

Given |w) € C* =1, construct My(C) > W := 222:_11 wq F,. Since a matrix
and its transposed are always similar [134], let Y € M4(C) be such that
WT =Y WY~ and define ¢ := Y1, ¥l := YW so that

ovt=w, @) =ywy HT =W and |w)=]|v),

whence (x) becomes I(1),¢) = 2(w|C |w) > 0. Observe that |w) € C4 1
is generic and that to any such vector one can associate orthogonal vec-
tors ¥, ¢ € C? @ C? through the matrices ¥, ® as described above 6. Thus,
I(v,¢) > 0 for any such pair implies C' := [Cyp] > 0. O

Remarks 5.6.5.

1. If positive, I} = v @7, is also CP; indeed, using (5.36), it turns out that
X =22, VjT(t) X, V;(t), X € My(C). As a consequence,

va t) @ Vi (£) X V;(t) @ Vi(T) .

2. The equivalence between the complete positivity of v, and the positivity

of It = v ® ¢ does not extend to the tensor products of generic 7t1’2);

indeed, in Proposition 6.2.2 it will be shown that I} = (1) ® %( ) can be
positive without fytl’2) being both CPU maps.

Once a semi-group reduced dynamics is accepted as a phenomenological
time-evolution under certain physical conditions as those compatible with,
for instance, the weak-coupling limit scenario, there is only one possible way
to get rid of the complete positivity constraint. One has to rely upon the
existence of physical mechanisms that eliminate those initial entangled states
that, like the symmetric projector Pﬁ, would otherwise be cast out of the state
of space by I} when 7; is not completely positive [122, 124, 292, 319].

In quantum information the situation is physically clearer and complete
positivity compulsory. In fact, the state transformations that are commonly
considered do not from dynamical semi-groups arising from suitable Marko-
vian approximations, rather they are maps as in Definition 5.6.1. Indeed, the
simplest operations are local state transformations that two parties operate
on shared entangled states as P_ﬁ. In order to be physically consistent, these
local operations must correspond to completely positive maps.

What then of positive maps? If, on one hand, the existence of entangle-
ment in nature forbids their use as dynamical maps that describe actually
occurring physical processes, on the other hand, as we shall see in the follow-
ing chapter, they are extremely useful as entanglement witnesses.

Notice that, as (¢ |¢) = 0, the matrices $¥' and ¥'® are traceless.
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6 Quantum Information Theory

In the last years, a considerable amount of theoretical and experimen-
tal studies have been focussing on the impact that quantum mechanics
may have on computer science, information theory and cryptography. We
shall loosely refer to this vast and variegated field as quantum informa-
tion [71, 48, 100, 128, 224, 242, 152, 239, 307]. In the following, we shall
briefly touch upon a small fraction of its many achievements.

6.1 Quantum Information Theory

Why quantum information? Is it not classical information sufficiently power-
ful a theory to satisfy our needs? The answer is that it will indeed be so until
computational models and information transmission protocols are based on
classical physics. Indeed, information is physical [187, 55] for it is carried by
physical entities, transmitted and manipulated by physical means; as a con-
sequence, any actual information processing protocol will rely upon a model
describing the physical processes involved. Since Nature is considered to be
ultimately quantal, one is inevitably led to consider a scenario in which quan-
tum mechanics will set the rules of the game also in dealing with information
and its manifold aspects.

Roughly speaking, the issue at stake is the use of qubits instead of bits as
fundamental informational resources so that one has the whole Bloch sphere
of two-level system states at disposal instead of just the two states (up and
down along the z-direction) that are available to classical spins.

When the information that is manipulated regards computational pro-
cesses, the question is whether Quantum Turing Machines (QTMs), that is
computing devices based on the laws of quantum mechanics, might perform
better than classical Turing machines. A breakthrough was indeed the dis-
covery that relevant speedups can be gained by quantum algorithms because
of the huge parallel computation made available by the possibility of linearly
superposing qubits states.

Truly, from an abstract perspective, as much as classical mechanics is
contained in quantum mechanics, also classical information, computation and
cryptography may be thought of as commutative versions of more general
theories, still in their infancy, that are to be soundly formulated within a

F. Benatti, Dynamics, Information and Complexity in Quantum Systems, 255
Theoretical and Mathematical Physics, DOI 10.1007/978-1-4020-9306-7_6,
(© Springer Science+Business Media B.V. 2009
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quantum, non-commutative, framework. However, the need to elaborate these
more general theories is not only justified in line of principle, but comes from
concrete facts. The pace at which every two years electronic devices double
their efficiency (the so-called Moore’s law) and decrease in size is such that
non-classical effects will soon appear and quantum mechanics will become
necessary to cope with them.

If information is carried by qubits , then the possible reversible operations
to which they can be subjected are all those corresponding to unitary matrices
in M5(C): these are called quantum gates. In the classical case, the only non-
trivial gate on bits 0,1 is that which flips them, 0 — 1, 1 — 0. Consider, for
instance, the Hadamard transformation in (5.58); its n-fold tensor product
U™ acting on |0)®" produces a uniform linear combination of kets labeled

by the 2" binary strings i) € Qén), in one stroke:

n|n®n 1 .
Ugm|o®n) = 572 > |y (6.1)
imenfm

Linearity is at the basis of quantum parallelism: suppose that the computation
of a binary function £ : 28" — 28" on n bits with n-bit strings as images,
i (f(i(")))(")7 can be operated by means of a unitary transformation

4)) = Up ™) = [ (£G™) ™)

on n qubits. By Uy f is computed on all strings at once, as follows:

n n 1 =1 n
UsUR0) = s S 1) ™).

The linear structure of quantum mechanics seems to provide a more powerful
setting than the classical scenario; however, the extraction of information out
of quantum states is a much more delicate problem than with binary strings.

Any computation performed by a QTM on n qubits must correspond to a
unitary operator on (C?)®"; then, a quantum algorithm acting on an initial
state of the n qubits would halt in a linear combination of all possible compu-
tational basis vectors in (C?)®", each one of them corresponding to a classical
n-bit string +™ occurring with a certain amplitude C(i™). If the solution
of a problem is a specific binary string i("), an efficient quantum computa-
tion must associate to that string a very high probability, |C(3™)2 ~ 1.
Only in this case the solution would show up with almost certainty from a
measurement in the computational basis.

Example 6.1.1 (Deutsch-Josza Algorithm). Let f : an) — {0,1} be
a binary function that is known to be either constant or balanced, that is
£(™) = 0 on half of the n-digit strings and f(¢") = 1 on the other half.
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The task is to decide between the two possibilities. Classically, the only way
to ascertain whether f is constant or not is to compute it on 271 + 1 strings,
that is on half plus one of them; this is because one can compute always 0
or always 1 on 2" /2 strings in a row without the function being constant, so
that only one more computation can settle the question. On the other hand,
if the bit strings i could indeed be treated as computational basis vectors
|4 ) in the Hilbert space H(™ = (C2)®" of n qubits, then the following
quantum algorithm would answer the question in just one trial. It is based
on a generalization of the CNOT gate of Example 5.5.9; instead of one control
qubit, there are n of them all prepared in the same state |0) together with
one target qubit in the state |1). As seen in (6.1),

n 1\" : 10)—11)
) = U +”|o>®“®1>—<_> > i) e -
V2 imeni™ V2
)\ (n in)y
The matrix Man(C) ® Ma(C) 3 Uy = 350 g 15 ™ | @ U™ i
unitary and flips the last qubit only if f(5) = 1. This yields !

" N i
|¢f>:Uf|¢><%> 3 iy @ 09 )>ﬁ|1®f( )

i(n) E-an)

1\" N 0)—|1
- (ﬁ) Z (—1)F G 4y ®%,

imenfm

Applying the Hadamard rotation on the first n qubits (see (5.58)), one gets

~ 1\" ((n)y 4 a(n) a(n) | .
U =US @ 1|w,) = § : 1\ FET) ™y @
| > . H ]1‘ f> (\/§> ( — ( 1) |.7 >>

i(n) erzé")

[0) —[1)
B

where (™ . ™ .= > h—y @kjk- Since projecting onto |0)®" yields

&

1\" j(n 0)—|[1
() X oo o R

imenim

the amplitude of |0)®™ in |¥) is 0 if f is balanced, 1 if f is constant.
Therefore, after operating the circuit one has just to perform a measurement
in the computational basis {| 7™ )} imepoem of the first n qubits : if |0)®"
occurs the binary function is constant, otlzlerwise it is balanced.

'The CNOT gate (5.165) corresponds to choosing f(i) =i, i = 0, 1.
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The preceding discussion regards instances of classical information being
encoded into quantum states and manipulated by quantum gates. Similarly,
classical information might be stored or transmitted by quantum means and
the question is then how to retrieve it with high reliability or fidelity. Sending
classical information encoded into non-orthogonal quantum states has indeed
the advantage of being protected against undetected eavesdropping.

Example 6.1.2 (No-Cloning). Suppose a sender A encodes the bits 0 and
1 into the qubits [1g), |11 ) € C? with |y ) # |11) and sends them to a
receiver B. If a spy F wants to access this amount of information without
being spotted, he/she has to read the transmitted state without changing it,
otherwise sender and receiver might get alerted. A way to do this is for the
spy to intercept the message during transmission and to copy it by means of
a unitary operator Ug acting as follows Ug(|¢) ® |e)) = [¢) ® |¢). But
unitarity implies

(o 11} = (o @ e tr @e) = (v @e| ULU [y @) = (o )

whence 19,1, not being equal, must be orthogonal. Therefore, if the code
states 19,1 are chosen not to be orthogonal, the spy cannot copy them with-
out alterations. This argument goes under the name of no-cloning theorem
and asserts that there cannot exist a unitary operator U that implements the
operation of copying two generic quantum states, unless they are orthogonal.
Indeed, if such an unitary operator U existed, then, on the linear combina-
tions of two orthogonal states |1 ),|®),

U(alw) + 81N ®le)) =alv)@lv) + Blo)®|¢)

= (alv) + 810)) @ (alw) + B,]9))
=lal?|g) @) +161°16) @)
+ap(leyele) + o) @) .

This can only be true if either @« = 0 or § = 0 as one can see by scalar
multiplication by [¢) ® | ¢).

In Section 5.5.4, it has already been emphasized the central role of entan-
glement as a resource for quantum informational tasks. Among the applica-
tions of entangled states to information transmission are the protocols for the
so-called dense coding and teleportation. In the first case, 2 bits can be sent
with one use of an entangled quantum channel, which points to the possibility
of achieving higher channel capacities if channel behave quantum mechani-
cally. In the second case, quantum states can be transferred between distant
parties sharing an entangled state by means of local quantum operations and
classical communication (known as LOCC operations).
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Example 6.1.3 (Dense Coding). If sender A and receiver B share the
entangled state (5.164), A can encode the pairs of bits (zy) into the Bell
states of Example 5.5.9 by local operations performed on his qubit, only.
Indeed, the states |¢$y> result from acting with the Pauli matrices on the

first qubit of \W()O) explicitly
|@,y)) = (0%0Y) @ W) , @,y =0,1.

Then, if A and B share [¥y), in order to send B two bits (z,y) of classi-
cal information, A acts on his qubit with o5c{ and sends it to B. When
both qubits are with him, B has them in the state |@Ty ); by performing a
measurement in the Bell basis, he can thus recover the pair (zy). Roughly
speaking, one can transmit two bits at the price of 1 qubit, that is by just
one use of the entangled quantum channel represented by \!1700) and its local
modifications.

Example 6.1.4 (Teleportation). Suppose A has two qubits, denoted by
1,2, the first one in the state [ ); = a|0)1 + 5]1)1 and the second one
being one party in the symmetric Bell state | oo )og = f Zl oli)2® i)
together with a third qubit (3) of B. Let B perform a Hadamard rotation on
his qubit in |Pyg), changing the entangled state into (see Figure 6.1)

1

| )as = (1€ Up)|[¥oo)as = 5 Z|Z 2@ Upli)
z:O

—_

1 2 3
® @ ST @

[4) @)

Fig. 6.1. Teleportation

The state |1 ); can now be teleported from A to B becoming | )3. The
protocol is as follows; A performs on his two qubits 1,2 a measurement in
the ONB {|!p‘u >12}3 —o of C’® (CQ, where |W >12 =0y ® UH|¢/00>12 with
(U, |W,) = Tr(aual,) = 0. Notice that the amplitude of |¥, )2 in the
state |9 )1 ® |Q5>23 is

1

D (ilowl) (i Un i) Unli)s

i,j=0

12( T [([9)1 @ [P )a3) = 1

O |
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[t

1
== (ilow ) Ugli)s =oulv)s
=0

[\

where it has been used that Uy = UIT{ and U% = 1. Thus, after A has
classically (that is by means of a classical channel) communicated to B the
result of his local measurement, B knows his qubit to be in the state o] )3,
whence by a local rotation by o, he gets his third qubit in the state | ).

The procedure does not violate no-cloning for the state that appears at
B’s end, disappears from A’s end. Neither does it violate Einstein’s locality;
indeed, before classical communication of the actually measured index pu, B’s
state is the equidistributed mixture of the four possibilities corresponding to
the four different measurement outcomes of A; explicitly, using Example 5.2.5
with the normalized Pauli matrices o, / V2 as ONB,

1 1
:Zg oul ) 1/)|‘7ﬂ:§

On the other hand, before A’s measurement, the marginal state of B is

p3 =Tri2(|Y)11(Y | @ | P)a323(P|)

=(jo)ulvl) 5 S 1e((9)22(31) Vsl #hasl 0 = L

- 2
i,7=0

Notice that the net effect of quantum teleportation is to get the third
qubit in the rotated state o, ) by means of a measurement in the ONB
{1 ¥, )12}) —¢ peformed on qubits 1 and 2, when the state of 1,2,3 is [ )1 ®
| P )os.

Example 6.1.5. In order to implement a two-qubit gate like the unitary
Ucnor on two target qubit states 1) 2, one adds to them three pairs of qubits
each of which in the same entangled state |®) introduced in the previous
example. Thus, one deals with a multipartite entangled state [249, 323, 71|

W) = |1)1®[1Y2)2®@|P)34 @ |P )57 ® | D )es

corresponding to the scheme in Figure 6.2.

Then, measurements are performed on qubits (1,3,5) and (2,4, 6) in the
ONBs obtained from the GHZ vectors as in Example 5.5.10.3. By projecting
| @) onto the 6 qubit state | Wape )135 @ |Wdes )a6s, One computes

1

(1500 @ a0t )1 = (22) 3 (rlotlon) (1ot drlos )

r,5=0
i,J,k=
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1 3 5 “D) 7
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Fig. 6.2. One way Quantum Computation

x (slof[2) (s|0Un i) (s|of k) Unlj)r ® Unlk)s

1
:( ) S (r ot [9) (s]of e W s 05Unot ) UnoS]r)r @ Unod] s)s
r,5=0

= (%) (Uns @ Unof) Ut (ot @t 1)1 L4

where in summing over ¢, j, k it has been used that, under transposition,
alT,3 = 01,3. Thus, a part from local unitary rotations, by measuring in the
chosen ONB one implements the unitary transformation

Uy =Y (slofUnatlr)|r)(r|®]s)(s]|
r,s=0
= > (s®e|Unlrob)|r)(r|®]s)(s|

r,s=0

on the state |11 )7 ® |12 )s of the pair of qubits that remain unaffected by
the measurement. In particular, choosinga =b=c=d=e = f =0, it turns
out that vV2UY = |0)(0|®@1+|1){1|®03 = 1® Uy Ucnor 1@ Uy, namely
V2 U amounts to the CNOT gate unitary matrix apart from unitary, local
rotations.

6.2 Bipartite Entanglement

We have seen in Section 5.5.4 that, by looking at its marginal states, one
knows whether a pure bipartite state is entangled or not. For density ma-
trices entanglement detection is by far more difficult; only in low dimension
the problem has been completely solved by the so-called Peres-Horodecki
criterion [236, 148, 152].
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Proposition 6.2.1. Let a bipartite system S1+.S2 be described by the algebra
Mg, (C) ® Mg, (C), a state p1o € S(S1 + S2) is entangled if and only there
exists a positive map A : Mg, (C) — Mgy, (C) such that idg, ® At [p12] is not
positive definite, where At : Bf (C%) — B} (C%) is the dual map of A from
the space of states S(So) = B} (C%) to the space of states S(S;) = B (C¥).

Proof: The set Syep(S1 + S2) of separable states over My, (C) @ My, (C)
is the closure in trace-norm of the convex hull of pure separable states (see
Remark 5.5.7). By the Hahn-Banach theorem [258], Ssep(S1 + S2) can be
strictly separated from any entangled state pe,: by a hyperplane, that is
by a continuous linear functional R : S(S1 + S2) — R and a real constant
a such that R(pent) < a < R(psep). As the trace-norm and the Hilbert-
Schmidt topology are equivalent in finite dimension, using the argument of
Example 5.2.4, the action of R can be represented by means of R = Rf €
M4, (C) ® Mg, (C) such that R(p) = Tr(Rp). Setting S := R’ — al, it thus
follows that p € Mg, (C) ® My, (C) is entangled if and only if there exists
S € My, (C) ® Mg, (C) such that Tr(Sp) < 0 while Tr(S psep) > 0 for all
Psep € Ssep(sl + 52)

Furthermore, to any such matrix, the Jamiotkowski isomorphism (see Re-
mark 5.2.5) associates a positive map Ag : My, (C) — My, (C) with S as Choi
matrix. Let Af : Bf (C%) — B (C%) be its dual such that

Te(Sp) = T (iddl ® Ag[P™) p) —Tr (Pil idg, ® A} [p]) ,

for all p € S(S1 + S2). If p is an entangled state such that Tr(S p) < 0, then
idg, ® AL[p] cannot be positive definite. Vice versa, if idg, ® A [p] > 0 for
all positive A : Mg, (C) — Mg, (C), then p € Sqep(S1 + S2). O

As a consequence of the previous argument, a map A : Mg, (C) — My, (C)
is a witness of the entanglement of the state p € S(S1+Ss) if idg, ® AT turns
p into a non-positive matrix. Therefore, A cannot be a CP map; however it
preserves positivity. Indeed, the Choi matrix L € My, (C)® Mg, (C) associated
to the dual map A™ is block positive for Tr(L p) > 0 whenever p is separable,
that is (Y@@ | L[y ®¢) for all ¢ € C¥ and ¢ € C%2, whence AT is a positive
map.

Unfortunately, as already noticed (see Remark 5.2.6.3), unlike CP maps
for which Proposition 5.2.1 holds, positive linear maps still lack a complete
characterization. Consequently, given an entangled state p € S(S7 + S2) it
is usually rather difficult to find a corresponding entanglement witness A. A
relatively understood sub-class of positive maps is the following one.

Definition 6.2.1 (Decomposable Maps). 4 map A : B(H) — B(K) is
decomposable if it is positive and A = Ay + Ag o Ty, with Ay 3 CP maps and
Ty the transposition on B(H) with respect to a fived orthonormal basis in H.
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Let (di,d2) = (2,2),(2,3),(3,2), then a theorem of Woronowicz [321]
asserts that all positive maps A : My, (C) — My, (C) are decomposable.
This fact makes transposition an exhaustive entanglement witness in low
dimension; in other words, for the stated dimensions, those states that remain
positive under partial transposition, are separable and viceversa.

Corollary 6.2.1. If in the previous proposition (dy,ds2) = (2,2),(2,3),(3,2),
then, p1a € S(S1 + S2) is entangled if and only if 72 [p12] is not positive-
definite, where 72 = idg, ® Tq, denotes partial transposition on the second
factor.

Proof: If p € S(S; + S,) is separable then T®[p] > 0 for transposition is
a positive map. Vice versa, because of the assumption, Woronowicz theorem
ensures that any positive map is decomposable. Therefore, if T [p] >0, it
turns out that, for all positive A : My, (C) — My, (C),

idg, ® Alp] = idg, ® Aq[p] + ida, ® A[TP[p]] >0,

as Ay 2 are CP maps. O

Remarks 6.2.1.

1. Though partial transposition as transposition are to be defined with re-
spect to a chosen ONB, the spectrum of an operator is basis-independent;
therefore, the non-positivity of T(?) [p12], thence the entanglement of pqo,
does not depend on the ONB with respect to which the partial transpo-
sition is performed.

2. Those states which remain positive under partial transposition are called
PPT states, otherwise NPT states, namely negative under partial trans-
position. Woronowicz theorem does not extend to higher dimension;
there are instances of non-decomposable positive maps already for d; =
dy = 3 [83, 130, 288, 321]; as a consequence partial transposition is
not an exhaustive entanglement witness in higher dimension. In other
words, all NPT states are entangled, but there can exist PPT entangled
states [149, 297].

3. No pure bipartite state can be PPT entangled; indeed, by Proposi-
tion 5.5.7, entangled vector states |¥ip) € C% ® C% have a Schmidt

d

decomposition (5.159) of the form |¥5) = Z\/E| wj(.l)) ® |1/}§2) )
j=1

where d := max{dy, ds}, {| 1/’;1’2) )}4_, are orthonormal sets in the Hilbert
spaces C%2 and the Schmidt coefficients Aj > 0 for at least two indices.

Set Ppo := | W12 ) (W12 |; the partial transposition with respect to the ONB

having {] %('2) )}9_, among its elements yields
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Rz := TO[Py] = ZWMW (P 1@ P W] .

i,j=1

Let A\ip > 0, then

(D), 2y, (1),(2) (1), 2y o (1),,(2)
R12|w1 ¥y >\/§|¢2 1 >:_\/r/\2|¢1 ¥y >\/§|¢2 () >

Thus T [P12] cannot be positive if Pjo is entangled.

4. The entanglement of PPT entangled density matrices cannot be detected
by decomposable positive maps as one can see from an argument similar
to the one used in the proof of Corollary 6.2.1. An instance of such states
will be discussed in Example 6.2.4.

The following ones are families of bipartite states over C¢ @ C¢, d > 2,
where PPT states are always separable.

Examples 6.2.1.

1. Werner States [317] This is a class of d* x d? density matrices on
C? ® C? of the form py = allzz + B3V where V is the flip operator
(see (5.32)) and W := Tr(pwV) (*).

As the eigenvalues of V' are £1, those of pyy are a4/ and must be positive.
Also, V2 = g2 and TeV = Y20 (i |V |ij) = 01 [(i]5)? = d;

1,7=1
thus, normalization and (*) yield ad? + 3d = 1 and W = ad + Bd?,
whence
d—WwW dW — 1+W 1-W
= g@E-1n "7 i 1) vt l=garn T dasa
_Ad=W) b AW 1 (6.2)

PW="r 1 @ T a@E 1)

If py is separable as in (5.166), by spectralizing the contributing density
matrices, it can always be recast as pw = >, pij| ¥} ) (9] [@ [¢7 ) (97 ],
pij =0, 32 iy = 1. Then,

W =Tr(pwV) = Z”” ¥ YT |V Y] @97 ) ZZNMKWW?HZU
ij

ij

This is a necessary condition for the separability of Werner states in
dimension d; it is albo sufficient; the clue is that Werner states are exactly
those states on C¢* that commute with all unitaries of the form U ® U
with U a unitary matrix in M4(C). Practically, since V(A®B)V = B A
for all A, B € My(C), all Werner states have the form
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pw = [ WU U,
u

where dU is the normalized, invariant Haar measure over the unitary
group U on C¢ 2; furthermore, W = Tr(p V).

If1>W>0,letp € C4 |p) = VIW|Y)+V1—-W|yt) € C4, with
(¢|v*)y=0andset p:=|¢)(¢|®|¢)(4|. Thus, py arises by twirling
a separable state with tensor products of local unitaries, therefore it is
itself separable, as local actions cannot create entanglement.

The necessary and sufficient condition for separability, W > 0, turns out
to be equivalent to py being positive under partial transposition. Indeed,
by applying T® —idy ® T4 to pw one gets

d—-Ww dw —
W]_d(d2 )]ld2 + P

a2 _
Its eigenvalues (d — W)/(d® — d) > 0 and W/d are positive if and only if
W > 0.

2. Isotropic States [151] This is a class of d* x d? density matrices on
C? @ C* which are related to Werner states by partial transposition.
They have the form pp = ol + 3 P_‘i and are uniquely identified by the
parameter 0 < F' := Tr(ppﬁjf) (*).

Like for Werner states, positivity, normalization and (*) yield o > 0,
ad>+B=1and 1> F = a+8 > 0, whence isotropic states are mixtures
of the totally depolarized state on C? and of the totally symmetric state,

T®p

?(1—F) 1z  d®F—1 5,
-1 & B PL (6.3)

pr =

Since (Y@ ¢ | ]31 [P ®@¢) =|(1|¢*)|?, where 1* is the vector in C? with
complex conjugate components with respect to v, if pp is separable, then
(see the previous example)

&I»—‘

F TI‘ pFP Z,Uz_j| ’(/J | ¢2 >|

As for Werner states, 0 < F' < 1/d is necessary and also sufficient for
separability. The reason is that isotropic states are all and only those

“The particular convex combination of states (U @ U) p (UT ® UT) appearing in
the integral is known as twirling. Twirled p are such that, for all unitary V,

VeV (/ dUU@UpUT@aUT) VT®VT=/dU VU VU p(UV) @ (UV)T
u u

:/d(VTW)W@@WpWT@W*:/dUU@UpU*@UT,
u u

for the Haar measure satisfies d(VU) = dU for all unitary V.
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d? x d? density matrices which commute with local unitaries of the form
U ® U*, where U is any unitary matrix in My(C) and U* denotes its
complex conjugate (not its adjoint). Moreover, one can show that, since
U® U*)ﬁi(UT QUT) = ﬁf, any isotropic pp arises from a twirling of
the form

pF:/dU UeUpU oUT),
u

where UT denotes the transposition of U and p is such that Tr(pﬁff) =F.
If Fd < 1,set | ¢) = VdF |)++1—dF | ) and choose p = | ) (¢ |®
| &)(@]; then, pr can be obtained by twirling a separable state and is thus
itself separable.

The above necessary and sufficient conditions for separability coincides
with the isotropic states being positive under partial transposition. In-
deed, ,

1-F d°F —1

o1t a1

has positive eigenvalues (dF + 1)/(d* + d) > 0 and (1 — dF)/(d* — d) if
and only if 0 < F < 1/d.

T [PF] =

Distillability and Bound Entanglement

Entangled states of two qubits as the Bell states (see Example 5.5.9) are called
maximally entangled. Consider a pure state |W15) € C? @ C? of a bipartite
system consisting of two copies of a same system; as we shall see, there
are good reasons to measure the amount of entanglement of pio by means
of the von Neumann entropy of any of its two marginal density matrices

p&,ll’f) = Try (| 1o ) (1o \) (see Proposition 5.5.5).

Definition 6.2.1 (Pure State Entanglement). Let |¥5) € C? @ C? be a
pure state of the bipartite system Sy + Sa; the entanglement of |Wio) is

Brl| ¥ )Wz ] = (o)) (6.4)

According to Example 5.5.10.1, all Bell states have marginal states that
are the tracial state with maximal von Neumann entropy: E[¥,, ]| = log 2.
The presence of uncontrollable interactions with the environment in which

a bipartite system may be immersed usually spoils its maximally entangled

01)—110
states. For instance, the so-called singlet state |¥)_ = M

be rotated into |¥) = a|01) + ] 10), with |a|*> + 8|2 =1 and 0 < |a| < 1,
so that

might
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2
A= (10 ) - B = —laPloglal? - 5P 1og 3P < log2.

It may even be turned into a mixed state because the environment usually
acts as a source of noise and dissipation. A measure of the entanglement of
p12 € S(S1 + S2) is as follows 2.

Definition 6.2.2 (Entanglement of Formation). [53] The entanglement
of formation of a state p12 of a bipartite system S1 + So is the least average
pure state entanglement over all conver decompositions of pi2,

Er[p1a] := min{ > A8 (PS{’:)) cp2 = Nl (ol p s (65)
J i

where A\j >0 and 3, \; = 1.

Maximal entanglement is an important resource in quantum information,
but also a highly degradable one; of particular importance are then those
quantum protocols that enable to distil maximally entangled states out of
non-maximally entangled ones by means of LOCC *. The basic scheme of
a distillation protocol is as follows: given m copies of pjo € B (C? @ C9),
one tries to maximize the number n of copies of the singlet state projection
P_ = |W_)(W_| that can be obtained by means of local operations and
classical communication:

Locc
P12 Q P12 & -+ p12 P.@P_®---P_ .
—

mtimes n times

The LOCC defining the distillation protocols amount to maps of the form

m T 1 m
pia" P(ul) = EZA” ® Asi piy AL ® A;- , (6.6)

el

where .
N[ = ZTI‘(AIMAM ® A;iAQi p?2m> ’
iel

while Aj; : (C4)®™ — (C2)®", j =1,2.

3Various entanglement measures have appeared while quantum entanglement
theory has been developing, for a review and the related literature see the contri-
bution by M.B. Plenio and S.S. Virmani in [71].

4For a review of entanglement distillation and the other topics of this Section
see [70] and the contributions by A. Sen, U. Sen, M.Lewenstein et al., W. Diir and
H.-J. Briegel, and P. Horodecki in [71]
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Practically, one seeks distillation protocols that output states p(™) whose
distance from P®" (for instance, with respect to the trace-norm (5.21)) van-
ishes when m — +o00, while the ratio n/m is the highest possible. The optimal
ratio, denoted by Ep[p12], is called entanglement of distillation and represents
the maximal asymptotic fraction of singlets per p2 that one can achieve by
LOCC. In other words, one can hope to distil at most n ~ m Ep[p12]] singlets
P_ out of m p12 when m gets sufficiently large.

It turns out that PPT states p12 cannot be distilled [150]; when p;4 is sep-
arable this is obvious since one cannot create non-local quantum correlations
by means of local operations and classical communication. The interesting
point is that one has to distinguish between free entanglement, the entan-
glement which can be distilled, and bound entanglement, that which cannot
be distilled. The result just quoted can be rephrased by saying that the en-
tanglement of PPT entangled states is bound. This can be seen as follows: if
the entanglement in pi is distillable, then for some m, the state pg) in (6.6)
must be an entangled state of 2 qubits. whence an NPT state according to
Corollary 6.2.1. This implies that, for at least one index i € I, the (non-
normalized) state

P12 = A1y ® Agiy p" ALO ® AQZO (6.7)

is NPT. Observe that, for such m and ig, Aj;, : (C4)®™ - C?; therefore,
one can always write Aj;; = Zzlc:o | k)Y (x|, where |¢j) € (CH)®™ and
|k), k= 0,1, is any chosen basis in C?. Let Q; be the projections onto the
subspaces of (C?)®™ spanned by |0 ) and |1);1 ); then,

P2 = Aviy ® A2iy Q1 ® Qapia" Q1 ® Q2 A 110 ® Agm

implies that pi, = Q1 ® Q25" Q1 ® Q2 must be entangled, otherwise its
separability would be preserved when passing to pis.

Consider now the orthonormal bases {|b;,, )}¢ in (C*)®™, j = 1,2, such
that Q; = |bj1)(bj1 |+ |bj2)(bj2|; in the corresponding representation pf,
is a 4 x 4 matrix acting on the subspace K spanned by the product states
|biibaj ), 4,5 = 1,2. Since it corresponds to an entangled state, by partial
transposition with respect to the ONB {| by; ) }3_,, T2[p},] cannot be positive

semi-definite. Therefore, there must exist | @) € K such that

2

(@ Talpla] |B) = Y &5re (bribaj | Talpho] bribac )
i,5:k,4=1
= Z B, Dpp (biibae | Py [bribo; ) = Z B}, Dre (bribae | pT3" |brrba; )
0,53k, 0=1 0,53k 0=1

= (2|T[piy"]|2) <0,

where T[p12 ] is now the partial transposition with respect to the whole ONB
{] ba; >} . Also, the last equality follows because | @) is supported by the
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subspace K corresponding to the orthogonal projection @1 ® @2 and thus has
vanishing projections onto all | by;bg; ) unless 4,5 = 1,2.

Since NPT is a property which does not depend on the basis chosen
to compute the partial transposition (see Remark 6.2.1.1), fix the bases
{|ejx)}¢_, in C? and choose in (C? ® C?)®™ the product basis consisting of
Vectors | e1x, 1k, - - - €1k, ) ®| €2, €20, - - - €20, ). Then, T[p$5"] = (Talp12])®™;
one thus concludes that pio is distillable only if p1o is NPT .

Remark 6.2.2. From Remark 6.2.1.3 we know that no pure PPT entangled
state can exist; it turns out that their entanglement is always distillable and
thus free. Whether the entanglement of generic NPT states is also free, that is
whether all NPT states are distillable, is one of the open problems in quantum
information theory [71, 152].

Entanglement Cost

One of the first questions in quantum information has been whether, by
means of LOCC one can turn a pure state |Wy5) of a bipartite system into
another pure state | @12 ). The answer is that this is possible if and only if
the marginal states pgl’f)
Definition 5.5.1 [224].

If one considers asymptotic LOCC protocols where m copies of a state
| 712 ) are turned into n copies of a state | P12 ) with vanishing error when
m — 400, then the transformation of | W15 ) into | @12 ) is possible if and only
if [71]

are more mixed than those of | $12) in the sense of

n _ Ep[fy]

m EF[@lQ} '
Since Ep[¥_] = 1 (we shall use log, in the following), one can always asymp-
totically distil n < mEg[¥12] copies of P_ out of m copies of any pure
bipartite entangled state ¥ys.

Furthermore, the reverse operation is also possible; namely, protocols have
been devised which invert distillation and, by using m copies of the sin-
glet state P_, form, by means of LOCC, n copies of a bipartite pure state
W5, Actually, like in the case of entanglement distillation, one considers the
asymptotic minimal ratio m/n when n — 400 and p%" is better and bet-
ter approximated (within a suitable distance) by a suitable LOCC operation
acting on P®™ [137]. The optimal asymptotic ratio, denoted by Ec|[pi2] is
called the entanglement cost of pyo; it represents the minimal fraction of sin-
glet that is needed to create one bipartite system in the state pi2. In other
words, for large n, one can create n copies of pi5 only acting with LOCC on
no less than n E¢[p12] singlets.

In [224] a distillation protocol Ap is constructed which asymptotically

yields Ep[¥] = S (p&é) singlets per bipartite entangled state p12 (see (6.4))
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and a formation protocol Ag that asymptotically yields one copy of pis at
the cost of Ep[¥2] singlets. It turns out that the entanglement cost and the
entanglement of distillation equal the pure state entanglement of formation.
By deﬁnition, EC [!712] S EF[EZ/U] S ED [![’12] if EF[![/IQ] < ED [![’12] then

m

by means of the protocol Ag one could asymptotically obtain ———
Er[¥12]

of U5 out of m copies of P_ and then, using an optimal distillation protocol,
Ep [¥12]
Er[¥2]
cannot increase the amount of entanglement by deterministic LOCC' °. Anal-
ogously, if E¢[W12] < Ep[¥;2], then one could use an optimal creation protocol

extract from them m > m copies of P_. This is impossible as one

to obtain ———— copies of p12 out of m copies of P_ (for m large) and then
Ec[¥12]

Er[¥12]

——— > m copies
Ec[¥12] P

use the distillation protocol Ap to extract from them m

of P_.

For pure states, forming entangled states from singlets and distilling sin-
glets from entangled states are reversible operations; it is not so for mixed
states and the reason for this peculiar kind of irreversibility is bound entan-
glement [152, 150, 71].

Consider the entanglement of formation as defined by (6.5); it can be
interpreted as the minimal averaged entanglement cost of pi2. In fact, given

a convex decomposition of p1o = > Ajl Wy Y (4l, |, the entropies S (pfp]) )
are the entanglement cost of the pure states that decompose it. However, in
line of principle, it could be more advantageous to create the tensor product
P}y instead of the n copies of p1a one by one. One is thus led to define the

so-called reqularized entanglement of formation

o0 : 1 n
EF[pio] i= lim  —Er[pfy'] . (6.8)

Such a limit exists because the entanglement of formation is subadditive.

Indeed, consider the state pgg) ® pg) of two copies of the bipartite system

S1 + S and suppose Ep [p(u)] is achieved at the (optimal) decompositions

pgg =2 I/J(-i) | qby) >(¢§-i) |. Since the decomposition

oLy ZV“ v 16 (6 @ 6 ) (6 |

need not in general be optimal for Ep [pglz) ® pg)}, it follows that

Er[pl) ® p2] < Bplpll)] + Ep[pl] .

50ne can achieve entanglement increase by LOCC only probabilistically for
certain states of a mixture, for instance in some of the states in (6.6), but not on
the average for the whole mixture.
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In [137] it is proved that the regularized entanglement of formation equals
the entanglement cost: Ec[p12] = Ef°[p12]. Moreover (see P. Horodecki’s con-
tribution in [71]), it has been proved that Ec[p12] > 0 for all entangled pjo.

As a consequence of the fact that, if p1o is PPT entangled, no entangle-
ment can be distilled from it, it thus turns out that a non-zero non-retrievable
amount of entanglement (of singlets) is always necessary to create PPT en-
tangled states.

Concurrence

We shall now elaborate a little bit more in detail on the entanglement of

formation of two qubit states.

Let Sa g be two qubits , |0) = (é), 1) = (?) the standard basis in

C? and consider a generic two qubit vector state of S4 + Sp of the form
‘WAB> = 000|00> —|—Cgl|01> +010| 10> —|—011| 11> .

Coo Cor

Then, the marginal state py = CCT, C =
Cio Cn

) has eigenvalues

1+,/T—C(Wap)?
2 )

C(Wagp) :=2|Co0C11 — Cp1Chol - (6.9)
This expression can be recast as follows. Let [¥7 5) denote the complex con-

jugate of [ ¥4 ) with respect to the standard product basis {|ij)}; ;_, , and
denote

|Uap) = 0o®@0|Wap ) = —Ciio| 11)+Cg1| 10 )+Cy| 01)—C5,00) , (6.10)

for o9 = (? —02) is such that 02| 0) =4 1), 02]1) = —i|0). Then,

)<§AB |WaB )| =C(¥aB) - (6.11)
Since oo (g* ) il (g) , it turns out that C(¥4 ) = 0 when ¥4 5 is separable,
while C(¥4p) reaches its maximum C(¥ap) = 1 when ¥up is maximally

entangled and (only) two coefficients C;; are proportional to 2-1/2,
Therefore, for two qubit vector states, the entanglement of formation reads

Ep[|Wap )(Yas || = EWan) := Hy (1 - W) ; (6.12)

where Hy(z) := —zlogx — (1 — z)log(1l — x).
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The variational problem embodied in Definition 6.2.2 is in general ex-
tremely difficult to solve and a general closed expression of E(p) as a function
of p has been found only in the case of two qubits ; it is based upon the notion
of concurrence [320].

Given a two qubit density matrix p € My(C), one first constructs the
density matrix

,5:0'2@)0'2;)*0'2@0'2 s (613)
obtained via the operation (6.10), where p* denotes complex conjugation with
respect to the the standard basis {[ij)}; ;_o,. Then, the quantity C(¥ap)
in (6.9) generalizes to density matrices as follows.

Definition 6.2.3 (Concurrence). Let \;, i = 1,2,3,4, be the positive
eigenvalues of \//pp~/p in decreasing order. The concurrence of p is
C(p) = max{)\l - )\2 - )\3 - )\4, 0} . (614)

Examples 6.2.2.
1. Pure states Let p = [¢)(¢], [¢) € C*. Then,
2
|

VBB = | Wl ),

whence C(p) = | (0|}
2. Werner states Setting d =2 in (6.2)

0V 0 :1—|—0’37 0M1 _0’1+i0‘2
2 2
1—o03 o1 — 102

11| =—— 1)(0] =

(=252 a0 = 2

it follows that

~ 1
p}r:1(1®1+01®01—02®02+03®03)

. 1
V:1d®T[PE]:5(1®1+01®01+02®02+03®03)

1 2W —1
pW:,(1®1+ (01®01+02®02+03®‘73)>'

4
Since W € R, the algebraic relations among the Pauli matrices yield

pw = pw, whence the eigenvalues of \/\/pwpw/pw are those of py,
namely % (thrice degenerate) and # It then follows that
max{—W,0} -1<W<1/2
C(pW) = ’
max{(W —2)/3,0} 1/2<W <1

whence C(pw) > 0 and py is entangled if and only if W < 0, in agreement
with Example 6.2.1.1
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3. Isotropic States Setting d = 2 in (6.3) and arguing as in the previous
example, the isotropic states read

1

4F —

1
(0'1®O'1—02®02+0'3®0'3)> .

Again, it turns out that pr = pp so that the eigenvalues of \/\/prpr/pPr
are those of pp itself, namely % thrice degenerate and F'. Thus,

max{2F — 1,0} 1/4<F<1

Clpr) = )
max{—(142F)/3,0} 0<F<1/4

whence pr is entangled if and only if F' > 1/2, in agreement with Exam-
ple 6.2.1.2.

By direct inspection, the function (see (6.12))

E(C() = Hy (” W) , (6.15)

is monotonically increasing (£/(x) > 0, 0 < z < 1) and convez (£"(z) > 0,
0 <2 < 1) in the concurrence. As 0 < C(3)) < 1, the entanglement increases
from £(C(1))) = 0 for separable vector states to £(C(1)) = 1 for maximally
entangled states and

g()\ﬂ?l + (1 —)\)1‘2) < )\5(3’)1) + (1 —)\)5(1‘2) ,0<A<1,0<L T12 < 1.

Further, given a decomposition p =3, p;|; )(¢; |, let
(C)p=x , pyts) st = D25 C(¥)) (6.16)
J

(€)p=5, ps 0wy = 2P E(C(¥5) (6.17)

J

denote the corresponding average concurrence, respectively the average en-
tanglement. Because of convexity, it turns out that

E (€=, s 1130051) < o=y 103151 (6.18)

Theorem 6.2.1. [320] The entanglement of formation (6.2.2) of any state p
of a two qubit system is given by Ep[p] = E(C(p)) and is thus a monotonically
increasing function of the concurrence (6.14).
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Proof:  The right hand side of (6.18) is the argument of the minimum
n (6.5) (see (6.12)), whereas the left hand side is an increasing function
of its argument. It thus follows that Eg[p] cannot be smaller than £(Cpin)
where Cp,ip, is the smallest average concurrence. Therefore, if C,,;,, is attained
at a suitable decomposition, then the same decomposition yields Er[p] =
E(Crin). We will construct a density matrix p = 7, p;[1);)(4; [ such that
(&) p=3,ps 105 ;1 =C (p) and show that no smaller average concurrence can
be achieved, namely C,:r, = C(p).

In order to arrive at such decomposition, we first consider the expansion
p=>"1|vi){vi], n <4 being the rank of p, and |v;) its (non-normalized)
eigenvectors such that (v;|v;) = r;d;;, with r; the eigenvalues of p.

The n x n matrix 7 with entries 7;; := (v;|0;), where |7;) 1= 02 ® 02|v]),
is symmetric, (v;|0;) = (vj|9;), but not hermitian and

(r7)i; = = > _(wilti)(Tlvs) = {(ril /oA/p Irs) -

k=1

Thus the eigenvalues of 77* are the squares of the eigenvalues A; of /pp\/p
in decreasing order (see (6.14)). Let Z be the n x n unitary matrix that
diagonalizes 777,

Zrr* 2V = (Z7ZT)(Z7Z7)* = diag(\?, A3, 02, )2)

then Z can be chosen such that Z7Z7 = diag(\1, A2, A3, A1) is diagonal with
the \;’s as eigenvalues. Setting |w;) := >7_; Z5;|v;) gives p = 31| Jwi)(wl,
with decomposers such that

(w;|w;) = Z ZixZjo (vg|ve) = (Z7Z7)i5 = Nidij .
k=1

Case 1: A\ < Ao+ A3+ A4

Because of the ordering of the A;’s, this case is possible if n > 3. Con-
sider the quantity f(0) := Z?Zl N\;e??i: since f(0,7/2,7/2,m/2) < 0 while
£(0,0,0,0) > 0, by continuity f(¢) = 0 at some ¢. Using the vectors |w; )
introduced above, let

4 1 1 1 1
11 1 -1 -1

|Zz Z: ij€ <P]|w C:= [Oij] = 5 1 -1 1 -1 ’
B 1 -1 -1 1

where €24 and |z ) do not appear if Ay = 0.
Introducing the normalized vectors |1); ) := | z; )/[|2|, from CTC =1 it
turns out that
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! ~ If ()|
p=Z||2j||2|1/)j><¢j\, and |<¢i|¢i>|=4”2_”2:0’
i=1 '

for all i = 1,2,3,4. Then, the vectors |1;) and thus p are separable.
Case 2: A1 > Ao + A3+ A4

Set |y1) = |wi), ly;) = ilw;), if j > 2. Then p = 377 |y; )(y; |; fur-
ther, consider the diagonal matrix Y = diag(A1, —A2, —A3, —A4) with entries
Yij = (vl ;)

Because of Example 5.5.4, any other decomposition p = 377, | 2;)(z |
is such that | z; ) = 1"y Vil i ), with V a unitary matrix on C". Therefore,
for orthogonal V| the quantity

n
Cpmy o) = D (2]5) = E V;iVirYij
j=1 k=1

= Te(VYVT) =Te(Y) =M — X2 — A3 — M =C(p)

is independent of V. By using this invariance property, one can find a decom-
. n
position p =3 %, [z )(2; | such that

150 =€) = I 1501 = llie (12 )

for all 1 < j <n. Thus, its average concurrence (6.16) equals C(p),

anm () =Stm1m)=co.

Jj=1

The | z;) are constructed as follows: unless all the Y;; are already equal
to C(p), there must be one decomposer, y; say, with Y33 > C(p), and an-
other one, ys, with Yoo < C(p). Choosing V that exchanges y; with ys
and leaves the other decomposers fixed, we obtain a decomposition with
the same average concurrence and Y71, Yoo exchanged. By continuity there
must exist an orthogonal matrix V such that (z1]21) = (22]22) = C(p), with
|zj) = >0, Vilyi). Iteration of this argument for the remaining decomposers
yields the result.

The proof of the theorem is then concluded by showing that no decom-
position can achieve a smaller average concurrence than C(p). Indeed, using
again Example 5.5.4, a generic decomposition has average concurrence

<C>p:§:j@:1|zq VWzg| = Z| zq1Zq) ‘—Z

g=1

n

> (Zej)*Yas

=1

)

where Z : C" + C9 is an isometry: ZqQ:l |(Zgi)?| = 1foralll <i < n.
Since one can always adjust the phases of the Z,; in such a way that (Z,1)? =
|(Z41)?] >0, for all 1 < ¢ < @Q, then
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Q n Q n
CNPRINNES) 3D AR SO BN
q=11i=1 q=1 i=2
Q n
> |A— ZZ(Zqi)Q/\z >C(p)
qg=1 i=2

3

Two-Mode Gaussian States

Let S be a bipartite continuous variable system consisting of two subsystems
A and B described by annihilation and creation operators af&, i=1,2,...,p,
and b?, i=1,2,...,q, p+q = f, satisfying the CCR (5.92), and arranged,
as in (5.95), into a vector

X =(a,b,al b)), a=(ar,....a,), b:=(by,....b,) .

We know that a state of S described by a density matrix p is specified by the
characteristic function (5.117) which now reads

va(z):Tr (pez*'i> =Tr (pezz':‘@eZ’t'B) , (6.19)
where A = (a,a), B := (b,b"), Zoy = (Zas, —z;,) with z, =
(ZalsZa2,- - s Zap) and 2zp = (2b1, 2b2, - . ., Zbq)- Let T, denote the transpo-
sition with respect to the orthonormal basis of the occupation number states
ko) =|karkaz - kap ), kai € N, of the subsystem A (see (5.93)); then, using
the number state basis {| koksp )}k, &,, one calculates

T (p7 % %) = 3 (koo |07 oy M Guds | €754 © %0 P k)

ka .k
JasJb

= 3" Giako | plkady ) (da %o A Ky ) (G, |70 [Ry)

kg kyp
Ja-Jdb

= Y (kaky|pliudy)(kaleZe 5, ) (G, 7B k)

kq.kyp
Ja:db

=Tr (pez;.ﬁ’ ®eZZ'B) ,

where A’ := (at,a). The last equality easily follows from
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P
* A . I
(kaleZo A5, ) = [ Kai e =% |ja;)

1=1
and
za—z"al | S —zatz*al * S —z2*a+zal
(ke 7)) = ((Fle7* = k)" = (jle™ *F** |k) .

Partial transposition thus amounts to changing annihilation operators of a
chosen subsystem into creation operators within the Weyl operator appearing
into the characteristic function of a bipartite state.

In terms of position and momentum operators this means keeping fixed
G, = (a+a")/Vv2, G, = (b+b")/v2 and p, = (b—b')/(iv/2 while changing
P, = (a —a')/(iv/2) into —p,. This observation identifies partial transposi-
tion as a local mirror reflection [278]. Also in the continuous variable case,
separable bipartite states must remain positive, hence well-defined states,
under partial transposition. Then, if the correlation matrix associated with
pTa fails to satisfy (5.113) the state p is surely entangled. In view of the fact
that positivity under partial transposition fails to be equivalent to separabil-
ity already for two 3-level systems, one may suspect this to be the case for
all continuous variable systems as well. Surprisingly it turns out that par-
tial transposition is an exhaustive entanglement witness also for two-mode
Gaussian states [278] (see also [103, 102, 198]).

We shall use the notation of Examples 5.5.3 and start by noting that one
can always consider Gaussian states p with characteristic function

G(R) — e %R'(El VEIR)

as in (5.131). Indeed, as local operations that do not alter the entanglement
properties, the displacement operators D(u) = D(u1) ® D(usz) can be used
to set the mean values Tr(p(q,p)) = 0. Partial transposition on the first
mode amounts to replacing p; with —p; in V thus I3 with —I3 in (5.138)
(see (5.131)— (5.135)). Thus p and p’e are well-defined states if and only if
both the following inequalities hold

1

Z + Iy >0 + I + 213 (620)

1

Z+I4Z.[1+127213. (621)
Also, the operations leading from a generic V to the standard form V,
in (5.137) are local ones, acting independently on the two subsystems A
and B; this means that if a two-mode Gaussian state p with correlation ma-

trix V is separable the same is true of the two-mode Gaussian state py with
correlation matrix V. In [278] it is showed that

Lemma 6.2.1. All two-mode Gaussian states with Is > 0 are separable.
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Notice that, when I3 > 0, (6.20) implies (6.21) whence pZe > 0 in agree-
ment with its being separable. Suppose instead that a two-mode Gaussian
state p with I3 < 0 be PPT , then its mirror reflected p’* has I3 > 0 and is
thus separable by the Lemma, whence by a second mirror reflection also p is
separable.

Proof of Lemma 6.2.1 The strategy of the proof is to show that if a two-
mode Gaussian state p has a correlation matrix V with Is > 0, then V > 14/2
whence, because of Example 5.5.3.3, p is separable. Because of the possibility
of reducing V to the standard form

a 0 7 0

0 a 0
V == )
7m0 B0

0 » 0 g

by local operations, one can equivalently show that I3 = ;2 > 0 implies
Vo > 1/2. Analogously, since matrices of the form O(z) = diag(z,z7 1),
0 # z € R, implement local scalings of positions and momenta which preserve

0 1)
, one can focus upon

the symplectic matrix J = <_ 10

<O(y)0(w)

0 O(z=HO0(y)
a(ry)? 0 1y 0
_ 0 afzy)? 0 R Y
- ,YlyQ 0 6I72y2 O - Y0 -
0 Yoy 2 0 Py 2

Consider the 2 x 2 matrices

az? Y1 oz 2 Y2
X = s Y =
( Y Bx? Yo o fa?

and notice that, according to (5.132)— (5.135), their entries are correlations in-
volving position (gi,2), respectively momentum operators (pi,2). Their eigen-
values are

Ty o= (ax2 +bz7 2+ /4y + (az? — ba:—2)2>

T4 =

DN = N =

(ax‘Q +b2® £ /4y + (az—2 — bx2)2>

1 1
with eigenvectors |x4 ) = (izi ), respectively |yy ) = (55‘) such that
it =

2
T c1 N _ -2\
E = m:2<—(a$2—b$ Q)Clli\/4+(a$2—b$ 2)201 2)
yi C2 2 2y, .1 2\
n =TT a 2(—(aa;_ —bx*)ey £ \/4—1— (ax=2 — bx?)2c, )
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Since | x4+ ), respectively | y+ ) are the rows of the orthogonal rotation matrices
Ox and Oy which diagonalize X, respectively Y, one can make Ox = Oy =0
by choosing the scaling parameter x such that

71 72

ax? —bxr—2 aqr—2—ba?’

a b
namely z? = M Since the diagonalization of the two sub-matrices
aye +bn

X and Y of V] is obtained by means of a same orthogonal rotation, the

overall transformation is symplectic (that is it preserves {2 = < ("[H; ?2 ) ).
2 Ja

Therefore, one can study the diagonal matrix

Yoy 0 0 0
vl 0 vy 0 0
0 0 0 y2a_ 0 ’
0 0 0 g2y

which must satisfy V{ & £ > 0 whence z,y; > 1/4 and z_y_ > 1/4. By
choosing the remaining scaling parameter y such that y?>x_ = y~2y_ one
gets that all four eigenvalues are > 1/2 and thus that V(’)’ > 14/2. This means
that the two-mode Gaussian state pj corresponding to such a correlation
matrix has a P-representation (5.111) with a positive phase-space function

0 (ry) and is thus separable according to Example 5.5.3.3. Observe that this
fact does not allows one to directly infer that also the state pj, with correlation
matrix V) is separable; indeed, the diagonalization of V| has been obtained
by non-local rotations involving both sub-systems. However, using (5.141)
in Remark 5.5.3, the positive phase-space distribution R (r() is obtained
from the function R{(rf) relative to the P-representation of p’ by means of
a symplectic matrix S composed of a same rotation O in the ¢; > and p; 2
planes, so that ||| = ||ST)]|. It thus follows that Rl (rf]) = Ry(S~'r}) > 0,
whence pg and thus p are separable.

If I3 =0, let 71 > 72 = 0 and choose 2% = \/a/3, y? = 2+/af3 so that

202 0 2vivaB 0

V= 0 1/2 0 0
0 2vivalB 0 232 0
0 0 0 1/2

] 1
Similarly as before, one checks that V| > :l:%() = V) > j:?4.

Positive Maps and Semigroups

We have seen in Section 6.2 that positive but not completely positive maps
cannot be directly used as mathematical descriptions of fully consistent state-
transformations; however, they play a major role as entanglement witnesses
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(see Proposition 6.2.1). Unfortunately, since there are no general rules that
allows one to identify positive maps, only particular instances of them can
be provided [179, 84, 85, 86, 114, 67]. The one which follows assumes the
existence of just one negative eigenvalue in decompositions as in (5.41) that
is smaller in absolute value than all the other ones [35].

Proposition 6.2.1. Let {Lk}gil be a Hilbert-Schmidt ONB in M4(C) and
A Mg(C) — My(C) a positive map with a decomposition

d2
AX]=> 6, LEX Ly, X e My(C),
k=1
where 0 < €; < Liyq for i > 2 while 1 = —|l1| < 0, with [{1] < by, If
1—||Ly|?
[41] < EQM, then A is positive.

L2

Proof: The matrices Ly form a Hilbert-Schmidt ONB, thus, using (5.30),
it turns out that, for all normalized v, ¢ € C?,

d

=D (WILL 1) (I Lal) = (P Te(|¢) (@) ¥) = 1.

k=1

d? 9
> |wizlie)
k=1

Then, since ||L;||> = |[L}|? < Tr(LIL;) = 1 (see Remark 5.2.4), it follows
that

d? d? 9 9
Wl (Zek LL|¢><¢Lk> ) 2 63 [wiLllo)| —lal|w@lLler)
k=1 k=2

2
IR TSR AAR

— o= (62 + ) (w1 Io)

1—||Ly |
If 4] < 62%, then it follows that (| A[|¢)(¢|] ) > 0 for all nor-
1
malized 1), ¢ € C¢, whence A is positive. a

In Remark 5.6.4.6 it has been stressed that, apart from the fact that
the Kossakowski matrix C' = [Cj;] cannot be positive, there are no general
prescriptions on C' such that the corresponding semigroup surely consist of
positive, but not CP maps; as well as for positive maps, one can however seek
sufficient conditions.

In the following, we shall consider a system consisting of two d-level
systems Sy and construct [35] a semigroup of positive, but not CP maps

Iy = v} ®~2 on My(C)® M4(C), where %(1) = exp(tLy) is a semigroup of CP
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maps, while 'y( )isa semigroup of positive, but not CP maps ®. The construc-
tion will also provide non-decomposable positive maps able to witness bound
entangled states within a particular class of bipartite states with d = 4 [36].
We shall consider generators as in Proposition 5.6.1 without asking for the
positivity of the Kossakowski matrix.

Proposition 6.2.2. Suppose %1’2) : Mg(C) — M4(C) to be semigroups with
generators

Li[X] = i[H®, ; Oexal - @y, x)), der,
fori=1,2, where Ggi = (Gg )T € My(C), together with GE;) =1/Vd, form
two Hilbert-Schmidt ONBs in My(C).

Assume cgl >0,0=1,2,...,d*—1, and c (2) |c(2)| < 0, for one index
k, while Ce >0 for 0 # k. Then, the sengroups of maps Iy = t(l) ®fyt(2) on
Md((C) ® Mq(C) preserves positivity if ¢, 1 > \ck |, 0=1,2,...,d> — 1 and
B > 1P e=1,2,...,d> =1, L £k

Proof:  According to [177, 178] (see also [64]), in order to show that the
semigroup {I}};>0, with generator L = LW @1idy + idg ® L®, consists of
positive maps, it is sufficient to prove that

I(¥,¢) == (| L[|¢)(o]][¢) 20
for all orthogonal v, ¢ € C? ® C?. Since (1) |¢) = 0, it follows that

d*—1 9 a2— )
1w.6)= Y (w16 o) + 3= ¢ [(wih e e)
=1 -1

It proves convenient to define the following d? x d* matrices ¥ = [¢);;] and
& = [¢;;] where ¢;; and ¢;; are the components of the vectors ¢ and ¢ with
respect to a fixed ONB {|1,j) ijl in C? ® C%. Then, one rewrites

2 . 2
106,6) = > o [GPown)| + 3 o (e @)
(=1 =1
d*—1 . 9 d*—1 ) 9
1
= @ = 1) [meePeeh| + 3 o | m(eP wle))|
=1 k#Al=1
+ 1) Z ’Tr (Gt ( ’Tr (erdtaran )‘
(1,2)

STf the two semigroups -, were the same, then, according to Proposition 5.6.1
and the successive remark, I} positive would mean Iy CP.
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As (1| ¢) = 0, the matrices P¥T and ¥ are traceless; using the ONBs
consisting of the matrices G( D= (G( ))T ¢=1,2,...,d* — 1, one thus gets

_ d*—1
Z (Tr(GSVpwt))? Tr((z Tr(G§1>q5wT)G§1>)¢wT>
/=1 /=1

= Tr(@¢;)2 = Tr(TTP)? = Tr((wip)T)?

} 1(Tr(Gg2)(wq5)T)2
(=1
This yields
2 e
nEP o2 < Y oD@ Y [meP o)
=1 k£0=1
whence one concludes
d?—1 9
166,6) 2 Y (e = | )) [ Te(G (P owh)|
di:jl
+ 37— 1)) (T&« (GP wie)T )‘ >0.
/=1

O

Example 6.2.3. [35] Let d = 2 and 0,, @ = 0,1,2, 3, be the Pauli matrices
plus the 2 x 2 identity matrix og. Let S, : M2(C) — M2(C) be the completely
positive map X — S,[X]| = 0,X 04, and set

3 3
1 1
XHEC;SQ[X], XHiaz:%eaSa[X],

where ¢, = 1 when o # 2, whereas e = —1. The first map amounts to
the trace map Trp (see (5.30)), while the second one corresponds to the
transposition To with respect to the basis of eigenvectors of o3: indeed, it
changes 05 into —o5 and leaves all other Pauli matrices unchanged. According
to Proposition 6.2.1, it is positive but not CP , for A,3 = diag(1,1,—1,1)
and |lo,]]? = 1.

Consider generators Lj 2 as in Proposition 6.2.2 with d = 2, F; = a,;/\/§
and choose as Kossakowski matrices

100 1 0 0
c®W=o1 0], c®=[0 -1 0
00 1 0 0 1
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Then, the corresponding master equations read

008"l = Lilol = 3(D2 8061 - 39)

001 = Lalo] = 5 (D286l — o)

The second one has been considered in Example 5.6.5 and generates a positive
semigroup such that

1 _ =2t _
v2lp) = B (ﬂ + pro1+e ¥ pyog + /)303) =pt—

D) P02 .
Since Li[o;] = —20; while L;[og] = 0, the solutions of the first master equa-
tion are the following CPU maps,
1 I+e % p.c 1—e2t _
’Yt()[f’}: 5 = 5 +e?p.

Let id,, Tr,, and T, denote identity, trace and transposition operations on
(C%)®; since 1 = Tr(p) and p — T[p] = pao2, one rewrites

] 1— e—2t 1 + e—2t ) 1— e—2t
%Fl) = e idy + T'ﬁz ; %@ = 5 idy + 5 Ty .

As T4 =Ty ® Ty and Try o Ty = Try, the tensor product maps I; = 7} ® 72
can be recast in the form

1 —2t 1— —4t
N—e2 ™% g, + 12 1,014,
2 4
Ftl
1—e 2t 1 —e 2t
+ Te(e_QtTg ®idy + Tem ® idQ) oTs.  (6.22)
F2

t

The semigroup {I}}¢>0 consists of positive maps because the chosen Kos-
sakowski matrices satisfy the sufficient condition of Proposition 6.2.2; more-
over, the maps I} are of the form Iy = I'} + I'? o Ty. It turns out that I}
is completely positive for all ¢ > 0 for it is the sum of tensor products of
completely positive maps. If I'? were also CP, each map I} would then be
decomposable; in order to check whether this is true or not, consider the Choi
matrix ids ® A;[P}], where

1— e—2t
At = e_2tT2 ® ld2 + TTI’Q X ldg .
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Fixing a basis {|0),[1)} € C? and writing [#'1) = 137, |ab) ®|ab), one
explicitly computes

idy ® A4[P] =
(1+e2)P? 0o 0 0
0 (1—e2)P?  2e72P% 0
0 22P2 (1 —e¢ 2)P? 0
0 0 0 (14 e 2)P2

This 16 x 16 matrix has eigenvalue 0 with eigenvectors
(19),0,0,0), (0,]%;),0,0), (0,0,]%;),0), (0,0,0,]%;)), j=2,3,4,
where | ;) are the Bell states orthogonal to [¥yg), while
(1%00),0,0,0) , (0,0,0, %)) , (0, [¥oo), o), 0)

are eigenvectors relative to the positive eigenvalue (1+e~%)/+/2. More inter-
—2t
_ 3 . .
esting is the last eigenvalue — 5 with eigenvector (0, |Po), —|%o0), 0): it

is positive only if t > ¢t* = (log 3)/2. It follows that I} is surely decomposable
for t =0 (I = idye) and for ¢ > ¢*.

In order to ascertain whether the positive maps I} constructed in the
previous example are not decomposable for 0 < ¢ < t*, we need some further
insight. Indeed, the decomposition (6.22) need not be unique and there might
be other decompositions revealing that I; is decomposable for all t > 0. In
order to proceed, we use the following result.

Lemma 6.2.2. [35] Let A : My, (C) — Mg, (C) be a positive map and p a
PPT state of a bipartite system Sy + Sy. If T1r(idd1 ® A[Pﬁl] p) < 0, the

state p is bound-entangled and A not decomposable.

Proof: If A is decomposable, so is its dual AT : My, (C) — My, (C); indeed,
A=M+Ay0Ty = AT = A] + T, 0 Ay = A7 + Ay 0Ty,

where AT is CP for it is the dual of a CP map, while Ay := Ty, 0 AT 0 Ty, is
also CP as the corresponding Choi matrix is positive. In fact,

dg d2
idg, ® A[E?] = > B @ (Ta, 0 AD)[E?] = Taa, 0 ), Ej7 @ AJ[E}7]
i,j=1 1,5=1

= Td1d2 (¢] (idd2 (24 AT)[Edﬂ Z 0 s
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where Tg, 4, = Ta,0Tg4, is the transposition on My, 4,(C) = My, (C)®@M,,(C).
It preserves the positivity of the Choi matrix idg, ® AT [E%] associated with
the CP map AZ. Since p is assumed to be PPT, if A is decomposable or p
separable, then idg, ® AT [p] > 0. O

To make good use of the above result, it is convenient to introduce a par-
ticular class [34, 33] of 16-dimensional density matrices as states of a bipartite
system consisting of two pairs of qubits; their structure is simple, yet flexible
enough to represent an interesting setting where to test the decomposability
of a wider range of positive maps A : My(C) — My(C).

Example 6.2.4. Let S = 5; + S; be a bipartite system where S; 5 are each
a two qubit system; consider the sub-class of 16 x 16 density matrices con-
structed by associating to the pairs of the set L1 := {(c, ﬂ)}i,,@:o the vectors
[Was) = (14 ® 04p) |@ff_>, where \@j‘j is the Bell state | Wy ) in (5.164) and
Oag 1= 0o ® 0g are tensor products of Pauli matrices with o9 = 1. The
vectors | W, ) form an ONB in C'6,

~ ~ 1
(Vap | Pys) = <Wi‘ﬂ4 ® Uaﬁgvéhpﬂ = ZTT(UaU’y)Tr(Uﬁaé) = 0ay08s -
Given the corresponding orthogonal projections
Pog = [Wap)(Wag| = (ids ® 04p) ﬁj (ids ® 00p) ,  Pap Pye = 0ar 0gc Pag ,

consider the states consisting of all equidistributed convex combinations

Z Paﬁ7

(a,ﬁ Jel

where [ is a subset of L1 and N7 its cardinality.
The behavior of such states under partial transposition can be deduced
by means of the fact that the flip operator V =d idg ® T4 [Pfé] (5.32) is such

that V|#?) = [¥?) and V(A @ B)V = B® A for all A, B € My(C); while

1 d d

A®B|@i>=EZAM@@BM:%ZUlAMHﬂ@Bm

i ij=1

u

— yo > B AT |j) =14 © BAT|#Y) .
\/8]_ ZI (il A7) = 1a |75)

Then, setting ﬁalg = 1dy @ T4[Pag] = ;11]14 ®0asV 14 ®0ag, it turns out that
~ 1 ~ 1 ~
Pag| Wys) = 714 ® 0ap V 1ls @ 0agoysVIUL) = 10ag0ys ® 0aplll)
—1]1 ® 0a(Cago )T|@4)—eeesll ® Cas0rs0as|WL)
—44 apf\OapT~6 +/ = Cacyepes 4 aBVyi0aB|¥ 4+

1
= ZUa'y”ﬁ(s‘ LZ"‘f5> )
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where it has been used that o = ¢,0, with g, = 1if a # 2, = —1 otherwise,
that the algebra of the Pauli matrices implies

1 1 1 1
~ ~ . 1 1-1-1
Oa0y00 = Tay Oy 5 1= [flay] = 1-1 1-1

1-1-1 1
and it has been set

1-1 1

1
~ 1 1 1-1
77047 = Eaffy 77047 ) ni= [Waﬁ] = -1 1 1 1
1 —_

1 1 1

The vectors |, ) are thus eigenvectors of IBQB with eigenvalues 7,735 and

- . 1
pr = idy @ Ta[ps] = Z (TNI Z %wm) Py .
(v,0)€L16 (a,8)€l

Since the matrix 7, is symmetric, the eigenvalues of p; can be recast as

1
N, Z NarT8s = (77X177)75
" (aper

where X7 is a sort of characteristic matrix of the sublattice I with entries

X! =
m 4Ny

if (u,v) € I, = 0 otherwise. Concretely, consider

1
PZ6(P02+P11+P23+P31+P32+P33) ;

1
then, p = E(PM + Pog + Py + P2y + P32 + Ps3) for

1
X! =
6

o O O

1
Xin==2
, nXin=g

— o = O
_o O =

0
0
1
1

O = OO
oo O
— = O
_ o O O

0

Thus, p is positive, hence p is PPT.

We now show that Tr(idy ® I [Pyolp) < 0 for 0 < t < (log3)/2, where I}
is the positive semigroup of Example 6.2.3; by Lemma 6.2.2 it thus follows
that p is PPT entangled and I} indecomposable in that time-interval.

3 3
Since Try(-) = %ZS“H and Tq[-] = %ZEHSM[-], the two semi-
=0 pn=0

groups in Example 6.2.3 can be recast in the form
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3 3
(1)_1+3/\t 1_/\t ) (2)_3+)\t 1_)\15 Q.
W= St T 2 S =T ek ) S

i=1

where \; := e™? so that, with Sus[] := 0ag - Tag,
1+3X)3+ A 2)\ 3 +At)
Ft:( ’51)6( t)500+( t) t) ZSZO
1+ 3/\ —2X¢) 2/\
+ ( t) ) Z&Sm a=2xn)7 Z €7Sij
1j*1
. (T4+3M)B+A\p) (1 2)\,5 3+/\t
I[Pyl = P, Py
idy ® I3[ Poo 16 00 + Z
1+ 3)\ >\ 2 2
-+ ( t Z€ZPOZ ) Z 5jPij~
1,j=1
It then turns out that
1—X)(1 =3\
0<t<(log3)/2:>Tr(id4®Ft[P00]p) ! %8 ) .

6.3 Relative Entropy

A notion directly related to the von Neumann entropy with several useful
applications in quantum information and of great importance for the topics
discussed later in the book, is the quantum relative entropy. It is the quantum
counterpart of the Kullbach-Leibler distance (see (2.94)) and has already been
introduced in the proof of some properties of the von Neumann entropy (see
Proposition (5.5.6)).

Definition 6.3.1 (Relative Entropy). Let S be a quantum system de-
scribed by a d-dimensional Hilbert space H and p,o € BT(H) two density
matrices acting on H. The relative entropy of p with respect to o is

S(p: o) = {Tr(p <logp - loga)) if Ker(o) C Ker(p) (6.23)

400 otherwise ,

Ker(o) and Ker(p) being the subspaces where o and p vanish.

Example 6.3.1 (Relative modular operator). [225, 237, 261, 262]

Given the Hilbert space H = C¢, equip the algebra My(C) with the
Hilbert-Schmidt scalar product (5.26) and denote it as << -, - >>. Then,
consider the following linear operators on Mg4(C):
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Lx[Y]=XY, Rx[Y]=YX.

They commute with each other, LxRz[Y] = XY Z = RzLx[Y]; moreover,
if X = XT they are self-adjoint. Indeed, the ciclycity of the trace operation
yields

<<V, Lx[2] >> = Te(Y1 X 2) = Te((XV1)! Z) =<< Lx[Y], Z >>
<<V, Rx|Z] >> = ﬁ(yf ZX) - Tr((YTX)T Z) —<< Rx[Y],Z >> .
Further, if X > 0 the operators Lx and Rx turn out to be positive; in fact,
<< Z,Lx[Z]>>=Te(2'XZ) 20
<< Z,Rx|[Z] >> = Tr(ZT ZX) - Tr(ZX ZT) >0.

Let P; and P; be orthogonal projections; then, Lp Lp, = 6;;Lp, and
Rp,Rp, = 0;;Rp,. As a consequence, from the spectral representation X =
Xt = Z‘::l x; |x; ){(x; |, one derives the spectral representations

d d
LX:ZQCZ’LIMWM RX:Z%Rmxmim

i=1 i=1
with orthogonal projections {L| ., (, |}§:1, respectively { R, (a, |}§l:1. Sup-
pose p € B (H) is strictly positive, then R, = R;l is well defined as well
as the relative modular operator of p and o € B (H),

d
Ap’a =L, R;l = R;l L, = Z sﬂ”{l L‘ Y |R| riY(r] (6.24)
ij=1
where the spectralizations p = 2?21 rilr;)(r;| and o = Z?Zl sil si) (s
have been used. If both p and o are strictly positive, the same is true of their
relative modular operator: for all X € |mdd,

d
<< X, Ay, X >> = Tr( 3 st X ) (i X7y ) (g |)
ij=1
d 2
= > sy (| X si)|" 2 0
ij=1
Also,
d
log A, 5 =log Ly + 1ong—1 = Z(lOgSinsi)(m —logri By, y(r, |) .
=1

This yields the following expression for the relative entropy

<< VP, —(log A,.0)[\/7] >>= S (p. o) .
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Of the following properties of the relative entropy, joint convexity and
monotonicity under CPU maps have already been used in the proof of
the properties (5.162) and (5.163) of the von Neumann entropy in Propo-
sition 5.5.6.

Proposition 6.3.1. The relative entropy of p,o € By (H) is

1. positive:  S(p; o) >0, S(p;0)=0iff p=oc;
2. jointly convex: given weights A\; > 0, 1 € I, >
matrices p;,0; € B1(H), i € I,

S (Z Aipi s Z/M‘W) < Z)\i S (pi,0i) s (6.25)

i€l iel el

ierNi = 1, and density

3. invariant under unitary maps: let p,o € Bf (H) and U : H +— H a unitary
map, then

S(UpUt, UsUT) =S (p, o) . (6.26)

4. monotonically decreasing under trace-preserving CP maps: let p, o € B (H)
and F : Bf (H) — B (H) be a CP map such that Tr(F[p]) = Tr(p), then

S (Flp], Flo]) < S(p, 0) (6.27)

Writing F[p] = p o E, where E : B(H) — B(H) is the dual CPU map of F,
monotonicity reads

S(poE,c0E) < S(p, o) . (6.28)
Also, joint convexity is equivalently expressed by the inequality
s (z 5, Za) ST NS T . (6.29
il il iel
where p; := \;p; and 7; := \;0;.

Proof:

o Positivity: by means of the eigenvalues 7;, si (repeated according to
their multiplicities) and of the eigenbases |7 ), | s ) of p, respectively o, one
computes

S(p, o) = Y rillogri — (r; | logorlr; ))
=Y riflogrs = 3 1(r 1)) P log k)
i k
> Y ri(log i —log(} e (i )[%))

k



290 6 Quantum Information Theory
= Zri(log r; —log((ri|o|r:))
> Z(H - <’I“i|(7‘7"i>) =0.

The first inequality follows from >, [(r;|sg)|?> = 1 and the concavity of
the logarithm, while the second one is a consequence of the concavity of
n(z) = —xlogx, 0 < a < 1 (see (2.85) in Section 2.4.3), which also implies
that equality only holds when the eigenvalues and thus the density matrices
coincide.

e Joint convexity: we shall establish (6.29). Notice that, for all w > 0,

o 1 1
o [Ta(h )

o0 1 1 1
:(1_w)/0 dt((w+t)(1+t)_(1+t)2+(1+t)2)
:(1—w)+/0 ( dt  (w-1) .

1+6)2 w+t

Then, use the spectral representation of the relative modular operator (6.24)
to insert A, in the place of w, act with —log A, , on p and take the trace

of the resulting matrix. Since Tr((]l — A,,J)[p]) =Tr(p — o) =0, it follows
< de 1

S(p,0)= —Tr(log Ap,a[ﬂ]) = /o mTr((ﬂ—Ap,a)m[P—U]) .

Further, setting Y = 1 and X = (A, , +t1)"![p— o] in

<<Y,(1-A4,,)[X]>>=<<Y, (R, — Lo)R,'[X] >>

= << (R, — Lo)[Y], R'[X] >>,
yields
S0 = [ rmt(o-ogam-a) . 030

Let now p; and &; be as in (6.29) and
X;j = (L, +tR)"V2[p; — 5] — (Ls, +tR;)"?[B]

with B = BT € My(C) to be defined later. Then, since the various opera-
tors are self-adjoint with respect to the Hilbert-Schmidt scalar product, by
observing that >, (Ls; +tRj;) = L, +tR,, one obtains

0<) << X, X;>>=Y << pj =65, (Ls, +tR;) " [p;] >>
i i
—<<p—0,B>>—-<<B,p—0>>+<<B, (L, +tR,)[B] >> .
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By choosing B = (L, + tR,)[p], one gets the inequality
> <<pj =55 (Ls, +tR;,) 5 — 55] >>=
J

—ZTr( (L, +tRs,) 55 — &)

> Tr((P o)L, + tRﬁj)*[ﬁﬂ) v

which, once inserted in (6.30), yields the result.

e Invariance: it follows from the fact that log(UpUT) = U(log p)UT and
that the same holds for o.

e Monotonicity: it is implied by joint convexity. We shall first show that

S(p1,01) <S(piz, o12) ,

where p12,012 € BT(HU) with marginal states p1o2 = Tra 1p12, respectively
01,2 = Tra1012. Let d; = dim(H,), fix an ONB {|j>}d2_ in Hy and define
the unitary matrices U, € My, (C), ¢ = 1,2,...,ds, with entries Uo)jr =

_y
51, exp (% j0). Then, for all X € Mg, (C),
2

d2 d2
1 1 Gy ‘
PX] = S UXU = 2 30 UTIGIX k)5 (k|
=1 0,5,k=1

da
=D 11X 1) s

whence p; = id; ® @[p12] and similarly for 0. Furthermore, using the basis
. . do 1) .
{130}, to write p1y = S5y o5y @1 5) (k| then

d2 d2
1 1 1 1
S(pr. 1) = ZPL%Zoﬁf SIICR
=1 j=1
= Zp‘”@w J\,Za ® 14

=9 (1d1 @ P[p12] , id; @ 45[012])

do
1
d: DS (I ® Z)pra(lh @ Zo)T, (I ® Ze)or2 (I @ Zy)T)
=1
= S(p12, 012) ,

where the second equality follows from the orthogonality of the matrices
contributing to the sums, the last equality follows since the matrices 1; ® Z,
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are unitary and because of the invariance of the relative entropy, while the
two inequalities are a consequence of its joint convexity.
Monotonicity under trace preserving CP maps thus results from Re-

mark 5.6.3, by writing E[p] = Trg (U (p®pE) UT):

S (Elp], Elo]) < 5 (U (p© pp)UT, U (0 ® pp)UT)
S(P®PE70®PE) S(pag)'

(Il
Example 6.3.2. As an application of joint convexity, let p € By (H) be a

density matrix describing a statistical mixture {Aij,pijt: p = >2;; Nijpij,
2ij Aij = 1. Setting pi; == Aijpij, Pt = > pij and ,?)? ==Y, Pij, one derives
Z AijS (pij, p) = Z Trpi;log pij — Trp; log p — Z Aij log Aij
J J

—ZS ng>pz)+s p7,7 ZAljlog)‘U’

J

whence (6.29) applied with reference to the sum over the index 7 and the fact
that Y, pi = p yield

ij i j
—ZS P2, p +ZS(pi,p)

+ Z)\%log)\l1 + Z)\?log)\i — Z)\ijlog)\ij ,

J

~2
p<

where A= Z)‘ij . A2 Z)\” L pl = )\1 7 PJ — )\7]2 _
J J

The physical interpretation of the relative entropy comes from thermody-
namics: there, it amounts to free energy. As such, it can only decrease under
dissipative time-evolutions [286, 189]. Let o in (6.23) be the Gibbs state at in-
verse temperature 3 = T~ with respect to a Hamiltonian operator H € B(H)
(see (5.177)):

o=ppi=Zgexp(—fH) , Z' = Tr(exp(—GH)) .
The free energy of a state p € By (H) is

F(p) :==T5(p) —(H),, (H),:=Tr(pH).
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From F(pg) = —T log Zg it follows that

S(p: ps) = —S(p) —log Zs + B{H), = B(Flps) = F(p)) -

Let S undergo an irreversible evolution described by a quantum dynamical
semigroup v : S(S) — S(5), t > 0, with pg an equilibrium state, namely
velpg] = pp. Then, as seen in Chapter 3, the dynamical maps +; are com-
pletely positive and fulfill 74 = ;s 0 75, t > s. Thus, monotonicity (6.27)
yields

(3elol: ps) = B(F(ps) = F(el))

S
S(’n—s °yslpl; ’Yt—s[PﬂD
S(vulel: ps) = B(Flps) = FOleD) - (6.31)

S (ulel; ulos]) =

IN

While the relative entropy behaves monotonically, this is not true of the
von Neumann entropy (see Example 5.6.3). For instance, if the quantum
dynamical semigroup mentioned before represents the reduced dynamics of
a quantum open system S interacting with a reservoir, the free energy of an
initial state may decrease in time, showing tendency to equilibrium, while
but its von Neumann entropy may in some cases decrease (for more details
see [41]). The following example provide a class of dynamical operations on
the states of S which always increase the entropy of its states (or keep it
constant).

Examples 6.3.3.

1. Bistochastic maps [302, 303] Completely positive unital maps E :
B(H) — B(H) are called bistochastic if their dual maps F : S(S) — S(5)

preserve the tracial state: F [zﬂ = £

d

The most natural bistochastic maps are those associated with projec-
tive POVMS, Fp[p] = Zi Pippi, PZ‘P]‘ = 5¢jpj, Zi Pi =1 (see Sec-
tion 5.6.1). These maps always increase the von Neumann entropy; in-
deed, from (6.27)

5 (0l F|3] ) = 1o - s < 5 (. 7) =toxd - 50

2. Let P be a projective POVM as in the previous point. The linear span
of the orthogonal projectors P;, i € I (not necessarily one-dimensional,
so that card(I) < d) is an Abelian subalgebra Ap C B(H) with identity,
whose typical elements have the form a = Zie ; a; P;. The space of states
1 over Ap consists of normalized, positive linear expectations
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Ap3a— pla Zal
i€l

They thus correspond to all possible discrete probability distributions
with card(I) elements. Given a state p € S(S5) its restriction to Ap,
denoted by p[Ap, corresponds to the discrete probability distribution
Ly = {Tr(p P;)}ier. It thus follows that p[Ap = Fplp| = > .., Pip P,

indeed
Tr(Fp[p] a) = Z a; Tr(P;pP; P;)) ZaZ Tr(p P;)
1,J€1 el

icl

From the previous point, it then follows that
S(p) = min{S(p lA) : A C B(H) Abelian with identity} ,

the minimum being achieved at any Abelian subalgebra A generated
by the eigenprojectors P; = |r;)(r;| of p, for in this case p,(P;) =
Tr(p|rs)(ri|) =rs.

The following result emphasizes the connections between von Neumann
entropy and relative entropy [213]; the idea is to exploit the (infinitely many)
convex decompositions of mixed states.

Proposition 6.3.2. Let S be a quantum system described by a Hilbert space
H and let p =3 ,c; Nipi, Xi >0, D ;cp i = 1, be any convex decomposition
of a mized state p € S(S) in terms of other density matrices p; € S(5).

Then,
S(p) = min{z AiS(pisp) + p= Z/\im} :
icl il
Proof: From (6.23), Z)\i S(pi; p) = S(p Z/\ S(pi) < S(p), while
i€l iel
the spectral eigenprojectors of p give the upper bound. O

6.3.1 Holevo’s Bound and the Entropy of a Subalgebra

As seen in Example 6.1.2, by encoding classical information into non-
orthogonal quantum states one may always detect the presence of eaves-
droppers during transmission. However, the non-orthogonality of the quan-
tum code-words does not allow for perfect retrieval of the encoded classi-
cal information, for no measurement can perfectly distinguish between non-
orthogonal states.

In fact, let [ ) and |92 ) = a1 ) + B| i), @ # 0 be two vector states
in some Hilbert space H. Suppose there exists a set of orthogonal projections
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P;onH, j € J=J,UJy,such that if j € Jy, respectively j € Jo, is measured
then the state is 11, respectively 15, with probability 1. Then, the orthogonal
projections Q1,2 = ZjeJl,Q Pj, would be such that (¢12]Q12[Y12) =1,
whereas (11 2| Q2.1 [t1,2) = 0. Therefore,

1= (92| Q2 the) = 1B (¥ |Qavi ) <IBP <1 = |8 =1

namely ¥ L s.

More in general, the symbols i € T4 = {1,2,...,a} of a classical alphabet,
emitted with probabilities py, po, .. ., pa, might be encoded by means of mixed
states p; € By (H). Or, from a more realistic viewpoint, given an encoding of
the classical symbols into pure states i; € H, a noisy transmission channel
might transform them into mixed states p; := F[|1; )(; |], where T is the
dual of a CPU map E : B(H) — B(H). The receiver must then reconstruct the
encoded classical message with the least possible error; practically speaking,
he must seek a POVM B = {B;}icr, C B(H), Ig = {1,2,...,b}, such that,
when measured on the statistical mixture p =3 14 PaPa, it maximizes the
accessible information.

In such a context, three random variables appear: A, B, and AV B, with
probability distributions w4, 75 and w4y p:

1. the outcomes of A correspond to the indices i € I4 of the incoming states

and m4 = {pa}aeIA;
2. the outcomes of B correspond to the indices ¢ € I of the POVM and

mp = {Tr(p Biticry;
3. the outcomes of AV B correspond to the joint events consisting of an in-

coming state p, and a measured index i: T4y 5 = {paTr(pa Bi)} .
acly,iclp

According to Section 2.4.5, the mutual information (A, B) measures how
much knowledge one gains about A, that is about which state p; has reached
Bob, from measuring on B the POVM B = {B;}ic1,:

I(A,B) = H(A) + H(B) — H(AV B)

=~ palogpa — Y (Tr(p B;) log(Tr(p B;)

a€ly i€lp
+ Z Z pa(TI"(,Oa Bi)) log(pa(Tr(pa Bq)))
ac€lai€lp
Y (T B) log(T(p B,))
i€lp

+ Z Pa Z (Tl"(pa Bz)) IOg(Tr(pa Bl)) . (632)

a€ly iclp

In the classical case, perfect knowledge of A from knowing B can be
achieved by choosing B such that H(A|B) = 0; in the quantum case, there
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is a more stringent upper bound on I(A, B) that depends on the given de-
composition p =}, ; Paps and is denoted by x (p, {Papatacts)-

Proposition 6.3.3 (Holevo’s Bound). Given p = >, Papa € B (H)
and the POVM B = {B;};c1, C B(H),

I(A,B) < x(p,{p:Papatacrs) == S(p) = > paS(pa) - (6.33)

acla

Proof: (23] Given the POVM B = {B;}ic1,, C B(H), let B = {b;};c1,, be
an Abelian algebra with minimal projections Bj, agj = (5”@-, > jeln Bj =1g.
Tt can be embedded into B(H) (as a linear space) by means of the linear maps
v : B — B(H) such that vp [31] = B,;. Positive operators in B are of the
form b = >, ;. Bi b, Bi > 0, therefore vB(b) = > icr, Bi Bj > 0 so that
vB is a positive map and, because of Example 5.2.6.7, completely positive.
Also, ve(1p) = > icr, Y(bi) = > icr, Bi = 14, whence vp is a CPU map.
Furthermore, the states poyp and p; oyp on B are diagonal density matrices
with eigenvalues {Tr(p B; }icr,, respectively {Tr(p, B; bier, - Thus, (6.32) and
the monotonicity of the relative entropy (6.27) yield

I(A,B)= > paS(porys paoys) < Y paS(p;pa)

a€ly a€ly

Remarks 6.3.1.

1. Using (5.156) one derives that

X (P, {Papatacts) = = > paS(pi) <= palogps, = H(A) .

a€lg a€lp

Thus, if (6.33) is a strict inequality, perfect reconstruction of A upon
knowledge of B is not possible; on the other hand, the inequality is strict
unless the states p, are orthogonal to each other and thus perfectly dis-
tinguishable.

2. A consequence of the Holevo’s bound is that any quantum encoding of
n bits into n non-orthogonal qubits states |1; ) € C2" achieves secure
transmission, but cannot transfer more than H(A) < n bits of informa-
tion (when the entropy is expressed in base 2).

3. Whether the upper bound is achieved or not depends on the ability on
the part of the receiver to find one or more optimal detection strategies,
namely those POVM ’s B that maximize I(A, B). As we shall see this is
a remarkably difficult analytical problem even in low dimension.
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4. By taking the supremum over all possible POVM ’s B that the receiver
may devise as detection strategies, one defines the mazimal accessible
information as

I(A) = sup I(A,B) < x (p,{papatacts) - (6.34)

Example 6.3.4. Suppose A transmits the bits 0 and 1 to B by encoding
them into the non-orthogonal states

[£)=vPlv1) £ VI-pln)eCV,0<p<1, (¢n|thy) =0

chosen with equal probability. The statistics of the encoded quantum signals
is thus described by

My(C)3 p= g+ )+ + 51= )= =plva)(a| + (1= p) |42}l

and x({p,A\p;}) = Ha(p) = —plogyp + —(1 — p)logy(1 — p) reaches its
maximum of 1 bit of transmissible information only when p = 1/2 so that
(+]—-)=1-2p=0.

The problem of achieving the maximal accessible information I(A) ap-
peared earlier than in quantum information, in relation to finding optimal
decompositions achieving the so-called entropy of a subalgebra [213, 88], the
building block for constructing a particular quantum extension of the KS
entropy to be discussed later in Chapter 8.

Let M C B(H) be a finite-dimensional subalgebra with identity, p €
B (H) a state on B(H) and p | M the state on M which results from restrict-
ing p to act (as an expectation) on the observables in M, only.

Example 6.3.5. Let A C B(H) be an Abelian subalgebra with & < dim(H)
minimal projectors @; and p € B} (H) a density matrix; then, p| A amounts
to the classical probability distribution 74 = {Tr(pa;)}r_,.

Definition 6.3.2 (Entropy of a Subalgebra). Let M C B(H) be a subal-
gebra and p € ]]33;r (H) a state; the entropy of M relative to p is

H,(M):= sup > XNS(pIM, p; M) (6.35)
quej)‘leej

= S(pIM) - Z/\Sm . (636)

P=3icr Aipi

where the sup in (6.35) and the inf in (6.36) are taken with respect to all
possible linear convex decompositions p =, \ip;-
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It must be stressed that, unlike in Proposition 6.3.2, the decomposition
comes first and the restriction to the subalgebra only afterwards; this is what
makes the explicit computation of the entropy of a subalgebra a compli-
cated variational problem, in general. Luckily, there are particular instances
of states and subalgebras where things are easier.

Example 6.3.6. Consider the Abelian subalgebra A of Example 6.3.5 and
let p € B} (H) be a state which commutes with all elements of A. The fol-
lowing decomposition of p is optimal,

k ~ —~
_ pai /b pi;
p=2 TR i, pii= g(pa{ = Toa)

i=1

Indeed, the restrictions p[A and p; [ A are probability distributions

ok . Tr(pa; d;) .
= T . g = _—— — ..
ma={ r(”“ﬂ)}jzl A { T(pa) 7S,

J=1

such that S (p; ]A) =0 and

k
Hy (4) = 5 (p]4) = =3 Tr(p@) log Tr(p,)

The simplest context in which the above argument applies is when, instead
of B(H), one deals with an Abelian von Neumann algebra. Then, as seen
in Section 5.3.2, via the Gelfand transform, any finite subalgebra A C A
has minimal projections which correspond to the characteristic functions of
suitable measurable subsets of a measure space and thus identify a finite
partition of the latter or, equivalently a random variable A. Moreover, the
state w becomes a probability measure p and gives a probability distribution
over A such that the entropy of A yields the Shannon entropy of A: H,, (A) =
H(A).

Instead, the simplest non-commutative application of the previous argu-
ment is when B(H) = My(C) and p = 1,;/d is the tracial state; then,

k o o~
H,(A)=S(plA)=H(A) = — Z Trfiai) log TrElai) .

i=1

We now relate the variational problem in (6.35) to the one in (6.34). The
clue is that POVMs as B = {B;};c1, give rise to decompositions and vice
versa, while the main technical tools are provided by the GNS construction
7,(B(H)) based on the state p. Of particular importance is the possibility of
dealing with decompositions by means of positive elements in the commutant
m,(B(H))" or even in m,(B(H)) itself (see Remark 5.3.2.3 and the relation
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n (5.146)), an instance of which already appears in the previous example. It
follows that the probabilities in (6.32) can be recast as

(82, [mp(Bi) X 142,) _ Tx(p Bi) pL(X) (6.37)
Pa Pa

ol 'Ip‘lf(p)B) ) ) :<QP|Xz/1|‘QP>a (6.38)

where | £2,) is the GNS cyclic vector and the X € 7,(B(H))’, a € 14, are
positive operators in the commutant such that >, ., X, = 1.

It turns out that the linear functionals m,(B(H))" > X' — pi(X’) are
positive and normalized, hence states on the commutant, as well as

X = 3 (Te(p B)) ph(X") = (2,1 X'12,) . (6.39)

i€lp

Tr(/)a Bz) =

pi(Xa) =

K3 a

In analogy with the proof of the Holevo’s bound, let A = {@;};cr, be an
Abelian algebra (with identity) generated by minimal projections a; and
introduce the CPU map v/, : A — m,(B(H))’, vj4[a;] = X that sends A
into the commutant ’/TP(B(H))/. Then, using (6.37) and (6.38), one sees that
the states p’ o 'yA and pf o+, i € I, on A correspond to the probability
distributions 7y = {pa}tacr, and (7'4)* = {Tr(pi(X])}uer,, whence (6.32)
can be rewritten as

I(A,B) = = Y (Tx(p Bi)) log(Tx(p B;))

i€lp
+ Z Zpa (Tr(pa Bi)) log(Tr(pa Bi))
a€lpi€lp
== 3 (3 (Tx(p B)) (X)) Togpa
i€lp a€la
+ > (Tr(pBi) > ph(X}) log pi(X})
acla i€lp
==Y palogpa + Y (Tr(pBy) Y pi(X}) log p(X7)
i€lp i€lp acly
=S (p o) = Y (Tr(pBy) S(p;ov4) - (6.40)
i€lp

Therefore, the maximal accessible information relative to the encoding
{p, Papa} equals the entropy of the CPU map 7/, : A — 7,(B(H))’ relative
to the state p’ on the commutant: I(A) = H,(v}). If p is a faithful state, one
can use (5.146) to substitute the X’ with elements of a POVM in B(H) and
vy with a CPU map v4 : A — B(H), so that I(A) =H, (ya).

The natural embedding vps of a subalgebra M C B(H) into B(H) is a CPU
map (see Examples 5.2.3.7 and 8) such that p[M = poups. This observation
suggests the following extension of Definition 6.3.2.
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Definition 6.3.3 (Entropy of CPU maps). Given a completely positive
unital map v : M +— B(H), where M is a finite-dimensional algebra, its
entropy relative to a state p € B (H) is

Hy(7):=  sup Y XS(poy,pioy) (6.41)
p:EieI Aipi icl

— S(pon)— _inf AiS (pi o) - 6.42

(o) = inf ; (pio) (6.42)

Lemma 6.3.1.

1. Given a CPU map v : M — B(H) from a finite dimensional algebra M
into B(H), one has

0<H,(y) <S(povy) <logdim(M) , (6.43)

where dim(M) s the dimension of any mazimally Abelian subalgebra
contained in M.

2. If p is a faithful state, then H, (M) > 0 unless M is the trivial algebra,
consisting only of multiples of the identity.

3. Consider two finite dimensional algebras Mo and two CPU maps 7, :
M1 (g Mg, Y2 i Mg — B(H),

Hy (v20m) <Hp (72) - (6.44)

In particular, if N C M C B(H) are two finite dimensional subalgebras,

H, (N) < H, (M) . (6.45)

Proof: Positivity and boundedness are evident, monotonicity under CPU
maps follows from (6.28) applied to Definition 6.3.3, while monotonicity under
algebraic embeddings follows from considering the CPU maps consisting of
the natural inclusions ¢ps of M into B(H) and ¢nas of N into M:

H, (N) =H, (1ar 0 vnr) < Hp (eng) = Hy (M)

As regards the second property, suppose that H, (M) = 0, then, the first
property of the relative entropy in Proposition 6.3.1 yields p [M = p; [M for
all decompositions p = > ,.; Aip;. Then, consider the GNS representation
of B(H) based on p and set p(M) := Tr(p M) = (2,|m,(M)|£2,), for all
M € M. Tt follows that

(2,| X! 7,(M)|[2,)=p(M)(2,|X"|2,) equivalently
(2, | X (mp(M) = p(M)1)]2,) =0,
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for all 0 < X/ < 1 in the commutant 7,(B(H))’. Notice that any such X’ can
be written as a sum of positive 1 > X7 , € m,(B(H))’; then, since p faithful
on B(H) implies | £2,) separating for 7,(B(H)) and thus cyclic for 7,(B(H))’
(see Lemma 5.3.1), it follows that (m,(M) — p(M))|£2,) is orthogonal to a
dense subset of the GNS Hilbert space H, whence, again from the faithfulness
of p, M = p(M) 1 for all M € M. O

Example 6.3.7. The last result in Example 6.3.6 extends to subalgebras
M C B(H) which are not Abelian but commute with the state p 7; then

H, (M) =S (p]A) . (6.46)

where A is any maximally Abelian subalgebra contained in M. Indeed, from
Example 6.3.3.2 and the first case discussed in Example 6.3.6 it follows that
S(plM)=S(p]A) =H,(A), where A C M is maximally Abelian; on the
other hand, from Lemma 6.3.1, one deduces that

S(pIM) = S (plA) = H, (A) < H, (M) < S (p|M) .

Apart for the simple cases discussed in Examples 6.3.6 and 6.3.7, the
minimization of the linear convex combination of von Neumann entropies
in (6.42) is in general an extremely difficult task. At first sight, one might even
suspect to be forced to consider more than discrete convex decompositions of
the state p; luckily, the following result ensures that H, (M) can be reached
within e > 0, by means of discrete decompositions [88, 222]. We shall denote
by H) ({)\i, pz}) the argument of the supremum in (6.41) evaluated at a given

decomposition p = ., Aip;, namely

H) ({hispiier) =D Nier S (poy, pioa) - (6.47)

icl

Proposition 6.3.4. Let v : M — B(H) be a CPU map from a finite di-
mensional algebra M into B(H) and p € Bf (H) a density matriz. Given
a decomposition p = Y ..  Nip; and € > 0, there exists a decomposition
P =2 jesN; p where card(J) depends on dim(M) and €, such that

17 (O pidier) = Hy ((05),0,) | << (6.48)

Proof: Consider a finite partition Z = {Z,};c of the state-space S(M)
of M into subsets Z; such that

"In such a case, one says that such M are contained in the centralizer of p.
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01,2 € Zj - ||O'1 —O'QH <9 VZ]' cZ.

For instance, card(J) can be chosen not larger than the least number of balls
of radius ¢ that are necessary to cover S(M). Define

P = Z %pi, N o= Z Ai

i€l J i€l
PiOYEZ; PiOYEZ,

By construction, p = > and

jEJ Jpj

‘Hg({/\i,pi}ig) H"/({)\],p] ]EJ)‘ Z)\ S(pioy) — ZA;S(p;)
<2 >

jeJ i€l
PiOVEZ

S(piov) — S (p})

By choosing § appropriately, the result follows from the Fannes inequality
(see (5.157)). O

From this result, it follows that, for any € > 0, there exists a decomposition
p = ;cr Ni pi with card(I) depending on dim(M) and &, such that

H) (i pidier) 2 Hy () = <. (6.49)

We shall call e-optimal for v the decompositions which achieve H, () within
e > 0 and optimal for v those decompositions p =) . \jp; such that

H, () =5 (po~) ZASmov

6.3.2 Entropy of a Subalgebra and Entanglement of Formation

In this section, we shall consider some techniques developed in [45, 46, 47]
that are of help in calculating the entropy of a subalgebra H, (A) where A
is a maximally Abelian (n-dimensional) subalgebra of a full matrix algebra
M,,(C). The first step is to extract from (6.36) the expression

E,[M, M| := ZA S (pi | M) | (6.50)

p= Zlel iPi

where we have specified the state of the system, the total algebra of its
observables M and the selected subalgebra M C M. Then, one notices
that the variational problem can be solved by restricting to decomposi-
tions of p in terms of pure states; this is so for the von Neumann entropy
is concave (see (5.156)). In fact, assume p = . A;p; optimal for M (so
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that E,[M, M| = Z/\iS(pi M)), with non-pure decomposers p;. Then,
icl
by further decomposing p; = >, A\jxpjk, one gets another decomposition
P =ik \iAjkpjk; thence, S (p; [M) > Z NS (pjr [ M) yields
k

Ep[M, M] <> X\AiS (pjn [M <Z)\ S(pjIM) =E,[M,M] .
J.k

Notice that, since pure states P; cannot be decomposed, for them it holds
that
Ep,[M,M] =S (P;|M) . (6.51)

In a similar way, one shows that the functional E,[M,(C), M] is convex
over the state space B} (C"): given a convex combination p = >_;Vjpj, the
optimal decompositions p; = >, Ajrp;r that achieve

EpJ[ Z)\kS ka

for each j, provide a decomposition p = Zj & ViNjkp;k which need not be
optimal, whence

By 0,0, [Ma(C), M] <> v A58 (pj [M) < Zy] . (6.52)
7.k

We shall fix M = M,,(C) for some n; the following results turn out to be
useful [47].

Proposition 6.3.5. For a fized density matriz p € M, (C) and M C M, (C),

1. there is an optimal decomposition consisting of no more than n? decom-
posers;

2. the functional E,[M,(C), M| is linear on the convex hull of the optimal
decomposers of p; namely, if p = >, \; P; is an optimal decomposition
for E,[M,,(C), M|, where the P; are projections, then any other convex
combination p = 3, v; Pj, with weights v; > 0, . v; = 1, is also
optimal in the sense that,

E3[M,,(C), M] = Z v S (P [M)

Proof: The first statement results from a theorem of Caratheodory [20]
since M, (C) is n? dimensional as a linear space and the set of pure states is
compact [304] (see Remark 5.3.2.5).

The second statement is a consequence of (6.51) and (6.52); indeed, as a
convex functional, E,[M,,(C), M| can be expressed as
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E,[M,(C), M] =sup{Afp] : A affine functional on Bf (C")} .

Let E,[M,(C), M] = Alp], then Afg] < E;[M,(C), M] for a different state
o; thus, given an optimal decomposition p = > . A; P;, where A; > 0 and the
P; are projections,

E,[M, Z)\ S (P, = Z)\»Ep. [M,(C), M]
> ZAiA ZA P] M, (C), M] .

Therefore, A[P;] = Ep,[M,,(C), M| for all i; consequently, if p = >, v; P; is
any convex combination of these optimal projections, then

EplMa(C), M) < 3" 0,8 (P IM) = 3~ v, M, (C), M] = 3 v, AP
= A[7] < E5[M, (©). M] .
(|

Calculating E,[M,,(C), M| can be simplified if the state p enjoys symme-
tries that leave the subalgebra M invariant as a set; namely, suppose there
exists a unitary matrix U : C" + C" such that I,[p] = UpU' = p and
I'T[M] = M, where I'" : M,,(C) — M,,(C) is the dual map of I',. Then,

Proposition 6.3.6. Let E,[M,,(C), M] be achieved at the optimal decompo-
sition p = Y, \i Pi; then, the symmetry map I, gives other optimal decom-
positions.

Proof: From p = I,[p] = >, N [L[P] and I,[P] M = P |I'T M) =
P; | M it follows that

E,[M,(C), M] < Z)\ S (Iyu[Pi]) Z)\ S (P =E,[M,(C), M] .

O

Particularly suggestive instances of states p € Bf(@d) with symme-
tries are those that are permutation invariant with respect to a given ONB
{li)}9_,; they are of the form

1 T N 11—z
Pgd)zgﬂd‘Fg Z |Z><J|=Tﬂn+$|¢+><¢+|7 (6.53)
it j=1
L&
where |1, ) :gZ| ) so that ——— <z <1

i=1
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By defining F := (¢4 | pz |¥4 ), 0 < F < 1, one can rewrite p, in a way
which is directly comparable with the isotropic states (6.3):

@ 1-F dF

PP =TT |7/1+><1//+\ ; (6.54)

which we shall denote in the following by pgf)

by changing d into d?; notice that

as they are obtained from (6.3)

~ d2 ~ d
@S 0L) = (9 [ o |9y ) = F . (6.55)
Let m denote the d! permutations i — (i), 1 < i < d; it turns out that
a1 .
P = 5> Uslo)o] U, (6.56)

where |¢) € C? is any vector such that [(1y |¢)|> = F and U, unitarily
implements the permutation of the chosen ONB corresponding to .

Let A denote the maximally Abelian subalgebra generated by the projec-
tions {|4)(i|}L ,; the decomposition (6.56) is such that

B [Ma(C), A] < — ZS P} lA) =S (P} |A)
d
= =2 (@1} log (1)) = r(F).  (6.57)

Proposition 6.3.7. If pﬁé” is a permutation invariant state on My(C) and
r(F) is a convex function of F' € [0,1], the decomposition (6.56) achieves
E @ [Mg2(C), A].

Proof: Let p =, NP, P, =|¢;)(¢i|, achieve Ep(d) [M4(C), A] and
F

consider
PP = d|z Ul /U, —Z)\ !Z Ul P U,

P

i

The states P are permutation invariant; according to (6.56) they are com-
pletely characterized by parameters F; that satisfy

= (e 195 [0 ) = DN (s | PRIy ) = DN

Thus, Proposition 6.3.6, the assumed convexity of r(F') and (6.57) yield



306

6 Quantum Information Theory

E(d) [M4(C Z/\S (PTA )ZZAiT(Fi)ZT(F)

> Epgw [M4(C), A] .

Examples 6.3.8.

1.

1 _
For d = 2, p(2) =3 <2F1— 1 2F1 1) can be written as

1+a 1—a? 1 l1—a 2

2 2 — 2

Vi@ 1ma | T3\ Vi@ 1e |
2 2 2 2

,_.
N
Q

-

l\D\’—‘

where a := 2,/F(1 — F); then, with n(z) = —zlogz and the notation

of (6.12),
T(F>:n(1;“) +n(1;a)=H2<1+2\/Z(17_F)> . (6.58)

In order to use the previous proposition, we need show that r(F') is convex
on [0, 1]; for this we calculate

2
<17“<F>2<10g1+a2a) .

dF? a3 1—a

The function within the parenthesis is monotonically increasing from 0
to 400; the second derivative is thus non-negative and the function r(F)
is convex. Then,

E o [Mo(C), 4] = Ho (1 2 F>>

Hp(z) (A) =log2 — (1 +2v (- >

where A is the Abelian subalgebra of diagonal 2 x 2 matrices. Notice that
this is the only Abelian subalgebra in the d = 2 case: in [45] H,, (A) has
been computed for all states p € My(C).

. Given a fixed ONB {|i )}, in C%, consider the doubling map

d d
My(C)3 X =Y wy|i)(j|—DX] =Y wylii){jjl. (6.59)

ij=1 1,5=1

It is a homomorphism from My(C) onto a subalgebra My C Mg2(C),
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d
DIXIDY] = > @ijynelii){jj|kk)|ee)
i, 5 k=1
d d
=Z< $ikyke>|ii)<££:JD>[XY]. (6.60)
i,j=1 \k=1

It is thus a positive linear map from M,(C) onto My C M4 (C) where it
is invertible:

d d
Mo Xo= Y wijlii)(jj| =D [Xo] = Y wi|i)(j| € Ma(C) .
i,5=1 i,5=1

(6.61)
Let d = 2 and |0),]1) be the fixed ONB in C?; when applied to the
permutation invariant state in the previous example, the doubling map
gives the state

00)00 + [11)(11] 2F —1
R = pppfP] = L0 DAL 2821 (100) (11 4 11 )001)
1
:Z(ﬂ4+(2F_1)(01®01_02®02)+03®03>
1 0 0 2F—1

1 0 0 0 0
) 0 00 0

2F -1 0 0 1

If thus turns out that ]TZ%Q) as defined in (6.13) equals Rg) so that, for F' #

1/2, RE,Q) is entangled with concurrence E(Rg)) = |1 — 2F] (see (6.14))
and entanglement of formation (see (6.15) and Theorem 6.2.1) given by

EelR{Y) = H, (1 2 F>> = B, [My(C), 4]

. In [46], Proposition 6.3.7 has been used to compute E @ [M5(C), A] where
F

1 3F—1 3F—1
2 2
@ _ L[ sp_s 3F-1
Pr =3 p) 1 2 )
3F—1 3F—1 1
2 2

and A consists of diagonal matrices in this representation. While for d = 2
there is only one optimal decomposition achieving Ep;z) [M2(C), A], when
d = 3 more optimal decompositions appear. Indeed, one can decompose
pg) by means of the unitary operator U : C? +— C? that implements the
permutation (1,2,3) — (3,1,2):

o = 210001+ 3 U16)61 U + 502 [9)(0|U,  (6:62)
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where

a+ 2bcosd 3
|¢)=| a—2bcos( —7/3) | , a:=V3F, b:= 5(1—F).
a — 2bcos(f + 7/3)

It turns out that, for 0 < F < 8/9, the function 7(F) = S (| ¢ ){¢|[A) is
convex, whence

Epg)[Mg((C),A] — (2—F+2\§m>

Loy <1+F—2,6/2F(1 —F)) . (663)

There exists a value 0 < F* < 8/9 such that E o [M5(C), A] is achieved
F

at a unique decompositions of the form (6.62) given by

| [ VE+V2FO-F)
|¢>>:% VF—FU-F)2 | ,
VF - \/F(1-F)/2

for F* < F < 8/9; while, for 0 < F < F*, two optimal decompositions
of the form (6.62) appear with

1 a+ 2bcos by
|65) = —= | a—2bcos(n/3F 0F) | ,
V3 \,_
a —2bcos(m/3 £ 0F)

where the angle 0 varies with F. According to Proposition 6.3.5, all
linear convex combinations of the projections onto these vectors also
provide optimal decompositions. When 8/9 < F < 1, the function
r(F) = S(|¢)(¢|lA) is no longer convex and one cannot use Propo-
sition 6.3.7; in this case it is the close relation of H, (M) with the en-
tanglement of formation which is of help. Indeed, (6.63) coincides with
the entanglement of formation of the d = 3 isotropic states (6.3) for
1/3 < F < 8/9 as calculated in [298].

In order to expose the relation between the entanglement of forma-
tion (6.5) and E,[M, M| in (6.50), set M = My2(C) := My(C) @ M4(C),
M = M4(C) embedded as Mq(C) ® 1z into Mg (C) and p; = |5 )(; .

Since the marginal density matrices pgj) = p; |M, it turns out that
Erp] = E,[Mg2(C), My(C)] . (6.64)

Further insights into the connections between these two notions, with partic-
ular reference to Examples (6.3).2,3, come from [47]
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Proposition 6.3.8. Let A C My(C) be the maximally Abelian subalgebra
corresponding to a fired ONB {|i)}%_, and D[] is the doubling map (6.59);
then,

E,[M4(C), A] = Ep,[Mg2(C), Ma(C)] . (6.65)

Proof:  Suppose p = ) .\ P; achieves E,[My(C), A]; then, with p =
Sy rali) ],
d
DI 1Ma(C) = Tra(Blp) = 3 vl i)(i] = 14 mplis

ED[p][MdZ( < Z/\ S Z)\ S
- EP[Md((C)vA] .

Vice versa, let D[p] = Zj v; Q; achieve Epj) [My2(C), My(C)]; if the optimal
decomposers @; were of the form Q; = Zk,é qiz\ kk)(¢¢|, by the inverse
doubling map (6.61) one would get a decomposition of p that could be used
to reverse the previous inequality and thus prove the result. The decomposers
Q; are indeed of the claimed form as they are one-dimensional projections
that can always be recast as follows

VD |WJ <gp VD[P]
<L’7| oY) '

[
Because of (6.60), it turns out that D[p]™ = D[p"] whence, by power series
expansion, \/D[p] = D[,/p]. O

Q; =

Example 6.3.9. In [298], the entanglement of formation of an isotropic state

p;iﬂ) was computed by 1) considering the twirling (2) of suitable vectors of
diagonal form, |®) = Z?Zl ;| 9t ), with respect to the chosen ONB, and

d
by 2) minimizing the von Neumann entropy S (pg)) =— Z i log p; of the

marginal density matrix.

2
Choose one such |@) from an optimal decomposition for EF[p;—l‘i )] and

construct the density matrix

R = d'ZU QU | OND| U @ U

by using the permutation operators U,. Since, by definition, U, ® U, are
2
symmetries for the isotropic state pgﬁl ), using Proposition 6.3.6 one deduces
that E 2 [Mg2(C), My(C)] = S (pg)). On the other hand, in terms of the
F

doubling map (6.59) and using (6.55),
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2 1 -
R =Dl = =37 Un |6} U5

d

where p;fl) is as in (6.56) and |¢) = Z\/ﬁTz|Z> Finally, from Proposi-
i=1

tion 6.3.8, it results

E, 0 [Ma(C), A] = E ) M2 (C), Ma(C)] = 5 () -

o
In this way one can use the results of [298] to extend the computation of
E, @ [M3(C), A] to those values of F' € [8/9, 1], where the methods employed
in Example 6.3.8.3 are useless.

Trace-distance and Fidelities

In this section we review some mathematical techniques that are used to
compare two quantum states of a system S; the importance of such an is-
sue will become apparent in the next chapter when we shall deal with the
compression and retrieval of strings of qubits . We shall assume S to be an
N-level system.

Definition 6.3.4. Given p1 2 € S(S), their trace-distance is given by
1
D(p1, p2) := 5 Trlpr = po] - (6.66)

Namely, the trace distance of two density matrices is defined as half the
trace-norm ||p; — p2||¢ of their difference: D(p1, p2) is a proper distance on
the state-space S(.5).

Proposition 6.3.9. The trace distance enjoys the following properties:

1. Let P € Mn(C) be any orthogonal projector, then
D(p1; p2) = maxTe(P(p1 — p2)) - (6.67)

2. The trace-distance monotonically decreases under completely positive
trace-preserving maps F : S(S) — S(9):

D(F[p1], Flp2]) < D(p1,p2) - (6.68)

3. The trace-distance is jointly convez:
DY Nipss Y Xog) < D AiD(ps,0;) (6.69)
J J J

where A\j >0 and 3, A; = 1.
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Proof: As seen in Example 5.5.6, p; —pa = A— B and |p; — p2| = A+ B,
with A, B positive orthogonal matrices A, B > 0, AB = 0, so that TrA = TrB
since Trpy 2 = 1. Thus D(p1, p2) = TrA = TrB. Let P be any projector, then

Tr(P(A ~ B)) < Te(PA) < TeA = D(p1. pa) .

for Tr(PB) is a positive quantity and P projects onto a subspace. Further, if
this subspace supports A, it annihilates B and the maximum is achieved.

The second property is proved as follows: let P be the projector which
achieves the trace distance D(F[p1],F[p2]), then, because of the assumed
trace-preserving character of IF,

D(p,0) = TrA = TrF[A] > Tr(PF[A]) > Tr(PF[A]) — Tr(PF|[B])
= Tr(PF[A — B]) = Tr(P(F[p1] — Fpz])) = D(F[p], Flp2]) -
0

In order to introduce some useful notions of fidelity, let us begin with
a simple observation: the closer two vector states 115 € H = CV to each
other, the closer to 1 is |(%1 |2 )|. Indeed, the latter quantity is 1 iff ) = ¢
(a part for an overall multiplicative phase) and vanishes when ¢ L ¢. This
idea extends to density matrices of an N level system as follows.

Definition 6.3.5 (Fidelity). The fidelity of two density matrices p12 €
S(S) is

F(pr.p2) = Try/Varpev/on = Ty (Vey/m) (Vo2 v/71)
= Tr|Vp2v/p1l - (6.70)
If p1 = |91 ) (%1 | =: P, then /P, = P so that
F(Py,p2) = /(1] p2|v1) - (6.71)
Thus if p2 = |2 ) (W2 | =: Py, then F(Py, P2) = (1 |2)].

Proposition 6.3.10. The fidelity enjoys the following properties:
1. Let |W§W> be a purification of p € S(S) of the form

738! ZfU| @V|i), (6.72)

where {|i)}., is an orthonormal basis in H = CN and U any par-
tial isometry such that UTU projects onto the orthogonal complement of
Ker(p) and V is any unitary matriz. Then,

Flp1, pa) = gax [(9,27 | 2,17)] (6.73)

that is the fidelity is the largest such scalar product achievable by fizing
one purification and varying the other.
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2. The fidelity does not depend on the order of its arguments. Further,
F(p1,p2) =1 if and only if p1 = p2, otherwise 0 < F(py,p2) < 1.
3. Let £ = {E;}icr denote any POVM with elements in My (C), then

Flpy, p2) = max{z Te(p By (Tr(po Er) : B € 5} . (6.74)
el

4. The fidelity is jointly concave, namely if p1o =, )\1'011'2 with 0 < \; < 1,
SN =1 and 0;” € 8(9),

Flp1,p2) 2> X F(o},07) . (6.75)

5. The fidelity monotonically increases under the action of trace-preserving
completely positive maps F : S(S) — S(9):

F(F[Pl]vF[ﬂz]) > F(p1,p2) - (6.76)

Proof: It is easy to check that Tri| WV )(#YV | = p, so that (6.72) is a
purification of the mixed state p. One computes,

N
[(wD2Va w2 = N " (i | US/pay/prUn 15) (i | Vo Vi |5)
i,j=1

Te (U voav/piUs (ViVI)T) < IVpaviillr = Flpispa)

where T means transposition. Further, the upper bound is achieved by choos-

ing Vo =V} and Uy = WTU; with W such that VP21 = W\ /p2y/p1l-
From the previous point, the second point follows at once. ([

One expects a relation between trace-distance and fidelity of the kind: the
smaller the trace-distance, the closer to 1 the fidelity. That this is indeed so
is the content of the following

Proposition 6.3.11. Given p1 2 € S(S), the following bounds hold
1= F(p1,p2) < D(p1,p2) < V1= F2(p1,p2) - (6.77)

The following proposition establishes that if p; € S(S) is close to ps in the
sense that F(p1, p2) ~ 1 while while F(pa, p3) ~ 0, then also F(p1, p3) ~ 0.

Proposition 6.3.12. [19] Let p123 € S(S), then Fyj := F?(p;, p;) satisfy

Fi3 < Foz + 2(1 — Fig) + 2¢/(1 — F12)Fa3 (6.78)

where Trps = 1, but Trpy 2 < 1 (subnormalization,).
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Proof: Notice that subnormalization does not alter either the definition of
fidelity or the first property in Proposition (6.3.10). Let then | ¥; ) be a fixed
purification of p;, choose |W¥s3) in order to achieve Fyo and Fis. Further,
adjust the phases of the three vectors so that

Fio = (0 |W)? | Fiz= (¥ |U3)°, Fog > (U |U5)* .
Setting |¥) := | Wy ) — | ¥y ), one estimates
(U|&) = (0 |W1) + (Va | W) —2(¥ [¥) < 2(1— F12) ;

for subnormalization gives (¥ o | ¥ 2) < 1. Then, from (W5 | W3 ) = Trps =1
and the bound

VFiz = (01| Ws) = (U | W) + (V| 03) < Foy + [(¥]03)]

< Fog + (P |¥) < Fog + \/2(1 — /Fi2) ,
the result follows. (]

Let p € S(S) correspond to a mixture {\;, pj}, p = >_; Ajp;, subjected
to the action of a trace-preserving completely positive map F : S(S) — S(9).
Then would like to keep track of how much F[p] differs form p in the mean:
this is well described by

Definition 6.3.6 (Ensemble Fidelity). The ensemble fidelity relative to a
mizture {\;, p; } and a completely positive action F is defined as the ensemble
average of square fidelities,

Foy ({/\j»Pj}vF) = ZAJ F2(p;,Flp;]) - (6.79)

We shall also denote by
Fy(p,F) := sup{Fav({/\j,Pj},F) . P2 =P = PJT} : (6.80)

the supremum of the ensemble fidelities over all possible decompositions of p
as a mizture of pure states.

Example 6.3.10. [19] Let |i) € H= C3, i = 1,2, 3, be an othonormal basis
and consider the mixture represented by

p=pi| 1) (1 [+ p2l 1) (1 [+ ps|s) (3|,  where
[11) :=cosa|l)+sina|2), [¢) :=sina|l)+cosal|2)

and |3 ) is such that
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(V3| 1) = (3 |1ha) = (1 |12 ) =sin2a .

Suppose the system is subjected to a trace-preserving completely positive
map such that

Bl ) ] = [1(1], Fllea) (9] =122
Fll g ) s ] = 591 )0 |+ 5102 )0 (651)

The purification of a state p € S(S) actually couples S to an ancilla and
this coupling is embodied by an entangled pure state |¥,). The following
fidelity reflects how much the action of an operation on S described by a
completely positive trace-preserving map F : §(S5) — S(S) preserves this
entanglement.

Definition 6.3.7 (Entanglement Fidelity). The entanglement fidelity of
p relative to F is defined by the square fidelity of the states |W, )(¥,| and
F®id[| ¥, )(¥,|], where |¥,) is any purification of p:

Fon(p.F) i= F* (10,08, | F@id[| 2,)(%, 1) . (682)

Relations between these various fidelities are as follows [224].

Proposition 6.3.13.
0 < Fent(p,F) < Foy < F(p,Flp]) <1, (6.83)

where Fy, is any ensemble fidelity corresponding to a decomposition of p.
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entanglement measures, bound entanglement, continuous variable systems,
quantum algorithms, quantum cryptography and one-way quantum compu-
tation. Furthermore, the second half of the book provides an overview of the
state-of-the-art concerning experimental and technological implementations.

A thorough collection of recent results of quantum information and en-
tanglement theory concerning continuous variable atomic and optical systems
can be found in [76, 2].

As regards the role and use of Gaussian states in quantum information
theory see also [115].

Rapid introductions to the basic tools of quantum information are pro-
vided in [100, 188]



7 Quantum Mechanics of Infinite Degrees of
Freedom

Quantum systems with infinite degrees of freedom exhibit properties, like
relaxation to equilibrium, phase-transitions and the existence of inequivalent
representations of the CAR and CCR, that can satisfactorily be dealt with
by means of the methods and techniques of algebraic quantum statistical me-
chanics [108, 64, 65]. The point of departure from standard quantum mechan-
ics, is that in an infinite dimensional context one is usually provided with the
algebraic properties of the relevant observables, but, in general, not with an
a priori given representation on a Hilbert space; the latter rather depends on
to the physical properties of the systems under consideration [274, 290, 291].

Relaxation to Equilibrium

As discussed in Remark 2.1.3.4, by discretizing chaotic classical systems,
properties like the exponential growth of errors or a constant entropy pro-
duction can survive only over times that scale logarithmically with respect
to the discretization parameter. Indeed, beyond this time-scale, due to the
finite number of allowed states, quasi-periodicity and recursion appear. While
in classical dynamical systems, recursion can be eliminated by going to the
continuum, this is impossible in quantum mechanics because of the intrinsic
discretization of phase-space, due to i > 0 and to the Heisenberg uncertainty
relations. However, recursion times can be made longer and longer by letting
the number of degrees of freedom go to infinity [212, 300].

If we let N — oo in Example 5.6.1.2, the recurrence time diverges and,
unlike for finitely many spins, infinite spin chains may exhibit relaxation to
equilibrium. Indeed, observe that

(N=1)/2 ;o o
fn(0,t) == H cos o7 = H €08 oy
i=1 =1
(VD2 op cog2-(N+1)/2 0.9
= P — t .
[T cosi = In0.20

then, when N — oo, fn(0,¢) tends to a function foo(t) which satisfies
foo(t) cost = fo(2t) together with fo(0) = 1. By expanding both mem-
bers of the first equality and comparing equal powers in t, it turns out that

F. Benatti, Dynamics, Information and Complexity in Quantum Systems, 317
Theoretical and Mathematical Physics, DOI 10.1007/978-1-4020-9306-7_7,
(© Springer Science+Business Media B.V. 2009
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int
foolt) = %; (5.173) thus becomes
. ; itBu, Sint
P ®(Ui(t)) = P or

As a consequence, when ¢t — oo, the time-dependent state p7° defined on the
infinite spin array by the expectations

ol = P (o) = P (0 ()

tends to the state wa, such that we(07) = 1/2 and weo(07.) = 0 for all .

Inequivalent representations

One of the most relevant aspects of quantum mechanics with infinite de-
grees of freedom is the existence of inequivalent irreducible representations
of a same algebra; this fact explains physical phenomena such as symmetry
breaking and phase-transitions [290, 291, 274, 275].

We let N — oo in Example 5.4.1 and set

n

lvac)y = 10)%> ™)y =[] 0¥ vac); (7.1)
j=1

lvac) :=[1)%>, i) =[] 0| vac), , (7.2)
j=1

where i) = iyig -4, with i; € N.

The physical interpretation is straightforward: | vac);,| represent configu-
rations consisting of infinitely many spins all pointing up, respectively down,
whereas the vector states | ™ )1, describe local configurations that are ob-
tained from |vac )1, by flipping the spins at the sites specified by i1, i2, . .., i,
by means of the raising and lowering operators o.. By defining the scalar
product of infinite tensor products of vectors as infinite products of scalar
products of vectors at single sites [300], one gets

k(i(n) |j(m) >l~c = 5n,m H(Sizje 3 k :Tal’ T(i(n) |j(m) >l =0.
=1

Indeed, in the first scalar product, outside a local region where the spins may
be flipped, there are infinitely many spins all pointing up (down). Therefore,
the value of the scalar product is determined by the spins within the region
where they are flipped: it is 0 unless the flipped spins on both sides of the
scalar product match each other. On the contrary, in the second scalar prod-
uct there are always (infinitely many) spins in | 5™ ) that are orthogonal to
the ones at the corresponding sites in | ™).
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It thus follows that the completions of the linear spans of all vectors of the
form |i(") )1, respectively |i(") )1 give rise to two orthogonal Hilbert spaces
Hy, respectively H,. Furthermore, let A be the (local) algebra generated
by all products of Pauli matrices as in (5.61); the two Hilbert spaces then
provide two irreducible, inequivalent representations 7y, (A). In fact, suppose
X € B(H;) commutes with m1(A), then

q
(A X 15 = 1 (vac| H HO’j_SX lvac)y

T(UGC|X|UGC>T ™15

for HO’ H ol
r=1
each other Thus, X acts as ;(vac| X |vac); 1 on a dense set of Hy, whence

X = 1(vac| X |vac); 1 and the commutant of 71 (A) is trivial.
Consider now the magnetization m (V) relative to the first NV spins, that
is the operator-valued vector m(N) of components

N
=n) of, =123,
n=1

and the average magnetization m = (mj, mo, m3) given by the formal limits

vac); = 0 unless raising and lowering operators match

m;(N) .

m; = lim (7.3)

N —+oc0
Choose N > j, > iy, 1 <iy < jp, then (k =1, )

gm
(30 [ma(N) 50 ) = (N +in = jn) + > k(87 [ 05 57
£=1ip

L g o) 5 e = 1 5 18 | 5 e
=1,

for o3/ 0) = |0), o3| 1) = —| 1), while (0] 012]0) = (1|15 [1) = 0. Then,

i () g0y = {2 E

N —+o00 — M =
N)

lm (a0 T2 oy g

Njf@k“ | N |j )k

Therefore, the mean magnetization m exists as a weak-limit (see (5.8)), that
is with respect to the weak-operator topology determined by the representa-
tions 7y, (A) on Hy j. It thus depends on the representation with respect to
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which the limit is calculated and belongs to the bicommutant 7y | (A)" (see
Definition 5.3.1) where mg = (0,0, 1), my = (0,0, —u).

If 71, (A) were unitarily equivalent, then there would exist a unitary
operator U : Hy — H such that UTr (A)U = 7m1(A); if so, it could be
extended by continuity to the weak closures 7y, (A)”. Then, its action on
the mean magnetization would give rise to a contradiction:

—p=mi3=UlmesU=pU'U=p.

The vectors | vac )1, behave as vacuum vectors for the spin algebra A; indeed,
|vac)q,; and the representations my, | (A) are unitarily equivalent to the GNS
representations based on the expectation functionals

p q

. p . q .
wm(H o Haﬂ*) = 1,1 {vac| H ol Hajj lvac)q,) -
r=1 s=1

Other interesting representations of A can be obtained by means of the
following expectation functional

Ws (H U;Z) = H Tr(poj,) , (7.4)
(=1 (=1

where p is the spin density matrix of Example 5.5.5 and 0% is the j, Pauli
matrix at site ¢g. The corresponding GNS vector | £2,) can be identified with
the infinite tensor product of the vector states resulting from purifying p:

2) =i =@y 5210 10) + 2 e ) .

Further, the GNS representation 7,(.A) can be identified with the infinite
tensor product

m(A) = @ 7, (M:(0)) = @ (Ma(C) @ 1) .

n

The von Neumann algebra m,(.A)” is not irreducible, but it is a factor since

1
the commutant is 7s(A)" = ®(]12 ® Mg(C)). Since +os o_10) =0, the

2N i

projection A 3 Py := H % is such that Py|i™ ) = 0 if the sites
i=N

i1,02,. .. in € [N,2N], else Py|i™ )g = ]3™ ).

Given |9 ); € Hy and € > 0, one can find a vector |¢); in the sub-
set linearly spanned by |i(") )1 indexed by the sites within a suitable finite
interval I. such that |||¥)1 — [@)1]| < e; then, by choosing N such that
I.N[N,2N] = (), one estimates
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1(Py = D[ )1 < [I(Px = D] d)1]l + 2[4 )1 =)l < 2.

Therefore, Py — 1 strongly on Hy. Instead, Tr(pos) = s yields

N
. . 1+s 1 s=1
NETOO”S(PN)_NEEOO( 2 ) _{0 0<s<1

Therefore, for 0 < s < 1, the GNS representation 74(.A) cannot be unitarily
equivalent to 71 (A). If so, there would exist an isometry U : Hy +— H; such
that

0= lim (2 |7(Pn)|02) = Nlirfw(rzs |\ Ut (PN)U |92,) =1 .

N —4o00

In fact, U| 2, ) € Hy and Py converges strongly and thus weakly on Hj.

Factor Types

According to Example 5.6.2, the states w, on the spin algebra A may be
interpreted as thermal spin states at inverse temperature
1 1+s
Bs =—1 g

2w0 1—3;

— the zero temperature state w; is equivalent to the vacuum state wq;

— wp is an infinite temperature state with the properties of a tracial state
(compare (5.55)) such that wo(XY) = wo(YX) for all X,Y € A;

— for 0 < s <1, ws is a thermal state with no specific properties.

Correspondingly, the von Neumann algebras 7/ (A) that arise from the strong
closures of the spin algebras 7, (A) on the GNS Hilbert spaces Hj are instances
of the so-called factors of type I, IT and IIT [300].

The classification of von Neumann algebras starts by considering different
possible classes of their projections. A projection p = p' = p? of a von Neu-
mann algebra A is called an Abelian projection if p M p is Abelian. Typical
examples in this class are the minimal projections of Example 5.3.4.1:if p € A
is a minimal projection and ¢ € A is another projection, then 0 < pgp < p.
Therefore, pgp = Ap as all spectral projections of pgp are < p and must then
be equal to p. Since A is generated by its projections ¢, p Ap is Abelian.

Two projectors p, ¢ are said to be equivalent, p ~ g, if there exists U € A
such U'U = P and UU' = ¢. This is the case for the initial and range
projections in the polar decomposition (see Remark 5.2.2). A projection p € A
is said to be finite if A > q = ¢* = ¢> < p and ¢ ~ p imply = ¢ = p. Any
Abelian projection p € A is finite; in fact, let ¢ < p and p =UTU, ¢ = UUT.
Then, since ¢ < p = gp = pq = ¢ (see Example 5.3.4.1), it turns out that
V :=pUp = pqU = qU and V' commute so that

VivV=UqU=p*=p=VVIi=quU g=¢.
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1. A unital von Neumann algebra A is said to be of type [ if its identity 1 can
be decomposed into an orthogonal sum of Abelian projections p, € A.
Typical examples are A := L7 (X') and B(H) with H a separable Hilbert
space. In the first case, the characteristic functions of the atoms of any
partition of X" into disjoint measurable atoms are the required Abelian
projections. In the second case, the projections p, = |n)(n| onto the
orthonormal vectors {|n)},en of any ONB are Abelian and sum up to
the identity. Then, also A4 ® B(H) is of type I, the required Abelian
projections being given by 14 ® p,,.

2. A unital von Neumann algebra is said to be finite if its identity is a finite
projection, semi-finite if its identity can be decomposed into an orthog-
onal sum of finite projections. Since the projections p, in the previous
point are minimal, type I von Neumann algebras on infinite dimensional
Hilbert spaces are semi-finite, finite if dim(H) = n.

3. A unital von Neumann algebra is said to be of type IT if it is semi-finite,
but does not contain any non-zero Abelian projection; of type I11 if it
does not contain any finite projection.

The trace for finite dimensional systems (see (5.19)) is a particular real-
ization of the following general notion.

Definition 7.0.8 (Traces). [300] A trace on a von Neumann algebra A is
a map ¢ : Ay — Ry from its positive elements into the positive reals R
such that

@(Z )\zAz) = Z )\Z¢(Az) VA; € R+ N A; € .AJr

B(A)=d(UTAA) VAcA, ,UcA unitary .
The trace is

~ faithful if §(A) =0<= A =0 for A e Ay;

— finite if P(A) < +oo for all A€ Ay;

—  semi-finite if for all A € Ay there exists Ay > B < A with $(B) < +o00;
— normal if supP(A,) = P(sup A,,) for every increasing net {As} C A;.

Analogously to what has been proved for states (see Example 5.3.2.3), it
turns out that if & < ¥ for two faithful, semi-finite traces on A, then there
exists 0 < X’ < 1 in the center Z = AN A’ such that $(A) = ¥(X'A) for
all A € Ay [300]. Then, if A is a factor, Z = {A1} and all traces on it are
proportional; in fact, given any two traces @;, i = 1,2,

D <D+ Dy =D =\(DP1+D2), P <D +Dy = Dy = N\o(P1+ D),

whence @1 = Al)\gltﬁg.

Consequently, any chosen trace on a factor von Neumann algebra can
be used to assign its projections an intrinsic dimension, thus providing a
characterization of types [162, 117, 300]:
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1. Factors of type I have a semi-finite, faithful, normal trace given by (5.19)
whose range on projections is discrete and finite for finite type I,, factors,
or countable for infinite type I, factors: an example of the latter case is
the spin algebra IT;(A)” with respect to the zero temperature state wy;

2. factors of type Il have a semi-finite, faithful, normal trace whose range
on projections is the whole interval [0, 1] for finite type Iy factors or the
whole of R for infinite type I/, factors. An instance of the first occur-
rence is the spin algebra m4(.A)” with respect to the infinite temperature
state ws; when s = 0;

3. finally, type 111 factors have no semi-finite, faithful, normal traces: this
is the case of the spin algebra mg(A)” when 0 < s < 1.

7.1 Observables, States and Dynamics

The physical scenario in the examples discussed in the previous section is a
common one in quantum statistical mechanics. Indeed, the limit of infinitely
many degrees of freedom is in general achieved in the so-called thermodynam-
ical limit, where one starts with N particles in a finite volume V' C R? (or
Z? in the case of a lattice system) and lets N,V — oo in such a way that
N/V — p, where p > 0 is a given spatial density.

Each V' C R? has its own Hilbert space Hy = L2, (V) of Lebesgue square-
summable functions and the corresponding C* algebra Ay = B(Hy) of
bounded operators. Instead, in the case of a lattice system, each & € V carries
a Hilbert space H and the C* algebra A, := B(Hy), so that Hy = @,y He
and Ay = ®:EGV A Notice that in the continuous case each Hilbert space
Hly is infinite dimensional, while in the discrete case it depends on whether
the Hilbert spaces H, at the lattice sites are finite dimensional or not. If
Vi C Vy, set Vi = Vo \ Vi, then Hy, = Hy, ® Hyg and Ay, becomes a
subalgebra of Ay, by embedding any A; € Ay, into Ay, as A; ® lye, where
Ly, denotes the identity operator on the Hilbert space Hyy, . It follows that
the set Ay := J,, Av is a x-algebra, namely it is closed under addition and
multiplication of its elements; also, it is naturally endowed with the norm
Ay 3 X — || X|| for all V C R3.

Definition 7.1.1 (Quasi-Local C* algebras). The normed x-algebra Ay

Il

is the algebra of local observables, while its norm-closure A := UAV is
%

known as a quasi-local C* algebra.

Remark 7.1.1. The notion of quasi-local algebra is physically motivated
by the fact that the only experimentally accessible observables of infinitely
extended quantum systems are the local ones. These can then be used to
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approximate as much as one desires the non-local ones. From a mathematical
point of view, the construction is an instance of inductive limit [117] of a
directed net of C* algebras. In the case of an increasing sequence { Ay, }n;en
of finite-dimensional C* algebras A,, C A,,,, the generated quasi-local C"*
algebra is called Almost Finite (AF), if the algebras A,, are full matrix
algebras M,,,(C) then A is known as Uniformly Hyperfinite (UHF) [277, 244,
245].

Suppose an increasing sequence of finite-dimensional unital C* alge-
bras {A,, }n, is represented on a Hilbert space H, then the strong closure
of U, An, is a von Neumann algebra M which is called Hyperfinite. An
Abelian instance of such an algebra is the von Neumann algebra of essen-
tially bounded functions, L;°(X'), which one can generate by means of the
characteristic functions of finer and finer finite partitions of X’ as explained
in Remark 2.2.3.4.

Example 7.1.1. [10] Let M,, (C) C M,,(C) be two matrix algebras; given

a system of matrix units {E£ (1) %1 for the smaller one (see (5.12)), the or-

thogonal projections E,g ) sum up to the identity Y ;- ,SC) =15 € M,,(C),

whence Y"1, Tro (E,E?) = ng, where Try denotes the trace computed with
respect to the Hilbert space C"2. But then, using the cyclicity of the trace,

1 1 1 1 1
Try(EL)) = Tro(ELY EL)) = Tro(EG) BLY) = Try(EY)

for all k,p = 1,2,...,n1, whence ny = ny x d, where d := Trg(E,(;C)) for all
k=1,2,...,n1. Let {| f;) € C"}%_| be an ONB in the subspace projected

out by Eﬁ) and set

2 1
B s = Bl fe ) fin |ES) (7.5)

Since 1 < ky,j1 < nq while 1 < ko, jo < d, these are n? x d?> = n3 matrices
in M,,,(C); moreover, from (5.12) and Eﬁ)| fp) =1fp) it follows that

2 2 1 1) 1)
E((kz7k2);(jl7j2) E((pzmz);(m,lu) = E’(Cl)l | s ><f]2 |E§]1 E( 11 | fp2 >< f‘Z2 |E1<11

5]11)1 El(illfk2><fJ2|E |fp2><fqz|E1q1
1 1
= 6j11716j2172 E( )1 ‘sz ><fqz |E§qz

o (2)
= 5j1p1 5j2P2 E(k17k2);(¢11»¢12) :

Thus, (7.5) defines a set of matrix units in M, (C). Set E,‘fgn = fro ) fis |5

then, E((a,m (j1.j2) CAD be isomorphically represented by ,5331 ® E,€2J2 on

Cn2 = C™ ® CY. Therefore M,,,(C) is isomorphic to M, (C) @ My(C). The
matrix algebras M, (C) € M,,,,(C) that generate a UHF algebra A must



7.1 Observables, States and Dynamics 325

be such that any n; must divide the subsequent one so that A is isomorphic
to an infinite tensor product of matrix algebras. The simplest instance of
UHF algebra A is a quantum spin chain (see Section 7.1.5). In the case of
the previously discussed infinite spin system, A4 is the quasi-local algebra A
generated by the local algebras A[_j, 1) = ®§:7k(M2((C))g which are tensor
products of 2 x 2 matrix algebras at each lattice site.

7.1.1 Bosons and Fermions

Physical systems of quantum statistical mechanics usually consist of indistin-
guishable particles and are described by operators of creation and annihila-
tion satisfying either the CAR (5.62) or the CCR (5.92). More precisely, one
considers the Fock representation built upon the existence of a distinguished
vacuum vector | vac) (which was considered in Examples 5.6.2.1,2 for finitely
many degrees of freedom).
Let H be the Hilbert space describing a single Fermion or Boson and let

{|%:)}ien be an ONB. Then, one introduces operators

a; == a(y;) such that a(¢;)|vac) =0 VieN

al :=a'(sp;))  such that al|vac)=|v;) .
They are required to satisfy the CAR (5.62) if the particles are Fermions,
the CCR (5.92) if Bosons.

By expanding any |¢) € H along the chosen ONB , [¢) = . ci| i),
one can consistently define creation and annihilation operators of generic

|¥) € H:
a’ (1) :Zciaj , a(y) = Zcz‘ a; .

€N €N

This yields a(y)| vac) = 0, af(1)|vac) = [¢) and
[a(¥), a(9)] = [a' (@), al(6)] =0 [a(), a'(6)] = (v]6) (CCR)
{a@), a@)} = {a'w), a'(@)} =0, {a(w), a'(@)} = (v6) (CAR).
for all [1),]¢) € H. Furthermore, by using these algebraic relations one gets

a(¥)| ¢) = a(¥)a’¢|vac) = (¢ | ¢)| vac) . (7.6)

For both Fermions and Bosons the number operator is defined by
N = Z az a; .

Directly for Bosons and by means of
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lala;, a'(f)] = al{ai, a'(f)} — {a], a'(f)}a; = fia] , (7.7)

where f; := (1; | ), for Fermions, one finds that

[N» aT(f)} = aT(f) ) [Nv a(f)] = _a(f) . (7'8)

The Fock space H, g for Fermions, respectively Bosons is generated by the
completion of the linear span of vectors of the form P(a(f),a'(g))|vac) where
P(a(f),a’(g)) is any polynomial in Fermi, respectively Bose annihilation and
creation operators. The Fermi operators a”(f) are bounded on the Fock
space; indeed, from the CAR it follows that, for any normalized |¥) € Hp,

" (AP + et (N2 )P = 1£1 -

The polynomials P(a(f),a’(g) with f,g € Hy, where V is a finite volume,
generate, by norm completion, a local C*-algebra, A%

Remark 7.1.2. Given two volumes V; C Vi C R3, the local Fermi algebra
cannot be isomorphic to A{Z # A{Z ® "453’ where V3 := V5 \ V5. In fact, if
| f) € Hy, and | g) € Hy,, despite the fact that ( f|g) = 0, commutators of
the form [a# (f), a” (g)] need not vanish. However, because of (5.63), commu-
tators vanish if one considers polynomial with even numbers of creation and
annihilation operators: the quasi-local C* algebra they generate is denoted by
A% . The quasi-local algebra C* generated by polynomial with a same number
of creation and annihilation operators is denoted by A; it is known as even
Fermi algebra and commutes with the number operator. Indeed, using (7.8),
it turns out that the number operator generates the gauge-transformation

k

[N, [N, [N, a*(f)] -]

- N _ N\~ (i)
ezaN a’r(f) 672&N _ Z o
k=0 ’

k times

X (ia)k , ;
=YY B s =) @9
el N af(fye N = e q(f) = a(e'™f) . (7.10)

Therefore, the various phases compensate each other in polynomials with
equal numbers of a and af; these are thus left invariant by the gauge-
transformation for any o € R and must therefore commute with the number
operator .

For Bosons, [a*(f1), a?(f2)] = 0 if fi € Hy, and Vi N Va = 0; however,
the operators a*(f) cannot be bounded (see (5.69)) In order to construct
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local C* algebras generating a Bose quasi-local algebra AP, one associates
to |1¢) € H the bounded operators [108]

a(y) + aT(¢))

W(y) := exp (z 5 (7.11)

which generalize the Weyl operators (5.96) and linearly generate a local
Bosonic C* subalgebra AZ by choosing 1 supported within the volume V.

The C* algebras Ap p are irreducibly represented on the Fock spaces
Hpg r. In order to show this one can use a similar argument as for the spin
algebras 71 | (A) discussed in the previous section. If X belongs to the com-
mutant, X € Ap p, then (7.6) yields

(vac|a(gn) ) "aT(gl)XaT(fl) . "aT(fm) |Uac> =
= (vac| X a(gn) -+~ a(g)al (f1) -+~ af (fm) [vac)
— (vac| X [vac) (vac| a(gn)---a(gr)a’(f1)---a'(fn) [vac) ,

where (see (5.185) and (5.183))

(v atgn) ol (1)l () o) = { Bt ) 68
(7.12)

Therefore, X = (vac| X |vac) 1 whence the commutant is trivial; this means
(see Lemma 5.3.2) that Ap g are irreducibly represented.

Quasi-free Automorphisms and Quasi-free States

The gauge-transformation (7.9) is a particularly simple example of quasi-free
automorphism.

Definition 7.1.2. Every single particle unitary transformation U : H — H
gives rise to a quasi-free automorphism on APF given by

Oula®(f)] = a*(Uf) . (7.13)

Quasi-free automorphisms are typical time-evolutions of non-interacting
particles possibly subjected to external potentials. They preserve the num-
ber operator; indeed, by expanding U| fi) = 3_; cij| f;) with respect to the
chosen ONB, it turns out that

O[N] = ZaT(Ufi)a(Ufi) = Z cijcfka;r-ak = Za;aj ,

i€eN 4,5,k JjEN

for the matrix C' = [¢;;] is unitary.
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Examples 7.1.2.

1.

Let {Ug}zers be the unitary group of space-translations,

[ f)=Uelf)=1f2), (rlfa)=flr—o),

for all f € L%, (R3); then, {Og}gers is the group of space-translation
automorphisms of AB-:

Oula® ()] = a*(fa) - (7.14)

.Let h : H — H be a single-particle Hamiltonian with discrete spec-

trum, h = ) .e;|1;)(1);| being its spectral decomposition, and set
az# := a” (1;). Therefore, the basic annihilation and creation operators
annihilate and create single-particle energy eigenvectors. Consider the
second-quantized Hamiltonian H = ) . ¢; a;rai and the generated one-
parameter group of automorphisms © := {O; };cr,

a#(f) — Qt[a#(f)} = itH g# (f) e itH

By expanding and summing as in Remark 7.1.2 one finds that, for both
Bosons and Fermions,

e a(fye ™ =a(e™f),  e*al(f)e " =a(e™f), (7.15)
for all @ € C. Therefore,
Orla®(f)] = a® (™" f) (7.16)

whence the group @ is a quasi-free time-evolution.

. Let us consider a single-particle Hamiltonian h with an absolutely con-

tinuous spectrum and the corresponding quasi-free time-evolution (7.16).
For instance, the free-time evolution given by (p|h|f) = p?/(2m)f(p)
in momentum representation.

In this cases, one can use the so-called Riemann-Lebesgue Lemma [258].
For an integrable function f : R — C with integrable first derivative, it
follows from integration by parts:

vt f(V)eiyt
/Rdl/ f(y)e = T

- E/dy Fw)e’t —0
R

+oo g

+—/Rdz/ F(v)eirt

—oo 1

t

when ¢ — 4oc0. Because of the assumed absolute continuity of the spec-
trum of the single-particle Hamiltonian h, this lemma ensures that

lim {[la(f), a'(e™g)ll = lim [(f]e™g)|=0 (7.17)

t—too t—too
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for all f,g € H for Bosons and

lim [{a(f). a’(e™g)}| = lim |(f|e™g)]=0 (7.18)
t—+oo t—too

for Fermions. While Bosonic annihilation and creation operators commute

asymptotically in time, Fermionic ones anticommute. However, by means

of (7.7), one computes

[a(f1)a(f2), al(e™g)] = a(fi) (f2]e™g) — (file™g)al(fz) .

Then, ||[a(f1)a(fz2), af(e?*g)]| — 0 when t — Zoo; furthermore, the
same asymptotic commutativity in time holds for [X , ©;[Y]] where X
is an even polynomial in a,a’ and Y any polynomial. By continuity, it
extends to all X belonging to the even Fermi algebra A% and all Y € AF.
Moreover, this result holds for all quasi-free automorphisms O, (a® (f) =
a(U.f) over A% consisting of a discrete or continuous group {U; }¢er 7z of
single-particle unitaries Uy : H — H such that lim;— 1o ( f | Uzg) = 0 for
all f, g € H. This phenomenon is known as asymptotic Abelianess.

Definition 7.1.3. [65, 108] A quasi-free state on AP is any linear functional
wa such that w(l) =1 and

AW (@) = exp (~ {0 (1+24)[9)) | (719)

where 0 < A € B(H) is a positive bounded operator on the single particle
Hilbert space H =13, (R3).

A quasi-free state on AT is any linear functional wa such that wa (1) = 1
and

wala'(fn)---af(f1)algr) - algn)) = dum Det[(gi [ AL ;)] , (7.20)
where 0 < A < 1 € B(H) is a single particle operator on H = L3, (R?).
The Fock vacuum satisfying (7.12) is the simplest instance of a quasi-free

state; the one with A = 0. Like classical Gaussian states, quasi-free states
also can be reconstructed from their two-point correlation functions

wala'(flalg) = (gl Alf)  VfgeH. (7.21)

This property results directly from the determinant in (7.20) for Fermions,
while for Bosons it can be proved by showing that (7.19) leads to

wa(a(fm) - a¥(f1)ag1) - algn)) = Gum Per[(g; [ A|f;)] (7.22)

where the so-called permanent is as in (5.185); indeed, (7.19) is a generaliza-
tion of (5.186) to the infinite dimensional case.
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Example 7.1.3. [65] Suppose a quasi-free state satisfies the KMS condi-
tions (5.179) with respect to the quasi-free time-evolution (7.16); using the
commutation relations and (7.15), it turns out that

wala'(falg)) = (g Alf) = wala(g)Oisla’ (f)]) = walal(g)a’ (e’ f))
(1P 1F) £ walal (" Falg)
(gle Ph+ Ae P |f) .

Since this is true for all f,g € H it turns out that (compare (5.182)
and (5.184)) A+

e
where the plus sign holds for Fermions and
the minus sign for Bosons.

= Txoon

KMS States and Modular Theory

We have seen that Gibbs states of finite dimensional quantum systems sat-
isfy the KMS relations (5.179). These relations can be extended to infinitely
many degrees of freedom where they identify equilibrium states at a given
temperature [131] (a simple instance of this fact was offered in the previous
example). Unlike with finitely many degrees of freedom (see Remark 5.6.1.1),
there can be more than one equilibrium state at inverse temperature 5. An
equilibrium state is called extremal when it cannot be decomposed into a lin-
ear convex combination of other equilibrium states at the same temperature;
extremal equilibrium states give rise to factor representations and can be in
some cases rightly identified as pure thermodynamical phases [300, 65].

Given a triplet (A, ©,w), with a faithful state w. The latter is said to be
a KMS state at inverse temperature (3 with respect to the automorphism @
if the functions (compare (5.178))

Fxy(t) == w(@X]Y), Gxy(t)=w(YOX]) VXY eA,

can be extended to analytic functions Fxy (2), respectively G xy (z), on the
strips —( < $(z) < 0, respectively 0 < $(z) < G, and continuous on their
borders, where they satisfy

w(O[X]Y) = w(YOrpipX]) . (7.23)

We outline a few of the many properties of KMS states [300] (for a more
detailed analysis see [65, 108]). These properties involve the GNS cyclic rep-
resentation 7, (.A) on the GNS Hilbert space H,,, and the GNS implementation
of © by a unitary operator U, .
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Remarks 7.1.3.

1. When extended to the von Neumann algebra m,(A)”, a KMS state w
remain KMS in the sense that

(| XULOY |92,) = (2, | Y ULt +i3) X |2,) VXY € m,(A)",
2. KMS states are ©-invariant: indeed, (7.23) implies
fx (t) = w(O:[X]) = w(OrriplX]) = fx(t+if)

for all X € A. Thus, fx(t) can be periodically extended over the whole
of C where it defines a bounded analytic function for f(t) is bounded
on the strip —3 < §(z) < 0. Therefore, this function must be constant:
fx () = fx(0), whence ©,[X] = X for all X € A.

3. The center Z, = m,(A)”" N, (A) of the GNS representation based on a
KMS state w consists of ©-invariant global observables. Indeed, if T' € Z,,
by the same argument as in the previous point, the function

xr(t) = (2, | 7o (O X]) T |£2,) = (20| T Op1ip[X] |92
= (020 |7 (Or1ip X T |20 ) = fx o (t +1iB)
can be extended to a bounded analytic function over C, for all X € A.

Then, it must be fx 7(t) = fx.7(0). Since t € Z,,, choosing X = YT Z,
Y,Z € A, yields

fyt Z,T(t> = (2% |7TW(Y>T Uw(t)TULZ(t) Tu[Z] 192, )
= fy+ Z,T(O) = (2, |7TUJ<Y)TT7TUJ(Z) |2,)

on a dense set, whence U, (t) TUJ(t) = T for all t € R.

4. For fixed inverse temperature, the KMS states form a convex set which
is compact in the w*-topology [300].

5. A KMS state is said to be extremal KMS if it cannot be written as a con-
vex combination of other KMS states (at the same inverse temperature).
The GNS representation based on an extremal KMS state is a factor:
Z, = {AL}. If not, there would exist 0 < Ty 9 € Z, with 71 + T, = 1
which could be used to construct the states

(20| Timo (X) |£20)

< 12, | T; |~Qw )

which turns out to be a KMS state with respect to © at inverse temper-
ature (. Indeed,

Qu | Ty (O [X]) 70 (V) |20, )

(02, T |£2,)

(20| 70 (B[ X]) Timo (V) |20
(02, | T; 1£2,)

(20 | Timy (V)10 (Or4i5[X]) [920)

B (02,|T192,) = wi(YOrtip[X]) -




332 7 Quantum Mechanics of Infinite Degrees of Freedom

The modular theory or Tomita-Takesaki theory, which has been intro-
duced in its simplified finite-dimensional version in Section 5.5.1, extend to
generic von Neumann algebras M C B(H) with a faithful state (see Defini-
tion 5.3.2) [64]. More precisely, given a quantum triplet (A, ©,w), if the GNS
state is such that

X|2,)=0=X=0 VX en,(A)",
then there exists a modular conjugation J : H,, — H,,, such that
JP=1, J|2.,)=2,), Jor.(A)"J, = m.(A), (7.24)
and a modular operator A, : H, — H,, such that
JoA/AuX|02,) = XT|02,) VX enm,(A). (7.25)
Furthermore, the maps

ol i (A 2 X - AT X AL (7.26)
form a group {ol };er of automorphisms, called modular group; moreover,
they satisfy the KMS conditions

(2u1XY00) = (2|Y o (X)) VXY emu(A)”,  (7.27)

that we will shortly write as w(XY) = w(Yo_*(X)).

Example 7.1.4. If M C B(H) is an Abelian von Neumann algebra (M C
M) with a cyclic vector | 2), then it is maximally Abelian. In fact, | 2)
is necessarily cyclic also for the commutant M’, thence separating for the
bicommutant M” = M (see Lemma 5.3.1). Then, (7.25) gives

lIVAX|2)|P = | X1 2))* = (2] XXT|22)
=(Q|X'X|2) = |X|2))?,

for all X € M since M is Abelian. Therefore, A = 1 and JXJ = XT,
whence (7.24) yields M = M'.

Example 7.1.5. A most used GNS representation [300], is the so-called ther-
mal representation whose cyclic and separating vector is the tensor product
of two vacuum states, | 23 ) = |vac) ® | vac), so that the GNS Hilbert space
is isomorphic to the tensor product of two Fock Hilbert spaces.

We shall consider the framework of Examples 5.6.2.2,3 without restric-
tions on the dimensionality of the single particle Hilbert space and on the
cardinality of the spectrum of the single particle Hamiltonian h. We shall
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denote by a#, respectively b#, Bose, respectively Fermi, creation and anni-
hilation operators. In the Bose case, their action on |23 ) is

m(a(f)) = ap(f) = a(v/T+ A_f) @1 + 1@d' (j/A_f)
ma(al () =t ali(f) =al(VI+ A_f) @1 + 1ea(\/Af),

where the single particle operator j : H — H is antilinear and satisfies
(ifljg)=1{g|f), while in the Fermi case

ma(b(f)) = bs(f) =b(vI - A f) © 1 + 0@ al(j3/ALf)
w01 (f) = b5(f) = b (VI-ALf) @1 + 6 a(j/ALf)

where @ is an operator on the Fock space such that §b% = —b# 6 and
O|vac) = |vac). Then,

ah(NI02s) = 1VI+A_f)®|vac), as(f)|2s) =|vac) ®|j\/A_f)
b1 25) =1VI-ALf)®|vac) , bs(f)|2s) = |vac) @ | jy/ALf)

whence

(925 1afi(f)as(9) |2) = (3VA—f VA g) = (9| A-If)
(2 b5(Nbs(9) [28) = (/A f iV Avg) = (gl AL|f) .
The modular operators read

— — ala, atas _ i, pt
3 —e 5Zi51aiaz ® e“'ﬁijfzaiaz , AE —e 5Zi51bib1 ® e+5zi51bib1 ,

where af& and b? create or annihilate eigenstates |&;) of the single-particle
Hamiltonian h. By means of calculations similar to those that led to (7.9)
and (7.10), one explicitly calculates

Azag(f)| 25) = vac) @ | je’ " \JA_f)
Afbs(f)] 25) = |vac) @ | je /AL f)

One can thus explicitly evaluate the action of the modular conjugation;
from (7.25),

Toas(1)| ) = \/A5al(1)| 26) = [ M2 /THA_f) @ |vac)

Toaly (N 25) = /A as(£)| 25) = |vac) © | je*/? A f)
=|vac) @ |j/1+ A_f)

in the case of Bosons, while for Fermions one obtains
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Toba(f) 2s) = \JAFVE(N)2) = [e /T — A, f) ®|vac)
= | VAL f) ®|vac)

Tablh(N) 2s) = 1/ A§bs()] 2s) = [vac) @ | je ">\ /AL f)
= |vac) ® | j/T— AL f)

Since thermal states are faithful, | £23) is cyclic and separating, therefore

Tpas(f)Jp =a'(VA_f) @ 1+ 1@ a(j/T+ A_f)
Jpal(f)Js=a(/A_f) @ 1+ 1@adl(j/1+ A_f)

for Bosons and, for Fermions,

Jﬁbﬁ NJs=b(/A )@ T+ 0Rb(j\/1— ALf)
Jebly(f) Js =b(v/ALf) @1+ 0@b (j\/1—ALf) .

The thermal representation has been used in [211] to implement the trans-
position in an infinite dimensional context and study the entanglement prop-
erties of infinitely extended quantum systems (see also [308]), the starting
point being (5.149) in the finite-dimensional case. Let V' the flip operator
which exchange vectors in tensor products V|¢ ®@ 1) = |1 ® ¢ ), then

Vi, Xt elyJ,V=X"o1.

Analogously, in the thermal representation one may represent the transposi-
tion as follows

vrlas(N) = VI Jgali(f) Ty Vo =’ (jV/I+ A @1+ 10 o' (VA f)
VElba(f)) = VI Jsbl(£) Js Vi = b1 (VT — AL f) @ 1+ 0 ® b(v/ALf) -

Among the CPU maps on a C* algebra A, a special role is played by
the conditional expectations (see Definition 5.2.3). Suppose the orthogonal
projections P; in Example 5.2.9.1 commute with a given density matrix p €
B (H), it then follows that

poB(X) =Tr(pE[X]) =Y Te(P,p P, X) = Te()  Pip X) = p(X)
i€l i€l

for all X € B(H) for ), ; P; = 1. One says that the conditional expecta-
tion from B(H) onto the Abelian subalgebra P C B(H) generated by the P;
respects the state p. Also, notice that if p is faithful then P is left invariant
by the modular automorphism (5.180), that is o} [P] = P. This is the key
point how to extends these considerations to the case of general von Neu-
mann algebras with faithful normal states, where conditional expectations
are identified with normal projections of norm one (see Remark (5.2.7)). We
state the result, for a proof see [293].
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Proposition 7.1.1. Let A be a von Neumann algebra, w a faithful normal
state with associated modular group of automorphisms ot t € R. Moreover,
let Ay C A be a von Neumann subalgebra and wqy the restriction w [ Ay with
associated modular automorphisms deo. Then, the following conditions are
equivalent:

1. there exists a normal conditional expectation E : A — Aq that respects
the state, wo E = w;

2. 0L [Ao] C Ag for allt € R;

3. ol [A] = oL [A] for all A € Ay.

7.1.2 GNS Representation and Dynamics

Quantum dynamical systems will be identified as non-commutative algebraic
triplets (compare the analogous commutative Definition 2.2.4).

Definition 7.1.4. Quantum dynamical systems are triplets (A, ©,w), where
A is a C* algebra with identity 1, the dynamics @ corresponds to a group of
automorphisms O, : A— A, t € G, such that

00O, =000, =05, wobBy=w, Vs telG,

where G = 7Z or G = R and the state w : A — C is a normalized, positive,
O-invariant expectation, namely w o Oy = w for allt € G.

Given an algebraic triplet (A, ©,w), a natural Hilbert space formulation
is based on the GNS construction (see Definition 5.3.7); it does provide not
only a representation 7,(.A) on a Hilbert space H,, with a cyclic invariant
vector | £2), but also an implementation of the dynamics by a group of unitary
operators.

Proposition 7.1.2. [107, 300] Let (A,O,w) be a C* dynamical system and
(Hy, 7o, §2,,) the associated GNS triplet, then, the C* automorphism © is
implemented by a unique unitary operator U, : H, — H,,,

1,(0(X) =Ul 1, (X)U, VXecA. (7.28)

Proof: Given the GNS representation m,, m := 7, o © is another repre-
sentation of A on H, such that

<Qw ‘W(X) |Qw> = <~Qw |7rw(9(X)) |~Qw> = W(Q(X)) = w(X) :

Therefore, Remark 5.3.2.1 ensures the existence of a unitary operator U,, such
that (7.28) holds. If another unitary operator W with the same properties
exists, then |[WTU,,, FW(X):| (V)| 2,) = 0 for all Y € A, namely on a

dense set; therefore, WTU,, belongs to m,(A)’ for which |2, ) is separating
(see Lemma 5.3.1). Then, W = U,,, since (WTU,, — 1)| 2, ) = 0. O
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Remarks 7.1.4.

1.

If the dynamics is specified by a one-parameter group of C* automor-
phisms {6, };er which is weakly-continuous in the GNS representation,
then the group U, (G) := {U,(t) }+tec, G = R, is strongly continuous on
H,,. In fact, the previous Proposition asserts that each @; is implemented
by a unitary operator U, (t); furthermore,

UL (OUS ()7 (X)] ) = UL (07 (Os(X)] ) = 70 Q1 (X)) 2,)
— Ul (t + s)ma(X)| 2,)

on a dense set, whence the family {U,(¢)}+cr forms a one-parameter
group of unitaries on H,. Strong continuity follows from weak continuity
and

| (t) = D (X)] 212 = 2(w(XTX) = R@(XT0,(X))) -

. The Fock representation is unitarily equivalent to the GNS representation

based on the vacuum state: w(a(f)) = (vac|a(f)|vac) = 0 for all | f)
in the single-particle Hilbert space H. Suppose © is a quasi-free Fermi
automorphism as in Example 7.1.2.3; let V' : Hp — Hp be the unitary
operator that implements it on the Fock space. Since the number oper-
ator is left invariant by quasi-free automorphisms, if V' belonged to A,
then it should also belong to the even Fermi algebra Ag. Further, from
asymptotic Abelianess, the invariance of the norm under unitary trans-
formations and the fact that the various V; commute, it turns out that,
for any e > 0 and X € Ap,

I[Ve, Os[X]1[ = VI V. X Vs = VIX ViV
= VX - XVi| = |IX - /X Vi| <e
for all t € R. This cannot be true for all X € Ag so that the unitary oper-

ator V € B(Hp) does not belong to .Ap. However, since A is irreducible
(see (7.12)), V belongs to the bicommutant A% p = {\C}’ = B(HF).

. Very rarely, starting from the Hamiltonian of a system of N interacting

particles and going to the thermodynamic limit, one obtains a norm-
continuous dynamics at the C'* algebraic level, that is independently of a
given time-invariant state. Usually, the dynamics exists only in the GNS
representation provided by that state; however, an instance of Galilei
invariant interaction which gives rise to a norm-continuous group of au-
tomorphisms of the CAR algebra can be found in [300].
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Example 7.1.6 (Infinite Dimensional Quantum Cat Maps).

The finite dimensional quantization of the torus T? studied in Exam-
ple 5.4.2 can be turned into an infinite dimensional one by lifting the condi-
tion (5.86), namely the quantum counterpart of the folding constraint (2.15)
in Example 2.1.3. Concretely, the Weyl relations (5.83) become

Uéll‘/gnz _ e47ri0n1n2 V*eng U‘;n , = [0’1) ,

where U and V are two abstract unitary operators and n = (ny,ng) € Z>2.
Notice that 26 plays the role of 1/N in Example 5.4.2 and is a continuous
deformation parameter: when 6 = 0, the commutation relations are those
that hold for the exponential functions (2.21), namely

€nem = €men .
Then, as in (5.84), we define the unitary Weyl-like operators
Wp(n) 1= e 2im0mnz g yznz nec7?,
that satisfy relations similar to those in (5.85),
Wy(n) Wo(m) =2 ™07mm) yWy(n +m) |, VYn,meZ?, (7.29)

with symplectic form o(n, m) := nymg — namy. Also, in analogy with (7.11),
one sets

Wo(f) = f(n) Wy(n), (7:30)
where | f) = {f(n)}necz2 belongs to the subspace £, (Z?) C (?(Z?) of square-

summable sequences with finitely many non-zero components. We shall call
support of f the set

Supp(f) := {n €Z: f(n)# 0} (7.31)
The following properties hold for all f,g € ¢, (Z?),

Wo(H)F =W (fF),  f1(n)=f(-n)*

Wo(f)We(g) = Wo(f *g) , with (7.32)
(frg)(n):= Y ™7™ f(n—m)g(m) . (7.33)
meZ?

Consider the *-algebra A} := {Wy(f) : f € £*(Z*)} generated by all possible
linear combinations of Weyl operators Wy(f) with f € £*(Z?). Let then w
denote the linear functional w : A} — C such that

w(Wy(n)) = dno - (7.34)

Using (7.32) with (7.33) one checks that
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w (W) Wal(g)) = (f7 = > fi(m =(flg). (7.35)

mezZ?

Thus w is a positive normalized functional, namely a state on 43 similar to
wy in (5.187). Consider the associated GNS representation 7, (Aj) and set

[ fho=m(Wo(fNI2)  VIf)e(z?),

where | {2, ) is the cyclic GNS vector. Then, the vectors |n )y form an ONB
in H, and g(n|f)g = (n|f) = f(n). Therefore, H, = ¢*(Z?) = L3, (T?),
independently of the deformation parameter ¢; also

mo(Wo(£))lg) =1f+*g) - (7.36)

The *-algebra Aj can be equipped with a *-automorphism which extends
to the present case the dynamics discussed in Example 5.6.1.4: it is defined
on the Weyl operators by

Ou[Wo(n)] = Wo(ATn) , (7.37)

where A is a 2 X 2 integer matrix as in (5.176). The state w is left invariant by
O, which is then implemented by a same unitary operator U, for all § € [0, 1)
that coincides with the Koopman operator U, of Example 2.1.3. Indeed,

)= f(n)Ws(ATn) ZfAT ) Wo(p) = Wo(Un f) ,

(7.38)
for f(A=Tn) = (Us f)(n) (compare (2.1.3)). Consequently,

w (Wo(£)OaWa(9)]) = (2|7 (Wo(f)) Us m(Wa(g)) |£2)
=w(Wo(f)We(Unrg)) = (fIUalg) . (7.39)

The dependence on 6 € [0, 1) emerges when considering the closure of m,, (.Aj})
with respect to strong-operator topology thus obtaining von Neumann sub-
algebras My C B(H,,).

While the GNS Hilbert space and the unitary implementation of the dy-
namics are the same for all von Neumann dynamical triplets (Mg, Oy, w) !,
for § = 0 My is isomorphic to the maximally Abelian von Neumann algebra
L2 (T?) of essentially bounded functions on T? (see Section 5.3.2), for 6 ir-
rational My is a hyperfinite I1; factor, while My is not a factor and of finite
type I, when @ is rational.

Let us consider the case § = 0; clearly, M is an Abelian von Neumann
subalgebra of B(H,,), actually, maximally Abelian since it has a cyclic vector
| 2, ) (see Example 7.1.4.1); therefore, it is isomorphic to L5 (T?) via the
argument of Theorem 5.3.3 and a one-to-one mapping

10, and w denote the extensions of the automorphism @4 and of the state w
from Aj to the strong-operator closures M.
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en — Plen] = Wo(n) (7.40)

between the Weyl operators Wy(n) and the exponential functions (2.21).
Indeed, one observes that the multiplication of vectors in L3, (T?) by ey,
and the action (7.36) of Wy(n) on vectors in H,, do coincide. We shall thus
identify Mo = L. (T?).

Consider now the case of a rational deformation parameter, § = p/q,
p,q € N; then, (7.29) yields

W /q(an)Wy q(m) = ezmpa(n’m)wp/q(qn +m) =W,/ (m)Wp4(qn) ,
for all n, m € Z2. Further, set
72 >n= (n1,n2) = [n]+ < n >:= (In]+ < ny >, [no]+ < ng >)

where, for any n € Z, [n] = ¢m denotes the unique multiple of ¢ such that
0<n-—[n]=:<n><qg—1. Then, one gets
Wp/q(n) = Wp/q([n]) Wp/q(< n >) .

As a consequence, when 6 is rational, every W), ,,(f) can be written as

W) = > (Zf [+ < 1 >) Wyyq(In])) Wyyg(< m>)

<n>€J(q) [n]

= > Xf(s)Wy(s)  with (7.41)
seJ(q)
Z flgn +s) W, 4(qn) € MDD (7.42)
neZ?

J(q) = {s =(s1,82) : 0<s; <q— 1} and where

MO = LS f0) Wyalan) } (7.43)

nez?

denotes the von Neumann subalgebra of M, , linearly generated by the Weyl
operators of the form W, ,(qn), n € Z2. Because of (7.41), they commute

with M,,/, whence M@ belongs to the center of M,
Moreover, the exponential functions of the form Wy (gn) fulfil

Wo(gn)(r) = Wolgn)(r +s/q) Vs e J(q) - (7.44)

They generate a x-algebra whose strong-closure is a von Neumann subalgebra
M(()q) C M, of essentially bounded functions f on T? such that

Fr) =v@1f)(r) = f(r + s/q) , (7.45)
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for all s € J(q). Let IIs : Mo — ./\/léq) be defined by

Mo f IL[f) =Y flgn + s)Wo(qn) € M, (7.46)

nez

where s € J(q). By decomposing

F=3 1y Won) = 3 (3 Fim+ ) Wolam)) Wo(s) ,

n s€J(q) ™

it follows that II; can be recast as

II,[f] = Wo(—s) q% Z ’Vt(q)[f} e—2mist/q (7.47)
teJ(q)

Furthermore, a map similar to the one in (7.40),
Wolan) — &, [Wolqn)] = Wyglgn)  Vnez?,  (148)

makes M@ and ./\/léq) isomorphic so that (7.42), respectively (7.41) read
Xs(s) = D41 f]], respectively

Woa(f) = Z [ IIs[f1] Wpsq(s) - (7.49)
s€J(q)

Concluding: 1) M,/, is not a factor, 2) due to the finitely many non-
commuting W, ,,(s) with s € J(q), the type of M, , is finite I, (see the
discussion of types preceding Section 7.1) and 3) M/, is hyperfinite for such

is My (and thus /\/l(()q)) according to Remark 7.1.1.
For 6 irrational, My is a factor; indeed, from (7.29),

Wi (n), Wg(m)} = 2i sin(27 §o(n,m)) Wo(n + m) (7.50)

cannot vanish for n # m, whence the center Z = My N My is trivial, that is
it consists of multiples of the identity only. Since the state (7.34) is a trace
on My, according to the discussion following Definition 7.34, My is a type
IT; factor and also hyperfinite [263].

In the commutative setting of Example 2.2.3, the unitary U, corresponds
to the Koopman-von Neumann operator which cannot belong to the commu-
tative von Neumann algebra Mo = L7°(X).

As much as in this case and unlike for finite level quantum systems, the
quantum dynamics is typically implemented by unitary operators which map
the algebra of observables into itself, indeed

UL (1) 1o (X) U () = 7 (04(X)) € mu(A) (7.51)
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without U, (t) itself belonging to =, (A). Given 7,(A) and U, (G), one can
however consider all linear combinations of products of operators in 7, (.A)
and elements U, (t) which can always be reduced to the form (compare Ex-
ample 5.3.2.7 for a similar structure)

D mo(Xi) Us(ti) - (7.52)

el

These elements form an algebra, denoted by {m,(A),U,(G)} whose bi-
commutant, namely its strong closure on H,,, turns out to be a useful tool to
discuss ergodicity and mixing in quantum dynamics.

Definition 7.1.5 (Covariance Algebra). Given a quantum dynamical sys-
tem (A, O,w) and the GNS implementation of the dynamics, the associated
covariance algebra is the von Neumann algebra R, := {n,(A),U,(G)}".

As we have seen in Section 5.3, besides the von Neumann algebra R, itself,
what is also important is its commutant; in particular, in the framework of
the GNS construction, for what concerns the convex decompositions of the
reference state w (see Remark 5.3.2.3). As regards the covariance algebra
R, and its commutant R/, notice that if X € B(H,) commutes with R,
it must commute with both m,(A) and U, (G). Vice versa, if X € B(H,)
commutes with 7, (A) and U, (G), by continuity, it also commutes with the

von Neumann algebra generated by them. Therefore,

R, =mu(A) N ULG) (7.53)
where U, (G)’ is the algebra of the bounded constants of the motion, that is
the algebra of all X € B(H,,) such that U, ()" X U, (t) = X.

Example 7.1.7. For the case of Example 5.6.2 the covariance algebra is

Ry = (Wp(MQ(C)) U Up(R))N = (MQ(C) ® 1y U pt ®p7it>//
= MQ(C> & {112,03} ,

where {1y, 03} stands for the commutative algebra of 2 x 2 matrices which
are diagonal in the eigenbasis of p. Furthermore, the constants of the motion
are contained in U,(R)" = {12,053} ® {12,053} and

Rlp = WP(MQ((C))/ n UP(R)/ =1b® {]12,0’3} .

7.1.3 Quantum Ergodicity and Mixing

As seen in Section 2.3, ergodicity corresponds to a specific behavior of the
time-averages of two-point correlation functions. Given a quantum dynamical
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triplet (A, ©,w), two-point correlation functions have the form w(AO:(B))
where A, B € A and t € G, where G = R or Z. For sake of concreteness 2,
we will consider averages or invariant means as in (7.3), namely of the form
(compare Definition 2.3.1)

Z (ATey(B)C) (7.54)

e [(ATOUBIC)] = lim 5

in discrete time, or else

T
e [w(ATO4(B)C)] :Tliir;o% wa(Af@t(B)o) if G=R. (7.55)

Because of (5.49), it turns out that these averages are bounded,

e [w(AT6,(B)C)] ’ < [AlIBIHIC -
Also, in the GNS construction based on the invariant state w, the averages
e [w(ATO(B)O)] = e [( 2 | 70 (A)TUL () 70 (B) Un (t) 1 (C) 192,)]

provide bounded sesquilinear forms on a dense subset of the GNS Hilbert
space H,,. This observation together with an argument similar to that in
Example 5.3.2.3 lead one to introduce

1. an operator 1, [U,] € B(H,,) with matrix elements

(U1 [Us] @) =m [{(|Uu(t)|§)] Vb, ¢ € Ha ; (7.56)

2. a linear map 7, : A — B(H,,) defined by
(9 |no [A] [¢) = m [(¢ | UL(#) mu(A) Uu(t) |6)] V4,0 € Hey . (T:57)

Notice that, because of ©-invariance, w(n, [X]) = w(X).

Examples 7.1.8.

1. Consider a finite-dimensional dynamical system described by a finite-
dimensional Hilbert space H = C%, by observables that are matrices in
M,(C) and by a Hamiltonian H assumed to have non-degenerate eigen-
values eq > eq—1 > ...eo = 0 and eigenvectors |j), 7 = 0,2,...,d — 1.
The dynamics is thus given by (see (5.170))

2For more details on the existence of invariant means see [107].
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—1
Uy=e "M =10)(0] + > e "' |j)(j
=1

d—1
XXy =Ul XU =Y e (k| X|5)[k)(j],
3,k=0

for all X € My(C). Then, the time-average 7 yields

d—

nU) =10)(0[, n(X (GIX 3131
)=0

,_.

<.

Thus, 1 : Mg(C) — M4(C) amounts to the conditional expectation (see
Example 5.2.9.1) onto the Abelian subalgebra of M;(C) generated by the
minimal projections |j){j|.

2. All the eigenvectors |j) in the previous example provide, U;-invariant
expectation functionals w; on M, (C). The corresponding irreducible GNS
representations 7, (M4(C)) (see Section 5.5.1) act on a Hilbert space
isomorphic to C? with GNS cyclic vectors of the form | £2;) = [j)®|j).
The dynamics is implemented by unitary operators of the form

ij (t) _ e—itH ® eite_,» ﬂd ,

so that they preserve | £2;). It follows that ., [Us,] = [£2;)(£2; |, while
N, [X]=n(X)®|j)(j] for all X € My(C).

3. Consider the projection P, onto the subspace of vectors | ) € H,, such
that U, |1 ) = |1 ) (the GNS vector | (2, ) is certainly one of them). Then,
since ¥, ¢ € H,, are arbitrary,

(V|nw[Us] Polo) =n[(¢|Uu(t) Polo)] = (V| Pulo)
implies n,, [U,] P, = P.,; analogously, P, n, [U,] = P.,. Moreover,

(| Uu(8)n0 [Us] @) = {40 | Us(t + 5) [9)] = (¢ [0 [Us] @)

whence 7, [Uy]| ¢) is invariant. Thus, Py, [Uu]|¢) = N [Us]| @) for
all ¢ € H,, and then 0, [U,] = P, n, [U,] = P,,.

Notice that n,, [U,] belongs to R,,, for it arises from averaging correlation
functions; furthermore, since it equals P, it does not depend on the
specific invariant mean used.

While the average of the time-evolution U, (t) gives rise to the projec-
tor onto U, (t)-invariant vectors (compare Proposition 2.3.4), the average of
quasi-local observables A € A transforms them into global constants of the
motion, namely into observables that belong to the strong-closure of A and
that are left invariant by the dynamics.
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Proposition 7.1.3. 1, [A] C 7,(A)" N U,(G)'.

Proof:  We check this on the dense subset 7(A)| 2, ) C H,. Let X belong
to A and X’ to the commutant 7, (A)’, then, using (7.51),
(2 [0 (A) i [X] Xm0 (C) |920) =

= 1t [( Q2w | 70 (A) 170 (6:(X)) X' (C) |£2)]

= 10 [( Q0 | 70 (A)T X' 70(64(X)) 70 (C) |92, )]

= (| 7o (A)T X 0y [X] 7,(C) [20) -
Thus, 1, [X] commutes with 7, (A)" whence n,, [A] C 7, (A)”. Similarly,

)

(20 | 10(A) 0 [X] Us(8)70(C) |20 ) =
= 1 [( 2 [ 70 (A)T UL ()70 (XU (t + 8) 1 (C) [ 92.,)]
=M [(Q |7Tw( )T w(S)U (t+3)7rw(X)Uw(t+3)7Tw(C)‘QWH
= (D0 |7 (A) Us(s) o [X] 70 (C) [92,)

for all X € A and s € G, whence 7,(X) € U, (G)". O

QSPS

Example 7.1.9. We have just showed that X € A = n, [X] € U,(G);
also, by construction (see Example 7.1.8.3), P,, = n, [U.] € U, (G)”. Then,
it follows that [n,, [X], P,] = 0, whence
(12, |7rw(A)T77w [(X] Py (B) [£2,) =
="M R 2, | 7Tw(A)T Py 7y (04(X)) P 7 (B) |20 >]
= (2| Ww(A)T Py (X) Pymo(B)[$2,)

on a dense set. Therefore, for all X € A, it holds that

Nw [ X| Py =P,n, [ X|=P,m,(X)P, VXeA.

In the case of classical ergodic systems, these latter systems are equiv-
alently identified by the clustering properties of their two-point correlation
functions (Propositions (2.3.2) and 2.3.9), by the spectral properties of the
corresponding Koopman operator (Corollary 2.3.1) and by the extremal-
ity of their invariant states (Proposition 2.3.8). Clustering in the mean as
n (2.65) or (2.75) and extremality are notions that readily extend to the
non-commutative setting.

Definition 7.1.6. A quantum dynamical system (A, O, w) is n-clustering if
N [w(AO(B))] = w(A)w(B) VA,BeA, (7.58)

clustering if
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lim w(A8y(B)) =w(A)w(B) VX,Y € A. (7.59)

t—*4oo

A state v on A is extremal if v = Ay + (1 — Mg with 0 < XA < 1 and vy 2
states on A implies v1 2 = v; v is an extremal ©-invariant if it cannot be
written as a convexr sum of other O-invariant states on A.

Remarks 7.1.5.

1. If m,(A)" N U,(G) = {1}, where {\1} denotes the trivial algebra
consisting only of multiples of the identity, then the global constants of
the motion are trivial. It follows that (A, ©,w) is n-clustering. In fact, in
such a case 1, [B] = w(B) 1 for all B € A, whence

1 [w(AB(B))] = (L2 [ o (A)nw [B] [2s) = w(A)w(B) -

2. Suppose the invariant state w in (A, ©,w) is not extremal invariant; then,
there exists a state v on A such that \v < w, for some 0 < A < 1, and
vo® = v. Thus, from Remark 5.3.2.3, \v(X) = (2, | T'7,(X) |$2, ) for
all X € A, with 0 < 7" € 7, (A). Tt turns out that 7" € U,(G)’, too;
indeed, @-invariance yields

(£, |7Tw(A)T T’ Uo()m0(B) [£2) = (£ |7Tw(A)T T T, (O-¢(B)) |2,)
= Av(ATO_4(B)) = Av(6,(A)" B)
= ({2, |7Tw(A)T Us(t) T 7y(B) [2)

on a dense set. Therefore, 77 € R/,.
Consider now the following list (we shall refer to it as ergodic list in the

following) of statements [107] concerning clustering, extremal @-invariance
and the spectral properties of the dynamics of quantum dynamical systems.

w is extremal invariant (7.60)
R = {\1} (7.61)
Ro N R, ={A1} (7.62)
(A, 60,w) is n-clustering (7.63)
P, is a one-dimensional projector (7.64)
mw(A)" N R, = {1} (7.65)
Nw [X] =w(X)1 vVXeA (7.66)
w is the only normal invariant state on m,,(A)"” (7.67)
| 2,) is the only invariant vector state in 7, (A)| 2, ) . (7.68)

From Remark 7.1.5.2 it follows that (7.61)=- (7.60); also, if R/, is not trivial,
then, as in Remark 5.3.2.4, w can be decomposed into a convex combination
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of O@-invariant states. Therefore, (7.60)<= (7.61). If w is not extremal invari-
ant, the corresponding operator 1 # T’ € R/, provides an invariant vector
state U, (t)T"| 2, ) = T'| 2, ), thus |2, ) is not the only invariant vector
state and the projector P, onto the invariant subspace of H, cannot be
one-dimensional, whence (7.68)=— (7.60) and (7.64)—> (7.60).
Furthermore, using Example 7.1.8, one gets

Nt [W(AOH(B)] = (2 | 70w (A) 1w [Us] 7w (B) [20)
(024 | 70(A) Py (B) 92, ) ;5

together with P,| 2, ) =|(2,) and
w(Aw(B) = (2 [ o (A) [ 20 )( 20 [ 710 (B) [20)

this yields (7.64)<= (7.63).

From Proposition 5.5.2 it follows that the normal invariant states p on
7. (A)” must correspond to density matrices p € B{ (H,,) that commute with
U, (G); thus, p(n, [X]) = p(7,(X))) for all X € A and, if 7, [X] = w(X) 1,
then p(n, [X]) = p(m,(X)) = w(X), whence (7.66)= (7.67). Also, from
Remark 7.1.5.1, (7.66)== (7.63).

Other implications are (7.61)= (7.62)== (7.65) and (7.67)=> (7.68).

Summarizing,

Proposition 7.1.4. With reference to the previous list of ergodic properties,
the following implications hold

(7.64) < (7.63) «— (7.66) = (7.67)
I 4
(7.65) <= (7.62) < (7.61) <= (7.60) <= (7.68)

While in a commutative setting the properties (7.60)— (7.68) are equiva-
lent and each of them identifies an ergodic system, it is not so in the quantum
realm, unless (A, ©,w) is asymptotic Abelian [107, 300].

Definition 7.1.7 (Asymptotic Abelianess). Suppose (A, ©,w) enjoys one
of the following properties

n [w(AT[B,6,(C)|D)] =0 VA BC,DeA (7.69)

lim w(AT[B,6,(C)]D)=0 YA B,C,Dec A (7.70)

tliirgow(AT [B,0:(C)]T[B,6:(C)]A) =0 VYA BecA (7.71)
lim [|[B,6,(O)][| =0 ¥B,CeA. (7.72)

In the first case, (A, ©,w) is called n-Abelian, in the second one weakly asymp-
totic Abelian, in the third case strongly Asymptotic Abelian and in the last one
norm asymptotic Abelian.
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Physically speaking, asymptotic Abelianess corresponds to the fact that
the non-commutativity of any pair of local observables is a property which
dies out asymptotically under the action of the dynamics on one of them.

Example 7.1.10. Quantum spin chains (see Example 7.1.1) are the simplest
instance of norm-asymptotic Abelianess with respect to lattice-translations
on the quasi-local C* algebra A [277]. In the case of spins 1/2 at each site,
lattice-translations correspond to the shift-automorphism @, : A — A de-

fined by
n n
io | io+1
Ho;ﬁ] o I G
=1

0o
(=1

Given A, B € A, for any € > 0 we can find strictly local A., B. € A[_j x) such
that |[A — A.|| <eand ||B - B.|| <e. If N>n > 2k O}B| € Ajp—pnti]

commutes with A, [A, or [Bg]} = 0, whence

|[4. ezim]|| < |[2 - .. ez11] | + [ [4-. €212 - 5]
< 2¢||B|| + 2e(e + ||A]]) -

The mean magnetization m in (7.3) is not a quasi-local observable for the
spatial-average collects contributions from all local regions: nevertheless, it
exists in the GNS representations 7y | (A)” corresponding to the translation-
invariant states wy,) in (7.1) and (7.2). Furthermore, local non-commutativity
is suppressed by dividing by larger and larger number of sites with the result
that the mean magnetization commutes with all local observables. By its
very construction it also commutes with the GNS unitary operator U,, which
implements the space-translations on the GNS Hilbert space. Therefore, m €
Rt =, (A) NUL(Z)". Since 7y, (A)" = {AL} it thus follows that m is a
scalar multiple of the identity in the two representations.

The fact that the mean magnetization commutes with all local observables
holds, more in general, as a consequence of 7-Abelianess; namely, 7,, [A] C R,
follows from observing that (7.69) yields

me (2o |7 [mu(X), 70(00(V))] mul(B) |2,)] =
= (2 | mo () [mo(X) o [V]] 7a(B) 12,) = 0.

Remark 7.1.6. Proposition 7.1.3 states that n, [A] C 7,(A)" N U,(G); if
(A, ©,w) is n-Abelian then also 7, [A] C 7, (A)’, whence 1, [A] C R, NR.,.
Since the latter is an Abelian von Neumann algebra, actually the center of R,
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(see Definiton 5.3.4), it turns out that {nw (X, Nw [Y]} =0foral X,Y € A.

Therefore, using Example 7.1.9, one proves that on a dense set,
(0, | 7 (A) [Pw To(X) Py, P, (Y) Pw] 1o(B)|02) =
=, :< Oy | 7 (A)F :Pw 1o(X) Py, Uy(t) o (Y) Pw} mo(B) |2, >]
= [( 2 |7 (A) | P mo(X) Pu, ma(04(Y)) P ma(B) |2,

= (20| 7o) [Pom(X) P, ma [Y] Po| mu(B) 12,)

= [( 2 | T ) [mo(Ou(X) P [Y] Pu] ma(B) 12,
= (|74 Py [ [X] s ma [¥]| Pum(B) 192,) = 0.,

for all X, Y € A. Therefore, n-Abelianess implies Abeliannes of P, 7, (A) P,
as a set (in general it is not an algebra).

If (A, ©,w) corresponds to a classical dynamical system, then (7.70), (7.71)
and (7.72) are equivalent statements implying (7.69). In a genuinely quantum
setting, however, (7.71), (7.70) and (7.72) take into account the differences
between convergence in the weak, strong and norm topologies, whereby, in
general, (7.72)= (7.71)= (7.70)=> (7.69). Interestingly, the weakest sort
of Abelianess is sufficient to make properties (7.60)— (7.68) equivalent to each
other. Indeed, the consequences of 7-Abeliannes are as follows.

Proposition 7.1.5. If (A, ©,w) is n-Abelian, then R, = n,(A)" N U,(G)'.

Corollary 7.1.1. If (A, O,w) is n-Abelian, the properties (7.60)— (7.68) in
the ergodic list are equivalent.

Proof: Because of n-Abelianess, applying the previous proposition one gets
that (7.65)== (7.66), whence the claimed equivalence follows from Proposi-
tion 7.1.4. [l

Then, the following definition makes sense.

Definition 7.1.8. An n-Abelian quantum dynamical system (A, O,w) is er-
godic if w is extremal invariant.

Remark 7.1.7. In the case of Example 7.1.8.2, the eigenvectors of the Hamil-
tonian are extremal as functionals on My;(C) and thus ergodic according to
the definition above. However, finite-dimensional systems cannot be asymp-
totic Abelian; indeed, while condition (7.64) holds, condition (7.66) does not.
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Proof of Proposition 7.1.5 The proof is based on 3 steps.
e Step 1: If (4,60,w) is n-Abelian then P, R, P, is Abelian.

Indeed, from Remark 7.1.6 we know that P, m,(A) P, is Abelian, thus,
by continuity, also P, m,(A)” P,. On the other hand, since the elements
of R, are strong limits of operators of the form (7.52), it turns out that
P, n,(A)" P, =P, R, P,, whence the latter is Abelian.

e Step 2: If P, R, P, is Abelian, then R, is Abelian (R], C R/, = R.,).
Since P, € R, we can use Example 5.3.2.6 to deduce that

P,R,P,C(P,R,P,) =P,R,P, .

Further, since | £2,,) is cyclic for P, R, P, with respect to the Hilbert space
P, H,, using Example 7.1.4.1 we conclude that P,R, P, = P,R, P,
whence the latter algebra is Abelian. In order to prove the statement,
we show that R/, and P, R/, P, are isomorphic; for any X’ € R/, set
AX’) = P, X’ P,,. This map is obviously linear and surjective; further, since
P, € Ry, M(X'Y") = MXHAY") for all XY’ € R/,. Finally, suppose
A(Z") = 0 for some Z' € R/, then, since P, |2, ) = |2 ),

Z' 1o (X)| 02,y =7,(X)Z' P, 2)=7,(X)P, Z'P,|2,) =0

on a dense set. Thus, Z’ = 0 and ) is also injective.

e Step3: IfX e Aand n,(X) € m,(A)N Uy(G) then n, [X] =7, (X) €
T (A).

This fact can be extended by continuity to the constants of the motion in the
strong closure 7, (A)” N U,(G)" so that

1o(A) O Un(G) C m(A) = mu(A)" N UL(G)Y C R, . (7.73)

If X € m,(A)" N U, (G), it commutes with the projector onto the invariant
vectors P, € R, whence X P, = P, X P, implies

(WW(A)” N Uw(G)’> P, C Pym,(A)" P, .
On the other hand, Example 7.1.9 and Proposition 7.1.3 yield
Mo [A] = Py (A) Py € 7 (A)" 0 UL(G)
whence by continuity
Pymu,(A) P, = (ww(A)” N Uw(G)’) P, . (7.74)

Finally, from the first two steps, (7.73) and (7.74), we derive
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R, P,=P,R P,C P,R,P,=P,m,(A)"P,
= (WW(A)// N U, (G) ) P, = (Ww(/l)” N Uw(G)/> P, .

Consequently, given X’ € R/, there exists Y’ € 7, (A)" N U,(G)’ such that
(X' =Y")|2,). As | 2,) is cyclic for R, it is separating for R/, thence
X' =Y’ so that R, C 7,(A)"” or, equivalently, R, C 7, (A)" N U,(G)
which, together with (7.73) completes the proof. O

Remark 7.1.8. In case of n-Abelianess, from R/, = 7, (A)" N U, (G)’ it fol-
lows that R/, is contained in the center Z, = m,(A)" Nm,(A)" of m,(A)"
and is thus Abelian. Actually, R/ coincides with the commutative algebra
of @-invariant classical observables of the quantum system (A4, ©,w). There-
fore, if (A, O,w) is n-Abelian and w is a factor state (see Remark 5.3.2.2),
then R/, = {A\1} and w is extremal invariant and thus ergodic, according to
Definition 7.1.8.

If (A,0,w) is n-Abelian, but the state w is not extremal invariant, that
is not ergodic with respect to @, then R/, cannot be trivial. However, it is
Abelian and thus generated by a unique set of minimal projections P]f (see
Section 5.3.2). Each of these projections are such that (UJ)! P; UL, = P; and
thus provides a @-invariant state w; on A:

2, |Pj 7o (X) [2,)
w(P;)) '

wj(X) = <

Since the P; are minimal projections in R}, they cannot be further decom-
posed in R/,, whence they are extremal invariant and yield a decomposition
w = ;w(Pj)w; of w into its ergodic components.

Example 7.1.11. [220] Let wy be states of a one-dimensional spin chain of
the form (7.4), where (the upper indices label the lattice sites, the lower ones
the Pauli matrices)

W (ﬁa;;> Hﬂ(ﬂJr oy ) f[ B3
(H) I (5520 ) = Tv s
(=1 = (=1

Unlike the states (7.1) and (7.2) which are characterized by infinitely many
spins pointing up, respectively down along the z axis, these states are anti-
ferromagnetic alternating spins up, at even sites w,, at odd sites w_, and
spins down. These are pure states and give rise to factor GNS representations
m(A)": in fact, as for the states (7.1) and (7.2), one can show that the
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commutants 7+ (A)" are trivial. Also, by considering the shift-automorphism
of Example 7.1.10, it turns out that wy o ©, = wx so that the state

wi= # (7.75)

is translation-invariant and can be decomposed in terms of pure states:

(12, | Qimo(4) |£20)
<Qw|Qj:|Qw> ’

with Q+ € m,(A). If w could be decomposed into O,-invariant states w;,
these would correspond to 0 < Q; € R, = m,(A) NU,(G)" that provide
decompositions of the pure states w4 as well

(o | Q2 Qimu(A) [20) | (wo |Qx (1= Qi)7w(4) |2 )
<'Qw|Q:t|Qw> <QW|Q:E"QLU> 7

which is impossible. Therefore w is extremal invariant, but not a factor state.
As for the spin system considered at the beginning of this chapter, the follow-
e,o

ing even and odd magnetizations m®° = (m7?,m35°, m5?) (see (7.3)) exist
as strong operator limits in the GNS representations 7+ and 7,:

wx(A) =

w4 (A) =

N

N
. M 2 . H 2i+1
¢i= 1 ot 2= 1 : .
= NG ON 11 E_X_:N gie M= M ON 11 K_Z_:N 7i

They commute with all local observables and thus belong to the trivial centers
Z, and the non-trivial one Z,. In the first two ones they are multiples of the
identity, m$ = (0,0, +x) and mS = (0,0, Fu), while in the representation
7, which can be conveniently split as 7, (A) = 74 (A) P r_(A),

1 0 -1 0
mms) =g 5) o mod=u(Y)
Furthermore, while enjoying clustering in the mean, the representation ,,,

which is not a factor, is not clustering; indeed,

—DF 4+ (=D
2

‘ 1Y 4 (1)
w(ohoit) = EU+ =0 ; =) _ (—1)* while w(oh) = (

=0.

From the previous discussion, it turns out that if (A, ©,w) is n-Abelian
and w extremal invariant (property (7.60) in the ergodic list), then two-
point correlation functions factorize in the mean (property (7.63) in the er-
godic list). Concerning the extension of the classical property of mixing (see
Proposition 2.3.3, (2.66) and (2.76)) to quantum dynamical systems, due
to non commutativity, one distinguishes between various way of clustering
beside (7.59).
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Definition 7.1.9. A quantum dynamical system (A, O,w) is weakly mixing

if [42]
lim w(46,(B)C) = w(AC)w(B) ¥ A,B,C € A; (7.76)

strongly mixing [42] (or hyperclustering in [215]) if

tli? w(AO:(B)CO(D)E) = w(ACE)w(BD) V A,B,C,D,Ec A .
(7.77)

Clearly, strong mixing implies weak-mixing and weak-mixing implies
n-Abelianess; it also implies weak asymptotic Abelianess, whereas strong-
mixing implies strong-asymptotic Abelianess. The proof of the latter state-
ment (the proof of the former one is similar) comes from (7.77) applied to

w(Aley(B), C)'[e4(B),C]A) =
= w((CA)'6,(BTB)CA) — w((CA)'0,(B)T CO,(B) A)
—w(AT6,(B)T CTO,(B)CA) + w(AT6,(B)! CTCOLB)A),

which yields
lim w(AT[0,(B),C]'[64(B),C]A) =

t—+oo
= w((CA)'CA)w(B'B) — w((CA)'CA)w(B'B)
—w(ATCTCA)w(B'B) + w(ATCTCA)w(BTB)=0.
Also, weak-mixing and strong-asymptotic Abelianess together imply strong-
mixing; this can be seen by rewriting
w(AT[64(B), C1T[64(B),ClA) =
= w((CA)'TO,(BTB)C A) — w((CA)6,(B"B)C A)
—w(ATO,(BYB)CTC A) + w(ATCTCO,(B'B) A)
—w((CA)TQt(BT) [CT , et(B)} CA) - w(AT 6,(B)f [CT, @t(B)}CA)
+w(AT 6,(B)t [cfc, @t(B)} A) .

Now, weak-mixing means that the first four terms factorize in the same way
and thus cancel each other, asymptotically in time; on the other hand, each
of the terms with the commutators vanish asymptotically if the system is
strongly asymptotic Abelian. This comes out from the Cauchy-Schwartz in-
equality (5.49) which gives upper bounds of the form

w((cay e )t [of, oB) ca) ‘2 <

< w((CA)Y 6,(B" B)CA) w((CA)T [cf, @t(B)]T [CT, et(B)} CA) .
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Proposition 7.1.6. Given a quantum dynamical system (A, O,w), we have
the following implications:

1. strong-mizing (7.77) implies weak-mizing (7.76);

2. strong-mizing (7.77) implies strong asymptotic Abelianess (7.71):

3. weak-mizing (7.76) implies weak asymptotic Abelianess (7.70);

4. weak-mizing (7.76) and strong-asymptotic Abelianess (7.71) imply strong-
mixing (7.77).

Remark 7.1.9. If the state w is faithful then weak-mixing is equivalent to
the factorization of two-point correlation functions (see (7.59)). Of course,
if (A,0w) is weakly mixing, then w(X ©(Y)) asymptotically split into
w(X)w(Y). Vice versa, using the KMS conditions (7.27), if (7.59) holds, then

limw(A©,(B) C) = | lim_w(0,(1)(C) ABY(B)
= w(o,(1)(C)A)w(B) =w(AC)w(B) .

The same conclusion that (7.59) implies weak-mixing follows if one knows
(A, O,w) to be weakly asymptotic Abelian; one uses

W(AO,(B)C) = w(AC O,(B)) + w(A [@t(B), c}) .

The following proposition establishes a link, similar to the classical one,
between mixing and the spectral properties of the time-evolution group
U, (G) in the GNS construction.

Proposition 7.1.7. If (A,0,w) is weakly mixing the following equivalent
properties hold,

w— lim m,(0(X)) =w(X)1 VX eA (7.78)
w— lim U(t) =2} 2] . (7.79)

Proof:  Weak-mixing asserts that , liIin Tw(01(X)) = w(X) 1 on a dense

set, whence (7.78). Furthermore, from

(,u(AJr 6:(B)) = (2, |7TW(A)T U,(t)r,(B)|2,) and
W(AT)W(B) <Qw|77w(A)T|Qw><Qw |70 (B) 1924 )

for all A, B € A, it follows that (7.78) and (7.79) are equivalent. O

Remarks 7.1.10.
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1. If (A, ©,w) is norm-asymptotic Abelian and w is a factor state, then w is
clustering as in (7.59) [64]. Indeed, Z,, = {\1} says that the C* algebra
B generated by m,(A) and m,(A)" has trivial commutant B = {1},
namely B” = B(H,,). Let X € A and consider the vector

HL 5 [ ) = (m(X) — w(X)D)] 2,)
It is orthogonal to | £2,, ): thus, there exists B(H,) > T = T such that
T|Ux)=0, TI2,)=1|2,) .
Actually, T' can be chosen in B [64]: the operators
O = T (mp(X) —w(X)D) . Cy = (1 T) (mp(X) — w(X))

are in B. Further, C1|$2,) = CT|2,) = 0 and 7,(X) = C; + Cy =
w(X)1; consequently,

W(XE[Y]) —w(X)w(Y) = (2] Crmu(O:[X]) 122,)
= (2,1 [C1, m(@XD)] 12.) -

Now, for any € > 0 one can approximate C; € B by a finite sum in

o (A) U, (A):

8

oS-,

so that

NE

WXOY]) = w(X)w(Y)] < D2 | [m(C), 7l 45)] By 12)] + =

1

<.
I

M:

13 [ [roc), ma(ay)]|| + =

<.
I

Thus, since (A, ©,w) is assumed to be norm-asymptotic Abelian, then it
turns out to be clustering whence, according to Remark 7.1.9, also weakly
mixing.

2. If (A, ©,w) is norm-asymptotic Abelian and w is an extremal KMS state,
then it is a factor state (see Remark 7.1.3.4) and the system is weakly
mixing.

Example 7.1.12. The infinite dimensional systems of Example 7.1.6 provide
an interesting framework to apply the previous abstract considerations [44].
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Since the @4-invariant state is tracial, as explained in Remark 7.1.9, cor-
relation functions as those appearing in (7.76) can be reduced to two-point
correlation functions as in (7.59). Then, (7.39) yields

w (Wo(N)OuWa(9)]) = (f1Uxlg) -

Therefore, if the underlying classical system is mixing, that is if the Koopman
operator U, has absolutely continuous spectrum on the subspace orthogonal
to the constant function ( namely to the GNS cyclic vector | {2, )), then, for
all f,g € L3, (T?),

Jim w (Wo(N)OLWa(9)]) = lim (f[Uflg)
= ([1102)(2]g) = wWe(f)w(Wa(g)) -

This means that, independently of the deformation parameter 6, the quan-
tum dynamical systems (My, @4, w) are mixing when such is the classical
dynamical system of which they represent a quantization.

As regards strong mixing (7.77), observe that (7.50) implies

o ([ e o), €51w00m ] ) =
= 4 sin?*(2700(n, (B)'m)) , (7.80)

where we have set B = AT, the transposed of A. Since o(n,B'm) is an
integer, when 6 € Q is rational, the right hand side of (7.80) is periodic
in t and cannot vanish when ¢ — +o00. Therefore, the quantum dynamical
systems (M4, 604, w) cannot be strong asymptotic Abelian, and thus not
strongly mixing, because of Proposition 7.1.6.

If 0 is irrational, then, as proved in [44], the right hand side of (7.80)
vanishes asymptotically at most for a countable set of 8 € [0,1]. A concrete
construction of a countable set of 6 is as follows [209].

Let t > 0; using (2.17)— (2.19) in Example 2.1.3 with b and ¢ exchanged,
one explicitly computes

o(n,B'm) = Cy(m)a’(niasy — ngary) + C—(m)a~ " (njas_ — ngar_)

— at%(maﬂ ~naiy) + O(@™Y)
ot -
= m(mlnl(a ' a)(a—a)

+mangb® — ming (o™ — a) — mang (a — a)) .

The transposed matrix B = AT has eigenvalues a*! as A; therefore, Tr(B?) =
ot +a~t € Zforall t > 0. It thus follows that
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at'H

o(n,B'm) = o (m1n1 ¢ — manab — (ming +mani)a
a2 _

+mynsa”t + mong a) + O(a™)

2
1 _
= =3 Zrka“rk + O(a™)
k=0
1 2
> r(at + a”H) + 0(a7

k=0

(%

where the coefficient r;, € Z and thus also the sum is an integer.
Choose 0 = a?s mod (1), s € Z, then

Oo(n,B'm)=s(a®—1)o(n, B'm) mod (1) = O(a™") mod (1) .

Therefore, when t — +o0, the function in (7.80) vanishes and norm-
asymptotic Abelianess holds. Indeed, consider Wy(f) and Wy(g) where f
and ¢ have compact supports, namely, there exists K > 0 such that
f(n) = g(n) =0 when ||n| > K; then,

| [wa(r). &5wal }H<Z|f )llg(m |H[Wa  Wa(B'm)] |
<07t 317 lotm)] G (781)

for a suitable constant Ci, .. Because of the assumption on Supp(f) and
Supp(g), (7.81) goes to 0 with ¢t — +o0.

Thus, for § = sa® mod (1), s € Z, (Mg, O4,w) are weakly mixing and
norm-asymptotic Abelian; whence, according to Proposition 7.1.6, strongly
mixing.

7.1.4 Algebraic Quantum K-Systems

The notion of K-systems is naturally extended by removing the Abelian
constraint from Definition 2.3.6.

Definition 7.1.10. Let (A, ©,w) be a quantum dynamical system; if A is a
C* algebra it is called a C* algebraic quantum K -system if there exists a C*
subalgebra Ay C A such that

1. A - @t[-AO} C At+1 fOT allt € Z;
2V ep At = A;
3. /\teZ A = {)\]1},
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where N\, A¢ denotes the set theoretic intersection of the C* subalgebras Ay
and \/,c; A¢ the C* they generate by norm closure. The nested sequence will
be called a quantum K-sequence.

If A is a von Neumann algebra acting on a Hilbert space, then (A, O, w)
1s a von Neumman algebraic K-system if there exists a quantum K -sequence
of von Neumann subalgebras A, with \/,., A; denoting the von Neumann
algebra obtained by strong-operator closure.

Remark 7.1.11. Typically [220], starting from a C* algebraic quantum K-
system with K-sequence A;, one considers the GNS representation 7, (A)
and the sequence of von Neumann subalgebras 7, (A;)” and checks whether
it is a (von Neumann) K-sequence for (m,,(A)", 0, w).

We have seen in Section 2.3 that classical K-systems enjoy the strongest
possible clustering properties corresponding to K-mixing; to some extent
this notion extends to von Neumann quantum K-systems. Let a quantum
dynamical system (A, ©, w) posses a sequence {A; }+cz of C* subalgebras such
that, setting M := m,(A)"” and M; := m,(A)", {M;}iez is a K-sequence
for the von Neumann triplet (M, O, w). We assume w to be a faithful state
and the My to be invariant under the modular automorphism o, so that
Proposition (7.1.1) ensures the existence of a normal conditional expectation
Ey : M — Mg which respects the state. It thus follows that the CPU maps
E;, =00 FEyoBO_; : M — M, are w-preserving conditional expectations.
Setting

Py, (A)[92, = Ei[m,(A)]| S2,) VAeA,

one obtains a bounded linear operator which can be extended to a bounded
operator Py : Hy, — H;, where H; is the closure of the linear span ,,(A)| {2, )
and H,, is the GNS Hilbert space corresponding to w.

Proposition 7.1.8. The P; are projectors such that P, = Ul (t) Py U, (t),
where U, (t) is the GNS unitary operator which implements © on H,,. If
{ M, }iez is a K-sequence, then [217]

1. Pt SPt+1 fOTG”tEZ,’
2.8 — 1imt*,+oc Pt = Il,'
3. s_limt—»JrOOPt = |QUJ><QQJ|

Proof: From the properties of the conditional expectations (see (5.44) in
Proposition 5.2.2), it follows that P? = P,. That PtJf = P, follows from the
assumption that w o B} = w; indeed, using (5.42) and (5.43), one gets

(7o (A) 2, | Py (B)$2, ) = w(A E([B]) = w(E,[A]" E,[B))) = w(E,[A]") B)
= <Pt7rw(A)~Qw |7Tw(B)~Qw> )
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for all A € A (thus on a dense subset of Hy,). Also, on a dense subset, it holds
that

P, (A)] 2,) =60r0EyoO_ym,(A)| 2,)
= Ur:rz (t) EO [Uw (t)ﬂ—w (A)Ur:rz (t)H Qw >
= Uj}(t) PO Uw(t)”Tw(A)” Qw > .

This proves the second statement of the Proposition, while, of the last asser-
tions, the first one is a consequence of M; C My and the last two relations
follow from

Jim (m(4)1| (B~ 1) [ra(B)) = lim_w(AT (E,[B] - B)) =0
t_l}r_noo<7rw(A)T | (Pe = | £20)( 020 |) 70 (B) ) = tl%g_noow(AT Ey[B]) —
—w(A)w(B)=0.

In fact, these two limits imply weak-operator convergence of projections to
projections which is equivalent to strong-operator convergence. Notice that
the second limit holds since F; maps onto the trivial algebra when ¢t — —oo
and w(FE¢[B]) = w(B). O

Corollary 7.1.2. Let (M,0,w) be a von Neumann algebraic quantum K-
system as specified above; then, for any e > 0, Ag € My and A € M there
exists T > 0 such that

W(A9O4[A]) — w(Aow(A)| < &1/w(Ao AD)
forallt < -T.

Proof: The result is a consequence of the second strong-operator limit in
the previous proposition and of [217, 300]

W(A0Bi[A]) = (Ao PoUL(H)A) = w(Ao UL(E) Pt A) |
whence
w(A0O4[A]) — w(Aow(A)| = |w (A0 UL(E) (P — | 2 )(2.1) A))|
< V(Ao AD) (P = | 2,020 1) AL 2,)]]

O

Corollary 7.1.3. Let (M,0,w) be a von Neumann algebraic quantum K-
system as specified above; then, it is weakly-mizing.
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Proof: Because of Remark 7.1.9, one need show

tljiglow(A@t[B]) =w(A)w(B) VA, Be M.

Since {M;}iez is a K-sequence, let ¢ > 0 and choose A, € Mg and s € Z
large enough such that

I(A - O.A])| 2,)| <e.
Then, for ¢ sufficiently large,
W(AO_i[B]) = w(A)w(B)| < |w((A - €.[4.)O—[B)|+
+w(A4:0_ 1.9 [B)) — w(Aw(B)| < 2Bl -

This shows clustering when ¢ — —o0; when ¢t — 400, one uses the modular
automorphism to rewrite

w(AB[B)) = w(O_[A]B) = w(o},[Bl0—[4]) ,

w

and then applies the previous argument. O

Remarks 7.1.12.

1. The result in Corollary 7.1.2 is the maximum of uniformity one can
achieve in clustering; indeed, if

w(BO,[A)) —w(B)w(A)‘ < ey/w(B BY)
for all t < —T and B € M, then B = 6;[Af] would yield
0=w(Al A) - [w(A))? = w((AT — w(A))(A - w(A))) .

As w was assumed faithful, this gives A = w(A)1 for all A.

2. By substituting Ay with ©O4[Ap] for fixed s, the uniformity in Corol-
lary 7.1.2 holds with respect to any fixed M.

3. The structure of the nested sequence of Hilbert subspaces {Hj}+cz corre-
sponding to the projections P, very much resembles that arising from
the Lebesgue spectrum of classical K-systems (see the discussion af-
ter Remark 2.3.5). However, the projections {P;}icz have been con-
structed by relying on the existence of w-preserving conditional expecta-
tions F; : M — M;. For a state like the tracial state which has trivial
modular automorphism, they surely exist; however, this need not be true
in general. Luckily, the previous results can also be proved without refer-
ring to the existence of a K-sequence of projections [220].
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Example 7.1.13. As sketched in Example 2.3.3.4, the classical hyperbolic
automorphisms of the torus are K-systems. Aided by this fact we shall
show that, for rational values of the deformation parameter 6 = p/q, their
quantized versions (My,O,w) are algebraic von Neumann quantum K-
systems [44].

According to Example 7.1.6, we shall identify the classical automor-
phisms of the torus as triplets (Mg, ©4,w), where M is the von Neumann
Abelian algebra of essentially bounded functions on T2, @, is such that
Oulfl(r) = f(Ar), f € Mo, and w is the integration on T? with respect
to the uniform measure dr . Therefore, the K-partition characterizing them
as K-systems amounts to the existence of a K-sequence {\;}+cz of von Neu-
mann subalgebras of M (see Definition 2.3.6).

Because of the decomposition (7.49), let M; C M,,, be defined, with
obvious use of the notation, as

Myi= 3 BTN Wyyq(s) (7.82)

s€J(q)

In this way, the K-properties of the classical K-sequence {N;}icz would
make the characterizing properties in Definition 7.1.10 also hold for the non-
commutative sequence { M };cz of subalgebras of M, /,. The first two condi-
tions are in fact immediate, while the third one comes from the fact that (7.46)
implies IT4[1] = d5,0.

Unfortunately, one has first to ensure that the M, are subalgebras, namely
that, if f,g € M, also

Z qu[ns[f] gpq[ZYt [g]] Wp/q(s) Wp/q(t) =

s,teJ(q)

= Z QSq[Hs[ﬂ qu[ﬂt[g]] Wp/q(Q[s + tD Wp/q(< s+t >)
s,teJ(q)

= Y O[S Wolals + )] Wyjg(< s +t>)  (7.83)
s,teJ(q)

belongs to M.

To this purpose, consider the von Neumann subalgebra M(()Q) Cc My
consisting of those essentially bounded functions on T? that satisfy (7.45).
Since Méq) is mapped into itself by @, the K-properties of the sequence
{N;}iez extend to the sequence {/\/t(q) =MNN Méq)}tez, whence the triplets
(M(()q), Oa,w) are also K-systems 2. Further, let B denote the (von Neumann)
subalgebra generated by the characteristic functions x 5(s) of the partition of
the torus into atoms

i i+ 1
A(s)::{r:s—gxigs—,_

,121,2},
q q

3Here, O, and w denote the restrictions of the dynamics and the state to Mo
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where sin € J(q); set B; := Ox(B), By := \/i,:_oo Bs. Finally, construct the
von Neumann subalgebras

./\/7,4/ :M(Q)\/Bt] ,

and consider the sequence {M}tez.

This is a K-sequence for Mg; indeed, ./\7t C ./\7t+1 directly follows from the
analogous property of the K-sequence {N(q)}tez, while \/tez/\N/} =Misa
consequence of the fact that \/,, /\/'t(q) = /\/léq) together with the observation
that Mo = Méq) VB C \/tGZJ\N/t. Finally, /\tGZJ\N/‘t = {1} follows from the
fact that, according to Proposition 2.3.5, Tail (B) = {A1}.

Let us now insert the subalgebras J\N/} in the place of A in (7.82); us-
ing (7.47), for f € N, s € J(q), let us consider

I[f]Wo(s) = iz Z %‘Z)m o-2mist/q

T 7

Now, it turns out that the map in (7.45) fulfils

AP a1 ) = elf] (r+ %) = (Ar4 25) = (ar+

=04 10111 (7).

<As>>
q

Since fyg‘Z) maps the subalgebra B into itself for all s € J(g), it turns out that,

when f € N, all the components in (7.82) also belong to N;. Therefore, with
1,9 € My, it follows that

Ny 3 1, () Wo(s) Hulg) Wo(t) = (L] Telg] Wolals + 1)) Wo(< s+ >) .

EMcares(N)

This shows that the linear sets in (7.83) are subalgebras of M,,/, and com-
pletes the proof that the quantum dynamical triplets (M, /4, O, w) are al-
gebraic von Neumann quantum K-systems.

Remark 7.1.13. The reason why all quantized hyperbolic automorphisms of
the torus are algebraic K-systems for rational deformation parameters is that
the properties of their classical counterparts are inherited by the commutative
subsystems (the centers) contained in (M,/4, 04, w). When the deformation
parameter is irrational, this is no longer true and indeed one can prove that
a part from countable sets of 6 € [0,1] (Mpy, Op,w) cannot be algebraic K-
systems [44].
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7.1.5 Quantum Spin Chains

As sketched in Example 7.1.1, the algebraic structure of quantum spin chains
is as in Definition 2.2.5, the difference being that at each site of the one-
dimensional lattice indexed by the integers k € Z, instead of diagonal matrix
algebras, there remain assigned copies Ay, of a same non-commutative algebra
A. In the following, we shall consider A = M;(C), namely chains consisting
of linear arrays of d-level quantum systems (or spins).

The algebra Az associated with the infinite chain is the quasi-local C*-
algebra which arises by taking the norm closure of the x-algebra consisting
of operators from all local algebras Aj_g ¢ = ®£:4 A = My(C)2RHD)
supported by the lattice sites in the interval [—¢, ¢]. If Ay denotes the strictly
local * algebra |J,cy A[—¢,¢, then Az = Aio‘l“l.

The local algebras A[_yq = ®i:_€ Ay, describe spin arrays located at
finitely many lattice sites —¢ < k < £. Their elements are linear combinations

of tensor products ®€:_2A;€, Ap € Ay If 0 < £ < p, the local algebra A[_, g
can be embedded into A|_,, ,; as follows; we shall denote by

I =@ le, L=t Mo, e =51 (7.84)

the tensor products of identities at sites from 4 to j, from —oo to i — 1 and
from j + 1 to +oo, respectively. Then, A[_; 4 is embedded into A[_, ;) as
N_p—r—1) ® A_g,g @ Njpq1 ). Analogously, Aj_s g is embedded into Ag as
1y 1) ®Aj—r,g @ Ljp41. In the following, for sake of simplicity, we shall often
identify local algebras A[_, ¢ with their embeddings, as well as their elements
as elements of Ag.

The dynamics over Ay is the shift automorphism O, : Az — Az

O (Aj—r.) = Al—t41,41]
o, (ﬂ_e_1] ® <®£:_€Ak> Q ]1[é+1> =l_»4® (®£J;1_@+1Ak) @ jpyo -

In order to complete the description of quantum spin chains as quantum
dynamical systems we need provide Az with translation invariant states,
that is with positive functionals w : Az — C such that wo®, = w. Given any
such state, its restrictions wy; ;) := w]A[; ;) to a local subalgebras Aj; ;) :=

5 _; Ar are density matrices pj; ; € Mq(C)®U~*1 Since it originates from
the global state w, the family of pj; ;) is automatically compatible with the
embedding of Aj; j) C A[; j+1], that is they fulfil the condition

w(A; @ A; @ 1jy) = Tr g (P[z‘,j+1}Ai @A ® ]1j+1)
= Trpi ) ((’H{jﬂ}p[z‘,jﬂ}) Ai®--- Aj)
= Trpi g (P Ai @ - 4;)
where Trp; 4 indicates that the trace has to be performed with respect to an

orthonormal basis of the Hilbert space (C?)®U~+1) associated with the spins
at sites ¢ < k < j. In other words,
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Trij413(Plij+1]) = Pl Vi,j €7 . (7.85)
Further, translation invariance implies
(O (A ® - Ay)) = w(l, & A © - Aj)
= Trji gy (Pl i © A @ - A5 ® 1)
= Trpi g ((Triayppgen) Ai ® - A;)
= w(A; @ Aj) = Trp ) (P Ai ® - Aj)
whence the local states satisfy

Triy (P g+1) = Plitrg+1 = Plij) » Vi j €L . (7.86)

Vice versa, if Az is equipped with a family of local states pj; 5, 4,7 € Z,
satisfying (7.85) and (7.86), then they define a translation invariant state w on
Az such that its restrictions to local subalgebras satisfy w[Aj; j1 = ppi ;1 [10].

Definition 7.1.11 (Quantum Spin Chains).
Quantum spin chains are dynamical systems represented by algebraic
triplets (Az, Oy, w) where

1. Az is a quasi-local algebra with a d-level system at each site;
2.0, : Ay — Az is the shift-automorphism over Ay;
3. w: Az — C is a translation invariant state over Ay,

Example 7.1.14. Quantum spin chains turn out to be C* algebraic quantum
K-systems; indeed, one argues in the same way as for classical spin chains
(see Remark 2.3.5). The K-sequence consist of the quasi-local algebras A; :=
O! (Ap) where Ay C Az is the quasi-local algebra which arises as the C*
inductive limit of the local matrix algebras Ay, 4, with p < ¢ < 0.

If w is a factor state, (Az, O, w) is also a von Neumann algebraic quantum
K-system. This can be seen as follows: denote by A[; the quasi-local algebra
generated by all matrix algebras of the form A, , with ¢ < p < ¢ and set
My = 7w, (A", My o= o (Ap)”, My = (My)" for the various commu-
tants. Clearly, the first two conditions in the second part of Definition 7.1.10
are satisfied. The third one is obtained as follows: since M1, C M., one
finds [220]

(m Mt>/ = U M; = U(M:: UM[tH) = (U M::) U (U M[t+1)

teZ teZ teZ teZ teZ
=MUM=MnM) =\l

for w has been assumed to be a factor whence the center Z, = M N M’ is
trivial.

This is not true in general; for instance, in the case of Example 7.1.11,
the state (7.75) is not a factor and the von Neumann system is not clus-
tering. Therefore, according to Corollary 7.1.3, (M, 6,,w) cannot be a von
Neummann algebraic quantum K-system.
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Ergodic Quantum Spin Chains

In Remark 7.1.8, we have seen that asymptotic Abelianess allows to uniquely
decompose non-extremal invariant states into their ergodic components.

As a concrete application, consider a quantum spin-chain (Az, O,,w)
whose state w is extremal invariant (see Definition 7.1.8) with respect to
the lattice translation by one site, ©,, but not with respect to lattice trans-
lations by ¢ sites, ©%, for some ¢ € N. We prove the following result [58].

Proposition 7.1.9. Let (Az, O,,w) be an ergodic quantum spin-chain. For
any £ € N the state w can be written as a conver decomposition

ne—1

1
w=—S w;, 7.87
T 757

where ng divides £ and the w; are shift-invariant states over the spin-chain
which are ergodic with respect to ©°.

Proof: Consider the commutant (R!) := 7, (Az)' N {Uf)}/ of the covari-
"

ance algebra (see Definition 7.1.5) RY := (’R’w (A)uUf (Z)) which is built

by means of the C* algebra 7, (A7) and the group of unitary GNS operators

U™, n €N, instead of U, (Z).

Since Az is norm-asymptotic Abelian and w is assumed not to be G%-
ergodic, because of Corollary 7.1.1, it turns out that RY, # {A1}. Let {Q;}ier
be a decomposition of the identity by orthogonal projections in (RY)’; then,
the cardinality of I, ny, must fulfil n, < /.

Indeed, let P denote any of the Q;, i € I, and set P; := UJ P (U}),
0 <j<¢-1.Since P commutes with 7, (Az), one derives

o (X)P; = Umo (67 [X))P (UL) = UL P o (67 [X])(US) = Pimu(X)

for all X € Az. Moreover, P; commutes with U, whence P; € (R.,)’ for all

0<j</—1andsodoes P := \/f;é P;, namely the smallest one among the
projections @ such that ¢ > P; for all 0 < j </ —1.
By decomposing n € Zasn=ml+r, 0 <r < /¢ —1, it follows that

n 0— n l—
Us {Pj j:(l) (UI;) = {Pj j:(l) :
Therefore, P is O,-invariant, whence P = 1 as w is ergodic with respect to
O,-ergodicity of w. Then, (7.61) in the ergodic list yields

1= (2|P|2) < Y (Q|P|2) = ({2|P|2) .
j=0
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Applying this argument to each of the @);, one obtains

_ , 2
1=(2]_Qil2)> .

el

Since A is norm-asymptotic Abelian, from the second step in the proof of
Proposition 7.1.5, one deduces that (RY)’ is Abelian. Let then Q;, 0 < j <
ny — 1 < £, be its minimal projections (see Example 5.3.4.1) with Q) such
that

Q= (21Q012) < gy = (2]Q;12)

for all 7 > 0. Then, introduce the set
So={iez: ULQo Uy =Qo} .

It follows that Sy D ¢Z; further, set ky := min{0 < j € Sp}. Then, £ x ko;
otherwise, £ = pko + ¢, for some p > 0 and 0 < ¢ < ko, so that ¢ € Sy thus
contradicting the minimality of k.

Furthermore, set Qo ; := UZ Qo (UJ)j, 0 < j < ke; Qo,; belongs to (RY)".
If it is not a minimal projector Q;(;), then, Qo ; = >, @Q; thus contradicting
go < q; when j > 0. Thus, Qo = Qi;)- If Qg := V120" Q5 = X570 Q; (the
projectors are now orthogonal), it follows that, as shown before, Q, € (R.)’
and hence @, = 1. Consequently, because of the uniqueness of the orthogonal
decomposition of the identity in an Abelian algebra, it turns out that kg = ny
whence Q; = UJ Qo (UJ)7 and g = ¢; = n, .

One can now introduce the states on Az defined by

Az 3 X = wi(X) = ne (2] Qymu(X) [2) = (2| Qom, (657 (X)) 2)
— WO(QZ'[X])7

for all X € Agz. It turns out that the w;’s are all ©f-ergodic, otherwise it
would be possible to further convexly decompose them (hence w) into O -
invariant components:

As explained in Remark 7.1.5.2, the decomposers wj; correspond to projectors
Aji
Pj; € (RL) such that ~L* = (2| P;; |22) and
g
Ajiw;i(X) = ne (2] Pyime, (X) [42)
§wj(X)=ng<Q|Pj7Tw(X)|Q>, VX € Ay .

As the projections Pj; and P; belong to the commutant m,,(Az)’, by choosing
X =YTZ one gets
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(2|7 (V) Pjin,(2)2) < (2| mu(Y) Pym,(2)]2) -

Since Y and Z are arbitrary elements of Az and the vectors 7, (X)| §2) are
dense in the GNS Hilbert space, it turns out that P;; < P;. But the P;’s are
minimal projections, thus P;; = P;. (]

Finitely Correlated States

An interesting class of translation-invariant states on a quantum spin-chain

Ay is constructed as follows [113]. Let (B, p, E) be an auxiliary triplet, where
1. Bis a finite dimensional algebra that we shall fix to be the algebra M;(C)

of b x b matrices acting on C? ;
2. pis a state on B identified by a density matrix: p(B) = Tr(p B).
3. E: A~ B is a completely positive map such that
E(]IA X ]13) =15 (7.88)
poE(14® B) = p(B) (7.89)
where 14 5 denote the identities of the algebras A, respectively B.

Since they result from iteratively composing CPU maps, the following maps
E™ .—Eo <idA ®E("—1>) LA B, n>1, EO.=E, (7.90)

are also CPU . Consequently, the functionals p o E™ on A®" are positive
and normalized. They are thus states on the local algebras A®™: moreover,
the corresponding density matrices in My(C)®™ @ M,(C) can be obtained
by duality: in fact,

Trg (pE[A®B]) - TrA®B(]F[p]A®B) , (7.91)

where F : §(B) — S(A ® B) is the trace-preserving dual map of E which
transforms states over B into states over A ® B. Analogously, to the CPU
maps E(™ there correspond the dual maps F(") : S(B) — S(A®("+1 @ B)
given by

F = (idgon @ F) o F" Y n>1, FO.=F.

Consider the states w_y 4 defined on the local subalgebras A;_ , by
w[—e,e](@’f;:—eAk) = Trp (P EM[(®f=_oAr) ® ﬂB])
= Trg (F" Vo] (@ Ay) @ I5) . (7.92)

As a consequence of (7.88) and (7.89), they satisfy the compatibility re-
lations (7.85), that is wi_y—1 041 [M[—r,g = w—r, and the translation-
invariance conditions (7.86), namely wi_g g = w_r41,041)- We illustrate these
properties by means of the simplest non trivial case and choose Aj; o); then
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W(A® 1) = Trs (pE[A 9 B[y ® 15])) = Trs (p B[4 © 1s]) = w(4)
w(ly @ A) = Trg (pE[Iy @ E[A® 15]]) = Trg (pE[4 @ 1s]) = w(4) .

Therefore, the family of local states w_y, defines a global invariant state
overt the quantum spin chain Ajz.

Definition 7.1.12 (Finitely Correlated States). Given a triplet (B, p,E)
as specified before, all functionals w on Az locally defined on Ay; ;1 by

w(@]_,Ay) = Tr (p EG—9) @i:#k]) ,

are translation invariant states called finitely correlated (FCS).

Remark 7.1.14. The specification finitely correlated refers to the finite di-
mensionality of the auxiliary algebra B. Without such a restriction, every
translation-invariant state over Az would be given as in the previous defini-
tion. Indeed, one could then choose B := Aj o), p = w[Ajp 400 and as E
the natural embedding of any A, ;) into Ap 1o

Because of translation-invariance, w [A[i,j] =w [A[Lj_i_s_l}; therefore, the
local structure of w is determined by the density matrices py; ,,) corresponding
to w [ A[1,5,)- They are recursively obtained by means of the dual maps (7.92),

prim = Trs (]F("_l)[pD . (7.93)

In order to take a closer look at the recursive structure of FCS, we make
use of the Kraus-Stinespring representation (5.195); concretely,

E(A@B)=Y VIA®BV;, Y ViV,=15 (7.94)
jed jeJ
vi:cteciec, Viiclec -, (7.95)
where J is an index set of finite cardinality. With [¢2), i = 1,,...,d and

[YB), k =1,2,...,b two ONBs in C¢, respectively C’, the action of V; can
be represented in the following two ways,

b
Vi) = 1w @ | 9F) (7.96)
k=1

d
Vi) =>"uf) e |wh,) (7.97)
=1
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where the !Ilezk , LPB ', € C4 are in general neither orthogonal nor normalised.
From (7.96) it follows that

b

b
= > WP WP, V= [l w00l
k=

ik=1 ik=1

Thus, 3¢, VJTV] = 1 whence ;. ; ZZ:1< A |7 ) = dpg. On the other
hand, from (7.91) one gets

=> Z Y21 p [l ) |0 (T | @ 0B ) (wF |

jeJ ik=
1-7

:ZZ Zwl%fi‘eq T ® |08 vl (7.98)

je€J Lp=11i,9=1
where we have conveniently chosen the eigenprojections of p as ONB in C?,
that is p = Zz Lrel WB Y (P |. As condition (7.89) amounts to Tr4F[p] = p,

the vectors u'/ s, must also satisfy >, ; Ze 17 W]A& |WJ tq) = OigTq-
By recurswely inserting (7.98) into (7.93), one gets the following expres-
sion for the local density matrices pj1 .1,

Pl = Y Z re | 9] ", (7.99)

imery Lp=1

(71)
| > Z | J17€11>®‘ ]21122> | 3271213>®“.

'L(n71>69(n_1)

@ |w @|wr, Y. (7.100)

7n 1yin—2%n— 1> Instn—1P

Remark 7.1.15. Notice that, despite the recursive structure involving more
and more factor components, for each n-tuple 5 = jijo - jn € I} there

in)
are at most b* vectors ¥~ € (C*)®".

J(n) i(n)
Example 7.1.15. The vectors ¥}~ need not be normalized, |7, "|| # 1;
taking this fact into account, (7.99) provides the following natural decompo-
sition of the local restrictions of FCS states,

b ( ) 2
. (n (n) j () é” || i (n)
P = S pGM A =S e L pi (7.01)

S(n) = Tn £,p=1 (n)
jmery P Z €||¢J " 112
l,p=1

p(F™)
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where ng(n) projects onto \Lpgp(n) )/||Wg;n)|| It follows that the support of
each p{l(z] has dimension at most b%. By defining the completely positive
(non-unital) maps A®B 3> A® 1+~ E;A® B] := VjTA ® BV; € B, the
weights 10(.7'(71))7 j(n) = j1j2 -+ Jn € I}, can be rewritten as

b
.(n i(m)
P =D re |99 12 = Tr (o Ejy 0By 0y, [Laon © 1)) -
=1
Since } ;. ;E; = E, from (7.88) and (7.89) it follows that the probabilities

() = {p(j(") }j<")€I§‘ define a shift invariant global state w, over the Abelian

algebra of generated by tensor products of infinitely many card(.J) x card(.J)
diagonal matrices, thus a classical spin chain (@?O", Op,wy).

As regards the action of V} in (7.97), we proceed as follows. Given the
vectors |WP); . € Cb, where j € J, i =1,2,...,band £ = 1,2,...,d, let
fu;e € M,(C) be the matrix such that (7 |v;[é |WB) = (B |Wfk€ ). Then,

d b
V=3 > (lvt) @ ol o)) (v | (7.102)

(=1 i=1
d b
vi=S 3 1P ((wtle (vPlu) - (7.103)
(=1 1i=1

Then, (7.88) implies 1z = >
the dual map F reads

v, — — d T
jes ViVi = s = 3 je ;2 0imy vjevj,- Further,

d
Flpl =Y > 14 0 e @], pusq - (7.104)

j€J p,g=1

It then turns out that, in terms of the vjss, the translation-invariant condi-
. d . .

tion (7.89) amounts to > .. ;> v;%gpng = p. Finally, using (7.93), the
local density matrices py; ) exhibit the following recursive structure,

Plt,n] = Z W;ﬁn) ><Wf<ln) | Trs (v;(")k(n) P’Ujmu(n)) ;- (7.105)

iMern
k("),i(n)eném

A N | hA A A -
where | W0, ) i= |y, ) @[i, )@+ [P ) and vy ) 1= Vjyiy Vjgin * Vi -
The above expression is particularly suited to deal with

Definition 7.1.13 (Purely Generated FCS). A FCS w is called purely
generated if the defining CPU E consists of only one Kraus operator [115]:

E(A®B)=VIA® BV .
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In terms of (7.102) and (7.103), the map E and its dual F read

a

a
E[A®B] = > (v Al ) o Bol, Flol = 3 [vil (e[ vipui,
ik=1 ik=1
whereby compatibility (7.88) and translation-invariance (7.89) impose

a a
viv] =1p , szpvi =p. (7.106)
i=1 i=1
The states pagp := F[p] on A®B and ppy o) = Trp(id4®@FoF[p]) on Ap o
can be explicitly written out. Notice that, because of translation-invariance,
p[1,2) describes any two nearest neighbor spins:

vipvl ... vipul
pass =Y [0 ) (| @uipvl=| - ... (7.107)
1,j=1 . e
Ve pUI ... v pUl
Rlijl Rlija
pua = > Mt e |l - , (7.108)
i=1 ) .
Raijl P Raija

where R;j, = Tr(vjv; PUVE).

Example 7.1.16 (AKLT Model). A typical instance of the recursive finitely
correlated structure is provided by the AKLT-model [4, 5], a spin-chain con-
sisting of spin 1 particles with nearest-neighbor interactions described by the
Hamiltonian

(1 1 2 ]
H = — . - . _ 1
2 {ZSk Sk+1+ G(Sk Sk+1) + 3} , (7.109)

where Sy = (S1k, Sak, S3x) represents the spin operator for the k-th spin
along the chain.

The possible values of the total spin of two nearest neighbors are 0, 1
and 2 with corresponding orthogonal projectors Pék), Pl(k)
Therefore, since

, respectively PQ(k) .

2
S Spp1 = —2P® — p® 4 ph) (Sk : Sk+1) = 4p® 4 p® 4 p®

and Po(k) + Pl(k) + PQ(k) = 1, it follows that the interaction between sites k

and k + 1 amounts to the projection PQ(k) onto the subspace with total spin
2.
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The spin 1 at site k can be described by means of two spins 1/2, labeled
by k, k, by projecting with P,z from C* onto the 3-dimensional subspace

orthogonal to the singlet state |Q/li%)) of the pair of spins 1/2 at k and k. Fur-

ther, after associating the spins 1 at k, k + 1 with the pairs k, &, respectively
k+1, k+1 of spins 1/2, one imposes valence bonds between the pairs, by

Tk ). It
+1
follows that the common state of the pairs k, k and k + 1, k + 1, namely of
two neighboring spins 1 is eigenstate of Pz(k) with eigenvalue 0.

Further, by appending two spins 1/2 at the opposite ends, 0 and N + 1,
of the spin 1 chain, it thus follows that the vector state

requiring that the spins 1/2 at k and k + 1 be in a singlet state |

(35 Pern ) ) @ oy @l el ) (n0)

is the unique ground state for the Hamiltonian

N—-1 (2) 9
H= > P! (1 + 85 Sl> - (1 +Snar - SN) (7.111)

which is obtained from 7.109 by adding two boundary interactions involving
the boundary spin 1/2 operators sz and sy-i1. In the limit of an infinitely
long spin-chain, the above valence-bond construction provides a unique,
translation-invariant ground state of the AKLT-model, known as valence-
bond solid, which exhibits short-range correlations and an energy gap.

In the limit of an infinite spin-chain, its ground state, the valence-bond
solid, corresponds to the triplet (B, p, E) with B = M, p(B) = %Tr(B) and

E:Ms®@M;> AR Bw— VI(A® B)V € M, , (7.112)

where, with |b; 2) € C? the eigenvectors of the Pauli matrix o3 relative to the
eigenvalues 1, —1 and |ay 2 3) the eigenvectors of S, relative to the eigenvalues
_17 07 17

2 1
Vb)) = \/;|(13,b1> -7 laz, b1), Vlbe) = f lag, ba) — \/7@1,171
(7.113)

From (7.102), with o4 := (01 & i03)/2, it thus follows that

2 1 2
v = —\/;0-1- , U2 = —EU:’, , U3 = \/;U— . (7.114)

One can thus check that the conditions (7.106) are satisfied and, moreover,
that the identity matrix 1o € Ms is the only solution of the second relation
n (7.106) in agreement with the translation invariance and purity of the
valence bond solid. Further, from (7.107) one explicitly computes
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0 0 0 0 0 0
(=05 Ve 0 ) 02 vV2 0 0 0
0 v2 1 0 0 0
pags==| V20 1 V2o | == ;
6 0 \/§a+ 1+ 03 00 0 L v2 0
00 0 v2 1 0
0 0 0 0 0 0
(7.115)
while (7.108) gives the nearest neighbor states
0 0 0 0 0 0 0 0 0
0 1 0 -1 0 0 0 0 0
0 O 2 0 -1 0 0 0 O
1 0 -1 0 1 0 0 0 0 O
pra=5|0 0 -1 0 1 0 -1 0 0 (7.116)
0 0 0 0 0 1 0 -1 0
0 0 0 0 -1 0 2 0 0
0 O 0 0 0 -1 0 1 0
0 O 0 0 0 0 0 0 O

Remark 7.1.16. Finitely correlated states are a useful arena for investigat-
ing the behavior of entanglement in quantum spin chains for these are deter-
mined by the triplet (B, p, E) (see [38, 204]). Furthermore, they are particular
important as ground states of certain solid state Hamiltonians whereby one is
interested in either the relations between entanglement and long-range order
effects [227] or in the possibility to create entanglement between distant sites
by suitable local measurements [241].

Price-Powers Shifts

The so-called Price-Powers shift [246, 247] are quantum dynamical systems
described by an infinite-dimensional C* algebra A, whose building blocks
are the identity operator 1 and operators e;, i = N, satisfying

ei=e, e2=1. (7.117)

K2 K3

Their algebraic properties are determined by a function
g:No—{0,1}, g¢(0)=0, (7.118)

called bitstream: according to its values, different e;’s commute or anticom-
mute o
eiej = (=)D e e, VijEN. (7.119)
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By means of the above relations, every product of finitely many e;’s can be
reduced (up to a sign) to an operator of the form

Wi = €4,€iy """ €4, , (7120)

where ¢ = iyis - - - 1,, € N* stands for any choice of finitely many indices such
that i; <o < ... <'i,: % will be called the support of W;.

It is convenient for later purposes to explicitly compute the commutator
of two operators W; and W; with supports ¢ = i1ia -+ -, and J = jijo - Jm:

Wi, Wy = Wi W; (1 ()T g<lip—fq\>) . (7.121)

By means of the operators W; one constructs finite-dimensional local subal-
gebras. Indeed, again by means of (7.117) and (7.119), products of W, with
’s consisting of indices from a same interval [p, q], p < ¢, reduce up to a sign
to some other W; from the same interval. Thus, the algebra Ay, ) generated
by W; with 4 from [p, ¢] is a finite-dimensional unital C* algebra that can be
embedded into the spin algebra Mj;(C)®@—P+1 This becomes apparent by
representing the operators e; by means of tensor products of Pauli matrices:

j—1
ej = @Q(097); @ (04); @ Ui - (7.122)
i=1
Since 0,0, = —0,0,, one can check that the relations (7.119) are indeed
satisfied. The local C* algebras generate the x-algebra
A* - U A[Ln] B

n>1

and by norm closure (for instance as a subalgebra of the quantum spin chain
R, M2(C)) the quasi-local algebra

A, = (7.123)

As for quantum spin chains the dynamics on A, is given by the shift to the
right of the support of the operators Wj:

Wi = @Z [Wz] =: Wi+t = € +tCig+t " Cip+t teN. (7124)

Proposition 7.1.10. Let Wy := 1; the linear functional w : A, — C ob-
tained by setting

w(Ws) =59 (7.125)
and by linearly extending it to A, defines a tracial O,-invariant state on
Ag. This is the only tracial state on Ay if and only if the following property

holds: for all finite supports © = iyig - - -1, € N* there exists k € N such that
Si1 9k — ig]) s odd.
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Proof: The positivity of w can be checked by setting W = 3", ¢;W;, ¢; € C
and considering

wWIW)=> "¢ c; w(W] W;) .
.5

The expectations w(WiT W;) vanish unless I/V;r W; = 1 which can be true
only if each e;, in W; is matched by an e;, in Wj;. Thus, W(W; W;) = di
whence w(WTW) > 0. Therefore, w is positive, thus continuous (see (5.49))
and can be extended by continuity to the whole of A;. That wo O, = w
follows directly from (7.124) and (7.125). Such a state has the tracial property
w(Wi Wj) = w(Wj Wz)

Suppose that a state & on A, has the tracial property and that for all
finite supports ¢ = iyis-- -4, € N* there exists k such that >°,_, g(|/k — i¢|)
is odd, then [10] using (7.117) and (7.119), one gets

&V}(Wl) = (I)(Bi Wi) = L,Nu(ek Wi Bk)
= ()P D GG W) = B(W)

Therefore, w(W;) = 0 for all W; # 1 whence © = w.

Viceversa, if there exists a support ¢ = iyis - - - i,, such that for all k € N
> r—1 g(Jk—1ig|) is even, then (7.121) implies that W; commutes with A, and
thus with A,, whence, setting W := 1+ W; (w(W) = 1)), it turns out that

.Ag > Wj — Q(WJ) = w(WWJ) R Wj S .Ag s

defines another state on A, with the tracial property. O

Remark 7.1.17. The property that ensures the uniqueness of the tracial
state w defined by (7.125) is guaranteed by non-periodic bitstreams [222]; we
shall assume this in the following.

Definition 7.1.14 (Price-Powers Shifts). We shall call Price-Powers shifts
the dynamical triplets (Ag, @g,w) constructed as above with a unique invari-

ant tracial state w.

Examples 7.1.17. [13]

1. The von Neumann algebras M, := m,(A,)"” that arise from the strong
closure of A, in the GNS construction based on w are hyperfinite. By
extending © and w to M, one gets von Neumann triplets (M,, O, w)
with w still a unique tracial state.

2.If g = 0 then (M, O,,w) is an algebraic version of the classical balanced
two-valued Bernoulli shift (£22,7,, ). The von Neumann algebra M, is

.y
generated by the projections p; := 5  which are orthogonal for a

same index 7 and otherwise commute.
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3. If g # 0, because of the existence of a unique normalized trace, all M are
hyperfinite factors of type II;. Indeed, their center Z; := M N M; =0,
otherwise there would be a positive Z € Z, with w(Z) > 0 such that

w(Z W)

W;) = ———
wz(Wi) o(7)

the uniqueness of w:

gives a different tracial state on M, contradicting

) N — w(ZWi Wj) _ w(Wj ZW,;) _ w(Z Wj W,,)
25 = =) () o)

= wz(Wj W,) .

4.1f g(1) = 1 then A, amounts to a discrete Fermi algebra endowed with
an infinite temperature state. Indeed, e;e; 4 e;e; = 0 if 7 # j so that the
operators

_ €2i1 tiey ¢ €1 — ey
ap = —— 2 gl.=2 2
2 2
i > 1, satisfy the CAR (5.62). Moreover, the expectations
5
wlaja) = 5

are those of a Fermionic KMS state at infinite temperature (see Exam-
ple (7.1.3)).

5. The bitstream can be chosen such that the von Neumann dynami-
cal triplets (Ay, ©,,w) are asymptotically highly anti-commautative [222].
This means the following: there exists a subset S C A, such that 1) the
set 1US is dense in A, and 2) for any S € S, e > 0 and N € N there exist
0<ny <ng <---<ny € N such that the anti-commutators satisfy

Jfoxs. x| <

for all n; # n;. In this case the tracial state w turns out to be the only
state which is invariant under the shift ©,. Indeed, choose S € § and set

1 N
X == ; ©mi[S], then

2 1
T T it 2 il ni[ gt nj
x| 2ase st ovis)|
i#]
2 e(N—-1)
< —|8|? + ———=.

Further, if v is a translation-invariant state on Ay, then v(X) = v(S);
thus, by applying (5.49),

v(9)| = v(X)| < %(\/V(XT X) + \/V(XXT)) - \/w(XTX;— X XT)

- \/|Sll2 L e -1
- N 2N
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Because of the arbitrariness of N and e > 0, it follows that v(S) = 0 for
all S € § and because of the assumed density of the set 1US, v coincides
with w as defined in (7.125).

Like in Example 7.1.12, Price-Powers shifts are weakly mixing for all
bitstreams; indeed, because of the quasi-local structure of the algebra and
the of the tracial property of w, one need only study the asymptotic behavior
of

w(WiOq[Wj]) = w(Wi Wjie) -

Clearly, for sufficiently large ¢, 2N (§ +t) = 0, then

Jim w(Wi6,[Wj)) =0,

unless ¢ = 7 = .

As regards strong-mixing, it is convenient to consider strong-asymptotic
Abelianess first; namely, at its simplest, using (7.121), it turns out that

e 2
w (feis egpllless ejedd) = (1= (=)o)~

Therefore, unlike for weak-asymptotic Abelianess, the possibility of strong-
asymptotic Abelianess depend on the asymptotic behavior of the bitstream:;

for instance, highly anti-commutative Price-Powers shifts cannot be strongly
asymptotic Abelian.

7.2 von Neumann Entropy Rate

As seen in the introduction to this chapter, the usual setting of quantum sta-
tistical mechanics consists of a quasi-local algebra .4 which is the C* inductive
limit of local C*-algebras Ay C B(Hy ) of operators localized in finite vol-
umes V C R?; also, A is equipped with a locally normal state, namely with a
state whose local restriction to Ay, w [ Ay is a density matrix py € B} (Hy ).
Usually, w is translation-invariant, that is py 4 = py, where V + a denotes
the volume V rigidly translated by a € R3 (or by a € Z? in the case of a
lattice system).

Consider two disjoint volumes Vi and V5 and let V' := V; U V5; then,
Ay = Ay, ® Ay, and py, , = TrHVMpV, namely the states localized within
V1,2 are obtained as marginal states of py localized within the larger volume
V. Each local state py has von Neumann entropy

S(V):=8(pv) = -Tr(pv logpv) ;

then, the subadditivity of the von Neumann entropy, that is the upper bound
in (5.161) reads
S(V)<SWi) + S(Va) , (7.126)
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where the equality holds if and only if py = py, ® py,. In order to understand
the meaning of strong subadditivity in this setting, consider two volumes V'
and U such that Vo := VNU # 0 and set V; := V\ Vo, V3 := U\ Vs,
W =ViUV,UVs =UUYV. Since V; 5 3 are disjoint volumes, it follows that
Aw = -AV1 ® sz (9 -AVS; Ay = AV1 ® .AV2 and Ay = .sz X AV3; further

pve = Tray, euy, (pw) » pv = Tray, (ow) , pu = Tra,, (pw) -
Then (5.162) reads

SWUV) + S(Va) < S(U) + S(V) . (7.127)

In general, the von Neumann entropy of py- diverges when V' 1 R3 (or V 1 Z?);
on thus wonders whether the rate S(V)/|V| exists when the V T R3, Z3,
where |V| = fv dr. Among the many ways a sequence of volumes may fill
the whole space R? (or Z?), a convenient one [314] is to consider a family of

parallelepipeds V(a) := {az = (21, 29,23) € R® : —a; < ; < ai}, where
a € R} and then to let each a; — 400 so that V(a) — R.

Proposition 7.2.1 (Mean von Neumann Entropy). [314]
If (A,w) is a quasi-local shift-dynamical system with a locally normal
translation invariant state w, its mean von Neumann entropy is given by

S(V(a) _ . S(V(e)

= 1l 7.128
swhi= i Ve o Ve (7.128)

Proof: [314] Because of translation invariance, in (7.128) we can consider
parallelepipeds of the form V(a) = {m eER}:0<a; < ai}. Choose ¢ > 0
and a parallelepiped V(ag) in such a way that

L S((@)  S(V(ao)
@) =20 W@l 2 Viao)

—€. (%)

By decomposing Ry 3 a; = niag +b; withn; € Nand 0 < b; < aé, any other
V(a) can be written as the union of disjoint parallelepipeds

V)= |J Valao) U Vi(ao)
0<k;<ni—1
0<kg<ng—1
0<kz<ng-—1

Vie(ag) := {w eR?: kil <y < (ki + l)aé}

Vo(ap) := {ac € R : nyaf < x; < mgab + bi} )

Then, (7.126) yields
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S(V(a)) < (Hn) S(V(ao)) + S(Ve(ao))  (xx) .

————
[V (a)]

By translation, V3 (ag) can be embedded within V (ag); furthermore, since 0 <
b; < a}, each of them is the intersection of the interval [0, a] with an interval
[—ci,al — ci], ¢; > 0, of the same length. It thus follows that V3(ag) can be
written as the intersection Vo of V' := V(@) with a suitably translated V (ag)
denoted by U. Then, from (7.127) and translation-invariance one derives the
upper bound

S(Vp(ag)) = S(Va) < S(UUV) + S(Va) < S(U)+ S(V) =28(V(ap)) .

Finally, dividing (**) by V' (a) and going to the limit, similarly as in the proof
of the existence of the Shannon entropy rate in (3.2), using (*) one gets

S(v(@) _ S(V(ao) L S(V(a)
S )] = TViag)] = ) e < BRiiprgr +e

whence the result follows from the arbitrariness of € > 0. O

Examples 7.2.1.

1. For quantum spin chains (Az, ©,,w), the mean entropy is given by

1 1

s(w) = lm_—S(ppm) =inf —5 (ppm) » (7.129)
where py ] is the density matrix corresponding to the restriction w [ Ay )
of the translation invariant state w to the local subalgebra Aj; .

2. Because of their structure (see Remark 7.1.15), purely generated FCS
w have s(w) = 0. Indeed, the support of local states pp; ) is at most
b%-dimensional where M;(C) = B is the auxiliary algebra in the triplet
(B, p,E); then S (p[l’n]) < 2log, b.

3. Consider the Bosonic (7.22) and Fermionic (7.20) quasi-free states w4
and assume the action of the operator A on ]Lﬁr (R?) to be given by

(r4v) = [ do Katr—o)u(a) .

where the kernel K 4 has Fourier transform

~ 1 .
Ka(k):= ——= [ dee ™® K, (x
k)= s [ e
such that 0 < I?A(k:) < 1 for Fermions, 0 < IA(A(k:) < M < 4oo for
Bosons. These quasi-free states are translation-invariant and their mean
entropies can be explicitly calculated [233, 110],
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-~

DK a(k)) + n(1 — I?A(k))) (Fermions)

o
x>
7~

-~

n(Ra(k)) = 1+ Ra(k)))  (Bosons) .

X
€
=
I
_
—
o
N
/N

Remarks 7.2.1.

1. The entropy density of quantum spin-chains scales as the power of the
shift-automorphism, that is the entropy production per length ¢ time-step
is £ times the entropy production per unit time-step:

1

se(w) = lim —S (pW)) = (s(w) (7.130)
n—oo N,

where p(") = w Ao ne—1. Indeed, since the limit in (7.129) exists, it can

be computed as

1 1
= lim —S = - 5p(w) .
s(w) = Tim =S (ppng) = 5 se(w)

2. From (5.156), it follows that the entropy density is affine over all convex
decompositions of @,-invariant states w of quantum spin-chains into ©,,-
invariant components w;. Namely, if w = Zj Ajwj, with 0 < A; < 1,
>-;Aj =1, then

s(w)=> Ajs(w;), VLEN. (7.131)

3. In the case of a decomposition of a translation-invariant state w of a
quantum spin-chain into Gfr—invariant components w;, the previous two
points give

se(w) = Z/\jstg(wj) = EZ)\js(wj) , WeN. (7.132)

Let us consider the decomposition of a ©,-invariant state w over a quan-
tum spin-chain which is not ©%-ergodic into n, ©%-ergodic states (see Propo-
sition 7.1.9).

Lemma 7.2.1. Given the decomposition w = - Z;ﬁgl wj, using the nota-

n.
tion of Remark 7.2.1, it turns out that ‘

1. all states w; have the same entropy density with respect to 6L sp(wj) =
se(w), 0<j<my—1.
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2. Set sy) = %S (pg-l)), FIORES %S (p(l)) and fix n > 0; it turns out that the
subsets of states
Apy = {wj : s;e) > s(w) + 77} (7.133)
has asymptotically zero density. Namely, if #(As,,) denotes its cardinal-
ity, then
A
lim #( é,n)

Ng—00 Ny

0. (7.134)

Proof:
Part 1 Because of (7.132), sy(w;) = s¢(wp), for 1 < j < ny — 1. This fact
follows from subadditivity (5.161) and the fact that
p;ne) = wy 00,7 A, ne—1] = wo [MA{—jne—j—1 -
—_—
::pg—j,nlfjfl]

Indeed, split the intervals [—j,nfl —j — 1], 0 < 7 < ny — 1 into disjoint
pieces (notice that, according to Proposition 7.1.9, n, < ¢),

[jnl—j—1]=[-4L—-1U[,nl —L—-1]U[nl —L,nl —j—1] ;
—_———

11 Iz 13

then, apply (5.161) to the density matrices pgné) , respectively pélUIS ® pé"‘,

and use translation-invariance together with the bound (5.155). It then
follows

S (pﬁ-”l)) <S (pg]’”é_e_”) +5 (PéIUIS) <S (pé"é_%)) +2llog, d .

Vice versa, if instead of subdividing the interval [—j, n¢—j—1] of interest,
we include it as a disjoint piece in a larger one

[—lnl+L—1]=[-4,-1U[-j,nl —j—1Unl—jnl+¢-1],
—_———

I Iy I3

then, subadditivity and boundedness give

S (p;né)) > 9 (p([]—@,nf-&-@—l]) _g (pélu3> > 9 (p(()n[-&-%)) — 2log,d .

Dividing by n and taking the limit n — oo yield the result.

A
Part 2 If there were 79 such that limsup M = a > 0, then there
np—00 Ty
#(Afj,ﬂo)

would be a subsequence ¢; such that lim = a. Then, since

j—o00 ’I”ng

ng.—1
£

pthi) = Z péj, subadditivity implies
k=0
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ng, —1 ng.—1

) Ny, ) 1 < p / )

ng, s9) = -5 (p(zj)) > - 3 s (pEf”) = s
J 7 k=0 k=0

¢ : ¢
> #(Ay ) (s(w) +0) + #(47, ) min 57
Zj,
The previous point, (7.130) and (7.129) obtain

. mé; (€;)
U s(w) = s¢, (wy) = 1£1nf ES (pj ) <Uts; whence

AC
0 > PG () 4 ) 4 #(ni’”)

ngj J

s(w) .
When ng;, — oo, a contradiction arises:

s(w) = (s(w) +mo)a + s(w)(1 —a) > s(w) .

7.3 Quantum Spin Chains as Quantum Sources

Quantum spin chains (Az, Oy,w), with A = M;(C), provide useful algebraic
descriptions of quantum sources whose signals consist of quantum states act-
ing on Hilbert spaces of increasing dimension. The local states p(™) obtained
as restrictions of w to the local subalgebras A := A[1,n) describe ensembles
of quantum strings of length n emitted by these sources.

Quantum sources are one of the two ends of quantum transmission chan-
nels; like their classical counterparts, these consist of a source, a sender who
encodes, a channel which transmits and a receiver which decodes. Channel in-
puts and outputs are generic quantum states and the encoding and decoding
procedures, as well as the channel action are quantum operations described
by trace-preserving CP maps on the state-space.

In analogy with Figure 2.2, a quantum transmission scheme can be pic-
torially represented as in Figure 7.1.

1. At each stroke of time, a source A emits quantum states, represented by
density matrices p; € Bf (H), i = 1,2,...,a, H = C?, with weights p(i).
The statistical description of a single use of the source is given by means
of the density matrix p = >_7_, p(i) p;.

2. As a result of n uses of the source, the sender would collect generic
density matrices p(?,}) € B (H®"), i =iy iy € Ql(ln), with weights

i
p(™) (i(")). Consequently, the statistics of n uses of the source is described
by the density matrix
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Fig. 7.1. Quantum Transmission Channel

pt" = Z p(n)(i(n)) 5(72) ) (7.135)
Sy

which embodies purely classical correlations (the weights) and quantum

correlations due to the states pgﬁ?).

. The encoding is a trace-preserving CP map £M : B (H®") — B (KEZ))

such that £ [p (n)] = ai(n,z) are density matrices that can all be consid-

ered as acting on a same (finite dimensional) Hilbert space ng)
(n)

. The code-states Tany 8O through the (lossless) channel that transform

them as a trace-preserving CP map F(™) : B} (KEZ)) — IB%l(K(”)) such that

out

F(™) [ai(nn))] = 5((7?), the latter being a, possibly not-normalized, positive

matrix acting on a (finite dimensional) Hilbert space Kt(mi
(

ZL)) finally undergoes a decompressing procedure
corresponding to the action of a CP map D™ : Bl(K(")) — B (H®)

out
such that D™ [55&) ] = ﬁ(%

. The efficiency of the encodmg—decoding procedures with respect to the

channel action F is measured by how faithfully the decompressed states

ﬁ{z("n)) reproduce the input states p%%.

The simplest instance of quantum source is the generalization of a classical

Bernoulli process: at each use of the source, vector states |1; ) € H := C,
1 =1,2,...,a, (not necessarily orthogonal) are independently emitted with
weights p(7). The quantum statistics of n uses of the source is thus described
by the density matrix

"= ®P= Z P (™) ®pij oopiy =i (i | (7.136)
=1 =1

imen(™
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where p = 37 p(i)| v ) (s | and p™ (i) = [T}_, p(i;).

Remarks 7.3.1.

1. Quantum spin chains as they appear in quantum statistical mechanics
provide fairly general models of quantum sources. Their local states over
n successive chain sites correspond to density matrices p("™ that describe
a variety of possible quantum strings of length n consisting of separable
and entangled states that can in turn be pure and mixed.

2. Like classical strings, quantum strings emitted from quantum sources of
Bernoulli type can be chained together by tensorizing them; this is not
anymore so obvious for generic quantum strings [60].

3. Two classical strings can always be told apart, for instance by a non-
zero value of the Hamming distance that counts by how many symbols
they differ. Instead, there are uncountably many quantum strings that
can be arbitrarily close to one another, for instance with respect to the
trace-distance (6.66), and which cannot then be perfectly distinguished.

7.3.1 Quantum Compression Theorems

In analogy with classical coding, the idea how to compress quantum infor-
mation in absence of noise is to consider quantum strings acting on Hilbert
spaces H®" with n large and to map them into quantum strings acting on
Hilbert spaces H( of smaller dimension in a way that allows for faithful
decompression.

Concretely, the procedure consists in a coding operation corresponding to
a trace-preserving CP compression map £ : Bf (H®") s B (H™) and a
decoding operation described by a trace-preserving CP decompression map
D™ B (H™) — B (H®") that tries to retrieve the source signals. If the
task is to compress the information contained in n uses of a quantum source,
then each of the quantum strings in (7.136)) is subjected to the chain of maps

pﬁﬁ% = UE?% =& [PE@)] — ﬁ% =D [ngln))] : (7.137)
Any sequence {5("), D(")}n will be referred to as a compression scheme and
denoted by (€, D).

In the following, we shall first focus on quantum Bernoulli sources emitting
qubits, that is we shall consider Hilbert spaces H®" = C?" and local algebras
A = My, (C). For them, the compression rate of a scheme (C, D) is defined
as follows.

Definition 7.3.1 (Compression Rate). The compression rate of (€, D) for
a qubit quantum source (Az,w) is given by

1
R(&) := limsup — log, dim(H™) .

n—+oco T
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(n)

where H™) s the minimal support subspace of all quantum code-words Oyimy -

According to the previous definition, for large n, 2" #(€) estimates the di-
mension of the subspace supporting the encoded signals, with R(E) roughly
being the used number of qubits per encoded qubit . Clearly, one looks for
compression schemes (£, D) such that R(E) < 1 with D™ o £ asymptoti-
cally approximating the identity map in a suitable topology.

Compression of qubit Bernoulli Sources

In the case of a Bernoulli quantum source, Shannon’s noiseless coding the-
orem 3.2.2 has a natural quantum extension whereby the von Neumann en-
tropy plays the role of the Shannon entropy as optimal compression rate.

A convenient fidelity is the ensemble fidelity introduced in Definition 6.3.6;
using (6.71) it reads:

Fo ({p{0h 0} 0 o g ) = 57 pl (o) Al ) - (7138)
imenl™

It is positive, bounded by 1 and equal to 1 if and only if ﬁg?n)) = pi?n)). Useful
upper and lower bounds to F,, are obtained as follows.
If p = 23:1 ri|r;){r;j| € S(C?) is the spectral decomposition of the

(n)

state describing a single use of the source, the eigenvalues T of p®" are

of the form r;ﬁz) =: [\, rj,- Let H™ C H®" be the smallest subspace, of

dimension d(n), supporting all code-words ﬁg% and let (™ : H®" — H™)
denote the corresponding orthogonal projection. Then,

Fuo ({p0 05} D 0g) < 37 50 T (o 1)
i el
d(n)
<) e (p®M) . (7.139)
1

3

<.
Il

Indeed, the first inequality is implied by the fact that ﬁg?n)) < '™ while the
second one is the Ky Fan inequality (5.158), where e;(p®"), j = 1,2,---,d(n),
are the first d(n) largest eigenvalues of p®".

Vice versa, given I'™ : H®" — H)  consider the trace-preserving CP
map £ : B (H®") s B} (H™) defined by

EMp] =™ pr™ 4+ 3" [0)(Px|p|Pr)(0], (7.140)
| B ) LK ()

|o><0\Tr(<n—P>p)



7.3 Quantum Spin Chains as Quantum Sources 385

where |0) € H(™ is a suitable reference state. As a decompression map D),
choose the identity map on H(™ which embeds it into H®". Then,

it = Ty T 4 [0) (0] Tr (1= P) o) )

z("

whence, since pgﬁ?) is a pure state,

P ({0 10 0 80) 5 3 o0 (), 7))

imenf™
2
= > B (el 1)) = S A (2 (o, 1) - 1)
i enl™ i(n)
> 2T 1) 1 (7.141)

Exactly as the Shannon entropy in the classical case, a theorem of Schu-
macher [267, 159] shows that, for quantum sources of Bernoulli type, the von
Neumann entropy S (p) is the optimal compression rate. Namely, this rate
can be achieved by suitable compression and decompression schemes with
high-fidelity retrieval of increasingly long qubit strings; on the other hand,
compression and decompression schemes with rates exceeding S (p) perform
poorly with long qubit strings.

Theorem 7.3.1 (Schumacher Theorem).

Let (Agz, p®%°) be a qubit Bernoulli source with entropy density S(p). If
R > S(p) there exists a compression scheme (€, D) with rate R(E) = R and
ensemble fidelity Fy, tending to 1. On the contrary, if R < S(p), then for
every compression scheme such that R(E) = R the ensemble fidelity tends to
0 in the limit n — oco.

Proof: The eigenvalues 7*;.7(’2) of p®" provide a probability distribution

(n)

) = {7‘;.7(’2)}].(71)69(”) on the strings ™ € Qén) with Shannon entropy
2

nS(p). According to Proposition 3.2.2, for any § > 0, ¢ > 0 and n large
enough, there exists a subset AE") of probability

Prob(AM) = 3 #lm = ( @n F<">) >1-6
jeAl™
and cardinality d(n) satisfying
(1— 5)2n(5(p)—e) <d(n) < on(S(p)+e)

Let '™ project onto the subspace linearly spanned by the eigenvectors

|r3(.72) ) = |7 ) ® |75 ) - ®|rj, ) corresponding to the eigenvalues 7‘;?2),
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i e A" Such '™ can be used to construct the compression map (7.140);
hence, from (7.141), Fy,, > 1 —24. Also, the bounds on d(n) ensures that any
rate R < S(p) is achievable.

Vice versa, if d(n) < 2"(5(P)=¢) then, according to Theorem 3.2.2, given

the probability distribution 7(" = {r;?,)b) }j<">e!2§”)’ any subset Bj(,) with
d(n) strings has vanishingly small probability,

Prob(Bym) = 3. riw) = Tr(p Fdn))
JEBan)

for n large enough, where I, projects onto the subset spanned by the

eigenvectors relative to the eigenvalues indexed by j(") € Bg(n)- It then
follows that also the sum of the first d(n) largest eigenvalues of p®" must be
smaller than e and so also Fy,, < e because of (7.139). O

Example 7.3.1. [159] In a single use, a Bernoulli qubit source emits the
non-orthogonal states

[10) = V1—¢l0)+Ve|1), [¢) = V1—¢|0)—e[1)

where 0 < & < 1/2, with probability 1/2 each; the corresponding statistical
ensemble is described by

p = 310 )t | + 3161 )| = (1) 0)(0] +1)(1] .

Suppose thata given the 3'qub1t strings |wi1i2i3 > = |wi1 > ® |’(/}i2 ) ® |¢z3 >a
only two qubits can be transmitted; how can the transmission of quantum
information be optimized?

Since (0]t ) =(0]91) =vV1—e,(1|thg) =—(1|9p1) =cand e < 1/2,
the sender may encode and decode each 3-qubit string by tracing over the
third qubit and appending the high probability state | 0)(0| in its place:

|wil’i2’is ><’l/)i1’i2’i3 | ngzm - ng?’) o 81(3) H wiliQiS ><w111213 ]
- |wi1i2 ><¢m‘2 | ® |0><O| .

The average fidelity then results

1 ~(3
Fy) = 3 D (Virinis |2 o Wiinis ) =1—¢.

i1,12,13

A better strategy arises from considering the components of a 3-qubit string
along the eigenvectors of p®3:

|<000 | ¢i1i2i3 >
|<010 | whizis >
|< 100 | wiﬂzia >

110 | iy igis

| =( I( )
‘:(1_5\/E |<101|wi1i213>
} E |<<011|1/}i1i213>>

= 1—8\/5 ‘ 111|'(/)i1i213 |

evl1l—e
ev1l—e
ev1—¢e -
€
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Since € < 1/2, the eigenvectors | 000), | 001 ), |010) and | 100 ) provide higher
probabilities than the second four eigenvectors; let P project onto the linear
span. Observe that the unitary permutation

1000) — 000) |111) — |001)
1001) — ]010) |110) — |011)
U: ,
1010) — | 100) |101) — |101)
1100) — [110) |011) — [111)

is such that UPUT = 115, ® |0)( 0|, where 15 = Zz,jzo |37 ) (47| is the iden-
tity matrix of the first two qubits . Therefore, one can construct a compression
map as follows; first, introduce the trace-preserving CP maps

E[p] = PpP + |OOO><OOO|Tr((]l—P)p>
UEp Ut =112 ©10)(0|(UT pU) 112 @ [0)(0]

+|ooo><ooom((11— P) p) .

Then, define £ : Bf (C3) — B (C?) as &Y [p] := &P [UE[p] U] and DS
B} (C2) — By (C3) as DSV [o] = Ut o ®|0)(0|U. It follows that

D o &P p] = PpP + |OOO)<OOO|TY<(]1—P)p) .

. ~(3 3 3
ThUS, with pl(lz?QiS = ’D; ) © 52( )H wi1i2i3 ><wi1i2i3 H?
N C)) LN o Pl s M2
<w212213 |pi1i2i3 WJHZQZS > - |<w111213 | lelmls >|
+ {000 | i imis ) (Diyinis | (1= P) [4455 )
=1-9¢% +15e* — 9¢° 4+ 265 .

As the right end side of the last inequality is the same for all 3-qubit strings
considered, this is also the value of the fidelity F(E?,) As shown in the figure
below, the latter turns out to be larger than FY) for0<e< 1/2.

Compression of Ergodic Quantum Sources

As showed in Section 3.2.1, Proposition 3.2.2, Theorem 3.2.1 and Theo-
rem 3.2.2 establish the role the entropy rate as the optimal compression
rate of classical ergodic sources. Theorem 7.3.1 assigns the same role to the
von Neumann entropy in the case of quantum sources of Bernoulli type.

For this particular family of quantum chains, the von Neumann entropy
coincides with their entropy density as defined in Section 7.2; it is thus ex-
pected that a kind of general Quantum Shannon-Mc Millan-Breiman Theorem
should hold for generic ergodic quantum sources. The relevance for quantum
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-0.05

Fig. 7.2. Fé?) — Fa%) against 0 <e < 1.

information of quantum spin chains endowed with states with a more general
structure than a tensor product has been emphasized in Section 7.3, where
analogies and differences between classical and quantum contexts have also
been outlined.

In particular, in Remark 7.3.1.2 it was pointed out that, unlike for classi-
cal bit strings, one cannot profit from any natural ”chaining together” qubit
-strings. Though ideas how to circumvent such a problem have been put for-
ward [60], this fact represents an obstruction to a full quantum generalization
of the classical Breiman theorem. The latter is an almost everywhere state-
ment regarding single sequences, while the Shannon-Mc Millan formulation
is concerned with statistical ensembles; of this theorem there exist a number
of extensions to particular non-commutative settings [223, 240, 169, 94] and
a full quantum extension [58]. This general result has then been used [59] to
devise compression protocols for ergodic sources consisting of encoding and
decoding procedures similarly to what outlined in the previous section.

Theorem 7.3.2. Let (Az,O,,w), with A = My(C) as site-algebras, be an
ergodic quantum spin-chain with mean entropy s(w). Then, for all § > 0
there is N5 € N such that for all n > Ny there exists an orthogonal projection
pn(9) € Ay, such that

1. w(pn(6)) = Tr, (0™ pp(6)) > 1 -4,
2. for all minimal projections 0 # p, € A, dominated by pp () (p < pp(9))

(1 _5)2—n(s(w)+6) < w(pn(é)) < 2—n(s(w)—6) ,

3. 2n(s(w)75) < Trn(pn((;)) < 2n(s(w)+6)'

That the above results extend Proposition 3.2.2 is apparent: classical high
probability subsets are replaced by orthogonal projections p,(d) whose sta-
tistical weight with respect to the translation-invariant state w is nearly 1;
further, the typical subsets correspond to orthogonal projections whose nor-
malization (dimension of the associated Hilbert subspaces), Tr(p,(d)) goes
as 27(@) for large n.
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Like in the case of a Bernoulli quantum source, the proof of Theorem 7.3.2
hinges upon considering the discrete probability distributions 7(*) = {ry) }fil
consisting of the eigenvalues of the density matrices p(© describing the restric-
tions w to the local subalgebra A, = My(C)®* with spectral decomposition

Pt = Z r(l | The Shannon entropy H (7)) equals the von Neu-

mann entropy S ( (5)); further, from the definition of entropy density s(w),
given 71 > 0, for infinitely many ¢ one has

s(w) = inf = S( )<£S( ):%H(W(Z))Ss(w)+n. (7.142)

For Bernoulli quantum sources, the products of eigenvalues of single site
density matrices provide a natural Bernoulli stochastic process, whose en-
tropy density s(w) is exactly the von Neumann entropy of p. Such a struc-
ture is missing in the case of generic ergodic quantum source. However,
from (7.142), one observes that choosing ¢ large enough, S (p(z)) ~ (s(w).
Moreover, the eigenvectors \rlm ><r§€) | are minimal projections generating
a maximally Abelian subalgebra © C Ay, and the eigenvalues rl@) define
a probability 7(¥) over the symbols i € I := {1,2,...d*}. By tensorizing
copies of the Abelian subalgebra ®, one can embed the Abelian subalgebras
D, = D" into the local algebras A,,, and C*-induction yields a quasi-local
Abelian algebra ©>° embedded into the quantum spin-chain Az.

The Abelian algebra D> is clearly associated to a triplet, or symbolic

model (.(NZI, . u(f)) (see Definition 2.2.5 and the preceding discussion) where
2, is the space of sequences of symbols from I, T, is the shift along these

sequences and p¥ is the measure on QI that arises from 7(©. Further,
from (7.130), the (classical) entropy rate is

h(p®) = Tim LS (6 = s(w) = £5(0) (7.143)

n—oo n

As the automorphism over D°° corresponding to the shift 7, on ﬁl is not
O,, but its f-th power ©F the Abelian spin-chain associated to the symbolic

model of above is (33?", 6L w [33?0) (see Defintion 2.2.5 and the preceding
discussion). The state w is ©,-ergodic, but not in general G%-ergodic. If it
were O -ergodic, ( , 6L w F’D?O) would amount to an ergodic process and

we could use the classical techniques as in Proposition 3.2.2 with the mean
entropy h(w [D3°) = ¢s(w) in the place of the Shannon entropy as follows
from the classical Shannon-Mc¢ Millan-Breiman result in Theorem 3.2.1.
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Remarks 7.3.2.
1. The ergodicity of the embedded Abelian spin-chain (Z)?O,@ﬁ,w [’D?")

would follow from that of the quantum spin-chain (.Az,@(l;,w), since

otherwise the resulting decomposition of w [D$° into ergodic components
would provide a decomposition of w as well.

2. In [240], the quantum Shannon-Mc Millan theorem was proved under the
assumption of Qf(f)—ergodicity of the spin-chain state w: such a property is
known as complete ergodicity. This restriction has been removed in [58].

The possible lack of ©%-ergodicity can be overcome by means of Propo-
sition 7.1.9 and of Lemma 7.2.1. Indeed, the argument of above can be de-
veloped for the ©%-ergodic components w; indexed by j € Aj,, for which

s¢(w;) = £s(w) and sge) =15 (p;z)) < s(w) + n, for some fixed n > 0. For
(0

] .

corresponding to their spectra, the Abelian subalgebras 7

gﬁ), 1 € I, and the associated ergodic

Abelian spin-chains ( ?f,@f,,wj [@f’) Because of the bound (3.7) in Re-

mark 3.1.1.1 and of the choice of indices j € AZT;’ these chains have entropy
rates

each of these wj, one considers the local states p;’ over Ay, the probability

distributions 7rj(-€)
generated by their spectral projections p

hy < H(m) = 8 (o) < £(s(w) +1) . (7.144)

After identifying strings (™) of symbols from I ;7 with minimal projections

; ‘
Dy € DI C Ayp, so that Wgzl)) = Trpone—1 (p(”@pim))7 one can choose

positive €, and select subsets of minimal projections,

Cj(n) = {Pim) €@ : 27T < Tygg gy (P pyny) < 2770
(7.145)
such that, by using Proposition 3.2.2, Theorem 3.2.1 and (7.144), for n large
enough

H#(CS") = Trig ne—1)(pym) < 27040 < gn(taldtm+d) (7.146)

ﬂ](-n)(C](-n)) = Z Tr[o’nzf1]p§-n)) >1-
Py €CS™

, (7.147)

| ™

(n) ._
where p;" 1= Zpi(mecy” Dyi(n) -

In order to use these arguments and conclude the proof of the quan-
tum Shannon-Mc Millan theorem, some further results are needed. The first
one deals with discrete subsets equipped with (not necessarily compatible)
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probability distributions and with the asymptotic behavior of their minimal
cardinality.

Lemma 7.3.1. Let D > 0 and {(Inﬂ'{n)} N be a countable family of finite
ne
sets I, of cardinality #(I,) with associated probability distributions m, =

{pn(?) }ic1, - Suppose ! logy #(1,) < D for all n and define
n
Qe () == min{log2 #2) : QCI,, m(2)>1- 5} . (7.148)
I Ina n 12}
(b))

1 1
lim —H(m,) =h<oo (1) and limsup Easm(ﬂn) <h (2),

n—oo N n—00

for all e € (0,1), then

1
lim —ag,(m,) < h, Ve € (0,1) . (7.149)

n—oo n

Proof: Let 6 > 0 be arbitrarily chosen and distinguish the following dis-
joint subsets of I,,:

1L(8) = {z el : mali) > 2*"“1*5)} ,
12(6) = {z e, : 27" <) < 2—"(h—5)} 7
3(6) = {z €1, ¢ mali) < 2*"<h+5>} .

= b > 0; then, there exists n such that

Suppose 1 > limsup,,_, . 7, (13(5))
) < 1—b. Choose 0 < & < b;if m,(§2) > 1—¢,

T (13(8) > b and m, (I () UL2(9)
l—e<m2) <1-b+m, (Q N Ig’(é)) implies
b—e <, (rz N 13;(5)) < #(9 N 13(5)) 9=n(h+d  and

1og2#(r2m,§(5)) > logy(b—¢) + n(h+0)

1
whence lim —ag ,(m,) > h+ 0 contradicting the second condition in the

n—oo N

statement of the lemma. Thus, hm 7, (I3(8) = 0.

It also follows that I3 (9) cannot asymptotically contribute to the Shannon
entropy H(m,); indeed, applying inequality (2.85) to the (non-normalized)
™ (17(9)
#(L3(9)
that > s 5 Pn(i) = 2icrs s) dn(), yields

distributions {p, (i) }icss (5) and § ga(i) := } , which are such
€13 (5)
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1 . . 1 ) .
h = — Z P (i) logy pp (i) < - Z Pn(i) logs ¢n (1)
i€l (5) i€13(9)
1 . 3 3
= == 3 puli)(loga ma(I3(0)) — logy #(12(0)))
i€13(5)

IN

a(13(5)) - oy ma(I3(9) + Dra(I3(9))

The right hand side of the last inequality goes to 0 with n — oo due to
7o (I2(8) — 0 with n — oo and because log, #(I,,) < nD by assumption.
Further, this very same fact implies lim,, o 7,(I1(6) = 0 for all § > 0,
otherwise

1 1 1
g _ = . N . N 13
SH(m) = > pali)logz p(i) — — | > pali)logypn(i) — b
i€IL(6) i€I2(5)
< (I, (8)) (h = 8) + ma(13(8)) + By
<+ 6(malIL(0)) = ma(12(6))) + B
would contradict the first condition of the lemma for sufficiently small J.

Consequently, lim 7, (I2(5)) = 1 for sufficiently small 6. Thus, choosing
n so that 7, (£2) > 1—¢ and 7, (I2(5)) > 1—n, it follows that m,, (Qﬂ[ﬁ(é)) >
1 —¢e —mn, whence
#(Q N 1721(5)) >(1—e—n) 27(h=3) implies
1 1
Eas’n(wn) > ﬁlogz(l —e—n)+h—90.

Since § can be chosen arbitrarily small, the result follows. O

Returning to the probability distribution 7(©) associated with the ordered
spectrum of p(¥), fix ¢ € (0,1) and set

k
N.y = min{l <k<d Y rl">1- 5} , (7.150)
=1

so that Oég,[(ﬂ'(e)) =logy N. . If

1

lim sup 7Ne < s(w) , (7.151)
{— 00

then, together with (7.142), this allows using Lemma 7.3.1. As follows: let I,

be the set of indices labeling the eigenprojections | ry) )(ry) |. Then, choose

0 < &’ < & and consider the subset I7(¢) as constructed in the lemma and

set



7.3 Quantum Spin Chains as Quantum Sources 393
OSSR
i€12(87)

It turns out that, for ¢ sufficiently large,

T(pOP@) = > =a 2@ 215
ie€IZ(8")

Further, every minimal projection p < P(d) dominated by Py(d) projects
onto a vector of (C2)®¢,

p=leXwl, lv)= > alr?)y, > jaP=1,

i€I7(8") i€IF(6")
whence, by the definition of the subset I7(5’)

9—L(s(w)+9) - 9—L(s(w)+d") ~ Tr(p(l) p) < 9—L(s(w)=6") ~ 9—l(s(w)=3)
Finally, from Tr(p® Py(6)) > 1 — 6 and

H(IF(5) 27 @) < Tr(p® Py(s)) = Y rf? < #(17(8)) 2770
iel2(8)

it follows that (1 — §)2/C)=9 < Tr(Py(8)) = #(I2(8")) < 2°6WIHD) thus
concluding the proof of Theorem 7.3.2.

Of course, it remains to be showed that (7.151) really holds true. The proof
of this fact hinges upon a per se interesting result concerning the minimal
dimension of the so-called high probability subspaces. Practically speaking,
these are the relevant subspaces: as already seen in the case of Bernoulli
quantum sources and as it will be showed at the end of this section, they
allow for quantum compression with reliable retrieval.

Definition 7.3.2 (Typical Subspaces).

1. Given a quantum spin chain (Az,w), projectors p, € A, such that
w(pn) = Tr(p™ p,) > 1 — ¢ will be termed w-typical projectors and w-
typical subspaces the subspaces of (C4)®™ onto which they project.

2. For any € > 0, let

Ben(w) = min{log, Tr(q) : Ay 3 g =q' =g, Tr(p™ ) 21 -2}
(7.152)

The following result relates the spectrum of local states to the dimension
of high probability subspaces [58, 140, 141].

Lemma 7.3.2. 3. ,(w) equals N.,, in (7.150).
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Proof: By definition,

(3 I ) = e 3 ) 21 e

whence e, (w) < N. 5. If the inequality is strict, then there exists a projec-
tion ¢ € A,, such that m := Tr(q) < N.,, and Tr(p(™ ¢) > 1 — . Then, using
Ky Fan inequality (5.158), a contradiction emerges:

1—e<Tr(p™ q) =3 (gl p™ |gi) <> W <1-¢,
i=1 i=1
where | ¢; ){¢; | are minimal projections such that ¢ = >/~ [ ¢; ){q; |- O

For showing (7.151), the key result is
Lemma 7.3.3. For an ergodic quantum spin-chain (AZ, @g,w)

1
lim sup Eﬂsm(w) <s(w), Vee(0,1).

n—oo

Before proving it, observe that the previous two lemmas imply a quantum
counterpart to the AEP (see Theorem 3.2.2).

Proposition 7.3.1 (Quantum AEP (QAEP)).
Let (Az,0,,w) be an ergodic quantum source with entropy rate s(w).
Then, for every 0 <e <1,

lim %ﬁe,n(w) =s(w) . (7.153)

n—oo

Remark 7.3.3. Operatively, the previous proposition states that any se-
quence of typical projections must project onto subspaces whose dimension
goes as 2@ asymptotically.

Proof of Proposition 7.3.3 Lemma 7.2.1 ensures that for any ¢ > 0 and
fixed n > 0 there exists L € N such that ¢ > L implies

0< #(Aen) < #<A§m) —1_ #(Aen)

3
-, 21,
Ty 2 Ny Ty

N ™

Consider the @ -ergodic components w; of w, the sets CJ(-n) in (7.146) and

the smallest projector ¢! := vjEA;fnp(n)

(n) - c
; larger than all p;7, j € A7, . If

J
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m=nl+r, 0<r<lset g, :=q™) @ Up,ne+r—1) and, by means of (7.147),
estimate
1 ne—1 ( )
Tr[07m—1] (p(m)(bn) = TTZ Z Tr[o}m_l] (pjm q'm)
§j=0
1 ng—1
nl) (n
- e Z Tr[o,nE—l](Pél )q( Z)
j=0
n[—l AC
gy > Pad g 8y 5 0

1
> e jz::o Trio,ne-1] (Pj p; ) = Tig

Then, definition (7.152) and (7.146) imply

Bem(w) < 1ogy Tr(g m—1)(gm) = log, Tr(g ne—11(¢™?) + rlogyd
<logy( > Triomey@")) + rlogyd

JEAD ,

<logy #(A7,;) + n(€(s(w) +n) +96) + rlogyd ,

whence the result follows from the arbitrariness of 7 and § and from

. 1 . 1 )
lim sup Eﬁg)m(u}) < hmsupalog2 #(Ag,) +sw) +n+ 5.

m— 00 m— 00 £

Universal Quantum Compression

Based on the classical construction of universal codes [325, 168], of which a
particular instance has been given in Section 3.2.1, one may disengage the
compression from its explicit dependence on the quantum source statistics
by resorting to Universal Quantum Compression Schemes [163].

In the following, the construction in [163] will be slightly modified. We
shall consider a quantum spin chain Az with an ergodic translation-invariant
state w, an increasing sequence of local subalgebras A, as defined in Sec-
tion 7.3 and local states w [A,, described by density matrices P,

The idea is to construct the analogous of the typical subsets A" as in the
proof of Proposition 3.2.3, with cardinality growing as 2" and probability
771(4") (AM) tending to 1 with n for all sources A (Bernoulli in that case)
with entropy (rate) H(A) < R. As always when passing from classical to
quantum sources typical subsets will be replaced by typical subspaces and by
the associated orthogonal projectors.
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Theorem 7.3.3 (Universal Typical Subspaces).

Let s > 0 and € > 0. There exists a sequence of projectors Qﬁ’,? € A,,
n € N, such that for n large enough

Tr(Qg@) < gnls+e) (7.154)

and for every ergodic quantum state w on Az with entropy rate s(w) < s it
holds that
lim w™(Q() = Tr(p™ Q) = (7.155)

n—oo

Definition 7.3.3. The orthogonal projectors Q(gne) in the above theorem will
be called universal typical projectors at level s.

We subdivide the proof of Theorem 7.3.3 in various steps.
Step 1 Let £ € Nand R > 0. Any Abelian quasi-local subalgebra C3° C Az
constructed from a maximal Abelian /—block subalgebra C, C A,, together
with the probability distribution w [C;® corresponds to a classical ergodic
stochastic process.

The results in [168] imply that, independently of the latter, there exists a
universal sequence of projectors (corresponding to classical universal typical

subspaces) pgl])% € C,S") C Ay, with

—1ogTr( "2 <R, suchthat lim 7 (p{")) =1

n—oo

for any ergodic state m on the Abelian algebra C;° with entropy rate s(m) < R.
Notice that ergodicity and entropy rate of m are defined with respect to the
shift on Cp°, which corresponds to the ¢-shift on Az.

One then applies unitary operators of the factorized form U®", with U €
Ay unitary, to the p ) and introduces the projectors

wi') = V Uenp e e A (7.156)

U€A, unitary

These are, by definition, the smallest projectors such that, for all U,

@n (n) rrx@n (¢n)
Uy gU™" <wy

Let p(n) Y icr | z(n) )(zz & | be a spectral decomposition ofpé Izi (withI c N
some index set), and let P( ) denote the orthogonal pI‘OJeCtOI" onto a given

subspace V. Then, w%g) can also be written as

w%;i) =P (Span{U®n|Z(n) )y 1 iel,Ue A, unitary}) :
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It proves convenient to consider the projectors

We(e;) =P (span{A®”| z(n) )y rielAe Ag}) , w(gfgg) < We(,[;) .

(7.157)
Given m =nl + k withn € Nand k € {0,...,¢0 — 1}, let
wén;;) = wézg) ®1% c A, , Wz(fg) = Wz(ﬁg) ®1% c A,

These are projectors and, as in [160], one estimates the trace of VVe r €An
as follows. By an argument similar to that used in the proof of Lemma 3.2.2,
the dimension of the symmetric subspace SY M (Ag, := span{A®" : A € Ag}
is upper bounded by (n 4 1)3m(A) | thus

Tew ) = TW 5 Trl® < (n41)2 Tip{")-2° < (n4+1)%" 2.2 (7.158)

Step 2. Consider a stationary ergodic state w on the spin-chain A4z with
entropy rate s(w) < s. Let £,0 > 0. If £ is chosen large enough, then the

projectors wéﬁ?, where R := {(s + 5), are 0—typical for w i.e.

ﬂ(<m <U)>1—5

for m € N sufficiently large. This follows from the result in Proposition 7.1.9

concerning the convex decomposition of the ergodic state w into k(¢) < ¢
k(1)

states wz l , sz . » that are ergodic with respect to the £—shift on

Az and have an entropy rate (with respect to the £—shift) equal to £ s(w).

Moreover, according to Lemma 7.2.1, for every A > 0, if one defines the
set of integers Ay A = {i € {1,...,k(0)} : S(wz(ze) > U(s(w) + A)}, then
these states enjoy the following property with respect to the von Neumann
#(Aea) 0

k(O

Let C; ¢ be the maximal Abelian subalgebra of A, generated by the one-
dimensional eigenprojectors of the density matrices corresponding to w( ) ¢
Ay. The restriction of w; ¢ to the Abelian quasi-local algebra C2 generated
by C; ¢ is again an ergodic state. From the properties of the entropy density
and of the von Neumann entropy one derives the chain of bounds

entropy: Zlim
— 00

0 s(w) = s(w')) < s 165%) < 5w 1¢i0) = W) .

Further, with A := £—s(w), ifi € Ajf 4 one has the upper bound S(w (l)) < R.

Let U; € Ay be a unitary operator such that szgmpénl)%U xon ¢ Cf? For
every 1 € Aj 5, it holds that

W (W) = P UEm U — 1 (7.159)

/Li



398 7 Quantum Mechanics of Infinite Degrees of Freedom

We can thus fix an £ € N large enough to fulfill #(k/g’f) >1- and use the

ergodic decomposition to obtain the lower bound

n In 1 In In o In
SR 2 i 3 P 2 (1-3) in W i)

1€EA7 A
i€AS 4

Then (7.159) yields
W W) 2 W (i) =14 .

Step 3. One can now proceed as in [163] and introduce a sequence of inte-
gers ,,, m € N, where each ¢, is a power of 2 fulfilling the inequality

(2% <m < 20,,23%m (7.160)

Let the integer sequence n,, and the real-valued sequence R,, be defined by
€

N i= | 7], respectively Ry, := £y, - (5 + 5) and set

(Crmmm) : _ 3lm
Q) = | Veln, ifm = 6270 (7.161)
Wg(m'jlg:) ® id®(m—fmmm) otherwise .

Observe that

1 45m ] m+1 m 1
— log Tr ngsb) < logTrQ _M+R_+_
m ’ nmfm b Nm lp Nm
4fm6£m+2+ ey 1
= 4, 23tm —1 2 23m — 17

where the second inequality follows from (7.158) and the last one from the
bounds on n,,

93tn _ 1< L] <, < L <98t
b L,
Thus, for large m, it holds
1 (m)
—log TrQy" < s+e. (7.162)
m :

By the special choice (7.160) of £, it is ensured that the sequence of projectors
2’,’2) € A, is indeed typical for any quantum state w with entropy rate

s(w) < s. This means that {ng’;)}meN is a sequence of universal typical
projectors at level s.
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7.3.2 Quantum Capacities

The x-quantity in Holevo’s bound 6.33 limits the amount of classical in-
formation that can be retrieved by a POVM measurement from encoding
classical symbols i € T4 = {1,2,...,a} by quantum (mixed) states, i — p;
coming from a mixture p = > ., pip; € B (H) with a priori probabil-
ities p;. In particular, the bound is in general hardly reachable; however,
like in classical capacity theory, the amount of retrievable classical informa-
tion per transmitted quantum state can be made arbitrarily close to the
Holevo bound by means of suitable encodings of longer and longer strings
i = 1191y € 11(4") := T4 x ---I4. Also, the Holevo bound is a limit to
H/_/
n times

the classical information per letter that can be encoded into quantum states
and retrieved with negligible errors. As we shall see, this state of affairs will
lead to different definitions of quantum capacities.

In order to prepare the ground for a detailed discussion, appropriate no-
tations must be introduced.

We spectralize p = ZaeIp r(a)|r(a))(r(a)l, set I} := I, x ---I,, denote

——

n times
a™ = qjag - ay, a; € I,, and write

n

r(a(”)) — HT(Oéi) , |a(n)> = ®|7“(Oéj)> (7.163)

i=1

p(z(n)) = pi, ® Pis ® - “Pi, s P(Z(”)) = Hpij (7164)

P — Z P(i(n)) p(i(”)) — Z r(a(”))|a("))<a(”)| (7.165)

i(")elﬁln) ameln

On the other hand, the spectral decompositions of the quantum code-words

pi =Y p(kli) [p(kli)){p(Kli) |, (7.166)

kelJ;

with eigenvalues 0 < p(k|i) < 1 and eigenprojectors | p(k|¢) ) (p(kl|i) |, provide
conditional and joint probabilities.

Denote by A respectively K (™), the stochastic variables with outcomes
i respectively k™ = ik, - ki, € Ik, where Iy := Ui(n)elg J(@E™)
with J(3™) = x"_,J;,. Finally assign to A and K™ conditional and
joint probabilities deﬁned by Trcmam = {P(k(" ‘Z(n)}ﬁ")elg M (i)
where

P(E™Mi™) =[] plksliz) . (7.167)
Jj=1
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and by 400y o0 = {PE™, ™)} 00y g ery, » Where
PGE™ k™) .= PE™) P(e™ ™) (7.168)

Shannon entropies are computed using (7.164) and additivity of von Neu-
mann entropy, as follows:

H(A™) =nH(A)=n)_p;log,p; (7.169)
i=1
H(AM v KMy = HAM) + > PE™) H(K™ ™)

imery

= H(AM)+ 3 PE™) S(p™))
imery

- n(H(A) " S(pi)) . (7.170)
i=1

According to the AEP (see Proposition 3.2.2), for any fixed £ > 0, we can
distinguish a subset of 74 -typical strings i e Ug(n) C Il(qn) and a subset
of T gty ge(m-typical strings (i, k™) e v ¢ IXL) X Igl). These subsets
are such that 4 (U™) > 1—¢ and T4y geo (V) > 1 —e. Furthermore,
if i € U™ then

o~ n(H(A)+e) < p(i(n)) < 2 n(H(A)=e) (7.171)
while if (", k™) € VI, then

+Z?:1Pi5(m)—a)

(7.172)
As for classical capacity (see Section 3.2.2), we distinguish one more typical

2—n(H(A)+Z?:1piS(pi)+€) < P(Z(n),k(n)) < 2_n<H(A)

subset, W™ C Il(f) X IJ(B"), consisting of all jointly typical pairs, (i, k™) e
VI where also i™ € 4™ From (7.168), (7.171) and (7.172),

2—n(S(P)—x+2€> S(p)—x—26>

< P(E™}i™) < 2_n( ; (7.173)

where (6.33) has been used and y is Holevo’s y-quantity for p and its decom-
position p = >"7 | pip;. Finally, in terms of (7.164) and (7.165),

p(i(n)) - Z P(k(")|i(")) \P(k:(”)ﬁ(”)))(P(k:(”)|i(”))| (7.174)
k() eJ(im)
PO = Z P(i(”),k(”)) |P(k(n)|i(n)) ><P(k(n)|i(n))| , (7.175)
i(mery

k() cga(n))y
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where (see (7.166)) | P(k™[i"™)) := Q"_, | p(k;lij)).
As showed in the proof of Theorem 7.3.1, for any ¢ > 0 there ex-
ists an orthogonal projector II. € B(H®") that commutes with p®" and

Tr(p®™ I1.) > 1 — e. Analogously, if the sum in (7.175) is restricted to W,
one gets a positive operator p, < p®" € BT(H‘X’") with

Tep, = 3 P@E™ kM)
(10 ) ew™

_ ( DY )P(i("),k(”)) >1-2. (7.176)

(i("),k("))GVén) (i("),km))evén)
i(n) gy (™)

Theorem 7.3.4. [136, 269] Let p =", pipi € BY (H) provide a statisti-
cal mixture of quantum states available for encoding symbols i € I, emitted
by a classical source; let x := x (p, {pipi}ic1,). For any fized § > 0 and suffi-
ciently large n, there exists an encoding i™ — E(E™) = p(i"™) on a subset
IxC It consisting of M strings and a decoding POVM

BE®") > B = {{| 9k ) (w(k™) |}

(M) ef,
@) k(n)yew™
U= Y ™) ek

i(n) €ly
(i(n),k(n))gwé”)

M
such that P X’ < 0 and e, < §, where e, is the decoding error
! (n) 5(m) (n) 5(m) OONTE
enimlogr S0 PO [@EE) | PE))]
(M) el
k(n) eg(n))
(7.177)

The strategy of the proof consists of the following steps.

() and to encode

cach of them by a density matrix £(i") = p(s™). The encoding thus
provides the density matrix

n 1 -(n
p(g)::M Z GEM)

1. choose an equidistributed set I A C I of M sequences 1

i(">efA
1 n - (1 n (M n «(n
= 4 S PE™EM) [ PR ) ) (PRI | (7.178)
i ely

k(M) eg@(n)
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Choose random encodings £ as in the proof of Theorem 3.2.3: the ar-
gument does ensure that the required encoding and decoding procedures
exist, but does not provide concrete instances of them (for a similar result
see [144, 146]).

As regards the decoding protocol, the idea is to try to identify by
means of (possibly of norm less than 1) vectors | @ (k™]i™)) only those
| P(k™]i™) ) in (7.178) which are labeled by pairs (s, k) € W™
after the same have been projected by II. onto the chosen high probabil-
ity subspace of p™. All other | P(k™[i™)) will be made correspond to
|w(k™]i™)) = 0.

The non-trivial decoding vectors are constructed as follows. (For sake

of simplicity we shall denote multi-indices 4™, k™ as i and k. Set
|®(i, k)) := II.| P(i,k) ), consider the matrix S with entries

St = (2(0.0) |91 F)) = (P(R0) | 11 |P(R[D) . (7.179)

where i,7 € T4, k,k € J(i),J(7) and (i, k), (i,k) € W This matrix is
positive and its square root defines vectors |¥(i, k) ) such that [136]
v

VS in.Gm = (E(kli) | @(E[7)) = (w (ki) | P(E[7)) -
Namely, Q’1/2| ®(k|i) ) where Q~1/2 is the (positive) inverse square-root
of @ := Z | (ki) )(P(k|i)| (defined only on the range of @Q), where Z
(i,k) (i,k)
denotes the sum restricted to the pairs (i, k) € We(n)
The error (7.177) is complementary to the ensemble fidelity (see Defi-

nition 6.3.6) that has been used in Theorem 7.3.1. Using the previous
definitions and that @~'/2 > 0, it can be bounded as follows:

en < = > P (1~ (k) | PRI

2 - ,
<2-47 > P VSiimyim - (7.180)

i€la (isk)

Proof of Theorem 7.3.4 Since 2(z —/z) < z—2? for all z > 0, the same
inequality holds by substituting x with the positive matrix S in (7.179);
taking diagonal values:

3 1
VSaryiin = 5 Sarsim — 5 2 Seri60 SGosm -
(54)

Then, using the first inequality in (7.173), the bound (7.180) can conveniently
be recast as follows
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erb_2_7zzpk| (i,k);(i,k)

iely (i.k)
Z Z (i k) (4,6)
zGIA (i,k)
Qn(S(p) x+2¢) ' )
+ — Z Z P(k[i) P(£17) Sei,k);05,0) S(.0)5(i,k) -

% jEIA (4,k)#(4,0)

Suppose now to choose the M words i eI, randomly according to the
probability distribution P(i); we obtain in this way a statistical ensemble of
random codes and, as much as in the classical case, by averaging over the
contributions of the randomly chosen i one eliminates the dependence on
I4 and remains with a sum over all i) e I't. Therefore, the average error
can be estimated from above by

<2-3 Z ZP P(kli) S(Z k);(4,k) (7.181)

ier( (i,k)
Ly
+ > Z P(i S2 ki) (7.182)
ze](") (’L k)
Log
M(M —1)

on(S(p)—x+2¢)
M

x> > P@)P) P(k[E) P(CF) S ke Siieyik {7:183)

1jel( ()20

Loy,
From (7.179) and (7.176),
L= Tr(ﬁnﬂs) - Tr(p@mUE) - Tr((ﬁn - p®n)HE) >1-3 (1).
Further, S r),ix) < 1, thus Ly, < 1 (2a). Finally, the last sum can be

bounded from above by observing that if 0 < A < B and 0 < C' < D, then
by means of cyclicity under the trace operation,

Tr(AC) = Tr(VACVA) < Tr(AD) = Tr(VDAVD) < Tr(BD) .

Therefore, since 11, commutes with p®”, Lo, < Tr (HS (p®”)2); on the other
hand, from the quantum AEP we know that the dimension of the subspace
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projected out by I, is < 25()+e) with eigenvalues < 2 "(5(P)=¢) wwhence
Loy < 27 7(5(P)=32) (2p). Altogether, inequalities (1), (2a) and (2b) yield

el <2 —3(1—3¢) + 1 + M2 (x5 — g 4 97 n(x—F-%)

where we have put the growth rate R into evidence M = 2"%. The latter
can be chosen arbitrarily close to the Holevo y quantity and still the average
error becomes negligible with n — oo. Therefore, for any 6 > 0 and n large
enough there is an I4C It with R> x — 0 and e,, < 4. [l

Example 7.3.2. Suppose the sender encodes classical symbols ¢ € [ into
states that she obtains by acting locally with unitary operators U; on her
system in a state p12 € My, (C) ® My, (C) which she shares with the receiver.
She selects the unitary operators U; with probabilities p;, and after changing
p12 into p; = U; @15 p1o UJ@I[ she sends her system to the receiver. The sender
tries to maximize the information accessible to the receiver by optimizing the
Holevo bound, thus seeking [71]

Oy = g}%}f{S(p)—ZmS(pi)} ; P:Zpipi~

Note that S (p;) = S (p12) for unitary transformations do not change the von
Neumann entropy; in order to maximize S (p), consider the marginal states

PV =Tra(p), PP =Tri(p) = p2 (= Tri(p12)) -

By subadditivity (5.160) and (5.155),
Cnr <8 (p) 4+ (p2) = S (pra) < log di +5 (p2) = S (pr2) -

Choose as unitary operators the d7 Weyl operators Wy, (n) of Example 5.4.2
with equal probabilities 1/d?; then, using (5.88) and (5.30), one gets

1 1
P=r Z Wa, (n) @ 1y p1o Wy, (n) @ 1y = di@pz ,

n:(nl,nz)

so that Cps > log dy + S (p2) — S (p12). This transmission protocol can thus
achieve an optimal quantum transmission rate Cp; = log d1+S (p2) —S (p12).

In general, like in classical transmission, the quantum states that have
been used to code and transmit information are subjected to perturbing
effects of the transmission channel which is being used. Concretely, if the
the quantum code-words are projections P; € My(C) chosen with probabil-
ities p;, thus making a statistical ensemble described by the density matrix
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p = >, pi P;, a probability preserving channel acts on them as a trace-
preserving CP map A. In the light of the previous theorem, the channel
capacity is defined by [145, 276]

C[A] = max {S (Alp]) = sz- S (A[Pi])} :

As much as for the entanglement cost (see (6.8)), in order to improve the
capacity, one may consider n uses of the channel, thus a CP map A®" acting
on states on My(C)®" which may carry entanglement between different uses.
Then one introduces the reqularized capacity

ColA] = lim (A% .

n—-+oo n

Such a limit exists because the capacity is superadditive; indeed, consider
C[A1 @ Az] and two statistical ensembles {pgl) , Pi(l)} and {pgl) , Pi(l)} that
achieve Cyr[41], respectively Cyr[As]. The additivity of the von Neumann en-
tropy over tensor products states implies that, for the not necessarily optimal
statistical ensemble, {pgl)p?) , Pi(l) ® PJ,(Q)}7

Culty @ 23] = 5 (m[pM]) - meg( )
+ S(/lz [p?] ) Zp(ms( P(z ]> — ot Ay] + Carlda] -

Were the capacity additive, the regularized capacity would coincide with
Chr[A]. This is another important open question in quantum information
which is actually equivalent to the additivity of the entanglement of forma-
tion [276] (see also [43] for an approach to this problem based on the relations
between the entanglement of formation and the the entropy of a subalgebra.)

Bibliographical Notes

A most exhaustive and complete review of the algebraic approach to quan-
tum statistical mechanics is provided by [64]; in [65] one finds plenty of ap-
plications to spin and continuous systems. A fully developed mathematical
theory of the canonical commutation and anti-commutation relations, quasi-
free states and quasi-free automorphisms can be found in [237, 200, 201, 202,
255, 256, 257].

Quantum ergodicity and mixing are presented in [260, 277, 300, 107, 64]
in increasing order of mathematical sophistication; the second reference has
provided most of the material of this book concerning these topics, the first
one concerning mixing. In [64] one also finds a detailed discussion of de-
composition theory, while in [300] more recent developments are presented.
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In [215, 221] what has been called mixing in this book is termed clustering, the
qualification mixing being assigned to a stronger clustering behavior which is
discussed in connection with Galilei-invariant interactions [218]. In [107, 300]
one finds enlightening discussions about the physical meaning of the different
algebraic factor types and of Tomita-Takesaki modular theory.

Applications of quantum mechanics with infinite degrees of freedom to
collective phenomena and thermodynamics can be found in [274], while
in [290, 291] the emphasis is more on symmetry breaking phenomena and
on the existence of inequivalent representations of the CCR and CCR with
applications to physically relevant models.

Quantum information related issues involving infinitely many degrees of
freedom and the necessary mathematical tools like quantum compression the-
orems and quantum capacities are discussed in [145, 239, 250]. For a review
of different formulation of quantum capacity related quantities and their re-
lations see [182].
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The last part of the book first deals with two extensions of the Kol-
mogorov dynamical entropy to quantum systems and with their applications.
Then, it discusses some recent generalizations to quantum systems of classical
algorithmic complexity.



8 Quantum Dynamical Entropies

The first part of this book has been devoted to illustrate some of the many
properties of the classical dynamical entropy of Kolmogorov and Sinai; in par-
ticular, it has been showed that it provides the optimal compression rate of
ergodic sources (Shannon-Mc Millan-Breiman Theorem 3.2.1), while, through
the positive Lyapounov exponents (Pesin’s Theorem), it measures the dynam-
ical instability of classical dynamical systems; finally, it gives the complexity
rate of almost all trajectories of ergodic dynamical systems (Brudno’s theo-
rem 4.2.1).

Several extensions of the KS entropy to quantum dynamical systems can
be found in the mathematical and physical literature (see the bibliographical
notes at the end of this chapter). All of them predated or were developed
independently of quantum information; due to its rapid growth, the latter
more and more appears as an ideal ground for testing the physical meaning
and the technical usefulness of these proposals.

One of the aims behind the attempts at defining quantum dynamical
entropies was the possibility of classifying quantum dynamical systems, as
much as it had been done for classical dynamical systems by means of the
KS entropy (see Remark 3.1.2). Afterwards, the quantum dynamical entropies
have been applied to the study of quantum chaotic phenomena and the quan-
tum/classical correspondence; recently, they have been used to shed light on
certain foundational aspects of quantum information, like quantum capacity
and quantum algorithmic complexity.

Of the various quantum dynamical entropies that have been proposed
in recent years, we shall mainly focus upon two of them; namely, the en-
tropy of Connes, Narnhofer and Thirring [88] (CNT entropy) and of Alicki
and Fannes [9] (AFL entropy) . These quantum dynamical entropies em-
body two radically different ways of approaching the notion of information
production in quantum mechanics; indeed, they may behave differently on a
same quantum dynamical system.

In Section 2.4, we have seen that partitions of the phase-space into
finitely many, disjoint measurable atoms provide classical dynamical systems
(X, T, 1) (see Definition 2.2.2) with symbolic models: finite measurable parti-
tions P = {P; };er can be used to successively localize the moving phase-point

'The L in AFL stands for Lindblad who introduced the notion in [194, 195, 196].

F. Benatti, Dynamics, Information and Complexity in Quantum Systems, 411
Theoretical and Mathematical Physics, DOI 10.1007/978-1-4020-9306-7_8,
(© Springer Science+Business Media B.V. 2009
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within their atoms P; and to quantify the predictability of the dynamics via
the information relative to the next time-step that is gained by observing the
evolving system.

In Chapter 3, partitions have been interpreted as POVMs taken from
a commutative dynamical triple (Lg°(X),Or,w,), where atoms have been
identified with their characteristic functions and thus with orthogonal pro-
jections summing up to the identity (see Definition 2.2.3.2). Thus, partitions
P define partitions of unit (see Definition 5.6.1) and CPU maps Ex on the
C*-algebra B(IL%(X)). However, because of commutativity, the action of E
on L (&) reduces to the identity map; indeed, for all f € L7 (X),

Ex[fl(z) =Y xp(@) f(@) xp, (@) = Y xpi(@) f(z) = f(2) .

i€l el

The dynamics is thus insensitive to measurements, ©@poEy = EyoOp = Op,
as well as the states on L7°(X): Fy[w,] = w,,, where Fy is the dual CP map
such that Fy[w,](f) = w.(Ex[f]).

Given a quantum dynamical triplet (A, ©,w), if one wants to extend the
notion of partition to such a non-commutative context, a natural step is
to substitute commuting projections with non-commuting ones or, more in
general, with non-projective POV Ms . Differently from the classical case, the
CPU maps E : A — A associated with them do not in general commute
with the quantum dynamics, @ o E # @ # E o ©, nor do the dual maps
F preserve the quantum state, Flw] # w. Both E and F act as external
perturbations; therefore, a preliminary question arises whether one should or
not incorporate measurement processes into the very construction of quantum
dynamical entropies.

If the answer is yes, then, beside the dynamics itself, measurement pro-
cesses themselves may act as a source of randomness; on the other hand, if
the answer is no, the regular and irregular features of the dynamics refer
to the system only, but are insensitive to the typical quantum phenomenon
that getting information about quantum systems in general perturbs them.
In other words, a perturbation-free quantifier of quantum dynamical random-
ness might not measure the actual information production that always comes
from observations of the time-evolving system; on the other hand, a quan-
tifier of quantum dynamical randomness that takes into account acquisition
of information through measurement processes would add the randomness
coming from the latter ones to that proper to the quantum dynamics itself.

Purpose of this and the last chapter is to convey the idea that, unlike
in classical dynamics, randomness in quantum dynamics has more than one
facet and that choosing one of the two answers above just means exploring
two of these inequivalent aspects.
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8.1 CNT Entropy: Decompositions of States

The non-commutative algebraic structure which more closely resembles a
commutative one is that of type II; factor von Neumann algebras A (see
point 2 after Definition 7.0.8). Indeed, the state w which makes A a type
I factor is a normalized trace such w(XY) = w(Y X) for all X,Y € A.
The CNT entropy [88] generalizes to ge