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Preface
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1 Introduction

This book focusses upon quantum dynamics from various points of view which
are connected by the notion of dynamical entropy as a measure of information
production during the course of time.

For classical dynamical systems, the notion of dynamical entropy was in-
troduced by Kolmogorov and developed by Sinai (KS entropy) and provided
a link among different fields of mathematics and physics. In fact, in the light
of the first theorem of Shannon, the KS entropy gives the maximal com-
pression rate of the information emitted by ergodic information sources. A
theorem of Pesin relates it to the positive Lyapounov exponents and thus to
the exponential amplification of initial small errors, in a word to classical
chaos. Finally, a theorem of Brudno links the KS entropy to the compress-
ibility of classical trajectories by means of computer programs, namely to
their algorithmic complexity, a notion introduced, independently and almost
simultaneously by Kolmogorov, Solomonoff and Chaitin.

In a previous book by the author, the notion of quantum dynamical en-
tropy elaborated by A. Connes, H. Narnhofer and W. Thirring (CNT entropy)
was presented within the context of quantum ergodicity and chaos. The CNT
entropy is a particular proposal of how the KS entropy might be extended
from classical to quantum dynamical systems.

After the appearance of the CNT entropy, other proposals of quantum dy-
namical entropies appeared which in general assign different entropy produc-
tions to the same quantum dynamics. The basic reason is that each proposal
is built according to a different view about what information in quantum
systems should mean. Concretely, it is a general fact that, in order to gain
information about a system and its time-evolution, one has to observe it and
a quantum fact that observations may be invasive and perturbing. Should this
fact be considered inescapable and thus incorporated in any good quantum
dynamical entropy or, rather, should it be avoided as a source of spurious
effects that have nothing to do with the actual quantum dynamics?

This is an unavoidable question and, based on the possible answers, one
is led to different notions of quantum dynamical entropies. These will be
sensitive to different aspects of the quantum dynamics and thus, not unex-
pectedly, not equivalent: the real issue is which these aspects are and what
kind of informational meaning they do posses.

F. Benatti, Dynamics, Information and Complexity in Quantum Systems, 1
Theoretical and Mathematical Physics, DOI 10.1007/978-1-4020-9306-7 1,
c© Springer Science+Business Media B.V. 2009



2 1 Introduction

In view of the role of the KS entropy in classical chaos, one of the prin-
cipal applications of the quantum dynamical entropies has been to the phe-
nomenology of quantum chaos. The scope has now become wider: quantum
compression theorems and recent attempts at formulating a non-commutative
algorithmic complexity theory motivate the study of whether and how the
different quantum dynamical entropies are related to these new concepts. In
particular, a better understanding of the many facets of information in quan-
tum systems may come from clarifying the relations of the various quantum
dynamical entropies among themselves and their bearing on quantum com-
pression schemes and the algorithmic reproducibility of quantum dynamics.

The issue at stake can be conveniently conveyed by an example: the sim-
plest classical ergodic information source emits bits independently of each
other with probabilities 1/2 for both 0 and 1. The KS entropy is log 2 and
represents

1. the information rate of a classical source emitting independent bits;
2. the Lyapounov exponent of the classical dynamical system consisting in

throwing a fair coin;
3. the algorithmic complexity of almost every resulting sequence of tails and

heads.

The quantum counterpart of such an information source is a so-called quan-
tum spin chain, that is a one-dimensional lattice carrying a 2 × 2 matrix
algebra at each of its infinitely many sites: each site carries a so-called qubit .
The dynamics of such a system is just the shift from one site to the other and
the infinite dimensional algebra of operators is equipped with a translation-
invariant state. These non-commutative structures have recently become of
primary importance in the boosting field of quantum information. What is
relevant is that one can construct subalgebras of quantum spin chains char-
acterized by varying degrees of non-commutativity between their operators.
Depending on that degree, the CNT entropy, varies between zero and log 2,
while another quantum dynamical entropy, the AFL entropy of Alicki, Fannes
and Lindblad, is always log 2. The CNT entropy thus appears to be sensitive
to the amount of non-commutativity between operators, whereas the AFL
entropy is apparently independent of that structural algebraic property.

Because of its unifying properties, the KS entropy can be taken as a
good indicator of classical randomness and complexity; one would then like
to assign a similar role to the quantum dynamical entropies. Does this mean
that, in accordance with the CNT entropy behavior, quantum dynamical
systems have varying degrees of complexity or randomness depending on
the degree of non-commutativity ? Or, according to the AFL entropy, the
algebraic structural properties have no bearing on dynamical randomness or
complexity, which are rather related to the statistics of such systems, namely
to their shift-invariant state?

More concretely, one may ask which one of the two quantum dynamical
entropies is closer to the actual quantum informational structure of these
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quantum sources. Regarding this issue, of particular interest are the yet un-
explored relations of the quantum dynamical entropies to the quantum algo-
rithmic complexities.

Indeed, as there inequivalent generalizations of the KS entropy, so there
are different extensions of the classical algorithmic complexity. These exten-
sions have been motivated by the possibility of a model of computation based
on the laws of quantum mechanics and on the theoretical formulation of the
notion of Quantum Turing Machines (QTMs ). Like Classical Turing Ma-
chines (TMs ), QTMs consist of a read/write head moving on tapes with,
say, binary programs written on them. Only, the tapes of QTMs can occur in
linear superpositions of the classical configurations of 0’s and 1’s. In a word,
inputs and outputs of QTMs are qubits.

Since the various quantum dynamical entropies were proposed, indepen-
dently of quantum information, as tools to better study the long-time dy-
namical features of infinite quantum systems, one may doubt that relations
should exist between them and quantum information. One notices, however,
that the CNT entropy was developed using the notion of entropy of a sub-
algebra which, years later, independently appeared in quantum information
theory as a measure of entanglement known as entanglement of formation.
Also, the AFL entropy is based on techniques that in quantum information
theory are fundamental tools to describe quantum channels and, more in
general, all quantum operations that may affect quantum systems.

The book is organized in three parts.
In the first part, the first chapter presents basic notions of ergodic theory,

the second gives an overview of entropy in information theory, the third
addresses the notion of KS entropy and the classical compression theorems,
while algorithmic complexity is the subject of the fourth chapter.

The second part consists of three chapters; the first offers an overview
of algebraic quantum mechanics with particular emphasis on the notions
of positivity and complete positivity of quantum maps and quantum time-
evolutions, both reversible and irreversible. The second chapter introduces
the fundamentals of quantum information, the relations between positive
and completely positive maps and quantum entanglement, the entropy of
a subalgebra, the entanglement of formation and the accessible information
of a quantum channel. The third concerns infinite quantum dynamical sys-
tems and quantum ergodicity, quantum chains as quantum sources and the
quantum counterparts to Shannon’s theorems.

In the first chapter of the third part, a detailed introduction is given to
the CNT and AFL entropies and to their use in the study of dynamical infor-
mation production in quantum systems. Finally, the second and last chapter
of the book focusses on some recent extensions of algorithmic complexity to
quantum systems, starting with a discussion of quantum Turing machines
and quantum computers and concluding with an exploration of the possible
role played in this context by the quantum dynamical entropies.



4 1 Introduction

The topics addressed come from rather different fields that only recently,
because of the birth and rapid development of quantum information, quantum
communication and computation have started to overlap. This book has been
written not as an introduction to any of these topics (of which exhaustive
presentations do exist in plenty), rather as an attempt to provide readers with
expertise in some, but not in all of the topics, with a self-consistent overview
of these many subjects. Therefore, care has been taken to give proofs of
almost all of the results that have been used, apart from basic and standard
facts, and to illustrate them by means of selected examples.



Part I

Classical Dynamical Systems
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In the first part of the book classical dynamical systems are presented
from the points of view of ergodic, information and algorithmic complexity
theory.

Ergodic theory studies the clustering properties of equilibrium states; in
information theory the central notion of entropy is used to quantify the de-
gree of predictability of phase-space trajectories, while algorithmic complex-
ity theory quantifies their randomness in terms of how easily they can be
described by algorithms.

The purpose of this presentation is to set up a suitable algebraic frame-
work that makes easier the extension of these three points of view to quantum
dynamical systems.



2 Classical Dynamics and Ergodic Theory

In this chapter the term classical dynamical system will broadly refer to one-
parameter families of transformations, or dynamical maps, Tt acting on a
phase space X whose points x describe the system degrees of freedom. In
physical applications, x identifies an initial state, or configuration, Ttx the
resulting state or configuration after a span of time of length t. If t is dis-
crete, t ∈ Z, one speaks of a reversible time-evolution through discrete time
steps with trajectories {Ttx}t∈Z consisting of countably many configurations
at negative and positive integer times. If t ∈ N, this means that the dynam-
ics can only develop forward in time and is thus irreversible. In the case of
a continuous-time dynamics, trajectories through x ∈ X at t = 0 are contin-
uous sets {Ttx}t∈R of configurations if the dynamics is reversible, otherwise
trajectories are only forward in time, {Ttx}t∈R+ .

Once the description of a system by means of a phase-space X has been
chosen, any phase-point x ∈ X contains all possible information about the
system state. When all this information is not available, the state of a system
amounts to a normalized positive measure on X , a probability distribution,
such that the volume of a measurable subset gives the probability that x
belong to it. Entropy quantifies the amount of information corresponding to
such probability distribution, that is how informative the measure is about
the actual state of the system.

Beside the knowledge of the state of classical systems, information can
also concern how states change in time, in particular, as regards foreseeing
their behavior; the degree of predictability of dynamical systems is measured
by dynamical entropies. Intuitively, regular time-evolutions should allow for
reliable predictions, which are instead hardly possible for irregular dynamics;
roughly speaking, irregularity is expected to correspond to the fact that the
past does not completely contain the future.

Information about the state or the time-evolution of physical systems can
be obtained by measuring suitable quantities accessible to experiments. These
quantities, called observables for short, correspond to functions on X . Unlike
for quantum dynamical systems, for classical ones any measuring protocol
can in principle be assumed not to interfere with the system observed, the
basic reason being that classical descriptions involve commuting objects, as
functions on the phase-space X indeed are.

F. Benatti, Dynamics, Information and Complexity in Quantum Systems, 9
Theoretical and Mathematical Physics, DOI 10.1007/978-1-4020-9306-7 2,
c© Springer Science+Business Media B.V. 2009



10 2 Classical Dynamics and Ergodic Theory

Which observables are appropriate to describe a dynamical system de-
pends on the structure of the chosen phase-space X ; for instance, statistical
descriptions require that X be endowed with a measure-structure, whereby
measurable functions constitute appropriate observables. On the other hand,
X might be provided with a topology and typical observables would then
correspond to continuous functions.

2.1 Classical Dynamical Systems

In this section we review some basic facts relative to classical dynamical
systems mainly adopting a measure-theoretic point of view; in this way a
minimum of constraints is put on the mathematical properties of states, ob-
servables and dynamical maps and the emerging technical context is broad
enough to describe a large variety of physical phenomena, from those typical
of Hamiltonian mechanics to those better understood in terms of discrete
dynamical systems.

Definition 2.1.1. Classical dynamical systems are triplets (X , T, μ), where

1. X is a measure space with an assigned σ-algebra Σ of measurable sets;
2. T is measurable, that is A ∈ Σ ⇒ T−1(A) ∈ Σ;
3. X is endowed with a T -invariant, positive normalized measure μ, such

that μ(X ) = 1 and μ ◦ T−1 = μ.

Remarks 2.1.1.

1. A collection Σ of subsets S ⊆ X is called a measure-algebra if 1) X ∈ Σ,
2) S ∈ Σ implies X \ S ∈ Σ, where S1 \ S2 denotes the complement of
the subset S2 relative to the subset S1, and 3) Si ∈ Σ for i = 1, 2, . . . , n,
implies

⋃n
i=1 Si ∈ Σ. A measure-algebra Σ is a measure σ-algebra if it

is closed not only with respect to finite unions of its elements, but also
with respect to countable unions, that is if

⋃∞
n=1 Sn ∈ Σ for all {Sn}∞n=1,

Sn ∈ Σ. Since the complements of unions of sets are the intersections of
the complements of the sets, namely X \ (A ∪ B) = (X \ A) ∪ (X \ B),
σ-algebras contains infinite intersections of their elements, too.

2. Let Σ0 be a measure-algebra, by adding to Σ0 infinite unions and inter-
sections of elements of Σ0 one obtains a σ-algebra Σ which is the smallest
one containing Σ0; such Σ is called the σ-algebra generated by Σ0. If the
measure space X is endowed with a topology, then, the σ-algebra gener-
ated by the open subsets is known as Borel σ-algebra and its elements as
Borel sets [258].

3. A positive function μ : Σ �→ R
+, such that μ(X ) = 1 is a probability

measure on X relative to a σ-algebra Σ if it is σ-additive, namely if



2.1 Classical Dynamical Systems 11

Σ ⊃ {Sn}∞n=1 , Si ∩ Sj = ∅ =⇒ μ

( ∞⋃

n=1

Sn

)

=
∞∑

n=1

μ(Sn) .

Notice that μ is automatically monotone under inclusion, namely

A ⊆ B =⇒ A = (A \B) ∪B =⇒ μ(A) = μ(A \B) + μ(B) ≥ μ(B) .

4. The following criterion is rather useful: an additive positive finite map
μ : Σ �→ R

+ is σ-additive if and only if limn μ(Bn) = 0 for any collec-
tion {Bn}∞n=1 of sets Bn ∈ Σ such that Bn+1 ⊆ Bn and

⋂
n Bn = ∅.

Indeed, suppose μ is σ-additive and {Bn}∞n=1 has decreasing properties
and empty intersection; then, the sets Cn := Bn \Bn+1 are disjoint and
Bn =

⋃
k≥n Ck. It thus follows that μ(B1) =

∑∞
k=1 μ(Ck), whence

lim
n→∞

μ(Bn) = lim
n→∞

∞∑

k=n

μ(Ck) = 0 .

Vice versa, let μ be positive, finite and additive on Σ and take any col-
lection {Cn}∞n=1 of disjoint subsets of Σ; because of additivity

μ
( ∞⋃

k=1

Ck

)
=

n∑

k=1

μ(Ck) + μ
( ∞⋃

k=n+1

Ck

)
.

Since Bn :=
⋃∞

k=n+1 Ck ⊆ Bn−1 and
⋂

n Bn = ∅, σ-additivity follows. If
μ is σ-additive over a measure algebra Σ0 it can be extended in an unique
way to the σ-algebra Σ generated by Σ0. In other words, given a S ∈ Σ,
for any ε > 0, there exists S′ ∈ Σ0 such that μ(S ΔS′) < ε, where

S ΔS′ = (S \ S′) ∪ (S′ \ S) = (S ∪ S′) \ (S ∩ S′) . (2.1)

5. A regular Borel measure on X is a measure on the Borel σ-algebra such
that, for any measurable subset B and ε > 0, there exists an open, Uε, and
a closed subset, Cε, with Cε ⊆ B ⊆ Uε such that μ(Uε\Cε) < ε [258, 313].

Definition 2.1.1 provides an appropriate framework for irreversible dy-
namical systems in discrete time whereby the time-evolution of phase-points
x ∈ X consists in successively applying the dynamical map T to x so that
trajectories are given by countable sets {Tnx}n∈N. For reversible, discrete-
time dynamics, also T−1 is assumed measurable, that is T (A) ∈ Σ if A ∈ Σ
with μ ◦ T = μ; trajectories are then of the form {Tnx}n∈Z.

The measure μ defines a probability distribution over X : if f : X �→ R is
a measurable function (an observable of the system), its mean value is

μ(f) :=
∫

X
dμ(x)f(x) . (2.2)
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In particular, if A ⊆ X is a measurable subset and 1A(x) its characteristic
function 1, the volume

μ(A) :=
∫

X
dμ(x)χA(x) , (2.3)

has a natural interpretation as the probability that x ∈ X belong to A.
We shall as well refer to these probability distributions as to the states of
a classical dynamical system. In fact, in the case of a continuous phase-
space, access to phase-points is practically never achievable; thus, one has to
content oneself with the knowledge of how phase-points are distributed over
X . From a physical point of view, the fact that states μ are assumed to be T -
invariant means that the statistical description of dynamical systems refers
to equilibrium states. Interestingly, a measure-theoretical dynamical triplet
can be represented in terms of a unitary operator on a Hilbert space [17, 61].

Example 2.1.1 (Koopmann-von Neumann Formalism). [175]

Let (X , T, μ) be a measure-theoretic dynamical triplet. Finite additions
and multiplications of characteristic functions of measurable subsets Ai ⊆ X
give the algebra S(X ) of simple functions s =

∑
i ci 1Ai

over X . Lebesgue-
integration with respect to μ defines a scalar product 〈 s1 | s2 〉μ over S(X ),

〈 s1 | s2 〉μ :=
∑

i,j

(c1i )
∗ c2j

∫

X
dμ(x)1A1

i
(x)1A2

j
(x) =

∑

i,j

(c1i )
∗ c2j μ(A2

i ∩A2
j ) ,

for 1A(x)1B(x) = 1A∩B(x). Further, by linearly extending the map defined
by 1A �→ UT 1A := 1A ◦T = 1T−1(A), one gets a linear operator UT on S(X ).
Since μ ◦ T−1 = μ, UT preserves scalar products

〈UT s1 |UT s2 〉μ :=
∑

i,j

(c1i )
∗ c2j μ

(
T−1(A1

i ∩A2
j )
)

= 〈 s1 | s2 〉μ .

Therefore, the Koopman operator UT can be extended to an isometric im-
plementation of the dynamics (invertible and thus unitary in the reversible
case) on the Hilbert space L

2
μ(X ) of square-summable functions on X ,

(UTψ)(x) = ψ(Tx) ∀ψ ∈ L
2
μ(X ) , ∀x ∈ X . (2.4)

The spectral properties of UT will turn out to be of particular relevance for
ergodic theory (see Section 2.3). Using a bra-ket quantum like notation, we
observe that:

1. the identity function 1l(x) = 1 almost everywhere with respect to μ, is
always an eigenvector of UT with eigenvalue 1, UT | 1l 〉 = | 1l ◦ T 〉 = |T 〉;

1 1A(x) = 1 if x ∈ A, 1A(x) = 0 otherwise
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2. if 1 is a degenerate eigenvalue, then there exist constants of the motion
1l �= ψ ∈ L

2
μ(X ), UT |ψ 〉 = |ψ ◦ T 〉 = |ψ 〉;

3. mean values are scalar products, μ(ψ) = 〈 1l |ψ 〉, for all ψ ∈ L
2
μ(X );

4. products of mean values amount to the matrix elements of the orthogonal
projection | 1l 〉〈 1l |

μ(ψ)μ(φ) = 〈ψ∗ | 1l 〉〈 1l |φ 〉 , ∀ψ, φ ∈ L
2
μ(X ) , (2.5)

where ψ∗ is the complex conjugate of ψ.

Hamiltonian Mechanics

Hamiltonian mechanics is an important source of classical dynamical sys-
tems [16, 17, 299]. Systems with f degrees of freedom are described by
a phase-space which is a 2f -dimensional manifold Mf ⊆ R

f × R
f whose

points r = (q,p) consist of positions q = (q1, . . . , qf ) ∈ R
f and momenta

p = (p1, . . . , pf ) ∈ R
f . The phase-space inherits a symplectic geometry from

the symplectic matrix J := [Jij ] =
(

Of 1lf
−1lf Of

)

where Of and 1lf are the

f × f zero and identity matrices, respectively. Via the symplectic matrix one
defines the Poisson brackets of two (differentiable) functions F,G : Mf �→ R,

{F , G}(r) :=
2f∑

i,j=1

∂F (r)
∂ri

Jij
∂G(r)
∂rj

. (2.6)

With respect to them, q and p are canonical coordinates: {qi , pj} = δij and
the time-evolution is generated by the Hamilton equations

dq

dt
= ∂pH(r) ,

dp

dt
= −∂qH(r) ,

where H = H(r) is a (time-independent) Hamiltonian or energy function of
the system. They are solved by the Hamiltonian flux r �→ r(t) = ΦH

t (r),
t ∈ R

2. The time-evolution of functions F on Mf then amounts to a group
of dynamical maps F �→ Ft := F ◦ΦH

t that solves the time-evolution equation

dFt(r)
dt

= {Ft , H}(r) . (2.7)

Suppose Mf = R
2f ; then, a natural σ-algebra for the phase-space Mf

is the Borel σ-algebra (see Remark 2.1.1.2) containing all open subsets of

2One can always extract a discrete time-evolution {T n}n∈Z from it by fixing
t = 1 and setting T := ΦH

1 .
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the topology of Mf given by the Euclidean distance. The Liouville mea-
sure dr =

∏f
i=1 dqidpi is invariant under the Hamiltonian flux ΦH

t ; however,∫
Mf

dr diverges and cannot be normalized to a probability distribution. A
way out typically occurs when there are constants of the motion, that is func-
tions F on Mf , like the Hamiltonian itself, such that {F , H} = 0. By fixing
their values, the dynamics is restricted to time-invariant submanifolds that
usually have finite volumes. Instances of equilibrium states leading to descrip-
tions of Hamiltonian systems as measure-theoretical triplets (Mf , Φ

H
1 , μH)

(discrete time), or (Mf , {ΦH
t }t∈R, μH) (continuous time), are in general pro-

vided by probability distributions dμH(r) = f(r)dr , where f : Mf �→ R
+ is

a normalized, positive functions such that {f , H} = 0. Prominent instances
of such probability measures are the micro-canonical, canonical and grand-
canonical states of classical statistical mechanics [300].

The time-invariance of states as the previous ones deserves to be exam-
ined in some more detail as it follows from a duality argument which we
shall frequently encounter in the following. Duality is essentially the obser-
vation that the mean value of a function F at time t, Ft, with respect to a
state μ equals the mean value of F with respect to the state μt at time t,
μ(Ft) = μt(F ). This defines the time-evolution of states as the dual of the
time-evolution of observables (functions); indeed, from time-invariance of the
Liouville measure it follows that

μ(Ft) =
∫

Mf

dr μ(r)F (ΦH
t (r)) =

∫

Mf

dr μ(ΦH
−tr)F (r) =: μt(F ) , (2.8)

whence μt := μ ◦ ΦH
−t solves the time-evolution equation

∂μt(r)
∂t

= {H , μt}(r) . (2.9)

Example 2.1.2 (Regular Motion). Consider two uncoupled harmonic
one-dimensional oscillators described by r = (q1, q2, p1, p2) ∈ M2 = R

4 and
by the Hamiltonian

H(r) =
p2
1

2m1
+
m1ω

2
1

2
q21

︸ ︷︷ ︸
H1(r)

+
p2
2

2m2
+
m2ω

2
2

2
q22

︸ ︷︷ ︸
H2(r)

.

By fixing the single oscillator energies Hi(r) = Ei, i = 1, 2, the motion
develops on the 2-torus T

2 := {θ = (θ1, θ2) : θi ∈ [0, 2π)}, where it amounts
to a two-dimensional rotation. Indeed, setting

Ji(r) := Hi(r)/ωi =
p2

i

2miωi
+

miωi

2
q2i , tan θi :=

pi

miωiq
whence

qi =
√

2Ji

miωi
cos θi , pi =

√
2miωiJi sin θi ,
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one gets angle-action variables (θ, I), θ = (θ1, θ2), I := (I1, I2).
These are canonical coordinates, with Poisson brackets {θi , Jk} = δik;

moreover, H(r) = K(J) = ω1J1 + ω2J2. Thus, the corresponding Hamilton
equations,

dθ

dt
= ω ,

dJ

dt
= 0 , ω = (ω1, ω2) ,

are solved by the Hamiltonian flux

Tt : θ �→ θ(t) := Tt(θ) = θ + ω t . (2.10)

By varying E1, E2 and thus I, the phase-space R
4 is covered by non-

intersecting 2-dimensional tori. On each fixed torus, dθ/(2π)2 gives a prob-
ability measure which is invariant under the Hamiltonian flux. The triplet
(T2, T := T1,dθ/(2π)2) fulfils the requirements in Definition 2.1.1.

In the Koopman-von Neumann formalism, the unitary operator UT im-
plementing T on H := L

2(T2,dθ/(2π)2) has the exponential functions
en(θ) = exp(in · θ), n ∈ Z

2, as eigenfunctions ,

(UT en)(θ) = en(θ + ω) = ei
∑2

j=1 nj(θj+ωj) = ei
∑2

j=1 njωj en(θ) . (2.11)

Therefore, the time-evolution of H � |ψ 〉 =
∑

n∈Z2 ψ̂(n)| en 〉 is given by

|ψ 〉 �→ Uk
T |ψ 〉 =

∑

n∈Z2

ψ̂(n) eik
∑2

j=1 njωj | en 〉 , k ∈ Z . (2.12)

Remarks 2.1.2.

1. If
ω2

ω1
=
p

q
, p, q ∈ N, trajectories close since θ(2qπ/ω1) = θ mod 2π.

2. If there are no 0 �= n1,2 ∈ Z such that n1ω1 + n2ω2 = 0, then, every
trajectory {θ(t)}t∈R fills the 2-torus T

2 densely. Namely, for any ε ≥ 0,
φ,θ ∈ T

2, there is t ∈ R such that ‖θ(t) − φ)‖ ≤ ε, where the norm is
the Euclidean norm computed mod 2π. Indeed, using (2.10),

t∗ := (φ1 − θ1)/ω1 =⇒ θ1(t∗ + 2nπ/ω1) = φ1 mod 2π ,

for all n ∈ Z. Since T is compact, the sequence {θ2(t∗ +2nπ/ω1)}n∈Z has
accumulation points; thus, for any ε ≥ 0 there exist n, p ∈ N such that
∣
∣
∣θ2(t∗ + 2(n+ p)π/ω1) − θ2(t∗ + 2nπ/ω1)

∣
∣
∣ = 2pπ

ω2

ω1
mod 2π ≤ ε ,

whence the sequence {θ2(t∗ + 2npπ/ω1)}n∈N subdivides the circle into
disjoint intervals Δn of length

∣
∣
∣θ2(t∗ + 2(n+ 1)pπ/ω1) − θ2(t∗ + 2npπ/ω1)

∣
∣
∣ ≤ ε .

Therefore,

φ2 ∈ Δm =⇒ ‖θ(t∗ + 2mpπ/ω1) − φ‖ =
∣
∣
∣θ2(t∗ + 2pmπ/ω1) − φ2

∣
∣
∣ ≤ ε .



16 2 Classical Dynamics and Ergodic Theory

3. A similar argument as before shows that, in discrete time, trajectories
{θ(n)}n∈Z fill T

2 densely if and only if there are no integers n1,2 �= 0
such that n1ω1 + n2ω2 = 2πp with Z � p �= 0 [91].

4. Example 2.1.2 is a particular instance of the Liouville-Arnold theo-
rem [16, 17, 299] on integrable Hamiltonian systems. Suppose a canonical
system with f degrees of freedom possesses f global constants of the mo-
tion Ki, K1 := H in involution, that is {Ki , Kj} = 0, i, j = 1, 2, . . . , f .
If the subset Nk := {Ki(r) = ki : i = 1, 2, . . . , f} ⊆ Mf is compact and
connected and the differential 1-forms dKi are linearly independent on it,
then Nk is isomorphic to the f -torus T

f . Moreover, there exists a canon-
ical transformation from r ∈ Nk to angle-action variables (θ , J) such
that the Hamiltonian flux ΦH

t is isomorphic to an f -dimensional rotation
on T

f with J -dependent frequencies: θ(t) = θ + ω(J)t. Accordingly, the
phase-space Mf foliates into disjoint f -tori which are filled densely by the
trajectories {θ(t)}t∈R when

∑f
i=1 niωi(J) = 0, ni ∈ Z, only if all ni = 0.

Tori such that
∑f

i=1 niωi(J) = 0 for 0 �= ni ∈ Z are called resonant and
on them trajectories close. The independence of the oscillation frequen-
cies ω from the actions J in Example 2.1.2 is an exception due to the
linearity of the Hamilton equations.

Integrable Hamiltonian systems cannot behave too irregularly as their
motion amounts to a multi-dimensional rotation over invariant tori. In order
to increase the degree of irregularity, some constants of the motion must
disappear in order to let the trajectories wander around according to less
predictable patterns. In the following example, a constant of the motion is
eliminated by means of a folding condition.

Example 2.1.3 (Hyperbolic Behavior). [17, 271]
Let δp(t) denote the periodic delta function

∑
n∈Z

δ(n−t) with unit period
and consider a free one-dimensional motion with periodic quadratic kicks,
occurring with strength β ∈ R, according to the pulsed Hamiltonian

H =
1
2

(
p2 + δp(t)βq2

)
.

A natural dynamical map T consists in updating the vector r = (q, p) on
phase space from immediately after the n-th kick to immediately after the
n− i-th one; namely T : rn → rn+1, where rn := (qn, pn) and

qn := lim
ε→0+

q(n+ ε) , pn := lim
ε→0+

q(n+ ε) .

Integrating the Hamilton equations

dq
dt

= p ,
dp
dt

= −δp(t)β q ,
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first between Tn + ε and T (n + 1) − ε and then between T (n + 1) − ε and
T (n+ 1) + ε, yields

q(n+ 1 + ε) − q(n+ ε) = p(n+ ε) +
∫ n+1+ε

n+1−ε

ds p(s)

p(n+ 1 + ε) − p(n+ ε) = −β q(n+ 1) .

By letting ε → 0+, the integral is of order ε and vanishes; thus, the dynamical
map T reduces to a 2 × 2 matrix acting on R

2:

r =
(
q
p

)

�→ Ar , A =
(

1 1
−β 1 − β

)

. (2.13)

Since det(A) = 1, the Liouville measure dr = dq dp is T -invariant. The
eigenvalues of A,

α±1 =
2 − β ±

√
β(β − 4)

2
=

2 − β ±
√

(β − 2)2 − 4
2

,

are real with |α| > 1 when β < 0 or β > 4. The corresponding eigenvector
| a+ 〉 identifies a direction in R

2 along which lengths increase exponentially
for n ≥ 0, while they contract exponentially along the direction of the eigen-
vector | a− 〉 relative to the other eigenvalue |α|−1 < 1. This motion is called
hyperbolic.

For β = −1, A =
(

1 1
1 2

)

is symmetric thus 〈 a− | a+ 〉 = 0 and, writing

| r 〉 = γ| a+ 〉 + δ| a− 〉,

‖rn‖2 = |γ|2e2n log α + |δ|2e−2n log α , (2.14)

where rn := A
nr. Therefore, the norms of all vectors r �= 0 increase ex-

ponentially while remaining on the hyperbolae selected by fixing a value of
F (r) := q2 − p2 + qp. Indeed, one can directly check that F (rn+1) = F (rn),
whence this function is a constant of the motion [118]. This is no longer true
if one imposes a folding condition that forces the dynamics to develop on the
two-dimensional torus T

2 := {R
2 � r = (q, p) mod (1)}, namely if one defines

the dynamical map

TA : T
2 � r �→ rn := (Anr mod 1) ∈ T

2 . (2.15)

Then, the resulting triplet (T2, TA,dr) is as in Definition 2.1.1 and the map
T is known as Arnold Cat Map [17].
More in general, one may consider the dynamics on the 2-dimensional torus
T

2 generated as in (2.15) by a matrix

A =
(
a b
c d

)

, a, b, c, d ∈ Z : ad− bc = 1 , |a+ d| > 2 , (2.16)
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with eigenvalues α±1 ∈ R. Since A need not be Hermitian, its normalized

eigenvectors | a± 〉 =
(
a1±
a2±

)

are in general only linearly independent; one

explicitly computes

a1± = bΔ± , a2± = (α±1 − a)Δ± where Δ± :=
1

√
b2 + (α±1 − a)2

,

(2.17)

and expands R
2 � | r 〉 =

(
x
y

)

= C+(r)| a+ 〉 + C−(r)| a− 〉 with

C+(r) :=
xa2− − ya1−

Δ
, C−(r) :=

ya1+ − xa2+

Δ
(2.18)

where

Δ := Det
(
a1+ a1−
a2+ a2−

)

= b(1 − α2)Δ+Δ− . (2.19)

Then, the hyperbolic behavior shows up since

A
k| r 〉 = αk C+(r) | a+ 〉 + α−k C−(r) | a− 〉 (2.20)

and the absolute value of one of the eigenvalues α± =
a+ d±

√
(a+ d)2 − 4
2

is larger than 1.
Consider now the Koopman operator UA on H := L

2
dr(T2); the orthogonal

exponential functions
en(r) := exp(2πin · r) (2.21)

are such that (AT denotes the transposed of A)

(UA en)(r) = e2πi n·(Ar) = e2πi (AT n)·r = eAT n(r) , (2.22)

whence, setting ψ(n) := 〈 en |ψ 〉 for all ψ ∈ H, it turns out that

(UAψ)(n) = 〈 en |UA |ψ 〉 = 〈 eA−T n |ψ 〉 = ψ(A−T n) .

Therefore, UA has no other eigenvector but e0 = 1l: if UA|ψ 〉 = μ|ψ 〉 for
ψ ∈ H with |μ| = 1; then, with |ψ 〉 =

∑
n∈Z2 ψ̂(n)| en 〉,

〈 em |Up
Aψ 〉 =

∑

n∈Z2

ψ̂(n) 〈 em | eApn 〉 = ψ̂(A−pm) = μpψ̂(m) ,

for any fixed m ∈ Z
2. Since ψ̂(n) → 0 with ‖n‖ → ∞, if ψ̂(m) �= 0, then

limp ψ̂(A−pm) = 0 because of hyperbolicity, while μpψ̂(m) oscillates.

The exponential amplification of small errors that results from (2.14)
(or form (2.20)) cannot hold for arbitrarily large n: In fact, ‖rn‖ ≤

√
2
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so that the expansion is eventually counteracted by the folding condition
in (2.15). Suppose | r 〉 = ε| a+ 〉, then ‖rn‖ = εen log α ≤

√
2 increases until

n ≤ log(ε−1
√

2)/(logα).
This argument applies to any pair of initial conditions r1,2; their distance

‖r1−r2‖ increases exponentially due to the expanding contribution from the
component of r1 − r2 along | a+ 〉 until the folding condition affects one of
the two cartesian components of r1 − r2. Notice however that the smaller
is ‖r1 − r2‖, the longer the amplification lasts. This observation allows the
introduction of the notion of asymptotic divergence rate of initially close
trajectories even when they develop on compact phase-spaces: these rates are
known as Lyapounov exponents and are a measure of dynamical instability.

Definition 2.1.2 (Maximal Lyapounov Exponent). [199, 106] The
maximal positive Lyapounov exponent of a dynamical triplet (X , T, μ) equipped
with a distance d(x, y) is defined by

λM (x) = lim
n→∞

1
n

lim
d(x,y)→0

log
d(Tnx , Tny)

d(x, y)
.

Of course X may be a multi-dimensional space and thus there might be
more directions along which distances expand exponentially fast with ex-
ponents λ(x) > 0; the intuitive picture behind the definition is that, for
sufficiently small d(x, y), the distance at time n is such that

d(Tnx, Tny) � enλM (x) d(x, y)
(
1 +O

(
e−n(λM (x)−λ(x))

))
,

where λ(x) < λM (x) [62].

Remarks 2.1.3.

1. A rigorous approach to Lyapounov exponents can be found in [199]; here,
we sketch a few basic facts (see [106, 313]). Assume the phase-space X
to be a compact manifold with a C∞ differentiable structure, a Borel σ-
algebra and a Riemannian metric such that the tangent spaces τx(X ) at
x ∈ X are isomorphic to R

k equipped with an Euclidean structure. The
dynamics T : X �→ X is assumed to be continuous with continuous first
derivatives, so that one can focus upon its linearization τx(T ) that maps
the tangent space τx(X ) into the tangent space τTx(X ). In particular,
one is interested in the asymptotic behavior of ‖τx(Tn)‖ where, by the
chain rule,

τx(Tn) = τT n−1x(T ) ◦ τT n−2x ◦ · · · τx(T ) .

Let X be equipped with a T -invariant regular Borel measure μ (see
Remark 2.1.1.5); then, there exists a measurable subset B ⊆ X with
μ(B) = 1 and a positive measurable function s : B �→ R+ such that, given
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x ∈ B, there are real numbers {λ(j)(x)}s(x)
j=1 , λ(j)(x) < λ(j+1)(x), and lin-

ear subspaces of R
k, {V (j)(x)}s(x)

j=0 , V (0) = {0}, V (j)(x) ⊂ V (j+1)(x),
V (s(x)) = R

k, for which

a) lim
n→∞

1
n

log ‖τx(Tn)r‖ = λ(j)(x) for all r ∈ Wj(x) := V (j)(x) �
V (j−1)(x);
b) λ(j)(x) is defined, measurable and T -invariant on the subset of x ∈ B
such that s(x) ≥ j, that is λ(j)(Tx) = λ(j)(x);
c) τx(T )V (j)(x) ⊂ V (j)(Tx) for all j ≤ s(x).
It thus follows that, if λ(j)(x) < 0, the norms of all r ∈ V (j)(x) go to 0
exponentially fast with n → +∞. On the other hand, if λ(j)(x) > 0, the
norms of all vectors r ∈ V (j)(x) � V (j−1)(x) diverge exponentially fast.

2. There can be more than one positive Lyapounov exponent thus more than
one amplifying direction in space. In volume-preserving dynamical sys-
tems to any amplifying direction there corresponds a shrinking direction
(amplifying in the past).

3. On compact manifolds, the two limits in Definition 2.1.2 do not commute:
the numerator is limited by compactness, whence the 1/n limit vanishes
if performed before letting d(x, y) → 0.

4. If there is an intrinsic smallest distance δ > 0 between points x, y ∈ X and
the largest possible distance Δ is finite, then the Lyapounov exponent is
zero. This means that exponential separation or amplification cannot be
extended beyond the logarithmic time-scale set by δ eλt ≤ Δ. This gives

a so-called breaking-time [118] tB :=
1
λ

log
Δ

δ
.

5. When the motion develops on a compact phase-space, the existence of
positive Lyapounov exponents is known as extreme sensitivity to initial
conditions and provides a widely accepted definition of classical chaotic
motion [271, 228]. Notice that without the folding condition, also an
inverted harmonic oscillator with Hamiltonian H(r) = p2/(2m)−mωq2/2
would show an exponentially fast separation of initial conditions, though
far less irregular and interesting than one on a compact manifold.

2.1.1 Shift Dynamical Systems

Phase-spaces with a finite or a countable number of states are typical either
of systems which arise from suitable discretizations of otherwise continuous
phase-spaces or of intrinsically discrete systems as cellular automata [62]. The
first possibility arises in particular when the observations aimed at identifying
the system state as a point of phase-space have a finite accuracy; then, one
performs a coarse-graining of phase space into a certain number of regions
whose volume is determined by the given accuracy and whose interior points
are accessible only through observations of higher accuracy. As we shall see
in later sections, in such a case, the system states are identifiable with the



2.1 Classical Dynamical Systems 21

labels of the regions where the system state is localized and the dynamics
corresponds to jumping from label to label rather than from point to point
of the phase-space.

Instead, the phase-space of cellular automata [62, 18] is discrete from the
start as they consist of copies of a same system (automaton) described by
a d-valued function i, for instance, in the binary case i = 0 may be used to
signal when an automaton is deactivated, i = 1 when it is activated.

The phase-space X of a cellular automaton with N systems comprises dN

configurations (states) corresponding to finite strings i(N) = (i1, i2, . . . , iN ) ∈
Ω

(N)
d := {1, 2, . . . , d}N . The dynamics is given in discrete time by a map

T : Ω(N)
d �→ Ω

(N)
d that updates the configurations from time n to time n+ 1:

i(N)(n) �→ i(N)(n+1). The state ik(n+1) of the k-th automaton at time n+1
in general depends on the states of some or all other automata at time n. In
the following, we shall focus upon a most simple class of cellular automata,
that is shift dynamical systems [17, 61, 164, 313].

Let the space X be the collection Ωd := {0, 1, . . . , d}N of all sequences
i = {ij}j∈N of symbols from a finite alphabet ij = 1, 2, . . . , d. Each i can be
interpreted as a configuration of a countable network of cellular automata,
each of them being indexed by an integer j ∈ N, with ij denoting its actual
state among the d possible ones. Let Tσ : Ωd �→ Ωd be the left shift along
sequences,

(Tσi)j = ij+1 , (2.23)

and set i(n) := Tn
σ i: Tσ amounts to a rather trivial dynamics, namely to a

deterministic updating whereby the state ij(n+ 1) of the j-th automaton at
time n+ 1 depends only on (is equal to) that of its right nearest neighbor at
time n:

ij(n+ 1) := (Tn+1
σ i)j = (Tσi)j(n) = ij+1(n) .

From the point of view of a fixed automaton, say the 0-th one, this kind of
dynamics is typically like tossing a coin. Indeed, suppose the initial configu-
ration i(0) of the network is to be chosen randomly, according to a probabil-
ity distribution where all automaton states occur with the same probability
2−N . Because of the dynamics, this property is then inherited by the sequence
{i0(n)}n∈N of successive states of the 0-th automaton.

In order to provide the shift along binary sequences with a measure-
theoretic formulation as in Definition 2.1.1, the set Ωd of infinite sequences
has to be equipped with a σ-algebra of measurable sets. The standard way
to do this is by means of the so-called cylinders [61, 164, 91, 17]; they consist
of all sequences whose entries have fixed values within chosen intervals:

C
[j,k]

ijij+1 · · · ik
︸ ︷︷ ︸

i(k−j+1)

:=
{

i ∈ Ω2 : ij+	 = ij+	 , � = 0, 1, . . . , k − j
}
. (2.24)

They are labeled by the interval [j, k] and by the binary string i(k−j+1) of
length k− j + 1 of assigned digits within that interval; each one of them can
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be obtained as a finite intersection of simple cylinders C{	}
i�

,

C
[j,k]

i(k−j+1) =
k−j⋂

	=0

C
{j+	}
ij+�

, C
{	}
i�

:=
{

i ∈ Ω2 : i	 = i	

}
. (2.25)

We shall denote by C[j,k] the sets consisting of the 2(k−j+1) cylinders
C

[j,k]

i(k−j+1) . The σ-algebra Σ is obtained from all possible unions and intersec-
tions of simple cylinders. Further, pre-images of cylinders under T−1 remain
cylinders: in fact

T−1
σ

(
C
{	}
i�

)
:=
{

i ∈ Ω2 : Tσi ∈ C
{	}
i�

}
=
{

i ∈ Ω2 : i	(1) = i	+1 = i	

}

= C
{	+1}
i�

, (2.26)

whence Tσ is measurable with respect to Σ.

Remark 2.1.4. The left shift on unilateral sequences is not invertible; it be-
comes so by choosing instead of Ωd the set ΩZ

d of all doubly infinite sequences
i = {ij}j∈Z. Then, the same result as in (2.26) holds for the pre-images of
cylinders under Tσ, Tσ(C{	}

i�
) = C

{	−1}
i�

, whence T−1
σ is also measurable.

We shall refer to any probability measure μ on Σ as to a global state
on Ωd; to any such μ there correspond local states μ[j,k] on the cylinder
sets C[j,k]. As cylinders in C[j,k] are in one-to-one correspondence with strings
i(k−j+1) ∈ Ω

(k−j+1)
d of length k − j + 1, these local states are probability

distributions on Ω
(k−j+1)
d :

μ[j,k] =
{
p[j,k](i

(k−j+1))
}

i(k−j+1)∈Ω
(k−j+1)
d

p[j,k](i
(k−j+1)) ≥ 0 ,

∑

i(k−j+1)∈Ω
(k−j+1)
d

p[j,k](i
(k−j+1)) = 1 . (2.27)

Consider the sequence of local states {μ(n)}n∈N,

μ(n) := {p(n)(in)}
i(n)∈Ω

(n)
d

, p(n)(in) = p[1,n](i
n) , (2.28)

on the cylinder sets C[1,n]; since C [1,n]
i1i2···in

=
d⋃

i=1

C
[1,n+1]
i1i2···ini, from the additivity

of the measure the following compatibility condition follows

p(n)(i1i2 . . . in) = μ
(
C

[1,n]
i1i2...in

)
=

d∑

i=1

p(n+1)(i1i2 . . . ini) . (2.29)
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Particularly important global states over Ωd correspond to shift-invariant
probability measures μ, μ ◦ T−1

σ = μ. From

μ
(
C

[2,n+1]
i1i2...in

)
= μ
(
T−1

σ (C [1,n]
i1i2...in

)
)

= μ
(
C

[1,n]
i1i2...in

)

it then follows that
d∑

i=1

p(n)(ii2 · · · in) =
d∑

i=1

μ
(
C

[1,n]
ii2...in

)
= μ(C [2,n]

i2...in
) = μ

(
T−1

σ (C [1,n−1]
i2...in

)
)

= μ
(
C

[1,n−1]
i2...in

)
= p(n−1)(i2 · · · in) . (2.30)

As a consequence, if μ is shift-invariant the probabilities assigned to cylinders
C

[j,k]
ijij+1...ik

depend only on the values ijij+1 . . . ik defining the cylinder, but
not on the interval [j, k].

Remark 2.1.5. Interestingly, the conditions (2.29) and (2.30) defines a dy-
namical triplet (Ωd, Tσ, μ) in the sense of Definition 2.1.1. This is the content
of Kolmogorov representation theorem [266]: if X = {1, 2, . . . , d}, the set Ωd,
as the infinite Cartesian product X×∞ of countably many copies of X can be
equipped with the product topology which is the coarsest one with respect to
which the projection maps πj : i �→ ij are continuous, namely the one gener-
ated by union and intersections of preimages π−1

j (B) of sets B ∈ X that are
open with respect to the discrete topology of X . Then, Ωd is a compact set by
Tychonoff theorem [251]. Namely, any open cover of Ω also contains a finite
subcover, whence in any collection of closed sets in Ω with empty intersection
there also exists a finite sub-collection with empty intersection [251].

Suppose one is given a collection of numbers p(n)(i(n)) as in (2.28) sat-
isfying (2.27); they assign volumes μ

(
C

[1,n]

i(n)

)
:= p(n)(i(n)), and define local

states on the measure algebras generated by these cylinders. If the quantities
p(n)(i(n)) fulfil (2.29), the local states extend to a positive, finite and addi-
tive function μ on the σ-algebra Σ generated by cylinders. In order to show
that μ is also σ-additive and thus a measure, one uses Remark 2.1.1.4 and
that each set in Σ the σ-algebra is closed in the product topology. Therefore,
given any decreasing sequence Σ ⊃ {Cn}∞n=1 with empty intersection, com-
pactness ensures that there exists a finite sub-collection {Cnj

}k
j=1 such that

⋂k
j=1 Cnj

= ∅, whence limn→∞(Cn) = 0.
Further, suppose that the quantities p(n)(i(n)) also fulfil (2.30), then it

turns out that

μ
(
C

[j,k]
ij ...ik

)
=

∑

i1i2...ij−1

p(k)(i1i2 . . . ij−1ij . . . ik)

=
∑

i�...ij−1

p(k−	+1)(i	 . . . ij−1ij . . . ik) ,
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for all � = 1, 2, . . . , j − 1. Therefore, μ
(
C

[j,k]
ij ...ik

)
= p(k−j+1)(ij . . . ik) whence

μ
(
T−1

σ (C [j,k]
ij ...ik

)
)

= μ
(
C

[j,k]
ij ...ik

)
and the measure μ is shift-invariant.

Example 2.1.4 (Bernoulli shifts). Consider a shift dynamical system
(Ωd, Tσ, μ); the simplest choice of local states μ(n) corresponds to product
measures on Ω

(n)
d :

p(n)(i1 · · · in) =
n∏

j=1

p(ij) , p(i) ≥ 0 ,
d∑

i=1

p(i) = 1 . (2.31)

These dynamical triplets are known as Bernoulli-shifts; if d = 2 and X =
{0, 1}, (Ω2, Tσ, μ) amounts to repeatedly tossing a coin, possibly biased if the
probabilities of head (0) and tail (1) are different.

Example 2.1.5 (Markov Chains). Shift dynamical systems slightly more
correlated than Bernoulli shifts are the so-called Markov shifts. Given the
local states μ(n) = {p(n)(i(n)}

i(n)∈Ω
)n)
d

, the ratios

p(in|i1i2 · · · in−1) :=
p(n)(i1i2 · · · in)

p(n−1)(i1i2 · · · in−1)
(2.32)

define conditional probabilities for the n-th symbol to be in if the previous
n − 1 ones are i1 · · · in−1. The global state μ is said to possess the Markov
property if and only if the following conditions occur:

p(in|i1i2 · · · in−1) = p(in|in−1) (2.33)
d∑

i=1

p(i|j) = 1 (2.34)

d∑

j=1

p(i|j) p(j) = p(i) . (2.35)

Condition (2.33) means that the conditional probabilities (2.32) depend only
on in and on in−1 and not on the previous symbols, so that

p(n)(i1i2 · · · in) =
(n−1∏

	=1

p(i	+1|i	)
)
p(i1) . (2.36)

Therefore, local states μ(n) are completely specified by the d × d matrix
P = [p(in|in−1)] and the probability vector | p 〉 = {p(j)}d

j=1.
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Because of (2.34), the matrix P is a stochastic matrix, namely its entries
p(i|j) are positive and qualify as transition probabilities as they express the
fact that the system cannot but remain in the same state or change into
another one. It follows that condition (2.29) is satisfied, indeed from (2.36)

d∑

i=1

p(n)(i1 · · · in−1i) =
d∑

i=1

p(i|in−1)
(n−2∏

	=1

p(i	+1|i	)
)
p(i1)

=
(n−2∏

	=1

p(i	+1|i	)
)
p(i1) = p(n−1)(i1i2 · · · in−1) .

Further, because of (2.35), the probability vector is an eigenvector with eigen-
value 1 of the matrix P and (2.30) is also satisfied, whence the local states
μ(n) generate a global shift-invariant states on Ωd. In fact,

d∑

i=1

p(n)(ii2 · · · in) =
(n−1∏

	=2

p(i	+1|i	)
) d∑

i=1

p(i2|i)p(i)

=
(n−1∏

	=2

p(i	+1|i	)
)
p(i2) = p(n−1)(i2i3 · · · in) .

Notice that Bernoulli shifts are particular instances of Markov chains with
transition probabilities p(i|j) = p(i) for all j = 1, 2, . . . , d.

2.2 Symbolic Dynamics

As already remarked, states corresponding to a continuous phase-space can
only be identified with finite precision that is they can be located within
subsets of small, but finite size, and cannot be further resolved. A typical
case is when the finite accuracy available corresponds to the subdivision of
the phase-space in a finite number of non-overlapping measurable subsets,
namely to a coarse-graining of the phase-space X by means of a so-called
finite partition [7, 167].

Definition 2.2.1 (Partitions).

1. A finite, measurable partition (partition for short) P of (X , T, μ) is any
collection of measurable subsets Pi ⊆ X , i ∈ IP , IP an index set of finite
cardinality, such that Pi∩Pj = ∅ for i �= j and

⋃
i∈IP

Pi = X The subsets
Pj are called atoms.

2. A partition P = {Pi}p
i∈IP

is finer than a partition Q = {Qj}q
j∈IQ

(Q
coarser than P), symbolically Q � P, if the atoms of Q are unions of
atoms of P: Qj =

⋃
i∈Ij⊆IP

Pi, for all j ∈ IQ.
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3. Given two partitions P = {Pi}i∈IP
and Q = {Qj}j∈IQ

, the partition
P ∨Q = {Pi ∩Qj}i∈IP ,j∈IQ is the coarsest refinement of P and Q.

Example 2.2.1. [61] Quite often, X is endowed with a σ-algebra Σ which is
generated by a measure-algebra Σ0; it is then possible to approximate within
ε any finite Σ-measurable partition P = {Pi}d

i=1 by a finite Σ-measurable
partition Q = {Qi}d

i=1 with atoms Qi ∈ Σ0, in the sense that (see (2.1))
μ(Pi ΔQi) < ε, i = 1, 2, . . . , d. Indeed, because of Remark 2.1.1.4, given
δ > 0, for any Pi ∈ P one can find Q′

i ∈ Σ0 such that μ(Pi ΔQ′
i) < δ; notice

that Pi ∩ Pj = ∅, thus x ∈ Q′
i ∩Q′

j and x /∈ Pi yield x ∈ Q′
i ΔPi, whence

Q′
i ∩Q′

j ⊆ Q′
i ΔPi ∪Q′

j ΔPj =⇒ μ(Q′
i ∩Q′

j) ≤ 2δ .

The sets Q′
i need not form a partition; however, let Q′ :=

⋃d−1
i,j=1 Q

′
i ∩ Q′

j ,
which is such that μ(Q′) ≤ d(d− 1) δ and set

Qi := Q′
i \Q′ , i = 1, 2, . . . , d− 1 , Qd := X \

d−1⋃

j=1

Qj .

These are atoms of a partition Q ⊂ Σ0. Consider first the symmetric differ-
ences Qi ΔPi, i = 1, 2, . . . , d − 1; one has that, if x ∈ Qi and x /∈ Pi, then
x ∈ Q′

i ΔPi, while, if x ∈ Pi and x /∈ Qi, then x ∈ Q′
i ΔPi or x ∈ Pi ∩ Q′,

whence

Qi ΔPi ⊆ Q′ ∪ (Q′
i ΔPi) =⇒ μ(Qi ΔPi) ≤ (d(d− 1) + 1) δ .

Since Pd = X \
⋃d−1

j=1 Pj and (X \A)Δ (X \B) = AΔB,

Qd ΔPd =
(d−1⋃

j=1

Qj

)
Δ
(d−1⋃

j=1

Pj

)
⊆

d−1⋃

j=1

(Qj ΔPj)

yields μ(Qd ΔPd) ≤ (d − 1)(d(d − 1) + 1) δ, whence the result follows by
choosing δ = (d− 1)−1(d(d− 1) + 1)−1ε.

The volumes μ(Pi) =: p(i) of the atoms of any partition P provide a
discrete probability measure μP := {μ(Pi)}i∈IP on P. While atoms in general
change under the dynamics T ,

Pi �→ T−j(Pi) := {x ∈ X : T jx ∈ Pi} ∀j ≥ 0 , (2.37)

their volumes do not for T is assumed to preserve μ.
Further, if Pi1 ∩Pi2 = ∅, then T−j(Pi1)∩T−j(Pi2) = ∅. Therefore, for all

j ∈ N (j ∈ Z if T has a measurable inverse)
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Pj := T−j(P) = {T−j(Pi)}i∈IP (2.38)

are partitions with the same probability distribution of P: μPj = μP . Further,
partitions at successive times are all refined by the partition

P(n) :=
n−1∨

j=0

Pj = P ∨ T−1(P) ∨ · · · ∨ T 1−n(P) . (2.39)

If p := card(IP), the atoms

P
(n)

i(n) := Pi0 ∩ T−1(Pi1) ∩ · · ·T−n+1(Pin−1) (2.40)

of P(n) are labeled by strings i(n) := i0i1 · · · in−1 ∈ Ω
(n)
p . We shall denote by

μ
(n)
P =

{
p(n)(i(n)) := μ(P (n)

i(n))
}

i(n)∈Ω
(n)
p

, (2.41)

the probability distribution associated with P(n) and consisting of the vol-
umes of its atoms with respect to the given probability measure μ.

Remark 2.2.1. Notice that a phase-point x ∈ X belongs to the atom Pi(n)

of P(n) if and only if T jx ∈ Pij
for all 0 ≤ j ≤ n − 1. As a conse-

quence, the atoms of P(n) contain all phase-points x ∈ X whose trajectories
{T jx}j∈Z successively intercept the atoms Pij

of P identified by the string
i(n) = i0i1 · · · in−1 ∈ Ω

(n)
p . As an effect of the coarse-graining, segments of dif-

ferent trajectories
{
T jx
}n−1

j=0
may correspond to a same i(n) ∈ Ω

(n)
p ; thus, as

normalized volumes, the probabilities p(n)(i(n)) quantify how likely is it that
different initial conditions give rise to a same segment of trajectory between
(discrete) time j = 0 and j = n− 1.

Lemma 2.2.1. Given a reversible dynamical system (X , T, μ) and a partition
P = {Pi}i∈IP , card(IP) = p, the dynamics T : X �→ X corresponds to the
left-shift (2.23) on sequences i ∈ ΩZ

p (see Remark 2.1.4).

Proof: Let i(x) ∈ ΩZ

p be the sequence of atom labels corresponding to the
trajectory {T j(x)}j∈Z with initial point x ∈ X . According to section 2.1.1
and to (2.37), ij(x) = ij if and only if T jx ∈ Pij

. Then, from (2.23),

ij(Tx) = ij ⇔ T j+1x ∈ Pij
⇔ ij+1(x) = (Tσi)j(x) = ij .

�
Therefore, any coarse-graining of X by means of a partition P provides

a description of the dynamical triplet (X , T, μ) in terms of the left shift
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on the sequences in ΩZ

p . The segments of trajectories up to time n − 1 are

in one-to-one correspondence with the sets of strings i(n) ∈ Ω
(n)
p and the

probability distribution μ(n)
P provides states over the cylinder sets C[0,n−1]. By

means of (2.40) and of the T -invariance of μ, one shows that conditions (2.29)
and (2.30) are fulfilled, whence the local states μ

(n)
P define a global shift-

invariant state μP over ΩZ

p . By varying x ∈ X , the trajectories
{
T jx
}

j∈Z

gets in general encoded by a subset Ω̃Z

p ⊂ ΩZ

p .

Definition 2.2.2 (Symbolic Models). Given a partition P of X , the triplet
(Ω̃Z

p , Tσ, μP) provides a symbolic model for the dynamical system (X , T, μ).

Example 2.2.2 (Baker Map). The Baker map (see Figure 2.1) is the in-
vertible map of the two-dimensional torus T

2 = {x = (x1, x2) , mod 1} into
itself given by

TBx =

⎧
⎪⎨

⎪⎩

(
2x1,

x2

2

)
0 ≤ x1 <

1
2(

2x1 − 1,
1 + x2

2

)
1
2
≤ x1 < 1

T−1
B x =

⎧
⎪⎨

⎪⎩

(x1

2
, 2x2

)
0 ≤ x2 <

1
2(

1 + x1

2
, 2x2 − 1

)
1
2
≤ x2 < 1

.

Fig. 2.1. Baker Map
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The map TB is measurable with respect to the Borel σ-algebra of T
2

and preserves the Lebesgue measure dμ(x) = dx1dx2: altogether, one has a
dynamical system described by the measure-theoretic triplet (T2, TB ,dx ).
It is evident that, when n → +∞, a sufficiently small distance between
two points x and x + δ increases as 2n along the horizontal direction until
it gets of order 1. Therefore, Definition 2.1.2 gives log 2 > 0 as maximal
Lyapounov exponent of the Baker map; instead, small distances decrease
exponentially along the vertical direction with the same speed so that volumes
are conserved.

Let ω+(x1) = {ωi}i≥0 and ω−(x2) = {ω−j}j≥1 be the half-sequences
consisting of the coefficients of the binary expansions of x1, respectively x2:

x1 =
∑

j=0

ωj

2j+1
, x2 =

∑

j=1

ω−j

2j
.

Setting ω(x) := (ω−(x1), ω+(x2)) = {ωj(x)}j∈Z ∈ Ω2 and using the mod 1
folding condition defining T

2, it turns out that TB is isomorphic to the left
shift Tσ on Ω2, namely ωj(TBx) = ωj+1(x).

Further, the Lebesgue measure on T
2 corresponds to the uniform product

measure (2.31) on the σ-algebra generated by cylinders. This can be seen
as follows. According to Remark 2.25, cylinders are intersections of simple
cylinders as C{0}

0 and C
{0}
1 that correspond to the vertical rectangles P0 =

{x : 0 ≤ x1 < 1/2} and P1 = {x : 1/2 ≤ x1 < 1} and their images
C
{j}
ij

= T−j
B (C{0}

ij
), j ∈ Z (see (2.26)). Under T−1

B they get rotated into
horizontal rectangles; successive applications of the Baker’s map split them
into horizontal rectangles of half height, each one of them having as neighbors
halved rectangles coming from the other initial rectangle.

It turns out that C [1,n−1]
i1,...,in−1

is a horizontal rectangle of width 1 and height

2−n+1; a further intersection with C
{0}
i0

provides the cylinder C
([0,n−1]
i0,i1,...,in−1

corresponding to a horizontal rectangle of width 1/2 and height 2−n+1 whose
area is 2−n. These areas may only come from a product measure,

μ
(n)
B (C([0,n−1]

i(n) ) :=
n−1∏

j=0

μ
(1)
B (C{j}

ij
) , μ

(1)
B (C{j}

ij
) =

1
2

∀j .

Therefore, the coarse-graining of T
2 given by P = {P0, P1} provides the

symbolic model (Ω2, Tσ, μB) for (T2, TB ,dx ).

2.2.1 Algebraic Formulations

In this section, instead of referring to phase-space trajectories, we shall con-
sider classical dynamical systems from the point of view of their observables
and of their time-evolution. By observables we mean suitable functions over
the phase-space.
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It is convenient to consider complex-valued functions f : X �→ C; their
values f(x) can be inferred by measuring real, �(f), and imaginary parts,
�(f). Further, it is reasonable to assume that functions f, g in a suitably
chosen class of observables give observables in the same class under addition,
(f, g) �→ (f +g)(x) = f(x)+g(x), and multiplication either by scalars α ∈ C,
(α, f) �→ (αf)(x)αf(x), or by another observable, (f, g) �→ fg(x) = f(x)g(x).

In other words, it is a reasonable physical assumption to require that ob-
servables constitute algebras of functions on X : these algebras are commuta-
tive for fg = gf . Physically speaking, there are no fundamental obstructions
to the fact that classical measuring processes can, in line of principle, be per-
formed without effects on the state of the measured system. As the measured
values depend on the system state, it follows that measuring g and then f
yields the same results as measuring f and then g.

Also, it is practically convenient to approximate certain observables in
the algebra by means of other observables that are in a certain sense close to
them; we shall thus assume these commutative algebras of observables to be
endowed with topologies and to be closed with respect to them; in particu-
lar, we shall consider algebras of observables where converging sequences of
functions do converge to observables in the algebra.

Like in Examples 2.1.2, 2.1.3, in the following we shall assume X to be
compact in a metric topology and measurable with respect to the Borel σ-
algebra that contains all its open and closed sets. Then, a natural algebra of
observables is provided by the continuous functions on X [258].

Definition 2.2.3. Let X be a compact metric space; C(X ) will denote the
Banach ∗-algebra (with identity) of continuous functions f : X �→ C endowed
with the uniform topology given by the norm

C(X ) � f �→ ‖f‖ = sup{|f(x)| : x ∈ X} . (2.42)

Remarks 2.2.2.

1. If f, g ∈ C(X ) and α ∈ C then f + αg ∈ C(X ) as well as fg ∈ C(X ).
Sums, multiplications by complex scalars, by continuous functions and
complex conjugation ∗ : f(x) �→ f∗(x) all map C(X ) into itself. These
facts make C(X ) a ∗-algebra with a norm f �→ ‖f‖; indeed,

‖f‖ = 0 ⇔ f = 0 , ‖α f‖ = |α| ‖f‖ , ‖f + g‖ ≤ ‖f‖ + ‖g‖ ,

for all f, g ∈ C(X ), α ∈ C. This norm defines the uniform neighborhoods

Uε(f) := {g ∈ C(X ) : ‖f − g‖ ≤ ε} , f ∈ C(X ) , (2.43)

and equips C(X ) with a metric and a corresponding topology called uni-
form topology, Tu.



2.2 Symbolic Dynamics 31

2. A sequence {fn}n∈N ⊂ C(X ) is a Cauchy sequence if, for any ε > 0
there exists N ∈ N such that n,m ≥ N =⇒ ‖fn − fm‖ ≤ ε; since
all Cauchy sequences in C(X ) converge uniformly to f ∈ C(X ), that is
limn ‖f − fn‖ = 0 or limn fn = f , C(X ) is termed a Banach algebra.
Also, ‖f∗f‖ = ‖f‖2, ‖f∗‖ = ‖f‖ and ‖fg‖ ≤ ‖f‖ ‖g‖ for all f, g ∈ C(X );
this makes C(X ) a C∗ algebra (see Definition 5.2.1).

3. Because of assumed compactness of X , the identity function 1l(x) = 1
belongs to C(X ). When X is not compact, one considers the ∗-algebra
C0(X ) consisting of the complex continuous functions on X vanishing at
infinity. When equipped with the norm (2.42), C0(X ) is a Banach algebra,
but the identity function does not belong to it.

A description of dynamical systems by means of continuous functions
is, however, too restrictive, in general. For instance, the corresponding C∗

algebras cannot contain observables related to yes/no questions like

is the state localized within a measurable subset (region) A ∈ X or not?

as these correspond to characteristic functions 1A of A which are only mea-
surable and not continuous. The Koopman-von Neumann formulation of Ex-
ample 2.1.1 offers a natural way to enlarge the algebra of observables. In a
quantum-like notation, we shall denote by |ψ 〉 any function in L

2
μ(X ) and by

〈x |ψ 〉 its value ψ(x) at x ∈ X . Functions f ∈ C(X ) can then be represented
on L

2
μ(X ) as multiplication operators Mf :

〈x |Mf |ψ 〉 = f(x)ψ(x) , ∀ψ ∈ L
2
μ(X ) . (2.44)

In the following, we shall identify, C(X ) and its representation by multipli-
cation operators, that is we shall identify Mf and f .

Remarks 2.2.3.

1. The maps C(X ) � f �→ Lψ(f) := ‖f |ψ 〉‖ are semi-norms. They define
strong-neighborhoods on C(X ), that is neighborhoods in the so called
strong topology, Ts,

U{ψj}n
j=1

ε (f) :=
{
g ∈ C(X ) : ‖(f − g)|ψj 〉‖ ≤ ε , 1 ≤ j ≤ n

}
. (2.45)

Since ‖(f − g)|ψ 〉‖ ≤ ‖f − g‖ ‖ψ‖2, g ∈ Uε/‖ψ‖(f) =⇒ g ∈ Uψ
ε ;

therefore, every strong-neighborhood contains a uniform neighborhood
and is thus a uniform neighborhood itself; in general, however, there
can be uniform neighborhoods which are not strong-neighborhoods, so
that the uniform topology is finer than the strong topology, Ts � Tu;
namely, Tu has more neighborhoods. Practically speaking, a sequence
fn ∈ C(X ) converges strongly to f ∈ C(X ), s − limn fn = f , if
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limn→∞ ‖(f − fn)|ψ 〉‖ = 0 ∀ψ ∈ L
2
μ(X ), and, while all uniformly con-

vergent sequences converge strongly, there can be strongly converging
sequences which do not converge uniformly.

2. If {fn}n∈N converges with respect to Tu, it converges also with respect
to Ts, but not vice versa; it follows that the strong closure of C(X ),
that is C(X ) together with all its possible strong limit points, is strictly
larger than C(X ). Indeed, it contains C(X ), simple functions and discon-
tinuous functions f that may jump arbitrarily but only on sets of zero
measure [258]. Equip X with a σ-algebra and a measure μ; then,

‖f‖∞ := inf
{
a ≥ 0 : μ

(
{x : |f(x)| ≥ a}

)
= 0
}
,

where f is a measurable function on X , defines a norm ‖ · ‖∞ called
essential norm. If ‖f‖∞ < ∞, then |f(x)| > ‖f‖∞ only on a set of zero
measure; further, the following collection of measurable functions,

L
∞
μ (X ) :=

{
f : ‖f‖∞ < ∞

}
,

is a C∗ algebra with respect to the essential norm known as the algebra
of essentially bounded functions.

3. There is another topology on C(X ) which is inherited by its multiplicative
action on L

2
μ(X ) and which is coarser than the strong topology, namely

the weak topology, Tw � Ts � Tu. It is generated by the semi-norms
Lφ,ψ(f) := |〈φ |Mf |ψ 〉| which defines the weak neighborhoods

U{(φj ,ψj)}n
j=1

ε (f) :=
{
g ∈ C(X ) : Lφj ,ψj

(f − g) ≤ ε , 1 ≤ j ≤ n
}
.

(2.46)
A sequence fn ∈ C(X ) converges weakly to f ∈ C(X ), w− lim fn = f , if
and only if lim

n→∞
|〈φ | (f−fn |ψ 〉| = 0 for all ψ, φ ∈ L

2
μ(X ). As we shall see

in the more general non-commutative context, the strong and the weak
closures coincide. In the case of C(X ) they give rise to L

∞
μ (X ) which has

the structure of a so-called von Neumann algebra.
4. Actually, L

∞
μ (X ) can be generated as the strong closure on L

2
μ(X ) of the

algebra containing the characteristic functions of finer and finer partitions
of X . More precisely, one may consider a refining sequence {Pn}n≥0,
Pn � Pn+1, that generates the σ-algebra of X when n → +∞. Each Pn

is a finite dimensional commutative algebra An whose elements are the
step functions that are linear combinations of the characteristic functions
of the finitely many atoms of Pn; then,

L
∞
μ (X ) =

⋃

n

An

weak−closure

.
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In order to complete the formulation of measure-theoretic triplets (X , T, μ)
into an algebraic framework, one has to endow C(X ) with a time-evolution
corresponding to T and a map C(X ) �→ C that play the role of μ by assigning
mean values to continuous functions.

We shall consider invertible continuous dynamical maps T on X and
discrete-time dynamics. As in Example 2.1.2, any f ∈ C(X ) changes in time
according to

f(x) �→ f(T tx) = f ◦ T t(x) =: ft(x) , t ∈ Z .

The map ΘT : C(X ) �→ C(X ), defined by ΘT (f) = f ◦T is an automorphism
of C(X ); namely, it is invertible and

ΘT (α f + β g) = αΘT (f) + β ΘT (g) , ΘT (fg) = ΘT (f)ΘT (g) . (2.47)

Moreover, ΘT preserves the uniform norm.

Example 2.2.3. In the Koopman-von Neumann formalism where functions
f ∈ C(X ) are represented as multiplication operators, the Koopman operator
UT implements unitarily the automorphism ΘT ; indeed, using (2.4), for all
ψ ∈ L

2
μ(X ) and x ∈ X ,

〈x |UT f U†
Tψ 〉 = f(Tx) 〈Tx |U†

Tψ 〉 = f(Tx) 〈T−1 ◦ Tx |ψ 〉
= 〈x |ΘT (f)ψ 〉.

Notice that UT cannot belong to C(X ), otherwise it would commute with all
f ∈ C(X ) which would then be constant in time.

Concerning the possible states over C(X ) (see (2.2)), we shall consider
the space M(X ) of regular Borel measures over X (see Remark 2.1.1.5).
The simplest instances of elements of M(X ) are the evaluation functionals
δx : C(X ) �→ C, defined by δx(f) := f(x), for all x ∈ X and f ∈ C(X ). These
functionals can be seen as integration with respect to Dirac delta distribu-
tions and embody the fact that phase-space points are the simplest physical

states: δx(f) =
∫

X
dy f(y) δ(y−x). By making convex combinations of eval-

uation functionals one obtains more general positive, normalized expectation
functionals over C(X ).

Actually, a theorem of Riesz [258] asserts that the action of any such
functional is representable by integration with respect to a regular Borel
measure in M(X ). In view of the physical interpretation of states as positive
functionals that assign mean values to observables, it makes sense to identify
measures μ ∈ M(X ) and states ωμ : C(X ) �→ C such that 3

3For sake of notational convenience, we shall sometime employ the notation
μ(f) for ωμ(f).
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A � f �→ ωμ(f) =
∫

X
dμ(x) f(x) , ∀ f ∈ C(X ) . (2.48)

Remarks 2.2.4.

1. With two measures μ1,2 on a measure space X all convex combinations
pμ1+(1−p)μ2 with p ∈ [0, 1] provide other measures; therefore, the space
of states of classical systems is a convex set.

2. Given two measures μ1,2 on X equipped with a σ-algebra Σ, μ1 is said
to be absolutely continuous with respect to μ2, μ1 � μ2, if for any B ∈ Σ
μ2(B) = 0 =⇒ μ1(B) = 0. Then, there exists a positive f ∈ L

1
μ(X )

such that μ1(B) =
∫

B
dμ2(x) f(x) for all B ∈ Σ. The density f(x) is

called Radon-Nikodym derivative and denoted by dμ1
dμ2

. If also μ2 � μ1

then μ1 and μ2 are said to be equivalent. Differently, μ1 and μ2 are called
mutually singular, μ1 ⊥ μ2, if there exists B ∈ Σ such that μ1(B) = 0
while μ2(X\B) = 0.

3. According to Lebesgue decomposition theorem, given two measures μ and
m on X , there exists a unique choice of measures μ1,2 and of p ∈ [0, 1]
such that μ = pμ1 + (1 − p)μ2 with μ1 � m and μ2 ⊥ m.

4. If X = T
2 as in Example 2.1.3, then any L

1
dr (T2) � ρ(r) ≥ 0 with∫

T2 dr ρ(r) = 1 is the Radon-Nikodym derivative of a measure which is
absolutely continuous with respect to dr . Vice versa, evaluation func-
tionals δr(f) = f(r) are singular measures with respect to dr .

Finally, a measure μ ∈ M(X ) is T -invariant if the corresponding mean
values are time-independent, ωμ(ΘT (f)) = ω(f) or ωμ = ωμ◦ΘT . Notice that
(2.48) and (2.47) allows one to extend the state ωμ and the automorphism
ΘT to the von Neumann algebra of essentially bounded functions L

∞
μ (X ).

Definition 2.2.4. To any measure-theoretic triplet (X , T, μ), where X is a
compact metric space equipped with the Borel σ-algebra and μ ∈ M(X ) is a
T -invariant regular Borel measure, one can associate a C∗ algebraic triplet
(C(X ), ΘT , ωμ) and a von Neumann triplet (L∞

μ (X ), ΘT , ωμ) where state ωμ

and automorphism ΘT are defined as in (2.48), respectively (2.47).

2.2.2 Conditional Probabilities and Expectations

Given a measure space (X , μ) with σ-algebraΣ, a finite partition P = {Pi}p
i=1

such that μ(Pi) > 0 for all i, and X ∈ Σ, consider the following function

x ∈ X �→ μ(X|P)(x) :=
μ(X ∩ Pi)
μ(Pi)

if x ∈ Pi , (2.49)

such that
∫

Pi

dμ (x)μ(X|P)(x) = μ(X ∩ Pi) . (2.50)
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It is the conditional probability of X ∈ Σ given the partition P and repre-
sents the probability of the subset X once it is known that x belongs to one
of the atoms of P. This notion can be extended to the case of partitions with
atoms P such that μ(P ) = 0 by assigning a same fixed, arbitrary real value
to μ(X|P)(x) when x ∈ P : in such a way one gets a family of versions of
the conditional probability each of which satisfies (2.50) [61]. One can ex-
tend (2.49) and (2.50) and define probability distributions conditioned upon
σ-subalgebras T ⊆ Σ.

Consider an integrable function f ∈ L
1
μ(X ), the functional on T defined

by F (T ) :=
∫

T

dμ (x) f(x), T ∈ T , is bounded, σ-additive and absolutely

continuous with respect to μ (see Remarks 2.1.1.3 and 2.2.4.1); its Radon-
Nikodym derivative dF

dμ (x) =: E(f |T )(x) such that

∫

T

dμ (x)E(f |T )(x) =
∫

T

dμ (x) f(x) ∀T ∈ T , (2.51)

is T -measurable and integrable and is called the conditional expectation of f
with respect to the σ-algebra T .

By choosing as f the characteristic function 1lX of a subset X ∈ Σ its
conditional probability given T is thus defined by μ(X|T )(x) := E(1lX |T )(x)
and is such that

∫

T

dμ (x)μ(X|T )(x) = μ(X ∩ T ) ∀X ∈ Σ , T ∈ T . (2.52)

Given a σ-subalgebra T ⊆ Σ consider the Abelian von Neumann al-
gebra L

∞
μ (X , T ) consisting of the essentially bounded T -measurable func-

tions on X (see Remark 2.2.3.2). This is a subalgebra of the Abelian von
Neumann algebra L

∞
μ (X ) of the Σ-measurable essentially bounded func-

tions on X . Then, (2.51) makes the conditional expectation a linear map
E(·|T ) : L

∞
μ (X ) �→ L

∞
μ (X , T ) which is linear, positive and a measure pre-

serving projection, that is μ ◦ E(·|T ) = μ and E(E(f |T )|T ) = E(f |T ). The
first three assertions are evident, while idempotency is a corollary of the fol-
lowing more general property. Suppose T1 � T2 are two σ-subalgebras of
Σ such that T1 ∈ T1 =⇒ T1 ∈ T2 but not vice versa, in general. Then, if
f ∈ L

∞
μ (X ), (2.51) yields
∫

T1

dμ (x)E(E(f |T2)|T1) =
∫

T1

dμ (x)E(f |T2) =
∫

T1

dμ (x) f(x)

=
∫

T1

dμ (x)E(f |T1) ,

for all T1 ∈ T1, whence T1 � T2 =⇒ E(E(f |T2)|T1) = E(f |T1).
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Proposition 2.2.1. If f ∈ L
∞
μ (X ) and g ∈ L

∞
μ (X , T ), where T ⊆ Σ, then

E(g f |T ) = g E(f |T ) . (2.53)

Proof: Suppose g = 1T , the characteristic function of a subset T ∈ T ;
then, for all T0 ∈ T , T ∩ T0 ∈ T and (2.51) yields
∫

T0

dμ (x)E(1T f |T )(x) =
∫

T∩T0

dμ (x) f(x) =
∫

T0

1T (x)E(f |T )(x) .

Then, one concludes the proof by approximating g ∈ L
∞
μ (X , T ) with respect

to the essential norm by means of simple functions. �
Given a refining sequence {Tn}n∈Z, that is n ≤ m =⇒ Tn ⊆ Tm ⊆ Σ,

we shall set T+ :=
∨

n∈Z
the smallest σ-subalgebra containing all the Tn’s

(Tn ↑ T+), respectively denote by T− :=
∧

n∈Z
Tn the largest σ-subalgebra

contained in all the Tn (Tn ↓ T−). The proof of the following continuity
properties can be found in [61] and [101].

Theorem 2.2.1. Let X be a measure space equipped with a σ-algebra Σ and
a measure μ; given a refining sequence of σ-subalgebras Tn, then

lim
n→+∞

E(f |Tn) = E(f |T+) , lim
n→−∞

E(f |Tn) = E(f |T−) ,

for all f ∈ L
∞
μ (X ).

Examples 2.2.4.

1. If Σ ⊃ T := N , the trivial σ-algebra consisting of the empty set ∅ and
the whole of X ; then, E(f |N ) = μ(f) 1l. On the other hand, if T = Σ,
then E(f |Σ) = f .

2. By inserting characteristic functions f = 1X , X ∈ Σ, in the above theo-
rem, one gets the following continuity properties of the conditional prob-
abilities:

lim
n→±∞

μ(X|Tn)(x) = μ(X|T±)(x) , μ− a.e.

for allΣ-measurable subsets of X .
3. Consider the unit interval [0, 1) with the Borel σ-algebra Σ and the

Lebesgue measure dμ (x) = dx ; construct the measure algebra Tn gener-
ated by the partition Pn of [0, 1) into 2n atoms Pk = [k2−n, (k+ 1)2−n).
Then, Tn ↑ Σ and [61]

E(f |Tn)(x) =
2n−1∑

k=0

1Pk
(x) 2n

∫ (k+1)2−k

k2−n

dt f(t) ,

for all f ∈ L
∞
[0,1)(dt ). For n → ∞ the summand containing x tends to the

derivative of the integral at x and thus to f(x) μ-a.e..
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2.2.3 Dynamical Shifts and Classical Spin Chains

Dynamical shifts and symbolic models can be given an algebraic formulation
in terms of classical spin chains. Consider a triplet (ΩZ

p , Tσ, μ), that is a shift-
dynamical system over doubly infinite sequences of symbols from an alphabet
with p elements that leaves invariant a measure μ.

Let us associate to each symbol j ∈ {1, 2, . . . , p} a p × p matrix of the
form

Pj =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0 0
0 0 0 · · · 0 0
· · · · · · · ·
· · · 1︸︷︷︸

(j,j)−thentry

· ·

· · · · · · · ·
0 0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Varying 1 ≤ j ≤ p, we obtain an orthonormal family of orthogonal projec-
tions such that PiPj = δijPj and

∑p
j=1 Pj = 1lp, where 1lp denotes the p× p

identity matrix; these projectors generate the diagonal p × p matrix algebra
Dp(C) 4 with elements

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d1 0 0 · · · 0 0
0 d2 0 · · · 0 0
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
0 0 0 · · · 0 dp

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
p∑

j=1

djPj . (2.54)

To each label j in a sequence i = {ij}j∈Z one thus associates the diagonal
matrix algebra Dp(C): each of its minimal projectors thus corresponds to a
simple cylinder. Extending the construction to generic cylinders C([0,n−1]

i0,i1,...,in−1

as in (2.24), these correspond to tensor products of projectors

P
([0,n−1]

i(n) :=
n−1⊗

j=0

Pij
, i(n) := i0, i1, . . . , in−1 . (2.55)

Then, the natural matricial description that one associates to strings of
length n is the diagonal matrix algebra D(n) = D⊗n :=

⊗n−1
j=0 (Dp(C))j ,

namely the tensor product of n copies of Dp(C) whose elements are diagonal
pn × pn matrices of the form

D(n) :=
∑

i(n)∈Ω
(n)
p

d(i(n))P [0,n−1]

i(n) . (2.56)

4These commutative matrix algebras are also called Abelian and projections as
the Pj are known as minimal projectors.
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A suggestive physical picture is as follows: each matrix algebra Dp(C)
describes a classical spin, with p possible states, in an infinite classical fer-
romagnet. Spins located at the lattice sites −n ≤ j ≤ n are described by
tensor products of the form D[−n,n] :=

⊗n
j=−n(Dp(C))j . These matrix alge-

bras can be interpreted as algebras of observables for finite portions of the
infinite ferromagnet by the embedding D[−n,n] �→ 1l−n−1] ⊗ D[−n,n] ⊗ 1l[n+1

into D∞ :=
⋃

n≥0 D[−n,n], where 1l−n−1] and 1l[n+1 denote the tensor products
of infinitely many identity matrices 1l ∈ Dp(C) located along the two-sided
chain at sites from −∞ up to −n− 1, respectively from n+ 1 up to +∞.

Each D[−n,n] can be equipped with the standard sup-norm of matrix
algebras (see (5.3)) 5. The sup-norm inductively extends to D∞ and allows

to consider the uniform closure DZ :=
⋃

n∈N
D[−n,n]

uniform
. This procedure

is known as C∗-inductive limit [64] as it involves an increasing sequence of
local algebras D[−n,n]; DZ provides a C∗ algebraic description of a classical
spin chain.

Using (2.26), the left-shift along sequences gives rise to an algebraic shift
map Θσ : DZ �→ DZ such that

Θσ(D[−n,n]) = D[−n+1,n+1] . (2.57)

Further, the local probability measures μ(n) := {p(i(n))}
i(n)∈Ω

(n)
p

that

yield the global Tσ-invariant state μ over ΩZ

p can be associated with diagonal
matrices

ρ(n)
μ :=

∑

i(n)∈Ω
(n)
p

p(i(n))P [0,n−1]

i(n) , (2.58)

by means of the trace operation (see (5.19)) which acting on any matrix re-
turns the sum of its diagonal entries. In fact, multiplying ρ(n)

μ with matrices as
in (2.56), gives another matrix in D(n) with diagonal elements p(i(n)) d(i(n)),
and one gets

Tr
(
ρ(n)

μ D(n)
)

=
∑

i(n)∈Ω
(n)
p

p(i(n)) d(i(n)) ,

whence p(i(n)) = Tr
(
ρ
(n)
μ P

[0,n−1]

i(n)

)
. Therefore, conditions (2.29)- (2.30)

translate into the following algebraic relations to be satisfied by {ρ(n)
μ }n∈N:

Trn(ρ(n)
μ ) = Tr1(ρ(n)

μ ) = ρ(n−1)
μ , (2.59)

where Trj denotes the trace with respect to j-th factor. These conditions
allows to consistently define a global state ωμ on the spin chain DZ; this state

5The sup-norm of a diagonal matrix D is the square root of the largest diagonal
element of D†D.
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is specified by its values as a positive expectation functional over local spin
arrays where it coincides with the local states ρ(n)

μ (which we shall encounter
in the quantum setting as density matrices).

Definition 2.2.5 (Classical Spin Chains).
The C∗ algebraic triplet (DZ, Θσ, ωμ) associated with a measure-theoretic

triplet (Ωp, Tσ, μ) will be referred to as a classical spin chain.

Remark 2.2.5. In Section 5.3.2, it will be proved that to all classical spin
chains as defined above, there correspond algebraic triplets as in Defini-
tion 2.2.4. In particular, the von Neumann algebraic triplets arise when the
C∗ triplets (DZ, Θσ, ωμ) are represented on a Hilbert space and enlarged by
adding to them their weak-limit points.

Example 2.2.5. [113] Consider a Markov chain as in Example 2.1.5. Let

ρ =
d∑

i=1

p(i)Pi =

⎛

⎜
⎜
⎝

p(1) 0 · · · 0
0 p(2) · · · 0
...

...
...

...
0 0 · · · p(d)

⎞

⎟
⎟
⎠

correspond to the probability measure μ = {p(i)}d
i=1. Define on the tensor

product Dd(C)⊗Dd(C) a linear map E : Dd(C)⊗Dd(C) �→ Dd(C) by linear
extension of the following action on tensor products of minimal projectors
Pi ∈ Dd(C),

Pi ⊗ Pj �→ E[Pi ⊗ Pj ] := p(j|i)Pi ,

where P (j|i) are the transition probabilities of the Markov chain. From (2.34)
and (2.35) and using that

∑d
k=1 Pk = 1l,

E[1l ⊗ 1l] =
d∑

i,j=1

E[Pi ⊗ Pj ] =
d∑

i,j=1

p(j|i)Pi =
d∑

i=1

Pi = 1l

Tr
(
ρE[1l ⊗ Pk]

)
=

d∑

i=1

Tr
(
ρE[Pi ⊗ Pk]

)
=

d∑

i=1

p(k|i)Tr(ρPi)

=
d∑

i=1

p(k|i) p(i) = p(k) = Tr(ρPk) ,

for all k = 1, 2, . . . , d. Furthermore, higher order probabilities as in (2.36) are
iteratively obtained as:

p(i0i1 · · · in−1) = Tr
(
ρE[Pi0 ⊗ E[Pi1 ⊗ · · ·E[Pin−1 ⊗ 1l ] ] ]

)
.
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For instance, to evaluate Tr
(
ρE[Pi0 ⊗ E[Pi1 ⊗ 1l]]

)
use
∑d

k=1 Pk = 1l, then

d∑

k=1

Tr
(
ρE[Pi0 ⊗ E[Pi1 ⊗ Pk]]

)
=

d∑

k=1

P (k|i1)Tr
(
ρE[Pi0 ⊗ Pi1 ]

)

= Tr
(
ρE[Pi0 ⊗ Pi1 ]

)
= p(i1|i0)Tr(ρPi0)

= p(i1|i0) p(i0) = p(i0i1) .

Therefore, the local density matrices ρ(n)
μ are the local restrictions ωμ |̀D(n) of

a global state ωμ on the classical spin chain DZ such that, for all Di ∈ Dd(C),

ωμ

(
D1 ⊗D2 ⊗ · · ·Dn

)
= Tr

(
ρE[D1 ⊗ E[D2 ⊗ · · ·E[Dn ⊗ 1l] ] ]

)
.

2.3 Ergodicity and Mixing

The two uncoupled harmonic oscillators of Example 2.1.2 whose orbits fill
the phase-space densely (see Remarks 2.1.2.2 and 2.1.2.3) are typical ergodic
systems. Ergodic theory developed [167] from the attempt to explain why in
thermodynamic systems time-averages of typical observables coincide with
their mean values μ(f) with respect to equilibrium distributions. Intuitively,
if an orbit fills the energy shell densely, evaluating the time-average of a
function along such an orbit should indeed amount to integrating with respect
to the Liouville measure restricted to the energy shell.

Definition 2.3.1. Let f : X → C be a complex function associated to a
dynamical system (X , T, μ); time-averages are defined by

f(x) := lim
t→+∞

1
t

t−1∑

s=0

f(T sx) , f(x) := lim
t→+∞

1
t

∫ t

0

ds f(Tsx)

in discrete, respectively continuous time.

Example 2.3.1. Consider the uncoupled oscillators of Example 2.1.2 and
a continuous function f : T

2 �→ R. By means of (2.12), the discrete and
continuous time averages yield

f(θ) = lim
t→+∞

∑

n∈Z2

f̂(n)
eit
∑2

i=1 ωini − 1
t(ei

∑2
i=1 ωini − 1)

en(θ) =
∑

n∈Z2
∑2

i=1 ωini∈2πZ

f̂(n) en(θ) ,

respectively
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f(θ) = lim
t→+∞

∑

n∈Z2

f̂(n)
eit
∑2

i=1 ωini − 1
it
∑2

i=1 ωini

en(θ) =
∑

n∈Z2
∑2

i=1 ωini=0

f̂(n) en(θ) .

Then, besides ensuring that orbits fill T
2 densely, the conditions in Re-

mark 2.1.2.2 and 2.1.2.3 also imply that time-averages coincide with their
mean values: f(θ) = f̂(0) =

∫
T2 dθ f(θ) = μ(f).

A considerable break-through in ergodic theory was Birkhoff’s theorem 6.

Theorem 2.3.1. Given
(
X , T, μ

)
, let f ∈ L

1
μ(X ) be a complex μ-summable

function on X . Then,

1. the time-average f(x) exists μ-a.e. on X ;
2. the time-average f is T -invariant: f ◦ T = f μ-a.e.;
3. the time-average f ∈ L

1
μ(X ) and μ(f) = μ(f).

The proof [91, 61] of these important results hinges on the following lemma
known as maximal ergodic theorem.

Lemma 2.3.1. Given the dynamical triplet
(
X , T, μ

)
, for any f ∈ L

1
μ(X ),

set Sf
k (x) :=

1
k

k−1∑

j=0

f(T jx) and Af :=
{
x ∈ X : supk≥0 S

f
k (x) > 0

}
; then,

∫

Af

dμ (x) f(x) ≥ 0.

Proof: Set Φ(1)
n (x) := max

{
0, Sf

1 (x), . . . , Sf
n(x)

}
and split X into the sub-

set Af
n :=

{
x : Φ(1)

n (x) > 0
}

and its complement where Φ(1)
n (x) = 0. Further,

Φ(2)
n (x) := max

{
Sf

1 (x), . . . , Sf
n(x)

}
= Φ(1)

n (x) on Af
n; also,

Φ
(2)
n+1(x) = max

{
f(x), f(x) + f(Tx), . . . , f(x) + f(Tx) + · · · f(Tnx)

}

= f(x) + max
{

0, f(Tx), . . . , f(Tx) + · · · f(Tnx)
}

= f(x) + Φ(1)
n (Tx) .

Thus, since Φ(1)
n (x) is non-negative, μ is T -invariant and Φ

(2)
n+1(x) ≥ Φ

(2)
n (x),

6Though the results presented below can be extended to dynamical systems in
continuous time, we shall concentrate on discrete time dynamical systems.
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∫

Af
n

dμ (x) f(x) =
∫

Af
n

dμ (x)
(
Φ

(2)
n+1(x) − Φ(1)

n (Tx)
)

≥
∫

Af
n

dμ (x)Φ(2)
n (x) −

∫

X
dμ (x)Φ(1)

n (Tx)

=
∫

Af
n

dμ (x)Φ(1)
n (x) −

∫

X
dμ (x)Φ(1)

n (x) = 0 .

Then, the result follows for, when n → +∞, the points in Af that are not in
Af

n form a set of vanishingly small measure μ. �
Proof of Theorem 2.3.1 Let a < b ∈ R and, using the notations of the
previous lemma, set

Eab :=
{
x ∈ X : lim inf

n→+∞

1
n
Sf

n(x) < a < b < lim sup
n→+∞

1
n
Sf

n(x)
}
.

Let g(1)
ab (x) := f(x)− b when x ∈ Eab, otherwise g(1)

ab (x) = 0; consider the set

{
x ∈ X : sup

n

1
n
S

g
(1)
ab

n (x) > 0
}

=
{
x ∈ X : sup

n

1
n
Sf

n(x) > b
}
.

This set not only coincides with the set Ag
(1)
ab as defined in Lemma 2.3.1, but

it also equals Eab; while the first property is contained in the definition of
the set, the second one follows from the fact that, on one hand,

lim sup
n→+∞

1
n
Sf

n(x) > b =⇒ sup
n→+∞

1
n
Sf

n(x) > b =⇒ Eab ⊆ Ag
(1)
ab .

On the other hand, by definition of Eab, if x /∈ Eab also Tnx /∈ Eab for all n,

whence g(1)
ab (Tnx) = 0, Sg

(1)
ab

n (x) = 0 and x /∈ Ag
(1)
ab . Thus, Lemma 2.3.1 yields

∫

Ag
(1)
ab

dμ (x) g(1)
ab (x) =

∫

Eab

dμ (x) (f(x) − b) ≥ 0 .

The same argument applied to the function g
(2)
ab (x) := a − f(x) if x ∈ Eab,

otherwise g(2)
ab (x) = 0, gives

∫

Eab

dμ (x) (a− f(x)) ≥ 0, whence

b μ(Eab) ≤
∫

Eab

dμ (x) f(x) ≤ aμ(Eab) .

Since a < b this can only be possible if μ(Eab) = 0; therefore, the limit

f̂(x) := lim
n→+∞

1
n
Sf

n(x) exists μ-a.e. on X . Namely, outside the union of all

Eab with rational a, b, which is still a set of zero measure, the sequence Sf
n(x)

converges pointwise to f̂(x) which can however be ±∞.
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The limit function is T -invariant by construction; moreover, f̂ ∈ L
1
μ(X ).

Indeed, ∫

X
dμ (x)

∣
∣
∣
1
n
Sf

n(x)
∣
∣
∣≤
∫

X
dμ (x) |f(x)| ;

therefore, Fatou’s lemma 7 yields
∫

X

dμ (x) |f̂(x)| ≤ lim inf
n→+∞

∫

X
dμ (x)

∣
∣
∣
∣
1
n
Sf

n(x)
∣
∣
∣
∣ ≤
∫

X
dμ (x) |f(x)| < +∞ .

Finally, choose λ ≥ 0, let gλ(x) :=
∣
∣
∣
∣
1
n
Sf

n(x)
∣
∣
∣
∣−λ, and consider the set Agλ as

in Lemma 2.3.1 ; then,
∫

X
dμ (x)

∣
∣
∣
∣
1
n
Sf

n(x) − f̂(x)
∣
∣
∣
∣ ≤
∫

X\Agλ

dμ (x)
∣
∣
∣
∣
1
n
Sf

n(x) − f̂(x)
∣
∣
∣
∣

+
∫

Agλ

dμ (x)
∣
∣
∣
∣
1
n
Sf

n(x)
∣
∣
∣
∣ +

∫

Agλ

dμ (x) |f̂(x)| .

Consider the third integral, Lemma 2.3.1 yields μ(Agλ) ≤ 1
λ
‖f̂‖1; as to the

second one, it can be estimated as follows
∫

Agλ

dμ (x)
∣
∣
∣
∣
1
n
Sf

n(x)
∣
∣
∣
∣ ≤

1
n

n−1∑

k=0

∫

|f(T kx)|>α

dμ (x) |f(T kx)| + αμ(Agλ)

=
∫

|f(x)|>α

dμ (x) |f(x)| + αμ(Agλ) ,

for some fixed α ≥ 0. Now, μ(Agλ) and thus the third integral can be made
arbitrarily small by choosing an appropriate λ, as well as the second one by
setting α large enough. Further, Lebesgue dominated convergence theorem 8,

can be applied to
∫

X\Agλ

dμ (x)
∣
∣
∣
∣
1
n
Sf

n(x) − f̂(x)
∣
∣
∣
∣ which becomes negligibly

small when n → +∞, whence
∫

X
dμ (x) f̂(x) = lim

n→+∞

∫

X
dμ (x)

1
n
Sf

n(x) = lim
n→+∞

1
n

n−1∑

k=0

∫

X
dμ (x) f(T kx)

=
∫

X
dμ (x) f(x) .

7Fatou’s lemma [258] asserts that if fn is a sequence of measurable functions on

a measure space X , then

∫

X
dμ lim inf

n→+∞
fn ≤ lim inf

n→+∞

∫

X
dμ fn.

8 Lebesgue Dominated Convergence Theorem [258] asserts that if {fn}n∈N is
a sequence of measurable functions on X such that the limit f(x) = lim

n→+∞
fn(x)

exists for all x ∈ X and |fn(x)| ≤ g(x) for all x ∈ X with g ∈ L
1
μ(X ), then

f ∈ L
1
μ(X ) and

∫

X
dμ (x) f(x) = lim

n→+∞

∫

X
dμ (x) fn(x) .
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�

In the light of Birkhoff’s ergodic theorem, we first give a general measure-
theoretic definition of ergodicity and then consider its physical consequences.

Definition 2.3.2. A dynamical system (X , T, μ) is ergodic if for all measur-
able subsets T−1(B) = B implies μ(B) = 0 or μ(B) = 1.

Remarks 2.3.1.

1. The first conclusion to be drawn from this definition is that ergodic sys-
tems cannot possess non-trivial T -invariant measurable functions (con-
stants of the motion). Indeed, if f : X → R is such that f ◦ T = f then
Na := {x ∈ X : f(x) = a} ⊆ X is measurable; moreover, as x ∈ T−1(Na)
implies Tx ∈ Na, then f(x) = f(Tx) = a. Thus, T−1(Na) ⊆ Na and er-
godicity forces Na to equal either X or ∅ μ-a.e. for all a ∈ R, whence
f(x) = cf μ-a.e. on X .

2. If f ∈ L
1
μ(X ), its time-average f is T -invariant by point 2 in Birkhoff’s

theorem. If (X , T, μ) is ergodic, from the previous remark and point 3 in
Birkhoff’s theorem, f(x) = cf μ − a.e; thus, μ(f) = cf = f(x) μ − a.e.
on X . Namely, ergodicity implies that time-averages and phase-averages
(mean-values) of (summable) observables coincide. Vice versa, dynami-
cal systems where time-averages and phase-averages coincide are ergodic
because of Proposition 2.3.1 below.

3. If the only T -invariant measurable functions are constant almost every-
where on X , then (X , T, μ) is ergodic: in fact, the characteristic functions
of T -invariant measurable subsets are T -invariant and must then be con-
stant almost everywhere, namely equal either to 0 or to 1 μ-a.e.

4. The average time spent within B by almost all phase-points of an ergodic

system equals the volume of B. Indeed, let 1
t
B(x) :=

1
t

t−1∑

s=0

1B(T s
Tx);

count the mean number of times B is crossed by the trajectory {Tnx}n∈N

during a span of time of length t. Then, ergodicity yields

1B(x) = lim
t→+∞

1t
B(x) = μ(B) μ− a.e. . (2.60)

Proposition 2.3.1. A dynamical system (X , T, μ) is ergodic if and only if
for all measurable A,B it holds that

lim
t→∞

1
t

t−1∑

s=0

μ(A ∩ T−s(B)) = μ(A)μ(B) . (2.61)
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Proof: Consider 1A(x)1t
B(x) =

1
t

t−1∑

s=0

1A∩T−s(B)(x), by Birkhoff’s theorem

and Lebesgue dominated convergence theorem (see footnote 8) it follows that

μ(1A1B) = lim
t→∞

1
t

t−1∑

s=0

μ(A ∩ T−s(B)) .

If the system is ergodic, then (2.61) follows from (2.60). If (2.61) holds, then
A = B = T−1(B) =⇒ μ(B)2 = μ(B), whence μ(B) equals either 0 or 1. �

Definition 2.3.3 (Mixing). A dynamical system (X , T, μ) is mixing if and
only if for all measurable subsets A,B ⊆ X it holds that

lim
t→+∞

μ(A ∩ T−t(B)) = μ(A)μ(B) . (2.62)

The subsets A ∩ T−t(B) consist of those points of A that visit B at time
t; thus, (2.62) asserts that relative to the volume of any measurable subset
A, the volume of points of A that will eventually be in another measurable
subset B equals the volume of B. In other words, mixing dynamical systems
are in the long run characterized by the uniform spreading of their measurable
subsets; on the other hand (2.61) states that ergodicity amounts to a uniform
spreading on average.

From a physical point of view, quantities like μ(A ∩ T−t(B)) are two-point
correlation functions; thus, mixing characterizes dynamical systems whose
two-point correlation functions factorize asymptotically, whereas ergodicity
corresponds to two-point correlation functions factorizing in the mean.

Remarks 2.3.2.

1. If lim
n→+∞

an = a, an ∈ R, then, lim
n→+∞

1
n

n−1∑

k=0

ak = a, whence (2.62) im-

plies (2.61) and mixing implies ergodicity. The opposite is not in general
true as the time-average can get rid of those s for which μ(A∩T−s(B)) �=
μ(A)μ(B). There is a third asymptotic behavior, intermediate between
ergodicity and mixing, known as weak mixing [313] and related to the
fact that

lim
n→∞

|an − a| = 0 =⇒ lim
n→∞

1
n

n−1∑

j=0

|an − a| = 0

=⇒ lim
n→∞

1
n

∣
∣
∣
∣
∣
∣

n−1∑

j=0

(an − a)

∣
∣
∣
∣
∣
∣
= 0 .



46 2 Classical Dynamics and Ergodic Theory

Weak mixing amounts to the request that

lim
t→∞

1
t

t−1∑

s=0

∣
∣μ(A ∩ T−s(B) − μ(A)μ(B))

∣
∣ = 0 ; (2.63)

it is implied by mixing and implies ergodicity.
2. Given an invertible map T , a stronger notion of mixing is formulated

as follows [91]. Given any finite collection Sr := {Si}r
i=1, Si ∈ Σ, of

measurable subsets of X , denote by

Σ∞
n (Sr) :=

∞∨

k≥n

T−k(Sr)

the σ-algebra generated by all possible atoms of the form T−k(Sj) for
k ≥ n and Sj ∈ Sr. Then, (X , T, μ) is said to be K-mixing if

lim
n→∞

sup
B∈Σ∞

n (Sr)

∣
∣
∣μ(S0 ∩ B) − μ(S0)μ(B)

∣
∣
∣ = 0 , (2.64)

for all S0,Sr ∈ Σ. Observe that x ∈ Σ∞
n (Sr) implies T−kx ∈ Si at

some time k ≥ n for some atom Si ∈ Sr; therefore, K-mixing amounts
to the uniform statistical independence of any given measurable subset
from the trajectories of any finite family of subsets if these are considered
sufficiently far away in the past.

By using the density of the algebra of simple functions S(X ) in the
Hilbert space L

2
μ(X ) as in Example 2.1.1, it is convenient to reformulate (2.61)

and (2.62) in terms of square-summable functions. It is thus possible to study
how those properties constrain the spectrum of the Koopman operator UT .

Proposition 2.3.2. A dynamical system (X , T, μ) is

1. ergodic if and only if for all ψ, φ ∈ L
2
μ(X )

lim
t→∞

1
t

t−1∑

s=0

μ(ψ φ ◦ T s) = μ(ψ)μ(φ) ; (2.65)

2. mixing if and only if for all ψ, φ ∈ L
2
μ(X )

lim
t→+∞

μ(ψ φ ◦ T t) = μ(ψ)μ(φ) . (2.66)

According to the Koopman-von Neumann formalism of Example 2.1.1, us-
ing (2.5), it turns out that μ(ψφ ◦ T t) = 〈ψ∗ |U t

T |φ 〉. Therefore, ergodicity
and mixing can conveniently be expressed as weak-limits, that is as limits with
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respect to the weak topology (see Remark 2.2.3.3). Then (2.65) and (2.66)
are equivalent to

w − lim
t→∞

1
t

t−1∑

s=0

Us
T = | 1l 〉〈 1l | (2.67)

w − lim
t→∞

U t
T = | 1l 〉〈 1l | . (2.68)

The constant function | 1l 〉 is such that UT | 1l 〉 = | 1l 〉; if there exists
|ψ 〉 �= | 1l 〉 such that UT |ψ 〉 = |ψ 〉, then one can orthogonally decompose
|ψ 〉 = α| 1l 〉 + β|φ 〉 with 〈φ | 1l 〉 = 0, ‖φ‖ = 1 and UT |φ 〉 = |φ 〉. Thus,

1 = lim
t→+∞

〈φ |U t
T |φ 〉 �= |〈φ | 1l 〉|2 = 0 ,

whence (2.68) cannot hold. If (2.68) holds, a similar argument excludes the
presence of eigenvectors |ψλ 〉 such that UT |ψλ 〉 = eiλ|ψλ 〉. Therefore,

Proposition 2.3.3. A dynamical system (X , T, μ) is mixing only if 1 is the
only eigenvalue of its Koopman operator and it is not degenerate.

In order to see the impact of ergodicity as expressed by (2.67) on the
spectrum of UT , we use [313]

Proposition 2.3.4 (von Neumann Ergodic Theorem). Let UT be the
unitary Koopman operator acting on the Hilbert space H := L

2
μ(X ) of a

dynamical triplet (X , T, μ), with T invertible. Let At : H �→ H be defined

by At|ψ 〉 :=
1
t

t−1∑

s=0

Us
T |ψ 〉, ψ ∈ H, and let P project onto the subspace K

of vectors such that UT |ψ 〉 = |ψ 〉. Then, lim
t→+∞

‖(At − P )ψ‖ = 0; in other

words, P is the strong limit (see Remark 2.2.3.1) of the sequence of operators
At, P = s− limt→+∞At.

Proof: The subspace orthogonal to K is (UT − 1l)H; thus, for any ψ ∈ H,

|ψ 〉 = P |ψ 〉 + (1l − P )|ψ 〉 = P |ψ 〉 + (UT − 1l)|φ 〉 ,

for some φ ∈ H. Since At(UT − 1l) =
U t

T − 1l
t

, the result follows from

‖(At − P )|ψ 〉‖ ≤ ‖(U t
T − 1l)|φ 〉‖

t
≤ 2‖φ‖

t
.

�
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Corollary 2.3.1. A dynamical system (X , T, μ) is ergodic if and only if 1 is
a non-degenerate eigenvalue of the Koopman operator UT .

Proof: Since strong convergence implies weak convergence, condition (2.67)
means that ergodicity is equivalent to P = | 1l 〉〈 1l |. �

Remarks 2.3.3.

1. By substituting ψ, φ ∈ L
2
μ(X ) with ψ − μ(ψ) and φ − μ(φ) (they also

belong to L
2
μ(X )), ergodicity, respectively mixing amount to

lim
t→∞

1
t

t−1∑

s=0

μ(ψ φ ◦ T s) = 0 , lim
t→+∞

μ(ψ φ ◦ T t) = 0 , (2.69)

for all ψ, φ ∈ L
2
μ(X ) with μ(ψ) = μ(φ) = 0.

2. In case T is not invertible, the Koopman operator is not unitary, but just
an isometry, that is U†U = 1l, while UU† �= 1l. If T is invertible, time
averages can be extended from −∞ to +∞ and, because of T -invariance
of μ, it does not matter which one of ψ and φ is the time-evolving function
in (2.65) and (2.66).

Examples 2.3.2.

1. Ergodic rotations as in Example 2.1.2 are never mixing for the Koopman
operator has the exponential functions en(θ) as eigenfunctions.

2. The system in Example 2.1.3 is mixing. Given ψ, φ ∈ L
2
dr(T2) with

μ(ψ) = μ(φ) = 0, let ε > 0 and choose L > 0 such that ‖ψ−ψε‖ ≤ ε and
‖φ− φε‖ ≤ ε, where ψε =

∑
‖m‖≤L ψ̂(m)em and φε =

∑
‖n‖≤L φ̂(n)en.

Then, using (2.22),

|μ(ψ φ ◦ T p
A
)| ≤ ε (‖φ‖ + ‖φε‖) + |μ(ψε φε ◦ T p)|
≤ ε (‖φ‖ + ‖φε‖) +

∑

‖n‖≤L

‖A−pn‖≤L

|ψ̂(n)| |φ̂(A−pn)| .

When p → ∞, hyperbolicity permits ‖n‖ ≤ L and ‖A
−pn‖ ≤ L only if

n = 0; since μ(φ) = φ̂(0) = 0, the Arnold Cat Map satisfies (2.66).
3. Conditions for the Markov chain in Example 2.1.5 to be mixing can be

derived by considering two-point correlation functions involving cylinders,
of the form

μ
(
C

[0,p−1]
i0···ip−1

⋂
T−t

σ (C [0,q−1]
j0···jq−1

)
)

= μ
(
C

[0,p−1]
i0···ip−1

⋂
C

[t,t+q−1]
j0j1···jq−1

)
.

By means of the matrix P = [p(i|j)] of transition probabilities and
of (2.36), one writes
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μ
(
C

[0,p−1]
i0···ip−1

⋂
C

[t,t+q−1]
j0···jq−1

)
=

∑

kp,···kt−1

p(i0 · · · ip−1kp · · · kt−1j0 · · · jq−1)

=
d∑

kp,,kt−1=1

(q−2∏

a=0

Pja+1ja

)
Pj0kt−1

⎛

⎝
∑

kp+1,...,kt−2

t−2∏

b=p

Pkb+1kb

⎞

⎠ ×

×Pkpip−1

( p−2∏

c=0

Pic+1ic

)
p(i0)

=
d∑

kp,kt−1=1

(q−2∏

a=0

Pja+1ja

)
Pj0kt−1 (P t+p−1)kt−1kp

Pkpip−1 p(i0 · · · ip−1)
︸ ︷︷ ︸
μ(Ci0···ip−1 )

.

Using (2.34) and (2.35), it follows that (see [61, 313])

lim
t→+∞

μ
(
C

[0,p−1]
i0···ip−1

⋂
C

[t,t+q−1]
j0···jq−1

)
= μ

(
C

[0,p−1]
i0···ip−1

)
μ
(
C

[0,q−1]
j0···jq−1

)
,

is achieved if and only if lim
t→+∞

(P t)ij = p(i) for all j = 1, 2, . . . , d; while

factorization in the mean (and thus ergodicity) holds if and only if, for
all j = 1, 2, . . . , d,

Qij := lim
t→+∞

1
t

t−1∑

s=0

(P s)ij = p(i) .

4. The condition for mixing in the previous example is certainly satisfied by
Bernoulli dynamical systems whose matrix of transition probabilities is
P = [p(i)]di,j=1 (see Example 2.1.5).

2.3.1 K-Systems

Consider an invertible Bernoulli system (ΩZ

p , Tσ, μ), where the space of p-adic
doubly infinite sequences i ∈ ΩZ

p is equipped with the σ-algebra generated
by cylinder sets and μ is a translation invariant product measure on Σ. Let
C{0} = {C{0}

j }d
j=1 be the finite partition consisting of simple cylinders as

in (2.25) and consider the σ-algebras

C0] :=
∨

j≥0

T−j
σ (C{0}) =

∨

j≥0

C{j} (2.70)

Cn] := Tn
σ (C0]) =

∨

j≥−n

C{j} (2.71)

generated by union and intersections of cylinders of the form (see (2.26))
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C
[p,q]

i(q−p+1) =
q⋂

j=p

T−j
σ (C{j}

ij
) , i(q−p+1) = ipip+1 · · · iq ∈ Ω(q−p+1)

p ,

for any q ≥ p ≥ −n. From Section 2.1.1 and Examples 2.3.2.3-4, one deduces
that:

i) Cn] ⊂ Cn+1] , ii)
∨

n≥0

Cn] = Σ , iii)
∧

n≥0

C−n] = N , (2.72)

where N is the trivial σ-algebra consisting only of the empty set ∅ and of
ΩZ

d , all equalities being understood up to sets of zero measure. Condition ii)
expresses the fact that cylinder sets C[p,q] with p, q ∈ Z generate Σ, while in
condition iii), ∧

n≥0

C−n] =
∧

n≥0

∨

j≥n

T−j
σ (C{0})

denotes the largest σ-algebra, called tail of C{0} (Tail
(
C{0}

)
) contained in all

C−n] with n ≥ 0.
Cylinders in C−n] are of the form C

[p,p+q]

i(q+1) with p ≥ n , q ≥ 0; they become
subsets of Tail

(
C{0}

)
when t → +∞. Then, from the mixing relation in

Remark 2.3.2.3, one deduces that the characteristic functions of these atoms
go into the constant functions μ(C [0,q]

i(q+1)) 1l, asymptotically, whence condition
iii). Bernoulli shifts are particular instances of Kolmogorov (K-)systems [91]
and C0] a particular example of K-partition.

Definition 2.3.4 (Classical K-systems). A discrete-time dynamical sys-
tem (X , T, μ) with σ-algebra Σ is a K-system if there exists a σ-subalgebra
(a so-called K-partition) Σ0 ⊂ Σ that gives rise to a nested K-sequence of
σ-subalgebras Σt := T t(Σ0) such that

1. Σt := T t(Σ0) ⊂ Σt+1 for all t ∈ Z;
2.
∨

t∈Z
Σt = Σ;

3.
∧

t∈Z
Σt = N .

For Bernoulli shifts, the partition C{0} is such that
∨

n∈Z
Tn

σ (C{0}) = Σ

and Tail
(
C{0}

)
= N : C{0} is a generating partition with a trivial tail.

Definition 2.3.5. Let (X , T, μ) a measure theoretic dynamical triplet with Σ
as σ-algebra.

1. A finite, measurable partition P of X is called generating if (apart from
sets of zero measure μ)

+∞∨

j=−∞
T j(P) = Σ (T invertible) or

+∞∨

j=0

T j(P) = Σ (otherwise) .
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2. The tail of a finite measurable partition P is defined by

Tail (P) :=
∧

n≥0

∨

k≥n

T−k
σ (P) (2.73)

and will be said to be trivial if Tail (P) = N , that is if all its subsets equal
∅ or X up to sets of zero measure μ.

Remark 2.3.4. A generating partition P = {Pi}i∈I consists ofΣ-measurable
atoms Pi such that unions and intersections of their images Tn(Pi), in the
past, n < 0, and in the future, n > 0, generate Σ. Instead, the refinements
P−n] :=

∨+∞
k=n T

−k(P) are the σ-subalgebras generated by the atoms in the
past of P up to a discrete time t = −n. Since P−n−1] ⊆ P−n], one can also
loosely write Tail (P) = lim

n→+∞
P−n] to indicate that the tail of P contains

all measurable subsets generated by the remote past of P. As such, tails are
T -invariant.

From the preceding discussion concerning Bernoulli shifts, there clearly
appears a relation between the triviality of the tails of partitions and the
dynamical system mixing properties.

Proposition 2.3.5. A dynamical system (X , T, μ) is K-mixing (see Re-
mark 2.3.2.2) if and only if all its finite partitions have trivial tails.

Proof: Consider a finite partition P and its tail. By definition, Tail (P) is
mapped into itself by T ; thus, if in (2.64) S0 ∈ Tail (P), then S0 belongs to
P−n] :=

∨
j≥n T

−j(P) for all n and thus to the σ-algebra Σ∞
n (P), generated

by P−n]. Therefore, one can choose B = S0 in (2.64) which then yields
μ(S0 ∩ S0) = μ(S0)2 and, in turn, Tail (P) = N .

Vice versa, let us choose as Sr in (2.64) a finite partition P 9 and con-
sider the σ-subalgebras P−n] ⊆ Σ generated by the infinite refinements
∨

k≥n T
−k(P). The corresponding conditional probabilities μ(S|P−n])(x),

S ∈ Σ (see (2.49) and (2.50)) are such that, for any A0 ∈ Σ and B ∈ P−n],
∣
∣
∣μ(A0 ∩B)(x) − μ(A0)μ(B)

∣
∣
∣ ≤
∫

B

dμ (x)
∣
∣
∣μ(A0|P−n])(x) − μ(A0)

∣
∣
∣ .

Because of Theorem 2.2.1 and Examples 2.2.4.1,3, from P−n] ↓ N it follows
that μ(A0|P−n])(x) → μ(A0) μ-a.e. when n → ∞, whence K-mixing follows
from Lebesgue dominated convergence theorem. �

In the next chapter, by using entropic tools, we shall show that all finite
partitions of K-systems have trivial tails and are thus K-mixing; at this point
it suffices to observe that

9Starting from the finite set Sr of measurable subsets {Si}r
i=1, one constructs

the partition of X consisting of S′
0 :=

⋂r
i=1 Si, S′

i := Si\S′
0 and S′

r+2 := X \
⋃r

i=0 S′
i.
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Proposition 2.3.6. If a dynamical triplet (X , T, μ) has a generating parti-
tion P with trivial tail, Tail (P) = N , then it is a K-system.

Proof: The σ-algebra P0] :=
∨

n≥0 T
−n(P) is a K-partition. �

Examples 2.3.3.

1. As for Bernoulli shifts, also for the Markov shifts in Example 2.1.5,
the partition P = {P0,1} consisting of simple cylinders as in (2.25)
satisfies condition i) and ii) in (2.72). However, the argument used
when discussing the triviality of the tail for Bernoulli shifts shows that
Tail (P) = N if and only if the Markov shifts are mixing in which case
by Proposition 2.3.6 they are K-systems.

2. Consider Example 2.1.2 with the frequencies ω1,2 such that the system
is ergodic (see Remarks 2.1.2.2 and 2.1.2.3). As a partition of T

2, choose
the Cartesian product C of the partitions of the 1-dimensional torus T

into atoms C1 = {0 ≤ θ < π}, C2 = {π ≤ θ < 2π}. Because of ergodicity,
the trajectories of the end points of the atoms Ci ×Cj fill T

2 densely and
the intersections of their images T k(Ci×Cj) under the dynamics become
finer and finer and approximate better and better the Borel σ-algebras
of T

2. Actually, this already occurs if one restricts to T−j(C) with j ≥ 0,
namely

∨+∞
j=0 T

−j(C) = Σ. This also means that Tail (C) = Σ.
3. The partition in Example 2.2.2 of the two-torus into the vertical half-

rectangles gives thinner and thinner vertical rectangles while moving into
the past, and thinner and thinner horizontal rectangles into the future.
Their intersections are squares of increasingly small side, by means of
which one can approximate better and better every Borel subset of T

2.
The tail of such a partition is trivial due to the fact that the Baker map
acts as a Bernoulli shift with respect to it.

In order to set the ground for a quantum extension of the notion of
K-system (see Section 7.1.4), we operate a reformulation of the conditions
in Definition (2.3.4) in terms of algebras of functions. Given a K-sequence
{Σt := T t(Σ0)}t∈Z of σ-subalgebras, consider the Abelian von Neumann sub-
algebras Mt := L

∞
μ (X , Σt) = Θt

T [M0] consisting of the essentially bounded
Σt-measurable functions on X (see Section 2.2.2). Then, one has

Mt ⊂ Mt+1 ,
∨

t∈Z

Mt = M ,
∧

Mn = {λ1l} ,

where the generation of M by
∨

is by strong-operator closure on the Hilbert
space L

2
μ(X ), while

∧
denotes set-theoretic intersection.

We shall see in Section 5.3.2 that unital Abelian von Neumann algebras
M can always be identified with suitable L

∞
μ (X ) and represented as multipli-

cation operators on the Hilbert space L
2
μ(X ). It thus makes sense to provide

an algebraic reformulation of Definition 2.3.4 (see Definition 2.2.4).
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Definition 2.3.6 (Classical Algebraic K-Systems).
A classical von Neumann algebraic triplet (M, ΘT , ω) is an algebraic K-

system, if there exists a von Neumann subalgebra N0 ⊆ M such that, setting
Nt := Θt

T (N0), t ∈ Z,

1. Nt ⊂ Nt+1 for all t ∈ Z;
2.
∨

t∈Z
Nt = M;

3.
∧

n∈Z
Nt = {λ1l}.

Any such sequence {Nt}t∈Z of von Neumann subalgebras of M will be called
a classical K-sequence.

Remark 2.3.5. The above definition can also be formulated in an Abelian
C∗ algebraic context; there, M will be a C∗ algebra as well as the subalgebras
of the K-sequence and

∨
t∈Z

Nt will denote the algebra generated by norm
closure. The classical spin chains discussed in Section 2.2.3 are instances of
classical C∗ K-systems: with M = DZ, N0 will be the left half-spin chain D0]

generated by the diagonal matrix algebras D[p,q] with p ≤ q ≤ 0. Then, the
algebraic K-sequence will consist of the subalgebras Dt] = Θσ(D0]) generated
by the diagonal matrix algebras D[p,q] with p ≤ q ≤ t.

Given a measure-theoretic K-system with a K-sequence of σ-algebras
{Σn}n∈Z, instead of considering the von Neumann algebras Mn, one may
focus upon the Hilbert spaces Hn := L

2
μ(X , Σn) of square-summable Σn-

measurable functions on X . From the conditions i), ii) and iii) in Defini-
tion 2.3.4, it follows that

1. Ht ⊂ Ht+1 for all t ∈ Z;
2.
⋃

t∈Z
Ht = H;

3.
⋂

t∈Z
Ht = C 1l,

where H := L
2
μ(X ) and C 1l stands for the Hilbert space consisting of constant

functions on X (μ-a.e.). Since, according to the construction of the unitary
Koopman operator in (2.4), 1T (S0)(x) = 1S0(T

−1x) = (U−1
T 1S0)(x), it follows

that Ht = U−t
T H0; whence, setting Kt := Ht+1 � Hn,

t �= s =⇒ Kt ⊥ Hs , H =
⊕

t∈Z

Kt . (2.74)

By choosing an orthonormal basis {| fj 〉}j∈J in K0, one gets an orthonormal
basis for Ht of the form {| ej,t 〉 := U−t

T | fj 〉}j∈J and thus one for H of the
form {| ej,t 〉}j∈J,t∈Z. Any unitary operator U on a separable Hilbert space H

which generates an orthonormal basis of the previous form is said to have a
Lebesgue spectrum of multiplicity J .

Proposition 2.3.7. [91] For a K-system (X , T, μ), J is countably infinite.
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Proof: Since H0 ⊂ H1 there surely exists f ∈ H1 with g := f − E(f |Σ0),
where E(f |Σ0) is the conditional expectation of f with respect to Σ0, such
that E(|g|2|Σ0) �= 0 on a Σ0-measurable subset S0 with μ(S0) > 0. Consider

the function G ∈ H1 defined by G(x) :=
g(x)

√
E(|g|2|Σ0)(x)

1S0(x); from the

properties of the conditional expectation it follows that

E(G|Σ0)(x) =
E(g|Σ0)(x)

√
E(|g|2|Σ0)(x)

1S0(x) = 0 (∗)

E(|G|2|Σ0)(x) =
E(|g|2|Σ0)(x)
E(|g|2|Σ0)(x)

1S0(x) = 1S0(x) (∗∗) .

Let {| e0k 〉}k∈N be an orthonormal basis in the Hilbert space L
2
μ(S0) of square

summable functions supported within S0 and set | f0
k 〉 := MG| e0k 〉 where MG

denotes the multiplication by G, namely f0
k (x) = G(x) e0k(x). Notice that

| f0
k 〉 ∈ H1; further, by using (2.51) and (2.53), it follows that | f0

k 〉 ⊥ H0,
whence | f0

k 〉 ∈ K0 = H1 � H0 as defined in (2.74). Indeed, let |h0 〉 ∈ H0,
then (∗) yields

〈h0 | f0
k 〉 =

∫

S0

dμ (x)h∗0(x)G(x) e0k(x) =
∫

S0

dμ (x)E(h∗0 Ge0k|Σ0)(x)

=
∫

S0

dμ (x)h∗0(x)E(G|Σ0)(x) e0k(x) = 0 .

Also, the set {| f0
k 〉}n∈N is an orthonormal basis for

〈 f0
j | f0

k 〉 =
∫

S0

dμ (x) (e0j )
∗(x) |G(x)|2 e0k(x)

=
∫

S0

dμ (x)E
(
(e0j )

∗ |G|2 e0k|Σ0

)
(x)

=
∫

S0

dμ (x) (e0j )
∗(x)E(|G|2|Σ0)(x) e0k(x) = 〈 e0j | e0k 〉 = δjk .

Therefore, K1 must be an infinite dimensional separable Hilbert space. �

2.3.2 Ergodicity and Convexity

We conclude this section by considering some aspects of ergodicity and mixing
in relation to continuous dynamics on compact, metric spaces and to the
convex space M(X , T ) of their regular, T -invariant Borel measures. The first
result [313] states that ergodic measures are extremal in M(X , T ), namely
they cannot be decomposed into convex combinations of other measures in
M(X , T ). We shall make use of the algebraic setting of Definition 2.2.4.
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Proposition 2.3.8. An algebraic triplet (C(X ), ΘT , ωμ) is ergodic if and
only if M(X , T ) � ωμ = λω1 + (1 − λ)ω2, 0 < λ < 1, ω1,2 ∈ M(X , T )
implies ωμ = ω1,2.

Proof: Suppose a T -invariant Borel measurable subset E exists such that
0 < μ(E) < 1 and let Ec := X\E. With 1lE and 1lEc their characteristic
functions and ωμ(1lE) = μ(E), the two states

C(X ) � f �→ ω1(f) =
ωμ(1lEf)
μ(E)

, C(X ) � f �→ ω2(f) =
ωμ(1lEcf)
1 − μ(E)

are different and both in M(X , T ); furthermore, they decompose ωμ. for
ωμ = μ(E)ω1 + (1 − μ(E)) ω2.

Suppose ωμ can be decomposed as stated in the proposition, then the
measure μ1 ∈ M(X , T ) corresponding to ω1 is absolutely continuous with
respect to μ (see Remark 2.2.4.2). Let f1(x) ≥ 0 be its Radon-Nikodym
derivative. Consider the measurable subset E = {x ∈ X : f(x) < 1}. Observe
that one can decompose E = (E ∩ T−1(E)) ∪ (E\T−1(E)) by means of
disjoint subsets and, analogously, T−1(E) = (T−1(E) ∩ E) ∪ (T−1(E)\E).
As μ ◦ T−1 = μ,

ω1(1lE) =
∫

E∩T−1(E)

dμ(x) f1(x) +
∫

E\T−1(E)

dμ(x) f1(x) = ω1(1lT−1(E))

=
∫

T−1(E)∩E

dμ(x) f1(x) +
∫

T−1(E)\E

dμ(x) f1(x) .

Therefore, as f1 < 1 on E while f1 ≥ 1 outside it, it follows that

μ(E\T−1(E)) >
∫

E\T−1(E)

dμ(x) f1(x) =
∫

T−1(E)\E

dμ(x) f1(x)

≥ μ(T−1(E)\E) .

Then, μ(E\T−1(E)) = μ(T−1(E)\E) = 0 since

μ(E) = μ(E ∩ T−1(E)) + μ(E\T−1(E))
= μ(T−1(E)) = μ(T−1(E) ∩ E) + μ(T−1(E)\E) .

Thus, E is T -invariant apart from sets of 0 measure μ; if the system is ergodic,
this implies either μ(E) = 0 or μ(E) = 1. The latter equality cannot hold,
otherwise 1 = ω1(1l) = ω1(1lE) < μ(E) = 1; thus, μ(E) = 0. The same
argument applied to F := {x ∈ X : f1(x) > 1}, leads to μ(F ) = 0 whence to
f1(x) = 1 μ-a.e. on X which implies ωμ = ω1 and thus extremality. �

The second result is a refinement [313] of Proposition 2.3.2.
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Proposition 2.3.9. The triplet (C(X ), ΘT , ωμ) is ergodic, respectively mix-
ing if and only if, for all f ∈ C(X ) and g ∈ L

1
μ(X ),

lim
t→∞

1
t

t−1∑

s=0

ωμ(f ◦Θs
T g) = ωμ(f)ωμ(g) (2.75)

lim
t→∞

ωμ(f ◦Θt
T g) = ωμ(f)ωμ(g) . (2.76)

Proof: If (2.75) holds, it implies (2.65) by the fact that any ψ ∈ L
2
μ(X ) is

also summable and can be approximated in L
2
μ(X ) by continuous functions.

Vice versa (2.65) implies (2.75) as any f ∈ C(X ) also belongs to L
2
μ(X ) and

any f ∈ L
1
μ(X ) can be approximated in L

1
μ(X ) by square-summable func-

tions. The same considerations can be used to prove that (2.76) is equivalent
to (2.66). �

Example 2.3.4. Given the algebraic triplet (C(X ), ΘT , ωμ), let ν be an-
other state on C(X ) absolutely continuous with respect to ωμ, but not ΘT -
invariant, that is, for all f ∈ C(X ),

ν(f) =
∫

X
dμ (x) gν(x) f(x) , ν(1l) =

∫

X
dμ (x) gν(x) = ωμ(gν) = 1 ,

with Radon-Nikodym derivative gν �= gν ◦ ΘT ∈ L
1
μ(X ). From a physical

point of view, ων can be considered as a perturbation of the equilibrium
state ωμ. By duality (see (2.8)), for all f ∈ C(X ), νt(f) = ν(f ◦ Θt

T ) where
νt := ν ◦Θ−t

T . If (C(X ), ΘT , ωμ) is mixing, then (2.76) implies

lim
t→∞

νt(f) = ωμ(f)ωμ(gν) = ωμ(f) , ∀ f ∈ C(X ) .

Physical instances of measures that are absolutely continuous with respect
to an invariant one are local perturbations of equilibrium states; then, being
mixing guarantees that these perturbations fade away in time and provides
a mathematical explanation of relaxation to equilibrium.

2.4 Information and Entropy

At its simplest, information theory is concerned with the description of two
parties transmitting information to each other. Information is physical as it
is encoded into physical carriers, e.g. electromagnetic waves, that undergo
physical processes, e.g. interactions with an optical fiber. As long as the
laws that describe these processes are those of classical physics, one talks of
classical information theory.
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Fig. 2.2. Classical Transmission Channel

2.4.1 Transmission Channels

In the following, we shall consider two parties A and B exchanging signals
according to the following typical scheme (see Figure 2.2):

1. At each use, a classical source emits symbols i from an alphabet consist-
ing, say, of integers IA = {1, 2, . . . , a}: symbols are emitted with proba-
bilities πA = {pA(i)}a

i=1.
2. After � successive uses of the source, the source outputs are strings of

length �, i(	) := i1i2 · · · i	 ∈ Ω
(	)
a , emitted with probabilities pA(�)(i(	)).

These strings can be interpreted as outcomes of a random variable
A(	) :=

∨	
i=1 Ai which is the join of � successive random variables from

the stochastic process {Ai}i∈N (A1 := A) associated with countably suc-
cessive uses of the source. The random variable A(	) is distributed accord-
ing to the probabilities πA(�) =

{
pA(�)(i(	))

}

i(�)∈Ω
(�)
a

that � subsequent

uses have actually emitted a given string of symbols.
3. The sender encodes the emitted strings i(	) into strings of fixed length

n, x(n) = x1x2 · · ·xn ∈ Ω
(n)
d , consisting of symbols xi from another

alphabet IX := {1, 2, . . . d}. The encoding procedure amounts to a map
E(n) : Ω(	)

a �→ Ω
(n)
d ,

E(n) : Ω(	)
a � i(	) �→ E(n)(i(	)) = x(n) ∈ Ω

(n)
d . (2.77)

4. The code-words x(n) are then sent to a receiver via a transmission chan-
nel, C(n) = C × C × · · · C, which transforms an input string x(n) into an
output string y(n) = C(n)(x(n)) = y1y2 · · · yn ∈ Ω

(n)
κ , consisting of sym-

bols yi from, possibly, another alphabet IY := {1, 2, . . . , κ}, according to
a set of transition probabilities (compare Example 2.1.5)

p(y(n)|x(n)) ≥ 0 ,
∑

y(n)∈Ω
(n)
κ

p(y(n)|x(n)) = 1 . (2.78)
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These latter quantities take into account the possibility that the trans-
mission channel be noisy and thus might randomly associate different
outputs y(n) to a same input x(n).

5. The channel inputs and outputs are thus random variables X(n) and
Y (n) with outcomes x(n) and y(n). If the code-words x(n) occur with in-
put probabilities πX(n) = {pX(n)(x(n))}

x(n)∈Ω
(n)
d

, the transition probabil-
ities provide joint probability distributions for the joint random variables
X(n) ∨ Y (n) given by

πX(n)∨Y (n) =
{
pX(n)∨Y (n)(x(n),y(n)) : (x(n),y(n)) ∈ Ω

(n)
d ×Ω(n)

κ

}

pX(n)∨Y (n)(x(n),y(n)) = pX(n)(x(n)) p(y(n)|x(n)) . (2.79)

Consequently the output random variables Y (n) are distributed according
to the marginal probability distributions πY (n) = {pY (n)(y(n)}

y(n)∈Ω
(n)
κ

where
pY (n)(y(n)) :=

∑

x(n)∈Ω
(n)
d

pX(n)∨Y (n)(x(n),y(n)) . (2.80)

6. At the receiving end of the transmission channel, the output string y(n)

goes through a decoding procedure whose aim is to retrieve the actual
source output i(	) that has been encoded into x(n) = E(n)(i(	)) from the
received string y(n) = C(n)(x(n)). Decoding amounts to a map

Ω(n)
κ � y(n) �→ D(y(n)) =: ĩ

(	) ∈ Ω(	)
a . (2.81)

The whole procedure comprises the following steps

i(	)
E(n)

−→ x(n) C(n)

−→ y(n) D(n)

−→ ĩ
(	)

∈ Ω
(	)
a ∈ Ω

(n)
d ∈ Ω

(n)
κ ∈ Ω

(	)
a

The efficiency of the transmission is related to how much the decoded word
ĩ
(	)

differs from the word i(	) that, after being encoded into x(n), has been sent
through the noisy channel and received as y(n). The task is thus to minimize
decoding errors while keeping a non-vanishing number of bits transmitted
per use of the channel.

In Section 3.2.2, we shall consider the class of memoryless channels with-
out feedback ; they act on input symbols in a way which is statistically in-
dependent from previous inputs and outputs. As such, they are completely
specified by factorized transition probabilities:

p(y(n)|x(n)) =
n∏

i=1

p(yi|xi) . (2.82)
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Examples 2.4.1 (Channels).

1. Noiseless Binary Channel: two classical bits (bits ) 0, 1 are emitted
with probabilities pA(0), pA(1) and sent through a noiseless channel:

p(0|0) = p(1|1) = 1 , p(0|1) = p(1|0) = 0 .

2. Binary Symmetric Channel: two bits are emitted with probabilities
pA(0), pA(1) and sent through a channel which flips them according to

p(0|0) = p(1|1) = 1 − p > 0 , p(1|0) = p(1|1) = p > 0 .

3. Binary Erasure Channel: two bits are emitted with probabilities
pA(0), pA(1) and sent through a channel which does not flip them, but
may erase anyone of them with a same probability 0 < α < 1. This ac-
tion is described by a map C from the two-letter alphabet {0, 1} onto the
three-symbol alphabet {0, 1, 2}, where 2 stays for a junk symbol, and by
transition probabilities

p(0|0) = p(1|1) = 1 − α , p(2|0) = p(2|1) = α .

A noiseless channel is characterized by transition probabilities that equal
1 in correspondence to specific pairs of input and output strings otherwise
they vanish. There are then no distortions in transmitting or storing infor-
mation by means of these channels. In such cases, the question is whether
the source information can be compressed and retrieved with negligible prob-
ability of error, the possibility of compression depending upon the presence
of redundancies and regularities in the source.

More precisely, if the source emits binary strings of length n, one asks 1)
whether for each bit from the source one can store h < 1 bits , still being able
to reliably reconstruct the information emitted by the source from the 2h×n

bit strings effectively retained and 2) which is the optimal compression rate
h achievable. This problem is addressed by Shannon’s first theorem which
asserts that, for stationary sources, the optimal rate is the their entropy-rate.

In the presence of noise in the transmission channel, the strategy is some-
how the reverse with respect to noiseless transmission; in order to reduce the
possibility of noise-induced errors, one introduces redundancies by multiple
uses of the channel. The aim is to optimize the number of signals that can
faithfully be transmitted by n uses of the channel. Shannon’s second theo-
rem proves that this number can be made increase exponentially with n at
an optimal rate R, the channel capacity.

2.4.2 Stationary Information Sources

In most informational contexts, stationary sources are a reasonable descrip-
tion of the actual physical processes taking place. Stationarity means that the
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probability of a string i(	) does not depend on when the source had emitted
it, but only on the letters emitted. This is equivalent to (compare (2.30))

∑

i1

pA(�)(i1i2 · · · i	) = pA(�−1)(i2i3 · · · i	) .

This condition goes together with the fact that the probability of a string of
length �−1 must be the sum of the probabilities of all words of length � with
the same first �− 1 symbols (compare (2.29)),

∑

i�

pA(�)(i1i2 · · · i	) = pA(�−1)(i1i2 · · · i	−1) .

The similarities with shift dynamical systems now are apparent.

Lemma 2.4.1. A classical, stationary information source corresponds to a
stationary stochastic process {Ai}in∈N, where the random variables Ai take
on values in an alphabet IA = {1, 2, . . . , a} and the joint random variables
A(n) :=

∨n
i=1 Ai are distributed with probability distributions πA(n) satisfying

appropriate compatibility and stationarity conditions.
Equivalently, a stationary classical source can be described by the measure-

theoretic triplet (Ωa, Tσ, μA), where μA = μA ◦ T−1
σ is a state on the set Ωa

of semi-infinite strings i = {ij}j∈N, ij ∈ IA, equipped with the left shift Tσ.
The restrictions μ(n)

A of μA to the sets of finite strings Ω(n)
a are given by the

probability distributions πA(n) .
Finally, a stationary source can be described as a C∗ triplet (DA, Θσ, ΨA)

as in Definition 2.2.5, namely by a semi-infinite classical spin-chain con-
sisting of a lattice of a-valued spins described, locally, by tensor products

D(n) =
n−1⊗

j=0

Da(C) of diagonal a× a matrix algebras Da(C), equipped with an

automorphism Θσ which amounts to the left shift along the chain and with a
Θσ-invariant state ΨA such that (compare (2.56))

ΨA |̀D(n) =
∑

i(n)∈Ω
(n)
a

pA(n)(i(n))P [0,n−1]

i(n) .

Examples 2.4.2.

1. Bernoulli Sources (see Example 2.1.4): the probabilities of strings are

products of the probabilities of their symbols, pA(n)(i(n)) =
n∏

j=1

pA(ij),

that are statistically independent from each other.
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2. Markov Sources (see Example 2.1.5): the probability of emission of the
n-th symbol depends only on the n− 1-th one, namely

pA(n)(i(n)) = p(in|i1, i2, · · · in−1) pA(n−1)(i1i2 · · · in−1)
= p(in|in−1) pA(n−1)(i1i2 · · · in−1)
= p(in|in−1) p(in−1|in−2) · · · pA(i2|i1)pA(i1) ,

where p(in|i1, i2, · · · in−1) are the conditional probabilities for the occur-
rence of the in-th symbol if the symbols i1, i2, . . . , in−1 have already
occurred. Using (2.30), it follows that stationarity is equivalent to the
probability vector |πA 〉 = {pA(i)}i∈IA

being eigenvector, relative to the
eigenvalue 1, of the matrix of transition probabilities.

2.4.3 Shannon Entropy

Like an information source A that emits symbols j ∈ {1, 2, . . . , a} with proba-
bilities pA(j), also a partition P = {Pi}p

i=1 of the phase-space of a dynamical
system (X , T, μ) into atoms with volumes μ(Pi), can be interpreted as a clas-
sical random variable. In the latter case, randomness is related to the fact
that the phase-point or state of the system is localized within the atom Pi

with probability μ(Pi).
The notion of entropy measures the amount of uncertainty about the out-

comes of a random variable like P before the phase-point has been localized
within a definite atom, for instance as a consequence of an observation or
a measurement process of sort. Equivalently, entropy measures the amount
of information, relative to the partition P, that has been gained after the
phase-point of the system has indeed been localized in one of its atoms.

Definition 2.4.1 (Shannon Entropy). The Shannon entropy of a discrete
random variable A with probability distribution πA = {pA(j)}a

j=1 is given by

H(A) := −
a∑

j=1

pA(j) log pA(j) =
a∑

j=1

η(pA(j)) , (2.83)

where

η(x) =
{

0 x = 0
−x log x 0 < x ≤ 1 (2.84)

Remark 2.4.1. The Shannon entropy plays for discrete dynamical systems
the role played by Gibbs entropy for continuous systems which is defined
as [167, 300]

HG(ρ) := −
∫

X
dx ρ(x) log ρ(x) ,

for a state on the phase-space X with probability density ρ(x).
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The Shannon entropy is such that H(A) = 0 if and only if one outcome,
say j∗, occurs with probability pA(j∗) = 1, while pA(j) = 0 for j �= j∗; it
reaches its maximum H(A) = log a, when all outcomes are equiprobable,
pA(j) = 1/a. Indeed, the function η(x) is concave, whence

x(log x − log y) ≥ x− y , ∀x, y ∈ [0, 1] , (2.85)

with equality holding if and only if x = y.
Let then E be a random variable with πE = {pE(j) = 1/a}a

j=1, then
H(E) = log a and

H(A) −H(E) = −
a∑

j=1

pA(j)
(
log pA(j) + log a

)
) ≤

a∑

j=1

(pA(j) − 1/a) = 0 .

Given two random variables A and B, we shall keep the notation used for the
join of two partitions and denote by A ∨ B the random variable with joint
probability distribution

πA∨B := {pA∨B(i, j)}i∈IA,j∈IB
, IA = {1, 2, . . . , a} , IB = {1, 2, . . . , b} .

(2.86)
By summing over the outcomes of A, respectively B, one obtains the marginal
probability distributions πA := {pA(i)}i∈IA

and πB := {pB(j)}j∈IB
, where

pA(i) :=
b∑

j=1

pA∨B(i, j) , pB(j) :=
a∑

i=1

pA∨B(i, j) . (2.87)

Lemma 2.4.2 (Subadditivity). Given two random variables A and B,

H(A ∨B) ≤ H(A) + H(B) . (2.88)

Proof: Given πA∨B as in (2.86) and πA and πB as in (2.87), use (2.85)
with x = pA∨B(i, j) and y = pA(i)pB(j),

H(A) +H(B) −H(A ∨B) =
∑

i∈IA,j∈IB

pA∨B(i, j) log
pA∨B(i, j)
pA(i)pB(j)

≥
∑

i∈IA,j∈IB

(pA∨B(i, j) − pA(i)pB(j)) = 0 .

�
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Remarks 2.4.2.

1. As already observed, any finite (measurable) partition P = {Pi}IP of
(X , T, μ) is a random variable P whose outcomes correspond to the labels
of the atoms to which the system phase-point happens to belong. The
volumes of the atoms give the probabilities of such occurrences, so that
a finite partition P also attributes to the random variable P the natural
probability distribution πP = μP = {μ(Pi}i∈IP .

2. In analogy with Definition 2.2.1.2, a random variable A is finer than
a random variable B (B � A) if each outcome j ∈ IB of B is deter-
mined by a subset Ij

A ⊆ IA of outcomes of A. It follows that, if A has
probability distribution πA = {pA(i)}i∈IA

and B probability distribution
πB = {pB(j)}j∈IB

, B � A implies pB(j) =
∑

i∈Ij
A
pA(i).

3. According to Definition 2.2.1.3, the refinement P ∨ Q of two partitions
P = {Pi}i∈IP

and Q = {Qj}j∈IQ
, is a random variable P ∨Q with joint

probability distribution μP∨Q = {μ(Pi ∩ Qj)}i∈IP ,j∈IQ
. P ∨ Q is finer

than both random variables P and Q; also, Q � P =⇒ P ∨Q = P.

2.4.4 Conditional Entropy

Because of possible statistical correlations, the knowledge of a random vari-
able A may decrease the uncertainty about another random variable B; the
less so, the more A and B are statistically independent. These intuitive ar-
guments are formalized by introducing the notions of conditional probability,
conditional entropy and mutual information.

Consider two random variables A and B with probability distributions
πA = {pA(i)}i∈IA

, respectively πB = {pB(j)}j∈IB
, and joint probability

πA∨B = {pA∨B(i, j)}i∈IA,j∈IB
. The quantity

pA|j(i|j) :=
pA∨B(i, j)
pB(j)

(2.89)

represents the probability of the outcome A = i conditioned upon the out-
come B = j. Altogether, πA|B=j = {pA|j(i|j)}a

i=1 is the conditional probabil-
ity distribution of A conditioned upon the outcome B = j. The conditional
probabilities are such that

pA|B=j(i|j) ≥ 0 ,
a∑

i=1

pA|B=j(i|j) = 1 ∀ j = 1, 2, . . . b .

The notion of conditional probability is naturally associated to that of
conditional entropy which measures the amount of uncertainty about a ran-
dom variable A which is left once that relative to another one, B, has been
removed.
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Definition 2.4.2 (Conditional Entropy).
Given two random variables A and B with probabilities πA, πB as in (2.87)

and joint probability πA∨B as in (2.86), the conditional entropy of A with re-
spect to B is

H(A|B) =
b∑

j=1

pB(j)H(A|B = j) (2.90)

= −
b∑

j=1

pB(j)
a∑

i=1

pA∨B(i, j)
pB(j)

log
pA∨B(i, j)
pB(j)

= H(A ∨B) − H(B) , (2.91)

where H(A|B = j) is the Shannon entropy corresponding to the conditional
probability πA|B=j.

Lemma 2.4.3. The conditional entropy fulfils

0 ≤ H(A|B) ≤ H(A)
H(A ∨B|C) = H(A|C) +H(B|A ∨ C) ≤ H(A|C) + H(B|C) .

Proof: The lower bound follows since the left hand side of (2.90) is positive,
while the first upper bound is a consequence of (2.88) applied to (2.91).
Further, using the latter relation one gets

H(A ∨B|C) = H(A ∨B ∨ C) −H(C)
= H(A ∨ C) −H(C) +H(A ∨B ∨ C) −H(A ∨ C)
= H(A|C) +H(B|A ∨ C) ,

while (2.88) applied to H(A ∨B|C = k) gives the second upper bound. �

Corollary 2.4.1. B � A =⇒ H(B) ≤ H(A).

Proof: From Remark 2.4.2.3 it follows that B � A =⇒ A ∨B = A; thus,

H(A) = H(A ∨B) = H(A|B) +H(B) ≥ H(B) .

�

Example 2.4.3. If N denotes the (trivial) random variable with only one
certain outcome, then H(A|N) = H(A) for any other random variable A.

By the definition of conditional entropy,H(A|B) = 0 implies that in (2.90)

a∑

i=1

pA∨B(i, j)
pB(j)

log
pA∨B(i, j)
pB(j)

= 0 ∀j .
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Therefore, for fixed j, pA∨B(i, j) = pB(j) for only one i ∈ IA; thus, for each
fixed i ∈ IA, the index set IB can be subdivided into disjoint subsets Ii

B such
that

pA(i) =
∑

j∈Ii
B

pA∨B(i, j) =
∑

j∈Ii
B

pB(j) .

That is (see Remark 2.4.2.2) A � B; indeed, the outcomes of A are deter-
mined by those of B. In other words, when knowing B means knowing A,
then A � B. Viceversa, if B is finer than A, then H(A|B) = 0; in fact,

A ∨B = B =⇒ H(A|B) = H(A ∨B) −H(B) = 0 .

Remarks 2.4.3.

1. Conditioning can be extended to random variables Ai, i = 1, 2, . . . , n.
The probability of the events Ai = ai, i = p+1, . . . , n conditioned on the
events Ai = ai, i = 1, . . . , p is given by

p(ap+1 · · · an|a1 · · · ap) :=
p(a1 · · · apap+1 · · · an)

p(ap+1 · · · an)
,

where explicit reference to the random variables in p(· · ·) has been omit-
ted, for sake of simplicity. It follows that also the notion of conditional
entropy can be extended to

H(Ap+1 ∨Ap+2 · · · ∨An|A1 ∨A2 · · · ∨Ap) := −
∑

a1,...ap

p(a1, a2, . . . , ap)

×
∑

ap+1,...,an

p(ap+1 · · · an|a1 · · · ap) log p(ap+1 · · · an|a1 · · · ap) .

2. A sequence of random variables {Aj}j∈N form a Markov process as in
Example 2.4.2.2 if p(an|a1 · · · an−1) = p(an|an−1) for all n ∈ N. In such
a case H(An|A1 ∨ · · ·An−1) = H(An|An−1).

3. Since the conditional entropy is positive, it follows that

H(A ∨B) ≥ max{H(A),H(B)} ;

Both this observation and subadditivity (2.88) agree with the interpre-
tation of the entropy as a measure of uncertainty. The latter is in fact
greater about A∨B than about either A or B, while, due to possible sta-
tistical correlations between A and B, the uncertainty of A∨B is smaller
than the sum of the uncertainties of A and B independently. Further,
due to (2.85),

H(A ∨B) = H(A) +H(B)

if and only if πA∨B factorizes into the product of the probabilities, namely
if and only if A and B are statistically independent.
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4. The second upper bound in Lemma 2.4.3 yields H(B|A∨C) ≤ H(B|C);
as C � A∨C, this inequality is a particular instance of the more general
monotonicity property of the conditional entropy established in Corol-
lary 2.4.2.

Example 2.4.4. Suppose a random variable is given by a finite partition
P = {Pi}d

i=1 with atoms that are measurable with respect to a σ-algebra
Σ generated by a measure-algebra Σ0 as in Example 2.2.1. Then, for any
ε > 0, there exists a partition Q = {Qi}d

i=1 with atoms Qi ∈ Σ0 such that
H(P|Q) < ε. In fact, as showed in the example, one can always construct Q
such that, for all i = 1, 2, . . . , d, one has

μ(Pi ΔQi) ≤ δ min
1≤i≤d

μ(Pi)
2

, 0 < δ < 1 .

Now, Pi ⊆ Qi ∪ (Pi ΔQi) and Pi ΔQi = (Pi ∪Qi) \ (Pi ∩Qi) yield

μ(Pi) ≤ μ(Qi) + δ
μ(Pi)

2
and μ(Pi ΔQi) ≥ μ(Qi) − μ(Pi ∩Qi) .

Thus, μ(Qi) ≥
μ(Pi)

2
and δ μ(Qi) ≥ μ(Qi) − μ(Pi ∩Qi), whence

pP|Q=i(i|i) :=
μ(Pi ∩Qi)
μ(Qi)

≥ 1 − δ .

Since πP|Q=i is a conditional probability, it follows that pP|Q=i(j|i) ≤ δ for
j �= i. Finally, choosing δ so that the continuous function η(x) in (2.84) be
such that η(x) < ε/d when 0 ≤ x ≤ δ and 1 − δ ≤ x ≤ 1, (2.91) yields

H(P|Q) =
d∑

i=1

μ(Qi)
d∑

j=1

η(pP|Q=i(j|i)) ≤ ε .

Proposition 2.4.1 (Strong Subadditivity).
Given three discrete random variables A, B and C, the following inequality

holds,
H(A ∨B ∨ C) +H(B) ≤ H(A ∨B) +H(B ∨ C) , (2.92)

together with those obtained by cyclic permutations of A, B and C.

Proof: Similarly to the proof of Lemma 2.88, the result follows by apply-
ing (2.85) as follows:
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H(A ∨B ∨ C) +H(B) −H(A ∨B) −H(B ∨ C) =

= −
∑

i∈IA,j∈IB ,k∈IC

pA∨B∨C(i, j, k) log
pA∨B∨C(i, j, k)pB(j)
pA∨B(i, j)pB∨C(j, k)

≤ −
∑

i∈IA,j∈IB ,k∈IC

(
pA∨B∨C(i, j, k) − pA∨B(i, j)pB∨C(j, k)

pB(j)

)
= 0 .

�
As a consequence of strong subadditivity, the conditional entropy mono-

tonically decreases upon refinement of its second argument.

Corollary 2.4.2. B � C =⇒ H(A|C) ≤ H(A|B).

Proof: From (2.92) and (2.91),

H(A ∨B ∨C)−H(B ∨C) = H(A|B ∨C) ≤ H(A ∨B)−H(B) = H(A|B) .

The result follows since B � C =⇒ B ∨ C = C. �

2.4.5 Mutual Information

A notion related to the conditional entropy is that of mutual information: it
measures the amount of information about a random observable A that can
be achieved by knowing another random variable B.

Definition 2.4.3 (Mutual Information).
Given two random variables A and B, their mutual information is given

by

I(A;B) := H(A) +H(B) −H(A ∨B)
= H(A) −H(A|B) = H(B) −H(B|A) . (2.93)

The mutual information amounts to the relative entropy (also known as
Kullback-Leibler distance or information divergence) of the joint probabil-
ity distribution πA∨B with respect to the product probability distribution
π̃A∨B = {pA(i)pB(j)}i∈IA,j∈IB

obtained from the marginal ones (see (2.87)):

S
(
π̃A∨B, πA∨B

)
:=
∑

ij

pA∨B(i, j) log
pA∨B(i, j)
pA(i)pB(j)

. (2.94)

Since H(A) measures the unconditioned uncertainty about A and H(A|B)
the uncertainty about A if one knows B, their difference amounts to the
knowledge of A given by B. If A and B are statistically independent, know-
ing B does not give any information about A, whence H(A|B) = H(A),
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and I(A;B) = 0. On the other hand, if A is finer than B, then knowing A
means knowing B, thus B � A =⇒ H(B|A) = 0 and I(A;B) = H(B). Vice
versa, I(A;B) < H(B) means that H(B|A) > 0 or, in other words, that the
knowledge of B is unable to remove all the uncertainty about A.

An interesting inequality involves the mutual information in connection
with three random variables A, B and C that form a so-called Markov chain
A → B → C [92]; namely (see Remark 2.4.3.2)

pC|A∨B=(i,j)(k|i, j) :=
pA∨B∨C(i, j, k)
pA∨B(i, j)

= pC|B=j(k|j) =
pB∨C(j, k)
pB(j)

.

Notice that C, B and A form a Markovian chain C → B → A, too; indeed,
as pC∨B(k, j) = pB∨C(j, k) it turns pout that

pA|C∨B=(k,j)(i|k, j) :=
pA∨B∨C(i, j, k)
pC∨B(k, j)

= pC|B=j(k|j)
pA∨B(i, j)
pC∨B(k, j)

=
pA∨B(i, j)
pB(j)

= pA|B=j(i|j) .

Using the latter property one can prove the so-called data processing inequal-
ity [92].

Proposition 2.4.2. A → B → C =⇒ I(A;C) ≤ I(A;B).

Proof: From Definition 2.4.3, I(A;B) − I(A;C) = H(A|C) − H(A|B)
while the Markovianity assumption yields H(A|B) = H(A|B ∨ C) (see Re-
mark 2.4.3.2), whence, from (2.4.1),

I(A;B) − I(A;C) = H(A|C) −H(A|B ∨ C)
= H(A ∨ C) +H(B ∨ C) −H(A ∨B ∨ C) −H(C) ≥ 0 .

�
The meaning of the data processing inequality is that the mutual infor-

mation of two random variables A and B cannot be increased by any further
processing of B by a function C = g(B), for this yields a Markov chain
A → B → C.

Example 2.4.5. When dealing with noisy transmission channels, signals a
from a source described by a random variable A are encoded into code-words
b(a) that give rise to another random variable B = B(A). Then, the code-
words are sent through the channel which outputs signals c = c(b), providing
a third random variable C(B). Altogether, A, B(A) and C(B) form a Marko-
vian chain A → B(A) → C(B), as well as C(B) → B(A) → A; thus, we get
the data-processing inequalities

I(A;C(B)) ≤ I(A;B(A)) , I(A;C(B)) ≤ I(B(A);C(B)) . (2.95)
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3 Dynamical Entropy and Information

Repeated uses of an information source or successive localizations of a tra-
jectory with respect to a partition of phase-space, give rise to stochastic pro-
cesses. Since equilibrium states μ give rise to shift-invariant probability distri-
butions, the Shannon entropy is a constant of the motion: for instance, given
the time-evolved partition T−j(P) in (2.38), one has Hμ(T−j(P)) = Hμ(P).
Therefore, it is not the Shannon entropy, rather the entropy rate that is useful
to quantify the degree of irregularity of the dynamics. Since its introduction
as a mathematical tool, the notion of entropy rate or, more generally, of
dynamical entropy, has been playing a major role in the theory of classical
dynamical systems for it provides links among as different properties as dy-
namical instability, informational compressibility and algorithmic complexity.

3.1 Dynamical Entropy

As in Section 2.4.3, given a dynamical system corresponding to a measure-
theoretic triplet (X , T, μ), we will consider a coarse-graining of X by means
of a finite, measurable partition P = {Pi}p

i=1 and identify P with the random
variable (denoted by the same symbol) corresponding to the process of lo-
calization of the system phase-point (state) within one of the disjoint atoms
Pi that cover X . The outcomes of P are the labels of the atoms and occur
according to the discrete probability distribution μP = {pμ(i) := μ(Pi)}p

i=1.
Further, the time-evolved partition Pj := T−j(P) at time j in (2.38) is iden-
tified with the j-th random variable of a stochastic process {Pj}j∈Z. Thus,
the refined partitions P(n) with atoms P (n)

i(n) as in (2.40) correspond to joint
random variables with discrete probability distributions as in (2.41),

μ
(n)
P =

{
p(n)

μ (i(n)) := μ(P (n)

i(n))
}

i(n)∈Ω
(n)
p

,

and Shannon entropies (comparing with (2.83), we explicitly indicate the
dependence of the entropy from the measure and the partition)

Hμ(P(n)) := −
∑

i(n)∈Ω
(n)
p

p(n)
μ (i(n)) log p(n)

μ (i(n)) . (3.1)
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Definition 3.1.1 (Entropy Rate). The entropy rate of (X , T, μ) with re-
spect to a finite, measurable partition P is given by

hKS
μ (T,P) := lim

n→∞

1
n
Hμ(P(n)) = inf

n

1
n
Hμ(P(n)) . (3.2)

The above limit exists because of the stationarity of μ,

Hμ(Pk) = Hμ(P) ∀ k ≥ 0 , (3.3)

and because of the subadditivity of the Shannon entropy [313]. Together,
they yield, for all 0 ≤ p ≤ n− 1,

Hμ(P(n)) ≤ Hμ(P(p)) + Hμ

(n−1∨

k=p

Pk
)

= Hμ(P(p)) + Hμ

(
T−p

(n−p−1∨

k=0

Pk
))

= Hp +Hn−p ,

where Hn := Hμ(P(n)). Fix m ∈ N and set n = km + r, 0 ≤ r < m; then,
from (2.88)

Hn

n
≤ Hm

m
+

Hr

km+ r
.

Since m is fixed, when n goes to infinity, k goes to infinity as well, whence

lim sup
n→∞

Hn

n
≤ Hm

m
.

Since m is arbitrary, it follows that

lim sup
n→∞

Hn

n
≤ inf

m

Hm

m
≤ lim inf

n→∞

Hn

n
.

The entropy rate can be expressed by means of the conditional en-
tropy (2.91) of two partitions Hμ(P|Q) in such a way that h(μP , Tσ) measures
to which extent the knowledge of the past of P may help to predict its future
outcomes. Recursively using (2.91) and (3.3), one gets

Hμ(P(n)) = Hμ

(
P
∣
∣
∣

n−1∨

j=1

Pj
)

+Hμ(P(n−1)) =
n−1∑

i=1

Hμ

(
P
∣
∣
∣

n−i∨

j=1

Pj
)

+ Hμ(P)

Hμ(P(n)) = Hμ

(
Pn−1

∣
∣
∣

n−2∨

j=0

Pj
)

+Hμ(P(n−1))

=
n−1∑

i=1

Hμ

(
Pi
∣
∣
∣

i−1∨

j=0

Pj
)

+ Hμ(P) .
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Because of Corollary 2.4.2, the positive terms in the sums are monotonically
decreasing with increasing n, thus, arguing as in Remark 2.3.2.1,

hKS
μ (T,P) = lim

n→∞

1
n

n−1∑

i=1

Hμ

(
P
∣
∣
∣

n−i∨

j=1

Pj
)

= lim
n→∞

Hμ

(
P
∣
∣
∣

n∨

j=1

Pj
)

(3.4)

hKS
μ (T,P) = lim

n→∞

1
n

n−1∑

i=1

Hμ

(
Pi
∣
∣
∣

i−1∨

j=0

Pj
)

= lim
n→∞

Hμ

(
Pn
∣
∣
∣

n−1∨

j=0

Pj
)
. (3.5)

Consider the first equality in (3.5): Pi is the random variable whose outcomes
depend on which atom of P the system state is in at time i, while

∨i−1
j=0 Pj

is the joint random variable relative to the atoms visited at previous times
0, 1, . . . , i − 1. Thus, the entropy rate corresponding to P is the average in-
formation about the next localization provided by the knowledge of all the
previous ones.

Remarks 3.1.1.

1. Let (Ωa, Tσ, πA) describe a stationary information source. Then, the prob-
abilities πA(n) , A(n) =

∨n−1
j=0 Aj , together with the corresponding en-

tropies H(A(n)) refer to the statistical ensembles of strings of length n
emitted by the source A. As discussed in Section 2.4.3, repeated uses
of the source A can be described as a stochastic process {Aj}j∈Z where
Aj is the random variable associated to the j-th use of the source. The
entropy rate of the source A is thus given by

h(A) := lim
n→∞

1
n
H(A(n)) . (3.6)

The entropy rate h(A) of a stationary source is the entropy per symbol
of the stationary stochastic process {Aj}j∈Z generated by A.

2. Because of subadditivity (2.88), the entropy rate of a partition is always
bounded by its Shannon entropy

hKS
μ (T,P) ≤ Hμ(P) . (3.7)

Furthermore, since
∑

i(n)∈Ω
(n)
p

μ(P (n)

i(n)) = 1, from (3.1), one gets the lower
bound

Hμ(P(n)) := −
∑

i(n)∈Ω
(n)
p

p(n)
μ (i(n)) log p(n)

μ (i(n)) ≥ − log sup
P∈P(n)

μ(P ) ,

whence [164]

hKS
μ (T,P) ≥ − lim sup

n→+∞

1
n

log sup
P∈P(n)

μ(P ) . (3.8)
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3. If Q � P, Corollary 2.4.1 implies hKS
μ (T,Q) ≤ hKS

μ (T,P).
4. Since μ is T -invariant, the conditional entropy is stationary, namely

Hμ(T−1(P)|T−1(Q)) = Hμ(P|Q) .

Thus, if T is invertible (3.5) can be rewritten as

hKS
μ (T,P) = lim

n→∞
Hμ

(
P
∣
∣
∣

n−1∨

j=1

P−j
)
.

5. Let P and Q be two partitions; then, using Corollary 2.4.1, the rela-
tion (2.91), Lemma 2.4.3, Corollary 2.4.2 and the previous remark, one
derives

Hμ(P(n)) ≤ Hμ(P(n) ∨Q(n)) = Hμ(Q(n)) + Hμ(P(n)|Q(n))

≤ Hμ(Q(n)) +
n−1∑

i=0

Hμ(Pi|Q(n)) ≤ Hμ(Q(n)) +
n−1∑

i=0

Hμ(Pi|Qi) ,

whence Hμ(P(n)) ≤ Hμ(Q(n)) + nHμ(P|Q) implies

hKS
μ (T,P) ≤ hKS

μ (T,Q) + Hμ(P|Q) . (3.9)

6. Given a partition P, set Pr,s :=
∨s

j=r Pj , where r ≤ s and r ≥ 0 if T is
not invertible. Notice that

n−1∨

	=0

P	
r,s =

n−1∨

	=0

s∨

j=r

Pj+	 =
s+n−1∨

	=r

P	 = T−r

(
s+n−r−1∨

	=0

P	

)

;

then, since μ is T -invariant, from

1
n
Hμ

(n−1∨

	=0

P	
r,s

)
=
n+ s− r

n

1
n+ s− r

Hμ

(n+s−r−1∨

	=0

P	
)

it follows that hKS
μ (T,Pr,s) = hKS

μ (T,P). For instance, s = −r = n gives

hKS
μ

⎛

⎝T,

n∨

j=−n

Pj

⎞

⎠ = hKS
μ (T,P) , ∀n ≥ 0 . (3.10)

7. As before, set Q =
∨k−1

j=0 Pj , k ≥ 1; then, P �
∨n−1

	=0 Qk	 =
∨nk−1

	=0 P	

and (3.9) yield

1
k

hKS
μ

(
T k,P

)
≤ 1
k

hKS
μ

(
T k,Q

)
= hKS

μ (T,P) . (3.11)
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8. After regrouping
∨kn−1

j=0 T−j(P) =
∨n−1

i=0

∨n−1
j=0 T

−kj−i(P), from subaddi-
tivity and T -invariance of μ it follows that

1
kn

Hμ

(kn−1∨

j=0

Pj
)
≤ 1
kn

n−1∑

i=0

Hμ

(
T−i ◦

(n−1∨

j=0

Pjk
))

=
1
n
Hμ(

n−1∨

j=0

(Pkj
)
,

whence letting n → +∞ obtains hKS
μ (T,P) ≤ hKS

μ

(
T k,P

)
.

The entropy rate relative to a given partition P of (X , T, μ) strongly
depends on the latter; for instance, if N is the trivial partition consisting
only of X itself and the empty set, then T−j(N ) = N for all j ≥ 0, whence
hKS

μ (T,N ) = 0. The obvious way of achieving an absolute entropy rate is
to look for the greatest possible one; this leads to the notion of dynamical
entropy also known as Kolmogorov-Sinai entropy (KS -entropy) or metric
entropy [171, 172].

Definition 3.1.2 (KS Entropy). The dynamical entropy of a classical dy-
namical system (X , T, μ) is defined as

hKS
μ (T ) := sup

P
hKS

μ (T,P) ,

where P is any finite, measurable partition.

Remark 3.1.2. The dynamical entropy provides a quantity that remains
invariant under isomorphisms between dynamical systems [61]. Two dynam-
ical systems (X1,2, T1,2, μ1,2) with σ-algebra Σ1,2 are isomorphic if there ex-
ist subsets X (0)

1,2 ⊆ X1,2 of measure μ1,2(X (0)
1,2 ) = 1 and a one-to-one map

Φ : X (0)
1 �→ X (0)

2 such that

1. if S2 = Φ(S1) with S1 ∈ X (0)
1 , then S1 ∈ Σ1 if and only if S2 ∈ Σ2 and

μ1(S1) = μ2(S2), that is μ2 ◦ Φ = μ1 and μ2 = μ1 ◦ Φ−1 relative to X (0)
1,2 ;

2. X (0)
1,2 ⊆ T−1

1,2 (X (0)
1,2 ); namely, the specially selected subsets X (0)

1,2 must be
mapped into themselves by the dynamics;

3. Φ(T1x1) = T2Φ(x1), that is T2 ◦ Φ = Φ ◦ T1 and Φ−1 ◦ T2 = T1 ◦ Φ−1

relative to X (0)
1,2 .

Because of these properties, it turns out that, if (X1,2, T1,2, μ1,2) are isomor-
phic, then hKS

μ1
(T1) = hKS

μ2
(T2). The proof is as follows: if X (0)

1,2 = X1,2, to
any partition P1 of X1 there corresponds a partition P2 := Φ(P1) and vice
versa, the same being true of the refined partitions P(n)

1 that are mapped

into partitions
n−1∨

j=0

Φ ◦ T−j
1 (P1) =

n−1∨

j=0

T−j
2 (Φ(P1)) = P(n)

2 . The result thus

follows since μ1 |̀P(n)
1 = μ2 |̀P(n)

2 =⇒ Hμ1(P
(n)
1 ) = Hμ2(P

(n)
2 ).
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If X (0)
1,2 ⊂ X1,2, consider a finite, measurable partition P1 = {P (1)

i }p
i=1 of

X1 and construct the partition P2 of X2 with atoms P (2)
i := Φ(P (1)

i ∩ X (0)
1 ),

i = 1, 2, . . . , p and P
(2)
p+1 := X2 \ X (0)

2 . Since the latter atom has measure

μ2(P
(2)
p+1) = 0, from the properties of X (0)

1,2 and the isomorphism Φ, it turns

out that Hμ2(P
(n)
2 ) = Hμ1(P

(n)
1 ). This gives hKS

μ2
(T2) ≥ hKS

μ1
(T1); indeed, P1

is a generic partition of X1, but P2 is not so for X2; the result thus follows
by exchanging the roles of the two dynamical systems.

Concluding, two isomorphic dynamical systems must have the same dy-
namical entropy; since dynamical systems with the same dynamical entropy
need not be isomorphic, the latter is not a complete invariant [61, 91].

Example 3.1.1. [61] Suppose the discrete-time dynamics of (X , T, μ) is
sampled by observing the time-evolving system not at each tick of the clock,
rather every k ticks; then

hKS
μ

(
T k
)

= k hKS
μ (T ) . (3.12)

Indeed, consider Remark 3.1.1.7: since Q depends on P in a specific way, by
varying P, one does not in general exhaust the whole class of finite measurable
partitions of X . Then,

hKS
μ

(
T k
)
≥ sup

P
hKS

μ

(
T k,Q

)
= k hKS

μ (T ) .

On the other hand, Remark 3.1.1.3 and P � Q yield

k hKS
μ (T,P) = hKS

μ

(
T k,Q

)
≥ hKS

μ

(
T k,P

)
=⇒ k hKS

μ (T ) ≥ hKS
μ

(
T k
)
.

The technical difficulty of computing the sup in Definition 3.1.2 is over-
come when there does exist a generating partition P (see Definition 2.3.5)
such that, together with its images at different times Pj = T−j(P), it pro-
vides refined partitions P(n) that generate the σ-algebraΣ of X when n → ∞.

Theorem 3.1.1 (Kolmogorov-Sinai Theorem). If the partition P is gen-
erating for (X , T, μ), then hKS

μ (T ) = hKS
μ (T,P).

Proof: Consider T invertible (for T not invertible the argument is the
same) and a generic finite, measurable partition Q; because of the assump-
tion, using Example 2.4.4, for any ε > 0 one can find an n ≥ 0 and a finite
partition P̃ � P−n,n :=

∨n
j=−n P

j , that is a partition generated by finite
unions of atoms of P−n,n, such that the conditional entropy Hμ(Q|P̃) ≤ ε.
Therefore, from (3.9) and (3.10) together with Corollary 2.4.2, one derives
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hKS
μ (T,Q) ≤ hKS

μ (T,P−n,n) + Hμ

(
Q|P−n,n

)
≤ hKS

μ (T,P) + Hμ(Q|P̃)

≤ hKS
μ (T,P) + ε ,

whence, choosing Q such that hKS
μ (T ) ≤ hμ(T,Q) + ε, it follows that

hKS
μ (T ) − ε ≤ hKS

μ (T,Q) ≤ hKS
μ (T,P) + ε

with ε > 0 arbitrary. �
The following corollaries are often useful for concretely computing the

dynamical entropy.

Corollary 3.1.1. Suppose {Pn}n∈N is a sequence of finite partitions for
(X , T, μ) of increasing finesse, Pn � Pn+1, such that

∨
n Pn = Σ. Then,

hKS
μ (T ) = lim

n→∞
hKS

μ (T,Pn) .

Proof: Given ε > 0, let Q be a finite, measurable partition such that
hKS

μ (T ) ≤ hKS
μ (T,Q) + ε; from the assumption and Corollary 2.4.2 it follows

that there exist n ∈ N and Q̃ � Pn such that

hKS
μ (T ) − ε ≤ hKS

μ (T,Q) = hKS
μ (T,Pn) + Hμ(Q|Pn)

≤ hKS
μ (T,Pn) + Hμ(Q|Q̃)

≤ hKS
μ (T,Pn) + ε ≤ hKS

μ (T ) + ε .

�
A similar argument as in the previous proof can be used to show

Corollary 3.1.2. Given (X , T, μ), suppose Σ0 is a measure algebra that gen-
erates the σ-algebra Σ of X . Then,

hKS
μ (T ) = sup

P⊆Σ0

hKS
μ (T,P) .

Examples 3.1.2.

1. Given two dynamical systems (Xi, Ti, μi), i = 1, 2, their direct product
(X1 × X2, T1 × T2, μ1 × μ2) provides a new dynamical system (X , T, μ)
consisting of two statistically and dynamically independent components.
Concretely, X := X1 × X2 is the phase-space consisting of points x =
(x1, x2), x1,2 ∈ X1,2 and the dynamics T is such that Tx = (T1x1, T2x2).
Furthermore, if Σ1,2 are the σ-algebras of X1,2, then X remains equipped
with the σ-algebra Σ = Σ1 ×Σ2 of measurable sets of the form S1 × S2,
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S1,2 ∈ Σ1,2 and with the T -invariant measure on X , μ = μ1 ×μ2, defined
by μ(S1 × S2) = μ1(S1)μ2(S2). Then, [61]

hKS
μ1×μ2

(T1 × T2) = hKS
μ1

(T1) + hKS
μ2

(T2) .

Indeed, Σ is generated by the measure algebra
⋃

P1,2
P1 ×P2 where P1,2

are generic finite, measurable partitions in X1,2; thus, from Corollary 3.1.2
and statistical independence,

hKS
μ (T ) = sup

P1×P2

hKS
μ (T,P1 × P2)

= sup
P1

hKS
μ1

(T1,P1) + sup
P2

hKS
μ2

(T2,P2)

= hKS
μ1

(T1) + hKS
μ2

(T2) .

2. Bernoulli Systems: (see Example 2.1.4) let μ be a product measure such

that p(n)(i(n)) =
n−1∏

j=0

p(ij). As seen in Example 2.3.3.1, the partition C of

Ωp into C0
j :=

{
i ∈ Ωp : ij ∈ {1, 2, . . . , p

}
is generating for the σ-algebra

of cylinders. Therefore,

hKS
μ (Tσ) = hKS

μ (Tσ, C) = lim
n→∞

1
n
Hμ(C(n))

= − lim
n→∞

1
n

∑

i(n)∈Ω
(n)
p

⎛

⎝
n−1∏

j=0

p(ij)

⎞

⎠
p∑

j=1

log p(ij)

= −
p∑

i=1

p(i) log p(i) = Hμ(C) .

3. Markov Processes: Let the measure in
(
Ωp, Tσ, μ

)
be given, as in

Example 2.4.2.2, by p(n)(i(n)) = p(i0)
n∏

j=1

p(ij |ij−1) on Ω
(n)
p . Again,

the partition C of the previous example is generating. Therefore, since∑p
i=1 p(i|j) = 1,

hKS
π (Tσ) = hKS

π (Tσ, C) = lim
n→∞

1
n
Hπ(C(n))

= − lim
n→∞

1
n

∑

i(n)∈Ω
(n)
p

p(i0)
n−1∏

j=1

p(ij |ij−1)
(
p(i0)

n−1∏

k=1

log2 p(ik|ik−1)
)

= −
p∑

i,j=1

p(i)p(j|i) log2 p(j|i) .
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4. Ergodic Rotations: Consider the irrational rotations on the T
2 de-

scribed by the triplets
(
T

2, T,dθ
)
. As seen in Example 2.3.3.2, there is

a generating partition C such that
∞∨

j=0

T−j(C) = Σ = T (Σ) =
∨

j=1

T−j(C) ,

where the last two equalities follow from the invertibility of the dynamics
T . Then, as in Example 2.4.4, for any ε > 0, one can find an n ∈ N and
a partition C̃ �

∨n
j=1 T

−j(C) such that Hμ(C|C̃) ≤ ε. It thus follows from
Corollary 2.4.2 that

Hμ

(
C
∣
∣
∣

n∨

j=1

T−j(C)
)
≤ Hμ(C|C̃) ≤ ε ,

whence, from (3.4), hKS
μ (T ) = 0. This very same argument holds for all

reversible dynamical systems
(
X , T, μ

)
that possess a partition P which

generates the σ-algebra of X as Σ =
∨∞

j=0 Pj .
5. Non-ergodic Rotations: Unlike in the previous example, there exists
k ∈ N such that T k = 1l, the trivial dynamics with hKS

μ (1l) = 0. Then,
from Example 3.1.1, 0 = hKS

μ (1l) = hKS
μ

(
T k
)

= k hKS
μ (T ).

KS entropy and Lyapounov Exponents

In Section 2.2, Lyapounov exponents (see Definition 2.1.2) have been in-
troduced as indicators of hyperbolic behavior, that is of exponential sepa-
ration of initially close trajectories. In Example 2.2.2 this has been calcu-
lated to be log 2 for the Baker map, which is isomorphic to a Bernoulli shift
(Ω2, Tσ, μB) with a balanced probability measure μB ; therefore, according
to Example 3.1.2.2, the Lyapounov exponent equals the KS entropy for this
system.

From an informational point of view this fact can be understood as being
due to the loss of information along the direction where distances and thus
errors increase exponentially fast [62, 271]. It is therefore plausible to ex-
pect that all possible expanding directions contribute with their Lyapounov
exponents to the loss of information and thus to the KS entropy (see Re-
mark 2.1.3.1). This is indeed the content of the following theorem [199]:

Theorem 3.1.2 (Pesin Theorem). Let (X , T, μ) be a smooth dynamical
systems as in Remark 2.1.3.1; set Λ(x) :=

∑

j:λ(j)(x)≥0

λ(j)(x) dimWj(x); then,

hKS
μ (T ) =

∫

X
dμ (x)Λ(x) .
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When the dynamical triplet (X , T, μ) is ergodic, the Lyapounov expo-
nents, which are constants of the motion, are constant almost everywhere on
X , whence Pesin’s equality assumes the simpler expression

hKS
μ (T ) =

∑

j:λ(j)≥0

λ(j) .

A particular instance of Pesin’s result applied to hyperbolic dynamical
systems [313, 164] is provided by Example 8.2.4.

Proposition 3.1.1. The KS entropy of the hyperbolic automorphisms of the
torus with positive eigenvalues α±1 of the matrix A is

hKS
μ (TA) = logα .

Standard proofs of this result can be found in [164, 279]; here, we prefer
to defer it to Chapter 8, where it will be obtained by means of a quantum
dynamical entropy (see Proposition 8.2.7 and Remark 8.2.4).

3.1.1 Entropic K-systems

In Section 2.3.1, K-systems have been defined in terms of the existence of
a K-sequence {Σ}n∈Z of nested σ-subalgebras (see Definition 2.3.4) or of
an algebraic K-sequence of nested Abelian von Neumann subalgebras (see
Definition 2.3.6). We will now show that the algebraic characterization is
equivalent to the following entropic properties, the link being the triviality
of the tails of all finite partitions (see (2.73)).

Theorem 3.1.3. [91, 216] Let (X , T, μ) be a dynamical triplet, the following
ones are equivalent properties:

1. there exists a K-sequence {Pn}n∈Z based upon a finite generating parti-
tion P (see Definition 2.3.5);

2. Tail (Q) = N for any finite measurable partition, where N is the trivial
partition of X ;

3. for all finite measurable partitions Q of X ,

hKS
μ (T,Q) > 0 ; (3.13)

4. for all finite measurable partitions Q of X

lim
n→+∞

hKS
μ (Tn,Q) = Hμ(Q) ; (3.14)

5. for any two finite measurable partitions Q1,2,

lim
n→+∞

Hμ

(
Q1|

∨

k≥n

T−k(Q2)
)

= Hμ(Q1) ; (3.15)
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6. for any two finite measurable partitions Q1,2,

lim
n→+∞

Hμ

(
Q1|

∨

k≥n

T−k(Q2)
)

= 0 =⇒ Q1 = N . (3.16)

From the characterization of K-mixing by the triviality of the tails of all
their finite partitions (condition (2) above), Proposition 2.3.5 gives

Corollary 3.1.3. A dynamical triplet (X , T mu) with a finite generating par-
tition is a K-system if and only if it is K-mixing.

The key observation in the proof of Theorem 3.1.3 is the continuity of
the conditional probabilities as stated in Theorem 2.2.1 and the continuity
of entropies and conditional entropies with respect to their arguments. This
fact allows us to recast (3.4) in the more suggestive form

hKS
μ (T,P) = lim

n→∞
Hμ

(
P
∣
∣
∣

n∨

j=1

Pj
)

= Hμ

(
P
∣
∣
∣

+∞∨

j=1

Pj
)
, (3.17)

where Pj = T−j(P). Also, by means of (2.73), in (3.15) and (3.16) one
rewrites

lim
n→+∞

Hμ

(
Q1|

∨

k≥n

T−k(Q2)
)

= Hμ

(
Q1| lim

n→+∞

∨

k≥n

T−k(Q2)
)

= Hμ

(
Q1|Tail (Q2)

)
. (3.18)

We shall also need the following two results [91].

Lemma 3.1.1. Given two finite partitions Q1,2,

Hμ

(
Q1|

+∞∨

n=1

T−n(Q1) ∨ Tail (Q2)
)

= hKS
μ (T,Q1) . (3.19)

Proof: As a first step, observe that, given a finite partition Q, repeatedly
using (2.91) and (3.3) yield

Hμ

( n∨

k=1

T k(Q)
∣
∣
∣

+∞∨

j=1

T−j(Q)
)

=
n−1∑

k=0

Hμ

(
T k(Q)

∣
∣
∣

+∞∨

j=−k+1

T−j(Q)
)

= nHμ

(
Q
∣
∣
∣

+∞∨

j=1

T−j(Q)
)

= nhKS
μ (T,Q) .
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Then, for fixed ε > 0 and sufficiently large n, using Corollary 2.4.2 and
Definition 3.1.1 one gets

hKS
μ (T,Q1 ∨Q2) =

1
n
Hμ

(n−1∨

k=0

T k(Q1 ∨Q2)
∣
∣
∣

+∞∨

j=1

T j(Q1 ∨Q2)
)

︸ ︷︷ ︸
L1(n)

≤ 1
n
Hμ

(n−1∨

k=0

T k(Q1 ∨Q2)
∣
∣
∣

+∞∨

j=1

T j(Q1)
)

︸ ︷︷ ︸
L2(n)

≤ 1
n
Hμ

(n−1∨

k=0

T k(Q1 ∨Q2)
)
≤ hKS

μ (T,Q1 ∨Q2) + ε .

Thus, lim
n→+∞

L1(n)
n

= lim
n→+∞

L2(n)
n

. Further, Lemma 2.91 yields

L1(n) = Hμ

(n−1∨

k=0

T k(Q1)
∣
∣
∣

+∞∨

j=1

T j(Q1 ∨Q2)
)

︸ ︷︷ ︸
L11(n)

+ Hμ

(n−1∨

k=0

T k(Q1)
∣
∣
∣

+∞∨

j=1

T j(Q2) ∨
+∞∨

j=−n+1

T−j(Q1)
)

︸ ︷︷ ︸
L12(n)

L2(n) = Hμ

(n−1∨

k=0

T k(Q1)
∣
∣
∣

+∞∨

j=1

T j(Q1)
)

︸ ︷︷ ︸
L21(n)

+Hμ

(n−1∨

k=0

T k(Q2)
∣
∣
∣

+∞∨

j=−n+1

T j(Q1)
)

︸ ︷︷ ︸
L22(n)

.

Corollary 2.4.1 implies L11(n) ≤ L21(n) and L11(n) ≤ L21(n), then

hKS
μ (T,Q1) = lim

n→+∞

L21(n)

n
= lim

n→+∞

L11(n)

n
.

By applying (2.91) and then the argument that led to (3.4) one gets

hKS
μ (T,Q1) = lim

n→+∞

L11(n)

n

= lim
n→+∞

1
n

n−1∑

k=0

Hμ

(
T k(Q1)

∣
∣
∣

+∞∨

j=1

T−j(Q2) ∨
+∞∨

r=−k+1

T−r(Q1)
)

= lim
n→+∞

1
n

n−1∑

k=0

Hμ

(
Q1

∣
∣
∣

+∞∨

j=k+1

T−j(Q2) ∨
+∞∨

r=1

T−r(Q1)
)
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= lim
n→+∞

Hμ

(
Q1

∣
∣
∣

+∞∨

j=n

T−j(Q2) ∨
+∞∨

r=1

T−r(Q1)

︸ ︷︷ ︸
Cn

)
= Hμ

(
Q1

∣
∣
∣
∧

n≥0

Cn

)

≤ Hμ

(
Q1

∣
∣
∣Tail (Q2) ∨

+∞∨

r=1

T−r(Q1)
)
≤ hKS

μ (T,Q1) .

The last equality follows from the fact that the partitions Cn (not finite in
general) are such that Cn � Cn−1, whereas for the last but one inequality
Corollary 2.4.2 has been used and the fact that

Tail (Q2) ∨
+∞∨

r=1

T−r(Q1) =

⎛

⎝
∧

n≥0

∨

k≥n

T−k(Q2)

⎞

⎠ ∨
+∞∨

r=1

T−r(Q1) �
∧

n≥0

Cn .

�

Lemma 3.1.2. Given two finite partitions Q1,2,

Q2 �
∨

n∈Z

Tn(Q1) =⇒ Tail (Q2) � Tail (Q1) . (3.20)

Proof: We shall show that all partitions Q � Tail (Q2) are such that
Q � Tail (Q1), too. Notice that Q �

∨
n∈Z

Tn(Q1), by hypothesis. If

Hμ

(
P
∣
∣
∣Tail (Q1) ∨Q

)
= Hμ

(
P
∣
∣
∣Tail (Q1)

)
(∗)

for all finite partitions P �
∨n

k=−n T
k(Q1), then by approximating Q arbi-

trarily well by
∨n

k=−n T
k(Q1), continuity allows one to substitute Q for P in

(∗). Then, (2.91) implies

Hμ

(
Q
∣
∣
∣Tail (Q1) ∨Q

)
= Hμ

(
Q
∣
∣
∣Tail (Q1)

)
=⇒ Q � Tail (Q1) .

Equality (∗) is proved as follows: a repeated use of (2.91), together with the
T -invariance of Q (see Remark 2.3.4) and Remark 3.1.1.4, yield

Hμ

( n∨

k=−n

T k(Q1)
∣
∣
∣

+∞∨

j=n+1

T−j(Q1) ∨Q
)

︸ ︷︷ ︸
L1(n)

=

=
n∑

k=−n

Hμ

(
T k(Q1)

∣
∣
∣

+∞∨

j=−k+1

T−j(Q1) ∨Q
)

= 2nHμ

(
Q1

∣
∣
∣

+∞∨

k=1

T−j(Q1) ∨Q
)

as well as
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Hμ

( n∨

k=−n

T k(Q1)
∣
∣
∣

+∞∨

j=n+1

T−j(Q1)
)

︸ ︷︷ ︸
L2(n)

= 2nHμ

(
Q1

∣
∣
∣

+∞∨

k=1

T−j(Q1)
)

= 2nhKS
μ (T,Q1) .

Since Q is T -invariant, it coincides with Tail (Q), whence Lemma 3.1.2 ensures
that L1(n) = L2(n). Furthermore, since

P �
n∨

k=−n

T k(Q1) =⇒ P ∨
n∨

k=−n

T k(Q1) =
n∨

k=−n

T k(Q1) ,

by using (2.91) one gets

L1(n) = Hμ

(
P
∣
∣
∣

+∞∨

j=n+1

T−j(Q1) ∨Q
)

︸ ︷︷ ︸
L11(n)

+ Hμ

( n∨

k=−n

T k(Q1)
∣
∣
∣P ∨

+∞∨

j=n+1

T−j(Q1) ∨Q
)

︸ ︷︷ ︸
L12(n)

L2(n) = Hμ

(
P
∣
∣
∣

+∞∨

j=n+1

T−j(Q1)
)

︸ ︷︷ ︸
L21(n)

+Hμ

( n∨

k=−n

T k(Q1)
∣
∣
∣P ∨

+∞∨

j=n+1

T−j(Q1)
)

︸ ︷︷ ︸
L22(n)

.

Since L11(n) ≤ L21(n) and L12(n) ≤ L22(n), L1(n) = L2(n) gives

Hμ

(
P
∣
∣
∣

+∞∨

j=n+1

T−j(Q1) ∨Q
)

= Hμ

(
P
∣
∣
∣

+∞∨

j=n+1

T−j(Q1)
)

for all n ≥ 0. Therefore (see the proof of the previous lemma),

Hμ

(
P
∣
∣
∣
∧

n≥0

(+∞∨

j=n

T−j(Q1) ∨Q
))

= Hμ

(
P
∣
∣
∣Tail (Q1)

)
.

The equality (∗) thus follows from Corollary 2.4.2 and

Tail (Q1) ∨Q �
∧

n≥0

(+∞∨

j=n

T−j(Q1) ∨Q
)

so that

Hμ

(
P
∣
∣
∣Tail (Q1)

)
≥ Hμ

(
P
∣
∣
∣Tail (Q1) ∨Q

)

≥ Hμ

(
P
∣
∣
∣
∧

n≥0

(+∞∨

j=n

T−j(Q1) ∨Q
))

= Hμ

(
P
∣
∣
∣Tail (Q1)

)
.

�
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Proof of Theorem 3.1.3 The equivalences will be proved according to the
following scheme:

(5) =⇒ (4)
⇑ ⇓

(1) ⇐⇒ (2) ⇐⇒ (3)
&

(6)

(1) =⇒ (2): take Q1 has the K-partition P, then Lemma 3.1.2 implies
Tail (Q) � Tail (P) = N for all finite partitions Q.
(2) =⇒ (1): this is the content of Proposition 2.3.6.
(2) =⇒ (3): if hKS

μ (T,Q) = 0 for a finite partition Q, by means of (3.17) and
the argument of Example 2.4.3 extended by continuity to non-finite contexts,
one gets Q �

∨+∞
n=1 T

−n(Q). Then, T−k(Q) �
∨+∞

n=k+1 T
−n(Q), for all k ≥ 0,

whence

Tail (Q) =
∧

k≥0

∨

n≥k

T−n(Q) =
+∞∨

n=0

T−n(Q) ' Q =⇒ Q = N .

(3) =⇒ (2): let Q2 be a finite partition with Tail (Q2) �= N ; Lemma 3.1.2
applied to Q1 � Tail (Q2) yields hKS

μ (T,Q1) = 0, whence Q1 = N .
(2) =⇒ (5): using (3.18) one gets

Hμ

(
Q1|Tail (Q2)

)
= Hμ(Q1|N ) = Hμ(Q1) ,

for all finite partitions Q1,2 (see Example 2.4.3).
(2) =⇒ (6): follows from (2) =⇒ (5).
(6) =⇒ (2): suppose Q2 is a finite partition; if Q1 � Tail (Q2), (3.18) yields
0 = Hμ

(
Q1|Tail (Q2)

)
. Thus, Q1 = N from (6), whence Tail (Q1) = N .

(5) =⇒ (4): consider a finite partition Q and notice that

+∞∨

k=n

T−k(Q) '
+∞∨

j=1

T−jn(Q) .

Then, Corollary 2.4.2, (3.17) and (3.7) imply

Hμ(Q) = lim
n→+∞

Hμ

(
Q
∣
∣
∣

+∞∨

k=n

T−k(Q)
)

≤ lim
n→+∞

Hμ

(
Q
∣
∣
∣

+∞∨

j=1

T−jn(Q)
)

= hKS
μ (Tn,Q) ≤ Hμ(Q) .

(4) =⇒ (3): given a finite partition Q �= N , choose ε > 0 in such a way that
Hμ(Q) − ε > 0 and n large enough to have hKS

μ (Tn,Q) ≥ Hμ(Q) − ε. Then,
from (3.11) one derives
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hKS
μ (T,Q) ≥ 1

n
hKS

μ (Tn,Q) ≥ Hμ(Q) − ε

n
> 0 .

�

3.2 Codes and Shannon Theorems

As seen in Section 2.4 communication channels usually comprise a preliminary
encoding of the source signals. In the following, we shall review some basic
facts concerning the role of entropy in this context, with particular reference
to compression of information and its transmission through noisy channels.

Definitions 3.2.1 (Codes).

1. A code E : IA �→ Ω∗
d for a source A with alphabet IA = {1, 2, . . . , a} is any

map which associates source symbols i ∈ iA with strings of any lengths
consisting of symbols x ∈ IX = {1, 2, . . . , d}:

IA � i �→ E(i) = x(n) = x1x2 · · ·xn ∈ Ω∗
d , xj ∈ {1, 2, . . . , d} ,

where Ω∗
d denotes the set

⋃
n≥1 Ω

(n)
d .

2. A code is non-singular if any two different source symbols i, j ∈ IA are
mapped into different code-words E(i) �= E(j) ∈ Ω∗

d . In this way, any
code-word corresponds to a unique source-symbol.

3. The extension of a code E : IA → Ω∗
d to strings i(	) = i1i2 · · · i	 ∈ Ω

(	)
a of

length � is defined by concatenation:

Ω(	)
a � i(	) �→ E(	)(i(	)) = E(i1)E(i2) · · · E(i	) ∈ Ω∗

d .

4. A code E is uniquely decodable if its extensions E(	) are non-singular.
5. A code E is a prefix or an instantaneous code if no code-word prefixes

another code-word, that is if no code-word consists in code-symbols added
to a code-word.

Examples 3.2.1. [92]

1. Prefix-codes are uniquely decodable and uniquely decodable codes are
non-singular.

2. Let IA = {1, 2, 3}, IX = {0, 1}; E(1) = 0, E(2) = 00, E(3) = 01 is a non-
singular code, but not an uniquely decodable one for E(11) = E(2) = 00.

3. The code E(1) = 0, E(2) = 01, E(3) = 11, is not a prefix-code as E(1)
prefixes E(2). However, it is uniquely decodable for the following reason.
Suppose E(i(	)) = E(j(	)) = x(n): if x1 = 1 then x2 = 1 and i1 = j1 = 3;
if x1 = x2 = 0, then i1 = j1 = 1. Finally, if x1 = 0 and x2 = 1 then
i1 = j1 = 1 when x3 = 1, otherwise i1 = j1 = 2. In this way every string
of code-words encodes a unique source-word.



3.2 Codes and Shannon Theorems 87

4. The code E(1) = 0, E(2) = 10, E(3) = 11 is such that no string can
be prefix to another. Unlike in the previous one, in this case one need
not check the next symbol in order to identify the corresponding source-
symbol.

Prefix-codes are particularly important because the lengths of their code-
words satisfy the following inequality.

Proposition 3.2.1 (Kraft’s Inequality). [92] If E : IA → Ω∗
d is a prefix-

code over the alphabet IX = {1, . . . , d} for a source alphabet IA = {1, 2, . . . , a}
and �i denotes the length of the code-word E(i), then

a∑

i=1

d−	i ≤ 1 . (3.21)

This inequality is known as Kraft inequality; vice versa, if a set of lengths �i,
i = 1, 2, . . . , a satisfies (3.21), then there exists a prefix-code E : IA → Ω∗

d .

Proof: The lengths �i need not be all different; let them be ordered such
that �1 < �2 < · · · < �m, m ≤ a and let Nj be the number of source-symbols
with code-words of length �j . Necessarily, N1 ≤ d	1 , otherwise there would
be more source-symbols than words of length �1 that encode them and the
code would be singular. The prefix condition means that none of the N1 code-
words can prefix code-words of length �2, whence N1 d

	2−	1 code-words are no
more available and non-singularity implies N2 ≤ d	2 −N1 d

	2−	1 . Continuing,
N2 d

	3−	2 and N1 d
	3−	1 cannot be used as code-words of length �3, whence

N3 ≤ d	3 −N1 d
	3−	1 − N2 d

	3−	2 .

Iterating the argument one gets a set of inequalities

Nj ≤ d	j −
j−1∑

k=1

Nk d
	j−	k , 1 ≤ j ≤ m ,

the last one (j = m) resulting in (3.21). Vice versa, if a set of m different
lengths �i satisfy the Kraft inequality, then they also satisfy the inequalities

j∑

k=1

Nk d
−	k ≤

a∑

i=1

d−	i ≤ 1 =⇒ Nj ≤ d	j −
j−1∑

k=1

Nk d
	j−	k ,

for 1 ≤ j ≤ m. Therefore, the source-symbols i ∈ IA can always be regrouped
into subsets IA(j), each with Nj elements, such that there are sufficiently
many code-words to construct a prefix-code IA(j) � i �→ E(i) ∈ Ω∗

d . �
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Example 3.2.2. [92] Inequality (3.21) extends to countable prefix codes.
Indeed, any x(n) = (x1, x2, . . . , xn) ∈ Ω

(n)
d can be associated with the in-

terval Δx := [0.x1x2 · · ·xn , 0.x1x2 · · ·xn + d−n) ⊂ [0, 1] by means of the

d-nary expansion x =
n∑

j=1

xj

dj
=: 0.x1x2 · · ·xn. Therefore, if a countable set

{xi}i∈N of code-words x
(	i)
i ∈ Ω∗

d with lengths �i have the prefix property,
the corresponding intervals Δi of lengths d−	i are all disjoint and the sum
of their lengths cannot exceed 1. Viceversa, given a countable set of lengths
satisfying the extended Kraft inequality

∑

i∈N

d−	i ≤ 1 ,

these can be assigned to disjoint dyadic intervals whose left ends can be used
as code-words of a prefix-code.

Given a source A some codes will prove more adapted to its statistical
properties than others; for instance, it is convenient to assign shorter code-
words to the symbols emitted with higher probability. In this context, a useful
parameter is the following one.

Definition 3.2.1 (Average Code Length). [92] Let A be a source emit-
ting symbols from the alphabet IA with probabilities π = {p(i)}i∈IA

, the av-
erage length of a code E : IA → Ω∗

d is defined by Lπ(E) :=
∑a

i=1 p(i)�i,
where �i := �(E(i)) is the length of the code-word E(i) assigned to the i-th
source-symbol.

A way to optimize a code relative to a fixed source probability distribution
is to try to achieve the shortest average length. If E is a prefix-code for
which (3.21) becomes an equality, the optimal lengths are found by imposing
that the quantity Lπ(E) + λ

(∑a
i=1 d

−	i − 1
)

be stationary upon variation of

the lengths and of the Lagrange multiplier λ. Since
∑a

i=1 p(i) = 1, one gets
λ∗ = − log d and �∗i = − logd p(i), whence the corresponding average length
equals the Shannon entropy in base d, L∗ = Hd(A). This is the smallest one
achievable by a prefix code; indeed, with D :=

∑a
i=1 d

−	i ≤ 1, by means of
the relative entropy (2.94) and of (2.85), one estimates

Lπ(E) − L∗ =
a∑

i=1

p(i) (�i + logd p(i)) =
a∑

i=1

p(i) logd

(

p(i)
D

d−	i

)

− logd D

= S (π̃ , π) − logd D ≥ 0 , (3.22)

where π̃ = {d−	i/D}a
i=1. Since �∗i is not generally an integer, it cannot be

directly used to construct an optimal code; however, set �i := (− logd p(i)) 1,
so that �∗i ≤ �i < �∗i + 1 and

1�x� denotes the smallest integer larger than x ∈ R+
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a∑

i=1

d−	i ≤
a∑

i=1

d−	∗i =
a∑

i=1

p(i) = 1 .

According to Proposition 3.2.1, one can thus construct a prefix-code E with
average length Lπ(E) such that

Hd(A) = L∗ ≤ Lπ(E) =
a∑

i=1

p(i)�i < L∗ + 1 = Hd(A) + 1 .

These upper and lower bounds also characterize the average code length
Lπ(Eopt) of any optimal code for Lπ(E) ≥ Lπ(Eopt) ≥ L∗.

Example 3.2.3 (Shannon-Fano-Elias Code). Let A be a source that
emits symbols i ∈ IA = {1, 2, . . . , a} with probabilities π = {p(i)}a

i=1 and
assume, without loss of generality that p(i) > 0. Let P (i) :=

∑i
j=1 p(j);

then, to each symbol i there corresponds a jump from P (i − 1) to P (i) and
the value Q(i) := P (i− 1) + p(i)/2 belonging to the corresponding step can
be used to identify the i-th symbol. Since a code-word must contain a finite
number of symbols, a suitable truncation of Q(i) is necessary; for this the
binary expansion of Q(i) is used. Concretely, one assigns to the i-th symbol
the code-word E(i) = x1(i)x2(i) · · ·x	i

(i), where

− log2 p(i) + 1 ≤ �i := (− log2 p(i)) + 1 < − log2 p(i) + 2 , (3.23)

and xj(i) ∈ {0, 1} are the binary coefficients of the expansion of Q(i) trun-
cated at the �i-th digit:

Q(i) :=
	i∑

j=1

xj(i)
2j

︸ ︷︷ ︸
Q(i)

+
∑

j=	i+1

xj(i)
2j

≤ Q(i) +
1

2	i
< Q(i) +

p(i)
2

< P (i) .

Since P (i− 1) < Q(i) < P (i), Q(i) provides a code-word E(i) for the symbol
i of length �i < − log2 p(i) + 2. Also, with the notation of Example 3.2.2, the
binary intervals

[
0.x1(i)x2(i) · · ·x	i

(i) , 0.x1(i)x2(i) · · ·x	i
(i) + 2−	i

]

lie within the steps corresponding to different i’s and are thus disjoint. Then,
E is a prefix-code with average length satisfying

H2(A) ≤ Lπ(E) =
a∑

i=1

p(i) �i =
a∑

i=1

p(i)
(
(− log2 p(i)) + 1

)
< H2(A) + 2 .
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Remark 3.2.1. The difference between the average code-length and the en-
tropy Hd(A) in the case of the assignment �i = (− logd p(i)), can be elimi-
nated asymptotically by coding not single source-symbols but whole blocks
of them. In this case, given a stationary source A and a prefix-code E , one
encodes strings of length n, i(n) ∈ Ω

(n)
a , with code-words E(n)(i(n)) ∈ Ω∗

d of
lengths �(n)

i(n) and average code-length per symbol

Lπ
A(n) (E(n)) :=

1
n

∑

i(n)∈Ω
(n)
a

pA(n)(i(n)) �(n)

i(n) .

Then, the same argument developed for codings of single source-symbols
yields the bounds

Hd(A(n))
n

≤ Lπ
A(n) ,n(E(n)) <

Hd(A(n))
n

+
1
n
.

Taking the limit n → ∞, one sees that the average code-length per symbol
tends to the entropy rate (in base d) hd(A) of the source (see Remark 3.1.1.1).
This simple result motivates the following interpretation:

The entropy rate of a stationary source represents the expected number
of code-symbols needed to optimally describe the whole stochastic process
corresponding to the source.

3.2.1 Source Compression

Storing or transmitting information consumes a certain amount of resources,
like the number of uses of a channel or the allocation of memory. In order
to minimize the costs, the strategy is to compress information as much as
possible in such a way that it could be efficiently retrieved, that is with small
probability of errors. We shall start with the case of binary Bernoulli sources
A emitting statistically independent signals (see (2.31)).

In such a case, the source amounts to a stochastic process {Aj}j∈Z con-
sisting of independent and identically distributed random variables, each with
discrete probability distribution πA = {p(i)}a

i=1. Then, the mean value of the
random variable

Ln(A) := − 1
n

n−1∑

j=0

log p(Aj) (3.24)

is the Shannon entropy H(A) =
∑

i(n)∈Ω
(n)
a

p(i(n))Ln(i(n)), while the variance

equals Vn(A) := 〈(Ln(A) −H(A))2〉 =
1
n
〈log2 p(A)〉 − H2(A).

Lemma 3.2.1 (Tschebitcheff Inequality). Let X be a random variable
with outcomes i = 1, 2, . . . , d, probability π = {p(i)}d

i=1, mean value M :=

〈X〉 and variance V := 〈X2〉 −M2, then Prob {|X − M | ≥ ε} ≤ V 2

ε2
.
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Proof: The upper bound follows from

Prob {|X − M | ≥ ε} :=
∑

i:|i−M |≥ε

p(i) ≤ 1
ε2

∑

i:|i−M |≥ε

p(i)(i − M)2 .

�
With X := Ln(A) as in (3.24), the previous Lemma yields

Prob {|Ln(A) −H(A)| ≥ ε} ≤ 1
ε2n

〈log2 p(A) −H2(A)〉 .

Therefore, chosen ε > 0 and δ > 0, for n sufficiently large, one can select high
probability subsets

A(n)
ε,δ :=

{
i(n) ∈ Ω(n)

a :
∣
∣
∣− 1

n
log p(n)(i(n)) −H(A)

∣
∣
∣ < ε

}
, (3.25)

such that
Prob

(
A(n)

ε,δ

)
≥ 1 − δ , Prob

(
(A(n)

ε,δ )c
)
≤ δ , (3.26)

where (A(n)
ε,δ )c := Ω

(n)
2 \ A(n)

ε,δ is the corresponding low probability subset.

Proposition 3.2.2 (Asymptotic Equipartition Property (AEP)).
For any ε > 0 and δ > 0, there exists Nε,δ such that, for all n > Nε,δ, the

high probability subsets A(n)
ε,δ ⊂ Ω

(n)
2 are such that, for all i(n) ∈ A(n)

ε,δ ,

e−n(H(A)+ε) ≤ p(i(n)) ≤ e−n(H(A)−ε) , (3.27)

while, their cardinalities #(A(n)
ε,δ ) satisfy

(1 − δ)en(H(A)−ε) < #(A(n)
ε,δ ) ≤ en(H(A)+ε) . (3.28)

Proof: The first statement follows from (3.25), while the second one is a
consequence of (3.26) and of

1 =
∑

i(n)∈Ω2

p(i(n)) ≥
∑

i(n)∈A(n)
ε

p(i(n)) ≥ #(A(n)
ε ) e−n(H(A)+ε)

1 − δ <
∑

i(n)∈A(n)
ε

p(i(n)) ≤ #(A(n)
ε ) e−n(H(A)−ε) .

�
Roughly speaking, the AEP states that, for large n, the binary strings of

length n can be subdivided into a high probability subspace A(n)
ε,δ containing

≈ enH(A) strings each one of them occurring with probability ≈ e−nH(A).
Also, the closer the source entropy to 1, the closer A(n)

ε,δ gets to Ω
(n)
2 .
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For Bernoulli sources, the AEP amounts to
1
n

log p(i(n)) → H(A) in
probability. In fact, the AEP extends to ergodic sources and, more in gen-
eral, to symbolic modeling of ergodic dynamical systems, with the Shannon
entropy replaced by the entropy rate.

Let P = {Pi}p
i=1 denote a finite, measurable partition of a reversible

ergodic triplet (X , T, μ) and set Ps
r :=

∨s
j=r Pj , Pj := T−j(P). Further, for

any x ∈ X let Ps
r (x) denote the atom of the partition Ps

r that contains x: for
μ-almost all x there is one and only one such atom. Notice that each Ps

r is a
random variable on X such that

Ps
r (x) =

s⋂

j=r

T−j(Pij
) ⇐⇒ T jx ∈ Pij

∀ j = r, r + 1, . . . , s .

Consider now the random variable

hn(x) := − 1
n

log μ(Pn−1
0 (x)) ; (3.29)

with the notation of Section 3.1, its expectation is

μ(hn) =
∫

X
dμ (x)hn(x) = − 1

n

∑

i(n)∈Ω
(n)
p

∫

P
(n)

i(n)

dμ (x) log μ(Pn−1
0 (x))

= − 1
n

∑

i(n)∈Ω
(n)
p

μ(P (n)

i(n)) log μ(P (n)

i(n)) =
1
n
Hμ(P(n)) . (3.30)

Rewrite hn(x) = − 1
n

n−1∑

k=1

log
μ(Pk

0 (x))
μ(Pk−1

0 (x))
− 1

n
logμ(P(x)), P0

0 = P, and ob-

serve that Pk
0 (x) = P0

−k(T kx) and Pk−1
0 (x) = P−1

−k(T kx), then

hn(x) =
1
n

n−1∑

k=0

gk(T kx) where (3.31)

g0(x) := − log μ(P(x)) , gk(x) := log
μ(P0

−k(x))

μ(P−1
−k(x))

. (3.32)

All these functions are positive; furthermore, 0 ≤ g := limk gk exists almost
everywhere and is integrable. In fact, let f i

k := gk |̀Pi, that is

f i
k(x) := − log

μ(P−1
−k(x) ∩ Pi)

μ(P−1
−k(x))

;

then, the conditional probability (2.52) of the random variable P conditioned
on the measure algebra generated by P−1

−k reads
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μ
(
P = i

∥
∥
∥P−1

−k

)
(x) = e−fi

k(x) .

Since, from Theorem 2.2.1, limk f
i
k exists μ-almost everywhere, the same is

true of g = limk gk. Now, fix a ∈ R and define the following disjoint subsets
of X :

Ek :=
{
x max

1≤j≤k−1
gj(x) ≤ a < gk(x)

}

F i
k :=

{
x max

1≤j≤k−1
f i

j(x) ≤ a < f i
k(x)

}
.

Using the defining property (2.52) of conditional probabilities, one estimates

μ(Ek) =
p∑

i=1

μ(Pi ∩ F i
k) =

p∑

i=1

∫

F i
k

dμ (x)μ
(
P = 1

∥
∥
∥P−1

−k

)
(x)

≤ e−aμ(F i
k) and

∞∑

k=1

μ(Ek) ≤ e−a

p∑

i=1

μ

( ∞⋃

k=1

F i
k

)

≤ p e−a .

Setting g := supk gk and Gk := {x : k < g(x) ≤ k + 1},

μ(g) =
∞∑

k=0

∫

Gk

dμ (x) g(x) ≤
∞∑

k=0

(k + 1) e−k < +∞ ,

whence g and g are both integrable.

Example 3.2.4. Consider the case of a bilateral Bernoulli shift as in Exam-
ple 3.1.2.2. Then, x = i ∈ Ωa, and, choosing as P the generating partition
C, one gets gk(i) = g0(i) = − logμ(C(i)). Therefore, the sum in (3.31) yields
the time-average of g0, whence one can apply Birkhoff’s Theorem 2.3.1 and
ergodicity to deduce that

lim
n→∞

hn(i) = Hμ(C) = hKS
μ (Tσ) μ− a.e.

and that the asymptotic behavior p(i(n)) � e−nhKS
μ (Tσ) holds almost every-

where and not only in probability.

Despite the fact that, in general, the functions in (3.31) are different for
different k’s and thus (3.31) is not a time-average as in Birkhoff’s theorem,
none the less the following result holds.

Theorem 3.2.1 (Shannon-Mc Millan-Breiman Theorem).
Let (X , T, μ) be a reversible, ergodic dynamical system, then, for all finite,
measurable partitions P = {Pi}p

i=1,

lim
n→∞

hn(x) = hKS
μ (T,P) μ− a.e.
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Proof: [61, 199] With the notation introduced in the preceding discussion,
dominated convergence, T -invariance of μ and (3.30) together with (3.31)
yield

μ(g) = lim
n→∞

μ(gn) = lim
n→∞

1
n

n−1∑

k=0

μ(gk) = lim
n→∞

1
n

n−1∑

k=0

μ(gk ◦ T k)

= lim
n→∞

μ(hn) = hKS
μ (T,P) .

On the other hand, from ergodicity, hKS
μ (T,P) = μ(g) = lim

n→∞

1
n

n−1∑

k=0

g(T kx)

μ− a.e., whence the theorem is proved by showing that

lim
n→∞

1
n

n−1∑

k=0

(gk − g)(T kx) = 0 μ− a.e. (∗) .

Consider GN (x) := supk≥N |gk(x)− g(x)|; these functions are integrable and
limN GN = 0 μ-a.e., thus, from ergodicity,

lim sup
n→∞

∣
∣
∣
∣
∣

1
n

n−1∑

k=0

(gk − g)(T kx)

∣
∣
∣
∣
∣
≤ lim sup

n→∞

1
n

n−1∑

k=0

∣
∣(gk − g)(T kx)

∣
∣

≤ lim sup
n→∞

1
n

n−1∑

k=0

GN (T kx) = μ(GN )

μ-a.e. and for all N ∈ N whence (∗). �

Remark 3.2.2. The Shannon-Mc Millan-Breiman theorem applied to an er-
godic source allows a reformulation of the AEP in terms of the KS entropy.
Indeed, choosing as P the standard generating partition as in Example 3.2.4,
almost everywhere convergence of p(n)

A (i(n)) to e−n h(A), ensures that, given
ε > 0, and δ > 0, for n sufficiently large, the ensemble of strings of length n

can be subdivided into a high probability subspace A(n)
ε of probability ≈ 1

containing ≈ en h(A) strings.

The AEP allows the implementation of the following compression scheme
of an ergodic binary source: one considers strings of length n, makes a list
of those contained in a high probability subset A(n)

ε and assign them as
a code their position in the list. Since A(n)

ε contains less than 2n(h(A)+ε)

strings (entropies being conveniently computed with logarithms in base 2),
the number of bits needed for the encoding is at the most

( log2 2n(h(A)+ε) ) + 1 = (h(A) + ε ) + 1 ,
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while the strings belonging to the complementary set (A(n)
ε )c may be encoded

by a same integer, say #(A(n)
ε ) + 1. Upon retrieval, the strings belonging to

A(n)
ε are exactly identified by their code, but not those in (A(n)

ε )c; however,
since Prob((A(n)

ε )c) ≤ δ and δ → 0 with n → ∞, the larger n gets, the lower
is their probability of occurring. Therefore, the probability of error can be
made vanishingly small by increasing n.

Theorem 3.2.2 (Noiseless Coding Theorem). Let A be an ergodic bi-
nary source with entropy rate h(A): binary strings of length n can be encoded
by using nR < n bits and vanishing probability of error if R > h(A). If
R < h(A), then the probability of error goes to 1 with n → ∞.

Proof: The first part of the theorem follows from the previous discussion
by applying the equipartition theorem with R = h(A) + ε.

For the second part, let R = h(A) − ε and consider the high probability
subset A(n)

ε/2 together with its complement (A(n)
ε/2)

c. The probability of any

subset B of Ω(n)
2 containing +2nR, 2 strings can be estimated as follows,

Prob(B) ≤ Prob
(
B ∩ (A(n)

ε/2)
c
)

+ Prob
(
B ∩ A(n)

ε/2

)

≤ δ + 2nR2−n(h(A)−ε/2) = δ + 2−nε/2 ,

where δ is a vanishingly small quantity given by the AEP . Thus, listing the
strings belonging to a subset as B, one uses less than h(A) bit per bit , but,
when n gets larger, the probability that an emitted string belong to B gets
vanishingly small and the probability of error close to 1. �

Universal Source Codings

The compression protocols discussed in the previous section depends on
the knowledge of the source statistics. Interestingly, encoding and decoding
schemes exist which work equally well, namely with a same compression rate
R, for all ergodic sources A with an entropy rate h(A) < R, whatever their
overall stationary probability distribution: these protocols provide universal
source codings.

In the following, we shall consider Bernoulli sources [92], while the general
case can be found discussed in [325, 168]. The method used is based on the
concept of type.

Let A be a stationary Bernoulli source emitting strings i(n) = i1i2 · · · in ∈
Ω

(n)
a , ij ∈ IA = {1, 2, . . . , a} according to compatible probability distribu-

tions πA(n) =
{
p
(n)
A (i(n)) =

∏n
j=1 pA(ij)

}
. We shall denote

2�x� denotes the largest integer smaller than x ∈ R.
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1. by N(j|i(n)) the number of times j ∈ IA occurs in the string i(n);

2. by p(j|i(n)) :=
N(j|i(n))

n
the so-called empirical probability generated by

the string i(n) and by Πi(n) := {p(j|i(n))}a
j=1 the corresponding empirical

distribution. The latter is known as the type of i(n): strings i(n) whose
symbols occur with same frequencies belong to a same type Π(n);

3. by Pn the set of all types Π(n);
4. by T (Π(n)) the subset of all strings i(n) ∈ Ω

(n)
a with a same type Π(n).

The construction of universal codings is based on the following two
bounds; of particular importance is the second one which states that the
number of different types increases at most polynomially with n.

Lemma 3.2.2. Let Π(n) ∈ Pn be a type of Ω(n)
a and let H(Π(n)) be its

Shannon entropy. The number of strings in T (Π(n)) and the number of all
possible types fulfil

#(T (Π(n))) ≤ 2nH(Π(n)) , #(Pn) ≤ (n+ 1)a .

Furthermore, the a-priori probability of T (Π(n)) is such that

π
(n)
A (T (Π(n)) ≤ 2−n S(Π(n) , πA) ,

where S(Π(n) , πA) is the classical relative entropy (see (2.94)).

Proof: Let P (n) be the following empirical probability distribution onΩ(n)
a ,

P (n)(i(n)) :=
a∏

j=1

p(j|i(n))N(j|i(n)) =
a∏

j=1

2np(j|i(n)) log2 p(j|i(n)) = 2−nH(Π
i(n) ) .

The probability of the type class T (Π(n)) is certainly smaller than 1; thus,

1 ≥ P (n)
(
T (Π(n))

)
=

∑

i(n)∈T (Π(n))

P (n)(i(n)) = #(T (Π(n))) 2−nH(Π(n))

yields the first estimate.
The second is a very loose upper bound: each type Πi(n) is entirely char-

acterized by how many times each symbol i ∈ IA occurs in i(n). Without
constraints (that can only decrease the number of types) there are n + 1
choices for each i = 1, 2, . . . , a, namely 0, 1,. . ., n, whence the result.

Finally, the last bound is derived as follows: first, notice that
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p
(n)
A (i(n)) =

n∏

j=1

pA(ij) =
a∏

	=1

pA(�)N(	|i(n)) =
a∏

	=1

2np(	|i(n)) log2 pA(j)

= 2
n
∑a

�=1

(
p(	|i(n)) log2 p(	|i(n))− p(	|i(n)) log2

p(�|i(n))
pA(j)

)

= 2−n(H(Π
i(n) ) + S(Π

i(n) , πA)) .

Then, using the first upper bound,

π
(n)
A (T (Π(n))) =

∑

i(n)∈T (Π(n))

p
(n)
A (i(n))

= #(T (Π(n))) 2−n(H(Π(n)) + S(Π(n) , πA)) ≤ 2−n S(Π(n) , πA) .

�
Because of the first bound in Lemma 3.2.2, at most nR+1 bits are needed

to encode the label of a string i(n) of type Π(n) with H(Π(n)) < R, while at
most a log2(n + 1) + 1 bits ensures the encoding of the label specifying the
type P to which the string belongs (the +1 accounts for R and log2(n+1) not
being integers). Therefore, in the limit n → ∞, one expects a compression
rate R for all Bernoulli sources with H(A) < R.

Definition 3.2.2 (Universal Codings). Let R > 0 and consider an en-
coding of a Bernoulli source A into binary strings of length +nR,, given by
En : Ω(n)

a → Ω
�nR�
2 , followed by a decoding procedure D : Ω�nR�

2 → Ω
(n)
a .

This gives a universal (n, 2nR)-code if the probability of error

P (n)
err := π

(n)
A

({
i(n) : Dn ◦ En(i(n)) �= i(n)

})

goes to 0 when n → ∞ and En, Dn do not depend on the Bernoulli source
probability πA.

Proposition 3.2.3. There exist universal source codings (n, 2nR) for every
Bernoulli source with H(A) < R.

Proof: Given R > 0, let Rn := R−a log2(n+ 1)
n

; using the first two bounds

in Lemma 3.2.2, the subsets A(n) :=
{

i(n) ∈ Ω(n)
a : H(Πi(n)) ≤ Rn

}
have

cardinalities such that

#
(
A(n)

)
=

∑

Π(n)∈Pn

H(Π(n))≤Rn

#(T (Π(n))) ≤
∑

Π(n)∈Pn

H(Π(n))≤Rn

2nH(Π(n))

≤
∑

Π(n)∈Pn

H(Π(n))≤Rn

2n Rn ≤ (n+ 1)a 2nRn = 2nR .
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Let En associate to strings in A(n) their label in the list of such strings
expressed in bits and let Dn be its inverse map. If H(A) < R, then, using
the third bound in the previous lemma,

P (n)
err = 1 − π

(n)
A

(
A(n)

)
=

∑

Π(n)∈Pn

H(Π(n))>Rn

π(n)
(
T (Π(n))

)

≤ (n+ 1)a max
{
π

(n)
A

(
T (Π(n))

)
: H(Π(n)) > Rn

}

≤ (n+ 1)a 2
−n min

{
S(Π(n) , πA) : H(Π(n))>Rn

}

.

Since limn Rn = R and H(A) < R, and the relative entropy S(π1 , π2) = 0
iff π1 = π2, Pn

err gets exponentially small for n sufficiently large. �

3.2.2 Channel Capacity

Noiseless channels are an exception; usually, during transmission signals get
distorted. It can thus happen that a channel outputs a same string y(n)

when presented with different input strings x
(n)
1 and x

(n)
2 which cannot then

be decoded without errors. Like in compression, to counteract distortion one
resorts to suitable encoding and decoding procedures of longer and longer
strings; however, unlike in compression where redundancies are eliminated,
in the presence of noise, the strategy is to introduce redundancies in order to
lower the possibility that different input strings give rise to a same channel
output.

Example 3.2.5. In Example 2.4.1, bits 0 and 1 can be converted into one
another with probability 0 < p < 1/2 by a binary symmetric channel C. The
probability of a wrong decoding can be lowered by encoding

E(0) = 00 · · · 0︸ ︷︷ ︸
2n+1 times

, E(1) = 11 · · · 1︸ ︷︷ ︸
2n+1 times

.

Then, 2n+1 uses of the channel output strings i(2n+1) := C(2n+1) ◦ E(i) that
can be decoded by a majority rule: let Ni(2n+1)(0) denote the number of 0s
in i(2n+1), then

D(i(2n+1)) =
{

0 if Ni(2n+1)(0) > n
1 if Ni(2n+1)(0) ≤ n

.

By such an encoding-decoding procedure one transmits one bit at the cost
of 2n + 1 bits; an error occurs, that is D ◦ C(2n+1) ◦ E(i) �= i, if ≥ n + 1
bits of E(i) are flipped by the channel C. The probability of such an event,(

2n+ 1
n+ 1

)

pn+1(1−p)n, vanishes with n → ∞; unfortunately, the transmission
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rate, that is the number of bits transmitted per use of the channel,
1

2n+ 1
,

vanishes, too.

In the following we shall consider channels C without memory and without
feedback such that each of their uses is independent of the previous inputs
and outputs. Further, n uses of the channel C amount to a single use of a
channel C(n) which maps input strings x(n) ∈ In

X consisting of n symbols from
an alphabet IX = {1, 2, . . . , nX} into output strings y(n) ∈ In

Y consisting of
symbols from an alphabet IY = {1, 2, . . . , nY }. Input and output strings are
conveniently described as realizations of stochastic processes {Xi}i∈N and
{Yi}i∈N with join random variables X(n) :=

∨n
i=1 Xi and Y (n) :=

∨n
j=1 Yj .

The transitions x(n) �→ y(n) occur with probabilities p(y(n)|x(n)) that fac-
torize (see (2.82)) and are thus completely characterized by the single-use
transition probabilities p(yj |xi).

One of the great achievements of early information theory was obtained
by Shannon who proved that codes exist such that the number M(n) of
distinguishable strings x(n) increases with n at a non-zero exponential rate
R: M(n) ≈ 2Rn.

Definition 3.2.3 (Channel Codes and Capacity). [92]
A code (M,n), for a channel C consists of

1. a set IC := {1, 2, . . .M};
2. an encoding E : IC �→ In

X associating a code-word x(n)(w) = E(w) to any
of the indices w ∈ IC ;

3. a decoding procedure D : In
Y �→ IC , D(y(n)(w)) =: ŵ ∈ IC , that returns

ŵ ∈ IC given a channel output y(n)(w) = Cn(x(n)(w)).

The rate of the code is defined by R :=
log2 M

2
3. The probability of an error,

ŵ = D(y(n)(w)) �= w, is

en(w) :=
∑

y(n)∈Ω
(n)
nY

:D(y(n)) �=w

p
(
y(n)|x(n)(w)

)
.

The rate is said achievable if there exists a sequence of codes (2nR, n) with
vanishing maximal probability of error en := maxw∈IC

en(w).
The capacity C of the channel C is the largest of its achievable rates.

Remark 3.2.3. For a memoryless channel, (2.82) holds; thus, if the probabil-
ities of the input stochastic process {Xi}i∈N factorize, so do the probabilities
of the output stochastic process {Yi}i∈N:

3For sake of simplicity, in the following M = 2nR will be identified with �2nR�,
the smallest integer larger than M .



100 3 Dynamical Entropy and Information

pY (n)(y(n)) =
∑

x(n)∈In
X

p(y(n)|x(n)) pX(n)(x(n))

=
n∏

j=1

∑

xj

p(yj |xj) pX(xj) =
n∏

j=1

pY (yj) . (3.33)

Shannon’s result is that the mutual information (2.93) I(X;Y ) is an achiev-
able rate and that the channel capacity is given by

C = max
πX

I(X;Y ) . (3.34)

Examples 3.2.6.

1. Example 2.4.1.1: pB(i) = pA(i), i = 0, 1, implies I(A;B) = H(A), whence
capacity, C = 1, is attained at πA = {1/2, 1/2}.

2. Example 2.4.1.2: with H(p) := −p log2 p− (1 − p) log2(1 − p),

I(A;B) = H(B) +
1∑

i=0

pA(i)
1∑

j=0

p(j|i) log2 p(j|i) = H(B) −H(p) ,

whence capacity C = 1 −H(p) is attained at πA = {1/2, 1/2}, since

pB(0) = pA(0)(1−p)+pA(1)p =
1
2
, pB(1) = pA(0)p+pA(1)(1−p) =

1
2
.

3. Example 2.4.1.3: pB(1) = pA(0)(1−α), pB(2) = pA(1)(1−α) and pB(3) =
α(pA(0) + pA(1)) = α yield

I(A;B) = H(B) − (pA(0) + pA(1))H(α) = H(B) −H(α)
= (1 − α)H(A) ,

whence capacity C = (1 − α) is attained at πA = {1/2, 1/2}.
4. The capacity in (3.2.3) refers to only one use of the channel C; consider

now the channel C(n) acting on x(n) ∈ In
X with outputs y(n) ∈ In

Y . The
mutual information I(X(n);Y (n)) of the corresponding random variables
X(n) and Y (n) can be controlled by repeatedly using (2.93). From (2.82),

H(Y (n)|X(n)) = H(X(n) ∨ Y (n)) −H(X(n))
= H(Yn|X(n) ∨ Y (n−1)) +H(X(n) ∨ Y (n−1)) −H(X(n))

=
n∑

j=1

H(Yj |X(n) ∨ Y (j−1)) =
n∑

j=1

H(Yj |Xj) .

Further, from (2.88),



3.2 Codes and Shannon Theorems 101

I(X(n);Y (n)) = H(Y (n)) −H(Y (n)|X(n))

≤
n∑

j=1

(
H(Yj) −H(Yj |Xj)

)
≤ nC . (3.35)

Therefore, if C(n) denotes the capacity of the channel C(n), the supremum
over all input probability distributions gets C(n) ≤ nC. Actually, from
Remark 3.2.3, equality is achieved by choosing a factorizing πX(n) such

that pX(n)(x(n)) =
n∏

j=1

pX(xj), with πX the one achieving capacity C.

Then, the output probabilities factorize too and thus H(Y (n)) = nH(Y ).

The above relation between capacity and mutual information can be un-
derstood as follows. As showed in the last example, if X(n) consists of n
independent, identically distributed repetitions of X, then the same is true
of Y (n) and X(n)∨Y (n) with respect to Y and X∨Y . With H(X), H(Y ) and
H(X,Y ) the corresponding entropies, based on the AEP , for large n there are
roughly 2nH(X) πX -typical inputs, 2nH(Y ) πY -typical outputs and 2nH(X,Y )

jointly typical pairs (x(n),y(n)), that is typical with respect to πX∨Y . Of
course, not all input-output pairs (x(n),y(n)) with x(n) πX -typical and y(n)

πY -typical are jointly typical: this happens with probability roughly equal to

2nH(X,Y )

2nH(X) 2nH(Y )
= 2−nI(X;Y ) .

Therefore, in order to encounter a jointly typical pair with fixed output y(n)

one needs at least 2nI(X;Y ) inputs; in other words, one expects that encoding a
number of input strings smaller than 2nI(X;Y ), none of them should be jointly
typical with respect to a same y(n). Vice versa, more than 2nI(X;Y ) inputs
would start having a same jointly typical output and thus being not exactly
identifiable. Memoryless channels with independent, identically distributed
inputs are thus expected to have achievable rates R � I(X;Y ).

In order to give a mathematical proof of the above intuitive argument,
we start by extending the notion of typical strings.

Definition 3.2.4 (Jointly-typical Strings).
Two strings x(n) ∈ In

X and y(n) ∈ In
Y are jointly typical if they belong to

the subset A(n)
ε ⊆ In

X × In
Y such that

∣
∣
∣− 1

n
log2 pXn(x(n)) −H(X)

∣
∣
∣ < ε

∣
∣
∣− 1

n
log2 pY n(y(n)) −H(Y )

∣
∣
∣ < ε

∣
∣
∣− 1

n
log2 pXnY n(x(n),y(n)) −H(X ∨ Y )

∣
∣
∣ < ε ,

where 0 < ε - 1.
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Since (2.82) holds, the argument of the proof of Proposition 3.2.2 gives
rise to a jointly typical AEP. Namely, let ε > 0, for sufficiently large n’s the
probability carried by subsets of strings violating any of the inequalities in the
previous definition can be made smaller than ε/3 so that Prob(A(n)

ε ) ≥ 1− ε.
Moreover, its cardinality fulfils

(1 − ε) 2n(H(X,Y )−ε) ≤ #(A(n)
ε ) ≤ 2n(H(X∨Y )+ε) , (3.36)

while the probabilities of strings x(n), y(n) and (x(n),y(n)) satisfying the
inequalities in Definition 3.2.4 fulfil

2−n(H(X)+ε) ≤ pXn(x(n)) ≤ 2−n(H(X)−ε) (3.37)

2−n(H(Y )+ε) ≤ pY n(y(n)) ≤ 2−n(H(Y )−ε) (3.38)

2−n(H(X∨Y )+ε) ≤ p
(n)
XnY n(x(n),y(n)) ≤ 2−n(H(X∨Y )−ε) , (3.39)

Then, Prob
({

(x(n),y(n)) ∈ A(n)
ε

})
=

∑

(x(n),y(n))∈A(n)
ε

pXn(x(n)) pY n(y(n))

can be bounded from below and above as follows:

(1 − ε) 2−n(I(X;Y )+3ε) ≤ Prob
({

(x(n),y(n)) ∈ A(n)
ε

})
≤ 2−n(I(X;Y )−3ε) .

(3.40)

Theorem 3.2.3 (Shannon Noisy-Channel Theorem).
All rates R < C, C as in (3.34), are achievable and any sequence of codes

(nR, n) with the maximal error probability en → 0 must have R ≤ C.

Proof that en → 0 ⇒ R ≤ C : Suppose the signals w ∈ {1, 2, . . . ,M},
M = (2nR), encoded by (nR, n) into E(w) = x(n) ∈ In

X , are equidistributed;
let W denote the random variable with outcomes w. Using (2.93), (2.95) with
C(B) = E(W ) = X(n) and (3.35), it follows that

nR ≤ log2 M = H(W ) = H
(
W |Y (n)

)
+ I
(
W ;Y (n)

)

≤ H
(
W |Y (n)

)
+ I
(
X(n);Y (n)

)
≤ H

(
W |Y (n)

)
+ nC .

We need now connect H
(
W |Y (n)

)
to the error probability: this is done by

means of the so-called Fano’s inequality. By assumption the maximal error
probability in Definition 3.2.3 goes to zero with n, so does the average error

probability eav
n :=

1
M

∑

w∈IC

en(w). Let E :=
{

0 ŵ = w
1 ŵ �= w

; E is a random

variable determined by W and Y (n). Thus, using 2.91,
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H
(
W |Y (n)

)
= H

(
E|W,Y (n)

)
+H

(
W |Y (n)

)

= H
(
W |E, Y (n)

)
+H

(
E|Y (n)

)
.

Now, from Remark 2.4.3.4, H
(
E|Y (n)

)
≤ H(E) ≤ 1. Further, E = 0 implies

that W is determined by Y (n) so that H
(
W |E = 0, Y (n)

)
= 0, whereas if

E = 1 then the cardinality of possible values of W is M − 1. Therefore,

H
(
W |E, Y (n)

)
=
∑

i=0,1

Prob(E = i)H
(
W |E = i, Y (n)

)

≤ eav
n log2(M − 1) ≤ eav

n nR =⇒ H
(
W |Y (n)

)
≤ 1 + eav

n nR .

The result follows since nR ≤ 1 + e(n)
av nR + nC implies e(n)

av ≥ 1− 1
nR − C

R

which in turn implies that e(n)
av cannot vanish with n → ∞ if R > C. �

The proof of the first part of Theorem 3.2.3 relies on the following steps:

1. for w ∈ {1, 2, . . . ,M = 2nR}, choose the code-word x(n)(w) at random
with probability p

(n)
X (x(n)) =

∏n
i=1 pin(xi). This gives a random code of

type (nR, n) with overall probability Prob(E) =
M∏

w=1

n∏

i=1

pin(xi(w));

2. choose the symbols w at random with the same probability p(w) = M−1;
3. if C(n)(x(n)) = y(n) and there is only one ŵ such that E(ŵ) = x(n)(ŵ) is

jointly typical with y(n), then associate with y(n) the symbol ŵ, otherwise
declare an error. This gives a decoding map y(n) �→ D(y(n)) = ŵ;

4. an error is also declared if D(y(n)) = ŵ �= w and Cn(E(w)) = y(n).

Proof that (nR,n) is achievable when R < C : Let e(n)
E (w) be the

probability of an error relative to a random code E and e
(n)
av (E) the corre-

sponding average error probability. Further, let

P (e) :=
∑

E
Prob(E) e(n)

av (E) =
1
M

M∑

w=1

∑

E
Prob(E)e(n)

E (w) :

this is the average error probability over all randomly generated codes. Then,
every w gives the same contribution to the error, so P (e) =

∑
E Prob(E)e(n)

E (1)

with fixed w = 1. Let Fw :=
{

(x(n)(w),y(n)) ∈ A(n)
ε

}
, where A(n)

ε is a jointly-

typical subspace. According to the rules of the game, if y(n) = Cn(x(n)(1)),
a decoding error occurs when

1. (x(n)(1),y(n)) /∈ A(n)
ε , that is when the input corresponding to w = 1

and the relative output are not jointly typical;
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2. (x(n)(i),y(n)) ∈ Fi for i �= 1, that is when the output corresponding to
w = 1 is jointly-typical with code-words associated to w �= 1.

The overall average error probability can thus be estimated as follows:

P (e) = Prob
(
(F1)c ∪

M⋃

i=2

Fi

)
≤ Prob((F1)c) +

M∑

i=1

Prob(Fi) .

By the jointly-typical AEP , F1 ⊆ A(n)
ε =⇒ Prob((F1)c) ≤ ε for n large

enough. Further, because of randomness of the code, the input x(n)(i), i �= 1,
are statistically independent from x(n)(1) and y(n) = Cn(x(n)(1)). Then, the
jointly-typical AEP also yields

M∑

i=2

Prob(Fi) ≤ (M − 1) 2−n(I(X;Y )−3ε) ≤ 2−n(I(X;Y )−R−3ε) .

If R < I(X;Y ) − 3ε, the latter quantity gets ≤ ε for n sufficiently large
and thus P (e) ≤ 2ε. This implies that there exists at least one code E∗ with
e
(n)
av ≤ 2ε. By choosing for X the distribution π∗ attaining capacity in (3.34),

the condition for achieving the rate R becomes R < C. Finally, at least half
of the code-words x(n)(w) of E∗ must have e(n)(w) ≤ 4ε otherwise e(n)

av > 2ε.
Keeping only these ones, changes the rate from R to R(n) := R − 1/n. The
procedure thus yields a sequence of codes (nR(n), n) such that e(n) → 0 and
R(n) → R for all R < C. �
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4 Algorithmic Complexity

One of the intuitive notions which is most elusive from a mathematical point
of view is that of randomness. Consider a string i(n) ∈ Ω∗

2 emitted by a
Bernoulli source with probabilities p0,1; suppose that n >> 1 and that the
number of 0s, n(0), is nearly half the number of 1s, n(1) � 2n(0). One expects
that, generically, the relative frequencies n(i)/n tend to the probabilities pi

with increasing n; indeed, only special, that is intuitively non-random, strings
should fail such a statistical test. Therefore, one would call i(n) random only
if p0 = 1/3 [305]. Of course, passing the frequency test is not enough; indeed,
if p0 = 1/2, both i(n) consisting of n/2 subsequent pairs 0, 1 and a string j(n)

of 0s and 1s distributed without any evident pattern occur with probability
2−n. However, because of its regularity, i(n) would be called non-random and,
vice versa, because of the absence of regular structures, j(n) would be called
random [92, 310].

Presence and absence of patterns seems to be a useful clue to defining
which strings or sequences are random and which are not so; this property
should somehow be related to the degree of compressibility so that one might
wonder whether the entropy rate introduced in Section 3 could provide a
natural measure of randomness. Also, by replacing the entropy rate with the
dynamical KS entropy, one could define a classical dynamical system to be
random or not on the basis of the compressibility of the best ones amongst
its symbolic models. However, entropy rate and the KS entropy describe the
average behavior of sources or of dynamical systems and say nothing about
individual strings or individual trajectories.

Various attempts have been undertaken to tackle the problem of formal-
izing the intuitive notion of randomness of individual sequences i ∈ Ω2.
In [305], three relevant approaches are discussed: in the first one, randomness
is identified with stochasticness, that is with the impossibility of devising a
winning strategy when bets on the value of the next symbol in of i ∈ Ω∗

2 are
based on the knowledge of iii2 · · · in−1. In the second approach, randomness
is identified with chaoticness that is with the absence of regular patterns in
i ∈ Ω2. In the third approach, randomness in a sequence i ∈ Ω2 is identi-

F. Benatti, Dynamics, Information and Complexity in Quantum Systems, 105
Theoretical and Mathematical Physics, DOI 10.1007/978-1-4020-9306-7 4,
c© Springer Science+Business Media B.V. 2009
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fied with its typicalness, that is with the fact that it does not belong to any
effectively null subset of Ω∗

2
1

In the following we shall focus on the second approach which is also
known as algorithmic complexity theory, and was developed independently
and almost at the same time by Kolmogorov [173, 174], Chaitin [77] and
Solomonoff [283, 284] in the early sixties. Algorithmic complexity theory
involves as many subjects as mathematics, logics, computer science and
physics [310, 73, 254]: we shall give a short overview of some of its aspects that
are relevant for an extension of this notion to quantum dynamical systems.

4.1 Effective Descriptions

The main step towards a theory of randomness of individual strings was the
observation that regular strings admit short effective descriptions, whereas
irregular strings do not. By effective description of a (binary) target string
it is meant any algorithm (binary program) that is computed by a suitable
computer and makes it halt with the target string as output.

Example 4.1.1. Any string i(n) = i1i2 · · · in consisting of n bits can always
be reproduced by processing the program

PRINT i1i2 · · · in ,

which specifies the bits to print, one after the other.
This program amounts to the literal transcription of the target string.

Clearly, one has to seek more clever ways to describe i(n), that is shorter
programs. In doing so, one is much helped by the presence of patterns; if
ij = 0 for all 1 ≤ j ≤ n, the following simple program could be used:

1 Let Ω∗
2 , the set of all binary sequences, be equipped with the σ-algebra gener-

ated by cylinder sets and with the uniform product probability distribution so that
any cylinder Ci indexed by a string i ∈ Ω∗

2 of length length �(i) has probability
π(Ci) = 2−�(i). A subset A ⊂ Ω∗

2 is a null subset if for any ε > 0 there are cylinders
Cij , ij ∈ Ω∗

2 such that A ⊂
⋃

j Cij and
∑

j 2−�(ij) ≤ ε. A subset A ⊂ Ω∗
2 is an

effectively null subset if the previous inequality is satisfied with the strings ij that
index the cylinders and ε > 0 (any rational number) both effectively computable
by a suitable algorithm (for instance by a program processed by a computer) [305].
Intuitively, random sequences cannot be effectively reproducible and thus cannot
belong to effectively null sets. Concretely, these latter sets consist of non-typical
strings and correspond to effective statistical tests or Martin-Löf tests that, when
failed, identify these non-random strings (an example is the frequency test men-
tioned in the discussion prior to this remark) [310]. In other words, a sequence is
random according to the typicalness criterion if it passes all Martin-Löf tests. On
the other hand, if typicalness were defined with reference to all possible null sub-
sets, then there would be no typical sequences; indeed, any i ∈ Ω2 belongs to the
null subset of Ω2 consisting of the sequence itself.
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PRINT 0 n TIMES .

For large n, the length of such a program goes as log2 n, that is as the number
of bits necessary to specify the length of the string �(i(n)) = n. This is also
the case if, less trivially, the string i(n) consists of a same pattern, i(q) that
repeats itself � n/q times. Indeed, what is to be specified is the length of
the pattern at the cost of a fixed number, log2 q, of bits and the number of
repetitions at the cost of � log2 n/q � log2 n bits for n . q.

On the other hand, if i(n) shows no pattern, there is no shorter effective
description than literal transcription. In this case, the length of the effective
description grows as n and not as log2 n.

In the previous example, it is clear that one is interested in the shortest
possible effective descriptions s(i(n)) of a given string i(n): let C(i(n)) denote
the length of any of these shortest description, that is �(s(i(n))) = C(i(n)).

The map i(n) �→ s(i(n)) is code for the ensemble of strings of length n.
In Section 4.3, it will be showed that, by processing the effective descriptions
by means of particular computing devices called prefix machines (in which
case C(i(n)) is denoted by K(i(n))), the code becomes a prefix code (see
Definition 3.2.1), so that the extended Kraft inequality (see Example 3.2.2)
applies ∑

i∈Ω∗
2

2−K(i) ≤ 1 . (4.1)

Example 4.1.2 (Payoff Functions). [120, 310] Suppose the government
of a country claims that in the j-th one of n successive elections it won with
0.99ij percent of the votes, ij being any decimal digit for j odd and the
j/2 digit in the decimal expansion of π for j even. To defend itself from
the accuse of fabricating the electoral results, the government replies that
the probability Q(i(n)) = 10−n of such a string of decimal digits i(n) =
i1i2 · · · in is equal to that of any other string randomly obtained according
to the uniform probability distribution over 10 symbols. This defense can be
defeated by using the regularity of i(n) to construct a suitable payoff function
t(i(n)|Q) ≥ 0, namely a non-negative function whose mean value is such that

∑

i(n)∈Ω
(n)
10

10−nt(i(n)|Q) ≤ 1 .

Its meaning is as follows: the accuser proposes the government to be payed
t(i(n)|Q) upon betting 1 on the outcome i(n). This is a fair proposal for, if
the outcomes i(n) are distributed according to the uniform probability Q, the
accuser average gain cannot be higher than 1.

However, if there is a pattern in i(n), the accuser can construct a payoff
function t(i(n)|Q) that assumes high values on the strings with such a pat-
tern. Concretely, for the half of the decimal digits of i(n) that are randomly
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distributed according to Q, one needs n/2 log2 10 bits for its description; in-
stead, for the remaining half that comes from an algorithm that computes
successive approximations to π, a finite number, C, of bits 2 suffice. Then,
one gets the following upper bound to the length of the shortest effective
description computed by a prefix machine (see previous remark),

K(i(n)) ≤ n

2
log2 10 + C .

Setting t(i(n)|Q) := 2− log2 Q(i(n))−K(i(n)) = 10n 2−K(i(n)), one defines a payoff
function; indeed, because of (4.1),

∑

i(n)∈Ω
(n)
10

Q(i(n)) 2− log2 Q(i(n))−K(i(n)) =
∑

i(n)∈Ω
(n)
10

2−K(i(n)) ≤ 1 .

While any fair Casino’s owner should accept bets based on such a payoff
function, the government cannot; indeed, by betting 1 on the digit of each
one of n successive elections, the accuser will pay n to the government but
receive 10n/22−C from it, quite an amount of money for large n. As the
payoff function does depend only on the presence of a pattern, but not on its
particular form, the accuser strategy does not require any a priori knowledge.

The aim of algorithmic complexity theory is an objective characterization
of the randomness of individual strings in terms of the lengths of their shortest
effective descriptions. It is thus necessary to eliminate the dependence of such
lengths on the computers that process the corresponding programs. Indeed,
given a same target string i(n) two different computers V1,2 will in general
provide shortest descriptions s1,2(i(n)) with different lengths C1,2(i(n)). As
explained in Proposition 4.1.1, this problem is overcome by resorting to ef-
fective descriptions processed by universal computers, namely by computers
that are able to simulate the action of any other computing machine. The
universal computers on which classical algorithmic complexity theory is based
are the so-called Universal Turing Machines (UTMs ).

4.1.1 Classical Turing Machines

A Turing Machine (TM ) is a very basic (and abstract) model of computing
device (see [310]) consisting of

1. a bi-infinite tape T subdivided into cells labeled by integers i ∈ Z, each
cell containing either a blank symbol # or a symbol σ from a given
alphabet Σ̃. We shall set Σ = Σ̃ ∪ #;

2This number becomes negligible when n increases.
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2. a reading/write head H moving along the tape that, when positioned on
the i-th cell, reads the symbol σi ∈ Σ, leaves it unchanged or changes it
into σ′i ∈ Σ and then proceeds to either the cell i+ 1 to the right (R) or
to the cell i− 1 to the left (L);

3. a central processing unit C (CPU) capable of a finite number of control
states qi ∈ Q := {q0, q2 . . . , q|Q|−1}: at each computational step, the CPU
state q ∈ Q may remain the same or change into q′ ∈ Q.

The list of possible moves defines a program for the TM ; formally, it
amounts to a transition function

δ : Q×Σ �→ Q×Σ × {L,R} , δ(q, σ) = (q′, σ′, d) , d ∈ {L,R} . (4.2)

As a consequence, any TM can be identified by the set of rules defining δ. Each
set of rules, that is any TM , corresponds to a certain task, a computation,
to be performed on an input data string. Any computation can be assumed
to start with the CPU control state in a chosen ready state qr, the head
positioned on a chosen 0-th cell and the input written on a finite number
of cells extending from the 0-th one to its left, while all other cells to the
left and to the right contain blank symbols. The computation then proceeds
through a sequence of steps dictated by the transition function δ, each one of
them corresponding to a certain configuration of the TM that performs it.

Definition 4.1.1 (TM configurations). At each step of a computation
a classical configuration c of a TM U is a triplet

C � c :=
(
q, {σi}i∈Z, k

)
∈ Q×ΣZ × Z ,

where in the infinite sequence {σi}i∈Z of cell symbols only finitely many of
them are such that σi �= #, while q, k denote the state of the control unit and
of the head position and C the set of all configurations.

In order to determine when a computation terminates, we assume that
among the control states there is a special state, qf , such that when the
control unit is in the state qf , then the output is read off from the position
of the head to its right until the last σi �= #.

Because they consist of a finite set of rules involving finite sets of symbols,
transition functions (and thus TMs ) can be encoded and numbered. Given a
program p (or the TM which computes it), its number γ(p) in the enumeration
of all programs (or TMs ) is known as Gödel number of p [93]. A universal
Turing machine is any TM U which, upon receiving the code of a TM V, is
able to simulate V on any input string.

Example 4.1.3. There are many possible ways to encode a transition func-
tion δ; a simple one is as follows [128]: the control states qi and the symbols
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σj are identified by giving their positions i, j in the respective lists Q and Σ.
These are then encoded as strings of as many 0’s:

qi �→ 0i := 00 · · · 0︸ ︷︷ ︸
i times

, σj �→ 0j := 00 · · · 0︸ ︷︷ ︸
j times

.

Thus, the rule δ(qi, σj) = (qk, σ	, d) can be encoded as 0i 1 0j 1 0k 1 0	 1 0n(d),
where the 1s are used to separate the various entries (only sequences of 0s
are entries corresponding to labels). These appear one after the other as they
do in the given rule, while n(d) = 1 if d = L, n(d) = 2 if d = R. Then,
the transition function (or, equivalently, the TM U that performs the task
specified by it) can be encoded as

1 0|Q| 11 0|Σ| 11 0i1 1 0j1 1 0k1 1 0	1 1 0n(d1)
︸ ︷︷ ︸

1st rule

11

0i2 1 0j2 1 0k2 1 0	2 1 0n(d2)
︸ ︷︷ ︸

2nd rule

11

...
0im 1 0jm 1 0km 1 0	m 1 0n(dm)
︸ ︷︷ ︸

last rule

111 ,

where the first two strings of 0s encode the total number of control states
and of symbols, the pairs of 1s separate the rules, while the first and last 1
mark the beginning and the end of the list.

Suppose f : N �→ N is a function from the integers to the integers; by
passing to the binary representation of n ∈ N, f becomes a function from
Ω∗

2 �→ Ω∗
2 . It is called total if its domain of definition is the whole of Ω∗

2

(symbolically, f(i(n)) ↓ for all i(n) ∈ Ω∗
2), partial otherwise, namely if there

exist strings i(n) on which f is not defined (symbolically, f(i(n)) ↑ on these
strings). The existence of an algorithm or an effective procedure which allows
one to compute f provides an intuitive and informal definition of computable
functions; among others, a possible formalization of computability is as fol-
lows [93].

Definition 4.1.2. A partial function f : Ω∗
2 �→ Ω∗

2 is said to be computable
if there is a Turing machine that on input i ∈ Ω∗

2 outputs f(i).

The so-called Church-Turing thesis asserts that the intuitively and in-
formally defined set of computable functions coincides with those that are
computable according to the previous definition [93, 128]. It is not a theo-
rem, yet it could not be disproved as a conjecture; therefore, it is commonly
accepted that the TMs provide a computational model which computes all
what can be thought of being intuitively computable.
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Remark 4.1.1. Given a computable partial function f , if pf is one of the
(infinitely many) programs which compute it, one can assign f the Gödel
number γ(pf ) of pf which is one of the (infinitely) many Gödel numbers of
f [93]. It follows that the computable functions form a countable set; this fact
allows the use of Cantor’s diagonal argument to construct a total function
f : Ω∗

2 �→ Ω∗
2 which is not computable. In order to show this, consider the

enumeration as φj : N �→ N of all computable partial functions f : N �→ N

that can be constructed by choosing a definite Gödel number for each one of
them. Then, the function defined by

φ(n) =
{
φn(n) + 1 if φn(n) ↓

0 if φn(n) ↑

is total as φ ↓ on all inputs. Furthermore, it cannot coincide with any φj for,
if φj is defined on j, then φ(j) = φj(j) + 1 �= φj(j).

Example 4.1.4. An important class of TMs are the Probabilistic TMs
(PTMs ) which provide a more powerful classical model of computation than
TMs [128]. They are defined by transition functions of the form

δ : Q×Σ ×Q×Σ × {L,R} �→ [0, 1] (4.3)

(q, σ; q′, σ′, d) �→ δ(q, σ; q′, σ′, d) ∈ [0, 1] ,
∑

q′,σ′,d

δ(q, σ; q′, σ′, d) = 1 . (4.4)

Namely, PTMs are defined by assigning the probabilities δ(q, σ; q′, σ′, d) with
which the machine goes from a CPU control state q ∈ Q and symbol read
σ ∈ Σ to a new control state q′, new symbol σ′ together with a subsequent
head move d ∈ {L,R}. Therefore, given a starting configuration ci ∈ C the
machine will move to a new configuration cj ∈ C with a certain transition
probability pij := p(ci → cj), the successors of ci being all those cj with
pij �= 0. The transition probabilities satisfy

∑
j pij = 1; indeed, given a

starting configuration ci, the PTM will surely move to a subsequent one
among those available to it. Each step performed by a PTM will then be
described by a transition matrix π = [pij ].

Any computation performed by a PTM on an initial configuration c0
can be seen as a tree whose nodes are the successor configurations and the
branches connecting the leaves carry the relative non-zero transition proba-
bilities. Each run of the machine defines a tree-level with its corresponding
nodes; if a successor configuration at level j appears more than once then the
probability of its occurrence at that level is the sum of the probabilities lead-
ing to it through the various branches. As a simple instance of such a mech-
anism [128], consider an initial configuration c0 branching into two different
configurations c11 and c12 at level 1 with probabilities p01 := p(c0 → c11)
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and p02 := p(c0 → c12): p01 + p02 = 1. During the second step of the com-
putation, the two configurations at level 1 branch into two configurations
each: c11 into c21 and c22 with probabilities p11 := p(c11 → c21), respectively
p12 := p(c11 → c22), such that p11 + p12 = 1, while c12 branches into c23 and
c24 with probabilities p23 := p(c12 → c23), respectively p24 := p(c12 → c24),
such that p23 + p24 = 1 (see Figure 4.1). Thus the probabilities of the four
configurations are

p(c21) = p01 p11 , p(c22) = p01 p12 , p(c23) = p02 p23 , p(c24) = p02 p24 .

If c22 = c23 = c∗ then the probability of c∗ is p(c∗) = p(c22) + p(c23).

Fig. 4.1. Probabilistic Turing Machines: Level Tree

Remark 4.1.2. Within the class of PTMs , TMs are deterministic in the
sense that the corresponding probabilities δ(q, σ; q′, σ′, d) equal 1 when the
couples (q, σ) and triplets (q′, σ′, d) are connected by the rules (4.2), otherwise
δ(q, σ; q′, σ′, d) = 0. The computations performed by TMs correspond to de-
terministic classical processes, while those of PTMs correspond to stochastic
classical processes (compare the ballistic and Brownian computers discussed
in [51]); in other words, it is the laws of classical physics upon which the
models of computations embodied by TMs and PTMs are based.

PTMs are important from the point of view of the so-called computational
complexity 3 [128, 165]. All computational tasks need a certain amount of
time to be performed and use a certain amount of memory (space); roughly
speaking, computational complexity theory estimates how the amount of time
and/or space required to perform a computation involving n bits scales with
n: if the time required to process n bits goes as nα, α > 0, one says that the
computation has polynomial computational complexity, otherwise superpoly-
nomial or exponential. When a computer U simulates another computer V

that performs a certain task, there is an unavoidable overhead in space/time

3To be distinguished from the descriptional complexity.
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resources due to the simulation. The latter is then called efficient if the over-
head scales polynomially with respect to the space/time resources used by
V. The Classical Strong Church-Turing Thesis [165] states that:

Any realistic computational model can be efficiently simulated by a PTM .

Namely, any computational model which is consistent with the laws of
classical physics and which accounts for all necessary computational re-
sources 4 only requires a polynomial space/time overhead to be simulated
by a PTM . As the Church-Turing thesis (see Remark 4.1.1), also the strong
Church-Turing thesis has survived all attempts to disprove it; however, as
observed by Feynamn [116], this paradigm does not seem to be extendible to
computational models based on quantum mechanics, for then classical physics
appears unable to simulate their performances as efficiently.

4.1.2 Kolmogorov Complexity

In the following we shall restrict to the effective description of binary strings;
using the notation of the previous section, we shall therefore consider TMs
with the alphabet Σ = {0, 1} ∪ #. Further, �(p) will denote the length, that
is the number of bits, of a program p written as a binary string and U(p) the
result of p being processed by a TM U.

Definition 4.1.3 (Kolmogorov Complexity). The Kolmogorov complex-

ity [92, 310] or plain algorithmic complexity of i(n) ∈ Ω
(n)
2 is the length of the

shortest binary program p such that U(p) = i(n): 5

CU(i(n)) := min
{
�(p) : U(p) = i(n)

}
.

Plain algorithmic complexity is thus seemingly related to the most efficient
way individual strings can be compressed; indeed, by the previous definition,
no effective description of a given string i(n) can be shorter than programs
with length equal to its algorithmic complexity C(i(n)).

Remark 4.1.3. Unlike computational complexity (see Remark 4.1.2), algo-
rithmic complexity is not concerned with the space/time resources needed to
process certain programs, but only with their lengths, without restrictions on
time and memory. ¿From the algorithmic point of view, only random strings
are interesting, while those with simple effective descriptions are somewhat

4The adjective realistic refers to the fact that the time and space resources
effectively needed should be explicitly declared [165].

5We shall conform to the notation of [310] which uses the letter C for the
Kolmogorov complexity and K for the prefix complexity (see Section 4.3).
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dull, despite the large amount of resources that may be needed to compute
them. Indeed, there might be short effective descriptions that require a very
long time to yield their targets, as for instance the DNA-encoding of human
beings [310]. The attempts to fill this gap by considering algorithmic and com-
putational complexity together has led to the notion of logical depth [310].

Proposition 4.1.1. The following properties hold:

1. The plain algorithmic complexities of a same string i(n) with respect to
two different UTMs U1,2 differ by a constant which does not depend on
the string, but only on the UTMs .

2. The plain algorithmic complexity is upper bounded as follows

CU(i(n)) ≤ A+ �(i(n)) = A+ n , (4.5)

where A is a constant which does not depend on i(n).
3. The number of strings i(n) ∈ Ω(n) with plain algorithmic complexity

strictly smaller than c > 0 6 is bounded by

#
{

i(n) ∈ Ω(n) : CU(i(n)) < c
}
≤ 2c − 1 . (4.6)

Proof: The proof of the first statement follows from the fact that U1 can
simulate U2 and vice versa, for both are assumed to be universal. Given i(n),
let p∗1 be such that CU1(i

(n)) = �(p∗1) and let P12 be the program, of length
�(P12) = L12, which allows U2 to simulate U1. In order to make U2 simulate
U1 on the input p∗1, the programs P12 and p∗1 must be put together in way that
U1 knows when the simulation instructions end and the string to be processed
starts. This is achieved by concatenating P12 and p∗1 as q = p∗1β(P12), where

i(n) = i1i2 · · · in �→ β(i(n)) = i1i1i2i2 · · · inin01

is the encoding of a string obtained by repeating each of its bits twice and
marking the end with a the pair of different bits 01: for this encoding one
needs �(β(P12)) = 2 (L12 +1) bits. In this way U2 will first read β(P12) being
thus able to simulate U1 on the subsequent portion p∗1 of the program q.
Therefore, from the definition of plain complexity, it follows that

CU2(i
(n)) ≤ �(q) + A ≤ �(p∗) + 2 (L12 + 1) + A ≤ CU1(i

(n)) +A12 .

Reversing the roles of U1,2 one gets CU1(i
(n)) ≤ CU2(i

(n)) + A21; thus,∣
∣CU1(i

(n)) − CU2(i
(n))
∣
∣ ≤ A, where A is a suitable constant which does not

depend on the input i(n).

6If c is not integer, c is to be understood as �c�, the largest integer not larger
than c: �c� ≤ c < �c� + 1.
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The first upper bound follows as in Example 4.1.1, from the effective
description which tells U to print the bits of i(n) one after the other.

The second upper bound follows because the number of binary programs
with length smaller than c equals the number of binary strings with +c, − 1
digits at the most, whence

#{p : �(p) < c} =
�c�−1∑

j=1

2j = 2�c� − 1 ≤ 2c − 1 .

�
Example 4.1.5. In order to improve the loose upper bound (4.5), given
i(n) ∈ Ω

(n)
2 , let k be the number of 1s among its bits; there are

(
n
k

)
strings in

Ω
(n)
2 sharing this feature. They can be listed and each of them identified by

its number Nk(i(n)) in the list; notice that no more than (log2

(
n
k

)
) bits are

required to specify Nk(i(n)). One can thus construct an effective description
of i(n), by specifying k and Nk(i(n)) in such a way that the UTM must be
able to detach the specification of k, pk, from that of Nk(i(n)). For this, one
may do as in the proof of Proposition 4.1.1, by encoding pk as β(pk), the
binary string obtained from pk by repeating each of its bits twice and mark-
ing the end by 01. Since, �(β(pk)) ≤ 2 (log2 k + 1), from Definition 4.1.3 it
follows that

C(i(n)) ≤ log2

(
n

k

)

+ 2 (log2 k + 1) .

The following upper bound holds [92],
(
n

k

)

≤ 2n H2(
k
n ) ,

where H2(
k

n
) := −k

n
log2

k

n
log2 −(1− k

n
log2) log2(1−

k

n
log2), which can be

derived by setting p = k/n in

1 =
n∑

j=0

(
n

j

)(
j

n

)j (

1 − j

n

)n−j

≥
(
n

k

)

pk(1 − p)n−k , 0 ≤ k ≤ 1 .

Thus,
1
n

C(i(n)) ≤ H2(
k

n
) + 2

log2 k + 1
n

. Consider now the strings i(n) to be
prefixes, that is the initial n bits, of infinite binary sequences i ∈ Ω2. Let
0 ≤ p ≤ 1 be the probability of the bit 1; if k/n �→ p, then

lim sup
n→∞

C(i(n))
n

≤ H2(π) . (4.7)

where H2(π) is the (log2) entropy rate of a Bernoulli binary source with
probability π = (p, 1 − p). The upper bound in (4.5) is thus not a loose one
for p close to 1/2.
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Example 4.1.6. One would expect the algorithmic complexity of a pair (i, j)
of strings i, j ∈ Ω∗

2 to be smaller (apart from the usual additive constant
independent of them) than the sum of the algorithmic complexities of i and
j, namely:

C((i, j)) ≤ C(i) + C(j) + C .

Intuitively, this should be so because one can always put together the shortest
programs p, respectively q for i, respectively j, in a program pq which is an
effective description of (i, j). Unfortunately, the plain algorithmic complexity
cannot enjoy the form of subadditivity expressed by the previous inequality.

Indeed, if p, q are two programs such that C(i) = �(p) and C(j) = �(q),
then any program using p and q to output the pair (i, j) must separate p
from p, for instance by prefixing p with its length �(p) encoded by β(�(p))
(see the proof of Proposition 4.1.1) at the cost of 2(log �(p)+1) extra bits. In
this way, the reference UTM U first computes p generating i, then computes
q, generating j and finally outputs (i, j). Thus, one estimates:

C((i, j)) ≤ �(β(�(p))p) + �(q) + C0

≤ C(i) + C(j) + 2 log2 �(p) + C1 ,

where C0,1 are additive constants independent of the strings considered.
The log2 �(p) extra bits cannot in general be avoided by reducing it to

an additive constant independent of the input string. Indeed [120, 310], let
�(i) = n, �(j) = m and set k := n + m; there are (k + 1)2k pairs (i, j) such
that the concatenated string ij ∈ Ω

(k)
2 . By setting c = (k+1)2k in (4.6), one

gets that at least one pair (i, j) of such strings satisfies

C((i, j)) ≥ k + log2(k + 1) .

Then, using (4.5), from k = n+m = �(i) + �(j) it follows that

C((i, j)) ≥ C(i) + C(j) + log2(k + 1) − C .

Remarks 4.1.4.

1. Since the algorithmic complexities of i(n) with respect to two UTMs is
a constant independent of the string, one can fix a UTM U once and for
all and drop the reference to it in CU (i(n)).

2. The additive constant A in (4.5) can in line of principle be very large;
however, since it is the same for all target strings i(n), it becomes less
and less important with increasing n. The additive constant can even be
got rid of if, as in Example 4.1.5, one considers infinite strings i ∈ Ω2,
their prefixes i(n) ∈ Ω

(n)
2 and let n → ∞ in the algorithmic complexity

per symbol
C(i(n))

n
.
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3. The bound (4.6) shows that the one in (4.5) is not too loose for large n.
In fact, the fraction of strings i(n) with complexity smaller than n − c,
0 ≤ c ≤ n, can be estimated by

#
{

i(n) ∈ Ω(n) : C(i(n)) ≤ n− c
}

2n
< 21−c .

Therefore, when n gets large, the number of strings with complexity sig-
nificantly smaller than n gets small.

4. In view of the previous remark, it is suggestive to define random those
sequences i ∈ Ω2 such their initial prefixes i(n) fulfil C(i(n)) > n − c
for all n ∈ N, where c is a constant independent of n. Unfortunately,
the vary same reason why the plain complexity is not subadditive (see
Example 4.1.6 makes this definition not very useful [310]. Fortunately, as
we shall see in Section 4.3, by using prefix TMs to compute programs
one replaces the algorithmic complexity C(i(n)) with the so-called prefix
complexity K(i(n)) and, in so doing, restores subadditivity and makes
K(i(n)) > n − c for all n ∈ N a good definition of random sequences
i ∈ Ω2 [310].

Non-Computability of C(i(n))

Algorithmic complexity is not computable; namely, there cannot exist an
algorithm 7 able to compute the C(i(n)) for all strings. Indeed [254], if such a
program q of length �(q) < ∞ existed, then, one could construct the following
program p :

• Step 1: let i0 equal the empty string;
• Step 2: generate the k-string ik in the lexicographically ordered set of

all binary strings, call for q and compute C(ik);
• Step 3: if C(ik) > �(p) write ik and halt else set k = k + 1 and

go to Step 2.

Since q, the program which computes the plain complexity of any input
string, is assumed to exists, p also exists. Moreover, it has finite length �(p)
and halts with the first binary string, say ik∗ in lexicographical order, as out-
put. Since the its plain complexity exceeds �(p), p is an effective description
of ik∗ that is strictly shorter than its shortest possible effective description,
which is a contradiction.

Remark 4.1.5. [268] The non-computability of C(i(n)) implies the undecid-
ability of the halting problem, namely that there cannot exist an algorithm
able to decide whether a UTM U halts when processing a generic program

7A TM according to the Church-Turing thesis.
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p. Indeed, if such an algorithm existed, then one could compute C(i(n)) for
all i(n). Effectively, one would proceed by generating the binary strings in
lexicographical order (each one of them is a program) and subsequently pro-
cessing them in dovetailed fashion [310, 92]. That is, at stage 1, step 1 of
program 1 is effected, at stage 2, step 2 of program 1 and step 1 of program
2, at stage k, step k of program 1, step k − j + 1 of program j, 1 ≤ j ≤ k,
and so on. At the N -th step, there will be three groups of programs,

those that have halted with U(p) = i(n);
those that have halted with U(p) �= i(n);
those that are still being processed.

Notice that in the third group there might be shorter programs than those
which have already halted. Let p∗ be one of the shortest in the first group.
One cannot set C(i(n)) = �(p∗) because it cannot be excluded that a program
p in the third group, shorter than p, will halt later with U(p) = i(n). However,
if the halting problem could be decided, then one would exactly have this vital
piece of information and, waiting long enough, would have a means to find
the shortest one among those programs such that U(p) = i(n).

In spite of the fact that the plain complexity is not computable, the
previous remark provides a means to effectively approximate it from above;
namely, one can construct a sequence of functions Ct that can be computed
by a UTM U on any binary input string i(n) and get closer to C(i(n)) with
increasing n [120]. Let Ut(p) denote the output of the computation by U

of a program p that halts in t steps. By processing in dovetailed fashion
the programs of length �(p) ≤ t, one can check whether during the first t
computational steps some of them has halted with output i(n), in which case
one sets

C̃t(in)) := min{�(p) ≤ t : Ut(p) = i(n)} , C̃t(i(n)) = +∞ otherwise .

Finally, with reference to the loose upperbound (4.5), let

Ct(i(n)) := min{C̃t(i(n)) , n+A} .

The function C̃t(i(n)) can only decrease with increasing t; moreover, from
Definition 4.1.3, Ct(i(n)) ≥ C(i(n)) so that it tends to the plain complex-
ity of i(n) monotonically from above. One says that the plain complexity is
semi-computable from above. Notice that, although we know that the approx-
imating values Ct(i(n)) tend to C(i(n)) from above, yet we do not know how
far from the actual value C(i(n)) any given Ct(i(n)) might be.

Definition 4.1.4. A real function f on Ω∗
2 is called semi-computable from

above if there exists a non-increasing sequence of functions {fk}k∈N on Ω∗
2
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with rational values 8 such that they are computable in the sense of Def-
inition 4.1.2 and limk→∞ fk(i(n)) = f(i(n)). A real function f on Ω∗

2 is
called semi-computable from below if −f is semi-computable from above. A
real function f on Ω∗

2 is computable if it is semi-computable both from above
and below.

Remarks 4.1.6.

1. The difference from semi-computable and computable functions can be
understood as follows. If f is computable then there exist two mono-
tone sequences of rational-valued computable functions {fa,b

k }k∈N, fa
k

non-increasing and f b
k non-decreasing, such that

f(i(n)) = lim
k→+∞

fa,b(i(n)) .

It follows that one can always estimate, for any i ∈ Ω∗
2 , the distance

between the computed values fa,b
k (i) and the actual value f(i) by means

of the computable difference fa
k (i) − f b

k(i).
2. The approximations fk(i) of a function f(i) semi-computable from below

can be seen as the result of a same program (binary string) pf . When a
reference UTM U is presented with pf , together with the binary repre-
sentation i(k) of k and an input string i ∈ Ω∗

2 , it computes fk(i), that
is U(〈pf , i(k), i〉) = fk(i), where 〈pf , i(k), i〉 is the binary string which
encodes and separates the various inputs. Consequently, as well as com-
putable functions also semi-computable functions can be enumerated.

An interesting class of lower semi-computable functions consists of the
so-called constructive semi-measures [120, 310].

Definition 4.1.5. A positive function μ : Ω∗
2 �→ R is called a semi-measure

if
∑

i∈Ω∗
2
w(i) ≤ 1 and a constructive semi-measure if it is semi-computable

from below. A constructive semi-measure m : Ω∗
2 �→ R is called a universal

semi-measure if for any constructive semi-measure μ there exists a constant
Cμ such that

Cμ μ(i) ≤ m(i) ∀i ∈ Ω∗
2 .

Working with semi-measures μ instead of measures allows for more free-
dom; for instance constructive measures turn out to be automatically com-
putable. Namely, if fk is a non-decreasing sequence of rational-valued com-
putable functions that approximate μ from below and

∑
i∈Ω∗

2
μ(i(n)) = 1,

one can construct a computable approximation 0 ≤ μk ≤ μ such that, given
ε > 0,

∑
i∈Ω∗

2
μk(i(n)) ≥ 1 − ε. Then, for all i ∈ Ω∗

2 it holds that

8Any p/q, p, q ∈ N, can be written as a binary string 〈p, q〉 ∈ Ω∗
2 .
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|μ(i) − μk(i)| ≤
∑

i∈Ω∗
2

(μ(i) − μk(i)) ≤ ε .

Example 4.1.7. [120, 310] Constructive semi-measures can be enumerated
(see Remark 4.1.6.2); let {μn} denote their list and let {α(n)}n∈N be lower
semi-computable positive numbers such that

∑
n α(n) ≤ 1. Then

m :=
∑

n

α(n)μn ≥ α(k)μk ∀ μk .

m is thus a dominating semi-measure, it is also constructive and thus uni-
versal in the sense of Definition 4.1.5; indeed, there exists a two-argument
lower semi-computable function μ(i(n), n) that reproduces all constructive
semi-measure by varying n ∈ N. The idea of the proof is as follows. Given a
lower semi-computable function f and a non-decreasing sequence of rational-
valued approximations fk, let pf the binary program that allows a reference
UTM U to compute them as outlined in Remark 4.1.6.2 and let {ij}j∈N be
the lexicographically ordered list of all binary strings. By computing them in
dovetailed fashion, let then U t

p be the computable function defined by

Uk
pf

(ij) =
{

U(〈pf , i(k), ij〉) if �(ij) ≤ k
0 otherwise .

Notice that Uk
pf

→ f when k → +∞; then, consider the recursive effective
procedure consisting of the following steps:

1. set μ0
pf

(ij) = 0;
2. set k = k + 1;
3. compute i1, i2, . . . , ik in dovetailed fashion; if some Uk

pf
(ij) has not halted

go to Step 5, else compute
∑k

j=1 U
k
pf

(ij);

4. if
∑k

j=1 U
k
pf

(ij) ≤ 1, set μk
pf

:= Uk
pf

, and go to Step 2, else
5. set μk

pf
:= μk−1

pf
and stop.

By construction, the function μ(i(n), pf ) := limk→+∞ μk
pf

(i(n)) is lower semi-
computable and a semi-measure; further, it coincides with f if the latter is
itself a constructive semi-measure.

Algorithmic Complexity and Thermodynamics

Beside its many mathematical applications, algorithmic complexity has also
been used to explore the relations between computation and thermodynam-
ics [54, 51, 52, 268, 310]. As already remarked in this section, computing is a
physical process and questions about its thermodynamic cost is surely of prac-
tical importance, but also of general interest as they amount to asking which
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computational steps are intrinsically irreversible and which ones can instead
be performed reversibly [51]. As nicely illustrated in [268], trying to answer
these questions brings together thermodynamics, computability theory and
Gödel incompleteness theorem.

The starting step is the observation [187, 51, 116] that the only irreversible
computer operations are intrinsically logically irreversible, namely those with
outputs that do not uniquely identify the input. The most obvious instance
of such operations is erasure and, as an oversimplified case, consider one
molecule of gas contained in a cubic box of volume V in which a freely
moving piston can be used to confine the molecule on the left side of the box,
a case which is read as a bit 1. The flip operation which turns 1 into 0 can
be effected reversibly by slowly rotating the box around its vertical axis and
thus exchanging its right and left sides.

In order to erase these two bits of information, the piston can be let
loose so that free expansion (of one molecule) allows the molecule, which was
confined in a volume V/2 before, to wander later within the whole volume V .
If the process occurs isothermally at temperature T , the loss of information
corresponding to the increase of the space at disposal corresponds to an
increase in thermodynamical entropy and decrease of free energy (the internal
energy does not change in isothermal processes):

ΔS = κ log 2 , ΔF = ΔU − T ΔS = −κT log 2 .

By extrapolating this simple observation, one is naturally led to the identifi-
cation of free energy and free memory: one can consume free memory to store
data instead of erasing them and in this wave saves free energy, or, vice versa,
by consuming free energy in erasure processes one saves free memory [268].

Differently from erasure which can in no way be turned into a reversible
operation, all other operations are only superficially irreversible and can be
made reversible by adding enough supplementary information [51]. For in-
stance binary addition maps the pairs (0, 0) and (1, 1) into 0 and pairs (0, 1)
and (1, 0) into 1. Therefore, by reading off 0 (1) one cannot decide which cou-
ple of bits was the input; however, conserving the inputs and writing them
together with their outputs turns the binary addition (⊕) into a reversible
operation:

0 ⊕ 0 = 0
0 ⊕ 1 = 1
1 ⊕ 0 = 1
1 ⊕ 1 = 0
︸ ︷︷ ︸
irreversible

,

(0, 0) �→ (0, 0, 0)
(0, 1) �→ (0, 1, 1)
(1, 0) �→ (1, 0, 1)
(1, 1) �→ (1, 1, 0)
︸ ︷︷ ︸

reversible

.

Unfortunately, the redundant information that is used in order to make op-
erations reversible has to be stored and this occupies free memory so that
massive erasure operations are eventually needed, free energy consumed and
heat waste generated. In order to minimize free energy consumption, one can
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first proceed to reversibly compress as much as possible the stored informa-
tion to be erased. For instance, in the case of the binary addition, one can
use only the first input bit since the second one can be recovered by binary
subtraction (�) from the output bit:

(0, 0) �→ (0, 0) , 0 � 0 = 0
(0, 1) �→ (0, 1) , 1 � 0 = 1
(1, 0) �→ (1, 1) , 1 � 1 = 0
(1, 1) �→ (1, 0) , 0 � 1 = 1
︸ ︷︷ ︸

still reversible

.

Suppose the occupied memory consists of a binary string i(n), then the best
compression achievable is given by the shortest binary program p∗ such that
U(p∗) = i(n) whose length is the Kolmogorov complexity C(i(n)). Reversibly
encoding i(n) into p∗ and erasing the latter entails the optimal loss of free
energy ΔoptF = −κT C((i(n)) log 2 to be compared with ΔF = −nκT log 2.

These considerations suggest [326] that, when dealing with the thermo-
dynamics of computation, the notion of entropy should be improved by the
addition to the standard thermal contribution, Sth, of the one coming from
the optimal erasure of the memory

Scomp = Sth + κC(M) log 2 ,

where C(M) is the algorithmic complexity of the computer memory. For in-
stance, by using Scomp, the Maxwell’s demon paradox [190] can be solved by
observing [326] that Stherm can indeed be diminished by the demon collect-
ing together all fastest particles and transferring heath from lower to higher
temperatures. However, storing all the information necessary to comparing
particle velocities rapidly consumes free memory and asks for erasure thus
restoring the second law of thermodynamics.

Unfortunately, the main problem with optimal compression is that it is
based on the knowledge of the algorithmic complexity of the occupied memory
which cannot always be computed. In few words, performing an optimal
compression of the memory content before erasure is not always possible
and there will always be an excess of free energy consumption. As this is
ultimately due to the undecidability of the halting problem, this effect can
be suggestively and not unduly called Gödel friction [268].

4.2 Algorithmic Complexity and Entropy Rate

Despite Remark 4.1.4.4, there is a sense in which the Kolmogorov complexity
can be used to look at the individual trajectories of a classical dynamical
system (X , T, μ) and at their randomness, namely through their asymptotic
complexity rate. As explained in Section 2.2, a partition P of X provides a
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symbolic model (Ω̃p, Tσ, μP) whereby trajectories are reduced to sequences
i ∈ Ω̃p ⊆ Ωp of symbols from an alphabet with p letters of which one can
study the complexity of the prefixes i(n) ∈ Ω

(n)
p

9.
As for the Shannon entropy, when dealing with sequences, one may decide

to focus not on the Kolmogorov complexity which generically diverges, rather
upon its rate or complexity per symbol [7, 69].

Definition 4.2.1. The complexity rate of a sequence i ∈ Ω̃p is given by

c(i) := lim sup
n→∞

1
n

C(i(n)) ,

where i(n) is the initial prefix of i of length n.
Given a dynamical system (X , T, μ) and a finite, measurable partition

P of X , let i(x) ∈ Ωp denote the symbolic trajectory that P associates to
the trajectory {Tnx}n≥0 issuing from x ∈ X . Then, the complexity rate of
{Tnx}n≥0 with respect to P is c(x,P) := c(i(x)).

To start with, we shall consider the case of a dynamical system which
is itself already a symbolic model, namely a binary information source. An
important result is that, typically, for sequences emitted by ergodic sources,
the bound (4.7) becomes an equality in the limit.

Theorem 4.2.1 (Brudno’s Theorem). Let (Ω2, Tσ, π) be a binary ergodic
source with entropy rate h(π). Then,

c(i) = lim
n→∞

1
n

C(i(n)) = h(π) , (4.8)

for almost all i ∈ Ω2 with respect to π.

The proof [69, 318, 166] consists 1) in using the counting argument (4.6)
and the AEP (Proposition 3.2.2) to show that

lim inf
n→∞

1
n

C(i) ≥ h(π) π − a.e ; (4.9)

and 2) in providing, for the initial prefixes i(n) of π-almost all i ∈ Ω∗
2 , an

appropriate binary program pi(n) ∈ Ω∗
2 such that lim

n→∞

�(pi(n))
n

≤ h(π) and

U(pi(n)) = i(n) whence

9In order to do this, one has to extend Definition 4.1.3 to the case of strings of
symbols from generic finite alphabets. This is straightforward and will always be
understood in the following.
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lim sup
n→∞

1
n

C(i(n)) ≤ h(π) π − a.e . (4.10)

Proof of the lower bound : Because of the assumption of ergodicity, The-
orem 3.2.1 allows us to use the AEP with the entropy rate h(π) in place of
the Shannon entropy H(A). Let A(n)

ε ⊆ Ω
(n)
2 be the set in (3.27) consisting

of binary strings i(n) such that

2−n(h(π)+ε) ≤ π(i(n)) ≤ 2−n(h(π)−ε) ,

and Â
(n)
ε ⊂ Ω2 the set of sequences whose initial prefixes of length n, i(n)

belong to A
(n)
ε and have complexity C(i(n)) ≤ n(h(π) − 2ε). From (4.6), it

follows that

π
(
Â(n)

ε

)
= π
({

i(n) ∈ A(n)
ε : C(i(n)) ≤ n(h(π) − 2ε)

})

≤ #
(
Â(n)

ε

)
· max

i(n)∈A
(n)
ε

π(i(n))

≤ 2n(h(π)−2ε)+1 · 2−n(h(π)−ε) = 2−nε+1 .

Since strings i(n) /∈ A
(n)
ε may also have complexity C(i(n)) ≤ n(h(π)− 2ε), it

is necessary to control their overall probability. Set (Â(k)
ε )c := Ω2\Â(k)

ε and

Ã(k)
ε :=

{
i ∈ (Â(k)

ε )c : C(i(k)) ≤ k(h(π) − 2ε)
}
, B(n)

ε :=
⋃

k≥n

Ã(k)
ε .

Since Ã(k)
ε ⊂ (Â(k)

ε )c implies π
(
B(n)

ε

)
≤ π
(⋃

k≥n

(Â(k)
ε )c

)
= 1 − π

(⋂

k≥n

Â(k)
ε

)
,

it follows that the probability of the set of sequences whose initial prefixes
have complexity C(i(n)) ≥ n(h(π) − 2ε) is estimated from above by

π

(
⋃

k≥n

{
Â(k)

ε ∪ Ã(k)
ε

}
)

≤ π
(⋃

k≥n

Â(k)
ε

)
+ π
(
B(n)

ε

)

≤
∑

k≥n

2−k ε+1 + π
(
B(n)

ε

)
≤ 2−n ε+1

1 − 2−ε
+ 1 − π

(⋂

k≥n

Â(k)
ε

)
.

The set
⋂

k≥n Â
(k)
ε consists of sequences i ∈ Ω2 whose initial prefixes are

typical for all lengths k ≥ n; therefore lim
n→∞

π
(⋂

k≥n

Â(k)
ε

)
= 1. It thus follows

that inf
n≥n

C(i(n))
n

> h(π) − 2ε π-almost everywhere. Since ε is arbitrary the

lower bound follows. �
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Proof of the upper bound : Given Ω
(n)
2 � i(n) = i1i2 · · · in, fix 0 < L < n

and consider all strings of length L made of consecutive bits of i(n); there are
n− L+ 1 of them:

sk := iki2 · · · iL+k−1 , 1 ≤ k ≤ n− L+ 1 . (∗)

Let Ω(L)

i(n) denote their set and let N(s) be the number of occurrences of the

string s ∈ Ω
(L)

i(n) ; N(s) can be expressed as follows. Let i ∈ Ω2 be any sequence
with initial prefix of length n equal to i(n), then

N(s) =
n−L+1∑

j=0

χs(T j
σ(i)) , (∗∗)

where Tσ is the left shift and χs(T j
σ(i)) is 1 if the initial prefix of length L in

T j
σ(i) equals s, 0 otherwise.

Given the N(s), s ∈ Ω
(L)

i(n) , one can thus construct a so-called empirical

probability distribution π
(L)

i(n) on Ω
(L)

i(n) :

π
(L)

i(n) := {p(L)
n (s)} , p(L)

n (s) :=
N(s)

n− L+ 1

with corresponding Shannon entropy

H(π(L)

i(n)) := −
∑

s∈Ω
(L)

i(n)

p(L)
n (s) log2 p

(L)
n (s) .

Notice that the set of lengths �(s) := (− log2 p
(L)
n (s)) is such that

− log2 p
(L)
n (s) ≤ �(s) < − log2 p

(L)
n (s) + 1 ; (∗ ∗ ∗)

therefore, they satisfy the Kraft inequality
∑

s∈Ω
(L)

i(n)

2−	(s) ≤
∑

s∈Ω
(L)

i(n)

p(L)
n (s) = 1 .

Because of Proposition 3.2.1, there thus exists a binary prefix code over the
strings s ∈ Ω

(L)

i(n) consisting of codewords w(s) of lengths �(s) := �(w(s)).
With sk as defined in (∗) above, for a given 1 ≤ j ≤ L − 1, consider the

adjacent strings of length L of the form sj+pjL, 0 ≤ pj ≤ pmax
j . Since the first

bit of sj is ij and the last bit of sj+pmax
j L is ij+(pmax

j +1)L−1, then the bit not
belonging to any sj+pjL are i1i2 · · · ij and ij+(pmax

j +1)Lij+(pmax
j +1)L+1 · · · in,

whence

j + (pmax
j + 1)L− 1 ≤ n =⇒ pmax

j ≤ n− j − L+ 1
L

,
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for a total of no more than 2(L − 1) bits. Also, since any 1 ≤ k ≤ n can be

written as k = j + pL with 1 ≤ L − 1 and 0 ≤
⌈
k

L

⌉

uniquely determined,

then, for different 1 ≤ j ≤ L− 1, the sets Sj := {sj+pjL}
pmax

j

p1=0 do not overlap

and
⋃L−1

j=1 Sj = Ω
(L)

i(n) .
Consider a program Qj that reconstructs i(n) by specifying the codewords

w(sj+pjL) plus the bits uncovered by them; its length can be bounded from
above as follows:

�(Qj) ≤ C + 2(L− 1) +
pmax

j∑

pj=0

�(sj+pjL) ,

where C is a constant independent of j and of L. Further, (∗ ∗ ∗) entails the
following bound for the plain algorithmic complexity of i(n):

C(i(n)) ≤ min
1≤j≤L−1

�(Qj) ≤
1

L− 1

L−1∑

j=1

�(Qj)

≤ C + 2(L− 1) +
1

L− 1

L−1∑

j=1

pmax
j∑

p=0

�(sj+pL)

= C + 2(L− 1) +
1

L− 1

∑

s∈Ω
(L)

i(n)

N(s)�(s)

≤ C + 2(L− 1) +
n− L+ 1
L− 1

∑

s∈Ω
(L)

i(n)

p(L)
n (s)

(
− log2 p

(L)
n (s) + 1

)

︸ ︷︷ ︸
H(π

(L)

i(n) )+1

.

From ergodicity and (∗∗), it follows that, when n → ∞,

N(s)
n− L+ 1

�−→ p(s) = π
(
C [0,L−1]

s

)

for π-almost all sequences i ∈ Ω2, where C [0,L−1]
s is the cylinder set containing

all i ∈ Ω2 with s ∈ Ω
(L)

i(n) as initial prefix. Thus, when n → ∞ π
(L)

i(n) tends to

the probability distribution π(L) over the partition C(L) =
{
C

[0,L−1]

s∈Ω
(L)
2

}
of Ω2

indexed by the strings s ∈ Ω
(L)
2 ; then, by continuity,

lim sup
n→∞

1
n

C(i(n)) ≤ H(C(L)) + 1
L− 1

, π − a.e .

By taking L → ∞, the upper bound follows (see Remark 3.1.1.1). �
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The previous result that holds for ergodic binary information sources can
easily be extended to generic ergodic sources and then to ergodic dynamical
systems via Definition 4.2.1.

Proposition 4.2.1. Let (X , T, μ) be an ergodic dynamical system and P a
finite, measurable partition of X ; then

c(x,P) = hKS
μ (T,P) μ− a.e .

Proof: The partition P defines a symbolic model (Ω̃p, Tσ, μP) which is an
ergodic shift-dynamical system. The result follows since Brudno’s theorem
ensures that for μP -almost all i ∈ Ω̃p, hence for μ-almost all x ∈ X , it holds
that c(i) = h(μP) = hKS

μ (T,P). �

Corollary 4.2.1. Let (X , T, μ) be an ergodic dynamical system and P a fi-
nite, measurable generating partition of X ; then

c(x,P) = hKS
μ (T ) μ− a.e .

4.3 Prefix Algorithmic Complexity

A way to eliminate the logarithmic correction that spoils the subadditivity of
the plain algorithmic complexity (see Example 4.1.6) is to ask that the only
acceptable programs for the UTM U are the so-called self-delimiting ones,
namely those containing the specification of their lengths, so that the UTM
always knows when its input programs end. These programs have the prefix
property that if U halts on one of them, say p, then p cannot be the prefix of
any other halting program for U. Any TM that accepts only programs with
the prefix property is called a prefix TM ; it can be showed [78] that there
exist prefix UTMs capable of simulating the behavior of any other prefix TM .
The consequences of the prefix constraint are far reaching. One first proceeds
to define an adapted version of algorithmic complexity of binary strings (the
extension to strings from different alphabets is straightforward).

Definition 4.3.1 (Prefix Algorithmic Complexity). The prefix algorith-

mic complexity of i(n) ∈ Ω
(n)
2 is the length of the shortest program p such that

U(p) = i(n), where U is any chosen reference prefix UTM :

K(i(n)) = min
{
�(p) : U(p) = i(n) , U a prefix UTM

}
.
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Remarks 4.3.1.

1. A prefix TM can be figured out [78] as a TM with a control unit, two tapes
and two reading-write heads. The first tape, the program tape, is entirely
occupied by the program which is written as a binary string between two
blank symbols marking its beginning and its end; the program is read by
a head that can only read, halt and move right. The second tape, the work
tape, is, as in the case of an ordinary TM , two-way infinite and the head
on it can read, write 0,1, leave a blank #, halt or move both right and
left. The computation starts with the head on the program tape scanning
the first blank symbol, the other head on the 0-th cell of the work tape,
only finitely many of its cells possibly carrying non-blank symbols, and
with the control unit in its initial ready state qr. Then, in agreement
with the symbols read by the two heads and the control unit internal
state, the head on the working tape erases and writes or does nothing
and then moves left, right or stays, the head on the program tape either
moves right or stays, while the control unit updates its internal state. The
computation terminates if the reading head on the program tape reaches
the end of the program, in which case, the output is what is written on
the work tape to the right of the cell being scanned by the head until
only cells with blank symbols are found. The program halts if and only
if the head on the program tape reaches the end of the tape.

2. Since the set of programs with the prefix property is smaller than the set
of all programs, then

C(i(n)) ≤ K(i(n)) .

On the other hand, if p is such that C(i(n)) = �(p), then, considering its
self-delimiting encoding p∗ := β(�(p))p, it follows that

K(i(n)) ≤ �(p∗) ≤ C(i(n)) + 2 log �(p) + C .

3. The prefix complexity is subadditive; in fact, if p and q are programs such
that K(i) = �(p) and K(j) = �(q), with i, j ∈ Ω∗, then, since p and q are
now, by definition, self-delimiting, one has

K(i, j) ≤ K(i) + K(j) + C .

4. Unlike for the plain complexity (see Remark 4.1.4.4), one can rightly
define random those sequences i ∈ Ω2 for which

K(i(n)) > n− c ,

for all their prefixes i(n), that is all those sequences whose prefixes i(n)

have prefix complexity that increases at least as n. Indeed [310], it turns
out that these sequences are those and only those passing all constructive
statistical Martin-Löf tests checking whether they belong to effectively
null sets (see footnote 1). In this sense, relative to the prefix definition
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of algorithmic complexity, Levin’s chaoticness and typicalness mentioned
in the introduction to this section are equivalent characterization of ran-
domness.

One of the most important consequences of working with prefix UTMs U is
that their halting programs p form a set of prefix codes for the output strings
U(p) = i ∈ Ω∗

2 and their lengths satisfy the extended Kraft inequality (3.2.2).

Example 4.3.1. Consider a prefix UTM U and the so-called Chaitin magic
number [80, 92, 50] defined by Ω =

∑

p : U(p)↓
2−	(p), where the sum runs over

all halting programs p; because of the prefix property, Ω ≤ 1.
Let us consider the binary expansion of Ω which has infinitely many 0s if

it is rational and suppose an algorithm exists that calculates the digits of Ω.

Then, the n-digit approximation Ωn :=
n∑

j=1

ωj

2j
is such that Ωn > Ω − 2−n.

Then, one knows whether U halts on programs of length ≤ n.
Indeed, by listing them in lexicographical order and by processing them

in dovetailed fashion, one can collect all programs p1, p2, . . . that halt until,
after T (n) computational steps,

Sn :=
m(n)∑

i=1

2−	(pi) ≥ Ωn .

If p is any program halting in more than T (n) computational steps, one gets

Ω ≥ Sn + 2−	(p) ≥ Ωn + 2−	(p) > Ω + 2−	(p) − 2−n .

Therefore, �(p) > n so that if a program of length shorter than n has not
halted in T (n) computational steps it will never halt.

Let G(n) be the set of strings ij := U(pj), j = 1, 2, . . . ,m(n), correspond-
ing to the outputs of the programs that have halted in T (n) computational
steps and let i denote the first string (in a suitable order) not in G(n). Such
string must have prefix complexity K(i) > n: indeed, if K(i) ≤ n, there
would exist a program p of length ≤ n such that U(p) = i. However, from
the previous discussion one deduces that also p must have halted in T (n)
computational steps so that i ∈ G(n), too. Further, let p∗ be any shortest
effective description of the string Ω(n) := ω1ω2 · · ·ωn consisting of the first
n bits of Ω, namely K(Ω(n)) = �(p∗). Then, by means of a fixed number c of
extra bits, one can use the knowledge of the Ω(n) to recover i, whence

n < K(i) ≤ �(p∗) + c = K(Ω(n)) + c =⇒ K(Ω(n)) > n− c ∀n .

Then Ω is a random sequence in the sense of Remark 4.3.1.4.
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Definition 4.3.2. Given a prefix UTM U, the map Ω∗
2 � i �→ PU(i), where

PU(i) :=
∑

p : U(p)=i

2−	(p) (4.11)

defines a so-called the universal probability on Ω∗
2 .

This definition makes sense, for, as a consequence of the prefix property,
not only (4.1) holds, but it also turns out that

∑

i∈Ω∗
2

PU(i) =
∑

i∈Ω∗
2

∑

p : U(p)=i

2−	(p) ≤ 1 .

Remarks 4.3.2.

1. If a prefix TM A halts on p = 0 and q = 1 with the strings i and j as
outputs, then PA(i) = PA(j) = 1/2 since no other program can halt.
Without the prefix restriction the sum in (4.11) would diverge simply
because all programs prefixed by p and q would also output i and j.

2. After division by
∑

i∈Ω∗ PU(i), PU(i) represents the probability that i
be the output of U running a binary program p of length �(p) randomly
chosen according to the Bernoulli uniform probability distribution that
assigns probability 2−	(p) to anyone of them. Since short programs have
higher probabilities, random strings have smaller algorithmic probabili-
ties than regular ones.

3. The probability PU is called universal (see Example 4.1.7) for the fol-
lowing reason. Let A be any prefix TM and q a program such that
A(q) = i ∈ Ω∗

2 ; further, let q′ be a self-delimiting program of fixed length
L that makes U simulate A so that U(q′q) = A(q) = i. Then,

PU(i) =
∑

p : U(p)=i

2−	(p) ≥
∑

q : U(q′q)=i

2−	(q)−	(q′) = 2−L PA(i) . (4.12)

Suppose now π = {p(i)}i∈Ω∗
2

to be a computable probability distribution
over Ω∗

2 (see Definition 4.1.2). Consider a prefix TM A that does the
following:
– it computes the probability distribution π;
– it encodes the strings i ∈ Ω∗

2 by means of the Shannon-Fano-Elias
code corresponding to the computed π (see Example 3.2.3);

– given a program q ∈ Ω∗
2 , it checks whether q is the Shannon-Fano-

Elias code for any i ∈ Ω∗
2 ; if so, it outputs i.

Since the lengths of the code-words are as in (3.23), then, for all i ∈ Ω∗
2 ,

PA(i) =
∑

A(q)=i

2−	(q) ≥ 4 p(i) .
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For the prefix UTM U to work as A, it is necessary to compute the
probability distribution π, whence the program q′ in (4.12) is such that
L = K(π) + L′, where K(π) is the prefix complexity of π, where it is
understood that the computable probability distribution π is written as
a binary string (denoted by the same symbol). Then, for all computable
probability distributions π on Ω∗

2 ,

PU(i) ≥ C 2−K(π) p(i) , (4.13)

with C > 0 a constant independent of i and π.

Universal probability, prefix complexity and Shannon entropy of com-
putable probability distributions are intimately related. Given a prefix UTM
U, the programs p∗ such that U(p∗) = i ∈ Ω∗

2 with �(p∗) = K(i) provide a
prefix code such that

PU(i) =
∑

U(p)=i

2−	(p) ≥ 2−K(i) . (4.14)

Further, if the strings i are chosen at random with respect to a computable
probability distribution π, then (3.22) implies that the corresponding average
length, namely the average prefix complexity, satisfies

∑

i∈Ω∗
2

p(i)K(i) ≥ H2(π) = −
∑

i∈Ω∗
2

p(i) log2 p(i) . (4.15)

There might be infinitely many programs such that U(p) = i, yet the lower
bound in (4.14) is surprisingly good as the sum is actually dominated by the
shortest programs for i.

Proposition 4.3.1. For all i ∈ Ω∗
2 , PU(i) ≤ C 2−K(i), where C > 0 is a

constant independent of i.

Together with (4.14), this result permits the identification (up to an ad-
ditive constant) of the prefix complexity of a string with minus the logarithm
of its universal probability.

Corollary 4.3.1. K(i) = − log2 PU(i) + O(1).

There thus appears a similarity between the fact that the optimal code-
word lengths with respect to a probability distribution π = {p(i)}i∈I are of
the form �∗i = − log2 p(i) and the fact that the lengths of the shortest descrip-
tions of binary strings practically amount to the logarithm of their universal
probabilities. This similarity can be carried even further by examining the
average complexity.
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Corollary 4.3.2. Given a computable probability distribution π on Ω∗
2 , the

corresponding average prefix complexity satisfies

H2(π) ≤
∑

i∈Ω∗
2

p(i)K(i) ≤ H2(π) + K(π) + C .

Proof: From Proposition 4.3.1 and (4.13)

K(i) ≤ − log2 PU(i) + C ′ ≤ − log2 p(i) + K(π) + C .

Multiplying by p(i) and summing over i ∈ Ω∗
2 yields the upper bound,

while (4.15) gives the lower bound. �

Proof of Proposition 4.3.1 : The idea is to construct, for each i ∈ Ω∗
2 , a

set of programs p of length �(p) ≤ − log2 PU(i) +C ′ with the prefix property
such that U(p) = i, so that K(i) ≤ �(p) would end the proof. Unfortunately,
the argument of Remark 4.3.2.3 is not viable as the universal probability is
not computable. However, as much as for the plain algorithmic complexity,
the prefix complexity is semi-computable from above whence the universal
probability results lower semi-computable because of Corollary 4.3.1; this
turns out to be sufficient for constructing a prefix code with the desired
property. Let all the programs (listed in lexicographical order) be run by U

in dovetail fashion and collect them in pairs (pk,xk) where pk is the program
which halts at the k step of the dovetailed computation with xk ∈ Ω∗

2 as
output. The quantity

PU(k,xk = x) :=
∑

(pi,xi=x)
i≤k

2−	(pi) ≤ PU(x)

is computable and tends to PU(x) along the subsequence {(pk,xk = x)}k;
set nk := (− log2 PU(k,xk = x)). Since

2−	∗(k) ≤ PU(k,xk = x) ≤ 2−	∗(k)+1 ,

where �∗(k) is the smallest length in the sum, it follows that nk = �∗(k). Given
(pk,xk, nk), this triplet is assigned to the first non-occupied node at the (nk+
1)-th level of a binary tree; further, in order to enforce the prefix condition, all
nodes stemming from it are made unavailable to further assignments. Since
nk is not strictly monotonic, it may happen that different pairs (pi,xi = xk),
i ≤ k, have the same nk; by eliminating all but the first pair with that value
of nk, no more than one node will be occupied by a triplet with the same xk

at level nk. Therefore,

nk ≥ − log2 PU(k,xk = x) ≥ − log2 PU(x) =⇒ nk = (− log2 PU(x)) + rk

with rk ≥ 0 and rk �= rj for j �= k. To each x ∈ Ω∗
2 there correspond many

assignments of triplets (pk,xk = x, nk) each one of them to one and only
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one node at level nk +1. The nodes thus provide binary code-words of length
nk + 1 for the triplets. In order to see that there are sufficiently many nodes
to accommodate all triplets, we check that the lengths nk+1 satisfy the Kraft
inequality (3.21). That this is indeed so follows from the fact that

∑

xk=x

2−nk = 2−�− log2 PU(x)�
∑

xk=x

2−rk ≤ 2PU(x) ,

for all x ∈ Ω∗
2 , whence

∑

x∈Ω∗
2

∑

xk=x

2−nk−1 ≤
∑

x∈Ω∗
2

PU(x) ≤ 1 .

The above algorithm allows the construction of a binary tree whereby any
x ∈ Ω∗

2 can be identified with the binary string i(x) ∈ Ω∗
2 corresponding to

the lowest depth node assigned to its triplets (pk,xk = x, nk). The length of
the code-word i(x) ∈ Ω∗

2 is the smallest nk + 1:

�(i(x)) ≤ (− log2 PU(x)) + 1 ≤ − log2 PU(x) + 2 .

Finally, let q be a program of fixed length L that makes the prefix UTM U

generate the binary tree by dovetailed computation as specified above and
let q′ be another program of fixed length L′ with the necessary instructions
to U such that, when presented with the code-word q′q i(x), U computes the
program in the triplet assigned to the node marked by i(x), writes the result
and halts. By construction, the program p in the triplet at the node i(x) is
such that U(p) = x; then

K(x) ≤ �(q′q i(x)) = − log2 PU(x) + L+ L′ + 2 .

�

Remark 4.3.3. Because of its construction the universal probability is a
lower semi-computable semi-measure (see Definition 4.1.5), thus there exists
a constant CP such that CP PU ≤ m, where m is the universal semi-measure
constructed in Example 4.3.2. Furthermore, an argument similar to the one
in the previous proof, extends the result in Corollary 4.3.1 to

K(i) = − log2 PU(i) + O(1) = − log2 m(i) + O(1) .
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In the second part of the book quantum dynamical systems with finite
and infinite degrees of freedom are presented by using the algebraic approach
to quantum statistical mechanics. The corresponding technical framework
proves convenient for the extension of ergodic and information theory to
non-commutative contexts.



5 Quantum Mechanics of Finite Degrees of
Freedom

Quantum dynamical systems are described by means of non-commutative
algebras of observables, by means of their time-evolution and by means of
the expectation functionals that assign mean values to them. Classical dy-
namical systems can always be described in terms of phase-points and phase-
trajectories; however, an algebraic formulation is always possible and has two
advantages: on one hand, similarities and differences with respect to quan-
tum dynamical systems become more evident and, on the other hand, one
can infer from the algebraic reformulation of classical notions how to possibly
extend them to the quantum setting.

With reference to information, the most important difference that one
encounters passing from the commutative to the non-commutative setting is
that the disturbances exerted on quantum systems by measurement processes
cannot in general be made negligible, not even in line of principle.

5.1 Hilbert Space and Operator Algebras

In standard quantum mechanics, physical states are usually described by
normalized vectors in separable Hilbert spaces, and the observables by self-
adjoint linear operators acting on them. Here follows some notations and
basic facts.

1. |ψ 〉, |φ 〉, or ψ, φ, and | i 〉, with i running on a suitable index set I, will
denote (normalized) vectors in Hilbert spaces H and Pψ = |ψ 〉〈ψ | the
associated orthogonal projectors.

2. The scalar product on H, denoted by 〈ψ |φ 〉, linear in the second ar-
gument and anti-linear in the first one, satisfies the Cauchy-Schwartz
inequality

|〈ψ |φ 〉| ≤ ‖ψ‖ ‖φ‖ . (5.1)

Any finite or countable set {Ψi}i∈I ⊂ H such that 〈Ψi |Ψj 〉 = δij and
|ψ 〉 =

∑
i∈I〈Ψi |ψ 〉 |Ψi 〉 for all ψ ∈ H, is an orthonormal basis (ONB)

in H. The corresponding projectors Pi := |Ψi 〉〈Ψi | fulfil
∑

i∈I

Pi =
∑

i∈I

|Ψi 〉〈Ψi | = 1l , (5.2)
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where 1l denotes the identity operator on H, 1l|ψ 〉 = |ψ 〉 for all ψ ∈ H.
3. Given any linear operator X on H, its matrix elements with respect to

ψ, φ ∈ H will be denoted either as 〈ψ |Xφ 〉 or as 〈ψ |X |φ 〉, depending
on notational convenience.

4. XT and X∗ will denote transposition and complex conjugation with re-
spect to a given ONB {Ψj}j :

〈Ψi |XTΨj 〉 = 〈Ψj |XΨi 〉 , 〈Ψi |X∗Ψj 〉 = 〈Ψi |XΨj 〉∗ .

Instead, X† = (XT )∗ = (X∗)T will represent the basis-independent ad-
joint of X:

〈ψ |X†φ 〉 = 〈Xψ |φ 〉 = 〈φ |Xψ 〉∗ ∀ψ, φ ∈ H .

Physical observables correspond to self-adjoint operators X = X†.
5. The uniform norm, ‖X‖, of a linear operator X on H is defined by

‖X‖ := sup
‖ψ‖=1

‖X|ψ 〉‖ . (5.3)

6. X is bounded if ‖X ‖ < ∞, in which case

‖X|ψ 〉‖ ≤ ‖X‖ ‖ψ‖ , |〈φ |Xψ 〉| ≤ ‖X‖ ‖φ‖ ‖ψ‖ . (5.4)

Linear combinations of bounded operators are again bounded; their lin-
ear span will be denoted by B(H). The product of bounded operators is
bounded, for ‖XY |ψ 〉‖ ≤ ‖X‖ ‖Y ‖ ‖ψ‖. Therefore, B(H) is a so-called
∗-algebra.

7. An operator U ∈ B(H) such that U† U = 1l is called an isometry ; in
general, U U† = (U U†)(U U†) is a projection, if also U U† = 1l, then U is
a unitary operator. Isometries have ‖U‖ =

√
‖U† U‖ = ‖1l‖ = 1.

8. The uniform norm defines on B(H) uniform neighborhoods of the form

Uε(X) = {Y ∈ B(H) ; ‖X − Y ‖ ≤ ε} , ε ≥ 0 , (5.5)

whence a sequence Xn ∈ B(H) converges uniformly to X ∈ B(H),
limn→∞Xn = X, if limn→∞ ‖X −Xn‖ = 0. The corresponding topology
on B(H), τu, is called uniform topology.

9. B(H) is complete with respect to the uniform topology, namely all se-
quences of operators which are of Cauchy type with respect to the uni-
form norm converge to an element of B(H). Therefore, B(H) is a so-called
Banach ∗-algebra. Moreover, since the uniform norm fulfils

‖X†‖ = ‖X‖ , ‖X†X‖ = ‖X‖2 , (5.6)

B(H) is a C∗-algebra (see Section 5.2).
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10. In the case of n < ∞ degrees of freedom, each one of them is described
by a Hilbert space Hj , 1 ≤ j ≤ n. Altogether, their Hilbert space is
the tensor product H

(n) =
⊗n

j=1 Hj , denoted by H
⊗n when the Hilbert

spaces Hj are copies of a same H. Depending on notational convenience,
its vectors will be denoted either by |ψ 〉 = |ψ1 〉 ⊗ |ψ2 〉 ⊗ · · · |ψn 〉 or by
|ψ 〉 = |ψ1 ⊗ψ2 ⊗ · · ·ψn 〉, with scalar products 〈φ |ψ 〉 =

∏n
j=1〈φj |ψj 〉.

Bounded operators on H
(n) are linear combinations of tensor products of

the form X1 ⊗ X2 ⊗ · · ·Xn, Xj ∈ B(Hj); the associated C∗ algebra of
bounded operators on H

(n) is B(H(n)) :=
⊗n

j=1 B(Hj).
11. The strong topology on B(H), τs, is the smallest topology with respect

to which all semi-norms of the form Lψ(X) := ‖X|ψ 〉‖, ψ ∈ H, are
continuous; its strong neighborhoods are of the form

Us
ε (X) := {Y ∈ B(H) : Lψj

(Y −X) ≤ ε , 1 ≤ j ≤ n} , (5.7)

for ψj ∈ H, n ∈ N and ε ≥ 0. A sequence Xn ∈ B(H) converges strongly
to X ∈ B(H), s − limn→∞Xn = X, if limn→∞ ‖(Xn − X)|ψ 〉‖ = 0 for
all ψ ∈ H.

12. The weak topology on B(H), τw, is the smallest topology with respect to
which all semi-norms of the form Lφ,ψ(X) := |〈φ |Xψ 〉|, φ , ψ ∈ H are
continuous; its weak-neighborhoods are of the form

Uw
ε (X) := {Y ∈ B(H) : Lφj ,ψj

(Y −X) ≤ ε , 1 ≤ j ≤ n} , (5.8)

for ψj , φj ∈ H, n ∈ N and ε ≥ 0. A sequence Xn ∈ B(H) converges weakly
to X ∈ B(H), w− limn→∞Xn = X, if limn→∞ |〈φ | (Xn −X)ψ 〉| = 0 for
all φ, ψ ∈ H.

13. Since strong neighborhoods are uniform neighborhoods, but the reverse
is not true when H is infinite dimensional, the uniform topology is in
general finer than the strong one, that is τu has more neighborhoods
than τs: τs � τu. The weak topology is in general coarser than the strong
one; every weak neighborhood is also a strong neighborhood, but the
reverse fails to be true in infinite dimensional H. The norm, strong and
weak topologies are equivalent in finite dimension.

14. Among other topologies on B(H) [64], one of some use in the following is
the σ-weak topology, τuw; it is finer than the weak topology for it is the
smallest one that makes continuous the following semi-norms,

Luw
{φn},{ψn}(X) =

∑

n

|〈φn |X |ψn 〉| , (5.9)

where {ψn}, {φn} ⊂ H are such that
∑

n ‖ψn‖2 < ∞ and
∑

n ‖φn‖2 < ∞.

Most of the previous assertions are standard facts [64, 251, 300]; however,
the various topologies on B(H) deserve a closer look.
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Remarks 5.1.1.

1. That the uniform topology is finer than the strong topology can be seen as
follows. Given any strong neighborhood Us

ε (X), let α := max1≤i≤n ‖ψi‖,
then Uu

ε/α(X) ⊆ Us
ε (X); indeed,

Y ∈ Uu
ε/α(X) =⇒ ‖(X − Y )|ψi 〉‖ ≤ ε

α
‖ψi‖ ≤ ε =⇒ Y ∈ Us

ε (X) ,

whence Us
ε (X) is a uniform neighborhood, too. In order to show that τu

is in general strictly finer than τs, it is sufficient to exhibit a sequence of
operators in B(H) which converges strongly, but not uniformly. To this
end, suppose H to be infinite dimensional, choose a ONB {Ψk}k∈N with
associated orthonormal projectors Pk and construct QN :=

∑N
k=1 Pk.

Then, (5.2) reads s−limN QN = 1l; namely, if ψ ∈ H and cψ(i) = 〈Ψi |ψ 〉,
then

lim
N→∞

‖(QN − 1l)|ψ 〉‖2 = lim
N→∞

∞∑

n≥N+1

|cψ(n)|2 = 0 .

On the other hand, QN → 1l cannot hold in the uniform sense, otherwise
for any ε ≥ 0 there would exist N0(ε) such that, if N ≥ N0(ε), then
‖(QN − 1l)|ψ 〉‖ ≤ ε uniformly in ψ ∈ H, while ‖(QN − 1l)|ψ 〉‖ = ‖ψ‖ for
all ψ in the subspace orthogonal to that projected out by QN .

2. In like manner, the weak topology cannot have more neighborhoods than
the strong topology. Given Uw

ε (X) as in (5.8), set β := max1≤i≤n ‖φi‖;
then Us

ε/β(X) ⊆ Uw
ε (X); indeed, using (5.1),

Y ∈ Us
ε/α(X) =⇒ |〈φi | (X − Y ) |ψi 〉| ≤

ε

β
‖φi‖ ≤ ε =⇒ Y ∈ Uw

ε (X) .

In general, τs is strictly finer than τw. Let H be infinite dimensional and,
given an ONB {Ψk}k∈N, consider the operator X : H �→ H defined as the
right shift along the ONB :

X|Ψk 〉 = |Ψk+1 〉 , X†|Ψk 〉 =
{

0 k = 1
|Ψk−1 〉 k ≥ 2 .

Note that X†X|Ψk 〉 = |Ψk 〉 for all k ∈ N so that X†X = 1l; X is an
isometry with XX† projecting onto the subspace orthogonal to Ψ1. Fur-
thermore, by expanding H � |ψ 〉 =

∑∞
k=1 cψ(k)|Ψk 〉, cψ(k) := 〈Ψk |ψ 〉,

it turns out that

‖Xn|ψ 〉‖2 = 〈ψ | (X†)nXn |ψ 〉 = ‖ψ‖2 ,

whereas
w − lim

n→∞
Xn = 0 .
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Indeed, given φ, ψ ∈ H, ε > 0 and |ψK 〉 =
∑K

i=1 cψ(i)|Ψi 〉 such that
‖|ψ 〉 − |ψK 〉‖ ≤ ε, (5.1) yields

∣
∣
∣〈φ |Xn |ψ 〉

∣
∣
∣ ≤
∣
∣
∣〈φ |Xn |ψK 〉

∣
∣
∣ + ε |ψ‖ =

∣
∣
∣

K∑

i=1

c∗φ(i) cψ(i+ n)
∣
∣
∣ + ε ‖ψ‖

≤

√
√
√
√

K∑

i=1

|cφ(i)|2
√
√
√
√

K+n∑

i=n+1

|cψ(i)|2 + ε ‖ψ‖ ,

where the second square-root becomes negligibly small for sufficiently
large n.

3. By adding to a subalgebra A ⊆ B(H) its limit points with respect to a
given topology τ , one obtains its closure A τ

. If of two topologies τ1,2 on
A ⊆ B(H), τ1 is coarser than τ2 (τ1 � τ2), τ1 has less neighborhoods
than τ2 and thus more convergent sequences; therefore, Aτ1 ⊇ Aτ2 . In
particular, A τu is a C∗-subalgebra of B(H); further, since τu ' τs ' τw
it follows that A τu ⊆ A τs ⊆ A τw .

4. Given a ∗-subalgebra A ⊂ B(H), consider the linear functionals F :
A τ1 �→ C, respectively F : A τ1 �→ C, that are continuous with re-
spect to two topologies τ1 � τ2; more precisely, the preimages F−1(V ) of
open sets V ⊂ C are open sets in A τ1 , respectively A τ2 . Then, since not
all open sets in A τ2 are open sets in A τ1 , a τ2-continuous F , that is con-
tinuous with respect to the finer topology, may fail to be τ1-continuous,
that is continuous with respect to the coarser topology. For instance, all
weakly continuous linear functionals on A ⊆ B(H) are strongly continu-
ous but strong continuity does not in general ensure that a functional is
also weakly continuous.

5. If A is a generic Banach algebra, its topological dual, A∗ is the linear space
A∗ consisting of all linear functionals F : A �→ C that are continuous on
A. Then, A∗ can be equipped with the so-called w∗-topology, namely with
the coarsest topology that makes continuous all semi-norms of the form

Lw∗

X (F ) = |F (X)| ∀X ∈ A . (5.10)

Its neighborhoods are of the form

Uw∗

ε (F ) := {G ∈ A∗ : Lw∗

Xj
(G− F ) ≤ ε , 1 ≤ j ≤ n} , (5.11)

for any Xj ∈ A, n ∈ N and ε ≥ 0. A sequence Fn ∈ A∗ w∗-converges to
F ∈ A∗, w∗ − limn→∞ Fn = F , if limn→∞ |Fn(X) − F (X)| = 0 for all
X ∈ A.

5.2 C∗ Algebras

The bounded operators on a Hilbert space H form a Banach ∗-algebra with
respect to the uniform norm (5.3); this norm fulfils the two equalities (5.6).
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While the first one follows at once from (5.3) and the definition of adjoint,
the second one is proved by using (5.1):

‖X‖2 = sup
‖ψ‖=1

〈ψ |X†Xψ 〉 ≤ ‖X†‖ ‖X‖ =⇒ ‖X‖ ≤ ‖X†‖ ;

thus, exchanging X and X†, yields ‖X‖2 = ‖X†|2 = ‖X†X‖. From the fact
that ‖XY ‖ ≤ ‖X‖ ‖Y ‖ (an inequality that follows at once from (5.3)), one
gets ‖X†| = ‖X‖; in fact,

‖X‖2 = ‖X†X‖ ≤ ‖X‖ ‖X†‖ =⇒ ‖X‖ ≤ ‖X|† ,

while ‖X†‖2 = ‖XX†‖ ≤ ‖X‖ ‖X†| =⇒ ‖X†‖ ≤ ‖X‖.
More in general, let A be an algebra with an involution † : A �→ A such

that
(αA+ β B)† = α∗A† + β∗B† , (AB)† = B†A†

for all α, β ∈ C and A,B ∈ A. Let A be complete with respect to a norm
‖ · ‖ : A �→ R+ such that

‖αA‖ = |α| ‖A‖ , ‖A+B‖ ≤ ||A‖ + ‖B‖ , ‖AB‖ ≤ ‖A‖ ‖B‖

and ‖A‖ = 0 ⇐⇒ A = 0 for all α ∈ C and A,B ∈ A. If the norm further
satisfes (5.6) it is called a C∗ norm.

Definition 5.2.1. Any Banach ∗-algebra A with respect to a C∗ norm is
called a C∗ algebra. A is called unital if it possesses an identity 1l such that
A 1l = 1lA = A for all A ∈ A.

Examples 5.2.1.

1. The commutative algebras C(X ), respectively L
∞
μ (X ) of continuous, re-

spectively essentially bounded functions over a compact phase-space X
discussed in Section 2.2.1 are C∗ algebras with respect to the uniform,
respectively essentially bounded norms.

2. Many instances of quantum systems are N -level systems; their Hilbert
space is finite dimensional and thus can be taken as H = C

N , while
their observables are Hermitian N ×N matrices with complex entries. In
such cases, the C∗ algebra of bounded operators B(H) is the full matrix
algebra MN (C). Given an ONB {Ψj}N

j=1 in C
N , set Eij := |Ψi 〉〈Ψj |,

i, j = 1, . . . , N ; then,

Eij |ψ 〉 = 〈Ψj |ψ 〉 |Ψi 〉 , EijEk	 = δjkEi	 ,

N∑

i=1

Eii = 1l . (5.12)
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Any set of matrices with these properties constitutes a set of matrix units,
Eii being a complete set of orthogonal projections. Any X ∈ MN (C) can
be thus expressed as a linear combination of the matrix units:

X =
N∑

i,j=1

Eii X Ejj =
N∑

i,j=1

Xij Eij .

In the standard representation where the basis vectors have the form

|Ψj 〉 = ( 0 0 · · · 1 · · · 0 0 )T
,

with 1 in the j-th entry, the matrix units Eij are N ×N matrices whose
entries are all 0, but for the ij-th one which is equal to 1.

3. A typical scenario often encountered in quantum physics is as fol-
lows: a quantum system described by a generic (not necessarily finite-
dimensional) Hilbert space H is coupled to an N -level system, the corre-
sponding algebra being the tensor product MN (B(H)) := MN (C)⊗B(H)
consisting of operators of the form

X̃ =
N∑

i,j=1

Eij ⊗Xij =

⎛

⎜
⎜
⎜
⎝

X11 · · · X1N

· · · · ·
· · · · ·
· · · · ·

XN1 · · · XNN

⎞

⎟
⎟
⎟
⎠

= [Xij ] , (5.13)

where Xij are operators in B(H) and Eij are matrix units in standard
form. The tensor product MN (B(H)) is a ∗-algebra of operators acting
on the Hilbert space H̃ := C

N ⊗ H consisting of vectors

H̃ � | ψ̃ 〉 =
N∑

i=1

| i 〉 ⊗ |ψi 〉 =

⎛

⎜
⎝

|ψ1 〉
...

|ψN 〉

⎞

⎟
⎠ . (5.14)

A uniform norm on MN (B(H)) is defined by

‖X̃‖2 = sup
‖ψ̃‖=1

〈 ψ̃ | X̃†X̃ |ψ̃ 〉

=

⎧
⎨

⎩

N∑

i,j,k=1

〈ψk |X†
ikXij |ψj 〉 :

N∑

i=1

‖ψi‖2 = 1

⎫
⎬

⎭
. (5.15)

Indeed, it turns out that it satisfies (5.6); beside, MN (B(H)) is a complete
∗-algebra with respect to it, thence a C∗ algebra.

4. Given X,Y ∈ B(H), B(H) � [X, , Y ] := XY −Y X denotes their commu-
tator. Let V ⊆ B(H) be a linear self-adjoint subset, that is it contains the
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adjoint of any of its elements. The commutant of V, denoted by V ′, con-
sists of all bounded operators that commute with all X ∈ V. If X ′ ∈ V ′

also (X ′)† ∈ V ′; further, if X ′, Y ′ ∈ V ′, then

[X ′Y ′ , X] = X ′ [Y ′ , X] + [X ′ , X]Y ′ = 0 ∀X ∈ V .

Therefore, X ′Y ′ ∈ V ′ and V ′ is a ∗-algebra; also, if a sequence of X ′
n ∈ V ′

uniformly converges to X ∈ B(H), then,

‖[X ′, X]‖ = ‖[X ′ −X ′
n , X]‖ ≤ 2‖X ′ −X ′

n‖ ‖X‖ ,

implies that V ′ is uniformly closed and thus a C∗ subalgebra of B(H).
5. If A ⊆ B(H) is a C∗ subalgebra with commutant A′, the center of A,

ZA := A∩A′, contains all those A ∈ A that commute among themselves
and is thus an Abelian C∗ subalgebra of B(H).

Given a bounded operator A in a unital C∗ algebra A, a−A is invertible
in A (a stands for a1l) if there exists B := (a−B)−1 ∈ A for which (a−A)B =
B(a−A) = 1l. The set of such a ∈ C is called the resolvent set of A (Res(A)).
Its complement is the spectrum of A (Sp(A)).

Examples 5.2.2. [64]

1. Let A ∈ A and a ∈ C such that ‖A‖ < |a|, then by Taylor expansion

1
a−A

=
1
a

∞∑

n=0

(
A

a

)n

the series converges in norm and gives rise to a well-defined operator in A.
Therefore, Sp(A) is contained in the subset of a ∈ C such that |a| ≤ ‖A‖.
Furthermore, if a0 ∈ Res(A) so that (a−A)−1 exists in A, choose a ∈ C

such that |a− a0| < ‖(a0 −A)−1‖; then,

1
a−A

=
1

(a− a0) + a0 −A
=

1
a0 −A

∞∑

n=0

(
a0 − a

a0 −A

)n

exists as well, whence Res(A) is an open subset of C and Sp(A) a closed
subset of C.

2. For a, b ∈ C and A ∈ A, a− (b−A) is invertible if and only if (b− a)−A
is invertible. Thus Sp(b−A) = b− Sp(A).

3. For a ∈ C and A ∈ A; a−A is invertible if and only if a∗−A† is invertible,
whence Sp(A†) = Sp(A)∗, the conjugate set of Sp(A).

4. If A is invertible, using A−1 one writes

a−A = aA(A−1 − a−1) , a−1 −A−1 = a−1A−1(A− a) .



5.2 C∗ Algebras 147

Therefore, if a−A is invertible, then a−1−A−1 turns out to be invertible
too and vice versa; therefore, Sp(A−1) = (Sp(A))−1, the set consisting
of the inverse of each element of Sp(A−1) (notice that 0 /∈ Sp(A) and
a ∈ Sp(A) =⇒ |a|−1 ≤ ‖A−1‖ < +∞).

5. The spectral radius R(A) of A ∈ A is [64]

R(A) := sup{|λ| : λ ∈ Sp(A)} = lim
n→+∞

‖An‖1/n .

An operator A ∈ A is normal if A†A = AA†; then, R(A) = ‖A‖. Indeed,
the C∗ properties of the norm yield

‖A2n‖2 = ‖(A†)2
n

A2n‖ = ‖(A†A)2
n‖ = ‖(A†A)2

n−1
(A†A)2

n−1‖
= ‖(A†A)2

n−1‖2 = ‖A†A‖2n

= ‖A‖2n+1
, whence

R(A) = lim
n→+∞

‖A2n‖2−n

= ‖A‖ .

6. Self-adjoint A � A = A† are normal and hence R(A) = ‖A‖.
7. If U is unitary (U† U = U U† = 1l) or isometric (U† U = 1l), then

‖Un‖2 = ‖(U†)n Un‖ = ‖(U†)n−1U† U Un−1‖ = ‖(U†)n−1 Un−1‖
= ‖U† U‖ = ‖1l‖ = 1 .

Therefore, Sp(U) is contained within the unit circle {x ∈ C : |z‖ ≤ 1}.
On the other hand, if U is invertible, U−1 = U† and the preceding point
3 implies that Sp(U) = {z ∈ C : |z| = 1}.

8. If A � A = A† and |a|−1 > ‖A‖, then from point 1 above one deduces
that −i|a|−1 −A = −i|a|(1 − i|a|A) is invertible so that

A � U := (1 + i|a|A)(1 − i|a|A)−1

is a well defined unitary operator; moreover, the last point ensures that

1 − i|a|z
1 + i|a|z
︸ ︷︷ ︸

w

−U =
2i|a|

1 + i|a|z (A− z)(1 + i|a|A)−1

is invertible whenever |w| �= 1, namely whenever �(z) �= 0. Therefore,
A− z is invertible and Sp(A) ⊆ [−‖A‖, ‖A‖] because of points 3 and 6.

9. Let P (z) be a polynomial of degree n on C, A ∈ A and for a ∈ C write

P (z) − a = α

n∏

i=1

(z − αi) , α , αi ∈ C

P (A) − a = α
n∏

i=1

(A− αi) .
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The operators A − αi commute, thus P (A) − a is not invertible if and
only if at least one of them is not invertible, that is a ∈ Sp(P (A)) if
and only if at least one αi ∈ Sp(A). Since P (αi) = a, it follows that
Sp(P (A)) = P (Sp(A)), the set of values attained by P (z) on Sp(A).

10. Suppose A � A = A†, from the previous result and point 8 it turns out
that Sp(A2) = (Sp(A)2) ⊆ [0, ‖A‖2].

Remark 5.2.1. If A ∈ A is self-adjoint, then by the density of the polyno-
mials in the commutative C∗ algebra of continuous functions f over R, one
can extend Example 5.2.2.8 to f(Sp(A)) = Sp(f(A)). This is the spectral
mapping theorem [64, 324].

5.2.1 Positive Operators

Particularly important bounded self-adjoint operators are the positive ones,
that is those whose spectrum consists of non-negative values; from a physical
point of view, they represent observables that, when measured, always returns
a positive outcome.

Definition 5.2.2. An operator A of a unital C∗ algebra A is positive (A ≥ 0)
if A = A† and Sp(A) ⊆ R+. Given A,B ∈ A, one sets A ≥ B whenever
A−B ≥ 0.

Remark 5.2.2. Positive operators A � A ≥ 0 are characterized by being
of the form A = B†B, for some B ∈ A and by having a unique positive
square-root

√
A such that A =

√
A
√
A [64] (see also Example 5.3.4.2).

When A = B(H), the positivity of a self-adjoint operator X ∈ B(H)
amounts to 〈ψ |Xψ 〉 ≥ 0 for all ψ ∈ H, which corresponds to the positivity
of all its eigenvalues xi ∈ R such that (X − xi)|ψ 〉 = 0 for some |ψ 〉 ∈ H.
Denote by |X| :=

√
X†X the unique square-root of the positive operator

X†X. The map V : Ran(|X|) �→ Ran(X) defined by V |X||ψ 〉 = X|ψ 〉,
where Ran(X) denotes the range of X ∈ B(H), 1 is a partial isometry,

‖V |X||ψ 〉‖2 = 〈ψ |X†X |ψ 〉‖ = ‖|X||ψ 〉‖2 .

Let U denote the partial isometry which equals the extension of V on the
closure of Ran(X) and 0 on Ker(|X|) = (Ran(|X|))⊥, then X = U |X| is the
so-called polar decomposition of X [64]. It is unique; namely, if X = V B with
B ≥ 0 and V is a partial isometry with V = 0 on Ker(B), then

1The range of X ∈ B(H) is the linear subset of vectors of the form |ψ 〉 = X|φ 〉
for some φ ∈ H. Ran(X†) ⊥ Ker(X), where Ker(X) is the kernel of X that is the
closed subspace of vectors ψ ∈ H such that X|ψ 〉 = 0.
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X†X = BV †V B = B2 =⇒ B = |X|

by the uniqueness of the square-root; further, U = V for both annihilate
Ran(|X|)⊥. The projection p := U† U is called the initial projection of U ,
while q = UU† its final projection.

In the simplest cases B(H) = MN (C), then |X| =
√
X†X can be spectral-

ized, |X| =
∑

i=1 xi|Ψi 〉〈Ψi |. The eigenvalues xj ≥ 0 of |X| are the so-called
singular values of X, while its eigenvectors Ψj form an ONB in C

N . Using the
polar decomposition, it turns out that any matrix can always be represented
in terms of its singular values and of two, generally different, ONBs ,

X = U |X| =
N∑

j=1

xj |Φj 〉〈Ψj | , |Φj 〉 := U |Ψj 〉 . (5.16)

Also, if V is the unitary matrix that diagonalizes the Hermitian matrix |X|,
|X| = V D V †, then X = W DV † with W := UV unitary.

Examples 5.2.3. [10, 296]

1. From Example 5.2.2.10 it turns out that the spectrum of the positive
elements A ≥ 0 of a C∗ algebra A is such that Sp(A) ⊆ [0, ‖A‖].

2. Suppose A ≥ B ≥ 0 for A,B ∈ A; then, from the previous remark,
A−B = C† C, whence

D†(A−B)D = (CD)† (CD) ≥ 0 =⇒ D†AD ≥ D†BD ,

for all D ∈ A. A typical situation is when A = P , an orthogonal projec-
tion which is always ≤ 1l, then D† P D ≤ D†D.

3. Let B(H) � X := Pψ − Pφ = |ψ 〉〈ψ | − |φ 〉〈φ |, ψ �= φ ∈ H. One can
always write

|φ 〉 = α|ψ 〉 + β|ψ⊥ 〉 , 〈ψ |ψ⊥ 〉 = 0 , α := 〈ψ |φ 〉 , β =
√

1 − |α|2 .

Then, on the subspace K spanned by ψ and ψ⊥, X is represented by the
2 × 2 matrix

MX =
(

β2 −βα
−βα∗ −β2

)

.

Thus X has eigenvalues ±β and eigenprojectors

| ± 〉 :=

√
1 ± β

2
|ψ 〉 ∓ e−iϕ

√
1 ∓ β

2
|ψ⊥ 〉,

where eiϕ is the phase of α. Therefore,

X = β(|+ 〉〈+ | − |− 〉〈− |) , |X| = β QK ,

where QK = |+ 〉〈+ | + | − 〉〈− | projects onto K. Further, U = β−1X is
an isometry on K that vanishes on K

⊥.
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4. If X = U |X| then X† = |X|U† whence

XX† = U |X|2 U† = U X†X U† .

Therefore, X†X and XX† have the same eigenvalues with the same
degeneracies apart, possibly, from the eigenvalue 0.

5. Suppose 0 < X ≤ Y , X,Y ∈ B(H), then Y −1 ≤ X−1. Indeed, X−1 and
Y −1 exist; thus one can set Z := Y −1/2XY −1/2. Then, Z ≤ 1l. In fact,
(see Definition 5.2.2) for all ψ ∈ H

〈ψ |Y −1/2XY −1/2 |ψ 〉 = 〈Y −1/2ψ |X |Y −1/2ψ 〉
≤ 〈Y −1/2ψ |Y |Y −1/2ψ 〉 = 〈ψ |ψ 〉 .

By the same argument, multiplication of both sides of the inequality
Z ≤ 1l first by Z−1 = Y 1/2X−1Y 1/2 yields 1l ≤ Y 1/2X−1Y 1/2; one then
multiplies both sides of this inequality by Y −1/2.

6. Let X ≤ Y ∈ B(H) be such that logX exists (see Remark 5.2.1 and
Remark 5.3.4), then logX ≤ log Y . This follows from the spectral calculus
and the previous point, for t+X ≤ t+ Y for all t ≥ 0 and the fact that

log
x

y
=
∫ +∞

0

dt
1

t+ x
−
∫ +∞

0

dt
1

t+ y
, ∀x, y > 0 .

Then, logX − log Y =
∫ +∞

0

dt
1

t+X
−
∫ +∞

0

dt
1

t+ Y
≤ 0.

7. Consider the setting of Example 5.2.1.3, that is the C∗ algebraMN (B(H));
X̃ ≥ 0 if and only if 〈 ψ̃ | X̃ |ψ̃ 〉 =

∑N
i,j=1〈ψi |Xij |ψj 〉 ≥ 0 for all ψ̃ ∈ H̃.

By arbitrarily choosing Yi ∈ B(H), φ ∈ H and setting |ψi 〉 := Yi|φ 〉, it
follows that X̃ ≥ 0 if and only if

N∑

i,j=1

Y †
i Xij Yj =

(
Y †

1 · · · Y †
N

)
⎛

⎝

X11 · · · X1N
...

...
...

XN1 · · · XNN

⎞

⎠

⎛

⎝

Y1
...
YN

⎞

⎠ ≥ 0

for all Yi ∈ B(H).
8. Also, X̃ ≥ 0 if and only if X̃ = Ỹ †Ỹ , Ỹ ∈ MN (B(H)). Then,

X̃ =
N∑

i,j=1
k,�=1

EjiEk	 ⊗ Y †
ijYk	 =

n∑

k=1

⎛

⎝
N∑

j,	=1

Ej	 ⊗ Y †
kjYk	

⎞

⎠ .

Therefore, X̃ ≥ 0 if and only if it is a sum of matrices of the form [Y †
i Yj ],

Yi ∈ B(H).
9. Consider the N ×N matrix Ẽ := [Eij ] ∈ MN (MN (C)) whose entries are

matrix units Eij ∈ MN (C). According to the previous point, Ẽ ≥ 0 ;
indeed,
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Ẽ =
N∑

i,j=1

Eij ⊗Eij =
N∑

i,j=1

Eij ⊗ E†
kiEkj ∀ k = 1, 2, . . . , N .

Let {| i 〉}N
i=1 be the ONB such that Eij = | i 〉〈 j |; then, Ẽ turns out to

be proportional to the orthogonal projector P̂N
+ ,

P̂N
+ = |Ψ̂N

+ 〉〈Ψ̂N
+ | =

1
N

N∑

i,j=1

| i 〉〈 j | ⊗ | i 〉〈 j | =
1
N

Ẽ (5.17)

onto the totally symmetric state

C
N ⊗ C

N � |Ψ̂N
+ 〉 :=

1√
N

N∑

i=1

| ii 〉 . (5.18)

Finite Dimensional algebras

A C∗ algebra A is finite dimensional if its dimension as a linear space is finite;
as such it has an identity 1l. In particular, its center ZA (see Example 5.2.1.5)
is a finite dimensional algebra whose elements all commute: such an algebra
is called Abelian. It is generated by minimal projections {Pi}n

i=1 (see Exam-
ple 5.3.4). Due to their orthogonality, A =

⊕n
i=1 Ai, where Ai := APi, with

Pi its identity operator, whence their centers are trivial and the Ai simple
algebras. In fact, Ai cannot contain any non trivial ideal i ⊆ A, for, like
A, also i has an identity E [296]; then, XE ∈ i =⇒ EXE = XE so that
E commutes with all self-adjoint X ∈ Ai and thus belongs to its center:
EX = (X E)† = EX E = X E.

We shall set A = Ai and show that it is isomorphic to a matrix algebra
by constructing an appropriate system of matrix units {Ei,j}d

i,j=1.
Let B ⊆ A be a maximally Abelian subalgebra with minimal projectors

{Qj}d
j=1 such that QjQk = δjkQj and

∑d
j=1 Qj = 1l. For each Qj , one can

always choose Xj ∈ A such that Yj := QjXjQ1 �= 0; indeed, for all X ∈ A,
iX := {

∑n
i=1 Xi X Yi : Xi, Y ; i ∈ A} is an ideal of A which, as A is simple,

must coincide with it.
Observe that Y †

j Yj = Q1X
†
jQjXjQ1 and YjY

†
j = QjXjQ1X

†
jQj commute

with B; since B is maximally Abelian, they belong to it. Thus, Y †
j Yj = λjQ1

and YjY
†
j = μjQj . Further, λj = μj > 0, for ‖Y †

j Yj‖ = ‖YjY
†
j ‖. By setting

Zj := Yj/
√
λj and Eij := ZiZ

†
j it follows that Z†

jZj = Q1, while Ejj =
ZjZ

†
j = Qj for all j. Moreover,

EijEpq =
QiXiQ1X

†
jQjQpXpQ1X

†
qQq

√
λiλjλpλq
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= δjp

Yi
︷ ︸︸ ︷
QiXiQ1

Y †
j Yj

︷ ︸︸ ︷

Q1X
†
jQjXjQ1

Y †
q

︷ ︸︸ ︷
Q1X

†
qQq

√
λiλq λj

= δjpEiq .

Thus, the Eij are the required set of matrix units as they linearly span A: for
all X ∈ A, Z†

i X Zj = (Q1X
†
i Qi X QjXjQ1)/

√
λiλj = μij(X)Q1, whence

X =
d∑

i,j=1

Qi X Qj =
d∑

i,j=1

ZiZ
†
i X ZjZ

†
j =

d∑

i,j=1

μij(X)ZiQ1Z
†
j

=
d∑

i,j=1

μij(X)Eij .

Therefore, any finite dimensional C∗ algebra is isomorphic to the orthogonal
sum of full matrix algebras: A �

⊕n
i=1 Mdi

(C).

Compact Operators

If H is infinite dimensional, the matricial structure of MN (C) carries over to
the so-called compact operators, B∞(H). These are all X ∈ B(H) such that
|X| has a discrete spectrum of finitely degenerate eigenvalues that accumulate
to 0, the only eigenvalue with possibly infinite degeneracy 2. It turns out that
these spectral properties are preserved by linear combinations and operator
multiplication [251, 270].

Practically speaking, compact operators are obtained by closing with re-
spect to the uniform norm the ∗-algebra of finite rank operators, that is of
the linear span of all possible X on H that are non-zero on finite dimensional
subspaces, only, where they can be represented as usual matrices. As such the
algebra of compact operators is a Banach ∗-algebra without identity operator
for the only eigenvalue of 1l is infinitely degenerate.

Trace-Class Operators

Consider a matrix algebra MN (C), the functional Tr : MN (C) �→ C,

MN (C) � X �→ Tr(X) :=
N∑

i=1

〈Ψi |X |Ψi 〉 , (5.19)

where {Ψj}N
j=1 is any ONB in C

N , defines a so-called trace on MN (C).

2The simplest example of compact operator is any projector P = |ψ 〉〈ψ | which
vanishes on the orthogonal complement of ψ, whence its zero eigenvalues is infinitely
degenerate when H is infinite dimensional.
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The trace is basis-independent; indeed, because of (5.2); given any two
ONBs {Φj}N

j=1 and {Ψk}N
k=1,

N∑

j=1

〈Φj |X |Φj 〉 =
N∑

j,k,	=1

〈Φj |Ψk 〉〈Ψk |X |Ψ	 〉〈Ψ	 |Φj 〉

N∑

k,	=1

( N∑

j=1

〈Ψ	 |Φj 〉〈Φj |Ψk 〉

︸ ︷︷ ︸
δk�

)
〈Ψk |X |Ψ	 〉 =

N∑

k=1

〈Ψk |X |Ψk 〉 .

The trace of a matrix amounts to the sum of its diagonal entries, so Tr(X) ≥ 0
if X ≥ 0. Further, it is cyclic; namely, for all X,Y ∈ MN (C), (5.2) yields

Tr(XY ) =
N∑

i=1

〈Ψi |XY |Ψi 〉 =
N∑

i,j=1

〈Ψi |X |Ψj 〉〈Ψj |Y |Ψi 〉

=
N∑

i,j=1

〈Ψj |Y |Ψi 〉〈Ψi |X |Ψj 〉 = Tr(Y X) . (5.20)

Using the trace, one constructs the following map from MN (C) onto R
+,

‖ · ‖1 : X �→ ‖X‖1 := Tr|X| =
N∑

i=1

xi , (5.21)

where xj are the singular values of X (see (5.16)). This map vanishes only if
X = 0; also, from (5.4) and (5.16) it follows that

|Tr(Y X)| ≤
N∑

i=1

xi|〈Ψi |Y U |Ψi 〉| ≤ ‖Y ‖ ‖X‖1 (5.22)

|TrX| = |Tr(U |X|)| ≤ ‖X‖1 (5.23)
‖X + Z‖1 = Tr(U†(X + Z)) ≤ ‖X‖1 + ‖Z‖1 . (5.24)

Therefore, ‖ · ‖1 is a norm on MN (C) called trace-norm.

If extended to B(H) with H infinite dimensional, the trace selects the
linear subspace B1(H) ⊂ B(H) of trace-class operators:

B1(H) :=
{
X ∈ B(H) : ‖X‖1 < ∞

}
.

If X ∈ B1(H) then, by the polar decomposition X =
∑

n xn|φn 〉〈ψn |, where
{φn} and {ψn} are two ONB in H, xn are the eigenvalues of |X| =

√
X†X

and the sum converges in trace-norm; also, ‖X‖1 =
∑∞

i=1 xi.
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Then, inequality (5.22) holds with Y ∈ B(H), X ∈ B1(H), (5.23) and
(5.24) with X,Z ∈ B1(H). The trace-class operators thus form a ∗-algebra 3;
B1(H) is also closed with respect to the trace-norm and thus a Banach ∗-
algebra, without identity in infinite dimension for Tr(1l) diverges [251, 270] .

Example 5.2.4. [64] Any X ∈ B(H) defines a linear functional

FX : B1(H) �→ C , ρ �→ FX(ρ) := Tr(X ρ) ∀ ρ ∈ B1(H) ,

on B1(H) which is bounded for |FX(ρ)| ≤ ‖X‖ ‖ρ‖1. Therefore, B(H) can be
identified with a subspace of B1(H)∗, the topological dual of B1(H), that is
the (Banach) space consisting of all continuous linear functionals on B1(H).
Actually, B(H) = B1(H)∗. Indeed, let F ∈ B1(H)∗ and consider the bounded
operator |φ 〉〈ψ | with φ , ψ ∈ H not necessarily normalized. It is also trace-
class; indeed, set Pψ := |ψ 〉〈ψ |/‖ψ‖2; then,

‖|φ 〉〈ψ |‖1 = Tr
(√

‖φ‖2 ‖ψ‖2 Pψ

)
= ‖φ‖ ‖ψ‖ .

It thus follows that |F (|φ 〉〈ψ |)| ≤ ‖F‖ ‖φ‖ ‖ψ‖ for all φ, ψ ∈ H. Therefore,
each F ∈ B1(H)∗ defines a so-called sesquilinear form on H × H, linear in
the first argument, antilinear in the second one and continuous with respect
to both. Consequently, there exists an unique operator XF ∈ B(H) such
that F (|φ 〉〈ψ |) = 〈ψ |XF |φ 〉 for all φ, ψ ∈ H. Before proving this fact,
we draw the conclusion; as already noticed, any ρ ∈ B1(H) can be written as
ρ =

∑
n rn|φn 〉〈ψn | with the possibly infinite sum converging in trace-norm;

thus, B1(H)∗ ⊆ B(H) for

F (ρ) =
∑

n

rn F (|φn 〉〈ψn |) =
∑

n

rn 〈ψn |XF |φn 〉 = Tr(XF ρ) .

The property of sesquilinear forms used above comes as follows: if f : H �→ C

is a continuous linear functional on H, that is |f(ψ)| ≤ ‖f‖ ‖ψ‖, then Ker(f)
is closed. Assume Ker(f) �= H; if φ ∈ Ker(f)⊥, ‖φ‖ = 1, then f(φ) �= 0 and

Ker(f) � |χ 〉 := f(φ)|ψ 〉 − f(ψ)|φ 〉 =⇒ f(ψ) = 〈 φ̃ |ψ 〉 ,

where | φ̃ 〉 := f(φ)|φ 〉. It is easily seen that this vector is unique and that
‖f‖ = |f(φ)|. Given a continuous sesquilinear form f : H × H �→ C, for each
fixed ψ ∈ H it defines a continuous linear functional fψ : H �→ H; therefore,
there exists a unique |χψ 〉 ∈ H such that f(φ, ψ) = fψ(φ) = 〈χψ |φ 〉. This
allows to define a linear operator X†

f ∈ B(H) such that X†
f |ψ 〉 = |χψ 〉 and,

whence f(φ, ψ) = 〈ψ |Xf |φ 〉.
3
B1(H) is a two-sided ideal, namely Y X, Y X ∈ B1(H) whenever X ∈ B1(H) and

Y ∈ B(H).
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Remark 5.2.3. As B(H) is the dual of B1(H) it can be equipped with the
corresponding w∗-topology (see Remark 5.1.1.5); namely, any ρ ∈ B1(H)
defines a linear functional B(H) � X �→ Eρ(X) := Tr(Xρ). The w∗-topology
on B(H) is the coarsest one with respect to which all semi-norms Lρ(X) :=
|Tr(ρX)| are continuous. By comparing these semi-norms with those in (5.9),
it turns out that the w∗ topology coincides with the σ-weak topology.

Hilbert-Schmidt Operators

A second norm on MN (C), also based on the trace, is given by

‖ · ‖2 : X �→ ‖X‖2 :=
√

Tr|X|2 =

√
√
√
√

N∑

i=1

x2
i . (5.25)

It is called Hilbert-Schmidt norm; unlike the trace-norm, it originates from a
(Hilbert-Schmidt) scalar product

MN (C) ×MN (C) � (Y,X) �→ Tr(Y †X) . (5.26)

that satisfies |Tr(Y †X)| ≤ ‖Y ‖2‖X‖2. In fact, using (5.16) and (5.1),

|Tr(Y †X)| ≤
N∑

i=1

xi

∣
∣
∣〈Ψi |Y †U |Ψi 〉

∣
∣
∣ ≤

√
√
√
√

N∑

i=1

x2
i

√
√
√
√

N∑

j=1

|〈Ψj |Y †U |Ψj 〉|2

≤ ‖X‖2

√
√
√
√

N∑

j=1

〈Ψj |Y †U |Ψj 〉〈Ψj |U†Y |Ψj 〉 ≤ ‖X‖2 ‖Y ‖2 , (5.27)

for U |Ψj 〉〈Ψj |U† ≤ 1l. When defined on B(H) with H infinite-dimensional,
the Hilbert-Schmidt norm singles out the linear subspace B2(H) of Hilbert-
Schmidt operators

B2(H) :=
{
X ∈ B(H) : ‖X‖2 < ∞

}
.

If X ∈ B2(H), ‖X‖2 =
√∑∞

i=1 x
2
i , with xi the singular values of X. Then,

inequality (5.27) holds with X,Y ∈ B2(H), respectively Y ∈ B(H), X ∈
B2(H). B2(H) is also close with respect to ‖·‖2 and thus a Banach ∗-subalgebra
of B(H) (actually also a two-sided ideal as B1(H)) without identity in the
infinite dimensional case for ‖1l‖2 diverges [251, 270].

Example 5.2.5. Let Fj , j = 1, 2, . . . , N2, be a set of N×N matrices, orthog-
onal with respect to (5.26), Tr(F †

j Fk) = δjk: they form an ONB in MN (C).
Indeed, as a Hilbert space equipped with (5.26), MN (C) has dimension N2,
therefore, for all X ∈ MN (C),
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MN (C) � X =
N2
∑

j=1

Tr(X F †
j )Fj . (5.28)

Consider the linear map TrN : MN (C) �→ MN (C) defined by

MN (C) � X �→ TrN [X] := Tr(X) 1lN . (5.29)

We shall refer to it as trace map. Choose an ONB {|α 〉}N
α=1 in C

N ; the
N2 matrix units Eαβ := |α 〉〈β | also form an ONB in MN (C). Thus, there
must exist a unitary matrix U ∈ MN2(C) such that Eαβ =

∑N2

i=1 Uαβ,i Fi.
Therefore, the trace-map can be recast as

TrN [X] =
N∑

α,β=1

Eβα X Eαβ =
N2
∑

i,j=1

N∑

α,β=1
γ,δ=1

U∗
αβ,i Uαβ,j F

†
i X Fj

=
N2
∑

i=1

F †
i X Fi . (5.30)

Remark 5.2.4. The uniform, trace and Hilbert-Schmidt norms are all equiv-
alent on finite-dimensional H and thus define equivalent topologies with the
same converging sequences. Indeed, given X ∈ MN (C) its norm coincides
with its largest singular values, ‖X‖ = max1≤i≤N xi, then

‖X‖ ≤ ‖X‖1 , ‖X‖1 ≤ N ‖X‖ , ‖X‖ ≤ ‖X‖2 , ‖X‖2 ≤
√
N ‖X‖ .

Also, ‖X‖2 ≤ ‖X‖1 for the sum of squares of positive numbers is smaller
that the square of their sum; while from (5.1),

‖X‖1 =
N∑

i=1

xi ≤

√
√
√
√

N∑

i=1

12

√
√
√
√

N∑

j=1

x2
j =

√
N ‖X‖2 .

However, the trace and Hilbert-Schmidt norms are not C∗ norms; indeed, for
any N ∈ N,

‖X†X‖1 =

√
√
√
√

N∑

i=1

x2
i �=

N∑

i=1

xi , ‖X†X‖2 =

√
√
√
√

N∑

i=1

x4
i �=

N∑

i=1

x2
i .

Therefore, the trace-class and Hilbert-Schmidt operators form Banach ∗-
algebras but not C∗ algebras.
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5.2.2 Positive and Completely Positive Maps

Physical transformations of quantum systems are described by linear maps
acting either on their observables or on their states. As already seen in the
classical case, these two possibilities are dual to each other; in the first case
states are not affected, in the second one, states change while the observables
do not. The physically relevant request is that mean values do not depend
on which of the two ways they are calculated.

In the classical setting, states must change while preserving their ultimate
characteristic of being probability distributions; the maps which describe clas-
sical state transformations must thus be positivity preserving. In quantum
mechanics things are more complicated and intriguing; it is indeed neces-
sary to sharpen the notion of positive linear transformation. This latter is as
follows.

Definition 5.2.1 (Positive Maps). A linear map Λ : B(H) �→ B(H) is
positive if and only if B(H) � X ≥ 0 =⇒ B(H) � Λ[X] ≥ 0.

Given a positive linear map Λ, one can always lift it to act on the operator-
valued algebras MN (B(H)) as

idN ⊗ Λ : [Xij ] �→ [Λ[Xij ]] =

⎛

⎜
⎜
⎜
⎝

Λ[X11]· · · · Λ[X1N ]
· · · · ·
· · · · ·
· · · · ·

Λ[XN1] · · · Λ[XNN ]

⎞

⎟
⎟
⎟
⎠

. (5.31)

One may then ask whether idN ⊗ Λ is positive, too.

Definition 5.2.2 (Completely Positive Maps).
A linear map Λ : B(H) �→ B(H) is N -positive if and only if

idN ⊗ Λ : MN (B(H)) �→ MN (B(H))

is positive; Λ is completely positive (CP) if and only if it is N -positive for all
N . A linear map Λ : B(H) �→ B(H) is called a CPU map when it is CP and
also unital, that is Λ[1l] = 1l.

Examples 5.2.6.

1. Positive maps are hermiticity-preserving, for Λ[X†] = Λ[X]†. Indeed,
any X ∈ B(H) can be decomposed into Hermitian components, X =
X +X†

2︸ ︷︷ ︸
X1

+ i
X −X†

2i︸ ︷︷ ︸
X2

. In turn,X1,2 can be decomposed into positive com-

ponents X1,2 = X+
1,2 − X−

1,2, X
±
1,2 :=

|X1,2| ±X1,2

2
. Thus,

Λ[X]† = Λ[X+
1 ]−Λ[X−

1 ] − i Λ[X+
2 ] + i Λ[X−

2 ] = Λ[X1 − iX2] = Λ[X†] .
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2. Positivity corresponds to 1-positivity; complete positivity is stronger for
there are positive maps which are not 2-positive, a renown example being
transposition T2 : M2(C) �→ M2(C), T2[X] = XT , with respect to a
fixed ONB. We shall consider the N -dimensional case: TN is positive for
transposition does not affect the spectrum of a matrix, but the partial
transposition idN ⊗ TN is not positive, whence TN is not N -positive
and thus not CP . This can be seen by considering the positive matrix
Ẽ = [Eij ] of Example 5.2.3.9. Then,

V := idN ⊗ TN [Ẽ] = N idN ⊗ TN [P̂N
+ ] =

N∑

i,j=1

| i 〉〈 j | ⊗ | j 〉〈 i | (5.32)

acts as a flip operator on C
N ⊗ C

N , that is V
(
|ψ 〉 ⊗ |φ 〉

)
= |φ 〉 ⊗ |ψ 〉.

Since V has eigenvalue 1 on the N(N + 1)/2 dimensional subspace of
symmetric states and −1 on the N(N − 1)/2 dimensional subspace of
anti-symmetric states, it is not positive and TN not N -positive, hence
not completely positive.

3. CPU maps satisfy the inequality

Λ[X†X] ≥ Λ[X†]Λ[X] ≥ 0 . (5.33)

In fact, from Example 5.2.3.8 it turns out that
(

1l X
X† X†X

)

=
(

1l 0
X† 0

) (
1l X
0 0

)

≥ 0 , ∀X ∈ B(H) .

Since Λ is CPU , it follows that

id2 ⊗ Λ

(
1l X
X† X†X

)

=
(

1l Λ[X]
Λ[X†] Λ[X†X]

)

≥ 0 ,

whence, because of the previous point, and using Example 5.2.3.7,

(Λ[X]† −1l )
(

1l Λ[X]
Λ[X†] Λ[X†X]

)(
Λ[X]
−1l

)

= Λ[X†X] − Λ[X†]Λ[X]

≥ 0 .

4. CPU maps are contractions: since B(H) � X†X ≤ ‖X‖2, positiv-
ity, unitality and (5.33) yield Λ[X]†Λ[X] ≤ Λ[X†X] ≤ ‖X‖2, whence
‖Λ[X]‖ ≤ ‖X‖.

5. Let B ⊆ A a C∗ subalgebra of a C∗ algebra A, both assumed with
identity, the map ıBA : B �→ A denotes the natural embedding of B into
A; according to Examples 5.2.3.7 and 8, embeddings are CPU maps.
Indeed, for all Ai ∈ A, Bj ∈ B and N ∈ N,

N∑

i,j=1

A†
i ıBA[B†

i Bj ]Aj = Z† Z ≥ 0 .
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6. If A and B are C∗ algebras (with identity) and A is Abelian, then
any positive map Λ : A �→ B is CP . In order to check whether∑n

i,j=1 Y
†
i Λ[X†

i Xj ]Yj ≥ 0 for all Xi,j ∈ A, Yi,j ∈ B and n ∈ N we
use that Yi,j and Λ[X†

i Xj ] can be identified with functions f(x) ∈ C(X )
over a compact topological space X . Then

( n∑

i,j=1

Y †
i Λ[X†

i Xj ]Yj

)
(x) =

n∑

i,j=1

Y ∗
i (x)Λ[X†

i Xj ](x)Yj(x)

= Λ[Z†
xZx](x) ≥ 0 ,

where Zx :=
∑n

i=1 Yi(x)Xi ∈ A for all x ∈ X .
7. If A and B are C∗ algebras with identity and B is Abelian, then any

positive map Λ : A �→ B is CP . We take B = B(H) and check whether
∑n

i,j=1〈ψi |Λ[X†
i Xj ] |ψj 〉 ≥ 0 for all ψi ∈ H, n ∈ N and Xi ∈ A identi-

fied with functions in C(X ). By duality, ΛT [|ψj 〉〈ψi |] gives a complex
measure on X such that

n∑

i,j=1

〈ψi |Λ[X†
i Xj ] |ψj 〉 =

n∑

i,j=1

∫

X
dμij(x)X∗

i (x)Xj(x) ≥ 0 .

Indeed, for all ci ∈ C and |Ψ 〉 :=
∑n

i=1 ci|ψi 〉,
n∑

i,j=1

c∗i cj

∫

X
dμi,j(x) =

n∑

i,j=1

〈ψi |Λ[1l] |ψj 〉 = 〈Ψ |Λ[1l] |Ψ 〉 ≥ 0 .

In order to ascertain whether a linear map is completely positive, it seems
necessary to checkN -positivity for allN ∈ N. Luckily, the following result [82,
83] shows that N -positive maps Λ : MN (C) → B(H) are automatically CP .

Theorem 5.2.1 (Choi). A linear map Λ : MN (C) → B(H) is CP if and
only if idN ⊗Λ[Ẽ] ≥ 0, where Ẽ is the matrix introduced in Example 5.2.3.9.

Proof: As seen in Example 5.2.3.9, Ẽ ≥ 0; thus the “only” if part follows
from the fact that if Λ is CP it is N -positive (see Definition 5.2.2).

As regards the “if” part, in order to check that Λ N -positive implies Λ
CP , we choose M ∈ N arbitrary and show that idM ⊗ Λ[X̃] ≥ 0 for all
MM (C)⊗B(H) � X̃ ≥ 0. Using Example 5.2.3.8, it is sufficient to show that
∑M

i,j=1 Y
†
i Λ[X†

i Xj ]Yj ≥ 0 for all choices of Yi ∈ B(H) and Xi ∈ MN (C).
Then, by writing Xi =

∑N
k,	=1 x

i
k	 Ek	 ∈ MN (C), from the assumed positiv-

ity of [Λ[Eij ]]Ni,j=1 and Example 5.2.3.7 it turns out that



160 5 Quantum Mechanics of Finite Degrees of Freedom

M∑

i,j=1

Y †
i Λ[X†

i Xj ]Yj =
N∑

k,	,s=1

(
M∑

i=1

xi
k	Yi

)†

Λ[E	s]
M∑

j=1

xj
ksYj

︸ ︷︷ ︸
Zks

=
N∑

k=1

N∑

	,s=1

Z†
k	 Λ[E	s]Zks ≥ 0 ,

whence Λ is M -positive for all M ∈ N and thus CP . �

Remark 5.2.5. The matrix XΛ := idN ⊗ Λ[Ẽ] ∈ MN (MM (C)) associated
with any linear map Λ : MN (C) �→ MM (C) is known as Choi matrix. Theo-
rem 5.2.1 can then be rephrased as: Λ : MN (C) �→ MM (C) is CP if and only
if its Choi matrix is positive.

Vice versa, let X =
∑

i,j;s,r Xis,jr E
(N)
ij ⊗ E

(M)
rs be an NM × NM ma-

trix, where E(N)
ij and E

(M)
rs denote the matrix units in MN (C), respectively

MM (C). The map ΛX : MN (C) �→ MM (C) defined by linear extension of

E
(N)
ij �→ ΛX [E(N)

ij ] :=
M∑

r,s=1

E(M)
sr Xis,jr , (5.34)

is such that its Choi matrix is X. Denoting by L(N,M) the linear space of
linear maps Λ : MN (C) �→ MM (C), the one-to-one relation

L(N,M) � Λ ←→ X ∈ MNM (C)

is known as Jamio�lkowski isomorphism [158].

If a map Λ : MN (C) �→ B(H) is only positive, its Choi matrix cannot be
positive, but only block positive, namely only its mean values relative to
product states in C

N ⊗ H are surely non-negative.

Proposition 5.2.1. A linear map Λ : MN (C) �→ B(H) is positive if and only
if 〈ψ ⊗ φ | idN ⊗ Λ[Ẽ] |ψ ⊗ φ 〉 ≥ 0 for all ψ ∈ C

N and φ ∈ H.

Proof: Positive matrices can be written as sums of projectors with positive
coefficients, thus, according to Definition 5.2.1, Λ : MN (C) �→ B(H) is positive
if and only if 〈φ |Λ[|ψ 〉〈ψ |] |φ 〉 ≥ 0 for all φ ∈ H and ψ ∈ C

N . But,

〈φ |Λ[|ψ 〉〈ψ |] |φ 〉 =
N1∑

i,j=1

ψ∗(i)ψ(j) 〈φ |Λ[Eij ] |φ2 〉

= 〈ψ∗ ⊗ φ |
N∑

i,j=1

Eij ⊗ Λ[Eij ] |ψ∗ ⊗ φ 〉

= 〈ψ∗ ⊗ φ | idN ⊗ Λ[Ẽ] |ψ∗ ⊗ φ 〉 ,
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where |ψ∗ 〉 =
∑N

i=1 ψ
∗(i)| i 〉 with respect to the fixed ONB in C

N such that
Eij = | i 〉〈 j |. �

In finite dimension the structure of CP maps can be made explicit by
means of the Hilbert-structure inherited by MN (C) from the Hilbert-Schmidt
scalar product (5.26).

Examples 5.2.7.

1. Consider the linear space L(N,N) of linear maps Λ : MN (C) �→ MN (C);
it can be given a Hilbert space structure by means of the Hilbert-Schmidt
scalar product of their Choi matrices,

<< Λ1|Λ2 >>:= Tr
(
idN ⊗ Λ1[Ẽ]† idN ⊗ Λ2[Ẽ]

)
.

Consider an ONB {Fi}N2

i=1 in MN (C) and the maps Φij ∈ L(N,N), de-
fined by Φij [X] := F †

i X Fj . They satisfy << Φij |Φk	 >>= δikδj	 and
therefore form an ONB in L(N,N), whence

Λ =
N2
∑

i,j=1

Lij F
†
i X Fj , Lij :=<< Φij |Λ >>= Tr(F †

i Λ[Fj ]) , (5.35)

for all Λ ∈ L(N,N). If Λ preserves hermiticity, the N2×N2 matrix of co-
efficients Λij is Hermitian and can be diagonalized, Lij =

∑N2

k=1 �kV
∗
kiVkj .

Suppose the eigenvalues �k are positive, then

Λ[X] =
N2
∑

k=1

G†
k X Gk , Gk :=

√
�k

N2
∑

j=1

Vkj Fj . (5.36)

Using Example 5.2.3.8, maps Γ ∈ L(N,N) of the form Γ [X] = G†X G
are easily proved to be CP . Therefore, linear maps Λ : MN (C) �→ MN (C)
of the form (5.36) are CP and CPU if

∑N
k=1 G

†
kGk = 1lN . Notice that the

decomposition (5.36) is highly non-unique; another possible decomposi-
tion is indeed provided by (5.35) if the matrix [Lij ] is positive.

2. Let TrN : MN (C) �→ MN (C) be the trace map of Example 5.2.5 and
consider the reduction map [151] Λ : MN (C) �→ MN (C),

Λ[X] = TrN [X] −X . (5.37)

Λ is positive, but not CP ; positivity follows since, if X ≥ 0, TrN [X] is not
smaller than any of the eigenvalues of X. On the other hand, using (5.17),
the Choi matrix of Λ turns out to be idN ⊗ Λ[Ẽ] = 1lN2 −NP̂N

+ ; it has
a negative eigenvalue 1 −N , whence Λ cannot be CP .



162 5 Quantum Mechanics of Finite Degrees of Freedom

3. The transposition TN : MN (C) �→ MN (C) is the paradigm of a map
which is positive but not CP (as it is not N -positive); by combining TN

with Λ in (5.37), Λ̂ := Λ ◦ TN : MN (C) �→ MN (C) is CP . Indeed,
using (5.32), idN ⊗ Λ̂[Ẽ] = idN ⊗Λ[V ] = 1lN2 −V ≥ 0, for the eigenvalues
of the flip operator are ±1.

The next two results [287, 180] show that the CP maps are completely char-
acterized by a structure as in (5.36).

Theorem 5.2.2 (Stinespring Dilation). A unital map Λ : B(H) �→ B(K)
is CPU if and only if there exists a triplet (KΛ, πΛ(B(K)), VΛ), where KΛ

is a Hilbert space, VΛ : K �→ KΛ an isometry and πΛ : B(H) �→ B(KΛ) a
representation of B(H) on KΛ such that

Λ[X] = V †
Λ πΛ(X)VΛ . (5.38)

The triplet (KΛ, πΛ(B(K)), VΛ) is unique up to unitary equivalences.

Proof: If Λ has the form (5.38) with V †
ΛVΛ = 1lK, Example 5.2.3.8 shows

that Λ is CPU . To prove the converse, consider the linear span of all elements
of the form X ⊗ ψ, X ∈ B(H) and ψ ∈ H,

B :=

{
∑

i

Xi ⊗ ψi : Xi ∈ B(H) , ψi ∈ H

}

and the bilinear form 〈 · | · 〉Λ : B × B �→ C defined by

(X ⊗ ψ, Y ⊗ φ) �→ 〈X ⊗ ψ |Y ⊗ φ 〉Λ := 〈ψ |Λ[X†Y ] |φ 〉 . (5.39)

If Λ is CP , this bilinear form is positive on B × B (see Example 5.2.3.7),

〈
N∑

i=1

Xi ⊗ ψi |
N∑

j=1

Xj ⊗ ψj 〉Λ =
N∑

i,j=1

〈ψi |Λ[X†
i Xj ] |ψj 〉

= 〈 ψ̃ |
N∑

i,j=1

Eij ⊗ Λ[Eij ] |ψ̃ 〉 ≥ 0 ∀N ∈ N .

By considering the quotient of B by the kernel of the bilinear form, (5.39)
gives a scalar product on the linear span BΛ := B/Kern(〈 · | · 〉Λ) of the
equivalence classes [X ⊗ψ] (see the discussion after Definition 5.3.5). Set KΛ

equal to the closure of BΛ with respect to the scalar product 〈 · | · 〉Λ and let
πΛ represent B(H) on KΛ by πΛ(X)[Y ⊗ φ] = [XY ⊗ φ]. Then, the linear
maps VΛ : K �→ KΛ and V †

Λ : KΛ �→ K,

VΛ|φ 〉 = [1l ⊗ φ] , V †
Λ[X ⊗ φ] = Λ[X]|φ 〉 ,

define an isometry (Λ is CPU) and V †
Λπ(X)VΛ|φ 〉 = V †

Λ[X ⊗ φ] = Λ[X]|φ 〉
for all φ ∈ H. �
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Example 5.2.8. That CPU maps are contractions (see Example 5.2.6.4)
comes easily from Stinespring dilation. In fact, VΛ is an isometry, thus
VΛV

†
Λ ≤ 1l, whence

Λ[X†X] = V †
ΛπΛ[X†]πΛ[X]VΛ ≥ V †

ΛπΛ[X†]VΛ V †
ΛπΛ[X]VΛ = Λ[X]†Λ[X] .

Proposition 5.2.1 (Kraus Representation). Λ : B(H) �→ B(K)) is
CPU if and only if it admits a Kraus representation of the form

Λ[X] =
∑

j

G†
j X Gj , (5.40)

where the Kraus operators Gj : K �→ H are such that, if infinite, the sum
converges in the strong-operator topology.

Proof: The Stinespring representation is of the form B(H)⊗ 1l
K̃

on H⊗ K̃,
for a finite dimensional or countably infinite Hilbert space K̃. Given an ONB
{| j 〉} in K̃, the isometry VΛ : K �→ H ⊗ K̃ and its adjoint V †

Λ : H ⊗ K̃ �→ K

read

VΛ|φ 〉 =
∑

j

Gj |φ 〉 ⊗ | j 〉 , V †
Λ|ψ ⊗ φ 〉

∑

j

〈 j |φ 〉Gj |ψ 〉 ,

with Gj : K �→ H and
∑

j G
†
jGj = 1lK. �

Remarks 5.2.6.

1. Using (5.36), the composition of CPU maps results in a CPU map. Indeed,
let Λ12 : B(H1) �→ B(H2), Λ12[X] =

∑
j G

†
12(j)X G12(j), X ∈ B(H1), and

Λ23 : B(H2) �→ B(H3), Λ23[Y ] =
∑

k G
†
23(k)Y G23(k), Y ∈ B(H2), then,

Λ23 ◦ Λ12[X] =
∑

j,k

G†
13(jk)X G13(jk) ,

with new Kraus operators G13(jk) := G12(j)G23(k).
2. Let Λ : B(H) �→ B(H) be CPU and T the transposition with respect to a

fixed ONB in H; while Λ◦T need not be CPU , T ◦Λ◦T surely is; indeed,
T ◦ Λ ◦ T[X] =

∑
j T
[
G†

j [XT ]Gj

]
=
∑

j G
T
j X G∗

j , with T[X] =: XT ,

X ∈ B(H), the transposed of X and X∗ := (X†)T its conjugate.
3. In full generality, a CPU map Λ : B(H) �→ B(K) has the form

Λ[X] =
∑

i,j

Cij L
†
i X Lj ,

with
∑

i,j CijL
†
iLj = 1lK and C = [Cij ] a positive matrix, from which

the diagonal Kraus representation is achieved by diagonalization as in
Example 5.2.7.



164 5 Quantum Mechanics of Finite Degrees of Freedom

4. While the structure of completely positive maps is fully under control, it
is not so for positive maps which are still somewhat elusive. For instance,
if the coefficients matrix C = [Cij ] is Hermitian but not positive, by
grouping together its positive and negative eigenvalues, ck, Λ can always
be written as the difference of two CP maps,

Λ[X] =
∑

ck≥0

ck G
†
k X Gk −

∑

ck<0

|ck|G†
k X Gk . (5.41)

For instance, let {Fi}N2

i=1 be a Hilbert-Schmidt ONB in MN (C) with
F1 = 1lN/N ; using (5.30), the reduction map in Example 5.2.7.2, which

is positive, but not CP , reads Λ[X] =
( 1
N2

− 1
)
X +

N2
∑

i=2

F †
i X Fi.

If there are no negative ck, then Λ is completely positive; if not, no general
rule exists to deduce from the ck whether Λ is a positive map.

Conditional Expectations

Particularly important CPU maps are the so-called conditional expectations
which are the non-commutative counterparts of the Radon-Nikodym deriva-
tive in (2.51).

Definition 5.2.3. [117] A positive, unital linear map E : A �→ B ⊆ A where
A and B are C∗ algebras with identity is a conditional expectation of A onto
B if E[AB] = E[A]B for all A ∈ A and B ∈ B.

Proposition 5.2.2. Conditional expectations enjoy the following properties:

E[A]† = E[A†] ∀ A ∈ A (5.42)
E[BA] = BE[A] ∀A ∈ A, B ∈ B (5.43)
E ◦ E = E (5.44)

E[A†A] ≥ E[A]† E[A] ∀ A ∈ A (5.45)
‖E‖ = 1 . (5.46)

Further, E is a CPU map.

Proof: Property (5.42) comes from positivity as in Example 5.2.6.1; prop-
erty (5.43) is a consequence of (5.42):

E[BA] = E[(BA)†]† = E[A†B†]† = (E[A†]B†)† = BE[A] .

Property (5.44) follows from E[1lE[A]] = E[A] for all A ∈ A; in order to prove
property (5.45) consider A− E[A] and use positivity and (5.43), then
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0 ≤ E[(A− E[A])†(A− E[A])] = E[A†A] − E[A]† E[A] .

Property (5.46) results from the previous property and positivity:

A†A ≤ 1l‖A‖2 =⇒ E[A]† E[A] ≤ E[A†A] ≤ ‖A‖2 .

Complete positivity is a consequence of (5.43) which yields

E[B1AB2] = B1E[A]B2 ∀ B1,2 ∈ B , A ∈ A .

Therefore, from Examples 5.2.3.7 and 8,

N∑

i,j=1

B†
i E[A†

i Aj ]Bj =
N∑

i,j=1

E[B†
iA

†
i AjBj ] = E[Z† Z] ≥ 0 ,

for all Bi ∈ B, Aj ∈ A and N ∈ N, where Z :=
∑N

j=1 AjBj . �
Because of the properties 3 and 5, conditional expectations are also called

projections of norm one.

Remark 5.2.7. In case A is a von Neumann algebra and A0 ⊆ A a von Neu-
mann subalgebra, one call conditional expectations all projections of norm
one which are also normal. This latter property of linear maps Λ : A1 �→ A2

between von Neumann algebras amounts to the following [64]. Let {Aμ}μ

be an increasing net of operators in A, that is a set of operators indexed
by a set of indexes μ ∈ M equipped with a partial ordering � such that
μ1 � μ2 =⇒ Aμ1 ≤ Aμ2 . If the net {Aμ}μ has an upper bound, then
it has a least upper bound A ∈ A to which the net converges strongly:
s − limμ Aμ = A. Then, Λ is normal if for all nets {Aμ}μ with an upper
bound limμ Λ[Aμ] = Λ[limμ Aμ].

Examples 5.2.9.

1. Let {Pi}i∈I ∈ B(H) be orthogonal projections PiPj = δijPi such that∑
i∈I Pi = 1l, then E[X] :=

∑
i∈I Pi X Pi is a conditional expectation

from B(H) onto the Abelian subalgebra P generated by the Pi. Indeed,
it is positive, linear and writing P � P =

∑
j∈I pjPj , it turns out that

E[XP ] =
∑

i,j∈I

pjPiXPjPi =
∑

i∈I

piPiXPi = E[X]P .

2. Consider two finite-level systems A and B described by matrix algebras
Mna

(C), respectively Mnb
(C); let T̂rA denote the normalized trace map

performed with respect to party A, namely

T̂rA(XA) :=
1
na

TrA(XA) 1lA . (5.47)
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A linear map from the matrix algebra Mna
(C)⊗Mnb

(C) of the compound
system A+B onto the subalgebra 1lA ⊗Mnb

(C) is obtained by defining

E[XA ⊗XB ] := T̂rA(XA) ⊗XB ∀ A ∈ Mna
(C) B ∈ Mnb

(C)

on tensor products and then by extending it by linearity and continuity
to the whole of Mna

(C) ⊗Mnb
(C). Any 0 ≤ X ∈ Mna

(C) ⊗Mnb
(C) can

be written as
∑

i(X
i
A)†Xj

A ⊗ EB
ij by means of a system of matrix units

{EB
ij}nb

i,j=1 in Mnb
(C) (see Examples 5.2.3.7 and 8). Thus, one verifies

that E is a positive linear map; indeed,

〈ΨB |E[X] |ΨB 〉 =
nb∑

i,j=1

T̂rA

((
Xi

A

)†
Xj

A

)
〈ΨB |EB

ij |ΨB 〉

=
1
na

TrA

(
(YA)† YA

)
≥ 0 ,

where YA :=
∑nb

j=1 Ψ
j
B Xj

A with Ψ j
B the j-th component of |ΨB 〉 ∈ C

nb

along the ONB associated with the chosen matrix units. By writing the
identity matrix 1lA+B =

∑na

i=1

∑nb

j=1 E
A
ii ⊗EB

jj where {EA
ij}nA

i,j=1 is a sys-
tem of matrix units in Mna

(C), one shows that E[1lA+B] = 1lA+B, whence
E is unital. Furthermore, as any X ∈ Mna

(C) ⊗Mnb
(C) can be written

in the form X =
∑

	 X
	
A ⊗X	

B , it turns out that

E[XXB ] =
∑

	

T̂rA(X	
A) ⊗X	

BXB = E[X]XB ,

whence E is a conditional expectation from Mna
(C)⊗Mnb

(C) onto 1lA ⊗
Mnb

(C).

5.3 von Neumann Algebras

In this section, we consider in detail some techniques proper to von Neumann
algebras which are C∗ subalgebras of B(H) that are also closed with respect
to the strong and weak topologies [64, 293, 300].

Definition 5.3.1. The commutant of a C∗ algebra A ⊆ B(H) is the C∗ al-
gebra B(H) ⊇ A′ :=

{
X ′ ∈ B(H) : [X ′ , X] = 0 ∀X ∈ A

}
, the bicommutant

the C∗ algebra B(H) � A′′ :=
{
X ′′ ∈ B(H) : [X ′′ , X ′] = 0 ∀X ′ ∈ A′

}
.

Remark 5.3.1. Beside being C∗ algebras, commutants and bicommutants
are also closed with respect to both the strong and weak topology. Indeed, if
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X ′ = (s, w) − limn→∞X ′
n with [X ′

n,X] = 0 for all X ∈ A, then, because of
the continuity of the scalar product,

〈ψ | [X ′ , X] |φ 〉 = lim
n→∞

〈ψ | [X ′ , Xn] |φ 〉 = 0

for all ψ, φ ∈ H, whence X ′ ∈ A′. Therefore, A′ and A′′ contain all those
operators that can be constructed from operators in A via strong-limits and
weak-limits. In particular, A′ and A′′ contain the spectral projectors of any
of their self-adjoint and unitary elements.

Examples 5.3.1.

1. If A ⊆ A′, all its elements commute with each other and A is an Abelian
C∗ algebra, maximally Abelian if A = A′.

2. The center of A is the Abelian C∗ algebra Z := A ∩A′.
3. Of the commutative algebras of section 2.2.1, the C∗ algebra of continuous

functions, C(X ), is not maximally Abelian since it is properly contained
within the C∗ algebra of essentially bounded functions, L

∞
μ (X ); the latter

is instead maximally Abelian [293].
4. If A = B(H), only multiples of the identity operator can commute with

all bounded operators on H, that is B(H)′ = {1l}, the trivial algebra. On
the contrary, {1l}′ = B(H)′′ = B(H). The same is true for the C∗ algebra
of compact operators A = B∞(H), A′ = {1l} for the identity is the only
operator on H which commute with all finite-rank ones; however, unlike
for B(H), B∞(H) ⊂ B(H) = B∞(H)′′ in infinite dimension.

5. Consider the operator-valued matrix algebra MN (A) consisting of N×N
matrices with entries from a C∗ algebra A ⊆ B(H). Let 1lN ⊗A ⊂ MN (A)
be the subalgebra whose elements have the form 1lN ⊗ X, X ∈ A. The
request that

[
1lN ⊗ X ,

∑N
ij=1 Eij ⊗ Xij

]
=
∑N

ij=1 Eij ⊗ [X , Xij ] = 0
for all X ∈ A with Xij ∈ B(H), implies (1lN ⊗ A)′ = MN (A′). The
bicommutant (1lN⊗A)′′ can be identified by imposing that, for allX ′ ∈ A′

and 1 ≤ k ≤ N ,

[
Ekk ⊗X ′ , Y

]
=

N∑

j=1

(
Ekj ⊗X ′Xkj − Ejk ⊗XjkX

′
)

= 0 ,

where Y =
∑N

ij=1 Eij ⊗ Xij ∈ MN (B(H)). This forces Y to be of the

form Y =
∑N

k=1 Ekk ⊗ Xkk with Xkk ∈ A′′. Finally,
[
Eij ⊗ 1l , Y

]
=

Eij ⊗ (Xjj −Xii) = 0 for all i, j = 1, 2, . . . , N , yields Xii = X for all i,
whence (1l ⊗A)′′ = 1lN ⊗A′′.

6. Given ψ ∈ H, let H
A
ψ ⊆ H be the closure of the linear span of vectors of the

form X|ψ 〉, X ∈ A, with A ⊆ B(H) a C∗ algebra, and by PA
ψ : H �→ H

A
ψ

the corresponding orthogonal projector. Since AH
A
ψ ⊆ H

A
ψ , it follows
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that PA
ψ X PA

ψ = X PA
ψ for all X ∈ A, whence, by taking the adjoint

X PA
ψ = PA

ψ X PA
ψ = (PA

ψ X† PA
ψ )† = (X† PA

ψ )† = PA
ψ X for all X ∈ A.

Therefore, PA
ψ ∈ A′ and PA′

ψ ∈ A′′ for all ψ ∈ H.

Definition 5.3.2. A vector ψ ∈ H is cyclic for a C∗ algebra A ⊆ B(H) if
H
A
ψ = H, separating if X|ψ 〉 = 0 ⇐⇒ X = 0 for all X ∈ A.

Being cyclic and separating are related properties; indeed, suppose ψ ∈ H

to be cyclic for a C∗ algebra with identity A ⊆ B(H) and X ′|ψ 〉 = 0 for
X ′ ∈ A′. Then, 0 = AX ′|ψ 〉 = X ′A|ψ 〉, whence X ′ = 0 for cyclicity
of ψ ∈ H amounts to A|ψ 〉 being dense in H. Vice versa, suppose ψ to
be separating for A′, but not cyclic for A; then, A′ � 1l − PA

ψ �= 0, but
PA

ψ |ψ 〉 = |ψ 〉 since we assumed 1l ∈ A, which is a contradiction.

Lemma 5.3.1. Let A ⊆ B(H) be a C∗ algebra with identity; then ψ ∈ H is
cyclic for A if and only if it is separating for A′.

Cyclicity refers to the possibility that, by acting on some vectors with all
the operators of a given algebra, one gets a dense subspace whose closure is
the whole Hilbert space. This is the case with the vector | 1l 〉 ∈ L

2
μ(X ) in

the Koopman-von Neumann formulation of classical mechanics (see Exam-
ple 2.1.1). By acting on | 1l 〉 with the simple functions, one gets a dense linear
span, whose closure is the whole of L

2
μ(X ). The same is true using continuous

functions f ∈ C(X ) or essentially bounded functions g ∈ L
∞
μ (X ).

Differently, if a vector ψ ∈ H is not cyclic for A ⊆ B(H), then PA
ψ projects

onto a proper A-invariant subspace H
A
Ψ ⊂ H. The absence of proper invariant

subspaces with respect to A is related to the triviality of the commutant A′.

Definition 5.3.3 (Irreducible Algebras). A C∗ algebra A ⊆ B(H) is ir-
reducible if only H if all ψ ∈ H are cyclic for it.

Lemma 5.3.2. A C∗ algebra A ⊆ B(H) is irreducible if and only if A′ = {1l}.

Proof: If A′ = {1l} then PA
ψ = 1l for all ψ ∈ H. If all ψ ∈ H are cyclic for

A and A′ �= {1l}, then, according to Remark 5.3.1, there exists a projection
A′ � Q �= 1l. Therefore, if Q|ψ 〉 = |ψ 〉, then QA|ψ 〉 = A|ψ 〉; thus, the
closure of A|ψ 〉 cannot equal H. �

Given the commutant and bicommutant of a C∗ algebra A ⊆ B(H), we
can continue and consider the commutant of the bicommutant and so on.
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Notice that, if A ⊆ B are two C∗ algebras acting on H, then B′ ⊆ A′. Thus,
from A ⊆ A′′ it follows that A′′′ ⊆ A′; however, A′ ⊆ (A′)′′ = A′′′, whence

A ⊆ A′′ = Aiv = Avi = · · · , A′ = A′′′ = Av = Avii = · · · . (5.48)

The closure properties of commutants and bicommutants discussed in
Remark 5.3.1 are typical of

Definition 5.3.4 (von Neumann Algebras). A C∗ algebra A ⊆ B(H) is
called a von Neumann algebra if A = A′′. In the following, we shall employ the
symbol M to denote von Neumann algebras, while keeping A for C∗ algebras
which are not von Neumann algebras. von Neumann algebras M with center
(see Example 5.3.1.2) Z = M ∩ M′ = {λ1l} consisting of multiples of the
identity are called factors.

Theorem 5.3.1 (von Neumann Bicommutant Theorem). A C∗ al-
gebra A ⊆ B(H) with identity 1l, is a von Neumann algebra if and only if it
is strongly and weakly closed.

Proof: As the bicommutant A′′ is the commutant of the commutant it is
strongly and weakly closed. Let Aw, As denote the weak and strong closures
of A; the strong topology is finer than the weak one, thus As ⊆ Aw ⊆ A′′

(see Remark 5.1.1.3). Therefore, we need only show that if A = As then
A = A′′; in other words, we have to prove that A is strongly dense in A′′,
namely that in any strong neighborhood Us

ε (X ′′), X ′′ ∈ A′′, of the form (5.7),
there is an X ∈ A. In order to do so, as a first step, note that, according
to Example 5.3.1.6, given ψ ∈ H, PA

ψ ∈ A′ and PA
ψ |ψ 〉 = |ψ 〉 for 1l ∈ A;

thus, PA
ψ A′′|ψ 〉 = A′′PA

ψ |ψ 〉 = A′′|ψ 〉 ⊆ H
A
ψ ; this implies that for any

ε ≥ 0 and X ′′ ∈ A′′ there exists X ∈ A such that ‖(X − X ′′)|ψ 〉‖ ≤ ε.
The second step is to extend this result to generic strong neighborhoods; for
this we use (5.15), Example 5.3.1.5 and the previous arguments with 1ln ⊗A,
Mn(A′), (1ln ⊗ A)′′ = 1ln ⊗ A′′ and ψ̃ replacing A, A′, A′′, respectively ψ.
Then, for any ε ≥ 0, X ′′ ∈ A′′ and ψ̃ =

∑n
i=1 | i 〉 ⊗ |ψi 〉, there exists X ∈ A

such that
∑n

i=1 ‖(X ′′ −X)|ψi 〉‖ ≤ ε. �

Examples 5.3.2.

1. The previous proof shows that by considering the strong closure of a C∗

algebra A ⊆ B(H) one obtains the bicommutant A′′ ⊆ B(H).
2. Since M ⊆ M′ =⇒ Z = M, Abelian von Neumann algebras can be

factors only if trivial.
3. In the Koopman-von Neumann formalism, C(X ) is a C∗ but not a von

Neumann algebra; actually C(X )′′ = L
∞
μ (X ) for the algebra of essentially

bounded functions on L
2
μ(X ) is strongly closed by construction.
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4. If M is an irreducible von Neumann Algebra (see Definition 5.3.3), then
it is a factor, whereas the opposite is not true in general. However, if M
contains a maximally Abelian von Neumann algebra N = N ′ ⊆ M, then
M′ ⊆ N and Z = M′, whence, if M is a factor it is also irreducible (see
Lemma 5.3.2).

5. B(H) is a von Neumann algebra since any bounded operator can be con-
structed by closing the ∗ algebra of finite-rank operators on H in either
the weak or strong topology. Their uniform closure instead yields the C∗

algebra B∞(H) of compact operators which is not a von Neumann algebra
for B∞(H)′′ = B(H) ⊃ B∞(H), in infinite dimension.

6. Let M ⊆ B(H) be a von Neumann algebra, E ∈ M an orthogonal pro-
jector and consider EME; this is a von Neumann algebra acting on EH

with commutant (EME)′ = EM′E(= EM′ = M′E). Indeed, for all
X ∈ M and X ′ ∈ M′,

(EXE)(EX ′E) = EXEX ′ = X ′EXE = (EX ′E)(EXE) ,

thus EME ⊆ (EM′E)′. On the other hand, if X = XE ∈ (EM′E)′

it commutes with E and, for any X ′ ∈ M′,

XX ′ = XEX ′ = XEX ′E = EX ′EX = X ′X ,

whence (EM′E)′ ⊆ EME.
7. Suppose M ⊆ B(H) is a factor von Neumann algebra and consider the

algebra M∪M′ consisting of operators of the form
∑

j XjX
′
j with Xj ∈

M and X ′
j ∈ M′. Then, (M∪M′)′ = M′ ∩ M′′ = M ∩M′ = {λ1l},

whence (M∪M′)′′ = B(H).

5.3.1 States and GNS Representation

The C∗ algebras so far considered had concrete representations by means of
bounded operators on given Hilbert spaces H; more in general, the notion of
C∗ algebra in Definition 5.2.1 can be formulated in purely algebraic terms.
What one needs is the abstract setting at the beginning of Section 5.2 and an
abstract definition of states, along the lines developed for classical systems
in Section 2.2.1.

Definition 5.3.5. A state on a C∗ algebra A is any positive, normalized
linear map ω : A �→ C; namely, ω(Y †Y ) ≥ 0 for all Y ∈ A and ω(1l) = 1.
States are also known as expectation functionals.

A state ω is pure on A if the only positive, not necessarily normalized,
functionals μ : A �→ C such that μ ≤ ω have the form μ = λω for some
0 ≤ λ ≤ 1.

States ω such that ω(X†X) = 0 ⇐⇒ X = 0, X ∈ A, are called faithful.
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From positivity it follows that states are automatically continuous function-
als; indeed, if ω is a state on A, then

(ω(X†Y ))∗ = ω(Y †X) , |ω(X†Y )|2 ≤ ω(X†X)ω(Y †Y ) . (5.49)

In order to prove this, one chooses λ ∈ C and consider

0 ≤ ω((X+λY )†(X+λY )) = ω(X†X)+λω(X†Y )+λ∗ω(Y †X)+|λ|2ω(Y †Y ) .

Then, the equality comes from setting λ = 1, i, while the inequality from
choosing λ equal to the conjugate of the phase of ω(X†Y ).

The bilinear map A×A � (X,Y ) �→ ω(X†Y ) would be a scalar product
on A as a linear space, were it not for the fact that, in general, ω(X†X) =
0 even if X �= 0. In order to circumvent this difficulty, one considers the
set I :=

{
X ∈ A : ω(X†X) = 0

}
. Because of (5.49), I is a linear set

and also close; therefore, one can consider the quotient A/I consisting of
the equivalence classes [X]ρ :=

{
X + I : I ∈ I

}
, X ∈ A. Since (5.49)

gives ω((X + I1)†(Y + I2)) = ω(X†Y ) for all I1,2 ∈ I, each class can be
identified with a vector |Ψω

X 〉, I corresponding to the null vector. It thus
follows that (5.49) defines a true scalar product over the linear span of these
vectors, 〈Ψω

X |Ψω
Y 〉 := ω(X†Y ). Consequently, by closing the linear span with

respect to the corresponding norm, one gets a Hilbert space Hω.
Further, it is immediate to represent operators X ∈ A as linear operators

πω(X) acting multiplicatively on Hω,

X �→ πω(X) , πω(X)|Ψω
Y 〉 = |Ψω

XY 〉 . (5.50)

Since I is a two-sided ideal in A, the null vector is mapped into the null
vector and πω(X) is a well-defined linear operator on Hω; it is also bounded,
for (5.49) and X†X ≤ ‖X‖21l imply

‖πω(X)|Ψω
Y 〉‖2 = ω(Y †X†XY ) ≤ ‖X‖2ω(Y †Y ) = ‖X‖2 ‖|Ψω

Y 〉‖2 .

Further, πω is a so-called ∗ morphism, that is

πω(X†) = πω(X)† , πω(XY ) = πω(X)πω(Y ) ∀X,Y ∈ A .

Therefore, πω represents A as a subalgebra of the bounded operators on Hω:
A �→ πω(A) ⊆ B(Hω)).

Definition 5.3.6 (Representations). A ∗homomorphism (homomorphism
for short) between two C∗ algebras A1,2 is a linear map π : A1 �→ A2 that
preserves the algebraic relations and the adjoint operation:

π(A†
1) = π(A1)† , π(A1B2) = π(A1)π(B1) ∀A1, B1 ∈ A1 .
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When a homomorphism is invertible, it is called an isomorphism, automor-
phism if it maps A invertibly onto itself.

If A1 = A and A2 = B(H), then π gives a representation (π(A),H) as
a C∗ (sub)algebra of bounded operators on a Hilbert space H. Two represen-
tations of (π1,2(A),H1,2) of A on two Hilbert spaces H1,2 are equivalent if
there exists an isometry U : H1 �→ H2 such that π1(A) = U† π2 (A)U .

According to Definition 5.3.2, the state |Ψω
1l 〉 is cyclic for πω(A) on Hω; in

fact, πω(X)|Ψω
1l 〉 = |Ψω

X 〉 and the linear span of the vectors of the form |Ψω
X 〉,

X ∈ A, is dense in Hω, by construction. Also, the expectation associated with
ω takes the form

ω(X) = 〈Ψω
1l |πω(X) |Ψω

1l 〉 , X ∈ A . (5.51)

We shall set |Ωω 〉 := |Ψω
1l 〉; from Definition 5.3.2 it also follows that |Ωω 〉

is separating for the commutant πω(A)′ ⊆ B(Hω)
The previous approach is due to Gelfand, Naimark and Segal and is known

as GNS construction. [64].

Definition 5.3.7. Given the GNS triplet (Hω, πω, Ωω), Hω, πω and Ω will
be called GNS Hilbert space, GNS representation and GNS vector, respectively.

Remarks 5.3.2.

1. Any triplet (Hν , πν , Ων) with the GNS properties of (Hω, πω, Ωω) is uni-
tarily equivalent to it. Namely, there exists an isometry U : Hν �→ Hω

such that U |Ων 〉 = |Ωω 〉 and πν(X) = U† πω(X)U for all X ∈ A.
Indeed, because of (5.51) that holds for both representations, the map
U : Hν �→ Hω defined by Uπν(X)|Ω 〉 = πω(X)|Ωω 〉 is such that

ω(X†Y ) = 〈Ωω |πω(X)†πω(Y ) |Ωω 〉 = 〈Ων |πν(X)†U†Uπν(Y ) |Ων 〉
= 〈Ων |πν(X)†πν(Y ) |Ων 〉

on the dense subsets πω(A)|Ω 〉 ⊆ Hω and πν(A)|Ων 〉 ⊆ Hν . Then, U
extends to an isometry U : Hω �→ Hν ; furthermore, on the dense subset
of πν(Y )|Ων 〉, Y ∈ A,

U†πω(X)Uπν(Y )|Ων 〉 = U†πω(X)πω(Y )|Ωω 〉 = U†πω(XY )|Ωω 〉
= U†Uπν(XY )|Ων 〉 = πν(X)πν(Y )|Ω 〉,

that is U†πω(X)U = πν(X) for all X ∈ A.
2. As a ∗-homomorphism, the GNS representation πω preserves the C∗ prop-

erties of A. Therefore πω(A) is a C∗ algebra, as well as its commutant
πω(A)′. The latter is also a von Neumann algebra, this need not be true
of πω(A), but it is certainly so of the bicommutant πω(A)′′, that is of the
strong closure of πω(A) on Hω. If the center Zω := πω(A)′′ ∩ πω(A) is
trivial, that is it consists of the multiples of the identity only, then ω is
called a factor or primary state.
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3. If ω is a state on A and ν is a linear positive functional on it, ma-
jorized by ω, ν ≤ ω, then also ν satisfies a Cauchy-Schwartz inequality as
ω in (5.49) 4, |ν(X†Y )|2 ≤ ν(X†X)ν(Y †Y ) ≤ ω(X†X)ω(Y †Y ). Conse-
quently, ν defines a continuous sesquilinear form on Hω×Hω so that, from
Example 5.2.4, ν(X†Y ) = 〈Ω |πω(X)† T ′ πω(Y ) |Ω 〉, with T ′ ∈ B(Hω).
Further, from 0 ≤ ν(X†X) ≤ ω(X†X), for all X ∈ A, one deduces that
0 ≤ T ′ ≤ 1l. Moreover, T ′ ∈ πω(A)′; indeed,

ν(X†Y Z) = 〈Ω |πω(X)†T ′πω(Y )πω(Z) |Ω 〉 = ν((Y †X)†Z)
= 〈Ω |πω(X)†πω(Y )T ′πω(Z) |Ω 〉 ,

whence [T ′ , πω(Y )] = 0 for all Y ∈ A since πω(A)|Ω 〉 is dense in Hω.
4. From the previous result, it turns out that πω(A) is an irreducible C∗

algebra (see Definition 5.3.3) if and only if ω is a pure state (see Def-
inition 5.3.5). In fact, according to Lemma 5.3.2, πω(A) is irreducible
if and only if πω(A)′ = {λ1}. If πω(A)′ is trivial then ν ≤ ω implies
T ′ = λ1l, hence ω is pure. On the other hand, if πω(A)′ is not triv-
ial, then there exists some 1l �= X ′ ∈ πω(A)′, so that also X ′ + (X ′)†

and its spectral projectors belong to the von Neumann algebra πω(A)′.
Therefore, there must be at least one non-trivial projector P ′ ∈ πω(A)′;
also, 1l − P ′ = Q′ ∈ πω(A)′, so that one can decompose ω into a convex
combination ω = λωP ′ + (1 − λ)ωQ′ , where λ := 〈Ω |P ′ |Ω 〉 while

ω̃P ′ := λωP ′(X) := 〈Ω |P ′πω(X) |Ω 〉 (5.52)
ω̃Q′ := (1 − λ)ωQ′(X) := 〈Ω |Q′πω(X) |Ω 〉 (5.53)

are positive, normalized linear functionals over A which are both ma-
jorized by ω but are not of the form λω (compare the analogous argument
in the proof of Proposition 2.3.8).

5. The previous point is an example of the convex structure [20] of the space
of states S(A) on a C∗ algebra A. In more formal terms [64]: given a C∗

algebra A with identity, the set S(A) of its states is compact in the w∗

topology generated by the semi-norms S(A) � ω �→ LX(ω) = |ω(X)|.
Moreover, its extremal points are the pure states and S(A) is the w∗

closure of their convex hull.

5.3.2 C∗ and von Neumann Abelian algebras

Let A be an Abelian unital C∗ or von Neumann algebra. As discussed in
Remarks 2.2.2.2,3, the algebra C(X ) of the continuous functions over a com-
pact topological space X is a typical example of the first case, while the
algebra L

∞
μ (X ) of the essentially bounded functions is an instance of the sec-

ond case. In this section we shall show that these two cases do in fact exhaust
4What matters in the derivation of (5.49) is positivity and not normalization.
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all the possibilities: the main technique we shall use is the so-called Gelfand
transform.

All multiplicative functionals χ : A �→ C such that

χ(AB) = χ(A)χ(B) , χ(A†) = χ(A)∗ ∀ A,B ∈ A

are known as characters and their set will be denoted by XA. It turns out
that characters are states on A; indeed,

χ(A) = χ(1lA) = χ(1l)χ(A) =⇒ χ(1l) = 1 ,

while, if A � A ≥ 0 then A = B†B (see Remark 5.2.2), whence

χ(A) = χ(B†B) = |χ(B)|2 ≥ 0 .

Further, A−a, with a ∈ C and A ∈ A, is invertible if there exists B ∈ A such
that B(A−a) = 1l; since, for any χ ∈ XA, χ(B)(χ(A)−a) = 1, it follows that
if A− a is invertible then χ(A) �= a for all χ ∈ XA. Therefore, the spectrum
of A ∈ A contains the values assumed on A by the characters on A:

Sp(A) ⊇ {χ(A) : χ ∈ XA} . (5.54)

Examples 5.3.3.

1. Let A = C(X ), then XA consists of the evaluation functionals (Dirac
deltas) δx(f) = f(x) for all x ∈ X , f ∈ C(X ).

2. Let A = DN (C) the algebra of all diagonal matrices on C
N with respect

to a given ONB {| i 〉}N
i=1, namely A � A =

∑N
i=1 Ai Eii, where {Eij} is

the associated family of matrix units. Then, XA consists of the maps

χj(A) := Tr(AEjj) = 〈 j |A |j 〉 = Aj .

Indeed, AB =
∑N

i,j=1 AiBjEiiEjj =
∑N

i=1 AiBiEii implies χj(AB) =
AjBj = χj(A)χj(B) for all A,B ∈ A. Notice that the multiplicative
property cannot be true of any pure state |ψ 〉〈ψ | ∈ MN (C); in fact, for
|ψ 〉 = α| i 〉 + β| j 〉

〈ψ |AB |ψ 〉 = |α|2AiBi + |β|2AjBj while
〈ψ |A |ψ 〉 〈ψ |B |ψ 〉 = |α|4AiBi + |β|4AjBj + |α|2|β|2(AiBj +AjBi) .

3. Characters behave as tracial states over A, namely χ(AB) = χ(BA).
However, the only tracial state on MN (C) is given by

τ(X) = Tr(
1l
N

X) , so that τ(XY ) = τ(Y X) , (5.55)
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for all X,Y ∈ MN (C). It thus follows that there cannot be characters on
MN (C). Indeed,

τ(E2
ii) = τ(Eii) =

1
N

, τ(Eii)τ(Eii) =
1
N2

;

therefore the tracial state can be multiplicative only if N = 1. In order to
show that the only tracial state on MN (C) is τ , let us assume that there
exists another state ω such that ω(XY ) = ω(Y X) for all X,Y ∈ MN (C).
Let X = Eij and Y = Ek	; because of (5.12), it turns out that

ω(EijEk	) = δjkω(Ei	) = ω(Ek	Eij) = δi	ω(Ekj) .

Thus, ω(Eij) = 0 if i �= j and ω(Eii) = α for all i = 1, 2, . . . , N so that
ω(1l) = 1 =⇒ α = 1/N . In conclusion, ω acts as τ on a system of matrix
units and must thus coincide with it.

The set of characters is a subset of the unit ball of the topological dual
of A (XA ⊂ (A∗)1); moreover, XA coincides with the set of pure states over
A. In fact, if ω is a pure state on A, then in the GNS representation πω(A)
is irreducible (πω(A)′ = {λ1l}), but then πω(A) = λA1l for all A ∈ A for
Abelianness implies πω(A) ⊆ πω(A)′. Then, ω(A) = 〈Ωω |πω(A) |Ωω 〉 = λA

and
ω(AB) = 〈Ωω |πω(A)πω(B) |Ωω 〉 = λAλB = ω(A)ω(B) ,

whence ω ∈ XA.
Let A∗ be endowed with the w∗-topology (see Remark 5.1.1.5), then XA

is a w∗-closed subset of (A∗)1. In fact, if χn ∈ XA w∗-converges to χ, that is
if χn(A) → χ(A) for all A ∈ A, χ is linear and also multiplicative; indeed,

|χ(AB) − χ(A)χ(B)| ≤ |χ(AB) − χn(AB)|
+ ‖A‖ |χn(B) − χ(B)| + ‖B‖ |χn(A) − χ(A)| .

Therefore, by choosing n large enough the left hand side of the inequality can
be made arbitrarily small.

Remark 5.3.3. Once the topological dual A∗ is equipped with the w∗-
topology, its unit ball (A∗)1 is compact by the Banach-Alaoglu theorem [324].
As XA is a closed subset, it is also compact [324]; further, since the space of
states is Hausdorff, so is XA. One can thus consider the C∗ algebra C(XA) of
continuous functions over the set of characters and the corresponding prop-
erties. For instance, in the proof of Theorem 5.3.2, we shall profit from a
theorem of Stone and Weierstrass [259] which states that the norm-closure
of any algebra of complex functions on a compact Haussdorf space X that
separates points and contains the identity coincides with C(X ).
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Definition 5.3.8 (Gelfand transform). The Gelfand transform is the map
Γ : A �→ C(XA) from an Abelian C∗ algebra to the continuous functions over
its characters, defined by

A � A �→ Γ [A](χ) = χ(A) ∀χ ∈ XA .

Notice that Γ [A](χ) is automatically continuous on XA equipped with
the w∗ topology inherited from A∗. In full generality, the following property
holds [64, 300, 324]

Theorem 5.3.2. Any Abelian unital C∗ algebra A is isomorphic to C(XA).

Proof: The Gelfand transform is a ∗-homomorphism: linearity is evident,
also Γ [A†](χ) = χ(A†) = χ(A)∗ = (Γ [A](χ))∗. Moreover,

Γ [AB](χ) = χ(AB) = χ(A)χ(B) = (Γ [A]Γ [B])(χ) .

It also preserves the norm; in fact,

‖Γ [A]‖2 = sup
χ∈XA

|Γ [A](χ)|2 = sup
χ∈XA

|χ(A)|2 = ‖A‖2 ,

for all A ∈ A. The latter equality is a consequence of the fact that XA
coincides with the set of pure states over A and that [64, 300], for any A ∈ A
one can always construct a pure state ω such that ω(A) = ‖A‖.

It thus follows that Γ [A] = 0 only if A = 0. Furthermore, Γ [1l] = 1 and,
if χ1 �= χ2, then χ1(A) = Γ [A](χ1) �= χ2(A) = Γ [A](χ2) for some A ∈ A.
One says that Γ [A] separates points of XA; thus, the theorem of Stone and
Weierstrass (see Remark 5.3.3) applies to Γ [A] so that Γ [A] = C(XA). �

Remark 5.3.4. [324] If A is a generic C∗ algebra and X one of its normal
elements (XX† = X†X), then one can consider the Abelian C∗ algebra
A[X] generated by the norm closure of the ∗-algebra of polynomials in the
commuting operators 1l, X and X†. Let us consider the Gelfand transform
Γ : A[X] �→ C(XA[X]); to any function f ∈ C(XA[X]) one associates a unique
element f(X) := Γ−1[f ] ∈ A[X]. This is known as continuous functional
calculus. Consider, for instance, the function f(z) := (χ(X)− z)−1; then, by
using a power series expansion and the isomorphic properties of Γ and its
inverse, one obtains

Γ

[
1

X − z

]

= f(z) , f(X) = Γ−1[f ] =
1

X − z
,

whenever z > ‖X‖ = supχ∈XA[X]
|χ(X)|. Thus, from Example 5.2.2.5 it fol-

lows that the spectrum of a normal X ∈ A coincides with the values assumed
on X by the characters of XA[X]: Sp(X) = {χ(X) : χ ∈ XA[X]}.
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Examples 5.3.4.

1. If A is a finite-dimensional Abelian algebra, then XA contains finitely
many points (characters) XA = {χi}a

i=1. The maps δ̂j : XA �→ C defined
by δ̂j(χi) = δij , are continuous with respect to the discrete topology on
XA. By inverting the Gelfand isomorphism, the corresponding elements
pi := Γ−1[δ̂i] ∈ A are orthogonal projections:

pipk = Γ−1[δ̂iδ̂k] = δik Γ
−1[δ̂k] = δik pk .

These are minimal projections of A; namely, the only projections in A
majorized by pi are the trivial one p = 0 and pi itself. Indeed, consider
two projections q, p in a generic unital C∗ algebra and suppose q ≤ p;
then, writing p = q + (p− q), Example 5.2.3.2 yields

q ≥ q p q = q + q(p− q)q ≥ q for p− q ≥ 0 .

Therefore, q(p − q)q = X†X = 0 with X =
√
p− qq whence X = 0 and

pq = q = qp. If p = pi ∈ A and A � q ≤ pi, write Γ [q] =
∑n

i=1 πi(q) δ̂i

with πi(q) ∈ R+; it follows that

Γ [q] = Γ [qpi] = Γ [q]Γ [pi] = πi(q)δ̂i .

Since Γ [q] = Γ [q]2, one concludes that Γ [q] = δ̂i whence q = pi.
2. Consider X ≥ 0, and the function f(t) =

√
t, t ≥ 0. Since the spec-

trum of X is contained in [0, ‖X‖] and thus also XA[X] ⊆ [0, ‖X‖];
from Remark 5.3.4 it thus follows that Y := f [X] = Γ−1[

√
t] ≥ 0

and Y 2 = Γ−1[t] = X. We now show that the square-root of X is
unique; let A � Z ≥ 0 be such that Z2 = X and let Pn(t) be a
sequence of polynomials on [0, ‖X‖] converging uniformly to

√
t. Set

Qn(t) := Pn(t2): limn→+∞Qn(t) = t uniformly on [0, ‖X‖]. Furthermore,
from Remark 5.3.4 and Remark 5.2.1,

XA[X] = Sp(X) = Sp(Z2) = (Sp(Z))2 = {t2 : t ∈ Sp(Z)} ,

whence

Z = lim
n→+∞

Qn(Z) = lim
n→+∞

Pn(Z2) = lim
n→+∞

f(X) =
√
X .

3. The Gelfand isomorphism maps the von Neumann algebra L
∞
μ (X ) into

C(Y) where Y is a so-called extremely disconnected Hausdorff space whose
open sets have open closures [324].

The preceding considerations can be extended to Abelian von Neumann
algebras M ⊂ B(H) on a separable Hilbert space H [324]. Since M is also a C∗
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algebra, one considers the Gelfand isomorphism Γ : M �→ C(XM); suppose
ψ ∈ H to be cyclic for M and define the linear functional F : C(XM) �→ C,

F (f) := 〈ψ |Γ−1[f ] |ψ 〉 .

This functional is positive since Γ−1 is an isomorphism and preserves positiv-
ity; then, Riesz representation theorem [258] (see (2.48)) ensures that there
exists a positive Borel measure μ on XM such that

〈ψ |Γ−1[f ] |ψ 〉 =
∫

XM

dμ (x) f(x) = μ(f) .

The support of μ is the whole of XM, otherwise there would exist Y ⊂ XM
and a positive continuous f , non-zero on Y, such that

μ(f) = 0 = 〈
√
Γ−1[f ]ψ |

√
Γ−1[f ]ψ 〉 .

Since ψ is cyclic for M, it is separating for M′ and for M ⊆ M′; then√
Γ−1[f ]|ψ 〉 = 0 implies Γ−1[f ] = 0 whence f = 0. For all X ∈ M,

∫

XM

dμ (x) |Γ [X](x)|2 = 〈ψ |Γ−1[Γ [X†]Γ [X] |ψ 〉 = ‖X|ψ 〉‖2 .

Then, one can construct a unitary operator U : H �→ K := L
2
μ(XM) by

extending to the L2-closures of M|ψ 〉 and C(XM ) the linear operator defined
on the latter spaces by U : X|ψ 〉 �→ Γ [X]. It turns out that

U X U† (Γ [Y ]) = U X Y = Γ [X Y ] = Γ [X] (Γ [Y ]) ,

for all X ∈ M, whence U X U† is represented by a multiplication operator on
C(XM). This relation can be used to prove that U MU† is a von Neumann
subalgebra of B(K) and since the algebra of multiplication by continuous
functions is weakly dense in the von Neumann algebra of multiplication op-
erators by functions in L

∞
μ (XM) it follows that this latter is isomorphic to

U MU†.
Even when a cyclic vector for the von Neumann algebra M does not exist,

one can prove a similar result [324].

Theorem 5.3.3. Every Abelian von Neumann algebra M acting on a sepa-
rable Hilbert space H is isomorphic to some L

∞
μ (X ), where X is a compact

Hausdorff space and μ is a finite, positive Borel measure on X supported by
the whole of X .

5.4 Quantum Systems with Finite Degrees of Freedom

The simplest quantum systems are 2-level systems (the qubits of quantum
information): their states and observables are 2 × 2 matrices from M2(C)
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acting on the Hilbert space C
2. Though simple, the 2 dimensional framework

is sufficient to accommodate a variety of rather successful phenomenological
descriptions as for spin 1/2 particles in magnetic contexts [248, 273, 280],
for atoms whose ground and first excited states can be treated as isolated
from the rest of the energy eigenvalues [87], for the polarization degree of
freedom of photons [272, 312] and for the strangeness degree of freedom of
neutral K mesons [30, 31]. Recently, even macroscopic systems in particular
ultracold atoms [191] have been started to be studied as spin 1/2 particles;
this is the case for the low-lying energy states of Bose-Einstein condensates
in double well potentials and superconducting boxes near resonance [197,
316]. The latest advances in the experimental manipulation of atomic systems
have indeed provided concrete realizations of 2-level quantum systems and
made them available for the actual verification of central issues of quantum
information theory [6, 63].

The observables of 2-level systems are self-adjoint 2×2 matrices acting on
the 2-dimensional Hilbert space C

2; particularly important are the unitary
and self-adjoint Pauli matrices σ1,2,3 that satisfy the algebraic relations

σjσk = δjk1l2 + iεjk	 σ	 , (5.56)

where εjk	 is the antisymmetric 3-tensor, and 1l2 denotes the 2 × 2 identity
matrix.

When normalized, σ̃μ := σμ/
√

2, they become an ONB with respect to
the Hilbert-Schmidt scalar product (5.26), that is Tr(σ̃μσ̃ν) = δμν . Thus, it
turns out that any X ∈ M2(C) can be written as (see Example 5.2.5)

X =
3∑

μ=0

(Tr(σ̃μX)) σ̃μ . (5.57)

It is customary to work within the representation of the eigenvectors of σ3,

| 0 〉 =
(

1
0

)

and | 1 〉 =
(

0
1

)

(the states of a particle with spin 1/2 pointing

down, respectively up along the z direction in space). Then, the Pauli matrices
have the standard form

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =
(

1 0
0 −1

)

so that σ1| 0 〉 = | 1 〉, σ1| 1 〉 = | 0 〉 and σ2| 0 〉 = −i| 1 〉, σ2| 1 〉 = i| 0 〉.
The action of σ1 on the standard ONB amounts to a spin flip; if 0 and 1

were classical spin states encoding bits, then σ1 would implement the NOT
logical operation: 0 �→ 1, 1 �→ 0 or i �→ i ⊕ 1, where ⊕ denotes the binary
addition (addition mod 2). The ONB associated with σ1 consists of

| ± 〉 :=
| 0 〉 ± | 1 〉√

2
=

1√
2

(
1
±1

)

, σ1| ± 〉 = ±|± 〉 .
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Their ONB is unitarily related to the standard one by the Hadamard rotation

UH :=
1√
2

(
1 1
1 −1

)

= U†
H = U−1

H , UH | i 〉 =
1√
2

1∑

j=0

(−1)ij | j 〉 . (5.58)

A system consisting of n spins 1/2 is described by the matrix algebra
M2n(C) = (M2(C))⊗n; denoting by σi

μ, μ = 0, 1, 2, 3, the Pauli matrices of
the i-th spin, the elements of M2n(C) are linear combinations of operators
of the form

⊗n
i=1 σ

i
μi

acting on (C2)⊗n. The so-called computational basis of
quantum information consists of tensor products of eigenvectors of σ3,

| i(n) 〉 = | i1i2 · · · in 〉 = | i1 〉 ⊗ | i2 〉 ⊗ · · · | in 〉 , ij ∈ {0, 1} ,

that are in one-to-one correspondence with bit-strings i(n) ∈ Ω
(n)
2 .

One may interpret them as orthogonal configurations of quantum spins
located at the integer sites 0 ≤ � ≤ n of an infinite 1-dimensional lattice.
Of course, unlike for classical spins, in this case linear combinations of these
configurations are also possible physical states. Thus, a one dimensional array
of n spins 1/2 provide a non-commutative counterpart to classical spin-chains
of finite length n. Interestingly, their algebra M2n(C) also describes n degrees
of freedom satisfying Canonical Anticommutation Relations (CAR).

Example 5.4.1 (Finite Spin Systems: CAR). From (5.56) it follows that
different Pauli matrices anticommute,

{
σj , σk

}
:= σjσk + σkσj = 2δjk 1l .

Set σ+ :=
σ1 + iσ2

2
=
(

0 1
0 0

)

and σ− :=
σ1 − iσ2

2
=
(

0 0
1 0

)

. These

matrices fulfil the following algebraic relations
{
σ+ , σ−

}
= 1 ,

[
σ+ , σ−

]
= σ3 (5.59)

σ2
± = 0 ,

[
σ3 , σ+

]
= 2σ+ ,

[
σ3 , σ−

]
= −2σ− . (5.60)

With | 0 〉, | 1 〉 the eigenvectors of σ3, σ−| 1 〉 = 0, while σ+| 1 〉 = | 0 〉.
In the case of n-spin 1/2 systems, let σi

# = σi
3 , σ

i
± , 1li denote the spin

operators relative to the i-th spin. They are identified as elements of M2n(C)
by embedding them as

M2(C) � σi
# �→ 1l[1,i−1] ⊗ σi

# ⊗ 1l[i+1,n] , (5.61)

where 1l[j,k] := 1lj ⊗ 1lj+1 ⊗ · · · 1lk is the tensor product of as many identity
matrices 1l ∈ M2(C) as the sites in the subset [j, k]. Then, setting
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ai :=
( i−1⊗

j=1

σj
3

)
⊗ σi

− ⊗ 1l[i+1,N ] , a
†
i :=

( i−1⊗

j=1

σj
3

)
⊗ σi

+ ⊗ 1l[i+1,N ] ,

one obtains operators that obey the CAR of n Fermionic degrees of freedom:
{
ai , a

†
j

}
:= aia

†
j + a†j ai = δij ,

{
ai , aj

}
=
{
a†i , a

†
j

}
= 0 . (5.62)

Further, the vector state | 1 〉⊗n := | 1 〉 ⊗ | 1 〉 ⊗ · · · | 1 〉
︸ ︷︷ ︸

n times

consisting of n spins

all pointing down, behaves as the vacuum state for it is annihilated by all ai,
while a†i , acting on it, creates the vector state with the i-th spin pointing up,

ai| 1 〉⊗n = 0 , a†i | 1 〉⊗n = | 1 · · · 1 0︸︷︷︸
ithsite

1 · · · 1 〉 .

There cannot be more than one Fermion for each i as from (5.62) (a†i )
2 = 0.

Thus, products of the form
∏n

j=1(a
†
j)

ij , where ij = 0, 1 and (a†j)
0 = 1l, create

the computational basis,

n∏

j=1

(a†j)
ij⊕1| 1 〉⊗n = | i1i2 · · · in 〉 ,

where ⊕ denotes summation mod 2. Since

[AB,C] = ABC − CAB = A(BC + CB) − (AC + CA)B
= A {C , B} + {A , C}B , (5.63)

the number operator

N̂ :=
n∑

i=1

a†iai =
n∑

i=1

1l[1,i−1] ⊗ σi
+σ

i
− ⊗ 1l[i+1,N ]

=
n∑

i=1

1l[1,i−1] ⊗
1li + σi

3

2
⊗ 1l[i+1,n] (5.64)

satisfies N̂ | 1 〉⊗n = 0 and

[N̂ , ai] = −ai , [N̂ , a†i ] = a†i , (5.65)

whence N̂ | i(n) 〉 = (
∑n

j=1 ij) | i
(n) 〉. Therefore, the basis vectors | i(n) 〉 are

occupation number states that is eigenstates of N̂ ; they span the so-called

Fock space H
(n)
F = | vac 〉⊕

n⊕

k=1

Hk, where | vac 〉 = | 1 〉⊗n is the vacuum state

and Hk is the Hilbert space corresponding to k Fermi degrees of freedom.
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As much as one can construct n Fermi creation and annihilation operators
satisfying the CAR out of n spin 1/2 operators, so one can obtain the n spin
algebra M2n(C) out of the creation and annihilation operators of n Fermi
degrees of freedom. Indeed, from (5.64) one derives σi

3 = 2a†iai − 1l and

σi
− =

(i−1∏

j=1

(2a†iai − 1l)
)
ai , σi

+ =
(i−1∏

j=1

(2a†iai − 1l)
)
a†i .

These relations are known as Jordan-Wigner transformations [295]. They
show that the algebra of n Fermi degrees of freedom is isomorphic to that
of n spins 1/2, M2n(C). It is important to notice that one Fermi degree of
freedom correspond to a totally delocalized spin operator.

Remark 5.4.1. [290, 291] The kinematical description of n Fermionic de-
grees of freedom is abstractly provided by a set of n operators aj , a

†
j satisfying

the CAR (5.62) together with the algebra AF comprising all polynomials
P (aj , a

†
j) constructed with them. The Fock one is a concrete representation

of the aj , a
†
j as annihilation and creation operators on a Hilbert space with a

distinguished vector | vac 〉, the vacuum state, such that aj | vac 〉 = 0 for all
j = 1, 2, . . . , n.

Because of the CAR relations, in any representation π on a Hilbert space
H, π(aj) and π(a†j) are bounded operators with respect to uniform norm:

π(a†jaj) + π(aja
†
j) = 1l ≥ π(a†jaj) =⇒ ‖π(aj)‖ ≤ 1 . (5.66)

Also, any two irreducible representations (π1,2(AF ),H1,2) of the CAR of
finitely many Fermions are unitarily equivalent to the Fock one (see Defini-
tion 5.3.6). Indeed, from the previous example, we know that both represen-
tations are isomorphic to M2n(C) for n Fermions; so, the positive operators
πi(N̂) :=

∑n
j=1 πi(aj)†π(aj) have discrete integer spectrum with an eigen-

value 0. In fact, if πi(N̂)|ψi 〉 = λ|ψλ
i 〉, then (5.65) implies

[N̂ , an
i ] = ai [N̂ , an−1

i ] + [N̂ , ai] an−1
i

= ai [N̂ , an−1
i ] − an

i = −nan
i ,

so that

πi(N̂)π(ai)n|ψλ
i 〉 = λπ(ai)n|ψλ

i 〉 +
[
πi(N̂) , π(ai)n

]
|ψλ

i 〉

= (λ− n)π(ai)n|ψλ
i 〉 .

Thus the spectrum is discrete with 0 as its smallest eigenvalue; the cor-
responding eigenvector |ψ0

i 〉 is annihilated by all πi(aj) and is unique as
implied by the assumed irreducibility of the representation πi. In fact, the
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linear span πi(AF )|ψ0
i 〉 is dense in Hi (see Definition 5.3.3); therefore, if

πi(aj)|φi 〉 = 0 for all j = 1, 2, . . . , n, then the same should hold for its com-
ponent |φ⊥i 〉 orthogonal to |ψ0

i 〉; therefore, 〈φ⊥i |πi(P (aj , a
†
j) |ψ0

i 〉 = 0 for
all polynomials in annihilation and creator operators, whence |φ⊥i 〉 = 0 as
it would be orthogonal to a dense subset in Hi. The eigenvector |ψ0

i 〉 is the
vacuum for the Fock representation πi; let U : H1 �→ H2 be such that

U |ψ0
1 〉 = |ψ0

2 〉 , Uπ1(P (aj , a
†
j))|ψ0

1 〉 = π2(P (aj , a
†
j))|ψ0

2 〉 .

Since the scalar products 〈ψ0
i |πi(P ′)†πi(P ′′) |ψ0

i 〉, with P ′ and P ′′ arbitrary
polynomials, are completely determined by the CAR relations, their values
do not depend on the representation chosen; that is

〈ψ0
1 |π1(P ′)†π1(P ′′) |ψ0

1 〉 = 〈ψ0
2 |π2(P ′)†π2(P ′′) |ψ0

2 〉
= 〈ψ0

1 |π1(P ′)†U† Uπ1(P ′′) |ψ0
1 〉 .

on a dense set, whence U extends to an isometry from H1 to H2.

Of course, not all quantum systems with finite degrees of freedom are finite
level systems. A free quantum particle in one dimension or a one-dimensional
quantum harmonic oscillator are systems with one degree of freedom, but
they are described by means of the infinite dimensional Hilbert space of
square-summable complex functions over R. In quantum information, these
systems are sometimes referred to as continuous variable systems in contrast
to spin-like systems whose variables (observables) are instead discrete (N×N
matrices).

For continuous variable systems the standard kinematics is more appro-
priately given in terms of unitary groups of translations in position and mo-
mentum. The algebraic relations between them are known as Canonical Com-
mutation Relations (CCR).

Consider a Hamiltonian classical system with f degrees of freedom and
canonical coordinates R

2f � (q,p), q = (q1, q2, . . . , qf ), p = (p1, p2, . . . , pf ).
In standard quantization, one introduces unbounded, densely defined, self-
adjoint position and momentum operators (q̂i, p̂i) on H = L

2
dq (Rf ) defined,

in the so-called position representation, by

(q̂iψ)(q) = qiψ(q) , (p̂iψ)(q) = −i ∂qi
ψ(q) , ψ ∈ H . (5.67)

On a common dense domain, they satisfy the standard commutation relations
(with � = 1)

[
q̂i , p̂j

]
= iδij ,

[
q̂i , q̂j

]
=
[
p̂i , p̂j

]
= 0 . (5.68)

Unlike, Fermionic annihilation and creation operators, the operators q̂i

and p̂i have continuous spectrum and cannot be bounded. Indeed, from (5.68),
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[
q̂i , p̂

n
i

]
= i n p̂n−1

i =⇒ 2‖q̂i‖ ‖p̂i‖ ≥ n , (5.69)

for all integer n. Because of unboudedness, one introduces the one-parameter
groups of unitary operators {Ui(q)}q∈R and {Vi(p)}p∈R,

(
Ui(q)ψ

)
(q) = ψ(q + qi) ,

(
Vi(p)ψ

)
(q) = eipqiψ(q) , (5.70)

where (qi)j = δij q, in position representation, while
(
Ui(q)ψ

)
(p) = eiqpiψ(p) ,

(
Vi(p)ψ

)
(p) = ψ(p − pi) , (5.71)

in momentum representation, with (pi)j = δij p.
These semi-groups are continuous with respect to the strong-operator

topology, whence, by Stone theorem [300], they are generated by self-adjoint
operators q̂i and p̂i

Ui(q) := exp (i q p̂i) , Vi(p) := exp (i p q̂i) . (5.72)

By writing them as formal series, it can be checked that they implement
translations in position, respectively momentum:

Ui(q) q̂i U
†
i (q) = q̂i + q , Vi(p) p̂i U

†
i (p) = p̂i − p . (5.73)

The CCR can thus be recast as
⎧
⎨

⎩

Ui(q)Vj(p) = Vj(p)Ui(q) i �= j

Ui(q)Vi(p) = ei qp Vi(p)Ui(q) .
(5.74)

Set q̂ := (q̂1, q̂2, . . . , q̂f ), p̂ := (p̂1, p̂2, . . . , p̂f ), r̂ := (q̂, p̂), and

W (r) := ei (q·p̂+p·q̂) = ei r·(Σ1r̂) , (5.75)

where · denotes the usual scalar product and Σ1 :=
(

0 1lf
1lf 0

)

with 1lf is

the f × f identity matrix. These operators are known as Weyl operators; by
the Campbell-Hausdorff formula,

exp (A+B) = exp (−1
2
[A,B]) exp (A) exp (B) , (5.76)

that holds when [A , B] is a multiple of the identity, they can be recast in
the form

W (r) = e−
i
2 q·p ei q·p̂ ei p·q̂ . (5.77)

The Weyl operators satisfy W (r)† = W (−r) and the composition law
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W (r1)W (r2) = e
i
2 σ(r1,r2) W (r1 + r2) , (5.78)

where

σ(r1, r2) := q1 · p2 − p1 · q2 = r · (Jfr) , Jf =
(

0 1lf
−1lf 0

)

, (5.79)

is the symplectic form characteristic of the Weyl relations. It thus follows
that the ∗ algebra W generated by linear combinations and products of Weyl
operators coincides with their linear span.

Remark 5.4.2. Given the ∗ algebra W, one looks for its closure with respect
to a suitable topology; it turns out that the C∗ algebra that arises from
the uniform norm is too small for physical purposes [300]. For instance, one
would like that two Weyl operators W (r1,2) be close to each other when
‖r1 − r2‖ → 0; however, whenever r1 �= r2,

‖W (r1) −W (r2)‖ = ‖1l −W †(r1)W (r2)‖ = 2 ,

since unitary operators have norm 1.
The fact that the translation groups {Ui(q)}q∈R, {Vi(p)}p∈R are strongly

continuous, makes it a natural choice to consider the closure W of W with
respect to the strong-operator topology. Similarly to the CAR , also for the
CCR of finitely many degrees of freedom all irreducible (strongly continuous)
representations are unitarily equivalent. In order to show this, one uses the
so-called Weyl-transform of a function f ∈ L

1
dr (R2f ) [300, 142],

f �→ W � W (f) :=
∫

dr f(r)W (−r) . (5.80)

The Weyl transform is such that W †(f) = W (f+), where f+(r) := f∗(−r)
and, by using (5.78), W (f1)W (f2) = W (f1 × f2) where

(f1 × f2)(r) :=
∫

dw f1(w)f2(r − w) e
i
2 σ(w,r) .

Let P := W (g) where g(r) := (
√

2π)−f exp(− 1
4‖r‖2), then,

P = P † , P W (r)P = e−
1
4‖r‖2

P ,

whence P is a projection for P �= 0. Indeed, if W (f) = 0, choose ψ, φ ∈ H

such that Iψ,φ := 〈ψ |P |φ 〉 �= 0; then, for all r ∈ R
2f ,

0 = 〈ψ |PW †(r)W (f)W (r)P |φ 〉 =
∫

dw f(w) eiσ(r,w)〈ψ |PW (w)P |φ 〉

= Iψ,φ

∫

dw f(w) e−
1
4‖w‖2

eiσ(r,w) .
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Since the integral is the Fourier transform of f(w) exp(− 1
4‖w‖2), it follows

that f(r) = 0 almost everywhere, which is not true of g(r).
Let K ⊆ H denote the subspace projected out by P and consider an ONB

{φa} in K; since

〈W (r1)φa |W (r2)φb 〉 = 〈Pφa |W †(r1)W (r2) |Pφb 〉
= 〈φa |φb 〉 e

i
2 σ(r2,r1) e−

1
4‖r1−r2‖2

, (5.81)

the closures Ka of the linear spans of vectors of the form W (r)|φa 〉, r ∈
R

2f , are mutually orthogonal. Each vector in Ka is cyclic for W which is
then irreducibly represented on it. Further, K = H; in fact, the orthogonal
complement K⊥ is also invariant under W. Restricting W onto K⊥ yields
another representation, W⊥, such that the maps f �→ W⊥(f) := W (f) |̀K⊥
are injective. But this contradicts the fact that W⊥(g) = P |̀K⊥ = 0.

Therefore, every strongly continuous representation of the CCR decom-
poses into an orthogonal sum of irreducible representations. Further, the re-
lation

PW (r)|φa 〉 = PW (r)P |φa 〉 = e−
1
4‖r‖2 |φa 〉

extends linearly to the whole of Ka, whence P acts as a multiple of the
identity on each of the invariant subspaces Ka. Consider any two irreducible
representations Wa,b with their orthogonal projections Pa,b = Wa,b(g) onto
the cyclic vectors Pa,b|φa,b 〉 = |φa,b 〉 and their representation Hilbert spaces
Ka,b. By linear extension, define the operator Uab : Ka �→ Kb such that
UabWa(r)|φa 〉 := Wb(r)|φb 〉, for all r ∈ R

2f ; from (5.81)

〈Wa(r1)φa |Wa(r2)φa 〉 = 〈Wb(r1)φb |Wb(r2)φb 〉
= 〈W (r1)φa |U†

abUab |W (r2)φa 〉.

This relation extends to Ka,b, whence Uab is an isometry such that

U†
ab Wa(r)Uab = Wb(r) , ∀r ∈ R

2f ,

so that the two irreducible representations Wa,b are unitarily equivalent.

As we shall see in Chapter 7, for infinitely many degrees of freedom there
are inequivalent irreducible representations of the CCR ; this is true also for
finitely many degrees of freedom when the symplectic manifold is not R

2f ,
rather a torus [300, 291] or when strong continuity is relaxed. This is the
case for a discrete formulation of the Weyl relations that holds for discrete
variable quantum systems and turns out to be extremely useful for quantizing
hyperbolic dynamics of the kind studied in Example 2.1.3.

Example 5.4.2 (Weyl Relations: Finite Dimension).
Actions similar to translations in position and momentum can also be

defined for finite level systems, that is on Hilbert space H = C
N . Let
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{| k 〉}N−1
k=0 be an ONB , fix αu,v ∈ [0, 1] and consider the following matri-

ces UN , VN ∈ MN (C)

UN := e
2π
N i αu

N−1∑

k=0

e
2π
N i k| k 〉〈 k | , VN := e

2π
N i αv

N−1∑

k=0

| k 〉〈 k − 1 | ,

together with the identification | j 〉 = | jmodN 〉. These operators are uni-
tary and

UN | � 〉 = e
2π
N i (αu+	)| � 〉 , VN | � 〉 = e

2π
N i αv | �+ 1 〉 . (5.82)

Thus, setting n := (n1, n2) ∈ Z
2, UN and VN satisfy the discrete Weyl

relations
Un1

N V n2
N = e

2π
N i n1n2 V n1

N Un2
N . (5.83)

Further, like in the continuous case, it is convenient to introduce the discrete
Weyl operators

WN (n) := e−i π
N n1n2 Un1

N V n2
N . (5.84)

They satisfy W †
N (n) = W (−n) and the composition law

WN (n)WN (m) = ei π
N σ(n,m) WN (n + m) , (5.85)

with σ(n,m) := n1m2−n2m1. Since ‖ [UN , VN ] ‖ = 2| sin π
N |, lettingN → ∞

one expects to recover the commutative structure of Example 2.1.3.
In order to be compatible with a finite dimensional Hilbert space C

N ,
powers as UN

N and V N
N must be proportional to the N × N identity matrix

1lN ; in particular,

UN
N = e2π i αu 1lN , V N

N = e2π i αv 1lN . (5.86)

Different choices of αu,v label different irreducible representations Wαu,v

N ;
they play a role in the quantization of classical discrete maps as in Exam-
ple 2.1.3 [98] (see Example 5.6.1). These representations cannot be equivalent,
otherwise, for αu �= α′u, there would exist an isometry T such that

T † UN
N,αu

T = e2π i αu = UN
N,α′

u
= e2π i αu ,

where UN,α denotes the operator UN fulfilling a specific rule (5.86).
When normalized, the discrete Weyl operators form an ONB in MN (C).

Indeed, using (5.84) and (5.82), it turns out that

Tr
(
WN (n)

)
=

N−1∑

	=0

e−i π
N n1n2 〈 � |Un1

N V n2
N |� 〉

=
N−1∑

	=0

e−i π
N (n1n2+2n1(αu+	)−2n2αv )〈 � | �+ n2 〉

= δn20

N−1∑

	=0

e−
2π i
N (αu+	) = N δn,0 . (5.87)
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This in turn yields

Tr
(
W †

N (n)WN (m)
)

= N δn,m , (5.88)

whence (see Example 5.2.5)

X =
1
N

∑

n∈Z
2
N

(
Tr
(
W †

N (n)X
))

WN (n) ∀X ∈ MN (C) , (5.89)

where Z
2
N := {n = (n1, n2) : 0 ≤ ni ≤ N − 1}.

Returning to continuous variable systems, a particular vector state in
H = L

2(Rf ) is given by the Gaussian function

g(q) = (π)−f/4 exp(−q2

2
) , (q̂i + ip̂i)| g 〉 = 0 , (5.90)

for all i = 1, 2, . . . , f . Notice that in momentum representation ĝ(p), obtained
from g(q) by Fourier transform, has the same Gaussian form as the latter. For
reasons which will become immediately clear we shall refer to the Gaussian
state as to the vacuum and set | vac 〉 := | g 〉.

Example 5.4.3 (CCR : Annihilation and Creation Operators).
Given f canonical pairs (q̂i, p̂i), using (5.68) one shows that the operators

ai =
q̂i + ip̂i√

2
, a†i =

q̂i − ip̂i√
2

, (5.91)

satisfy the CCR that describe Bosonic degrees of freedom,
[
ai, a

†
j

]
= δij ,

[
ai , aj

]
=
[
a†i , a

†
j

]
= 0 . (5.92)

The Gaussian function | vac 〉 plays thus the role of the vacuum for the CCR
as it is annihilated by all ai, ai| vac 〉 = 0. Since

a†iai (a†i )
ni | vac 〉 = a†i [ai, (a†i )

ni ]| vac 〉 = ni (a†i )
ni | vac 〉 ,

the vectors |k 〉 := | k1, k2, . . . , kf 〉 =
f∏

i=1

(a†i )
ki

√
ki!

| vac 〉 are such that

ai|k 〉 =
√
ki|k − 1i 〉 , a†i |k 〉 =

√
ki + 1i|k + 1i 〉 , (5.93)

where k± 1i := (k1, . . . , ki−1, ki ± 1, ki+1, . . . , kf ). They are the orthonormal
eigenvectors of the number operator,
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N̂ :=
f∑

i=1

a†iai , N̂ |k 〉 = (
f∑

i=1

ki)|k 〉 . (5.94)

The occupation number states |k 〉 span the Fock space for the f Bosonic

modes (degrees of freedom), H
(f)
F = | vac 〉 ⊕

f⊕

n=1

Hn, where Hn is the Hilbert

space of n modes. Unlike for Fermions, the number operator is unbounded
and the Bosonic Fock space is infinite dimensional for such is the Hilbert
space of each mode.

By introducing the 2f -dimensional operator valued vectors

A := (a1, . . . , af ; a†1, . . . , a
†
f ) , A† := (a†1, . . . , a

†
f ; a1, . . . , af ) , (5.95)

the Weyl operators (5.75) can be rewritten as

W (r) = eZ∗·A =
f∏

j=1

eaj
qj+ipj√

2
−a†

j

qj−ipj√
2 where (5.96)

Z = (z∗,−z) , z =
q + ip√

2
∈ C

f , (5.97)

while the CCR relations (5.78) become

eZ∗
1 ·A eZ∗

2 ·A = e−
1
2 Z∗

i ·(Σ3Zj) e(Z∗
1+Z∗

2)·A ,

where Σ3 =
(

1lf 0
0 −1lf

)

and (5.97) yields

Z∗
1 · (Σ3Z2) = −2i�(z∗

1 · z2) = −2i σ(r1, r2) . (5.98)

Of particular interest are the so-called displacement operators

D(z) = ez·a† − z∗·a = e−
|z|2
2 ez·a†

e−z∗·a , (5.99)

where z := {zi}f
i=1 ∈ C

f and (5.76) has been used. Their action is as follows,

D(z)† aj D(z) =
∞∑

kj=0

1
kj !

dkj
zj

[aj ] = aj + zj , j = 1, 2, . . . , n , (5.100)

where dkj
zj denotes the map dzj

[·] = [−zj a
† + z∗j aj , · ] applied kj times.

Given z ∈ C
f and the corresponding displacement operator D(z), us-

ing (5.96) and (5.97), one finds that it corresponds to the Weyl operator
W (r(z)) with r(z) =

√
2(−�(z),�(z)), whence, via (5.78), one computes

D(z1)D(z2) = e−
i
2�(Z∗

1 ·(Σ3Z2)) D(z1 + z2) . (5.101)
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5.5 Quantum States

Hilbert space vectors as those encountered in the previous sections are
the simplest possible instances of quantum states: once it is known that
a quantum system is in a physical state described by ψ ∈ H, then the
system observables X = X† ∈ B(H) have mean-values, or expectations,
〈X 〉ψ := 〈ψ |X |ψ 〉. With B(H) � Pψ := |ψ 〉〈ψ | the orthogonal projec-
tor onto |ψ 〉, using the trace (5.19), one writes 〈X 〉ψ = Tr(Pψ X).

One-dimensional projections Pψ are known as pure states and are the most
informative about the system they describe; they are quantum counterparts
to the classical evaluation functionals δx(f) = f(x) of section 2.2.1. Also in
quantum mechanics, however, what is often practically achievable is not the
specification of a precise vector state, but only that the system physical state
corresponds to a projector Pj occurring with a certain weight 0 ≤ λj ≤ 1
within a statistical ensemble J of projectors such that

∑
j∈J λj = 1. In such

a case, the state of the system is a mixed state, namely a mixture of pure
states; relatively to them, observables have mean-values that are linear convex
combinations of pure state mean-values:

〈X 〉ρ :=
∑

j∈J

λj 〈ψj |X |ψj 〉 = Tr(ρX) , ρ :=
∑

j∈J

λj |ψj 〉〈ψj | . (5.102)

As a linear convex combination (weighted sum) of projectors, ρ is a positive
operator of trace 1, known as density matrix.

Definition 5.5.1 (Density Matrices). Any positive trace-class operator
ρ ∈ B1(H) with Trρ = 1 describes a mixed state; let ρ =

∑
j=1 rj | rj 〉〈 rj |

be its spectral representation with 1 ≥ rj ≥ 0,
∑

j rj = 1. Then, ρ defines a
positive, linear and normalized functional on B(H):

B(H) � X �→ ωρ(X) := Tr(ρX) =
∑

j

rj 〈φj |X |φj 〉 . (5.103)

The set of all density matrices over the Hilbert space H of a quantum system
S will be denoted by S(S) or by B

+
1 (H) and called state-space.

Its extremal points, those which cannot be decomposed into convex combi-
nations of other states, are called pure states.

Remark 5.5.1. The eigenvalue rj of ρ in (5.103) represents the probability
to find the system in the state | rj 〉 once it is known that it is described by
the density matrix ρ. However, a mixture as in (5.102) can correspond to a
convex combination of non-orthogonal projectors Pj = |ψj 〉〈ψj |; this fact
points to two crucial aspects that mark a substantial difference with respect
to classical phase-space probability distributions: 1) a same ρ corresponds to
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different mixtures and 2) the weights λj of the mixture are interpretable as
probabilities if and only if

λk = 〈ψk | ρ |ψk 〉 =
∑

j∈J

λj |〈ψj |ψk 〉|2 ⇐⇒ 〈ψj |ψk 〉 = δjk ,

that is if and only if the vector states corresponding to a given physical
mixture are the eigenvectors of the associated density matrix.

Examples 5.5.1.

1. The geometry of the state-space of two level systems can be simply visu-
alized. Using (5.57), the density matrices ρ ∈ M2(C) read

ρ =
(
r s
s∗ 1 − r

)

=
1
2
(1l + ρ · σ) =

1
2

(
1 + ρ3 ρ1 − iρ2

ρ1 + iρ2 1 − ρ3

)

, (5.104)

with 0 ≤ r ≤ 1 and r(1 − r) ≥ |s|2 for ρ ≥ 0. Thus, ρ ∈ R
3 has length

0 ≤ ‖ρ‖2 = 1 − 4Det(ρ) ≤ 1 .

Thus, the density matrices of two-level systems are identified by the vec-
tor ρ, the so-called Bloch vector, inside the 3-dimensional sphere. The
pure states are uniquely associated with points on its surface, while or-
thogonal states are connected by a diameter.

2. By expanding the exponential operators in (5.99) as power series and
acting on the vacuum state, the resulting pure state,

|z 〉 := D(z)| vac 〉 = e−
|z|2
2 ez·a† | vac 〉 = e−

|z|2
2

n∏

j=1

∞∑

kj=0

z
kj

j√
kj !

|k 〉 ,

(5.105)
is a so-called coherent state [312], that is an eigenstate of the annihilation
operators

ai|z 〉 = zi|z 〉 ∀ i = 1, 2, . . . , n . (5.106)

It thus follows that the squared-moduli of the components of z are mean-
occupation numbers: 〈z | N̂ |z 〉 =

∑f
j=1 |zj |2. Coherent states cannot be

orthogonal to each other for there are uncountably many of them, indeed,
from (5.101), one derives

〈z1 |z2 〉 = 〈 0 |D†(−z1)D(z2) |0 〉 = ei�((z1)∗·z2)e−
1
2 |z

1 − z2|2 . (5.107)

Nevertheless, with zj = rj exp (iϑj) and dz =
∏n

j=1 rjdrj dϑj ,
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1
πf

∫

Rf

dz |z 〉〈z | =
f∏

j=1

∞∑

pj ,qj=0

| pj 〉〈 qj |√
pj !qj !

∫ ∞

0

rjdrj e−r2
j r

pj+qj

j ×

× 1
π

∫ 2π

0

dϑj eiϑj(qj−pj) =
f∏

j=1

∞∑

pj=0

| pj 〉〈 pj | = 1l . (5.108)

Namely, coherent states form an overcomplete set in the Fock space H
(f)
F .

Let a† represent the creation operator of a photon in a single mode;

a coherent state | z 〉 = e−|z|2/2
∞∑

n=0

zn

√
n!
|n 〉 corresponds to a Poisson

distribution over the mode number states, |〈n | z 〉|2 =
|z|2n

n!
e−|z|2 .

3. Passing from annihilation and creation operators to position and momen-
tum ones, by inverting (5.97) the complex parameters z ∈ C

f correspond
to points r = (q,p) ∈ R

2f in phase-space, where q :=
√

2�(z) and
p :=

√
2�(z). Coherent states are then characterized by gaussian lo-

calization both in q and p; indeed, if
√

2z0 = q0 + ip0, then from the
discussion preceding equation (5.101), using (5.77), (5.70) and (5.90) one
gets, in position representation,

〈 q |z0 〉 = 〈 q |W ((−q0,p0)) |vac 〉 = eip0·(q−q0/2) e−‖q−q0‖2/2

πf/4
, (5.109)

while, in momentum representation (see (5.71)),

〈p |z0 〉 = e−iq0·(p−p0/2) e−‖p−p0‖2/2

πf/4
. (5.110)

The phase-space localization properties of coherent states make them use-
ful tools for studying the quasi-classical behavior of quantum states [138].
In particular, given a density matrix ρ for a continuous variable system
with f degrees of freedom, one can compare its statistical properties with
those of the function Rρ(q,p) := 〈z | ρ |z 〉 [300] which is positive, since
ρ ≥ 0, and normalized because of (5.108), thence a well-defined phase-
space probability density. Viceversa, given a phase-space density R(q,p)
one can naturally associate to it a density matrix, ρR, which is diagonal
with respect to the overcomplete set of coherent states:

ρR =
∫

dz R(z) |z 〉〈z | =
∫

R2f

dx dy

(2π)f
R(x,y) |x + iy 〉〈x + iy | .

(5.111)
Most density matrices ρ admit a so-called P -representation [121] as above
in terms of a function R(x,y) that is summable and normalized, but, in
general, not positive and thus not a phase-space density.
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The classical character of coherent states stands in sharp contrast with
that of number eigenstates: this behavior shows up most evidently when
photons interact with beam-splitters [123].

Beamsplitters

A beam splitter is an optical device that is used to divide an incoming classical
light beam of intensity I along a spatial direction 1 into a reflected beam of
intensity R × I, with reflection coefficient R along an orthogonal direction
2, and a transmitted beam of intensity T × I, with transmission coefficient
T along the incoming direction 1. In absence of absorption and dissipation,
R+ T = 1.

Quantum mechanically, one associates photon modes to the two spatial
directions; in an effective two-dimensional description, a generic single photon
state |ψ 〉 incident upon the beam splitter is a superposition of single-photon
basis states | 1 〉, | 2 〉 describing photons impinging on the beam-splitter along
the directions 1 and 2.

Fig. 5.1. Beam Splitter

In absence of dissipation, the interaction with the beam splitter produces
outgoing photon states according to the rules

| 1′ 〉 := U | 1 〉 = t1| 1 〉 + r2| 2 〉 , | 2′ 〉 := U | 2 〉 = r1| 1 〉 + t2| 2 〉 ,

where r1,2, t1,2 ∈ C are the reflection and transmission amplitudes along the

directions 1, 2. Therefore, a natural matrix U =
(
t1 r2
r1 t2

)

appears which is

unitary. In fact, by using creation operators a†i for the two modes, one writes
| i 〉 = a†i | vac 〉, where the vacuum | vac 〉 is the state with no photons. Setting
| 1′ 〉 := b†1| vac 〉 and | 2′ 〉 = b†2| vac 〉, yields b†1 = t1a

†
1 + r2a

†
2, b

†
2 = r1a

†
1 + t2a

†
2

and the Hermitian conjugate linear relations. As the b#i create and annihilate
new photon states, they must comply with the CCR (5.92), whence
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[b1 , b
†
1] = |t1|2+|r2|2 = 1 = [b1 , b

†
1] = |t1|2+|r2|2 , [b1 , b

†
2] = t∗1r1+r∗2t2 = 0 .

The whole physical process can thus be characterized by the matrix

U :=
(
t1 r2
r1 t2

)

=
(
teiψ1 reiφ2

reiφ1 teiψ2

)

,

where r2 + t2 = 1 and (φ1 + φ2) − (ψ1 + ψ2) = π. For sake of simplicity, we
shall set t = r = 1/

√
2, ψ1 = ψ2 = 0 and φ1 = φ, so that φ2 = π − φ; in this

case, the matrix U reads

U =
(
t1 r2
r1 t2

)

=
1√
2

(
1 eiφ

−e−iφ 1

)

. (5.112)

It describes a so-called 50 : 50 beam-splitter that rotates by φ and π − φ
the reflected and transmitted beams. The transformation a1,2 �→ b1,2 can be
unitarily implemented, namely we can explicitly construct the operator Û
that sends | 1 〉, | 2 〉 into | 1′ 〉, | 2′ 〉. Since the beam-splitter does nothing to
the vacuum, namely Û | vac 〉 = Û†| vac 〉 = | vac 〉, the action of Û must be
such that b1,2 = Û a1,2 Û

†. Let us consider the operator

Û(z) := ez a1a†
2−z∗ a†

1a2 , z = |z|eiα ;

it is unitary and its action can be computed as for the displacement operators
in (5.100). Namely

Û(z) a†i Û(z)† =
∞∑

k=0

1
k!
dk

z [a†j ] , dz[·] = [z a1a
†
2 − z∗ a†1a2 , · ] .

Since dz[a
†
1] = z a†2 and dz[a

†
2] = −z∗ a†1, the infinite sums can be explicitly

computed, the result being

Û(z) a†1 Û(z)† = (cos |z|) a†1 − eiα (sin |z|) a†2
Û(z) a†2 Û(z)† = e−iα (sin |z|) a†1 + (cos |z|) a†2 .

Therefore, the matrix (5.112) corresponds to |z| = π/4 and α = π + φ; set
Û := Û(−π/4 exp (iφ)). In terms of Û it is now easy to check that an incoming
photon along direction 1 emerges in a superposition of states,

| 1′ 〉 = b†1| vac 〉 = Û†a†1Û | vac 〉 =
a†1 + eiφa†2√

2
| vac 〉 =

| 1 〉 + eiφ| 2 〉√
2

,

Instead, for a coherent state |α 〉 = D(α)| vac 〉, α ∈ C, one has

Û |α 〉 = Û D(α) Û†| vac 〉 = eα Û a†
1 Û†−α∗ Û a1 Û† | vac 〉

= e
α√
2

a†
1−α∗

√
2
a1 e

α√
2
eiφa†

2−α∗
√

2
e−iφa2 | vac 〉 = | α√

2
〉1 ⊗ | eiφ α√

2
〉2 .
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This means that an incoming coherent state gets split into a transmitted co-
herent state | α√

2
〉1 of intensity |α|2/2 and a reflected/phase-shifted coherent

state | eiφ α√
2
〉2 of intensity |α|2/2, exactly as with classical light.

On the other hand, a purely quantum effect results from a beam splitter
acting on a state | 1112 〉 consisting of two photons coming from the orthogonal
directions 1, 2. It is transformed into | 1′11′2 〉 = b†1b

†
2| vac 〉; explicitly,

| 1′11′2 〉 = Û a†1Û Û† a†2 Û
†| vac 〉 =

1
2
(a†1 + eiφa†2)(−e−iφa†1 + a†2)| vac 〉

=
1
2
(−eiφ(a†1)

2 + a†1a
†
2 − a†2a

†
1 + eiφ(a†2)

2)| vac 〉 =
| 21 〉 + | 22 〉√

2
.

The outgoing state thus consists in a superposition of states with both pho-
tons moving along a same direction; then, photons will always be found to-
gether either along direction 1, | 21 〉, or along direction 2, | 22 〉, with the same
probability. On the contrary, no experiment can reveal one photon along di-
rection 1 and the other photon along direction 2. This is because the ampli-
tude for | 1112 〉 is the sum of the amplitudes of all processes leading to this
state; in the present case these are reflections along either directions 1 and
2 with amplitudes r1r2 = −1/2 and transmissions along either directions 1
and 2 with amplitudes t1t2 = 1/2. These processes interfere destructively.

The same kind of effect appears in single photon experiments with Mach-
Zender interferometers.

Fig. 5.2. Mach-Zender Interferometer

In a configuration as in Figure 5.2, an incoming photon is either reflected
or transmitted at a beam-splitter BS1 with amplitudes r1 and t1, reflected by
perfectly reflecting mirrors M and then either reflected or transmitted with
amplitudes r2 and t2 at a second beam-splitter BS2. The outgoing photons
are then counted by detectors D1,2. The probability P1 of a photon being
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detected at D1 is determined by the amplitude atD1 which is the sum of those
of the processes “reflection at BS1 + transmission at BS2” and “transmission
at BS1 + reflection at BS2”, that is P1 = |r1t2 + t1r2|2. Analogously, the
processes “transmission at BS1 + transmission at BS2” and “reflection at BS1

+ reflection at BS2” contribute to the detection probability at D2, P2 =
|t1t2 + r1r2|2. One can visualize the entire process by means of a binary tree
with one level for each beam-splitter.

Fig. 5.3. Mach-Zender Interferometer: Binary Tree

If both beam-splitters act through a same operator U as before, then,
taking into account the impinging directions,

P1 =
∣
∣
∣
∣
1
2

(
−e−iφ + eiφ

)∣∣
∣
∣

2

= sin2 φ , P2 =
∣
∣
∣
∣
1
2

(
1 + e2iφ

)∣∣
∣
∣

2

= cos2 φ .

An interference pattern thus emerges which depends on the phase-shift φ and
can then be experimentally controlled.

Uncertainty Relations

Beside being necessary for the consistency of the statistical interpretation
of quantum mechanics, the positivity of quantum states is, together with
non-commutativity, at the origin of the Heisenberg uncertainty relations.

Consider the CCR for f degrees of freedom; with the notation of (5.75),
let ρ ∈ B

+
1 (H) be a density matrix such that all first moments ri := Tr(ρ r̂i)

and all second moments Tr(ρ r̂ir̂j) are finite. Then, the 2f × 2f real matrices

C̃ρ :=
[
Tr
(
ρ (r̂i−ri)(r̂j−rj)

)]2f

i,j=1
, (C̃ρ)T :=

[
Tr
(
ρ (r̂j−rj)(r̂i−ri)

)]2f

i,j=1

are both positive. In fact,

〈u | C̃ρ |u 〉 =
2f∑

i,j=1

u∗i uj Tr
(
ρ (r̂i − ri)(r̂j − rj)

)
= Tr(ρX†X) ≥ 0 ,
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for all u ∈ C
2f , where X :=

∑2f
i=1 ui(r̂i − ri). Using commutators ([· , ·]) and

anti-commutators ({· , ·}), one finds

(r̂i − ri)(r̂j − rj) =
1
2

{
(r̂i − ri) , (r̂j − rj)

}
+

1
2

[
r̂i , r̂j

]

(r̂j − rj)(r̂i − ri) =
1
2

{
(r̂i − ri) , (r̂j − rj)

}
− 1

2

[
r̂i , r̂j

]
.

With Jf as in (5.79), the CCR (5.68) read
[
r̂i , r̂j

]
= i (Jf )ij ; it thus turns

out that the correlation matrix

Cρ := [Cρ
ij ]

2f
i,j=1 =

C̃ρ + (C̃ρ)T

2
, Cρ

ij :=
1
2
Tr
(
ρ
{

(r̂i − ri) , (r̂j − rj)
}
,

beside being positive, must also satisfy

Cρ ± 1
2

[
Tr
(
ρ
[
r̂i , r̂j

])]
= Cρ ± i

Jf

2
≥ 0 . (5.113)

Let f = 1 and choose ρ = |ψ 〉〈ψ |; then,

Cρ ± i

2

(
0 1
−1 0

)

=

=

⎛

⎝
〈ψ | (Δq̂)2 |ψ 〉 〈ψ | {q̂ , p̂} |ψ 〉/2 ± i/2

〈ψ | {q̂ , p̂} |ψ 〉/2 ∓ i/2 〈ψ | (Δp̂)2 |ψ 〉

⎞

⎠ ,

where Δq̂ := q̂−〈ψ | q̂ |ψ 〉 and Δp̂ := p̂−〈ψ | p̂ |ψ 〉. Therefore, (5.113) implies

〈ψ |Δ2q̂ |ψ 〉 〈ψ |Δ2p̂ |ψ 〉 ≥ 〈ψ | {q̂ , p̂} |ψ 〉2
4

+
1
4
≥ 1

4
.

These are the uncertainty relations for conjugate position and momentum.
In terms of Bosonic annihilation and creation operators, using (5.91)

and (5.95), the correlation matrix reads

V ρ := U†
1 C

ρ U1 =
1
2

[
Tr
(
ρ
{
Ai − 〈Ai〉ρ , A†

j − 〈A†
j〉ρ
})]2f

i,j=1
, (5.114)

where U1 =
1√
2

(
1 1
−i i

)

⊗ 1lf and 〈A#
i 〉ρ := Tr

(
ρA#

i

)
. Notice that the

matrices V ρ,

Ṽ ρ =
1
2

[
Tr
(
ρ
(
Ai − 〈Ai〉ρ

)(
A†

j − 〈A†
j〉ρ
)]2f

i,j=1

and the transposed

(Ṽ ρ)T =
1
2

[
Tr
(
ρ
(
A†

j − 〈A†
j〉ρ
)(

Ai − 〈Ai〉ρ
)]2f

i,j=1
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are also positive. Since
[
Ai , A

†
j

]
= δij if 1 ≤ i ≤ f , while

[
Ai , A

†
j

]
= −δij if

1 + f ≤ i ≤ 2f , and

1
2

{
Ai , A

†
j

}
= AiA

†
j −

1
2

[
Ai , A

†
j

]
= A†

jAi +
1
2

[
Ai , A

†
j

]
,

it follows that

V ρ ≥ 0 , V ρ ± 1
2
Σ3 ≥ 0 , Σ3 :=

(
1lf 0
0 −1lf

)

. (5.115)

The correlation matrix of a coherent state ρ = |z 〉〈z | as in (5.105) is par-
ticularly simple; indeed, by virtue of ai|z 〉 = zi|z 〉, it turns out that

〈z | a†iaj |z 〉 = z∗i zj , 〈z | aiaj |z 〉 = zizj , 〈z | aia
†
j |z 〉 = δij + ziz

∗
j ,

whence V ρ =
1
2

(
1lf 0
0 1lf

)

.

Gaussian States

In classical probability theory, continuous probability distributions μ on R
n

can be described in terms of their Fourier transforms or characteristic func-
tions [157]

Fμ(ξ) :=
∫

dμ(x) eiξ·x .

In this way, the moments of the probability distribution can be obtained by
differentiating Fμ(ξ) at ξ = 0. Similarly, let ρ be a state of a continuous vari-
able system with f degrees of freedom equipped with a strongly continuous
representation of the CCR in the form (5.96), then the characteristic function
of ρ is given by

FC
ρ (r) := Tr

(
ρW (r)

)
= Tr

(
ρ eZ∗·A

)
=: FV

ρ (z) , (5.116)

where (5.96) and (5.97) have been used.

Remark 5.5.2. The characteristic function FC
ρ (r) is the inverse of the Weyl-

transform (5.80); indeed,

ρ =
∫

dr

(2π)f
FC

ρ (r)W (−r) ,

where the convergence of the integral is understood with respect to the weak-
operator topology on the representation Hilbert space. The easiest way to see
this is to call X the right hand side of the previous equality and calculate its
matrix elements in the position representation (5.67) using (5.70):
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〈 q1 |X |q2 〉 =
∫

dr

(2π)f
FC

ρ (r) 〈 q1 |W (−r) |q2 〉

=
∫

dq dp

(2π)f
FC

ρ (r) δ(q − q1 + q2)e
−ip·( 1

2 q+q2)

=
∫

dp

(2π)f
FC

ρ (q1 − q2,p) e−
i
2 p·(q1+q2) .

By computing the trace in position representation, one gets

FC
ρ (q1 − q2,p) = Tr

(
ρW (q1 − q2,p)

)

=
∫

dx 〈x | ρ |x − q1 + q2 〉 e−ip·( q1−q2
2 −x) ,

whence, from the representation
∫

dp

(2π)f
eip·q = δ(q) of the Dirac delta,

〈 q1 |X |q2 〉 =
∫

dx

∫
dp

(2π)f
eip·(q−x) 〈x | ρ |x − q1 + q2 〉 = 〈 q1 | ρ |q2 〉 .

Taking derivatives of FC
ρ (r) at r = 0 with respect to the real variables

qi, pi, respectively of FV
ρ (z) at z = 0 with respect to the complex variables zi,

z∗i , one gets the expectation values of all products of position and momentum
coordinates, respectively of annihilation and creation operators.

For instance, the first moments arise as follows,

∂zi
FV

ρ (z)
∣
∣
∣
z=0

= Tr(ρ ai) , ∂z∗
i
FV

ρ (z)
∣
∣
∣
z=0

= −Tr(ρ a†i ) , (5.117)

while second moments can be extracted from

∂2
zizj

FV
ρ (z)

∣
∣
∣
z=0

= Tr
(
ρ ajai

)
=

1
2
Tr
(
ρ
{
Ai , A

†
j

})
(5.118)

for 1 ≤ i ≤ f , 1 + f ≤ j ≤ 2f ,

∂2
z∗

i z∗
j
FV

ρ (z)
∣
∣
∣
z=0

= Tr
(
ρ a†ja

†
i

)
=

1
2
Tr
(
ρ
{
Ai , A

†
j

})
(5.119)

for 1 + f ≤ i ≤ 2f , 1 ≤ j ≤ f ,

∂2
z∗

i zj
FV

ρ (z)
∣
∣
∣
z=0

=
δij

2
− Tr

(
ρ aja

†
i

)
= −1

2
Tr
(
ρ
{
Ai , A

†
j

})
(5.120)

for 1 + f ≤ i ≤ 2f , 1 + f ≤ j ≤ 2f ,

∂2
ziz∗

j
FV

ρ (z)
∣
∣
∣
z=0

=
δij

2
− Tr

(
ρ aia

†
j

)
= −1

2
Tr
(
ρ
{
Ai , A

†
j

})
(5.121)

for 1 ≤ i ≤ f , 1 ≤ j ≤ f .
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The link with the correlation matrix (5.114) is apparent; indeed, the pre-
vious moments arise from a gaussian characteristic function of the form

FV
ρ (z) = eZ∗·〈A〉ρ − 1

2 Z∗·(V ρZ) , (5.122)

where 〈A〉ρ := {Tr(ρAi)}2f
i=1 and the vectors Z, A are as in (5.97) and (5.95).

Notice that (5.114) implies that the sesquilinear form

(Z1,Z2) �→ Z∗
1 · (V ρZ2)

is symmetric and positive.
Taking into account (5.91) and (5.97), one passes from the complex vector

Z = (z∗,−z) ∈ C
2f to the vector r = (q,p) of canonical position and

momentum coordinates by means of

Z = U2r , U2 :=
1√
2

(
1 −i
−1 −i

)

⊗ 1lf .

Since U†
2U1 = −iΣ1 = −i

(
0 1lf
1lf 0

)

, where U1 is the matrix in (5.114),

FV
ρ (z) becomes the following Gaussian function of r ∈ R

2f ,

FC
ρ (r) = eir·(Σ1〈r̂〉ρ)− 1

2 r·(Σ1CρΣ1r) , (5.123)

where 〈r̂〉ρ := {Tr(ρ r̂i)}2f
i=1.

As in classical probability, the Gaussian form of the characteristic function
is such that higher moments are determined by first and second moments.
Obviously, not all quantum states have this property, if they do have it, they
are called Gaussian states.

Example 5.5.2. Coherent states ρ = |u 〉〈u | = D(u)| 0 〉〈 0 |D†(u), u ∈ C
f

are Gaussian; indeed, using (5.100),

FV
ρ (z) = 〈 0 |D†(u)eZ∗·AD(u) |0 〉 = 〈 0 | eZ∗·(A+U) |0 〉

= eZ∗·U 〈 0 | eZ∗·A |0 〉 = eZ∗·U− 1
2‖z‖2

, U = (u,u∗) ∈ C
2f .

The first moments are u = 〈u |a |u 〉, u∗ = 〈u |a† |u 〉, the correlation matrix

V ρ = 1
2

(
1lf 0
0 1lf

)

.

From its characteristic function, one can easily determine whether a given
Gaussian state ρ is pure; indeed, by using Remark 5.5.2, one computes

Tr(ρ2) =
∫

dr1 dr2

(2π)2f
FC

ρ (r1)FC
ρ (r2)Tr

(
W (−r1)W (−r2)

)

=
∫

dr

(2π)f
FC

ρ (r)FC
ρ (−r) =

∫
dr

(2π)f
e−r·(Cρr) =

1
√

4fDet(Cρ)
.

Therefore, ρ is pure if and only if Det(Cρ) = 4−f .
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A part from their first moments which can always be set equal to 0 by a
suitable shift operated by a displacement operator D(z) in (5.99), Gaussian
states are completely determined by their correlation matrix. An interesting
question is the following one: given a Gaussian function

F (z) = eZ∗·M e−
1
2 Z∗·(V Z) , (5.124)

with M ∈ C
2f an assigned complex vector and V an assigned (2f) × (2f)

positive matrix such that the associated sesquilinear form is symmetric,

Z∗
1 · (VZ2) = Z∗

2 · (VZ1) , (5.125)

is F (z) the characteristic function of Gaussian state ρ with correlation matrix
V and first moments given by the components of M?

The answer is that it is so if and only if V satisfies the conditions (5.115).
While necessity descends from the uncertainty relations, sufficiency comes
instead from the following general result [143].

Proposition 5.5.1. A function R
2f � r �→ FC(r) (C2f � z �→ FV (z))

is the characteristic function of a quantum state ρ of f degrees of freedom
satisfying the CCR if and only if 1) FC(0) = 1 (FV (0) = 1), 2) FC(r)
(FV (z)) is continuous at r = 0 (z = 0) and 3) for any n-tuple {ri}n

i=1,
ri ∈ R

2f , ({zi}n
i=1) the n× n matrix FC (FV ) with entries (see (5.98))

FC
ij = e−

i
2 σ(ri,rj) FC(rj − ri)

(
FV

ij = e
1
2 Z∗

i ·(Σ3Zj) FC(zj − zi)
)

is positive definite.

We postpone the proof of the proposition and instead show that if the
positive (2f)× (2f) matrix V in (5.124) satisfies V ± 1

2Σ3 ≥ 0, then there is
a (Gaussian) state ρ with F (z) as characteristic function.

We just need to consider condition 3) and prove that

n∑

i,j=1

u∗i uj e(Z∗
j−Z∗

i )·M e−
1
2 (Z∗

j−Z∗
i )·(V (Zj−Zi)) e

1
2 Z∗

i ·(Σ3Zj) ≥ 0 ,

for all choices of n complex vectors zi ∈ C
f in Zi = (z∗

i ,−zi). Because
of (5.125), we shall thus show that

n∑

i,j=1

w∗
iwj eZ∗

i ·((V + 1
2 Σ3)Zj) ≥ 0 , where wi := eZ∗

i ·M− 1
2 Z∗

i ·(V Zi) .

Since V + 1
2Σ3 is positive, the same is true of the n× n Hermitian, positive

definite matrix A := [Aij ], with entries Aij := Z∗
i ·((V + 1

2Σ3)Zj). Then, con-
sider the spectral decomposition of A with eigenvalues a	 ≥ 0, � = 1, 2, . . . , n,
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so that Aij =
∑n

	=1 a	ψ	iψ
∗
	j , where ψ	i is the i-th component of the �-th

eigenvector of A; then,

n∑

i,j=1

w∗
iwj eAij =

∞∑

k=0

1
k!

n∑

	1,	2,...	k=1

k∏

j=1

a	j

∣
∣
∣
∣
∣

n∑

i=1

wi

k∏

r=1

ψ∗
	ri

∣
∣
∣
∣
∣

2

≥ 0 .

Proof of Proposition 5.5.1 If FV (z) = FV
ρ (z) in (5.116), then condition

1) in the statement of the proposition is satisfied because Tr(ρ) = 1, while
condition 2) is fulfilled since we assumed a strongly-continuous representation
of the CCR and ρ is a trace-class operator, so that

∣
∣FV (z) − 1

∣
∣ ≤
∑

j

rj

∣
∣
∣〈 rj | eZ∗·A − 1l |rj 〉

∣
∣
∣ ,

where rj and | rj 〉 are eigenvalues and eigenvectors of ρ. As regards condition
3), observe that using (5.116) and (5.78), it turns out that

n∑

i,j=1

u∗i ujFV
ij = Tr

(
ρX†X

)
≥ 0 ,

where X :=
∑n

i=1 ui exp(Z∗
i · A).

The sufficiency of conditions 1), 2) and 3) is shown by using them to
construct a strongly continuous representation of the CCR by Weyl operators
W (r) on a Hilbert space H and a density matrix ρ on H such that FC(r) is
of the form (5.116) [143]. One starts by defining the operators

(
W0(r)ψ

)
(w) = e−

i
2 σ(r,w)ψ(w + r) , r ∈ R

2f , (5.126)

on the functions on R
2f ; these operators satisfy the CCR (5.78):

(
W0(r1)W0(r2)ψ

)
(w) = e−

i
2 σ(r1,r2)

(
W0(r1 + r2)ψ

)
(w) .

Then, one considers the linear span K0 of all functions on R
2f of the form

ΨC(w) =
n∑

k=1

ck exp(− i

2
σ(rk,w)) ;

for all finite n ∈ N, and defines on it the sesquilinear form

〈ΨC1 |ΨC2 〉F :=
n1∑

i=1

n2∑

j=1

(c1i )
∗c2j F

C(rj − ri) e−
i
2 σ(ri,rj) ,

where zi,j are related to ri,j via (5.97). Because of the positive semi-
definiteness of FC , 〈ΨC |ΨC 〉F ≥ 0; thus, in analogy to the GNS construction,
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one takes the quotient of K0 by the kernel consisting of those ΨC such that
〈ΨC |ΨC 〉F = 0 and then its completion with respect to the scalar product
defined on the quotient by 〈 · | · 〉F . This gives a Hilbert space K containing
the constant function 1l(r) = 1 on R

2f for 〈 1l | 1l 〉F = 1; similarly to the GNS
vector, | 1l 〉 is cyclic for the family of operators W0(r) since

ΨC(w) =
n∑

k=1

ck exp(− i

2
σ(rk,w)) =

n∑

k=1

ck

(
W0(rk) 1l

)
(w) ,

and
〈 1l |W0(r) |1l 〉F = 〈 1l | e− i

2 σ(r,·) 〉F = F (z) . (5.127)

Further, (5.126) yields

(
W0(r)ΨC1

)
(w) =

n∑

k=1

cke−
i
2 σ(rk,r) e−

i
2 σ(rk+r,w) ,

whence

〈W0(r)ΨC1 |W0(r)ΨC2 〉F =
∑

i,j

(c1i )
∗c2j e

i
2 σ(r1

i ,r) e−
i
2 σ(r2

j ,r)

× FC(r2
j − r1

i ) e−
i
2 σ(r1

i +r,r2
j+r)

=
∑

i,j

(c1i )
∗c2j F

C(r2
j − r1

i ) e−
i
2 σ(r1

i ,r2
j )

= 〈ΨC1 |ΨC2 〉F .

The operators W0(r) can thus be extended to unitary operators on K where
they provide a representation of the CCR . If the latter is strongly continu-
ous, then, from Remark 5.4.2, it reduces to an orthogonal sum of unitarily
equivalent irreducible representations. Namely, there exists an irreducible rep-
resentation of the CCR on a Hilbert space H by Weyl operators W (r) and
an isometry U : K �→ H̃ :=

⊕
n H such that

W0(r) = U† W̃ (r)U , W̃ (r) :=
⊕

n

W (r) .

Also, U | 1l 〉 =
⊕

n |ψn 〉 is a normalized vector in H̃, namely
∑

n ‖ψn‖2 = 1,
so that ρ :=

∑
n λn Pn is a density matrix on H, where λn := ‖ψn‖2 and

Pn := | ψ̂n 〉〈 ψ̂n | with ψ̂n := ψn/‖ψn‖. Now, from (5.127) it follows that

Tr
(
ρW (r)

)
=
∑

n

〈ψn |W (r) |ψn 〉 = 〈U1l | W̃ (r) |U1l 〉

= 〈 1l |W0(r) |1l 〉 = F (z) ,

which concludes the proof. In order to show that the representation of the
CCR by the Weyl operators W0(r) on K is strongly continuous, we shall first
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show that the condition 1), 2) and 3) ensure uniform continuity of FC(r) at
any r. Indeed, choosing vectors r1 = 0, r2 = u and r3 = w, it turns out that

FC =

⎛

⎝
1 FC(u) FC(w)

FC(−u) 1 FC(w − u)e−
i
2 σ(u,w)

FC(−w) FC(u − w)e
i
2 σ(u,w) 1

⎞

⎠ ;

its positivity implies FC(−u) = FC(u)∗, |FC(u)| ≤ 1 and
∣
∣
∣FC(u) − FC(w)

∣
∣
∣ ≤ 1 −

∣
∣
∣FC(u − w)

∣
∣
∣
2

− 2�
{

(FC)∗(u)FC(w)
[
1 − FC(u − w) e

i
2 σ(u,w)

]}

≤ 4
∣
∣
∣1 − FC(u − w) e

i
2 σ(u,w)

∣
∣
∣ .

Then, the strong continuity of the representation is a consequence of the fact
that, for all ΨC ∈ K0, the contribution

〈ΨC |W0(r) |ΨC 〉F =
∑

i,j

c∗i cj e−
i
2 (σ(rj ,r)+σ(ri,rj+r)) FC(rj + r − ri)

goes to 〈ΨC |ΨC 〉F when r → 0 in the equality

‖(W0(r) − 1l)|ΨC 〉‖2
F = 2

(
〈ΨC |ΨC 〉F −�〈ΨC |W0(r) |ΨC 〉F

)

and that this result can be extended to the whole of K. �

Examples 5.5.3 (Two-Mode Gaussian States).

1. Consider two bosonic modes (r̂ = (q̂1, q̂2, p̂1, p̂2)) in a state ρ with Gaus-
sian characteristic function,

FC
ρ (r) = e−

1
2 r·(Σ1CρΣ1r) , R

4 � r = (q1, q2,p1,p2) . (5.128)

With respect to (5.123) 〈r̂〉ρ = 0, a case which can always be attained by
suitably translating ρ. This is more easily ascertained in terms of creation
and annihilation operators as in (5.122); indeed, if ρ is such that

〈A〉ρ := {Tr(ρAi)}4
i=1 =: U = (u,u∗) �= 0 ,

consider ρ̃ := D†(u) ρD(u), with D(u) as in (5.99) (see also Exam-
ple 5.5.2). Using (5.100) and (5.116),

FV
ρ̃ (z) = Tr

(
ρD(u) eZ∗·A D†(u)

)
= e−Z∗·U FV

ρ̃ (z)

= e−Z∗·U eZ∗·U − 1
2 Z∗·(V ρZ) = e−

1
2 Z∗·(V ρZ) .
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It is convenient to rearrange r̂ as R̂ = M r̂, M = M−1 = MT ,

R̂ =

⎛

⎜
⎝

q̂1
p̂1

q̂2
p̂2

⎞

⎟
⎠ =

⎛

⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟
⎠

︸ ︷︷ ︸
M

⎛

⎜
⎝

q̂1
q̂2
p̂1

p̂2

⎞

⎟
⎠ . (5.129)

As a consequence, the CCR (5.68) now read

[R̂i , R̂j ] = iΩij , Ω := M J2 M =

⎛

⎜
⎝

0 1 0 0
−1 0 0 0
0 0 1 0
0 0 −1 0

⎞

⎟
⎠ , (5.130)

and the characteristic function (5.128) becomes

FC
ρ (r) =: G(R) = e−

1
2 R·(Σ̂1 VΣ̂1R) , (5.131)

where Σ̂1 :=

⎛

⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟
⎠ and V =

[
1
2
Tr
(
ρ
{
R̂i , R̂j

})]4

i,1=1

. More

explicitly, a same argument as the one that led to (5.113) shows that C
is a positive real 4 × 4 of the form

V =
(

A C
CT B

)

(5.132)

0 ≤ A :=
(

Tr(ρ q̂21) 1
2Tr(ρ {q̂1 , p̂1})

1
2Tr(ρ {q̂1 , p̂2

1}) Tr(ρ q̂21)

)

(5.133)

0 ≤ B :=
(

Tr(ρ q̂22) 1
2Tr(ρ {q̂2 , p̂2})

1
2Tr(ρ {q̂2 , p̂2}) Tr(ρ q̂22)

)

(5.134)

C :=
(

Tr(ρ q̂1q̂2) Tr(ρ q̂1p̂2)
Tr(ρ p̂1q̂2) Tr(ρ p̂1p̂2)

)

. (5.135)

By multiplying (5.113) on both sides by M , the necessary and sufficient
conditions for V to be the correlation matrix of a gaussian state are

V ± i

2
Ω ≥ 0 . (5.136)

2. Every 2 × 2 real matrix S of determinant 1 such that S J2 S
T = J2,

where J2 =
(

0 1
−1 0

)

is the symplectic matrix (2.6) for one degree

of freedom, can be used to define new one-mode canonical operators,

r̂′ = Sr̂, r̂ =
(
q̂
p̂

)

, r̂′ :=
(
q̂′

p̂′

)

, [r̂′i , R̂
′
j ] = i(J2)ij . This fact allows for
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a greatly simplification of the basic structure of the correlation matrix
V [278, 115]. As a first step, consider a positive, real symmetric 2 × 2
matrix X with α :=

√
det(X) and define S :=

√
X/α; it turns out that

X = ST

(
α 0
0 α

)

S. Furthermore, since
√
X is symmetric and J2 anti-

symmetric,
√
X J2

√
X is antisymmetric and thus proportional to J2. Its

determinant is α whence
√
X J2

√
X = α J2 and S J2 S

T = J2
5. As a sec-

ond step, use this result and let SA,B effect the symplectic diagonalization
of the positive, real matrices A,B in V, then

V =
(
SA 0
0 SB

) (
α 1l2 C̃
C̃T β 1l2

) (
ST

A 0
0 ST

B

)

.

As a third and last step, notice that the real matrix C̃ can be written as

C̃ = U

(
c1 0
0 c2

)

V T , where c1,2 are its singular values (see (5.16)) and

U, V are two orthogonal matrices. If their determinant is 1 then they also
preserves J2, otherwise set Ũ := Uσ3, Ṽ := V σ3 and

(
γ1 0
0 γ2

)

:= σ3

(
c1 0
0 c2

)

σ3 ,

where now γ1,2 need not be both positive. Therefore, any two-mode cor-
relation matrix can be written as [278, 103]

V =
(
UA 0
0 UB

)
⎛

⎜
⎝

α 0 γ1 0
0 α 0 γ2

γ1 0 β 0
0 γ2 0 β

⎞

⎟
⎠

︸ ︷︷ ︸
V0

(
UT

A 0
0 UT

B

)

, (5.137)

by means of matrices UA,B such that UA,B J2 U
T
A,B = J2. In conclusion,

by suitably changing canonical coordinates, one can always reduce V to

the standard form V0 =
(
A0 C0

CT
0 B0

)

, where A0 =: α 1l2, B0 := β 1l2

and C0 :=
(
γ1 0
0 γ2

)

. Then, for V0, by imposing the positivity of the

principal minors of V0 ± i
2Ω, the condition (5.136) amounts to

1
4

+ I4 ≥ I1 + I2 + 2 I3 , (5.138)

where I1 = α2 = Det(A0), I2 = β2 = Det(B0), I3 = γ1γ2 = Det(C0) and

5The above argument is the simplest formulation of a more general theorem of
Williamson on the symplectic diagonalization of positive, real 2f×2f matrices [115]
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I4 = (αβ − γ2
1) (αβ − γ2

2) = det(V0) .

As the determinants Ij are invariant under transformations as those lead-
ing from V to V0, that is I1 = Det(A), I2 = Det(B), I3 = Det(C) and
I4 = Det(V), inequality (5.138) is necessary and sufficient to ensure that
a positive, real 4 × 4 matrix V as in (5.132)– (5.135) be the correlation
matrix of a two-mode Gaussian state.

3. Consider a two-mode Gaussian state ρ as in (5.111); a necessary and
sufficient condition such that Rρ(q1, q2; p1, p2) ≥ 0 is that the correlation
matrix V satisfy

V ± 1l4
2

≥ 0 .

Indeed, using the argument at the end of Example 5.4.3, from the CCR
relations (5.78) and (5.107) the characteristic function of ρR results

EρR
(r) =

∫

R4

dx dy

(2π)2
R(x,y) ×

×〈 vac |W (
√

2(x,−y))W (q,p)W (
√

2(−x,y)) |vac 〉

=
∫

R4

dx dy

(2π)2
R(x,y) ei

√
2 (q·y+p·x) 〈 vac |W (q,p) |vac 〉

= e−
1
4 (‖q‖2+‖p‖2)

∫

R4

dx dy

(2π)2
R(x,y) ei

√
2 (q·y+p·x) . (5.139)

Because of the argument developed in the first one of the above ex-
amples, we can assume ρR to be a Gaussian function with 〈r̂〉ρR

= 0;
thus, by Fourier transform and using (5.131) the result follows from
‖R‖2 = ‖r‖2 = ‖q‖2 + ‖p‖2 and

R(u) =
∫

R4

dR

π2
e−i

√
2 u·(Σ1MR) G(R) e

‖R‖2

4

=
∫

R4

dR

π2
e−i

√
2 u·(Σ1MR) e−

1
2 R·(Σ̂1(V− 1

21l4)Σ̂1R) ,

where R := (q1,p1, q2,p2) ∈ R
4, M4(C) � Σ1 =

(
0 1l2
1l2 0

)

and

M4(C) � M is the matrix in (5.129).

Remark 5.5.3. Matrices as those in the second example above form the so-
called symplectic group for f = 1 degrees of freedom [265]; the symplectic
group for f > 1 degrees of freedom consists of real matrices S ∈ Mf (R) of de-
terminant 1 such that preserve the symplectic matrix Jf , that is S Jf S

T = Jf .
Setting as before r̂′ := Sr̂, the CCR are respected, namely [r̂′i , r̂

′
j ] = i(Jf )ij .

Therefore, because of the unitary equivalence of the CCR representations
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(see Remark 5.4.2), there exists a unitary operator U(S) on the representa-
tion Hilbert space H = L

2
dq (Rf ) such that r̂′ = U†(S) r̂U(S). From (5.75),

the Weyl operators transform as

U†(S)W (r)U(S) = ei r·(Σ1Sr̂) = ei (S̃T r)·(Σ1r̂) = W (S̃T r) , (5.140)

where, if S =
(

A C
CT B

)

with A,B,C ∈ Mf (R), then S̃ =
(
D C
B A

)

while

the transposed S̃T equals
(
DT CT

C AT

)

.

Let ρ ∈ B
+
1 (H) be a density matrix for the f Bosonic degrees of freedom

and consider the state ρS := U(S) ρU†(S) obtained by operating the sym-
plectic transformation of the canonical operators; because of (5.140), their
characteristic functions (5.116) of ρ and ρS are related by EρS

(r) = Eρ(S̃T r).
With r = (q,p),u = (x,y) ∈ R

2f , (5.139) generalizes to

Eρ(r) = e−‖r‖2/4

∫

R2f

du

(2π)f
Rρ(u) e

√
2u·(Σ1r) ,

where Σ1 :=
(

Of 1lf
1lf Of

)

, whence the corresponding functions RρS
(u) and

Rρ(u) in the P -representation (5.111) are related by

e−‖r‖2/4

∫

R2f

du

(2π)f
RρS

(u) ei
√

2u·(Σ1r) =

= e−‖S̃T r‖2/4

∫

R2f

du

(2π)f
Rρ(S−1u) ei

√
2u·(Σ1r) . (5.141)

5.5.1 States in the Algebraic Approach

As we have seen in Example 5.2.4 and Remark 5.2.3, expectations as in Defi-
nition 5.5.1 provide semi-norms that equip B(H) with a w∗ topology which is
equivalent to the σ-weak topology. On the other hand, in Section 5.3.1, states
have been defined as positive, normalized linear functionals on C∗ algebras
which are continuous with respect to the uniform topology of B(H). Since
this topology is finer and thus has more open subsets than the σ-weak one,
in general expectations need not be also σ-weak continuous. The following
result [64] characterizes the space of density matrices within the more general
space of states on B(H).

Proposition 5.5.2. If M ⊆ B(H) is a von Neumann algebra with identity,
all σ-weakly continuous expectations on M have the form M � X �→ Tr(ρX),
with ρ ∈ B1(H) a density matrix.
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Proof: From Example 5.2.4, any σ-weak functional F : M �→ C takes the
form F (X) =

∑
n〈ψn |X |φn 〉 where {ψn} and {φn} are sequences of vectors

in H such that
∑

n ‖ψ‖2 ≤ ∞ and
∑

n ‖φ‖2 ≤ ∞.
Set | ψ̃ 〉 =

⊕
n |ψn 〉, | φ̃ 〉 =

⊕
n |φn 〉 and consider the following represen-

tation of B(H) on their Hilbert space H̃, π(X)| ψ̃ 〉 =
⊕

n(X|ψn 〉), X ∈ B(H).
Then, F (X) = 〈 ψ̃ |π(X) |φ̃ 〉. If F is positive and M � X ≥ 0, then

F (X) =
1
4

(
〈 ψ̃ + φ̃ |π(X) |ψ̃ + φ̃ 〉 − 〈 ψ̃ − φ̃ |π(X) |ψ̃ − φ̃ 〉

)

≤ 1
4
〈 ψ̃ + φ̃ |π(X) |ψ̃ + φ̃ 〉 .

By considering the GNS construction based on the vector state | ψ̃+ φ̃ 〉 (once
normalized), Remark 5.3.2.3 implies the existence of 0 ≤ T ′ = (S′)†S′ ≤ 1l/4
in the commutant of π(M). Since S′ maps H̃ into itself,

F (X) = 〈 ψ̃ + φ̃ |T ′π(X) |ψ̃ + φ̃ 〉 = 〈S′(ψ̃ + φ̃) |π(X) |S′(ψ̃ + φ̃) 〉
=
∑

n

〈χn |X |χn 〉 , ∀X ∈ M .

Set ρ :=
∑

n |χn 〉〈χn |; this operator is positive. If F (1l) = 1, then Tr(ρ) = 1,
whence ρ ∈ B

+
1 (H) and F (X) = Tr(ρX) for all X ∈ M. �

Remark 5.5.4. [64] As functionals, density matrices are normal as their σ-
weak continuity is equivalent to the property of normal linear maps outlined
in Remark 5.2.7.

Because of the convexity of the space of states (see Remark 5.3.2.5), one
has that

Proposition 5.5.1. The space of states S(S) of a quantum system S is con-
vex and a same density matrix can in general be decomposed into infinitely
many different convex combinations of other density matrices, unless it is a
pure state which is thus extremal in S(S).

Proof: Take any set of 0 ≤ Xj ∈ B(H), j ∈ J , such that
∑

j∈J Xj = 1l; as
ρ ≥ 0, in terms of its spectral decomposition ρ =

∑
k rk|ψk 〉〈ψk |, its unique

(positive) square-root is given by
√
ρ =

∑
k

√
rk|φk 〉〈φk |. Then,

ρ =
∑

j∈J

λj ρj , ρj :=
√
ρXj

√
ρ

λj
, λj = Tr(ρXj) . (5.142)

Thus the same density matrix ρ describes mixtures whose components are
described by density matrices ρj ; in turn, these can also be decomposed unless
they are projectors, as, in this case, ρ = |ψ 〉〈ψ | implies
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√
ρXj

√
ρ = 〈ψ |Xj |ψ 〉 |ψ 〉〈ψ |

so that ρj = ρ for all choices of Xj ≥ 0. �

Example 5.5.4. [156] Consider two generic decompositions of a same den-
sity matrix ρ ∈ S(S) into non-orthogonal one-dimensional projectors,

ρ =
P∑

p=1

√
ρ |ψp 〉〈ψp |

√
ρ

︸ ︷︷ ︸
|wp 〉〈wp |

, ρ =
Q∑

q=1

√
ρ |φq 〉〈φq |

√
ρ

︸ ︷︷ ︸
| zq 〉〈 zq |

,

with
∑P

p=1 |ψp 〉〈ψp | = 1 and
∑Q

q=1 |φq 〉〈φq | = 1. By means of the spectral
representation ρ =

∑N
j=1 rj | rj 〉〈 rj |, setting | vj 〉 := √

rj | rj 〉, one gets

|wp 〉 =
N∑

j=1

〈 rj |ψp 〉
︸ ︷︷ ︸

(W †)jp

| vj 〉 , | zq 〉 =
N∑

j=1

〈 rj |φq 〉
︸ ︷︷ ︸

(Z†)jq

| vj 〉 .

The P×N matrix W : C
N �→ C

P with entries Wpj := 〈ψp | rj 〉 and the Q×N
matrix Z : C

N �→ C
Q with entries Zqj := 〈φq | rj 〉 are such that W †W = 1N

and Z†Z = 1N . Then | v	 〉 =
∑P

p=1 Wp	|wp 〉 and | zq 〉 =
∑P

p=1 Vpq|wp 〉,
where V = WZ† : C

Q �→ C
P . Thus, any two decompositions of ρ into

projections are related by a P × Q matrix V such that V V † = WW † and
V †V = ZZ†; therefore, if P = Q = rank(ρ), then W , Z and hence V are
unitary matrices on the support of ρ. Also, if P = rank(ρ), but Q is arbitrary,
then V is an isometry such that V †V = 1N .

In Section 5.3.1, states on C∗ algebras have been used to construct Hilbert
space representations; in the present setting, a representation on a concrete
Hilbert space H is a priori given, it is nevertheless instructive to consider pure
and mixed states of a finite dimensional quantum system S. In such cases,
the GNS representation amounts to what in quantum information is known
as mixed state purification.

Let ρ ∈ MN (C) be a density matrix and consider its spectral representa-
tion ρ =

∑N
j=1 rj | rj 〉〈 rj |, some eigenvalues possibly being equal to zero. To

ρ one associates the state vector |√ρ 〉 ∈ C
N ⊗ C

N given by

|√ρ 〉 :=
N∑

j=1

√
rj | rj 〉 ⊗ | rj 〉 . (5.143)

Given X ∈ MN (C), let it be represented by π(X) = X ⊗ 1lN on C
N ⊗ C

N ,

X ⊗ 1lN |√ρ 〉 =
N∑

j=1

√
rj (X| rj 〉) ⊗ | rj 〉 =

N∑

j,k=1

√
rj 〈 rk |X |rj 〉 | rk 〉 ⊗ | rj 〉

= |X√
ρ 〉 , (5.144)

whence 〈√ρ |X ⊗ 1lN |√ρ 〉 = 〈√ρ |X√
ρ 〉 = Tr(ρX).
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Pure States

If ρ = |ψ 〉〈ψ |, ψ ∈ C
N , then |√ρ 〉 := |ψ 〉 ⊗ |ψ 〉 ∈ C

N ⊗ C
N and

π(X)|√ρ 〉 = X|ψ 〉 ⊗ |ψ 〉, for all X ∈ MN (C), whence the GNS Hilbert
space is (isomorphic to) C

N . Indeed, by taking the quotient of MN (C) with
respect to the set

I :=
{
X ∈ MN (C) : 〈ψ |X†X |ψ 〉 = 0

}
,

the equivalence classes |Ψρ
X 〉 are identified with operators of the form

X|ψ 〉〈ψ |. By varying X, the GNS Hilbert space Hρ is generated by vec-
tors |φ 〉〈ψ | for all φ ∈ C

N and is thus isomorphic to C
N . It follows that the

GNS representation πρ(MN (C)) is unitarily equivalent to MN (C) and thus
irreducible in agreement with Remark 5.3.2.

Faithful Density Matrices

At the opposite end with respect to pure states, let us consider a den-
sity matrix ρ ∈ MN (C) with eigenvalues rj all different from zero, so that
Tr(ρX†X) = 0 ⇐⇒ X = 0. According to Definition 5.3.5, ρ is faithful.

Matrices X ∈ MN (C) becomes N2-dimensional vectors whose compo-
nents are their matrix elements with respect to the ONB consisting of the
eigenvectors of ρ, |X 〉 =

∑N
i,j=1 〈 ri |X |rj 〉 | ri 〉 ⊗ | rj 〉. Also, by varying

X ∈ MN (C), the linear span of vectors of the form |X√
ρ 〉 is dense in

C
N ⊗ C

N . Let ψ =
∑N

i,j=1 ψij | ri 〉 ⊗ | rj 〉 ∈ C
N ⊗ C

N and X = | rp 〉〈 rq |,
then 〈ψ |X ⊗ 1lN |√ρ 〉 = ψ∗

pq
√
rq. Therefore, if ψ is orthogonal to the linear

span of |X√
ρ 〉 then, ψ∗

pq = 0 for all p, q as ρ is faithful.
Because of Remark 5.3.2.1, the triplet (CN ⊗ C

N , π, |√ρ 〉) is unitarily
equivalent to the GNS triplet (Hρ, πρ, Ωρ) corresponding to the expectation
functional ωρ : MN (C) � X �→ ωρ(X) := Tr(ρX).

The matrix algebra MN (C) is represented by MN (C)⊗ 1lN on Hρ; so, its
commutant is πρ(MN (C))′ = 1lN ⊗MN (C), πρ(MN (C)) has trivial center and
is thus a factor. The action of the commutant is given by

1lN ⊗X|√ρ 〉 =
N∑

j=1

√
rj | rj 〉 ⊗ (X| rj 〉) = |√ρXT 〉 , (5.145)

where XT denotes the transposition of X with respect to the eigenbasis of ρ.
We can now look at the decomposers in (5.142) from the point of view

of Remark 5.3.2.3. Given a convex decomposition ρ =
∑

j∈J λjσj , every σj

corresponds to a unique 0 ≤ X ′
j in the commutant π(MN (C))′, thence to a

unique 0 ≤ Xj ∈ MN (C), such that X ′
j = 1lN ⊗X∗

j and

λjσj(X) = 〈√ρ |π(X)X ′
j |
√
ρ 〉 = 〈√ρ |X ⊗X∗

j |√ρ 〉
= 〈√ρ |X√

ρXj 〉 = Tr(
√
ρXj

√
ρX) , (5.146)
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whence λj = Tr(ρXj) and σj = (
√
ρXj

√
ρ)/λj .

Example 5.5.5. Consider a two-level system equipped with the density ma-

trix ρ =
1
2

(
1 − s 0

0 1 + s

)

, 0 ≤ s ≤ 1; as GNS vector we can take its

purification (5.143)

|√ρ 〉 =

√
1 − s

2
| 0 〉 ⊗ | 0 〉 +

√
1 + s

2
| 1 〉 ⊗ | 1 〉 ,

where | 0 〉, | 1 〉 are the eigenstates of ρ. The corresponding GNS representa-
tion is πρ(M2(C)) = M2(C) ⊗ 1l2 with GNS Hilbert space C

4,

〈√ρ |X ⊗ 1l |√ρ 〉 =
1 − s

2
〈 0 |X |0 〉 +

1 + s

2
〈 1 |X |1 〉 = Tr(ρX) ,

for all X ∈ M2(C). The commutant is πρ(M2(C))′ = 1l2 ⊗M2(C) so that πρ

is reducible and a factor since πρ(M2(C))′′ = πρ(M2(C)) whence its center
(see Definition 5.3.4) is trivial, Zρ = πρ(M2(C))′′ ∩ πρ(M2(C)) = {λ1l}.

Modular Theory

The GNS state of any faithful density matrix is separating for πρ(MN (C)),
namely πρ(X)|√ρ 〉 = 0 ⇐⇒ X = 0, and thus cyclic for the commutant
πρ(MN (C))′ (see Lemma 5.3.1).

We shall now give the fundamentals of the so-called modular theory that
looks particularly simple for finite-level systems.

Let ρ be a faithful states and identify its GNS triplet (Hρ, πρ, Ωρ) with
(CN ⊗ C

N ,MN (C) ⊗ 1lN , |
√
ρ 〉). The so-called modular conjugation is the

antilinear map Jρ : C
N ⊗ C

N �→ C
N ⊗ C

N such that

|ψ 〉 :=
N∑

i,j=1

ψij | ri 〉 ⊗ | rj 〉 �→ Jρ|ψ 〉 =
N∑

i,j=1

ψ∗
ij | rj 〉 ⊗ | ri 〉 . (5.147)

It satisfies J2
ρ = 1l and Jρ|

√
ρ 〉 = |√ρ 〉; furthermore,

Jρ|X
√
ρ 〉 = Jρ (X ⊗ 1lN )Jρ|

√
ρ 〉 =

N∑

i,k=1

√
ri (〈 rk |X |ri 〉)∗ | rk 〉 ⊗ | ri 〉

= 1lN ⊗X∗|√ρ 〉 = |√ρX† 〉 , (5.148)

where X∗ is the conjugate of X with respect to the ONB {| rj 〉}N
j=1, that

is 〈 rk |X∗ |rj 〉 = (〈 rk |X |rj 〉)∗. Given X,Y,Z ∈ MN (C), one explicitly
computes
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[
Jρ(X ⊗ 1lN )Jρ , Y ⊗ 1lN

]
|Z√ρ 〉 =

= Jρ(X ⊗ 1lN )Jρ|Y Z
√
ρ 〉 − (Y ⊗ 1lN )Jρ(X ⊗ 1lN )|√ρZ† 〉

= Jρ|X
√
ρ(Y Z)† 〉 − (Y ⊗ 1lN )|Z√ρX† 〉

= |Y Z√ρX† 〉 − |Y Z√ρX† 〉 = 0 .

Thus, Jρ(X ⊗ 1lN )Jρ belongs to the commutant 1lN ⊗MN (C) = πρ(MN (C))′

of MN (C) ⊗ 1lN = πρ(MN (C)); since the GNS vector |√ρ 〉 is cyclic for
πρ(MN (C)) it is separating for πρ(MN (C))′. Therefore, from (5.148),

Jρ X ⊗ 1lN Jρ = 1lN ⊗X∗ , (5.149)

whence Jρ antilinearly embeds πρ(MN (C)) into its commutant πρ(MN (C))′.
Actually, the embedding is an anti-isomorphism,

Jρπρ(MN (C))Jρ = πρ(MN (C))′ . (5.150)

Indeed, using (5.145), for any S′ ∈ πρ(MN (C))′ and Z ∈ MN (C), it holds

S′|√ρ 〉 = |YS′
√
ρ 〉 = |√ρ(√ρ Y †

S′
1
√
ρ
)† 〉 = Jρ

( 1
√
ρ
Y T

S′
√
ρ
)
⊗ 1lN Jρ|

√
ρ 〉 ,

where the first inequality is due to the fact that S′|√ρ 〉 is a vector in Hρ

which can be obtained by acting on the GNS vector with some πρ(YS′). Then,

S′ = Jρ

( 1
√
ρ
Y T

S′
√
ρ
)
⊗ 1lN Jρ .

A related notion is that of modular operator

Δρ := ρ⊗ ρ−1 , (5.151)

which, according to (5.148), is such that,

JρΔ
1/2
ρ |X√

ρ 〉 = Jρ
√
ρ⊗ 1

√
ρ
|X√

ρ 〉 = Jρ|
√
ρX 〉 = |X†√ρ 〉 . (5.152)

5.5.2 Density Matrices and von Neumann Entropy

From the point of view of the GNS construction, pure states can be dis-
tinguished from mixed states because their GNS representations are non-
irreducible factors for the latter, while they are irreducible factors for the
former. There are however handier ways to sort these states out; perhaps the
easiest is to consider ρ2: if more than one eigenvalue of ρ is non zero, then
ρ is mixed since then ρ2 �= ρ. Indeed, the spectrum of a mixed state ρ has a
richer structure than that of any one-dimensional projection.
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The possibility of comparing, in some cases, the eigenvalues of two density
matrices ρ1,2 ∈ B

+
1 (H) comes form the so-called minmax principle of which

we give a short sketch (for a general formulation and proof see [252]). We
shall consider the eigenvalues listed in decreasing order; namely, in the spec-
tral decompositions B

+
1 (H) � ρ =

∑
i ri | ri 〉〈 ri |, with eigenvalues repeated

according to their multiplicities, we shall take ri ≥ ri+1, for all i. Because of
the ordering, it turns out that

ri = sup
{
〈ψ | ρ |ψ 〉 : ‖ψ‖ = 1 , |ψ 〉 ⊥ {| r1 〉, | r2 〉, . . . , | ri−1 〉}

}
. (5.153)

Indeed, for a ψ specified as above, 〈ψ | ρ |ψ 〉 =
∑

k≥i rk|〈ψ | rk 〉|2 ≤ ri and
ri is achieved by choosing |ψ 〉 = | ri 〉. The minmax principle asserts that

ri = inf
{φj}i−1

j=1

sup
{
〈ψ | ρ |ψ 〉 : ‖ψ‖ = 1 , |ψ 〉 ⊥ {|φ1 〉, |φ2 〉, . . . , |φi−1 〉}

}
,

(5.154)
where {φj}i−1

j=1 is any set of vectors in H.
In order to prove this relation, we denote by Uρ({φj}i−1

j=1) the argument
of the inf and show that Uρ({φj}i−1

j=1) ≥ ri, whence the result follows for ri is
achieved by choosing |φj 〉 = | rj 〉, j = 1, 2, . . . , i−1. Now, there surely exists
a normalized vector |Ψ 〉 =

∑i
k=1 ck| rk 〉 ⊥ {φj}i−1

j=1; indeed, if P projects
onto the linear span of {| rj 〉}i

j=1, the vectors {P |φ	 〉}i−1
	=1 span at most an

(i− 1)-dimensional subspace. But then,

Uρ({φj}i−1
j=1) ≥ 〈Ψ | ρ |Ψ 〉 =

i∑

k=1

rk |ck|2 ≥ ri

i∑

k=1

|ck|2 = ri .

From the minmax principle, it follows that ρ1 ≥ ρ2 =⇒ ei(ρ1) ≥ ei(ρ2),
where ei(ρ) is the i-th one in the ordered list of eigenvalues of ρ. Further, for
generic ρ1,2 ∈ B

+
1 (H), the minmax principle provides an upper bound to the

differences |ei(ρ1) − ei(ρ2)| in terms of the trace-norm (5.21).

Example 5.5.6. Given ρ1,2 ∈ B
+
1 (H), decompose ρ1−ρ2 = R+ − R−, where

R± are positive orthogonal operators, so that

‖ρ1 − ρ2‖1 = Tr(R+ +R−) = Tr(2R− ρ1 − ρ2) ,

where R := ρ1 + R− = ρ2 + R+ ≥ ρ1,2. Let ri, respectively r1,2
i be the

eigenvalues of R, respectively ρ1,2 listed in decreasing order; then, by the
minmax principle, ri ≥ r1,2

i for all i. Thus, 2ri − r1i − r2i ≥ |r1i − r2i | =⇒∑
i |r1i − r2i | ≤ ‖ρ1 − ρ2‖1.

The spectrum of a density matrix is a classical probability distribution:
this hints at the possibility of quantifying its information content of by means
of the Shannon entropy of such a distribution. This leads to the notion of
von Neumann entropy of a state ρ ∈ B

+
1 (H) [226].
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Definition 5.5.2 (von Neumann Entropy).
Given ρ ∈ S(S) with spectral decomposition (degenerate eigenvalues are

repeated according with their multiplicity and with chosen orthogonal one-
dimensional eigenprojectors) ρ =

∑
j rj | rj 〉〈 rj |, the von Neumann entropy

of ρ is the Shannon entropy of the probability distribution corresponding to
its spectrum: S(ρ) = −Tr(ρ log ρ) = −

∑
j rj log rj.

The following are some of the properties of the von Neumann entropy:
they show that it plays a role similar to that of the Shannon entropy in a
classical context. Other properties more related to composite systems will be
discussed in Section 5.5.3.

Proposition 5.5.3. Let ρ ∈ B
+
1 (H) be a density matrix. If H = C

N , then
the von Neumann entropy is bounded by the entropy of the state 1lN/N :

0 ≤ S(ρ) ≤ logN . (5.155)

The von Neumann entropy is concave; that is, given weights λi ≥ 0, i ∈ I,∑
i∈I λi = 1 and density matrices ρi ∈ B

+
1 (H),

∑

i∈I

λiS (ρi) ≤ S

(
∑

i∈I

λiρi

)

≤
∑

i∈I

λiS (ρi) +
∑

i∈I

η(λi) , (5.156)

where η is the concave function (2.84). If H = C
N , the von Neumann entropy

is continuous on B
+
1 (H) with respect to the trace-norm; namely, if ρ1,2 ∈

B
+
1 (H) are such that ‖ρ1 − ρ2‖1 ≤ 1/e; then they satisfy the so-called Fannes

inequality

|S(ρ1) − S(ρ2)| ≤ ‖ρ1 − ρ‖1 logN + η(‖ρ1 − ρ2‖1) . (5.157)

Proof: Since S (ρ) − logN = −
∑N

i=1 ri(log ri − log 1/N), boundedness
follows from (2.85). The lower bound in (5.156) comes from the concavity
of η(x); indeed, let rj and | rj 〉, respectively ri

j and | ri
j 〉 be eigenvalues and

eigenvectors of ρ :=
∑

i∈I λiρi, respectively ρi. Then,

rj =
∑

i∈I

λi〈 rj | ρi |rj 〉 =
∑

i∈I

λi

∑

k

ri
k |〈 ri

k | rj 〉|2 ,

with
∑

i∈I,k λi |〈 ri
k | rj 〉|2 = 1. Therefore,

S (ρ) =
∑

j

η(rj) ≥
∑

i∈I,k

λi |〈 ri
k | rj 〉|2 η(ri

k) =
∑

i∈I

λi

∑

k

η(ri
k) =

∑

i∈i

λiS (ρi) .

On the other hand, from Example (5.2.3).9,
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λiρi ≤ ρ =⇒ λiρi log(λiρi) = λiρi log ρi − η(λi) ≤ λiρi log ρ .

Fannes inequality follows from the fact that |η(u) − η(v)| ≤ η(|u − v|) if
|u− v| ≤ 1/e and from Example 5.5.6 which implies that

sk := |r1k − r2k| ≤
N∑

k=1

sk =: S ≤ ‖ρ1 − ρ2‖1 ≤ 1/e ,

where r1,2
k are the ordered eigenvalues of ρ1,2. Then,

|S (ρ1) − S (ρ2)| ≤
N∑

k=1

∣
∣η(r1k) − η(r2k)

∣
∣ ≤

N∑

k=1

η(sk) = S

N∑

k=1

η(
sk

S
) + η(S)

≤ ‖ρ1 − ρ2‖1 logN + η(‖ρ1 − ρ2‖1) ,

for η(x) increases when x ∈ [0, 1/e]. We complete the proof by showing that
|η(u) − η(v)| ≤ η(|u − v|) indeed holds when |u − v| ≤ 1/e (see [222]). The
function f(x) := η(x + (u − v)) − η(x) decreases for u − v ≥ 0, thus f(0) =
η(u − v) ≥ f(v) = η(u) − η(v). If u − v ≤ 1/e, η(u − v) ≥ u − v, while the
increasing function g(t) := t+ η(t) gives g(u) = u+ η(u) ≥ v+ η(v) and thus
η(u) − η(v) ≥ v − u which implies η(u− v) ≥ η(v) − η(u). �

Remarks 5.5.5. 1. The second inequality in (5.156) becomes an equality
if and only if the ranges of the matrices ρi are orthogonal to each other;
indeed, in such a case the eigenvectors of different ρi’s are orthogonal so
that their spectral decompositions give the spectral decomposition of ρ,

ρ =
∑

ik

λir
k
i | rk

i 〉〈 rk
i | =⇒ S (ρ) =

∑

ik

λir
k
i log(λir

k
i ) .

2. In the case of an infinite dimensional Hilbert space, the von Neumann
entropy is only lower semicontinuous: if a sequence of density matrices
σn tends to a density matrix σ in trace norm, then S (σ) ≤ limn S (σn),

in general. As an example [300], take σn := (1 − 1
n

)ρ +
1
n
ρn, where

S (ρ) = 0 and S (ρn) increases like n. Then, ‖σn − ρ‖1 ≤ 2/n → 0 when
n → +∞; also, by (5.156),

S (σn) ≥ (1 − 1
n

)S (ρ) +
1
n
S (ρn) =

1
n
S (ρn) → c > 0 = S (ρ) .

The least mixed states, the pure states, are 1-dimensional projectors for
which r1 = 1 while all other states have r1 < 1. This suggests the following

Definition 5.5.1. [300] A density matrix ρ1 ∈ S(S) is said to be more mixed
than another density matrix ρ2 ∈ S(S), ρ1 ' ρ2, if their decreasingly ordered
eigenvalues ei(ρ1,2), j = 1, 2, . . . , d, satisfy
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k∑

i=1

ei(ρ1) ≤
k∑

i=1

ei(ρ2) , k = 1, 2, . . . , d .

The relation ' is a total ordering among density matrices of two level
systems; this is because e1(ρ1,2)+e2(ρ1,2) = 1 for any pair of density matrices
ρ1,2 ∈ M2(C). Therefore, ρ1 ' ρ2 ⇐⇒ e1(ρ1) ≤ e1(ρ2).

Unfortunately, for higher dimensional systems ' is only a partial ordering;
for instance, consider the following density matrices ρ1,2 ∈ M3(C),

ρ1 =

⎛

⎝
1/2 0 0
0 1/2 0
0 0 0

⎞

⎠ , ρ2 =

⎛

⎝
2/3 0 0
0 1/6 0
0 0 1/6

⎞

⎠ .

Then, e1(ρ1) = 1/2 < e1(ρ2) = 2/3, but e1(ρ1) + e2(ρ1) > e1(ρ2) + e2(ρ2).
The following proposition provides a helpful tool that allows, in some

cases, to establish whether two density matrices are in the ' order.

Proposition 5.5.4 (Ky Fan Inequality). Given ρ ∈ B
+
1 (H), it holds that

k∑

j=1

ej(ρ) = max
{

Tr(Pρ) : P 2 = P = P † , dim(PH) = k
}
. (5.158)

Proof: Let {|φj 〉}k
j=1 be an orthonormal set in H, K the subspace they

generate and P :=
∑k

j=1 |φj 〉〈φj | the corresponding orthogonal projector. If

{|ψi 〉}k
i=1 is any other ONB in K, then

k∑

j=1

〈φj | ρ |φj 〉 =
k∑

j=1

〈ψj | ρ |ψj 〉. Let

| ri 〉 be the eigenprojectors of ρ corresponding to the eigenvalues ei(ρ) =: ri

listed in decreasing order and consider the subspace spanned by {| ri 〉}k−1
i=1 . A

same argument as in the proof of the minmax principle (5.154), ensures the
existence of some |ψk 〉 ∈ K orthogonal to it; analogously, there must exist

|ψk−1 〉 ∈ K ⊥ {| ri 〉}k−2
i=1 ∪ |ψk 〉}

and so on. Thus, one collects {|ψj 〉}k
j=1 ∈ K such that

|ψj 〉 ⊥ {| r1 〉, . . . , | rj−1 〉, |ψj+1 〉 . . . , |ψk 〉}

and (5.154) yields Tr(P ρ) =
∑k

i=1〈ψi | ρ |ψi 〉 ≤
∑k

i=1 ei(ρ). �
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Examples 5.5.7.

1. Given any ρ ∈ S(S) and unitary matrices Uj ∈ MN (C), j ∈ J , together
with weights 0 < λj < 1,

∑
j∈J λj = 1, set ρ̃ :=

∑
j∈J λj Uj ρU

†
j . If

ρ =
∑N

i=1 ri| ri 〉〈 ri |, the unitarily rotated matrices Uj ρU
†
j have the

same spectrum for Uj ρU
†
j =

N∑

i=1

ri| r̃i 〉〈 r̃i | and | r̃i 〉 := U | ri 〉 form an

ONB . Further, their convex combination ρ̃ ' ρ; indeed, let P be the
projector achieving the maximum in (5.158),

∑k
i=1 ei(ρ̃) = Tr(P ρ̃); then

k∑

i=1

ei(ρ̃) =
∑

j∈J

λj Tr(U†
j P Uj ρ) ≤ (

∑

j∈J

λj)
k∑

i=1

ei(ρ) =
k∑

i=1

ei(ρ) ,

for the projectors U†
j P Uj need not achieve the maximum in (5.158).

2. Consider the convex set B
+
1 (H) of all density matrices of a system S

described by a Hilbert space H, not necessarily finite dimensional, and
let Sord(S) be totally ordered: the most mixed ρ ∈ Sord(S) have the
largest entropy [300, 314]. Indeed, ρ1 ' ρ2 =⇒ S(ρ1) ≥ S(ρ2). In order
to show this, set αi := ei(ρ1); then, for all N ≥ 1 and αN > 0,

N−1∑

k=1

( k∑

i=1

αi

)
(logαk − logαk+1) + logαN =

N∑

k=1

αk logαk .

Set βi := ei(ρ2); since ρ1 ' ρ2 =⇒
∑k

i=1 αi ≤
∑k

i=1 βi for all k ≥ 1,
using (2.85), one finds

N∑

k=1

−αk logαk ≥ −
N−1∑

k=1

( k∑

i=1

βi

)
(logαk − logαk+1) + logαN

= −
N∑

k=1

βk logαk ≥ −
N∑

k=1

βk log βk +
N∑

k=1

(βk − αk) ,

for all N ≥ 1, whence S (ρ1) ≥ S (ρ2), for
∑

k βk =
∑

k αk = 1.

5.5.3 Composite Systems

In quantum information, physical systems S consisting of several subsystems,
S = Si + S2 + · · ·Sn, are called multi-partite.

If each of the constituent subsystems is described by a Hilbert space Hi,
the Hilbert space of S is H

(n) =
⊗n

i=1 Hi and its observables are Hermitian
elements of the C∗ algebra B(H(n)) =

⊗n
i=1 B(Hi).
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Given a multi-partite state ρ ∈ S(S), marginal states ρi1i2···ik
for all pos-

sible choices of subsystems Si1 +Si2 + . . .+Sik
are obtained by partial tracing

over the Hilbert spaces H	 whose indices are different from the selected ones
i1, i2, . . . , ik, namely

ρi1i2···ik
= Trj1Trj2 · · ·Trjn−k

(ρ) , j	 �= i1, i2, . . . , ik , � = 1, 2, . . . , n− k ,

where Trj(ρ) =
∑

k〈ψ
(j)
k | ρ |ψ(j)

k 〉 denotes the trace computed with respect
to any ONB {|ψ(j)

k 〉} ∈ Hj and yields a density matrix acting on the Hilbert
H

(n−1) =
⊗n

1=i�=j Hi.
In particular, the states of bipartite systems S = S1 + S2, are described

by density matrices ρ12 ∈ B
+
1 (H(2)) with marginal states

ρ1 = Tr2ρ12 :=
∑

j

〈ψ(2)
j | ρ12 |ψ(2)

j 〉 , ρ2 = Tr1ρ12 :=
∑

j

〈ψ(1)
j | ρ12 |ψ(1)

j 〉 .

Proposition 5.5.5. The marginal states of any pure state ρ12 ∈ S(S1 + S2)
have the same eigenvalues with the same multiplicity, apart from the zero
eigenvalue, and thus the same von Neumann entropy.

Proof: Let |ψ12 〉 ∈ H be the vector onto which the pure state ρ12 projects
and r

(1)
j , | r(1)j 〉, the non-zero eigenvalues (repeated according to their multi-

plicities) and eigenvectors of the marginal density matrix ρ1 = Tr2ρ. Using
the corresponding ONB {| r(1)j 〉} in H1 and any other ONB {|φ(2)

k 〉} in H2,
one can expand

|ψ12 〉 =
∑

j,k

Cjk| r(1)k 〉 ⊗ |φ(2)
k 〉 =

∑

j

| r(1)j 〉 ⊗ |φ(2)
j 〉 ,

where |φ(2)
j 〉 :=

∑
k Cjk|φ(2)

k 〉 need not be either orthogonal or normalized.
Then,

ρ1 =
∑

j

r
(1)
j | r(1)j 〉〈 r(1)j | =

∑

j,k

〈φ(2)
j |φ(2)

k 〉 | r(1)k 〉〈 r(1)j | ,

whence 〈φ(2)
j |φ(2)

k 〉 = δjkr
(1)
j . Setting | r(2)j 〉 := |φ(2)

j 〉/
√
r
(1)
j yields

|ψ12 〉 =
∑

j

√

r
(1)
j | r(1)j 〉 ⊗ | r(2)j 〉 . (5.159)

It thus follows that ρ2 =
∑

j r
(1)
j | r(2)j 〉〈 r(2)j |, whence S (ρ1) = S (ρ2). �
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Remark 5.5.6. The expression (5.159) yields the so-called Schmidt decom-
position of bipartite pure states |Ψ12 〉 ∈ H1 ⊗ H2 into a linear combination
with positive coefficients of tensor products of equally indexed states from two
ONBs of the two subsystems. The degeneracy of the 0 eigenvalue accounts
for the possibly different dimensions of the Hilbert spaces H1,2.

Example 5.5.8. Let a bipartite system S = S1 + S2 consist of a 2-level
system S1 and an N -levl system S2. Let {Xi}n

i=1 ∈ M2(C) be a set of matrices
such that

∑n
i=1 X

†
i Xi = 1l2, consider a fixed vector ψ ∈ C

2 and the vector
state C

2 ⊗ C
N � |Ψ 〉 :=

∑n
i=1 Xi|ψ 〉 ⊗ | i 〉, where {| i 〉}N

i=1 is an ONB for
S2. The normalized vector |Ψ 〉 yields marginal states

M2(C) � ρ1 = Tr2(|Ψ 〉〈Ψ |) =
N∑

i=1

Xi|ψ 〉〈ψ |X†
i

MN (C) � ρ2 = Tr1(|Ψ 〉〈Ψ |) =
N∑

i,j=1

〈ψ |X†
jXi |ψ 〉 | i 〉〈 j | .

Let ra, | a 〉, a = 1, 2, be the eigenvalues, respectively eigenvectors of ρ1; by
expanding Xi|ψ 〉 =

∑2
a=1 cia | a 〉, it turns out that |Ψ 〉 =

∑2
a=1 | a 〉⊗| φ̃a 〉,

where | φ̃a 〉 :=
∑N

i=1 cia | i 〉. The vectors |φa 〉 := | φ̃a 〉/‖φ̃a‖ are orthonormal
and the 0 eigenvalue of ρ2 = r1|φ1 〉〈φ1 |+r2|φ2 〉〈φ2 | is (N −2)-degenerate.

We end this section with a list of properties of the von Neumann entropy
which pertain to composite systems.

Proposition 5.5.6. Let S = S1+S2 be a composite system with Hilbert space
H = H1 ⊗ H2, H1,2 of dimension d1,2. The von Neumann entropy is additive
on product states B

+
1 (H) � ρ12 = ρ1 ⊗ ρ2,

S (ρ12) = S (ρ1) + S (ρ2) . (5.160)

Given ρ12 ∈ B
+
1 (H), let B

+
1 (H1) � ρ1 := Tr2ρ12 and B

+
1 (H2) � ρ2 := Tr1ρ12

be the marginal states. Then

|S(ρ1) − S(ρ2)| ≤ S(ρ12) ≤ S(ρ1) + S(ρ2) ; (5.161)

The second inequality expresses that von Neumann entropy is subaddi-
tive; more in general, the von Neumann entropy is strongly subadditive.
Namely, let S = S1 + S2 + S3 be a tripartite system described by a state
ρ123 ∈ B

+
1 (H) with H = H1 ⊗ H2 ⊗ H3. For any cyclic permutation (i, j, k)

of (1, 2, 3) let B
+
1 (Hi ⊗ Hj) � ρij := Trkρ123, B

+
1 (Hi) � ρi := Trjkρ123 be

marginal states. Then [192, 314]

S(ρ123) + S(ρj) ≤ S(ρij) + S(ρjk) . (5.162)
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Furthermore, the differences between the von Neumann entropies of ρ12 and
of the marginal states ρ1,2, S (ρ12) − S (ρ1,2), are concave:

S

⎛

⎝
∑

j

λjρ
(j)
12

⎞

⎠ − S

⎛

⎝
∑

j

λjρ
(j)
1,2

⎞

⎠ ≥
∑

j

λj

(
S
(
ρ
(j)
12

)
− S

(
ρ
(j)
1,2

)
, (5.163)

where λj > 0 and
∑

j λj = 1.

Proof: Additivity comes from the fact that the spectrum of ρ12 = ρ1 ⊗ ρ2

consists of the products of the eigenvalues of ρ1 and ρ2.
Assume strong subadditivity holds and let ρAB =

∑
i r

AB
i | rAB

i 〉〈 rAB
i | be

a density matrix on HA ⊗ HB and

|√ρAB 〉 =
∑

i

√
rAB
i | rAB

i 〉 ⊗ | rAB
i 〉 ∈ (HA ⊗ HB) ⊗ (HA ⊗ HB)

the corresponding GNS state. Set H1 := HA, H2 := HB, in the first factor,
H3 := HA ⊗ HB in the second one and

ρ123 := |√ρAB 〉〈√ρAB | =
∑

i,j

√
rAB
i rAB

j | rAB
i 〉〈 rAB

j | ⊗ | rAB
i 〉〈 rAB

j | .

Then, ρ3 = Tr12ρ123 = ρAB = Tr3ρ123 = ρ12, therefore, ρ1 = Tr23ρ123 = ρA,
ρ2 = Tr13ρ123 = ρB . Also, because of purity, S(ρ123) = 0, thus (5.162) and
Proposition 5.5.5 yield

S(ρAB) = S(ρ3) ≤ S(ρ13) + S(ρ23) = S(ρ2) + S(ρ1) = S(ρA) + S(ρB)

which implies subadditivity. The lower bound in (5.161) follows instead from

S(ρA) = S(ρ1) ≤ S(ρ13) + S(ρ12) = S(ρ2) + S(ρ3) = S(ρB) + S(ρAB)
S(ρB) = S(ρ2) ≤ S(ρ12) + S(ρ23) = S(ρ3) + S(ρ1) = S(ρAB) + S(ρA) .

In order to prove strong subadditivity, we introduce the quantum relative
entropy of two density matrices ρ and σ (see Definition 6.3.1)

S (ρ , σ) := Tr
(
ρ log ρ − ρ log σ

)

which is well defined when σ|ψ 〉 = 0 =⇒ ρ|ψ 〉 = 0.
We shall prove in Section 6.3 that S (ρ , σ) does not increase under maps

like the partial traces, thence

S

(

ρ12 ,
1l1
d1

⊗ ρ2

)

= S

(

Tr3ρ123 , Tr3
(1l1
d1

⊗ ρ23

))

≤ S

(

ρ123 ,
1l1
d1

⊗ ρ23

)

.

On the other hand,
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S

(

ρ12 ,
1l1
d1

⊗ ρ2

)

= −S (ρ12) + S (ρ2) + log d1 and

S

(

ρ123 ,
1l1
d1

⊗ ρ23

)

= −S (ρ123) + S (ρ23) + log d1 ,

whence
(
S (ρ123) − S (ρ23)

)
−
(
S (ρ12) − S (ρ2)

)
≤ 0.

The concavity (5.163) follows from another property of the relative en-
tropy which shall be discussed in Section 6.3, namely its joint convexity :

S

⎛

⎝
∑

j

λjρ
(j) ,

∑

j

λjσ
(j)

⎞

⎠ ≤
∑

j

λjS
(
ρ(j) , σ(j)

)
,

where λj > 0 and
∑

j λj = 1. Let ρ(j) := ρ
(j)
12 and σ(j) := ρ

(j)
1 ⊗ 1l2

d2
, with

ρ
(j)
1 := Tr2ρ

(j)
12 ; then,

S

⎛

⎝
∑

j

λjρ
(j)
12 ,

∑

j

λjρ
(j)
1 ⊗ 1l2

d2

⎞

⎠ =

−S

⎛

⎝
∑

j

λjρ
(j)
12

⎞

⎠+ S

⎛

⎝
∑

j

λjρ
(j)
1

⎞

⎠+ log d2

≤
∑

j

λjS

(

ρj
12 , ρ

(j)
1 ⊗ 1l2

d2

)

=
∑

j

λj

(
S
(
ρ
(j)
1

)
− S

(
ρ
(j)
12

))
+ log d2 .

�

5.5.4 Entangled States

One of the most puzzling and fascinating aspects of quantum mechanics is its
non-locality embodied by the concept of quantum entanglement [152]. This
is a property of certain quantum states of composite systems, called entan-
gled, which are such that their constituting subsystems cannot be attributed
properties of their own, not even with a certain probability. As a paradigm
of such states, consider the following vector state of two spin 1/2 particles
(the simplest instance of the vector states (5.18) in Example 5.2.3.9),

|Ψ00 〉 :=
| 00 〉 + | 11 〉√

2
, (5.164)

where | 0 〉 and | 1 〉 are eigenstates of the Pauli matrix σ3. By looking at the
corresponding projector,



5.5 Quantum States 223

|Ψ00 〉〈Ψ00 | =
1
2

(
| 0 〉〈 0 | ⊗ | 0 〉〈 0 | + | 1 〉〈 1 | ⊗ | 1 〉〈 1 |

)

+
1
2

(
| 0 〉〈 1 | ⊗ | 0 〉〈 1 | + | 1 〉〈 0 | ⊗ | 1 〉〈 0 |

)
,

one sees that, while the first line is the density matrix of an equally distributed
mixture of both spins pointing up and down along the z direction, the in-
terference term in the second line forbids to attribute these two properties
with probability 1/2 to the component spins. By rotating the orthonormal
projectors (1±σ3)/2 into any two other orthonormal pairs (1l±n1 ·σ)/2 and
(1l ± n2 · σ)/2, the same obstruction occurs along any two directions n1,2.

Example 5.5.9 (Bell States). [224] The symmetric vector (5.164) is the
first one in the so-called Bell basis of C

2 ⊗ C
2 of which the others read

| Ψ̂01 〉 =
| 01 〉 + | 10 〉√

2
, | Ψ̂10 〉 =

| 00 〉 − | 11 〉√
2

, | Ψ̂11 〉 =
| 00 〉 − | 11 〉√

2
.

In quantum information 2-level systems are called qubits, unitary actions on
them quantum gates and nets of unitary gates quantum circuits. The Bell
states can be created out of a separable pure state of two qubits by means
of local and non-local operations, according to the quantum circuit in Figure
5.4.

Fig. 5.4. Bell States

The input vectors |x 〉 and | y 〉, x, y = 0, 1, are members of the so-called
computational basis; |x 〉, called control qubit , is subjected to a Hadamard
unitary rotation (see (5.58)), UH , and then, together with | y 〉, called target
qubit, to a so-called Control-Not unitary gate, UCNOT . The first transforma-
tion affects one of the two qubits only via the matrix M4(C) � UH ⊗ 1l2 and
is thus local; the second one involves both qubits in a non-local way. Indeed,
the unitary matrix UCNOT ∈ M4(C) implements the classical CNOT gate,
CNOT (x, y) = (x, y⊕x), that acting on pairs (x, y) of bits leaves the control
bit unchanged and adds it to the target bit:
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CNOT (00) = (00) CNOT (01) = (01)

CNOT (10) = (11) CNOT (11) = (10)
.

If we substitute pairs of bits with tensor products of computational basis
vectors, the Pauli matrix σ1 flips the |x 〉 so that the same relations are
implemented on C

2 ⊗ C
2 by

UCNOT := | 0 〉〈 0 | ⊗ 1l + | 1 〉〈 1 | ⊗ σ1 =
(

1l 0
0 σ1

)

. (5.165)

Fig. 5.5. CNOT Gate

Let | Ψ̂xy 〉 := UCNOTH⊗1l|xy 〉; by a Hadamard rotation (5.58), one gets

| Ψ̂xy 〉 =
1√
2

1∑

i=0

(−1)ix| i, y ⊕ i 〉 =
| 0, y 〉 + (−1)x| 1, y ⊕ 1 〉√

2
,

and, by varying x, y ∈ {0, 1}, one obtains the Bell basis.

Entanglement is a purely quantum phenomenon, with no classical coun-
terpart; it has from the start attracted a lot of scientific and, unfortunately,
also pseudo-scientific interest; one of the great merits of quantum informa-
tion is to have promoted entanglement to the status of a physical resource
for performing informational and computational tasks otherwise impossible
in a purely commutative context.

In the following, we shall mainly focus upon bipartite discrete quantum
systems consisting of two parties described by means of finite dimensional
Hilbert spaces C

d1 and C
d2 , respectively. Within the state-space S(S1 +S2),

one distinguishes separable from entangled states.

Definition 5.5.3 (Separable and Entangled States). A density matrix
ρ ∈ S(S1 + S2) is separable if and only if it can be approximated in trace
norm by a linear convex combination of tensor products of density matrices:
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ρ =
∑

(i1,i2)∈I1×I2

λi1i2 ρ
1
i1 ⊗ ρ2

i2 , λi1i2 ≥ 0 ,
∑

(i1,i2)∈I1×I2

λi1i2 = 1 . (5.166)

Those ρ ∈ S(S1 + S2) which cannot be written in a factorized form as
in (5.166) are called entangled or non-separable states.

Remark 5.5.7. Pure separable states are of the form |ψ 〉 = |ψ1 〉⊗|ψ2 〉 for
some ψ1,2 ∈ C

d1,2 , otherwise they are entangled. The set Ssep(S) of separable
states of the bipartite system S is the closure of the convex hull of its separable
pure states (see Remark 5.3.2.5).

In order to judge whether a pure bipartite state is entangled or separable
is sufficient to look at its marginal density matrices.

Proposition 5.5.7. A vector state |Ψ12 〉 ∈ C
d1 ⊗ C

d2 of a bipartite system
S1 + S2 is separable if and only if its the marginal states ρ1,2 are pure.

Proof: If |Ψ12 〉 is separable, its projector is the tensor product of two
projectors and partial tracing yields one of them. Vice versa, if the marginal
density matrices are not projectors, then the Hilbert-Schmidt decomposi-
tion (5.159) contains more than one pair and |Ψ12 〉 is entangled. �

The structure of separable states is apparent from (5.166): they can be
obtained by mixing with weights λi1i2 otherwise independent states of S1

and S2, the only possible correlations between them being those relative to
the probability distribution {λi1i2} associated with the weights and thus of
purely classical nature. Instead, pure entangled states carry correlations that
are purely quantum mechanical.

Examples 5.5.10.

1. Consider a bipartite system consisting of two d-level systems in the
state (5.18) which generalizes the two qubit symmetric state (5.164).
From partial tracing the projector P̂ d

+ = |Ψ̂d
+〉〈Ψ̂d

+|, one gets

ρ1 = ρ2 =
1
d

d∑

i=1

| i 〉〈 i | =
1l
d
,

namely the totally mixed state for both parties. Thus, the von Neu-
mann entropy of the bipartite state P̂ d

+ is smaller than that of either

its components, 0 = S
(
P̂ d

+

)
≤ S (ρ1,2) = log d, which is maximal, in-

stead. In other terms, the information content of the entangled pure
state P̂ d

+ is smaller than that of its constituent parties. This holds for
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all entangled pure states. In order to see this, one uses the Schmidt-
decomposition (5.159) and Proposition 5.5.5: if ρ12 = |Ψ12 〉〈Ψ12 |, then
S(ρ12) = 0, and S(ρ1) = S(ρ2) = −

∑N1
i=1 r

1
i log2 ri > 0 unless ρ1,2 are

pure states and thus ρ12 separable.
2. The previous observation makes the statistical properties of pure entan-

gled states incompatible with classical ones; indeed, by (2.88) one knows
that the Shannon entropy of a bipartite classical system (described by
two random variables) cannot be less than that of any of its marginal dis-
tributions. This classical behavior is characteristic of all separable states;
namely, the von Neumann entropy of all separable bipartite states cannot
be smaller than the von Neumann entropy of their marginal states. This
fact follows from (5.163); in fact, consider a separable state

ρ12 =
∑

ij

λijρ
(1)
i ⊗ ρ

(2)
j ∈ B

+
1 (H1 ⊗ H2)

so that ρ1 =
∑

i λ
(1)
i ρ

(1)
i , λ(1)

i :=
∑

j λij ; then, by applying (5.163), (5.160)
and the positivity of the von Neumann entropy (see (5.155)), one gets

S (ρ12) − S (ρ1) ≥
∑

ij

λij

(
S
(
ρ
(1)
i ⊗ ρ

(2)
j

)
− S

(
ρ
(1)
i

))

=
∑

ij

λijS
(
ρ
(2)
j

)
≥ 0 .

3. The so-called GHZ states are entangled pure states of tripartite systems

consisting of 3 qubits : |Φ± 〉 :=
| 000 〉 ± | 111 〉√

2
in the computational

basis. Though entangled as tripartite states, all their two qubit marginal
states are separable, for instance

ρ±13 :=
1
2
Tr2
( 1∑

i,j=0

(−1)i+j | iii 〉〈 jjj |
)

=
1
2

1∑

i=0

| i 〉〈 i | ⊗ | i 〉〈 i | .

From |Φ+ 〉 one obtains an ONB in H
(3) = (C2)⊗3 by acting locally with

the Pauli matrices,

|Ψabc 〉 := σa
1 ⊗ σb

1 ⊗ σc
3|Φ+ 〉 , a, b, c = 0, 1

〈Ψdef |Ψabc 〉 =
1
2

1∑

i,j=0

〈 i |σd+a
1 |j 〉 〈 i |σe+b

1 |j 〉 〈 i |σf+c
3 |j 〉

︸ ︷︷ ︸
∝δij

=
1
2

1∑

i=0

(−1)f+c 〈 i |σd+a
1 |i 〉 〈 i |σe+b

1 |i 〉 = δadδbeδcf .
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5.6 Dynamics and State-Transformations

The standard time-evolution of quantum systems is typically described by
a strongly continuous one-parameter family of unitary operators {Ut}t∈R on
a Hilbert space H, fulfilling the group composition law UtUs = Ut+s, for all
t, s ∈ R. By Stone’s theorem [300], the group is generated by a self-adjoint
operator H on H, the Hamiltonian, such that, for all ψ ∈ H, (� = 1)

∂t|ψt 〉 = −iH|ψt 〉 , |ψt 〉 = Ut|ψ 〉 , Ut = e−itH . (5.167)

This type of time-evolution equation is proper to the so-called closed quan-
tum systems. As any other physical system, also closed systems S are in
contact with the environment E which contains them; however their mutual
interactions are negligible and the dynamics of S is independent of E and
is reversible. When the interactions between S and E cannot be neglected,
it may nevertheless be possible to derive a closed dynamics for the system
S alone which nevertheless accounts for the presence of the environment. In
such cases, S is known as an open quantum system and its so-called reduced
dynamics is irreversible and incorporates noisy and dissipative effects due to
the presence of E.

The Schrödinger time-evolution easily extends from vector states to mix-
tures. Since pure states |ψ 〉〈ψ | evolve into pure states Ut|ψ 〉〈ψ |U†

t , exten-
sion to convex combinations of pure states yields the Liouville equation

∂tρt = −i
[
H , ρt

]
, (5.168)

with formal solution ρt = Ut ρU
∗
t for any initial state ρ ∈ B

+
1 (H). By duality

(compare (2.9) and (2.7)), if X ∈ B(H) then Tr(ρt X) = Tr(ρXt) and one
gets the Heisenberg time-evolution equation for the operators

∂tXt = i
[
H , Xt

]
. (5.169)

This gives rise to a one parameter family {Ut}t∈R of automorphisms of B(H),

X �→ Ut[X] := Xt = U†
t X Ut , (5.170)

that preserve hermiticity and products of operators,

Ut[X†] = Ut[X]† , Ut[XY ] = Ut[X]Ut[Y ] ∀ X,Y ∈ B(H) .

As automorphisms, these linear maps are positive, and also completely
positive as their action is of the Kraus-type discussed in Proposition 5.2.1.
By duality the action of Ut is transferred to the action of the dual U+

t on
B

+
1 (H): U+

t [ρ] = UtρU
†
t ; Ut preserves the trace, Tr(Ut[ρ]) = 1, and sends

projectors into projectors,
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P 2 = P = P † =⇒ (U+
t [P ])2 = U+

t [P ] = U+
t [P ]† .

A state ρ is an equilibrium state if and only if it commutes with the Hamil-
tonian that generates the dynamics, U+

t (ρ) = ρ ⇔ [H , ρ] = 0. However,
if a state ρ changes in the course of time under a time-evolution imple-
mented by unitary operators, its spectrum does not. As a consequence, as
much as the Gibbs entropy of classical probability distributions evolving
under a Hamiltonian flux on phase-space is a constant of the motion, the
von Neumann entropy is always preserved by the Schrödinger-Liouville time-
evolution, S(U+

t [ρ]) = S(ρ).

Examples 5.6.1.

1. We have seen that density matrices ρ of 2-level systems are identified
by their Bloch vectors ρ ∈ R

3. By denoting them as kets |ρ 〉, the linear
action of the commutator on the right hand side of (5.168) corresponds to
a 3×3 matrix acting on |ρ 〉, whence the Liouville equation can be recast
in the form ∂t|ρ 〉 = −2H |ρ 〉. Since [1l , ρ] = 0, it is no restriction to
take the Hamiltonian of the form H = ω · σ with ω = (ω1, ω2, ω3) ∈ R

3,
σ = (σ1, σ2, σ3). Then, the algebraic relations (5.56) yield

dρ i

dt
= 2

3∑

j,k=1

εijkωjρk =⇒ H =

⎛

⎝
0 ω3 −ω2

−ω3 0 ω1

0 ω2 −ω1

⎞

⎠ .

Thus, Bloch vectors rotate with angular velocity ω = ‖ω‖ around the
direction of ω; their lengths are then constant, pure states remain pure
and the surface of the Bloch sphere is mapped into itself.
Suppose ω = (0, 0, ω), then, by series expansion,

Ut = e−itωσ3 = cosωt + i σ3 sinωt ;

thus, σ3(t) := U†
t σ3 Ut = σ3, while

σ+(t) := U†
t σ+ Ut = σ+ (cos 2ωt + i sin 2ωt) = σ+ e2itω .

The same result more directly follows from the fact that

σk
3σ+ = σk−1

3 σ+ σ3 + 2σ+ = σ+ (σ3 + 2)k

and that this relation extends to functions f(σ3) that can be expanded
as power series, namely f(σ3)σ+ = σ+f(σ3 + 2).

2. Consider an array of N spins 1/2 equipped with the Hamiltonian [300]

HN =
N∑

j=1

Bμjσ
j +

N∑

j=1

N−1∑

i=1

ε(i)σj σj+i =
N∑

j=1

(Hj + Hint
j ) ,
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where, as in Example 5.4.1, σj denotes the Pauli matrix σ3 at site j
and products of Pauli matrices at different sites denote tensor products
of commuting operators. The single sum corresponds to the spins being
coupled to a vertical constant magnetic field B, while the double sum
describes spin-spin interactions whose range is regulated by the coupling
constants ε(i) which only depend on the distance between spins.
Let the array be provided with periodic boundary conditions σi

# = σi+N
#

(σ# = σ3,±); then, the j-th spin interacts with the same strength with
those symmetrically placed on its left and right hand side. Suppose N
odd, it follows that Hint

j can be recast as

Hint
j =

(N−1)/2∑

i=1

ε(i)
(
σj−iσj + σjσj+i

)
.

Using the previous example and the fact that σk
# commutes with all spin

operators from sites different from k, one obtains

σj(t) := eitHN σj e−itHN = σj (5.171)

σj
+(t) := eitHN σj

± e−itHN = eit(Hj+Hint
j ) σj

+ e−it(Hj+Hint
j )

= σj
+ e2it(Bμj+

∑ (N−1)/2
i=1 ε(i)(σj−i+σj+i))

= σj
+ e2itBμj

(N−1)/2∏

i=1

((
cos 2tε(i) + σj−i sin 2ε(i)

)
×

×
(
cos 2tε(i) + σj+i sin 2ε(i)

))
(5.172)

while σj
−(t) is obtained by taking the adjoint of σj

+(t). Let the spin system
be endowed with a state which is the tensor product of equal pure states
as in (5.104) each of them for each one of the sites

ρ⊗N =
N⊗

n=1

ρ , ρ :=
1
2

(
1 + s

√
1 − s2eiφ

√
1 − s2e−iφ 1 − s

)

.

This state is not invariant under the time-automorphism in (5.171)
and (5.172): indeed, ρ⊗N (σj(t)) = s for all j, but

ρ⊗N (σ+(t)) = e2itBμj ρ(σj
+)

(N−1)/2∏

i=1

((
cos 2tε(i) + ρ(σj−i) sin 2ε(i)

)
×

×
(
cos 2tε(i) + ρ(σj+i) sin 2ε(i)

))

= e2itBμj

√
1 − s2

2
f2

N (s, t) ,

fN (s, t) :=
(N−1)/2∏

i=1

(
cos 2ε(i)t + i s sin 2ε(i)t

)
.
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If the coupling constants decrease exponentially with the spin distance,
ε(i) = 2−(i+1), and s = 0, then

fN (0, t) =
(N−1)/2∏

i=1

cos
t

2i

and the observables σj
± show a recurrence time that increases as 2(N−1)/2,

ρ⊗N (σj
+(t)) = e2itBμj

1
2
f2

N (0, t) . (5.173)

3. Consider f uncoupled harmonic oscillators of masses m = 1 and fre-
quencies ωi described by the algebra of Weyl operators (5.75) W (r),
r = (q,p) ∈ R

2f and by the Hamiltonian operator

Hf =
f∑

j=1

( p̂2
i

2
+
ω2

i

2
q̂2i

)
.

Using (5.68), the Heisenberg equations of motion (5.169) for position and
momentum operators r̂ = (q̂, p̂) read

dq̂

dt
= p̂ ,

dp̂

dt
= −Ω2q̂ ,

where Ω2 is the diagonal f × f matrix Ω2 = diag(ω2
1 , ω

2
2 , . . . , ω

2
f ). They

are solved by

r̂t := Ut[r̂] = eitH r̂ e−itH = Atr̂ , At =
(

cosΩt Ω−1 sinΩt
−Ω sinΩt cosΩt

)

.

Because of linearity, it turns out that the time-evolution maps Weyl op-
erators into Weyl operators,

W (r) = eir·(Σ1r̂) �→ Ut[W (r)] =: Wt(r) = eir·(Σ1r̂t) = ei(Atr)·(Σ1r̂)

= W (rt), (5.174)

where rt solves the Hamilton equations for f classical harmonic oscilla-
tors. Using the notation (5.95), one passes to annihilation and creation
operators via the relations

A =
1√
2

(
Ω1/2 iΩ−1/2

Ω1/2 −iΩ−1/2

)

r̂ .

The Hamiltonian then reads H =
1
2

f∑

i=1

ωi a
†
iai, so that

ai(t) = Ut[ai] = ai e−iωit , a†i (t) = Ut[a
†
i ] = a†i eiωit .



5.6 Dynamics and State-Transformations 231

4. Example 5.4.2 provides the right algebraic setting for quantizing classical
dynamical systems as those studied in Example 2.1.3. As much as in that
case, the quantum time-evolution will be described by a one-parameter
group {Θt

N}t∈Z consisting of integer powers of an automorphism ΘN :
MN (C) �→ MN (C).

Let A =
(
a b
c d

)

of Example 2.1.3 be an evolution matrix with integer

components and determinant equal to one. According to (2.22), the time-
evolution of the exponential functions reads

(UAen)(r) = e2π i n·(Ar) = e2π i (AT n)·r = eAT n(r) , A
T =

(
a c
b d

)

.

If one identifies em with W0(m), then the discrete Weyl relations (5.85)
can be read as a non-commutative deformation of the fact that the ex-
ponential functions commute:

W0(n)W0(m) = W0(n + m) = W0(m)W0(n) . (5.175)

It is thus natural to define the automorphism as

ΘN [WN (n)] = WN (AT n) , (5.176)

and extend it linearly to the whole of MN (C).
In order to be an automorphism, Θ has to fulfil ΘN [1lN ]; then, from (5.84)
and (5.86),

ΘN [UN
N ] = e2π i αu = WN (NA(1, 0)) = WN (N(a, b))

= e2π i(aαu+bαv−N
2 ab)

ΘN [V N
N ] = e2π i αv = WN (NA(0, 1)) = WN (N(c, d))

= e2π i(cαu+dαv−N
2 cd) .

It thus follows that a discrete representation Wαu,v

N of the CCR has to
be chosen such that

(
a b
c d

)(
αu

αv

)

=
(
αu

αv

)

+
N

2

(
ab
cd

)

mod 1 .

For instance, when in Example 2.1.3 α = −1, then A =
(

1 1
1 2

)

= A
T

and the choice αu,v = N/2 mod 1 yields a finite-dimensional quantization
of the Arnold Cat Map [98, 135, 135].
Furthermore, the automorphism ΘN is implemented by a unitary opera-
tor SN : C

N �→ C
N which can be determined by means of the equation

(5.89) once it is represented with respect to the chosen basis {| j 〉}N−1
j=0 :
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〈 k |SN |� 〉 =
N−1∑

p,q=0

Sk	,pq 〈 q |SN |p 〉

Sk	,pq :=
1
N

∑

n∈Z
2
N

〈 p |WN (−n) |q 〉 〈 k |WN ((−n) |� 〉 .

Thermal States

In the following, we shall focus upon states of quantum systems that are
left invariant by the dynamics, namely we shall be interested in equilibrium
states. A well-known class of such states is represented by the thermal or
Gibbs states:

ρβ :=
e−β H

Zβ
, Zβ := Tr

(
e−β H

)
, (5.177)

at inverse temperature T−1 = β relative to a Hamiltonian H. Let us consider
a finite level system and the two-point time-correlation functions

FXY (t) := Tr
(
ρβ Ut[X]Y

)
, GXY (t) := Tr

(
ρβ Y Ut[X]

)
(5.178)

for all X,Y ∈ MN (C), where the dynamical maps Ut, t ∈ R, are generated
by (5.169). Simple manipulations based on the cyclicity of the trace show
that

FXY (t) = Tr
(
Y ρβ Ut[X]

)
= Tr

(
ρβ Y ρβ Ut[X] ρ−1

β

)

= Tr
(
ρβ ei H (t+iβ) X e−i H (t+iβ)

)
= GXY (t+ iβ) . (5.179)

The above equality expresses the Kubo-Marting-Schwinger (KMS ) condi-
tions in their simplest form [183, 203] and Gibbs states as in (5.177) are the
simplest instances of KMS states.

Remarks 5.6.1.

1. Only the Gibbs state ρβ ∈ MN (C) can have two-point correlation func-
tions satisfying (5.179); in fact,

Tr
(
ρX Y

)
= Tr

(
ρ Y Uiβ [X]

)
= Tr

(
Uiβ [X] ρ Y

)

for all Y ∈ MN (C) yields

ρX = e−β H X eβ H ρ =⇒
[
eβ H ρ , X

]
= 0

for all X ∈ MN (C) whence ρ ∝ e−β H . If the KMS condition are taken
as a signature of thermal equilibrium, the conclusion to be drawn from
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this example is that for finite degrees of freedom there can be only one
equilibrium state at a given temperature. Therefore, in order to mathe-
matically describe phase-transitions one needs infinitely many degrees of
freedom [300].

2. At infinite temperature β = 0 and the Gibbs states reduce to a tracial
state (see Example 5.3.3.3): τ(X) = Tr( 1l

N X).
3. We have seen that faithful density matrices ρ > 0 are naturally associated

with the modular operator (5.151). The modular operator defines the
modular automorphisms σρ

t : πρ(MN (C)) �→ πρ(MN (C)), t ∈ R, given by

σρ
t [πρ(X)] = Δi t

ρ πρ(X)Δ−i t = ρi t ⊗ ρ−i t πρ(X) ρi t ⊗ ρ−i t . (5.180)

They from a group, the modular group, and preserve the GNS state,
σρ

t |
√
ρ 〉 = |√ρ 〉, so that (5.152) reads

σρ
−i/2(πρ(X))|√ρ 〉 = Jρπρ(X)†|√ρ 〉 = |√ρX 〉 .

Further, it turns out that ρ is a KMS state at inverse temperature β = 1
with respect to σρ

−t,

〈√ρ |σρ
−t[πρ(X)]πρ(Y ) |√ρ 〉 = Tr

(
ρ1−it X ρit Y

)

= Tr
(
ρ Y ρ−i(t+i) X ρi(t+i)

)
= 〈√ρ |πρ(Y )σρ

−(t+i)[πρ(X)] |√ρ 〉 .

By means of the modular group, when a faithful ρ is decomposed into a
linear convex combination of other density matrices σj , ρ =

∑
j λjσj , its

decomposers in (5.146) can be recast as follows,

λjσj(X) = 〈√ρ |πρ(X) |√ρXj 〉 = 〈√ρ |πρ(X)σρ
−i/2[πρ(Xj)] |

√
ρ 〉

= 〈√ρ |σρ
i/2[πρ(Xj)]πρ(X) |√ρ 〉 . (5.181)

The two-point correlation functions FXY (t), respectively GXY (t) can be
analytically extended to the strip {t + iy : −β < y < 0}, respectively to the
strip {t+ iy : 0 < y < β} where they are continuous and bounded, including
the boundaries where they satisfy the KMS conditions (5.179). When the
Gibbs state (5.177) is a density matrix, ρβ ∈ B

+
1 (H), these properties which

are almost obvious in the case of finite-level systems, can be extended to
systems with an infinite dimensional Hilbert space H [107, 300].

Examples 5.6.2.

1. Spin 1/2: The density matrix in Example 5.5.5 corresponds to Gibbs
states with Hamiltonian H = ω σ3 and temperature β−1 such that

ρ =
1
2

(
1 − s 0

0 1 + s

)

=
1

2 coshβω
e−βωσ3 ,
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with s = tanhβω. Therefore, the modular group consists of

Δt
ρ = ρit ⊗ ρ−it = e−itβωσ3 ⊗ eitβωσ3 = e−itβω(σ3⊗1l2−1l2⊗σ3) .

2. Fermions: Let N Fermionic modes, described by creation and annihi-
lation operators a#

i , i = 1, 2, . . . , N , satisfying the CAR {ai , a
†
j} = δij ,

be equipped with a Hamiltonian operator

H =
N∑

i=1

εi a
†
i ai .

This can be regarded as the second quantization of an N -level, one-
particle Hamiltonian h =

∑N
i=1 εi| i 〉〈 i | ∈ MN (C) and a†i as the creation

operator of a Fermion in the eigenstate | i 〉 with energy εi.
The partition function Zβ is easily calculated since for each mode the
occupation number states are | 0 〉 and | 1 〉 (see Example 5.4.1):

Zβ = Tr
(
e−β H

)
=

N∏

i=1

1∑

ni=0

e−βεi ni =
N∏

i=1

(
1 + e−βεi

)
,

whence the Gibbs state of N non-interacting Fermions read

ρβ =
N∏

i=1

(
1 + e−βεi

)−1

e−β H .

In thermodynamics, Gibbs states are canonical equilibrium states, ρC
β ,

while gran-canonical states have the form

ρGC
β =

N∏

i=1

(
1 + e−β(εi−μ)

)−1

e−β (H−μ N) ,

where μ is the chemical potential and N̂ =
∑

i=1 a
†
i ai is the number

operator. Two-point expectations read

Tr(ρGC
β a†i aj) = δij

z

eβεi + z
, (5.182)

where z = eμβ is the so called fugacity. As regards higher order correlation
functions, by means of the CCR anyone of them can be reduced to sums
of expectations with equal numbers of annihilation and creation operators
matching in pairs:

Tr(ρβ a
†
ip
· · · a†i1 aj1 · · · ajq

) = δpqDet
([

Tr(ρ a†ik
aj�

)
]N

k,	=1

)
. (5.183)

By suitably shifting the one-particle Hamiltonian, one may always assume
the lowest eigenvalue (ground state energy) to be 0, whence
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0 ≤ Tr
(
ρGC

β a†1 a1

)
=

z

1 + z
≤ 1 ,

for the CAR imply ‖a†a‖ ≤ 1, so that z ≥ 0.
3. Bosons: Let a#

i , i = 1, 2, . . . , N , satisfy the CCR [ai , a
†
j ] = δij of a

system of N Bosonic modes with a second-quantized Hamiltonian

H =
N∑

i=1

εi a
†
i ai , εi ≥ 0 .

The partition function reads

Zβ = Tr
(
e−β H

)
=

N∏

i=1

∞∑

ni=0

e−βεi ni =
N∏

i=1

(
1 − e−βεi

)−1

,

and the canonical and gran-canonical equilibrium states have the form

ρC
β =

N∏

i=1

(
1 − e−βεi

)
e−β H , ρGC

β =
N∏

i=1

(
1 − e−β(εi−μ)

)
e−β (H−μN̂) .

The Bose two-point correlation functions read

Tr(ρGC
β a†i aj) = δij

z

eβεi − z
, (5.184)

while 2N -point ones are of the form

Tr(ρβ a
†
ip
· · · a†i1 aj1 · · · ajq

) = δpqPer
([

Tr(ρ a†ik
aj�

)
]N

k,	=1

)
, (5.185)

where, unlike for Fermions, 2N -point correlation functions do not assign
different signs to different permutations whence a permanent appears
instead of a determinant. Furthermore, with the ground state energy set
equal to 0,

Tr
(
ρGC

β a†1 a1

)
=

z

1 − z
=⇒ 0 ≤ z < 1 .

The fact that when z → 1, the ground level can be infinitely popu-
lated is the source of the phenomenon of Bose-Einstein condensation.
Canonical and gran-canonical N Bose states as ρGC are Gaussian (see
Example 5.5.2); indeed, the characteristic functions (5.116) of ρC

β equals

Tr
(
ρβ W (z)

)
=

N∏

i=1

(
1 − e−βεi

)
Tr
(
e−βεi a†

i aieziai−z∗
i a†

i

)
.

In order to compute the trace, it is convenient to split W (z) as in (5.77),
and to use the overcomplete basis of coherent states (5.108) expressed as
in (5.105); this yields
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Tr
(
e−βεi a†

i aieziai−z∗
i a†

i

)
= e−|zi|2/2Tr

(
eziaie−βεia

†
i aie−z∗

i a†
i

)

= e−|zi|2/2

∫
dwi

π
〈wi | eziaie−βεia

†
i aie−z∗

i a†
i |wi 〉

= e−|zi|2/2

∫
dwi

π
e−|wi|2 〈 vac | e(zi+w∗

i )aie−βεia
†
i aie−(z∗

i −wi)a
†
i |vac 〉 .

Taking into account that (see (5.100)), for any α ∈ C,

eα ε a† a a e−α ε a† a =
∞∑

k=0

αk

k!
[H , [H , · · · [
︸ ︷︷ ︸

k times

H , a ]] · · ·] = e−αε a

eα ε a† a a† e−α ε a† a = eαε a†

and that (5.76) yields

eα a eγ a†
= eαγ/2 eα a+γ a†

= eαγ eγ a†
eα a , α ∈ C ,

one obtains, by Gaussian integration,
∫

dwi

π
e−|wi|2 〈 vac | e(zi+w∗

i )aie−βεia
†
i aie−(z∗

i −wi)a
†
i |vac 〉 =

=
∫

dwi

π
e−|wi|2−(zi+w∗

i )(z∗
i −wi)e

−βεi =
e−|zi|2e−βεi (1−e−βεi )−1

1 − e−βεi
.

Therefore, one derives the form of the correlation matrix (5.122) from

Tr
(
ρβ W (z)

)
= exp

(
−1

2

N∑

i=1

|zi|2 coth
βεi

2

)

= exp
(

−1
4
(z,−z∗)

(
coth β h

2 0
0 coth β h

2

)(
z∗

−z

))

, (5.186)

where h =
∑N

i=2 εi| i 〉〈 i | (ε1 = 0) has been used.
4. The relation (5.87) in Example 5.4.2, allows to equip the quantized hy-

perbolic automorphisms of the torus T
2 with the ΘN -invariant state ωN

defined by

ωN (WN (n)) :=
1
N

Tr(WN (n)) = δn0 (5.187)

on the Weyl operators and extended by linearity to their linear span,
where it amounts to the normalized trace.

5.6.1 Quantum Operations

A major departure from classical mechanics is represented by the role played
in quantum mechanics by the measurement processes where a microscopic
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system, S, on which the measurement is performed, interacts with a (usually)
macroscopic system, E, the measuring apparatus.

In a classical, commutative context it is always possible, at least in line
of principle, to make negligible the effects on S due to its interaction with E;
instead, in quantum mechanics states are generically unavoidably perturbed
when undergoing a measurement process. The standard way the quantum
mechanical perturbations are taken into account is via the so-called wave-
packet reduction postulate; in its simplest formulation it goes as follows. Let
X = X† be an observable with discrete, finite and non-degenerate spectrum,
say X =

∑d
j=1 xj Pj , Pj := |ψj 〉〈ψj |. Upon measuring X on a system

S, the outcomes are the eigenvalues xj ; the measurement process can be
schematized as follows: a beam of copies of a same system S, all prepared
so as to be described by a same state ρ, are sent through an apparatus that
measures the eigenvalues xj leaving the system state in the corresponding
eigenprojections Pj and direct them towards a screen with d slits. By opening
the jth slit, the others being kept closed, only those systems on which the
eigenvalue xj has been measured are collected. Suppose Nj of the N systems
that interacted with the apparatus reach the screen through the j-th slit;
then, the ratio Nj/N approximates the quantity

pρ
j := Tr(ρPj) = 〈ψj | ρ |ψj 〉

when N becomes sufficiently large. If no selection is operated, that is if all the
d slits are left open, after sufficiently many repetitions of the experiment with
the same state preparation, the collected mixture of systems is described by
the projections Pj weighted with the corresponding mean values pρ

j . Thus, a
typical non-selective measurement process changes the state as follows:

ρ �→
d∑

j=1

pρ
j Pj =

d∑

j=1

|ψj 〉〈ψj | ρ |ψj 〉〈ψj | =
d∑

j=1

Pj ρPj

︸ ︷︷ ︸
FP [ρ]

. (5.188)

The map FP is linear on the state-space S(S) and transforms states into
states: indeed, FP [ρ] ≥ 0 and Tr(FP [ρ] = Tr(ρ) = 1, as one can check by using
the cyclicity of the trace and the fact that the Pj ’s constitute a resolution of
the identity,

∑
j Pj = 1l.

In general, the instantaneous change from ρ into FP [ρ] transforms pure
states into mixtures and may intuitively be associated with the loss of in-
formation due to the interaction with the many degrees of freedom of the
macroscopic measuring apparatus. As a consequence, contrary to classical
mechanics, quantum mechanics distinguishes between two state-changes, a
reversible one due to the Liouville time-evolution and an irreversible one, the
wave-packet reduction, describing the action of measurement processes.
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Remark 5.6.2. Effectively, while being subjected to a measurement, any
quantum micro-system is to be considered as an open quantum system dy-
namically and statistically correlated with the (infinitely) many, degrees of
freedom of the measure instrument. This many-body interaction is usually
not controllable and the phenomenological description of its overall effects
is via maps as in (5.188). In particular, a measurement process of an ob-
servable on a system whose state |ψ 〉 is a coherent superposition of the
observable eigenstates, |ψ 〉 =

∑d
j=1 cj |ψj 〉, transforms it into a mixture

ρ =
∑d

j=1 |cj |2|ψj 〉〈ψj |, with consequent loss of coherence.
The existence of two basic quantum time-evolutions, one reversible typical

of closed quantum systems, the other one irreversible and related to measure-
ment processes, is unsatisfactory from an epistemological point of view. All
the more so, since the irreversible macroscopic behavior of system plus appa-
ratus should be deducible from the reversible dynamics of their constituent
microsystems. Alongside with the problem of reconciling thermodynamical
irreversibility with microscopic reversibility, quantum mechanics raises the
question of how to reconcile a reversible microscopic dynamics which pre-
serves the purity of states with an irreversible macroscopic one which trans-
forms pure states into mixtures. A number of approaches have been developed
to attack this problem, for a thorough review of one of them which is based
on a modification of microscopic dynamics by the insertion of a decoherent
mechanism with negligible effects on microsystems, but substantial ones on
macrosystems see [21].

It is convenient to extend the notion of wave-packet reduction to that of
positive operator-valued measures (POVM).

The key property of a map as in (5.188) is its structure and the use on
the right and left of ρ of operators such that

∑
j P

2
j

(
=
∑

j Pj

)
= 1. The

generalization is quite natural.

Definition 5.6.1 (Partitions of Unity). Let Ej ∈ B(H), j ∈ J , be a
selection of operators such that

∑
j∈J E

†
jEj = 1l: it is usually referred to

as a POVM or a partition of unity. One associates to it the linear map
FE : S(S) �→ S(S),

FE [ρ] =
∑

j∈J

Ej ρ E
†
j . (5.189)

In Example 5.6.4, we shall discuss the interpretation of generic POVMs in
relation to measurement processes; for the moment, it suffices to stress that
the operators forming POVMs need neither be self-adjoint nor orthogonal
projections. While the von Neumann entropy is constant under the Liouville
time-evolution; on the contrary, under a generic POVM , it can increase or
decrease.
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Example 5.6.3. If ρ = Q is a pure state (one-dimensional projection), then
S(Q) = 0, while under the action of a wave-packet reduction, FE [Q] gets
mixed and S(FE [Q]) ≥ 0. However, if one starts with a mixed ρ, S(FE [ρ]) can
be smaller than S(ρ): take for instance E1 = | 1 〉〈 0 |, E2 = | 1 〉〈 1 |, where
| 0 〉, | 1 〉 are a basis in C

2, then, E†
1E1 + E†

2E2 = 1l and, for all ρ ∈ S(S),

FE [ρ] = | 1 〉〈 0 |ρ| 0 〉〈 1 | + | 1 〉〈 1 |ρ| 1 〉〈 1 | = | 1 〉〈 1 |Tr(ρ) = | 1 〉〈 1 | .

Thus, for any given mixed ρ, S(ρ) > S(FE [ρ]) = 0.

As we shall see in Section 6.1, the use of generic POVMs , that is not made
of orthogonal projections, is practically useful when one wants to distinguish
between non-orthogonal quantum states. However, consider the statement

measuring the (orthonormal) POVM P := {Pj}j∈J ∈ B(H) on the system
S in the state ρ corresponds to the irreversible map ρ �→ FP [ρ] =

∑
j∈J PjρPj .

This has an acceptable interpretation in physical terms for the orthogo-
nality of the Pj ’s reduces the experimental measure of P to an experiment
with #(J) slits. The same argument does not directly work when projec-
tive POVMs P are substituted with generic E := {Ej}j∈J ,

∑
j∈J E

†
jEj = 1l.

Consider the statement

measuring a generic POVM E := {Ej}j∈J ∈ B(H) on the system S in the

state ρ corresponds to the irreversible map ρ �→ FE [ρ] =
∑

j∈J EjρE
†
j .

In order to give it a meaning, one has to specify what is measured and
on which system; indeed, the non-orthogonality of the Ej ’s makes untenable
the straightforward interpretation accorded to projective measurements. An
answer to the above question is given in terms of couplings to ancillas and
partial tracing.

Example 5.6.4. [224] Let E := {Ej}j∈J ⊆ B(H) be a POVM for a system S.
Let R be an auxiliary system described by a Hilbert space K which provides
an abstract quantum description of an instrument to which S is coupled
during a measurement. A schematic description of a measurement process
associated with E is as follows:

1. there exist orthonormal bases, {|ψj 〉} ∈ H and {| k 〉}k≥0 ∈ K, with | 0 〉
corresponding to the ready-state of the measurement apparatus;

2. there is a unitary time-evolution operator Ut on H ⊗ K such that, at the
end of the process, at time t = T say, for any initial ψ ∈ H, one has

UT |ψ 〉 ⊗ | 0 〉 =
∑

j∈J

Ej |ψ 〉 ⊗ | j 〉 =: |Ψ 〉 .

The unitary operator UT is well-defined: indeed, the right hand side of
the above equality can be taken as a definition of UT as a linear operator
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from H ⊗ | 0 〉 into H ⊗ K. Since
∑

j∈J E
†
jEj = 1lS , where 1lS denotes the

identity operator on H, scalar products of vectors in the subspace H ⊗ | 0 〉
are preserved and the isometry UT can be extended to a unitary operator
on H ⊗ K. Let the compound system S + R be in the state Ψ , according
to the postulate of wave-packet reduction, by measuring the eigenprojectors
1lS ⊗ Pk, Pk := | k 〉〈 k |, k ∈ J , the outcoming (not-normalized) states

1lS ⊗ Pk |Ψ 〉〈Ψ |1lS ⊗ Pk =
(
Ek|ψ 〉〈ψ |E†

k

)
⊗ Pk ,

are obtained with probabilities

πk(ψ) := 〈Ψ | 1lS ⊗ Pk |Ψ 〉 = 〈ψ |E†
kEk |ψ 〉 .

By disregarding the ”instrument” R, the overall effect of the entire process
on the system S alone is as follows:

– by measuring the projections 1lS ⊗Pk on S +R after the action of UT on
|ψ 〉 ⊗ | 0 〉, the state |ψ 〉 changes into the normalized states

| ψ̃k 〉 :=
Ek|ψ 〉〈ψ |E†

k√
〈ψ |E†

kE
†
k |ψ 〉

,

with probabilities πk(ψ);
– without selection, the overall effect is

|ψ 〉〈ψ | �→
∑

j∈J

πj(ψ) | ψ̃j 〉〈 ψ̃j | =
∑

j∈J

Ej |ψ 〉〈ψ |E†
j = FE [|ψ 〉〈ψ |] .

– The process described by (5.189) is obtained by linear extension of the
action of FE from projectors to mixtures of projectors.

Remark 5.6.3. The previous one is an example of dilation of a CP map to
a unitary evolution on a larger system from which the former is obtained by
partial tracing [109]. In general, any POVM E := {Ej}j∈J ⊆ B(H) can be
dilated to a projective POVM P = {Pj}j∈J consisting of orthogonal projec-
tors Pj on a larger Hilbert space K [143]. For POVMs such that card(J) = d,
the proof goes as follows: consider the Hilbert space KE = H ⊗ C

d linearly
spanned by vectors of the form

|Ψ 〉E :=
d∑

j=1

Ej |ψj 〉 ⊗ | j 〉 ,

where |ψj 〉 ∈ H and {| j 〉}d
j=1 is an ONB in the auxiliary Hilbert space C

d.
Let |φ 〉 ∈ H and set |Ψφ 〉E :=

∑d
j=1 Ej |φ 〉 ⊗ | j 〉. The operators Pj on KE

defined by
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Pj |Ψ 〉 = Ej |ψj 〉 ⊗ | j 〉

are orthogonal projections such that
∑d

j=1 Pj = 1l on KE and the projective
POVM P = {Pj}d

j=1 ⊆ B(KE) is such that

d∑

j=1

Pj |Ψφ 〉EE〈Ψφ |Pj =
d∑

j=1

Ej |φ 〉〈φ |E†
j ⊗ | j 〉〈 j |

whence (5.189) results by tracing over the auxiliary Hilbert pace C
d.

5.6.2 Open Quantum Dynamics

Despite the practical impossibility of describing the interaction between
a micro-system and a macro-system during a measurement process, it is
not without hope to try a dynamical derivation of the wave-packet reduc-
tion (5.189). The idea is that the latter is a time asymptotic effect of a
many-body interaction whose time-scale is much shorter than the duration
of the process. The phenomenological description of the process cannot be
given in terms of an automorphism Ut: on one hand, Ut is reversible, while
the wave-packet reduction is not, on the other hand Ut cannot transform pure
into mixed states.

A straightforward way to extend the quantum time-evolution beyond the
reversible one generated by the unitary Liouville equation is to add some
extra structure to (5.168). One observes that the commutator corresponds to
a linear action on the state-space S(S), and that the generated dynamical
maps Ut satisfy the composition law Ut ◦ Us = Ut+s for all s, t ∈ R.

A sensible step is to modify (5.168) by adding to the commutator a linear
term that breaks time-reversibility and generates a semi-group Γt, t ≥ 0, of
linear maps obeying a forward-in-time composition law Γt ◦Γs = Γt+s, where
now s, t ≥ 0. Namely, one tries to substitute (5.168) with a time-evolution
equation of the form

∂tρ(t) = LH [ρ(t)] + D[ρ(t)] . (5.190)

Formally, the semi-group of linear maps {Γt}t≥0, solutions of (5.190), is ob-
tained by exponentiating the generator:

ρ �→ ρ(t) = Γt[ρ] , Γt := et L , L = LH + D . (5.191)

Not all linear mapsD lead to physically consistent irreversible time-evolutions
Γt; the following conditions result necessary:

1. Tr(D[ρ]) = 0: since Tr([H , ρt]) = 0, this implies trace-conservation
∂tTr(ρt) = 0;

2. D[ρ]† = D[ρ]: this guarantees preservation of hermiticity;
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3. the positivity Γt[ρ] must be preserved at all times t ≥ 0.

While the first condition can be relaxed, for instance in the case of de-
caying systems [11], which we shall not consider, the other two conditions
are instead necessary to ensure that Γt map density matrices into density
matrices. However, positivity-preservation alone does not suffice for the full
physical consistency of Γt, the stronger property of complete positivity dis-
cussed in Section 5.2.2 turns out to be necessary. Despite its mathematical
origin, this notion is deeply rooted in quantum physics. Its importance was
firstly appreciated in the theory of open quantum systems [11, 96, 181].

Equations of the form (5.190) that lead to semi-groups of dynamical maps
that break time-reversibility are usually derived when one thinks of S as a
subsystem immersed in a large (infinite) reservoir, or heat bath, R. Practi-
cally, one deals with a situation similar to the one in Example 5.6.4 and uses
a partial tracing technique: the system S is not closed, but coupled to a large
system R. The system S+R is described by the tensor product Hilbert space
H ⊗ K, its states ρS+R are density matrices on such a space and evolve in
time according to the unitary time-evolution

ρS+R �→ ρS+R(t) := US+R
t [ρS+R] = US+R(t) ρS+R U†

S+R(t),

generated through (5.168) by a Hamiltonian of the form

H = HS + HR + λHI , (5.192)

where HS,R are the Hamiltonian operators describing the reversible time-
evolutions of system and reservoir alone, while HI takes into account their
interactions with λ an adimensional coupling constant.

The interaction Hamiltonian is such that there are practically no hopes
to arrive at an explicit unitary time-evolution US+R(t). On the other hand,
one is interested in the dynamics of the open system S alone. Furthermore, in
many situations of physical interest, one may reasonably assume that there
are no statistical correlations between system and reservoir at t = 0; namely,
the initial state of the compound system can be taken of the factorized form
ρS+R = ρS⊗ρR of the initial condition. Then, by tracing over the environment
degrees of freedom, one obtains a one-parameter family of dynamical maps

ρS �→ ρS(t) := TrK(ρS+R(t)) (5.193)

on the state-space of S which is called reduced dynamics.
Together with the fixed form of the initial condition, the elimination of the

environment degrees of freedom by means of the partial trace TrK makes the
evolution irreversible. The factorized initial condition does get entangled in
the course of time, so that, in general, the family {ρS(t)}t≥0 of states satisfies
a highly complicated integro-differential evolution equation of the form

∂tρS(t) =
∫ t

0

dsLλ
s [ρS(t− s)] , (5.194)
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in which the linear operator Lλ
s on the state space S(S) of the system exhibits

memory effects that account for the entanglement of the system with the
reservoir from time t = 0 to time t > 0. Before dealing with how one can
eliminate the memory effects and get an evolution equation that generate
a semi-group of maps on S(S), it is convenient to examine (5.193) in some
more detail.

Let for sake of simplicity assume that the initial state of the reservoir
is described by a density matrix be ρR =

∑
j pj |ψR

j 〉〈ψR
j |, where pj ≥ 0,

∑
j pj = 1, and the ψR

j form an orthonormal basis in K. We use them to
calculate the partial trace TrK:

ρS(t) =
∑

ij

pj 〈ψR
i |US+R(t) |ψR

j 〉 ρS 〈ψR
j |U†

S+R(t) |ψR
i 〉 .

Notice that the matrix elements provide operators

Vij(t) :=
√
pj 〈ψR

i |US+R(t) |ψR
j 〉 : H �→ H ,

so that the reduced dynamics corresponds to maps

ρS �→ Λt[ρS ] :=
∑

ij

Vij(t) ρS V
†
ij(t) . (5.195)

According to Proposition 5.2.1, the resulting dynamical maps are CPU with
the Vij(t) as Kraus operators. However, they do not form a semi-group be-
cause of the memory effects built in the integro-differential equation they sat-
isfy. Under the hypothesis of a very weak coupling between S and R (λ << 1),
a semi-group reduced dynamics is obtained by performing suitable Markov
approximations, the most straightforward being the substitution

∫ t

0

dsLλ
s [ρS(t− s)] �→ L[ρS(t)] :=

(∫ +∞

0

dsLλ
s

)

[ρS(t)] .

Since the memory effects have been eliminated, L is a generator corresponding
to a Liouville equation or master equation as in (5.191).

In the so-called weak-coupling limit [105], the Markov approximation
sketched above can be understood as follows: an expansion to second order
in the small coupling constant λ shows that (5.194) becomes

∂tρS(t) = −i[HS + λ2 H1 , ρS(t)] + λ2

∫ t

0

dsD(s)[ρS(t− s)] ,

where D[·] acts linearly on the state space S(S). The effects due to the
presence of the reservoir are thus visible on a time-scale τ = tλ2 which is
slow as λ - 1; by rescaling the evolution equation reads

∂τρS(τλ−2) = −i[λ−2HS + H1 , ρS(τλ−2)] +
∫ τλ−2

0

dsD(s)[ρS(τλ−2 − s)] .



244 5 Quantum Mechanics of Finite Degrees of Freedom

Then, by letting λ → 0 one replaces the upper integration limit by +∞ and
neglects s in comparison with τλ−2 in the argument of the state appearing in
the integral. The problem with too naive Markovian approximations as this
one is that very rarely they lead to irreversible evolutions that are positivity
preserving [105]: most derivations provide time-evolutions that are not posi-
tive and generate physically inconsistent negative probabilities. For instance,
the wild oscillations due to the system Hamiltonian term λ−2HS when λ → 0
makes intuitively plausible using an ergodic average to smooth away too fast
effects [95].

Irreversible Dynamics within the Bloch Sphere

With respect to Example 5.6.1.1, it proves convenient to represent density
matrices ρ ∈ M2(C) by Bloch vectors with one more component correspond-
ing to the coefficient of σ0 in the expansion (5.104).

We shall identify ρ as a 4-dimensional ket R
4 � | ρ 〉 := (1, ρ1, ρ2, ρ3). As

a consequence, the linear action of the generator L : ρ �→ L[ρ] in (5.191)
corresponds to a 4 × 4 matrix L = [Lμν ] acting on | ρ 〉. The Liouville equa-
tion (5.168) thus becomes

∂t| ρ 〉 = −2(H + D) ,

with −2H and −2D 4 × 4 matrices corresponding to the commutator LH

and the added term D in (5.190) (−2 has been inserted for convenience).
Concerning the matrix D, the request of trace and hermiticity preservation
imposes D0j = 0, j = 1, 2, 3, and Dμν ∈ R. By splitting D into the sum of a
symmetric and antisymmetric matrix, the latter corresponds to a Hamilto-
nian contribution that can be incorporated into H. Thus, one remains with
a purely dissipative matrix

D =

⎛

⎜
⎝

0 0 0 0
u a b c
v b α β
w c β γ

⎞

⎟
⎠ , (5.196)

with 9 real parameters which depends on the phenomenology of the system-
environment interaction and can, in line of principle, be tested in dedicated
experiments [32].

By exponentiating L, one gets a one-parameter semi-group of 4×4 matri-
ces, {Gt}t≥0, such that Gt = e−2t(H+D) which corresponds to the semi-group
{Γt}t≥0 on the state-space S(S) given by

ρ �→ ρ(t) = Γt[ρ] =
3∑

μ=0

ρμ(t)σμ , ρμ(t) = (Gtρ)μ .

Since the trace is preserved at all times, checking positivity preservation
amounts to checking whether Det[ρ(t)] ≥ 0 for all t ≥ 0 and for all initial ρ.
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Since the contributions of the anti-symmetric H cancel out, the time-
derivative of the determinant reads

Ḋ[ρ] :=
dDet[ρ(t)]

dt

∣
∣
∣
t=0

= 2
( 3∑

i,j=1

Dijρiρj +
3∑

j=1

Dj0ρj

)
.

Let ρ be a pure state P (n) :=
1l2 + n · σ

2
, then Det[P (n)] = 0. Therefore,

Γt[P (n)] ≥ 0 asks for Ḋ[P (n)] ≥ 0 and the same must also be true for the
orthogonal projector P (−n). By summing Ḋ[P (n)] ≥ 0 and Ḋ[P (−n)] ≥ 0
and varying n in the unit sphere, positivity is preserved only if

D(3) =

⎛

⎝
a b c
b α β
c β γ

⎞

⎠ ≥ 0 . (5.197)

The positivity of D(3) is necessary for positivity preservation, but not suf-
ficient, the reason being that Ḋ[P (n)] < 0 can follow because of the extra
term

∑3
j=1 Dj0ρj . However, it becomes also sufficient when we ask that Γt

increase the von Neumann entropy of any initial state, as this is equivalent
to u = v = w = 0 in D. Indeed, given any initial ρ, let it be spectralized as

ρ = r1
1l + n · σ

2
+ r2

1l − n · σ
2

,

with 0 ≤ r1,2 ≤ 1, n ∈ R
3 and

∑3
j=1 n

2
j = 1. Then, one explicitly computes

Ṡ(ρ) :=
dS (ρ(t))

dt

∣
∣
∣
t=0

= −Tr
(dρ(t)

dt

∣
∣
∣
t=0

ln ρ
)

= 2
{

(r1 − r2)〈n | D(3) |n 〉 +
∑

j=1

Dj0nj

}
ln
r1
r2

.

If Dj0 = 0 for j = 1, 2, 3, then the time-derivative is positive because of the
positivity of D and due to the fact that (r1 − r2) ln r1/r2 ≥ 0; if not, one can
always find a ρ for which Ṡ(ρ) < 0: it suffices to choose r1−r2 sufficiently small
and adjust n to make negative the second term in the previous expression.

Example 5.6.5. Let us consider the following simple master equation for a
2-level system S,

∂ρ(t)
∂t

=
1
2

(σ1 ρ σ1 − σ2 ρ σ2 + σ3 ρ σ3 − ρ) .

Using (5.56), L[1l] = L[σ1] = L[σ3] = 0, while L[σ2] = −2σ2; therefore, the
generated semi-group γt = exp(t L) is such that

γt[ρ] =
1
2

(
1l + ρ1σ1 + e−2tρ2σ2 + ρ3σ3

)
.
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Since the matrix in (5.197) is now D(3) =

⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠, the necessary con-

dition for positivity preservation is satisfied. Further, the Bloch vector at
time t, ρ(t), is such that ‖ρ(t)‖ ≤ ‖ρ‖; therefore, any initial density matrix
remains a density matrix.

Suppose the 2-level S system evolving under γt is statistically coupled to
another 2-level system S′ that has no evolution of its own. Then, one has to
consider states of the composite system S′ +S that evolve in time under the
semi-group of maps of the form Γt = id2 ⊗ γt, that is Γt lifts the action of γt

from M2(C) to M2(M2(C)) = M2(C) ⊗M2(C) as in Section 5.2.2.
Among the possible initial conditions for Γt there is the Bell state |Ψ̂00〉

in (5.164); we know from (5.17) that the corresponding projector P̂ 2
+ is pro-

portional to the matrix Ẽ = [Eij ] ∈ M2(M2(C)) whose entries are matrix
units in M2(C). By writing E11 = (1l + σ3)/2, E12 = (σ1 + iσ2)/2 and
E22 = (1l − σ3)/2 in terms of the Pauli matrices, it turns out that

P̂ 2
+ =

1
4

(
1l ⊗ 1l + σ1 ⊗ σ1 − σ2 ⊗ σ2 + σ3 ⊗ σ3

)
.

Then, setting λt := exp(−2t), under the time-evolution Γt, P̂ 2
+ evolves into

Γt[P̂ 2
+] =

1
4

(
1l ⊗ 1l + σ1 ⊗ σ1 − λtσ2 ⊗ σ2 + σ3 ⊗ σ3

)

=
1
4

(
1l + σ3 σ1 + iλtσ2

σ1 − iλtσ2 1l − σ3

)

=
1
4

⎛

⎜
⎝

2 0 0 1 + λt

0 0 1 − λt 0
0 1 − λt 0 0

1 + λt 0 0 2

⎞

⎟
⎠ ,

which is not positive definite for any t > 0, for it always shows a negative
eigenvalue (λt − 1)/4.

The physical meaning of the previous example is that, though γt is a
meaningful time-evolution for one 2-level system, Γt is not so for two 2-level
system as there exists a state of the two together which does not remain
positive definite. Notice that the state which exposes the problem is entan-
gled; indeed, any separable state, as in Definition 5.5.3 would remain positive
under Γt: as γt[ρ] ≥ 0 for all ρ ∈ S(S),

Γt

⎡

⎣
∑

ij

λijρ
′
i ⊗ ρj

⎤

⎦ =
∑

ij

λijρ
′
i ⊗ γt[ρj ] ≥ 0 .

The importance of Theorem 5.2.1 is now apparent: physical transformations
of an N -level system S cannot be described by linear maps Λ that are only
positivity preserving, they must also be completely positive. Otherwise, by
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coupling S with another N -level system S′, one would obtain a map idN ⊗Λ
which would map the initial entangled state P̂N

+ into a non-positive definite
matrix.

The standard quantum time-evolution Ut is automatically in Kraus form,
thus completely positive and free from inconsistencies with respect to statis-
tical couplings to ancillas. It is only when performing a Markovian approx-
imation that one must check that complete positivity be guaranteed by the
procedure [95, 96, 105, 285].

5.6.3 Quantum Dynamical Semigroups

Positivity and complete positivity depend on the dissipative term D[ρ] added
to the commutator in (5.190): it turns out that when one asks that the
generated semi-group consist of completely positive maps, then the form of
the generator is completely fixed.

Theorem 5.6.1. [126] Let {γt}t≥0 be a one-parameter semi-group of her-
miticity preserving, unital linear maps γt : Md(C) �→ Md(C) such that
limt→0 γt = idd with respect to the norm-topology. Then,

1. the semi-group has the form γt = exp(tL) with generator

L[X] = i
[
H , X

]
+

d2−1∑

a,b=1

Cab

(
F †

a X Fb − 1
2

{
F †

aFb , X
})

,

where the matrices Fa form an ONB in Md(C) with respect to the Hilbert-
Schmidt scalar product with Fd2 = 1ld/

√
d (Tr(Fa) = 0 if a �= d2 − 1))

and the (d2 − 1)× (d2 − 1) matrix C := [Cab], called Kossakowski matrix,
is Hermitian.

2. The maps γt are completely positive if and only if [Cab] is a positive
matrix.

Proof: From Example 5.2.7.1, the linear maps Fab : Md(C) �→ Md(C)
defined by Fab[X] := F †

a X Fb, a, b = 1, 2, . . . , d2, form an orthonormal basis
in the d2 dimensional linear space of all linear operators on Md(C) equipped
with the Hilbert-Schmidt scalar product of the associated Choi matrices. It
follows that the generator L can be expanded as L =

∑d2

a,b=1 Lab Fab. Then,
the request that the generated semi-group preserve hermiticity implies that
L[X]† = L[X†] for all X ∈ Md(C) which in turn yields L∗

ab = Lba. Now, after
rewriting

L[X] = F X + X F † +
d2−1∑

a,b=1

Lab F
daga X Fb , F :=

1√
d

d2
∑

a=1

Lad2 F †
a ,
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and separating F into its Hermitian components, F = K + iH, where

K :=
1
2

d2
∑

a=1

(Lad2 F †
a + Ld2a Fa) , H :=

1
2i

d2
∑

a=1

(Lad2 F †
a − Ld2a Fa) ,

one concludes that

L[X] = i[H , X] + (KX + XK) +
d2−1∑

a,b=1

Lab F
†
a X Fb .

The first statement of the theorem follows by further imposing unitality, that
is that γt[1l] = 1l for all t ≥ 0. One thus gets that L[1l] = 0, which further

imposes K = −1
2

d2−1∑

a,b=1

Lab F
†
a Fb.

According to Theorem 5.2.1, γt is a CPU map on Md(C) if and only if
Γt := idd ⊗ γt is a positive, unital map on Md(C) ⊗Md(C). Notice that the
maps Γt form a norm-continuous semi-group with generator L12 := idd ⊗ L;
then, according to [177, 178] (see also [64]), the maps idd ⊗ γt are positive if
and only if

I(ψ, φ) := 〈ψ |L12[|φ 〉〈φ |] |ψ 〉 ≥ 0

for all orthogonal ψ, φ ∈ C
d ⊗ C

d. Since 〈ψ |φ 〉 = 0, it follows that

I(ψ, φ) =
d2−1∑

a,b=1

Cab

(
〈ψ | 1ld ⊗ F †

a |φ 〉〈φ | 1ld ⊗ Fb |ψ 〉
)
.

Then, it proves convenient to define the d2 × d2 matrices Ψ = [ψij ] and Φ =
[φij ] where ψij and φij are the components of the vectors ψ and φ with respect
to a fixed ONB {| i, j 〉}d

i,j=1 in C
d ⊗ C

2. Notice that 〈ψ |φ 〉 = Tr(Ψ †Φ). By
introducing the vectors | v 〉 ∈ C

d2−1 with components given by

va := 〈φ | 1ld ⊗ Fa |ψ 〉 = Tr(Fa(Φ†Ψ)T ) ,

one then rewrites I(ψ, φ) =
d2−1∑

a,b=1

Cab v
∗
avb = 〈 v |C |v 〉. If C = [Cab] ≥ 0, then

I(ψ, φ) ≥ 0 for all orthogonal ψ, φ ∈ C
d ⊗ C

d, whence Γt is positive.
Vice versa, given a generic vector | v 〉 ∈ C

d2−1, the traceless matrix
Md(C) � Ψ :=

∑d2−1
a=1 va Fa corresponds to a vector ψ ∈ C

d ⊗ C
d that is or-

thogonal to the non-normalized totally symmetric vector |Ψd
+〉 =

∑d2−1
i=1 | ii 〉.

If Γt is positive, then I(ψ, Ψd
+) = 〈 v |C |v 〉 ≥ 0 for all | v 〉 ∈ C

d2−1 whence
C ≥ 0. �
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Remarks 5.6.4.

1. If {γt}t≥0 is a norm-continuous one-parameter semi-group of positive
maps γt : Md(C) �→ Md(C) with generator L and ψ, φ ∈ C

d are orthogo-
nal vectors, then

0 ≤ 〈ψ | γt[|φ 〉〈φ |] |ψ 〉 = t 〈ψ |L[|φ 〉〈φ |] |ψ 〉

to first order in t. This yields the only if part of the theorem used in the
previous proof; it turns out that this condition is also sufficient for the
maps γt to be positive [177, 178, 64].

2. The extension of Theorem 5.6.1 from Md(C) to B(H) with H an infinite
dimensional Hilbert space, has been provided by [193] under the assump-
tion that ‖L[X]‖ ≤ ‖L‖ ‖X‖ for all X ∈ B(H), namely that the generator
L be bounded on B(H).

3. By duality, one gets the following time-evolution equation for the states
of the open quantum system S:

L+[ρ] = −i
[
H , ρ

]
+

d2−1∑

a,b=1

Cab

(
Fb ρF

†
a − 1

2

{
F †

aFb , ρ
})

.

Since the γt are unital, their dual maps γ+
t preserve the trace of ρ.

4. If γt is CP , the expression
d2−1∑

a,b+1

Cab Fb ρF
†
a can be put in Kraus form

as in (5.36). Such a term corresponds to what in the classical Brownian
motion is the diffusive effect due to the presence of a white-noise. It is
indeed sometimes called quantum noise which is also in agreement with
the effects of generic POVMs on quantum states [121].

5. Beside the noise contribution, the remaining part of the generator has
the form

−i(H − i

2
K) ρ + i ρ (H +

i

2
K) , K =

1
2

d2−1∑

a,b=1

Lab F
†
a Fb .

This expression corresponds to the typical phenomenological description
of the time-evolution of decaying systems; in particular, K is a damping
term due to probability that goes irreversibly from the system S to its
decay products.

6. Regarding the generated maps γt = exp(tL), there are no general results
on the form of the Kossakowski matrix C = [Cij ] able to ensure that the
γt be positive; the only available general expression is for d = 2 [178].

Semigroups consisting of completely positive maps are called quantum
dynamical semi-groups. Their derivation as Markovian approximations of an
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underlying reversible many-body dynamics mainly follows three schemes, the
already mentioned weak-coupling limit, the singular-coupling limit [126, 125,
230] and the low density limit [104]. All of them work when the time scales
of the system S and of the reservoir R are clearly distinguishable. The weak-
coupling limit is the one most frequently encountered in the literature since
the beginning of the theory of open quantum systems and also the one which,
if not performed with due accuracy [96], leads to semi-groups of maps which
are not completely positive and thus to physical inconsistencies in relation to
entanglement.

Example 5.6.6. [27] Let d = 2; in such a case, by choosing the orthonormal
basis of Pauli matrices Fj = σj/

√
2’s, j = 1, 2, 3, the dissipative contribution

to the semi-group generator reads

LD[ρ] =
3∑

i,j=0

Cij

[
σiρσj −

1
2

{
σjσi , ρ

}]
.

For sake of simplicity, we shall restrict to entropy-increasing semi-groups.
Then, we can consider the matrix D in (5.196) whose entries read

a = C22 + C33 , α = C11 + C33 , γ = C11 + C22

b = −C12 , c = −C13 , β = −C23 .

Thus, the positivity of [Cij ], which, according to the previous theorem, is nec-
essary and sufficient for the complete positivity of Γt, results in the necessary
and sufficient inequalities for a, b, c, α, β, γ:

2R ≡ α+ γ − a ≥ 0 , RS ≥ b2

2S ≡ a+ γ − α ≥ 0 , RT ≥ c2

2T ≡ a+ α− γ ≥ 0 , ST ≥ β2

RST ≥ 2 bcβ +Rβ2 + Sc2 + Tb2 .

These constraints are much stronger than those coming from positivity alone,
that is from D(3) ≥ 0 in (5.197) which yields

a ≥ 0 , α ≥ 0 , γ ≥ 0 , aα ≥ b2 , aγ ≥ c2 , αγ ≥ β2

and DetD(3) ≥ 0. As a concrete example, take a = α and β = b = c = 0; so
that the Kossakowski-Lindblad generator reads

L[ρ] =
γ

2
(σ1ρσ1 − ρ) +

γ

2
(σ2ρσ2 − ρ) +

2α− γ

2
(σ3ρσ3 − ρ) ,

whence L[σ1,2] = −ασ1,2 and L[σ3] = −γ σ3. It follows that, when α, γ > 0,
the generated semi-group γt describes a decay process towards ρ∞ = 1l/2
with different rates for the diagonal and off-diagonal elements of γt[ρ].
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Indeed, setting μt := exp(−γt) and λt := exp(−αt), it turns out that

γt[ρ] =
1
2

(
1l + λt(ρ1σ1 + ρ2σ2) + μtσ3

)
=

1
2

(
1 + μtρ3 λt(ρ1 − iρ2)

λt(ρ1 + iρ2) 1 − μtρ3

)

.

On the other hand, consider Γt = id2 ⊗ γt and P̂ 2
+ as in Example 5.6.5, it

turns out that

Γt[P̂ 2
+] =

1
4

(
1l ⊗ 1l + λt (σ1 ⊗ σ1 − σ2 ⊗ σ2) + μt σ3 ⊗ σ3

)

=
1
4

⎛

⎜
⎝

1 + μt 0 0 2λt

0 1 − μt 0 0
0 0 1 − μt 0

2λt 0 0 1 + λt

⎞

⎟
⎠ .

This matrix is positive definite if and only if 1 + μt ≥ 2λt. This is implied
by the complete positivity condition γ ≤ 2α, whereas if γ > 2α, when t → 0
one gets

1 + μt − 2λt � t(2α− γ) < 0 .

In conclusion, only complete positivity guarantees full physical consistency
with respect to statistical couplings with other systems. However, this im-
poses a hierarchy, γ ≤ 2α, upon the decay rates of the entries of the dissipa-
tively evolving state γt[ρ], which should otherwise only be positive.

5.6.4 Physical Operations and Positive Maps

The argument behind the request of complete positivity on state transfor-
mations is that one can never exclude that the system S undergoing the
transformation is indeed entangled with an ancilla system S′, even without
any effective sign of statistical correlations. Though plausible, this point of
view is not always accepted [235]; after all, the mere possibility of entan-
glement with an uncontrollable ancilla would then, via complete positivity,
constrain the decay properties. Consider, for instance, an actual experiments
where optically active molecules interact weakly with a heat bath; they can
effectively be described as 2-level systems. The relaxation to equilibrium of
their optical activity can accordingly be predicted by an appropriate master
equation. Clearly, the fact that the optical activity may depend on whether
the molecules are entangled with some other system out of any experimental
control sounds admittedly weird [72, 185, 186, 292].

However, most of the objections to complete positivity do not consider
the entanglement issue for they all focus upon single open quantum systems
in heat baths. If, however, two optically active molecules in a same environ-
ment are considered, the entanglement issue comes to the fore. If the two
molecules do not interact between themselves, but are weakly coupled to
their environment, it is sensible to describe their open dynamics by a semi-
group of dynamical maps of the form Γt = γt ⊗ γt, where γt is the reduced
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dynamics of a single molecule. These dynamical maps differ from id2 ⊗ γt in
Examples 5.6.5 and 5.6.6.

Notice that in going from idd ⊗ γt to Γt = γt ⊗ γt one effectively goes
from the possible existence of statistical correlations between the system Sd

and another system of the same type which is somewhat uncontrollable, to a
concrete scenario when one has two statistically coupled systems in a same
environment. The following result on one hand extends Theorem 5.6.1 and
on the other stresses once more the fact that complete positivity is not just a
mathematical option without physical meaning, rather an unavoidable con-
straint on all sensible Markovian approximations.

Proposition 5.6.1. [37] Let {γt}t≥ be a norm-continuous semi-group of
dynamical maps γt : Md(C) �→ Md(C) with generator as in Theorem 5.6.1.
Then, the linear maps Γt = γt ⊗ γt form a norm-continuous semi-group on
Md(C) ⊗Md(C) and preserve positivity if and only if γt is a CPU map for
all t ≥ 0.

Proof: One implication is straightforward: if γt is a CPU map, then γt⊗id2

and id1 ⊗ γt are positive and such is Γt.
For the other implication, notice that, in view of the assumptions, the one-

parameter family {Γt}t≥0 is a norm-continuous semi-group with generator
L12 = L⊗ idd + idd ⊗L. Then we argue as in the proof of the second part of
Theorem 5.6.1 and show that

I(ψ, φ) := 〈ψ |L12[|φ 〉〈φ |] |ψ 〉 ≥ 0

for all orthogonal ψ, φ ∈ C
d ⊗ C

d. Since 〈ψ |φ 〉 = 0, it follows that

I(ψ, φ) =
d2−1∑

a,b=1

Cab

(
〈ψ |F †

a ⊗ 1ld |φ 〉〈φ |Fb ⊗ 1ld |ψ 〉

+ 〈ψ | 1ld ⊗ F †
a |φ 〉〈φ | 1l1 ⊗ Fb |ψ 〉

)
.

By means of the matrices Ψ = [ψij ] and Φ = [φij ] associated to the vectors
ψ, φ ∈ C

d ⊗ C
d as explained in the proof of Theorem 5.6.1, one introduces

the vectors |w 〉, | v 〉 ∈ C
d2−1 with components given by

wb := 〈φ |Fb⊗1ld |ψ 〉 = Tr(Fb(ΨΦ†)) , vb := 〈φ | 1ld⊗Fb |ψ 〉 = Tr(Fb(Φ†Ψ)T ) ,

and rewrites

I(ψ, φ) =
d2−1∑

a,b=1

Cab (w∗
awb + v∗avb) = 〈w |C |w 〉 + 〈 v |C |v 〉 (∗) .
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Given |w 〉 ∈ C
d2−1, construct Md(C) � W :=

∑d2−1
a=1 wa Fa. Since a matrix

and its transposed are always similar [134], let Y ∈ Md(C) be such that
WT = Y W Y −1 and define Φ := Y −1, Ψ † := Y W so that

ΦΨ † = W , (Ψ †Φ)T = (Y W Y −1)T = W and |w 〉 = | v 〉 ,

whence (∗) becomes I(ψ, φ) = 2〈w |C |w 〉 ≥ 0. Observe that |w 〉 ∈ C
d2−1

is generic and that to any such vector one can associate orthogonal vec-
tors ψ, φ ∈ C

d ⊗ C
d through the matrices Ψ,Φ as described above 6. Thus,

I(ψ, φ) ≥ 0 for any such pair implies C := [Cab] ≥ 0. �

Remarks 5.6.5.

1. If positive, Γt = γt ⊗ γt is also CP; indeed, using (5.36), it turns out that
γt[X] =

∑
j V

†
j (t)X,Vj(t), X ∈ Md(C). As a consequence,

Γt[X] =
∑

j,k

V †
j (t) ⊗ V †

k (t)X Vj(t) ⊗ Vk(T ) .

2. The equivalence between the complete positivity of γt and the positivity
of Γt = γt ⊗ γt does not extend to the tensor products of generic γ(1,2)

t ;
indeed, in Proposition 6.2.2 it will be shown that Γt = γ

(1)
t ⊗ γ

(2)
t can be

positive without γ(1,2)
t being both CPU maps.

Once a semi-group reduced dynamics is accepted as a phenomenological
time-evolution under certain physical conditions as those compatible with,
for instance, the weak-coupling limit scenario, there is only one possible way
to get rid of the complete positivity constraint. One has to rely upon the
existence of physical mechanisms that eliminate those initial entangled states
that, like the symmetric projector P̂ d

+, would otherwise be cast out of the state
of space by Γt when γt is not completely positive [122, 124, 292, 319].

In quantum information the situation is physically clearer and complete
positivity compulsory. In fact, the state transformations that are commonly
considered do not from dynamical semi-groups arising from suitable Marko-
vian approximations, rather they are maps as in Definition 5.6.1. Indeed, the
simplest operations are local state transformations that two parties operate
on shared entangled states as P d

+. In order to be physically consistent, these
local operations must correspond to completely positive maps.

What then of positive maps? If, on one hand, the existence of entangle-
ment in nature forbids their use as dynamical maps that describe actually
occurring physical processes, on the other hand, as we shall see in the follow-
ing chapter, they are extremely useful as entanglement witnesses.

6Notice that, as 〈ψ |φ 〉 = 0, the matrices ΦΨ† and Ψ†Φ are traceless.
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6 Quantum Information Theory

In the last years, a considerable amount of theoretical and experimen-
tal studies have been focussing on the impact that quantum mechanics
may have on computer science, information theory and cryptography. We
shall loosely refer to this vast and variegated field as quantum informa-
tion [71, 48, 100, 128, 224, 242, 152, 239, 307]. In the following, we shall
briefly touch upon a small fraction of its many achievements.

6.1 Quantum Information Theory

Why quantum information? Is it not classical information sufficiently power-
ful a theory to satisfy our needs? The answer is that it will indeed be so until
computational models and information transmission protocols are based on
classical physics. Indeed, information is physical [187, 55] for it is carried by
physical entities, transmitted and manipulated by physical means; as a con-
sequence, any actual information processing protocol will rely upon a model
describing the physical processes involved. Since Nature is considered to be
ultimately quantal, one is inevitably led to consider a scenario in which quan-
tum mechanics will set the rules of the game also in dealing with information
and its manifold aspects.

Roughly speaking, the issue at stake is the use of qubits instead of bits as
fundamental informational resources so that one has the whole Bloch sphere
of two-level system states at disposal instead of just the two states (up and
down along the z-direction) that are available to classical spins.

When the information that is manipulated regards computational pro-
cesses, the question is whether Quantum Turing Machines (QTMs), that is
computing devices based on the laws of quantum mechanics, might perform
better than classical Turing machines. A breakthrough was indeed the dis-
covery that relevant speedups can be gained by quantum algorithms because
of the huge parallel computation made available by the possibility of linearly
superposing qubits states.

Truly, from an abstract perspective, as much as classical mechanics is
contained in quantum mechanics, also classical information, computation and
cryptography may be thought of as commutative versions of more general
theories, still in their infancy, that are to be soundly formulated within a
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quantum, non-commutative, framework. However, the need to elaborate these
more general theories is not only justified in line of principle, but comes from
concrete facts. The pace at which every two years electronic devices double
their efficiency (the so-called Moore’s law) and decrease in size is such that
non-classical effects will soon appear and quantum mechanics will become
necessary to cope with them.

If information is carried by qubits , then the possible reversible operations
to which they can be subjected are all those corresponding to unitary matrices
in M2(C): these are called quantum gates. In the classical case, the only non-
trivial gate on bits 0, 1 is that which flips them, 0 �→ 1, 1 �→ 0. Consider, for
instance, the Hadamard transformation in (5.58); its n-fold tensor product
U⊗n

H acting on | 0 〉⊗n produces a uniform linear combination of kets labeled
by the 2n binary strings i(n) ∈ Ω

(n)
2 , in one stroke:

U⊗n
H | 0⊗n 〉 =

1
2n/2

∑

i(n)∈Ω
(n)
2

| i(n) 〉 . (6.1)

Linearity is at the basis of quantum parallelism: suppose that the computation
of a binary function f : Ω(n)

2 �→ Ω
(n)
2 on n bits with n-bit strings as images,

i(n) �→ (f(i(n)))(n), can be operated by means of a unitary transformation

| i(n) 〉 �→ Uf | i(n) 〉 = | (f(i(n)))(n) 〉

on n qubits. By Uf f is computed on all strings at once, as follows:

UfU
⊗n
H | 0 〉⊗n =

1
2n/2

∑

i(n)∈Ω
(n)
2

| (f(i(n)))(n) 〉 .

The linear structure of quantum mechanics seems to provide a more powerful
setting than the classical scenario; however, the extraction of information out
of quantum states is a much more delicate problem than with binary strings.

Any computation performed by a QTM on n qubits must correspond to a
unitary operator on (C2)⊗n; then, a quantum algorithm acting on an initial
state of the n qubits would halt in a linear combination of all possible compu-
tational basis vectors in (C2)⊗n, each one of them corresponding to a classical
n-bit string i(n) occurring with a certain amplitude C(i(n)). If the solution
of a problem is a specific binary string i(n), an efficient quantum computa-
tion must associate to that string a very high probability, |C(i(n))|2 ≈ 1.
Only in this case the solution would show up with almost certainty from a
measurement in the computational basis.

Example 6.1.1 (Deutsch-Josza Algorithm). Let f : Ω(n)
2 �→ {0, 1} be

a binary function that is known to be either constant or balanced, that is
f(i(n)) = 0 on half of the n-digit strings and f(i(n)) = 1 on the other half.
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The task is to decide between the two possibilities. Classically, the only way
to ascertain whether f is constant or not is to compute it on 2n−1 +1 strings,
that is on half plus one of them; this is because one can compute always 0
or always 1 on 2n/2 strings in a row without the function being constant, so
that only one more computation can settle the question. On the other hand,
if the bit strings i(n) could indeed be treated as computational basis vectors
| i(n) 〉 in the Hilbert space H

(n) = (C2)⊗n of n qubits , then the following
quantum algorithm would answer the question in just one trial. It is based
on a generalization of the CNOT gate of Example 5.5.9; instead of one control
qubit, there are n of them all prepared in the same state | 0 〉 together with
one target qubit in the state | 1 〉. As seen in (6.1),

|Ψ 〉 := U
⊗(n+1)
H | 0 〉⊗n ⊗ | 1 〉 =

(
1√
2

)n ∑

i(n)∈Ω
(n)
2

| i(n) 〉 ⊗ | 0 〉 − | 1 〉√
2

.

The matrix M2n(C) ⊗M2(C) � Uf =
∑

j(n)∈Ω
(n)
2

| j(n) 〉〈 j(n) | ⊗ σ
f(j(n))
1 is

unitary and flips the last qubit only if f(j(n)) = 1. This yields 1

|Ψf 〉 := Uf |Ψ 〉 =
(

1√
2

)n ∑

i(n)∈Ω
(n)
2

| i(n) 〉 ⊗ | 0 ⊕ f(i(n)) 〉 − | 1 ⊕ f(i(n)) 〉√
2

=

⎛

⎜
⎝

(
1√
2

)n ∑

i(n)∈Ω
(n)
2

(−1)f(i(n)) | i(n) 〉

⎞

⎟
⎠ ⊗ | 0 〉 − | 1 〉√

2
.

Applying the Hadamard rotation on the first n qubits (see (5.58)), one gets

| Ψ̃ 〉 := U⊗n
H ⊗ 1l|Ψf 〉 =

(
1√
2

)n ( ∑

j(n)

i(n)∈Ω
(n)
2

(−1)f(i(n))+i(n)·j(n) | j(n) 〉
)
⊗

⊗ | 0 〉 − | 1 〉√
2

,

where i(n) · j(n) :=
∑n

k=1 ikjk. Since projecting onto | 0 〉⊗n yields
⎛

⎜
⎝

(
1√
2

)n ∑

i(n)∈Ω
(n)
2

(−1)f(i(n))

⎞

⎟
⎠ | 0 〉⊗n ⊗ | 0 〉 − | 1 〉√

2
,

the amplitude of | 0 〉⊗n in | Ψ̃ 〉 is 0 if f is balanced, ±1 if f is constant.
Therefore, after operating the circuit one has just to perform a measurement
in the computational basis {| i(n) 〉}

i(n)∈Ω
(n)
2

of the first n qubits : if | 0 〉⊗n

occurs the binary function is constant, otherwise it is balanced.
1The CNOT gate (5.165) corresponds to choosing f(i) = i, i = 0, 1.
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The preceding discussion regards instances of classical information being
encoded into quantum states and manipulated by quantum gates. Similarly,
classical information might be stored or transmitted by quantum means and
the question is then how to retrieve it with high reliability or fidelity. Sending
classical information encoded into non-orthogonal quantum states has indeed
the advantage of being protected against undetected eavesdropping.

Example 6.1.2 (No-Cloning). Suppose a sender A encodes the bits 0 and
1 into the qubits |ψ0 〉, |ψ1 〉 ∈ C

2 with |ψ0 〉 �= |ψ1 〉 and sends them to a
receiver B. If a spy E wants to access this amount of information without
being spotted, he/she has to read the transmitted state without changing it,
otherwise sender and receiver might get alerted. A way to do this is for the
spy to intercept the message during transmission and to copy it by means of
a unitary operator UE acting as follows UE(|ψ 〉 ⊗ | e 〉) = |ψ 〉 ⊗ |ψ 〉. But
unitarity implies

〈ψ0 |ψ1 〉 = 〈ψ0 ⊗ e |ψ1 ⊗ e 〉 = 〈ψ0 ⊗ e |U†
EUE |ψ1 ⊗ e 〉 =

(
〈ψ0 |ψ1 〉

)2

,

whence ψ0,1, not being equal, must be orthogonal. Therefore, if the code
states ψ0,1 are chosen not to be orthogonal, the spy cannot copy them with-
out alterations. This argument goes under the name of no-cloning theorem
and asserts that there cannot exist a unitary operator U that implements the
operation of copying two generic quantum states, unless they are orthogonal.
Indeed, if such an unitary operator U existed, then, on the linear combina-
tions of two orthogonal states |ψ 〉, |φ 〉,

U
(
(α |ψ 〉 + β |φ 〉) ⊗ | e 〉

)
= α |ψ 〉 ⊗ |ψ 〉 + β |φ 〉 ⊗ |φ 〉

=
(
α |ψ 〉 + β |φ 〉

)
⊗
(
α |ψ 〉 + β, |φ 〉

)

= |α|2 |ψ 〉 ⊗ |ψ 〉 + |β|2 |φ 〉 ⊗ |φ 〉
+ αβ

(
|ψ 〉 ⊗ |φ 〉 + |φ 〉 ⊗ |ψ 〉

)
.

This can only be true if either α = 0 or β = 0 as one can see by scalar
multiplication by |ψ 〉 ⊗ |φ 〉.

In Section 5.5.4, it has already been emphasized the central role of entan-
glement as a resource for quantum informational tasks. Among the applica-
tions of entangled states to information transmission are the protocols for the
so-called dense coding and teleportation. In the first case, 2 bits can be sent
with one use of an entangled quantum channel, which points to the possibility
of achieving higher channel capacities if channel behave quantum mechani-
cally. In the second case, quantum states can be transferred between distant
parties sharing an entangled state by means of local quantum operations and
classical communication (known as LOCC operations).
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Example 6.1.3 (Dense Coding). If sender A and receiver B share the
entangled state (5.164), A can encode the pairs of bits (xy) into the Bell
states of Example 5.5.9 by local operations performed on his qubit , only.
Indeed, the states | Ψ̂xy 〉 result from acting with the Pauli matrices on the
first qubit of |Ψ̂00〉; explicitly

| Ψ̂xy 〉 = (σx
3σ

y
1 ) ⊗ 1l|Ψ̂00〉 , x, y = 0, 1 .

Then, if A and B share |Ψ̂00〉, in order to send B two bits (x, y) of classi-
cal information, A acts on his qubit with σx

3σ
y
1 and sends it to B. When

both qubits are with him, B has them in the state | Ψ̂xy 〉; by performing a
measurement in the Bell basis, he can thus recover the pair (xy). Roughly
speaking, one can transmit two bits at the price of 1 qubit , that is by just
one use of the entangled quantum channel represented by |Ψ̂00〉 and its local
modifications.

Example 6.1.4 (Teleportation). Suppose A has two qubits , denoted by
1, 2, the first one in the state |ψ 〉1 = α| 0 〉1 + β| 1 〉1 and the second one
being one party in the symmetric Bell state | Ψ̂00 〉23 = 1√

2

∑1
i=0 | i 〉2 ⊗ | i 〉3

together with a third qubit (3) of B. Let B perform a Hadamard rotation on
his qubit in |Ψ̂00〉, changing the entangled state into (see Figure 6.1)

|Φ 〉23 := (1l ⊗ UH)|Ψ̂00〉23 =
1
2

1∑

i=0

| i 〉2 ⊗ UH | i 〉3 .

Fig. 6.1. Teleportation

The state |ψ 〉1 can now be teleported from A to B becoming |ψ 〉3. The
protocol is as follows; A performs on his two qubits 1, 2 a measurement in
the ONB {|Ψμ 〉12}3

μ=0 of C
2 ⊗ C

2, where |Ψμ 〉12 := σμ ⊗ UH |Ψ̂00〉12 with
〈Ψμ |Ψν 〉 = 1

2Tr(σμσν) = δμν . Notice that the amplitude of |Ψμ 〉12 in the
state |ψ 〉1 ⊗ |Φ 〉23 is

12〈Ψμ |(|ψ 〉1 ⊗ |Φ 〉23) =
1
2

1∑

i,j=0

〈 i |σμ |ψ 〉 〈 i |UH |j 〉UH | j 〉3
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=
1
2

1∑

i=0

〈 i |σμ |ψ 〉U2
H | i 〉3 = σμ|ψ 〉3 ,

where it has been used that UH = U†
H and U2

H = 1l. Thus, after A has
classically (that is by means of a classical channel) communicated to B the
result of his local measurement, B knows his qubit to be in the state σμ|ψ 〉3,
whence by a local rotation by σμ he gets his third qubit in the state |ψ 〉3.

The procedure does not violate no-cloning for the state that appears at
B’s end, disappears from A’s end. Neither does it violate Einstein’s locality;
indeed, before classical communication of the actually measured index μ, B’s
state is the equidistributed mixture of the four possibilities corresponding to
the four different measurement outcomes of A; explicitly, using Example 5.2.5
with the normalized Pauli matrices σμ/

√
2 as ONB,

ρ =
1
4

3∑

μ=0

σμ|ψ 〉〈ψ |σμ =
1l
2
.

On the other hand, before A’s measurement, the marginal state of B is

ρ3 = Tr1,2(|ψ 〉11〈ψ | ⊗ |Φ 〉2323〈Φ |)

= Tr
(
|ψ 〉11〈ψ |

) 1
2

1∑

i,j=0

Tr
(
| i 〉22〈 j |

)
UH | i 〉33〈 j |UH =

1l
2
.

Notice that the net effect of quantum teleportation is to get the third
qubit in the rotated state σμ|ψ 〉 by means of a measurement in the ONB
{|Ψμ 〉12}3

μ=0 peformed on qubits 1 and 2, when the state of 1, 2, 3 is |ψ 〉1 ⊗
|Φ 〉23.

Example 6.1.5. In order to implement a two-qubit gate like the unitary
UCNOT on two target qubit states ψ1,2, one adds to them three pairs of qubits
each of which in the same entangled state |Φ 〉 introduced in the previous
example. Thus, one deals with a multipartite entangled state [249, 323, 71]

|Ψ 〉 := |ψ1 〉1 ⊗ |ψ2 〉2 ⊗ |Φ 〉34 ⊗ |Φ 〉57 ⊗ |Φ 〉68

corresponding to the scheme in Figure 6.2.
Then, measurements are performed on qubits (1, 3, 5) and (2, 4, 6) in the

ONBs obtained from the GHZ vectors as in Example 5.5.10.3. By projecting
|Ψ 〉 onto the 6 qubit state |Ψabc 〉135 ⊗ |Ψdef 〉468, one computes

(

135〈Ψabc | ⊗ 246〈Ψdef |
)
|Ψ 〉 =

(
1√
2

)5 1∑

r,s=0
i,j,k=0

〈 r |σa
1 |ψ1 〉 〈 r |σb

1 |i 〉 〈 r |σc
3 |j 〉
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Fig. 6.2. One way Quantum Computation

×〈 s |σd
1 |ψ2 〉 〈 s |σe

1UH |i 〉 〈 s |σf
3 |k 〉 UH | j 〉7 ⊗ UH | k 〉8

=
(

1√
2

)5 1∑

r,s=0

〈 r |σa
1 |ψ1 〉 〈 s |σd

1 |ψ2 〉〈 s |σe
1UHσ

b
1 |r 〉 UHσ

c
3| r 〉7 ⊗ UHσ

f
3 | s 〉8

=
(

1√
2

)5 (
UHσ

c
3 ⊗ UHσ

f
3

)
Ueb

Z

(
σa

1 ⊗ σd
1

)
|ψ1 〉7 ⊗ |ψ2 〉8 ,

where in summing over i, j, k it has been used that, under transposition,
σT

1,3 = σ1,3. Thus, a part from local unitary rotations, by measuring in the
chosen ONB one implements the unitary transformation

Ueb
Z :=

1∑

r,s=0

〈 s |σe
1UHσ

b
1 |r 〉 | r 〉〈 r | ⊗ | s 〉〈 s |

=
1∑

r,s=0

〈 s⊕ e |UH |r ⊕ b 〉 | r 〉〈 r | ⊗ | s 〉〈 s |

on the state |ψ1 〉7 ⊗ |ψ2 〉8 of the pair of qubits that remain unaffected by
the measurement. In particular, choosing a = b = c = d = e = f = 0, it turns
out that

√
2U00

Z = | 0 〉〈 0 |⊗1l+ | 1 〉〈 1 |⊗σ3 = 1l⊗UH UCNOT 1l⊗UH , namely√
2U00

Z amounts to the CNOT gate unitary matrix apart from unitary, local
rotations.

6.2 Bipartite Entanglement

We have seen in Section 5.5.4 that, by looking at its marginal states, one
knows whether a pure bipartite state is entangled or not. For density ma-
trices entanglement detection is by far more difficult; only in low dimension
the problem has been completely solved by the so-called Peres-Horodecki
criterion [236, 148, 152].
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Proposition 6.2.1. Let a bipartite system S1+S2 be described by the algebra
Md1(C) ⊗Md2(C), a state ρ12 ∈ S(S1 + S2) is entangled if and only there
exists a positive map Λ : Md2(C) �→ Md1(C) such that idd1 ⊗ Λ+[ρ12] is not
positive definite, where Λ+ : B

+
1 (Cd2) �→ B

+
1 (Cd1) is the dual map of Λ from

the space of states S(S2) = B
+
1 (Cd2) to the space of states S(S1) = B

+
1 (Cd1).

Proof: The set Ssep(S1 + S2) of separable states over Md1(C) ⊗Md2(C)
is the closure in trace-norm of the convex hull of pure separable states (see
Remark 5.5.7). By the Hahn-Banach theorem [258], Ssep(S1 + S2) can be
strictly separated from any entangled state ρent by a hyperplane, that is
by a continuous linear functional R : S(S1 + S2) �→ R and a real constant
a such that R(ρent) < a ≤ R(ρsep). As the trace-norm and the Hilbert-
Schmidt topology are equivalent in finite dimension, using the argument of
Example 5.2.4, the action of R can be represented by means of R = R† ∈
Md1(C) ⊗Md2(C) such that R(ρ) = Tr(Rρ). Setting S := R′ − a1l, it thus
follows that ρ ∈ Md1(C) ⊗ Md2(C) is entangled if and only if there exists
S ∈ Md1(C) ⊗Md2(C) such that Tr(S ρ) < 0 while Tr(S ρsep) ≥ 0 for all
ρsep ∈ Ssep(S1 + S2).

Furthermore, to any such matrix, the Jamio�lkowski isomorphism (see Re-
mark 5.2.5) associates a positive map ΛS : Md1(C) �→ Md2(C) with S as Choi
matrix. Let Λ+

S : B
+
1 (Cd2) �→ B

+
1 (Cd1) be its dual such that

Tr(S ρ) = Tr
(
idd1 ⊗ ΛS [P d1

+ ] ρ
)

= Tr
(
P d1

+ idd1 ⊗ Λ+
S [ρ]
)
,

for all ρ ∈ S(S1 + S2). If ρ is an entangled state such that Tr(S ρ) < 0, then
idd1 ⊗ Λ+

S [ρ] cannot be positive definite. Vice versa, if idd1 ⊗ Λ+[ρ] ≥ 0 for
all positive Λ : Md2(C) �→ Md2(C), then ρ ∈ Ssep(S1 + S2). �

As a consequence of the previous argument, a map Λ : Md2(C) �→ Md1(C)
is a witness of the entanglement of the state ρ ∈ S(S1 +S2) if idd1 ⊗Λ+ turns
ρ into a non-positive matrix. Therefore, Λ cannot be a CP map; however it
preserves positivity. Indeed, the Choi matrix L ∈ Md1(C)⊗Md2(C) associated
to the dual map Λ+ is block positive for Tr(Lρ) ≥ 0 whenever ρ is separable,
that is 〈ψ⊗φ |L |ψ⊗φ 〉 for all ψ ∈ C

d1 and φ ∈ C
d2 , whence Λ+ is a positive

map.
Unfortunately, as already noticed (see Remark 5.2.6.3), unlike CP maps

for which Proposition 5.2.1 holds, positive linear maps still lack a complete
characterization. Consequently, given an entangled state ρ ∈ S(S1 + S2) it
is usually rather difficult to find a corresponding entanglement witness Λ. A
relatively understood sub-class of positive maps is the following one.

Definition 6.2.1 (Decomposable Maps). A map Λ : B(H) �→ B(K) is
decomposable if it is positive and Λ = Λ1 + Λ2 ◦TH, with Λ1,2 CP maps and
TH the transposition on B(H) with respect to a fixed orthonormal basis in H.
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Let (d1, d2) = (2, 2), (2, 3), (3, 2), then a theorem of Woronowicz [321]
asserts that all positive maps Λ : Md1(C) �→ Md2(C) are decomposable.
This fact makes transposition an exhaustive entanglement witness in low
dimension; in other words, for the stated dimensions, those states that remain
positive under partial transposition, are separable and viceversa.

Corollary 6.2.1. If in the previous proposition (d1, d2) = (2, 2), (2, 3), (3, 2),
then, ρ12 ∈ S(S1 + S2) is entangled if and only if T(2)[ρ12] is not positive-
definite, where T(2) := idd1 ⊗Td2 denotes partial transposition on the second
factor.

Proof: If ρ ∈ S(S1 + S2) is separable then T(2)[ρ] ≥ 0 for transposition is
a positive map. Vice versa, because of the assumption, Woronowicz theorem
ensures that any positive map is decomposable. Therefore, if T(2)[ρ] ≥ 0, it
turns out that, for all positive Λ : Md2(C) �→ Md2(C),

idd1 ⊗ Λ[ρ] = idd1 ⊗ Λ1[ρ] + idd1 ⊗ Λ2[T(2)[ρ]] ≥ 0 ,

as Λ1,2 are CP maps. �

Remarks 6.2.1.

1. Though partial transposition as transposition are to be defined with re-
spect to a chosen ONB, the spectrum of an operator is basis-independent;
therefore, the non-positivity of T(2)[ρ12], thence the entanglement of ρ12,
does not depend on the ONB with respect to which the partial transpo-
sition is performed.

2. Those states which remain positive under partial transposition are called
PPT states, otherwise NPT states, namely negative under partial trans-
position. Woronowicz theorem does not extend to higher dimension;
there are instances of non-decomposable positive maps already for d1 =
d2 = 3 [83, 130, 288, 321]; as a consequence partial transposition is
not an exhaustive entanglement witness in higher dimension. In other
words, all NPT states are entangled, but there can exist PPT entangled
states [149, 297].

3. No pure bipartite state can be PPT entangled; indeed, by Proposi-
tion 5.5.7, entangled vector states |Ψ12 〉 ∈ C

d1 ⊗ C
d2 have a Schmidt

decomposition (5.159) of the form |Ψ12 〉 =
d∑

j=1

√
λj |ψ(1)

j 〉 ⊗ |ψ(2)
j 〉,

where d := max{d1, d2}, {|ψ(1,2)
j 〉}d

j=1 are orthonormal sets in the Hilbert
spaces C

d1,2 and the Schmidt coefficients λj > 0 for at least two indices.
Set P12 := |Ψ12 〉〈Ψ12 |; the partial transposition with respect to the ONB

having {|ψ(2)
j 〉}d

j=1 among its elements yields
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R12 := T(2)[P12] =
d∑

i,j=1

√
λjλj |ψ(1)

i 〉〈ψ(1)
j | ⊗ |ψ(2)

j 〉〈ψ(2)
i | .

Let λ12 > 0, then

R12
|ψ(1)

1 ψ
(2)
2 〉 − |ψ(1)

2 ψ
(2)
1 〉√

2
= −

√
λ1λ2

|ψ(1)
1 ψ

(2)
2 〉 − |ψ(1)

2 ψ
(2)
1 〉√

2
.

Thus T(2)[P12] cannot be positive if P12 is entangled.
4. The entanglement of PPT entangled density matrices cannot be detected

by decomposable positive maps as one can see from an argument similar
to the one used in the proof of Corollary 6.2.1. An instance of such states
will be discussed in Example 6.2.4.

The following ones are families of bipartite states over C
d ⊗ C

d, d ≥ 2,
where PPT states are always separable.

Examples 6.2.1.

1. Werner States [317] This is a class of d2 × d2 density matrices on
C

d ⊗ C
d of the form ρW = α1ld2 + β V where V is the flip operator

(see (5.32)) and W := Tr(ρWV ) (*).
As the eigenvalues of V are ±1, those of ρW are α±β and must be positive.
Also, V 2 = 1ld2 and TrV =

∑N
i,j=1〈 ij |V |ij 〉 =

∑N
i,j=1 |〈 i | j 〉|2 = d;

thus, normalization and (*) yield αd2 + β d = 1 and W = αd + β d2,
whence

α =
d−W

d(d2 − 1)
, β =

dW − 1
d(d2 − 1)

; α+ β =
1 +W

d(d+ 1)
, α− β =

1 −W

d(d− 1

ρW =
d(d−W )
d2 − 1

1ld2

d2
+

dW − 1
d(d2 − 1)

V , −1 ≤ W ≤ 1 . (6.2)

If ρW is separable as in (5.166), by spectralizing the contributing density
matrices, it can always be recast as ρW =

∑
ij μij |ψ1

i 〉〈ψ1
i | ⊗ |ψ2

j 〉〈ψ2
j |,

μij ≥ 0,
∑

ij μij = 1. Then,

W = Tr(ρWV ) =
∑

ij

μij〈ψ1
i ⊗ψ2

j |V |ψ1
i ⊗ψ2

j 〉 =
∑

ij

μij |〈ψ1
i |ψ2

j 〉| ≥ 0 .

This is a necessary condition for the separability of Werner states in
dimension d; it is also sufficient; the clue is that Werner states are exactly
those states on C

d2
that commute with all unitaries of the form U ⊗ U

with U a unitary matrix in Md(C). Practically, since V (A⊗B)V = B⊗A
for all A,B ∈ Md(C), all Werner states have the form



6.2 Bipartite Entanglement 265

ρW =
∫

U
dU (U ⊗ U) ρ (U† ⊗ U†) ,

where dU is the normalized, invariant Haar measure over the unitary
group U on C

d 2; furthermore, W = Tr(ρ V ).
If 1 ≥ W ≥ 0, let ψ ∈ C

d, |φ 〉 =
√
W |ψ 〉 +

√
1 −W |ψ⊥ 〉 ∈ C

d, with
〈ψ |ψ⊥ 〉 = 0 and set ρ := |φ 〉〈φ |⊗ |ψ 〉〈ψ |. Thus, ρW arises by twirling
a separable state with tensor products of local unitaries, therefore it is
itself separable, as local actions cannot create entanglement.
The necessary and sufficient condition for separability, W ≥ 0, turns out
to be equivalent to ρW being positive under partial transposition. Indeed,
by applying T(2) = idd ⊗ Td to ρW one gets

T(2)[ρW ] =
d−W

d(d2 − 1)
1ld2 +

dW − 1
d2 − 1

P̂ d
+ .

Its eigenvalues (d−W )/(d3 − d) ≥ 0 and W/d are positive if and only if
W ≥ 0.

2. Isotropic States [151] This is a class of d2 × d2 density matrices on
C

d ⊗ C
d which are related to Werner states by partial transposition.

They have the form ρF = α1ld2 +β P̂ d
+ and are uniquely identified by the

parameter 0 ≤ F := Tr(ρF P̂
d
+) (*).

Like for Werner states, positivity, normalization and (*) yield α ≥ 0,
αd2 + β = 1 and 1 ≥ F = α+β ≥ 0, whence isotropic states are mixtures
of the totally depolarized state on C

d2
and of the totally symmetric state,

ρF =
d2(1 − F )
d2 − 1

1ld2

d2
+

d2F − 1
d2 − 1

P̂ d
+ . (6.3)

Since 〈ψ⊗φ | P̂ d
+ |ψ⊗φ 〉 = |〈ψ |φ∗ 〉|2, where ψ∗ is the vector in C

d with
complex conjugate components with respect to ψ, if ρF is separable, then
(see the previous example)

F = Tr(ρF P̂
d
+) =

1
d

∑

ij

μij |〈ψ1
i | (φ2

j )
∗ 〉|2 ≤ 1

d
.

As for Werner states, 0 ≤ F ≤ 1/d is necessary and also sufficient for
separability. The reason is that isotropic states are all and only those

2The particular convex combination of states (U ⊗U) ρ (U† ⊗U†) appearing in
the integral is known as twirling. Twirled ρ are such that, for all unitary V ,

V ⊗ V

(∫

U
dU U ⊗ U ρ U† ⊗ U†

)

V † ⊗ V † =

∫

U
dU V U︸︷︷︸

W

⊗V U ρ (UV )† ⊗ (UV )†

=

∫

U
d(V † W ) W ⊗ W ρ W † ⊗ W † =

∫

U
dU U ⊗ U ρ U† ⊗ U† ,

for the Haar measure satisfies d(V U) = dU for all unitary V .
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d2 × d2 density matrices which commute with local unitaries of the form
U ⊗ U∗, where U is any unitary matrix in Md(C) and U∗ denotes its
complex conjugate (not its adjoint). Moreover, one can show that, since
(U ⊗ U∗)P̂ d

+(U† ⊗ UT ) = P̂ d
+, any isotropic ρF arises from a twirling of

the form
ρF =

∫

U
dU (U ⊗ U∗) ρ (U† ⊗ UT ) ,

where UT denotes the transposition of U and ρ is such that Tr(ρP̂ d
+) = F .

If Fd ≤ 1, set |φ 〉 =
√
dF |ψ 〉+

√
1 − dF |ψ⊥ 〉 and choose ρ = |ψ 〉〈ψ |⊗

|φ 〉〈φ |; then, ρF can be obtained by twirling a separable state and is thus
itself separable.
The above necessary and sufficient conditions for separability coincides
with the isotropic states being positive under partial transposition. In-
deed,

T(2)[ρF ] =
1 − F

d2 − 1
1ld2 +

d2F − 1
d(d2 − 1)

V

has positive eigenvalues (dF + 1)/(d2 + d) ≥ 0 and (1 − dF )/(d2 − d) if
and only if 0 ≤ F ≤ 1/d.

Distillability and Bound Entanglement

Entangled states of two qubits as the Bell states (see Example 5.5.9) are called
maximally entangled. Consider a pure state |Ψ12 〉 ∈ C

d ⊗ C
d of a bipartite

system consisting of two copies of a same system; as we shall see, there
are good reasons to measure the amount of entanglement of ρ12 by means
of the von Neumann entropy of any of its two marginal density matrices
ρ
(1,2)
Ψ12

:= Tr2,1

(
|Ψ12 〉〈Ψ12 |

)
(see Proposition 5.5.5).

Definition 6.2.1 (Pure State Entanglement). Let |Ψ12 〉 ∈ C
d ⊗C

d be a
pure state of the bipartite system S1 + S2; the entanglement of |Ψ12 〉 is

EF[|Ψ12 〉〈Ψ12 |] := S
(
ρ
(1,2)
Ψ12

)
. (6.4)

According to Example 5.5.10.1, all Bell states have marginal states that
are the tracial state with maximal von Neumann entropy: E[Ψ̂xy] = log 2.

The presence of uncontrollable interactions with the environment in which
a bipartite system may be immersed usually spoils its maximally entangled

states. For instance, the so-called singlet state |Ψ 〉− :=
| 01 〉 − | 10 〉√

2
might

be rotated into |Ψ 〉 = α| 01 〉 + β| 10 〉, with |α|2 + |β|2 = 1 and 0 < |α| < 1,
so that
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ρ
(1)
Ψ =

(
|α|2 0
0 |β|2

)

, E[Ψ ] = −|α|2 log |α|2 − |β|2 log |β|2 < log 2 .

It may even be turned into a mixed state because the environment usually
acts as a source of noise and dissipation. A measure of the entanglement of
ρ12 ∈ S(S1 + S2) is as follows 3.

Definition 6.2.2 (Entanglement of Formation). [53] The entanglement
of formation of a state ρ12 of a bipartite system S1 + S2 is the least average
pure state entanglement over all convex decompositions of ρ12,

EF[ρ12] := min

⎧
⎨

⎩

∑

j

λjS
(
ρ
(1,2)

ψj
12

)
, ρ12 =

∑

j

λj |ψj
12 〉〈ψ

j
12 |

⎫
⎬

⎭
, (6.5)

where λj > 0 and
∑

j λj = 1.

Maximal entanglement is an important resource in quantum information,
but also a highly degradable one; of particular importance are then those
quantum protocols that enable to distil maximally entangled states out of
non-maximally entangled ones by means of LOCC 4. The basic scheme of
a distillation protocol is as follows: given m copies of ρ12 ∈ B

+
1 (Cd ⊗ C

d),
one tries to maximize the number n of copies of the singlet state projection
P− := |Ψ− 〉〈Ψ− | that can be obtained by means of local operations and
classical communication:

ρ12 ⊗ ρ12 ⊗ · · · ρ12︸ ︷︷ ︸
m times

LOCC

�−→ P− ⊗ P− ⊗ · · ·P−
︸ ︷︷ ︸

n times

.

The LOCC defining the distillation protocols amount to maps of the form

ρ⊗m
12 �→ ρ

(n)
12 =

1
NI

∑

i∈I

A1i ⊗ A2i ρ
⊗m
12 A†

1i ⊗ A†
2i , (6.6)

where
NI :=

∑

i∈I

Tr
(
A†

1iA1i ⊗ A†
2iA2i ρ

⊗m
12

)
,

while Aji : (Cd)⊗m �→ (C2)⊗n, j = 1, 2.

3Various entanglement measures have appeared while quantum entanglement
theory has been developing, for a review and the related literature see the contri-
bution by M.B. Plenio and S.S. Virmani in [71].

4For a review of entanglement distillation and the other topics of this Section
see [70] and the contributions by A. Sen, U. Sen, M.Lewenstein et al., W. Dür and
H.-J. Briegel, and P. Horodecki in [71]
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Practically, one seeks distillation protocols that output states ρ(n) whose
distance from P⊗n

− (for instance, with respect to the trace-norm (5.21)) van-
ishes when m → +∞, while the ratio n/m is the highest possible. The optimal
ratio, denoted by ED[ρ12], is called entanglement of distillation and represents
the maximal asymptotic fraction of singlets per ρ12 that one can achieve by
LOCC. In other words, one can hope to distil at most n � mED[ρ12]] singlets
P− out of m ρ12 when m gets sufficiently large.

It turns out that PPT states ρ12 cannot be distilled [150]; when ρ12 is sep-
arable this is obvious since one cannot create non-local quantum correlations
by means of local operations and classical communication. The interesting
point is that one has to distinguish between free entanglement, the entan-
glement which can be distilled, and bound entanglement, that which cannot
be distilled. The result just quoted can be rephrased by saying that the en-
tanglement of PPT entangled states is bound. This can be seen as follows: if
the entanglement in ρ12 is distillable, then for some m, the state ρ(n)

12 in (6.6)
must be an entangled state of 2 qubits . whence an NPT state according to
Corollary 6.2.1. This implies that, for at least one index i0 ∈ I, the (non-
normalized) state

ρ̃12 := A1i0 ⊗ A2i0 ρ
⊗m
12 A†

1i0
⊗ A†

2i0
(6.7)

is NPT . Observe that, for such m and i0, Aji0 : (Cd)⊗m �→ C
2; therefore,

one can always write Aji0 =
∑1

k=0 | k 〉〈ψjk |, where |ψjk 〉 ∈ (Cd)⊗m and
| k 〉, k = 0, 1, is any chosen basis in C

2. Let Qj be the projections onto the
subspaces of (Cd)⊗m spanned by |ψj0 〉 and |ψj1 〉; then,

ρ̃12 := A1i0 ⊗ A2i0 Q1 ⊗ Q2 ρ
⊗m
12 Q1 ⊗ Q2 A

†
1i0

⊗ A†
2i0

implies that ρ′12 := Q1 ⊗ Q2 ρ
⊗m
12 Q1 ⊗ Q2 must be entangled, otherwise its

separability would be preserved when passing to ρ̃12.
Consider now the orthonormal bases {| bjn 〉}dm

n=1 in (Cd)⊗m, j = 1, 2, such
that Qj = | bj1 〉〈 bj1 | + | bj2 〉〈 bj2 |; in the corresponding representation ρ′12
is a 4 × 4 matrix acting on the subspace K spanned by the product states
| b1ib2j 〉, i, j = 1, 2. Since it corresponds to an entangled state, by partial
transposition with respect to the ONB {| b2j 〉}2

j=1, T2[ρ′12] cannot be positive
semi-definite. Therefore, there must exist |Φ 〉 ∈ K such that

〈Φ |T2[ρ′12] |Φ 〉 =
2∑

i,j;k,	=1

Φ∗
ijΦk	 〈 b1ib2j |T2[ρ′12] |b1kb2	 〉

=
2∑

i,j;k,	=1

Φ∗
ijΦk	 〈 b1ib2	 | ρ′12 |b1kb2j 〉 =

2∑

i,j;k,	=1

Φ∗
ijΦk	 〈 b1ib2	 | ρ⊗m

12 |b1kb2j 〉

= 〈Φ |T[ρ⊗m
12 ] |Φ 〉 < 0 ,

where T[ρ⊗m
12 ] is now the partial transposition with respect to the whole ONB

{| b2j 〉}dm

j=1. Also, the last equality follows because |Φ 〉 is supported by the
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subspace K corresponding to the orthogonal projection Q1⊗Q2 and thus has
vanishing projections onto all | b1ib2j 〉 unless i, j = 1, 2.

Since NPT is a property which does not depend on the basis chosen
to compute the partial transposition (see Remark 6.2.1.1), fix the bases
{| ejk 〉}d

k=1 in C
d and choose in (Cd ⊗C

d)⊗m the product basis consisting of
vectors | e1k1e1k2 . . . e1km

〉⊗| e2	1e2	2 . . . e2	m
〉. Then, T[ρ⊗m

12 ] = (T2[ρ12])⊗m;
one thus concludes that ρ12 is distillable only if ρ12 is NPT .

Remark 6.2.2. From Remark 6.2.1.3 we know that no pure PPT entangled
state can exist; it turns out that their entanglement is always distillable and
thus free. Whether the entanglement of generic NPT states is also free, that is
whether all NPT states are distillable, is one of the open problems in quantum
information theory [71, 152].

Entanglement Cost

One of the first questions in quantum information has been whether, by
means of LOCC one can turn a pure state |Ψ12 〉 of a bipartite system into
another pure state |Φ12 〉. The answer is that this is possible if and only if
the marginal states ρ(1,2)

Ψ12
are more mixed than those of |Φ12 〉 in the sense of

Definition 5.5.1 [224].
If one considers asymptotic LOCC protocols where m copies of a state

|Ψ12 〉 are turned into n copies of a state |Φ12 〉 with vanishing error when
m → +∞, then the transformation of |Ψ12 〉 into |Φ12 〉 is possible if and only
if [71]

n

m
≤ EF[Ψ12]

EF[Φ12]
.

Since EF[Ψ−] = 1 (we shall use log2 in the following), one can always asymp-
totically distil n ≤ mEF[Ψ12] copies of P− out of m copies of any pure
bipartite entangled state Ψ12.

Furthermore, the reverse operation is also possible; namely, protocols have
been devised which invert distillation and, by using m copies of the sin-
glet state P−, form, by means of LOCC , n copies of a bipartite pure state
Ψ12. Actually, like in the case of entanglement distillation, one considers the
asymptotic minimal ratio m/n when n → +∞ and ρ⊗n

12 is better and bet-
ter approximated (within a suitable distance) by a suitable LOCC operation
acting on P⊗m

− [137]. The optimal asymptotic ratio, denoted by EC[ρ12] is
called the entanglement cost of ρ12; it represents the minimal fraction of sin-
glet that is needed to create one bipartite system in the state ρ12. In other
words, for large n, one can create n copies of ρ12 only acting with LOCC on
no less than nEC[ρ12] singlets.

In [224] a distillation protocol ΛD is constructed which asymptotically
yields EF[Ψ12] = S

(
ρ
(1)
Ψ12

)
singlets per bipartite entangled state ρ12 (see (6.4))
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and a formation protocol ΛF that asymptotically yields one copy of ρ12 at
the cost of EF[Ψ12] singlets. It turns out that the entanglement cost and the
entanglement of distillation equal the pure state entanglement of formation.

By definition, EC[Ψ12] ≤ EF[Ψ12] ≤ ED[Ψ12]; if EF[Ψ12] < ED[Ψ12]; then,
by means of the protocol ΛF one could asymptotically obtain

m

EF[Ψ12]
copies

of Ψ12 out of m copies of P− and then, using an optimal distillation protocol,

extract from them m
ED[Ψ12]
EF[Ψ12]

> m copies of P−. This is impossible as one

cannot increase the amount of entanglement by deterministic LOCC 5. Anal-
ogously, if EC[Ψ12] < EF[Ψ12], then one could use an optimal creation protocol
to obtain

m

EC[Ψ12]
copies of ρ12 out of m copies of P− (for m large) and then

use the distillation protocol ΛD to extract from them m
EF[Ψ12]
EC[Ψ12]

> m copies

of P−.
For pure states, forming entangled states from singlets and distilling sin-

glets from entangled states are reversible operations; it is not so for mixed
states and the reason for this peculiar kind of irreversibility is bound entan-
glement [152, 150, 71].

Consider the entanglement of formation as defined by (6.5); it can be
interpreted as the minimal averaged entanglement cost of ρ12. In fact, given
a convex decomposition of ρ12 =

∑
j λj |ψj

12 〉〈ψ
j
12 |, the entropies S

(
ρ
(1)

ψj
12

)

are the entanglement cost of the pure states that decompose it. However, in
line of principle, it could be more advantageous to create the tensor product
ρ⊗n
12 instead of the n copies of ρ12 one by one. One is thus led to define the

so-called regularized entanglement of formation

E∞
F [ρ12] := lim

n→+∞

1
n

EF[ρ⊗n
12 ] . (6.8)

Such a limit exists because the entanglement of formation is subadditive.
Indeed, consider the state ρ

(1)
12 ⊗ ρ

(2)
12 of two copies of the bipartite system

S1 + S2 and suppose EF[ρ(i)
12 ] is achieved at the (optimal) decompositions

ρ
(i)
12 =

∑
j ν

(i)
j |φ(i)

j 〉〈φ(i)
j |. Since the decomposition

ρ
(1)
12 ⊗ ρ

(2)
12 =

∑

j,k

ν
(1)
j ν

(2)
k |φ(1)

j 〉〈φ(1)
j | ⊗ |φ(2)

k 〉〈φ(2)
k |

need not in general be optimal for EF[ρ(1)
12 ⊗ ρ

(2)
12 ], it follows that

EF[ρ(1)
12 ⊗ ρ

(2)
12 ] ≤ EF[ρ(1)

12 ] + EF[ρ(2)
12 ] .

5One can achieve entanglement increase by LOCC only probabilistically for
certain states of a mixture, for instance in some of the states in (6.6), but not on
the average for the whole mixture.
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In [137] it is proved that the regularized entanglement of formation equals
the entanglement cost: EC[ρ12] = E∞

F [ρ12]. Moreover (see P. Horodecki’s con-
tribution in [71]), it has been proved that EC[ρ12] > 0 for all entangled ρ12.

As a consequence of the fact that, if ρ12 is PPT entangled, no entangle-
ment can be distilled from it, it thus turns out that a non-zero non-retrievable
amount of entanglement (of singlets) is always necessary to create PPT en-
tangled states.

Concurrence

We shall now elaborate a little bit more in detail on the entanglement of
formation of two qubit states.

Let SA,B be two qubits , |0〉 =
(

1
0

)

, |1〉 =
(

0
1

)

the standard basis in

C
2 and consider a generic two qubit vector state of SA + SB of the form

|ΨAB 〉 = C00| 00 〉 + C∗
01| 01 〉 + C10| 10 〉 + C11| 11 〉 .

Then, the marginal state ρA = CC†, C =
(
C00 C01

C10 C11

)

has eigenvalues

1 ±
√

1 − C(ΨAB)2

2
, C(ΨAB) := 2 |C00C11 − C01C10| . (6.9)

This expression can be recast as follows. Let |Ψ∗
AB〉 denote the complex con-

jugate of |ΨAB 〉 with respect to the standard product basis {|ij〉}i,j=0,1 and
denote

| Ψ̃AB 〉 := σ2⊗σ2|ΨAB 〉 = −C∗
00| 11 〉+C∗

01| 10 〉+C∗
10| 01 〉−C∗

11| 00 〉 , (6.10)

for σ2 =
(

0 −i
i 0

)

is such that σ2| 0 〉 = i| 1 〉, σ2| 1 〉 = −i| 0 〉. Then,

∣
∣
∣〈 Ψ̃AB |ΨAB 〉

∣
∣
∣ = C(ΨAB) . (6.11)

Since σ2

(
α∗

β∗

)

⊥
(
α
β

)

, it turns out that C(ΨAB) = 0 when ΨAB is separable,

while C(ΨAB) reaches its maximum C(ΨAB) = 1 when ΨAB is maximally
entangled and (only) two coefficients Cij are proportional to 2−1/2.

Therefore, for two qubit vector states, the entanglement of formation reads

EF[|ΨAB 〉〈ΨAB |] = E(ΨAB) := H2

(
1 +
√

1 − C(ΨAB)2

2

)

, (6.12)

where H2(x) := −x log x− (1 − x) log(1 − x).
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The variational problem embodied in Definition 6.2.2 is in general ex-
tremely difficult to solve and a general closed expression of E(ρ) as a function
of ρ has been found only in the case of two qubits ; it is based upon the notion
of concurrence [320].

Given a two qubit density matrix ρ ∈ M4(C), one first constructs the
density matrix

ρ̃ = σ2 ⊗ σ2ρ
∗σ2 ⊗ σ2 , (6.13)

obtained via the operation (6.10), where ρ∗ denotes complex conjugation with
respect to the the standard basis {|ij〉}i,j=0,1. Then, the quantity C(ΨAB)
in (6.9) generalizes to density matrices as follows.

Definition 6.2.3 (Concurrence). Let λi, i = 1, 2, 3, 4, be the positive
eigenvalues of

√√
ρρ̃

√
ρ in decreasing order. The concurrence of ρ is

C(ρ) := max{λ1 − λ2 − λ3 − λ4 , 0} . (6.14)

Examples 6.2.2.

1. Pure states Let ρ = |ψ〉〈ψ|, |ψ〉 ∈ C
4. Then,

√
ρρ̃

√
ρ =

∣
∣
∣〈ψ|ψ̃〉

∣
∣
∣
2

|ψ〉〈ψ| ,

whence C(ρ) =
∣
∣
∣〈ψ|ψ̃〉

∣
∣
∣.

2. Werner states Setting d = 2 in (6.2)

| 0 〉〈 0 | =
1 + σ3

2
, | 0 〉〈 1 | =

σ1 + iσ2

2

| 1 〉〈 1 | =
1 − σ3

2
, | 1 〉〈 0 | =

σ1 − iσ2

2
,

it follows that

P̂ 2
+ =

1
4

(
1 ⊗ 1 + σ1 ⊗ σ1 − σ2 ⊗ σ2 + σ3 ⊗ σ3

)

V = id ⊗ T [P 2
+] =

1
2

(
1 ⊗ 1 + σ1 ⊗ σ1 + σ2 ⊗ σ2 + σ3 ⊗ σ3

)

ρW =
1
4

(
1 ⊗ 1 +

2W − 1
3

(σ1 ⊗ σ1 + σ2 ⊗ σ2 + σ3 ⊗ σ3)
)
.

Since W ∈ R, the algebraic relations among the Pauli matrices yield
ρ̃W = ρW , whence the eigenvalues of

√√
ρW ρ̃W

√
ρW are those of ρW ,

namely 1+W
6 (thrice degenerate) and 1−W

2 . It then follows that

C(ρW ) =

⎧
⎨

⎩

max{−W, 0} −1 ≤ W ≤ 1/2

max{(W − 2)/3, 0} 1/2 ≤ W ≤ 1
,

whence C(ρW ) > 0 and ρW is entangled if and only ifW < 0, in agreement
with Example 6.2.1.1
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3. Isotropic States Setting d = 2 in (6.3) and arguing as in the previous
example, the isotropic states read

ρF =
1
4

(
1 ⊗ 1 +

4F − 1
3

(σ1 ⊗ σ1 − σ2 ⊗ σ2 + σ3 ⊗ σ3)
)
.

Again, it turns out that ρ̃F = ρF so that the eigenvalues of
√√

ρF ρ̃F
√
ρF

are those of ρF itself, namely 1−F
3 thrice degenerate and F . Thus,

C(ρF ) =

⎧
⎨

⎩

max{2F − 1, 0} 1/4 ≤ F ≤ 1

max{−(1 + 2F )/3, 0} 0 ≤ F ≤ 1/4
,

whence ρF is entangled if and only if F > 1/2, in agreement with Exam-
ple 6.2.1.2.

By direct inspection, the function (see (6.12))

E(C(ψ)) = H2

(
1 +
√

1 − C(ψ)2

2

)

, (6.15)

is monotonically increasing (E ′(x) ≥ 0, 0 ≤ x ≤ 1) and convex (E ′′(x) ≥ 0,
0 ≤ x ≤ 1) in the concurrence. As 0 ≤ C(ψ) ≤ 1, the entanglement increases
from E(C(ψ)) = 0 for separable vector states to E(C(ψ)) = 1 for maximally
entangled states and

E(λx1 + (1 − λ)x2) ≤ λE(x1) + (1 − λ)E(x2) , 0 ≤ λ ≤ 1 , 0 ≤ x1,2 ≤ 1 .

Further, given a decomposition ρ =
∑

j pj |ψj 〉〈ψj |, let

〈C〉ρ=
∑

j pj |ψj〉〈ψj | :=
∑

j

pj C(ψj) (6.16)

〈E〉ρ=
∑

j pj |ψj〉〈ψj | :=
∑

j

pj E(C(ψj)) (6.17)

denote the corresponding average concurrence, respectively the average en-
tanglement. Because of convexity, it turns out that

E
(
〈C〉ρ=

∑
j pj |ψj 〉〈ψj |

)
≤ 〈E〉ρ=

∑
j pj |ψj 〉〈ψj | . (6.18)

Theorem 6.2.1. [320] The entanglement of formation (6.2.2) of any state ρ
of a two qubit system is given by EF[ρ] = E(C(ρ)) and is thus a monotonically
increasing function of the concurrence (6.14).
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Proof: The right hand side of (6.18) is the argument of the minimum
in (6.5) (see (6.12)), whereas the left hand side is an increasing function
of its argument. It thus follows that EF[ρ] cannot be smaller than E(Cmin)
where Cmin is the smallest average concurrence. Therefore, if Cmin is attained
at a suitable decomposition, then the same decomposition yields EF[ρ] =
E(Cmin). We will construct a density matrix ρ =

∑
j pj |ψj 〉〈ψj | such that

〈C〉ρ=
∑

j pj |ψj 〉〈ψj | = C(ρ) and show that no smaller average concurrence can
be achieved, namely Cmin = C(ρ).

In order to arrive at such decomposition, we first consider the expansion
ρ =

∑n
i=1 | vi 〉〈 vi |, n ≤ 4 being the rank of ρ, and |vj〉 its (non-normalized)

eigenvectors such that 〈vi|vj〉 = rjδij , with rj the eigenvalues of ρ.
The n× n matrix τ with entries τij := 〈vi|ṽj〉, where |ṽi〉 := σ2 ⊗ σ2|v∗i 〉,

is symmetric, 〈vi|ṽj〉 = 〈vj |ṽi〉, but not hermitian and

(ττ †)ij = (ττ∗)ij =
n∑

k=1

〈vi|ṽk〉〈ṽk|vj〉 = 〈ri|
√
ρρ̃

√
ρ |rj〉 .

Thus the eigenvalues of ττ∗ are the squares of the eigenvalues λj of
√
ρρ̃

√
ρ

in decreasing order (see (6.14)). Let Z be the n × n unitary matrix that
diagonalizes ττ∗,

Zττ∗Z† = (ZτZT )(ZτZT )∗ = diag(λ2
1, λ

2
2, λ

2
3, λ

2
4) ,

then Z can be chosen such that ZτZT = diag(λ1, λ2, λ3, λ4) is diagonal with
the λj ’s as eigenvalues. Setting |wi〉 :=

∑n
j=1 Z

∗
ij |vj〉 gives ρ =

∑n
i=1 |wi〉〈wi|,

with decomposers such that

〈wi|w̃j〉 =
n∑

k,	=1

ZikZj	 〈vk|ṽ	〉 = (ZτZT )ij = λiδij .

Case 1: λ1 < λ2 + λ3 + λ4.

Because of the ordering of the λj ’s, this case is possible if n ≥ 3. Con-
sider the quantity f(θ) :=

∑4
i=1 λie2iθi : since f(0, π/2, π/2, π/2) < 0 while

f(0, 0, 0, 0) > 0, by continuity f(ϕ) = 0 at some ϕ. Using the vectors |wi 〉
introduced above, let

| zi 〉 =
4∑

j=1

Cijeiϕj |wj 〉, C := [Cij ] =
1
2

⎛

⎜
⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞

⎟
⎠ ,

where e2iϕ4 and | z4 〉 do not appear if λ4 = 0.
Introducing the normalized vectors |ψj 〉 := | zj 〉/‖zj‖, from C†C = 1 it

turns out that



6.2 Bipartite Entanglement 275

ρ =
4∑

i=1

‖zj‖2 |ψj 〉〈ψj | , and |〈ψi | ψ̃i 〉| =
|f(ϕ)|
4‖zi‖2

= 0 ,

for all i = 1, 2, 3, 4. Then, the vectors |ψj 〉 and thus ρ are separable.

Case 2: λ1 > λ2 + λ3 + λ4.

Set | y1 〉 = |w1 〉, | yj 〉 = i|wj 〉, if j ≥ 2. Then ρ =
∑n

j=1 | yj 〉〈 yj |; fur-
ther, consider the diagonal matrix Y = diag(λ1,−λ2,−λ3,−λ4) with entries
Yij := 〈 yi | ỹj 〉.

Because of Example 5.5.4, any other decomposition ρ =
∑n

j=1 | zj 〉〈 zj |
is such that | zj 〉 =

∑n
i=1 V

∗
ji| yi 〉, with V a unitary matrix on C

n. Therefore,
for orthogonal V , the quantity

cρ=
∑n

j=1 | zj 〉〈 zj | :=
n∑

j=1

〈 zj | z̃j 〉 =
n∑

j,i,k=1

VjiVjkYij

= Tr(V Y V T ) = Tr(Y ) = λ1 − λ2 − λ3 − λ4 = C(ρ)

is independent of V . By using this invariance property, one can find a decom-
position ρ =

∑n
j=1 | zj 〉〈 zj | such that

〈 zj | z̃j 〉 = C(ρ) = |〈 zj | z̃j 〉| = ‖zj‖2 C
(

zj

‖zj‖

)

,

for all 1 ≤ j ≤ n. Thus, its average concurrence (6.16) equals C(ρ),

〈C〉 =
n∑

j=1

‖zj‖2 C
(

zj

‖zj |

)

=
n∑

j=1

〈 zj | z̃j 〉 = C(ρ) .

The | zj 〉 are constructed as follows: unless all the Yii are already equal
to C(ρ), there must be one decomposer, y1 say, with Y11 > C(ρ), and an-
other one, y2, with Y22 < C(ρ). Choosing V that exchanges y1 with y2

and leaves the other decomposers fixed, we obtain a decomposition with
the same average concurrence and Y11, Y22 exchanged. By continuity there
must exist an orthogonal matrix V such that 〈z1|z̃1〉 = 〈z2|z̃2〉 = C(ρ), with
|zj〉 =

∑n
i=1 V

∗
ji|yi〉. Iteration of this argument for the remaining decomposers

yields the result.
The proof of the theorem is then concluded by showing that no decom-

position can achieve a smaller average concurrence than C(ρ). Indeed, using
again Example 5.5.4, a generic decomposition has average concurrence

〈C〉ρ=
∑Q

j=1 | zq 〉〈 zq | =
Q∑

q=1

|〈 zq | z̃q 〉| =
Q∑

q=1

∣
∣
∣
∣
∣

n∑

i=1

(Zqj)2Yii

∣
∣
∣
∣
∣
,

where Z : C
n �→ C

Q is an isometry:
∑Q

q=1

∣
∣(Zqi)2

∣
∣ = 1 for all 1 ≤ i ≤ n.

Since one can always adjust the phases of the Zqi in such a way that (Zq1)2 =
|(Zq1)2| ≥ 0, for all 1 ≤ q ≤ Q, then
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〈C〉ρ=
∑Q

q=1 | zq 〉〈 zq | ≥
∣
∣
∣
∣
∣

Q∑

q=1

n∑

i=1

(Zqi)2Yii

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
λ1 −

Q∑

q=1

n∑

i=2

(Zqi)2λj

∣
∣
∣
∣
∣

≥
∣
∣
∣
∣
∣
λ1 −

∣
∣
∣
∣
∣

Q∑

q=1

n∑

i=2

(Zqi)2λi

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≥ C(ρ) .

Indeed, by assumption,
∣
∣
∣
∣
∣

Q∑

q=1

n∑

i=2

(Zqi)2λi

∣
∣
∣
∣
∣
≤

n∑

i=2

Q∑

q=1

∣
∣(Zqi)2

∣
∣λi = λ2 + λ3 + λ4 < λ1 .

�

Two-Mode Gaussian States

Let S be a bipartite continuous variable system consisting of two subsystems
A and B described by annihilation and creation operators a#

i , i = 1, 2, . . . , p,
and b#i , i = 1, 2, . . . , q, p+ q = f , satisfying the CCR (5.92), and arranged,
as in (5.95), into a vector

X̂ = (a, b,a†, b†) , a = (a1, . . . , ap) , b := (b1, . . . , bq) .

We know that a state of S described by a density matrix ρ is specified by the
characteristic function (5.117) which now reads

FV
ρ (z) = Tr

(
ρ eZ∗·X̂

)
= Tr

(
ρ eZ∗

a·Â ⊗ eZ∗
b ·B̂
)
, (6.19)

where A := (a,a†), B := (b, b†), Za,b := (za,b,−z∗
a,b) with za :=

(za1, za2, . . . , zap) and zb := (zb1, zb2, . . . , zbq). Let Ta denote the transpo-
sition with respect to the orthonormal basis of the occupation number states
|ka 〉 = | ka1ka2 . . . kap 〉, kai ∈ N, of the subsystem A (see (5.93)); then, using
the number state basis {|kakb 〉}ka,kb

, one calculates

Tr
(
ρTa eZ∗·X̂

)
=
∑

ka,kb
ja,jb

〈kakb | ρTa |jajb 〉〈 jajb | eZ∗
a·Â ⊗ eZ∗

b ·B̂ |kakb 〉

=
∑

ka,kb
ja,jb

〈 jakb | ρ |kajb 〉〈 ja | eZ∗
a·Â |ka 〉 〈 jb | eZ∗

b ·B̂ |kb 〉

=
∑

ka,kb
ja,jb

〈kakb | ρ |jajb 〉〈ka | eZ∗
a·Â |ja 〉 〈 jb | eZ∗

b ·B̂ |kb 〉

= Tr
(
ρ eZ∗

a·Â
′
⊗ eZ∗

b ·B̂
)
,

where Â
′
:= (a†,a). The last equality easily follows from
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〈ka | eZ∗
a·Â |ja 〉 =

p∏

i=1

〈 kai | ezaiai−z∗
aia

†
i |jai 〉

and

〈 k | eza−z∗a† |j 〉 = (〈 j | e−za+z∗a† |k 〉)∗ = 〈 j | e−z∗a+za† |k 〉 .

Partial transposition thus amounts to changing annihilation operators of a
chosen subsystem into creation operators within the Weyl operator appearing
into the characteristic function of a bipartite state.

In terms of position and momentum operators this means keeping fixed
q̂a = (a + a†)/

√
2, q̂b = (b + b†)/

√
2 and p̂b = (b− b†)/(i

√
2 while changing

p̂a = (a − a†)/(i
√

2) into −p̂a. This observation identifies partial transposi-
tion as a local mirror reflection [278]. Also in the continuous variable case,
separable bipartite states must remain positive, hence well-defined states,
under partial transposition. Then, if the correlation matrix associated with
ρTa fails to satisfy (5.113) the state ρ is surely entangled. In view of the fact
that positivity under partial transposition fails to be equivalent to separabil-
ity already for two 3-level systems, one may suspect this to be the case for
all continuous variable systems as well. Surprisingly it turns out that par-
tial transposition is an exhaustive entanglement witness also for two-mode
Gaussian states [278] (see also [103, 102, 198]).

We shall use the notation of Examples 5.5.3 and start by noting that one
can always consider Gaussian states ρ with characteristic function

G(R) = e−
1
2 R·(Σ̂1 VΣ̂1R)

as in (5.131). Indeed, as local operations that do not alter the entanglement
properties, the displacement operators D(u) = D(u1) ⊗D(u2) can be used
to set the mean values Tr(ρ (q̂, p̂)) = 0. Partial transposition on the first
mode amounts to replacing p̂1 with −p̂1 in V thus I3 with −I3 in (5.138)
(see (5.131)– (5.135)). Thus ρ and ρTa are well-defined states if and only if
both the following inequalities hold

1
4

+ I4 ≥ I1 + I2 + 2 I3 (6.20)

1
4

+ I4 ≥ I1 + I2 − 2 I3 . (6.21)

Also, the operations leading from a generic V to the standard form V0

in (5.137) are local ones, acting independently on the two subsystems A
and B; this means that if a two-mode Gaussian state ρ with correlation ma-
trix V is separable the same is true of the two-mode Gaussian state ρ0 with
correlation matrix V0. In [278] it is showed that

Lemma 6.2.1. All two-mode Gaussian states with I3 ≥ 0 are separable.
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Notice that, when I3 ≥ 0, (6.20) implies (6.21) whence ρTa ≥ 0 in agree-
ment with its being separable. Suppose instead that a two-mode Gaussian
state ρ with I3 < 0 be PPT , then its mirror reflected ρTa has I3 > 0 and is
thus separable by the Lemma, whence by a second mirror reflection also ρ is
separable.

Proof of Lemma 6.2.1 The strategy of the proof is to show that if a two-
mode Gaussian state ρ has a correlation matrix V with I3 ≥ 0, then V ≥ 1l4/2
whence, because of Example 5.5.3.3, ρ is separable. Because of the possibility
of reducing V to the standard form

V0 =

⎛

⎜
⎝

α 0 γ1 0
0 α 0 γ2

γ1 0 β 0
0 γ2 0 β

⎞

⎟
⎠ ,

by local operations, one can equivalently show that I3 = γ1γ2 ≥ 0 implies
V0 ≥ 1l/2. Analogously, since matrices of the form O(x) = diag(x, x−1),
0 �= x ∈ R, implement local scalings of positions and momenta which preserve

the symplectic matrix J =
(

0 1
−1 0

)

, one can focus upon

(
O(y)O(x) 0

0 O(y)O(x−1)

)

V0

(
O(x)O(y) 0

0 O(x−1)O(y)

)

=

=

⎛

⎜
⎝

α(xy)2 0 γ1y
2 0

0 α(xy)−2 0 γ2y
−2

γ1y
2 0 βx−2y2 0

0 γ2y
−2 0 βx2y−2

⎞

⎟
⎠ =: V ′

0 .

Consider the 2 × 2 matrices

X :=
(
αx2 γ1

γ1 βx−2

)

, Y :=
(
αx−2 γ2

γ2 βx2

)

and notice that, according to (5.132)– (5.135), their entries are correlations in-
volving position (q̂1,2), respectively momentum operators (p̂1,2). Their eigen-
values are

x± :=
1
2

(
a x2 + b x−2 ±

√
4 γ1 + (a x2 − b x−2)2

)

x± :=
1
2

(
a x−2 + b x2 ±

√
4 γ2 + (a x−2 − b x2)2

)

with eigenvectors |x± 〉 =
(
x1
±
x2
±

)

, respectively | y± 〉 =
(
y1
±
y2
±

)

such that

x2
±
x1
±

=
c1

x± − ax2
= 2
(
−(ax2 − bx−2)c−1

1 ±
√

4 + (ax2 − bx−2)2c−2
1

)−1

y2
±
y1
±

=
c2

y± − ax−2
= 2
(
−(ax−2 − bx2)c−1

2 ±
√

4 + (ax−2 − bx2)2c−2
2

)−1

.
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Since |x± 〉, respectively | y± 〉 are the rows of the orthogonal rotation matrices
OX and OY which diagonalize X, respectively Y , one can make OX = OY = 0
by choosing the scaling parameter x such that

γ1

ax2 − bx−2
=

γ2

ax−2 − bx2
,

namely x2 =

√
aγ1 + bγ2

aγ2 + bγ1
. Since the diagonalization of the two sub-matrices

X and Y of V ′
0 is obtained by means of a same orthogonal rotation, the

overall transformation is symplectic (that is it preserves Ω =
(

J2 O2

O2 J2

)

).

Therefore, one can study the diagonal matrix

V ′′
0 :=

⎛

⎜
⎝

y2 x+ 0 0 0
0 y−2 y+ 0 0
0 0 y2 x− 0
0 0 0 y−2 y−

⎞

⎟
⎠ ,

which must satisfy V ′′
0 ± i

2Ω ≥ 0 whence x+y+ ≥ 1/4 and x−y− ≥ 1/4. By
choosing the remaining scaling parameter y such that y2 x− = y−2 y− one
gets that all four eigenvalues are ≥ 1/2 and thus that V ′′

0 ≥ 1l4/2. This means
that the two-mode Gaussian state ρ′′0 corresponding to such a correlation
matrix has a P -representation (5.111) with a positive phase-space function
R′′

0 (r′′0) and is thus separable according to Example 5.5.3.3. Observe that this
fact does not allows one to directly infer that also the state ρ′0 with correlation
matrix V ′

0 is separable; indeed, the diagonalization of V ′
0 has been obtained

by non-local rotations involving both sub-systems. However, using (5.141)
in Remark 5.5.3, the positive phase-space distribution R′′

0 (r′′0) is obtained
from the function R′

0(r
′
0) relative to the P -representation of ρ′ by means of

a symplectic matrix S composed of a same rotation O in the q1,2 and p1,2

planes, so that ‖r′′0‖ = ‖S̃T r′0‖. It thus follows that R′′
0 (r′′0) = R′

0(S
−1r′0) ≥ 0,

whence ρ0 and thus ρ are separable.
If I3 = 0, let γ1 > γ2 = 0 and choose x2 =

√
α/β, y2 = 2

√
αβ so that

V ′
0 =

⎛

⎜
⎝

2α2 0 2γ1

√
αβ 0

0 1/2 0 0
2γ1

√
αβ 0 2β2 0

0 0 0 1/2

⎞

⎟
⎠ .

Similarly as before, one checks that V ′
0 ≥ ± i

2
Ω =⇒ V ′

0 ≥ ±1l4
2

. �

Positive Maps and Semigroups

We have seen in Section 6.2 that positive but not completely positive maps
cannot be directly used as mathematical descriptions of fully consistent state-
transformations; however, they play a major role as entanglement witnesses
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(see Proposition 6.2.1). Unfortunately, since there are no general rules that
allows one to identify positive maps, only particular instances of them can
be provided [179, 84, 85, 86, 114, 67]. The one which follows assumes the
existence of just one negative eigenvalue in decompositions as in (5.41) that
is smaller in absolute value than all the other ones [35].

Proposition 6.2.1. Let {Lk}d2

k=1 be a Hilbert-Schmidt ONB in Md(C) and
Λ : Md(C) �→ Md(C) a positive map with a decomposition

Λ[X] =
d2
∑

k=1

�k L
†
k X Lk , X ∈ Md(C) ,

where 0 ≤ �i ≤ �i+1 for i ≥ 2 while �1 = −|�1| < 0, with |�1| ≤ �2. If

|�1| ≤ �2
1 − ‖L1‖2

‖L1‖2
, then Λ is positive.

Proof: The matrices Lk form a Hilbert-Schmidt ONB, thus, using (5.30),
it turns out that, for all normalized ψ, φ ∈ C

d,

d2
∑

k=1

∣
∣
∣〈ψ|L†

k|φ〉
∣
∣
∣
2

=
d∑

k=1

〈ψ |L†
k |φ 〉〈φ |Lk|ψ 〉 = 〈ψ |Tr(|φ 〉〈φ |)|ψ 〉 = 1 .

Then, since ‖Lj‖2 = ‖L†
j‖2 ≤ Tr(L†

jLj) = 1 (see Remark 5.2.4), it follows
that

〈ψ|
(

d2
∑

k=1

�k L
†
k|φ〉〈φ|Lk

)

|ψ〉 ≥ �2

d2
∑

k=2

∣
∣
∣〈ψ|L†

k|φ〉
∣
∣
∣
2

− |�1|
∣
∣
∣〈ψ|L†

1|φ∗〉
∣
∣
∣
2

= �2 − (�2 + |�1|)
∣
∣
∣〈ψ|L†

1|φ〉
∣
∣
∣
2

≥ �2(1 − ‖L1‖2) − |�1|‖L1‖2 .

If |�1| ≤ �2
1 − ‖L1‖2

‖L1‖2
, then it follows that 〈ψ |Λ[|φ 〉〈φ |] 〉ψ ≥ 0 for all nor-

malized ψ, φ ∈ C
d, whence Λ is positive. �

In Remark 5.6.4.6 it has been stressed that, apart from the fact that
the Kossakowski matrix C = [Cij ] cannot be positive, there are no general
prescriptions on C such that the corresponding semigroup surely consist of
positive, but not CP maps; as well as for positive maps, one can however seek
sufficient conditions.

In the following, we shall consider a system consisting of two d-level
systems Sd and construct [35] a semigroup of positive, but not CP maps
Γt = γ1

t ⊗γ2
t on Md(C)⊗Md(C), where γ(1)

t = exp(tL1) is a semigroup of CP
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maps, while γ(2)
t is a semigroup of positive, but not CP maps 6. The construc-

tion will also provide non-decomposable positive maps able to witness bound
entangled states within a particular class of bipartite states with d = 4 [36].
We shall consider generators as in Proposition 5.6.1 without asking for the
positivity of the Kossakowski matrix.

Proposition 6.2.2. Suppose γ(1,2)
t : Md(C) �→ Md(C) to be semigroups with

generators

Li[X] = i[H(i) , X] +
d2−1∑

	=1

c
(i)
	

(
G

(i)
	 X G

(i)
	 − 1

2

{
(G(i)

	 )2 , X
})

, c	i ∈ R ,

for i = 1, 2, where G(i)
	 = (G(i)

	 )† ∈ Md(C), together with G
(i)
d2 = 1/

√
d, form

two Hilbert-Schmidt ONBs in Md(C).
Assume c(1)	 > 0, � = 1, 2, . . . , d2−1, and c(2)k = −|c(2)k | < 0, for one index

k, while c(2)	 > 0 for � �= k. Then, the semigroups of maps Γt = γ
(1)
t ⊗γ

(2)
t on

Md(C) ⊗Md(C) preserves positivity if c(1)	 ≥ |c(2)k |, � = 1, 2, . . . , d2 − 1 and
c
(2)
	 ≥ |c(2)k |, � = 1, 2, . . . , d2 − 1, � �= k.

Proof: According to [177, 178] (see also [64]), in order to show that the
semigroup {Γt}t≥0, with generator L = L(1) ⊗ idd + idd ⊗ L(2), consists of
positive maps, it is sufficient to prove that

I(ψ, φ) := 〈ψ |L[|φ 〉〈φ |] |ψ 〉 ≥ 0

for all orthogonal ψ, φ ∈ C
d ⊗ C

d. Since 〈ψ |φ 〉 = 0, it follows that

I(ψ, φ) =
d2−1∑

	=1

c
(1)
	

∣
∣
∣〈ψ |G(1)

	 ⊗ 1l2 |φ 〉
∣
∣
∣
2

+
d2−1∑

	=1

c
(2)
	

∣
∣
∣〈ψ | 1l1 ⊗G

(2)
	 |φ 〉

∣
∣
∣
2

.

It proves convenient to define the following d2 × d2 matrices Ψ = [ψij ] and
Φ = [φij ] where ψij and φij are the components of the vectors ψ and φ with
respect to a fixed ONB {| i, j 〉}d

i,j=1 in C
d ⊗ C

2. Then, one rewrites

I(ψ, φ) =
d2−1∑

	=1

c
(1)
	

∣
∣
∣Tr(G(1)

	 ΦΨ †)
∣
∣
∣
2

+
d2−1∑

	=1

c
(2)
	

∣
∣
∣Tr(G(2)

	 (Ψ †Φ)T )
∣
∣
∣
2

=
d2−1∑

	=1

(c(1)	 − |c(2)k |)
∣
∣
∣Tr(G(1)

	 ΦΨ †)
∣
∣
∣
2

+
d2−1∑

k �=	=1

c
(2)
	

∣
∣
∣Tr(G(2)

	 (Ψ †Φ)T )
∣
∣
∣
2

+ |c(2)k |

⎛

⎝
d2−1∑

	=1

∣
∣
∣Tr(G(1)

	 ΦΨ †)
∣
∣
∣
2

−
∣
∣
∣Tr(G(2)

	 (Ψ †Φ)T )
∣
∣
∣
2

⎞

⎠ .

6If the two semigroups γ
(1,2)
t were the same, then, according to Proposition 5.6.1

and the successive remark, Γt positive would mean Γt CP.
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As 〈ψ |φ 〉 = 0, the matrices ΦΨ † and Ψ †Φ are traceless; using the ONBs
consisting of the matrices G(i)

	 = (G(i)
	 )†, � = 1, 2, . . . , d2 − 1, one thus gets

d2−1∑

	=1

(Tr(G(1)
	 ΦΨ †))2 = Tr

((d2−1∑

	=1

Tr(G(1)
	 ΦΨ †)G(1)

	

)
ΦΨ †

)

= Tr(ΦΨ †)2 = Tr(Ψ †Φ)2 = Tr((Ψ †Φ)T )2

=
d2−1∑

	=1

(Tr(G(2)
	 (Ψ †Φ)T )2 .

This yields

∣
∣
∣Tr(G(2)

k (Ψ †Φ)T )2
∣
∣
∣ ≤

d2−1∑

	=1

∣
∣
∣Tr(G(1)

	 (ΦΨ †)
∣
∣
∣
2

+
d2−1∑

k �=	=1

∣
∣
∣Tr(G(2)

	 (Ψ †Φ)T )
∣
∣
∣
2

,

whence one concludes

I(ψ, φ) ≥
d2−1∑

	=1

(c(1)	 − |c(2)k |)
∣
∣
∣Tr(G(1)

	 ΦΨ †)
∣
∣
∣
2

+
d2−1∑

	=1

(c(2)	 − |c(2)k |)
∣
∣
∣Tr(G(2)

	 (Ψ †Φ)T )
∣
∣
∣
2

≥ 0 .

�

Example 6.2.3. [35] Let d = 2 and σα, α = 0, 1, 2, 3, be the Pauli matrices
plus the 2×2 identity matrix σ0. Let Sa : M2(C) �→ M2(C) be the completely
positive map X �→ Sα[X] = σαX σα, and set

X �→ 1
2

3∑

α=0

Sα[X] , X �→ 1
2

3∑

α=0

εαSα[X] ,

where εα = 1 when α �= 2, whereas ε2 = −1. The first map amounts to
the trace map Tr2 (see (5.30)), while the second one corresponds to the
transposition T2 with respect to the basis of eigenvectors of σ3: indeed, it
changes σ2 into −σ2 and leaves all other Pauli matrices unchanged. According
to Proposition 6.2.1, it is positive but not CP , for Λαβ = diag(1, 1,−1, 1)
and ‖σα‖2 = 1.

Consider generators L1,2 as in Proposition 6.2.2 with d = 2, Fi = σi/
√

2
and choose as Kossakowski matrices

C(1) =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , C(2) =

⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠ .
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Then, the corresponding master equations read

∂tγ
(1)
t [ρ] = L1[ρ] :=

1
2

( 3∑

i=1

Si[ρ] − 3 ρ
)

∂tγ
(2)
t [ρ] = L2[ρ] :=

1
2

( 3∑

i=1

εi Si[ρ] − ρ
)
.

The second one has been considered in Example 5.6.5 and generates a positive
semigroup such that

γ
(2)
t [ρ] =

1
2

(
1l + ρ1σ1 + e−2tρ2σ2 + ρ3σ3

)
= ρ+

e−2t − 1
2

ρ2σ2 .

Since L1[σi] = −2σi while L1[σ0] = 0, the solutions of the first master equa-
tion are the following CPU maps,

γ
(1)
t [ρ] =

1l + e−2tρ · σ
2

=
1 − e−2t

2
+ e−2t ρ .

Let idn, Trn and Tn denote identity, trace and transposition operations on
(C2)⊗n; since 1 = Tr(ρ) and ρ− T[ρ] = ρ2σ2, one rewrites

γ
(1)
t = e−2tid2 +

1 − e−2t

2
Tr2 , γ

(2)
t =

1 + e−2t

2
id2 +

1 − e−2t

2
T2 .

As T4 = T2 ⊗ T2 and Tr2 ◦ T2 = Tr2, the tensor product maps Γt = γ1
t ⊗ γ2

t

can be recast in the form

Γt = e−2t 1 + e−2t

2
id4 +

1 − e−4t

4
Tr2 ⊗ id2

︸ ︷︷ ︸
Γ 1

t

+
1 − e−2t

2

(
e−2tT2 ⊗ id2 +

1 − e−2t

2
Tr2 ⊗ id2

)

︸ ︷︷ ︸
Γ 2

t

◦T4 . (6.22)

The semigroup {Γt}t≥0 consists of positive maps because the chosen Kos-
sakowski matrices satisfy the sufficient condition of Proposition 6.2.2; more-
over, the maps Γt are of the form Γt = Γ 1

t + Γ 2
t ◦ T4. It turns out that Γ 1

t

is completely positive for all t ≥ 0 for it is the sum of tensor products of
completely positive maps. If Γ 2

t were also CP , each map Γt would then be
decomposable; in order to check whether this is true or not, consider the Choi
matrix id4 ⊗ Λt[P 4

+], where

Λt := e−2tT2 ⊗ id2 +
1 − e−2t

2
Tr2 ⊗ id2 .
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Fixing a basis {| 0 〉, | 1 〉} ∈ C
2 and writing |Ψ̂4

+〉 = 1
2

∑1
a,b=0 | ab 〉⊗ | ab 〉, one

explicitly computes

id4 ⊗ Λt[P 4
+] =

⎛

⎜
⎜
⎜
⎝

(1 + e−2t)P̂ 2
+ 0 0 0

0 (1 − e−2t)P̂ 2
+ 2e−2tP̂ 2

+ 0
0 2e−2tP̂ 2

+ (1 − e−2t)P̂ 2
+ 0

0 0 0 (1 + e−2t)P̂ 2
+

⎞

⎟
⎟
⎟
⎠

.

This 16 × 16 matrix has eigenvalue 0 with eigenvectors

(| Ψ̂j 〉, 0, 0, 0) , (0, | Ψ̂j 〉, 0, 0) , (0, 0, | Ψ̂j 〉, 0) , (0, 0, 0, | Ψ̂j 〉) , j = 2, 3, 4 ,

where | Ψ̂j 〉 are the Bell states orthogonal to |Ψ̂00〉, while

(|Ψ̂00〉, 0, 0, 0) , (0, 0, 0, |Ψ̂00〉) , (0, |Ψ̂00〉, |Ψ̂00〉, 0)

are eigenvectors relative to the positive eigenvalue (1+e−2t)/
√

2. More inter-

esting is the last eigenvalue
1 − 3e−2t

√
2

with eigenvector (0, |Ψ̂00〉,−|Ψ̂00〉, 0): it

is positive only if t ≥ t∗ = (log 3)/2. It follows that Γt is surely decomposable
for t = 0 (Γ0 = id16) and for t ≥ t∗.

In order to ascertain whether the positive maps Γt constructed in the
previous example are not decomposable for 0 < t < t∗, we need some further
insight. Indeed, the decomposition (6.22) need not be unique and there might
be other decompositions revealing that Γt is decomposable for all t ≥ 0. In
order to proceed, we use the following result.

Lemma 6.2.2. [35] Let Λ : Md1(C) �→ Md2(C) be a positive map and ρ a
PPT state of a bipartite system S1 + S2. If Tr

(
idd1 ⊗ Λ[P d1

+ ] ρ
)

< 0, the
state ρ is bound-entangled and Λ not decomposable.

Proof: If Λ is decomposable, so is its dual ΛT : Md2(C) �→ Md1(C); indeed,

Λ = Λ1 + Λ2 ◦ Td1 =⇒ ΛT = ΛT
1 + Td1 ◦ ΛT

2 = ΛT
1 + Λ̃2 ◦ Td2 ,

where ΛT
1 is CP for it is the dual of a CP map, while Λ̃2 := Td1 ◦ΛT

2 ◦Td2 is
also CP as the corresponding Choi matrix is positive. In fact,

idd2 ⊗ Λ̃[Ẽd2 ] =
d2∑

i,j=1

Ed2
ij ⊗ (Td1 ◦ ΛT

2 )[Ed2
ji ] = Td1d2 ◦

d2∑

i,j=1

Ed2
ji ⊗ ΛT

2 [Ed2
ji ]

= Td1d2 ◦ (idd2 ⊗ ΛT )[Ẽd2 ] ≥ 0 ,
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where Td1d2 = Td2◦Td1 is the transposition on Md1d2(C) = Md1(C)⊗Md2(C).
It preserves the positivity of the Choi matrix idd2 ⊗ΛT [Ẽd2 ] associated with
the CP map ΛT

2 . Since ρ is assumed to be PPT , if Λ is decomposable or ρ
separable, then idd2 ⊗ ΛT [ρ] ≥ 0. �

To make good use of the above result, it is convenient to introduce a par-
ticular class [34, 33] of 16-dimensional density matrices as states of a bipartite
system consisting of two pairs of qubits; their structure is simple, yet flexible
enough to represent an interesting setting where to test the decomposability
of a wider range of positive maps Λ : M4(C) �→ M4(C).

Example 6.2.4. Let S = S1 + S2 be a bipartite system where S1,2 are each
a two qubit system; consider the sub-class of 16 × 16 density matrices con-
structed by associating to the pairs of the set L16 := {(α, β)}3

α,β=0 the vectors
|Ψαβ〉 :=

(
1l4 ⊗ σαβ

)
|Ψ̂4

+〉, where |Ψ̂4
+〉 is the Bell state |Ψ00 〉 in (5.164) and

σαβ := σα ⊗ σβ are tensor products of Pauli matrices with σ0 = 1l2. The
vectors |Ψαβ 〉 form an ONB in C

16,

〈Ψαβ |Ψγδ 〉 = 〈Ψ̂4
+|1l4 ⊗ σαβσγδ|Ψ̂4

+〉 =
1
4
Tr(σασγ)Tr(σβσδ) = δαγδβδ .

Given the corresponding orthogonal projections

Pαβ := |Ψαβ〉〈Ψαβ | =
(
id4 ⊗ σαβ

)
P̂ 4

+

(
id4 ⊗ σαβ

)
, Pαβ Pγε = δαγ δβε Pαβ ,

consider the states consisting of all equidistributed convex combinations

ρI :=
1
NI

∑

(α,β)∈I

Pαβ ,

where I is a subset of L16 and NI its cardinality.
The behavior of such states under partial transposition can be deduced

by means of the fact that the flip operator V = d idd ⊗Td[P̂ d
+] (5.32) is such

that V |Ψ̂d
+〉 = |Ψ̂d

+〉 and V (A⊗B)V = B ⊗A for all A,B ∈ Md(C); while

A⊗B|Ψ̂d
+〉 =

1√
d

d∑

i=1

A| i 〉 ⊗B| i 〉 =
1√
d

d∑

i,j=1

〈 j |A |i 〉 | j 〉 ⊗B| i 〉

=
1√
d

d∑

j=1

| j 〉 ⊗
d∑

i=1

B| i 〉〈 i |AT |j 〉 = 1ld ⊗BAT |Ψ̂d
+〉 .

Then, setting P̃αβ := id4⊗T4[Pαβ ] = 1
41l4⊗σαβ V 1l4⊗σαβ , it turns out that

P̃αβ |Ψγδ 〉 =
1
4
1l4 ⊗ σαβ V 1l4 ⊗ σαβσγδV |Ψ̂4

+〉 =
1
4
σαβσγδ ⊗ σαβ |Ψ̂4

+〉

=
1
4
1l4 ⊗ σαβ(σαβσγδ)T |Ψ̂4

+〉 = εαεγεβεδ 1l4 ⊗ σαβσγδσαβ |Ψ̂4
+〉

=
1
4
ηαγηβδ|Ψγδ 〉 ,
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where it has been used that σT
α = εασα with εα = 1 if α �= 2, = −1 otherwise,

that the algebra of the Pauli matrices implies

σασγσα = η̃αγ σγ , η̃ := [η̃αγ ] =

⎛

⎜
⎜
⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞

⎟
⎟
⎠

and it has been set

ηαγ := εαεγ η̃αγ , η := [ηαβ ] =

⎛

⎜
⎜
⎝

1 1 −1 1
1 1 1 −1

−1 1 1 1
1 −1 1 1

⎞

⎟
⎟
⎠ .

The vectors |Ψγδ 〉 are thus eigenvectors of P̃αβ with eigenvalues ηαγηβδ and

ρ̃I := id4 ⊗ T4[ρI ] =
∑

(γ,δ)∈L16

( 1
4NI

∑

(α,β)∈I

ηαγηβδ

)
Pγδ

.

Since the matrix ηαγ is symmetric, the eigenvalues of ρ̃I can be recast as

1
4NI

∑

(α,β)∈I

ηαγηβδ = (η XI η)γδ

where XI is a sort of characteristic matrix of the sublattice I with entries
XI

μν =
1

4NI
if (μ, ν) ∈ I, = 0 otherwise. Concretely, consider

ρ =
1
6

(
P02 + P11 + P23 + P31 + P32 + P33

)
;

then, ρ̃ =
1
6
(P01 + P02 + P20 + P22 + P32 + P33) for

XI =
1
6

⎛

⎜
⎝

0 0 1 0
0 1 0 0
0 0 0 1
0 1 1 1

⎞

⎟
⎠ , η XI η =

1
6

⎛

⎜
⎝

0 1 1 0
0 0 0 0
1 0 1 0
0 0 1 1

⎞

⎟
⎠ .

Thus, ρ̃ is positive, hence ρ is PPT.
We now show that Tr(id4 ⊗ Γt[P00]ρ) < 0 for 0 < t < (log 3)/2, where Γt

is the positive semigroup of Example 6.2.3; by Lemma 6.2.2 it thus follows
that ρ is PPT entangled and Γt indecomposable in that time-interval.

Since Tr2( · ) =
1
2

3∑

μ=0

Sμ[ · ] and T2[ · ] =
1
2

3∑

μ=0

εμ Sμ[ · ], the two semi-

groups in Example 6.2.3 can be recast in the form
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γ
(1)
t =

1 + 3λt

4
S0 +

1 − λt

4

3∑

i=1

Si , γ
(2)
t =

3 + λt

4
S0 +

1 − λt

4

3∑

i=1

εiSi ,

where λt := e−2t, so that, with Sαβ [ · ] := σαβ · σαβ ,

Γt =
(1 + 3λt)(3 + λt)

16
S00 +

(1 − 2λt)(3 + λt)
16

3∑

i=1

Si0

+
(1 + 3λt)(1 − 2λt)

16

3∑

i=1

εiS0i +
(1 − 2λt)2

16

3∑

i,j=1

εjSij

id4 ⊗ Γt[P00] =
(1 + 3λt)(3 + λt)

16
P00 +

(1 − 2λt)(3 + λt)
16

3∑

i=1

Pi0

+
(1 + 3λt)(1 − 2λt)

16

3∑

i=1

εiP0i +
(1 − 2λt)2

16

3∑

i,j=1

εjPij .

It then turns out that

0 < t < (log 3)/2 =⇒ Tr
(
id4 ⊗ Γt[P00] ρ

)
=

(1 − λt)(1 − 3λt)
48

< 0 .

6.3 Relative Entropy

A notion directly related to the von Neumann entropy with several useful
applications in quantum information and of great importance for the topics
discussed later in the book, is the quantum relative entropy. It is the quantum
counterpart of the Kullbach-Leibler distance (see (2.94)) and has already been
introduced in the proof of some properties of the von Neumann entropy (see
Proposition (5.5.6)).

Definition 6.3.1 (Relative Entropy). Let S be a quantum system de-
scribed by a d-dimensional Hilbert space H and ρ, σ ∈ B

+
1 (H) two density

matrices acting on H. The relative entropy of ρ with respect to σ is

S(ρ ; σ) :=

{
Tr
(
ρ
(
log ρ− log σ

))
if Ker(σ) ⊂ Ker(ρ)

+∞ otherwise ,
(6.23)

Ker(σ) and Ker(ρ) being the subspaces where σ and ρ vanish.

Example 6.3.1 (Relative modular operator). [225, 237, 261, 262]
Given the Hilbert space H = C

d, equip the algebra Md(C) with the
Hilbert-Schmidt scalar product (5.26) and denote it as << · , · >>. Then,
consider the following linear operators on Md(C):
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LX [Y ] = X Y , RX [Y ] = Y X .

They commute with each other, LXRZ [Y ] = X Y Z = RZLX [Y ]; moreover,
if X = X† they are self-adjoint. Indeed, the ciclycity of the trace operation
yields

<< Y , LX [Z] >> = Tr
(
Y †X Z

)
= Tr

(
(XY †)† Z

)
=<< LX [Y ], Z >>

<< Y , RX [Z] >> = Tr
(
Y † Z X

)
= Tr

(
(Y †X)† Z

)
=<< RX [Y ], Z >> .

Further, if X ≥ 0 the operators LX and RX turn out to be positive; in fact,

<< Z , LX [Z] >> = Tr
(
Z†X Z

)
≥ 0

<< Z , RX [Z] >> = Tr
(
Z† Z X

)
= Tr

(
Z X Z†

)
≥ 0 .

Let Pi and Pj be orthogonal projections; then, LPi
LPj

= δijLPi
and

RPi
RPj

= δijRPi
. As a consequence, from the spectral representation X =

X† =
∑d

i=1 xi |xi 〉〈xi |, one derives the spectral representations

LX =
d∑

i=1

xi L| xi 〉〈 xi | , RX =
d∑

i=1

xi R| xi 〉〈 xi | ,

with orthogonal projections {L| xi 〉〈 xi |}d
i=1, respectively {R| xi 〉〈 xi |}d

i=1. Sup-
pose ρ ∈ B

+
1 (H) is strictly positive, then Rρ−1 = R−1

ρ is well defined as well
as the relative modular operator of ρ and σ ∈ B

+
1 (H),

Δρ,σ := Lσ R
−1
ρ = R−1

ρ Lσ =
d∑

i,j=1

sir
−1
j L| si 〉〈 si |R| rj 〉〈 rj | , (6.24)

where the spectralizations ρ =
∑d

j=1 rj | rj 〉〈 rj | and σ =
∑d

i=1 si| si 〉〈 si |
have been used. If both ρ and σ are strictly positive, the same is true of their
relative modular operator: for all X ∈ |mdd,

<< X , Δρ,σX >> = Tr
( d∑

i,j=1

sir
−1
j X†| si 〉〈 si |X| rj 〉〈 rj |

)

=
d∑

i,j=1

sir
−1
j

∣
∣〈 rj |X† |si 〉

∣
∣2 ≥ 0

Also,

logΔρ,σ = logLσ + logR−1
ρ =

d∑

i=1

(
log si L| si 〉〈 si | − log ri R| ri 〉〈 ri |

)
.

This yields the following expression for the relative entropy

<<
√
ρ , −(logΔρ,σ)[

√
ρ] >>= S (ρ , σ) .



6.3 Relative Entropy 289

Of the following properties of the relative entropy, joint convexity and
monotonicity under CPU maps have already been used in the proof of
the properties (5.162) and (5.163) of the von Neumann entropy in Propo-
sition 5.5.6.

Proposition 6.3.1. The relative entropy of ρ, σ ∈ B1(H) is

1. positive: S(ρ ; σ) ≥ 0, S(ρ ; σ) = 0 iff ρ = σ;
2. jointly convex: given weights λi ≥ 0, i ∈ I,

∑
i∈I λi = 1, and density

matrices ρi, σi ∈ B1(H), i ∈ I,

S

(
∑

i∈I

λiρi ,
∑

i∈I

λiσi

)

≤
∑

i∈I

λi S (ρi , σi) ; (6.25)

3. invariant under unitary maps: let ρ, σ ∈ B
+
1 (H) and U : H �→ H a unitary

map, then
S
(
UρU† , UσU†) = S (ρ , σ) . (6.26)

4. monotonically decreasing under trace-preserving CP maps: let ρ, σ ∈ B
+
1 (H)

and F : B
+
1 (H) �→ B

+
1 (H) be a CP map such that Tr(F[ρ]) = Tr(ρ), then

S (F[ρ] , F[σ]) ≤ S (ρ , σ) . (6.27)

Writing F[ρ] = ρ ◦ E, where E : B(H) �→ B(H) is the dual CPU map of F,
monotonicity reads

S (ρ ◦ E , σ ◦ E) ≤ S (ρ , σ) . (6.28)

Also, joint convexity is equivalently expressed by the inequality

S

(
∑

i∈I

ρ̃i ,
∑

i∈I

σ̃i

)

≤
∑

i∈I

λi S (ρ̃i , σ̃i) , (6.29)

where ρ̃i := λiρi and σ̃i := λiσi.

Proof:
• Positivity: by means of the eigenvalues rj , sk (repeated according to
their multiplicities) and of the eigenbases | rj 〉, | sk 〉 of ρ, respectively σ, one
computes

S (ρ , σ) =
∑

i

ri(log ri − 〈 rj | log σ |rj 〉)

=
∑

i

ri

(
log ri −

∑

k

|〈 rj | sk 〉)|2 log sk

)

≥
∑

i

ri

(
log ri − log(

∑

k

sk |〈 ri | sk 〉|2)
)
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=
∑

i

ri(log ri − log(〈 ri |σ |ri 〉)

≥
∑

i

(ri − 〈 ri |σ |ri 〉) = 0 .

The first inequality follows from
∑

k |〈 ri | sk 〉|2 = 1 and the concavity of
the logarithm, while the second one is a consequence of the concavity of
η(x) = −x log x, 0 ≤ x ≤ 1 (see (2.85) in Section 2.4.3), which also implies
that equality only holds when the eigenvalues and thus the density matrices
coincide.
• Joint convexity: we shall establish (6.29). Notice that, for all w > 0,

− logw =
∫ ∞

0

dt
( 1
w + t

− 1
1 + t

)

= (1 − w)
∫ ∞

0

dt
( 1

(w + t)(1 + t)
− 1

(1 + t)2
+

1
(1 + t)2

)

= (1 − w) +
∫ ∞

0

dt
(1 + t)2

(w − 1)2

w + t
.

Then, use the spectral representation of the relative modular operator (6.24)
to insert Δρ,σ in the place of w, act with − logΔρ,σ on ρ and take the trace

of the resulting matrix. Since Tr
(
(1l −Δρ,σ)[ρ]

)
= Tr(ρ− σ) = 0, it follows

S (ρ , σ) = −Tr
(
logΔρ,σ[ρ]

)
=
∫ ∞

0

dt
(1 + t)2

Tr
(
(1l−Δρ,σ)

1
Δρ,σ + t1l

[ρ−σ]
)
.

Further, setting Y = 1l and X = (Δρ,σ + t1l)−1[ρ− σ] in

<< Y , (1l −Δρ,σ)[X] >> = << Y , (Rρ − Lσ)R−1
ρ [X] >>

= << (Rρ − Lσ)[Y ] , R−1
ρ [X] >> ,

yields

S (ρ , σ) =
∫ ∞

0

dt
(1 + t)2

Tr
(
(ρ− σ)

1
Rρ + tLσ

[ρ− σ]
)
. (6.30)

Let now ρ̃j and σ̃j be as in (6.29) and

Xj := (Lσ̃j
+ tRρ̃j

)−1/2[ρ̃j − σ̃j ] − (Lσ̃j
+ tRρ̃j

)1/2[B] ,

with B = B† ∈ Md(C) to be defined later. Then, since the various opera-
tors are self-adjoint with respect to the Hilbert-Schmidt scalar product, by
observing that

∑
j(Lσ̃j

+ tRρ̃j
) = Lσ + tRρ, one obtains

0 ≤
∑

j

<< Xj , Xj >>=
∑

j

<< ρ̃j − σ̃j , (Lσ̃j
+ tRρ̃j

)−1[ρ̃j ] >>

− << ρ− σ , B >> − << B , ρ− σ >> + << B , (Lσ + tRρ)[B] >> .
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By choosing B = (Lσ + tRρ)−1[ρ], one gets the inequality
∑

j

<< ρ̃j − σ̃j , (Lσ̃j
+ tRρ̃j

)−1[ρ̃j − σ̃j ] >>=

=
∑

j

Tr
(
(ρ̃j − σ̃j)(Lσ̃j

+ tRρ̃j
)−1[ρ̃j − σ̃j ]

)

≥ Tr
(
(ρ− σ)(Lσ̃j

+ tRρ̃j
)−1[ρ̃j ]

)
,

which, once inserted in (6.30), yields the result.
• Invariance: it follows from the fact that log(UρU†) = U(log ρ)U† and
that the same holds for σ.
• Monotonicity: it is implied by joint convexity. We shall first show that

S (ρ1 , σ1) ≤ S (ρ12 , σ12) ,

where ρ12, σ12 ∈ B
+
1 (H12) with marginal states ρ1,2 = Tr2,1ρ12, respectively

σ1,2 = Tr2,1σ12. Let di = dim(Hi), fix an ONB {| j 〉}d2
j=1 in H2 and define

the unitary matrices U	 ∈ Md2(C), � = 1, 2, . . . , d2, with entries (U	)jk =

δjk exp (
2πi
d2

j�). Then, for all X ∈ Md2(C),

Φ[X] :=
1
d2

d2∑

	=1

U	 X U†
	 =

1
d2

d2∑

	,j,k=1

e2πi	(j−k)〈 j |X |k 〉 | j 〉〈 k |

=
d2∑

j=1

| j 〉〈 j | 〈 j |X |j 〉 ;

whence ρ1 = id1 ⊗ Φ[ρ12] and similarly for σ1. Furthermore, using the basis
{| j 〉}d2

j=1 to write ρ12 =
∑d2

j,k=1 ρ
(1)
jk ⊗ | j 〉〈 k |, then

S (ρ1 , σ1) = S

⎛

⎝
d2∑

j=1

ρ
(1)
jj ,

d2∑

j=1

σ
(1)
jj

⎞

⎠ ≤
d2∑

j=1

S
(
ρ
(1)
jj , σ

(1)
jj

)

= S

⎛

⎝
d2∑

j=1

ρ
(1)
jj ⊗ | j 〉〈 j | ,

d2∑

j=1

σ
(1)
jj ⊗ | j 〉〈 j |

⎞

⎠

= S (id1 ⊗ Φ[ρ12] , id1 ⊗ Φ[σ12])

≤ 1
d2

d2∑

	=1

S
(
(1l1 ⊗ Z	)ρ12(1l1 ⊗ Z	)† , (1l1 ⊗ Z	)σ12(1l1 ⊗ Z	)†

)

= S (ρ12 , σ12) ,

where the second equality follows from the orthogonality of the matrices
contributing to the sums, the last equality follows since the matrices 1l1 ⊗Z	
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are unitary and because of the invariance of the relative entropy, while the
two inequalities are a consequence of its joint convexity.

Monotonicity under trace preserving CP maps thus results from Re-
mark 5.6.3, by writing E[ρ] = TrE

(
U (ρ⊗ ρE)U†

)
:

S (E[ρ] , E[σ]) ≤ S
(
U (ρ⊗ ρE)U† , U (σ ⊗ ρE)U†)

= S (ρ⊗ ρE , σ ⊗ ρE) = S (ρ , σ) .

�

Example 6.3.2. As an application of joint convexity, let ρ ∈ B1(H) be a
density matrix describing a statistical mixture {λij , ρij}: ρ =

∑
ij λijρij ,∑

ij λij = 1. Setting ρ̃ij := λijρij , ρ̃1
i :=

∑
j ρ̃ij and ρ̃2

j :=
∑

i ρ̃ij , one derives

∑

j

λijS (ρij , ρ) =
∑

j

Trρ̃ij log ρ̃ij − Trρ̃1
i log ρ−

∑

j

λij log λij

=
∑

j

S
(
ρ̃ij , ρ̃

1
i

)
+ S

(
ρ̃1

i , ρ
)
−
∑

j

λij log λij ,

whence (6.29) applied with reference to the sum over the index i and the fact
that

∑
i ρ̃

1
i = ρ yield

∑

ij

λijS (ρij , ρ) ≥
∑

j

S
(
ρ̃2

j , ρ
)

+
∑

i

S
(
ρ̃1

i , ρ
)
−
∑

ij

λij log λij

=
∑

j

S
(
ρ2

j , ρ
)

+
∑

i

S
(
ρ1

i , ρ
)

+
∑

i

λ1
i log λ1

i +
∑

j

λ2
j log λ2

j −
∑

ij

λij log λij ,

where λ1
i :=

∑

j

λij , λ
2
j :=

∑

i

λij , ρ
1
i :=

ρ̃1
i

λ1
i

, ρ2
j :=

ρ̃2
j

λ2
j

.

The physical interpretation of the relative entropy comes from thermody-
namics: there, it amounts to free energy. As such, it can only decrease under
dissipative time-evolutions [286, 189]. Let σ in (6.23) be the Gibbs state at in-
verse temperature β = T−1 with respect to a Hamiltonian operator H ∈ B(H)
(see (5.177)):

σ = ρβ := Zβ exp(−βH) , Z−1
β = Tr(exp(−βH)) .

The free energy of a state ρ ∈ B1(H) is

F (ρ) := T S(ρ) − 〈H〉ρ , 〈H〉ρ := Tr(ρH) .
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From F (ρβ) = −T logZβ it follows that

S(ρ ; ρβ) = −S(ρ) − logZβ + β〈H〉ρ = β
(
F (ρβ) − F (ρ)

)
.

Let S undergo an irreversible evolution described by a quantum dynamical
semigroup γt : S(S) �→ S(S), t ≥ 0, with ρβ an equilibrium state, namely
γt[ρβ ] = ρβ . Then, as seen in Chapter 3, the dynamical maps γt are com-
pletely positive and fulfill γt = γt−s ◦ γs, t ≥ s. Thus, monotonicity (6.27)
yields

S
(
γt[ρ] ; γt[ρβ ]

)
= S
(
γt[ρ] ; ρβ

)
= β
(
F (ρβ) − F (γt[ρ])

)

= S
(
γt−s ◦ γs[ρ] ; γt−s[ρβ ]

)

≤ S
(
γs[ρ] ; ρβ

)
= β
(
F (ρβ) − F (γs[ρ])

)
. (6.31)

While the relative entropy behaves monotonically, this is not true of the
von Neumann entropy (see Example 5.6.3). For instance, if the quantum
dynamical semigroup mentioned before represents the reduced dynamics of
a quantum open system S interacting with a reservoir, the free energy of an
initial state may decrease in time, showing tendency to equilibrium, while
but its von Neumann entropy may in some cases decrease (for more details
see [41]). The following example provide a class of dynamical operations on
the states of S which always increase the entropy of its states (or keep it
constant).

Examples 6.3.3.

1. Bistochastic maps [302, 303] Completely positive unital maps E :
B(H) �→ B(H) are called bistochastic if their dual maps F : S(S) �→ S(S)

preserve the tracial state: F

[
1l
d

]

=
1l
d
.

The most natural bistochastic maps are those associated with projec-
tive POVMs , FP [ρ] =

∑
i PiρPi, PiPj = δijPj ,

∑
i Pi = 1l (see Sec-

tion 5.6.1). These maps always increase the von Neumann entropy; in-
deed, from (6.27)

S

(

F[ρ] , F

[
1l
d

])

= log d − S (F[ρ]) ≤ S

(

ρ ,
1l
d

)

= log d − S (ρ) .

2. Let P be a projective POVM as in the previous point. The linear span
of the orthogonal projectors Pi, i ∈ I (not necessarily one-dimensional,
so that card(I) ≤ d) is an Abelian subalgebra AP ⊂ B(H) with identity,
whose typical elements have the form a =

∑
i∈I ai Pi. The space of states

μ over AP consists of normalized, positive linear expectations
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AP � a �→ μ(a) =
∑

i∈I

ai μ(Pi) .

They thus correspond to all possible discrete probability distributions
with card(I) elements. Given a state ρ ∈ S(S) its restriction to AP ,
denoted by ρ |̀AP , corresponds to the discrete probability distribution
μρ := {Tr(ρPi)}i∈I . It thus follows that ρ |̀AP = FP [ρ] =

∑
i∈I PiρPi,

indeed

Tr
(
FP [ρ] a

)
=
∑

i,j∈I

ajTr(PiρPi Pj) =
∑

i∈I

ai Tr(ρPi) .

From the previous point, it then follows that

S(ρ) = min
{
S(ρ |̀A) : A ⊂ B(H) Abelian with identity

}
,

the minimum being achieved at any Abelian subalgebra A generated
by the eigenprojectors Pi = | ri 〉〈 ri | of ρ, for in this case μρ(Pi) =
Tr(ρ | ri 〉〈 ri |) = ri.

The following result emphasizes the connections between von Neumann
entropy and relative entropy [213]; the idea is to exploit the (infinitely many)
convex decompositions of mixed states.

Proposition 6.3.2. Let S be a quantum system described by a Hilbert space
H and let ρ =

∑
i∈I λiρi, λi ≥ 0,

∑
i∈I λi = 1, be any convex decomposition

of a mixed state ρ ∈ S(S) in terms of other density matrices ρi ∈ S(S).
Then,

S(ρ) = min
{∑

i∈I

λi S(ρi ; ρ) : ρ =
∑

i∈I

λiρi

}
.

Proof: From (6.23),
∑

i∈I

λi S(ρi ; ρ) = S(ρ) −
∑

i∈I

λiS(ρi) ≤ S(ρ), while

the spectral eigenprojectors of ρ give the upper bound. �

6.3.1 Holevo’s Bound and the Entropy of a Subalgebra

As seen in Example 6.1.2, by encoding classical information into non-
orthogonal quantum states one may always detect the presence of eaves-
droppers during transmission. However, the non-orthogonality of the quan-
tum code-words does not allow for perfect retrieval of the encoded classi-
cal information, for no measurement can perfectly distinguish between non-
orthogonal states.

In fact, let |ψ1 〉 and |ψ2 〉 = α|ψ1 〉 + β|ψ⊥
1 〉, α �= 0 be two vector states

in some Hilbert space H. Suppose there exists a set of orthogonal projections
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Pj on H, j ∈ J = J1∪J2, such that if j ∈ J1, respectively j ∈ J2, is measured
then the state is ψ1, respectively ψ2, with probability 1. Then, the orthogonal
projections Q1,2 :=

∑
j∈J1,2

Pj , would be such that 〈ψ1,2 |Q1,2 |ψ1,2 〉 = 1,
whereas 〈ψ1,2 |Q2,1 |ψ1,2 〉 = 0. Therefore,

1 = 〈ψ2 |Q2 |ψ2 〉 = |β|2 〈ψ⊥
1 |Q2 |ψ⊥

1 〉 ≤ |β|2 ≤ 1 =⇒ |β| = 1

namely ψ1 ⊥ ψ2.
More in general, the symbols i ∈ IA = {1, 2, . . . , a} of a classical alphabet,

emitted with probabilities p1, p2, . . . , pa, might be encoded by means of mixed
states ρi ∈ B1(H). Or, from a more realistic viewpoint, given an encoding of
the classical symbols into pure states ψi ∈ H, a noisy transmission channel
might transform them into mixed states ρi := F[|ψi 〉〈ψi |], where F is the
dual of a CPU map E : B(H) → B(H). The receiver must then reconstruct the
encoded classical message with the least possible error; practically speaking,
he must seek a POVM B = {Bi}i∈IB

⊂ B(H), IB = {1, 2, . . . , b}, such that,
when measured on the statistical mixture ρ =

∑
a∈IA

paρa, it maximizes the
accessible information.

In such a context, three random variables appear: A, B, and A∨B, with
probability distributions πA, πB and πA∨B:

1. the outcomes of A correspond to the indices i ∈ IA of the incoming states
and πA = {pa}a∈IA

;
2. the outcomes of B correspond to the indices i ∈ IB of the POVM and

πB = {Tr(ρBi}i∈IB
;

3. the outcomes of A∨B correspond to the joint events consisting of an in-
coming state ρa and a measured index i: πA∨B =

{
paTr(ρa Bi)

}

a∈IA,i∈IB

.

According to Section 2.4.5, the mutual information I(A,B) measures how
much knowledge one gains about A, that is about which state ρi has reached
Bob, from measuring on B the POVM B = {Bi}i∈IB

:

I(A,B) = H(A) +H(B) −H(A ∨B)

= −
a∑

a∈IA

pa log pa −
∑

i∈IB

(Tr(ρBi) log(Tr(ρBi)

+
∑

a∈IA

∑

i∈IB

pa(Tr(ρa Bi)) log(pa(Tr(ρa Bi)))

= −
∑

i∈IB

(Tr(ρBi)) log(Tr(ρBi))

+
∑

a∈IA

pa

∑

i∈IB

(Tr(ρa Bi)) log(Tr(ρa Bi)) . (6.32)

In the classical case, perfect knowledge of A from knowing B can be
achieved by choosing B such that H(A|B) = 0; in the quantum case, there
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is a more stringent upper bound on I(A,B) that depends on the given de-
composition ρ =

∑
a∈IA

paρa and is denoted by χ (ρ, {paρa}a∈IA
).

Proposition 6.3.3 (Holevo’s Bound). Given ρ =
∑

a∈IA
pa ρa ∈ B

+
1 (H)

and the POVM B = {Bi}i∈IB
⊆ B(H),

I(A,B) ≤ χ (ρ, {ρ, paρa}a∈IA
) := S(ρ) −

∑

a∈IA

pa S(ρa) . (6.33)

Proof: [23] Given the POVM B = {Bi}i∈IB
⊆ B(H), let B = {b̂j}j∈IB

be
an Abelian algebra with minimal projections b̂j , b̂ib̂j = δij b̂i,

∑
j∈IB

b̂j = 1lB.
It can be embedded into B(H) (as a linear space) by means of the linear maps
γB : B �→ B(H) such that γB [̂bi] = Bi. Positive operators in B are of the
form b =

∑
i∈IB

βi b̂i, βi ≥ 0, therefore γB(b) =
∑

i∈IB
βi Bj ≥ 0 so that

γB is a positive map and, because of Example 5.2.6.7, completely positive.
Also, γB(1lB) =

∑
i∈IB

γ(̂bi) =
∑

i∈IB
Bi = 1lA, whence γB is a CPU map.

Furthermore, the states ρ◦γB and ρi ◦γB on B are diagonal density matrices
with eigenvalues {Tr(ρBi}i∈IB

, respectively {Tr(ρa Bi}i∈IB
. Thus, (6.32) and

the monotonicity of the relative entropy (6.27) yield

I(A,B) =
∑

a∈IA

pa S(ρ ◦ γB ρa ◦ γB) ≤
∑

a∈IA

pa S(ρ, ρa) .

�

Remarks 6.3.1.

1. Using (5.156) one derives that

χ (ρ, {paρa}a∈IA
) = S(ρ) −

∑

a∈IA

pa S(ρi) ≤ −
∑

a∈IA

pa log pa = H(A) .

Thus, if (6.33) is a strict inequality, perfect reconstruction of A upon
knowledge of B is not possible; on the other hand, the inequality is strict
unless the states ρa are orthogonal to each other and thus perfectly dis-
tinguishable.

2. A consequence of the Holevo’s bound is that any quantum encoding of
n bits into n non-orthogonal qubits states |ψi 〉 ∈ C

2n

achieves secure
transmission, but cannot transfer more than H(A) ≤ n bits of informa-
tion (when the entropy is expressed in base 2).

3. Whether the upper bound is achieved or not depends on the ability on
the part of the receiver to find one or more optimal detection strategies,
namely those POVM ’s B that maximize I(A,B). As we shall see this is
a remarkably difficult analytical problem even in low dimension.
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4. By taking the supremum over all possible POVM ’s B that the receiver
may devise as detection strategies, one defines the maximal accessible
information as

I(A) := sup
B

I(A,B) ≤ χ (ρ, {paρa}a∈IA
) . (6.34)

Example 6.3.4. Suppose A transmits the bits 0 and 1 to B by encoding
them into the non-orthogonal states

| ± 〉 =
√
p |ψ1 〉 ±

√
1 − p |ψ2 〉 ∈ C

N , 0 ≤ p ≤ 1 , 〈ψ1 |ψ2 〉 = 0 ,

chosen with equal probability. The statistics of the encoded quantum signals
is thus described by

Md(C) � ρ =
1
2
|+ 〉〈+ | +

1
2
| − 〉〈− | = p |ψ1 〉〈ψ1 | + (1 − p) |ψ2 〉〈ψ2 | ,

and χ({ρ, λρj}) = H2(p) = −p log2 p + −(1 − p) log2(1 − p) reaches its
maximum of 1 bit of transmissible information only when p = 1/2 so that
〈+ | − 〉 = 1 − 2p = 0.

The problem of achieving the maximal accessible information I(A) ap-
peared earlier than in quantum information, in relation to finding optimal
decompositions achieving the so-called entropy of a subalgebra [213, 88], the
building block for constructing a particular quantum extension of the KS
entropy to be discussed later in Chapter 8.

Let M ⊆ B(H) be a finite-dimensional subalgebra with identity, ρ ∈
B

+
1 (H) a state on B(H) and ρ |̀M the state on M which results from restrict-

ing ρ to act (as an expectation) on the observables in M , only.

Example 6.3.5. Let A ⊂ B(H) be an Abelian subalgebra with k ≤ dim(H)
minimal projectors âi and ρ ∈ B

+
1 (H) a density matrix; then, ρ |̀A amounts

to the classical probability distribution πA = {Tr(ρ âi)}k
i=1.

Definition 6.3.2 (Entropy of a Subalgebra). Let M ⊆ B(H) be a subal-
gebra and ρ ∈ B

+
1 (H) a state; the entropy of M relative to ρ is

Hρ (M) := sup
ρ=
∑

i∈I λiρi

∑

i∈I

λi S (ρ |̀M , ρi |̀M) (6.35)

= S (ρ |̀M) − inf
ρ=
∑

i∈I λiρi

∑

i∈I

λiS (ρi |̀M) , (6.36)

where the sup in (6.35) and the inf in (6.36) are taken with respect to all
possible linear convex decompositions ρ =

∑
i∈I λiρi.
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It must be stressed that, unlike in Proposition 6.3.2, the decomposition
comes first and the restriction to the subalgebra only afterwards; this is what
makes the explicit computation of the entropy of a subalgebra a compli-
cated variational problem, in general. Luckily, there are particular instances
of states and subalgebras where things are easier.

Example 6.3.6. Consider the Abelian subalgebra A of Example 6.3.5 and
let ρ ∈ B

+
1 (H) be a state which commutes with all elements of A. The fol-

lowing decomposition of ρ is optimal,

ρ =
k∑

i=1

Tr(ρâi) ρi , ρi :=
√
ρ âi

√
ρ

Tr(ρ âi)
=

ρ âi

Tr(ρ âi)
.

Indeed, the restrictions ρ |̀A and ρi |̀A are probability distributions

πA =
{

Tr(ρ âj)
}k

j=1
, πi

A =
{

Tr(ρ âi âj)
Tr(ρ âi)

= δij

}k

j=1

,

such that S (ρi |̀A) = 0 and

Hρ (A) = S (ρ |̀A) = −
k∑

i=1

Tr(ρ âi) log Tr(ρ âi) .

The simplest context in which the above argument applies is when, instead
of B(H), one deals with an Abelian von Neumann algebra. Then, as seen
in Section 5.3.2, via the Gelfand transform, any finite subalgebra A ⊂ A
has minimal projections which correspond to the characteristic functions of
suitable measurable subsets of a measure space and thus identify a finite
partition of the latter or, equivalently a random variable A. Moreover, the
state ω becomes a probability measure μ and gives a probability distribution
over A such that the entropy of A yields the Shannon entropy of A: Hω (A) =
H(A).

Instead, the simplest non-commutative application of the previous argu-
ment is when B(H) = Md(C) and ρ = 1ld/d is the tracial state; then,

Hρ (A) = S (ρ |̀A) = H(A) = −
k∑

i=1

Tr(âi)
d

log
Tr(âi)
d

.

We now relate the variational problem in (6.35) to the one in (6.34). The
clue is that POVMs as B = {Bi}i∈IB

give rise to decompositions and vice
versa, while the main technical tools are provided by the GNS construction
πρ(B(H)) based on the state ρ. Of particular importance is the possibility of
dealing with decompositions by means of positive elements in the commutant
πρ(B(H))′ or even in πρ(B(H)) itself (see Remark 5.3.2.3 and the relation
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in (5.146)), an instance of which already appears in the previous example. It
follows that the probabilities in (6.32) can be recast as

Tr(ρa Bi) =
〈Ωρ |πρ(Bi)X ′

a |Ωρ 〉
pa

=
Tr(ρBi)

pa
ρ′i(X

′
a) (6.37)

ρ′i(X
′
a) :=

〈Ωρ |πρ(Bi)X ′
a |Ωρ 〉

Tr(ρBi)
, pa := 〈Ωρ |X ′

a |Ωρ 〉 , (6.38)

where |Ωρ 〉 is the GNS cyclic vector and the X ′
a ∈ πρ(B(H))′, a ∈ IA, are

positive operators in the commutant such that
∑

a∈IA
X ′

a = 1l.
It turns out that the linear functionals πρ(B(H))′ � X ′ �→ ρ′i(X

′) are
positive and normalized, hence states on the commutant, as well as

ρ′(X ′) :=
∑

i∈IB

(Tr(ρBi)) ρ′i(X
′) = 〈Ωρ |X ′ |Ωρ 〉 . (6.39)

In analogy with the proof of the Holevo’s bound, let A = {âj}j∈IA
be an

Abelian algebra (with identity) generated by minimal projections âj and
introduce the CPU map γ′A : A �→ πρ(B(H))′, γ′A[âj ] = X ′

j that sends A
into the commutant πρ(B(H))′. Then, using (6.37) and (6.38), one sees that
the states ρ′ ◦ γ′A and ρ′i ◦ γ′A, i ∈ IB , on A correspond to the probability
distributions π′A = {pa}a∈IA

and (π′A)i = {Tr(ρ′i(X
′
a)}a∈IA

, whence (6.32)
can be rewritten as

I(A,B) = −
∑

i∈IB

(Tr(ρBi)) log(Tr(ρBi))

+
∑

a∈IA

∑

i∈IB

pa (Tr(ρa Bi)) log(Tr(ρa Bi))

= −
∑

i∈IB

(∑

a∈IA

(Tr(ρBi)) ρ′i(X
′
a)
)

log pa

+
∑

a∈IA

(Tr(ρBi))
∑

i∈IB

ρ′i(X
′
j) log ρ′i(X

′
j)

= −
∑

i∈IB

pa log pa +
∑

i∈IB

(Tr(ρBi))
∑

a∈IA

ρ′i(X
′
a) log ρ′i(X

′
a)

= S (ρ′ ◦ γ′A) −
∑

i∈IB

(Tr(ρBi))S(ρ′i ◦ γ′A) . (6.40)

Therefore, the maximal accessible information relative to the encoding
{ρ , paρa} equals the entropy of the CPU map γ′A : A �→ πρ(B(H))′ relative
to the state ρ′ on the commutant: I(A) = H ′

ρ(γ
′
A). If ρ is a faithful state, one

can use (5.146) to substitute the X ′
j with elements of a POVM in B(H) and

γ′A with a CPU map γA : A �→ B(H), so that I(A) = Hρ (γA).

The natural embedding ıM of a subalgebra M ⊆ B(H) into B(H) is a CPU
map (see Examples 5.2.3.7 and 8) such that ρ |̀M = ρ◦ ıM . This observation
suggests the following extension of Definition 6.3.2.
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Definition 6.3.3 (Entropy of CPU maps). Given a completely positive
unital map γ : M �→ B(H), where M is a finite-dimensional algebra, its
entropy relative to a state ρ ∈ B

+
1 (H) is

Hρ (γ) := sup
ρ=
∑

i∈I λiρi

∑

i∈I

λi S (ρ ◦ γ , ρi ◦ γ) (6.41)

= S (ρ ◦ γ) − inf
ρ=
∑

i∈I λiρi

∑

i∈I

λiS (ρi ◦ γ) . (6.42)

Lemma 6.3.1.

1. Given a CPU map γ : M �→ B(H) from a finite dimensional algebra M
into B(H), one has

0 ≤ Hρ (γ) ≤ S (ρ ◦ γ) ≤ log dim(M) , (6.43)

where dim(M) is the dimension of any maximally Abelian subalgebra
contained in M .

2. If ρ is a faithful state, then Hρ (M) > 0 unless M is the trivial algebra,
consisting only of multiples of the identity.

3. Consider two finite dimensional algebras M1,2 and two CPU maps γ1 :
M1 �→ M2, γ2 : M2 �→ B(H),

Hρ (γ2 ◦ γ1) ≤ Hρ (γ2) . (6.44)

In particular, if N ⊆ M ⊆ B(H) are two finite dimensional subalgebras,

Hρ (N) ≤ Hρ (M) . (6.45)

Proof: Positivity and boundedness are evident, monotonicity under CPU
maps follows from (6.28) applied to Definition 6.3.3, while monotonicity under
algebraic embeddings follows from considering the CPU maps consisting of
the natural inclusions ıM of M into B(H) and ıNM of N into M :

Hρ (N) = Hρ (ıM ◦ ıNM ) ≤ Hρ (ıM ) = Hρ (M) .

As regards the second property, suppose that Hρ (M) = 0, then, the first
property of the relative entropy in Proposition 6.3.1 yields ρ |̀M = ρi |̀M for
all decompositions ρ =

∑
i∈I λiρi. Then, consider the GNS representation

of B(H) based on ρ and set ρ(M) := Tr(ρM) = 〈Ωρ |πρ(M) |Ωρ 〉, for all
M ∈ M . It follows that

〈Ωρ |X ′
i πρ(M) |Ωρ 〉 = ρ(M) 〈Ωρ |X ′ |Ωρ 〉 equivalently

〈Ωρ |X ′
i

(
πρ(M) − ρ(M) 1l

)
|Ωρ 〉 = 0 ,
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for all 0 ≤ X ′
i ≤ 1l in the commutant πρ(B(H))′. Notice that any such X ′ can

be written as a sum of positive 1l ≥ X ′
1,2 ∈ πρ(B(H))′; then, since ρ faithful

on B(H) implies |Ωρ 〉 separating for πρ(B(H)) and thus cyclic for πρ(B(H))′

(see Lemma 5.3.1), it follows that (πρ(M) − ρ(M))|Ωρ 〉 is orthogonal to a
dense subset of the GNS Hilbert space Hρ whence, again from the faithfulness
of ρ, M = ρ(M) 1l for all M ∈ M . �

Example 6.3.7. The last result in Example 6.3.6 extends to subalgebras
M ⊆ B(H) which are not Abelian but commute with the state ρ 7; then

Hρ (M) = S (ρ |̀A) , (6.46)

where A is any maximally Abelian subalgebra contained in M . Indeed, from
Example 6.3.3.2 and the first case discussed in Example 6.3.6 it follows that
S (ρ |̀M) = S (ρ |̀A) = Hρ (A), where A ⊆ M is maximally Abelian; on the
other hand, from Lemma 6.3.1, one deduces that

S (ρ |̀M) = S (ρ |̀A) = Hρ (A) ≤ Hρ (M) ≤ S (ρ |̀M) .

Apart for the simple cases discussed in Examples 6.3.6 and 6.3.7, the
minimization of the linear convex combination of von Neumann entropies
in (6.42) is in general an extremely difficult task. At first sight, one might even
suspect to be forced to consider more than discrete convex decompositions of
the state ρ; luckily, the following result ensures that Hρ (M) can be reached
within ε > 0, by means of discrete decompositions [88, 222]. We shall denote
by Hγ

ρ

(
{λi, ρi}

)
the argument of the supremum in (6.41) evaluated at a given

decomposition ρ =
∑

i∈I λiρi, namely

Hγ
ρ

(
{λi, ρi}i∈I

)
:=
∑

i∈I

λi∈I S (ρ ◦ γ , ρi ◦ γ) . (6.47)

Proposition 6.3.4. Let γ : M �→ B(H) be a CPU map from a finite di-
mensional algebra M into B(H) and ρ ∈ B

+
1 (H) a density matrix. Given

a decomposition ρ =
∑

i∈I λiρi and ε > 0, there exists a decomposition
ρ =

∑
j∈J λ

′
j ρ

′
j where card(J) depends on dim(M) and ε, such that

∣
∣
∣Hγ

ρ

(
{λi, ρi}i∈I

)
− Hγ

ρ

({
λ′j , ρ

′
j

}
j∈J

)∣
∣
∣ ≤ ε . (6.48)

Proof: Consider a finite partition Z = {Zj}j∈J of the state-space S(M)
of M into subsets Zj such that

7In such a case, one says that such M are contained in the centralizer of ρ.
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σ1,2 ∈ Zj =⇒ ‖σ1 − σ2‖ ≤ δ ∀Zj ∈ Z .

For instance, card(J) can be chosen not larger than the least number of balls
of radius δ that are necessary to cover S(M). Define

ρ′j :=
∑

i∈I
ρi◦γ∈Zj

λi

λ′j
ρi , λ′j :=

∑

i∈I
ρi◦γ∈Zj

λi .

By construction, ρ =
∑

j∈J λ
′
jρ

′
j and

∣
∣
∣Hγ

ρ

(
{λi, ρi}i∈I

)
− Hγ

ρ

({
λ′j , ρ

′
j

}
j∈J

)∣
∣
∣ ≤

∣
∣
∣
∣
∣
∣

∑

i∈I

λi S (ρi ◦ γ) −
∑

j∈J

λ′j S
(
ρ′j
)
∣
∣
∣
∣
∣
∣

≤
∑

j∈J

∑

i∈I
ρi◦γ∈Zj

λi

∣
∣
∣S (ρi ◦ γ) − S

(
ρ′j
)∣∣
∣ .

By choosing δ appropriately, the result follows from the Fannes inequality
(see (5.157)). �

From this result, it follows that, for any ε > 0, there exists a decomposition
ρ =

∑
i∈I λi ρi with card(I) depending on dim(M) and ε, such that

Hγ
ρ

(
{λi, ρi}i∈I

)
≥ Hρ (γ) − ε . (6.49)

We shall call ε-optimal for γ the decompositions which achieve Hρ (γ) within
ε > 0 and optimal for γ those decompositions ρ =

∑
i λjρi such that

Hρ (γ) = S (ρ ◦ γ) −
∑

i

λjS (ρi ◦ γ) .

6.3.2 Entropy of a Subalgebra and Entanglement of Formation

In this section, we shall consider some techniques developed in [45, 46, 47]
that are of help in calculating the entropy of a subalgebra Hρ (A) where A
is a maximally Abelian (n-dimensional) subalgebra of a full matrix algebra
Mn(C). The first step is to extract from (6.36) the expression

Eρ[M,M ] := inf
ρ=
∑

i∈I λiρi

∑

i∈I

λiS (ρi |̀M) , (6.50)

where we have specified the state of the system, the total algebra of its
observables M and the selected subalgebra M ⊆ M. Then, one notices
that the variational problem can be solved by restricting to decomposi-
tions of ρ in terms of pure states; this is so for the von Neumann entropy
is concave (see (5.156)). In fact, assume ρ =

∑
j λjρj optimal for M (so
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that Eρ[M,M ] =
∑

i∈I

λiS (ρi |̀M)), with non-pure decomposers ρj . Then,

by further decomposing ρj =
∑

k λjkρjk, one gets another decomposition
ρ =

∑
j,k λjλjkρjk; thence, S (ρj |̀M) ≥

∑

k

λjkS (ρjk |̀M) yields

Eρ[M,M ] ≤
∑

j,k

λjλjkS (ρjk |̀M) ≤
∑

j

λjS (ρj |̀M) = Eρ[M,M ] .

Notice that, since pure states Pj cannot be decomposed, for them it holds
that

EPj
[M,M ] = S (Pj |̀M) . (6.51)

In a similar way, one shows that the functional Eρ[Mn(C),M ] is convex
over the state space B

+
1 (Cn): given a convex combination ρ =

∑
j νj ρj , the

optimal decompositions ρj =
∑

k λjkρjk that achieve

Eρj
[Mn(C),M ] =

∑

k

λkS (ρjk |̀M)

for each j, provide a decomposition ρ =
∑

j,k νjλjkρjk which need not be
optimal, whence

E∑
j νjρj

[Mn(C),M ] ≤
∑

j,k

νjλjkS (ρjk |̀M) ≤
∑

j

νj S (ρj |̀M) . (6.52)

We shall fix M = Mn(C) for some n; the following results turn out to be
useful [47].

Proposition 6.3.5. For a fixed density matrix ρ ∈ Mn(C) and M ⊆ Mn(C),

1. there is an optimal decomposition consisting of no more than n2 decom-
posers;

2. the functional Eρ[Mn(C),M ] is linear on the convex hull of the optimal
decomposers of ρ; namely, if ρ =

∑
i λi Pi is an optimal decomposition

for Eρ[Mn(C),M ], where the Pi are projections, then any other convex
combination ρ̃ =

∑
j νj Pj, with weights νj > 0,

∑
j νj = 1, is also

optimal in the sense that,

Eρ̃[Mn(C),M ] =
∑

j

νj S (Pj |̀M) .

Proof: The first statement results from a theorem of Caratheodory [20]
since Mn(C) is n2 dimensional as a linear space and the set of pure states is
compact [304] (see Remark 5.3.2.5).

The second statement is a consequence of (6.51) and (6.52); indeed, as a
convex functional, Eρ[Mn(C),M ] can be expressed as



304 6 Quantum Information Theory

Eρ[Mn(C),M ] = sup
{
Λ[ρ] : Λ affine functional on B

+
1 (Cn)

}
.

Let Eρ[Mn(C),M ] = Λ[ρ], then Λ[σ] ≤ Eσ[Mn(C),M ] for a different state
σ; thus, given an optimal decomposition ρ =

∑
i λi Pi, where λi > 0 and the

Pi are projections,

Eρ[Mn(C),M ] =
∑

i

λi S (Pi |̀M) =
∑

i

λiEPi
[Mn(C),M ]

≥
∑

i

λiΛ[Pi] = Λ[
∑

i

λi Pi] = Eρ[Mn(C),M ] .

Therefore, Λ[Pi] = EPi
[Mn(C),M ] for all i; consequently, if ρ̃ =

∑
j νj Pj is

any convex combination of these optimal projections, then

Eρ̃[Mn(C),M ] ≤
∑

j

νjS (Pj |̀M) =
∑

j

νjEPj
[Mn(C),M ] =

∑

j

νjΛ[Pj ]

= Λ[ρ̃] ≤ Eρ̃[Mn(C),M ] .

�
Calculating Eρ[Mn(C),M ] can be simplified if the state ρ enjoys symme-

tries that leave the subalgebra M invariant as a set; namely, suppose there
exists a unitary matrix U : C

n �→ C
n such that Γu[ρ] = U ρU† = ρ and

ΓT
u [M ] = M , where ΓT

u : Mn(C) �→ Mn(C) is the dual map of Γu. Then,

Proposition 6.3.6. Let Eρ[Mn(C),M ] be achieved at the optimal decompo-
sition ρ =

∑
i λi Pi; then, the symmetry map Γu gives other optimal decom-

positions.

Proof: From ρ = Γu[ρ] =
∑

i λi Γu[Pi] and Γu[Pi] |̀M = Pi |̀ΓT
u [M ] =

Pi |̀M it follows that

Eρ[Mn(C),M ] ≤
∑

i

λi S (Γu[Pi] |̀M) =
∑

i

λi S (Pi |̀M) = Eρ[Mn(C),M ] .

�
Particularly suggestive instances of states ρ ∈ B

+
1 (Cd) with symme-

tries are those that are permutation invariant with respect to a given ONB
{| i 〉}d

i=1; they are of the form

ρ(d)
x =

1
d
1ld +

x

d

d∑

i�= j=1

| i 〉〈 j | =
1 − x

d
1ln + x|ψ+ 〉〈ψ+ | , (6.53)

where |ψ+ 〉 :=
1
d

d∑

i=1

| i 〉 so that − 1
d− 1

≤ x ≤ 1.
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By defining F := 〈ψ+ | ρx |ψ+ 〉, 0 ≤ F ≤ 1, one can rewrite ρx in a way
which is directly comparable with the isotropic states (6.3):

ρ
(d)
F =

1 − F

d− 1
1ld +

dF − 1
d− 1

|ψ+ 〉〈ψ+ | , (6.54)

which we shall denote in the following by ρ(d2)
F as they are obtained from (6.3)

by changing d into d2; notice that

〈Ψ̂d
+|ρ

(d2)
F |Ψ̂d

+〉 = 〈ψ+ | ρ(d)
F |ψ+ 〉 = F . (6.55)

Let π denote the d! permutations i �→ π(i), 1 ≤ i ≤ d; it turns out that

ρ
(d)
F =

1
d!

∑

π

Uπ |φ 〉〈φ |U−1
π︸ ︷︷ ︸

P π
φ

, (6.56)

where |φ 〉 ∈ C
d is any vector such that |〈ψ+ |φ 〉|2 = F and Uπ unitarily

implements the permutation of the chosen ONB corresponding to π.
Let A denote the maximally Abelian subalgebra generated by the projec-

tions {| i 〉〈 i |}d
i=1; the decomposition (6.56) is such that

E
ρ
(d)
F

[Md(C),A] ≤ 1
d!

∑

π

S
(
Pπ

φ |̀A
)

= S
(
Pπ

φ |̀A
)

= −
d∑

j=1

|〈φ | j 〉|2 log |〈φ | j 〉|2 =: r(F ) . (6.57)

Proposition 6.3.7. If ρ(d)
F is a permutation invariant state on Md(C) and

r(F ) is a convex function of F ∈ [0, 1], the decomposition (6.56) achieves
E

ρ
(d)
F

[Md2(C),A].

Proof: Let ρ(d)
F =

∑
i λi Pi, Pi = |φi 〉〈φi |, achieve E

ρ
(d)
F

[Md(C),A] and
consider

ρ
(d)
F =

1
d!

∑

π

U†
π ρ

(d)
F Uπ =

∑

i

λi
1
d!

∑

π

U†
π Pi Uπ

︸ ︷︷ ︸
P u

i

.

The states Pu
i are permutation invariant; according to (6.56) they are com-

pletely characterized by parameters Fi that satisfy

F = 〈ψ+ | ρ(d)
F |ψ+ 〉 =

∑

i

λi 〈ψ+ |Pu
i |ψ+ 〉 =

∑

i

λi Fi .

Thus, Proposition 6.3.6, the assumed convexity of r(F ) and (6.57) yield
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E
ρ
(d)
F

[Md(C),A] =
∑

i

λi S (Pu
i |̀A) =

∑

i

λi r(Fi) ≥ r(F )

≥ E
ρ
(d)
F

[Md(C),A] .

�

Examples 6.3.8.

1. For d = 2, ρ(2)
F =

1
2

(
1 2F − 1

2F − 1 1

)

can be written as

ρ
(2)
F =

1
2

(
1+a
2

√
1−a2

2√
1−a2

2
1−a
2

)

+
1
2

(
1−a
2

√
1−a2

2√
1−a2

2
1+a
2

)

,

where a := 2
√
F (1 − F ); then, with η(x) = −x log x and the notation

of (6.12),

r(F ) = η

(
1 + a

2

)

+ η

(
1 − a

2

)

= H2

(
1 + 2

√
F (1 − F )
2

)

. (6.58)

In order to use the previous proposition, we need show that r(F ) is convex
on [0, 1]; for this we calculate

d2r(F )
dF 2

=
2
a3

(

log
1 + a

1 − a
− 2a

)

.

The function within the parenthesis is monotonically increasing from 0
to +∞; the second derivative is thus non-negative and the function r(F )
is convex. Then,

E
ρ
(2)
F

[M2(C),A] = H2

(
1 + 2

√
F (1 − F )
2

)

Hρ(2) (A) = log 2 − H2

(
1 + 2

√
F (1 − F )
2

)

,

where A is the Abelian subalgebra of diagonal 2×2 matrices. Notice that
this is the only Abelian subalgebra in the d = 2 case: in [45] Hρ (A) has
been computed for all states ρ ∈ M2(C).

2. Given a fixed ONB {| i 〉}d
i=1 in C

d, consider the doubling map

Md(C) � X =
d∑

i,j=1

xij | i 〉〈 j | �→ D[X] =
d∑

i,j=1

xij | ii 〉〈 jj | . (6.59)

It is a homomorphism from Md(C) onto a subalgebra M0 ⊂ Md2(C),
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D[X] D[Y ] =
d∑

i,j ; k,	=1

xij yk	| ii 〉〈 jj | kk 〉| �� 〉

=
d∑

i,j=1

(
d∑

k=1

xik yk	

)

| ii 〉〈 �� | = D[XY ] . (6.60)

It is thus a positive linear map from Md(C) onto M0 ⊂ Md2(C) where it
is invertible:

M0 � X0 =
d∑

i,j=1

xi,j | ii 〉〈 jj | �→ D
−1[X0] =

d∑

i,j=1

xij | i 〉〈 j | ∈ Md(C) .

(6.61)
Let d = 2 and | 0 〉, | 1 〉 be the fixed ONB in C

2; when applied to the
permutation invariant state in the previous example, the doubling map
gives the state

R
(2)
F := D[ρ(2)

F ] =
| 00 〉00 + | 11 〉〈 11 |

2
+

2F − 1
2

(
| 00 〉〈 11 | + | 11 〉〈 00 |

)

=
1
4

(
1l4 + (2F − 1)(σ1 ⊗ σ1 − σ2 ⊗ σ2) + σ3 ⊗ σ3

)

=
1
2

⎛

⎜
⎝

1 0 0 2F − 1
0 0 0 0
0 0 0 0

2F − 1 0 0 1

⎞

⎟
⎠ .

If thus turns out that R̃(2)
F as defined in (6.13) equals R(2)

F so that, for F �=
1/2, R(2)

F is entangled with concurrence E(R(2)
F ) = |1 − 2F | (see (6.14))

and entanglement of formation (see (6.15) and Theorem 6.2.1) given by

EF[R(2)
F ] = H2

(
1 + 2

√
F (1 − F )
2

)

= E
ρ
(2)
F

[Md(C),A] .

3. In [46], Proposition 6.3.7 has been used to compute E
ρ
(3)
F

[M3(C),A] where

ρ
(3)
F =

1
3

⎛

⎝
1 3F−1

2
3F−1

2
3F−1

2 1 3F−1
2

3F−1
2

3F−1
2 1

⎞

⎠ ,

and A consists of diagonal matrices in this representation. While for d = 2
there is only one optimal decomposition achieving E

ρ
(2)
F

[M2(C),A], when
d = 3 more optimal decompositions appear. Indeed, one can decompose
ρ
(3)
F by means of the unitary operator U : C

2 �→ C
3 that implements the

permutation (1, 2, 3) �→ (3, 1, 2):

ρ
(3)
F =

1
3
|φ 〉〈φ | + 1

3
U |φ 〉〈φ |U−1 +

1
3
U2 |φ 〉〈φ |U−2 , (6.62)
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where

|φ 〉 =

⎛

⎝
a+ 2b cos θ

a− 2b cos(θ − π/3)
a− 2b cos(θ + π/3)

⎞

⎠ , a :=
√

3F , b :=

√
3
2
(1 − F ) .

It turns out that, for 0 ≤ F ≤ 8/9, the function r(F ) = S (|φ 〉〈φ | |̀A) is
convex, whence

E
ρ
(3)
F

[M3(C),A] = η

(
2 − F + 2

√
2F (1 − F )

3

)

+ 2 η

(
1 + F − 2

√
2F (1 − F )

6

)

. (6.63)

There exists a value 0 < F ∗ ≤ 8/9 such that E
ρ
(3)
F

[M3(C),A] is achieved
at a unique decompositions of the form (6.62) given by

|φ 〉 =
1√
3

⎛

⎝

√
F +

√
2F (1 − F )√

F −
√
F (1 − F )/2√

F −
√
F (1 − F )/2

⎞

⎠ ,

for F ∗ ≤ F ≤ 8/9; while, for 0 < F < F ∗, two optimal decompositions
of the form (6.62) appear with

|φ±F 〉 =
1√
3

⎛

⎝
a+ 2b cos θf

a− 2b cos(π/3 ∓ θF )
a− 2b cos(π/3 ± θF )

⎞

⎠ ,

where the angle θF varies with F . According to Proposition 6.3.5, all
linear convex combinations of the projections onto these vectors also
provide optimal decompositions. When 8/9 ≤ F ≤ 1, the function
r(F ) = S (|φ 〉〈φ | |̀A) is no longer convex and one cannot use Propo-
sition 6.3.7; in this case it is the close relation of Hρ (M) with the en-
tanglement of formation which is of help. Indeed, (6.63) coincides with
the entanglement of formation of the d = 3 isotropic states (6.3) for
1/3 ≤ F ≤ 8/9 as calculated in [298].

In order to expose the relation between the entanglement of forma-
tion (6.5) and Eρ[M,M ] in (6.50), set M = Md2(C) := Md(C) ⊗ Md(C),
M = Md(C) embedded as Md(C) ⊗ 1ld into Md2(C) and ρj = |ψj 〉〈ψj |.
Since the marginal density matrices ρ(1)

ψj
= ρj |̀M , it turns out that

EF[ρ] = Eρ[Md2(C),Md(C)] . (6.64)

Further insights into the connections between these two notions, with partic-
ular reference to Examples (6.3).2,3, come from [47]
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Proposition 6.3.8. Let A ⊂ Md(C) be the maximally Abelian subalgebra
corresponding to a fixed ONB {| i 〉}d

i=1 and D[·] is the doubling map (6.59);
then,

Eρ[Md(C),A] = ED[ρ][Md2(C),Md(C)] . (6.65)

Proof: Suppose ρ =
∑

i λi Pi achieves Eρ[Md(C),A]; then, with ρ =
∑d

i,j=1 rij | i 〉〈 j |,

D[ρ] |̀Md(C) = Tr2(D[ρ]) =
d∑

i=1

rii| i 〉〈 i | = ρ |̀A implies

ED[ρ][Md2(C),Md(C)] ≤
∑

i

λi S (D[Pi] |̀Md(C)) =
∑

i

λiS (Pi |̀A)

= Eρ[Md(C),A] .

Vice versa, let D[ρ] =
∑

j νj Qj achieve ED[ρ][Md2(C),Md(C)]; if the optimal
decomposers Qj were of the form Qj =

∑
k,	 q

j
k	| kk 〉〈 �� |, by the inverse

doubling map (6.61) one would get a decomposition of ρ that could be used
to reverse the previous inequality and thus prove the result. The decomposers
Qj are indeed of the claimed form as they are one-dimensional projections
that can always be recast as follows

Qj =

√
D[ρ] |Ψj 〉〈Ψj |

√
D[ρ]

〈Ψ |D[ρ] |Ψ 〉 .

Because of (6.60), it turns out that D[ρ]n = D[ρn] whence, by power series
expansion,

√
D[ρ] = D[

√
ρ]. �

Example 6.3.9. In [298], the entanglement of formation of an isotropic state
ρ
(d2)
F was computed by 1) considering the twirling (2) of suitable vectors of

diagonal form, |Φ 〉 =
∑d

i=1

√
μi| ii 〉, with respect to the chosen ONB , and

by 2) minimizing the von Neumann entropy S
(
ρ
(1)
Φ

)
= −

d∑

i=1

μi log μi of the

marginal density matrix.
Choose one such |Φ 〉 from an optimal decomposition for EF[ρ(d2)

F ] and
construct the density matrix

R
(d2)
F :=

1
d!

∑

π

Uπ ⊗ Uπ |Φ 〉〈Φ |U−1
π ⊗ U−1

π

by using the permutation operators Uπ. Since, by definition, Uπ ⊗ Uπ are
symmetries for the isotropic state ρ(d2)

F , using Proposition 6.3.6 one deduces

that E
R

(d2)
F

[Md2(C),Md(C)] = S
(
ρ
(1)
Φ

)
. On the other hand, in terms of the

doubling map (6.59) and using (6.55),
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R
(d2)
F = D[ρ(d)

F ] =
1
d!

∑

π

Uπ |φ 〉〈φ |U−1
π ,

where ρ
(d)
F is as in (6.56) and |φ 〉 =

d∑

i=1

√
μi | i 〉. Finally, from Proposi-

tion 6.3.8, it results

E
ρ
(d)
F

[Md(C),A] = E
R

(d2)
F

[Md2(C),Md(C)] = S
(
ρ
(1)
Φ

)
.

In this way one can use the results of [298] to extend the computation of
Eρ(3) [M3(C),A] to those values of F ∈ [8/9, 1], where the methods employed
in Example 6.3.8.3 are useless.

Trace-distance and Fidelities

In this section we review some mathematical techniques that are used to
compare two quantum states of a system S; the importance of such an is-
sue will become apparent in the next chapter when we shall deal with the
compression and retrieval of strings of qubits . We shall assume S to be an
N -level system.

Definition 6.3.4. Given ρ1,2 ∈ S(S), their trace-distance is given by

D(ρ1, ρ2) :=
1
2

Tr|ρ1 − ρ2| . (6.66)

Namely, the trace distance of two density matrices is defined as half the
trace-norm ‖ρ1 − ρ2‖tr of their difference: D(ρ1, ρ2) is a proper distance on
the state-space S(S).

Proposition 6.3.9. The trace distance enjoys the following properties:

1. Let P ∈ MN (C) be any orthogonal projector, then

D(ρ1, ρ2) = max
P

Tr(P (ρ1 − ρ2)) . (6.67)

2. The trace-distance monotonically decreases under completely positive
trace-preserving maps F : S(S) �→ S(S):

D(F[ρ1],F[ρ2]) ≤ D(ρ1, ρ2) . (6.68)

3. The trace-distance is jointly convex:

D(
∑

j

λjρj ,
∑

j

λjσj) ≤
∑

j

λjD(ρj , σj) , (6.69)

where λj ≥ 0 and
∑

j λj = 1.
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Proof: As seen in Example 5.5.6, ρ1 − ρ2 = A−B and |ρ1 − ρ2| = A+B,
with A,B positive orthogonal matrices A,B ≥ 0, AB = 0, so that TrA = TrB
since Trρ1,2 = 1. Thus D(ρ1, ρ2) = TrA = TrB. Let P be any projector, then

Tr(P (A−B)) ≤ Tr(PA) ≤ TrA = D(ρ1, ρ2) ,

for Tr(PB) is a positive quantity and P projects onto a subspace. Further, if
this subspace supports A, it annihilates B and the maximum is achieved.

The second property is proved as follows: let P be the projector which
achieves the trace distance D(F[ρ1],F[ρ2]), then, because of the assumed
trace-preserving character of F,

D(ρ, σ) = TrA = TrF[A] ≥ Tr(PF[A]) ≥ Tr(PF[A]) − Tr(PF[B])
= Tr(PF[A−B]) = Tr(P (F[ρ1] − F[ρ2])) = D(F[ρ],F[ρ2]) .

�
In order to introduce some useful notions of fidelity, let us begin with

a simple observation: the closer two vector states ψ1,2 ∈ H = C
N to each

other, the closer to 1 is |〈ψ1 |ψ2 〉|. Indeed, the latter quantity is 1 iff ψ = φ
(a part for an overall multiplicative phase) and vanishes when ψ ⊥ φ. This
idea extends to density matrices of an N level system as follows.

Definition 6.3.5 (Fidelity). The fidelity of two density matrices ρ1,2 ∈
S(S) is

F (ρ1, ρ2) := Tr
√√

ρ1ρ2
√
ρ1 = Tr

√
(
√
ρ2
√
ρ1)†(

√
ρ2
√
ρ1)

= Tr |√ρ2
√
ρ1| . (6.70)

If ρ1 = |ψ1 〉〈ψ1 | =: P1 then
√
P1 = P1 so that

F (P1, ρ2) =
√

〈ψ1 | ρ2 |ψ1 〉 . (6.71)

Thus if ρ2 = |ψ2 〉〈ψ2 | =: P2, then F (P1, P2) = |〈ψ1 |ψ2 〉|.

Proposition 6.3.10. The fidelity enjoys the following properties:

1. Let |ΨUV
ρ 〉 be a purification of ρ ∈ S(S) of the form

|ΨUV
ρ 〉 =

N∑

i=1

√
ρ U | i 〉 ⊗ V | i 〉 , (6.72)

where {| i 〉}N
i=1 is an orthonormal basis in H = C

N and U any par-
tial isometry such that U†U projects onto the orthogonal complement of
Ker(ρ) and V is any unitary matrix. Then,

F (ρ1, ρ2) = max
U2 , V2

∣
∣〈ΨU2V2

ρ2
|ΨU1V1

ρ1
〉
∣
∣ , (6.73)

that is the fidelity is the largest such scalar product achievable by fixing
one purification and varying the other.
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2. The fidelity does not depend on the order of its arguments. Further,
F (ρ1, ρ2) = 1 if and only if ρ1 = ρ2, otherwise 0 ≤ F (ρ1, ρ2) < 1.

3. Let E = {Ei}i∈I denote any POVM with elements in MN (C), then

F (ρ1, ρ2) = max
{∑

i∈I

Tr(ρ1Ei) (Tr(ρ2 Ei) : Ei ∈ E
}
. (6.74)

4. The fidelity is jointly concave, namely if ρ1,2 =
∑

i λiσ
i
1,2 with 0 < λi < 1,

∑
i λi = 1 and σ1,2

i ∈ S(S),

F (ρ1, ρ2) ≥
∑

i

λi F (σ1
i , σ

2
i ) . (6.75)

5. The fidelity monotonically increases under the action of trace-preserving
completely positive maps F : S(S) �→ S(S):

F
(
F[ρ1],F[ρ2]

)
≥ F (ρ1, ρ2) . (6.76)

Proof: It is easy to check that Tr1|ΨUV
ρ 〉〈ΨUV

ρ | = ρ, so that (6.72) is a
purification of the mixed state ρ. One computes,

∣
∣〈ΨU2V2

ρ2
|ΨU1V2

ρ1
〉
∣
∣ =

N∑

i,j=1

〈 i |U†
2

√
ρ2
√
ρ1U1 |j 〉 〈 i |V †

2 V1 |j 〉

= Tr
(
U†

2

√
ρ2
√
ρ1U1(V1V

†
2 )T
)
≤ ‖√ρ2

√
ρ1‖tr = F (ρ1, ρ2) ,

where T means transposition. Further, the upper bound is achieved by choos-
ing V2 = V1 and U2 = W †U1 with W such that

√
ρ2
√
ρ1 = W |√ρ2

√
ρ1|.

From the previous point, the second point follows at once. �
One expects a relation between trace-distance and fidelity of the kind: the

smaller the trace-distance, the closer to 1 the fidelity. That this is indeed so
is the content of the following

Proposition 6.3.11. Given ρ1,2 ∈ S(S), the following bounds hold

1 − F (ρ1, ρ2) ≤ D(ρ1, ρ2) ≤
√

1 − F 2(ρ1, ρ2) . (6.77)

The following proposition establishes that if ρ1 ∈ S(S) is close to ρ2 in the
sense that F (ρ1, ρ2) � 1 while while F (ρ2, ρ3) � 0, then also F (ρ1, ρ3) � 0.

Proposition 6.3.12. [19] Let ρ1,2,3 ∈ S(S), then Fij := F 2(ρi, ρj) satisfy

F13 ≤ F23 + 2 (1 − F12) + 2
√

(1 − F12)F23 , (6.78)

where Trρ3 = 1, but Trρ1,2 < 1 (subnormalization).
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Proof: Notice that subnormalization does not alter either the definition of
fidelity or the first property in Proposition (6.3.10). Let then |Ψ1 〉 be a fixed
purification of ρ1, choose |Ψ2,3 〉 in order to achieve F12 and F13. Further,
adjust the phases of the three vectors so that

F12 = 〈Ψ1 |Ψ2 〉2 , F13 = 〈Ψ1 |Ψ3 〉2 , F23 ≥ 〈Ψ2 |Ψ3 〉2 .

Setting |Ψ 〉 := |Ψ2 〉 − |Ψ1 〉, one estimates

〈Ψ |Ψ 〉 = 〈Ψ1 |Ψ1 〉 + 〈Ψ2 |Ψ2 〉 − 2 〈Ψ1 |Ψ2 〉 ≤ 2
(
1 −
√
F12

)
,

for subnormalization gives 〈Ψ1,2 |Ψ1,2 〉 < 1. Then, from 〈Ψ3 |Ψ3 〉 = Trρ3 = 1
and the bound

√
F13 = 〈Ψ1 |Ψ3 〉 = 〈Ψ2 |Ψ3 〉 + 〈Ψ |Ψ3 〉 ≤ F23 + |〈Ψ |Ψ3 〉|

≤ F23 +
√
〈Ψ |Ψ 〉 ≤ F23 +

√

2(1 −
√
F12) ,

the result follows. �
Let ρ ∈ S(S) correspond to a mixture {λj , ρj}, ρ =

∑
j λjρj , subjected

to the action of a trace-preserving completely positive map F : S(S) �→ S(S).
Then would like to keep track of how much F[ρ] differs form ρ in the mean:
this is well described by

Definition 6.3.6 (Ensemble Fidelity). The ensemble fidelity relative to a
mixture {λj , ρj} and a completely positive action F is defined as the ensemble
average of square fidelities,

Fav

(
{λj , ρj},F

)
:=
∑

j

λj F
2(ρj ,F[ρj ]) . (6.79)

We shall also denote by

Fs(ρ,F) := sup
{
Fav({λj , Pj},F) : P 2

j = Pj = P †
j

}
, (6.80)

the supremum of the ensemble fidelities over all possible decompositions of ρ
as a mixture of pure states.

Example 6.3.10. [19] Let | i 〉 ∈ H = C
3, i = 1, 2, 3, be an othonormal basis

and consider the mixture represented by

ρ = p1|ψ1 〉〈ψ1 | + p2|ψ1 〉〈ψ1 | + p3|ψ3 〉〈ψ3 | , where
|ψ1 〉 := cosα | 1 〉 + sinα | 2 〉 , |ψ2 〉 := sinα | 1 〉 + cosα | 2 〉

and |ψ3 〉 is such that
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〈ψ3 |ψ1 〉 = 〈ψ3 |ψ2 〉 = 〈ψ1 |ψ2 〉 = sin 2α .

Suppose the system is subjected to a trace-preserving completely positive
map such that

F[|ψ1 〉〈ψ1 |] = | 1 〉〈 1 | , F[|ψ2 〉〈ψ2 |] = | 2 〉〈 2 |

F[|ψ3 〉〈ψ3 |] =
1
2
|ψ1 〉〈ψ1 | +

1
2
|ψ2 〉〈ψ2 | . (6.81)

The purification of a state ρ ∈ S(S) actually couples S to an ancilla and
this coupling is embodied by an entangled pure state |Ψρ 〉. The following
fidelity reflects how much the action of an operation on S described by a
completely positive trace-preserving map F : S(S) �→ S(S) preserves this
entanglement.

Definition 6.3.7 (Entanglement Fidelity). The entanglement fidelity of
ρ relative to F is defined by the square fidelity of the states |Ψρ 〉〈Ψρ | and
F ⊗ id[|Ψρ 〉〈Ψρ |], where |Ψρ 〉 is any purification of ρ:

Fent(ρ,F) := F 2
(
|Ψρ 〉〈Ψρ |,F ⊗ id[|Ψρ 〉〈Ψρ |]

)
. (6.82)

Relations between these various fidelities are as follows [224].

Proposition 6.3.13.

0 ≤ Fent(ρ,F) ≤ Fav ≤ F (ρ,F[ρ]) ≤ 1 , (6.83)

where Fav is any ensemble fidelity corresponding to a decomposition of ρ.
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7 Quantum Mechanics of Infinite Degrees of
Freedom

Quantum systems with infinite degrees of freedom exhibit properties, like
relaxation to equilibrium, phase-transitions and the existence of inequivalent
representations of the CAR and CCR , that can satisfactorily be dealt with
by means of the methods and techniques of algebraic quantum statistical me-
chanics [108, 64, 65]. The point of departure from standard quantum mechan-
ics, is that in an infinite dimensional context one is usually provided with the
algebraic properties of the relevant observables, but, in general, not with an
a priori given representation on a Hilbert space; the latter rather depends on
to the physical properties of the systems under consideration [274, 290, 291].

Relaxation to Equilibrium

As discussed in Remark 2.1.3.4, by discretizing chaotic classical systems,
properties like the exponential growth of errors or a constant entropy pro-
duction can survive only over times that scale logarithmically with respect
to the discretization parameter. Indeed, beyond this time-scale, due to the
finite number of allowed states, quasi-periodicity and recursion appear. While
in classical dynamical systems, recursion can be eliminated by going to the
continuum, this is impossible in quantum mechanics because of the intrinsic
discretization of phase-space, due to � > 0 and to the Heisenberg uncertainty
relations. However, recursion times can be made longer and longer by letting
the number of degrees of freedom go to infinity [212, 300].

If we let N → ∞ in Example 5.6.1.2, the recurrence time diverges and,
unlike for finitely many spins, infinite spin chains may exhibit relaxation to
equilibrium. Indeed, observe that

fN (0, t) :=
(N−1)/2∏

i=1

cos
t

2i
=

(N−1)/2∏

i=1

cos
2t

2i+1

=
(N+1)/2∏

i=2

cos
2t
2i

=
cos 2−(N+1)/2t

cos t
fN (0, 2t) ;

then, when N → ∞, fN (0, t) tends to a function f∞(t) which satisfies
f∞(t) cos t = f∞(2t) together with f∞(0) = 1. By expanding both mem-
bers of the first equality and comparing equal powers in t, it turns out that

F. Benatti, Dynamics, Information and Complexity in Quantum Systems, 317
Theoretical and Mathematical Physics, DOI 10.1007/978-1-4020-9306-7 7,
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f∞(t) =
sin t
t

; (5.173) thus becomes

ρ∞⊗(σj
+(t)) = e2itBμj

sint

2t
.

As a consequence, when t → ∞, the time-dependent state ρ∞t defined on the
infinite spin array by the expectations

σj
# �→ ρ⊗∞

t (σj
#) := ρ⊗∞(σj

#(t)) ,

tends to the state ω∞ such that ω∞(σj) = 1/2 and ω∞(σj
±) = 0 for all j.

Inequivalent representations

One of the most relevant aspects of quantum mechanics with infinite de-
grees of freedom is the existence of inequivalent irreducible representations
of a same algebra; this fact explains physical phenomena such as symmetry
breaking and phase-transitions [290, 291, 274, 275].

We let N → ∞ in Example 5.4.1 and set

| vac 〉↑ := | 0 〉⊗∞ , | i(n) 〉↑ :=
n∏

j=1

σ
ij

− | vac 〉↑ (7.1)

| vac 〉↓ := | 1 〉⊗∞ , | i(n) 〉↓ :=
n∏

j=1

σ
ij

+ | vac 〉↓ , (7.2)

where i(n) = i1i2 · · · in with ij ∈ N.
The physical interpretation is straightforward: | vac 〉↑,↓ represent configu-

rations consisting of infinitely many spins all pointing up, respectively down,
whereas the vector states | i(n) 〉↑,↓ describe local configurations that are ob-
tained from | vac 〉↑,↓ by flipping the spins at the sites specified by i1, i2, . . . , in
by means of the raising and lowering operators σ±. By defining the scalar
product of infinite tensor products of vectors as infinite products of scalar
products of vectors at single sites [300], one gets

k〈 i(n) | j(m) 〉k = δn,m

n∏

	=1

δi�j�
, k =↑, ↓, ↑〈 i(n) | j(m) 〉↓ = 0 .

Indeed, in the first scalar product, outside a local region where the spins may
be flipped, there are infinitely many spins all pointing up (down). Therefore,
the value of the scalar product is determined by the spins within the region
where they are flipped: it is 0 unless the flipped spins on both sides of the
scalar product match each other. On the contrary, in the second scalar prod-
uct there are always (infinitely many) spins in | j(m) 〉 that are orthogonal to
the ones at the corresponding sites in | i(n) 〉.
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It thus follows that the completions of the linear spans of all vectors of the
form | i(n) 〉↑, respectively | i(n) 〉↓ give rise to two orthogonal Hilbert spaces
H↑, respectively H↓. Furthermore, let A be the (local) algebra generated
by all products of Pauli matrices as in (5.61); the two Hilbert spaces then
provide two irreducible, inequivalent representations π↑,↓(A). In fact, suppose
X ∈ B(H↑) commutes with π↑(A), then

↑〈 i(n) |X |j(m) 〉↑ = ↑〈 vac |
p∏

r=1

σir
+

q∏

s=1

σjs

− X |vac 〉↑

= ↑〈 vac |X |vac 〉↑ ↑〈 i(n) | j(m) 〉↑ ,

for
q∏

s=1

σjs

+

p∏

r=1

σir
− | vac 〉↑ = 0 unless raising and lowering operators match

each other. Thus, X acts as ↑〈 vac |X |vac 〉↑ 1l on a dense set of H↑, whence
X = ↑〈 vac |X |vac 〉↑ 1l and the commutant of π↑(A) is trivial.

Consider now the magnetization m(N) relative to the first N spins, that
is the operator-valued vector m(N) of components

mi(N) := μ

N∑

n=1

σn
i , i = 1, 2, 3 ,

and the average magnetization m = (m1,m2,m3) given by the formal limits

mi := lim
N→+∞

mi(N)
N

. (7.3)

Choose N > jn ≥ im, 1 ≤ i1 ≤ j1, then (k =↑, ↓)

k〈 i(n) |m3(N) |j(m) 〉k = ±μ(N + in − jm) + μ

jm∑

	=in

k〈 i(n) |σn
3 |j(m) 〉k

k〈 i(n) |m1,2(N) |j(m) 〉k = μ

jm∑

	=in

k〈 i(n) |σn
1,2 |j(m) 〉k ,

for σ3| 0 〉 = | 0 〉, σ3| 1 〉 = −| 1 〉, while 〈 0 |σ1,2 |0 〉 = 〈 1 |σ1,2 |1 〉 = 0. Then,

lim
N→+∞ k〈 i(n) | m3(N)

N
|j(m) 〉k =

{
μ k =↑
−μ k =↓

lim
N→+∞ k〈 i(n) | m1,2(N)

N
|j(m) 〉k = 0 .

Therefore, the mean magnetization m exists as a weak-limit (see (5.8)), that
is with respect to the weak-operator topology determined by the representa-
tions π↑,↓(A) on H↑,↓. It thus depends on the representation with respect to
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which the limit is calculated and belongs to the bicommutant π↑,↓(A)′′ (see
Definition 5.3.1) where m0 = (0, 0, μ), m1 = (0, 0,−μ).

If π↑,↓(A) were unitarily equivalent, then there would exist a unitary
operator U : H↑ �→ H↓ such that U† π↓(A)U = π↑(A); if so, it could be
extended by continuity to the weak closures π↑,↓(A)′′. Then, its action on
the mean magnetization would give rise to a contradiction:

−μ = m13 = U†m03 U = μU† U = μ .

The vectors | vac 〉↑,↓ behave as vacuum vectors for the spin algebra A; indeed,
| vac 〉↑,↓ and the representations π↑,↓(A) are unitarily equivalent to the GNS
representations based on the expectation functionals

ω↑,↓(
p∏

r=1

σir
+

q∏

s=1

σjs

− ) := ↑,↓〈 vac |
p∏

r=1

σir
+

q∏

s=1

σjs

− |vac 〉↑,↓ .

Other interesting representations of A can be obtained by means of the
following expectation functional

ωs

(
n∏

	=1

σi�
j�

)

=
n∏

	=1

Tr(ρ σj�
) , (7.4)

where ρ is the spin density matrix of Example 5.5.5 and σi�
j�

is the j	 Pauli
matrix at site i	. The corresponding GNS vector |Ωs 〉 can be identified with
the infinite tensor product of the vector states resulting from purifying ρ:

|Ωs 〉 =
⊗

n

|√ρ 〉 =
∞⊗

n=1

(√1 − s

2
| 0 〉 ⊗ | 0 〉 +

√
1 + s

2
| 1 〉 ⊗ | 1 〉

)
.

Further, the GNS representation πω(A) can be identified with the infinite
tensor product

πs(A) =
⊗

n

πρ(M2(C)) =
⊗

n

(
M2(C) ⊗ 1l2

)
.

The von Neumann algebra πs(A)′′ is not irreducible, but it is a factor since

the commutant is πs(A)′ =
⊗

n

(
1l2 ⊗M2(C)

)
. Since

1l + σ3

2
σ−| 0 〉 = 0, the

projection A � PN :=
2N∏

i=N

1l + σi
3

2
is such that PN | i(n) 〉0 = 0 if the sites

i1, i2, . . . , in ∈ [N, 2N ], else PN | i(n) 〉0 = | i(n) 〉0.
Given |ψ 〉↑ ∈ H↑ and ε > 0, one can find a vector |φ 〉↑ in the sub-

set linearly spanned by | i(n) 〉↑ indexed by the sites within a suitable finite
interval Iε such that ‖|ψ 〉↑ − |φ 〉↑‖ ≤ ε; then, by choosing N such that
Iε ∩ [N, 2N ] = ∅, one estimates
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‖(PN − 1l)|ψ 〉↑‖ ≤ ‖(PN − 1l)|φ 〉↑‖ + 2 ‖|ψ 〉↑ − |φ 〉↑‖ ≤ 2ε .

Therefore, PN → 1l strongly on H↑. Instead, Tr(ρσ3) = s yields

lim
N→+∞

ωs(PN ) = lim
N→+∞

(
1 + s

2

)N

=
{

1 s = 1
0 0 ≤ s < 1

Therefore, for 0 ≤ s < 1, the GNS representation πs(A) cannot be unitarily
equivalent to π↑(A). If so, there would exist an isometry U : Hs �→ H↑ such
that

0 = lim
N→+∞

〈Ωs |πs(PN ) |Ωs 〉 = lim
N→+∞

〈Ωs |U†π↑(PN )U |Ωs 〉 = 1 .

In fact, U |Ωs 〉 ∈ H↑ and PN converges strongly and thus weakly on H↑.

Factor Types

According to Example 5.6.2, the states ωs on the spin algebra A may be
interpreted as thermal spin states at inverse temperature

βs =
1
2ω

log
1 + s

1 − s
;

– the zero temperature state ω1 is equivalent to the vacuum state ω↑;
– ω0 is an infinite temperature state with the properties of a tracial state

(compare (5.55)) such that ω0(XY ) = ω0(Y X) for all X,Y ∈ A;
– for 0 < s < 1, ωs is a thermal state with no specific properties.

Correspondingly, the von Neumann algebras π′′s (A) that arise from the strong
closures of the spin algebras πs(A) on the GNS Hilbert spaces Hs are instances
of the so-called factors of type I, II and III [300].

The classification of von Neumann algebras starts by considering different
possible classes of their projections. A projection p = p† = p2 of a von Neu-
mann algebra A is called an Abelian projection if pM p is Abelian. Typical
examples in this class are the minimal projections of Example 5.3.4.1: if p ∈ A
is a minimal projection and q ∈ A is another projection, then 0 ≤ pqp ≤ p.
Therefore, pqp = λp as all spectral projections of pqp are ≤ p and must then
be equal to p. Since A is generated by its projections q, pA p is Abelian.

Two projectors p, q are said to be equivalent, p � q, if there exists U ∈ A
such U† U = P and UU† = q. This is the case for the initial and range
projections in the polar decomposition (see Remark 5.2.2). A projection p ∈ A
is said to be finite if A � q = q∗ = q2 ≤ p and q � p imply =⇒ q = p. Any
Abelian projection p ∈ A is finite; in fact, let q ≤ p and p = U† U , q = UU†.
Then, since q ≤ p =⇒ qp = pq = q (see Example 5.3.4.1), it turns out that
V := pUp = pqU = qU and V † commute so that

V † V = U† q U = p2 = p = V V † = qUU† q = q .
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1. A unital von Neumann algebra A is said to be of type I if its identity 1l can
be decomposed into an orthogonal sum of Abelian projections pn ∈ A.
Typical examples are A := L

∞
μ (X ) and B(H) with H a separable Hilbert

space. In the first case, the characteristic functions of the atoms of any
partition of X into disjoint measurable atoms are the required Abelian
projections. In the second case, the projections pn = |n 〉〈n | onto the
orthonormal vectors {|n 〉}n∈N of any ONB are Abelian and sum up to
the identity. Then, also A ⊗ B(H) is of type I, the required Abelian
projections being given by 1lA ⊗ pn.

2. A unital von Neumann algebra is said to be finite if its identity is a finite
projection, semi-finite if its identity can be decomposed into an orthog-
onal sum of finite projections. Since the projections pn in the previous
point are minimal, type I von Neumann algebras on infinite dimensional
Hilbert spaces are semi-finite, finite if dim(H) = n.

3. A unital von Neumann algebra is said to be of type II if it is semi-finite,
but does not contain any non-zero Abelian projection; of type III if it
does not contain any finite projection.

The trace for finite dimensional systems (see (5.19)) is a particular real-
ization of the following general notion.

Definition 7.0.8 (Traces). [300] A trace on a von Neumann algebra A is
a map Φ : A+ �→ R+ from its positive elements into the positive reals R+

such that

Φ(
∑

i

λiAi) =
∑

i

λiΦ(Ai) ∀λi ∈ R+ , , Ai ∈ A+

Φ(A) = Φ(U†AA) ∀A ∈ A+ , U ∈ A unitary .

The trace is

– faithful if Φ(A) = 0 ⇐⇒ A = 0 for A ∈ A+;
– finite if Φ(A) < +∞ for all A ∈ A+;
– semi-finite if for all A ∈ A+ there exists A+ � B ≤ A with Φ(B) < +∞;
– normal if supΦ(Aα) = Φ(supAα) for every increasing net {Aα} ⊂ A+.

Analogously to what has been proved for states (see Example 5.3.2.3), it
turns out that if Φ ≤ Ψ for two faithful, semi-finite traces on A, then there
exists 0 ≤ X ′ ≤ 1l in the center Z = A ∩ A′ such that Φ(A) = Ψ(X ′A) for
all A ∈ A+ [300]. Then, if A is a factor, Z = {λ1l} and all traces on it are
proportional; in fact, given any two traces Φi, i = 1, 2,

Φ1 ≤ Φ1 +Φ2 =⇒ Φ1 = λ1(Φ1 +Φ2) , Φ2 ≤ Φ1 +Φ2 =⇒ Φ2 = λ2(Φ1 +Φ2) ,

whence Φ1 = λ1λ
−1
2 Φ2.

Consequently, any chosen trace on a factor von Neumann algebra can
be used to assign its projections an intrinsic dimension, thus providing a
characterization of types [162, 117, 300]:



7.1 Observables, States and Dynamics 323

1. Factors of type I have a semi-finite, faithful, normal trace given by (5.19)
whose range on projections is discrete and finite for finite type In factors,
or countable for infinite type I∞ factors: an example of the latter case is
the spin algebra Πs(A)′′ with respect to the zero temperature state ω1;

2. factors of type II have a semi-finite, faithful, normal trace whose range
on projections is the whole interval [0, 1] for finite type II1 factors or the
whole of R+ for infinite type II∞ factors. An instance of the first occur-
rence is the spin algebra πs(A)′′ with respect to the infinite temperature
state ωs when s = 0;

3. finally, type III factors have no semi-finite, faithful, normal traces: this
is the case of the spin algebra πs(A)′′ when 0 < s < 1.

7.1 Observables, States and Dynamics

The physical scenario in the examples discussed in the previous section is a
common one in quantum statistical mechanics. Indeed, the limit of infinitely
many degrees of freedom is in general achieved in the so-called thermodynam-
ical limit, where one starts with N particles in a finite volume V ⊂ R

3 (or
Z

3 in the case of a lattice system) and lets N,V → ∞ in such a way that
N/V �→ ρ, where ρ ≥ 0 is a given spatial density.

Each V ⊂ R
3 has its own Hilbert space HV = L

2
dr (V ) of Lebesgue square-

summable functions and the corresponding C∗ algebra AV = B(HV ) of
bounded operators. Instead, in the case of a lattice system, each x ∈ V carries
a Hilbert space Hx and the C∗ algebra Ax := B(Hx), so that HV =

⊗
x∈V Hx

and AV =
⊗

x∈V Ax. Notice that in the continuous case each Hilbert space
HV is infinite dimensional, while in the discrete case it depends on whether
the Hilbert spaces Hx at the lattice sites are finite dimensional or not. If
V1 ⊆ V2, set V c

12 := V2 \ V1, then HV1 = HV2 ⊗ HV c
12

and AV1 becomes a
subalgebra of AV2 by embedding any A1 ∈ AV1 into AV2 as A1 ⊗ 1lV c

12
where

1lV c
12

denotes the identity operator on the Hilbert space HV c
12

. It follows that
the set A0 :=

⋃
V AV is a ∗-algebra, namely it is closed under addition and

multiplication of its elements; also, it is naturally endowed with the norm
AV � X �→ ‖X‖ for all V ⊂ R

3.

Definition 7.1.1 (Quasi-Local C∗ algebras). The normed ∗-algebra A0

is the algebra of local observables, while its norm-closure A :=
⋃

V

AV

‖·‖
is

known as a quasi-local C∗ algebra.

Remark 7.1.1. The notion of quasi-local algebra is physically motivated
by the fact that the only experimentally accessible observables of infinitely
extended quantum systems are the local ones. These can then be used to
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approximate as much as one desires the non-local ones. From a mathematical
point of view, the construction is an instance of inductive limit [117] of a
directed net of C∗ algebras. In the case of an increasing sequence {Ani

}ni∈N

of finite-dimensional C∗ algebras Ani
⊆ Ani+1 the generated quasi-local C∗

algebra is called Almost Finite (AF), if the algebras Ani
are full matrix

algebras Mni
(C) then A is known as Uniformly Hyperfinite (UHF) [277, 244,

245].
Suppose an increasing sequence of finite-dimensional unital C∗ alge-

bras {Ani
}ni

is represented on a Hilbert space H, then the strong closure
of
⋃

ni
Ani

is a von Neumann algebra M which is called Hyperfinite. An
Abelian instance of such an algebra is the von Neumann algebra of essen-
tially bounded functions, L

∞
μ (X ), which one can generate by means of the

characteristic functions of finer and finer finite partitions of X as explained
in Remark 2.2.3.4.

Example 7.1.1. [10] Let Mn1(C) ⊆ Mn2(C) be two matrix algebras; given
a system of matrix units {E(1)

jk }n1
j,k=1 for the smaller one (see (5.12)), the or-

thogonal projections E(1)
kk sum up to the identity

∑n1
k=1 E

(1)
kk = 1l2 ∈ Mn2(C),

whence
∑n1

k=1 Tr2(E
(1)
kk ) = n2, where Tr2 denotes the trace computed with

respect to the Hilbert space C
n2 . But then, using the cyclicity of the trace,

Tr2(E
(1)
kk ) = Tr2(E

(1)
kp E

(1)
pk ) = Tr2(E

(1)
pk E

(1)
kp ) = Tr2(E(1)

pp ) ,

for all k, p = 1, 2, . . . , n1, whence n2 = n1 × d, where d := Tr2(E
(1)
kk ) for all

k = 1, 2, . . . , n1. Let {| fi 〉 ∈ C
n2}d

i=1 be an ONB in the subspace projected
out by E

(1)
11 and set

E
(2)
(k1,k2);(j1,j2)

:= E
(1)
k11

| fk2 〉〈 fj2 |E
(1)
1j2

. (7.5)

Since 1 ≤ k1, j1 ≤ n1 while 1 ≤ k2, j2 ≤ d, these are n2
1 × d2 = n2

2 matrices
in Mn2(C); moreover, from (5.12) and E

(1)
11 | fp 〉 = | fp 〉 it follows that

E
(2)
(k1,k2);(j1,j2)

E
(2)
(p1,p2);(q1,q2)

= E
(1)
k11

| fk2 〉〈 fj2 |E
(1)
1j1

E
(1)
p11

| fp2 〉〈 fq2 |E
(1)
1q1

= δj1p1 E
(1)
k11

| fk2 〉〈 fj2 |E
(1)
11 | fp2 〉〈 fq2 |E

(1)
1q1

= δj1p1δj2p2 E
(1)
k11

| fk2 〉〈 fq2 |E
(1)
1q1

= δj1p1 δj2p2 E
(2)
(k1,k2);(q1,q2)

.

Thus, (7.5) defines a set of matrix units in Mn2(C). Set Ed
k2j2

:= | fk2 〉〈 fj2 |;
then, E(2)

(k1,k2);(j1,j2)
can be isomorphically represented by E

(1)
k1j1

⊗ Ed
k2j2

on
C

n2 = C
n1 ⊗ C

d. Therefore Mn2(C) is isomorphic to Mn1(C) ⊗Md(C). The
matrix algebras Mni

(C) ⊆ Mni+1(C) that generate a UHF algebra A must
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be such that any ni must divide the subsequent one so that A is isomorphic
to an infinite tensor product of matrix algebras. The simplest instance of
UHF algebra A is a quantum spin chain (see Section 7.1.5). In the case of
the previously discussed infinite spin system, A is the quasi-local algebra A
generated by the local algebras A[−k,k] =

⊗k
	=−k(M2(C))	 which are tensor

products of 2 × 2 matrix algebras at each lattice site.

7.1.1 Bosons and Fermions

Physical systems of quantum statistical mechanics usually consist of indistin-
guishable particles and are described by operators of creation and annihila-
tion satisfying either the CAR (5.62) or the CCR (5.92). More precisely, one
considers the Fock representation built upon the existence of a distinguished
vacuum vector | vac 〉 (which was considered in Examples 5.6.2.1,2 for finitely
many degrees of freedom).

Let H be the Hilbert space describing a single Fermion or Boson and let
{|ψi 〉}i∈N be an ONB. Then, one introduces operators

ai := a(ψi) such that a(ψi)| vac 〉 = 0 ∀i ∈ N

a†i := a†(ψi) such that a†i | vac 〉 = |ψi 〉 .

They are required to satisfy the CAR (5.62) if the particles are Fermions,
the CCR (5.92) if Bosons.

By expanding any |ψ 〉 ∈ H along the chosen ONB , |ψ 〉 =
∑

i ci|ψi 〉,
one can consistently define creation and annihilation operators of generic
|ψ 〉 ∈ H:

a†(ψ) =
∑

i∈N

ci a
†
i , a(ψ) =

∑

i∈N

c∗i ai .

This yields a(ψ)| vac 〉 = 0, a†(ψ)| vac 〉 = |ψ 〉 and
[
a(ψ) , a(φ)

]
=
[
a†(ψ) , a†(φ)

]
= 0 ,

[
a(ψ) , a†(φ)

]
= 〈ψ |φ 〉 (CCR )

{
a(ψ) , a(φ)

}
=
{
a†(ψ) , a†(φ)

}
= 0 ,

{
a(ψ) , a†(φ)

}
= 〈ψ |φ 〉 (CAR ) ,

for all |ψ 〉, |φ 〉 ∈ H. Furthermore, by using these algebraic relations one gets

a(ψ)|φ 〉 = a(ψ)a†φ| vac 〉 = 〈ψ |φ 〉| vac 〉 . (7.6)

For both Fermions and Bosons the number operator is defined by

N :=
∑

i∈N

a†i ai .

Directly for Bosons and by means of
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[a†iai , a
†(f)] = a†i{ai , a

†(f)} − {a†i , a†(f)}ai = fia
†
i , (7.7)

where fi := 〈ψi | f 〉, for Fermions, one finds that

[N , a†(f)] = a†(f) , [N , a(f)] = −a(f) . (7.8)

The Fock space HF,B for Fermions, respectively Bosons is generated by the
completion of the linear span of vectors of the form P (a(f), a†(g))| vac 〉 where
P (a(f), a†(g)) is any polynomial in Fermi, respectively Bose annihilation and
creation operators. The Fermi operators a#(f) are bounded on the Fock
space; indeed, from the CAR it follows that, for any normalized |Ψ 〉 ∈ HF ,

‖a†(f)|Ψ 〉‖2 + ‖a†(f)|Ψ 〉‖2 = ‖f‖2 .

The polynomials P (a(f), a†(g) with f, g ∈ HV , where V is a finite volume,
generate, by norm completion, a local C∗-algebra, AF

V .

Remark 7.1.2. Given two volumes V1 ⊂ V2 ⊂ R
3, the local Fermi algebra

cannot be isomorphic to AF
V2

�= AF
V1

⊗ AF
V3

, where V3 := V2 \ V2. In fact, if
| f 〉 ∈ HV1 and | g 〉 ∈ HV3 , despite the fact that 〈 f | g 〉 = 0, commutators of
the form [a#(f) , a#(g)] need not vanish. However, because of (5.63), commu-
tators vanish if one considers polynomial with even numbers of creation and
annihilation operators: the quasi-local C∗ algebra they generate is denoted by
AG. The quasi-local algebra C∗ generated by polynomial with a same number
of creation and annihilation operators is denoted by AE ; it is known as even
Fermi algebra and commutes with the number operator. Indeed, using (7.8),
it turns out that the number operator generates the gauge-transformation

eiαN a†(f) e−iαN =
+∞∑

k=0

(iα)k

k!
[N , [N , · · · [
︸ ︷︷ ︸

k times

N , a#(f)] · · ·]]

=
+∞∑

k=0

(iα)k

k!

∑

j

fj [N , [N , · · · [
︸ ︷︷ ︸

k−1 times

N , a†j ] · · ·]]

=
∑

j

fj

+∞∑

k=0

(iα)k

k!
= eiα a†(f) = a†(eiαf) (7.9)

eiαN a†(f) e−iαN = e−iα a(f) = a(eiαf) . (7.10)

Therefore, the various phases compensate each other in polynomials with
equal numbers of a and a†; these are thus left invariant by the gauge-
transformation for any α ∈ R and must therefore commute with the number
operator N .

For Bosons, [a#(f1) , a#(f2)] = 0 if fi ∈ HVi
and V1 ∩ V2 = ∅; however,

the operators a#(f) cannot be bounded (see (5.69)) In order to construct
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local C∗ algebras generating a Bose quasi-local algebra AB , one associates
to |ψ 〉 ∈ H the bounded operators [108]

W (ψ) := exp
(
i
a(ψ) + a†(ψ)

2

)
(7.11)

which generalize the Weyl operators (5.96) and linearly generate a local
Bosonic C∗ subalgebra AB

V by choosing ψ supported within the volume V .

The C∗ algebras AB,F are irreducibly represented on the Fock spaces
HB,F . In order to show this one can use a similar argument as for the spin
algebras π↑,↓(A) discussed in the previous section. If X belongs to the com-
mutant, X ∈ A′

B,F , then (7.6) yields

〈 vac | a(gn) · · · a†(g1)X a†(f1) · · · a†(fm) |vac 〉 =
= 〈 vac |X a(gn) · · · a(g1)a†(f1) · · · a†(fm) |vac 〉
= 〈 vac |X |vac 〉 〈 vac | a(gn) · · · a(g1)a†(f1) · · · a†(fm) |vac 〉 ,

where (see (5.185) and (5.183))

〈 vac | a(gn) · · · a(g1)a†(f1) · · · a†(fm) |vac 〉 =
{

per([〈 gi | fj 〉]) CCR
det([〈 gi | fj 〉]) CAR

.

(7.12)
Therefore, X = 〈 vac |X |vac 〉 1l whence the commutant is trivial; this means
(see Lemma 5.3.2) that AB,F are irreducibly represented.

Quasi-free Automorphisms and Quasi-free States

The gauge-transformation (7.9) is a particularly simple example of quasi-free
automorphism.

Definition 7.1.2. Every single particle unitary transformation U : H �→ H

gives rise to a quasi-free automorphism on AB,F given by

ΘU [a#(f)] = a#(Uf) . (7.13)

Quasi-free automorphisms are typical time-evolutions of non-interacting
particles possibly subjected to external potentials. They preserve the num-
ber operator; indeed, by expanding U | fi 〉 =

∑
j cij | fj 〉 with respect to the

chosen ONB, it turns out that

Θ[N ] =
∑

i∈N

a†(Ufi)a(Ufi) =
∑

i,j,k

cijc
∗
ika

†
jak =

∑

j∈N

a†jaj ,

for the matrix C = [cij ] is unitary.
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Examples 7.1.2.

1. Let {Ux}x∈R3 be the unitary group of space-translations,

| f 〉 �→ Ux| f 〉 = | fx 〉 , 〈 r | fx 〉 = f(r − x) ,

for all f ∈ L
2
dr (R3); then, {Θx}x∈R3 is the group of space-translation

automorphisms of AB,F :

Θx[a#(f)] = a#(fx) . (7.14)

2. Let h : H �→ H be a single-particle Hamiltonian with discrete spec-
trum, h =

∑
i εi|ψi 〉〈ψi | being its spectral decomposition, and set

a#
i := a#(ψi). Therefore, the basic annihilation and creation operators

annihilate and create single-particle energy eigenvectors. Consider the
second-quantized Hamiltonian H =

∑
i εi a

†
iai and the generated one-

parameter group of automorphisms Θ := {Θt}t∈R,

a#(f) �→ Θt[a#(f)] := eitH a#(f) e−itH .

By expanding and summing as in Remark 7.1.2 one finds that, for both
Bosons and Fermions,

eαH a(f) e−αH = a(e−α∗hf) , eαH a†(f) e−αH = a(eαhf) , (7.15)

for all α ∈ C. Therefore,

Θt[a#(f)] = a#(eithf) , (7.16)

whence the group Θ is a quasi-free time-evolution.
3. Let us consider a single-particle Hamiltonian h with an absolutely con-

tinuous spectrum and the corresponding quasi-free time-evolution (7.16).
For instance, the free-time evolution given by 〈p |h |f 〉 = p2/(2m)f(p)
in momentum representation.
In this cases, one can use the so-called Riemann-Lebesgue Lemma [258].
For an integrable function f : R �→ C with integrable first derivative, it
follows from integration by parts:

∫

R

dν f(ν) ei ν t =
f(ν)ei ν t

i t

∣
∣
∣
+∞

−∞
+
i

t

∫

R

dν f ′(ν) ei ν t

=
i

t

∫

R

dν f ′(ν) ei ν t −→ 0

when t → ±∞. Because of the assumed absolute continuity of the spec-
trum of the single-particle Hamiltonian h, this lemma ensures that

lim
t→±∞

‖[a(f) , a†(eihtg)]‖ = lim
t→±∞

|〈 f | eihtg 〉| = 0 (7.17)
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for all f, g ∈ H for Bosons and

lim
t→±∞

‖{a(f) , a†(eihtg)}‖ = lim
t→±∞

|〈 f | eihtg 〉| = 0 (7.18)

for Fermions. While Bosonic annihilation and creation operators commute
asymptotically in time, Fermionic ones anticommute. However, by means
of (7.7), one computes

[a(f1)a(f2) , a†(eihtg)] = a(f1) 〈 f2 | eihtg 〉 − 〈 f1 | eihtg 〉 a(f2) .

Then, ‖[a(f1)a(f2) , a†(eihtg)]‖ → 0 when t → ±∞; furthermore, the
same asymptotic commutativity in time holds for [X , Θt[Y ]] where X
is an even polynomial in a, a† and Y any polynomial. By continuity, it
extends to all X belonging to the even Fermi algebra AG and all Y ∈ AF .
Moreover, this result holds for all quasi-free automorphisms Θt(a#(f) =
a(Utf) over AG consisting of a discrete or continuous group {Ut}t∈R,Z of
single-particle unitaries Ut : H �→ H such that limt→±∞〈 f |Utg 〉 = 0 for
all f, g ∈ H. This phenomenon is known as asymptotic Abelianess.

Definition 7.1.3. [65, 108] A quasi-free state on AB is any linear functional
ωA such that ω(1l) = 1 and

ωA(W (ψ)) = exp
(
−1

4
〈ψ | (1l + 2A) |ψ 〉

)
, (7.19)

where 0 ≤ A ∈ B(H) is a positive bounded operator on the single particle
Hilbert space H = L

2
dr (R3).

A quasi-free state on AF is any linear functional ωA such that ωA(1l) = 1
and

ωA(a†(fm) · · · a†(f1)a(g1) · · · a(gn)) = δnm Det[〈 gi |A |fj 〉] , (7.20)

where 0 ≤ A ≤ 1l ∈ B(H) is a single particle operator on H = L
2
dr (R3).

The Fock vacuum satisfying (7.12) is the simplest instance of a quasi-free
state; the one with A = 0. Like classical Gaussian states, quasi-free states
also can be reconstructed from their two-point correlation functions

ωA(a†(f)a(g)) = 〈 g |A |f 〉 ∀f, g ∈ H . (7.21)

This property results directly from the determinant in (7.20) for Fermions,
while for Bosons it can be proved by showing that (7.19) leads to

ωA(a†(fm) · · · a†(f1)a(g1) · · · a(gn)) = δnm Per[〈 gi |A |fj 〉] , (7.22)

where the so-called permanent is as in (5.185); indeed, (7.19) is a generaliza-
tion of (5.186) to the infinite dimensional case.
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Example 7.1.3. [65] Suppose a quasi-free state satisfies the KMS condi-
tions (5.179) with respect to the quasi-free time-evolution (7.16); using the
commutation relations and (7.15), it turns out that

ωA(a†(f)a(g)) = 〈 g |A |f 〉 = ωA(a(g)Θiβ [a†(f)]) = ωA(a(g)a†(e−β hf))
= 〈 g | e−β h |f 〉 ± ωA(a†(e−β hf)a(g))
= 〈 g | e−β h ±Ae−β h |f 〉 .

Since this is true for all f, g ∈ H it turns out that (compare (5.182)

and (5.184)) A∓ =
e−β h

1l ∓ e−β h
, where the plus sign holds for Fermions and

the minus sign for Bosons.

KMS States and Modular Theory

We have seen that Gibbs states of finite dimensional quantum systems sat-
isfy the KMS relations (5.179). These relations can be extended to infinitely
many degrees of freedom where they identify equilibrium states at a given
temperature [131] (a simple instance of this fact was offered in the previous
example). Unlike with finitely many degrees of freedom (see Remark 5.6.1.1),
there can be more than one equilibrium state at inverse temperature β. An
equilibrium state is called extremal when it cannot be decomposed into a lin-
ear convex combination of other equilibrium states at the same temperature;
extremal equilibrium states give rise to factor representations and can be in
some cases rightly identified as pure thermodynamical phases [300, 65].

Given a triplet (A, Θ, ω), with a faithful state ω. The latter is said to be
a KMS state at inverse temperature β with respect to the automorphism Θ
if the functions (compare (5.178))

FXY (t) := ω(Θt[X]Y ) , GXY (t) := ω(Y Θt[X]) ∀X,Y ∈ A ,

can be extended to analytic functions FXY (z), respectively GXY (z), on the
strips −β < �(z) < 0, respectively 0 < �(z) < β, and continuous on their
borders, where they satisfy

ω(Θt[X]Y ) = ω(Y Θt+iβ [X]) . (7.23)

We outline a few of the many properties of KMS states [300] (for a more
detailed analysis see [65, 108]). These properties involve the GNS cyclic rep-
resentation πω(A) on the GNS Hilbert space Hω and the GNS implementation
of Θ by a unitary operator Uω.
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Remarks 7.1.3.

1. When extended to the von Neumann algebra πω(A)′′, a KMS state ω
remain KMS in the sense that

〈Ωω |X Uω(t)Y |Ωω 〉 = 〈Ωω |Y U†
ω(t+ iβ)X |Ωω 〉 ∀X,Y ∈ πω(A)′′ ,

2. KMS states are Θ-invariant: indeed, (7.23) implies

fX(t) := ω(Θt[X]) = ω(Θt+iβ [X]) = fX(t+ iβ)

for all X ∈ A. Thus, fX(t) can be periodically extended over the whole
of C where it defines a bounded analytic function for f(t) is bounded
on the strip −β < �(z) < 0. Therefore, this function must be constant:
fX(t) = fX(0), whence Θt[X] = X for all X ∈ A.

3. The center Zω = πω(A)′′ ∩ πω(A)′ of the GNS representation based on a
KMS state ω consists of Θ-invariant global observables. Indeed, if T ∈ Zω,
by the same argument as in the previous point, the function

fX,T (t) := 〈Ωω |πω(Θt[X])T |Ωω 〉 = 〈Ωω |T Θt+iβ [X] |Ωω 〉
= 〈Ωω |πω(Θt+iβ [X])T |Ωω 〉 = fX,T (t+ iβ)

can be extended to a bounded analytic function over C, for all X ∈ A.
Then, it must be fX,T (t) = fX,T (0). Since t ∈ Zω, choosing X = Y † Z,
Y,Z ∈ A, yields

fY † Z,T (t) = 〈Ωω |πω(Y )† Uω(t)T U†
ω(t)πω[Z] |Ωω 〉

= fY † Z,T (0) = 〈Ωω |πω(Y )† T πω(Z) |Ωω 〉
on a dense set, whence Uω(t)T U†

ω(t) = T for all t ∈ R.
4. For fixed inverse temperature, the KMS states form a convex set which

is compact in the w∗-topology [300].
5. A KMS state is said to be extremal KMS if it cannot be written as a con-

vex combination of other KMS states (at the same inverse temperature).
The GNS representation based on an extremal KMS state is a factor:
Zω = {λ1l}. If not, there would exist 0 ≤ T1,2 ∈ Zω with T1 + T2 = 1l
which could be used to construct the states

ωi(X) =
〈Ωω |Tiπω(X) |Ωω 〉

〈Ωω |Ti |Ωω 〉
which turns out to be a KMS state with respect to Θ at inverse temper-
ature β. Indeed,

ωi(Θt[X]Y ) =
〈Ωω |Tiπω(Θt[X])πω(Y ) |Ωω 〉

〈Ωω |Ti |Ωω 〉

=
〈Ωω |πω(Θt[X])Tiπω(Y ) |Ωω 〉

〈Ωω |Ti |Ωω 〉

=
〈Ωω |Tiπω(Y )πω(Θt+iβ [X]) |Ωω 〉

〈Ωω |Ti |Ωω 〉 = ωi(Y Θt+iβ [X]) .
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The modular theory or Tomita-Takesaki theory, which has been intro-
duced in its simplified finite-dimensional version in Section 5.5.1, extend to
generic von Neumann algebras M ⊆ B(H) with a faithful state (see Defini-
tion 5.3.2) [64]. More precisely, given a quantum triplet (A, Θ, ω), if the GNS
state is such that

X|Ωω 〉 = 0 =⇒ X = 0 ∀X ∈ πω(A)′′ ,

then there exists a modular conjugation J : Hω �→ Hω, such that

J2 = 1l , Jω|Ωω 〉 = |Ωω 〉 , Jω πω(A)′′ Jω = πω(A)′ , (7.24)

and a modular operator Δω : Hω �→ Hω such that

Jω

√
ΔωX|Ωω 〉 = X†|Ωω 〉 ∀X ∈ πω(A)′′ . (7.25)

Furthermore, the maps

σt
ω : πω(A)′′ � X �→ Δit

ω XΔ−it
ω (7.26)

form a group {σt
ω}t∈R of automorphisms, called modular group; moreover,

they satisfy the KMS conditions

〈Ωω |X Y |Ωω 〉 = 〈Ωω |Y σ−i
ω (X) |Ωω 〉 ∀X,Y ∈ πω(A)′′ , (7.27)

that we will shortly write as ω(XY ) = ω(Y σ−i
ω (X)).

Example 7.1.4. If M ⊆ B(H) is an Abelian von Neumann algebra (M ⊆
M′) with a cyclic vector |Ω 〉, then it is maximally Abelian. In fact, |Ω 〉
is necessarily cyclic also for the commutant M′, thence separating for the
bicommutant M′′ = M (see Lemma 5.3.1). Then, (7.25) gives

‖J
√
ΔX|Ω 〉‖2 = ‖X†|Ω 〉‖2 = 〈Ω |XX† |Ω 〉

= 〈Ω |X†X |Ω 〉 = ‖X|Ω 〉‖2 ,

for all X ∈ M since M is Abelian. Therefore, Δ = 1l and JXJ = X†,
whence (7.24) yields M = M′.

Example 7.1.5. A most used GNS representation [300], is the so-called ther-
mal representation whose cyclic and separating vector is the tensor product
of two vacuum states, |Ωβ 〉 = | vac 〉 ⊗ | vac 〉, so that the GNS Hilbert space
is isomorphic to the tensor product of two Fock Hilbert spaces.

We shall consider the framework of Examples 5.6.2.2,3 without restric-
tions on the dimensionality of the single particle Hilbert space and on the
cardinality of the spectrum of the single particle Hamiltonian h. We shall
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denote by a#, respectively b#, Bose, respectively Fermi, creation and anni-
hilation operators. In the Bose case, their action on |Ωβ 〉 is

πβ(a(f)) =: aβ(f) = a(
√

1l +A−f) ⊗ 1l + 1l ⊗ a†(j
√
A−f)

πβ(a†(f)) =: a†β(f) = a†(
√

1l +A−f) ⊗ 1l + 1l ⊗ a(j
√
A−f) ,

where the single particle operator j : H �→ H is antilinear and satisfies
〈 jf | jg 〉 = 〈 g | f 〉, while in the Fermi case

πβ(b(f)) =: bβ(f) = b(
√

1l −A+f) ⊗ 1l + θ ⊗ a†(j
√
A+f)

πβ(b†(f)) =: b†β(f) = b†(
√

1l −A+f) ⊗ 1l + θ ⊗ a(j
√
A+f) ,

where θ is an operator on the Fock space such that θ b# = −b# θ and
θ| vac 〉 = | vac 〉. Then,

a†β(f)|Ωβ 〉 = |
√

1l +A−f 〉 ⊗ | vac 〉 , aβ(f)|Ωβ 〉 = | vac 〉 ⊗ | j
√
A−f 〉

b†β(f)|Ωβ 〉 = |
√

1l −A+f 〉 ⊗ | vac 〉 , bβ(f)|Ωβ 〉 = | vac 〉 ⊗ | j
√
A+f 〉 ,

whence

〈Ωβ | a†β(f)aβ(g) |Ωβ 〉 = 〈 j
√
A−f | j

√
A−g 〉 = 〈 g |A− |f 〉

〈Ωβ | b†β(f)bβ(g) |Ωβ 〉 = 〈 j
√
A+f | j

√
A+g 〉 = 〈 g |A+ |f 〉 .

The modular operators read

Δ−
β = e−β

∑
i εi a†

i ai ⊗ e+β
∑

i εi a†
i ai , Δ+

β = e−β
∑

i εi b†i bi ⊗ e+β
∑

i εi b†i bi ,

where a#
i and b#i create or annihilate eigenstates | εi 〉 of the single-particle

Hamiltonian h. By means of calculations similar to those that led to (7.9)
and (7.10), one explicitly calculates

Δ−
β aβ(f)|Ωβ 〉 = | vac 〉 ⊗ | jeβ h

√
A−f 〉

Δ+
β bβ(f)|Ωβ 〉 = | vac 〉 ⊗ | jeβ h

√
A+f 〉 .

One can thus explicitly evaluate the action of the modular conjugation;
from (7.25),

Jβ aβ(f)|Ωβ 〉 =
√
Δ−

β a
†
β(f)|Ωβ 〉 = | e−β h/2

√
1l +A−f 〉 ⊗ | vac 〉

= |
√
A−f 〉 ⊗ | vac 〉

Jβ a
†
β(f)|Ωβ 〉 =

√
Δ−

β aβ(f)|Ωβ 〉 = | vac 〉 ⊗ | jeβ h/2
√
A−f 〉

= | vac 〉 ⊗ | j
√

1l +A−f 〉 ,

in the case of Bosons, while for Fermions one obtains
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Jβ bβ(f)|Ωβ 〉 =
√
Δ+

β b
†
β(f)|Ωβ 〉 = | e−β h/2

√
1l −A+f 〉 ⊗ | vac 〉

= |
√
A+f 〉 ⊗ | vac 〉

Jβ b
†
β(f)|Ωβ 〉 =

√
Δ+

β bβ(f)|Ωβ 〉 = | vac 〉 ⊗ | jeβ h/2
√
A+f 〉

= | vac 〉 ⊗ | j
√

1l −A+f 〉 .

Since thermal states are faithful, |Ωβ 〉 is cyclic and separating, therefore

Jβ aβ(f)Jβ = a†(
√
A−f) ⊗ 1l + 1l ⊗ a(j

√
1l +A−f)

Jβ a
†
β(f)Jβ = a(

√
A−f) ⊗ 1l + 1l ⊗ a†(j

√
1l +A−f)

for Bosons and, for Fermions,

Jβ bβ(f)Jβ = b†(
√
A+f) ⊗ 1l + θ ⊗ b(j

√
1l −A+f)

Jβ b
†
β(f)Jβ = b(

√
A+f) ⊗ 1l + θ ⊗ b†(j

√
1l −A+f) .

The thermal representation has been used in [211] to implement the trans-
position in an infinite dimensional context and study the entanglement prop-
erties of infinitely extended quantum systems (see also [308]), the starting
point being (5.149) in the finite-dimensional case. Let V the flip operator
which exchange vectors in tensor products V |φ⊗ ψ 〉 = |ψ ⊗ φ 〉, then

V † Jρ X
† ⊗ 1lN Jρ V = XT ⊗ 1l .

Analogously, in the thermal representation one may represent the transposi-
tion as follows

γ−T [aβ(f)] = V †
− Jβ a

†
β(f)Jβ V− = a†(j

√
1l +A−f) ⊗ 1l + 1l ⊗ a†(

√
A−f)

γ+
T [bβ(f)] = V †

+ Jβ b
†
β(f)Jβ V+ = b†(j

√
1l −A+f) ⊗ 1l + θ ⊗ b(

√
A+f) .

Among the CPU maps on a C∗ algebra A, a special role is played by
the conditional expectations (see Definition 5.2.3). Suppose the orthogonal
projections Pi in Example 5.2.9.1 commute with a given density matrix ρ ∈
B

+
1 (H), it then follows that

ρ ◦ E(X) = Tr(ρE[X]) =
∑

i∈I

Tr(Pi ρPi X) = Tr(
∑

i∈I

PiρX) = ρ(X)

for all X ∈ B(H) for
∑

i∈I Pi = 1l. One says that the conditional expecta-
tion from B(H) onto the Abelian subalgebra P ⊂ B(H) generated by the Pj

respects the state ρ. Also, notice that if ρ is faithful then P is left invariant
by the modular automorphism (5.180), that is σt

ρ[P] = P. This is the key
point how to extends these considerations to the case of general von Neu-
mann algebras with faithful normal states, where conditional expectations
are identified with normal projections of norm one (see Remark (5.2.7)). We
state the result, for a proof see [293].
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Proposition 7.1.1. Let A be a von Neumann algebra, ω a faithful normal
state with associated modular group of automorphisms σt

ω, t ∈ R. Moreover,
let A0 ⊂ A be a von Neumann subalgebra and ω0 the restriction ω |̀A0 with
associated modular automorphisms σt

ω0
. Then, the following conditions are

equivalent:

1. there exists a normal conditional expectation E : A �→ A0 that respects
the state, ω ◦ E = ω;

2. σt
ω[A0] ⊆ A0 for all t ∈ R;

3. σt
ω0

[A] = σt
ω[A] for all A ∈ A0.

7.1.2 GNS Representation and Dynamics

Quantum dynamical systems will be identified as non-commutative algebraic
triplets (compare the analogous commutative Definition 2.2.4).

Definition 7.1.4. Quantum dynamical systems are triplets (A, Θ, ω), where
A is a C∗ algebra with identity 1l, the dynamics Θ corresponds to a group of
automorphisms Θt : A �→ A, t ∈ G, such that

Θt ◦Θs = Θs ◦Θt = Θt+s , ω ◦Θt = ω , ∀ s, t ∈ G ,

where G = Z or G = R and the state ω : A �→ C is a normalized, positive,
Θ-invariant expectation, namely ω ◦Θt = ω for all t ∈ G.

Given an algebraic triplet (A, Θ, ω), a natural Hilbert space formulation
is based on the GNS construction (see Definition 5.3.7); it does provide not
only a representation πω(A) on a Hilbert space Hω with a cyclic invariant
vector |Ω 〉, but also an implementation of the dynamics by a group of unitary
operators.

Proposition 7.1.2. [107, 300] Let (A, Θ, ω) be a C∗ dynamical system and
(Hω, πω, Ωω) the associated GNS triplet, then, the C∗ automorphism Θ is
implemented by a unique unitary operator Uω : Hω �→ Hω,

πω(Θ(X)) = U†
ω πω(X)Uω ∀X ∈ A . (7.28)

Proof: Given the GNS representation πω, π := πω ◦ Θ is another repre-
sentation of A on Hω such that

〈Ωω |π(X) |Ωω 〉 = 〈Ωω |πω(Θ(X)) |Ωω 〉 = ω(Θ(X)) = ω(X) .

Therefore, Remark 5.3.2.1 ensures the existence of a unitary operator Uω such
that (7.28) holds. If another unitary operator W with the same properties
exists, then

[
W †Uω , πω(X)

]
πω(Y )|Ωω 〉 = 0 for all Y ∈ A, namely on a

dense set; therefore, W †Uω belongs to πω(A)′ for which |Ωω 〉 is separating
(see Lemma 5.3.1). Then, W = Uω, since (W †Uω − 1l)|Ωω 〉 = 0. �
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Remarks 7.1.4.

1. If the dynamics is specified by a one-parameter group of C∗ automor-
phisms {Θt}t∈R which is weakly-continuous in the GNS representation,
then the group Uω(G) := {Uω(t)}t∈G, G = R, is strongly continuous on
Hω. In fact, the previous Proposition asserts that each Θt is implemented
by a unitary operator Uω(t); furthermore,

U†
ω(t)U†

ω(s)πω(X)|Ωω 〉 = U†
ω(t)πω(Θs(X))|Ωω 〉 = πω(Θt+s(X))|Ωω 〉

= U†
ω(t+ s)πω(X)|Ωω 〉

on a dense set, whence the family {Uω(t)}t∈R forms a one-parameter
group of unitaries on Hω. Strong continuity follows from weak continuity
and

‖(Uω(t) − 1l)πω(X)|Ωω 〉‖2 = 2
(
ω(X†X) −�(ω(X†Θt(X)))

)
.

2. The Fock representation is unitarily equivalent to the GNS representation
based on the vacuum state: ω(a(f)) = 〈 vac | a(f) |vac 〉 = 0 for all | f 〉
in the single-particle Hilbert space H. Suppose Θ is a quasi-free Fermi
automorphism as in Example 7.1.2.3; let V : HF �→ HF be the unitary
operator that implements it on the Fock space. Since the number oper-
ator is left invariant by quasi-free automorphisms, if V belonged to AF ,
then it should also belong to the even Fermi algebra AE . Further, from
asymptotic Abelianess, the invariance of the norm under unitary trans-
formations and the fact that the various Vt commute, it turns out that,
for any ε > 0 and X ∈ AF ,

‖[Vt , Θs[X] ]‖ = ‖V †
s Vt X Vs − V †

s X Vt Vs‖
= ‖Vt X − X Vt‖ = ‖X − V †

t X Vt‖ ≤ ε

for all t ∈ R. This cannot be true for all X ∈ AF so that the unitary oper-
ator V ∈ B(HF ) does not belong to AF . However, since AF is irreducible
(see (7.12)), V belongs to the bicommutant A′′

B,F = {λC}′ = B(HF ).
3. Very rarely, starting from the Hamiltonian of a system of N interacting

particles and going to the thermodynamic limit, one obtains a norm-
continuous dynamics at the C∗ algebraic level, that is independently of a
given time-invariant state. Usually, the dynamics exists only in the GNS
representation provided by that state; however, an instance of Galilei
invariant interaction which gives rise to a norm-continuous group of au-
tomorphisms of the CAR algebra can be found in [300].
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Example 7.1.6 (Infinite Dimensional Quantum Cat Maps).
The finite dimensional quantization of the torus T

2 studied in Exam-
ple 5.4.2 can be turned into an infinite dimensional one by lifting the condi-
tion (5.86), namely the quantum counterpart of the folding constraint (2.15)
in Example 2.1.3. Concretely, the Weyl relations (5.83) become

Un1
θ V n2

θ = e4π i θ n1n2 V n2
θ Un1

θ , θ ∈ [0, 1) ,

where U and V are two abstract unitary operators and n = (n1, n2) ∈ Z
2.

Notice that 2θ plays the role of 1/N in Example 5.4.2 and is a continuous
deformation parameter : when θ = 0, the commutation relations are those
that hold for the exponential functions (2.21), namely

enem = emen .

Then, as in (5.84), we define the unitary Weyl-like operators

Wθ(n) := e−2i π θ n1n2 Un1
θ V n2

θ , n ∈ Z
2 ,

that satisfy relations similar to those in (5.85),

Wθ(n)Wθ(m) = e2i π θ σ(n,m) Wθ(n + m) , ∀n,m ∈ Z
2 , (7.29)

with symplectic form σ(n,m) := n1m2−n2m1. Also, in analogy with (7.11),
one sets

Wθ(f) =
∑

n

f(n)Wθ(n) , (7.30)

where | f 〉 = {f(n)}n∈Z2 belongs to the subspace �∗(Z2) ⊂ �2(Z2) of square-
summable sequences with finitely many non-zero components. We shall call
support of f the set

Supp(f) :=
{

n ∈ Z : f(n) �= 0
}

(7.31)

The following properties hold for all f, g ∈ �∗(Z2),

Wθ(f)† = Wθ(fT ) , fT (n) = f(−n)∗

Wθ(f)Wθ(g) = Wθ(f ∗ g) , with (7.32)

(f ∗ g)(n) :=
∑

m∈Z2

e2i π θ σ(n,m) f(n − m)g(m) . (7.33)

Consider the ∗-algebra A∗
θ :=

{
Wθ(f) : f ∈ �∗(Z2)

}
generated by all possible

linear combinations of Weyl operators Wθ(f) with f ∈ �∗(Z2). Let then ω
denote the linear functional ω : A∗

θ �→ C such that

ω(Wθ(n)) = δn0 . (7.34)

Using (7.32) with (7.33) one checks that
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ω
(
Wθ(f)†Wθ(g)

)
= (fT ∗ g)(0) =

∑

m∈Z2

f∗(m)g(m) = 〈 f | g 〉 . (7.35)

Thus ω is a positive normalized functional, namely a state on A∗
θ similar to

ωN in (5.187). Consider the associated GNS representation πω(A∗
θ) and set

| f 〉θ := πω(Wθ(f))|Ω 〉 ∀ | f 〉 ∈ �∗(Z2) ,

where |Ωω 〉 is the cyclic GNS vector. Then, the vectors |n 〉θ form an ONB
in Hω and θ〈n | f 〉θ = 〈n | f 〉 = f(n). Therefore, Hω = �2(Z2) = L

2
dr (T2),

independently of the deformation parameter θ; also

πω(Wθ(f))| g 〉 = | f ∗ g 〉 . (7.36)

The ∗-algebra A∗
θ can be equipped with a ∗-automorphism which extends

to the present case the dynamics discussed in Example 5.6.1.4: it is defined
on the Weyl operators by

ΘA[Wθ(n)] = Wθ(AT n) , (7.37)

where A is a 2×2 integer matrix as in (5.176). The state ω is left invariant by
ΘA which is then implemented by a same unitary operator Uω for all θ ∈ [0, 1)
that coincides with the Koopman operator UA of Example 2.1.3. Indeed,

ΘA[Wθ(f)] =
∑

n

f(n)Wθ(AT n) =
∑

p

f(A−T p)Wθ(p) = Wθ(UA f) ,

(7.38)
for f(A−T n) = (UA f)(n) (compare (2.1.3)). Consequently,

ω (Wθ(f)ΘA[Wθ(g)]) = 〈Ω |πω(Wθ(f))† Uω πω(Wθ(g)) |Ω 〉
= ω(Wθ(f)Wθ(UA g)) = 〈 f |UA |g 〉 . (7.39)

The dependence on θ ∈ [0, 1) emerges when considering the closure of πω(A∗
θ)

with respect to strong-operator topology thus obtaining von Neumann sub-
algebras Mθ ⊆ B(Hω).

While the GNS Hilbert space and the unitary implementation of the dy-
namics are the same for all von Neumann dynamical triplets (Mθ, ΘA, ω) 1,
for θ = 0 Mθ is isomorphic to the maximally Abelian von Neumann algebra
L
∞
dr(T2) of essentially bounded functions on T

2 (see Section 5.3.2), for θ ir-
rational Mθ is a hyperfinite II1 factor, while Mθ is not a factor and of finite
type In when θ is rational.

Let us consider the case θ = 0; clearly, M0 is an Abelian von Neumann
subalgebra of B(Hω), actually, maximally Abelian since it has a cyclic vector
|Ωω 〉 (see Example 7.1.4.1); therefore, it is isomorphic to L

∞
dr(T2) via the

argument of Theorem 5.3.3 and a one-to-one mapping
1ΘA and ω denote the extensions of the automorphism ΘA and of the state ω

from A∗
θ to the strong-operator closures Mθ.
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en �→ Φ[en] = W0(n) (7.40)

between the Weyl operators W0(n) and the exponential functions (2.21).
Indeed, one observes that the multiplication of vectors in L

2
dr (T2) by en

and the action (7.36) of W0(n) on vectors in Hω do coincide. We shall thus
identify M0 = L

∞
dr(T2).

Consider now the case of a rational deformation parameter, θ = p/q,
p, q ∈ N; then, (7.29) yields

Wp/q(qn)Wp/q(m) = e2π i p σ(n,m)Wp/q(qn + m) = Wp/q(m)Wp/q(qn) ,

for all n,m ∈ Z
2. Further, set

Z
2 � n = (n1, n2) = [n]+ < n >:= ([n1]+ < n1 >, [n2]+ < n2 >) ,

where, for any n ∈ Z, [n] = q m denotes the unique multiple of q such that
0 ≤ n− [n] =:< n >≤ q − 1. Then, one gets

Wp/q(n) = Wp/q([n])Wp/q(< n >) .

As a consequence, when θ is rational, every Wp/q(f) can be written as

Wp/q(f) =
∑

<n>∈J(q)

(∑

[n]

f([n]+ < n >)Wp/q([n])
)
Wp/q(< n >)

=
∑

s∈J(q)

Xf (s)Wp/q(s) with (7.41)

Xf (s) :=
∑

n∈Z2

f(qn + s)Wp/q(qn) ∈ M(q) , (7.42)

J(q) :=
{

s = (s1, s2) : 0 ≤ si ≤ q − 1
}

and where

M(q) :=
{∑

n∈Z2

f(n)Wp/q(qn)
}

(7.43)

denotes the von Neumann subalgebra of Mp/q linearly generated by the Weyl
operators of the form Wp/q(qn), n ∈ Z

2. Because of (7.41), they commute
with Mp/q whence M(q) belongs to the center of Mp/q.

Moreover, the exponential functions of the form W0(qn) fulfil

W0(qn)(r) = W0(qn)(r + s/q) ∀ s ∈ J(q) . (7.44)

They generate a ∗-algebra whose strong-closure is a von Neumann subalgebra
M(q)

0 ⊂ M0 of essentially bounded functions f on T
2 such that

f(r) = γ(q)
s [f ](r) := f(r + s/q) , (7.45)
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for all s ∈ J(q). Let Πs : M0 �→ M(q)
0 be defined by

M0 � f �→ Πs[f ] :=
∑

n∈Z

f(qn + s)W0(qn) ∈ M(q)
0 , (7.46)

where s ∈ J(q). By decomposing

f =
∑

n

f(n)W0(n) =
∑

s∈J(q)

(∑

m

f(m + s)W0(qm)
)
W0(s) ,

it follows that Πs can be recast as

Πs[f ] = W0(−s)
1
q2

∑

t∈J(q)

γ
(q)
t [f ] e−2 π i s·t/q . (7.47)

Furthermore, a map similar to the one in (7.40),

W0(qn) �→ Φq[W0(qn)] = Wp/q(qn) ∀n ∈ Z
2 , (7.48)

makes M(q) and M(q)
0 isomorphic so that (7.42), respectively (7.41) read

Xf (s) = Φq[Πs[f ]], respectively

Wp/q(f) =
∑

s∈J(q)

Φq[Πs[f ]]Wp/q(s) . (7.49)

Concluding: 1) Mp/q is not a factor, 2) due to the finitely many non-
commuting Wp/q(s) with s ∈ J(q), the type of Mp/q is finite In (see the
discussion of types preceding Section 7.1) and 3) Mp/q is hyperfinite for such
is M0 (and thus M(q)

0 ) according to Remark 7.1.1.
For θ irrational, Mθ is a factor; indeed, from (7.29),

[
Wθ(n) , Wθ(m)

]
= 2 i sin(2π θσ(n,m))Wθ(n + m) (7.50)

cannot vanish for n �= m, whence the center Z = Mθ ∩M′
θ is trivial, that is

it consists of multiples of the identity only. Since the state (7.34) is a trace
on Mθ, according to the discussion following Definition 7.34, Mθ is a type
II1 factor and also hyperfinite [263].

In the commutative setting of Example 2.2.3, the unitary Uω corresponds
to the Koopman-von Neumann operator which cannot belong to the commu-
tative von Neumann algebra M0 = L

∞
μ (X ).

As much as in this case and unlike for finite level quantum systems, the
quantum dynamics is typically implemented by unitary operators which map
the algebra of observables into itself, indeed

U†
ω(t)πω(X)Uω(t) = πω(Θt(X)) ∈ πω(A) , (7.51)
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without Uω(t) itself belonging to πω(A). Given πω(A) and Uω(G), one can
however consider all linear combinations of products of operators in πω(A)
and elements Uω(t) which can always be reduced to the form (compare Ex-
ample 5.3.2.7 for a similar structure)

∑

i∈I

πω(Xi)Uω(ti) . (7.52)

These elements form an algebra, denoted by {πω(A), Uω(G)} whose bi-
commutant, namely its strong closure on Hω, turns out to be a useful tool to
discuss ergodicity and mixing in quantum dynamics.

Definition 7.1.5 (Covariance Algebra). Given a quantum dynamical sys-
tem (A, Θ, ω) and the GNS implementation of the dynamics, the associated
covariance algebra is the von Neumann algebra Rω := {πω(A), Uω(G)}′′.

As we have seen in Section 5.3, besides the von Neumann algebra Rω itself,
what is also important is its commutant; in particular, in the framework of
the GNS construction, for what concerns the convex decompositions of the
reference state ω (see Remark 5.3.2.3). As regards the covariance algebra
Rω and its commutant R′

ω, notice that if X ∈ B(Hω) commutes with Rω,
it must commute with both πω(A) and Uω(G). Vice versa, if X ∈ B(Hω)
commutes with πω(A) and Uω(G), by continuity, it also commutes with the
von Neumann algebra generated by them. Therefore,

R′
ω = πω(A)′ ∩ Uω(G)′ , (7.53)

where Uω(G)′ is the algebra of the bounded constants of the motion, that is
the algebra of all X ∈ B(Hω) such that Uω(t)†X Uω(t) = X.

Example 7.1.7. For the case of Example 5.6.2 the covariance algebra is

Rρ =
(
πρ(M2(C)) ∪ Uρ(R)

)′′
=
(
M2(C) ⊗ 1l2 ∪ ρit ⊗ ρ−it

)′′

= M2(C) ⊗ {1l2, σ3} ,

where {1l2, σ3} stands for the commutative algebra of 2 × 2 matrices which
are diagonal in the eigenbasis of ρ. Furthermore, the constants of the motion
are contained in Uρ(R)′ = {1l2, σ3} ⊗ {1l2, σ3} and

R′
ρ = πρ(M2(C))′ ∩ Uρ(R)′ = 1l2 ⊗ {1l2, σ3} .

7.1.3 Quantum Ergodicity and Mixing

As seen in Section 2.3, ergodicity corresponds to a specific behavior of the
time-averages of two-point correlation functions. Given a quantum dynamical
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triplet (A, Θ, ω), two-point correlation functions have the form ω(AΘt(B))
where A,B ∈ A and t ∈ G, where G = R or Z. For sake of concreteness 2,
we will consider averages or invariant means as in (7.3), namely of the form
(compare Definition 2.3.1)

ηt

[
ω(A†Θt(B)C)

]
= lim

T→∞

1
2T + 1

T−1∑

t=−T

ω(A†Θt(B)C) (7.54)

in discrete time, or else

ηt

[
ω(A†Θt(B)C)

]
= lim

T→∞

1
2T

∫ T

−T

dt ω(A†Θt(B)C) if G = R . (7.55)

Because of (5.49), it turns out that these averages are bounded,
∣
∣
∣ηt

[
ω(A†Θt(B)C)

]∣∣
∣ ≤ ‖A‖ ‖B‖ ‖C‖ .

Also, in the GNS construction based on the invariant state ω, the averages

ηt

[
ω(A†Θt(B)C)

]
= ηt

[
〈Ωω |πω(A)†U†

ω(t)πω(B)Uω(t)πω(C) |Ωω 〉
]
,

provide bounded sesquilinear forms on a dense subset of the GNS Hilbert
space Hω. This observation together with an argument similar to that in
Example 5.3.2.3 lead one to introduce

1. an operator ηω [Uω] ∈ B(Hω) with matrix elements

〈ψ | ηω [Uω] |φ 〉 = ηt [〈ψ |Uω(t) |φ 〉] ∀ψ, φ ∈ Hω ; (7.56)

2. a linear map ηω : A �→ B(Hω) defined by

〈ψ | ηω [A] |φ 〉 = ηt

[
〈ψ |U†

ω(t)πω(A)Uω(t) |φ 〉
]

∀ψ, φ ∈ Hω . (7.57)

Notice that, because of Θ-invariance, ω(ηω [X]) = ω(X).

Examples 7.1.8.

1. Consider a finite-dimensional dynamical system described by a finite-
dimensional Hilbert space H = C

d, by observables that are matrices in
Md(C) and by a Hamiltonian H assumed to have non-degenerate eigen-
values ed ≥ ed−1 ≥ . . . e0 = 0 and eigenvectors | j 〉, j = 0, 2, . . . , d − 1.
The dynamics is thus given by (see (5.170))

2For more details on the existence of invariant means see [107].
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Ut = e−i t H = | 0 〉〈 0 | +
d−1∑

j=1

e−i ej t | j 〉〈 j |

X �→ Xt = U†
t X Ut =

d−1∑

j,k=0

ei t(ej−ek)〈 k |X |j 〉 | k 〉〈 j | ,

for all X ∈ Md(C). Then, the time-average η yields

η(U) = | 0 〉〈 0 | , η(X) =
d−1∑

j=0

〈 j |X |j 〉 | j 〉〈 j | .

Thus, η : Md(C) �→ Md(C) amounts to the conditional expectation (see
Example 5.2.9.1) onto the Abelian subalgebra of Md(C) generated by the
minimal projections | j 〉〈 j |.

2. All the eigenvectors | j 〉 in the previous example provide, Ut-invariant
expectation functionals ωj on Md(C). The corresponding irreducible GNS
representations πωj

(Md(C)) (see Section 5.5.1) act on a Hilbert space
isomorphic to C

d with GNS cyclic vectors of the form |Ωj 〉 = | j 〉 ⊗ | j 〉.
The dynamics is implemented by unitary operators of the form

Uωj
(t) = e−itH ⊗ eitej 1ld ,

so that they preserve |Ωj 〉. It follows that ηωj

[
Uωj

]
= |Ωj 〉〈Ωj |, while

ηωj
[X] = η(X) ⊗ | j 〉〈 j | for all X ∈ Md(C).

3. Consider the projection Pω onto the subspace of vectors |ψ 〉 ∈ Hω such
that Uω|ψ 〉 = |ψ 〉 (the GNS vector |Ωω 〉 is certainly one of them). Then,
since ψ, φ ∈ Hω are arbitrary,

〈ψ | ηω [Uω] Pω |φ 〉 = ηt [〈ψ |Uω(t)Pω |φ 〉] = 〈ψ |Pω |φ 〉

implies ηω [Uω] Pω = Pω; analogously, Pω ηω [Uω] = Pω. Moreover,

〈ψ |Uω(s)ηω [Uω] |φ 〉 = ηt [〈ψ |Uω(t+ s) |φ 〉] = 〈ψ | ηω [Uω] |φ 〉 ,

whence ηω [Uω] |φ 〉 is invariant. Thus, Pωηω [Uω] |φ 〉 = ηω [Uω] |φ 〉 for
all φ ∈ Hω and then ηω [Uω] = Pω ηω [Uω] = Pω.
Notice that ηω [Uω] belongs to Rω, for it arises from averaging correlation
functions; furthermore, since it equals Pω, it does not depend on the
specific invariant mean used.

While the average of the time-evolution Uω(t) gives rise to the projec-
tor onto Uω(t)-invariant vectors (compare Proposition 2.3.4), the average of
quasi-local observables A ∈ A transforms them into global constants of the
motion, namely into observables that belong to the strong-closure of A and
that are left invariant by the dynamics.
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Proposition 7.1.3. ηω [A] ⊆ πω(A)′′ ∩ Uω(G)′.

Proof: We check this on the dense subset π(A)|Ωω 〉 ⊆ Hω. Let X belong
to A and X ′ to the commutant πω(A)′, then, using (7.51),

〈Ωω |πω(A)†ηω [X] X ′πω(C) |Ωω 〉 =
= ηt

[
〈Ωω |πω(A)†πω(Θt(X))X ′πω(C) |Ωω 〉

]

= ηt

[
〈Ωω |πω(A)†X ′ πω(Θt(X))πω(C) |Ωω 〉

]

= 〈Ωω |πω(A)†X ′ ηω [X] πω(C) |Ωω 〉 .

Thus, ηω [X] commutes with πω(A)′ whence ηω [A] ⊆ πω(A)′′. Similarly,

〈Ωω |πω(A)†ηω [X] Uω(s)πω(C) |Ωω 〉 =
= ηt

[
〈Ωω |πω(A)† U†

ω(t)πω(X)Uω(t+ s)πω(C) |Ωω 〉
]

= ηt

[
〈Ωω |πω(A)† Uω(s)U†

ω(t+ s)πω(X)Uω(t+ s)πω(C) |Ωω 〉
]

= 〈Ωω |πω(A)† Uω(s) ηω [X] πω(C) |Ωω 〉 ,

for all X ∈ A and s ∈ G, whence πω(X) ∈ Uω(G)′. �

Example 7.1.9. We have just showed that X ∈ A =⇒ ηω [X] ∈ Uω(G)′;
also, by construction (see Example 7.1.8.3), Pω = ηω [Uω] ∈ Uω(G)′′. Then,
it follows that [ηω [X] , Pω] = 0, whence

〈Ωω |πω(A)†ηω [X] Pω πω(B) |Ωω 〉 =
= ηt

[
〈Ωω |πω(A)† Pω πω(Θt(X))Pω πω(B) |Ωω 〉

]

= 〈Ωω |πω(A)† Pω πω(X)Pω πω(B) |Ωω 〉

on a dense set. Therefore, for all X ∈ A, it holds that

ηω [X]Pω = Pω ηω [X] = Pω πω(X)Pω ∀X ∈ A .

In the case of classical ergodic systems, these latter systems are equiv-
alently identified by the clustering properties of their two-point correlation
functions (Propositions (2.3.2) and 2.3.9), by the spectral properties of the
corresponding Koopman operator (Corollary 2.3.1) and by the extremal-
ity of their invariant states (Proposition 2.3.8). Clustering in the mean as
in (2.65) or (2.75) and extremality are notions that readily extend to the
non-commutative setting.

Definition 7.1.6. A quantum dynamical system (A, Θ, ω) is η-clustering if

ηt [ω(AΘt(B))] = ω(A)ω(B) ∀A,B ∈ A , (7.58)

clustering if
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lim
t→±∞

ω(AΘt(B)) = ω(A)ω(B) ∀X,Y ∈ A . (7.59)

A state ν on A is extremal if ν = λν1 + (1 − λ)ν2 with 0 < λ < 1 and ν1,2

states on A implies ν1,2 = ν; ν is an extremal Θ-invariant if it cannot be
written as a convex sum of other Θ-invariant states on A.

Remarks 7.1.5.

1. If πω(A)′′ ∩ Uω(G)′ = {λ 1l}, where {λ 1l} denotes the trivial algebra
consisting only of multiples of the identity, then the global constants of
the motion are trivial. It follows that (A, Θ, ω) is η-clustering. In fact, in
such a case ηω [B] = ω(B) 1l for all B ∈ A, whence

ηt [ω(AΘt(B))] = 〈Ωω |πω(A)ηω [B] |Ωω 〉 = ω(A)ω(B) .

2. Suppose the invariant state ω in (A, Θ, ω) is not extremal invariant; then,
there exists a state ν on A such that λν ≤ ω, for some 0 < λ < 1, and
ν ◦Θ = ν. Thus, from Remark 5.3.2.3, λν(X) = 〈Ωω |T ′πω(X) |Ωω 〉 for
all X ∈ A, with 0 ≤ T ′ ∈ πω(A)′. It turns out that T ′ ∈ Uω(G)′, too;
indeed, Θ-invariance yields

〈Ωω |πω(A)† T ′ Uω(t)πω(B) |Ωω 〉 = 〈Ωω |πω(A)† T ′ πω(Θ−t(B)) |Ωω 〉
= λ ν(A†Θ−t(B)) = λ ν(Θt(A)†B)
= 〈Ωω |πω(A)† Uω(t)T ′ πω(B) |Ωω 〉 ,

on a dense set. Therefore, T ′ ∈ R′
ω.

Consider now the following list (we shall refer to it as ergodic list in the
following) of statements [107] concerning clustering, extremal Θ-invariance
and the spectral properties of the dynamics of quantum dynamical systems.

ω is extremal invariant (7.60)
R′

ω = {λ1l} (7.61)
Rω ∩ R′

ω = {λ1l} (7.62)
(A, Θ, ω) is η-clustering (7.63)
Pω is a one-dimensional projector (7.64)
πω(A)′′ ∩ R′

ω = {λ1l} (7.65)
ηω [X] = ω(X) 1l ∀X ∈ A (7.66)
ω is the only normal invariant state on πω(A)′′ (7.67)
|Ωω 〉 is the only invariant vector state in πω(A)|Ωω 〉 . (7.68)

From Remark 7.1.5.2 it follows that (7.61)=⇒ (7.60); also, if R′
ω is not trivial,

then, as in Remark 5.3.2.4, ω can be decomposed into a convex combination
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of Θ-invariant states. Therefore, (7.60)⇐⇒ (7.61). If ω is not extremal invari-
ant, the corresponding operator 1l �= T ′ ∈ R′

ω provides an invariant vector
state Uω(t)T ′|Ωω 〉 = T ′|Ωω 〉, thus |Ωω 〉 is not the only invariant vector
state and the projector Pω onto the invariant subspace of Hω cannot be
one-dimensional, whence (7.68)=⇒ (7.60) and (7.64)=⇒ (7.60).
Furthermore, using Example 7.1.8, one gets

ηt [ω(AΘt(B)] = 〈Ωω |πω(A) ηω [Uω] πω(B) |Ωω 〉
= 〈Ωω |πω(A)Pω πω(B) |Ωω 〉 ;

together with Pω|Ωω 〉 = |Ωω 〉 and

ω(A)ω(B) = 〈Ωω |πω(A) |Ωω 〉〈Ωω |πω(B) |Ωω 〉 ,

this yields (7.64)⇐⇒ (7.63).
From Proposition 5.5.2 it follows that the normal invariant states ρ on

πω(A)′′ must correspond to density matrices ρ ∈ B
+
1 (Hω) that commute with

Uω(G); thus, ρ(ηω [X]) = ρ(πω(X))) for all X ∈ A and, if ηω [X] = ω(X) 1l,
then ρ(ηω [X]) = ρ(πω(X)) = ω(X), whence (7.66)=⇒ (7.67). Also, from
Remark 7.1.5.1, (7.66)=⇒ (7.63).

Other implications are (7.61)=⇒ (7.62)=⇒ (7.65) and (7.67)=⇒ (7.68).
Summarizing,

Proposition 7.1.4. With reference to the previous list of ergodic properties,
the following implications hold

(7.64) ⇐⇒ (7.63) ⇐= (7.66) =⇒ (7.67)
⇓ ⇓

(7.65) ⇐= (7.62) ⇐= (7.61) ⇐⇒ (7.60) ⇐= (7.68) .

While in a commutative setting the properties (7.60)– (7.68) are equiva-
lent and each of them identifies an ergodic system, it is not so in the quantum
realm, unless (A, Θ, ω) is asymptotic Abelian [107, 300].

Definition 7.1.7 (Asymptotic Abelianess). Suppose (A, Θ, ω) enjoys one
of the following properties

ηt

[
ω(A† [B,Θt(C)]D)

]
= 0 ∀A,B,C,D ∈ A (7.69)

lim
t±∞

ω(A† [B,Θt(C)]D) = 0 ∀A,B,C,D ∈ A (7.70)

lim
t±∞

ω(A† [B,Θt(C)]† [B,Θt(C)]A) = 0 ∀A,B ∈ A (7.71)

lim
t±∞

‖[B,Θt(C)]‖ = 0 ∀B,C ∈ A . (7.72)

In the first case, (A, Θ, ω) is called η-Abelian, in the second one weakly asymp-
totic Abelian, in the third case strongly Asymptotic Abelian and in the last one
norm asymptotic Abelian.
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Physically speaking, asymptotic Abelianess corresponds to the fact that
the non-commutativity of any pair of local observables is a property which
dies out asymptotically under the action of the dynamics on one of them.

Example 7.1.10. Quantum spin chains (see Example 7.1.1) are the simplest
instance of norm-asymptotic Abelianess with respect to lattice-translations
on the quasi-local C∗ algebra A [277]. In the case of spins 1/2 at each site,
lattice-translations correspond to the shift-automorphism Θσ : A �→ A de-
fined by

Θσ

[
n∏

	=1

σi�
j�

]

=
n∏

	=1

σi�+1
j�

.

Given A,B ∈ A, for any ε > 0 we can find strictly local Aε, Bε ∈ A[−k,k] such
that ‖A − Aε‖ ≤ ε and ‖B − Bε‖ ≤ ε. If N � n > 2k, Θn

σ [B] ∈ A[n−k,n+k]

commutes with Aε,
[
A , Θn

σ [Bε]
]

= 0, whence

∥
∥
∥
[
A , Θn

σ [B]
]∥
∥
∥ ≤

∥
∥
∥
[
A−Aε , Θ

n
σ [B]

]∥
∥
∥+

∥
∥
∥
[
Aε , Θ

n
σ [B −Bε]

]∥
∥
∥

≤ 2ε‖B‖ + 2ε(ε+ ‖A‖) .

The mean magnetization m in (7.3) is not a quasi-local observable for the
spatial-average collects contributions from all local regions: nevertheless, it
exists in the GNS representations π↑,↓(A)′′ corresponding to the translation-
invariant states ω↑,↓ in (7.1) and (7.2). Furthermore, local non-commutativity
is suppressed by dividing by larger and larger number of sites with the result
that the mean magnetization commutes with all local observables. By its
very construction it also commutes with the GNS unitary operator Uω which
implements the space-translations on the GNS Hilbert space. Therefore, m ∈
R′

↑,↓ = π↑,↓(A)′ ∩ Uω(Z)′. Since π↑,↓(A)′ = {λ1l} it thus follows that m is a
scalar multiple of the identity in the two representations.

The fact that the mean magnetization commutes with all local observables
holds, more in general, as a consequence of η-Abelianess; namely, ηω [A] ⊆ R′

ω

follows from observing that (7.69) yields

ηt

[
〈Ωω |πω(A)†

[
πω(X) , πω(Θt(Y ))

]
πω(B) |Ωω 〉

]
=

= 〈Ωω |πω(A)†
[
πω(X) , ηω [Y ]

]
πω(B) |Ωω 〉 = 0 .

Remark 7.1.6. Proposition 7.1.3 states that ηω [A] ⊆ πω(A)′′ ∩ Uω(G)′; if
(A, Θ, ω) is η-Abelian then also ηω [A] ⊆ πω(A)′, whence ηω [A] ⊆ Rω ∩R′

ω.
Since the latter is an Abelian von Neumann algebra, actually the center of Rω
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(see Definiton 5.3.4), it turns out that
[
ηω [X] , ηω [Y ]

]
= 0 for all X,Y ∈ A.

Therefore, using Example 7.1.9, one proves that on a dense set,

〈Ωω |πω(A)†
[
Pω πω(X)Pω , Pω, πω(Y )Pω

]
πω(B) |Ωω 〉 =

= ηt

[
〈Ωω |πω(A)†

[
Pω πω(X)Pω , Uω(t)πω(Y )Pω

]
πω(B) |Ωω 〉

]

= ηt

[
〈Ωω |πω(A)†

[
Pω πω(X)Pω , πω(Θt(Y ))Pω

]
πω(B) |Ωω 〉

]

= 〈Ωω |πω(A)†
[
Pωπω(X)Pω , ηω [Y ] Pω

]
πω(B) |Ωω 〉

= ηt

[
〈Ωω |πω(A)†

[
πω(Θt(X))Pω , ηω [Y ] Pω

]
πω(B) |Ωω 〉

]

= 〈Ωω |πω(A)† Pω

[
ηω [X] , ηω [Y ]

]
Pω πω(B) |Ωω 〉 = 0 ,

for all X,Y ∈ A. Therefore, η-Abelianess implies Abeliannes of Pω πω(A)Pω

as a set (in general it is not an algebra).

If (A, Θ, ω) corresponds to a classical dynamical system, then (7.70), (7.71)
and (7.72) are equivalent statements implying (7.69). In a genuinely quantum
setting, however, (7.71), (7.70) and (7.72) take into account the differences
between convergence in the weak, strong and norm topologies, whereby, in
general, (7.72)=⇒ (7.71)=⇒ (7.70)=⇒ (7.69). Interestingly, the weakest sort
of Abelianess is sufficient to make properties (7.60)– (7.68) equivalent to each
other. Indeed, the consequences of η-Abeliannes are as follows.

Proposition 7.1.5. If (A, Θ, ω) is η-Abelian, then R′
ω = πω(A)′′ ∩ Uω(G)′.

Corollary 7.1.1. If (A, Θ, ω) is η-Abelian, the properties (7.60)– (7.68) in
the ergodic list are equivalent.

Proof: Because of η-Abelianess, applying the previous proposition one gets
that (7.65)=⇒ (7.66), whence the claimed equivalence follows from Proposi-
tion 7.1.4. �

Then, the following definition makes sense.

Definition 7.1.8. An η-Abelian quantum dynamical system (A, Θ, ω) is er-
godic if ω is extremal invariant.

Remark 7.1.7. In the case of Example 7.1.8.2, the eigenvectors of the Hamil-
tonian are extremal as functionals on Md(C) and thus ergodic according to
the definition above. However, finite-dimensional systems cannot be asymp-
totic Abelian; indeed, while condition (7.64) holds, condition (7.66) does not.
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Proof of Proposition 7.1.5 The proof is based on 3 steps.

• Step 1: If (A, Θ, ω) is η-Abelian then Pω Rω Pω is Abelian.

Indeed, from Remark 7.1.6 we know that Pω πω(A)Pω is Abelian, thus,
by continuity, also Pω πω(A)′′ Pω. On the other hand, since the elements
of Rω are strong limits of operators of the form (7.52), it turns out that
Pω πω(A)′′ Pω = Pω Rω Pω, whence the latter is Abelian.

• Step 2: If Pω Rω Pω is Abelian, then R′
ω is Abelian (R′

ω ⊆ R′′
ω = Rω).

Since Pω ∈ Rω, we can use Example 5.3.2.6 to deduce that

Pω Rω Pω ⊆ (Pω Rω Pω)′ = PωR′
ω Pω .

Further, since |Ωω 〉 is cyclic for Pω Rω Pω with respect to the Hilbert space
PωHω, using Example 7.1.4.1 we conclude that Pω Rω Pω = Pω R′

ω Pω,
whence the latter algebra is Abelian. In order to prove the statement,
we show that R′

ω and Pω R′
ω Pω are isomorphic; for any X ′ ∈ R′

ω set
λ(X ′) = Pω X

′ Pω. This map is obviously linear and surjective; further, since
Pω ∈ Rω, λ(X ′Y ′) = λ(X ′)λ(Y ′) for all X ′, Y ′ ∈ R′

ω. Finally, suppose
λ(Z ′) = 0 for some Z ′ ∈ R′

ω, then, since Pω|Ωω 〉 = |Ωω 〉,

Z ′ πω(X)|Ωω 〉 = πω(X)Z ′ Pω|Ω 〉 = πω(X)Pω Z
′ Pω|Ωω 〉 = 0

on a dense set. Thus, Z ′ = 0 and λ is also injective.

• Step 3: If X ∈ A and πω(X) ∈ πω(A)∩ Uω(G)′ then ηω [X] = πω(X) ∈
πω(A)′.

This fact can be extended by continuity to the constants of the motion in the
strong closure πω(A)′′ ∩ Uω(G)′ so that

πω(A)′′ ∩ Uω(G)′ ⊆ πω(A)′ =⇒ πω(A)′′ ∩ Uω(G)′ ⊆ R′
ω . (7.73)

If X ∈ πω(A)′′ ∩ Uω(G)′, it commutes with the projector onto the invariant
vectors Pω ∈ Rω, whence X Pω = Pω X Pω implies

(
πω(A)′′ ∩ Uω(G)′

)
Pω ⊆ Pω πω(A)′′ Pω .

On the other hand, Example 7.1.9 and Proposition 7.1.3 yield

ηω [A] = Pω πω(A)Pω ⊆ πω(A)′′ ∩ Uω(G)′ ,

whence by continuity

Pω πω(A)′′ Pω =
(
πω(A)′′ ∩ Uω(G)′

)
Pω . (7.74)

Finally, from the first two steps, (7.73) and (7.74), we derive
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R′
ω Pω = Pω R′

ω Pω ⊆ Pω Rω Pω = Pω πω(A)′′ Pω

=
(
πω(A)′′ ∩ Uω(G)′

)
Pω =

(
πω(A)′′ ∩ Uω(G)′

)
Pω .

Consequently, given X ′ ∈ R′
ω there exists Y ′ ∈ πω(A)′′ ∩ Uω(G)′ such that

(X ′ − Y ′)|Ωω 〉. As |Ωω 〉 is cyclic for Rω, it is separating for R′
ω, thence

X ′ = Y ′ so that R′
ω ⊆ πω(A)′′ or, equivalently, R′

ω ⊆ πω(A)′′ ∩ Uω(G)′

which, together with (7.73) completes the proof. �

Remark 7.1.8. In case of η-Abelianess, from R′
ω = πω(A)′′ ∩ Uω(G)′ it fol-

lows that R′
ω is contained in the center Zω = πω(A)′′ ∩ πω(A)′ of πω(A)′′

and is thus Abelian. Actually, R′
ω coincides with the commutative algebra

of Θ-invariant classical observables of the quantum system (A, Θ, ω). There-
fore, if (A, Θ, ω) is η-Abelian and ω is a factor state (see Remark 5.3.2.2),
then R′

ω = {λ1l} and ω is extremal invariant and thus ergodic, according to
Definition 7.1.8.

If (A, Θ, ω) is η-Abelian, but the state ω is not extremal invariant, that
is not ergodic with respect to Θ, then R′

ω cannot be trivial. However, it is
Abelian and thus generated by a unique set of minimal projections P ′

j (see
Section 5.3.2). Each of these projections are such that (U†

ω)t Pj U
t
ω = Pj and

thus provides a Θ-invariant state ωj on A:

ωj(X) :=
〈Ωω |Pj πω(X) |Ωω 〉

ω(Pj)
.

Since the Pj are minimal projections in R′
ω, they cannot be further decom-

posed in R′
ω, whence they are extremal invariant and yield a decomposition

ω =
∑

j ω(Pj)ωj of ω into its ergodic components.

Example 7.1.11. [220] Let ω± be states of a one-dimensional spin chain of
the form (7.4), where (the upper indices label the lattice sites, the lower ones
the Pauli matrices)

ω+

(
n∏

	=1

σi�
j�

)

=
n∏

	=1

Tr
(

1l + (−1)i�σ3

2
σj�

)

=
n∏

	=1

(−1)i�δj�3

ω−

(
n∏

	=1

σi�
j�

)

=
n∏

	=1

Tr
(

1l − (−1)i�σ3

2
σj�

)

=
n∏

	=1

(−1)i�+1δj�3 .

Unlike the states (7.1) and (7.2) which are characterized by infinitely many
spins pointing up, respectively down along the z axis, these states are anti-
ferromagnetic alternating spins up, at even sites ω+, at odd sites ω−, and
spins down. These are pure states and give rise to factor GNS representations
πω(A)′′: in fact, as for the states (7.1) and (7.2), one can show that the
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commutants π±(A)′ are trivial. Also, by considering the shift-automorphism
of Example 7.1.10, it turns out that ω± ◦Θσ = ω∓ so that the state

ω :=
ω+ + ω−

2
(7.75)

is translation-invariant and can be decomposed in terms of pure states:

ω±(A) =
〈Ωω |Q±πω(A) |Ωω 〉

〈Ωω |Q± |Ωω 〉 ,

with Q± ∈ πω(A)′. If ω could be decomposed into Θσ-invariant states ωi,
these would correspond to 0 ≤ Qi ∈ R′

ω = πω(A)′ ∩ Uω(G)′ that provide
decompositions of the pure states ω± as well

ω±(A) =
〈ωω |Q±Qiπω(A) |Ωω 〉

〈Ωω |Q± |Ωω 〉 +
〈ωω |Q± (1l −Qi)πω(A) |Ωω 〉

〈Ωω |Q± |Ωω 〉 ,

which is impossible. Therefore ω is extremal invariant, but not a factor state.
As for the spin system considered at the beginning of this chapter, the follow-
ing even and odd magnetizations me,o = (me,o

1 ,me,o
2 ,me,o

3 ) (see (7.3)) exist
as strong operator limits in the GNS representations π± and πω:

me
i := lim

N→+∞

μ

2N + 1

N∑

	=−N

σ2i
i , mo

i := lim
N→+∞

μ

2N + 1

N∑

	=−N

σ2i+1
i .

They commute with all local observables and thus belong to the trivial centers
Z± and the non-trivial one Zω. In the first two ones they are multiples of the
identity, me

± = (0, 0,±μ) and mo
± = (0, 0,∓μ), while in the representation

πω which can be conveniently split as πω(A) = π+(A)
⊕

π−(A),

πω(me
3) = μ

(
1l 0
0 −1l

)

, πω(m0
3) = μ

(
−1l 0
0 1l

)

.

Furthermore, while enjoying clustering in the mean, the representation πω,
which is not a factor, is not clustering; indeed,

ω(σi
3σ

i+	
3 ) =

(−1)	 + (−1)	

2
= (−1)	 while ω(σk

3 ) =
(−1)k + (−1)1+k

2
= 0 .

From the previous discussion, it turns out that if (A, Θ, ω) is η-Abelian
and ω extremal invariant (property (7.60) in the ergodic list), then two-
point correlation functions factorize in the mean (property (7.63) in the er-
godic list). Concerning the extension of the classical property of mixing (see
Proposition 2.3.3, (2.66) and (2.76)) to quantum dynamical systems, due
to non commutativity, one distinguishes between various way of clustering
beside (7.59).
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Definition 7.1.9. A quantum dynamical system (A, Θ, ω) is weakly mixing
if [42]

lim
t→±∞

ω(AΘt(B)C) = ω(AC)ω(B) ∀ A,B,C ∈ A ; (7.76)

strongly mixing [42] (or hyperclustering in [215]) if

lim
t→±∞

ω(AΘt(B)CΘt(D)E) = ω(ACE)ω(BD) ∀ A,B,C,D,E ∈ A .

(7.77)

Clearly, strong mixing implies weak-mixing and weak-mixing implies
η-Abelianess; it also implies weak asymptotic Abelianess, whereas strong-
mixing implies strong-asymptotic Abelianess. The proof of the latter state-
ment (the proof of the former one is similar) comes from (7.77) applied to

ω(A†[Θt(B) , C]†[Θt(B), C]A) =
= ω((CA)†Θt(B†B)CA) − ω((CA)†Θt(B)† C Θt(B)A)
−ω(A†Θt(B)† C†Θt(B)CA) + ω(A†Θt(B)† C† C Θt(B)A) ,

which yields

lim
t→±∞

ω(A†[Θt(B), C]†[Θt(B), C]A) =

= ω((CA)† CA)ω(B†B) − ω((CA)† CA)ω(B†B)
−ω(A† C† CA)ω(B†B) + ω(A† C† CA)ω(B†B) = 0 .

Also, weak-mixing and strong-asymptotic Abelianess together imply strong-
mixing; this can be seen by rewriting

ω(A†[Θt(B), C]†[Θt(B), C]A) =
= ω((CA)†Θt(B†B)C A) − ω((CA)†Θt(B†B)C A)
−ω(A†Θt(B†B)C† C A) + ω(A† C† C Θt(B†B)A)

−ω
(
(CA)†Θt(B†)

[
C† , Θt(B)

]
CA
)
− ω

(
A†Θt(B)†

[
C† , Θt(B)

]
CA
)

+ω
(
A†Θt(B)†

[
C† C , Θt(B)

]
A
)
.

Now, weak-mixing means that the first four terms factorize in the same way
and thus cancel each other, asymptotically in time; on the other hand, each
of the terms with the commutators vanish asymptotically if the system is
strongly asymptotic Abelian. This comes out from the Cauchy-Schwartz in-
equality (5.49) which gives upper bounds of the form
∣
∣
∣ω
(
(CA)†Θt(B)†

[
C† , Θt(B)

]
CA
)∣
∣
∣
2

≤

≤ ω((CA)†Θt(B†B)CA) ω
(
(CA)†

[
C† , Θt(B)

]† [
C† , Θt(B)

]
CA
)
.
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Proposition 7.1.6. Given a quantum dynamical system (A, Θ, ω), we have
the following implications:

1. strong-mixing (7.77) implies weak-mixing (7.76);
2. strong-mixing (7.77) implies strong asymptotic Abelianess (7.71):
3. weak-mixing (7.76) implies weak asymptotic Abelianess (7.70);
4. weak-mixing (7.76) and strong-asymptotic Abelianess (7.71) imply strong-

mixing (7.77).

Remark 7.1.9. If the state ω is faithful then weak-mixing is equivalent to
the factorization of two-point correlation functions (see (7.59)). Of course,
if (A, Θ ω) is weakly mixing, then ω(X Θt(Y )) asymptotically split into
ω(X)ω(Y ). Vice versa, using the KMS conditions (7.27), if (7.59) holds, then

lim
t
ω(AΘt(B)C) = lim

t→±∞
ω(σω(i)(C)AΘt(B)

= ω(σω(i)(C)A)ω(B) = ω(AC)ω(B) .

The same conclusion that (7.59) implies weak-mixing follows if one knows
(A, Θ, ω) to be weakly asymptotic Abelian; one uses

ω(AΘt(B)C) = ω(AC Θt(B)) + ω
(
A
[
Θt(B) , C

])
.

The following proposition establishes a link, similar to the classical one,
between mixing and the spectral properties of the time-evolution group
Uω(G) in the GNS construction.

Proposition 7.1.7. If (A, Θ, ω) is weakly mixing the following equivalent
properties hold,

w − lim
to±∞

πω(Θt(X)) = ω(X) 1l ∀X ∈ A (7.78)

w − lim
t→±∞

Uω(t) = |Ωω 〉〈Ωω | . (7.79)

Proof: Weak-mixing asserts that lim
t→±∞

πω(Θt(X)) = ω(X) 1l on a dense

set, whence (7.78). Furthermore, from

ω(A†Θt(B)) = 〈Ωω |πω(A)† Uω(t)πω(B) |Ωω 〉 and
ω(A†)ω(B) = 〈Ωω |πω(A)†|Ωω 〉〈Ωω |πω(B) |Ωω 〉 ,

for all A,B ∈ A, it follows that (7.78) and (7.79) are equivalent. �

Remarks 7.1.10.



354 7 Quantum Mechanics of Infinite Degrees of Freedom

1. If (A, Θ, ω) is norm-asymptotic Abelian and ω is a factor state, then ω is
clustering as in (7.59) [64]. Indeed, Zω = {λ1l} says that the C∗ algebra
B generated by πω(A) and πω(A)′ has trivial commutant B′ = {λ1l},
namely B′′ = B(Hω). Let X ∈ A and consider the vector

Hω � |ΨX 〉 := (πω(X) − ω(X)1l)|Ωω 〉 .

It is orthogonal to |Ωω 〉: thus, there exists B(Hω) � T = T † such that

T |ΨX 〉 = 0 , T |Ωω 〉 = |Ωω 〉 .

Actually, T can be chosen in B [64]: the operators

C1 := T (πω(X) − ω(X)1l) , C2 := (1l − T ) (πω(X) − ω(X)1l)

are in B. Further, C1|Ωω 〉 = C†|Ωω 〉 = 0 and πω(X) = C1 + C2 =
ω(X)1l; consequently,

ω(XΘt[Y ]) − ω(X)ω(Y ) = 〈Ωω |C1πω(Θt[X]) |Ωω 〉
= 〈Ωω |

[
C1 , πω(Θt[X])

]
|Ωω 〉 .

Now, for any ε > 0 one can approximate C1 ∈ B by a finite sum in
πω(A) ∪ πω(A)′:

∥
∥
∥C1 −

n∑

j=1

πω(Xj)Y ′
j

∥
∥
∥ ≤ ε

‖Y ‖ ,

so that

|ω(XΘt[Y ]) − ω(X)ω(Y )| ≤
n∑

j=1

∣
∣
∣〈Ωω |

[
πω(C1) , πω(Aj)

]
Bj |Ωω 〉

∣
∣
∣ + ε

≤
n∑

j=1

‖Bj‖
∥
∥
∥
[
πω(C1) , πω(Aj)

]∥
∥
∥ + ε .

Thus, since (A, Θ, ω) is assumed to be norm-asymptotic Abelian, then it
turns out to be clustering whence, according to Remark 7.1.9, also weakly
mixing.

2. If (A, Θ, ω) is norm-asymptotic Abelian and ω is an extremal KMS state,
then it is a factor state (see Remark 7.1.3.4) and the system is weakly
mixing.

Example 7.1.12. The infinite dimensional systems of Example 7.1.6 provide
an interesting framework to apply the previous abstract considerations [44].
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Since the ΘA-invariant state is tracial, as explained in Remark 7.1.9, cor-
relation functions as those appearing in (7.76) can be reduced to two-point
correlation functions as in (7.59). Then, (7.39) yields

ω
(
Wθ(f)Θt

A
[Wθ(g)]

)
= 〈 f |U t

A
|g 〉 .

Therefore, if the underlying classical system is mixing, that is if the Koopman
operator UA has absolutely continuous spectrum on the subspace orthogonal
to the constant function ( namely to the GNS cyclic vector |Ωω 〉), then, for
all f, g ∈ L

2
dr (T2),

lim
t→±∞

ω
(
Wθ(f)Θt

A
[Wθ(g)]

)
= lim

t→±∞
〈 f |U t

A
|g 〉

= 〈 f∗ |Ω 〉〈Ω | g 〉 = ω(Wθ(f))ω(Wθ(g)) .

This means that, independently of the deformation parameter θ, the quan-
tum dynamical systems (Mθ, ΘA, ω) are mixing when such is the classical
dynamical system of which they represent a quantization.

As regards strong mixing (7.77), observe that (7.50) implies

ω

([
Wθ(n) , Θt

A
[Wθ(m)]

]†[
Wθ(n) , Θt

A
[Wθ(m)]

])

=

= 4 sin2(2πθσ(n, (B)tm)) , (7.80)

where we have set B = A
T , the transposed of A. Since σ(n,Btm) is an

integer, when θ ∈ Q is rational, the right hand side of (7.80) is periodic
in t and cannot vanish when t → ±∞. Therefore, the quantum dynamical
systems (Mp/q, ΘA, ω) cannot be strong asymptotic Abelian, and thus not
strongly mixing, because of Proposition 7.1.6.

If θ is irrational, then, as proved in [44], the right hand side of (7.80)
vanishes asymptotically at most for a countable set of θ ∈ [0, 1]. A concrete
construction of a countable set of θ is as follows [209].

Let t ≥ 0; using (2.17)– (2.19) in Example 2.1.3 with b and c exchanged,
one explicitly computes

σ(n , B
tm) = C+(m)αt(n1a2+ − n2a1+) + C−(m)α−t(n1a2− − n2a1−)

= αtm1a2− −m2a1−
Δ

(n1a2+ − n2a1+) + O(α−t)

=
αt+1

b(1 − α2)

(
m1n1(α−1 − a)(α− a)

+m2n2b
2 −m1n2 (α−1 − a) −m2n2 (α− a)

)
.

The transposed matrix B = A
T has eigenvalues α±1 as A; therefore, Tr(Bt) =

αt + α−t ∈ Z for all t ≥ 0. It thus follows that
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σ(n , B
tm) =

αt+1

α2 − 1

(
m1n1 c − m2n2 b − (m1n2 +m2n1) a

+m1n2α
−1 +m2n1 α

)
+ O(α−t)

=
1

α2 − 1

2∑

k=0

rkα
t+k + O(α−t)

=
1

α2 − 1

2∑

k=0

rk

(
αt+k + α−(t+k)

)
+ O(α−t) ,

where the coefficient rk ∈ Z and thus also the sum is an integer.
Choose θ = α2s mod (1), s ∈ Z, then

θ σ(n , B
tm) = s(α2 − 1)σ(n , B

tm) mod (1) = O(α−t) mod (1) .

Therefore, when t → +∞, the function in (7.80) vanishes and norm-
asymptotic Abelianess holds. Indeed, consider Wθ(f) and Wθ(g) where f
and g have compact supports, namely, there exists K > 0 such that
f(n) = g(n) = 0 when ‖n‖ ≥ K; then,

∥
∥
∥
[
Wθ(f) , Θt

A
[Wθ(g)]

]∥
∥
∥ ≤

∑

n,m

|f(n)| |g(m)|
∥
∥
∥
[
Wθ(n) , Wθ(Btm)

]∥
∥
∥

≤ α−t
∑

n,m

|f(n)| |g(m)|Cn,m (7.81)

for a suitable constant Cn,m. Because of the assumption on Supp(f) and
Supp(g), (7.81) goes to 0 with t → +∞.

Thus, for θ = sα2 mod (1), s ∈ Z, (Mθ, ΘA, ω) are weakly mixing and
norm-asymptotic Abelian; whence, according to Proposition 7.1.6, strongly
mixing.

7.1.4 Algebraic Quantum K-Systems

The notion of K-systems is naturally extended by removing the Abelian
constraint from Definition 2.3.6.

Definition 7.1.10. Let (A, Θ, ω) be a quantum dynamical system; if A is a
C∗ algebra it is called a C∗ algebraic quantum K-system if there exists a C∗

subalgebra A0 ⊂ A such that

1. At : Θt[A0] ⊂ At+1 for all t ∈ Z;
2.
∨

t∈Z
At = A;

3.
∧

t∈Z
At = {λ1l},
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where
∧

t∈Z
At denotes the set theoretic intersection of the C∗ subalgebras At

and
∨

t∈Z
At the C∗ they generate by norm closure. The nested sequence will

be called a quantum K-sequence.
If A is a von Neumann algebra acting on a Hilbert space, then (A, Θ, ω)

is a von Neumman algebraic K-system if there exists a quantum K-sequence
of von Neumann subalgebras An, with

∨
t∈Z

At denoting the von Neumann
algebra obtained by strong-operator closure.

Remark 7.1.11. Typically [220], starting from a C∗ algebraic quantum K-
system with K-sequence At, one considers the GNS representation πω(A)
and the sequence of von Neumann subalgebras πω(At)′′ and checks whether
it is a (von Neumann) K-sequence for (πω(A)′′, Θ, ω).

We have seen in Section 2.3 that classical K-systems enjoy the strongest
possible clustering properties corresponding to K-mixing; to some extent
this notion extends to von Neumann quantum K-systems. Let a quantum
dynamical system (A, Θ, ω) posses a sequence {At}t∈Z of C∗ subalgebras such
that, setting M := πω(A)′′ and Mt := πω(At)′′, {Mt}t∈Z is a K-sequence
for the von Neumann triplet (M, Θ, ω). We assume ω to be a faithful state
and the M0 to be invariant under the modular automorphism σω, so that
Proposition (7.1.1) ensures the existence of a normal conditional expectation
E0 : M �→ M0 which respects the state. It thus follows that the CPU maps
Et := Θt ◦ E0 ◦ Θ−t : M �→ Mt are ω-preserving conditional expectations.
Setting

Ptπω(A)|Ωω := Et[πω(A)]|Ωω 〉 ∀A ∈ A ,

one obtains a bounded linear operator which can be extended to a bounded
operator Pt : Hω �→ Ht, where Ht is the closure of the linear span πω(A)|Ωω 〉
and Hω is the GNS Hilbert space corresponding to ω.

Proposition 7.1.8. The Pt are projectors such that Pt = U†
ω(t)P0 Uω(t),

where Uω(t) is the GNS unitary operator which implements Θ on Hω. If
{Mt}t∈Z is a K-sequence, then [217]

1. Pt ≤ Pt+1 for all t ∈ Z;
2. s− limt→+∞ Pt = 1l;
3. s− limt→+∞ Pt = |Ωω 〉〈Ωω |.

Proof: From the properties of the conditional expectations (see (5.44) in
Proposition 5.2.2), it follows that P 2

t = Pt. That P †
t = Pt follows from the

assumption that ω ◦ Et = ω; indeed, using (5.42) and (5.43), one gets

〈πω(A)Ωω |Ptπω(B)Ωω 〉 = ω(A†Et[B]) = ω(Et[A]†Et[B])) = ω(Et[A]†)B)
= 〈Ptπω(A)Ωω |πω(B)Ωω 〉 ,
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for all A ∈ A (thus on a dense subset of Hω). Also, on a dense subset, it holds
that

Ptπω(A)|Ωω 〉 = Θt ◦ E0 ◦Θ−tπω(A)|Ωω 〉
= U†

ω(t)E0[Uω(t)πω(A)U†
ω(t)]|Ωω 〉

= U†
ω(t)P0 Uω(t)πω(A)]|Ωω 〉 .

This proves the second statement of the Proposition, while, of the last asser-
tions, the first one is a consequence of Mt ⊂ Mt+1 and the last two relations
follow from

lim
t→+∞

〈πω(A)† | (Pt − 1l) |πω(B) 〉 = lim
t→+∞

ω(A† (Et[B] −B)) = 0

lim
t→−∞

〈πω(A)† | (Pt − |Ωω 〉〈Ωω |) |πω(B) 〉 = lim
t→+∞

ω(A†Et[B]) −

−ω(A)ω(B) = 0 .

In fact, these two limits imply weak-operator convergence of projections to
projections which is equivalent to strong-operator convergence. Notice that
the second limit holds since Et maps onto the trivial algebra when t → −∞
and ω(Et[B]) = ω(B). �

Corollary 7.1.2. Let (M, Θ, ω) be a von Neumann algebraic quantum K-
system as specified above; then, for any ε > 0, A0 ∈ M0 and A ∈ M there
exists T > 0 such that

∣
∣
∣ω(A0Θt[A]) − ω(A0)ω(A)

∣
∣
∣ ≤ ε

√

ω(A0 A
†
0)

for all t ≤ −T .

Proof: The result is a consequence of the second strong-operator limit in
the previous proposition and of [217, 300]

ω(A0Θt[A]) = ω(A0 P0 U
†
ω(t)A) = ω(A0 U

†
ω(t)P−t A) ,

whence
∣
∣
∣ω(A0Θt[A]) − ω(A0)ω(A)

∣
∣
∣ =
∣
∣
∣ω
(
A0 U

†
ω(t) (Pt − |Ωω 〉〈Ωω |)A

)∣
∣
∣

≤
√

ω(A0 A
†
0) ‖(Pt − |Ωω 〉〈Ωω |)A|Ωω 〉‖ .

�

Corollary 7.1.3. Let (M, Θ, ω) be a von Neumann algebraic quantum K-
system as specified above; then, it is weakly-mixing.



7.1 Observables, States and Dynamics 359

Proof: Because of Remark 7.1.9, one need show

lim
t±∞

ω(AΘt[B]) = ω(A)ω(B) ∀A,B ∈ M .

Since {Mt}t∈Z is a K-sequence, let ε > 0 and choose Aε ∈ M0 and s ∈ Z

large enough such that

‖(A−Θs[Aε])|Ωω 〉| ≤ ε .

Then, for t sufficiently large,
∣
∣
∣ω(AΘ−t[B]) − ω(A)ω(B)

∣
∣
∣ ≤
∣
∣
∣ω((A−Θs[Aε])Θ−t[B])

∣
∣
∣+

+
∣
∣
∣ω(AεΘ−(t+s)[B]) − ω(A)ω(B)

∣
∣
∣ ≤ 2ε ‖B‖ .

This shows clustering when t → −∞; when t → +∞, one uses the modular
automorphism to rewrite

ω(AΘt[B]) = ω(Θ−t[A]B) = ω(σi
ω[B]θ−t[A]) ,

and then applies the previous argument. �

Remarks 7.1.12.

1. The result in Corollary 7.1.2 is the maximum of uniformity one can
achieve in clustering; indeed, if

∣
∣
∣ω(BΘt[A]) − ω(B)ω(A)

∣
∣
∣ ≤ ε

√
ω(BB†)

for all t ≤ −T and B ∈ M, then B = Θt[A†] would yield

0 = ω(A†A) − |ω(A)|2 = ω
(
(A† − ω(A)∗)(A− ω(A))

)
.

As ω was assumed faithful, this gives A = ω(A)1l for all A.
2. By substituting A0 with Θs[A0] for fixed s, the uniformity in Corol-

lary 7.1.2 holds with respect to any fixed Ms.
3. The structure of the nested sequence of Hilbert subspaces {Ht}t∈Z corre-

sponding to the projections Pt very much resembles that arising from
the Lebesgue spectrum of classical K-systems (see the discussion af-
ter Remark 2.3.5). However, the projections {Pt}t∈Z have been con-
structed by relying on the existence of ω-preserving conditional expecta-
tions Et : M �→ Mt. For a state like the tracial state which has trivial
modular automorphism, they surely exist; however, this need not be true
in general. Luckily, the previous results can also be proved without refer-
ring to the existence of a K-sequence of projections [220].
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Example 7.1.13. As sketched in Example 2.3.3.4, the classical hyperbolic
automorphisms of the torus are K-systems. Aided by this fact we shall
show that, for rational values of the deformation parameter θ = p/q, their
quantized versions (Mθ, Θ, ω) are algebraic von Neumann quantum K-
systems [44].

According to Example 7.1.6, we shall identify the classical automor-
phisms of the torus as triplets (M0, ΘA, ω), where M0 is the von Neumann
Abelian algebra of essentially bounded functions on T

2, ΘA is such that
ΘA[f ](r) = f(A r), f ∈ M0, and ω is the integration on T

2 with respect
to the uniform measure dr . Therefore, the K-partition characterizing them
as K-systems amounts to the existence of a K-sequence {Nt}t∈Z of von Neu-
mann subalgebras of M (see Definition 2.3.6).

Because of the decomposition (7.49), let Mt ⊂ Mp/q be defined, with
obvious use of the notation, as

Mt :=
∑

s∈J(q)

Φq[Πs[Nt]]Wp/q(s) . (7.82)

In this way, the K-properties of the classical K-sequence {Nt}t∈Z would
make the characterizing properties in Definition 7.1.10 also hold for the non-
commutative sequence {Mt}t∈Z of subalgebras of Mp/q. The first two condi-
tions are in fact immediate, while the third one comes from the fact that (7.46)
implies Πs[1l] = δs,0.

Unfortunately, one has first to ensure that the Mt are subalgebras, namely
that, if f, g ∈ Nt, also

∑

s,t∈J(q)

Φq[Πs[f ]Φq[Πt[g]]Wp/q(s)Wp/q(t) =

=
∑

s,t∈J(q)

Φq[Πs[f ]Φq[Πt[g]]Wp/q(q[s + t])Wp/q(< s + t >)

=
∑

s,t∈J(q)

Φq

[
Πs[f ]Φq[Πt[g]W0(q[s + t])

]
Wp/q(< s + t >) (7.83)

belongs to Mt.
To this purpose, consider the von Neumann subalgebra M(q)

0 ⊂ M0

consisting of those essentially bounded functions on T
2 that satisfy (7.45).

Since M(q)
0 is mapped into itself by ΘA, the K-properties of the sequence

{Nt}t∈Z extend to the sequence {N (q)
t := Nt ∩M(q)

0 }t∈Z, whence the triplets
(M(q)

0 , ΘA, ω) are also K-systems 3. Further, let B denote the (von Neumann)
subalgebra generated by the characteristic functions χΔ(s) of the partition of
the torus into atoms

Δ(s) :=
{

r :
si

q
≤ xi ≤

si + 1
q

, i = 1, 2
}
,

3Here, ΘA and ω denote the restrictions of the dynamics and the state to M0



7.1 Observables, States and Dynamics 361

where sin ∈ J(q); set Bt := ΘA(B), Bt] :=
∨t

s=−∞ Bs. Finally, construct the
von Neumann subalgebras

Ñt := N (q)
t ∨ Bt] ,

and consider the sequence {Ñt}t∈Z.
This is a K-sequence for M0; indeed, Ñt ⊂ Ñt+1 directly follows from the

analogous property of the K-sequence {N (q)}t∈Z, while
∨

t∈Z
Ñt = M is a

consequence of the fact that
∨

t∈Z
N (q)

t = M(q)
0 together with the observation

that M0 = M(q)
0 ∨ B ⊂

∨
t∈Z

Ñt. Finally,
∧

t∈Z
Ñt = {λ1l} follows from the

fact that, according to Proposition 2.3.5, Tail (B) = {λ1l}.
Let us now insert the subalgebras Ñt in the place of Nt in (7.82); us-

ing (7.47), for f ∈ Ñt, s ∈ J(q), let us consider

Πs[f ]W0(s) =
1
q2

∑

t∈J(q)

γ
(q)
t [f ] e−2 π i s·t/q .

Now, it turns out that the map in (7.45) fulfils

γ(q)
s [ΘA [f ]] (r) = ΘA[f ]

(

r +
s

q

)

= f

(

Ar +
As

q

)

= f

(

Ar +
< As >

q

)

= ΘA

[
γ

(q)
<As>[f ]

]
(r) .

Since γ(q)
s maps the subalgebra B into itself for all s ∈ J(q), it turns out that,

when f ∈ Ñt, all the components in (7.82) also belong to Ñt. Therefore, with
f, g ∈ Ñt, it follows that

Ñt � Πs[f ]W0(s)Πt[g]W0(t) =
(
Πs[f ]Πt[g]W0(q[s + t])

)

︸ ︷︷ ︸
∈Π<s+t>(Ñt)

W0(< s + t >) .

This shows that the linear sets in (7.83) are subalgebras of Mp/q and com-
pletes the proof that the quantum dynamical triplets (Mp/q, ΘA, ω) are al-
gebraic von Neumann quantum K-systems.

Remark 7.1.13. The reason why all quantized hyperbolic automorphisms of
the torus are algebraic K-systems for rational deformation parameters is that
the properties of their classical counterparts are inherited by the commutative
subsystems (the centers) contained in (Mp/q, ΘA, ω). When the deformation
parameter is irrational, this is no longer true and indeed one can prove that
a part from countable sets of θ ∈ [0, 1] (Mθ, ΘA, ω) cannot be algebraic K-
systems [44].
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7.1.5 Quantum Spin Chains

As sketched in Example 7.1.1, the algebraic structure of quantum spin chains
is as in Definition 2.2.5, the difference being that at each site of the one-
dimensional lattice indexed by the integers k ∈ Z, instead of diagonal matrix
algebras, there remain assigned copies Ak of a same non-commutative algebra
A. In the following, we shall consider A = Md(C), namely chains consisting
of linear arrays of d-level quantum systems (or spins).

The algebra AZ associated with the infinite chain is the quasi-local C∗-
algebra which arises by taking the norm closure of the ∗-algebra consisting
of operators from all local algebras A[−	,	] :=

⊗	
k=−	 Ak = Md(C)⊗(2	+1),

supported by the lattice sites in the interval [−�, �]. If A0 denotes the strictly
local ∗ algebra

⋃
	∈N

A[−	,	], then AZ = A0
‖·‖

.
The local algebras A[−	,	] =

⊗	
k=−	 Ak describe spin arrays located at

finitely many lattice sites −� ≤ k ≤ �. Their elements are linear combinations
of tensor products ⊗	

k=−	Ak, Ak ∈ Ak. If 0 ≤ � ≤ p, the local algebra A[−	,	]

can be embedded into A[−p,p] as follows; we shall denote by

1l[i,j] := ⊗j
k=i1lk , 1li−1] := ⊗i−1

k=−∞1lk , 1l[j+1 := ⊗∞
k=j+11lk (7.84)

the tensor products of identities at sites from i to j, from −∞ to i − 1 and
from j + 1 to +∞, respectively. Then, A[−	,	] is embedded into A[−p,p] as
1l[−p,−	−1] ⊗ A[−	,	] ⊗ 1l[	+1,p]. Analogously, A[−	,	] is embedded into A0 as
1l−	−1] ⊗A[−	,	] ⊗1l[	+1. In the following, for sake of simplicity, we shall often
identify local algebras A[−	,	] with their embeddings, as well as their elements
as elements of A0.

The dynamics over AZ is the shift automorphism Θσ : AZ → AZ

Θσ(A[−	,	]) = A[−	+1,	+1]

Θσ

(
1l−	−1] ⊗

(
⊗	

k=−	Ak

)
⊗ 1l[	+1

)
= 1l−	] ⊗

(
⊗	+1

k=−	+1Ak

)
⊗ 1l[	+2 .

In order to complete the description of quantum spin chains as quantum
dynamical systems we need provide AZ with translation invariant states,
that is with positive functionals ω : AZ �→ C such that ω ◦Θσ = ω. Given any
such state, its restrictions ω[i,j] := ω |̀A[i,j] to a local subalgebras A[i,j] :=
⊗j

k=i Ak are density matrices ρ[i,j] ∈ Md(C)⊗(j−i+1). Since it originates from
the global state ω, the family of ρ[i,j] is automatically compatible with the
embedding of A[i,j] ⊂ A[i,j+1], that is they fulfil the condition

ω (Ai ⊗ · · ·Aj ⊗ 1lj+1) = Tr[i,j+1]

(
ρ[i,j+1]Ai ⊗ · · ·Aj ⊗ 1lj+1

)

= Tr[i,j]
((

Tr{j+1}ρ[i,j+1]

)
Ai ⊗ · · ·Aj

)

= Tr[i,j]
(
ρ[i,j]Ai ⊗ · · ·Aj

)
,

where Tr[i,j] indicates that the trace has to be performed with respect to an
orthonormal basis of the Hilbert space (Cd)⊗(j−i+1) associated with the spins
at sites i ≤ k ≤ j. In other words,
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Tr{j+1}(ρ[i,j+1]) = ρ[i,j] , ∀i, j ∈ Z . (7.85)

Further, translation invariance implies

ω(Θσ(Ai ⊗ · · ·Aj)) = ω(1li ⊗Ai ⊗ · · ·Aj)
= Tr[i,j+1]

(
ρ[i,j+1]1li ⊗Ai ⊗ · · ·Aj ⊗ 1lj+1

)

= Tr[i,j]
((

Tr{i}ρ[i,j+1]

)
Ai ⊗ · · ·Aj

)

= ω(Ai ⊗ · · ·Aj) = Tr[i,j]
(
ρ[i,j]Ai ⊗ · · ·Aj

)
,

whence the local states satisfy

Tr{i}(ρ[i,j+1]) = ρ[i+1,j+1] = ρ[i,j] , ∀i, j ∈ Z . (7.86)

Vice versa, if AZ is equipped with a family of local states ρ[i,j], i, j ∈ Z,
satisfying (7.85) and (7.86), then they define a translation invariant state ω on
AZ such that its restrictions to local subalgebras satisfy ω |̀A[i,j] = ρ[i,j] [10].

Definition 7.1.11 (Quantum Spin Chains).
Quantum spin chains are dynamical systems represented by algebraic

triplets (AZ, Θσ, ω) where

1. AZ is a quasi-local algebra with a d-level system at each site;
2. Θσ : AZ �→ AZ is the shift-automorphism over AZ;
3. ω : AZ �→ C is a translation invariant state over AZ

Example 7.1.14. Quantum spin chains turn out to be C∗ algebraic quantum
K-systems; indeed, one argues in the same way as for classical spin chains
(see Remark 2.3.5). The K-sequence consist of the quasi-local algebras At :=
Θt

σ(A0) where A0 ⊂ AZ is the quasi-local algebra which arises as the C∗

inductive limit of the local matrix algebras A[p,q], with p ≤ q ≤ 0.
If ω is a factor state, (AZ, Θσ, ω) is also a von Neumann algebraic quantum

K-system. This can be seen as follows: denote by A[t the quasi-local algebra
generated by all matrix algebras of the form A[p,q] with t ≤ p ≤ q and set
Mt := πω(At)′′, M[t := πω(A[t)′′, M′

t := (Mt)′ for the various commu-
tants. Clearly, the first two conditions in the second part of Definition 7.1.10
are satisfied. The third one is obtained as follows: since M[t+1 ⊂ M′

t, one
finds [220]
(
⋂

t∈Z

Mt

)′

=
⋃

t∈Z

M′
t =

⋃

t∈Z

(M′
t ∪M[t+1) =

(⋃

t∈Z

M′
t

)
∪
(⋃

t∈Z

M[t+1

)

= M′ ∪M = (M∩M′)′ = λ1l′

for ω has been assumed to be a factor whence the center Zω = M∩M′ is
trivial.

This is not true in general; for instance, in the case of Example 7.1.11,
the state (7.75) is not a factor and the von Neumann system is not clus-
tering. Therefore, according to Corollary 7.1.3, (M, θσ, ω) cannot be a von
Neummann algebraic quantum K-system.
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Ergodic Quantum Spin Chains

In Remark 7.1.8, we have seen that asymptotic Abelianess allows to uniquely
decompose non-extremal invariant states into their ergodic components.

As a concrete application, consider a quantum spin-chain (AZ, Θσ, ω)
whose state ω is extremal invariant (see Definition 7.1.8) with respect to
the lattice translation by one site, Θσ, but not with respect to lattice trans-
lations by � sites, Θ	

σ, for some � ∈ N. We prove the following result [58].

Proposition 7.1.9. Let (AZ, Θσ, ω) be an ergodic quantum spin-chain. For
any � ∈ N the state ω can be written as a convex decomposition

ω =
1
n	

n�−1∑

j=0

ωj , (7.87)

where n	 divides � and the ωj are shift-invariant states over the spin-chain
which are ergodic with respect to Θ	

σ.

Proof: Consider the commutant (R	
ω)′ := πω(AZ)′ ∩

{
U 	

ω)
}′ of the covari-

ance algebra (see Definition 7.1.5) R	
ω :=

(
πω(A) ∪ U 	

ω(Z)
)′′

which is built
by means of the C∗ algebra πω(AZ) and the group of unitary GNS operators
Un	

ω , n ∈ N, instead of Uω(Z).
Since AZ is norm-asymptotic Abelian and ω is assumed not to be Θ	

σ-
ergodic, because of Corollary 7.1.1, it turns out that R	

ω �= {λ1l}. Let {Qi}i∈I

be a decomposition of the identity by orthogonal projections in (R	
ω)′; then,

the cardinality of I, n	, must fulfil n	 ≤ �.
Indeed, let P denote any of the Qi, i ∈ I, and set Pj := U j

ω P (U†
ω)j ,

0 ≤ j ≤ �− 1. Since P commutes with πω(AZ), one derives

πω(X)Pj = U j
ωπω(Θj [X])P (U†

ω)j = U j
ωP πω(Θj [X])(U†

ω)j = Pjπω(X) ,

for all X ∈ AZ. Moreover, Pj commutes with U 	
ω, whence Pj ∈ (R	

ω)′ for all
0 ≤ j ≤ �− 1 and so does P :=

∨	−1
j=0 Pj , namely the smallest one among the

projections Q such that Q ≥ Pj for all 0 ≤ j ≤ �− 1.
By decomposing n ∈ Z as n = m�+ r, 0 ≤ r ≤ �− 1, it follows that

Un
ω {Pj}	−1

j=0 (U†
ω)n = {Pj}	−1

j=0 .

Therefore, P is Θσ-invariant, whence P = 1l as ω is ergodic with respect to
Θσ-ergodicity of ω. Then, (7.61) in the ergodic list yields

1 = 〈Ω |P |Ω 〉 ≤
n�−1∑

j=0

〈Ω |Pj |Ω 〉 = � 〈Ω |P |Ω 〉 .
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Applying this argument to each of the Qj , one obtains

1 = 〈Ω |
∑

i∈I

Qi |Ω 〉 ≥ n	

�
.

Since A is norm-asymptotic Abelian, from the second step in the proof of
Proposition 7.1.5, one deduces that (R	

ω)′ is Abelian. Let then Qj , 0 ≤ j ≤
n	 − 1 ≤ �, be its minimal projections (see Example 5.3.4.1) with Q0 such
that

q0 := 〈Ω |Q0 |Ω 〉 ≤ qj := 〈Ω |Qj |Ω 〉
for all j > 0. Then, introduce the set

S0 :=
{
j ∈ Z : U j

ω Q0 (U†
ω)j = Q0

}
.

It follows that S0 ⊇ �Z; further, set k0 := min{0 < j ∈ S0}. Then, � ∝ k0;
otherwise, � = p k0 + q, for some p ≥ 0 and 0 < q < k0, so that q ∈ S0 thus
contradicting the minimality of k0.

Furthermore, set Q0,j := U j
ω Q0 (U†

ω)j, 0 ≤ j ≤ k	; Q0,j belongs to (R	
ω)′.

If it is not a minimal projector Qi(j), then, Q0,j =
∑

i Qi thus contradicting
q0 ≤ qj when j > 0. Thus, Q0,j = Qi(j). If Q0 :=

∨k0−1
j=0 Qj =

∑k0−1
j=0 Qj (the

projectors are now orthogonal), it follows that, as shown before, Q0 ∈ (R	
ω)′

and hence Q0 = 1l. Consequently, because of the uniqueness of the orthogonal
decomposition of the identity in an Abelian algebra, it turns out that k0 = n	

whence Qj = U j
ω Q0 (U†

ω)j and q0 = qj = n−1
	 .

One can now introduce the states on AZ defined by

AZ � X �→ ωj(X) := n	 〈Ω |Qjπω(X) |Ω 〉 = 〈Ω |Q0πω

(
Θ−j

σ (X)
)
|Ω 〉

= ω0(Θj
σ[X]) ,

for all X ∈ AZ. It turns out that the ωj ’s are all Θ	
σ-ergodic, otherwise it

would be possible to further convexly decompose them (hence ω) into Θ	
σ-

invariant components:

ωj =
∑

i

λjiωji , ω =
n�−1∑

j=0

∑

i

λji

n	
ωji .

As explained in Remark 7.1.5.2, the decomposers ωji correspond to projectors

Pji ∈ (R	
ω)′ such that

λji

n	
= 〈Ω |Pji |Ω 〉 and

λjiωji(X) = n	 〈Ω |Pjiπω(X) |Ω 〉
≤ ωj(X) = n	〈Ω |Pjπω(X) |Ω 〉 , ∀X ∈ AZ .

As the projections Pji and Pj belong to the commutant πω(AZ)′, by choosing
X = Y †Z one gets
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〈Ω |πω(Y )† Pji πω(Z) |Ω 〉 ≤ 〈Ω |πω(Y )† Pj πω(Z) |Ω 〉 .

Since Y and Z are arbitrary elements of AZ and the vectors πω(X)|Ω 〉 are
dense in the GNS Hilbert space, it turns out that Pji ≤ Pj . But the Pj ’s are
minimal projections, thus Pji = Pj . �

Finitely Correlated States

An interesting class of translation-invariant states on a quantum spin-chain
AZ is constructed as follows [113]. Let (B, ρ,E) be an auxiliary triplet, where

1. B is a finite dimensional algebra that we shall fix to be the algebra Mb(C)
of b× b matrices acting on C

b ;
2. ρ is a state on B identified by a density matrix: ρ(B) = Tr(ρB).
3. E : A �→ B is a completely positive map such that

E(1lA ⊗ 1lB) = 1lB (7.88)
ρ ◦ E(1lA ⊗B) = ρ(B) , (7.89)

where 1lA,B denote the identities of the algebras A, respectively B.

Since they result from iteratively composing CPU maps, the following maps

E
(n) := E ◦

(
idA ⊗ E

(n−1)
)

: A⊗n �→ B , n ≥ 1 , E
(0) := E , (7.90)

are also CPU . Consequently, the functionals ρ ◦ E
(n) on A⊗n are positive

and normalized. They are thus states on the local algebras A⊗n: moreover,
the corresponding density matrices in Md(C)⊗n

⊗
Mb(C) can be obtained

by duality: in fact,

TrB
(
ρE[A⊗B]

)
= TrA⊗B

(
F[ρ]A⊗B

)
, (7.91)

where F : S(B) �→ S(A ⊗ B) is the trace-preserving dual map of E which
transforms states over B into states over A ⊗ B. Analogously, to the CPU
maps E

(n) there correspond the dual maps F
(n) : S(B) �→ S(A⊗(n+1) ⊗ B)

given by

F
(n) := (idA⊗n ⊗ F) ◦ F

(n−1) , n ≥ 1 , F
(0) := F .

Consider the states ω[−	,	] defined on the local subalgebras A[−	,	] by

ω[−	,	](⊗	
k=−	Ak) := TrB

(
ρE

(n)[(⊗	
k=−	Ak) ⊗ 1lB]

)

= TrB
(
F

(n−1)[ρ] (⊗	
k=−	Ak) ⊗ 1lB

)
. (7.92)

As a consequence of (7.88) and (7.89), they satisfy the compatibility re-
lations (7.85), that is ω[−	−1,	+1] |̀A[−	,	] = ω[−	,	], and the translation-
invariance conditions (7.86), namely ω[−	,	] = ω[−	+1,	+1]. We illustrate these
properties by means of the simplest non trivial case and choose A[1,2]; then
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ω(A⊗ 1l2) = TrB
(
ρE[A⊗ E[1lA ⊗ 1lB]]

)
= TrB

(
ρE[A⊗ 1lB]

)
= ω(A)

ω(1l1 ⊗A) = TrB
(
ρE[1lA ⊗ E[A⊗ 1lB]]

)
= TrB

(
ρE[A⊗ 1lB]

)
= ω(A) .

Therefore, the family of local states ω[−	,	] defines a global invariant state
overt the quantum spin chain AZ.

Definition 7.1.12 (Finitely Correlated States). Given a triplet (B, ρ,E)
as specified before, all functionals ω on AZ locally defined on A[i,j] by

ω(⊗j
k=iAk) = TrB

(
ρ E

(j−i)[⊗j
k=iAk]

)
,

are translation invariant states called finitely correlated (FCS).

Remark 7.1.14. The specification finitely correlated refers to the finite di-
mensionality of the auxiliary algebra B. Without such a restriction, every
translation-invariant state over AZ would be given as in the previous defini-
tion. Indeed, one could then choose B := A[1,+∞], ρ := ω |̀A[0,+∞] and as E

the natural embedding of any A[i,j] into A[1,+∞].

Because of translation-invariance, ω |̀A[i,j] = ω |̀A[1,j−i+1]; therefore, the
local structure of ω is determined by the density matrices ρ[1,n] corresponding
to ω |̀A[1,n]. They are recursively obtained by means of the dual maps (7.92),

ρ[1,n] := TrB
(
F

(n−1)[ρ]
)
. (7.93)

In order to take a closer look at the recursive structure of FCS, we make
use of the Kraus-Stinespring representation (5.195); concretely,

E(A⊗B) =
∑

j∈J

V †
j A⊗B Vj ,

∑

j∈J

V †
j Vj = 1lB (7.94)

V †
j : C

b �→ C
d ⊗ C

b , V †
j : C

d ⊗ C
b �→ C

b , (7.95)

where J is an index set of finite cardinality. With |ψA
i 〉, i = 1, , . . . , d and

|ψB
k 〉, k = 1, 2, . . . , b two ONBs in C

d, respectively C
b, the action of Vj can

be represented in the following two ways,

Vj |ψB
i 〉 =

b∑

k=1

|ΨA
j,ik 〉 ⊗ |ψB

k 〉 (7.96)

Vj |ψB
i 〉 =

d∑

	=1

|ψA
	 〉 ⊗ |ΨB

j,i	 〉 , (7.97)
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where the ΨA
j,ik , Ψ

B
j,i	 ∈ C

d are in general neither orthogonal nor normalised.
From (7.96) it follows that

Vj =
b∑

i,k=1

|ΨA
j,ik ⊗ ψB

k 〉〈ψB
k | , V †

j =
b∑

i,k=1

|ψB
k 〉〈ΨA

j,ik ⊗ ψB
k | .

Thus,
∑

j∈J V
†
j Vj = 1l whence

∑
j∈J

∑b
k=1〈ΨA

j,pk |ΨA
j,qk 〉 = δpq. On the other

hand, from (7.91) one gets

F[ρ] =
∑

j∈J

b∑

i,k=1
p,q=1

〈ψB
p | ρ |ψB

k 〉 |ΨA
j,pq 〉〈ΨA

j,ki | ⊗ |ψB
q 〉〈ψB

i |

=
∑

j∈J

b∑

	,p=1

b∑

i,q=1

r	 |ΨA
j,	q 〉〈ΨA

j,	i | ⊗ |ψB
q 〉〈ψB

i | , (7.98)

where we have conveniently chosen the eigenprojections of ρ as ONB in C
b,

that is ρ =
∑b

	=1 r	|ψB
	 〉〈ψB

	 |. As condition (7.89) amounts to TrAF[ρ] = ρ,
the vectors ΨA

j,ik must also satisfy
∑

j∈J

∑b
	=1 r	〈ΨA

j,	i |ΨA
j,	q 〉 = δiq rq.

By recursively inserting (7.98) into (7.93), one gets the following expres-
sion for the local density matrices ρ[1,n],

ρ[1,n] =
∑

j(n)∈In
J

b∑

	,p=1

r	 |Ψ j(n)

	p 〉〈Ψ j(n)

	p | , (7.99)

|Ψ j(n)

	p 〉 :=
∑

i(n−1)∈Ω
(n−1)
b

|ΨA
j1,	i1 〉 ⊗ |ΨA

j2,i1i2 〉 ⊗ |ΨA
j2,i2i3 〉 ⊗ · · ·

· · · ⊗ |ΨA
jn−1,in−2in−1

〉 ⊗ |ΨA
jn,in−1p 〉 . (7.100)

Remark 7.1.15. Notice that, despite the recursive structure involving more
and more factor components, for each n-tuple j(n) = j1j2 · · · jn ∈ In

J there

are at most b2 vectors Ψ j(n)

	p ∈ (Cd)⊗n.

Example 7.1.15. The vectors Ψ j(n)

	p need not be normalized, ‖Ψ j(n)

	p ‖ �= 1;
taking this fact into account, (7.99) provides the following natural decompo-
sition of the local restrictions of FCS states,

ρ[1,n] =
∑

j(n)∈In
J

p(j(n)) ρj(n)

[1,n] , ρj(n)

[1,n] =
b∑

	,p=1

r	‖Ψ j(n)

	p ‖2

b∑

	,p=1

r	‖Ψ j(n)‖2

︸ ︷︷ ︸
p(j(n))

P j(n)

	p , (7.101)
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where P j(n)

	p projects onto |Ψ j(n)

	p 〉/‖Ψ j(n)

	p ‖. It follows that the support of

each ρj(n)

[1,n] has dimension at most b2. By defining the completely positive

(non-unital) maps A ⊗ B � A ⊗ 1l �→ Ej [A ⊗ B] := V †
j A ⊗ B Vj ∈ B, the

weights p(j(n)), j(n) = j1j2 · · · jn ∈ In
J , can be rewritten as

p(j(n)) =
b∑

	=1

r	 ‖Ψ j(n)‖2 = Tr
(
ρ[1,n] Ej1 ◦ Ej2 ◦ · · ·Ejn

[1lA⊗n ⊗ 1lB]
)
.

Since
∑

j∈J Ej = E, from (7.88) and (7.89) it follows that the probabilities
π(n) = {p(j(n)}j(n)∈In

J
define a shift invariant global state ωπ over the Abelian

algebra of generated by tensor products of infinitely many card(J)× card(J)
diagonal matrices, thus a classical spin chain (D⊗∞

J , Θσ, ωπ).

As regards the action of Vj in (7.97), we proceed as follows. Given the
vectors |ΨB 〉j,i	 ∈ C

b, where j ∈ J , i = 1, 2, . . . , b and � = 1, 2, . . . , d, let
v†j	 ∈ Mb(C) be the matrix such that 〈ψB

k | v†j	 |ψB
i 〉 = 〈ψB

k |ΨB
j,k	 〉. Then,

Vj =
d∑

	=1

b∑

i=1

(
|ψA

	 〉 ⊗ v†j	|ψB
i 〉
)
〈ψB

i | (7.102)

V †
j =

d∑

	=1

b∑

i=1

|ψB
i 〉
(
〈ψA

	 | ⊗ 〈ψB
i |vj	

)
. (7.103)

Then, (7.88) implies 1lB =
∑

j∈J V
†
j Vj = 1lB =

∑
j∈J

∑d
	=1 vj	v

†
j	. Further,

the dual map F reads

F[ρ] =
∑

j∈J

d∑

p,q=1

|ψA
p 〉〈ψA

q | ⊗ v†jp ρ vjq . (7.104)

It then turns out that, in terms of the vj	s, the translation-invariant condi-
tion (7.89) amounts to

∑
j∈J

∑d
	=1 v

†
j	 ρ vj	 = ρ. Finally, using (7.93), the

local density matrices ρ[1,n] exhibit the following recursive structure,

ρ[1,n] =
∑

j(n)∈In
J

k(n),i(n)∈Ω
(n)
d

|ΨA
k(n) 〉〈ΨA

i(n) | TrB
(
v†

j(n)k(n) ρ vj(n)i(n)

)
, (7.105)

where |ΨA
i(n) 〉 := |ψA

k1
〉⊗|ψA

k2
〉⊗· · · |ψA

kn
〉 and vj(n)i(n) := vj1i1vj2i2 · · · vjnin

.
The above expression is particularly suited to deal with

Definition 7.1.13 (Purely Generated FCS). A FCS ω is called purely
generated if the defining CPU E consists of only one Kraus operator [113]:

E(A⊗B) = V †A⊗B V .
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In terms of (7.102) and (7.103), the map E and its dual F read

E[A⊗B] =
a∑

i,k=1

〈ψA
i |A |ψA

j 〉 vi B v†k , F[ρ] =
a∑

i,k=1

|ψA
k 〉〈ψA

i | ⊗ v†k ρ vi ,

whereby compatibility (7.88) and translation-invariance (7.89) impose
a∑

i=1

vi v
†
i = 1lB ,

a∑

i=1

v†i ρ vi = ρ . (7.106)

The states ρA⊗B := F[ρ] on A⊗B and ρ[1,2] = TrB(idA⊗F◦F[ρ]) on A[1,2]

can be explicitly written out. Notice that, because of translation-invariance,
ρ[1,2] describes any two nearest neighbor spins:

ρA⊗B =
a∑

i,j=1

|ψA
i 〉〈ψA

j | ⊗ vi ρ v
†
j =

⎛

⎜
⎜
⎜
⎜
⎝

v1 ρ v
†
1 . . . v1 ρ v

†
a

· · · · ·
· · · · ·
· · · · ·

va ρ v
†
1 . . . va ρ v

†
a

⎞

⎟
⎟
⎟
⎟
⎠

(7.107)

ρ[1,2] =
a∑

i,j=1

|ψA
i 〉〈ψA

j | ⊗

⎛

⎜
⎜
⎜
⎝

R1ij1 . . . R1ija

· · · · ·
· · · · ·
· · · · ·

Raij1 . . . Raija

⎞

⎟
⎟
⎟
⎠

, (7.108)

where Rij	k := Tr(v†i v
†
j ρ v	vk).

Example 7.1.16 (AKLT Model). A typical instance of the recursive finitely
correlated structure is provided by the AKLT-model [4, 5], a spin-chain con-
sisting of spin 1 particles with nearest-neighbor interactions described by the
Hamiltonian

H =
N−1∑

k=1

{
1
2
Sk · Sk+1 +

1
6

(
Sk · Sk+1

)2

+
1
3

}

, (7.109)

where Sk = (S1k, S2k, S3k) represents the spin operator for the k-th spin
along the chain.

The possible values of the total spin of two nearest neighbors are 0, 1
and 2 with corresponding orthogonal projectors P (k)

0 , P (k)
1 , respectively P (k)

2 .
Therefore, since

Sk · Sk+1 = −2P (k)
0 − P

(k)
1 + P

(k)
2 ,

(
Sk · Sk+1

)2

= 4P (k)
0 + P

(k)
1 + P

(k)
2

and P
(k)
0 + P

(k)
1 + P

(k)
2 = 1, it follows that the interaction between sites k

and k + 1 amounts to the projection P
(k)
2 onto the subspace with total spin

2.
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The spin 1 at site k can be described by means of two spins 1/2, labeled
by k, k, by projecting with Pkk from C

4 onto the 3-dimensional subspace
orthogonal to the singlet state |Ψ (−)

k,k
〉 of the pair of spins 1/2 at k and k. Fur-

ther, after associating the spins 1 at k, k+1 with the pairs k, k, respectively
k + 1, k + 1 of spins 1/2, one imposes valence bonds between the pairs, by
requiring that the spins 1/2 at k and k + 1 be in a singlet state |Ψ (−)

k,k+1
〉. It

follows that the common state of the pairs k, k and k + 1, k + 1, namely of
two neighboring spins 1 is eigenstate of P (k)

2 with eigenvalue 0.
Further, by appending two spins 1/2 at the opposite ends, 0 and N + 1,

of the spin 1 chain, it thus follows that the vector state
(
⊗N−1

k=1 Pk,k+1

)
|Ψ (−)

0 1
〉 ⊗ |Ψ (−)

12
〉 ⊗ · · · |Ψ (−)

N−1N
〉 ⊗ |Ψ (−)

NN+1
〉 (7.110)

is the unique ground state for the Hamiltonian

H =
N−1∑

k=1

P
(2)
k +

2
3

(
1 + s0 · S1

)
+

2
3

(
1 + sN+1 · SN

)
(7.111)

which is obtained from 7.109 by adding two boundary interactions involving
the boundary spin 1/2 operators s0 and sN+1. In the limit of an infinitely
long spin-chain, the above valence-bond construction provides a unique,
translation-invariant ground state of the AKLT-model, known as valence-
bond solid, which exhibits short-range correlations and an energy gap.

In the limit of an infinite spin-chain, its ground state, the valence-bond
solid, corresponds to the triplet (B, ρ,E) with B = M2, ρ(B) = 1

2Tr(B) and

E : M3 ⊗M2 � A⊗B �→ V †(A⊗B)V ∈ M2 , (7.112)

where, with |b1,2〉 ∈ C
2 the eigenvectors of the Pauli matrix σ3 relative to the

eigenvalues 1,−1 and |a1,2,3〉 the eigenvectors of Sz relative to the eigenvalues
−1, 0, 1,

V |b1〉 =

√
2
3
|a3, b1〉 −

1√
3
|a2, b1〉 , V |b2〉 =

1√
3
|a2, b2〉 −

√
2
3
|a1, b1〉 .

(7.113)
From (7.102), with σ± := (σ1 ± iσ2)/2, it thus follows that

v1 = −
√

2
3
σ+ , v2 = − 1√

3
σ3 , v3 =

√
2
3
σ− . (7.114)

One can thus check that the conditions (7.106) are satisfied and, moreover,
that the identity matrix 12 ∈ M2 is the only solution of the second relation
in (7.106) in agreement with the translation invariance and purity of the
valence bond solid. Further, from (7.107) one explicitly computes
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ρA⊗B =
1
6

⎛

⎝
1 − σ3

√
2σ− 0√

2σ+ 1
√

2σ−
0

√
2σ+ 1 + σ3

⎞

⎠ =
1
6

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 2

√
2 0 0 0

0
√

2 1 0 0 0
0 0 0 1

√
2 0

0 0 0
√

2 1 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(7.115)
while (7.108) gives the nearest neighbor states

ρ[1,2] =
1
9

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0
0 0 2 0 −1 0 0 0 0
0 −1 0 1 0 0 0 0 0
0 0 −1 0 1 0 −1 0 0
0 0 0 0 0 1 0 −1 0
0 0 0 0 −1 0 2 0 0
0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7.116)

Remark 7.1.16. Finitely correlated states are a useful arena for investigat-
ing the behavior of entanglement in quantum spin chains for these are deter-
mined by the triplet (B, ρ,E) (see [38, 204]). Furthermore, they are particular
important as ground states of certain solid state Hamiltonians whereby one is
interested in either the relations between entanglement and long-range order
effects [227] or in the possibility to create entanglement between distant sites
by suitable local measurements [241].

Price-Powers Shifts

The so-called Price-Powers shift [246, 247] are quantum dynamical systems
described by an infinite-dimensional C∗ algebra Ag, whose building blocks
are the identity operator 1l and operators ei, i = N, satisfying

ei = e∗i , e2i = 1l . (7.117)

Their algebraic properties are determined by a function

g : N0 �→ {0, 1} , g(0) = 0 , (7.118)

called bitstream: according to its values, different ei’s commute or anticom-
mute

ei ej = (−)g(|i−j|) ej ei , ∀i, j ∈ N . (7.119)
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By means of the above relations, every product of finitely many ei’s can be
reduced (up to a sign) to an operator of the form

Wi = ei1ei2 · · · ein
, (7.120)

where i = i1i2 · · · in ∈ N
∗ stands for any choice of finitely many indices such

that i1 < i2 < . . . < in: i will be called the support of Wi.
It is convenient for later purposes to explicitly compute the commutator

of two operators Wi and Wj with supports i = i1i2 · · · in and j = j1j2 · · · jm:

[Wi , Wj ] = Wi Wj

(
1 − (−)

∑n
p=1

∑m
q=1 g(|ip−jq|)

)
. (7.121)

By means of the operators Wi one constructs finite-dimensional local subal-
gebras. Indeed, again by means of (7.117) and (7.119), products of Wi, with
i’s consisting of indices from a same interval [p, q], p ≤ q, reduce up to a sign
to some other Wi from the same interval. Thus, the algebra A[p,q] generated
by Wi with i from [p, q] is a finite-dimensional unital C∗ algebra that can be
embedded into the spin algebra M2(C)⊗(q−p+1. This becomes apparent by
representing the operators ej by means of tensor products of Pauli matrices:

ej =
j−1⊗

i=1

(σg(j−i)
z )i ⊗ (σx)j ⊗ 1l[j+1 . (7.122)

Since σzσx = −σxσz, one can check that the relations (7.119) are indeed
satisfied. The local C∗ algebras generate the ∗-algebra

A∗ =
⋃

n≥1

A[1,n] ,

and by norm closure (for instance as a subalgebra of the quantum spin chain⊗∞
n=1 M2(C)) the quasi-local algebra

Ag := A∗
‖·‖

. (7.123)

As for quantum spin chains the dynamics on Ag is given by the shift to the
right of the support of the operators Wi:

Wi �→ Θt
σ[Wi] =: Wi+t = ei1+tei2+t · · · ein+t , t ∈ N . (7.124)

Proposition 7.1.10. Let W∅ := 1l; the linear functional ω : Ag �→ C ob-
tained by setting

ω(Wi) = δi,∅ (7.125)

and by linearly extending it to A∗ defines a tracial Θσ-invariant state on
Ag. This is the only tracial state on Ag if and only if the following property
holds: for all finite supports i = i1i2 · · · in ∈ N

∗ there exists k ∈ N such that∑n
	=1 g(|k − i	|) is odd.
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Proof: The positivity of ω can be checked by setting W =
∑

i ciWi, ci ∈ C

and considering
ω(W †W ) =

∑

i,j

c∗i cj ω(W †
i Wj) .

The expectations ω(W †
i Wj) vanish unless W †

i Wj = 1l which can be true
only if each eik

in Wi is matched by an ej�
in Wj . Thus, ω(W †

i Wj) = δi,j

whence ω(W †W ) ≥ 0. Therefore, ω is positive, thus continuous (see (5.49))
and can be extended by continuity to the whole of Ag. That ω ◦ Θσ = ω
follows directly from (7.124) and (7.125). Such a state has the tracial property
ω(Wi Wj) = ω(Wj Wi).

Suppose that a state ω̃ on Ag has the tracial property and that for all
finite supports i = i1i2 · · · in ∈ N

∗ there exists k such that
∑n

	=1 g(|k − i	|)
is odd, then [10] using (7.117) and (7.119), one gets

ω̃(Wi) = ω̃(e2k Wi) = ω̃(ek Wi ek)
= (−)

∑n
�=1 g(|k−i�|) ω̃(e2k Wi) = −ω̃(Wi) .

Therefore, ω̃(Wi) = 0 for all Wi �= 1l whence ω̃ = ω.
Viceversa, if there exists a support i = i1i2 · · · in such that for all k ∈ N∑n

	=1 g(|k− i	|) is even, then (7.121) implies that Wi commutes with A∗ and
thus with Ag, whence, setting W := 1l +Wi (ω(W ) = 1)), it turns out that

Ag � Wj �→ ω̃(Wj) := ω(W Wj) , Wj ∈ Ag ,

defines another state on Ag with the tracial property. �

Remark 7.1.17. The property that ensures the uniqueness of the tracial
state ω defined by (7.125) is guaranteed by non-periodic bitstreams [222]; we
shall assume this in the following.

Definition 7.1.14 (Price-Powers Shifts). We shall call Price-Powers shifts

the dynamical triplets
(
Ag, Θσ, ω

)
constructed as above with a unique invari-

ant tracial state ω.

Examples 7.1.17. [13]

1. The von Neumann algebras Mg := πω(Ag)′′ that arise from the strong
closure of Ag in the GNS construction based on ω are hyperfinite. By
extending Θ and ω to Mg one gets von Neumann triplets (Mg, Θ, ω)
with ω still a unique tracial state.

2. If g ≡ 0 then (Mg, Θσ, ω) is an algebraic version of the classical balanced
two-valued Bernoulli shift (Ω2, Tσ, μ). The von Neumann algebra M0 is

generated by the projections pi :=
1l ± ei

2
which are orthogonal for a

same index i and otherwise commute.
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3. If g �= 0, because of the existence of a unique normalized trace, all Mg are
hyperfinite factors of type II1. Indeed, their center Zg := Mg ∩M′

g = ∅,
otherwise there would be a positive Z ∈ Zg with ω(Z) > 0 such that

ωZ(Wi) :=
ω(ZWi)
ω(Z)

gives a different tracial state on Mg contradicting

the uniqueness of ω:

ωZ(Wi Wj) =
ω(ZWi Wj)

ω(Z)
=
ω(Wj ZWi)

ω(Z)
=
ω(ZWj Wi)

ω(Z)
= ωZ(Wj Wi) .

4. If g(1) ≡ 1 then Ag amounts to a discrete Fermi algebra endowed with
an infinite temperature state. Indeed, eiej + ejei = 0 if i �= j so that the
operators

ai :=
e2i−1 + i e2i

2
, a†i :=

e2i−1 − i e2i

2
,

i ≥ 1, satisfy the CAR (5.62). Moreover, the expectations

ω(a†iaj) =
δij

2
are those of a Fermionic KMS state at infinite temperature (see Exam-
ple (7.1.3)).

5. The bitstream can be chosen such that the von Neumann dynami-
cal triplets (Ag, Θσ, ω) are asymptotically highly anti-commutative [222].
This means the following: there exists a subset S ⊂ Ag such that 1) the
set 1l∪S is dense in Ag and 2) for any S ∈ S, ε > 0 and N ∈ N there exist
0 < n1 < n2 < · · · < nN ∈ N such that the anti-commutators satisfy

∥
∥
∥
{
Θni

σ [S†] , Θnj
σ [S]

}∥
∥
∥ ≤ ε

for all ni �= nj . In this case the tracial state ω turns out to be the only
state which is invariant under the shift Θσ. Indeed, choose S ∈ S and set

X :=
1
N

N∑

i=1

Θni
σ [S], then

∥
∥
∥X†X + XX†

∥
∥
∥ ≤ 2

N
‖S‖2 +

1
N2

∑

i�=j

∥
∥
∥
{
Θni [S†] , Θnj [S]

}∥
∥
∥

≤ 2
N

‖S‖2 +
ε(N − 1)

N
.

Further, if ν is a translation-invariant state on Ag, then ν(X) = ν(S);
thus, by applying (5.49),

|ν(S)| = |ν(X)| ≤ 1
2

(√
ν(X†X) +

√
ν(XX†)

)
≤
√
ω(X†X + XX†)

2

≤
√

‖S‖2

N
+

ε(N − 1)
2N

.
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Because of the arbitrariness of N and ε > 0, it follows that ν(S) = 0 for
all S ∈ S and because of the assumed density of the set 1l∪S, ν coincides
with ω as defined in (7.125).

Like in Example 7.1.12, Price-Powers shifts are weakly mixing for all
bitstreams; indeed, because of the quasi-local structure of the algebra and
the of the tracial property of ω, one need only study the asymptotic behavior
of

ω(WiΘσ[Wj ]) = ω(Wi Wj+t) .

Clearly, for sufficiently large t, i ∩ (j + t) = ∅, then

lim
t→+∞

ω(WiΘσ[Wj ]) = 0 ,

unless i = j = ∅.
As regards strong-mixing, it is convenient to consider strong-asymptotic

Abelianess first; namely, at its simplest, using (7.121), it turns out that

ω
(
[ei , ej+t]†[ei , ej+t]

)
=
(
1 − (−1)g(|j+t−i|)

)2

.

Therefore, unlike for weak-asymptotic Abelianess, the possibility of strong-
asymptotic Abelianess depend on the asymptotic behavior of the bitstream;
for instance, highly anti-commutative Price-Powers shifts cannot be strongly
asymptotic Abelian.

7.2 von Neumann Entropy Rate

As seen in the introduction to this chapter, the usual setting of quantum sta-
tistical mechanics consists of a quasi-local algebra A which is the C∗ inductive
limit of local C∗-algebras AV ⊆ B(HV ) of operators localized in finite vol-
umes V ⊂ R

3; also, A is equipped with a locally normal state, namely with a
state whose local restriction to AV , ω |̀AV is a density matrix ρV ∈ B

+
1 (HV ).

Usually, ω is translation-invariant, that is ρV +a = ρV , where V + a denotes
the volume V rigidly translated by a ∈ R

3 (or by a ∈ Z
3 in the case of a

lattice system).
Consider two disjoint volumes V1 and V2 and let V := V1 ∪ V2; then,

AV = AV1 ⊗ AV2 and ρV1,2 = TrHV2,1
ρV , namely the states localized within

V1,2 are obtained as marginal states of ρV localized within the larger volume
V . Each local state ρV has von Neumann entropy

S(V ) := S (ρV ) = −Tr(ρV log ρV ) ;

then, the subadditivity of the von Neumann entropy, that is the upper bound
in (5.161) reads

S(V ) ≤ S(V1) + S(V2) , (7.126)
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where the equality holds if and only if ρV = ρV1 ⊗ρV1 . In order to understand
the meaning of strong subadditivity in this setting, consider two volumes V
and U such that V2 := V ∩ U �= ∅ and set V1 := V \ V2, V3 := U \ V2,
W = V1 ∪ V2 ∪ V3 = U ∪ V . Since V1,2,3 are disjoint volumes, it follows that
AW = AV1 ⊗AV2 ⊗AV3 , AV = AV1 ⊗AV2 and AU = AV2 ⊗AV3 ; further

ρV2 = TrHV1⊗HV3
(ρW ) , ρV = TrHV3

(ρW ) , ρU = TrHV1
(ρW ) .

Then (5.162) reads

S(U ∪ V ) + S(V2) ≤ S(U) + S(V ) . (7.127)

In general, the von Neumann entropy of ρV diverges when V ↑ R
3 (or V ↑ Z

2);
on thus wonders whether the rate S(V )/|V | exists when the V ↑ R

3,Z3,
where |V | =

∫
V

dr. Among the many ways a sequence of volumes may fill
the whole space R

3 (or Z
3), a convenient one [314] is to consider a family of

parallelepipeds V (a) :=
{

x = (x1, x2, x3) ∈ R
3 : −ai ≤ xi ≤ ai

}
, where

a ∈ R
3
+ and then to let each ai → +∞ so that V (a) → R

3.

Proposition 7.2.1 (Mean von Neumann Entropy). [314]
If (A, ω) is a quasi-local shift-dynamical system with a locally normal

translation invariant state ω, its mean von Neumann entropy is given by

s(ω) := lim
V (a)→R3

S(V (a))
|V (a)| = inf

V (a)

S(V (a))
|V (a)| . (7.128)

Proof: [314] Because of translation invariance, in (7.128) we can consider
parallelepipeds of the form V (a) =

{
x ∈ R

3 : 0 ≤ xi ≤ ai

}
. Choose ε > 0

and a parallelepiped V (a0) in such a way that

s(ω) = inf
V (a)

S(V (a))
|V (a)| ≥ S(V (a0))

|V (a0)|
− ε . (∗)

By decomposing R+ � ai = nia
i
0 + bi with ni ∈ N and 0 ≤ bi ≤ ai

0, any other
V (a) can be written as the union of disjoint parallelepipeds

V (a) =
⋃

0≤k1≤n1−1
0≤k2≤n2−1
0≤k3≤n3−1

Vk(a0) ∪ Vb(a0)

Vk(a0) :=
{

x ∈ R
3 : kia

i
0 ≤ xi ≤ (ki + 1)ai

0

}

Vb(a0) :=
{
x ∈ R

3 : nia
i
0 ≤ xi ≤ nia

i
0 + bi

}
.

Then, (7.126) yields
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S(V (a)) ≤
(

3∏

i=1

ni

)

︸ ︷︷ ︸
|V (a)|

S(V (a0)) + S(Vb(a0)) (∗∗) .

By translation, Vb(a0) can be embedded within V (a0); furthermore, since 0 ≤
bi ≤ ai

0, each of them is the intersection of the interval [0, ai
0] with an interval

[−ci, ai
0 − ci], ci ≥ 0, of the same length. It thus follows that Vb(a0) can be

written as the intersection V2 of V := V (a0) with a suitably translated V (a0)
denoted by U . Then, from (7.127) and translation-invariance one derives the
upper bound

S(Vb(a0)) = S(V2) ≤ S(U ∪ V ) + S(V2) ≤ S(U) + S(V ) = 2S(V (a0)) .

Finally, dividing (∗∗) by V (a) and going to the limit, similarly as in the proof
of the existence of the Shannon entropy rate in (3.2), using (∗) one gets

lim sup
V (a)

S(V (a))
|V (a)| ≤ S(V (a0)

|V (a0)|
≤ s(ω) + ε ≤ lim inf

V (a)

S(V (a))
|V (a)| + ε ,

whence the result follows from the arbitrariness of ε > 0. �

Examples 7.2.1.

1. For quantum spin chains (AZ, Θσ, ω), the mean entropy is given by

s(ω) = lim
n→+∞

1
n
S
(
ρ[1,n]

)
= inf

n

1
n
S
(
ρ[1,n]

)
, (7.129)

where ρ[1,n] is the density matrix corresponding to the restriction ω |̀A[1,n]

of the translation invariant state ω to the local subalgebra A[1,n].
2. Because of their structure (see Remark 7.1.15), purely generated FCS
ω have s(ω) = 0. Indeed, the support of local states ρ[1,n] is at most
b2-dimensional where Mb(C) = B is the auxiliary algebra in the triplet
(B, ρ,E); then S

(
ρ[1,n]

)
≤ 2 log2 b.

3. Consider the Bosonic (7.22) and Fermionic (7.20) quasi-free states ωA

and assume the action of the operator A on L
2
dr (R3) to be given by

〈 r |Aψ 〉 =
∫

R3
dx KA(r − x)ψ(x) ,

where the kernel KA has Fourier transform

K̂A(k) :=
1

(2π)3

∫

R3
dx e−ik·x KA(x)

such that 0 ≤ K̂A(k) ≤ 1 for Fermions, 0 ≤ K̂A(k) ≤ M < +∞ for
Bosons. These quasi-free states are translation-invariant and their mean
entropies can be explicitly calculated [233, 110],



7.2 von Neumann Entropy Rate 379

s(ωA) =
1

(2π)3

∫

R3
dk
(
η(K̂A(k)) + η(1 − K̂A(k))

)
(Fermions)

s(ωA) =
1

(2π)3

∫

R3
dk
(
η(K̂A(k)) − η(1 + K̂A(k))

)
(Bosons) .

Remarks 7.2.1.

1. The entropy density of quantum spin-chains scales as the power of the
shift-automorphism, that is the entropy production per length � time-step
is � times the entropy production per unit time-step:

s	(ω) := lim
n→∞

1
n
S
(
ρ(n	)

)
= � s(ω) , (7.130)

where ρ(n	) = ω |̀A0,n	−1. Indeed, since the limit in (7.129) exists, it can
be computed as

s(ω) = lim
n→+∞

1
n�
S
(
ρ[1,n	]

)
=

1
�
s	(ω) .

2. From (5.156), it follows that the entropy density is affine over all convex
decompositions of Θσ-invariant states ω of quantum spin-chains into Θσ-
invariant components ωj . Namely, if ω =

∑
j λjωj , with 0 ≤ λj ≤ 1,∑

j λj = 1, then

s(ω) =
∑

j

λj s(ωj) , ∀� ∈ N . (7.131)

3. In the case of a decomposition of a translation-invariant state ω of a
quantum spin-chain into θ	

σ-invariant components ωj , the previous two
points give

s	(ω) =
∑

j

λjs	(ωj) = �
∑

j

λjs(ωj) , ∀� ∈ N . (7.132)

Let us consider the decomposition of a Θσ-invariant state ω over a quan-
tum spin-chain which is not Θ	

σ-ergodic into n	 Θ
	
σ-ergodic states (see Propo-

sition 7.1.9).

Lemma 7.2.1. Given the decomposition ω = 1
n�

∑n�−1
j=0 ωj, using the nota-

tion of Remark 7.2.1, it turns out that

1. all states ωj have the same entropy density with respect to Θ	
σ: s	(ωj) =

s	(ω), 0 ≤ j ≤ n	 − 1.
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2. Set s(	)j := 1
	S
(
ρ
(l)
j

)
, s(	) := 1

	S
(
ρ(l)
)

and fix η > 0; it turns out that the
subsets of states

A	,η :=
{
ωj : s(	)j ≥ s(ω) + η

}
(7.133)

has asymptotically zero density. Namely, if #(A	,η) denotes its cardinal-
ity, then

lim
n�→∞

#(A	,η)
n	

= 0 . (7.134)

Proof:

Part 1 Because of (7.132), s	(ωj) = s	(ω0), for 1 ≤ j ≤ n	 − 1. This fact
follows from subadditivity (5.161) and the fact that

ρ
(n	)
j = ω0 ◦Θ−j

σ |̀A[0,n	−1] = ω0 |̀A[−j,n	−j−1]
︸ ︷︷ ︸

:=ρ
[−j,n�−j−1]
0

.

Indeed, split the intervals [−j, n� − j − 1], 0 ≤ j ≤ n	 − 1 into disjoint
pieces (notice that, according to Proposition 7.1.9, n	 ≤ �),

[−j, n�− j − 1] = [−j, �− 1]
︸ ︷︷ ︸

I1

∪ [�, n�− �− 1]
︸ ︷︷ ︸

I2

∪ [n�− �, n�− j − 1]
︸ ︷︷ ︸

I3

;

then, apply (5.161) to the density matrices ρ(n	)
j , respectively ρI1∪I3

0 ⊗ρI2
0 ,

and use translation-invariance together with the bound (5.155). It then
follows

S
(
ρ
(n	)
j

)
≤ S

(
ρ
[	,n	−	−1]
0

)
+ S

(
ρI1∪I3
0

)
≤ S

(
ρ
(n	−2	)
0

)
+ 2� log2 d .

Vice versa, if instead of subdividing the interval [−j, n�−j−1] of interest,
we include it as a disjoint piece in a larger one

[−�, n�+ �− 1] = [−�,−1]
︸ ︷︷ ︸

I1

∪ [−j, n�− j − 1]
︸ ︷︷ ︸

I2

∪ [n�− j, n�+ �− 1]
︸ ︷︷ ︸

I3

,

then, subadditivity and boundedness give

S
(
ρ
(n	)
j

)
≥ S

(
ρ
[−	,n	+	−1]
0

)
− S

(
ρI1∪3
0

)
≥ S

(
ρ
(n	+2	)
0

)
− 2� log2 d .

Dividing by n and taking the limit n → ∞ yield the result.

Part 2 If there were η0 such that lim sup
n�→∞

#(A	,η0)
n	

= a > 0, then there

would be a subsequence �j such that lim
j→∞

#(A	j ,η0)
n	j

= a. Then, since

ρ(	j) =

n�j
−1
∑

k=0

ρ
	j

k , subadditivity implies
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n	j
s(	j) =

n	j

�j
S
(
ρ(	j)

)
≥ 1
�j

n�j
−1
∑

k=0

S
(
ρ
(	j)
k

)
=

n�j
−1
∑

k=0

s
(	j)
k

≥ #(A	j ,η0) (s(ω) + η0) + #(Ac
	j ,η0

) min
k∈Ac

�j,η0

s
(	j)
k .

The previous point, (7.130) and (7.129) obtain

�j s(ω) = s	j
(ωj) = inf

m

1
m
S
(
ρ

m	j

j

)
≤ �j s

(	j)
j whence

s(	j) ≥
#(A	j ,η0)

n	j

(s(ω) + η0) +
#(Ac

	j ,η0
)

n	j

s(ω) .

When n	j
→ ∞, a contradiction arises:

s(ω) ≥ (s(ω) + η0)a+ s(ω)(1 − a) > s(ω) .

�

7.3 Quantum Spin Chains as Quantum Sources

Quantum spin chains (AZ, Θσ, ω), with A = Md(C), provide useful algebraic
descriptions of quantum sources whose signals consist of quantum states act-
ing on Hilbert spaces of increasing dimension. The local states ρ(n) obtained
as restrictions of ω to the local subalgebras A(n) := A[1,n] describe ensembles
of quantum strings of length n emitted by these sources.

Quantum sources are one of the two ends of quantum transmission chan-
nels; like their classical counterparts, these consist of a source, a sender who
encodes, a channel which transmits and a receiver which decodes. Channel in-
puts and outputs are generic quantum states and the encoding and decoding
procedures, as well as the channel action are quantum operations described
by trace-preserving CP maps on the state-space.

In analogy with Figure 2.2, a quantum transmission scheme can be pic-
torially represented as in Figure 7.1.

1. At each stroke of time, a source A emits quantum states, represented by
density matrices ρi ∈ B

+
1 (H), i = 1, 2, . . . , a, H = C

a, with weights p(i).
The statistical description of a single use of the source is given by means
of the density matrix ρ =

∑a
i=1 p(i) ρi.

2. As a result of n uses of the source, the sender would collect generic
density matrices ρ(n)

i(n) ∈ B
+
1 (H⊗n), i(n) = i1i2 · · · in ∈ Ω

(n)
a , with weights

p(n)(i(n)). Consequently, the statistics of n uses of the source is described
by the density matrix
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Fig. 7.1. Quantum Transmission Channel

ρ(n) :=
∑

i(n)∈Ω
(n)
a

p(n)(i(n)) ρ(n)

i(n) , (7.135)

which embodies purely classical correlations (the weights) and quantum
correlations due to the states ρ(n)

i(n) .

3. The encoding is a trace-preserving CP map E(n) : B
+
1 (H⊗n) �→ B

+
1 (K(n)

in )
such that E(n)[ρ(n)

i(n) ] = σ
(n)

i(n) are density matrices that can all be consid-

ered as acting on a same (finite dimensional) Hilbert space K
(n)
in .

4. The code-states σ
(n)

i(n) go through the (lossless) channel that transform

them as a trace-preserving CP map F
(n) : B

+
1 (K(n)

in ) �→ B1(K
(n)
out) such that

F
(n)[σ(n)

i(n) ] = σ̃
(n)

i(n) , the latter being a, possibly not-normalized, positive

matrix acting on a (finite dimensional) Hilbert space K
(n)
out.

5. The channel output σ̃(n)

i(n) finally undergoes a decompressing procedure

corresponding to the action of a CP map D(n) : B1(K
(n)
out) �→ B

+
1 (H⊗n)

such that D(n)[σ̃(n)

i(n) ] = ρ̃
(n)

i(n) .
6. The efficiency of the encoding-decoding procedures with respect to the

channel action F is measured by how faithfully the decompressed states
ρ̃
(n)

i(n) reproduce the input states ρ(n)

i(n) .

The simplest instance of quantum source is the generalization of a classical
Bernoulli process: at each use of the source, vector states |ψi 〉 ∈ H := C

d,
i = 1, 2, . . . , a, (not necessarily orthogonal) are independently emitted with
weights p(i). The quantum statistics of n uses of the source is thus described
by the density matrix

ρ⊗n :=
n⊗

j=1

ρ =
∑

i(n)∈Ω
(n)
a

p(n)(i(n))
n⊗

j=1

ρij
, ρij

= |ψij
〉〈ψij

| , (7.136)
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where ρ =
∑a

i=1 p(i)|ψi 〉〈ψi | and p(n)(i(n)) =
∏n

j=1 p(ij).

Remarks 7.3.1.

1. Quantum spin chains as they appear in quantum statistical mechanics
provide fairly general models of quantum sources. Their local states over
n successive chain sites correspond to density matrices ρ(n) that describe
a variety of possible quantum strings of length n consisting of separable
and entangled states that can in turn be pure and mixed.

2. Like classical strings, quantum strings emitted from quantum sources of
Bernoulli type can be chained together by tensorizing them; this is not
anymore so obvious for generic quantum strings [60].

3. Two classical strings can always be told apart, for instance by a non-
zero value of the Hamming distance that counts by how many symbols
they differ. Instead, there are uncountably many quantum strings that
can be arbitrarily close to one another, for instance with respect to the
trace-distance (6.66), and which cannot then be perfectly distinguished.

7.3.1 Quantum Compression Theorems

In analogy with classical coding, the idea how to compress quantum infor-
mation in absence of noise is to consider quantum strings acting on Hilbert
spaces H

⊗n with n large and to map them into quantum strings acting on
Hilbert spaces H

(n) of smaller dimension in a way that allows for faithful
decompression.

Concretely, the procedure consists in a coding operation corresponding to
a trace-preserving CP compression map E(n) : B

+
1 (H⊗n) �→ B

+
1 (H(n)) and a

decoding operation described by a trace-preserving CP decompression map
D(n) : B

+
1 (H(n)) �→ B

+
1 (H⊗n) that tries to retrieve the source signals. If the

task is to compress the information contained in n uses of a quantum source,
then each of the quantum strings in (7.136)) is subjected to the chain of maps

ρ
(n)

i(n) �→ σ
(n)

i(n) := E(n)[ρ(n)

i(n) ] �−→ ρ̃
(n)

i(n) := D(n)[σ(n)

i(n) ] . (7.137)

Any sequence {E(n),D(n)}n will be referred to as a compression scheme and
denoted by (E ,D).

In the following, we shall first focus on quantum Bernoulli sources emitting
qubits, that is we shall consider Hilbert spaces H

⊗n = C
2n

and local algebras
A(n) = M2n(C). For them, the compression rate of a scheme (C,D) is defined
as follows.

Definition 7.3.1 (Compression Rate). The compression rate of (E ,D) for
a qubit quantum source (AZ, ω) is given by

R(E) := lim sup
n→+∞

1
n

log2 dim(H(n)) .
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where H
(n) is the minimal support subspace of all quantum code-words σ(n)

i(n) .

According to the previous definition, for large n, 2n R(E) estimates the di-
mension of the subspace supporting the encoded signals, with R(E) roughly
being the used number of qubits per encoded qubit . Clearly, one looks for
compression schemes (E ,D) such that R(E) < 1 with D(n) ◦ E(n) asymptoti-
cally approximating the identity map in a suitable topology.

Compression of qubit Bernoulli Sources

In the case of a Bernoulli quantum source, Shannon’s noiseless coding the-
orem 3.2.2 has a natural quantum extension whereby the von Neumann en-
tropy plays the role of the Shannon entropy as optimal compression rate.

A convenient fidelity is the ensemble fidelity introduced in Definition 6.3.6;
using (6.71) it reads:

Fav

({
p
(n)

i(n)ρ
(n)

i(n)

}
,D(n) ◦ E(n)

)
=

∑

i(n)∈Ω
(n)
2

p
(n)

i(n) Tr
(
ρ
(n)

i(n) ρ̃
(n)

i(n)

)
. (7.138)

It is positive, bounded by 1 and equal to 1 if and only if ρ̃(n)

i(n) = ρ
(n)

i(n) . Useful
upper and lower bounds to Fav are obtained as follows.

If ρ =
∑2

j=1 rj | rj 〉〈 rj | ∈ S(C2) is the spectral decomposition of the

state describing a single use of the source, the eigenvalues r(n)

j(n) of ρ⊗n are

of the form r
(n)

j(n) =:
∏n

i=1 rji
. Let H

(n) ⊆ H
⊗n be the smallest subspace, of

dimension d(n), supporting all code-words ρ̃(n)

i(n) and let Γ (n) : H
⊗n �→ H

(n)

denote the corresponding orthogonal projection. Then,

Fav

({
p
(n)

i(n)ρ
(n)

i(n)

}
,D(n) ◦ E(n)

)
≤

∑

i(n)∈Ω
(n)
2

p
(n)

i(n) Tr
(
ρ(n) Γ (n)

)

≤
d(n)∑

j=1

ej(ρ⊗n) . (7.139)

Indeed, the first inequality is implied by the fact that ρ̃(n)

i(n) ≤ Γ (n), while the
second one is the Ky Fan inequality (5.158), where ej(ρ⊗n), j = 1, 2, · · · , d(n),
are the first d(n) largest eigenvalues of ρ⊗n.

Vice versa, given Γ (n) : H
⊗n �→ H

(n), consider the trace-preserving CP
map E(n) : B

+
1 (H⊗n) �→ B

+
1 (H(n)) defined by

E(n)[ρ] = Γ (n) ρΓ (n) +
∑

|Φk 〉⊥K(n)

| 0 〉〈Φk | ρ |Φk 〉〈 0 |

︸ ︷︷ ︸

| 0 〉〈 0 |Tr

(
(1l−P ) ρ

)

, (7.140)
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where | 0 〉 ∈ H
(n) is a suitable reference state. As a decompression map D(n),

choose the identity map on H
(n) which embeds it into H

⊗n. Then,

ρ̃
(n)

i(n) = Γ (n) ρ
(n)

i(n) Γ
(n) + | 0 〉〈 0 |Tr

(
(1l − P ) ρ(n)

i(n)

)
,

whence, since ρ(n)

i(n) is a pure state,

Fav

({
p
(n)

i(n)ρ
(n)

i(n)

}
,D(n) ◦ E(n)

)
≥

∑

i(n)∈Ω
(n)
2

p
(n)

i(n) Tr
((

ρ
(n)

i(n) Γ
(n)
)2)

=
∑

i(n)∈Ω
(n)
2

p
(n)

i(n)

(
Tr
(
ρ
(n)

i(n) Γ
(n)
))2

≥
∑

i(n)

λi(n)

(
2Tr
(
ρ
(n)

i(n) Γ
(n)
)
− 1
)

≥ 2Tr
(
ρ⊗n Γ (n)

)
− 1 . (7.141)

Exactly as the Shannon entropy in the classical case, a theorem of Schu-
macher [267, 159] shows that, for quantum sources of Bernoulli type, the von
Neumann entropy S (ρ) is the optimal compression rate. Namely, this rate
can be achieved by suitable compression and decompression schemes with
high-fidelity retrieval of increasingly long qubit strings; on the other hand,
compression and decompression schemes with rates exceeding S (ρ) perform
poorly with long qubit strings.

Theorem 7.3.1 (Schumacher Theorem).
Let (AZ, ρ

⊗∞) be a qubit Bernoulli source with entropy density S(ρ). If
R ≥ S(ρ) there exists a compression scheme (E ,D) with rate R(E) = R and
ensemble fidelity Fav tending to 1. On the contrary, if R < S(ρ), then for
every compression scheme such that R(E) = R the ensemble fidelity tends to
0 in the limit n → ∞.

Proof: The eigenvalues r
(n)

j(n) of ρ⊗n provide a probability distribution

π(n) = {r(n)

j(n)}j(n)∈Ω
(n)
2

on the strings j(n) ∈ Ω
(n)
2 with Shannon entropy

nS(ρ). According to Proposition 3.2.2, for any δ > 0, ε > 0 and n large
enough, there exists a subset A(n)

ε of probability

Prob(A(n)
ε ) =

∑

j∈A
(n)
ε

r
(n)
jn = Tr

(
ρ⊗n Γ (n)

)
≥ 1 − δ

and cardinality d(n) satisfying

(1 − δ)2n(S(ρ)−ε) ≤ d(n) ≤ 2n(S(ρ)+ε) .

Let Γ (n) project onto the subspace linearly spanned by the eigenvectors
| r(n)

j(n) 〉 = | rj1 〉 ⊗ | rj2 〉 · · · ⊗ | rjn
〉 corresponding to the eigenvalues r

(n)

j(n) ,
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j(n) ∈ A
(n)
ε . Such Γ (n) can be used to construct the compression map (7.140);

hence, from (7.141), Fav ≥ 1−2δ. Also, the bounds on d(n) ensures that any
rate R < S(ρ) is achievable.

Vice versa, if d(n) ≤ 2n(S(ρ)−ε), then, according to Theorem 3.2.2, given
the probability distribution π(n) = {r(n)

j(n)}j(n)∈Ω
(n)
2

, any subset Bd(n) with
d(n) strings has vanishingly small probability,

Prob(Bd(n)) =
∑

j∈Bd(n)

r
(n)
jn = Tr

(
ρ⊗n Γdn)

)
≤ ε

for n large enough, where Γd(n) projects onto the subset spanned by the
eigenvectors relative to the eigenvalues indexed by j(n) ∈ Bd(n). It then
follows that also the sum of the first d(n) largest eigenvalues of ρ⊗n must be
smaller than ε and so also Fav ≤ ε because of (7.139). �

Example 7.3.1. [159] In a single use, a Bernoulli qubit source emits the
non-orthogonal states

|ψ0 〉 :=
√

1 − ε| 0 〉 +
√
ε| 1 〉 , |ψ1 〉 :=

√
1 − ε| 0 〉 −

√
ε| 1 〉

where 0 < ε < 1/2, with probability 1/2 each; the corresponding statistical
ensemble is described by

ρ =
1
2
|ψ0 〉〈ψ0 | +

1
2
|ψ1 〉〈ψ1 | = (1 − ε)| 0 〉〈 0 | + ε| 1 〉〈 1 | .

Suppose that, given the 3-qubit strings |ψi1i2i3 〉 := |ψi1 〉 ⊗ |ψi2 〉 ⊗ |ψi3 〉,
only two qubits can be transmitted; how can the transmission of quantum
information be optimized?

Since 〈 0 |ψ0 〉 = 〈 0 |ψ1 〉 =
√

1 − ε, 〈 1 |ψ0 〉 = −〈 1 |ψ1 〉 = ε and ε < 1/2,
the sender may encode and decode each 3-qubit string by tracing over the
third qubit and appending the high probability state | 0 〉〈 0 | in its place:

|ψi1i2i3 〉〈ψi1i2i3 | �→ ρ̃
(3)
i1i2i3

= D(3)
1 ◦ E(3)

1 [|ψi1i2i3 〉〈ψi1i2i3 |]
= |ψi1i2 〉〈ψi1i2 | ⊗ | 0 〉〈 0 | .

The average fidelity then results

F (1)
av =

1
8

∑

i1,i2,i3

〈ψi1i2i3 | ρ̃
(3)
i1i2i3

|ψi1i2i3 〉 = 1 − ε .

A better strategy arises from considering the components of a 3-qubit string
along the eigenvectors of ρ⊗3:

|〈 000 |ψi1i2i3 〉| = (1 − ε)3/2

|〈 001 |ψi1i2i3 〉| = (1 − ε)
√
ε

|〈 010 |ψi1i2i3 〉| = (1 − ε)
√
ε

|〈 100 |ψi1i2i3 〉| = (1 − ε)
√
ε

,

|〈 110 |ψi1i2i3 〉| = ε
√

1 − ε
|〈 101 |ψi1i2i3 〉| = ε

√
1 − ε

|〈 011 |ψi1i2i3 〉| = ε
√

1 − ε
|〈 111 |ψi1i2i3 〉| = ε3/2

.
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Since ε < 1/2, the eigenvectors | 000 〉, | 001 〉, | 010 〉 and | 100 〉 provide higher
probabilities than the second four eigenvectors; let P project onto the linear
span. Observe that the unitary permutation

U :

⎧
⎪⎨

⎪⎩

| 000 〉 �→ | 000 〉 | 111 〉 �→ | 001 〉
| 001 〉 �→ | 010 〉 | 110 〉 �→ | 011 〉
| 010 〉 �→ | 100 〉 | 101 〉 �→ | 101 〉
| 100 〉 �→ | 110 〉 | 011 〉 �→ | 111 〉

,

is such that UPU† = 1l12 ⊗ | 0 〉〈 0 |, where 1l12 =
∑1

i,j=0 | ij 〉〈 ij | is the iden-
tity matrix of the first two qubits . Therefore, one can construct a compression
map as follows; first, introduce the trace-preserving CP maps

E[ρ] = P ρP + | 000 〉〈 000 |Tr
(
(1l − P ) ρ

)

U E[ρ]U† = 1l12 ⊗ | 0 〉〈 0 |
(
U† ρU

)
1l12 ⊗ | 0 〉〈 0 |

+| 000 〉〈 000 |Tr
(
(1l − P ) ρ

)
.

Then, define E(3)
2 : B

+
1 (C3) �→ B

+
1 (C2) as E(3)

2 [ρ] := E(3)
1 [U E[ρ]U†] and D(3)

2 :
B

+
1 (C2) �→ B

+
1 (C3) as D(3)

2 [σ] = U† σ ⊗ | 0 〉〈 0 |U . It follows that

D(3)
2 ◦ E(3)

2 [ρ] = P ρP + | 000 〉〈 000 |Tr
(
(1l − P ) ρ

)
.

Thus, with ρ̃
(3)
i1i2i3

= D(3)
2 ◦ E(3)

2 [|ψi1i2i3 〉〈ψi1i2i3 |],

〈ψi1i2i3 | ρ̃
(3)
i1i2i3

|ψi1i2i3 〉 = |〈ψi1i2i3 |P |ψi1i2i3 〉|2

+ |〈 000 |ψi1i2i3 〉|2 〈ψi1i2i3 | (1l − P ) |ψi1i2i3 〉
= 1 − 9ε3 + 15ε4 − 9ε5 + 2ε6 .

As the right end side of the last inequality is the same for all 3-qubit strings
considered, this is also the value of the fidelity F

(2)
av . As shown in the figure

below, the latter turns out to be larger than F
(1)
av for 0 < ε < 1/2.

Compression of Ergodic Quantum Sources

As showed in Section 3.2.1, Proposition 3.2.2, Theorem 3.2.1 and Theo-
rem 3.2.2 establish the role the entropy rate as the optimal compression
rate of classical ergodic sources. Theorem 7.3.1 assigns the same role to the
von Neumann entropy in the case of quantum sources of Bernoulli type.

For this particular family of quantum chains, the von Neumann entropy
coincides with their entropy density as defined in Section 7.2; it is thus ex-
pected that a kind of general Quantum Shannon-Mc Millan-Breiman Theorem
should hold for generic ergodic quantum sources. The relevance for quantum
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Fig. 7.2. F
(2)
av − F

(1)
av against 0 ≤ ε ≤ 1.

information of quantum spin chains endowed with states with a more general
structure than a tensor product has been emphasized in Section 7.3, where
analogies and differences between classical and quantum contexts have also
been outlined.

In particular, in Remark 7.3.1.2 it was pointed out that, unlike for classi-
cal bit strings, one cannot profit from any natural ”chaining together” qubit
-strings. Though ideas how to circumvent such a problem have been put for-
ward [60], this fact represents an obstruction to a full quantum generalization
of the classical Breiman theorem. The latter is an almost everywhere state-
ment regarding single sequences, while the Shannon-Mc Millan formulation
is concerned with statistical ensembles; of this theorem there exist a number
of extensions to particular non-commutative settings [223, 240, 169, 94] and
a full quantum extension [58]. This general result has then been used [59] to
devise compression protocols for ergodic sources consisting of encoding and
decoding procedures similarly to what outlined in the previous section.

Theorem 7.3.2. Let (AZ, Θσ, ω), with A = Md(C) as site-algebras, be an
ergodic quantum spin-chain with mean entropy s(ω). Then, for all δ > 0
there is Nδ ∈ N such that for all n ≥ Nδ there exists an orthogonal projection
pn(δ) ∈ An such that

1. ω(pn(δ)) = Trn(ρ(n) pn(δ)) ≥ 1 − δ,
2. for all minimal projections 0 �= pn ∈ An dominated by pn(δ) (p ≤ pn(δ))

(1 − δ)2−n(s(ω)+δ) < ω(pn(δ)) < 2−n(s(ω)−δ) ,

3. 2n(s(ω)−δ) < Trn(pn(δ)) < 2n(s(ω)+δ).

That the above results extend Proposition 3.2.2 is apparent: classical high
probability subsets are replaced by orthogonal projections pn(δ) whose sta-
tistical weight with respect to the translation-invariant state ω is nearly 1;
further, the typical subsets correspond to orthogonal projections whose nor-
malization (dimension of the associated Hilbert subspaces), Tr(pn(δ)) goes
as 2ns(ω) for large n.
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Like in the case of a Bernoulli quantum source, the proof of Theorem 7.3.2
hinges upon considering the discrete probability distributions π(	) = {r(	)i }d�

i=1

consisting of the eigenvalues of the density matrices ρ(	) describing the restric-
tions ω to the local subalgebra A	 = Md(C)⊗	 with spectral decomposition

ρ(	) =
d�
∑

i=1

r
(	)
i | r(	)i 〉〈 r(	)i |. The Shannon entropy H(π(	)) equals the von Neu-

mann entropy S
(
ρ(	)
)
; further, from the definition of entropy density s(ω),

given η > 0, for infinitely many � one has

s(ω) = inf
n

1
n
S
(
ρ(n)
)
≤ 1

�
S
(
ρ(	)
)

=
1
�
H(π(	)) ≤ s(ω) + η . (7.142)

For Bernoulli quantum sources, the products of eigenvalues of single site
density matrices provide a natural Bernoulli stochastic process, whose en-
tropy density s(ω) is exactly the von Neumann entropy of ρ. Such a struc-
ture is missing in the case of generic ergodic quantum source. However,
from (7.142), one observes that choosing � large enough, S

(
ρ(	)
)
� � s(ω).

Moreover, the eigenvectors | r(	)i 〉〈 r(	)i | are minimal projections generating
a maximally Abelian subalgebra D ⊂ A	 and the eigenvalues r

(	)
i define

a probability π(	) over the symbols i ∈ I := {1, 2, . . . d	}. By tensorizing
copies of the Abelian subalgebra D, one can embed the Abelian subalgebras
Dn := D⊗n into the local algebras An	 and C∗-induction yields a quasi-local
Abelian algebra D∞ embedded into the quantum spin-chain AZ.

The Abelian algebra D∞ is clearly associated to a triplet, or symbolic
model

(
Ω̃I , Tσ, μ

(	)
)

(see Definition 2.2.5 and the preceding discussion) where

Ω̃I is the space of sequences of symbols from I, Tσ is the shift along these
sequences and μ(	) is the measure on Ω̃I that arises from π(	). Further,
from (7.130), the (classical) entropy rate is

h(μ(	)) = lim
n→∞

1
n
S
(
ρ(n	)

)
= s	(ω) = � s(ω) . (7.143)

As the automorphism over D∞ corresponding to the shift Tσ on Ω̃I is not
Θσ, but its �-th power Θ	

σ, the Abelian spin-chain associated to the symbolic
model of above is

(
D∞

I , Θ	
σ, ω |̀D∞

I

)
(see Defintion 2.2.5 and the preceding

discussion). The state ω is Θσ-ergodic, but not in general Θ	
σ-ergodic. If it

were Θ	
σ-ergodic,

(
D∞

I , Θ	
σ, ω |̀D∞

I

)
would amount to an ergodic process and

we could use the classical techniques as in Proposition 3.2.2 with the mean
entropy h(ω |̀D∞

I ) = � s(ω) in the place of the Shannon entropy as follows
from the classical Shannon-Mc Millan-Breiman result in Theorem 3.2.1.
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Remarks 7.3.2.

1. The ergodicity of the embedded Abelian spin-chain
(
D∞

I , Θ	
σ, ω |̀D∞

I

)

would follow from that of the quantum spin-chain
(
AZ, Θ

	
σ, ω
)
, since

otherwise the resulting decomposition of ω |̀D∞
I into ergodic components

would provide a decomposition of ω as well.
2. In [240], the quantum Shannon-Mc Millan theorem was proved under the

assumption of Θ(	)
σ -ergodicity of the spin-chain state ω: such a property is

known as complete ergodicity. This restriction has been removed in [58].

The possible lack of Θ	
σ-ergodicity can be overcome by means of Propo-

sition 7.1.9 and of Lemma 7.2.1. Indeed, the argument of above can be de-
veloped for the Θ	

σ-ergodic components ωj indexed by j ∈ Ac
	,η for which

s	(ωj) = �s(ω) and s
(	)
j := 1

	S
(
ρ
(	)
j

)
≤ s(ω) + η, for some fixed η > 0. For

each of these ωj , one considers the local states ρ(	)
j over A	, the probability

distributions π(	)
j corresponding to their spectra, the Abelian subalgebras Dj

generated by their spectral projections p(	)
j,i , i ∈ Ij , and the associated ergodic

Abelian spin-chains
(
D∞

Ij
, Θ	

σ, ωj |̀D∞
Ij

)
. Because of the bound (3.7) in Re-

mark 3.1.1.1 and of the choice of indices j ∈ Ac
	,η, these chains have entropy

rates
hj ≤ H(π(	)

j ) = S
(
ρ
(	)
j

)
≤ � (s(ω) + η) . (7.144)

After identifying strings i(n) of symbols from Ij with minimal projections
pi(n) ∈ Dj

n ⊂ An	, so that π
(n	)

i(n) = Tr[0,n	−1](ρ(n	)pi(n)), one can choose
positive ε, δ and select subsets of minimal projections,

C(n)
j :=

{
pi(n) ∈ Dj

n : 2−n(hj+δ) < Tr[0,n	−1](ρ(n	)pi(n)) < 2−n(hj−δ)
}

(7.145)
such that, by using Proposition 3.2.2, Theorem 3.2.1 and (7.144), for n large
enough

#(C(n)
j ) = Tr[0,n	−1](pi(n)) ≤ 2n(hj+δ) ≤ 2n(	 s(ω)+η)+δ) (7.146)

π
(n)
j (C(n)

j ) =
∑

p
i(n)∈C(n)

j

Tr[0,n	−1]p
(n)
j ) ≥ 1 − ε

2
, (7.147)

where p(n)
j :=

∑
p

i(n)∈C(n)
j

pi(n) .
In order to use these arguments and conclude the proof of the quan-

tum Shannon-Mc Millan theorem, some further results are needed. The first
one deals with discrete subsets equipped with (not necessarily compatible)
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probability distributions and with the asymptotic behavior of their minimal
cardinality.

Lemma 7.3.1. Let D > 0 and
{(

In, πn

)}

n∈N

be a countable family of finite

sets In of cardinality #(In) with associated probability distributions πn =

{pn(i)}i∈In
. Suppose

1
n

log2 #(In) ≤ D for all n and define

αε,n(πn) := min
{

log2 #(Ω) : Ω ⊂ In , πn(Ω) ≥ 1 − ε
}
. (7.148)

If
{(

In, πn

)}

n∈N

satisfies

lim
n→∞

1
n
H(πn) = h < ∞ (1) and lim sup

n→∞

1
n
αε,n(πn) ≤ h (2) ,

for all ε ∈ (0, 1), then

lim
n→∞

1
n
αε,n(πn) ≤ h , ∀ε ∈ (0, 1) . (7.149)

Proof: Let δ > 0 be arbitrarily chosen and distinguish the following dis-
joint subsets of In:

I1
n(δ) :=

{
i ∈ In : πn(i) > 2−n(h−δ)

}
,

I2
n(δ) :=

{
i ∈ In : 2−n(h+δ < πn(i) < 2−n(h−δ)

}
,

I3
n(δ) :=

{
i ∈ In : πn(i) < 2−n(h+δ)

}
.

Suppose 1 ≥ lim supn→∞ πn(I3
n(δ)) = b > 0; then, there exists n such that

πn(I3
n(δ) ≥ b and πn(I1

n(δ)∪I2
n(δ)) < 1−b. Choose 0 < ε < b; if πn(Ω) ≥ 1−ε,

1 − ε ≤ πn(Ω) < 1 − b+ πn

(
Ω ∩ I3

n(δ)
)

implies

b− ε ≤ πn

(
Ω ∩ I3

n(δ)
)
< #

(
Ω ∩ I3

n(δ)
)

2−n(h+δ and

log2 #
(
Ω ∩ I3

n(δ)
)
> log2(b− ε) + n(h+ δ) ,

whence lim
n→∞

1
n
αε,n(πn) > h + δ contradicting the second condition in the

statement of the lemma. Thus, lim
n→∞

πn(I3
n(δ) = 0.

It also follows that I3
n(δ) cannot asymptotically contribute to the Shannon

entropy H(πn); indeed, applying inequality (2.85) to the (non-normalized)

distributions {pn(i)}i∈I3
n(δ) and

{

qn(i) :=
πn(I3

n(δ)
#(I3

n(δ)

}

i∈I3
n(δ)

, which are such

that
∑

i∈I3
n(δ) pn(i) =

∑
i∈I3

n(δ) qn(i), yields
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h3
n := − 1

n

∑

i∈I3
n(δ)

pn(i) log2 pn(i) ≤ − 1
n

∑

i∈I3
n(δ)

pn(i) log2 qn(i)

= − 1
n

∑

i∈I3
n(δ)

pn(i)
(
log2 πn(I3

n(δ)) − log2 #(I3
n(δ))

)

≤ −πn(I3
n(δ))

1
n

log2 πn(I3
n(δ) + Dπn(I3

n(δ)) .

The right hand side of the last inequality goes to 0 with n → ∞ due to
πn(I3

n(δ) �→ 0 with n → ∞ and because log2 #(In) ≤ nD by assumption.
Further, this very same fact implies limn→∞ πn(I1

n(δ) = 0 for all δ > 0,
otherwise

1
n
H(πn) = − 1

n

∑

i∈I1
n(δ)

pn(i) log2 pn(i) − 1
n

∑

i∈I2
n(δ)

pn(i) log2 pn(i) − h3
n

< πn(I1
n(δ)) (h− δ) + πn(I2

n(δ)) + h3
n

< h + δ
(
πn(I1

n(δ)) − πn(I2
n(δ))

)
+ h3

n

would contradict the first condition of the lemma for sufficiently small δ.
Consequently, lim

n→∞
πn(I2

n(δ)) = 1 for sufficiently small δ. Thus, choosing

n so that πn(Ω) ≥ 1−ε and πn(I2
n(δ)) ≥ 1−η, it follows that πn

(
Ω∩I2

n(δ)
)
≥

1 − ε− η, whence

#
(
Ω ∩ I2

n(δ)
)
≥ (1 − ε− η) 2n(h−δ) implies

1
n
αε,n(πn) ≥ 1

n
log2(1 − ε− η) + h − δ .

Since δ can be chosen arbitrarily small, the result follows. �
Returning to the probability distribution π(	) associated with the ordered

spectrum of ρ(	), fix ε ∈ (0, 1) and set

Nε,	 := min
{

1 ≤ k ≤ d	 :
k∑

i=1

r
(	)
i ≥ 1 − ε

}
, (7.150)

so that αε,	(π(	)) = log2 Nε,	. If

lim sup
	→∞

1
�
Nε,	 ≤ s(ω) , (7.151)

then, together with (7.142), this allows using Lemma 7.3.1. As follows: let I	

be the set of indices labeling the eigenprojections | r(	)i 〉〈 r(	)i |. Then, choose
0 < δ′ < δ and consider the subset I2

	 (δ′) as constructed in the lemma and
set
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P	(δ) :=
∑

i∈I2
� (δ′)

| r(	)i 〉〈 r(	)i | .

It turns out that, for � sufficiently large,

Tr
(
ρ(	) P	(δ)

)
=

∑

i∈I2
� (δ′)

r
(	)
i = π(	)(I2

n(δ′)) ≥ 1 − δ .

Further, every minimal projection p ≤ P	(δ) dominated by P	(δ) projects
onto a vector of (C2)⊗	,

p = |ψ 〉〈ψ | , |ψ 〉 =
∑

i∈I2
� (δ′)

ci | r(	)i 〉 ,
∑

i∈I2
� (δ′)

|ci|2 = 1 ,

whence, by the definition of the subset I2
	 (δ′)

2−	(s(ω)+δ) < 2−	(s(ω)+δ′) < Tr(ρ(	) p) < 2−	(s(ω)−δ′) < 2−	(s(ω)−δ) .

Finally, from Tr(ρ(	) P	(δ)) ≥ 1 − δ and

#(I2
	 (δ′)) 2−	(s(ω)+δ) ≤ Tr(ρ(	) P	(δ)) =

∑

i∈I2
� (δ′)

r
(	)
i ≤ #(I2

	 (δ′)) 2−	(s(ω)−δ)

it follows that (1 − δ) 2	(s(ω)−δ) ≤ Tr(P	(δ)) = #(I2
	 (δ′)) ≤ 2	(s(ω)+δ), thus

concluding the proof of Theorem 7.3.2.
Of course, it remains to be showed that (7.151) really holds true. The proof

of this fact hinges upon a per se interesting result concerning the minimal
dimension of the so-called high probability subspaces. Practically speaking,
these are the relevant subspaces: as already seen in the case of Bernoulli
quantum sources and as it will be showed at the end of this section, they
allow for quantum compression with reliable retrieval.

Definition 7.3.2 (Typical Subspaces).

1. Given a quantum spin chain (AZ, ω), projectors pn ∈ An such that
ω(pn) = Tr(ρ(n) pn) ≥ 1 − ε will be termed ω-typical projectors and ω-
typical subspaces the subspaces of (Cd)⊗n onto which they project.

2. For any ε > 0, let

βε,n(ω) := min
{

log2 Tr(q) : An � q = q† = q2 , Tr(ρ(n) q) ≥ 1 − ε
}
.

(7.152)

The following result relates the spectrum of local states to the dimension
of high probability subspaces [58, 140, 141].

Lemma 7.3.2. βε,n(ω) equals Nε,n in (7.150).
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Proof: By definition,

ω
(Nε,n∑

i=1

| r(n)
i 〉〈 r(n)

i |
)

= Tr(ρ(n)

Nε,n∑

i=1

| r(n)
i 〉〈 r(n)

i |) ≥ 1 − ε ,

whence βε,n(ω) ≤ Nε,n. If the inequality is strict, then there exists a projec-
tion q ∈ An such that m := Tr(q) < Nε,n and Tr(ρ(n) q) ≥ 1− ε. Then, using
Ky Fan inequality (5.158), a contradiction emerges:

1 − ε ≤ Tr(ρ(n) q) =
m∑

i=1

〈 qi | ρ(n) |qi 〉 ≤
m∑

i=1

r
(n)
i < 1 − ε ,

where | qi 〉〈 qi | are minimal projections such that q =
∑m

i=1 | qi 〉〈 qi |. �
For showing (7.151), the key result is

Lemma 7.3.3. For an ergodic quantum spin-chain
(
AZ, Θσ, ω

)

lim sup
n→∞

1
n
βε,n(ω) ≤ s(ω) , ∀ε ∈ (0, 1) .

Before proving it, observe that the previous two lemmas imply a quantum
counterpart to the AEP (see Theorem 3.2.2).

Proposition 7.3.1 (Quantum AEP (QAEP)).
Let (AZ, Θσ, ω) be an ergodic quantum source with entropy rate s(ω).

Then, for every 0 < ε < 1,

lim
n→∞

1
n
βε,n(ω) = s(ω) . (7.153)

Remark 7.3.3. Operatively, the previous proposition states that any se-
quence of typical projections must project onto subspaces whose dimension
goes as 2ns(ω), asymptotically.

Proof of Proposition 7.3.3 Lemma 7.2.1 ensures that for any ε > 0 and
fixed η > 0 there exists L ∈ N such that � > L implies

0 ≤ #(A	,η)
n	

≤ ε

2
,

#(Ac
	,η)

n	
= 1 − #(A	,η)

n	
≥ 1 − ε

2
.

Consider the Θ	
σ-ergodic components ωj of ω, the sets C(n)

j in (7.146) and

the smallest projector q(n	 :=
∨

j∈Ac
�,η

p
(n)
j larger than all p(n)

j , j ∈ Ac
	,η. If
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m = n�+r, 0 ≤ r < �, set qm := q(n	)⊗1l[n	,n	+r−1] and, by means of (7.147),
estimate

Tr[0,m−1](ρ(m)qm) =
1
n	

n�−1∑

j=0

Tr[0,m−1](ρ
(m)
j qm)

=
1
n	

n�−1∑

j=0

Tr[0,n	−1](ρ
(n	)
j q(n	)

≥ 1
n	

n�−1∑

j=0

Tr[0,n	−1](ρ
(n	)
j p

(n)
j ) ≥

#(Ac
	,η)

n	
(1 − ε

2
) ≥ 1 − ε .

Then, definition (7.152) and (7.146) imply

βε,m(ω) ≤ log2 Tr[0,m−1](qm) = log2 Tr[0,n	−1](q(n	)) + r log2 d

≤ log2

( ∑

j∈Ac
�,η

Tr[0,n	−1](p
(n)
j )
)

+ r log2 d

≤ log2 #(Ac
	,η) + n(�(s(ω) + η) + δ) + r log2 d ,

whence the result follows from the arbitrariness of η and δ and from

lim sup
m→∞

1
m
βε,m(ω) ≤ lim sup

m→∞

1
m

log2 #(Ac
	,η) + s(ω) + η +

δ

�
.

�

Universal Quantum Compression

Based on the classical construction of universal codes [325, 168], of which a
particular instance has been given in Section 3.2.1, one may disengage the
compression from its explicit dependence on the quantum source statistics
by resorting to Universal Quantum Compression Schemes [163].

In the following, the construction in [163] will be slightly modified. We
shall consider a quantum spin chain AZ with an ergodic translation-invariant
state ω, an increasing sequence of local subalgebras An as defined in Sec-
tion 7.3 and local states ω |̀An described by density matrices ρ(n).

The idea is to construct the analogous of the typical subsets A(n) as in the
proof of Proposition 3.2.3, with cardinality growing as 2nR and probability
π

(n)
A (A(n)) tending to 1 with n for all sources A (Bernoulli in that case)

with entropy (rate) H(A) < R. As always when passing from classical to
quantum sources typical subsets will be replaced by typical subspaces and by
the associated orthogonal projectors.
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Theorem 7.3.3 (Universal Typical Subspaces).
Let s > 0 and ε > 0. There exists a sequence of projectors Q

(n)
s,ε ∈ An,

n ∈ N , such that for n large enough

Tr
(
Q(n)

s,ε

)
≤ 2n(s+ε) (7.154)

and for every ergodic quantum state ω on AZ with entropy rate s(ω) ≤ s it
holds that

lim
n→∞

ω(n)(Q(n)
s,ε ) = Tr(ρ(n)Q(n)

s,ε ) = 1 . (7.155)

Definition 7.3.3. The orthogonal projectors Q(n)
s,ε in the above theorem will

be called universal typical projectors at level s.

We subdivide the proof of Theorem 7.3.3 in various steps.
Step 1 Let � ∈ N and R > 0. Any Abelian quasi-local subalgebra C∞	 ⊆ AZ

constructed from a maximal Abelian �−block subalgebra C	 ⊆ A	, together
with the probability distribution ω |̀C∞	 corresponds to a classical ergodic
stochastic process.

The results in [168] imply that, independently of the latter, there exists a
universal sequence of projectors (corresponding to classical universal typical
subspaces) p(n)

	,R ∈ C(n)
	 ⊆ A	n with

1
n

log Tr(p(n)
	,R) ≤ R , such that lim

n→∞
π(n)(p(n)

	,R) = 1

for any ergodic state π on the Abelian algebra C∞	 with entropy rate s(π) < R.
Notice that ergodicity and entropy rate of π are defined with respect to the
shift on C∞	 , which corresponds to the �-shift on AZ.

One then applies unitary operators of the factorized form U⊗n, with U ∈
A	 unitary, to the p(n)

	,R and introduces the projectors

w
(	n)
	,R :=

∨

U∈A� unitary
U⊗np

(n)
	,RU

∗⊗n ∈ A(	n) . (7.156)

These are, by definition, the smallest projectors such that, for all U ,

U⊗np
(n)
	,RU

∗⊗n ≤ w
(	n)
	,R .

Let p(n)
	,R =

∑
i∈I | i

(n)
	,R 〉〈 i(n)

	,R | be a spectral decomposition of p(n)
	,R (with I ⊂ N

some index set), and let P(V ) denote the orthogonal projector onto a given
subspace V . Then, w(	n)

	,R can also be written as

w
(	n)
	,R = P

(
span

{
U⊗n| i(n)

	,R 〉 : i ∈ I, U ∈ A	 unitary
})

.
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It proves convenient to consider the projectors

W
(	n)
	,R := P

(
span

{
A⊗n| i(n)

	,R 〉 : i ∈ I,A ∈ A	

})
, w

(	n)
	,R ≤ W

(	n)
	,R .

(7.157)
Given m = n�+ k with n ∈ N and k ∈ {0, . . . , �− 1}, let

w
(m)
	,R := w

(	n)
	,R ⊗ 1⊗k ∈ Am , W

(m)
	,R := W

(	n)
	,R ⊗ 1⊗k ∈ Am .

These are projectors and, as in [160], one estimates the trace of W (m)
	,R ∈ Am

as follows. By an argument similar to that used in the proof of Lemma 3.2.2,
the dimension of the symmetric subspace SYM(A	n := span{A⊗n : A ∈ A	}
is upper bounded by (n+ 1)dim(A�), thus

TrW (m)
	,R = TrW (	n)

	,R ·Tr1l⊗k ≤ (n+1)2
2�

Trp(n)
	,R·2	 ≤ (n+1)2

2� ·2Rn·2	 . (7.158)

Step 2. Consider a stationary ergodic state ω on the spin-chain AZ with
entropy rate s(ω) ≤ s. Let ε, δ > 0. If � is chosen large enough, then the
projectors w(m)

	,R , where R := �(s+ ε
2 ), are δ−typical for ω i.e.

Tr
(
ρ(m)w

(m)
	,R )

)
≥ 1 − δ ,

for m ∈ N sufficiently large. This follows from the result in Proposition 7.1.9
concerning the convex decomposition of the ergodic state ω into k(�) ≤ �

states ω(	)
i,l , ω =

1
k(l)

k(l)∑

i=1

ω
(	)
i,l , that are ergodic with respect to the �−shift on

AZ and have an entropy rate (with respect to the �−shift) equal to � s(ω).
Moreover, according to Lemma 7.2.1, for every Δ > 0, if one defines the

set of integers A	,Δ := {i ∈ {1, . . . , k(�)} : S(ω(	)
i,	 ) ≥ �(s(ω) + Δ)}, then

these states enjoy the following property with respect to the von Neumann

entropy: lim
	→∞

#(A	,Δ)
k(�)

= 0.

Let Ci,	 be the maximal Abelian subalgebra of A	 generated by the one-
dimensional eigenprojectors of the density matrices corresponding to ω

(	)
i,	 ∈

A	. The restriction of ωi,	 to the Abelian quasi-local algebra C∞i,	 generated
by Ci,	 is again an ergodic state. From the properties of the entropy density
and of the von Neumann entropy one derives the chain of bounds

� · s(ω) = s(ω(	)
i,	 ) ≤ s(ω(	)

i,	 |̀C∞i,	) ≤ S(ω(	)
i,l |̀Ci,	) = S(ω(	)

i,	 ) .

Further, withΔ := R
	 −s(ω), if i ∈ Ac

	,Δ one has the upper bound S(ω(l)
i,l ) < R.

Let Ui ∈ A	 be a unitary operator such that U⊗n
i p

(n)
	,RU

∗⊗n
i ∈ C(n)

i,	 . For
every i ∈ Ac

	,Δ, it holds that

ω
(	n)
i,	 (w(	n)

	,R ) ≥ ω
(	n)
i,	 (U⊗n

i p
(n)
	,RU

∗⊗n
i ) −→ 1 . (7.159)
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We can thus fix an � ∈ N large enough to fulfill #(Ac
�,Δ)

k(	) ≥ 1− δ
2 and use the

ergodic decomposition to obtain the lower bound

ω(	n)(w(	n)
	,R ) ≥ 1

k(�)

∑

i∈Ac
�,Δ

ω
(	n)
	,i (w(	n)

	,R ) ≥
(

1 − δ

2

)

min
i∈Ac

�,Δ

ω
(	n)
i,	 (w(	n)

	,R ) .

Then (7.159) yields

ω(	n)(W (	n)
	,R ) ≥ ω(	n)(w(	n)

	,R ) ≥ 1 − δ .

Step 3. One can now proceed as in [163] and introduce a sequence of inte-
gers �m, m ∈ N , where each �m is a power of 2 fulfilling the inequality

�m23·	m ≤ m < 2�m23·2	m . (7.160)

Let the integer sequence nm and the real-valued sequence Rm be defined by
nm := + m

	m
,, respectively Rm := �m ·

(
s+ ε

2

)
and set

Q(m)
s,ε :=

{
W

(	mnm)
	m,Rm

if m = �m23·	m ,

W
(	mnm)
	m,Rm

⊗ id⊗(m−	mnm) otherwise .
(7.161)

Observe that

1
m

log Tr Q(m)
s,ε ≤ 1

nm�m
log TrQ(m)

s,ε ≤ 4	m

�m

log(nm + 1)
nm

+
Rm

�m
+

1
nm

≤ 4	m

�m

6�m + 2
23	m − 1

+ s+
ε

2
+

1
23	m − 1

,

where the second inequality follows from (7.158) and the last one from the
bounds on nm

23	m − 1 ≤ m

�m
− 1 ≤ nm ≤ m

�m
≤ 26	m+1 .

Thus, for large m, it holds

1
m

log TrQ(m)
s,ε ≤ s+ ε. (7.162)

By the special choice (7.160) of �m it is ensured that the sequence of projectors
Q

(m)
s,ε ∈ Am is indeed typical for any quantum state ω with entropy rate

s(ω) ≤ s. This means that {Q(m)
s,ε }m∈N is a sequence of universal typical

projectors at level s.
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7.3.2 Quantum Capacities

The χ-quantity in Holevo’s bound 6.33 limits the amount of classical in-
formation that can be retrieved by a POVM measurement from encoding
classical symbols i ∈ IA = {1, 2, . . . , a} by quantum (mixed) states, i �→ ρi

coming from a mixture ρ =
∑

i∈IA
piρi ∈ B

+
1 (H) with a priori probabil-

ities pi. In particular, the bound is in general hardly reachable; however,
like in classical capacity theory, the amount of retrievable classical informa-
tion per transmitted quantum state can be made arbitrarily close to the
Holevo bound by means of suitable encodings of longer and longer strings
i(n) = i1i2 · · · in ∈ I

(n)
A := IA × · · · IA︸ ︷︷ ︸

n times

. Also, the Holevo bound is a limit to

the classical information per letter that can be encoded into quantum states
and retrieved with negligible errors. As we shall see, this state of affairs will
lead to different definitions of quantum capacities.

In order to prepare the ground for a detailed discussion, appropriate no-
tations must be introduced.

We spectralize ρ =
∑

α∈Iρ
r(α)| r(α) 〉〈 r(α) |, set In

ρ := Iρ × · · · Iρ
︸ ︷︷ ︸

n times

, denote

α(n) = α1α2 · · ·αn, αi ∈ Iρ, and write

r(α(n)) :=
n∏

i=1

r(αi) , |α(n) 〉 :=
n⊗

j=1

| r(αj) 〉 (7.163)

ρ(i(n)) := ρi1 ⊗ ρi2 ⊗ · · · ρin
, P (i(n)) :=

n∏

j=1

pij
(7.164)

ρ⊗n =
∑

i(n)∈I
(n)
A

P (i(n)) ρ(i(n)) =
∑

α(n)∈In
ρ

r(α(n))|α(n) 〉〈α(n) | .(7.165)

On the other hand, the spectral decompositions of the quantum code-words

ρi =
∑

k∈Ji

p(k|i) | p(k|i) 〉〈 p(k|i) | , (7.166)

with eigenvalues 0 ≤ p(k|i) ≤ 1 and eigenprojectors | p(k|i) 〉〈 p(k|i) |, provide
conditional and joint probabilities.

Denote by A(n), respectively K(n), the stochastic variables with outcomes
i(n), respectively k(n) = ki1ki2

· · · kin
∈ In

K , where In
K :=

⋃
i(n)∈In

A
J(i(n))

with J(i(n)) := ×n
j=1Jij

. Finally assign to A(n) and K(n) conditional and
joint probabilities defined by πK(n)|A(n) := {P (k(n)|i(n)}i(n)∈In

A , k(n)∈J(i(n)),
where

P (k(n)|i(n)) :=
n∏

j=1

p(kj |ij) , (7.167)
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and by πA(n)∨K(n) = {P (i(n),k(n))}i(n)∈In
A,k(n)∈In

K
, where

P (i(n),k(n)) := P (i(n)) P (k(n)|i(n)) . (7.168)

Shannon entropies are computed using (7.164) and additivity of von Neu-
mann entropy, as follows:

H(A(n)) = nH(A) = n
a∑

i=1

pi log2 pi (7.169)

H(A(n) ∨K(n)) = H(A(n)) +
∑

i(n)∈In
A

P (i(n))H(K(n)|i(n))

= H(A(n)) +
∑

i(n)∈In
A

P (i(n))S(ρ(i(n)))

= n
(
H(A) +

a∑

i=1

pi S(ρi)
)
. (7.170)

According to the AEP (see Proposition 3.2.2), for any fixed ε > 0, we can
distinguish a subset of πA(n)-typical strings i(n) ∈ U (n)

ε ⊆ I
(n)
A and a subset

of πA(n)∨K(n)-typical strings (i(n),k(n)) ∈ V(n)
ε ⊆ I

(n)
A × I

(n)
K . These subsets

are such that πA(n)(U (n)
ε ) ≥ 1− ε and πA(n)∨B(n)(V(n)

ε ) ≥ 1− ε. Furthermore,
if i(n) ∈ U (n)

ε then

2−n(H(A)+ε) ≤ P (i(n)) ≤ 2−n(H(A)−ε) , (7.171)

while if (i(n),k(n)) ∈ V(n)
ε , then

2
−n

(
H(A)+

∑a
i=1 piS(ρi)+ε

)

≤ P (i(n),k(n)) ≤ 2
−n

(
H(A)+

∑a
i=1 piS(ρi)−ε

)

.
(7.172)

As for classical capacity (see Section 3.2.2), we distinguish one more typical
subset, W(n)

ε ⊆ I
(n)
A ×I

(n)
B , consisting of all jointly typical pairs, (i(n),k(n)) ∈

V(n)
ε , where also i(n) ∈ U (n). From (7.168), (7.171) and (7.172),

2
−n

(
S(ρ)−χ+2ε

)

≤ P (k(n)|i(n)) ≤ 2
−n

(
S(ρ)−χ−2ε

)

, (7.173)

where (6.33) has been used and χ is Holevo’s χ-quantity for ρ and its decom-
position ρ =

∑a
i=1 piρi. Finally, in terms of (7.164) and (7.165),

ρ(i(n)) =
∑

k(n)∈J(i(n))

P (k(n)|i(n)) |P (k(n)|i(n)) 〉〈P (k(n)|i(n)) | (7.174)

ρ⊗n =
∑

i(n)∈In
A

k(n)∈J(i(n))

P (i(n),k(n)) |P (k(n)|i(n)) 〉〈P (k(n)|i(n)) | , (7.175)
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where (see (7.166)) |P (k(n)|i(n)) 〉 :=
⊗n

j=1 | p(kj |ij) 〉.
As showed in the proof of Theorem 7.3.1, for any ε > 0 there ex-

ists an orthogonal projector Πε ∈ B(H⊗n) that commutes with ρ⊗n and
Tr(ρ⊗n Πε) ≥ 1− ε. Analogously, if the sum in (7.175) is restricted to W(n)

ε ,
one gets a positive operator ρ̃n ≤ ρ⊗n ∈ B

+
1 (H⊗n) with

Trρ̃n =
∑

(i(n),k(n))∈W(n)
ε

P (i(n),k(n))

=
( ∑

(i(n),k(n))∈V(n)
ε

−
∑

(i(n),k(n))∈V(n)
ε

i(n) /∈U(n)
ε

)
P (i(n),k(n)) ≥ 1 − 2ε . (7.176)

Theorem 7.3.4. [136, 269] Let ρ =
∑

i∈IA
piρi ∈ B

+
1 (H) provide a statisti-

cal mixture of quantum states available for encoding symbols i ∈ IA emitted
by a classical source; let χ := χ (ρ, {piρi}i∈IA

). For any fixed δ > 0 and suffi-
ciently large n, there exists an encoding i(n) �→ E(i(n)) = ρ(i(n)) on a subset
ĨA ⊆ In

A consisting of M strings and a decoding POVM

B(H⊗n) ⊃ B(n) :=
{{

|Ψ(k(n)|i(n) 〉〈Ψ(k(n)|i(n)) |
}

i(n)∈ĨA

(i(n),k(n))∈W(n)
ε

∪ 1l −
∑

i(n)∈ĨA

(i(n),k(n))∈W(n)
ε

|Ψ(k(n)|i(n)) 〉〈Ψ(k(n)|i(n) |
}
,

such that
∣
∣
∣
∣
M

n
− χ

∣
∣
∣
∣ ≤ δ and en ≤ δ, where en is the decoding error

en := 1 − 1
M

∑

i(n)∈ĨA

k(n)∈J(i(n))

P (k(n)|i(n))
∣
∣
∣〈Ψ(k(n)|i(n)) |P (k(n)|i(n)) 〉

∣
∣
∣
2

.

(7.177)

The strategy of the proof consists of the following steps.

1. choose an equidistributed set ĨA ⊆ In
A of M sequences i(n) and to encode

each of them by a density matrix E(i(n)) = ρ(i(n)). The encoding thus
provides the density matrix

ρ
(n)
E :=

1
M

∑

i(n)∈ĨA

E(i(n))

=
1
M

∑

i(n)∈ĨA

k(n)∈J(i(n))

P (k(n)|i(n)) |P (k(n)|i(n)) 〉〈P (k(n)|i(n)) | . (7.178)
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2. Choose random encodings E as in the proof of Theorem 3.2.3: the ar-
gument does ensure that the required encoding and decoding procedures
exist, but does not provide concrete instances of them (for a similar result
see [144, 146]).

3. As regards the decoding protocol, the idea is to try to identify by
means of (possibly of norm less than 1) vectors |Ψ(k(n)|i(n)) 〉 only those
|P (k(n)|i(n)) 〉 in (7.178) which are labeled by pairs (i(n),k(n)) ∈ W(n)

ε

after the same have been projected by Πε onto the chosen high probabil-
ity subspace of ρ(n). All other |P (k(n)|i(n)) 〉 will be made correspond to
|Ψ(k(n)|i(n)) 〉 = 0.

4. The non-trivial decoding vectors are constructed as follows. (For sake
of simplicity we shall denote multi-indices i(n), k(n) as i and k. Set
|Φ(i, k) 〉 := Πε|P (i, k) 〉, consider the matrix S with entries

S(i,k),(i,k) := 〈Φ(i, k) |Φ(i, k) 〉 = 〈P (k|i) |Πε |P (k|i) 〉 , (7.179)

where i, i ∈ ĨA, k, k ∈ J(i), J(i) and (i, k), (i, k) ∈ W(n)
ε . This matrix is

positive and its square root defines vectors |Ψ(i, k) 〉 such that [136]
√
S(i,k),(i,k) =: 〈Ψ(k|i) |Φ(k|i) 〉 = 〈Ψ(k|i) |P (k|i) 〉 .

Namely, Q−1/2|Φ(k|i) 〉 where Q−1/2 is the (positive) inverse square-root

of Q :=
∗∑

(i,k)

|Φ(k|i) 〉〈Φ(k|i) | (defined only on the range of Q), where
∗∑

(i,k)

denotes the sum restricted to the pairs (i, k) ∈ W(n)
ε .

5. The error (7.177) is complementary to the ensemble fidelity (see Defi-
nition 6.3.6) that has been used in Theorem 7.3.1. Using the previous
definitions and that Q−1/2 ≥ 0, it can be bounded as follows:

en ≤ 2
M

∑

i∈ĨA
k∈J(i)

P (k|i)
(
1 − 〈Ψ(k|i) |P (k|i) 〉

)

≤ 2 − 2
M

∑

i∈ĨA

∗∑

(i,k)

P (k|i)
√
S(i,k);(i,k) . (7.180)

Proof of Theorem 7.3.4 Since 2(x−√
x) ≤ x−x2 for all x ≥ 0, the same

inequality holds by substituting x with the positive matrix S in (7.179);
taking diagonal values:

√
S(i,k);(i,k) ≥

3
2
S(i,k);(i,k) − 1

2

∗∑

(j,k)

S(i,k);(j,	) S(j,	);(i,k) .

Then, using the first inequality in (7.173), the bound (7.180) can conveniently
be recast as follows
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en ≤ 2 − 3
M

∑

i∈ĨA

∗∑

(i,k)

P (k|i)S(i,k);(i,k)

+
1
M

∑

i∈ĨA

∗∑

(i,k)

P (k|i)S2
(i,k);(j,	)

+
2n(S(ρ)−χ+2ε)

M

∑

i,j∈ĨA

∗∑

(i,k) �=(j,	)

P (k|i)P (�|j)S(i,k);(j,	) S(j,	);(i,k) .

Suppose now to choose the M words i(n) ∈ ĨA randomly according to the
probability distribution P (i); we obtain in this way a statistical ensemble of
random codes and, as much as in the classical case, by averaging over the
contributions of the randomly chosen i(n) one eliminates the dependence on
ĨA and remains with a sum over all i(n) ∈ In

A. Therefore, the average error
can be estimated from above by

eav
n ≤ 2 − 3

∑

i∈I
(n)
A

∗∑

(i,k)

P (i)P (k|i)S(i,k);(i,k)

︸ ︷︷ ︸
L1

(7.181)

+
∑

i∈I
(n)
A

∗∑

(i,k)

P (i)P (k|i)S2
(i,k);(i,k)

︸ ︷︷ ︸
L2a

(7.182)

+
M(M − 1)

M
2n(S(ρ)−χ+2ε)

×
∑

i,j∈I
(n)
A

∗∑

(i,k) �=(j,	)

P (i)P (j)P (k|i)P (�|j)S(i,k);(j,	) S(j,	);(i,k)

︸ ︷︷ ︸
L2b

.(7.183)

From (7.179) and (7.176),

L1 = Tr
(
ρ̃nΠε

)
= Tr

(
ρ⊗nΠε

)
− Tr

(
(ρ̃n − ρ⊗n)Πε

)
≥ 1 − 3ε (1) .

Further, S(i,k);(i,k) ≤ 1, thus L2a ≤ 1 (2a). Finally, the last sum can be
bounded from above by observing that if 0 ≤ A ≤ B and 0 ≤ C ≤ D, then
by means of cyclicity under the trace operation,

Tr(AC) = Tr(
√
AC

√
A) ≤ Tr(AD) = Tr(

√
DA

√
D) ≤ Tr(BD) .

Therefore, since Πε commutes with ρ⊗n, L2b ≤ Tr
(
Πε(ρ⊗n)2

)
; on the other

hand, from the quantum AEP we know that the dimension of the subspace
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projected out by Πε is ≤ 2n(S(ρ)+ε) with eigenvalues ≤ 2−n(S(ρ)−ε), whence
L2b ≤ 2−n(S(ρ)−3ε) (2b). Altogether, inequalities (1), (2a) and (2b) yield

eav
n ≤ 2 − 3(1 − 3ε) + 1 + M 2−n(χ−5ε) = 9ε + 2−n(χ−R−5ε) ,

where we have put the growth rate R into evidence M = 2n R. The latter
can be chosen arbitrarily close to the Holevo χ quantity and still the average
error becomes negligible with n → ∞. Therefore, for any δ ≥ 0 and n large
enough there is an ĨA ⊆ In

A with R ≥ χ− δ and en ≤ δ. �

Example 7.3.2. Suppose the sender encodes classical symbols i ∈ I into
states that she obtains by acting locally with unitary operators Ui on her
system in a state ρ12 ∈ Md1(C)⊗Md2(C) which she shares with the receiver.
She selects the unitary operators Ui with probabilities pi, and after changing
ρ12 into ρi = Ui⊗1l2 ρ12 U

†
i ⊗1l she sends her system to the receiver. The sender

tries to maximize the information accessible to the receiver by optimizing the
Holevo bound, thus seeking [71]

CM := max
pi,Ui

{

S (ρ) −
∑

i

piS (ρi)

}

, ρ =
∑

i

pi ρi .

Note that S (ρi) = S (ρ12) for unitary transformations do not change the von
Neumann entropy; in order to maximize S (ρ), consider the marginal states

ρ(1) = Tr2(ρ) , ρ
(2)
1 = Tr1(ρ) = ρ2 (= Tr1(ρ12)) .

By subadditivity (5.160) and (5.155),

CM ≤ S
(
ρ(1)
)

+ S (ρ2) − S (ρ12) ≤ log d1 + S (ρ2) − S (ρ12) .

Choose as unitary operators the d2
1 Weyl operators Wd1(n) of Example 5.4.2

with equal probabilities 1/d2
1; then, using (5.88) and (5.30), one gets

ρ =
1
d2
1

∑

n=(n1,n2)

Wd1(n) ⊗ 1l2 ρ12 Wd1(n) ⊗ 1l2 =
1l1
d1

⊗ ρ2 ,

so that CM ≥ log d1 + S (ρ2) − S (ρ12). This transmission protocol can thus
achieve an optimal quantum transmission rate CM = log d1+S (ρ2)−S (ρ12).

In general, like in classical transmission, the quantum states that have
been used to code and transmit information are subjected to perturbing
effects of the transmission channel which is being used. Concretely, if the
the quantum code-words are projections Pi ∈ Md(C) chosen with probabil-
ities pi, thus making a statistical ensemble described by the density matrix
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ρ =
∑

i pi Pi, a probability preserving channel acts on them as a trace-
preserving CP map Λ. In the light of the previous theorem, the channel
capacity is defined by [145, 276]

CM [Λ] := max
pi,Pi

{

S (Λ[ρ]) −
∑

i

pi S (Λ[Pi])

}

.

As much as for the entanglement cost (see (6.8)), in order to improve the
capacity, one may consider n uses of the channel, thus a CP map Λ⊗n acting
on states on Md(C)⊗n which may carry entanglement between different uses.
Then one introduces the regularized capacity

C∞[Λ] := lim
n→+∞

1
n
CM [Λ⊗n] .

Such a limit exists because the capacity is superadditive; indeed, consider
CM [Λ1⊗Λ2] and two statistical ensembles {p(1)

j , P
(1)
i } and {p(1)

j , P
(1)
i } that

achieve CM [Λ1], respectively CM [Λ2]. The additivity of the von Neumann en-
tropy over tensor products states implies that, for the not necessarily optimal
statistical ensemble, {p(1)

i p
(2)
j , P

(1)
i ⊗ P

(2)
j },

CM [Λ1 ⊗ Λ2] ≥ S
(
Λ1[ρ(1)]

)
−
∑

i

p
(1)
i S

(
Λ1[P

(1)
i ]
)

+ S
(
Λ2[ρ(2)]

)
−
∑

i

p
(2)
i S

(
Λ2[P

(2)
i ]
)

= CM [Λ1] + CM [Λ2] .

Were the capacity additive, the regularized capacity would coincide with
CM [Λ]. This is another important open question in quantum information
which is actually equivalent to the additivity of the entanglement of forma-
tion [276] (see also [43] for an approach to this problem based on the relations
between the entanglement of formation and the the entropy of a subalgebra.)
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The last part of the book first deals with two extensions of the Kol-
mogorov dynamical entropy to quantum systems and with their applications.
Then, it discusses some recent generalizations to quantum systems of classical
algorithmic complexity.



8 Quantum Dynamical Entropies

The first part of this book has been devoted to illustrate some of the many
properties of the classical dynamical entropy of Kolmogorov and Sinai; in par-
ticular, it has been showed that it provides the optimal compression rate of
ergodic sources (Shannon-Mc Millan-Breiman Theorem 3.2.1), while, through
the positive Lyapounov exponents (Pesin’s Theorem), it measures the dynam-
ical instability of classical dynamical systems; finally, it gives the complexity
rate of almost all trajectories of ergodic dynamical systems (Brudno’s theo-
rem 4.2.1).

Several extensions of the KS entropy to quantum dynamical systems can
be found in the mathematical and physical literature (see the bibliographical
notes at the end of this chapter). All of them predated or were developed
independently of quantum information; due to its rapid growth, the latter
more and more appears as an ideal ground for testing the physical meaning
and the technical usefulness of these proposals.

One of the aims behind the attempts at defining quantum dynamical
entropies was the possibility of classifying quantum dynamical systems, as
much as it had been done for classical dynamical systems by means of the
KS entropy (see Remark 3.1.2). Afterwards, the quantum dynamical entropies
have been applied to the study of quantum chaotic phenomena and the quan-
tum/classical correspondence; recently, they have been used to shed light on
certain foundational aspects of quantum information, like quantum capacity
and quantum algorithmic complexity.

Of the various quantum dynamical entropies that have been proposed
in recent years, we shall mainly focus upon two of them; namely, the en-
tropy of Connes, Narnhofer and Thirring [88] (CNT entropy) and of Alicki
and Fannes [9] (AFL entropy) 1. These quantum dynamical entropies em-
body two radically different ways of approaching the notion of information
production in quantum mechanics; indeed, they may behave differently on a
same quantum dynamical system.

In Section 2.4, we have seen that partitions of the phase-space into
finitely many, disjoint measurable atoms provide classical dynamical systems
(X , T, μ) (see Definition 2.2.2) with symbolic models: finite measurable parti-
tions P = {Pi}i∈I can be used to successively localize the moving phase-point

1The L in AFL stands for Lindblad who introduced the notion in [194, 195, 196].

F. Benatti, Dynamics, Information and Complexity in Quantum Systems, 411
Theoretical and Mathematical Physics, DOI 10.1007/978-1-4020-9306-7 8,
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within their atoms Pi and to quantify the predictability of the dynamics via
the information relative to the next time-step that is gained by observing the
evolving system.

In Chapter 3, partitions have been interpreted as POVMs taken from
a commutative dynamical triple (L∞

μ (X ), ΘT , ωμ), where atoms have been
identified with their characteristic functions and thus with orthogonal pro-
jections summing up to the identity (see Definition 2.2.3.2). Thus, partitions
P define partitions of unit (see Definition 5.6.1) and CPU maps EX on the
C∗-algebra B(L2

μ(X )). However, because of commutativity, the action of E

on L
∞
μ (X ) reduces to the identity map; indeed, for all f ∈ L

∞
μ (X ),

EX [f ](x) =
∑

i∈I

χPi
(x) f(x)χPi

(x) =
∑

i∈I

χPi
(x) f(x) = f(x) .

The dynamics is thus insensitive to measurements, ΘT ◦EX = EX ◦ΘT = ΘT ,
as well as the states on L

∞
μ (X ): FX [ωμ] = ωμ, where FX is the dual CP map

such that FX [ωμ](f) = ωμ(EX [f ]).
Given a quantum dynamical triplet (A, Θ, ω), if one wants to extend the

notion of partition to such a non-commutative context, a natural step is
to substitute commuting projections with non-commuting ones or, more in
general, with non-projective POVMs . Differently from the classical case, the
CPU maps E : A �→ A associated with them do not in general commute
with the quantum dynamics, Θ ◦ E �= Θ �= E ◦ Θ, nor do the dual maps
F preserve the quantum state, F[ω] �= ω. Both E and F act as external
perturbations; therefore, a preliminary question arises whether one should or
not incorporate measurement processes into the very construction of quantum
dynamical entropies.

If the answer is yes, then, beside the dynamics itself, measurement pro-
cesses themselves may act as a source of randomness; on the other hand, if
the answer is no, the regular and irregular features of the dynamics refer
to the system only, but are insensitive to the typical quantum phenomenon
that getting information about quantum systems in general perturbs them.
In other words, a perturbation-free quantifier of quantum dynamical random-
ness might not measure the actual information production that always comes
from observations of the time-evolving system; on the other hand, a quan-
tifier of quantum dynamical randomness that takes into account acquisition
of information through measurement processes would add the randomness
coming from the latter ones to that proper to the quantum dynamics itself.

Purpose of this and the last chapter is to convey the idea that, unlike
in classical dynamics, randomness in quantum dynamics has more than one
facet and that choosing one of the two answers above just means exploring
two of these inequivalent aspects.
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8.1 CNT Entropy: Decompositions of States

The non-commutative algebraic structure which more closely resembles a
commutative one is that of type II1 factor von Neumann algebras A (see
point 2 after Definition 7.0.8). Indeed, the state ω which makes A a type
II1 factor is a normalized trace such ω(X Y ) = ω(Y X) for all X,Y ∈ A.
The CNT entropy [88] generalizes to generic von Neumann algebras previous
extensions of the KS entropy to type II1 factors that were based on the above
commutativity with respect to the state [107, 89].

The CNT entropy quantifies the information rate in quantum dynamical
systems described by algebraic triplets (A, Θ, ω) and it does it independently
of external measurement processes, by relying only on the algebraic properties
of A, Θ and ω. The basic idea of the whole construction is a clever use of
the relation between entropy and relative entropy that has been discussed
in Section 6.3.1 in relation to the entropy of a subalgebra (more in general
of a CPU map: see Definitions 6.3.2 and 6.3.3). Before getting to that, we
indicate why, in general, the steps that in Section 3.1 led to the KS entropy
are not practicable in a quantum setting.

Suppose M ⊂ A is a finite-dimensional subalgebra; if (A, Θ, ω) is a clas-
sical dynamical triplet, the KS entropy is constructed by considering

– the finite partition corresponding to the subalgebra M ;
– the partition M (n) =

∨n−1
j=0 Θ

k(M) generated by the time-evolved parti-
tions {Θk(M)}n−1

k=0 ;
– the Shannon entropy of the state ω restricted to M (n): H(ω |̀M (n));

– the asymptotic rate lim
n→∞

1
n
H(ω |̀M (n)).

In the non-commutative context, by sheer analogy one might consider

– any finite-dimensional subalgebra M ⊆ A;
– the finite-dimensional subalgebras M (n) :=

∨n−1
k=0 Θ

k(M) generated by
the n (finite-dimensional) subalgebras Θk(M)n−1

k=0 ;

– the von Neumann entropy of the restricted state ω |̀M (n): S
(
ω |̀M (n)

)
;

– the asymptotic rate lim
n→∞

1
n
S
(
ω |̀M (n)

)
.

However, this argument generally fails and the reason why it does fail is
non-commutativity [301]: despite being finite-dimensional, the subalgebras at
different times Θk(M) need not commute and can thus generate an infinite-
dimensional subalgebra M (n) so that S

(
ω |̀M (n)

)
cannot in general be con-

trolled.
In order to overcome these difficulties, the idea is to extend the entropy

of a CPU map Hρ (γ) (see Definition 6.3.3) to the entropy Hω (γ1, γ2, . . . , γn)
of n CPU maps γi : M i �→ A from finite-dimensional C∗ algebras (that we
shall always suppose with identity) M i into A.
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Remark 8.1.1. As in Section 6.3.1, when M is a subalgebra of A, then one
chooses as CPU map γ the natural embedding ιM of M into A. Therefore,
when dealing with the set of subalgebras {Θj(M)}n−1

j=0 , the n CPU maps are
given by γj := Θj ◦ ιM .

Like in the case of Hρ (γ), we shall consider linear convex decompositions
of the state ω in terms of states ωi(n) . These states will now be indexed by
strings i(n) = i1i2 · · · in, ij ∈ Ij , each CPU map γj being associated with
a generic index set Ij , carrying a total weight λ(i(n)). Fixing ij ∈ Ij , after
summing over the all other indices and after renormalization, one obtains
auxiliary decompositions of ω associated to each γj . Concretely, from the
multi-index decomposition

ω =
∑

i(n)∈I(n)

λi(n) ωi(n) , I(n) := I1 × I2 × · · · In , (8.1)

one obtains subdecompositions ω =
∑

ij∈Ij

λj
ij
ωj

ij
, j = 1, 2, . . . , n, where

ωj
ij

:=
∑

i(n)
ij fixed

λi(n)

λj
ij

ωi(n) , λj
ij

:=
∑

i(n)
ij fixed

λi(n) . (8.2)

Let Λ(n) :=
{
λ

(n)

i(n)

}

i(n)∈I(n)
be the probability distribution associated with

the weights in (8.1) and Λj :=
{
λj

ij

}

ij∈Ij

the marginal probability distri-

butions consisting of the weights in (8.2). The generalization of (6.3.3) is as
follows.

Definition 8.1.1 (n-CPU Entropies). Given a C∗ algebra A equipped with
a state ω, let γi : M i ⊂ A, i = 1, 2, . . . , n, be CPU maps from finite-
dimensional C∗ algebras into A. Their entropy with respect to ω is:

Hω (γ1, γ2, . . . , γn) := sup
ω=
∑

i(n) λ
i(n) ω

i(n)

{

H(Λ(n)) −
n∑

j=1

H(Λj)

+
n∑

j=1

∑

ij∈Ij

λj
ij
S
(
ωj

ij
|̀γj , ω |̀γj

)
}

(8.3)

= sup
ω=
∑

i(n) λ
i(n) ω

i(n)

{

H(Λ(n)) −
n∑

j=1

H(Λj)

+
n∑

j=1

(

S (ω |̀M j) −
∑

ij∈Ij

λj
ij
S
(
ωj

ij
|̀γj

)
)}

, (8.4)



8.1 CNT Entropy: Decompositions of States 415

where, with η(x) := −x log x, x ∈ [0, 1],

H(Λ(n)) =
∑

i(n)

η(λi(n)) , H(Λj) =
∑

ij∈Ij

η(λj
ij

) .

As in Section 6.3.1, a concrete way to construct decompositions of ω is
to use the GNS construction based on the state ω; it follows that the states
ωi(n) contributing to ω =

∑
i(n) λi(n)ωi(n) are in one-to-one correspondence

with the positive elements of the commutant of πω(A):

λi(n)ωi(n)(X) = 〈Ωω |Y ′
i(n)πω(X) |Ωω 〉 , (8.5)

where 0 ≤ Y ′
i(n) ∈ πω(A)′ and

∑
i(n) Y ′

i(n) = 1l. Also, if ω is faithful, one can
express the decomposing states in terms of 0 ≤ X ∈ πω(A)′′ by means of the
modular automorphism σω (see (5.181) in Remark 5.6.1.3):

λi(n)ωi(n)(X) = 〈Ωω |σi/2
ω

(
πω(Yi(n))

)
πω(X) |Ωω 〉 , (8.6)

where 0 ≤ Yi(n) ∈ A and
∑

i(n) Yi(n) = 1l.

In analogy with (6.47), we shall denote by

H
{γj}n

j=1
ω

(
{λi(n) , ωi(n)}

)
:= H(Λ(n)) −

n∑

j=1

H(Λj)

+
n∑

j=1

∑

ij∈Ij

λj
ij
S
(
ωj

ij
|̀γj , ω |̀γj

)
, (8.7)

the contribution to the n-subalgebra entropy coming from a chosen decom-
position of the state ω.

The n-CPU entropies enjoy a number of very useful properties that can
luckily be proved without being obliged to know the optimal decompositions;
the first one of these is a generalization of Proposition 6.3.4.

Proposition 8.1.1. Given a C∗ algebra A, a state ω on it and CPU maps
γj : M j �→ A, j = 1, 2, . . . , n, from finite-dimensional C∗ algebras M j

(dim M j ≤ d) into A, consider a decomposition ω =
∑

i(n)∈I(n) λ
(n)

i(n) ωi(n)

and ε > 0. Then, there exists a decomposition ω =
∑

j∈J(n) λ
′(n)

j(n) ω
′
j(n) where

J (n) := J1×J2×· · · Jn is a multi-index set with card(J (n)) depends on d and
ε and j(n) := j1j2 · · · jn, jk ∈ Jk, such that

H
{γj}n

j=1
ω

({
λ

(n)

i(n) , ωi(n)

}

i(n)∈I(n)

)
≤ H

{γj}n
j=1

ω

({
λ′

j(n) , ω
′
j(n)

}

j(n)∈J(n)

)
+ ε .
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Proof: Following the steps in the proof of Proposition 8.1.1, consider par-
titions Zj = {Zj

kj
}nj

kj=1 of the state-spaces S(M j) into atoms Zj
kj

such that

if νj
1,2 are two states on M j belonging to any Zj

kj
, then ‖ν1 − ν2‖ ≤ δ. The

cardinality nj of each of these partitions can be chosen not larger than the
smallest number, r, of balls of radius ≤ δ needed to cover each S(M j), a
number which depends on dimM j and thus on d. Given the decompositions

ω =
∑

i(n)∈I(n)

λ
(n)

i(n)ωi(n) and ω =
∑

ik

λk
ik
ωk

ik
, k = 1, 2, . . . , n

one constructs the states

ω′jk
:=

∑

ik∈Ik
ωk

ik
∈Zk

jk

λk
ik

λ′jk

ωk
ik
, λ′jk

:=
∑

ik∈Ik
ωk

ik
∈Zk

jk

λk
ik

ω′
j(n) :=

∑

i(n)∈I(n)

ωk
ik

∈Zk
jk

,k=1,2,...,n

λ
(n)

i(n)

λ′
j(n)

ωi(n) , λ′
j(n) :=

∑

i(n)∈I(n)

ωk
ik

∈Zk
jk

,k=1,2,...,n

λ
(n)

i(n) ,

and the corresponding decompositions

ω =
∑

j(n)∈J(n)

λ′
j(n)ω

′
j(n) and ω =

∑

jk∈Jk

λ′jk
ω′jk

.

Then, introducing the probability distributions Λ(n) :=
{
λ

(n)

i(n)

}

i(n)∈I(n)
and

Λ′ :=
{
λ′

j(n)

}

j(n)∈J(n)
, together with the respective marginal distributions

Λk :=
{
λk

ik

}
ik∈Ik

and Λ′
k :=

{
λ′jk

}

jk∈Jk
, one estimates

H
{γj}n

j=1
ω

({
λ

(n)

i(n) , ωi(n)

}

i(n)∈I(n)

)
− H

{γj}n
j=1

ω

({
λ′

j(n) , ω
′
j(n)

}

j(n)∈J(n)

)
=

= H(Λ(n)) −H(Λ′) +
n∑

k=1

(
H(Λ′

k) −H(Λk)
)

+
n∑

k=1

⎛

⎝
∑

ik∈Ik

λk
ik
S
(
ωk

ik
|̀γk , ω |̀γk

)
−
∑

jk∈Jk

λ′jk
S
(
ω′jk

|̀γk , ω |̀γk

)
⎞

⎠

≤ n ε .

Indeed, according to the proof of Proposition 8.1.1, each term in the second
sum over k is ≤ ε, while the first line after the equality is ≤ 0. This can
be seen by considering the Λk as probability distributions over partitions
Pk with atoms P k

ik
and Λ(n) as a probability distribution over the finite

partition P(n) :=
∨n

k=1 Pk. Then (compare Remarks 2.4.2), the Λ′
k and Λ′

k
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are probability distributions over coarser partitions Qk � Pk, respectively
Q(n) :=

∨n
k=1 Qk � P(n), whence, using the conditional entropy (2.90),

H(P(n) ∨Q(n)) = H(P(n)) = H(Q(n)) +H(P(n)|Q(n))
H(Pk ∨Qk) = H(Pk) = H(Qk) +H(Pk|Qk) .

Thus, from Lemma 2.4.3 and Corollary 2.4.2,

H(P(n)) −H(Q(n)) ≤
n∑

k=1

H(Pk|Qk) =
n∑

k=1

(
H(Pk) − H(Qk)

)
.

�
From proposition 8.1.1 it follows that for any ε > 0, there exists a finite

decomposition ω =
∑

i(n)∈I(n) λ
(n)

i(n) ωi(n) such that

H
{γj}n

j=1
ω

({
λ

(n)

i(n) , ωi(n)

}

i(n)∈I(n)

)
≥ Hω (γ1, γ2, . . . , γn) − n ε , (8.8)

while, from Definition 8.1.1,

Hω (γ1, γ2, . . . , γn) ≥ H
{γj}n

j=1
ω

({
λ

(n)

i(n) , ωi(n)

}

i(n)∈I(n)

)
.

We shall call these decompositions ε-optimal and remark that their cardi-
nality r := #(I(n)) depends on ε and on the maximal dimension d of the
finite-dimensional C∗ algebras on which the γj act. Then, the n-CPU map
entropies result equicontinuous in the maps γj : M j �→ A with respect to the
topology defined on their linear space by the norm

‖γ1 − γ2‖ω := sup
X∈A

‖X‖≤1

‖(γ1 − γ2)(X)‖ω , (8.9)

where ‖X‖2
ω := ω(X†X) for all X ∈ A.

Proposition 8.1.2. Let γj and γ′j, j = 1, 2, . . . , n, be CPU maps from finite-
dimensional C∗ algebras M j with dim M j ≤ d into A. Then, for any ε > 0
there can be found δ > 0 depending on ε and d such that

∣
∣
∣Hω (γ1, γ2, . . . , γn) − Hω (γ′1, γ

′
2, . . . , γ

′
n)
∣
∣
∣ ≤ n ε

when ‖γj − γ′j‖ω ≤ δ.

Proof: Consider a finite decomposition of cardinality r as in (8.8) with
ε/2 in the place of ε; then,
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Hω (γ1, γ2, . . . , γn) − Hω (γ′1, γ
′
2, . . . , γ

′
n) ≤ H

{γj}n
j=1

ω

({
λ

(n)

i(n) , ωi(n)

}

i(n)∈I(n)

)

−H{γ′
j}n

j=1
ω

({
λ

(n)

i(n) , ωi(n)

}

i(n)∈I(n)

)
+

nε

2
=

n∑

j=1

(
S (ω ◦ γj) − S

(
ω ◦ γ′j

)
+

+
∑

ij∈Ij

λj
ij

(
S
(
ωj

ij
◦ γj

)
− S

(
ωj

ij
◦ γ′j
)))

+
nε

2
.

Choose 0 < δ < δ0 and δ0 such that the Fannes inequality 5.157 implies
∣
∣
∣S (ν1 |̀M) − S (ν2 |̀M)

∣
∣
∣ ≤ ε

6

when M is a finite-dimensional C∗ algebra with dimM ≤ d and ν1,2 ∈ S(M)
are states on it such that ‖ν1 − ν2‖ ≤ δ0. Since |ω(X)| ≤ ‖X‖ω (see (5.49)),
it follows that

‖ω ◦ (γj − γ′j)‖ = sup
M∈M ,‖M‖≤1

|ω ◦ (γj − γ′j)(M)| ≤ ‖γ−γ′j‖ω ≤ δ < δ0 ,

whence
n∑

j=1

(
S (ω ◦ γj) − S

(
ω ◦ γ′j

))
≤ n

ε

6
.

In order to estimate the remaining sums, let us divide each index set Ij

into two disjoint subsets, namely

I0
j :=

{

ij ∈ IJ : λj
ij
≥ δ2

δ20

}

and its complement. Since ω =
∑

ij∈Ij
λj

ij
ωj

ij
, from (8.9), the state-based

distances are such that, for all ij ∈ I0
j ,

‖γj − γ′j‖ωj
ij

≤ 1
√
λj

ij

‖γj − γ′j‖ω ≤ δ0 ,

so that
n∑

j=1

∑

ij∈I0
j

λj
ij

(
S (ω ◦ γj) − S

(
ω ◦ γ′j

))
≤ n

ε

6
. Finally, using that

card(Ij) ≤ card(I(n)) ≤ r and dim M j ≤ d together with (5.155), one derives

∑

ij /∈I0
j

λj
ij

(
S
(
ωj

ij
◦ γj

)
− S

(
ωj

ij
◦ γ′j
))

≤ r
δ2

δ20
log d .

Therefore, δ < δ0 such that r
δ2

δ20
log d ≤ ε

6
, yields

Hω (γ1, γ2, . . . , γn) − Hω (γ′1, γ
′
2, . . . , γ

′
n) ≤ n(

ε

2
+ 3

ε

6
) = n ε ,
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whence the result follows by exchanging the sets {γj}n
j=1 and {γ′j}n

j=1. �
Other properties that are important for applications to concrete quantum

dynamical systems are the following ones.

Proposition 8.1.3 (Properties of n-CPU Entropies).
Given a C∗ algebra A equipped with a state ω and n CPU maps γi :

M j �→ A from unital C∗ algebras M j, j = 1, 2, . . . , n, with dim M j ≤ d,
into A, it holds that:

1. the n-CPU map entropies are positive and bounded,

0 ≤ Hω (γ1, γ2, . . . , γn) ≤
n∑

j=1

Hω (γj) ≤
n∑

j=1

S (ω ◦ γj) ≤ n log d ; (8.10)

2. the n-CPU map entropies do not depend on the order of their arguments:

Hω (γ1, γ2, . . . , γn) = Hω

(
γπ(1), γπ(2), . . . , γπ(n)

)
, (8.11)

with π(i) any permutation of 1, 2, . . . , n;
3. the n-CPU map entropies are not sensitive to repetitions of their argu-

ments:

Hω (γ1, . . . γj−1, γj , γj , γj+1, . . . , γn) = Hω (γ1, γj−1, γj , γj+1, . . . , γn) ;
(8.12)

4. if Θ : A → A is an automorphism such that ω ◦Θ = ω, then

Hω (Θ ◦ γ1, Θ ◦ γ2, . . . , Θ ◦ γn) = Hω (γ1, γ2, . . . , γn) ; (8.13)

5. the n-CPU map entropies are subadditive:

Hω (γ1, . . . , γp, γp+1, . . . , γn) ≤ Hω (γ1, γ2, . . . , γp)
+Hω (γp+1, γp+2, . . . , γn) ; (8.14)

6. the n-CPU map entropies are monotonic under composition of CPU
maps; namely, if γ′j : N j �→ M j are CPU maps from finite-dimensional
C∗ algebras N j into finite-dimensional C∗-algebras M j, j = 1, 2, . . . , n,
which are in turn mapped into A by CPU maps γj, then

Hω (γ1 ◦ γ′1, γ2 ◦ γ′2, . . . , γn ◦ γ′n) ≤ Hω (γ1, γ2, . . . , γn) ; (8.15)

7. the n-CPU map entropies increase by non-trivially increasing the number
of their arguments:

Hω (γ1, γ2, . . . , γn) ≤ Hω (γ1, γ2, . . . , γn, γn+1) . (8.16)

Before proving the previous properties we examine some simple cases
where, in analogy with Example 6.3.6, the n-CPU map entropies can explic-
itly be computed.
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Examples 8.1.1.

1. If in (8.15) one considers as CPU maps γ′j and γj the natural em-
beddings of subalgebras N j ⊆ M j ⊆ A, then that property asserts
that the n-subalgebra entropies increases under embeddings into larger
subalgebras. Suppose the finite-dimensional C∗ subalgebras {M j}n

j=1

to be such that they together generate a finite-dimensional subalgebra
M (n) :=

∨n
j=1 M j . This is the case, for instance, when each M j is a

spin-algebra at site j on a lattice so that M (n) is the algebra of n spins
at sites 1, 2, . . . , n. Then, M j ⊆ M (n) whence property (8.15) together
with property (8.12) and property (8.10) give

Hω (M1,M2, . . . ,Mn) ≤ Hω

(
M (n),M (n), . . . ,M (n)

)

= Hω

(
M (n)

)
≤ S

(
ω |̀M (n)

)
. (8.17)

2. Suppose A is an Abelian von Neumann algebra and {Aj}n
j=1 are finite di-

mensional subalgebras generated by minimal projectors {âji}dj

i=1. Then,
consider the products âi(n) := â1i1 â2i2 · · · ânin

, I(n) = ×n
j=1Ij , where

i(n) = i1i2 · · · in, ij ∈ Ij and Ij = {1, 2, . . . , dj}. Because of commutativ-
ity, these are projectors that one can use to decompose ω as follows

ω =
∑

i(n)∈I(n)

λi(n) ωi(n) , ωi(n)(a) =
ω(âi(n)a)
ω(âi(n))

∀a ∈ A .

Further, the various probability distributions and elements of the subde-
compositions amounts to

Λ(n) = {ω(âi(n))}i(n)∈I(n) , ωj
ij

(a) =
ω(âjij

a)
ω(âjij

)
, Λj = {ω(âjij

)}ij∈Ij
.

It thus follows that 1) the states ω |̀Aj = Λj and the states ωj |̀Aj are
pure states because the orthogonality of the minimal projectors implies

ωj
ij

(âjk) =
ω(âjij

âjk)
ω(âjij

)
= δijk .

Since the minimal projections â
(n)

i(n) generate the Abelian subalgebra
A(n) :=

∨n
j=1 Aj , this yields

H
{Aj}n

j=1
ω

({
λ

(n)

i(n) , ωi(n)

})
= −

∑

i(n)∈I(n)

λ
(n)

i(n) log λ(n)

i(n) = S
(
ω |̀A(n)

)
.

Because of (8.17) this result is optimal; thus,
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Hω (A1,A2, . . . ,An) = S
(
ω |̀A(n)

)
. (8.18)

Notice that the latter von Neumann entropy is the Shannnon entropy
of the random variable

∨n
j=1 Aj distributed with probability Λ(n), where

the random variables Aj are distributed with marginal probabilities Λj .
The outcomes of these random variables correspond to the minimal pro-
jections âji; according to Section 5.3.2, via the Gelfand transform these
can be turned into characteristic functions of the atoms of suitable mea-
surable partitions.

3. The result in (8.18) also holds when the Aj are commuting Abelian finite-
dimensional subalgebras of a non-commutative A, but ω is the tracial
state. Indeed, the minimal projectors of the Aj provide an optimal de-
composition as in the previous example. The reason is that the modular
automorphism of the tracial state is trivial; thus, (8.6) yields

λi(n)ωi(n)(a) = 〈Ωω |σi/2
ω

(
πω(âi(n))

)
πω(a) |Ωω 〉

= 〈Ωω |πω(âi(n)a) |Ωω 〉 = ω(âi(n)a) .

4. Suppose {M j}n
j=1 are finite-dimensional C∗ subalgebras that generate

a finite-dimensional subalgebra M (n) :=
∨n

j=1 M j ⊆ A. Further, sup-
pose they contain pairwise commuting Abelian subalgebras Aj ⊆ M j

each belonging to the centralizer of ω 2 and such that the algebra
A(n) :=

∨n
j=1 Aj they generate is maximally Abelian in M (n). Since

the Aj pairwise commute the products of their minimal projectors âjij

provide the minimal projectors âi(n) of A
(n)
j . By assumption, they are

left invariant by the modular automorphism of ω and can thus be used
to decompose ω as in the previous two examples. Then, from the second
example above and from Example 6.3.3.2 one derives

Hω (M1,M2, . . . ,Mn) ≥ H
{Mj}n

j=1
ω

(
{ω(âi(n)), ωi(n)}i(n)∈I(n)

)

= S
(
ω |̀A(n)

)
= S

(
ω |̀M (n)

)
.

Therefore, the first example yields

Hω (M1,M2, . . . ,Mn) = S (ω |̀M1 ∨ M2 ∨ · · ·Mn) . (8.19)

Proof of Proposition 8.1.3

1. Positivity comes from choosing not to decompose ω at all, in which
case the argument of the supremum in (8.3) vanishes. Further, the first
line in the argument of the supremum equals minus the relative en-
tropy (see (2.94)) S

(
Λ(n) , Λ̃(n)

)
of the two probability distributions

2They are therefore left pointwise invariant by the modular automorphism of ω.
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Λ(n) =
{
λ

(n)

i(n)

}

i(n)∈I(n)
, respectively Λ̃(n) :=

{∏n
j=1 λ

j
ij

}

i(n)∈I(n)
on the

strings set of strings i(n). Since the relative entropy is non-negative, the
upper bound to the n-CPU map entropies follows from Lemma 6.3.1.

2. In order to show (8.11), let ω =
∑

i(n)∈I(n) λ
(n)

i(n)ωi(n) be an ε-optimal
decomposition such that, as in (8.8),

Hω (γ1, γ2, . . . , γn) ≤ H
{γj}n

j=1
ω

({
λ

(n)

i(n) , ωi(n)

}

i(n)∈I(n)

)
+ n ε .

Since H
{γπ(j)}n

j=1
ω

({
λ

(n)

π(i(n))
, ωπ(i(n))

}

i(n)∈I(n)

)
, where π(i(n)) denotes the

string iπ(1)iπ(2) · · · iπ(n), equals H
{γj}n

j=1
ω

({
λ

(n)

i(n) , ωi(n)

}

i(n)∈I(n)

)
, it fol-

lows that

Hω (γ1, γ2, . . . , γn) ≤ H
{γπ(j)}n

j=1
ω

({
λ

(n)

π(i(n))
, ωπ(i(n))

}

i(n)∈I(n)

)
+ n ε

≤ Hω

(
γπ(1), γπ(2), . . . , γπ(n)

)
+ n ε .

Equality follows from the arbitrariness of ε > 0 by exchange of the sets
{γj}n

j=1 and {γπ(j)}n
j=1.

3. In view of (8.11), to prove (8.12) we show that Hω (γ1, γ2, . . . , γn) does
not change if the argument γn appears twice. Consider an ε-optimal de-
composition for the right hand side of (8.12) and, according to (8.5), the
corresponding positive decomposition of unity in the commutant π(A)′,
{Yi(n)}i(n)∈I(n) . Then, construct a new decomposition

ω =
∑

j(n+1)∈J(n+1)

λ̃
(n+1)

j(n+1) ω̃j(n+1)

based on a decomposition of unit consisting of π(A)′ � Ỹj(n+1) := Yi(n)1l,
where j(n+1) := i(n)jn+1, i(n) ∈ I(n) and jn+1 ∈ Jn+1 = {1}. Then,

λ̃
(n+1)

j(n+1) = ω(Ỹj(n+1)) = λ
(n)

i(n) , ω̃k
jk

= ωk
ik

∀ k �= n+ 1 ,

while λ̃n+1
jn+1

= 1 and ω̃n+1
jn+1

= ω. Therefore,

Hω (γ1, γ2, . . . , γn) ≤ H
{γj}n

j=1
ω

({
λ

(n)

i(n) , Yi(n)

}

i(n)∈I(n)

)
+ n ε

= H
{γj}n

j=1∪γn

ω

({
λ̃

(n+1)

j(n+1) , Ỹj(n+1)

}

j(n+1)∈J(n+1)

)
+ n ε

≤ Hω (γ1, γ2, . . . , γn, γn) + n ε .

In order to invert this inequality, let

ω =
∑

i(n+1)∈I(n+1)

λ
(n+1)

i(n+1) ωi(n+1)
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be an ε-optimal decomposition for the left hand side of (8.12) and consider

ω =
∑

j(n)∈J(n)

λ̃
(n)

j(n) ω̃j(n) ,

where j(n) = j1j2 · · · jn with jk = ik for 1 ≤ k ≤ n− 1, while jn ∈ Jn :=
In×In+1 enumerates the pairs (inin+1) so that J (n) = I1×· · · In−1×Jn,
λ̃

(n)

j(n) = λ
(n)

i(n) , ω̃j(n) = ωi(n) . If 1 ≤ k ≤ n − 1, it also turns out that

λ̃k
ik

= λk
ik

and ω̃k
jk

= ωk
ik

, while

λ̃n
jn

=
∑

i(n+1)
in,in+1 fixed

λ
(n+1)

i(n+1) , ω̃n
jn

=
1

λ̃n
jn

∑

i(n+1)
in,in+1 fixed

λ
(n+1)

i(n+1)ωi(n+1) .

Then, Λ̃(n) :=
{
λ̃

(n)

j(n)

}

j(n)∈J(n)
= Λ(n+1), and Λ̃k :=

{
λk

ik

}
ik∈Ik

= Λk for

1 ≤ k ≤ n− 1, whereas Λ̃n :=
{
λ̃n

jn

}
. Finally, one can estimate

Hω (γ1, γ2, . . . , γn−1, γn) ≥ H
{γi}n

i=1
ω

({
λ̃

(n)

j(n) , ω̃j(n)

}

j(n)∈J(n)

)

= H(Λ̃(n)) −
n−1∑

j=1

H(Λ̃j) +
n−1∑

j=1

∑

ij∈Ij

λ̃j
ij
S
(
ω̃j

ij
◦ γj , ω ◦ γj

)

−H(Λ̃n) +
∑

jn∈Jn

λ̃jn
S
(
ω̃n

jn
◦ γn , ω ◦ γn

)
. (∗)

From (2.88) it follows that H(Λ̃n) ≤ H(Λn) + H(Λn+1). On the other
hand, with jn = (in, in+1),

ωn
in

=
1
λn

in

∑

in+1

λ̃n
jn
ω̃n

jn
, ωn+1

in+1
=

1
λn+1

in+1

∑

in

λ̃n
jn
ω̃n

jn

and (6.31) imply

∑

jn∈Jn

λ̃n
jn
S
(
ω̃n

jn
◦ γn , ω ◦ γn

)
≥

n+1∑

k=n

∑

ik∈Ik

λk
ik
S
(
ωk

ik
◦ γk , ω ◦ γk

)
.

Together with (∗) this yields

Hω (γ1, γ2, . . . , γn−1, γn) ≥ H
{γj}n

j=1∪γn

ω

({
λ

(n+1)

i(n+1) , ωi(n+1)

}

i(n+1)∈I(n+1)

)

≥ Hω (γ1, γ2, . . . , γn, γn) − n ε .

4. Property (8.13) is a consequence of ω ◦Θ = ω. In fact, given an ε-optimal
decomposition for the right (left) hand side of (8.13) and the correspond-
ing positive decomposition of unit in the commutant,

{
Y

(n)

i(n)

}

i(n)∈I(n)
,
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then
{
U†

ω Y
(n)

i(n) Uω

}

i(n)∈I(n)
(
{
Uω Y

(n)

i(n) U
†
ω

}

i(n)∈I(n)
), where Uω is the uni-

tary GNS implementation of Θ, provides a decomposition for the left
(right) side.

5. In order to prove subadditivity, let ω =
∑

∈(n) λ
(n)

i(n)ωi(n) be an ε-optimal
decomposition for Hω (γ1, γ2, . . . , γn) and construct from it the following
two decompositions:

ω =
∑

j(p)

λ1
j(p)ω

1
j(p) , ω =

∑

k(n−p+1)

λ2
k(n−p+1)ω

2
k(n−p+1)

where j(p) = i1i2 · · · ip ∈ I(p) := I1 × I2 × · · · × Ip, while the indexes
k(n−p+1) = ip+1ip+2 · · · in ∈ I(n−p+1) := Ip+1 × Ip+2 × · · · × In and

ω1
j(p) :=

∑

k(n−p+1)∈I(n−p+1)

λ
(n)

i(n)

λ1
j(p)

ωi(n) , λ1
j(p) :=

∑

k(n−p+1)∈I(n−p+1)

λ
(n)

i(n)

ω2
k(n−p+1) :=

∑

j(p)∈I(p)

λ
(n)

i(n)

λ2
k(n−p+1)

ωi(n) , λ2
k(n−p+1) :=

∑

j(p)∈I(p)

λ
(n)

i(n) .

Since Λ1 :=
{
λ1

j(p)

}

j(p)∈I(p)
and Λ2 :=

{
λ2

k(n−p+1)

}

k(n−p+1)∈I(n−p+1) are

marginal distributions of Λ(n) =
{
λ

(n)

i(n)∈I(n)

}
, (2.88) yields

H(Λ(n)) ≤ H(Λ1) +H(Λ2) whence
Hω (γ1, γ2, . . . , γp) + Hω (γp+1, γp+2, . . . , γn) ≥

≥ H
{γj}p

j=1
ω

({
λ1

j(p) , ω
1
j(p)

}

j(p)∈I(p)

)
+

+H
{γj}n

j=p+1
ω

({
λ2

k(n−p+1) , ω
2
k(n−p+1)

}
k(n−p+1)∈I(n−p+1)

)

≥ H
{γj}n

j=1
ω

({
λ

(n)

i(n) , ωi(n)

}

i(n)∈I(n)

)
≥ Hω (γ1, γ2, . . . , γn) − n ε .

6. Property (8.15) follows from the monotonicity of the relative entropy
under CPU maps.

7. Finally, property (8.16) is a consequence of (8.15) and of the fact that,
given an ε-optimal decomposition for the left hand side, one may con-
struct a decomposition for the right hand side as in the first part of point
3 above.

�

Proposition 8.1.4. [216] Given a C∗ algebra A equipped with a state ω,
let {γj}n

j=1, γ
′
n be CPU maps from finite-dimensional C∗-algebras {M j}n

j=1

into A, then
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Hω (γ1, γ2, . . . , γn−1, γn) − Hω (γ1, γ2, . . . , γn−1, γ
′
n) ≤ Hω (γn | γ′n) (8.20)

Hω (γ1 | γ2) := sup
ω=
∑

i∈I λiωi

Hγ1,γ2
ω ({λi, ωi}i∈I) (8.21)

Hγ1,γ2
ω ({λi, ωi}i∈I) :=

∑

i∈I

λi

(
S (ωi ◦ γ1 , ω ◦ γ1) −

−S (ωi ◦ γ2 , ω ◦ γ2)
)
. (8.22)

Proof: Let ω =
∑

i(n)∈I(n) λ
(n)

i(n)ωi(n) be an ε-optimal decomposition such
that, as in (8.8),

Hω (γ1, γ2, . . . , γn) ≤ H
{γj}n

j=1
ω

({
λ

(n)

i(n) , ωi(n)

}

i(n)∈I(n)

)
+ n ε ,

then, according to (8.7),

Hω (γ1, γ2, . . . , γn−1, γn) − Hω (γ1, γ2, . . . , γn−1, γ
′
n) ≤

≤ H
{γj}n

j=1
ω

({
λ

(n)

i(n) , ωi(n)

}

i(n)∈I(n)

)
−

−H
{γj}n−1

j=1 ∪γ′
n

ω

({
λ

(n)

i(n) , ωi(n)

}

i(n)∈I(n)

)
+ n ε

≤
∑

in∈In

λn
in

(
S
(
ωn

in
◦ γ1 , ω ◦ γ1

)
− S

(
ωn

in
◦ γ2 , ω ◦ γ2

))
+ nε .

Since n is fixed and ε is arbitrary the result follows. �

Example 8.1.2. If A is an Abelian C∗ algebra and γ1,2 are the natural
embeddings of two finite-dimensional Abelian C∗ algebras A1,2 ⊆ A, then
Hω (A1 | A2) reduces to the conditional entropy of the random variables
A1,2 associated with the minimal projections {â1i}i∈I1 , I1 = 1, 2, . . . , d1 and
{â2j}j∈I2 , I2 = 2, . . . , d2, of A1,2. These projections give rise to probability
distributions ω |̀A1 = {ω(â1i}d1

i=1 and ω |̀A2 = {ω(â1j}d2
j=1 and can be consid-

ered as the outcomes of A1,2. Accordingly, the set of expectations ω(â1iâ2j)
corresponds to the probability distribution of the joined random variable
A1∨A2. Consequently, by using the minimal projections of A1 to decompose

ω =
∑

i∈I1

ω(â1i)ωi , ωi(a) :=
ω(âi a)
ω(âi)

∀a ∈ A ,

it turns out that ωi |̀A1 = {ωi(â1k) = δik}d1
k=1 and ωi |̀A2 =

{
ω(â1iâ2j)
ω(â1i)

}d2

j=1

.

Then, by means of (8.22) and of (2.91) one gets

HA1,A2
ω ({ω(â1i), ωi}i∈I1) = H(A1) −H(A2) −H(A1) +H(A1 ∨A2)

= H(A1 ∨A2) ,
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where H(A1,2) := S (ω |̀A1,2) are the Shannon entropies of the random vari-
ables A1,2. We now show that no decomposition can do better; indeed, in the
Abelian case at hands, decompositions of ω correspond to partitions of unit
with positive elements {ĉk}k∈K in A such that

ω =
∑

k∈K

ω(ĉk)ωk , ωk(a) =
ω(ĉk a)
ω(ĉk)

∀a ∈ A .

Finally, Corollary 2.4.1 and strong subadditivity (see Proposition 2.4.1) yield

HA1,A2
ω ({ω(ĉk), ωk}k∈K) = H(A1) −H(A1 ∨ C) −H(A2) +H(A2 ∨ C)

≤ H(A1) −H(A1 ∨ C) −H(A2) +H(A1 ∨A2 ∨ C)
≤ H(A1 ∨A2) −H(A2) = H(A1|A2) ,

where C, A1 ∨C and A2 ∨C are random variables with probability distribu-
tions {ω(ĉk)}k∈K , {ω(ĉk â1i)}i∈I1,k∈K and {ω(ĉk â2j)}j∈I2,k∈K .

CNT Entropy Rate and CNT Entropy

Apart from the relation (8.13), all other properties in Proposition 8.1.3 regard
n-tuples of arbitrary maps γ without reference to the dynamics. Since the
purpose of the CNT entropy is to quantify the information production in
a given quantum dynamical triplet (A, Θ, ω), we set γj := Θj ◦ γ, where
j = 0, 1, . . . , n − 1 and γ : M �→ A is a CPU map from a finite-dimensional
C∗ algebra into A. The first step is to ensure the existence of the rate

lim
n→∞

1
n

Hω

(
γ,Θ ◦ γ, . . . , Θn−1 ◦ γ

)
.

This limit exists since (8.14) together with (8.13) yield

Hω

(
γ,Θ ◦ γ, . . . , Θn−1 ◦ γ

)
≤ Hω

(
γ,Θ ◦ γ, . . . , Θp−1 ◦ γ

)
+

+ Hω

(
Θp ◦ γ,Θp+1 ◦ γ, . . . , Θn−1 ◦ γ

)

= Hω

(
γ,Θ ◦ γ, . . . , Θp−1 ◦ γ

)
+ Hω

(
γ,Θ ◦ γ, . . . , Θn−p−1 ◦ γ

)
.

Thus, one can apply the same argument already used to show the existence
of the classical entropy rate (3.2) or of the mean von Neumann entropy in
quantum spin chains: actually,

lim
n→∞

1
n

Hω

(
γ,Θ ◦ γ, . . . , Θn−1 ◦ γ

)
= inf

n

1
n

Hω

(
γ,Θ ◦ γ, . . . , Θn−1 ◦ γ

)
.

(8.23)



8.1 CNT Entropy: Decompositions of States 427

Definition 8.1.2. Given a quantum dynamical triplet (A, Θ, ω), where A is
a C∗ or a von Neumann algebra and a CPU map γ : M �→ A from a finite-
dimensional C∗ algebra M into A, the CNT entropy rate of γ is

hCNT
ω (Θ, γ) := lim

n→∞

1
n

Hω

(
γ,Θ ◦ γ, . . . , Θn−1 ◦ γ

)
, (8.24)

while the CNT entropy of (A, Θ, ω) is defined by

hCNT
ω (Θ) = sup

γ
hCNT

ω (Θ, γ) . (8.25)

There are a few properties of the CNT entropy that easily follows from
the above construction.

Proposition 8.1.5. The following bounds hold for the CNT entropy rate of
a quantum dynamical triplet (A, Θ, ω); given any CPU map γ from a finite
dimensional C∗ algebra M into A, one has:

0 ≤ hCNT
ω (Θ, γ) ≤ Hω (γ) (8.26)

1
n

hCNT
ω (Θn, γ) ≤ hCNT

ω (Θ, γ) ≤ hCNT
ω (Θn, γ) . (8.27)

Proof: The bounds in (8.26) come from the properties (8.10) and (8.13)
of the n-CPU map entropies. The upper bound in (8.27) follows from sub-
additivity (8.14) together with property (8.13); indeed, since the limit (8.24)
exists, one can fix N � n > 0 and compute

hCNT
ω (Θ, γ) = lim

k→+∞

1
kn

Hω

(
γ,Θ ◦ γ, . . . , Θnk−1 ◦ γ

)

≤ 1
n

lim
k→+∞

1
k

n−1∑

j=0

Hω

(
Θj ◦ γ,Θn+j ◦ γ, . . . , Θn(k−1)+j ◦ γ

)

= lim
k→+∞

1
k

Hω

(
γ,Θn ◦ γ, . . . , Θn(k−1) ◦ γ

)
= hCNT

ω (Θn, γ) .

For the lower bound, first notice that n-CPU entropies remain unchanged by
adding to the maps γj in their arguments any number of CPU maps γ′j from
trivial finite dimensional C∗ algebras {c1lj} 3 into A. Indeed, for any such
CPU map Hω (γ′) = 0, thus by subadditivity,

Hω (γ1, γ2, . . . , γn, γ
′
1, . . . , γ

′
m) ≤ Hω (γ1, γ2, . . . , γn) .

However, any optimal decomposition for the right hand side of the previous
inequality can always be used to decompose ω in the left hand side, too. This

3That is algebras consisting only of multiples of an identity operator 1lj
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decomposition can then be used to invert the previous inequality; then, one
expands Θjn ◦ γ into the set

Γ (j) :=
{
Θjn ◦ γ , Θjn+1 ◦ γ′ , . . . Θjn+n−1 ◦ γ′

}
,

where γ = γ ◦ γ′ and γ′ embeds the trivial subalgebra of M into M . Us-
ing (8.15), one finally gets

1
k

Hω

(
γ,Θn ◦ γ, . . . , Θn(k−1) ◦ γ

)
=

1
k

Hω

(
Γ (0), Γ (1), . . . , Γ (k−1)

)

≤ n
1
kn

Hω

(
γ,Θ ◦ γ, . . . , Θkn−1 ◦ γ

)
,

whence the result follows by taking the limit k → +∞. �
As much as for the KS entropy, one needs a means to avoid computing

the supremum in (8.25). The structure of AF or UHF C∗ algebras or hyper-
finite von Neumann algebras resembles that of classical dynamical systems
admitting a generating partition (see Definition 2.3.5) Indeed, by using the
continuity properties of the n-CPU entropies discussed in Proposition 8.1.2,
one can prove a non-commutative counterpart to the Corollary 3.1.1 of the
Kolmogorov-Sinai theorem 3.1.1.

Proposition 8.1.6. [88] Let (A, Θ, ω) be a C∗ quantum dynamical triple
which admits a sequence of CPU maps τj : M j �→ A and σj : A �→ M j

from finite-dimensional C∗ algebras with identity into A and back such that
limj→+∞ ‖τj ◦ σj [A] −A‖ = 0 for all A ∈ A. Then

hCNT
ω (Θ) = lim

j→+∞
hCNT

ω (Θ, τj) .

Proof: Let γ : M �→ A be any CPU map from a finite-dimensional C∗

algebra M into A; set γj := τj ◦ σj ◦ γ. Then, γj(M) → γ(M) in norm
for all M ∈ M whence ‖γj − γ‖ → 0 when j → +∞ for M is finite-
dimensional. The same is true for the CPU maps Θk ◦ γj and Θk ◦ γ, k ≥ 0.
Since ‖Θk ◦ (γj − γ)‖ω ≤ ‖Θk ◦ (γj − γ)‖, Proposition 8.1.2 yields

1
n

∣
∣
∣Hω

(
γj , Θ ◦ γj , . . . , Θ

n−1 ◦ γj

)
− Hω

(
γ,Θ ◦ γ, . . . , Θn−1 ◦ γ

)∣∣
∣ ≤ ε

for any ε > 0 and j sufficiently large, whence

lim
j→+∞

hCNT
ω (Θ, γj) = hCNT

ω (Θ, γ) .

Now, using the monotonicity property (8.15), it turns out that

hCNT
ω (Θ, γ) = lim inf

j→+∞
hCNT

ω (Θ, γj) ≤ lim inf
j→+∞

hCNT
ω (Θ, τj)

≤ lim sup
j→+∞

hCNT
ω (Θ, τj) ≤ hCNT

ω (Θ) .
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The result thus follows by taking the supremum over γ. �
In case A is an AF or a UHF C∗ algebra, namely the norm completion

of an increasing sequence of finite-dimensional C∗ subalgebras Mni
⊂ A or

matrix algebras Mni
(C) (see Remark 7.1.1), one chooses as CPU maps σj

the corresponding conditional expectations and, as the CPU maps τj , the
natural embeddings ιMnj

: Mnj
�→ A [88, 89, 231, 232].

A similar result as in Proposition 8.1.6 holds for von Neumann quantum
dynamical systems with A a hyperfinite von Neumann algebra (for the proof
see [88, 222]).

Proposition 8.1.7. Let (A, Θ, ω) be a von Neumann dynamical triple, with
A hyperfinite and generated by an increasing sequence of finite-dimensional
von Neumann subalgebras {Mk}k∈N; then,

hCNT
ω (Θ) = lim

k→+∞
hCNT

ω (Θ,Mk) .

Remark 8.1.2. When a quantum dynamical system under has the algebraic
structure as in the above proposition, then the continuity properties of the
CNT entropy allows to turn the lower bound in (8.27) into an equality [88],
namely

hCNT
ω (Θn) = |n|hCNT

ω (Θ) ∀n ∈ Z .

Moreover, this result can be extended to a one-parameter group of automor-
phisms {Θt}t∈R, that is [214, 222]

hCNT
ω (Θt) = |t|hCNT

ω (Θ) ∀t ∈ R ,

where Θ := Θt=1.

8.1.1 CNT Entropy: Quasi-Local Algebras

As seen in Section 7.1, in quantum statistical mechanics one often considers
quasi-local algebras A which are generated (inductive limit) by local algebras
AV , indexed by finite volumes V , that are not finite dimensional. For instance,
this is the case with Bosons in R

3 or with a lattice Z
3 with infinite dimensional

Hilbert spaces at its sites; in such a setting one cannot resort to either of the
preceding two propositions to compute the CNT entropy (8.25).

Nevertheless, a quantum Kolmogorov-Sinai-like theorem holds under the
following physically plausible assumptions [232]; we shall consider dynamical
triples (A, Θ, ω) consisting of

1. a quasi-local C∗-algebra A which is the norm completion of
⋃

V AV where
the local algebras AV associated with finite volumes V ⊂ R

3 share a same
identity and are isomorphic to the von Neumann algebras B(HV ) 4;

4In the following we shall restrict to R
3 for simplicity; the result holds in general

for R
d and Z

d, d ≥ 1 [232].
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2. if V ⊂ V ′, set V ′′ := V ′ \ V , then HV ′ = HV ⊗ HV ′′ , AV ′ = AV ⊗AV ′′ ;
3. the Θ-invariant state ω is locally normal, that is ω |̀AV is a density matrix

ρV ∈ B
+
1 (HV ).

Let ιV denote the embedding of AV into A; as shown in [231, 232], using
the second assumption one can construct a family of CPU conditional expec-
tations σV : A �→ AV such that ‖ιV ◦ σV [A] − A‖ → 0 for all A ∈ A when
V ↑ R

3. Consider a CPU map γ : M �→ A where M is a finite-dimensional
unital C∗ algebra and set γV := ιV ◦ σV ◦ γ. Now, limV ↑R3 ‖γV − γ‖ = 0 for
M is finite dimensional whence Proposition 8.1.6 yields

lim
V ↑R3

hCNT
ω (Θ, γV ) = hCNT

ω (Θ, γ) .

From (8.25) and the previous equality one derives

hCNT
ω (Θ) = sup

γ
lim

V ↑R3
hCNT

ω (Θ, γV ) ≤ lim sup
V ↑R3

sup
γ

hCNT
ω (Θ, γV )

≤ lim sup
V ↑R3

sup
λV :M �→AV

hCNT
ω (Θ, ιV ◦ λV ) ≤ hCNT

ω (Θ) ,

where the second inequality holds for not all CPU maps λV : M �→ AV are
of the form of γV . Thus,

hCNT
ω (Θ) = lim

V ↑R3
sup

γV :M �→AV

hCNT
ω (Θ, γV ) . (8.28)

Fix a volume V ⊂ R
3 with local density matrix ρV =

∑+∞
i=1 r

i
V | ri

V 〉〈 ri
V |

where the eigenvalues ri
V are repeated according to their multiplicities and

decreasingly ordered. Let P (k)
V :=

∑k
i=1 | ri

V 〉〈 ri
V |, Q(k)

V := 1l − P
(k)
V and

A(k)
V := P

(k)
V AV P

(k)
V ⊕ CQ

(k)
V .

The latter is a finite von Neumann subalgebra of AV ; consider the map

σ
(k)
V [A] := P

(k)
V AP

(k)
V +

ω(Q(k)
V AQ

(k)
V )

ω(Q(k)
V )

Q
(k)
V ∀ A ∈ AV .

It linearly maps AV into A(k)
V , is unital and positive; further, if A ∈ AV and

A(k)
V � B = P

(k)
V Z P

(k)
V + cB Q

(k)
V , with cB ∈ C and Z ∈ AV ,

σ
(k)
V [AB] = P

(k)
V AP

(k)
V Z P

(k)
V + cB

ω(Q(k)
V AQ(k))

ω(Q(k)
V )

Q
(k)
V = σ

(k)
V [A]B .

Therefore, according to Definition 5.2.3, σ(k)
V : AV �→ A(k)

V is a conditional
expectation; then, for any CPU map γV : M �→ AV set τV := ιV ◦ γV and
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τ (k) := ιV ◦ ι(k)
V ◦ σ(k)

V ◦ γ, where ι(k)
V is the embedding of A(k)

V into AV . We
now show that, for any γV : M �→ AV ,

hCNT
ω (Θ, τV ) = lim

k→+∞
hCNT

ω

(
Θ, τ

(k)
V

)
. (8.29)

This lead to the result that, in order to compute the CNT entropy, one
must essentially compute the CNT entropy rates of the finite-dimensional
subalgebras projected out by the spectral projections of local states.

Theorem 8.1.1. [232] Under the assumptions 1 − 3 on (A, Θ, ω),

hCNT
ω (Θ) = lim

V ↑R3
lim

k→+∞
hCNT

ω

(
Θ,A(k)

)
.

Proof: Writing hCNT
ω

(
Θ,A(k)

V

)
= hCNT

ω

(
Θ, ιV ◦ ι(k)

V

)
and using (8.29)

and (8.15) one gets

lim
k→+∞

hCNT
ω

(
Θ,A(k)

V

)
≤ sup

γV :M �→AV

hCNT
ω

⎛

⎝Θ, ιV ◦ γV︸ ︷︷ ︸
τV

⎞

⎠

= sup
γV :M �→AV

lim
k→+∞

hCNT
ω

⎛

⎜
⎜
⎝Θ, ιV ◦ ι(k)

V ◦ σ(k)
V ◦ γV

︸ ︷︷ ︸
τ
(k)
V

⎞

⎟
⎟
⎠

≤ lim
n→+∞

sup
γV :M �→AV

hCNT
ω

(
Θ, τ

(n)
V

)

≤ lim
k→+∞

hCNT
ω

(
Θ, ιV ◦ ι(k)

V

)
= lim

k→+∞
hCNT

ω

(
Θ,A(k)

V

)
.

Therefore, the result follows from (8.28) and the above estimates which yield

sup
γV :M �→AV

hCNT
ω (Θ, ιV ◦ γV ) = lim

k→+∞
hCNT

ω

(
Θ,A(k)

V

)
.

�
Proof of (8.29) We argue as in the proof of Proposition 8.1.2; we thus set
γj := Θj ◦ τV , γ′j := Θj ◦ τ (k)

V and estimate the norms
∥
∥
∥
∥
∥

ω(X ′
iΘ

j ◦ τV [M ])
ω(X ′

i)
− ω(X ′

iΘ
j ◦ τ (k)

V [M ])
ω(X ′

i)

∥
∥
∥
∥
∥
, (∗)

where a short hand notation for (8.5) has been used and the X ′
i are positive

elements of the commutant πω(A)′ such that
∑

i X
′
i = 1l.
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By writing AV � X = (P (n)
V +Q

(n)
V )X(P (n)

V +Q
(n)
V ), and setting νi(M) :=

ω(X ′
iΘ

j ◦ τV [M ]) and ν
(k)
i (M) := ω(X ′

iΘ
j ◦ τ (k)

V [M ]), one finds

νi(M) − ν
(k)
i (M) = ω(Θ−j [X ′

i]Q
(k)
V γV [M ]Q(k)

V )
︸ ︷︷ ︸

A

+ω(Θ−j [X ′
i]P

(k)
V γV [M ]Q(k)

V )
︸ ︷︷ ︸

B

+ ω(Θ−j [X ′
i]Q

(k)
V γV [M ]P (k)

V )
︸ ︷︷ ︸

C

−ω(Θ−j [X ′
i]Q

(k)
V )

ω(Q(k)
V γV [M ]Q(k)

V )

ω(Q(k)
V )

︸ ︷︷ ︸
D

.

Since 0 ≤ Θ−j [X ′
i] =: Z ∈ πω(A)′ commutes with the projections Y =

P
(k)
V , Q

(k)
V , one can write ZY =

√
ZY

√
Z =

√
ZY

√
ZY ; thus, using the

Cauchy-Schwartz inequality (5.49), one estimates

|A|2 ≤ ω(ZQ(k)
V )ω(ZQ(k)

V γV [M†]Q(k)
V γV [M ]Q(k)

V )

≤ ω(X ′
i)ω(ZQ(k)

V )‖γV ‖2 ‖M‖2

|B|2 ≤ ω(ZP (k)
V )ω(ZQ(k)

V γV [M†]P (k)
V γV [M ]Q(k)

V )

≤ ω(X ′
i)ω(ZQ(k)

V )‖γV ‖2 ‖M‖2

|C|2 ≤ ω(ZP (k)
V )ω(ZQ(k)

V γV [M ]P (k)
V γV [M†]Q(k)

V )

≤ ω(X ′
i)ω(ZP (k)

V )‖γV ‖2 ‖M‖2

|D|2 ≤ ω(X ′
i)ω(ZQ(n)

V ) ‖γV ‖2 ‖M‖2 ,

where (5.33) and Y ≤ 1l =⇒ X† Y X ≤ X†X have been repeatedly used;
further, in the expression C, Z has been transferred to the right side of ω(·)
before applying (5.49).

Since
∑

i X
′
i = 1l, these estimates obtain

∑

i

1
ω(X ′

i)
‖νi − ν

(k)
i ‖2 ≤ 16 ‖γV ‖

∑

i

ω(Θ−j [X ′
i]Q

(k)
V ) = 16 ‖γV ‖2

∑

j=k+1

rj
V

≤ ε

for and ε > 0 and k sufficiently large. Notice that the summands are ω(X ′
i)

times the squares of the norms (∗); we can now distinguish between the set
I of those i’s such that the norms (∗) ≤ ε1/3 and the rest Ic. Then,

ε ≥
∑

i∈Ic

ω(X ′
i)

∥
∥
∥
∥
∥

νi − ν
(k)
i

ω(X ′
i)

∥
∥
∥
∥
∥

2

≥ ε2/3
∑

i∈Ic

ω(X ′
i)

implies that the total weight of Ic is smaller than ε1/3. As in the proof of
Proposition 8.1.2, this can be used to show that, for any η > 0,
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∣
∣
∣Hω

(
τV , Θ ◦ τV , . . . , Θn−1 ◦ τV

)
− Hω

(
τ

(k)
V , Θ ◦ τ (k)

V , . . . , Θn−1 ◦ τ (k)
V

)∣
∣
∣ ≤ nη

for k sufficiently large. �

8.1.2 CNT Entropy: Stationary Couplings

In this section we reconsider the expressions (8.21) and (8.22) in the following
algebraic setting:

– a von Neumann algebra A with a normal state ω;
– an Abelian von Neumann algebra B with a normal state ωμ

5;
– the tensor product von Neumann algebra A⊗B equipped with a normal

state ω̃ such that its marginal states are ω̃ |̀A = ω and ω̃ |̀B = ωμ.

Let A ⊆ A and B ⊆ B be finite-dimensional C∗ subalgebras; as CPU
maps γ1, respectively γ2 in (8.21) we shall take the embeddings γi = ιB,
respectively γ2 = ιA of B, respectively A into A ⊗ B. We shall focus upon
the quantity Hω̃ (B | A): one has the following result [210].

Proposition 8.1.8. Let B be the random variable corresponding to the sub-
algebra B and Hμ(B) denote the Shannon entropy corresponding to the von
Neumann entropy of the state ωμ restricted to B. Then,

Hω̃ (B | A) = Hμ(B) − S (ω ⊗ ωμ |̀A ⊗ B , ω̃ |̀A ⊗ B) . (8.30)

Proof: Given the minimal projections {b̂j}j∈IB
, IB = {1, 2, . . . , d} of

the finite dimensional Abelian algebra B ⊆ B and a convex decomposi-
tion ω̃ =

∑
i∈I λiω̃i, one can construct a finer decomposition of the form

ω̃ =
∑

i∈I;j∈IB

λiμijω̃ij , by further decomposing ω̃i =
∑

j∈IB
μijω̃ij , where the

states ω̃ij on A⊗ B and their weights μij are defined by

ω̃ij(a⊗ b) :=
ωi(a⊗ b̂jb)

ω̃i(̂bj)
, μij := ω̃i(̂bj) (∗)

for all a ∈ A and b ∈ B. Since for all i ∈ I

ω̃ij (̂bk) =
ω̃i(̂bj b̂k)

ω̃i(̂bj)
= δjk ,

the restrictions ω̃ij |̀B are probability distributions Λij = {δjk}k∈IB
with

zero Shannon entropy. Then, using (8.22) and (6.23), one computes

5According to Section 5.3.2, the state ωμ corresponds to integration with respect
to a suitable measure μ and measure space X .
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HB,A
ω̃ ({λiμij , ω̃ij}i∈I,j∈IB

) = Hμ(B) − S (ω |̀A)

+
∑

j∈IB

λiμij S (ω̃ij |̀A) (∗∗)

HB,A
ω̃ ({λi, ω̃i}i∈I) = Hμ(B) − S (ω |̀A)

+
∑

i∈I

λi

(
S (ω̃i |̀A) − S (ω̃i |̀B)

)
.

It thus turns out that

HB,A
ω̃ ({λiμij , ω̃ij}i∈I,j∈IB

) − HB,A
ω̃ ({λi, ω̃i}i∈I) = −

∑

i∈I;j∈IB

λiμij logμij

−
∑

i∈I

λiS (ω̃i |̀A) +
∑

i∈I;j∈IB

λiμijS (ω̃ij |̀A) ≥ 0 .

Indeed, since μijω̃ij ≤ ω̃i, the monotonicity of f(x) = log x as an operator
function (see Example 5.2.3.9) gives

∑

j∈IB

μijω̃ij |̀A log ω̃ij |̀A =
∑

j∈IB

μijω̃ij |̀A
(
log
(
μij ω̃ij |̀A

)
− logμij

)

≤
∑

j∈IB

μijω̃ij |̀A
(
log ω̃i |̀A − log μij

)

= ω̃i |̀A log ω̃i |̀A −
∑

j∈IB

μij ω̃ij |̀A logμij .

Therefore, after multiplying by the weights λi and summing over i ∈ I, by
taking the trace and considering that the marginal state ωij |̀A has trace 1,
one finally gets

−
∑

i∈I;j∈IB

λiμijS (ω̃ij |̀A) ≤ −
∑

i∈I

λiS (ω̃i |̀A) −
∑

i∈I;j∈IB

λiμij logμij .

One thus concludes that in order to compute Hω̃ (B | A) one can start
with decompositions of ω̃ in terms of states of the form (∗). Then, consider
the decomposition ω̃ =

∑
j∈IB

νjω̃j , where

ω̃j(a⊗ b) :=
ω̃(a⊗ b̂jb)

ω̃(̂bj)
, νj := ω̃(̂bj) a ∈ A , b ∈ B .

Since S (ω̃j |̀B) = 0, this decomposition contributes with

HB,A
ω̃ ({λj , ω̃j}j∈IB

) = Hμ(B) − S (ω |̀A) +
∑

j∈IB

νjS (ω̃j |̀A) (∗ ∗ ∗) .

Further, notice that the decomposition appearing in equation (∗∗) is such
that
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∑

i∈I

λiμij = νj = ωμ(̂bj) ,
∑

i∈I

λiμij

νj
ω̃ij = ω̃j .

Therefore, by the concavity of the von Neumann entropy (see (5.156))
∑

j∈IB

λiμij S (ω̃ij |̀A) ≤
∑

j∈IB

νj S (ω̃j |̀A) ,

whence decompositions of the form (∗ ∗ ∗) are optimal. The proof is finally
completed by calculating

S (ω ⊗ ωμ |̀A ⊗ B , ω̃ |̀A ⊗ B) =

Tr

(

ω |̀A ⊗ ωμ |̀B
(
logω |̀A ⊗ ωμ |̀B − log ω̃ |̀A ⊗ B

)
)

=

= −Hμ(B) − S (ω |̀A) +
∑

j∈IB

νj Tr
(
ω̃j |̀A log

(
νj ω̃j |̀A

))
=

=
∑

j∈IB

νj S (ω̃j |̀A) − S (ω |̀A) .

�
The previous considerations are useful in a different approach to the CNT

entropy which was developed in [264] (see also [222]). We shall refer to the
formulation used in [13]

Definition 8.1.3. Let (A, Θ, ω) be a dynamical triple with A a hyperfinite
von Neumann algebra and ω a normal Θ-invariant state; a stationary cou-
pling to a commutative dynamical triple (B, θ, ωμ) where B is an Abelian von
Neumann algebra, is any triplet of the form (A ⊗ B, Θ ⊗ θ, ω̃) where ω̃ is a
Θ ⊗ θ-invariant state such that ω̃ |̀A = ω and ω̃ |̀B = ωμ.

The quantity Hω̃ (B | A) and its expression (8.30) can be generalized as
follows [210]. For any finite dimensional subalgebra B ⊂ B let

Hω̃ (B | A) := sup
ω̃=λiω̃i

∑

i

λi

(
S (ω̃i |̀B , ω̃ |̀B) − S (ω̃i |̀A , ω̃ |̀A)

)
(8.31)

= S (ωμ |̀B) − S (ω̃ |̀A ⊗ B , ω ⊗ ωμ |̀A ⊗ B) . (8.32)

It then turns out [264, 222, 210] that

hCNT
ω (Θ) = sup

B,B,θ,ω̃

{
hKS

ωμ
(θ,B) − Hω̃ (B | A)

}
. (8.33)

where the supremum is computed over all possible stationary couplings and
all finite-dimensional subalgebras B ⊂ B. Notice also that in the expression
of the KS entropy, in according with Section 5.3.2, we have kept the algebraic
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notation whereby B stands for a partition of a phase-space X , the automor-
phism θ for a measurable, invertible dynamical map T : X �→ X and the
state ωμ for a T -invariant measure μ.

Remark 8.1.3. The relative entropy as it has been used so far has always
involved density matrices or restrictions of states to finite dimensional subal-
gebra, whereas in (8.31), because of the presence of the generic von Neumann
algebra A, it apparently works in a more general context. It turns out that the
expression (6.23) for the relative entropy has a generalization to any unital
C∗ algebra A and to generic positive, linear functionals (not even normalized)
ω1,2 on it [88, 222, 300]:

S (ω1 , ω2) = sup
∫ +∞

0

dt
t

[ω1(1l)
1 + t

− ω1(y(t)† y(t)) −
1
t
ω2(x(t)x(t)†)

]
,

where y(t) = 1l − x(t) and t �→ x(t) ∈ A is any step function with values in
A vanishing in a neighborhood of t = 0.

8.1.3 CNT entropy: Applications

We start the presentation of various concrete applications of the CNT entropy
by showing that in a commutative context it reduces to the KS entropy.

Consider a classical dynamical system (X , T, μ) that possesses a generat-
ing partition P = {Pi}p

i=1 (see Definition 2.3.5) and its corresponding von
Neumann triplet (M := L

∞
μ (X ), ΘT , ωμ) (compare Definition 2.2.4). In this

framework, the partition P is identified with the finite-dimensional subalge-
bra MP generated by the characteristic functions χPi

of the atoms Pi of
P. Furthermore, the partitions Pk

−k :=
∨k

j=−k T
−j(P) (which generate the

Σ-algebra of X when k → +∞) correspond to the Abelian finite-dimensional
subalgebras Mk :=

∨k
j=−k Θ

j
T (MP) generated by the characteristic func-

tions of the atoms of Pk
−k (these subalgebras generate M). We can thus

apply the argument of Example 8.1.1.2 to deduce that

Hωμ

(
Mk, ΘT (Mk, . . . , Θ

n−1
T (Mk)

)
= S

(
ωμ |̀M (n)

k

)
= S

(
ωμ |̀M (n+2k−1)

)

= Hμ(P(n+2k−1)) ,

where we used that ωμ is ΘT -invariant and that

M
(n)
k =

n−1∨

	=0

Θj
T (Mk) =

n+k−1∨

	=−k

Θj
T (M) = Θ−k

T

(n+2k−1∨

j=0

Θj
T (M)

)
,

together with (3.1). Thus, from Theorem 3.1.1,

hCNT
ωμ

(Θ,Mk) = hKS
μ (T,P) = hKS

μ (T ) .

Then, hCNT
ω (ΘT ) = hKS

μ (T ) follows from Proposition 8.1.7.
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CNT entropy: Finite Quantum Systems

For finite-dimensional quantum dynamical systems, the C∗ algebra A is a
matrix algebra Md(C) and the states density matrices ρ ∈ Md(C) with von
Neumann entropy always bounded from above by log d. All these systems
cannot support a non-zero CNT entropy rate, in agreement with the fact
that their dynamics, given by a unitary U ∈ Md(C), is quasi-periodic and
shows the behavior discussed in Remark 7.1.7, at the most. We shall prove
this by considering the slightly more general scenario studied in [39].

Proposition 8.1.9. Let (A, Θσ, ω) be a quantum dynamical system with
A = B(H), ω corresponding to a density matrix ρ ∈ B

+
1 (H) with finite von

Neumann entropy S (ρ) and invariant under the automorphism Θ such that

B(H) � X �→ Θ[X] = ei H X e−i H ,

where the Hamiltonian H has a discrete spectrum. Then, hCNT
ω (Θ) = 0.

Proof: Let P (n) be the projector onto the subspace of H spanned by the
eigenvectors relative to the first n decreasingly ordered eigenvalues of H and
Q(n) := 1l − P (n). Then A is generated as a von Neumann algebra by the
increasing sequence of subalgebras A(n) := P (n) AP (n) ⊕ CQ(n). These sub-
algebras are Θ-invariant; also, they diagonalize ρ for it commutes with H
since ω ◦ Θ = ω. Then, from Proposition 8.1.7, (8.12) and (8.10) it follows
that

hCNT
ω (Θ) = lim

n→+∞
hCNT

ω

(
Θ,A(n)

)
= lim

n→+∞

1
n

Hω

(
A(n),A(n), . . . ,A(n)

)

= lim
n→+∞

1
n

Hω

(
A(n)

)
≤ lim

n→+∞

1
n
S
(
ρ |̀A(n)

)
= 0 .

�

CNT Entropy: Quantum Spin Chains

The algebraic structure of a quantum spin chain (AZ, Θσ, ω) is such that we
can apply Proposition 8.1.6. Let then {A[−	,	]}	∈N be an increasing sequence
of finite-dimensional local subalgebras that generate AZ, then

hCNT
ω (Θσ) = lim

	→∞
hCNT

ω

(
Θσ,A[−	,	]

)
= lim

	→∞
hCNT

ω

(
Θσ,A[1,	]

)
,

where the second equality follows from the translation invariance of ω and
the property (8.13). Further, since Θj

σ[A[1,	]] = A[1+j,	+j] ⊂ A[1,	+n−1], for
0 ≤ j ≤ n− 1, using (8.15), (8.12) and (8.10) one derives

Hω

(
A[1,	], Θσ(A[1,	]), . . . , Θn−1

σ (A[1,	])
)
≤ Hω

(
A[1,	+n−1], . . . ,A[1,	+n−1]

)

= Hω

(
A[1,	+n−1]

)
≤ S

(
ρ[1,	+n−1]

)
,
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where ρ[1,	+n−1] is the local density matrix corresponding to the state ω
restricted to the local subalgebra A[1,	+n−1]. By using (8.24) and Exam-
ple 7.2.1.1 one thus concludes with

Proposition 8.1.10. hCNT
ω (Θσ) ≤ s(ω) for any (AZ, Θσ, ω).

In order to show whether and when hCNT
ω (Θσ) ≥ s(ω), we use the fol-

lowing strategy. Consider a local subalgebra A[1,	] with fixed � ≥ 1 and set
n = k�+ p, 0 ≤ p < � in (8.24); using Definition 8.1.2 and property (8.16) we
get the following lower bound:

hCNT
ω (Θσ) ≥ lim

n→∞
hCNT

ω

(
Θσ,A[1,	]

)

≥ lim
n→∞

1
k�+ p

Hω

(
A[1,	], Θσ(A[1,	]), . . . , Θk	+p−1(A[1,	])

)

≥ lim
k→∞

1
k�

Hω

(
A[1,	], Θ

	
σ(A[1,	]), . . . , Θ(k−1)	(A[1,	])

)

= lim
k→∞

1
k�

Hω

(
A[1,	],A[	+1,2	], . . . ,A[(k−1)	+1,k	]

)

≥ lim
k→∞

1
k�
H

{A[j�+1,(j+1)�]}k−1
j=0

ω

(
{λi(k) , ωi(k)}

)
, (8.34)

where we used (8.7) with ω =
∑

i(k) λi(k)ωi(k) any chosen decomposition
adapted to the k commuting local subalgebras A[j	+1,(j+1)	].

CNT Entropy: FCS States

If a quantum spin chain is endowed with a finitely correlated state ω as
defined in Section 7.1.5, then its CNT entropy coincides with the entropy
density s(ω) (see Section 7.2) [133].

Proposition 8.1.11. Let (AZ, Θσ, ω) be a quantum spin chain with a FCS
ω, then hCNT

ω (Θσ) = s(ω).

Proof: Because of Proposition 8.1.10, the result follows if we show that
hCNT

ω (Θσ) ≥ s(ω); for this we use the lower bound (8.34) and Remark 7.1.15.
Therefore, we fix a local subalgebra A[1,	]; since altogether the arguments
of the k-subalgebra entropy in (8.34) generate the local subalgebra A[1,k	]

we need consider the local state ρ[1,k	]. We start from a decomposition as
in (7.101) with n = k� and regroup the indices j(k	) as follows

j(k	) = j1j2 · · · j	︸ ︷︷ ︸
i1

j	+1j	+2 · · · j2	
︸ ︷︷ ︸

i2

· · · j(k−1)	+1j(k−1)	+2 · · · jk	
︸ ︷︷ ︸

ik

.
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Notice that the index j of the Kraus operators in the CPU map E defining
the FCS ω runs over a finite set J , whence j(k	) ∈ Ik	

J , while each ip in the
regrouped index i(k) = i1i2 · · · ik belongs to the index set I	

J ; thus i(k) ∈ Ik
I�

J
.

We have seen in Example 7.1.15 that the weights p(jk	) assigned to the
indices j(k	) give rise to a compatible family of local probability distributions
π(k	) and that these define a global shift-invariant state ωπ over the classical
spin chain D

⊗∞
J . We then construct the decomposition ω =

∑
i(k) λi(k)ωi(k) ,

where λi(k) := p(i(k)) and ωi(k) := ρi(k)

[1,k	] and use it to compute

H
{A[j�+1,(j+1)�]}k−1

j=0
ω

(
{λi(k) , ωi(k)}

)
=

∑

i(k)∈Ik

I�
J

η(p(i(k)) −
k∑

j=1

∑

ij∈I�
J

η(pj(ij)) +

+
k∑

j=1

S
(
ω |̀A[(j−1)	+1,j	]

)
−

k∑

j=1

∑

ij∈I�
J

pj(ij)S
(
ωj

ij
|̀A[(j−1)	+1,j	]

)
,

where, with the notation of Example 7.1.15,

pj(ij) :=
∑

i(k)∈Ik
I�
J

ijfixed

p(i(k)) , ωj
ij

:=
∑

i(k)∈Ik
I�
J

ijfixed

p(i(k))
pj(ij)

ρi(k)

[1,k	] = ρ
ij

[1,	] .

From translation invariance of FCS it follows that ω |̀A[(j−1)	+1,j	] = ρ[1,	],

ωj
ij
|̀A[(j−1)	+1,j	] = ρj(�)

[1,	] and pj(ij) = p(j(	)) for some j(	) ∈ I	
J . There-

fore, (8.34) reads

hCNT
ω (Θσ) ≥ lim

k→∞

{
1
k�

∑

i(k)∈Ik

I�
J

η(p(i(k)))

}

− 1
�

∑

j(�)∈I�
J

η(p(j(	)))

+
1
�
S
(
ρ[1,	]

)
− 1

�

∑

j(�)∈I�
J

p(j(	))S
(
ρj(�)

[1,	]

)
.

In the limit � → ∞, the second term in the first line gives the Shannon
entropy rate of the classical spin chain (D⊗∞

J , Θσ, ωπ) as well as the limit
k → ∞ in the first term, while the first contribution in the second line gives
the von Neumann entropy density of (AZ, Θσ, ω). Thus,

hCNT
ω (Θσ) ≥ s(ω) − lim

	→∞

1
�

∑

j(�)∈I�
J

p(j(	))S
(
ρj(�)

[1,	]

)
.

The proof is then completed by using that, as discussed in Example (7.1.15),
S
(
ρj(�)

)
≤ 2 log �. �
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CNT Entropy: Price-Powers Shifts

The non-commutative shifts discussed in Section 7.1.5 offer an interesting
variety of behaviors of the CNT entropy [13].

By construction the quasi-local algebra Ag is generated by the Abelian

algebra A1 consisting of the orthogonal projections
1l ± e1

2
and by its images

An := Θn
σ(A1). These are also Abelian subalgebras, but in general they do

not commute with each other; moreover, denoting by Mk the subalgebra
generated by A	, � = 1, 2, . . . , k, these generate the von Neumann algebra
Mg in Example 7.1.17.1. Therefore, one can compute hCNT

ω (ΘT ) by means of
Proposition 8.1.7. Notice that, because of (7.122), the Mk can be represented
as subalgebras of the spin algebras M2(C)⊗k; this fact allows to derive a
bitstream-independent upper bound to the CNT entropy. Indeed, by using
the properties in Proposition 8.1.3, one estimates

Hω

(
Mk, Θσ(Mk), . . . , Θn−1(Mk)

)
≤ Hω (Mn+k−1)

≤ Hω

(
M2(C)⊗(n+k−1)

)
= (n+ k − 1) log 2 whence

hCNT
ω (Θσ,Mk) ≤ log 2 =⇒ hCNT

ω (Θσ) ≤ log 2 .

We discuss a few particular cases, a thorough analysis of the dependence of
the CNT entropy on the bitstream being provided by [222].

1. For a bitstream g ≡ 0,
(
Mg, Θσ, ω

)
amounts to a classical Bernoulli shift

and
hCNT
Mg

(Θσ) = log 2 . (8.35)

2. If g(n) = 1 for all n ≥ 1, then Mg describes a Fermi system on a one-
dimensional lattice at infinite temperature (see Example 7.1.17.3), where
pairs e2i, e2i+1 give rise to annihilation and creation operators ai, a

†
i ful-

filling the CAR. Since n such operators generate an algebra isomorphic
to M2n(C), an argument similar to the one that gave the universal upper
log 2 yields

Hω

(
Mk, Θσ(Mk), . . . , Θn−1(Mk)

)
≤ Hω (Mn+k−1)

≤ Hω

(
M2(C)⊗[(n+k−1)/2]

)
= [

n+ k − 1
2

] log 2 whence

hCNT
ω (Θσ,Mk) ≤ log 2

2
=⇒ hCNT

ω (Θσ) ≤ log 2
2

,

where we have set [j/2] = j/2 for j even and [j/2] = (j + 1)/2 for j odd.
On the other hand, (7.121) implies

[e2j−1e2j , e2k−1e2k] = (e2j−1e2j) (e2k−1e2k) ×

×
(
1 − (−1)g(|2(j−k)+1|)+g(|2(j−k)−1|)

)
= 0 ,
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for all j, k ≥ 1; therefore, operators of the form e2j−1e2j commute. Let A
denote the Abelian algebra generated by e1e2 (which is isomorphic to the
diagonal matrix algebra D2(C)); then, the Abelian algebras {Θ2j

σ (A)}n−1
j=0

commute and generate an Abelian algebra isomorphic to the diagonal
matrix algebra D2n(C). Then, using Example 8.1.1.1, one gets

Hω

(
A, Θ2

σ(A), . . . , Θ2(n−1)
σ (A)

)
= n log 2 .

Finally, (8.27) yields

hCNT
ω (Θσ) ≥ hCNT

ω (Θ,A) ≥ 1
2
hCNT

ω

(
Θ2

σ,A
)

=
log 2

2
,

whence
hCNT

ω (Θσ) =
log 2

2
. (8.36)

3. In the case of an asymptotically highly anti-commutative Price-Powers
shift [220], for any Wi ∈ Ag there exists an infinite set I(i) of integers
such that

{
Θn

σ [W †
i ] , Θm

σ [Wi]
}

= W †
i+nWi+m + Wi+mW

†
i+n = 0 ,

for all n,m ∈ I(i). We shall show that

hCNT
ω (Θσ) = 0 . (8.37)

In order to do that, we shall consider a stationary coupling of (Mg, Θσ, ω)
to commutative dynamical triple (B, θ, ωμ) (see Definition 8.1.3 and the
preceding discussion), namely a triplet of the form (A⊗B, Θ⊗θ, ω̃) where
ω̃ is a Θσ⊗θ-invariant state such that ω̃ |̀A = ω and ω̃ |̀B = ωμ. Let p ∈ B
be any projection; then,

{
W †

i+n ⊗ θn[p] , Wi ⊗ θm[p]
}

=
{
W †

i+n , Wi

}
⊗ θn[p]θm[p] = 0

for all n,m ∈ I(i). As done in Example 7.1.17.5, by setting

X :=
1
N

N∑

i=1:ni∈I(i)

Wi ⊗ p

for an arbitrary N ∈ N, one estimates
∣
∣
∣ω̃(Wi ⊗ p)

∣
∣
∣ =
∣
∣
∣ω̃(X)

∣
∣
∣ ≤
√

1
N

.

Since N is arbitrary, we deduce that ω̃(Wi ⊗ p) = 0 for all Wi ∈ Mg and
all p ∈ B which means that the global state factorizes: ω̃ = ω ⊗ ωμ. This
fact in turn implies that the relative entropy contributions in (8.32) vanish
so that Hω̃ (B | A) = S (ωμ |̀B) for all finite-dimensional subalgebras B ⊂
B. Since hKS

ωμ
(θ, ωμ) ≤ S (ωμ |̀B), the result follows from (8.33).
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CNT Entropy: Quasi-Free Bosons and Fermions

For quasi-local algebras of Bosons and Fermions in translation-invariant
quasi-free states as those considered in Example 7.2.1.3, one can consider
the discrete space-translation group Θ := {Θn}n∈Z3 (see Example 7.1.2.1)
and enlarge the scope of Definition (8.1.2) to cover the fact that there are
now three directions along which the n-CPU entropy (8.3) can increase.

Given a CPU map γ : M �→ AB,F from a finite-dimensional unital C∗

algebra into the Fermi, respectively Bose quasi-local algebra, a natural way to
proceed [233] is to consider, for each k = (k1, k2, k3) ∈ N

3, the parallelepipeds

B(k) :=
{

n ∈ N
3 : 0 ≤ ni ≤ ki , i = 1, 2, 3

}
,

CPU maps of the form Θn ◦ γ and then to replace (8.24) by

hCNT
ωA

(Θ, γ) := lim
k1,k2,k3→+∞

1
k1k2k3

HωA

(
{Θn ◦ γ}n∈B(k)

)
. (8.38)

while keeping the definition of (8.25) for the CNT entropy of Θ. Notice that
the limit in the right hand side of (8.38) exists because of the subadditivity
property (8.14) and the assumed translation-invariance of the quasi-free state
ωA together with property (8.13).

With the same technical assumptions ensuring the result in Exam-
ple 7.2.1.3, by means of (8.1.1) it can be showed that the CNT entropy of
the space-translations coincides with the mean entropy [233]:

hCNT
ωA

(Θ) =
1

(2π)3

∫

R3
dk
(
η(K̂A(k)) + η(1 − K̂A(k))

)
(Fermions)

hCNT
ωA

(Θ) =
1

(2π)3

∫

R3
dk
(
η(K̂A(k)) − η(1 + K̂A(k))

)
(Bosons) .

Remarks 8.1.4.

1. Quasi-free automorphisms in the Fermionic case have been considered
in [214, 289]; the following result holds [223]: let f, g ∈ L

2
[0,2π](dp ) be

single particle wave-functions for a Fermi system on a lattice ([0, 2π]
being the momentum space). Consider

ΘU (a#(f)) = a#(Uf) , (Uf)(p) = ei ω(p)f(p) ;

it defines a quasi-free automorphism over the CAR algebra with single
particle energy ω(p) assumed to be a real absolutely continuous function
of the momentum variable p. Further, let

ω(a(f)a†(g)) =
∫ 2π

0

dp ρ(p) f∗(p) g(p)
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define a quasi-free ΘU -invariant state over the system, with 0 ≤ ρ(p) ≤ 1
a measurable one-particle distribution over [0, 2π]. Then,

hCNT
ω (ΘU ) =

∫ 2π

0

dp |ω′(p)| (η(ρ(p)) + η(1 − ρ(p))) ,

where ω′(p) := dω(p)/dp is the group velocity. The physical interpretation
is suggestive [214]: for a quasi-free automorphism the dynamical entropy
production as described by the CNT entropy amounts to a flux of single
particle Fermionic entropy governed by the group velocity.

2. While in one-dimensional quantum dynamical systems the 1/n factor
controls the asymptotic increase of the n-CPU map entropies, this is no
longer true in higher dimension. An instance of this fact is the previous
result where one divides by volumes in order to avoid divergences due to
the freedom to move in more than one direction. In general, that is in the
case of the time-evolution in dimension ≥ 2, it turns out that hCNT

ω (Θ) =
+∞; this problem arises already on the classical level and a possible way
out is to consider space and time translation together [153, 39].

8.1.4 Entropic Quantum K-systems

In Section 3.1.1 it was proved that the algebraic structure of classical Kol-
mogorov systems introduced in Section 2.3.1 can be characterized by means of
the dynamical entropy rate. In particular, from the proof of Theorem 3.1.3 it
emerges that the equivalence between the existence of a K-partition, namely
property (1) in the theorem, and the entropic properties (3) − (6) hinges
upon property (2) that is the triviality of the tail of all finite-dimensional
partitions.

Algebraic quantum K-systems have been introduced in Section 7.1.4 as
generalizations of classical K-systems; in this section, we present an entropic
characterization of non-commutative K-systems that partially mimics that
given in Theorem 3.1.3. This gives rise to a class of quantum dynamical
systems with particular clustering properties, but in general not K-systems
from the algebraic point of view.

We start by considering the relations (3) − (6) in the above mentioned
theorem and study how they are affected if one substitutes the n-subalgebra
entropies for the Shannon entropies. For sake of simplicity, we shall restrict to
the case of AF algebras A (see Remark7.1.1) so that we can consider finite-
dimensional subalgebras A ⊂ A as arguments of n-subalgebra entropies,
namely, we take the natural embeddings ιA : A �→ A as CPU maps γ. Also,
we shall restrict to faithful states ω so that the only subalgebra with 0 entropy
with respect to ω is the trivial one (see Lemma 6.3.1).
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Theorem 8.1.2. Given a quantum dynamical triple (A, Θ, ω) with A an AF
C∗ algebra and ω a faithful state, let {c1l} ⊂ A denote the trivial subalgebra
and consider the following statements

1. the CNT entropy is strictly positive, namely for all non-trivial finite-
dimensional subalgebras A ⊃ A �= {c1l},

hCNT
ω (Θ,A) > 0 ; (8.39)

2. for all finite-dimensional subalgebras A ⊃ A �= {c1l},
lim

n→+∞
hCNT

ω (Θn,A) = Hω (A) ; (8.40)

3. for all finite-dimensional subalgebras A ⊃ A �= {c1l}, A ⊃ B and all
sequences {jk}k∈N of positive integers,

lim
n→+∞

lim inf
k→+∞

[
Hω

(
B, Θn+j1(A), . . . , Θn+jk(A)

)

−Hω

(
B, Θn+j1(A), . . . , Θn+jk(A)

)]
= Hω (B) ; (8.41)

4. for all finite-dimensional subalgebras A ⊃ A �= {c1l} and all sequences
{jk}k∈N of positive integers

lim
n→+∞

lim inf
k→+∞

[
Hω

(
B, Θn+j1(A), . . . , Θn+jk(A)

)

−Hω

(
B, Θn+j1(A), . . . , Θn+jk(A)

)]
= 0 =⇒ B = {c1l} . (8.42)

They stand in the following relations

(8.40) =⇒ (8.39)
⇑ ⇑

(8.41) =⇒ (8.42)
.

Proof: (8.40)=⇒ (8.39) Because of the second property in Lemma 6.3.1,
one can choose 0 < ε < Hω (A) and n such that, using the lower bound
in (8.27),

hCNT
ω (Θ,A) ≥ 1

n
hCNT

ω (Θn,A) ≥ Hω (A) − ε

n
> 0 .

(8.41)=⇒ (8.40) Consider the sequence {jk = (k − 1)n}k≥1, from the as-
sumption it follows that for any ε > 0 there exists n0 ∈ N such that, for all
n ≥ n0,

lim inf
k→+∞

[
Hω

(
A, Θn(A), Θn+n(A), . . . , Θnk(A)

)
−

−Hω

(
Θn(A), Θ2n(A), Θ3n(A), . . . , Θnk(A)

)]
=

= lim inf
k→+∞

[
Hω

(
A, Θn(A), . . . , Θnk(A)

)
− Hω

(
A, Θn(A), . . . , Θn(k−1)(A)

)]

≥ Hω (A) − ε ,
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where property (8.13) has been used in the first equality. Further, since
lim inf
k→+∞

= sup
p≥0

inf
k≥p

it follows that there exists p0 ∈ N such that, for all p ≥ p0,

Δp := Hω (A, Θn(A), . . . , Θnp(A)) − Hω

(
A, Θn(A), . . . , Θn(p−1)(A)

)

≥ lim inf
k→+∞

[
Hω

(
A, Θn(A), . . . , Θnk(A)

)

−Hω

(
A, Θn(A), . . . , Θn(k−1)(A)

)]
− ε ≥ Hω (A) − 2ε .

Choosing p > p0, one thus estimates

1
p
Hω

(
A, Θn(A), . . . , Θn(p−1)(A)

)
=

1
p

p−1∑

j=1

Δj +
Hω (A)

p

≥ Hω (A)
p

+
1
p

p0−1∑

j=1

Δj +
p− p0

p

(
Hω (A) − 2ε

)
.

Since the left hand side of the first inequality is always smaller than Hω (A)
(see (8.26)), the result follows from the arbitrariness of ε > 0 by letting
p → +∞.
(8.41)=⇒ (8.42) This follows from property 2 in Lemma 6.3.1.
(8.42)=⇒ (8.39) When A �= {c1l}, then, the same argument used to

show that (8.41)=⇒ (8.40) implies that, for any ε and sufficiently large
n, hCNT

ω (Θn,A) ≥ ε. Thus, the lower bound in (8.27) yields

hCNT
ω (Θ,A) ≥ 1

n
hCNT

ω (Θn,A) ≥ ε

n
> 0 .

�
While in a commutative context the above relations are equivalent, there

are no proofs so far that they are such also for quantum dynamical sys-
tems. Also, the classical versions of relations (8.39)– (8.42) are equivalent
to K-mixing which is the strongest possible way of clustering. If one wants
to relate the behavior of the CNT entropy to the mixing properties of the
dynamics, among the possible choices, (8.40) appears the more appropriate.
Indeed, one knows that hCNT

ω (Θn,A) ≤ Hω (A); this is due to the fact that
the dynamics usually create correlations between past and future. Therefore,
if, asymptotically, the equality holds as in (8.40) this means that for large in-
tervals between successive events the system is affected by memory loss [216].

Definition 8.1.4 (Entropic Quantum K-Systems). [215] A quantum
dynamical triple (A, Θ, ω) is called an entropic K-system if, for any CPU
map γ : M �→ A from a finite-dimensional algebra M into A, it holds that

lim
t→+∞

hCNT
ω

(
Θt, γ

)
= Hω (γ) .
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This choice is also convenient because the behavior of hCNT
ω (Θn,M) is

often more informative on the properties of the dynamics than hCNT
ω (Θ). For

instance, if (A, Θ, ω) is an entropic K-system, then

lim
t→+∞

Hω

(
M , Θt(M), . . . , Θt(k−1)(M)

)
= kHω (M) , (8.43)

for all k ∈ N and for all finite-dimensional subalgebras M ⊆ A. Indeed,
from (8.23) it follows that

hCNT
ω

(
Θt,M

)
≤ 1
k

Hω

(
M , Θt(M), . . . , Θt(k−1)(M)

)
≤ Hω (M) ,

whence the result follows by taking the limit limt→+∞.
The asymptotic behavior (8.43) is an effective expression of the memory-

loss properties of the dynamics of entropic K-systems. Comparing the contri-
butions in (8.3) to the n-CPU entropies, one sees that, for large t, the optimal
decompositions ω =

∑
i(k) λ

(k)

i(k),t
ωi(k),t for Hω

(
M , Θt(M), . . . , Θt(k−1)(M)

)

must be such that

lim
t→+∞

(
H(Λ(k)

t ) −
k−1∑

j=0

H(Λj,t)
)

= 0 (8.44)

lim
t→+∞

∑

ij∈Ij

λj
ij ,t S

(
ωj

ij ,t |̀Θjt(M) , ω |̀Θjt(M)
)

= Hω (M) , (8.45)

where Λ(k)
t := {λ(k)

i(k),t
}i(k) , Λj,t := {λj

ij ,t}ij
and

λj
ij ,t :=

∑

i(k),ij fixed

λ
(k)

i(k),t
, ωj

ij ,t :=
∑

i(k),ij fixed

λ
(k)

i(k),t
ωi(k) , t

λj
ij ,t

.

In fact, the difference in (8.44) can at most vanish, but never be positive, while
each of the summands in (8.45) is bounded by Hω (M). This also means that
the optimal decompositions for large n must be such that the corresponding
sub-decompositions are close to be optimal for Hω (M).

Example 8.1.3. Let (Aθ, ΘA, ω) denote a quantized hyperbolic automor-
phism of the torus, where A is the C∗ algebra generated by the Weyl-
operators Wθ(f), with θ =< α2s >, s ∈ N; these quantum dynamical systems
are norm asymptotic Abelian (see Example 7.1.12). By using the exponen-
tial decay (7.81) of their commutators, we shall show that they are entropic
K-systems [209].

Let γ : M �→ Aθ be a CPU map from a finite dimensional algebra M
into A. Fix ε > 0 and choose k such that
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Hω (γ) ≥ hCNT
ω

(
Θt

A
, γ
)
≥ 1
k

Hω

(
γ,Θt

A
◦ γ, . . . , Θt

A
◦ γ
)
− ε

≥ 1
k

(
H(Λ(k)

t ) −
k−1∑

j=0

H(Λj,t)
)

(8.46)

+
1
k

k−1∑

j=0

∑

ij

λj
ij ,tS

(
ωj

ij ,t ◦Θjt ◦ γ◦ , ω ◦ γ◦
)
. (8.47)

Notice that ω is the tracial state; thus, its modular operator is trivial whence
its decompositions can be chosen of the form (see (8.6))

ω =
∑

j

λjωj , ωj(A) =
ω(Xj A)
ω(Xj)

for A � Xj ≥ 0 such that
∑

j Xj = 1l. Because of the norm-density of the
Weyl operators within Aθ, given ε > 0, we can reach

Hω (γ) ≤
p∑

i=1

λiS (ωi ◦ γ , ω ◦ γ) + ε (8.48)

by means of a decomposition ω =
∑p

i=1 λiωi, where

Xj := Wθ(fi)Wθ(fi) ,
p∑

i=1

Wθ(fi)Wθ(fi) = 1l ,

with functions such that f∗i (−n) = fi(n). Moreover, we can arrange them
in such a way that fj(n) = 0 for all 1 ≤ j ≤ p − 1 if ‖n‖ > K, while
‖Wθ(fi)‖ ≤ ε.

As a trial decomposition for Hω

(
γ,Θt

A
◦ γ, . . . , Θt(k−1)

A

)
, consider the pos-

itive operators

X
(k)

i(k),t
:=
(
Y

(k)

i(k),t

)†
Y

(k)

i(k),t
where

Y
(k)

i(k),t
:= Wθ(fi0)Θ

t
A
[Wθ(fi1)] · · ·Θ

t(k−1)
A

[Wθ(fik−1)] ,

where i(k) ∈ Ω
(k)
p . They satisfy

∑
i(k) X

(k)

i(k),t
= 1l; further,

Xj
ij ,t :=

∑

i(k),ij fixed

X
(k)

i(k),t

= Θjt
A

( ∑

ij+1...ik−1

(
Y[ij+1,ik+1]

)†
Xij

Y[ij+1,ik−1]

)
(8.49)

Y[ij+1,ik−1] := Θt
A
[Wθ(fij+1)] · · · Θ

(k−j−1)t
A

[Wθ(fik−1)] . (8.50)
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Using the tracial properties, the coefficients of the convex decompositions
ω =

∑
ij
λj

ij ,tω
j
ij ,t are

λj
ij ,t = ω(Xj

ij ,t) = ω(Xij
) = λij

. (8.51)

Therefore, in (8.46), H(Λj,t) = H(Λ) for all 0 ≤ j ≤ k − 1, where, in terms

of η(x) = −x log x, H(Λ) =
p∑

i=1

η(λi). Therefore,

1
k

(
H(Λ(k)

t ) −
k−1∑

j=0

H(Λj,t)
)

=
1
k
H(Λ(k)

t ) −H(Λ) (8.52)

In order to control the probability distribution Λ
(k)
t consisting of the coeffi-

cients λ(k)

i(k),t
, we expand

Wθ(fir
) =
∑

nr

fir
(nr)Wθ(nr) , nr ∈ Supp(fir

) .

By means of the Weyl relations (7.29), they thus read

λ
(k)

i(k),t
= ω(X(k)

i(k),t
) =

∑

n0...nk−1
m0...mk−1

(k−1∏

r=0

fir
(nr)f∗ir

(mr)
)

e2 π iθβ({nr},{mr}) ×

×ω
(
Wθ

(k−1∑

j=0

B
jt(nj − mj)

))
where

β({nr}, {mr}) =
k−1∑

a=1

a−1∑

b=0

(
σ(Bnbnb,B

nana) − σ(Bnbmb,B
nama)

)

ω
(
Wθ

(k−1∑

j=0

B
jt(nj − mj)

))
= δ∑k−1

j=0 Bjt(nj−mj),0
,

where B = A
T is the transpose of the dynamical matrix A. By expanding

|nj − mj 〉 = γj | a+ 〉 + δj | a− 〉 along the eigenvectors of B, one gets

(k−1∑

j=0

γjα
jt
)
| a+ 〉 +

(k−1∑

j=0

γjα
−jt
)
| a− 〉 = 0 ,

where α > 1 ad α−1 are the eigenvalues of B, whence

γk−1 +
k−2∑

j=0

γjα
−(k−1−j)t = 0 = δ0 +

k−1∑

j=1

γjα
−jt .



8.1 CNT Entropy: Decompositions of States 449

Suppose 1 ≤ ij ≤ p−1 for all ij ∈ i(k), then the fij
have compact support and,

for t sufficiently large, the above equalities imply γk−1 = 0 = δ0. Iterating
this argument, one gets nj = mj for 0 ≤ j ≤ k − 1, whence

λ
(k)

i(k),t
=

∑

n0...nk−1

k−1∏

r=0

|fir
(nr)|2 =

k−1∏

j=0

ω(Xij
) .

Then,
∑̃

i(k)
η(λ(k)

i(k),t
) = k

p−1∑

i=1

η(λi), where
∑̃

denotes the sum over ij �= p

for all 0 ≤ j ≤ k − 1. Therefore,

1
k
H(Λ(k)

t ) =
1
k

∑

i(k)

η(λ(k)

i(k),t
) ≥ 1

k

∑̃

i(k)
η(λ(k)

i(k),t
) = H(Λ) − η(λp) .

Furthermore, from the assumptions, λp = ω(Xp) ≤ ε; thus (8.52) can be
estimated as follows

1
k

(
H(Λ(k)

t ) −
k−1∑

j=0

H(Λj,t)
)
≥ ε log ε . (8.53)

In order to lowerbound (8.47), we first rewrite it by means of (8.51) as

1
k

k−1∑

j=0

∑

ij

λj
ij ,tS

(
ωj

ij ,t ◦Θjt ◦ γ , ω ◦ γ
)

= S (ω ◦ γ) −
p∑

i=1

λiS (ωi ◦ γ)

+
1
k

k−1∑

j=0

∑

ij

λij

(
S
(
ωij

◦ γ
)
− S

(
ωj

ij ,t ◦Θjt ◦ γ
))

.

Secondly, by means of (8.48), we lowerbound it by

Hω (γ) − ε +
1
k

k−1∑

j=0

∑

ij

λij

(
S
(
ωij

◦ γ
)
− S

(
ωj

ij ,t ◦Θjt ◦ γ
))

. (8.54)

Thirdly, we consider the expectations

ω
(
Xj

ij ,tΘ
jt[Wθ(g)]

)
=

∑

ij+1...ik−1

ω
((
Y[ij+1,ik+1]

)†
Xij

Y[ij+1,ik−1]Wθ(g)
)

= ω(Xij
Wθ(g)) +

∑

ij+1...ik−1

ω
((
Y[ij+1,ik+1]

)†
Xij

[
Y[ij+1,ik−1],Wθ(g)

])
,

and expand the commutator as
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[
Y[ij+1,ik−1],Wθ(g)

]
=

k−j−1∑

a=1

Θt
A
[Wθ(fij+1)] · · ·

· · · Θ(a−1)t
A

[Wθ(fij+a−1)]
[
Θat

A
[Wθ(fij+a

)] , Wθ(g)
]
Θ

(a+1)t
A

[Wθ(fij+a+1)] · · ·

· · ·Θt(k−j−1)
A

[Wθ(fik−1) .

Since Wθ(fi)Wθ(fi) ≤
∑p

j=1 Wθ(fj)Wθ(fj) = 1l, then ‖Wθ(fi)‖ ≤ 1; there-
fore, using (7.81), one can estimate

∥
∥
∥
[
Y[ij+1,ik−1],Wθ(g)

]∥
∥
∥ ≤

k−j−1∑

a=1

∥
∥
∥
[
Θat

A
[Wθ(fij+a

)] , Wθ(g)
]∥
∥
∥

≤
k−j−1∑

a=1

α−at
∑

na,ma

|fij+a
(na)| |g(ma)|Cna,ma

.

Consequently, if all functions have compact support, the commutator goes
to 0 exponentially fast with n; now, the function fp not necessarily with
compact support is in any case such that ‖Wθ(fp)‖ ≤ ε and any element in
γ(M) can be approximated in norm within ε by suitable Wθ(g) where g has
compact support. Therefore, one can adjust n so that

∥
∥
∥ω

j
ij ,t ◦γ−ωij

◦γ
∥
∥
∥ ≤ ε,

whence (8.54) and the Fannes inequality (5.157) yield

1
k

k−1∑

j=0

∑

ij

λj
ij ,tS

(
ωj

ij ,t ◦Θjt ◦ γ , ω ◦ γ
)
≥ Hω (γ) − ε + h(ε)

where h(ε) → 0 when ε → 0. Together with (8.46), (8.47) and (8.53), this
last estimate proves the result; indeed, for all γ : M �→ Aθ and ε > 0, one
can choose t large enough so that

Hω (γ) ≥ hCNT
ω

(
Θt

A
, γ
)
≥ Hω (γ) + ε log ε − 2 ε + h(ε) .

The previous result puts into evidence the role of asymptotic commuta-
tivity in establishing the existence of a memory loss mechanism. One won-
ders whether the vice versa is also true, namely whether asymptotic memory
loss implies asymptotic Abelianess and to which degree. The following result
whose proof can be found in [42, 222] gives a partial answers to this question.

Proposition 8.1.12. Let (A, Θ, ω) be a quantum dynamical triple with A a
hyperfinite von Neumann algebra of type II1 equipped with the tracial state
ω. Then, this dynamical system is strongly asymptotically Abelian.

The following corollary regards quantized hyperbolic automorphisms of
the torus with rational deformation parameter θ = p/q which are algebraic
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quantum K-systems and expresses the generic inequivalence of this notion
and the one of entropic quantum K-system.

Corollary 8.1.1. The quantized hyperbolic automorphisms of the torus with
rational deformation parameter θ = p/q cannot be entropic K-systems.

Proof: As seen in Example (7.1.13), these quantum dynamical systems
cannot be strongly asymptotically Abelian. �

8.2 AFL Entropy: OPUs

The quantum dynamical entropy developed by R. Alicki and M. Fannes [9] is
based on an earlier approach of Lindblad [194] to the non-commutative gen-
eralization of the KS entropy and considers the description of C∗ quantum
dynamical systems (A, Θ, ω) by means of quantum symbolic models. In anal-
ogy with classical symbolic models (see Section 2.2), the time-evolution Θ is
coarsely reconstructed by means of a shift automorphism Θσ on a quantum
spin half-chain AX (see Section 7.1.5) equipped with a particular (unlike
for classical dynamical systems, in general not translation-invariant) state
ωX . We shall denote these quantum symbolic models by quantum dynami-
cal triples (AX , Θσ, ωX ), where the subindex X denotes the fact that they
are constructed by means of operational partitions of unity (OPUs) in a way
that can be physically interpreted as corresponding to repeated measurements
performed on the system (A, Θ, ω).

Definition 8.2.1 (Operational Partitions of Unity). An operational
partition of unity in A is any finite collection of operators Z = {Zi}|Z|

i=1,
Zi ∈ A, such that

|Z|∑

i=1

Z†
i Zi = 1l , (8.55)

where |Z| is the cardinality of Z.

OPUs correspond to the POVM measurements typical of quantum infor-
mation (see Definition 5.6.1); as already observed, they are the most general
algebraic extension of the notion of classical partitions to quantum systems.
Furthermore, we shall see that OPUs can profitably be used instead of par-
titions even in a classical context.

Given two OPUs Z1 = {Z1i}|Z1|
i=1 and Z2 = {Z2j}|Z2|

j=1 , the algebraic ex-
tension of the notion of refinement of two partitions (see Section 2.2) is as
follows

Z1 ◦ Z2 := {Z1iZ2j}|Z1| |Z2|
i,j=1 . (8.56)
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What one gets by this definition is a finer OPU; indeed,

|Z1| |Z2|∑

i,j=1

Z†
2j Z

†
1i Z1i Z2j =

|Z2|∑

j=1

Z†
2j Z2j = 1l .

Moreover, consider a measure-theoretic triple (X , T, μ) and the correspond-
ing von Neumann algebraic commutative triple (L∞

μ (X ), ΘT , ωμ). One can

associate to two finite, measurable partitions P = {Pi}|P|
i=1 and Q = {Qj}|Q|

j=1

of the measure space X the OPUs ZP and ZQ from L
∞
μ (X ) consisting of the

characteristic functions χPi
and χQj

of their atoms. It then turns out that
ZP ◦ ZQ = {χPi∩Qj

}|P|,|Q|
i,j=1 corresponds to the refined partition P ∨Q.

Definition 8.2.2. Given an OPU Z = {Zi}|Z|
i=1 ⊂ A, its time-evolution at

time t = k ∈ Z under the dynamics Θ is defined as

Zk := Θk(Z) =
{
Θk(Zi)

}|Z|
i=1

. (8.57)

Further, Z(n) will denote the OPU

Z(n) := Z ◦Θ(Z) ◦ · · ·Θn−1(Z) = {Zi(n)}
i(n)∈Ω

(n)
|Z|

(8.58)

where Zi(n) = Θn−1(Zin−1) · · ·Θ(Zi1)Zi0 , (8.59)

and Ω
(n)
|Z| � i(n) := i0i1 · · · in−1 with ij ∈ {1, 2, . . . , |Z|}.

Note that Zk is an OPU follows since Θ is an automorphism of A:

|Z|∑

i=1

Θ(Zi)†Θ(Zi) = Θ
( |Z|∑

i=1

Z†
i Zi

)
= Θ(1l) = 1l .

Then, Z(n) is also an OPU .

8.2.1 Quantum Symbolic Models and AFL Entropy

Given an OPU Z = {Zj}|Z|
j=1, let {| zi 〉}|Z|

i=1 denote a fixed orthonormal basis
in the finite-dimensional Hilbert space C

|Z|. The |Z| × |Z| matrix

M|Z|(C) � ρ[Z] :=
|Z|∑

i,j=1

| zi 〉〈 zj | ω(Z†
jZi) (8.60)

is a density matrix. Indeed, normalization comes from Definition 8.2.1, while
positivity is ensured by the fact that
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〈ψ | ρ[Z] |ψ 〉 =
|Z|∑

i,j=1

ψ∗
i ψj ω(Z†

jZi) = ω(Z†
ψZψ) ≥ 0 ,

where C
|Z| � |ψ 〉 =

∑|Z|
i=1 ψi| zi 〉 and Zψ :=

∑|Z|
i=1 ψ

∗
i Zi.

Furthermore, from ω ◦Θ = ω, it follows that

ρ[Zt] = ρ[Z] ∀ t ∈ Z . (8.61)

Consider the time-refined OPU Z(n); the corresponding density matrix is
of the form

M|Z|(C)⊗n � ρ[Z(n)] =
∑

i(n),j(n)∈Ω
(n)
|Z|

| zi(n) 〉〈 zj(n) | ω
(
Z†

j(n)Zi(n)

)
, (8.62)

where
| zi(n) 〉 := | zi1 〉 ⊗ | zi2 〉 ⊗ · · · | zin

〉 .
At each iteration of the dynamicsΘ, one component is added to the OPU Z(n)

and one factor to the corresponding algebraic tensor product M|Z|(C)⊗n.
Therefore, to any given OPU Z ⊂ A there remains associated a quantum spin
half-chain AZ (see Section 7.1.5), with a |Z|-dimensional spin at each site and
a family of density matrices ρ

[
Z(n)

]
, n ∈ N. Since Θ is an automorphism,

applying Definition 8.2.1, it turns out that these density matrices form a
compatible family in the sense of (7.85), namely

Tr{n+1}

(
ρ[Z(n+1)]

)
= Tr{n+1}

( ∑

i(n+1)

j(n+1)

| zi(n+1) 〉〈 zj(n+1) | ω
(
Z†

j(n+1)Zi(n+1)

))

=
∑

i(n+1)

j(n+1)

| zi(n) 〉〈 zj(n) | 〈 zjn+1 | zin+1 〉ω
(
Z†

j(n+1)Zi(n+1)

)

=
∑

i(n) , j(n)

| zi(n) 〉〈 zj(n) |
|Z|∑

i=1

ω
(
Z†

j(n)Θ
n(Z†

i Zi)Zi(n)

)
= ρ[Z(n)] .

Thus the family ρ[Z(n)], n ∈ N, provides a state ωZ over AZ .
The dynamicsΘ on A corresponds to moving right along AZ with the shift

automorphism Θσ; however, unlike the states of quantum spin chains (see
Definition 7.1.11) which are Θ-invariant, the compatible family {ρ[Z(n)]}n∈N,
need not satisfy condition (7.86); namely, in general, ωX ◦ Θσ �= ωX . For
instance, in general,

Tr{1}ρ[Z(2)] =
|Z|∑

i1,j1=1

| zi1 〉〈 zj1 |
|Z|∑

k=1

ω
(
Z†

kΘ(Z†
j1
Zi1)Zk

)
�= ρ[Z] .
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In the classical setting the KS -entropy is the maximal Shannon entropy
per symbol over all symbolic models built upon finite measurable partitions.
The AFL construction defines the quantum dynamical entropy of (A, Θ, ω)
as the largest mean von Neumann entropy over all its symbolic models
(AZ , Θσ, ωZ) constructed from OPUs Z chosen from a selected Θ-invariant
subalgebra A0 ⊆ A. Because of the lack of translation invariance, it is not
guaranteed that the mean von Neumann entropy of (AZ , Θσ, ωZ) exists as a
limit.

Definition 8.2.3 (AFL -Entropy). Let A0 ⊆ A be a Θ-invariant subalgebra
and let Z ⊂ A0 be an OPU ; set

hAFL
ω (Θ,Z) := lim sup

n→∞

1
n
S
(
ρ[Z(n)]

)
, (8.63)

where S
(
ρ[Z(n)]

)
is the von Neumann entropy of the density matrix asso-

ciated with the OPUs Z(n). The AFL -entropy of (A, Θ, ω) is then defined
as

hAFL
ω (Θ) := sup

Z∈A0

hAFL
ω (Θ,Z) . (8.64)

When needed, we shall explicitly refer to the dependence on A0 by writing
hAFL

ω (Θ,A0).

As for the CNT entropy (compare (8.27)), when one considers powers Θq,
q ≥ 0, of the automorphism Θ, one has the following bound.

Proposition 8.2.1. For all N � q ≥ 1, it holds that
1
q
hAFL

ω (Θq) ≥ hAFL
ω (Θ).

Proof: For any given OPU Z = {Zi}|Z|
i=1, set

Z(q,n) := Θq(n−1)[Z] ◦Θq(n−2)[Z] · · ·Θq[Z] ◦ Z .

Given the OPU Z(q), q ≥ 1, one verifies that (Z(q))(q,n) = Z(qn). Therefore,
writing n = kp+ q with 0 ≤ q ≤ p, by means of (5.161) one gets

hAFL
ω (Θ,Z) = lim sup

n→∞

1
n
S
(
ρ[Z(n)]

)
= lim sup

k→∞

1
k q + p

S
(
ρ[Z(k q+p)]

)

≤ 1
q

lim sup
k→∞

1
k
S
(
ρ[Z(k q)]

)
=

1
q

lim sup
k→∞

1
k
S
(
ρ[Z(q,k)]

)

=
1
q
hAFL

ω

(
Θq,Z(q)

)
.

In fact, since the states ρ[Z(n)] are density matrices on a spin-algebra
M|Z|(C)⊗n =

⊗n−1
j=0 (M|Z|(C))j , one derives the bound
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∣
∣
∣S
(
ρ[Z(k q+p)

)
− S

(
ρ[Z(k q)]

)∣
∣
∣ ≤ S

(
ρ[k q,k q+p]

)
≤ q log |Z| ,

where ρ[k q,k q+p] is the marginal density matrix on
⊗k q+p

j=k q(M|Z|(C))j . Since
OPUs of the form Z(q) are a subclass of all possible OPUs, one concludes

hAFL
ω (Θ) = sup

Z∈A0

hAFL
ω (Θ,Z) ≤ 1

q
hAFL

ω (Θq) .

�

Remarks 8.2.1.

1. Suppose the dynamics is trivial, Θ = idA, namely Θ[A] = A for all A ∈ A;
from the previous result it follows that, if hAFL

ω (idA) > 0, then it is
infinite for one can choose an arbitrarily large q and idq

A = idA. This effect
is clearly due to the perturbing action of the OPUs which themselves act
as a source of entropy. Therefore, the Θ-invariant subalgebra A0 from
where the OPUs are taken has to be chosen in such a way to minimize
these perturbing effects.

2. The request that OPUs consist of elements from a selected Θ-invariant
subalgebra A0 ⊂ A usually comes from physical considerations. Indeed,
OPUs as POVMs should correspond to physically realizable measurement
processes which are always strictly local, namely they should consist of
operators from local subalgebras of A. The obvious choice for A0 is thus
the ∗-algebra containing all strictly local C∗ algebras.

3. Unlike for the CNT entropy (see Remark 8.1.2), it is not known whether
an equality of the form hAFL

ω (Θq) = q hAFL
ω (Θ) holds. Indeed, the key

ingredient in the proof of this equality for the CNT entropy is its strong
continuity which is not usable in the case of the AFL entropy. Continuity
is also important to check on its dependence on the OPUs : for results in
this direction see [10, 133].

8.2.2 AFL Entropy: Interpretation

Like the KS entropy, one can interpret the AFL entropy as the asymptotic
rate of information provided by repeated, coarse-grained observations of the
time-evolution; the difference from the classical setting is in that a coupling
to an external ancillary system is required. This can be seen by going to the
GNS construction

(
Hω, πω, Ωω

)
based on the Θ-invariant state ω.

Consider an OPU Z = {Zi}|Z|
i=1, the pure state projection onto

Hω ⊗ C
|Z| � |Ψω

Z 〉 :=
|Z|∑

i=1

πω(Zi)|Ωω 〉 ⊗ | zi 〉
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has the following marginal density matrices (see (8.62))

ρI = TrC|Z| |Ψω
Z 〉〈Ψω

Z | =
|Z|∑

i=1

πω(Zi)|Ωω 〉〈Ωω |πω(Z†
i )

=: F
ω
Z [|Ωω 〉〈Ωω |] , (8.65)

ρII := TrHω

(
|Ψω

Z 〉〈Ψω
Z |
)

=
|Z|∑

i,j=1

〈Ωω |πω(Z†
jZi) |Ωω 〉 | zi 〉〈 zj | = ρ[Z] .

The first marginal state is a mixed state on Hω resulting from a POVM
measurement (see Definition 5.6.1) on the GNS state |Ωω 〉〈Ωω |. This effect
corresponds to the action of a map which, in the GNS representation, is the
dual of the following CPU map on A:

A � A �→ EZ [A] =
|Z|∑

i=1

Z†
i AZi .

Since |Ψω
Z 〉〈Ψω

Z | is a pure state, Proposition 5.5.5 ensures that ρ[Z] and
F

ω
Z [|Ωω 〉〈Ωω |] have the same von Neumann entropy. The same argument

applies to the case of the refined OPU Z(n): the von Neumann entropy
S
(
ρ[Z(n)]

)
equals that of

F
ω
Z(n) [|Ωω 〉〈Ωω |] =

∑

i(n)∈Ω
(n)
|Z|

πω(Zi(n))|Ωω 〉〈Ωω |πω(Z†
i(n)) , (∗)

with Zi(n) as in Definition 8.2.2. Using the GNS implementation of the dy-
namics, πω(Θ(X)) = U†

ωπω(X)Uω, and the fact that Uω|Ωω 〉 = |Ωω 〉, one
rewrites

πω (Zi(n)) |Ωω 〉 = Un−1
ω πω(Zin−1)U

†
ω)n−1) · · ·Uωπω(Zi1)U

†
ωπω(Zi0)|Ωω 〉

= Un
ω

(
U†

ωπω(Zin−1)U
†
ωπω(Zin−2) · · ·U†

ωπω(Zi0

)
|Ωω 〉 ,

whence, setting Uω[A] := Uω AU†
ω, A ∈ A, (∗) can be recast as

F
ω
Z(n) [|Ωω 〉〈Ωω |] = U

n
ω ◦
(
U
†
ω ◦ F

ω
Z

)n

[|Ωω 〉〈Ωω |] . (8.66)

It thus follows that

S
(
F

ω
Z(n) [|Ωω 〉〈Ωω |]

)
= S

(
ρ[Z(n)]

)
. (8.67)

Therefore, the AFL entropy can be regarded as the largest entropy production
provided by POVM measurements based on a selected class of OPUs and
performed at each tick of time on the evolving system coupled to a purifying
GNS ancilla.
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Because of this fact, while the CNT entropy which corresponds to the
maximal compression rate of ergodic quantum sources, the AFL entropy ap-
pears to be related to the classical capacity of quantum channels. We shall
show this after providing examples of quantum dynamical systems where the
AFL entropy can be explicitly computed.

8.2.3 AFL-Entropy: Applications

As for the CNT entropy, we first ascertain whether the AFL entropy reduces
to the KS entropy when the algebraic dynamical triple (A, Θ, ω) describes a
classical dynamical system (X , T, μ).

As already remarked, classical partitions P = {Pi}|P|
i=1 of X , are associated

with OPUs ZP = {χPi
}|P|

i=1, then

Z(n)
P = Zn−1

P ◦ Zn−2
P ◦ · · · ZP =

{
Θn−1(χPin−1

)Θn−2(χPin−2
) · · ·χPi0

}

=
{
χT−n+1(Pin−1 )∩T−n+2(Pin−2 )∩···Pi0

}
=
{
χ

P
(n)

i(n)

}
,

so that Z(n) is the OPU associated with the refined partition P(n) 6 and

ρ[Z(n)] =
∑

i(n),j(n)∈Ω
(n)
|ZP |

| zi(n) 〉〈 zj(n) | μ
(
Pj(n)Pi(n)

)

=
∑

i(n)∈Ω
(n)
|ZP |

| zi(n) 〉〈 zi(n) | μ (Pi(n))

is diagonal with eigenvalues μ (Pi(n)) so that (see (3.1))

S
(
ρ[Z(n)

P ]
)

= −
∑

i(n)∈Ω
(n)
|ZP |

μ(Pi(n)) logμ(Pi(n)) = Hμ(P(n))

lim sup
n→+∞

1
n
S
(
ρ[Z(n)

P ]
)

= hKS
μ (T,P) . (8.68)

However, in view of the fact that one is free to choose more general OPUs than
those arising from classical partitions, Definition (8.2.3) may in general lead
to an AFL entropy of (X , T, μ) which is larger than its KS entropy. Actually,
this is not the case: in order to prove it let us consider a generic OPU given
by a finite collection F := {fi}|F|

i=1 of essentially bounded functions such that

|F|∑

i=1

|fi|2 = 1 ∈ L
∞
μ (X ) .

6The notations is that used in (2.40) and (2.39).
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The corresponding density matrix (see (8.60)) reads

ρ[F ] =
|F|∑

i,j=1

ωμ(f∗j fi) | zi 〉〈 zj | =
∫

X
dμ (x)

|F|∑

i,j=1

f∗j (x)fi(x) | zi 〉〈 zj |

=
∫

X
dμ (x)PF (x) (8.69)

with {| zi 〉}|F|
i=1 an ONB in C

|Z| and

M|F|(C) � PF (x) = |ΨF (x) 〉〈ΨF (x) | , |ΨF (x) 〉 :=
|F|∑

i=1

fi(x) | zi 〉 . (8.70)

Notice that, because F is an OPU, the PF (x) are projections onto normalized
vector states. If an OPU results from the refinement of other OPUs , then
the associated density matrix is a continuous convex combination of tensor
products of projections of the form (8.70). Concretely, if F = F1 ◦F2 ◦· · · Fn,

n⊗

j=1

M|Fj |(C) � ρ[F ] =
∫

X
dμ (x)PF1(x) ⊗ PF2(x) ⊗ · · ·PFn

(x) . (8.71)

Using this expression it is possible to prove that, without restrictions on the
OPUs taken from M := L

∞
μ (X ), the AFL entropy of (M, ΘT , ωμ) coincides

with the KS entropy of (X , T, μ).

Proposition 8.2.2. hAFL
ωμ

(ΘT ,M) = hKS
μ (T ) (see Definition 8.2.3).

Proof: Let P = {Pi}d
i=1 be any finite measurable partition of X with

P(n) = {P (n)

i(n)}i(n)∈Ω
(n)
d

its dynamical refinement up to time t = n−1 and let

F be any other OPU from M. Given F (n) as in (8.58), let

PF(n)(x) := PF (x) ⊗ PF1(x) ⊗ · · ·PFn−1(x) . (∗)

Since the atoms of P(n) are disjoint, one can decompose ρ[F (n)] into a convex
sum of other density matrices in M|F|(C)⊗n:

ρ[F (n)] =
∫

X
dμ (x)PF(n)(x) =

∑

i(n)∈Ω
(n)
d

μ(P (n)

i(n)) ρi(n)

ρi(n) :=
1

μ(P (n)

i(n))

∫

P
(n)

i(n)

dμ (x)PF(n)(x) .

Thus, the concavity of the von Neumann entropy (5.156) and the triangle
inequality (5.161) implies
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S
(
ρ[F (n)]

)
≤ −

∑

i(n)∈Ω
(n)
d

μ(P (n)

i(n)) logμ(P (n)

i(n)) +
∑

i(n)∈Ω
(n)
d

μ(P (n)

i(n))S (ρi(n))

= Hμ(P(n)) +
∑

i(n)∈Ω
(n)
d

μ(P (n)

i(n))S (ρi(n))

≤ Hμ(P(n)) +
∑

i(n)∈Ω
(n)
d

n−1∑

j=0

μ(P (n)

i(n))S
(
ρij

)
, (∗∗)

where, from (∗), ρk :=
1

μ(P (n)

i(n))

∫

P
(n)

i(n)

dμ (x)PFk(x).

Let Qk ∈ M|F|(C) be a projection; since S (Qk) = 0, the Fannes inequal-
ity (5.157) implies

S (ρk) ≤ ‖ρk −Qk‖1 log |F| + η(‖ρk −Qk‖1) .

Notice that each ρk ∈ C
|F| is a continuous convex combination of pure state

projections PF(n)(x); the partition P is arbitrary and can always be chosen
in such a way that each ρk stays sufficiently close to a projection Qk so that
the right hand side of the previous inequality can be upperbounded by a
quantity independent of n and i(n). Consequently, dividing both sides of (∗∗)
by n and taking the lim sup obtains

hAFL
ωμ

(ΘT ,F) ≤ lim sup
n→+∞

1
n
Hμ(P(n)) = hKS

μ (T,P) ≤ hKS
μ (T ) .

On the other hand, from (8.68) one gets

hAFL
ωμ

(ΘT ,M) ≥ sup
ZP∈Π

hAFL
ωμ

(ΘT ,ZP ) = hKS
μ (T ) ,

where Π is the ∗-subalgebra of M containing the OPUs ZP arising from all
possible measurable partitions of X . �

Evidently, one would like to reach the KS entropy by computing the AFL
entropy on a smaller set than the whole of M = L

∞
μ (X ). The search for

a suitable ∗-subalgebra M0 ⊂ M starts with the introduction [10] of an
entropic distance between two OPUs F1,2 ⊂ M defined by

Δ[F1|F2] := S (ρ[F1 ◦ F2]) − S (ρ[F2]) . (8.72)

Some useful properties of the entropic distance can be extracted by in-
specting more closely the consequences of (8.71). Indeed, it turns out that, in
a commutative context, the entropy of a composite OPU is invariant under
permutations of the constituent OPUs :

S (ρ[F1 ◦ F2 ◦ F3]) = S (ρ[F2 ◦ F1 ◦ F3]) , (8.73)
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for all OPUs F1,2,3 ⊂ M. In fact, because of their tensor product form, the
density matrices ρ[F1 ◦ F2 ◦ F3] and ρ[F2 ◦ F1 ◦ F3] are unitarily equivalent.
Also, (5.161) yields

S (ρ[F1 ◦ F2]) ≤ S (ρ[F1]) + S (ρ[F2]) , (8.74)

for all OPUs F1,2 ⊂ M. Indeed, by partial tracing ρ[F1 ◦ F2] over C
|F1|,

respectively C
|F2|, one gets

Tr2(ρ[F1 ◦ F2]) =
∫

X
dμ (x)PF1(x)Tr(PF2) = ρ[F1]

Tr1(ρ[F1 ◦ F2]) =
∫

X
dμ (x)Tr(PF1(x))PF2) = ρ[F2] .

A more interesting property is the following one: for all OPUs F1,2 ⊂ M,

S (ρ[F1 ◦ F2]) ≥ S (ρ[F1]) . (8.75)

To prove this, consider the case in which the integration measure in (8.71)
is a discrete probability distribution μ = {pj}d

j=1, that is ρ[F1 ◦ F2] =
d∑

j=1

pj PF1(j) ⊗ PF2(j). Then, construct the density matrix

ρ123 :=
d∑

j=1

pj | j 〉〈 j | ⊗ PF1(j) ⊗ PF2(j) ,

where {| j 〉}d
j=1 is an ONB in C

d, where the labels denote the factors from
left to right. Notice that

ρ2 := Tr13(ρ123) =
d∑

j=1

pj PF1(j) = ρ[F1]

ρ12 := Tr3(ρ123) =
d∑

j=1

pj | j 〉〈 j | ⊗ PF1(j)

ρ23 := Tr1(ρ123) =
d∑

j=1

pj PF1(j) ⊗ PF1(j) = ρ[F1 ◦ F2] .

Then, strong subadditivity (5.162) yields (8.74): indeed, because of Re-
mark 5.5.5 and of the fact that PFi

(j) projects onto a normalized vector
in C

|Fi|, it turns out that

S (ρ123) = S (ρ12) = −
∑

j

pj log pj .
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Finally, probability distributions given by regular Borel measures μ can be
approximated by discrete ones; thus, the inequality (8.75) can be extended to
generic μ [10] by means of the continuity of the von Neumann entropy (5.157)
(notice that all the density matrix considered act on a Hilbert space of fixed
finite dimension).

Lemma 8.2.1. Given OPUs F1,2,3 ⊂ M, the entropic distance satisfies

Δ[F1|F2] ≥ 0 (8.76)
Δ[ΘT [F1]|ΘT [F2]] = Δ[F1|F2] (8.77)

Δ[F1 ◦ F2|F3] ≤ Δ[F1|F3] + Δ[F2|F3| (8.78)
Δ[F1|F2 ◦ F3] ≤ Δ[F1|F2] (8.79)

Δ[F (n)
1 |F (n)

2 ] ≤ nΔ[F1|F2] . (8.80)

Proof: Positivity is a consequence of (8.72) and (8.75) while time-invariance
comes from (8.61). Subadditivity in the first argument can be derived as fol-
lows. By using (8.73) one gets

Δ[F1 ◦ F2|F3] = S (ρ[F1 ◦ F2 ◦ F3]) − S (ρ[F1 ◦ F2])
= S (ρ[F1 ◦ F3 ◦ F2]) − S (ρ[F1 ◦ F2]) .

Setting ρ123 = ρ[F1 ◦ F3 ◦ F2], it turns out that ρ2 = Tr13(ρ123) = ρ[F3],
while ρ12 = Tr3(ρ123) = ρ[F1 ◦ F3] and ρ23 = Tr1(ρ123) = ρ[F2 ◦ F3]. Then,
strong subadditivity (5.162) yields

S (ρ[F1 ◦ F3 ◦ F2]) + S (ρ[F3]) ≤ S (ρ[F1 ◦ F3]) + S (ρ[F2 ◦ F3]) ,

whence

Δ[F1 ◦ F2|F3] ≤ S (ρ[F1 ◦ F3]) + S (ρ[F2 ◦ F3]) − 2S (ρ[F3])
= Δ[F1|F2] +Δ[F2|F3] .

Further, using (8.78) and (8.73),

Δ[F1|F2 ◦ F3] = S (ρ[F1 ◦ F2 ◦ F3]) − S (ρ[F2 ◦ F3])
= Δ[F1 ◦ F3|F2] −Δ[F3|F2]
≤ Δ[F1|F2] +Δ[F3|F2] −Δ[F3|F2] = Δ[F1|F2] .

Finally, if in (8.78) one puts F (n)
1 (see (8.58)) in the place of F1 ◦ F2 and

F (n)
2 in the place of F3, then using of (8.79), (8.73) and (8.77) one gets

Δ[F (n)
1 |F (n)

2 ] ≤
n−1∑

k=0

Δ[Fk|F (n)
2 ] ≤

n−1∑

k=0

Δ[Fk|F2k]

= nΔ[F1|F2] .

�
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Definition 8.2.4. [10] A ∗-subalgebra with identity M0 ⊂ M is entropy-
dense in M = L

∞
μ (X ) if for any finite, measurable partition P of X and any

ε > 0 there exists an OPU F ⊂ M0 such that Δ[ZP |F ] ≤ ε, where ZP ∈ M
denotes the OPU corresponding to P.

Theorem 8.2.1. Let (L∞
μ (X ), ΘT , ωμ) be the algebraic triple corresponding

to a classical dynamical system (X , T, μ). Let M0 ⊂ M = L
∞
μ (X ) be a Θ-

invariant entropy-dense ∗-subalgebra of M with identity, then

hAFL
ωμ

(ΘT ,M0) = hKS
μ (T ) . (8.81)

Proof: Since M0 ⊂ M, Proposition 8.2.2 gives hKS
μ (T ) ≥ hAFL

ωμ
(ΘT ,M0).

Let P be any finite, measurable partition of X , P(n) its dynamical refinement
up to time t = n− 1 and ZP , Z(n)

P the corresponding OPUs in M. Fix ε > 0
and choose F to be an OPU in the entropy-dense M0 such that Δ[ZP |F ] ≤ ε;
then, using (8.75), (8.73), (8.72) and (8.80) one gets

S
(
ρ[Z(n)

P ]
)
≤ S

(
ρ[Z(n)

P ◦ F (n)]
)

= S
(
ρ[F (n) ◦ Z(n)

P ]
)

= S
(
ρ[F (n)]

)
+ Δ[Z(n)

P |F (n)] ≤ S
(
ρ[F (n)]

)
+ n ε .

By dividing by n and taking the lim sup, (8.68) obtains

hAFL
ωμ

(ΘT ,ZP ) = hKS
μ (T,P) ≤ hAFL

ωμ
(ΘT ,F) + ε ≤ hAFL

ωμ
(ΘT ,M0) + ε

for all ε > 0. Therefore, hKS
μ (T,P) ≤ hAFL

ωμ
(ΘT ,M0) for all finite, measurable

partitions of X whence hKS
μ (T ) ≤ hAFL

ωμ
(ΘT ,M0). �

Example 8.2.1. Consider the hyperbolic automorphisms of the torus T
2

studied in Example 2.1.3. To the measure-theoretic triple (T2, TA,dr) one
associates the algebraic dynamical triple (M, ΘA, ω) where M := L

∞
dr (T2),

ΘA := ΘTA
and ω is the state obtained by integration with respect to dr .

We now show that the ∗-subalgebra M0 ⊂ M linearly spanned by the expo-
nential functions en(r) = exp (2π in · r) is entropy-dense in M.

Given a fixed N ∈ N, the following collection of exponential functions

FN =
{

en√
M

}

n∈IN

, IN :=
{

n = (n1, n2) : −N ≤ ni ≤ N
}
,

where M := (2N + 1)2, is an OPU ; indeed,

∑

n∈IN

∣
∣
∣
∣
en√
M

∣
∣
∣
∣

2

=
∑

n∈IN

1
M

= 1l ,
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where 1l is the identity function on T
2. Notice that the functions en are

orthogonal, namely ω(e∗n em) = δn,m; thus, (8.60) reads

ρ[FN ] =
1
M

∑

n∈IN

| zn 〉〈 zn | ,

where {| zn 〉}n∈IN
is an ONB in C

M . Then, S (ρ[FN ]) = logM which is also
the von Neumann entropy of the state in (8.65),

F
ω
FN

[|Ωω 〉〈Ωω |] =
1
M

∑

n∈IN

| en 〉〈 en | =:
1
M

PN ,

where PN is the orthogonal projection onto the M -dimensional subspace
spanned by the M orthogonal vectors | en 〉. Also, we have chosen the GNS
representation where |Ωω 〉 is the identity function on T

2 and the action of
πω(f) on vectors of L

2
dr (T2) is the multiplication by f ∈ M: 〈 r |πω(f) |ψ 〉 =

f(r)ψ(r) (see Example 5.3.2.2).
Consider now a finite, measurable partition P = {Pj}m

j=1 of T
2 and the

corresponding OPU ZP ; we want to estimate

Δ[ZP |FN ] = S (ρ[ZP ◦ FN ]) − S (ρ[FN ]) = S (ρ[ZP ◦ FN ]) − logM .

The von Neumann entropy of ρ[ZP ◦ FN ] is the same as the von Neumann
entropy of (see (8.67))

σN := F
ω
ZP ◦FN

[|Ωω 〉〈Ωω |] =
1
M

m∑

j=1

∑

n∈IN

πω(χPj
en)|Ωω 〉〈Ωω |πω(χPj

e∗n)

=
1
M

m∑

j=1

Qj PN Qj , where 〈 r |Qj |ψ 〉 = χPj
(r)ψ(r)

=
1
M

m∑

j=1

Tr(Qj PN Qj)σj , where σj :=
Qj PN Qj

Tr(Qj PN Qj)
.

To compute Tr(Qj PN Qj) we use Example 5.2.3.8; since Qj PN Qj = X†X,
X := PNQj , its spectrum is the same as that of XX† = PN Qj PN and thus
their traces are the same. Since

Tr(PN Qj PN ) =
∑

n∈IN

〈 en |Qj |en 〉

=
∑

n∈IN

∫

T2
dr |en(r)|2 χPj

(x) = Mμ(Pj) ,

it follows that σN =
∑m

j=1 μ(Pj)σj . Furthermore, as the σj are density ma-
trices with orthogonal ranges, Remark 5.5.5 yields
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S (σN ) = −
m∑

j=1

η(μ(Pj)) +
m∑

j=1

μ(Pj)S (σj)

= −
m∑

j=1

η(μ(Pj)) +
m∑

j=1

μ(Pj)
(

Tr(η(Qj PN Qj))
Mμ(Pj)

+ log(Mμ(Pj))
)

=
1
M

m∑

j=1

Tr(η(Qj PN Qj)) + logM whence

Δ[P|FN ] =
1
M

m∑

j=1

Tr(η(Qj PN Qj)) , η(x) = −x log x .

We now conclude tgeh proof by showing that, for N large enough, the right
hand side of the last inequality can be made negligibly small. As already seen,
Qj PN Qj and PN Qj PN have the same spectrum; therefore,

Tr(η(Qj PN Qj)) = Tr(η(PN Qj PN )) .

Further, η(x) ≥ x(1−x) for all 0 ≤ x ≤ 1 and η(x)−x(1−x) is bounded; thus,
for all ε > 0, there exists C(ε) > 0 such that [10] η(x) ≤ ε + C(ε)x(1 − x).
Applying this inequality to the eigenvalues πjk of PN Qj PN and observing
that 0 ≤ πjk ≤ 1 for PN Qj PN ≤ 1l, one gets

1
M

Tr(η(PN Qj PN )) =
1
M

∑

k

η(πjk) ≤ 1
M

∑

k

(
ε + C(ε)πjk(1 − πjk)

)

≤ ε + C(ε)
1
M

(
Tr(PN Qj PN ) − Tr((PN Qj PN )2)

)

= ε + C(ε)
(
μ(Pj) − 1

M

∑

n∈IN

〈 en |Qj PN Qj |en 〉
)
.

In the second inequality it has been used that the range of PN has dimen-
sion M . Since the exponential functions | en 〉 form an ONB in L

2
dr (T2), by

increasing N (and thus M) one makes PN → 1l so that

1
M

∑

n∈IN

〈 en |Qj PN Qj |en 〉 = μ(Pj) − 1
M

∑

n∈IN

〈 en |Qj(1l − PN )Qj |en 〉

tends to μ(Pj) when N → ∞.

AFL Entropy: Finite Quantum Systems

Like the CNT entropy, also the AFL entropy vanishes for finite-level quantum
systems. In order to show this we start by deriving a useful bound [10] on the
von Neumann entropy S (ρ[Z]) of a given OPU Z = {Zi}|Z|

i=1 ⊂ B(H), when
B(H) is equipped with a state represented by a density matrix ρ.
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Let 0 ≤ rj ≤ 1 and | rj 〉 be the eigenvalues and eigenvectors of ρ and
{| zj 〉}|Z|

j=1 an ONB in C
|Z|; because of Definition 8.2.1, the vectors

|ΨZ
j 〉 :=

|Z|∑

k=1

Zk| rj 〉 ⊗ | zk 〉

are orthogonal, indeed (8.55) yields

〈ΨZ
j |ΨZ

	 〉 =
|Z|∑

k=1

〈 rj |Z†
kZk |r	 〉 = 〈 rj | r	 〉 = δj	 .

Set ρZ :=
∑

j rj |ΨZ
j 〉〈ΨZ

j |; then, S (ρZ) = S (ρ) and

B1(H) � ρI := TrII(ρZ) =
∑

j

|Z|∑

k=1

rj Zk | rj 〉〈 rj |Z†
k =: FZ [ρ]

B1(C|Z|) � ρII := TrI(ρZ) =
|Z|∑

j,k=1

Tr(ρZ†
kZj) | j 〉〈 k | = ρ[Z] .

Applying subadditivity 5.161 to these marginal density matrices one obtains
the following upper bound to S (ρ[Z]).

Proposition 8.2.3. Let ρ ∈ B1(H) be a state on A = B(H) and Z =
{Zi}|Z|

i=1 ⊂ B(H) any fixed OPU ; then

S (ρ[Z]) ≤ S (ρ) + S (FZ [ρ]) . (8.82)

If B(H) = Md(C), then the von Neumann entropy of both ρ and FZ [ρ] are
upperbounded by log d independently of Z. Since in the case of a finite-level
system the dynamics is implemented by a unitary operator which belongs to
Md(C), all OPUs from Md(C) are such that also the refined OPUs Z(n) up
to discrete time t = n− 1 also belong to Md(C). Then, the following results
holds.

Proposition 8.2.4. Let (A, Θσ, ω) be a finite-level quantum system, where
A = Md(C), ω corresponds to a density matrix ρ ∈ B1(Cd) and Θ is imple-
mented by a unitary U ∈ Md(C). Then, for all OPUs Z ⊂ Md(C),

hAFL
ω (Θ,X ) = 0 , hAFL

ω (Θ) = 0 .
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Remark 8.2.2. The fact that for finite-level systems the AF entropy van-
ishes is neither a surprise nor is it the end of the story. Indeed, in quantum
chaotic phenomena [75, 322], namely when studying the behavior for � → 0
of quantum systems with a chaotic classical limit, the associated classical
instability manifests itself in the presence of a logarithmic time-scale as in
Remark 2.1.3.4. Roughly speaking, the explanation of this fact stems from
the fact that, in the semi-classical approximation, quantizing means operat-
ing a coarse graining of the phase-space into atoms of size 2π�: this forbids
the existence of a bona fide Lyapounov exponent, but makes its classical ex-
istence felt up to times that scale as − log(�/S) (where � is normalized to a
reference classical action S). In some models, as for instance the quantized
finite Arnold cat map in Example 5.6.1.3 and the kicked top in [184], the clas-
sical limit can be mimicked by the dimension of the underlying Hilbert space
N → +∞. The AFL construction, notably the entropy of a time-evolving
OPU , has been applied to such cases and proved to increase linearly with
the number of timesteps T up to T � logN [10, 12, 25]. Interestingly, the
AFL entropy has also been applied to study the emergence of chaos in the
continuous limit of discretized classical dynamical systems [24, 26], where the
suppression of instability also finds its root in a finite coarse graining of the
phase space.

AFL Entropy: Quantum Spin Chains

Interestingly, the AFL entropy of quantum sources differs from the CNT
entropy by a correction term which increases with the dimension of single site
algebras. According to Remark 8.2.1, the OPUs will be taken from strictly
local subalgebras of the quasi-local source algebra A.

Proposition 8.2.5. Let (AZ, ω) be a quantum spin chain with single site
matrix algebras Md(C). Relative to OPUs from any local subalgebra A[p,q],
X ⊂ A[p,q] ⊆ A0 := Aloc

Z
, the AFL entropy is given by

hAFL
ω (Θσ) = s(ω) + log d ,

where the dynamics is the shift Θσ over AZ, and the translation-invariant
state ω ◦Θσ = ω has mean von Neumann entropy s(ω).

Proof: Because of translation-invariance of ω, it is no restriction to take
X = {Xi}p

i=1, Xi ∈ A[0,	]. It follows that the dynamical refinements X (k)

are localized within [0, �+ k − 1]. With ρ = ω |̀A[0,	+k−1] and FX (k) [ρ], both
density matrices in Md(C)⊗ (	+k), (8.82) yields

hAFL
ω (Θσ,X ) ≤ lim sup

k→∞

S(ω |̀A[0,	+k−1])
k

+ log d = s(ω) + log d ,
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whence hAFL
ω (Θσ) ≤ s(ω) + log d. The upper bound is reached by an OPU

consisting X made of matrix units e0p0q0
:= | p0 〉〈 q0 | from the algebra Mn(C)

at site 0, where {| i 〉}d
i=1 is an ONB in C

n [133].

Explicitly, X =
{

1
d1/2

e0p0q0

}

(q0,p0)

and

X (k) =
{
ep(k)q(k)√

dk

}

(p(k),q(k))

, ep(k)q(k) :=
k−1⊗

i=0

ei
piqi

.

According to (8.60), the matrix elements of the (dk × dk)× (dk × dk) density
matrix ρ[X (k)] are thus given by

ρ[X (k)]pq;rs =
1
dk
ω
(
e(k)

sr e
(k)
pq

)
=

1
dk
ω

(
k−1⊗

i=0

ei
siri

ei
piqi

)

=
1
dk

k−1∏

i=0

δripi
ω

(
k−1⊗

i=0

ei
siqi

)

.

The expectations on the right hand side of the last equality define the local
state ρ[0,k−1] := ω |̀A[0,k−1] so that

ρ[X (k)] =
1
dk

1l
Cdk ⊗ ρ[0,k−1] ,=⇒ S

(
ρ[X (k)]

)
= S(ρ[0,k−1]) + k log d

and hAFL
ω (Θσ) ≥ hAFL

ω (Θσ)X = s(ω) + log d. �

AFL Entropy: Price-Powers Shifts

Price-Powers shifts (see Definition 7.1.14) provide non-commutative contexts
whereby the differences between CNT and AFL entropies can be better ap-
preciated [13]: indeed, it turns out that, while the former depends on the
bit-stream g, the latter does not.

Proposition 8.2.6. Let the triplet (Ug, Θσ, ω) represent a Price-Powers shift
with bitstream g; then, relative to local OPUs , hAFL

ω (Θσ) = 1 independently
of g.

Proof: As for quantum spin chains, OPUs will be taken from local sub-
algebras, X ⊂ A0 = U loc

g ; by translation-invariance of the state ω, we can
always suppose X = {Xi}d

1=1 ⊂ U[0,	], so that X (k) ⊂ U[0,	+k−1]. The lat-
ter local subalgebra is not isomorphic to a full-matrix algebra, rather to an
orthogonal sum of m νj ×νj full-matrix algebras: U[0,	+k−1] =

⊕m
j=1 Mνj

(C).
As a linear space U[0,	+k−1] is 2	+k dimensional (this is the number of

independent Wi that generate it), while each of the contributing Mνj
(C) is



468 8 Quantum Dynamical Entropies

a ν2
j -dimensional linear space, whence the constraint 2	+k =

∑m
j=1 ν

2
j . From

the splitting of U[0,	], the elements Xi(k) , i(k) = i0i1 · · · in−1 ∈ Ω
(n)
d , of X (k)

can be decomposed as Xi(k) =
⊕m

j=1 X
j

i(k) , and

ρ[0,	+k−1] =
m⊕

j=1

δj τj ,

where τj = 1
νj

1lνj
are tracial states on Mνj

(C), while 0 < δj ,
∑m

j=1 δj = 1
account for the various multiplicities. It follows that

ρ[X (k)] =
m∑

j=1

δjρ
(k)
j , (ρ(k)

j )q(k)p(k) := τj

(
(Xj

p(k))†X
j
q(k)

)
.

Then, (8.82), (5.156), (5.155) and concavity of log x yield

S(ρ[X (k)]) ≤
m∑

j=1

δj S
(
ρ
(k)
j

)
+ log m ≤

m∑

j=1

δj log
ν2

j

δj

≤ log(
m∑

j=1

ν2
j ) = �+ k ,

whence hAFL
ω (Θσ) ≤ 1. The bound is attained at the OPU consisting of

orthogonal projectors at site j = 0,

X = {p0
1, p

0
2} , p0

i :=
1l + (−)i e0

2
.

In fact, X (k) =
{
pi(k) :=

∏0
j=k−1 p

j
ij

}

i(k)∈Ω
(k)
2

and

ρ[X (k)]i(k)j(k) = ω(pj(k)pik)) = 2−k
k−1∏

	=0

δi�j�
= 2−kδi(k)j(k) .

The last equality follows by using (7.119) and (7.125); ω is tracial and the pi
j

orthogonal for fixed i, thus

ω(pj(k)pi(k)) = ω

(
k−1∏

r=0

pr
jr

k−1∏

s=1

ps
is

)

= δi0j0δik−1jk−1ω
(
p0

i0 · · · p
k−2
jk−2

pk−1
ik−1

pk−2
ik−2

· · · p1
i1

)

= δi0j0δik−1jk−1δik−2jk−2ω
(
p0

i0 · · · p
k−2
jk−2

pk−1
ik−1

pk−3
ik−3

· · · p1
i1

)
+

+ δi0j0δik−1jk−1ω
(
· · · pk−3

jk−3
pk−2

jk−2

[
pk−1

ik−1
, pk−2

ik−2

]
pk−3

ik−3
· · ·
)
. (∗)
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Using (7.119) one calculates

[
pk−1

ik−1
, pk−2

ik−2

]
=

1
4
(−)ik−2+jk−1 (1 − (−)g(1)) ek−1ek−2 .

Notice that either this commutator vanishes because g(1) = 1 or the operator
pk−2

jk−2

[
pk−1

ik−1
, pk−2

ik−2

]
(it belongs to the subalgebra U[k−2,k−1]) cannot be turned

into an identity by means of (7.117) as all the other p come from different
sites. Thus, (∗) vanishes. Iteration of this argument yields

ω(p(k)
j p

(k)
i ) =

k−1∏

	=0

δi�j	 ω

(
k−1∏

r=0

prjr

)

= 2−kδij .

The density matrix ρ[X (k)] is thus diagonal with eigenvalues 2−k whence
S(ρ[X (k)]) = k log 2 and hAFL

ω (Θσ) ≥ 1. �

Remark 8.2.3. While the AFL entropy is always log 2 for all bitstreams,
instead the CNT entropy varies from 0 to log 2 (see (8.35)– (8.37)). Since the
bitstream fixes the degree of departure from commutativity, this fact indi-
cates the CNT entropy is sensitive to the dynamics, but also to the algebraic
structure of quantum dynamical systems, in particular to whether they are
asymptotically Abelian. On the contrary, the AFL entropy accounts for the
effects of the dynamics not directly, rather through a particular family, in
general not translation-invariant, of local density matrices over a quantum
spin chain. As such, it is more sensitive to the properties of the state ω and
in some cases strongly depends on the OPUs that are used to construct the
local density matrices. The effects of the OPUs are at the root of the fact
that the AFL entropy of a spin chain is the entropy density augmented by the
logarithm of the dimension of the spin algebras, hAFL

ω (Θσ) = s(ω) + log d,
whereas the CNT entropy equals the entropy density hCNT

ω (Θσ) = s(ω). If
freely chosen and not carefully selected from a suitable Θ-invariant A0 in such
a way that the perturbations are kept to a minimum, it may happen that even
dynamical systems without dynamics may have non-zero AFL entropy. An
abstract though revealing example is that of a so-called Cuntz algebra [10],
namely the C∗ algebra A generated by the identity 1l and by linear combi-
nations of products Wi := Si1Si2 · · ·Sin

of two isometries Si, i = 0, 1, such
that

S†
0S0 = S†

1S1 = 1l , S0S
†
0 + S1S

†
1 = 1l .

It turns out that

S†
0 S1 = S†

0(S0S
†
0 + S1S

†
1)S1 = S†

0 S1 + S†
0 S1 =⇒ S†

0S1 = 0 .

Let the Cuntz algebra A be equipped with the tracial state ω(Wi) = 0 unless
Wi = 1l in which case ω(1l) = 1 and take the dynamics as trivial Θ = idA
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namely, Θ[Wi] = Wi for all Wi. While hCNT
ω (idA) = 0, the AFL entropy

of the OPU X = {Si/
√

2}1
i=0 diverges. Indeed, the elements of the partition

X (k) are of the form Xi(k) := 2−k/2 Sik
Sik−1 · · ·Si1 ; thus,

X†
i(k) Xj(k) = 2−kS†

i1
· · ·S†

ik−1
S†

ik
Sjk

Sjk−1 · · ·Sj1 = 2−k δi(k),j(k) whence

S
(
ρ[X (k)]

)
= k log 2 =⇒ hAFL

ω (idA,X ) = log 2 .

Therefore, using Remark 8.2.1.1, one deduces that, if the OPUs are freely
taken from A, then hAFL

ω (idA) = +∞.

AFL Entropy: Arnold Cat Maps

We now consider the infinite dimensional quantized hyperbolic automor-
phisms of the torus in Example 7.1.6, namely the triplets (Mθ, ΘA, ω),
where Mθ is the von Neumann algebra generated by the Weyl opera-
tors (7.30), equipped with the automorphism (7.34) and the ΘA-invariant
tracial state (7.34).

We shall show that, independently of the deformation parameter, when
the OPUs are taken from the ΘA-invariant ∗ subalgebra A0 generated the by
Weyl operators Wθ(f) where the f have compact support, the AFL entropy
of (Mθ, ΘA, ω) coincides with the KS entropy [15] (see Proposition 3.1.1).

Proposition 8.2.7. hAFL
ω (ΘA) = logα for all (Mθ, ΘA, ω), where α > 1

is the largest eigenvalue of A (see Example 2.1.3) and the OPUs are taken
from the ΘA-invariant subalgebra A0 ⊂ Mθ which is generated by the Weyl
operators Wθ(f) with compact Supp(f).

Remark 8.2.4. Since the AFL entropy does not depend on θ and because,
for θ = 0, the quantum dynamical system (Mθ, ΘA, ω) reduces to the clas-
sical hyperbolic automorphisms of the torus (see Example 8.2.1), the proof
which follows is another way to compute hKS

μ (TA) and thus the Lyapounov
exponents.

The OPUs that will be repeatedly used in the following have the form

Z =
{

Zi :=
eiβi

√
p
Wθ(ni)

}p

i=1

, ni ∈ Z
2 . (8.83)

Since ω(Z†
j Zi) =

δninj

p
ei(βi−βj), from (8.60) one computes

ρ[Z] =
p∑

i,j=1

| zi 〉〈 zj | ω(Z†
jZi) =

∑

i,j : ni=nj

ei(βi−βj)

p
| zi 〉〈 zj | .

The index set {1, 2, . . . p} can thus be divided into disjoint equivalence classes
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{1, 2, . . . , p} =
⋃

i

[i] , [i] := {1 ≤ a ≤ p : na = ni} .

If #[i] denotes the cardinality of [i], one can then write

ρ[Z] :=
∑

[i]

1
p

∑

a,b∈[i]

ei(βi−βj) | zi 〉〈 zj | =
∑

[i]

#[i]
k

| [i] 〉〈 [i] | (8.84)

where the vectors | [i] 〉 :=
1

#[i]

∑

a∈[i]

eiβi | za 〉, are orthogonal. Thus,

S (ρ[Z]) = −
∑

[i]

#[i]
p

log
#[i]
p

=
∑

[i]

η

(
#[i]
p

)

. (8.85)

where (2.84) has been used. Consider now two OPUs of the form (8.83),

Z1 =

{

eiβ
(1)
i
Wθ(n

(1)
i )

√
p1

}p1

i=1

, Z2 =

{

eiβ
(2)
i
Wθ(n

(2)
i )

√
p2

}p2

i=1

.

According to (8.56) and (7.29), their refinement is an OPU of the same form

Z1 ◦ Z2 =
{

eiβ(i,j)

√
p1p2

Wθ(n
(1)
i + n

(2)
j )
}p1,p2

i,j=1

. (8.86)

One now introduces the equivalent classes

[i, j] :=
{

(a, b) : n(1)
a + n

(2)
b = n

(1)
i + n

(2)
j , 1 ≤ a ≤ p1 .1 ≤ b ≤ p2

}
,

Notice that if x ∈ [a]1 is such that there exist y ∈ [b]2 such that (x, y) ∈ [i, j],
then this is true for all pairs (u, v) with u ∈ [a]1 and v ∈ [b]2. Therefore, one
can write

#[i, j] =
∑

[a]1 : ∃b s.t. [a,b]=[i,j]

#[a]1 #[b]2 .

Lemma 8.2.2. The following two properties hold:

S (ρ[Z1 ◦ Z2]) = S (ρ[Z2 ◦ Z1]) (8.87)
S (ρ[Z1 ◦ Z2]) ≥ S (ρ[Z2]) . (8.88)

Proof: The first equality follows from (8.85) applied to (8.86) which gives

S (ρ[Z1 ◦ Z2]) =
∑

[i,j]

η

(
#[i, j]
p1p2

)

.
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The second one can be derived as follows: set

N(i, j) :=
∑

[a]1 : ∃b s.t. [a,b]=[i,j]

#[a]1
p1

,

and use that η(xy) = x η(y) + y η(x) ≥ x η(y) to estimate

S (ρ[Z1 ◦ Z2]) =
∑

[i,j]

η
(
N(i, j)

⎛

⎝
∑

[a]1 : ∃b s.t. [a,b]=[i,j]

1
N(i, j)

#[a]1
p1

#[b]2
p2

)
⎞

⎠

≥
∑

[i,j]

N(i, j) η

⎛

⎝
∑

[a]1 : ∃b s.t. [a,b]=[i,j]

#[a]1
N(i, j) p1

#[b]2
p2

.

⎞

⎠

Since
∑

[a]1 : ∃b s.t. [a,b]=[i,j]

1
N(i, j)

#[a]1
p1

= 1 ,

the concavity of η(x) yields

S (ρ[Z1 ◦ Z2]) ≥
∑

[i,j]

∑

[a]1 : ∃b s.t. [a,b]=[i,j]

#[a]1
p1

η
(#[b]2

p2

)
=
∑

[b]2

η
(#[b]2

p2

)

= S (ρ[Z2]) .

In fact, by summing over all [i, j], one sums over all [b]2 and [a]1, the latter
being as many as p1/#[a]. �

We now concentrate on a special OPU , Z =
{

1√
q+1

Wθ(nj)
}q

j=0
, where,

for a fixed q ∈ N, we choose nj := ([αj ] − 1)n, 0 ≤ j ≤ q, with Z
2 � n �= 0.

Also, [αj ] < αj denotes the integer part of the j-th power of the eigenvalue
α > 1. The refined OPU

Zq,	 := Θ
q(	−1)
A

[Z] ◦Θq(	−2)
A

[Z] ◦ · · ·Θq
A
[Z] ◦ Z

has |Zq,	)| = [αq]	 elements of the form

eiβ(j(n))Wθ(n(j(	))) , n(j(	)) :=
	−1∑

k=0

([αjk ] − 1)(AT )kn ,

where j(	) = j0j1 . . . j	−1 with j	 ∈ I(q) := {0, 1, . . . , [αq−1] − 1. In order to
evaluate S

(
ρ[Zq,	]

)
, we have to investigate the equivalence classes determined

by relations of the form n(r(	)) = n(s(	)), r(	), s(	) ∈ I	. By expanding
n along the (linearly independent) eigenvectors | ± 〉 of A

T relative to the
eigenvalues α±1, |n 〉 = γ|+ 〉 + δ| − 〉, one gets



8.2 AFL Entropy: OPUs 473

	−1∑

k=0

λqk([λrk ] − [λsk ]) = λq(	−1)
(
[λrk ] − [λsj ] +

+
	−2∑

k=0

λ−q (	−k−1)([λrk ] − [λsk ])
)

= 0 .

By choosing q large enough, such an equality can only be true if r	−1 = k	−1;
iterating this argument yields

n(r(	)) = n(s(	)) ⇐⇒ r(	) = s(	) .

This implies that the equivalence classes contain one element only, [r(	)] =
r	), so that (8.85) obtains

1
�
S
(
ρ[Zq,	]

)
=

1
�

log |Z(q,	)| = log[αq] . (8.89)

Lemma 8.2.3. hAFL
ω (ΘA) ≥ logα.

Proof: Given the OPU of above, consider the refined OPU

Z(q(	−1)+1 = Θ
q(	−1)
A

[Z] ◦Θq(	−1)−1
A

[Z] ◦ · · ·ΘA[Z] ◦ Z .

As already remarked, by refining any pairs of the constituent OPUs one gets
an OPU of the form (8.83); thus, by repeatedly applying (8.87) and (8.88),
one gets

S
(
ρ[Z(q(	−1)+1]

)
≥ S

(
ρ[Z(q,	)]

)
.

One finally estimates

hAFL
ω (ΘA) ≥ lim sup

	→+∞

1
q(�− 1) + 1

S
(
ρ[Zq(	−1)+1]

)

≥ 1
q

lim sup
	→+∞

1
�
S
(
ρ[Zq,	)]

)
≥ 1

q
log[αq] ,

and the result follows by choosing q arbitrarily large. �
In order to reverse the inequality in the previous lemma, we shall consider

OPUs of the form Z = {W (fi)}p
i=1; notice that

p∑

i=1

W †
θ (fi)Wθ(fi) = 1l =⇒

p∑

i=1

‖fi‖2 = 1

as turns out by computing the expectations with respect to ω of both sides of
the operatorial equation and by using (7.35). Let the support of Z be defined
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as the union of the supports of the constituent fi, Supp(Z) :=
⋃p

i=1 Supp(fi),
where Supp(f) is the set of n ∈ Z

2 where f(n) �= 0 (see (7.31)). The com-
pactness assumption means that, given Z there exist finite real constants g,
d such that Supp(Z) ⊆ Rg,d, where

Rgd :=
{
n ∈ Z

2 : |n 〉 = γ| a+ 〉 + δ| a− 〉 , |γ| ≤ g , |δ| ≤ d
}
,

with | a± 〉 the eigenvectors of A.
As seen in Example 7.1.6, the vectors πω(Wθ(f))|Ωω 〉 in the GNS rep-

resentation, amount to the �2(Z2) vectors | fi 〉 = {f(n)}n∈Z2 ; thus, (8.65)
gives

S (ρ[Z]) = S

(
p∑

i=1

| fi 〉〈 fi |
)

≤ log #(Supp(Z)) , (8.90)

where #(Supp(Z)) denotes the cardinality of the support.
Since the refined OPU Z(	) has elements

Θ	−1
A

[Wθ(fi�−1)]Θ
	−2
A

[Wθ(fi�−2)] · · · ΘA[Wθ(fi1)]Wθ(fi0) ,

and each Θj
A
[Wθ(fij

)] is supported by vectors of the form

A
j |nj 〉 = γjα

j | a+ 〉 + δjα
−j | a− 〉 ,

with nj ∈ Supp(fi), it turns out that Supp(Z(	)) consists of vectors

|n(�) 〉 =
(	−1∑

j=0

αjγj

)
| a+ 〉 +

(	−1∑

j=0

α−jδj

)
| a− 〉

∣
∣
∣
∣
∣
∣

	−1∑

j=0

αjγj

∣
∣
∣
∣
∣
∣
≤ g

αn − 1
α− 1

,

∣
∣
∣
∣
∣
∣

	−1∑

j=0

α−jγj

∣
∣
∣
∣
∣
∣
≤ d

α

α− 1
,

whence #(Z(n)) = O(αn) and, from (8.90),

lim sup
n→+∞

1
n
S
(
ρ[Z(n)]

)
≤ logα

for all OPUs from the chosen A0.

Lemma 8.2.4. hAFL
ω (ΘA) = supZ∈A0

hAFL
ω (ΘA)Z ≤ logα.

Finally, Lemma 8.2.3 and Lemma 8.2.4 together prove Proposition 8.2.7
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8.2.4 AFL Entropy and Quantum Channel Capacities

In Section 7.3.2 we have discussed the encoding of strings i(n) of symbols
from an alphabet IA emitted by a classical source by means of quantum
code-words ρ(i(n)) taken from a statistical ensemble with weights p(i(n)).
In [8] a different encoding protocol is proposed; it uses a quantum dynamical
system (A, Θ, ω) and the CPU maps M(A0) � E : A �→ A. The idea is to
encode strings i(n) = i1i2 · · · in by perturbing the state ω with CPU maps
Eij

at each stroke of time t = j, 1 ≤ j ≤ n.

Remark 8.2.5. As A is in general a quasi-local algebra, in order that the
encoding protocols be physically implementable, the CPU maps are chosen
to consist of finitely many Kraus operators taken from the union A0 of all
strictly local subalgebras,

A � A �→ Eij
[A] =

∑

k∈I(ij)

X†
ijk AXijk , Xijk ∈ A0 ,

where
∑

k∈I(ij)
X†

ijkXijk = 1l and the index set I(ij) is of finite cardinality.
The CPU maps are further distinguished in E ∈ Mb(A0) when they are
bistochastic, see Example 6.3.3.1, in which case they are entropy increasing,
and E ∈ Mu(A0) when the Xijk are unitary: Mu(A) ⊂ Mb(A0) ⊂ M(A0).

In order to proceed with the explicit encoding, it is convenient to pass to
the GNS triple (Hω, Uω, Ωω); set X̂ijk := πω(Xijk) and denote by

Êij
[B̂] =

∑

k∈I(ij)

X̂†
ijk B̂ X̂ijk , B ∈ B(Hω) , (8.91)

the GNS representation of the CPU maps Eij
as CPU maps on B(Hω). More-

over, let F̂ij
be their dual maps acting on B1(Hω),

B1(Hω) � ρ̂ �→ F̂ij
[ρ̂] =

∑

k∈I(ij)

X̂ijk ρ̂ X̂
†
ijk , (8.92)

and let U
−1
ω [ρ̂] := Uωρ̂U

†
ω denote the Schrödinger time-evolution in the GNS

representation. Then, the encoding procedure proposed in [8] is to assign to
a string i(n) ∈ In

A a density matrix ρ̂(i(n)) according to the following scheme:

i(n) �→ E(n)(i(n)) =: ρ̂(i(n)) =

⎛

⎝
1∏

j=n

U
−1
ω ◦ F̂ij

⎞

⎠ [|Ωω 〉〈Ωω |]

= (U−1
ω ◦ F̂in

) ◦ (U−1
ω ◦ F̂in−1) ◦ · · · (U−1

ω ◦ F̂i1)[|Ωω 〉〈Ωω |] , (8.93)
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The states ρ̂(i(n)) are the GNS representations of perturbed states obtained
from the given Θ-invariant state ω as follows:

ωi(n) := ω ◦

⎛

⎝
n∏

j=1

Eij
◦Θ

⎞

⎠ = ω ◦ (Ei1 ◦Θ) ◦ (Ei2 ◦Θ) ◦ · · · (Ein
◦Θ) . (8.94)

Example 8.2.2. Let the encoding (8.93) be based on a Bernoulli quantum
spin chain (AZ, Θσ, ω), where AZ consists of single site algebras Md(C), Θσ

is the right shift and ω the product state

ω(A) = Tr(ρ⊗ ρ⊗ · · · ρ
︸ ︷︷ ︸
p−q+1 times

A) , A ∈ A[p,q] .

Since the Kraus operators from the various CPU maps in (8.93) are finitely
many and belong to local subalgebras of AZ, there exists an � ∈ N such that
Xijk ∈ A[−	,	] for all ij ∈ IA and k ∈ I(ij). With respect to (8.94), each
Θ = Θσ shifts the Kraus operators of the CPU map to the right by one site;
therefore, the Xijk of Eij

, 2 ≤ j ≤ n, will be shifted to the right by j − 1
sites. Therefore, the perturbed states ωi(n) have the form

ωi(n) = ω ◦ E
(0)
i1

◦ E
(1)
i2

◦ · · ·E(n−1)
in

◦Θn−1 ,

where the Kraus operators of E
(j−1)
ij

, Θj−1
σ (Xijk), belong to A[−	+j−1 , 	+j−1].

It thus turns out that the state ωi(n) in (8.94) amounts to a density matrix
ρloc

i(n) ∈ A[	 , 	−n−1] tensorized with ρ over the sites k /∈ [� , � − n − 1]. In
the GNS representation, the corresponding ρ̂(i(n)) in (8.93) acts as a density
matrix ρ̂loc

i(n) on πω(A[−	,	+n−1]) ⊗ πω(A[−	,	+n−1]).

Example 8.2.3. Given a quantum spin chain as encoder, single-site encod-
ings turn out to be particularly useful; that is, we will use CPU maps con-
sisting of Kraus operators Xik belonging to single site algebras Md(C). The
following CPU maps are three interesting possibilities.

1. Let {| i 〉}d
i=1 denote a fixed ONB in C

d; then, consider the purifying maps

Md(C) � ρ �→ Fi[ρ] := Tr(ρ) | i 〉〈 i | , i = 1, 2, . . . , d .

These are the dual maps of the CPU maps

Md(C) � A �→ Ei[B] :=
d∑

k=1

| k 〉〈 i |A | i 〉〈 k | = 〈 i |A |i 〉 1l .
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The encoding is performed by choosing Xik = | i 〉〈 k |, i, k = 1, 2, . . . , d,
whence if Y ∈ A is such that Θn−1

σ (Y ) ∈ A(n) = A[0,n−1], then
ωi(n)(Y ) = 〈 i(n) |Θn−1

σ (Y ) |i(n) 〉, where | i(n) 〉 := | i1 〉 ⊗ | i2 〉 ⊗ · · · | in 〉.
As a consequence, this particular encoding corresponds to a perturbation
of ω such that ρloc

i(n) = | i(n) 〉〈 i(n) | ∈ A(n).
2. Consider the discrete Weyl operators in Example 5.4.2 with N = d and

perform the encoding corresponding to the CPU maps

Md(C) � A �→ En[A] = Wd(n)†AWd(n) ,

with n = (n1, n2), ni = 0, 1, . . . d − 1. The Kraus operators involved are
thus of the form Xik = Wd(ni) where i = 1, 2, . . . , d2 enumerates the d2

pairs n and k = 1 for all i. Then, choosing Y ∈ A as in the previous case,
the perturbed states turn out to be

ωi(n)(Y ) = Tr

⎛

⎝
n⊗

j=1

Wd(nij
) ρW †

d (nij
)Θn−1

σ (Y )

⎞

⎠ ,

corresponding to A(n) � ρloc
i(n) =

⊗n
j=1 Wd(nij

) ρW †
d (nij

).

3. Let ρ =
∑d

i=1 ri| ri 〉〈 ri | be the spectral representation of the single
site density matrix and |√ρ 〉 =

∑d
i=1

√
rj | rj 〉 ⊗ | rj 〉 its purification.

Consider the GNS representation where |Ωω 〉 = (|√ρ 〉〈√ρ |)⊗∞; then,
the encoding in the previous point yields a perturbed state (8.93) that
amounts to a local density matrix of the form

πω(A(n))⊗πω(A(n))′ � ρ̂loc
i(n) =

n⊗

j=1

Wd(nij
)⊗1ld |

√
ρ 〉〈√ρ |W †

d (nij
)⊗1ld .

As in Section 6.3.1, the classical source A emitting symbols i(n) ∈ In
A with

probabilities p(i(n)) is described as a stochastic variable A(n) with probability
distribution π(n) = {p(i(n))}i(n)∈In

A
. The encoding (8.93) provides a statistical

mixture described by the density matrix

B1(Hω) � ρ̂E(n) =
∑

i(n)∈In
A

p(i(n))ρ̂(i(n)) ,

and any decoding POVM B̂(n) = {B(n)
j }j∈IB

by means of operators in B(Hω)
defines another stochastic variable B̂(n). The mutual information (6.32) of
A(n) and B̂(n) is bounded by the Holevo χ quantity (6.33),

I(A(n); B̂(n)) ≤ S (ρ̂E(n)) −
∑

i(n)∈In
A

p(i(n))S
(
ρ̂(i(n)

)
, (8.95)
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and depends on the source probability πA(n) , on the CPU maps implementing
the encoding E(n) and on the POVM B̂(n).

If the encoding (8.93) is based on Bernoulli quantum spin chains as in
Example 8.2.2, then

ρ̂E(n) =
∑

i(n)∈In
A

p(i(n)) ρ̂(i(n)) = F
ω
Y(n) [|Ω 〉〈Ω |] , (8.96)

where, using the argument which led to (8.66), Y(n) is a localized POVM
whose elements are operators of the form

Θn−1
σ (Xin−1kn−1)Θ

n−2(Xin−2kn−2) · · ·Xi0k0 ∈ A[−	,	+n−1] ,

with Xijk ∈ A[−	,	]. Then, from (8.95), (8.67) and Proposition 8.2.3

I(A(n); B̂(n)) ≤ S (ρ̂E(n)) = S
(
F

ω
Y(n) [|Ω 〉〈Ω |]

)
= S

(
ρ(n)[Y]

)

≤ (n− 2�)(S (ρ) + log d) . (8.97)

Indeed, ρ(n)[Y] results from the tensor product density matrix ρ⊗ (n−2	) on
the algebra Md(C)⊗ (n−2	).

Furthermore, if the decoding is operated by means of local POVMs B con-
sisting of operators Bi ∈ A[p,q], then in (8.95) one can substitute the density
matrices ρ̂(i(n)) and ρ̂E(n) in the GNS representation with local density matri-
ces ρloc(i(n)) and ρloc

E(n) =
∑

i(n) p(i(n)) ρloc(i(n)). The corresponding Holevo’s
bound reads

I(A(n);B(n)) ≤ S
(
ρloc
E(n)

)
−
∑

i(n)∈In
A

p(i(n))S
(
ρloc(i(n))

)
. (8.98)

This bound and the fact that the various states are matrices in Md(C)⊗ (n−2	)

imply that, for encodings B by means of generic POVMs in A,

I(A(n);B(n)) ≤ (n− 2�) log d , (8.99)

while, for POVMs B consisting of bistochastic maps

I(A(n);B(n)) ≤ (n− 2�)(log d− S(ρ)) , (8.100)

for the encodings are entropy increasing so that S(ρloc(i(n)) ≥ S
(
ρ⊗ (n−2	)

)
.

Example 8.2.4. With reference to the three encodings in Example 8.2.3,
the Holevo χ quantity, denoted by χ1,2,3 for sake of simplicity, depend only
on the structure of the perturbed states restricted to the first n sites of the
quantum spin chain A. By choosing uniform Bernoulli probability distribu-
tions p(i(n)) =

∏n
j=1 pij

over the indices i(n), the product structure of the
perturbed states yields:
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1. Let π = {pi = 1/d}d
i=1; since ρloc

i(n) = | i(n) 〉〈 i(n) |, S(ρloc
i(n)) = 0 and

∑

i(n)

p(i(n)) ρloc
i(n) =

(
1ld
d

)⊗n

=⇒ χ1 = n log d .

2. Let π = {pi = 1/d2}d2

i=1; since ρloc
i(n) =

⊗n
j=1 Wd(nij

) ρW †
d (nij

), addi-
tivity of the von Neumann entropy (5.160) and unitarity of the Weyl
operators imply S

(
ρloc

i(n)

)
= nS (ρ). Further, from (5.30) it follows that

∑d2

i=1 Wd(ni) ρW
†
d (ni) = d 1ld. Thus

∑

i(n)

p(i(n)) ρloc
i(n) =

(
1ld
d

)⊗n

=⇒ χ2 = n(log d− S(ρ)) .

3. Since ρ̂loc
i(n) =

⊗n
j=1 Wd(nij

) ⊗ 1ld |
√
ρ 〉〈√ρ |W †

d (nij
) ⊗ 1ld are pure,

S(ρ̂loc
i(n)) = 0. Also, using again (5.30), it follows that

1
d

d2
∑

i=1

Wd(ni)⊗1ld |
√
ρ 〉〈√ρ |W †

d (ni)⊗1ld = 1l⊗TrI(|
√
ρ 〉〈√ρ |) = 1l⊗ρ ,

where TrI denotes partial trace over the first factor. Therefore, choosing
the probability π as in the previous point,

∑

i(n)

p(i(n)) ρ̂loc
i(n) =

(
1ld
d

⊗ ρ

)n

=⇒ χ3 = n(log d+ S(ρ)) .

According to Section 3.2.2, the classical capacity of the channel resulting
from the considered encodings is:

C := sup
π(n) , E(n) , B(n)

lim sup
n→∞

1
n
I(A(n);B(n)) , (8.101)

where the supremum is computed varying probabilities, encoding and decod-
ing protocols. The following possibilities are envisaged:

1. entanglement assisted capacity, Cent, when B̂ = {B̂i}i∈IB
⊂ B(Hω) con-

sists of bounded operators on the GNS Hilbert space;
2. ordinary capacities, C ≥ Cb ≥ Cu, when B = {Bi}i∈IB

⊂ A and the en-
coding E(n) is performed with any localized CPU map (C) with localized
bistochastic CPU maps (Cb) and with localized CPU maps consisting of
unitary Kraus operators (Cu);

3. Bernoulli capacities, C0
ent ≥ C0 ≥ C0

b ≥ C0
u, when the supremum is taken

over input probabilities that factorize p(i(n)) =
∏n

i=1 pij
.
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Remark 8.2.6. The entanglement in the capacity Cent is due to the GNS
vector |Ωω 〉 being entangled over the algebra πω(A) ⊗ πω(A)′ and the con-
sidered POVMs B̂ consist of generic operators in B(Hω). The entanglement
of |Ωω 〉 is most simply seen in the case of a Bernoulli quantum spin chain
as the one discussed in Example 8.2.3; there, the GNS construction amounts
to purifying the single site density matrix ρ into a vector |√ρ 〉 ∈ C

d ⊗ C
d

which entangles Md(C) ⊗ 1l with 1l ⊗Md(C) at each single site.

The entanglement assisted capacity of Bernoulli quantum sources is
bounded by the AFL entropy, for all triplets (A, Θ, ω), while the capacity
equals the AFL entropy in the case of Bernoulli quantum spin chains.

Proposition 8.2.8. The entanglement assisted capacity relative to Bernoulli
classical sources encoded by using quantum dynamical systems (A, Θ, ω), is
bounded by the AFL entropy: C0

ent ≤ hAFL
ω (Θ,A0).

Moreover, the capacities of encodings by Bernoulli quantum spin chains
(A, Θσ, ωρ) can be explicitly computed:

C0
u = C0

b = Cu = Cb = log d− S(ρ) (8.102)
C0 = C = log d (8.103)
C0

ent = Cent = S(ρ) + log d . (8.104)

Proof: As regards the first part of the proposition, the source probabilities
p(i(n)) =

∏n
j=1 pij

by assumption; therefore, (8.93) and (8.66) yield

ρ̂E(n) :=
∑

i(n)∈In
A

p(i(n))ρ̂(i(n)) =

⎛

⎝
1∏

j=n

U
−1
ω ◦

∑

ij∈IA

pij
F̂ij

⎞

⎠ [|Ωω 〉〈Ωω |]

= U
−n
ω ◦ F̂

ω
X (n) [|Ωω 〉〈Ωω |] , X := {√piXik} i∈Ia

k∈I(i)
.

Then, from (8.67) and (8.95) I(A(n); B̂(n)) ≤ S
(
ρ̂E(n)

)
= S

(
ρ(n)[X ]

)
, whence

the result follows from Definition 8.63.
Concerning the second part of the proposition, for single site encodings

of Bernoulli classical sources by means of Bernoulli quantum spin chains, we
can use the result in Theorem 7.3.4. It ensures that one can always find a
suitable decoding POVM such that the asymptotic amount of transmitted
information per symbol, namely the argument of the supremum in (8.101)
equals the corresponding Holevo χ quantity. Consider now the first case in
Example 8.2.4, χ1/n = log d and (8.99) imply that log d ≤ C0 ≤ C ≤ log d,
whence (8.102). In the second case χ2/n = log d−S(ρ), this and (8.99) imply

log d− S(ρ) ≤ C0
b ≤ Cb ≤ log d− S(ρ) .
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Thus, (8.103) results from the fact that C0
u ≤ C0

b and Cu ≤ Cb. Finally,
by means of the same argument, (8.104) follows from the third case in the
quoted example and from (8.97):

log d+ S(ρ) = χ3 ≤ C0
E ≤ CE ≤ log d+ S(ρ) .

�
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As already emphasized in Chapter 4 information is physical and the limits
to information processing tasks are ultimately set by the underlying phys-
ical laws. For instance, the standing models of computation are based on
the physics of deterministic and/or stochastic classical processes; instead,
quantum computation theory [66, 128, 224, 165, 71] studies the new pos-
sibilities offered by a model of computation based on quantum mechanical
laws. The birth of such a theory finds a technological motivation in the high
pace at which chip miniaturization proceeds. Indeed, information processing
at the atomic level, namely at a scale where the physical laws are those of
quantum mechanics, might soon become a concrete practical issue [66]. On
the other hand, a strong theoretical impulse to the development of quantum
computation theory came from Feynman’s suggestion [116, 139] that quan-
tum computers might provide a more efficient description of quantum systems
than classical (probabilistic) computers and, above all, from the discovery of
quantum algorithms with more efficient performances with respect to what
is classical achievable [224].

A first theoretical step in this direction was the extension of the notions
of TM and of UTM to those of quantum Turing machines (QTMs ) [99]
and to universal QTMs (UQTMs ) [56]: very roughly speaking, these latter
are computing devices that work as classical TMs and UTMs , the only
difference being that their configurations behave as vector states of a suitable
Hilbert space. Namely, given any set of possible configurations, their linear
superpositions are also possible configurations.

Once the existence of UQTMs is foreseen, a very natural theoretical step is
to try to formulate quantum versions of the concepts introduced in Chapter 4;
in particular, by extending algorithmic complexity theory to the quantum
setting, one may try to set up a theory of randomness of individual quantum
states [120] and of quantum processes.

In the following, we shall consider some proposals that have recently been
put forward concerning different ways in which one might approach the al-
gorithmic complexity of quantum states. All proposals start from the basic
intuitive idea that complexity should characterize properties of systems that
are difficult to describe; they can roughly be summarized as follows:

F. Benatti, Dynamics, Information and Complexity in Quantum Systems, 483
Theoretical and Mathematical Physics, DOI 10.1007/978-1-4020-9306-7 9,
c© Springer Science+Business Media B.V. 2009
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1. one may attempt to describe quantum states by means of other quantum
states that are processed by UQTMs [57]: the corresponding complexity
will be referred to as qubit quantum complexity and denoted by QCq;

2. one may decide to describe quantum states by classical [309] programs
run by UQTMs : the corresponding complexity will be denoted by QCc

and referred to as bit quantum complexity ;
3. one may choose to relate the complexity of a qubit string to the complex-

ity of the (classical) description of the quantum circuits that construct
the qubit string [205, 206]. The corresponding complexity will be denoted
by QCnet and referred to as circuit quantum complexity ;

4. one may extend the notion of universal probability (see Section 4) and
define a quantum universal semi-density matrix [119]. There then arise
two possible definitions of quantum complexity, denoted by QC±

u.p. that
do not refer either to QTMs or to circuits.

We shall mainly concentrate on the qubit quantum complexity QCq: it al-
lows for a quantum generalization of Brudno’s theorem that will be presented
in detail. On general grounds, one should not expect the above proposals to
yield equivalent notions; very likely, each one of them will be sensitive to
different specific quantum properties, as we have seen to be the case with
the quantum extensions of the KS dynamical entropy. Unlike in the classical
domain (see Remark 4.3.1.4) where chaoticness and typicalness appear to
be equivalent characterization of random bit sequences, qubit sequences are
likely to be random in different inequivalent ways.

9.1 Effective Quantum Descriptions

The notions of qubit and bit quantum complexity are based on the use of
QTMs. In the following, we will not consider what quantum computers might
do that classical computers do not, nor will we address their practical im-
plementation (see for instance [128, 224]). We shall simply assume that such
devices exist and proceed to define:

1. the targets of the algorithmic descriptions processed by QTMs ;
2. which kinds of algorithms are processed by QTMs ;
3. how these algorithms are processed by QTMs ;
4. which are the outputs of these processes.

1. In the quantum setting, the targets of the effective descriptions will
be qubit strings; since one is always interested in targets of increasing length,
a convenient mathematical framework is provided by quantum spin chains
(see Section 7.1.5), namely by algebraic triples of the form (AZ, Θσ, ω) that
have been introduced in Definition (7.1.11), with 2 × 2 matrix algebras at
each site. As already noted in Remarks 7.3.1, in going from bit to qubit
strings there are similarities, but also differences. In particular, there is a
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larger variety of qubit strings. Therefore, by qubit strings it will be meant
any local density matrix corresponding to generic mixed and entangled states
on local subalgebras A(n) = (M2(C))⊗n.

2. The inputs to QTMs will be generic qubit strings, loosely referred
to as quantum programs; a subclass of these are the classical programs or
bit strings that QTMs, as extensions of classical TMs, must also be able to
process.

3. While classical TMs ultimately amount to specific transition functions
between their configurations, QTMs are defined by transition amplitudes
between their configurations which form a Hilbert space. Any QTM will thus
identify a specific quantum computation that is a specific unitary operators
acting on the Hilbert space of its configurations.

4. Finally, the outputs of a quantum computation operated by a QTM
will be a qubit string read out by a measurement process.

Within the framework just outlined, the first two generalizations of clas-
sical algorithmic complexity previously mentioned are based on qubit strings
effectively described by bit strings in the first case and by qubit strings in
the second one.

9.1.1 Effective Descriptions by qubit Strings

Given the quasi-local structure of quantum sources as C∗ algebras generated
by local n-qubit sub-algebras A(k) = M2(C)⊗k, let us denote by Hk := (C2)⊗k

the Hilbert space of k qubits (k ∈ N0) and fix in each single qubit Hilbert
space C

2 a computational basis | 0 〉, | 1 〉. In order to be as general as pos-
sible, superpositions of qubit states of different lengths k are allowed: they
correspond to vectors in the Fock-like Hilbert space HF :=

⊕∞
k=0 Hk. More

in general, qubit strings will be represented by density matrices ρ ∈ B
+
1 (HF )

acting on HF .

Example 9.1.1. Any bit string i ∈ {0, 1}∗ identifies a computational basis
vector in HF : the empty string λ corresponds to the vacuum |ΩF 〉, the 1-
qubit subspace H1 is spanned by | 0 〉, | 1 〉, while the k-qubit subspace Hk is
generated by the vectors corresponding to the bit strings of length k, i(k) ∈
Ω

(k)
2 , namely by | i(k) 〉 = | i1i2 · · · ik 〉, ij = 0, 1. Generic qubit strings amount

to density matrices in B
+
1 (H≤n) acting on H≤n :=

⊕n
k=0 Hk, its dimension

being
∑n

k=0 2k = 2n+1 − 1.

In the commutative setting, the length of a bit string is simply the number
of bits it consists of; in the quantum setting, the number of qubits involved
fixes the Hilbert space dimension. Therefore, the following definition naturally
extends the notion of length of a program.
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Definition 9.1.1. The length, �(ρ), of a qubit string ρ ∈ B
+
1 (HF ) is

�(ρ) := min{n ∈ N0 | ρ ∈ B
+
1 (H≤n)} , (9.1)

setting �(ρ) = ∞ if this set is empty.

As we shall see, QTMs act on and construct superpositions of vector qubit
strings and, more in general, convex combinations of projection onto vector
qubit strings of different lengths. Moreover, like their classical counterparts,
QTMs comprise different parts as a read/write head, a control unit and one or
more tapes all of them capable of being in states that are either Hilbert space
vectors or density matrices acting on them. Therefore, the QTMs configura-
tions too are generically described by density matrices acting on appropriate
Hilbert spaces. Notice that mixed states are quite typical in such a context
for they naturally appear when one is interested in the state of the read/write
head, say, and therefore traces over the Hilbert spaces corresponding to the
other QTMs components.

As observed in Remark 7.3.1.3, unlike in the classical situation where there
are countably many bit strings, there are uncountably many qubit strings
that can be arbitrarily close to one another. In order to quantify how close
two qubit strings ρ, σ ∈ B

+
1 (HF ) actually are, it is convenient to use the

trace-distance introduced in Definition 6.3.4, D(ρ, σ).

9.1.2 Quantum Turing Machines

Any model of computation is based on the physics of the processors perform-
ing the computations; both deterministic and probabilistic Turing machines
(see Example 4.1.4) work according to the laws of classical physics. It was
Feynman [116] who was the first one to argue that quantum processes, to be
efficiently simulated, require quantum computers. Indeed, quantum mechan-
ics allow superpositions of states; in the case of TMs , the natural classical
states are their configurations c :=

(
(σi)i∈Z, q, k

)
(see Definition 4.1.1). The

main feature of quantum computing machines is the possibility of producing
and acting on linear superpositions of classical configurations, thus of per-
forming in one single step of a computation what, classically, would only be
achieved by an enormous number of TMs working in parallel (this is quantum
parallelism, a phenomenon briefly sketched in Example 6.1.1).

The Hilbert space spanned by the classical configurations | c 〉 provides
(vector) states |Ψ 〉 =

∑
c∈C Ψ(c)| c 〉 of the QTM , with Fourier coefficients

Ψ(c) that represent the complex amplitudes associated to the computational
steps c. As in the case of PTMs, a quantum computation corresponds to a
level-tree with an initial configuration branching into others, the main dif-
ference being that the edges leading from one level to the next do not carry
branching probabilities, rather branching amplitudes that give rise to inter-
ference effects.
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Example 9.1.2. With reference to Example 4.1.4 [128], consider the fol-
lowing branching tree that resembles the scheme of a Mach-Zender inter-
ferometer (see Figure 5.5). It describes a computational process starting
off with an initial configuration c0 that branches into two different con-
figurations c11 and c12 at level 1 with amplitudes a01 := a(c0c11) and
a02 := a(c0c12) = 2−1/2, so that |a01|2 + |a02|2 = 1. This first computational
step is then followed by a second one with two configurations at level 1 branch-
ing as follows: c11 into c21 and c22 with amplitudes a11 := a(c11c21) = 1/

√
2

and a12 := a(c11c22) = 1/
√

2, while c12 into c23 and c24 with amplitudes
a23 := a(c12c23) = −1/

√
2 and a24 := a(c12c24) = 1/

√
2.

Fig. 9.1. Quantum Turing Machines: Level Tree

Thus, the overall amplitudes for the 4 configurations at step 2 are

a(c21) := a01 a11 =
1
2
, a(c22) := a01a12 =

1
2
,

a(c23) := a02a23 = −1
2
, a(c24) := a02a24 =

1
2
.

The most important difference with respect to classical PTMs is now ap-
parent; indeed, consider the case of equal configurations c22 and c23, say
c22 = c23 = c∗. Then, the amplitude for c∗ is the sum of the amplitudes for
c22 and c23, a(c∗) = 0, whence p(c∗) = |a(c∗)|2 = 0. The corresponding de-
structive interference eliminates the configuration c∗ from the computation.
On the other hand, assume c21 = c24 = c∗; these two configurations con-
structively interfere at level 2 so that a(c∗) = 1, whence c∗ appears among
the computational steps with probability p(c∗) = 1.

The notion of QTM as a computing device working according to quantum
mechanics was first proposed by Deutsch[99]. A full and detailed analysis can
be found in [56] and [3] and further developments in connection with the
notion of universality in [208]. In the following, we shall assume the existence
of such machines and provide a schematic presentation of how they perform
their tasks. QTMs work analogously to classical TMs, that is they consist of
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1. An internal control unit C with associated Hilbert space HC linearly
spanned by the classical control states qi, i = 1, 2, . . . , |Q|, the typical
control vector being

|ΨC 〉 =
|Q|∑

i=1

c(i) | qi 〉 ,
|Q|∑

i=1

|c(i)|2 = 1 .

We shall distinguish special initial and final control states q0 and qf ,
respectively.

2. An input/output tape, whose vector states are of the form

|ΨT 〉 =
∑

σ∈ΣZ

t(σ) |σ 〉 ,

where σ ∈ ΣZ denotes any sequence consisting of infinitely many
blanks and only finitely many symbols from the alphabet Σ̃ = {0, 1}
(see Section 4.1.1). The basis states |σ 〉 correspond to classical tape-
configurations and span a (separable) tape Hilbert space HT.

3. A read/write head H that can position itself on the tape cells labeled
by the integers k ∈ Z. The head Hilbert space HH is formed by square-
summable sequences and the typical head vector state is

|ΨC 〉 =
∑

k∈Z

h(k) | k 〉 ,
∑

k∈Z

|h(k)|2 = 1 .

A QTM U will then be described by means of a Hilbert space of the form
HU = HT⊗HC⊗HH with the configuration basis vectors |σ, q, k 〉 providing
a distinguished orthonormal basis.

The time-evolution of standard quantum mechanical systems, that is
isolated from their environment, is linear and reversible; as any step of a
quantum computation corresponds, in absence of external noise, to a phys-
ical quantum process, it must be described by means of a unitary operator
UU : HU �→ HU.

Remarks 9.1.1.

1. The probabilistic transition functions (4.4) are replaced by a quantum
transition function which assigns amplitudes (not probabilities) to the
transitions (q, σ) �→ (q′, σ′, d):

(q, σ; q′, σ′, d) �→ δ(q, σ; q′, σ′, d) ∈ C̃
[0,1] , (9.2)

where C̃ denotes the set of complex numbers α ∈ C, 0 ≤ |α| ≤ 1, such that
there is a deterministic algorithm that computes the real and imaginary
parts of α to within any fixed precision 2−n in time polynomial in n.
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Consider the linear operator UU on HU whose matrix elements with re-
spect to the configuration basis vectors are defined by [229]

〈q′,σ′, k′|UU |q,σ, k〉 =
{
δ(q, σk; q′, σ′k,−1) if k′ = k − 1
δ(q, σk; q′, σ′k,+1) if k′ = k + 1 ,

(9.3)

where d = ±1 identify a head’s movement to the left d = −1), respectively
to the right (d = +1), and the tape (classical) configurations σ and σ′

are such that their symbols σj = σ′
j for all j �= k.

In this way the quantum transition function δ identifies the possible tran-
sitions operated by the linear operator UU; namely, UU operates a tran-
sition

tape conf. : σ
cell with head on it : k
symbol in cell k : σk

⎫
⎬

⎭
�−→

⎧
⎨

⎩

tape conf. σ′

cell with head on it: k + d
symbol in cell k : σ′k

if and only if δ(q, σk, q
′, σ′k, d) �= 0.

Using the orthogonality of the configuration vectors, one explicitly com-
putes the action of UU as

UU| q,σ, k 〉 =
∑

q′,σ′
k,d

δ(q, σk; q′, σ′k, k + d) | q′,σ′
k, j + d 〉 , (9.4)

where σ′
k denotes the tape-configuration with all symbols equal to those

of σ, but for the k-th one. In [229] necessary and sufficient conditions are
given on the quantum transition function δ so that UU acts unitarily on
HU and thus appropriately describes a quantum computation as a unitary
discrete-time quantum evolution.

2. A possible model of a QTM is obtained via a quantum circuit consisting
of unitary gates (see Example 5.5.9), a so-called circuit model. A quan-
tum computation on, say, N qubits thus amounts to a unitary operator
U acting on a 2N dimensional Hilbert space HN . It requires a certain
number of gates to be implemented; if one had at disposal all 1-qubit
unitary gates plus the CNOT 2-qubit gate, then any U would be exactly
implementable [165]. In particular, the action of U : HN �→ HN on a
given state |ψ 〉 requires O(2N ) of these gates to be implemented [206].
More constructively, one seeks finite sets of gates G that would provide a
so-called complete gate basis in the sense that the action of any 1-qubit
gate can be mimicked by gates from G up to an arbitrary precision: one
such set consists [165] of the CNOT gate, the Hadamard gate and the
1-qubit gate

T :=
(

e−iπ/8 0
0 eiπ/8

)

.

Consider a generic unitary action U : HN �→ HN of a quantum circuit
consisting of m 1-qubit and CNOT gates; a result known as Solovay-
Kitaev theorem [170, 306, 165, 206] states that that U can be reproduced
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up to any ε > 0 by O(m logc m/ε) gates from G with c ∈ [1, 2]. Then, on
a given |ψ 〉 ∈ HN , ‖(U − V )|ψ 〉‖ ≤ ε where V : HN �→ HN is a unitary
operator corresponding to a quantum circuit consisting of N(U, ε) gates
from G, where [206],

N(U, ε) = O

(

2N logc

(
2N

ε

))

.

3. Another model of quantum computation is based on the possibility of
implementing unitary operations on qubits by means of the mechanism
outlined in Example 6.1.5. This latter is at the root of the so-called one-
way quantum computation [249, 323], whereby quantum gates, that is uni-
tary transformations, on qubits are implemented by performing measure-
ments, that is irreversible operations, on some other qubits, all of them
prepared in certain entangled multipartite states called cluster states.

Definition 9.1.2 (QTMs: Starting and Evolution Conventions).
Given a UQTM U and an input qubit string σ ∈ B

+
1 (HF ), we shall identify

it with the initial state of a quantum computation by U again denoted by σ. It
corresponds to a density matrix acting on HU with σ written on the input track
over the cells indexed by [0, l(σ) − 1], and blank states # on the remaining
cells of the input track and on the whole output track, while the control is in
the distinguished initial state q0 and the head is in the state corresponding
to its being positioned upon the 0 cell. The state Ut(σ) of U on input σ after
t ∈ N0 computational steps will be given by Ut(σ) := U t

Uσ
(
U t

U

)†.

In the rest of this section we shall deal with the halting conditions for
QTMs and with showing that their actions amount to definite quantum op-
erations, that is to trace-preserving completely positive maps on B

+
1 (HF ).

For this observe that, in accordance to the previous definition, the state of
the control after t steps is given by partial trace over all the other parts of
the machine, that is over the head and tape Hilbert spaces, HC and HT,
respectively, Ut

C(σ) := TrH,T

(
Ut(σ)

)
.

Definition 9.1.3 (QTMs: Halting Convention). A QTM U halts at time
t ∈ N0, that is after t computational steps, on input σ ∈ B

+
1 (HF ), iff

〈 qf |Ut
C(σ) |qf 〉 = 1 and 〈 qf |Ut′

C(σ) |qf 〉 = 0 for every t′ < t , (9.5)

where qf is a special control state.
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Remark 9.1.2. The above halting convention expresses the possibility of
checking whether a QTM halts on a certain input by measuring the orthog-
onal projection | qf 〉〈 qf |: if U has halted on input σ then, by measuring
| qf 〉〈 qf |, one ascertains this fact with certainty. On the other hand, if U

has not yet halted then measuring | qf 〉〈 qf | has no effect on the still go-
ing on computation. In general, for a generic input σ = |ψ 〉〈ψ | ∈ B

+
1 (HF ),

0 < 〈 qf |Ut
C(|ψ 〉〈ψ |) |qf 〉 < 1; in such a case the vector |ψ 〉 will be called

non-halting, otherwise t-halting. Let H̃(t) ⊂ HF denote the set of vector in-
puts with equal halting time t: their linear combinations are also inputs such
that U halts on them at time t. Therefore, H̃(t) is a linear subspace of HF ;
what is more important, if t �= t′, the corresponding subspaces H(t) and H(t′)
are mutually orthogonal. Indeed, were this not true, non-orthogonal vectors
could be perfectly distinguished by means of their different halting times. It
follows that the subset B

+
1 (HF ) on which U halts is the union

⋃
t∈N B

+
1 (H(t)).

It proves convenient to consider a special class of QTMs with the property
that their tape T consists of two different tracks, an input track I and an
output track O. This can be achieved by having an alphabet which is a
Cartesian product of two alphabets, in our case Σ = {0, 1,#} × {0, 1,#}.
Then, the tape Hilbert space HT can be written as HT = HI ⊗ HO.

Definition 9.1.4 (Quantum Turing Machines).
A map U : B

+
1 (HF ) → B

+
1 (HF ) will be called a QTM , if there is a two-

track QTM U with the following properties [56]:

1. the alphabet consists of Σ = {0, 1,#} × {0, 1,#};
2. the corresponding time evolution operator UU is unitary,;
3. if U halts on input σ with a variable-length qubit string ρ ∈ B

+
1 (HF ) on

the output track starting in cell 0 such that the i-th cell is empty for every
i �∈ [0, �(ρ) − 1], then U(σ) = ρ; otherwise, U(σ) is undefined.

In general, different inputs σ have different halting times t(σ) and the
corresponding outputs result from different unitary transformations U

t(σ)
U

.
However, notice that the subset of B

+
1 (HF ) on which U is defined is of the

form
⋃

t∈N
B

+
1 (H(t)). Therefore, by introducing an internal clock that keeps

track of the halting times, the action of U restricted to this subset amounts
to a well-defined quantum operation, that is to a completely positive map
U : B

+
1 (HF ) → B

+
1 (HF ).

Lemma 9.1.1 (QTMs as Quantum Operations).
For every QTM U there is a quantum operation U : B

+
1 (HF ) → B

+
1 (HF ),

such that U(σ) = U[σ] for every σ ∈
⋃

t∈N
B

+
1 (H(t)).
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Proof: Let Bt be an orthonormal basis of H(t), t ∈ N, and B⊥ an or-
thonormal basis in the orthogonal complement of

⊕
t∈N

H(t) within HF . Let
an ancilla Hilbert space HA := �2(N0) be added to the QTM, and define a lin-
ear operator VU : HF → HU⊗HA by specifying its action on the orthonormal
basis vectors ∪t∈N{Bt} ∪ B⊥:

VU| b 〉 :=
{
U t

U| b 〉 ⊗ | t 〉 if | b 〉 ∈ Bt,
| b 〉 ⊗ | 0 〉 if| b 〉 ∈ B⊥ .

The ancilla acts as a sort of internal clock which registers the halting times of
the components of a vectors belonging to the halting subspaces and assigns
time 0 to the non-halting components. With Bt = {| btjt

〉}, B⊥ = {| b⊥j 〉}:

HU ⊗ HA � |Ψ 〉 =
∞∑

t=0

∑

jt

Ct
Ψ (jt) | btjt

〉 +
∑

j

C⊥
Ψ (j) | b⊥j 〉 ,

VU|Ψ 〉 =
∞∑

t=0

∑

jt

Ct
Ψ (jt)U t

U| btjt
〉 ⊗ | t 〉 +

∑

j

C⊥
Ψ (j) | b⊥j 〉 ⊗ | 0 〉 .

From orthogonality, it turns out that the map VU is a partial isometry:

〈Ψ |V †
U
VU |Φ 〉 = 〈Ψ |Φ 〉 , Ψ, Φ ∈ HU ⊗ HA .

Thus, the map σ �→ VUσV
†
U

is trace-preserving and completely positive (see
Section 5.2.2). Further, by partial tracing over the Hilbert spaces of the head,
of the control unit, of the input tape and of the internal clock Hilbert spaces,
one obtains the quantum operation U[σ] := TrC,H,I,A(VUσV

†
U
). �

We have seen in Chapter 4 that the definition of algorithmic complexity
rests on a solid ground because the length of the shortest effective description
of a bit string is essentially independent of the computer that computes it
once this is chosen from the class of universal Turing machines. Clearly, any
definition of quantum complexity based on using QTMs will also need the
existence of universal QTMs in order to be essentially machine-independent.
In [56], a UQTM U was constructed that works as follows: for any QTM A

there exists a classical description (bit string) iA of A such that

D
(
U(iA, T, |ψ 〉〈ψ |, δ) , AT (|ψ 〉〈ψ |)

)
≤ δ ,

for all inputs |ψ 〉〈ψ | ∈ B
+
1 (HF ), computational steps T and δ > 0 with

D(·, ·) the trace-distance introduced in Definition 6.3.4.
According to this definition U is universal in that it simulates any other

QTM up to an arbitrary accuracy for a given number of steps; notice that
this latter piece of information must be part of the input. This means that,
if A halts on a certain input, U is able to approximate the output of A only
if provided with the halting time. While such a definition works perfectly
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well for the aims of [56] which are directed to see the impact of QTMs on
computational complexity (see Remark 4.1.2), it is on the other hand not
appropriate for an approach to quantum algorithmic complexity simply be-
cause the halting times are likely to be enormous and in any case cannot be
given beforehand.

A useful definition of a UQTM U for algorithmic purposes must then
be independent from the halting time of the simulated QTM A. The main
problem is that, as the simulation is only approximate, such is in particular
the simulation of the control state of A whence, when A halts, U will in general
do it only with a certain probability thus violating the halting convention in
Definition 9.1.3. In [208] it is showed how such a problem can be circumvented
and how one can arrive at the following operative definitions of UQTM which
is fully consistent from the point of view of quantum algorithmic complexity.

Theorem 9.1.1 (Strongly UQTMs ). [208] There is a QTM U such that
for every QTM A and every qubit string σ for which A(σ) is defined, there
is a qubit string σA such that

D (U(δ, σA) , A(σ)) ≤ δ ∀δ ∈ Q
+ ,

where (see Definition 9.1.1) �(σA) ≤ �(σ) +CM , D(· . ·) is the trace-distance
and CA ∈ N is a constant depending only on A.

In the following theorem, both the universal simulator, U, and the QTM
to be simulated, A, are provided with a quantum input and a classical input
fixing the accuracy δ of the approximation.

Theorem 9.1.2 (Parameter Strongly UQTMs). [208] There is a UQTM
U with the properties of the previous theorem such that for every QTM A and
every qubit string σ, there is a qubit string σA such that, if A(2k, σ) is
defined, then

D (U(k, σA) , A(2k, σ)) ≤ 1
2k

∀k ∈ N ,

and �(σA) ≤ �(σ) + CA, CA ∈ N depending only on A.

This result is not just a corollary of the preceding theorem: indeed, ac-
cording to Theorem 9.1.1, the input, σA, may in general depend on k.

Remark 9.1.3. A UQTM is able to apply a unitary transformation U on
some segment of its tape within an accuracy of δ, if it is supplied with a
complex matrix Ũ as input such that
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‖U − Ũ‖ ≤ δ

2(10
√
d)d

,

d being the size of the matrix. The machine cannot apply U exactly; in fact, it
only knows an approximation Ũ . It also cannot apply Ũ directly, for Ũ is only
approximately unitary, and the machine can only work unitarily. Instead, it
will effectively apply another unitary transformation V which is close to Ũ
and thus close to U , such that ‖V −U‖ < δ. Let |ψ〉 := U |ψ0〉 be the output
that one wants to have from U and let |φ〉 := V |ψ0〉 be the approximation that
is really computed by the machine. Then, both the norm and trace-distance
are small: ‖|φ 〉 − |ψ 〉‖ < δ, D

(
|φ 〉〈φ |, |ψ 〉〈ψ |

)
< δ.

9.2 qubit Quantum Complexity

As already remarked, unlike bit strings, qubit strings, are uncountably many
and cannot be expected to be exactly reproducible by a QTM . It rather
makes sense to try to approximate a target qubit string ρ by a qubit string ρ̃
within a trace-distance 0 ≤ D(ρ, ρ̃) - 1 (ρ̃ ≈ ρ). According to the previous
section, ρ̃ will be the output of a QTM U that executes a quantum program
σ ∈ B

+
1 (HF ): ρ̃ := U[σ] ≈ ρ.

Remark 9.2.1. In view of the definition of classical algorithmic complexity,
one is particularly interested to seek whether the length of σ (see (9.1)) can
be made shorter than that of ρ itself: �(σ) < �(ρ). The minimum possible
length �(σ) for reproducing ρ will get us close to the notion of qubit quantum
complexity QCq. There are at least two natural possible definitions. The first
one is to demand only optimal (in the sense of minimal length) approximate
reproductions of ρ within some trace distance δ. The second one is based
on the notion of an approximation scheme. In order to define the latter, the
chosen QTM has to be supplied with two inputs, the qubit string and a
parameter.

Definition 9.2.1. Let k ∈ N and σ ∈ B
+
1 (HF ). Let β(k) denote the string

that consists of the at most +log2 k, bits of the binary expansion of k, each re-
peated twice and ends with 01. Let |β(k) 〉〈β(k) | be the corresponding projec-
tor in the computational basis. The map (k, σ) �→ C(k, σ) := |β(k) 〉〈β(k) |⊗σ
defines an encoding C : N × B

+
1 (HF ) → B

+
1 (HF ) of a the pair (k, σ) into a

single qubit string C(k, σ). Note that

�(C(k, σ)) = 2+log k, + 2 + �(σ) . (9.6)

We shall denote by U(k, σ) the result of the action of a QTM U on C(k, σ).
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The above encoding has the typical self-delimiting form that we have
already met in Example 4.1.5. In this way, the QTM U is able to detach in
C(k, σ) the information about k from that about σ.

Definition 9.2.2 (qubit Quantum Complexity).
Let U be a QTM and ρ ∈ B

+
1 (HF ) a qubit string. For every δ ≥ 0, the

finite-accuracy quantum complexity QCδ
U(ρ) is defined as the minimal length

�(σ) of any quantum program σ ∈ B
+
1 (HF ) such that the corresponding output

U(σ) has a trace-distance from ρ smaller than δ,

QCδ
U(ρ) := min

{
�(σ) : D (ρ,U(σ)) ≤ δ

}
. (9.7)

Similarly, an approximation-scheme quantum complexity QCU is defined as
the minimal length �(σ) of any density operator σ ∈ B

+
1 (HF ), such that when

processed by U together with any integer k, the output U(k, σ) has trace-
distance from ρ smaller than 1/k, for all k:

QCU(ρ) := min
{
�(σ) : D (ρ , U(k, σ)) ≤ 1

k
for every k ∈ N

}
. (9.8)

We now show that theorems 9.1.1 and 9.1.2 allow one to prove the in-
dependence (up to an additive constant) of the above definitions from the
chosen QTM U if this is universal as specified in those theorems. Accord-
ingly, we will fix an arbitrary UQTM and, like in the classical case, drop
reference to it and set

QCq (ρ) := QCU(ρ) , QCδ
q (ρ) := QCδ

U(ρ) . (9.9)

Theorem 9.2.1. There is a QTM U such that for every QTM A there exist
constants CA ≥ 0 and CA,δ,Δ such that for every qubit string ρ ∈ B

+
1 (HF )

and 0 ≤ δ < Δ, it holds that

QCU(ρ) ≤ QCA(ρ) + CA , QCΔ
U (ρ) ≤ QCδ

A(ρ) + CA,δ,Δ .

Proof: Let � = QCδ
A(ρ), then there exists σ such that, according to (9.7),

� = �(σ) and D(A[σ], ρ) ≤ δ. On the other hand, Theorem 9.1.1 implies that
there exists a QTM U and a density matrix σA such that

D
(
U(Δ− δ, σA) , A(σ)

)
≤ Δ− δ

whence, by the triangle inequality,

D
(
U(Δ− δ, σA) , ρ

)
≤ Δ .
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Moreover, �(σA) ≤ �(σ) + CA = QCδ
A(ρ) + CA; thus, with C(Δ − δ, σA) as

in Definition 9.2.1, using (9.6) it follows that

�
(
C(Δ− δ, σA)

)
≤ �(σA) + Cδ,Δ ≤ QCδ

A(ρ) + CA,δ,Δ .

whence QCΔ
U (ρ) ≤ QCδ

A(ρ) + CA,δ,Δ.
If � = QCA(ρ), then there exists a qubit string σ such that � =

�(σ) and D(A(k, σ), ρ) ≤ 1/k for all k ∈ N. On the other hand, Theo-
rem 9.1.2 says that there exists a QTM U and a density matrix σA such

that D
(
U(k, σA) , A(2k, σ)

)
≤ 1

2k
. It follows that

D
(
U(k, σA) , ρ

)
≤ D

(
U(k, σA) , A(2k, σ)

)
+ D

(
A(2k, σ) , ρ

)

≤ 1
2k

+
1
2k

=
1
k
.

Together with the fact that �(σA) ≤ �(σ) + CA ≤ QCA(ρ) + CA, this implies
QCU(ρ) ≤ QCA(ρ) + CA. �

Remarks 9.2.2.

1. Definition 9.2.2 is essentially equivalent to that in [57], the only technical
difference being the use of the trace distance rather than the fidelity.

2. The same qubit program σ is accompanied by a classical specification of
an integer k, which tells the program to what accuracy the computation of
the output state must be accomplished. Notice that in (9.8) the minimal
length has to be sought among those σ such that anyone of them yields
an approximation of ρ within 1/k for all k: this is an effective procedure.

3. The exact choice of the accuracy 1/k is not important; choosing any
computable function that tends to zero for k → ∞ will get an equivalent
definition (in the sense of being equal up to some constant). The same
is true for the choice of the encoding C: as long as k and σ can both be
computably decoded from C(k, σ) and as long as there is no way to extract
additional information on the desired output ρ from the k-description
part of C(k, σ), the results will be equivalent up to a suitable constant.

Examples 9.2.1.

1. If U is a UQTM , a noiseless transmission channel (implementing the
identity transformation) between the input and output tracks can always
be realized: this corresponds to classical literal transcription, so that au-
tomatically QCδ

U(ρ) ≤ �(ρ) + cU for some constant cU . Of course, the
key point in classical as well as in quantum algorithmic complexity is
that there sometimes exist much shorter qubit programs than just literal
transcription.
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2. The finite accuracy and approximation scheme QCq are related to each
other by the following inequality: for every QTM U and every k ∈ N ,

QC1/k
q (ρ) ≤ QCq (ρ) + 2+log k, + 2, ∀ρ ∈ B

+
1 (HF ) .

Indeed, if QCU(ρ) = �, there is σ ∈ B
+
1 (HF ) with �(σ) = �, such that

D(U[k, σ], ρ) ≤ 1/k for every k ∈ N. Then σ′ := C(k, σ), where C is the
encoding in Definition 9.2.1, is such that D (U[σ′], ρ) ≤ 1/k and

QC1/k
q (ρ) ≤ �(σ′) ≤ 2+log k, + 2 + � = 2+log k, + 2 + QCq (ρ) ,

where the second equality follows from (9.6).

9.2.1 Quantum Brudno’s Theorem

In this section, we prove a quantum version of Brudno’s theorem (Theo-
rem 4.2.1), by means of which we shall connect the quantum entropy rate
s of an ergodic quantum spin chain to the qubit complexities QCq (ρ) and
QCδ

q (ρ) of qubit strings that are pure states ρ = |ψ 〉〈ψ | of the chain. It
will be showed that there are sequences of typical subspaces of (C2)⊗n, such

that the complexity rates
1
n

QCq (q) and
1
n

QCδ
q (q) of any one-dimensional

projector q onto a state belonging to these subspaces can be made arbitrarily
close to the entropy rate by choosing n large enough. Moreover, there are no
such sequences with a smaller expected complexity rate.

Theorem 9.2.2 (Quantum Brudno’s Theorem).
Let (A, ω) be an ergodic quantum source with entropy rate s. For every

δ > 0, there exists a sequence of ω-typical projectors qn(δ) ∈ A(n), n ∈ N,
i.e. limn→∞ Tr(ρ(n)qn(δ)) = 1, such that for every one-dimensional projector
q ≤ qn(δ) and n large enough

1
n

QCq (q) ∈ (s− δ, s+ δ) , (9.10)

1
n

QCδ
q (q) ∈ (s− δ(2 + δ)s, s+ δ) . (9.11)

Moreover, s is the optimal expected asymptotic complexity rate, in the sense
that every sequence of projectors qn ∈ A(n), n ∈ N, that for large n may
be represented as a sum of mutually orthogonal one-dimensional projectors
that all violate the lower bounds in (9.10) and (9.11) for some δ > 0, has an
asymptotically vanishing expectation value with respect to ω.

As for the proof of Brudno’s theorem 9.2.2, we first prove upper and then
lower bounds [40].
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Lower Bounds

In the classical case, it has been showed that there cannot be more than
2c+1 − 1 different programs of length � ≤ c and this fact has been used to
prove the lower bound to complexity in Brudno’s Theorem.

A similar result holds for QTMs , too. In order to show this, one can
adapt an argument due to [57] which states that there cannot be more than
2	+1 − 1 mutually orthogonal one-dimensional projectors p with quantum
complexity QCq (p) ≤ �. The proof is based on the Holevo’s χ-quantity (see
Proposition 6.3.3); we shall use it to provide an explicit upper bound on
the maximal number of orthogonal one-dimensional projectors that can be
approximated within trace-distance δ by the action of completely positive
maps E on density matrices σ of length �(σ) ≤ c.

Lemma 9.2.1 (Quantum Counting Argument).
Let 0 < δ < 1/e, c ∈ N such that c ≥ 1

δ

(
4 + 2 log 1

δ

)
, K a linear subspace

of an arbitrary Hilbert space K, and E : B
+
1 (HF ) → B

+
1 (K) a quantum oper-

ation. Let N δ
c be a maximum cardinality subset of orthonormal vectors from

the set Aδ
c(E,K) of all normalized vectors in K which are reproduced within

δ by the operation E on some input of length ≤ c:

Aδ
c(E,K) :=

{
|φ 〉 ∈ K : ∃σφ ∈ B

+
1 (H≤c),D (E[σφ], |φ 〉〈φ |) ≤ δ

}
,

Then, log2 |N δ
c | < c+ 1 +

2 + δ

1 − 2δ
δc.

Proof: Let φj ∈ Aδ
c(E,K), j = 1, . . . , N , a set of orthonormal vectors and

V denote the Abelian subalgebra of B(K) generated by the corresponding
projectors Pj := |φj〉〈φj | and PN+1 := 1K −

∑N
i=1 Pi. By the definition of

Aδ
c(E,K), for every 1 ≤ i ≤ N , there are density matrices σi acting on H≤c

with D(E[σi], Pi) ≤ δ.

Let σ :=
1
N

N∑

i=1

σi; it also acts on H≤c and dim H≤c = 2c+1 − 1,

whence (6.33) yields χ(Eσ) < c+1, where Eσ := {σ, σi/N}. Then, consider the
completely positive map EV : B

+
1 (K) → B

+
1 (K), ρ �→ EV [ρ] :=

∑N+1
i=1 PiρPi.

Applying twice the monotonicity of the relative entropy under completely
positive maps,

1
N

N∑

i=1

S (EV ◦ E[σi] , EV ◦ E[σ]) ≤ 1
N

N∑

i=1

S (E[σi] , E[σ])

≤ χ(Eσ) .

For every i ∈ {1, . . . , N}, the density matrix EV ◦ E[σi] is close to the corre-
sponding one-dimensional projector EV [Pi] = Pi. Indeed, (6.68) yields
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D(EV ◦ E[σi],EV [Pi]) ≤ D(E[σi], Pi) ≤ δ .

Let Δ := 1
N

∑N
i=1 Pi. The trace-distance is jointly convex (see (6.69)),

thus

D(EV ◦ E[σ],Δ) ≤ 1
N

N∑

i=1

D(EV ◦ E[σi]), Pi) ≤ δ .

Since δ < 1
e , Fannes inequality (5.157) gives

S (EV ◦ E[σi]) = |S (EV ◦ E[σi]) − S(Pi)| ≤ δ log2(N + 1) + η(δ)

∣
∣
∣S (EV ◦ E[σ]) − S(Δ)

∣
∣
∣ ≤ δ log(N + 1) + η(δ) ,

where η(δ) := −δ log2 δ. Combining the previous estimates yields

c+ 1 > χ(Eσ) ≥ (1 − 2δ) log2 N − 2δ − 2η(δ) .

If log2 N ≥ c+1+ 2+δ
1−2δ δc, then c+1 > c+1+δ(cδ−4)+2δ log δ, whence c <

2
δ

(
2 + log 1

δ

)
. Therefore, the maximum number |N δ

c | of orthonormal vectors

in Aδ
c(E ,K) must fulfil log2 |N δ

c | < c+ 1 +
2 + δ

1 − 2δ
δc. �

The second step uses the previous lemma together with Proposition 7.3.1
about the minimum dimension of the typical subspaces. Notice that the limit
(7.153) is valid for all 0 < ε < 1. By means of this property, one proves
the lower bound for the finite-accuracy complexity QCδ

q (ρ), and then use
Example 9.2.1.2 to extend it to QCq (ρ).

Corollary 9.2.1 (Lower Bound for
1
n

QCδ
q (ρ)).

Let (AZ, ω) be an ergodic quantum source with entropy rate s. Further, let
0 < δ < 1/e, and let (pn)n∈N

be a sequence of typical projectors, according to
Definition 7.3.2. Then, there is another sequence of typical projectors p̃n(δ) ≤
pn, such that for n large enough

1
n

QCδ
q (p̃) > s− δ(2 + δ)s

is true for every one-dimensional projector p ≤ p̃n(δ).

Proof: The case s = 0 is trivial, so let s > 0. Fix n ∈ N, 0 < δ < 1/e and
consider the set

Ãn(δ) :=
{
p ≤ pn : p = |ψ 〉〈ψ | , QCδ

q (p) ≤ ns(1 − δ(2 + δ))
}
.

From the definition of QCδ
q (p), for any of such p’s there exists a density

matrix σp with �(σp) ≤ ns(1 − δ(2 + δ)) such that D(U(σp), p) ≤ δ, where,
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as explained in Lemma 9.1.1, U(σp) is the result of the quantum operation
U : B

+
1 (HF ) → B

+
1 (HF ) associated with the UQTM U that has been fixed as

explained before Theorem 9.1.1. Then, using the notation of Lemma 9.2.1,
Ãn(δ) ⊂ Aδ

�ns(1−δ(2+δ))�(U,Kn), where Kn is the typical subspace supporting
pn. Let pn(δ) ≤ pn be the sum of any maximal number of mutually orthogonal
projectors from Aδ

�ns(1−δ(2+δ))�(U,Kn). If n is such that

ns(1 − δ(2 + δ)) ≥ 1
δ

(

4 + 2 log2

1
δ

)

,

Lemma 9.2.1 implies that

log2 Tr pn(δ) < (ns(1 − δ(2 + δ))) + 1 +
2 + δ

1 − 2δ
δ(ns(1 − δ(2 + δ))) . (9.12)

Therefore, no one-dimensional projectors p ≤ pn(δ)⊥ := pn − pn(δ) exist
such that p ∈ Aδ

�ns(1−δ(2+δ))�(U,Kn). Namely, one-dimensional projectors
p ≤ pn(δ)⊥ must satisfy

1
n

QCδ
q (p) > s− δ(2 + δ)s .

Since inequality (9.12)) is valid for every n ∈ N large enough,

lim sup
n→∞

1
n

log2 Trnpn(δ) ≤ s− 2δ3s− 5δ4s
1 − 2δ

< s. (9.13)

From Proposition 7.3.1 limn→∞ Tr(ρ(n)pn(δ)) = 0, whence p̃n(δ) := pn(δ)⊥

provide the required sequence of typical projectors. �

Corollary 9.2.2 (Lower Bound for
1
n

QCq (ρ)).

Let (AZ, ω) be an ergodic quantum source with entropy rate s. Let (pn)n∈N

with pn ∈ A(n) be an arbitrary sequence of typical projectors. Then, for every
0 < δ < 1/e, there is a sequence of typical projectors p̃n(δ) ≤ pn such that,

for n large enough,
1
n

QCq (p) > s − δ is satisfied for every one-dimensional

projector p ≤ p̃n(δ).

Proof: From Corollary 9.2.1, for every k ∈ N, there exists a sequence of
typical projectors pn( 1

k ) ≤ pn, such that, if n is large enough,

1
n

QC1/k
q (p) > s− 1

k
(2 +

1
k

)s

for every one-dimensional projector p ≤ pn(1/k). Then
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1
n

QCq (p) ≥ 1
n

QC1/k
q (p) − 2 + 2+log2 k,

n

> s− 1
k

(

2 +
1
k

)

s− 2(2 + log2 k)
n

,

where the first estimate is by Example 9.2.1.2 and the second one is true for
one-dimensional projectors p ≤ pn( 1

k ) and n ∈ N large enough. Fix a large k

satisfying
1
k

(2 +
1
k

)s ≤ δ

2
. The result follows by setting p̃n(δ) = pn(

1
k

) with
k, and n such that

1
k

(2 +
1
k

)s ≤ δ

2
,

2(2 + log2 k)
n

≤ δ

2
.

�

Upper Bounds

The lower bound shows that, for large n, with high probability the qubit
complexity of pure states of a quantum spin chain is bounded from below
by a quantity which is close to the entropy rate of the chain. Similar upper
bounds also hold from which Theorem 9.2.2 follows.

Proposition 9.2.1 (Upper Bound).
Let (AZ, ω) be an ergodic quantum source with entropy rate s. Then, for

every 0 < δ < 1/e, there is a sequence of typical projectors pn(δ) ∈ A(n) such
that for every one-dimensional projector p ≤ pn(δ) and n large enough

1
n

QCq (p) < s+ δ and
1
n

QCδ
q (p) < s+ δ .

The proof of this statement is obtained by explicitly providing, for any
minimal projector p ≤ pn(δ) ∈ A(n), a qubit string p̃ of length �(p̃) � n(s+δ),
that computes p with arbitrary accuracy. Such a qubit string is constructed
by means of universal quantum typical subspaces introduced (see Defini-
tion 7.3.3); its length is in general not minimal and only upperbounds the
quantum complexities QCδ

q (p) and QCq (p). However, it is shorter than the
literal transcription of p (see Example 9.2.1.2): recall that the latter corre-
sponds to a qubit string p̃ comprising p itself plus the instructions to the
UQTM U to copy p, whence its length �(p̃) � n > n(s+ δ) for n large enough
and δ sufficiently small.

Let 0 < ε < δ/2 be an arbitrary real number such that r := s + ε is
rational, and let {p̃n := Q

(n)
s,ε }n∈N be the universal projector sequence of

Theorem 7.3.3, which is independent of the given state ω as long as s(ω) ≤ s.
Though the dimension of the subspace supporting p̃n is � 2nr, generic

one dimensional projections q̃ ≤ p̃n are not qubit strings as defined in
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Section 9.1.1 and their lengths need not be �(q̃) � nr. However, because
of (7.154), if n is large enough then there exists some unitary transformation
U† that transforms the projector p̃n into a projector belonging to the state-
space B

+
1 (H�nr�), where (nr) is the smallest integer larger then nr. It follows

that every one-dimensional projector p̃ ≤ p̃n can be transformed into a qubit
string p := U†p̃U of length �(p) = (nr).

According to Remark 9.1.3, p can be presented to the UQTM U together
with some classical instructions including a subprogram for the computation
of the necessary unitary rotation U . This UQTM starts by computing a
classical description of the transformation U , and subsequently applies U to
p, recovering the original projector p̃ = U pU† on the output tape.

Apart from technical details, the main point in the proof is the following:
since the unitary operator U depends on ω only through the entropy rate s,
the subprogram that computes U does not have to be supplied with addi-
tional information on ω and its restriction to A(n). Therefore, the additional
instruction for the implementation of U will contribute with a number of
extra qubits which is independent of the universal projection index n.

The quantum decompression algorithm D will formally amount to a map-
ping (r is rational)

D : N × N × Q × HF → HF , (k, n, r, p̃) �→ p = D(k, n, r, p̃) .

Remark 9.2.3. The decompression algorithm D is due to be short in the
sense of being ”short in description”, not short (fast) in running time or
resource consumption. Indeed, the algorithm D is in general slow and memory
consuming; however, this does not matter. In fact, algorithmic complexity
only cares about the length of the programs and not either in how fast they
are computed or in how much resources they consume.

In the following steps, D will deal with rational numbers, square roots of
rational numbers, bit-approximations (up to some specified accuracy) of real
numbers and vectors and matrices containing such numbers. Classical TMs
as well QTMs can of course deal with all such objects. For example, rational
numbers can be stored as lists of two integers (containing numerator and
denominator), square roots can be stored as such lists supplemented with an
additional bit to denote the square root operation, and, also, binary-digit-
approximations can be stored as binary strings. Vectors and matrices are
arrays containing those objects. They will be presented to the UQTM U as
vectors of the computational basis and operations on them, like addition or
multiplication, will as easily be implemented as by classical computers.

The instructions defining the quantum algorithm D are as follows.
1. Read n, r; find � ∈ N such that � · 23� ≤ n < 2 · � · 23·2� with � a power of two

(there is only one such �). Compute ñ := �n
�
�. Compute R := r�.

2. Compute a list of codewords Ω
(ñ)
�,R, belonging to a classical universal block code

sequence of rate R. The construction of an appropriate algorithm can be found
for instance in [168].
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Since Ω
(ñ)
l,R ⊂

(
{0, 1}l

)ñ
, Ω

(ñ)
l,R = {ω1, ω2, . . . , ωM} can be stored as a list of

binary strings. Every string has length �(ωi) = ñl and the exact value of the

cardinality M ≈ 2ñR depends on the choice of Ω
(ñ)
�,R.

3. Compute a basis
{
A{i1,...,iñ}

}
of the symmetric subspace

SY M ñ(A(�)) := span{A⊗ñ : A ∈ A(�)} .

Namely, for every ñ-tuple {i1, . . . , iñ}, where ik ∈ {1, . . . , 22�}, there is one
basis element A{i1,...,iñ} ∈ A(ñ�), given by

A{i1,...,iñ} =
∑

σ

e
(�,ñ)

σ(i1,...,iñ) , (9.14)

where the summation runs over all ñ-permutations σ, and

e
(�,ñ)
i1,...,iñ

:= e
(�)
i1

⊗ e
(�)
i2

⊗ . . . ⊗ e
(�)
iñ

,

with
{

e
(�)
k

}22�

k=1
a system of matrix units in A(�). In the computational basis,

all entries of such matrices are zero, except for one entry which is one. There is

a number of d =
(

ñ+22l−1
22�−1

)
= dim(SY M ñ(A(�))) different matrices A{i1,...,iñ}

which we can label by {Ak}d
k=1. It follows from (9.14) that these matrices have

integer entries and can thus be stored as lists of 2ñ� × 2ñ�-tables of integers
without any need of approximations.

4. For every i ∈ {1, . . . , M} and k ∈ {1, . . . , d}, let |uk,i〉 := Ak|ωi〉, where |ωi〉
denotes the computational basis vector which is a tensor product of |0〉’s and
|1〉’s according to the bits of the string ωi. Compute the vectors |uk,i〉 one after
the other. For every vector that has been computed, check if it can be written as
a linear combination of already computed vectors. (The corresponding system
of linear equations can be solved exactly, since every vector is given as an array
of integers.) If yes, then discard the new vector |uk,i〉, otherwise store it and give
it a number. This way, a set of vectors {|uk〉}D

k=1 is computed. These vectors

linearly span the support of the projector W
(lñ)
�,R given in (7.157).

5. Denote by {|φi〉}2n−ñ�

i=1 the computational basis vectors of Hn−ñ�. If n = � 23·l,

then let D̃ := D, and let |xk〉 := |uk〉. Otherwise, compute |uk〉⊗ |φi〉 for every

k ∈ {1, . . . , D} and i ∈ {1, . . . , 2n−ñ�}. The resulting set of vectors {|xk〉}D̃
k=1

has cardinality D̃ := D · 2n−ñ�. In both cases, the resulting vectors |xk〉 ∈ Hn

span the support of the projector Q
(n)
s,ε = pn.

6. The set {|xk〉}D̃
k=1 is completed to linearly span the whole space Hn. This will

be accomplished as follows. Consider the sequence of vectors

{

| x̃j 〉
}D̃+2n

j=1

:=

{

|xj 〉
}D̃

j=1

∪
{

|Φj 〉
}2n

j=1

,

where {Φk}2n

k=1 denotes the computational basis vectors of Hn. Find the smallest

i such that |x̃i〉 can be written as a linear combination of

{

| x̃j 〉
}i−1

j=1

, and

discard it (this can still be decided exactly, since all the vectors are given as
tables of integers). Repeat this step D̃ times until there remain only 2n linearly
independent vectors, namely all the |xj〉 and 2n − D̃ of the |Φj〉.
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7. Finally, apply the Gram-Schmidt orthonormalization procedure to the resulting

vectors, to get an orthonormal basis

{

|yk〉
}2n

k=1

of Hn, such that the first D̃

vectors are a basis for the support of Q
(n)
s,ε = pn. Since every vector |xj〉 and

|Φj〉 has only integer entries, all the resulting vectors |yk〉 will have only entries
that are (plus or minus) the square root of some rational number.

Up to this point, the previous steps did not involve any kind of numerical
approximation. Instead, the next ones will compute an approximate descrip-
tion of the desired unitary decompression map U and apply it to the quantum
state p. In view of Remark 9.1.3, the task is to calculate the number N of bits
necessary to guarantee that the output will be within trace-distance δ = 1/k
of p̃.

8. Read the value of k (which denotes an approximation parameter; the larger
k, the more accurate the output of the algorithm will be). Due to the con-
siderations above and the calculations below, the necessary number of bits N
turns out to be N = 1 + �log(2k2n(10

√
2n)2

n

)�. Compute this number. Then,

compute the components of all the vectors {|yk〉}2n

k=1 up to N bits of accuracy.
(This involves only calculation of the square root of rational numbers, which
can be done to any desired accuracy.) Denote the resulting numerically ap-
proximated vectors by |ỹk〉 and write them as columns into an array (a matrix)
Ũ := (ỹ1, ỹ2, . . . , ỹ2n). Let U := (y1, y2, . . . , y2n) denote the unitary matrix
with the exact vectors |yk〉 as columns. Since N binary digits give an accuracy
of 2−N , it follows that

∣
∣
∣Ũi,j − Ui,j

∣
∣
∣ < 2−N <

1/k

2 · 2n(10
√

2n)2n
.

If two 2n × 2n-matrices U and Ũ are ε-close in their entries, they must be
2n · ε-close in norm, too. Whence we get

‖Ũ − U‖ <
1/k

2(10
√

2n)2n
.

So far, every step could have been performed on a classical computer; the
intrinsically quantum part starts when one consider the qubit string p, that
is the input quantum program.

9. Compute �nr�, which gives the length �(p̃). Afterwards, move p̃ to some free
space on the input tape, and append zeroes, i.e. create the state

p′ ≡ |ψ0〉〈ψ0| := (|0〉〈0|)⊗(n−�(p̃)) ⊗ p̃

on some segment of n cells on the input tape.
10. According to Remark 9.1.3, apply a unitary approximation to the unitary

transformation U on the tape segment that contains the state p′, move the
result onto the output tape and halt.
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Proof of Proposition 9.2.1 The triple (n, r, q̃) can be encoded into a
single qubit string σ (note that the parameter k is not a part of σ) as follows.
First, write both r and n in a self-delimiting way as computational basis
vectors |β(r)〉, respectively |β(n)〉 (see Definition9.2.1), of length 2 log2 r+ 2,
respectively 2 log2 n+ 2,.

Then, consider the projectors Pn := |β(n)〉〈β(n)|, Pr := |β(r)〉〈β(r)| and
attach to them the rotated projector p = U† p̃ U , so that the resulting input
qubit string is σ(p) := Pr ⊗ Pn ⊗ p. If n fulfils (7.162), then

�(σ(p)) = 2+log2 n, + 2 + c+ (nr) ,

where C(r) ∈ N is some constant which depends on C(r), but not on n.
This qubit string is presented to the UQTM U together with a description

of the decompression algorithm D of fixed length C ′(r) which depends on r,
but not on n. This will give a qubit string σU(p) of length

�(σU(p)) = 2+log2 n, + 2 + C(r) + (nr) + C ′(r)

≤ 2 log2 n+ n

(

s+
1
2
δ

)

+ C ′′(r) ,

where C ′′(r) is again a constant which depends on r, but not on n. The
matrix U , whose construction is part of the decompression algorithm D,
rotates (decompresses) a compressed (short) qubit string p back into the
typical subspace. Conversely, for every one-dimensional projector p̃ ≤ p̃n,
where p̃n = Q

(n)
s,ε was defined in (7.161), let p ∈ H�nr� be the projector given

by (| 0 〉〈 0 |)⊗(n−�nr�) ⊗ p = U†p̃U . Then, since D is such that the trace-
distance fulfils D

(
U(σU(p), k), p̃

)
< 1

k for every k ∈ N, it follows that

1
n

QCq (p̃) ≤ 2
log2 n

n
+ s+

1
2
δ +

C ′′(r)
n

.

If n is large enough, then the first inequality in Proposition 9.2.1 follows,
while the second inequality is proved by letting k := ( 1

2δ ). Then, for every
one-dimensional projector p̃ ≤ p̃n and n large enough

1
n

QC2δ
q (p̃) ≤ 1

n
QC1/k

q (p̃) ≤ 1
n

QCq (p̃) +
2+log2 k, + 2

n

< s+ δ +
2 log2 k + 2

n
< s+ 2δ , (9.15)

where the first inequality follows from the obvious monotonicity property
δ ≥ ε ⇒ QCδ

q (ρ) ≤ QCε
q (ρ), the second one is by Example 9.2.1.2 and the

third estimate is due to the first inequality in Proposition 9.2.1. �
Proof of Theorem 9.2.2 Let p̃n(δ) be the typical projector sequence

given in Proposition 9.2.1, i.e. the complexities
1
n

QCq (p̃) and
1
n

QCδ
q (p̃) of

every one-dimensional projector p̃ ≤ p̃n(δ) are upperbounded by s+ δ.
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Due to Corollary 9.2.1, there exists another sequence of typical projectors

πn(δ) ≤ p̃n(δ) such that additionally,
1
n

QCδ
q (π) > s − δ(2 + δ)s is satisfied

for all one-dimensional projections π ≤ πn(δ).
Also, from Corollary 9.2.2, there is another sequence of typical projectors

π̃n(δ) ≤ πn(δ) such that
1
n

QCq (π) > s − δ holds for all one-dimensional

projections π ≤ π̃n(δ).
Further, the optimality of these upper and lower bounds, and thus of

s as optimal expected asymptotic complexity rate, follows from applying
Lemma 9.2.1 together with Proposition 7.3.1. �

Remark 9.2.4. Unlike in Theorem 4.2.1 where the result holds almost ev-
erywhere, its quantum generalization given above essentially holds in proba-
bility. The major obstruction to a stronger quantum version comes form the
difficulty of extending to qubit strings what is natural for bit strings, namely
their concatenation [60].

Example 9.2.2. Consider a quantum spin chain (A, ω) of Bernoulli type
with a state ω which is the tensor product of tracial states ρ = 1l2/2 for each
qubit ; this quantum source is mixing, thus ergodic and its entropy rate is
s = −Trρ log2 ρ = 1. Then, the quantum version of Brudno’s theorem states
that there exists a sequence of subspaces Kn ⊆ HF of high probability, such
that for any ε > 0, by taking n sufficiently large,

1 − ε ≤ 1
n

QCq (|Ψ 〉〈Ψ |) ≤ 1 + ε ,

for all qubit pure state Ψ ∈ Kn.

9.3 cbit Quantum Complexity

A different approach to quantum algorithmic complexity is proposed in [309]
where as effective descriptions of n-qubit strings |Ψ 〉 ∈ Hn one chooses bit
strings corresponding to self-delimiting classical programs p ∈ Ω∗

2 instead
of generic qubit strings. These classical programs are presented to a fixed
UQTM U as computational basis vectors | p 〉 which, after being processed
by U, outputs normalized vectors |U(p) 〉 ∈ Hn. Furthermore, the difference
between the output |U(p) 〉 and the target |Ψ 〉 is taken care of by the scalar
product 〈Ψ |U[p] 〉.

Definition 9.3.1 (bit Quantum Complexity). The bit quantum complex-
ity QCc (Ψ) of n-qubit vector states |Ψ 〉 ∈ Hn is

QCc (Ψ) := min
{
�(p) +

⌈
− log2 |〈Ψ |U[p] 〉|2

⌉}
,

where p ∈ Ω∗
2 is any self-delimiting binary program.
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The logarithmic correction acts as a penalty for bad approximations:
− log2 |〈Ψ |U[p] 〉| diverges for an effective description of Ψ which yields a
vector orthogonal to it, while it vanishes when |U(p) 〉 � |Ψ 〉. Therefore, the
bit quantum complexity results from a tradeoff between the length of the
classical description and the permitted errors.

Example 9.3.1. Let a vector Ψ ∈ Hn be called directly computable if there
exists a self-delimiting program p ∈ Ω∗

2 such that |U(p) 〉 = |Ψ 〉. Then,
consider an orthonormal basis B := {| bi 〉}2n

i=1 in Hn entirely consisting of
directly computable vectors. Let K(B) denote its classical prefix-complexity
achieved by a self-delimiting program qB, K(B) = �(qB). Let us fix | bi 〉 ∈ B;
if pi is any program such that |U(pi) 〉 = | bi 〉 then no penalty for a bad
approximation is to be payed and, with p∗ the shortest among such programs,

QCc (bi) ≤ �(p∗) . (∗)

On the other hand, let QCc (bi) be attained at q∗ ∈ Ω∗
2 , namely

QCc (bi) = �(q∗) +
⌈
− log2 |〈U(q∗) | bi 〉|2

⌉
.

By letting U process the binary programs in dovetailed fashion (see Re-
mark 4.1.5), q∗ can be used to construct the vector |U(q∗) 〉 ∈ Hn whose
coefficients 〈 bj |U(q∗) 〉 in the expansion with respect to the ONB B provide
probabilities |〈 bj |U(q∗) 〉|2 that can be used to construct a Shannon-Fano-
Elias code-word q(i) for | bi 〉 (see Example 3.2.3). Therefore, qB, q∗ and q(i)
can be used to construct a self-delimiting program q = qBq∗q(i) such that U

does the following:

– it constructs the directly computable basis B and the vector |U(q∗) 〉;
– it computes the Shannon-Fano-Elias code for B with respect to |U(q∗) 〉;
– it outputs the vector with code-word q(i).

Since |U(q) 〉 = | bi 〉, from (∗) one gets

�(p∗) ≤ �(q) ≤ �(q∗) + �(q(i)) + K(B) + C = QCc (bi) + K(B) + C , (∗∗)

whence, up to an additive constant,

QCc (Ψ) = min
{
�(p) : |U(p) 〉 = |Ψ 〉

}

for all Ψ belonging to a directly computable ONB .

The preceding example can be used to show that bit quantum complexity
and classical prefix complexity agree on bit strings.

Proposition 9.3.1. For all i ∈ Ω∗
2 , QCc (| i 〉) = K(i) up to an additive

constant.
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Proof: Choosing the computational basis {| i(n) 〉}i(n) ∈ Ω
(n)
2 as the di-

rectly computable ONB B of the previous example, the result follows from
(∗∗) because the shortest program that tells U how to generate B is now such
that �(qB) = O(1). �

For generic qubit strings, a loose upper bound is easily obtained.

Proposition 9.3.2. [309] If Ψ ∈ Hn is normalized

QCc (Ψ) ≤ 2n + C ,

where C is a constant independent of Ψ .

Proof: Consider the computational basis vectors | i(n) 〉 ∈ Hn; by expand-
ing |Ψ (n) 〉 =

∑
i(n)∈Ω

(n)
2

c(i(n)) | i(n) 〉, there must be at least one i(n)
∗ such

that |c(i(n)
∗ )|2 ≥ 2−n. Let p ∈ Ω∗

2 be a self-delimiting program such that, by
literal transcription, |U(p) 〉 = | i(n)

∗ 〉. Then, with such a choice of effective
description of |Ψ 〉 one gets the upper bound

QCc (Ψ) ≤ �(p) +
⌈
− log2 |〈U(p) |Ψ 〉|2

⌉
≤ 2n + C .

�
A lower bound to the bit quantum complexity of a subset of Ψ ∈ Hn can

be obtained following an argument developed in [119]. For any Ψ ∈ Hn and
α ≥ 0, let us define the subsets

Ω∗
2 ⊇ Πα(Ψ) :=

{
p ∈ Ω∗

2 : − log2 |〈U(p) |Ψ 〉|2 < α
}

and the quantities QCα(Ψ) := min{�(p) : p ∈ Πα(Ψ)}. If α ≥ β, then
Πβ(Ψ) ⊆ Πα(Ψ), whence

α ≥ β =⇒ QCβ(Ψ) ≥ QCα(Ψ) ≥ QC∞(Ψ) .

Notice that QC∞(Ψ) is the length of the shortest classical programs p such
that |U[p] 〉 is non-orthogonal to |Ψ 〉, |〈U(p) |Ψ 〉| > 0. Therefore, if QCc (Ψ)
is attained at q, that is if

QCc (Ψ) = �(q) +
⌈
− log2 |〈U(q) |Ψ 〉|2

⌉

︸ ︷︷ ︸
β

,

then, �(q) ≥ QCβ(Ψ) ≥ QCα(Ψ) for all α ≥ β and

QCc (Ψ) ≥ QC∞(Ψ) + β . (9.16)

The following Lemma shows that there are vectors Ψ ∈ Hn for which QC∞(Ψ)
cannot be small.
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Lemma 9.3.1. Let K(d) ⊆ Hn be a d-dimensional subspace; then, for all
0 ≤ a ≤ log2 d there exists a subspace Ka ⊆ K(d) of dimension da ≥ d − 2a

such that QC∞(Ψ) ≥ a for all Ψ ∈ Ka.

Proof: According to (4.6), there are less than 2a programs p ∈ Ω∗
2 with

�(p) < a; it follows that the subspace H(a) linearly spanned by the corre-
sponding vectors |U[p] 〉 has dimension ≤ 2a. Let K(d) ⊆ Hn be any subspace
of dimension d ≥ 2a and choose Ka ⊆ K(d) orthogonal to H(a) and thus of
dimension da ≥ d − 2a. Now, |Ψ 〉 ∈ Ka satisfies QC∞(Ψ) ≥ a, unless there
is a program p with �(p) < a with 〈U(p) |Ψ 〉 �= 0; this is impossible since, by
construction, |Ψ 〉 is orthogonal to the linear span of |U[p] 〉 with �(p) < a. �

Unlike for the qubit quantum complexity QCq where the corresponding
complexity rate could be controlled by means of high probability subspaces,
in the case of the bit quantum complexity QCc, one has to argue in terms of
volumes of vectors. Indeed, one can estimate how many unit vectors |Ψ 〉 ∈ Ka

satisfy QCα(Ψ) < r. This will be done by representing Ψ as a point u ∈ R
2da

on the unit sphere S2da
whose coordinates are the real and imaginary parts

of the Fourier coefficients of the expansion of |Ψ 〉 with respect to a chosen
ONB in the subspace Ka.

Let S2da
(θ) denote the area of the sector of S2da

consisting of unit vectors
u ∈ R

2da which have scalar product 1 ≥ u · e ≥ cos θ with respect to a fixed
vector e; it is expressed by

S2da
(θ) =

∫ θ

0

dφA2da−1(sinφ) ,

where

An(t) = tn−1 2πn/2

Γ (n/2)
,

with Γ (z) the Euler Gamma function, is the area of the unit sphere Sn in
R

n of radius t (notice that area of the unit sphere and area of the sector of
angle θ are related by An(1) = Sn(π)). The sector area can be bounded from
above as follows:

S2da
(θ) =

2πda−1/2

Γ (da − 1/2)

∫ θ

0

dφ sin2da−1 φ ≤ 2πda−1/2

Γ (da − 1/2)
sin2(da−1) θ .

(9.17)
Let S̃2da

(θ) denote the sector area S2da
(θ) normalized to that of the unit

sphere, A2da
(1); then,

S̃2da
(θ) :=

S2da
(θ)

A2da
(1)

≤ 2πda−1/2

Γ (da − 1/2)
Γ (da)
2πda

sin2(da−1) θ (9.18)

< da e−(da−1)(θ−π/2)2 , (9.19)

where the last inequality comes from expanding f(θ) := log sin θ around π/2,
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f(θ) = −1
2
(θ−π/2)2+

1
6
f

′′′
(θ) (θ−π/2)3 ≤ −1

2
(θ−π/2)2 , θ ≤ θ ≤ π/2 ,

and from the fact that f
′′′

(θ) ≥ 0. We now use (9.19) to estimate the relative
volume, Fa(p, α), of the subset

Fa(p, α) :=
{
|ψ 〉 ∈ Ka : − log2 |〈U(p) |ψ 〉|2 < α

}

consisting of vectors with penalty smaller than α with respect to a given
output |U[p] 〉. Since 2−α/2 < |〈U[p] |ψ 〉| = cos θ = sin(π/2 − θ) ≤ π/2 − θ,

Fa(p, α)) < da e−(da−1)2−α

.

From this inequality we further deduce

Lemma 9.3.2. The relative volume, F r
a (α), of the set

Fr
a(α) :=

{
|ψ 〉 ∈ Ka : QCα(ψ) < r

}

has relative volume F r
a (α) such that

F r
a (α) < da 2r e−(da−1)2−α

.

Proof: If |ψ 〉 ∈ Ka is such that QCα(ψ) < r, then − log2 |〈ψ |U[p] 〉|2 < α
for at least one program p with �(p) < r; the result then follows since there
are ≤ 2r such programs. �

The complement Gr
a(α) of Fr

a(α) consists of |ψ 〉 ∈ Ka such that either
− log2 |〈ψ |U[p] 〉|2 ≥ α or − log2 |〈ψ |U[p] 〉||2 < α, but �(p) ≥ r. In other
words, from (9.16) and Lemma 9.3.1, it turns out that Gr

a(α) consists of
|ψ 〉 ∈ Ka such that

QCc (ψ) ≥ QC∞(Ψ) + α ≥ a+ α (9.20)

or
QCc (ψ) ≥ r − log2 |〈ψ |U[p] 〉||2 ≥ r . (9.21)

Notice that the relative volume Gr
a(α) of Gr

a(α) is large, Gr
a(α) ≥ 1− ε if the

relative volume of Fr
a(α) is small, F r

a (α) ≤ ε. Lemma 9.3.2 can then be used
to prove that for a large fraction of vectors |ψ 〉 ∈ Ka one has QCc (ψ) � 2n
when n → ∞.

Proposition 9.3.3. For any ε ≥ 0 and N � n large enough, there exists
a subspace Kn−1 ⊂ Hn of dimension ≥ 2n−1 containing a subset Gn−1 of
relative volume Gn−1 ≥ 1 − ε such that, for all |Ψ 〉 ∈ Gn−1,

2 − ε ≤ QCc (Ψ)
n

≤ 2 + ε .
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Proof: Choose H(d) = Hn in Lemma 9.3.1 and a = n−1; then, there exists
a subspace Kn−1 ⊂ Hn of dimension dn−1 ≥ 2n − 2n−1 = 2n−1 such that
QC∞(Ψ) ≥ n− 1 for all Ψ ∈ Kn−1. Setting r = 2n and α = n− 1 − 2 log2 n
in Lemma 9.3.2 one gets

F 2n
n−1(n− 1 − 2 log2 n) < e−(1−2−n+1)n2 + (3n−1) log 2 .

Thus, for n sufficiently large, the subset Gn−1 ⊆ Kn−1 of Ψ ∈ Kn−1 that
violate QCn−1−2 log2 n(Ψ) < 2n has relative volume Gn−1 ≥ 1− ε. The result
then follows by applying the lower bound in Proposition 9.3.2 and the upper
bounds (9.20) and (9.21). �

Remark 9.3.1. Proposition 9.3.3 states that a large fraction of n-qubit vec-
tor states belonging to a subspace of dimension not less than 2n−1 has a bit
quantum complexity per symbol close to 2. Notice that this is twice the qubit
quantum complexity per symbol of all pure states in the high probability sub-
spaces of a Bernoulli quantum source (see Example 9.2.2). However, in the
latter case the fact that the complexity rate � 1 follows from the specific
structure of the state ω on the quantum spin chain A. Instead, the result
of Proposition 9.3.3 does not refer to the considered n qubits belonging to a
quantum chain and thus to a reference global state ω. Indeed, the weights of
the subsets of vectors with bit quantum complexity rate � 2 are estimated
in terms of relative volumes instead of probabilities as in Theorem 9.2.2.

Circuit Algorithmic Complexity

Any state |Ψ 〉 ∈ Hn of n qubits can be obtained as the result of an action
on a fixed state |Φ 〉 ∈ Hn by a suitable unitary operator U : Hn �→ Hn.
From Remark 9.1.1.2 we know that the action of U can be approximated
within any ε > 0 by means of a quantum circuit, that is by another unitary
operator V : Hn �→ Hn, consisting of N(U, ε) gates from a complete gate
basis G. Furthermore, to leading order in the number of qubits and of the

accuracy ε, the number of gates scales as N(U, ε) = O
(
2n log

1
ε

)
.

This fact is essential in the definition of quantum algorithmic complexity
proposed in [205, 206, 207] where the focus is not on the effective description
of the n-qubit states, whether quantum or classical, rather on the effective
description of the quantum circuits that can be used to effectively construct
those quantum states up to a certain fixed accuracy ε.

Given a complete gate basis G, the fixed ready state |Φ 〉 and the accuracy
parameter ε > 0, a same |Ψ 〉 can be reached up to ε by a certain set C

G,ε
Ψ

of quantum circuits V G,ε
Ψ that will be identified with their unitary actions

on |Φ 〉. Let the description of any of these circuits be encoded by a binary
string iV G,ε

Ψ
∈ Ω∗

2 ; then
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Definition 9.3.2 (Circuit Quantum Complexity). Let ΩG,ε
Ψ ⊂ Ω∗

2 be
the subset of strings that encode the circuits in C

G,ε
Ψ ; the circuit quantum

algorithmic complexity of an n-qubit state |Ψ 〉 ∈ Hn is the least classical
prefix algorithmic complexity of the strings in ΩG,ε

Ψ :

QCG,ε
net (Ψ) := min

{
K(iV G,ε

Ψ
) : iV G,ε

Ψ
∈ ΩG,ε

Ψ

}
.

Remark 9.3.2. The dependence of QCnet on the encoding of the descrip-
tion of the circuits V G,ε

Ψ ∈ C
G,ε
Ψ can be handled as in classical algorithmic

complexity: a change of code is taken care of by a finite additive constant
corresponding to a suitable dictionary which is thus independent of the circuit
described.

The physical motivation behind such a definition is that, after all, quan-
tum states can be prepared by means of arrays of unitary gates that can be
effectively described; then, the idea is to relate the complexity of vector states
to the degree of compressibility of the descriptions of the quantum circuits
that provide suitable approximations to them.

Example 9.3.2. If one want to reproduce a bit string i(n) by a quantum
circuit, the first step is to associate it to a qubit vector state | i(n) 〉 of the so
called computational basis (see Section 4.1.1), where

| i(n) 〉 = | i1 〉 ⊗ | i2 〉 ⊗ · · · | in 〉 , ij = 0, 1 , σ3| ij 〉 = (−1)ij | ij 〉 .

This state can then easily be obtained by flipping with σ
ij

1 the j-th qubit
of | 0 〉⊗n. The corresponding quantum circuit consists of n 1-qubit gates,
either trivially the identity matrix 1l2 or the Pauli matrix σ1; therefore, an
upper bound to the algorithmic complexity of the classical description of such
a quantum circuit is easily seen to scale as n, exactly as the Kolmogorov
complexity of a generic bit string of length n (see Proposition 4.1.1).

Within this approach one usually estimates the complexity by upper
bounds that depend on results as the one quoted in Remark 9.1.1.2, whence
the circuit complexity of a state |Ψ 〉 of n qubits can be estimated as follows:

QCG,ε
net (Ψ) = O(n22n log 1/ε) , (9.22)

where f(n) = O(g(n)) if there exists Cf,g > 0 such that |f(n)| ≤ Cf,g|g(n)|.

Remark 9.3.3. As already pointed out (see for instance Example 3.2.2), a
bit string i(n) of length n can be associated with an interval in [0, 1] of length
2−n; this latter can also be interpreted as the volume of the subset V (i(n))



9.3 cbit Quantum Complexity 513

of bit strings of any length that are prefixed by i(n). Therefore, the upper
bound (4.5) to the algorithmic complexity of i(n) scales as − log V (i(n)) = n.
In a quantum context, because of the lack of discreteness, given a fixed n-
qubit vector Ψ , one can in general only hope to construct it within an error
ε; namely, a quantum circuit can be devised that outputs |ψ 〉 ∈ (C2)⊗n such
that |〈ψ |Ψ 〉| ≥ 1 − ε for some accuracy parameter 0 ≤ ε ≤ 1. Using (9.17),
one finds that the logarithm of the volume Vε(Ψ) of such a cone scales as
2n log ε in agreement with (9.22).

Notice that the upper bound to the bit quantum complexity in Proposi-
tion 9.3.2 is obtained by choosing |ψ 〉 such that |〈ψ |Ψ 〉| ≥ 2−n; this cor-
responds to a parameter in (9.22) which scales as ε � 1 − 2−n and to an
upper bound to QCG,ε

net (Ψ) which is only polinomially different from the one
to QCc (Ψ) [207].

By means of the upper bound (9.22), it is possible to put into evidence
the difference in circuit complexity between separable and entangled states.

The important point is that a product state |Ψ 〉 =
J⊗

j=1

|Φj 〉 ∈ Hn can

be constructed with accuracy ε by means of n circuits that construct the
vectors |Φj 〉 with accuracy ε/n [205]. Suppose that the state |Ψ 〉 shows some
entanglement between its constituent qubits ; namely, |Ψ 〉 =

⊗J
j=1 |Φj 〉,

where
∑J

j=1 nj = n and |Φj 〉 ∈ Hnj
are entangled states of nj qubits. Then,

one obtains

QCG,ε
net (Ψ) = O

( J∑

j=1

n2
j2

nj log
J

ε

)
.

For sufficiently small ε, the sum is upper bounded by

J∑

j=1

n2
j2

nj log
J

ε
≤ n22n J

2J−1
log

J

ε
≤ n22n log

1
ε
.

Therefore, the upper bound is the largest when the state |Ψ 〉 is completely
entangled, that is when J = 1 and nj = n; vice versa, in the case of complete
separability, namely when J = n and nj = 1, one gets

QCG,ε
net (Ψ) = O

(
2n log

n

ε

)
,

with polynomial instead of exponential increase with the number of qubits.

Quantum Universal Semi-Density Matrix

Like in Section 9.3, the quantum extension of classical algorithmic complex-
ity proposed in [119] starts from the classical description of quantum states
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|Ψ 〉 ∈ Hn of n qubit systems by means of bit strings i ∈ Ω∗
2 . However,

these descriptions are not considered as programs of a certain length which
has to be minimized, rather as bit strings characterized by a given universal
probability PU as explained in Remark 4.3.2.3.

For instance, if a state |Ψ 〉 can be expanded with respect to the com-
putational basis {| i(n) 〉}

i(n)∈Ω
(n)
2

by means of coefficients which are exactly
computable by a program j ∈ Ω∗

2 processed by a fixed UTM U, then

m(Ψ) := PU(j)

naturally represents the universal probability of this state. Exactly com-
putable states are termed elementary as well as linear operators X on Hn

whose matrix elements with respect to the computational basis can be exactly
computed; operators which can be approximated from below by an increas-
ing sequence of elementary operators are called lower semi-computable (see
Definition 4.1.4). Then, an argument similar to the one in Example 4.1.7.3
leads to the following result [119].

Theorem 9.3.1. A lower semi-computable semi-density matrix ρ ∈ B1(Hn),
namely ρ ≥ 0 and ρ ≤ 1, can be effectively constructed such that, for any
other semi-computable semi-density matrix σ ∈ B1(Hn), there is a constant
Cσ for which Cσ σ ≤ ρ. Moreover, ρ can be identified with

ρ =
∑

|Ψel 〉∈Hn

m(Ψel) |Ψel 〉〈Ψel | ,

where the sum runs over all elementary vector states of n qubits.

The operator ρ is a convex combination over elementary projections
weighted with their universal probabilities; since the universal probability
PU is not normalized, neither is ρ. Inspired by Remark 4.3.3, it is thus sug-
gestive to introduce an operatorial complexity

κ := − log2 ρ ,

and two possible definitions of algorithmic complexity of a state |Ψ 〉:

QC−
u.p.(Ψ) := − log2(〈Ψ |ρ |Ψ 〉) , QC+

u.p.(Ψ) := 〈Ψ |κ |Ψ 〉 .

From the the concavity of the function f(x) = log2 x it follows that

QC−
u.p.(Ψ) ≤ QC+

u.p.(Ψ) .

Indeed (see the proof of Proposition 5.5.3), with ρ =
∑

i ri | ri 〉〈 ri | the
spectral decomposition of ρ,
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log2(〈Ψ |ρ |Ψ 〉) = log2

(
∑

i

ri |〈Ψ | ri 〉|2
)

≥
∑

i

|〈Ψ | ri 〉|2 log2 ri = 〈Ψ | log2 ρ |Ψ 〉 .

For bit strings i(n) ∈ Ω∗
2 the two possibilities coincide with the algorithmic

complexity K(i(n)). Indeed, consider the computational basis vectors i(n),
then {〈 i(n) |ρ |i(n) 〉}

i(n)∈Ω
(n)
2

is a semi-measure. As m is a universal semi-
measure on Ω∗

2 it follows that there exists a constant Cρ such that

Cρ 〈 i(n) |ρ |i(n) 〉 ≤ m(i(n)) ,

whence, from Remark 4.3.3, QC−
u.p.(i

(n)) ≥ K(i(n)) +O(1).
On the other hand, ρ =

∑
i(n)∈Ω∗

2
m(i(n)) | i(n) 〉〈 i(n) | is a lower semi-

computable, semi-density matrix. Therefore, the monotonicity of the loga-
rithm as an operator function (see Example 5.2.3.6) yields

Cρ ρ ≤ ρ =⇒ − log2 ρ+ log2 Cρ ≥ κ ,

whence QC+
u.p.(i

(n)) ≤ K(i(n)) +O(1).
The operatorial complexity κ has an interesting similarity with the clas-

sical algorithmic complexity in that its mean value with respect to a lower
semi-computable density matrix ρ equals its von Neumann entropy up to an
additive constant [119] (compare Corollary 4.3.2),

Tr(ρκ) = S2(ρ) + O(1) , S2(ρ) := −Tr(ρ log2 ρ) .

Setting ρ̂ :=
ρ

Tr(ρ)
, the positivity of the relative entropy, S (ρ , ρ̂) ≥ 0, yields

S2(ρ) ≤ Tr(ρκ) + log2 Tr(ρ) .

By assumption, there exists a constant Cρ such that Cρ ρ ≤ ρ; thus, as before,

− log2 Cρ − log2 ρ ≥ κ =⇒ S2(ρ) ≥ Tr(ρκ) +O(1) .

Remark 9.3.4. The topics addressed in this chapter are relatively recent
and still in their infancy so that the relations between the various extensions
of classical algorithmic complexity theory to quantum systems are largely to
be explored (a discussion of those between Vitanyi’s and Gács’ proposals can
be found in [119]).

Further, beside the previous result and Theorem 9.2.2, the connections
between quantum algorithmic complexities and the von Neumann entropy or
the von Neumann entropy rate have not yet been clarified. In particular, the
randomness of the quantum dynamics, rather than of quantum states have
not been tackled yet; namely, a quantum extension of the dynamical version
of Brudno’s theorem (see Corollary 4.2.1) is still missing.
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120. P. Gács: Lecture Notes on Descriptional Complexity and Randomness. Tech-

nical Report, Comput. Sci. Dept., Boston Univ., 1988
121. C.W. Gardiner, P. Zoller: Quantum Noise, (Springer, Berlin 2004)
122. P. Gaspard, M. Nagaoka: J. Chem. Phys. 111, 5668 (1999)
123. C.C. Gerry, P.L. Knight: Introductory Quantum Optics, (Cambridge Univer-

sity Press, Cambridge 2005)
124. S. Gnutzmann, F. Haake: Z. Phys. B 10, 263 (1996)
125. V. Gorini, A. Kossakowski: J. Math. Phys. 17, 1298 (1976)
126. V. Gorini, A. Kossakowski, E.C.G. Sudarshan: J. Math. Phys. 17, 821 (1976)
127. P. Grünwald, P. Vitanyi: Shannon Information and Kolmogorov Complexity,

arXiv: cs/0410002

128. J. Gruska: Quantum Computing, (Mc Graw Hill, London 1999)
129. M.C. Gutzwiller: Chaos in Classical and Quantum Mechanics, (Springer, New

York 1990)
130. K.-C. Ha, S.-H. Kye and Y.-S. Park: Phys. Lett. A313, 163 (2003)
131. R. Haag, N. Hugenholtz and M. Winnink: Commun. Math. Phys. 5, 848

(1967)



References 521

132. F. Haake: Statistical Treatment of Open Systems by Generalized Master Equa-
tions, in Springer Tracts in Mod. Phys. 95, (Springer-Verlag, Berlin 1973)

133. B. Haegeman: Local aspects of quantum entropy, (PhD Thesis, Katholieke
Universitaet Leuven, Belgium 2004)

134. P.R. Halmos: A Hilbert space problem book, (Springer-Verlag, New York 1982)
135. J.H. Hannay, M.V. Berry: Physica D 1, 267 (1980)
136. P. Hausladen, R. Jozsa, B. Schumacher et al.: Phys. Rev. A 54, 1869 (1996)
137. P.M. Hayden, M. Horodecki, B.M. Terhal: J. Phys. A 34, 6891 (2001)
138. K. Hepp: Commun. Math. Phys. 35, 265 (1974)
139. A.J.P. Hey ed.: Feynman and Computation, (Perseus Books, Reading MS,

1999)
140. F. Hiai, D. Petz: Commun. Math. Phys. 143, 99 (1991)
141. F. Hiai, D. Petz: J. Functional Anal. 125, 287 (1994)
142. A.S. Holevo: Probl. Inf. Transm. (USSR) 9, 177 (1973)
143. A.S. Holevo: Probabilistic and Statistical Aspects of Quantum Theory, (Ams-

terdam, North Holland, 1982)
144. A.S. Holevo: IEEE Trans. Information Theory 44, 269 (1998)
145. A.S. Holevo: Statistical Structure of Quantum Theory, (Lect. Notes in Physics

Monographs 67, Springer Verlag, Berlin, Heidelberg 2001)
146. A.S. Holevo: Coding Theorems for Quantum Channels,

arXiv: quant-ph/9809023

147. R.A. Horne, C.R. Johnson: Matrix Analysis, (Cambridge University Press,
Cambridge 1985)

148. M. Horodecki, P. Horodecki, R. Horodecki: Phys. Lett. A 223, 1 (1996)
149. P. Horodecki: Phys. Lett. A 232, 333 (1997)
150. M. Horodecki, P. Horodecki, R. Horodecki: Phys. Rev. Lett. 80, 5239 (1998)
151. M. Horodecki, P. Horodecki: Phys. Rev. A 59, 4206 (1999)
152. R. Horodecki, P. Horodecki, M. Horodecki et al.: Quantum Entanglement,

arXiv: quant-ph/0702225

153. T. Hudetz: Lett. Math. Phys. 16, 151 (1988)
154. T. Hudetz: J. Math. Phys. 35, 4303 (1994)
155. T. Hudetz: Banach Center Publications 43, 241 (1998)
156. L.P. Hughston, R. Jozsa, W.K. Wootters, Phys. Lett. A 183, 14 (1993)
157. J. Jacod: Probability Essentials, (Springer Berlin 2003)
158. A. Jamio�lkowski: Rep. Math. Phys. 3, 275 (1972)
159. R. Jozsa, B. Schumacher: J. Mod. Opt. 41, 2343 (1994)
160. R. Jozsa, M. Horodecki, P. Horodecki et al.: Phys. Rev. Lett. 81, 1714 (1998)
161. R.V. Kadison, J.R. Ringrose: Fundamentals of the Theory of Operator Alge-

bras 1: Elementary Theory, (Academic Press, New York 1983)
162. R.V. Kadison, J.R. Ringrose: Fundamentals of the Theory of Operator Alge-

bras 2: Advanced Theory, (Academic Press, New York 1986)
163. A. Kaltchenko, E.H. Yang: Quantum Information and Computation 3, 359

(2003)
164. A. Katok, B. Hasselblatt, L. Mendoza: Introduction to the Modern Theory of

Dynamical systems, (Cambridge University Press, Cambridge 1995)
165. P. Kaye, R. Laflamme, M. Mosca: An Introduction to Quantum Computing,

(Oxford University Press, Oxford UK, 2007)
166. G. Keller: Wahrsheinlichkeittheorie (Lecture Notes, Universität Erlangen-

Nurnberg 359 (2003)



522 References

167. A.Y. Khinchin: Mathematical Foundations of Statistical Mechanics, (Dover,
New York 1949)

168. J. Kieffer: IEEE Trans. Inform. Theory 24, 674 (1978)
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314–315, 334, 372, 405, 479–480,
513

cost, 269–271, 405

distillation, 267, 269

formation, 267–269, 273, 302–309,
405

regularized, 270–271, 405

witnesses, 253, 262–263, 277, 279–281

Entropic distance, 459–461

Entropy

functionals

optimal decompositions, 270, 297,
303, 304, 307, 308, 415, 446

Gibbs, 61, 227

Shannon, 1, 61–63, 64, 69, 71–73, 88,
90, 92, 96, 123–125, 131, 214–215,
225, 298, 378, 384–385, 389, 391,
400, 413, 426, 433–434, 439, 443,
454

rate, 378, 439

strong subadditivity, 66–67

subadditivity, 72, 73

von Neumann, 213–216, 219–220,
225–227, 238, 245, 266, 287, 289,
293–294, 302, 309, 376, 384, 385,
387, 389, 397, 400, 404, 405, 413,
421, 426, 433, 435, 437, 439, 454,
456, 458, 461, 463–466, 479, 515

rate, 376–381

strong subadditivity, 377

subadditivity, 376–377

Entropy dense subalgebras, 462

Entropy functionals

entropy of a subalgebra, 3, 294–314,
405, 413

n-CPU entropies, 414, 415, 419, 427,
428, 446

n-subalgebra entropies, 415, 420, 443

Ergodic systems

classical, 344

time-averages, 40, 41, 44

quantum, 341

time-averages, 341–342

Essential norm, 32

F

Flip operator, 158, 162, 264, 285, 334
Fock space

Bosonic, 189
Fermionic, 326, 327

Folding condition, 16, 17, 19, 20, 29
Fugacity, 234
Functions

continuous, 10, 30–33, 40, 56, 66,
148, 167, 171, 173, 175–176, 178,
442–443

essentially bounded, 32, 34, 35, 144,
167, 168, 173, 324, 338, 339, 360,
457–458

measurable, 10, 11, 19, 32, 35, 43–44,
52, 53

G

Gödel friction, 122
Gödel numbers, 111
Gauge-transformations, 326–327
Gelfand-Naimark-Segal (GNS)

construction, 172, 202, 209, 213, 298,
335, 341, 342, 353, 374, 415, 455,
480

Hilbert space, 172, 211, 212, 301,
321, 330, 332, 338, 342, 347, 357,
366, 479

triplet, 172, 211, 212, 335
unitary operator, 347, 357
vector, 172, 203, 212, 213, 320, 338,

343, 480
Gelfand transform, 174, 176, 298, 421

H

Hadamard rotation, 180, 223–224, 257,
259

Heisenberg equation, 230
High probability subsets, 91, 388
Hilbert-Schmidt decomposition, 225
Holevo’s bound, 294, 296, 299, 399, 478
Hyperbolic motion

Arnold cat map
quantum

finite, 231, 466
classical
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Arnold cat map, 17
quantum

Arnold cat map
infinite, 470

I

Inequality
Fannes, 215–216, 302, 418, 450, 459,

499
Kraft, 87–88, 107, 125, 129, 133
Ky Fan, 217, 384, 394

Information sources
classical, 60

stationary, 59–60
quantum, 381–383

J

Jamio�lkowski isomorphism, 160, 262

K

Kolmogorov (K-) systems
classical

algebraic, 53, 357, 361
entropic, 80, 445–446, 451
K-partitions, 50, 360, 443
K-sequences, 50, 52, 53, 80, 357,

359–361, 363
quantum

algebraic, 3, 317, 357–358, 363, 443
entropic, 443–451
K-sequences, 357

Koopman operator, 12, 18, 33, 46–48,
53, 338, 344, 355

Koopman-von Neumann formalism, 15,
33, 46–47, 169

Kraus
operators, 163, 243, 439, 475–477,

479
representation, 163

Kubo-Martin-Schwinger (KMS)
conditions, 232, 233, 330, 332, 353

L

Lebesgue spectrum, 53, 359
Limits

C* inductive, 363, 376

low density, 249
singular coupling, 249
strong, 32, 47, 167, 349
thermodynamical, 323
uniform, 143–144
weak, 39, 46–47, 167, 319–320
weak-coupling, 243, 249, 253

Liouville equation, 227–228, 241, 243,
244

Liouville measure, 14, 17, 40
Logarithmic time-scale, 20, 466
Lyapounov exponents, 1, 19, 20, 79–80,

104, 411

M

Mach-Zender interferometer, 195–196,
487

Maps
completely positive (CP), 157

dilation of, 240
trace preserving, 289, 292, 381, 382,

384, 387
unital (CPU), 293

dynamical, 9, 10, 13, 33, 232,
241–243, 251–253, 293

embeddings, 158–159
N-positive, 159
positive, 157–159

decomposable, 262–263
Markov approximations, 243
Martin-Löf tests, 106, 128
Master equation, 243, 245, 251, 283
Maximal accessible information, 297,

299
Measurement processes, 139, 236–238,

412–413, 455
Measures

σ-algebras, 10, 77–78
absolutely continuous, 34, 35, 55, 56,

328, 355, 442
Lebesgue decomposition, 34
mutually singular, 34
product, 24, 29, 49, 78

Minmax principle, 214, 217
Mixing systems

classical, 40–47
K-mixing, 46, 51, 81, 352–353, 357,

445
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weakly mixing, 46
quantum

hyperclustering, 352
strongly mixing, 352, 355, 356
weakly mixing, 352–354, 356, 358,

376
Modular theory, 212, 332

KMS conditions, 330–335
modular automorphisms, 232, 335
modular conjugation, 212, 332, 333
modular group, 233, 236, 332, 335
modular operator, 213, 232, 333, 447
relative modular operator, 287–290,

332
Mutual information, 63, 67–69,

100–101, 295, 477

N

Neighborhoods
strong, 31, 141, 169
uniform, 30–31, 140–142
weak, 32, 141

Non-commutative deformations, 139,
231, 344, 388

Norm
C*, 144
sup-norm, 38
uniform, 33, 140, 143–145, 152, 182,

185
Number operator

Bosonic, 189, 325, 326–327
Fermionic, 181, 325–326

O

Observables
functions, 9–10
local, 323, 343, 347, 351

Occupation number states
Bosonsic, 189
Fermionic, 232

One-way quantum computation, 315
Open quantum systems

dynamical semigroups, 247–248
Kossakowski-Lindblad generators,

250
Kossakowski matrix, 247, 249,

280–281

reduced dynamics, 227, 242–243, 251
Operational partitions of unit (OPUs),

451–452
density matrices, 452–453
refinement of, 451, 471
time-evolution, 451, 452

Operations
local, 253, 259, 267–268, 277, 278
LOCC, 258, 267–270

non-local, 223
Operators

bounded, 140–141, 143, 144, 146,
167, 170–172, 182, 323, 327, 479

compact, 152, 167, 170
finite rank, 152, 170
Hilbert-Schmidt, 155–156
isometric, 12, 147
partial isometries, 148–149, 311, 492
polar decomposition, 148–149, 153,

321
singular values, 149, 153, 155–156

tensor product of, 141, 145, 180, 228
trace-class, 152–155
unitary, 12, 15, 53, 140, 147, 178, 184,

185, 203, 208, 226, 227, 231, 239,
256, 258, 307, 320, 330, 335–338,
340, 343, 347, 357, 396, 397, 404,
465, 485, 488–490, 502, 511

Weyl, 184–185, 187, 189, 202–203,
208, 229–230, 236, 277, 327,
337–339, 404, 447, 470, 477

P

Partition functions
Bosonic, 235
Fermionic, 234

Partitions, 25–27
entropy rate, 73–75
generating, 50–52, 76, 79–81, 93, 94,

127, 428, 436
tail, 51–52

Partitions of unity, 238, 451
Pauli matrices, 179–180, 226, 228, 246,

250, 259, 260, 272, 282, 285–286,
319, 350, 373

Probability
empirical, 96, 125

Probability distributions
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conditonal, 35, 60, 63, 157, 190–191,
198, 298–299, 389–391, 417

joint, 58, 62, 63, 67
marginal, 58, 62, 414, 416

Projectors, 37
minimal, 37, 39, 151, 297, 420–421
orthogonal, 139, 140, 190, 240, 293,

370, 395–396, 468, 500

Q

Quantum
circuits, 223, 484, 511–512
gates, 223, 256, 258, 490
noise, 249
universal semi-density matrix, 484,

513–515

R

Radon-Nikodym derivative, 34–35, 55,
56, 164

Random sequences
chaoticness, 105, 129, 484
stochasticness, 105–106
typicalness, 106, 129, 484

Random variables, 57–58, 60, 62–68,
71, 90, 99, 100, 225, 295, 421, 425,
426

Reduction map, 161, 164
Regular motion, 14–15
Relative entropy

classical, 96
quantum, 221, 287

joint convexity, 289–292
monotonicity under CPU maps,

498–499
Relaxation to equilibrium, 56, 251,

317–318
Representations

Fock, 183, 325, 326
GNS, 170, 172, 175, 210–213, 300,

320–321, 331, 332, 335–336, 338,
343, 347, 350, 351, 357, 456, 463,
474–478

momentum, 184, 188, 192, 328
position, 183, 184, 192, 198–199
thermal, 332, 334

Resolvent, 146

S

Scalar product
Hilbert-Schmidt, 155, 161, 179, 247,

287, 290–291
Semi-computability, 118–120, 132, 133,

514, 515
Semi-computable functions, 120
Semi-norms, 31, 32, 141, 143, 155, 173,

208
Sesquilinear form, 154, 173, 200–202,

342
Shift dynamical systems

Bernoulli, 24–25
Markov, 24–25

Spectrum, 46, 47, 53, 146, 148, 149,
152, 158, 174, 176, 177, 182–183,
213–215, 218, 221, 227, 237, 263,
328, 332, 355, 359, 392, 393, 437,
463, 464

Spin chains
classical, 37, 39–40, 53, 180, 363
quantum, 2, 347, 381–405

States
coherent, 191–193, 200, 235, 481
cyclic, 66, 153, 168, 172, 178, 186,

203, 212, 213, 220, 232, 237, 299,
301, 324, 330, 332, 334, 335, 338,
343, 349–350, 355, 403

entangled, 222–226, 246, 253,
258–260, 262, 263, 266–271, 273,
281, 383, 485, 513

equilibrium, 7, 12, 14, 56, 71, 227,
232, 234, 235, 293, 330

expectation functionals, 33, 139, 170,
320, 343

factor, 350, 351, 354, 363
faithful, 212, 299–300, 330, 332, 357,

443–444
finitely correlated, 366–372, 438
Gaussian, 188–210, 276–279, 314–315,

329
Gibbs, 232–234, 292, 330
global, 22–24, 38, 40, 362, 369, 441,

511
KMS, 232, 233, 330–332, 354, 375
local, 22–25, 28, 39, 253, 363, 367,

376, 378, 381, 383, 390, 393, 395,
431, 438, 467
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marginal, 218–220, 225–226, 260,
261, 266–267, 269, 271, 291, 376,
404, 433, 434, 456

mean values, 11–14, 33, 34, 40, 41,
44, 90, 107, 139, 157, 160, 190,
237, 277, 515

mixed, 190, 210, 213, 216, 225, 241,
267, 270, 294–295, 312, 399, 456,
486

normal, 334, 335, 376, 433

NPT, 263, 268–269

phase-points, 11, 12, 139, 274

positive functionals, 33–34

PPT, 263, 264, 268, 269, 271, 278,
284–286

PPT entangled, 263, 264, 268, 269,
271, 286

probability distributions, 12

pure, 173–176, 190–191, 209, 211,
213, 216, 219, 223–229, 237, 238,
244, 266, 267, 269–270, 272, 295,
302, 303, 313, 314, 350, 351, 385,
420, 455, 456, 459, 497, 501, 506,
511

entangled, 266–267

purification, 210

quantum

convex decompositions, 294, 414,
448

quasi-free, 327, 329–330, 378, 442

separable, 224–225, 246, 262, 265–266

separating, 168, 172, 178, 212, 213,
247, 301, 332, 334–335, 350

shift-invariant, 2, 25, 364, 439

space of

convex structure, 173, 190

symmetric, 151, 158, 225, 259, 265

tracial, 174, 175, 232, 266, 293, 298,
321, 359, 373–375, 421, 447, 450,
468–470, 506

Stationary couplings, 433–436, 441

Stochastic matrices, 25

Strings

bit, 256, 485, 492, 512–513

qubit, 385–387, 484–486, 494, 497,
501, 506–508

Symbolic dynamics, 25–40

Symbolic models

classical, 295, 399, 404
quantum
OPUs, 451, 452–454

Symplectic
form, 18, 337
matrix, 13, 205, 207, 278–279
structure, 13

T

Tensor products
of algebras, 37–39
of projectors, 37

Theorem
AEP

classical, 91–95
quantum, 394

Birkhoff ergodic, 44–45
Brudno

classical, 123–127
quantum, 497–498

Kolmogorov-Sinai, 76, 428
Kraus, 163, 227
Liouville-Arnold, 16
no-cloning, 258, 260
noiseless coding, 95, 384
Shannon-Mc Millan-Breiman, 93, 94,

387, 389, 411
Stinespring, 162, 163, 367
von Neumann bicommutant, 169
von Neumann ergodic, 47

Time-evolution
continuous, 9, 14, 40, 41
discrete, 9, 13, 14, 16, 21, 27, 33, 41,

50, 51, 76, 342, 465, 489
irreversible, 9, 241
reversible, 9, 241–242

Topology
strong, 31–32, 141, 142, 169, 170
uniform, 30, 31, 140–142, 208
w*, 143, 208
weak, 32, 47, 141–142, 155, 166, 208
σ-weak, 141, 143, 155, 208–209

Totally symmetric projector, 151
Totally symmetric vector, 159
Trace, 38, 152–156, 161, 165, 190, 199,

202, 214–216, 219, 221, 224, 227,
232, 235–237, 241–242, 244, 249,
253, 262, 268, 282, 283, 288–290,
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292, 310–314, 322–324, 340, 363,
365, 366, 375, 381–384, 387, 397,
403, 413, 434, 479, 486, 492–496,
498, 499, 504

partial, 242, 479, 490

Trace map, 156, 161, 165, 282

Transition probabilities, 25, 39, 48, 49,
57–59, 61, 99, 111–112

Transmission rate, 404–405

Transposition, 140, 158, 159, 162, 163,
211, 261–263

partial, 158, 263–269, 277, 285

mirror reflection, 277, 278

Triplets

classical C* algebraic, 39

measure theoretic, 29, 33, 34, 39

quantum algebraic, 332

Turing machines

classical, 108, 109

prefix, 107, 127

probabilistic, 486

transition functions, 109–111

universal, 108, 492
quantum, 3, 255, 486–487, 491–492

universal, 492
Types, 96, 321–322, 340, 406

U

Uncertainty relations, 196, 197, 201,
317

V

Vacuum state, 181, 182, 191, 322, 332,
336

Bosonic, 189
Fermions, 182

W

Wave-packet reduction, 237–239, 241
Weyl relations

continuous variables, 185, 186
discrete, 187, 231
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