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Preface

Emergence of Data Science placed knowledge discovery, machine learning, and
data mining in multidimensional data, into the forefront of a wide range of current
research, and application activities in computer science, and many domains far
beyond it.

Discovering patterns, in multidimensional data, using a combination of visual
and analytical machine learning means are an attractive visual analytics opportu-
nity. It allows the injection of the unique human perceptual and cognitive abilities,
directly into the process of discovering multidimensional patterns. While this
opportunity exists, the long-standing problem is that we cannot see the n-D data
with a naked eye. Our cognitive and perceptual abilities are perfected only in the
3-D physical world. We need enhanced visualization tools (“n-D glasses”) to
represent the n-D data in 2-D completely, without loss of information, which is
important for knowledge discovery. While multiple visualization methods for the
n-D data have been developed and successfully used for many tasks, many of them
are non-reversible and lossy. Such methods do not represent the n-D data fully and
do not allow the restoration of the n-D data completely from their 2-D represen-
tation. Respectively, our abilities to discover the n-D data patterns, from such
incomplete 2-D representations, are limited and potentially erroneous. The number
of available approaches, to overcome these limitations, is quite limited itself. The
Parallel Coordinates and the Radial/Star Coordinates, today, are the most powerful
reversible and lossless n-D data visualization methods, while suffer from occlusion.

There is a need to extend the class of reversible and lossless n-D data visual
representations, for the knowledge discovery in the n-D data. A new class of such
representations, called the General Line Coordinate (GLC) and several of their
specifications, are the focus of this book. This book describes the GLCs, and their
advantages, which include analyzing the data of the Challenger disaster, World hunger,
semantic shift in humorous texts, image processing, medical computer-aided diag-
nostics, stock market, and the currency exchange rate predictions. Reversible methods
for visualizing the n-D data have the advantages as cognitive enhancers, of the human
cognitive abilities, to discover the n-D data patterns. This book reviews the state of the
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art in this area, outlines the challenges, and describes the solutions in the framework
of the General Line Coordinates.

This book expands the methods of the visual analytics for the knowledge dis-
covery, by presenting the visual and hybrid methods, which combine the analytical
machine learning and the visual means. New approaches are explored, from both
the theoretical and the experimental viewpoints, using the modeled and real data.
The inspiration, for a new large class of coordinates, is twofold. The first one is the
marvelous success of the Parallel Coordinates, pioneered by Alfred Inselberg. The
second inspiration is the absence of a “silver bullet” visualization, which is perfect
for the pattern discovery, in the all possible n-D datasets. Multiple GLCs can serve
as a collective “silver bullet.” This multiplicity of GLCs increases the chances that
the humans will reveal the hidden n-D patterns in these visualizations.

The topic of this book is related to the prospects of both the super-intelligent
machines and the super-intelligent humans, which can far surpass the current
human intelligence, significantly lifting the human cognitive limitations. This book
is about a technical way for reaching some of the aspects of super-intelligence,
which are beyond the current human cognitive abilities. It is to overcome the
inabilities to analyze a large amount of abstract, numeric, and high-dimensional
data; and to find the complex patterns, in these data, with a naked eye, supported by
the analytical means of machine learning. The new algorithms are presented for the
reversible GLC visual representations of high-dimensional data and knowledge
discovery. The advantages of GLCs are shown, both mathematically and using the
different datasets. These advantages form a basis, for the future studies, in this
super-intelligence area.

This book is organized as follows. Chapter 1 presents the goal, motivation, and
the approach. Chapter 2 introduces the concept of the General Line Coordinates,
which is illustrated with multiple examples. Chapter 3 provides the rigorous
mathematical definitions of the GLC concepts along with the mathematical state-
ments of their properties. A reader, interested only in the applied aspects of GLC,
can skip this chapter. A reader, interested in implementing GLC algorithms, may
find Chap. 3 useful for this. Chapter 4 describes the methods of the simplification of
visual patterns in GLCs for the better human perception.

Chapter 5 presents several GLC case studies, on the real data, which show the
GLC capabilities. Chapter 6 presents the results of the experiments on discovering
the visual features in the GLCs by multiple participants, with the analysis of the
human shape perception capabilities with over hundred dimensions, in these
experiments. Chapter 7 presents the linear GLCs combined with machine learning,
including hybrid, automatic, interactive, and collaborative versions of linear GLC,
with the data classification applications from medicine to finance and image pro-
cessing. Chapter 8 demonstrates the hybrid, visual, and analytical knowledge dis-
covery and the machine learning approach for the investment strategy with GLCs.
Chapter 9 presents a hybrid, visual, and analytical machine learning approach in
text mining, for discovering the incongruity in humor modeling. Chapter 10
describes the capabilities of the GLC visual means to enhance evaluation of
accuracy and errors of machine learning algorithms. Chapter 11 shows an approach,
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to how the GLC visualization benefits the exploration of the multidimensional
Pareto front, in multi-objective optimization tasks. Chapter 12 outlines the vision of
a virtual data scientist and the super-intelligence with visual means. Chapter 13
concludes this book with a comparison and the fusion of methods and the dis-
cussion of the future research. The final note is on the topics, which are outside of
this book. These topics are “goal-free” visualizations that are not related to the
specific knowledge discovery tasks of supervised and unsupervised learning, and
the Pareto optimization in the n-D data. The author’s Web site of this book is
located at http://www.cwu.edu/*borisk/visualKD, where additional information
and updates can be found.

Ellensburg, USA Boris Kovalerchuk
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Abstract

This book combines the advantages of the high-dimensional data visualization and
machine learning for discovering complex n-D data patterns. It vastly expands the
class of reversible lossless 2-D and 3-D visualization methods which preserve the
n-D information for the knowledge discovery. This class of visual representations,
called the General Lines Coordinates (GLCs), is accompanied by a set of algorithms
for n-D data classification, clustering, dimension reduction, and Pareto optimiza-
tion. The mathematical and theoretical analyses and methodology of GLC are
included. The usefulness of this new approach is demonstrated in multiple case
studies. These case studies include the Challenger disaster, the World hunger data,
health monitoring, image processing, the text classification, market prediction for a
currency exchange rate, and computer-aided medical diagnostics. Students,
researchers, and practitioners in the emerging Data Science are the intended read-
ership of this book.

xxi



Chapter 1
Motivation, Problems and Approach

The noblest pleasure is the joy of understanding.
Leonardo da Vinci

1.1 Motivation

High-dimensional data play an important and growing role in knowledge discovery,
modeling, decision making, information management, and other areas. Visual
representation of high-dimensional data opens the opportunity for understanding,
comparing and analyzing visually hundreds of features of complicated multidi-
mensional relations of n-D points in the multidimensional data space. This chapter
presents motivation, problems, methodology and the approach used in this book for
Visual Knowledge Discovery and Machine Learning. The chapter discussed the
difference between reversible lossless and irreversible lossy visual representations
of n-D data along with their impact on efficiency of solving Data Mining/Machine
Learning tasks. The approach concentrates on reversible representations along with
the hybrid methodology to mitigate deficiencies of both representations. This book
summarizes a series of new studies on Visual Knowledge Discovery and Machine
Learning with General Line Coordinates, that include the following conference and
journal papers (Kovalerchuk 2014, 2017; Kovalerchuk and Grishin 2014, 2016,
2017; Grishin and Kovalerchuk 2014; Kovalerchuk and Smigaj 2015; Wilinski and
Kovalerchuk 2017; Smigaj and Kovalerchuk 2017; Kovalerchuk and Dovhalets
2017). While visual shape perception supplies 95–98% of information for pattern
recognition, the visualization techniques do not use it very efficiently (Bertini et al.
2011; Ward et al. 2010). There are multiple long-standing challenges to deal with
high-dimensional data that are discussed below.

Many procedures for n-D data analysis, knowledge discovery and visualization
have demonstrated efficiency for different datasets (Bertini et al. 2011; Ward et al.
2010; Rübel et al. 2010; Inselberg 2009). However, the loss of information and
occlusion, in visualizations of n-D data, continues to be a challenge for knowledge
discovery (Bertini et al. 2011; Ward et al. 2010). The dimension scalability chal-
lenge for visualization of n-D data is already present at a low dimension of n = 4.
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Since only 2-D and 3-D data can be directly visualized in the physical 3-D world,
visualization of n-D data becomes more difficult with higher dimensions. Further
progress in data science require greater involvement of end users in constructing
machine learning models, along with more scalable, intuitive and efficient visual
discovery methods and tools that we discuss in Chap. 12.

In Data Mining (DM), Machine Learning (ML), and related fields one of these
challenges is ineffective heuristic initial selection of a class of models. Often we do
not have both (1) prior knowledge to select a class of these models directly, and
(2) visualization tools to facilitate model selection losslessly and without occlusion.

In DM/ML often we are in essence guessing the class of models in advance, e.g.,
linear regression, decision trees, SVM, linear discrimination, linear programming, SOM
and so on. In contrast the success is evident in model selection in low-dimensional 2-D
or 3-D data that we can observe with a naked eye as we illustrate later. While iden-
tifying a class of ML models for a given data is rather an art than science, there is a
progress in automating this process. For instance, a method to learn a kernel function
for SVM automatically is proposed in (Nguyen et al. 2017).

In visualization of multi-dimensional data, the major challenges are (1) occlusion,
(2) loss of significant n-D information in 2-D visualization of n-D data, and (3) diffi-
culties of finding visual representation with clear and meaningful 2-D patterns.

While n-D data visualization is a well-studied area, none of the current solutions
fully address these long-standing challenges (Agrawal et al. 2015; Bertini, et al. 2011;
Ward et al. 2010; Inselberg 2009; Simov et al. 2008; Tergan and Keller 2005; Keim
et al. 2002; Wong and Bergeron 1997; Heer and Perer 2014; Wang et al. 2015). In this
book, we consider the problem of the loss of information in visualization as a problem
of developing reversible lossless visual representation of multidimensional (n-D) data
in 2-D and 3-D. This challenging task is addressed by generalizing Parallel and Radial
coordinates with a new concept of General Line Coordinates (GLC).

1.2 Visualization: From n-D Points to 2-D Points

The simplest method to represent n-D data in 2-D is splitting n-D space
X1 � X2 � … � Xn into all 2-D projections Xi � Xj, i, j = 1, …, n and showing
them to the user. It produces a large number of fragmented visual representations of
n-D data and destroys the integrity of n-D data. In each projection Xi � Xj, this
method maps each n-D point to a single 2-D point. We will call such mapping as
n-D point to 2-D-point mapping and denote is as P-to-P representation for short.

Multidimensional scaling (MDS) and other similar nonreversible lossy methods are
such point-to-point representations. These methods aim preserving the proximity of n-D
points in 2-D using specific metrics (Jäckle et al. 2016; Kruskal and Wish 1978; Mead
1992). It means that n-D information beyond proximity can be lost in 2-D in general,
because its preservation is not controlled. Next, the proximity captured by these
methods may or may not be relevant to the user’s task, such as classification of n-D
points, when the proximity measure is imposed on the task externally not derived from
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it. As a result, such methods can drastically distort initial data structures (Duch et al.
2000) that were relevant to the user’s task. For instance, a formal proximity measure
such as the Euclidean metric can contradict meaningful similarity of n-D points known
in the given domain. Domain experts can know that n-D points a and b are closer to
each other than n-D points c and d, |a, b| < |c, d|, but the formal externally imposed
metric F may set up an opposite relation, F(a, b) > F(c, d). In contrast, lossless data
displays presented in this book provide opportunity to improve interpretability of
visualization result and its understanding by subject matter experts (SME).

The common expectation of metric approaches is that they will produce relatively
simple clouds of 2-D points on the plane with distinct lengths, widths, orientations,
crossings, and densities. Otherwise, if patterns differ from such clouds, these methods
do not help much to use other unique human visual perception and shape recognition
capabilities in visualization (Grishin 1982; Grishin et al. 2003). Together all these
deficiencies lead to a shallow understanding of complex n-D data.

To cope with abilities of the vision system to observe directly only 2-D/3-D spaces,
many other common approaches such as Principal Components Analysis (PCA) also
project every n-D data point into a single 2-D or 3-D point. In PCA and similar
dimension reduction methods, it is done by plotting the two main components of these
n-D points (e.g., Jeong et al. 2009). These two components show only a fraction of all
information contained in these n-D points. There is no way to restore completely n-D
points from these two components in general beyond some very special datasets. In
other words, these methods do not provide an isomorphic (bijective, lossless, rever-
sible) mapping between an n-D dataset and a 2-D dataset. These methods provide only
a one-way irreversible mapping from an n-D dataset to a 2-D data set.

Such lossy visualization algorithms may not find complex relations even after
multiple time-consuming adjustments of parameters of the visualization algorithms,
because they cut out needed information from entering the visualization channel. As
a result, decisions based on such truncated visual information can be incorrect.
Thus, we have two major types of 2-D visualizations of n-D data available to be
combined in the hybrid approach:

(1) each n-D point is mapped to a 2-D point (P-to-P mapping), and
(2) each n-D point is mapped to a 2-D structure such as a graph (we denote this

mapping as P-to-G), which is the focus of this book.

Both types of mapping have their own advantages and disadvantages.
Principal Component Analysis (PCA) (Jolliffe 1986; Yin 2002), Multidimensional

Scaling (MDS) (Kruskal and Wish 1978), Self-Organized maps (SOM) (Kohonen
1984), RadVis (Sharko et al. 2008) are examples of (1), and Parallel Coordinates
(PC) (Inselberg 2009), and General Line Coordinates (GLC) presented in this book are
examples of (2). The P-to-P representations (1) are not reversible (lossy), i.e., in general
there is no way to restore the n-D point from its 2-D representation. In contrast, PC and
GLC graphs are reversible as we discuss in depth later.

The next issue is preserving n-D distance in 2-D. While such P-to-P repre-
sentations as MDS and SOM are specifically designed to meet this goal, in fact,
they only minimize the mean difference in distance between the points in n-D and
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their representations in 2-D. PCA minimizes the mean-square difference between
the original points and the projected ones (Yin 2002). For individual points, the
difference can be quite large. For a 4-D hypercube SOM and MDS have Kruskal’s
stress values SSOM = 0.327 and SMDS = 0.312, respectively, i.e., on average the
distances in 2-D differ from distances in n-D over 30% (Duch et al. 2000).

Such high distortion of n-D distances (loss of the actual distance information)
can lead to misclassification, when such corrupted 2-D distances are used for the
classification in 2-D. This problem is well known and several attempts have been
made to address by controlling and decreasing it, e.g., for SOM in (Yin 2002). It
can lead to disasters and loss of life in tasks with high cost of error that are common
in medical, engineering and defense applications.

In current machine learning practice, 2-D representation is commonly used for
illustration and explanation of the ideas of the algorithms such as SVM or LDA, but
much less for actual discovery of n-D rules due to the difficulties to adequately
represent the n-D data in 2-D, which we discussed above. In the hybrid approach
that combined analytical and visual machine learning presented in this book the
visualization guides both:

• Getting the information about the structure of data, and pattern discovery,
• Finding most informative splits of data into the training–validation pairs for

evaluation of machine learning models. This includes worst, best and median
split of data.

1.3 Visualization: From n-D Points to 2-D Structures

While mapping n-D points to 2-D points provides an intuitive and simple visual
metaphor for n-D data in 2-D, it is also a major source of the loss of information in
2-D visualization. For visualization methods discussed in the previous section, this
mapping is a self-inflicted limitation. In fact, it is not mandatory for visualization of
n-D data to represent each n-D point as a single 2-D point.

Each n-D point can be represented as a 2-D structure or a glyph. Some of them
can be reversible and lossless. Several such representations are already well-known
for a long time, such as radial coordinates (star glyphs), parallel coordinates (PC),
bar- and pie-graphs, and heat maps. However, these methods have different lim-
itations on the size and dimension of data that are illustrated below.

Figure 1.1 shows two 7-D points A and B in Bar (column)-graph chart and in Parallel
Coordinates. In a bar-graph each value of coordinates of an n-D point is represented by
the height of a rectangle instead of a point on the axis in the Parallel Coordinates.

The PC lines in Fig. 1.1b can be obtained by connecting tops of the bars (columns)
7-D points A and B. The backward process allows getting Fig. 1.1a from Fig. 1.1b.

The major difference between these visualizations is in scalability. The length of
the Bar-graph will be 100 times wider than in Fig. 1.1a if we put 100 7-D points to
the Bar graph with the same width of the bars. It will not fit the page. If we try to
keep the same size of the graph as in Fig. 1.1, then the width of bars will be 100
times smaller, making bars invisible.
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In contrast, PC and Radial coordinates (see Fig. 1.2a) can accommodate 100 lines
without increasing the size of the chart, but with significant occlusion. An alternative
Bar-graph with bars for point B drawn on the same location as A (on the top of
A without shifting to the right) will keep the size of the chart, but with severe occlusion.

The last three bars of point A will be completely covered by bars from point
B. The same will happen if lines in PC will be represented as filled areas. See
Fig. 1.2b. Thus, when we visualize only a single n-D point a bar-graph is equivalent
to the lines in PC. Both methods are lossless in this situation. For more n-D points,
these methods are not equivalent in general beyond some specific data.

Figure 1.2a shows points A and B in Radial (star) Coordinates and Fig. 1.3
shows 6-D point C = (2, 4, 6, 2, 5, 4) in the Area (pie) chart and Radial (star)
Coordinates. The pie-chart uses the height of sectors (or length of the sectors)
instead of the length of radii in the radial coordinates.

Tops of the pieces of the pie in Fig. 1.3a can be connected to get visualization of point
C in Radial Coordinates. The backward process allows getting Fig. 1.3a from Fig. 1.3b.
Thus, such pie-graph is equivalent to its representation in the Radial Coordinates.

As was pointed out above, more n-D points in the same plot occlude each other
very significantly, making quickly these visual representations inefficient. To avoid

X1 X2 X3 X4 X5 X6 X7 X1 X2 X3 X4 X5 X6 X7

(b) 7-D points A and B in Parallel Coordinates.(a) 7-D points A and B in Bar-graph 

Fig. 1.1 7D points A = (7, 9, 4, 10, 8, 3, 6) in red and B = (6, 8, 3, 9, 10, 4, 6) in blue in a
Bar-graph chart (a) and in Parallel coordinates (b)

(a) 7-D points A and B in Radial
Coordinates.

(b) 7-D points A and B in Area chart based on 
PC. 
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Fig. 1.2 7D points A = (7, 9, 4, 10, 8, 3, 6) in red and B = (6, 8, 3, 9, 10, 4, 6) in Area-Graph
based on PC (b) and in Radial Coordinates (a)

1.3 Visualization: From n-D Points to 2-D Structures 5



occlusion, n-D points can be shown side-by-side in multiple plots not in a single
plot. In this case, we are limited by the number of the plots that can be shown
side-by-side on the screen and by perceptual abilities of humans to analyze multiple
plots at the same time.

Parallel and radial coordinates have fundamental advantage over bar- and pie-charts
allowing the visualization of larger n-D datasets with less occlusion. However parallel
and radial coordinates suffer from occlusion just for larger datasets.

To visualize each n-D data point x = (x1, x2,… xn) the heat map uses a line of n-
bars (cells) of the same size with values of color intensity of the bar (cell) matched
to the value of xi. While the heat map does not suffer from the occlusion, it is
limited in the number of n-D points and dimension n that can be presented to the
user on a single screen. It is also unable to show all n-D points that are close to the
given n-D point next to that n-D point. Only two n-D points can be shown on the
adjacent rows.

The discussed visualization approaches can be interpreted as specific glyph-
based approaches where each glyph is a sequence of bars (cells), segments, or
connected points specifically located on the plane in the parallel or radial way.
These visual representations provide homomorphism or isomorphism of each n-D
data point into visual features of some figures, e.g., a “star”.

Homomorphic mapping is a source of one of the difficulty of these visualiza-
tions, because it maps two or more equal n-D points to a single visual representation
(e.g., to a single polyline in the parallel coordinates). As a result, the information
about frequencies of n-D points in the dataset is lost in 2-D visualization.
Commonly it is addressed by drawing wider lines to represent more often n-D
points, but with higher occlusion. In the heat map all equal points can be preserved
at the cost of less number of different n-D points shown.

(a) 6-D point C in Pie-chart. (b) 6-D point C=(2,4,6,2,5,4) in Radial  
Coordinates.
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Fig. 1.3 6-D point C = (2, 4, 6, 2, 5, 4) in Pie-chart (a) and Radial Coordinates (b)
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The capabilities of lossless visual analytics based on shape perception have been
shown in (Grishin 1982; Grishin et al. 2003), and are widely used now in technical
and medical diagnostics, and other areas with data dimensions up to a few thou-
sands with the use of a sliding window to show more attributes than can be
represented in a static screen.

In this book, Chap. 6 demonstrates shape perception capabilities in experimental
setting. While moving to datasets with millions of records and many thousands of
dimensions is a challenge for both lossless and lossy algorithms, lossless repre-
sentations are very desirable due to preservation of information. The combination of
both types of algorithms is most promising.

1.4 Analysis of Alternatives

An important advantage of lossless visualizations is that an analyst can compare
much more data attributes than in lossy visualizations. For instance, multidimen-
sional scaling (MDS) allows comparing only a few attributes such as a relative
distance, because other data attributes are not presented in MDS.

Despite the fundamental difference between lossy and lossless visual represen-
tations of n-D data and needs in more lossless representations, the research pub-
lications on developing new lossless methods are scarce.

The positive moment is that the importance of this issue is recognized, which is
reflected in appearance of both terms “lossy” and “lossless” in the literature and
conference panel discussions (Wong and Bergeron 1997; Jacobson et al. 2007;
Ljung et al. 2004; Morrissey and Grinstein 2009; Grinstein et al. 2008; Belianinov
et al. 2015).

In (Morrissey and Grinstein 2009) the term lossless is specifically used for
Parallel Coordinates. In (Belianinov et al. 2015) the term lossless visualization is
also applied to parallel coordinates and its enhancement, to contrast it with PCA
and similar techniques (“Parallel coordinates avoid the loss of information afforded
by dimensionality reduction technique”). Multiple aspects of dimension reduction
for visualization are discusses in (Gorban et al. 2008).

There is a link between lossy image/volume compression and lossy visualiza-
tion. In several domains such as medical imaging and remote sensing, large subsets
of the image/volume do not carry much information. This motivates lossy com-
pression of some parts of them (to a lower resolution) and lossless representation of
other parts (Ljung et al. 2004). Rendering such images/volumes is a form of
visualization that is partially lossy.

In (Jacobson et al. 2007) a term lossy visualization is used to identify the
visualization where each n-D data point is mapped to a single color. In fact, this is a
mapping of each n-D point to a 3-D point, because this “fused” color is represented
by three basis color functions. It is designed for lossy fusing and visualizing large
image sets with many highly correlated components (e.g., hyperspectral images), or
relatively few non-zero components (e.g., the passive radar video).
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The loss can be controlled by selecting an appropriate fused color (3-D point)
depending on the task. In the passive radar data, the noisy background is visualized
as a lossy textured gray area. In both these examples, the visualization method does
not cause the loss of information. The uncontrolled lossy image/volume compres-
sion that precedes such visualization/rendering could be the cause. This is the major
difference from lossy visualizations considered above.

A common main idea behind Parallel, Radial and Paired Coordinates defined in
Chap. 2 is the exchange of a simple n-D point that has no internal structure for a 2-
D line (graph) that has the internal structure. In short, this is the exchange of the
dimensionality for a structure. Every object with an internal structure includes two
or more points. 2-D points do not overlap if they are not equal. Any other unequal
2-D objects that contain more than one point can overlap. Thus, clutter is a direct
result of this exchange.

The only way to avoid clutter fundamentally is locating structured 2-D objects
side-by-side as it is done with Chernoff faces (Chernoff 1973). The price for this is
more difficulty in correlating features of the faces relative to objects that are stacked
(Schroeder 2005).

A multivariate dataset consists of n-tuples (n-D points), where each element of
an n-D point is a nominal or ordinal value corresponding to an independent or
dependent variable. The techniques to display multivariate data are classified in
(Fua et al. 1999) as it is summarized below:

(1) Axis reconfiguration techniques, such as parallel coordinates (Inselberg 2009;
Wegman 1990) and radial/star coordinates (Fienberg 1979),

(2) Glyphs (Andrews 1972; Chernoff 1973; Ribarsky et al. 1994; Ward 2008),
(3) Dimensional embedding techniques, such as dimensional stacking (LeBlanc

et al. 1990) and worlds within worlds (Feiner and Beshers 1990),
(4) Dimensional subsetting, such as scatterplots (Cleveland and McGill 1988),
(5) Dimensional reduction techniques, such as multidimensional scaling (Kruskal

and Wish 1978; Mead 1992; Weinberg 1991), principal component analysis
(Jolliffe 1986) and self-organizing maps (Kohonen 1984).

Axis reconfiguration and Glyphs map axis into another coordinate system.
Chernoff faces map axis onto facial features (icons). Glyphs/Icons are a form of
multivariate visualization in orthogonal 2-D coordinates that augment each spatial
point with a vector of values, in the form of a visual icon that encodes the values
coordinates (Nielson et al. 1990). The glyph approach is more limited in dimen-
sionality than parallel coordinates (Fua et al. 1999).

There is also a type of glyph visualization where each number in the n-D point is
visualized individually. For instance, an n-D point (0, 0.25, 0.5, 0.75, 1) is represented
by a string of Harvey balls or by color intensities. This visualization is not scaled well
for large number of points and large dimensions, but it is interesting conceptually
because it is does not use any line to connect values in the visualization. These lines are
a major source of the clutter in visualizations based on Parallel and Radial coordinates.
It is easy to see that Harvey balls are equivalent to heat maps.
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Parallel and Radial coordinates are planar representations of an n-D space that
map points to polylines. The transformation to the planar representation means that
axis reconfiguration and glyphs trade a structurally simple n-D object to a more
complex object, but in a lower dimension (complex 2-D face, or polyline versus a
simple n-D string of numbers). Pixel oriented techniques map n-D points to a
pixel-based area of certain properties such as color or shape (Ankerst et al. 1996).

Dimensional subsetting literally means that a set of dimensions (attributes) is
sliced into subsets, e.g., pairs of attributes (Xi, Xj) and each pair is visualized by a
scatterplot with total n2 of scatterplots that form a matrix of scatterplots.
Dimensional embedding also is based on subsets of dimensions, but with specific
roles. The dimensions are divided into those that are in the slice and those that
create the wrapping space where these slices are then embedded at their respective
position (Spence 2001).

Technically (1)–(3) are lossless transformations, but (4) can be a lossy or a
lossless transformation depending on completeness of the set of subsets, and the
dimensional reduction (5) is a lossy transformation in general. Among lossless
representations, only (1) and (2) preserve n-D integrity of data. In contrast, (3) and
(4) split each n-D record adding a new perceptual task of assembling
low-dimensional visualized pieces of each record to the whole record. Therefore,
we are interested in enhancing (1) and (2).

The examples of (1) and (2) listed above fundamentally try to represent visually
actual values of all attributes of an n-D point. While this ensures lossless repre-
sentation, it fundamentally limits the size of the dataset that can be visualized (Fua
et al. 1999). The good news is that visualizing all attributes is not necessary for
lossless representation. The position of the visual element on 2-D plane can be
sufficient to restore completely the n-D vector as it was shown for Boolean vectors
in (Kovalerchuk and Schwing 2005; Kovalerchuk et al. 2012).

The major advantage of PC and related methods is that they are lossless and
reversible. We can restore an n-D point from its 2-D PC polyline. This ensures that
we do not throw the baby out with the bathwater. i.e., we will be able to discover
n-D patterns in 2-D visualization that are present in the n-D space. This advantage
comes with the price.

The number of pixels needed to draw a polyline is much more than in “n-D point
to 2-D point” visualizations such as PCA. For instance, for 10-D data point in PC,
the use of only 10 pixels per line that connects adjacent nodes will require
10 � 10 = 100 pixels, while PCA may require only one pixel. As a result, rever-
sible methods suffer from occlusion much more than PCA. For some datasets, the
existing n-D pattern will be completely hidden under the occlusion (e.g.,
(Kovalerchuk et al. 2012) for breast cancer data).

Therefore, we need new or enhanced methods that will be reversible (lossless),
but with smaller footprint in 2-D (less pixels used). The General Line Coordinates
(GLC) such as Collocated Pared Coordinates (CPC) defined in Chap. 2 have the
footprint that is two times smaller than in PC (two times less nodes and edges of the
graph).

1.4 Analysis of Alternatives 9



Parallel and Radial Coordinates provide lossless representation of each n-D point
visualized individually. However, their ability to represent losslessly a set of n-D
points in a single coordinate plot is limited by occlusion and overlapping values.
The same is true for other General Line Coordinates presented in this book. While
full losslessness is an ideal goal, the actual level of losslessness allows discovering
complex patterns as this book demonstrates.

1.5 Approach

The approach taken in this book to enhance visual discovery in n-D data consists of
three major components:

(A1) Generating new reversible lossless visualization methods of n-D data.
(A2) Combining lossless and lossy visualizations for the knowledge discovery,

when each of them separately is not sufficient.
(A3) Combining analytical and visual data mining/machine learning knowledge

discovery means.

The generation of new reversible lossless visual representations includes:

(G1) Mapping n-D data points into separate 2-D figures (graphs) providing better
pattern recognition in correspondence with Gestalt laws and recent
psychological experiments with more effective usage of human vision
capabilities of shape perception.

(G2) Ensuring interpretation of features of visual representations in the original
n-D data properties.

(G3) Generating n-D data of given mathematical structures such as hyper-planes,
hyper-spheres, hyper–tubes, and

(G4) Discovering mathematical structures such as hyper-planes, hyper-spheres,
hyper–tubes and others in real n-D data in individual and collaborative
settings by using a combination of visual and analytical means.

The motivation for G3 is that visualization results for n-D data with known in
advance structure (modeled data) are applicable for a whole class of data with this
structure. In contrast, a popular approach of inventing visualizations for specific
empirical data with unknown math properties may not be generalizable.

In other words, inventions of specific visualization for specific data do not help
much for visualization of other data. In contrast, if we can establish that new data
have the same structure that was explored on the modeled data we can use the
derived properties for these new data to construct the efficient visualization of these
new data. The implementation of this idea is presented in Chap. 6 with
hyper-cylinders (hyper-tubes).

Example Consider modeled n-D data with the following structural property. All
n-D points of class 1 are in the one hypercube and all n-D points of class 2 are in
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another hypercube, and the distance between these hyper-cubes is greater or equal
to k lengths of these hyper-cubes.

Assume that it was established by a mathematical proof that, for any n-D data
with this structure, a lossless visualization method V, produces visualizations of n-D
points of classes 1 and 2, which do not overlap in 2-D. Next, assume also that this
property was tested on new n-D data and was confirmed. Then the visualization
method V can be applied with the confidence that it will produce a desirable
visualization without occlusion.

The combination of lossless and lossy visual representations includes

(CV1) Providing means for evaluating the weaknesses of each representation and
(CV2) Mitigating weaknesses by sequential use of these representations for

knowledge discovery.

The results of this combination, fusion of methods are hybrid methods. The
motivation for the fusion is in the opportunity to combine the abilities of lossy
methods to handle larger data sets and of larger dimensions with abilities of the
lossless methods to preserve better n-D information in 2-D.

The goal of hybrid methods is handling the same large data dimensions as lossy
methods, but with radically improved quality of results by analyzing more infor-
mation. It is possible by applying first lossy methods to reduce dimensionality with
acceptable and controllable loss of information, from, say, 400 dimensions to 30
dimensions, and then applying lossless methods to represent 30 dimensions in 2-D
losslessly. This approach is illustrated in Chap. 7 in Sect. 7.3.3, where 484
dimensions of the image were reduced to 38 dimensions by a lossy method and then
then 38-D data are visualized losslessly in 2-D and classified with high accuracy.

The future wide scope of applications of hybrid methods is illustrated by the
large number of activities in lossless Parallel Coordinates and lossy PCA captured
by Google search: 268,000 records for “Parallel Coordinates” and 3,460,000
records for “Principal Component Analysis” as of 10/20/2017.

The progress in PC took multiple directions (e.g., Heinrich and Weiskopf 2013;
Viau et al. 2010; Yuan et al. 2009) that include unstructured and large datasets with
millions of points, hierarchical, smooth, and high order PC along with reordering,
spacing and filtering PC, and others. The GLC and hybrid methods can progress in
the same way to address Big Data knowledge discovery challenges. Some of these
ways are considered in this book.

The third component of our approach (A3) is combining analytical and visual
data mining/machine learning knowledge discovery means. This combination is in
line with the methodology of visual analytics (Keim et al. 2008). Chapter 8 illus-
trates it, where analytical means search for profitable patterns in the lossless visual
representation of n-D data for USD-Euro trading. Chapter 9 illustrates it too, where
the incongruity model is combined with visual of texts representations to distin-
guish jokes from non-jokes.
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Chapter 2
General Line Coordinates (GLC)

Descartes lay in bed and invented the method of co-ordinate
geometry.

Alfred North Whitehead

This chapter describes various types of General Line Coordinates for visualizing
multidimensional data in 2-D and 3-D in a reversible way. These types of GLCs
include n-Gon, Circular, In-Line, Dynamic, and Bush Coordinates, which directly
generalize Parallel and Radial Coordinates. Another class of GLCs described in this
chapter is a class of reversible Paired Coordinates that includes Paired Orthogonal,
Non-orthogonal, Collocated, Partially Collocated, Shifted, Radial, Elliptic, and
Crown Coordinates. All these coordinates generalize Cartesian Coordinates. In the
consecutive chapters, we explore GLCs coordinates with references to this chapter
for definitions. The discussion on the differences between reversible and
non-reversible visualization methods for n-D data concludes this chapter.

2.1 Reversible General Line Coordinates

2.1.1 Generalization of Parallel and Radial Coordinates

The radial arrangement of n coordinates with a common origin is used in several
2-D visualizations of n-D data. The first has multiple names [e.g., star glyphs
(Fanea et al. 2005), and star plot (Klippel et al. 2009)], the name Radar plot is used
in Microsoft Excel. We call this lossless representation of n-D data as the
Traditional Radial (Star) Coordinates (TRC). In the TRC, the axes for variables
radiate in equal angles from a common origin. A line segment can be drawn along
each axis starting from the origin and the length of the line (or its end) represents
the value of the variable (Fig. 2.1).

Often the tips of the star’s beams are connected in order to create a closed
contour, star (Ahonen-Rainio and Kraak 2005). In the case of the closed contour,
we will call the Traditional Radial Coordinates as Traditional Star Coordinates
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(TSC), or Star Coordinates for short if there is no confusion with others. The
closed contour is not required to have a full representation of the n-D point. A link
between xn and x1 can be skipped.

Without closing the line, TRC and Parallel Coordinates (PC) (Fig. 2.2) are
mathematically equivalent (homomorphic). For every point p on radial coordinate
X, a point q exists in the parallel coordinate X that has the same value as p. The
difference is in the geometric layout (radial or parallel) of n-D coordinates on the
2D plane. The next difference is that sometimes, in the Radial Coordinates, each
n-D point is shown as a separate small plot, which serves as an icon of that n-D
point.

In the parallel coordinates, all n-D points are drawn on the same plot. To make
the use of the radial coordinates less occluded at the area close to the common
origin of the axis, a non-linear scale can be used to spread data that are close to the
origin as is shown later in Chap. 4. Radial and Parallel Coordinates above are
examples of generalized coordinates, called General Line Coordinates (GLC).

These GLC coordinates can be of different length, curvilinear, connected or
disconnected, and oriented to any direction (see Fig. 2.3a, b). The methods for
constructing curves with Bezier curves are explained later for In-Line Coordinates.

Fig. 2.1 7-D point D = (5, 2, 5, 1, 7, 4, 1) in radial coordinates

X1 X2                      X3                          X4                              X5                          X6                        X7

Fig. 2.2 7-D point D = (5, 2, 5, 1, 7, 4, 1) in parallel coordinates
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The 7-D points shown in Fig. 2.3 are

F ¼ 3; 3:5; 2; 0; 2:5; 1:5; 2:5ð Þ; G ¼ 3; 3:5; 2; 2; 2:5; 1:5; 2:5ð Þ;
H ¼ 3; 3:5; 2; 4; 2:5; 1:5; 2:5ð Þ; J ¼ 3; 3:5; 2; 8; 2:5; 1:5; 2:5ð Þ;

where G is shown with red dots. Here F, G and J differ from G only in the values of
x4. Now let {(g1, g2, g3, x4, g5, g6, g7)} be a set of 7-D points with the same
coordinates as in G, but x4 can take any value in [0, 8].

(a) 7-D point D in General Line Coordinates with straight lines.

(b) 7-D point D in General Line Coordinates with curvilinear lines.

(c) 7-D points F-J in General Line Coordinates 
that form a simple single straight line.

(d) 7-D points F-J in Parallel Coordinates that do not 
form a simple single straight line.

X1 X2 X3 X4 X5 X6 X7

X1 X2 X3 X4 X5 X6 X7

J

H 

G 

F 

X1 X2                      X3                          X4                              X5                          X6                        X7

X1 X2                      X3                          X4                              X5                          X6                        X7

F G H J

Fig. 2.3 7-D points in general line coordinates with different directions of coordinates X1,X2,…,
X7 in comparison with parallel coordinates
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This set is fully represented in Fig. 2.3c by the simple red line with dots com-
pletely covering X4 coordinate. In contrast, this dataset is more complex in Parallel
Coordinates as Fig. 2.3d shows.

This example illustrates the important issue that each GLC has its own set of n-D
data that are simpler than in other GLC visualizations. This explains the need for
developing:

(1) Multiple GLCs to get options for simpler visualization of a wide variety of n-D
datasets,

(2) Mathematical description of classes of n-D data, where particular GLC is
simpler than other GLCs, and

(3) Algorithms to visualize those n-D sets in simpler forms.

Several chapters of this book address these needs for a number of GLCs and can
serve as a guide for development (1)–(3) for other GLCs in the future.

2.1.2 n-Gon and Circular Coordinates

The lines of some coordinates in the generalized coordinates can also form other
shapes and continue straight after each other without any turn between them.

Figure 2.4 shows a form of the GLC, where coordinates are connected to form
the n-Gon Coordinates. The n-Gon is divided into segments and each segment
encodes a coordinate, e.g., in a normalized scale within [0, 1]. If xi = 0.5 in an n-D
point, then it is marked as a point on Xi segment. Next, these points are connected
to form the directed graph starting from x1.

Figure 2.5 shows examples of circular coordinates in comparison with Parallel
Coordinates. Circular Coordinates is a form of the GLC where coordinates are
connected to form a circle. Similarly, to n-Gon the circle is divided into segments,

X1

X2

X3
X4

X5

X6 0.5

0.6

0.9

1.0
0.0

0.0

0.7

0.7

0.1

Fig. 2.4 n-Gon (rectangular)
coordinates with 6-D point
(0.5, 0.6, 0.9, 0.7, 0.7, 0.1)
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each segment encodes a coordinate, and points on the coordinates are connected to
form the directed graph starting from x1.

Circular coordinates also can be used with splitting coordinates, where two
coordinates out of n coordinates identify the location of the center of the circle and
remaining n-2 coordinates are encoded on the circle (Fig. 2.5).

This is a way to represent geospatial data. Multiple circles can be scaled to avoid
their overlap. The size of the circle can encode additional coordinates (attributes). In
the same way, n-Gon can be used in locational setting for representing geospatial
information.

Figure 2.6 shows other examples of n-Gon coordinates, where the n-Gon is not
arbitrary selected, but the use of a pentagon that reflects 5 trading days of the stock
market.

(a) Parallel Coordinates display. (b) Circular Coordinates display.

(c) Spatially distributed objects in circular coordinates with two coordinates X5

and X6 used as a location in 2-D and X7 is encoded by the sizes of circles.

X1

X2

X3

X4

0.50.5

0.2

X1

X2X3

X4

0.2

0.3

0.6

0.3

0.4

X5

X6

X1X1 X2 X3 X4

0.3

X2
X3

X4

0.50.5

0.2

Fig. 2.5 Examples of circular coordinates in comparison with parallel coordinates
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Figure 2.7 shows stock data in Radial Coordinates. While visuals in Figs. 2.6
and 2.7 are different, both show that in this example the stock price did not change
significantly during the week.

This circular setting of coordinates provides a convenient way to observe the
change from the first trading data (Monday) to the last trading data (Friday) that are
located next to each other. Parallel coordinates lack this ability due to linear
location of coordinates.

Figure 2.8 presents 3-D point A = (0.3, 0.7, 0.4) in 3-Gon (triangular) and in
radial coordinates. It shows that they have the same expressiveness and can be used
equally in the same applications.

(a) Example in n-Gon coordinates with curvi-
linear edges of a graph.

(b) Example in n-Gon coordinates with 
straight edges of a graph.

100 0
X3 Wednesday X3 Wednesday

100 0

Fig. 2.6 Example of weekly stock data in n-Gon (pentagon) coordinates

0

100

X3 Wednesday

Fig. 2.7 Weekly stock data
in radial coordinates
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2.1.3 Types of GLC in 2-D and 3-D

Tables 2.1 and 2.2 summarize different types of General Line Coordinates in 2-D
and 3-D, respectively. Some of them already have been explained and illustrated
other will be in further sections and chapters.

(a)  Point A in in 3-Gon coordinates. (b) Point A in in radial coordinates .

1   0

0    10   1

X1X
3

X
2

0.5

0.5

1   

11

X1
X

3

X
2

0.5 0.5

0.5

Fig. 2.8 3-D point A = (0.3, 0.7, 0.4) in 3-Gon (triangular) coordinates and in radial coordinates

Table 2.1 2-D line coordinates

Type Characteristics

2-D General Line
Coordinates (GLC)

Drawing n coordinate axes in 2-Din variety of ways: curved,
parallel, unparalleled, collocated, disconnected, etc.

Collocated Paired
Coordinates (CPC)

Splitting an n-D point x into pairs of its coordinates (x1, x2),...,
(xn−1, xn); drawing each pair as a 2-D point in the collocated
axes; and linking these points to form a directed graph. For
odd n coordinate Xn is repeated to make n even

Basic Shifted Paired
Coordinates (SPC)

Drawing each next pair in the shifted coordinate system by
adding (1, 1) to the second pair, (2, 2) to the third pair, (i−1, i
−1) to the ith pair, and so on. More generally, shifts can be a
function of some parameters

2-D Anchored Paired
Coordinates (APC)

Drawing each next pair in the shifted coordinate system, i.e.,
coordinates shifted to the location of a given pair (anchor),
e.g., the first pair of a given n-D point. Pairs are shown relative
to the anchor easing the comparison with it

2-D Partially Collocated
Coordinates (PCC)

Drawing some coordinate axes in 2D collocated and some
coordinates not collocated

In-Line Coordinates (ILC) Drawing all coordinate axes in 2D located one after another on
a single straight line

Circular and n-Gon
coordinates

Drawing all coordinate axes in 2D located on a circle or an
n-Gon one after another

Elliptic Coordinates Drawing all coordinate axes in 2D located on ellipses

GLC for Linear Functions
(GLC-L)

Drawing all coordinates in 2D dynamically depending on
coefficients of the linear function and value of n attributes

Paired Crown Coordinates
(PWC)

Drawing odd coordinates collocated on the closed convex hull
in 2-D and even coordinates orthogonal to them as a function
of the odd coordinate
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The last type of GLCs in Tables 2.1 and 2.2 called GLC for linear functions
(GLC-L) is designed to deal with linear functions of n variables. In detail, this type
of GLC is presented in Chap. 7.

In contrast with other GLCs listed in these tables, in GLC-L the location of
coordinates is not static, but it is dynamically build from original positions of
coordinates as a function of n-D points visualized. Another difference is that the
candidate classification relation between coordinates is built in to the visualization.
For other GLCs listed in these tables, it is not the case. In those visual represen-
tations, we are looking for any relations and features that might be informative for
the given task.

In general, not all GLCs must have immediate applications. The situation here is
similar to a situation with the definition of general linear equations of n variables x1,
x2,…,xn with arbitrary coefficients. Some equations are in use every day, some will
be used tomorrow, but some may never be of any use. The value of both general
definitions is in the fact that equations and visualizations do not cover all possible

Table 2.2 3-D line coordinates

Type Characteristics

3-D General Line
Coordinates (GLC)

Drawing n coordinate axes in 3-D in variety of ways: curved,
parallel, unparalleled, collocated, disconnected, etc.

Collocated Tripled
Coordinates (CTC)

Splitting n coordinates into triples and representing each triple
as 3-D point in the same three axes; and linking these points to
form a directed graph. If n mod 3 is not 0 then repeat the last
coordinate Xn one or two times to make it 0

Basic Shifted Tripled
Coordinates (STC)

Drawing each next triple in the shifted coordinate system by
adding (1, 1, 1) to the second tripple, (2, 2, 2) to the third
tripple (i−1, i−1, i−1) to the ith triple, and so on. More
generally, shifts can be a function of some parameters

Anchored Tripled
Coordinates (ATC) in 3-D

Drawing each next triple in the shifted coordinate system, i.e.,
coordinates shifted to the location of the given triple of
(anchor), e.g., the first triple of a given n-D point. Triple are
shown relative to the anchor easing the comparison with it

3-D Partially Collocated
Coordinates (PCC)

Drawing some coordinate axes in 3-D collocated and some
coordinates not collocated

3-D In-Line Coordinates
(ILC)

Drawing all coordinate axes in 3D located one after another on
a single straight line

In-Plane Coordinates (IPC) Drawing all coordinate axes in 3D located on a single plane
(2-D GLC embedded to 3-D)

Spherical and Polyhedron
Coordinates

Drawing all coordinate axes in 3D located on a sphere or a
polyhedron

Ellipsoidal Coordinates Drawing all coordinate axes in 3D located on ellipsoids

GLC for Linear Functions
(GLC-L)

Drawing all coordinates in 3D dynamically depending on
coefficients of the linear function and value of n attributes

Paired Crown Coordinates
(PWC)

Drawing odd coordinates collocated on the closed convex hull
in 3-D and even coordinates orthogonal to them as a function
of the odd coordinate value
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tasks. There is no “silver bullet” among them. Therefore, we need a collection of
other equations and other visualization methods where we can look for the right one
for new tasks.

2.1.4 In-Line Coordinates

The GLC include In-Line Coordinates (ILC) shown in Fig. 2.9 that are similar to
Parallel Coordinates, except that the axes X1,X2,…,Xn are horizontal, not vertical. All
coordinates are collocated on the same line, but may or may not overlap. Each pair is
represented by a directed curve. Any curve from xi to xi+1 will satisfy the requirement of
lossless representation, but the curves of different heights and shapes can show addi-
tional information such as the distance between adjacent values, |xi − xi+1|. In Fig. 2.9
the height of the curve represents the distance between the two adjacent values, e.g., for
point (5, 4, 0, 6, 4, 10), the heights represent 1, 4, 6, 2, 6. Respectively, the quadratic
curve from x1 to x2 is constructed by fitting a quadratic equation to three points (x1, 0),
(O2 + x2, 0), and ((x1 + O2 + x2)/2, |x1 − x2|), where O2 is the coordinate of the origin
of X2 on the joint line that starts from the origin of X1.

A quadratic Bezier curve based on these three points approximates this quadratic
equation. A set of such Bezier curves is shown in Fig. 2.9. Consider curves for the
points xi, xi+1. We treat these xi and xi+1 on Xi and Xi+1 as 2-D points A = (a1, a2)
and B = (b1, b2), respectively and find the midpoint, C = (A + B)/2. Then the
normal line N to the line (A, B) is constructed from point C and the point D on N is
found such that its distance from C is |xi − xi+1|. The points A, B and D are used to
construct the quadratic Bezier curve from xi to xi+1. Figure 2.9 shows that In-Line
Coordinates require the same number of nodes as Parallel Coordinates, which
makes the scopes of applicability of these methods similar.

An alternative to smooth curves are simpler “triangular” edges that connect point
A, B and D, i.e., the top of the curve to points on coordinates, for short we will call
these lines triangles. The curves are directed edges, but the direction is clear, we
omit arrowheads. To decrease occlusion we draw n-D points of one class above the
coordinate line and another class below it as is shown in Fig. 2.10.

Below we elaborate algorithmic options for constructing in-line coordinates and
representing n-D data in ILC. Later in Chap. 5 some of these options are illustrated
in the case study with real data.

X1        X2       X3      X4       X5    X6

Fig. 2.9 6-D (5, 4, 0, 6, 4,
10) point in in-line
coordinates
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In designing of ILC, we have several options to locate coordinates X1–Xn:

(L1) All coordinated X1–Xn are drawn sequentially one after another overlapping
only in a single point where they are connected. See Fig. 2.11a.

(L2) All coordinated X1–Xn are collocated, i.e., are drawn at the same location
with full overlap. See Fig. 2.11b.

(L3) All coordinated X1–Xn are drawn sequentially with partial overlap. See
Fig. 2.11c. This overlap can depend on a parameter.

(L4) All coordinated X1–Xn are dynamically sequentially located as it is shown in
the next section on Dynamic Coordinates.

Note that in L2 and L3 the curves can go backward and arrowheads must be
drawn to avoid confusion. A given n-D point a = (a1,a2,…,an) can serve as a
parameter for L3, where each ai will indicate the value on coordinate Xi where the
coordinate Xi+1 will start.

Alternatively, given n-D point a, we set up the origin point O2 for coordinate X2

at the value a1−a2 on coordinate X1. In this case, the value a2 must be plotted at the
position O2 + a2, which is a1 given O2 = a1−a2. Thus, a1 and a2 will be located at
the same 2-D point. Next, we similarly assign all other origin points Oi = a1−ai. As
a result, we get all ai points in the same location as a1. In other words, we will
collapse n-D point a to a single 2-D point. This mapping is reversible and lossless
because having all origins Oi we can restore n-D point a. For instance, for a = (1,1,
…,1) all Oi = a1−ai = 0. Thus, all coordinates Xi are collocated with the same
origin as in Fig. 2.11b and point a can be restored.

X1      X2                X3           X4       X5

Fig. 2.10 Two 5-D points of two classes in sequential in-line coordinates

(a) Sequential ILC. (b) Collocated ILC.

(c) Overlapping ILC.

X 1 X 2 X 3 X 4 X 1  X 2  X 3  X 4

X 1 X 2 X 3 X 4

Fig. 2.11 Options to locate coordinates in on-line coordinates
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Next, we have several options for ordering/reordering coordinates X1–Xn and
respective Bezier curves and triangles:

(O1) Keeping the original order of coordinates as in Fig. 2.10.
(O2) Ordering by increasing values of xi for a given n-D point x.
(O3) Ordering by increasing distance |xi− xi+1| between consecutive values xi and

xi+1 for a given n-D point x.
(O4) Ordering by increasing variance of values of xi for a given set of n-D points,

not a single n-D point as in (O2) and (O3).

In addition, we have several options to position triangles and Bezier or other
curves that connect points on X1–Xn.

(P1) Curves and triangles of all classes are above the ILC base line.
(P2) Curves and triangles of class 1 are above and class 2 is below the ILC base

line growing downwards instead. See Fig. 2.10.
(P3) Curves and triangles of class 1 are above and all other classes are below the

ILC base line growing downwards instead.

We have also several options to construct triangles and curves that connect
points on X1–Xn by assigning the height of triangles and curves as follows:

(C1) The distance between connected values xi and xi+1 that repeats their distance
on the base line of ILC).

(C2) The value xi of the first connected coordinate in each pair (xi, xi+1). The last
one xn will not be represented in this way.

(C3) The value xi+1 of the second connected coordinate in each pair (xi, xi+1). The
first one x1 will not be represented in this way.

(C4) Another value, e.g., a constant or xi+2 for the pair (xi, xi+1). In the case of xi+2,
each third coordinate Xi+2 can be omitted on the base line of ILC, because
that value will be encoded as a height of the curve or the tringle for (xi, xi+1).
See Fig. 2.12. In this case, the base line will be shortened containing only 2/3
of all coordinates. If xi, xi+1, and xi+2 are correlated the shape of the curve or
the triangle will make it visible in ILC.

(C5) The value xi+2 is the height of the curve with an additional property that the
width of the curve is xi+3 for each pair (xi, xi+1). See an example in Fig. 2.13 for
7-D point x = (x1, x2, x3, x4, x5, x6, x7) = (1, 2, 3, 5, 3, 4, 2) with values of x3 and
x4 encoded as the height and width of the curve that connects (x1, x2) and values
of x6 and x7 the height and width of the curve that connects (x2, x5). As a result

x1=1 x2=2

X1
X2

x3=3Fig. 2.12 3-D point x = (x1,
x2, x3) = (1, 2, 3) in in-line
coordinates with the value of
x3 encoded in the height of
triangle that connects (x1, x2)
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out of seven coordinates only three coordinates X1, X2 and X5 are directly
encoded in the base line of ILC. Thus, in general with (C5) we keep 3/5 of the
total number of coordinates on the base line making it shorter.
Examples of several ILC options defined above are presented in Chap. 5 for
real world data.

2.1.5 Dynamic Coordinates

In Parallel, Radial and other coordinate systems described above the location of all
coordinates X1–Xn is fixed and values of each coordinate xi of the n-D point x is
located on Xi. We will call this mapping of n-D points to coordinates static
mapping.

In the dynamic mapping of the given n-D point x, the location of the next value
xi+1 depends on the location and value of xi. Thus, the location of xi+1 will change
dynamically with change of xi. In Tables 2.1 and 2.2, we identified GLC for linear
functions (GLC-L) and Paired Crown Coordinates (PWC) that do not use static
mapping but dynamic one. PWC will be described later in this chapter and GLC-L
in Chap. 7.

A 2-D graph x* of an n-D point x = (x1,x2,…,xn) is created in dynamic mapping
by connecting the consecutive edges as follows. The first edge has length x1 and is
located on the first coordinate X1, starting from origin and ending on point x1 on X1.
The second edge starts at the end of the first edge and is going parallel to the
second coordinate X2. It has length x2. Similarly, the edge j is going parallel
to coordinate Xj starting at the end of edge j-1. In general, this graph is not a closed
contour. A closed contour is made by adding the edge that connects the last node
with the origin node. In the cases below 16 coordinates X1–X16 are located in four
different ways: as radii from the common origin (Kandogan 2000) in Fig. 2.14a, as
a star zig-zag in Fig. 2.14b, as a linear zigzag in Fig. 2.15a, b and as a single line in
Fig. 2.15c forming Dynamic In-line Coordinates. All of them encode the same
16-D point a = (1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2).

The first edge of the graph a* is located on X1 coordinate forming the edge of
length a1 = 1. The second edge starts at the point where x1 is located and goes

x1=1 x2=2

X1

X2

x3=3

x4=5
X5

x5=3

x6=4

x7=2

Fig. 2.13 7-D point x = (x1,
x2, x3, x4, x5, x6, x7) = (1, 2, 3,
5, 3, 4, 2) in in-line
coordinates with values of x3,
x4,x6 and x7 encoded in the
height and width of the curves
that connect (x1, x2) and (x2,
x5)
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parallel to X2 coordinate. For Fig. 2.14a it is with the angle 360°/16 = 22.5°. The
length of this edge is a2 = 1. Similarly, all other edges are generated.

Chapter 3 presents several other ways to implement dynamic mapping. All
dynamic coordinates are lossless 2-D representations of n-D data. Their multiplicity
expands opportunities to discover visual patterns on the same n-D data.

(a) Point a in Radial Dynamic Coordinates. (b) Point a in Star Zigzag dynamic coordinates.

X3

X5

X7

X9

X11

X1

X13

X15

X16 X2

X4X14

X6

X8X10

X12

X3

X5

X7X9

X11

X13

X15 X2

X4

X14

X6

X8
X10

X12

X16
X1

Fig. 2.14 16-D point a = (1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2) in two Dynamic Coordinates

(a) Linear Zigzag Dynamic Coordinates. 
Coordinates. 

(b) Point a in Linear Zigzag Dynamic 
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(c) Dynamic In-line Coordinates. 

Fig. 2.15 Point a = (1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2) in 16-D Linear Zigzag Dynamic
Coordinates
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2.1.6 Bush and Parallel Coordinates with Shifts

The Bush Coordinates (BC) are modified Parallel Coordinates (PC) where only the
middle coordinate in vertical. All other coordinates are tilted increasingly to form a
“bush”.

Figure 2.16a, b shows both Parallel and Bush coordinates for the same data. It
shows how simple preattentive straight blue line in PC is converted to a more
complex line in BC, while Fig. 2.16c, d show the opposite effect a preattentive blue
line in BC is converted to a more complex line in PC.

This example along several other examples in this book shows the abilities to
select a specific GLC that simplifies the visualization of a given n-D point. Chapter
4 presents the simplification in more detail and with more examples.

We also can shift Coordinates in Bush and Parallel Coordinates to the central
coordinate. This shift can be in both horizontal and vertical directions. A specific
shift of a given n-D point will collapse it to a single 2-D point as it is shown in
Fig. 2.17 for the green line from Fig. 2.16.

While the given n-D point will be encoded as a single 2-D point, other n-D
points will still have n nodes and n-1 edges in the graph as is shown in Fig. 2.17.
However the graphs of the n-D points that are close to the given n-D point x = (x1,
x2,…,xn) will be smaller (see Fig. 2.17 for the red line and curves).

When this shifting is applied to Parallel Coordinates in Fig. 2.16a we use curves
to connect the points to be able to see n-D points as shown in Fig. 2.17b for blue
and read 6-D points. This is similar to drawing lines with Bezier curves and
triangles in ILC above (Fig. 2.10).

(a) Dataset 1 in PC (b) Dataset 1 in BC

(c) Dataset 2 in PC (d) Dataset 2 in BC

Fig. 2.16 Three 6-D points in parallel and bush coordinates
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2.2 Reversible Paired Coordinates

2.2.1 Paired Orthogonal Coordinates

The algorithm for representing n-D points in 2-D using lossless Collocated Paired
Coordinates (CPC) is presented below. We use an example in 6-D with a state
vector x = (x, y, x′, y′, x″, y″), where x and y are location of the object, x′ and y′ are
velocities (first derivatives), and x″ and y″ are accelerations (second derivatives) of
this object.

The main steps of the algorithm are:

1. Normalization of all dimensions to the same interval, e.g., [0, 1],
2. Grouping attributes into consecutive pairs (x, y) (x′, y′′) (x″, y″),
3. Plotting each pair in the same orthogonal normalized Cartesian coordinates X

and Y, and
4. Plotting a directed graph (digraph): (x, y) ! (x′, y′) ! (x″, y″) with directed

edges (arrows) from (x, y) to (x′, y′) and from (x′, y′) to (x″, y″).

In Fig. 2.18a CPC algorithm is applied to a 6-D point (5, 4, 0, 6, 4, 10) showing
two arrows: (5, 4) ! (0, 6) ! (4, 10).

(a) Shifted Collapsing Bush Coordinates (b) Shifted Collapsing Parallel Coordinates

Fig. 2.17 Three 6-D points after shifting coordinates X1, X2, X4, X5, X6 to X3 with collapsing the
green line from Fig. 2.16 to a single 2-D point (small green circle in the center) in BC and PC
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The Shifted Paired Coordinates (SPC) show each next pair in the shifted coor-
dinate system. The first pair (5, 4) is drawn in the (X, Y) system, pair (0, 6) is drawn in
the (X + 1, Y + 1) coordinate system, and pair (4, 10) is drawn in the (X + 2, Y + 2)
coordinate system. For point x = (5, 4, 0, 6, 4, 10), the graph consists of the arrows:
from (5, 4) to (1, 1) + (0, 6) = (1, 7) then from (1, 7) to (2, 2) + (4, 10) = (6, 12) in the
original (X, Y) coordinates. See Fig. 2.18b. In the original (X, Y) coordinate system the
nodes of the graph are points (5, 4), (1, 7) and (6, 12).

In the SPC version presented above, the shift from each coordinate system to the
next one is the constant 1. SPC allows generalizations by using:

(1) any constants as shifts from each coordinate system to the next one that differ
from 1, e.g., 2, 3 and so on,

(2) dynamic shifts that depend on an n-D point x itself, e.g., the second pair (x′, y
′) = (0, 6) is drawn in the (X + x, Y + y) coordinate system, (0, 6) + (5,
4) = (5, 10) with x = 5, y = 4. Similarly, the third pair (x″, y″) = (4, 10) is
drawn in the (X + x + x′, Y + y + y′) coordinate system (4, 10) + (5 + 0,
4 + 6) = (9, 20) with x′ = 0, y′ = 6.

Note that this mapping is lossless. It allows restoring the original 6-D point (5, 4,
0, 6, 4, 10) from 6-D point (5, 4, 5, 10, 9, 20) by subtracting respective numbers.

The Anchored Paired Coordinates (APC) starts at the given pair (a1, a2) that
serves an “anchor”. Below we present two version of APC: APC1 and APC2.

In APC-1 pair (a1, a2) is drawn in a given (X, Y) coordinate system. Then a new
coordinate system is created (X + a1, Y + a2) that has its origin in (a1, a2). Next
this new system is used as a collocated coordinate system for all n-D points. In other
words, APC1 is CPC shifted to the point (a1, a2). If anchor pair (a1, a2) is selected
to be the first pair coordinates of a given n-D point x, then for this n-D point APC is
CPC, because there is no shift for the first pair (x1, x2) of x.

In APC2 pair (a1, a2) is also drawn in a given (X, Y) coordinate system, but all pairs
(x1, x2), (x3, x4),…,(xn-1, xn) are represented by directed edges from the anchor (a1, a2).

a1; a2ð Þ ! x1; x2ð Þ; a1; a2ð Þ ! x3; x4ð Þ; . . .; a1; a2ð Þ ! xn�1; xnð Þ

(a) Collocated Paired Coordinates. (b) Shifted Paired Coordinates.

X

YFig. 2.18 6-D point (5, 4, 0,
6, 4, 10) in paired coordinates
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In APC2 directed edges are labeled (numbered) to indicate the order of the edges
to be able to restore the n-D point from the graph. These labels can be turned off to
decrease occlusion to see a generalized visual pattern.

APC2 is illustrated below with two examples. Let the anchor be (a1, a2) = (1, 2)
in (X, Y) coordinates, then the 6-D point (5, 4, 0, 6, 4, 10), used in the example
above, has three edges drawn in the given (X, Y) coordinates:

1; 2ð Þ ! 5þ 1; 4þ 2ð Þ; 1; 2ð Þ ! 0þ 1; 6þ 2ð Þ; 1; 2ð Þ ! 4þ 1; 10þ 2ð Þ

These edges directly show velocity and acceleration vectors of the state vector
that the 6-D point (5, 4, 0, 6, 4, 10) represents. This is an advantage of the APC2 for
modeling state vectors. In contrast, in the coordinate systems such as standard
Radial Coordinates the directions have no such physical meaning. Figure 2.19
illustrates APC2 for another 6-D point, x = (0.2, 0.4, 0.1, 0.6, 0.4, 0.8) when the
anchor pair in the first pair of this 6-D point.

The general idea of the paired coordinates is converting a simple string of
elements of n-D point x = (x1,x2,…,xn) in coordinates X1, X2,…,Xn to a more
complex structure with consecutive 2-D elements (pairs) for even n:

x1; x2ð Þ x3; x4ð Þ; . . .; xi; xiþ 1ð Þ; . . .; xn�3; xn�2ð Þ; xn�1; xnð Þf g

For the odd n this structure is slightly different with xn-1 used in both last two
pairs to give a pair to xn:

x1; x2ð Þ x3; x4ð Þ; . . .; xi; xiþ 1ð Þ; . . .; xn�2; xn�1ð Þ; xn�1; xnð Þf g

Alternatively, xn can form a pair with itself for an odd n:

x1; x2ð Þ; x3; x4ð Þ; . . .; xi; xiþ 1ð Þ; . . .; xn�2; xn�1ð Þ; xn; xnð Þf g

An example shown in Fig. 2.20a illustrates the advantages of Paired
Coordinates over Parallel Coordinates (Fig. 2.20b) using 6-D point x = (x, y, x′, y′,

1.1
1 (0.1,0.6)+(0.2,0.4)=(0.3, 1.0)

0.9
0.8     (x'',y'')
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(0.4, 0.8)+ (0.2,0.4)= (0.6, 1.2)

(x',y')

(0.2, 0.4)=(x,y)

X, X`,X``

Y, Y`,Y``

1 2

Fig. 2.19 6-D point x = (x,
y, x′, y′, x″, y″) = (0.2, 0.4,
0.1, 0.6, 0.4, 0.8) in anchored
paired coordinates with
numbered arrows
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x″, y″) = (0.2, 0.4, 0.1, 0.6, 0.4, 0.8). Parallel Coordinates require 5 lines to show
x (Fig. 2.20b). In contrast, all collocated coordinates require only 2 lines, which
leads to less clutter when multiple n-D points are visualized on the same (X, Y)
coordinate plane. It is a general property of all paired coordinates to require two
times fewer lines than the Parallel Coordinates require.

The 3-D version of the Collocated Paired Coordinates is a natural generalization
of the visual representations shown above by adding the Z coordinate, and showing
lines in 3-D.

Linearly correlated data in CPC. Figure 2.21a shows linearly correlated data
from Table 2.3 in the Collocated Paired Coordinates. All shapes are identical and
existence of the shifts is visible. This visualization required only 3 lines for each
8-D point instead of 7 lines in the parallel coordinates.

(a) Collocated Paired Coordinates (b) Parallel Coordinates

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 2.20 State vector x = (x, y, x′, y′, x″, y″) = (0.2, 0.4, 0.1, 0.6, 0.4, 0.8) in Collocated Paired
and Parallel Coordinates

(a) Correlated data from Table 2.3 (b). Full CPC encoding of 
6-D points with repeated 
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Fig. 2.21 CPC visualizations
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Typically, CPC visualization without labels is sufficient to observe the visual
pattern. For long graphs produced for higher dimensional data we use animation of
the graph with a point moving on the edges of the graph or jumping from node to
node for faster traversing of the graph. One of the agents in the collaborative
visualization can drive the animation for other agents. In this case the interactive
CPC visualization uses coloring or blinking of these graphs. This interactive
visualization allows:

(i) turning off all other graphs showing only such ambiguous graphs,
(ii) presenting these graphs in a separate window (CPC plane), and
(iii) showing actual numeric values.

Figure 2.21b illustrates a complete CPC graph visualization with labels 1 and 2
for two 6-D points A = (0, 0, 1, 0, 0, 0) and B = (1, 0, 0, 0, 1, 0) denoted as (A) and
(B) respectively.

In both the green node indicates the start point of the graph, and labels 1 and 2
indicate the sequence of traversing the edges of graph. For point A the sequence is
(0, 0) ! (1, 0) ! (0, 0) and for point B it is (1, 0) ! (0, 0) ! (1,0).

2.2.2 Paired Coordinates with Non-linear Scaling

Rescaling of coordinates changes visual pattern of n-D data that can be used to
simplify visualization of n-D data and to make the pattern clearer. Figure 2.22a
shows 4-D point (1, 1, 1, 0.5) in Shifted Paired Coordinates in regular linear

Table 2.3 Correlated 8-D
points that differ in a shift

x1 x2 x3 x4 x5 x6 x7 x8
xred 5 6 4 3 7 8 1 3

xblue 10 11 9 8 12 13 6 8

xgreen 1 2 0 −2 3 4 −3 0
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X
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X
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X 3̀
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X
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(a) (b)

Fig. 2.22 4-D point (1, 1, 1, 0.5) in shifted paired coordinates in a regular (linear) scaling, b in
disproportional (non-linear) scaling of coordinate X3
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scaling, and Fig. 2.22b shows it with disproportional non-linear scaling of coor-
dinate X3.

This rescaling of X3 converts the graph (arrow) to a single point that is a simpler
visual representation. The rescaling formula of X3 to X′3 is below and it is illus-
trated in Fig. 2.23,

x03 ¼
x3; if x3\0:5

0:5x3 þ 0:25; if 0:5� x3\1

�

2.2.3 Partially Collocated and Non-orthogonal Collocated
Coordinates

Collocated Paired Coordinates defined above in Sect. 2.2.1 require full collocation
of orthogonal pairs of Cartesian coordinates. In this section, we present coordinate
systems where these requirements for pairs are relaxed.

Figure 2.24 shows Partially Collocated Orthogonal (Ortho) Coordinates. Here
X1 and X3 are partially collocated, i.e., X3 starts at the blue dot in X1 coordinate, but

0 0.5 0.75 1

0 0.5 0.75 1

X3

X3̀

0 0.5 0.75 1

0.5

1 X3̀

X3

Fig. 2.23 Rescaling X3 to X′
3

Fig. 2.24 Partially
Collocated Orthogonal
(Ortho) Coordinates
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X2 and X4 do not collocate at all, X4 is shifted relative to X2. Thus, this is a mixture
of CPC and SPC coordinates. The 4-D point (1, 1, 0, 1) in these coordinates
collapses to a single 2-D point. This 2-D point is located at the place of 2-D point
(1, 1) in (X1, X2) coordinates. This makes the visual representation of this point
simple and pre-attentive.

Figure 2.25 shows Partially Collocated Ortho and non-Ortho Coordinates.
Here (X1, X2) is an orthogonal pair and (X3, X4) is a non-orthogonal pair, where X1

and X3 are partially collocated in the same way as in Fig. 2.24, but X4 is shifted and
rotated relative to X2. In these coordinates another 4-D point (1, 1, 0, 1.2) will
collapse to a single 2-D point. This 2-D point is located at the place of 2-D point (1,
1) in (X1, X2) coordinates making it pre-attentive.

Figure 2.26 shows Fully Collocated non-Ortho Coordinates, where both (X1,
X2) and (X3, X4) are non-orthogonal pairs. In these coordinates the third 4-D point
(1, 1, 1, 1) will collapse to a single 2-D point. This 2-D point is located at the place
of 2-D point (1, 1) in (X1, X2) coordinates making it pre-attentive.

Pairing of radially located coordinates is considered in the next section. In
general, multiple different pairing can be designed to simplify visualization of given
n-D points of interest.

2.2.4 Paired Radial (Star) Coordinates

Traditional Radial (Star) Coordinates shown on Fig. 2.1 use n nodes to represent
each n-D point. Below we present the Paired Radial (Star) Coordinates that use a
half of the nodes to get a reversible representation of an n-D point.

Fig. 2.25 Partially
Collocated Ortho and
non-Ortho Coordinates

Fig. 2.26 Collocated Paired
non-Ortho Coordinates
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A 6-D point x = (x1, x2, x3, x4, x5, x6) = (1, 1, 2, 2, 1, 1) with non-orthogonal
Cartesian mapping is shown in Fig. 2.27 in Paired Radial Coordinates. It is split to
three 2-D pairs with the 2-D point (x1, x2) = (1, 1) located in the first sector in
coordinates (X1, X2), point (x3, x4) = (2, 2) located in the second sector in coor-
dinates (X3, X4), and point (x5, x6) = (1, 1) located in the third sector in coordinates
(X5, X6).

Then these points are connected sequentially to form a directed graph. As a
result a 6-D point is represented losslessly not by six 2-D points as in Parallel
Coordinated but by three 2-D points, i.e., two times less 2-D points.

Figure 2.28 shows other examples of 16-D and 192-D points represented in 2-D
in Paired Radial (Star) Coordinates as closed contours (“stars”). These paired
coordinates belong to the class of Paired Coordinates. For short, below we call
these representations CPC stars or CPC-S.

CPC stars are presented here in two versions: CPC-SC and CPC-SP that use,
respectively, Cartesian and polar encodings for pairs. Figure 2.28a shows that
coordinates X2 and X3 are collocated. In the same way, X4 and X5 are collocated as
well as all other Xj, Xj+1 are collocated. At the end, coordinates X1 and X16 are
collocated due to the radial location of coordinates.

X
2X

3

X
4 X

5

X
6

1 2 
1

2
(x3,x4)
=(2,2)

(1,1)= (x5,x6)

(1,1)= (x
1
,x

2
)

X1

Fig. 2.27 Example of n-D point represented as a closed contour in 2-D where a 6-D point x = (1,
1, 2, 2, 1, 1) is forming a tringle from the edges of the graph in Paired Radial Coordinates with
non-orthogonal Cartesian mapping

(a) (b)

X1

X2X3

X5 X4

X6X7

X9X8

X11X10

X13X12

X15

X16

X14

(c)

Fig. 2.28 Examples of n-D points as closed contours in 2-D: a 16-D point (1, 1, 2 ,2, 1, 1, 2, 2, 1,
1, 2, 2, 1, 1, 2, 2) in Partially Collocated Radial Coordinates with Cartesian encoding, b CPC star
of a 192-D point in Polar encoding, c the same 192-D point as a traditional star in Polar encoding
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The CPC stars are generated as follows: a full 2p circle is divided on n/2 equal
sectors. Each pair of values of coordinates (xj, xj+1) of an n-D point x is displayed in
its own sector as a 2-D point.

The graph of a 6-D point (1, 1, 1, 1, 1, 1) in Partially Collocated Radial
Coordinates is shown in Fig. 2.29 on the left as a blue triangle. The same 6-D point
in the Cartesian Collocated Paired Coordinates on the right produced a much
simpler graph as a single point. Thus, this figure illustrates the perceptual and
cognitive differences between the alternative 2-D representations of the same n-D
data. Here a 2-D point is much simpler perceptually and cognitively than a triangle
for the same 6-D point.

Figure 2.29 shows pair (x1, x2) = (1, 1) as a point in the sector (X1, X2) using
Cartesian mapping to these non-orthogonal oblique coordinates. Similarly the next
pair (x3, x4) = (2, 2) is shown in the sector (X3, X4). Note that coordinates X2 and
X3 are collocated. In the same way, X4 and X5 are collocated as well as all other Xj,
Xj+1 are collocated including X1 and X16. This collocation is a critical innovation of
this method allowing having n/2 sectors and 2-D points instead of n sectors and 2-D
points in the traditional star coordinates. This method dramatically decreases clutter
as Fig. 2.28b shows in contrast with the traditional star in Fig. 2.28c.

In the polar mapping, pair (xj, xj+1) is mapped to the point p = (r, a) that is

located at the distance r ¼ ðx2j þ x2jþ 1Þ1=2 from the star center with the angle a of
the ray to this point from the sector start. Here r is the Euclidean length of the
projection of vector x on the plane of two coordinates (Xj, Xj+1). The angle a is
proportional to the normalized value of xj computed relative to the angle of the
sector, 2p/(n/2).

In this way, we get n/2 points and connect them by straight lines (or arrows) to
generate a star. This is a polar representation of all 2-D projections of x on plane. It
is a lossless display forming a single connected figure (directed graph) without
crossing lines. It also satisfies Gestalt Laws that support an effective use of human
shape perception capabilities.

Fig. 2.29 6-D point (1, 1, 1, 1, 1, 1) in two X1–X6 coordinate systems (left—in Radial
Collocated Coordinates, right—in Cartesian Collocated Coordinates)
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Other versions of this representation are produced when radius r represents xj
and angle a represents xj+1, or vice versa. Alternatively, each pair (xj, xj+1) can be
encoded as is in the non-orthogonal oblique coordinates (Xj, Xj+1) as it is done in
Figs. 2.27 and 2.28a.

In general, CPC Radial Coordinates use n/2 2-D points instead of n 2-D points
and dramatically increase the abilities to visualize higher-dimensional data
losslessly.

Statement 2.1 (Half Size) Any n-D point to be represented in the CPC Radial
Coordinates requires n/2 2-D points for even n and (n + 1)/2 for odd n.

Proof This statement follows directly from the described Radial CPC representa-
tion algorithm.∎

The CPC stars provide a new visualization showing 2-D projections directly. It is
especially beneficial for naturally paired data where CPC stars easily interpretable.
In comparison with traditional stars, CPC stars:

• have twice less break points on the contour of the figure that is significantly
decreasing shapes complexity,

• effectively doubles data dimensions accessible as Fig. 2.28b shows versus
Fig. 2.28c

Thus, CPC stars have important advantages over traditional stars for shape
perception. Chapter 6 presents Star coordinates in more detail. That chapter shows
that the CPC star representation is quite effective for shape perception for data
dimensions up to 200.

2.2.5 Paired Elliptical Coordinates

Above Circular Coordinates used curvilinear coordinates. However, that version of
Circular Coordinates uses the same number of nodes and edges as Parallel
Coordinates. In contrast, paired coordinates CPC, SPC and APC, built with straight
lines for coordinates, use two times less edges and nodes with less clutter. Below
we present a version of Elliptical Paired Coordinates (EPC), EPC-H, that also
hold this property.

Figure 2.30 shows an example of 4-D point P = (0.3, 0.5, 0.5, 0.2) in EPC-H as
a short green arrow. For comparison, Fig. 2.31 shows the same point P in Radial
Coordinates that present it as a graph with 4 nodes. In Fig. 2.30, the blue ellipse CE

holds four coordinate curves X1–X4.
The green arrow (A!B) is constructed by using 4 ellipses of the size of the blue

coordinate ellipse. These four ellipses touch the middle vertical line M and move
along it to get different 4-D points. Below we explain this process. The thin red
ellipse on the right is defined by the three requirements: to go through x1 = 0.3, to
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touch line M and be of the size of the blue coordinate ellipse CE. Visually it is done
by copying CE and shifting the copy to the right to touch line M and then sliding it
along M to reach x1 = 0.3 on coordinate X1.

This process shows that only one red ellipse satisfy these requirements. Then the
same process is conducted for x2 = 0.5 with the thin blue ellipse. The point A where
these red and blue ellipses cross each other in CE is the point that represents pair (x1,
x2) = (0.3, 0.5). Next this process is repeated for x3 = 0.5 and x4 = 0.2 to produce
the crossing point B of two respective ellipses on the left that represents pair (x3,
x4) = (0.5, 0.2). Then the two crossing points A and B are connected to form the
green arrow that serves as visualization of 4-D point P = (0.3, 0.5, 0.5, 0.2).

This process is reversible allowing restoring the 4-D point P from the
(A!B) arrow. The process starts from sliding the thin red ellipse on the right to
cross point A. Then the point where this ellipse crosses CE ellipse gives the point on
X1 coordinate, which is x1 = 0.3. The same process is conducted for the blue circle
on the right to find its crossing with X2 coordinate to find x2 = 0.5. Next it is
repeated for point B and thin red and blue ellipses on the left.

X3

0.3
X1

X2

X4

0.50.5

0.2

M

CE

A
B

Fig. 2.30 4-D point
P = (0.3, 0.5, 0.5, 0.2) in 4-D
Elliptic Paired Coordinates,
EPC-H as a green arrow. Red
mark separate coordinates in
the Coordinate ellipse

X1

X2

X3

X4

0.3

0.5

0.5

0.2

Fig. 2.31 4-D point
P = (0.3, 0.5, 0.5, 0.2)
in Radial Coordinates
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2.2.6 Open and Closed Paired Crown Coordinates

This sections describes a method to represent a given n-D point w = (w1,w2,…,wn)
as an open or closed contour without using radial location of coordinates exploited
in Sect. 2.2.4. We will call this class of coordinates as Paired Crown Coordinates
(PWC) and denote its open and closed contour versions as OPWC, CPWC,
respectively.

The process of constructing PWC includes two algorithms:

• Coordinate Layout (CL) algorithm to locate n coordinates in 2-D plane, and
• Point Mapping (PM) algorithm that maps (locates) a given n-D point on PWC.

Below we describe these algorithms for the even n. If n is odd then the value of
coordinate Xn in-D point w is repeated to get n + 1 coordinates.

The Coordinate Layout algorithm:

(1) Normalizes all coordinates X1,X2,…,Xn to [0, 1] interval;
(2) Collocates all odd coordinates X1,X3,…,Xn-1 on a “crown” that can be any

convex closed contour. In Fig. 2.32 we use a square and a circle; We denote the
set of all collocated odd coordinates as X coordinate.

(3) Locates all even coordinates X2,X4,…,Xn orthogonal to the crown starting from
the points on the crown. The location of these points is not static, but dynamic.
Each even coordinate Xj+1 starts at the value wj of the odd coordinate Xj on the
crown. We denote the set of all even coordinates as Y coordinate.

The Point Mapping (PM) Algorithm:

(1) Normalizes all wi from w to [0, 1] (represents w in normalized coordinates);
(2) Pairs normalized values of w: (w1, w2), (w3, w4),…,(wn−1, wn);
(3) Maps a pair (wj, wj+1) from w to the location of value wj+1 on coordinate Xj+1,

e.g., locates pair (w1, w2) on the location of value w2 on coordinate X2 and (w3,
w4) on the location of value w4 on coordinate X4.

w1  w3w5 w7w9w11 w13w15 w17w19w21w23 w25 w27 w29 w31    w33

w6

w14

w22

w30 X1 X3 X5 … X31 X33

X2 X4 X6 … X32 X34

X

Y

Fig. 2.32 34-D point in Collocated Paired Coordinates
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These algorithms are illustrated below for 34-D point w with values of all its odd
coordinates ordered in ascending order, w1 � w3 � …�wn−1. First, Fig. 2.32
shows this point CPC, where X and Y stand for sets of odd and even coordinates,
respectively. Then Fig. 2.33a shows this point in PWC with the crown as a square
and in Fig. 2.33b with the crown as a circle. It is noticeable that the axis X from
Fig. 2.32 is “bended” and presented as a square in Fig. 2.33a and as a circle in
Fig. 2.33b. Some locations on the square and the circle are labeled from 0 to 8,
where 0 and 8 are at the same location (upper left corner) as a result of bending in
Fig. 2.33a.

In Fig. 2.33a, the value w5 (labeled with 1) is a starting point of the normal to the
square that forms the coordinate X6. The length of this norm is the value of w6.

The location of w6 represents the pair (w5, w6). Both w5 and w6 can be restored.
To get a closed contour (CPWC version) the location of last pair labeled by 8 in
Fig. 2.33a, is connected by a directed edge to the location of first pair. Otherwise,
we will have an open contour (OPWC version).

While both these pairs start from the same point labeled by 8, the normals are
different. For pair (w33, w34) the normal is for left side of the square and for pair (w1,
w2) it is for the top of the square. In contrast, the circle in Fig. 2.33b has only one
normal at all locations.

The bending does not connect locations of w34 and w1, but keeps a fixed gap
between them, shown by sector between two red dotted arrows in Fig. 2.33b. The
name of these coordinates as crown coordinates is coming from resemblance to the
solar crown and its protuberances.

(a) Mapping odd coordinates to a square. (b) Mapping odd coordinates to a circle.
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Fig. 2.33 34-D point from Fig. 2.32
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The representations of 34-D point w in Paired Crown Coordinates in Fig. 2.33
uses 17 nodes and edges, i.e., the half of needed to visualize w in Parallel
Coordinates. The advantage of closed contours in Fig. 2.33 relative to the open
contour in CPC in Fig. 2.32 is exactly in its closeness that is consistent with Gestalt
laws of shape perception. Chapter 6 presents the perception aspects in more detail.

The advantage of these closed contours relative to traditional stars and CPC stars
is that they do not occlude the points near the center, because all points are located
outside of the crown.

These closed contours also improve visibility of some coordinate values relative
to the polar mapping of CPC Stars and regular stars, because in higher dimension
the sectors in CPC Stars and regular stars become smaller. Note that to have a
closed contour we need at least 6 dimensional w, because the triangle is the simplest
closed contour. It needs three pairs of coordinate values (w1, w2), (w3, w4), and (w5,
w6) to visualize its three nodes.

Above we described PWC for n-D point w with ordered values of its odd
coordinates. It ensured that no edge goes backward. Therefore, the PWC graph is
planar without self-crossing as it is described below. Figure 2.34 shows another
option of the crown as a non-convex closed contour.

Above we assumed that odd coordinates of w are ordered. This requirement can
be substituted by the requirement to order these coordinates first. Then PWC will be
applied to the ordered w.

Below we present formal statements showing that this process guarantees that
lines of the graph will not cross and will not go backward. These statements are
based on the following algorithm called the odd ordering algorithm:

Step 1. Represent all nodes of n-D point x as a sequence of pairs
x1; x2ð Þ; x3; x4ð Þ; . . .; xn�1; xnð Þ e.g., (0, 0), (1, 0), (0, 1), (1, 1), (0, 0).
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0 8 w4
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w7

Fig. 2.34 Crown as
non-convex closed contour

42 2 General Line Coordinates (GLC)



Step 2. Order pairs using their first element in ascending order, e.g., (0, 0), (0, 0),
(0, 1), (1, 0), (1, 1), i.e., (x1, x2), (x9, x10), (x5, x6), (x3, x4), (x7, x8).

Step 3. Denote these ordered pairs as w1; w2ð Þ; w3; w4ð Þ; w5; w6ð Þ; w7; w8ð Þ;
w9; w10ð Þ.

These pairs correspond to w used in the PWC process above.

Statement 2.2 (Planarity) The odd ordering algorithm produces a planar CPC
graph such that each edge is located on the right from the previous edges or on the
same vertical line as the previous edge.

Proof Let (wi, wi+1) and (wi+2, wi+3) be two consecutive nodes of a PWC graph for
an n-D point w after applying the odd ordering algorithm to w. Thus, wi � wi+2,
i.e., each next edge of the CPC graph is located on the right from the previous edge
or on the same vertical line as the current node. This location of the next node does
not allow the next edge and further edges to cross the current edge and previous
edges that are all on the left from the next edge. If wi = wi+2 then the next edge is on
the same vertical line as the previous one.∎

The next algorithm is the Complete odd ordering algorithm where after odd
ordering, all pairs with equal first element are ordered in ascending order relative to
its second element, e.g., (0, 0), (0, 0), (0, 1), (1, 0), (1, 1), i.e., (x1, x2, x9, x10, x5, x6,
x3, x4, x7, x8).

The Complete ordering algorithm orders all coordinates of x in the ascending
order, e.g., for (0, 0, 1, 0, 0, 1, 1, 1, 0, 0) the order is
x1; x2; x4; x5; x9; x10; x3; x6; x7; x8ð Þ ¼ 0; 0; 0; 0; 0; 0; 1; 1; 1; 1ð Þ:
Statement 2.3 The planarity statement 2.2 is true for both the complete odd
ordering, and the complete ordering algorithm.

Proof Both orderings satisfy the requirements of odd ordering required for the
planarity theorem.∎

Discussion. Consider another n-D point q with at least one odd i such that
qi > qi+2, i.e., violates the order from w. The graph for q goes backward from the
node for pair (qi, qi+1) to the node for pair (qi+2, qi+3) and potentially can be
self-crossing (non-planar).

Some datasets may have many such points. We analyzed several real datasets.
Some datasets have the same orderings practically for all n-D points. Some datasets
have large subsets with the same orderings especially when strict ordering is relaxed
by allowing violation of the ordering within some threshold.

For the datasets that are extremely diverse in ordering it is better to use other
GLCs such as Radial Coordinates that have no self-crossings and others that we
present in this chapter later. In Chap. 4 we provide methods to simplify visual
patterns that are helpful to avoid crossing too.
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2.2.7 Clutter Suppressing in Paired Coordinates

Lines in Parallel, Radial, and Paired Coordinates can produce complex shapes
especially with larger dimensions that lead to higher density of features.
Figure 2.28a shows this for a 192-D point in the traditional Radial Coordinates.
This creates clutter where it is difficult to distinguish features of a single n-D point
visually. We will call it a single point clutter.

Another type of clutter is a result of displaying together several high-dimensional
points, which we will call multiple points clutter. This clutter issue is well known for
popular lossless Parallel and Radial Coordinates (Fanea et al. 2005). It is desirable to
have methods for decreasing clutter for GLCs in general.

Side-by-side visualization One of such methods is displaying each n-D point
separately as it is commonly done with Chernoff’s faces: side-by-side. However,
only few hundreds of n-D points can be analyzed using the side-by-side method.

While this method does not scale to thousands of n-D points, there are many real
world tasks that deal with hundreds not thousands of n-D points as datasets at UCI
Machine Learning repository (Lichman 2013) illustrates.

The important issue with this method is switching gaze from one graph to
another one. It takes time, requires memorizing the first graph before looking at
another one, which complicates the comparison of graphs.

Overlay One of the solutions for this issue is considering one graph as a base, and
overlaying other graphs with it one after another. The color of the overlaid graph
will differ from the color of the base graph. The sections of two graphs that are
practically identical can be highlighted or be shown in a third color. The analysts
can indicate interactively that two graphs are similar and potentially from the same
class by using graphical user interface.

From Stars to SPC Stars One of the ways to decrease the single graph clutter is
moving from traditional Radial (Star) Coordinates to CPC Stars. This increases the
scalability of the side-by-side method as Chap. 6 shows.

Envelops and convex hulls of CPC graphs is one of the ways to mitigate
perceptual difficulties of both single point and multiple points clutter. Envelopes
and convex hulls are simpler than CPC graphs.

Users can compare features of envelopes and convex hulls such as orientation,
size and symmetries easier than features of CPC graphs. See Fig. 2.35 where the

-5

0

5

10

5 10

Fig. 2.35 Convex hulls of
correlated data from Table 2.3
in CPC
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graphs from Fig. 2.20a are converted to their convex hulls that are simple triangles,
which can be easily compared visually. Here, the features of each envelope, such as
the orientation and size of triangles indicate some relationships, and can be
extracted, presented and analyzed mathematically.

In the same way, the envelopes of multiple n-D points can be compared.
However, due to generalization of graphs envelopes allow discovering only a
limited number of statistical properties of data classes such as dominant orientation.

Paired Coordinates presented above provide new visualizations, which show n-D
points in a way which could be especially beneficial for the naturally paired data,
and could be easily interpretable. All Paired Coordinates representations have two
times fewer break points than the traditional Stars and Parallel Coordinates on the
contour of the figure. This significantly decreases the complexity of the forms. It
effectively doubles the representable data dimensions for CPC stars as Fig. 2.28b
illustrates and Chap. 6 presents in detail.

The expansion of GLCs for dimensions n up to 1000 is as follows: grouping
coordinates xi of x by 100–150 and representing them by separate or collocated
colored GLC graphs, and/or mapping some xi values into colors. Lossy reduction of
n can be applied after visual analysis of these lossless displays, which can reveal the
least informative attributes that can be removed. Another reduction is based on a
priori domain knowledge.

2.3 Discussion on Reversible and Non-reversible
Visualization Methods

Partial GLC. Lossy non-reversible versions of any GLC can be produced by
drawing only a part of the graph x* of each n-D point x. We will call them partial
GLC. For dynamic coordinates illustrated in Sect. 2.1.5 in Fig. 2.14a, Kandogan
(2000) suggested the extreme case of partial representation—drawing only the last
node of the graph x*. The advantage of it is in less clutter, but the disadvantage is in
information loss.

In general, the partial dynamic GLCs have an advantage over partial static
GLCs because the location of each xi depends on the location of all previous xk,
k < i. In this way, the location of xn contains some information about all xi. We
consider the issue of dimension reduction for dynamic GLC-L in Chap. 7 in detail.

In contrast, in CPC a node of graph x* contains only information about a given
pair (xi, xi+1). Therefore, for partial static GLCs showing most informative coor-
dinates is a preferred way for dimension reduction.

While the focus of this book is on reversible GLCs, there are many other
visualization methods and some of them are reversible too. The survey of other
visualization methods can be found in (Chan 2006) and several other publications
listed in the References. These methods can be combined with GLCs and partial
GLCs to produce hybrid methods.
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Cartesian and Polar versions of the lossless tradition and CPC Star coordinates
are defined above. The words “stars” and “radial” are present in several alternative
visualization techniques such as the Radial Visualization (RadViz) (Hoffman and
Grinstein 2002), and the Star Coordinates (Kandogan 2000, 2001). The Radvis
visualization is not reversible but lossy, when representing each n-D data point by a
single 2-D point.

Kandogan’s Star Coordinates as they are used in (Kandogan 2000, 2001) are
non-reversible too. However, the full graph used to get this visualization is rever-
sible as Fig. 2.14a in Sect. 2.1.5 illustrates. The GLC-L and all dynamic GLCs can
be viewed as generalization of it.

RadViz and Star Coordinates from (Kandogan 2000, 2001) show clouds of 2-D
points and allow getting some attributes of this clouds (sizes, elongation, and
localization in data space). These clouds are meaningful mostly for compact classes
and if they do not occlude each other.

Thus, the point-based approach has significant limitations being oriented to
visual classification and clustering tasks with relatively simple compact data
classes. While these visualization are lossy and, respectively, incomplete, they has
important positive properties such as low occlusion and representing some integral
information about the all attributes of an n-D point.

Due to absence of internal structure of a 2-D point, in contrast with a 2-D graph,
the ability to extract deep structural information from point clouds is quite limited.
In essence, such abraded visual representation prevents deep visual analytics from
the very beginning of visual data exploration.

GLC contains well-known Parallel and Radial (Star) coordinates along with new
ones that generalize them by locating coordinates in any direction that differ from
parallel or radial locations and in any topology (connected or disjoint). For any
GLC it is possible to find an n-D data point with simple representation in that GLC.

An analyst can do this in two steps: (1) draw a simple figure in a given GLC and
then (2) record numeric values of coordinates of that figure. The straight horizontal
line in Fig. 2.3c and pentagons in Figs. 2.6 and 2.7 in Sect. 2.1 give examples of
these steps.

For a set of n-D points, the concept of best GLC also depends on both dataset
and on the user’s task. For the classification tasks, the goal is finding the simple
representation of the dataset that makes classification easier visually. Discovering
such simple parametrized SPC visualization are presented in Chap. 5.

In GLC approach, we attempt to use maximally the unique capabilities of the
human vision system to extract the deep structural n-D information. The GLC
approach opens opportunity for detecting essentially nonlinear, non-compact
structures in the n-D data space, and understanding their properties better than by
using non-reversible methods. Non-reversible methods simplify the user’s visual
task, but can remove deep structural information before it can be discovered.
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Chapter 3
Theoretical and Mathematical Basis
of GLC

The secret of getting ahead is getting started.
Mark Twain

This chapter mathematically defines concepts that form various General Line
Coordinates (GLCs). It provides relevant algorithms and statements that describe
mathematical properties of GLCs and relations that GLCs represent. The theoretical
basis of a GLC is considered in connection with the Johnson-Lindenstrauss Lemma.

3.1 Graphs in General Line Coordinates

Below we give a more formal description of General Line Coordinates in the vector
algebra terms. GLC axes can be drawn in 2-D in a variety of ways shown in
Chap. 2. The locating and drawing of axes must be accompanied by an algorithm
for constructing a 2-D graph x* for each n-D point x = (x1, x2,…,xn) in these
located coordinates. We start by presenting concepts needed for defining located
coordinates and then we outline several algorithms for constructing graphs and
present them in detail more rigorously.

Below scalars are denoted as low case italic letters such as x, y, u, w, a, b, c with
or without indices. The n-D points are denoted as bold low case letters such as x, y,
w, a, b, or italic upper case letters such as A, B, C. Respectively graphs that
represent in 2-D or 3-D an n-D points are denoted such as x*, y*, w*, a*, b*, A*,
B*, C*. Coordinates are denoted as upper case letters such as X, W, U, or with
indices Xi, Wi, Ui. Symbol ∎ will indicate the end of the proof of the statements.

World Coordinates W1, W2,…,Wn are n-D coordinates of the given task, i.e.,
attributes of n-D objects such as mass, length and so on.

Viewport coordinates are coordinates within 2-D screen window where GLC are
drawn. We use here the term viewport as it is used in Computer Graphics. We
denote these 2-D coordinates as U1, U2. Each coordinate Wi is defined by its
interval of values [o, e], where o is the origin value and e is the end value.
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Normalized coordinate X = [0, 1] is a coordinate W = [o, e], where o (origin) is
mapped to x = 0 and e is mapped to x = 1.

Reversed normalized coordinate is a coordinate X, where e is mapped to x = 0,
and origin o to x = 1.

Negated normalized coordinate �X is a coordinate where x 2 X is mapped to
1 − x, on �X. In contrast with the reversed normalized coordinate, it does not change
the location of the origin o and end point e.

Located coordinate is a coordinate located in the viewpoint coordinates (U1, U2)
where both the origin and the endpoint are mapped to some 2-D points O = (o1, o2)
and E = (e1, e2) in (U1, U2).

In the located coordinates O and E are not scalars, but 2-D points. In other
words, a located coordinate is given by a triple <O, E, L>, where L is a line (straight
or curvilinear) between O and E. More formally the located coordinate can be
defined using the notation below.

T is the length of line L; and
D(A, B) is the distance on the curve L from 2-D point A to 2-D point B.
A parametrization function for L is mapping M: L ! [0,T] with M(O) = 0,

M(E) = T, and M(A) = D(O,A) for all A 2 L, where D(O, A) is the distance on the
line from the origin to point A.

A located coordinate X is a triple <O, E, L> parameterized by some function M.
The number x from interval [0, T] is called a value on the coordinate X.
A located coordinate X is called a located linear coordinate if its line L is a

linear segment in 2-D. and it is called located curvilinear if L is curve. Thus, we
distinguish linear and curvilinear coordinates in (U1, U2).

A located vector x in coordinates (U1, U2) for a scalar value x is an ordered pair
of 2-D points q1 = <q11, q12>, q2 = <q21, q22>, such that ||q1 − q2|| = |x|.

In Algorithm 1 defined below, each n-D point x = (x1, x2,…,xn) is mapped to the
n located vectors x1, x2,…,xn.

A linear located coordinate X from point O to point E in (U1, U2) is equivalent to
a set of located vectors from the origin of (U1, U2) to points {O + x(E − O)},
x 2 [0, 1] where x is the value of the coordinate X.

Collocated coordinates Xi and Xj are coordinates such that

\Oi;Ei; Li [ ¼ \Oj;Ej; Lj [

Horizontal Collocated coordinates Xi and Xj are coordinates such that

\Oi;Ei; L[ ¼ \Oj;Ej; L[ ;Oi ¼ Oj ¼ oi1; oi2ð Þ;Ei ¼ Ej ¼ ei1; oi2ð Þ:

Vertical Collocated coordinates Xi and Xj are coordinates such that

\Oi;Ei; L[ ¼ \Oj;Ej; L[ ;Oi ¼ Oj ¼ oi1; oi2ð Þ;Ei ¼ Ej ¼ oi1; ei2ð Þ:

Here the first coordinate of the end points Ei and Ej differ from end points in
horizontal collocated coordinates.
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Radial coordinates Xi and Xj are coordinates such that Oi = Oj and Ei 6¼ Ej.
Now we will outline several representation mapping algorithms for an n-D

point x = (x1, x2,…,xn) to the set of located coordinates {Xi} in 2-D. These
algorithms are mappings that produces a graph in 2-D,

F xð Þ ¼ x�:

Therefore, we will call them graph construction algorithms. Below several of
these mappings F will be presented.

Next, we define the Lp distance between directed graphs x* and y* located in
2-D with equal number of nodes k.

D� x�; y�ð Þ ¼ ð
Xk
i¼1
jjnxi � nyijjpÞ

1
p

where nxi = (u1xi, u2xi) and nyi = (u1yi, u2yi) are ith nodes of x* and y* in 2-D (U1,
U2) coordinates.

The Lpdistances between nodes is defined in 2-D as,

nxi � nyi
�� �� ¼ ð u1xi � u1yi

�� ��pþ u2xi � u2yi
�� ��pÞ1=p

The Euclidian distance between graphs and nodes is L2 distance when p = 2 and
the sum of absolute values is L1 distance with p = 1.

Mapping F: {x}!{x*} from a set of n-D points {x} to a set of directed graphs
{x*}in 2-D is called an L-mapping if:

(1) F is 1:1 bijective mapping, and
(2) F preserves appropriate Lp distance D(x, y) between any n-D points x and y in

2-D, D(x, y) = D*(x*, y*).

For instance, D can be Euclidian distance between n-D points

D x; yð Þ ¼ jjx� yjj ¼ ð
Xn
i¼1
ðxi � yiÞ2Þ1=2

and D* can be Euclidian distance between graphs.
A pair <{Xi}i=1:n, F>, that consists of a set of located coordinates {Xi}i=1:n and a

graph construction algorithm F is called n-D General Line Coordinates (GLC).
General Line Coordinates <{Xi}i=1:n, F> are called L-GLC if F is an L-map-

ping. Thus, only located coordinates {Xi}i=1:n with mapping of n-D points to 2-D
graphs F that preserve n-D distance and reversible are L-GLC.

Statement 3.1 Parallel Coordinates preserve Lp distances for p = 1 and p = 2,

Dðx; yÞ ¼ D�ðx�; y�Þ:
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Proof In Parallel Coordinates, u1xi � u1yi ¼ 0 for any vertical coordinate Xi,
because values of xi and yi are located on the same vertical line. Also

u2xi � u2yi ¼ xi � yi

for the same reason. ∎
Similarly, several other coordinate systems such as CPC and SPC also preserve

n-D distance in 2-D graphs.

Statement 3.2 CPC and SPC preserve Lp distances for p = 1 and p = 2,

D x; yð Þ ¼ D� x�; y�ð Þ:
Proof In CPC and SPC, each pair (xi, xi + 1) is a node nxi, i + 1 = (xi, xi + 1) of the
graph x* and each pair (yi, yi + 1) is a node nyi, i + 1 = (yi, yi + 1). The p-powered Lp

distance between two nodes is

nxi;iþ 1 � nyi;iþ 1

�� ��p¼ xi � yij jpþ xiþ 1 � yiþ 1j jp

The value of (D*(x*, y*))p is the sum of all p-powered distances between nodes
which is equal to the p-powered distances between x and y,

D� x�; y�ð Þð Þp¼
X

i¼1;3;5;...k�1
xi � yij jpþ xiþ 1 � yiþ 1j jpð Þ

¼
X

i¼1:k xi � yij jp¼ Dp x; yð Þ

This leads to the Statement 3.2. ∎
Mapping P:{w}!{u} from a set of n-D points {w} in coordinates {Wi}i = 1:n to

a set of 2-D points in viewport coordinates (U1.U2) is called a P-to-P mapping.
In contrast with L-mapping, known P-to-P mappings such as MDS (Duch et al.

2000) in general do not preserve the distance between all n-D points, but only
minimize the average difference of distances. Informally, if n-D points x and y are
close to each other, then the graphs x* and y* are also close to each other in PC,
CPC and SPC. The P-P mappings do not guarantee this. For this reason, the visual
means that are the focus of this book are the General Line Coordinates.

Graph Construction Algorithms

Algorithm 1 Constructing a graph x* in 2-D or 3-D as a collection of directed
edges (arrows, vectors). Each edge is located on the respective coordinate Xi

starting at the origin of this coordinate and ending at point xi on Xi. See Fig. 3.1 for
an example. We will call this algorithm a basic GLC graph-constructing algorithm
(GLC-B). This example shows that edges of the graph x* can be disconnected.

Algorithm 2 Constructing a graph x* by connecting the location of xi on Xi with
the location of xi + 1 on Xi + 1, starting from i = 1, and ending at i = n. See Fig. 3.2.
The same connections are implemented for coordinates located in parallel in
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Parallel Coordinates. Therefore, Algorithm 2 is a generalization to GLC of the
algorithm implemented in Parallel Coordinates (PC). Respectively we will call it as
GLC-PC graph constructing algorithm.

Algorithm 3 Constructing a graph x* by the algorithm as illustrated in Fig. 3.3. It
moves the start point of each of the vectors xi + 1 to the end of vector xi. This
algorithm is a generalization to GLC of the algorithm from (Kandogan 2000, 2001)
to what is called there as the Star Coordinates (SC). Respectively we will call it as
GLC-SC1 graph constructing algorithm.

Algorithm 4 Constructing a graph x* by the algorithm that is illustrated in Fig. 3.4. It
is a generalization of the CPC algorithm described in Chap. 2. We will call this
algorithm the GLC-CC1 graph constructing algorithm. In Fig. 3.4 it creates points P1,
P2 and P3 in respective pairs of coordinates (X1, X2), (X3, X4), (X5, X6) and connect
these points to form a digraph. In contrast with CPC here, it is not required that
coordinates are orthogonal and collocated.

X1
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X3 X4

X5

X6x1 x2

x3

x4
x5 x6

Fig. 3.1 Six coordinates and
six vectors that represent a
6-D data point (0.75, 0.5, 0.7,
0.6, 0.7, 0.3)
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X3 X4

X5

X6

x1 x2
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x6x5

Fig. 3.2 6-D data point
(0.75, 0.5, 0.7, 0.6, 0.7, 0.3)
in GLC-PC
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Fig. 3.3 6-D data point
(0.75, 0.5, 0.7, 0.6, 0.7, 0.3)
in GLC-SC1
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Fig. 3.4 6-D data point
(0.75, 0.5, 0.7, 0.6, 0.7, 0.3)
in GLC-CC1
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Algorithm 5 Constructing a graph x* by the algorithm that is illustrated in
Fig. 3.5. It is another generalization to GLC of the algorithm for orthogonal
Collocated Paired Coordinates presented in Chap. 2 in combination with the idea of
Algorithm 3, i.e., moving the next vector to the end of the previous one. We will
call this algorithm the GLC-CC2 graph constructing algorithm. Here the yellow
dotted line, constructed as a sum of vectors x3 + x4, is moved to point P1. Similarly,
the sum of vectors x5 + x6 is moved to point P2.

Algorithm 6 Constructing a graph x* by the algorithm as illustrated in Fig. 3.6. It
moves the end of the vector x2 to the end of vector x1 and for each other vectors
xi + 1 it moves its start point to the end point of vector xi, e.g., the start point of x3 is
moved to the end point of vector x2. This algorithm is a generalization to GLC of
the algorithm implemented in the Star Coordinates (SC) (Kandogan 2000, 2001)
and is a modification of Algorithm 3. Respectively, we will call it as GLC-SC2
graph constructing algorithm.

Figures 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 show that the algorithms above require a
different number of points and edges in the graph x* for lossless representation of
an n-D point x:

• Algorithm 1 requires 12 points and 6 lines;
• Algorithm 2 requires 6 points and 5 lines;
• Algorithms 3 and 6 require 7 points and 6 lines;
• Algorithms 4 and 5 require 3 points and 2 lines.

In general, Algorithm 4 (GLC-CC1) requires two times less points and lines than
Algorithms 1–3. This is a fundamental advantage of GLC-CC algorithm from
human cognitive viewpoint, because it simplifies pattern discovery by a naked eye.
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Fig. 3.5 6-D data point
(0.75, 0.5, 0.7, 0.6, 0.7, 0.3)
in GLC-CC2
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Fig. 3.6 6-D data point
(0.75, 0.5, 0.7, 0.6, 0.7, 0.3)
in GLC-SC2
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3.2 Steps and Properties of Graph Construction
Algorithms

Below we present steps and properties of some of the Algorithms 1–4 more for-
mally and rigorously.

Algorithm 1 Basic GLC-B Graph Construction Algorithm

Step 1 Create n located linear coordinates in 2-D coordinates (U1, U2).
Step 2 Select an n-D point, e.g., (7, 5, 6, 5, 6, 2).
Step 3 For each i (i = 1:n) locate value xi in the coordinate Xi (see Fig. 3.1 for an

example), and define n vectors xi of length xi from the origin of Xi that we
denote as Oi.

Algorithm 2 GLC-PC Graph Construction Algorithm

Step 1 Apply basic algorithm GLC-B to construct n located linear coordinates and
vectors x1, x2,…,xn for a given n-D point x.

Step 2 Assign P1 = O1 + x1, P2 = O2 + x2,…,Pn = On + xn.
Step 3 Connect points Pi to form a graph: P1!P2! ⋯ !Pi − 1!Pi⋯!Pn

Statement 3.3 (n points lossless representation) If all coordinates Xi do not
overlap then GLC-PC algorithm provides bijective 1:1 mapping of any n-D point
x to 2-D directed graph x*.

Proof Non-overlap ensures getting n unique 2-D points x1, x2,…,xn for each n-D
point x. Next, GLC-PC reproduces the order of values (x1, x2,…,xn) by directed
edges in the graph x* that allows to restore xi having 2-D vectors x1, x2,…,xn. ∎

Algorithm 3 GLC-SC1 Graph Construction Algorithm

Step 1 Apply basic algorithm GLC-B to construct n located linear coordinates and
vectors x1, x2,…,xn for a given n-D point x.

Step 2 Assign P1 = O1 + x1, P2 = P1 + x2,…,Pn = Pn − 1 + xn.
Step 3 Connect points Pi by straight arrows to form a graph:

P1 ! P2 ! � � � ! Pi�1 ! Pi ! � � � ! Pn:

Statement 3.4 (n points lossless representation) If all coordinates Xi do not
overlap then GLC-PC and GLC-SC1 algorithms provide bijective 1:1 mapping of
any n-D point x to 2-D directed graph x*.

Proof Non-overlap ensures getting n unique 2-D points x1, x2,…,xn for each n-D
point x. Next, GLC-PC and GLC-SC1 reproduce the order of values (x1, x2,…,xn)
by directed edges in the graph x*. ∎

Also for overlapping GLC-PC and GLC-SC1 coordinates, it is possible to get
bijective mapping by labeling edges of the graph and/or by making edges curvilinear
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for n-D points that come to the overlap area to disambiguate them. In-Line Coordinates
defined in Chap. 2 illustrate this with Bezier curves used for edges.

Algorithm 4 GLC-CC1 Graph Construction Algorithm

Step 1 Apply basic algorithm GLC-B to construct n located coordinates and
vectors x1, x2,…,xn for a given n-D point x.

Step 2 Compute the sum of vectors x1 and x2, x12 = x1 + x2, and then compute
the point P1 = O1 + x12. Next compute the sum of vectors x3 and x4,
x34 = x3 + x4 and the point P2 = O3 + x34. Repeat this process by
computing P3 = O5 + x56 and for all next i, Pi = O2i − 1 + x2i − 1, 2i. For
even n, the last point is Pn/2 = On − 1 + xn − 1, n (see Fig. 3.4), for odd n,
the last xn − 1, n = xn and the last point P(n + 1)/2 = On + xn. We denote the
last point as Pm which is Pn/2 for even n and P(n + 1)/2 for odd n.

Step 3 Build a directed graph by connecting points {P}:

P1 ! P2 ! � � � ! Pi�1 ! Pi � � � ! Pm:

This graph can be closed by adding edge Pn ! P1.

Statement 3.5 (n/2 points lossless representation) If coordinates Xi, and Xi + 1 are
not collinear in each pair (Xi, Xi + 1) then GLC-CC1 algorithm provides bijective
1:1 mapping of any n-D point x to 2-D directed graph x* with n=2d e nodes and
n=2d e � 1 edges.

Proof Non-collinearity allows back projection of each graph node (point Pi) to
coordinates x2i − 1 and x2i that are used for constructing it, Pi = O2i − 1 + x2i − 1, 2i.
Next, GLC-CC1 algorithm reproduces the order of values (x1, x2,…,xn) by directed
edges from Pi to Pi + 1 for all i. ∎

Algorithm 5 GLC-CC2 Graph Construction Algorithm

Step 1 Apply basic algorithm GLC-B to construct n located coordinates and
vectors x1x2,…,xn for a given n-D point x.

Step 2 Compute the sum of vectors x1 and x2, x12 = x1 + x2 and then compute the
point P1 = O1 + x12. Next compute the sum of vectors x3 and x4,
x34 = x3 + x4 and the point P2 = P1 + x34. Repeat this process by
computing P3 = P2 + x56 and for all next i, Pi = Pi − 1 + x2i − 1, 2i. For
even n the last point is Pn/2 = Pn/2 − 1 + xn − 1, n (see Fig. 3.5), for odd n,
xn − 1, n = xn and the last point is P(n + 1)/2 = P(n + 1)/2 − 1 + xn.

Step 3 Build a directed graph by connecting points {P}:

P1 ! P2 ! � � � ! Pi�1 ! Pi ! � � � ! Pn:

This graph can be closed by adding edge Pn ! P1.

Statement 3.6 (n/2 points lossless representation) If coordinates Xi, and Xi + 1 are
not collinear in each pair (Xi, Xi + 1) then GLC-CC2 algorithm provides bijective
1:1 mapping of any n-D point x to 2-D directed graph x* with n=2d e nodes and
n=2d e � 1 edges.
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Proof For a non-collinear pair of coordinates, the point P1 allows us to restore x1
value by projecting P1 to coordinate X1 as shown in Fig. 3.5. Formally it can be
computed by representing the coordinate X1 as a vector X1, and using a dot product
(P1 − O1) • X1 of X1 with vector (P1 − O1). This gives us value x1 and vector x1.
Next, the property

P1 ¼ O1þ x12 ¼ O1þ x1þ x2

allows us to compute x2 = P1 − O1 − x1.
The same can be done by a dot product (P1 − O1) • X2. In the same way by

projecting point P2 to X3 we get x3 and then using P2 = O3 + x34 = O3 + x3 + x4
we restore x4 = P2 − O1 − x3. These steps are continued for all points Pi until all xi
are restored. The property of n=2d e nodes and n=2d e � 1 edges follows directly
from the process of constructing a single 2-D point Pi = Pi − 1 + x2i − 1, 2i for each
pair (x2i − 1, x2i). ∎

Algorithm 6 GLC-SC2 Graph Construction Algorithm

Step 1 Apply basic algorithm GLC-B to construct n located linear coordinates and
vectors x1, x2,…,xn for a given n-D point x.

Step 2 Assign P1 = O1 + x1, P2 = P1 − x2,…,Pn = Pn – 1 − xn.
Step 3 Connect points Pi by straight arrows to form a graph with arrows going to P2:

P1 ! P2  � � �  Pi�1  Pi  � � �  Pn:

Statement 3.7 (n points lossless representation) If all coordinates Xi do not
overlap then GLC-SC2 algorithm provides bijective 1:1 mapping of any n-D point
x to 2-D directed graph x*.

Proof Non-overlap ensures getting n unique 2-D points x1, x2,…,xn for each n-D
point x. Next, the order of values (x1, x2,…,xn) is restorable from graph x* con-
structed in GLC-SC2. ∎

Thus, algorithms GLC-CC1 and GLC-CC2 use about a half of the nodes used in
GLC-PC, GLC-SC1 and GLC-SC2 as Figs. 3.2, 3.3, 3.4, 3.5 and 3.6 illustrate this
property.

Statement 3.8 GLC-CC1 preserves Lp distances for p = 1, D(x, y) = D*(x*, y*).

Proof In GLC-CC1, each pair (xi, xi + 1) in x is mapped to node nxi,
i + 1 = (Oi + xi + xi + 1) of the graph x* and each pair (yi, yi + 1) in y is mapped to
node nyi, i + 1 = (Oi + yi + yi+1) of the graph y*. The L1 distance between these
nodes is

nxi; iþ 1 � nyi;iþ 1

�� �� ¼ Oiþ xiþ xiþ 1ð Þ � Oiþ yiþ yiþ 1

� ��� �� ¼
xiþ xiþ 1 � yi � yiþ 1

�� �� ¼ ðxi � yiÞþ ðxiþ 1 � yiþ 1

�� �� ¼
xi � yik kþ xiþ 1 � yiþ 1

�� �� ¼ xi � yij j þ xiþ 1 � yiþ 1j j
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The last property is derived for even n from the fact that for each i vectors xi and
yi are located on the same coordinate Xi, i.e., their difference is a their scalar
difference due to construction process of vectors xi and yi in GLC-CC1.

The total L1 distance D*(x*, y*) is the sum of L1 distances between all nodes of
x* and y*, which is equal to the distance between x and y in GLC-CC1 due to the
property of this distance derived above,

D� x�; y�ð Þ ¼
X

i¼1;3;5;...n�1 nxi;iþ 1 � nyi;iþ 1

�� �� ¼
X

i¼1;3;5;...n�1 ð xi � yij j þ xiþ 1 � yiþ 1j jÞ ¼
X

i¼1:n xi � yij j ¼ D x; yð Þ:

For odd n we duplicate the last coordinate to get this statement. ∎

3.3 Fixed Single Point Approach

3.3.1 Single Point Algorithm

So far, we have shown a cognitive advantage of both GLC-CC representations, i.e.,
its twice-smaller footprint in 2-D, relative to GLC-PC and GLC-SC. This leads to
much smaller occlusion when multiple n-D data are represented in 2-D. Below we
show its other advantage—the ability to represent losslessly any given n-D point
(x1, x2,…,xn) as a single 2-D point instead of a graph. The algorithm to produce
this representation is the Single Point (SP) algorithm

Steps of the Single Point (SP) Algorithm

Step 1 Select an arbitrary 2-D point A = (a1, a2) on the plane. This point will be
called the anchor 2-D point. Then select the n-D point x = (x1, x2,…,xn)
that will be called the base n-D point (or n-D anchor point). Next, select a
set of positive constants c1, c2,…,cn that will be used as lengths of
coordinates X1, X2,…,Xn.

Step 2 Compute 2-D points O1 = (a1 − x1, a2 − x2) and E1 = (a1 − x1 + c1,
a2 − x2). Coordinate line X1 is defined as the located vector X1 = (O1, E1).

Step 3 Define the points O1 and O2, O2 = O1, and E2 = (a1 − x1, a2 − x2 + c2).
Coordinate line X2 is defined as a vector X2 = (O2, E2).

Step 4 Repeat the steps 2 and 3 for all other coordinates to build the coordinate
system X1, X2,…,Xn.

This algorithm creates a system of Parameterized Shifted Paired Coordinates
(PSPC), where each next pair of coordinates is drawn in the shifted Cartesian
coordinates. These coordinates are defined by parameters which are respective
components of a base n-D point x and 2-D anchor point A. See Fig. 3.7.

Statement 3.9 In the coordinate system X1, X2,…,Xn constructed by the Single
Point algorithm with the given base n-D point x = (x1, x2,…,xn) and the anchor 2-D
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point A, the n-D point x is mapped one-to-one to a single 2-D point A by GLC-CC
algorithm.

Proof Consider coordinate X1 and a point located on X1 at the distance x1 from O1.
According to Step 2 of SP algorithm O1 = (a1 − x1, a2 − x2). Thus, it is the point
(a1 − x1 + x1, a2 − x2) = (a1, a2 − x2). It is projection of pair (x1, x2) to X1

coordinate.
Similarly consider coordinate X2 and a point located on X2 at the distance x2

from O2. According to Step 2 of SP algorithm O2 = (a1 − x1, a2 − x2). Thus, it is
the point (a1 − x1, a2 − x2 + x2) = (a1 − x1, a2). It is a projection of pair (x1, x2) to
X2 coordinate. Therefore, pair (x1, x2) is represented in X1, X2 coordinate system as
(a1, a2). In the same way, the pair (x3, x4) is also mapped to the point (a1, a2). The
repeat of this reasoning for all other pairs (xi, xi + 1) will match them to the same
point (a1, a2). This concludes the proof. ∎ Figure 3.7 illustrates this proof for a 6-D
point (2, 4, 1, 7, 3, 5).

3.3.2 Statements Based on Single Point Algorithm

Another advantage of the combination of GLC-CC and SP algorithms is that all n-D
points of an n-D hypercube around a given base n-D point x = (x1, x2,…,xn) are
mapped to graphs that are located within a square defined by the square algorithm
presented below. In other words informally, n-D locality is converted to 2-D
locality and vice versa. Here an n-D point y is close to the base n-D point x if and
only if the graph y* of y is close to 2-D anchor point A.

Steps of the Square algorithm for Parameterized SPC

Step 1 Construct a hypercube H with the center at the base point x = (x1, x2,…,xn)
and distance d to its faces. Respectively, 2n nodes N of this hypercube are
(x1 + ad, x2 + ad,…,xn + ad), where a = 1 or a = −1 depending on the
node, e.g., (x1 + d, x2 + d,…,xn + d), (x1 − d, x2 − d,…,xn − d), (x1 + d,
x2 − d,…,xn − d).

Step 2 Construct a square S around point (a1, a2) with corners: (a1 + d, a2 + d),
(a1 + d, a2 − d), (a1 − d, a2 + d), (a1 − d, a2 − d)

(2,4,1,7,3,5) 

X1

X5

X3

X2
X4X6

2

1

3

745
(3,3,2,6,2,4) 

Fig. 3.7 6-D points (3, 3, 2,
6, 2, 4) and (2, 4, 1, 7, 3, 5) in
X1−X6 coordinate system
build using point (2, 4, 1, 7, 3,
5) as an anchor
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Statement 3.10 (locality statement) All graphs that represent nodes N of n-D
hypercube H are within square S.

Proof Consider the n-D node (x1 + d, x2 + d,…,xn + d) of H where d is added to
all coordinates of the n-D point x. This node is mapped to the 2-D point (a1 + d,
a2 + d) which is a corner of the square S. Similarly, the node (x1 − d, x2 − d,…,
xn − d) of H where d is subtracted from all coordinates of x is mapped to the 2-D
point (a1 − d, a2 − d) which is another corner of the square S. Similarly, the n-D
node of the hypercube that contains pairs (x1 + d, x2 − d), (x3 + d, x4 − d),…,
(xi + d, xi + 1 − d),…,(xn − 1 + d, xn − d), i.e., with positive d for the odd coordi-
nates (X1, X3,…) and negative d for the even coordinates (X2, X4,…) is mapped to
the 2-D point (a1 + d, a2 − d). Similarly, a node with alternation of positive and
negative d in all such pairs (xi − d, xi + 1 + d) will be mapped to (a1 − d, a2 + d).
Both these points are also corners of the square S.

If an n-D node of H includes two pairs such as (xi + d, xi + 1 + d) and (xj + d,
xj + 1 − d) then it is mapped to the graph that contains two 2-D nodes (a1 + d,
a2 + d) and (a1 + d, a2 − d) that are corners of the square S. Similarly, if an n-D
node of H includes two other pairs (xk − d, xk + 1 + d) and (xm − d, xm + 1 − d) it is
mapped to the graph that contains two 2-D nodes (a1 − d, a2 + d) and (a1 − d,
a2 − d) that are two other corners of the square S. At most a hypercube’s n-D node
has all these four types of pairs that can be present several times, and respectively
all of them will be mapped to four corners of the 2-D square S. Respectively, all
edges of this graph will be within the square S. Any other n-D point y of the
hypercube H has at least one coordinate that is less than this coordinate for some
node Q of this hypercube.

For example, let y1 < q1 and yi = qi for all other i, then all pairs (yi, yi + 1), but
the first pair (y1, y2) will be mapped to the corners of the square S. The first pair (y1,
y2) will be mapped to the 2-D point, which is inside of the square S because y1 < q1.
This concludes the proof. ∎

Figures 3.8 and 3.9 illustrate this statement and its proof.

(3,5,2,8,4,6) 
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X2 X4
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(3,3,2,6,4,4) 

(1,5,0,8,2,6) 

(1,3,0,6,2,4) 

Fig. 3.8 Data in
parameterized shifted paired
coordinates. Blue dots are
corners of the square S that
contains all graphs of all n-D
points of hypercube H for 6-D
base point (2, 4, 1, 7, 3, 5)
with distance 1 from this base
point
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Both the Collocated Paired Coordinates and the Parameterized Shifted Paired
Coordinates are reversible (lossless), and represent a similar n-D point as similar 2-
D graphs, i.e., 2-D nodes of similar n-D points are located closely as Figs. 3.10 and
3.11 illustrate.

Figure 3.10 shows an example of 4-D data of two classes in Collocated Paired
Coordinates in blue and green ellipses. Figure 3.11 shows data from Fig. 3.10 in
the Parameterized Shifted Paired Coordinates with 4-D point (3, 13, 13, 2) from the
green class as the base point for parameterized shift.

(3,5,2,8,-2,6) 

X1
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X2

X4
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74 (2,4,1,7,-3,5) 

(3,3,2,6,-2,4) 

(1,5,0,8,-4,6) 

(1,3,0,6,-4,4) 

-3

(x1x2x3x4x5x6)(x1x2x3x4x5x6)

(x1x2x3x4x5x6) 5

Fig. 3.9 Data in Parameterized Shifted Paired Coordinates. Blue dots are corners of the square S
that contains all graphs of all n-D points of hypercube H for 6-D base point (2, 4, 1, 7, −3, 5) with
distance 1 from this base point

X2,X4

X1,X3

Fig. 3.10 4-D data of two classes in Collocated Paired Coordinates shown in blue and green
ellipses
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Both Figs. 3.10 and 3.11 show the separation of two classes, but in Fig. 3.11, the
separation between these blue and green classes is much simpler than in Fig. 3.10.
This is a demonstration of the promising advantages of parameterized shifted
coordinates to simplify visual patterns of n-D data in 2-D in tasks such as clus-
tering and supervised classification. This gives the direction for future studies to
solve a major challenge. This challenge is finding the conditions where this
empirical observation can be converted into the provable property of simpler and
less overlapped 2-D representation of non-intersecting hyper-ellipses,
hyper-rectangles, and other shapes in n-D.

3.3.3 Generalization of a Fixed Point to GLC

Other general line coordinates, not only the shifted paired coordinates, also allow
the creating of a single 2-D point from an n-D point x reversible and losslessly.
These GLCs include Shifted Bush and Parallel Coordinates, Partially Collocated

Fig. 3.11 4-D data of two classes in Parameterized Shifted Paired Coordinates
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and In-Line Coordinates, which is illustrated in Chap. 2. Figure 3.12 provides
additional illustrations for the non-orthogonal shifted paired coordinates.

Statement 3.11 Any n-D general line coordinates (including the connected or
disconnected, the orthogonal or non-orthogonal) constructed by Algorithm 2 with
Algorithm 1 can be shifted to represent a given n-D point as a single 2-D point
losslessly.

Proof Consider a 2-D point A, coordinate axes X1 − Xn and values (x1, x2,…,xn) of
an n-D point x that are drawn in some 2-D coordinate system (U1, U2) in accor-
dance with the Algorithm 1. Let u(Oi1, Oi2), u(Ei1, Ei2) be respectively coordinates
of the origin and the end of axis Xi in (U1, U2) coordinate system, and pair (ui1, ui2)
be a location in (U1, U2) where vector xi ends on the axis Xi, i.e., represents the
value xi.

Coordinates of point A are given as (a1, a2) in coordinates (U1, U2). Consider a
vector vi = (a1 − ui1, a2 − ui2) that represents the difference between points A and
(ui1, ui2) that represents value xi. Shifting axis Xi by this difference will bring the
end point of vector xi from (ui1, ui2) to A:

a1 � ui1; a2 � ui2ð Þþ ui1; ui2ð Þ ¼ a1; a2ð Þ:
Doing this for all axes, Xi will move all xi to A. ∎

Statement 3.12 Any n-D general line coordinates (including the connected or
disconnected, orthogonal or non-orthogonal) constructed by Algorithm 4 with
Algorithm 1 can be shifted to represent a given n-D point as a single 2-D point
losslessly.

Proof Below we use the same notation and approach as in the proof for Algorithms
1 and 2. The difference is that instead of shifting end points of vectors xi we shift
points Pi = (pi1, pi2) to A = (a1, a2). This is done by shifting a whole pair of
coordinates that forms Pi by vector wi = (a1 − pi1, a2 − pi2). This will bring point
Pi to A: (pi1, pi2) + (a1 − pi1, a2 − pi2) = (a1, a2). ∎

Statement 3.13 Any n-D general line coordinates (including connected or dis-
connected, orthogonal or non-orthogonal) constructed by any of Algorithms 3, 5
and 6 with Algorithm 1 cannot be shifted to represent a given n-D point as a single
2-D point losslessly.

x*

X1

X3

X5

X2 X6
X4

Fig. 3.12 Representation of
6-D point x = (3, 4, 2, 3, 1, 2)
as a single 2-D point x* in
non-orthogonal shifted
coordinates
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Proof In Algorithms 3, 5, and 6 in contrast with Algorithms 2 and 4 the length of each
edge of the graph x* of the n-D point x is fixed and cannot be changed under shifting.

This prevents the collapsing of any two nodes of x* to a single node that is
needed for getting a single 2-D point representing x. Below we use the same
notation and approach as in the proof for Algorithm 2 with Algorithm 1. ∎

3.4 Theoretical Limits to Preserve n-D Distances in 2-D:
Johnson-Lindenstrauss Lemma

The curse of dimensionality challenge was originally associated with the optimization
problems (Bellman 1957) where the number of alternative to be explored is growing
exponentially with growth of dimension (Curse of Dimensionality 2010).

The curse of dimensionality challenge in visual representation of n-D data for
machine learning is related to the fundamental problem of preserving n-D distanced
in 2-D. The source of this problem is the drastic differences in the neighborhood
capacities.

In the discrete case in n-D, the center c of the hypercube Hn has 2n nodes of
hypercube around this n-D point (“neighbors”) with equal distances D(c, x) from
this center. In 2-D, the square H2 has just 22 = 4 nodes, but H10 in 10-D has
210 = 1024 nodes.

Mapping those 1024 10-D points to four 2-D points means that in average 1024/
4 = 256 10-D points will be mapped to a single 2-D point. Thus, multiple non-zero
distances, D10(x, u) > 0, between such 256 points x, u in 10-D are nullified to the
zero distance D2(x, u) = 0 between them in 2-D.

In other words, the 2-D space does not have enough neighbors with equal distances
to represent all n-D neighbors of a given n-D point with equal distances in n-D space.
This leads to the significant corruption of n-D distances in 2-D for datasets that have
multiple n-D points with equal or close to equal distances from a given n-D point. This
is a situation for the mean point of an n-D Gaussian distribution, because multiple
points are concentrated around the mean in this distribution.

Note that mapping nodes of n-D hypercube Hn to 2-D points to the circle
preserves the distance from nodes to the center of the hypercube, but corrupts the
distances between these n-D points themselves. These difficulties are reflected in
the Johnson-Lindenstrauss lemma that implies that only a small number of n-D
points can be represented with preserving distances with small deviations in k-
D when k < n as we show below.

Lemma (Johnson and Lindenstrauss 1984) Given 0 < e < 1, a set X of m points in
Rn, and a number k > 8ln(m)/e2, there is a linear map ƒ: Rn ! Rk such that

1 � eð Þ u� vk k2� f uð Þ � f vð Þk k2� 1 þ eð Þ u� vk k2

for all u, v 2 X.
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In other words, this lemma sets up a relation between n, k and m when the
distance can be preserved with some allowable error e.

The version of the Johnson-Lindenstrauss lemma (Dasgupta and Gupta 2003)
allows one to define the possible dimensions k < n such that for any set of m points
in Rn there is a mapping f: Rn ! Rk with “similar” distances in Rn and Rk between
mapped points. This similarity is expressed in terms of error 0 < e < 1.

For e = 0 these distances are equal. For e = 1 the distances in Rk are less or equal
to

ffiffiffi
2
p

S, where S is the distance in Rn. This means that distance s in Rk will be in the
interval [0, 1.42S].

In other words, the distances will not be more than 142% of the original distance,
i.e., it will not be much exaggerated. However, it can dramatically diminish to 0. The
exact formulation of this version of the Johnson-Lindenstrauss lemma is as follows.

Theorem 1 (Dasgupta and Gupta 2003, Theorem 2.1) For any 0 < e < 1 and any
integer n, let k be a positive integer such that

k� 4ðe2=2� e3=3Þ�1 ln n ð3:1Þ

then for any set V of m points in Rk there is a mapping f: Rn!Rk such that for all
u, v 2 V

ð1� eÞ u� vk k2� f uð Þ � f vð Þk k2�ð1þ eÞ u� vk k2 ð3:2Þ

It is also shown in (Dasgupta and Gupta 2003) that this mapping can be found in
randomized polynomial time. A formula (3.3) is presented in (Frankl and Maehara
1988) stating that k dimensions are sufficient, where

k ¼ 9 e2�2e3=3� ��1
ln n

l m
þ 1 ð3:3Þ

Table 3.1 presents the values of the number of points in high-dimensional space
and dimension k required to keep error in Rk within about 31% of the actual
distance in the Rn (

ffiffi
e
p

=
ffiffiffiffiffiffiffi
0:1
p ¼ 0:316228) using the formulas (3.1)–(3.3).

It shows that to keep distance errors within about 30% for just 10 arbitrary
high-dimensional points, we need over 1900 dimensions, and over 4500 dimensions
for 300 arbitrary points.

This is hard to accomplish in many tasks. Figure 3.13 illustrates data from
Table 3.1. The bounds computed for other values of e such as 0.3, 0.5, 0.8, 1.0 and
the number of samples up to 106 can be found in (Pedregosa et al. 2011).

3.5 Visual Representation of n-D Relations in GLC

This section describes relations in n-D spaces that can be represented by different
GLCs including PC, CPC, SPC and GLC-L that are defined below. In Paired GLC
such as CPC and SPC each directed edge of the graph directly visualizes relations
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of four dimensions. In contrast, each edge of the graph in PC directly visualized
only relations between two adjacent coordinates. For instance, for all coordinates
scaled to [0.1], in 4-D CPC, an edge going up and to the right indicates relation
(x3 > x1) and (x4 > x2). In contrast, in PC the edge going to the same direction (up
and right) indicates only relation (x2 > x1). In CPC if this edge is in the first
quadrant below its diagonal then in addition it also expresses the relation (x2 < x1)
and (x4 < x3).

Table 3.1 Dimensions to support ±31% of error (e = 0.1)

Number of arbitrary
points in
high-dimensional space

Sufficient
dimension with
formula (3.1)

Sufficient
dimension with
formula (3.2)

Insufficient
dimension with
formula (3.3)

10 1974 2145 1842

20 2568 2791 2397

30 2915 3168 2721

40 3162 3436 2951

50 3353 3644 3130

60 3509 3813 3275

70 3642 3957 3399

80 3756 4081 3506

90 3857 4191 3600
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Fig. 3.13 Dimensions required supporting ±31% of error e
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3.5.1 Hyper-cubes and Clustering in CPC

Consider an n-D hypercube, that is a set of n-D points {w} that are in the vicinity of
an n-D point a within distance r from a for each dimension Xi, {w: 8 i di(w,
a) � r}. We denote this set {w} of n-D points as w(a, r).

Statement 3.14 For any n-D point w within the n-D hypercube w(a, r), a CPC
graph w* for w is a CPC graph a* for a shifted to no more than the distance r in
each dimension.

Proof Let a = (a1, a2,…,an). Then the farthest points w of the hypercube are
w = (a1 ± r, a2 ± r2,…,an ± r). If these points are shifted relative to a no more
than r then all other points are shifted within r too. Therefore, the statement is
true for these points. In CPC w is shown as a directed graph w* that connects pairs

w1;w2ð Þ ! w3;w4ð Þ ! � � � ! wn�1;wnð Þ:
Consider for all i, wi = ai + r then (w1, w2) = (a1 + r, a2 + r) of w is shifted

relative to the first pair (a1, a2) of a with the shift (r, r). Similarly the pair (wi, wi + 1)
of w is shifted relative to the pair (ai, ai + 1) of a with the same shift (r, r). Thus, to
produce the graph w* for w we need to add shift r in X coordinate and shift r on Y
coordinate to the graph for a. Similarly shifts (−r, r) or (r, −r) will happen when
some wi will be equal to ai − r keeping the max of distance equal to r. ∎

Now consider two classes of n-D vectors that are within two different hypercubes
with property Q: centers a and b of W(a, r) and W(b, r) are with the distance greater
than 2r in each dimension Xi, that is Di(a, b) > 2r and have ai < bj. for all i and j.

Statement 3.15 Nodes of graphs of CPC representations of all n-D points from
hyper-cubes W(a, r) and W(b, r) with property Q do not overlap.

Proof First, maxDi(wk, ws) = 2r and max Di(wk, a) = r when both wk and ws are
withinW(a, r). The same properties maxDi(wk, ws) = 2r and maxDi(wk, b) = r are true
when both wk and ws are within W(b, r). In n-D if hypercubes W(a, r) and W(b,
r) overlap then a dimension Xi must exist such that Di(a, b) � 2r because it must be
less than or equal to the sum of max distances Di(a, w) = r and Di(b, w) = r within
each hyper-cube that is r + r. This would contradics property Q that requires for all Xi

that Di(a, b) > 2r. This distance is sufficient for graphs of n-D points from these
hyper-cubes not overlap because for all i and j ai < bj., i.e., the lowest node of the graph
b* will be above the highest node of a* with that distance. ∎

A similar statement can be formulated for the hyper-spheres. For some situations
that do not satisfy property Q we still can make two hyper-cubes non-overlapping
by reversing some coordinates.

Example Let in 4-D a = (1, 4, 4, 1), b = (4, 1, 1, 4), and r = 1. The hyper-cubes W
(a, r) and W(b, r) do not overlap in 4-D, but in CPC in 2-D, graph a* is the arrow
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(1, 4) ! (4, 1) and graph b* is the arrow (4, 1) ! (1, 4), i.e., it is the same line
with the opposite direction. Assume that values of each coordinate Xi are in [0, 5]
interval. Next, we reverse coordinates X2 and X3 making reversed coordinates X2′
and X3′ with values x2′ = 5 − x and x3′ = 5 − x for each n-D point x, where 5 is
the max of X2 and X3 in this example. This produces a′ = (1, 1, 1, 1), and b′ = (4,
4, 4, 4) with graphs (1, 1) ! (1, 1) and (4, 4) ! (4, 4) that do not overlap.

The benefit of Statement 3.15 is that if two classes are within such
non-overlapping hyper-cubes then it will be visible in CPC visualization without
knowing in advance centers and lengths of these hyper-cubes. In contrast, analytical
discovery of this separation would require search for centers and lengths of
appropriate hypercubes.

For analytical clustering, we need to seed n-D points to start it and the clustering
result is sensitive to selection of these points. Not knowing the centers and lengths
of hypercubes, we need to search through many of them. In addition, the selection

of clustering objective function itself is quite subjective.
The visualization of the clusters found analytically is a way to confirm them and

to check their meaning. The challenges for pure analytical methods for discovering
more complex data structures such as non-central tubes, piecewise tubes and
overlapping structures grow due to the complexity of these data. Thus hybrid
methods that combine them with visual methods are promising.

3.5.2 Comparison of Linear Dependencies
in PC, CPC and SPC

In PC a 2-D line L: xj = mxi + b is visualized by an infinite set of lines (Inselberg
2009) (Figs. 3.14 and 3.15). In CPC and SPC the same line is represented in a
classical Cartesian form as a single line (Figs. 3.16 and 3.17), because CPC and
SPC consist of a set of pairs of classical Cartesian coordinates that are collocated or
shifted. In PC there is a point L^ that does not show the value of xj having xi. One
must draw a line to coordinate Xj via points xi and L^ to get xj.

A different line must be drawn for each other xi value. If all these lines are drawn
together, they will completely cover a large segment between coordinates Xi and Xj

and none of the line will be visible creating an extreme case of full occlusion (see
the grey area in Fig. 3.14).

Xj

X
i

L^

Fig. 3.14 Line L:
xj = mxi + b for m < 0 and
point L^ that represent L in
Parallel Coordinates
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In contrast in the classical Cartesian Coordinates, the same single line is used for
all x. This classical metaphor is familiar to everyone and learning a new metaphor is
not required. Also while point L^ fully represents line L: y = kx + m, the 2-D point
H^ = (k, m) fully represents L also in a compact way in CPC in a pair of coordi-
nates such as (X1, X2). The visual process of getting y from a given x is drawing
line L using points (0, m), (1, m − k), then drawing a line from x on X1 to L, and
projecting the crossing point to X2 to get y (see Fig. 3.17).

In SPC, we have two cases for representing line L. The first case is for con-
secutive pairs such as (X1, X2), and (X3, X4), where L is visualized in the classical
Cartesian form discussed above. The second case is for odd pairs such as (X1, X3),
(X3, X5), (X5, X7), where L: xj = mxi + b, j = i + 2.

In SPC these coordinates are parallel, but shifted, thus the classical Cartesian
visualization is not applicable. When Xj coordinate is shifted the point L^ can keep
its locations in SPC if one or both coordinates are rescaled to accommodate the
shift. Alternatively, L^ is shifted if coordinates are not rescaled. To see it compare
Fig. 3.14 with Fig. 3.18 where Xj is shifted. Thus, the property that L^ fully rep-
resents a 2-D line L in PC holds for SPC.

Now consider situations for Collocated Paired Coordinates. For consecutive
pairs (Xi, Xi + 1) for odd i it is the same as for SPC considered above, but for
collocated pairs (Xi, Xi + 2) with a common origin for pairs of coordinates such as

Xj

X i

L^

Fig. 3.15 Line L:
xj = mxi + b for m > 0 and
point L^ that represents L in
Parallel Coordinates

X i

X i+1

Fig. 3.16 Line L:
xj = mxi + b for m < 0 in
Cartesian visualization used
in CPC and SPC for pairs of
coordinates (Xi, Xi + 1)

k1 x

y

(1,k+m)

(0,m) (k,m)=H*

X i

X j

Fig. 3.17 Line L:
xj = mxi + b for m > 0 in
Cartesian visualization used
in CPC and SPC for pairs of
coordinates (Xi, Xi + 1) with
point H^ that completely
represents L
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(X1, X3) and (X2, X4) the situation is different and another solution is required. This
solution is shown in Figs. 3.15, 3.16 and 3.17. First a distance d is set up and
coordinate Xi + 2 is moved up to this distance parallel to Xi. In this way we get a
situation of finding point L^ as it is done in PC in Fig. 3.14. This stage is shown in
Fig. 3.19, where blue dotted lines show how xj is identified on Xj by getting line via
xi and L^. Next, these lines are reflected back to Xi relative to the middle line that is
at height d/2 for a given d (see Fig. 3.19) to get value of xj on coordinate Xj that is
collocated with coordinate Xi.

This process is equivalent to building a triangle with two equal sides. Thus, the
Xj can be removed from its temporary location (see Fig. 3.20). In the final algo-
rithm the triangular property allows avoiding moving Xj to the temporary location

X i

X j

Fig. 3.18 line L:
xj = mxi + b and point L^ that
represents L in SPC where
both i and j are odd or even

X i

X j

d

Fig. 3.19 Line L:
xj = mxi + b in CPC
constructed by reflecting
points relative to the middle
line at height d/2 for a given d

Xi Xj

d/2
Fig. 3.20 Figure 3.19 with
removed Xj from its
temporary location

X1 X3 X5 X7

d/2
L^1,3

L^3,5
L^5,7

Fig. 3.21 Multiple points L^
for 8-D data for pairs (X1,
X3), (X3, X5) and (X5, X7) in
CPC
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substituting it by building triangles. Finally, Fig. 3.21 shows multiple points L^ for
8-D data for pairs (X1, X3), (X3, X5) and (X5, X7) in CPC.

3.5.3 Visualization of n-D Linear Functions and Operators
in CPC, SPC and PC

At the mathematical level, n-D linear structure is a parameterized straight line
Y = A + tv in n-D space, where A = (a1, a2,…,an) and Y = (y1, y2,…,yn) are n-D
points and v = (v1, v2,…,vn) is an n-D vector, yi = ai + tvi, i = 1,…,n, and scalar t is
changing in some interval, e.g., [0, 1].

The PC visualization in Figs. 3.14 and 3.15 is not actual visualization of the n-D
straight line: Y = A + tv. It is visualization of a single projection of that n-D line to
a pair of coordinates (Xi, Xj) (Inselberg 2009). To fully represent the n-D straight
line: A + tv, Inselberg (2009) uses a set of projections of that n-D line to pairs of
coordinates (Xi, X2), (X2, X3),…,(Xn − 1, Xn) using the property that a line in Rn is
the intersection of n − 1 non-parallel hyperplanes. Those hyperplanes can be built
from those projections, e.g., x2 = mx1 + b can be converted to the n-D hyperplane

x2 ¼ mx1þ bþ 0x3þ 0x4þ � � � þ 0xn;

i.e., any n-D point x = (x1, x2, x3, x4,…,xn) such that x2 = mx1 + b will be on that
hyperplane when all other xi for i > 2 can take any values due to their zero
coefficients.

Conceptually the idea of this visualization is related to the idea of the scatter plot
matrix that represents a set of n-D data in their projections to all pairs of coordinates
(Xi, Xj). PC present projections only for adjacent pairs of coordinates, while it is
sufficient for restoration of the n-D line it does not show the n-D line itself. This
situation is also similar to showing 2-D projections of a 3-D object instead of that
3-D object.

To represent several parallel lines {Lk: xi + 1 = mxi + bk} for a given pair (Xi,
Xi + 1) in PC a set of points Lk^ is used that are located on the same vertical line
(Inselberg 2009). In CPC and SPC the parallel lines are represented by a set of Hi^
points also located on the same vertical line. Alternatively, CPC and SPC have a
classical and familiar visual representation of one line shifted above or below
another one. As with a single line L, an attempt in PC to draw all points of two
parallel lines Lk1 and Lk2 will end up with a completely covered “black” segment
between coordinates X1 and X2. The generalization of this visualization for n-D line
Ln: A + tv in PC requires to show sets of L^ points for all consecutive pairs (Xi,
Xi + 1) (Inselberg 2009).
Linear Operators. The situation with parallel n-D lines also represents another type
of linear relation in n-D, where n-D line Ln2 is a linear function of another n-D line
Ln1 : Ln2 ¼ Ln1 + uh, where h is a given n-D vector and u is a scalar coefficient.
This is equivalent to defining a set of linear operators Tu(x) in n-D space for
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different u. At the level of individual x = (x1, x2,…,xn), we have Ln2(x) =
Tu(x) = Ln1(x) + uh, where h represents a shift vector of the n-D line. In the
notation where Ln1 = A1 + tv and Ln2 = A2 + tv we have Ln2 = A2 + tv =
A1 + tv + uh = (A1 + uh) + tv. Thus A2 = (A1 + uh), i.e., n-D point A1 moves to
direction h for the distance |uh|. In other words, the lines Ln1 and Ln2 go from points
A1 and A2 in the same direction given by n-D vector v.

Under such a linear operator for given x = A + tv, t, h = (h1, h2,…,hn) and u, a
graph x* for x in PC moves to (a1 + uh1 + tv1, a2 + uh2 + tv1,…,an + uhn + tvn).
If in vector v all its coordinates vi are equal, then visually in PC the graph x* for x is
shifted by that value. This is the case in Fig. 3.22b.

For CPC and SPC consider paired spaces (X1 � X2), (X3 � X4),…,
(Xn − 1 � Xn). In the space (X1 � X2), point (a1, a2) is moving to the direction v1, 2 =
(v1, v2) with the parameter t: (y1, y2) = (a1, a2) + t(v1, v2). Similarly in (Xi � Xi + 1)
point (ai, ai + 1) is moving to the direction vi, i + 1=(vi, vi + 1) with the same parameter

t : yi; yiþ 1ð Þ ¼ ai; aiþ 1ð Þþ t vi; viþ 1ð Þ:

When all of these spaces are collocated in CPC, an n-D point A is represented as
a set of 2-D points connected by arrows forming a graph A*. Applying tv to A will
produce n-D point Y. The 2-D representation of this n-D point is graph Y* obtained

(a) Points in CPC with equal shifts (b) Points in CPC with unequal shifts

(c) Points in PC with equal shifts 
A

A

B B

Fig. 3.22 Linearly related 8-D points in CPC (a), (b) and PC (c)
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from graph A* by moving each of its 2-D points (ai, ai + 1) to the direction tvi, i + 1.
For different 2-D points (ai, ai + 1) these directions are different.

A linear segment in n-D is a set of points {W: W = A + tv, t 2 [a, b]}.

Statement 3.16 An n-D linear segment is represented as a set of shifted graphs in
CPC.

Proof Two arbitrary n-D vectors W1 = A + t1v and W2 = A + t2v from this linear
segment with v = (v1, v2,…,vn) are shifted from n-D point A in the v direction for
different distances of these shifts in accordance with t1 and t2, respectively. These
shifts are translated to shifts of nodes of graphs W1* and W2*. For any W1 and W2

their first 2-D points (w11, w12) and (w21, w22) are shifted in the directions of (v1, v2)
on 2-D relative to the first 2-D point of A which is (a1, a2). Similarly, the second
points are shifted in the direction (v3, v4). Thus, directions of the linear shifts can
differ for different points/nodes of the same graph. ∎

In Fig. 3.22, the 8-D structure consists of three 8-D points. In Fig. 3.22a, c CPC the
first 8-D point is A = (0, 0, 1, 0, 1, 1, 0, 1). It forms a square of four 2-D points in 2-D
in Fig. 3.22a when the first and last nodes are connected. The 8-D linear transform
v creates four 2-D vectors (v1, v2), (v3, v4), (v5, v6), (v7, v8) that transform these four 2-D
points in different directions depending on the values of these vectors. These vectors are
shown in red in Figs. 3.22a when all four 2-D transformation vectors are the same.
A more complex situation when transform vectors have different norms but the same
direction is shown in Fig. 3.22b. It produces rotation in 2-D. In such cases, rescaling of
coordinates in CPC and SPC allows making all 2-D pairs (v1, v2), (v3, v4), (v5, v6), (v7,
v8) equal resulting in figures like Fig. 3.22a.

The comparison of Fig. 3.22a, c shows that in PC v also captures the n-D
structure in 2-D, but again uses significantly more lines.

Analytical discovery and visual insight. Consider 8-D linear segment from
A to B,

A;B½ � ¼ fxt : xt ¼ Aþ tv; t 2 Zg

with A = (0, 0, 1, 0, 1, 1, 0, 1) from, v = (1, 1, 1, 1, 1, 1, 1, 1) visualized partially in
Fig. 3.22a.

While the square structure is a visible structure in this figure it is not obvious
how it can be discovered analytically. The analytical discovering of relations is
done by searching in an assumed class of relations. It is difficult to guess this class.
Even when the class is guessed correctly, but the class is very large; the search may
not be feasible computationally. The visual insight helps to identify and to narrow
this class. Figures 3.23 and 3.24 show the more complex n-D linear structures
visualized in CPC and in PC. These 8-D structures consist of three 8-D points.

Figure 3.23a shows the case with opposing 2-D transform vectors directed
outside of the square. This leads to expanding the base square similar to zooming
out. In the case of Fig. 3.23a these transform vectors are equal; in the case of
Fig. 3.23b they have different norms.
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An interesting case represents the situation when opposing 2-D transform vec-
tors are directed inside of the square. At first, it decreases the square and then
increases it (“swapping”, “turning out” 2-D points).

See trajectory of point A to point B in Fig. 3.24a. In the case of Fig. 3.24a, the
transform vectors are equal; in the case of Fig. 3.24b they have different norms.

n-D tubes. Consider data of two classes that satisfy two different linear relations:
W = A + tv and U = B + tq. These data are represented in CPC as two sets of
graphs shifted in v and q directions, respectively. If W = A + tv + e, where e is a
noise vector, then we have graphs for n-D points W in the “tube” with its width
defined by e. Later in Sect. 5.2 (Chap. 5), we compare PC and CPC visualizations
of n-D linear relations corrupted by noise given by vector e: Ln2 = A2 + tv + e for
v with all equal coordinates vi. In Chap. 6, tubes with noise are explored in detail.

A

B

A

(a)
(b)

Fig. 3.23 Linearly related 8-D points in CPC with opposing shifts outside of equal value (a), and
opposing shifts with unequal values (b)

A

B

1 2 k K+1 A

B

1 2 k K+1

(a) (b)

Fig. 3.24 Linearly related 8-D points in CPC with opposing shifts inside of equal value (a), and
opposing shifts with unequal values (b)
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Scalability and occlusion of linear dependencies. There is an advantage of
CPC and SPC over PC for representing some n-D linear structures. Consider 100
linearly dependent 8-D points wi = A + tiv, where A = (5, 5, 5, 5, 5, 5, 5, 5),
v = (1, 1, 1, 1, 1, 1, 1, 1), and ti + 1 = ti + 0.001, t1 = 0, i = 1:100. In PC each of
them is a horizontal line. Figure 3.25a shows these 100 lines in PC. They fill the red
area forming a complete box without any individual PC line being visible. Also, no
room left to show any other n-D data. This is the case of the complete occlusion in
PC. In contrast, CPC and SPC provide more meaningful visualizations.

Figure 3.25b shows the same 100 8-D points in SPC forming a red line that
corresponds to the traditional visualization of the linear dependence. CPC forms a
similar red line, where each of these 8-D points is a single red dot. This a significant
scalability issue for PC. In contrast, in this example CPC and SPC left plenty of
room for other data to display without overlap and occlusion.

Norms. In CPC we can compute norms |vi, i + 1| of all vi, i + 1 vectors and find all
vectors with the max of these norms. If only a single vector has the max norm value
then this is a prevailing direction of the 2-D shape transformation that represents the
n-D linear map/operator tv. This transformation can also be described by a multi-
linear map of n variables (n-linear map) or more generally by a tensor.

Above we considered n-D linear relation where the output is an n-D point not a
scalar. Chapter 7 is devoted to a way to visualize an n-D linear function F
(x) = y where y is a scalar,

y ¼ c1x1þ c2x2þ c3x3þ � � � þ cnxnþ cnþ 1

for machine learning tasks.

Fig. 3.25 8-D linear segment with 100 8-D points in Parallel Coordinates (a) and Shifted Paired
Coordinates (b). Red box in (a) and red line in (b) show the same 100 8-D points
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Chapter 4
Adjustable GLCs for Decreasing
Occlusion and Pattern Simplification

Simplicity is the ultimate sophistication.
Leonardo da Vinci

Occlusion is one of the major problems for visualization methods in finding the patterns
in the n-D data. This chapter describes the methods for decreasing the occlusion, and
pattern simplification in different General Line Coordinates by adjusting GLCs to the
given data via shifting, relocating, and scaling coordinates. In contrast, in Parallel and
Radial Coordinates such adjustments of parameters are more limited. Below these
adjustment transformations are applied to the Radial, Parallel, Shifted Paired, Circular
and n-Gon Coordinates. Cognitive load can be significantly decreased, when a more
complex visualization of the same data is simplified.

4.1 Decreasing Occlusion by Shifting and Disconnecting
Radial Coordinates

In Radial Coordinates, the different n-D data points occlude each other, when their
values are close to the common coordinate origin, because that area is small.
Figure 4.1 illustrates this occlusion, where it is impossible to see the full difference
between the three 8-D points shown as red, green, and blue lines.

The Unconnected Radial Coordinates (URC) shown in Fig. 4.2 resolve this
occlusion issue by starting all coordinates at the edge of the circle instead of at the
common origin, i.e., by shifting all of the coordinates to that edge. Thus, more
freedom, in locating coordinates, shows its benefits in the decrease of the occlusion
in Radial Coordinates.

The same origin-based occlusion takes place in the Cartesian Coordinates,
Collocated Cartesian, and Collocated Star Coordinates, because all of them have a
common origin of all coordinates. The way to resolve this origin-base occlusion is
the same as for the Radial Coordinates—shifting the coordinates from the common
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origin along their directions, i.e., making these coordinates unconnected. Parallel
Coordinates are free from this occlusion problem, due to the absence of the com-
mon origin.

4.2 Simplifying Patterns by Relocating and Scaling
Parallel Coordinates

4.2.1 Shifting and Tilting Parallel Coordinates

For Parallel Coordinates shifts of coordinates allow revealing visual patterns faster
and make patterns simpler by presenting them as preattentive straight lines as we
show below. It exploits a well-known property that straight lines are preattentive
features (Few 2004; Appelbaum and Norcia 2009).

Below we provide a summary of the experimental electroencephalogram
(EEG) study in (Appelbaum and Norcia 2009), on straight line preattentive

X1

X2

X3

X4

X5

X6

X7

X8

A

B

C

Fig. 4.1 Traditional Radial
Coordinates: values of 8-D
point A occluded by 8-D
points B and C, near the
origin, due to the
connectedness of coordinates
at the origin

X1

X2

X3

X4

X5

X6

X7

X8

Fig. 4.2 Unconnected radial
coordinates: occlusion
removal demonstration,
values of 8-D points A, B, and
C are not occluded
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perception. They measured the time to distinguish the vertical and the horizontal
lines, in the central region, from the lines in the background (see Fig. 4.3).

Each straight line is represented as a one-dimensional random luminance bar,
with a minimum bar width of 6 arc min. In the experiment, the frequency of
changes of lines in the center differs from the frequency of change of the back-
ground (3 Hz vs. 3.6 Hz). This difference allowed the measurement of time for
processing straight lines in the center.

Participants were asked to detect the subtle changes in a set of straight lines
(Fig. 4.3b) with a button press. In 20% of the 1.67-second stimulus cycles, the
aspect ratio (horizontal to vertical) became elliptical vs. circular at the beginning, as
Fig. 4.3b shows. The aspect ratio was monitored and adjusted to maintain the
performance at approximately 80% of correct detection.

These authors assessed the amplitude and timing of brain responses in EEG for
the sets of straight lines in the center versus the background processing. They
concluded: the separation of the straight lines from the background proceeds pre-
attentively, based on the statistical analysis of the electroencephalogram collected
with a whole-head 128-channel Geodesic EEG system.

This result covers many straight lines. In our examples in this chapter, just a few
straight lines are used, i.e., much simpler cases, which respectively also should be
preattentive, and can be generalized for more lines.

Consider the two 6-D data points A = (0.3, 0.6, 0.4, 0.8, 0.2, 0.9) in blue and
B = (0.35, 0.68, 0.48, 0.85, 0.28, 0.98) in orange in Fig. 4.4. Figure 4.4a shows A and
B, in the standard Parallel Coordinates, as non-preattentive zig-zag lines.

(a) Difference in the frequency of change of the 
stimulus and background 

(b) Shape discrimination

Fig. 4.3 Preattentive aspects
of the straight horizontal and
vertical line processing
(Appelbaum and Norcia
2009)

4.2 Simplifying Patterns by Relocating and Scaling … 79



In contrast, in Fig. 4.4b, c A is a preattentive straight line, and B is much simpler
than in Fig. 4.4a. The lines in Fig. 4.4b, c can be compared and correlated easier.
This simplification was achieved by changing the Parallel Coordinates to the
Shifted Coordinates.

4.2.2 Shifting and Reordering of Parallel Coordinates

The Shifted Parallel Coordinates is a visual way to implement the idea of designing
a complex non-linear transform of the n-D dataspace into another space, where a
linear discriminant function, or a hyper-plane, can be built for the n-D data

(a) Data in the Traditional Parallel Coordi-
nates – non-preattentive representation.

(b) Data in the Shifted Parallel Coordinates -
pre- attentive representation.

(c) Data in the Shifted General Line Coordi-
nates- preattentive representation.

(d) Data in the scaled Parallel Coordinates –
pre- attentive representation.

X 1

X 1

X 2

X 2

X 3

X 3

X 4

X 4

X 5

X 5

X 6

X 1 X 2 X 3 X 4 X 5 X 6

X 1 X 2 X 3 X 4 X 5 X 6

Fig. 4.4 Non-preattentive versus preattentive visual representations (linearized patterns): the 6-D
point A = (3, 6, 4, 8, 2, 9) in blue, and the 6-D point B = (3.5, 6.8, 4.8, 8.5, 2.8, 9.8) in orange in
the traditional and the shifted parallel coordinates and GLCs
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classification. This linearization idea is behind the algorithm based on rescaling
(Vityaev and Kovalerchuk 2005).

Shifting coordinates, in the Parallel Coordinates, to get a linear representation is
similar to applying the Rescaled Parallel Coordinates (Theus 2008). Rescaling
visually can be done without shifting, but by contracting or expanding the coor-
dinates, as it is shown in Fig. 4.4d. Note that rescaling may change the perception,
because the resolution of some coordinates can decrease.

Rescaling in the Parallel Coordinates can be done with minimal visual changes
in the coordinates, by changing the number of pixels used for the units in a
coordinate. Shrinking the coordinate line of the given length leads to the shrinking
of the units of that coordinate (decreasing the number of pixels devoted to the scale
unit).

The same decreased number of pixels can be implemented with keeping the
length of the coordinate. In this case, the range of the values that the coordinate line
carries will be larger. This would require redrawing the dividers of units on the
coordinate making them denser.

Figure 4.5 illustrates the simplification of the visual representation of n-D data of
the two classes by shifting and reordering of the Parallel Coordinates. In Fig. 4.5b,
some coordinates are moved up, and some of the others are moved down. The order
of the coordinates is also changed. As a result, the first class (red) became preat-
tentive, being represented by horizontal straight lines. In Fig. 4.5b, the second class
(green) became simpler too. It is now a set of monotone increasing lines, which is
recognizable easier and faster, than the zig-zag lines in Fig. 4.5a.

(a) Original visual representation of 
the two classes in the Parallel 

(b) Simplified visual representation after 
the shifting and reordering of the  

X 1 X 2 X 3 X 4 X 5 X 6

0

3

1

2

X 1̀ X 5̀ X 4̀X 6̀ X 2̀X 3̀

Coordinates.
Parallel Coordinates.

Fig. 4.5 Simplification of the visual representation by the shifting and reordering of the parallel
coordinates
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4.3 Simplifying Patterns and Decreasing Occlusion
by Relocating, Reordering, and Negating Shifted
Paired Coordinates

4.3.1 Negating Shifted Paired Coordinates for Removing
Crossings

Figures 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12 and 4.13 illustrate the simplification
process, for the Shifted Paired Coordinates, in comparison with the Parallel
Coordinates. All of these figures show the same four 6-D points: A = (0.3, 0.6, 0.4,
0.8, 0.2, 0.9) (thick blue line), and C = (0.8, 0.9, 0.4, 0.5, 0.2, 0.3) (thick green
line), and the two other 6-D points (thin lines) of the blue and green classes.

Points A and C can be viewed as the representative points (centers) of these
classes. We start from the representation of these data in the Parallel Coordinates in
Fig. 4.6. This representation is quite complex, with 6 points and 5 zigzag lines for
every 6-D point, without a clear visual separation between the points of the two
classes. In contrast, the representation in SPCs in Fig. 4.7 is simpler with the 3
points, and the two lines for each 6-D point. However the lines of the two classes
cross each other in (X1, X2), (X3, X4) spaces. A simpler pattern would be the one,
where the lines do not cross in these spaces. This is implemented, in Fig. 4.8, by
substituting the coordinate X4 to 1−X4. While it removes one, it creates another
crossing in (X3, 1−X4), and (X5, X6) spaces. This crossing is resolved, in Fig. 4.9,
by substituting the coordinate X6 by 1−X6. Now, the cases of the two classes are
separated, but still not preattentive.

X2   
X1   

X4   X3   
X6   X5   

Fig. 4.6 Four 6-D points of
the two classes in the parallel
coordinates
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X2   

X1   
X3   

X6   

X5   

(0.3, 0.6)

(0.4, 0.8)

(0.2, 0.9)

(0.4, 0.5)

(0.8, 0.9)
X4

Fig. 4.7 Four 6-D points of the two classes in SPCs with the crossing lines

X2   

X1   

1 -X4   

X3   

X6   

X5   

(0.3, 0.6)

(0.4, 0.2)

(0.2, 0.9)(0.4, 0.5)

(0.8, 0.9)

(0.2, 0.3)

Fig. 4.8 Four 6-D points of the two classes in SPCs with the crossing lines with the coordinate X4

changed to 1−X4, which removes the crossing of lines caused by X4, where: A′ = (0.3, 0.6, 0.4,
0.2, 0.2, 0.9) (thick blue line), and C′ = (0.8, 0.9, 0.4, 0.5, 0.2, 0.3) (thick green line)

2

X1

1-X 4

X3

1 -X6

X5

(0.3, 0.6)

(0.4, 0.2)
(0.2, 0.1)

(0.4, 0.5)
(0.2, 0.7)

(0.8, 0.9)

Fig. 4.9 Four 6-D points of the two classes in SPCs with the crossing of the lines caused by X6

eliminated by changing the coordinate X6 to 1−X6 with A″ = (0.3, 0.6, 0.4, 0.2, 0.2, 0.1) (thick
blue line), and C″ = (0.8, 0.9, 0.4, 0.5, 0.2, 0.7) (thick green line)
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X2   

X1   

1 -X4   

X3   

1 -X6   

X5   

(0.3, 0.6)

(0.4, 0.2)

(0.2, 0.1)

(0.4, 0.5) (0.2, 0.7)(0.8, 0.9)

Fig. 4.10 Four 6-D points of the two classes in the shifted paired coordinates, without the
crossing lines and with the monotone blue lines, and the horizontal thick green line obtained by
shifting the pairs of coordinates (X1, X2) and (X5, 1−X6) down, to make the thick green line C
horizontal

X2   

X1   

1 -X4   

X3   

1 -X6   

X5   

(0.3, 0.6)

(0.4, 0.2)

(0.2, 0.1)

(0.4, 0.5)(0.2, 0.7) (0.8, 0.9)

Fig. 4.11 Four 6-D points of two classes in Shifted Paired Coordinates, without the crossing lines
and with the horizontal thick green line, and with a straight monotone thick blue line, obtained by
shifting the pairs of coordinates (X1, X2) and (X5, 1−X6) horizontally, to make the thick blue line a
straight line

1 - X

1 - X(0.8, 0.9)

X2

X1

4

X3

6

X5

(0.3, 0.6)
(0.4, 0.2)

(0.2, 0.1)

(0.4, 0.5) (0.2, 0.7)

Fig. 4.12 Four 6-D points of
the two classes in the Shifted
Paired Coordinates without
the crossing lines, and with a
straight monotone thick blue
line, and a horizontal thick
green line, obtained by
shifting a pair of coordinates
(X1, X2) to the right, to
collapse C into a single arrow
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4.3.2 Relocating Shifted Paired Coordinates for Making
the Straight Horizontal Lines

In Fig. 4.10, the green line C became a preattentive horizontal straight line by
shifting the coordinates (X1, X2) and (X5, 1−X6) down. Here the blue line is still not
preattentive. In Fig. 4.11, it is made more preattentive by shifting pairs of the
coordinates (X1, X2) and (X5, 1−X6) horizontally, to make the thick blue line a
straight line.

4.3.3 Relocating Shifted Paired Coordinates for Making
a Single 2-D Point

Figure 4.12 shows the next step of simplification, where the green line C is col-
lapsed into a single arrow between the two points. The first point is obtained by
shifting the pair of coordinates (X1, X2) to the right, in such way that (x1, x2) = (0.2,
0.7) will be at the same position, where (x3, x4) = (0.4, 0.5) is located in (X3, X4)
coordinates.

The final simplification step is presented in Fig. 4.23, where the green line C is
collapsed into a single preattentive 2-D point, shown as the green dot, by shifting a
pair of coordinates (X5, 1−X6) to the left. This representation remains reversible,
i.e., all values of these four 6-D points can be restored, from these graphs.

Figure 4.14 shows another numeric example of the preattentive lossless repre-
sentation in the Shifted Paired Coordinates. A straight horizontal line that represents
the 6-D point A = (3, 6, 4, 8, 2, 9) in blue in Fig. 4.14 is preattentive. It also shows
the point B = (3.5, 6.8, 4.8, 8.5, 2.8, 9.8) in orange from the same class. While B is
not preattentive, its representation, and comparison with A, is simplified, when
A was made preattentive.

X 2

X 1

1 - X 4

X 3

1 - X 6

X 5

(0.3, 0.6)
(0.4, 0.2)

(0.2, 0.1)

(0.4, 0.5)
(0.2, 0.7)

(0.8, 0.9)

Fig. 4.13 Four 6-D points of
the two classes in the shifted
paired coordinates without the
crossing lines, obtained by
shifting pair of coordinates
(X5, 1−X6) to the left, to
collapse the thick green line C
into a single point
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The paired lossless representation of the 6-D point A, in Fig. 4.14, not only is
preattentive, but is also two times simpler, than in the Parallel Coordinates having
only the three 2-D points vs. the six 2-D points, in Parallel Coordinates, in
Fig. 4.4a. Figure 4.15 represents the same 6-D point A, as a single 2-D point,
losslessly and preattentively by shifting the coordinates (X1, X2) and (X5, X6), in
the same way, as in Fig. 4.13.

4.4 Simplifying Patterns by Relocating
and Scaling Circular and n-Gon Coordinates

Figure 4.16 shows the ways to simplify the visualization of other GLCs using the
shifting and rescaling of coordinates. In Fig. 4.16, this approach is applied to the
traditional Radial Coordinates, and the new circular and n-Gon coordinates, which
were defined in Chap. 2, without these simplifications. For the comparison, the
same data are shown in Fig. 4.16a in the Parallel Coordinates, and in Fig. 4.17a in
the Radial Coordinates.

In the Circular Coordinates (Fig. 4.16b), the circle is divided into the segments,
and each segment encodes a coordinate (e.g., in a normalized scale within [0, 1]),
where each xi of an n-D point x is located in the respective coordinate Xi. For
instance, x1 = 0.3, in the Fig. 4.16b, is located at the respective distance from the
origin of X1, along the Xi segment of the circle.

X2
X4 

X6

X3

X1   

X5

3

4
2

(3.5, 6.8, 4.8, 8.5, 2.8, 9.8)

(3, 6, 4, 8, 2, 9)
8  6  9

Fig. 4.15 Preattentive
lossless visualization of the
6-D point in blue, as a
preattentive single 2-D point,
and the simplified
visualization of the 6-D point
B in orange in the SPCs

X2

X1

X4

X3

X6

X5

(3,6) (4,8) (2,9)

Fig. 4.14 Preattentive
lossless visualization of the
6-D point A = (3, 6, 4, 8, 2, 9)
in the blue, as a preattentive
horizontal straight line, and a
simplified visualization of the
6-D point B = (3.5, 6.8, 4.8,
8.5, 2.8, 9.8) in orange in the
SPCs
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Next, these points xi are connected, to form the directed graph, starting from x1.
Connecting x1 and xn leads to a closed contour (see the dotted lines in Fig. 4.17b). It
is advantageous perceptually, which we will illustrate later in detail. Closed con-
tours are colored to distinguish the n-D points, and their classes. Similarly, the
n-Gon (triangle, rectangle, pentagon, and so on) is divided into the segments, and
each segment encodes a coordinate.

These points are connected to form a graph (see Fig. 4.19a). Figures 4.16a, b,
4.17a and 4.19a shows that the Circular Coordinates, and the n-Gon coordinates,
have the same complexity. They require the same number of lines, as the known
Parallel and Radial Coordinates, for the same 4-D point. Therefore, these new
coordinates have a potential to be successful, in the same types of applications,
where the Parallel and Radial Coordinates have been successful.

(a) Two 4-D points in Parallel Coordinates (b) Two 4-D points in Circular Coordinates

X1 X2 X3 X4
X1

X3

X4

0.3

0.50.5

0.2

X2

Fig. 4.16 4-D points A = (0.3, 0.5, 0.5, 0.2) in green, and B = (0.2, 0.45, 0.4, 0.4) in orange, in
parallel and circular coordinates, fully connected

(a) Two 4-D points in Radial coordinates (b) 4-D point A  in Contracted Circular Coordi-
nates

X1

X
2

X
3 0.3

0.5

0.5

0.2

X
4 X 1̀

X2X3

X 4̀ 0.3

0.50.5

0.2

Fig. 4.17 Simplification of visualization by relocating and rescaling of the coordinates for 4-D
points A in green and B in orange displayed in the radial and circular coordinates partially
connected
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The idea of simplification is transforming the original 2-D graph, from the
irregular shape, to a familiar regular symmetric shape such as a square, pentagon,
hexagon, and so on. Figures 4.17b and 4.18a, b show the results of such a trans-
formation, of an irregular rectangle into a square, for the 4-D point A in Circular
Coordinates; and the Figs. 4.19a, b and 4.20 show this in the n-Gon (Square)
Coordinates and Radial Coordinates. All of these transformations are linear.
Coordinates shrink under these transformations; respective segments of the circle
shrink into subsegments, shown in Figs. 4.17b and 4.18a. In Fig. 4.17b, this
resulted in moving x1 = 0.3 down and x4 = 0.2 up to form a horizontal line at the
position of 0.5. Moving both x1 and x4 to the location of 0.5, on the respective
coordinates, ensures getting a square because x2 and x3 are already in those 0.5
positions.

(a) Two 4-D points in Contracted Circular 
Coordinates. 

(b) 4-D point A in Disproportional Circular Co-
ordinates. 

X 1̀

X
2

X
3

X 4̀

0.3

0.50.5

0.2

X 1̀

X2X3

0.3

0.50.5

0.2

X 4̀

Fig. 4.18 Simplification of visualization by relocating and rescaling of the coordinates for 4-D
points A in green and B in orange displayed in the circular coordinates fully and partially
connected

(a) Two 4-D points in the connected n-Gon 
(Square) Coordinates

(b) Two 4-D points in the Partially Connected   
n-Gon (Square) Coordinates 

X
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0.3
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X3

X 4̀
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0.3

0.3

Fig. 4.19 Simplification of visualization by relocating and rescaling of the coordinates for 4-D
points A in green and B in orange displayed in the square coordinates, fully and partially connected
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These linear transformations map X1 to X′1 with 0 ! b, 0.3 ! 0.5, 1.0 ! 1.0,
and X4 to X′4 with 0 ! d, 0.2 ! 0.5, and 1.0 ! 1.0. The linear equations to find
these transforms are y = ax + b and y = cx + d, where for y = ax + b and X1, we
have the two pairs (x = 0.3, y = 0.5) and (x = 1, y = 1). This leads to a system of
two linear equations: 0.5 = 0.3a + b and 1 = a + b with a solution: a = 0.714 and
b = 0.286. Thus, the coordinate X′1 starts at the location 0.286 on the circle seg-
ment X1. In the polar coordinates, this location is given by a pair (R, a). Similar
computations are conducted for x4 = 0.2, on the coordinate X4. In contrast in
Fig. 4.18b, the shape is simplified by a non-linear monotone transform, which maps
X1 to X′1 with 0 ! 0, 0.3 ! 0.5, 1.0 ! 1.0, and maps X4 to X′4 with 0 ! 0,
0.2 ! 0.5, and 1.0 ! 1.0. It can be modeled by a piecewise linear transformation,
with two linear parts, which can be found by solving two systems of two linear
equations.

The scaling approach without changing the length and location of the Parallel
Coordinates was implemented for the Parallel Coordinates in (Theus 2008). Above
this idea was generalized for various GLCs, allowing relocation, and resizing of the
coordinates in addition to rescaling. The advantages of rescaling were shown in
(Theus 2008) for n-D data, for the Tour de France 2005, with a conclusion, that
after each axis is aligned at the individual medians, the display clearly reveals the
most information.

In terms of the examples, in Figs. 4.16, 4.17, 4.18, 4.19 and 4.20, the role of the
linearized graph of n-D point A, is played by a set of individual medians in each
axis in Theus (2008). Theus (2008) proposed several options for selecting such an
n-D point: the mean, the median, a specific case, or a specific value. We will call
this n-D point: an alignment n-D point. He also noticed that the alignment of
coordinates can be controlled without using a particular n-D point by either indi-
vidually scaling the axes or by using some common scale over all axes with a
general conclusion: “Parallel coordinate plots are not very useful “out of the box,”
i.e., without features like a-blending, and the scaling options”.

The same simplification approach as described above can be applied for Circular
and n-Gon coordinates for a higher number of dimensions with substituting squares

X̀

X2

X3

X
4̀

0.3

0.5

0.5

0.2

Fig. 4.20 Simplification of
visualization by relocating
and rescaling the coordinates
for the 4-D points A in green
and B in orange partially
connected radial coordinates
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to pentagons, hexagons, and other respective n-Gons. It is likely that the highest
dimensions will be comparable with the dimension that is workable for the Radial
Coordinates. It is illustrated, in Figs. 4.16, 4.17, 4.18, 4.19 and 4.20, where
Figs. 4.17a and 4.20 shows the same two n-D points, in Radial Coordinates, and
Partially Connected Radial Coordinates. Circular, n-Gon coordinates, and Radial
Coordinates use the same number of 2-D points, around a common center, to
represent each n-D point. The difference is in how the points are located. Therefore,
easiness for people in discovering clusters, in Circular and n-Gon coordinates,
should be similar to that for the Radial Coordinates. In more detail, this issue is
considered in Chap. 6, for the dimensions up to n = 192.

4.5 Decreasing Occlusion with the Expanding
and Shrinking Datasets

4.5.1 Expansion Alternatives

Above in this chapter we simplified the visualization for the four n-D points. The
justification for considering the four n-D points is the assumption that these four
points are representative for the larger datasets. The thick lines are viewed as
centers of the two classes, centers of subsets of the class (clusters), or other n-D
points of interest. For short, we denote these n-D points as centers c1 and c2. The
thin lines represent other points of these classes, which are close to the first ones.
For the four n-D points, the major issue is the simplification of the pattern, while for
the larger number of n-D points, both the decreasing occlusion, and the simplifi-
cation of the visual pattern, are critical for the success of visual discovery.

Below we present five expansion alternatives E1–E5, for the given vicinities of
the n-D center points c1 and c2, to be able to visualize more data, with less
occlusion. The vicinities are defined, by some parameter of clustering. Typically, it
is a closeness threshold, which we denote as T. Changing the threshold T, will show
the dependence, of the class separation on it.

Alternative expansions of the visualization process presented in the previous
sections of this chapter are:

(E1) Keep the center point c1, and visualize all the n-D points from both classes
C1 and C2, which are in the given vicinity of c1. This will visualize how close the
two classes are, and how they overlap.

(E2) Keep the center point c2 and visualize all the n-D points from both classes
C1 and C2, which are in the given vicinity of c2. This will visualize how close the
two classes are, and how they overlap.

(E3) Keep the center point c1, and visualize all the n-D points of class C1 in the
given vicinity of that center c1, and all the n-D points of class 2, which are outside
of this vicinity. This visualizes how far the n-D points of the two classes are.
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(E4) Keep the center point c2, and visualize all the n-D points of class C2, in the
given vicinity of c2, and all of the n-D points of class C1, which are outside of this
vicinity. This will visualize how far the n-D points of the two classes.

(E5) Keep both the center points c1 and c2, and visualize all the n-D points which
are in the given vicinities of c1 and c2. This will visualize how close, and how far
the n-D points of the two classes are.

The motivation for these controlled expansions, of the process, with four points,
is that throwing all data, of both classes, into the visualization will typically end up,
in a messy highly occluded picture, with the useful pattern hidden. Clustering,
before visualizing, is a natural approach to avoid such an output. In Machine
Learning, using the clustering before the classification is quite common, even
without the visualization, because it simplifies the pattern, and therefore the process
of discovering it (Rokach et al. 2005; Cohen et al. 2007).

4.5.2 Rules and Classification Accuracy for Vicinity in E1

The visualizations for E1 allow the generation of a simple classification rule

If x 2 V c1; Tð Þ then x 2 Class 1;

i.e., if n-D point x is in the vicinity V(c1, T) of the n-D point with the threshold T,
then x belongs to Class 1. Also for vicinity V(c1, T) of c1, we can get two numbers;

• the total number N(c1, T) of n-D points in V(c1, T), and
• the number N(1, c1, T) of n-D points of class 1 in V(c1, T).

This gives us the accuracy of this rule as a ratio: R = N(1, c1, T)/N(c1, T).

Finding a threshold Below we describe an algorithm for finding a threshold T.
Consider an n-D dataset A of the labeled points of several classes, e.g., of two
classes, which we will denote class 1 and class 2. Let also c1, c2 2 A be the n-D
points of interest, which belong to class 1 and class 2, respectively.

The steps of the algorithm that we denote as GLC-S are as follows:

Step 1 Selecting an n-D point of interest c1, from A, by a user (domain expert) or
by the algorithm (as the center of some cluster, produced by a clustering
algorithm).

Step 2 Checking for elements of other classes in a vicinity of the n-D point c1.
Step 3 Finding the largest vicinity Vkmax(c1) of c1, where only the elements of

class 1 are present. An efficient way for doing this is combining the
analytical and visual means.

Step 4 Checking if Vkmax(c1) is large enough against the size threshold T,
|Vkmax(c1)| > T. This step is to avoid the potential overfitting.
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Step 5 If |Vkmax(c1)| > T then form a sub-rule

If x 2 Vkmax c1ð Þ; then x 2 class 1: ð4:1Þ

Step 6 Expanding the vicinity Vkmax to a larger V(c1, T), with a larger threshold T:

c11 � x1j j\T & c12 � x2j j\T &. . .& c1n � xnj j\T ð4:2Þ

This vicinity is a hypercube, centered in c1, with the sides of length 2T. In
other words, an object is contained in the vicinity V(c1, T) of c1, if the
difference between each of the dimensions is less than T, for the all
coordinates of the object x.

Step 7 Exploring V(c1, T), using GLC visualizations, to find the classification
patterns in it. If the patterns are not found, for a given threshold, it is
interactively changed. If this step is ended, with patterns P1 and P2 in V(c1, T)
and V(c2, T), for classes 1 and 2, respectively, with the acceptable errors;
these P1 and P2 are recorded as rules along with the confusion matrix M,
which shows their accuracy.

Step 8 Forming the sub-rules for V(c1, T) and V(c2, T):

If x 2 V c1; Tð Þ&P1 xð Þ then x 2 class 1

If x 2 V c2; Tð Þ&P2 xð Þ then x 2 class 2

Step 9 Looping steps 1–7 for the other n-D points x, which are outside of V(c1,
T) and V(c2, T). Points x are selected by the user, or by the algorithm, as the
centers of other clusters. The scalability of this algorithm, to the large data
sets, depends on the number of V(ci, T), which needs to be explored.

4.6 Case Studies for the Expansion E1

This section illustrates the expansion E1, on several case studies. In three case
studies, only the one n-D point, from class 2, is in the given vicinity V(c1, T). In
these cases, there is a significant vicinity of point c, where classification is quite
correct, in terms of the accuracy ratio R with the rule (4.1).

Case study 4.1 This case study uses the glass identification data from the UCI
Machine Learning repository (Lichman 2013). These data include the 10-D
instances from seven classes. Figure 4.21 shows the results for E1 for these data in
CPCs, and in SPCs with the two different mutual locations of paired coordinates
denoted as SPC1 (Fig. 4.21b), and SPC2 (Fig. 4.21c). Here V(c1, T) contains only a
single blue line, from class 2. The rule (4.1) is quite accurate, on these data, because
only the one n-D point is misclassified. We denote its graph as L4, in Fig. 4.21a.
This line differs from the lines of class 1, in all three visualizations. Therefore, we
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can construct a classification sub-rule for n-D point a, which excludes it from class
1, by using a distance threshold from it,

If a 2 V c; Tð Þ& L5 � a�j j[ e L5ð Þ; then a 2 class 1;

where a* is a graph for a, and e(L4) is a distance threshold between L4 and a*.

Case study 4.2 This case study uses Blood transfusion 4-D data from UCI
Machine Learning repository (Lichman 2013). The attributes are: months since last
donation, total number of donations, total blood donated, months since first
donation, and a binary class variable (1 for donated before the given date in red, in
Fig. 4.22, and 0 for not donated, before the given date, in blue in Fig. 4.22).

Figure 4.22 illustrates the GLC-S algorithm for a given c from this dataset. It
shows these data in CPCs and PSPCs. Here V(c, T) contains only a single blue line
from class 2, denoted as L5, in Fig. 4.22a, which differs from the lines of the n-D

(a) CPCs. (b) SPCs 1.

(c) SPCs 2.

L4

Fig. 4.21 Set V(1, c1, T): objects of class 1 (green), and class 2 (blue), which are close to the
object c1 in the Shifted Paired Coordinates, the and Collocated Paired Coordinates

(a) CPC. (b) PSPC: the n-D point c as a single
2-D point (green).

L5

Fig. 4.22 Blood transfusion 4-D data, which are close to the data point c, within a given threshold
T, in CPCs and PSPCs. Points of class 1 are in red, and points of class 2 are in blue
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points of class 1, in CPC visualizations, and in PSPCs, in Fig. 4.22b. This allows us
to create the classification sub-rule:

If a 2 V c; Tð Þ& L5 � a�j j[ e L5ð Þ; then a 2 class 1;

where a* is a graph for the n-D point a, and e(L5) is a distance threshold, between
L5 and a*. Alternatively, we can ignore L5, and get a simpler, but less accurate
sub-rule: If a 2 V(ak, T), then a 2 class 1. The location of the green dot (point c), in
Fig. 4.22b, allows seeing the closest cases relative to it. For any point c, which
belongs to a specific class (e.g., class 1), it helps to assess the number of similar
points, from the opposite class, and closeness to c of the similar points, from the
opposite class. CPC and PSPC show that a blue line is similar to red lines. This
shows that accurate classification of this blue point is challenging. In this way, a
user can visually compare the red lines, which are closest to the blue line. A user
can analyze the blue line in connection with two nearest red lines and reveal other
features for classification. Interactive change of the threshold T gives a user a way
to dynamically assess: how common c is, for its own class, and for the opposite
class.

Case study 4.3 This case study uses Ecoli 7-D data of 8 classes from the UCI
Machine Learning Repository (Lichman 2013). Figure 4.23 illustrates the GLC-S
algorithm for a given c, from this dataset.

It shows these data in the CPCs and the SPCs. Here V(c, T) contains a set of lines
from class 1 (red), which is distinct from lines of class 2 (blue) in the SPCs
visualization (Fig. 4.23a). Denote the average line of the lines of class 2, as shown
in Fig. 4.23a, as L6, and construct the classification sub-rule for n-D point a,

If a 2 V c; Tð Þ& L6 � a�j j[ e L6ð Þ; then a 2 class 1;

where a* is a graph for a, and e(L6) is a distance threshold between L6 and a*.

Case study 4.4 This case study uses 7-D Seeds data of three classes from the UCI
Machine Learning Repository (Lichman 2013).

Figure 4.24 illustrates the GLC-S algorithm, for a given c, from this dataset, with
4 attributes used. It shows these data in SPCs. Here V(c, T) contains a set of lines,
from class 1 (red), and only one line from class 2 (blue). We denote this line as L7

(a)  CPC visualization. (b) SPC visualization.

L6

Fig. 4.23 Ecoli 7-D data: ecoli cytoplasm (red), and the ecoli inner membrane (blue) in CPCs and
SPCs, which are close to point c
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(see Fig. 4.24), and construct the classification sub-rule shown below that filters out
lines a* that are very close to L7,

If a 2 V c; Tð Þ& L7 � a�j j[ e L7ð Þ; then a 2 class 1;

where a* is a graph for n-D point a, and e(L7) is a distance threshold between L7
and a*. Alternatively, L7 can be ignored with a simpler, but slightly less accurate
sub-rule as follows: If a 2V(c, T), then a 2 class 1.

Case study 4.5 This case study is based on the user knowledge modeling dataset
from the UCI Machine Learning Repository (Lichman 2013). This dataset contains
the 258 5-D records of the four classes. The fifth attribute is repeated to make the
sixth attribute, because the SPC require the even number of attributes. First, the data
were split into the 172 training cases and the 86 validation cases (2/3 and 1/3). Then
the centers c1–c4 of classes on the training data are computed in two steps:
(1) computing average 6-D points e1–e4 of each class, and (2) finding centers ci as
6-D points, with the smallest Euclidian distance, to the respective ei.

Figure 4.25 shows the colored SPC graphs of these four points ci, and the
colored nodes of all the graphs, from the vicinity sets (hypercubes) V(ci, Ti). The
edges of the graphs are omitted to decrease clutter. Here T1 = 0.22, T2 = 0.25,
T3 = 0.2, and T4 = 0.15. As this figure shows, the 6-D points in each V(ci, Ti)
belong only to the training data of the respective class without any point from other
classes. In other words, the 6-D hyper-cubes defined by pairs (ci, Ti) separates these

L7

Fig. 4.24 4-D subset of seeds dataset in SPC: class 1 (red), and class 2 (blue). The green dot is c

Fig. 4.25 Phase 1: 6-D training data subset of knowledge modeling data in SPC. Centers of
classes are colored lines. Black dotted lines are discrimination lines. Dots are nodes of graphs
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training data with 100% accuracy. Moreover, this separation allows constructing the
simple and accurate discrimination functions in SPC, shown as dotted black lines in
Fig. 4.25. Figure 4.26 shows the centers c1–c4, and the black discrimination lines
from Fig. 4.25, along with all the validation 6-D points, which are located within
the hypercubes, found on the training data. These 6-D points are shown, by the
nodes of their graphs, in the respective colors of their classes. As Fig. 4.26, shows
all these points in each hypercube, belong to the respective class, without any point
from other classes. This means 100% accuracy, on the validation cases.

Each next phase repeats the same process, for unclassified data, remaining from
the previous phases. This includes computing the new centers c1–c4 and the new
vicinity hyper-cubes V(ci, Ti). Figures 4.27, 4.28 and 4.29 shows the results for the
phases 2 and 3. Table 4.1 summarizes the results numerically. All training and
validation cases are correctly classified in the phases 1-3. Three training cases and
two validation cases remain unclassified (see Fig. 4.30). Thus, the classification rule
RV: for this dataset is RV: If x 2 V1(ci, Ti) [ V2(ci, Ti) [ V2(ci, Ti) then x 2 class
i, where V1(ci, Ti), V2(ci, Ti), V2(ci, Ti) are hypercubes found in the phases 1–3.

The five remaining cases ak, k = 1:5, which are outside of these hyper-cubes, can be
classified, by memorizing them, without making the rule significantly overfitted,
because they are only 1.9% of the dataset, with a new rule Ra to augment Rv:

Fig. 4.26 Phase 1: 6-D validation data subset of knowledge modeling data in SPC. Centers of
classes (colored lines), and discrimination dotted lines are from training data. Dots are nodes of
graphs

Fig. 4.27 Phase 2: 6-D training data subset of knowledge modeling data in SPC. Centers of
classes are colored lines. Black dotted lines are discrimination lines. Dots are nodes of graphs

96 4 Adjustable GLCs for Decreasing Occlusion and Pattern …



If (x = a1 _ x = a2 _ x = a3) then x 2 class 1, else if (x = a4 _ x = a5), then
x 2 class 3.

Case study 4.6 This case study usesWisconsin Breast Cancer (WBC) dataset from
the UCI Machine Learning Repository (Lichman 2013). It contains 444 benign
cases and 239 malignant cases as full 9-D records. The 9th attribute is repeated to

Fig. 4.28 Phase 2: 6-D validation data subset of knowledge modeling data in SPC. Centers of
classes (colored lines) and discrimination dotted lines are from training data. Dots are nodes of
graphs

(a) training data. (b) validation data. 

Fig. 4.29 Phase 3: 6-D training and validation subsets of knowledge modeling data in SPC.
Centers of classes are colored lines. Black dotted lines are discrimination lines. Dots are nodes of
graphs

Table 4.1 All phases of visual classification with expanding and shrinking the user knowledge
dataset

Class
1

Class
2

Class
3

Class
4

Total Data% Accuracy
%

Total training 48 54 57 13 172 66.67 100

Total validation 15 29 31 11 86 33.33 100

Phase 1 training 12 22 16 6 56 21.71 100

Phase 1 validation 9 13 16 6 44 17.05 100

Phase 2 training 19 21 28 5 73 28.29 100

Phase 2 validation 5 11 14 3 33 12.79 100

Phase 3 training 14 11 11 2 38 14.73 100

Phase 3 validation 1 5 1 2 9 3.4 100

Remaining training data 3 0 0 0 3 1.1

Remaining validation
data

0 2 0 0 2 0.78%
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make the 10th attribute. The data were split to training and testing cases
(70%:30%). The original plotting of data in SPC is cluttered (see Fig. 4.31). The
search for rectangular rules decsribed below allowed decreasing clutter in SPC and
discovering efficient rules (see Fig. 4.32). These rules have accuracy over 90% and
cover majority of the cases of the given class. The rectangular rules include the
rules of the following structure for a 10-D point x = (x1, x2,…, xn):

If xi; xj
� � 2 R1 then x 2 class C:

If xi; xj
� � 2 R1 & xk; xmð Þ 62 R2 & xs; xtð Þ 62 R3 then x 2 class C

where R1–R3 are rectangles in projections of x in respective paired of coordinates
(Xi, Xj), (Xk, Xm) and (Xs, Xt).

(a) remaining training data. (b) remaining validation data.

Fig. 4.30 Remaining 6-D training and validation subsets of knowledge modeling data in SPC

Fig. 4.31 9-D WBC data in SPC with high level of clutter

(a) Full 10-D SPC visualization without frequency 
of cases visualized.

(b) Zoomed center of the pattern with frequency 
of cases visualized.

Fig. 4.32 Subset of WBC data with dominant red class cases found by a rectangular rule
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4.7 Discussion

Parallel Coordinates are used, for over 25 years, and many applications had shown
their benefits. However, there are plenty of observations in the literature which help
to specify the better areas of the application of, and the improvement for the PCs.
GLCs are a new technique, which is going through the same process. There are
datasets, where the different GLCs reveal the patterns better, by changing the
directions and mutual location, as this chapter shows in multiple cases. Also there
are other datasets, where PCs reveal the patterns better than some other GLCs.
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Chapter 5
GLC Case Studies

A pretty experiment is in itself often more valuable than
twenty formulae extracted from our minds.
No amount of experimentation can ever prove me right;
a single experiment can prove me wrong.

Albert Einstein

This chapter provides several successful case studies on the use of GLC for
knowledge discovery and supervised learning mostly from the data from the
University of California Irvine Machine Learning repository (Lichman 2013). The
real world tasks include Health monitoring, Iris data classification, Challenger
disaster and others. These cases studies involve several GLC methods, two-layer
visual representation, and comparison with alternative methods such as Parallel
Coordinates, RadVis, and Support Vector Machine.

5.1 Case Study 1: Glass Processing with CPC, APC
and SPC

This case study uses 9-D glass processing data from UCI Machine Learning
Repository (Lichman 2013).

Figures 5.1, 5.2 and 5.3 show two classes of these data (floated processed and
non-floated processed) in Collocated, Anchored, and Shifted Paired Coordinates.
The Anchored Paired Coordinates (Fig. 5.2) allowed isolating these classes better
than two other methods. Such differences show the importance of having multiple
lossless n-D visualizations to be able to discover a better one for the given data.

While the visual patterns P1 and P2 of classes 1 and 2 are distinct in Fig. 5.2 a
simple mathematical and natural language descriptions of them are not obvious.
Discovering these patterns P1 and P2 analytically requires the mathematical description
of the class of the patterns {Pi} where a learning algorithm can search for them. Visual
representation allows easing or even avoiding this difficult formalization process by
direct classification of the new objects in the visual representation.

© Springer International Publishing AG 2018
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The use of the natural language to communicate patterns P1 and P2 to other
experts is also problematic. We do not have ready expressions for them. The
description like “elongated almost horizontal pattern” for the red pattern is quite
uncertain, fuzzy. It does not tell how much elongated, how close to the horizontal
line and how it is related to the blue pattern. For the more complex blue pattern,
even such uncertain description is difficult to form. Thus, the use of pictures, like
shown in Fig. 5.2, is a better way to communicate these patterns to experts. It is

Fig. 5.1 Two classes in Collocated Paired Coordinates

Fig. 5.2 Two classes in Anchored Paired Coordinates (best result)
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consistent with the Asian proverb: “Better to see something once than to hear about
it a thousand times.”

5.2 Case Study 2: Simulated Data with PC and CPC

This study uses simulated dataset A that is designed as described below. Figure 5.5
shows advantages of visualization of these data in CPC relative to visualization of
these data in Parallel Coordinates shown in Fig. 5.4. CPC shows structure of 23-D
data simpler than the Parallel Coordinates.

The method for generation of lines is as follows. First an n-D point a is gen-
erated with a single random number a, a = (a, a,…, a) for each of 23 dimensions.
Then for generation of all other data points ak we add a random shift s and a small
amount of random noise e to each dimension:

aki ¼ aþ sþRANDðÞ�5� 2:5:

This experiment was conducted for n = 23. Parallel coordinates indicated linear
correlation, as all lines were roughly horizontal (see Fig. 5.4).

CPC show those PC lines as small “knots” located on a straight diagonal line in
Fig. 5.5. It resembles a common correlation plot for 2-D data, which makes it a
quite familiar and intuitive metaphor. With less resolution those blobs are visible as
single points strengthening this analogy.

Next, these blobs occupy much less space than PC lines. Thus, it is scalable to a
larger number of n-D points while PC representation will completely cover PC area
where the visual pattern of correlated lines will disappear.

Fig. 5.3 Two classes in Shifted Paired Coordinates
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Fig. 5.4 23-D dataset A in Parallel Coordinates

Fig. 5.5 23-D dataset A = {a} in CPC
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5.3 Case Study 3: World Hunger Data

Figure 5.6 provides an example of visual representation in Collocated Paired
Coordinates of World Hunger data from the International Food Policy Institute
(Global Hunger index 2012). For comparison, Fig. 5.7 shows the same data visu-
alized as traditional time series.

Note that this representation is the same as Parallel Coordinates for such time
series. The International Food Policy Institute classifies the hunger, between 10 and
20% as serious and less than 10% as low or moderate. The Global Hunger Index
(GHI) for each country measures as,

GHI = UNN + UW5 + MR5ð Þ/3,

where UNN is the proportion of the population that is Undernourished (in %), UW5
is the prevalence of Underweight in children under age of five (in %), and MR5 is
the Mortality rate of Children under age five (in %).

This institute considers GHI between 30 and 40% as extremely alarming, and
between 20 and 30% as alarming.

CPC representation in Fig. 5.6 complements Tableau visualizations available at
the website of this Institute by showing integrated picture in its dynamics for
countries with the hunger problem for four time intervals 1990–92; 1995–1997,
2000–2002; 2006–2008.
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Fig. 5.6 4-D data: representation of prevalence of undernourished in the population (%) in
Collocate Paired Coordinates
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Figure 5.7 shows these data as the traditional time series. We denote these four
time intervals as t1, t2, t3, and t4. Each arrow in Fig. 5.6 represents GHI at time t1–t4
for each country, where the arrow start in the pairs (GHI(t1), GHI(t2)), and the arrow
end is (GHI(t3), GHI(t4)).

Figures 5.6 and 5.7 show that the traditional time series and Parallel Coordinates
require 4 points and 3 lines for each 4-D vector. In contrast, the CPC required only
one line (arrow). In Fig. 5.6, these lines do not overlap and have no any occlusion
in contrast with the traditional time series in Fig. 5.7. The arrows that go up (e.g.,
Benin, Botswana) indicate hunger growth and the arrows that go down (e.g.,
Angola, Bangladesh) in Fig. 5.6 indicate hunger decline from the first pair of years
(1990–92; 1995–1997) to the second pair of years (2000–2002; 2006–2008),
respectively. Note that Angola consistently improves the situation year after year. It
is visible in the traditional time series and in CPC.

In CPC, it is expressed differently from the former—by the fact that Angola’s
arrow is located below the diagonal. In contrast, the arrow for Bangladesh crosses
the diagonal which indicates that the hunger situation was worsened from 1990–92
to 1995–1997, but improved from 1995–1997 to 2000–2002 and 2006–2008.
Thus CPC provides a new metaphor and a user needs to learn it to use CPC more
efficiently as it is common with any new visual representation.

Several features of CPC metaphor are quite intuitive without special learning.
For instance, the arrows at the top in Fig. 5.6 indicate countries with highest level
of hunger (above extremely alarming) and arrow at the bottom indicates the
countries with the low or moderate level of hunger. A user can project a respective
arrow point to the axis of the year of interest to get an estimate of the hunger index
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Fig. 5.7 4-D data: representation of prevalence of undernourished in the population (%) in
traditional time series (equivalent to Parallel Coordinates for time series)
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for the country interest. As we see, for two countries, GHI is way above 40%
(extreme alarming level).

Up or down directions of arrow are also self-explanatory for hunger grows or
decline, respectively. Next arrows of similar directions and that are close to each
other indicate countries with similar hunger situations.

Figure 5.8a shows Angola in n-Gon (triangular) coordinates that constitute three
GHI components (UNN, UW5, MR5) shown within max values of each of them.
Figure 5.8b shows the same Angola in n-Gon (triangular) coordinates with filled
area.

5.4 Case Study 4: Challenger USA Space Shuttle Disaster
with PC and CPC

Challenger USA Space Shuttle O-Ring Dataset on Challenger disaster from the UCI
Machine Learning Repository (Draper 1993, 1995; Lichman 2013). The Challenger
O-rings data include parameters such as (1) temporal order of flight, (2) number of
O-rings at risk on a given flight, (3) number of O-rings experiencing thermal
distress, (5) launch temperature (degrees F), and (5) leak-check pressure (psi).

These data have been normalized to be in the [0,1] interval before visualizing
them. We considered two different normalizations of the number of O-rings at risk.
This number is 6 in all flights. It is mapped to 0 in the first visualization and to 1 in
the second visualization.

The used data (Draper 1993) differ from data analyzed in Tufte and Robins (1997,
p. 44). The data used by Tufte and Robins include three erosion incidents at temper-
ature 53F, which makes the link between low temperature and large incidents much
more transparent. Draper’s data are more difficult for revealing this pattern. Figures 5.9
and 5.10 show a visualization of Draper’s data in traditional plots. Figures 5.11 and
5.12 present the same data in CPC requiring a single line per record with low overlap
and without occlusion issues in contrast with the traditional plots.

Figures 5.11 and 5.12 show three distinct flights #2, #14, and #2 with orienta-
tions that differ from other flights. These flights had the maximum value of O-rings
at risk. Thus, CPC visually show a distinct pattern in flights that has a meaningful
interpretation. The well-known case is #14, which is the lowest temperature (53F)
from the previous 23 Space Shuttle launches. It stands out in the Collocated Paired
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(a) (b)Fig. 5.8 a Angola in n-Gon
(triangular) coordinates and
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Coordinates. In the test at high leak-check pressure (200 psi) it had 2 O-rings that
experienced a thermal distress. The case #2 also experienced thermal distress for
one O-ring at much higher temperature of 70 F and lower leak-check pressure (50
psi). This is even more outstanding from others with the vector directed down. The
case #14 is directed horizontally. All other cases excluding case #21 are directed
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Fig. 5.9 Challenger USA Space Shuttle normalized and mapped O-Ring dataset in a traditional
line chart. X coordinate is a temporal order of flights. Each line represents an attribute

Fig. 5.10 Challenger USA Space Shuttle normalized O-Ring dataset in Parallel Coordinates.
Each line represents a flight
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up. The case #21 stands out because it had O-rings that experienced a thermal
distress at high leak-check pressure (200 psi) and high temperature (75F).

5.5 Case Study 5: Visual n-D Feature Extraction
from Blood Transfusion Data with PSPC

While we have situations, where the visualization in General Line Coordinates
systems allow separate classes directly in one step, in some other situations more
stages are needed. Figure 5.13 shows 748 cases of 4-D data points of two classes
from the Blood Transfusion Service Center data (Lichman 2013) visualized in
Parametrized SPC (PSPC) with the 4-D anchor point in the average point of the red
class. Each 4-D point is represented losslessly as an arrow. In this PSPC space two
classes and their convex hulls heavily overlap.
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Fig. 5.11 Challenger USA
Space Shuttle normalized
O-Ring dataset in the
Collocated Paired
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are mapped to 0. Flight
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While this PSPC representation does not separate classes, it gives multiple visual
insights for extraction features that can be more discriminative for these classes. An
observer can discover the differences in orientation and length of some arrows of
two classes. For instance, west and southwest orientation is common for a large
number of red arrows in the bottom that are often shorter than blue arrows with the
same direction. The length of the majority of the red arrows is also smaller than the
length of the blue arrows with a few exclusions on the top. Therefore, the next step
is extracting two new features from PSPC: orientation, y1, and length, y2. The
formulas for these new features are given below in terms of two variables,

v1 ¼ x3 þ a1 � a3ð Þ � x1;v2 ¼ x4 þ a2 � a4ð Þ � x2;

where x1, x2, x3 and x4 are values of coordinates of a given arrow x in Fig. 5.13, and
(a1, a2, a3, a4) are coordinates of the 4-D anchor point A which is the average point
of the red class.

In these terms, new features y1 and y2 are defined as follows:

y1 : if v2 � then y1 ¼ arccos v1=v3ð Þ else y1 ¼ 2p� y1

y2 : y2 ¼ v21 þ v22
� �1=2

:

Fig. 5.13 Original 4-D data of two classes in PSPC system
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Then both y1 and y2 are normalized to [0,1] interval for the visualization. The
result is shown in Fig. 5.14 as a standard scatter plot of these two attributes. It
shows that the majority of the blue cases are in the middle and the upper section of
this middle part contains mostly the blue cases. The most overlapping area is the
section of the lower section of the middle part. This informal visual exploration
gives an insight on the area, where the next stage of feature extraction must be
concentrated. This is the area with most of the overlap in Fig. 5.14. The cases from
that area can be visualized in the original PSPC system to attempt to extract
additional features that can separate blue and read cases in this smaller dataset.

What are the chances to extract features y1 and y2 pure analytically using ana-
lytical machine learning techniques without any visual insight? From our viewpoint
it is not realistic. It would require: (1) to identify a class of functions {f} that will
include both functions y1 and y2 without knowing that these functions can be
potentially useful, (2) to develop a formal criterion K that will evaluate all functions
from {f} to be a good feature, (3) to use significant computing resources to run K on
{f}. To ensue (1) we would need to make the class of functions {f} very large if not
infinite. This makes (2) and especially (3) extremely unrealistic. This example
illustrates the general advantages of visualization approach that in large part sub-
stitutes cognition for perception (Munzner 2014).

5.6 Case Study 6: Health Monitoring with PC and CPC

Figure 5.15 illustrates the opportunities of using Parametrized Shifted Paired
Coordinates for health monitoring of an individual in comparison with Parallel
Coordinates. In this example four health characteristics are monitored: systolic
blood pressure, x1; diastolic blood pressure, x2; pulse, x3; and total cholesterol, x4.

Fig. 5.14 Two classes in features y1 and y2 extracted using visual insight
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At the initial moment the individual health status is presented by four values of
these characteristics (100, 150, 95, 250). A desired health status for these charac-
teristics is identified as (70, 120, 60, 190). The goal is to monitor the progress the
individual is making toward this goal with a complex of medical treatments, diet,
exercises, and so on.

In Fig. 5.15a in PSPC the goal is presented as a single preattentive point that is
simple metaphor to learn because targets quite often are represented as points. This
single point is a result of the PSPC design. In contrast, the Parallel Coordinates
show the goal as a zig-zag line with 4 points that is not preattentive. Next the
current status in Fig. 5.15a for PSPC consists just of a single line (arrow). In
Parallel Coordinates it is again a zig-zag line with three segments. PSPC uses a
standard Cartesian representation for pairs (X1, X2) and (X3, X4) that is familiar to
everybody with high school background. In contrast, the Parallel Coordinates need
to be learned.

The only novelty that a user needs to learn in Fig. 5.15a is a shift of coordinates
(X3, X4) relative to (X1, X2). The coordinates are labeled, thus, it is quite intuitive,
and dotted lines help to trace values in (X3, X4) coordinates that interactive software
can provide if needed.

Figure 5.15a exploits the PSPC property that n-D points with values of coor-
dinates that are similar to the values of coordinates of the anchor n-D point are
visualized as smaller graphs (see mathematical statements in Chap. 3 and Figs. 5.18

(a) PSPC: The green dot is the desired goal state, the 
red arrow is the initial state, the orange arrow is the 
health state at the next monitoring time, and the 
light green arrow is the current health state of the 

person.

(b) the same data as in (a) Par-
allel Coordinates.
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Fig. 5.15 4-D Health monitoring visualization in PSPC a and Parallel Coordinates b with
parameters: systolic blood pressure, diastolic blood pressure, pulse, and total cholesterol at four
time moments
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(a) Extended convex hulls of two classes in 4-
D. The blue convex hull represnts class 1 and 

red convex hull represents class 2.

(b) Class unique areas: blue area for class 1 
and yellow area for class 2.
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Fig. 5.16 Convex hulls for Iris data

(a) Collocated Paired Coordinates (b) Anchored Paired Coordinates.

(c) Shifted Paired Coordinates (d) Parallel Coordinates

Fig. 5.17 Iris data. Red is Iris-setosa class
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and 5.19 below as other examples). In 4-D case it means smaller arrow as
Fig. 5.15a shows. This is also a quite intuitive metaphor that cases that are closer to
the goal are more similar to the goal in its visual representations.

Next, Fig. 5.15 uses color to indicate the progress in reaching the goal. The
initial health status is shown as a red arrow. Then the arrows that are closer to the
goal are shown in yellow and light green with the goal shown as a dark green dot.
A few informal experiments that we conducted with participants had shown that
people very quickly grasp how to use PSPC for such health monitoring. Studies that
are more formal will be conducted later.

While this example used 4 health indicators it can be expanded to incorporate
more such indicators. For instance, adding two more health indicators will just add
another pair of shifted Cartesian Coordinates. The goal still will be a single dark
green 2-D dot with each graph that represents the status at time t consisting of two
connected arrows. These graphs became smaller when they approach the goal point.
We will illustrate this situation in some cases studies below.

5.7 Case Study 7: Iris Data Classification in Two-Layer
Visual Representation

Below we present a visual process to construct the Machine Learning classification
model using GLCs with Iris data from the UCI Machine Leaning repository
(Lichman 2013) that are commonly used to demonstrate new Machine Learning
methods. These data represent three classes of Iris. Each record is described by four
attributes: SL: sepal length, SW: sepal width, PL: petal length, and PW: petal width.

Fig. 5.18 Iris data in
Parametrized Shifted Paired
Coordinates—PSPC anchored
in class 1. The class 1 convex
hull is in green
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5.7.1 Extended Convex Hulls for Iris Data in CPC

In this section, we explore whether we can separate classes visually by comparing
hyper-rectangles built around each class. We form a 4-D hyper-box
(hyper-rectangle) with the center at average points of the respective class. Each
4-D hyper-box is fully described by its 16 corners. To ensure that each hyper-box
includes all points of the respective class the corners are defined as 4-D points by all
16 combinations of min and max values of 4 coordinates (PW, PL, SW, SL) of all
points from the respective class. We will call these hyper-boxes extended convex
hulls for the classes because the actual convex hulls of these classes are contained in
them.

Figure 5.16a shows extended convex hulls of the first two classes of Iris data in
Collocated Paired Coordinates. These 2-D convex hulls overlap as Fig. 5.16a
shows. However, it does not imply that 4-D data are also overlap. It is similar to the
case of usual projections: overlap of projection to any coordinate does not imply the
overlap of n-D data. There is also an important difference between CPC and usual
projections.

In general, a single 2-D projection of n-D point does not allow restoring this n-D
point, but CPC allow this, because each n-D point is encoded as a graph in 2-D with
n/2 edges not as a single 2-D point. Below we explain the way to discover that
classes do not overlap in 4-D.

Consider the black horizontal line in Fig. 5.16a. At first glance it cannot dis-
criminate classes with 100% accuracy due to overlap. This could be the case if 2-D
graphs of some 4-D points are fully located in the overlap area. Otherwise classes
can be fully discriminated by the black horizontal line in the example.

Fig. 5.19 Change number.
Iris data in Parametrized
Shifted Paired Coordinates
(PSPC) anchored in class 2
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If there are graphs from two classes that are partially or fully in the overlap area,
then we search visually for subareas {E1i,} and {E2i} in CPC coordinates, where
only nodes of graphs of one class present and nodes of graphs of another class are
absent, respectively.

A simple version of this situation is when there is an area Em where nodes {Qi1,
Qi2,…, Qik} of all training data of only one class Cm are present. For this situation
the discrimination rule R has a simple form for n-D point x = {x1, x2,…, xn}:

R : If Qi1 xð Þ;Qi2 xð Þ; . . .;Qik xð Þf g�Em then x 2 Cm:

This is the case in the example for the data from Fig. 5.16, see the blue area (E1)
and light orange area (E2) in Fig. 5.16b. The first nodes of all 4-D points of class 1
are in the blue rectangle and the first nodes of all 4-D points of class 2 are in the
light orange rectangle.

5.7.2 First Layer Representation

Below we explore the separation of Iris class 1 from classes 2 and 3 in Parallel.
Collocated Paired, Anchored Paired, and Shifted Paired Coordinates defined in
Chap. 2. Figure 5.17 shows the results of the comparison of PC, CPC, APC, and
SPC for these data that contain 150 4-D iris records.

In contrast with the Parallel Coordinates (Fig. 5.17d), in new Collocated Paired
visualizations (Fig. 5.17a, b, c) class 1 (red) and classes 2 and 3 (white) almost do
not overlap. The Iris-setosa class (class 1) is clearly separated from the other two
classes in these new visualizations. In CPC, classes slightly overlap and in SPCs,
they touch each other, but do not overlap. Here in APC and SPC, the anchor and
shifts are fixed and selected in advance without using this dataset to assign them.
Later we will show parametrized SPC visualization with shifts adjusted for the
given Iris data.

Note that CPC, APC, and SPC paired visualizations need only one 2-D segment
to represent a 4-D data record. In contrast, the Parallel Coordinates require three
segments per 4-D record. The larger number of segments leads to more overlaps
among the lines in Parallel Coordinates.

Figure 5.18 shows the results of representation of Iris classes 1 and 2 in PSPC
with the anchor point as the middle point of cases of class 1 and Fig. 5.19 shows the
same two classes with the anchor point as the middle point of cases of class 2.

The middle 4-D point is computed as (min(xi) + max(xi))/2 for each attribute in
the respective class. In both pictures, classes 1 and 2 are clearly visually separated
while the separation is better in (b). The blue lines in both figures are separation
lines discovered visually. Those lines can be formalized for analytical linear dis-
crimination of these classes.

In Figs. 5.18 and 5.19 Iris class 1 is shown in red and Iris class 2 is shown in
yellow. Figures 5.18 and 5.19 also show a convex hull (in green) for Iris class 1. In
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addition to the black lines, a user can easily construct other discrimination lines
visually at the different levels of generalization, i.e., how far from the given points
each class is extended. These extensions can be non-convex hulls, then
convex-hulls, extended convex hulls, and straight (linear) discrimination lines
shown in Figs. 5.18 and 5.19. Comparison of classes in Figs. 5.18 and 5.19 show
that the class that is used as a source of the anchor point in PSPC is visually
represented as a smaller and more compact blob. It is in full accordance with PSPC
concept and methodology. In Fig. 5.18 it is a small red blob and in Fig. 5.19 it is a
small yellow blob. The anchor point A is represented as a single 2-D point and 4-D
points that are close to it are represented as small graphs around it.

Next, we show separation of classes 2 and 3. Figure 5.20 shows graphs of the
n-D points of classes 2 and 3 in PSPC with the anchor point as the average point of
class 2. The graphs of n-D points of class 2 are in yellow. In Fig. 5.20 the graphs of
class 3 that are fully within the convex hull of class 2 are in orange. At first glance,
here classes 2 and 3 heavily overlap. In fact, this is not the case.

Most of the end points (x3, x4) of the arrows that represent 4-D points of class 3
are on the right of one red line and above another red line in Fig. 5.20. Respectively
there is a simple rule that separates class 2 from class 3 based on these two red lines
in the coordinates (X3, X4). The first line is a vertical line x3 = e, where e is some
constant extracted from the Fig. 5.20. The second line has an equation d3x3 +
d2x4 + d12 = 0, where coefficients also extractable from Fig. 5.20. Thus, this rule is
as follows for a 4-d x point:

If x3 [ eð Þ or d3x3 þ d2x4 þ d12 [ 0ð Þ then x belongs to class 3 ð5:1Þ

An alternative and more conservative (less generalized) way to separate the
cases of class 3 that are only partially within the convex hull of class 2 is building a
rule that directly uses the convex hulls:

Fig. 5.20 Graphs of n-D points of classes 2 and 3 in PSPC. Graphs of 4-D points of class 2 are
dark blue, of class 3 are light blue, and graphs of class 3 that are fully within the convex hull of
class 2 are orange
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if x1; x2ð Þ 62 H1 & x1; x2ð Þ 62 H2 then x is in class 3; else x is in class 2 ð5:2Þ

Here (x1, x2) is a part of the 4-D point x = (x1, x2, x3, x4), H1 and H2 are convex
hulls of classes 1 and 2, respectively, i.e., if pair (x1, x2) of coordinates of the 4-D
point x is not in the convex hulls of classes 1 and 2 then x is in the class 3. The
accuracy of both rules for classes 2 and 3 is the same (50 + 45)/(50 + 50) = 0.95
with 50 cases in class 2 and 50 cases in class 3, due to the fact that 5 cases of class 3
are fully within the convex hull of class 2 (see orange cases in Fig. 5.20).

5.7.3 Second Layer Representation for Classes 2 and 3

The next step is an attempt to improve this accuracy by using the second layer of
visual discovery by:

• Extracting visually the features from graphs of class 2 and from misclassified
graphs of class 3 in Fig. 5.20 that can potentially discriminate these cases, and
then

• Discovering new classification rules visually based on those new secondary
features.

While below we demonstrate this approach for Iris data the concept of the
two-layer representation is a part of a general concept of multilayer visual knowl-
edge discovery. When classes are not fully separated in the visualization in original
features, this first layer visualization serves as a source of information for extracting
features of the second layer to be used to fully separate classes. Similarly, the
features of the second layer serve as a source for the third layer and so on if needed.

The visual analysis of Fig. 5.20 shows that orange arrows are closer to the
anchor point a (in the middle of the dark blue arrows) than other arrows from class
3. This leads to the extraction of the distance between x and a and the distance
between the ends of x and the anchor point a in coordinates (X1, X2). Another
subtle feature is associated with the length of orange lines relative to arrows of class
2. Several of them are longer than arrows of class 2. This leads to extracting lengths
of arrows. To simplify computations we computed horizontal and vertical projec-
tions of length of arrow. The results of this visual feature extraction written for 4-D
point x and the 4-D anchor point a = (a1, a2, a3, a4) are:

y2 = ((x3 − a3)
2 + (x4 − a4)

2)1/2—the distance between points x and a.
y1 = ((x1 − a1)

2 + (x2 − a2)
2)1/2—the distance between the ends of x and the

anchor point a;
y3 = x1 − x3—horizontal coordinate difference;
y4 = x2 − x4—vertical coordinate difference.

Figure 5.21 shows the results of the representation of 50 cases of class 2 and 5
misclassified cases of class 3 in y1, y2, y3, y4 coordinates in PSPC, with the anchor
in the average case of class 2 in y1, y2, y3, y4 coordinates.
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Figure 5.21 allows visual finding two areas A and B where only points of class 3
are present. This leads to a rule:

If y3; y4ð Þ 2 Aor y1; y2ð Þ 2 B then class 3 ð5:3Þ

It classifies all 5 cases of class 3 correctly with total 100% accuracy. Instead of
(y3, y4) 2 A we can use in (5.3) another more general and robust condition

y3; y4ð Þ 62 H2 & y 62 H1;

where H1, H2 are the convex hulls of classes 1 and 2. The next robust, but less accurate
rule for Fig. 5.21, is rule (5.4) with 3 cases of class 3 in area B misclassified based on
the black line L that separates area A from the green convex hull of class 2,

If L y3; y4ð Þ[ 0 then class 2 else class 3 ð5:4Þ

5.7.4 Comparison with Parallel Coordinates,
Radvis and SVM

Figures 5.22, 5.23 and 5.24 show all three Iris classes in Parallel Coordinates
(Dzemyda et al. 2012; Gristein et al. 2002) and Radvis (Rubio-Sánchez 2015). Both

B

A

Fig. 5.21 Second layer visual representation: dark blue—50 cases of class 2, orange and light
blue—5 cases of class 3 in y1, y2, y3, y4 coordinates in PSPC

5.7 Case Study 7: Iris Data Classification in Two-Layer Visual Representation 119



clearly show the abilities to separate only class 1 from classes 2 and 3, but do not
separate well the classes 2 and 3. Also, note that while Figs. 5.22 and 5.23 show the
same data the same visualization method—Parallel Coordinates, the classification
pattern is visible better in Fig. 5.23 due to showing original (not normalized) data.

Fig. 5.22 Iris data in Parallel Coordinates representation (Dzemyda et al. 2012)

Fig. 5.23 Iris flowers in parallel coordinates (Grinstein et al. 2002)
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Table 5.1 shows results of SVM algorithm on the same Iris data (Kaur 2016;
Mafrur 2015). In both SVM models from (Kaur 2016) the total number of errors is
5, which are in classes 2 and 3.

This is exactly the same number of errors that we obtained in Fig. 5.20 before
the second layer of visual discovery. Results from (Mafrur 2015) with 4 errors are
slightly better than our result and from (Kaur 2016), but it uses 59 support vectors
(over 1/3 of all cases) that may indicate overfitting. For class 2 it has 23 support
vectors. Our solution uses only 9 4-D border points of the convex hull. Our
alternative solution with two 2-D linear discrimination lines in Fig. 5.20 only needs
6 scalar coefficients with very similar accuracy as in (Mafrur 2015).

Note that while our second layer brings 100% accuracy it may be overfitting for
the area B in Fig. 5.21 that is responsible for eliminating three errors. In contrast, a
linear discrimination line (a black line in Fig. 5.21) that needs just three scalar
coefficients can generalize the area A. The accuracy of this solution is 98% (147/
150). The advantage of visual analysis is that a user can see areas A and B and
judge how artificial and complex they are to decide which one to ignore to avoid
overfitting.

Fig. 5.24 Iris data in RadVis
representation
(Rubio-Sanchez et al. 2016)

Table 5.1 SVM confusion matrixes for Iris data

Radial kernel (Mafrur 2015) Radial kernel (Kaur 2016) Polynomial kernel (Kaur
2016)

Real
class

Predicted class Real
class

Predicted class Real
class

Predicted class

1 2 3 1 2 3 1 2 3

1 50 0 0 1 50 0 0 1 50 0 0

2 0 48 2 2 0 47 3 2 0 46 4

3 0 2 48 3 0 2 48 3 0 1 49
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While this analysis does not involve cross-validation for testing models, the presented
GLC visualizations are informative to the possible success or failure of cross-validation.
It is visible in Figs. 5.20 and 5.21 that the common leave-one-out cross-validation will
not significantly change the accuracy produced by the GLC methods.

Next, SVM will classify every 4-D point as belonging to one of three classes
being trained on them, while Figs. 5.20, 5.21 and 5.22 show significant areas
without any 4-D point from the given 150 4-D points.

Therefore, the refusal to classify 4-D points in such areas can be justified. In this case,
the points outside of the convex hulls in Figs. 5.20 and 5.21 will not be classified to
these 3 classes. When new genetically modified Iris will be introduced, the 4-D points in
these areas can get their classification, but to another class, not to one of these 3 classes.

5.8 Case Study 8: Iris Data with PWC

This section demonstrates the use of Paired Crown Coordinates defined in Sect. 2.2.6
in Chap. 2. In this section, the PWC step that orders odd coordinates is omitted. It
allows visualizing multiple n-D points with different orders in a single plot. This case
study also uses 4-D Iris dataset from UCI Machine Learning repository (Lichman
2013). It includes 150 4-D records of three classes with 50 records per class. PWC are
lossless which means that using it we are preserving and showing every part of Iris data
without skipping anything.

The first phase includes the selection of a shape of the closed figure (“crown”).
In this study, the crown is a circle with radius r. The normalized values of odd
coordinates X1 and X3 of each 4-D point x = (x1, x2, x3, x4) are plotted on the
perimeter of the circle. The formulas for mapping xi with odd i, (i = 1, 3) of 4-D
point x to the 2-D location (p1, p2) on the circle are:

pi1 ¼ c1 þ r � cos a xið Þð Þ
pi2 ¼ c2 þ r � sin a xið Þð Þ

where (c1, c2) is the center of the circle, r is the radius of the circle, and a(xi) is the
angle. The angle a(xi) is proportional to the distance Di = ||xi − xmin| on the circle
from xmin to xi relative to the total distance

D ¼ xmax � xminj jj j þ dg

where dg is a gap between location of xmax and xmin on the circle.
Similarly, the formulas for mapping xi with even i, (i = 2, 4) of 4-D point x to

the 2-D location (q1, q2) are:

qi1 ¼ c1 þ rþ xið Þ � cos a xið Þð Þ
qi2 ¼ c2 þ rþ xið Þ � sin a xið Þð Þ:
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Thus, two 2-D points Q1 = (q11, q12) and Q2 = (q21, q22) for pairs (x1, x2) and
(x3, x4) from each 4-D point x are generated.

The final phase is connecting point Q1 to point Q2 by the directed edge (arrow).
The Iris dataset with three classes were passed through all phases of the PWC
process. Figures 5.25, 5.26 and 5.27 show these classes separately in PWC. Each
4-D point is visualized in PWC as a single dotted pink edge between yellow nodes
Q1 and Q2.

The projections of Q1 and Q2 to the circle are blue dots on the circle. The difference
in graphs of three classes can be easily determined in these figures. First, the distances
from the crown (circle) to graphs in all of three classes are different. Class 1 practically
has no distance from the circle in this figure, class 2 has some distance, and class 3 has
comparatively larger distance. This difference allow immediately construct a classifi-
cation rule R1 to separate class 1 from classes 2 and 3:

R1 : If Q1 andQ2 are in the circle with radius rþ e then Q1;Q2ð Þ belongs to class 1;

where e is some positive constant that can be derived from Figs. 5.25, 5.26 and
5.27. Next, in all three classes, Q2 is closer to the circle than Q1 with edged go
down towards the circle with some subtle differences in angles for different classes.
Such properties also potentially can be used for designing another classification
rule.

Also for the comparison, plots with pairs of classes were generated. Figure 5.28
shows the comparison plot of classes 2 and 3. As we have seen from individual
plots, classes 2 and 3 differ more from class 1 than from each other. Figure 5.28
shows classes 2 and 3 together with coloring class 2 in blue and class 3 in yellow.

Fig. 5.25 Class 1 of Iris
dataset in PWC
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At the first glance, we do not have a visible pattern that separates classes 2 and 3
in Fig. 5.28. However, adding another circle (black circle in Fig. 5.29) the pattern
became visible better.

Fig. 5.26 Class 2 of Iris
dataset in PWC

Fig. 5.27 Class 3 of Iris
dataset in PWC
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The data points inside the black circle that we denote as B show some unique
properties. Most of those data points are blue, i.e., belong to class 2. This allows
designing a classification rule R2,

R2 : If Q1;Q2ð Þ is in circle B and Q1;Q2ð Þ does not belong to class 1 then
Q1;Q2ð Þ belongs to class 2:
Figure 5.30 shows a comparison plot of classes 1 and 2, and Fig. 5.31 shows a

comparison plot of classes 1 and 3 with another black circle E that discriminates
class 1 from classes 2 and 3.

These plots are showing a clear distinction between classes where data points
lying inside or outside the circle belongs to class 1 and data points lying outside the
circle belongs to classes 2 and 3. Thus, we can specify rule R1 by setting a radius
using Figs. 5.30 and 5.31.

An alternative PWC visualization of the same data with an ellipse as a crown is
presented in Fig. 5.32. It shows the same result regarding accuracy of classification
of the dataset. Data points that lie inside the black ellipse belong to class 1 and those
lie outside the ellipse belong to classes 2 or 3.

The motivations for using an elliptic shape instead of a circle could be (1) giving
more space for graphs in the area where graphs are densely located, (2) giving more
space for areas where more important data are located data, or (3) shrinking space in
areas with less number of graphs or less important data. It can be done expanding or
shrinking the circle to the ellipse in respective directions. In essence, it works as
local zooming similar to fish eye zooming.

Fig. 5.28 4-D points of Iris
class 2 (blue) and class 3
(yellow)
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Fig. 5.29 4-D points of Iris
class 2 (blue) and class 3
(yellow) with discrimination
circle (thin black)

Fig. 5.30 4-D points of class
1 (magenta) and class 2
(yellow)
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5.9 Case Study 9: Car Evaluation Data with PWC

This case study used 6-D Car evaluation data from UCI Machine Leaning
repository (Lichman 2013) with four classes. Figures 5.33 shows 6-D points each
class individually. Car evaluation data have six dimensions, which leads in PWC to
three 2-D points for each 6-D point and two arrows connecting three points on a
2-D plane in its visualization.

Figure 5.33 allows one to see some patterns with respect to arrows direction. All
arrows are coming towards the circle for third data point and all the arrows are
going away from the circle for second data point, which shows that first and third
data points lie close to the circle whereas second data points lie away from circle.
The same “triangular” pattern is present in all four classes of data.

Features that are more interesting are revealed in this dataset if we plot each node
of the graphs in different color (see Fig. 5.34). In the class 2 (see Fig. 5.34b), all the
starting nodes that are shown in red are making a circle and all the nodes that are
shown in blue come under that circle.

Therefore, based on this observation, rule R3 was generated to be tested for each
x = (x1, x2, x3, x4, x5, x6)

R3 : If x2 [ x6 then x belongs to Class 2:

Similarly, by looking into data visualization of classes 1 and 3 rule R4 was
generated to be tested:

Fig. 5.31 Iris 4-D points of
class 1 (magenta) and class 3
(green)
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R4 : If x6 � x2 AND x6\x4 then x belongs to Class 1ORClass 3:

By looking into class 4 another distinct rule R5 was generated by considering the
difference D between positions of x2 and x6 in visualization (Dx2x6), which is the
same constant C for all nodes of class 4:

R5 : If x6 � x2 AND x6\ x4 ANDDx2x6 ¼ C then x belongs to Class 4:

By the design of this visualization the difference Dx2x6 is equal to x6 and the rule
is simplified:

R5 : If x6 � x2 AND x6\x4 AND x6 ¼ C then x belongs to Class 4:

(a) Iris classes 1 and 2. (b) Iris classes 1 and 3.

Fig. 5.32 Iris data in PWC with elliptic crown
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Here x6 is one of two values (x5, x6) mapped to the third node (blue in Fig. 5.34),
x4 is one of two values (x3, x4) mapped to the second node (green in Fig. 5.34), and
x2 is one of two values (x1, x2) mapped to the first node (red in Figs. 5.34),

The combination of rules R4 and R5 allows deriving the rule for class 1:

R6 : If R4 xð Þ and not R5 xð Þ then x belongs to class 1;

i.e., if rule R4 is true for x, but rule R5 is false for x than x is in class 1. This rule R6
was false on 4 cases other rules were correct on tested cases.

To derive these illustrative rules only about 11% of the data have been used.
This shows the opportunities to build and validate more complex rules with more
data used in the same visual representation of data in PWC.

(a) Class 1. (b) Class 2

(c) Class 3. (d) Class 4.

Fig. 5.33 Car data in PWC
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5.10 Case Study 10: Car Data with CPC, APC, SPC,
and PC

In this section the same car data as in Case study 9 are visualized with CPC, APC,
SPC, and PC. Visualizing the data separately for each class makes a clear dis-
tinction between classes when compared altogether.

As mentioned above, classes 2 and 4 have unique features in PWC with unique
rules. These classes also exhibit unique patterns in some of GLCs used in this case
study. Classes 1 and 3 share some patterns in all four visualization methods sim-
ilarly to observed in PWC visualization before.

(a) Class 1. (b) Class 2.

(c) Class 3. (d) Class 4.

Fig. 5.34 Car data in PWC with differently colored nodes for each 6-D point
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In Fig. 5.35 in CPC, each class exhibits a distinct pattern with class 2 as the most
distinct from other classes. While these patterns are visible and describable, they are
not an immediate guide for classification of individual cases. How can we use these
distinct patterns? We can check whether the same unique visual pattern is present in
training, validation, and testing data. If this is the case, then training data are correct
data for the given validation and testing data. This justifies applying analytical
machine learning algorithms for discovery discrimination rules on these training
data for expected validation and testing data. We discuss this fundamental oppor-
tunity and demonstrate its application in Chap. 7.

In Fig. 5.36 in APC, also each class exhibits a distinct pattern with class 2 as the
most distinct from other classes. Similarly to Fig. 5.35, we can

• check whether the same unique visual pattern is present in training, validation,
and testing data, and

• justify the use of these training data, or
• reject these training data and construct new training data.

(a) Class 1. (b) Class 2.

(c) Class 3. (d) Class 4.

Fig. 5.35 Four car classes in CPC
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Note, that in contrast with CPC, in Fig. 5.35, here the pattern in APC can be
used directly to build and test a classification rule using unique directions of edges.

In Fig. 5.37 in SPC, the distinction of visual patterns is less obvious, while class
3 and 4 are most distinct from classes 1 and 2. The classification rule for classes 3
and 4 can be constructed from Fig. 5.37c using unique directions of edges from the
bottom.

In Fig. 5.38 in PC, the distinction of visual patterns is also less obvious, while
class 2 is most distinct. The classification rule for class 2 can be constructed directly
from Fig. 5.38c using unique directions of edges from the bottom.

(a) Class 1. (b) Class 2.

(d) Class 4.(c) Class 3.

Fig. 5.36 Four car classes in APC
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5.11 Case Study 11: Glass Identification Data with Bush
Coordinates and Parallel Coordinates

This case study illustrates Bush Coordinates (defined in section in 2.1.6 in Chap. 2)
using Glass identification data from UCI Machine Learning repository (Lichman
2013). Bush Coordinates are defined in Chap. 2. The full Glass dataset consists of
214 instances represented by ten attributes and the type of glass. Figure 5.39 shows
a hundred of 10-D records of three types glass (in red, green and blue) from this
dataset in Parallel and Bush Coordinates.

The comparison of visualizations in Parallel and Bush Coordinates shows that in
Bush Coordinates:

• blue lines for all coordinates are more clustered, and
• red and green lines that connect coordinates X1 and X2 are more clustered.

(a) Class 1. (b) Class 2.

(d) Class 4.(c) Class 3.

Fig. 5.37 Four car classes in SPC
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As a result, on Bush Coordinates we can see faster and better

• clusters of red and blue lines,
• negative correlation of red and green lines connecting X1 and X2, and
• two opposing correlation in blue lines connecting X7 and X8 coordinates.

This example demonstrates that tilt of coordinates allows improving the perception
of visual patterns.

(a) Class 1. (b) Class 2.

(c) Class 3. (d) Class 4.

Fig. 5.38 Four car classes in PC

(a) Parallel Coordinates (b) Bush coordinates

Fig. 5.39 Three classes of Glass visualized in Parallel and Bush Coordinates
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5.12 Case Study 12: Seeds Dataset with In-Line
Coordinates and Shifted Parallel Coordinates

This section explores seed data from UCI Machine Learning Repository (Lichman
2013) with Parallel Coordinates and In-Line Coordinates.

Shifted Collapsing Parallel Coordinates. These coordinates are defined in
Chap. 2 in the section on Bush and Shifted Parallel Coordinates. While commonly,
Parallel Coordinates are drawn vertically, in Fig. 5.40 they are rotated and made
horizontal for better comparison with In-Line Coordinates later in this section. In
this figure, data of class 1 (seeds of diameter 1 mm) are on the bottom (red) and
data of the class 2 (seeds of diameter 2 mm) are on the top (green). Each record of
each class is 7-dimensional. For this case study, 100 randomly selected records out
of total 210 records are used.

In this figure, the green data are grouped more tightly together. The pattern of
red data is somewhat similar except for the few curves that are further down the line
showing that some of the seeds of this class have more varying attributes. Some
differences in patterns of two classes are visible. However, it is not clear how to
build a discrimination function from them. Therefore, other visualizations are
explored below.

In-Line Coordinates. Below we use in-line coordinates with triangles and
Bezier curves defined in Chap. 2 in the section on In-Line Coordinates. In Fig. 5.41

Fig. 5.40 7-D seed data in Shifted Collapsing Parallel Coordinates with rotated axis
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the size and shape of the Bezier curves and the triangles are specified by properties
L, P, C and O of ILC defined in Chap. 2. Bezier curves and triangles are ordered by
increasing variance of coordinates in the given dataset with the coordinate X3 with
smallest variance put first.

Figure 5.41 shows that the seeds are grouped up tightly for both the blue and
orange curves. The grouping stops for both blue and orange curves at the end where
the attribute with the highest variance is located. The orange line starts sooner than
the blue line, which shows a significant difference in values of the respective
attribute between classes. It is also visible very well, that majority of attributes have
significant difference in values of attributes between classes. This gives a good
visual guidance to build a classification rule with using most attributes that are most
separated visually.

Figure 5.42 shows the zoomed overlap area from Fig. 5.41. It illustrates the
advantages of ILC with using both sides of its base line to draw class 1 on one side
and class 2 on the other side. It is visible on the right in Fig. 5.42 that, while there
is a heavy overlap in values, the patters for blue and orange classes differ. It is more
difficult to see such difference in Parallel Coordinates where both classes are
overlaid by drawing one on the top of another. Traditional PCs lack ILC capability

(a) Seeds data in In-Line Coordinates with Bezier curves.

(b) Seeds data in In-Line Coordinates with triangles.

Fig. 5.41 Seeds data in in-line Coordinates with Bezier curves and triangles. The orange curves
are the seeds of class 1 and the blue curves are the seeds of class 2. The coordinate X3 with
smallest variation is put first. The last coordinate X8 is class
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of using two sides of the base line. Note, that in Fig. 5.40 we used the expanded
capabilities of Shifted Parallel Coordinates by drawing classes on two sides of the
Parallel Coordinates (which are collapsed to a single middle coordinate) and by
using Bezier curves to draw lines. However, it is less informative than ILC visu-
alizations in Figs. 5.41 and 5.42.

5.13 Case Study 13: Letter Recognition Dataset with SPC

This case study is based on the Letter Recognition Data Set from the UCI Machine
Learning Repository (Lichman 2013). It contains 20,000 records that represent
extracted 16 features of letters. This case study uses all 16-D records of two classes
(letters T and I) to classify them. These 1550 records were split with 1085 records
to training data (70%) and 560 records (30% to validation data). Then centers c1
and c2 of two classes on the training data are computed in two steps: (1) computing
average 16-D points e1 and e2 of each class, and (2) finding two centers ci as 16-D
points with the smallest Euclidian distance to the respective ei.

The method used in this case is described in detail in Sect. 4.5 in Chap. 4.
Figure 5.43 shows colored SPC graphs of these two points ci and the colored nodes
of all graphs from the vicinity sets (hypercubes) V(ci, Ti). The edges of graphs are
omitted to decrease clutter. Here a half of the length of the side of the hyper-cubes
for letter T is T1 = 0.3 and for letter I it is T2 = 0.2. As this figure shows 16-D
points in each V(ci, Ti) belong only to training data of the respective class without
any point from the other class. In other words, the 16-D hyper-cubes defined by
pairs (ci, Ti) separates these training data with 100% accuracy. Moreover, this
separation allows constructing simple and accurate discrimination functions in SPC

Fig. 5.42 Zoomed overlap area from Fig. 5.41
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as lines between dotted black lines in Fig. 5.43. These dotted lines connect most
distant nodes of graphs in each vicinity (hypercube) V(ci, Ti). This part of the
training data covers 282 cases (18.19%) of all training cases. Figure 5.44 shows
centers c1, c2 and all validation 16-D points that are within the hypercubes found on
training data from Fig. 5.43. These points are shown by nodes of their graphs in the
colors of their classes. As Fig. 5.44 shows, all these points in each hypercube
belong only to a single class, indicating 100% accuracy of classification.

Each next phase repeats the same process for unclassified data that are remained
from the previous phases. This includes computing new centers c1, c2 and new
vicinity hypercubes V(ci, Ti). Total it required 5 phases with 5 letters T and 7 letters
I remained unclassified (Fig. 5.47). Table 5.2 shows results of all phases numeri-
cally. Figures 5.45 and 5.46 illustrate phase 4. As Table 4.2 shows, all phases
produced classification of both training and validation data with 100% accuracy.

Fig. 5.43 Phase 1: 16-D training data subset of the letter data in SPC. Centers of classes are
colored lines. Dots are nodes of graphs

Fig. 5.44 Phase 1: 16-D validation data subset of the letter data in SPC. Centers of classes
(colored lines) are from training data. Dots are nodes of graphs

Fig. 5.45 Phase 4: 16-D training data subset of letter dataset in SPC. Centers of classes are
colored lines. Dots are nodes of graphs
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Thus, the classification rule RV: for this dataset is

RV : If x 2 V1 ci;Tið Þ [V2 ci; Tið Þ [V2 ci; Tið Þ [V4 ci; Tið Þ [V5 ci; Tið Þ then x
2 class i:

where Vj(ci, Ti) for j = 1:5 are hypercubes learned in phases 1–5, respectively.
Remaining 5 “T” denoted as ak, k = 1:5, and 7 “I” denoted as bt, t = 1:7 are outside
of found hyper-cubes. These cases can be classified by memorizing them without

Fig. 5.46 Phase 4: 16-D validation data subset of letter dataset in SPC. Centers of classes (colored
lines) are from training data. Dots are nodes of graphs

(a) Class “T”. (b) Class “I”.

Fig. 5.47 Remaining 16-D training and validation subsets of letter dataset

Table 5.2 All phases of visual classification of letters T and I in SPC

Letter T Letter I Total Data % Accuracy %

Total training 560 525 1085 70.00 100

Total Validation 235 230 465 30.00 100

Phase 1 training 178 104 282 18.19 100

Phase 1 validation 31 17 48 3.10 100

Phase 2 training 102 154 256 16.52 100

Phase 2 validation 70 53 123 7.94 100

Phase 3 training 91 127 218 14.06 100

Phase 3 validation 81 65 146 9.42 100

Phase 4 training 159 99 258 16.65 100

Phase 4 validation 44 72 116 7.48 100

Phase 5 training 26 35 61 3.94 100

Phase 5 validation 9 21 30 1.94 100

Remaining training data 5 7 12 0.77

Remaining validation data 0 0 0 0
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making the rule significantly overfitted, because they are only 0.77% of the dataset,
with a new rule Rab to augment Rv:

Rab : If 9i x ¼ ai then x 2 class 00T00; else if 9t x ¼ bt then x 2 class 00I00

5.14 Conclusion

This chapter provided examples of applying multiple GLCs to a variety of datasets.
It shows the advantages of having multiple options to visualize the same data that
GLCs offer. GLCs allowed extracting different kind of features present in datasets.
The challenge for the future is expanding ways to extract features present in a
dataset. The patterns that discovered in these studies range from circular/closed
shape patterns, to relations between locations of different nodes of the same graph
and between different graphs, and clouds of other graphs around a given graph.
Multiple graphs share similar patterns, which allowed discovering and validating
classification rules. Visual representation with GLCs also helps to see and resolve
conflicts among the rules to maximize accuracy of classification. The results pro-
duced in several case studies are quite comparable with results produced by ana-
lytical algorithms such as SVM. Hence, GLC expands the important visual
component in machine learning.
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Chapter 6
Discovering Visual Features and Shape
Perception Capabilities in GLC

All our knowledge has its origins in our perceptions.
Leonardo da Vinci.

6.1 Discovering Visual Features for Prediction

Features. Analysis of data visualized with different GLCs in previous chapters
show that multiple visual features could be estimated for each individual graph.
These features include, but are not limited by:

• types of angles (e.g., sharp angle),
• orientation and direction of straight lines and angles,
• length of the straight lines,
• color of straight lines,
• width of the lines (as representation of the number of edges with similar values),
• width, length and color of the curves (e.g., Bezier curves),
• number of crossings of edges of a graph,
• directions of crossed edges,
• shape of an envelope that contains the graph,
• a “type” of the graph (dominant direction or absence of it: knot, L-shape,

horizontal, vertical, Northwest, etc.).

The analysis of these features can be split between different agents in the col-
laborative visualization process to speed up processing and use skills of analysts
most efficiently.

Relations. Many relations between graphs also can be estimated visually by
individual or collaborative agents and can be split between agents to find relations
such as:

• parallel graphs,
• graphs rotated, shifted or affine transformed relative to each other,
• percentage of overlap of graphs,
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• the size and shape of the area of the overlap of envelopes of two graphs,
• the distance between two graphs.

Some of these relations are illustrated in Fig. 6.1 in Parallel Coordinates and
CPC for six 8-D data points a1, a2, …, a6, where for each ai values of all aij are
equal to a constant ci, aij = ci, j = 1, 2, …, n.

In Parallel Coordinates (on the top of Fig. 6.1) these points are shown as quite
intuitive and preattentive parallel horizontal lines. In CPC (on the bottom of
Fig. 6.1) these points are shown as preattentive single 2-D points. These points are
simpler than PC lines in Fig. 6.1.

However, the metaphor used to know that values are equal is a new one and
needs to be learned along with CPC visualization. In spite of these differences, it is
easy to see in PC that the structures of 8-D points are the same—equal distant
horizontal lines. In CPC it is shown by equal distant points on the same line.

Figure 6.2 provides examples in Parallel Coordinates and CPC for other six 8-D
data points b1, b2, …, b6 with unequal values and more complex structure. The
common structure is less evident in Parallel Coordinates on the top of Fig. 6.2 than
in CPC on the bottom of Fig. 6.2.

This example shows there is no “silver bullet” visualization that is the best in
revealing the data structures for all datasets. The best one for the given data must be
discovered by exploring alternative visual representations.

Feature discovery. Now assume that 8-D points in Fig. 6.1 belong to class 1
and in Fig. 6.2 belong to class 2 and we need to find not any features of these
datasets, but discriminating ones. In PC, a discriminating feature is whether the

Fig. 6.1 Six 8-D points {bi} in Parallel Coordinates (top) and CPC (bottom)
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shape is a horizontal line or not. Another one is whether the shape has peaks or not.
In CPC a discriminating feature is whether shape is a rectangle or not, and another
one is whether the shape is a single point or not.

These examples illustrate the difference between generic feature observing and
discovery in contrast with discovering features that help discriminating cases from
different classes. This book, including this chapter, focuses on discovering under-
lying features of data structure to be used for supervised data classification and data
class prediction with the use of visual means.

The visual means potentially include both the human visual system and com-
puter vision systems. In this sense our goal here is similar to feature extraction in
image processing and computer vision.

Goal and approach. This chapter is to explore and evaluate how efficiently the
human visual system can discover features in Closed Contour Paired Coordinates
(traditional Stars/Radial Coordinates, and CPC Stars) in comparison with Parallel
Coordinates. The approach includes:

• Random generation of a few base classes of n-D data (hyper-tubes,
hyper-spheres, hyper-planes, hypercubes);

• Experimental evaluation of average time that subjects use to discover complex
features of shapes of these classes;

• Interpretation of these features as properties of data structures;
• Generalization to wider classes of n-D data by involving affine, projective and

other transformation of base data classes.

The essence of the study in this chapter is visual shape recognition by humans. It
is a drastically flexible and a very complicated process. Many years of psychology

Fig. 6.2 Six 8-D points {bi} in Parallel Coordinates (top) and CPC (bottom)
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development produced very general qualitative Gestalt laws, but only very limited
quantitative estimates of perception thresholds for simple shape features such as
line length, box size or brightness.

The reasons of this limited progress are:

• mutual influence of many features in recognition of complex form, and
• deficiencies of modeling theories for such complex processes.

As a result, building of quantitative applied models of vision is extremely dif-
ficult and time consuming. Therefore, this study focuses on experimental qualita-
tive ranking test on finding data displays that are essentially better than others are.
Our experiment on a modeled data structure allows extending its results only
qualitatively onto data with similar structures. The actual numbers from such tests
are very dependent on many factors (objective and subjective).

This dependence and multiple external assumptions of the statistical theory limit
applicability of the statistical theory and criteria to such type of data (Trafimow and
Marks 2015; Trafimow and Rice 2009; Valentine et al. 2015).

The goals of the experiments are to:

1. Test effectiveness of some GLCs for visual discovery of n-D data features and
data structures for different data dimensions in classification tasks;

2. Identify advantages of Radial Coordinates (traditional stars) and Star Collocated
Paired Coordinates (Star CPC);

3. Further expose the advantages of modeled data approach of visual analytics, as
allowing results generalization vs. getting results applicable only to very specific
analyzed data.

Modeled data approach. First, we outline the modeled data approach to data
generation for the experiments. Testing new visualization methods is possible in
two fundamentally different ways. The first one is generating data with given
mathematical properties. When the method is successful in experiments on these
modelled data this method can be successfully applied to other data with the same
mathematical properties. The second way is to experiment with data without known
mathematical properties, which is common in uncontrolled real world data. In the
last case, the success of visual representation of such data does not help to know
how successful this method can be on another data, because the properties of data
were not formulated.

Thus, the judgment about the method effectiveness is quite limited under such
testing. Only if the solution for these specific data has its own value, beyond the
illustration of the method success, then such tests are beneficial by themselves, but
not for other datasets. However, not all real data are such “self-beneficial” data
Therefore a wide use of modeled data will be beneficial for testing many other new
methods not only GLC.
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6.2 Experiment 1: CPC Stars Versus Traditional Stars
for 192-D Data

Hyper-tubes. This section quantitatively evaluates the hypothesis denoted as H1

that CPC stars have advantages over traditional stars in easiness of discovering
visual patterns by humans. It is shown that these advantages grow with data
dimension n. To test H1 we consider the task of discovering n-D points with
identical features in a given set of n-D points using their representations as CPC
stars and traditional stars. Subjects are asked to find these identical features in both
visual representations. The success is measured by comparing accuracy of pattern
discovery in CPC stars and traditional stars.

Five data classes have been generated as points {x} in the n-D data space Rn.
with n = 192. Points of each class Ck are located in a separate hyper-tube Tk around
its randomly generated direction Ak from the space origin, where k = 1, …, 5 is a
class label. We generated from 5 to 15 192-D points randomly within each
hyper-tube.

Then these points have been additionally randomized (either by Gaussian
multiplicative or additive n-D “noise” with given standard distributions). The dis-
tance of each point from tube central line (generatrix) is one of the factors that
specify the variation of shapes of stars. Stars are similar in shapes and differ in sizes
for narrow hyper-tubes of this type.

The design of this experiment is representative for other n-D data structures
because many classes of n-D data can be represented as combinations of tubes. For
instance, a curved tube can be approximated by a sequence of linear tubes.
A hyper-sphere (“ball”) is a “tube” around a single point. Another important aspect
is that partial affine invariance of human shape perception allows detecting the
shapes that are rotated, shifted and resized. Thus, it opens wide possibilities for
visual recognition and interpretation of complex nonlinear n-D structures.

Experiment setting and results. Each subject was asked to find a few features
separating five tubes (with 6 n-D points in each tube) from others tubes by using
CPC stars randomly placed on a sheet of paper.

In addition, the subject solved the same task for traditional stars that represent
the same n-D data points with the same placement on a paper sheet. The experiment
was repeated for different levels of “noise”, i.e. tube width (10, 20, 30% of max-
imum possible value of each coordinate of an n-D point).

All subjects were volunteers and the time of each test was limited to 20-30 min.
It essentially restricted the number of features that can be analyzed. Time and errors
of solutions are shown in Tables 6.1 and 6.2. Due to obvious qualitative visual
advantages of CPC Stars versus traditional stars especially for n = 192, the first
quantitative tests involved only two subjects to roughly estimate these advantages.
The tests results clearly show that for n = 192 traditional stars cannot compete with
CPC.

Subject #1, with some previous experience in similar tests, did these tests first for
CPC stars with 10% noise, then for traditional stars with 10% noise and then for
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CPC stars with 20% noise. During 30 min time limit, the respondent detected four
discriminative features of each of five classes for CPC stars and three such features
for traditional stars.

However, in the last test only wide and large features were detected while
comparison of 80–90% of features that consist of the sets of narrow peaks was
drastically more difficult. Therefore, subject #1 denied test for stars with 20 and
30% of noise.

This experiment had shown that for n = 192 traditional stars display data per-
ceptually lossy, while these stars actually preserved and display all information
contained in n-D points that the stars represent.

This is an example of mathematical lossless, but perceptually lossy traditional
stars when the perception time was limited and stars were small. In contrast, placing
one star on a full A4 sheet of paper makes everything visible without losses. Thus,
magnification can improve performance of the common stars, but with fewer stars
in a vision field.

Recognition of these features with 30% noise is so time consuming that even
very experienced Subject #2 could not separate more than two tubes for 30 min and
only by using large local and integral features.

In contrast, CPC Star tests showed acceptable time (1–5 min) for all figures and
noise up to 30% (see Table 6.3). Subject #2 with advanced skills performed two
times better with CPC stars versus traditional stars, especially for wide tubes with
20–30% of noise.

Table 6.1 Subject 1: Time
(mean/standard deviation) and
errors of one feature detection
for 5 tubes (sec)

Subject #1

Noise Stars CPC stars

10% Time 124/68 92/52

Features 3 4

Errors 2 2

20% Time n/a 119/74

Features n/a 4

Errors n/a 3

Table 6.2 Subject 2: Time
(mean/standard deviation) and
errors of one feature detection
for 5 tubes (sec)

Subject #2

Noise Stars CPC stars

10% Time 107/48 60/33

Features 3 5

Errors 3 0

20% Time 159/71 84/42

Features 3 5

Errors 4 1

30% Time n/a 197/105

Features n/a 5

Errors n/a 3
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The success of CPC stars versus traditional stars is due to: (1) two times less
dense placement of the points, and (2) a specific mapping of pairs xi, xi+1 into a
contour.

6.3 Experiment 2: Stars Versus PC for 48-D, 72-D
and 96-D Data

6.3.1 Hyper-Tubes Recognition

This section quantitatively evaluates the hypothesis denoted as H2 that Stars have
advantages versus PC lines. Consider an n-D Euclidian data space En with n-D
points {x = (x1, x2, …, xn)}. A linear hyper-tube (hyper-cylinder) is a set of n-D
points in En defined by its radius. The axis A of a linear hyper-tube is given by an
n-D orientation vector v and a start n-D point xs). In the hyper-tube the distance
d from each point x of the hyper-tube to its axis is no greater than its radius R, d(x,
A) � R.

For this experiment, five data classes were generated as n-D points in five linear
hyper-tubes with the randomly generated orientation vectors vk of these hyper-tubes.
Axis of all hyper-tubes go through the origin point (0, 0, …, 0). Initially all given n-D
points of each hyper-tube lay on its axis before “noise” was added, i.e., any two of
these points related linearly y = ax, where coefficient a represents the proportion of
their distances to the origin. This leads to the similarity of shapes of stars for x and y,
which visually represent their sizes proportional to the distance from the origin. Shapes
of PC lines are also similar for the same reason.

Three independent datasets were generated with total 90 n-D points. Each
dataset includes 30 n-D points (6 points from each of 5 hyper-tubes):

• In dataset 1 points of each hyper-tube T lay equidistantly on the axis A of T,
xk = kx1 (k = 1, 2, … 6).

• In dataset 2 a “normal noise” was added to each of 6 equidistant points with
mean m = 10% and standard deviation, sd = 5% of the norm |x| of each n-D
point.

Table 6.3 Time and errors of grouping pictures by their whole shapes

sd/m % 0/0% 5/10% 10/15%

Subject Sec Errors Sec Errors Sec Errors

Stars

#1 280 0 585 4 780 5

#4 173 0 312 3 539 4

Parallel Coordinates

#1 985 0 1020 7 2185 11

#4 742 0 823 4 1407 8
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• In dataset 3 the “normal noise” was added in the same way with m = 15% and
sd = 10%.

Such random deviations of points from axis mask similarity of shapes. See Fig. 6.3.
In addition, these “central” tubes are representative for other data structures such as
arbitrary tubes with the axes that cross at any point of the data space. These tubes
are transformed to central tubes by shifting the origin to the crossing point.

Curved hyper-tubes (curved tubes for short) are defined by substituting a con-
stant orientation vector v to a vector that is defined as a vector v(t) that depends on
the parameter t, where v(0) and v(1) are the orientation vectors at the beginning and
end of the curved tube. A curved tube can be approximated in a piece-wise fashion
by linear tubes. Humans can detect compact clusters of curved tubes due partial
affine invariance of human shape perception in 2-D.

This setting opens wide possibilities for complex nonlinear structure detection
and their interpretation as a relation between different sets of coordinates.
Figure 6.3 clearly shows the advantages of stars versus PC lines, especially for
n = 96. To estimate roughly these advantages, again only two subjects were tested.
Subjects have been given 30 stars of five hyper-tubes points on an A4 paper sheet.
They were asked to group them into five groups by shape similarity. Similarly, they
have been given 30 PC graphs of n-D points from five hyper-tubes on an A4 paper
sheet and have been asked to answer the same question as for stars.

Fig. 6.3 Examples of corresponding figures: stars (row 1) and PCs lines (row 2) for five 48-D
points from two tubes with m = 5%. Row 3 and 4 are the same for dimension n = 96
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Table 6.3 shows the task performance time (in seconds) and errors amount in
each test for stars and PCs with different levels of noise. The first two columns
show results without noise. Columns 4 and 5 show results with moderate noise
(sd = 5, mean of noise = 10%) and the last two columns show results with a higher
level of noise (sd = 10, mean of noise = 15%).

With moderate noise, performance, time and errors are almost doubled relative
to the tests without noise. Similarly, with higher noise, performance time and errors
have grown relative to the tests with moderate noise. Also Table 6.3 shows that
performance of the stars 2–3 times better than performance of PC lines with and
without noise.

6.3.2 Feature Selection

Pattern recognition is based on discovering features of shapes that are common for
majority of the pictures of one class and are not typical for pictures of others
classes. Therefore, in this experiment stars and PC lines are compared by a set of
local features that are common for certain classes of figures. To get such figures,
n-D data points were generated as follows:

(1) Select m (5 � m � 9) consecutive coordinates Xa, Xa+1, …, Xb (that we will
call feature location), b = a + m − 1, and assign some values to these coor-
dinates. Thus, each feature location is identified by a sequence of coordinates,
Xa, Xa+1, …, Xb that is given by the index interval [a,b].

(2) Repeat this process k times for 3 � k � 5, i.e., assign some values to con-
secutive coordinates in k other feature locations of the n-D point for different
intervals [a,b]. In this way, several coordinates of the point are assigned and
form a deterministic pattern.

(3) Repeat (1)–(2) for different m and k with assigning different values to selected
coordinates. This creates several different deterministic patterns, where each
pattern is represented by a single incomplete n-D point with only coordinates
that are in the assigned feature locations are identified. The number of coor-
dinated defined in this way varies from 20 to 63.

(4) Generate several complete n-D points in each class by giving random values to
the undefined coordinates of incomplete n-D points (see Fig. 6.4). The random
fragments (different for each figure) were placed between feature locations
identical for all figures of a given class. These fragments add noise to the shape
that is not an additive noise.

Consider a point x = (x1, x2, …, xn) of the data space S
n as shown on Fig. 6.4. It

can be described by the set of Elementary Conjunctions (EC) of coordinates. If all
points of given class have the same values of coordinates from i-th to (i + m − 1)-th,
then all stars that represent these points have identical shape fragment E with
identical location on these stars. Appearance of such fragments can be considered as
the true value of elementary conjunction (EC),
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xi ¼ ci & xiþ 1 ¼ ciþ 1 & . . . & xiþm�1 ¼ ciþm�1;

where ci, ci+1 and other constants are value of respective indexed coordinates, and
m is the length of this fragment.

Consider a class of stars with a few common fragments, E1, E2…, En. These
fragments identify structures in the data space that can be encoded as EC. These
fragments can be recognizable by humans if they are large enough to be above a
visual perception threshold for shape discrimination.

Several such fragments have been generated separately (see Figs. 6.5 and 6.6)
for different dimensions n and different sample sets of n-D points A, …, F from two
data classes with 10 n-D points in each class. These fragments were placed at
different feature locations in the stars.

Subjects knew that the stars or PC graphs of the first class are placed in the first
two rows of the screen and second one in the last two rows. They were instructed to
find all first class fragments not existing in second class and vice versa. Tests were
done separately for PC lines and stars displays of the same classes. Subjects were
required to find complete set of coordinates that form each common fragment.

Table 6.4 shows performance times for different dimensions, classes and dis-
plays of figures for each subject in the same format as before. In this table, the

Fig. 6.4 Two stars with identical shape fragments on intervals [a,b] and [d,c] of coordinates

Fig. 6.5 Samples of some class features on stars for n = 48

Fig. 6.6 Samples of some class features on PCs for n = 48
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average feature selection time is the first number and its standard deviation is the
second number.

For dimension n = 48, different shapes for samples A, D, F have been generated
to verify the impact of fragment shapes on performance time. As expected, subjects
used more time to perform tests for larger dimensions. However, time increase was
less than expected due learning by subjects during the tests. In addition, studies had
shown that other factors also influenced performance. These factors include: sub-
ject’s individuality, a number of tests with him/her, and others. Despite these dif-
ferences, all subjects had shown at least 2 times faster selection of informative
features with stars than with PC lines.

6.3.3 Unsupervised Learning Features for Classification

The above mentioned data samples of 72 and 96 dimensions with two classes by 10
figures in each of them were visually represented as stars and lines in PCs on
separate sheets. These figures were placed randomly to roughly estimate the feature
selection time for self-learning by subjects. Besides, Gaussian noise was added, as
in the previous experiment. Thus, the subjects did not know the class of any picture
and sorted the plots into two sets based on visible similarity.

In this case, subjects spent a significant time to find the first feature for sepa-
rating 10 figures in two classes. Then subjects searched for other separating features
with a similar performance time in the same way as in another experiment. For
example, searching for the first feature in sample with dimension n = 72 required

Table 6.4 Feature selection time (mean/standard deviation in seconds)

Subjects Figures Dimensions

48 72 96

Samples Sample Sample

A D F A A

1 Stars 32/14 36/12 46/27 104/26 59/18

PC lines 79/38 93/31 117/79 133/36 91/27

2 Stars 96/12 116/60 164/99

PC lines 274/113 374/240 241/110

3 Stars 51/21 78/26 99/47

PC lines 138/53 119/33 142/56

4 Stars 30/13 33/11 44/23 56/15

PC lines 64/21 89/24 108/49 114/30

5 Stars 54/25 61/30 93/27

PC lines 122/37 83/35 167/49

Average subject Stars 31/14 38/16 60/21 99/19 94/44

PC lines 72/30 101/15 144/75 209/14 151/58
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112 s for stars and 274 s for PC lines. For both classes the average time of feature
detection without noise was:

• 54 s (mean)/17 s (standard deviation) for stars and 128/22 s for PC lines for
n = 72;

• 44/23 s for stars and 92/42 s for PC lines for n = 96.

Again, despite dimension increase, performance was enhanced due to learning of a
subject on preceding tests. When each data point of sample with n = 96 has been
distorted by 10% additive noise, the participants spent 4 min 44 s to find the first
valid feature. Then they spent on average 3 min 16 s to find the next feature with
stars, and refused to continue after 27 min work with PC lines, when only 7 figures
were classified. This provides further evidence confirming the advantages of stars
versus PC displays for these types of tasks. These results can convince analysts to
use CPC stars and regular stars more actively, not only using Parallel Coordinates.

6.3.4 Collaborative N-D Visualization and Feature
Selection in Data Exploration

Our experiments above have shown that agents recognize the same features with
different speed. The experiment below reveals that the teamwork of agents leads to
significant time saving to solve the task.

Collaborative feature selection. In this experiment, the figures are compared by
selecting sets of local features, which are common for classes of figures. Figures of
each class include 4–6 identical shape features formed by 5–9 consecutive coor-
dinates. Different random fragments were placed between these informative features
in each figure forming “noise”. Subjects knew that the stars or Parallel Coordinates
graphs of the first class are in the first two rows and second one in the last two rows.
Subjects were instructed to find all first class fragments not existing in the second
class and vice versa. Subjects were required to find all coordinates that create each
common fragment.

Subjected collaborated by discussing feature discovery, guiding each other
when looked at the same data source and then transitioning together to discuss the
next data source. Table 6.5 shows performance time for 96 and 48 dimensions. It
shows the average time of feature selection (first number) and the standard deviation
of this value (second number).

Table 6.5 Individual and collaborative feature selection time (mean/standard deviation in sec.)

96 dimensions 48 dimensions

C A D F

Individual 94/44 31/14 38/16 60/21

Collaborative 33/12 13/11 14/13 15/12
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To verify the impact of shapes of fragments on the performance time we used
different shapes for samples A, D, F in the dimension n = 48. Table 6.5 shows that
collaborative feature selection is 2–4 times faster than in case of individual work
for all these sets of features and both dimensions (96 and 48).

6.4 Experiment 3: Stars and CPC Stars Versus PC
for 160-D Data

This section experimentally explores human abilities to recognize 160-D linear
patters with Gaussian noise. Those patterns are represented by n-D points within
linear hyper-tubes (hyper-cylinders) in 160-D where each hyper-tube represents a
data class. The axis of the hyper-tubes are given as Ak + tuk, where Ak is a starting
n-D point of the axis, t2[0,1], and n-D vector uk sets up a direction of the
hyper-tube. The noise level defines the width of each linear hyper-tube.

6.4.1 Experiment Goal and Setting

Data Modeling steps implemented in this experiment include:

Step 1. Randomly generating the linear hyper-tubes (hyper-cylinders) that cross
the origin of the n-D data space of dimension n = 160. All hyper-cylinders
are normalized to length 1 with the axis A + tu, where A is its starting, t2
[0,1] and n-D vector u is a hyper-tube direction. Both A and u are
randomly generated.

Step 2. Computing randomly equidistant points on axis of these hyper-tubes in the
range from t = 0.3 to t = 1.0, i.e. forming a set of vectors {vi} = {(vi1, vi2,
…, vin)} from the origin to these points.

Step 3. Computing n-D vector kG = (kG1, kG2, …, kGn) of Gaussian noise with
standard deviation r 2 [0.1,0.3] for each vi separately.

Step 4. Computing n-D points wi = (kG1vi1, kG2vi2,…, kGnvin), i.e., vectors vi with
multiplicative noise.

Data Visualization steps implemented in this experiment include:

Step 1. Selecting visualization method Mk: Regular Stars, CPC Stars, and Parallel
Coordinates.

Step 2. Displaying each generated n-D point wi using Mk in a separate window.
Step 3. Tiling these windows in the random order (see Figs. 6.7, 6.8 and 6.9).

Please note that the Figures are renumbered to ensure sequential order of
citations. Please check and confirm the change.Thank you. Your refrences
are correct. I just changes only one below.

Step 4. Repeating steps 1–3 for other selected visualization methods Mk.
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Fig. 6.7 Twenty 160-D points of 2 classes represented in star CPC with noise 10% of max value
of normalized coordinates (max = 1) and with standard deviation 20% of each normalized
coordinate

Fig. 6.8 Twenty 160-D points of 2 classes represented in Parallel Coordinates with noise 10% of
max value of normalized coordinates (max = 1) and with standard deviation 20% of each
normalized coordinate
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6.4.2 Task and Solving Hints

In the actual experiment, the participants observed 160-D data. In the introduction
session participants observed other data and of a smaller dimension n = 100. The
goal of introduction session was to make participants familiar with the experiment
set up not data of actual experiment. The actual 160-D training data where provided
to participants only during the experiment as two labeled figures on the same sheets
of paper where the 18 test cases where present (see Figs. 6.7, 6.8 and 6.9). Each
participant received the three sheets of paper in A4 format with 20 figures in each
sheet generated by a given method as shown in the Figs. 6.7, 6.8 and 6.9. Radial
Coordinates, Star CPC, and Parallel Coordinates methods are used in these sheets to
visualize n-D points. These 20 figures split equally between 2 classes. Participants
are informed about equal number of figures of two classes, but only one figure of
each class is labeled by the class number and distinctly colored. These two figures
serve as training data. The locations of figures of the same class in the three sheets
are randomized to eliminate the impact of location on results of the experiment.

The goal of the participant in the actual experiment is to classify unlabeled 18
figures using two labeled training figures within 20 min per sheet (one hour total for
three sheets). In the pilot study, we found that it is not required more than an hour
for the images of this complexity. Each participant is asked to write the class

Fig. 6.9 Twenty 160-D points of 2 classes represented in Parallel Coordinates with noise 10% of
max value of normalized coordinates (max = 1) and with standard deviation 20% of each
normalized coordinate
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number next to each unlabeled figure. It was also recommended to participants to
circle up to 3–5 found local patterns in unlabeled figures that match to training
figures. Each participant worked with total 18*3 = 54 stimuli to be recognized.
These stimuli are presented in three sheets shown in Figs. 6.7, 6.8 and 6.9.

In the introduction session with 100-D data to help participants to better
understand examples of patterns of radial directions, angles, convexities, concavi-
ties, different forks, figure symmetries, envelops, orientations of parts, elongations,
and so on distorted and not distorted by noise have been provided.

Figure 6.10 shows samples of these data. This was a part of the lecture delivered
to participants (all participants are students majoring in Computer Science). The
lecture explains to them the design of all three visualization methods with several
examples.

6.4.3 Results

The experiment was conducted with two groups of computer science students at
two universities. Over 100 sets of forms were distributed in one university and 15
sets in another one. Total 75 sets were returned from the first set and 14 sets were
returned from the second set. Not all forms were fully filled. Tables 6.6, 6.7 and 6.8
show the results of this experiment based on these responses.

Total 18 students did not make any errors and six students made one error in all
tests. It shows that there is a room to increase both noise level and dimensions. It
also show that to reveal differences in difficulties in these three displays (PCs, Stars,
CPCs) for these students the noise level and/or dimension has to be increased in
further tests.

(a) Initial 100-D points without noise for Class (Hyper-tube) #1 and Class (Hyper-tube) #2 

(b) 100-D points with multiplicative noise: circled areas are the same as in upper star. 

Fig. 6.10 Samples of 100-D data in Star CPC used to make participants familiar with the task
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On the other side, three students could not solve all three tests at all. One student
made Stars and CPC Stars tests without errors, but could not make PCs test and one
student could not solve two tests.

The actual reasons are not known while possible reasons can be rushing, lack of
motivation, insufficient test time and time to become familiar with test setting, and
other personal reasons.

A total 60 students provided legible answers in all PCs, Stars, and CPCs dis-
plays but some figures may left unanswered. The figures left without answers were
interpreted as refusals and incorrect class labeling was interpreted as an error. The
results of these 60 students are shown in Tables 6.6, 6.7 and 6.8. Figure 6.11
visualizes some data from Tables 6.6, 6.7 and 6.8. The results in Tables 6.6, 6.7
and 6.8 and Fig. 6.11 show that:

• Respondents are able to find multiple noisy patterns in 160-D data presented in
all three visualization methods in a short period of time (within one hour).

• Classification in Parallel Coordinates was three times less accurate that in Radial
Coordinates and Star CPC (224 versus 88 and 68 errors and refusals).

Table 6.6 PC results of the experiment with 160-D data based on answer by 60 respondents who
filled all forms on 160-D data classification

PC

Errors Refusals Errors + refusals Correct

Answers 189 35 224 856

Mean per person 3.15 0.58 3.73 14.27

Mean % 17.50 3.24 20.74 79.26

Stand. Dev. 2.52 1.44 2.42 3.03

Table 6.7 Stars results of the experiment with 160-D data based on answer by 60 respondents
who filled all forms on 160-D data classification

Stars

Errors Refusals Errors + refusals Correct

Answers 78 10 88 992

Mean per person 1.30 0.17 1.47 16.53

Mean % 7.22 0.93 8.15 91.85

Stand. Dev. 1.87 0.46 1.57 1.9

Table 6.8 CPC Stars results of the experiment with 160-D data based on answer by 60
respondents who filled all forms on 160-D data classification

CPC stars

Errors Refusals Errors + refusals Correct

Answers 59 9 68 1012

Mean per person 0.98 0.15 1.13 16.87

Mean % 5.46 0.83 6.30 93.70

Stand. Dev. 1.8 1.22 1.77 1.88
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PC

Stars

CPC 
Stars

Fig. 6.11 Comparison of results of the experiment on PC, Stars and CPC Stars

• Classification in Radial Coordinates was slightly less accurate (14%) than in
Star CPC (total 88 versus 68 errors and refusals), but many students solved CPC
Star tests faster than Stars.

• The number of refusals in Parallel Coordinates was 2–3 times greater than in
Radial Coordinates and Star CPC (35 versus 10 and 9 refusals).

In an informal interview after the experiment, a number of respondents stated
that classifying figures and finding patterns in Star CPC was easier than in Radial
Coordinates and in both was easier than in Parallel Coordinates. Respondents also
stated that they have more confidence in their decision in Star CPC than in other
methods due to less complexity of the figures. Only the 9 refusals in Star CPC
classifications confirm such informal statements.

6.5 Experiment 4: CPC Stars, Stars and PC for Feature
Extraction on Real Data in 14-D and 170-D

6.5.1 Closed Contour Lossless Visual Representation

Figures 6.12 and 6.13 show, respectively, traditional and CPC Stars for 5 classes:
healthy (black), and 4 diseases (colored) from the cardiology data from UCI
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Machine Learning Repository (Lichman 2013). This dataset includes 14 attributes
selected by a cardiologist from 47 registered attributes.

In Fig. 6.12, some diseases have visible differences from healthy patients such as
more fragments of rectangles and different symmetry axes. This first visual clue is a
guide for the next analytical steps. On the next analytical steps the analyst checks
the clue on the entire dataset to provide confidence in the discovered pattern.

These figures also show that CPC stars are more compact than traditional stars. It
is visible in Fig. 6.13 where all not black cases are more “horizontal” and black
cases are mostly vertical with Northwest orientation.

The difference between classes is less evident in traditional stars. CPC stars
allow getting better patterns and finding them faster. Figure 6.14a shows a tradi-
tional star for an n-D point p from the black class. The traditional stars from
Fig. 6.12 that are close to p were found visually and are presented in Fig. 6.14b–e
from each colored class.

Similarly, Fig. 6.15a shows the CPC star for the same point p and Fig. 6.15b–e
present respective close CPC stars from each colored class. The overlay of stars
(a) and (b) from Fig. 6.14 is captured in Fig. 6.16 showing real closeness of these
closed forms.

Fig. 6.12 Samples of 14-D data from 5 colored classes represented by closed contours (stars) in
traditional Radial Coordinates. 17 stars mark similar forms found in the black and red classes (13
in black class and 4 in red class). The found pattern is dominant in the black class (76.5%
accuracy). Red stars mark most similar forms found in these opposite classes
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Fig. 6.13 Samples of 14-D data from the 5 colored classes represented by closed contours (CPC
stars) in CPC Radial Coordinates. 17 stars mark similar forms found in black and red classes (14 in
black class and 3 in red class). The found pattern is dominant in the black class (82.4% accuracy).
Red stars mark the most similar forms found in these opposite classes

Fig. 6.14 Closest CPC stars from 5 classes from Fig. 6.12

Fig. 6.15 Closest CPC stars (a) and (b) from Fig. 6.13
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6.5.2 Feature Extraction Algorithm

Below we describe the algorithm for extraction of discrimination features using the
data explained above. We start from an arbitrarily n-D point p1 from class C1 (e.g.,
black class), and find the n-D point p2 in class C2 (e.g., red class), which is most
similar to p1 using a lossless closed contour representation of points in 2-D. See
Fig. 6.14, where black Fig. 6.14a represents p1 and red Fig. 6.14b represents p2 for
Fig. 6.12. Then we search for the n-D points in both classes, which are most similar
to p1 and p2. These points are marked by stars in Figs. 6.12 and 6.13. Next, we
evaluate distribution of these points between C1 and C2 classes. In Fig. 6.12, it is
13:4 (76.5% in C1) and in Fig. 6.13, it is 14:3 (82.4% in C1).

Respectively the algorithm steps are:

1. Randomly select an arbitrarily n-D point p1 from class C1

2. Find all the n-D points in both classes that most similar to p1 and p2.
3. Evaluate distribution of these points between C1 and C2 classes.
4. Remove these points from the dataset.
5. Select another point in C1 from the remaining C1 points and repeat the visual

search for this point as we did for p1 and p2. This process continues until all
points from C1 and C2 are processed.

6. Enhance visual patterns to improve separation. For points p1 and p2, this is
finding features that differentiate them.

7. Formalize found visual patterns to be able computing class of new objects
without a human expert who needs to analyze visual patterns.

Below we discuss step 6 in more details. Consider p1 and p2 as shown in
Fig. 6.14a, b. The upper line in the black case p1 is going down, but in the red case
p2, it is horizontal. Next, we test this visually discovered property on its ability to
separate better those 17 cases. We have two cases with horizontal line in each class
C1 and C2 among 17 cases that are similar to p1 and p2. Thus, this feature is not a
good feature to improve the separation of these 17 cases. Another visual feature
must be found.

Fig. 6.16 Overlay of stars
(a) and (b) from Fig. 6.12
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Having CPC star representation we can try to find separation features in CPC
stars. We can see in Fig. 6.15b (red case) a very short line on the right, which is
almost vertical. This line is present in all three red cases and is not present in any of
the 14 black cases that we try to separate. Thus, this is a perfect feature to improve
the separation of 17 very visually close cases with 100% accuracy.

Next, we turn to Step 7 to find an analytical form of that visual feature. Denote
the start and end points of that line as ws and we. Their distance dðws;weÞ serves as
a discrimination feature

If d ws;weð Þ[ d then classC1 else class C2; ð6:1Þ

where d is a distance threshold computed from Fig. 6.15b. Assume for simplicity of
notation that we started the graph in Fig. 6.15 from point ws. Then our start and end
points are

ws1 ¼ f x1; x2ð Þ;ws2 ¼ g x1; x2ð Þ ð6:2Þ

we1 ¼ f x3; x4ð Þ;we2 ¼ g x3; x4ð Þ; ð6:3Þ

where x1–x4 are first four original n-D coordinates of an n-D point that we consider.
Here f and g are functions that are used to map x1–x4 to CPC star coordinates as we
presented in Sect. 6.1. Thus, formula (6.1) will be rewritten as with use of (6.2)–(6.3):

ð ws1�we1ð Þ2þ ws2�we2ð Þ2Þ1=2 [ d then classC1 else classC2 ð6:4Þ

f x1; x2ð Þ � f x3; x4ð Þð Þ2 þ g x1; x2ð Þ � g x3; x4ð Þð Þ2
� �1=2

[ d then ClassC1 else ClassC2 ð6:5Þ

Discovering (6.5) demonstrates the power of visual analytics, which combines
visual and computational methods in Visual Knowledge Discovery. Discovering (6.5)
purely analytically by Machine Learning methods without a visual clue would be
extremely difficult. We would need to guess somehow a set of models that includes
(6.5). What could be the base for such a guess? It is hard to expect some knowledge for
this guess. In these particular data, we did not have such prior knowledge. Next, if the
guessed set of models includes (6.5), the machine learning algorithm may not learn it. It
may not be the winning model on the given training data for the given ML algorithm.

How general is this algorithm? Why is it not an ad hoc one? Steps 1 and 4 are
quite general for any training dataset with the classes of n-D points identified. The
success in Steps 2, 3, 5 and 6 depends on 2-D representation of n-Data, perceptual
abilities of the viewer, allotted time and amount of data. The step 7 is also quite
general and its success depends on success in previous steps and on mathematical
skills of the analyst. So far, experiments with CPC Stars show that all these steps
are doable successfully for real data providing a consistent framework for visual
analytics in Data Mining and Machine Learning. Further research and experiments
are needed to specify steps 1–7 more and data types where this algorithm will be
efficient. It includes training data scientists in visual features search.
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6.5.3 Comparison with Parallel Coordinates

Figure 6.17 shows the same data in Parallel Coordinates as in Fig. 6.13 and
Fig. 6.18 shows a subset of similar Parallel Coordinates curves from Fig. 6.17. We
do not see a separation pattern between the classes in these figures, but a separation
pattern is visible in CPC stars in Fig. 6.13.

Please check and confirm if the inserted citation of Fig. 6.18 is correct. If not,
please suggest an alternate citation. Please note that figures and tables should be
cited sequentially in the text.Done

The difference between Traditional Stars, CPC stars, and Parallel Coordinates is
even more visible in Figs. 6.19 and 6.20 in the higher dimension (n = 170).
Figure 6.19 shows traditional 170-D stars in the first two rows: musk chemicals
(first row), and non-musk chemicals (second row) from Musk data from UCI
Machine Learning repository (Lichman 2013). Respectively, the third and fourth
rows in Fig. 6.19 show CPC 170-D stars from the same dataset: musk chemicals
(third row) and non-musk chemicals (fourth row).

A specific pattern on the right of each star is visible on rows 2 and 4, which
represent non-musk chemicals. Multiple other distinct features can be extracted from
Fig. 6.19, which can assist in separating the two classes. In contrast, in Parallel
Coordinates in Fig. 6.20, it is very difficult to identify and separate features of two
classes with four points from the black class, and five points from the red class.

Fig. 6.17 Samples of 14-D data from 5 colored classes in Parallel Coordinates
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6.6 Discussion

6.6.1 Comparison of Experiments 1 and 3

Below we compare the results of experiments 3 with experiment 1 that has less
number of respondents, but more difficult data of dimension n = 192.

The experiment 1 was repeated for different levels of “noise”, i.e., hyper-tube
width (up to 10, 20, 30% of maximum possible value of each coordinate of an n-D
point). Each respondent had 20 min for each GLC representation type.

Fig. 6.18 Similar Parallel Coordinates curves from Fig. 6.17

Fig. 6.19 Traditional 170-D stars: class “musk” (first row) and class “non-musk chemicals”
(second row). CPC 170-D stars from the same dataset: class “musk” (third row) and class
“non-musk chemicals” (fourth row)

Fig. 6.20 Nine 170-dimensional points of two classes in Parallel Coordinates
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Experiment 1 had shown that with increased noise level from standard deviation
10–30% that respondents not only produced more misclassifications, but one of the
respondents completely refused answering using Radial Coordinates for data with
20 and 30% of noise and another one with advanced skills refused answering using
Radial Coordinates for data with 30% of noise. In contrast, CPC Star tests showed
acceptable time (1–5 min) for all figures with noise up to 30%. The success of CPC
stars versus Radial Coordinates was due to two times less dense placement of the
points as a result of a specific mapping of pairs (xi, xi+1) into a closed contour in
CPC stars.

The difference in experiments 1 and 3 is not only in the dimensions and the
number of classes (2 vs. 5), but in the noise control. In experiment 3, the Gaussian
noise is with mean 10% of the max value of each normalized coordinate (max = 1),
and standard deviation of 20% of that max value for the normal distribution, N(0.1,
0.2). Thus, this noise is three times smaller than the highest noise of 30% used in
experiment 1, which is much more complex for the human analysis.

The experiment 1 with n = 192 and a high level of noise (30%) points out on the
likely upper bound of human classification of n-D data using the Radial Coordinates
for data modeled as linear hyper-tubes. This upper bound is no greater than 192
dimensions with up to 30% noise. One of the motivations for the experiment 3 with
n = 160 was the failure of Radial Coordinates at n = 192. The decreased dimensions
and noise level in experiment 3 was to find out would n = 160 with lower noise be
upper bound or not for the Radial Coordinates. The experiment 3 shows that the upper
bound for human classification on such n-D data is no less than n = 160 dimensions
with up to 20% noise. Thus the expected classifiable dimensions are in [160,192]
dimensions interval for the Radial Coordinates.

Due to advantages of Star CPC over Radial Coordinates, these limits must be
higher for Star CPC and lower for Parallel Coordinates due to higher occlusion in
PC. Limits that are more exact are the subject of the future experiments. About 70
respondents participated in the experiment 3, therefore it seems that 160 dimensions
can be viewed as a quite firm bound. In contrast, the question that 192 dimensions
is the max of the upper limit for Star CPC may need addition studies. Thus, so far
the indications are that the upper limit for Star CPC is above n = 192 and it needs to
be found in future experiments for linear hyper-tubes. Note that finding bounds for
linear-hyper-tubes most likely will be also limits for non-linear hyper-tubes due to
their higher complexity.

6.6.2 Application Scope of CPC Stars

As experiment 1 had shown, the application scope of CPC Stars covers tasks with
192 dimensions. While this is a significant progress, the current interests in Big data
studies are in larger dimensions and the number of n-D points. However, in many
practical diagnostics tasks in medicine and engineering, the dimensions do not
exceed 200.
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The expansion to dimension n up to 1000 can be performed by grouping the
coordinates {Xi} by 100–150, and representing them by separate or collocated
colored stars, and/or mapping some Xi into colors. Lossy reduction of n can be
applied after visual analysis of these lossless displays, which can reveal the least
informative attributes. Another reduction can be based on a priori domain
knowledge.

In the mentioned diagnostics tasks, the number of n-D points is often less than
103–104. In many tasks with millions of records, often a prior knowledge of data
and a specific goal allow essential data reduction. The experience shows that visual
comparison of thousands of figures to analyze few classes is feasible if the visual
representation effectively applies human shape perception capabilities. To avoid
occlusion each star can be displayed in its own coordinate system in a separate cell.

While this solves the occlusion issue, it requires switching gaze from one star to
another one. It takes time, requires memorizing the first star before looking at
another one, which complicates the comparison of stars.

One of the solutions for this issue is considering one star as a base and using an
animated overlay of other stars with it one after another. The analyst can control a
speed of animation. In animation, the color of the overlaid star differs from the color
of the base star. The sections of two stars, which are practically identical, can be
blinked or shown in a third color. The analyst can use a mouse interaction to
indicate that two stars are similar and potentially from the same class. Future
experimental studies will be to find most efficient interactive arrangement.

6.6.3 Prospects for Higher Data Dimensions

The above advantages of CPC stars versus traditional stars and parallel coordinates
are even more essential for data of higher dimensions. We presented these three
representations (Figs. 6.19 and 6.20) for musk learning dataset from the UCI
machine learning repository. It is an example of very practical design models of
drugs and other chemicals without expensive experimental tests, such as clinical
trials of the targeted properties. In the data each instance is described by their 170
physical, chemical, structural, etc. properties and its target attribute (musk class or
non-musk class).

Although CPC stars show the same information in each cell as the traditional
stars, they are better for visual analysis because they have:

• less density of form features,
• bigger sizes, and
• better separability.

In contrast, Parallel Coordinates are unacceptable for such large data dimen-
sions, while the stars above allow comparing data with over a hundred attributes.
Open polylines in Parallel Coordinates of the same n-D data points as shown in
Fig. 6.20 are practically indistinguishable. These advantages of closed contours are
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consistent with Gestalt Laws. Therefore, new extensive user studies are not nec-
essary because of extensive previous experiments elsewhere verified Gestalt Laws.
These laws are viewed as most universal information about form perception for
display choice independently on specific data properties. In addition, we conducted
such studies described in this chapter.

6.6.4 Shape Perception Capabilities: Gestalt Law

Gestalt Laws. About century ago, psychologists experimentally revealed funda-
mental laws [Gestalt Laws (Wertheimer 1944; Elder and Goldberg 2002)] of per-
ception and recognition of figures by a human vision system. According to Gestalt
Laws, a figure that possesses a closure, symmetry, similarity, proximity, and con-
tinuity will be detected faster in the presence of noise.

In the same way its shape will be recognized faster and more accurately as well
as a common pattern of a few figures will be specified better. In concordance with
the Gestalt laws, the closed contours such as stars in Radial Coordinates show the
essential perceptual advantages over lines in the Parallel Coordinates (PC), bar
charts, pie charts, etc.

Mapping data vectors into contours allows describing and recognizing very
complicated nonlinear structures in a data space. Invariance of shape perception
under local affine transformations of image (Wagemans et al. 2000) radically
extends these capabilities.

Visualizations with simple connections between data attributes and image fea-
tures allow effective use of these unique human perceptual capabilities. Polar dis-
plays of data vectors (stars), parallel (Cartesian) coordinates, pie- and bar-charts are
among visualizations that benefit from these capabilities.

Lack of experimental and theoretical data for display evaluation.
Unfortunately, extreme complexity and flexibility of visual shape perception led
psychologists to focus on either very common law of vision such as Gestalt law or
some basic properties such as perception thresholds.

Overviews (Bertini et al. 2011; Hoffman and Grinstein 2002) and respective
publications in last few decades do not expose lossless visualizations for more than
10–20 dimensions intended for effective use of complex shape perception. For
lesser dimensions some experimental studies of effectiveness of displaying contours
such as stars, pie-charts, bar-graphs, Chernoff faces, etc. have been done e.g., (Elder
and Goldberg 2002).

However, usually these visualizations show only specific attributes of given data
that are: (1) known to a subject matter expert as important ones, (2) suspected to be
important by a researcher, or (3) found by clustering. Therefore, it is difficult to use
these results as evaluations of capabilities of the visualization methods or to syn-
thesize better visualizations for other data, especially beyond 20–30 dimensions.

Shape perception features. Humans are able to detect, compare, and describe
multiple figures by using hundreds of their local features such as concave, convex,
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angle, and wave, and combine them into a multilevel hierarchy (Grishin 1982;
Grishin et al. 2003).

Each feature itself includes many attributes, e.g., size, orientation, location, and
others. A term “holistic picture” denotes an image together with its description that
includes image statistics, textures, integral characteristics, shapes, and coloring.
Moreover, the holistic concept is appearing at multiple levels of image perception.
First, the image is considered as a set of “spot clusters” and relations between them
as an overall structure of the image. Then each spot cluster is considered with the
same aspects (statistics, textures, integrals, shapes and coloring) where elements are
“spots” and the structure represent relations between these “spots”. Next, each
“spot” is viewed at the holistic level in the same way and at the levels of its
elements. At these levels, perceptually important features include symmetry,
elongation, orientation, compactness, convexity/concavity, peaks, waves, sharp
angle, inside/outside, etc.

6.7 Collaborative Visualization

Visualization of large n-D datasets for pattern discovery can be accomplished
collaboratively by splitting a dataset between collaborating agents, which can
include both humans and software agents. In this case, each agent analyzes and
visualizes a subset of data and exchanges findings with other agents.

There are multiple options of for collaborative visualization for knowledge
discovery. Below we present 3 major options.

Option 1: Data splitting to support collaboration based on:

• Location of data on n-D space (each agent works of the data from a specific
location on n-D space produced by data clustering).

• Class of data (each agent works only on the data of a specific class or classes),
• Attributes of data (each agent works only on the projection of data to the specific

subset of attributes.)

Option 2: Task specialization.

• Specialization of agents to different visual tasks depending on individual skills
and capabilities of agents. In this case, data can be the same for all agents (not
split), but organized and visualized differently, e.g., different order of the
attributes because visualization in parallel coordinates and paired coordinates
are sensitive to this change.

Option 3: Joint work

• Work without splitting data and tasks between team members. People work as a
team on the same task, on the same data and discuss findings. This is a case of
the collaborative experiment described in Sect. 6.3.4.
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Other options include different combinations of options 1–3. Figures 6.21 and
6.22 illustrate options 1 and 2. Figure 6.23 shows the combination of options 1 and
2, when each agent works on subset of data and own subtask first and then work
together exchanging findings using a collaboration platform.

Figures 6.24 and 6.25 illustrate the situation when the base n-D data are the
same for all agents, but visualization data (plots) are different and tasks are different
too. In Fig. 6.24 each agent needs to evaluate the representation in the respective
plot. In Fig. 6.25 each agent needs to evaluate the separation pattern between
classes of data.

Fig. 6.21 Data splitting for collaborative visualization

Fig. 6.22 Task splitting for Collaborative Visualization

Collabora on
pla orm

Joint visual
solu on

Agent
task4/data4

Agent 1
task1/data1

Agent 2
task2/data2

Agent 3
task3/data3

Fig. 6.23 Data and task
split-based collaborative
visualization framework
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Fig. 6.24 Collaboration diagram with data example 1

Fig. 6.25 Collaboration diagram with data example 2
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6.8 Conclusion

This chapter shows that Paired Closed Contour Coordinates as a part of GLC are
capable representing data in 14-D, 48-D, 96-D, 160-D, 170-D, and 192-D where
humans are capable discovering features and patterns for classification these
high-dimensional data. In particular, the experiment 3 that was involved about 70
participants show the abilities of visual discovery of n-D patterns using GLCs with
n = 160 dimensions. This shows that this type of GLC is useful at the current stage
of its development and is promising for knowledge discovery tasks in visual ana-
lytics, visual data mining and machine learning. Advantages of this technique
relative to the Parallel Coordinates were shown in experiments described above.
This technique can be applied in cooperation with the analytical Data Mining/
Machine Learning methods to decrease the heuristic guesses in selecting a class of
Data Mining models.
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Chapter 7
Interactive Visual Classification,
Clustering and Dimension Reduction
with GLC-L

I believe in intuition and inspiration.
It is, strictly speaking, a real factor in scientific research.

Albert Einstein

7.1 Introduction

A representative software system for the interactive visual exploration of multi-
variate datasets is XmdvTool (2015). It implements well-established algorithms
such as parallel coordinates, radial coordinates, and scatter plots with hierarchical
organization of attributes (Yang et al. 2003). For a long time, its functionality was
concentrated on exploratory manipulation of records in these visualizations.
Recently, its focus has been extended to support data mining (version 9.0, 2015),
including interactive parameter space exploration for association rules (Lin et al.
2014), interactive pattern exploration in streaming (Yang et al. 2013), and time
series (Zhao et al. 2016).

The goal of this chapter is to present a new interactive visual machine learning
system for solving supervised learning classification tasks based on a GLC-L
visualization algorithm and associated interactive and automatic algorithms
GLC-IL, GLC-AL and GLC-DRL for discovery of linear and non-linear relations
and dimension reduction. Classification and dimension reduction tasks from three
domains, image processing, computer-aided medical diagnostics and finance (stock
market), are used to illustrate this method.

This chapter is organized as follows. First we presents the approach including
the base algorithm GLC-L, its interactive version, the algorithm for automatic
discovery of relations combined with interactions, visual structure analysis of
classes and generalization of algorithms for non-linear relations. Next, we present
the results for five case studies using these algorithms. The discussion and the
analysis of the results in comparison with prior results and software implementation
follow the results. Then the advantages and benefits of the presented algorithms for
multiple domains are summarized.
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7.2 Methods: Linear Dependencies for Classification
with Visual Interactive Means

We consider a task of visualizing an n-D linear function F xð Þ ¼ y, where x ¼
x1; x2; . . .; xnð Þ is an n-D point and y is a scalar,

FðxÞ ¼ y ¼ c1x1 þ c2x2 þ c3x3 þ � � � þ cnxn þ cnþ 1:

Such functions play important roles in classification, regression and multi-
objective optimization tasks. In regression, F(x) directly serves as a regression
function. In classification, F(x) serves as a discriminant function to separate the two
classes with a classification rule with a threshold T: if y < T then x belongs to class
1, else x belongs to class 2. In multi-objective optimization, F(x) serves as a tradeoff
to reconcile n contradictory objective functions with ci serving as weights for
objectives.

7.2.1 Base GLC-L Algorithm

This section presents the visualization algorithm called GLC-L for a linear function.
It is used as a base for other algorithms presented in this chapter.

Let K ¼ k1; k2; . . .; knþ 1ð Þ; ki ¼ ci=cmax, where cmax ¼ maxi¼1:nþ 1 cið Þj j, and

G xð Þ ¼ k1x1 þ k2x2 þ � � � þ knxn þ knþ 1:

Here all ki are normalized to be in [−1, 1] interval. The following property is true
for F and G : F xð Þ\T if and only if G xð Þ\T=cmax. Thus, F and G are equivalent
linear classification functions. Below we present steps of GLC-L algorithm for a
given linear function F(x) with coefficients C ¼ c1; c2; . . .; cnþ 1ð Þ.

Step 1 Normalize C ¼ c1; c2; . . .; cnþ 1ð Þ by creating as set of normalized
parameters K ¼ k1; k2; . . .; knþ 1ð Þ : ki ¼ ci=cmax. The resulting nor-
malized equation

yn ¼ k1x1 þ k2x2 þ � � � þ knxn þ knþ 1

with normalized rule:
if yn\T=cmax then x belongs to class 1, else x belongs to class 2,
where yn is a normalized value, yn ¼ F xð Þ=cmax. Note that for the
classification task we can assume cn þ 1 ¼ 0 with the same task gener-
ality. For regression, we also deal with all data normalized. If actual yact
is known, then it is normalized by Cmax for comparison with
yn; yact=cmax.
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Step 2 Compute all angles Qi = arccos(|ki|) of absolute values of ki and locate
coordinates X1−Xn in accordance with these angles as shown in Fig. 7.1
relative to the horizontal lines. If ki < 0, then coordinate Xi is oriented to
the left, otherwise Xi is oriented to the right (see Fig. 7.1). Draw its
values of a given n-D point x ¼ x1; x2; . . .; xnð Þ, as vectors x1; x2; . . .; xn
in respective coordinates X1−Xn (see Fig. 7.1).

Step 3 Draw vectors x1, x2,…, xn one after another, as shown on the left side of
Fig. 7.1. Then project the last point for xn onto the horizontal axis U (see
a red dotted line in Fig. 7.1). To simplify, visualization axis U can be
collocated with the horizontal lines that define the angles Qi.

Step 4 Step 4a. For regression and linear optimization tasks, repeat step 3 for all
n-D points as shown in the upper part of Figs. 7.2a and 7.3a.
Step 4b. For the two-class classification task, repeat step 3 for all n-D
points of classes 1 and 2 drawn in different colors. Move points of class
2 by mirroring them to the bottom with axis U doubled as shown in
Fig. 7.2. For more than two classes, Fig. 7.1 is created for each class and
m parallel axes Uj are generated next to each other similar to Fig. 7.2.
Each axis Uj corresponds to a given class j, where m is the number of
classes.
Step 4c. For multi-class classification tasks, conduct step 4b for all n-D
points of each pair of classes i and j drawn in different colors, or draw
each class against all other classes together.

x1 X2
X3 X4

Q1 Q2 Q3 Q4

x2

x3

x4

X1

U

A

Fig. 7.1 4-D point A = (1, 1, 1, 1) in GLC-L coordinates X1–X4 with angles (Q1, Q2, Q3, Q4)
with vectors xi shifted to be connected one after another and the end of last vector projected to the
black line. X1 is directed to the left due to negative k1. Coordinates for negative ki are always
directed to the left
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This algorithm uses the property that cos(arccos k) = k for k 2 [−1, 1], i.e.,
projection of vectors xi to axis U will be kixi and with consecutive location of
vectors xi, the projection from the end of the last vector xn gives a sum
k1x1 þ k2x2 þ � � � þ knxn on axis U. It does not include kn + 1. To add kn + 1, it is
sufficient to shift the start point of x1 on axis U (in Fig. 7.1) by kn + 1. Alternatively,
for the visual classification task, kn + 1 can be omitted by subtracting kn + 1 from the
threshold.

Steps 2 and 3 of the algorithm for negative coefficients ki and negative values xi
can be implemented in two ways. The first way represents a negative value xi, e.g.,

U

Fig. 7.2 GLC-L algorithm on simulated data. Result with axis X1 starting at axis U and repeated
for the second class below it

0 U

A1

A2

Q2
Q1 Q3 Q4

(a) (b)

Fig. 7.3 GLC-L algorithm on real and simulated data. a Visualized data subset from two classes
of Wisconsin breast cancer data from UCI machine learning repository [16]; b 4-D point A = (−1,
1, −1, 1) in two representations A1 and A2 in GLC-L coordinates X1–X4 with angles Q1–Q4
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xi = −1 as a vector xi that is directed backward relative to the vector that represent
xi = 1 on coordinate Xi. As a result, such vectors xi go down and to the right. See
representation A1 in Fig. 7.3b for point A = (−1, 1, −1, 1) that is also self-crossing.
The alternative representation A2 (also shown in Fig. 7.3b) uses the property that
kixi > 0 when both ki and xi are negative. Such kixi increases the linear function F by
the same value as positive ki and xi. Therefore, A2 uses the positive xi, ki and the
“positive” angle associated with positive ki. This angle is shown below angle Q1 in
Fig. 7.3b. Thus, for instance, we can use xi = 1, ki = 0.5 instead of xi = −1 and
ki = −0.5. An important advantage of A2 is that it is perceptually simpler than A1.
The visualizations presented in this chapter use A2 representation.

A linear function of n variables, where all coefficients ci have similar values, is
visualized in GLC-L by a line (graph, path) that is similar to a straight line. In this
situation, all attributes bring similar contributions to the discriminant function and
all samples of a class form a “strip” that is a simple form GLC-L representation. In
general, the term cn + 1 is included in F due to both mathematical and the appli-
cation reasons. It allows the coverage of the most general linear relations. If a user
has a function with a non-zero cn + 1, the algorithm will visualize it. Similarly, if an
analytical machine learning method produced such a function, the algorithm will
visualize it too. Whether cn + 1 is a meaningful bias or not in the user’s task does not
change the classification result. For regression problems, the situation is different; to
get the exact meaningful result, cn + 1 must be added and interpreted by a user. In
terms of visualization, it only leads to the scale shift.

7.2.2 Interactive GLC-L Algorithm

For the data classification task, the interactive algorithm GLC-IL is as follows:

• It starts from the results of GLC-L such as shown in Fig. 7.3a.
• Next, a user can interactively slide a yellow bar in Fig. 7.3a to change a clas-

sification threshold. The algorithm updates the confusion matrix and the accu-
racy of classification, and pops it up for the user.

• An appropriate threshold found by a user can be interactively recorded. Then, a
user can request an analytical form of the linear discrimination rule be produced
and recorded.

• A user sets up two new thresholds if the accuracy is too low with any threshold
(see Fig. 7.4a with two green bars). The algorithm retrieves all n-D points with
projections that end in the interval between these bars. Next, only these n-D
points are visualized (see Fig. 7.4b).

• At this stage of the exploration the user has three options:

(a) modify interactively the coefficients by rotating the ends of the selected
arrows (see Fig. 7.5),

(b) run an automatic coefficient optimization algorithm GLC-AL described in
Sect. 7.2.3,
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(c) apply a visual structure analysis of classes.

For clustering, the interactive algorithm GLC-IL is as follows. A user interac-
tively selects an n-D point of interest P by clicking on its 2-D graph (path) P*. The
system will find all graphs H* that are close to it according to the rule below.

Fig. 7.4 Interactive GLC-L setting with sliding green bars to define the overlap area of two
classes for further exploration. a Interactive defining of the overlap area of two classes; b selected
overlapped n-D points

Fig. 7.5 Modifying interactively the coefficients by rotating the ends of selected arrows, X2 and
X4 are rotated
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Let P* = (p1, p2, …, pn) and H* = (h1, h2, …, hn), where pi = (pi1, pi2) and
hi = (hi1, hi2) are 2-D points (nodes of graphs),

T be a threshold that a user can change interactively,
L(P, T) be a set of n-D points that are close to point P with threshold T (i.e., a

cluster for P with T),

L P; Tð Þ ¼ H : D P�;H�ð Þ� Tf g, where D P�;H�ð Þ� T , 8i pi � hij jj j\T , and
||pi − hi|| be the Euclidian distance between 2-D points pi and hi.

The automatic version of this algorithm searches for the largest T, such that only
n-D points of the class, which contains point P, are in L(P, T) assuming that the
class labels are known,

max T : fH 2 L P; Tð Þ ) H 2 Class Pð Þg;

where (P) is a class that includes n-D point P.

7.2.3 Algorithm GLC-AL for Automatic Discovery
of Relation Combined with Interactions

The GLC-AL algorithm differs from the Fisher Linear Discrimination Analysis
(FDA), Linear SVM, and Logistic Regression algorithms in the criterion used for
optimization. The GLC-AL algorithm directly maximizes some value computed
from the confusion matrix (typically accuracy), A = (TP + TN)/
(TP + TN + FP + FN), which is equivalent to the optimization criterion used in the
linear perceptron (Freund and Schapire 1999) and Neural Networks in general. In
contrast, the Logistic Regression minimizes the Log-likelihood (Freedman 2009).
The GLC-AL algorithm also allows maximization of the truth positive (TP). Fisher
Linear Discrimination Analysis maximizes the ratio of between-class to
within-class scatter (Maszczyk and Duch 2008). The Linear SVM algorithm sear-
ches for a hyperplane with a large margin of classification, using the regularization
and quadratic programming (Cristianini and Shawe-Taylor 2000).

The automatic algorithm GLC-AL is combined with interactive capabilities as
described below. The progress in accuracy is shown after every m iterations of
optimization, and the user can stop the optimization at any moment to analyze the
current result. It also allows interactive change of optimization criterion, say from
maximization of accuracy to minimization of False Negatives (FN), which is
important in computer-aided cancer diagnostic tasks.

There are several common computation strategies to maximize accuracy A in
[−1, 1]n + 1 space of coefficients ki. Gradient-based search, random search, genetic
and other algorithms are commonly used to make the search feasible.

For the practical implementation, in this study, we used a simple random search
algorithm that starts from a randomly generated set of coefficients ki, computes the
accuracy A for this set, then generates another set of coefficients ki again randomly,
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computes A for this set, and repeats this process m times. Then the highest value of
A is shown to the user to decide if it is satisfactory. This is Step 1 of the algorithm
shown below. It is implemented in C++ and linked with OpenGL visualization and
interaction program that implements Steps 2–4. A user runs the process m times
more if it is not satisfactory. In Sect. 7.4.1, we show that this automatic Step 1 is
computationally feasible.

Validation Process Typical 10-fold cross validation with 90–10% splits produces
10 different 90–10% splits of data on the training and validation data. In this study,
we used 10 different 70–30% splits with 70% for the training set and 30% for the
validation set in each split. Thus, we have the same 10 tests of accuracy as in the
typical cross validation. Note that supervised learning tasks with 70–30% splits are
more challenging than the tasks with 90–10% splits.

These 70–30% splits were selected by using permutation of data. The splitting
process is as follows:

(1) indexing all m given samples from 1 to m, w = (1,2,…,m),
(2) randomly permuting these indexes, and getting a new order of indexes, p(w),
(3) picking up first 70% of indexes from p(w),
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(4) assigning samples with these indexes to be training data,
(5) assigning remaining 30% of samples to be validation data.

This splitting process also can be used for a 90–10% split or other splits.
The total validation process for each set of coefficients K includes:

(i) applying data splitting process,
(ii) computing accuracy A of classification for this K,
(iii) repeating (i) and (ii) t times (each times with different data split),
(iv) computing average of accuracies found in all these runs.

7.2.4 Visual Structure Analysis of Classes

For the visual structure analysis, a user can interactively:

• Select border points of each class, coloring them in different colors.
• Outline classes by constructing an envelope in the form of a convex or a

non-convex hull.
• Select most important coordinates by coloring them differently from other

coordinates.
• Select misclassified and overlapped cases by coloring them differently from

other cases.
• Draw the prevailing direction of the envelope and computing its location and

angle.
• Contrast envelopes of difference classes to find the separating features.

7.2.5 Algorithm GLC-DRL for Dimension Reduction

A user can apply the automatic algorithm for dimension reduction anytime a pro-
jection is made to remove dimensions that don’t contribute much to the overall line
in the x direction (angles close to 90°). The contribution of each dimension to the
line in the horizontal direction is calculated each time the GLC-AL finds
coefficients.

The algorithm for automatic dimension reduction is as follows:

Step 1 Setting up a threshold for the dimensions, which did not contribute to the
line significantly in the horizontal projection.

Step 2 Based on the threshold from Step 1, dimensions are removed from the data,
and the threshold is incremented by a constant.

Step 3 A new projection is made from the reduced data.
Step 4 A new confusion matrix is calculated
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The interactive algorithm for dimension reduction allows a user to pick up any
coordinate arrow Xi and remove it by clicking on it, which leads to the zeroing of its
projection. See coordinates X2 and X7 (in red) in Fig. 7.6b.

The computational algorithm for dimension reduction is as follows.

Step 1 The user visually examines the angles for each dimension, and determines
which one is not contributing much to the overall line.

Step 2 The user selects and clicks on the angle from Step 1.
Step 3 The dimension, which has been selected, is removed from the dataset and a

new projection is made along with a new confusion matrix. The dimension,
which has been removed, is highlighted.

Step 4 Step 4a: The user goes back to Step 1 to reduce further the dimensions
Step 4b: The user selects to find other coefficients with the remaining
dimensions for a better projection using the described above automatic
algorithm GLC-AL.

7.2.6 Generalization of the Algorithms for Discovering
Non-linear Functions and Multiple Classes

Consider a goal of visualizing a function

F xð Þ ¼ c11x1 þ c12x
2
1 þ c21x2 þ c22x

2
2 þ c3x3 þ . . . þ cnxn þ cnþ 1

Fig. 7.6 Interactive dimension reduction, angles for each dimension are shown on the bottom. a Initial
visualization of two classes optimized by GLC-AL algorithm; b visualization of two classes after 2nd
and 7th dimensions (red) with low contribution (angle about 90°) have been removed
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with quadratic components. For this F, the algorithm treats xi and xi
2 as two different

variables Xi1 and Xi2 with the separate coordinate arrows similar to Fig. 7.1.
Polynomials of higher order will have more than two such arrows. For a
non-polynomial function

F xð Þ ¼ c1f1 x1ð Þ þ c2f2 x2ð Þ þ . . . þ cnfn xnð Þ þ cnþ 1;

which is a linear combination of non-linear functions fi, the only modification in
GLC-L is the substitution of xi by fi(xi) in the multiplication with angles still defined
by the coefficients ci. The rest of the algorithm is the same.

For the multiple classes the algorithm follows the method used in the multino-
mial logistic regression by discrimination of one class against all other k−1 classes
together. Repeating this process k times for each class will give k discrimination
functions that allow the discrimination of all classes.

7.3 Case Studies

Below we present the results of five case studies. In the selection of data for these
studies, we followed a common practice in the evaluation of new methods—using
benchmark data from the repositories with the published accuracy results for
alternative methods as a more objective and less biased way than executing alter-
native methods by ourselves.

We used data from Machine Learning Repository at the University of California
Irvine (Lichman 2013), and the Modified National Institute of Standards and
Technology (MNIST) set of images of digits (LeCun et al. 2013). In addition, we
used S&P 500 data for the period that includes the highly volatile time of Brexit.

7.3.1 Case Study 1

For the first study, Wisconsin Breast Cancer Diagnostic (WBC) data set was used
(Lichman 2013). It has 11 attributes. The first attribute is the id number which was
removed and the last attribute is the class label which was used for classification.
These data were donated to the repository in 1992. The samples with missing values
were removed, resulting in 444 benign cases and 239 malignant cases.

Figures 7.7 and 7.8 show samples of screenshots where these data are interac-
tively visualized and classified in GLC-L for different linear discrimination func-
tions, providing accuracy over 95%. The malignant cases are drawn in red and
benign in blue.

Figures 7.7 and 7.9 show examples of how splitting the data into training and
validation affects the accuracy. Figure 7.7 shows results of training on the entire
data set, while Fig. 7.9 shows results of training on 70% of the data randomly
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Fig. 7.7 Results for Wisconsin breast cancer data showing the training, validation, and the entire
data set when trained on the entire data set. a Entire training and validation data set. Best
projections of one of the first runs of GLC-AL. Coefficients found on the entire data set; b data
split into 70/30 (training and validation) showing only 70% of the data, using coefficients and the
separation line found on the entire data set in a

Fig. 7.8 Results for
Wisconsin breast cancer data
showing the 30% of the entire
dataset (validation set). Using
the coefficients and the
separation line same as in
Fig. 7.7a. Accuracy goes up
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selected. The visual analysis of Fig. 7.9 shows that 70% of data used for training
are representative for the validation data too (Figs. 7.10, 7.11).

This is also reflected in similar accuracies of 97.07 and 96.56% on these training
and validation data. The next case studies are shown first on the entire data set to
understand the whole dataset. Section 7.3.4 presents accuracy on the training and
validation data with the same 70/30 split.

Figure 7.12a shows the results for the best linear discrimination function
obtained in the first 20 runs of the random search algorithm GLC-AL. The threshold
found by this algorithm automatically is shown as a yellow bar. Results for the
alternative discriminant functions from multiple runs of the random search by
algorithm GLC-AL are shown in Figs. 7.12b, 7.13, 7.14. 7.15 and 7.16.

In these examples, the threshold (yellow bar) is located at the different positions,
including the situations, where all malignant cases (red cases) are on the correct side
of the threshold, i.e., no misclassification of the malignant cases.

Figures 7.14, 7.15 and 7.16 show the process and results of interactive selecting
subsets of cases using two thresholds. This tight threshold interval selects heavily
overlapping cases for further detailed analysis and classification. This analysis
removed interactively the second dimension with low contribution without
decreasing accuracy (see Fig. 7.16).

Fig. 7.9 Results for
Wisconsin breast cancer data
showing the training dataset
when trained on the training
set. Data are split using 70%
(training set) to find
coefficients with the
projecting training set. Best
result from the first runs of
GLC-AL
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Fig. 7.10 Results for
Wisconsin breast cancer data
showing the validation dataset
(30% of the data) when
trained on the training set.
Using the coefficients found
by the training set in Fig. 7.9
and projecting the validation
data set

Fig. 7.11 Results for
Wisconsin breast cancer data
showing the entire data set
when trained on the training
set. Projecting the entire data
set using the coefficients
found by the training set in
Fig. 7.9
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7.3.2 Case Study 2

In this study, the Parkinson’s data set from UCI Machine Learning Repository
(Lichmam 2013) were used. This data set, known as Oxford Parkinson’s Disease
Detection Dataset, was donated to the repository in 2008. The Parkinson’s data set
has 23 attributes, one of them being status if the person has Parkinson’s disease.

The dataset has 195 voice recordings from 31 people of which 23 have
Parkinson’s disease. There are several recordings from each person. Samples with
Parkinson’s disease present are colored red in this study. In the data preparation step
of this case study, each column was normalized between 0 and 1 separately.

Figures 7.17, 7.18, 7.19, 7.20, 7.21 and 7.22 show examples of how splitting the
data into training and validation sets affects the accuracy. Figures 7.17, 7.18 and
7.19 show results of training on the entire dataset, while Fig. 7.20 shows results of
training on 70% of the data randomly selected.

The accuracies in Figs. 7.17, 7.18 and 7.19 are 85.19% for whole dataset,
88.32% for the 70% of the dataset and 77.59% for remaining 30% of the dataset. It
shows that accuracies depend of subsets used for the splits.

Fig. 7.12 Wisconsin breast cancer data interactively visualized and classified in GLC-L for
different linear discrimination functions: a using the best function of the first 20 runs of the random
search with a threshold found automatically shown as a yellow bar; b using an alternative function
from the first 20 runs with the threshold (yellow bar) at the positions having only one malignant
(red case) on the wrong side and higher overall accuracy than in a
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The visual analysis of Fig. 7.21 shows that 70% data used for training is also
representative for the validation data (30% of data) shown in Fig. 7.21. This is
reflected in similar accuracies of 91.24% on training data, 82.75 on validation data
and 88.71% overall data shown in Figs. 7.20, 7.21 and 7.22. The rest of illustration
for this case study in Fig. 7.22 is for the entire dataset to understand the dataset as a
whole. Section 7.4.1 presents accuracy on the training and validation with the same
70/30 split.

The result for the best discrimination function found from the second run of 20
epochs is shown in Fig. 7.23. In Fig. 7.24, five dimensions are removed, some of
them are with angles close to 90°. In addition, the separation line threshold is

Fig. 7.13 Wisconsin breast
cancer data interactively
visualized and classified in
GLC-L for different linear
discrimination functions.
Visualization from Fig. 7.12b
where the separation
threshold is moved to have all
malignant (red cases) on the
correct side with the tradeoff
in the accuracy
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Fig. 7.14 Wisconsin breast
cancer data interactively
projecting a selected subset.
Two thresholds are set from
Fig. 7.13 for selecting
overlapping cases

Fig. 7.15 Wisconsin breast
cancer data interactively
projecting a selected subset.
Overlapping cases from the
interval between two
thresholds from Fig. 7.14
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Fig. 7.16 Wisconsin breast cancer data interactively projecting a selected subset. Overlapping
cases from the interval between two thresholds, with the second dimension with low contribution
removed without decreasing accuracy

Fig. 7.17 Results with Parkinson’s disease data set showing the entire dataset when trained on
this dataset. Best projections of one of the first runs of GLC-AL. Coefficients found on the entire
dataset
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Fig. 7.18 Results with Parkinson’s disease data set showing only 70% of the data, using the
coefficients and the separation line found on the entire data set in Fig. 7.17

Fig. 7.19 Results with Parkinson’s disease data set showing the 30% using coefficients and the
separation line the same as in Fig. 7.17. Accuracy goes down
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moved relative to Fig. 7.23. In Fig. 7.25, the two limits for a subinterval are set to
zoom in on the overlapping samples.

In Fig. 7.26, where the subregion is projected and 42 samples are removed, the
accuracy only decreases by 4% from 86.15 to 82.35%. Out of those 42 cases, 40 of
them are samples of Parkinson’s disease (red cases), and only 2 cases are not
Parkinson’s disease. With such line separation as in Figs. 7.23, 7.24 and 7.25, it is
very easy to classify cases with Parkinson’s disease from this dataset (high True
Positive rate, TP); however, a significant number of cases with no Parkinson’s
disease are classified incorrectly (high False Positive rate, FP).

This indicates the need for improving FP more exploration, such as preliminary
clustering of the data, more iterations to find coefficients, or using non-linear dis-
criminant functions. The first attempt can be a quadratic function that is done by
adding a squared coordinate Xi

2 to the list of coordinates without changing the
GLC-L algorithm (see Sect. 7.2.6).

Fig. 7.20 Results with Parkinson’s disease data set showing the training dataset (70% of the
entire dataset) when trained on the training dataset to find the coefficients. Projecting training set,
best from the first runs of GLC-A
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7.3.3 Case Study 3

In this study, a subset of the Modified National Institute of Standards and
Technology (MNIST) database (LeCun et al. 2013) was used. Images of digit 0
(red) and digit 1 (blue) were used for projection with 900 samples for each digit. In
the preprocessing step, each image is cropped to remove the border. The images
after cropping were 22 � 22, which is 484 dimensions.

Figures 7.27, 7.28, 7.29, 7.30, 7.31 and 7.32 show examples of how splitting the
data into training and validation changes the accuracy. Figures 7.27, 7.28 and 7.29
shows the results of training on the entire data set, while Fig. 7.14 shows the results
of training on 70% of the data, which are randomly selected. The visual analysis of
Figs. 7.30, 7.31 and 7.32 shows that 70% of the data used for training are also
representative for the validation data.

This is also reflected in similar accuracies of 91.58 and 91.44% respectively. The
rest of this case study is illustrated on the entire data set to understand the dataset as
a whole. Accuracy on the training and validation can be found later in Sect. 7.4.1,
where a 70/30 split was also used.

Fig. 7.21 Results with Parkinson’s disease data set showing the validation data (30% of the data)
using coefficients found by the training set in Fig. 7.20 and projecting the validation dataset
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Figure 7.33 shows the results of applying the algorithm GLC-AL to these
MNIST images. It is the best discriminant function of the first run of 20 epochs with
the accuracy of 95.16%. Figure 7.34 shows the result of applying the automatic
algorithm GLC-DRL to these data and the discriminant function. It displays 249
dimensions and removes 235 dimensions, dropping the accuracy only slightly by
0.28%. Figure 7.35 shows the result when a user decided to run the algorithm
GLC-DRL a few more times. It removed 393 dimensions, kept and projected the
remaining 91 dimensions with the accuracy dropping to 83.77% from 93.84% as
shown in Fig. 7.34.

Figure 7.36 shows the result of user interaction with the system by setting up the
interval (using two bar thresholds) to select a subset of the data of interest in the
overlap of the projections. The selected data are shown in Fig. 7.37. Figure 7.38
shows the results of running GLC-AL algorithm on the subinterval to find a better
discriminant function and projection. Accuracy goes up by 5.6% in this subinterval.

Next, the automatic dimension reduction algorithm GLC-DRL is run on these
subinterval data, removing the 46 dimensions and keeping and projecting the 45
dimensions with the accuracy going up by 1% (see Fig. 7.39). Figure 7.40 shows

Fig. 7.22 Results with Parkinson’s disease data set showing the entire data set when trained on
the training set. Projecting the entire data set using coefficients found by the training set in
Fig. 7.20
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the result when a user decided to run the algorithm GLC-DRL a few more times on
these data, removing 7 more dimensions, and keeping 38 dimensions, with the
accuracy gaining 6.8%, and reaching 95.76%.

7.3.4 Case Study 4

Another experiment was done on a different subset of the MNIST database to see if
any visual information could be extracted on encoded images. For this experiment,
the training set consisted of all samples of digit 0 and digit 1 from the training set of
MNIST (60,000 images). There was 12,665 samples of digit 0 and digit 1 combined
in the training set.

The validation set consisted of all the samples of digit 0 and digit 1 from the
validation set of MNIST (10,000 images). There was 2115 samples of digit 0 and
digit 1 combined in the validation set. The preprocessing step for the data was the

Fig. 7.23 Additional Parkinson’s disease experiments. a Best projection from the second run of
20 epochs
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same as for case study 3, where pixel padding was removed resulting in 22 � 22
images.

A Neural Network Autoencoder, which was constructed using Python library Keras
(2017), encoded the images from 484 (22 � 22) dimensions to 24 dimensions.
François Chollet originally developed the Keras library (Chollet 2015). This study used
Keras version 1.0.2 running with python version 2.7.11. The Autoencoder had one
hidden layer and was trained on the training set (12,665 samples). Examples of
decoded images can be seen in Fig. 7.41. The validation set (2115 images) was passed
through the encoder to get its representation in 24 dimensions.

The goal of this case study is to compare side-by-side GLC-L visualization with
parallel coordinates. Figures 7.42, 7.43, 7.44 and 7.45 show the comparison of
these two visualizations using 24 dimensions found by the Auto encoder among the
original 484 dimensions. Figures 7.42 and 7.43 show the difference between the
two classes more clearly than Parallel coordinates (PC) in Figs. 7.44 and 7.45. The
shapes of the clouds in GLC-L are very different. The red class is elongated and the
blue one is more rounded and shifted to the right relative to the red cloud. It also
shows the separation threshold between classes and the accuracy of classification.

Fig. 7.24 Additional Parkinson’s disease experiments. Projection with 5 dimensions removed.
Separation line threshold is also moved. Accuracy stays the same
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Parallel coordinates in Figs. 7.44 and 7.45 do not show a separation between
classes and accuracy of classification. Only a visual comparison of Figs. 7.44 and
7.45 can be used for finding the features that can help in building a classifier. In
particular, the intervals on features 10, 8, 23, 24 are very different, but the overlap is
not, allowing the simple visual separation of the classes. Thus, there is no clear way
to classify these data using PCs. PCs give only some informal hints for building a
classifier using these features.

7.3.5 Case Study 5

This study uses S&P 500 data for the first half of 2016 that include highly volatile
S&P 500 data at the time of the Brexit vote. S&P 500 lost 75.91 points in one day
(from 2113.32 to 2037.41) from 23 June to 24 June 2016 and continued dropping to
27 June to 2000.54 with total loss of 112.78 points since 23 June. The loss of value
in these days is 3.59 and 5.34%, respectively.

Fig. 7.25 Additional Parkinson’s disease experiments. Two limits for a subinterval are set
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The goal of this case study is predicting S&P 500 up/down changes on Fridays
knowing S&P 500 values for the previous four days of the week. The day after the
Brexit vote is also a Friday. Thus, it is also of interest to see if the method will be
able to predict that S&P 500 will go down on that day.

Below we use the following notation to describe the construction of features
used for prediction:

S1(w), S2(w), S3(w), S4(w), and S5(w) are S&P 500 values for Monday–Friday,
respectively, of week w;

Di(w) = Si+1(w) − Si(w) are differences in S&P 500 values on adjacent days,
i = 1:4;

Class(w) = 1 (down) if D4(w) < 0,
Class(w) = 2 (up) if D4(w) > 0,
Class(w) = 0 (no change) if D4(w) = 0.

We computed the attributes D1(w)−D4(w) and Class(w) from the original S&P
500 time series for the trading weeks of the first half of 2016. Attributes D1–D3

Fig. 7.26 Additional Parkinson’s disease experiments. Only cases for the subinterval are
projected with the separation line moved. Accuracy drops
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Fig. 7.28 MNIST subset for digits 0 and 1 dataset showing 70% of the data, using coefficients
and separation line found on the entire data set in Fig. 7.27

Fig. 7.27 MNIST subset for digits 0 and 1 dataset showing the entire dataset when trained on this
dataset. Best projections of one of the first runs of GLC-A. Coefficients found on the entire data set
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Fig. 7.29 MNIST subset for digits 0 and 1 dataset showing 30% of the data, using coefficients
and separation line found on the entire data set in Fig. 7.27

Fig. 7.30 MNIST subset for digits 0 and 1 data set showing training dataset (70% of the whole
dataset) when trained on the training dataset to find the coefficients. Projecting training set, best
from the first runs of GLC-A
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Fig. 7.31 MNIST subset for digits 0 and 1 dataset showing validation dataset (30% of the whole
dataset) when trained on the training dataset to find the coefficients. Projecting validation set

Fig. 7.32 MNIST subset for digits 0 and 1 data set showing the entire data set when trained on the
training set. Projecting the entire data set using the coefficients found by the training set
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were used to predict Class (up/down). We excluded incomplete trading weeks,
getting 10 “Friday down” weeks, and 12 “Friday up” weeks available for training
and validation. We used multiple 60%:40% splits of these data on training and
validation due to a small size of these data.

The Brexit week was a part of the validation data set and was never included in
the training datasets. Figures 7.46, 7.47, 7.48 and 7.49 show the best results on the
training and validation data, which are: 76.92% on the training data, and 77.77% on
the validation data.

We attribute the greater accuracy on the validation data to a small dataset. These
accuracies are obtained for two different sets of coefficients.

The accuracy of one of the runs was 84.81% on training data, but its accuracy on
validation was only 55.3%. The average accuracy on all 10 runs was 77.78% on all
training data, and 61.12% on the validation data.

While these accuracies are lower than in the case studies 1–4, they are quite
common in such market predictions (see Chap. 8). The accuracy of the down
prediction for 24 June (after Brexit) in those 10 runs was correct in 80% of the runs,
including the runs shown in Figs. 7.47 and 7.49 as green lines.

Fig. 7.33 Experiments with 900 samples of MNIST dataset for digits 0 and 1. Results for the best
linear discriminant function of the first run of 20 epochs
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7.4 Discussion and Analysis

7.4.1 Software Implementation, Time and Accuracy

All algorithms, including visualization and GUI, were implemented in OpenGL and
C++ in the Windows Operating System. A Neural Network Autoencoder was
implemented using the Python library Keras (Chollet 2015; Keras 2017). Later, we
expect to make the programs publicly available.

Experiments presented in Sect. 7.3 show that 50 iterations produce a nearly
optimal solution in terms of accuracy. Increasing the number of iterations to a few
hundred did not show a significant improvement in the accuracy after 50 epochs. In
the cases where better coefficients were found past 50 epochs, the accuracy increase
was less than 1%.

The automatic step 1 of the algorithm GLC-AL in the case studies above had
been computationally feasible. For m = 50 (number of iterations) in the case study,
it took 3.3 s to get 96.56% accuracy on a PC with 3.2 GHz quad core processor.
Running under the same conditions, case study 2 took 14.18 s to get 87.17%
accuracy, and for case study 3, it took 234.28 s to get 93.15% accuracy. These

Fig. 7.34 Experiments with 900 samples of MNIST dataset for digits 0 and 1. Results of the
automatic dimension reduction displaying 249 dimensions with 235 dimensions removed with the
accuracy dropped by 0.28%
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accuracies are on the validation sets for the 70/30 split of data into the training and
validation sets. In the future, work on a more structured random search can be
implemented to decrease the computation time in high dimensional studies.

Table 7.1 shows the accuracy on training and validation data for the case studies
1–3. We conducted 10 different runs of 50 epochs each with the automatic step 1 of
the algorithm GLC-AL. Each run had freshly permutated data, which were split into
70% training and 30% validation as described in Sect. 7.2.3. In some runs for case
study 1, the validation accuracy was higher than the training one, which is because
the data set is relatively small and the split heavily influences the accuracy.

The training accuracies in Table 7.1 are the highest ones obtained in each run of
the 50 epochs. Validation accuracies in this table are computed for the discrimi-
nation functions found on respective training data. The variability of accuracy on
training data among 50 epochs in each run is quite high. For instance, the accuracy
varied from 63.25 to 97.91% with the average of 82.46% in case study 1.

Fig. 7.35 Experiments with 900 samples of MNIST dataset for digits 0 and 1. Automatic
dimension reduction, which is run a few more times removing 393 dimensions and keeping 91
dimensions with dropped accuracy
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Fig. 7.36 Experiments with 900 samples of MNIST dataset for digits 0 and 1. Thresholds for a
subinterval are set (green bars)

Fig. 7.37 Experiments with a 900 samples of MNIST dataset for digits 0 and 1 with automatic
dimension reduction. Data between the two green thresholds are visualized and projected
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7.4.2 Comparison with Other Studies

Case Study 1 For the Wisconsin breast cancer (WBC) data, the best accuracy of
96.995% is reported in [24] for the 10 fold cross-validation tests using SVM. This
number is slightly above our average accuracy of 96.955 on the validation data in
Tab1e 1, using the GLC-L algorithm. We use the 70:30 split, which is more
challenging, for getting the highly accurate training, than the 10-fold 90:10 split
used in that study. The best result on validation is 98.04%, obtained for the run 8
with 97.49% accuracy on training (see Table 7.1) that is better than 96.995% in
Salama et al. (2012).
The best results from previous studies collected in Salama et al. (2012) include
96.84% for SVM-RBF kernel (Aruna et al. 2011) and 96.99% for SVM in
(Christobel and Sivaprakasam 2011). In Salama et al. (2012) the best result by a
combination of major machine learning algorithms implemented in Weka (2017) is
97.28%. The combination includes SVM, C4.5 decision tree, naïve Bayesian
classifier and k-Nearest Neighbors algorithms. This result is below the 98.04% we
obtained with GLC-L. It is more important in the cancer studies to control the
number of misclassified cancer cases than the number of misclassified benign cases.
The total accuracy of classification reported (Salama et al. 2012) does not show

Fig. 7.38 Experiments with a 900 samples of MNIST dataset for digits 0 and 1 with automatic
dimension reduction. GLC-AL algorithm on the subinterval to find a better projection. Accuracy
goes up by 5.6% in the subregion
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these actual false positive and false negative values, while figures in Sect. 7.3.2 for
GLC-L show them along with GLC-L interactive tools to improve the number of
misclassified cancer cases.

This comparison shows that the GLC-L algorithm can compete with the major
machine learning algorithms in accuracy. In addition, the GLC-L algorithm has the
following important advantages: it is (i) simpler than the major machine learning
algorithms, (ii) visual, (iii) interactive, and (iv) understandable by a user without
advanced machine learning skills. These features are important for increasing user
confidence in the learning algorithm outcome.

Case Study 2 In Ramani et al. (2011) 13 Machine Learning algorithms have been
applied to these Parkinson’s data. The accuracy ranges from 70.77% for Partial
Least Square Regression algorithm, 75.38% to ID3 decision tree, to 88.72% for
Support Vector Machine, 97.44% for k-Nearest Neighbors and 100% for Random
decision tree forest, and average accuracy equal to 89.82% for all 13 methods.

The best results that we obtained with GLC-L for the same 195 cases are 88.71%
(Fig. 7.22) and 91.24% (Fig. 7.20). Note that the result in Fig. 7.20 was obtained
by using only 70% of 195 cases for training, not all of them. The split for training
and validation is not reported in Ramani et al. (2011), making the direct comparison
with results from GLC-L difficult. Just by using more training data, the commonly

Fig. 7.39 Experiments with a 900 samples of MNIST dataset for digits 0 and 1 with automatic
dimension reduction. Result of automatic dimension reduction running a few more times that
removes 46 dimensions and keeps 45 dimensions with accuracy going up by 1%
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used split 90:10 can produce higher accuracy than a 70:30 split. Therefore, the only
conclusion that can be made is that the accuracy results of GLC-L are comparable
with average accuracy provided by common analytical machine learning
algorithms.

Case Study 3 While we did not conduct the full exploration of MNIST database
for all digits, the accuracy with GLC-AL is comparable and higher than the
accuracy of other linear classifiers reported in the literature for all digits and whole
dataset. Those errors are 7.6% (accuracy 92.4%), for a pairwise linear classifier, and

Fig. 7.41 Examples of original and encoded images. a Example of a digit after preprocessing;
b decoded image from 24 values into 484. The same image as in a; c another example of a digit
after preprocessing; d decoded image from 24 values into 484. The same image as in c

Fig. 7.40 Experiments with a 900 samples of MNIST dataset for digits 0 and 1 with automatic
dimension reduction. Result of automatic dimension reduction running a few more times that
removes 7 more dimensions and keeps 38 dimensions with accuracy going up 6.8% more
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Fig. 7.42 Encoded digit 0 and digit 1 on and GLC-L, using 24 dimensions found by the
Autoencoder among 484 dimensions. Results for the best linear discriminant function of the first
run of 20 epochs

Fig. 7.43 Encoded digit 0
and digit 1 on GLC-L, using
24 dimensions found by the
Autoencoder among 484
dimensions. Another run of
20 epochs, best linear
discriminant function from
this run. Accuracy drops 1%

Fig. 7.44 Encoded digit 1 in
Parallel Coordinates using 24
dimensions found by the
Autoencoder among 484
dimensions. Each vertical line
is one of the 24 features
scaled in the [0, 35] interval.
Digit 1 is visualized on the
parallel coordinates
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12 and 8.4% (accuracy 88 and 91.6%), for two linear classifiers (1-layer NN)
(LeCun et al. 1998). From 1998, dramatic progress was reached in this dataset with
non-linear SVM and deep learning algorithms with over 99% accuracy (LeCun
et al. 2013). Therefore, future application of the non-linear GLC-L (as outlined in
Sect. 7.2.6) also promises higher accuracy.

For Case study 4, the comparison with parallel coordinates is presented in
Sect. 7.3.4. For case study 5, we are not aware of similar experiments, but the
accuracy in this case study is comparable with the accuracy of some published stock
market predictions in the literature.

Fig. 7.46 Run 3: data split
60%/40% (training/
validation) for the coefficients
K = (0.3, 0.6, −0.6). Results
on training data (60%) for the
coefficients found on these
training data

Fig. 7.45 Encoded digit 0 in
Parallel Coordinates using 24
dimensions found by the
Autoencoder among 484
dimensions. Each vertical line
is one of the 24 features
scaled in the [0, 35] interval.
Digit 0 is visualized in
Parallel Coordinates
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Fig. 7.48 Run 7: data split
60%/40% (training/
validation) for coefficients
K = (−0.3, −0.8, 0.3). Results
on training data (60%) for
coefficients found on these
training data

Fig. 7.47 Run 3: data split
60%/40% (training/
validation) for the coefficients
K = (0.3, 0.6, −0.6). Results
on validation data (40%) for
coefficients found on the
training data. A green line (24
June after Brexit) is correctly
classified as S&P 500 down
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7.5 Conclusion

This chapter presented GLC-L, GLC-IL, GLC-AL, and GLC-DRL algorithms, and
their use for knowledge discovery in solving the machine learning classification
tasks in n-D interactively. This chapter presented the five case studies to evaluate
these algorithms using the data from three domains: computer-aided medical
diagnostics, image processing, and finance (stock market). The utility of our
algorithms was illustrated by these empirical studies.

The main advantages and benefits of these algorithms are:

• lossless (reversible) visualization of n-D data in 2-D as graphs,
• absence of the self-crossing of graphs (planar graphs),
• dimension scalability (the case studies had shown the success with 484

dimensions),
• scalability to the number of cases (interactive data clustering increases the

number of data cases that can be handled),
• integration of automatic and interactive visual means,
• reached the accuracy on the level of analytical methods,
• opportunities to justify the linear and non-linear models versus guessing a class

of predictive models,
• simple to understand for a non-expert in Machine Learning (can be done by a

subject matter expert with minimal support from the data scientist),
• supports multi-class classification,
• easy visual metaphor of a linear function, and
• applicable (scalable) for discovering patterns, selecting the data subsets, clas-

sifying data, clustering, and dimension reduction.

Fig. 7.49 Run 7: data split
60%/40% (training/
validation) for coefficients
K = (−0.3, −0.8, 0.3). Results
on validation data (40%) for a
coefficient found on training
data. A green line (24 June
after Brexit) is correctly
classified as S&P 500 down
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In all experiments in this chapter, 50 simulation epochs were sufficient to get
acceptable results. These 50 epochs correspond to computing 500 values of the
objective function (accuracy), due to ten versions of training and validation data in
each epoch. The likely contribution to rapid convergence of data that we used is the
possible existence of many “good” discrimination functions that can separate
classes in these datasets accurately enough. This includes the situations with a wide
margin. In such situations, a “small” number of simulations can find “good”
functions. The indirect confirmation of multiplicity of discriminant functions is a
variety of machine learning methods that produced quite accurate discrimination on
these data that can be found in the literature. These methods include SVM, C4.5
decision tree, naïve Bayesian classifier, k-Nearest Neighbors, and Random forest.
The likely contribution of the GLC-AL algorithm is in random generation of
vectors of coefficients {K}. This can quickly cover a wide range of K in the
hypercube [−1, 1]n + 1 and capture K that quickly gives high accuracy. Next, a
“small” number of simulations is a typical fuzzy set with multiple values. In our
experiments, this number was about 50 iterations. Building a full membership
function of this fuzzy set is a subject of future studies on multiple different datasets.

Overfitting rejects relevant cases by considering them irrelevant. In contrast,
underfitting accepts irrelevant cases, considering them as relevant. The described
visual analytics can support improving the control of underfitting (overgeneral-
ization) and overfitting in learning algorithms known as bias-variance dilemma
(Domingos 2000). In this way, it helps selecting a class of machine learning models
more rigorously.

A common way to deal with overfitting is adding a regularization term to the
cost function that penalizes the complexity of the discriminant function, such as
requiring its smoothness, certain prior distributions of model parameters, limiting
the number of layers, certain group structure, and others (Domingos 2000).
Moreover, such cost functions as the least squares can be considered as a form of
regularization for the regression task. The regularization approach makes ill-posed
problems mathematically solvable. However, those extra requirements often are
external to the user task. For instance, the least-square method may not optimize the
error for most important samples because it is not weighted. Thus, it is difficult to
justify a regularizer including k parameter, which controls the importance of the
regularization term.

The linear discriminants, considered in this chapter, are among the simplest
discriminants with lower variance predictions outside training data and do not need
to be penalized for complexity. Further simplification of linear functions commonly
is done by dimension reduction that is explored in Sect. 7.2.5. Linear discriminants
suffer much more from overgeneralization (higher bias).

The expected contribution of the visual analytics, discussed in the chapter to deal
with the bias-variance dilemma, is not in a direct justification of a regularization
term to the cost function. It is in the introduction of another form of a regularizer
outside of the cost function. In general, it is not required for a regularizer to be a part
of the cost function to fulfil its role of controlling underfitting and overfitting.
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The opportunity for such an outside control can be illustrated by multiple figures
in this chapter. For instance, Fig. 7.7a shows that cases of class 1 form an elongated
shape, and all cases of class 2 form another elongated shape on the training data.
The assumption that the training data are representative for the whole data leads to
the expectation that all new data of each class must be within these elongated
shapes of the training data with some margin. Figure 7.7b shows that this is the
case for validation data from Fig. 7.8. The analysis shows that only a few cases of
validation data are outside of the convex hulls of the respective elongated shapes of
classes 1 and 2 of the training data. This confirms that these training data are
representative for the validation data. The linear discriminant in Fig. 7.7a, b, shown
as a yellow bar, classifies any case on the left to class 1 and any case on the right to
class 2, i.e., significantly underfits (overgeneralizes) elongated shapes of the classes.

Thus, elongated shapes and their convex hull can serve as alternative regular-
izers. We outlined the idea of using convex hulls in Sect. 7.2.4. The actual convex
hulls have been constructed in several chapters for several datasets, e.g., Chap. 5
(Sect. 5.6 for Iris data). Additional requirements may include smoothness or sim-
plicity of an envelope at the margin distance µ from the elongated shapes. Here µ
serves as a generalization parameter that plays a similar role that k parameter plays
to control the importance of the regularization term within a cost function.

Two arguments for simpler linear classifiers versus non-linear classifiers are
presented (Pereira et al. 2009): (1) non-linear classifiers not always provide a
significant advantage in performance, and (2) the relationship between features and
the prediction can be harder to interpret for non-linear classifiers. Our approach,
based on a linear classifier with non-linear constraints in the form of envelopes,
takes a middle ground, and thus provides an opportunity to combine advantages
from both linear and non-linear classifiers.

While the results are positive, these algorithms can be improved in multiple
ways. Future studies are to expand this approach to knowledge discovery in datasets
of larger dimensions with the larger number of instances and with heterogeneous
attributes. Other opportunities include using GLC-L and related algorithms: (a) as a
visual interface to larger repositories: not only data, but models, metadata, images,
3-D scenes and analyses, (b) as a conduit to combine visual and analytical methods
to gain more insight.
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Chapter 8
Knowledge Discovery and Machine
Learning for Investment Strategy
with CPC

An economist is an expert who will know tomorrow why the things
he predicted yesterday didn’t happen today.

Laurence J. Peter

8.1 Introduction

Knowledge discovery is an important aspect of human cognition. The advantage of
the visual approach is in the opportunity of solving easier perceptual tasks instead
of complex cognitive tasks. However for cognitive tasks such as financial invest-
ment decision making, this opportunity faces the challenge that financial data are
abstract multidimensional and multivariate, i.e., outside of traditional visual per-
ception in 2-D or 3-D world. This chapter presents an approach to find an
investment strategy based on pattern discovery in multidimensional space of
specifically prepared time series.

Visualization based on the lossless Collocated Paired Coordinates (CPC) defined
in Chap. 2 plays an important role in this approach for building the criteria in the
multidimensional space for finding an efficient investment strategy. Criteria gen-
erated with the CPC approach allow reducing/compressing space using simple
directed graphs with the beginnings and the ends located in different time points.

The dedicated subspaces constructed for EUR/USD foreign exchange market
time series include characteristics such as moving averages, differences between
moving averages, changes in volume, adjusted moving averages known as the
Bollinger Band, etc. Extensive simulation studies in learning/testing context are
presented below. Effective relations were found for one-hour EURUSD pair for
recent and historical data. In this chapter, the method is presented for one-day
EURUSD time series in 2-D and 3-D visualization spaces. The main positive result
is finding the property in the visualization space that leads to a profitable investment
decision (long, short position or nothing). This property is the effective split of a
normalized 3-D space on 4 � 4 � 4 cubes. The strategy is ready for implemen-
tation in algotrading mode.
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While cognitive algorithms intend to mimic the functioning of the human brain
for improving human decision-making, often the scope of mimicking is not obvi-
ous. This is evident for the tasks with unclear human decision that must be mim-
icked. A market investment decision is one example with this difficulty due to
complexity and uncertainty of the task and its high dynamics, i.e., a strategy that
was correct at time t is not correct at time t + 1.

Thus for such tasks, we need two-stage cognitive algorithms:

• mimicking good human decision process at the upper level, and
• mimicking the functioning of the human brain to reproduce that good human

decision.

Both stages are active areas of research. This chapter focuses on the first stage
for market investment decisions. The concept of dynamic logic for human decisions
at the upper level is presented in Kovalerchuk et al. (2012). It includes the sequence
of decision spaces and criteria from less specific to more specific.

This concept is applied in this chapter to the development of the investment strategy,
where a lossless visual representation of n-D data serves as an initial form of the
decision space and more specifics are learned later using a machine learning technique.

Difficulties of defining investment strategy algorithmically are well documented
in the literature (Kovalerchuk and Vityaev 2000; Bingham 2014; Li et al. 2009;
Martin 2001; Wilinski et al. 2014; Guo et al. 2014; Hoffmann 2014).

Multivariate and multidimensional nature of data complicates both knowledge
representation and discovery including:

• identifying a class of predictive models (SVM, regression, ANN, kNN and so
on) with associated trading strategies with parameters to be learned, and

• analyzing multidimensional data with a naked eye to stimulate both intuitive
discovery of patterns and formal models (Lian et al. 2015; Wichard and
Ogorzalek 2004).

The most efficient strategy should take into account the proper balance between
both directions of investment (long and short positions) typical for foreign
exchange markets (the pair EURUSD belongs to them). The best use of the market
potential is reached when numbers of both long and short positions taken are
comparable. The methodology presented in this chapter allows the adaptation of the
strategy to this symmetry.

The goal is finding visualization-inspired investment strategy using multivariate
and multidimensional data. One of the main conclusions is that the new lossless
Collocated Paired Coordinates approach is an effective instrument for such inspi-
ration in the synthesis of the investment strategy.

Chapter 2 contains detailed steps of CPC. Below we summarize them:

(1) Representing a normalized to [0, 1] n-D point x ¼ x1; x2; . . .; xn�1; xnð Þ, as a set
of pairs x1; x2ð Þ; . . .; xi; xiþ 1ð Þ; . . .; xn�1; xnð Þ;

(2) Drawing 2-D orthogonal Cartesian coordinates X1;X2ð Þ; . . .; Xi;Xiþ 1ð Þ; . . .;
Xn�1;Xnð Þ
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with all odd coordinates collocated on a single horizontal axis X and all even
coordinates collocated on a single vertical axis Y;

(3) Drawing each pair xi; xiþ 1ð Þ in Xi;Xiþ 1ð Þ;
(4) Connecting pairs by arrows to form a graph x� : x1; x2ð Þ ! x3; x4ð Þ ! . . .

! xn�1; xnð Þ.
This graph x* represents n-D point x in 2-D losslessly, i.e., all values of x can be

restored. Thus, this visualization is reversible representing all n-D data without loss
of them. For the odd n the last pair can be xn; xnð Þ or xn; 0ð Þ .

For 3-D visualization, the pairs are substituted by triples

x1; x2; x3ð Þ; . . .; xi; xiþ 1; xiþ 2ð Þ; . . .; xn�2;xn�1; xn
� �

:

If n is not divisible by 3, e.g., n = 7 then for n = 7 we have triples
x1; x2; x3ð Þ; x4; x5; x6ð Þ; x7; x7; x7ð Þ or triples x1; x2; x3ð Þ; x4; x5; x6ð Þ; x7; 0; 0ð Þ. If
n = 8 then we have triples x1; x2; x3ð Þ; x4; x5; x6ð Þ; x7; x8; x8ð Þ or triples
x1; x2; x3ð Þ; x4; x5; x6ð Þ; x7; x8; 0ð Þ.
Pairs of variables xi; xiþ 1ð Þ for time series can be sequential pairs of values at

time t and t + 1. In this way a 4-D point x can be formed as vt; yt; vtþ 1; ytþ 1ð Þ,
where v is volume and y is profit at two consecutive times t and t + 1. Respectively
a 4-D point vt; yt; vtþ 1; ytþ 1ð Þ will be represented in 2-D as an arrow from 2-D
point vt; ytð Þ to another 2-D point vtþ 1; ytþ 1ð Þ.

This simple graph fully represents 4-D data. It has a clear and simple meaning—
the arrow going up and to the right indicates the growth in both profit and volume
from time t to t + 1. Similar interpretations have other arrow directions. To make
visualization more clear the time pairs starting from odd time t are visualized
separately from time pairs starting from even time t. This helps to observe better the
beginnings and ends of events.

Similarly, a 6-D point x can be formed as vt; dMAt; pt; dMA;tþ 1; vtþ 1; ptþ 1
� �

,
where dMA is the difference between the moving averages for some windows. We
represent this 6-D point in 3-D as an arrow from 3-D point vt; yt; dMAtð Þ to 3-D point
vtþ 1; dMA;tþ 1; ytþ 1
� �

. This simple graph fully represents 6-D data point with a
clear meaning—the arrow going up and to the right indicates the growth in all three
attributes: profit, dMA, and volume from time t to t + 1.

Several figures such as Figs. 8.5, 8.6, 8.7, 8.8, 8.9, 8.16, 8.17 and 8.18 show and
use this visualization. To shorten notation for the spaces in this chapter we will use
notation like Yr;Vrð Þ instead of Yrt;Vrt; Yr;tþ 1;Vr;tþ 1

� �
, and Yr; dMAr;Vrð Þ, instead

of Yrt;Vrt; dMArt; Yr;tþ 1; dMAr;tþ 1;Vr;tþ 1
� �

where index r stands for normalized
profit, volume and dMA. Thus, 2-D and 3-D notations Yr;Vrð Þ and Yr; dMAr;Vrð Þ will
represent 4-D and 6-D spaces, respectively.

The general CPC concept can be applied also more generally for time series of
pairs of variables volume v and profit y. Consider consecutive time moments
t; tþ 1; . . .; tþ k � 1 and a 2 k-D point
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x ¼ vt; yt; vtþ 1; ytþ 1; vtþ 2; ytþ 2; . . .; vtþ k�1; ytþ k�1ð Þ;

where v is volume and y is profit as before. This 2k-D point is represented in 2-D as
a directed graph x* (path that starts in point vt; ytð Þ and ends in vtþ k�1; ytþ k�1ð Þ.
This graph fully represents 2k-D data point. In this general case, the path that is
going up and to the right indicates the growth in both profit and volume from time
t to t + k.

Besides CPC the whole class of General Line Coordinates described in previous
chapters opens multiple opportunities to represent n-D financial data visually and
discovering patterns in these data.

Below we present the stages of the process, a visual method for building an
investment strategy using 4-D and 6-D data in 2-D and 3-D spaces, results of 4-D
and 6-D pattern discovery in 2-D and 3-D visualization spaces, summarize results
and outline the future research.

8.2 Process of Preparing of the Strategy

8.2.1 Stages of the Process

The first stage of the process is selecting features/indicators from the time series to
prepare the variables for creating the multivariate space. The selected features should
meet some conditions related to correlation (Hellwig 1969). We selected the features
from many well-known indicators such as Bollinger Bands (BB), difference between
moving averages (dMA), volume (V). Some of them were transformed to derivatives of
the base indicators such as difference between current and previous Volume (dV),
current relative value of the observed variable Yr and others. This catalogue is open for
modification and expansion in case of the insufficient accuracy of prediction.

The selected features/indicators are derived from time series with the same
frequency of sampling as underlying instrument. In this chapter it is 1 h EURUSD
pair. All indicators are normalized to [0, 1], excluding BB due to the nature of this
indicator.

The second stage is finding good spaces Yr;Prð Þ or Yr;Pr1;Pr2ð Þ, where Yr is the
main relative normalized outcome in time series, Pr1, and Pr2 are indicators used for
space creating, e.g., Pr1; Pr2 belong to Br; Vr; dVr; dMAr; etcf g. The relative
variables with index r are normalized. Inside the spaces the process is looking for
areas or subspaces such as squares, rectangles, cubes or cuboids where the number
of profitable events prevails. The event is profitable if it signals to open long or
short position in this point of the space and at this time. The areas with big
asymmetry between the number of long and short positions are considered as
promising from investment strategy point of view. Such asymmetric areas are
identified in two steps: (a) by visual and analytical discovery in the CPC space, and
(b) by a machine learning process of verification on testing data.
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The third stage is testing and verifying the strategy by constructing a cumulative
profit curve. The curve with a significant profit and a small variance (e.g., with
appropriate Calmar ratio (Young 1991) for evaluating risk) is used as a measure of
success of the algorithm along with comparison with the result to typical benchmarks.

8.2.2 Variables

Below we list the variables used in this study that include the main outcome and its
features/indicators such as based on open, close, high and low values of a variable
of trading interest known collectively as a candle or a candlestick.

The main outcome variable is Yri ¼ ðYi � Ymin iÞ= Ymax i � Ymin ið Þ. This is relative
position of Close value Y ið Þ of current candle normalized to [0, 1] between min and
max of last kb candles, where kb is a parameter of the strategy (in the first exper-
iment presented below kb = 120), where ic is the current value of index i and

Ymax i ¼ max Yið Þ; for i ¼ ic � kb . . . ic

Ymin i ¼ minðYiÞ; for i ¼ ic � kb . . . ic

The six indicators are listed below.

(1) The relative value of position Y(i) with respect to Bollinger Band is denoted as Br,
Br ið Þ ¼ Y ið Þ � Bd ið Þð Þ= Bup ið Þ � Bd ið Þ� �

. Y(i) can be out of this normalized
Bollinger Band range [0, 1]. Here Y ið Þ is the Close value of i-candle in the time
series in i-time, and the Candle is a vector of 4 values known as OHLC,

Ymax ið Þ ¼ max Y i� kb : ið Þð Þ;

Ymin ið Þ ¼ min Y i� kb : ið Þð Þ;

kb is the number of candles back to calculate relative variables;

BBd ið Þ ¼ MAb ið Þ � kBb � Stb ið Þ;

MAb ið Þ ¼ meanðY i� Bb : ið Þ is the average value of last Bb Closes, and
Stb ið Þ ¼ stdðY i� Bb : ið Þ is the standard deviation for last Bb-candles.

(2) Relative Volume, Volr, is the measure of the position of current Volume between
the min and max of Volume within the determined number of last candles (here
it is kb candles). Volume is a measure of how much of a given financial
asset has been traded in the current period. In the experiments EURUSD 1 h
series was used, thus the period for volume observation is one hour.

(3) difference between moving averages, dMAr , where
dMA ið Þ ¼ MAf ið Þ �MAs ið Þ,
MAf ið Þ ¼ mean Y i� f : i� 1ð Þð Þ is moving average with f-parameter
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MAs ið Þ ¼ mean Y i� s : i� 1ð Þð Þ;

f and s are the numbers of candles to calculate moving averages. For the
first experiment f = 5 (“fast”), and s = 28 (“slow”),
dMAr ið Þ ¼ dMA ið Þ � dMAmin ið Þð Þ= dMAmax ið Þ � dMAmin ið Þð Þ is the relative differ-
ence of MA;

dMAmax ið Þ ¼ max dMA i� kb : ið Þð Þ;

dMAmin ið Þ ¼ min dMA i� kb : ið Þð Þ:

(4) Relative return, rr,

rr ið Þ ¼ r ið Þ � rmin ið Þð Þ= rmax ið Þ � rmin ið Þð Þ;

where
rmax ið Þ ¼ max r i� kb : ið Þð Þ is return max in last kb ¼ 120 candles,

rmin ið Þ ¼ min r i� kb : ið Þð Þ;

r ið Þ ¼ Close ið Þ � Close i� 1ð Þ;

Close is the last value in i-candle OHLC.
(5) Relative difference between real value of Y and its prediction, dyr. Prediction is

performed with a linear regression model.

dyr ið Þ ¼ dy ið Þ � dymin ið Þ� �
= dymax ið Þ � dymin ið Þ� �

;

where

dy ið Þ ¼ Close i� 1ð Þ � ynext ið Þ;

ynext ið Þ is the prediction in i-Close based on linear regression;

dymax ið Þ ¼ max dy i� kb : ið Þð Þ;

dymin ið Þ ¼ min dy i� kb : ið Þð Þ:

(6) First derivative dVr of the Volume, V. It is also a relative variable:

dVr ið Þ ¼ dV ið Þ � dVmin ið Þð Þ= dVmax ið Þ � dVmin ið Þð Þ;

where
dV ið Þ ¼ Vi�1 � Vi�2; dVmax ið Þ ¼ max dV i� kb : ið Þð Þ; dVmin ið Þ ¼ min dV i� kb : ið Þð Þ.
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8.2.3 Analysis

The analysis involves three important parameters: f (numbers of candles to calculate
fast moving averages), s (numbers of candles to calculate slow moving averages),
and kb (number of “back” candles). Additional parameters include Stop Loss that is
popular in the broker platforms mechanism to avoid big losses. The variable Yr and
every variable from a set S ¼ Br; Vr; dMAr; rr; dyr; dVr

� �
are used to create 2-D

spaces such as Br; Yrð Þ; Vr;Yrð Þ and so on.
Considering the variables as traditional time series allows us to compare each

pair (Pr, Yr) as shown in Fig. 8.1, where Pr is one of the variables from the set S. In
Fig. 8.1, it is the first pair.

Figure 8.1 shows a small part of time series (100 one-hour candles of
EURUSD). It allows observing a modest correlation with the correlation coefficient
equal 0.49 that can be a potential source for a trading strategy rule. Figures 8.2 and
8.3 show far worse situations for finding patterns to construct a trading strategy
with correlation coefficients only from 0.055 to 0.15.

Among other indicators from S only dMAr has a modest correlation coefficient
(0.45) with Yr. See Fig. 8.4. For other pairs the coefficients are much smaller. The
visualization of relations of observed variable Yr with variables Vr or dMAr in
Figs. 8.1 and 8.4 allows getting a preliminary idea for classification of variables on
promising and not promising by observing the actual position of correlated vari-
ables. However, even for these two selected pairs of variables, it is hard to expect
building an efficient trading strategy using these relatively low correlations. Surely,
we cannot base high prediction accuracy expectations on these weak correlated
variables.

0 20 40 60 80 100
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1Fig. 8.1 Comparison of two
time series: relative outcome
Yr and relative position of Y
(i) inside Bollinger Band
(dotted)

8.2 Process of Preparing of the Strategy 223



In this chapter, we attempt a quite different way using CPC for finding a relation
between the selected variables in spite of such relatively low correlation.
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8.2.4 Collocated Paired Coordinates Approach

Figure 8.5 shows some arrows in Vr; Yrð Þ space under the CPC approach. This is
also a fragment of two time series such as shown in Fig. 8.3: relative volume Vr and
relative main outcome variable Yr. Figure 8.3 shows time series in a classical form
with time as an independent variable. Figure 8.5 has no time axis. The time is
represented by arrow direction.
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The beginning of the arrow shows the first point in the space ðVr i; Yr iÞ, and the
head of the arrow shows the next point in the same space ðVr iþ 1; Yr iþ 1Þ. Figure 8.5
shows the inspiration idea for building a trading strategy in contrast with Fig. 8.3
where we do not see it. Figure 8.5 allows finding the areas with clusters of two
kinds of arrows. The arrows for the long positions are solid (green) arrows, for the
short positions, are dotted (red). Along the Yr axis we can observe a type of change
in Y in the current candle. Due to the fact that if Yr iþ 1 [ Yr i then Yiþ 1 [ Yi the
proper decision in i-point would be a long position opening. Otherwise, the best
decision in the point would be a short position. Additionally, Fig. 8.5 shows how
effective will be a decision in the positions. If the arrows are very horizontal, the
profit will be small and more vertical arrows indicate the larger profit.

In comparison with traditional representation in the time series domain, the
proposed method brings the additional knowledge about the potential of profit in
selected area of parameters (in Fig. 8.5 it is (Vr, Yr) space).

Figure 8.6 shows multiple arrows for 500 candles period. It shows only candles
for even i-candles, denoted as even candles. The arrows for odd candles (odd i) can
be visualized in the same way.

This separation simplifies visualization. In contrast, presenting even and odd
candles together will show them connected which will mute the visual pattern.

Figure 8.7 shows a part of the set arrows from Fig. 8.6. This set includes only
more vertical arrows such that, Yr iþ 1 � Yr ij j[ h ¼ 0:05. Variable h can be a
parameter of future strategy and can have another value.

Figure 8.7 is much more readable and may inspire a trading strategy develop-
ment more efficiently demonstrating the power of CPC visualization.

Fig. 8.6 The arrows represent open positions long (green arrow) and short (red arrow) in the
space (Vr, Yr) (relative volume—relative observed variable)
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While arrows indicate well the increase and decrease in values, another notation
in CPC space is also beneficial in cases where the beginnings of the CPC sections
are more important than ends. In these cases, we use special pins (section with
circle at the beginning) instead of arrows.

Figure 8.8 shows the pins in Br; Yrð Þ space with condition Yr i�1 [ Yr i only. It is
the condition for opening short positions. It is a result of simulation for 500 candles
period for even candles only. Here we see the advantage of the dividing candles to
even and odd sets.

Otherwise, we would have the circle in every contact point between two nearest
sections and it will be impossible to recognize the end and the beginning of the
pins. In this section, the data from the same EURUSD 1 h time series are used for
both arrows and pins.

The particular used interval with 500 candles is not specific for the method. The
objective is to explain the idea of using CPC on any number of candles and
intervals. For another interval with the same or another number of candles, the
distribution of pins or arrows will be different but the algorithm will search
asymmetric areas in the same way.

The pins with the circles have an important advantage of observing the clusters
of the beginnings of the pins (circles) to determine the best places in the space
Br; Yrð Þ for opening a long or a short position. For example, Fig. 8.9 shows a
rectangle with more empty circles than the filled ones. This leads to the rule: if the
next point of time series is exactly in this area, then open a short position.

It gives an idea how to create an investment strategy—looking for areas with big
asymmetry between filled and empty circles, i.e., between suggestions of long and
short positions. Note that these areas are changing over time and need to be updated
regularly. At first glance, arrows in Figs. 8.6 and 8.8 are chaotic without a useful
pattern. This situation is quite common in visualization of complex data. It is a
strong inspiration for combining a pure visual technique with analytical compu-
tations for searching the subsets with big asymmetry. In this case, the CPC 2-D or
3-D visual representation opens an opportunity for an analytical discovery of
interesting patterns in this low dimensional CPC visual space. In general, the
combination of analytical and visual means is a core idea of the visual analytics
methodology (Keim et al. 2008).

8.3 Visual Method for Building Investment Strategy
in 2D Space

The main idea is to find a place in 2-D representation of 4-D ðPr;YrÞ space where
asymmetry between number of suggestions to open long position (filled circles) and
short positions (empty circles) is high (as in the rectangle in Fig. 8.9). In the
experiments, we used a rectangle or a square in 2D space and a cube or a cuboid in
3D space. Consider rectangle R ic; jcð Þ, where ic; jc are the coordinates of its center
with the following properties.
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(a) Properties for positive long positon asymmetry Al:
Property a1: ic; jcð Þ ¼ argmaxA1 i; jð Þ
where

Al i; jð Þ ¼ nl i; jð Þ= nl i; jð Þþ ns i; jð Þð Þ;
i ¼ il; ilþ 1; ilþ 2; . . . ir; j ¼ jb; jbþ 1; jbþ 2; . . .; jt

nl i; jð Þ—number of suggestions to open long position in the i; jð Þ area (number
of filled circles);
ns i; jð Þ—number of suggestions to open short position in the i; jð Þ area (number
of empty circles);
il—left barrier for the area; ir—right barrier for the area; i has increment 0.1;
ib—bottom barrier for the space; it—top barrier for the space; i has increment 0.1.
Property a2: nl þ nsð Þ[ nmin;
where nmin is the minimal threshold number of the events (circles) in the
rectangle. We used nmin ¼ 5 in our simulations in the 2D representations to
make the conclusions more robust.
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circles)
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(b) Properties for positive short positon asymmetry As

Property b1 : ic; jcð Þ ¼ argmax As i; jð Þ
where
As i; jð Þ ¼ ns i; jð Þ= nl i; jð Þþ ns i; jð Þð Þ; i ¼ il; ilþ 1; ilþ 2; . . . ir; j ¼ jb; jbþ 1; jbþ 2; . . .; jt;
and other notations are the same as in (a).
Property b2:
nl þ nsð Þ[ nmin; where nmin is minimal number of the events (circles) inside
the rectangle to consider this rectangle; in our simulations in 2D spaces there
was nmin ¼ 5;

For a rectangle with its center in ic; jcð Þ circle c(Pr, Yr) belongs to this rectangle
when Pr [ ic −w/2 and Pr\ic ¼ w=2, where w = 0.2 is the width of the rectangle;
Pr 2 Br; Vr; dVr; dMAr; etcf g. Yr [ jc � h=2 and Yr\jc ¼ h=2, where h = 0.2 is
the width of the rectangle; Yr � [0, 1].

While in general the optimal rectangles for long and short positions are different
here, we defined a simplified case. The general concept of the first strategy is to find a
rectangle with properties 1 and 2 in the learning mode of the algorithm and then test
them in the test mode, i.e., test the algorithm when in current candles the parameters
of time series c ðPr;YrÞ are located in the best areas with coordinates ic; jcð Þ.

8.4 Results of Investigation in 2D Space

All the 4-D spaces based on pairs Br; Yrð Þ; dMAr; Yrð Þ; Vr; Yrð Þ;
dVr; Yrð Þ; rr; Yrð Þ; ðdyr; YrÞ have been investigated. We considered from 300 to 800
candles for space Br;Yr

� �
separately for even and odd candles and found the best

area (rectangle or square in the space) relative to the properties 1 and 2 as a pattern
for the investment strategy, i.e., with a large asymmetry between suggestions for
opening long and short positions.

Figure 8.9 shows the rectangle found for short positions with
As ¼ ns= nl þ nsð Þ ¼ 0:83 and parameters:
ic; jcð Þ ¼ 0:4; 0:2ð Þ; w ¼ 0:2; h ¼ 0:2; nl ¼ 1; ns ¼ 5. The found rectangle for
long positions has much less Al ¼ nl= nl þ slð Þ ¼ 0:56 with parameters
ic; jcð Þ ¼ 0:4; 0:2ð Þ; w ¼ 0:2; h ¼ 0:2; nl ¼ 9; sl ¼ 7.
These rectangles were used 500 times for profit simulation for the even candles

in series from 300 to 1300 of candles (learning period) and the same rectangle was
used for testing period from 1301 to 2300 candles. For every Br; Yrð Þ that happens
in this rectangle a short position was opened. The cumulative profit for short and
long sides of the market is shown in Figs. 8.10 and 8.11 for odd candles.

The profit for short positions in Fig. 8.11 is much higher than in Fig. 8.10 for the
long positions which is consistent with As and Al values. The cumulative profit is
shown in Fig. 8.12 for both sides. The data from 300 to 1300 candles are
responsible for learning period, the next candles from 1301 to 2300 for the test
period.

230 8 Knowledge Discovery and Machine Learning for Investment …



Usually an optimal relation between the periods is found by the search algo-
rithms (e.g., Wilinski et al. 2014; Wilinski and Zablocki 2015). Typically, it results
in the training period that is much longer than the test one.

The first two experiments resulted in a much better split on the training and test
periods, which is with the same numbers of candles. The result of initial test guides
determining the test period duration. If the result is like in Fig. 8.10 then the
reduction of the test period makes sense, otherwise its extension is justified.
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The next simulation experiment was conducted for the space Vr; Yrð Þ (relative
volume, relative values of observed variable Y). The result with a cumulative curve
is shown in Fig. 8.13. We obtained the same positive result in the final point of the
time series for the other indicators listed above.

In the next experiment, we joined all rules, for all indicators. The following
relative indicators were used: Br; Vr; dyr; rr; dMAr; dVr. The result of the simu-
lation is presented in Fig. 8.14. The simulation was performed for arbitrarily
determined parameters specified above such as kb; s; f ; SL; kw . . . etc:
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The future studies can include looking for optimal values of parameters in a
fixed period of time series and for a proper balance between accuracies in learning
and testing periods.

Commonly in financial ML, the test period is shorter than the training one (e.g.,
Wilinski et al. 2014; Wilinski and Zablocki 2015). Figure 8.14 shows significantly
increasing profit in the test period with the same length of both training and test
periods in this interval of the market data. In another interval of time series, other
ratios between length of training and test data need to be learned in the same way

In this study we analyze profit in normalized units: price interest points (pip) and
PPC (Profit per candle). A pip indicates the change in the exchange rate for a
currency pair. We assume one pip as 0.0001 USD in the pair EURUSD that is used
as a measurement unit of change.

Profit per candle (PPC) represents the difference between values of cumulative
profit at the end and the starting point of the period divided by the number of
candles in the period. PPC ¼ Profitend � Profitbegin

� ��
iend � ibegin
� �

where
iend; ibegin numbers of considered candles (here—one-hour candles). The result is
equal to 1371 pips in 2000 candles with PPC equal to 0.68.

The result in Fig. 8.14 is very positive: the Calmar ratio is equal 6.60 for the
learning period and it is 2.94 for the test period from 1300 to 2300 candles. Calmar
ratio (Young 1991) is one from many criteria, which evaluate trading quality. It is
especially useful for long-term simulations and performances. “Calmar ratio of
more than 5 is considered excellent, a ratio of 2–5 is very good, and 1–2 is just
good” (Main 2015).

Next in this section, we compare the above result with a common benchmark for
the time series of 1 h EURUSD in the same period of 2000 candles from February
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2, 2012 to May 31, 2012. The chart of the pair is shown in Fig. 8.15. Another
period will be explored in the next section.

The popular benchmark Buy and Hold strategy (only one long position is opened
at the beginning) for the considered part of time series provided the negative gain is
−0.0771 (loss of 771 pips. The potential maximum possible profit for the 2000
candles is equal to 1.9388 (19388 pips).

It sums up all possible long positions (when yiþ 1 [ yi) open for one-hour period
and all possible short positions (otherwise). To obtain this absolute result one
should have the foreseeing knowledge like God. Note that the result from the first
strategy 0.1371 is equal to about 7.1% of this theoretical maximum profit.

The comparison of all considered strategies is presented in Table 8.1. Its col-
umns show results for learning and test periods jointly and the result for test period
only. The column with Calmar ratio presents a level of risk in the strategy and

0 500 1000 1500 2000 2500
# candles

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36
2000 1h-candles of EURUSD pair

Fig. 8.15 Considered part of 1 h EURUSD time series

Table 8.1 Comparison of the results of different strategies in 2D spaces

Experiment X axis Y axis Fin result
(pips)

Fin test
(pips)

Calmar PPC

1 Br Yr 250 100 3.43 0.050

2 Vr Yr 217 146 2.39 0.073

3 All Yr 1371 382 6.60 0.680

4 Pips—
b1

Y −771 −668 – −0.385

5 Pips—
b2

Y 19,388 9674 ∞ 9.694
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column PPC shows Profit per Candle in pips. The column Finresult show the full
profit reached in both learning and test periods and in column Fintest shows profit
from test period only.

The Table 8.1 allows comparing three considered strategies presented above in
figures and two benchmarks. In Table 8.1, “b1” denotes the first benchmark
(Buy&Hold); “b2” denotes the second “ideal” benchmark with no losses. For b2,
the Calmar ratio is infinity because there is no drawdown in this case. The most
interesting result is #3 with all indicators from set S.

The Buy&Hold benchmark (row #4) has no chance to be competitive with our
strategies because of decreasing trend in the studied period. Of course one can find
another specially prepared period for the Buy&Hold strategy (with increasing
trend). In contrast, the strategy proposed in this chapter should work everywhere
including periods with both trends.

The second benchmark b2 is the theoretical ideal result, which absolutely no one
can reach. The first and the second strategies give us small PPC to be considered as
valuable strategies. Later we compare strategy #3 with the results of experiments in
3D spaces presented in the next section.

8.5 Results of Investigation in 3D Space

8.5.1 Strategy Based on Number of Events in Cubes

The next idea is exploring effective areas (cubes and cuboids) in 3D space that will
represent 6-D data. Each space includes Yr (as main axis to observe the outcome of
time series) and two indicators from set S ¼ Br; Vr; dyr; rr; dMAr; dVrf g in con-
secutive time periods.

The first attempt was made with ðYr; Vr;dMArÞ space. This normalized space
was split into 10 � 10 � 10=1000 cubes of size 0.1 � 0.1 � 0.1. 500 events have
been used to locate “circles” or arrows in these 1000 small cubes for the same
period of time series as previously (from 300 to 1300 candles) separately for even
and odd candles.

The simulation had shown that many cubes are empty and it makes sense to
modify a condition on the minimal number of circles in a cube. In this experiment
we started with the limit of 5 circles, Tmin ¼ 5. Figure 8.16 shows two marked
cubes (filled circles for suggestions to open long positions and empty circles for
short positions) (Fig. 8.17).

The grid resolution (1000 cubes) seems to be too fragmented for a good gen-
eralization. The next attempt was made with a new grid 5 � 5 � 5 = 125 cubes of
size 0.2 � 0.2 � 0.2. Figure 8.18 shows the two cubes with largest asymmetry
factor, which the Matlab program found.

These cubes provide the positive prediction value in terms of the confusion
matrix with the accuracy
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TruePositive/(TruePositive + FalsePositive)

equal to 0.619 (for long positions) and 0.686 (for short positions) with a threshold
Tmin ¼ 10 on the number of circles required in the cube .

Fig. 8.16 Pins in 3-D space: two cubes found in (Yr, dMAr, Vr) space with the maximum
asymmetry between long and short positions

Fig. 8.17 The zoomed cubes with the best asymmetry from Fig. 8.16. The upper cube with green
circles is selected for long positions lower cube with red circles is for short positions. For better
visibility, the viewpoint is changed from Fig. 8.16
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The same algorithm was used in both grid cases (10 � 10 � 10 and 5 � 5 � 5)
to find cubes with maximum of criteria Al and As in cubes with an additional
requirement on the minimum number of the circles in the cube to be no less than
Tmin. After these two best cubes have been found in the learning period, the proper
positions are opened when subsequent events are located in the cubes. Figure 8.19
presents the cumulative profit for 5000 candles in learning period and 1700 candles
during testing. The presented profit is not too rewarding because of small number of
positive events.

While formally here Calmar Ratio equals to infinity generally the strategy is
extremely careful. For example, we can see here the period of almost 3000 h
(between #1200 and #3900) with no trade. The profit of 149 pips in Fig. 8.19 is
only 0.022 per candle (compare to Table 8.1) indicates the need for a more dynamic
strategy.

8.5.2 Strategy Based on Quality of Events in Cubes

The next approach is an algorithm with different criteria. It uses the sum of returns
accumulated in the learning period. Figure 8.6 above shows a lot of arrows with
solid stems (long positions) and dashed stems (short positions) which are located
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Fig. 8.18 Two determined cubes in Yr-dMAr-Vr space with the maximum asymmetry between
long and short positions for the new grid resolution
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with different angles in the 2D space. The more vertical arrows are also more
promising in profit (independently of the direction) due to the design of this space.

Figure 8.7 shows arrows with more vertical stems. Therefore, a new hypothesis
for a potential strategy is that the more vertical arrows lead to higher profit. This is
reflected in a new criterion for the learning period, which is the value of the
projection of the arrows on Yr axis only.

The projection value is Yr i�Yr i�1 that is a normalized value of Yi�Yi�1. More
formally, consider a cube indexed by (k1, k2, k3) in the space (P1, P2,Yr) in a 3D
grid, where k1, k2 k3 = 1, 2, …, K. We are interested in maximum of criterion Cl for
long positions and Cs for short positions:

Cl ðk1;k2;k3Þ ¼
X

ðYr i ðk1;k2;k3Þ�Yr i�1 ðk1;k2;k3ÞÞ

when ðYr i�Yr i�1Þ[ 0 for all i that belong to a learning period and for all cubes (k1,
k2, k3) and

Cs ðk1;k2;k3Þ ¼
X

ðYr i ðk1;k2;k3Þ�Yr i�1 ðk1;k2;k3ÞÞ

when ðYr i�Yr i�1Þ\0 for all i that belong to learning period and for all cubes (k1,
k2, k3). Recall that the beginning of the arrow Yr i�1ð Þ belongs to (k1, k2, k3)-cube
belongs, not its head. For each learning period, the sums Cl k1;k2;k3ð Þ and Cs k1;k2;k3ð Þ
are computed in every (k1, k2, k3)-cube.

A new investment strategy is if Cl dominates, then open a long position else
open a short position. Figure 8.20 shows the bars that represent the criteria Cl and
Cs (by their length) in every cube (in grid 4 � 4 � 4). The bars have different

0 1000 2000 3000 4000 5000 6000 7000

Candles #300-5300 + 1700 (Test Window)

0

0.005

0.01

0.015
Cumulative profitFig. 8.19 Cumulative profit

based on algorithm with
maximum level of Al or As
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lengths. A visual strategy can be based on this difference, e.g., if one of the bars is
longer than the other one, then open a proper position:

Cl ðk1;k2;k3Þ [Cs ðk1;k2;k3Þ þ dc then open long position;

Cs ðk1;k2;k3Þ [Cl ðk1;k2;k3Þ þ dc then open short position;

where dc is additional difference for Cl and Cs to make the difference more distinct.
This strategy has been checked for different values of periods of learning and
testing, i.e., bars have been generated for the test data and compared with bars for
the training data, because for the test period in every i-candle the (k1, k2, k3) cube
can be different.

Parameters f ; s; kbð Þ have noticeable influence on the result of every simulation.
Figure 8.21 shows some curves of cumulative profits as functions of f ; s; kbð Þ. The
thicker line is the best one relative to the value of a linear combination of the
cumulative profits for learning period and Calmar ratio in the same learning period.
For selecting the promising curve, the following criterion is used:

C ¼ wc � Calmarlearn þwp � profitlearn

where:
wc is a weight of Calmar component (in these experiments wc ¼ 0:3);
wp is a weight of profit component (in these experiments wp ¼ 100 for 500 h of
learning period);
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Fig. 8.20 Bars in 3D space after learning period which represent preferences to open long (green)
or short (red) position
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Calmarlearn is the Calmar ratio at the end of learning period;
profitlearn is a cumulative profit at the end of the learning period measured as a
change in EURUSD rate.

The main idea in constructing the criterion C is to balance Calmar and Profit
contributions. We tried to examine some pairs of weights (wc, wp) but this one
mentioned above gave us the result we can see below. Here the principles of
heuristic were applied—the approach is simple and the results are satisfactory.
Figure 8.21 presents the results of simulations for learning periods of 200 candles
and test periods of 50 candles.

Figure 8.21 shows that while the thicker line (best in criterion C) provides one of
the top results (profits), it does not provide the best cumulative profits at the end of
learning period due to the weighting nature of criterion C that also takes into
account the Calmar ratio.

Figures 8.22, 8.23, 8.24, 8.25, 8.26 and 8.27 show cumulative profits for dif-
ferent learning and testing periods as a function of 20 shifted datasets (cycles).

The design of these cycles is illustrated in Fig. 8.27. First the best values of
parameters f ; s; kbð Þ were found by optimizing them on training data and then these
values were used in the test period which follows the learning period.

The charts in Figs. 8.22, 8.23, 8.24, 8.25 and 8.26, but Fig. 8.25, show very
efficient result taking into account the profit-risk relation.
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Fig. 8.21 Cumulative profits for different values of parameters03D5 (f, s, kb)
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Profit is represented by its PPC value. Practitioners consider the profit at the
level of 10–20 pips per day as very high or even unrealistic to be stable (Krutsinger
1997; Pasche 2014). The general conclusion is that the chosen space Yr;Vr;dMAr

� �

is very efficient.
Figures 8.22, 8.23, 8.24, 8.25, 8.26, 8.28 and 8.29 are to show general direction

of changes in cumulative profit. It is important that y-axes have different scales and
should not be compared directly.

Figure 8.27 shows how a set of learning periods have been generated for
selecting a period that provides the best result at its end. At every learning period,
multiple simulations were run with the different parameters. The parameters of the
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winning learning period are used in the test period to evaluate the efficiency of the
optimized parameters in the investment strategy.

8.5.3 Discussion

The chosen space Yr;Vr;dMAr
� �

is the most efficient from explored options from set
S ¼ Br; Vr; dMAr; rr; dyr; dVr

� �
. Below we discuss characteristics of this space to

clarify the impact of parameters f, s and kb on profit and risk stabilization. Many
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experienced traders try to find the best universal values for their indicators
(Krutsinger 1997; Bingham 2014; Fong et al. 2005; Cheng et al. 2012; Mehta and
Bhattacharyya 2004; Fong and Yong 2005; Wilinski and Zablocki 2015).

Figure 8.28 shows the cumulative profit for one of our simulations with constant
values of these parameters, f = 6, s = 20, kb = 150 for the pair learning/test periods
200/100 of one-hour candles.

While the chart in Fig. 8.28 starts with values of the parameters that are optimal
for the first learning period with high profit value, it shows the significant profit
decline for the next periods.
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This leads us to the conclusion that the desire for stable “universal” parameters
has no ground. The markets are under permanent volatility.

Multiple figures above present examples of cumulative profit visualizations.
Even a novice usually can estimate a quality of different strategies looking at these
visualizations, For instance, the advantage of the curve in Fig. 8.24 over the curve
in Fig. 8.28 is evident without any formal measurement. Next we explored other
aspects of the method by checking the strategy on more recent data with newest
candles and different sampling. Figure 8.29 shows simulation with one-day candles.

The result is also very positive. Additionally we can notice that the learning
period is equal to about one month and the testing period is a one-week period (five
trading days). These are very convenient circumstances for both automatic and
manual trading.
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The last experiment was carried out on a much larger periods of data of 80 cycles
(windows of shifted sets of training and testing data) with each learning period of
500 one-hour candles and each test period of 100 one-hour candles (Fig. 8.30). This
Figure shows that the cumulative profit has one period within 25–30 cycles with
declining values of profit, but the total results are very positive. While we use
measurable objective criteria of success (Calmar ratio and PPC) human perception
of success is also important to have confidence in the strategy and the curve in
Fig. 8.30 serves this goal.

Figure 8.31 shows some simulation results in a symbolic form of circles and
squares of the sizes that depend on PPC.

This figure visualizes the difference in simulation results for one-hour and daily
time series, where circles denote one-hour time series and squares denote daily time
series. The X coordinates is hours in a learning period and Y coordinate is hours in
a test period. The best result for one-hour series (100/24 h ratio between learning
and test periods) is a red circle in the left-bottom corner of Fig. 8.31. For the time
series of one-day candles (shown as squares) the positive results take place for
ratios of days such as 100/24, 50/20, 150/24. In Fig. 8.31 these ratios are shown in
hours, e.g., the point 30/5 days is shows as a large blue square for 720/120 h.

8.6 Conclusion

Many parts of the chapter show the inspiring power of CPC visualization in both
2D and 3D spaces of features that represent time series data. This power is coming
from the two levels of the approach in searching the best conditions to build the
investment strategy. The first level involves examining the best 4D and 6D coor-
dinate systems to build 2D or 3D visualization spaces. The second level involves
learning parameters of attributes in each selected space.

A key role of the CPC approach in visualization of 4D and 6D points as arrows
in 2D and 3D was in helping to find the best locations (squares in 2D or cubes in
3D) to open long or short positions, respectively. It is shown that the CPC method
allows guiding exploration and machine learning for improving the search for the
best local combinations of predictive features. For instance, further exploration will
benefit from adding Kelly’s criterion (Nekrasov 2014) to select the best squares (or
cubes) in CPC spaces. This criterion allows taking into account together the
quantity (number) of the arrows in the local places and their quality (lengths of
projections). This is consistent with our much better results in the 3D distributions
for 5 � 5 � 5 or 4 � 4 � 4 grids with a criterion based on length of bars
(Fig. 8.20). It allowed us to increase a frequency in simulated trading with a much
greater number of open positions in Sect. 8.5, than in the previous method, based
on circles in subcubes in Sect. 8.2.

Future challenges include introduction of deeper relations between learning and
testing periods beyond the ratio of their lengths, and the implementation of the
method in a trading platform and expanding to other investment tasks.
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In general, in the investment domain, we want to solve a two-criterion task: max
of profit, p, and min of risk, r. It is obvious that these criteria contradict each other
quite often if not all the time. Thus, this is a mathematically ill-posed problem. The
common ways in multi-objective optimization to resolve this issue is to find a
Pareto frontier or to combine two criteria to one criterion. Calmar ratio implements
the second option with an intuitive idea behind it as follows. The component that
must be maximized must be a dividend and the component that must be minimized
must be a divisor. In this way if we have two pairs (p1, r1) and (p2, r2) such that
p1 > p2 and r1 < r2 then Calmar ratio of (p1, r1) will be greater than it is for (p2, r2).
In this case Calmar ratio is consistent with Pareto frontier. However if p1 > p2 and
r1 > r2 then Calmar ratio of (p1, r1) can or cannot be greater than it is for (p2, r2). It
will depend of actual values of these 4 numbers. In essence, Calmar ratio sets up the
order in the Pareto frontier that can be questionable. It can be resolved by analysis
of differences of actual pairs (pi, ri) from the Pareto frontier. It is commonly done by
visualizing the Pareto frontier in this 2-D case of two criteria. In fact, a 2-D case is
quite limited and exploration of Pareto frontier in higher dimensions will lead to
deeper models. Parallel Coordinated (a special case of GLC) are commonly used to
visualize the multidimensional Pareto frontier, but they quickly lead to high
occlusion. General Line Coordinates are especially promising way to accomplish
such Pareto frontier analysis when the number of criteria is more than two. The
issues of Pareto frontier are considered in Chap. 11.

This chapter illustrates the potential of a new emerging joint area of research and
application of n-D visual discovery and investment strategies to boost the creativity
of both scientists and practitioners.
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Chapter 9
Visual Text Mining: Discovery
of Incongruity in Humor Modeling

All intellectual labor is inherently humorous.
George Bernard Shaw

9.1 Introduction

Garden path jokes. This chapter presents a visual text mining approach to mod-
eling humor within text. It includes algorithms for visualizing and discovering shifts
in text interpretation as intelligent agents parse meaning from garden path jokes.
Garden path jokes (Dynel 2012) can occur when a reader’s initial interpretation of
an ambiguous text turns out to be incorrect often triggering a humorous response.

We describe three successful approaches to text visualization conducive to
identifying distinguishing features given humorous and non-humorous texts. These
visualization methods include Collocated Paired Coordinates defined in Chap. 2,
Heat maps, and two-dimensional Boolean plots (Kovalerchuk and Delizy 2005;
Kovalerchuk et al. 2012).

This methodology and tools offer a new approach to testing and generating
hypotheses related to theories of humor as well as other phenomena involving
incongruity-resolution and shifts in interpretation including non-verbal humor.

While many theories of humor agree that humor often involved the detection of
incongruities and their resolution, the details remain vague and there is no agreed
upon theoretical framework, which describes how these incongruities are formed
and detected by intelligent agents (Ritchie 1999).

Humor modeling and natural language understanding. While visual text/data
mining and machine learning have been extensively used in many domains
(Kovalerchuk and Schwing 2005; Simov et al. 2008), the modeling humor is a new
area for these methods. The presented approach visualizes shifts in meaning
assignment over time as jokes are processed to deeper understand the specific
mechanisms underlying humor.

Furthermore, these approaches can be used to model and detect other forms of
humor, in particular sequential physical humor in nonverbal settings and other
phenomena involving shifts of interpretation. In general, visualization and visual
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text mining give us more tools for detecting features associated with various natural
language phenomena. A major challenge in natural language understanding and
humor modeling is automated recognition of shifts in the meaning for an ambiguous
word within the text.

Correlation-based measure. The visualization approaches presented in this
chapter use correlation-based measures to assign the meaning of ambiguous words.
These measures incorporate:

• the context of the ambiguous word in different parts of a surface level text and
• relations associated with different meanings of that word as defined in an on-

tology at a deeper level.

These measures represented as meaning correlation scores capture opposing
meanings of the part of the joke. They form a 4-D space of measures with each joke
represented as a 4-D point in that space. Then these 4-D points are visualized in
CPCs, heat maps and Boolean plots.

Visualization. The CPC lets us visually see shifts of meaning in jokes when
compared with non-jokes. The heat maps color code the differences of meaning
given different time steps. The resulting heat maps of jokes distinguishable from
that of non-jokes with respect to these meaning correlation differences. Finally, the
third Boolean visualization displays in two dimensions an entire model 4-D space. It
consists of Boolean vectors that describe meaning correlation over time. The set of
jokes and non-jokes, plotted in this space, allows an analyst to see the boundary
between what is a joke and a non-joke.

To show the power of this visual approach we compare the results with tradi-
tional analytical data mining/machine learning approaches on the same data with
the same features.

This chapter includes the construction of an informal ontology using web mining
to identify semantic relations to visualize jokes and non-jokes. While improvements
can be made, the results are encouraging.

Related Work. Both Computational Humor and Text Visualization as fields have
seen extensive activity lately, but tend to work on separate topics. Computational
Humor deals a lot with the modeling and detection of incongruities within text and
many attempts have recently been made attempting to detect or generate jokes using
computers (Labutov and Lipson 2012; Mihalcea et al. 2010; Petrovic and Matthews
2013; Ritchie 2003; Taylor and Mazlack 2007; Valitutti et al. 2013; Taylor and Raskin
2012), but no attempt focused on visualization has been made. On the other hand,
studies on Text Visualization tend to focus on other topics such as identifying the
central topic within a text.

9.2 Incongruity Resolution Theory of Humor and Garden
Path Jokes

In this chapter, we use the Fishtank joke ‘Two fish are in a tank. One looks to the
other and asks: How do you drive this thing?’ to illustrate the approach. Many
predominant theories of verbal humor state that humor is triggered by the detection
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and resolution of incongruities (Ritchie 1999; Schultz and Horibe 1974). The
dictionary defines ‘incongruous’ as lacking harmony of parts, discordant, or
inconsistent in nature. During the parsing of a text incongruities form when a
reader’s interpretation of some concept conflicts with the other possible interpre-
tations, as the text is read.

Below we focus on a particular humor subtype where there is a shift from some
interpretation to an opposing one. Dynel calls these jokes “garden path” jokes using
the garden path metaphor of being misled (Dynel 2012), while other theorists use
the terminology of ‘forced reinterpretation’ and ‘frame shifting’ (Ritchie 1999).
These jokes are sequential in nature and describe a certain pattern of incongruity
and resolution. With a garden path joke, readers first establish some interpretation
A as they read the first part of a joke, called the setup. Then, given new evidence
included in the second part, called the punchline, readers must discard this inter-
pretation and establish a new interpretation B. The fishtank joke above displays
such joke, and an incongruity. The reader initially interprets the tank to be an
aquarium, but given additional information, the alternative meaning of a vehicle
becomes possible and probable.

Incongruities often arise when ‘opposing’ or ‘mutually exclusive’ elements
simultaneously occur. Different word meanings oppose when a tank is a vehicle, it
is not an aquarium. Opposition occurs in many other areas, e.g., when something is
hot it is not cold. To model this we visualize changes of correlation in the context
established for mutually exclusive meanings. Similar meanings have similar con-
texts according to the distributional hypothesis (McDonald and Ramscar 2001;
Sahlgren 2008). Next we discuss the approach to establish meaning of words and
how we are identifying correlation between the meaning representations.

Dynamic model Ritchie (2014) emphasized the importance of adding time to
models of jokes making them dynamic. A deeper semantic analysis is required to be
able to model jokes adequately (Taylor and Raskin 2013). Garden path jokes
consist of two parts that we denote P1 and P2. Respectively we denote the text with
two parts as T = (P1, P2). Model M described in Table 9.1 involves six consecutive
moments t1–t6 that involve parts consecutive parts P1 and P2.

Table 9.1 Incongruity process for model M

Time Description

t1 Agent G (human or a software agent) reads the first part of the text P1 and concludes
(at a surface level) that P1 is a usual text

t2 Agent G reads the second part of the text P2 and concludes that (at a surface level) that
P2 is a usual text

t3 Agent G starts to analyze a relation between P1 and P2 (at a deeper semantic level).
Agent G retrieves semantic features (words, phrases) F(P1) of P1

t4 Agent G retrieves semantic features (words, phrases) F(P2) of P2

t5 Agent G compares (correlates) features F(P1) with P2 and features F(P2) with P1

finding significant differences in meaning (incongruity)

t6 Agent G reevaluate usuality of P2 taking into account these correlations and concludes
that P2 is unusual
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9.3 Establishing Meanings and Meaning Correlations

We chose a vector representation of meaning, based on the frequency at which
words occur in the context of some target word. This is a common approach taken
by a number of researchers in the past for dealing with meaning (Mikolov et al.
2013). These vectors of word associations form an informal ontology describing
entities and their relations. The material used to build these vectors was retrieved
via a web search in line with our previous work (Galitsky and Kovalerchuk 2014).

9.3.1 Vectors of Word Association Frequencies Using
Web Mining

Below we consider some ambiguous word A with a number of possible meanings
AM1… AMn and different parts P1, …, Pm of some text containing the ambiguous
word A. For each meaning AMx we establish a set of disambiguating keywords K
(AMx), which uniquely identify that meaning. While we hand-chose our keyword
sets these can be automated using a variety of resources such as Wordnet.

The keywords K(AMx) are used as a query for a search engine (e.g., Google) to
retrieve the top n documents. Let D(q, n) be a search function which retrieves
n documents relevant to some query q. The resulting document set for some
meaning AMx is thus designated D(K(AMx), n). For short we will also write D(x,n)
for this set of documents when the word A is clear from the context.

Next, we compute frequencies of all words occurring within distance j of A given
the document set D(x,n). Let F (A, j, x, n) be a vector of word frequencies, where
F is a function that returns a vector of word frequencies. We use the approach
known as term-frequency times inverse document frequency approach (TF�IDF)
(Rajaraman and Ullman 2011) for identifying word frequencies F. The value of
F for a given term (word) w in the document set D(x,n) is as follows:

Fw ¼ TFwD � IDFw

where
TFwD = fwD /maxk fkD,
fwD is the number of occurrences of term (word) w in document set D(x,n),
maxk fkD is the max of the number of occurrences of any word in the document

set D(x,n),
IDFw = log2(n/nw),
nw is the number of times the term w appears in D(x,n).
The terms with the highest TF�IDF score are often the terms that best charac-

terize the topic of the document (Rajaraman and Ullman 2011).
F (A, j,x, n) represents the meaning for AMx as a set of word association

frequencies, or in other words its contexts. These frequencies are ordered by the
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lexicographic order of the words. Note that we include the frequency of the given
word A itself though the variants without it being explored too.

In a similar fashion we establish semantics for the ambiguous word A given the
different parts P1, …, Pm of some text containing A. We denote them as F (A, j, P1,
n), …, F (A, j, Pm, n) where F (A, j, Pi, n) is a vector of frequencies of Pi within
distance j from A in the top n documents, which contain a selected part of Pi or a
whole Pi.

9.3.2 Correlation Coefficients and Differences

Correlation coefficients. Denote the meaning of A given a search result for a
phrase Pi that contains A as APi. We are interested in correlation of APi with each of
its meanings AM1, …, AMn.

The first meaning APi is formalized by a vector of frequencies F(A,j,Pi,n).
Respectively, the meanings AMx are formalized as vectors of frequencies F(A,j,x, n).
Having these vectors, we can compute the correlation coefficients between them

C F A; j; Pi; nð Þ; F A; j; x; nð Þð Þ

Each joke in our dataset is a two-part joke with parts P1 and P2 in which two
meanings are invoked as vectors F (A, j,P1, n) and F (A, j,P2, n). Given two
meanings AMx and AMy of the ambiguous word A and some statement with parts
P1 and P2 that refer to A, we calculate the following correlation scores.

Given P1 (part one of the given text):
C1x = C(F (A, j, P1, n),F (A, j,x, n)) is a correlation of meaning AP1 with

meaning AMx,
C1y = C(F (A, j, P1, n),F (A, j, y, n)) is a correlation of meaning AP1 with

meaning AMy.
Given P2 (part two of the given text):
C2x = C(F (A, j, P2, n),F (A, j, x n)) is a correlation of meaning AP2 with

meaning AMx,
C2y = C(F (A, j, P2, n),F (A, j, y, n)) is a correlation of meaning AP2 with

meaning AMy.
Differences of correlation coefficients. Finally, we calculate differences

between the correlation coefficients, which are useful for joke classification as they
describe correlation movement patterns. For example, the difference between C1x

and C1y tells us which meaning x or y has greater correlation with part P1 of the
joke. Similarly, the difference between C2x and C2y tells us which meaning x or
y has greater correlation with part 2. Thus, if C1x − C1y > 0 then the meaning x is
more relevant to P1.

On the other hand, the difference between C1x and C2x tells us if a correlation of
meaning x has increased or decreased when moving from part 1 to part 2. of some
text. If C1x − C2x > 0 then the correlation of meaning x has decreased as the text is
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read in, while if C1x − C2x < 0 then it has increased. Such changes indicate the shift
in the meaning and incongruity.

Features from correlation coefficients. We define four Boolean variables
u1 − u4 using these differences:

u1 ¼ 1; if C1x [C1m; else u1 ¼ 0
u2 ¼ 1; if C1x [C2y; else u1 ¼ 0
u3 ¼ 1; if C1m\C2m; else u3 ¼ 0
u4 ¼ 1; if C2x\C2m; else u4 ¼ 0

Example In order to concentrate on the issue at hand, i.e. modeling incongruity,
many jokes are simplified. Respectively, we consider a distilled version of the
two-part garden path joke J with parts

P1 ¼ ‘fish in tank0;P2 ¼ ‘they drive the tank0

that include the ambiguous word A = ‘tank’.
Let tankM1 and tankM2 be the two meanings invoked at different points while

reading J,

tankMx ¼ ‘aquarium0; tankMy ¼ ‘vehicle0

Let K(tankMx) = [“aquarium”, “tank”] and

KðtankMyÞ ¼ ½‘‘vehicle00; ‘‘panzer00; ‘‘tank00�:

. Then we compute meaning vectors F for different meanings of ‘tank’ using data
from four web searches for P1, P2, K(tankMx) and K(tankMy) and the correlation
coefficients between these meaning vectors.

Meaning correlation coefficients given P2:

C1x ¼ CðFðtank; 5; fish in a tank; 10Þ;
Fðtank; 5; faquarium; tankg; 10ÞÞ ¼ 0:824

C1y ¼ CðFðtank; 5; fish in a tank; 10Þ;
Fðtank; 5; fvehicle; panzer; tankg; 10ÞÞ ¼ 0:333

Meaning correlation coefficients given P2:

C2x ¼ CðFðtank; 5; drive the tank; 10Þ;
Fðtank; 5; faquarium; tankg; 10ÞÞ ¼ 0:389

C2x ¼ CðFðtank; 5; drive the tank; 10Þ;
Fðtank; 5; faquarium; tankg; 10ÞÞ ¼ 0:389
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Over the course of a garden path joke there should be a switch in dominant
meaning. Given part 1, correlation with meaning x, C1x should be greater than C1y and
given part 2 C2y correlation with meaning y should be greater than C2x. The correlation
coefficients above capture these shifts, 0.824 > 0.333 and 0.573 > 0.389. The visual
analysis of this example is presented later in next sections.

9.4 Dataset Used in Visualizations

Two-part jokes of garden path form that contain lexical ambiguities have been
collected and converted into a simple form by hand, as we want to model incon-
gruity rather than focusing on other issues related to parsing text.

Algorithmically selecting relevant parts of text P1 and P2 from longer texts that
contain a lot of additional material is a valid approach, but outside the scope of this
study. Therefore, “Two fish are in tank” becomes “a fish in a tank.” as the number
of fish has little to do with the lexical ambiguity involved in the incongruity we
model.

For each joke, a non-joke of similar form was created. It contains the same first
part, but a different non-humorous second part with minimal change, usually only a
noun or verb, to preserve the structure of the statement. The following are some
examples of jokes and non-jokes contained in the dataset.P1: Two fish are in a tank.
P2: They drive the tank.P1: Two fish are in a tank.P2: They swim in the tank.

Meaning x search query: ‘Aquarium tank’
Meaning y search query: ‘Panzer tank’P1: No charge said the bartender.P2: To

the neutron.P1: No charge said the bartender.P2: To the customer.
Meaning x search query: ‘Cost charge’
Meaning y search query: ‘Electron charge.’

9.5 Visualization 1: Collocated Paired Coordinates

CPC setup. The first visualization method used for humor data is Collocated Paired
Coordinates described in Chap. 2, and illustrated in several consecutive chapters. Each
text from the dataset with two parts P1 and P2 is represented as a 4-D point z = (z1, z2.
z3, z4) in the same way as in the fishtank example above. Then odd coordinates X1 and
X3 are mapped to the Cartesian coordinate X and even coordinates X2 and X4 are
mapped to the Cartesian coordinate Y for visualization in 2-D.

In CPC each 4-D point is a directed graph (arrow) drawn in (X, Y) coordinates
with start node (z1, z2) and end node (z3, z4). Respectively, the X-axis shows the
correlations with the first meaning and the Y-axis shows the correlation with the
second meaning. This allows us to visualize correlation patterns.
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The arrow from point (z1, z2) to point (z3, z4) represents the time of parsing and
understanding the text. At the beginning, a reader:

(1) reads part P1,
(2) correlates P1 with two opposing meanings x and y of word A from P1, and
(3) selects the most correlated meaning of A from x and y with larger C value. Next,

the reader does the same steps (1)–(3) for part P2.

A garden path jokes involves a shift from one meaning to another one, e.g., from
x in P1 to y in P2 or vice versa. This means that these jokes should form a line
(arrow) moving away from one axis and towards another as the meaning correlation
score C for one meaning lessens and other meaning increases.

Results. In visualization in Fig. 9.1, the X-axis represents coordinate X1 that
corresponds to the highest correlations computed for P1. The Y-axis represents
coordinate X2 that shows the lowest correlations computed for P1. Formally, this
means for each joke z = (z1, z2.z3, z4) that

z1 ¼ max Cx1; Cy1
� �

; z2 ¼ min Cx1; Cy1
� � ð9:1Þ

If Cx1 ¼ max Cx1; Cy1
� �

then z3 ¼ Cx2; z4 ¼ Cy2ð Þ; else z3 ¼ Cy2; Z4 ¼ Cx2ð Þ
ð9:2Þ

Fig. 9.1 Collocated Paired Coordinate plot of meaning context correlation over time. The set of
jokes and non-jokes plotted as meaning correlation over time using collocated paired coordinates
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Thus, the arrows should all move in the same direction as a meaning shift occurs.
In Fig. 9.1, the arrows are green, if the text is humorous, and red if not.

Figure 9.1 shows that most jokes involve a shift away from correlation with the
highest meaning in P1 towards the lowest meaning in P2 of the joke, while two
jokes do not match this pattern. In Fig. 9.1, the dominant pattern for green arrows,
which represent jokes is starting below the diagonal line, and ending above it. We
record this pattern formally as a classification rule R1:

R1 : If z1 [ z2 & z3\z4; then z is a joke; else z is a non-joke:

Visually this rule means that the first point (z1, z2) must be below the blue
diagonal line shown in Fig. 9.1 and the second point (z3, z4) must be above this
diagonal line. The two green arrows in Fig. 9.1 that do not follow this pattern are
marked by blue circles around their end points. Both of them start and end below
the diagonal line. Two red arrows also do not follow rule R1. They are marked by
circles too.

All four deviations are likely a result of getting the irrelevant documents from
the web search due poor choice in keywords or semantic noise, which do not match
the human preferred meaning. Methods such as latent semantic analysis (Dumais
2004) may help with this.

As we see in Fig. 9.1, the pattern of the red arrows is different. They tend to stay
on the same lower side of the diagonal line, as there is no meaning change. The
confusion matrix for rule R1 is in Table 9.2 The total accuracy of Rule R1 is equal
to 88.23%, based on the confusion matrix in Table 9.2.

We can also only look at the meaning correlation coefficients (z3, z4) given P2,
which clearly shows for jokes that z3 < z4, i.e., there is higher correlation with
the meaning in z4, which opposes some meaning that was initially established in
z3. In other words, most of the jokes end above the diagonal line; while only two
non-jokes end above the diagonal. We can record this visual discovery as a rule
R2:

R2 : If z3\z4 then z is a joke; else z is a non-joke:

The confusion matrix and accuracy for rule R2 is the same as for rule R1.
Comparison with decision tree. To compare the visual results with traditional

analytical data mining/machine learning approaches the C4.5 decision tree algo-
rithm (Quinlan 1993) was used. The C4.5 decision tree algorithm produces a model

Table 9.2 Confusion matrix
for visual classification rule
R1

Predicted joke Predicted non-joke

Actual jokes 17 15 2

Actual non-jokes 17 2 15
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indicating the same key features that involve changes in meaning correlation as the
visual approach with CPC shows.

The resulting C4.5 rule R3 is

If z3\z4\0:0075 then z is a joke; else z is a non-joke:

The confusion matrix and accuracy for rule R3 is the same as for rules R1 and
R2 presented above, because 0.0075 is very close to 0 that is the case on rules R1
and R2. Rules R2 and R3 are very similar and result in one key splitting feature,
which is the same that we found through the visual data mining process.

Rules R3 and R2 are as accurate as rule R1 but, at first glance, are simpler than
R1, because they only use z3 < z4. However, they use z1 and z2 implicitly due to
dependencies presented in formulas (9.1) and (9.2) above.

9.6 Visualization 2: Heat Maps

In the CPC visualization above, we saw a shift from one meaning correlation being
higher to the opposite. To test this intuition we use heat maps based on differences
in correlation coefficient values given the different meanings and different parts of
text. This allows identifying potential features that distinguish jokes from
non-jokes, assisting in model discovery. The heat map visualization process
includes:

• Organizing the dataset from correlation coefficient differences D1 = C1y − C2x,
and D2 = C2x − C2y along with classification label of being a joke or not,

• Color coding the correlation score differences based on values,
• Sorting the rows into groups by classification that is into two groups of joke and

non-joke,
• Identifying regions of the heat map where there is a distinguishable difference

between the joke and non-joke sections in terms of color.

Figure 9.2 shows the resulting heat map for correlation differences. While this
heat map only uses three colors for color coding by value, clearly we can identify
areas where the joke dataset differs from the non-joke dataset. In Fig. 9.2 the second
column shows C2x − C2y, i.e., the difference between correlation with meaning
x and meaning y given the second part of the joke. If this value is negative then
meaning y is greater given P2, if it is positive then meaning x remains dominant.
While we already expected this to happen, the heat map allows us to identify this
value automatically as being a distinguishing feature between classes.
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9.7 Visualization 3: Model Space Using Monotone
Boolean Chains

In this section, we represent the difference between garden path jokes and non-jokes
in 4-D Boolean space. This 4-D Boolean space is visualized in 2-D using the
method from (Kovalerchuk and Delizy 2005). In Fig. 9.3 each 4-D Boolean vector
is shown as a binary sequence without comma separation. These Boolean vectors

Fig. 9.2 Heat map for
correlation differences
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form monotonically increasing chains, i.e., each succeeding vector in the chain is
the same as the last, except it has an additional bit set to one.

Each chain describes the change in features. The chains altogether represent the
entire model space of 24 Boolean vectors based on the Boolean four features u1, u2,
u3, u4 derived from the meaning correlation coefficient differences described in
Sect. 9.3.2.

The steps of this visualization process are:

• Establishing a 4-D Boolean vector (u1, u2, u3, u4) for each joke/non-joke as
described in Sect. 9.3.2;

• Establishing and visualizing 2-D Boolean space of chains in accordance with
(Kovalerchuk and Delizy 2005) as explained below;

• Plotting vectors established for jokes as green dots and as red dots for non-jokes
on the Boolean plot;

Figure 9.3 shows the resulting visualization using the same dataset, which was
used in the two other visualizations. Figure 9.3 shows the full 4-D space, which
consists of 24 = 16 Boolean vectors with the smallest vector (0,0,0,0) at the bottom
and the largest vector (1,1,1,1) at the top. The vectors with single “1” form the
second layer, vectors with two “1” the third (middle) layer, and the vectors with
three “1” form the forth layer. Together these five layers are called the 4-D Multiple
Disk Form (MDF) (Kovalerchuk, Delizy, 2005). This is a special 4-D case of the
general MDF, which is constructed in (Kovalerchuk and Delizy 2005).

Each joke and non-joke is encoded as a Boolean vector (u1, u2, u3, u4) and is
placed as a dot in the respective Boolean vector in Fig. 9.3. Here jokes are green
dots and non-jokes are red dots. Figure 9.3 shows that only two vectors (1011) and
(1111) that have has mixed content with one joke in each of them. All other boxes
represent a single class.

Just visual observation of Fig. 9.3 allows formulating a simple rule, which we
denote as rule R4:

R4 : Ifðw� 1; 0; 1; 1ð Þ _ w� 0; 1; 0; 1ð Þ thenw is joke elsew is a non-joke:

It is based on noticing that green dots are located only in three vectors. This rule
expresses this property—if w is in one of them, then it is a joke. The accuracy of

Fig. 9.3 Plot of Monotone Boolean space of jokes (green dots) and non-jokes (red dots)
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this rule is 94.12% (32 out of 34 cases are correctly classified) in contrast with
88.23% for previous rules above. This rule also covers vector (1101) by monotone
generalization while this vector is not present in the given dataset. Why is accuracy
of R4 higher than for Rules R1–R3? In fact those rules use only one or two out of
four values u1, u2, u3 and u4, but rule R4 uses all 4 values, i.e., captures more
complex relations as patterns.

The vectors in Fig. 9.3 have a hierarchical structure that allows outlining the
border between jokes and non-jokes. Consider the increasing chain of Boolean
vectors outlined by the blue arrows in Fig. 9.3:

0000ð Þ; 1000ð Þ; 1010ð Þ; 1011ð Þ; 1111ð Þ

Rule R4 established the border between jokes and non-jokes between vectors
(1010) and (1011) in this chain, i.e., in R4 vector (1010) is a non-joke, and (1011) is
a joke. Both errors of rule R4 are in this chain.

Now consider another increasing chain of Boolean vectors outlined by the violet
arrows in Fig. 9.3:

0000ð Þ; 0100ð Þ; 1100ð Þ; 1101ð Þ; 1111ð Þ

Rule R4 established the border between jokes and non-jokes between vectors
(1100) and (1101), i.e., in R4 vector (1100) is a non-joke and (1101) is a joke. Only
one error of rule R4 is in this chain.

In both chains u4 = 1 plays a critical role for the text to become a joke in
transition from the third vector with u4 = 0 to fourth vector with u4 = 1.

The analysis of the third chain (0000), (0010), (0110), (1110), (1111) (shown by
orange arrow) again shows the critical role of u4 = 1 in transition from the forth
non-joke vector (1110) to the fifth vector (1101) to become a joke.

After discovering visually such an important role of u4 = 1 in Fig. 9.3 we can
take a close look at the meaning of u4. It is defined in Sect. 9.3.2 as follows: u4 = 1
if C2x < C2y, i.e., correlation with meaning y is greater than meaning x.

This is rule R2 discovered with CPCs in Sect. 9.5. However, the Boolean chains
shows that we cannot use u4 = 1 alone. The transition to jokes depends on values of
other ui in different combinations of ui in the Boolean vector depending on the
chain. This confirms the insufficiency of rules R3 and R4 for modeling of jokes that
we pointed out above.

Figure 9.3 allows generalizing rule R4 to construct a more complete border
between jokes and non-jokes as set of pairs based on the discovered role of u4 = 1:

1010ð Þ � 1011ð Þ; 1000ð Þ � 1011ð Þ; 1110ð Þ � 1111ð Þ;
0000ð Þ � 0001ð Þ; 0100ð Þ � 1001ð Þ; 1100ð Þ � 1101ð Þ
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where the first vector in the pair is a non-joke and the second is joke. However, we
can make some judgements about them. This generalized rule can be tested on new
data by getting more garden path joke and non-jokes.

The visually discovered fact that most of the jokes and non-jokes concentrated in
few Boolean vectors on Fig. 9.3 is the insight for further exploration. The existence
of the vectors with the mixture of cases is another visual insight likely pointing to
the need for more features beyond u1-u4, to separate such cases.

9.8 Conclusion

Incongruities and their resolution appear in many other places where classification
occurs though. The incongruity visual analysis approaches can be used to detect and
classify other forms of humor including physical humor (Nijholt 2014).

In general, incongruities can arise and are resolved where classification occurs
based on multiple sources of evidence, for example, where multiple sensors are
used, or where a sensor takes readings at multiple steps in time. These incongruity
visualization should be able to identity some of these nonverbal and non-humorous
‘mistakes’ and their resolution which can be useful for a number of tasks from
process control to sensor management.

Overall, the results from this study show that visualization can be used as a valid
strategy for approaching the modeling and detection of humor within text. This
chapter presented three approaches, which were all successful in enabling a person
to identify key features that distinguish humorous and non-humorous garden path
jokes. One future direction is to use these visualization techniques on other joke
types to see what they would look like in terms of patterns of meaning correlation
over time.

These techniques can potentially be used to visualize many other forms of
incongruity within texts such as:

• shifting within product review sets,
• paradigm level formation of incongruity and resolution within academic docu-

ment sets over time,
• the writings of a bipolar patient who might shift from one opposing emotion to

the other in a cyclic fashion,
• identify non-verbal incongruities, and their resolution such as non-verbal humor,

and
• other phenomena involving opposing states and patterns of shifting.

In addition, these visualization techniques allow plotting many examples at
once, which is beneficial for analysis of natural language texts.
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Chapter 10
Enhancing Evaluation of Machine
Learning Algorithms with Visual Means

Science can progress on the basis of error as long as it is not
trivial.

Albert Einstein

10.1 Introduction

10.1.1 Preliminaries

Previous chapters demonstrated the ways of visual discovery of patterns using different
General Line Coordinates. This chapter demonstrates the hybrid visual and analytical
way to enhance the estimation of accuracy and errors of machine leaning discovery. It
focuses on improvement of k-fold cross validation. It provides: (1) a justification for the
worst case estimates using the Shannon Function, (2) hybrid visual and analytical ways
to get these estimates, and (3) illustrative case studies. The visual means include the
point-to-point and GLC point-to-graph mappings of the n-D data to 2-D.

The algorithm of k-fold Cross Validation (CV) is a common tool actively used to
evaluate and compare machine learning algorithms. However, it has several important
deficiencies documented in the literature along with its advantages. The advantages of
quick computations are also a source of its major deficiency. It tests only a small
fraction of all the possible splits of data on training and testing data leaving untested
many difficult for prediction splits. The associated difficulties include bias in estimated
average error rate and its variance, the large variance of the estimated average error, and
possible irrelevance of the estimated average error to the problem of the user.

The improvement of the cross validation described below combines visual and
analytical means in a hybrid setting. The visual means include both the point-to-point
mapping and GLC point-to-graph mappings of the n-D data to 2-D data. The analytical
means involve the adaptation of the Shannon function to obtain the worst case error
estimate. It is illustrated below for classification tasks. In k-fold cross validation data are
split into k equal-sized folds. Each fold is a validation/test set for evaluating classifiers
learned on the remaining k-1 folds. The error rate is computed as the average error
across the k tests and is considered as an estimate of the error expectation.
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Four cross validation schemes are presented in Moreno-Torres et al. (2012),
which are summarized below:

(1) Standard stratified cross validation (SCV) places an equal number of samples of
each class on each partition to keep the same class distributions in all partitions.

(2) Distribution-balanced stratified cross validation (DB-SCV) keeps data distri-
bution as similar as possible between the training and validation folds and
maximizes the diversity on each fold to minimize the covariate shift.

(3) Distribution-optimally-balanced stratified cross-validation (DOB-SCV) is
DB-SCV with the additional information used to choose in which fold to place
each sample.

(4) Maximally-shifted stratified cross validation (MS-SCV) creates the folds that
are as different as possible from each other. It tests the maximal influence
partition-based covariate shift on the classifier performance by putting the
maximal shift on each partition.

Here covariate shift means that the training and testing sets have different dis-
tributions (Shimodaira 2000), e.g., a unimodal distribution on the training set and a
two-modal distribution on the testing/validation set.

This chapter provides (1) a justification for the use of the worst case estimates
using the Shannon Function as a criterion, (2) hybrid visual and analytical ways to
get such worst case estimates, and (3) illustrative case studies.

10.1.2 Challenges of k-Fold Cross Validation

The k-fold cross validation model error estimates vary depending on the way how
data are split for cross validation and distributed in the splits. This leads to the
difficulties judging how actually successful the learned model in predictions is.

The theorem proved in Bengio and Grandvalet (2004) had shown that there is no
universal (valid under all distributions) unbiased estimator of the variance of k-fold
cross validation.

Multiple attempts made to address k-fold problems by making additional as-
sumptions and modifications to get better average estimates, e.g., (Dietterich 1998;
Grandvalet and Bengio 2006). To the best of our knowledge much less was done to
improve the worst-case estimates in both probabilistic and deterministic settings.

Estimates of the average error and its variance can be insufficient or even
irrelevant to the supervised learning problem that is of user’s interest. It is related to
the Maximally-shifted stratified cross validation (MS-SCV) listed above as schema
(4). It is found in extensive experiments on real data in Moreno-Torres et al. (2012)
that:
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• MS-SCV produces a much worse accuracy than all other partitioning strategies,
and

• cross validation approaches that limit the partition-induced covariate shift
(DOB-SCV, DB-SCV) are more stable when running a single experiment, and
need a lower number of iterations to stabilize.

These results illustrate the problem. Limiting the covariate shift gives a more stable
result on validation data. However, nobody can guaranty us that on new unseen data
the covariance shift will be limited and limited in the same way. It is simply out of our
control in many real world tasks. Therefore, the stable result under such limits can be
biased showing a lower error rate than it can be on the real test data.

We address these challenges by supplementing limited covariate shift (“average”
case) by the bounds for “worst” and “best” cases. This will balance the risk of using
a given learning algorithm with “average” by providing information that is more
complete. This is the ultimate goal of this chapter.

10.2 Method

10.2.1 Shannon Function

Below we formalize a way to evaluate the worst case as a compliment to k-fold
estimates of the average error. It is done by adaptation of the minmax Shannon
function (Shannon 1949) originally proposed for analysis of the complexity of
switching circuits as Boolean functions. The Shannon function measures the
complexity of the most difficult function. In particular, this function was applied to
find an algorithm Aj that restores the worst (most complex) monotone Boolean
function of n-variables for the smallest number of queries (Hansel 1966;
Kovalerchuk et al. 1996).

Consider a labeled dataset D and a set of machine learning algorithm {Aj}j2J. Let
{Di}i2I, 1 = {1,2,…,m} be a set of splits of D to < Training data, Validation data >
pairs. k-fold cross validation split is one of them. Each Di is a pair of training and
validation data, Di = (Tri, Vali). Ajv(Di) is the error rate on validation data Vali pro-
duced by Aj when Aj is trained on the training data Tri from Di. The adaptation of the
Shannon function S(I, J) to supervised learning problem is defined as follows

S I; Jð Þ ¼ min
j2J

max
i2I

Ajv Dið Þ ð10:1Þ

The algorithm Ab is called S best algorithm if

S I; Jð Þ ¼ min
i2I

AbvðDiÞ ð10:2Þ
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In other words, the S-best algorithm produces fewer errors on validation data on
its worst k-fold splits among {Di} than other algorithms on their worst k-fold splits
among {Di}.

Let DA = {Di: i2IA} be a set of all passible k-fold splits for given k and data D,
i.e., k-1 folds (bins) with the training data and one fold (bin) with the validation
data. In contrast with the standard k-fold validation, here the validation sets for
different Di can overlap. Let DT = {Di: i2T} is some set of splits.

Statement If DT = {Di: i2T} � DA then S(IA, J) � S(IT, J)
This statement follows directly from definitions of these terms. For instance, if S

(IT, J) = 0.2 then adding more splits can give us a better split Dr in DA such that
Ajv Drð Þ\0:2 for some Aj.

In other words, for each DT the value of S(IA, J) provides a low bound for S(IT, J).
Similarly, for DA the value of S(IT, J) provides an upper bound for S(IA, J).
A standard k-fold split DK = {Di: i2K} is one of DT. How close the bounds are to
the actual worst case depends on the specific DT and DA. At least the average error
rate for DK can be computed quickly enough. Computing error rates for multiple DK

produced by random or non-random splits of data into folds will give several
bounds.

Asymptotically this will lead to the actual Shannon worst case,

Dw ¼ argðmin
j2J

max
i2I

Ajv Dið ÞÞ ð10:3Þ

Split Dw is called the worst case split for S-best algorithm Ab.

Dw ¼ argðmax
i2I

AbvðDiÞÞ ð10:4Þ

Informally, the worst case split is a split, which is most difficult for the S-best
algorithm which produces fewer errors on validation data than other algorithms on
their worst splits from {Di}.

Split Db is called the best case split for S-best algorithm Ab

Dh ¼ argðmin
i2I

AjvðDiÞÞ ð10:5Þ

Informally, the best case split is a split, which is easiest for the S-best algorithm,
which produces fewer errors on the validation data than the other algorithms on
their worst splits from {Di}.

Split Dm is called the median split for S-best algorithm Ab,

Dh ¼ argðmedian
i2I

ðAjvðDiÞÞÞ ð10:6Þ

Informally, the median split for the S-best algorithm produces the error rate that
is close to the average error rate among {Di} for Ab algorithm.
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Both the worst-case and best-case estimates provide the “bottom line” of the
expected errors. As we mentioned above, for the tasks with a high cost of individual
error, it is very important.

10.2.2 Interactive Hybrid Algorithm

The steps of first part of the interactive hybrid algorithm for S-best algorithm
that is discovering data structure are as follows:

(S1) Visualize n-D data in 2-D;
(S2) Select border points of each class and color them in different colors;
(S3) Outline classes by constructing envelopes in the form of a convex or a

non-convex hull;
(S4) Outline (a) overlap areas L for overlapped classes or (b) select closest areas

C for separable classes;
(S5) Compute the size of the overlap areas L or areas C of the closest samples;
(S6) Set up ratio of training-validation data, |Tr|/|Val|, e.g. 90%:10% with (|Tr| + |

Val|)/|Val| = k.

The steps of second part of the Interactive Hybrid algorithm for the Worst case
(IH-W) of S-best algorithm are:

(W1) Form Val as areas L or C;
(W2) Adjust (increase or decrease) L or C to make |L| = |Val|, or |C| = |Val|;
(W3) Form training data Tr = D\Val and pair < Tr, Val >;
(W4) Apply each algorithm Aj to Tr to construct discrimination function F;
(W5) Apply F to Val to get error rate Ajv(Val);
(W6) Record Ajv(Val) and find max(Ajv(Val)), j2J;
(W7) Repeat (W1)–(W6) to get values {max Ajv(Vali)} i2I for a set of

training-validation pairs {Di};
(W8) Find the Shannon worst case split, mini2I maxj2J (Ajv(Vali)) and algorithm

Ab that provides this split.

The interactive algorithm for the best case (IH-B) of S-best algorithm consists
of using algorithm Ab from step W8 to get mini2I (Abv(Vali)).

The interactive algorithm for the median case (IH-M) of S-best algorithm
consists of using algorithm Ab from step W8 to get median i2I (Abv(Vali)).

10.3 Case Studies

Case studies in this section show how the visual means support finding worst and
best cases of splits with the use of the interactive hybrid algorithm.
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10.3.1 Case Study 1: Linear SVM and LDA in 2-D
on Modeled Data

Worst case Figure 10.1 shows two separable classes classified by linear SVM and
simplified Linear Discriminant Analysis (LDA) algorithms. For the linear SVM for
linearly separable classes we use its geometric interpretation (Bennett and Campbell
2000; Bennett and Bredensteiner 2000), which is based on the closest support vectors
of the two classes. In this SVM the red line connects closest support vectors from
opposing classes. In simplified LDA it connects centers of training data of classes.

The green lines that bisect these lines in the middle serve as SVM and LDA
linear classifiers, respectively. Both classifiers are error-free on training data (blue
and grey convex hulls), but not error free on validation data of the blue class (violet
triangle on the left). This triangle illustrates the worst-case example of the splitting
data to training and validation data in cross validation algorithm evaluation process.

In Fig. 10.1, the violet areas form the validation data (5% of the blue pentagon
and 5% of the grey pentagon). The classification results of training data in Fig. 10.1
are the best cases for both linear SVM and simplified LDA on training data, because
this pair Di is error-free on training data (see green discrimination lines in
Fig. 10.1). Both SVM and LDA are the winners on training data for this Di.

(a) Linear SVM: Narrow margin case

(b) Simplified LDA: narrow margin case

A
B

Fig. 10.1 Examples of the
worst case cross validation
split of two separable classes
classified by linear SVM and
simplified LDA
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However, both are erroneous on the validation data, because a discrimination line
exists which separates validation data with 100% accuracy. This line is the black
middle line between two pentagons in Fig. 10.1b, but both algorithms did not find it.
This black line was found by pure visual means. This shows that there are situations
where visual classification can be more accurate than the classification by using known
analytical machine learning methods. Thus, SVM and simplified LDA are not winners
for the validation data in Di and respectively are not S-best algorithms for this Di.

Next, even if such worst Di is included in 10-fold cross validation, the difference
between average error estimates for two algorithms will likely be statistically
insignificant if both algorithm equally accurate on the remaining nine training-
validation pairs. This is a motivation for using the Shannon function and for search of
the worst cases or at least estimates the bounds of the worst cases.

Why is it important to search for such rare worst training-validation pairs Di?
The ultimate goal of machine learning is generalization beyond the given data D to
unseen data. The existence of worst training–validation pairs with large error
indicates that the algorithm Aj does not capture a generalization pattern in some
situations on given data D.

This increases the chances of misclassification on unseen data too. In the tasks
with the high cost of an individual error (e.g., medicine), such situations must be
traced and analyzed before use in real applications.

For instance, if a set of selected splits {Di} for the S-best algorithm is not
error-free then we can treat the areas, where those errors occurred differently.

This treatment can include:

(1) refusal to classify data from those areas,
(2) use other machine learning algorithms,
(3) adding more data and retraining on extended data,
(4) cleaning existing data,
(5) modifying features,
(6) use other appropriate means, such as manual classification by experts.

The case study in this section uses 2-D artificial modeled 2-D data. For this
analysis in real machine learning tasks, such 2-D data can be obtained from n-D
data by point-to-point matching visualization algorithms such as PCA, MDS, SOM
and others. Transformation of n-D to 2-D by these methods needs to be used
cautiously due to lossy nature of these methods that was discussed in other chapters.

10.3.2 Case Study 2: GLC-AL and LDA on 9-D
on Wisconsin Breast Cancer Data

The case study in this section is based on the graph representation of the n-D points in
2-D, not on a single 2-D point representation of an n-D point. For this study,Wisconsin
Breast Cancer Diagnostic (WBC) dataset was used from ICI Machine Learning
Repository (Lichman 2013) with 9 attributes for each record and the class label which
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was used for classification. These data have been explored in Sect. 7.3.1 in Chap. 7
with the accuracy over 95% on these data.

Figure 10.2 shows the screenshots, where these data are interactively visualized
and classified with a linear classifier using GLC-AL algorithm defined in Sect. 7.2
in Chap. 7. In Fig. 10.2 the malignant cases are drawn in red and benign in blue.
Figure 10.2 is based on Figs. 7.14 and 7.15 from Chap. 7.

In Fig. 10.2a, the GLC-AL linear classifier misclassified 31 samples with all of
them from class 1 when all data (444 benign cases and 239 malignant samples)
were used for training. The selected overlap area contains 38 samples (4.5%, with
28 samples from class 1, and 10 samples from class 2).

According to step W1 of the algorithm IH-W, we form the validation set Val as a set
of samples in the overlap area L. We keep Val equal to L without adjustment, skipping
the step W2. Next we use a shortcut for steps W2–W5, which allows us to get a bound
for the error rate Ajv(L), where Ajv is the GLC-L algorithm applied to Val = L trained on
Tr. The result of this shortcut is presented in Fig. 10.2b. It shows the overlapping cases

(a) Training data and worst-case validation data.Validation data 
are between green vertical lines where two classes overlap.

(b) Validation data from (a) 

Fig. 10.2 Worst case cross validation example for 9-D Wisconsin Breast Cancer data of two
classes (red and blue) in lossless GLC-L visualization
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L, selected in Fig. 10.2a and the accuracy of classification of samples from L, when all
of them and only them are used as training data. At the first glance, running GLC-L on
L as training data, not validation data, contradicts steps W2–W5, which require running
L as validation data. The trick is that, training GLC-L on L as training data, we expect
to get a smaller error rate on L than running the linear model on L, constructed by
GLC-L on training data Tr without any data from L in Tr.

In Fig. 10.2b, the accuracy is 73.68% (error rate 0.2632) with L as training data.
The error rate 0.2632 is the upper bound for the error rate Ajv(L), Ajv(L) � 0.2632.
We cannot get a bound with the larger number of errors than 0.2632 for the
algorithm GLC-L, if we continue to run GLC-L on the overlap area L for more
epochs. It follows from the design of GLC-L. GLC-L keeps coefficients with the
current lowest error rate. Having the error rate equal to 0.2632 GLC-AL will update
it only by finding a smaller error rate, not a larger one.

This conclusion was made under assumption that we use L as Tr. Now we need
to explore what will happen with the other splits when L is only a part of Tr, not
equal to Tr. Can we get another error rate r for GLC-L, say r = 0.3, which is greater
than 0.2632 for these other splits and, respectively, another upper bound for Ajv(L)?
If such greater r exists our previous claim, that we cannot get more errors with
GLC-L, will be wrong.

We cannot get such greater r for the same reason as above. The GLC-L design
will not allow it. We already have a linear model in Fig. 10.2a that classified all
samples from Tr = D\L with zero error rate, where D is the total given dataset.
Thus, GLC-AL algorithm trained on Tr data that include L will only keep linear
models that classify L better because for samples outside L GLC-AL already
obtained models with zero error rate.

This shortcut can be applied for any GLC-L data. If such upper bound is a
tolerable error rate then we can apply the coefficients found by GLC-AL on TR\L as
training data for classification of new data. Thus steps W2–W5 of the algorithm
IH-W for GLC-L can be simplified.

To compare the bound for GLC-L with the bounds for linear SVM and LDA
steps, W4–W6 must be run for these algorithms. The algorithm with the smallest
bound will be a candidate for the S-best algorithm on these data. In addition to this
analytical option, an interactive option can be applied to the modified and simplified
versions of linear SVM and LDA algorithms that work with 2-D GLC-L visual
representations of n-D data. Both algorithms follow the steps used in case study 1
with two differences: (1) convex hull constructed by GLC-L algorithm are used, and
(2) the overlap area is defined by the location of the last node of the graph (marked
by black squares) between green lines. This way, to identify the overlap area, was
used in Fig. 10.2.

Linear SVM in GLC-L visualization uses closest support vectors (SV) from two
classes in GLC-L. For overlapping convex hulls of two classes we use the overlap area
that is identified by a user interactively using two thresholds (see green lines in
Fig. 10.2a). Two closest nodes of graphs from two different classes in the overlap area
are called closest support vectors of these graphs. If the overlap area is empty (the case
of linearly separable classes) then two closest nodes of the frames of two convex hulls
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are called closest support vectors of the frames. Having two closest support vectors
A and B, we build a line that connects them and a line that bisects them in the middle
and orthogonal to the first line. The closest nodes are defined by the distance between
projections of the last points of the graphs for A and B to the horizontal line.

For the LDA we use for A the average point in the projection on the point of
class 1 to the horizontal line and for point B we use the same in the class 2. Then the
middle point C between A and B is used to construct the discrimination line. It is
shown in Fig. 10.2a as a grey line.

What is important in the example in Fig. 10.2 is the abilities to build a visual
classifiers (in this case for 9-D), and be able to compare error rates visually. It also
allows chopping visually overlapping parts by setting up thresholds interactively
and using these folds to construct validation data for the worst case.

10.4 Discussion and Conclusion

This chapter had shown a hybrid way to improve cross validation by using com-
bined visual and analytical means. The main benefit of this hybrid approach is
leveraging the abilities of the human visual system to guide the discovery of pat-
terns in 2-D. This includes discovering splits of n-D data in 2-D visualization of
these data. This approach creates an opportunity to avoid a blind computational
search of worst splits among the exponential number of alternatives that can be the
case in the pure computational approach. In essence, the visual approach brings
additional information about the n-D data structure that the computational approach
lacks. Adding such information from the visual channel can be viewed as a way to
add more features and relations to the data, sometimes called privileged information
(Vapnik and Vashist 2009), or prior domain knowledge (Mitchell 1997; Mitchell
et al. 2005). The difference is that both privileged information and domain
knowledge typically is not present in the original data. In contrast, the visual
channel makes the hidden information already present in n-D data be readily
available via the interactive process.

While this visual opportunity exists, it requires a relatively simple visualization
for humans to be able to discover a pattern in them, i.e., within the abilities of the
human visual channel. The ways to simplify the visual patterns in the General Line
Coordinates are presented in Chap. 4. Such ways should be applied before and in
concert with the interactive search for worst case splits in cross validation.

The focus on worst-case splits and adaptation of the Shannon function bring a
new formal validation task. The main justification for the use of worst case esti-
mates and Shannon Functions is three-fold:

(1) Existence of the tasks with a high cost of individual errors;
(2) Existence of the tasks with high error rate for the worst case splits;
(3) Abilities to limit using algorithm that are poor in worst cases.
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In (1) and (2), the use of the average error rate can be too optimistic and risky
where the worst-case estimate serves as warning, while (3) allows preventing risky
decisions and predictions. We may have two algorithms A and B with the average
error rates with a statistically insignificant difference, but A has much smaller
worst-case error rate than B. This can be a reason to prefer A for the classification of
new samples, because A was able to discover better difficult patterns than
B showing stronger generalization ability. In addition, while error rate for A is better
than for B in the worst case, in some worst folds it can be too big. The prediction on
new unseen data in these folds can be blocked for both A and B.

The challenges for k-fold cross validation include: (1) selecting the number of
folds k and running multiple k, (2) missing multiple splits that left untested,
(3) large variance of error rates, (4) bias in estimated average errors and its variance,
and (5) insufficiency or irrelevance of estimated average errors.

The hybrid approach allows dealing with these challenges as follows. First k = 2
is used to provide an upper bound of the worst error rate for all the other k for the
given algorithm A. Then we increase k until the worst case bound will be below
threshold Tworst selected by a user for the given task. This k is considered accept-
able. On the other extreme, with k = m (leave-one-out split), where m is the number
of samples, we consider another threshold Tbest, and decrease k until the best error
rate will be still below Tbest. Assume that we find k that satisfies both the Tworst and
Tbest. For instance, we can find that for k = 8 the worst error rate is bounded by 0.18
and the best error rate is bounded by the error rate 0.05, with average error rate as
0.12 with its variance ±0.02. In other words, we have a wider interval [0.05, 0.18]
than the average interval [0.10, 0.14].

The computational support of visual exploration and visual support of analytical
computations are important parts in this hybrid approach to avoid brute force
search. As examples in this chapter show, the visual approach allows a quick visual
judgment that the error rate in one split is greater than in another one. A user can
find visually a large overlap area of two classes and chop it to form several vali-
dation folds, e.g., getting 10-fold cross validation splits. This confirms our main
statement that brute force search is not mandatory and is avoidable using an
appropriate visualization.

The future studies are toward making hybrid interactions more efficient and
natural in the computational and visual aspects but not limited by them. This
includes adding speech recognitions to interactions allowing a user to give oral
commands such as “decrease slightly the overlap area”, “shift the overlap area to
the right”, “make an about 5% area on the top of the convex hull” and so on. This
will require formalization of the linguistic variables involved in these commands in
the spirit of the Computing with Words (CWW) approach (Kovalerchuk 2013).
More complex commands such as “decrease slightly the overlap area, and shift the
overlap area to be close to the envelope frame” will require more sophisticated
uncertainty aggregation techniques (Kreinovich 2017).
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Chapter 11
Pareto Front and General Line
Coordinates

What a good thing Adam had when he said a good thing,
he knew nobody had said it before.

Mark Twain

11.1 Introduction

Optimizing simultaneously several likely conflicting objectives is the goal of
multi-objective optimization. Mathematically it is an ill-posed problem.
Formulating it as finding of all non-dominated solutions is a known way to make it
a mathematically correct problem.

The concept of Pareto front (PF) that formalizes the idea of all non-dominated
solutions plays an important role in multi-objective optimization (MOO) problems
and related domains (Ehrgott 2006; Ehrgott and Gandibleux 2014). MOO problems
with more than three objectives are called many-objective optimization problems
(Chand and Wagner 2015). The Pareto Front is a mathematically correct solution of
multi-objective optimization problems with several conflicting objectives.
However, it is only a partial solution for many real-world situations, where only few
of the PF alternatives can be implemented, due to resource limitations and other
reasons. Commonly Pareto Front is narrowed by linear aggregation of contradictory
criteria, where the challenge is assigning weights to criteria. Lossless visualization
of multi-dimensional data of the Pareto Front is promising way to assist in inter-
active selecting appropriate weighs. This chapter shows a way to accomplish this
with GLC-L visualization method defined Chap. 7. It also shows a way to visualize
the approximation set for the Pareto Front with Collocated Paired Coordinates,
defined in Chap. 2 in comparison with Parallel Coordinates to assists in finding
“best” Pareto points.

Below we provide basic definitions used in this chapter.

Definition Two n-D points x and y are incomparable if indexes i and j exist such
that xi > yi and xj < yj. Example: x = (1, 2, 3, 4) and y = (2, 1, 3, 4), x2 > y2 and
x1 < y1.
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Definition A given set of n-D points P is a non-dominated set if every n-D point
x in P is incomparable with any other n-D point y in P.

Definition A pair <F, C> is called a multi-objective problem, if F is a set of
objective functions {Fi} and C is a set of constrains on a set of objects {a}.

Definition An n-D point a = (F1(a), F2(a),…,Fn(a)) is called a feasible n-D point
(solution) of a multi-objective problem <F, C> if 8 Ci2C Ci(a) = True.

Definition A set of all non-dominated feasible n-D points of the multi-objective
problem <F, C> is called Pareto Front (PF) for <F, C>.

In contrast with a generic set of non-dominated n-D points, MOO assumes a
specific problem with a given pair <F, C>.

Below in this section, we follow the review in (Ibrahim et al. 2016) to summarize
the role, main challenges, requirements and opportunities of PF visualization.

The PF allows and effective interactive optimization. Visualization of true Pareto
front is difficult because

• It should show the location, range, shape, and distribution of obtained non-
dominated solutions.

• It should preserve the Pareto dominance relation and relative closeness to
reference points in the visual representation.

• Non-dominated solutions produced by MOO algorithms may be only approxi-
mations of the true PF (called approximation sets).

• Visualization of obtained non-dominated solutions must reveal its relation to the
true PF.

• Scatter plots visualize only 2-D and 3-D PFs and their approximation sets, more
advanced approaches are needed for four or more objectives.

• Existing visualization tools (e.g., parallel coordinates) fail to show the shape of
the Pareto front.

Thus, visualization of PF consists of two problems:

• Visualization of the true PF and
• Visualization of an approximation set of the true PF with its likely relationship

to the true PF.

There is no single formal definition of the approximation set beyond requiring
that it is a distinct set of n-D objective points that are non-dominated relative to
each other. These sets can be subsets, supersets of PF, or other sets. The quality of
an approximation set is measures by such characteristics as convergence, spread,
and distribution of objective vectors.

Visualization of the approximation set allows to:

• estimate the location, range, and shape of PF,
• assess conflicts and trade-offs between objectives,
• select preferred solutions,
• monitor the progress or convergence of an optimization run, and
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• assess the relative performance of different MOO algorithms better than formal
measures due to difficulties to capture in a single measure all variety of aspects of PF.

The major requirement of the PF and its approximation set visualization is
preserving the Pareto dominance between n-D points, i.e., making it evident from
visualization. Other requirements are:

• maintaining shape, range, and distribution of PF points,
• being stable under addition or removal of points within the range of the

approximation set,
• handling a large number of PF points of large dimensions and multiple

approximation sets for comparison, and
• being simple to understand and use.

For two or three objectives, we have scatter plots that satisfy most of these
requirements. This situation is similar to what we have in general for 2-D and 3-D data
visualization (see Chap. 10). All challenges are coming at the higher dimensions.

11.2 Pareto Front with GLC-L

While PF provides a mathematically correct solution of MOO problems, it is only a
partial solution for many real world situations, where only one or few of the PF
alternatives can be actually implemented as a solution, due to multiple reasons such
resource limitations. For instance, the aircraft manufacturer cannot build airplanes for
every alternative in PF. Thus, the next task is narrowing PF. The common way of
doing this is linear aggregation of multiple criteria that is going back to (Gass and
Saaty 1955). The major challenge in linear aggregation is assigning weights to criteria.
Visualization is natural way to assist in interactive selecting appropriate weighs.

Below we show a way to accomplish this with GLC-L that was defined in
Chap. 7. An analyst needs to see if weights in a linear function F are consistent with
analyst’s preferences of alternatives. Figure 11.1 shows two 4-D objective alter-
natives a = (1,1,1,1) and b = (1.2,0.5,1.4,0.7) visualized in GLC-L coordinates
X1–X4 with angles (Q1, Q2, Q3, Q4). In GLC-L all vectors ai and bi shifted to be
connected one after another and the end of last vector projected to the black line. X1

is directed to the left due to negative coefficient k1. Coordinates for negative ki are
always directed to the left.

Projections of a and b show that weighted a is greater than weighted
b. However, for the analyst b is better than a, this contradiction is evident in
GLC-L. GLC-L shows the contribution of each weights and criteria and allows
adjusting them interactively by changing angels as shown in Fig. 11.2 to make
weights consistent with preference of b over a, b, b > a.

Assume that an analyst has a matrix of preferences P on the alternatives in PF. If
a > b in P, but F(a) < F(b) in GLC-L then a and b and the endpoints of projections of
a and b to U axis are colored red. Then in line with Fig. 11.1 the number of red lines
and dots (for endpoints) can indicate the level of inconsistency between F and P.
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Next, the analyst may have a full order of all alternatives in addition to pref-
erences of pairs of alternatives. While the order of alternatives is transitive the
preferences on pairs may not. In addition, the order can be with the strength of the
preference on some numeric scale. GLC-L can show consistency of F with such
order and preferences. Figures 11.1 and 11.2 illustrate this too. The distance

x1
X

2
X3

X4

Q1 Q2 Q3 Q4

x2

x3

x4

X1

U

a
b

Fig. 11.1 4-D points a = (1, 1, 1, 1) and b = (1.2, 0.5, 1.4, 0.7) in GLC-L coordinates X1–X4

with angles (Q1, Q2, Q3, Q4) with vectors xi shifted to be connected one after another and the end
of last vector projected to the black line. X1 is directed to the left due to negative k1. Coordinates
for negative ki are always directed to the left
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Fig. 11.2 Adjusting coefficients of the weighted sum of criteria to meet expert’s preferences
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between projections indicates this. If the user expects the small difference, but it is
large according to F as in Fig. 11.1, then the analyst can make it smaller as in
Fig. 11.2. In Fig. 11.2 it is not only smaller but with a different sign (negative).

Another goal is of using PF is decreasing the occlusion and clutter by visualizing
only PF of a dataset for the tasks such observing a set of students and selecting one
representative student for each category such as “Best”, “OK”, “not OK”. Only PF
students in each category will be visualized.

The comparison of GLC visualization of PF with Parallel Coordinates is pro-
vided in the next section. The comparison with lossy methods such as RadVis for
Iris data is shown in Sect. 5.7.4 in Chap. 5. While those data are not directly about
PF, they are representative for the comparison situation.

PF alternatives can be ordered by the weighted Euclidean distances to the “ideal”
alternative that is not a part of PF, but can be a majorant of all alternatives in PF.
The assignment of weights interactively with GLC-L is illustrated in Fig. 7.5 in
Chap. 7. The distance-based idea is explained below. Let a be such ideal alternative
(prototype) expressed as an n-D point, where n is the number of multi-objective
criteria and y be an n-D point from PF for these n criteria. Then we compute a
squared weighted Euclidian distances

dk a; yð Þ ¼ k1 a1 � y1ð Þ2 þ k2 a2 � y2ð Þ2 þ � � � þ kn an � ynð Þ2

between a and x. To visualize it in GLC-L we rewrite dk(a, y) using another
notation, where

x1 ¼ a1 � y1ð Þ2; x2 ¼ a2 � y2ð Þ2; . . .; xn ¼ an � ynð Þ2

Thus, in this notation, dk(a, y) = k1x1 + k2x2 +⋯+ knxn. This is exactly GLC-L
linear from that was visualized in Chap. 7. Therefore, we can adjust angles in this
visualization in the same way as it is done in Fig. 7.5 in Chap. 7. This idea is in line
with generalization of GLC-L to non-linear relations presented in Chap. 7.

Example 1 We illustrate this PF approach in comparing it with Grade Point
Average (GPA) based practice for selecting students to be admitted to the Computer
Science major. Consider grades (3, 2.5, 4, 2, 3) and (4, 4, 2, 4, 3) of two students S1
and S2, respectively, in five classes Cl1–Cl5. Their GPA in these classes are 2.9 and
3.4, respectively. Based on these numbers, the second student will be admitted to
the Computer Science major more likely than the first one. However, these classes
have different importance for admission of these students to the Computer Science
major program. The experts may say that Cl3 is the most important and rather the
second student must be admitted. Thus, assume that we have expert’s preference (3,
2.5, 4, 2, 3) > (4, 4, 2, 4, 3). To set up weights of the classes to the make weighted
GPA consistent with expert’s opinion, we experiment with different weights w1–w5

and find (w1, w2, w3, w4, w5) = (0.5, 0.6, 1.0, 0.2, 0.3).
Applying these weights gives us weighted GPA, WGPA1 = 1.66 and

WGPA2 = 1.62 that reverse GPA preferences that is matched with expert’s
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preference. These experimenting can be done with GLC-L interactively as shown in
Fig. 11.2. Multiple different weights can satisfy this requirement. GLC-L has an
advantage of visualizing the alternatives and abilities of adjusting and selecting
weighs to meet better expert’s opinion.

Example 2 This example uses actual grades of over 50 students in 6 courses to be
admitted to the Computer Science major program. First, the Pareto front was found
in 6-D. Next the expert preliminary assigned weights to these 6 courses. Then a
group of four students in PF was selected to test these weights on consistency to
the expert opinion.

Figure 11.3a visualizes in GLC-L these four students as lines along with the green
line for the “ideal” studentwith all 6Agrades. Figure 11.4 zooms the ends of these lines
and their projections. It uses weights that the expert preliminary assign. This visual-
ization shows that these original weights are not consistent with expert’s ordering of
students. Interactive adjustment of coefficients made the weighted sum consistent with
expert order of the students: St1 > St5 > St3 > St2 > St4 to be admitted to the major.

Figures 11.3b, c visualize these five students using other coefficients that provide
weighed sums that are consistent with the expert’s order of students. The coefficients
used in Fig. 11.3c are equal to 0 in three courses that effectively provided dimension
reduction from 6-D to 3-D. The expert was able to justify it by noting that remaining
courses are more advanced and can be sufficiently representative for the admission.

11.3 Pareto Front and Its Approximations with CPC

This section demonstrates visualization of PF for 4-D data in Collocated Paired
Coordinates (CPC) defined in Chap. 2. Figure 11.5 shows an example of six 4-D
points in CPC. Three orange arrows that encode 4-D points a–c represent Pareto
Front. Other three 4-D points x, y, z show as blue arrows are dominated by at least
one of points from PF.

Dotted blue arrows show dominance directions between 4-D points. Point z has
two dominance arrows to point a that link node (a1, a2) with node (z1, z2) and node
(a3, a4) with node (z3∙z4). The direction of all dominance arrows is to up and right.
Figure 11.6 shows data from Fig. 11.5 in Parallel Coordinates for comparison.

Figure 11.7 shows two examples of approximation of PF. The first approxi-
mation consists of 4-D points r and m shown as green and grey arrows, respec-
tively. Point r is a majorant for PF and point m is a minorant for PF, i.e., all PF
points are less than r and greater than m.

These dominance arrows indicate that (a1, a2) dominates (z1, z2) and (a3, a4)
dominates (z3∙z4). In this way, we can visually establish that z is not in the PF. If
only one dominance arrow or none of them connects two 4-D points then these 4-D
points are incomparable and therefore are candidates to PF. The second approxi-
mation consists of 4-D points r and q. The point q shown as a black arrow is a
minorant of all six 4-D points from Fig. 11.7. Figure 11.8 shows data from
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(a) 6-D Pareto Front inconsitent with expert opinion (for 6 cources).

(b) 6-D Pareto Front consitent with expert opinion.

(c) 3-D Pareto Front consitent with expert opinion,

Fig. 11.3 6-D and 3-D Pareto Fronts in GLC-L

(a) inconsistent 6-D (b) Consistent 6-D (c) Consistent 3-D

Fig. 11.4 Zoomed ends of GLC-L graphs and projections from Fig. 11.3

11.3 Pareto Front and Its Approximations with CPC 283



Fig. 11.7 in Parallel Coordinates for comparison. Next, we consider a linear PF that
is defined below.

Definition Pareto Front is a linear Pareto Front for a set of n-D points {pi}i=1: m if
any affine sum s of {pi} is in PF, i.e., s = a1p1+a2p2+���+ampm for any {ai}i=1: m
such that a1+a2+���+am = 1 and 8i ai2[0, 1].

A set of these n-D points {pi}i=1: m is called the basis. As an example, we
construct a linear Pareto Front for four 4-D points p1–p4 shown in Table 11.1.

x=(1,2,3,4) 

y=(2,1,3,4)

b=(1,6,9,7)

c=(8,6,10,3)

a=(5,3,9,4)

z=(4,2,7,3)

1  2   3   4 5 6 7 8 9 10  11
1 

 2
  

 3
  

 4
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6 
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X
1
 X

3

X
2
 X

4

Fig. 11.5 Six 4-D points as
arrows in CPC with Pareto
Front (orange arrows). Dotted
blue arrows show dominance
directions between 4-D points
(arrows)
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X1 X2 X3 X4

Fig. 11.6 Data from
Fig. 11.5 in Parallel
Coordinates

b=(1,6,9,7)

c=(8,6,10,3)

1  2   3   4 5 6 7 8 9 10  11
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 2

  
 3

  
 4

5 
6 

7 r=(9,7,11,7)

m=(1,3,9,3)

q=(1,1,9,3) 

a=(5,3,9,4)

X
1
 X

3

X
2
 X

4

Fig. 11.7 Approximation of
Pareto set (green arrow r and
grey arrow m). Point r is a
majorant and point m is a
minorant for PF. Point q is a
minorant of all six 4-D points
from Fig. 11.5 in Collocated
Paired Coordinates
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For illustration of this linear PF we use values of coefficients ai from [0, 1] with
step 0.1, i.e., 0, 0.1, 0.2,…,0.9,1 and any combinations with only two nonzero
coefficients ai > 0, aj > 0, e.g., 0.3p2+0.7p4, 0.1p1+0.9p3. This subset of the linear
Pareto Front is shown in Fig. 11.9. It is one of the possible approximations of the

0 

2 

4 

6 

8 

10 

12 

X1 X2 X3 X4

Fig. 11.8 Data from
Fig. 11.7 in Parallel
Coordinates

Table 11.1 Four 4-D basis
points for linear affine PF

Point X1 X2 X3 X4

p1 0 0 0 1

p2 0 0 1 0

p3 0 1 0 0

p4 1 0 0 0

X1 X3

X2 X4

Fig. 11.9 Subset of a linear Pareto Front for four 4-D points p1–p4 visualized in Collocated
Paired Coordinates. Each curve represents two 4-D points similarly to straight lines
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full linear PF for 4-D points p1–p4. Two black dots on X and Y coordinates
represent two 4-D points (0.5, 0, 0.5, 0) and (0, 0.5, 0, 0.5).The orange two-sided
arrow represents other two 4-D points (0, 0, 0.5, 0.5) and (0.5, 0.5, 0, 0). The green
two-sided arrow represents other two 4-D points (0.5, 0, 0, 0.5) and (0, 0.5, 0.5, 0).

Figure 11.10 shows the same data in Parallel Coordinates as in Fig. 11.9.
Figure 11.10 is much more cluttered than Fig. 11.9, because it used three lines per
each 4-D point, versus only one line in CPC in Fig. 11.9.

In CPC representation of PF, similar n-D points are located next to each other,
which allows an analyst to interactively exploring similar options to select the
“best” one. The bold blue arrow going up represents (0.4, 0.6, 0, 0) and the orange
arrow that is also going up next to it represents (0.5, 0.6, 0, 0). In the same way, the
bold blue arrow next to the green arrow, represent a 4-D point that is similar to the
green one.

This CPC visualization of PF can be provided for higher dimensions than 4-D
and for other types of PF not only linear explored above such as hyper-sphere and
hyper-cylinder (hyper-tube). Also similarly, to visualization in CPC we can visu-
alize PF in other paired coordinates defined in Chap. 2 such as SPC. The advantage
of Parametrized SPC is in abilities representing any given n-D point as a single 2-D
point losslessly as shown in Sect. 2.2 in Chap. 2. This ability combined with
visualization of the similar points as short graphs next to that 2-D point provides an
intuitive way to analyze similar n-D points in PF.

Another opportunity with CPC for PF is in abilities to generate multiple
approximate sets of Pareto Front and to split CPC space to quadrants and
approximating PF in quadrant including finding and visualizing local majorants and
minorants in each quadrant.
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Chapter 12
Toward Virtual Data Scientist
and Super-Intelligence with Visual Means

All generalizations are false, including this one.
Mark Twain

The Big data challenge includes dealing with a big number of, heterogeneous and
multidimensional, datasets, of all possible sizes, not only with the data of big size.
As a result, a huge number of Machine Learning (ML) tasks, which must be solved,
dramatically exceeds the number of the data scientists, who can solve these tasks.
Next, many ML tasks require the critical input, from the subject matter experts
(SME), and end users/decision makers, who are not ML experts. A set of tools,
which we call a “virtual data scientist” is needed to assist the SMEs, and end users
to construct the ML models, for their tasks, to meet this Big data challenge, with a
minimal contribution from data scientists. This chapter describes our vision of such
a “virtual data scientist”, based on the visual approach of the General Line
Coordinates.

12.1 Introduction

This chapter considers a problem of automated creation of empirical ML models of
the real, complex processes from the data with the dominant role of SMEs, who are
not data scientists, with the minimal involvement of Data Scientists (DSs). We
approach this problem from the Visual Knowledge Discovery viewpoint. This goal
is within the DARPA recent vision of Machine Learning (DARPA 2016).

Tasks The Machine Learning modeling tasks, which need the active involvement
of SMEs include (DARPA 2016):
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(1) Formally defining the modeling problems (defining the objectives, attributes/
features, relations, evaluation metrics, labeling data, etc.),

(2) Constructing the ML models for the formally defined problems (selecting a
class of the ML methods, constricting the ML model within a selected class of
methods, by optimizing model parameters, using the input training data),

(3) Curating the automatically constructed models (providing the explanatory
data and model visualization, finding spurious correlations, evaluating the
predictive prospects on new data, etc.).

This list is not complete. Other tasks include the feature subset selection,
dimensionality reduction, feature extraction, eliminating spurious attributes; dealing
with noisy visually overlapping data, solving the clustering tasks, tasks with the
high dimensional data, from heterogeneous sources, etc.

This chapter considers the difficulties, in solving these tasks, and then focuses on
the SMEs involvement, for model construction (task 2 above), as one of the most
difficult ones for the SME. Typically, the SME cannot select an initial class of ML
methods, such as the Support Vector Machine (SVM), Bayes, Artificial Neural
Networks (ANN), k-Nearest Neighbors (k-NN) or others, not being an ML expert.
Moreover, for Data Scientists it is also a significant challenge. One of challenges is
that humans cannot see the n-D data, with a naked eye. Thus, at first glance, it
seems unrealistic to expect selecting a class of ML methods, and building the ML
models with them, by a non ML expert. This chapter shows that the GLC approach
is a promising way, for doing this.

Below, we first present the typical deficiencies of the ML projects, and outline
the ways for resolving them. Then, we outline the vision of constructing the n-D
ML models, with the SME, by generalizing the success in 2-D. After that, we
present the visual approach, for constructing the ML classification models, with the
SME. A visual approach to the curation of the ML models, and the preattentive n-D
data visualization, for the classification and clustering, with the outlining of the
future research, conclude this chapter.

12.2 Deficiencies

Typical deficiencies D1–D5, of the ML project, are listed below, with the outline
and a discussion of the ways to resolve them, including the role of the SME, and the
visual means.

D1. Questionable Input (input training data deficiency): incomplete, noisy biased,
and redundant data. It commonly leads to the overfitting, irrelevant correlations,
and the wrong predictions.

290 12 Toward Virtual Data Scientist and Super-Intelligence …



Adding the relevant data, removing the redundant data, denoising the data, and
dealing with biases are the time consuming tasks, and often are out of competence,
of the data scientists, who build the ML models. Visual means can assist the SME,
and the data scientists in doing this.

D2. Inaccurate Model (with sufficient/representative input data). The technolo-
gies, to improve the models, can potentially resolve this deficiency.

The known solutions are incremental learning ML models, with additional data,
and discovering the limited subareas, where the models that are built deficient, but
the data can still be useful. Visual means can assist the SME, and the data scientists,
in the incremental learning, and finding these subareas.

D3. Unexplained Model the lack of explanatory power, of the accurate—enough,
ML models. These models are black box models, for the SME, who can refuse to
use the black box models. The technologies, to convert the black box models, into
models, which make sense to the SME, can resolve this deficiency. Extracting the
logical rules, from the neural networks is one of these technologies, which can be
also be visualized for the SMEs, to understand the underlying learned models.
Visualization, of such logical rules, and other explainable models, can assist the
SME, in understanding these models.

D4. Inconsistent Model (the explanatory ML model, derived from the data, but
rejected by the SME). In these cases, the explanation is wrong for the SME, even
when the model is accurate enough, on the given data.

For instance, an SME can claim, that the high accuracy is the result of over-
fitting, by limited training data, which are not representative for the task
(Kovalerchuk et al. 2000). Another claim can be that the model is based on spurious
variables, overgeneralizes, or undergeneralizes the training data, and will lack the
predictive capabilities, on the new data, due to these reasons.

The ways, to resolve this deficiency, are the same as for D2 and D3, but with a
better explanation, and focus. The visual means can help, in this model rebuilding
process, including the faster discovery of inconsistencies.

D5. Lack of Skills The need for tight collaboration between the SMEs and the data
scientists, often is mandatory in machine learning modeling. While the obvious
approach is mutual knowledge acquisition, from the subject domain, and ML, it is
often time consuming, and impractical. Another approach is developing the tools
(including visual tools), to enable an SME to build the ML models, with the
minimal participation of the data scientists. This is our interest in this chapter.

The deficiencies D1–D5 can be found, in all tasks 1–3. Questionable input (D1),
and lack of skills (D5), are related to defining the problems (task 1). Inaccurate
unexplained, or inconsistent models (D2–D4), and lack of skills (D5) are related
both to constructing and curating models (tasks 2 and 3).
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12.3 Visual n-D ML Models: Inspiration
from Success in 2-D

The major challenge, in all three tasks, is the high dimensionality of data in ML.
The SMEs can build the models in 2-D, with the two variables, visually and with
minimal ML knowledge, as we later illustrate, in Fig. 12.1.

Such models include as linear regression, linear, and non-linear discrimination
functions. In contrast, in n-D, it is impossible to see the n-D data, with a naked eye.
As a result, the SME and the data scientists cannot build the n-D ML models
visually, without the special visual means (“n-D glasses”).

Levels of Generalization in the Construction of the ML Models Different ML
analytical methods favor different levels of generalizations, of the training data, in
constructing the ML models. This level can be over-generalization, or
under-generalization of the given training data. It is difficult to select, and justify the
right level without the SME. It is especially difficult for the high-dimensional data.

Figure 12.1 illustrates the fundamental difficulty of over-generalization, or
under-generalization of the training data in developing the data classification
models. It shows the five levels of generalization of the training data of the two
classes (blue and green dots, respectively) from the widest to narrowest
generalizations:

1. The widest generalization is given by a brown straight line. Here every point on
the right is classified, into the green class, and every point on the left is clas-
sified, into the blue class.

2. The second level of generalization of training data is presented by the blue and
green curves, i.e., only the points, which are on the right of the green curve are
classified into the green class and, respectively, only points, on the left of the
blue curve, are classified into the blue class. The points, between these two
curves, are not classified at all.

Fig. 12.1 2-D visual
classification task
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3. The third level of generalization, of the training data, is presented by the blue
and green ovals, i.e., only the points, which are within the ovals are classified
into these classes.

4. The forth level of generalization is presented by the blue and green convex hulls,
around these training data. It presents a more conservative generalization, than
the levels 1–3. Only the points, which are within these convex hulls, are clas-
sified into these classes. The system will refuse to classify the points, which are
outside of these convex hulls.

5. The fifth level of generalization is presented by the non-convex hulls, around the
blue and green dots, which is a more conservative generalization, than 1–4. The
black lines, in Fig. 12.1, show the deviations of these hulls, from the convex
hulls.

In Fig. 12.1, all the testing data are dots, with black outlines. All of them are
within the blue and green convex hulls, and the two of them are outside, of the
non-convex hulls. Thus, levels 1–4 of the generalization classify all of them, and
the non-convex hulls generalization refuses to classify the two of them.

Now, assume that the new data, to be classified, are the red and orange dots, in
Fig. 12.1. All five generalizations will consistently classify the red, and the orange
dots, which are in the middle of respective ovals. However, these generalizations
will be inconsistent, for the four other new points. For instance, the red dot, on the
top, will be classified into the blue class at levels of generalizations 1 and 2, and
will be refused to be classified at the levels 3–5.

Classification Confidence and Visualization The solution, for this situation,
proposed in literature, is the provision of a classification confidence measure, for
each prediction. First, not all the ML methods provide such measures. If measures
are provided, they are rarely comparable across different ML methods, but are ML
method specific. For instance, for the brown straight line it can be how large is
Euclidean distance from this line to the point, but for the ovals (ellipses) it can be
how large is Mahalanobis distance from the center of oval to the point. Next, both
of the distances can be irrelevant, to the user task and goal, because they are not
derived, from the user task at hand, but are externally imposed, by the respective
ML methods.

To deal with this challenge, we propose, as a part of the virtual data scientist
vision:

• visualizing multiple levels of generalizations, produced by the n-D ML models,
for the SME, such as shown in the Fig. 12.1, and

• accompanying it by the, formally computed, confidence measures, provided by
the different ML methods.

This will allow the SMEs to make a better-informed decision, on selecting the
level of generalization. While this approach works for 2-D, we need the visual-
ization means to produce the figures, like Fig. 12.1, for the n-D data.

Multiple data dimensionality reduction methods provide the opportunity, to
present the different levels of generalization, of the n-D data in 2-D. These methods
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include Principal Component Analysis (PCA), Multidimensional Scaling (MDS),
manifolds, Self-Organized maps (SOM), and others. As was discussed in Chap. 1,
while these methods are very valuable, not all of the n-D data can be represented in
this way.

The first two PCA components may not capture the relations between the n-D
points, accurately enough. MDS, SOM, and manifolds may not represent the dis-
tances between the n-D data points accurately in 2-D, for some n-D datasets (Duch
et al. 2000).

In other words, these methods can be inadequate, in representing some of the
n-D data in 2-D. As a result, the constructed ML models can be inaccurate, and/or
uninterpretable by the SMEs. The combination of the GLC approach, with such
lossy methods, allows minimizing the impact of the information loss.

12.4 Visual n-D ML Models at Different
Generalization Levels

Convex Hull Generalization in Model Construction The visual approach, to the
classification model construction, is illustrated below with the data, from
Table 12.1. In this table, the class 1 is represented, by its 16 four-dimensional
border points, i.e., all 4-D points of class 1 are within a convex hull H1, formed by
these 4-D points. Similarly, the class 2 is represented by its border 4-D points,
which form a convex hull H2. Respectively, the formal solution for this classifi-
cation task is:

Table 12.1 4-Data for 2
classed (16 4-D points for
each class)

# Class 1 # Class 2

a1 1 5 2 4 b1 2 4 3 3
a2 1 5 3 4 b2 2 4 4 3

a3 1 5 4 6 b3 2 4 5 5

a4 1 5 5 6 b4 2 4 6 5

a5 2 5 2 4 b5 3 4 3 3

a6 2 5 3 4 b6 3 4 4 3
a7 2 5 4 6 b7 3 4 5 5

a8 2 5 5 6 b8 3 4 6 5

a9 3 7 2 4 b9 4 6 3 3

a10 3 7 3 4 b10 4 6 4 3

a11 3 7 4 6 b11 4 6 5 5
a12 3 7 5 6 b12 4 6 6 5

a13 4 7 2 4 b13 5 6 3 3

a14 4 7 3 4 b14 5 6 4 3

a15 4 7 4 6 b15 5 6 5 5

a16 4 7 5 6 b16 5 6 6 5
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If x insideH1 then x 2 class 1;

If x insideH2 then x 2 class 2:

Below we show, that one can find this solution visually, in 2-D, while the data are
in 4-D using the Parametrized Shifted Paired Coordinates (PSPC), defined in
Chap. 3. This will allow the SMEs, who are not ML experts, to operate with these
4-D data, in a familiar 2-D space.

The 4-D point (3, 5, 4, 4) is used, as a parameterization parameter of the PSPCs,
which are described below. Figure 12.2 shows this point, in those shifted coordi-
nates, in red. Note, that it is shown, as a 2-D point losslessly, i.e., all of its four
dimensions can be restored from this 2-D point. It is done first, by projecting it, in
the Fig. 12.2, to X1 and X2 coordinates, and getting (3, 5), then by projecting it to
X3 and X4 coordinates, and getting (4, 4).

Only those n-D points that have the same overlaying projection lines for all odd
coordinates and the same overlaying projection lines for all even coordinates will be
represented as single 2-D points. This is the case, for points (1, 5, 2, 4), and (2, 5, 3,
4), shown in blue and green, in Fig. 12.2. Other n-D points will have the n/2 2-D
points, for the even n, and (n + 1)/2, for the odd n. For the odd n, the last coordinate
is duplicated, to get the even number of coordinates.

Other points are represented by graphs, which consist of the two points con-
nected by an arrow. This is illustrated in Fig. 12.2 for the point (1, 5, 3, 4). The first
2-D point (1, 5) in (X1, X2) is shown in blue, and the second point (3, 4) in (X3, X4)
is shown in green. Figure 12.3 shows the 4-D points, from Table 12.1, which have
lossless representation, as single 2-D points, in this PSPC system.

This is an important advantage of the PSPCs. It allows representing losslessly,
not only the 4-D points, as the 2-D points, but also the points of higher dimensions.
For instance, for the 6-D parameterization point (3, 5, 4, 4, 6, 1), coordinates X1, X2

are shifted to the left by 3 and 5 positions, respectively; the coordinates X3, X4 are
shifted to the left by 4 positions each; and coordinates X5, X6 are shifted to the left

Fig. 12.2 Shifted 4-D
coordinates, based on the
parameterization of the 4-D
point (3, 5, 4, 4)
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by 6 and 1 positions, respectively. Bold points, in Table 12.1, are corners of two
4-D hyper-rectangles.

Each of these 4-D hyper-rectangles is mapped one-to-one to 2-D quadrilaterals
(quads for short) with corners (A, B, C, D) and (E, F, G, H), respectively, shown in
Fig. 12.3. Thus, for accurate classification of all points from classes 1 and 2
visualization in Fig. 12.2 is sufficient. For this, a user simply draws a given 4-D
point x = (x1, x2, x3, x4), e.g., (2, 3.5, 4, 1.5) in the coordinates X1−X4, in Fig. 12.3
as the two 2-D points (x1, x2) = (2, 3.5) and (x3, x4) = (4, 1.5), connected by an
black arrow. As was shown, it can be a single 2-D point, if these two 2-D points are
in the same location. Then a user visually checks, whether this arrow is within one
of the rectangles. This is the case for x = (x1, x2, x3, x4) = (2, 3.5, 4, 1.5), which is
shown as a black arrow in Fig. 12.2, in the rectangle with the corners (A, B, C, D).
Thus (2, 3.5, 4, 1.5) belongs to class 1. This 100% accurate visual test leads to the
100% accurate analytical discrimination rule for any x = (x1, x2, x3, x4), which
tests that the point x belongs to the respective class.

Hyper-plane Generalization in Model Construction Next, we consider a typical,
supervised learning classification task, where only the training data are given, such
as in Table 12.1. The information, that the 4-D points in Table 12.1 form the two
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Fig. 12.3 4-D points, which have the lossless representation, as single 2-D points, and the
selected another 4-D point in PSCs, based on the parameterization point (3, 5, 4, 4), shown in red
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convex hulls, around these two sets of points, is not provided; i.e., no guidance is
provided, and no limiting overgeneralizations of classes, by convex hulls, are
provided. Without such limitations, a black diagonal line F, in Fig. 12.3 is
acceptable. It discriminates, these two datasets, with 100% accuracy. A user can
draw it on the screen, by using a mouse function. Next, its equations can be easily
be extracted visually or automatically as x2 = x1 + 2.5, in the coordinates (X1, X2),
and as x4 = x3 + 0.5, in the coordinates (X3, X4).

Let’s illustrate the use of this line F, for the visual decision for the point (1, 5, 3, 4),
which is shown, in Fig. 12.3, as a horizontal arrow from the point (1, 5) to the point (3,
4). The class 1 is above the line F, and this arrow is also above it, therefore (1, 5, 3, 4) is
in class 1. This discrimination is done, completely visually, in 2-D, for a 4-D point,
similarly to the visual solution, for the previous task. For analytical discrimination of
any 4-D point, one needs to test both of the linear inequalities: x2 > x1 + 2.5, and
x4 > x3 + 0.5. For the 4-D point (1, 5, 3, 4), both are obviously true, therefore it
belongs to class 1. This discrimination rule is derived directly, from the visual repre-
sentation. Formally for x = (x1, x2, x3, x4) the discrimination rule is:

If x2 [ ðx1 þ 2:5Þ& ðx4 [ x3 þ 0:5Þ; then x 2 Class 1; else

fIf x2\ðx1 þ 0:5Þ& ðx4\x3 þ 0:5Þ; then x 2 Class 2;

else x 62 Class 1ð Þ& x 62 Class 2ð Þg:

After such a rule is extracted, it can be used in the same way as any other rule,
built, by using the analytical ML methods, to compute the class prediction for the
new n-D points. Note, that while the visual solution is simple, this analytical rule is
more complex, than a single linear discrimination function. The rule can be sim-
plified by changing the coordinates, as shown, in Fig. 12.4, with two new
non-orthogonal coordinate systems (X 0

1, X 0
2), and (X 0

3, X 0
4). Next, the coordinates

of the points, from Table 12.1, are recomputed into these coordinates. In these new
coordinates, a simpler discrimination rule for x0 ¼ ðx01; x02; . . .; x0nÞ is equivalent to a
decision tree, in these coordinates:

If ðx02 [ 2:5Þ & ðx04\0:5Þ then x0 2 Class 1; else

If ðx02\2:5Þ & ðx04 [ 0:5Þ then x0 2 Class 2; else x 62 Class 1ð Þ & x 62 Class 2ð Þ� �
:

Both the 4-D, convex hull and hyper-plane based, generalizations are visualized
in 2-D, in Figs. 12.3 and 12.4. These figures play the same role, for these data, as
Fig. 12.1 for the 2-D data, used as inspiration for such visual exploration, of
alternative levels of generalization, for 4-D data.
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12.5 Visual Defining and Curating ML Models

Questionable Input (deficiency D1) The deficiencies, of the training data, often
are the main reason for the failure of the ML projects. The fundamental assumption
of the training data is: that these data are representative for new unknown data, for
which the class must be predicted. It means that, for instance, grey points, in
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Fig. 12.4 Transformed solution, with non-orthogonal shifted coordinates

Fig. 12.5 Example of machine learning task with the nearest neighbors solution
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Fig. 12.5, will not come as the new data, when the training data of the two classes
are limited by the blue and yellow points in this figure.

If these grey data come, then retraining will be needed, with the added training
labeled data, which are close to these grey points. The problem is that recognizing
the need, to retrain the system, when the grey data will come is difficult, because an
ML method may have no internal mechanism, to trigger the retraining process. For
instance, k-NN can classify the grey points as belonging to the blue class, due to the
shorter distances to that class (see Fig. 12.5). Similarly the projection method, in
Fig. 12.6a, will classify these points into the blue class too, because both projec-
tions of the gray points are within the projections of the blue points into coordinates
X1 and X2.

The same result gives the linear, discriminant-function, algorithm, with a ver-
tical line (see Fig. 12.6b).

In contrast, the linear discriminant function method, with a tilted line in the
middle, between the green and yellow points, puts the gray points into the yellow
class (see Fig. 12.7). Note that the projection method, with the original coordinates
in Fig. 12.6a, classifies the grey points as belonging to the blue class. The same
projection method, in the rotated coordinates, shown in Figs. 12.7 and 12.8, clas-
sifies them into the yellow class.

The deficiencies of the training data, for the grey points, along with the defi-
ciencies of the ML generalization models, for these grey points, led to the presented

Fig. 12.6 Example of the
machine learning task with
the orthogonal projections,
solution and projection to X1
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predictive inconsistencies. Visualizations, in Figs. 12.5, 12.6, 12.7 and 12.8, made
both deficiencies available, for the analysis by the SME.

As we see from this example, the visual approach is, in essence, the same as the
presented one, for model construction, in Sect. 12.4. Here, we visualized the
training, and the new (grey) data, along with the classification models.
Figures 12.5, 12.6 and 12.7 visualize the 2-D data and the 2-D classification
models. Such a type of visualization can be made, to assist the SME in dealing with
the n-D data, and models, using multiple GLCs, as we have seen in Sect. 12.4, and
other chapters.

Commonly the generalization principles, in ML methods, are external for the
given training data, and task. To recognize and resolve these inconsistencies
additional information is needed. SME is a natural source of it. The proposed
visualization approach allows the SME to see these inconsistencies in 2-D, decide
about the additional training data, and/or ML models to use.

We envision the following process:

• The SME observes the new n-D data, to be classified, which are visualized in
2-D in CPCs, PSPCs, or other appropriate GLC coordinates,

• gets classification from the models from the different ML methods and

Fig. 12.7 Example of the
ML task, with the tilted
projection solution

Fig. 12.8 Example of the
machine learning task, with
the skewed coordinates
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• triggers the retraining based on the visual judgment, that the training data are not
representative, for the new data.

In this process, observing data in figures like Figs. 12.1, 12.3 and 12.4 SME can
request retraining for points in the areas outside of convex hulls and keep classi-
fications provided by automatic ML methods within convex hulls.

12.6 Summary on the Virtual Data Scientist
from the Visual Perspective

The Sects. 12.1–12.5 above described a vision of a “virtual data scientist” assisting
the SMEs, and the end users in building the empirical ML classification models,
using the different GLCs. The feasibility of this new approach to construct and cure
ML models was demonstrated with real world and simulated data not only in this
chapter, but also in several other chapters. Table 12.2 summarizes the visual rep-
resentations of real data and ML models from different chapters of this book that are
relevant to the vision of the future virtual data scientist presented in this chapter.

These representations include the interactive visual classification, clustering, and
dimension reduction with multiple GLCs on the real-world data.

Future research is on elaborating this vision of the virtual data scientist, and
ways to implement it, for increasingly complex ML problems, from multiple
domains, including the large and highly overlapped, and imbalanced classes.

12.7 Super Intelligence for High-Dimensional Data

The visual discovery approaches, in the n-D data, create an exciting opportunity for
progress in the super-intelligence studies. While significant progress in Artificial
Intelligence, Computational Intelligence, and Machine Leaning, improved the
human abilities to discover the patterns, in the n-D data, the direct human cognitive
abilities to do this, with a naked eye, are extremely limited, to the relatively small
2-D and 3-D datasets.

Lifting this human cognitive limitation is in a drastic contrast, with the opposite
goal of reaching the human-level machine intelligence for the human abilities,
which is the goal of other aspects of Artificial Intelligence, Computational
Intelligence, and Cognitive Science. This opposite goal is deciphering the brain’s
existing cognitive abilities, and mimicking human intelligence, which uses the
naked eye very successfully, to recognize and discover visual patterns, e.g., faces
and facial expressions, in our physical 3-D world. Thus we need both:

• the deciphering of the brain, and
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Table 12.2 Sections of chapters that are relevant to the vision of the future virtual data scientist

# Chapter, Section, Figures Description

1 Chap. 4, Sect. 4.6.
Figures 4.25, 4.26, 4.27, 4.28, 4.29 and
4.30

Case study 4.5. User knowledge modeling
dataset with SPC

1 Chap. 5, Sect. 5.1.
Figures 5.1, 5.2 and 5.3

Case study 1: Glass processing with
CPCs, APCs and SPCs

2 Chap. 5, Sect. 5.4.
Figures 5.9, 5.10, 5.11 and 5.12

Case study 4: Challenger USA space
shuttle disaster with PCs and CPCs

3 Chap. 5, Sect. 5.5.
Figures 5.13 and 5.14

Case study 5: Visual n-D feature
extraction from blood transfusion data
with PSPCs

4 Chap. 5, Sect. 5.7.
Figures 5.16, 5.17, 5.18, 5.19 and 5.20

Case study 7: Iris data classification in
two-layer visual representation with CPCs

5 Chap. 5, Sect. 5.8.
Figures 5.25, 5.26, 5.27, 5.28, 5.29, 5.30,
5.31 and 5.32.

Case study 8: Iris data with PWCs

6 Chap. 5, Sect. 5.9.
Figures 5.33 and 5.34

Case study 9: Car evaluation data with
CPCs, SPCs, APCs, and PCs

7 Chap. 5, Sect. 5.10.
Figures 5.35, 5.36, 5.37 and 5.38

Case study 10: Car data with CPCs,
APCs, SPCs, and PCs

8 Chap. 5, Sect. 5.12.
Figures 5.40, 5.41 and 5.42

Case study 12: Seeds dataset with in-line
coordinates and shifted parallel
coordinates

Chap. 5, Sect. 5.13.
Figures 5.43, 5.44, 5.45, 5.46 and 5.47

Case study 13: Letter recognition dataset
with SPC

9 Chap. 6, Sects. 6.2–6.4. Figures 6.3, 6.4,
6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12,
6.13, 6.14, 6.15, 6.16, 6.17 and 6.19

Experiments 1–4: CPC Stars versus
traditional stars for 192-D data; stars
versus parallel coordinates for 48-D, 72-D
and 96-D data; stars and CPC stars versus
PC for 160-D data; CPC stars, stars and
PC for feature extraction in 14-D and
170-D

10 Chap. 7, Sect. 7.3.1
Figures 7.7, 7.8, 7.9, 7.10, 7.11, 7.12,
7.13, 7.14, 7.15 and 7.16

Case study 1: Wisconsin Breast Cancer
Diagnostic (WBC)

11 Chap. 7, Sect. 7.3.2
Figures 7.17, 7.18, 7.19, 7.20, 7.21, 7.22,
7.23, 7.24, 7.25 and 7.26

Case study 2: Parkinson’s data set
classification

Chap. 7, Sects. 7.3.3 and 7.3.4.
Figures 7.27, 7.28, 7.29, 7.30, 7.31, 7.32,
7.34, 7.35, 7.36, 7.37, 7.38, 7.39, 7.40,
7.41, 7.42, 7.43, 7.44 and 7.45

Case studies 3 and 4: Subsets of MNIST
database of digits

Chap. 7, Sect. 7.3.5
Figures 7.46, 7.47, 7.48 and 7.49

Case study 5: S&P 500 data that include
the time of the Brexit vote

Chap. 9, Sects. 9.5–9.7
Figures 9.1, 9.2 and 9.3

Visual text mining: Discovery of
incongruity in humor modeling
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• the enhancing of the brain to be able to deal with abstract high-dimensional data,
as it is done with 2-D and 3-D data.

Compare this situation with building a machine that will fly as a bird. It is
difficult to decipher the mechanism of bird flying. The history of aviation had
shown, that direct attempts, to mimic it, failed many times. Next, the machine that
intends only to mimic a flying bird will be limited. It will not fly to the Moon and
the Planets. For flying that far a machine with “super-bird” flying capabilities is
needed.

Similarly deciphering the brain’s ability, to work visually with 2-D data, will
hardly give us a way to build a super-intelligence, to deal visually with the large
and abstract n-D data. This is a separate, and very challenging task. Evolution has
developed our brain in a particular form, to adapt to a particular physical 3-D
environment, which did not include the abstract high-dimensional data (n-D data) to
be analyzed, until the very recent Big data era.

This separate task requires the ideas, beyond what is on the surface when the
humans solve their typical cognitive tasks in 2-D and 3-D. In the same way,
exploring how a bird is flying hardly will help in building a rocket to fly to the
Moon, which requires discovering the more general flying principles. Similarly,
dealing with Big n-D requires discovering the more general cognitive principles,
than we use for the 2-D and 3-D data.

Is it always more difficult to discover the more general principles, than the more
specific ones? The history of the science tells us, that it is not always the case. The
modern flight theory, which includes the propulsion theory, and aerodynamics
explains not only bird flight, but also rocket, and aircraft flights. However, this more
general theory does not tell us anything, about the physiology of bird flight, at the
level of muscles, and the bird brain control of the flight. Thus, higher generality
does not mean the abilities to explain all aspects of the bird flight. However, it can
help to discover, and understand the mechanism of other related activities. For
instance, the propulsion theory allows the understanding of an octopus motion. In
our case, it is discovering cognitive principles, to deal with the n-D data.

This brings us to the important point, that for understanding some fundamental
brain cognitive principles, it is not necessary to study the brain itself first.
Respectively, to build such a more general theory, we can work on the task that the
brain does not support well, which is dealing with n-D abstract data. The goal is to
understand and enhance the brain’s capability, to deal with such n-D data. It
includes experiments, with the same n-D data, where a human may, or may not,
recognize the pattern, depending on the 2-D lossless representation, of these n-D
data. These experiments can tell us about the human abstract pattern recognition
abilities, providing the data to build a cognitive pattern recognition/discrimination
model.

After a discrimination model is built, the next question is: “What is the mental
process in the brain, behind this ability or inability?” The common approach in such
tasks is: collecting, and analyzing the functional MRI data, when the subjects solve
the task. In (Murray et al. 2002) functional MRI was used to measure the activity in
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a higher object processing area, the lateral occipital complex, and in the primary
visual cortex, in response to the visual elements, which were either grouped into
objects, or randomly arranged. These authors observed the significant activity
increases, in the lateral occipital complex, and the concurrent reductions of activity,
in the primary visual cortex, when the elements formed the coherent shapes.

Based on this observation, they suggested that the activity in the early visual
areas is reduced because of grouping processes performed in the higher areas. These
findings were used as an evidence for the brain predictive coding models of vision
(Mumford 1992; Rao and Ballard 1999), which postulate that inferences of
high-level areas are subtracted, from incoming sensory information, in lower areas,
through cortical feedback. Note, that this study was conducted, for 2-D and 3-D
shapes, such as those shown in Fig. 12.9, without any relation to the higher-n n-D
data.

The predictive coding models of vision represent one side, of the two funda-
mental alternatives: local and distributed representation models/hypotheses, for the
brain to be biologically adequate, representations for observed high-level structures,
and cognitively adequate models. There are several, distributed representation,
cognitive models with the bottom-up, and top-down signals (Carpenter and
Grossberg 2016) including the dynamic logic model, which we advocate
(Kovalerchuk et al. 2012), because of its ability to overcome the combinatorial
complexity. On the other hand, while the current deep learning large Neural
Networks may not be biologically adequate, their applied results are impressive.

The concept of the lossless reversible visualization, of n-D data, can be viewed,
as a cognitive enhancer, for discovering the n-D data patterns. It simplifies the
representation of the n-D data in 2-D, for the better perceptual and cognitive
abilities, for the visual pattern discovery. Figure 12.10 summarizes the vision of the
Virtual Data Scientist, and the Visual Super Intelligence.

The future studies are two-fold:

• enhancement of the methods for lossless representation, and the knowledge
discovery, of the n-D data, in 2-D,

• clarification of the brain cognitive processes, associated with analysis of the
abstract n-D data.

For the second issue future studies include gaze analysis: when humans analyze
visual representations of abstract n-D data and discover n-D patterns. While the
eyes provide the initial input of such visual information, visual perception, and
cognition deeply involve the brain. Therefore, the gaze analysis will help, to look
deeper into this complex process. Combining the eye-tracking methodology, the

Fig. 12.9 Examples of
different stimulus conditions
(Murray et al. 2002)
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mathematical models from different fields, and the behavioral information, which
emerges in the analysis of n-D data, will be a source of new knowledge of the
cognitive processes. This will include the future experiments, which compare
observers’ performance, in discovering the n-D data patterns, by analyzing the 2-D
graphs as a function of their fixations, and the simulations by the computations of
these fixations.

These future studies will also help: (a) to reveal the individual variability among
the people, in their perceptual and cognitive abilities, for recognizing the abstract
forms, and (b) to understand the visual and cognitive perception along with
improving the accuracy, increasing efficiency, and decreasing the cost of the n-D
data analysis.
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Chapter 13
Comparison and Fusion of Methods
and Future Research

Science never solves a problem without creating ten more.
George Bernard Shaw

In this chapter, we first compare GLCs with other visualization methods that were
not analyzed in the previous chapters yet. Then we summarize some comparisons
that were presented in other chapters. Next, the hybrid approach that fuses GLC
with other methods is summarized along with the outline of the future research.

13.1 Comparison of GLC with Chernoff Faces
and Time Wheels

Chernoff faces Table 13.1 presents the comparisons of Paired Coordinates with
Chernoff faces, Parallel and Radial/Star coordinates. Chernoff faces are multi-part
glyphsintheshapeofahumanfaceandtheindividualparts,suchaseyes,ears,mouthand
nose represent the data variables by their shape, size and orientation (Chernoff 1973).

The use of the Chernoff’s faces is based on the human ability to easily recognize
faces and small changes in them. However, faces are not necessarily superior to
other multivariate techniques (Morris et al. 1999), In general, as it was noticed in
the literature (Spence 2001), icons have advantages over other representations in the
case of the semantic relation between the icons and the task.

The arbitrary match of the face features with the attributes of the n-D point has
no such semantic match. The features of the faces such as the curvature of the
mouth, the eye size and the density of the eyebrow are of different importance for
our interpretations of the whole face (De Soete 1986), and an arbitrary match will
lead to a very different conclusion about the n-D points based on the facial
metaphor.

Table 13.1 shows the advantages of Line Coordinates such as Collocated,
Parallel and Radial/Star Coordinates over Chernoff faces. There are multiple
modifications of Parallel Coordinates methods that intend to improve them. Most of
these improvements are also applicable to the Collocated Coordinates.
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TimeWheel Figure 13.1 shows the TimeWheel visual representation (Tominski
et al. 2004). In this representation n-1 coordinates are located on the sides of the
n-Gon and one coordinate is located horizontally between opposite nodes of the
n-Gon. Typically this coordinate is time. Consider a set of 7-D points {x} = {(x1,
x2,…,x6, x7)} where x1 is a timestamp, x2 is respiration rate, x3 is heart rate, x4–x7
are other medical characteristics. For each x a brown line links x1 and x2 values of
x. Similarly a green line links x1 and x3 values of x. Other pairwise links (x1, xi) are
shown by other colored lines. This set of colored lines losslessly represents a 7-D
point. See Fig. 13.1a for a 7D point a = (7, 4, 4, 9, 6, 2, 8) and jointly with a 7-D
point b = (6, 7, 8, 6, 3, 8, 3) in Fig. 13.1b.

At the first glance, the TimeWheel is similar to our n-Gon representation shown
in Figs. 2.4 and 2.6 in Chap. 2, because coordinates are located on the sides of the
n-Gon. The first technical difference is in the location of x7 in the middle of the
n-Gon. The second one is that the TimeWheel is a lossless visual representation of
an n-D point only if we have all n-D points {x} with different x1 values, e.g.,
different timestamps. Otherwise, if two n-D points a and b have equal timestamps
a7 = b7, we will not be able to restore the other ai and bi because two lines will start
from the same point a7 = b7 for each coordinate (see Fig. 13.1b).

13.2 Comparison of GLC with Stick Figures

A Stick Figure (SF) of n lines (“sticks”), connected with different angles, encodes
2n attributes (Pickett andGrinstein 1988). It is done by encoding each pair of attributes
(Xi, Xi+1) by the length and the angle of the stick (see Fig. 13.2a). A stick figure can
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Fig. 13.1 a 7-D point a = (7, 4, 4, 9, 6, 2, 8) in the TimeWheel. b 7-D points a = (6, 4, 4, 9, 6, 2,
8) and b = (6, 7, 8, 6, 3, 8, 3) in the TimeWheel
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look like a human body skeleton, which is a familiar metaphor. Other forms of SFs
may not have this familiar metaphor. SFs are useful when figures are shown
side-by-side. Otherwise, the occlusion severely limits the discovery of the patterns
visually. While also suffer from occlusion, many GLCs including CPCs and SPCs
allow the discovery of patterns when multiple n-D points are drawn in the same
coordinates in a single display, as case studies in this book show. As any glyph
approach, stick figures can be combined with Cartesian Coordinates. In (Grinstein
et al. 1989) income and age are used to identify the locations ofmultiple small SFs that
create a “texture”.

SFs are similar conceptually to Chernoff Faces (CFs) that have been compared
with GLC above in Table 13.1. A significant part of this comparison is applicable for
comparison of SF and GLC. The major difference of paired GLCs from
CFs and SFs is mapping data attributes to visual features. In paired GLCs, two
attributes are encoded by a single 2-D point (a node of the graph). In SFs, two

(a) Stick figure with 5 sticks that 

encodes 10 attributes. 

(b) Stick figure with 2 sticks that encodes 4 
attributes.

(c) Joint Shifted Paired Coordinates and a Stick figure with 2 sticks that encodes 10 attributes.
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Fig. 13.2 Stick figures and Joint Shifted Paired Coordinates with a Stick figure
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attributes are encoded by an edge (“stick”) of the graph (length and angle of the
edge).

In CFs two or more attributes are encoded by features of an open or closed line
such as length, angle, curvature and others. SPCs allows representing a given n-D
point as a single 2-D point losslessly by adapting shifts of pairs of coordinates as
was shown above. CF and SF do not have such capability.

Next CF, SFs, and GLCs including Parallel Coordinates (PCs) are not invariant
to the order of coordinates. Different orderings produce different figures in all of
them. This is not necessary a deficiency because humans can discover patterns in
some visualizations easier than in others. Once a pattern is discovered visually in
one of orderings of coordinates, it can be converted to the analytical form that is
“order free”. See for instance Sect. 5.7. in Chap. 5.

Also in GLCs, coordinates can be labeled by actual names of attributes from the
beginning. See Fig. 5.15 in Chap. 5 for health monitoring. It avoids memory
overload to remember the meaning of indexed labels of coordinates Xi. Both CFs
and SFs require remembering meaning of visual features in terms of attributes they
encode, because commonly they are not labeled.

In CPCs, graphs are directed, but in SFs, the graphs are not directed. The
directions of the graph edges can be beneficial, e.g., it shows a trend in World
hunger data in Fig. 5.6 in Chap. 5. One of the benefits of SFs is familiarity of
human body skeleton metaphor, which can be remembered faster. On the other side,
this metaphor limits the number of features, which have a meaning in this metaphor,
e.g., arms, legs and body.

Next, we propose a way to combine SFs and paired GLCs to increase the
number of attributes to be encoded by the graph. It is based on the fact that SPCs
and SFs use different parts of the graph to encode the attributes (SPCs use nodes
and SFs edges). The idea is to use both nodes and edges for encoding attributes.
SPCs do not use the length of the edges and angles between them to encode
attributes, but use them for the simplification of graphs as it is done in Sect. 3. The
length and the angles of the edges can be adjusted in SPCs to make their values to
represent attributes.

To get a desired length of the edge a horizontal shifting a pairs of coordinates is
sufficient. To get a desired angle of the edge shifting a pairs of coordinates along a
given radial distance from the node where edge is originated is sufficient. In this
way, a graph with two arrows will encode not 6 attributes as in the SPC, but 10
attributes as Fig. 13.2c shows. SF to represent 10 attributes requires 5 edges (sticks)
(see Fig. 13.2a) and with two edges it encodes only 4 attributes (see Fig. 13.2b).
While this method works for n-D points shown side-by-side as it is always done
with SFs, it does not work for drawing graphs of multiple n-D points in the same
SPC space. The reason is that adjusting the length and the angles for the second n-D
point changes the length and the angle for the first n-D point already adjusted.
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13.3 ComparisonofRelational Information inGLCsandPC

The patterns representing the relational information in different GLCs such as CPCs,
SPCs and Star CPCs in comparison with Parallel Coordinates (PCs) are shown in
several chapters. Below we summarize these comparisons concentrated in Chaps. 3,
5, 6 and 7.

• PCs are a special case of GLCs when all coordinates are parallel. Thus, it is logical
to use PCs as one of GLCs (not as opposing to GLCs) in the situations where PCs is
more intuitive and simpler than other GLCs in discovering relations.

• Each edge of the graph in CPCs and SPCs directly visualizes a relation of four
dimensions. In PCs it directly visualizes only a relation between two adjacent
dimensions.

• PCs require two times more nodes to represent a relation between n dimensions
as a graph than CPCs and SPCs require that leads to more occlusion.

• In PCs, for each value xi, a different line must be drawn to show the linear
relations xj = mxi + b for the two adjacent dimensions. For all values of xi, this
leads to an infinite set of lines for this linear relation. CPCs and SPCs allow a
single line in a classical Cartesian form.

• In PCs, the infinite set of lines for linear relations xj = mxi + b (regression) creates
an extreme case of full occlusion (no line visible). Therefore, this drawing is not
scalable for large datasets. A single line in CPCs and SPCs for the same dataset
has no occlusion and is scalable.

• Classical Cartesian visualization of linear relations xj = mxi+b used CPCs, and
SPCs is familiar to everyone. It does not require learning a new visualization in
contrast with PCs for this relation.

• Compact representations of the linear relation y = kx+m (that do not directly map
individual points x to y) have the same expressiveness in PCs, CPCs and SPCs
requiring a single 2-D point.

• The SPC visualization of 4-D Health monitoring relations is much simpler and
more familiar than in PCs in Fig. 5.15 in Sect. 5. It shows the relation between
the initial health status, and its change over time to the goal state.

• Linear discrimination relations between Iris classes produced in SPC are highly
accurate, while PCs and RadVis do not reveal such a linear discrimination
relation, as Sect. 5.7 in Chap. 5 shows.

• CPS Stars allowed more accurate results (94%) than PCs (79%) in discovering
noisy 160-D linear relations by humans, as Figs. 6.7 and 6.9 in Chap. 6 show.

• Visualization of a noisy 23-D linear relation in CPC is simpler, more familiar
and less occluded in Fig. 5.5, than in PCs in Fig. 5.4 in Chap. 5.

• The GLC-L visulization method has the capabilities to represent weighted dis-
criminating linear relations between n dimensions as shown in multiple case
studies in Sect. 7.3 in Chap. 7. Such capabilities are not known for the PCs.

• Commonly the non-linear relations are modeled by interpolating them by a set of
linear relations. The listed capabilites of the different GLCs, to represent the
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linear relations with noise, show an opportunity to use them for interpolating
non-linear relations in the future.

13.4 Fusion GLC with Other Methods

While reversible GLCs are the focus of this book, many other visualization methods
exist and some of them are reversible too as was discussed in this book. The fusion
of GLCs with these methods produces hybrid methods.

The hybrid approach was outlined in Chap. 1. It contains two aspects:
(1) combining point-to-point and point-to-graph visual representations of the n-D
data (i.e., non-reversible, lossy representations with reversible lossless representa-
tions) when separately these representations are not sufficient, and (2) combining
visual and analytical means of knowledge discovery to get deeper knowledge.

The combination of lossless and lossy visual representations includes providing
means for evaluating the weaknesses of each representation and mitigating them by
sequential use of them for knowledge discovery. Combining visual and analytical
means of knowledge discovery also guides:

• Discovering the information about the structure of data and patterns that sep-
arate the classes of data, and

• Finding the splits of data into the training–validation pairs that will allow the
most complete evaluation of the discovered patterns. This includes guiding in
finding the worst, best, and median splits.

The hybrid methods allow radically improve quality of knowledge discovery
results by analyzing more information. In applying these methods we first reduce
dimensionality with acceptable and controllable loss of information by using
non-reversible methods. Then we apply reversible methods to represent remaining
dimensions in 2-D losslessly. In Chap. 7 in Sect. 7.3.3 it was done with 484
original dimensions reduced to 38 dimensions with loss of some information and
then these 38-D data are visualized losslessly in 2-D and classified with high
accuracy.

13.5 Capabilities

In many engineering application 10% improvement in efficiency is considered as a
valuable progress provided by a new technology. For GLC the benchmarks of
current technology are Parallel and Radial (Star) Coordinates. Relative to these
methods the progress in efficiency can be measured by decreasing the occlusion,
which is indicated by decreasing the number of 2-D points and lines per n-D point.
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As it is shown in this book such GLC as CPC, SPC, and Star CPC improve this
measure two times (100%).

We have shown that Lossless Visual Representation (LVR) methods for n-D
data are important complements to the non-reversible lossy visualizations methods.
We expanded the methods of lossless visualization of n-D data and demonstrated
their promising efficiency, using the modeled and real data. LVR allows the better
interpretation of their features in terms of n-D data properties than some lossy
visualizations such as the Multidimensional Scaling. LVR allows the efficient use of
human shape perception capabilities in line with Gestalt laws and recent psycho-
logical experiments. LVR are naturally expandable to a collaborative framework.

The LVR is justified by deficiencies of lossy visualizations that map n-D data
into 2-D data with significant loss of the information. Lossy visualizations not only
drop information, but commonly do not control which n-D properties are dropped.
The need in multiple LVRs is dictated by a very limited number of available LVRs
of n-D data, and by the absence and likely the impossibility of a “silver bullet
visualization”, that can be ideal for all possible datasets.

The General Line Coordinates, as a class of LVP methods presented in this
book, provide a common visualization framework, and a large number of new
visual representations of multidimensional data, without dimension reduction. It is
important that the GLC class is a very large and diverse class of coordinate systems.
This increases the chances to capture diverse patterns/regularities in a variety of
multidimensional data.

This book presented
• new methods for decreasing occlusion and simplifying visual patterns for

classification tasks,
• demonstrated efficiency of new compact lossless representation by Parametric

Shifted Paired Coordinates (PSPC) on real iris and health monitoring data,
• proposed a new two-layer GLC concept and demonstrated its efficiency on real

data,
• demonstrated advantages of closed contour lossless visual representations over

Parallel Coordinates for high-dimensional data in the experiment with several
about 70 participants for classification of modelled data (linear hyper-tubes),

• clarified limits of high-dimensionality of data for human visual classification of
modelled n-D data (linear hyper-tubes) in Parallel Coordinates, star CPC and
Radial Coordinates.

This creates an opportunity to design the advanced hybrid data mining/machine
learning methods that integrate the advantages of analytical and visual methods to
get higher accuracy, interpretability, and avoiding the overgeneralization and
overfitting of discovered patterns. In the future such hybrid exploration may pro-
vide end users with “n-D glasses” to conduct deep n-D data exploration with less
extensive involvement of data scientists.
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13.6 Future Research

The challenge for the further studies is progressing to higher dimensions and larger
datasets with GLCs. We envision three approaches.

The first approach is a hybrid approach, which combines the advantages of
lossless and lossy methods. The attempt to visualize, say, 400-D in the first two
principal components directly without GLCs will often lead to very significant loss
of information.

The second approach is expanding the GLC side-by-side approach used in
Chap. 5, where each n-D point is shown as a separate graph (figure) preferably as a
closed contour to leverage the human perceptual abilities with closed contours. This
visualization is free from occlusion, but suffers from switching gazing from graph
to graph. Currently it can handle a quite limited number of graphs analyzed at each
given time.

The third approach is splitting dimensions by clustering them and visualizing
data in each subset of dimensions separately, with combining patterns found in such
subsets of dimension into a joint pattern. For instance, data with 1000 dimensions
can be split to 10 clusters of 100 dimensions. All three approaches are topics of
future exploration. While we expect progress in all of them, we do not expect that
GLC will provide a “silver bullet” for all possible tasks and data, as it is the case
with all current methods.

For years Parallel Coordinates have been developed in multiple directions to
enhance them (Heinrich and Weiskopf 2013). Most of these enhancements are
applicable to the General Line Coordinates, and can be applied to develop their
more advanced versions. These enhancements include supporting unstructured
datasets with millions of points, multi-timepoint volumetric datasets with tens of
millions of points per time step (Blass et al. 2008) and large document corpora
(Candan et al. 2012). Next, to decrease the clutter from crossing lines and to deal
with large datasets, multiple methods have been developed such as: parallel hier-
archical coordinates (Candan et al. 2012; Fua et al. 1999), smooth parallel coor-
dinates (Moustafa and Wegman 2002), higher order parallel coordinates (Theisel
2000), continuous parallel coordinates (Heinrich and Weiskopf 2013), reordering,
spacing and filtering PC (Yang et al. 2003), and others. These developments deal
with larger datasets and decreased clutter from crossing lines.

In (Chen et al. 2013; Viau et al. 2010; Yuan et al. 2009) parallel coordinates are
combined with scatter-plot matrixes and histograms to produce the multiple coor-
dinated views. The combination with the statistical analysis formed the enhanced
parallel coordinates (Yuan et al. 2009). A significant effort has been devoted to
controlling the ordering and the scaling of parallel coordinates (Andrienko and
Andrienko 1999), including locating the variables of interest in adjacent axes
because the ordering of the axes influences the shape of the lines and their inter-
pretation. Significant effort also was devoted to exploring the mathematical prop-
erties of parallel coordinates (Inselberg 2009). The same is needed for GLC along
with developing advanced GLC and applying them to challenging datasets.
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As was pointed out above most of these approaches can be used to develop more
advanced versions of GLC and hybrid methods for knowledge discovery in Big
data. Several such options have been presented in this book. The explanatory power
of visualization was recognized and demonstrated for a long time (Tufte and Robins
1997). The GLC contributes to it for multidimensional data.

A full classification of the General Line Coordinates for the cognitively efficient
n-D data visualization and knowledge discovery is a task for future research as well
as the deeper links with Machine Learning to be able to build visually the learning
algorithms using visual means in GLC.

While many GLC challenges in knowledge discovery need to be resolved in the
future research, this book shows that more complete preservation of multidimen-
sional data in 2-D visualization and more efficient use of preserved information for
visual and hybrid knowledge discovery is feasible.
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