
Studies in Computational Intelligence 722

Roger Lee Editor

Software
Engineering
Research,
Management
and Applications

Studies in Computational Intelligence

Volume 722

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the worldwide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

Roger Lee
Editor

Software Engineering
Research, Management
and Applications

123

Editor
Roger Lee
Software Engineering and Information
Technology Institute

Central Michigan University
Mount Pleasant, MI
USA

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-319-61387-1 ISBN 978-3-319-61388-8 (eBook)
DOI 10.1007/978-3-319-61388-8

Library of Congress Control Number: 2017943823

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

The purpose of the 15th International Conference on Software Engineering,
Artificial Intelligence Research, Management and Applications (SERA 2017) held
on 7–9 June 2016 at the University of Greenwich, UK, is aimed at bringing together
scientists, engineers, computer users, and students to share their experiences and
exchange new ideas and research results about all aspects (theory, applications, and
tools) of Software Engineering Research, Management, and Applications, and to
discuss the practical challenges encountered along the way and the solutions
adopted to solve them. The conference organizers selected the best 12 papers from
those papers accepted for presentation at the conference in order to publish them in
this volume. The papers were chosen based on review scored submitted by mem-
bers of the program committee and underwent further rigorous rounds of review.

In Chap. “Agile Web Development Methodologies: A Survey and Evaluation”,
Nasrin Ghasempour Maleki and Raman Ramsin provide a criteria-based evaluation
of fourteen agile Web development methodologies. The evaluation results highlight
the strengths and weaknesses of the methodologies as to their general processes,
modelling languages, agile features, and Web development facilities and can,
therefore, help Web developers choose the methodology that best fits their project
needs.

In Chap. “Load Experiment of the vDACS Scheme in Case of Increasing the
Simultaneous Connection for the DACS SV”, Kazuya Odagiri, Shogo Shimizu, and
Naohiro Ishii perform a load experiment of the cloud type virtual PBNM named the
vDACS Scheme, which can be used by plural organizations, for applications to the
small- and medium-size scale organizations.

In Chap. “Blind Channel Estimation Using Novel Independent Component
Analysis with Pulse Shaping for Interference Cancellation”, Renuka Bhandari and
Sangeeta Jadhav designing the novel blind channel estimation approach using
independent component analysis (ICA) with both ISI cancellation and blind
interference cancellation. This method is named as hybrid ICA (HICA).

v

In Chap. “Anticipated Test Design and its Application to Evaluate and Select
Embedded Libraries”, Clauirton Siebra, Carla Nascimento, Leonardo Sodre,
Antônio Cavalcanti, Daniel Barros, Fernando Lima, Fernando Cruz, Fábio Q. B. da
Silva, and Andre L M Santos present an anticipated test design methodology; their
work applies this strategy to the development of a set of libraries that are used in
several other projects.

In Chap. “Improving Web Application Reliability and Testing Using Accurate
Usage Models”, Gity Karami and Jeff Tian examine the impact of accurate usage
models on reliability, test coverage, and test efficiency. A case study is carried out
to quantify this impact. They found supporting evidence that accurate Markov OP
improves reliability, test coverage, and test efficiency.

In Chap. “C-PLAD-SM: Extending Component Requirements with Use Cases
and State Machines”, Kevin A. Gary and M. Brian Blake describe an extension to
the C-PLAD approach, dubbed C-PLAD-SM, which addresses the gaps in their
earlier work.

In Chap. “A Structural Rule-Based Approach for Design Patterns Recovery”,
Mohammed Ghazi Al-Obeidallah, Miltos Petridis, and Stelios Kapetanakis present
a multiple levels detection approach (MLDA) to recover design pattern instances
from Java source code. MLDA is able to extract design pattern instances based on a
generated class-level representation of an investigated system.

In Chap. “DRSS: Distributed RDF SPARQL Streaming”, Amadou Fall Dia,
Zakia Kazi-Aoul, Aliou Boly, and Elisabeth Metais present DRSS, a distributed and
scalable engine for RDF streams processing. DRSS proposes a new query syntax
for continuous querying of RDF data streams.

In Chap. “An Efficient Approach for Real-Time Processing of RDSZ-Based
Compressed RDF Streams”, Ndeye Bousso Deme, Amadou Fall Dia, Aliou Boly,
Zakia Kazi-Aoul, and Raja Chiky propose an approach for continuous querying
RDSZ-based RDF streams without decompression phase. They add three algo-
rithms from simple to aggregate query execution over RDSZ-compressed items.

In Chap. “Energy Efficiency Cluster Head Election Using Fuzzy Logic Method
for Wireless Sensor Networks”, Wided Abidi and Tahar Ezzedine introduce a new
clustering algorithm which elects CHs using fuzzy logic method and based on a set
of parameters which increases the lifetime of WSN.

In Chap. “Enabling GSD Task Allocation via Cloud-Based Software Processes”,
Sami Alajrami, Barbara Gallina, and Alexander Romanovsky propose to integrate
and semi-automate the calculation of an existing global distance metric (GDM) into
an architecture that supports executing cloud-based software processes.

In Chap. “Composite Event Handling over a Distributed Event-Based System”,
Amina Chaabane, Salma Bradai, Wassef Louati, and Mohamed Jmaiel address the

vi Foreword

structured peer-to-peer network shortcomings. They exploit advantages offered by
structured topology (distributed hash table DHT) and extend it by novel approach in
order to improve expressiveness by supporting complex event processing (CEP).

It is our sincere hope that this volume provides stimulation and inspiration, and
that it will be used as a foundation for works to come.

June 2017 Program Chairs:
Lachlan MacKinnon

Jixin Ma
University of Greenwich, London, UK

Foreword vii

Contents

Agile Web Development Methodologies: A Survey
and Evaluation . 1
Nasrin Ghasempour Maleki and Raman Ramsin

Load Experiment of the vDACS Scheme in Case of Increasing
the Simultaneous Connection for the DACS SV. 27
Kazuya Odagiri, Shogo Shimizu and Naohiro Ishii

Blind Channel Estimation Using Novel Independent Component
Analysis with Pulse Shaping for Interference Cancellation 45
Renuka Bhandari and Sangeeta Jadhav

Anticipated Test Design and Its Application to Evaluate
and Select Embedded Libraries. 59
Clauirton Siebra, Carla Nascimento, Leonardo Sodre,
Antônio Cavalcanti, Daniel Barros, Fernando Lima, Fernando Cruz,
Fábio Q.B. da Silva and Andre L.M. Santos

Improving Web Application Reliability and Testing
Using Accurate Usage Models . 75
Gity Karami and Jeff Tian

C-PLAD-SM: Extending Component Requirements
with Use Cases and State Machines . 93
Kevin A. Gary and M.B. Blake

A Structural Rule-Based Approach for Design Patterns Recovery 107
Mohammed Ghazi Al-Obeidallah, Miltos Petridis
and Stelios Kapetanakis

DRSS: Distributed RDF SPARQL Streaming . 125
Amadou Fall Dia, Zakia Kazi-Aoul, Aliou Boly and Elisabeth Métais

ix

An Efficient Approach for Real-Time Processing of RDSZ-Based
Compressed RDF Streams . 147
Ndéye Bousso Déme, Amadou Fall Dia, Aliou Boly, Zakia Kazi-Aoul
and Raja Chiky

Energy Efficiency Cluster Head Election using Fuzzy Logic
Method for Wireless Sensor Networks . 167
Wided Abidi and Tahar Ezzedine

Enabling GSD Task Allocation via Cloud-Based Software
Processes . 179
Sami Alajrami, Barbara Gallina and Alexander Romanovsky

Composite Event Handling over a Distributed Event-Based
System . 193
Amina Chaabane, Salma Bradai, Wassef Louati and Mohamed Jmaiel

Author Index . 215

x Contents

Contributors

Wided Abidi Engineering School of Tunis, Communications Systems Laboratory,
University of Tunis El Manar, Tunis, Tunisia

Mohammed Ghazi Al-Obeidallah Department of Computing, University of
Brighton, Brighton, UK

Sami Alajrami Newcastle University, Newcastle upon Tyne, UK

Renuka Bhandari Department of E&TC, Dr. D.Y. Patil Institute of Engineering
& Technology, Pune, India; Army Institute of Technology Pune, Pune, India

Daniel Barros CIn/Samsung Laboratory of Research and Development, Recife,
Brazil

M.B. Blake College of Computing & Informatics, Drexel University, Philadel-
phia, PA, USA

Aliou Boly LID Lab, UCAD, Dakar-Fann, Senegal

Salma Bradai ReDCAD Laboratory, University of Sfax, National School of
Engineers of Sfax, Sfax, Tunisia

Antônio Cavalcanti CIn/Samsung Laboratory of Research and Development,
Recife, Brazil

Amina Chaabane Higher Institute of Applied Sciences and Technology,
University of Kairouane, Kasserine, Tunisia

Raja Chiky LISITE Lab, ISEP, Paris, France

Fernando Cruz CIn/Samsung Laboratory of Research and Development, Recife,
Brazil

Amadou Fall Dia LISITE Lab, ISEP, Paris, France

Ndéye Bousso Déme LID Lab, UCAD, Dakar-Fann, Senegal

xi

Tahar Ezzedine Engineering School of Tunis, Communications Systems Labo-
ratory, University of Tunis El Manar, Tunis, Tunisia

Barbara Gallina MÃ¤laradalen Univeristy, VÃ¤sterÃ¥s, Sweden

Kevin A. Gary The School of Computing Informatics, and Decision Systems
Engineering, The Ira A. Fulton Schools of Engineering, Arizona State University,
Mesa, AZ, USA

Naohiro Ishii Aichi Institute of Technology, Toyota, Aichi, Japan

Sangeeta Jadhav Army Institute of Technology Pune, Pune, India

Mohamed Jmaiel Research Center for Computer Science, Multimedia and Digital
Data Processing of Sfax, Sfax, Tunisia

Stelios Kapetanakis Department of Computing, University of Brighton, Brighton,
UK

Gity Karami Department of Computer Science and Engineering, Southern
Methodist University, Dallas, TX, USA

Zakia Kazi-Aoul LISITE Lab, ISEP, Paris, France

Fernando Lima CIn/Samsung Laboratory of Research and Development, Recife,
Brazil

Wassef Louati Faculty of Economics and Management of Sfax, University of
Sfax, Sfax, Tunisia

Nasrin Ghasempour Maleki Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran

Elisabeth Métais CEDRIC Lab, CNAM, Paris, France

Carla Nascimento CIn/Samsung Laboratory of Research and Development,
Recife, Brazil

Kazuya Odagiri Sugiyama Jogakuen University, Nagoya, Aichi, Japan

Miltos Petridis Department of Computing, Middlesex University, London, UK

Raman Ramsin Department of Computer Engineering, Sharif University of
Technology, Tehran, Iran

Alexander Romanovsky Newcastle University, Newcastle upon Tyne, UK

Andre L.M. Santos Centro de Informática, Universidade Federal de Pernambuco,
Recife, Brazil

Shogo Shimizu Gakushuin Women’s College, Tokyo, Japan

Clauirton Siebra Informatics Center, Federal University of Paraiba, Joao Pessoa,
Brazil

xii Contributors

Fábio Q.B. da Silva Centro de Informática, Universidade Federal de Pernambuco,
Recife, Brazil

Leonardo Sodre CIn/Samsung Laboratory of Research and Development, Recife,
Brazil

Jeff Tian Department of Computer Science and Engineering, Southern Methodist
University, Dallas, TX, USA; School of Computer Science, Northwestern
Polytechnical University, Xi’an, Shaanxi, China

Contributors xiii

Agile Web Development Methodologies:
A Survey and Evaluation

Nasrin Ghasempour Maleki and Raman Ramsin

Abstract Dynamic and accessible web systems have gained utmost importance in
modern life. Due to the competitive nature of such systems, they need to be superior
as to performance, scalability, and security. Web systems typically require short
time-to-markets, and it should be possible to easily implement new requirements
into working web systems. These ideals have made agile methods especially suit-
able for developing such systems, as they promote productivity, facilitate contin-
uous interaction with customers, and enhance the flexibility and quality of the
software produced. When starting a web development project, selecting the
methodology that fits the project situation can be an important factor in the ultimate
success of the endeavor. In order to facilitate the selection process, we provide a
criteria-based evaluation of fourteen agile web development methodologies. The
evaluation results highlight the strengths and weaknesses of the methodologies as to
their general processes, modeling languages, agile features, and web development
facilities, and can therefore help web developers choose the methodology that best
fits their project needs.

Keywords Software development methodology ⋅ Agile method ⋅ Web
system ⋅ Web development methodology ⋅ Criteria-based evaluation

1 Introduction

Businesses increasingly rely on web systems for maintaining their competitive
edge, and the widespread use of these systems has made them indispensable in
everyday life. Due to their pivotal role, web systems have to be developed fast, and

N.G. Maleki ⋅ R. Ramsin (✉)
Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran
e-mail: ramsin@sharif.edu

N.G. Maleki
e-mail: ghasempourmk@alum.sharif.edu

© Springer International Publishing AG 2018
R. Lee (ed.), Software Engineering Research, Management and Applications,
Studies in Computational Intelligence 722, DOI 10.1007/978-3-319-61388-8_1

1

they should be flexible enough to be easily changed and extended as required; also,
special attention should be given to proper requirements engineering and contin-
uous verification/validation of these systems. An important feature of web devel-
opment projects is their highly dynamic nature, which necessitates constant user
feedback. Due to the above characteristics, web development involves much more
than mere web “programming”: developers have thus realized that using the right
software development methodology is essential for successful construction and
evolution of web systems.

Agile methodologies are suitable candidates for developing web systems, since
they adequately address the specific needs of this context. However, there are many
agile web development methodologies to choose from, and choosing the right one
can be a serious challenge for web development teams. Making the right choice
requires adequate knowledge about the strengths and weaknesses of each
methodology; however, development teams should not be expected to acquire this
knowledge through hands-on experience with each and every methodology. For-
tunately, criteria-based evaluation of methodologies is a proven method for iden-
tifying and accentuating the capabilities and limitations of software development
methodologies. Several such evaluations have previously been conducted on var-
ious types of methodologies [1–3], but the need remains for a comprehensive
evaluation of modern agile web development methodologies.

We provide a comprehensive criteria-based evaluation of fourteen prominent
agile web development methodologies. Methodologies have been targeted for
evaluation based on their popularity and documentation; methodologies that lack
proper methodology documentation (on the process, products, and people involved)
have not been included. The evaluation criteria have been collected from multiple
sources, and have been adapted to the specific characteristics of the agile web
development context. Evaluation results clearly show the pros and cons of the
methodologies, and can be used by web developers to choose the methodology that
fits their needs.

The rest of the paper is structured as follows: Sect. 2 provides a brief overview
of the targeted agile web development methodologies; Sect. 3 presents the evalu-
ations criteria; Sect. 4 lists the results of applying the evaluation criteria to the
methodologies; and Sect. 5 presents the conclusions and suggests ways for fur-
thering this research.

2 An Overview of Targeted Methodologies

The fourteen agile web development methodologies targeted for evaluation have
been briefly introduced throughout the rest of this section.

2 N.G. Maleki and R. Ramsin

2.1 MockupDD

MockupDD is an agile model-driven web engineering methodology based on
Scrum [4]; its process consists of four phases (Fig. 1):

1. Mockup Construction: Requirements are gathered from the collection of stories
by customers or final users through using mockups to produce graphical stories.

2. Mockup Processing: Important parts of the UI are identified through mapping
the basic concepts of mockups to a structural UI meta-model.

3. Features specification and tags refinement: Mockups are tagged with labels that
represent their semantics. User stories are then adapted with the mockups, and
the tags are classified.

4. Code and Model Generation: Tags will either be converted into web engi-
neering elements, or be combined to identify more complex design features.
After the full definition of tags, an executable version is produced; other models
of model-driven web engineering are created based on this version.

2.2 RAMBUS

RAMBUS is an agile methodology loosely based on Scrum [5]; its process consists
of three phases (Fig. 2):

1. Communication: Communication with users is performed to capture the func-
tional requirements on story cards. To show the behavior of the system, a

Fig. 1 Process of MockupDD

Agile Web Development Methodologies: A Survey and Evaluation 3

Fig. 2 Process of RAMBUS

navigation model is created. For each story card, user priorities, predicted dif-
ficulties in implementing the story, and the relevant items of the navigation
model are written on the back of the card. Type diagrams are produced to show
the relationships of the elements.

2. Modeling: Class and type diagrams are developed/refined iteratively, and a
database model is created. User stories are enriched with user acceptance cri-
teria. Reuse options are explored, and nonfunctional requirements are consid-
ered in the user stories.

3. Construction: Coding and testing are performed, resulting in an executable
release. Daily sessions, strict coding standards, test-driven development, con-
tinuous integration, and pair programming are the agile practices prescribed by
the methodology for this particular phase.

2.3 USABAGILE_Web

USABAGILE_Web is a methodology for designing or reengineering a web system
by architectural analysis, creating a UI prototype, and usability testing [6]. Before
the main process, three usability assessment activities are performed:

1. Inspection: UI structure is inspected to detect usability problems. Typically, a
team of 3–5 specialists performs Nielsen analysis. UI functionality is not
considered.

2. Evaluation: Under the supervision of experts, the usability of web pages is
analyzed based on components such as links, forms, and the elements with
which the user interacts.

4 N.G. Maleki and R. Ramsin

3. Questionnaire: A questionnaire is used for capturing the wishes and feelings of
users after using the UI.

The results of the above activities are documented in a special usability report.
The main process uses this usability report as input, and consists of six phases
(Fig. 3):

1. Analysis: UI behavior is captured in behavioral use case diagrams.
2. Design: A summary of the UI structure related to user operations is produced for

logical analysis. Navigation features of the UI are shown to the customer, and
the feedback is used for analyzing the UI design.

3. Prototyping: This phase is integrated with the two previous phases. UI proto-
types are created by experts based on analysis and design results.

4. Implementation: After UI prototypes are accepted by the customers and experts,
the system is implemented.

5. Test: A set of potential users are selected (preferably from among those who
filled the assessment questionnaire) to test the new UI. New features are
implemented as required, and the process is iterated until the product is fully
validated by the users.

6. Release: The produced/reengineered web system is deployed into the user
environment.

2.4 Augmented WebHelix

WebHelix was introduced in 2006 as a spiral lightweight methodology for teaching
web development to students [7]. Augmented WebHelix is a practical, business-
oriented web development methodology that extends WebHelix with management
and Q/A activities [8]; its main process consists of eight phases (Fig. 4):

Fig. 3 Process of USABAGILE_Web

Agile Web Development Methodologies: A Survey and Evaluation 5

1. Business Analysis: Spans identifying business processes, identifying real and
virtual chains of supply, and providing a high-level business plan.

2. Planning: Spans identifying the software and hardware platforms, specifying the
project management scheme and the necessary tools and resources, and pro-
ducing a business plan.

3. Analysis: Spans creating or updating the requirements, creating/updating the
navigation model, creating UI prototypes, creating/updating the information
structure, and identifying criteria for acceptance testing.

4. Design: Spans creating or updating a detailed system architecture, updating the
system UI and navigation model, creating a system object diagram, creating or
updating the system information design, creating or updating the management
plan, forming the programming team, creating a Gantt chart, and identifying test
criteria for system acceptance.

5. Coding and Integration: Spans components selection, implementing the UI,
coding, integration, unit testing, code review, and updating the acceptance criteria.

6. Testing: Spans web design testing, multimedia testing, and user acceptance
testing.

7. Deployment and Training: The system is deployed into the network environ-
ment, and the users are trained.

8. Maintenance and Future Updates: Spans maintaining and updating the system.

Fig. 4 Process of Augmented WebHelix

6 N.G. Maleki and R. Ramsin

2.5 Secure FDD

Secure FDD extends the Feature-Driven Development (FDD) methodology with
security analysis and design features in order to develop secure web systems [9]; its
process consists of six stages (Fig. 5):

1. Requirements Analysis: Security-related needs and expectations of the stake-
holders are identified, and security rules are set. A list of features (as defined in
FDD) is also produced.

2. Security Policy Decision: Policies on how to implement security are specified.
These policies help build the web system in a security-conscious manner.

3. Use Case Analysis: Features are classified and an overall structural model is
produced. Use case analysis is performed for refining the system scope.

4. Content Design: A blueprint for implementing the features is produced by
conducting structural design (focusing on feature content) and functional design
(focusing on the user actions involved in each feature).

5. Security Risk Analysis: An iterative-incremental process is performed to deter-
mine security control features.

6. Implementation: The target system is implemented, with special attention to
security features.

2.6 XWebProcess

XWebProcess extends the Extreme Programming (XP) methodology with web
development features [10]; its process consists of six stages (Fig. 6):

Fig. 5 Process of Secure FDD

Agile Web Development Methodologies: A Survey and Evaluation 7

1. Exploration: High-level requirements are captured in user stories, and the
overall system design is determined by prototyping.

2. Requirements: The system architecture is defined, with special attention to
flexibility, efficiency, and maintainability. User stories are estimated and pri-
oritized, and high-priority stories are selected for development in the next cycle.

3. Analysis and Design: The data layer is designed based on the data recovery and
security rules added to XP.

4. Web Navigation and Presentation: Web content and navigation is designed by
using the design practices added to XP. The web system is then implemented.

5. Web Testing: Verification and validation are performed, and detected bugs are
fixed. Support analysts assist the developers if a special setup configuration
(e.g., files, devices, and environment variables) is required for running the tests.

6. Web Support: Website components are maintained.

2.7 XP

The XP methodology (in its original, non-extended form) can also be effectively
used for developing web systems [11, 12]; its process consists of six phases
(Fig. 7):

1. Exploration: Activities include team formation, elicitation of high-level
requirements (as user stories), and specification of system architecture.

2. Planning: User stories are estimated, prioritized, and broken down into devel-
opment tasks for programmers to complete in 1–3 weeks. A subset of the stories
is then selected for implementation in the first release.

Fig. 6 Process of XWebProcess

8 N.G. Maleki and R. Ramsin

3. Iterations to Release: Analysis, design, coding, testing and integration are
performed iteratively in a collective code ownership environment.

4. Productionizing: System-wide testing is performed, and the system is deployed
into the user environment.

5. Maintenance: The remaining user stories are implemented by repeating phases
2, 3 and 4.

6. Death: Project review and post-mortem are conducted.

2.8 UML-Based Agile Method

The agile web development method proposed by Lee et al. involves modeling
activities using an extension of UML [13]. The produced UML model for the web
application consists of a navigation model, a components communication model, a
conceptual model, and an architectural model. Developers can thus take advantage
of both model-based and test-based development. Its cyclic process consists of two
phases (Fig. 8):

1. Analysis: Requirements analysis is performed, and the conceptual model is
produced (as a class diagram). An architecture is also defined (as a component
diagram).

2. Construction: This phase consists of two sub-phases: Build and Sophistication.
During Build, developers iteratively select a subset of the requirements and

Fig. 7 Process of XP

Agile Web Development Methodologies: A Survey and Evaluation 9

build a storyboard that depicts how the requirements are realized through user
interactions. Sophistication involves detailed design and implementation.

The implemented components are integrated with existing subsystems, and
integration/regression tests are applied. The cycle is repeated until all the require-
ments are satisfied.

2.9 Crystal Orange Web

Crystal Orange Web is a variant of Cockburn’s Crystal Orange methodology
specifically designed for ongoing web development projects [14]. It stresses the
importance of collaboration among the developers, and makes extensive use of
agile practices. Instead of providing a specific lifecycle, the methodology prescribes
five agile conventions: “Regular Heartbeat with Learning”, “Basic Process”,
“Maximum Progress, Minimum Distractions”, “Maximally Defect Free”, and “A
Community Aligned in Conversation”; these conventions facilitate the development
and constant evolution of a web system over an extended period of time.

2.10 S-Scrum

S-Scrum is a variant of Scrum aimed at developing secure web systems [15]. The
objective is to provide critical security web services and perform security analysis
and design during early stages of Scrum. The methodology accommodates
changing requirements; moreover, if the changed requirement is a critical security
requirement, the current sprint is cut short and a new sprint is started in order to
implement the changed requirement. The process of S-Scrum is analogous to the

Fig. 8 Process of UML-Based Agile Method

10 N.G. Maleki and R. Ramsin

original Scrum process; however, special attention is given to developing and
applying security and intrusion tests, and producing a misuse case diagram (Fig. 9).

2.11 Scrum for CMMI Level 2

Salinas et al. have proposed an extended variant of Scrum to accommodate
CMMI-Level 2 in the context of web development [16]. The methodology claims to
have achieved this by adding a time-boxed “Sprint 0” at the beginning of the Scrum
process (Fig. 10). “Sprint 0” deals with quality assurance, project data management,
and project evaluation. After “Sprint 0”, the original Scrum process is enacted along
with the proposed extensions: project data is collected during Scrum meetings, and
project reports are produced at the end of each sprint.

Fig. 9 Process of S-Scrum

Fig. 10 Process of Scrum for CMMI Level 2

Agile Web Development Methodologies: A Survey and Evaluation 11

2.12 AWDWF

As the name suggests, AWDWF (Agile Web Development with Web Framework)
is the result of integrating Web Framework features with the Agile Web Devel-
opment process, with the specific aim of achieving fast response to requests and
quick adaptation to change [17]; an analysis conducted on web development with
AWDWF has shown that productivity and quality are improved. The process of the
methodology consists of eight phases (Fig. 11): Requirements Analysis, Business
Analysis, Choose Frameworks, Design with Frameworks, Implement, Test, Eval-
uation, and Deploy Web Application. The Web Framework provides a simple
MVC-based programming model that can shorten the development cycle.

2.13 AWE

The iterative process of the Agile Web Engineering (AWE) methodology [18]
consists of six stages (Fig. 12): Business Analysis, Requirements Analysis, Design,

Fig. 11 Process of AWDWF

Fig. 12 Process of AWE

12 N.G. Maleki and R. Ramsin

Implementation, Test, and Evaluation. During the Design stage, a high-level
implementation is produced that addresses all architectural issues. This version is
evolved into a release of the system during Implementation and Test. Evaluation
involves design-independent appraisal by the ambassador user and developers.

2.14 MDE-Scrum

This mockup-based methodology combines Model-Driven Engineering (MDE) with
Scrum [19]. At the start of the process (Fig. 13), requirements are captured in user
stories and mockups of the system are designed. User-approved mockups are con-
verted into annotated UML models of the desired system. A functional prototype of
the system is then generated based on these models, and is converted into an exe-
cutable release. Major conversions are automated through the MockupToME tool.
The Scrum process facilitates the conversion process by focusing the effort on
specific high-priority features, and by supporting user-centered refinement of
mockups and models.

3 Evaluation Criteria

The evaluation criteria were collected from various sources, including [1–3, 20].
They have been grouped based on the methodology feature that they evaluate.
There are four groups of criteria: modeling language, process, agility, and web-
based features; the criteria belonging to these categories are described in Tables 1,
2, 3 and 4, respectively.

Fig. 13 Process of MDE-Scrum

Agile Web Development Methodologies: A Survey and Evaluation 13

Table 1 General criteria for evaluating methodologies—Modeling language group [1]

Name Type Possible values

Support for specific modeling language SC 1: Not prescribed/enforced;
2: Prescribed; 3: Enforced

Simplicity to learn and use SM Yes/No
Expressiveness of modeling language SM Yes/No
Support for complexity management SM Yes/No

Table 2 General criteria for evaluating methodologies—Process group [1]

Name Type Possible values

Coverage of generic lifecycle SC D: Definition; C: Construction; M: Maintenance
Support for seamless transition
between phases

SC 1: No; 2: Potentially; 3: Yes

Support for smooth transition
between phases

SC 1: No; 2: Potentially; 3: Yes

Type of lifecycle D Waterfall (W.), Iterative-Incremental (I.-I.), etc.
Attention to design activities SM Yes/No
Potential of integration with other
methodologies

SC Integration strategy: 1: Not required; 2: Required
but not provided; 3: Provided

Adequacy of products SC Relevant products in: 1: No phases; 2: Some
phases; 3: All phases

Consistency of products SC 1: Products overlap; 2: Products do not overlap
Support for modeling different
views in products

SC S: Structural; F: Functional; B: Behavioral

Support for modeling different
granularity levels in products

SC S: System; P: Package; C: Component;
O: Object; D: Domain; SD: Sub-Domain; PR:
Product; F: Features

Support for modeling different
abstraction levels in products

SC A: Analysis; D: Design; I: Implementation

Testability of products SC 1: Not addressed; 2: Partial; 3: High
Tangibility of products (to
customer and/or development
team)

SC 1: None tangible; 2: Some not tangible to team
members; 3: Some not tangible to customer; 4: All
tangible

Traceability of products to
requirements

SM Yes/No

Definition of roles SC 1: Roles not defined; 2: Roles defined, but without
responsibilities; 3: Both roles and responsibilities
defined

Required team
knowledge/experience

SM Yes/No

Support for team motivation
mechanisms

SM Yes/No

Expressiveness of process SC 1: No; 2: To some extent; 3: Yes
(continued)

14 N.G. Maleki and R. Ramsin

Table 2 (continued)

Name Type Possible values

Completeness of process
definition

SC L: Lifecycle; A: Activities; TP:
Techniques/Practices; R: Roles; P: Products;
U: Umbrella Activities; RL: Rules;
ML: Modeling Language

Rationality and consistency of
activities

SC 1: Problems in consistency and rationality;
2: Problems in consistency; 3: Problems in
rationality; 4: No problems

Support for complexity
management in process

SM Yes/No

Attention to detail in process
definition

SC Details provided for: 1: No phases; 2: Some of the
phases and internal tasks; 3: All phases and internal
tasks

Definition of phase inputs and
outputs (I/O)

SC 1: I/O not defined; 2: I/O defined implicitly; 3: I/O
explicitly defined for all phases

Availability of documentation on
process

SM Yes/No

Tool support for process SM Yes/No
Ease of use of process SC 1: Weak; 2: Average; 3: Good
Availability of experience reports
of practical use

SM Yes/No

Configurability of process SC 1: No; 2: Possible, but not addressed explicitly; 3:
Explicitly addressed

Flexibility of process SC 1: No; 2: Possible, but not addressed explicitly; 3:
Explicitly addressed

Specification of criticality level
addressed by process

SC 1: Defined explicitly; 2: Not defined explicitly, but
can be inferred; 3: Not defined and cannot be
inferred

Platform-adaptivity of process SM Yes/No
Support for formalism SM Yes/No
Support for scalability SC 1: Small; 2: Medium; 3: Large
Support for modularity SM Yes/No
Support for requirements
elicitation

SC
(D)

M: Uses conventional methods (description); D:
Uses a specific method (description); N: No certain
way

Support for requirements
specification

D

Support for requirements-based
process

SM Yes/No

Support for requirements
prioritization

SM Yes/No

Need for observation of specific
constraints/assumptions

SC 1: Constraints/Assumptions exist 2:
Constraints/Assumptions prescribed 3: No
constraints/assumptions

Agile Web Development Methodologies: A Survey and Evaluation 15

The evaluation framework has been validated according to the four meta-criteria
defined in [21]; validation shows that the proposed criteria are general enough to be
applied to all agile web development methodologies, precise enough to help
identify their similarities and differences, comprehensive enough to cover their
important characteristics, and balanced in covering the major types of features in a
methodology (Technical, Managerial, and Usage). The criteria’s definition con-
forms to the Feature Analysis approach [22], in that they are of three types (based
on their results): Simple (SM: Yes/No results), Scale (SC: results are discrete
levels), and Descriptive (D: results are narrative statements).

Table 3 Criteria related to agility characteristics [1]

Name Type Possible values

Support for early and continuous delivery
of working software

SC 1: Neither early nor continuous; 2: Continuous
but not early; 3: Early and continuous

Support for active user involvement SM Yes/No

Support for continuous customer feedback SM Yes/No

Support for self-organizing teams SC 1: Not discussed; 2: Addressed; 3: Ignored

Support for face-to-face conversation SM Yes/No

Support for velocity monitoring and control SM Yes/No

Attention to team behavior/efficiency SM Yes/No

Task assignment method D Voluntary sign up, Team-assigned,
Manager-assigned, etc.

Support for continuous integration SM Yes/No

Modeling coverage SM Yes/No

Support for standards SM Yes/No

Support for iterative-incremental process SM Yes/No

Support for agile techniques SM Yes/No

Support for requirements flexibility SM Yes/No

Support for rapid production of artifacts SC 1: No; 2: To some extent; 3: Yes

Support for lean development (through
short time spans, and the use of tools)

SM Yes/No

Support for learning (from previous
iterations/projects)

SC 1: Not addressed; 2: Addressed implicitly; 3:
Addressed explicitly

Provision of feedback by process SM Yes/No

16 N.G. Maleki and R. Ramsin

4 Results of Evaluation

The results of evaluating the targeted web development methodologies are pre-
sented in Tables 5, 6, 7 and 8, based on the type of criteria used for evaluation. If a
methodology cannot be evaluated according to a certain criterion, the result has
been marked with a ‘–’. The results clearly highlight the strengths and weaknesses
of each methodology, and can be used for selecting and/or improving the
methodologies.

Table 4 Criteria related to key features of web-based systems [2, 3]

Name Type Possible values

New or extended methodology SM 1: New; 2: Extended (methodology)
Support for specification of technical
web characteristics

SM Yes/No

Support for architectural web design SM Yes/No
Support for early UI design SM Yes/No
Support for web-based security SM Yes (How?)/No
Support for rapid web development SM Yes (How?)/No
Support for web usability SM Yes (How?)/No
Addressed level of web criticality SM 1: Low, 2: Medium, 3: High
Support for web reliability SM Yes (How?)/No
Support for web flexibility SM Yes (How?)/No

Attention to web design aspects
(logic, content, navigation, UI)

SC 1: Logic; 2: Content; 3: Navigation; 4: UI;
5: Not addressed

Support for tuning the development
speed based on process feedback

SC 1: No; 2: Some recommendations given;
3: Fully supported

Specification of web-related products
and roles

SC 1: Only type defined; 2: Names and some
recommendations given for products;
3: Fully defined

Agile Web Development Methodologies: A Survey and Evaluation 17

T
ab

le
5

R
es
ul
ts
of

ev
al
ua
tio

n
ba
se
d
on

ge
ne
ra
l
m
et
ho

do
lo
gy

ev
al
ua
tio

n
cr
ite
ri
a—

M
od

el
in
g
la
ng

ua
ge

C
ri
te
ri
on

T
ar
ge
te
d
m
et
ho
do
lo
gi
es

M
oc
ku
pD

D
R
A
M
B
U
S

U
SA

B
A
G
IL
E
_W

eb
W
eb
H
el
ix

S-
FD

D
X
W
eb
-P
ro
ce
ss

X
P

U
M
L
-A

W
C
ry
st
al

O
ra
ng
e

W
eb

S-
Sc
ru
m

Sc
ru
m
-C
M
M
I

A
W
D
W
F

A
W
E

Sc
ru
m
-M

D
E

Su
pp
or
t
fo
r

sp
ec
ifi
c
m
od
el
in
g

la
ng
ua
ge

1
1

3
1

3
1

1
3

1
1

1
1

1
3

Si
m
pl
ic
ity

to
le
ar
n

an
d
us
e

–
–

Y
–

Y
–

–
Y

–
–

–
–

–
Y

E
xp
re
ss
iv
en
es
s
of

m
od
el
in
g

la
ng
ua
ge

–
–

Y
–

Y
–

–
Y

–
–

–
–

–
Y

Su
pp
or
t
fo
r

co
m
pl
ex
ity

m
an
ag
em

en
t

–
–

Y
–

Y
–

–
N

–
–

–
–

–
Y

18 N.G. Maleki and R. Ramsin

T
ab

le
6

R
es
ul
ts
of

ev
al
ua
tio

n
ba
se
d
on

ge
ne
ra
l
m
et
ho

do
lo
gy

ev
al
ua
tio

n
cr
ite
ri
a—

Pr
oc
es
s

C
ri
te
ri
on

T
ar
ge
te
d
m
et
ho

do
lo
gi
es

M
oc
ku

pD
D

R
A
M
B
U
S

U
SA

B
A
G
IL
E
_W

eb
W
eb
H
el
ix

S-
FD

D
X
W
eb
-P
ro
ce
ss

X
P

U
M
L
-A

W
C
ry
st
al

O
ra
ng

e
W
eb

S-
Sc
ru
m

Sc
ru
m
-C
M
M
I

A
W
D
W
F

A
W
E

Sc
ru
m
-M

D
E

C
ov

er
ag
e
of

ge
ne
ri
c

lif
ec
yc
le

D
C

M
D

C
M

D
C

M
D

C
M

D
C

M
D

C
M

D
C
M

D
C

M
–

D
C

M
D

C
M

D
C

M
D
C
M

D
C
M

Su
pp

or
t
fo
r
se
am

le
ss

tr
an
si
tio

n
3

2
2

1
3

1
1

3
–

1
1

1
1

1

Su
pp

or
t
fo
r
sm

oo
th

tr
an
si
tio

n
3

3
3

3
3

3
3

3
–

3
3

3
3

3

T
yp

e
of

lif
ec
yc
le

I.-
I.

I.-
I.

I.-
I.

I.-
I.

I.-
I.

I.-
I.

I.-
I.

I.-
I.

I.-
I.

I.-
I.

I.-
I.

I.-
I.

I.-
I.

I.-
I.

A
tte
nt
io
n
to

de
si
gn

ac
tiv

iti
es

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Po
te
nt
ia
l
of

in
te
gr
at
io
n

1
1

1
1

1
1

1
1

2
1

1
1

1
1

A
de
qu

ac
y
of

pr
od

uc
ts

3
3

3
3

3
3

3
3

–
3

3
1

3
3

C
on

si
st
en
cy

of
pr
od

uc
ts

2
2

2
2

2
2

2
2

–
2

2
2

2
2

Su
pp

or
t
fo
r
m
od

el
in
g

di
ff
er
en
t
vi
ew

s
S
F
B

S
F
B

S
F
B

S
B

S
F
B

S
S

S
F
B

S
S
F

–
S
F
B

S
S
F
B

Su
pp

or
t
fo
r
m
od

el
in
g

di
ff
er
en
t
gr
an
ul
ar
ity

le
ve
ls

P
C

D
P
C
D

O
P
D

P
D

S
C

O
D

F
O

O
P
C

O
D

–
P
D

P
D

P
D

P
P
C
D

Su
pp

or
t
fo
r
m
od

el
in
g

di
ff
er
en
t
ab
st
ra
ct
io
n

le
ve
ls

D
I

A
D

I
A

D
I

D
I

A
D

I
D

I
D

I
A

D
I

–
A

D
I

A
D

I
A

D
I

I
D

I

T
es
ta
bi
lit
y
of

pr
od

uc
ts

3
3

3
3

3
3

3
3

–
3

3
2

3
3

T
an
gi
bi
lit
y
of

pr
od

uc
ts

4
4

4
4

4
4

4
4

–
4

4
1

4
4

T
ra
ce
ab
ili
ty

to
re
qu

ir
em

en
ts

Y
Y

Y
Y

Y
Y

Y
Y

–
Y

Y
Y

Y
Y

D
efi
ni
tio

n
of

ro
le
s

1
3

1
1

3
3

3
3

3
3

3
2

3
3

T
ea
m

kn
ow

le
dg

e/
ex
pe
ri
en
ce

N
Y

N
N

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Su
pp

or
t
fo
r
te
am

m
ot
iv
at
io
n

1
1

1
1

1
2

2
1

2
1

1
1

1
1

E
xp

re
ss
iv
en
es
s
of

pr
oc
es
s

3
2

3
3

3
3

3
3

3
3

3
3

3
2

(c
on

tin
ue
d)

Agile Web Development Methodologies: A Survey and Evaluation 19

T
ab

le
6

(c
on

tin
ue
d)

C
ri
te
ri
on

T
ar
ge
te
d
m
et
ho

do
lo
gi
es

M
oc
ku

pD
D

R
A
M
B
U
S

U
SA

B
A
G
IL
E
_W

eb
W
eb
H
el
ix

S-
FD

D
X
W
eb
-P
ro
ce
ss

X
P

U
M
L
-A

W
C
ry
st
al

O
ra
ng

e
W
eb

S-
Sc
ru
m

Sc
ru
m
-C
M
M
I

A
W
D
W
F

A
W
E

Sc
ru
m
-M

D
E

C
om

pl
et
en
es
s
of

de
fi
ni
tio

n
L
A

P
U

L
A
P
U
R

R
L

L
A

P
U

L
A

U
L
A
P
U

R
M
L

L
A

P
U

R
T
P

L
A

P
U

R
T
P

L
A

P
U

R
R
L
M
L

L
A

U
R

R
L

L
A

P
U

T
P
R
R
L

L
A

P
U

R
R
L

L
A

R
L
A

P
U

R
T
P

L
A

P
U

R
at
io
na
lit
y
an
d

co
ns
is
te
nc
y

4
4

4
4

4
4

4
4

4
4

4
4

4
4

C
om

pl
ex
ity

m
an
ag
em

en
t

Y
Y

Y
Y

Y
Y

Y
Y

–
Y

Y
Y

Y
Y

A
tte
nt
io
n
to

de
ta
il
in

pr
oc
es
s

3
2

3
2

3
3

3
4

2
3

3
3

1
2

D
efi
ni
tio

n
of

ph
as
e
I/
O

3
3

2
2

2
3

3
3

1
3

3
1

3
2

A
va
ila
bi
lit
y
of

do
cu
m
en
ta
tio

n
Y

Y
Y

Y
Y

Y
Y

Y
N

Y
Y

Y
Y

N

T
oo

l
su
pp

or
t
fo
r
pr
oc
es
s

Y
Y

N
N

Y
Y

Y
Y

–
N

N
N

N
Y

E
as
e
of

us
e
of

pr
oc
es
s

2
3

3
3

3
3

3
3

–
3

3
3

3
3

A
va
ila
bi
lit
y
of

re
po

rt
s

Y
N

N
N

Y
Y

Y
Y

–
Y

Y
Y

Y
Y

C
on
fi
gu

ra
bi
lit
y
of

pr
oc
es
s

1
1

1
1

3
1

1
1

3
3

3
3

1
1

Fl
ex
ib
ili
ty

of
pr
oc
es
s

3
3

3
3

3
3

3
1

3
3

3
3

3
1

C
ri
tic
al
ity

le
ve
l

2
2

2
2

1
2

2
2

1
1

2
2

2
2

Pl
at
fo
rm

-a
da
pt
iv
ity

of
pr
oc
es
s

N
N

N
Y

N
N

N
Y

–
N

N
Y

N
N

Su
pp

or
t
fo
r
fo
rm

al
is
m

N
N

N
N

N
N

N
N

–
N

N
N

N
N

Sc
al
ab
ili
ty

2
2

3
3

3
2

2
2

2
3

3
2

3
2

M
od

ul
ar
ity

Y
Y

Y
Y

Y
Y

Y
Y

–
Y

Y
Y

Y
Y

R
eq
ui
re
m
en
ts
el
ic
ita
tio

n
D
:
U
se
r

St
or
y

D
:
U
se
r

St
or
y

M
:
B
y
U
sa
bi
lit
y

E
xp
er
ts

M
:
R
eq
s.

D
oc
.

D
:

Fe
at
ur
es

D
:
U
se
r
St
or
y

D
:

U
se
r

St
or
y

M
:
U
se
r

R
eq
s.

N
D
:
U
se
r

St
or
y

N
M
:
R
eq
s.

D
oc
.

N
D
:
U
se
r

St
or
y

(c
on

tin
ue
d)

20 N.G. Maleki and R. Ramsin

T
ab

le
6

(c
on

tin
ue
d)

C
ri
te
ri
on

T
ar
ge
te
d
m
et
ho

do
lo
gi
es

M
oc
ku

pD
D

R
A
M
B
U
S

U
SA

B
A
G
IL
E
_W

eb
W
eb
H
el
ix

S-
FD

D
X
W
eb
-P
ro
ce
ss

X
P

U
M
L
-A

W
C
ry
st
al

O
ra
ng

e
W
eb

S-
Sc
ru
m

Sc
ru
m
-C
M
M
I

A
W
D
W
F

A
W
E

Sc
ru
m
-M

D
E

R
eq
ui
re
m
en
ts

sp
ec
ifi
ca
tio

n
M
oc
ku

ps
Pr
od

uc
t

B
ac
kl
og

Pr
ot
ot
yp

e
R
eq
s.

D
oc
.

Fe
at
ur
es

U
se
r
St
or
y

U
se
r

St
or
y

St
or
y-
bo

ar
d

–
Pr
od

uc
t

B
ac
kl
og

Pr
od

uc
t

B
ac
kl
og

Pr
ot
ot
yp

e
–

U
se
r
St
or
y

R
eq
ui
re
m
en
ts
-b
as
ed

pr
oc
es
s

Y
Y

Y
Y

Y
Y

Y
Y

–
Y

Y
Y

Y
Y

R
eq
ui
re
m
en
ts

pr
io
ri
tiz
at
io
n

Y
Y

N
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
on

st
ra
in
ts
/a
ss
um

pt
io
ns

1
1

3
1

1
2

2
1

1
2

3
3

2
1

Agile Web Development Methodologies: A Survey and Evaluation 21

T
ab

le
7

R
es
ul
ts
of

ev
al
ua
tio

n
ba
se
d
on

ag
ili
ty

ch
ar
ac
te
ri
st
ic
s

C
ri
te
ri
on

T
ar
ge
te
d
m
et
ho

do
lo
gi
es

M
oc
ku

pD
D

R
A
M
B
U
S

U
SA

B
A
G
IL
E
_W

eb
W
eb
H
el
ix

S-
FD

D
X
W
eb
Pr
oc
es
s

X
P

U
M
L
-A

W
C
ry
st
al
O
ra
ng

e
W
eb

S-
Sc
ru
m

Sc
ru
m
-C
M
M
I

A
W
D
W
F

A
W
E

Sc
ru
m
-M

D
E

E
ar
ly

an
d
co
nt
in
uo

us
de
liv

er
y

3
3

3
3

2
3

3
2

3
3

3
3

3
3

A
ct
iv
e
us
er

in
vo

lv
em

en
t

Y
Y

Y
N

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

C
on

tin
uo

us
cu
st
om

er
fe
ed
ba
ck

Y
Y

Y
N

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Se
lf
-o
rg
an
iz
in
g
te
am

s
2

1
2

1
3

3
3

3
1

3
3

1
1

3

Fa
ce
-t
o-
fa
ce

co
nv

er
sa
tio

n
Y

Y
Y

N
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

V
el
oc
ity

m
on

ito
ri
ng

an
d
co
nt
ro
l

Y
Y

N
N

Y
Y

Y
Y

Y
Y

Y
N

Y
Y

T
ea
m

be
ha
vi
or
/e
ffi
ci
en
cy

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

T
as
k
as
si
gn

m
en
t

m
et
ho

d
T
ea
m

–
–

–
M
an
ag
er

T
ea
m

T
ea
m

T
ea
m

–
T
ea
m

T
ea
m

–
–

T
ea
m

C
on

tin
uo

us
in
te
gr
at
io
n

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

M
od

el
in
g
co
ve
ra
ge

Y
Y

Y
Y

Y
Y

Y
Y

N
N

N
Y

Y
Y

St
an
da
rd
s

N
Y

N
N

N
Y

Y
N

N
N

Y
N

N
N

It
er
at
iv
e-
In
cr
em

en
ta
l

pr
oc
es
s

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

A
gi
le

te
ch
ni
qu

es
N

N
N

N
N

Y
Y

N
N

Y
Y

N
N

N

Fl
ex
ib
ili
ty

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

R
ap
id

pr
od

uc
tio

n
of

ar
tif
ac
ts

2
3

2
2

3
3

3
2

3
3

3
3

3
3

L
ea
nn

es
s

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

L
ea
rn
in
g

2
3

3
2

3
3

3
3

3
3

3
3

3
3

Fe
ed
ba
ck

by
pr
oc
es
s

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

22 N.G. Maleki and R. Ramsin

T
ab

le
8

R
es
ul
ts
of

ev
al
ua
tio

n
ba
se
d
on

ke
y
fe
at
ur
es

of
w
eb
-b
as
ed

sy
st
em

s

C
ri
te
ri
on

T
ar
ge
te
d
m
et
ho
do
lo
gi
es

M
oc
ku
p-
D
D

R
A
M
B
U
S

U
SA

B
A
G
IL
E
_W

eb
W
eb
H
el
ix

S-
FD

D
X
W
eb
-P
ro
ce
ss

X
P

U
M
L
-A

W
C
ry
st
al

O
ra
ng
e

W
eb

S-
Sc
ru
m

Sc
ru
m
-C
M
M
I

A
W
D
W
F

A
W
E

Sc
ru
m
-M

D
E

N
ew

or
ex
te
nd
ed

m
et
ho
do
lo
gy

1
1

2
1

2
2

1
2

1
2

2
2

1
2

Sp
ec
ifi
ca
tio

n
of

te
ch
ni
ca
l
w
eb

ch
ar
ac
te
ri
st
ic
s

N
N

N
N

N
N

N
N

N
N

N
N

Y
N

A
rc
hi
te
ct
ur
al

w
eb

de
si
gn

Y
Y

N
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

E
ar
ly

U
I
de
si
gn

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

W
eb
-b
as
ed

se
cu
ri
ty

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

R
ap
id

w
eb

de
ve
lo
pm

en
t

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

W
eb

us
ab
ili
ty

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

A
dd
re
ss
ed

le
ve
l

of
w
eb

cr
iti
ca
lit
y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

W
eb

re
lia
bi
lit
y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

W
eb

fle
xi
bi
lit
y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

A
tte
nt
io
n
to

w
eb

de
si
gn

as
pe
ct
s

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
4

1
2
3
4

1
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3

4
1
2
3
4

T
un
ab
ili
ty

of
de
ve
lo
pm

en
t

sp
ee
d

2
3

2
2

2
3

3
2

3
2

2
2

2
2

Sp
ec
ifi
ca
tio

n
of

w
eb
-r
el
at
ed

pr
od
uc
ts
an
d
ro
le
s

2
3

1
2

3
3

3
3

3
3

3
1

3
3

Agile Web Development Methodologies: A Survey and Evaluation 23

5 Conclusions and Future Work

By evaluating the targeted methodologies, their individual strengths and weak-
nesses are highlighted. However, apart from these evaluations, some general
observations can also be made: it can be observed that some of the targeted
methodologies pay special attention to web security issues, a feature that is
increasingly considered as essential in modern web systems; it can also be observed
that Scrum variants seem to fully cover the different web development contexts that
are commonly encountered.

As future work, we intend to propose a comprehensive agile web development
methodology that addresses the weaknesses of existing methodologies while
making use of their strengths. Another strand of research can focus on using the
evaluation results for extending existing methodologies so that their shortcomings
are properly addressed.

References

1. Farahani, F.F., Ramsin, R.: Methodologies for agile product line engineering: a survey and
evaluation. In: Proceedings of the International Conference on Intelligent Software
Methodologies, Tools and Techniques (SOMET’14), pp. 545–564 (2014)

2. Babanezhad, R., Bibalan, Y.M., Ramsin, R.: Process patterns for web engineering. In:
Proceedings of the Computer Software and Applications Conference (COMPSAC’10),
pp. 477–486 (2010)

3. Kaur, S., Singh, H.: Quality metrics for agile web engineering based on GQM approach.
VSRD-IJCSIT 2(6), 454–461 (2012)

4. Rivero, J.M., et al.: Mockup-driven development: providing agile support for model-driven
web engineering. Inf. Softw. Technol. 56(6), 670–687 (2014)

5. Pereira, V., Francisco, A.: Introducing a new agile development for web applications using a
groupware as example. Commun. Comput. Inf. Sci. 165, 144–160 (2011)

6. Benigni, G., Gervasi, O., Passeri, F.L., Kim, T.: USABAGILE_Web: a web agile usability
approach for web site design. Lect. Notes Comput. Sci. (LNCS) 6017, 422–431 (2010)

7. Whitson, G.: WebHelix: another web engineering process. J. Comput. Sci. Coll. 21(5), 21–27
(2006)

8. Subramanian, N., Whitson, G.: Augmented WebHelix: a practical process for web
engineering. In: Software Engineering for Modern Web Applications: Methodologies and
Technologies, pp. 25–27. IGI Global (2008)

9. Ge, X., et al.: Agile development of secure web applications. In: Proceedings of the
International Conference on Web Engineering (ICWE’06), pp. 305–312 (2006)

10. Sampaio, A., Vasconcelos, A., Sampaio, P.R.F.: Design and empirical evaluation of an agile
web engineering process. In: Proceedings of the Brazilian Symposium on Software
Engineering (SBES’04), pp. 194–209 (2004)

11. Maurer, F., Martel, S.: Extreme programming: rapid development for web-based applications.
Internet Comput. 6(1), 86–91 (2002)

12. Ambler, S.W.: AM Throughout the XP Lifecycle. http://www.agilemodeling.com/essays/
agileModelingXPLifecycle.htm (2002)

24 N.G. Maleki and R. Ramsin

http://www.agilemodeling.com/essays/agileModelingXPLifecycle.htm
http://www.agilemodeling.com/essays/agileModelingXPLifecycle.htm

13. Lee, W., et al.: Agile development of web application by supporting process execution and
extended UML model. In: Proceedings of the Asia-Pacific Software Engineering Conference
(APSEC’05), pp. 93–200 (2005)

14. Cockburn, A.: Agile Software Development: The Cooperative Game. Addison-Wesley (2002)
15. Mougouei, D., Fazlida, N., Sani, M., Almasi, M.M.: S-Scrum: a secure methodology for agile

development of web services. WCSIT J. 3(1), 15–19 (2013)
16. Salinas, C.J.T., Escalona, M.J., Mejías, M.: A scrum-based approach to CMMI maturity level

2 in web development environments. In: Proceedings of the International Conference on
Information Integration and Web-based Applications and Services (IIWAS’12), pp. 282–285
(2012)

17. Hu, R., Wang, Z., Hu, J., Xu, J., Xie, J.: Agile web development with web framework. In:
Proceedings of the International Conference on Wireless Communications, Networking and
Mobile Computing (WiCOM’08), pp. 1–4 (2008)

18. McDonald, A., Welland, R.: Agile Web Engineering (AWE) process: multidisciplinary
stakeholders and team communication. In: Proceedings of the International Conference on
Web Engineering (ICWE’03), pp. 515–518 (2003)

19. Basso, F.P., Pillat, R.M., Roos-Frantz, F., Frantz, R.Z.: Study on combining model-driven
engineering and Scrum to produce web information systems. In: Proceedings of the
International Conference on Enterprise Information Systems (ICEIS’14), pp. 137–144 (2014)

20. Hesari, S., Mashayekhi, H., Ramsin, R.: Towards a general framework for evaluating software
development methodologies. In: Proceedings of the Computer Software and Applications
Conference (COMPSAC’10), pp. 208–217 (2010)

21. Karam, G.M., Casselman, R.S.: A cataloging framework for software development methods.
Computer 26(2), 34–44 (1993)

22. Kitchenham, B., Linkman, S., Law, D.: DESMET: a methodology for evaluating software
engineering methods and tools. Comput. Control Eng. J. 8(3), 120–126 (1997)

Agile Web Development Methodologies: A Survey and Evaluation 25

Load Experiment of the vDACS
Scheme in Case of Increasing
the Simultaneous Connection
for the DACS SV

Kazuya Odagiri, Shogo Shimizu and Naohiro Ishii

Abstract In the current Internet system, there are many problems using anonymity
of the network communication such as personal information leaks and crimes using
the Internet system. This is why TCP/IP protocol used in Internet system does not
have the user identification information on the communication data, and it is dif-
ficult to supervise the user performing the above acts immediately. As a study for
solving the above problem, there is the study of Policy Based Network Manage-
ment (PBNM). This is the scheme for managing a whole Local Area Network
(LAN) through communication control for every user. In this PBNM, two types of
schemes exist. The first is the scheme for managing the whole LAN by locating the
communication control mechanisms on the path between network servers and cli-
ents. The second is the scheme of managing the whole LAN by locating the
communication control mechanisms on clients. As the second scheme, we have
studied theoretically about the Destination Addressing Control System (DACS)
Scheme. By applying this DACS Scheme to Internet system management, we will
realize the policy-based Internet system management. In this paper, as the pro-
gression phase for the last goal, we perform the load experiment of the cloud type
virtual PBNM named the vDACS Scheme, which can be used by plural organi-
zations, for applications to the small and medium size scale organization. The
number of clients used in an experiment is 200.

Keywords Policy-based network management ⋅ DACS scheme ⋅ NAPT

K. Odagiri (✉)
Sugiyama Jogakuen University, 17-3 Hosigaokamotomachi Chiksa-ku,
Nagoya, Aichi 464-8662, Japan
e-mail: kodagiri@sugiyama-u.ac.jp; kazuodagiri@yahoo.co.jp

S. Shimizu
Gakushuin Women’s College, Tokyo, Japan
e-mail: shogo.shimizu@gakushuin.ac.jp

N. Ishii
Aichi Institute of Technology, Toyota, Aichi, Japan
e-mail: ishii@aitech.ac.jp

© Springer International Publishing AG 2018
R. Lee (ed.), Software Engineering Research, Management and Applications,
Studies in Computational Intelligence 722, DOI 10.1007/978-3-319-61388-8_2

27

1 Introduction

In the current Internet system, there are many problems using anonymity of the
network communication such as personal information leaks and crimes using the
Internet system. The news of the information leak in the big company is sometimes
reported through the mass media. Because TCP/IP protocol used in Internet system
does not have the user identification information on the communication data, it is
difficult to supervise the user’s acts above immediately. As studies and technologies
for managing Internet system realized on TCP/IP protocol, those such as Domain
Name System (DNS), Routing protocol, Fire Wall (F/W) and Network address port
translation (NAPT)/network address translation (NAT) are listed. Except these
studies, various studies are performed elsewhere. However, they are the studies for
managing the specific part of the Internet system, and have no purpose of solving
the above problems.

As a study for solving the problems, Policy Based Network Management
(PBNM) [1] exists. The PBNM is a scheme for managing a whole Local Area
Network (LAN) through communication control every user, and cannot be applied
to the Internet system. This PBNM is often used in a scene of campus network
management. In a campus network, network management is quite complicated.
Because a computer management section manages only a small portion of the wide
needs of the campus network, there are some user support problems. For example,
when mail boxes on one server are divided and relocated to some different server
machines, it is necessary for some users to update a client machine’s setups. Most
of computer network users in a campus are students. Because students do not check
frequently their e-mail, it is hard work to make them aware of the settings update.
This administrative operation is executed by means of web pages and/or posters.
For the system administrator, individual technical support is a stiff part of the
network management. Because the PBNM manages a whole LAN, it is easy to
solve this kind of problem. In addition, for the problem such as personal infor-
mation leak, the PBNM can manage a whole LAN by making anonymous com-
munication non-anonymous. As the result, it becomes possible to identify the user
who steals personal information and commits a crime swiftly and easily. Therefore,
by applying the PBNM, we will study about the policy-based Internet system
management.

In the existing PBNM, there are two types of schemes. The first is the scheme of
managing the whole LAN by locating the communication control mechanisms on
the path between network servers and clients. The second is the scheme of
managing the whole LAN by locating the communication control mechanisms on
clients. It is difficult to apply the first scheme to Internet system management
practically, because the communication control mechanism needs to be located on
the path between network servers and clients without exception. Because the sec-
ond scheme locates the communication control mechanisms as the software on each
client, it becomes possible to apply the second scheme to Internet system

28 K. Odagiri et al.

management by devising the installing mechanism so that users can install the
software to the client easily.

As to the second scheme, we have studied theoretically about the Destination
Addressing Control System (DACS) Scheme. As the works on the DACS Scheme,
we showed the basic principle of the DACS Scheme, and security function [2].
After that, we implemented a DACS System to realize a concept of the DACS
Scheme. By applying this DACS Scheme to Internet system, we will realize the
policy-based Internet system management. Then, the Wide Area DACS system
(wDACS system) [3] to use it in one organization was showed as the second phase
for the last goal. As the first step of the second phase, we showed the concept of the
cloud type virtual PBNM, which could be used by plural organizations [4]. In this
paper, as the progression phase of the third phase for the last goal, we perform the
load experiment to confirm the possibility of the cloud type virtual PBNM for the
use in plural organizations. In Sect. 2, motivation and related research for this study
are described. In Sect. 3, the existing DACS Scheme and wDACS Scheme is
described. In Sect. 4 the proposed scheme and load experiment results are
described.

2 Motivation and Related Reserach

In the current Internet system, problems using anonymity of the network commu-
nication such as personal information leak and crimes using the Internet system
occur. Because TCP/IP protocol used in Internet system does not have the user
identification information on the communication data, it is difficult to supervise the
user performing the above acts immediately.

As studies and technologies for Internet system management to be comprises of
TCP/IP [5], many technologies are studied. For examples, Domain name system
(DNS), Routing protocol such as Interior gateway protocol (IGP) such as Routing
information protocol (RIP) and Open shortest path first (OSPF), Fire Wall (F/W),
Network address translation (NAT)/Network address port translation (NAPT), Load
balancing, Virtual private network (VPN), Public key infrastructure (PKI), Server
virtualization. Except these studies, various studies are performed elsewhere.
However, they are for managing the specific part of the Internet system, and have
no purpose of solving the above problems.

As a study for solving the above problem, the study area about PBNM exists.
This is a scheme of managing a whole LAN through communication control every
user. Because this PBNM manages a whole LAN by making anonymous com-
munication non-anonymous, it becomes possible to identify the user who steals
personal information and commits a crime swiftly and easily. Therefore, by
applying this policy-based thinking, we study about the policy-based Internet
system management.

In policy-based network management, there are two types of schemes. The first
scheme is the scheme described in Fig. 1. The standardization of this scheme is

Load Experiment of the vDACS Scheme in Case of Increasing … 29

performed in various organizations. In IETF, a framework of PBNM [1] was
established. Standards about each element constituting this framework are as fol-
lows. As a model of control information stored in the server called Policy
Repository, Policy Core Information model (PCIM) [6] was established. After it,
PCMIe [7] was established by extending the PCIM. To describe them in the form of
Lightweight Directory Access Protocol (LDAP), Policy Core LDAP Schema
(PCLS) [8] was established. As a protocol to distribute the control information
stored in Policy Repository or decision result from the PDP to the PEP, Common
Open Policy Service (COPS) [9] was established. Based on the difference in dis-
tribution method, COPS usage for RSVP (COPS-RSVP) [10] and COPS usage for
Provisioning (COPS-PR) [11] were established. RSVP is an abbreviation for
Resource Reservation Protocol. The COPS-RSVP is the method as follows. After
the PEP having detected the communication from a user or a client application, the
PDP makes a judgmental decision for it. The decision is sent and applied to the
PEP, and the PEP adds the control to it. The COPS-PR is the method of distributing
the control information or decision result to the PEP before accepting the
communication.

Next, in DMTF, a framework of PBNM called Directory-enabled Network
(DEN) was established. Like the IETF framework, control information is stored in
the server storing control information called Policy Server, which is built by using
the directory service such as LDAP [12], and is distributed to network servers and
networking equipment such as switch and router. As the result, the whole LAN is
managed. The model of control information used in DEN is called Common
Information Model (CIM), the schema of the CIM (CIM Schema Version 2.30.0)
[13] was opened. The CIM was extended to support the DEN [14], and was
incorporated in the framework of DEN.

Fig. 1 Principle in first scheme

30 K. Odagiri et al.

In addition, Resource and Admission Control Subsystem (RACS) [15] was
established in Telecoms and Internet converged Services and protocols for
Advanced Network (TISPAN) of European Telecommunications Standards Insti-
tute (ETSI), and Resource and Admission Control Functions (RACF) was estab-
lished in International Telecommunication Union Telecommunication
Standardization Sector (ITU-T) [16].

However, all the frameworks explained above are based on the principle shown
in Fig. 1. As problems of these frameworks, two points are presented as follows.
Essential principle is described in Fig. 2. To be concrete, in the point called PDP
(Policy Decision Point), judgment such as permission or non-permission for
communication pass is performed based on policy information. The judgment is
notified and transmitted to the point called the PEP, which is the mechanism such as
VPN mechanism, router and Fire Wall located on the network path among hosts
such as servers and clients. Based on that judgment, the control is added for the
communication that is going to pass by.

The principle of the second scheme is described in Fig. 3. By locating the
communication control mechanisms on the clients, the whole LAN is managed.
Because this scheme controls the network communications on each client, the
processing load is low. However, because the communication control mechanisms
needs to be located on each client, the work load becomes heavy.

When it is thought that Internet system is managed by using these two schemes,
it is difficult to apply the first scheme to Internet system management practically.
This is why the communication control mechanism needs to be located on the path
between network servers and clients without exception. On the other hand, the
second scheme locates the communication controls mechanisms on each client.
That is, the software for communication control is installed on each client. So, by
devising the installing mechanism and letting users install software to the client
easily, it becomes possible to apply the second scheme to Internet system

Fig. 2 Essential principle

Load Experiment of the vDACS Scheme in Case of Increasing … 31

management. As a first step for the last goal, we showed the Wide Area DACS
system (wDACS) system [3]. This system manages a wide area network, which one
organization manages. Therefore, it is impossible for plural organizations to use this
system. Then, as the first step of the second phase, we showed the concept of the
cloud type virtual PBNM, which could be used by plural organizations in this
paper.

3 Existing DACS Scheme and wDACS System

In this section, the content of the DACS Scheme which is the study of the phase 1 is
described.

3.1 Basic Principle of the DACS Scheme

Figure 4 shows the basic principle of the network services by the DACS Scheme.
At the timing of the (a) or (b) as shown in the following, the DACS rules (rules
defined by the user unit) are distributed from the DACS Server to the DACS Client.

Fig. 3 Principle in second scheme

32 K. Odagiri et al.

(a) At the time of a user logging in the client.
(b) At the time of a delivery indication from the system administrator.

According to the distributed DACS rules, the DACS Client performs (1) or
(2) operation are shown in the following. Then, communication control of the client
is performed for every login user.

(1) Destination information on IP Packet, which is sent from application program,
is changed.

(2) IP Packet from the client, which is sent from the application program to the
outside of the client, is blocked.

An example of the case (1) is shown in Fig. 4. In Fig. 4, the system adminis-
trator can distribute a communication of the login user to the specified server among
servers A, B or C. Moreover, the case (2) is described. For example, when the
system administrator wants to forbid a user to use MUA (Mail User Agent), it will
be performed by blocking IP Packet with the specific destination information.

In order to realize the DACS Scheme, the operation is done by a DACS Protocol
as shown in Fig. 5. As shown by (1) in Fig. 5, the distribution of the DACS rules is
performed on communication between the DACS Server and the DACS Client,
which is arranged at the application layer. The application of the DACS rules to the
DACS Control is shown by (2) in Fig. 5.

Fig. 4 Basic principle of the DACS scheme

Load Experiment of the vDACS Scheme in Case of Increasing … 33

The steady communication control, such as a modification of the destination
information or the communication blocking is performed at the network layer as
shown by (3) in Fig. 5.

3.2 Communication Control on Client

The communication control on every user was given. However, it may be better to
perform communication control on every client instead of every user. For example,
it is the case where many unspecified users use a computer room, which is con-
trolled. In this section, the method of communication control on every client is
described, and the coexistence method with the communication control on every
user is considered.

When a user logs into a client, the IP address of the client is transmitted to the
DACS Server from the DACS Client. Then, if the DACS rules corresponding to IP
address, is registered into the DACS Server side, it is transmitted to the DACS
Client. Then, communication control for every client can be realized by applying
the DACS Control. In this case, it is a premise that a client uses a fixed IP address.
However, when using DHCP service, it is possible to carry out the same control to
all the clients linked to the whole network or its subnetwork for example.

When using communication control on every user and every client, communi-
cation control may conflict. In that case, a priority needs to be given. The judgment
is performed in the DACS Server side as shown in Fig. 6. Although not necessarily
stipulated, the network policy or security policy exists in the organization such as a
university (1). The priority is decided according to the policy (2). In (a), priority is

Fig. 5 Layer setting of the DACS scheme

34 K. Odagiri et al.

given for the user’s rule to control communication by the user unit. In (b), priority is
given for the client’s rule to control communication by the client unit. In (c), the
user’s rule is the same as the client’s rule. As the result of comparing the conflict
rules, one rule is determined respectively. Those rules and other rules not over-
lapping are gathered, and the DACS rules are created (3). The DACS rules are
transmitted to the DACS Client. In the DACS Client side, the DACS rules are
applied to the DACS Control. The difference between the user’s rule and the
client’s rule is not distinguished.

3.3 Security Mechanism of the DACS Scheme

In this section, the security function of the DACS Scheme is described. The
communication is tunneled and encrypted by use of SSH. By using the function of
port forwarding of SSH, it is realized to tunnel and encrypt the communication
between the network server and the, which DACS Client is installed in. Normally,
to communicate from a client application to a network server by using the function
of port forwarding of SSH, local host (127.0.0.1) needs to be indicated on that client
application as a communicating server. The transparent use of a client, which is a
characteristic of the DACS Scheme, is failed. The transparent use of a client means

Fig. 6 Creating the DACS rules on the DACS server

Load Experiment of the vDACS Scheme in Case of Increasing … 35

that a client can be used continuously without changing setups when the network
system is updated. The function that doesn’t fail the transparent use of a client is
needed. The mechanism of that function is shown in Fig. 7.

3.4 Application to Cloud Environment

In this section, the contents of wDACS system are explained in Fig. 8. First, as
preconditions, because private IP addresses are assigned to all servers and clients
existing in from LAN1 to LAN n, mechanisms of NAT/NAPT are necessary for the
communication from each LAN to the outside. In this case, NAT/NAPT is located
on the entrance of the LAN such as (1), and the private IP address is converted to
the global IP address towards the direction of the arrow. Next, because the private
IP addresses are set on the servers and clients in the LAN, other communications
except those converted by Destination NAT cannot enter into the LAN. But,
responses for the communications sent from the inside of the LAN can enter into
the inside of the LAN because of the reverse conversion process by the
NAT/NAPT. In addition, communications from the outside of the LAN1 to the
inside are performed through the conversion of the destination IP address by
Destination NAT. To be concrete, the global IP address at the same of the outside
interface of the router is changed to the private IP address of each server. From
here, system configuration of each LAN is described. First, the DACS Server and
the authentication server are located on the DMZ on the LAN1 such as (4). On the
entrance of the LAN1, NAT/NAPT and destination NAT exists such as (1) and (2).
Because only the DACS Server and network servers are set as the target destination,
the authentication server cannot be accessed from the outside of the LAN1. In the
LANs form LAN 2 to LAN n, clients managed by the wDACS system exist, and
NAT/NAPT is located on the entrance of each LAN such as (1). Then, F/W such as
(3) or (5) exists behind or with NAT/NAPT in all LANs.

Fig. 7 Extend security
function

36 K. Odagiri et al.

4 Cloud Type Virtual PBNM for the Common Use
Between Plural Organizations

In this section, after the concept and implementation of the proposed scheme were
described, functional evaluation results are described.

4.1 Concept of the Cloud Type Virtual PBNM
for the Common Use Between Plural Organizations

In Fig. 9 which is described in [4], the proposed concept is shown. Because the
existing wDACS Scheme realized the PBNM control with the software called the
DACS Server and the DACS client, other mechanism was not needed. By this
point, application to the cloud environment was easy.

The proposed scheme in this paper realizes the common usage by plural orga-
nizations by adding the following elements to realize the common usage by plural
organizations: user identification of the plural organizations, management of the
policy information of the plural organizations, application of the PKI for code

Fig. 8 Basic system configuration of wDACS system

Load Experiment of the vDACS Scheme in Case of Increasing … 37

communication in the Internet, Redundant configuration of the DACS Server
(policy information server), load balancing configuration of the DACS Server,
installation function of DACS Client by way of the Internet.

4.2 Implementation of the Basic Function in the Cloud Type
Virtual PBNM for the Common Usage Between Plural
Organizations

In the past study [2], the DACS Client was operated on the windows operation
system (Windows OS). It was because there were many cases that the Windows OS
was used as the client. However, the Linux operating system (Linux OS) had
enough functions to be used as the client recently, too. In addition, it was thought
that the case used in the clients in the future came out recently. Therefore, to prove
the possibility of the DACS Scheme on the Linux OS, the basic function of the
DACS Client was implemented in this study. The basic functions of the DACS
Server and DACS Client were implemented by JAVA language. From here, it is
described about the order of the process in the DACS Client and DACS Server as
follows.

Fig. 9 Basic system configuration of wDACS system concept of the proposed scheme

38 K. Odagiri et al.

(Processes in the DACS Client)
(p1) The information acquisition from Cent OS
(p2) Transmission from the DACS Client to the DACS
(p3) The information transmission from the DACS Client to
(p4) The reception of the DACS rules from the DACS Server
(p5) Application of the DACS rules of the DACS Control

(Processes in the DACS Server)
(p1) The information reception from the DACS Client
(p2) Connection to the database
(p3) Inquiry of the Database
(p4) Transmission of the DACS rules to the DACS Client.

4.3 Results of the Functional Evaluation

In this section, the results of the functional evaluation for the implementation
system are described in Fig. 10.

In Fig. 11, the setting situation of the DACS rules is described. This DACS rules
is the rule to change a Web server for the access. The delivery of the DACS rules is
between the DACS SV and the DACS CL encrypted by using SSL.

Fig. 10 Prototype system

Load Experiment of the vDACS Scheme in Case of Increasing … 39

By this DACS rules, the next operation was realized. When the user accessed the
Web Server with the IP address of 192.168.1.10, the Web Server with the IP
address of 192.168.1.12 was accessed actually. As for this communication result,
the communication log on each Web server was confirmed by viewing.

5 Load Experiment Results

5.1 Load Experiment Results to Confirm the Function
of the Software for Realization of the Cloud Type
Virtual PBNM for the Common Use Between Plural
Organizations

In this section, the load experiment results are described. In the Fig. 12, the
experimental environment is described. This environment consists of four virtual
servers. In the virtual server 1, servers group such as the DACS Server and user
authentication server is stored. In other virtual severs such as the virtual server 2,
virtual server 3 and virtual server 4, the virtual client which is installed the DACS
Client is stored. The number of the virtual clients is 100.

By using this experimental environment, the load experiment was executed.
Specifically, simultaneous accesses for the DACS SV from the 100 virtual clients
were performed at the rate of one time form 15 min. The number of the simulta-
neous connection for the DACS SV was set to 10 on this occasion. The experi-
mental results are described in Fig. 13.

In this Figure, the practice time of the DACL CL and CPU consumption is
described. The average of the results of the measurement for ten times was
263.2 MHz. This value is around three times of the value shown in Fig. 14.

In the experiment of the Fig. 14, the Windows client is used, and the commu-
nications between the DACS SV and the DACS CL is not encrypted. In this
experiment, the Linux client is used, and the communications between the
DACS SV and the DACS CL is encrypted by SSL. Particularly, because an element
of the overhead processes of the SSL is large, it is thought that such a result was
derived.

Fig. 11 Setting situation of the DACS rules on the DACS CL

40 K. Odagiri et al.

5.2 Load Experiment Results for Applications to the Small
and Medium Size Scale Organization

In this section, the load experiment results are described. The experimental envi-
ronment is described. The experimental environment is as previous experiment
environment. The simultaneous accesses for the DACS SV from the 200 virtual
clients were performed at the rate of one time form 15 min.

Fig. 12 Experimental environment

Fig. 13 Experimental results (1)

Load Experiment of the vDACS Scheme in Case of Increasing … 41

In the first experiment, the number of the simultaneous connection for the
DACS SV was set to 10 on this occasion. The experimental results are described in
Fig. 15. In this Figure, the average of the results of the measurement for ten times
was 477.3 MHz.

In the second experiment, the number of the simultaneous connection for the
DACS SV was set to 20 on this occasion. The experimental results are described in
Fig. 16.

In this Figure, the average of the results of the measurement for ten times was
538.8 MHz. Then, in the Fig. 17, the load experiment results are described in the
case that the number of the simultaneous connection for the DACS SV was set to 30
on. As the result, the average of the CPU consumption was 540.1 MHz.

As the results of these experiments, the CPU consumption becomes approxi-
mately constant in the case of the number of the simultaneous connection from 20
to 30. The value of around 540 MHz is the CPU load when the 200 clients are
connected simultaneously.

Fig. 14 Experimental results
(2)

Fig. 15 Experimental results (3)

42 K. Odagiri et al.

6 Conclusion

In this paper, we performed the load experiment of the cloud type virtual PBNM,
which can be used by plural organizations. In this experiment, the 200 virtual
clients with Linux OS are used, and the communications between the DACS SV
and the DACS CL are encrypted. The number of the simultaneous connection for
the DACS SV was set to 20 on this occasion. As the result, the average of CPU
consumption was 538.8 MHz. When the number of the simultaneous connection
for the DACS SV was set to 30 on this occasion, the average of CPU consumption
was 540.1 MHz. These two values are two times as large as the value in case of the
10 simultaneous connections.

As to the future work, we are going to perform more load experiments in the
form of increasing the number of the virtual client and the number of the simul-
taneous connection for the DACS SV.

Acknowledgements This work was supported by the research grant of KDDI Foundation. We
express our gratitude.

Fig. 16 Experimental results (4)

Fig. 17 Experimental results (5)

Load Experiment of the vDACS Scheme in Case of Increasing … 43

References

1. Yavatkar, R., Pendarakis, D., Guerin, R.: A Framework for Policy-Based Admission Control.
IETF RFC 2753 (2000)

2. Odagiri, K., Yaegashi, R., Tadauchi, M., Ishii, N.: Secure DACS scheme. J. Netw. Comput.
Appl., Elsevier 31(4), 851–861 (2008)

3. Odagiri, K., Shimizu, S., Takizawa, M., Ishii, N.: Theoretical suggestion of policy-based wide
area network management system (wDACS system part-I). Int. J. Netw. Distrib. Comput.
(IJNDC), 1(4), 260–269 (2013)

4. Odagiri, K., Shimizu, S., Ishii, N., Takizawa, M.: Suggestion of the cloud type virtual policy
based network management scheme for the common use between plural organizations. In:
Proceedings of International Conference on Network-Based Information Systems
(NBiS-2015), September, pp. 180–186 (2015)

5. Cerf, V., Kahn, E.: A protocol for packet network interconnection. IEEE Trans. on Commun.
COM-22, 637–648 (1974)

6. Moore, B., et al.: Policy Core Information Model—Version 1 Specification. IETF RFC 3060
(2001)

7. Moore, B.: Policy Core Information Model (PCIM) Extensions. IETF 3460 (2003)
8. Strassner, J., Moore, B., Moats, R., Ellesson, E.: Policy Core Lightweight Directory Access

Protocol (LDAP) Schema. IETF RFC 3703 (2004)
9. Durham, D., et al.: The COPS (Common Open Policy Service) Protocol. IETF RFC 2748

(2000)
10. Herzog, S., et al.: COPS usage for RSVP. IETF RFC 2749 (2000)
11. Chan, K., et al.: COPS Usage for Policy Provisioning (COPS-PR). IETF RFC 3084 (2001)
12. CIM Core Model V2.5 LDAP Mapping Specification (2002)
13. CIM Schema: Version 2.30.0 (2011)
14. Wahl, M., Howes, T., Kille, S.: Lightweight Directory Access Protocol (v3). IETF RFC 2251

(1997)
15. ETSI ES 282 003: Telecoms and Internet converged Services and protocols for Advanced

Network (TISPAN). Resource and Admission Control Subsystem (RACS). Functional
Architecture, June 2006

16. ETSI ETSI ES 283 026: Telecommunications and Internet Converged Services and Protocols
for Advanced Networking (TISPAN). Resource and Admission Control. Protocol for QoS
reservation information exchange between the Service Policy Decision Function (SPDF) and
the Access-Resource and Admission Control Function (A-RACF) in the Resource and
Protocol specification, April 2006

44 K. Odagiri et al.

Blind Channel Estimation Using Novel
Independent Component Analysis
with Pulse Shaping for Interference
Cancellation

Renuka Bhandari and Sangeeta Jadhav

Abstract Now days with the growing exposure of wireless communications, there
is more focus on achieving the spectral efficiency and low bit rate errors (BER).
This can be basically achieved by Space Time Frequency based Multiple Input
Multiple Output (MIMO)-OFDM wireless systems. The efficient channel estimation
method plays important role in optimizing the performance of spectral efficiency
and BER. There are different types of MIMO-OFDM channel estimation methods.
In this paper, we focused on designing efficient blind channel estimation method for
MIMO-OFDM. Recently there has been increasing research interest in designing
the blind channel based estimation methods. There are number of blind channel
estimation methods introduced so far, however none of them effectively addressed
the problem of Inter Symbol Interference (ISI). ISI may have worst impact on
performance of channel estimation methods if there are not addressed by channel
estimation techniques. In this paper we are designing the novel blind channel
estimation approach using Independent Component Analysis (ICA) with both ISI
cancellation and blind interference cancellation. This method is named as
Hybrid ICA (HICA). HICA algorithm use the HOS (higher order statistical)
approach and pulse shaping in order to minimize the blind interference and ISI
effects. Simulation results shows that HICA is outperforming the existing channel
estimation methods in terms of BER and MSE.

Keywords MIMO-OFDM ⋅ Channel estimation ⋅ Spectral efficiency ⋅ Error
rates ⋅ ICA ⋅ Interference

R. Bhandari (✉)
Department of E&TC, Dr. D.Y. Patil Institute of Engineering & Technology,
Pune 411018, India
e-mail: renukabhandari6@gmail.com

R. Bhandari ⋅ S. Jadhav
Army Institute of Technology Pune, Pune 411015, India

© Springer International Publishing AG 2018
R. Lee (ed.), Software Engineering Research, Management and Applications,
Studies in Computational Intelligence 722, DOI 10.1007/978-3-319-61388-8_3

45

1 Introduction

In wireless communications, the approach multiple input multiple output (MIMO)
is widely used in which there are multiple antennas at sender as well as receiver
side. MIMO is nothing but the vital approach designed for current generation of
digital/wireless communication standards. The MIMO was integrated with com-
munication or transmission systems such as OFDM (orthogonal frequency division
multiplexing) as well as CDMA (code division multiple access) [1]. MIMO-OFDM
is our main focus in this paper. MIMO-OFDM transmission methods are widely
studied since from last one decade. In MIMO, basically the transmitter antennas are
employed in order to gain the higher data rates using spatial multiplexing and
optimize the link reliability using either of three coding standards such as
(1) space-time, (2) space-frequency and (3) space-time-frequency. The basic
characteristic of all three coding standards is assumption of accurate channel
information at the side of receiver. In case of practice, when the channel infor-
mation is not available, design of receiver is basically depends on the suboptimum
equalization differentiation solutions in order to track and acquire the data at
receiver using training sequence. But the training sequence is leads to be overhead
limitation which may be prohibitive [2].

Now days, the mobile wireless systems are demanded for more data rate for
different multimedia services. Therefore MIMO-OFDM transmission systems are
now considered as strong methodology for designing the wireless communication
systems. This is because of distinct benefits of both OFDM and MIMO. The
channel estimation methods of MIMO-OFDM are categorized in three main cate-
gories such as training based, semi blind and blind channel estimation methods. In
first category, prepare known training samples in order to perform the proper
channel estimation. The LS (least square) and MMSE (minimum mean square
error) are the well known examples of training based channel estimation methods.
The second category is based on combined properties of training based and blind
based channel estimation methods and used with MIMO-OFDM communication
systems. Third channel estimation approach is called as blind method in which
second order stationary statistics (SOS) or higher order statistical (HOS) are used
for delivering higher spectral efficiency. In wireless communication systems, the
wireless channel frequently designed as sparse channel with the higher delay spread
[3], however number of significant non zero paths basically very small. Depending
on assumption of sparsity of equivalent discrete-time channel in which only some
taps in line of longer tapped delay are significantly considered. In CDMA and
OFDM systems, sparse structure of wireless channel is widely used in order to
optimize the channel estimation performance [4]. There are different sparse channel
based estimation techniques which are utilizing the training sequence and command
with two main steps such as (1) position detection of MSTs (most significant taps),
also called as non-zero taps, (2) effective channels estimation fetching by using the
MSTs position.

46 R. Bhandari and S. Jadhav

The scope and goal of this paper is to present the novel approach of blind
channel estimation method for MIMO-OFDM. There is increasing research interest
in designing blind channel estimation techniques. There are number of recent blind
channel estimation techniques claims that increasing researchers interest [1–3].
There are number reasons due which there is increasing researches on blind channel
estimation approaches. In OFDM systems, basically symbols are transmitted in the
form of blocks, therefore approach of iterative channel estimation and block based
is enabled in 4th generation wireless systems. Therefore, first obtain the initial
symbol estimates by using the blind channel estimation method and then employ
the preliminary symbol estimations to gain the higher fidelity channel estimation.
This process iteratively repeated with the soft information exchange in order
improves the both data symbol estimations as well as channel estimates [5].
Another motivation of increasing research studies on blind channel estimations is
the present architecture of heterogeneous wireless systems with small cells like
femto cells those are having low mobility based users. This leads in rapid increase
in low mobility based applications and hence motivating to design blind channel
estimation which basically needs the large number of samples for good perfor-
mance based on quasi static channel conditions.

Therefore numbers of blind channel estimation based methods are designed in
previous studies. In [4], blind channel estimation based on CP (cyclic prefix) based
redundancy. This approach showing the better results for SNR (signal to noise
ratio), but it is having higher computational complexity. Therefore recently novel
approach for blind channel estimation designed based on non-redundant pre-coding
[1] for wireless systems in order to good performance with less SNR and less
computational complexity. The approach designed in [1] is based on non redundant
pre-coding was proposed in which only small fever number of sub carriers com-
mensurate with the length of channel as well as carry the pre-coded data symbols
for the purpose of blind channel estimations. With the method, the symbols
transmission is done in traditional manner, hence the use of MLD (maximum
likelihood detection) of data symbols as well as pre-carrier pre-coding among the
antennas for the improvement in data rate. There are other more pre-coding based
blind channel estimation approaches designed but suffered from the number of
limitations. The joint estimation of linearly pre-coded symbols leads to the MLD
method computationally hard to control. Additionally, MMSE (minimum mean
square error) based estimation of symbol is highly leads to computational overhead
because of need of high dimensional matrix inversion. The linearly pre-coding
among all the carriers leads to very difficult task to simultaneously use the
per-carrier pre-coding among the antennas for the optimization in data rate.

The existing SOS based or HOS based methods for blind channel estimations
designed with different objectives. However, none of the existing techniques cap-
able to interference signals cancellation in MIMO-OFDM [6]. Interference signals
are caused by either other mobile users or fading channel in MIMO-OFDM wireless
systems in blind manner. The HOS based Independent Component Analysis
(ICA) method is recently designed for interference cancellation in MIMO sys-
tems, but not clearly designed and addressed for blind channel estimation.

Blind Channel Estimation Using Novel Independent Component … 47

Additionally, ISI (inter carrier interference) also having major impact of perfor-
mance of blind channel estimation and spectral efficiency, which is not yet
addressed. In this paper, we are designed Hybrid ICA (HICA) approach by using
pulse shaping for efficient blind channel estimation in order to improve the per-
formance of spectral efficiency and less error rates. In Sect. 2, we are discussing the
different recent blind based channel estimation methods. In Sect. 3, we are pre-
senting the system model and design of HICA blind channel estimation method. In
Sect. 4, we are presenting the simulation results and comparative study. Finally the
conclusion and future work is discussed in Sect. 5.

2 Related Work

This section, presents the recent methodologies introduced by different authors for
blind channel estimation for MIMO-OFDM transmission systems.

In [7], author designed blind channel estimation approach using repetition index.
They proposed subspace blind channel estimation method based on repetition index
with similar results as compared to previous method with fever number of symbols.
Author does not evaluate the computational complexity for MIMO-OFDM.

In [8], proposed the blind channel estimation method in MIMO-OFDM systems
with the OSTBC (orthogonal space-time block code). They designed the new
weighted covariance matrix of the data received in order to exploits the redun-
dancies in code. They proposed this approach with aim of resolving all the
non-scalar ambiguities.

In [5], another SOS based blind channel estimation method proposed. They
proposed the algorithm of blind recursive for the tracking emerging time varying
wireless channel in MIMO-OFDM systems which are pre-coded. With this approach
subspace based tracking was designed for fast time varying wireless channels. Their
approach called the data from the time as well as frequency domain as the frequency
correlation of the wireless channels in order to faster the required SOSs updates.

In [6], author proposed the new blind channel estimation techniques based on
subspace and SOS models for MIMO-OFDM. Their approach exploited the null
space introduced by the OSTBC. This approach worked with only single receiver
antenna as well. Additionally they proposed the modified proposed approach with
goal of requirement of less received blocks.

In [9], another subspace based blind channel estimation method proposed for
MIMO-OFDM. They designed novel signal permutation approach in this article for
MIMO-OFDM. With this approach, it had high full-row-rank probability even if
few OFDM symbols or low-order modulation is applied. The experimental results
of this method shown that, NMSE performance is better as compared to the existing
subspace methods. However, computationally having higher overhead as the
interference is not handled.

In [10], new pre-coder is designed for blind channel estimation proposed for
MIMO-OFDM wireless systems. With this approach, fewer number of data

48 R. Bhandari and S. Jadhav

symbols in proportion with length of wireless channel were linearly pre-coded
before the transmission. The main benefits of using this method was compatibility
with improved data rate MIMO pre-coding by utilizing the less number of sub-
carriers in order to introduce the signal correlation required for blind channel
estimation. Interference cancellation is not addressed with this technique.

In [11], author investigated the blind channel estimation technique for
MIMO-OFDM by considering the effects of channel interference and ISI. The
investigation was performed with respect to BER and least square error rates.

In [12], the recent novel blind channel estimation technique designed for LTE
(long term evolution) wireless networks based on advantages of wavelet transform
denoising characteristics with ICA capability of blind estimation in LTE networks.
They called this approach as WD-ICA. The denoising approach was designed in
order to handle the blind interference cancellation. This was the first attempted
approach for blind channel estimation using ICA. The ISI cancellation is not per-
formed in this method.

3 Proposed Methodology

The system model designed for proposed HICA approach is showing in Fig. 1.
Figure 1 is showing (T) transmit and (R) receive antennae. End users data is ran-
domly generated in digital form which is first given input to pulse shaping algo-
rithm to inter symbol interference cancellation. Before pulse shaping, first symbol
mapping, IFFT/FFT and CP operations are performed at each transmitter and
receiver wireless antennas. Then input symbols from the each user are modulated
using any type of modulation technique like BPSK, QAM, and QPSK and trans-
mitted over the wireless AWGN channel. Considering that there are M transmitted
signals with every signal consisting of samples S. the attenuation for nth channel

Fig. 1 Proposed HICA MIMO-OFDM system model

Blind Channel Estimation Using Novel Independent Component … 49

path is represented by An. Attenuation factor is complex number. The pulse shaping
is introduced here to remove the ISI effects before performing the modulation in
order to minimize the error rates and optimize the spectral efficiency. Then further
during the transmission we designed the ICA based blind interference cancellation
approach. The algorithm design and steps are elaborated in below steps.

3.1 HICA Method

The idea of the proposed method is to first apply the pulse shaping method in each
users symbols in order to minimize the inter symbol interference. Pulse shape is
light weight ISI cancellation approach. We used the square root raised cosine filter
in up sampling domain to realize the pulse shaping filter. In this section we are just
presenting the core equations those are added for efficient blind channel estimation.

In first step, let’s consider gt(t) transmit side pulse shape filter for each user
symbols and gr(t) is receive antenna side matched filter. The composite channel is
represented as T * R with matrix H (t). The (iR, iT) channel using pulse phase
filtering is represented by:

hiR′ iTðtÞ= hiR′ iT ′cðtÞ * gtðtÞ * grðtÞ ð1Þ

where hiR′ iT′cðtÞ is the (iR, iT) element of H (t).
Here the channel can be represented as the L tap FIR filters array for blind

channel estimation.
In second step, for blind channel estimation is which is done by ICA block. In

proposed HICA, first signals sources from receiver observation mixture are iden-
tified by using determining separation matrix represented as (W).

In third step, at the every iteration of HICA, the estimated signals order is
different due to random initialization of HICA method. In spite of that, if there is
significant information in estimated signal, then it will appear at every iteration
always. The estimated common signals further prioritize based on their Higher
Order Statistics (HOS) in order to select the estimated desire signals (m) using
proposed HICA method by leaving the interference related components.

3.2 Mathematical Representation

First step is already represented above; the step 2 and 3 mathematical representation
of HICA method is below:

In second step, W is performed using the maximizing the non-gaussianity of the
observation signals principle. The non-gaussianity for random variable (v) con-
taining the complex data is measured by the Kurtosis K[s] as:

50 R. Bhandari and S. Jadhav

K v½ �=E vj j4
h i

− 2 E vj j2
h i� �2

− E vv½ �E½v*v*� ð2Þ

where (.)* is represents the complex conjugate.
The estimation of W is performed by the minimization of J (W) objective

function within the unitary constraint (WWH = IR) due to negative results of kurtosis
value on different modulation schemes. This objective function is based on esti-
mated signals ŝi [n] kurtosis values represented as:

W = minWf JðWÞ= ∑
M

j=1
K½s ̂½n�� ð3Þ

The objective function J(W) minimization is done by gradient computation of
objective function as:

Jw=
∂JðWÞ
∂W

=K WHs ̂ n½ �� �½E ŝ n½ �Þ3
n o

� ð4Þ

where (w) is represents the one vector from the separation matrix W.
As the objective function (Jw) optimization is in constraint of WWH = IR, object

function gradient must be complemented using projecting W over the interval after
each step performed by dividing the W by its norm.

In third step, the execution of HICA method number of times with various
random initialization of W at each time in order to estimate the common signals for
HICA executions. The two ŝi [n] and ŝi estimated signals for different executions
are assumed different if the SAM (spectral angle mapper) among their related
vectors vi[n] and vj[n] is more than the estimated threshold value ε. After that,
common estimated signals are prioritized based on their 3rd and 4th HOSs as:

J sq̂
� �

=
1
12

� �
½Q3

q�2 + ð 1
48

Þ½Q4
q − 3�2 ð5Þ

where, Q3
q =E ŝ3q

n o
= 1

T

� �
∑
T

n=1
ðsq̂ n½ �Þ3 is 3rd order of statistics and

Q4
q =E s4̂q

n o
= 1

T

� �
∑
T

n=1
ðsq̂½n�Þ4 is 4th order of statistics of estimated signals. And q is

nothing but execution index.

3.3 Ambiguity Elimination

The estimation of estimated users signals still to the permutation as well as phase
rotation ambiguities due to ICA algorithm ambiguity issues. The ŝi [n] is nothing

Blind Channel Estimation Using Novel Independent Component … 51

similar to the original transmitted signal s[n], and there is presence of ambiguity
matrix A comparing with the s[n]. This can be represented as:

sǐ n½ �=A × ŝi½n� ð6Þ

Two indeterminacies forming the A as:

A=P × D ð7Þ

where P is nothing but the permutation ambiguity matrix and (D) is phase rotation
ambiguity matrix.

In proposed blind channel estimation method, ambiguities elimination is per-
formed by multiplying the all estimated signals by the ambiguities elimination step
of the proposed method is represent by post-multiplying the estimated signals LF
which is represented as:

LF = argminLEG∥s n½ �− s ̂ n½ � xA∥2. ð8Þ

The final estimated signal is:

ŜiF n½ � = LF × s ̂ n½ � ð9Þ

3.4 Algorithm Design

The above steps in HICA are summarized in algorithm 1 for fixed step size (μ):

Step 1: Apply the Pulse shaping on input symbols of each user in order inter
symbol cancellations.

Step 2: Apply the modulation such PSK, QAM etc.
Step 3: Initialization HICA iterations in IT and set it = 0;
Step 4: Random W initialization
Step 5: Defining the objective function Jold←J Wð Þ.
Step 6: Gradient computation of objective function using Eq. (4).
Step 7: W updating according to negative gradient direction, W←W − μJw.
Step 8: W normalization according to unitary constraint, W←W ̸ Wk k
Step 9: If Jold − J(W) < ε (where ε is a very small threshold Value), then go

back to step 4.
Step 10: Set of signals estimation s ̂½n�=WH × Yr (where, Yr is the set of received

signal)
Step 11: Form every estimated signal ŝ [n] as vector which represented by Vit[n]
Step 12: If it < 1 go to step 4 else, continue.
Step 13: Find the set of the common vectors for all runs of algorithm up to itth

run.

52 R. Bhandari and S. Jadhav

Step 14: If there is no common vectors does not appear for all the HICA exe-
cutions, then go to step 4, else iteration is terminated.

Step 15: Apply Eq. (5) to prioritize the common estimated signals with J (ŝit).
Step 16: Selection of desired signals (m) with largest J (ŝit) in order perform the

blind interference cancellation.
Step 17: Ambiguity Elimination using Eq. (9).
Step 18: STOP.

4 Simulation Results

The proposed blind channel estimation method is simulated and compared against
the ICA based approach for BER and MSE analysis with below configuration
parameters (Table 1).

4.1 MSE (Mean Square Error) Performance

Figures 2 and 3 are showing the performance of proposed approach against existing
ICA method in terms of MSE for QAM and QPSK modulation techniques
respectively. The proposed approach is showing the more improvement in MSE
performance as compared to ICA method.

4.2 BER (Bit Rate Error) Analysis

BER is most important parameter used to evaluate the efficiency of channel esti-
mation method. Figures 4 and 5 are showing the performance of proposed approach

Table 1 MIMO-OFDM
simulation parameters

FFT Size 256

Block size 8
Sub band size 20
SNR range 0:5:50
Number of iterations 500
Channel type Iden channel
Blind estimation method ICA and HICA
Modulation technique QPSK and QAM
Number of subcarriers 256
Filter type Pulse shaping filter

Oversampling factor 4

Blind Channel Estimation Using Novel Independent Component … 53

against existing ICA method in terms of BER for QAM and QPSK modulation
techniques respectively. The proposed approach is showing the efficient BER
performance as compared to ICA method.

Fig. 2 MSE performance analysis using 16-QAM modulation

Fig. 3 MSE performance analysis using QPSK modulation

54 R. Bhandari and S. Jadhav

Fig. 4 BER performance analysis using 16-QAM modulation

Fig. 5 BER performance analysis using QPSK modulation

Blind Channel Estimation Using Novel Independent Component … 55

5 Conclusion and Future Work

For improving the spectral efficiency and data rate for current generation wireless
communication systems, efficient channel estimation methods plays very important
role. In this paper, we presented the novel blind channel estimation method called
HICA for MIMO-OFDM under HOS domain. The novelty of proposed approach
was the modified ICA approach with ISI and blind interference cancellation.
For ISI, we designed the pulse shaping based filters for each transmitting and
receiving antennas. However it is also observed from the simulation results that
spectral efficiency increases at cost of BER. The simulation results of proposed
approach showing the better performance as compared to previous channel esti-
mation method. HICA is outperforming the ICA method in terms of BER and MSE.
For future work, we suggest to work on analysis of computation overhead,
Peak-to-Average Power Ratio etc.

References

1. Tu, C.-C., Champagne, B.: Blind recursive subspace-based identification of time-varying
sideband MIMO channels. IEEE Trans. Veh. Technol. 61(2), 662–674 (2012)

2. Ngo, H., Larsson, E.G.: EVD-based channel estimation in multi cell multiuser MIMO systems
with very large antenna arrays. In: Proceedings of IEEE International Conference on
Acoustics, Speech, Signal Process., Kyoto, Japan, pp. 3249–3252, Mar 2012

3. Müller, R., Cottatellucci, L., Vehkaperä, M.: Blind pilot decontamination. IEEE J. Sel. Topics
Signal Process. 8(5), 773–786 (2014)

4. Shin Jr., C., Heath, R.W., Powers, E.J.: Blind channel estimation for MIMO-OFDM systems.
IEEE Trans. Veh. Technol. 56(2), 670–685 (2007)

5. Tu, C.-C., Champagne, B.: Blind recursive subspace-based identification of time-varying
wideband MIMO channels. IEEE Trans. Veh. Technol. 61(2) (2012)

6. Jiang, J.-D., Lin, T.-C., Phoong, S.-M.: New subspace-based blind channel estimation for
orthogonally coded MIMO-OFDM systems. In: 2014 IEEE International Conference on
Acoustic, Speech and Signal Processing (ICASSP)

7. Shao, X., Chen, J., Kuo, Y.: Blind channel estimation for MIMO-OFDM systems based on
repetition index. In: 2011 International Conference on Internet Computing and Information
Services. IEEE (2011)

8. Sarmadi, N., Pesavento, M.: Closed-form blind channel estimation in orthogonally coded
mimo-ofdm systems: a simple strategy to resolve non-scalar ambiguities. In: 2011 IEEE 12th
International Workshop on Signal Processing Advances in Wireless Communications

9. Fang, S.-H., Chen, J.-Y., Lin, J.-S., Shieh, M.-D., Hsu, J.-Y.: Subspace-based blind channel
estimation for MIMOOFDM systems with new signal permutation method. In: Vehicular
Technology Conference (VTC Spring). IEEE (2014)

10. Noh, S., Sung, Y., Zoltowski, M.D.: A new precoder design for blind channel estimation in
MIMO-OFDM systems. IEEE Trans. Wirel. Commun. 13(12) (2014)

56 R. Bhandari and S. Jadhav

11. Shirmohammadi, M., Damavandi, M.-A.: Blind channel estimation of MIMO-OFDM systems
in satellite communication. In: Information and Communication Technology Convergence
(ICTC). IEEE (2015)

12. Abdel-Hamid, G.M., Saad, R.S.: Blind channel estimation using wavelet denoising of
independent component analysis for LTE. Indonesian J. Electr. Eng. Comput. Sci. 1(1) (2016)

Blind Channel Estimation Using Novel Independent Component … 57

Anticipated Test Design and Its
Application to Evaluate and Select
Embedded Libraries

Clauirton Siebra, Carla Nascimento, Leonardo Sodre,
Antônio Cavalcanti, Daniel Barros, Fernando Lima,
Fernando Cruz, Fábio Q.B. da Silva and Andre L.M. Santos

Abstract Code refactoring usually generates problems in other parts of the code
that had already been validated. A solution is to use an anticipated test design
methodology, where unit tests are first created to each module/class/method before
their modification. Thus, developers are able to ensure the correct execution of
functions after their refactoring. Our work applies this strategy to the development
of a set of libraries that are used in several other projects. As developers have to
modify the initial implementation of these libraries, to adapt such libraries to dif-
ferent needs, it is important to ensure that the libraries’ functions are still properly
working and verify if the efficiency of the algorithms was modified. Results show

C. Siebra (✉)
Informatics Center, Federal University of Paraiba, Joao Pessoa, Brazil
e-mail: clauirton@ci.ufpb.br

C. Nascimento ⋅ L. Sodre ⋅ A. Cavalcanti ⋅ D. Barros ⋅ F. Lima ⋅ F. Cruz
CIn/Samsung Laboratory of Research and Development, Recife, Brazil
e-mail: cmpn@cin.ufpe.br

L. Sodre
e-mail: lmas2@cin.ufpe.br

A. Cavalcanti
e-mail: avcj@cin.ufpe.br

D. Barros
e-mail: dnmlb@cin.ufpe.br

F. Lima
e-mail: flasfl@cin.ufpe.br

F. Cruz
e-mail: frlc@cin.ufpe.br

F.Q.B. da Silva ⋅ A.L.M. Santos
Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
e-mail: fabio@cin.ufpe.br

A.L.M. Santos
e-mail: alms@cin.ufpe.br

© Springer International Publishing AG 2018
R. Lee (ed.), Software Engineering Research, Management and Applications,
Studies in Computational Intelligence 722, DOI 10.1007/978-3-319-61388-8_4

59

that this approach has increased the confidence of developers in modifying a library
and generating several implementations of such library, so that the best imple-
mentation could be selected using the same set of unit tests.

Keyword Anticipated design ⋅ Test generation ⋅ Test unit ⋅ Continuous
integration ⋅ Agile methods

1 Introduction

Software testing was already identified as a very labor intensive and expensive stage
of the software development process, which can often account for more than 50% of
total development costs [1]. While number and complexity of tests are increasing
due to new resources provided by computational platforms, test centers are forced to
improve their test process time. Note that as faster a specific system is evaluated and
delivered to the market, as better will be its chances against other applications. This
scenario configures a contradiction: the need to increase the number of tests and
decrease the test time. Furthermore, this contradiction can lead to a reduction of the
quality of the overall test process. Thus, there are strong benefits in reducing the cost
and improving the effectiveness of the software testing process.

Test automation is the main practice discussed in the software literature as an
alternative to obtain a better efficiency in software testing. In fact, there has been a
rapid growth of practices in using automated software testing tools and, currently, a
large number of test automation tools have been developed and have become
available on the market [2]. Although automation techniques for test generation
have started to be gradually adopted by the IT industry in software testing practice,
there still exists a big gap between real software application systems and the
practical usability of automated test generation techniques proposed by the research
community. The survey presented by Rafi and colleagues [3], for example, shows
that limitations of test automation are: high initial investment in automation setup,
tool selection and training. Furthermore, 45% of the respondents agreed that
available tools in the market offer a poor fit for their needs. Finally, it was found
that 80% of the practitioners disagreed with the vision that automated testing would
fully replace manual testing.

The use of automated software generation could be applied as an alternative for
anticipated test design since tests cases are early and mostly generated along the
specification stage. However, this type of automation is still need to leave the
academy and show up its advantages when used in real problems. In addition to the
limitations listed in the previous paragraph, there are several other aspects that still
need to be considered. First, the maintenance of automated test cases was cited as
problematic by real practitioners, mainly when the project presents an unstable set
of requirements. Note that this is a common situation in the majority of real soft-
ware development projects. Thus, the use of automated approaches requires the use
of test cases that are highly maintainable and robust. This may be a problem

60 C. Siebra et al.

because the maintenance load of automated testing is likely to increase in the future
as we have already seen systems where the amount of test code exceeds the amount
of production code [4]. Second, to cover initial investments, the automated
approach should be easily configured and fitted to the various software develop-
ment projects and ways to work. A software team will not invest in an automation
process to only use it in one or few projects. In fact, the current approaches still
need to better consider this issue [5]. Third, there is not a strategy that supports an
incremental delivery of test automation. This lack brings problems since practi-
tioners must directly go to a state where test automation requires high investment
and then maybe provides high reward, rather than going to an initial model where
test automation requires a low investment and provides a lower reward. Approaches
supporting such incremental adaptation would assist to mitigate from the current
high-risk reward scenario [3]. Finally, the literature supports the superiority of test
automation mainly when several regression testing rounds are needed [6]. This may
be the principal reason for the divergence between academic and practitioners’
vision about automation. According to Rafi et al. [3], for example, while many
academic sources provide evidence that test automation increases fault detection,
still 58% of the practitioners do not agree with this affirmation.

Based on this discussion, our development team decided to avoid the test
automation approach and use our previous experience regarding anticipated test
design, which was originally proposed in [7]. The main idea is to use this approach
along the development of embedded libraries that will be used in several other
projects. These libraries are usually modified by developers that may not be part of
the original project. Furthermore, as these libraries are usually modified in accor-
dance with the context where they will be applied, the anticipated test design
enables both the trustability of the final code and also a comparative analysis
regarding the efficiency of different versions of the original library. This analysis is
mainly important because it supports the selection process of the best
implementation.

The remainder of this paper is organized as follows: Sect. 2 presents current
approaches that use some kind of anticipated test design method and the particular
features of such methods. Section 3 details the anticipated test design method
defined by our development team and how it evolved from the traditional test
method initially used by such team. Section 4 places the anticipated test design into
the context of the evaluation processes of software libraries. Section 5 discusses our
experience in a case study related to the definition of an image manipulation library.
Finally, Sect. 6 concludes this work with the main remarks and research directions.

2 Approaches for Anticipated Test Design

As discussed along the introduction, the automated test generation is the most
popular technique to design tests before the actual test stage. Other approaches have
the same aim but, differently, do not use automation as primary method to test design.

Anticipated Test Design and Its Application … 61

The Built-in Test Design [8] is an example. The essential idea of the built-in test
design is that component suppliers pre-place test scripts in components and set their
corresponding testing-interfaces. Built-in test scripts generally contain test cases or
present facilities to generate test cases which the component can use to test itself and
its own methods. A component can operate in two modes: normal and maintenance.
Components do not differ from other non-built-in testing enabled components while
they are running in the normal mode. However, in the maintenance mode, the
component user can invoke the respective component methods to execute the test, via
their interfaces, evaluate the test results and output test reports [9].

Much of the work in Built-in Test Design has focused on component-based
software [8–10], since reusable components have limited access and it is difficult to
carry out tests in system built by externally-provided components. Our testing
approach differentiates from them by providing the ability to test any arbitrary part
of the system, rather than just reusable components. Note that such components are
not usually produced to be modified and, consequently, their related built-in test
functions are created without a special attention on the adaptability aspect.

similar approach to Built-in Test Design and derived from the hardware testing is
the Design-for-Testability technique [11], where self-testing software components
are produced in such way that they can autonomously evaluate themselves along,
for example, integration tests. A set of associated test cases are provided with
self-testing components and they are executed at the system deployment time. The
successful execution of all test cases associated with a component C newly inte-
grated in a system assures that C was correctly integrated into the system, i.e., the
interactions of C with the system are correct. Similarly, the successful execution of
all test cases associated with components that interact with C assures that the system
integrates well with C, i.e., all interactions from the system to C are correct [12].

Design-for-Testability is again mostly focused on reusable components, where
tests for software components are executed only once at deployment time since
software components are not supposed to be changed during their lifetime. In
addition, this approach considers integration tests as more important since unit
testing must be performed during the development process. Differently, our
intention is not to create test situations that will be used at deployment time, but just
create facilitators in terms of testing code that accelerates the performance of the
test stage. In this way, these testing codes can be implemented as both unit and
integration tests, and regularly executed along different cycles.

A more general approach for anticipated test design is called Test-Driven
Development (TDD), which is based on formalizing a piece of functionality as a test
and implementing the functionality such that the test passes [13]. An important
feature of TDD is that programmers write functional tests before the corresponding
production code. The work of Muller and Hagner [14] was the first in carrying out a
practical analysis of the TDD application, comparing such approach to traditional
programming (design, implementation and test). The conclusions of this work
turned out that TDD does not accelerate the implementation and the resulting
programs are not more reliable, but test-first seems to support better program
understanding. A similar result was obtained by Pancur et al. [15] who carried out

62 C. Siebra et al.

an experiment with 38 senior undergraduates, showing that Test First group
obtained neither higher external quality nor better code coverage. Differently, other
practical studies [16, 17] support the use of TDD, so that we do not still have a clear
vision about their real benefits. Thus, rather than motivate the use of this strategy,
such studies show the need of more experimental analysis and the execution of
replication studies.

The order of development is the main difference from our work to the TDD
approach. While TDD requires the implementation of test code first than production
code, we maintain the traditional order of implementation for each functional code
unit. Furthermore, our tests are still executed in a well-defined test stage. Differ-
ently, TDD starts with the unit tests coding to the proposed functionalities using a
unit testing framework. Afterwards, programmers write code to pass these test
cases, but are not allowed to write code that does not aim to pass the tests that are
already produced. Codes for the proposed functionalities are considered to be fully
implemented if and only if all the existing test cases pass successfully. Note that
there is a fully mixed between implementation and test stages.

The next schema (Table 1) summarizes the relation between the development
process stages (specification, implementation, test and deployment) and the
moments when tests are mainly created (C) and executed (E).

Table 1 Comparison between possible approaches for test design, where ASG = Automated
Software Generation, BTD = Built-in Test Design, DFT = Design-For-Testability, TDD =
Test-Driven Development, ATD = our approach for Anticipated Test Desigh. The symbol
(C) means the main moment for test creation, while the symbol (E) means the main moment for
test execution

Specification Implementation Test Deployment

ASG (C) Tests are
usually created
from
specification

(E) Well defined
stage where code
is evaluated

BTD (C) Provides pre-place test
scripts in components and sets
the corresponding testing
interfaces

(E) Test
execution is
focused on
integration
matters

DFT (C) Test stage is
used to create test
cases for future
use

(E) Test
execution is
focused on
integration
matters

TDD (C) (E) Implementation and test stages are mixed,
so that the implementation of production code is in
fact a test process

ATD (C) Production and test code
are created in pair (see Sect. 3)

(E) Well defined
stage where code
is evaluated

Anticipated Test Design and Its Application … 63

3 Anticipated Test Design Definition

3.1 Flow of Activities

Along our previous traditional development process (Scenario A), the development
team used to work in cycles. Each cycle had a set of features, which were developed
according to the next flow (Fig. 1). These feature could come as result of a
refactoring process (adaptation and/or modification of an existent feature), or the
own system evolution (new feature). For each new feature, it was carried out an
analysis of alternatives to implement it in terms of design patterns, data structures
and algorithms. Then, the specification of the feature was sent to the implemen-
tation stage and, after that, to the test team, which accounted for creating test cases
and evaluating the new code. If this new code passes all test set, then it is integrated
to the project.

Considering this process, we have that the development time T of a feature f in
this Scenario A is given by Eq. (1).

Tf ,A = Tanalysis,A +Timplementation,A + Ttest,A ð1Þ

In this Eq. (1), Timplementation, A corresponds only to the time to implement the
production code related to f, while Ttest, A corresponds to the sum of time to create
tests cases and execute such tests. Then we have (2):

Ttest,A =Ttest− implementation,A +Ttest− execution,A ð2Þ

In Scenario B, we have a slight modification since the creation of tests is moved
to the implementation stage (Fig. 2).

Considering this new process, we have that the development time T of a feature
f in this scenario B is given by Eq. (3) and Timplementation, B is given by Eq. (4).

Tf ,B = Tanalysis,B +Timplementation,B + Ttest,B ð3Þ

Timplementation,B = Ttest− implemenation,B +Tproduct− implementation,B ð4Þ

Fig. 1 Traditional flow of development (Scenario A)

64 C. Siebra et al.

A direct implication when we change from Scenario A to Scenario B is:

Ttest,B < Ttest,Að Þ AND Timplementation,B > Timplementation,A
� � ð5Þ

Considering this equation, Scenario B will present advantages regarding Sce-
nario A if we ensure two conditions. First, Ttest, B must be as shorter as possible than
Ttest, A. Second, Timplementation, B must be as closer as possible to Timplementation, A.
The first condition naturally holds, since we are leaving out the time related to test
implementation from Ttest, B when compared to Ttest, A. However, to ensure the
second condition, we must demonstrate that Ttest-implemenation, B is significantly
shorter than Ttest-implemenation, A. This means:

Ttest− implemenation,B < < < Ttest− implementation,A ð6Þ

The theoretical rationale that supports the relation (6) in our approach says that if
a developer is implementing a function, s/he is thinking about its possible problems
and normal/exceptions flows. This involvement over the code elaboration gives to
its developer a focused expertise, which can better lead him/her along the definition
of forms of evaluation.

3.2 Definition of Miniworlds

The implementation of test code, or test methods, is only part of our test cases. The
second part is related to the definition of input values to feed the tests. In our first
version, each test implementation had a set of methods to create important instances
in the database, considering the functionality to be tested. For example, if the
method accounts for ordering a set of data by some specific field, the database
should have a set of data to be ordered. So, an initialize function was performed to
insert these data into the database. After the test, a clean-up method was performed
to reset the database to the next test.

In this initial approach, the idea was to maintain the initialization methods as
simple as possible. After some experiments, we noticed that some methods were

Fig. 2 Flow of development, considering an anticipated test design approach (Scenario B)

Anticipated Test Design and Its Application … 65

still presenting errors ever when they passed through the test set. The analysis of the
test cases demonstrated that the problem was the limited situations created by the
input data rather than the own test codes. The improvement of the initialization
methods, so that they could configure a higher number of test situations, leaded to a
huge redundancy of code. This fact motivated the team to define the concept of
miniworld, which is a metaphor to represent all input data and related expected
results for a given software code. This means, a set of test scenarios that makes
sense to such code and can evaluate it. Formally, given a set of test codes Ω that
contains n tests [t1,…, tn], where [α1, α2,…, αn] are respectively the set of data
required by [t1, t2,…, tn]. A miniworld is a set of data Φ, composed by: α1 ∪ α2 ∪ ,
…, ∪ αn; which tries to maximizes the coverage of Ω.

Based on the miniworld concept, the initialization is only carried out once and
the test methods do not need to perform further initializations into the database.
This approach significantly reduced the redundancy of test code but, on the other
hand, it created an important new project thread associated with the miniworld
configuration. At the moment, miniworlds are manually generated. However, the
literature present some approaches to the automatic generation of databases, which
present a varying rich synthetic data distribution. For example, an approach to
automatically generate test data for SQL queries is described in (Suárez-Cabal et al.
[18]). In this approach, the queries and database schema are used to lead the data
generation. The different test situations on the queries are identified using a con-
dition coverage criterion and they are represented with a set of constraints that the
information in the database must fulfil. Other similar approaches are presented in
Bruno and Chaudhuri [19] and Khalek et al. [20]. Our future works intend to
analyze such techniques and their integration to our approach.

3.3 Integration with Agile Methods

The anticipated test design implements several testing principles of the Agile
methods. Both approaches recognize that testing is not a separate phase, but an
integral part of software development along with coding [21]. Thus, development
teams use a “whole-team” approach to provide a better quality to software products.
Testers on agile processes use their expertise in eliciting examples of desired
behavior from customers, collaborating with the development team to turn those
into executable specifications that guide coding. The anticipated test design also
provides this possibility.

As supported by the anticipated test design, testing is always applied after short
code modifications, so that the code evolves incrementally and interactively. This is
one of the principles of Agile Methods. Thus, in contrast with other test method-
ologies, the anticipated test design focuses on repairing faults immediately, as
suggested by the Agile methods, rather than waiting for the end of the project.

66 C. Siebra et al.

All these concepts are straightforward to support a continuous process of inte-
gration, which is the key idea of Agile testing and also explicitly supported by the
anticipated test design. Thus, such approach can naturally be used by development
teams that intend to apply the Agile concepts.

4 Library Evaluation and Selected Scenario

The evaluation and selection of embedded libraries to compose a software system
use to be a complicated and time consuming decision making process. According to
Lin et al. [22], the main reasons are:

• Difficulty in accessing applicability of libraries to the business needs of the
organization due to availability of large number of libraries in the market;

• Existence of incompatibilities between various hardware and software systems;
• Lack of technical knowledge and experience to decision makers, and;
• Ongoing improvements in information technology, which are not followed by

the libraries.

As the selection of inappropriate libraries can impact the quality of the appli-
cation and negatively affect the success of the product in the market, there are
several proposals that try to improve this activity. In general, all these proposals are
based on the concept of Multi criteria decision making (MCDM) [23]. Taking as
example the process of evaluation and selection of libraries, the goal of the MCDM
involves to simultaneously consider multiple attributes to rank the available
libraries and select the best one. However, this activity of library selection is usually
carried out under schedule pressure and evaluators may not have time or experience
to plan selection process in detail [24]. Furthermore, there is always a significant
probability that libraries still need to be modified or adapted to meet the needs of the
application in development [25].

Rather than looking for an appropriate library that could fit all the requirements
of a given problem; a home-made or third-part set of libraries can be used as basis
and be (1) adapted to different problems, (2) modified to improve aspects of effi-
ciency, and (3) refactored due to architectural issues. In all these situations, two
verifications should be carried out afterwards: correctness of the new library version
and efficiency of such version when compared to its original version.

As discussed in [7], the anticipated test design is an efficient way to support
these types of verifications for legacy system and this approach could also be used
in this case for software libraries. Thus, the idea of our development team is to
adapt or extend our libraries and use the anticipated test design approach to validate
and select new definitions of the same library.

The next stages are introduced as a method to extend/adapt software libraries,
given the requirements in terms of new functions or performance improvements.
Such stages also show how the anticipated test design is integrated in such method:

Anticipated Test Design and Its Application … 67

1. Requirement definition: if we intend to select a software library, we first need to
define what we expect from this library in terms of functions (f1,…, fn) and
performance of such functions p(fi);

2. Preliminary investigation on adaptability of software libraries: if there is a Δf
(lib) that represents the difference between what the library lib offers and what
we expect in terms of functionalities, or/and a Δp(fi) that represents the differ-
ence between the real and expected performances of a function fi ∈ lib; then the
development team needs to investigate what should be done to eliminate or
attenuate Δf and Δp;

3. Short listing of extensions and/or adaptations: candidate extensions and adap-
tations are possible modifications that are identified to deal with Δf and
Δp. Libraries can present several limitations such as essential functionalities and
features that do not work with existing hardware, operating system, data man-
agement software, or network configurations. At the same time, there are several
possible candidate solutions that can be used to modify the package. For
example, a function for face recognition can be implemented using diverse
machine learning algorithms. Thus, a list of these algorithms could be consid-
ered for detailed evaluation;

4. Definition of criteria for evaluation: the concepts of anticipated test design are
very important in this stage. As unit tests of a library are created along the
development of a library, or before its modification, such tests must already
consider the performance criteria that are going to be used to qualify the library.
Simple examples of criteria are processing time and amount of memory that is
used by a process. These tests are integrated to the library and, if such library is
modified, the tests can again be applied so that we have a solid way to make
comparative analysis;

5. Creating new functionalities and evaluating the libraries: this stage implements
the candidate functionalities according to Δf, which were specified in stage 3.
Actually, this stage may work as a loop (Fig. 3), since extensions can affect
other parts of the library, creating problems regarding what is provided by the
signatures of the interfaces. The idea of the anticipated test design is exactly to
avoid such unexpected counter-effects;

6. Adapting and evaluating functions: this stage implements the candidate changes,
which were identified in stage 3. This stage can also wok as a loop (Fig. 3),
where modifications are carried out and evaluated until the criteria defined in
step 4 holds. In this process, for example, rating is done against each basic
criterion, defined in the anticipated test design. An Aggregate score is then
calculated for each library modification to support the process of selection.

Next figure (Fig. 3) illustrates how these stages are related. The first three stages
(requirement definition, preliminary investigation of adaptability of software
libraries and short listing of extensions and/or adaptations) are very similar to a
traditional process of requirements analysis and design from software engineering.

The next two types of library modifications (functions extensions or adaptations)
will be evaluated in accordance with test units already implemented, which are part

68 C. Siebra et al.

of the library. Such tests will identify both if the library is still providing their
functions in a correct way and if modifications in the internal algorithms or prop-
erties of the library have positively or negatively affected the performance of this
library. Next section discusses an application of this strategy.

5 Library Evaluation and Selection Scenario

5.1 Specification of Miniworlds to Pensieve

The case study of this paper is based on a project called Pensieve, whose aim is to
develop a set of libraries to analyse and select images in accordance with different
requirements of several projects related to multimedia aspects. Pensieve is divided
into a set of different libraries and each of them has a particular purpose.

Test units were introduced into each library to implement two objectives. The
first objective is to validate the level of assertiveness of each library since there is a
significant possibility that their initial implementation approaches change over the
time. Thus, the team should verify if the performance of these libraries have been
modified and quantify such modification. The second objective is to validate the

Fig. 3 Schema to apply the
anticipated test designing over
the process of adaptation of a
library to pre-defied
requirements

Anticipated Test Design and Its Application … 69

input/output of libraries’ functions, using the data of pre-defined miniworlds. This
process mainly ensures the correctness of functions that have been refactored or
whose internal algorithms have been modified.

5.2 Method

At an initial moment, the development team did not know what could be the best
techniques to compose the Pensieve libraries. Thus, the anticipated test design was
carried out so that the team could have unit tests available and, using such tests,
they could investigate and validate candidate techniques. The miniworld for this
process was developed as a xml document, which had the expected results
according to pre-defined inputs. Then, different approaches were evaluated and their
results were compared to each other, so that we could create a ranking of
approaches according different criteria. In order to do that, there were several
changes in the libraries along their definitions and unit tests assisted this process
since they accelerated the advances in the libraries definition because the tests could
quickly validate or invalidate candidate approaches. For example, three approaches
were sequentially used to modify functionalities of one of our libraries. After
several evaluations using the same parameters (test units), the application of our
method resulted in an improvement of about 30% in this library in terms of required
processing time.

Apart the tests applied to libraries as a whole to evaluate their performances,
tests were also individually applied to individual methods of libraries to ensure that
the continuous changes and improvements did not affect results of other parts of the
code. The test data was also created as a miniworld and the team tried to automate
the generation of such miniworlds, since they could be very complex to some
functions. For example, the miniworld of a functionality N was generated from a
machine learning algorithm. To that end, the team used the Weka tool to specify an
algorithm aimed at extracting features of a specific type of object. Then, these
features could be used to classify several input objects into different clusters, cre-
ating a variety of objects to be used along evaluations.

5.3 Execution

The activities of the Pensieve were based on development cycles, which were
divided into: planning phase, estimate phase, development phase and test phase.
The planning (requirements definition) and estimate (preliminary investigation)
phases were based on the prioritisation of functionalities, which were requested by
the client. Thus, the requirements were organized according to their priorities in the
development backlog, which guided the work of the development team.

70 C. Siebra et al.

The phases of development and tests were almost the same. While the team was
implementing the functional code, according to the list of candidate solutions, the
test units were used to validate each implementation. Functionalities were con-
sidered correct only after the application of all set of tests units. If a new function
was created, a new set of test units were also created to validate this function.
A miniworld with the test data was also defined or derived from an existent
miniworld. An important aspect of these miniworlds was the test data for perfor-
mance evaluation, which were generally defined by means of threshold values. For
example, “the accuracy of functionality N must be higher than 90%”. This means,
such tests were the criteria to the acceptance of the implemented or modified
function. Based on this approach, all functionalities of the library could be qualified
according to their performances, so that the team could also have an idea about
parts of the code that could be improved in case of future needs.

The creation of miniworlds tried to reuse as much as possible previous test data
(input-output tuples) to avoid redundancies. This means, rather than implement new
test data for each test unit, a same miniworld could be shared by different test units
that require the same test data. However, the definition of this relation 1-n between
test data and test units is not easy and requires a proper definition of the test
interfaces.

5.4 Results

The Pensieve project has evolved from a proof of concept implementation
regarding the development of libraries. Since its initial development, the team
decided to use the anticipated test design so that test units were created to validate
library functions along all its evolution. A qualitative analysis of the results shows
that this approach resulted in gains to the project. The first gain is the higher
confidence of developers, since they could try several different modifications, while
ensure the code is still working. A second gain was a better understanding of the
code by developers. In fact, the application of test units and the observation of its
outcomes enable that developers have a better comprehension about the code even
if they were not part of its development. Members of the team said that the test code
uses to give important information about the functional code quality and specific
features that are hard to uniquely be extracted from the functional code. This aspect
positively affected the project integration, which was carried out after the complete
evaluation of modified modules. Third, it was possible to monitor the libraries
evolution while new adaptations were incorporated to them. The impact of the
changes could also be evaluated, so that bad modifications were eliminated in an
initial stage. In order, the analysis of outcomes regarding some test values could be
compared to thresholds, leading the development team along the process of deci-
sion making associated with changes in the architecture and algorithms.

Table 2 compares the use of the anticipated test design in two different projects:
S-Project and Pensieve Libs. S-Project is a solution to share media among devices.

Anticipated Test Design and Its Application … 71

The main difference regarding these two projects is the use of tests to also evaluate
and monitor the performance of several versions of the same code in the Pensieve
Libs project. This further use only requires that the development of initial test units
also considers tests of performance, which can evaluate the efficiency from simple
methods to a complete library. After that, performance tests can be normally applied
together with the remainder tests.

6 Conclusion and Research Directions

The main proposal of the anticipated test design is to implement code units that
have their own test functions. Previous works show that the implementation of
these functions tends to be easier since they are being implemented together to the
production code that they intend to evaluate. The literature brings examples [26] of
approaches that also decided by a manual creation of code units, which include their
own test code. However, the practical effects of their application are not presented,
so that we cannot make conclusions on their validity.

Table 2 Comparative
analysis of the anticipated test
design application into
different contexts, where SP
means S-Project and PL
means Pensieve Libs

Motivation to use

SP: Ensure the behaviour of existing functionalities after code
refactoring
PL: Ensure the behaviour of functionalities after extensions of
the library and monitor the performance of functionalities after
their modification
Application of previous experiences
SP: Pioneer project, when the approach was created
PL: The experience acquired along the SP development was
used. Both projects had the same technical manager, who
accounted for sharing the knowledge.
Use/Adaptation of the method
SP: Development of functional code and test units with their
miniworlds to evaluate a Data Access Object (DAO) layer,
which was based on a legacy code.
PL: Development of functional code and test units with their
miniworlds to evaluate functionalities of libraries and identify
the level of performance of such functionalities.
People Involved
SP: CIn/Samsung development team
PL: Two teams physically separated, CIn/Samsung and
SIDI/Samsung
Moment of inclusion of tests in the project
SP: Test units were developed along the implementation phase
PL: Test units were developed along the implementation phase

72 C. Siebra et al.

Differently, the anticipated test design was already used to assist the evolution of
a legacy system and some of the advantages of its use were confirmed in our work.
First, the anticipated test design enabled the definition of a test model where its
parts are reusable (miniworlds). This fact contributed to reduce the time allocated to
the creation of test scenarios, since it is not necessary to define data tests for each
new functionality. The reuse of test data also increased the probability of capturing
common failures, as reported by the project developers. Second, the anticipated test
design improved the understanding of the code and a quicker assimilation of the
code functionalities.

Our research directions intend to perform a quantitative analysis of this case
study, showing how the use of the anticipated test design affected traditional project
management metrics, such as development time, code reliability, quality and test
coverage. Furthermore, we are looking for better ways to populate the miniworlds
since this is a development task that is spending a significant time and the
incorrect/incomplete database population may hide code problems that will com-
promise the final system quality [27].

Acknowledgements The authors would like to thank the support received from the
SIDI/Samsung team, in particular to Helder Pinho. Professor Fabio Q. B. da Silva holds a research
grant from the Brazilian National Research Council (CNPq), project #314523/2009-0.

References

1. Korel, B.: Automated software test data generation. IEEE Trans. Software Eng. 16(8), 870–
879 (1990)

2. Anand, S., Burke, E.K., Chen, T.Y, Clark, J., Cohen, M.B., Grieskamp, W., Harman, M.
Harrold, M.J., McMinn, P.: An orchestrated survey of methodologies for automated software
test case generation. J. Syst. Softw. 86(8):1978–2001 (2013)

3. Rafi, D.M., Moses, K.R. K., Petersen, K., Mäntylä, M.V.: Benefits and limitations of
automated software testing: Systematic literature review and practitioner survey. In:
Proceedings of the 7th Int. Workshop on Automation of Software Test, pp. 36–42 (2012)

4. Berner, S., Weber, R., Keller, R.: Observations and lessons learned from automated testing.
In: Proceedings of the 27th International Conference on Software Engineering, pp. 571–579
(2005)

5. Wissink, T., Amaro, C.: Successful test automation for software maintenance. In: Proceedings
of the 22nd IEEE International Conference on Software Maintenance, pp. 265–266 (2006)

6. Persson, C., Yilmazturk, N.: Establishment of automated regression testing at abb: Industrial
experience report on avoiding the pitfalls. In: Proceedings of the 19th IEEE International
Conference on Automated Software Engineering, pp. 112–121 (2004)

7. Siebra, C., Gouveia, T., Sodre, L., Silva, F.Q.B., Santos, A.L.M.: The anticipated test design
and its use in legacy code refactoring: lessons learned from a real experiment. In: 2016
International Conference on Information Technology for Organizations Development
(IT4OD), Fez, pp. 1–6 (2016)

8. Beydeda, S.: Research in testing COTS components—built-in testing approaches. In:
Proceedings of the 3rd ACS/IEEE International Conference on Computer Systems and
Applications (2005)

Anticipated Test Design and Its Application … 73

9. Mao, C.: Built-in regression testing for component-based software systems. In: Proceedings
of the 31st Annual International Computer Software and Applications Conference, vol. 2,
pp. 723–728 (2007)

10. Wang, Y., Patel, D., King, G., Court, I., Staples, G., Ross, M., Fayad, M.: On built-in test
reuse in object-oriented framework design. ACM Comput. Surv. 32(1), 7–12 (2000)

11. Binder, R.: Design for testability in object-oriented systems. Commun. ACM 37(9), 87–101
(1994)

12. Mariani, L., Pezzé, M.: A technique for verifying component-based software. In: Proceedings
of the Int. Workshop on Test and Analysis of Component Based Systems. Electronic Notes in
Theoretical Computer Science, vol. 116, pp. 17–30 (2005)

13. Erdogmus, H., Morisio, M., Torchiano, M.: On the effectiveness of the test-first approach to
programming. IEEE Trans. Softw. Eng. 31(3), 226–237 (2005)

14. Muller, M., Hagner, O.: Experiment about test-first programming. IEEE Proc. Softw. 149(5),
131–136 (2002)

15. Pancur, M., Ciglaric, M., Trampus, M., Vidmar, T.: Towards empirical evaluation of
test-driven development in a university environment. In: Proceedings of EUROCON 2003,
Computer as a Tool, vol. 8, no. 2, 83–86 (2003)

16. Kaufmann, R., Janzen, D.: Implications of test-driven development: a pilot study. In:
Proceedings of the 18th Annual ACM SIGPLAN Conference on Object oriented Program-
ming, Systems, Languages, and Applications, pp. 298–299 (2003)

17. Janzen, D.: Software architecture improvement through test-driven development. In:
Proceedings of the Conference on Object Oriented Programming Systems Languages and
Applications, pp. 222–223 (2005)

18. Suárez-Cabal, M., De La Riva, C., Tuya, J.: Populating test databases for testing SQL queries.
IEEE Lat. Am. Trans. 8(2), 164–171 (2010)

19. Bruno, N., Chaudhuri, S.: Flexible database generators. In: Proceedings of the 31st
International Conference on Very large Databases, pp. 1097–1107 (2005)

20. Khalek, S., Elkarablieh, B., Laleye, Y., Khurshid, S.: Query-aware test generation using a
relational constraint solver. In: Proceedings of the 23rd IEEE/ACM International Conference
on Automated Software Engineering, pp. 238–247 (2008)

21. Stolberg, S.: Enabling agile testing through continuous integration. In: IEEE Agile
Conference, AGILE’09, pp. 369–374 (2009)

22. Lin, H., Hsu, S., Sheen, G.: A fuzzy-based decision-making procedure for data warehouse
system selection. Expert Syst. Appl. 32(3), 939–953 (2007)

23. Yoon, K., Hwang, C.: Multiple Attribute Decision-Making: An Introduction. Sage Publisher
(1995)

24. Jadhava, A., Sonar, R.: Framework for evaluation and selection of the software packages: a
hybrid knowledge based system approach. J. Syst. Softw. 84(8), 1394–1407 (2011)

25. Mizuno, O., Kawashima, N., Kawamoto, K.: Fault-prone module prediction approaches using
identifiers in source code. Int. J. Softw. Innov. 3(1), 36–49 (2015)

26. Deveaux, D., Frison, P., Jézéquel, J.: Increase software trustability with self-testable classes in
Java. In: Proceedings of the 13th Australian Conference on Software Engineering, pp. 3–11
(2001)

27. Saifan, A.A., Alsukhni, E., Alawneh, H., Sbaih, A.: Test Case Reduction Using Data Mining
Technique. Int. J. Softw. Innov. 4(4), 56–70 (2016)

74 C. Siebra et al.

Improving Web Application Reliability
and Testing Using Accurate Usage Models

Gity Karami and Jeff Tian

Abstract With the prevalence of the World Wide Web and its increasing size and

complexity, quality assurance (QA) and testing are becoming increasingly important

for web applications. Markov operational profile (Markov OP) is a good candidate

for effective web quality and reliability assurance because it captures the behavior of

web components and related navigation facilities to support usage based statistical

testing (UBST). The accuracy of such usage models would affect the effectiveness

of quality assurance and testing activities. In this paper, we examine the impact of

accurate usage models on reliability, test coverage, and test efficiency. A case study

is carried out to quantify this impact. We found supporting evidence that accurate

Markov OP improves reliability, test coverage, and test efficiency.

Keywords Markov operational profile (OP) ⋅ Web application ⋅ Reliability ⋅ Test

coverage ⋅ Test efficiency

1 Introduction

Web applications provide cross-platform universal access to web resources for the

massive user population. Worldwide users rely on web applications to fulfill their

needs for information processing, storage, search, and retrieval. Therefore, quality

assurance (QA) for web applications is becoming increasingly important.

The concept of quality is generally associated with good user experience char-

acterized by the absence of observable problems and satisfaction of user expecta-

G. Karami ⋅ J. Tian (✉)

Department of Computer Science and Engineering, Southern Methodist University,

Dallas, TX 75275, USA

e-mail: tian@smu.edu

G. Karami

e-mail: gkarami@smu.edu

J. Tian

School of Computer Science, Northwestern Polytechnical University,

Xi’an, Shaanxi, China

© Springer International Publishing AG 2018

R. Lee (ed.), Software Engineering Research, Management and Applications,
Studies in Computational Intelligence 722, DOI 10.1007/978-3-319-61388-8_5

75

76 G. Karami and J. Tian

tions [4, 6]. Quality consists of many different attributes, including reliability which

is defined as the probability of failure-free operations for a specific time period or

input set under a specific environment [10]. Reliability is one of the primary quality

attributes for web applications [11].

Testing is a major part of quality assurance [1]. Reliability goals can be used as

a objective criterion to stop testing [9]. The use of this criterion requires the test-

ing to be performed under an environment that resembles actual usage via usage

based statistical testing (UBST) to obtain realistic reliability assessment. For practi-

cal implementation of UBST, actual usage should be captured in operational profiles

(OPs) [10]. OP is a usage model that quantitatively characterizes how an applica-

tion will be used by its target users. Several variations of OP based on partitions, tree

structures, finite state machines, and Markov OP are commonly used [13].

Markov OP is an effective and efficient way to guide UBST of a web application.

Markov OP captures all components, related navigation facilities, and their usage

for the web application [7]. Markov OP can help us prioritize testing effort based on

usage scenarios and frequencies for individual functions and navigation patterns to

improve the reliability of the web application. In addition, we can utilize the con-

structed Markov OP with no extra cost for traditional coverage based testing (CBT).

Accuracy of Markov OP would impact quality of the web application. A less

accurate Markov OP is likely to lead to lower reliability, test coverage, and test effi-

ciency. In this research, we present a new method to compare Markov OPs with

different levels of accuracy and quantify their impact on reliability, test coverage,

and test efficiency. We have applied our method in a case study to demonstrate its

applicability and effectiveness.

In Sect. 2, we discuss the related work. In Sect. 3, we describe our method to quan-

tify impact of accuracy of Markov OP on reliability, test coverage, and test efficiency.

In Sect. 4, we apply our method on a case study. Finally, we discuss our conclusions

in Sect. 5.

2 Related Work

In this section, we review related work in quality, reliability, quality assurance, test-

ing techniques, and Markov OP.

2.1 Quality, Reliability, and Testing Techniques

Quality may be defined from different views, such as based on external behavior from

a customer’s view, or based on internal characteristic from a developer’ s view [6].

Quality defined based on external behavior from a customer’s view can be quantified

by reliability. Reliability is defined as the probability of failure-free operations for a

specific time period or input set under a specific environment [10]. Two basic types

Improving Web Application Reliability and Testing Using Accurate Usage Models 77

of software reliability models are: input domain reliability models (IDRMs) and time

domain software reliability growth models (SRGMs) [9]. IDRMs provide a snapshot

of reliability. In Brown-Lipow IDRM [2], the whole input domain is partitioned into

sub domains, {Ei, i = 1, 2,⋯ ,N}, where each Ei represents a specific sub domain.

P(Ei) is the probability that input in this sub domain is used in the actual usage envi-

ronment, ni is the number of runs for this sub domain, and fi is the number of failures

observed out of ni runs. Brown-Lipow model links OP (P(Ei)) to reliability, as:

R = 1 −
∑N

i=1

(
fi
ni

)
P(Ei) =

∑N

i=1
RiP(Ei)

Ri = 1 −
fi
ni

Testing plays a central role in assuring software quality and reliability [1]. It

involves executing a software and observing its results. If a failure or an observ-

able deviation from user expectations happens, we need to locate and remove the

fault or the underlying problem in the software that caused the failure. We can stop

testing using reliability or coverage criterion and categorize different testing tech-

niques accordingly into usage based statistical testing (UBST) and traditional cover-

age based testing (CBT). UBST views the web application from a user’s perspective

and focuses on the usage scenarios and associated probabilities [10]. UBST and the

related reliability criterion ensure that the faults that are most likely to cause prob-

lems to users are more likely to be detected and removed, and the reliability of the

software reaches certain targets before testing stops. On the other hand, CBT focuses

on covering functional or implementation units and related entities [1]. CBT uses

various forms of test coverage as the stopping criteria which may lead to effective

fault removal. Finite state machines (FSMs) are state based models that can be used

for CBT, e.g., requiring all states and state transitions be traversed [3]. Augmented

FSM that include probabilistic usage information called Markov operational profile

(Markov OP) can be used for UBST [13].

2.2 Markov OP Usage and Construction

Markov OP is a type of usage models for large applications involving state transitions

such as web applications [7, 13]. Markov OP supports selective testing or UBST

instead of complete coverage of a large web application which may be infeasible.

If some components are more likely to be used, the likelihood that an underlying

fault is going to be triggered through such usage is also higher. Therefore, we need

to concentrate on testing highly used components. UBST using Markov OP also

allows us to obtain a realistic evaluation of reliability [10]. If we have access to a

Markov OP, we can also utilize it with no additional cost to do CBT on the same web

application.

78 G. Karami and J. Tian

To construct a Markov OP for a web application, we need to identify information

sources and collect data, and then identify states, transitions, input-output relations,

and determine usage frequencies of individual transitions. Each state in a Markov

OP can be associated with a web page or a group of web pages, and each state tran-

sition can be associated with a hyperlink or a group of hyperlinks. There are three

generic methods for information gathering and OP construction, including (1) actual

measurement of usage at customer installations, (2) survey of target customers, and

(3) usage estimation based on expert opinion [10]. Since access logs are routinely

used for existing web applications, the actual measurement of usage derived from

such logs is the most effective and efficient way for obtaining usage scenarios and

the corresponding Markov OP [7].

All visited web pages and hyperlinks of a web application can be collected from

its access log fields, including “Requested URL” and “Referring URL”. State and

state transitions can be identified by assigning each web page or a group of web

page to a unique state in a Markov OP, and each hyperlink or a group of hyperlinks

to unique state transitions. Transition probabilities can also be calculated using these

fields. Therefore, Markov OPs can be constructed based on the access log following

the method developed in [7].

2.3 Maintaining Accuracy of Markov OP

Markov OPs constructed by different people using different methods and informa-

tion sources may have different levels of accuracy. Accuracy of Markov OPs may

also deteriorate over maintenance and evolution. The initial Markov OP constructed

before maintenance and evolution may not accurately reflect the actual usage of the

updated web application. At this point, the updated web application has not been

deployed yet, so that its actual usage data could not be collected to construct a

new Markov OP. If we utilize the initial Markov OP to do UBST or CBT of the

updated web application, it may negatively affect its reliability, test coverage, and test

efficiency.

A new method was developed in previous research to maintain accuracy of

Markov OP over maintenance and evolution [8]. Since the user behavior reflected in

the initial Markov OP is not expected to change drastically after maintenance activi-

ties, the initial Markov OP is utilized as a starting point in this method for the updated

Markov OP. On the other hand, activity diagrams commonly used in software devel-

opment describe the application in terms of activities [5]. Such models share some

common characteristic with Markov OP. In this method, the initial Markov OP is

compared with activity diagrams to examine effects of maintenance and evolution on

the usage of the updated web application. The results from this comparative analysis

is utilized to update the structure and transition probabilities of the initial Markov

OP. This method to maintain the accuracy of Markov OP was validated by a case

study to show that the updated Markov OP was found more accurate than the initial

Markov OP.

Improving Web Application Reliability and Testing Using Accurate Usage Models 79

3 Impacts of Accuracy of Markov OP

In this section, we first quantify Markov OP accuracy. Then, we develop a method to

quantify the impact of accuracy of Markov OP on test coverage, test efficiency, and

reliability.

3.1 Quantifying Markov OP Accuracy

Markov OP has three basic elements: states, transitions, and transition probabilities.

In this section, we introduce the following notations to represent a Markov OP and

its elements:

∙ < S,T ,P >: a Markov OP.

∙ S = {si|i = 1, 2,⋯ , n}, si: a state.

∙ T = {tij|i, j = 1, 2,⋯ , n}, tij: a transition from si to state sj.
∙ P = {pij|i, j = 1, 2,⋯ , n}, pij: the transition probability from state si to state sj.
∙ |S|: cardinality of set S.

Markov OPs may have different levels of accuracy, as they are constructed by

different people using different methods and information sources at different times.

We quantify accuracy of a given Markov OP by comparing it with a reference Markov

OP which is assumed to be 100% correct. We consider the following scenarios:

1. Common states or transitions: When subset Sc or subset Tc is present in both

the reference Markov OP and the given Markov OP, we consider Sc or Tc as a

common subset of states or transitions. In Fig. 1, subset Sc is the common subset

of states between the reference Markov OP and the other Markov OPs.

2. Missing states or transitions: When subset Sm or subset Tm is absent in the given

Markov OP while it is present in the reference Markov OP, we consider Sm or Tm
as a subset of missing states or transitions in the given Markov OP. For example,

subset Sm is absent in the given Markov OP with missing states in Fig. 1b, while

it is present in the reference Markov OP in Fig. 1a.

3. Extra states or transitions: When subset Se or subset Te is present in the given

Markov OP while it is absent in the reference Markov OP, we consider subset

Se or Te as an extra subset of states or transitions in the given Markov OP. For

example, subset Se is present in the given Markov OP with extra states in Fig. 1c,

while it is absent in the reference Markov OP in Fig. 1a.

4. Incorrect states or transitions: We treat the subset of incorrect states as a combi-

nation of a subset of missing states and a subset of extra states. We also treat the

subset of incorrect transitions as a combination of a subset of missing transitions

and a subset of extra transitions. Figure 1d shows a Markov OP with incorrect

states. In this Markov OP, subset Sm is the corresponding subset of missing states

and subset Se is the corresponding subset of extra states.

80 G. Karami and J. Tian

b) Markov OP with missing state

d) Markov OP with incorrect statec) Markov OP with extra state

a) Reference Markov OP

e

c

c
c

m

c

e

m

Fig. 1 Markov OPs with lower level of accuracy than reference Markov OP

5. Incorrect transition probabilities: Subset Tx in the given Markov OP has incorrect

transition probabilities, if its corresponding subset in the reference Markov OP

has different transition probabilities.

By quantifying missing states and transitions, extra states and transitions, states

with incorrect probabilities in the given Markov OP, we can assess the accuracy of

the given Markov OP.

3.2 Impact on Test Coverage

As we discussed in the previous section, if we have already constructed a Markov

OP for a web application, we can utilize it to perform traditional CBT with no extra

cost. By definition, the reference Markov OP can achieve 100% test coverage. If we

utilize a given Markov OP with a lower level of accuracy to perform CBT for a web

application, we may reach a different level of test coverage than that achieved by

using the reference Markov OP. In this section, we examine the impact of accuracy

of Markov OP on test coverage for web applications.

The given Markov OP may have missing states or transitions, so we can not per-

form CBT on the corresponding missing components or links. For example, if subset

Improving Web Application Reliability and Testing Using Accurate Usage Models 81

Sm or subset Tm is a subset of missing states or transitions in the given Markov OP,

we can not perform CBT on the corresponding components or links in the web appli-

cation. Therefore, there is a direct link between missing states or transitions in the

given Markov OP and reduced coverage. We calculate state coverage Vs, transition

coverage Vt, and overall coverage V for the given Markov OP using the following

equations:

Vs = 1 −
|Sm|
|S| =

|S| − |Sm|
|S| =

|Sc|
|S|

Vt = 1 −
|Tm|
|T| =

|T| − |Tm|
|T| =

|Tc|
|T|

V =
(|S| + |T|) − (|Sm| + |Tm|)

|S| + |T| =
|Sc| + |Tc|
|S| + |T|

By comparing test coverage for the given Markov OP and the reference Markov

OP, we can conclude that the given Markov OP with a lower level of accuracy leads

us to a reduced coverage to the levels specified in the equations above, down from

100% when the reference Markov OP is used.

3.3 Impact on Test Efficiency

The given Markov OP may have extra states or transitions, so we may end up wast-

ing time to perform CBT on extra components or links not present in the reference

Markov OP. For example, if subset Se or subset Te is a subset of extra states or transi-

tions in the given Markov OP, we waste time performing CBT on the corresponding

components or links in the web application. Therefore, there is a direct link between

extra states or transitions in the given Markov OP with reduced test efficiency and

increased cost. We calculate the relative state waste Ws, transition waste Wt, and

overall waste W for the given Markov OP using the following equations:

Ws =
|Se|
|S|

Wt =
|Te|
|T|

W =
|Se| + |Te|
|S| + |T|

82 G. Karami and J. Tian

The reference Markov OP has no waste. By comparing test efficiency for the given

Markov OP and the reference Markov OP, we can conclude that the given Markov

OP with lower level of accuracy leads us to a reduced efficiency as characterized by

the amount of relative waste given in the above equations.

3.4 Impact on Reliability

As we discussed in Sect. 2, Markov OP can be used to perform UBST and to obtain

a realistic evaluation of reliability of a web application. If we utilize a reference

Markov OP and a given Markov OP with a lower level of accuracy, we may reach

different levels of reliability for the web application. In this section, we discuss the

impact of accuracy of Markov OP on reliability of the web application. Before exam-

ining their impact on reliability, we introduce the following terms and notations:

∙ R0
: Reliability of a web application before testing.

∙ Rx
: Reliability of a web application after testing and removing detected faults

based on Markov OP-x. In particular, Rr
is the reliability of the web application

after testing based on the reference Markov OP, and Rg
is reliability of the web

application after testing based on a given Markov OP.

The given Markov OP may include common states or transition, missing states

or transition, extra states or transitions, incorrect states or transition, and incorrect

probabilities. Common states, extra states, incorrect states, and missing states have

primary impact on the reliability, while the others have secondary impact on the

reliability. In the following, we discuss the primary impact in details. We plan to

address the secondary impact in the future.

∙ Common states: If subset Sc is present in both the reference Markov OP and the

given Markov OP, we can test components in the web applications corresponding

to subset Sc using the corresponding Markov OP. If we utilize a Markov OP to

test the web application, we may detect and remove faults from the components

corresponding to subset Sc. If we remove the detected faults, Rr
c and Rg

c would

be higher than R0
c . In addition, Rr

c ≈ Rg
c , as we are not considering the secondary

impact on reliability by differences in probability distributions associated with the

subset Sc for different Markov OPs. Therefore, we can take advantage of reliability

growth resulted from UBST using either the reference Markov OP or the given

Markov OP.

∙ Missing states: If subset Sm is not present in the given Markov OP while it is

present in the reference Markov OP, we can not test components in the web appli-

cations corresponding to subset Sm using the given Markov OP and the number of

underlying faults remain unchanged. Since we do not remove the faults from web

pages corresponding to the subset Sm, Rg
m would remain the same as R0

m. There-

fore, we can not get full benefit of reliability growth resulted from UBST using the

given Markov OP with missing states. On the other hand, the reference Markov OP

Improving Web Application Reliability and Testing Using Accurate Usage Models 83

doesn’t have any missing state. If we utilize the reference Markov OP to test the

web application, we may detect and remove faults which have not been detected

by the given Markov OP. If we remove the detected faults, Rr
m would be higher

than R0
m and Rg

m, where Rg
m = R0

m as stated above. Therefore, we can take advan-

tage of reliability growth associated with subset Sm resulted from UBST using the

reference Markov OP, but not from UBST using the given Markov OP.

∙ Extra states: If subset Se is present in the given Markov OP while it is not present in

the reference Markov OP, we may observe some failures resulted from components

in the web applications corresponding to subset Se using the given Markov OP.

However, the probability that the components in the web applications are under

actual usage is zero, because Se is not present in the reference Markov OP. So

removing the underlying faults associated with subset Se is a waste of time and

doesn’t improve the reliability of the web application. Therefore, we can not get

the benefit of reliability growth resulted from UBST using the given Markov OP

on these extra states. On the other hand, the reference Markov OP doesn’t have any

extra state or transition, resulting in no wasted testing effort that has no impact on

reliability.

After applying any Markov OP to perform UBST, the reliability is then evaluated

under the actual usage environment captured by the reference Markov OP. We apply

Brown-Lipow model to quantify reliability of the web application in 3 steps:

1. We first need to partition the web application into sub domains and calculate

reliability for each sub domain. We partition the web application into components

corresponding to subset Sc, subset Sm, and subset Se. R0
and Rx

can be calculated

for these subsets based on pre and post testing data.

2. We need to calculate P(Sc), P(Sm), and P(Se). To avoid the theoretical difficulties

of of non-stationary stochastic processes [12], we estimate probability of each

subset based on frequency of states in each subset from actual usage of the web

application as captured by the reference Markov OP. Although we may observe

some failures resulted from components in the web applications corresponding to

subset Se, frequency of subset Se in the actual usage as captured by the reference

Markov OP is zero, so P(Se)=0. Therefore, we only need to estimate P(Sc) and

P(Sm) here.

3. We can estimate reliability of the whole web application for each Markov OPs

by applying Brown-Lipow model to corresponding pre and post testing reliability

for each sub domain.

We use the following equations to quantify reliability of the web application after

testing based on the reference Markov OP and the given Markov OP:

Rg = Rg
cP(Sc) + R0

mP(Sm) + Rg
eP(Se)

Rr = Rr
cP(Sc) + Rr

mP(Sm)

84 G. Karami and J. Tian

Since P(Se) = 0, Rg
is reduced to :

Rg = Rg
cP(Sc) + R0

mP(Sm)

In addition, we can not get the benefit of reliability growth resulted from UBST

using the given Markov OP with missing states as captured by R0
m in the above equa-

tion. As stated in the reliability analysis earlier, Rr
m > R0

m and Rr
c ≈ Rg

c . Therefore, we

can conclude that post reliability using the reference Markov OP would most likely

be higher than post reliability based on the given Markov OP with a lower level of

accuracy.

4 Results from a Case Study

In this section, we first provide a case study and discuss the experimental setup.

Then, we apply our method on the case study to examine the impact of accuracy of

Markov OP on test coverage, test efficiency, and reliability.

4.1 Case Study

As we mentioned in Sect. 2, accuracy of Markov OP deteriorates after maintenance

and evolution. In our previous research, we developed a new method to update an

initial Markov OP constructed before maintenance by analyzing its differences with

activity diagrams [8].

We used a student payments (SP) web application as a case study. SP helped inter-

national students make payments to register in different exams. An initial Markov OP

was constructed based on actual usage of the web application before maintenance.

Then, the initial Markov OP was updated using our method. Finally, a new Markov

OP was constructed based on actual usage of the updated web application after its

deployment. By comparing the Markov OPs, we validated that the updated Markov

OP is more accurate than the initial Markov OP.

Figure 2 shows the high level initial Markov OP constructed based on actual usage

of SP web application before maintenance activities. Figure 3 shows the high level

updated Markov OP constructed using the method described in [8]. Figure 4 shows

the high level new Markov OP constructed based on actual usage of SP web appli-

cation after maintenance activities. In this paper, we utilize tabular presentation

for lower level Markov OPs, as it is easier for comparing them for missing, extra,

and incorrect states and transitions. Tables 1, 2, and 3 show elements of the initial

Markov OP, the updated Markov OP, and the new Markov OP for the GRESubset.

Since the new Markov OP is constructed based on the actual usage of the updated

web application, we consider it the reference Markov OP. We applied our method on

the updated Markov OP by comparing it to the reference Markov OP to examine

Improving Web Application Reliability and Testing Using Accurate Usage Models 85

ToeflSubset GRESubsetContactUs AppSubset

Default

SignUp
status

A

B

C
D

E
F

G

H

Fig. 2 Initial Markov OP-L for SP as a whole

ToeflSubset GRESubsetContactUs AppSubset

Default

SignUpstatus

SEVISSubset

A

B

C
D E F

H

G

I

0.
16

7

Fig. 3 Updated Markov OP for SP as a whole

the impact of its accuracy on test coverage, test efficiency and reliability. We also

applied our method on the initial Markov OP. In the following, we provide results of

applying our method on these Markov OPs.

4.2 Results for the Updated Markov OP

We first compared the updated Markov OP with the reference Markov OP to assess its

accuracy. We found that the updated Markov OP doesn’t have any missing, extra, and

incorrect state or transition. Therefore, the updated Markov OP has the same level

of accuracy in overall structure as the reference Markov OP. The list of common,

missing, and extra states or transitions are:

86 G. Karami and J. Tian

ToeflSubset GRESubsetContactUs AppSubset

Default

SignUpstatus

SEVISSubset

A

B

C
D E F

H

G

I

Fig. 4 New Markov OP for SP as a whole

Table 1 States in Markov OPs for GRESubset

Initial Markov OP Updated Markov OP New Markov OP

GRE GRE GRE

GREReg GREReg GREReg

GRERegV GRERegV GRERegV

GRERep GRERep GRERep

GRERepV GRERepV GRERepV

GRERes

GREResc

Sc = S, Se = ∅, Sm = ∅,Tc = T ,Te = ∅,Tm = ∅

Then, we quantified state coverage, transition coverage, overall coverage for the

updated Markov OP using the formulas provided in the previous section. We found

that state coverage, transition coverage, and overall coverage for the updated Markov

OP are:

Vs =
|Sc|
|S| = 1

Vt =
|Tc|
|T| = 1

V =
|Sc| + |Tc|
|S| + |T| = 1

Therefore, we reached the same level of test coverage based on the updated Markov

OP or the reference Markov OP.

Improving Web Application Reliability and Testing Using Accurate Usage Models 87

Table 2 Transitions in Markov OPs for GRESubset

Initial Markov OP Updated Markov OP New Markov OP

TGRE,GREReg TGRE,GREReg TGRE,GREReg
TGREReg,GRERegV TGREReg,GRERegV TGREReg,GRERegV
TGREReg,Signup TGREReg,Signup TGREReg,Signup
TGRERegV ,Default TGRERegV ,Default TGRERegV ,Default
TGRERegV ,Status TGRERegV ,Status TGRERegV ,Status
TGRERegV ,ENDState TGRERegV ,ENDState TGRERegV ,ENDState
TGRE,GRERep TGRE,GRERep TGRE,GRERep
TGREReg,GRERepV TGRERep,GRERepV TGRERep,GRERepV
TGRERep,Signup TGRERep,Signup TGREReg,Signup
TGRERepV ,Default TGRERepV ,Default TGRERepV ,Default
TGRERepV ,Status TGRERepV ,Status TGRERepV ,Status
TGRERepV ,ENDState TGRERepV ,ENDState TGRERepV ,ENDState
TGRE,SignUp TGRE,SignUp TGRE,SignUp
TGRE,GRERes
TGRERes,Default
TGRERes,ENDState
TGRE,GREResc
TGREResc,Default
TGREResc,ENDState

We also quantified the relative state waste, transition waste, and overall waste of

the web application for the updated Markov OP using the formulas provided in the

previous section. We found that the relative state waste, transition waste, and overall

waste for the updated Markov OP are:

Ws =
|Se|
|S| = 0

Wt =
|Te|
|T| = 0

W =
|Se| + |Te|
|S| + |T| = 0

Therefore, we reached the same level of the test efficiency based on the updated

Markov OP or the reference Markov OP.

Finally, we quantified reliability of the web application for the updated Markov

OP using the formulas provided in the previous section. As for reliability we only

consider the primary impact due to missing, extra, and incorrect states, the estimated

reliability resulting from the updated Markov OP would also be the same as that from

the reference Markov OP, as follows:

88 G. Karami and J. Tian

Table 3 Transition Probabilities in Markov OPs for GRESubset

Initial Markov OP Updated Markov OP New Markov OP

PGRE,GREReg = 0.578 PGRE,GREReg = 0.709 PGRE,GREReg = 0.750
PGREReg,GRERegV = 0.796 PGREReg,GRERegV = 0.796 PGREReg,GRERegV = 0.760
PGREReg,Signup = 0.204 PGREReg,Signup = 0.204 PGREReg,Signup = 0.240
PGRERegV ,Default = 0.486 PGRERegV ,Default = 0.486 PGRERegV ,Default = 0.512
PGRERegV ,Status = 0.286 TGRERegV ,Status = 0.286 PGRERegV ,Status = 0.269
PGRERegV ,ENDState = 0.228 PGRERegV ,ENDState = 0.228 PGRERegV ,ENDState = 0.219
PGRE,GRERep = 0.171 PGRE,GRERep = 0.210 PGRE,GRERep = 0.194
PGREReg,GRERepV = 0.770 PGRERep,GRERepV = 0.770 PGRERep,GRERepV = 0.786
PGRERep,Signup = 0.230 PGRERep,Signup = 0.230 PGREReg,Signup = 0.214
PGRERepV ,Default = 0.500 PGRERepV ,Default = 0.500 PGRERepV ,Default = 0.546
PGRERepV ,Status = 0.300 PGRERepV ,Status = 0.300 PGRERepV ,Status = 0.273
PGRERepV ,ENDState = 0.200 PGRERepV ,ENDState = 0.200 PGRERepV ,ENDState = 0.181
PGRE,SignUp = 0.066 PGRE,SignUp = 0.081 PGRE,SignUp = 0.056
PGRE,GRERes = 0.079
PGRERes,Default = 0.667
PGRERes,ENDState = 0.333
PGRE,GREResc = 0.106
PGREResc,Default = 0.625
PGREResc,ENDState = 0.375

Rr = Ru = Rr
cP(Sc) + Rr

mP(Sm) = Rr
c

Because P(Sm) = 0, P(Sc) = 1, and Sc = S in this case.

4.3 Results for the Initial Markov OP

We first compared the initial Markov OP with the reference Markov OP to assess

accuracy of the initial Markov OP. We found common, missing, and extra states and

transitions between the reference Markov OP and the initial Markov OP, as charac-

terized below:

Sc = {Default, SignUp, status,ToeflSubset,ContactUS,AppSubset,GRESubset,
GRE,GREReg,GRERegV ,GRERep,GRERepV}

Tc = {TDefault,SignUp,TDefault,status,TGRE,Signup,TDefault,ToeflSubset,TDefault,ContactUS,
TDefault,AppSubset,TDefault,GRESubset,TSignUp,Default,TToeflSubset,SignUp,Tstatus,ENDState,
TToeflSubset,Default,Tstatus,Default,TToeflSubset,status,TToeflSubset,ENDState,TGRERepV ,Status,

Improving Web Application Reliability and Testing Using Accurate Usage Models 89

TGRESubset,SignUp,TGRESubset,status,TGRERegV ,Status,TAppSubset,Default,TAppSubset,SignUp,
TAppSubset,status,TAppSubset,ENDState,TGRE,GREReg,TGREReg,GRERegV ,TGRERegV ,Default,
TGREReg,Signup,TGRESubset,ENDState,TGRERegV ,ENDState,TGRE,GRERep,TGREReg,GRERepV ,
TGRERep,Signup,TGRERepV ,Default,TGRESubset,Default,TGRERepV ,ENDState,TContactUs,ENDState}

Sm = {SEVISSubset}

Tm = {TSEVISSubset,Default,TDefault,SEVISSubset,TSEVISSubset,status,TSEVISSubset,SignUp,
TSEVISSubset,ENDState}

Se = {GRERes,GREResc}

Te = {TGRE,GRERes,TGRE,GREResc,TGRERes,Default,TGRERes,ENDState,TGREResc,Default,
TGREResc,ENDState}

Then, we quantified state coverage, transition coverage, and overall coverage for

the initial Markov OP using the formulas derived in the previous section. The state

coverage, transition coverage, and overall coverage for the reference Markov OP are

all 1. However, the initial Markov OP leads us to a lower test coverage as follows:

Vs =
|Sc|
|S| = 12

13
= 0.92

Vt =
|Tc|
|T| = 35

40
= 0.87

V =
|Sc| + |Tc|
|S| + |T| = 12 + 35

13 + 40
= 0.89

We also quantified the relative state waste, transition waste, and overall waste of

the web application for the initial Markov OP using the formulas provided in the

previous section. The relative state waste, transition waste, and overall waste for the

reference Markov OP are all 0. However, the initial Markov OP leads us to a lower

test efficiency as follows:

|Se|
|S| = 2

13
= 0.15

|Te|
|T| = 6

40
= 0.15

|Se| + |Te|
|S| + |T| = 2 + 6

13 + 40
= 0.15

By analyzing the results, we can conclude the initial Markov OP with lower level of

accuracy leads us to a reduced coverage and efficiency.

90 G. Karami and J. Tian

After quantifying test coverage and test efficiency, we quantified reliability of the

web application based on the initial Markov OP using the formulas provided in the

previous section. For reliability we only consider the primary impact due to missing,

extra, and incorrect states. Based on actual usage data after the web maintenance

activities, we calculated that

P(Sc) = 0.95,P(Sm) = 0.05, and P(Se) = 0

The estimated reliability resulting from the initial Markov OP and the reference

Markov OP would be as follows:

Ri = Ri
c ∗ 0.95 + R0

m ∗ 0.05

Rr = Rr
c ∗ 0.95 + Rr

m ∗ 0.05

We found that Rr
> Ri

because of the following reasons:

∙ The reference Markov OP leads us to remove the faults corresponding to subset

Sm, but we can not take advantage of reliability growth of subset Sm based on the

initial Markov OP. Therefore, Rr
m > R0

m.

∙ The reference Markov OP and the initial Markov OP lead us to remove the faults

corresponding to subset Sc, so Rr
c ≈ Ri

c.

Therefore, we can conclude the initial Markov OP with lower level of accuracy

leads us to a lower level of reliability than the reference Markov OP.

4.4 Summary of Case Study Results

Table 4 shows state coverage, transition coverage, and overall coverage for the initial

Markov OP, the updated Markov OP, and the reference Markov OP. Table 5 shows

the relative state waste, transition waste, and overall waste for the initial Markov OP,

the updated Markov OP, and the reference Markov OP. Table 6 shows the reliability

of the web application based on the initial Markov OP, the updated Markov OP, and

the reference Markov OP.

To summarize, after applying our method on the reference Markov OP and the

updated Markov OP, we found that the reference Markov OP and the updated Markov

OP lead us to the same level of test coverage, test efficiency, and reliability as shown

in Tables 4, 5, and 6. After applying our method on the reference Markov OP and

the initial Markov OP, we found that the initial Markov OP with lower levels of

accuracy leads us to a lower level of test coverage, test efficiency, and reliability

than the reference Markov OP also shown in these tables.

As characterized in this case study as well as in [8], the initial Markov OP is less

accurate than the updated Markov OP, and the updated Markov OP has no missing or

Improving Web Application Reliability and Testing Using Accurate Usage Models 91

Table 4 Test coverage for Markov OPs with different levels of accuracy

State coverage Transition coverage Overall coverage

Reference Markov OP 1 1 1

Updated Markov OP 1 1 1

Initial Markov OP 0.92 0.87 0.89

Table 5 Waste for Markov OPs with different levels of accuracy

State waste Transition waste Overall waste

Reference Markov OP 0 0 0

Updated Markov OP 0 0 0

Initial Markov OP 0.15 0.15 0.15

Table 6 Reliability based on Markov OPs with different levels of accuracy

Reliability

Reference Markov OP Rr
= Rr

c ∗ 0.95 + Rr
m ∗ 0.05

Updated Markov OP Ru = Rr

Initial Markov OP Ri
= Ri

c ∗ 0.95 + R0
m ∗ 0.05, Ri

< Rr

extra states or transitions. Therefore, this case study demonstrated that less accurate

Markov OPs lead to reduced test coverage, test efficiency, and reliability, which can

be quantified by the equations we derived in this paper.

5 Conclusion

Markov OP of a web application can be used to perform usage based statistical testing

(UBST) and to assess web application reliability. In addition, if we have access to

a Markov OP, we can utilize it for traditional coverage based testing (CBT). A less

accurate Markov OP may lead us to lower test coverage, lower test efficiency, and

lower reliability. In this paper, we developed a new method to quantify the impact of

accuracy of Markov OP on test coverage, test efficiency, and reliability.

In our method, we assessed the accuracy of a given Markov OP by comparing

it with the reference Markov OP which is assumed to be 100% accurate. We iden-

tified subsets of missing, extra, and incorrect states and transitions. Then, we cal-

culated test coverage and test efficiency for each Markov OP using formulas we

derived from the comparative analysis. We quantified primary impact of accuracy

of Markov OP on reliability due to missing, extra, and incorrect states. We applied

Brown-Lipow model to quantify the overall reliability of the web application. We

applied our method on a case study to demonstrate that a Markov OP with a lower

92 G. Karami and J. Tian

level of accuracy leads us to lower test coverage, lower test efficiency, and lower

reliability.

In this paper, we examined impact of accuracy of Markov OP on test coverage

and test efficiency due to missing, extra, and incorrect states or transitions. We also

examined primary impact of accuracy of Markov OP on reliability due to missing,

extra, and incorrect states. As a follow up to this study, we plan to address the sec-

ondary impact of accuracy of Markov OP due to other differences between the given

Markov OP and the reference Markov OP in the future. We also plan to address

impact of accuracy of Markov OP on usability and customer satisfaction.

Markov OP not only help us perform UBST and CBT, but can also be used to

understand user behavior, and fine-tune system performance and usability. There-

fore, accuracy of Markov OP may affect test coverage, test efficiency, reliability,

usability, customer satisfaction, and communication. In conclusion, based on the

analysis and the case study in this paper, we can help improve web application reli-

ability, test coverage, and test efficiency by constructing and maintaining accurate

Markov OPs. Such accurate Markov OPs can also contribute to an overall improve-

ment to web application quality and user satisfaction.

Acknowledgements This work is supported in part by National Science Foundation (NSF) Grant

#1126747 and NSF Net-Centric I/UCRC.

References

1. Beizer, B.: Software Testing Techniques. Van Nostrand Rinhold (1983)

2. Brown, J.R., Lipow, M.: Testing for software reliability. In: Proceedings of the International

Conference on Reliable Software, pp. 518–527 (1975)

3. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. Softw.

Eng. 4(3), 178–187 (1978)

4. Denning, P.J.: What Is software quality? Communications of the ACM 35(1), 13–15 (1992)

5. Eshuis, R.: Symbolic model checking of UML activity diagrams. IEEE Trans. Softw. Eng.

15(1), 1–38 (2006)

6. ISO/IEC 25010 System and Software Engineering—Systems and Software Quality Require-

ments and Evaluation (SQuaRE)—System and Software Quality Models, ISO (2011)

7. Kallepalli, C., Tian, J.: Measuring and modeling usage and reliability for statistical web testing.

IEEE Trans. on Softw. Eng. 27(11), 1023–1036 (2001)

8. Karami, G., Tian, J.: Maintaining Accurate Web Usage Models Using Updates from Activity

Diagrams, Submitted to Information and Software Technology (2017)

9. Lyu, M.R.: Software Reliability Engineering. IEEE Computer Society Press and Mcgraw-Hill

(1996)

10. Musa, J.D.: Software Reliability Engineering. McGraw-Hill (1998)

11. Offutt, J.: Quality attributes of web software applications. IEEE Softw. 19(2), 25–32 (2003)

12. Taylor, H.M., Karlin, S.: An Introduction to Stochastic Modeling, 3rd edn. Academic Press

(1998)

13. Whittaker, J.A., Thomason, M.G.: A markov chain model for statistical software testing. IEEE

Trans. Softw. Eng. 42(10), 812–824 (1994)

C-PLAD-SM: Extending Component
Requirements with Use Cases and State
Machines

Kevin A. Gary and M.B. Blake

Abstract Classic approaches to component specification derived from component
requirements emphasize identifying external interfaces and behaviors. The C-PLAD
requirements model provided a unifying framework for combining domain
requirements and application requirements through an iterative refinement process.
C-PLAD repackaged UML features and Unified Process techniques into an iterative
process. In our continuing work, we found another layer was required—the
inclusion of state machines to drive the architectural specifications beyond com-
ponent interfaces and into component states in order to provide guarantees in our
domains of interest, namely safety-critical applications. In this paper we describe an
extension to the C-PLAD approach, dubbed C-PLAD-SM, which addresses the
gaps in our earlier work.

Keywords Component ⋅ State machine ⋅ Architecture

1 Introduction

C-PLAD is a development process based on the Unified Process (RUP) [13]. The
major innovation is that this process jointly supports domain engineering and
application engineering within one analysis, design and development process.
C-PLAD is divided into six high-level phases (see Fig. 1). These phases are
Specification, Requirements, High-Level Use Cases, Component-Level Use Cases,
Software Design and Development, and Testing. The software design and devel-
opment phase and the testing phase are iterative phases. In the Specification Phase,

K.A. Gary (✉)
The School of Computing Informatics, and Decision Systems Engineering,
The Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ 85281, USA
e-mail: kgary@asu.edu

M.B. Blake
College of Computing & Informatics, Drexel University, Philadelphia, PA 19104, USA
e-mail: MBrianBlake@drexel.edu

© Springer International Publishing AG 2018
R. Lee (ed.), Software Engineering Research, Management and Applications,
Studies in Computational Intelligence 722, DOI 10.1007/978-3-319-61388-8_6

93

the preliminary system description is written in the form of a problem statement,
jointly crafted by the domain expert and the software engineers. In the Require-
ments Phase, software engineers again consult with the domain experts to draft a set
of written requirements that separates system features from functional requirements.
During a High-Level Use Cases Phase, specific C-PLAD use case templates are
employed to characterize the application with a separation of functional and non-
functional application concerns. Although we direct readers to related work for
details [2], this approach is the first major departure from other approaches such as
(the RUP and Object Modeling Technique (OMT) [15]). The Component-Level
Use Cases Phase provides a step-wise iterative process for extracting
component-level use cases from the high-level use cases in the previous phase (an
adaptation of this process is discussed in later sections and shown in Fig. 2). The
last two phases, System Design and Development and Testing follow conventional
notions of use-case driven development [13] performed iteratively to help enhance
use cases as more concrete notions of the target application are discovered.

The C-PLAD [2] approach provided a unique design framework facilitating the
conceptualization of components. C-PLAD’s major innovation was a specific
step-wise process for creating use cases that support both application-level and
domain-level analysis. This approach introduces new specific use case templates to
assist this step-wise process. This step-wise process ultimately results in
component-based use cases. In our original presentation of C-PLAD, we suggested
following standard RUP techniques for design and implementation. In this paper we
revise this recommendation to suggest state machine models at the component
level.

Specification Requirements High-Level
Use Cases

Component-
Level Use

Cases

Software Design and
Development

Testing

Application
Specificaiton

System
Features

Software
Requirements

A pp lica tion -
Le ve l

F u n ctio n a l

In fras truc tu re

Component
1 ..n

Component
1 ..n

Class Diagrams and
Sequence Diagrams

Test
Scripts

Iterative Design, Development, and Testing

C o m p o n en t D o c u m en ta tio n :
U se C ases , C lass D iag ram s , S eq uence D iag ram s ,
and S o ftw a re A P Is fo r each com p onen t

A p p lica tio n -L eve l D o cu m en ta tio n :
S pec ifica tion , R equ irem en ts and S ys tem -Le ve l U se C a ses

Fig. 1 The C-PLAD model [2]

94 K.A. Gary and M.B. Blake

2 Component Use Cases

In C-PLAD a component-level use case is extracted from high-level use cases with
other components serving as actors triggering the use case (Fig. 1).
Component-level use cases are then elaborated with conventional modeling nota-
tions such as class and sequence diagrams. Initially we focused on design for
relationships and interactions between components. What we have found in practice
is that state machines, applied at the component level, provide an excellent way to
bridge the space from use case component requirements to component design and
implementation. In the following sections we describe the mapping between these
spaces, present a concrete example of C-PLAD applied in an open source toolkit in
a mission critical domain, and discuss how this C-PLAD extension benefits
component-based software architectures.

2.1 Components and State Machines

Our initial approach to realizing application functionality using C-PLAD consid-
ered interactions between components as links representing composed component
functionality. This is a fairly typical approach when performing component-based

Fig. 2 C-PLAD extended into the design space

C-PLAD-SM: Extending Component Requirements … 95

design, particularly in the RUP methodology: partition functionality, map partitions
to components, then determine how to compose components to realize the entire set
of functionality of the system. The emphasized tools1 in this approach are the class
diagram to capture static relationships between types of objects, and the sequence
diagram, to capture messages exchanged between components to realize a “sce-
nario”. Indeed we have found these tools very useful in constructing the design
abstractions in our application of C-PLAD. However, we also found that simply
treating components as “black-boxes”, and relying on human judgment to deter-
mine what belongs in that box, was not satisfactory when the safety and reliability
of the system were at stake. We turned to state machines as a key design abstraction
and implementation model applied at the component level.

State machines provide several mechanisms amenable to realizing
component-level use cases:

1. State machines naturally decouple the generator of an event from its handler.
This is a common feature of reactive systems, and here provides a way of
“wiring” components without coupling them.

2. State machines naturally handle asynchronous and concurrent situations. Con-
currency may be modeled using other UML diagrams such as an activity dia-
gram, but this assumes one model from the functional perspective at the
application level. State machines define how a particular component reacts in
response to potentially numerous threads of control at a given time.

3. State machines provide a model of how components handle complexity without
necessarily violating component encapsulation. Certainly to some extent, a state
machine specified at the component level reveals information about the com-
ponent’s dynamic behavior; yet it still does not have to reveal how that behavior
is implemented.

4. Components are typically expressed at multiple levels of granularity within a
given system. Components are often aggregated (or composed) into
higher-order components. Hierarchical state machines (HSMs) support nesting
structures that may be mapped to component aggregation hierarchies.

5. State machines are unique in that they express a model of the system from the
component or object perspective. As such, state machine models, when
expressed per component, express information about component state and
dynamic behavior that is not wholly present when using an interaction diagram.

6. State machines provide a consistent pattern that guide not only design but also
visualization and implementation of a component. In the IGSTK project
described below, the state machine drives component design and also compo-
nent implementation. All stakeholders, no matter what area of specific expertise,
share a common language for expressing how their components behave.

1We acknowledge the reader may prefer other tools, such as component instead of class diagrams,
and collaboration instead of sequence diagrams. The focus is on static and dynamic relationships
between components.

96 K.A. Gary and M.B. Blake

Our focus on component design led us to state machines. This is not altogether
surprising. The principal contribution of this C-PLAD extension is the connection
between component-level use cases and component-level state machines.

2.2 Extending C-PLAD with State Machines

We extend C-PLAD to emphasize the creation of state machine models at the
component-level, and the connection of infrastructure functionality expressed in
component-level use cases to these state machines. Further, we map component
interactions to entry points in state machines for components. We show the
extension to the original C-PLAD approach in Fig. 2. This extension is applied at
the middle tiers section of Fig. 1 labeled “High-level Use Cases”, “Component-
level Use Cases”, and “Software Design and Development”.

In C-PLAD-SM, each component-level use case is realized by a component, and
each component has a state machine capturing the encapsulated functionality of that
component. This has the effect of completing the design perspective of the system;
interactions and relationships are represented using sequence and class diagrams,
component behaviors using state machines. Class and sequence diagrams capture
static and dynamic relationships between components; state machines capture
behavior from the component perspective. One can now go directly to the state
machine of a component to understand if new or modified requirements will impact
the system’s components in an adverse way. In fact, we believe it is appropriate to
construct the state machine model of the component first and use this to drive the
development of the interface (class) and available collaborations (sequence) in
which the component may fruitfully participate.

The trigger action of an application scenario causes an entry into a component.
This “entry” is an event or request on the component. The component leverages the
state machine to determine if it can safely respond to the request. Typically, a
component will interact with other components to satisfy the request. In
C-PLAD-SM these interactions are expressed using standard UML sequence dia-
grams. An interaction from some component A to some component B captured in a
sequence diagram results in a request on B. Component B’s ability to respond to the
request is governed by its state machine (see Fig. 3). Note that in order to satisfy
A’s request, B might in fact have to enact complex behaviors or even delegate to
other components. Instead of indicating these behaviors via self-directed messages
on the sequence diagram, we use the component state machine to express this
behavior.

Readers experienced in UML and component-based software will not find this
result surprising; interaction diagrams focus on the collaborative behavior of a set of
components to satisfy some request, state machines focus on the states and
behaviors of components (or objects). Referring again to Fig. 2, what is interesting
in C-PLAD-SM is that the component-level use cases are used to derive the
component state machine. As the component use cases are derived from application

C-PLAD-SM: Extending Component Requirements … 97

requirements, this provides a direct path from application-level requirements to
stateful behaviors on components. Furthermore, the path from application scenarios
to sequence diagrams and onto component state machines also defines another path
that connects application functionality to component behavior.

3 Applying the Method: IGSTK

The image-guided surgery toolkit (IGSTK, http://www.igstk.org) is an open source
project aimed at developing robust software for medical applications [7].
Image-guided surgery involves the use of pre-operative medical images to provide
image overlay and instrument guidance during procedures. Image-guided surgery
systems have been commercially available for about 10 years now, but this field of
research is still active, and challenges still exist. These systems are software
intensive and must be reliable since they are used in a surgical environment.

An example application for IGSTK is an ultrasound-guided biopsy. Require-
ments for this application were elicited from clinicians at a major University
Medical Center. The activity diagram in Fig. 4 shows the main success scenario of
this application:

IGSTK employs a component-based architecture in a layered architecture pattern
(see Fig. 5). An IGSTK application, shown at the left, interacts with View com-
ponents that determine how to render Spatial Object Representations. These Rep-
resentations are mappings of Spatial Objects, which are wrappers for objects in the
surgical environment, such as needles, imaging devices, and so on. The position of
objects in the space is correlated via tracking devices. A full description of the
IGSTK architecture can be found in [7].

Each layer in Fig. 5 is dedicated to a type of general-purpose functionality, such
as Viewing or Tracking. Each layer is composed of one or more components that
realize functionality mapped to that layer. For example, consider a magnetic or
optical tracking device. These devices are responsible for identifying the precise

Fig. 3 Component interactions

98 K.A. Gary and M.B. Blake

http://www.igstk.org

Fig. 4 Scenario for ultrasound-guided biopsy procedure

Fig. 5 IGSTK architecture layers and components

C-PLAD-SM: Extending Component Requirements … 99

location of a surgical instrument or anatomical object (e.g. organ). The software
interface of such a device is presented to IGSTK as an instance of a Tracking
component. It is important to note that each component instance has its behavior
regulated by a distinct, hidden state machine instance. The state machine is explicit
but fully encapsulated within the component implementation; other component
instances are not aware of its existence nor can they dispatch events directly to the
state machine. All events are received by strongly typed component interfaces and
subsequent invocation of an appropriate behavior is governed by the state machine
(see Fig. 3).

Figure 5 shows associative relationships for Trackers with other components as
well as interaction paths with these components. It says nothing about the behav-
ioral aspects of the Tracker itself. Likewise, application requirements such as those
shown in Fig. 4 assume robustness of various functionalities provided by the
component, such as “Initiate Tracking”, which is a non-trivial process. State
machines were incorporated as a base architectural pattern early in the implemen-
tation cycles of the project. These state machines are applied principally to provide
component safety through self-awareness; applications built on IGSTK are assured
that components are explicitly aware of their own state and the events they are
capable of safely responding to at any given time.

To further clarify how the C-PLAD-SM extension applies to IGSTK, we con-
sider the Tracker component in more detail. The scenario expressed by the activity
diagram in Fig. 4 describes application-level functionality. This functionality is
incorporated into a high-level use case indicating the functional need to include
tracking. Other high-level use cases express a similar need. Component-level use

Fig. 6 Tracker component use cases

100 K.A. Gary and M.B. Blake

cases capturing the internal behaviors of Tracking components are constructed.
These use cases and their relationships are shown in Fig. 6.

The functionality described by Fig. 6 deals with the complex behaviors (note
Tracker Initialization is included in the component use cases) particular to wrapping
a Tracking device as a software component. This functionality does not have to do
with the interactions of Trackers with other components, except where indicated by
the presence of the External Component actor.

The state machine for the Tracker component must then capture these
component-specific behaviors, and when these behaviors may be invoked. The state
machine regulating the behavior of a Tracker component in IGSTK is shown in
Fig. 7. Note how the states and transitions at the top of the diagram correspond to
the initialization activity. This model still does not indicate how this behavior is
performed, but it does indicate when it may be performed in terms of the state the
Tracker must be in and the event(s) it must receive.

The Tracker component state machine is interesting to review as it shows
complex behavior of the IGSTK framework encapsulated within individual com-
ponents housed in separate layers of the architecture shown in Fig. 5. The
requirements at this component-level were derived from high-level use cases at the
application level and the functionality mapped onto components via state machines.

The IGSTK project incorporates lightweight, agile-like process practices [4] into
an open source project. The requirements, architecture, and component imple-
mentations have evolved iteratively over the past 2 years. The original C-PLAD
method was applied in the early stages of the project to help identify components.
As the project has evolved, C-PLAD-SM has also evolved.

Fig. 7 State machine for IGSTK tracker component

C-PLAD-SM: Extending Component Requirements … 101

4 Benefits of C-PLAD-SM

Extending C-PLAD component-level use cases by applying state machines as the
corresponding modeling tool in the design space provides several benefits, which
we discuss in this section.

4.1 Safety

Clearly, in a mission-critical domain such as software for technology-assisted
surgical intervention, application safety is a crucial issue. We conceptually define
safety with respect to IGSTK as predictable behavior of software components. This
definition does not assume a lack of hardware or software faults, but instead states
that even in the face of such faults the component remains “self-aware”, under-
standing its current state and what behaviors it may still safely perform.

Component-level safety in IGSTK is provided by the state machine. The con-
sequences of entering a state which represents a malfunction on the part of the
component are documented in component-level use cases and reified in the
component-level state machine. This is particularly important in surgical inter-
vention scenarios, as it provides a direct route by which a critical fault in a given
component may result in a drastic recovery action, such as entering a fail-safe mode
where the computer is immediately shut off, the application as a whole disengaged,
and human intercession is required to complete the procedure.

4.2 Visibility

To maintain component safety, state machine instances within IGSTK are con-
structed programmatically, as opposed to common techniques using code genera-
tion and round-trip engineering tools. This forces state machines to be constructed
in a type-safe manner. IGSTK makes heavy use of C++ macros to create type-safe
interactions between components and the state machines that regulate their
behavior.

Hand-coding state machines with IGSTK has the unfortunate side-effect of not
allowing component designers to “see” what the state machine looks like. To
provide this facility, IGSTK includes export methods to multiple formats so that
state machines may be visualized. These visualizations may then be inspected to
ensure proper behavior. Visualization formats include .dot files displayable by
GraphViz (http://www.graphviz.org), and .lts files displayable by LTSA (http://
www.doc.ic.ac.uk/∼jnm/book/). We are currently constructing more general export
routines to support UML’s XML interchange format (XMI) and the W3C’s state-
chart SCXML format (http://www.w3.org/TR/scxml/).

102 K.A. Gary and M.B. Blake

http://www.graphviz.org
http://www.doc.ic.ac.uk/%7ejnm/book/
http://www.doc.ic.ac.uk/%7ejnm/book/
http://www.w3.org/TR/scxml/

Using animation techniques with LTSA, we have added the ability to trace the
execution of an IGSTK application by showing the sequence of transitions through
which each state machine progresses on a per component basis. This type of
record-playback facility, derived from IGSTK log files, allows component devel-
opers to ensure per component behaviors are sequenced correctly, and application
architects to ensure cross-component interactions occur as expected.

4.3 Maintainability

The connection between a component-level use case and a component-level state
machine provides perhaps its greatest benefits in the area of software maintenance.
In fact, this is one of the strongest situations supporting the use of C-PLAD in
general. Experienced architects are able to successfully digest requirements and
from scratch produce a component-based software architecture that satisfies those
requirements. It is more challenging, in our view, to maintain the consistency and
intent of the architecture in the face of new and evolving requirements. When the
scenarios supporting a use case are modified, how does one navigate through the
original analysis and design to understand the impact to the developed architecture.
The obvious answer is “very carefully”, as the architecture may easily become
misunderstood and bloated over time.

C-PLAD provides a process whereby requirements traceability from the
application-level to the component-level is provided via the respective use cases,
and traceability into the component design is preserved by mapping from the
component-level use case to the component state machine.

Consider the following situation. Suppose a new scenario is proposed that
suggests a modification to a component-level use case. The provisions of these
changes must be incorporated into the component’s state machine. If significant
redesign of the state machine is required (new states, new transitions, refactoring of
existing transitions), it suggests the new scenario was not properly mapped to the
component architecture. Perhaps a new component is required, preventing archi-
tecture bloat at the component-level, or the component design is too brittle and
should be revisited. Stated another way, component state machines are an
expression of the functional purpose of the component, providing a mechanism for
maintenance analysis that goes beyond human subjective judgment of the rela-
tionship of new or modified functionality to the existing components. The state
machine provides a tangible means by which one can assess the impact of evolving
requirements on the evolution of the component architecture.

4.4 Verifiability

Traceability is well understood to provide maintainability and testability of a
software platform. The mapping of component-level use cases to component state

C-PLAD-SM: Extending Component Requirements … 103

machines not only assists with maintainability but with the ability to validate the
components provide the functionality required according to the component-level
use cases. Originally we considered applying well-established model-checking
tools such as SPIN (http://spinroot.com) and UPPAAL (http://www.uppaal.com) to
this task. We found these tools are geared toward verifying properties of state
machines for reactive concurrent systems, and IGSTK component state machines
require a more safety-oriented approach as described above. We have constructed
[8, 9] a suite of validation tools that verify certain safety properties of component
state machines and considering ways to automatically validate a component pro-
vides all the behaviors mandated by its component-level use cases.

5 Related Work

The initial goal of C-PLAD was to couple the creation of software product lines
[11] with the integration of openly available components [1] to address what
Metzger and Pohl now call “Variability Management” [14] in software product-line
engineering. However, another feature in this work is the extension of C-PLAD to
support the formal integration of state machine paradigms within component
software. Several places explore low-level semantics of state machine design (c.f.
[6, 10]), but few research projects investigate the incorporation state machines into
formal software development lifecycles. Furthermore, we focus on the integration
of state machine software, which is different than the common approach of mod-
eling and evaluating software using state chart diagrams offline (at design time or
during testing) [8]. Here, we intend to conceptualize the functional requirements
needed then develop/generate state machine software to ensure that functionality.
Bontemps et al. [3] investigates the generation of agent-oriented software from
state-based models but mainly for synthesis and verification. In our work, we
develop state machines that control software in actual operational environments.
Zhu [16] directly ties scenario descriptions to behavioral component specifications
for an agent-oriented platform. This approach is similar to the tack described in this
chapter, though our focus is on the internal safety per component and its correlation
to a component-level use case, as opposed to component interactions to satisfy an
application-level scenario. Coleman et al. [5] introduce ObjectCharts that incor-
porate state machines into the object-oriented development lifecycle. The focus of
this work is similar, particularly with regards to the consideration of software
lifecycles. However, ObjectCharts are focused at the class-level, where as our work
addresses component-level design which resides at an aggregate level. In a recent
survey by Khan et al. [12] on non-functional requirements engineering, the authors
provide a taxonomy for evaluating integrating software architectures with
non-functional requirements approaches together with notations used in each
approach. C-PLAD-SM integrates multiple notations and techniques to address
functional and non-functional requirements in component-based architectures.

104 K.A. Gary and M.B. Blake

http://spinroot.com
http://www.uppaal.com

6 Conclusions

Component encapsulation provides several features for managing and evolving
complex software. Components typically provide well-defined interfaces repre-
senting a rigid boundary between providers and consumers of services. Compo-
nents provide a pragmatic vehicle for testing and maintaining complex software.
Component-based design, and specifically encapsulation, does not apply as well to
other design needs such as dealing with per component complexity. While parti-
tioning the complexity of a software system into components helps make the overall
complexity of the system manageable, it is still the case that many of these “smaller
problems” remain complex and require one to consider how to express object-level
realization of this complex functionality. Additionally, many types of application
domains, including the one in which we have applied C-PLAD-SM, require
stronger statements of the dynamic behavior of a component in order to guarantee
quality attributes such as safety and maintainability. Our solution is to construct a
state machine, derived from the component-level use case, at the component level.

In the conclusion of our original presentation [2], we suggested C-PLAD as a
technique that bridges the gap between RUP’s use case driven requirements
methodology and (human-driven) derivation of an architecture. Few methodologies
address this space, instead, it is up to talented individuals with the experience and
insight to produce powerful abstractions to drive solutions. We do not suggest
C-PLAD replaces this innate talent, but we do put it forward as an extension to RUP
that attempts to address the area directly. In fact, our approach, is consistent with
the evolution of UML—providing multiple perspectives on a problem to arrive at a
solution. In the case of C-PLAD-SM, we use the application and the domain level
for requirements, the high-level and the component use case for analysis, and class,
sequence and state machine perspectives of components at the design level to arrive
at an architecture.

References

1. Batory, D., Johnson, C., MacDonald, B., von Heeder, D.: Achieving extensibility through
product-lines and domain-specific languages: a case study. In: ACM TOSEM, April 2002

2. Blake, M.B., Cleary, K., Ibanez, L., Ranjan, S., Gary, K.: Use case-driven component
specification: a medical applications perspective to product line development. In: Proceedings
of the ACM Symposium on Applied Computing (SAC’05), Software Engineering Track,
Sante Fe, New Mexico, Mar 2005

3. Bontemps, Y., Heymans, P., Schobbens, P.-Y.: From live sequence charts to state machines
and back: a guided tour. IEEE Trans. Softw. Eng. 31(12), 999–1014 (2005)

4. Campanelli, A., Parreiras, F.: Agile methods tailoring–a systematic literature review. J. Syst.
Softw. 110, 85–100 (2015)

5. Coleman, D., Hayes, F., Bear, S.: Introducing objectcharts or how to use statecharts in
object-oriented design. IEEE Trans. Softw. Eng. 18(1), 1992

C-PLAD-SM: Extending Component Requirements … 105

6. Ferrentino, A.B., Mills, H.D.: State machines and their semantics in software engineering. In:
Proceedings of the IEEE Conference on Computer Software and Applications (COMP-
SAC’77), pp. 242–251 (1977)

7. Gary, K., Blake, B., Ibanez, L., Gobbi, D., Aylward, S., Cleary, K.: IGSTK: an open source
software platform for image-guided surgery. In: IEEE Computer Special Issue on Software
Engineering Systems, April 2006

8. Gary, K., Kokoori, S., David, B., Otoom, M., Cleary, K.: Architecture validation in open
source software. In: Proceedings of ROSATEA 2007: The Role of Software Architecture for
Testing and Analysis, Boston, MA, July 2007

9. Gary, K., Kokoori, S., Muffih, B., Enquobahrie, A., Cheng, P., Yaniv, Z., Cleary, K.: Agile
methods for safety-critical open source software. J. Softw. Pract. Exp. (2011) (Wiley)

10. Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Trans. Softw. Eng.
Method. (TOSEM) 5(4), 293–333 (1996)

11. Heineman, G.T., Councill, W.T. (eds.): Component-Based Software Engineering: Putting the
Pieces Together. Addison-Wesley, Boston, MA (2001)

12. Khan, F., Jan, S.R., Tahir, M., Khan, S., Ullah, F.: Survey: dealing non-functional
requirements at architecture level. VFAST Trans. Softw. Eng. 9(2), 7–13 (2016)

13. Kruchten, P.: The Rational Unified Process—An Introduction, 2nd edn. Addison-Wesley,
Boston, MA (2000)

14. Metzger, A., Pohl, K.: Software product line engineering and variability management:
achievements and challenges. In: Proceedings of the on Future of Software Engineering,
pp. 70–84. ACM (2014)

15. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-Oriented Modeling
and Design. Prentice Hall (1991)

16. Zhu, X., Maiden, N., Pavan, P.: Scenarios: bringing requirements and architecture together.
In: Proceedings of the 2nd International Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools (SCESM’03). Portland, OR (2003)

106 K.A. Gary and M.B. Blake

A Structural Rule-Based Approach
for Design Patterns Recovery

Mohammed Ghazi Al-Obeidallah, Miltos Petridis and Stelios Kapetanakis

Abstract Design patterns have a key role in the software development process. They

describe both structure, behavior of classes and their relationships. Design patterns

can improve software documentation, speed up the development process and enable

large-scale reuse of software architectures. This paper presents a Multiple Levels

Detection Approach (MLDA) to recover design pattern instances from Java source

code. MLDA is able to extract design pattern instances based on a generated class

level representation of an investigated system. Specifically, MLDA presents what is

the so-called Structural Search Model (SSM) which incrementally builds the struc-

ture of each design pattern based on the generated source code model. Moreover,

MLDA uses a rule-based approach to match the method signatures of the candidate

design instances to that of the subject system. As the experiment results illustrate,

MLDA is able to extract 23 design patterns with reasonable detection accuracy.

Keywords Design patterns ⋅ Detection ⋅ Reverse engineering ⋅ Gang of four ⋅
Static analysis ⋅ Rule-based systems

1 Introduction

The detection of design patterns is a reverse engineering activity where design

patterns are extracted depending on certain criteria. The idea of patterns was adopted

by the so-called Gang of Four (Gamma, Helm, Johnson, and Vlissides) [1]-

henceforth GoF.

M.G. Al-Obeidallah (✉) ⋅ S. Kapetanakis

Department of Computing, University of Brighton, Brighton, UK

e-mail: M.Al-Obeidallah@brighton.ac.uk

S. Kapetanakis

e-mail: S.Kapetanakis@brighton.ac.uk

M. Petridis

Department of Computing, Middlesex University, London, UK

e-mail: M.Petridis@mdx.ac.uk

© Springer International Publishing AG 2018

R. Lee (ed.), Software Engineering Research, Management and Applications,
Studies in Computational Intelligence 722, DOI 10.1007/978-3-319-61388-8_7

107

108 M.G. Al-Obeidallah et al.

GoF have cataloged 23 design patterns. Each design pattern describes a prob-

lem that occurs over and over again, in an attempt to describe the core solution to

that problem. This solution can be re-used a million times over, without doing it

the same way twice. In fact, design patterns vary in their levels of abstraction. Each

design pattern solves a specific design problem by connecting a number of classes

(participant classes) together using different relationships. According to the GoF’s

catalog, each design pattern involves both structural and behavioral aspects. Struc-

tural aspects describe the static arrangement of classes and their relationships. On the

other hand, behavioral aspects describe dynamic interactions between the participant

classes.

Design patterns at the source code level reflect the earliest set of design decisions

that have been taken by the development team. In addition, the majority of current

software systems involve instances of design patterns in their source codes. Conse-

quently, the extraction of design patterns helps a number of stakeholders, such as

system analysts, software engineers and architects to capture design and code infor-

mation and enhance their understanding over an enterprise system. However, the

extraction of design patterns is not an easy task since software documentation is not

always available and the possible variants of pattern instances.

This paper presents a new detection approach named Multiple Levels Detection

Approach (MLDA). MLDA provides a Structural Search Model (SSM) that is able

to extract the instances of design patterns based on the generated class level repre-

sentation of the Java source code.

Furthermore, MLDA builds the structure of each design pattern incrementally

based on the generated source code model. To reduce the number of false positive

instances, a rule-based system that is able to match the method signatures of the

candidate design instances to that of the subject system has been developed. Since

GoF design patterns have been attractive both to industry and academia, this paper

focuses on the GoF design patterns.

This paper is organized as follows: Section 2 presents MLDA architecture, the

structural search model and the rule-based system. Experiments and results, related

work and threats to validity are discussed in Sects. 3, 4, and 5 respectively. Finally,

the conclusion is presented in Sect. 6.

2 Recovering Design Pattern Instances

The Multiple Levels Detection Approach (MLDA) is a research prototype, which

has been developed to extract the instances of design patterns from Java source code.

MLDA involves three main levels: a parsing level, a searching level and a method

signatures matching level. The architecture of MLDA appears in Fig. 1.

The parsing level aims to extract the source code information and produce a source

code model. Moreover, MLDA aims to extract the five major relationships, which

may occur between classes and objects inside any object-oriented program. These

relationships are Inheritance, Aggregation, Association, Dependency and Realiza-

A Structural Rule-Based Approach for Design Patterns Recovery 109

Fig. 1 The architecture of MLDA

tion. On the other hand, the searching level of MLDA aims to examine the source

code model that has been developed during the parsing level and tries to match it

with the GoF’s catalog.

Specifically, MLDA introduces a structural search model (SSM), which involves a

searching algorithm for each design pattern. MLDA works on the principle of build-

ing the patterns incrementally based on the connecting relationships. The third level

of MLDA is the method signatures matching level. The method signatures of the sub-

ject system are represented as a set of facts. On the other hand, the required method

signatures of the candidate design instances are represented as a set of rules. CLIPS

(C Language Integrated Production System) [2], an expert system tool, has been

used to match the generated facts and rules. It must be noticed that MLDA uses the

standard codes presented by GoF [1].

2.1 Parsing Level

Parsing is “the process of analyzing a string of symbols, either in natural language or

in computer languages, conforming to the rules of a formal grammar” [3]. MLDA’s

parsing level relies on the packages of the Javaparser version 1.0.11, which has

been developed by Júlio Vilmar Gesser and is available online [4]. The Javaparser

is an open source project and can be used under the terms of the LGPL license.

In fact, the Javaparser involves a number of useful packages, such as Japa.parser,

Japa.parser.ast, Japa.parser.ast.expr and Japa.parser.ast.visitor. The motivation of

importing the packages of Javaparser is their ability to generate an Abstract Syntax

Tree (AST) that can record the source code structure. AST is a tree that represents the

syntactic behavior of the source code where its elements are mapped into tree nodes.

The parsing level of MLDA aims to extract all the possible relationships between

classes in the Java source code. The relationships have been defined by MLDA as

follows: The relationship between the source class Cs and the destination class Cd

is denoted by R (Cs, Cd) = Inheritance, Dependency, Aggregation, Association, and

Realization, in which:

110 M.G. Al-Obeidallah et al.

∙ R (Cs, Cd) = Inheritance: indicates that class Cd is extended by class Cs.

∙ R (Cs, Cd) = Dependency: indicates that a reference to class Cd is passed in as a

method parameter to class Cs.

∙ R (Cs, Cd) = Aggregation: indicates that class Cs stores a reference to class Cd

for later use.

∙ R (Cs, Cd) = Association: indicates that the containing object in class Cs is respon-

sible for the creation and lifecycle of the contained object of class Cd.

∙ R (Cs, Cd) = Realization: indicates that class Cd is an interface and extended by

class Cs.

MLDA will try to extract all classes and their relationships from the subject sys-

tem. In fact, MLDA provides a clear distinction between the aggregation relationship

and the association relationship. In the aggregation relationship, the creation of the

objects will occur during the compile time while in the association relationship, the

creation of the objects will occur during the runtime. Hence, MLDA performs a

static analysis that is acting as a dynamic analysis since all the object creations are

recorded. In addition, the parsing level of MLDA records the dynamic interactions

between classes.

The output of the parsing level is a model of the source code, and a library of

design patterns. The source code of the subject system is modeled in the form: source

class, destination class and relationship type. The same structure is also applied to

represent the catalog of GoF. The source code model generated by MLDA’s parsing

level is presented in Fig. 2.

The source code model will be exported into an SQL table, which will be exam-

ined by the SSM in order to extract the candidate instances of design patterns. The

library holds a representation of each design pattern. This representation is similar

in its structure to the structure of the source code model (i.e. the representation of

Fig. 2 The source code

model generated by MLDA

A Structural Rule-Based Approach for Design Patterns Recovery 111

Fig. 3 The representation of the command design pattern in the library

each design pattern in the library involves three columns: source class, destination

class and relationship type). To explain how MLDA represents each design pattern

in the library, the command design pattern representation is presented in Fig. 3.

MLDA has successfully extracted two aggregation relationships and one inheri-

tance relationship. One aggregation relationship is connecting the “Invoker” class to

the “Command” class, and the other is connecting the “ConcreteCommand” class to

the “Receiver” class. Furthermore, the inheritance relationship between the “Com-

mand” class and the “ConcreteCommand” class is also extracted. However, MLDA

has excluded the role of the “Client” class since it represents the role of the main

program inside the source code. This will not affect how the command participant

classes are connected and communicate together.

2.2 Searching Level

The searching level of MLDA aims to build the design pattern structure incremen-

tally from the source code model based on its representation in the library. MLDA

involves a searching algorithm for each design pattern.

The searching algorithm tries to build the pattern structure from the source code

model by checking the relationship that is connecting the source class to the destina-

tion class. If the search process finds one of the required relationships of the pattern,

it will continue searching for the remaining relationships until it can form a complete

pattern structure that is similar to the pattern representation in the library. When the

pattern structure has been found in the source code model, all the patterns’ partic-

ipant classes are exported from the source code model to an SQL table. MySQL

Workbench version 6.3 CE was used to create the tables. Since MLDA is able to

distinguish between the aggregation and the association relationships and records

all the object creations and the dynamic interactions between classes, it is expected

to extract all behavioral design patterns. In addition, the searching level of MLDA

introduces what is called the SSM which involves a searching algorithm for each

GoF design pattern. Each part of the SSM involves two participant classes (i.e. the

source and destination class).

To explain how the searching level works, the searching algorithms of the Proxy

and Command design patterns are presented. Figure 4 shows the SSM of the Proxy

design pattern. The extraction of Proxy instances is based on its representation in

112 M.G. Al-Obeidallah et al.

Fig. 4 The structural search model of the proxy design pattern

the library. MLDA will search for two participant classes that have a realization rela-

tionship. The retrieved classes are stored temporally for later use. Then, MLDA will

continue searching in the table, which represents the source code model, for another

two classes that are connected together by a realization relationship as well. MLDA

will combine the two extracted parts together if they have the same superclass (root)

and different subclasses.

If MLDA has successfully combined the two extracted parts, the process will con-

tinue searching for another two classes that are connected together using an associ-

ation relationship. All classes are forming an instance of the Proxy design pattern

if the role of the third part’s source class is similar to the role of the merged part’s

source class. In addition, the role of the destination class of the third part must be

similar to the role of the source class of the first part. All the extracted instances and

their participant classes will be exported to the SQL table.

Figure 5 explains the searching attempts to extract the instances of the Command

design pattern. The Command design pattern involves four main roles: Invoker,

Command, ConcreteCommand and Receiver. MLDA will start searching for two

classes that are connected using an aggregation relationship (searching attempt one).

The next searching attempt aims to extract another two classes that are connected

together using an inheritance relationship (searching attempt two). MLDA will com-

bine the parts of searching attempt one and searching attempt two together if they

have the same destination class. Consequently, forming the “Merged A” part. Finally,

MLDA will search for another two participant classes that are connected using an

A Structural Rule-Based Approach for Design Patterns Recovery 113

Fig. 5 The structural search model of the command design pattern

aggregation relationship and which differ from the classes that are extracted dur-

ing the third searching attempt. If the second and third searching attempts have the

same source class, then all classes together form an instance of the Command design

pattern.

The design pattern library generated by MLDA and the structural search model

and its pseudocode for all GoF design patterns are available online and can be down-

loaded from https://www.sites.google.com/site/mldamodel/.

2.3 Method Signatures Matching

The candidate design pattern instances that have been detected by SSM are filtered

by applying a rule-based approach. This approach aims to remove the false positive

instances by matching the method signatures of the candidate design instances to

that of the subject system. A rules template for GoF method signatures has been

created to reflect the required method signatures for each design pattern. The rules

template relies on standard structural definitions presented by GoF [1]. In addition,

the so-called MLDA rules/facts generator is introduced here, which is a simple Java

program that is able to write a set of rules and facts based on the method signatures

representation of the candidate design instances and subject system. Specifically,

MLDA rules/facts generator will generate a list of rules to reflect the required method

https://www.sites.google.com/site/mldamodel/

114 M.G. Al-Obeidallah et al.

Fig. 6 A detailed architecture of MLDA’s level three

signatures and method calls between candidate instance participant classes. On the

other hand, MLDA rules/facts generator will generate a list of facts to represent the

interactions between methods inside the subject system. Figure 6 shows the detailed

architecture of MLDA’s level three.

A rule based-system contains IF-THEN rules, facts and an inference engine that

controls the application of the rules. Our main motivation behind the use of a rule-

based approach is the ability to represent the method signatures of the candidate

design instances as an independent piece of knowledge, which can be transformed

into a set of rules. In addition, the method signatures of GoF design patterns have a

uniform structure, which facilitate their representation as a set of rules. By contrast,

the comparison process performed by the inference engine allows an effective match

between the set of rules and the facts. MLDA uses CLIPS v6.3, an expert system tool,

to process the generated facts and rules and to remove the false positive instances.

The detailed architecture of MLDA illustrates the relationship between the SSM,

MLDA rules/facts generator, rules template and CLIPS.

As Fig. 6 illustrates, MLDA parser will parse the subject system and extract its

method signatures from each class/interface. The extracted signatures are access

modifier, is_static, returntype and call_to.

2.3.1 CLIPS

CLIPS is one of the most popular shells widely used through the government, indus-

try and academia. The CLIPS shell provides the basic elements of a rule-based sys-

tem:

∙ Fact-list, which contains all the facts about the problem. Facts are stored in short-

term memory.

∙ Knowledge-base, which contains all the rules. Rules are stored in the knowledge

base (database).

∙ Inference engine, which controls the overall execution of rules.

A Structural Rule-Based Approach for Design Patterns Recovery 115

CLIPS uses forward chaining and provides a language for representing facts and

rules. The language is based on the artificial intelligence language, LISP. CLIPS

inference engine enacts the required matching by using Rete algorithm [5]. Rete

algorithm is a pattern matching algorithm for implementing expert systems designed

by Charles Forgy in 1974 [5]. It is used to determine which rule the inference engine

should fire.

2.3.2 Rules Template for Method Signatures of Design Patterns

A rules template has been created to reflect the required method signatures between

pattern participant classes. A readable and uniform rule syntax were used, which is

consistent with the CLIPS rules’ syntax. Hence, the generated rules can be loaded

directly onto CLIPS. Table 1 shows the rule syntax used to create the template and

its corresponding significance. Table 2 shows the rules template of the proxy design

Table 1 The created rules template syntax and its significance

Rule syntax Significance

Class A has method m Method m is implemented inside Class A

Method m returntype Class A Method m returns an object of type Class A

Method m is static YES/NO Whether method m is static or not

(test (=(str-compare m1 m2)0) To check whether m1 and m2 are the same

method (for overriding purpose)

(test (neq m1 m2)) To check whether m1 and m2 are two different

methods

(method m1 call_ to method m2) The implementation of method m1 involves a

call to method m2

Table 2 Rules template of

the proxy design pattern
Proxy rule template

1. (defrule Proxy_rule

2. IF

3. (Subject has method ?x)

4. (Proxy has method ?y)

5. (test (= (str-compare ?x ?y) 0))

6. (RealSubject has method ?z)

7. (test (= (str-compare ?x ?z) 0))

8. (method ?y call_ to method ?z)

9. THEN

10. (Prox_ instance is true positive)

11.) End of proxy rule

116 M.G. Al-Obeidallah et al.

pattern. The rules template for all GoF design patterns is available online and can be

downloaded from MLDA website.

2.3.3 MLDA Rules/Facts Generator

MLDA rules/facts generator-henceforth R/F generator-is a simple Java program,

implemented as a part of MLDA project, which generates a set of rules and facts to

represent the required method signatures of candidate design instances and a subject

system respectively. The outputs of the R/F generator consist in two files: rules.txt

and facts.txt, which will be loaded onto CLIPS for processing.

In order to generate the rules, the R/F generator constructs a connection to the

SQL table and provides access to each record. Based on the rules template, the R/F

generator will generate a rule for each candidate design instance. Specifically, the

R/F generator will fill each template entry by its corresponding role in the SQL table.

Java OutputStreamWriter has been used to write rules into a text file.

Figure 7 presents an example to illustrate how the R/F generator creates rules. The

presented example shows the generated rules of the Proxy candidate instances.

As Fig. 7 illustrates, the R/F generator creates two rules to represent the required

method signatures between Proxy participant classes (that is, Subject, Proxy and

RealSubject). Method IDs, titles and variables will be automatically incremented as

new instances are inserted into the table. To generate the facts, the MLDA parser

stores the retrieved method signatures from the subject system in an SQL table. The

R/F generator represents each method signatures record of the subject system as a

set of facts. The subject system is represented as a set of classes/interfaces where

each record stores the methods that are implemented inside that class/interface. In

addition, each record stores the method access modifier, return type, static status

and method calls. Figure 8 shows an example of how the R/F generator generates

Fig. 7 Rules generation example of the proxy candidate instances

A Structural Rule-Based Approach for Design Patterns Recovery 117

Fig. 8 Facts generation example of subject system

facts to represent the method signatures of a subject system. The R/F generator is

customizable. This means that the syntax of the rules and facts can be changed by

modifying the template.

2.3.4 Rules and Facts Matching

The generated facts and rules will be loaded onto CLIPS, as two text files, for process-

ing. Facts will be stored in the working memory while the rules will be stored in the

knowledge base. The CLPS inference engine uses forward chaining which relies on

Rete algorithm to fire the rules. If rule conditions match a set of facts, the rule will

be inserted into the agenda for execution. The agenda is a collection of activations

which are rules match pattern entities. At the end of the cycle, all the matched rules

will be in the agenda. The inference engine will fire the rules based on their order in

the knowledge base. The topmost rule will be executed first. However, the order of

the rules in the knowledge base is not important. This is mainly due to the way that

the rules template was constructed. Specifically, the action part of each rule does not

assert new facts to the working memory. Hence, the order of the rules will not affect

rules execution. One cycle is required to fire the rules. The “run” command would run

the inference engine of CLIPS. Rules that represent false positive instances should

not be fired. These instances have a similar structure to the design patterns, but that

they did not implement the required method signatures of design patterns. On the

other hand, rules that represent the true positive instances should be fired. However,

some of the true positive instances are partly implemented in the source code.

118 M.G. Al-Obeidallah et al.

3 Experiments and Results

MLDA was implemented in Java using NetBeans Integrated Development Environ-

ment version 8.1. The extracted instances of design patterns are stored in tables,

which have been constructed using MySQL Workbench version 6.3 CE. MLDA has

been applied to four open source systems (JHotDraw, JRefactory, QuickUML and

JUnit) that are widely used as benchmarks for design patterns detection. The char-

acteristics of the four systems appear in Table 3. All the experiments have been run

on Windows 7 with Intel Core i5-2400 CPU.

The effectiveness of MLDA has been evaluated in terms of accuracy and search-

ing time. To evaluate the accuracy of MLDA, two well-known metrics are used

namely precision and recall. The F-measure, which represents the harmonic mean

of recall and precision, is calculated as well. The previous metrics can be calculated

as follows [6]:

Precision = [True Positives∕(True Positives + False Positives)]%
Recall = [True Positives∕(True Positives + False Negatives)]%
F-measure = 2 × [(Precision × Recall)∕(Precision + Recall)]%

Where True Positives: the number of instances, which are correctly detected by

MLDA. False Positives: the number of instances, which are incorrectly detected by

MLDA. False Negatives: the number of instances, which are incorrectly rejected by

MLDA (missed instances).

To validate the extracted instances, we refer to the all publicly published results

in the literature which have presented the true positive, false positive and false neg-

ative instances of JHotDraw, JRefactory, JUnit and QuickUML. Consequently, the

number of true positives, false positives and false negatives are validated based on

the common public results in the literature.

The subject systems have been parsed by MLDA parser and the SSM model is

applied to the generated source code model to extract the candidate instances of

design patterns. The results of the parsing of the subject systems are presented in

Table 4. MLDA extracted 990 classes and 80 interfaces from the subject systems. In

addition, Table 4 shows the number of facts and rules generated by the R/F generator.

Table 3 The characteristics of the systems used in the experiments

Project Category Version Size (MB)

JHotDraw Graphics user

interface

5.1 2.98

JRefactory Graphics user

interface

2.6.24 4.0

JUnit Unit testing 3.7 2.66

QuickUML Design tool 2001 1.76

A Structural Rule-Based Approach for Design Patterns Recovery 119

Table 4 The results of the parsing and rules/facts generation of the subject systems using MLDA

System/Extracted

feature

JHotDraw JRefactory JUnit Quick-UML

Interfaces 18 35 8 19

Classes 183 577 104 126

Aggregation 96 439 31 99

Dependency 110 782 110 157

Association 40 54 25 118

Inheritance 97 535 50 105

Realization 25 89 13 33

Methods 572 1727 334 584

Facts 4222 9163 1981 2397

Rules 195 284 39 129

Table 5 presents the experimental results of recovering 23 GoF design patterns

from the subject systems. In terms of performance, MLDA is performing quite well

where it extracted 647 candidate instances within 312 s. The searching time that

MLDA spent depends on the number of classes involved and the number of recov-

ered instances. In terms of accuracy, MLDA detected most of the design pattern

instances that are consistent with the standard definition presented by GoF. How-

ever, MLDA wrongly rejected some design pattern instances in the subject systems

since these instances are partly implemented in the source code. For example, MLDA

has rejected one visitor instance since the roles of “ObjectStructure”, “Element”, and

“ConcreteVisitor” are not implemented in the source code of JRefactory.

MLDA builds the structure of each design pattern incrementally and records all

the object creations and interactions between classes, which are necessary to detect

design pattern instances. Specifically, all the object creations are recoded during the

parsing level where MLDA made a clear distinguishing between the association rela-

tionship and the aggregation relationship. MLDA is not able to extract the instances

that are inconsistent with GoF representation or partly implemented in the source

code.

Furthermore, the rule-based approach presented by MLDA enhances the detec-

tion accuracy which relies on the principle of relationships matching. As Table 5

illustrates, the rule-based approach reduces the number false positive instances by

matching the method signatures of the candidate instances to that of the subject sys-

tem. The inference engine of CLIPS performs the required matching between the

generated rules and facts.

The common syntax for all relationships, detected design pattern instances for all

subject systems, R/F generator source code, rules template and the source code of

MLDA is available online and can be downloaded from https://www.sites.google.

com/site/mldamodel/.

https://www.sites.google.com/site/mldamodel/
https://www.sites.google.com/site/mldamodel/

120 M.G. Al-Obeidallah et al.

Ta
bl
e
5

T
h
e

e
x
p
e
r
im

e
n
ta

l
r
e
s
u
lt

s
o
f

r
e
c
o
v
e
r
in

g
2
3

G
o
F

d
e
s
ig

n
p
a
tt

e
r
n
s

f
ro

m
th

e
s
u
b
je

c
t

s
y
s
te

m
s

S
u

b
je

c
t

s
y
s
te

m
s

J
H

o
tD

r
a
w

J
R

e
fa

c
to

r
y

J
U

n
it

Q
u
ic

k
U

M
L

D
e
s
ig

n
p

a
tt

e
r
n
s

C
l

D
I

P
%

R
%

C
l

D
I

p
%

R
%

D
I

C
l

P
%

R
%

D
I

C
l

P
%

R
%

S
in

g
le

to
n

2
2

1
0
0

1
0
0

1
0

1
0

1
0
0

8
3

0
0

1
0
0

1
0
0

1
1

1
0
0

1
0
0

P
ro

to
ty

p
e

2
2

1
0
0

1
0
0

0
0

N
A

N
A

0
0

1
0
0

1
0
0

0
0

N
A

N
A

A
b
s
tr

a
c
t

fa
c
to

r
y

0
0

N
A

N
A

0
0

N
A

N
A

0
0

1
0
0

1
0
0

0
0

N
A

0

F
a
c
to

r
y

m
e
th

o
d

0
0

N
A

0
1
0
1

8
1

9
8

9
1

2
2

1
0
0

1
0
0

1
2

1
2

1
0
0

6
7

B
u

il
d

e
r

0
0

N
A

N
A

0
0

N
A

0
%

0
0

1
0
0

1
0
0

0
0

N
A

0

A
d
a
p
te

r
3
1

1
3

8
5

1
0
0

1
7

1
5

1
0
0

9
4

7
5

1
0
0

4
5

2
6

2
5

1
0
0

8
6

B
r
id

g
e

7
5

8
0

1
0
0

0
0

N
A

N
A

0
0

1
0
0

1
0
0

0
0

N
A

0

C
o
m

p
o
s
it

e
1

1
1
0
0

1
0
0

0
0

N
A

N
A

0
0

1
0
0

0
1

1
1
0
0

1
0
0

D
e
c
o
r
a
to

r
1

1
1
0
0

3
3

1
1

1
0
0

1
0
0

1
0

1
0
0

1
0
0

2
2

1
0
0

6
7

F
a
c
a
d

e
1

1
1
0
0

1
0
0

2
2

1
0
0

N
A

0
0

1
0
0

1
0
0

1
1

1
0
0

1
0
0

F
ly

w
e
ig

h
t

1
1

1
0
0

1
0
0

0
0

N
A

N
A

0
0

1
0
0

1
0
0

1
1

1
0
0

1
0
0

P
ro

x
y

0
0

N
A

N
A

0
0

N
A

N
A

0
0

1
0
0

1
0
0

1
1

1
0
0

5
0

C
o

R
0

0
N

A
N

A
0

0
N

A
N

A
0

0
1
0
0

1
0
0

0
0

N
A

N
A

C
o

m
m

a
n

d
1
7

9
8
9

8
9

4
5

3
2

6
9

8
8

0
0

1
0
0

1
0
0

1
7

1
7

1
0
0

9
4

I
n
te

r
p
r
e
te

r
0

0
N

A
N

A
0

0
N

A
N

A
0

0
1
0
0

1
0
0

0
0

N
A

N
A

I
te

r
a
to

r
0

0
N

A
N

A
0

0
N

A
N

A
0

0
1
0
0

0
0

0
N

A
N

A

M
e
d
ia

to
r

2
0

N
A

N
A

0
0

N
A

N
A

0
0

1
0
0

1
0
0

0
0

N
A

N
A

M
e
m

e
n
to

1
0

N
A

N
A

0
0

N
A

N
A

0
0

1
0
0

1
0
0

6
0

N
A

N
A

O
b

s
e
r
v
e
r

0
0

N
A

0
0

0
N

A
N

A
0

0
1
0
0

0
1

1
1
0
0

1
0
0

S
ta

te
/S

tr
a
te

g
y

3
3

7
8
6

1
0
0

1
1

8
1
0
0

7
3

8
3

1
0
0

1
0
0

1
1

1
0

1
0
0

1
0
0

V
is

it
o
r

1
1

1
0
0

5
0

1
1

1
0
0

5
0

0
0

1
0
0

1
0
0

0
0

N
A

N
A

T
e
m

p
la

te
m

e
th

o
d

9
5

5
8
0

1
0
0

9
6

2
1

1
9

1
0
0

2
1

2
5
0

1
0
0

4
9

1
3

2
3

1
0
0

T
o
ta

l/
A

v
e
r
a
g
e

1
9
5

4
8

8
7
%

8
4
%

2
8
4

1
7
1

8
3
%

8
8
%

3
9

1
3

9
2
%

5
7
%

1
2
9

8
5

8
8
%

8
2
%

No
te

C
I

C
a
n
d
id

a
te

I
n
s
ta

n
c
e
s

a
f
te

r
a
p
p
ly

in
g

S
tr

u
c
tu

r
a
l

S
e
a
r
c
h

M
o
d
e
l

(
le

v
e
l

tw
o
)

D
I

D
e
te

c
te

d
I
n
s
ta

n
c
e
s

a
f
te

r
a
p
p
ly

in
g

r
u
le

s
-
b
a
s
e
d

a
p
p
ro

a
c
h

(
le

v
e
l

th
r
e
e
)
P

P
r
e
c
is

io
n
R

R
e
c
a
ll
NA

N
o
t

A
p

p
li

c
a
b

le

A Structural Rule-Based Approach for Design Patterns Recovery 121

4 Related Work

During the last two decades, many tools and approaches have been developed in order

to recover design pattern instances from object-oriented source code. However, these

tools and approaches differ in their input, output, evaluation criteria and extraction

methodology.

Guéhéneuc et al. developed PTIDEJ (Pattern Traces Identification, Detection and

Enhancement in Java) at the University of Montreal and since then, PTIDEJ has

evolved into a complete reverse engineering tool [7, 8]. PTIDEJ extracted design

patterns by finding all micro-architectures similar to design motifs (i.e. finding all

classes and interfaces that have structures similar to design motifs).

Design patterns detection using a Similarity Scoring Approach (SSA) is a research

prototype developed in Java at the University of Macedonia to handle the problem

of multiple variants of design patterns [9]. SSA uses a graph similarity algorithm

to detect design patterns by calculating the similarity of vertices between the pat-

tern and the system under study. To handle the system-size problem, SSA divides

the system into a number of subsystems and the similarity algorithm is applied to

the subsystems instead of the whole system. SSA was applied to three open source

systems: JHotDraw v5.1, JRefactory v2.6.24 and JUnit v3.7.

DeMIMA (Design Motif Identification: Multilayered Approach) is a tool devel-

oped at the University of Montreal [10]. It is a semi-automatic tool that identifies

micro-architectures similar to design motifs in the source code. DeMIMA involves

three layers: two layers to recover source code abstract model and class relation-

ships and one layer to recognize design patterns from the abstract model. DeMIMA

identifies micro-architectures similar to the design motifs by transforming them into

constraints that reflect the relationships between participant classes. DeMIMA was

applied to JHotDraw v5.1, JRefactory v2.6.34, JUnit v3.7, MapperXML v1.9.7 and

QuickUML 2001. DeMIMA observed precision of 34% for twelve design motifs and

achieved 100% recall.

The approach presented by Dongjin et al. involves a sub-pattern representation

for the 23 GoF design patterns-henceforth, sub-patterns approach [11]. The source

code and predefined GoF patterns are transformed into graphs with classes as nodes

and the relationships as edges. The instances of sub-patterns are identified by means

of subgraph discovery. The joint classes have been used to merge the sub-pattern

instances. Finally, the behavioral characteristics of method invocations are com-

pared with the predefined method signature template of GoF patterns to obtain final

instances. The sub-patterns’ approach achieved 68–100% precision and 73–100%

recall.

Pattern Inference and Recovery Tool (PINOT) reclassifies the catalog of design

patterns by intent [12]. The new classification is better suited for the reverse engi-

neering approach. To capture program intent, PINOT used static program analysis

techniques to recover design pattern instances from four open source projects: Java

AWT v1.3, JHotDraw v6.0, Java Swing v1.4 and Apache Ant v1.6.

The technique presented by Uchiyama et al. (henceforth, the Uchiyama tech-

nique) uses source code metrics and machine learning to detect design patterns [13].

122 M.G. Al-Obeidallah et al.

By using the goal question metric method (GQM), some source code metrics are

selected to judge roles. Pattern specialists define a set of questions to be evaluated,

and they decide on certain metrics to help answer these questions. Moreover, the

Uchiyama technique uses a hierarchical neural network simulator in which the input

is the metric measurements of each role and the output is the expected role. The

detection is done by matching the candidate roles produced by the machine learn-

ing simulator and the pattern structure definitions. Searching is looking for all com-

binations of the candidate roles that are in agreement with pattern structures. The

Uchiyama technique extracted inheritance, interface implementation and aggrega-

tion relationships.

The approach presented by Alnusair et al. [14]-henceforth, Sempatrec-uses ontol-

ogy formalism to represent the conceptual knowledge of the source code and seman-

tic rules to capture the structure and the behavior of design patterns. A tool named

Sempatrec (SEMantic PATtern RECovery) has been developed as a plug-in for the

Eclipse IDE to implement the approach. Sempatrec processes the Java bytecode of

the target software, generates an RDF (Resource Description Framework) ontology

and stores the ontology locally in a pool. The reported precision and recall were 61–

82% and 88–90% respectively. The accuracy of MLDA has been compared to four

approaches as presented in Table 6.

The selection of these approaches was made based on their results, which were

detailed enough to compare, and were applied to the same case studies (JHotDraw

version 5.1 and JUnit version 3.7). However, the comparison among design pattern

detection approaches is challenging. This was due to the fact that there is no standard

benchmark to validate the results of each approach. In fact, each approach has its lim-

itations, patterns representation, case studies and validation method. Table 6 shows

the results of design patterns extraction of MLDA, Sub-patterns [11], Sempatrec

[14], DeMIMA [10] and SSA [9]. As Table 6 illustrates, MLDA achieves reasonable

detection accuracy in terms of precision for the detection of JHotDraw and JUnit

instances. In addition, MLDA enhances the detection accuracy which relies on the

principle of relationships matching. The ability of MLDA to build the structure of

each design pattern, record all the object interactions and match the method signa-

tures increase the number of true positive instances. However, MLDA missed the

instances that are partly implemented in the source code, since the SSM relies on

the standard definition of GoF. On the other hand, the lack of dynamic information

explains the existence of false positives. It must be noted that we only compare the

results that DeMIMA, SSA, Sempatrec and Sub-patterns revealed.

5 Threats to Validity

Threats to internal validity concern factors that could affect the results. In this paper,

this is mainly due to the variants of design patterns. Design pattern instances are

recovered based on the standard structural format presented by GoF [1]. More-

over, the way in which the results are validated could affect precision and recall.

A Structural Rule-Based Approach for Design Patterns Recovery 123

Table 6 Comparison of the results of MLDA and that of other approaches

DPs SS MLDA DeMIMA SSA Sempatrec Sub-patterns

P% R% F% P% R% F% P% R% F% P% R% F% P% R% F%

AD JD 85 100 92 4 100 8 44 100 61 45 100

JU 100 45 63 0 17 100 29 100 100 100 100 100 100

DE JD 100 33 50 8 100 15 33 33 33 50 33 40 100

JU 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

CO JD 89 89 89 33 100 50 100 100 100 100 100 100 100

JU NA NA NA 100 100 100 100 100 100 100 100 100 100 100 100

FM JD NA 0 NA 2 100 4 100 67 80 100 100 100 100

JU 100 100 100 100 100 100 100

SI JD 100 100 100 100 100 100 100 100 100 100 100 100 100

JU NA NA NA 100 100 100

OB JD NA 0 NA 25 100 40 50 40 44 50 40 44 100

JU NA 0 NA 25 100 40 100 100 100 100 100 100 100 50 67

TM JD 80 100 89 7 100 13 20 100 33 50 100 67 100

JU 50 100 67 0 100 100 100 100 100 100 100 100 100

VI JD 100 50 67 100 100 100 100 100

JU NA NA NA 100 100 100

Average % 90 63 82 34 100 47 74 88 75 83 89 87 100 94 96

Note AD Adapter DE Decorator CO Command FM Factory Method SI Singleton OB Observer TM
Template Method VI Visitor SS Subject Systems JD JHotDraw JU JUnit P Precision R Recall F
F-measure Blank Not revealed

To validate the number of true positives, false positives and false negatives, we refer

to all publicly published results in the available literature. In fact, we investigated the

results of [7, 9–11, 15, 16]. In addition, we used P-MARt [17], the design pattern

detection tools benchmark platform [18] and the repository of Perceron [19] as the

main benchmarks to validate our results. In doing this, more accurate validation is

performed. Threats to external validity concern the generalization of the results. In

fact, this paper focuses on Java programming language. It could be worthwhile to

conduct the evaluation on other projects having different languages.

6 Conclusion

This paper presented a Multiple Levels Detection Approach (MLDA) to extract

design pattern instances from Java source code. MLDA works on three levels: a

parsing level, a searching level and a method signatures matching level. The parsing

level aims to generate a source code model, which records all objects, classes and

methods interaction of the system under study. Furthermore, the parsing level gen-

erates a library of design patterns that has the form of source class, destination class

and relation type for all GoF design patterns. On the other hand, the searching level

introduces the so-called structural search model (SSM), which involves a searching

124 M.G. Al-Obeidallah et al.

algorithm for each design pattern. The searching algorithm tries to build the pattern

structure incrementally based on the generated source code model. The third level of

MLDA uses a CLIPS inference engine to match the method signatures of the candi-

date design instances to that of the subject system. As the experiment results show,

MLDA is able to extract 23 design patterns with reasonable detection accuracy.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston (1995)

2. CLIPS: A Tool for Building Expert Systems. http://www.clipsrules.net/ (2016). 5 Jan 2017

3. Frost, R., Hafiz, R., Callaghan, P.: Parser combinators for ambiguous left-recursive grammars.

In: 10th International Symposium on Practical Aspects of Declarative Languages (PADL),

ACM-SIGPLAN, vol. 4902, pp. 167–181 (2008)

4. Github. : JavaParser by javaparser. https://javaparser.github.io/javaparser/ (2015). 1 Mar 2015

5. Forgy, C.L.: Rete: a fast algorithm for the many pattern/many object pattern match problem.

Artif. Intell. 19(1), 17–37 (1982)

6. Frakes, W.B., Baeza-Yates, R.: Information Retrieval: Data Structure and Algorithms. Prentice

Hall (1992)

7. Guéhéneuc, Y.G., Sahraoui, H., Zaidi, F.: Fingerprinting design patterns. In Proceedings of

the 11th Working Conference on Reverse Engineering (WCRE), pp. 172–181. IEEE Computer

Society Press, Washington, DC, USA (2004)

8. Guéhéneuc, Y.G., Jussien, N.: Using explanations for design patterns identification. In: Pro-

ceedings of the First IJCAI Workshop Modelling and Solving Problems with Constraints, pp.

57–64 (2001)

9. Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.: Design pattern detection using

similarity scoring. IEEE Trans. Softw. Eng. 32, 11 (2006)

10. Guéhéneuc, Y., Antoniol, G.: DeMIMA: a multilayered approach for design pattern identifica-

tion. IEEE Trans. Softw. Eng. 34 (2008)

11. Yu, D., Zhang, Y., Chen, Z. : A comprehensive approach to the recovery of design pattern

instances based on sub-patterns and method signatures. J. Syst. Softw. 103, 1–16 (2015)

12. Shi, N., Olsson, R.: Reverse engineering of design patterns from java source code. In: ASE 06:

Proceedings of the 21st IEEE International Conference on Automated Software Engineering,

pp. 123–134 (2006)

13. Uchiyama, S., Kubo, A., Washizaki, H., Fukazawa, Y.: Detecting design patterns in object-

oriented program source code by using metrics and machine learning. J. Softw. Eng. Appl. 7,

983–998 (2014)

14. Alnusair, A., Zhao, T., Yan, G.: Rule based detection of design patterns in program code. Int.

J. Softw. Tools Technol. Trans. 16(3), 315–334 (2014)

15. Lucia, A.D., Deufemia, V., Gravino, C., Risi, M.: Design pattern recovery through visual lan-

guage parsing and source code analysis. J. Syst.Softw. 82, 1177–1193 (2009)

16. Zanoni, M.: Data mining techniques for design pattern detection. Ph.D. Dissertation, Universita

degli Studi di Milano-Bicocca (2012)

17. Guéhéneuc,Y.-G.: P-MARt: Pattern-like micro architecture repository. In: Proceedings of the

1st EuroPLoP Focus Group on Pattern Repositories (2007)

18. Arcelli Fontana, F., Caracciolo, A., Zanoni, M.: DPB: a benchmark for design pattern detection

tools. In Proceedings of the 16th European Conference on Software Maintenance and Reengi-

neering (CSMR 12) pp. 235–244. IEEE Computer Society, Szeged, Hungary (2012)

19. Ampatzoglou, A., Michou, O., Stamelos, I.: Building and mining a repository of design pattern

instances: practical and research benefits. Entertain. Comput. 4, 131–142 (2013)

http://www.clipsrules.net/
https://javaparser.github.io/javaparser/

DRSS: Distributed RDF SPARQL Streaming

Amadou Fall Dia, Zakia Kazi-Aoul, Aliou Boly and Elisabeth Métais

Abstract In this work, we present DRSS, a distributed and scalable engine for RDF

streams processing. DRSS proposes a new query syntax for continuous querying of

RDF data streams. The system includes among others three efficient algorithms for

(1) rewriting continuous queries sharing common sub-structures (2), SPARQL

query partitioning across multiple computer nodes according to an efficient dis-

tribution strategy and (3) query-based data distribution for local processing of

sub-queries minimizing data exchanged across nodes. Our system combines both

real-time data from multiple sources and stored RDF processing. DRSS and its all

algorithms are implemented using the real-time data processing platform Storm

Framework, which provides parallelization mechanisms of query operators. The

DRSS evaluation is conducted on a real dataset containing up to 1 million RDF

graphs. Experiments and obtained results confirm the scalability and the effective-

ness of our system.

Keywords DRSS ⋅ RDF graphs streams ⋅ Distributed sparql

1 Introduction

Data streams are becoming more and more common in many applications like web

logs activity, social networking, weather forecast, sensor networks, traffic manage-

ment, real-time geolocation and so on. Processing such data in near real-time has

A.F. Dia (✉) ⋅ Z. Kazi-Aoul

LISITE Lab, ISEP, 75006 Paris, France

e-mail: amadou.dia@isep.fr

Z. Kazi-Aoul

e-mail: zakia.kazi@isep.fr

A. Boly

LID Lab, UCAD, Dakar-Fann, Senegal

e-mail: aliou.boly@ucad.edu.sn

E. Métais

CEDRIC Lab, CNAM, 75003 Paris, France

e-mail: elisabeth.metais@cnam.fr

© Springer International Publishing AG 2018

R. Lee (ed.), Software Engineering Research, Management and Applications,
Studies in Computational Intelligence 722, DOI 10.1007/978-3-319-61388-8_8

125

126 A.F. Dia et al.

been widely studied in database community and then, several Data Streams Man-

agement Systems (DSMSs) [5] and Complex Event Processing (CEP) systems [11]

have been proposed. DSMSs and CEP allow on-the-fly processing of data streams

by exploiting the power of continuous query languages such as CQL [4]. However,

due to the heterogeneous nature of incoming data and its lack of proper metadata,

such systems lack of explicit operators that enable continuous and coherent query-

ing and reasoning over these data from multiple sources. Several work groups have

attempted to fill this gap by lifting data streams to semantic level.

The Resource Description Framework (RDF
1
) is the main element for describ-

ing data in the semantic web. Data are encoded in RDF model and queried with the

SPARQL Protocol and RDF Query Language (SPARQL
2
). The W3C work group

RSP
3

(RDF Stream Processing) has extended SPARQL for continuous RDF stream-

ing. The main non-distributed proposed extensions are Streaming SPARQL [8], C-

SPARQL [6], SPARQLstream [10], CQELS [17], EP-SPARQL [2] and Sparkwave

[16]. Authors have developed a set of operators to support continuous evaluations

of SPARQL queries. All the proposed systems provide, among others, solutions to

address the heterogeneity issue of data streams but not the parallelism and scal-

ability aspect in RDF stream processing. Indeed, as mentioned in [18, 19], the

existing approaches start to fail in many cases such as high number of concurrent

queries, large static data or wide range of data generation frequencies. Thus, several

approaches such as DIONYSUS [12], CQELS Cloud [19] and C-SPARQL on S4 [15]

are proposed for real-time processing of large RDF data in parallel and distributed

way. The distributed and highly scalable computing of large RDF streams leads to an

efficient data and query partitioning across multiple computer nodes while minimiz-

ing data communications between them. Existing systems have proposed advanced

techniques for supporting scalability but none of them provides at the same time

scalability, combining real-time processing and background knowledge and a full

implemented and open source system.

In this work, we introduce DRSS (Distributed RDF SPARQL Streaming), a dis-

tributed system for continuous processing of large RDF streams. DRSS addresses all

above issues by presenting algorithms (1) for rewriting continuous queries shar-

ing common sub-structures, for (2) SPARQL query partitioning across computer

nodes and (3) knowledge-based graph partitioning for locally processing RDF data

as much as possible while minimizing data exchanged between machines. Query

partitioning and optimization are done “offline” while input data are dynamically

distributed over nodes. We also implement a key-value memory storage mechanism

of static RDF data to alleviate the cost of join operations between streams and stored

graphs. Our system includes both real-time and stored RDF data processing. DRSS is

implemented using the real-time distributed platform Apache Storm which provides

a set of primitives for parallelization.

1
https://www.w3.org/RDF/.

2
https://www.w3.org/TR/sparql11-query/.

3
https://www.w3.org/community/rsp/.

https://www.w3.org/RDF/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/community/rsp/

DRSS: Distributed RDF SPARQL Streaming 127

The remainder of this paper is organized as follows. Section 2 is devoted to the

presentation of related work in RDF stream processing. Section 3 presents the pro-

posed DRSS architecture and incorporated algorithms. Section 4 provides the details

of the implementation before stating the experimental setup and evaluation results

of the implemented DRSS system. Finally, Sect. 5 concludes this work and draws

some perspectives.

2 Related Work

The task of managing RDF data streams is a well studied problem with many

works that mainly extend the semantic query language SPARQL. In this section, we

firstly present previous approaches that not offer support for parallel and distributed

processing before analyzing systems around distributed computing RDF streams.

2.1 Centralized RDF Stream Processing

Existing RSP languages and associated systems are C-SPARQL [6], SPARQLstream
[10], Sparkwave [16] and CQELS [17]. They address a variety of issues includ-

ing continuous SPARQL query processing and stream reasoning. C-SPARQL and

CQELS reuse existing and tested technologies for stream management and knowl-

edge discovering. For instance, C-SPARQL uses ESPER
4

or STREAM [3] and Jena
5

or RDF4J.
6

CQELS implements operators of Aurora [1] and the underlying TDB
7

libraries of Jena. RSP systems use triple-based model where each input event or

fact is encoded within one or a sequence of separated RDF triples. However, in

the context of stream reasoning, events are frequently captured by a set of

triples grouped around a RDF graph but not by a succession of separated input

triples. Unlike RSP systems, the CEP
8
-based system EP-SPARQL [2] provides an

unified language for event processing. The system differs in its way of representing

time: temporal operators expressed in terms of sequence and simultaneity. Similar

to RSP engines, EP-SPARQL uses RDF triple model as input format. Then, all the

approaches used in these systems can not be adopted, for the graph-based model rep-

resentation (raising the locks of variety and heterogeneity of the data sources) or for

the complex and distributed processing of large RDF graphs streams.

4
http://www.espertech.com/esper/.

5
https://www.jena.apache.org/.

6
http://www.rdf4j.org/sesame/.

7
https://www.jena.apache.org/documentation/tdb/.

8
Complex Event Processing.

http://www.espertech.com/esper/
https://www.jena.apache.org/
http://www.rdf4j.org/sesame/
https://www.jena.apache.org/documentation/tdb/

128 A.F. Dia et al.

2.2 Distributed Stored RDF Data Processing

The problem of distributing RDF graphs into a set of clusters is widely discussed with

stored RDF graphs [9, 13, 14, 20, 22, 23]. The distribution process is performed

both on the RDF graphs storage and on the SPARQL query execution. The first one

is usually performed only once, and a SPARQL 1.1 federated query can be used

for executing distributed queries over different SPARQL endpoints. However, this

technique is not applicable in streaming context where, new sources and new data

are dynamically added at fast and variable speeds. The distribution strategies of RDF

graphs streams must be adapted to sliding windows which open the door for the

combination of RSP systems to distributed approaches over stored RDF graphs.

2.3 Distributed RDF Stream Processing

In order to efficiently process the large distributed amount of RDF graphs streams,

a number of works have been proposed in Semantic Web Community on extending

SPARQL around distributed streaming approaches.

∙ DIONYSUS [12]. Authors introduce a design of a promising system which pro-

vides one query interface to enable analytical, streaming and sequence-based

queries over distributed RDF graphs. In order to handle data sources variety and

heterogeneity issues, authors firstly modeled data as RDF graphs and based their

envisioned design on the following four main goals. The first goal is the defini-

tion of a Common Basic Graph Pattern store (CBGP-store) which is assigned to

a generic BGP and manually or automatically generated from a domain ontol-

ogy. This storage model allow incremental and indexed computation over sliding

windows for an efficient analysis of data at the end. Their second goal is to locally

optimize and process an Exact Query Graphs (EQGs) on its foreseen CBGP-store.

An EQGs is the query oriented version of a the CBGP-store (i.e. more selec-

tive form) with distributed triples patterns and SPARQL1.1 operators (select,
optional, union, filter, group by, etc.). Their third goal is to

enable different kinds of queries such as analytical, streaming and sequence-based

through a single query interface. The fourth and last goal is providing the seman-

tic completeness and locations transparency. This means adding coherence (for

instance, new data source added) and query optimization strategies and reduce

network traffic by employing local optimization and computation strategies.

∙ CQELS Cloud [19]. CQELS authors have recently introduced a new system called

CQELS cloud. The proposed system is among the first systems addressing elastic

and scalable processing for Linked Stream Data. The system distributes the com-

puting and is based on an elastic execution model and a parallelizing algorithms

for incremental computing of continuous query operators.

DRSS: Distributed RDF SPARQL Streaming 129

– Elastic execution model for computing continuous queries over RDF streams:

the execution model of CQELS Cloud handles a set of continuous query in

CQELS query language syntax (CQELS-QL [17]) to produce a set of stream

results in one of SPARQL result format. An execution coordinator maps opera-

tors among processing nodes. This execution model minimizes communication

cost by first using the dictionary encoding approach of CQELS for compression

and second deploying on the same machine, operators that consume the same

input data.

– Parallelizing algorithms for incremental processing of continuous query opera-

tors: each continuous operator of the CQELS-QL (e.g. Aggregation, JOIN and

Filter) is considered as complex because of the set of mapping and intermediate

results they needed to compute a query.

Each Operator Container (OC) hosts a set of physical query operators that process

input streams and forward the output to the consuming operators in the network.

The Execution Coordinator coordinates the cluster of OCs using coordination ser-

vices provided by Storm and HBase
9

which share the same Zookeeper
10

cluster.

The system evaluations
11

show how the throughput scales linearly with the num-

ber of processing nodes using LSBench scenario [18]. However, the system only

considers matching, join, and aggregate operators and do not include any reason-

ing task.

∙ C-SPARQL on S4 [15]. Authors present a new implementation of C-SPARQL

query based on the distributed streaming platform S4.
12

The system operates over

a fixed RDF schema and implements a partial RDFS reasoning to provide an

efficient pattern matching over RDF streams, adding complexity to the system.

Authors distributed continuous tasks over set of nodes by considering two sub-

tasks:

– Closure computation: for distributing triples, authors present a new improved

schema which reduces the number of times each triple needs to be processed.

– Query answering: the system provides a set of stream operators used to support

key features in C-SPARQL.

Authors implement the projection, join, selection, filtering and aggregation opera-

tors. The system supports time based window and does not implement count-based

window. Their implementation also do not support complex time join and can not

response to continuous queries with time event overlapping.

9
https://www.hbase.apache.org/.

10
https://www.zookeeper.apache.org/.

11
https://www.code.google.com/p/cqels/wiki/CQELSCloud.

12
http://www.incubator.apache.org/s4/.

https://www.hbase.apache.org/
https://www.zookeeper.apache.org/
https://www.code.google.com/p/cqels/wiki/CQELSCloud
http://www.incubator.apache.org/s4/

130 A.F. Dia et al.

Fig. 1 DRSS system architecture

3 DRSS

In this section, we present our proposed system DRSS (Distributed RDF SPARQL

Streaming) and extended SPARQL query language CRSS (Continuous RDF

SPARQL Streaming) for continuous querying of RDF graphs within the DRSS

system.

Our proposed architecture for Distributed RDF SPARQL Streaming is shown in

Fig. 1. This architecture first links six components spread from a → to f.

The component a stores all the user queries expressed using the CRSS query

syntax (that will be detailed in the following) and is linked to the DRSS offline (b).

The Query Parser module splits the CRSS query into dynamic and static part.

The dynamic part contents all the identifiers of each stream source within the original

query and the window parameters. The static part represents the related SPARQL

which is transmitted to the Query Rewritter module and then to the Query
Partitioner. These two modules will be explained in detail in the following.

3.1 Query Rewritter Module

The Query Rewritter uses the algorithm 1 for rewriting all SPARQL queries

sharing sub-structure(s). A common sub-structure(s) can be designed by one or more

triple patterns (located in the WHERE clause). Listings 1 and 2 give two examples of

simple SPARQL queries retrieving all stored Ids and geographical location of each

sensor observing water pressure in a drinking water distribution network (dwdn).

DRSS: Distributed RDF SPARQL Streaming 131

@prefix ex: <http ://wdn.org/sensor/el/> .
@prefix ms: <http :// datacollect.rsp.org/> .
SELECT ?sensorId ?lat ?long
WHERE {

?sensId ms:observation "pressure ";
ex:hasLocation ?locatId .

?locatId ms:latitude ?lat ;
ms:longitude ?long .}

Listing 1 First query

@prefix ex: <http ://wdn.org/sensor/el/> .
@prefix ms: <http :// datacollect.rsp.org/> .
SELECT ?sensorId ?sectId ?cityId
WHERE {

?sensId ms:observation "pressure ";
ex:hasLocation ?locatId .

?locatId ms:sectorId ?sectId;
ms:city ?cityId .}

Listing 2 Second query

Using the algorithm 1, we notice that the two queries share a triple pattern. The

listing 3 shows the rewritten query from both above queries.

@prefix ex: <http ://wdn.org/sensor/el/> .
@prefix ms: <http :// datacollect.rsp.org/> .
SELECT ?sensorId ?lat ?long ?sectId ?cityId
WHERE {

?sensId ms:observation "pressure ";
ex:hasLocation ?locatId .

OPTIONAL {? locatId ms:latitude ?latt .}
OPTIONAL {? locatId ms:longitude ?long . }
OPTIONAL {? locatId ms:sectorId ?sectId .}
OPTIONAL {? locatId ms:city ?cityId . }}

Listing 3 Rewritten query

Finally, the algorithm 1 regroups all common patterns of various SPARQL queries

before rewriting them into a single query. Its advantages are a unique evaluation

of common parts to several requests and the non-duplication of a sub query graph

process observed in more than one CRSS query. All rewritten queries are then passed

to the Query Partitioner.

132 A.F. Dia et al.

Algorithm 1: Query Rewritter Module

Input : Set of SPARQL queries Qinitial = {Qcrss1 ,Qcrss2 , ...,Qcrssn}
/* Qcrssi are the SPARQL queries extracted from CRSS queries */

Output: Set of rewritten SPARQL queries QRewritten = {Q1,Q2, ...,Qk}
/* with k ≤ n (k = n in case of there is no shared

sub-structure(s) between queries) */

1 Initialize Sp = ∅ a set of query graph pattern paths

2 foreach Q ∈ Qinitial do
3 if Q.formType =="select" then
4 Let Vars be the set of variables
5 Let Grp be the grouping set
6 Let Odr be the ordering set
7 end
8 Let Tp be the set of triples patterns
9 Let Sp be the set of sub pattern paths

10 Build the Q graph pattern paths PQ = {Vars,Grp,Odr,Tp, Sp}
11 Sp.add(PQ)

12 end
13 Initilialize the set of query path indexer Q = ∅ for each Q

/* Each query Q has its set of indexer to one or more other
queries with which it shares a sub-structure */

14 i ← 0
15 j ← 0
16 while i < Sp.size() do
17 j ← i + 1
18 while j < Sp.size() do
19 if PQi

.sharePatternWith(PQj
) then

20 Qi
.add(IdQj

) /* IdQj
is the query identifier */

21
22 end
23 end
24 end
25 foreach p ∈ PQ do
26 Find all p shared query indexes for combining them
27 Qpath ← all shared patterns

28 Qoptional ← all not shared patterns

29 QRewritten.add(Qpath,Qoptional)

30 end
31 return QRewritten

DRSS: Distributed RDF SPARQL Streaming 133

3.2 Query Partitionner Module

Using algorithm 2, the module partitions each SPARQL query based on the join

operation. We first list all join nodes present in the query graph pattern and define

the notions of light pattern (pattern including a single join node) and full
pattern (formed by exactly two join nodes). lights are directly assigned to

the corresponding join nodes (and therefore to the corresponding partitions) and the

full ones are duplicated to their different partitions. This method allows to process

a part of the graph pattern locally without requiring communication between the

processing nodes. Moreover, only small portions of the graph (full patterns)

are duplicated between these nodes. Once the different partitions were generated,

we used the syntactic and semantic algebra of SPARQL [21] to generate the most

optimal query execution plan.

Figures 2 and 3 give respectively an example of the extracted SPARQL query

from a CRSS one and its query graph pattern. Figures 4 and 5 show the algebraic join

procedure in partitions and all the resulting query graphs partitions. Each partition

is processed by one or a set of machines without requiring communications between

them. This allows us to parallelize the query process. The resulting query partitions

with better execution plans are deployed to the processing nodes (machines) using a

distribution and parallelism mechanism based on the Apache Storm topology.

During the chain transmission b → to e, the offline module shares all the infor-

mation about the query partition Id, the original query Id, the stream Id, the window

type, and the window parameters. We need all of them to properly handle and parti-

tion the input RDF graphs.

3.3 RDF Graph Partitioner Module

The DRSS real-time uses the algorithm 3 for partitioning each incoming RDF

graph. The partitioning method remains based on the information gathered from

query partitioning step i.e. the query identifier and its partitions, the patterns included

in each partition, etc. The interest of this method is to treat each pattern locally.

Fig. 2 A CRSS SPARQL query example

134 A.F. Dia et al.

Algorithm 2: Query Partitioner Module

Input : SPARQL query Q, and the partition degree N
Output: Set of SPARQL query partitions Qp = {Q1,Q2, ...,Qn}

1 GraphPatt ← all BGP of Q
/* BGP ⇔ SPARQL query basic graph pattern */

2 Let joinNode = {node ∈ BGP, Degr(node) > 1 ∧ node ≠ predicate}

/* Degr(node) means the sum of all input and output links of
the node */

3 Let lightPattern be a semantic link between two nodes where one of
them is not a joinNode

4 Let fullPattern be a semantic link between two joinNode
5 NbrOfJoinNodes ← joinNodesCounter(BGP)
6 DuplicatePattern = ∅
7 i ← 0
8 while i < NbrOfJoinNodes do
9 create empty query partition Qi = ∅
10 end
11 foreach pattern ∈ BGP do
12 if pattern is lightPattern then
13 assign pattern to the corresponding partition Qi of the

current joinNode
14 else
15 assign pattern to both corresponding partitions Qi and Qj, (i ≠ j)

of the two linked joinNode
/* A pattern shared by two joinNode is always duplicated

to the two related partitions */
16 end
17 foreach Partition Qi do
18 if currentPartitionDegree(Qi) ≥ N then
19 Qpadd(Qi) /* ignored if Qi is already in Qp */

20 end
21 end
22 end
23 return Qp

Before deploying each RDF graph partition to its intended computing node (d→ to
e), we pass it through the windowing systems contained in its original query. Each

RDF graph partition is then directed to the windowing module to which it is con-

nected before being redirected to the node intended to process it as soon as it leaves

the windowing module. Static RDF data are previously imported (during offline
process) and stored into Redis

13
(c → to e). The queries in the different partitions

are formed with the CONSTRUCT header of SPARQL syntax. The intermediate

13
https://www.redis.io/.

https://www.redis.io/

DRSS: Distributed RDF SPARQL Streaming 135

Fig. 3 Corresponding query graph pattern

Fig. 4 Our Algebraic join

procedure

results are supported by the Result formatter and, depending on the header

of the CRSS query, will be destined for a local or remote repository or written on an

outgoing stream (e→ to c or e→ to f).

136 A.F. Dia et al.

Fig. 5 Resulted query graph partitions

Algorithm 3: RDF Graph Partitioner Module

Input : RDF graph G, set of SPARQL query partitions Qp
Output: Set of RDF graphs partitions mapped with query

partition id Gp = {(G1,Qpid), (G2,Qpid), ..., (Gn,Qpid)}

1 MQP = Map<Qp, List<Pattern>>
/* Initialize the map between Query partition id and list of

used patterns */

2 GQp
= ∅ // the graph associated to a given query partition

3
4 foreach triple ∈ G do
5 foreach Q ∈ Qp do
6 if queryPatterns(MQP,Q) contains triple then
7 GQp

← addNewPattern(GQ, triple)

8 updateGraphSet(GQp
, queryId(Q))

9 end
10 end
11 end
12 return Gp

DRSS: Distributed RDF SPARQL Streaming 137

3.4 CRSS Query Language

We present our continuous extension of SPARQL query named CRSS (Continu-

ous RDF SPARQL Streaming). CRSS is basically a near C-SPARQL [7] query

language for continuous processing of RDF graphs streams grouping all the oper-

ators of queries present in SPARQL1.1. Thus, in a first step, we have defined a new

native query syntax, close to that of C-SPARQL. The presented anatomy of a CRSS

query takes into account five (5) variants of windows that we detail through a sample

request applied on a case study concerning data from real-time monitoring of a dwdn

(pressure, water flow, water level, chlorine level, etc.).

QUERY queryID AS {
PREFIX namespaceIRI

SELECT | CONSTRUCT | DESCRIBE | ASK
*FROM [NAMED] STREAM <streamIRI> WINDOW
*FROM [NAMED] <staticSourceIRI>
WHERE { Query graph pattern(s) }
GROUP BY expr HAVING expr ORDER BY expr }
[REFRESH time timeUnit]

∙ [RANGE EVENTS 1000] returns the last 1000 pressure values observed in a

given area.

∙ [RANGE EVENTS BATCH 1000] returns a collection of 1000 pressure values

observed in a given area.

∙ [RANGE 10m STEP 1m] returns every minute, all pressure values observed in a

given area over the last 10 minutes of the implicit timestamp.

∙ [EXTRANGE 10m STEP 1m] returns every minute, all pressure values observed

in a given area over the last 10 minutes of the explicit timestamp.

∙ [RANGE 10m EVENT BATCH 1000] returns the first 1000 pressure values

collected in a given sector or those observed after 10 min and which would not

have reached the value 1000. This last window is namedhybridWind and allows

us to prevent peak cases because the first of those satisfied condition (1000 events

or 10 min) is immediately processed.

The REFRESH operator is optional and represents the frequency of refreshing the

query execution.

4 Implementation and Evaluation

4.1 Datasets Generator and Implementation

In this section, we evaluate our parallelization and distribution strategy over synthetic

RDF datasets generated for meeting specific needed complexities that may not be

138 A.F. Dia et al.

Table 1 RDF graphs streams generator

Stream Id LB UB Stream rate

(G/s)

Topic Id MAX

w:40fe 20 40 10 fi:40fe 1000000

w:a983 40 60 20 fi:a983 1000000

w:3fef 60 80 30 fi:3fef 1000000

w:9b20 80 100 40 fi:9b20 1000000

w:9eab 100 120 50 fi:9eab 1000000

w:4b4e 120 160 70 fi:4b4e 1000000

w:a1da 160 200 90 fi:a1da 1000000

w:fc3b 200 240 120 fi:fc3b 1000000

found in the available datasets. Datasets relate to the monitoring of a drinking water

distribution networks. We use a robust and generic random RDF graphs streams

generator which contains a different level of simulation configuration. We give an

example of listed characteristics in table I. In the simulation generator, we allocate a

temporary Stream Id for each stream. This identifier is used for only dissociating

the different generated streams and will be replaced by the specified kafka
14

producer

Topic Id while entered to the kafka queue. Highlight that, in DRSS, each given

stream items is written on a unique kafka topic; then, we have the same number of

topics as streams.

The simulation runs a parallel workflow (precisely a number of threads equiva-

lent to the number of streams) and then sends all generated streams to their specific

kafka topics. A workflow is composed by the graph generation and the graph writing

to kafka topic. The graph generation randomly generates an RDF graph i.e., a graph

with a number of triples chosen between LB (Lower Bound) and UB (Upper Bound).

To avoid false rate caused by the offset observed in graph building, we implement a

warmer which generates a set of RDF graphs before start sending the graphs. In this

case, we make sure to avoid a more longer waiting time than the sleep one needed.

The warmer time is calculated as follows: Let n be a random value between LB
and UB and 𝜆 be the time needed to build the graph with (LB+n

2
) triples. We evaluate

the number of optimal graphs N to be generated before start writing them on topic

through the following formula:

N = n ∗ 𝜆.

This random RDF graph construct is required to vary the different processing pat-

terns. We need to control incoming data by varying the stream Rate in terms of

number of RDF graphs per second (G/s). Finally, the maximal number of RDF

graphs to be generated by each stream is given by the MAX parameter (Table 1).

We implement our system using Apache Zookeeper, Apache kafka, Apache

Storm
15

and Redis. An input RDF graph is partitioned and each partition is routed

14
https://www.kafka.apache.org/.

15
http://www.storm-project.net/.

https://www.kafka.apache.org/
http://www.storm-project.net/

DRSS: Distributed RDF SPARQL Streaming 139

to the same bolt which shares the “equivalent” partition. To define how RDF graphs

should be partitioned among the bolts, we use two of eight built-in stream groupings

in Storm namely fields grouping, all grouping. The fields
grouping is used for grouping all RDF graphs partitions sharing the same query

partition Id within the same processing task (processing node). The all
grouping is used for the replication of a full pattern for local and paral-

lel join without communication between nodes. After partitioning, we adopt RDSZ

[?] algorithm for RDF stream compression in a distributed environment. RDSZ com-

presses the items into RDF streams using first a differential encoder followed by Zlib

compressor. We first use the URI namespace for reducing the URI names (which are

verbose) in the bindings. We then store each created context (Pattern+Bindings)

in a key-value format into the memory. In this way, all the machines in the cluster

will quickly access the context for decompression.

4.2 Evaluation Setup and Results

We fully implemented DRSS using Java and all experiments are performed using

a cluster of 9 machines running Linux. Each of them has one CPU with 4 cores of

2.4 GHz and 4 GB RAM. Of these 9 machines, there is one we named fake-node.

The fake-node is not a central or master node but is first used for running the

DRSS-offline queries planner (Query rewriter, Query partitioner and Query

optimizer (see Sect. 3) before taking the role of result formatting. The Result
formatter continuously receives RDF graphs results from computer nodes where

only CONSTRUCT sub-queries are executed whenever the header of the registered

CRSS query (SELECT, CONSTRUCT or DESCRIBE). Each CRSS query has an

identifier which is part of its query partition. The query partition Id is also found on

the computing nodes that is intended for processing it. On the real time side, each

input RDF graph has an event Id. After partitioning, the new id will be composed by

the stream Id, the ids of the queries and partitions that should process this sub-graph.

If merging stored RDF graphs with RDF streams is needed, the data importation

is done during offline process and stored in Redis. This procedure avoids the risk

of blockage in the network during the invocation of remote RDF repositories. The

local memory storage allows us to locally join static RDF data to RDF graphs streams

in near real-time. It also takes into account a refreshment mechanism of stored data.

Indeed, we consider static RDF data as data streams with low frequency refreshment

(every 24 h or every week, etc.).

For evaluation, we first consider four DRSS queries Q1, Q2, Q3 and Q4. For

each query, we measure the average execution time considering number of compute

nodes and the size of the window. We do not take into account the time needed

for result formatting (i.e. integrating sub-results and writing final results on output

kafka topic(s) or temporary stored for a future procedure of local or remote reposi-

tories refreshment). To test scalability, we vary the size of the cluster and run all 4

queries on clusters with 1, 2, 4, 6 and 8 computing nodes respectively. We normalize

140 A.F. Dia et al.

Fig. 6 DRSS scalability test by varying number of computing nodes

the queries execution time to those considered in our baseline where we process all

queries on a single node.

In Fig. 6 we observe a low execution time as the number of computing nodes

increases. This is due to the local processing of a query partition. There is no shared

intermediate result between nodes during the process and the number of join nodes

within the query does not have a great influence from 2 machines. This is due to

the fact that the join is done in parallel by duplicating the join patterns (full
pattern).

The above experiments was done with fixed window size. For testing scalability

in term of data size to be processed in a window, we resume a similar evaluation

by varying the window data size. The results of this evaluation are shown in Fig. 7

Fig. 7 DRSS sclability test by window length

DRSS: Distributed RDF SPARQL Streaming 141

that plots the evolution of the execution time when we increase the window length in

terms of number of RDF graphs. We fixed the input stream rate at 300 graphs/second.

Naturally, as the number of RDF graphs to be processed in a window increases, the

execution time of each query also increases. The execution time observes a nearly

linear evolution confirming the scalability achieved in Fig. 6.

Our last evaluations relate to concurrent queries (Q1–Q5) and the combination of

multiple streams sources in a query (Q5). The given queries are not interdependent

but, we configure their outputs such a way that they depend on each others. We first

consider a set of concurrent queries (i.e. queries that need results provided by one

or more queries in the same topology running) and measure the throughput RDF

graphs (RDF graphs/second) while fixing the window size to 100,000 graphs for all

queries and varying the number of computing nodes. The links observed between

used queries can be represented as follows:

∙ Q2 → needs Q1
∙ Q3 → needs Q1 & Q2
∙ Q4 → needs Q1 & Q2 & Q3
∙ Q5 → needs Q1 & Q2 & Q3 & Q4

In Fig. 8 we tend to have a linear growth of the throughput when we increase the

number of computing nodes. However, the throughput is negatively proportional to

the number of queries that a query depends. But this evolution can always be offset by

additional computing nodes. Given that Q5 does not use left outer join and

the possibility that the internal query (query on which depends Q5) does not return

result the query Q5 does not return any result during processing time. Similarly,

we can do the same observation in Fig. 9 for the variation of the number of source

streams joined within the query Q5.

Fig. 8 DRSS concurrent queries evaluation

142 A.F. Dia et al.

Fig. 9 DRSS multiple streams evaluation

The more computing nodes are added, the more the expected performances

believe. These experiments demonstrate the scalability of our parallelization strategy

of the processing and the distribution of the data.

Highlight that we do not test the elasticity of our system but we have configured

a robust mechanism which allocate an input task (with partition Id) dedicated to a

bolt which has not sent acknowledgment (Ack), to an another bolt.

5 Conclusion and Future Work

In this paper, we present DRSS, a distributed RDF SPARQL Streaming for scal-

able and continuous processing of continuous SPARQL queries expressed using our

CRSS query syntax. We proposed three algorithms for query rewriting, query parti-

tioning and RDF graph partitioning. We also propose a new extension of SPARQL

neared those proposed by C-SPARQL and regrouping all SPARQL query operators

with three new variants of window. Experiments show excellent scalability in term

of query execution time. In a near future, we plan to work on the problem of scal-

able combinations of large stored RDF data and their refreshment during continuous

process.

Acknowledgements This work was performed under the FUI Waves project. This project aims

to design and develop a distributed processing platform of massive data streams. The case study

concerns the real-time monitoring of a drinking water distribution network.

DRSS: Distributed RDF SPARQL Streaming 143

Appendix

QUERIES

∙ Q1: Query q1 AS {SELECT ?eID ?obsID ?result ?sID FROM STREAM <http ∶
∕∕ex.org∕obs> [RANGE EVENTS 5000] WHERE { ?eID zone ?zID . ?eID start-
Time “2014-01-01T00:00:00.000+01:00” . ?eID isProducedBy ?sID . ?eID has-
Value ?result . ?eID hasObservation ?obsID .?result type ?ObsID . ?result num-
Value 1.3e-1 . ?obsID inSector ?sectID ?obsID type observationValue .?obsID
unit “CubicMeterPerHour”.}}

∙ Q2: Query q2 AS { SELECT ?pressureSens ?value FROM STREAM
<ex.org∕obs> [RANGE 60s STEP 20s] FROM <http ∶ ∕∕exorg∕staticrepo>
WHERE {?sector rdfs:label “Lou” . ?pressureSens ssn:onPlatform ?sector . ?event
ssn:isProducedBy ?pressureSens; ssn:hasValue ?observation. ?observation a
“pressure” ; w:numValue ?value.} }

∙ Q3: Query q3 AS SELECT ?pressureSens ?value FROM STREAM <ex.org∕obs>
[RANGE 60s STEP 20s] FROM <http ∶ ∕∕exorg∕staticrepo>WHERE {?sector
rdfs:label “Lou” . ?pressureSens ssn:onPlatform ?sector . ?event ssn:isProduced
By ?pressureSens; ssn:hasValue ?observation. ?observation a “pressure” ; w:num
Value?value.}}

∙ Q4: Query q4 AS SELECT ?sensor ?value FROM STREAM <http ∶ ∕∕ex.sh>
[RANGE EVENTS BATCH 1000] WHERE {?eventID ssn:hasValue observation;
ssn:isProducedBy ?sensor ; a ssn:SensorOutput. ?observation qudt:numValue
?value; qudt:unit “http://qudt.org/unit#CubicMeterPerHour”; a ssn:Observation
Value .}}

∙ Q5: QUERY q5 AS { SELECT ?aSub ?anObj (count(distinct ?subject) as ?count)
FROM STREAM < http ∶ ∕∕example.org∕observations1 > [RANGE EVENTS
10000] FROM NAMED < http ∶ ∕∕repository.org∕biblio.rdf > FROM STREAM
< http ∶ ∕∕example.org∕observations2 > [RANGE 1m STEP 30s] FROM
NAMED < http ∶ ∕∕repository.org∕book.rdf > WHERE {?subject weather:type
?object . ?aSub sens-obs:aProp ?anObj ; sens-obs:anotherProp ?anotherObj ;
{ select ?name (count(distinct ?object) as ?count2) FROM STREAM < http ∶
∕∕example.org∕observations2 > [RANGE 2m STEP 30s] FROM STREAM <

http ∶ ∕∕example.org∕observations3 > [RANGE 10m TUMBLING] FROM
NAMED< http ∶ ∕∕repository.org∕biblio.rdf >WHERE {?object weather:name
?name ; sens-obs:aProp ?aName .} GROUP BY ?name }} GROUP by ?aSub
?anObj }}

144 A.F. Dia et al.

References

1. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M.,

Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data stream management.

VLDB J. Int. J. Very Large Data Bases 12(2), 120–139 (2003)

2. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: Ep-sparql: a unified language for event

processing and stream reasoning. In: Proceedings of the 20th International Conference on

World Wide Web, pp. 635–644. ACM (2011)

3. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R., Srivastava,

U., Widom, J.: Stream: the stanford data stream management system. In: Data Stream Man-

agement, pp. 317–336. Springer (2016)

4. Arasu, A., Babu, S., Widom, J.: The cql continuous query language: semantic foundations and

query execution. VLDB J. Int. J. Very Large Data Bases 15(2), 121–142 (2006)

5. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream

systems. In: Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium

on Principles of Database Systems, pp. 1–16. ACM (2002)

6. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment for c-sparql

queries. In: Proceedings of the 13th International Conference on Extending Database Technol-

ogy, pp. 441–452. ACM (2010)

7. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-sparql: a continuous query

language for RDF data streams. Int. J. Semant. Comput. 4(01), 3–25 (2010)

8. Bolles, A., Grawunder, M., Jacobi, J.: Streaming sparql-extending sparql to process data

streams. Semant. Web: Res. Appl. 448–462 (2008)

9. Buil-Aranda, C., Arenas, M., Corcho, O., Polleres, A.: Federating queries in sparql 1.1: syntax,

semantics and evaluation. Web Semant.: Sci. Serv. Agents World Wide Web 18(1), 1–17 (2013)

10. Calbimonte, J.P., Corcho, O., Gray, A.J.: Enabling ontology-based access to streaming data

sources. In: The Semantic Web–ISWC 2010, pp. 96–111. Springer (2010)

11. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co. (2010)

12. Gillani, S., Picard, G., Laforest, F.: Dionysus: towards query-aware distributed processing of

RDF graph streams. In: EDBT/ICDT Workshops. Citeseer (2016)

13. Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M.: Triad: a distributed shared-nothing rdf

engine based on asynchronous message passing. In: Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data, pp. 289–300. ACM (2014)

14. Hammoud, M., Rabbou, D.A., Nouri, R., Beheshti, S.M.R., Sakr, S.: Dream: distributed rdf

engine with adaptive query planner and minimal communication. Proc. VLDB Endow. 8(6),

654–665 (2015)

15. Hoeksema, J., Kotoulas, S.: High-performance distributed stream reasoning using s4. In:

Ordring Workshop at ISWC (2011)

16. Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pattern matching

over RDF data streams. In: Proceedings of the 6th ACM International Conference on Distrib-

uted Event-Based Systems, pp. 58–68 (2012)

17. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive approach for

unified processing of linked streams and linked data. In: The Semantic Web–ISWC 2011, pp.

370–388. Springer (2011)

18. Le-Phuoc, D., Dao-Tran, M., Pham, M.D., Boncz, P., Eiter, T., Fink, M.: Linked stream data

processing engines: facts and figures. Semant. Web-ISWC 2012, 300–312 (2012)

19. Le-Phuoc, D., Quoc, H.N.M., van Le, C., Hauswirth, M.: Elastic and scalable processing of

linked stream data in the cloud. In: International Semantic Web Conference, pp. 280–297.

Springer (2013)

20. Makris, K., Bikakis, N., Gioldasis, N., Christodoulakis, S.: Sparql-rw: transparent query access

over mapped RDF data sources. In: Proceedings of the 15th International Conference on

Extending Database Technology, pp. 610–613. ACM (2012)

21. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. ACM Trans. Database

Syst. (TODS) 34(3), 16 (2009)

DRSS: Distributed RDF SPARQL Streaming 145

22. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: Fedx: a federation layer for

distributed query processing on linked open data. In: Extended Semantic Web Conference, pp.

481–486. Springer (2011)

23. Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A distributed graph engine for web scale

rdf data. In: Proceedings of the VLDB Endowment, vol. 6, pp. 265–276. VLDB Endowment

(2013)

An Efficient Approach for Real-Time
Processing of RDSZ-Based Compressed
RDF Streams

Ndéye Bousso Déme, Amadou Fall Dia, Aliou Boly, Zakia Kazi-Aoul
and Raja Chiky

Abstract In recent years, the volume of generated RDF graphs streams from

different fields of applications is very large and therefore difficult to process in an

optimized manner. Indeed, processing such data in conventional triplestores can be

costly in terms of execution time and memory consumption. Several works have

examined data compression approach both on static and dynamic RDF data. In addi-

tion to those based on stored RDF data, two recent compression algorithms RDSZ

and ERI were focused on RDF streams. Continuous compressed format requires

less memory space but cannot be exploited through SPARQL queries. In this paper,

we propose an approach for continuous querying RDSZ-based RDF streams with-

out decompression phase. We add three algorithms from simple to aggregate query

execution over RDSZ compressed items. Our experimentation use real datasets to

demonstrate the effectiveness and efficiency of our proposition in term of query exe-

cution time and memory save.

Keywords RDF streams ⋅ RDSZ ⋅ Compression ⋅ Continuous querying

N.B. Déme ⋅ A. Boly

LID Lab, UCAD, Dakar-Fann, Senegal

e-mail: ndeyebousso.deme@ucad.edu.sn

A. Boly

e-mail: aliou.boly@ucad.edu.sn

A.F. Dia (✉) ⋅ Z. Kazi-Aoul ⋅ R. Chiky

LISITE Lab, ISEP, 75006 Paris, France

e-mail: amadou.dia@isep.fr

Z. Kazi-Aoul

e-mail: zakia.kazi@isep.fr

R. Chiky

e-mail: raja.chiky@isep.fr

© Springer International Publishing AG 2018

R. Lee (ed.), Software Engineering Research, Management and Applications,

Studies in Computational Intelligence 722, DOI 10.1007/978-3-319-61388-8_9

147

148 N.B. Déme et al.

1 Introduction

In recent years, large volumes of data has been continuously generated at very fast

speeds by different fields of applications such as social networks, websites logs,

sensor networks, geolocation, quantified-self measurement, logistics management,

traffic management, alarms triggering, etc. Data are issued from multiple sources

and follow different formats (XML, CSV, textual, etc.). Due to the data heterogene-

ity, the semantic web community, with its broad spectrum of technologies (RDF,

SPARQL, RDFS and OWL), has defined a common model for representating and

processing heterogeneous data. More recent works propose to use semantic web tech-

nologies to process continuous RDF streams by providing RSP technologies (RDF

Stream Processing). Among these systems we can cite C-SPARQL [5], CQELS

[17], SPARQLstream [7], EP-SPARQL [3] and Sparkwave [16]. They allow real-

time processing of RDF triples by providing windowing operators or continuous

querying.

However, it can be very difficult to process the input RDF streams due to their

huge volume and its velocity. In order to reduce the cost of data processing, prior

works have adopted RDF data streams partitioning [1], summarization [8] and com-

pression. RDF data compression has given rise to recent works on static (stored)

and dynamic RDF data (streams). Since the “static” approaches [2, 11, 13, 15, 18]

are not suitable to RDF streams, two recent solutions RDSZ [14] and ERI [12] pro-

posed algorithms for RDF data streams compression. Unfortunately, data issued form

RDSZ or ERI compression algorithms cannot be processed (SPARQL queries execu-

tion) without prior decompression phase. Decompression phase naturally increases

the processing cost in term of execution time and memory consumption.

In this paper, we propose an extension of the RDSZ algorithm allowing to query

compressed data immediately. We propose three equivalent algorithms for process-

ing simple SPARQL query, SPARQL queries with FILTER operator(s) and SPARQL

queries with aggregate operator(s) over RDSZ-based compressed RDF data. We

evaluated our approaches using a real world RDF dataset that contains expressive

sensors description of 20,000 weather stations.

The remainder of this paper is organized as follows: Sect. 3 presents the existing

solutions on RDF data compression. We present our approach in Sect. 4 which we

will evaluate in Sect. 5. Section 6 presents the conclusion and some perspectives of

our work.

2 Background and Preliminaries

Integration, processing and analysis of data from different sources require common

representation model. The semantic web was proposed by Tim Berners-Lee (the

inventor of the web). The term refers to an evolution of the syntactic web. According

to Tim Berners-Lee, its implementation would allow automation of a large number

An Efficient Approach for Real-Time Processing . . . 149

Fig. 1 Semantic web stack

of tasks and easier access to knowledge. From a technological point of view, the

semantic web is represented by a broad spectrum of technologies making up its the-

ory. We present in Fig. 1,
1

a widely distributed schema, better known as “the seman-

tic web layer Cake”, and which summarizes the semantic web standard stack, thus

materializing the roadmap drawn up by Tim Berners-Lee [6]. The ascending stack

representation materializes the dependencies between the different standards (each

layer exploiting the previous layers). In the following, we present only the tools we

used in our work and those needed to understand them.

RDF (Resource Description Framework)

RDF is the lowest layer among semantic web-specific standards. It is a labeled

graph template for describing resources formally. It exploits the URI formalism and

imposes a form of subject—predicate—object triples for the expression of knowl-

edge. An RDF triple can be represented as a graph. An RDF Graph is a set of triples

where subjects and objects represent the nodes and predicates form the links between

nodes.

SPARQL (SPARQL Protocol and RDF Query Language)

SPARQL is the W3C standard for querying RDF triples. It is both a language and a

query protocol. The protocol will allow a Web client to consult a service or SPARQL

1
https://www.w3.org/2007/03/layerCake.png.

https://www.w3.org/2007/03/layerCake.png

150 N.B. Déme et al.

Table 1 Example of data stream

Timestamp SensorID Wind speed

...

2008_8_26_21_24_00 ZSFO1 “41.0”

2008_8_26_21_24_03 ZSFO1 “40.8”

2008_8_26_21_24_06 ZSFO1 “40.9”

2008_8_26_21_24_09 ZSFO1 “41.0”

2008_8_26_21_24_12 ZSFO1 “41.2”

...

access point (endpoint), by executing a SPARQL request, which will process the

request to return the responses in different formats (RDF/XML, N3, JSON, etc.). The

language allows querying, modifying, inserting and deleting RDF descriptions using

clauses (similar in some cases to those of the SQL language). SPARQL query head

form must be one of the following clauses: SELECT, CONSTRUCT, DESCRIBE,

ASK. Most of these query forms contain a set of triple patterns called a basic graph

pattern and included WHERE clause. Triple patterns are like RDF triples except that

each subject, predicate, and object can be a variable.

Today, many systems are continuously receiving large amounts of data generated

at high speeds. A Data stream is defined in [9] as an infinite sequence of continuously

generated elements at a fast rate (Table 1).

Windowing in Data Streams

One of the peculiarities of the analysis of data streams with respect to that of the

conventional data is its temporal aspect. Moreover, since a data stream is infinite, it

cannot be treated in its whole entirety. It is therefore necessary to define the portion

of the stream to which a treatment will be applied. To do this, we use windows that

mark the portion of the stream to be processed by referencing a start date and an end

date. It is thus possible to request only a sample of streams and not the entire stream,

accelerating the requests since the streams are continuous elements and therefore

without size limits. There are mainly four window types: fixed window, benchmark

window, sliding window and logical window. The first three are physical windows

based especially on the temporal aspect, and the last one constitutes a windowing

based on the number of elements in the stream.

Physical Window

It’s used to create windows that mark the portion of the stream to be processed by

means of a start date and an end date. There are three types of physical windows

detailed in the following.

An Efficient Approach for Real-Time Processing . . . 151

Fixed Window

is a window where the start and end dates are absolute. For example, a window

between the January 1st, 2016 at 11:00:00 PM and March 31st, 2016 at 11:00:00

PM.

Benchmark Window

is a window where one of the dates is relative, the reference point window is called.

For example, a window between December 31st, 2010 at 00:00:00 and the current

date.

Scrolling or Sliding Window

This is the case if the two dates are relatives. For example, a window covering the

last 10 days or hours.

Logical Window

It is also called a sequential window. The dates are expressed in the order of arrival

of the elements of the stream. For example, a window on the last ten elements of the

stream or in a more flexible way, a window on the 1000th and the 2000th elements

of the stream.

Data Stream Management System (DSMS)

Relational databases remain ubiquitous in the enterprise where applications require

constant storage of data and queries ranging from the simplest to the most complex.

Data are stored statically and update are performed less frequently than tables and

join selection queries. Queries are executed when requested by users and the pro-

vided result reflects the consistent state of the database. These databases are under the

implementation of relational database management systems (RDBMS). New appli-

cations are emerging and they require a new type of data storage and query. Today,

processing time becomes increasingly critical for some applications. They need to

query and analyze data faster, in order to make decisions or react as quickly as pos-

sible. From the control of network traffic to the analysis of transactional logs (web,

banking or telecommunication transactions) and the management of sensors data,

most applications require data management systems able to manage continuous data.

Taking into account criteria that differ from conventional data. Data management

systems (DSMSs) have been designed to meet the needs of many applications for

continuous process of generated data. Unlike DBMSs, DSMSs work with transient

and persistent queries.

Semantic Data Streams

The extraction of knowledge on classical (static) using semantics, has proved its

worth in many fields of application. Moreover, with the recurring problem of “large

volume of data processing and knowledge extraction”, existing techniques are not

152 N.B. Déme et al.

sufficient to obtain and derive information from the large amount of data available.

It is necessary to combine the techniques of representation of the static data in RDF

format with the characteristics and the information contained in the streams in order

to lead to the reasoning and the extraction of pertinent information. Therefore, a new

concept called RDF Stream has been defined in [4, 10], etc.

An RDF stream is a new data type, and is an RDF extension for the semantic

representation of data stream. RDF Stream is an extension to the RDF format by

adding a timestamp. Thus, a RDF Stream is defined as an ordered sequence of pairs,

where each pair is formed of an RDF triple and its timestamp 𝜏.

(< subject1 predicate1 object1 >, 𝜏1)
(< subject2 predicate2 object2 >, 𝜏2)

...

(< subjecti predicatei objecti >, 𝜏i)

The timestamp can be considered as an annotation of the RDF triples, and is

monotonically non-decreasing between the streams. Specifically, the timestamp is

not strictly increasing because it is not necessarily unique. Two or more consecutive

triples may have the same timestamp, meaning that they occur at the same time.

3 Related Work

In this section, we present the existing RDF data compression techniques.

3.1 Approaches over Stored RDF

Several works have been performed for the compression of static RDF data.

3.1.1 Basic Approaches

In [11], several approaches are proposed to compress the RDF data. The first are

using compressors gzip, bzip2 and ppmdi to compress RDF data. The second

approach uses an adjacency list. The third and final approach use an encoding dic-

tionary. The conclusions drawn by the authors are that RDF data are largely com-

pressible and that conventional compression techniques are not applicable on RDF

data.

An Efficient Approach for Real-Time Processing . . . 153

3.1.2 Logical Linked Data Compression

In [15], authors propose an algorithm that compresses real world datasets by gener-

ating a set of logical rules from the dataset. The triples deducted from these rules

are then deleted. Indeed, the algorithm automatically generates a set of rules and

divides the database into two sets of smaller disjoint data, namely a set of active data

and an inactive data set based on these rules. The inactive dataset contains a list of

uncompressed triples that remain and to which no rule can be applied during decom-

pression phase. On the other hand, the active data set contains a list of compressed

triples, to which rules are applied. The evaluation of this algorithm shows that more

than half of the triples can be removed without any loss of integrity.

3.1.3 Scalable RDF Data Compression with MapReduce

The RDF data compression technique with MapReduce proposed in [18] allows to

compress and decompress large amount of RDF data in a parallel way. They use

a dictionary coding technique that maintains the data structure and each term in a

dataset is replaced by a numeric ID.

3.1.4 Compressed k2-Triples for Full-In-Memory RDF Engines

The k2-triples algorithm in [2] uses a compact indexed RDF structure (called k2-

triples) applying compact k2-tree structures to the well-known vertical partitioning

technique. The result is an ultra-compressed representation of large RDF graphs and

allows the SPARQL queries to be executed in memory without decompression.

3.1.5 HDT (Header, Dictionary, Triples)

HDT in [13] is a compact data structure and a binary serialization format for RDF.

HDT can compress large datasets to save space while maintaining search and navi-

gation without pre-decompression. HDT is a representation format based on 3 com-

ponents:

∙ A header which contains logical and physical metadata that describes the RDF

dataset.

∙ A dictionary which organizes the identifiers of the RDF graphs.

∙ A triple set which includes the pure structure of the RDF graphs.

154 N.B. Déme et al.

3.2 Approaches over RDF Streams

Two recent works proposed techniques over RDF data streams compression.

3.2.1 RDSZ

The RDSZ (RDF Differential Stream compressor based on Zlib) algorithm in [14]

is an RDF stream compression algorithm without loss of data. RDSZ takes advan-

tage of the fact that the items in an RDF stream have structural similarities that can

be exploited by a differential encoding mechanism so that the new elements in the

stream can be represented on the basis of the previously processed ones. During the

compression phase the RDSZ algorithm uses three components:

The differential encoder which takes as input a sequence of elements of an RDF

stream. The RDF elements at the input are processed sequentially and separately by

the encoder. The first processing performed on an element is its decomposition into a

pattern of triples and an array of variables and corresponding values called bindings.

It returns as a result a string that represents the pattern (?x1 <predicate> ?x2)

obtained as output from the replacement process and a table of link variables that

binds each variable to its particular value of the input. After obtaining the pattern and

the binding, the encoder needs to determine whether this element can be represented

based on an element already processed in the stream or not. To do this, the encoder

uses the information on previously processed elements that are stored in a cache

called LRU (Least Recently Used). For each pattern, the associated variables and

a unique identifier are stored. After reading the cache, if the pattern of the RDF

element being processed is already in the cache, it means that another element with

the same pattern has been recently processed. Thus, the active element is coded on

the basis of the previous one. Since the two elements have the same pattern, there is

no need to re-send all the pattern data to the decompressor. Only the pattern identifier

will be included in the coded element. As for the variables, the new element and the

preceding one can have the same values or not. If a variable value is the same, there

is no need to send it again. Otherwise, the value is included in the coded element.

In this case, the result of the encoding process is a string that contains a row for the

model identifier and a row for each variable.

The multiplexer which takes as input an element sequence (coded or not) and

converts it into a single string by concatenating the serialization text of the ele-

ments. A special delimiter is used to mark the boundaries of each element, so that

the decompressor can separate them again. The compressor which takes as input the

string generated by the multiplexer and compresses this string. The Zlib compressor

implements the deflate algorithm which is a lossless data compression algorithm that

couples the LZ77 algorithm and the Huffman coding.

An Efficient Approach for Real-Time Processing . . . 155

3.2.2 ERI

The ERI (Efficient RDF Interchange) format in [12] is a compact representation of

RDF designed to take advantage of the redundancy of structures and inherent data

of RDF streams. ERI is based on RDSZ and uses the fact that in most RDF steams

the structure of the information is well known by the data provided and the number

of variations in the structure is limited.

3.2.3 Evaluation and Comparison Between RDSZ and ERI

We evaluate both algorithms in order to choose one of them according to some crite-

ria: compression and decompression time, size of data after the compression step and

the accuracy of the results of the queries on data after compression–decompression.

For the RDSZ algorithm, we use the following configuration: batchSize = 5 (num-

ber of elements processed by the compressor) and cacheSize = 100 (cache size). As

for ERI, it offers multiple ERI-1K (blocksize = 1024), ERI-4k (blocksize = 4096)

and ERI-4k-Nodict (blocksize = 4096) configurations. ERI-1K and ERI-4K contain

an LRU dictionary for each value channel, while ERI-4k-Nodict does not contain

it. For the evaluation, the ERI-4K and ERI-4k-Nodict configurations were chosen.

The datasets used to make the comparison are those of RDSZ
2

(AEMET2, Identica,

Wikipedia, Petrol, LOD, Mix).

3.2.4 Size of Data Obtained After Compression

For the size of the data obtained after compression, the two algorithms remain com-

parable. In some cases ERI surpasses RDSZ because when dividing the datasets into

graphs (RDSZ takes as input a graphs stream), elements with similarities are sep-

arated. On the other hand, RDSZ compression slightly surpasses ERI in particular

cases where the predicate number is small. In such cases, is more costly due to the

use of multiple compression channels.

3.2.5 Compression and Decompression Time

ERI compression time is significantly faster than RDSZ. Indeed, RDSZ processes

and exits graph streams while ERI processes triplet ones. Thus, RDSZ compression

may be affected by the fact that it must potentially process very large graphs with

several triplets, whereby the differential coding process takes a longer time. On the

other hand, the decompression time RDSZ is faster than ERI because ERI decom-

presses several channels and spells all the triplets of a block.

2
http://www.it.uc3m.es/berto/RDSZ/.

http://www.it.uc3m.es/berto/RDSZ/

156 N.B. Déme et al.

Table 2 Comparison between RDSZ and ERI

Algorithm Compression

time

Decompression

time

Size of data after

compression

Accuracy of

results

ERI - + +/- -

RDSZ + - +/- +

3.2.6 Accuracy of Results

Since RDSZ is a lossless data compression algorithm, when a query is executed

after the decompression phase we get the same query as when we run the query

before the compression phase. However, when compressing with the ERI algorithm,

data loss can occurs. The table below summarizes the comparison between the two

algorithms.

In our state of the art, we have seen that there are two approaches for compress-

ing RDF data. The first approach is not adapted to RDF graph stream processing

since it is based on static data. In the second, two algorithms have been proposed.

However, to execute queries on the compressed data with these two algorithms, it

is necessary to go through a decompression step. In our contribution we will extend

RDSZ algorithm in order to execute the queries on the compressed data. Our choice

is motivated by theAccuracy of results criterion. Indeed, the evaluation and

comparison of the two algorithms (Table 2) which enabled us to confirm that, unlike

the ERI, RDSZ is a lossless compression algorithm. In the following section we will

describe our contribution based on this algorithm.

4 Real-Time Querying over RDSZ-based Compressed RDF

4.1 System Architecture

One solution to reduce the cost of query operation on RDF streams is to execute

queries after the compression step. In our contribution, we implement this solution

for three forms of queries: Simple SPARQL query, SPARQL Query with filter
operator(s) and SPARQL Query with aggregate function(s).

As described in Fig. 2, the architecture of our system is composed of several mod-

ules. The first step for any kind of SPARQL query is the initialization phase. The

system takes as input three parameters: the SPARQL query, the window type and

the window size. During the initialization phase, several tasks are performed based

on these parameters. The first task is to retrieve patterns from the SPARQL query.

Indeed, a SPARQL query can consist of several patterns, during each phase, we parse

the input query. The patterns are retrieved and put into a list which is used in next

An Efficient Approach for Real-Time Processing . . . 157

Fig. 2 System architecture

step. The second phase is the initialization of the window with the given input size.

The window allows us to define the number of elements to be considered before

starting the treatment. The third and last task of this phase is the retrieval of the

type of the request. Indeed, the system can handle three types of requests. The first

type concerns simple queries. These queries are of the form SELECT ... WHERE

{...} without filter or aggregate function. The second type concerns requests with fil-

ter operator(s). Two types of filter are managed: the arithmetic filtering SELECT ...

WHERE { ... FILTER (...) } and the string expression filtering SELECT ... WHERE

{ ... FILTER regex(...) }. Arithmetic expression filtering are applied on integers,

real numbers, etc. Several types of operators can be applied to these types, such as:

superiority, inferiority or equality. For queries with string expression filtering, two

cases have been managed: the equality of two strings and the capacity of a sub-string

of characters by a string. The last type of request concerns aggregate operators such

as COUNT, SUM and AVG. In the following we will detail the processing of these

three types of queries.

Simple Query

After the initialization phase of the system, the system waits for the item to be

encoded by the RDSZ algorithm. Indeed, the user defines a window that contains

the items to be encoded by RDSZ. Therefore, when the window reaches its size, the

processing of the items contained in this window begins. We detail this processing

in the following.

∙ Job 1: checking the pattern: Verifying the item patterns returned by the RDSZ

algorithm is an essential step in processing the query. Indeed, during the com-

pression step of the RDSZ algorithm, the items can be encoded based on those

158 N.B. Déme et al.

already processed. As explained in Sect. 3, the RDSZ algorithm uses the redun-

dancy on the patterns of the datasets to compress the RDF data. Thus, when an

item is received, it can be encoded in two ways: either the same pattern was previ-

ously processed, or it was not. In the first case, the identifier of the previous pattern

is used, while in the second a new identifier is generated. Then, the objective of

this job is to check the type of encoding used for each item. The job goes through

the patterns received, and for each of them, checks whether it has been encoded

based on the patterns previously processed by the encoder or not. If the item has

been encoded with a previous pattern, then the pattern and pattern binding are

retrieved from the cache. Indeed, since the item has been encoded based on a pre-

vious item, the pattern will be retrieved with the identifier of this item. Otherwise,

only the binding is recovered in the cache since the pattern of the received item

will correspond to its pattern. The output of this job is sent to the next job.

∙ Job 2: comparison between the patterns of the query and those of the items:

The comparison performed by this job allows to retrieve the items whose patterns

correspond to those defined in the query. Indeed, the patterns of the query allow us

to make a filter on the items to return after the execution of the query. As described

in the Algorithm 1, the job goes through the patterns and binding of each item sent

by the previous job by retrieving the subject, predicate, and object of the pattern.

Then, it goes through the set of patterns of the query that were recovered in the

initialization phase by also retrieving the subject, the predicate and the object of

the pattern. Patterns of the query can be presented according the following eight

(8) different combinations:

∙ The three subject, predicate, and object elements are variables (?subject ?predi-

cate ?object)

∙ The subject is a constant and the predicate and the object are variables

(<http://pointA21> ?predicate ?object)

∙ The subject and the predicate are constants and the object is a variable

(<http://pointA21> <http://latitude> ?object)

∙ The three elements (subject, predicate and object) are constants

(<http://pointA21> <http://latitude> “4723”)

∙ The subject and the object are variables and the predicate is a constant (?subject
<http://latitude> ?object)

∙ The subject and the predicate are variables and the object is a constant (?subject

?predicate “4723”)

∙ The subject is a variable and the predicate and the object are constants (?subject

<http://latitude> “4723”)

∙ The subject and the object are constants and the predicate is a variable

(<http://pointA21> ?predicate “4723”)

An Efficient Approach for Real-Time Processing . . . 159

Algorithm 1 Matching item step

1: function MATCHEDITEM(encodedItem, cache)

2: result ← null
3: foreach item in encodedItem do
4: diffmodel ← checkItem(item)
5: itemPatterns ← diffmodel.getPattern()
6: itemBindings ← diffmodel.getBindings()
7: queryPatterns ← query.getPattern

8: foreach pattern in queryPatterns do
9: queryS ← pattern.getS()

10: queryP ← pattern.getP()
11: queryO ← pattern.getO()

12: if queryS.IsVar && queryP.IsVar && queryO.IsVar then

13: foreach itemPattern in itemPatterns do
14: itemS ← Bindings.getS(patternQuery)
15: itemP ← patternQuery.getP
16: itemO ← Bindings.getO(patternQuery)
17: ∕∕ add item in the result
18: end foreach
19: else if queryS.IsVar && queryP.IsVar && queryO.IsValue then
20: foreach itemPattern in itemPatterns do
21: itemS ← Bindings.getS(patternQuery)
22: itemP ← patternQuery.getP
23: itemO ← Bindings.getO(patternQuery)
24: if itemObject == queryObject then
25: ∕∕ add item in the result
26: end if
27: end foreach
28: end if
29: end foreach
30: end foreach
31: end function

A comparison is made between the patterns of the query and those of the current

item if at least one of the three elements (subject, predicate, object) of the pattern of

the query is a constant. In this case, we compare the element(s) of the two patterns:

if they are equal then we add the pattern of the current item in the result of the query

by replacing the subject and the object with their values recovered in the bindings.

Otherwise, we do not add the pattern of the item. This processing is carried out on

all the grounds of the request before moving to the next pattern of the current item.

After processing all the patterns of the current item, we move to the patterns of the

next item.

160 N.B. Déme et al.

Query with filter operator

Algorithm 2 filtering

1: function FILTER(Items, query)

2: filterType ← getFilter(query)

3: if filterType is regexContains then
4: regexContainsFilter(Items)

5: else if filterType is numeric then
6: numericFilter(ResultItem)
7: end if
8: end function
9: function REGEXCONTAINSFILTER(Items)

10: filterVar ← query.getFiterVar()
11: filterValue ← query.getFilterValue()

12: if varFilter is subject then

13: while item in Items do
14: if item.subject.contains(filterValue) then
15: ∕∕ add item in the result filter
16: end if
17: end while

18: else if filterVar is predicate then

19: while item in Items do
20: if item.predicate.contains(filterValue) then
21: ∕∕ add item in the result filter
22: end if
23: end while

24: else if filterVar is object then

25: while item in Items do
26: if item.object.contains(filterValue) then
27: ∕∕ add item in the result filter
28: end if
29: end while

30: end if
31: end function
32: function NUMERICFILTER(Items)

33: filterValue ← query.getFilterValue()
34: operator ← query.getFilterOperator()

35: if operator is ε = ε then

An Efficient Approach for Real-Time Processing . . . 161

36: while item in Items do
37: if item.object is filterValue then
38: ∕∕ add item in result filter
39: end if
40: end while

41: else if operator is ε > ε then

42: while item in Items do
43: if item.object > filterValue then
44: ∕∕ add item in result filter
45: end if
46: end while

47: else if operator is ε < ε then

48: while item in Items do
49: if item.object < valueFilter then
50: ∕∕ add item in result filter
51: end if
52: end while

53: end if
54: end function

Filter operators allow to apply restrictions on numbers, strings, dates, etc. In our

contribution, we have implemented the first two types of filters namely the filters on

the numbers and those on the strings of characters. When a query contains a filter

operator we check if it is an arithmetic expression filter or a string expression filter.

If it is an arithmetic expression, we retrieve the two operands and the operators but if

it is a string expression we only extract the two operands. The execution of the query

is done in two steps: in the first one, we eliminate the filters and execute it as it was

a simple query. We apply the filtering described in Algorithm 2. Depending on the

type of filter (numeric or string expression), different data processing are performed

in this job.

∙ Arithmetic expression filter The list of implemented arithmetic operations is:

superiority, inferiority and equality. After executing the query on the n items, the

result is filtered using the two operands and operators that were retrieved in the

initialization phase. We go through the result returned by job 2 and for each triple

we check and if it meets the conditions observed in the filter clause, we add it in

the final result, otherwise, we eliminate it.

∙ String expression filter We implemented two string expression filtering i.e. the

equality operator between two given strings and substring extraction (find a sub-

string from a given string). It is the same principle as with the digital filters we go

through the result returned by the job 2 and for each triple we check if it respects

the conditions that are in the filter. If yes we add it in the final result, otherwise,

we eliminate it.

162 N.B. Déme et al.

Query with Aggregate Operator

Aggregate operators allow us to aggregate the result of a query. When the query to

be executed contains aggregate operators, we retrieve the variables that are in the

Group By clause and those on which the aggregate functions apply. The execution

of a query with aggregate operators is done through two steps: in the first ones, we

eliminate the aggregation and execute it as it was simple query. The second step

concerns aggregation of the items and is described in Algorithm 3. Depending on

the type (COUNT, SUM, AVG, MAX, MIN), different jobs are executed with the

same principle.

Algorithm 3 aggregating

1: function AGREGATOR(resultItem,query)

2: agregateFunction ← query.getAgregateFunction()
3: var ← query.getGroupByVar()

4: if agregateFunction is count then

5: if var is subject then
6: while result1 in resultItem do
7: while result2 in resultItem do
8: if result1.subject equals result2.subbject then
9: count ← count + 1

10: end if
11: end while
12: ∕∕ add result_1 subject and count number in the result
13: count ← 0
14: end while
15: else if var is predicate then
16: while result1 in resultItem do
17: while result2 in resultItem do
18: if result1.predicate equals result2.predicate then
19: count ← count + 1
20: end if
21: end while
22: ∕∕ add result_1 predicate and count number in the result
23: count ← 0
24: end while
25: else if var is object then
26: while result1 in resultItem do
27: while result2 in resultItem do
28: if result1.object equals result2.object then
29: count ← count + 1
30: end if
31: end while
32: ∕∕ add result_1 object and count number in the result
33: count ← 0
34: end while
35: end if
36: end if
37: end function

An Efficient Approach for Real-Time Processing . . . 163

We go through the result returned by job 2 of each window and we group the

variables of the GROUP BY clause that we retrieved. Thus, for each group we apply

the aggregate function. At the end, we display the result for each group.

With the contribution presented above, we were able to execute SPARQL queries

on RDSZ-based compressed RDF data. These queries can be of different forms. We

implemented simple query execution with filter operators and aggregate operators.

In the next section we will evaluate this contribution on different parameters in order

to measure the performance.

5 Evaluation

In this section, we evaluate the performances of our contribution. We look at the

processing time (data compression time and query execution time) and the consumed

memory size. The results obtained are compared to those of the basic RDSZ algo-

rithm. The evaluations are made on a computer with an AMD E2-1800 APU 1.70

GHz processor and 4 GB of RAM running with a Windows 10 system.

5.1 Data Provided

We use 9757 RDF graphs issued from observations of 20,000 weather stations. These

dataset contains the aggregation of climatic data collected at various stations in the

United States since 2002. These data are collected at the Meteorological Depart-

ment of the University of Utah using the Kno.e.sis laboratory (The Ohio Center of

Excellence in Knowledge enabled Computing).

5.2 In Terms of Execution Time

The execution time of a query depends on several parameters, namely the size of

the batch, the size of the data, and so on. The size of the batch is the number of

items that the system must receive before starting the data processing. We do the

evaluation of the execution time by varying the size of the batch. To determine the

performance of our contribution we are based on the execution time of a query with

RDSZ. With RDSZ, we cannot directly querying compressed data using SPARQL

query language.

The execution time of a request with RDSZ is thus the sum of the time needed

for compression phase plus the one needed for decompression phase and the one

needed for query execution. On the other hand, the execution time of a query with

our contribution is the sum of the time needed for compression phase and the one

needed for our execution model. Queries are executed on different batch sizes (100,

164 N.B. Déme et al.

Fig. 3 Evaluation of execution time

200, 400, etc.) in order to see the evolution of time when the batch size increases.

In the results (Fig. 3) we note that the larger the batch size increases the better the

performance of the two curves decrease. This effect is due to the fact that when the

size of the batch increases, the system must wait for a larger number of items to

start its processing and consequently the processing time increases. The execution

times with our contribution are smaller. Indeed, we execute the queries just after the

compression step of RDSZ, which allows us to eliminate the decompression time.

Therefore, we have smaller execution times.

5.3 In Terms of Memory Consumption

We evaluate the memory space used in our contribution based on RDSZ. The mem-

ory space used by RDSZ is calculated by taking the maximum of the memory space

used between the compression and decompression phase and execution of the request

for each item of a batch. So, to get the memory space used in a batch, we calculate

the average. In the results (Fig. 4), we note that the larger the batch size increases the

more memory space used. The memory space used by our contribution is smaller

than the memory space used by RDSZ. Indeed, when executing the query with the

basic RDSZ algorithm, the data is decompressed, thus occupying a part of the mem-

ory space allocated to the java virtual machine (jvm). By eliminating the decompres-

sion phase the space that should be used by this step is released.

We evaluated the performances of our contribution with two parameters: execu-

tion time and memory space. The tests we carried out were based on data with an

overall size of 9757 RDF graphs. It should be noted that increasing the size of the

test data leads to more gains in performance.

An Efficient Approach for Real-Time Processing . . . 165

Fig. 4 Evaluation of memory consumption

6 Conclusion

In this paper, we proposed an extension of the RDSZ algorithm to allow continu-

ous querying of RDF data streams in RDSZ format. This extension allowed us to

execute SPARQL queries (simple, with filter and with aggregate) after the compres-

sion phase. The evaluation of this contribution has shown great gains on the execut-

ing time and consumed memory. As perspectives, we plan to take into account all

SPARQL operators in order to take into account the temporal windows and to extend

this work in order to be able to execute queries on the compressed data in the RDSZ

format up to the binary level.

References

1. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web data manage-

ment using vertical partitioning. In: Proceedings of the 33rd International Conference on Very

Large Data Bases, pp. 411–422. VLDB Endowment (2007)

2. Álvarez-García, S., Brisaboa, N.R., Fernández, J.D., Martínez-Prieto, M.A.: Compressed k2-

triples for full-in-memory rdf engines. arXiv preprint arXiv:1105.4004 (2011)

3. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: Ep-sparql: a unified language for event

processing and stream reasoning. In: Proceedings of the 20th International Conference on

World Wide Web, pp. 635–644. ACM (2011)

4. Barbieri, D., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Stream reasoning: where

we got so far. In: NeFoRS 2010: 4th International Workshop on New Forms of Reasoning for

the Semantic Web: Scalable and Dynamic (2010)

5. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-sparql: Sparql for con-

tinuous querying. In: Proceedings of the 18th International Conference on World Wide Web,

pp. 1061–1062. ACM (2009)

http://arxiv.org/abs/1105.4004

166 N.B. Déme et al.

6. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5), 28–37

(2001)

7. Calbimonte, J.P., Corcho, O., Gray, A.J.: Enabling ontology-based access to streaming data

sources. In: International Semantic Web Conference, pp. 96–111. Springer (2010)

8. Chiky, R.: Résumé de flux de données ditribués. Ph.D. thesis, Télécom ParisTech (2009)

9. Csernel, B., Clérot, F., Hébrail, G.: Classification de Flux de Donnes par chantillonnages sur

Fentres Inclines

10. Della Valle, E., Ceri, S., Barbieri, D.F., Braga, D., Campi, A.: A first step towards stream

reasoning. In: Future Internet Symposium, pp. 72–81. Springer (2008)

11. Fernández, J.D., Gutierrez, C., Martínez-Prieto, M.A.: Rdf compression: basic approaches. In:

Proceedings of the 19th International Conference on World Wide Web, pp. 1091–1092. ACM

(2010)

12. Fernández, J.D., Llaves, A., Corcho, O.: Efficient rdf interchange (eri) format for rdf data

streams. In: International Semantic Web Conference, pp. 244–259. Springer (2014)

13. Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Binary RDF

representation for publication and exchange (hdt). Web Semant. Sci. Serv. Agents World Wide

Web 19, 22–41 (2013)

14. Fernández, N., Arias, J., Sánchez, L., Fuentes-Lorenzo, D., Corcho, Ó.: RDSZ: an approach

for lossless RDF stream compression. In: European Semantic Web Conference, pp. 52–67.

Springer (2014)

15. Joshi, A.K., Hitzler, P., Dong, G.: Logical linked data compression. In: Extended Semantic

Web Conference, pp. 170–184. Springer (2013)

16. Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pattern matching

over RDF data streams. In: Proceedings of the 6th ACM International Conference on Distrib-

uted Event-Based Systems, pp. 58–68. ACM (2012)

17. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive approach for

unified processing of linked streams and linked data. In: International Semantic Web Confer-

ence, pp. 370–388. Springer (2011)

18. Urbani, J., Maassen, J., Drost, N., Seinstra, F., Bal, H.: Scalable RDF data compression with

mapreduce. Concurr. Comput. Pract. Exp. 25(1), 24–39 (2013)

Energy Efficiency Cluster Head Election
using Fuzzy Logic Method for Wireless
Sensor Networks

Wided Abidi and Tahar Ezzedine

Abstract The main challenge in wireless sensors networks (WSN) is to conserve
the energy consumption and prolong the lifetime of network. Since sensor nodes are
deployed in hostile area and it is difficult to recharge their batteries or change it, we
must maintain the lifetime of these nodes as longer as possible. Electing the
appropriate Cluster Head (CH) becomes very important. Many clustering algo-
rithms have been developed for selecting the best CHs. In this paper, we introduce a
new clustering algorithm which elects CHs using fuzzy logic method and based on
a set of parameters which increases the lifetime of WSN. In fact, we adopt three
principle criteria: the remaining energy of node, the number of neighbors within
cluster range and the distance between node and CH for electing best suitable nodes
as CH. Simulation results shows that our proposed algorithm beats the other
algorithms in regards of prolonging the lifetime of network and saving residual
energy.

Keywords Wireless sensors networks ⋅ Fuzzy logic ⋅ Clustering ⋅ Cluster
head election ⋅ Network lifetime

1 Introduction

Wireless Sensor Network (WSN) consists of large number of tiny devices called
sensor nodes [1]. These Nodes are deployed randomly in a geographical area. Their
roles are to sense, collect, aggregate and send data between each other or to a Base
Station (BS) located outside of the sensor area. This communication costs important
energy consumption. On the other hand, sensor nodes use batteries as power source

W. Abidi (✉) ⋅ T. Ezzedine
Engineering School of Tunis, Communications Systems Laboratory,
University of Tunis El Manar, Tunis, Tunisia
e-mail: abidiwided@gmail.com

T. Ezzedine
e-mail: taharezz@gmail.com

© Springer International Publishing AG 2018
R. Lee (ed.), Software Engineering Research, Management and Applications,
Studies in Computational Intelligence 722, DOI 10.1007/978-3-319-61388-8_10

167

that are limited resources. In addition, this power source is usually not replaceable
or rechargeable. Hence, the need to extend the lifetime of nodes and minimize the
energy consumption is necessary.

Due to the energy constraints of the large number of deployed sensors, gathering
nodes into groups called Clusters becomes very challenging. In each cluster, there is
only one node which is allowed to communicate with the BS called Cluster Head
(CH). Its main role is to collect the data sent by each node into cluster then
transmits aggregated information to BS. Many clustering algorithms have been
developed for WSN [2–4] which elects CHs through probabilistic approach or
deterministic approach particularly weight based approach. Probabilistic approach
elects CH without taking into account several lifetime factors like remaining energy
of the node, the number of neighbor nodes and the distance between CH and BS or
node and CH. The weight based approach considers the factors cited previously.
But its main shortcoming is frequently same nodes are elected as CH which causes
the loss of energy and subsequently the rapid death of the CH.

Since deficiencies of these two approaches, researchers have used fuzzy Logic
method to optimize CH selection. In reality, fuzzy logic method has been developed
to model the human decision making behavior. However, researchers used it to
divide the WSN to clusters with best set of CHs.

The fuzzy logic model is divided to four components as illustrated in Fig. 1: a
fuzzifier, fuzzy inference engine, fuzzy rule base and a defuzzifier. The role of the
fuzzifier is to convert crisp value to fuzzy input variables. Fuzzy rule base stores
IF-THEN rules. Based on these rules, fuzzy inference engine maps the set input
linguistic variables to the output linguistic variables. At the last, the defuzzifier
converts fuzzy output to crip output using the appropriate defuzzification method.

In this paper, we propose a new approach for electing CH using the fuzzy logic
method. Our algorithm is based on remaining energy of the node, the distance
between the node and the Base Station (BS) and the number of neighbor nodes
within the range to elect CH. Thus, elected CH must have at the same time a high
residual energy, maximum number of neighbor and finally a low distance to sink.
By considering these factors, we can save energy consumption and prolong the
lifetime of the network and good results will be shown by simulations later in the
paper.

Fig. 1 Block diagram of
fuzzy inference system

168 W. Abidi and T. Ezzedine

The rest of our paper is organized as follows. Clustering algorithms for WSN are
presented in related work in Sect. 2. Section 3 details the proposed algorithm to
select CH. Simulation results are shown and discussed in Sect. 4. We conclude in
Sect. 5.

2 Related Works

In the literature, there are several proposed clustering algorithms for WSN. In this
section, we will give an overview on the famous and recent one.

Low Energy Adaptive Clustering Hierarchy (LEACH) is a distributed clustering
protocol. It has been introduced by [5] to reduce power consumption and prolong
the lifetime of the WSN. LEACH divides network to clusters and only one node
(CH) in each cluster is the leader and it changes each round. CH communicates
directly with the BS to send data and uses data aggregation technique what reduce
energy consumption. LEACH consists of two main phase: cluster setup phase and
steady-state phase. In cluster setup phase, each node in the network decides if it will
be a Cluster Head (CH) or not for present round. This decision depends on the
desired percentage of CHs in the network and the number of times the node is
served as CH so far. In fact, each node chooses a random number between 0 and 1.
If this number is less than a threshold T, the node becomes a CH. Then, each CH
broadcasts advertising messages to the remaining nodes inviting it to choose which
of the CHs they will join and finally, clusters are created for the current round.
Based on the number of nodes in the cluster, the CH creates a time division multiple
access (TDMA) schedule and informs other sensor nodes when it can transmit.
Finally, in steady-state phase, transmission data starts. Sensor nodes send their data
in their own time slot and their radio can be turned off. CH must keep their radio on
to receive all data from nodes.

Cluster head election using fuzzy logic (CHEF) [6] is a distributed clustering
algorithm that uses fuzzy logic approach for WSN. When starting the round, CHEF
elects candidate CHs using the same probability approach as LEACH protocol.
Then it calculates the chance of these candidate CHs using the fuzzy logic method
and based on residual energy and local distance of the nodes as input. The local
distance is the sum of distance from all one-hop neighbors to a node. Fuzzy if-then
rules are used to evaluate the fuzzified input values. The output variable chance
arbitrates which candidate CH becomes a CH. The elected CH has higher chance
value than its candidate CHs neighbors. The input fuzzy variable local distance is
not a suitable variable for all network sizes and because of this, CHEF suffers a lot
in network size apart from 200 m × 200 m.

Energy aware unequal clustering using fuzzy approach (EAUCF) [7, 8] is also a
distributed clustering algorithm for WSN. When starting the round, tentative CHs
are selected by using random number generation such as CHEF algorithm. Fuzzy
system in EAUCF is based on two inputs: residual energy and distance to BS. The
output is the competition radius which calculated to each tentative CH node.

Energy Efficiency Cluster Head Election … 169

Each tentative CH will broadcast its residual energy and check the existence of
any other tentative CH node within its competition radius. If two such tentative CHs
are present within the competition radius of either one node, the nodes having lesser
residual energy will quit from CH competition. In CH election, an important
parameter like node degree is not considered which may lead to election of CH with
fewer and distant neighbors. These results in higher intra cluster communication
cost and reduces the lifetime of the WSN.

3 Proposed Clustering Algorithm

3.1 System Assumptions

• Homogenous network is assumed where all nodes are having equal capabilities
in terms of processing power, sensing area, and so forth.

• Sensor nodes are deployed randomly.
• Once deployed, nodes are static.
• All sensor nodes have the same initial energy.
• The base station is located in the outside of the WSNs.

3.2 Fuzzy System Model

Given that CH node has many activities to accomplish such as collecting infor-
mation from other nodes, aggregating it and sending it to the BS, CH needs more
energy level than member node. In other hand, the number of alive neighbors of a
node within the radius R called neighbor nodes Alive is a factor which determines
how a node is located. The energy consumption for transmitting data increases
when the distance between transmitter and receiver nodes increases. From an
energy conservation perspective, the distance between CH and BS should be
minimized. Based on these factors, we proposed a clustering algorithm that con-
siders the remaining energy (Erem) of the node, the number of neighbor nodes
(NA) and the distance between node and BS (dtoBS) to select the CH. This proposed
algorithm used the fuzzy logic method.

Our fuzzy system is composed of three fuzzy inputs and one fuzzy output. For
the first fuzzy input Erem, the fuzzy linguistic variables used are Low, Medium, and
High as depicted in Fig. 2. For the second fuzzy input NA, there are three fuzzy
linguistic variables which are Several, Medium and Few as shown in Fig. 3.
Finally, for the fuzzy input dtoBS, the fuzzy linguistic variables are Close, Average,
and Far as illustrated in Fig. 4.

170 W. Abidi and T. Ezzedine

Fig. 2 Fuzzy set for the input variable remaining energy

Fig. 3 Fuzzy set for the input variable neighbors alive

Fig. 4 Fuzzy set for the input variable distance to BS

Energy Efficiency Cluster Head Election … 171

There is only one output variable for our fuzzy system called Chance. This
output has nine linguistic variables: very small, small, rather small, low medium,
medium, big medium, rather big, big, and very big.

Note that for inputs variable: Low, High, Several, Few, Close and Far follow
trapezoidal membership function, whereas Medium, Medium and Average follow
triangular membership function. And for output variable, very small and very big
follow trapezoidal membership function and the remaining seven linguistic vari-
ables follow triangular membership function as shown in Fig. 5.

The fuzzy if-then rules are developed based on Mamdani method [9] and used to
map the input variables to appropriate fuzzy output variables. We have at total 27
fuzzy if-then rules as depicted in Table 1. Finally, the Center of Area (CoA) method
is used to obtain crisp output values.

Such as LEACH, CHEF and EAUCF, our algorithm operates in round. In every
round, each sensor node chooses a random number between 0 and 1. If this number
is less than a threshold Popt calculates with Eq. (1), the node becomes a
Candidate CH.

Popt = α * P ð1Þ

Where α is a constant value that defines the ratio of the candidate for cluster head
and P is the ratio of preferred number of cluster heads.

The Candidate CH nodes calculate their chance value using fuzzy method and
broadcast Candidate CH message to all nodes coming under their communication
radius.

The Candidate CH message contains the node id, remaining energy and chance
value. Each Candidate CH broadcast to the total list of Candidate CH. The Can-
didate CH which has the high chance is elected as a CH. If this elected CH has
received a Candidate CH message with higher chance than its own. It becomes a
node member. To form clusters, member nodes join the nearest CH. Finally, elected

Fig. 5 Fuzzy set for the output variable chance

172 W. Abidi and T. Ezzedine

CHs generate TDMA schedule for their members and broadcast it. Then, each
member nodes send their data to its CH during their allocated time slots. Otherwise,
they go to sleep state to save energy.

3.3 Energy Model

In our research, we have used the same energy model as the traditional LEACH
[10], as shown in “Fig. 6.” Note that, Eelec is the energy consumption per bit for
running transmitter or receiver circuitry, k is the number of bits, εfs and εmp are
proportional constant of the energy consumption for the transmit amplifier in free
space channel model (εfs ⋅ k ⋅ d2 power loss) and multipath fading channel model

Table 1 Fuzzy if-then rule

Remaining energy Neighbors alive Distance to BS Chance

Low Several Close Rather small
Low Medium Close Small
Low Few Close Very small
Low Several Average Rather small
Low Medium Average Small
Low Few Average Very small
Low Several Far Rather small
Low Medium Far Small
Low Few Far Very small
Medium Several Close High med
Medium Medium Close Med
Medium Few Close Low med
Medium Several Average High med
Medium Medium Average Med
Medium Few Average Low med
Medium Several Far High med
Medium Medium Far Med
Medium Few Far Low med
High Several Close Very big
High Medium Close Big
High Few Close rather big
High Several Average very big
High Medium Average big
High Few Average Rather big
High Several Far Very big
High Medium Far Big
High Few Far Rather big

Energy Efficiency Cluster Head Election … 173

(εmp ⋅ k ⋅ d4 power loss), respectively and d is the distance between transmitter and
receiver.

Thus we can deduce the energy consumed to transmit k bits along a distance d
through a free space channel model is:

ETx k, dð Þ = Eelec * k + εfs * k * d2 ð2Þ

Or multipath fading channel is:

ETxðk, dÞ = Eelec * k + εmp * k * d4 ð3Þ

And the energy to receive these bits is:

ERxðkÞ = Eelec * k ð4Þ

4 Simulations and Numerical Results

In this section, simulations are performed via Matlab software in the same condi-
tions. We have compared between our proposed approach and LEACH protocol
using parameters listed in Table 2. We consider a WSN with randomly distributed
sensor nodes in 100 × 100 network field. BS is located at the coordinate (50, 175).

Simulation results are analyzed with considering the First Node Dies (FND),
Half Nodes Die (HND) and the remaining energy of the network per round.

Figures 7 and 8 shows network lifetime. Our proposed algorithm shows
increased FND compared to LEACH, CHEF and EAUCF algorithms. As depicted
in Table 3, considering FND, our proposed algorithm increases network lifetime
compared to LEACH by 36%, CHEF by 14% and EAUCF by 12%. On considering

Fig. 6 The radio energy consumption model

174 W. Abidi and T. Ezzedine

Table 2 Parameters system

Simulation area 100 × 100 m2

Number of round 1000
Number of nodes 200
Desired percentage of CH 0.1
Initial energy of node 1 J
Transmission/Reception energy per bit Eelec 50 nJ/bit
Transmitter amplifier energy dissipation free space εfs 10 pJ/bit/m2

Transmitter amplifier energy dissipation multipath εmp 0.0013 pJ/bit/m4

Base station location Located at 50 × 175
Popt 0.21

Fig. 7 The number of alive nodes per round

Fig. 8 Total residual energy per round

Energy Efficiency Cluster Head Election … 175

HND, our proposed algorithm is better than LEACH by 38%, CHEF by 4% and
EAUCF by 8%.

Figure 8 shows the remaining energy for the network per round. For LEACH
protocol, remaining energy is consumed more quickly than other algorithms. The
remaining energy levels of CHEF and EAUCF are close to each other. However, for
our proposed algorithm, remaining energy increases slightly slower than LEACH,
CHEF and EAUCF.

5 Conclusions

In WSN, the main purpose is to increase network lifetime and save energy con-
sumption. This paper proposed a new clustering algorithm using fuzzy logic
method and based on a set of important parameters which influence the lifetime of
the network. In fact, our proposed algorithm combines probabilistic and metric
based CH election techniques with suitable criteria for CH election in WSN.
Simulation results are presented comparing with basic LEACH, CHEF and EAUCF
algorithms and it is observed that our developed approach is more effective than
LEACH in reducing energy consumption and extending lifetime network.

In future work, more parameters like density and number of hops between CH
and BS may also be utilized to further improve the performance of our fuzzy
algorithm.

References

1. Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: Energy conservation in wireless
sensor networks: a survey. Ad Hoc Netw. J. 7(3), 537–568 (2008)

2. Afsar, M.M., Tayarani-N, M.H.: Clustering in sensor networks: a literature survey. J. Netw.
Comput. Appl. 46, 198–226 (2014)

3. Singh, S.K., Singh, M.P., Singh, D.K.: Routing protocols in wireless sensor networks—a
survey. Int. J. Comput. Sci. Eng. Surv. (IJCSES) 1(2) (2010)

4. Katiyar, N.V., Chand, Soni, S.: A survey on clustering algorithms for heterogeneous wireless
sensor networks. Int. J. Adv. Netw. Appl. 2(4), 745–754 (2011)

5. Heinzelman, W.B., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication
protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii

Table 3 FND and HND for
200 nodes

Algorithms FND HND

LEACH 264 488
CHEF 314 641
EAUCF 320 624
Proposed algorithm 358 672

176 W. Abidi and T. Ezzedine

International Conference on System Sciences (HICSS’00), vol. 8, pp. 1–10. Maui, Hawaii,
USA (2000)

6. Kim, J.M., Park, S.H., Han, Y. J., Chung, T.M.: CHEF: cluster head election mechanism
using fuzzy logic in wireless sensor networks. In: Proceedings of the 10th International
Conference on Advanced Communication Technology, pp. 654–659. Gangwon-Do, South
Korea (2008)

7. Bagci, H., Yazici, A.: An energy aware fuzzy approach to unequal clustering in wireless
sensor networks. Appl. Soft Comput. J. 13(4), 1741–1749 (2013)

8. Bagci, H., Yazici, A.: An energy aware fuzzy unequal clustering algorithm for wireless sensor
networks. In: Proceedings of the 6th IEEE World Congress on Computational Intelligence
(WCCI’10). IEEE (2010)

9. Mamdani, E.H.: Application of fuzzy logic to approximate reasoning using linguistic
synthesis. IEEE Trans. Comput. 26(12), 1182–1191 (1977)

10. Heinzelman, W.B.: Application specific protocol architectures for wireless networks. Ph.D.
Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, MA (2000)

Energy Efficiency Cluster Head Election … 177

Enabling GSD Task Allocation via
Cloud-Based Software Processes

Sami Alajrami, Barbara Gallina and Alexander Romanovsky

Abstract Allocating tasks to distributed sites in Global Software Development

(GSD) projects is often done unsystematically and based on the personal experi-

ence of project managers. Wrong allocation decisions increase the project’s risks as

tasks have dependencies that are inherited by the distributed sites. Decision support

can help make the task allocation a more informed and systematic process. The chal-

lenges in allocating tasks to distributed sites exist because of three distance dimen-

sions between sites (geographical, temporal and cultural). An informed task alloca-

tion decision needs to consider these distances. Therefore, in this paper, we propose

to integrate and semi-automate the calculation of an existing Global Distance Metric

(GDM) into an architecture that supports executing cloud-based software processes.

We analyze the potential of integrating the GDM into this architecture and identify

the needed extensions to the architecture.

Keywords Global software development ⋅ Distributed tasks allocation decision

support ⋅ Cloud-based software processes ⋅ Global distance

1 Introduction

Global Software Development (GSD) [11] has moved software firms from mono-

lithic development (one team at one location) to multiple geographically-distributed

teams collaborating on a development project. GSD benefits are established in liter-

ature [6, 8, 11] and include: (a) utilizing cheaper labour in different countries hence

implying cost reduction, (b) having multiple teams working in different time zones

S. Alajrami (✉) ⋅ A. Romanovsky

Newcastle University, Newcastle upon Tyne, UK

e-mail: s.h.alajrami@ncl.ac.uk

A. Romanovsky

e-mail: alexander.romanovsky@ncl.ac.uk

B. Gallina

Mälaradalen Univeristy, Västerås, Sweden

e-mail: barbara.gallina@mdh.se

© Springer International Publishing AG 2018

R. Lee (ed.), Software Engineering Research, Management and Applications,
Studies in Computational Intelligence 722, DOI 10.1007/978-3-319-61388-8_11

179

180 S. Alajrami et al.

which leads to shorter development cycles, and (c) being in closer proximity to cus-

tomers and emerging markets.

Despite the benefits, teams collaborating in GSD projects face geographical, tem-

poral and cultural distances which make managing such projects a challenging task.

Naturally, dependencies exist between the distributed tasks. These task dependencies

(during process enactment) make it essential to ensure no deadlocks happen between

distributed sites.

The distances between distributed sites introduce management challenges that

can increase the risks for GSD projects. Such management challenges are inherent

in GSD projects and are linked to issues of communication, control and supervision,

coordination, creating social bonds, and building trust [7]. Among the main GSD

challenges, allocating the right resources/tasks to each site is of critical importance.

The complexity of the dependencies in GSD projects is reflected on the task allo-

cation decisions [12]. Task allocation can either decrease or increase the risks asso-

ciated with GSD projects (such as: decreased productivity and lack of trust between

sites) [13]. Despite the importance of task allocation decisions, in practice, the deci-

sion making process is not very systematic and often is based on the personal experi-

ence of the managers [14]. For example, allocating activities to sites with low differ-

ences (nearshoring [7]) seems to reduce GSD risks, while having large cultural differ-

ences between sites affects the trust between them. Therefore, a systematic decision

support is needed to support allocating GSD activities.

The larger the distance between distributed sites, the larger the difference.

Nearshoring [7] (allocating tasks to sites with low differences) reduces the risks asso-

ciated with GSD projects management [13]. Carmel and Abbott argue that the rise of

nearshoring proves that distance still matters [7]. Therefore, in this paper, we explore

how we can make informed decisions about task allocation in GSD projects based

on the distances between the distributed sites. In order to base the decision making

on the distance factor, this factor needs to be quantified. For that purpose, we use

the Global Distance Metric [17] which assesses and quantifies the distance between

collaborating sites.

In a previous work, we proposed a reference architecture for supporting Soft-

ware Development as a Service (SDaaS) in the cloud [5]. The potential for using

the cloud to facilitate GSD projects has been discussed in [10]. The SDaaS archi-

tecture goes one step further and uses a model-based approach to execute software

processes (which can be distributed processes). The SDaaS architecture facilitates

by default: global project awareness, enhancing communication and understanding

amongst distributed teams and supporting global monitoring and synchronization

of tasks. In addition, executable process models (when supported with the appro-

priate execution environment) can help addressing technical GSD challenges such

as: incompatible data formats and tools [2]. Therefore, in this paper, we propose to

extend the SDaaS architecture to support semi-automatic calculation of the Global
Distance Metric in order to provide task allocation decision support for project

managers.

The rest of the paper is structured as follows: Section 2 provides brief background

on the SDaaS architecture and Global Distance Metric (GDM). Section 3 describes

Enabling GSD Task Allocation via Cloud-Based Software Processes 181

our proposed extension of the SDaaS architecture to provide GSD task allocation

decision support. Section 4 explains the paper proposal using an example process.

Section 5 reviews some existing works that target task allocation support in GSD

projects. Finally, Sect. 6 concludes the paper and discusses the current limitations.

2 Background and Motivation

In this section, we briefly cover essential background information on our architecture

for executing cloud-based software processes and on GSD distance metric and task

allocation.

2.1 The SDaaS Architecture

We proposed a reference architecture for supporting executing software process mod-

els in the cloud [5]. As shown in Fig. 1, the architecture consists of two main ser-

vices: the design time service and the run-time service. The design time service deals

with modelling and manipulation of software processes while the run-time service

deals with scheduling, executing and monitoring software processes execution in the

cloud. The execution takes place in a set of distributed workflow engines (with dif-

Model
Transforma ons

Model
Storage Service

Model
Authoring

Access & Sync.
Service

RE
ST

 A
PI

Ex
te

rn
al

 T
oo

ls

Workflow Engines Registry

Artefacts Manager

External
Workflow

Collabora on

Consistency &
Compliance

Checker

Sc
he

du
le

r

SLA
Monitor

Execu on
Manager

Workflow Engines

Tools

Repositories

Run me (PaaS) (Enactment Service)
Design Time (SaaS)

(Process Modelling)

Fig. 1 The SDaaS reference architecture. Taken from [5]

182 S. Alajrami et al.

ferent computational and privacy specification). The workflow registry component

tracks and manages the active workflow engines. During the execution, process mod-

els consume and produce software artefacts (code, docs, models, tests etc.). These

artefacts are maintained along with meta-data describing them by the artefact man-

ager component. The tools needed to support each process activity can be integrated

within the environment or can be interfaced as a service. Activities can be: (a) auto-

mated (triggering tools to perform certain tasks e.g., testing), (b) interactive (receiv-

ing input from users e.g., for editing artefacts), or (c) decision points (deciding—

automatically or interactively—on which branch of the process to follow).

SDaaS facilitates distributed development. It uses a unified SaaS user interface

which enables teams across distributed sites to access a shared development envi-

ronment. This means that teams will be collaborating within the same virtual envi-

ronment which is highly accessible and available via the cloud. The cloud model is

based on provisioning of services and the SDaaS architecture provisions develop-

ment environments and tool-chains as services. Hashmi et al. [10] argue that GSD

challenges can be overcome via the use of services (Service Oriented Architecture -

SOA). Their argument is that SOA increases the interoperability and technology and

business alignment between sites [10]. Since the SDaaS architecture adopts a SOA,

we argue that it can overcome GSD challenges.

In addition, the SDaaS architecture adopts a model-driven approach and supports

modelling of dynamic processes like the ones that would be found in GSD projects.

The use of models allows for raising the levels of abstraction and improves com-

munication and understanding between distributed sites. The artefact manager of

the SDaaS architecture allows for tracing and maintaining shared artefacts. Finally,

SDaaS leverages the scalability of cloud to allocate computing resources and tools as

services on the fly to meet the needs of individual tasks in a GSD project. However,

the SDaaS architecture does not provide decision support for task allocation.

2.2 EXE-SPEM

The SDaaS architecture uses EXE-SPEM [3] as the modelling language for mod-

elling cloud-based executable software processes. EXE-SPEM is an extension of the

OMG Software Process and System Engineering Meta-model (SPEM2.0 [1]). EXE-

SPEM enables modelling important information needed for cloud-based process

enactment such as: control flow (i.e., order, conditions and loops), the responsible

team/team member for enacting each activity (task) in the process, and the cloud-

specific enactment information such as: the choice of cloud deployment model (pri-

vate versus public) and the amount of computational resources required. EXE-SPEM

is created by extending the meta-model of SPEM2.0 as shown in Fig. 2 (which is

simplified for readability) where meta-classes with dark grey background are added

to the original SPEM2.0 meta-model and the ones with light grey background have

new attributes.

Enabling GSD Task Allocation via Cloud-Based Software Processes 183

Fig. 2 The meta-model of EXE-SPEM

Using model-to-text transformational rules, EXE-SPEM process models are

mapped into XML-based textual representations which are compliant with the

schema shown in Fig. 3.

184 S. Alajrami et al.

Fig. 3 The XML schema for representing EXE-SPEM process models

2.3 GSD Task Allocation

Allocating GSD tasks to distributed sites has a direct impact on the risks associated

with distributed development projects. Allocation is often done based on multiple

criteria (labor cost rates, availability of workforce and expertise) [13].

Lamersdorf et al. have reviewed several tactics followed in practice to avoid the

risks associated with distance between distributed sites [14]. The first tactic is to

minimize the collaboration needed (separation of concerns between sites) which

reduces the GSD communication problems. Another tactic is to minimize the dif-

ferences (e.g., cultural, temporal) between sites. Grinter et al. [9] proposed the use

of strategies from organizational theory to task allocation in GSD projects.

The optimal task allocation decision needs to be based on understanding of the

capabilities, differences and distances among the distributed tasks. Distance between

sites is the main source of risk in GSD projects and it takes different dimensions

(geographical, temporal and cultural). Thus, quantifying these dimensions of dis-

tance helps to make an effective and informed task allocation decision by project

managers.

Enabling GSD Task Allocation via Cloud-Based Software Processes 185

2.4 Global Distance Metric

Noll and Beecham [17] have developed the global distance metric (GDM) to mea-

sure global distance between distributed sites collaborating on GSD projects. The

metric combines and quantifies the three dimensions of GSD distance: geographic,

temporal, and cultural between two sites. The metric is then calculated as follows:

Dglobal =
√

D2
geographic + D2

temporal + D2
cultural (1)

whereDc is the value of the distance dimension and c ∈ {geographic, temporal, cult-
ural}. Each of the dimensions in Eq. 1 is calculated as the sum of the impact values

for different distance factors. A list of these factors and there impact values is pro-

vided in Table 1. Each team (site) computes the global distance metric from other

collaborating sites. This provides a quantified representation of the perceived dis-

tances between the distributed sites towards each other.

Table 1 is taken from [17] and shows the factors contributing to each distance

dimension along with their impact values. These impact values have been identi-

fied by surveying practitioners. As we can see in the table, factors affecting both

the geographical and temporal distances are straightforward to assess (based on the

locations and timezones of distributed sites). However, the cultural distance depends

more on the perception and trust between teams. For example, as noted by Noll and

Beecham [17], having a team member from the same nationality (of a certain site)

in another site may lead to increase the perceived trust and reduce the perceived

language barriers.

Table 1 Factors contributing to distances [17]

No. Factors affecting geographic distance Impact value

1 Different building on same campus 1

2 Different towns in same region (two hour drive) 2

3 Less than three hour flight (Frankfurt to Helsinki) 3

4 Transcontinental flight (New York to San Francisco) 4

5 Intercontinental flight (London to Shanghai) 4

No. Factors affecting temporal distance Impact value

1 Transcontinental (five hour overlap) 0

2 Intercontinental (three or four hour overlap) 3

3 Global (one or two hour overlap) 4

4 No overlap 4

No. Factors affecting cultural distance Impact value

1 Uneven language skills 3

2 East/West divide in culture 3

3 Different national culture 2

4 Different organizational culture 3

186 S. Alajrami et al.

3 SDaaS-Based Task Allocation

In this section, we build on existing GSD support in the SDaaS architecture by facili-

tating decision making about allocating tasks across distributed sites. Since knowing

the distance (in all its dimensions) between distributed sites is crucial for making

the right allocation decision, we propose to integrate the measurement of the Global
Distance Metric (GDM) [17] (see Sect. 2.4) within the SDaaS architecture.

The SDaaS architecture can automate the measurement of the geographical and

temporal distances of the GDM based on knowing the collaborating sites and their

locations. In addition, it can calculate the cultural distance perceived by each site

towards each other site by relying on input from team members. These calculated

values can then be used to calculate the overall GDM between each two sites

using Eq. 1.

3.1 The SDaaS Architecture Extension

In order to support the GDM calculation, the SDaaS architecture needs to be

extended. Task allocation is needed during the process design-time phase. The fol-

lowing extensions are needed in the SDaaS architecture:

1. Extending the process models

The teams which might be involved in executing the process and their respec-

tive sites need to be integrated in the process models (which are created using

EXE-SPEM [3]). We extend the EXE-SPEM meta-model which defines EXE-

SPEM process models elements. As shown in Fig. 4, the extended meta-model of

EXE-SPEM integrates the Site and Teammeta-classes (in dark grey). The Activity
meta-class has a new attribute stating the site that the activity has been allocated

to. Finally, the CulturalDistanceKind enumeration is added to represent different

cultural distance factors as shown in Table 1.

In addition to extending the meta-model of EXE-SPEM, we extend the schema

for defining the XML representation of EXE-SPEM process models as shown in

Fig. 5 where the Site and Team have been added.

2. Adding a GDM calculation module

The design-time part of the SDaaS architecture (see Fig. 1) needs to be extended

by adding a module for calculating the GDM (following Eq. 1). The geographi-

cal and temporal distance factors can be automatically calculated by this module

using the team and site information from the process model. The cultural dis-

tance, however, is a subjective factor. Therefore, this module should interact with

the team members to calculate their perceived cultural distance factors towards

other teams at different sites. This can be done using the factors from Table 1.

3. Visualizing the GDM between distributed sites

Once the GDM between each pair of distributed sites is calculated, the project

manager needs to view the overall perceived distances between distributed sites

Enabling GSD Task Allocation via Cloud-Based Software Processes 187

Fig. 4 The extended meta-model of EXE-SPEM

Fig. 5 The software process

model XML schema

188 S. Alajrami et al.

Fig. 6 The global distance between three distributed teams. Taken from [17]

Fig. 7 The decision making process

in order to make the best allocation decisions. The distances can be visualized

following the example in Fig. 6 which is taken from Noll and Beecham [17] and

shows the distances between three distributed teams (Germany, Spain and UK).

The numbers represent the perceived distance from one site towards another. The

larger the number, the larger the distance and consequently, the larger the differ-

ences and risks.

The decision making process is depicted in Fig. 7. It starts with the project man-

ager or process author creating the process model and specifying the teams that might

be involved in this process. Then, the GDM between these sites is calculated and

visualized. Finally, the project manager makes a decision to allocate specific tasks

to specific teams based on a trade-off between multiple factors (e.g., labour cost,

availability, expertise and GDM). Based on the trade-offs, the project manager may

decide to make modifications to the process in order to reduce the risks associated

with involvement of distributed teams. For example, to reduce dependencies between

two teams with high GDM value.

4 Demonstrating Example

To demonstrate the proposed approach in this paper, we use a process model we

developed in a previous work [4]. The process is a safety process for generating

product and process safety arguments to be used in building safety cases for safety

critical systems. Figure 8 shows the original process (before introducing the exten-

sion for task allocation support) modelled in EXE-SPEM. The process consists of

Enabling GSD Task Allocation via Cloud-Based Software Processes 189

Fig. 8 Safety process modelled using EXE-SPEM. Adapted from [4]

activities which consume and produce work products (artefacts) and are performed

by role use (actors).

Figure 9 shows the same process modelled with the extended EXE-SPEM. As

the figure shows, the model now describe the collaborating sites (one in the UK and

another in India). By analyzing calculating the GDM between these two sites from

the process model, the distances can be reported and visualized to project managers

who can then make an informed decision to allocate certain activities to certain sites.

For example, as shown in Fig. 9, the decision could be to allocate the Product-based
Argument Generation activity to the UK site and the Process-based Argument Gen-
eration to the Indian site. After allocating the activities to sites, the process model

can be executed in the SDaaS architecture.

5 Related Work

Several approaches for task allocation in GSD projects have been studied in lit-

erature. Some studies have reviewed these approaches (e.g. [12, 14]). Imtiaz and

Ikram [12] have identified several factors that impact task allocation in GSD projects

such as: labour cost, expertise, task-site dependency, temporal and cultural dif-

190 S. Alajrami et al.

Legend
Start Ac vity Role use
Finish Work product Site

System
Architecture

Model

FPTC
results

In

Performed by

Process-Based
Argument Generation

FPTC-based
Analysis Product-Based

Argument Generation

Out

Safety Case
Argument
Fragment

In

Safety
Engineer

In

Hazardous
Events

Product-Based
SACM Argument

Out

Process-Based
SACM Argument

In

In

Arguments
Composition Out

Textual
Argument

Out

Textual
ArgumentOut

In

Process
Model

Out

Product Argument

Process Argument

Site 1
{UK, GMT}

Site 2
{India, DST}

Site = Site1

Site = Site2

Fig. 9 Safety process modelled using the extended EXE-SPEM

ferences, etc. Task allocation approaches often target one or few of these factors

and a trade-off between them need to be performed based on the situation and the

project [12].

Task allocation for GSD projects can be categorized into two groups [16]: (a)

optimization approaches (aiming to decide on the best task allocation with respect

to a specific goal) and (b) predictive approaches (aiming to evaluate different task

allocations individually).

Mockus and Weiss [15] propose an optimization algorithm which aims to mini-

mize the communication needed between sites and thus reducing the communication

overhead. However, this approach only addresses a single criterion (i.e., communi-

cation overhead). Another approach developed by Setamanit et al. [18] uses a simu-

lation model to compare different task allocation strategies with respect to productiv-

ity and development time. This approach, however, does not provide task allocation

decision support for individual projects and instead compare the strategies gener-

ally. Lamersdorf and Münch [13] study the risk identification and effort estimation

perspectives in GSD task allocation and conclude that although some approaches

can be used to support certain aspects of task allocation, there is no comprehensive

approach for systematic task allocation covering all the needed aspects.

Enabling GSD Task Allocation via Cloud-Based Software Processes 191

6 Conclusion and Future Work

In this paper, we extend the SDaaS architecture [5] to provide task allocation decision

support for GSD projects. SDaaS facilitates conducting GSD projects in the cloud

and automate the computational ad tool resources allocation on demand. The exten-

sion uses the Global Distance Metric (GDM) [17] to quantify the three dimensions of

GSD distance (geographical, temporal and cultural). This extension allows projects

managers to make task allocation decisions baring in mind the distances (differences)

between the collaborating distributed tasks and the risks associated with it.

In practice, the decision on task allocation is made based on multiple factors (e.g.

labour cost, expertise, availability, etc.) Although this paper focuses only on one

factor which impacts task allocation in GSD projects (the distance factor), other fac-

tors could similarly be integrated within the SDaaS architecture in future works.

The motivation for extending the SDaaS architecture is that it already support other

aspects of GSD projects (as discussed in Sect. 2.1).

This paper comes as a first step towards a comprehensive approach for task allo-

cation decision support within the SDaaS architecture. In the future, other factors

affecting task allocation decisions need to integrated. It is also possible to adapt the

model-based approach developed by Lamersdorf and Münch [13] which integrates

three models: a risk model which identifies risks for each allocation alternative, an

optimization model which suggests alternative allocation based on multiple criteria,

and an effort overhead model which estimates the effort needed for each allocation

alternative.

Acknowledgements B. Gallina is partially financially supported by EU and VINNOVA via the

ECSEL Joint Undertaking under grant agreement No 692474, project name AMASS.

References

1. Software and Systems Process Engineering Meta-Model Specification, V2.0. formal/2008-04-

01. Object Management Group (OMG), MA, USA (2008)

2. Alajrami, S., Gallina, B., Romanovsky, A.: Enabling global software development via cloud-

based software process enactment. Technical Report TR-1494, Newcastle University, School

of Computing Science (2016)

3. Alajrami, S., Gallina, B., Romanovsky, A.: EXE-SPEM: towards cloud-based executable soft-

ware process models. In: MODELSWARD’16—Proceedings of the 4th International Con-

ference on Model-Driven Engineering and Software Development, pp. 517–526. Scitepress,

Rome, Italy 19–21 February (2016)

4. Alajrami, S., Gallina, B., Sljivo, I., Romanovsky, A., Isberg, P.: Towards cloud-based enact-

ment of safety-related processes. In: Skavhaug, A., Guiochet, J., Bitsch, F. (eds.) Proceedings of

Computer Safety, Reliability, and Security—35th International Conference, SAFECOMP’16,

Trondheim, Norway, September 21–23, pp. 309–321. Springer (2016)

5. Alajrami, S., Romanovsky, A., Gallina, B.: Software development in the post-PC era: towards

software development as a service. In: Abrahamsson, P., Jedlitschka, A. (eds.) The 17th Inter-

national Conference on Product-Focused Software Process Improvement, PROFES’16, Trond-

heim, Norway, November 22–24, Proceedings. Springer (2016)

192 S. Alajrami et al.

6. Carmel, E.: Global Software Teams: Collaborating Across Borders and Time Zones. Prentice

Hall PTR, Upper Saddle River, NJ, USA (1999)

7. Carmel, E., Abbott, P.: Why ‘nearshore’ means that distance matters. Commun. ACM 50(10),

40–46 (2007)

8. Conchúir, E.O., Ågerfalk, P., Olsson, H., Fitzgerald, B.: Global software development: where

are the benefits?. Commun. ACM 52(8), 127–131 (2009)

9. Grinter, R.E., Herbsleb, J.D., Perry, D.E.: The geography of coordination: dealing with dis-

tance in R&D work. In: Proceedings of the International ACM SIGGROUP Conference on

Supporting Group Work. GROUP ’99, pp. 306–315. ACM, New York, NY, USA (1999)

10. Hashmi, S.I., Clerc, V., Razavian, M., Manteli, C., Tamburri, D.A., Lago, P., Nitto, E.D.,

Richardson, I.: Using the cloud to facilitate global software development challenges. In: 2011

IEEE Sixth International Conference on Global Software Engineering Workshop, pp. 70–77

(2011)

11. Herbsleb, J.D., Moitra, D.: Global software development. IEEE Softw. 18(2), 16–20 (2001)

12. Imtiaz, S., Ikram, N.: Dynamics of task allocation in global software development. J. Softw.

Evol. Process 29(1) (2017)

13. Lamersdorf, A., Münch, J.: Model-Based Task Allocation in Distributed Software Develop-

ment, pp. 37–53. Springer, Berlin, Heidelberg (2010)

14. Lamersdorf, A., Munch, J., Rombach, D.: A survey on the state of the practice in distributed

software development: criteria for task allocation. In: 2009 Fourth IEEE International Confer-

ence on Global Software Engineering, pp. 41–50 (2009)

15. Mockus, A., Weiss, D.M.: Globalization by chunking: a quantitative approach. IEEE Softw.

18(2), 30–37 (2001). doi:10.1109/52.914737

16. Münch, J., Lamersdorf, A.: Systematic Task Allocation Evaluation in Distributed Software

Development, pp. 228–237. Springer, Berlin, Heidelberg (2009)

17. Noll, J., Beecham, S.: Measuring global distance: a survey of distance factors and interventions,

pp. 227–240. Springer (2016)

18. Setamanit, S.O., Wakeland, W., Raffo, D.: Planning and improving global software develop-

ment process using simulation. In: Proceedings of the 2006 International Workshop on Global

Software Development for the Practitioner, GSD ’06, pp. 8–14. ACM, New York, NY, USA

(2006)

http://dx.doi.org/10.1109/52.914737

Composite Event Handling over
a Distributed Event-Based System

Amina Chaabane, Salma Bradai, Wassef Louati and Mohamed Jmaiel

Abstract The using of structured peer-to-peer networks improves system scalability

but it confines users expressiveness in terms of desired exchanged data. To address

this shortcoming, we exploit advantages offered by structured topology (Distributed

Hash Table DHT) and extend it by novel approach in order to improve expressiveness

by supporting Complex Event Processing (CEP). Our approach helps to make the

right routing decision while avoiding the network overhead and preserving system

scalability. It allows users to detail interest by defining logical and temporal patterns

of exchanged data especially with the growth of data size encapsulated as events in

the network. For efficient event filtering, we propose a smart data structure named

CECube for rapid CEP over DHT. The CECube indexes firstly composite subscrip-

tions, then basing on a simple binary search, it serves as publications filter and helps

making the right decision for what events should be aggregated and forwarded to

the adequate subscribers. The performance of our solution is implemented on Pastry

DHT and evaluated using FreePastry simulator. The results demonstrate firstly that

our approach is efficient in terms of filtering process and that the average number of

routing nodes is decreased. Secondly, we prove the superiority of our approach as

compared to another existing work.

A. Chaabane (✉)

Higher Institute of Applied Sciences and Technology, University of Kairouane,

B.P. 471, 1200 Kasserine, Tunisia

e-mail: amina.chaabane@redcad.org

S. Bradai

ReDCAD Laboratory, University of Sfax, National School of Engineers of Sfax,

B.P. 1173, 3038 Sfax, Tunisia

e-mail: Salma.bradai@redcad.org

W. Louati

Faculty of Economics and Management of Sfax, University of Sfax,

B.P. 1088, 3018 Sfax, Tunisia

e-mail: wassef.louati@redcad.org

M. Jmaiel

Research Center for Computer Science, Multimedia and Digital Data

Processing of Sfax, B.P. 275, 3021 Sfax, Tunisia

e-mail: mohamed.jmaiel@redcad.org

© Springer International Publishing AG 2018

R. Lee (ed.), Software Engineering Research, Management and Applications,
Studies in Computational Intelligence 722, DOI 10.1007/978-3-319-61388-8_12

193

194 A. Chaabane et al.

1 Introduction

Fueled by the widespread adoption of new technologies and systems, such as the

Machine to Machine (M2M) [1], gathering and sharing information become of great

importance for the network’s users. Given the example of crowd-powered sensor

systems, that could provide highway air pollution information, surrounding noise

level and more.

While current communication systems are using different protocols for message

and information dissemination between scattered users, they are faced with the

increased number of users, affect network efficiency and bothers users when they

receive useless data.

As all kinds of information, from the internet to the cell phone, are driven by

events, we thought of filtering exchanged data by integrating event-based systems

[2, 3] as an effective messaging mechanism between components. From one hand, It

offers the possibility to asynchronous data exchange in applications due to its specific

characteristic of space, time, and flow decoupling. From the other hand, it allow

users to interact with others and to specify the kind of messages or notifications they

want to receive. Basing on an event service notification, event based systems ensure

communication between scattered users. This event service is composed of brokers

that are responsible for event filtering and routing. Its scalability depends also on the

event service topology. It grows in importance from centralized to hierarchical and

Peer-to-Peer (P2P) architectures. With P2P topology, event service topology can be

structured or unstructured. Scalability is more sophisticated with structured topology

based on Distributed Hash Tables such as Pastry and Chord.

However, messages come with a high rate but few of them satisfy user’s interests.

In fact, they still be sent unnecessarily and passed across our systems as unrelated

pieces of information. Moreover, users have more and more various events for pub-

lication and attempt to search for multifarious events. With information diversity,

expressiveness of these systems is a salient feature to evaluate system efficiency

against user’s requirements. Publish/Subscribe (Pub/Sub) system handles expres-

siveness mainly with topic-based and content-based systems. But, user can require

or produce many events concurrently or sequentially with various contents and top-

ics. User’s interest becomes more exigent when he searches to reorganize favorite

events reception or detect significant event or event resulting from occurrence of

other events. Consequently, a lot of events could come with a high rate, but few of

them could satisfy user’s interests.

This issue can be handled through Complex Event Processing (CEP) approaches.

In fact, CEP offers the possibilities to aggregate and correlate events together by a

set of understood relationships in order to make them a source of great power, called

composite events, that can yield a wealth of information. Those composite events

detail events composition with temporal and logical relationships and even spatial

relationship for sensor networks especially. Let us consider one example to illus-

trate the problem involved in case of composite event handling. Taking the example

with centralized event service shown in Fig. 1, at the left hand we present coming

Composite Event Handling over a Distributed Event-Based System 195

Fig. 1 Composite event handling

subscription, at the right coming publication and at the bottom, we found the event

service responsible to event storage, matching and routing. In this example, S0 link

up e2 and e3 with XOR logical relationship. Thus, if the event service receives E3
followed by E2 matching e3, e2 respectively, then, it must memorize the first one

(E3) to be notified and ignore E2. However, E2 matches S2, consequently it will be

sent to the corresponding subscriber(s). When handling S1, the event service should

check temporal and logical relationships to build the composite event. For example,

when receiving E6, the event service should check the receiving of E5 previously in

order to validate temporal relationship. Otherwise, clients will be overwhelmed by

an excessive amount of primitive events, most of which may be irrelevant and could

be filtered out before reaching the client. Thus composite event allows to better sat-

isfy user’s interest and reduces network traffic by getting rid of uninterested events

from the network.

However, collecting events from scattered brokers and aggregating them to com-

posite events according to different event patterns, brings new challenges in terms

of their routing and management. Widely explored in the literature, this issue stills

require improvement for distributed event service, in particular event service under

P2P architecture for CEP.

After having studied existing approaches, this paper relies on Pub/Sub system

based on Distributed Hash Tables (DHT), which intrinsically offers efficient func-

tionalities such as event routing flexibility, scalability, load balancing and fault tol-

erance, in order to manage distributed composite events routing. We use topics to

compute keys for routing atomic/composite events in a DHT. Our Pub/Sub commu-

nication layer will be responsible for disseminating composite topic into primitive

and sub-composite topics that are mapped on nodes responsible on their hashed keys.

Furthermore the paper concentrates on combining all logical and temporal relation-

ships on a scalable P2P event-based system. We aim to provide a composite event

management solution that deals with all composite event patterns and structured

P2P networks. To this end, we propose a three dimensional indexing hash space

named CECube for detection of composite events produced throughout a distrib-

uted network. While basing on binary search, it allows not only an efficient events

matching and filtering process, but also it reduces useless transfer of atomic/primitive

events throughout brokers’ network. This is by checking temporal and logical con-

196 A. Chaabane et al.

straints before their sent. Our approach provides CEP requirements of a performed

P2P Pub/Sub middleware that can be integrated with IoT systems or social networks.

The remainder of this paper is organized as follows. We remind the notion of

Distributed Hash Table, CEP and composite event as backgrounds in Sect. 2. We

detail existing related works with advantages and shortcomings in Sect. 3. Then in

Sect. 4, we introduce our proposed approach of composite event filtering based on

DHT to overcome previous works limitations. Thereafter, we detail the indexing

and routing process in subscription phase in Sect. 5 and the matching process in

publication phase in Sect. 6. Results obtained from several experiments are provided

in Sect. 7. We finish this paper with a conclusion and future work in Sect. 8.

2 Backgrounds

To better understand our approach, we detail all its pillars in this section.

2.1 Distributed Hash Table Overview

DHT provides a lookup service similar to a hash table. The (Key, Value) pairs are

stored in a DHT node (rendezvous node). Each DHT node has a unique identifier

(nodeID) and stores some (key, value) pairs which have closest keys to its nodeID.

Generally, nodes are organized virtually according to the order growing of nodes

identifiers on a DHT ring (see Pastry [4], Chord [5], etc.).

2.2 Complex Event Processing

CEP can be seen as an extension to traditional Pub/Sub system, which allows sub-

scribers to express their interest in composite events. It consists in collecting infor-

mation produced by multiple, distributed sources, to process it in a timely way, in

order to extract new knowledge or valuable event as soon as the relevant information

is collected. It is based on composite event patterns which define knowledge and

desired event composition.

2.3 Composite Event

We can consider the following definition of event composition as proposed in [6]:

“Composite subscriptions consist of atomic subscriptions linked by logical or tem-

poral operators, and can be used to express interest in composite events. A composite

subscription is matched only after all component atomic subscriptions are satisfied”.

Composite Event Handling over a Distributed Event-Based System 197

2.4 Composite Event Relationships

In event-based system, user’s interest can be conveyed by a primitive event (sim-

ple) or composite event when there is a dependency or relativity between primitive

events. This dependency can be represented by the composite event relationships.

We handle logical and temporal relationships in our work.

2.4.1 Logical Relationships

The logical relationships supported by our approach are:

∙ Conjunction (And): Events E1 and E2 should occur;

∙ Disjunction (Or): Event E1 or E2 should occur;

∙ Or-exclusive (XOR): Event E1 or E2 should only one occurs;

∙ Negation (Not): Event E should not occur.

2.4.2 Temporal Relationships

In addition to logical operators, we handle also the following temporal relationships:

∙ E1 before E2: When user requires E2 after finishing E1;

∙ E1 meets E2: When user requires receiving E1 and E2 with time intersection;

∙ E1 overlaps E2: When user requires receiving E1 and E2 with time intersection

but E1 starts the first and E2 finishes the last;

∙ E1 finishes E2: When user requires E1 and E2 that finishes in the same time;

∙ E1 includes E2: When user requires to receive E2 when receiving E1;

∙ E1 starts E2: E1 and E2 start in the same time;

∙ E1 equals E2: E1 and E2 start and finish in the same times.

3 Related Work

In this section, we provide an overview of several research efforts in the literature

focused on the CEP. Then we discuss Pub/Sub systems and CEP applied to social

networks, IoT and crowdsensing systems.

3.1 CEP

The CEP appears as an important issue in the Pub/Sub systems due to user require-

ments value. In fact, taking account of composite user interest provides a flexible and

198 A. Chaabane et al.

energy-efficient manner and performs near real-time processing of Big Data streams.

Existing solutions can be categorized into centralized and distributed according to

the event service topology. The centralized solutions appear first and are more effi-

cient than distributed solutions for complex event routing in terms of matching rapid-

ity and event expressiveness. RUBCES [7] is a Rule Based Composite Event System

defining a Storage and Management of subscriptions as a centralized entity based

on defined rules for composite event matching and management. RUBCES allows

achievement and detection of primitive and composite events with only logical rela-

tionships (and, or). However, its centralized architecture causes server crowding and

reduces its reliability since the server can fail and as a result all subscriptions and

publications fail to.

Pietzuch et al. [8] propose a Composite Event Detectors (CED) based on a core

CE language compiled on Finite State Automata (FSA). These CED are devoted

to detect concurrent composite event patterns with specific parameterization and a

rich time mode. However, they cannot be deployed on distributed network. While

CED suffer especially from scalability issue with centralized automata detectors,

authors propose to improve this solution by duplicating these detectors at favourable

locations according to the network bandwidth and sources of composite events [8].

Nevertheless, this proposition remains suffer from scalability problem. In fact, when

some composite events are required too much, nodes of CED would be certainly

overcrowded. It suffers also from user-friendly definition of new composite event

according to user requirements as he needs to define a new CED.

Others works appear to purge scalability shortcoming and enhance compos-

ite event relationships. In this context, Courtenage et al. [9] propose Composite

Event Detectors and Atomic Event Detectors created on different nodes according

to received subscriptions. The identity of an event detector broker is located in the

network by hashing the event type and route it to a node having the closest successor

identifier to the service identifier (AED/CED). The event definition is based on the

𝜆-calculus formal language. Consequently, this solution lacks support for temporal

relationships which are a cornerstone for CE expressiveness and usefulness.

Lai et al. [10] handle composite event detection for sensor networks with tem-

poral, logical and spatial event composition. Each sensor node is programmed to

detect specific composite event according to program images conveying the com-

posite event and the sensor nodes responsibilities. Thus, the definition of new com-

posite event requires new program definition which is out of the simple user scope.

Besides, this approach can be used only for sensor networks deployed on limited area

such as on an airport to control freight and passenger traffic or on an enterprise to

control temperature versus working hours. However, the deployment of our frame-

work is possible on wide area network and it allows users to define new subscriptions

according to their interests.

Last work is named JTangCSPS proposed by Qian et al. [11]. It is a composite and

semantic Pub/Sub system over structured P2P networks. They use OWL language

to describe semantic events. Since OWL does not allow defining logical and tem-

poral operators, they use RDF graphs to describe the relations of composite event.

The major shortcoming of this work is that all primitive events shall be reached and

Composite Event Handling over a Distributed Event-Based System 199

checked before the checking of the composite event relationships which is unneces-

sary in some cases as when using the OR and XOR operators.

There are few approaches that have succeeded to maintain CEs management, but

some of them fail to comply with the event expressiveness such as the breach of some

logical and temporal relationships, and others are built on unstructured or central-

ized event notification system. In this paper, we present a composite event pattern

modeling and distributed composite event management to achieve large-scale and

efficient routing over P2P Pub/Sub system. In the next, we discuss CEP application

to the IoT, Crowd sensing and social network.

3.2 CEP Could Be Applied to IoT, Crowd Sensing Systems
and Social Networks

IoT and mobile Crowd Sensing are responsible to supervise and collect data over a

large network of senors and mobile devices which results high traffic. Recently, few

approaches propose to use CEP to detect valuable events for real time IoT applica-

tion. Chen et al. propose a distributed CEP engine for IoT applications [12]. They

use only logical operators to define complex event patterns. The CenceMe applica-

tion retrieves and publish automatically sensing people’s presence to social networks

through mobile phones [13]. It generates a lot of traffic by sensing data, but with-

out any filtering on generating data. It uses the phones and the backend servers to

achieve scalable inference. In the same context, PEIR [14] is also a participatory

sensing application based on GPS location data collection using mobile phone. It

estimates personal exposure to pollution and environmental impact. It uses client-

server architecture which affects scalability of the system. It is also not real time

application and does not filter exchanged data.

New mobile sensing platforms using data filtering are recently proposed in order

to minimize network traffic. Lifestreams [15] is a modular sense-making tool-set

for identifying important patterns from everyday life. It is based on data analysis

software. This software collects data from mobile phone into centralized data base

to be analyzed to facilitate the exploration and evaluation of personal data stream

sense-making. Lifestream uses some defined views to analyze collected data and

identify key behaviors and trends which are relevant to an individual’s health as well

as to enable researchers from health domains to identify behavioral-indicators from

large volumes of raw and heterogeneous data streams according defined view.

Some IoT applications need real time processing for handling big data streams.

They use Pub/Sub system to collect interested data by simple event filtering. We

find Pogo middleware [16], an application used on mobile phones to facilitate the

access to sensor data for the research community, uses Pub/Sub system with sim-

ple topic-based for filtering. It aims to achieve energy-saving on mobile devices by

simple filtering of sensed data on mobile devices. Tong et al. [17] propose an ubiq-

uitous Pub/Sub Platform for wireless sensor networks. They provide content-based

Pub/Sub with high level of abstraction from the underlying sensors and network

200 A. Chaabane et al.

infrastructures. Users can subscribe for sensing data by simply specifying the target

area, sensing types and data ranges of interest. CUPUS [18] for CloUd-based PUb-

lish/Subscribe middleware, is a mobile crowd sensing system that reduces energy

consumption significantly on mobile devices and sensors by suppressing the trans-

mission of redundant and irrelevant data into the cloud. To summarize, there are few

IoT applications using Pub/Sub system with simple filtering which reduce energy

consumption and traffic. These objectives can be more satisfactory with CEP. Espe-

cially for the social networks that attract a majority of the Internet users which

increase significantly User Generated Content [19]. Unfortunately, users are not

always satisfied by received contents so the checking of composite user interests

reduces the network traffic and improve the network efficiency.

In the next, we detail our CEP approach for event filtering over DHT.

4 The Proposed Approach of Composite Event Filtering
Based on DHT

4.1 Complex Event Modeling

In our work, we define a complex event based on a composite event definition as an

aggregation of primitive or sub-composite events with a set of logical operators and

temporal constraints. Therefore, We formulate a Composite Event (CE) made up of

the set of events E, where E can be a primitive or a sub-composite event with as

follows:

CE = [opi(Ei∕Ti ,Ej∕Tj)] (1)

With:

∙ Ei/Ej: primitif or sub-composite event; so that a CE could be the aggregation of

two sub-composite events, two primitive events or the aggregation of a primitive

event and a sub-composite event;

∙ Ti/Tj: temporal constraint of Ei/Ej;

∙ opi: logical/temporal (Log/Temp) relationship between Ei and Ej.

For example to compose three primitive events with logical operator “and”, accord-

ing to our formula, the generated CE will be as follows: CE = [and (E3∕T1), [and (E1∕T1 ,

E2∕T2)]].

4.2 Approach Overview

In our approach, we extend structured P2P Pub/Sub system for topic-based event in

order to support composite topic-based event while relying on DHT protocol. The

specific contributions of our work revolve around three main pillars.

Composite Event Handling over a Distributed Event-Based System 201

Fig. 2 Decomposition tree

of CE1

Firstly, brokers could act either as event sources and event consumers. They act

also as rendez-vous/filter nodes between publishers and subscribers. In fact, match-

ing publications into subscriptions needs that subscriptions and publications for par-

ticular events meet at a certain nodes in the system where they can be compared.

Secondly, In case of a composite subscription (CS) (subscription with a compos-

ite event), our Pub/Sub communication layer is responsible on its decomposing into

primitive and sub-composite events called its members. Those members are mapped

later to their root nodes responsible on their hashed identifiers. The decomposition

and mapping process follows a tree structure shown by Fig. 2. The example in the

figure shows that subscriber1 desires the reception of CE1 which is is the aggre-

gation by the logical operator “and” of two primitives events e1: foot ball match

and e2: comments in english. According to this example, the tree structure is built

in subscription phase from parent (N1) to roots (n1 and n2). In publication phase,

it is followed inversely so that the event composition will be checked gradually on

rendez-vous nodes. Useless events that have not meet any primitive and/or composite

subscription stop their dissemination over the tree, and hence reducing the network

traffic.

Moreover, our proposed decomposition process can detect shared or repeated

primitive or composite events. As shown the Fig. 3, the composite subscription Sub1
is reused in the composite subscription sub2. At this stage, the re-decomposition of

sub1 and re-routing of its members is unnecessary as it was already performed when

handling sub2. Consequently, we avoid again unnecessary events transfer.

Thirdly, we propose two smart structures, the “plane” and “CECube” for indexing

the primitive and composite subscriptions respectively. For both of them, the index-

ing process is based on an EventFlag ∈ {0, 1} to indicate the subscription existance

in the current rooting node. Our objective behind using those structures is to make

matching events easier and more efficient in the same time. Regarding the “Plane”

structure, its main role is to check logical and temporal constraints of a primitive

subscription.

Regarding the “CECube”, it allows CS indexing according to its members. More

details of the “plane” and “CECube” indexing and matching processes are given in

Sects. 5 and 6 respectively.

202 A. Chaabane et al.

Fig. 3 Decomposition tree with CE1 as a common event

5 Primitive/Composite Event Indexing in Subscription
Phase

5.1 Indexing Primitive Subscription Through Plane
Structure

To store primitive events on a responsible broker, we define a Plane structure with

two axes I(e) and I(T) as shown in Fig. 4, where I(e) is the hashed value index of

primitive event and I(T) is the hashed value index of the event occurrence time.

We use the uniform hashing function sha-1 that can accommodate all IDs without

conflict.

Each cell in this Plane contains a value denoted as PlaneValue. It consists of two

pieces of information. The first is the EventFlag, which is a bit value that indicates

whether a subscription contains a primitive event “e” at time T . Therefore, the Event-

Flag is set to “1” in order to indicate that there is a subscription for an event ei at

time Ti. The second is a Subscriber Identifier Vector (SIV) that stores identifiers of

Fig. 4 Plan structure

Composite Event Handling over a Distributed Event-Based System 203

subscribers to the primitive event. Subscribers could be either nodes responsible on

composite or simple subscriptions. In fact, primitive events can match primitive sub-

scriptions or belong to one or more composite subscriptions, to be aggregated later

(using the cube structure) with other members of the same CE.

5.2 Indexing Composite Subscription Through CECube
and Composite Event Matching Vector (CEMV)

To provide efficient matching operations in a distributed event service, we propose a

three dimensional indexing hash space named CECube. The CECube is maintained

by each broker that is responsible for a composite subscription. It is used to store

composite topic pattern, i.e. its aggregated members, and its logical and temporal

relationships. The axes respectively represent the hashed value index for composite

event CE, primitive or sub-CE belonging to CE denoted E and the occurrence time

T. The axes indexing process is performed similarly to the Plane axes. We note that

sub-CE or CE hashing is performed without event relationships and events time,

which reduces the number of built cube. The occurence time of sub-CE determines

the last occurence time of its events E.

When a broker receives a composite subscription, it begins by defining its mem-

bers (primitive events and/or sub-CEs) in addition to their Log/Temp relationships.

Then, it uses its cube structure in order to index and map all members into their

corresponding cells.

As shown in Fig. 5, a Plane perpendicular to the I(CE) axis is identified as [I(CE),

*, *] and denoted as “CellMatrix”. It represents the composition of the corresponding

CE at any time. Similarly, a line parallel to the I(E) axis forms the composition of

CE at a specific time T. It represents the CellSequence and is identified as [I(CE),

*, I(T)]. Each cell of the cube [I(CE), I(E), I(T)] is denoted as cubeValueSet and

maintains a set of values as follows:

Fig. 5 CECube structure

204 A. Chaabane et al.

Fig. 6 Composite Event Matching Vector modeling

∙ The EventFlag ∈ {0, 1}: as a bit that indicates whether a composite subscription

with (CE) contains an event E (primitive or composite) at time T .

∙ Subscriber Identifier Map denoted as SIM: It contains pairs of (key, value) as fol-

lows:

– The key is the relationship;

– the value is the the correspending vector of subscribers’ identifiers (SIV). In

other words, they are subscribers to the concerned CE aggregated with the same

relationship.

∙ The end time of the event/sub-CE: necessarily for temporal relationships checking.

To check event composition total matching efficiently, we define a Composite
Event Matching Vector (CEMV) for each CE. Our aim is to check easily the total

matching of a given CE with the coming of its members. As shown the Fig. 6, values

of each element in the CEMV will contain pairs of (key, value) as follows:

∙ The key: is relationship

∙ The value: is the EventFlag summation in the CellSequence [I(CE), *, I(T)] of the

concerned CE aggregated with the same relationship indicated in the key.

Those two information will make the matching easier in the publication phase as

explained in Sect. 6.

5.3 Primitive/Composite Event Handling
in Subscription Phase

While basing on the Plane and CECube structures, the subscription processing of

a composite and primitive subscriptions are shown in Algorithm 1. On receiving a

composite subscription according to the CE pattern defined by formula (1), we check

if the same composite subscription (Sub) is already indexed before (line 3). In case

that the concerned routing node has never received similar composition of Sub, it

Composite Event Handling over a Distributed Event-Based System 205

starts by decomposing the subscription to reveal its members (E). Then, Accord-

ing to the hash indexes of CE and E, their start time, it indexes those members in

their correspending cells in the cube. Therefore, each cell of [I(Sub), I(E), I(T)] will

contain the EventFlag set to 1, the SIM containing pairs of [[relationship, Vector of

subscriber’s ID (SIV)] and the end time of the event (E). Then the concerned Com-

posite Event Matching Vector is updated with adding the pair [relationship, summa-

tion of EventFlag]. Then, the events (E) will be routed to their rooting nodes, that

will process the same in case that (E) is itself a composition (lines 4–8).

If Sub is already indexed before, the process of cube indexing will just check the

relationship. If it is the same as the already indexed subscription, it will just add the

subscribers’ identifier to the adequate pair in the SIM. Otherwise, it adds an other

pair [relationship, SIV] in the same SIM. Then, the decomposition is stopped as

events subscription are already routed by the aleready indexed subscription (lines

10–11).

When a rendezvous node receives a primitive subscription (line 15), it updates its

Plane structure by setting corresponding EventFlag to “1” and adding sender node

to the SIV using plane function (line 16).

Algorithm 1: Subscription processing

Data: subscription Sub, sender S

Result: E1, E2, op

1 switch type of Sub do
2 case Composite
3 if Sub never mapped then
4 decompose(Sub,E1,E2, op);
5 cube(Sub,E1,E2, op, S);
6 updateCompositeEventMatchingVector (Sub,E1,E2);
7 send(E1);
8 send(E2);
9 end
10 else
11 updateSIM(S);
12 end
13 break;

14 endsw
15 case Primitive
16 plane(Sub, S);
17 break;

18 endsw
19 endsw

Figure 7 depicts the example of composite subscription shown previously by

Fig. 3. For composite subscription sub2, a cube structure is created in N2 as the root

node of the CE2. Then, members of CE2 are mapped in the cube according to their

hash index of events and occurence time. The occurence time of the sub-CE (CE1) is

the last occurence time of its members e1 and e2 (they have the same occurence time

206 A. Chaabane et al.

Fig. 7 Composite subscription processing

in the example as the match should coincide with comments). The Composite Event

Matching Vector responsible on the Plane [I(CE2, *, *] is updated by adding the

pair [logical relationship (“OR” in the example), summation of the EventFlag = 1]

for the CellSequence [I(CE2), *, I(t)]. Then event members are routed to their root

nodes (N1 and n3 respectively). The same scenario is performed in N1 responsible

on CE1.

When primitive events are routed to their root nodes, a Plane structure is created to

index those events according to their ID and time occurence. For example, for e1 the

concerned PlaneValue will contain the EventFlag set to “1” and the SIV containing

the ID of its subscriber which is N1 in the example.

6 Matching of Primitive/Composite Event
in Publication Phase

The publication phase consists in collecting and aggregating all primitive and/or

composite topics from different brokers to satisfy composite subscriptions. The

aggregation process will respect tree decomposition from leafs to the root in order

to avoid unnecessary event notification when primitive event does not satisfy logical

and temporal constraints.

The Algorithm 2 details steps of the publication phase. We distinguish primitive

event from composite event handling. In the first case, a primitive publication is

received on the root node of primitive event (line 1). We check through the Plane

created in the subscription phase if the corresponding EventFlag is set to “1” (line 2).

Composite Event Handling over a Distributed Event-Based System 207

Then, we use SIV of the PlaneValue for sending primitive events to their subscribers

(lines 3–5).

In the second case, an event E (primitive or sub-CE) is received by a node that

maintains a cube structure (line 7). We look at the Plane [*, I(E), *] perpendicular

to the I(E) axis to check if it belongs to any composite subscription (line 8). When

EventFlag is set to “1”, we look up the corresponding [I(CE), *, *] CellMatrixs and

scan all cubeValueSets for event matching and relationships checking and to found

following destinations (SIV) (lines 9, 10).

As the event E is reached, the EventFlag in the concerned cell which was already

set to 1 in the indexing process will be set to 0 in this matching process (line 11).

Note that we take into account the relationship when updating the EventFlag. For

example for the logical relationship “OR”, once an event is reached, we update also

the EventFlag of the other member and set it to 0. After verifying Log/Tem relation-

ship with other events (line 12), we update the CEMV to check the total matching

of the concerned CE (line 13). As the CEMV cells contain pairs of [Log/Temp rela-

tionship, summation of the EventFlag] and EventFlag of reached events are set to

0, when all summations of the EventFlag for the same relationship are set to 0, we

reveal that the concerned CE is matched. In this stage, a notification is sent to the

subscriber using the adequate SIV in the adequate SIM stored in the cubeValueSet.

Finally, we send composite event to those subscribers (lines 14-16-17).

Algorithm 2: Publication processing

Data: publication e, receiver R

Result: E1, E2, op

1 if R_has_a_plane_structure and e_is_primitive then
2 SIV ⟵ scanPlan(e);
3 for dest ∈ SIV do
4 send(e, dest);
5 end
6 end
7 if R_has_Cube_structure then
8 CE ⟵ scanPlan([∗, I(E), ∗]);
9 for ce ∈ CE do
10 if scanCubeValue([I(CE), *, *]) then
11 updateEventFlag;

12 checkLog∕TemRelationship;

13 updateCompositeEventMatchingVector(ce);
14 if (CompositeEventMatchingVector(ce)==0) then
15 SIV ⟵ scanPlan(ce);
16 for dest ∈ SIV do
17 send(ce, dest);
18 end
19 end
20 end
21 end
22 end

208 A. Chaabane et al.

7 Experimental Results

Experimental results consist in two parts. The first part provides an experimental

evaluation and explanation of the benefits of our solution. In the second part, we

compare it to JTangCSPS system to check its performance in terms of routing delay.

We have implemented our system over Scribe Pub/Sub system based on Pastry

DHT. Our evaluation uses FreePastry simulator with almost the same conditions of

JTangCSPS. Our measurements take place also on a standard PC installation with

Linux libraries and a hardware configuration comprising Intel core i5 CPU 2.53 GHz,

4 GB RAM. The experimentations are made with a static DHT network that does not

suffer from node failure.

7.1 Network Traffic Reduction

To achieve our goal, we propose a CECube structure for event composition through

P2P Pub/Sub system. Our approach allows to meet the needs of users and conse-

quently reduce the network traffic by avoiding unnecessary transfers between users.

We propose two scenarios to evaluate our approach as far as traffic reduction is

concerned. In the first scenario, we inject 200 composite subscriptions, each one

is composed of five primitives subscriptions. This scenario allows to compare a

Pub/Sub system with event composition over existing communication networks. In

the second scenario, we inject the 1000 atomic subscriptions that make up the 200

composite subscriptions of the first scenario. This scenario helps to show the con-

tribution of event composition with distributed Pub/Sub system. We measure the

number of notifications received by customers in the different scenarios after 4000

publications sent over the network.

The result shows that the number of notifications sent to the customer is greatly

reduced by using an event-based system. Indeed, the flow of publications can reach

100% if we consider the case of Facebook where sharing is done between a group

of friends. This type of sharing does not consider the interests of customers and as

result we observe user frustration. However, considering the interests of customers,

the reduction can reach 82%, as shown by the curve. Moreover, the injection of com-

posite subscriptions reduced more the overall traffic. The reduction reaches 65%

compared to a system using Pub/Sub without composition (first scenario). These

results are shown by curves of Fig. 8.

7.2 Evaluation of Our Approach for Composite
Subscriptions with and Without Intersections

We note that in the practice, there is too much intersection between user interests

above all when some events are famous and shared between most of the population.

Composite Event Handling over a Distributed Event-Based System 209

Fig. 8 Traffic reduction by Pub/Sub system with event composition

Fig. 9 Example of 10 composite subscriptions without intersections

The proposed CECube structure makes the intersection detection easier and allows

checking the matching of several events simultaneously. To check CECube perfor-

mance, we propose to compare the routing delay and hops count with two patterns

of composite events as shown by Figs. 9 and 10.

The first one is without intersection between composite subscriptions and it

is made up of 36 primitive subscriptions composing 10 composite subscriptions

(Fig. 9). For the second one shown by Fig. 10, each composite subscription sent is

210 A. Chaabane et al.

Fig. 10 Example of 10

composite subscriptions with

intersections

used again as a sub-composite subscription in the following one. So 12 primitive

subscriptions allow to produce 10 composite subscriptions sent to the event service.

For evaluation, we measure the routing delay and hops when increasing networks

size. The routing delay of a composite subscription includes the network delay and

the time to build cubes and to split the composite subscription at each node. For

publication phase, it includes the network delay and the matching time. Comparing

the two curves of Fig. 11, we note that the routing time of composite subscriptions

without intersection is slightly higher compared to the one of composite subscrip-

tions with intersections. The difference is 150 ms for the simple example shown in

Fig. 10 but it can be more significant certainly in the practice when having much

intersection between user interests. Indeed, the number of created cube is lowered

when the compositions are repeated even with different composition relationships.

We also remember that the hash of composite event is applied on the concatenation

of primitive events without including operators and relationships. Therefore, when

primitive or sub-composite subscriptions are repeated even with different relation-

ships, the matching of the composite or sub-composite events is carried out in the

Composite Event Handling over a Distributed Event-Based System 211

60

80

100

120

140

160

180

With intersec on

Without intersec on

0

20

40

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

R
o

u
ti

n
g

 D
el

ay
 (

m
s)

Number of Brokers

Fig. 11 Routing delay versus event service size in subscription phase

60

80

100

120

140

160

180

H
o

p
s

Without intersec on

With intersec on

0

20

40

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Number of Brokers

Fig. 12 Hops account versus number of nodes in subscription phase

same cube. The number of visited nodes is also reduced since a responsible node to

a composition is already found, the subscription stops without finishing its decom-

position and without routing of these primitive subscriptions.

This analysis is also verified by experimental results shown by the curves of

Fig. 12. These curves show the hops count for composite subscription routing with

and without event repetitions. The number of hops is significantly reduced with sub-

scriptions made by repetition with the patterns of Fig. 10. The difference is on aver-

age 40 hops with this example and can be more important in practice by increasing

the number of DHT nodes and varying user interests.

Now, we compare the routing delay in the publication phase with the same pat-

terns shown previously by Fig. 10. The curve of routing delay of publication when

having CE with intersection is almost constant when increasing network size. This

proves the scalability of our system Fig. 13.

Comparing two curves of this figure, we note the important difference in routing

delay between CE with and without repetition. When primitive or sub-composite

subscriptions are repeated even with different relationships, the event matching is

carried out in the same cube.

212 A. Chaabane et al.

1000

1500

2000

2500

Without intersec on

0

500

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

R
o

u
ti

n
g

 D
el

ay
 (

m
s)

Number of Brokers

With intersec on

Fig. 13 Routing delay versus number of nodes in publication phase

1500

2000

2500

3000

R
o

u
ti

n
g

D
el

ay
 (

m
s)

JTangCSPS (500 nodes)

CECube (500 nodes)

0

500

1000

2 5 10 15 20

Number of Primitive Subscriptions

JTangCSPS (1000 nodes)

CECube (1000 nodes)

Fig. 14 Routing delay versus number of primitive subscriptions with JtangCSPS and CECube

Finally, we compare our approach against JTangCSPS, explained in Sect. 3 in

terms of routing delay in order to evaluate our system performance. The routing

delay of a composite subscription includes the network delay and the time to build

the composite subscription tree and cube in JtangCSPS and CECube respectively

and to split the composite subscription at each node. As JtangCSPS evaluation, we

have tested with different scenarios when the number of primitive subscriptions of

the composite subscription varies from 2 to 20. Each broker randomly makes 20/i

composite subscriptions, each consisting of i primitive subscriptions where i = 2, 5,

10 and 20. To simplify the comparison, only operator conjunction “AND” is used

in composite subscription, and each primitive subscription only contains one type

constraint.

Figure 14 shows that CECube has a lower routing delay than JTangCSPS. This

is because, in CECube, index construction in the cube architecture is less expen-

sive than the tree construction with JTangCSPS. With JTangCSPS, the routing delay

increases fast before NoPS reaches 5 and then it increases slowly. It is the same aspect

with our CECube. Scalability of our system is explained by the stability of routing

delay which is almost the same with CECube regardless of the number of nodes.

However, it increases by 800 ms between 500 and 1000 nodes with JTangCSPS.

Composite Event Handling over a Distributed Event-Based System 213

8 Conclusion and Future Work

In this paper, we present a new three dimensional hash space, the CECube to per-

form CEP distributed over structured P2P network. Our approach proposes a plane

and cube structures. The plane structure is used to index primitive event according to

time occurrence and event ID hashing with bit indication. It simplifies event occur-

rence checking. The CEcube structure indexes composite events based on a binary

information in the subscription phase. In publication phase, matching process is per-

formed while basing on this simple binary information. This approach reduces the

required amount of events that has to be transferred on the network. With experi-

mental results, we demonstrate that our approach reduces significantly the routing

delay comparing to JtangCSPS system and it stills almost the same with increased

network size.

An interesting direction of future research therefore would be to enhance semantic

aspect of our approach in order to fulfill user interests. It is also interesting to exploit

our approach in various application domains such as the social network and IoT.

References

1. Alaya, M.B., Banouar, Y., Monteil, T., Chassot, C., Drira, K.: Om2m: extensible etsi-compliant

M2M service platform with self-configuration capability. Proc. Comput. Sci. 32, 1079–1086

(2014). In: The 5th International Conference on Ambient Systems, Networks and Technologies

(ANT-2014), the 4th International Conference on Sustainable Energy Information Technology

(SEIT-2014) [Online]. http://www.sciencedirect.com/science/article/pii/S1877050914007364

2. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area event noti-

fication service. ACM Trans. Inf. Syst. Secur. (TISSEC) 19(3), 332–383 (2001)

3. Liu, Y., Plale, B.: Survey of publish subscribe event systems (2003)

4. Rowstron, A.I.T., Druschel, P.: Pastry: scalable, decentralized object location, and routing for

large-scale peer-to-peer systems. In: Proceedings of the IFIP/ACM International Conference

on Distributed Systems Platforms Heidelberg, pp. 329–350. Springer (2001)

5. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a scalable peer-

to-peer lookup service for internet applications. In: Proceedings of the 2001 Conference on

Applications, Technologies, Architectures, and Protocols for Computer Communications, pp.

149–160. ACM (2001)

6. Hinze, A., Buchmann, A.: Principles and Applications of Distributed Event-Based Systems.

IGI Global (2010)

7. Sahingoz, O.K., Erdogan, N.: Rubces: rule based. composite event system. In: XII. Turkish

Artificial Intelligence and Neural Network Symposium (TAINN), Turkey (2003)

8. Pietzuch, P.R., Shand, B., Bacon, J.: A framework for event composition in distributed systems.

In: Proceedings of the ACM/IFIP/USENIX 2003 International Conference on Middleware, ser.

Middleware ’03, pp. 62–82. Springer, New York, Inc. (2003)

9. Courtenage, S., Williams, S.: The design and implementation of a p2p-based composite event

notification system. In: Proceedings of the 20th International Conference on Advanced Infor-

mation Networking and Applications - Volume 01, ser. AINA ’06, pp. 701–706. IEEE Com-

puter Society (2006)

10. Lai, S., Cao, J., Zheng, Y.: Psware: a publish/subscribe middleware supporting composite event

in wireless sensor network. In: Seventh Annual IEEE International Conference on Pervasive

http://www.sciencedirect.com/science/article/pii/S1877050914007364

214 A. Chaabane et al.

Computing and Communications—Workshops (PerCom Workshops), Galveston, TX, USA,

pp. 1–6 (2009)

11. Qian, J., Yin, J., Dong, J., Shi, D.: Jtangcsps: a composite and semantic publish/subscribe

system over structured p2p networks. Eng. Appl. Artif. Intell. 24(8), 1487–1498 (2011)

12. Chen, C., Fu, J.H., Sung, T., Wang, P., Jou, E., Feng, M.: Complex event processing for the

internet of things and its applications. In: 2014 IEEE International Conference on Automation

Science and Engineering, CASE 2014, New Taipei, Taiwan, 18–22 August, 2014, pp. 1144–

1149 (2014)

13. Miluzzo, E., Lane, N.D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S.B., Zheng,

X., Campbell, A.T.: Sensing meets mobile social networks: The design, implementation and

evaluation of the cenceme application. In: Proceedings of the 6th ACM Conference on Embed-

ded Network Sensor Systems, ser. SenSys ’08, pp. 337–350. ACM (2008)

14. Mun, M., Reddy, S., Shilton, K., Yau, N., Burke, J., Estrin, D., Hansen, M., Howard, E., West,

R., Boda, P.: Peir, the personal environmental impact report, as a platform for participatory

sensing systems research. In: Proceedings of the 7th International Conference on Mobile Sys-

tems, Applications, and Services, ser. MobiSys ’09, pp. 55–68. ACM (2009)

15. Hsieh, C., Tangmunarunkit, H., Alquaddoomi, F., Jenkins, J., Kang, J., Ketcham, C., Longstaff,

B., Selsky, J., Dawson, B., Swendeman, D., Estrin, D., Ramanathan, N.: Lifestreams: a modular

sense-making toolset for identifying important patterns from everyday life. In: The 11th ACM

Conference on Embedded Network Sensor Systems, SenSys ’13, Roma, Italy, 11-15 November,

2013, pp. 5:1–5:13 (2013)

16. Brouwers, N., Langendoen, K.: Pogo, a middleware for mobile phone sensing. In: Proceedings

of the 13th International Middleware Conference, ser. Middleware ’12, pp. 21–40. Springer,

New York, Inc. (2012)

17. Tong, X., Ngai, E.C.H.: A ubiquitous publish/subscribe platform for wireless sensor networks

with mobile mules. In: IEEE 8th International Conference on Distributed Computing in Sensor

Systems, DCOSS 2012, Hangzhou, China, pp. 99–108 (2012)

18. Antonic, A., Marjanovic, M., Pripuzic, K., Podnar Zarko, I.: A mobile crowd sensing ecosys-

tem enabled by cupus. Future Gener. Comput. Syst. 56(C), 607–622 (2016)

19. Paper, C.W.: Cisco visual networking index: global mobile data traffic forecast update, 2015–

2020 white paper. Technical Report, Cisco (2015)

Author Index

A
Abidi, Wided, 167
Alajrami, Sami, 179
Al-Obeidallah, Mohammed Ghazi, 107

B
Barros, Daniel, 59
Bhandari, Renuka, 45
Blake, M.B., 93
Boly, Aliou, 125, 147
Bradai, Salma, 193

C
Cavalcanti, Antônio, 59
Chaabane, Amina, 193
Chiky, Raja, 147
Cruz, Fernando, 59

D
da Silva, Fábio Q.B., 59
Déme, Ndéye Bousso, 147
Dia, Amadou Fall, 125, 147

E
Ezzedine, Tahar, 167

G
Gallina, Barbara, 179
Gary, Kevin A., 93

I
Ishii, Naohiro, 27

J
Jadhav, Sangeeta, 45
Jmaiel, Mohamed, 193

K
Kapetanakis, Stelios, 107
Karami, Gity, 75
Kazi-Aoul, Zakia, 125, 147

L
Lima, Fernando, 59
Louati, Wassef, 193

M
Maleki, Nasrin Ghasempour, 1
Métais, Elisabeth, 125

N
Nascimento, Carla, 59

O
Odagiri, Kazuya, 27

P
Petridis, Miltos, 107

R
Ramsin, Raman, 1
Romanovsky, Alexander, 179

S
Santos, Andre L.M., 59
Shimizu, Shogo, 27
Siebra, Clauirton, 59
Sodre, Leonardo, 59

T
Tian, Jeff, 75

© Springer International Publishing AG 2018
R. Lee (ed.), Software Engineering Research, Management and Applications,
Studies in Computational Intelligence 722, DOI 10.1007/978-3-319-61388-8

215

	Foreword
	Contents
	Contributors
	1 Agile Web Development Methodologies: A Survey and Evaluation
	Abstract
	1 Introduction
	2 An Overview of Targeted Methodologies
	2.1 MockupDD
	2.2 RAMBUS
	2.3 USABAGILE_Web
	2.4 Augmented WebHelix
	2.5 Secure FDD
	2.6 XWebProcess
	2.7 XP
	2.8 UML-Based Agile Method
	2.9 Crystal Orange Web
	2.10 S-Scrum
	2.11 Scrum for CMMI Level 2
	2.12 AWDWF
	2.13 AWE
	2.14 MDE-Scrum

	3 Evaluation Criteria
	4 Results of Evaluation
	5 Conclusions and Future Work
	References

	2 Load Experiment of the vDACS Scheme in Case of Increasing the Simultaneous Connection for the DACS SV
	Abstract
	1 Introduction
	2 Motivation and Related Reserach
	3 Existing DACS Scheme and wDACS System
	3.1 Basic Principle of the DACS Scheme
	3.2 Communication Control on Client
	3.3 Security Mechanism of the DACS Scheme
	3.4 Application to Cloud Environment

	4 Cloud Type Virtual PBNM for the Common Use Between Plural Organizations
	4.1 Concept of the Cloud Type Virtual PBNM for the Common Use Between Plural Organizations
	4.2 Implementation of the Basic Function in the Cloud Type Virtual PBNM for the Common Usage Between Plural Organizations
	4.3 Results of the Functional Evaluation

	5 Load Experiment Results
	5.1 Load Experiment Results to Confirm the Function of the Software for Realization of the Cloud Type Virtual PBNM for the Common Use Between Plural Organizations
	5.2 Load Experiment Results for Applications to the Small and Medium Size Scale Organization

	6 Conclusion
	Acknowledgements
	References

	3 Blind Channel Estimation Using Novel Independent Component Analysis with Pulse Shaping for Interference Cancellation
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	3.1 HICA Method
	3.2 Mathematical Representation
	3.3 Ambiguity Elimination
	3.4 Algorithm Design

	4 Simulation Results
	4.1 MSE (Mean Square Error) Performance
	4.2 BER (Bit Rate Error) Analysis

	5 Conclusion and Future Work
	References

	4 Anticipated Test Design and Its Application to Evaluate and Select Embedded Libraries
	Abstract
	1 Introduction
	2 Approaches for Anticipated Test Design
	3 Anticipated Test Design Definition
	3.1 Flow of Activities
	3.2 Definition of Miniworlds
	3.3 Integration with Agile Methods

	4 Library Evaluation and Selected Scenario
	5 Library Evaluation and Selection Scenario
	5.1 Specification of Miniworlds to Pensieve
	5.2 Method
	5.3 Execution
	5.4 Results

	6 Conclusion and Research Directions
	Acknowledgements
	References

	Improving Web Application Reliability and Testing Using Accurate Usage Models
	1 Introduction
	2 Related Work
	2.1 Quality, Reliability, and Testing Techniques
	2.2 Markov OP Usage and Construction
	2.3 Maintaining Accuracy of Markov OP

	3 Impacts of Accuracy of Markov OP
	3.1 Quantifying Markov OP Accuracy
	3.2 Impact on Test Coverage
	3.3 Impact on Test Efficiency
	3.4 Impact on Reliability

	4 Results from a Case Study
	4.1 Case Study
	4.2 Results for the Updated Markov OP
	4.3 Results for the Initial Markov OP
	4.4 Summary of Case Study Results

	5 Conclusion
	References

	6 C-PLAD-SM: Extending Component Requirements with Use Cases and State Machines
	Abstract
	1 Introduction
	2 Component Use Cases
	2.1 Components and State Machines
	2.2 Extending C-PLAD with State Machines

	3 Applying the Method: IGSTK
	4 Benefits of C-PLAD-SM
	4.1 Safety
	4.2 Visibility
	4.3 Maintainability
	4.4 Verifiability

	5 Related Work
	6 Conclusions
	References

	7 A Structural Rule-Based Approach for Design Patterns Recovery
	1 Introduction
	2 Recovering Design Pattern Instances
	2.1 Parsing Level
	2.2 Searching Level
	2.3 Method Signatures Matching

	3 Experiments and Results
	4 Related Work
	5 Threats to Validity
	6 Conclusion
	References

	DRSS: Distributed RDF SPARQL Streaming
	1 Introduction
	2 Related Work
	2.1 Centralized RDF Stream Processing
	2.2 Distributed Stored RDF Data Processing
	2.3 Distributed RDF Stream Processing

	3 DRSS
	3.1 Query Rewritter Module
	3.2 Query Partitionner Module
	3.3 RDF Graph Partitioner Module
	3.4 CRSS Query Language

	4 Implementation and Evaluation
	4.1 Datasets Generator and Implementation
	4.2 Evaluation Setup and Results

	5 Conclusion and Future Work
	References

	9 An Efficient Approach for Real-Time Processing of RDSZ-Based Compressed RDF Streams
	1 Introduction
	2 Background and Preliminaries
	3 Related Work
	3.1 Approaches over Stored RDF
	3.2 Approaches over RDF Streams

	4 Real-Time Querying over RDSZ-based Compressed RDF
	4.1 System Architecture

	5 Evaluation
	5.1 Data Provided
	5.2 In Terms of Execution Time
	5.3 In Terms of Memory Consumption

	6 Conclusion
	References

	10 Energy Efficiency Cluster Head Election using Fuzzy Logic Method for Wireless Sensor Networks
	Abstract
	1 Introduction
	2 Related Works
	3 Proposed Clustering Algorithm
	3.1 System Assumptions
	3.2 Fuzzy System Model
	3.3 Energy Model

	4 Simulations and Numerical Results
	5 Conclusions
	References

	Enabling GSD Task Allocation via Cloud-Based Software Processes
	1 Introduction
	2 Background and Motivation
	2.1 The SDaaS Architecture
	2.2 EXE-SPEM
	2.3 GSD Task Allocation
	2.4 Global Distance Metric

	3 SDaaS-Based Task Allocation
	3.1 The SDaaS Architecture Extension

	4 Demonstrating Example
	5 Related Work
	6 Conclusion and Future Work
	References

	Composite Event Handling over a Distributed Event-Based System
	1 Introduction
	2 Backgrounds
	2.1 Distributed Hash Table Overview
	2.2 Complex Event Processing
	2.3 Composite Event
	2.4 Composite Event Relationships

	3 Related Work
	3.1 CEP
	3.2 CEP Could Be Applied to IoT, Crowd Sensing Systems and Social Networks

	4 The Proposed Approach of Composite Event Filtering Based on DHT
	4.1 Complex Event Modeling
	4.2 Approach Overview

	5 Primitive/Composite Event Indexing in Subscription Phase
	5.1 Indexing Primitive Subscription Through Plane Structure
	5.2 Indexing Composite Subscription Through CECube and Composite Event Matching Vector (CEMV)
	5.3 Primitive/Composite Event Handling in Subscription Phase

	6 Matching of Primitive/Composite Event in Publication Phase
	7 Experimental Results
	7.1 Network Traffic Reduction
	7.2 Evaluation of Our Approach for Composite Subscriptions with and Without Intersections

	8 Conclusion and Future Work
	References

	Author Index

