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Foreword to the Second Edition

Scientists specialize. In attempting to isolate and understand individual processes,
we risk losing sight of the whole. In essence, most of us study isolated trees rather
than considering the whole forest. This specialization is evident in the science of
porous media: most studies focus on just one or a few specific media, with only
occasional papers addressing a broad class of media. Thus we have specialists in
natural media such as soil, fractured rock, and granular materials, while others focus
on powders, foodstuffs, paper and textiles, ceramics, building materials, and so on.

Percolation theory has been touted as providing a general framework for de-
scribing generalized transport in all types of media. Can this general framework be
applied to a specific class of porous media, with at least as much success as the
accumulated insights of decades of more conventional approaches? If the answer is
yes, then applying percolation theory to transport processes in porous media will
yield great scientific progress.

To illustrate this point, I will briefly consider the porous media that I study. Soils
are a growth medium for plants, and so they support most terrestrial life. More
than six billion people depend on soils for food, for storing and purifying water,
for recycling waste, and for holding us up. This vital layer covering the earth’s
terrestrial surface is fragile. Often less than a meter thick, soils develop slowly but
are easily damaged by accelerated erosion, compaction, tillage, and pollution. Thus
knowledge of soils and their wise management is crucial for sustaining civilization.

But soils are tremendously complex and variable. To describe a transport process
in the soil, one must first define the time scale and the sample size; only then can
the relevant scale(s) of climate, geology, landscape position, vegetation, and man-
agement be considered. The interface between air and land, between vegetable and
mineral, routinely encounters extremes of heat and cold, wet and dry, growth and
decay. Transport is irregular and incessant: heat, water, both as liquid and vapor,
organic and inorganic carbon are constantly on the move.

Conceptual and mathematical models describing these transport processes have
grown increasingly complex. Attempting to describe a greater range of behaviors,
soil scientists have incorporated macropores (wormholes, drying cracks), aggre-
gates, clay flocs and tactoids, and mineral-specific surface chemistry into our mod-
els. While our predictions have (on average) improved, the model parameters have
become more numerous, more difficult to quantify, and arguably less physically
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vi Foreword to the Second Edition

defensible. Continuous, volume-averaged functions gloss over important details: the
ubiquitous nonlinear behaviors appear to be driven by discrete events, discrete pore
pathways, and discrete “tipping points.”

When I first met Robert (Toby) Ewing about 15 years ago, I invited him to
present a guest lecture to students in my graduate-level soil physics course, which
covers heat transfer, water flow, chemical transport, and coupled processes. Over
the ensuing years I invited Toby to expand his role in the course. His contribu-
tions grew in quantity and quality, and now we effectively co-teach the course. I fo-
cus on continuous mathematical approaches following Fick, Fourier, Buckingham,
Taylor, Richards, and others. Toby focuses on discrete mathematical approaches for
flow and transport, including network models, percolation theory, and critical path
analysis.

Toby sometimes chides me about being stuck on “old” approaches (playfully us-
ing words like ancient and Neanderthal). I respond that the so-called “old” ways are
tested and trustworthy, while his “new” approaches lack measurement support and
substantive application. However, my defense of the ‘old’ ways has been weakening
since Toby met Allen Hunt about eight years ago. Allen has been at the forefront of
applying percolation theory to transport in (mainly geological) porous media. Allen
and Toby have developed a fruitful collaboration; this book, rich in insights, is one
such fruit. They present examples of percolation theory applied to gas transfer, water
retention and flow, electrical conductivity, heat transfer, and dispersion. Over time I
have come to appreciate the potential power of their work.

From time to time in science some new concept rings a bell, and scientists rush
to engage the new concept. I want to help “ring the bell” for this excellent work of
Hunt and Ewing. In soil science we have focused on empirical descriptions of flow
and transport. Hunt and Ewing offer percolation theory as a foundational description
of how to proceed with a unifying approach. Can percolation theory prove to be a
unifying theory in porous media? Perhaps. The theory is sound, but applications of
the theory to real porous media will require care and wisdom. The theory is unifying,
but like all theories it carries restrictions of simplifying assumptions. Questions of
when and when not, how and how not to apply the theory are valid and important
questions. Hunt and Ewing provide a foundation, and invite others to engage in the
iterative process of applying, evaluating, and advancing the theory.

The foundations of percolation theory presented in this book allow for the study
of isolated trees, but Hunt and Ewing also connect the trees to the forest. I encour-
age the broad range of porous media scientists to study this book. I think the book
provides new ways to consider the processes occurring in porous media, and it will
inspire new thought, analysis, and exploration of flow in porous media.

Curtiss Distinguished Professor of Agriculture Robert Horton
Ames, Iowa, USA
Eve of Thanksgiving (November), 2008



Preface to the Second Edition

Why would we wish to start a 2nd edition of “Percolation theory for flow in porous
media” only two years after the first one was finished? There are essentially three
reasons:

1) Reviews in the soil physics community have pointed out that the introductory
material on percolation theory could have been more accessible. Our additional
experience in teaching this material led us to believe that we could improve this
aspect of the book. In the context of rewriting the first chapter, however, we also
expanded the discussion of Bethe lattices and their relevance for “classical” ex-
ponents of percolation theory, thus giving more of a basis for the discussion of
the relevance of hyperscaling. This addition, though it will not tend to make the
book more accessible to hydrologists, was useful in making it a more complete
reference, and these sections have been marked as being possible to omit in a
first reading. It also forced a division of the first chapter into two. We hope that
physicists without a background in percolation theory will now also find the in-
troductory material somewhat more satisfactory.

2) We have done considerable further work on problems of electrical conductivity,
thermal conductivity, and electromechanical coupling. The electrical conductiv-
ity may in more complex media than those addressed in the first edition lead to
the relevance of nonuniversal exponents of percolation theory, while the thermal
conductivity may be strongly affected by complex structures such as capillary
bridges or pendular rings between grains. Neither of these subjects in morphol-
ogy was discussed in detail in the first edition.

Our additional research into the saturation dependence of the electrical con-
ductivity appeared to confirm the relevance of universal scaling to a much wider
range of materials than we knew about at the time of the first edition. However,
a related subject long considered important in petroleum engineering is diagen-
esis, which was handled in some detail in Sahimi’s 1993 review. It is possible
to make models of rock formation in which the connectivity of the pore space
scarcely changes, while the width of the pores diminishes rapidly with diminish-
ing porosity. Such models allow, at least in principle, the possibility of nonuni-
versal exponents of percolation theory.

The reason that pendular structures could be relevant, especially to the thermal
conductivity of geological porous media, is that the solid fraction generally has
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viii Preface to the Second Edition

a higher thermal conductivity than the fluid phase (e.g., air or water), while the
thermal resistance between neighboring grains may be quite high. Thus, small
amounts of fluid at these junctions – pendular structures – may produce a rather
large increase in the thermal conductivity, and this increase may have nothing
to do with percolation theory as such, since the topology of the connected net-
work might not initially change with increasing fluid content, although critical
path analysis may still be useful for this problem. The large increase in material
covered in the original Chap. 4 also led to its division into the current Chaps. 5
and 6.

3) We have recently addressed the problem of dispersion in porous media, which
brings up the relevance of some additional topological aspects of percolation the-
ory, in particular, the relationship of the tortuosity of the backbone cluster to the
distribution of passage times. Because this was not addressed in the first edition,
the introductory chapters mentioned the topic only briefly. As a consequence the
preface to the first edition is now more dated as dispersion was implied to be a
problem that could be omitted. In fact, inclusion of dispersion into the second
edition has made a significant advance in the unity of the theoretical approach
here.

We also bring in an additional problem (Sect. 11.4) addressing the question of
how to generate a realistic prediction in horizontal and vertical K distributions for
a topical waste management problem, which uses output parameters from a small-
scale upscaling to generate appropriate input parameters in a large-scale upscaling.
We hope it is useful to see how difficult practical problems in applying percolation
theory at multiple scales might be managed.

In order to give the book a wider relevance, it is useful to embed the discussions
of the relevance of universal exponents in a wider context. This is accomplished by
looking at a wider range of models of porous media, a wider range of properties, and
a wider range of experiments. As a consequence, the introductory review chapters
needed to be rewritten in order to accommodate a more widely applicable theory.

Finally, it has been noted that solutions to the problems are not provided. It was
our intention, except in the introductory chapters, to suggest mostly problems whose
solutions could be published, so these problems have not yet been attempted.

Besides the people acknowledged in the first edition, one of us would like to
thank the staff of the library at Wright State University.



Foreword to the First Edition

Though a sledge hammer may be wonderful for breaking rock, it is a poor choice
for driving a tack into a picture frame. There is a fundamental, though often subtle,
connection between a tool and the application. When Newton and Leibniz developed
the Calculus they created a tool of unprecedented power. The standard continuum
approach has served admirably in the description of fluid behavior in porous media:
the conservation of mass and linear response to energy gradients fit conveniently,
and are solid foundations upon which to build. But to solve these equations we
must characterize the up-scaled behavior of the medium at the continuum level. The
nearly universal approach has been to conceive the medium as a bundle of capillary
tubes. Some authors made the tubes porous, so they could fill and drain through their
walls; others “broke and reconnected” them so each tube had a range of diameters
along its length. In the end it must be admitted that the marriage of tool (capillary
tube bundles) and task (to derive the constitutive relations for porous media) has
not yet proven to be entirely satisfactory. Lacking in these conceptual models is
a framework to describe the fluid-connected networks within the medium which
evolve as functions of grain size distribution, porosity, saturation, and contact angle.
This is fundamentally a geometry problem: how to concisely describe the particular
nature of this evolving, sparse, dendritic, space-filling network.

Recognizing this basic problem, the community flocked to the fractal models as
they became better understood in the 1990s. But fractals alone were not enough,
as the real problem was to understand not the geometry of the medium, but the
geometry of the fluids within the medium, and moreover, to correctly identify the
geometry of the locations that control the flow.

I met Allen Hunt in the late 1990s, and over coffee he described his ideas about
critical path analysis for the development of constitutive relationships for unsatu-
rated conductivity. I was immediately sold: it was transparent that the geometric
model (with the equally important framework for mathematical analysis) was ide-
ally suited to the problem at hand. Since resistance to flow is a function of the fourth
power of the pore aperture, clearly the key was to systematize the determination of
the “weak link” to compute overall resistance to flow. Paths that had breaks were
irrelevant; and paths that contained very small pores provided negligible contribu-
tion. The permeability should be proportional to the fourth power of the radius of
the smallest pore in the connected path which has the largest small pore. Read that
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x Foreword to the First Edition

sentence twice: we are looking for the path of least resistance, and that paths re-
sistance will be a function of the smallest pore in that path. Allen had the tool to
identify this path as a function of fluid content. A very useful, appropriately sized,
hammer had arrived for our nail. Over the following years Allens work showed the
power of using the right tool: he could explain the relationship between the geom-
etry of the medium and liquid content versus permeability, residual fluid content,
electrical resistance, diffusion of solutes, and even the thorny issues of the scale of a
representative elementary unit. Critical path analysis is not a panacea, but due to the
focus on the controlling geometric features, it provides a remarkably concise param-
eterization of fluidmedium relationships based on physically measurable properties
that accurately predict many of the basic ensemble properties.

A fundamental problem in having these results be broadly understood and
adopted is sociological. Consider how much time we spend learning calculus to
solve the occasional differential equation. Critical path analysis requires calculus,
but also understanding of the mathematics of fractals, and the geometric strategy of
percolation theory. When Allen started his remarkably productive march into flow
through porous media he deftly employed these tools that none of our community
had mastered. There is a natural inertia to any discipline since re-tooling requires
major investments of time. From this perspective I have long encouraged Allen to
help the community make use of this essential set of tools by providing a primer
on their application to flow though porous media. In this book Allen has once again
moved forward strategically, and with great energy. He has provided an accessi-
ble tutorial that not only provides the bridge for the hydrologist to these new tools,
but also the physicist a window into the specialized considerations of flow through
natural porous media.

Learning new mathematical constructs is much like learning a new language.
There is a great deal of investment, and the early effort has few rewards. Ultimately,
however, without language there is no communication. Without mathematics, there
is no quantitative prediction. If understanding the behavior of liquids in porous me-
dia is central to your work, I urge you to make the investment in learning this mate-
rial. By way of this book Allen provides a direct and efficient avenue in this venture.
Your investment will be well beyond repaid.

Corvallis, Oregon John Selker
April, 2005



Preface to the First Edition

The focus of research in porous media is largely on phenomena. How do you explain
fingering? What causes preferential flow? What “causes” the scale effect on the hy-
draulic conductivity? Why can the incorporation of 5% of hydrophobic particles into
soil make the soil water repellent? Where do long tails in dispersion come from?
These are merely a few examples of a very long list of questions addressed. The ap-
proach to “solving” problems is frequently to (1) take standard differential equations
such as the advection–diffusion equation for solute transport, or Richards’ equation
for water transport; (2) substitute results for what are called constitutive relations
such as the hydraulic conductivity, K, molecular diffusion constants, or air perme-
ability as functions of saturation, and pressure-saturation curves, including hystere-
sis, etc.; (3) apply various models for the variability and the spatial correlations of
these quantities at some scale; and (4) solve the differential equations numerically
according to prescribed initial and/or boundary conditions. In spite of continuing im-
provement in numerical results, this avenue of research has not led to the hoped-for
increase in understanding. In fact there has been considerable speculation regarding
the reliability of the fundamental differential equations (with some preferring frac-
tional derivatives in the advection–diffusion equation, and some authors questioning
the validity of Richards’ equation) while others have doubted whether the hydraulic
conductivity can be defined at different scales.

Although other quite different approaches have thus been taken, let us consider
these “constitutive” relations. The constitutive relationships used traditionally are
often preferred because (1) they generate well-behaved functions and make numer-
ical treatments easier; (2) they are flexible. This kind of rationale for using a par-
ticular input to a differential equation is not likely to yield the most informative
solution. The most serious problem associated with traditional constitutive relations
is that researchers use such concepts as connectivity and tortuosity (defined in perco-
lation theory) as means to adjust theory to experimental results. But the appropriate
spatial “averaging” scheme is inextricably connected to the evaluation of connec-
tivity. In fact, when percolation theory is used in the form of critical path analysis,
it is not the spatial “average” of flow properties which is relevant, but the most re-
sistive elements on the most conductive paths, i.e. the dominant resistances on the
paths of least resistance. An additional problem is that usual constitutive relations
often cover simultaneous moisture regimes in which the represented physics is not
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xii Preface to the First Edition

equilibrium, and thus time-dependent, as well as those moisture regimes where the
dominant physics is equilibrium, so that they must be overprescribed (while still
not describing temporal effects). Finally, there has been no progress in making the
distributions and spatial correlations of, e.g. K, consistent with its values at the core
scale, because there is no systematic treatment of the connectivity of the optimally
conducting regions of the system. This book shows a framework that can be used
to develop a self-consistent and accurate approach to predict these constitutive re-
lationships, their variability, spatial correlations and size dependences, allowing use
of standard differential equations in their continuum framework (and, it is hoped, at
all spatial scales).

Although applications of percolation theory have been reviewed in the porous
media communities (e.g. Sahimi, 1993; Sahimi and Yortsos, 1990) (in fact, per-
colation theory was invented for treating flow in porous media, Broadbent and
Hammersley, 1957) it tends to be regarded as of limited applicability to real systems.
This is partly a result of these summaries themselves, which state for example that
“Results from percolation theory are based on systems near the percolation thresh-
old and the proximity of real porous rocks to the threshold and the validity of the
critical relationships away from the threshold are matters of question,” (Berkowitz
and Balberg, 1993). However, it is well-known that percolation theory provides the
most accurate theoretical results for conduction also, in strongly disordered systems
far above the percolation threshold (using critical path analysis). The novelty in this
course is the combined use of both scaling and critical path applications of percola-
tion theory to realistic models of porous media; using this combination it is possi-
ble to address porous media under general conditions, whether near the percolation
threshold or not.

This book will show how to use percolation theory and critical path analysis
to find a consistent and accurate description of the saturation dependence of basic
flow properties (hydraulic conductivity, air permeability), the electrical conductiv-
ity, solute and gas diffusion, as well as the pressure–saturation relationships, includ-
ing hysteresis and non-equilibrium effects. Using such constitutive relationships,
results of individual experiments can be predicted and more complex phenomena
can be understood. Within the framework of the cluster statistics of percolation the-
ory it is shown how to calculate the distributions and correlations of K. Using such
techniques it becomes easy to understand some of the phenomena listed above, such
as the “scale” effect on K, as well.

This work does not exist in a vacuum. In the 1980s physicists and petroleum
engineers addressed basic problems by searching for examples of scaling that could
be explained by percolation theory, such as Archie’s law (Archie, 1942) for the
electrical conductivity, or invasion percolation for wetting front behavior, hystere-
sis, etc. or by using the new fractal models for porous media. The impetus for further
research along these lines has dwindled, however, and even the basic understanding
of hysteresis in wetting and drainage developed in the 1980s is lacking today, at
least if one inquires into the usual literature. In addition, the summaries of the work
done during that time suggest that the percolation theoretical treatments are not flex-
ible enough for Archie’s law (predict universal exponents), or rely on non-universal
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exponents from continuum percolation theory without a verifiable way to link those
exponents with the medium and make specific predictions. An identifiable problem
has been the inability of researchers to separate connectivity effects from poresize
effects. This limitation is addressed here by applying percolation scaling and criti-
cal path analysis simultaneously. While there may have been additional problems in
the literature of the 1980s (further discussed here in the Chapter on hysteresis), it is
still not clear to me why this (to me fruitful) line of research was largely abandoned
in the 1990s. This book represents an attempt to get percolation theory for porous
media back “on track.”

It is interesting that many topics dealt with as a matter of course by hydrologists,
but in a rather inexact manner, are explicitly treated in percolation theory. Some
examples are:

1. upscaling the hydraulic conductivity = calculating the conductivity from micro-
scopic variability,

2. air entrapment = lack of percolation of the air phase,
3. residual water, oil residuals = critical moisture content for percolation, sum of

cluster numbers,
4. grain supported medium = percolation of the solid phase;
5. Representative Elementary Volume = the cube of the correlation length of perco-

lation theory,
6. tortuosity = tortuosity,
7. flow channeling = critical path.

These concepts and quantities are not, in general, treatable as optimization func-
tions or parameters in percolation theory because their dependences are prescribed.
Note that in a rigorous perspective for disordered systems, however, one does not
“upscale” K. The difficulty here is already contained within the language; what is
important are the optimal conducting paths, not the conductivities of certain regions
of space. The conductivity of the system as a whole is written in terms of the rate-
limiting conductances on the optimal paths and the frequency of occurrence of such
paths. Defining the conductivity of the system as a whole in terms of the conductiv-
ities of its components is already a tacit assumption of homogeneous transport. Fur-
ther, some elementary rigorous results of percolation theory are profoundly relevant
to understanding flow in porous media. In two-dimensional systems it is not possi-
ble for even two phases to percolate simultaneously (in a grainsupported medium
there is no flow or diffusion!), while in three dimensions a number of phases can
percolate simultaneously. As percolation thresholds are approached, such physical
quantities as the correlation length diverge, and these divergences cause systematic
dependences of flow and transport properties on system size that can only be ana-
lyzed through finite-size scaling. Thus it seems unlikely that treatments not based
on percolation theory can be logically generalized from 2D to 3D.

I should mention that a book with a similar title, “Percolation Models for Trans-
port in Porous Media,” by Selyakov and Kadet (1996) also noted that percolation
theory could have relevance further from the percolation threshold, but overlooked
the existing literature on critical path analysis, and never mentioned fractal models
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of the media, thereby missing the importance of continuum percolation as well. As
a consequence, these authors did not advance in the same direction as this present
course.

The organization of this book is as follows. The purpose of Chap. 1 is to pro-
vide the kind of introduction to percolation theory for hydrologists which (1) gives
all the necessary basic results to solve the problems presented later; and which (2)
with some effort on the part of the reader, can lead to a relatively solid founda-
tion in understanding of the theory. The purpose of Chap. 2 is to give physicists
an introduction to the hydrological science literature, terminology, experiments and
associated uncertainties, and finally at least a summary of the general understanding
of the community. This general understanding should not be neglected as, even in
the absence of quantitative theories, some important concepts have been developed
and tested. Thus these lecture notes are intended to bridge the gap between practic-
ing hydrologists and applied physicists, as well as demonstrate the possibilities to
solve additional problems, using summaries of the background material in the first
two chapters. Subsequent chapters give examples of critical path analysis for con-
crete system models Chap. 3; treat the “constitutive relationships for unsaturated
flow,” including a derivation of Archie’s law Chap. 4; hysteresis, non-equilibrium
properties and the critical volume fraction for percolation Chap. 5; applications of
dimensional analysis and apparent scale effects on K Chap. 6; spatial correlations
and the variability of the hydraulic conductivity Chap. 7; and multiscale heterogene-
ity Chap. 8.

I wish to thank several people for their help in my education in hydrology and
soil physics, in particular: Todd Skaggs, whose simulation results have appeared in
previous articles and also in this book; John Selker, who showed me the usefulness
of the Rieu and Sposito model for the pore space; Glendon Gee, who helped me
understand experimental conditions and obtain data from the Hanford site; Eugene
Freeman for providing additional Hanford site data; Bill Herkelrath, again for data;
Toby Ewing, whose simulations for diffusion were invaluable; Tim Ellsworth for
showing me the relevance of the experiments of Per Moldrup; Per Moldrup for giv-
ing me permission to republish his figures; Max Hu for providing me with his dif-
fusion data; and Sally Logsdon for her data on soil structure; Alfred Huebler for
giving me a forum among physicists to discuss these ideas. I also thank my wife,
Beatrix Karthaus-Hunt, for her support.

Dayton Allen G. Hunt
April, 2005
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Chapter 1
Percolation Theory: Topology and Structure

1.1 What is Percolation?

Percolation theory describes emergent properties related to the connectivity of large
numbers of objects. These objects typically have some spatial extent, and their spa-
tial relationships are relevant and statistically prescribed. Percolation theory is thus
related to graph (e.g., [1]) and network (e.g., [2]) theories. All of these exist within
the intersection of probability theory and topology. For the present purpose, the
chief relevance of percolation theory is its ability to deliver global properties from
local specifications. Here the global properties sought describe flow and conduction
properties of fluids in porous media. The relationships between local and global
properties are not trivial: sometimes the global properties relate to universal topo-
logical properties, and sometimes to system-dependent properties.

In percolation theory the topology is customarily referenced to some d-
dimensional spatial structure with an existence independent of the probabilistic
characteristics of the theory. Examples of such structures include regular grids
(known in solid state physics as lattices), consisting of nodes (sites) connected by
bonds. In porous media the pore space (filled, e.g., with water or air) corresponds to
a random lattice, viewed already in the 1950s ([3]) as a network. The typical twist
from percolation theory is to take such a known structure with simple topology,
characterized by as few as one or two parameters, and make the presence of, e.g.,
bonds a probabilistic affair, which generates quite complex topologies.

Percolation theory comes in three basic varieties: bond, site, and continuum, with
the first two versions linked by name to the grids mentioned above. We will consider
all three varieties. Percolation theory also has some interesting and potentially rel-
evant variants, including bootstrap percolation (an early reference is Chalupa et al.
[4]), gradient percolation [5], and invasion percolation [6–8]. Bootstrap and gradi-
ent percolations are ignored here, while invasion percolation theory is applied in a
few places. Invasion percolation was developed in the context of wetting and dry-
ing of porous media, in order to describe phenomena related to, e.g., wetting fronts,
where the wetting fluid enters the medium from one side. It should become clear
that a great deal of unification was already provided by the basic percolation theory
as formulated by Flory [9] and Broadbent and Hammersley [10]. Nevertheless, this
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2 1 Percolation Theory: Topology and Structure

book describes some new combinations of uses of percolation theory. In order to
understand these combinations it is important to understand clearly the basic ap-
plications of percolation theory, particularly to conduction. These applications have
some basis in the topology of the system being examined. Our introduction is made
more accessible by considering specific physical examples.

A system is said to be at percolation, or to percolate, when a sufficient frac-
tion of the entities in question (sites, bonds, etc.) is connected locally that a global
connection emerges. This global connection is a continuous string of locally con-
nected entities which is unbounded in size except as may result from limitations of a
finite-sized system. As is often the case in mathematics, percolation theory has some
surprises. Here the simplest result, at least conceptually, is that precisely one global
connection develops [11–13] exactly at a specific fraction, pc, of local connections
known as the critical fraction. Such a simple result is also profound, and decades
elapsed before it was proven.

1.2 Some Examples

A simple bond-percolation problem can be represented by a window screen which
maps out a square grid (lattice). Imagine cutting at random a fraction p of the ele-
ments of this grid. At some critical fraction p ≡ pc (which will turn out to be 0.5),
the window screen will lose its connectedness and fall apart. Percolation theory ad-
dresses directly the question, “at what fraction of cut bonds does the screen fall
apart?” (i.e., what is pc?), and related questions such as, “what is the largest hole
in the screen if the cut fraction p is less than pc,” and “what is the structure of such
holes?.” Percolation theory also readily provides the electrical conductivity of such
an incompletely connected network of (conducting) bonds, or what the diffusion
coefficient of a network of the same structure would be if the elements were water-
filled tubes rather than wires. Answers to the latter questions are given in terms of
p, pc, and the conductivity or diffusivity of the individual bonds.

A simple site-percolation problem can be represented by the random emplace-
ment of equal-sized metallic and plastic spheres in a large container. If two metal
spheres touch each other, a current can pass from one to the other. Here the relevant
percolation variable is the fraction, p, of spheres that is conducting. If the fraction
of metallic spheres exceeds a critical value, a continuous conducting pathway will
be formed. The larger the fraction of metallic spheres, the better connected the path
will be and the greater the electrical conductivity of the system. Percolation theory
generates the electrical conductivity as a function of the fraction of the spheres made
of metal. Site and bond percolation problems can be defined on either regular grids,
like a square-lattice window screen, or irregular grids like a random sphere pack.
They can also be defined on tree structures with constant branching ratios known as
Bethe lattices.

A continuum percolation problem receiving attention already in the 1970s is
a network of sintered glass and metallic particles. The glass particles may have
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different sizes and shapes from the metallic particles (which are typically smaller),
while the sintering process tends to change the shapes of the particles, producing
a net flow of material into the pore space. The irregularity of the particle shapes
can thus be contrasted with the regular geometry of the site percolation problem
described above. Such networks have relevance in the xerox industry. In the above
continuum percolation problem the relevant percolation variable becomes the vol-
ume fraction, p, taken up by the metallic particles. If the detailed structure is known,
percolation theory can account for some aspects of the electrical conductivity of
these systems as well [14–16]. Other real systems whose electrical properties can
be treated in terms of continuum percolation include piezoelectric ceramics [17, 18].
The continuum percolation problem that we will be most interested in here is that of
water flowing in variably saturated porous media. Porous media are often far from
the percolation threshold whereas piezoelectric ceramics are extremely close to it.

Across these applications of percolation theory, we may see the values of pc vary
widely from system to system. However, the same relationships are still used to de-
termine, e.g., the size of the largest hole in the screen, or the electrical conductivity
as a function of p− pc, where p is the fraction of conducting portions, and pc its crit-
ical value for percolation. Relationships that are functions of the difference p− pc

are normally (with isolated exceptions) termed “universal” [19, 20]. Here univer-
sal means that the property is independent of the details of the system and depends
only on its dimensionality, d. We demonstrate how percolation theory can be used
to solve practical problems relating to transport in porous media.

It had earlier been hoped that the universal behavior exhibited by most models
near the percolation threshold could be used to guide understanding of real physical
systems across the entire range of connectivities (see, for example, [21–24]). But
as has been frequently pointed out, it is not clear how close real systems are to
the percolation threshold. Thus it is important to emphasize at the outset that this
book will explain the use of percolation theory to calculate transport properties not
merely near the percolation transition, but also far from it. Far from the percolation
transition it is frequently nonuniversal aspects of percolation theory, i.e., the value
of pc and the statistical characteristics of the medium, which control transport; near
the percolation threshold it is the universal aspects that dominate. This perspective
will be seen to be far more useful than a restriction to either case by itself: it allows
calculation of all the transport properties of porous media, as well as their variability
and the structure of their spatial correlations.

This first chapter is devoted to the development of basic methods and concepts
from percolation theory that refer to the structure of topology of percolation. The
material here is drawn from many sources, but most importantly from Stauffer [19],
Sahimi [22, 23], Stauffer and Aharony [20], and Bunde and Havlin [25]. Some con-
cepts important for the unification of percolation theory will be treated in some
depth for the benefit of those readers with a physics background but without detailed
experience in percolation theory. These will be pointed out and can be skipped in an
initial reading. The second chapter provides an introduction to transport-related as-
pects of percolation theory. The third chapter will serve as an introduction to porous
media. Subsequent chapters will detail the applications.
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1.3 Qualitative Descriptions

Consider a square grid of points, and draw line segments between nearest neighbor
points “at random.” For very small values of p these segments will only connect
pairs of nearest neighbor sites. As p increases more pairs will connect, and gradu-
ally clusters of interconnected sites will appear. As p nears pc many of these clusters
will become large, with complex internal structure. What is the occurrence of such
clusters as a function of p and their size? We would also like to quantify the structure
of the clusters. This structure has been described using various quantities, such as
perimeter, density, mass (i.e., number of sites), “chemical path” length, and ramifi-
cation. The perimeter (the number of sites in the cluster with neighboring sites not in
the cluster) has two contributions: one is proportional to the volume [26], while the
second, similar to surface area, is proportional to the volume to the 1−1/d power,
where d is the Euclidean dimension [19]. The radius of a large cluster is not given
in terms of its volume by the usual relationships valid for Euclidean objects. In fact
large clusters at, or near, the percolation threshold are fractal objects, without scale
reference except in the small-scale limit when the scale of the grid becomes visible.

As p reaches pc the largest interconnected cluster just reaches infinite size. For p
greater than but still close to pc, most of the sites on the infinite connected cluster are
located on what are called “dead ends.” Dead ends are connected to the rest of the
infinite cluster by only one bond. If current were to flow across the system through
the infinite cluster, these dead ends would carry no current. If the dead ends are
“pruned” from the cluster, what remains is called the “backbone,” the portion of the
infinite cluster that carries current. The backbone has a large number of loops, mak-
ing it a multiply-connected object. The backbone also has “red” bonds, for which
no alternate path exists. If a red bond is cut, the current is interrupted. Red bonds
are associated with the largest drops in the potential field, which is why they are
designated “red” or “hot.” If the length scale viewed is not too large, then large fi-
nite clusters just below percolation have the same appearance as the infinite cluster
just above percolation. Figure 1.1 shows the “infinite” cluster for p > pc and bond
percolation on a square lattice, and Fig. 1.2 shows its backbone.

The backbone cluster itself has been described using the terms “links,” “nodes,”
and “blobs.” A pictorial definition of these terms is given in Fig. 1.3. The character-
istic separation of nodes, or the length of a link, will be equivalent to the correlation
length, defined in Eq. (1.1) below. A heuristic derivation of the exponent for the
vanishing of the conductivity [27] is based on the conceptualization of the infinite
cluster depicted in Fig. 1.3. Note that considerable work on nonlinear effects on
the electrical conductivity, as well as the usefulness of effective-medium theoretical
descriptions is based on this kind of a pictorial concept. This literature will not be
discussed here, and if interested, the reader should consult Shklovskii and Efros [28]
or Pollak [29] and the references therein.

The clusters, being fractal objects, have many properties which are best char-
acterized using a fractal dimensionality. While the multiplicity of consequent frac-
tal dimensionalities can be confusing, we will concentrate our attention on three
of these: (1) the fractal dimension, df, associated with the mass distribution of
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Fig. 1.1 A finite size sample of bond percolation on a square lattice above the percolation threshold

the cluster, (2) the fractal dimension associated with the mass distribution of the
backbone, Db, and (3) the fractal dimension associated with the optimal path length
along the backbone, Dmin. The first is relevant to any understanding of the occur-
rence of clusters as a function of cluster size, while the second, and perhaps the third,

Fig. 1.2 The same system and realization of Fig. 1.1, but for which the dead ends have been
removed from the infinite cluster to form the “backbone”. Note the existence of many closed loops
(Figure from Todd Skaggs, unpublished)
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Fig. 1.3 Schematic of a section of the backbone. Links and nodes have conventional meanings
from, e.g., Kirchoff’s network equations, while blobs are cycles or loops, or collections thereof.
Nodes are hatched circles with borders. Blobs are hatched circles without borders. Links are the
lines connecting nodes. Gray lines in the upper left hole represent dangling ends. The average link
length, χ , is also the average hole size

have relevance to calculations of dispersion through descriptions of solute transport
along paths of constant flux through porous media.

1.4 What are the Basic Variables?

The most fundamental variable is p, which for the bond percolation problem is de-
fined to be the fraction of (cut) bonds in the above screen problem, or, equivalently
the fraction of bonds emplaced on a background without bonds. In site percolation
p normally stands for the fraction of, e.g., the metallic balls mentioned above. It
can also stand for the number of lattice (grid) sites marked by some special color,
and which “connect” if they happen to be nearest neighbors. (In two dimensions
there is little point in distinguishing multiple colors because at most one type of
site, bond, or continuum can percolate at one time, but in higher dimensions more
than one color can percolate simultaneously.) In continuum percolation, p can stand
for a fractional volume, for example, the water content of a soil. The most impor-
tant value of p is pc, the critical value at which percolation occurs. In an infinitely
large system, pc is precisely defined: larger values of p guarantee “percolation,” the
existence of an infinitely large cluster of interconnected sites (bonds or volume),
while smaller values of p guarantee that percolation does not occur. For a given
finite-sized system this transition may occur at a value of p somewhat greater
than or less than pc. Some authors use this spread in pc values for finite-sized
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systems as a starting point to discuss finite-size effects on percolation properties;
here we use the cluster statistics of percolation as a basis for treating such finite-
size effects. Percolation theory has sufficient redundancy to make either approach
suitable.

Other basic variables are all functions of the difference p− pc. P∞ is defined
to be the fraction of active bonds (or sites) connected to the infinite cluster (if an
infinite cluster exists, i.e., for p > pc). χ , known as the correlation length, gives the
typical linear extent of the largest cluster for p < pc, and the largest hole for p > pc.
ns is defined to be the volume concentration of clusters of sites or bonds with s
interconnected elements, and is a function of s and of the difference p− pc. How
to obtain such quantities, and how to use them to calculate realistic and often very
accurate values of transport coefficients of disordered porous media, is the point of
this book.

1.5 What Is Scale Invariance and Why Is It So Important?

A core concept of percolation theory, central to much of its theoretical develop-
ment, is that the correlation length, χ , diverges (goes to infinity) in the limit p → pc.
While, for p �= pc, χ defines a relevant physical scale, this scale disappears precisely
at p = pc. The lack of any length scale, known as scale invariance, also implies
the relevance of fractal analysis, or self-similarity. Even for p �= pc, if a percola-
tion system is viewed at length scales less than χ it appears fractal. Only at length
scales greater than χ does the geometry become Euclidean [30]. Another physical
meaning of a divergent correlation length is that at p = pc, the largest cluster of
interconnected bonds, sites, or volume, just reaches infinite size. Thus it can be said
that if one examines the system at length scales smaller than the largest self-similar
structure, the medium appears to be self-similar. At the percolation threshold, the
largest self-similar structure reaches infinite size, and the self-similar appearance of
the medium extends to infinite length scales. Of course no physical medium on the
earth can precisely obey such a condition.

Before we define the correlation length, we define first the correlation function
g(r) as the mean number of sites, at a Euclidean distance r from some arbitrary
occupied site, that are also occupied and on the same cluster as that arbitrary site.
The sum of g(r) over all values of r will thus yield the total cluster mass. This makes
g(r), suitably normalized, a measure of cluster density. Because of the exceedingly
complex structure of clusters in higher dimensions, g(r) is cumbersome to construct,
except on Bethe lattices and 1D systems.
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The correlation length, χ , may be defined as

χ2 =

∞
∑

r=1
r2g(r)

∞
∑

r=1
g(r)

(1.1)

Thus the correlation length is a root-mean-square (rms) measure of the size of
the finite clusters. While Bunde and Havlin [25] take the lower limit of the sum in
Eq. (1.1) to be r = 1, Stauffer and Aharony ([20], Sect. 2.2) use r = 0, a distinction
which makes no difference in the behavior of any calculated property in the vicinity
of the percolation threshold.

Starting from p > pc, the divergence of the correlation length implies that the
largest hole in the infinite connected cluster just reaches infinite size and there is
symmetry between p > pc and p < pc. This symmetry is perfect only in two di-
mensions, where only one phase, or class, of sites or bonds can percolate simulta-
neously. The divergence of the correlation length implies that right at percolation
there is no finite length scale left in the problem. In reference to the qualitative dis-
cussion of Sect. 1.3, this scale invariance shows up also in the shapes and internal
structure of the clusters, and is represented through quantities that describe fractal
dimensionalities.

What does the lack of a finite length scale at the percolation threshold imply?
It requires the use of functions of powers. Powers may appear to have a scale, i.e.,
under some circumstances the relationship of a conductivity to a length scale, x, can,
simply by dimensional analysis, be shown to have a form such as

K = K0

(
x
x0

)−(d−1)

(1.2)

where the choice of the power −(d − 1) is not intended to be anything beyond il-
lustrative, K is a conductivity, K0 is a particular value of the conductivity, x is a
length, and x0 is a particular value of x. In contrast to an exponential function, x0 in
this case need not identify a particular “scale,” though if used in a judicious fash-
ion it may imply a boundary of the validity of the scale invariance (the existence of
a lower limit of the validity of scale-invariance in site and bond percolation prob-
lems is clearly required by the finite dimensions of the underlying lattice). On the
other hand an exponential function, K = K0 exp(−x/x0), must also have an argu-
ment x/x0. But the particular value of x0 has completely different consequences in
the two equations. For example, as long as x is within a range of lengths for which
the power law is valid (Eq. (1.2)), for d = 3, doubling the system size will always
decrease the conductivity by a factor of four, regardless of the actual values of x0 or
K0. In the case of the exponential function, the conductivity obtained by doubling
the system size will depend on the conductivity of the initial system, and thus on
the size ratio of the larger system to x0; this is in no sense a scale-independent re-
lationship. Notice that in physical systems a power law may have upper and lower
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boundaries. For example, physical objects with fractal characteristics are, strictly
speaking, truncated fractals: their fractal nature does not extend to subatomic or
galactic length scales. We may therefore give their power-law description an upper
and lower bound, but they are still scale-invariant within those bounds. More gen-
erally, incorporating a particular scale in a power-law equation may provide useful
information about one of its bounds without negating its scale invariance within the
range under consideration.

The above argument implies that the correlation length must therefore be a power
function. The argument of the correlation length is known to be the difference,
p − pc, making it simplest to describe the correlation length as in Eq. (1.3),

χ ∝ (p− pc)
−ν (1.3)

The negative exponent, −ν , allows χ to diverge at p = pc. The term “universal-
ity” can now be understood in a practical way: the form of Eq. (1.3) is the same in
all systems and the exponent ν depends only on the dimensionality of the system.
The scale invariance—lack of a length scale—also implies the relevance of fractal
analysis, or self-similarity. Self-similarity is especially important because it allows
the application of the mathematical techniques of renormalization. Application of
renormalization will permit us to estimate some important quantities of percola-
tion theory and to employ analogies from the existing framework of the theory of
critical phenomena. Renormalization and critical phenomena are treated in many
books (e.g., [25, 31–36]). The books by Bunde and Havlin [25] and Sornette [36]
address percolation theory, while Sornette [36] specifically links discussion of
percolation with critical phenomena, making these references most pertinent
here.

In disordered systems that are far above the percolation threshold, it is always
possible to define some variable, describing a subset of the system, which is at the
percolation threshold. If this variable is defined in such a way as to relate to lo-
cal transport coefficients, then it will be possible to identify the chief contribution
to the transport properties of the medium. Then one has the interesting result that
for disordered systems of nearly any structure transport is dominated by connecting
paths near the percolation threshold, and the fractal characteristics of percolation
can be relevant to transport even in media, which seem to have no resemblance to
fractals. The basis for this application, called critical path analysis, is described in
the last section of Chapter 2. Many applications of percolation theory to disordered
systems (e.g., [21] and [25]) ignore critical path analysis, and so underestimate its
value by restricting it to systems near the percolation threshold. The transport prop-
erty, for which the impact of the fractal structure is greatest, is solute dispersion
(Chap. 10).

The fact that percolation variables behave as power laws in p− pc, as in Eq. (1.3)
means that they must either diverge or vanish at p− pc, depending on whether the
exponent is negative or positive. The term singular behavior (in mathematics) or
critical behavior (in physics), however, refers to either divergences or zeros.
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It is important to consider some examples of problems that can be solved “ex-
actly,” providing a reference point for the more general scaling arguments typically
advanced in percolation theory. Most of these exact solutions derive from Essam
[37] or Stauffer [30]. We start with one of these, the calculation of the correlation
length in one dimension.

1.6 The Correlation Length in One Dimension

It is possible to use the definition (Eq. (1.1)) to make a direct calculation of the
correlation length in one dimension. That calculation is described nicely by Bunde
and Havlin [25]. The calculation was stated explicitly in terms of site percolation,
but is essentially the same for bond percolation. Consider a 1D chain, where each
site is occupied randomly with probability p. Clusters of length s consist of chains
of s consecutive occupied sites. Since any empty site breaks an infinite chain, the
percolation probability in one dimension is pc = 1: every single site must be oc-
cupied. Recall that the correlation function, g(r), is the mean number of sites on
the same cluster at a distance r from an arbitrary occupied site. In order for an-
other occupied site even to be on the same cluster as the given site, each site in be-
tween must be occupied, a situation that occurs with probability pr in each direction,
leading to

g(r) = 2pr (1.4)

Substituting Eq. (1.4) in the definition of the correlation length (Eq. (1.1)) leads to

χ2 =

∞
∑

r=1
r2g(r)

∞
∑

r=1
g(r)

=

∞
∑

r=1
r2 pr

∞
∑

r=1
pr

(1.5)

In this expression the sum of pr is simply a geometric series that yields the well-
known result 1/(1− p). The factors r2 may be verified to be generated from the sum
over pr by the (term by term) operation p(d/d p)(pd/d p)Σpr, since each derivative
generates from pr a factor r, but steps the power down by 1, requiring each time the
compensating operation of subsequent multiplication by the factor p. The second
derivative essentially generates (1− p)−3 from (1− p)−1, while the simple sum
generates (1− p)−1 in the denominator, and the result for χ2 is a quotient of the
two [25],

χ2 =
1+ p

(1− p)2 or χ ∝ (pc − p)−1 (1.6)

The final result ignores the factor of 1 + p in the numerator for the purpose of
finding the critical exponent (the power of p− pc) for the correlation length. Equa-
tion (1.6) thus both confirms the proposed functional form of the correlation length
as a divergent power of p− pc and yields the value ν = 1 in one dimension. In the
case of power-law divergences, the choice of a definition of χ is somewhat arbitrary.
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See problem 8 for an alternate calculation of χ which leads to the same critical be-
havior as shown in Eq. (1.6), although the exact result is different. Later we will also
find the value of ν by examining the cluster statistics. Percolation allows multiple
paths for analysis.

In order to be able to make general application of percolation theory to an arbi-
trary system of course it is necessary to know the value of such powers under all
circumstances. Most of the exponents of percolation theory are the same for all sys-
tems in a particular dimension, but differ importantly from dimension to dimension.
In other words, for all 3D arrangements of bonds and sites, most of the exponents of
percolation theory do not vary, but they do vary depending on whether the system
sites are arranged in 3D space, or on a plane, for example.

Note that the correlation length represents an actual distance as measured in the
Euclidean space and is thus a measure of a cluster size. The shortest connecting path
that links opposite sides of a cluster has a step-by-step length called the chemical
distance, rl [38–40], since this is an actual distance of particle transport.

1.7 The Relationship of Scale Invariance and Renormalization,
and the Relationship of the Renormalization Group
to Percolation Theory

Renormalization is both a technique and a conceptual foundation for understanding
percolation. As a technique it provides many useful results, but its conceptual role
is even more important here.

Renormalization as a technique is a rather complex mathematical procedure, cor-
responding (in real space though not in Fourier space) to a relatively simple physi-
cal operation. This operation is a kind of “coarse-graining,” caused by the observer
drawing back to a greater distance. If the system has true scale invariance, i.e., is ex-
actly at the percolation threshold, it will be impossible to detect a statistical change
in the appearance of the system as the scale of observation is increased. A system
with an infinite correlation length looks, in a statistical sense, the same at all finite
length scales. But if the system is merely near the percolation threshold, so the cor-
relation length is finite, then drawing back to a greater distance will make the corre-
lation length look smaller. Eventually the observation scale will be greater than the
correlation length. This (relative) diminution of the correlation length means that
at larger length scales the system must appear as though it were further from the
percolation threshold. Thus it must also be possible to redefine p simultaneously to
be enough closer to pc so that the appearance of the system does not change. This
concept underlies the assertion that it is possible to define ‘scaling’ variables.

In the operation of renormalization, systems which are precisely at percola-
tion remain at percolation. However, with increasing length scales, systems not
at percolation appear to move away from percolation. Considered in terms of the
changed p as a function of the scale of observation, repeated renormalization leads
to completely different trajectories (trends in p) for systems above and below the
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percolation threshold. The trajectory produced by repeated renormalization of a sys-
tem at the percolation threshold is a point, since no changes can be observed. But
the trajectory produced by such repeated applications of renormalization to a system
not at percolation will always be away from the percolation threshold. Specifically,
if the starting state has p > pc, the trajectory will always be toward p = 1, while
if the starting state has p < pc, the trajectory will always be toward p = 0. If there
is a largest cluster or largest hole size, this cluster (or hole) will look smaller every
time the renormalization is applied. If the initial p value is either 0 or 1, renormal-
ization will not affect p. Thus p = 0, p = pc, and p = 1 are all “fixed points” of
the renormalization procedure (though p = 0 and p = 1 are “trivial” fixed points,
giving no new information). This same behavior is observed at second-order phase
transitions, for which the correlation length also diverges. While the language and
understanding of phase transitions has become more complex since the study of
percolation theory commenced, the percolation transition does qualify as a second-
order phase transition in the traditional definition and the theoretical development
for such critical phenomena can be adopted for percolation theory.

1.8 Cluster Statistics of Percolation Theory

Probably the most elegant means to summarize the theory of percolation is to use
the scaling theory of percolation clusters [19]. In principle one can formulate most
of percolation theory simply in terms of its cluster statistics, and these statistics also
allow easy analogies to other phase transitions. The purpose of this section is not to
provide a detailed overview; for that the reader is referred to Stauffer’s 1979 review
[19]. What will be discussed here is sufficient to demonstrate the internal consis-
tency of percolation theory and to provide less-experienced readers with multiple
avenues for understanding and application.

The cluster statistics of percolation define the concentration ns of clusters of vol-
ume (number of sites) s as a function of p. Consider initially ns for p < pc, deferring
until later in this section the more complicated case including an infinite cluster. The
sum ∑sns over all cluster sizes must equal p, since it is by definition the total num-
ber of occupied sites per unit volume. Clearly as p increases toward pc the number
of large clusters increases. It turns out that precisely at pc there can be no volume
scale, because there is no length scale: ns must therefore follow a power law in s. So
at percolation ns must obey [41],

ns (p = pc) ∝ s−τ (1.7)

Here τ is an exponent whose value will be discussed later. How does ns depend
on p? For p �= pc a length scale exists, and its value is the correlation length χ . Sup-
pose that one increases the observation length scale (reducing χ) and simultaneously
takes the system closer to pc (increasing χ); one can recover the original appearance
if these operations cancel perfectly. Stauffer [19] states “We assume that the ratio
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[. . .] ns(p)/ns(pc) and similar ratios of other cluster properties are a function of the
ratio s/sχ.” Here sχ is a typical cluster volume at p, which, since cluster sizes follow
a power law, is proportional to the limiting (or largest) cluster volume at p. Since
the linear extent of the largest clusters with s = sχ is χ , which diverges as p → pc,
the limiting cluster volume must also diverge in the limit p → pc. The exponent of
(p− pc) which restricts the largest cluster volume is now denoted −1/σ , allowing
the possibility that it is different from −ν . This exponent must also be negative in
order that the largest cluster size diverge at p = pc. Thus (s/sχ)σ = sσ(p− pc) ≡ z
is the scaling variable that allows the simultaneous effects of a size change and a
change in p to cancel precisely. Consequently the ratio of the cluster numbers at p
and at pc can be written

ns (p)
ns (pc)

= f (z) = f [sσ (p− pc)] (1.8)

The value of σ is not known a priori. Equation (1.8) may be called semiem-
pirical in that it was designed to: (1) accommodate results of simulations, which
revealed that the cluster numbers ns decay according to a power law (with exponent
τ) precisely at the percolation threshold and (2) allow simultaneous rescaling of s
and p in such a way that the system looks the same, because the product (p− pc)sσ

remains the same. Approximate values of τ and σ can be found from simulations
and/or renormalization procedures. These values will be the same for all systems
of a given dimensionality, but have a dependence on spatial dimensionality, d (we
will use the notation 1D, 2D, and 3D to denote the dimensionality of the Euclidean
space, in which the system is embedded).

Substitution of p = pc in the left-hand side of Eq. (1.8) forces f (0) = 1. The exact
form of the function f was uncertain for a long time, with various approximations
proposed. In the Stauffer review it was pointed out that a Gaussian form for f could
fit a wide range of data. Thus a useful approximation for ns(p) is [19]

ns (p) ∝ s−τ exp
{
− [z− z0]

2
}
≈ s−τ exp

{
− [sσ (p− pc)]

2
}

(1.9)

The approximation made here, which omits z0, is motivated by the observation
that z0 must have some dependence on the system investigated and thus cannot
be universal. Nevertheless the fact that a z0 exists makes the cluster statistics, in
principle, asymmetric about the percolation transition, for which z = 0. For bond
percolation on a square lattice in two dimensions, however, there is perfect sym-
metry between connected and unconnected bonds, and the existence of a term z0

would imply that extrema for the clusters of interconnected bonds would occur
at different values of p than for clusters of unconnected bonds. However, it must
be kept in mind that the neglect of this detail could lead to small discrepancies.
The form of Eq. (1.9) makes it apparent that for p �= pc the cluster statistics de-
cay as a power law only up to a certain maximum size s = sχ, which is propor-
tional to |p− pc|−1/σ . This provides an explicit context for the scaling arguments
above, because clusters of larger volume rapidly become extremely rare when
|sσ(p− pc)| >> 1.
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One can use Eq. (1.9) in many ways. As a first application let us use Eq. (1.9)
to find the fraction of sites connected to the infinite cluster at p > pc. Note that the
summation of sns from s = 1 to infinity is qualitatively different for p > pc from
its form for p < pc. For p < pc, every occupied site (or bond) must be located on
some finite cluster, but for p > pc, some fraction P∞ of occupied sites is found on
the infinite cluster, not included in the summation. Thus every site on the lattice
is either (1) empty with probability 1− p, (2) occupied and on the infinite cluster
with probability pP∞, or (3) occupied but not on the infinite cluster with probability
p(1−P∞) ≡ Σsns. From these results one finds

P∞ = 1− 1
p∑s

sns (1.10)

Stauffer’s argument, which has been amply verified, is that it is the “singular”
behavior of cluster sums, such as Eq. (1.10), which gives the percolation quanti-
ties of interest, such as P∞, χ , etc. A sum of sns with ns taken from Eq. (1.9) may
be approximated by an integral. The functional dependence of such an integral on
variables such as p− pc can be evaluated by transforming the argument of the expo-
nential to dimensionless variables, i.e., z (no dependence on p− pc). The result then
contains one or more terms that are products of a power of p− pc, and a definite
integral which integrates to some (unimportant) constant. In such cases, singular be-
havior refers to the lowest nonanalytical power of p− pc. An even easier technique
for evaluating the functional dependence of such sums exists, however.

A sum over a power-law distribution of s, truncated at a maximum s value, will
typically be dominated by the largest s allowed. At large values of its argument,
the exponential function is a much more rapidly diminishing function than a power
law, but at small values of its argument it is nearly a constant. Thus the exponential
function can be approximated to do nothing except to truncate the sum, or integral,
over sns at a value of s proportional to (p− pc)−1/σ . This argument leads to the
following result:

∫ (p−pc)
−1
σ

1
ss−τds ∝ p

[
1− (p− pc)

τ−2
σ
]

(1.11)

The factor p is included since when p = pc the integral must yield p. Using
Eq. (1.11) in Eq. (1.10) gives

P∞ =
(p− pc)

p

τ−2
σ

∝ (p− pc)
β (1.12)

The exponent β is customarily used for the critical behavior of P∞. Equa-
tion (1.12) relates β to τ and σ via β = (τ−2)/σ . If the cluster statistics of perco-
lation theory are known accurately Eq. (1.12) allows direct calculation of β . Other-
wise Eq. (1.12) still gives an important scaling relationship.

Since P∞ must vanish at p = pc, β ≥ 0. Therefore τ ≥ 2. In one dimension,
because pc is exactly 1, there is no regime p > pc, and β = 0 is allowed, but in
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all higher dimensions, β > 0. In systems of practical interest (2D and 3D systems)
0 < β < 1. However, we will only be able to calculate accurately two values of β ,
0 in one dimension and 1 in six dimensions or higher (or on Bethe lattices). Though
we only show calculations of selected values of the critical exponents of percolation
theory, summaries of values given elsewhere are also provided.

One can, in fact, calculate an entire series of integrals similar to Eq. (1.11). In
particular, the kth moment of the cluster distribution is given by

Mk =
∫ (p−pc)

−1
σ

1
sks−τds ∝ |p− pc|

τ−1−k
σ (1.13)

Since the lower moments, M0, M1, and M2, all correspond to important physical
properties, the values of (τ−1− k)/σ for these cases receive special designations.
Thus Eq. (1.13) will provide the basis for three scaling relationships that we will use
later. The possibility to organize several scaling relationships into a single Eq. (1.13)
makes the cluster statistics formulation of percolation theory so appealing. But fur-
ther discussion of these scaling relationships is postponed until after we have shown
how to calculate ns in 1−d.

1.9 Derivation of 1D Cluster Statistics and Discussion
of Fractal Dimensionality

In one dimension the critical bond fraction for percolation, pc = 1. This result is
necessary because any break in the chain of elements will prevent the formation of
a cluster of infinite size that spreads from negative to positive infinity. A purpose
in repeating this fundamental condition is to remind the reader that in 1D systems
expressions containing 1− p may be rewritten as pc − p. The next discussion fol-
lows Stauffer [19] in its general content. The probability of finding a cluster of s
interconnected bonds, all in a row, is

ns = ps (1− p)2 (1.14)

where the factor (1− p)2 truncates the s-cluster on both ends. In the case that pc −
p << 1 (p very near pc), this result can be rewritten to lowest order in pc− p (noting
that 1− p = pc − p) as

ns = s−2 [1− (pc − p)]s
[
s2 (pc − p)2

]
= s−2 exp [−s(pc − p)]

[
s2 (pc − p)2

]
(1.15)

“Derivation” of Eq. (1.15) from Eq. (1.14) requires also use of the approximation
(1− x)s = exp(−sx), valid for x << 1. This approximation is used again when the
cluster statistics for a Bethe lattice are derived. The cluster statistics of percolation
theory can always be written in the following form,
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ns = s−τ f [sσ (p− pc)] (1.16)

Equations (1.15) and (1.16) show that for 1D systems τ = 2 and σ = 1. Also,
consistent with σ = 1, one sees that there is a cutoff in the occurrence of clus-
ters for sizes s > smax ≈ 1/(pc − p). In 1 − d the length of a cluster of s ele-
ments is s (times the fundamental bond length), so that the linear dimension of
the largest cluster for p < pc is also (pc − p)−1. This result then defines the cor-
relation length and yields the value ν = 1 in agreement with Eq. (1.6). Note that
the fact that smax ∝ (pc − p)−1/σ and that χ ∝ (pc − p)−ν implies the result that
smax ∝ χ1/σν = χ1 where the equality holds in 1−d. Any time the total “volume”
(s) of an object is proportional to its linear dimension (χ) to an exponent, the impli-
cation is that the “dimensionality” of the object is that exponent. As a consequence,
the combination of exponents 1/σν has become known as the fractal dimensional-
ity, df, of percolation clusters, i.e., of large clusters near the percolation threshold.
This fractal dimensionality has been called a “mass” fractal since it refers to a re-
lationship between volume (proportional to mass) and linear dimension. Since for
d = 1, df = 1 as well, in one dimension large clusters near the percolation threshold
do not (cannot) have the rough “surface” associated with fractal objects. However,
in systems of larger dimensionalities, df turns out to be less than d.

1.10 Argument for Dimensionally Dependent Scaling Law,
Implications for Critical Exponent, τ , and Applications
to Critical Exponents

The scaling form of Eq. (1.8) for the cluster statistics is independent of the dimen-
sionality of the system. The exponents of percolation theory that appear in Eq. (1.8),
Eq. (1.12), and similar equations below depend only on the dimensionality of the
system. The scaling laws in Eq. (1.13) do not depend explicitly on the dimensional-
ity allowing, in principle at least, the possibility that the values of the exponents are
the same in all dimensions. But there is an important scaling law that does depend
on dimensionality. The existence of this scaling law forces a variation of the values
of the critical exponents with dimensionality, necessitating the tabulation of values
given later in this chapter. Here we derive the dimensionally dependent scaling law
that relates the various critical exponents from percolation theory.

The dimensionally dependent scaling law relating various critical exponents from
percolation theory can be derived starting again from the cluster statistics of perco-
lation, though the cluster statistics are not, by themselves, sufficient for this deriva-
tion. We first need to rewrite the cluster statistics of percolation theory in terms of
the linear extent of the clusters. A cluster may be defined to have some linear extent
N, where N is a number which, when multiplied by a basic length scale (such as a
bond length) gives the linear dimension of the cluster. We know that the volume of
a cluster of linear extent N is equal to s = N1/σν , on account of the fractal dimen-
sionality of the clusters. We have derived the form of the cluster statistics in one
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dimension, and it has been demonstrated that this form is also appropriate in larger
dimensions, though with different values of the exponents [19]. Further, the scale-
invariance of the system exactly at percolation requires that the cluster statistics
follow a power-law decay, so we can write

ns (p = pc) = s−τ (1.17)

Now use the probabilistic identity

nsds = nNdN (1.18)

to obtain
nN = N− (τ−1−σν)

σν (1.19)

If one integrates this (unnormalized) probability density function over a range of
values from, say, N0 to 2N0, which in a power-law discretization scheme (appropri-
ate for self-similar media) would represent one “size class,” one obtains

P(N0) = N
− τ−1

σν
0 (1.20)

The significance of Eq. (1.20) becomes clear when it is discussed in the context
of the self-similarity of the medium at p = pc. At percolation, typically one cluster
of linear extent N0 should be found in a volume Nd

0 (for any value of N0) in order to
be (1) consistent with the idea of percolation, i.e., that one can expect percolation to
occur in any size system, all the way to infinite size, and (2) consistent with the con-
cepts of self-similarity, i.e., that all such volumes look alike. Thus the concentration
of clusters of size N0 is proportional to N−d

0 so that the product of Nd
0 and N−d

0 = 1.
The implication is that

τ−1
σν

= d τ = 1+
d
df

(1.21)

This is the fundamental scaling relationship of percolation theory that cannot
be obtained directly from the cluster statistics. It is the only such relationship that
involves explicitly the dimensionality of the space, d, in which the percolation prob-
lem is embedded. Equation (1.21) relates the fractal dimensionality, 1/σν , to the
Euclidean dimensionality, d, in terms of how rapidly cluster numbers decay with
increasing size.

It is also straightforward to derive the ratio of the number of connected sites
of a large cluster to the total number of occupied sites in the volume spanned by
that cluster. Such a ratio is proportional to the mass M of the cluster divided by its
volume V, and gives thus the cluster’s density, ρ (e.g., [22, 23]). In the context of
percolation, a “large” cluster has linear extent approximately equal to the correlation
length. The result for ρ is

ρ =
M
V

=
χdf

χd =
[
(p− pc)

−ν] 1
σν −d

= (p− pc)
dν− 1

σ ≡ (p− pc)
β (1.22)
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Equation (1.22), just above percolation in the limit of a cluster of infinite extent,
also gives the fraction of sites, which is connected to the infinite cluster, justifying
the final definition in Eq. (1.22). From Eq. (1.22) we can see that

β = dν− 1
σ

(1.23)

or

df =
1
σν

= d − β
ν

(1.24)

One can combine Eqs. (1.21) and (1.24) to write

τ−2
σ

= β (1.25)

which is the same result as that derived directly from the cluster statistics. Thus
combining the expression for the density of large clusters with the dimensionally
dependent scaling relationship yields one of the known cluster-scaling relationships
(from Eq. 1.12). The implication of this redundancy is that the density of large
clusters is dependent on the probability that an arbitrary site is found on the infinite
cluster. Therefore the argument leading to Eq. (1.22) only appears to be new.

The conclusion that τ > 2 (after Eq. (1.12)) can be drawn simply by examining
the definition of ns. Consider the integral

∫ ∞

1
snsds = s2−τ |∞1 (1.26)

which represents the total number of connected sites. This integral diverges unless
τ > 2. Although in dimensions d > 1 this is strictly an inequality, in d = 1 the value
τ = 2 is allowed. The reason for this is that the percolation probability is identically
1. So there is no regime p > pc in one dimension. Further, at p = pc the concen-
tration of clusters of linear size s cannot really follow a power law: all sites are
connected, there is only one cluster, and it is infinite in extent. Precisely at pc in
one dimension, then, the infinite cluster must be Euclidean, as implied already from
the equivalence of d and df. Equation (1.11), from which the scaling relationship
(Eq. (1.12)) for the exponents in ns was derived, yields in 1D fundamentally differ-
ent results in the limit p → 1 and for p = 1. In fact, a sudden increase in P∞ from 0 to
1 over an infinitesimally small increase in p is consistent with a value of β = 0. Note
that β = 0 is also obtained by application of the scaling Equations (1.23) or (1.25)
consistent with d = df or τ = 2. The other immediate implication of the argument
from integral 1.26 that τ > 2 is that Eq. (1.21) then requires df < d.

Finally, the most attractive aspect of the cluster statistics is that it is possible to
use the same starting point (Eq. (1.13)) to derive three different scaling relationships.
These relationships arise from applying the same techniques to the sums, Σs0ns ∝
(p− pc)2−α , Σs1ns ∝ (p− pc)β , Σs2ns ∝ (p− pc)−γ . The scaling relationships from
the second was already given in Eq. (1.12) (and 1.25); the first and third can be
written in the following forms (see problems 1.4, 1.5, and 1.9),
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2−α =
τ−1
σ

= dν (1.27)

τ−3
σ

= −γ (1.28)

The three sums also have interesting physical significance; for magnetic systems
they correspond to the free energy, the magnetization, and the magnetic susceptibil-
ity, respectively. In percolation problems, the first is the mean number of clusters,
the second yields the fraction of sites on the infinite cluster, while the third yields
the mean mass of the clusters. Each then relates an important exponent from ex-
periment to τ and to σ . Using these three scaling relationships (Eqs. (1.27), (1.28),
and (1.12)) and the dimensionally dependent scaling relationship (Eq. (1.21)) it is
possible to define all six critical exponents in terms of just two, most simply, for
example, τ and σ from the cluster statistics.

1.11 Explicit Calculations of the Second Moment of Cluster
Statistics in One Dimension

It will be necessary here to relate the second moment, M2, of the cluster distribution
to a simple sum over g(r). In fact, the sum over g(r) is easy to evaluate; any difficulty
comes from the argument of its equivalence to M2. Together with the results of
calculations already shown and the scaling relationships of percolation we will then
be able to generate the remaining exponents of percolation theory for the case of 1D
systems. We will also generate in subsequent sections the exponents of percolation
theory for infinite dimensional systems and then use the information generated from
the extreme cases to understand the dimensional dependence of the exponent values.

The mean mass of finite clusters is shown in Bunde and Havlin [25] to be pro-
portional to the second moment of the cluster size distribution. How do they show
this? They start with the sum Σsns and use the exact expression for ns in one dimen-
sion to show that this sum over finite cluster sizes (the only clusters that exist in one
dimension) is exactly p.

The probability that an arbitrary lattice site belongs to an s-cluster is sps(1− p)2.
The factor s arises from the possibility that such an arbitrary site can be any of the
s sites of the cluster. The authors then construct the corresponding probability per
cluster site, which is just ps(1− p)2. Now construct the sum

w ≡
∞

∑
s=1

sns = (1− p)2
∞

∑
s=1

sps = (1− p)2
∞

∑
s=1

p
d

d p
ps =

(
1− p2) p

d
d p

∞

∑
s=1

ps (1.29)

The sum is easily performed with the result

w = (1− p)2 p
d

d p

(
1

1− p
−1

)
= (1− p)2 p

(
1

1− p

)2

= p (1.30)
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The mean mass of a cluster can be defined as then

S =
∞

∑
s=1

s

⎡
⎢⎢⎣ sns

∞
∑

s=1
sns

⎤
⎥⎥⎦ (1.31)

with the factor in brackets generating the probability of an arbitrary site being found
on an s-cluster and the product of this factor with s then giving the expected number
of sites on s-clusters. Thus the mean mass is seen to be proportional to the second
moment of the cluster distribution (s2 in the sum).

In one dimension, since g(r) gives the expected number of cluster sites at distance
r the mean mass of a cluster is given [25] as follows,

S ≡ M2 = 1+
∞

∑
r=1

g(r) =
∞

∑
r=0

pr =
1

1− p
=

1
pc − p

(1.32)

M2 is traditionally characterized by the exponent γ , i.e., S ∝ (pc − p)−γ . Thus
γ = 1. From Eq. (1.28) one has (τ−3)/σ =−γ , so this result could be used to infer
the value of τ , if one already knew σ (which we found using Eq. (1.15) to be 1). Of
course in that derivation we also found τ and ν .

Since we have already shown how to obtain four exponents in 1D systems, we can
generate the remaining values. In fact α = [2− (τ − 1)/σ ] = [2− (2− 1)/1] = 1,
and β = (τ − 2)/σ = (2− 2)/1 = 0. Of course, following Eq. (1.26) we already
argued on physical grounds that β = 0. Thus we have the complete suite of these
fundamental exponents for 1D systems.

1.12 Calculation of the Correlation Length on a Bethe Lattice

Sections 1.12 through 1.15 give some exact calculations of exponents of percola-
tion theory for infinite dimensional systems (in particular, Bethe lattices) as well
as a mean-field calculation of the exponent β . This mean-field result for β is inde-
pendent of dimensionality, d. Using these values together with the scaling relation-
ships (Eqs. (1.25), (1.27), and (1.28)) and one physical argument from Bunde and
Havlin [25] allows calculation of all the exponents of percolation theory in infinite
dimensional systems. The scaling relationships in Eqs. (1.25), (1.27), and (1.28) are
consistent with the values of the exponents for infinite-dimensional systems and the
mean-field calculation of β . But these values are consistent with the dimensionally
dependent scaling relationship (Eq. (1.21)) only for d = 6. This will make it pos-
sible (in Sect. 1.16) to define the range of dimensionalities for which the complete
set of scaling relationships from percolation theory is accurate. Since this range
of dimensionalities turns out to be 1 ≤ d ≤ 6, the reader, especially those inter-
ested only in application of percolation theory to problems of subsurface flow and
transport, may assume that the above framework of scaling relationships is accurate
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for systems of experimental interest and skip Sects. 1.12 through 1.16 on a first
reading. Nevertheless the following material is included here for those readers in-
terested in understanding better the framework of the theoretical results they are
encountering. Readers who skip these sections will still encounter five derivations:
(1) cluster statistics in one dimension, (2) the correlation length in one dimension,
(3) the mean cluster mass in 1D, (4) the correlation length in two dimensions using
renormalization techniques, and (5) the relationship between fractal dimensionality
and tortuosity. Ability to perform some derivations as well as familiarity with the
scaling laws helps cement the understanding of people new to the field of percola-
tion theory.

Percolation problems can be solved rigorously on a Bethe lattice (Cayley tree)
as well as in one dimension. In contrast with the 1D system, the Bethe lattice has
one advantage: pc < 1 (meaning that it is possible to investigate behavior at p > pc

as well as p < pc). In contrast to all other dimensional systems, Bethe lattices have
the following advantage: there are no loops in the structure. In addition, the Bethe
lattice actually reduces to a 1D system in a particular limit. It is a relatively simple
argument to show that the Bethe lattice is otherwise equivalent to an infinite dimen-
sional structure, so that determination of percolation exponents on Bethe lattice in
addition to their values in 1D systems gives these exponents in two extreme cases. A
Bethe lattice of coordination number Z has a central site from which Z branches of
unit length emanate. The end of each branch is another site, which connects through
Z −1 branches to new sites. A Bethe lattice with Z = 3 is like a family tree: at each
generation there are twice as many ancestors as in the previous one, and it radiates
out from a single point.

The lack of loops in the system means that two sites can be connected by only
one path. One can draw (with some difficulty) a Bethe lattice on a 2D surface, but,
as we will see, the Bethe lattice is equivalent in several respects to an infinite dimen-
sional object. Clearly a Bethe lattice is a hierarchical structure, and it is convenient
(and consistent with a drawing) to refer to each higher order of the hierarchy as a
higher order shell. As Bunde and Havlin [25] point out, the Euclidean distance has
no meaning on a Bethe lattice; only the chemical distance, rl, between two sites
has any relevance. Thus the correlation length is calculated with respect to a dis-
tance measured in shell separations, l. In particular, the chemical distance between
the central site and a site in the lth shell is rl = l. The lth shell of the tree consists
of Z(Z − 1)l−1 sites. For the special case of Z = 2 the lth shell thus contains two
sites, as in a 1D chain, but in all other cases the number of sites increases exponen-
tially since the l dependence shows up in the exponent. In a d-dimensional lattice,
the number of sites at distance l increases as ld−1 (the surface area of a sphere of
radius r being proportional to r3−1, for example). Exponential functions may be ex-
pressed in terms of a Taylor series such as Σxn/n! As x increases, the power of the
dominant term increases as well. As x increases without bound, the dominant term
in the series becomes the largest (or infinite) power, meaning that it is consistent
to regard a Bethe lattice as an infinite dimensional structure. From the property of
universality of the exponents in percolation theory one can thus propose that the
exponents derived for the Bethe lattice are the same as for any infinite-dimensional
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lattice. Moreover, since Toulouse [42] argues that the upper critical dimensionality
for percolation is 6 (which we discuss in Sect. 1.16), it can be argued that the results
derived for the exponents for the Bethe lattice are relevant to all systems with d ≥ 6.

Assume that some fraction p of the sites on a Bethe lattice is occupied. The cor-
relation function g(l) is defined to be the mean number of sites on the same cluster
at distance l from an arbitrary occupied site. In order for two sites separated by a
distance rl both to belong to the same cluster, each site in between the two sites
must be occupied, bringing in a factor pl−1; thus the probability that the second site
is occupied and all the intervening sites as well is pl . The number of sites on the lth
shell is Z(Z −1)l−1, making g(l) the product of pl (the probability that a given site
is connected) and Z(Z − 1)l−1 (the number of possible connected sites). The cor-
relation function, [p(Z − 1)]lZ/(Z − 1), being nearly (p(Z − 1))l , obviously trends
rapidly to zero if the product p(Z −1) < 1, while it diverges for p(Z −1) > 1. This
makes pc(Z − 1) = 1 the defining equation for the critical percolation probability,
leading to pc = 1/(Z −1).

Next, the correlation length can be calculated in terms of the variable l as

χ2 =

∞
∑

l=1
l2g(l)

∞
∑

l=1
g(l)

≈

∞
∑

l=1
l2 (Z −1)l pl

∞
∑

l=1
(Z −1)l pl

(1.33)

This sum may be performed by the same techniques as used in the 1D chain, i.e.,
the geometric sum is now 1/(1−(Z−1)p) = 1/(1− p/pc) = pc/(pc− p). The same
trick to generate the factor l2 in 1D lattices works here as well, since differentiation
with respect to p leaves the factor (Z −1) alone. Bunde and Havlin [25] then find

χ2 ∝ (p− pc)
−2 (1.34)

and the correlation exponent equals 1 with respect to the chemical distance, l (in
l-space). Since the Euclidean dimension has no meaning on the Bethe lattice, there
is no purpose to make a direct calculation of the correlation length as an estimate
of the Euclidean dimension of the largest cluster for p < pc. But Bunde and Havlin
[25] make the argument that on other lattices of high enough dimension (greater
than the critical dimension, 6, as it turns out) any path on a cluster behaves like
a random walk (with the number of steps proportional to l), so that r2 ∝ l. This
argument implies that for d ≥ 6 (other than Bethe lattices) the correlation length as
a function of the Euclidean distance should have exponent ν = 1/2.

1.13 Explicit Calculations of the Second Moment of Cluster
Statistics on a Bethe Lattice

The calculation of the mean mass for a Bethe lattice is very similar to its calculation
in 1D systems. On a Bethe lattice one has [25]
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S = 1+
∞

∑
l=1

Z (Z −1)l−1 pl =
(

Z
Z −1

) ∞

∑
0

[
pl (Z −1)l

]

=

[
pc

pc
/
(pc +1)

]
1

1− (Z −1) p
=

pc +1
1− p/pc

=
pc (pc +1)

pc − p
(1.35)

This result yields once again γ = 1. On the Bethe lattice this calculation turns out
to be quite useful indeed.

The exponent β = 0 describing the behavior of the infinite cluster in one dimen-
sion (and given by the first moment of the cluster statistics) was already inferred in
Sect. 1.10. The discussion of the exponent β [25] is slightly more complicated on
a Bethe lattice, but the next section gives a derivation valid whenever “mean-field”
treatments are appropriate (as it will turn out, for d ≥ 6, and thus also on the Bethe
lattice).

1.14 Mean-Field Treatment of the Probability of Being
Connected to the Infinite Cluster

Consider a “mean-field” treatment of the bond percolation problem on a lattice with
coordination number (number of nearest neighbors), Z. In mean-field treatments all
sites are regarded as equivalent. While all sites were equivalent before the bonds
were actually assigned, this equivalence is lost afterwards, and this is a reason why
mean-field treatments can fail. Nevertheless, a mean-field treatment does illuminate
some important concepts, and we can apply these further.

Assume that an infinite cluster of connected sites exists. Define the probability
that some particular site is connected to the infinite cluster as P∞. Then the proba-
bility that it is not connected is 1−P∞. The probability that the site is connected to
one of its nearest neighbors, chosen arbitrarily, is p. According to the mean-field hy-
pothesis, the probability that that neighbor site is connected to the infinite cluster is
assumed to have the same value P∞, with the value independent of whether the two
sites are actually connected or not. The probability that the given site is connected
to the infinite cluster over this particular nearest neighbor is pP∞, where the product
is used because of the independence of the bond probability and the probability P∞.
The probability that it is not connected to the infinite site over this particular nearest
neighbor is 1− pP∞. The probability that it is not connected to the infinite cluster
over any of its nearest neighbors is thus (1− pP∞)Z . Thus we must have

1−P∞ = (1− pP∞)Z (1.36)

which states that the probability that a site is not connected to the infinite cluster is
equal to the probability that it is not connected over any one of its nearest neighbor
sites, and that the probability that each of those neighbor sites is not connected to
the infinite cluster is identical. Equation (1.36) can be rewritten as
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(1−P∞)
1
Z = 1− pP∞ (1.37)

Note that for p < 1/Z, this equation has only one solution, namely, P∞ = 0. If
the probability that any arbitrary site is connected to the infinite cluster is 0, there
must not be an infinite cluster. If an infinite cluster does not exist, the system must
be below the percolation threshold. This indicates that the lowest order 1/Z is the
percolation threshold. We expand Eq. (1.37) (keeping the first two terms of a Taylor
series) in the variable p−1/Z = p− pc and assume that P∞ << 1.

1+
1
Z

(−P∞)+
1
2
(−P∞)2

(
1
Z

)(
1
Z
−1

)
= 1−

(
1
Z

+ p− 1
Z

)
P∞ (1.38)

Note that the first two terms on each side of the equation are identical and can be
subtracted off. Then we have

P∞ =
p− (1/Z)

1/Z [1− (1/Z)]
=

p− pc

pc (1− pc)
(1.39)

P∞, like other percolation quantities, is known to be a power of p− pc. Thus the
mean-field treatment directly predicts pc = 1/Z as can be seen from the numera-
tor. Note the implication that pc = 1/Z has no dependence on d. This is incorrect.
However, we are going to assume that the result pc ∝ 1/Z is correct and that the
proportionality constant may depend on dimensionality. For our purposes this is the
most important result of the application of the mean-field treatment to find P∞ and
we will use it later to deduce some further values of pc.

Comparison of Eq. (1.39) with P∞ = (p− pc)β allows the identification β = 1.
β = 1 is the mean-field result. Like all such “classical” results, it is independent of
d. It will be argued to be relevant for systems with d ≥ 6. β = 1 can be derived
exactly for a Bethe lattice.

1.15 Cluster Statistics on a Bethe Lattice

In a 1D lattice the cluster statistics were easy to develop. They are almost as easy
to develop on a Bethe lattice, but one difference is that it is somewhat more difficult
to define the perimeter of an s-cluster, i.e., the number of sites which terminate the
cluster. It is, however, relatively easy (for Z = 3, at any rate) to convince oneself
that a cluster of one site has Z empty sites surrounding it, a cluster of two sites has
Z + Z −2 empty sites surrounding it, and a cluster of s sites has Z −2 more empty
sites surrounding it than a cluster of s− 1 sites. The number of perimeter (empty,
bounding) sites can be called u, and u is thus [25]

u(s) = Z +(s−1)(Z−2) (1.40)
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Note that u(s) = Z in the case Z = 2, for which the Bethe lattice collapses to a
1− d chain. Since an s-cluster again can connect only clusters on shells separated
by l = s, all sites in between must also be occupied, and

ns = gs ps (1− p)u(s) = gs ps (1− p)Z+(s−1)(Z−2) (1.41)

where gs is just the number of configurations for an s-site cluster. If p(1− p)Z−2 is
expanded in a Taylor series around pc = 1/(Z −1) it is possible to show that [25]

ns ≈ ns (p) f (p) (1.42)

where f (p) = (1− [(p− pc)2/2pc(1− pc)])s. This expression can be rewritten as
exp(−s[(p− pc)2/2pc(1− pc)]) for p nearly pc. In order to write this function as a
function of the scaling variable z = (p− pc)sσ, one must choose σ = 1/2 so that the
product of the factors (p− pc)sσ is then squared. Note that the form of the cluster
statistics (a Gaussian in p− pc) is the same as the approximate result, Eq. (1.9),
from Sect. 1.8.

We now have made calculations of the two exponents γ and σ for the Bethe
lattice. We can use one of the scaling relationships to infer the value of τ .

τ = 3+σγ = 3−1/2 = 5/2 (1.43)

Similarly we can find

α = 2−
(
τ−1
σ

)
= 2− 3/2

1/2
= −1 (1.44)

We can thus now find most of the exponents of percolation theory in infinite
dimensional systems. The one exponent we do not really know at this point is ν
for the correlation length. The dimensionally dependent scaling relationship cannot
give it to us. So, practically speaking, we must rely on the argument cited by Bunde
and Havlin [25] to find ν .

1.16 Summary of Relationships Between Exponents in One
Dimension and in Infinite Dimensions Using Scaling
Relationships. Implications for the Validity of Hyperscaling

The term hyperscaling was invented to describe scaling relationships that explicitly
involve the dimension, d. The entire compendium of scaling relationships developed
in Sects. 1.8 and 1.10 describe exponents with a dimensional dependence provided
the dimensionally dependent scaling relationship holds. These scaling relations have
been shown to be exact in one and two dimensions and are expected to hold for sys-
tems of relatively low dimensionality. The set of exponents derived for Bethe lat-
tices on the other hand, except for ν(l), has been suggested to be valid for all infinite
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dimensional systems. Mean-field theories are believed to describe the behavior of
the (classical) exponents of percolation theory in high enough dimensions. If the
same set of exponents is used independent of dimensionality for any range of values
of d, the dimensionally dependent scaling relationship, Eq. (1.21), cannot generally
be true for that set of exponents. However, that set of exponents might be consis-
tent with Eq. (1.21) for one value of d. Thus the set of exponents derived for Bethe
lattices may be assumed to be correct in all dimensionalities greater than some max-
imum (or critical) d = dc, if it is possible to find a d = dc for which Eq. (1.21) holds
for the classical exponents. Without a value of ν , however, this hypothesis cannot be
applied. If the suggestion described by Bunde and Havlin [25] regarding the value
of ν = 1/2 for infinite lattices is correct (which it is), then we can check to see
for which dimension (τ − 1)/σν = d holds for the exponents derived from Bethe
lattices. Using these results one finds that (τ − 1)/σν = 6 ≡ dc meaning that the
hyperscaling exponents must be the same as the classical exponents for d = 6. This
argument was first given by Toulouse [42], and the additional inference is that for
systems of dimensionality 6 or greater, the values for percolation exponents found
for Bethe lattices are valid. Note that df = 1/σν = 4 holds independently of d for
d ≥ dc. Thus even in an infinite dimensional system, the percolation cluster can be
embedded in a 4D space. This result helps to explain why any path on a cluster
behaves like a random walk for d ≥ 6.

For d < 6, where hyperscaling is valid, other means for finding the exponents are
required. One of the most productive such means is to apply renormalization group
calculations using the so-called epsilon expansion with ε = 6− d as an expansion
parameter, since the values of the exponents are known in six dimensions when
ε = 6−6 = 0. dc = 6 then becomes the upper limit of validity of hyperscaling.

1.17 Calculation of the Critical Site Percolation Probability
for the 2D Triangular Lattice and of the Critical Exponent
for the Correlation Length in Two Dimensions

The following discussion is an exercise in the power, but also imprecision, of spa-
tial renormalization techniques. It requires some subsequent discussion. Although
the actual results are not quite right, they appear to be reasonable, are very nearly
accurate, and help illustrate an earlier state of thinking.

While the following development is expanded from Stauffer [19], his source was
Reynolds et al. [43]. Consider the image of the triangular lattice in Fig. 1.4. The
circles represent sites. Each site can potentially be connected to six nearest neigh-
bors. Imagine coloring in a fraction p of the sites. Whenever two colored sites are
nearest neighbors they can be considered to connect (as in the case of metallic balls,
which could conduct electricity between them if they were in contact). If a colored
site is neighbor to an uncolored site, or two uncolored sites are neighbors, then no
connection is made. A renormalization process can be developed, which constructs
a new lattice out of “supersites,” which replace groupings of three sites as shown.
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Fig. 1.4 A small portion of
a site-percolation problem
on a triangular lattice. The
circles are sites. Supersites of
a real-space renormalization
are located at the centers
of the triangles shown. The
line drawn in is an aid to
measuring distances using
30-60-90 right triangles

A replacement of three sites by a single site must involve a rescaling of the length,
or distance between sites, by the factor 31/2. That result can be checked directly in
Fig 1.4 by examining the geometry of the system; the line separating the new sites
forms the bisector of the vertex of the triangles, as shown, thus developing 30-60-90
triangles. The sides of these triangles are in the ratios 1, 31/2, 2. The ratio of the sep-
aration of supersites to that of the simple sites in the original lattice is 2× 31/2/2.
If one moves just far enough away from the lattice that the new “supersites” are
exactly as far away from each other as the old simple sites, then the length scale
associated with the separation of sites has been reduced by 1/31/2.

Now consider how p changes with such a rescaling of the lattice. The approxi-
mation that is used here has been called “majority rule.” If either two or three sites
on the original lattice are colored in, the new site is colored in. Clearly, if all three
sites of the original lattice were colored in, a connection could be made across the
triangle in any direction, while if two sites are colored in, often a connection across
the triangle can still be made, though not in an arbitrary direction. If one or zero
sites are colored in on the original lattice, the new site is not colored in, because no
connection across the triangle can be made, and in most cases such a triangle will
interrupt the continuity of paths constructed across other nearby triangles. The new
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probability, p′, of coloring in a site is thus constructed from the old probability, p.
The above conceptualization is a very reasonable assumption, and nearly precise.
It basically means that if you can get across a given “supersite” from one side to
the other, presenting potential connections to new sites on both sides, it should be
colored in. Otherwise, it should not be. Mathematically this can be represented as

p′ = p3 +3p2 (1− p) (1.45)

The justification for this result is that the probability that all three sites are colored
in independently, each with probability p, is p3. The probability that two particular
sites are colored in and the third is not is p2(1− p). There are three possible locations
for the site, which is not colored in, justifying the factor 3. In the case that p′ = p,
the new lattice has precisely the same appearance and statistics as the old, and p′ =
p ≡ pc. If the substitution p′ = p is made in the above equation, it is possible to
rewrite the equation as

−2p3 +3p2 − p = 0 (1.46)

which can be factored as

− p(2p−1)(p−1) = 0 (1.47)

The three roots of this equation are p = 0, p = 1/2, and p = 1. The existence
of the “trivial” roots p = 0 and p = 1 was predicted in Sect. 1.7 (obviously if all
sites or no sites are initially colored in, this condition will persist). The root p = 1/2
represents pc.

The divergence of the correlation length must be according to a power law as
discussed. The only reasonable form for this relationship is

χ = χ0|p− pc|−ν (1.48)

where χ0 is a scale factor (obviously proportional to the original spacing of the
circles marking the fundamental lattice points), which need not concern us here
and ν > 0. The value of the critical exponent, ν , can be found through the above
renormalization by noting that −ν is the slope of a graph of the logarithm of χ vs the
logarithm of p− pc. Thus also for the above change of scale, take p slightly different,
e.g., larger than pc, p− pc = δ , where δ << 1, and find the behavior of p′ − pc as
a function of δ . This kind of procedure is known as “linearization,” because it will
define only the lowest order variability in p′. Using Eq. (1.45) without equating p
and p′ (because if p > pc, then p′ > p) write p′ as

p′ − pc = (pc +δ )3 +3(pc +δ )2(1− pc −δ )− pc (1.49)

and expand the result (again in a Taylor series) to first order in δ . The result (the
reader should verify this) is that p′ − pc = (3/2)δ . But since p− pc = δ by defini-
tion, one finds that
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ν = −
log
(
1/31/2

)
log(3δ/2)− log(δ )

=
log
(
31/2
)

log(3/2)
= 1.355 (1.50)

Note that the value of pc for the site percolation problem on the triangular lattice
is precisely 1/2, while the value of ν is 4/3 = 1.333 and the estimate of Eq. (1.50)
is only wrong by 2%.

Consider now also the number of sites on a cluster of linear dimension given by
the correlation length. In the renormalization procedure the number of sites on an
arbitrary cluster is reduced by the following ratio,

s(p′)
s(p)

=
p′3 +3p′2 (1− p′)

3p3 +2(3) p2 (1− p)+3p(1− p2)
=

1
3

(1.51)

if evaluated right at pc, i.e., p = p′ = 1/2. In Eq. (1.51) a standard result for the
average number of sites colored in on a given triangle is used, a sum over the
product of the probability of occupation and the number of occupied sites. How-
ever, if Eq. (1.51) is evaluated at p = pc + δ , where δ << 1, one finds a ratio of
(1/3)(1 + (5/2)δ ), which is slightly larger than 1/3. Equation (1.51) gives a first
estimate of the power σ in the cluster statistics, smax ∝ (p− pc)−1/σ,

1
σ

= − log(1/3)
log(3δ/2)− log(δ )

= 2ν = 2.711 (1.52)

Equation (1.52) for σ cannot be quite right. Consider now these rough results in
two dimensions, namely ν = 1.355 and σ = 1/2ν = 1/2.711 in the context of the
scaling relationships. Use df = 1/σν to find df = d = 2! If the fractal dimension-
ality is the same as the Euclidean dimensionality, then, by Eq. (1.24) just as in one
dimension, β = 0. Then Eq. (1.21) gives τ = 2 as well. In fact, however, σ > 1/2ν
(and it turns out that β = 0.14, not 0). While this difference is not great, and df = 1.9
for d = 2 (only slightly smaller than 2), the difference is obviously very important.
So, while the approximate renormalization procedure to find ν appeared at least in
1979 to generate some hope that the value was accurate, in fact the result for the
exponent σ is sufficient to show that Eq. (1.50) is merely an approximation.

The statement above Eq. (1.52) that σ is slightly larger than 1/2ν , while correct,
cannot rigorously be based on the argument provided, since that argument does not
produce a consistent power, independent of the value of p. It will turn out that the
correct value of 1/σ is 91/36 = 2.53, or about 7% different from the estimate. While
this difference is not large, it is critical.

1.18 Value of pc for Bond Percolation on the Square Lattice

Consider Fig. 1.5. The small black circles from a square lattice. Imagine that a
fraction p of the bonds (thin black lines) has been filled in at random, as shown.
Next construct the square lattice denoted by the grey circles, which are placed at the
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Fig. 1.5 A square lattice (small black circles and black lines) and its dual lattice (large grey circles
and grey lines), which is also a square lattice. Note that the bonds of the dual lattice percolate

centers of individual squares formed by the black circles. Imagine that a total of q
of the potential bonds on the grey lattice are connected (grey lines). Each of these
square lattices has the same coordination number, Z = 4. Further, every potential
bond on each lattice intersects (blocks) exactly one bond on the other lattice, which
we can call a dual lattice. Thus p for the first lattice is precisely 1−q for the other
lattice and p+q = 1. Given the 2D nature of the lattices, however, it is not possible
that both can “percolate” simultaneously. Either one lattice percolates or the other
does. Given the identical natures of the two lattices, however, it does not make sense
for pc > qc, or for pc < qc. The only alternative is to choose pc = qc = 1/2. The fact
that the square lattice is its own dual lattice means that its percolation probability
must be 1/2. The product of Zpc for this lattice is 2. Miyazima [44] has constructed
an analogous argument to find pc = 1/2 for bond percolation on a 4D hypercube
(and extended the derivation to 2n dimensions).

1.19 Estimations of pc for Bond Percolation on the Triangular
and Honeycomb Lattices

Consider Fig. 1.6. It includes a honeycomb lattice of grey circles (Z = 3) and a
triangular lattice of black circles (Z = 6), which are fully complementary (or each
other’s duals), as were the two square lattices above. Thus every bond that is con-
nected on the triangular lattice would “break” a bond on the honeycomb lattice and
vice versa. This means that if no bonds from one lattice are allowed to cross bonds
from the other one, the bond probability p on the triangular lattice is 1− q, with
q the bond probability on the honeycomb lattice and p = 1− q. The black lines
represent bonds on the triangular lattice, while the grey lines represent bonds on
the honeycomb lattice. As is generally true in two dimensions, either the triangular
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Fig. 1.6 A triangular lattice (small black circles and thin black lines) and its dual lattice (large

lattice percolates, or the honeycomb lattice percolates, but not both simultaneously.
In the figure the triangular lattice percolates. The result p+q = 1 together with the
exclusionary result on the two percolation probabilities implies that pc +qc = 1. But
the result from Sect. 1.13 that pc ∝ 1/Z implies that qc = 2pc. (pc ∝ 1/Z implies
that the quantity Zpc is a constant, which turns out to be a good approximation.)
Simultaneous solution of these two equations yields pc = 1/3, qc = 2/3. Note that
these estimates for pc are both consistent with the relationship Zpc = 2, but the ex-
act results are pc = 0.3473, qc = 0.6527, for which values Zpc = 2.08 and 1.96,
making this product only an approximate invariant. Vyssotsky et al. [45] suggested
that the product Zpc should take on the values d/(d − 1), for d ≥ 2, and such an
approximate invariant as this can be quite useful if a system, for which pc is not
known and cannot be readily calculated, is encountered.

1.20 Summary of Values of pc

In general, in a given lattice, a bond has more nearest neighbors than a site. In the
square lattice one bond is connected to six nearest neighbor bonds, while a site
has only four nearest neighbor sites. Thus large clusters of bonds can be formed
more effectively and a lower concentration of bonds is needed to form a spanning
cluster, i.e., pc for bonds is lower than for sites. For the smallest system possible,
four squares, the critical percolation probability is three-fourths for site, but one-
half for bond percolation. Here, the ratio of pc bond to pc site is exactly 2/3 =
Zsite/Zbond. For infinite sized systems the ratio of critical percolation probabilities is
not so simply related to the coordination numbers.

grey circles and grey bonds), which is a honeycomb lattice. Here the bonds of the honeycomb 
lattice percolate
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Table 1.1 Tabulated values of pc

Lattice type Z pc bond Estimated pc Z pc pc site (est.)

Honeycomb 3 1−2sin(π/18) 2/3 1.96 0.6962
Square 4 1/2 1/2 2 0.5927
Triangular 6 2sin(π/18) 1/3 2.08 1/2 (1/2)
Diamond 4 0.3886 1.55 0.4299
Simple cubic 6 0.2488 1.49 0.3116
BCC 8 0.1795 1.44 0.2464
FCC 12 0.119 1.43 0.199

The known results for pc are summarized in Table 1.1. The four cases, for which
simple approximations are known and repeated above, are noted. These four cases
and those of Miyazima [44].

All the estimated bond pc values given are exactly consistent with the Vyssot-
sky et al. [45] relationship above, though, when compared with the most accurate
determinations of pc that relationship gives values that are accurate only to within
about 4%.

Some of the references for the above values include Kesten [12] and Essam
et al. [46] (triangular bond, honeycomb and triangular site, square bond), Sykes and
Wilkinson [47]; Adler et al. [48] (BCC bond, simple cubic bond), Ziff and Sapoval
[49] (square site), Stauffer [30] (BCC site, FCC site, FCC bond, honeycomb site),
Strenski et al. [50] (simple cubic site).

1.21 More General Relationships for pc

Some relationships for pc are mentioned, which may help guide estimations in more
complex, but more realistic models.

The lattice structures mentioned so far by no means exhaust the types investi-
gated, and the Vyssotsky relationship is useful only for bond percolation. Galam
and Mauger [51] have developed a more general relationship for pc of the follow-
ing form, pc = p0[(d − 1)(q− 1)−adb. For regular lattices, q = Z is the coordina-
tion number. For nonperiodic tilings, q is an effective value of Z. The relationship
is considered to be valid for anisotropic lattices with nonequivalent nearest neigh-
bors, non-Bravais lattices with two atom unit cells and quasi-crystals. The biggest
strength of the relationship, however, may be that it can be applied to both site and
bond percolation problems. In the former case, b = 0, while in the latter b = a. The
biggest weakness is probably that the known systems fall into two classes, each with
different values of p0 and a. The first class includes 2D triangle, square, and honey-
comb lattices with a = 0.3601 and p0 = 0.8889 for site percolation and a = 0.6897
and p0 = 0.6558 for bond percolation. 2D Kagome and all (hyper)-cubic lattices
in 3 ≤ d ≤ 6 constitute the second class with a = 0.6160 and p0 = 1.2868 for site
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and a = 0.9346 and p0 = 0.7541 for bond percolation, respectively. But in order to
use these results to predict pc, one must know to which class of lattice a particular
system belongs. Nevertheless it is important here to provide guidance for prediction
of pc in new system geometries.

Finally we come to the result of Scher and Zallen [52] for the critical volume
fraction for continuum percolation. Such results have the potential to be of great
use in percolation problems in porous media. Scher and Zallen [52] found that for
regular lattices the critical occupied volume fraction,

Vc = pc f (1.53)

where pc is the critical bond fraction, and f is the filling factor (the fractional volume
covered) of a lattice when each site of the lattice is occupied by a sphere in such a
way that two nearest neighboring impenetrable spheres touch one another at one
point. For a simple cubic lattice the value of this product is 0.163, and in fact the
value of this product for all the lattices considered scarcely differed from 0.17. Note
that an analogous model (with different shaped objects) could have direct relevance
to porous media with f replaced by the porosity, and there is indeed evidence for the
applicability of Eq. (1.53) in this context.

Shante and Kirkpatrick [53] generalized this idea to overlapping spheres, and
showed that the average number, Bc, of bonds per site at pc (equal to the product of
Zpc) is related to the corresponding critical volume fraction by

Vc = 1− exp

[
−Bc

8

]
(1.54)

Note that the choice of Bc = 1.5 for three dimensions yields Vc = 0.17. This
result is generalized to an arbitrary continuum of spheres by choosing Bc to be the
limiting value of pcZ in the limit Z → ∞. Values of Vc on the order of 0.17 have
often been suggested to be relevant to real media. Balberg [16] has developed these
ideas further, finding,

Vc = 1− exp

[
−BcV

Ve

]
(1.55)

where V is the volume of the object and Ve is the excluded volume, i.e., the total
volume in which the center of a neighboring volume of the same shape cannot be
located without overlapping. For spheres this ratio is (4/3)πr3/(4/3)π(2r)3 = 1/8,
in agreement with the result of Shante and Kirkpatrick [53].

For results for the critical volume fractions for percolation for a number of
anisotropic shapes one can also consult the following web page http://ciks.cbt.nist.
gov/∼garbocz/paper59/node12.html#SECTION00050000000000000000 (geomet-
rical percolation threshold of overlapping ellipsoids, Garboczi, et al. [54]). These
values may be of considerable use in geologic applications, at least to guide con-
ceptualization. In particular, the critical volume fraction for percolation has a strong
tendency to diminish for increasing shape anisotropy.
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Problems

1.1. Show that at arbitrary p the largest clusters have cluster radius rs = sσν , and
argue then that for arbitrary p and arbitrary s, rs = sσνg[sσ (p− pc)], where g is
an unknown function. Does your result for rs imply an effective dimension of the
clusters?

1.2. Derive Eq. (1.50) from Eq. (1.49).

1.3. Derive Eq. (1.42) from Eq. (1.41).

1.4. The critical exponent α is defined through the singular contribution to Σs0ns ∝
(p− pc)2−α . Find α in terms of known exponents using the results of development
of 1.8 and an analogy to Eq. (1.13).

1.5. The critical exponent γ is defined through the singular contribution Σs2ns ∝
(p− pc)−γ . Find γ in terms of known exponents.

1.6. Show explicitly that Eq. (1.30) results from Eq. (1.29).

1.7. Verify the scaling relationships for the critical exponents in 1D, 2D, and 6D.
Do you expect them to be precisely satisfied in 3D (where the exponents may not
ever be represented in terms of rational fractions)?

1.8. Show that, for 1D systems, definition of χ as

χ =

∞
∑

r=1
rpr

∞
∑

r=1
pr

leads to χ = p/(1− p) instead of χ = (p + 1)/(1− p) as obtained from Eq. (1.5).
How would you characterize the sensitivity of the scaling behavior of the correlation
length relative to the details of its definition?

1.9. The sum in problem 1.4 has been argued to describe, for a magnetic system,
the free energy, while p (the first moment) corresponds to the magnetization, and
the sum in problem 1.5 (the second moment) to the susceptibility. Find an argument
for why an increase in the moment of the cluster distribution by one corresponds to
a derivative with respect to the applied field.
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Chapter 2
Properties Relevant for Transport
and Transport Applications

This chapter describes aspects of percolation theory that can be used in order to
predict transport properties of disordered systems. Topics are selected in order to
provide a basis for understanding subsequent applications to porous media and are
thus not meant to be exhaustive. Still, there will at times be hints to subjects that
may have relevance to problems not yet considered within the present framework.

2.1 Exponents Describing Backbone Structure

The structure of the backbone is important to such issues as distributions of arrival
times of passive solutes (simply carried along by fluid flow). The resulting disper-
sion is an inevitable aspect of transport and is frequently of great practical interest.
In the soil physics and hydrology literature it is customary to distinguish between
“transport” properties (including conduction) and flow properties. In the physics
literature all these properties fall under the category of transport.

A number of related properties of the infinite cluster have been investigated in
the context of solute dispersion. The mass fractal dimensionality of the backbone
cluster is denoted by Db. This fractal dimensionality has the same fundamental def-
inition as that of percolation clusters generally, but its value lacks the universality of
the percolation cluster. In other words the backbone cluster topology can differ sig-
nificantly depending on whether the percolation model is invasion or random, site or
bond and whether the local site or bond probabilities are correlated with each other.
The chemical path [1] is the shortest path length between two sites on a large cluster
near percolation. Defining chemical path lengths that incorporate the tortuosity of
the backbone cluster makes sense in the context of solute transport through porous
media, when such solutes are carried passively through percolation structures. The
tortuosity of the backbone cluster has been studied since the 1970s. One of the eas-
iest ways to characterize this tortuosity is to give the length of the shortest path, Λ,
along the backbone cluster as a function of p and pc. Stauffer [2] gives this length
as follows:

Λ ∝ |p− pc|−η (2.1)
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with η = 1 the value of the associated critical exponent (in three dimensions). In
fact, the “value” of this exponent has been growing over the last 30 years [3, 4], but
any value greater than 0.88 implies that the ratio of the (tortuous) path length to the
size of the largest cluster is divergent at p = pc, meaning that the path is infinitely
tortuous. Thus the tortuosity, T, may be defined as the ratio Λ/χ , or,

T =
(
Λ
χ

)
= |p− pc|ν−η (2.2)

The value of this exponent can be related to the fractal dimensionality, Dmin, of an
optimal chemical path along the backbone by using the defining equation of fractal
dimensionality from Mandelbrot [5]. For a path, which is constructed of steps of
length ε , the dimensionality is fractal (and larger than 1) if the total length of the
path, L, diverges in the limit that ε approaches zero. In particular, Dmin is given by

L(ε) = ε1−Dmin (2.3)

We can use this expression to relate Dmin to η . In percolation of course, as the
percolation threshold is approached the correlation length, χ , diverges, whereas the
individual step lengths (bond dimensions) are constant, but we can simply rescale
the picture by reducing the lengths of the individual steps inversely proportionally
to the correlation length. This process maintains the physical size of the cluster but
increases the detail at which the cluster is drawn, corresponding to Mandelbrot’s
definition. Thus ε ∝ χ−1 and

T ∝
(
|p− pc|ν

)1−Dmin = |p− pc|ν−νDmin (2.4)

which yields η = νDmin.
The mass fractal dimensionality of the backbone cluster Db [6] appears to be

more appropriate in relating the time of travel along such a backbone to the linear
extent of the cluster. Thus, the time of travel is not simply proportional to the length;
it turns out to be even longer than what would be simply predicted by making it
proportional to the tortuous length. Further, this time can depend strongly on the
type of percolation problem considered.

The argument of Lee et al. [6] follows. For particles entering a backbone cluster
at one side of a system, the typical velocity at distance x will scale as 1/n, where n is
the number of bonds at distance x. The number of bonds at distance x is proportional
to x−1+Db . Thus the typical travel time

t ∝
∫

dx
v

∝dxx−1+Db = xDb (2.5)

Lee et al. [6] do in fact find from simulations in two dimensions that the typical
time, t, that a particle takes in traversing a Euclidean distance x scales as the 1.62
power of x, very close to the value of Db = 1.6432 found by Grassberger [7] for
the backbone cluster in two dimensions, but nowhere near the value 1.217 for opti-
mal paths (see Table 2.2). Thus a kind of temporal tortuosity factor is given in the
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Table 2.1 Fractal dimensionalities associated with chemical path lengths and the backbone perco-
lation cluster in 3D (from Sheppard et al. [4])

Model Dmin Db

Site NTIP 1.37 1.87
Site TIP 1.37 1.86
Bond TIP 1.46 1.46
RP 1.37 1.87
Optimal path 1.43 1.42

Table 2.2 Fractal dimensionalities associated with chemical path lengths and the backbone perco-
lation cluster in 2D (from Sheppard et al. [4])

Model Dmin Db

NTIP 1.1293 1.6422
Site TIP 1.214 1.217
Bond TIP 1.217 1.217
RP 1.1307 1.6432
Optimal paths 1.21 1.21

same form as Eq. (1.59) but with Db substituted for Dmin. Such a result will have
considerable importance for the discussion in Chap. 10.

Sheppard et al. [4] give values for the mass fractal dimensionality of the sample-
spanning cluster and the backbone, Db, as well as the fractal dimensionality of
the optimal path, Dmin, in various percolation models. Presenting the basic infor-
mation from their summary (Tables 2.1 and 2.2) requires defining their acronyms:
IP = invasion percolation, TIP = trapping invasion percolation, NTIP = nontrapping
invasion percolation, RP = random percolation (the focus here). The difference be-
tween trapping invasion percolation and nontrapping invasion percolation is that in
the former case the “defending” fluid (defending against the “invading” fluid) is in-
compressible, meaning that it can be trapped (in finite clusters). In the latter case,
the defending fluid can always escape, even if it does not percolate, since it can be
compressed to zero volume.

In the present case for our dispersion calculations (Chap. 10) we have used sev-
eral values of the exponent Db. These values for the fractal dimensionality each lead
to distinct values for the exponent η .

2.2 Exponents for Conduction Properties

Consider the site percolation problem introduced in Sect. 1.2 and stipulate for sim-
plicity that all the metallic balls are of the same size and composition. Allow them
to be placed on a simple cubic lattice. We have not calculated pc for this lattice
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but numerical simulations give the result pc = 0.3116. Thus, in an infinite lattice,
if fewer than 31.16% of the balls emplaced are conducting and the remainder are
insulators, the system will not conduct at all. If p > pc, the system will conduct.
Clearly the conductivity of the system must follow a functional form, which van-
ishes (rather than diverge) at p = pc = 0.3116. The result of percolation theory is
that the functional form must be a power law (and the arguments given here justify
that), so that what we need to be able to do is predict the exponent.

The most important aspects of this problem treated by percolation theory are
probably the connectivity and the tortuosity of the conducting paths; certainly these
concepts have been independently (but inconsistently) developed in the porous me-
dia communities. Discussions of this topic have occupied a great deal of literature
but, as will be seen, the original discussion of Skal and Shklovskii [8] is the sim-
plest introduction, although it does not lead to the most widely accepted result. The
following is consistent with the general results of that work.

The electrical conductivity of a system is defined as the ratio of the current per
unit area and the applied electrical field. If this ratio is independent of the field (as is
normally the case at small field strengths), the system obeys Ohm’s law. The current
per unit area in the present case involves the current per path and the number of
connected paths per unit area. The simplest assumption is that the current for each
connected path is identical. Then the number of connected paths per unit cross-
sectional area (in three dimensions) is proportional to

χ−2 ∝ (p− pc)
2ν (2.6)

Since in three dimensions, ν = 0.88, the lowest order estimate of the conductivity
is that it should vanish as the 2ν = 1.76 power of the difference, p− pc. This sug-
gestion is actually fairly close to observation. But, as we know, the structure of large
clusters near the percolation threshold, and by extension also the infinite cluster just
above the percolation threshold, is fractal for distances below the correlation length
(which of course diverges right at percolation). This fractality produces a tortuosity
in the current-carrying path as well. The distance along a connected path, Λ, over
a separation equal to the correlation length is actually longer than the correlation
length. Λ diverges at the percolation threshold according to [2]

Λ ∝ (p− pc)
−νDmin (2.7)

Thus, assuming that the resistance of the current-carrying path is just the sum
of the resistances of all the metal balls encountered, this resistance per unit sys-
tem length must actually increase as the percolation threshold is approached, and
the increase must be given by the ratio of Λ to χ . This ratio is proportional to
(p− pc)v−vDmin = (p− pc)−0.33. Here we have used the value for Dmin for random
percolation given in Table 2.1. Such an increase in resistance produces an alteration
of the results for the conductivity to

σ ∝ (p− pc)
2ν+(Dminν−ν) = (p− pc)

2.09 ≡ (p− pc)
μ (2.8)
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Here the first contribution to the exponent is essentially a result of the connec-
tivity, or separation of the paths along which current can flow, while the second
contribution is due to the tortuosity of these paths. The combined exponent is thus
the sum of two contributions, 1.76 + 0.33 = 2.09 = μ . At the time of the origi-
nal estimate by Skal and Shklovskii [8], it was thought that η = 1, which leads
to μ = 1.88. Nowadays, μ is known at least as accurately as are the constituents
that distinguish μ from 2ν , and more modern publications [9, 10] give μ = 2. As
pointed out already by Berkowitz and Balberg [11] the explanation for the discrep-
ancy μ = 2 instead of μ = 2.09 is quite simple. The discussion up until now has
omitted the effects on μ of the “blobs,” or finite-length parallel paths. But the fact
that such blobs become increasingly complex and more numerous in the limit of
p → pc leads to a reduction in the resistance of the backbone cluster, meaning that
μ is reduced from 2.09. The presentation of this argument is meant more to provide
extra qualitative understanding than to imply a quantitative inference on the effects
of these “blobs” on conductivity.

In two dimensions the Skal and Shklovskii [8] argument would start with μ ≈ ν
rather than 2ν since the relevant current density is defined relative to a perpendic-
ular length (χ) rather than a cross-sectional area (χ2). Then complications due to
a tortuosity would be added. But the exponent μ appears to be smaller in magni-
tude than ν , making the argument of Skal and Shklovskii [8] more difficult to apply.
As Berkowitz and Balberg [11] explain, the structure of the backbone cluster in
2D is different enough to make blobs a more important modification to μ than the
tortuosity. As a first approximation to μ one can simply use the exponent for the
correlation length, ν = 1.33. Derrida and Vannimenus [12] find that the value of μ
in two dimensions is 1.28 and Jerauld et al. [13] find μ = 1.27, while Normand and
Herrmann [14] find μ = 1.30. Note that all of these values for μ in two dimensions
are not greatly different from the 2D value for ν . Establishing values for μ will have
relevance to discussions of Archie’s law for the electrical conductivity of porous
media. This is why it is important to find the best values for these exponents as well
as to determine the conditions under which one expects to observe them. The value
for μ in two dimensions (three dimensions) will be assumed here to be 1.3 (2).

In one dimension, the conductivity is either zero (if there are any nonconducting
elements at all) or a finite value, implying μ = 0. But μ is, in general, nonuniver-
sal for 1D systems, meaning that, in principle any value of μ can be generated. If
there is a variation in the conduction properties of the individual elements (not all
resistance values identical), the result pc = 1 implies that the total resistance may
be dominated by the resistance of the most resistive element in 1D systems. In that
case the conductivity is calculated using extreme value statistics. The choice of the
extreme value statistics is determined by the statistics of the individual resistances,
making 1D systems highly nonuniversal.

Note that although the concept of conductivity and the discussion of the value
of μ were introduced using the example of electrical conduction, the arguments are
perfectly general, and the results could be applied to, e.g., the hydraulic conductivity
or to air flow as well. What will turn out to differ among these properties is the
conditions under which arguments to invoke Eq. (2.8) actually apply.
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Berkowitz and Balberg [15] in fact explicitly demonstrated that models of hy-
draulic conduction yield Eq. (2.8) for the hydraulic conductivity near the perco-
lation threshold, and found values of the exponents compatible with μ = 2 in 3D
and μ = 1.3 in 2D, respectively, although they also found results compatible with
nonuniversal exponents [16, 17] in certain 3D systems.

One can also use the Einstein relationship [18, 19] between diffusion, D, and
conductivity, σ ,

σ = nD (2.9)

where n is the number of charge carriers, which is normally assumed to be given by
the fraction of sites connected to the infinite cluster, to find

D ∝ (p− pc)
μ−β (2.10)

Interestingly enough, as we will find, although other relationships given here are
verified, Eq. (2.10) may give inaccurate predictions for solute and gas diffusion in
porous media. In fact these two properties are not identical and, although these re-
sults may not yet be completely understood, the main discrepancy appears to be
due to the ability of solutes to diffuse over thin water films present in otherwise
dry pores, while there is ordinarily no equivalent possibility for gases to diffuse
through water. It is curious that a simple effective-medium theoretical result [20]
yields D ∝ (p− pc)1, which is exactly what is observed [21], although it is almost
certain that it would be for the wrong reasons. On account of this coincidence, how-
ever, and because of the rather close correspondence between effective-medium and
percolation theories, the essence of this derivation is repeated here.

The lowest order effective medium approximation for the mean diffusivity, Dm,
can be obtained via physical arguments [22, 23] or via lattice Green functions [24]
as [20]

∞∫
0

Dm −D
[(Z/2)−1]Dm +D

f (D)dD = 0 (2.11)

Keffer et al. [20] use as a distribution of diffusivities (to describe ultimately the
diffusion in zeolites)

f (D) = pδ (D−Db)+(1− p)δ (D−D0) (2.12)

where Db is a very small value and D0 is relatively large, and for which these authors
define f ≡ Db/D0. Note that, in an unusual choice, these authors chose to use the
symbol p for the low diffusion elements! The solution of Eq. (2.11) using Eq. (2.12)
for f(D) is

Dm

D0
=

1
2

{
A+
[

A2 +
4 f

(Z/2)−1

] 1
2
}

(2.13)

and

A = 1− p+ f p− f + p− f p
(Z/2)−1

(2.14)
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For f = 0 Eq. (2.14) yields

Dm

D0
=

[(Z/2)−1]− (Z/2) p
[(Z/2)−1]

=
(1− p)− (2/Z)

1− (2/Z)
(2.15)

which would seem to yield pc = 1−2/Z and a critical exponent of 1. But given that
these authors exchanged the roles of p and 1− p, the actual result obtained for pc is
Zpc = 2, which would be in agreement with the results of percolation theory except
that the constant, 2, is more appropriate for 2D, rather than the 3D configurations
considered. Note also the conclusion that the critical exponent 1 is unaffected by the
transposition of p and 1− p.

2.3 Summary of Derived Values of Critical Exponents

While most of the entries in Table 2.3 refer to quantities discussed in Chap. 1, it is
not presented there because of its inclusion of the conductivity exponent, μ .

Table 2.3

Exponent D = 1 d = 2 d = 3 d ≥ 6

α 1 −2/3 −0.62 −1
β 0 5/36 0.41 1
γ 1 43/18 1.82 1
σ 1 36/91 = 0.396 (0.369) 0.45 1/2
τ 2 187/91 2.18 5/2
ν 1 4/3 (1.355) 0.88 1/2
μ Not universal 1.3 (1.355) 2.0 (1.88) 3

This table was constructed synthesizing the tabulated values for these exponents from Sahimi [18,
19] and Stauffer [2], but using μ = 2.0 in three dimensions [9, 10] and μ = 1.3 in two dimensions
[14]. Known values, for which the derivations were described here, are underlined and in bold; if
the values obtained here are different from the known values, they are given in parentheses.

2.4 Finite-Size Scaling and Fractal Characteristics

Numerical simulations are a common means to generate values of pc as well as of
critical exponents in percolation theory. But simulations can be performed only for
finite-sized systems. While it is possible to try to extract limiting behavior in the
infinite system limit as a means to generate such quantities, a better approach is to
generate dependences of, e.g., the conductivity on the system size and use a known
transformation to yield the associated dependences on percolation variables. This
technique is used often for treating transport problems. For example, quantities like
the conductivity, which vanish at the percolation threshold, will diminish with in-
creasing system size until the linear dimension of the system exceeds the correlation
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length. At larger length scales the system is known to be Euclidean, meaning that the
property in question becomes independent of system size. The exception of course
is right at the percolation threshold, for which the correlation length is infinite and
the scale dependence continues to infinite system size.

Originally it was Fisher [25] who showed how to relate percolation quantities for
finite-sized systems to their behavior as a function of p− pc in the limit of infinite-
sized systems. In particular for a system of finite size L, a percolation quantity, ψ,
which obeys an arbitrary power law, (p− pc)q0 , will behave as follows:

ψ ∝ L− q0
ν h

[(
L
χ

) 1
ν
]

= L− q0
ν h
[
L

1
ν (p− pc)

]
(2.16)

with h an unknown nonsingular function. Substitute L = χ into Eq. (2.16) to obtain

ψ ∝ (p− pc)
−ν −q0

ν h [1] = (p− pc)
q0 (2.17)

Note the similarity of Eq. (2.16) with Eq. (1.8) for the cluster statistics. In partic-
ular, the ratio of L to the correlation length enters here because of the fact that sys-
tems near the percolation threshold obey fractal geometry (with, e.g., fractal cluster
dimensions) only for length scales smaller than the correlation length, χ . For length
scales larger than χ the system follows Euclidean geometry. For example, if a sys-
tem with p > pc is smaller than the correlation length, the above finite-size scaling
results hold and such transport quantities as a diffusion constant or the conductivity
will trend to zero with increasing system size up to a length scale equal to the cor-
relation length. But at larger system sizes, the transport coefficient will not change
for any further increase in system size. Only precisely at pc will the behavior of the
transport coefficient continue to diminish indefinitely with increasing system size.
But on the way to p = pc, the transport coefficient has taken on values at each size,
which were equal to the transport coefficient at that value of the correlation length.
Therefore the first factor in Eq. (2.16) gives the behavior of the variable ψ for the
condition L = χ , since the second factor does not change with L for L constrained
to equal χ . Thus any such exponent obtained from finite-size simulations (and pre-
sented as a function of system size, L) must be multiplied by −ν to find the value
predicted by percolation theory. The similarity of Eq. (2.16) with Eq. (1.8) is a con-
sequence of the relevance to percolation scaling of homogeneous functions, a topic
not further considered here, but treated in some detail in the standard references
mentioned earlier in the chapter.

2.5 Critical Path Analysis

Although an entire chapter is devoted to critical path analysis (CPA), its introduc-
tion here serves to familiarize the reader with its basic concepts. This introduction
addresses more general issues, such as effects of the dimensionality of the system,
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the connectivity of the medium, and the width of a distribution of local conduc-
tances, while Chap. 3 treats detailed applications of CPA to systems of experimental
relevance.

CPA uses percolation theory to calculate effective conduction properties of a dis-
ordered medium. CPA was developed [26–28] to find the limiting resistance value
in a random medium with a wide range of local resistances. The initial work was
meant to address the electrical conduction problems of impurity conduction sys-
tems in crystalline semiconductors as well as amorphous semiconductors, and so
topological disorder was included. The present introduction, however, concentrates
on lattice models. Because the connectivity of the more highly conductive regions
is a critical input into the calculation of effective properties, the fundamental the-
ory of connectivity is an obvious tool to be employed for such a calculation. Then
it is not necessary to add connectivity as an afterthought, or to develop alternative
methods to quantify connectivity, such as the Euler number [29]. While the latter
has an advantage in that it can be used to identify a percolation transition [29], i.e.,
when the Euler number changes sign the system crosses pc, its disadvantage is that
there is no known relationship between the Euler number and p. Thus there is no
way to express (p− pc) in terms of Euler numbers, making it impossible to use the
Euler number to predict any properties given in percolation theory. Two additional
advantages of CPA are that it can be applied to any conductance (or conductivity)
distribution and that it yields results, which are most accurate (exact) in the limit of
large disorder rather than in the limit of a homogeneous system (although in many
cases CPA can be formulated to be exact in both limits).

The gist of CPA is that it defines that interconnected network of conductances
which has the largest possible value of the smallest, or bottleneck, conductance. This
value is called the critical conductance and is found by setting an integral over the
conductance distribution equal to the critical percolation probability, pc. The lower
limit of this integral is the critical conductance, and the upper limit is the largest
conductance. The analysis can be formulated equivalently in terms of a resistance
distribution, for which pc fixes the upper limit of integration while the lower limit
is the smallest resistance in the distribution. In CPA pc is thus the most important
parameter, rather than the critical exponents. The critical percolation probability can
vary significantly from system to system. Thus there might be important differences
in applying CPA in different systems. Important differences do exist in applying
CPA in different dimensions.

2.5.1 Relation of CPA to Extreme Value Statistics in 1D Systems

Consider first the case of 1D systems. In infinite 1D systems the conductivity can
always be calculated exactly using what is often called the harmonic mean value of
the conductance distribution. This value is related simply to the inverse of the sum
of the resistance values since the effective resistance of resistances in series is their
sum. For uniform size characteristics (all bonds the same length, for example) the
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resistance distribution is a perfect proxy for the resistivity distribution as the resis-
tance of any bond is a given constant times its resistivity. For a wide distribution of
resistance values, the harmonic mean is dominated by the largest resistance in the
system. For a truncated power-law distribution of resistances, W(R) (or equivalently
conductances), the harmonic mean conductivity is in fact proportional to the largest
resistance value, at least as long as RW(R) is a power of R that is greater than −1.
This is simply a property of power-law distributions and may easily be verified by in-
tegration (Problem 2.4). Since pc = 1 in one dimension, CPA requires that the lower
limit of integration on the conductance distribution be the smallest conductance in
the system (or the largest resistance). In other words it is not possible to connect
an infinite path which avoids even the smallest conductance. A single missing ele-
ment will break the path. Thus CPA quickly reaffirms the relevance of the largest
resistance to the system conductivity. For a power-law resistance distribution that
extends to infinite resistance the conductivity is zero. In general the conductivity in
1D is given by σ = l/R, with l the system length and R its total resistance.

In finite-length 1D systems, the problem is more interesting. Again, since in 1D
pc = 1, the critical conductance gc is now the smallest actual conductance in the
system, rather than the smallest allowed by the distribution. Since it is impossible to
avoid even the largest resistance on the path, but this largest resistance can vary from
realization to realization, extreme value statistics are implicated in the procedure
to find both an ensemble mean conductivity of the system and a distribution of
conductivity values as a function of the system length. To find an ensemble mean
conductivity it is necessary first to find the dependence on x of the largest expected
resistance value, Rmax(x) in a system of length x. If Rmax(x) is a power of x, then
evaluation of the limit of x/Rmax(x) for x approaching infinity gives the scaling of the
conductivity as a function of length, x. In such cases, the limiting value of x/Rmax(x)
as x approaches infinity will typically be zero so that an infinite system does not
conduct at all. This is the case in the spatially random hopping conduction system
considered below. Whenever the system has a nonzero minimum conductance value,
however, the typical resistance of a system of length x is proportional to x and the
system conductivity is nonzero and well-defined.

The following specific system, r-percolation, is discussed in considerably more
detail in Sect. 4.1. Here we only give the briefest summary sufficient to actually
perform the calculations. Consider a 1D system with resistances connecting ev-
ery pair of sites, i and i + 1, where i denotes the position of a site on a linear
chain. Let the separation of the sites ri,i+1 be a random variable with uniform prob-
ability density, 1/b, where b is the typical separation of sites. Let the resistance
Ri,i+1 = R0 exp[2ri,i+1/a], where a << b and R0 are constants with units length and
resistance, respectively. While the probability of finding an arbitrary site a distance
r (within dr) from site i is dr/b, the probability that that site is the nearest neigh-
bor is (dr/b)exp(−r/b). This probability is normalized over the interval [0,∞]; the
nearest neighbor must be somewhere. Now what is the largest likely value of the
nearest neighbor distance in a chain of length x? First, the expected number of sites
on such a chain is x/b. Thus the number of possible realizations of the nearest neigh-
bor distance is proportional to x/b. This means that the total area under the curve
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exp(−r/b)/b would typically be divided into x/b roughly equal areas, meaning that
the largest expected resistance value, Rmax = R0 exp[2rmax/a], would be found by
setting the area under the extreme value distribution between rmax and infinity pro-
portional to b/x,

b
x
∝

∞∫
rmax

dr
b

exp

[
−r
b

]
(2.18)

Solution of this integration for rmax in terms of x leads to

rmax ∝ b ln
( x

b

)
(2.19)

Substitution into Rmax = R0 exp[2rmax/a] leads to

Rmax ∝ R0

[ x
b

] 2b
a

(2.20)

with the result that
σ (x) ∝ x1− 2b

a (2.21)

Equation (2.21), since b >> a, leads to a conductivity [30, 31] which is a negative
power of the system length and which vanishes in the limit of an infinite chain. In
condensed matter applications, where individual resistance values are typically ex-
ponential functions of random variables, the only easy way to generate a power-law
behavior of the conductivity with system size is to invoke extreme value statistics.
The only systems, in which mean-value statistics appear to be relevant, are 1D sys-
tems, because of the fact that pc = 1. Thus 1D systems make a very poor starting
point for understanding percolation behavior generally. We will find out in the next
chapter that, for other reasons, 2D systems make very poor models of 3D porous
media.

2.5.2 CPA in Two Dimensions

Next we apply CPA to an idealized conductance distribution on a 2D lattice. An
attractive point about 2D systems is the direct relationship there between critical
conductance and system conductivity. Consider the elementary relationship between
the resistance R and the resistivity ρ for a homogeneous system of length l and
cross-sectional area A, in particular R = ρl/A. In two dimensions the analogous
relationship is R = ρl/z, where z is the system dimension perpendicular to flow.
The particular case of two dimensions, where the sample-dependent property R is
equal to the ratio of two lengths times the material property, ρ , is interpreted [32]
for the case of disordered systems to imply the equivalence of ρ and R, and thus
between the conductance, g, and the conductivity, σ , as well. This makes the system
conductivity equal to the critical conductance.
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For the bond percolation problem we need the probability density function (pdf)
for finding a conductance between two arbitrary nearest neighbor sites with value
between g and g+dg, called W(g). Normalization of this pdf requires

∞∫
0

W (g)dg = 1 (2.22)

Consider the case that W(g) is a log uniform distribution of (electrical or hy-
draulic) resistance values with width 10 orders of magnitude, e.g., from 100 to 1010

in arbitrary units. Place each conductance at random between two arbitrary nearest
neighbor sites on a square lattice. Each site has four nearest neighbors, z = 4, and
pc = 0.5. The conductivity of this arrangement is the median conductance value
g = 105 because it is known that emplacement of a fraction 0.5 of the bonds of this
lattice guarantees that the system is at the percolation threshold. The median con-
ductance on this lattice is then the smallest conductance value that cannot be avoided
by the current, a value which is more generally known as the critical conductance,
gc. gc is found from

∞∫
gc

W (g)dg = pc = 0.5 (2.23)

For an infinite square lattice, placement of half the conductances into lattice posi-
tions at random guarantees existence of a cluster of interconnected conductances,
which just reaches infinite size; choosing that half of the conductance distribution
with the largest conductances yields the path of least resistance. If, in a correspond-
ing physical system all bonds have not only the same length, but also the same
cross-sectional area, the median conductance value would correspond rigorously to
the median conductivity in a distribution of conductivities. Such a picture applies
also to media in which the currents are represented numerically in terms of finite
difference equations, as long as the medium is divided up into subregions of iden-
tical squares. Since the effective conductivity of the medium is known in porous
media communities as the upscaled conductivity, then under fairly common condi-
tions we can identify the median of a conductivity distribution with the upscaled
conductivity in two dimensions. If the logarithm of K is symmetrically distributed,
then the median of the conductivity is also the geometric mean. But the same results
do not apply for all 2D systems.

If the same conductances are placed on a triangular lattice, where each point
has six nearest neighbors (Z = 6), the dominant conductance value from the dis-
tribution is 106.55 because pc is 0.345 and the current avoids the slowest two-
thirds of the connections. If the same conductances are placed on a honeycomb
lattice, with z = 3, the dominant conductance is gc = 103.45 because pc = 0.655
and the current avoids only the slowest one-third of the connections. The cor-
responding values of the rate-limiting conductances and associated conductivi-
ties extend over more than three orders of magnitude in the simplest 2D lattices!
In Fig. 2.1 we represent these results pictorially and include as well the range
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Critical Conductance As Function of Critical Probability
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Fig. 2.1 For a log-uniform distribution of conductances the critical (percolating) rate-limiting con-
ductance, gc, as a function of the critical percolation probability, pc. Note the rapid diminution of
pc and increase of gc with increasing dimensionality. Further, if the geometric mean of the distri-
bution is held constant, but the width is increased, all systems to the left of the square lattice will
have an increase in K, while all those to the right will experience a decrease

of likely values for gc in 3D lattices (pc ≤ 0.2488) as well as on a 1D chain
(where pc = 1). In 3D the relationship between gc and system conductivity is more
complex, and only in 2D systems can gc in Fig. 2.1 be interpreted also as the
conductivity.

2.5.3 CPA in 3D

In 3D we need to be able to write expressions for the conductivity as well. If only
enough resistors are placed on the lattice to guarantee the existence of an infinite
cluster (p = pc), then there will be only a single connected path in, say, the x di-
rection over a distance χ in both the y and the z directions. But χ diverges right at
the percolation threshold. While this path has the largest rate-limiting conductance
value possible for a given network topology and conductance distribution, construc-
tion of such a critical path does not optimize the conductivity since the conductivity
due to a single conducting path in an infinite cross-sectional area (or perpendicu-
lar distance in two dimensions) is zero. However, emplacement of a few smaller
conductances into their positions in the network reduces χ rapidly while scarcely
diminishing the rate-limiting conductance, allowing the possibility of a general op-
timization procedure. Such an optimization procedure for a 3D lattice, d = 3, is
given below. The optimization procedure results in the determination of an optimal
value of the conductance, gopt, which is useful as long as gopt is close enough to
gc so that the topology of the conducting paths is described by percolation theory.
Nevertheless, the tendency for pc to be much smaller in 3D than in 2D tends to make
the conductivity of 3D systems much higher than in 2D, and we discuss first general
tendencies for the conductivity in terms of the dimension of the medium.
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2.5.4 Dimensional Dependence and Similarity
to Matheron Conjecture

In Fig. 2.1 the dimensional dependence of gc for the proposed log-uniform distri-
bution of conductance values is clear and strong. In 2D square lattices the critical
conductance, 105, yields the conductivity and is the geometric mean of the distribu-
tion [(100)(1010)]1/2. For 1D systems gc is the smallest g in the system, while in 3D
systems, it is near the large end of the distribution. This dimensional dependence is
reminiscent of that in a classical conjecture of Matheron [33]. The relevance of the
geometric mean of a conductivity distribution to the 2D upscaled conductivity is not
restricted to a log-uniform distribution, but is repeated for log-normal distributions
and power law distributions as well, making it possible to compare the result from
CPA to a completely different formulation for upscaling K in heterogeneous media.
Assume that the logarithm of the hydraulic conductivity is normally distributed,

W (K) ∝ exp

{
−
[

(ln(K)− ln(K0))
2

2Var (ln(K))

]}
(2.24)

where Var[ln(K)] is the variance of the distribution of ln[K]. Then the lowest order
approximation to the hydraulic (or electrical) conductivity is [34]

K = Kgm exp

[(
1
2
− 1

d

)
Var (ln(K))

]
= K0 exp

[(
1
2
− 1

d

)
Var (ln(K))

]
(2.25)

where Kgm, the geometric mean of K, is here equal to K0, the most likely value of K.
In fact, De Wit [34] explains that Eq. (2.25) is essentially a perturbation expansion
in the (small parameter) Var(ln(K)). Equation (2.25) also implies that the upscaled
conductivity in 2D is equal to the geometric mean or to the median value. Further,
the hydraulic conductivity increases with increasing variance in 3D and diminishes
with increasing variance in 1D, just as in Fig. 2.1. Since all methods generate the
hydraulic conductivity in 1D systems using the inverse of the sum of the resistance
values, the two results coincide in 1D as well as in 2D, at least under some circum-
stances. But in 3D there are some fundamental differences.

In 3D Eq. (2.25) suggests that the conductivity is independent of the proper-
ties of the connectivity of the medium as long as ln(K) is a normally distributed
random field. It is known, however, that the connectivity of such fields plays an
important role in the upscaling [35–38]. As can be seen from CPA, the tendency
for K to increase with diminishing pc is not restricted to the effects of increasing
dimensionality, but includes effects of larger coordination number, Z, as well. Thus
increasing the local connectivity reduces pc and increases K. Further, Eq. (2.25) im-
plies that the conductivity can be represented in terms of the mean value and some
parameter describing the variation about the mean. However, it should be appar-
ent from critical path arguments that the important conductance may be far in the
tail of the distribution. As mentioned, Eq. (2.25) is not complete: it is believed that
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in fact Eq. (2.25) represents only the first term in a series [34] of terms proportional
to powers of the variance of ln(K). Thus the validity of Eq. (2.25) is subject to an
important condition on the magnitude of Var(ln(K)), which must be small. Similarly,
even using all the terms in the series is insufficient if the series does not converge,
which will be the case for large Var(ln(K)).

2.5.5 Optimization of the Percolation Network: Contrast
Between 2D and 3D

The idea of CPA is actually not best expressed as an upscaling of the conductivity.
In particular, in CPA, one seeks an optimization of an expression for the conduc-
tivity, which is based on selection of paths with very small values of the maximum
resistance and the separation of those paths. Thus we find the dominant conducting
paths, the current (or flow) on those paths, and how many such paths per unit area
intersect a plane perpendicular to the flow. We cannot restrict our attention precisely
to the paths with the smallest possible values of the maximum resistance, since these
paths would be precisely at the percolation threshold and then have infinite separa-
tion (leading to a zero conductivity). Incorporating some larger resistances reduces
the conductances of these paths, but increases their areal density rapidly from zero.
The typical separation of these paths is given in terms of the correlation length, χ .
The areal density of the relevant paths is thus χ−2. We will then invert an elemen-
tary relationship for the resistance of a homogeneous wire R = ρl/A, with ρ ≡ σ−1

the resistivity, l the length and A the cross-sectional area, to obtain the conductivity
from R, l, and A, i.e., σ = l/RA. A will thus be the square of the correlation length,
and l will be the typical separation of maximal resistances on the path. In that ex-
pression for the conductivity, however, all the functions must be written in terms of
the maximally valued resistance (or minimum conductance) in order to perform an
optimization.

The correlation length is defined in terms of (p− pc); thus we must have a general
expression for (p− pc), which is written in terms of the resistance distribution itself,
in order to apply the optimization procedure.

Define

F (R) ≡
R∫

0

W
(
R′)dR′ = p (2.26)

Then

F (Rc) =
Rc∫

0

W
(
R′)dR′ = pc (2.27)

Equations (2.26) and (2.27) can be solved in parallel for p− pc. Define a con-
ductance g ≡ R−1 and define l to be the typical separation of the rate-limiting
resistances, R. It is then possible to write a relatively simple expression for the
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conductivity of a 3D network, on which a fraction, p, of bonds with the smallest
R values possible, is placed at random,

σ =
l
[
F
(
g−1
)
−F
(
g−1

c

)]2ν
χ2

0

g (2.28)

In Eq. (2.28) χ2
0 [F(g−1)−F(g−1

c )]−2ν is the square of the correlation length as a
function of the smallest conductance included, g. l is actually the separation of rate-
limiting resistances on the dominant, current-carrying path and, as such, would seem
to involve only the statistics of the resistance values. If the resistance distribution is
discretized in steps of the fundamental constant e = 2.718, then one could write
for l,

l ≈ χ0

⎧⎨
⎩

∫ R
0 W (R)dR∫ e1/2R

−R/e1/2 W (R)dR

⎫⎬
⎭

− 1
3

(2.29)

in three dimensions. Equation (2.29) has a very simple basis actually. Note that the
ratio on the right-hand side is just the inverse of the fraction, f, of emplaced resis-
tances which is in the largest discretization class, so that l3 f ≈ 1. In this formulation,
the distribution of resistances on the percolating cluster is the same as in the medium
generally, so that the volume concentration of the largest resistances is easy to ob-
tain from the appropriate bulk distribution, W(R). Note that l in Eq. (2.28) is thus
only a very slowly varying function of p, and not a function of p− pc at all. For this
reason optimization of Eq. (2.28) is not complicated by consideration of l. Result
Eq. (2.28), however, is not generally agreed on. Several authors identify l with the
correlation length χ = χ0[F(g−1)−F(g−1

c )]−ν , by arguing that the separation of
rate-limiting resistances is topologically constrained, rather than a function of the
frequency of occurrence of such resistances. The physical basis for this argument is
that, in the vicinity of pc at least, most of the largest resistances are shorted by al-
ternate paths with smaller dominant resistance values, but that, for self-consistency
l cannot be larger than χ , otherwise the value of p would have to be changed. This
important problem is still not completely settled, with several different perspectives
taken in the literature.

If in Eq. (1.83) R is an exponential function of a random variable, such as a
site separation (R ∝ exp(2r/a) with a a constant length), then F(R)− F(Rc) ∝
ln(R/Rc) = ln(gc/g), but if R is a power of, e.g., a tube radius (for hydraulic con-
duction), then F(R)−F(Rc)∝ (R−Rc) or g−gc (see the assigned problems). Using
Eq. (2.29) for l and optimizing Eq. (2.28) leads to, in the first case,

dσ
dg

=
d
dg

[
l
[
F
(
g−1
)
−F
(
g−1

c

)]2ν
χ2

0

g

]
=
[

ln

(
gc

g

)]2ν
−2ν

[
ln

(
gc

g

)]2ν−1

= 0

(2.30)
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Solution of Eq. (2.30) leads immediately to ln(gc/g) = 2ν , or g = gc exp(−2ν).
Thus the controlling conductance, g, is closely related to the critical value, gc, and
this value of g can also be substituted into χ = χ0[F(g−1)−F(g−1

c )]−ν) to generate
an expression for σ in Eq. (2.28). Note that choice above of l ∝ χ would yield g =
gc exp(−ν), because the exponent 2ν would be replaced by ν . In two dimensions,
the factor χ2 in the denominator is replaced by χ . If l is taken to be proportional to
χ , the 2D case becomes special because l/χ has no dependence on the percolation
variables, with the conductivity a universal numerical factor (of order unity) times
the critical value of the conductance, gc. This result does appear to be verified [32],
and our own simulations agree [39]. Specific results from CPA will be discussed in
Chap. 4 and elsewhere.

Note, however, that in many cases it may be possible to apply CPA without using
the above optimization if it is desired only to find the ratio of the critical resis-
tance value at two different values of a changing external parameter such as the
moisture content, and under the assumption that far from the percolation thresh-
old the topological aspects affecting the optimization will change only slowly with
such external parameters. Such cases will also be considered in the chapters on
applications.

In hydrogeology one of the most important problems is to be able to predict the
effective (hydraulic) conductivity, Keff, of a medium from information regarding
the variability of K within the medium. This problem is known as “upscaling the
hydraulic conductivity.” It is often stated that Keff is bounded by its harmonic and
arithmetic mean values. The harmonic mean of a collection of resistance values is
the value obtained by configuring them all in series. The arithmetic mean of a col-
lection of resistors is the equivalent resistance value when they are all configured in
parallel. Geologists often assert that physicists do not comprehend the complexity
of geologic material, which is true, but such an upscaling scheme was obviously
developed from the geologic perspective of a subsurface stratified in horizontal ge-
ologic units, where horizontal conduction is governed by the arithmetic mean and
vertical conduction by the harmonic mean.

Upscaling K in three dimensions as though all resistances were configured in
parallel (series) is consistent with assuming that pc = 0(pc = 1). The latter is valid
for 1D systems. Thus regarding the bounds of K as being its harmonic and its arith-
metic means corresponds to assuming that the critical bond (or volume) fraction for
percolation is between 1 and 0, valid for one- and infinite-dimensional systems, re-
spectively. This means that typical guidelines for upscaling state only that the critical
percolation probability is a probability, or that conduction takes place in a dimension
between one and infinity. In this context we can see what potential improvement in
theory exists when a perspective based on percolation theory is adopted. The value
of pc for a given system defines what fraction of the (smallest) individual resis-
tances, which must be considered as connected in series, with the remaining 1− pc

fraction of larger resistances connected in parallel. Any information on connectiv-
ity should help to estimate the appropriate value of pc for a system, guiding the
upscaling.
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Problems

2.1. Provide the details of the derivation of Eqs. (2.13) and (2.14) for solute diffusion.

2.2. Verify that p − pc ∝ ln(gc/g) if R ∝ exp(2r/a), whereas p − pc ∝ (g − gc)
if R ∝ r−4. Are there any conditions or restrictions on W(R) for the validity of
this derivation? Can you name any systems for which these resistance values are
appropriate?

2.3. Repeat the optimization procedure for the conductivity if R ∝ r4 and p− pc ∝
gc −g. Note that the optimization procedure described in the text (for the exponen-
tial case) is unchanged if the conductivity is represented in terms of R rather than in
terms of g. However, the optimization procedure in terms of R fails for the case of
the power-law dependence of R. Show this explicitly. What does this failure imply?

2.4. Verify that if W (R)∝ R−α between Rmin and Rmax, such that −2 < α <−1, the
effective resistance of a 1D chain for this choice of W(R) is proportional to Rmax.
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Chapter 3
Porous Media Primer for Physicists

3.1 Introduction and Background

The study of soils and rocks is the province of many different disciplines. These
disciplines have historically focused on applications rather than understanding, and
this pragmatic approach has led to some cutting of corners. Furthermore, the dif-
ferent disciplines have different goals, so they have developed their own peculiar
vocabulary, insights, and biases. For example, petroleum engineers generally work
with consolidated rock, so the concept of a particle size distribution is not as central
to their thinking as it is to a soil scientist. Meanwhile, soil scientists working with
just two fluids – air and water – can frequently get away with assuming that air is
infinitely compressible (and has density and viscosity of zero); petroleum engineers
working with multiple flowing gases and liquids must consider all fluid phases in
concert. Insofar as the structure of the medium is concerned, the material presented
here tends to be centered on soil physics, but we have attempted to make contact
with other disciplines in important cases.

The literature on porous media is vast. Two particularly useful reference books
are Bear’s [1] classic Dynamics of fluids in porous media; and Dullien’s [2] Porous
media: Fluid transport and pore structure. Others include Warrick [3]; Marshall
et al. [4]; Hillel [5]; Sahimi [6], and Surkov and Tanaka [7]. In general, however, we
find that the biases of researchers in each field tend to be reflected in weaknesses in
their corresponding books: for example, soil physicists tend not to understand basic
concepts of the physics of transport in disordered systems, while engineers (and
physicists) tend to difficulties in understanding the basic patterns of the morphology
of soils. This book is no exception: it cannot serve as a substitute for any of the
standard texts on soil physics.

During the 1980s physicists (and some geophysicists) devoted considerable ef-
forts to understanding the physical (meaning here not hydraulic) properties of sand-
stones [8–14]. These investigations were largely driven by curiosity about novel
materials such as fractal media, and by the prospect of finding novel behavior, such
as nonuniversal scaling of transport properties associated with continuum percola-
tion theory. Much of the remaining physics research was driven by the needs of the
petroleum industry and its desire to understand the dynamics of multiphase flow. But
a great deal of information can now be gleaned from the soil physics community,
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which could not be incorporated into the standard physics journals of that period. In
fact several soil scientists [15–23] have addressed the question of whether natural
porous media can be treated practically and consistently using fractal models. Some
of these results call into question aspects of the fractal treatments of the 1980s’
physics community.

In contrast to its treatment of soil morphology and structure, the soil science lit-
erature is quite inadequate when it comes to treating flow and transport. Models are
based on detailed treatments of single pores, but then averages are performed over a
pore-size distribution without considering the effects of connectivity [24–37]. More
complicated averaging schemes exist, such as Burdine’s [38], which uses a joint
probability distribution rather than a single probability, thus diminishing the con-
nectivity of the largest pores. Following the averaging, connectivity (and tortuosity)
may be added in later, almost as an afterthought, in order to make theory agree with
experiment.

When an arithmetic mean of transport properties is performed, the assumption of
perfect connectivity has tacitly been made. That is, choice of a conductivity averag-
ing scheme (and there is no space here to describe all those used in this community)
independently from the connectivity is inherently contradictory. An internally in-
consistent phenomenology can produce any result, including wrong ones. But this
community has come to value flexible formulations of flow and transport above pre-
dictive ones: somewhere a combination of parameters must exist that makes “cor-
rect” predictions. And in fact, with the most flexible formulations [27], there may be
a large number of such combinations, so a common concern of the community re-
gards the “uniqueness” of parameter determinations. Another advantage of flexible
formulations is that experimental error, which is often appreciable, can be readily
accommodated. Usually the resulting relationships are recognized in the soil sci-
ence and hydrology community as being phenomenological only. But the point of a
physics-based treatment must be to derive relationships that are both predictive and
physically sound, even in the face of complexity.

The fundamental physics of porous media is classical Newtonian mechanics,
even though many natural porous media are not strictly Euclidean. The physics of
porous media does not use concepts that are foreign to physicists, although discus-
sions (particularly in the soil science community) may seem opaque to physicists.
The purpose of this chapter is to introduce physicists to the web of subsurface hydro-
logical science, to give an overview of the conceptual basis of the literature. As such
it will show both the internal inconsistencies and the successes of this literature.

Probably the most striking aspects of natural porous media are their complexity
and variability. To narrow the variability somewhat, these notes will be limited to
soils and rocks, largely ignoring complications due to organic matter in the medium.
We also exclude synthetic porous media and, except for one minor digression, living
organisms, further reducing the variability.

The fundamental difficulty in estimating transport properties of geological porous
media is obtaining a useful yet valid description of the pore space in three dimen-
sions. The dimensionality of the description is crucial for many reasons. In fact sys-
tematic errors result for fractal media if 2D images are used to estimate the porosity.
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But it is difficult to image a 3D volume of great complexity embedded in an opaque
medium. Attempts to isolate a sample of a natural medium generally cause some
rearrangement of the particles; this also changes the pore space, so accurate descrip-
tions of media in their natural setting are seldom available by direct measurement.
Another part of the uncertainty in treating geological porous media arises from the
lack of consensus as to what information is actually required. While new imaging
methods may help define the pore space, the danger also exists that these new meth-
ods will produce mainly superfluous data. If porous media are indeed fractal (within
limits, of course), then the information required for models may be distilled to a few
parameters.

The soil science community generally distinguishes between soil physical prop-
erties (comprehensive descriptions of the pore and particle space as well as me-
chanical properties), soil hydraulic properties (describing the flow of fluids through
the medium), and soil transport properties (diffusion, electrical conductivity, dis-
persion, and advection of both sorbing and nonsorbing solutes). Such distinction
between flow and transport tends to muddle the fact that all conductivities, whether
thermal, electrical, or hydraulic, are proportionality coefficients in the same equa-
tion in which a flux, J, is proportional to the negative of a potential gradient, −∇Ψ.
While the general problem of fluid flow in porous media is described by the Navier–
Stokes equation, at the usual low Reynolds number flows encountered this equation
also reduces to J ∝ −∇Ψ, with the hydraulic conductivity as the proportionality
constant. But a major goal of soil science has been to predict hydraulic properties
from physical properties, then to predict transport properties from the physical and
hydraulic properties. So a physicist needs to understand this distinction. Most treat-
ments (pedo-transfer functions) have been based either primarily on empiricism or
on numerical simulations. These notes show an alternative path to making predic-
tions of flow and transport properties.

3.2 Relevant Soil Physics

3.2.1 Porosity and Moisture Content

The most basic information regarding the pore space of a porous medium is its
porosity, the volume fraction of the pore space. The porosity, denoted φ , is thus a
fraction less than 1. Rock porosity values range from less than 1% in many crys-
talline rocks such as granite, through 5–15% in sandstones, to well over 60% in
pumice. Because soils are particulate rather than rigid, the requirement of mechan-
ical stability restricts soil porosity values to a smaller range. Most mineral soils (as
opposed to, e.g., peat) have porosities between about 30 and 60%, with 40–50%
being a common value near the surface.

In a natural setting, a geological porous medium’s pore space is generally com-
pletely occupied by air and/or water. The volume fraction of the water is usually
denoted θ , and the air-filled porosity ε . Assuming a constant volume, φ = θ + ε .
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But the assumption of a constant volume requires no movement or rearrangement
of the particles, and something as simple as a change in water content can af-
fect the particles’ arrangement. Specifically, clay minerals can adsorb water onto
their surfaces, causing clayey soils to swell with increasing moisture content. While
this issue is clearly important for the field of soil science, it is not fundamental
to the present discussion, and would force the development of more complicated,
nonlinear techniques.

An aspect of porous media that will surprise physicists is the manner of mea-
surements, and the implied systematic and random errors. For example, the concept
of porosity is certainly simple, but typically the most reliable means of estimating
that porosity is by measuring dry bulk (sample) density and assuming the particle
density. While the density of individual soil particles may easily vary by up to 15%,
the mean density of a collection of particles will not vary greatly from 2.65 g cm−3

(the density of quartz); typical errors in these porosity estimates are thus only a few
percent. The following discussion combines information from Warrick [3], Ewing
[39], and Marshall et al. [4].

The dry bulk density of a soil is readily obtained by weighing a predetermined
volume, but the processes of sample removal, transport, and drying can change the
volume. Biologically active soils, having some large pores between the soil clods or
aggregates, are particularly vulnerable to compaction. However, the porosity of such
pores (called “structural;” see below) is rarely more than 5% of the total porosity, so
errors resulting from such repacking may be restricted by this value. Another means
of obtaining the porosity is from measuring the loss of mass of an initially saturated
soil (θ = φ ) during long-term oven drying at 105◦C. This method requires that the
volume of pore space not change with addition or removal of water, not necessar-
ily a reasonable assumption for soils with significant clay content. It also requires
that the soil start completely saturated, but it takes good experimental technique to
guarantee water contents greater than about θ = 0.9φ . For example, estimates of
saturated moisture contents taken on the same soils by different Department of En-
ergy laboratories vary by as much as 20%. Faced with such issues, a physicist must
evaluate whether his/her notions of experimental tolerance are realistic.

Alternative indirect methods of estimating bulk density or porosity include
gamma ray attenuation [4] and gas pycnometry [40] with dry samples. These meth-
ods also are subject to changes in volume during sampling and transport.

Imaging techniques involving X-ray tomography can also be used to determine
the porosity of a medium, as well as to distinguish between different kinds of
pore space. Considerable effort has been expended in developing algorithms to dis-
tinguish pores and particles in 3D images of porous media. We list some recent
references [41–43] in order to point interested readers in a useful direction. These
publications describe procedures to solve practical issues: thresholding or segment-
ing, skeletonizing via medial axis transformation or deformation retract, and using
various algorithms to identify and classify pore space components. Naturally each
of these steps introduces some error, with a key consideration being the scales of the
voxels relative to the characteristic grains or pores.
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A sample’s water volume fraction is easily calculated by mass loss during dry-
ing, but frequently one wants to obtain repeated in situ measurements. One widely
used method uses the medium’s electrical properties. A standard equation from the
physics of homogeneous media is used in what is called time-domain reflectome-
try, relating the speed of an electromagnetic signal to the dielectric permittivity of
the medium. However, the usual means to relate the dielectric constant of disor-
dered media to their water contents are insupportable and must be reevaluated; at
present this method requires extensive calibration for each new soil. Another com-
mon method to measure the water content uses the fact that hydrogen atoms, having
small mass, are the most efficient at slowing fast neutrons. The neutrons are emitted
from (typically) a mixture of 241 Am and Be, and a nearby detector measures the
flux of thermalized neutrons. Nevertheless the analysis is rather grossly simplified,
so again the inferences for water content involve soil-specific calibrations. It is as-
serted that the highest precision available by such methods is 0.5%, but one should
assume that typical precisions are much lower.

3.2.2 Classification of the Pore Space

Suppose we have a high-resolution 3D image of a medium, for example, obtained
from X-ray microtomography (e.g., [44, 45]). After distinguishing between pore
space and solid, it is useful to classify portions of the pore space as either pore
bodies or pore throats. This difference is believed (correctly) to be fundamental
to differences between wetting and drying of porous media. Pore bodies are larger
voids, generally having one or more pore throats leading from them. The constricted
porespace connecting neighboring porespaces referred to as pore throat or neck.
The distinction between pore bodies and pore throats was not earlier made rigorous,
but recent research by Glantz and Hilpert [46] has utilized dual graph theory in an
attempt to accomplish this. Their work appears to be a generalization of usual solid-
state techniques for constructing dual lattices. But other arbitrary definitions exist
as well: what is the cutoff for the smallest pore, and what precisely is a pore [47]?

To better visualize these porous media descriptions, consider spherical particles
that are hexagonal close-packed Fig. 3.1) [[48], web pages] or cubic close-packed
(similar to Fig. 3.1, but with the difference that the third layer of spheres eclipses the
holes in both the first two layers, rather than merely repeating the first layer). The
emphasis in porous media on the spaces between the particles is complementary
to the usual emphasis in, e.g., condensed matter physics. The interstitial volumes
are found within two quite different solid structures, one of which is tetrahedral
(Fig. 3.2) and the other octahedral (Fig. 3.3) (http://www.kings.edu/∼chemlab/vrml/
clospack.html). The tetrahedral structure is found between three spheres in one
layer, and one sphere in the next layer placed over the center of these three spheres;
these four spheres form a tetrahedron. At the center of mass of these particles is a
void, which would be classified as a pore body. This void is everywhere negatively
curved on account of the positive curvature of the spheres. Leading out through the
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Fig. 3.1 Hexagonal
close-packed packing of
spheres. (From Weisstein
[48])

center of each face of the tetrahedron is a constriction in the void space, which would
be called a pore neck or throat. Similarly, each octahedral pore body is connected to
eight other pore bodies by constrictions, each passing through the center of a face
of the octahedron. One-third of the pore bodies have eightfold coordination (Z = 8),
and the remainder have fourfold coordination. In general, increased coordination
between pores enhances the transport properties of the medium. In addition to the
regular sphere packs, useful for basic concepts, random sphere packs have also been
intensively studied (e.g., [49]). Random sphere packs of equal-size spheres have av-
erage sphere coordination around 6 (like a simple cubic lattice), and average pore
coordination in the range 4.7–5.5 [50], depending on how dense the packing is, and
on precisely how a pore is defined.

Fig. 3.2 The tetrahedral structures in the hexagonal close-packed system. From http://www.kings.
edu/∼chemlab/vrml/clospack.html
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Fig. 3.3 The octahedral structures in the hexagonal close-packed system. From http://www.kings.
edu/∼chemlab/vrml/clospack.html

If the radii of all the spheres in a sphere pack were varied proportionately and
simultaneously, the porosity would not change: porosity is independent of particle
size. Additionally, the pore radii would remain a constant fraction of the sphere
radii. Also preserved is this aspect of the Scher and Zallen [51] relation, that the
critical volume fraction is a constant fraction of the porosity, though in this case
the relation would have to be appropriately defined to refer to the interstitial space.
Theoretical treatments of the hydraulic and electrical conductivities based on such
pictures of porous media lead to scaling formulations (e.g., [52]) that may not hold
in natural porous media.

To the extent that the distinction between pore bodies and throats is relevant
to a given medium, the storage properties of the medium relate most closely to
the pore bodies while the flow properties relate most closely to the pore necks.
Pore-scale network models (e.g., [53]) generally make use of this distinction. But
storage capacity alone is not the whole picture: differences in water storage during
drainage and wetting can be introduced by the presence of both pore bodies and
pore necks. Drainage of a single pore body (air displacing water, or more generally,
a non-wetting fluid displacing a wetting fluid) necessitates air entering the pore
body through a narrow pore throat, while filling a pore body with water requires the
air/water meniscus to expand from throat-sized to body-size (the importance of this
will be more evident in Chap. 7). This distinction, at the scale of the individual pore,
is generally recognized in the soils and hydrology community, where it is called the
“ink-bottle effect.” However, it is less widely appreciated that this difference also
manifests itself macroscopically, due to wetting and drying being history-dependent
processes; this also is further addressed in Chap. 7.

Further classification of the pore space can be useful in some natural media. For
example, in a granular medium at very low water saturation, most of the water may
be in the form of pendular rings (also called capillary bridges) surrounding the con-
tact point of two particles. Also at low water saturation, a significant portion of the
water may be sorbed to rough or fractal solid surfaces. While various investigators
have addressed the effects of fractal surfaces on water storage and flow properties,
we will show that storage effects are often masked by lack of equilibration, while
flow effects may not be seen at all.

The flow of fluids through porous media is strongly affected by pore sizes,
shapes, and connections. In order to generate a detailed representation of the pore
space, a number of imaging techniques have been used, beyond the X-ray imaging
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mentioned above (in connection with the difficulties of converting the 3D image
to information on the pore space). These include laser diffraction/scattering (e.g.,
Eshel et al. [54]), neutron radiographic imaging (e.g., [55]), confocal miscroscopy
(e.g., [56]), and filling a porous medium with a fluid which hardens (for example,
a resin), then dissolving the solid particles [57]. Methods that use penetrating ra-
diation are limited by attenuation, which leads to a loss of information in the third
dimension (sometimes within a millimeter or less). On the other hand, because one
cannot choose the chemistry of the natural medium being investigated, there may
be no suitable choice of a resin that can withstand the caustic agent used to dissolve
the porous solid. While synchrotron X-ray radiation is currently one of the best 3D
imaging options, with a resolution of, e.g., 5μm in a 5-mm sample [58], this method
may not yield the local connectivity.

The focus on an exact reproduction of the pore space reflects the modern ten-
dency to try to model at the pore scale the hydraulic properties of the porous medium
using the “exact” Navier–Stokes equation, or a simplification such as lattice Boltz-
mann techniques. Such an approach requires vast quantities of data, yet presumably
much of the data is irrelevant. Moreover, even the simpler lattice Boltzmann tech-
nique is insufficient to allow modeling more than a few hundred pores on a side.
Use of such a technique for treating multiple scales of heterogeneity simultaneously
is likely to be prohibitively difficult for the near future. This is especially relevant if
the medium is fractal over a couple of orders of magnitude. Finally, particularly in
the case of soils, these imaging methods have simply not been applied, and the avail-
able data are derived from particle size and related textural information (described
below).

Biologically active soils (e.g., prairie, forest, and agricultural soils) and soils with
significant clay content tend to be “structured.” By structured is meant two things:
first, some pores are larger than the largest grains, and second, a network of large
pores may percolate even though it constitutes only a small fraction of the total
porosity, typically less than the critical fraction for percolation for the “nonstruc-
tural” pores. The effects of soil structure on hydraulic properties in biologically
active soils are considered in Chap. 11. In the case of swelling clays, these larger
“pores” are mud cracks, and such media are not further considered here.

For a physically sound prediction of transport properties, the most important in-
formation would describe the entire range of pore sizes, including their connectiv-
ities. Such information is rarely available, and when obtained its value may not be
recognized.

3.2.3 Particle Sizes and Pore Sizes

Most of the available soil physical information in the USA is collected by the US
Department of Agriculture (USDA). In the relevant databases, the information most
widely available is the texture of a soil. Texture, a USDA classification scheme
having 12 classes, is related to the particle size distribution via the volume fractions
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of sand, silt, and clay particles graphed on a ternary plot. But in order to make a
quantitative prediction of the transport properties of the medium, it is the pore size
distribution that must be known. (The situation is similar in some rocks, where the
classification sandstone merely means that most of the particles are of sand size.) We
make the common assumption that the particle size distribution is related in some
fashion to the pore size distribution. The exact relationship is mediated somewhat
by the porosity. Where soil porosity information is not given, the organic matter
fraction may be available; knowing the organic fraction and texture constrains our
estimate of the porosity. Since percolation theoretical techniques refer directly to
the pore sizes, poor inferences of pore sizes from particle sizes will degrade its
performance.

Soil textural information is given in terms of the fractions of sand- (maximum
diameter 2 mm), silt- (maximum diameter 50μm), and clay-sized (maximum diam-
eter 2μm) particles in the soil. This classification scheme was developed primarily
for its relevance to agricultural soils, which need simultaneously to optimize water
retention (small pore sizes) and flow (large pore sizes). It has long been recognized
that soils with a wide range of particle sizes, incorporating sands, silts, and clays,
are ideally suited to agriculture. Such soils are classed as loams, with subclasses silt
loams, sandy loams, etc. For predicting the hydraulic properties of soils, however,
this information is essentially useless, especially since these diagnoses are often
made by crumbling the soil between the fingers [4], and it is known that in at least
50% of the cases such analyses fail to classify soils correctly.

In the usual absence of detailed knowledge of the pore space, the most detailed
information that can be obtained derives from particle-size measurements for soils,
or optical measurements of features related to the particles for rocks. One then tries
to relate this information to useful descriptions of the pore space. Even if the par-
ticle size distribution is known accurately, it is a customary practice to report the
soil textural information as well because typical experimental difficulties vary with
texture and the community in general is put on guard.

Particle sizes, if not shapes, are presumed to give indirect information on pore
sizes, and it is often assumed that pore sizes are some typical fraction of parti-
cle sizes [16, 59, 60]. Particle-size data yield the cumulative mass as a function of
a discretized distribution of particle sizes. This discretization, fortuitously for in-
vestigators with an investment in fractals, is defined with respect to a geometric
sequence: each size class is bounded by particle diameters that are in the ratio of
2:1. This Udden-Wentworth scale developed by geologists extends over many or-
ders of magnitude, from clay through silt and sand all the way to boulders. Sizes
larger than sand, called gravel or cobbles by soil scientists, are excluded from soil
texture by definition; the existence of such large particles is not correlated with
pores of a similar size. The 2-mm cutoff for inclusion in “soil” is based on moist
soils being cohesive; at sizes above this cutoff, cohesive forces between particles are
negligible.

Particle size measurements have traditionally been made by sieving, that is, vi-
brating a stack of sieves (with the largest diameter opening on top) and collecting
the mass fraction in each sieve. It is not trivial to relate the mass fraction of particles
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that fit through a square opening of some given size, but not through an opening
half that size, to the fractional volume of particles of some appropriate intermediate
diameter (probably best considered the geometric mean of the two opening sizes).
To complicate matters, this sieving can be done either wet or dry. In the former case,
cohesive forces from water must be overcome in order to separate particles; in the
latter case, it is quite possible to miss the modifications on the pore size distribu-
tion provided by soil “aggregates,” assemblages of soil particles glued together by
organic materials and the tendency of individual grains to clump together if they are
small enough. The latter tendency is especially strong in particles of clay mineral-
ogy, which tend to have high surface area and charge imbalances. Thus, if complete
information on the pore size distribution is desired, including the “structural” pores
that can be found along the boundaries of soil aggregates, then the apparently riskier
method of wet-sieving may be preferred [61].

A limitation on sieving is that the smallest particle size trapped by conventional
sieves is about 0.05 mm. Particle size data for smaller particles, i.e., silt and clay
sizes, must be obtained by other methods. The traditional means to determine the
weight fractions for smaller sizes is called hydrometry and amounts to Stokes set-
tling. In settling measurements, density corrections are asserted to be less than 5%.
A significant problem arises here: data obtained by these two different methods are
no longer constrained. The result is that frequently the total weight fraction does
not equal 1, so that the cumulative size distribution graph may not accumulate to 1,
or there may be regions with apparent negative slope. Since both these results are
unphysical, a protocol must be developed for accepting or rejecting data, or making
consistent adjustments to provide a reasonable synthesis.

To state the obvious, any measurement technique which isolates the particles
also destroys the pore space. For unconsolidated systems it is usually assumed that
recombining the soil particles – putting the dried, ground, and sieved particles back
into a sample container – reconstructs some semblance of the original soil texture,
though ordinarily not the soil structure. Clearly the use of such an option for rocks
misses entirely the role of cementation in the properties of the medium.

If the usual assumptions are made, then a distribution of particle sizes may be
transformed to a distribution of pore sizes by assuming that pores of size αd(α < 1)
are represented at the same frequency as particles of size d. In unstructured soils,
this may reasonably approximate the entire range of pore sizes that exists. Typical
estimates of the numerical value of α run about 0.3, though this value is notoriously
variable in terms of the typical particle size; finer soils tend to have a larger propor-
tionality constant than coarser ones. Obviously compaction of a given soil, resulting
in a smaller porosity, would reduce α . Further, the proportionality between parti-
cle and pore sizes may hold over part of the range of particle sizes measured and
not over the entire range. Especially if the larger pores are “structural” in nature a
simple relationship between particle and pore sizes is unlikely to exist. If the larger
pores are structural in nature, a different means of measuring them should be used as
well: because, e.g., optical measurements may give a pore dimension rather than a
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particle dimension, even if a consistent relationship between particle and pore sizes
existed, it would not be discovered.

3.2.4 Parallel Tube, Network, and Fractal Models

In addition to sphere packings considered above, there are also models of porous
media based on parallel capillary tubes, networks, and fractal concepts. Addition-
ally, while we discussed sphere packings primarily to introduce concepts and termi-
nology, they are also useful as descriptions of artificial porous media such as formed
by glass beads. Whether such artificial media prove to be useful for understanding
hydraulic properties of natural porous media is a question to which we return in
Sect. 5.4. We will not further treat bundles of capillary tube models. Because each
of the tubes implicitly spans the entire medium, the “pores” have infinite coordina-
tion and zero percolation threshold. The capillary bundle is therefore a misleading
and physically incorrect model, though it has a use in teaching basic concepts. It
also serves as a limiting case of perfect connectivity between pores of any given
size, but zero connectivity between pores of different sizes. Because this book is
a study of how connectivity affects flow and transport in natural media, we will
not pursue constructs as artificial as capillary tube models, popular though they
may be.

Network models of porous media began with Fatt [62] and have undergone
tremendous evolution in the past three decades. Where Fatt’s networks were tubes
meeting at a dimensionless point, a “ball-and-tube” configuration soon became com-
mon, reflecting the distinction made earlier between storage in pore bodies, and flow
through pore throats. More recent pore throat models have a polygonal rather than a
circular cross section [63–65] and/or a converging/diverging geometry (e.g., bicon-
ically shaped throats; [66, 67]) rather than a constant cross section. Early networks
were almost all 2D, while modern networks are almost all 3D, a critical distinction.
In a 2D medium percolation of only one phase is possible. Thus not only is simulta-
neous flow of air and water impossible, but if all the grains are in contact with each
other (necessary for mechanical stability) no flow is possible at all. Early networks
used regular lattices, with pore radii assigned at random to the bodies and throats,
and individual throats pruned (eliminated) at random to yield the desired mean coor-
dination. In contrast, modern treatments often use irregular networks [68], with pore
radii spatially correlated [69] and pore coordination positively correlated with pore
size [41]. Network models were used as conceptual tools in petroleum engineering
for two decades before their relationship to percolation processes was recognized
[70, 71].

The increasing capability of computers, combined with the increasing sophisti-
cation of network models, has made it possible to perform numerical flow simula-
tions of rather realistic media, if on a small scale. However, we seek an analytical
framework for prediction. The ability of fractal models to represent highly complex
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natural media with a paucity of relevant parameters is therefore a strong factor in
their favor.

Suppose we want to model a natural fractal porous medium. Even if the range
of fractal properties is restricted to one order of magnitude, the medium cannot
be mapped to a regular network because the network has a fundamental scale and
associated regularity. The question is how are natural porous media best modeled?
Does the distinction between pore body and pore throat still hold in real media, even
if they are fractal? A natural porous medium has a random arrangement of unequal
size and irregular shaped particles, complicating the precise identification of pore
bodies and throats. For some real media it has been suggested that a topological
definition using, e.g., dual graph theory [46] will yield a consistent distinction. The
application of dual graph theory is related to the construction in condensed matter
theory for finding the dual of a lattice, in this case for a random medium. Does
the distinction hold for fractal media? We assumed implicitly that it does, but what
inaccuracies may result from not having a rigorous classification for such a fractal
model?

Other practical questions arise. If one uses fractal models to interpret real media,
is there a tendency for the fractal dimensionalities to cluster around a single value
[72]? Should one use different fractal characteristics in the different ranges of pore
sizes corresponding to sand, silt, and clay particles [18], or even a multifractal anal-
ysis [73]? Many early network models of porous media used log-normal pore size
distributions instead of power-law distributions. Which distribution is more common
in nature, and does the existence of a power-law pore-size distribution really imply
the relevance of a fractal model? Does it make sense to use a power-law pore-radius
distribution on a regular grid?

Of course these practical details beg the question: How should one formulate
flow and transport theories in such problems? If one starts with a percolation theo-
retical basis, which form of percolation theory should one choose? Since treatment
of fractal media using regular network models would be ill-advised, we chose con-
tinuum over site or bond percolation theory, a choice with significant consequences.
As regards the question of whether to use fractal models, or more complicated treat-
ments, we have consistently followed an approach of allowing the available data to
guide us.

3.2.5 Representative Elementary Volume and the Concept
of “Upscaling”

An important concept in porous media goes by the name of Representative Elemen-
tary Volume, or REV for short. The concept of the REV was developed in recog-
nition of the variability of natural porous media at small scales, and has been in-
terpreted to be the minimum volume for which statistical treatments of properties
should apply. Statistical treatments in the porous media community are generally
interpreted in terms of mean values. Insofar as physical properties are concerned,
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such as density, this interpretation is valid, as is an ensemble mean value for entire
samples of a given size and shape. But when applied to transport properties, the
definition of the statistical treatment as a mean (or geometric or harmonic mean) of
values taken at a smaller scale is inaccurate. Nevertheless, percolation theory gives
a consistent and accurate interpretation of an REV.

The derivation of an expression for an effective hydraulic or electrical conduc-
tivity at a larger scale, in terms of the variability it exhibits at smaller (e.g., pore)
scales, is termed “upscaling” in the porous media community. However, we make no
distinction between upscaling at the pore scale and upscaling at larger scales, such
as field scales in soils, or formation scales in rocks. The particular strategy may
change with scale, but percolation theory must in principle be relevant at all scales.
Interestingly, the porous media communities view these two cases quite differently.

3.2.6 Porosity and Fractal Media

The fractal fragmentation model of Turcotte [11] added legitimacy to the study of
fractal models of porous media, particularly soils, because it developed a mecha-
nism by which scale-independent fracture properties could form a fractal distribu-
tion of particles. Rieu and Sposito [17] then developed a model, called from here
on the Rieu and Sposito (RS) model, of a fractal pore space linked to a fractal par-
ticle model. Several sets of investigators have shown that it is possible to predict
pressure–saturation curves from particle-size data using the RS model [21, 74, 75].
In the RS notation, d0 denotes the largest pore size, and dm the smallest. The reason
for their choice is that they can use an index i, representing the iteration of the frac-
tal process, which runs from 0 to m. This convention will be reversed here, because
it is more intuitive to consider r0 to be a minimum radius and rm a maximum, and
since one of us has used this convention consistently elsewhere.

For simplicity, consider that pores exist only at discretized diameters, di. Vi rep-
resents the total volume in all pore sizes greater than dm and less than or equal to
di. There is a constant ratio N of the number of pores of diameter di+1 = qdi to the
number of pores of diameter di. q is the ratio of pore diameters in successive classes,
and is less than 1. Define the partial volume Pi ≡ Vi −Vi+1, the total volume as V0,
and the volume of the solid material as Vm. Then one can write

V0 =
m

∑
i=0

Pi +Vm (3.1)

Self-similarity requires

Vi = NVi+1 +Pi (3.2)

This result allows Eq. (3.1) to be rewritten as
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V0 =
m−1

∑
i=0

NiPi +NmVm = P0

m−1

∑
i=0

(
Nq3)i

+
(
Nq3)m

V0 (3.3)

Here, as in the original treatment of Rieu and Sposito, the solid volume is now
reinterpreted as NmVm. One way to think of this is that pores smaller than dm can
be ignored; that is, if we could resolve smaller pores, the iteration would proceed
further. The total pore volume, Vp, can be written as

Vp = P0

[
1+Nq3 +

(
Nq3)2

+ . . .+
(
Nq3)m−1

]
= P0

1−
(
Nq3
)m

1−Nq3 (3.4)

Now one can express the porosity as

φ =
P0
{[

1−
(
Nq3
)m]

/
(
1−Nq3

)}
P0
{[

1− (Nq3)m]/(1−Nq3)
}

+NmVm
(3.5)

One can solve Eq. (3.3) for P0 in terms of V0 to find

P0 = V0
(
1−Nq3) (3.6)

Using the same substitution in Eq. (3.5) for NmVm as in Eq. (3.3), and substituting
Eq. (3.6) for P0, one finds

φ = 1−
(
Nq3)m

(3.7)

Consider the definition of the fractal dimensionality [76, Chap. 13, 77,
Chap. 3]:

D = log(N)/ log(1/q) (3.8)

Combine this definition with Eq. (3.7) to obtain

D = 3− log(1−φ)
log(qm)

(3.9)

The numerical factor qm, however, is nothing more than the ratio of the smallest
pore diameter to the largest, dm/d0, so that

D = 3− log(1−φ)
log(dm/d0)

(3.10)

Equation (3.10) may be rewritten as

φ = 1−
(

dm

d0

)3−D

(3.11)

Equation (3.11) establishes the RS result for the porosity. This result is very
simple, being for example independent of shape parameters and the choices of N
and q. Equation (3.11) can also be used to show that
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(
Nq3)m

= (qm)3−D (3.12)

which simplifies to N = q−D. What sort of a distribution of pore sizes does the above
analysis lead to? For the partial volume P(i) of pores of size class i, we can write

P(i) ∝ Ni = q−iD =
(

di

d0

)−D

(3.13)

where the last expression uses the relationship between the pore radius ri and the
fractal iteration i: ri = qir0. Equation (3.13) for P(i) could be written as P(i)Δi
without change, since i is an integral index and Δi = 1. Then the probability W(d)
that a pore’s diameter is within dd of d is found by using the transformation,
W (i)di = W (d)dd,

W (r) ∝
(d/d0)

−D

d ln(q)
∝ d−D−1 (3.14)

One can develop a normalized form for a pdf for pore radii, W(r), which generates
the same result for the porosity as Eq. (3.11):

W (r) =
3−Dp

r
3−Dp
m

r−1−Dp r0 ≤ r ≤ rm (3.15)

In this expression we have substituted Dp for D to indicate that the fractal di-
mensionality concerned applies to the pore space. The result for the total porosity
derived from Eq. (3.15) is [74]

φ =
3−Dp

r
3−Dp
m

rm∫
r0

r3r−1−Dpdr = 1−
(

r0

rm

)3−Dp

(3.16)

exactly as in RS. Equation (3.16), as written, is compatible with a volume r3 for
a pore of radius r. If a particular geometry for the pore shape is envisioned, it is
possible to change the normalization factor to maintain the result for the porosity,
and also maintain the correspondence to RS. This is an important restriction and is
applied because φ in the RS treatment is independent of geometry. Integration of
W (r)r3 over the continuous pore size distribution between pr and r, where p < 1
is an arbitrary factor, yields the contribution to the porosity from each size class
obtained by RS. Integration of W(r) over the same size range yields the probability
that an arbitrary pore has a radius of r that is in agreement with the direct calculation
of RS. Thus the present model is just a continuous version of the discrete RS model.
The power law distribution of pore sizes is bounded by a maximum radius rm, and
truncated at the minimum radius r0. Note that knowledge of φ , r0, and rm is suf-
ficient to give D explicitly. φ is typically obtained through density measurements,
and r0 and rm are obtained from particle size measurements. Several examples of
the determination of r0 and rm are given in Figs. 3.4, 3.5 and 3.6. We show below
that the RS model yields predictions for the water retention characteristics that have
been verified in experiment.
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Fig. 3.4 The cumulative particle-size distribution data from the Injection Test Site 2-2230 soil at
the US Department of Energy Hanford site. Data from Freeman [22]. The horizontal scale is in
logarithm base 10. The maximum particle radius is very nearly two orders of magnitude larger
than the minimum value (Log[2.5]–Log[0.5])

Using the substitutions φ → 1−φ and Dp → Ds (where Ds refers to the fractal
dimensionality of the solid portion of the medium), the result is obtained [74]

φ =
(

r0

rm

)3−Dp

(3.17)

As a reminder, in Eq. (3.16) r0 and rm refer explicitly to the minimum and max-
imum pore sizes, and in Eq. (3.17) to the minimum and maximum particle sizes.
Here we have made the common assumption [15, 59, 60] that pore and particle radii
are proportional to each other. Under this assumption, the ratio r0/rm is the same
for both particles and pores.

B8814-135

0

0.5

1

1.5

2

2.5

–1 –0.5 0 0.5 1

log[r]

lo
g

[m
as

s 
%

 le
ss

 t
h

an
]

r0

rm

Fig. 3.5 The cumulative particle-size distribution from the B8814-135 soil at the US Department
of Energy Hanford site
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Fig. 3.6 The cumulative particle-size data from the ERDF 4-1011 soil at the US Department of
Energy Hanford site

Katz and Thompson [10] used optical measurements to detect the range of sizes
in the particle space corresponding to the range from r0 to rm. They assumed a
lower cutoff of r0 ≈ 1nm, and determined values of rm of up to 100 μm. Then
they used Eq. (3.17) (as did [78]) to relate the porosity, the ratio rm/r0, and the
fractal dimensionality of the solid volume, Ds. But their statement, “successful pre-
diction of the porosities from the fractal parameters verifies the assumption that the
pore surface and volume are fractals with the same dimension,” does not follow,
because Eqs. (3.16) and (3.17) are complementary [79]. Given Eq. (3.16), which re-
lates the fractal dimensionality of the pore space to the porosity, and their assumed
values rm/r0 ≈ 104, their fractal dimensionality range from 2.57 to 2.87 would im-
ply porosities between 95 and 73%, rather than the values between 5 and 27% that
they calculated and measured. The real question, presumably, is whether one trusts
the Rieu and Sposito fractal model. We have provided two derivations of their re-
sult for the porosity above. Further, in addition to our tests on ca. 40 Hanford site
soils, which demonstrated that the Rieu and Sposito model can be used to predict
water retention curves, at least two other groups of researchers [19, 21] have also
demonstrated that the RS model is predictive in this way.

Where does the typical asymmetry between particles and pores come from?
A reasonable hypothesis is that it chiefly arises from the tendency for particles to be
positively curved and for the pores to be negatively curved (note the exception of
such materials as pumice, which can be formed when air bubbles percolate, and for
which values of φ are probably largest of geological porous media). Such a contrast
in curvature would tend to produce φ < 0.5. According to Eqs. (3.16) and (3.17),
φ < 0.5 is consistent with pore space having a greater fractal dimensionality than
that of the particles, a tendency noted also by Rieu and Sposito [17]. In soils, me-
chanical strength tends to limit porosity as well, a consideration of less importance
in rocks on account of cementation, although the mean porosity of rocks is less
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than that of soils. This discussion is not meant to justify a rule, but only to explain
tendencies.

3.3 Soil Water Potential and Water Retention

The study of unsaturated media today is strongly influenced by the ideas of Edgar
Buckingham, particularly his 1907 publication. Most of his ideas were actually
quantitatively incorrect, though useful for a qualitative understanding (or, as the case
may be, for a deeper understanding of the resistance of members of the soil physics
community to new ideas). T. V. Narasimhan at the University of California at Berke-
ley has made a study of the influence of these ideas on subsequent researchers, and
we quote his recent paper [80] liberally:

The concept of a capillary potential, first conceived by Buckingham a century ago, continues
to play a fundamental role in modern theory of soil-moisture movement.

Buckingham recognized that to satisfy the needs of an equation of motion, a potential must
be a conservative quantity in that its integral must identically vanish over a closed path in
space. Accordingly, Buckingham assumed that capillary potential, defined as work done
against the water-solid attractive forces, was a reversible process.

Buckingham made an important assumption that the work involved in pulling a given mass
of water away from a moist soil is fully reversible in order that capillary potential may be
conservative. This assumption was shown to be unrealistic for natural soils in an important
contribution by Haines [81], who experimentally established hysteresis in the soil-moisture
retention curve. In explaining hysteresis, Haines contributed the fundamental insight: “[t]he
mode of moisture distribution in soil does not give reversible conditions but leads to two
main values of capillary pull. The case of falling moisture tends to be governed by a higher
value of pressure deficiency as determined by the narrower section of the pores, while con-
ditions of wetting or increasing moisture tend to be governed by a lower value depending on
the wider sections of the pores. In other words it is found that a granular system, of which
soil is typical, will in general offer a greater capillary pull against the extraction of water
from its pores than it can engender when absorbing water into them” (Haines [81], p. 98).

We will return to this subject later, because it turns out that, at least under realistic
experimental conditions, percolation theory gives a second reason for the difference
between wetting and drying soils.

Water is held in porous media by adsorption at surfaces of particles, particu-
larly noticeable in clay minerals (which have high surface area) and presenting as
capillarity in pores. Capillarity in pores is thus a result of the tendency of water
to wet the mineral surfaces, together with the tendency of surface layers of water
to be attracted to the interior, i.e., the source of interfacial tension [82]. The basic
understanding of water in a pore space relates the physics concept of capillary rise in
a tube to a water potential in the soil. Suppose that a tube (manometer) is connected
through a porous cup to a porous medium at a position above the water surface or
water table, as in Fig. 3.7. The height of water in the manometer (which will be
negative) relative to the point in the soil is −h (say, −10 cm), and the water pressure
is less than the atmospheric pressure Pa at the air/water interface by P = −ρgh (for
ρ the density of water, and g the acceleration due to gravity). h is thus a pressure
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per unit weight (in a given volume) and is also called pressure head, matric head, or
just head.

Consider the case that the water is pure H2O. The quantity −h is also a specific
and simple example of the soil water potential (also called matric potential), ψ=−h,
which is defined as a work per unit weight that must be done on an infinitesimally
small amount of pure water to bring it into the soil at the same elevation. The stipu-
lation “small amount” is a necessary condition so as to prevent the change in water
content from changing the condition of the soil. A similar stipulation applies in
electrodynamics, where a field is to be detected with an arbitrarily small test charge.

In general the soil water potential may depend on many variables and include
many effects, such as osmotic pressures, overburdens, pneumatic pressures [39], but
the subject of the present discussion is limited to capillarity. h = −ψ is the height
above the water surface that water will rise at this negative pressure; it is also the
capillary rise of water in a tube of radius r, from the surface tension acting on the
meniscus with contact angle α , i.e.,

F = 2πrγ cos(α) = πr2ρhg (3.18)

This equation equates the vertical component (cosα) of the force due to interfa-
cial tension γ on a surface of area 2πrh, to the gravitational force (product of density

Fig. 3.7 After University of Florida web page, http://edis.ifas.ufl.edu/SS109. The capillary fringe
is discussed after Eq. (3.21) and has vertical thickness inversely proportional to the largest pore
size. This region has negative matric potential (pressure), but the tension is insufficient to drain the
largest pore
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ρ , volume πr2h and gravitational acceleration g) on the volume between that sur-
face and the water table. The result, h ∝ γ/r, can be generalized by replacing 1/r
by 1/2r1 + 1/2r2 for irregular solid surfaces with two (or more) different radii of
curvature [3]. But usually the result is written simply as h = A/r, with A in general
unknown and r a characteristic radius for a given pore size. An analogous argument
leads to the general relationship that, for an arbitrary pressure difference (per unit
weight) between air and water, P/ρg = h (leading to the use of h as an equivalent
pressure), and at equilibrium, only those pores with radius r < A/h will contain wa-
ter. The basis of this argument is in the radius of curvature of the air–water interface,
which must be as large as a pore radius in order for water to fill the pore. Then anal-
ysis of dθ/dh (within experimental uncertainty) over the full range of h yields, in
principle, the pdf for the pore-size distribution.

To illustrate, assume spherical pores, equilibrium conditions, and a pore radius
pdf equal to W(r). Then the total water content in the medium may be written

θ =

A/h∫
r0

W (r)
(

4
3
πr3
)

dr (3.19)

where A is a numerical coefficient (known for spherical pores, but unknown in a nat-
ural medium where the shapes of pores are typically unknown). Even in media with
nonideal pores, as long as pore lengths and radii are correlated, the factor r3 in the
integrand is appropriate. One then finds dθ/dh ∝W (r)r3h−2 ∝W (h)(dh/dr)h−5 ∝
W (h)h−3, so that to find W(h) (within numerical factors), one simply takes the prod-
uct of h3 and the derivative of the water content with respect to h at the given h.

W(h) determined in this way typically contains a region at intermediate satura-
tions which is consistent with power-law behavior and fractal models, but deviates at
the wet and dry ends of the moisture spectrum. The deviations give W(h) (and W(r))
sigmoidal shapes, with regions of pronounced curvature at the wet and dry ends.
Such deviations have led some to conclude that (1) the appropriate distribution of
pore volumes is not fractal but, e.g., log-normal, and (2) water content changes at
the wet end result from the wetting or drying of larger, “structural” pores, and at
the dry end from the volume of thin films of water. van Genuchten has developed
a special phenomenological relationship (discussed below) which matches the sig-
moidal shape by construction. Of course, some deviation from the predictions of
fractal models must be expected at both ends, since continuity of the constituent
phases is interrupted. Such discrepancies are not by themselves sufficient to accept
or reject a fractal model. Further, to the extent that such deviations arise from fluid
properties and percolation, they may be time-dependent (as discussed in Chap. 7).
Incorporation of both time-dependent and time-independent phenomena into a sin-
gle time-independent phenomenology is by definition inconsistent.

We contend that the RS fractal model is accurate and appropriate for a large
number of natural porous media. Certainly it is not sensible to assume this of all
media. It will be seen below that for some media, the equilibrium water content
predicted by the RS model deviates from experiment at both the wet and the dry
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ends of the spectrum. These observed deviations helped to spur the collection of
more detailed (and possibly superfluous) information, because they may represent
defects of the fractal models. But in fact they may represent strengths of the model,
because they are typically due to complications demanded by percolation theory.

For an RS fractal medium in equilibrium, the water content is

θ =
3−D

r3−D
m

A/h∫
r0

r2−Ddr (3.20)

where A/h in the range r0 ≤A/h≤ rm determines the largest pore that contains water.
For values of h outside this range (A/h larger than rm or smaller than r0), θ = φ or
θ = 0. At a particular value of h denoted hA (called the air entry pressure), air could
just enter the largest pore if that pore were located at the edge of the sample. Thus,
A/hA = rm. hA can then be related to the porosity:

φ =
3−D

r3−D
m

A/hA∫
r0

r2−Ddr (3.21)

Note that for any given soil, there must be some maximum pore size. For h < hA

corresponding to that largest pore, the soil may be saturated. There is a saturated
region above the water table (i.e., h > 0) known as the capillary fringe; the height of
this region approaches zero in the limit that the largest pore size approaches infinity.

It is easy to combine Eqs. (3.20) and (3.21) to produce

S ≡ θ
φ

= 1− 1
φ

[
1−
(

hA

h

)3−D
]

(3.22)

for the relative saturation S, a relationship also obtained by Rieu and Sposito [17]
using their discrete version of this model. Equation (3.22) may be (very roughly)
approximated as S = (hA/h)3−D, which is precisely the form of the phenomenolog-
ical relationship proposed by Brooks and Corey [30]. The water content of natural
porous media most closely resembles the result of Eq. (3.22) during drainage. The
θ (h) or S(h) relationship during drying is referred to as a water retention curve. In
Figs. 3.8, 3.9 and 3.10 the results of Eq. (3.22) are compared with water retention
data from the same media as for Figs. 3.4, 3.5 and 3.6. The value of the fractal
dimensionality was found from analysis of the particle size data (i.e., r0 and rm)
according to Figs. 3.4, 3.5 and 3.6, and knowledge of the porosity (Eq. (3.16)).
Note that the predicted water retention curve agrees with observation in the mid-
dle of the range of saturations, where both the water and the air phase percolate
simultaneously, but does not predict the curvature at the wet and dry ends, where
complications would be expected due to lack of percolation.

The complicating behavior at the wet and dry ends of the water retention curve
need not be due only to percolation behavior. Some pore size distributions may
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Fig. 3.8 The water retention data for the Injection Test Site 2-2230 soil at the US Department of
Energy Hanford site. The prediction of the fractal scaling in the open squares is taken from the
value of Dp determined from the particle-size data in Fig. 3.4, and one parameter, hA, which fixes
the vertical scale, was chosen to optimize the fit. The arrow denotes the dry-end moisture content
at which experiment begins to deviate from the fractal model

indeed be log-normal. At the wet end, structural pores often do complicate the anal-
ysis. At the dry end, water present in surface films may complicate matters. It is
important to keep these uncertainties in mind during analysis, although other than
percolation effects, only those effects due to structural pores will be considered
here, and those only in the final chapter. Before useful conclusions can be drawn
from any discrepancies in predictions from the fractal model, however, effects due
to percolation must be excluded. Otherwise inferences will be nonsense.
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Fig. 3.9 The water-retention data for the B8814-135 soil at the US Department of Energy Hanford
site. The prediction was made analogously to Fig. 3.8
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Fig. 3.10 The water-retention data for the ERDF 4-1011 soil at the US Department of Energy
Hanford site. The prediction was again made analogously to Fig. 3.8

As mentioned, a phenomenological relationship for the water retention curves of
porous media was developed by van Genuchten, having the form [36]

Θ =
[

1
1+(h/hA)n

]m

(3.23)

In this expression Θ ≡ (θ −θr)/(φ −θr), where the subscript r means the mois-
ture content remaining in the soil after it becomes difficult to remove further mois-
ture. m and n are powers. The use of multiple powers in such a phenomenology
is typical in the porous media community [and is common in the field of dielec-
tric relaxation as well – physicists and soil physicists familiar with that literature
may consider Cole-Cole [83] and Havriliak-Negami [84] forms for the dielectric
relaxation], but is not justifiable on the basis of theory. A van Genuchten water re-
tention curve is given in Fig. 3.11, where it is seen that a smooth sigmoidal curve is
generated. Many soil scientists and hydrologists favor this phenomenology because
both h and dh/dθ are continuous over the entire range of saturations. This makes
its substitution into partial differential equations governing larger scale transport
properties less troublesome, since the numerical solutions are then well-behaved.
However, numerical convenience and stability are not sufficient reason to prefer a
particular phenomenology.

Although this chapter is not an introduction to geologic processes, the context of
unsaturated properties in hydrology matches the unsaturated zone in geology. This
zone, above the water table and below the earth’s surface, is also called the vadose
zone.
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Fig. 3.11 The van Genuchten water-retention function. Note that both the water-retention function
and its derivative are continuous

3.4 Hysteresis and Time Dependence in Pressure–Saturation
Relationships

Hysteresis in wetting and drying is quite complex, making it necessary first to in-
troduce some terms. This terminology will be presented with respect to the specific
three-phase system of water/air/solid, but it applies equally to the general system
wetting/nonwetting/solid.

Drainage (drying) refers to air displacing water, or more generally, to a non-
wetting phase displacing a wetting phase. Imbibition (wetting) is the opposite: the
displacement of air by water. We likewise distinguish between allowable and ac-
cessible pores. A pore is allowable if the current pressure is sufficiently high (low)
that the capillary rise Eq. (3.18) predicts that it will drain (imbibe). A pore is water-
accessible if it is on the infinite water cluster, and air-accessible if it is on the infinite
air cluster. If drainage develops from completely saturated initial conditions, it is
called “primary” drainage. If wetting occurs from perfectly dry initial conditions,
it is the primary wetting curve. Starting from any intermediate point gives a sec-
ondary curve. This discussion focuses on the primary wetting and drainage curves.
The drying curve (water retention curve) and wetting curve together constitute the
pressure–saturation relationship.

There is one clearly symmetrical aspect of complete wetting and drying. In both
cases, two distinct phase transitions occur: the first when the displacing fluid first
percolates, the second when the displaced phase ceases to percolate [85]. However,
there is an intrinsic asymmetry in the connectivity of water and air: if the air-filled
pore space percolates but the water-filled pore space does not, the water phase may
nevertheless connect through thin films, providing an alternate means to transport
water through the pore space. The opposite situation (thin films of air connecting
otherwise disconnected air-filled pores) does not exist, because air is not wetting.
So a pore must be allowable, air-accessible, and water-accessible to fill with water,
but it can fill with air if it is merely allowable and air-accessible. In principle, one
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could invoke water film flow [86, 87] to eliminate all issues of connectivity from
hysteresis. But while this alternate path for water flow exists in principle, it may
not be important in a given situation, because the hydraulic conductance of thin
films is orders of magnitude lower than that of water-filled pores. Under conditions
where thin film flow is too slow to be relevant, the percolation theoretical issues are
symmetrical with respect to drainage and imbibition.

A second important structural asymmetry is that drainage is controlled by the
pore necks, while imbibition is controlled by the pore bodies. Specifically, for a
pore to be allowed to drain, the meniscus’ radius of curvature must be less than
the pore throat’s radius, while for a pore to be allowed to imbibe, the meniscus
radius must be greater than the pore body’s radius. Consequently, the water con-
tent for a given tension (meniscus curvature) is always higher during drainage
than during imbibition, resulting in a hysteresis loop. This particular effect is not
eliminated by film flow. This aspect of structural hysteresis is called the ink-bottle
effect.

The discussion so far has treated only structural hysteresis, which largely con-
sists of two contributions: connectivity-related limitations (discussed in Chap. 7)
and the ink-bottle effect. Another contributor to (apparent) hysteresis is the exper-
imental artifact of transport-limited equilibration. To illustrate: if water must leave
the soil at a given pressure in order for the soil to attain equilibrium, but the hy-
draulic conductivity is too low (e.g., less than 10−8 cm/s), then experimenters will
not have time to observe an equilibrium water content. Such conditions certainly
occur as the percolation threshold is approached, but they may also occur whenever
the controlling (bottleneck) pore radius is sufficiently small, i.e., when the saturated
value of the hydraulic conductivity is very low. Topp et al. [88] developed a nomo-
gram (a graphical extrapolation tool) for estimating the equilibrium water content
of a medium when the equilibration time is prohibitively long. Unfortunately, the
nomogram has an insufficient basis in the relevant physics.

Hysteresis in the pressure–saturation relationship is accompanied by a major hys-
teresis in the hydraulic conductivity, which can be expressed as either a function of
the pressure (K(h)) or the saturation (K(θ )). Hysteresis in K(h) can be significant,
because at a given h the moisture contents in drainage and imbibition can be quite
different. The hysteresis in K(θ ), however, is much smaller, since at a given satura-
tion (ignoring connectivity complications) the same pore sizes are filled with water
in both drainage and imbibition. Experimental data generally support this reasoning,
showing much greater hysteresis in K(h) than in K(θ ).

The transport-limited equilibration that causes apparent hysteresis in the
pressure–saturation relationship also has implications for experimentally measured
hydraulic conductivity. At a given imposed tension, if equilibration has not been
attained because the hydraulic conductivity is too low, then the moisture content is
too high. The estimated hydraulic conductivity K(h) is associated with the higher
moisture content. So paradoxically, just when the hydraulic conductivity is drop-
ping rapidly, equilibrium is not attained, with the result that the “measured” K is
too high. Because the water content is also too high, the (apparent) K(θ ) function is
much less affected than the function K(h). K(θ ) drops approximately as it should,
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simply because the errors partially compensate for each other, but K(h) may be too
small to measure accurately.

Finally, we consider the issue that, in principle, it is possible for water-filled
pores to be unable to drain when they are allowable and air-accessible, but not
water-accessible. That is, if they have become disconnected from the infinite cluster
during drainage, they may be unable to drain when thermodynamically appropriate.
Qualitative analysis led Hunt [89] to conclude that such a situation should have two
measurable effects: (1) for a given h value the moisture content is too high, and
(2) the excess moisture, being cutoff from the infinite cluster, cannot contribute to
K, so that the measured K is lower than the equilibrium value. Because the excess
moisture does not contribute to K, K(h) is approximately its equilibrium value while
K(θ ) is too small; thus a greater hysteresis would be observed in K(θ ) than in K(h).
Because these tendencies are the opposite from what is observed in experiment, this
scenario cannot be correct. To explain this discrepancy, Hunt [89] suggested that
film flow could be responsible. That argument hinges on an analysis of the total
distance that water would have to flow through films. It was shown that, above the
percolation threshold, this distance is only a few pore lengths because this distance
is not a function of the variable p− pc (θ −θt in continuum percolation). Below the
percolation threshold this distance can be represented as the system size x, minus
the correlation length χ , and it increases rapidly with diminishing θ . But above the
percolation threshold, the microscopic distances required, and the lack of a criti-
cal dependence, tend to mitigate the low value of film flow. Thus the disconnected
pores can drain, though with some delay which is weakly dependent on the mois-
ture content. This argument can break down, however, if too little time is allowed.
In fact, under those conditions a reversal of the usual tendencies does occur: time-
dependent effects are larger in K(θ ) than in K(h), and K(θ ) for a given θ diminishes
progressively with increasing drainage rates [90].

3.5 Hydraulic and Transport Properties

The basic science of fluid flow in porous media is based on the Navier–Stokes
equation, although the treatment might be more accurate if interactions between
the water and the particles were included. Nevertheless, for our purposes it is not
necessary to consider the full Navier–Stokes equation, because when velocity ad-
vection is not important (low Reynolds numbers, laminar flow) the Navier–Stokes
equation is equivalent to linear response. In the porous media community, this linear
response – the flow is proportional to the pressure gradient – is known as Darcy’s
law. In the case that Darcy’s law is valid, the hydraulic conductivity K is defined
to be the total volume of water transported per unit time, divided by the product
of the cross-sectional area of the flow and the pressure gradient. If the pressure is
expressed as an equivalent capillary rise, h ≡ P/ρg, then the pressure gradient is
unitless and K is a volume of flow per unit cross-sectional area per unit time, which
has units of length per time. Expressing the units of K as cm s−1 gives a measure
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of how fast water with a given depth can “infiltrate” into the soil, and also gives an
estimate of the pore-scale water velocity. Conveniently, gravity flow in a column of
arbitrary height, with no water ponded on the surface, produces what is called a unit
gradient, i.e., a pressure gradient h/h = 1.

It is often objected that Darcy’s law cannot be applied at the pore scale (Darcy’s
experiments used meter-scale samples), but the validity of linear response is not
scale-dependent. Such comments probably arise from the general failure of “up-
scaling” techniques for the hydraulic conductivity. But it is also well known that the
flow at the pore scale follows a kind of generalized Poiseuille behavior, that is,

Q ∝ ΔP
r4

μ l
(3.24)

In this expression Q is the total fluid flow (in volume per second), ΔP is the
pressure difference across the pore, μ is the viscosity, r is the effective radius, and
l the effective length of the pore. For right circular cylinders the numerical coef-
ficients are well known, and r and l can be treated as the actual radius and length
of the cylinder. In this case the hydraulic conductivity of the pore is K ∝ r2, but the
hydraulic conductance of the pore is proportional to r4/l, a critical difference in per-
spective. In the general case the numerical values can be obtained by modeling the
flow using the Navier–Stokes equation, and such flow is typically called Poiseuille
flow. The key point is that for a given pore shape, the numerical coefficients do not
depend on the size of the pore, as long as the linear regime (low Reynolds number)
is maintained. Considering typical pore radii in the micron to millimeter range, and
typical flow velocities less than 10−3 cms−1, one finds Reynolds numbers as low as
10−5, and the linear approximation is seldom in jeopardy [1].

When one desires a flow function which is purely a property of the medium,
one can multiply K by the viscosity and divide by the density, eliminating specific
properties of the fluid. The resulting function is called the permeability and has units
of length squared.

If the same pore is filled with a fluid of electrical conductivity σ0, and a potential
difference ΔV is applied, the total current passing through such a pore is

I ∝ ΔVσ0
r2

l
(3.25)

Thus the conductance of the pore is proportional to σ0r2/l. The correct means
to “upscale” the hydraulic and electrical conductivities are discussed in the next
two chapters; here we describe the general state of upscaling in the porous media
literature.

Consider the simplified regular porous medium from the beginning of this chap-
ter. Some fundamental relationships for the hydraulic conductivity and the electrical
conductivity of such idealized media can be readily obtained by scaling. The electri-
cal conductivity must be independent of the sphere size, because the conductance of
each pore is proportional to its radius r, while the number of connected paths is pro-
portional to r−2 and the number of pores along each identical path is proportional to
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1/r. Thus the resistivity ρ ∝ r2/(r)(r) is independent of r. On the other hand, the hy-
draulic conductivity of this medium would be proportional to r2, since the hydraulic
conductance of each pore is proportional to r3 and the other quantities have the
same behavior as for the electrical conductivity. This conclusion for the hydraulic
conductivity is sometimes referred to as Miller–Miller similitude [52]. In general,
formulations for the saturated hydraulic conductivity, KS, conform to this conclu-
sion: KS is ordinarily stated to be proportional to the square of the radius of some
“characteristic” pore [even in the Katz and Thompson [110] critical path analysis],
consistent with permeability having units of length squared. Theoretical approaches
differ mainly in what particular pore size is “characteristic” of the medium. It is
typically assumed in the porous media community that, by analogy, the ratio of the
unsaturated to the saturated hydraulic conductivity should also be the square of the
ratio of the relevant characteristic pore sizes, but this is not the case.

Many treatments of the electrical and hydraulic conductivity have been based on
“bundle of capillary tubes” model discussed in Sect. 3.2.4. In its simplest form, this
model represents the medium as a collection of right circular cylinders, all of the
same length, and occurring with a frequency that gives the same volume pdf as the
medium. Pressure–saturation relationships are derived by assuming that all tubes
with radius r < A/h are filled with water (regardless of height!), while larger tubes
are empty: allowability is considered but accessibility is not. Hysteresis is related
to the history-dependence of the water–solid contact angle in a long straight tube,
which has negligible impact on hysteresis in real soils. The hydraulic conductiv-
ity is then calculated as the arithmetic mean conductivity of all the tubes (both air-
and water-filled), an indefensible scheme. Additional “physics” may be added in the
form of misalignment of tubes, variable tube radii to generate the inkbottle effect,
tortuosity, etc. The culmination of this model is probably the generalized Kozeny–
Carman equation of Wyllie and Gardner [27], which “implicitly contained twelve
adjustable parameters” [12]. Most authors admit that the bundle of capillary tubes
model can tell them nothing about transverse dispersion (spreading of contaminants
in a direction perpendicular to the water flow), but attempts have been made to re-
late the longitudinal dispersion to the distribution of velocities in the various tubes.
Because the distribution of velocities in a real medium must relate to distributions
of paths of varying capacity, each of which passes through some range of pore sizes,
the bundle of capillary tubes model cannot predict longitudinal dispersion with any
validity. And yet, a recent publication [91] endorsed by the National Research Coun-
cil of Canada recommended abandoning models that are over 100 years old, turning
instead to the modern science of models based on the bundle of capillary tubes.

The general understanding of “upscaling the hydraulic conductivity” from the
pore scale is that, given a pore size distribution transformed into a bundle of capil-
lary tubes, an arithmetic mean is appropriate for averaging. “Cut and rejoin” modi-
fications, which connect two different radii with a single tube, change the weighting
function in the averaging to a joint probability distribution (e.g., [28, 92]). Upscal-
ing procedures for geologic scales have been proposed and followed with no ap-
parent physical basis and no demonstrable correspondence to reality. Rather, these
procedures follow from the observation that a collection of resistors in parallel pro-
duces an arithmetic mean conductance, while a collection of resistors in series is
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equivalent to a harmonic mean. The first case corresponds conceptually to a criti-
cal percolation probability of zero (as in a bundle of tubes model, each individual
element of the medium may be regarded as connecting both sides), while the sec-
ond corresponds directly to a critical percolation probability of one. The arithmetic
mean conductance of a collection of conductances is

< ga >=
[
(1/N)∑(gi)

1
]1

(3.26)

while the harmonic mean is

< gh >=
[
(1/N)∑(gi)

−1
]−1

(3.27)

Scheibe and Yabusaki [93] argued that the upscaled hydraulic conductivity must
lie somewhere between the harmonic and the arithmetic mean, and that the appro-
priate upscaling condition would be consistent with power-law averaging [94, 95],

< g >=
[
(1/N)∑(gi)

−z]z (3.28)

choosing some exponent z in −1 < z < 1. They then used extensive modeling to try
to identify trends of the exponent z. It is true that for any specific case, some value of
z in Eq. (3.28) must yield the appropriate value of < g >. However, their conclusion
does not follow, as there is no particular reason why the averaging must follow any
power law. We will return to this point below.

Here are two results of capillary bundle models, presented without the details of
the derivations [[91, 96] respectively].

K = C
g
νw

(
e

A/V

)2

φ or K =
D2

r φ 3

72τ (1−φ)2 (3.29)

In the second expression, Dr is the diameter of a “characteristic” pore, and τ is a
tortuosity (ratio of path length to Euclidean or straight-line distance). In the first ex-
pression, g is the acceleration due to gravity, e is the void ratio (e≡ φ/(1−φ)), νw is
the kinematic viscosity, and A/V is the specific surface area of the solid component.
The inverse of A/V is proportional to a pore size and arises from consideration of a
“wetted radius,” while e is a measure of porosity. Both expressions therefore contain
both a pore size squared and a porosity cubed, features common to relationships in
the Kozeny–Carman tradition [24, 26].

Given the current understanding of the permeability (or hydraulic conductivity)
of porous media, there are no exact results for media with an arbitrary microstruc-
ture. As a consequence there has been some interest in developing upper and lower
bounds of the hydraulic conductivity and exact solutions of simplified problems.
A summary of such results is given by Sahimi [97, 98]. These results include slow
fluid flow through a dilute cubic array of non-permeable spheres by the Stokes equa-
tion [99]; an extension of this result to all three types of cubic lattices [100]; the
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same problem using a transformation to a set of Fredholm’s integral equations of
the first kind [101]; harmonic expansions in spherical coordinates for cubic pack-
ings [102]; and treatments of [103–105] (corrected by [106]). Other results are for
mixtures in which both components are permeable, including solutions for upper
and lower bounds of the hydraulic conductivity [107–109]. Sahimi comments, “in
all cases that have been discussed so far [several more than those mentioned here],
the Kozeny–Carman empirical formula falls within 15% of the results for at least
one of the three types of periodic packings if [the porosity is less than half]” (1993).
On the other hand, in disordered media the Kozeny–Carman prediction of K came
in dead last when compared with treatments by Katz and Thompson [110] , Johnson
and Schwartz [111], and Bernabe and Revil [112], missing the numerically verified
result by orders of magnitude [113].

We mention here the upper bound, k0, on the permeability of a collection of solid
spheres [114], given as

k0 =
2
9

< r3 >2

(1−φ) < r >2 ≈ 2
9

(
5−Ds

6−Ds

)2
[

1+2

(
r0

rm

)5−D

−2

(
r0

rm

)6−D
]

r2
m

1−φ
(3.30)

Here r refers to the particles, i.e., the solid space. The expression is written ex-
plicitly for the Rieu and Sposito model, and the result for k0 is, asymptotically in
the “polydisperse limit” (large range of sizes), a constant factor of the square of the
largest particle size, rm. rm will typically be proportional to the maximum pore ra-
dius, with the proportionality constant a diminishing function of the porosity; how-
ever, neither φ nor (1−φ ) to a negative power is such a function. Clearly Eq. (3.30)
is larger than Kozeny–Carman treatments, consistent with its being an upper bound.
The Stokes dilute-limit permeability follows the same general form Torquato and Lu
[114], with slightly different second and third terms in the square brackets. These
dilute-limit results do not apply in the limit of small porosity, where the permeability
must vanish. But k0, as in the various theoretical approaches summarized in Bernabe
and Bruderer [113], is proportional to the square of a maximum radius. This kind of
result is generated by critical path analyses as well [110, 115]. It is interesting that
Eq. (3.30) as well as Eq. (3.29) tend to produce factors of 1− φ in the denomina-
tor, but Eq. (3.30), unlike Eq. (3.29), does not produce a proportionality to φ in the
numerator.

In strongly disordered media, the weighting function that is applied to local con-
ductivities to generate the system conductivity is not monotonic in the conductiv-
ity. The weighting function thus cannot be consistent with a power-law averaging.
This has been verified both in solid state applications (see [116, 117]) and for fluid
flow in porous media [113]. This nonmonotonicity occurs because the quasi-1D
paths, along which the optimal conduction occurs, are dominated by the largest re-
sistances on these paths. Smaller resistances in series are so much smaller that they
do not contribute substantially to the total resistance; larger resistances in parallel
are never encountered. As stated by Bernabe and Bruderer, the pressure field for
strongly disordered media is controlled by a few large potential drops due to the
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critical elements (bottlenecks), making stochastic (small-disorder = homogeneous
in the mean) treatments unappealing. Only approaches that are based on percolation
theory are consistent with this observation.

Many empirical relationships for unsaturated hydraulic conductivity have also
been proposed. The widely used phenomenology due to van Genuchten [34–36] is

K (θ)
KS

=
(
θ −θr

φ −θr

)1/2
[

1−
(

1−
[
θ −θr

φ −θr

]1/m
)m]2

(3.31)

θr is intended to represent the lowest moisture content reached. Here the square
on the outer brackets is intended to be consistent with the contention that the hy-
draulic conductivity should be proportional to the square of the “characteristic” pore
radius, as in the above discussion of the saturated hydraulic conductivity KS. In the
van Genuchten phenomenology one can also represent K as a function of h:

K (h)
KS

=

[
1

1+
(
h
/

hA
)n

]m
2
[

1−
(

1

1+
(
h
/

hA
)n

)m]2

(3.32)

A graphical comparison of Eq. (3.31) with the results for K from critical path
analysis (next chapter) is given in Fig. 3.12. The van Genuchten equation produces
a sigmoidal curve, as is typically observed for the (logarithm of the) hydraulic con-
ductivity as a function of saturation. It is often assumed that m = 1 − 1/n; this
relationship was applied in Fig. 3.12. These parameters are known to have some
relationship with the pore size distribution, but the community has been unable to
discover the form of the relationship. The relationship between m and n relates the
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Fig. 3.12 A comparison of the hydraulic conductivity as a function of saturation by percolation
theoretical means and using the van Genuchten empirical function. Note that the van Genuchten
function tends to a vertical slope at complete saturation, in contrast to the result from percola-
tion theory (critical path analysis). This will accommodate, as will be seen, the tendency for soil
structure to enhance K strongly right near saturation
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curvatures at large and small saturations. We show later that these curvatures must
be related, because percolation constraints on the air (water) phase must affect the
limits at large (small) saturations. The air and water critical volume fractions appear
to be equal for coarse soils, but not for soils with high clay content.

A number of problems exist with the van Genuchten relationship (Eq. (3.31)).
The argument of the first factor, known as the tortuosity/connectivity factor, has
a dependence on the moisture content consistent with percolation theory, but the
power of 1/2 is far from the appropriate value of 2 [118, 119]. Meanwhile, the
second factor is obtained through a simple arithmetic averaging procedure, which as
noted is only appropriate with perfect connectivity. Perfect connectivity requires a
critical volume fraction of zero, which should be reflected in the first (connectivity)
factor. But zero critical volume is inconsistent with an adjustable residual moisture
content [120]. These inconsistencies make the phenomenology capable of matching
almost any experimental result. The cherished flexibility has been obtained at the
cost of predictive science.

The porous media community broadly recognizes that there is a relationship be-
tween the slope of the pressure–saturation curve dθ/dh, and that of the hydraulic
conductivity as a function of saturation dK(θ)/dθ . On the other hand, the com-
munity is also devoting considerable effort to relating the air flow as a function of
saturation to the pore size distribution. Both theory and experiments demonstrate
that this dependence is weak at best, but this has not become common knowledge.

3.6 Some Notes on Experimental Procedures

We start with an extended quote from a description [121] of an experiment to mea-
sure K(h) and h(θ).

The experimental setup [. . .] includes a constant-head [h] water supply, a flow cell, ten-
siometers [devices to measure the tension, h], and a constant-head outflow system. In gen-
eral typical flow cells for the samples are ≈ 10.2 cm in diameter and 15.7 cm in length. The
system governing the constant-head water supply to the inlet is a Mariotte flask (influent
reservoir). The outlet tubing is put through a rubber stopper at the top of a 50-mL burette to
maintain the head at a constant level by fixing the location of the drip point on the outflow
end. The flow cell contains end caps, fitted with porous ceramic plates, sealing the ends of
the container (using rings) with inlet/outlet valves in each cap. Built into the sides of the
flow cell are two tensiometer ports used to house tensiometer-transducer systems. Approx-
imately 15 cm of tubing is attached to the small bleed ports on each end of the flow cell.
During operation, water is forced through the bleed ports across the ceramic plates and out
the inflow/outflow ports to remove air from between the porous plate and the plastic end
cap. The heights of the Mariotte bottle and lower burette are adjusted to create a uniform
pressure head within the sample. At pressure heads of −100cm or more, a vacuum system
[. . .] is used. Starting at near saturation, a series of unit gradient flows are established at
progressively decreasing (i.e., more negative) pressure heads in the soil. At each flow the
pressure heads in the tensiometers and the volumetric flow rate through the sample are mea-
sured. The procedure is repeated until the most negative value of the desired pressure head
is reached. Depending on individual samples, experimental run times varied from ≈ 2–6
weeks; the average being ≈ 5 weeks per sample.
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While details of this discussion may be obscure for physicists, some fundamental
issues are clear. First, when flow must proceed through both the sample and the ce-
ramic end plates, the flux of water through the system can in principle be limited by
either the hydraulic conductivity of the sample or that of the plates. If, in addition,
the time is limited for the equilibration of the sample at a new value of h, a limitation
is, in principle, being set on the minimum hydraulic conductivity measurable. This
combination can generate a situation where measured values of the moisture content
and K are both too high for a given h: the moisture does not have time to leave, and
K is an increasing function of the moisture content. Finally, the porous media com-
munity does not generally trust statements that the pressure head is uniform within
the sample. The tendency is therefore to invest effort into generating volume mod-
els where h = h(z) (z = height), while using the above phenomenological relations
to describe local water rearrangements. It will turn out (Chap. 7) that use of perco-
lation theory on models without a z-dependence (effectively 0D models) describes
the limitations of the experiments due to lack of equilibration, much better than the
usual column models with the inaccurate phenomenologies in common use. This is
perhaps not surprising, as it has already been demonstrated [122] that increasing the
sophistication of percolation theory to treat spatial gradients of p (invasion and gra-
dient percolation) does not lead to significantly better treatments of wetting fronts
and hysteresis than ordinary percolation theory.

3.7 One Example from Living Organisms

A recent publication [123] illustrates that the concepts of physical porous media
translate directly to biological media, in particular, apples and pears. While we had
not intended to discuss such media, Verboven et al. [123], address the influences of
the same fundamental characteristics (porosity, pore size, connectivity) on flow and
diffusion properties as are recognized in, e.g., soils. These physical properties are
currently being investigated with synchrotron radiation X-ray tomography, just as
physical porous media. Further, the diffusion differences in apples and pears pro-
duce the well-known contrasts in spoilage, bringing out a broader relevance. Deliv-
ery of oxygen to internal cells through water-free intercellular voids is essential to
prevent spoilage. Apples may be stored a long time, while pears have a very short
shelf life. Figure 3.13 shows the contrast between the pore space in apples and pears,
and is included partly because of its visual similarity with such images in physical
media. We quote from Verboven et al. [123]:

Our understanding of the gas exchange mechanisms in plant organs critically depends on in-
sights in the three-dimensional structural arrangement of cells and voids. Using synchrotron
X-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in
vivo fruit tissues of high moisture content at 1.4μm resolution.

Note that the resolution quoted is also very similar to 5μm, as given in Sect. 3.2.2.

Voids between apple parenchyma form an incompletely connected network (Fig. 3.14a)
confirming previous results [124] but now with much better contrast and resolution. Void
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Fig. 3.13 (Reprinted with permission from Verboven et al. [123]) Void space of an apple (A) and
pear (B). Note the difference in appearance, with the pear pores being long and thin. In color, the
pore space is blue

spaces can be long and may stretch over several hundreds of micrometers in the tissue.
These voids do not connect or split, but are surrounded by smaller individual voids without
preferential direction. On the equator of the apple fruit where the samples were taken, the
axes of the long voids in the cortex tissue are preferentially oriented in the radial direction
into the fruit. In contrast, although the void fraction of pear is very small, the pores form a
complete network throughout the cortex sample without preferential direction (Fig. 3.14b).

The most significant difference between apples and pears is in the “void fraction”
(porosity) and the values given are 5.1% for pear cortex and 23.0% for apple. Since
Verboven et al. [123] look for a linear dependence of diffusion on porosity, they

Fig. 3.14 (Reprinted with permission from Verboven et al. [123]). Void space in an apple (A) and
a pear (B)
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interpret the large difference in oxygen diffusion rates in terms of the other differ-
ences between pears and apples, that is, connectivity and pore sizes. In fact, as we
will see in Chap. 6, it may be possible that the differences in gas diffusion between
apples and pears can be understood solely in terms of the differences in porosity.

Problems

3.1. Remember that pumice (specific gravity of the solid portion typically about
2.65) may float on water. Does this mean that the holes in pumice cannot be con-
nected? Use the Scher and Zallen results (Chap. 1) to set an upper limit on the
porosity of a regular pumice, for which all the “holes” are the same size. Assume
that the holes are spherical. What lattice would you choose for this calculation?

3.2. Assuming a solid material density of 2.65, calculate the minimum porosity re-
quired for the condition that pumice float. Is the Scher and Zallen result useful as
a predictor? In a fractal model the porosity of a medium may approach 1. Do you
expect that the holes in pumice (due to gas bubbles) are of uniform size, or highly
variable?

3.3. If the holes in pumice are due to gas bubbles, did the gas escape? How? Can the
relevant porosities for these questions be the porosity not accessible to an infinite
cluster instead of the bulk porosity?

3.4. Suppose that the pumice was formed in a violent explosion that resulted when
the gas bubbles “percolated.” What sort of size distribution of pieces of pumice
would you expect to find?
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Chapter 4
Specific Examples of Critical Path Analysis

At the end of Chap. 2 the general technique of critical path analysis was introduced
within the framework of the electrical conductivity of disordered systems. In many
systems the charges that move between these sites are electrons, but in some cases
they may be ions, or even protons. Critical path analysis will actually form the ba-
sis of much of the remainder of this book. However, there are some subtleties to
the technique, and its application cannot be so easily generalized as sometimes as-
sumed. To some extent every case or system must be evaluated separately. In typical
solid-state applications conductances are connected between sites, which are located
randomly in space (why?1) meaning that the critical bond fractions from the lattice
models of Chap. 1 are not directly applicable. Nevertheless, when transport is lo-
cally defined according to the probability per unit time that, say, an electron moves
from one clearly defined site to another, then it is clear that the appropriate form
of percolation theory to apply is bond percolation, even though one may not know
from the results of Chap. 1 what an appropriate bond percolation threshold is. But
in porous media it is not initially obvious even which form of percolation theory,
bond, site, or continuum, should be used. While network models, which distinguish
carefully between pore bodies and pore throats, and for which it is known that the
chief limitation to flow comes through the pore throats, clearly require a bond per-
colation approach, it has been the contention of one of us that use of a continuous
random fractal model requires application of continuum percolation theory. If con-
tinuum percolation is not used, one can make a good case for treating the wetting of
a porous medium as a site percolation problem and the drying of the same medium
as a bond percolation problem [1, 2]. In each of these cases, for which an important
random component of the model is already linked with the topology of the connec-
tions, the critical percolation probability becomes a major issue, especially when
the distribution of local flow (or transport) rates is very wide, and particularly since
one of the basic components of the analysis is supposed to be the determination of
the critical path.

In the electrical conductivity in condensed matter systems described below (and,
if our interpretation is correct, also in humid clay minerals, Sect. 6.4), transport oc-
curs by the “hopping” of charges from site to site. The term “hopping” means that

1 In solid-state physics applications, electronic transport is wavelike in ordered systems.
Localization of electrons and hopping transport occur primarily in the presence of disorder.

Hunt, A., Ewing, R.: Specific Examples of Critical Path Analysis. Lect. Notes Phys. 771, 97–122
(2009)
DOI 10.1007/978-3-540-89790-3 4 c© Springer-Verlag Berlin Heidelberg 2009



98 4 Specific Examples of Critical Path Analysis

charges that are located on specific sites most of the time jump to another site in a
much shorter time period. “Hopping” can be a classical process, by which a parti-
cle jumps over an energy barrier to another site, or it can be a quantum mechanical
process, whereby the particle tunnels through an energy barrier. Consider first the
classical process. While the typical time taken to jump to another site is essentially
zero, the time a charge spends “waiting” to jump is typically an exponential func-
tion of the energy barrier, E, between the sites, that is, τ = υ−1

ph exp(E/kT ). Here
the quantity υph is a vibrational, or “attempt” frequency and kT is the product of
the Boltzmann constant and the temperature. The subscript, ph, refers to a phonon,
a quantized lattice vibration. The exponential dependence on energy E ultimately
derives from the probability that the energy to transport the particle over the barrier
can be absorbed by the particle from thermal fluctuations in the surroundings, and
the probability that such thermal fluctuations, or “phonons,” may be found is pro-
portional to the Boltzmann factor, exp(−E/kT ). This “waiting” time may also be
loosely referred to as a relaxation time, or a hopping time. In disordered systems,
such energy barriers can vary widely from place to place and the total time required
to transport charges through the material (related to an effective velocity, or current)
depends on all the waiting times along the particular path followed. For dc conduc-
tion in macroscopic natural systems there is usually enough time, enough individual
charges, and sufficient local heterogeneity that the dominant transport paths can be
identified as those with the “least resistance,” or with smallest transport times, that
is, smallest activation energies.

In the quantum process, the transition rates are related through Fermi’s “golden
rule” (any fundamental text on quantum mechanics) to the square of overlap ma-
trix elements calculated between localized “hydrogenic” wave functions. The elec-
trons are localized on sites due to disorder and occasionally tunnel from site to site.
This tunneling introduces an exponential factor with argument proportional to twice
(from the operation of squaring the matrix element) the separation of sites.

4.1 r-Percolation

The first system investigated in terms of critical path analysis [3] was a slightly
idealized representation of impurity conduction in crystalline semiconductors. This
system is represented schematically in two dimensions in Fig. 4.1 and can be de-
scribed as follows. Sites, i, are located randomly in 3D space (their individual po-
sitions are uncorrelated) with a mean concentration, N0. Resistances, Ri j, are con-
nected between each pair of sites, i, j, and have the values [4]

R−1
i j =

e2νph

kBT
exp

[
− E0

kBT

]
exp

[
−2ri j

a

]
≡ R−1

0 exp

[
−2ri j

a

]
(4.1)

In this expression for Ri j the only variable quantity is ri j, which is equal to
the spatial separation between sites i and j. The other quantities are the electronic
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Fig. 4.1 A schematic (and
2D) representation of the
Ambegaokar site percolation
treatment of r-percolation. If
one draws spheres of a given
radius, r, about every site on
the network, when the radius
of these spheres reaches rc,
an interconnected network of
spheres of infinite size will
appear. This rc is the critical
radius for percolation and
defines the minimum possi-
ble value of the maximum
resistance encountered by the
current

charge, e, a fundamental vibrational frequency, νph ≈ 1012 Hz, the Boltzmann con-
stant kB, the temperature T, a uniform activation energy, E0, and a fundamental
length scale, a. The magnitude of a is a few nanometers and its origin is in its de-
scription of the radius of the hydrogenic wave function. Typical site separations,
ri j, may be 5–15 times larger. Equation (4.1) actually arises from consideration of
equilibrium transition rates, wi j, that describe the probability per unit time that an
electron will jump from site i to site j. When ri j/a >> 1, wi j is very small, and it is
very difficult, and thus unlikely, for an electron on site i to jump to site j in a short
time. In Sect. 6.4 we will revisit this subject when we consider a time-dependent (or
frequency-dependent) electrical field.

Since in Eq. (4.1) all the quantities except ri j are constant, it is convenient to
express the individual resistances in terms of a constant prefactor R0 and the ran-
dom variable ri j. The resistances actually represent averages over local stochas-
tic processes involving the sudden motion of electrons from, e.g., site i to site
j, a type of electronic transport termed hopping. Because the only variable in
the resistances is the site separation, r, this system is also called r-percolation.
Note that the origin of the exponential function in ri j/a most simply relates to
an overlap in electronic (hydrogenic) wave functions on sites i and j, and repre-
sents a tunneling probability. In the more complicated r−E percolation discussed
in the following subsection the physical interpretation of this function remains the
same.

W (r)dr = 4πr2N0dr (4.2)
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The mean number, < N >, of sites j within a distance r of i is then

< N >=
4
3
πr3N0 (4.3)

When r is chosen so that < N >= 1, r must be the typical site separation, b,
i.e., (4/3)πb3N0 = 1. A typical value of ri j/a = b/a may be 10 or larger, so a site
which is twice as far from a given site as the typical nearest neighbor distance, b,
will be connected to it with a resistance, which is e10 ≈ 208 larger than the typical
value. Thus if one starts to connect appropriate resistors between neighboring sites
in Fig. 4.1 the resistance values may be spread over 10–20 orders of magnitude
or more. This exponential dependence of Ri j on the random variable ri j makes the
spread of Ri j values enormous and promotes the value of percolation theory for
finding the macroscopic transport coefficients.

We make use again of the probabilistic identity W (r)dr =W (R)dR, which should
be familiar from substitution of variables in integration, to transform Eq. (4.3) to

W (R) =
πa3N0

2R
ln2
(

R
R0

)
=

3a3

8b3R
ln2
(

R
R0

)
(4.4)

Note the appearance of the factor R−1, which is a result of the fact that the Ri j are
exponential functions of the random variable, ri j. Insofar as the Ri j are exponential
functions of random variables, this power of −1 is universal. For ill-condensed mat-
ter (impurity conduction systems, glasses, disordered ceramics, supercooled liquids,
etc.), this type of local transport (quantum mechanical tunneling and/or thermally
activated hopping) is the rule rather than the exception and the factor R−1 leads
to a number of universal results, although these results are not discussed here. For
most applications in porous media, however, local resistances (either electrical or
hydraulic) will not be of this form, but are actually powers of random variables and
this will lead to fundamental differences between the two systems. The logarithmic
factor in Eq. (4.3) is also a product of the functional form of the resistances, but its
specific form, ln2(R/R0), requires also that the pdf of the site separations, Eq. (4.2),
be a power law with power 2. If the pdf of the site separations were an exponential
function of the distance (as is the case for nearest neighbor separations in a 1D ana-
logue to the present system), then the logarithmic factor would be replaced with a
power. That power, in contrast to R−1, is not universal, but depends on the specifics
of the system, such as the ratio b/a.

Now that we have the expressions for the local resistance values in terms of site
separations as well as the pdf for the site separations, it is, in principle, a straight-
forward process to find the critical resistance of the system. What is missing is a
reference to percolation. Clearly the problem under discussion is most fundamen-
tally related to bond percolation, but in Chap. 1 there is no critical bond fraction
given for a random lattice. In fact computer simulations [5] for such random sys-
tems have shown that the percolation threshold is defined in terms of the average
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number of bonds, α , connected to an arbitrary site. When α ≥ 2.7 ≡ αc, then the
network of interconnected bonds percolates. The percolation condition can now be
satisfied by setting the average number of sites within a distance rc of an arbitrary
site equal to the critical value, αc,

αc =
rc∫

0

4πr2N0dr =
rc∫

0

3
r2

b3 dr (4.5)

The meaning of Eq. (4.5) is that on the average αc bonds with lengths that do
not exceed rc can be connected to such an arbitrary site. That result implies that
it is possible to connect an infinitely large network of connected bonds that do not
individually exceed rc in length. This means that the largest resistance in such a
network is given by Rc = R0 exp(2rc/a). The solution of Eq. (4.5) is

rc = α1/3
c b (4.6)

The critical resistance, Rc, is then

Rc = R0 exp

[
2α1/3

c b
a

]
(4.7)

and is not obtainable by any procedure based on averaging. Furthermore, with

α1/3
c ≈ 1.4 and b/a ≈ 10, Rc ≈ R0 exp(28) ≈ R01012, two things are apparent: (1)

paths, which allow a space between sites even twice the critical separation have
resistances 12 orders of magnitude larger, and (2) using a typical separation 2b/a
in place of the critical separation underestimates the controlling resistance by four
orders of magnitude. These are the reasons why predictions of transport processes
that are not based on percolation theory will fail. Note that Eq. (4.7) can just as
easily be derived if one considers the dimensionless variable, ξ ≡ 2r/a, such that
R = R0 expξ . The integrand is then modified by the extra factor (a/2)3 and the vari-
able of integration becomes ξ instead of r, but the functional dependence is still

ξ 2. Thus one finds ξc = (2/a)α1/3
c b leaving the result that Rc = R0 exp[(2/a)α1/3

c b]
unchanged. For r-percolation such a change of variables seems needlessly compli-
cated, but application of such a technique using a dimensionless variable to r−E
percolation proves to be very useful indeed.

We can find the typical separations, d, of all resistances R < Rc as follows:

(
4π
/

3
)

d3(
4π
/

3
)

b3

⎡
⎣

rc∫
0

4πr2N0dr

⎤
⎦= 1 (4.8)

The solution of Eq. (4.8) is
d = α−1/3

c b (4.9)
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Result Eq. (4.9) allows the percolation condition to be expressed in a nice geo-
metric form

rc = α2/3
c d (4.10)

i.e., that the typical length of bonds with r = rc, is proportional to their typical

separation, d, with a proportionality constant α2/3
c . The interpretation is thus clear

that a larger value of αc requires that the typical bond length be a larger fraction of
the typical bond separation making it increasingly difficult to connect up the bonds
into a percolating network.

Although we have treated the impurity conduction problem as a bond percolation
problem it can be easily represented in terms of site percolation through a geomet-
rical construction. Ambegaokar et al. [3] presented this problem initially in terms of
overlapping spheres (see the circles in Fig. 4.1). In particular their idea was that one
could construct spheres of an arbitrary but uniform radius, r, about each site i, and
increase r until at r = rc a path of touching or overlapping spheres could be found.
Imagining these spheres to be metallic and not bothering about the physical prob-
lems of their overlap allows an obvious site percolation interpretation in terms of a
connected conducting path. The largest resistances on that path, where the spheres
just touch, is Rc, and this value (Eq. (4.7)) dominates current.

To proceed further with critical path analysis we need to find a useful expression
for p− pc, in terms of which all other percolation variables are expressed. We have
not expressed Rc in terms of a critical bond probability, however, but in terms of a
number of connected bonds, αc. However, p− pc must be proportional to α −αc.
Thus the first step must be to express an arbitrary R, (which, for R < Rc gives the
maximum resistance on finite-sized clusters of interconnected resistors, and for R >
Rc gives the maximum resistance of the infinite cluster), in terms of an arbitrary α .
This is done as follows:

α =
r∫

0

3
y2

b3 dy (4.11)

using y as a dummy (spatial) variable. Combining Eqs. (4.5) and (4.8) gives

α−αc =
r3 − r3

c

b3 =
( a

2b

)3
[

ln3
(

R
R0

)
− ln3

(
Rc

R0

)]
(4.12)

This expression is somewhat complicated. We factor r3 − r3
c in keeping with the

spirit of percolation theory, in which quantities are expanded to lowest order in
p− pc; thus (r−rc)(r2 +rrc +r2

c)≈ (r−rc)3r2
c . In the second factor, which contains

only sums, r may be approximated as rc. This result is identical to the first term in a
Taylor series expansion of r3 − r3

c evaluated at the point rc. Then

p− pc ∝ α−αc =
r3 − r3

c

b3 ≈ 3r2
c

b3 (r− rc) =

(
3aα2/3

c

2b

)
ln

(
R
Rc

)
(4.13)
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From Chap. 2 we can write for the conductivity of a subnetwork defined by a
maximal resistance R,

σ =
l

Rχ2ν (4.14)

where l is the typical separation of resistances R and χ is the correlation length
evaluated at a value of p corresponding to the choice R. The point will be to optimize
the right-hand side of Eq. (4.14) in terms of system and percolation parameters. We
can write χ as

χ ∝ (p− pc)
−ν ∝ ln−ν

(
R
Rc

)
(4.15)

To address the separation of the largest resistances in the subnetwork we must
use a discretized distribution of resistance values rather than a continuous distribu-
tion, since it is otherwise impossible to define “the largest” resistance values. Since
the resistances considered are exponential functions of a random variable it makes
sense to discretize the distribution in steps of the natural constant e = 2.718, i.e.,
R = R0 exp( j), where j is an integer. Such a unit of resistance corresponds to an
increment in r of magnitude a/2. Then it is possible to write the separation of the
largest resistances, with length r, in terms of the separation, d, of all resistors with
R ≤ Rc,

l = d

⎡
⎣
∫ r+a/2

r−a/2 4πr2N0dr∫ r
0 4πr2N0dr

⎤
⎦
− 1

3

= d

[
3r
a

] 1
3

= b

[
3r
αca

] 1
3

(4.16)

Whether this value of l has any relationship with the typical separation of max-
imally valued resistances along the current-carrying paths on the infinite cluster is
not yet clear, however. While the distribution of resistance values on the infinite
cluster may be approximated as being the same as in the bulk, except terminated at
R, it is clear that the dominant current-carrying path might avoid most of the larger
resistances. Two widely different perspectives can be formulated for this problem.
Stauffer (and others) use the “links-nodes-blobs” model to argue l ∝ χ . Certainly it
makes no sense to choose l > χ , because one would then be basing the calculation
of l on a value of the controlling resistance smaller than the value used in Eq. (4.14).
Hunt [6] has used Eq. (4.16), which can lead to l << χ . While simulations clearly
show that l ∝ L in two dimensions, comparison of analogous results with experi-
ments on variable-range hopping systems in three dimensions [7, 8] has proved at
least ambiguous [6]. Below we give a self-consistent argument for using Eq. (4.16)
or slight modifications thereof.

l from Eq. (4.16) is not a function of the variable p − pc(r − rc), and its de-
pendence on r ∝ ln(R) is weak. So for the purpose of optimizing Eq. (4.14) the
dependence of l on r may be neglected. Then one can write,

σ ∝
1
R

ln2ν
(

R
Rc

)
(4.17)

It is easy to optimize such an expression for the dependence of σ on R with
respect to the arbitrary parameter R to find the optimal value of the limiting



104 4 Specific Examples of Critical Path Analysis

resistance, Ropt. Note also that it is immaterial whether the optimization is for-
mulated in terms of Rc or gc ≡ R−1

c . This equivalence is not preserved in typical
problems in porous media, as will be seen. The result of optimizing Eq. (4.17) is

Ropt = Rc exp(2ν) (4.18)

a result which is independent of the details of the system. Note that if the Stauf-
fer argument is used the power of 2ν on the logarithm is reduced to ν , and
Ropt = Rc exp(ν). In two dimensions the power of the logarithm is reduced by ν
in either perspective, so that the Stauffer argument yields Ropt = Rc, while a treat-
ment analogous to Eq. (4.16) would yield Ropt = Rc exp(ν). Ropt = Rc appears to be
confirmed in 2D simulations [6, 9].

How does one proceed further? The question which needs to be evaluated is what
fraction of the largest resistors on the connected path is shortened by smaller resis-
tances? If l ∝ χ , the implication is that in the limit p → pc all the largest resistances
are shortened. This argument appears to be inconsistent, especially in the context of
the optimization procedure, which, in three dimensions leads to Ropt > Rc in either
procedure [either Rc exp(ν) or Rc exp(2ν)], and suggests that it is only the inclusion
of resistances larger than the optimal value, Ropt, which does not change the con-
ductivity. Such a result is consistent with the physical result that 100% of the largest
resistances are shortened only for the choice R ≥ Ropt. If Ropt > Rc, then it is not
logical to choose l as a singular function at Rc. If l is not singular at Rc, then l may
be approximated as slowly varying in the immediate vicinity of Rc, and the result
(in three dimensions) follows that Ropt = Rc exp(2ν) generating the self-consistent
result that the fraction of shortened maximal resistors is only 1 at this larger value
of R. However, such an argument leaves a loophole in 2D. If l is assumed to be a
singular function of p− pc(l ∝ ξ ) in 2D, then the optimization procedure does not
lead to Ropt > Rc, because of the cancellation of l/χ (in contrast to l/χ2 in 3D). Of
course one could also make the argument that l is not singular at Rc, and that result
would also be self-consistent. If both possibilities, which are mutually exclusive,
are self-consistent in 2D, it may imply that 2D systems allow different solutions
depending on the details of the problem. It certainly appears likely that the opti-
mization is fundamentally different in 2D than in 3D since only the argument that l
is not singular at pc is self-consistent there. So we continue to use Eq. (4.16) (and
the appropriate analogue for variable-range hopping systems) for l in 3D systems.
Skaggs [10] and references cited therein discuss this subject in a detail beyond the
scope of this book.

An especially important physical result is an evaluation of the correlation length
at Ropt. To find this value of χ simply substitute R = Rc exp(2ν) in the expression
(Eq. (4.13)) for p− pc, and raise to the −ν power. The result is

χ
(
Ropt
)

=

[
b

3aνα2/3
c

]ν
≡ L (4.19)

This value, denoted with L, is particularly important because it gives (to within
a numerical constant) the structure of the optimal current-carrying paths. Thus the
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largest holes in the current-carrying paths are of approximate radius L, percolation
calculations of all transport quantities require that the system size be considerably
greater than L, or the effects of fluctuations will be large, etc. In the language of
hydrology, L3 would be the REV. Note that Berkowitz and Balberg [11] already
pointed out that in the neighborhood of the percolation threshold χ3 gives the REV,
and this result for critical path analysis is in conformance with their analysis. Also
analogous calculations of l and L for the hydraulic conductivity of network models
of porous media were verified [6] to give the right dependence on system and distri-
bution parameters, although the values from the simulations were typically 30–40%
smaller than predicted.

Figure 4.2 gives a comparison of the backbone cluster for the largest R = Rc with
the corresponding cluster for the largest R = Rmax.

Fig. 4.2 A comparison of
the backbone clusters for
maximum R values Rc and
Ropt. Note that in the first
case the correlation length
is infinite and there is only
one connected path across
the (finite-sized) system. In
an infinitely large system
there would still be only one
connected path. But for Ropt
there are several connected
paths (from Todd Skaggs,
unpublished)

4.2 r – E-Percolation (Variable-Range Hopping)

Amorphous semiconductors represent the classic case for the application of critical
path analysis. Here the energy is also a random variable, meaning that electrons can
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have a variety of energy values. At zero temperature, T, the electrons occupy the
lowest energy states and essentially do not move. At higher temperatures they can
move and there is a nonzero electrical conductivity. The Fermi energy at T = 0 di-
vides states occupied by electrons (with E < Ef) from those without electrons (with
E > Ef). Since we will consider only continuous energy distributions, Ef is then the
highest energy of any state occupied by electrons. In such systems, called r −E-
percolation, the resistances between individual sites are functions of two random
variables, energy and distance, as follows:

R−1
i j =

(
e2νph

kBT

)
exp

[
− Ei j

kBT
− 2ri j

a

]
(4.20)

T is the absolute temperature. The random energy, Ei j, is either the difference in
energy from the initial, Ei, to the final, E j, state (if this difference is positive and the
sites are on opposite sides of the Fermi energy) or it is the larger of the absolute val-
ues of the two energies (measured with respect to the Fermi energy, E f ). The reason
for this peculiar definition of Ei j is that the resistance is inversely proportional to the
probability per unit time that an electron jumps from site i to site j. This probabil-
ity is composed of the product of the conditional probability that an electron could
jump from site i to site j, if it were on site i to begin with and site j were empty,
with the probabilities that an electron resides on site i and that no electron resides
on site j. The first probability brings in a factor of exp[−(E j −Ei)/kBT ], if E j > Ei,
because of the necessity to find a phonon to deliver this energy to the electron. The
second probability is the product of the Fermi function, f (Ei), for electron occupa-
tion of a site at energy Ei and 1− f (E j) for no electron occupation of site j. f (Ei),
for example, is often approximated by a Boltzmann factor in the energy difference
Ei −E f . So the energy term in the exponent represents a composite of effects of site
occupation and energy conservation.

The energies of the individual sites are considered to be distributed uniformly
between −W0/2 and W0/2, so that the probability that a site has energy within dE
of any given energy in that range is

W (E)dE =
dE
W0

(4.21)

One can now write for the density of states (per unit energy per unit volume) at
the Fermi energy, E f ,

N (Ef) =
1

W0b3 (4.22)

where b is again the typical separation of sites. With two random variables, and with
local correlations introduced by the fact that neighboring bonds share one common
site (and its energy value), the application of critical path analysis is considerably
more complex. In analogy to Eq. (4.5) one would have to integrate over three spatial
coordinates and one energy coordinate. This was done [12] and the result obtained
that
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σdc ∝ exp

[
−
(

T0

T

) 1
4
]

(4.23)

with

kBT0 ∝W0

(
b
a

)3

(4.24)

The same result was obtained earlier by Mott [13] who, however, used an opti-
mization procedure for individual resistances. In this procedure electrons can hop
greater distances to relieve the energy increase, since there are more sites to at-
tempt at larger distances. The competition between energy and distance tends to
shift slowly toward a greater relevance of energy at lower temperatures (because of
the ratio of −E/kBT in the exponential function) so hops become longer and stay at
energies nearer the Fermi energy with diminishing temperature. While Mott’s pro-
cedure is not strictly valid, since it does not guarantee that the individual optimal
resistances connect up to form a continuous path for current flow, it is cited more
often because of its simplicity. Here a percolation argument, which is equally sim-
ple, is presented. The argument is based on a generalization of Eq. (4.10). If the
maximum hopping energy allowed is Em (when ri j = 0) and the maximum hopping
distance is rm (when Ei j = 0), then we must have

Em

kT
=

2rm

a
(4.25)

This equation guarantees the existence of a maximum resistance, Rc = R0 expEm/
kBT = R0 exp2rm/a. Connectivity is guaranteed if we relate the typical separation
of the sites utilized for the transport equal to the appropriate fraction of the length
of the individual resistors. To lowest order the typical resistance length is

< r >=
∫ rm

0 r
(
4πr2

)
dr∫ rm

0 (4πr2)dr
=
(

3
4

)
rm (4.26)

If one takes into account the fact that the occurrence of large hopping distances
must be suppressed because the energy range of sites must be increasingly restricted
with increasing r, the numerical coefficient (3/4) would be altered, so this factor
cannot be considered accurate2. Choosing 1 for the numerical coefficient is therefore
equally justified, though slightly less accurate, and it is best simply not to attach any
importance to the factor (3/4). The typical separation between sites with low-enough
energies (less than Em) is

d = b

(
3

4π

) 1
3
[

W0

Em

] 1
3

=
(

3
4π

) 1
3
[

1
N (Ef)Em

] 1
3

(4.27)

2 Getting that particular number was the motivation, in fact, for going beyond the particular calcu-
lation here to generate a fully consistent percolation calculation (Pollak, personal communication,
2005).
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Inserting the results of Eqs. (4.26) and (4.27) into Eq. (4.10) and solving simul-
taneously with Eq. (4.25) yields

rm = a

(
α2

c

9π

) 1
4
[

1
kBT N (Ef)a3

] 1
4

∝ a

[
kBT0

kBT

] 1
4

∝ a

[
W0 (b/a)3

kBT

] 1
4

(4.28)

This result is compatible with the prior results of Pollak [12] and Mott [13] since
rm/a = (T0/T )1/4, but it yields a slightly different numerical constant compared
with each of those derivations. The numerical constants given here are not correct.
Since, in order to connect sites with smaller energies, the hopping distance thus
increases with diminishing temperature this type of transport has become known as
variable-range hopping. If the combination of variables 2r/a+E/kBT is defined to
be ξ , then one can represent the effects of the full percolation calculation in a form
analogous to Eq. (4.5):

4αc
T
T0

ξc∫
0

ξ 3dξ = αc (4.29)

Instead of integrating over ξ 2dξ , as in r-percolation, one must integrate over
ξ 3dξ here because of the existence of three spatial dimensions (random variables)
and one energy dimension (random variable). Clearly the result of the integral is
ξc = (T0/T )1/4. The integral thus expresses that the resistance values required for
percolation are spread through the interior of a 4D volume. One can calculate the
typical spatial separation of the resistances with the largest values in a similar way
as for r-percolation, by noting that the largest resistance values are spread out over
the surface of this 4D volume

l = a

(
T0

T

) 1
4

⎡
⎣
∫ ξc+1
ξc−1 ξ 3dξ
∫ ξc

0 ξ 3dξ

⎤
⎦
− 1

3

= a

(
T0

T

) 1
3

(4.30)

Thus the largest resistances are located with a unit variation in ξ from the surface,
or percolating value, ξc. It is also possible to calculate the correlation length, which
describes the dc conduction. To calculate the correlation length it is necessary first to
find the fundamental length scale of the resistances. In the case of r−E-percolation
only a fraction of the sites actually take part in the conduction process and their
typical separation is a(T0/T )1/4, so that this fundamental scale is a(T0/T )1/4. Then
we have

χ ∝ a

(
T0

T

) 1
4

(p− pc)
−ν = a

(
T0

T

) 1
4 [

kBT
(
ξ 4 −ξ 4

c

)]−ν
(4.31)

The substitution giving the second form on the right-hand side was obtained by
writing Eq. (4.29) also for an arbitrary ξ (and α) and making p and pc proportional
to α and αc. Linearization allows ξ 4 − ξ 4

c to be expressed as roughly ξ 3
c (ξ − ξc),

and one finds
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χ ∝ a

(
T0

T

) 1
4
[(

T0

T

) 1
4

ln

(
R
Rc

)]ν
= a

(
T0

T

)(1+ν)( 1
4 )

lnν
(

R
Rc

)
(4.32)

Evaluated at R = Rc exp(2ν), just as for r-percolation, this expression yields

χ(Ropt) ≡ L ∝ a

(
T0

T

)( 1+ν
4 )

(4.33)

One can now write for the electrical conductivity,

σ =
l

L2Ropt
=

a(T0/T )1/3

[
a(T0/T )((1+ν)/4)

]2
R0 exp(T0/T )1/4

(4.34)

Note that in the case of either r-percolation or r − E-percolation systems the

uncertainty in the calculation of l has no effect on the exponent (2α1/3
c b/a or

(T0/T )1/4, respectively). The effect is thus on the preexponential, which is only
a power of the temperature. Since the exponential function is a much more rapidly
varying function of system parameters and, in the case of variable range hopping,
of the temperature, it was possible to use the percolation theoretical argument to
predict the electrical conductivity over as much as 14 orders of magnitude of the
conductivity with minimal discrepancy with experiment [though not in a-Si, [7]
rather with a-Si:H:Au [8]]. While such accuracy is clearly a selling point in the
theory it does not, except perhaps in the latter case, help to distinguish between the-
oretical treatments of l. The only reason why, in the latter case, it was possible to
make any judgment as to the accuracy of a particular result for l was that experi-
mental data were reported in the form of the ratio of the ac to the dc conductivity
(which eliminated the exponential T dependence), but a detailed treatment of the
ac conductivity is a topic beyond the present scope. In the case of the hydraulic
conductivity, which has no equivalent separation of exponential and nonexponential
contributions, this uncertainty in theory has reduced confidence somewhat in the
validity of the percolation-based treatment and introduced some confusion.

An important point of this exercise is to demonstrate from basic physics how to
calculate relevant length scales. The numerical values of these length scales are not
well-defined, but their dependence on system parameters has been approximately
verified in comparison with both experiment [6] and numerical simulations [14]. As
problems of hydrology are addressed, it will be important to have prior guidance for
calculating these quantities.

4.3 Saturated Hydraulic Conductivity

One difference between hydrological and solid-state applications of critical path
analysis is that in the former case the sites take up a nonnegligible volume. In
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addition, in spite of the approximation of (probabilistic) fractal modeling, the
coordination number of large pores is likely larger, on average, than of small pores.
Besides, there is no possibility to put pores on a regular grid if their lengths (as well
as widths) vary over more than an order of magnitude. For all of these reasons it
is a better idea to base the critical path analysis on continuum percolation theory
than to use the bond or site versions. In continuum percolation accurate application
of critical path analysis requires an expression for the critical volume fraction for
percolation, which we will call Vc. In contrast to the solid-state problems discussed
above, this value is not known from simulations, but we will show in Chaps. 6 and 7
that it is known empirically from experiments on solute diffusion in unsaturated me-
dia [15]. Balberg [16] (inspired by earlier work of Kogut and Straley [17]) already
gave a detailed discussion of continuum percolation problems in porous media. In
particular he demonstrated that in continuum percolation transport exponents may
be nonuniversal, but this topic is postponed until the next chapter. Finally, the lo-
cal transport law (Poiseuille flow) is a power law in geometric quantities such as
the pore radius and the pore length, rather than an exponential function. This dif-
ference will be important too, and the implications of this difference have not been
completely appreciated [18–20] in existing critical path applications to the saturated
hydraulic conductivity.

Let us assume low Reynolds number flows, meaning that for any given geometry
the dependence of the flow through a pore can be written in terms of an effective
pore length and pore radius. The appropriate way to relate these radii and lengths
to physical lengths requires pore-scale treatments of the Navier–Stokes equation.
For calculating the ratio of the hydraulic conductivity at an arbitrary saturation to
its value at full saturation such complications are unimportant, as long as the fractal
model of the pore space is accurate, since these geometrical factors do not change
with pore size. However, to calculate the hydraulic conductivity at full saturation,
such a complication is important and can only be resolved exactly by detailed imag-
ing and careful numerical work at the single pore scale, subjects not addressed in
this book. Note that the proposed activity of calculating the hydraulic conductivity is
called “upscaling” (at the pore scale) in the hydrology literature, but would be called
a calculation of an effective macroscopic transport parameter from its microscopic
variability in the physics literature.

Poiseuille flow implies that pores of radius r and length l have a hydraulic
conductance

gh ∝
r4

μ l
(4.35)

with μ the viscosity of the fluid, here assumed to be water. The reason for the form
of Eq. (4.35) is that in the linear regime (assumed here) the total flow through such
a pore is proportional simultaneously to gh and the pressure difference across the
pore, ΔP. The numerical constants are suppressed. If the medium is assumed to be
fractal, the aspect ratio (shape) of pores is, on the average, independent of their size,
meaning that l must be taken as proportional to r. In this case then,
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gh ∝ r3 (4.36)

To calculate the hydraulic conductivity accurately under conditions of saturation
one needs to find a critical value of a conductance, gc, from critical path analysis,
then find expressions for l and χ , and finally optimize the result. The easy part is to
find gc.

Under saturated conditions, rc is given through [21]

3−Dp

r
3−Dp
m

rm∫
rc

r3r−1−Dpdr = Vc (4.37)

with the critical volume content for percolation, Vc. Solution of this equation yields,

rc = rm (1−Vc)
1

3−Dp (4.38)

Note that we can write for an arbitrary r,

r = rm (1−V )
1

3−Dp (4.39)

The critical conductance, gh
c must be of the form

gh
c ∝ r3

m (1−Vc)
3

3−Dp = r3
c (4.40)

We assumed [21], as in Stauffer and Aharony [9] (as well as Katz and Thomp-
son [20], Banavar and Johnson [19], and Le Doussal [18]) that both l and χ are
proportional to rc so that the saturated hydraulic conductivity, KS, is represented by

KS ∝ r2
c (4.41)

How does this arise?
First we linearize the difference V −Vc,

V −Vc =
(
3−Dp

)( rc

rm

)3−Dp
(

r− rc

rc

)
(4.42)

Then for the case that gc ∝ r3
c we can write V −Vc in terms of the conductance

difference,

V −Vc =
(

3−D
3

)(
rc

rm

)3−Dp
(

g−gc

gc

)
(4.43)

For the optimization procedure the material result is that V −Vc ∝ g− gc. The
optimization

d
dg

[
g(gc −g)2ν

]
= 0 (4.44)

yields
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gopt =
gc

1+2ν
(4.45)

The factor 1+2ν could be written (if ν were very small) as exp(2ν). The reader
may verify that repeating the procedure with respect to the resistance yields Ropt =
Rc/(1− 2ν) which, again if ν were very small, would yield Ropt = Rc exp(−2ν)
and the two methods would be consistent (as in the exponential case above). But
ν is 0.88, which is not small, and the optimization procedure with respect to the
resistance yields a value, which is outside the range of physical values. This means
either that it is preferable to use the optimization procedure with respect to the con-
ductance rather than the resistance, or that the optimization procedure is not reliable
in the present context. Our choice is to consider the optimization procedure with
respect to the conductance as reasonable, but to interpret the results with caution.
There is a physical reason behind these results.

In the case where g is an exponential function of random variables (e.g., impurity
conduction systems), a small change in g is associated with a very small change in
p because of the logarithmic dependence of p on g. When g is a power of a random
variable as here, the result is that a small change in g makes a change of roughly
the same magnitude in V (corresponding to p), which sweeps χ right out of the
range where percolation theory gives an accurate estimation of the separation of
dominant current-carrying paths. This means that for g very near gc the separation of
current-carrying paths can be very small, i.e., on the order of the separation of pores,
which is the same order as rc, and the same order as the separation of controlling
resistances along the dominant paths. For a pictorial example of such a contrast
between current-carrying paths for exponential and power-law functions of random
variables refer to Fig. 4.3. Note that the exponential case is the same as in Fig. 4.2.

For these reasons we [21] decided to formulate KS as proportional to

KS ∝
lr3

c

χ2 =
rcr3

c

r2
c

= r2
c (4.46)

However, it should be kept in mind that l and L could have been written as other
pore length scales with different numerical constants, meaning that in some sense
a proportionality to r2

c is a matter of convenience. Note that KS proportional to the
square of a pore radius is a result obtained by many other authors, including Katz
and Thompson [20] [also Kozeny [22]-Carman [23], Johnson and Schwartz [24],
Bernabe and Revil, 1995 [25]; Torquato and Lu [26] who did not use critical path
analysis, but Banavar and Johnson [19] and Le Doussal [18], who did] who also
used the critical radius, rc, and whose critical path analysis yielded as well the same
sort of result for the critical radius, rc. However, there is some fairly considerable
uncertainty in the numerical prefactors, probably reflecting the choice to make other
pore length scales proportional to rc

2. Nevertheless, loosely at least, the Katz and
Thompson [20] and the Hunt and Gee [21] treatments of KS are equivalent. The
focus here is not on KS, for which one really needs additional information (pore
shape, in particular). But it is essential to present the basic discussion of KS. Also,
although we anticipate that both percolation-based treatments could be improved, in
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Fig. 4.3 A comparison of the backbone clusters for maximum R = Ropt for (a) the case that
the resistances of the bonds follow Eqs. (4.1) or (4.20), and (b) that the bond resistances follow
Eq. (4.35), i.e., exponential vs. power law functions (from Todd Skaggs, unpublished)

a controlled test [27] of four methods to calculate K [Kozeny-Carman, a “stochastic”
pore-scale model due to Bernabe and Revil (1995) and the Johnson and Schwartz
[24] treatment being the other three] the Katz and Thompson [20] result came out
on top. Notably, in the case of large variance the Kozeny-Carman results came in a
distant last place, although all four results were equally accurate in the limit of low
variance.

4.4 Unsaturated Hydraulic Conductivity

Typical formulations ([28–31], the various references to Mualem ([31–33] in
Chap. 3)) of the unsaturated hydraulic conductivity are in the form of a ratio with
KS. The reasons for this have already been discussed in the previous chapter, but
chiefly this is due to the typical lack of direct information regarding the pore space
and the difficulty of formulating an accurate calculation of KS without explicit in-
formation about pore sizes and shapes. However, in fractal systems, the particular
pore shapes are the same for all radii, and thus this geometric factor cancels out in
the ratio of K(S)/KS. The formulation of the hydraulic conductivity in this ratio will
also simplify the application of critical path analysis greatly.
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The effects of partial saturation are treated using the premise that film flow per-
mits, Blunt and Scher [32], Tokunaga and Wan [33], the porous medium to adjust
to removal of water by evacuating all pores with radii larger than some equilibrium
value, which we call, r>. Thus neither hysteresis nor effects of nonequilibrium are
considered yet. The following is taken from Hunt and Gee [21]. The relative satura-
tion is the quotient of the pore-space volume in pores with r < r> and the total pore
volume,

S =
(

1
φ

)(
3−Dp

r
3−Dp
m

) r>∫
r0

drr2−Dp =
1
φ

[
r

3−Dp
> − r

3−Dp
0

]

r
3−Dp
m

(4.47)

Remember from Chap. 3 that r0 and rm are the lower and upper bounds of validity
of the fractal description of the pore space. When r> = rm, Eq. (4.47) yields S = 1.
Next, the percolation condition relating the smallest (or critical) pore size needed
to be traversed, to the critical volume fraction, Vc, when the largest pore filled with
water has r = r>, is,

Vc =

(
3−Dp

r
3−Dp
m

) r>∫
rc(θ)

drr2−Dp =
(

r>

rm

)3−Dp

−
(

rc (θ)
rm

)3−Dp

(4.48)

Equation (4.48) has the same form as Eq. (4.47), but the upper limit has been
reduced from rm to r>, producing a related reduction in rc(θ) (and requiring its rep-
resentation as a function of θ ) consistent with the effects of partial saturation. Since
our goal here is to calculate the hydraulic conductivity as a function of moisture
content we should consider using a threshold moisture content, θt, in place of the
critical volume fraction, Vc. This turns out to be a good plan, since solute diffusion
experiments demonstrate a linear vanishing of the diffusion constant at such a mois-
ture content, θt. Together, Eqs. (4.37), (4.47), and (4.48) (and using θt in place of
Vc) allow rc for unsaturated conditions to be expressed in terms of rc for saturated
conditions,

rc (θ) = rc (θ = φ)
[

1−φ +(θ −θt)
1−θt

] 1
3−Dp

(4.49)

The critical hydraulic conductance as a function of moisture content is now,

gc(θ) = gc(θ = φ)
[

1−φ
1−S
1−θt

] 3
3−Dp

(4.50)

Equation (4.50) implies a scaling of the same form for the ratio of K(S)/KS. The
hydraulic conductivity of the medium is controlled by the hydraulic conductance of
the rate-limiting pore throat, which is proportional to the cube of the critical radius.
How does the vanishing of the correlation length (and therefore the minimum path
separation) at the percolation threshold affect the critical path results for K(S)/KS?
The answer is, not at all, at least to a very good approximation (over a fairly wide
range of moisture contents). Why? The answer has two parts: (1) such topological
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complications only have a strong effect in the vicinity of the percolation threshold
and (2) the calculation of KS takes into explicit account the competition between
the effects of finding the minimum value of the blocking or bottleneck resistance
and the infinite path separation. Thus in the calculation of K(S) = KS(K(S)/KS) the
effects of the path separation are already included at saturation, and as long as the
percolation threshold is not approached too closely, there is very little change in
these effects. However, this perspective must be reevaluated for moisture contents
that are low enough that the percolation threshold is near [34]. Thus we can now
write for the unsaturated hydraulic conductivity,

K(S) = KS

[
1−φ

1−S
1−θt

] 3
3−Dp

(4.51)

a result which can also be written as

K (S) = KS

[
1−φ +(θ −θt)

1−θt

] 3
3−Dp

(4.52)

While the present evidence is that Eq. (4.52) is accurate for typical porous media
over a wide range of moisture contents, it cannot be accurate [34] in the limit θ → θt.
In that limit Eq. (4.52) yields

K (θt) = KS

[
1−φ
1−θt

] 3
3−D

(4.53)

K(θt) from Eq. (4.53) is not zero, in fact it is the hydraulic conductivity associ-
ated with the limiting conductance of the smallest pore in the system. However, it
is an absolute requirement from percolation theory that the hydraulic conductivity
vanish at the percolation threshold. In fact, in this limit, the hydraulic conductivity
(like the electrical conductivity) must vanish according to the following result:

K (θ) = K1 (θ −θt)
μ (4.54)

How these results are to be reconciled is the subject of the next chapter; the
reconciliation illuminates the difference between the electrical and the hydraulic
conductivities of porous media, and also clarifies the role of some exact results for
nonuniversal scaling of transport properties derived by Balberg [16].

4.5 Hydraulic Conductivity for Geologic Media: Parallel
vs. Series

In this section we present a general result, which may be utilized to “upscale” the
hydraulic conductivity in geologic media, that is to calculate an effective hydraulic



116 4 Specific Examples of Critical Path Analysis

conductivity, Keff, when a wide distribution of individual K values exists. In the be-
ginning of this chapter we have, of course, argued that one should carefully address
the difficulties of each medium individually. Further, we argued elsewhere that the
appropriate conceptual view of this problem is not even upscaling the conductiv-
ity, per se. One should characterize the dominant conduction paths in terms of their
blocking resistance value and then find the frequency of occurrence of such paths. A
discussion in terms of the hydraulic conductivity implies already that the individual
portions of the medium have uniform conduction properties. Nevertheless, as wit-
nessed by the large number of such results for upscaling in use, there is a need to
write down a general result, which can be applied as a simple algorithm. We write
down such a result here. It is clearly a conceptual advance over the results currently
in use.

It is a typical argument in geology to consider a horizontally layered system and
contrast the vertical flow properties with the horizontal flow properties. The effec-
tive hydraulic (or electric) conductivities under such conditions are given through
the average resistance and average conductance values, respectively, since the re-
spective configurations of the resistance values are in series and in parallel. We cast
this discussion in the language of percolation theory and then seek the appropriate
generalizations.

In 1D systems water (or current) must flow through every element of the system.
In the thermodynamic limit of infinite system size, this means that every element
of a distribution of resistance values must be present with its occurrence described
by the relevant pdf of resistance values, W(R). The equivalent resistance of such a
1D system is given by the series combination of the individual resistances, which is
the arithmetic sum of the resistance values. The conductivity, hydraulic or electrical,
must be inversely proportional to the total resistance of the system, Rtot, which can
be simply calculated as

Rtot ∝< R >=
∞∫

0

RW (R)dR or Rtot =∑
i

Ri (4.55)

Thus,

Keff ∝

[
∑

i
Ri

]−1

∝

[
∑

i
K−1

i

]−1

(4.56)

If the individual elements are geometrically identical, then Keff is equal to the sec-
ond sum. Such a particular operation is often referred to as obtaining the harmonic
mean of the conductivities. For the two versions of Eq. (4.56) to be equivalent, it is
necessary that all the individual elements have the same size and shape; otherwise
the only valid sum is over the resistances, Ri.

The opposite extreme to the combination of all the resistances in series, as in a 1D
system, is the combination of all the resistances in parallel. In the case of a parallel
combination the total conductance is the sum of the individual conductances, and
the upscaled hydraulic conductivity, Keff, is then given through
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Keff ∝

[
∑

i
K1

i

]1

(4.57)

The same geometric restriction applies here, namely that the individual elements
all be congruent (have the same size and shape); otherwise it will be necessary to
include geometrical factors to transform the elements of the series to conductances.
When the factors are all identical, approximate Eq. (4.57) becomes an equality. As
a consequence of the validity of these two extremes, Scheibe and Yabusaki [35]
proposed the following formula:

K ∝

[
∑

i
Kz

i

]z

−1 ≤ z ≤ 1 (4.58)

The problem with such power-law averaging [36, 37] is that it is conceptu-
ally incorrect. Comparison of percolation theoretical calculations with simulations
[5, 27] demonstrate consistently that the importance of individual resistances to an
effective resistance of a medium is not a monotonically increasing or decreasing
function of resistance. In fact, this importance is peaked. In particular, the peak of
importance of resistance values occurs at the critical resistance, Rc. Smaller resis-
tances on the percolation path behave very much like shorts. Larger resistances are
avoided. These critical resistances control the field of potential drops in the entire
medium [27].

In a low order approximation (used as well by Balberg [16]) one can calculate the
hydraulic conductivity of a medium, to which critical path analysis is to be applied,
by including all the resistance values smaller than Rc on a 1D path, and ignoring the
remainder of the resistance distribution. While this is not completely accurate, it is
an improvement over Eq. (4.58), and in more or less the same spirit, as will shortly
become clear.

The two cases, parallel and series combinations or resistances, correspond in
critical path analysis, to the percolation probabilities, pc = 0 and pc = 1, respectively
(Why?). The answer is because, in the first case, it is possible to find a path through
the medium, which utilizes a vanishingly small part of the resistance distribution,
while in the second case it is impossible to find a path through the medium that
excludes any portion of the resistance distribution. In the first case, an arbitrarily
small fraction of the resistance distribution means that each resistor out of the entire
distribution can span from one side of the system to the other, consistent with a
parallel configuration of the resistors. Such a topology is, in fact, precisely what is
imagined in pore-scale models that rely on bundles of capillary tube approximations.
Thus, out of a continuum of possible values, the bundle of capillary tubes model
chooses one end point, meaning that the conditions for which it is valid never occur.
The second case is, as already discussed, equivalent to a series configuration. The
latter can be obtained in a 1D system, while the former is a necessary result only
of an infinite dimensional system [using the Vyssotsky et al. [38] formula, Zpc =
d(d − 1)]. What we present here is a procedure which maintains the fundamental
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perspective of critical path analysis, but also reduces to the proper results in the
limit of pc = 0 and pc = 1, respectively.

Keff =< K >

[∫ Kmax
Kc

W (K)K−1

K−1
max

]−1

(4.59)

In this expression the pdf, W(K), must be proportional to the distribution of K
values in bulk, but normalized so that

∫
dKW (K) between the limits Kc and Kmax is

1. Further, we require the same geometric constraints as in Eqs. (4.56) and (4.57).
Note that when pc = 0, Eq. (4.59) yields < K >, since Kc = Kmax, W(K) becomes a
delta function, δ (K −Kmax), and the integral then yields K−1

max, which cancels with
the denominator. However, when pc = 1, the integral yields the harmonic mean
conductivity, while the denominator (K−1

max)
−1 approximately cancels < K >, since

for a wide distribution of hydraulic conductivity values, W(K), the arithmetic mean
is dominated by the largest K value.

It is important here that Eq. (4.59) essentially represents an averaging procedure
where the importance of K values is strongly peaked right at the critical conduc-
tivity, Kc. For pc = 0, this peak moves to Kmax, while for pc = 1, the peak moves
to Kmin. Thus, in these two cases, Eq. (4.59) corresponds to the parallel and series
combinations, and the importance of individual conductivity values is either mono-
tonically increasing or monotonically decreasing. But in any other case (much more
realistic values of pc) this procedure yields an averaging procedure peaked at Kc. We
should bring up, however, that Eq. (4.59) performs rather disappointingly when it is
applied to a bimodal distribution [39]. In such a case the effective conductivity as a
function of the volume fraction of the medium in the upper mode of the distribution
has a sigmoidal shape with a point of inflection at the percolation threshold. Such
a bimodal distribution can be appropriate for geological media composed of sands
and muds. In particular, when the upper mode of the distribution (say sand fraction)
is below the percolation threshold, Eq. (4.59) drastically underestimates K, although
it otherwise does quite well. Further, Eq. (4.59) does generate a rapid increase in K
when the upper mode just exceeds the percolation threshold, and percolation theo-
retical results are generally in accord with the sigmoidal shape of log[K] vs. sand
fraction [39]. Power-law averaging performs most poorly, never generating a point
of inflection for any value z [39].

The implication of this discussion is that the tendency of water (or electrical cur-
rent) to follow the path of least resistance means that such a path is configured in
parallel with other paths, whose resistances are much higher (and can be ignored),
while the resistances on such an optimal path are configured in series. Power-law
averaging configures all the resistors equivalently, somewhere between series and
parallel. While power-law averaging does yield any value for Keff between the two
limits, and thus any value that experiment can develop, the logic of cause and ef-
fect is missing and the parameter μ has neither predictive value nor experimental
significance. This defect shows up clearly in the case of the bimodal distribution
where its results are only useful in the limits that the medium is either 0% or 100%
sand.
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4.6 Summary

Several examples of the application of critical path analysis were given. The most
difficult issue in these examples is the relationship between a critical, or rate-
limiting, conductance and the effective electrical or hydraulic conductivity. In the
first four calculations of the effective conductivity, we have chosen to apply a gen-
eral technique of Friedman and Pollak [40] in making this transition. This technique
develops the result in terms of the following length scales: (1) the separation of con-
trolling resistances along a path and (2) the separation of dominant paths. In the fifth
calculation we developed an algorithmic procedure that offers greater simplicity, if
not greater accuracy.

In 3D well-connected systems with local conductances exponential functions
of random variables, the typical separation of controlling resistances appears not
to be a critical function of percolation variables, but the opposite is likely in 2D
systems. In 3D systems critical path analysis requires an optimization of topologi-
cal (current-carrying path separations) and geometrical (resistance magnitude), but
in 2D systems a simpler scaling argument becomes possible with the conductivity
given merely by the critical conductance. If, however, local conductances are power
functions of random variables, such as is the case in porous media, then even in
the 3D case it is difficult to separate the effects of topology and geometry, since
both show up in factors relating to length scales of similar magnitudes. Neverthe-
less the calculations of the hydraulic conductivity at full saturation with the highest
degree of accuracy are based on precisely this form of critical path analysis. Finally,
it is possible even in the kind of messier problem that is prevalent in porous media
to formulate conductivity ratios, which are given purely in terms of the geometry
(though we will find that this formulation will generally break down as the percola-
tion threshold is approached). When the relevant problem is formulated as a ratio of
conductivities at two different saturations, even 3D problems are equally tractable.
But for the case of porous media we will find (next chapter) that not all conduc-
tivities are equivalent, and that specifically the electrical conductivity and thermal
of porous media behave quite differently as a function of, e.g., saturation, from the
hydraulic conductivity. Nevertheless, we also presented at the end of this chapter an
upscaling result that should apply on geologic scales equally to the electrical and to
the hydraulic conductivities.

Problems

4.1. Show that integration of Eq. (4.4) to find Rc directly yields the same value
as Eq. (4.7) derived through the procedure of Eqs. (4.5) and (4.6). This provides
the link between the probabilistic identity W (r)dr = W (R)dR and substitution of
variables in integration.

4.2. Repeat the analysis of Eqs. (4.35), (4.36), (4.37), (4.38), (4.39), (4.40) and
(4.41) for a log-normal distribution of pore radii. What additional assumptions must
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be made in order to complete the analysis? Constrain the pore-size distributions for
the log-normal and the fractal case to be in some sense similar (define the simi-
larity or equivalence) and then compare the results for the hydraulic conductivity.
Give graphical representations of both the comparison between the two pore-size
distributions and the two results for the hydraulic conductivity.

4.3. Repeat the analysis of Eqs. (4.42), (4.43), (4.44) and (4.45) for a log-uniform
distribution of pore radii. Compare your results with those for r-percolation.

4.4. Assume for simplicity that, as r-percolation involves an integral over a 3D
spherical region of space, r−E-percolation involves an integral over the analogue
to a sphere in 4D space. In such a picture write an analogue to Eq. (4.16) for l. What
length replaces d as the first factor? What is the dependence of l on T?

4.5. Find the temperature dependence of the correlation length for R = Ropt in r−E-
percolation.

4.6. Show that variable-range hopping in d dimensions leads to the result

σ ∝ exp

[
−
(

T0

T

) 1
d+1
]

4.7. Let the density of states, N(E), be proportional to En. Show that VRH in d
dimensions now leads to

σ ∝ exp

[
−
(

T0

T

) n+1
n+d+1

]

4.8. Suppose that a VRH system is long in two of its dimensions [41], y, but short in
the third, x, i.e., y >> x. Consider moreover that x may be shorter than the correla-
tion length found in problem 4.5, and that a potential difference is set up across one
of the long axes of the system (longitudinal, rather than transverse, conduction). In
this case the conduction path cannot develop fully in the third dimension and con-
duction follows some intermediate dimensionality between 2 and 3. It is possible to
constrain the conduction path to stay within the system by the trick of allowing con-
duction to proceed through larger resistances, and using a larger effective critical
resistance, i.e.,

χ = χ0 (p− pc)
−ν ≤ x

Let the exponent 2ri j/a + Ei j/kT = ξ . First solve this equation for the correlation
length for p and then substitute this new value of p into a linearized version of the
following equation (relating ξ −ξc to p− pc),

ξ 4
c

[
T
T0

]
= 1
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to find

σ ∝ exp

[
−
(

T0

T

) 1
4
]

exp

[
−
(

T0

T

) 1
4 (χ0

x

) 1
ν

]

Actually a more accurate calculation would replace χ0 with the correlation length
for the dc conductivity in 3D VRH (from problem 4.5), but this is sufficiently ac-
curate for the present purposes, and provides a preparation for material in Chap. 8.
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Chapter 5
Hydraulic and Electrical Conductivity:
Conductivity Exponents and Critical
Path Analysis

This chapter describes how to estimate hydraulic and electrical conductivity.
Electrokinetic currents, because of their very close relationship with electrical and
hydraulic conductivity, are discussed here too. Other properties, such as air perme-
ability, solute and gas diffusion, and thermal conductivity are discussed in Chap. 6.
The results are valid for generating sample-scale properties from pore-scale variabi-
lity. The theoretical development and the parameters obtained are consistent across
the various properties, and the results predict experimentally measured values. The
primary focus is on the saturation dependence of such properties, though sometimes
we also consider the saturated values of these properties, and their dependences on
porosity.

Several authors have considered whether the universal scaling of percolation
transport coefficients should be seen in basic properties such as hydraulic or electri-
cal conductivity [1–7]. An alternative perspective has also been proposed, namely
that conduction processes may follow nonuniversal power laws: the conductivity
exponent μ may take different values in different systems. Both models and data
exist [2, 8, 9] supporting a nonuniversal scaling of electrical or hydraulic conduc-
tivity for specific cases in continuum percolation. Feng et al. [9] obtained the then
“universal” value μ = 1.88 for a conducting matrix from which equal-sized, over-
lapping spherical voids are removed. This so-called random void or Swiss cheese
model is functionally equivalent to a conducting fluid with insulating spherical in-
clusions, e.g., a brine-saturated sandstone, and its low percolation threshold and
universal exponent support a percolation basis for Archie’s law (discussed below).
In their (1987) model the width of the conducting necks remaining between spheri-
cal voids was denoted δ , and its values were argued to be uniformly distributed. For
the inverse case, that of overlapping spherical conductors in an insulating matrix
(the inverted random void or cannonball rock model), Feng et al. [9] obtained the
nonuniversal value μ∗ = μ +0.5 = 2.38 (where the superscript ∗ denotes a nonuni-
versal value). Because this latter case is the negative of a typical particulate geo-
logical medium, its nonuniversal exponent need not imply nonuniversal behavior in
rock and soil. Further, the role of the overlapping volume (whether void or solid)
is very prominent in generating the nonuniversal exponents, but the construction of
solid overlaps is not obviously related to a physically based formation of geological
media.

Hunt, A., Ewing, R.: Hydraulic and Electrical Conductivity: Conductivity Exponents and Critical
Path Analysis. Lect. Notes Phys. 771, 123–167 (2009)
DOI 10.1007/978-3-540-89790-3 5 c© Springer-Verlag Berlin Heidelberg 2009
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We do not deny that there may be cases where such exotic power laws are appro-
priate, but we find both theoretical rationale and experimental evidence that univer-
sal scaling is far more common than the nonuniversal exponents. Further, we show
that CPA (critical path analysis, the subject of Chap. ??) can yield known nonuni-
versal scaling results under mathematical conditions which extend its validity to the
percolation threshold. While the derivation of a nonuniversal exponent in this case
requires using an unphysical limit of a reasonable model, our derivation demon-
strates clearly that treating geometrical conditions with CPA provides an appropriate
mathematical framework to generate nonuniversal exponents of percolation theory.

A common example of universal scaling is Archie’s law [10] for the saturation
dependence of the electrical conductivity. Archie’s law has often been expressed in
a form, in which both the saturation dependence and the dependence of the electrical
conductivity on porosity are represented as (possibly different) powers. Examining
the basis for Archie’s law has occupied many researchers, including (among others)
Adler et al. [11], Bigalke [12], Binley et al. [13–15], Thompson et al. [16], Kuentz
et al. [17], Lemaitre et al. [18], Johnson and Schwartz [19], Le Ravalec et al. [20],
Mattisson and Knackstedt [21], Ruffet et al. [22], Wong et al. [23], and Montaron
[24]. While Archie’s data are often cited to demonstrate the occurrence of different
values of such powers, we found [25] that each of his distinct data sets supports
universal scaling precisely. Moreover, all other experimental studies we found relat-
ing to saturation dependence were compatible with the universal scaling. Thus we
concluded that universal scaling is the most commonly observed result, if not the
only result found.

When we address the question of how percolation theory should be applied to
predicting conduction properties, we have to adapt our analyses to the medium in
question. This process, as suggested in Chap. 3, may be very different for artificial
and natural media, and may also differ depending on whether the medium is a prod-
uct of aggregation or of fragmentation processes. The analysis presented will be
tailored to media formed chiefly through fragmentation processes, such as soils, but
the results appear to be valid for many other media as well. The particular analysis
is based on the Rieu and Sposito [26] random fractal model presented in Chap. 3.
Certainly a large amount of data do seem to be in accord with that model, so it is at
least widely applicable. In case the RS model does not describe the pore space, an
analogous treatment should be used; the basic procedure is outlined in Sect. 5.3. It is
of general importance to consider the limitations of our methods, and in what kinds
of systems we might expect them to be incomplete. For example, one can imagine
scenarios in which Archie’s law follows universal scaling for saturation dependence
but not for porosity dependence, consistent with typical phenomenological repre-
sentations of Archie’s law. While such a result is not generated specifically by the
methods described here, that does not mean that it is generally incompatible with
percolation theory.

What is novel in this method, and, in this book, new in this chapter, is the de-
velopment of tests to distinguish when geometry (the pore-size distribution) is im-
portant to the conductivity: this technique combines critical path analysis (chiefly
geometry) and percolation scaling (chiefly topology). As a result of such tests, we
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find that universal percolation scaling should explain a wide range of data; we can
also predict under what conditions nonuniversal results may apply, and what form
they should take, whether nonuniversal power laws or otherwise.

We also can now better identify complications from experiment. In particular,
when analysis leads us to expect universal scaling from percolation theory, but ob-
servations indicate otherwise, we find that factors other than nonuniversal exponents
of percolation frequently influence experimental results. For example, we have seen
evidence for experimental issues such as contact resistance, nonzero conductivity of
the solid phase, misjudging the value of a critical moisture content, and dissolution
of precipitated ions; these issues complicate the analysis and may, if not accounted
for, appear to support nonuniversal exponents. We analyze over 80 data sets for elec-
trical conduction or diffusion (and summarize prior analysis of another 50 data sets),
all of which appear consistent with universal scaling. Some of these data sets (e.g.,
Archie [10]) had been interpreted differently in the past to support the relevance of
nonuniversal exponents.

5.1 Hydraulic and Electrical Conductivities, and Electrokinetic
Coupling: Universal and Nonuniversal Exponents

The scaling difference between electrical and hydraulic conduction, though only a
matter of the specific power of a pore radius, produces a huge difference in measur-
able properties. We start by contrasting electrical and hydraulic conductivity, with
each expressed as a function of moisture content, and for completeness include elec-
trokinetic effects as well.

From Chap. 4 we had that the hydraulic conductance of a (roughly cylindrical)
pore of radius r and length l filled with fluid of viscosity η is

gh ∝
r4

η l
(5.1)

The electrical conductance of the same pore is

ge ∝ σb
r2

l
(5.2)

where σb is the electrical conductivity of the water or brine filling the pore; σb

is therefore proportional to the concentration of charge carriers. Equation (5.2)
is equivalent to stating that the resistance of a homogeneous wire of resistivity
ρ ≡ 1/σ , length l, and cross-sectional area A is ρl/A, a result familiar from elemen-
tary physics. Equation (5.2) implicitly assumes that conduction is uniform within
a given pore and would be relevant for the thermal conductivity as well, if it were
not for the fact that the solid medium typically has a higher thermal conductivity
than the fluid-filled pore space. Because electrokinetic effects (as opposed to ther-
mal conduction) also relate chiefly to the water-filled pore space, we include them in
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this discussion. In this case in a cylindrical pore, so that the total charge transport is
confined to a cylindrical shell of length 2πr and thickness Δr, rather than a cylinder
of cross-sectional area πr2. Therefore the conductance gek (the coefficient of pro-
portionality between electrokinetic current, Jek, and the gradient of pore pressure)
takes the form [27].

gek ∝
r
l

(5.3)

In finding the controlling conductance in an infinitely large system, critical path
analysis will yield the same critical radius rc for electrical as for the hydraulic con-
ductivity [28], and for that matter also for the electrokinetic current, since in all
three cases a pore’s conductance is a monotonically increasing function of r. Using
a network model on a cubic grid, Friedman and Seaton [28] showed that the rela-
tionship between the saturated electrical conductivity σS and the saturated hydraulic
conductivity KS is KS ∝ r2

cσS. Extending the relationship to include an electrokinetic
conductance, gek would yield ge

c ∝ rcgek
c . The proportionality constant r2

c between
KS and σS is therefore system dependent rather than universal, even when both
properties are determined by critical path analysis. We will see that the connection
between the two properties is even less straightforward, and that there is little hope
of deriving a rigorously predictive relationship between the two quantities – without
knowing much more about the medium than one is likely to know if one’s aim is
simply to obtain KS from σS.

Consider the implications of treating a self-similar medium. If a medium is frac-
tal, it is not possible to distinguish the size of a pore on the basis of its aspect ratio
l/r. More generally, while all pore shapes of a given size need not be identical, self-
similarity still requires that the distribution of pore shapes be independent of pore
radius. Thus self-similarity implies r ∝ l in the mean.

In a medium in which the pore space is self-similar, we can summarize the scaling
of various pore-scale conductances with r

gh ∝ r3 (5.4)

ge ∝ r1 (5.5)

and
gek ∝ r0 (5.6)

Of course the porous medium may be simulated using a network model with a fixed
grid, such that all pore lengths are identical even while the pore radii vary. In such
a case it would be necessary to increase by 1 the powers of r in Eqs. (5.4) through
(5.6), giving the original values of 4, 2, and 1, respectively. The particular results
derived below would then no longer hold, but analogues to these results are treated
in the problem sets.

Assume the RS model as a case consistent with l ∝ r. Consider that if a pore
has radius r with probability W(r), it must have volume r3, making the chance that a
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small volume chosen arbitrarily belongs to a pore of radius r proportional to r3W (r).
Thus, since W (r) ∝ r−1−Dp , we must have the probability of “landing on” a pore of
radius r be r3W (r) ∝ r2−Dp . Combine Eqs. (5.4) and (5.5) with the relationship

W (r)dr = W (g)dg (5.7)

as well as r3W (r) ∝ r2−Dp and the results

W
(

gh
)
∝
(

gh
)−Dp

3
(5.8)

and

W (ge) ∝ (ge)2−Dp (5.9)

follow. In Eq. (5.8) it is almost always true that 0 < Dp/3 < 1, while in Eq. (5.9)
−1 < 2−Dp < 0 as long as 2 < Dp < 3, which is typically the case. Thus, under
usual circumstances, the distributions of both the electrical and the hydraulic con-
ductances are power laws with exponents −α such that 0 < α < 1. But Balberg [2]
determined that if

W (g) ∝ g−α 0 < α < 1 (5.10)

for a distribution that continued to g = 0, then the conductivity described by that
distribution must obey

σ ∝ (p− pc)
α

1−α (5.11)

Thus Eqs. (5.8) and (5.9) give results that correspond to those treated by
Balberg[2] (1987) as generating nonuniversal exponents of percolation theory, ex-
cept that, as we will see, they cannot be extended to g = 0 as required for that deriva-
tion. On the other hand, the distribution of electrokinetic conductances follows the
form

W
(

gek
)
∝ δ (g−g0) (5.12)

(where δ is the Dirac delta function): all conductances have the same value, which
we designate g0. In a system with heterogeneous mineralogy, Eq. (5.12) would no
longer hold, because the streaming potential, which we do not discuss (see, e.g.,
Bernabe [29]), would also vary. However, even in a heterogeneous network there
could be no correlation between saturation and the conductance distribution, so ar-
guments that conduction (as a function of saturation) is governed by nonuniversal
exponents would not apply.

A network in which all conductances have the same value cannot generate a
nonuniversal exponent for the conductivity. Further, application of critical path
analysis to such a network cannot yield a saturation dependence of the electroki-
netic current Jek, since the critical conductance value will have no dependence on
saturation. Thus the only saturation dependence available for Jek is topologically
based, and must be given by the universal scaling of percolation theory (also given
in Surkov and Tanaka [30]). When the pore-size distribution is irrelevant to con-
ductance, the universal exponents of percolation theory describe the behavior of the
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saturation dependence of the conductivity over the full range of saturations and Jek

must depend on saturation as

Jek ∝ (θ −θt)
μ (5.13)

Normalization for φ = 1 of such a property that depends only on surface proper-
ties is subtler than we wish to address, so this concludes our discussion of electroki-
netic currents and we return to the electrical and hydraulic conductivities, whose
dependences on saturation and porosity have not yet been completely described.

From Chap. 4 the ratio of the (unsaturated) hydraulic conductivity K(θ) and its
value KS at saturation is

K(θ) = KS

[
(1−φ)+(θ −θt)

1−θt

] 3
3−Dp

(5.14)

Equation (5.14) was developed in critical path analysis as the cube of the ratio of
the corresponding critical radii. In analogy with Eq. (5.14) for hydraulic conductiv-
ity, we can write for electrical conductivity [31]

σ (θ) = σS

[
(1−φ)+(θ −θt)

1−θt

] 1
3−Dp

(5.15)

The only difference between the forms of Eqs. (5.14) and (5.15) is that the power
3/(3−Dp) in Eq. (5.14) is replaced by 1/(3−Dp) in Eq. (5.15); this is done because
the power of r for hydraulic conductivity (3 in Eq. (5.4)) is replaced by its power for
electrical conductivity (1 in Eq. (5.5)).

Combination of Eq. (5.14) with Eq. (3.22) for moisture content as a function of
hydraulic head h gives the following result for K(h):

K (h) = KS

[
1− 1− (hA/h)3−Dp

1−θt

] 3
3−Dp

(5.16)

In the case θt → 0, Eq. (5.16) reduces to K(h) = KS(hA/h)3 independent of pore-
size distribution. Usual soil physics treatments imply the dependence h−2. But for
θt > 0, K(h) in Eq. (5.16) follows an approximate rather than an exact power law,
and the approximate power is greater than 3. See the discussion following Eq. (5.19)
for further details.

5.1.1 Balberg Nonuniversality

Balberg [2] demonstrated explicitly that distributions such as Eqs. (5.8) or (5.9), if
continued to g = 0 (which represents no mathematical problem, i.e., the distribu-
tion is normalizable), lead to nonuniversal exponents for conduction. That is, the
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conductivity vanishes according to some nonuniversal power of the difference be-
tween a volume fraction and its critical value. If we adapt Eq. (5.11) for continuum
variable p to the case that the fractional volume is a water content we find

σ ∝ (θ −θt)
α

1−α (5.17)

Substituting the exponent from Eq. (5.8) [Eq. (5.9)] in Eq. (5.11) would yield the
nonuniversal exponent Dp/(3−Dp)[(Dp −2)/(3−Dp)]. However, the distributions
given in Eqs. (5.8) and (5.9) are truncated, both at a maximum g corresponding to
rm, and at a minimum g corresponding to r0. The cutoff at the minimum g is re-
quired by physical constraints, not mathematical conditions: a fractal medium with
r0 = 0 would have porosity φ = 1, zero solid volume, and infinite solid surface area
in a finite volume (see Chap. 7). Because these are clearly unphysical results, we do
not expect Balberg’s prediction of nonuniversal exponents to be observed in the sat-
uration dependence of hydraulic or electrical conductivity through water-filled pore
space. On the other hand, the Balberg derivation will be seen below to be useful in
the present analysis, because his results follow from Eqs. (5.18) and (5.19) below in
the limit φ → 1. This provides a mathematical check on the present results. In prin-
ciple the Balberg result also provides a functional envelope that constrains the actual
behavior. But it appears that for experimental results to resemble the nonuniversal
scaling results, the porosity must be on the order of 90%, an unusual condition for
geological materials.

In this discussion we have identified the scaling of the bottleneck resistance as a
function of moisture content with the scaling of the conductivity. In order to clarify
the correspondence with the results of Balberg [2], we make the same assumption
that was made there – that conduction on these paths is basically 1D in character –
then calculate the average resistance of the resulting paths. To do this, one integrates
over the bulk resistance distribution cutoff at g−1

c , with the result that < g−1 >−1 is
given in each case by g−α

c . Applied to Eqs. (5.14) and (5.15), the results are [32]

K(θ) = KS

[
(1−φ)+(θ −θt)

1−θt

] Dp
3−Dp

(5.18)

and

σ (θ) = σS

[
(1−φ)+(θ −θt)

1−θt

]Dp−2
3−Dp

(5.19)

differing from Eqs. (5.14) and (5.15) solely in the substitution of Dp for 3 in the nu-
merator of the exponent. While these exponents are exactly α/(1−α), as required
by Balberg [2], the arguments of the powers in Eqs. (5.18) and (5.19) are not simply
θ − θt, as in his result. While it is already clear that Eqs. (5.18) and (5.19) yield
Eq. (5.17) (with p− pc → θ − θt) in the case φ = 1, we still need to demonstrate
under what range of moisture contents Eqs. (5.18) and (5.19) are generally valid,
before we apply the condition φ = 1.
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While Eqs. (5.18) and (5.19) were derived to allow comparison with those of
Balberg[2] (1987), they may have significance beyond that comparison. For exam-
ple, derivation of Eq. (5.18) implies that Eq. (5.16) in the case θt = 0 would reduce
to the nonuniversal result K(h)∝ h−Dp , rather than h−3. Note that the observed scal-
ing of K with h is usually according to a power between 2 and 3: typically closer
to 3 than to 2, but not to precisely either 2 or 3 (Sposito, personal communication,
2002). Furthermore, K(h) tends to drop more rapidly for coarser soils than for finer
soils [33]. Such a result cannot be understood in terms of Eq. (5.16), which has no
pore-size information beyond hA. But if Dp tends to be larger for sandy soils than
for clayey soils [34], such a result is indicated, and is consistent with Eq. (5.18).
Without analyzing a large number of additional media, these comments need not be
conclusive to the typical physicist reading this passage, but they should have con-
siderable significance to the typical soil physicist. If these considerations are indeed
relevant, then the Balberg [2] treatment, which uses the average resistance along
the critical path rather than the largest resistance, is a significant refinement to the
simpler critical path treatment.

For typical values of the fractal dimensionality of soils (say 2.8; [35]), the differ-
ence between Dp and 3 in the numerator of the exponent (Eq. (5.14) vs. (Eq. (5.18))
and Eq. (5.15) vs. Eq. (5.19)), while small, may be detectable. However, there is
some theory-based uncertainty as to whether using Dp is really more accurate than
3: as Mallory [36] pointed out, the distribution of resistances on the backbone clus-
ters is not the same as in the bulk. Larger resistors are shorted more often than
smaller ones, so integration over the bulk distribution, even with the cutoff, is not
strictly justifiable. Our comparisons with experiment have thus far used Eq. (5.14)
rather than Eq. (5.18), and we continue to use that equation here for evaluation, but
we emphasize that the issue of which exponent is more appropriate and accurate
remains unresolved.

In order to complete our comparison with Balberg’s [2] results, we need to
discuss the relationship between critical path analysis and percolation scaling.
This analysis leads to inferences regarding Kozeny–Carman phenomenology and
Archie’s law as well.

5.1.2 Transition from Critical Path Analysis
to Percolation Scaling

Regardless of whether the exponent’s numerator contains 3 (Eqs. (5.14) and (5.15))
or Dp (Eqs. (5.18) and (5.19)), the critical path equations imply that when the mois-
ture content θ → θt, the conductivity (whether hydraulic or electrical) is governed
by the smallest pore in the system. But this contradicts percolation scaling, accord-
ing to which K and σ must both go to zero in the limit θ → θt, even if the smallest
pore r0 > 0. In fact, if r0 > 0, then one expects universal scaling to hold and

K (θ)
K0

=
σ (θ)
σ0

∝ (θ −θt)
μ (5.20)
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with the constants K0 and σ0 having appropriate units and physical foundations. So
we must address the issue of these two distinct dependences of K(θ) and σ(θ) in
the limit θ → θt, first considering hydraulic conductivity.

When θ is near θt, Eq. (5.20), which results from topology and percolation scal-
ing, must replace Eq. (5.14), which describes K(θ) based on the size (geometry)
of the bottleneck pore. Denote by θxK the moisture content at that cross-over or
replacement point. The value of θxK can be determined [37] by setting equal the
two dependences of K(θ), and also setting equal their derivatives, at some moisture
content θ = θxK . The use of these two conditions, requiring continuity of both K
and dK/dθ , yields both θxK and the constant prefactor K0 in Eq. (5.20). Notice that
we must have θt ≤ θxK .

The practical consequence of the analysis for the crossover moisture content is
that for any θ , the appropriate equation for K is the one that gives the larger value of
|dK/dθ |. That is, the form to choose is the one most sensitive to changes in moisture
content at the current moisture content. Equivalently, the less-sensitive dependence
is set equal to a constant. This procedure also permits us to find K0, the prefactor
of the hydraulic conductivity in the range of moisture contents where K is given
by universal percolation scaling [37](Hunt, 2004c). This is a valuable capability, as
earlier recognized by Berkowitz and Balberg [5](1993): “One might suggest that,
since the hydraulic conductivity can vary by orders of magnitude among rocks of
the same porosity, the coefficients of equality in the power law relationship may be
of greater significance than the critical exponent.”

For short-hand reference, Eq. (5.20) will be referred to as percolation scaling of
K, while Eq. (5.14), derived from critical path analysis, will be referred to as fractal
scaling. Although both ultimately derive from percolation theory, in Eq. (5.14) it is
the fractal characteristics, through the power-law pore-size distribution, which make
the dominant impact on K and show up in the exponent.

The result from the above analysis for θxK is [37]

θxK = θt +

[
μ (1−φ)

3/
(
3−Dp

)
−μ

]
(5.21)

Note that if consistency with the Balberg result for nonuniversal scaling is re-
quired, 3/(3−Dp) must be replaced by Dp/(3−Dp). For μ = 2 and typical values
of φ = 0.4 and Dp = 2.8 [35], Eq. (5.21) leads to θxK −θt ≈ 0.09, about 22% of the
range of moisture contents. Figure 5.1 demonstrates an example of this crossover
for the values of Dp, φ , and θt from the McGee Ranch soil [32, 39], along with
experimentally measured values of K. Dp ≈ 2.81 was obtained from porosity and
particle size data via Eq. (3.16), while θt was obtained by comparison with stud-
ies examining percolation scaling of the diffusion constant [38]. Note that the data
for Fig. 5.1 [40] were obtained in a field experiment (unsteady drainage), and stops
at a moisture content approximately equal to θxK . Lower moisture contents are as-
sociated with very small values of K and require much longer drainage times than
attainable in experiment. Thus the question of equilibration becomes very important
at moisture contents below θxK , a topic which is discussed in detail in Chap. 7.
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Fig. 5.1 The hydraulic conductivity of the McGee Ranch soil as a function of moisture content.
Data from Rockhold et al. [40]. The circles are the experimental values. The bold line is the com-
bined prediction of critical path analysis (Eq. (5.14)) and universal scaling near the percolation
threshold (Eq. (5.20)). The light line for θ > 0.15 is Eq. (5.20), for θ < 0.15, Eq. (5.14). The
dashed lines on either side of the bold line represent the approximate uncertainty in the prediction
due to the variability (9 samples) in the measured values of r0 and rm and the consequent uncer-
tainty in Dp. The critical moisture content, 0.107, for percolation was obtained from the regression
of Hanford site soils on the Moldrup relationship for the threshold moisture content for diffusion
(Chap. 7), and is shown by the vertical line. KS was chosen to be the largest K value measured.
The porosity was 0.444. Note that the unsteady drainage (field) experiment did not attain lower
moisture contents than approximately θxK, where K begins to drop precipitously

For completeness, Fig. 5.2 shows predicted and observed K(θ) for a multi-modal
pore-size distribution, treated analytically by assuming that each mode of the dis-
tribution follows a power law. An interesting aspect of a multi-modal pore-size dis-
tribution is its effect on the representation of K(h). While K(h) tends to follow a
power law in hydraulic head (either h−3 or h−Dp ) in the case of a simple power-law
pore-size distribution (with a positive curvature on a log[K] vs. h plot), when the dis-
tribution is bimodal this universal tendency is lost. Consider a case when the largest
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Fig. 5.2 The hydraulic conductivity of the North Caisson soil. The North Caisson soil had a mul-
timodal particle-size distribution. Like the McGee Ranch soil the theoretical comparison involves
no uncertain parameters. Data from Rockhold et al. [40]
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water-filled pore is in the upper mode of the pore-size distribution (say, with dimen-
sion Du), but the critical pore radius is in the lower mode (say, Dl). Then the two
powers 3−Du and 3/(3−Dl) will not combine to form 3, because the two values
of D are not the same. (Use of the Balberg technique is a bit more complex here, but
does not change the conclusions qualitatively.) If the lower mode of the distribution
has a very small associated porosity, such as a small silt fraction in a sandy soil,
then the usual fractal analysis will generate a value of Dl very close to 3, and K(h)
will have a cusp associated with a crossover to a much more rapid drop in K with
increasing h. Experimental data near the cusp may appear to have a negative cur-
vature on the typical plot because of the experimental uncertainty, but it is actually
positively curved everywhere except at the crossover. Interestingly, the variability in
K values increases rapidly below the crossover, since there is typically considerable
relative variability in the concentration of fine soil particles when the medium is
rather coarse. So if (for example) silt and clay compose on average 5% of a given
soil, one is likely to encounter samples with concentrations from 2 to 10%; this
variability can easily produce a variability in 1/(3−Dl) of 50–15, respectively [39].

Repeating for electrical conductivity the analysis that led to the hydraulic con-
ductivity crossover θxK from fractal to percolation scaling yields [31]

θxσ = θt +

[
μ (1−φ)

1/
(
3−Dp

)
−μ

]
(5.22)

[or, using Balberg’s approach, (Dp −2)/(3−Dp) rather than 1/(3−Dp) in the de-
nominator]. If the same values for θt = 0.04, μ = 2, Dp = 2.8, and φ = 0.4 are
substituted into Eq. (5.22) as into Eq. (5.21), one finds θxσ −θt ≈ 0.4 for the elec-
trical conductivity, rather than the value 0.09 found for the hydraulic conductivity.
That is, in the case of electrical conductivity, it is percolation scaling which dom-
inates over the entire range of water contents. Thus the saturation dependence of
the electrical conductivity, in contrast to that of the hydraulic conductivity, may to a
good approximation be written in the form of percolation scaling all the way to full
saturation where θ = φ [31]:

σ = σ0 (φ −θt)
μ (5.23)

K at saturation is typically determined through rc, but σ is not. When K at satu-
ration contains information from the entire distribution of pore sizes, but σ at satu-
ration is independent of the pore-size distribution, there is no possibility to infer the
hydraulic conductivity from the electrical conductivity.

Further, Eq. (5.23), in its simplicity, should recall Archie’s law, in which the
conductivity is written as a power of the porosity.

5.1.3 Return to Balberg Nonuniversality

Equations (5.21) and (5.22) allow us to set a limit on the applicability of Bal-
berg’s results for nonuniversal scaling. Consider the limit r0 → 0, i.e., that fractal
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fragmentation has proceeded indefinitely (and the limit that the power law of the
conductance distribution continues to zero conductance). From Eq. (3.27) it is seen
that φ → 1. If φ = 1, Eq. (5.18) yields

K = KS

(
θ −θt

φ −θt

) Dp
3−Dp

(5.24)

and Eq. (5.19) yields

σ = σS

(
θ −θt

φ −θt

)Dp−2
3−Dp

(5.25)

Further, Eqs. (5.21) and (5.22) both yield

θx = θt (5.26)

Thus in the limit r0 → 0, the percolation scaling regime disappears, while the
fractal scaling regime develops a dependence on the moisture content (θ −θt) to a
power, where the value of the exponent is related to the specific characteristics of
the fractal structure, and is thus nonuniversal [32]. The predicted powers are in exact
agreement with the results of Balberg if the average pathway resistance (rather than
the critical resistance) is used. In a formal sense, extending the Rieu and Sposito
fractal pore space model to pores of zero radius is consistent with continuing the
power law conductance distribution to zero conductance, which allows direct com-
parison of Eqs. (5.24) and (5.25) with results of Balberg [2]. While Eqs. (5.24) and
(5.25) predict that the nonuniversal behavior is valid for the entire range of (con-
ducting) moisture contents, i.e., θt < θ < φ , the universal contribution to the power
from μ should also be added on at least in the vicinity of θt. Although we have been
treating universal scaling effects separately, in the limit φ = 1 the nonuniversal scal-
ing results dominate over the entire range of moisture contents, and the additional
contribution from universal scaling (μ = 2) may simply be added on in the vicinity
of the percolation threshold at θt. Note that for typical values of Dp ≈ 2.8 in soils
[35], the nonuniversal contributions to the power of Eqs. (5.18) and (5.19) are 14
and 4, respectively, i.e., much larger than 2. However, such soils also typically have
φ ≈ 0.4, and the argument of the power (1− φ) + θ − θt then becomes approxi-
mately 0.6+θ −θt. Such a function does not present as a power law when graphed
logarithmically.

5.1.4 Inferences on Porosity Dependences at Full Saturation:
Archie’s Law

Result Eq. (5.23) also allows further discussion of the electrical conductivity under
saturated conditions. It has been shown [41] that for natural media with insignifi-
cant clay content, θt = pcφ , with pc a numerical constant independent of porosity.
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While the motivation of that derivation was theoretical, it was also shown that exper-
imental data provided additional confirmation. The basis for this proportionality is
easily understood in terms of a network of identical tubes: when a fraction pc of the
tubes is filled with water, the water-filled tubes percolate and the moisture content
is pcφ , the result can be generalized heuristically to an arbitrary network with un-
known pc. Such an argument is really in the spirit of the first continuum percolation
calculation of a critical volume fraction [42]. Combining this proportionality with
the experimentally obtained approximation pc ≈ 0.1 (further discussion in Chap. 7),
Eq. (5.23) may be rewritten [31] as

σ ∝ (φ −0.1φ)μ = (0.9)μ φμ (5.27)

Equation (5.27) is in the form of Archie’s law, and the result implies that the ob-
served power μ of the porosity should be 1.3 in 2D systems and 2.0 in 3D systems.
Berkowitz and Balberg [5] suggested that Archie’s law might be a consequence of a
critical moisture content that is zero, but did not mention the possibility that it would
arise as a consequence of a proportionality of θt to φ . In fact we find experimental
evidence for both cases.

Although we do not expect that nonuniversal scaling will apply to the satura-
tion dependence of conduction properties, there is nevertheless a possible relevance
of nonuniversal scaling to the porosity-dependence of the conductivity (hydraulic
or electrical) of saturated media. Such a topic relates to a wider range of models
of porous media than those we have concentrated on so far, including diagenesis.
Nonuniversal exponents can, however, also result from pore-size distribution ef-
fects, and sometimes be implied by inappropriate analysis of experimental data.

Diagenesis is a physico-chemical process by which rock is altered at the grain
scale. For example, after burial, sediments may be exposed to thermal, chemical,
and pressure gradients that drive dissolution and precipitation of minerals. One can
envision a precipitation process by which sand grains grow concentrically, except
where they are already in contact with other grains. Such simplified models of dia-
genesis are discussed by Sahimi [43, 44] and bear some resemblance to the Swiss
cheese and cannonball rock models for generation of nonuniversal exponents of
conduction. Certainly the progression to systems with smaller porosity is geometri-
cally distinct from, e.g., drying of a fractal medium. In the former case, pore shapes
change continuously as the particles dilate, but in the latter, pore shapes must be
independent of pore size; thus in the latter case both the largest water-filled pore
and the critical pore radius have shapes independent of moisture content and both
the connectivity of the water-filled medium and the sizes of the water-filled pores
change with saturation, but not the porosity. In diagenesis, however, as the pore sizes
are reduced, the connectivity of the medium remains constant (at early stages), but
the porosity changes.

An important component of models for diagenesis is that they allow different
dependences of the electrical conductivity on saturation and on porosity. Because
the pore necks may diminish rapidly with diminishing porosity, it becomes possible
to develop a nonuniversal dependence of the conductivity on porosity. This allows a
more general phenomenological representation of Archie’s law:
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σ = σ0 (S−Sc)
μ φ n (5.28)

with μ and n being different powers. We still expect μ to be 2.0 in 3D and 1.3
in 2D. However, n could respond to different influences, and variation in values
of n could have different interpretations. What many models of diagenesis have in
common (and also with the models of Feng et al. [9], 1987) are (1) reliance on a
specific pore geometry and (2) dependence of the relevant pore radii on porosity.
While this research direction is not incompatible with percolation theory (indeed,
many of its papers have been developed within the framework of percolation theory
and examination of nonuniversal exponents), it is not a necessary development of
percolation theory. Even though an extensive literature exists on this subject, since
we have found that in many cases more mundane explanations exist for results that
at first glance might appear to imply nonuniversal exponents, we will not explore
the literature on diagenesis. For a good early review on diagenesis, the reader is
referred to Sahimi [43, 44]. But we will continue using μ for both powers (and μ∗

for, e.g., pore-size induced deviations from 2) as well as the logical development of
this subsection.

5.1.5 Universal Exponents Masquerading as Nonuniversal

Even as far as the porosity dependence of the electrical conductivity is concerned,
we find a great deal of evidence to support the relevance of universal exponents of
percolation theory. For simulations of 2D conduction, Kuentz et al. [17] effectively
found μ = 1.28± 0.07 (Table 5.1), while experiments on 3D systems compiled by
Krohn and Thompson [45] yield μ = 1.86± 0.19. Thompson et al. [16] give more
than 40 values (Table 5.2), also with μ around 1.8. Balberg [2] and Krohn and
Thompson [45] have two different perspectives on the wider range of μ values re-
ported in the literature at that time; by constraining their results to systems that were
consistent with each other, Krohn and Thompson [45] produced a much smaller
variation in μ values. Nevertheless, the measured porosity exponent in Archie’s law
need not be precisely 2.0. We have already mentioned the potential relevance of
diagenesis to series of related rocks with decreasing porosity. There exist also pos-
sible influences of pore-size variability. Data analysis may also include effects of

Table 5.1 Archie’s law exponents from 2D simulations [17]

System m

Random 1.22
Random 1.21
Triangle grains 1.26
Triangle pores 1.35
Diamond grains 1.24
Diamond pores 1.38
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Table 5.2 Archie’s law exponents from 3D rocks (mainly sandstones, from Thompson et al. [16]).
The minimum l value was a theoretical estimation of Thompson et al. [16]. They determined
the maximum l from mercury porosimetry. The Dp value calculated for the pore space is from
Eq. (2.16)

Price river (depth) D calculated Porosity Min l Max l m

67.5 2.975881 0.0828 0.02 0.72 1.78
93.8 2.975627 0.1265 0.02 5.14 1.81
93.2 2.975393 0.116 0.02 3 1.77

111.3 2.977919 0.1165 0.02 5.46 1.84
115 2.97452 0.1485 0.02 10.99 1.83
117 2.972552 0.1586 0.02 10.8 1.94
122.6 0.1282 0.02 1.84
125.4 2.976145 0.1192 0.02 4.09 1.87
128.1 2.977859 0.1275 0.02 9.47 1.88
130.3 2.974817 0.1095 0.02 2 1.85
132 2.974178 0.1242 0.02 3.4 1.9
137.3 2.974131 0.12 0.02 2.8 1.89
139.9 2.976272 0.1196 0.02 4.29 1.88
148.4 2.973592 0.1247 0.02 3.1 1.89
160.2 2.979283 0.1071 0.02 4.74 1.85
161.7 2.974569 0.1517 0.02 12.9 1.66
164.3 2.973942 0.1508 0.02 10.6 1.49
169.3 2.975546 0.1427 0.02 10.85 1.84
178.4 2.97544 0.1287 0.02 5.46 1.81
178.2 2.978037 0.1056 0.02 3.22 1.79
178.1 2.978725 0.0991 0.02 2.7 1.74
183.4 2.972752 0.1223 0.02 2.4 1.92
181.8 2.964996 0.123 0.02 0.85 1.88
189.1 2.974282 0.0922 0.02 0.86 1.77
197.1 2.971668 0.1044 0.02 0.98 1.77
199.7 2.979947 0.0848 0.02 1.66 1.78
203.8 2.977885 0.0656 0.02 0.43 1.69
210 2.981212 0.0359 0.02 0.14 1.57
224.8 2.971516 0.0751 0.02 0.31 1.78
233.1 2.972501 0.0726 0.02 0.31 1.79
265.8 2.978607 0.0526 0.02 0.25 1.77
607.3 2.97957 0.0943 0.02 2.55 1.81
626.2 2.984087 0.0691 0.02 1.8 1.72
637.8 2.984759 0.0658 0.02 1.74 2.24
652.9 2.981554 0.068 0.02 0.91 1.81
652.9 2.986981 0.042 0.02 0.54 1.66
Boise Table 1 2.948788 0.35 0.02 90 2.12
Boise Marsing 1 2.961246 0.239 0.02 23 2.1
Boise Silver 1 2.98126 0.097 0.02 4.63 2.37
Berea 2.96568 0.205 0.02 16 1.76
Navajo 2.973338 0.178 0.02 31.18 1.71
Coconino 2.975293 0.099 0.02 1.36 1.86
Nugget 2.981648 0.109 0.02 10.77 1.87
St Peters 2.983855 0.093 0.02 8.45 1.73
Tennessee 2.978262 0.062 0.02 0.38 1.67
Red Navajo 2.963027 0.23 0.02 23.5 1.8
Layered Navajo 2.964098 0.2295 0.02 28.5 1.76
White Navajo 2.96259 0.2676 0.02 82.5 1.5
Carmel 2.969541 0.1161 0.02 1.15 1.66
Austin Chalk 2.934058 0.2881 0.02 3.46 2.22
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incorrect estimations of a relevant critical volume fraction, in the case that θt is not
zero. We will later see that such effects can be detected already in the saturation
dependence of σ .

While the effects of connectivity and tortuosity (represented by percolation scal-
ing) appear to have the dominant effect on μ for electrical conductivity, the pore-size
distribution may introduce some variability. In particular, if θxσ < φ (the crossover
for the electrical conductivity is less than the porosity) then the pore-size distribu-
tion will modify somewhat the value of μ expected from experiment. In such a case,
the electrical conductivity at saturation should be larger than the value predicted
from Eq. (5.20) by a factor F:

F =
[

1−
(
φ −θxσ
φ −θt

)]μ [ 1
1− (φ −θxσ )/(1−θt)

](Dp−2)/(3−Dp)
(5.29)

Because F ≥ 1, one might think that representing the electrical conductivity as
a power of the porosity would always yield a power μ∗ ≥ 2 in a fully 3D medium.
Accordingly, one might then also assume that since the exponent (Dp −2)/(3−Dp)
for the electrical conductivity would be replaced by Dp/(3−Dp) for the hydraulic
conductivity, approximate powers for K should tend to be larger than for the electri-
cal conductivity. These conclusions cannot be generally confirmed, however, since
the actual result for the power of the porosity depends on the precise sequence of
media considered. The value of a particular model is that one can directly analyze
different sequences of media.

Consider If one holds the ratio rm/r0 constant while changing the porosity, then
Dp is a diminishing function of the porosity, making high-porosity media more
nearly commensurate with universal scaling than lower-porosity media, and thus
tending to produce a porosity exponent less than 2, not greater. If, on the other hand,
one holds Dp constant (forcing an increase in rm/r0 with increasing φ ), then there
is a tendency for an effective μ∗ to exceed 2 and to be larger for larger values of
Dp. These tendencies can be shown graphically as well (exercise 5.4). In this case
larger values of Dp correspond to larger disorder (larger ratio rm/r0). For example,
for φ = 0.4, the effective (and approximate) μ∗ rises rapidly from 2.3 to 8.3 as Dp

increases from 2.9 to 2.97.
It would be nice to use a comparison with experimental data to make further

tests of the present concepts. Because of the tendency for the exponents to be clus-
tered near μ = 2, the best data set for such comparison might appear to be that of
Thompson et al. [16]. But in order to make a comparison with the data compiled
by Thompson et al. [16] it would be necessary to use values for Dp calculated from
Eq. (3.16) in contradiction to the result used by Thompson et al. [16]: Eq. (3.17).
Such a calculation is rendered unreliable since Thompson et al. [16] did not actually
measure r0; rather they assumed that r0 was the same for all of their media. Because
the comparison (presented in the first edition of this book) was only suggestive, not
conclusive, and we have in the meantime many additional data sets to analyze, we
omit from the present edition the investigation of such variability of μ∗ as may result
from pore-size distributions and note only that the typically observed discrepancies
of 10–15% would not be unusual.
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We now pose the question: Which porous media have the appropriate structure
to make the simple scaling result Eq. (5.20) a valid predictor of the hydraulic or
electrical conductivity under conditions of full saturation? Models for the hydraulic
conductivity along these lines are known as Kozeny–Carman as they are known
as Archie’s law for the electrical conductivity. The analysis will be appropriate for
porous media which are well described by fractal models, but it may be approx-
imately valid for other media to the extent that they can be approximated by the
fractal model. Also it is assumed that the conduction in these systems is 3D; a sim-
ple alteration extends the derivation to 2D.

5.1.6 Regions of Applicability

Of the three parameters (rm/r0, Dp, and φ ) which describe a fractal pore space in
the RS model, only two are independent, so we represent the entire range of acces-
sible parameters in a 2D parameter space of porosity and fractal dimensionality. If
Eqs. (5.21) and (5.22) are solved for θx = φ(1− 0.1), each solution represents a
distinct curve in this space (we used 0.1, mainly because field soils rarely saturate
above 90%, and we remind the reader of the quote from Suleiman and Swartzen-
druber [46] cited in Sect. 3.2.1). Two sets of curves (Fig. 5.3) divide the parameter
space into three regions. For the leftmost region both the hydraulic and the electrical
conductivities can be represented as proportional to φ 2, and they are thus propor-
tional to each other. While this region is large, it represents relatively ordered media,

D
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Fig. 5.3 Plot of the φ −Dp (porosity–fractal dimension) plane showing regions of validity for
percolation scaling. Below the electrical conductivity lines scaling is valid for electrical conduc-
tivity; below the hydraulic conductivity lines, scaling is valid for the hydraulic conductivity. The
upper lines represent solutions of Eqs. (5.21) and (5.22) under the conditions that θxK and θxσ ,
respectively, are equal to 0.9φ . The lower lines represent the solutions of the equivalent equations
generated by the Balberg [2] theoretical framework Bemidji data are from W. Herkelrath (unpub-
lished), sandstone data are from [16], and Hanford data are from [37]
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and few natural media are found there (though many artificial media are because of
their near uniformity). This represents a crucial difference between natural and ar-
tificial media, and means that conclusions reached by studying artificial media will
typically be unsuitable for natural media. In the middle region it is still reasonable
to represent the electrical conductivity in the simple scaling form, but the hydraulic
conductivity develops a more complicated dependence on φ , so there is no simple
relationship between the two. In the rightmost region, neither property is a simple
power of φ and K ∝ σr2

c , just as in Friedman and Seaton [28] (the reader should
check that this conclusion is independent of the assumption of self-similarity). But,
if the fundamental parameters of a porous medium are not known, it will not be
possible to predict which of the three regions a system will be found in, nor would
it be possible to determine r2

c , if it could be guessed that the rightmost region were
appropriate.

For porosities just above the relevant crossover, each conductivity may be ap-
proximated as a nonuniversal power of φ , with μ∗ > 2 for the case that Dp is held
constant. An equivalent result is obtained by holding the porosity constant and in-
creasing Dp past its crossover. So crossing the parameter space from bottom to top
or, equivalently, from left to right, each conductivity solution moves from the univer-
sal scaling region, through a region in which the conductivity can be approximated
by a nonuniversal scaling power, before entering a region where it is clearly inappro-
priate to use simple scaling results. This process sets on at smaller values of Dp in
the hydraulic conductivity than in the electrical conductivity. Note also that smaller
values of Dp for a given φ are associated with narrower pore-size distributions, sup-
porting (and allowing testing of) the common assumption that larger values of the
power of the saturation dependence of the electrical conductivity arise from wider
distributions.

In Fig. 5.3, the Hanford site soils (Table 5.3) are well out of the regime of va-
lidity of Eq. (5.20) for K, but tend to cluster about the boundary for the validity
of Eq. (5.20) for σ . For small porosities, such as in rock, the region of validity of
Eq. (5.20) for K may approach actual conditions. Thus there appears to be a greater
justification for representing K as a power of φ in rocks than in soils, though even in
rocks the power is likely to be larger than 2. This is why we plot the sandstone data
from Thompson et al. [16] on the same figure. Interestingly, if the correct expres-
sion relating porosity and the fractal dimensionality (Eq. (3.16)) is used, the data
compiled by Thompson et al. [16] follow the same trend as the Hanford Site soils,
near the margin of the validity of Archie’s law for the electrical conductivity, mean-
ing that their exponents might well differ slightly from 2, as they indeed do. But if
the Thompson et al. [16] result for Dp is used, the rock samples fall along a curve
connecting the origin to the lowest porosity value of the Hanford site soils, clearly
a quite different tendency. This supports our contention that the Thompson et al.
[16] calculation of Dp is incorrect. It also suggests an intriguing possible connec-
tion between transport and structure: some aspect of transport during depositional
processes may prevent too large a value of the fractal dimensionality, i.e., too great
a disorder.
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Table 5.3 (from Hunt and Gee [38]). Physical characteristics of Hanford site soils. Except for the
soil texture and KS (from Khaleel and Freeman [78]), all the primary data came from Freeman [79]

Soil Dp Ds φ θd Texture KS hA

VOC 3-0647 2.773 2.8 0.515 0.134 Loamy sand 0.0002 85
VOC 3-0649 2.823 2.898 0.539 <0.12 Loam ng 530
VOC 3-0650 2.863 2.917 0.624 0.37§ Sandy loam 2.6E-07 51.5
VOC 3-0651 2.857? 2.87 0.374 0.126 Loamy sand 0.0094 25
VOC 3-0652 2.878 2.56 0.352 0.11 Sand 0.00037 58
VOC 3-0653 2.9? 2.874 0.419 0.12 Sandy loam 5.8E-06 55
VOC 3-0654 2.931 2.916 0.466 <0.18 Sandy gravel 0.00027 40
VOC 3-0654-2 2.849 0.419 0.11 Sandy gravel 0.0136 3
VOC 3-0655 2.927 0.4 <0.15 Silty, sandy gravel 0.000158 13
VOC 3-0657 2.955 0.359 <0.1 Gravelly sand 0.0136 30
ERDF 4-1011 2.871 2.816 0.44 0.125 Loamy sand 0.00001 56
ERDF 4-0644 2.906 2.81 0.38 0.115 Loamy sand 5.7E-06 100.5
B8814-135 2.891 2.727 0.356 0.14 Silty sand 1.36E-06 135
B8814-130B 2.886 2.682 0.329 0.11 Loamy sand 4.1E-07 46
FLTF D02-10 2.778 2.776 0.496 0.2 Silt loam 0.00012 100
FLTF D02-16 2.718 2.71 0.496 0.18 Silt loam 0.00012 150
FLTF D04-04 2.806 2.804 0.496 0.2 Silt loam 0.00012 100
FLTF D04-10 2.778 2.773 0.496 0.19 Loam 0.00024 100
FLTF D05-03 2.737 2.735 0.496 0.205 Loam 0.00029 130
FLTF D07-04 2.796 2.791 0.496 0.198 Silt loam 0.00012 98
FLTF D09-05 2.8 2.83 0.496 0.19 Loam 0.00029 72
FLTF D10-04 2.775 2.769 0.496 0.21 Silt loam 0.00012 90
FLTF D11-06 2.803 2.798 0.496 0.2 Silt loam 0.00012 76
FLTF D11-08 2.802 2.797 0.496 0.22 Silt loam 0.00012 80
Inj. Test Site 1-1417 2.919 2.876 0.566 0.088 Sand 0.00014 35
Inj. Test Site 1-1418 2.953 2.762 0.313 0.08 Gravelly sand 0.00014 2
Inj. Test Site 2-1417 2.9 2.719 0.328 0.033 Sand 0.00014 20
Inj. Test Site 2-1637 2.932 2.708 0.313 0.07 Sand 0.0042 11
Inj. Test Site 2-1639 2.951 2.654 0.239 0.06 Sand 0.0012 5
Inj. Test Site 2-2225 2.844 2.548 0.322 0.06 Sand 0.0055 15
Inj. Test Site 2-2226 2.925 2.573 0.229 0.06 Sand 0.015 7
Inj. Test Site 2-2227 2.919 2.666 0.271 0.056 Sand 0.0087 5.4
Inj. Test Site 2-2228 2.904 2.376 0.212 0.047 Sand 0.021 10
Inj. Test Site 2-2229 2.902 2.465 0.234 0.069 Sand 0.0064 11
Inj. Test Site 2-2230 2.853 2.8 0.447 0.11 Sand 0.00023 40
Inj. Test Site 2-2231 2.905 2.716 0.318 0.13 Gravelly sand 0.0075 70
Inj. Test Site 2-2232 2.88 2.508 0.272 0.08 Sand 0.041 14
Inj. Test Site 2-2233 2.9 2.492 0.243 0.075 Sand 0.017 11
Inj. Test Site 2-2234 2.81 <2 0.224 0.025 Sand 0.021 80
US Ecology MW10-45 2.859 2.634 0.34 0.066 Sand 0.00531 15.2
US Ecology MW10-86 2.764 2.569 0.397 0.069 Sand 0.0197 20
US Ecology MW10-165 2.8299 2.511 0.324 0.058 Sand 0.00663 22
218 W-5-0005 2.894 2.765 0.366 0.12 Sandy loam 0.000067 35
North Caisson 2.806 0.08 Sand 0.02 5
McGee Ranch 2.832 0.107 Silt loam 0.001 45
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We note in conclusion some potentially relevant work based on the effective-
medium approximation (EMA) and a related paper using percolation theory. Sahimi
[43, 44] gave a derivation of the EMA to produce Archie’s law. The exponent he
used, μ∗ = z/(z− 2), is appropriate for spherical particles but should be larger for
flatter particles, such as clay grains [47]. Bussian [48] generalized the self-similar
EMA to include finite rock conductivity. He found μ∗ > 3/2 in almost all cases,
arguing that it was due to the finite rock conductivity resulting from clay particles.
Hilfer [3] also used percolation theory to find μ∗ ≥ μ . Sahimi [43, 44] criticized this
result on the basis of its quasi-universality (and his understanding of the larger vari-
ability of μ∗). Clearly there is some variability in the exponent, but not a great deal,
and it appears that Hilfer’s result is more general and more relevant than Sahimi
indicated. In any case, Hilfer’s work is related to the present treatment.

5.2 Electrical Conductivity as a Function of Saturation: Trends
and Potential Complications in Experimental Data

If the percolation interpretation of Archie’s law is correct at full saturation, then
the electrical conductivity must follow Eq. (5.20) as a function of saturation. In
this section, we examine data relating to electrical conductivity as a function of
saturation.

Electrical conductivity is frequently analyzed in terms of a “formation factor.”
We avoid this analysis because it is rooted in assumptions (which we have shown
to be unjustified) regarding a universal relationship between the electrical and the
hydraulic conductivities. We will continue use of the concept of tortuosity, despite
some uncertainty in its definition far from the percolation threshold, and despite
possible confounding influence of other factors, such as a nonzero critical volume
fraction for percolation.

We performed extensive analysis of 11 data sets for the electrical conductivity as
a function of saturation σ(θ) (Ewing and Hunt, 2006). This analysis (1) showed that
the typical formula used in the soil physics community for the saturation dependence
of the electrical conductivity is inferior in description of the data to percolation scal-
ing, even for the data set it was originally developed for (and has a less satisfying
physical basis), (2) identified several errors in analysis, which could lead to a false
estimate for the actual experimental power on σ(θ), and (3) identified several phys-
ical complications which can make experimental data appear to have a lower degree
of universality than implied by percolation scaling. One such complication involves
overlooking effects of contact resistance, which can prevent the data from obeying
a power law even though the data approach the appropriate power law asymptoti-
cally in the large resistance (low moisture content) limit. Another complication is
overlooking effects of “residual” salinity, i.e., cases where the salinity of the in-
jected fluid is less than the salinity in situ. This can arise from dissolution of ions
in the solid medium, and is most important in the case where the injected fluid has
low conductivity. Such an influence introduces an additional saturation dependence,
though it is easily modeled.
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In both petroleum engineering and soil science, it is frequently assumed that the
electrical conductivity has contributions from both the solid and the liquid phases
[49–51]. A widely used relationship in soil science is

σ (θ) = σs +σbθ (aθ +b) (5.30)

where the σs term denotes a “surface” or “solid” term [50, 51]. Interpreted as the
contribution of hydrated clay minerals, this term is considered independent of mois-
ture content except under very dry conditions (discussed in Sect. 6.4). The second
term, attributed to conducting fluid in the pore space, is the product of the con-
ductivity of the liquid phase, the water content, and a “transmission coefficient” (a
fudge factor) which is itself a linear function of the water content [51]. Over a lim-
ited range of moisture values, θ(aθ + b) can present as (θ − θc)μ for μ = 2.0 (as
can be seen in Fig. 5.4), so this traditional phenomenology may mask a universal
dependence compatible with Archie’s law.

Because the solid phase is always well above the percolation threshold, a “sur-
face” or “solid” conductivity term might be taken to be independent of saturation.
In Sect. 6.4 we discuss data that show a pronounced dependence of the clay conduc-
tivity on water contents; at sufficiently low water contents it may be necessary to
expand the analysis, depending on the mineralogy of the medium. The solid phase
conductivity becomes more important as the water content is reduced [52, 53], ap-
proaching the (water) percolation threshold from above. So while surface conduc-
tivity is typically neglected, it may dominate the system conductivity if the solution
electrical conductivity is low, the medium has low porosity or a low degree of satu-
ration, and/or the medium has a high specific surface [54].

Universal formulations of the electrical conductivity were derived for a conduc-
tivity ratio σb/σs that is very large or infinite. Complications arise if this ratio is
small. In a number of the media we analyzed, there is evidence of a significant
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Fig. 5.4 Analysis of data by Rhoades et al. [51], data for the saturation dependence of the electrical
conductivity. The percolation scaling result (Eq. (5.31)) is compared with the phenomenology
(Eq. (5.30)) of Rhoades et al. [51]. Figure 5.4a, linear plot, Fig. 5.4b, logarithmic representation.
Note that Fig. 5.4b clearly shows the superiority of Eq. (5.31)
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contribution of the solid medium to the electrical conductivity, implying that the
conductivity ratio is not particularly large. In such cases, individual conducting path-
ways will tend to include both phases. We see therefore three approximations in
order of increasing complexity:

1. The solid phase is assumed to have zero conductivity, so current flows through
the liquid phase only (Eq. (5.20)).

2. The solid and liquid phases are assumed to conduct strictly in parallel, and so a
constant solid phase conductivity σs is added to Eq. (5.20):

σ (θ) = σs +aσb (θ −θt)
μ (5.31)

This parallel approach is quite common, and yet it is most appropriate for σs �
σb in which only a negligible quantity of current flows from one phase to another.

3. If the solid and fluid conductivities do not have a large contrast, then an optimized
path of conduction will sometimes go through the solid phase in order to bypass
a more tortuous path through the liquid, and sometimes through liquid to bypass
a higher resistance solid path. In other words, the two phases will not conduct
strictly in parallel; in fact, the degree of interaction in the conducting pathways
will vary with the relative conductivities of the two phases, as well as with the
liquid content. There is no universally agreed-upon mathematical formulation for
this interaction, which has been an active area of research for decades. We con-
jecture that such a phenomenon would reduce the value of μ by the tortuosity
contribution to the conductivity exponent [55]. This could reduce the exponent
on χ to 2ν = 1.76 when there is little contrast between solid and liquid conduc-
tivities.
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Fig. 5.5 Values of the apparent conductivity exponent (logarithmic derivative) μ∗ calculated across
a moving range of water contents Δθ = 0.01 for the given porosity and several values of Dp.
Data following some of these curves could be interpreted as having a nonuniversal value of the
conductivity exponent
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When Dp increases slightly past the limit of validity of Eq. (4.20), electrical
conductivity is under-predicted by percolation scaling [31]; with further increases
in Dp, percolation scaling is no longer a useful framework for analysis. For some
combinations of φ and Dp the difference is subtle (Fig. 5.5), and data may indicate
percolation scaling (Eq. (5.20)) with an exponent μ∗ > μ . We do not analyze data
to test this suggestion, however.

When data are within the range of validity of percolation scaling, and yet indicate
a nonuniversal value μ∗, caution is still advisable. For example, incorrect estimates
of θt can produce apparently nonuniversal values for μ∗. Hence simultaneous fitting
for both θt and μ has built-in pitfalls: under-estimation of θt can result in appar-
ent values of μ∗ > μ , while over-estimation of θt can produce values of μ∗ < μ
(Fig. 5.6). As a practical matter, it is best to start with the assumption that uni-
versality is observed, and only resort to nonuniversal exponents when other, more
mundane explanations have been exhausted. We try to minimize effects of incorrect
estimations of θt, including exclusion of the possibility of its existence, probably
contributing to our tendency to generate universal scaling where others have not.
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Fig. 5.6 Values of the apparent conductivity exponent (logarithmic derivative) μ∗ calculated across
a moving range of water contents Δθ = 0.01 for the given porosity and two values of Dp for cases
where the critical water content is underestimated, correct, and overestimated

5.2.1 Comparison with Experiment

Here we apply the percolation scaling framework to analysis of experimental data.
To the best of our knowledge, all of these data are from water-wet media, and hys-
teresis (if present) is ignored. The data sets examined (Table 5.4) represent both
coarse and fine soils, and both igneous and clastic sedimentary rock. We discuss
some of these data sets, with the presentation proceeding from simpler to more
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complex cases. The complex cases illustrate how a sound theoretical footing can
help handle potentially confounding issues.

The data of Rhoades et al. [51] (Fig. 5.4) were originally plotted in a form that
subtracted out any surface or solid conductivity σs, so our analysis simply involved
fitting values for a and θt. Our Eq. (5.31) yields the same R2 as Rhoades et al.’s
Eq. (6), but where their a and b are meaningless fitting parameters, our parameters
a and θt have physical significance: a gives the medium’s tortuosity at saturation,

Table 5.4 Sources of electrical conductivity data examined. All data except Ren’s (1999) were
obtained by digitizing published figures

Source Medium Parameters fit∗ Slope Intercept R2 Comments

Archie, Trans.
AIME [10]

Gulf coast
sandstones

φc = 0.020,
a = 1.591

1.000 0.0023 0.746 No units given in
figure

Nacatoch sand φc = 0.010,
a = 1.067

1.000 0.0019 0.852

Rhoades et al.,
Soil Sci. Soc.
Am. Proc. [51]

Indio vfsl θc = 0.073,
a = 1.232

1.000 −0.0053 0.982 Surface
contribution (if
any) removed
in figure

Abu-Hassanein
et al., J.
Geotech.
Eng. [59]

Soil A: 7% S,
40% c

θc = 0.011,
σr = 0.725

0.991 0.0011 0.973 Each soil tested
at three bulk
densities; all
densities
lumped
together in our
analysis

Soil B: 7% S,
53% c

θc = 0.064,
σr = 0.787

0.843 0.0210 0.823

Soil C: 38% S,
40% c

θc = 0.020,
σr = 0.112

0.919 0.0023 0.880

Soil D: 35% S,
20% c

θc = 0.000,
σr = 0.239

0.900 0.0038 0.865

Roberts and Lin,
Water Resour.
Res. [64]

Tuff: distilled
water

θc = 0.0024,
σr = 0.0039
(both)

0.715 0.0000 0.962 σb = 0.0 (DW),

J-13 water 1.215 −0.0000 0.916 σb = 0.0256
(J-13)†

Tusheng Ren,
unpublished
data, 1999

Silica sand θc = 0.066,
a = 2.703
(σs = 0.396)

0.972 0.0143 0.948 Conductive solid
phase, six
solution
concentrations†

Binley et al.
[13–15]

Sandstone (θc = 0.000)
aσb = 0.1466,
σs = 0.0020

1.000 −0.0004 0.965 Cassiani et al.
[56] give
aσb = 0.143,
σs = 0.0156

Rinaldi and
Cuestas, J.
Geotech.
Geoenv.
Eng. [58]

Loess, 16% clay θc = 0.040,
a = 2.132,
σr = 0.085

1.028 −0.0032 0.980 4 solution
concentrations
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Table 5.4 (continued)

Kechavarzi and
Soga, Geotech.
Test. J. [62]

Clean sand θc = 0.000,
aσb = 20.67,
and
cρc = 0.792
(Test 1), 0.705
(Test 2), and
0.702 (Test 3)

0.980 0.0114 0.980 Three
replications‡.
Miniature
resistivity
probe appears
to have contact
resistance

Mori et al.,
Vadose Zone J.
[60]

Tottori dune sand θc = 0.000,
a = 1.417

1.060 −0.0739 0.982 Three solution
concentrations

Tuli and
Hopmans, Eur.
J. Soil Sci. [61]

Oso flaco fine
sand

θc = 0.065,
a = 1.637,
σr = 0.384

1.002 −0.0011 0.984 σs value given.
Four solution
concentrations

(σs = 0.0725)

∗Values in parentheses were given rather than fit. Units omitted from table for simplicity; see
corresponding figures for actual units. †Where different solution concentrations were used, only σb
varied: other parameters were held constant across all concentrations. ‡Fitting allowed a different
value of ρc for each replication, but kept other parameters constant across all replications.

while θt is the critical volume for percolation. For the Indio soil represented here,
we have a tortuosity at saturation of 1.232, and a critical volume fraction θt = 0.073.
Plotting the same data in logarithmic coordinates (Fig. 5.4b) highlights the percola-
tion scaling formulation’s superiority at low water contents.

Archie’s [10] seminal paper presented electrical resistivity data for a number of
saturated consolidated Gulf Coast sandstones, and for samples of saturated uncon-
solidated Nacatoch sand. Fitting Eq. (5.23) to his sandstone and sand data, we obtain
correlation slopes of almost precisely one and intercepts near zero, in contrast to his
slopes of 0.66 (sandstone) and 1.55 (sand) (Table 5.4). As expected, tortuosity is
lower in sand than in sandstone. The critical volume for percolation in the sand is
just 1% of porosity; that in the sandstone (2% of porosity) would probably be higher
if the sandstones were strongly cemented.

Binley et al. [13] use their data to make inferences regarding moisture content and
are content with a simple calibration to Archie’s law. A second set of data from the
same sandstone (φ = 9.3%) was published in 2002. Cassiani et al. [56] tested their
own model using the data from Binley et al. [13] and found a constant solid contribu-
tion to the electrical conductivity of σs = 0.00143Sm−1 added to the 0.0156Sm−1

electrical conductivity of the fully saturated pore space. However, the Cassiani et al.
[56] analysis implies a relatively weak θ -dependent contribution (Fig. 5.7). Using
Cassiani et al.’s numerical values, and the common assumption that at typical exper-
imental frequencies the solid and solution conductions operate in parallel, we have
σ (θ) = 0.00143+0.0156(θ −θt)2.0 Sm−1 as a specific instance of Eq. (5.31). We
have no independent basis upon which to choose a value of θt in these sandstones.
We could assume θt = 0.1φ , but θt = 0 is more likely in a medium with significant
solid conductivity. As in the case of conducting spheres with pendular bridges (see
Sect. 6.2), any water at all should increase conductivity. Using the numerical val-
ues from Cassiani et al. [56] and assuming θt = 0 gives a no-parameter fit that is
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Fig. 5.7 Comparison of data for electrical conductivity, σ , as a function of water content, θ from
Binley et al. [13–15] with Eq. (5.31) and model results of Cassiani et al. [56]

clearly superior to Cassiani et al.’s [56] fit (Fig. 5.7). Fitting gives values slightly
different from Cassiani et al.’s [56] and yields a slope of 1.00 and an intercept of
−0.0004 for regressing predicted against observed values. Notice that if the solid
contribution (σs in Eq. (5.31)) had been underestimated, the prefactor σb = 0.0156
would be overestimated. That is, if we had optimized for θt alone, our value would
be dependent on the accuracy of the estimated σs.

Our predicted values compare well with Binley et al.’s [13–15] observations
(Fig. 5.7 and Fig. 5.8). For both data sets (2001 and 2002), individually as well
as combined, Eq. (5.31) with θt = 0 matches the data with slope near one, intercept
near zero, and a high correlation coefficient (Table 5.4). In support of our conjec-
ture about the exponent μ taking on smaller values for conducting solids, we find
μ∗ = 1.88 fits the data just as well as μ = 2.0.

A greater solid phase conductivity is seen (Fig. 5.9) in silica sand data (personal
communication; described in Ren et al. [57]). Here it is clear that the solid phase
makes a constant contribution to the overall conductivity – again suggesting θt = 0 –
with the remaining conductivity varying with the conductivity and volume fraction
of the solution. When we subtract the solid contribution, estimated as the mean
conductivity for the σb = 0 solution, the data fall on lines of μ = 2 in logarithmic
space (Fig. 5.10). Because each datum is from a separate packed core, the data as
a whole are somewhat noisy, but the figure shows reasonable prediction of total
conductivity from only the known values σb and θ , the assumed θt = 0, and the
estimated value of σs. A slight improvement is given by optimizing for a and θt.
The lower slopes at low water contents, as suggested by the data, are consistent
with our conjecture that a somewhat smaller value of μ may be more appropriate for
media with similar solid- and liquid-phase conductivities. Thus, at low saturations,
the current does not have to avoid the solid phase and the topology of the current
path is not coincident with the topology near the percolation threshold, so that the
conductivity does not quite follow the percolation prediction.
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Fig. 5.8 Direct comparison of measured and predicted electrical conductivity values for the data
of Fig. 5.7
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ductivities. Data from Ren et al. [57]

Residual salt in soil, whether precipitated or in the form of exchangeable cations,
may contribute a significant fraction of the liquid-phase conductivity. Making the
assumption that any residual salinity dissolves completely at any nonzero water con-
tent, we adapted Eq. (5.31) to account for residual salinity:

σ (θ) =
a(σbθ +σr)
θ (1−θt)

μ (θ −θt)
μ (5.32)

where σr is the residual salinity’s contribution to electrical conductivity. The fac-
tor (σbθ + σr)/θ therefore accounts for both solution and residual salinity con-
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Fig. 5.10 Comparison of data with zero-parameter predictions of electrical conductivity of silica
sand after subtracting the solid-phase electrical conductivity (Data from Fig. 5.9)

tributions. Note that Eq. (5.32) is consistent with an apparent μ∗ = μ − σr(θ −
θt)/[(σbθ +σr)θ)] and approaches μ if either θ → θt or σr → 0. We apply the anal-
ysis of Eq. (5.32) to the data of Rinaldi and Cuestas [58], who packed loess soils
with known volume fractions of NaCl solution, and measured electrical conductiv-
ity at different water contents (their Fig. 12). In the zero-electrolyte treatment, the
increase in electrical conductivity with water content can reasonably be attributed
to residual salts in the soil. Fitting Eq. (5.32) to their data provides an excellent
fit (Fig. 5.11), with R2 = 0.98. The optimized value for the residual salt equivalent
conductivity is 0.085Sm−1. If the relative concentration of the various cations were
known, their absolute concentrations could also be determined.

The data of Abu-Hassanein et al. [59] provide another example of the importance
of accounting for residual salt. They present data on four soils differing in texture
and clay mineralogy; each soil was also tested at three different degrees of com-
paction. Tap water (σb = 9.5× 10−3 Sm−1) was used throughout. Because we did
not know a priori whether any given soil will have residual salt- and/or solid-phase
conductivity, we added a solid-phase conductivity to Eq. (5.32). As it turned out,
the solid contribution was zero for all but soil D, which had a negligible value of
σs = 6.6× 10−5 Sm−1, so this was dropped from the analysis. Fitting each soil in
turn, we obtain R2 between 0.82 and 0.97 (Fig. 5.12). Residual salt accounts for
92–99% of the saturated conductivity. Note that in Fig. 5.15, when all data sets for
σ(θ) are plotted simultaneously, these data lie conspicuously above the universal
line. Consistent with expectations, higher clay soils had higher percentages of their
conductivity contributed by residual salinity and also had higher critical volumes
for percolation.

The data sets from Mori et al. [60] and Tuli and Hopmans [61] are somewhat sim-
ilar, so we present them together (Fig. 5.13). We obtain R2 = 0.98 fitting Eq. (5.31)
to Mori et al.’s data, slightly lower than their 0.99 using the Rhoades equation
(Eq. (5.30)), but we learn that θc = 0.0 and a = 1.417. Tuli and Hopmans [61]
give σs = 0.0725dSm−1 for Oso Flaco sand; this is the only medium we encoun-
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Fig. 5.12 Comparison of predicted (Eq. (5.32)) with measured electrical conductivity in four soils
[data from Abu-Hassanein et al. [59]]

tered that combined nonnegligible solid conductivity with a nonzero critical volume
for percolation. Our fit yields a mean absolute residual of only 0.02, compared with
their value of 0.08.

Last, we examine an unexpected complication in the data published by
Kechavarzi and Soga [62]. They present triplicate calibration curves for their minia-
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Fig. 5.13 Comparison of predicted and measured electrical conductivity in soils presented by Mori
et al. [60] labeled as MHMK2003 and Tuli and Hopmans [61], labeled as TH2004

ture resistivity probes, and report that fitting Archie’s law to the data gives R2 =
0.91, a disappointing value for a calibration curve. A plot of the raw data (Fig. 5.14)
shows a marked decrease in the slope of the σ(θ) curve; this, combined with the
unknown characteristics of the miniature probe, raised the possibility that there was
some contact resistance in their experimental setup. The washed sand was unlikely
to have residual salinity, and solid conductivity would curve the slope up rather than
down. We accordingly allowed for contact resistance ρc in the σ(θ) relationship
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Fig. 5.14 Comparison of electrical conductivity as a function of water content with Eq. (5.33),
including effects of a contact resistance that is independent of water content [Data from Kechavarzi
and Soga [62]].
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through a modification of Eq. (5.28), giving

σ (θ) =
1

cρc +
[
1/aσb (θ −θt)

μ] (5.33)

where the constant c corrects for geometric factors specific to their experimental
setup. Equation (5.33) yields μ∗ = μ/[1+aσbcρc(θ −θt)], which coincides with μ
if any of the constants are 0 as well as in the limit θ → θt. This new equation fits the
data quite well (Fig. 5.14), with R2 = 0.97.

The analyses of the saturation dependence of the electrical conductivity are sum-
marized in Table 5.4. Our examination of the data sets discussed above found critical
volume fractions for percolation ranging from 0.0 to 0.073, reasonably in line with
Hunt’s [63] observed range. Values of a, which we interpret as the electrical tor-
tuosity at saturation, ranged from 1.07 to 2.73, a relatively small variation. In two
cases brine conductivity σb was not given, forcing us to lump aσb into a single pa-
rameter; when this is done, the value of the lumped parameter cannot yield useful
information about its component parts. Conductivity attributable to residual salin-
ity was encountered in tuff and several of the soils, but in only one sand and none
of the sandstones. In Fig. 5.15 we represent all the saturation-dependent electrical
conductivity from Table 5.4 together. As predicted, all the data indicate an exponent
μ = 2.0 (Fig. 5.15), with deviations below the line indicating contact resistance
(e.g., Kechavarzi and Soga [62]) and deviations above the line indicating the effect
of residual salinity (e.g., Roberts and Lin [64]; Abu-Hassanein et al., [59]). De-
viations attributable to residual salinity are most pronounced for low-conductivity
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Fig. 5.15 Summary plot of all the data sets presented in Table 5.4 showing constant adherence to
the predicted universal behavior. For all data sets, the water content was normalized by subtracting
the critical value, and the electrical conductivity was normalized by subtracting the solid phase
contribution, then dividing by the brine conductivity value. Data are parallel to the line given by
the universal conductivity exponent, μ = 2. Those data sets that lie above the universal line were
analyzed as having residual salinity, those that curved downward away from the universal line, as
having a contact resistance
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solutions and/or low water contents (e.g. Ren et al., [65]). Further, as predicted, the
apparent power μ∗ increases to 2 in the limit θ → θt for data sets with either contact
resistance (e.g., Kechavarzi and Soga [62]) or residual salinity (e.g., Abu-Hassanein
et al. [59])

In subsequent analysis, we plotted critical volume fractions versus porosity to
examine the possibility that a linear relationship between them exists. The result
(Fig. 5.16) is consistent with our conjecture that θt ∝ φ , and finds a similar coeffi-
cient (0.12 rather than 0.1). In this analysis the regression line was forced through
the origin, and we did not include cases for which θt = 0. Note that almost all cases
with θt = 0 had large solid conductivities; in such cases the simple percolation argu-
ment that θt = pcφ will not hold. However, plotting 1/a against (1−θt)2 shows no
relationship as might have been expected from arguments leading to Eq. (5.27). This
indicates that a may indeed be best interpreted as the tortuosity of the conducting
pathways in the limit of full saturation.
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Fig. 5.16 Excel plot of the (nonzero) critical volume fractions from Fig. 5.15 vs. porosity. Al-
though the plot is quite noisy, it generates θt ∝ φ , with a proportionality constant of approximately
1/8 (fit constrained to pass through origin)

5.3 Effects of Arbitrary Pore-Size Distributions

This calculation of K(θ) follows the same procedure as in Chap. 4, but here we
assume no particular form for the pore-size distribution. However, we do assume
that there are minimum and maximum pore sizes, so the pdf for W(r) should still
be valid between the limits r0 and rm. Thus the same integral provides the basis for
all the calculations of equilibrium quantities, regardless of the actual form of W(r)
appropriate for a given soil:

r2∫
r1

r3W (r)dr (5.34)
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When r2 = rm and r1 = r0 – when we are integrating from the smallest to the largest
pore in the system – Eq. (5.34) yields a numerical constant of order unity times
the porosity φ . As we saw in the fractal treatment it is possible to define a suitable
normalization constant to generate precisely the porosity; here this is also of no
real concern since we will be using proxy data from the cumulative soil particle
size distribution. Such a choice guarantees normalization as well. When r2 = A/h
(as long as this value is less than rm) and r1 = r0, Eq. (5.34) defines the moisture
content θ . When r2 = rm and r1 = rc, Eq. (5.34) yields the critical moisture content
for percolation θt; if θt is known we can thereby deduce the bottleneck pore radius
rc under saturated conditions. When r2 = A/h and r1 = rc, Eq. (5.34) again yields θt

and can be used to deduce the bottleneck pore radius rc(θ) for any moisture content
θ > θt. If one assumes that distributions of pore aspect ratios are independent of pore
size, the ratio [rc(θ)/rc|θ=φ ]

3 again yields K(θ)/KS, as long as θ > θxK . Building
in this assumption deprives the procedure of some generality, but the assumption
is not unreasonable for many natural media, and allows the procedure to generate
the known appropriate K(θ)/KS when the medium is well described by a fractal
model. Thus the present formulation allows comparison of the present prediction
with analytical results for media presumed compatible with the fractal model.

The crossover moisture content θxK is found as follows. Instead of using
Eq. (5.14) as the functional form for the hydraulic conductivity (a result specific
to fractal geometry), K is set to the unspecified (and thus general) form K(θ). Com-
bining this K with Eq. (5.20), and setting K(θ) and dK/dθ equal for each equation
when θ = θxK yields

θxK = θt +
2K (θxK)
dK
dθ

|θ=θxK

(5.35)

This is the fundamental analytical result employed by Blank et al. [66] to make
comparisons between theoretical and experimental results for K(θ). The factor
2 = μ .

The pore-size distribution for field samples is seldom, if ever, known. But one
often has access to the cumulative particle-size distribution, which can be used as a
proxy for the cumulative pore-size distribution (with the usual uncertainties relating
pore and particle sizes). Evaluating Eq. (5.34) between any two limits is thus equiv-
alent to taking differences in the cumulative particle size distribution evaluated at
two corresponding limits. Comparison with experiment is shown in Fig. 5.17a, b.
The comparisons are drawn from the same soils as in Fig. 5.1, but here no assump-
tions have been made regarding the form of the pore-size distribution. Given results
from both experiment and an analytical model of flow on a random fractal, the nu-
merical procedure could serve as a test of the validity of the fractal model. But note
that in the present case there were 11 different particle size distributions to choose
from (all taken at the surface) while the hydraulic conductivity was determined at
5 different depths. We have chosen the two comparisons with the lowest R2 values.
We believe that this means that the two particle size distributions chosen were the
least suitable for the hydraulic conductivity shown, though this is not the only pos-
sible interpretation. Thus, if we chose to fit the fractal model to the same particle
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Fig. 5.17 (a, b) Use of numerical model to predict K for arbitrary soil pore space distribution and
comparison with saturation dependence of K for McGee Ranch soils (used in Fig. 5.1). Note that
there were 11 different particle size distributions taken from surface soils from which to generate
a pore size distribution, and that K was measured at 5 different depths. This leaves as many as
55 possible comparisons, of which we present 2. Note that these two presented had the lowest R2

values of all 55 comparisons. This may have happened because the particle size data chosen was
not representative of the pore-size distribution at the particular depth. In any case comparing a
numerical result with an analytical result for a fractal model and experimental data can clarify the
relevance of the fractal model
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size distributions and use those to predict the same two hydraulic conductivity func-
tions, we would also presumably have similar discrepancies. The meaning of the
discrepancies would indeed be that the model was not appropriate for the data, but
we think that in such a case the message would simply be that the parameters were
inappropriate, not the choice of model. Figure 5.1 did indicate that for this particular
suite of soils the fractal model was appropriate.

5.4 Water Film Issues

As saturation is reduced and pathways through water-filled pore space lose connec-
tivity, other modes of water transport become more prominent. Two such modes are
film flow and vapor phase flow. Film flow will be governed by the roughness of
grain surfaces, with surface fractal dimension Ds. It has been argued [67, 68] that
such conduction will follow

K ∝ S
3

m(3−Ds) (5.36)

For discussion of the physical interpretation of the parameter m, see the origi-
nal articles. Equation (5.36) is reminiscent of Eq. (5.14), and clearly has a similar
origin. But in natural porous media, especially those in which the pore-size distri-
bution covers at least two orders of magnitude, we do not expect to see Eq. (5.36)
easily verified. In such media the pore-size distribution itself is sufficient to cause a
variation in K of six or more orders of magnitude; then for θ < θxK the percolation
scaling will cause a further drop before film flow can prevent K from disappearing
altogether. For example, if KS = 10−2 cms−1, then values well below 10−8 cms−1

would still be dominated by capillary flow through water-filled pores. Values of K
much lower than 10−8 cms−1 are seldom measured, because experiments under typ-
ical conditions would have to last several years. However, monosized sphere packs
(e.g., glass beads) may have a ratio of the maximum to the minimum pore size as
small as 2, so their hydraulic conductivity may vary by as little as 24 = 16 before
other flow mechanisms become more important.

To see more clearly how an alternate means to transport water might show up
in experimental data, consider Fig. 5.18, which shows data for K(S) from Dr. M.
Ioannidis (personal communication, 2006) for a medium of nearly monodisperse
glass beads. The porosity of the medium is 0.3, noticeably smaller than appropriate
for a cubic packing, and more nearly appropriate for a random close-packed struc-
ture. To a first approximation, one can consider the experimental medium to have no
variability in pore size (Ioannidis, personal communication, 2007). The theoretical
formulation of this chapter would therefore require that the hydraulic conductivity
should exactly follow the universal scaling of Eq. (5.21). Clearly it does not, at least
not over the full range of saturations.

Our single-fit parameter is a critical volume fraction (or moisture content) for
percolation. The value obtained is θt = 0.049. This corresponds to a critical fraction
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Fig. 5.18 Semi-log comparison of universal scaling with data from Dr. Ioannidis on the saturation
dependence of the hydraulic conductivity of comparatively ordered granular media. The media
should be considered to have pore radii that vary over less than a factor 2

of the porosity of 0.049/0.3, about 16%, a very common result for continuum per-
colation noted first by Scher and Zallen [42]. Over almost two orders of magnitude,
K via Eq. (5.21) is in good agreement with the experimental data; only at lower
saturations do the experimental data exceed the prediction. This discrepancy has
two obvious interpretations. One possibility is that a different mechanism for water
transport becomes important as the saturation nears 20%. The second is that uni-
versal scaling of the hydraulic conductivity is not valid, and that both the exponent
μ∗ and the critical volume fraction θt should be considered fitting parameters. This
possibility is shown in Fig. 5.19; then in Fig. 5.21 we show that log(K) vs. log(θ)
is rather well described as a nonuniversal power with μ∗ = 2.81 and θt = 0.0145,
rather than μ = 2.0 and θt = 0.049.

How should one interpret these results? We will consider this problem from two
perspectives. First we revisit Buckingham’s [69] paper of a century ago and its con-
tinuing influence. Consider Fig. 5.20, Buckingham’s schematic understanding of the
dependence of hydraulic conductivity (denoted by Buckingham as λ ) as a function
of moisture content. As reported by Narasimhan [70], “Buckingham was led to the
conclusion ‘that the capillary conductivity, λ , will be a strong function of water con-
tent, θ , in a soil.’ He conjectured that the relation would have the shape indicated
schematically in Fig. 5.20. Between A and B, flow occurs dominantly through satu-
rated capillaries. Between B and C, capillary and film flow coexist. Between C and
D flow is exclusively through films. Between D and F films progressively break up.”

Based on our quantitative theory of K, we broadly agree with this interpretation
of Fig 5.20. Capillary flow will dominate from A to B, but also for much of the
range from B to C, where the steep slope is related to the approach to the percola-
tion threshold for the water-filled pores. Although film flow will become important
well before C, it is not film flow in parallel that is so important (and seemingly im-
plied by Narasimhan [70]), but film flow in series with capillary flow, preventing the
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Fig. 5.19 Semi-log comparison of nonuniversal scaling with the same data as in Fig. 5.18 and with
choice of an optimal value of the exponent, μ∗
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(1907) schematic
interpretation of the various
regimes of hydraulic
conductivity

–4

–3.5

–3

–2.5

–2

–1.5

–1

–0.5

0
0.1 1Saturation

data

non-universal scalingL
o

g
[K

 /K
S
]

Fig. 5.21 The same comparison as in Fig. 5.19, except represented on a log-log plot
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mean separation of water flow paths from diverging as the percolation threshold is
approached. Even as the percolation threshold is approached, water need flow only
a microscopic distance through thin films to incorporate finite-sized clusters into
the flow and thus avoid divergence in flow path separation [71]. From C onward we
generally agree with Buckingham: film flow can maintain higher values of K than
predicted by theory as the percolation threshold is approached. As the saturation
drops further, in the vicinity of C, Fig. 5.20) shows qualitatively what one would
expect if an alternate mode of conduction were to act in parallel to the mechanism
of capillary flow treated theoretically. Narasimhan [70] continues, “Voluminous soil
hydraulic conductivity data now exist not only confirming Buckingham’s conjecture
of the form of the functional dependence but also showing that the λ vs. θ relation is
strongly hysteretic [72–74].” Linear plots of the universal curve, together with K(θ)
from Ioannidis as a function of moisture content (Fig. 5.22), are in general accord
with Buckingham’s sketch (Fig. 5.20). Buckingham’s proposed mechanism appears
generally consistent with the discrepancy between data and universal scaling of per-
colation theory.

Secondly, we consider the actual values of the fitting parameter θt. To estimate
the critical volume fraction in Ioannidis’ glass bead medium, one can apply the
Vyssotsky et al. [76] bond percolation result. In a hexagonal close-packed system
(similar to random close-packed) there are two types of sites (see Sect. 3.2.2): one
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Fig. 5.22 The same comparison as in Fig. 5.18, but shown on a linear plot to make a graphical
correspondence with the schematic drawing of Buckingham (1906)
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with coordination number 4, the other with coordination number 8. The mean of
these two values is 6, which would correspond to a bond percolation probability
pc ≈ 0.25. But in hexagonal packing there are two tetrahedra for every octahedron;
the mean is therefore ∼ 5.3. This would increase pc to 0.283. If half of the pore
space is found in the bonds, then a water volume fraction θ =(0.5)(0.28)φ = 0.0425
should suffice for percolation. The critical volume fraction found using the universal
value μ = 2.0(θt = 0.049) is considerably closer to θt = 0.0425 than is the value
θt = 0.0149 fitted using a nonuniversal exponent. The critical volume fraction fitted
using a nonuniversal exponent requires closer to one-sixth of the pore space to be
in the bonds. Moreover, θt = 0.049 is consistent with the critical volume fractions
extracted from a wide range of experiments (Ewing and Hunt, 2006; Hunt, 2004e).

We conclude that the discrepancy between universal scaling and experiment
shown in Fig. 5.18 does not imply relevance of a nonuniform conductivity exponent.
It more likely represents a crossover from K dominated by flow through water-filled
pores, to the less-conductive film flow. At higher saturations, film flow operates in
parallel with capillary flow but is negligible in comparison; when the continuity of
capillary flow is interrupted, film flow operates in series with capillary flow through
finite clusters.

How do the data from Ioannidis fit in with the themes of this chapter? Prac-
tically speaking, Buckingham’s conclusions are most relevant for granular media
with narrow grain size distributions. Even in Ioannidis’ artificial medium, we detect
only the onset of film flow. In natural media with much broader pore-size distri-
butions, the hydraulic conductivity variation attributable to the pore-size variabil-
ity is already several orders of magnitude; effects of percolation scaling extend a
couple of orders of magnitude below that. Thus, if the saturated hydraulic conduc-
tivity is 10−2 cms−1, our percolation approach may account for values down from
10−7 cms−1 to 10−11 cms−1, and values in this range are rarely measured. So while
Buckingham’s thesis has supposedly been amply verified [70], we doubt that it has
been verified often. Recall that the difference between two nearly equal values may
easily vary over several orders of magnitude. Rigorous comparisons between theory
and experiment for this capillary/film flow crossover issue therefore require exacting
methods, and may still be inconclusive. Nonetheless, we believe our interpretation
of alternate water transport modes operating in concert with capillary flow is con-
sistent with both theory and observations.

The above discussion simultaneously addresses two common but apparently un-
related questions: (1) What properties or mechanisms could result in a nonuniversal
conductivity exponent? and (2) Why is the critical volume fraction so small? As
seen here, both questions may be resolved by considering a parallel conduction
mechanism.

How would Narasimhan view our above approach? We assume that he would be
skeptical, in view of the following quotes from the same paper [70]:

Philosophically, Buckingham’s skepticism raises the issue of the role of mathematics in the
earth sciences. Milton Whitney, who led the Bureau of Soils and who had the vision to bring
in talented physicists such as Briggs and Buckingham, believed that soil physics problems
were so complex that they should not be handled strictly mathematically [76].
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It is appropriate to conclude with a thoughtful remark attributed to Ansel Adams, the
renowned landscape photographer and conservationist: “There is nothing more disturbing
than a sharp image of a fuzzy concept.”

It is our belief, however, that with improvements in both the resolution and quan-
titative analysis of experiments, fuzzy concepts lose their validity if they do not
become clearer.

5.5 Electrical Conductivity for θ < θt

We now present a suggestion for the means to calculate the electrical conductiv-
ity for θ < θt. Below the percolation threshold, electrical conduction must utilize a
portion of the medium with a smaller electrical conductivity, σs, than whatever con-
ducting fluid (with σ = σ0) is filling the pore space. Clearly, however, the system
conductivity is maximized by minimizing the path length in the lower conducting
medium.

The present calculations simply seek an optimal path length. An optimal path will
utilize many finite clusters in addition to the infinite cluster. Such a path was shown
[71] to scale with p− pc exactly as the correlation length χ . This was the basis of our
earlier argument regarding liquid-phase diffusion: the total distance that water must
flow through liquid films above the percolation threshold is not a critical function of
percolation: both the separations between the connected water-carrying paths and
the total distance through the disconnected finite clusters scale the same way, and
the distance through film flow is the difference between the two. Of course it is
not necessary that the difference between two divergent quantities cancel; only that
their ratio do so. However, if it is the optimal path that is sought, then the difference
should be as small as possible, and thus not diverge. Thus the total distance that the
electrical current travels through the liquid should scale as the correlation length for
θ < θt, and the distance through the solid medium must be the size of the system,
x, less the correlation length χ . This suggests that the conductivity should have the
form

σ (θ)=
x

(χ/σ0)+(x−χ)/σs
=

x[
χ0 (θt −θ)−0.88/σ0

]
+
[
x−χ0 (θt −θ)−0.88/σs

]
(5.37)

proportional to the inverse of the sum of the resistances along 1D paths which min-
imize the total resistance. Such a power law rapidly reduces the conductivity below
the percolation threshold to the solid or surface conductivity. A similar decompo-
sition may be applied to solute diffusion through water-filled pores and pores with
only films of water.

The above calculation can equally apply to finding an optimal flow path (and as-
sociated K) through a system of muds and sands for which the sand portion does not
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percolate. The Stanley group has long addressed the problem of finding distributions
of such path lengths and transit times; see, for example, Lopez et al. [77].

Because Chaps. 5 and 6 are very closely related, a summary of Chap. 5 is com-
bined with the summary of Chap. 6 and given at the end of Chap. 6.

Problems

5.1. Prove that rc is the same for electrical and hydraulic conductivities and draw an
analogy to problem 1 in Chap. 3, which asked to show that the value obtained for Rc

was independent of whether one obtained rc first and substituted into the equation
for R(r), or whether one integrated over R directly.

5.2. The experimental results, Fig. 6.7, for Dpm/Dwθ (where Dpm is the diffusion
constant of an arbitrary solute in a porous medium and Dw is the corresponding
diffusion constant in water) appear to show very straight lines over a wide range
of moisture contents, which intersect the θ axis at distinct points, θt. Thus one
can write (Sect. 6.3) an empirical relationship Dpm/Dw = θ(θ − θt). In analogy
with Sect. 5.5 derive a relationship to predict Dpm/Dw for moisture contents less
than θt.

5.3. Consider a log-normal distribution of pore sizes, but assume as in a fractal model
that all pores have the same shapes (this is a necessary assumption in a fractal model,
but only an assumption of convenience, otherwise). Derive equivalent expressions
for the saturation dependence of the hydraulic and electrical conductivities using
critical path analysis and find the moisture contents at which the critical path anal-
ysis must be replaced by percolation scaling. These exercises may be performed
numerically. Compare the ranges of parameter space (Dp, φ ), for which Archie’s
law may be reasonably derived from percolation theory determined from the log-
normal and the power-law distributions. Does a log-normal distribution tend to make
Archie’s law more or less widely applicable than is the case for a power-law distri-
bution of pore sizes?

5.4. Graphically represent the apparent power μ∗(φ) of the porosity in Archie’s law
when the pore-size distribution modifies its value from 2 in the cases that a) the ratio
r0/rm is held constant and b) the fractal dimensionality is held constant. You will
need to keep in mind that in either case μ∗ is d ln(σ)/d ln(φ) = ((/σ)dσ/dφ .

References

1. Jerauld, G. R., J. C. Hatfield, L. E. Scriven, and H. T. Davis, 1984, Percolation and conduc-
tion on Voronoi and triangular networks: a case study in topological disorder, J. Phys. C 17:
1519–1529. 123



164 5 Conductivity Exponents and Critical Path Analysis

2. Balberg, I., 1987, Recent developments in continuum percolation, Philos. Mag. B 30:
991–1003. 123, 127, 128, 129, 130, 134, 136, 139

3. Hilfer, R., 1991, Geometric and dielectric characterization of porous media, Phys. Rev. 44: 60. 123, 142
4. Berkowitz, B., and I. Balberg, 1992, Percolation approach to the problem of hydraulic con-

ductivity in porous media, Transp. Porous Media 9: 275–286. 123
5. Berkowitz, B., and I. Balberg, 1993, Percolation theory and its application to groundwater

hydrology, Water Resour. Res. 29: 775–794. 123, 131, 135
6. Golden, K. M., S. F. Ackley, and V. I. Lytle, 1998, The percolation phase transition in sea ice,

Science 282: 2238–2241. 123
7. Golden, K. M., 2001, Brine percolation and the transport properties of sea ice. Ann. Glaciology

33: 28–36. 123
8. Kogut, P. M. and J. Straley, 1979, Distribution-induced non-universality of the percolation

conductivity exponents, J. Phys. C. Solid State Phys. 12: 2151–2159. 123
9. Feng, S., B. I. Halperin, and P. N. Sen, 1987, Transport properties of continuum systems near

the percolation threshold, Phys. Rev. B, 35: 197. 123, 136
10. Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir

characteristics. Trans. Am. Inst. Mech. Eng. 146: 54–61. 124, 125, 146, 147
11. Adler, P. M., C. G. Jacquin, and J. F. Thovert, 1992, The formation factor of reconstructed

porous media. Water Resour Res. 28: 1571–1576. 124
12. Bigalke, J., 2000, A study concerning the conductivity of porous rock, Phys. Chem. Earth 25:

189–194. 124
13. Binley, A., P. Winship, R. Middleton, M. Pokar, and J. L. West, 2001, Observation of sea-

sonal dynamics in the vadose zone using borehole radar and resistivity. In Proceedings of the
Symposium on the Application of Geophysics to Environmental and Engineering Problems,
SAGEEP, March 4–7, 2001. 124, 146, 147, 148

14. Binley, A., P. Winship, L. J. West, M. Pokar, and R. Middleton, 2002, Seasonal variation of
moisture content in unsaturated sandstone inferred for borehole radar and resistivity profiles,
J. Hydrol. 267: 160–172. 124, 146, 148

15. Binley, A., C. Cassiani, R. Middleton, and P. Winship, 2002, Vadose zone model parameteri-
zation using cross-borehole radar and resistivity imaging, J. Hydrol. 267: 147–159. 124, 146, 148

16. Thompson, A. H., A. J. Katz, and C. E. Krohn, 1987, Microgeometry and transport in sedi-
mentary rock, Adv. Phys. 36: 625. 124, 136, 137, 138, 139, 140

17. Kuentz, M., J. C. Mareschal, and P. Lavallee, 2000, Numerical estimation of electrical con-
ductivity in saturated porous media with a 2-D lattice gas, Geophysics 65: 766–772. 124, 136

18. Lemaitre., J., J. P. Roadec, D. Bideau, A. Gervois, and E. Bougault, 1988, The formation factor
of the pore space of binary mixtures of spheres, J. Phys. D: Appl. Phys. 21: 1589–1592. 124

19. Johnson, D. L., and L. M. Schwartz, 1989, Unified theory of geometric effects in transport
properties of porous media. In Paper presented at SPWLA, 30th Annual Logging Symposium,
Soc. of Prof. Well Log. Anal. Houston, TX. 124

20. Le Ravalec, M., M. Darot, T. Reuschle, and Y. Gueguen, 1996, Transport properties and
microstructural characgteristics of a thermally cracked mylonite, Pure Appl Geoph. 146:
207–227. 124

21. Mattisson, C., and M. A. Knackstedt, 1987, Transport in fractured porous solids, Geophys.
Res. Lett. 24: 495–498. 124

22. Ruffet, C., Y. Gueguen, and M. Darot, 1991, Complex conductivity and fractal microstruc-
tures, Geophysics 56: 758–768. 124

23. Wong, P., J. Koplik, and J. P. Tomanic, 1984, Conductivity and permeability of rocks, Phys.
Rev. B 30: 6606–6614. 124

24. Montaron, B., 2005, Fractals, percolation theory, and the stability of Archie’s m exponent,
SPWLA topical conference on “Low Resistivity Pay in Carbonates” in Abu-Dhabi, UAE,
2005. 124

25. Ewing, R. P., and A. G. Hunt, 2006, Dependence of the electrical conductivity on saturation
in real porous media, Vadose Zone J. 5(2): 731–741. 124



References 165

26. Rieu, M., and G. Sposito, 1991, Fractal fragmentation, soil porosity, and soil water properties
I. Theory, Soil Sci. Soc. Am. J. 55: 1231. 124

27. Hunt, A., N. Gershenzon, and G. Bambakidis, 2007, Pre-seismic electromagnetic phenomena
in the framework of percolation and fractal theories, Tectonophysics 431: 23–32. 126

28. Friedman, S. P., and N. A. Seaton, 1998, Critical path analysis of the relationship between
permeability and electrical conductivity of three-dimensional pore networks, Water Resour
Res. 34: 1703. 126, 140

29. Bernabe, Y., 1998. Streaming potential in heterogeneous network. J. Geophys. Res., 103:
20827–20841. 127

30. Surkov, V. V., and H. Tanaka, 2005, Electrokinetic effect in fractal pore media as seismo-
electric phenomena, in: Fractal Behavior of the Earth System, Ed. V. P. Dimri, Springer,
Heidelberg. 127

31. Hunt, A. G., 2004e, Continuum percolation theory and Archie’s law, Geophys Res Lett.
31(19): Art. No. L19503. 128, 133, 135, 145

32. Hunt, A. G., 2005, Continuum percolation theory for transport properties in porous media,
Phil. Mag. 85: 3409–3434. 129, 131, 134

33. Hillel, D., 1998, Environmental Soil Physics, Academic Press. (Elsevier?), San Diego, CA 130
34. Bittelli, M., G. S. Campbell, and M. Flury, 1999, Characterization of particle-size distribution

in soils with a fragmentation model. Soil Sci. Soc. Am. J. 63: 782–788. 130
35. Wu, Q., M. Borkovec, and H. Sticher, 1993, On particle-size distributions in soils, Soil Sci.

Soc. Am. J. 57: 883–890. 130, 131, 134
36. Mallory, K., 1993, Active subclusters in percolative hopping transport, Phys. Rev. B 47:

7819–7826. 130
37. Hunt, A. G., 2004, Percolative transport and fractal porous media, Chaos Solitons Fractals 19:

309–325. 131, 139
38. Hunt, A. G., and G. W. Gee, 2002, Water retention of fractal soil models using continuum

percolation theory: tests of Hanford site soils, Vadose Zone J, 1: 252–260. 131, 141
39. Hunt, A. G., and G. W. Gee, 2002, Application of critical path analysis to fractal porous media:

comparison with examples from the Hanford site, Adv. Water Resour., 25: 129–146. 131, 133
40. Rockhold, M. L., M. J. Fayer, and G. W. Gee, 1988, Characterization of unsaturated hydraulic

conductivity at the Hanford site, PNL 6488 Pacific Northwest National Laboratory, Richland,
WA 99352. 131, 132

41. Hunt, A. G., 2004, Continuum percolation theory for water retention and hydraulic conduc-
tivity of fractal soils: 1. Estimation of the critical volume fraction for percolation, Adv. Water
Resour. 27: 175–183. 134

42. Scher, H., and R. Zallen, 1970, Critical density in percolation processes, J. Chem. Phys. 53:
3759. 135, 158

43. Sahimi, M., 1993, Fractal and superdiffusive transport and hydrodynamic dispersion in het-
erogeneous porous media, Transp. Porous Media 13: 3–40. 135, 136, 142

44. Sahimi, M., 1993, Flow phenomena in rocks – from continuum models to fractals, percolation,
cellular automata, and simulated annealing, Rev. Mod. Phys. 65(4): 1393–1534. 135, 136, 142

45. Krohn, C. E., and A. H. Thompson, 1986, Fractal sandstone pores: automated measurements
using scanning-electron-microscope images, Phys. Rev. B 33: 6366–6374. 136

46. Suleiman, K. A., and D. Swartzendruber, 2003, Measurement of sated hydraulic conductiv-
ity of surface soil in the field with a small-plot sprinkling infiltrometer, J Hydrology 272:
203–212. 139

47. Mendelson, K. S., and M. H. Cohen, 1982, The effect of grain anisotropy on the electrical
properties of sedimentary rocks, Geophysics 47: 257. 142

48. Bussian, A. E., 1983, Electrical Conductance in a porous medium, Geophysics 48, 1258. 142
49. Patnode, H. W., and M. R. J. Wyllie, 1950, The presence of conductive solids in reservoir

rocks as a factor in electric log interpretation. Trans. AIME 189: 47–52. 143
50. Cremers, A. and H. Laudelout. 1965. Note on the “isoconductivity value” of clay gels. Soil

Sci. 100: 298–299. 143



166 5 Conductivity Exponents and Critical Path Analysis

51. Rhoades, J. D., P. A. C. Raats, and R. J. Prather, 1976, Effects of liquid-phase electric con-
ductivity, water content, and surface conductivity on bulk soil electrical conductivity, Soil Sci.
Soc. Am. J. 40: 651–655. 143, 146

52. Letey, J., and A. Klute, 1960, Apparent mobility of potassium and chloride ions in soil and
clay pastes, Soil Sci. 90: 259–265. 143

53. Cremers, A., J. van Loon, and H. Laudelout, 1966, Geometry effects for specific electrical
conductance in clays and soils. Proc. Internat. Conf. Clays Clay Miner. 14th Ghent, Belgium,
pp 149–162. 143

54. Klein, K. A., and J. C. Santamarina, 2003, Electrical conductivity in soils: underlying phe-
nomena, J. Envir. Eng. Geophys. 8: 263–273. 143

55. Stauffer, D., 1979, Scaling theory of percolation clusters, Phys. Rep. 54: 1–74. 144
56. Cassiani, G., E. Dalla, A. Brovelli, and D. Pitea, 2004, Pore-scale modeling of electrical con-

ductivity in unsaturated sandstones, Computational Methods in Water Resources: Proceedings
of the XVth International Conference, June 13–17, Chapel Hill, NC, USA, 235–246. 146, 147, 148

57. Ren, T., K. Noborio, and R. Horton, 1999, Measuring soil water content, electrical conductiv-
ity, and thermal properties with a thermo-time domain reflectometry probe, Soil Sci. Soc. Am.
J. 63: 450–457. 148, 149

58. Rinaldi, V. A., and G. A. Cuestas, 2002, Ohmic conductivity of a compacted silty clay. J.
Geotech. Geoenvir. Eng. 128: 824–835. 146, 150, 151

59. Abu-Hassanein, Z. S., C. H. Benson, and L. R. Blotz, 1996, Electrical resistivity of compacted
clays, J. Geotech. Eng. 122: 397–406. 146, 150, 151, 153, 154

60. Mori, Y., J. W. Hopmans, A. P. Mortensen, and G. J. Kluitenberg. 2003. Multi-functional heat
pulse probe for the simultaneous measurement of soil water content, solute concentration, and
heat transport parameters. Vadose Zone J. 2: 561–571. 147, 150, 152

61. Tuli, A., and J. W. Hopmans, 2004, Effect of degree of saturation on transport coefficients in
disturbed soils, Eur. J. Soil Sci. 55: 147–164. 147, 150, 152

62. Kechavarzi, C., and K. Soga, 2002, Determination of water saturation using miniature resistiv-
ity probes during intermediate scale and centrifuge multiphase flow laboratory experiments.
Geotech. Test. J. 25: 95–103. 147, 151, 152, 153, 154

63. Hunt, A. G., 2004, A note comparing van Genuchten and percolation theoretical formulations
of the hydraulic properties of unsaturated media, Vadose Zone J. 3: 1483–1488. 153

64. Roberts, J. J., and W. N. Lin, 1997, Electrical properties of partially saturated Topopah Spring
tuff. Water distribution as a function of saturation, Water Resour. Res. 33: 577–587. 146, 153

65. Ren, T., K. Noborio, and R. Horton, 1999, Measuring soil water content, electrical conduc-
tivity, and thermal properties with a thermo-time domain reflectrometry probe, Soil Sci. Sco.
Am. J. 63: 450–457. 154

66. Blank, L. A., A. G. Hunt, and T. E. Skinner, 2008, A numerical procedure to calculate hy-
draulic conductivity for an arbitrary pore size distribution, Vadose Zone J. 7: 461–472. 155

67. Davis, H. T., R. A., Novy, L. E. Scriven and P. G. Toledo, 1990, Fluid distribution and transport
in porous media at low wetting phase saturations, J. Phys. CM 2: SA 457–SA 464. 157

68. Toledo, P. G., R. A. Novy, H. T. Davis, and L. E. Scriven, 1992, On the transport properties of
porous media at low water content, in: Indirect Methods for Estimating the Hydraulic Prop-
erties of Unsaturated Soils, ed. M. Th. Van Genuchten, F. J. Leij, L. J. Lund, University of
California, Riverside, CA 92521. 157

69. Buckingham, E., 1907, Studies on the movement of soil moisture, Bul. No. 38, Bureau of
Soils, USDA, Washington, D. C. 158

70. Narasimhan, T. N., 2007, Central ideas of Buckingham, 1906: a century later, Vadose Zone J.
6: 687–693. 158, 160, 161

71. Hunt, A. G., 2004, Continuum percolation theory for water retention and hydraulic conduc-
tivity of fractal soils: 2. Extension to non-equilibrium, Adv. Water Resour. 27: 245–257. 160, 162

72. Mualem, Y., 1976, A new model for predicting the hydraulic conductivity of unsaturated
porous media, Water Resour. Res. 12: 513–522. 160

73. Mualem, Y., 1976. A catalogue of the hydraulic properties of unsaturated soils, Res. Proj. No.
442, Technion, Israel Institute of Technology, Haifa. 160



References 167

74. Mualem, Y. 1976, Hysteretical models for prediction of hydraulic conductivity in unsaturated
porous media, Water Resour. Res. 12: 1248–1254. 160

76. Vyssotsky, V. A., Gordon, S. B., Frisch, H.L. and Hammersley, J. M. 1961, Critical percolation
probabilities (bond problem) Phys. Rev. 123: 1566–1567. 160, 187

76. Landa, E. R., and J. R. Nimmo, 2003, The life and scientific contributions of Lyman J. Briggs,
Soil Sci. Soc. Am. J. 67: 681–693. 161

77. Lopez, E., S. V. Buldyrev, N. V. Dokholyan, L. Goldmakher, S. Havlin, P. R. King, and H.
E. Stanley, 2003, Postbreakthrough behavior in flow through porous media, Phys. Rev. E 67:
056314: 1–16. 163

78. Khaleel, R., and E. J. Freeman, 1995. Variability and scaling of hydraulic properties for 200
area soils, Hanford site, Westinghouse Hanford Company Report WHC-EP-0883. 141

79. Freeman, E. J., 1995. Fractal Geometries Applied to Particle Size Distributions and Related
Moisture Retention Measurements at Hanford, Washington, M. A. Thesis, University of Idaho,
Moscow. 141



Chapter 6
Other Transport Properties of Porous Media

In this chapter we discuss the air permeability, the thermal conductivity, as well
as solute and gas diffusion. Some interesting limitations and complications of the
percolation-based approach are illuminated in the context of the saturation depen-
dence of thermal conductivity. Then we summarize a treatment of the frequency-
dependent electrical conductivity in hydrated smectite clay minerals. We interpret
these experimental results using critical path analysis for interacting hopping charges
(a topic of Chap. 4) through surface water between and on the outside surfaces of
sheet silicates, which also brings in the subject of the continuity of water paths. We
also briefly present potential applications to electroseismic phenomena and give a
summary of Chaps. 5 and 6.

By contrasting the predicted behaviors of the various properties, and compar-
ing those predictions with experiment, we generate a deeper understanding of the
relative roles of geometry (pore size) and topology (pore connectivity). These rela-
tive roles are different for different properties. We also discover which property is
most sensitive to the particular way water is apportioned in the pore space (thermal
conductivity).

6.1 Air Permeability

Unlike the electrical and hydraulic conductivities, the air permeability ka as a func-
tion of the air-filled porosity ε is relatively simple to predict. Recall that if water and
air are the only two fluids, they must occupy the entire void volume: ε +θ = φ . For
an arbitrary fluid the permeability is obtained from the conductivity by multiply-
ing by the kinematic viscosity. This adjustment allows simple comparison between
permeabilities of different fluids, as long as their critical volume fractions for per-
colation are the same.

First we consider the assumption that the critical volume fractions εt for air per-
colation has the same value as θt for water percolation. A key difference between
air and water in soil is that water is a wetting fluid, while air is not. This difference
is accentuated by clay minerals, which have high specific surface area and whose
surfaces are often electrostatically charged; both these properties cause clay to ad-
sorb water. Water sorbed to a clay surface has higher viscosity than the bulk water

Hunt, A., Ewing, R.: Other Transport Properties of Porous Media. Lect. Notes Phys. 771, 169–206
(2009)
DOI 10.1007/978-3-540-89790-3 6 c© Springer-Verlag Berlin Heidelberg 2009
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(Sect. 6.4), so we could consider sorbed water (say, the first 4 molecular layers)
to be part of the solid phase. This would effectively decrease the size of the pores
with respect to water, but not with respect to air. A clayey soil therefore has εt < θt.
However, when the medium in question has low clay content, water sorption can
be neglected, and we expect εt ≈ θt; in such cases εt should also be on the order
of 0.1φ . To the extent that the critical volume fraction for percolation (εt for air
and θt for water) is independent of the fluid, the air permeability of a completely
dry porous medium equals the water permeability of the same medium when water
saturated.

Consider now the saturation dependence of the air permeability. Because water
is the wetting fluid, at any intermediate water content 0 < θ < φ the water occupies
the smaller pores, while air occupies the larger. Consequently, adding water to a
dry medium does not change the bottleneck radius rc for air flow, even while it
increases the rc for water flow. This holds for all air-filled porosity values ε ≥ εt.
Because there are no geometrical effects via a bottleneck pore radius, topological
effects must control permeability. With these topological effects accounted for by
universal percolation scaling, air-filled permeability ka(ε) must follow

ka (ε) = ka
∣∣ε=φ (ε− εt)

μ (6.1)

over the entire range of air-filled porosity values [1]. This result, as all percolation
results, becomes approximate far from the percolation threshold because percola-
tion theory is approximate far from the threshold, but clearly there is virtually no
additional dependence related to the pore-size distribution. The analysis of Hazlett
and Furr [2] is essentially equivalent to this result.

Again we have the complication that for 2D systems the exponent μ should be
1.3, instead of 2.0 in 3D. For experiments which were essentially 2D in nature (one
dimension transverse to flow smaller by a factor of ca. 1000 than the other two
dimensions), Steriotis et al. [3] reported the nonwetting phase relative permeability
shown in Fig. 6.1. These experimental results are compared with the prediction of
Eq. (6.1), using the 2D value μ = 1.3 [1]. This comparison required one adjustable
parameter, εt = 0.16.

Experiments on volcanic ash soils yielded a power relationship for air permeabil-
ity similar to Eq. (6.1), with the exponent given as 1.84±0.54 [4]. There is no simple
relationship discernible using percolation theory between the fractal dimensionality
of a soil and its air permeability, though these authors report a slight dependence on
pore-size distribution (as well as a great deal of scatter). Soil structure may have a
large impact on ka at ε = φ (Chap. 11), so it is possible that the results were affected
by structure. While the range of powers reported may be unacceptably wide, most
of the soils yielded an exponent slightly smaller than 2, while those with high clay
contents (which can produce a 2D structured soil) yielded an exponent somewhat
larger than 1 (Moldrup, personal communication, 2004).
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Fig. 6.1 Plots of the air-phase permeability as a function of wetting phase saturation. The solid
dots are actual measurements with two phases present; the open circles are measurements of single
phase flow. Data from Steriotis et al. [3]. The experimental conditions were appropriate for 2D
flow. The exponent, m, was thus chosen to be 1.27 (not updated to 1.3). The theoretical prediction
(dashed curve) from Eq. (6.1) uses one parameter, the critical air fraction for percolation, equal to
0.16. Note that only the solid circles represent a direct measurement, while the open circles are
from a proxy, and that Steriotis et al. [3] wished to show that the open circles were a reasonable
approximation to the actual values

Unsal et al. [5] present data for air permeability which compare well with uni-
versal scaling (Eq. (6.1)), as seen in Figs. 6.2 and 6.3. An additional data set from
Tuli et al. [6] is rather noisy. The Tuli et al. [6] data comprise 13 soils, while the
data of Unsal is from a single system. For the Unsal et al. [5] system we find
εt = 0.017 ≈ φ/22. With this value of the critical volume fraction we can choose a
prefactor as a second fit parameter and generate the following linear fit (Fig. 6.3):
y = x + 0.0004 with R2 = 0.9977. In order to analyze the data set of Tuli et al.
[6] we fitted a critical volume fraction and a prefactor to each soil, making each a
two parameter fit. When we plot predicted vs. observed values for all the systems
of Tuli et al. [6] together (Fig. 6.4) we find a 3% discrepancy in slope and an R2

of 0.95. Two of the thirteen soils had fit parameters εt = 0.0. When those are ex-
cluded and we plot for the remaining soils εt against φ , the linear regression yields
εt = 0.09φ +0.01, but with very small R2 = 0.05. The average of the eleven nonzero
values of εt is 0.032, or just under 8% of the average porosity 0.45, not greatly differ-
ent from the 9% obtained in the regression. The critical air fraction for percolation
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Fig. 6.2 Comparison of air permeability with universal percolation scaling (Eq. (6.1)). Data from
Unsal et al. [5]
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Fig. 6.3 Direct comparison of predicted and observed values of the air permeability (data from
Fig. 6.2). Note that the slope is 1, R2 = 0.998, and the value of the intercept is about 1/1000 of the
typical permeability values

is much smaller in 3D than in 2D (compare the Unsal et al. and Tuli et al. values of
0.017 and 0.032 with those of Stereotis et al. 0.16), generally consistent with other
3D versus 2D comparisons shown in Table 1.1 (percolation thresholds for various
lattices). Interestingly, Unsal et al. [5] had asserted that the air permeability function
ka(ε) can be used to obtain information about the pore-size distribution, at odds with
our analysis, as a two-parameter fit from a universal result predicts the data with a
slope of 1, an intercept of 1/1000 of the mean measured value and an R2 value of
0.998.

The three data sets investigated are at least compatible with universal scaling,
as predicted. Two of these data sets can be predicted extremely accurately with the
universal result from percolation theory.
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Fig. 6.4 Comparison of predicted and observed values of the air permeability [data from Tuli
et al. [6]]

6.2 Thermal Conductivity

6.2.1 General Comments on the Saturation Dependence
of the Thermal Conductivity

The saturation dependence of the thermal conductivity λ (θ) is difficult to analyze
within the context of percolation theory. First, all three phases in a typical unsat-
urated geological medium (water, air, solid) have nonzero thermal conductivities,
though the thermal conductivity of air λa is typically sufficiently small to ignore.
Second, the thermal conductivity of the water and solid phases is not a simple or
universal ratio. The solid-phase conductivity λs may be only half that of water λw

(organic soils), or as much as 15 times greater (high quartz soil), with more typi-
cal ratios (5–10) depending on mineralogy; other ratios will be obtained in artificial
media. Third, the ratio of the thermal conductivity of a saturated soil to its value
in the same soil under perfectly dry conditions is seldom much over 10. This im-
plies that the kind of critical path analysis arguments that we have been employing,
which can easily contain uncertainty regarding factors of 2, for example (in order to
get tendencies of many orders of magnitude correct), will tend to contain too high a
level of uncertainty. Unfortunately, because of the typically higher conductivity of
the solid phase, even under dry conditions the medium is not near the percolation
threshold. This introduces considerable uncertainty into percolation-scaling argu-
ments. In fact, when the medium becomes saturated, the equivalent volume fraction
incorporated by conducting material is 1 (while a critical volume fraction may be
zero), as far from the percolation threshold as it is possible to get, and the worst
possible conditions for percolation theory. An additional complication arises from
the physical arrangement of the solids. While water at both smaller and larger sat-
urations has the tendency to enhance the global connectivity of the pathways, in
granular media at fairly low saturations, the most important effect of water is to
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enhance the conduction between individual grains. A simultaneous solution, rather
than a separation, of all these issues is required because the total range of thermal
conductivity values from dry conditions to saturation is seldom much more than an
order of magnitude, mixing all these effects together. This places a high degree of
importance on an accurate description of the geometry (a very difficult problem) for
a property that does not really exhibit a wide range of values. Under such conditions
it may be difficult to find sufficient motivation for attacking the problem logically
and quantitatively. Still, it is important to attempt to develop a unified picture of all
conduction and transport properties in one place.

6.2.2 Theoretical Construction

In this discussion we come at the problem, so to speak, from two directions. First we
look at geometrical influences under ideal conditions to make geometry dominant,
then we look at percolation scaling under ideal conditions to make scaling simple.
Then we combine the two approaches to see whether the resulting expression is
compatible with experiment over all saturations and mineralogies, i.e., including all
possible nonideal conditions.

Consider a medium composed of solid spheres. Ignoring deformation, contact
between two spheres is simply a point, leading to an infinite contact resistance be-
tween each pair of spheres. When water enters such a medium it tends to form
pendular (ring) structures at the contact points [7]. Because the pendular structures
are much wider than they are long, for a small increase in water content one gains
a large increase in conductivity. This geometrical problem has never been solved
analytically. However, for a cubic lattice of spheres with all water being in pendular
rings, the conductivity is given approximately by [8]

λ (θ) ≈ λ |θ=0 +aθ b (6.2)

with a ≈ (λs/λw)3/2 and b ≈ 0.1+1.75(λw/λs). Commonly b appears to take on a
value near 1/4. This approximate power-law form of λ (θ), with a sublinear power at
typical values of λs/λw, is consistent with measurements of λ (θ) in granular media
at low water contents [9]. The form of Eq. (6.2) also holds for deformed spheres
[8], so the behavior (if not the actual value of the exponent) applies beyond perfect
spheres in a cubic lattice. Equation (6.2) also holds, under some rather restrictive
assumptions (needed for calculation), for spherical particles with a range of sizes,
though the expressions for the parameters are not identical [8]. At higher water
contents, as menisci coalesce and fill pores, resistance to heat flow is mainly due to
air inclusions, probably well described by simplistic treatments of tortuosity. In the
wet regime λ (θ) is often predicted by a simple linear mixing model.

What would percolation theory have to say about the thermal conductivity? We
have constructed the following percolation theoretical argument for the thermal con-
ductivity of natural porous media under the conditions that λa = 0, and λw = λs and
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that geometrical effects of pendular structures can be ignored. Under such condi-
tions, ignoring everything except the bulk fraction of the medium which is either
solid or water, one can represent thermal conductivity via universal scaling as

λ (θ) ∝ (1−φ +θ)2 (6.3)

Note that, even in the case φ → 1, the solid portion of the medium percolates by
construction as any medium must be “grain-supported,” otherwise it would collapse,
and the porosity would change. Thus there should be no need to include a critical
solid fraction for percolation.

Such an expression as Eq. (6.3) cannot be quantitatively accurate, because the
percolation threshold is never approached, not even for θ = 0. Further, in the limit
θ → φ (effectively p− pc = 1) it predicts dλ/dθ = 2, instead of 0. On the other
hand, Eq. (6.3) does reproduce an observed proportionality of the thermal conduc-
tivity of dry soils (θ = 0) to a nonlinear power of the density (1−φ)n [10, 11], with
Campbell [12] choosing precisely 2. In fact, Campbell’s result for the thermal con-
ductivity of dry soils, considered by some (including Campbell) to be predictive, is
λ = 0.03+0.7(1−φ)2. This relationship given in Campbell is in fact closely related
to Archie’s law. To investigate further, we have digitized 168 data points for thermal
conductivity of dry rocks and soils from Cóté and Konrad [13] and present log[λ ]
vs. log[1−φ ] (investigating Eq. (6.3) in the limit θ → 0). Allowing Excel to choose
a power leads to a slope of 2.017, less than 1% different from the predicted value,
but considerable curvature exists (Fig. 6.5). Note that analysis of rocks separately
leads to a larger slope (2.47) and soils separately to a smaller slope (1.43), while
each of those individual graphs also contains noticeable curvature (not shown). In-
cluding 18 additional soil data points from Lu et al. [14] would make no visible
change in the curvature, but would reduce the power to 1.98. Given that the thermal
conductivity of dry soils/rocks is sensitive to the exact mineralogy, our preliminary
comparison, lumping all types together is only suggestive, not conclusive.
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Fig. 6.5 Comparison of Eq. (6.3) for θ = 0 (dry soils) with all the relevant data collected by Cote
and Konrad [13]. While considerable curvature exists, the slope picked by Excel on a logarithmic
plot is 2.017, less than 1% different from the percolation theoretical slope
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By itself Eq. (6.3) bears little resemblance to experimental results for the satura-
tion dependence of the thermal conductivity. So we return to the approximate result
(Eq. (6.2)) of Ewing and Horton [8] and the fact that it appears to have relevance
also in media with a wider range of particle sizes. This allows an interpretation of
Eq. (6.2) in terms of critical path analysis, namely that it generates the appropriate
expression for the dependence of the critical (most highly resistive) pendular ring
on a percolating path. If this is true, then we could postulate the following formula
for the thermal conductivity,

λ (θ) ∝ (1+θ −φ)2
(

a+ cθ
1
4

)
(6.4)

which includes simultaneously effects of the saturation dependence of the connec-
tivity, or topology, of the connected network (the first factor) and the resistance of
the most resistive elements (the second factor). These factors affect the thermal con-
ductivity simultaneously (think back on the elementary physics formula, R = ρl/A,
discussed in Sect. 2.5) and thus should appear in a product. Of course in the limit
θ → φ topology and percolation scaling can no longer have a significant effect and
the contribution from Eq. (6.3) should be replaced by a function that asymptotically
approaches a constant value. Further, the resistance of the critical conductance only
begins to fall after a volume of water roughly equal to the surface film contribu-
tion to θt – see Chap. 7 – has been adsorbed. Finally, at higher saturations menisci
start to coalesce, water begins to fill pores, and the pendular rings cease to grow
as individual structures [8]. Thus, c in Eq. (6.4) must be zero for very small sat-
urations and jump to a geometrically dependent nonzero value at some saturation.
At the moisture content at which pendular structures cease to grow, the term cθ 1/4

should remain constant. Finally, note that, according to the interpretation, the term a
in Eq. (6.4) ultimately represents the contact area in the absence of water. Together,
this generates four parameters.

In the context of this book, however, Eq. (6.4) is rather disappointing. It has,
in fact, more parameters and less simplicity than corresponding equations for the
hydraulic and electrical conductivities. Further, as we will see, it only describes
data for the thermal conductivity up to a certain point; at higher moisture contents
Eq. (6.4) uniformly overestimates λ ; in the case of sandy soils, seriously so. The
reason for this is, of course, that the topological description near the percolation
threshold cannot hold in the vicinity of p = 1. Once the correlation length diminishes
to a typical grid spacing, it cannot diminish further, and the conductivity cannot rise
further, although Eq. (6.4) does describe almost the entire saturation dependence of
λ for some clay-rich soils (Fig. 6.6a). So, from an analytical perspective, one would
simply have to stop at Eq. (6.4) and ignore near-saturated conditions. Such a course,
however, is not satisfying to a hydrologist.

It turns out that a very small modification of Eq. (6.4) makes it perform very
well indeed over the entire range of saturations for all soils investigated. These
include thermal conductivity data of Lu et al. [14] and the saturation-dependent
phenomenology of Campbell [15], for which the dry limit was mentioned below
Eq. (6.3). It should be noted that the latter represents a smoothing of experimental
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error, and is not as reliable a comparison, though it simultaneously implies a much
wider relevance of the present results. The specific modification of Eq. (6.4) is to
reduce the power of the factor (1−φ +θ ) from 2 to 1 (making it a linear function).
Such a change is indefensible (and ruins the approximate correlation of the thermal
conductivity under purely dry conditions with the square of the density as well).
But the result describes the thermal conductivity well (Fig. 6.6), and the parameters
extracted mostly make as much sense as those extracted from a comparison with
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Fig. 6.6 (a) Comparison of experimental data for the thermal conductivity from Lu et al. [14] with
predictions from Eq. (6.4) and its modification. Experimental data are the various symbols, while
Eq. (6.4) is the dashed line, and Eq. (6.4) with a substitution of the linear power is represented
by the solid lines. Note that in the particular soil with contrasting theoretical expressions, the
superiority of the linear model is confined to a single data point, but typically the divergence
between experiment and Eq. (6.4) becomes clear for data above θ = 0.25, or even θ = 0.2. Soils
with higher thermal conductivity have higher sand contents (b) Comparison of phenomenological
data (equation from Campbell plotted by Bristow) with theoretical predictions from Eq. (6.4) and
its modification. Different symbols were chosen for different soil types: squares for a sand, triangles
for a silt loam, and crosses for a clay loam. Again the discrepancy between experiment and Eq. (6.4)
is smallest in the finest soil and it is this case that is compared with both Eq. (6.4) (dashed line) and
the modification with a linear power (solid line). In the other two cases, Eq. (6.4) would become
inaccurate already by θ = 0.20 and θ = 0.35, respectively
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Table 6.1 Thermal conductivity parameters and statistical quantities

cl (Bristow) sl (Bristow) Sand (Bristow) scl (Lu) sl (Lu) Sand (Lu)

Eq. (6.4)
Dry soil

conductivity
0.21 0.25 0.3 0.25 0.221

Pendular
contribution

0.305 0.5 1.02 0.42 0.56

Threshold 0.14 0.12 0.04 0.06 0.068
Pendular water

fraction
0.06 0.07 0.03 0.03 0.07

Slope 1.1 1.19 1.5 1.2 1.19
Intercept −0.03 −0.09 −0.27 −0.12 −0.09

R2 0.993 0.97 0.92 0.91 0.924

Modified
Eq. (6.4)
Dry soil

conductivity
0.13 0.16 0.16 0.144 0.12 0.43

Pendular
contribution

0.3 0.49 0.79 0.29 0.38 0.54

Threshold 0.14 0.13 0.049 0.11 0.068 0.02
Pendular water

fraction
0.19 0.077 0.036 0.18 0.18 0.2

Slope 0.994 0.992 1.007 0.998 0.988 0.998
Intercept 0.004 0.007 −0.009 0 0.008 0.004

R2 0.997 0.997 0.999 0.989 0.985 0.998

Ratio
linear/quadratic

Dry soil
conductivity

0.61904762 0.64 0.533333333 0.576 0.542986

Pendular
contribution

0.98360656 0.98 0.774509804 0.6904762 0.678571

Threshold 1 1.0833333 1.225 1.8333333 1
Pendular water

fraction
3.16666667 1.1 1.2 6 2.571429

cl = clay loam, sl = silt loam, scl = silty clay loam.

Eq. (6.4) (Table 6.1). The one exception is the total amount of water in pendular
structures which typically yields about 10% of the porosity or less. But in the case
that the quadratic dependence is replaced by the linear dependence, this parameter
on some occasions takes on much larger values, up to 40% of the porosity. However,
this may not be as serious as it seems; the 1/4 power factor from the pendular struc-
tures rises very rapidly at first and more slowly at higher moisture contents, making
its contribution nearly constant. Thus the fit does not depend sensitively on the value
of θ chosen at which the pendular structures no longer increase in size, making it
possible to increase the agreement with experiment rather minimally at the cost of
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a significant increase in pendular water. In other cases the ratios of the parameters
are consistent and not too different from Eq. (6.4) (Table 6.1). The threshold water
fraction is likely largely stored in films. The sum of the threshold water fraction and
the amount in pendular structures is 0.09 (silty clay loam) and 0.14 (silt loam) in
the fits of the data of Ren using Eq. (6.4). These values are similar to the critical
volume fraction, 0.11, in a silt loam in the Hanford site as well as to characteristic
values for the threshold for diffusion in silt loams of 0.12 [16]. The linear fit leads to
0.29 and 0.25 for the water fractions of the silty clay loam and the silt loam, respec-
tively. These values are upwards of 50% of the porosity. Nevertheless, the statistical
comparisons always favor the linear version of the topological factor, because the
quadratic version overestimates λ as saturation is approached.

The theoretical problem is that using a linear power of the percolation argument
makes that factor similar to a mixing model result, which is supposed to derive ulti-
mately from effects of volume averaging in heterogeneous media for which distinct
constituents have differing conductivities. But we are already isolating the chief
effect of the saturation dependence of the individual conductances when we con-
centrate on the effects of the critical pendular structures. We are allowed to take a
product of topological and geometrical effects on conductivity (Eq. (6.4)), as long as
they are independent. The product of two geometrical effects could only make sense
in a 1D system where conductances add reciprocally. We conclude that so much of
the regime of interest in the thermal conductivity is so far from the percolation
threshold that the asymptotic results from percolation theory cannot be applied over
a large range of moisture contents. This is in contrast to the electrical conductiv-
ity. Practically speaking, however, the effective power of the percolation argument
drops from 2 toward 0 as p = 1 is approached, and it is accurate enough over the
majority of the range of values to apply an effective μ = 1.

If we ignore the saturation dependence of the thermal conductivity and concen-
trate on its value in dry soils, we note that it has an interesting relationship with the
electrical conductivity of saturated soils (main contribution from fluid phase). Both
are (apparently) proportional to the square of the relevant volume fraction. While
Eq. (6.4) is much less accurate than corresponding equations for the electrical con-
ductivity in terms of saturation, in order to generate the corresponding property
dependence under dry conditions, it must be evaluated in a limit that is as close to
the percolation threshold as it is possible to reach, and under conditions that make
its chief defects negligible. Equation (5.20) for the electrical conductivity, on the
other hand, while much more accurate, must be evaluated at the limit furthest from
the percolation threshold, and there appears to be similar uncertainties in both these
examples.

Since the percolation-scaling result (Eq. (6.3)) requires a near coincidence of
solid and wetting phase conductivities, cannot be extended to wet conditions, and
neglects possible effects of pendular structures, while reliability of the sublinear
power result (Eq. (6.2)) requires existence of particles that can at least be repre-
sented as deformed spheres, there would appear to be no simple and general analysis
of the thermal conductivity that would be useful for prediction. But the remarkable
coincidence of the modification of Eq. (6.4) with experiment over the entire range of
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saturations and the mostly logical and consistent values of the extracted parameters
makes us hesitant to “throw in the towel.” For contrast, the theoretically more defen-
sible result (Eq. (6.4)) often leads, as expected, to unacceptably large discrepancies
when values of p − pc exceed about 0.75 (typically half the range of accessible
saturation values), and even its apparently successful prediction of the porosity de-
pendence of the thermal conductivity in dry soils leaves unanswered questions. Thus
we leave this topic with the hopes that our discussions can help to guide further in-
vestigations (and maybe suggest a useful phenomenology) together with the belief
that the limitations of percolation theoretical descriptions of this property will help
the reader to gain better perspective regarding its successes elsewhere.

6.3 Solute and Gas Diffusion

Experimental results for solute and gas diffusion as functions of moisture content
obey simple percolation-scaling relationships, though these relationships are not
trivially compatible with the discussion in Chap. 2. The present discussion is largely
based on numerical simulations of Ewing and Horton [17], plus some unpublished
simulations. All simulations were based on a (simple cubic) network model, and
were developed originally for saturated conditions with a variable pore connectiv-
ity. Pruning (cutting) bonds also reduced the porosity. The diffusion coefficient was
found through particle tracking: random walkers were released on one side of a sys-
tem of linear dimension x, and removed upon arrival at the other side, with their time
of passage recorded. For any given porosity the effective diffusion coefficient was
measured as a function of length. The authors expressed the diffusion coefficient
Dpm of an inert conservative solute in the porous medium in terms of its value Dw

in water
Dpm

Dwφ
≡ Γ−1 (6.5)

and used the simulations to evaluate the quotient Γ−1, known in the porous me-
dia community as the tortuosity. The authors found that the tortuosity had length
dependence

Γ ∝ x1.11 (6.6)

Hunt and Ewing [18] then used the physical arguments from Sect. 2.4 to deduce
that

Γ ∝ (p− pc)
−1.11ν (6.7)

which is the result that would obtain from finite-size scaling. For continuum per-
colation problems which use moisture content θ rather than p as the fundamental
variable, make the substitution (p− pc) → (θ −θt).

Consider the factor φ in the denominator of the left-hand side of Eq. (6.5). Hunt
and Ewing [18] argued that, for unsaturated problems, φ should be replaced by θ .
The choice of θ , as opposed to the accessible water-filled porosity θ(θ −θc)β , was
justified as follows. When a medium is being drained but still has θ > θt, clusters of
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water-filled pores may lose their (water-filled pore) connection to the infinite cluster
of water-filled pores, but they are still connected through water films. The distance
that a molecule would travel along film pathways between a disconnected cluster
and the infinite cluster need not be a critical function of percolation variables [19],
so it must be a function of the moisture content. That is, the slower diffusion through
thin water films does introduce a delay factor, but that delay factor is not a power
function of (θ −θt). This is an important argument, which we will revisit below in
the context of gas diffusion at partial saturations. With these substitutions, one has

Dpm

Dw

= θ (θ −θt)
0.98 (6.8)

Experiments yield essentially this result (Fig. 6.7), except that the reported power
is 1 instead of 0.98, and a numerical prefactor of 1.1 was given. We sought no nu-
merical prefactor in our analysis, so difference of 10% in magnitude is merely fortu-
itous. Note that what Ewing and Horton [17] called tortuosity is called “impedance
factor” by Moldrup et al. [16], from which paper Fig. 6.7 was obtained. Several
other experiments [20–23] are summarized in Fig. 6.8, taken from Hu et al. [24].
Note that for θ >> θt, Eq. (6.8) approaches Dpm/Dw = θ 2; this asymptotic depen-
dence is consistent with data near saturation. Additionally, some data sets diminish
much more rapidly than θ 2 at small values of θ , consistent with the critical behavior
of Eq. (6.8) near θt. Figure 6.9 shows a set of data reported in Hu and Wang [25].
These data do not show evidence of a nonzero θt, but are clearly consistent with θ 2

as the asymptotic dependence on the moisture content. Figure 6.10 [which includes
data from Hu and Wang [25] not published in Fig. 6.9] allows a simple power-law fit
of the data from nearly 50 years of experiments (excluding only those experiments

Fig. 6.7 Reprinted by permission from Moldrup et al. [16]. The ratio Dpm/Dwθ is plotted as a
function of moisture content. Note from the experimental results for different soils that this ratio
gives parallel lines of slope 1; the intercepts yield the critical moisture content for percolation, θt
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Eqn(4.24)

Fig. 6.8 After Hu et al. [24]. The first two data sets are from that work. Note that several of the
data sets drop rapidly between 1 and 10% saturation, consistent with a critical saturation in that
range of values. For large θ , Eq. (6.8) yields the asymptotic limit θ 1.98 ≈ θ 2. The CRWMS fit has
a slope of 1.9. CRWMS refers to the Civilian Radioactive Waste Management System of the U.S.
Department of Energy

which show an apparent nonzero θt), giving an exponent value of 1.97 compared
with Hunt and Ewing’s [18] value of 1.98. Again this near coincidence (rather than
an exponent of, say, 2) is clearly fortuitous, but it does suggest the validity of the
overall approach.

The agreement between theory and experiment is heartening, but also disturb-
ing. By neglecting the factor regarding accessible porosity, the exponent here for
solute diffusion is reduced from about 1.4 to about 1. However, it was precisely by
inclusion of this effect (Chap. 2) that the prediction of the exponent for diffusion
is reduced by about 0.4 from the exponent for conduction. Thus some future work
is required to reconcile these results and determine why the percolation arguments
from Chap. 2 seem to break down. On the other hand, for θt = 0 the moisture con-
tent dependence is nearly θ 2, identical to the power in the conductivity, although
we should probably expect θμ−β . This raises the possibility that the tendency of in-
vestigators to generate diffusion and electrical conductivity results from each other
(e.g., Schofield and Dakshinamurthi [26]; Klinkenberg [27]; Snyder [28]; Garrouch
et al., [29]) actually makes Fig. 6.10 more of an additional verification of universal
scaling for the conductivity than it is a result for diffusion.

Interestingly the effective-medium treatment from Sect. 2.2 predicts the experi-
mentally observed power (1) for the vanishing of the diffusion constant precisely.
However, that also appears to be fortuitous; if the contrast between the experimen-
tal results for gas and solute diffusions is based on the asymmetrical characteristics
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Fig. 6.9 After Hu and Wang [25]. Here the comparison with Eq. (6.8) (the dashed line) is given
under the assumption that θt = 0

from wetting (water) and nonwetting (air) fluids, then the effective-medium treat-
ment was not even constructed with this physics in mind. Also, the effective-medium
treatments do not predict a proportionality to θ 2 in the event that a critical moisture
content is zero.

Hunt and Ewing [18] adapted the same simulations to gas diffusion. A naı̈ve
development would be to replace θ by ε , the air-filled porosity. Then one would
have for the analogous ratio, Dpm/Dg (with the subscript g implying diffusion in
gas),

Dpm

Dg
= ε (ε− εt) (6.9)

But when gas-filled pores become cut off from the infinite cluster, water-filled pores
block gas diffusion much more effectively than water films block solute diffusion.
The reason for this is that, in addition to diffusing through water-filled pores, the
gas must be dissolved and exsolved at the boundaries of the water-filled regions.
Additionally, for a given molecule, liquid-phase diffusion is generally several orders
of magnitude lower than gas-phase diffusion. To lowest order and for many cases,
water-filled pores may be considered to block gas diffusion perfectly. This means
that the factor ε should be replaced by ε[(ε− εt)/(φ − εt)]0.4, and
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Fig. 6.10 Compilation of data (including sources not published in Figs. 6.7 and 6.8) from Hu and
Wang [25] and Hu et al. [24]. Excel fitted slope of 1.97 compares to 1.98 predicted by Eq. (6.8)
with θt = 0. The data from Conca and Wright [21] were not given in a form normalized to water, so
their data were graphically extrapolated to 100% water content with the intercept fitted by Excel,
which was then used to normalize that data. Then the normalized data from Conca and Wright
[22] were incorporated with the following sets [20, 79–94]. The CRWMS and Hu data sets are not
included because they show signs of nonzero θt (see Fig. 6.7) as well as not being normalized to
diffusion in water

Dpm

Dg
=

ε (ε− εt)
1.4

(φ − εt)
0.4 (6.10)

It turns out that εt for many systems is much smaller than θt (which is expected
to be ≈ 0.1φ ). Moldrup et al. [4, 16] also note that the air permeability may actually
vanish at ε = 0.02, about half the value given by εt = 0.1φ . Supposing that εt → 0,
the product of the two factors in ε may be approximated by ε2.4, and φ − εt by φ ,
yielding

Dpm

Dg
=

ε2.4

φ 0.4 (6.11)

The only difference between Eq. (6.11) and results summarized by experiment
[30] is that the reported powers are 2.5 and −1, respectively, instead of 2.4 and −0.4.
In fact, for consistency between the two relationships for solute and gas diffusions
one might argue that the apparent experimental proportionality to φ−1 should be
φ−0.5, so that in both gas and solute diffusions the right-hand side of the equation
is proportional to a composite factor, which is the square of some combination of
porosities. This assertion receives a little support from gas diffusion data in apples
and pears, but is somewhat at variance with the data described next.

Werner et al. [31] analyzed 81 published measurements of gas-phase diffusion,
both in situ and laboratory measurements, for which the air-filled porosity and the
total porosity were available. The data were compared with the usual formulations in
the literature, including Millington and Quirk [32], Currie [33], Sallam et al. [34],
and Moldrup et al. [30], using standard root mean square error (RMSE). Werner
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Fig. 6.11 Data from Werner et al. [31] for gas diffusion under field conditions compared with
Eq. (6.11) and with the Moldrup relation. Since the relationships are akin, there is little difference
in the comparison, but the Moldrup relationship has a slightly higher R2 (0.49 instead of 0.47) and
a slightly smaller intercept (0.022 rather than 0.028), both points in its favor

et al. [31] state, “The Moldrup relationship, Dpm/Dg = ε2.5/φ , originally proposed
for sieved and repacked soils, gave the best predictions of several porosity-based
relationships, but the relative deviation between observed and predicted Dpm can be
substantial.” “The data suggest that the air-filled and the total porosity of a soil are
not always sufficient descriptors for the prediction of Dpm.” In Fig. 6.11 we compare
80 of their compiled measurements (all of Table 6.2, excluding one measurement)
with both Eq. (6.11) above and the similar Moldrup relationship mentioned. In com-
parison with Eq. (6.11) there is no independent estimation of εt possible, so we have
simply used εt = φ/10. Note that both relationships underestimate Dpm somewhat,
and both produce an R2 of slightly less than 0.5. While this is the poorest comparison
of percolation-based predictions (except, in this edition, the thermal conductivity)
with experiment among the basic properties considered here, it still appears to be
“the best [. . .] of several porosity-based relationships.” If, as we argue, the percola-
tion theoretical treatment is best suited to describe such properties, then it is logical
to assume that the fundamental information missing in this data set is εt, and that
knowledge of the variability of εt would allow a much more accurate prediction of
Dpm. It should also be mentioned that the derivation here, and the Moldrup phe-
nomenology, were both intended for use with disturbed or weakly structured soils.
Although soil structure can have a large impact on the air permeability (as shown in
Chap. 11, it may increase the air permeability by a factor of 1000), its impact will
be much less on air diffusion, since with air diffusion the actual pore radius should
not be relevant, only the total porosity. Further research should examine whether
the Moldrup relationship works best on soils which are least likely to be structured
(e.g., sands).

Figure 6.12 shows the original comparison with experiment on six repacked soils
of the Moldrup relationship [30] for gas diffusion.
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Table 6.2 Compilation of effective diffusion coefficients measured directly in the subsurface. Data
from Werner et al. [31]

Soil type Dpm/Da ε φ

Rolston et al. [72]

na 0.005 0.12 0.53
na 0.007 0.09 0.51
na 0.021 0.13 0.53
na 0.035 0.18 0.56
na 0.030 0.17 0.55
na 0.030 0.17 0.55
na 0.052 0.21 0.57
na 0.034 0.20 0.55
na 0.038 0.22 0.57
na 0.078 0.25 0.57
na 0.067 0.26 0.58
na 0.046 0.19 0.54
na 0.039 0.19 0.55
na 0.044 0.19 0.55
na 0.061 0.22 0.56
na 0.040 0.21 0.56
na 0.027 0.18 0.55
na 0.045 0.19 0.55
na 0.102 0.28 0.57
na 0.121 0.27 0.57
na 0.090 0.28 0.56
na 0.073 0.25 0.56
na 0.082 0.27 0.56
na 0.072 0.25 0.56
na 0.122 0.28 0.57

van Bochove et al. [73]

Sandy loam 0.088 0.16 0.39

Ball et al. [74]

Sandy loam 0.001 0.17 0.44
Sandy loam 0.023 0.26 0.49
Sandy loam 0.024 0.24 0.46
Sandy loam 0.016 0.20 0.43
Clay loam 0.001 0.12 0.48
Clay loam 0.001 0.11 0.48
Clay loam 0.170 0.09 0.49
Clay loam 0.002 0.10 0.46
Loam/clay loam 0.068 0.15 0.49
Loam/clay loam 0.021 0.17 0.46
Loam/clay loam 0.013 0.10 0.39

Washington et al. [75]

na 0.099 0.26 0.49
na 0.054 0.23 0.49
na 0.024 0.08 0.45
na 0.012 0.08 0.47
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Table 6.2 (continued)

Soil type Dpm/Da ε φ

Werner and Höhener [76]

na 0.024 0.14 0.45
na 0.015 0.10 0.45
na 0.022 0.11 0.46
na 0.106 0.37 0.55
na 0.073 0.29 0.54
na 0.064 0.18 0.43
na 0.079 0.14 0.41
na 0.012 0.09 0.45
na 0.020 0.14 0.43
na 0.024 0.14 0.43
na 0.019 0.11 0.42
na 0.509 0.28 0.50
na 0.165 0.22 0.47
na 0.066 0.07 0.42
na 0.026 0.06 0.34
na 0.026 0.08 0.32
na 0.028 0.19 0.40
na 0.099 0.19 0.34
Sand 0.100 0.25 0.31
Sand 0.140 0.29 0.37
Sand 0.100 0.29 0.37
Sand 0.140 0.27 0.37
Sand 0.080 0.27 0.37
Sand 0.130 0.27 0.37
Sand 0.150 0.27 0.37

Hers et al. [77]

Sand 0.167 0.24 0.36
Sand 0.215 0.27 0.36
Sand 0.085 0.22 0.36
Sand 0.073 0.19 0.36
Sand 0.039 0.16 0.36
Sand 0.112 0.24 0.36

Nicot and Bennett [78]

Clay 0.022 0.15 0.36
Clay 0.071 0.24 0.36
Silty sand 0.127 0.33 0.44
Silty sand 0.128 0.35 0.44
Silty sand 0.097 0.28 0.39
Silty sand 0.078 0.28 0.39
Clayey sand 0.037 0.18 0.30
Clayey sand 0.049 0.18 0.30

na, not available.
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Fig. 6.12 Reprinted by permission from Moldrup et al. [30]. Gas diffusion coefficients for six
repacked soils compared with the Moldrup relation (solid curve) and with another popular phe-
nomenology

Equation (6.11) implies the same dependence of gas diffusion of dry media on
porosity as the dependence of solute diffusion in saturated media from Eq. (6.8),
namely a proportionality to the porosity squared. Verboven et al. [35] report results
for the mean gas diffusion constants of apples and pears as well as their mean porosi-
ties. These data are generally compatible with a quadratic dependence of the gas
diffusion constant on porosity. It is not really significant to determine the exact be-
havior from the published data because they consist only of mean values and stan-
dard deviations of porosity and diffusion constants. We have tried to analyze the
unpublished data (thanks to Dr. Verboven for sharing it), but we reached no definite
conclusions. Apparently the samples from which the porosity values were extracted
are not generally the same samples as those on which the diffusion constant was
measured. So there is no unique relationship between porosity and diffusion. Nev-
ertheless we tried two different schemes to associate the porosity values with the
diffusion data: scheme (1) generated a power-law relationship of Dg ∝ φ 2.05, while
scheme (2) generated Dg ∝ φ 2.26, both with R2 values of about 0.85. Thus there is a
tantalizing suggestion that the same simple scaling behavior for diffusion describes
gas diffusion data from living organisms as well as solute diffusion data from soils.

6.4 Electrical Conductivity of Hydrated Clay Minerals

This section applies the techniques of critical path analysis for hopping conduc-
tion to the electrical conductivity σ of hydrated clay minerals. Most publica-
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tions on the subject treat only the dc conductivity; experimental measurements of
that quantity are made at frequencies ω that are assumed low enough to exclude
ac conduction processes. This assumption may not be valid in practice. The ac
conduction processes are also typically considered to have a different source from
the dc conduction, another assumption that appears to be invalid in light of the ev-
idence presented in Hunt et al. [36]. The following discussion aims to clarify these
topics.

The dc electrical conductivity of a porous medium is usually considered related
to its water content through two terms; although Eq. (5.30) is the form traditionally
used in soil science, we will use Eq. (5.31), because of its superior physical inter-
pretation. The first term gives a surface or solid contribution, and the second term
represents the contribution of water in the pore space. The solid contribution may
dominate the medium’s bulk electrical conductivity at low water contents [37, 38].
The solid contribution arises especially from water associated with clay surfaces,
and the specific physical processes giving rise to this electrical conductivity are an
interesting and long-standing problem. There is as yet no consensus even as to what
charge carriers give rise to the conductivity, even though it is clear that the conduc-
tion proceeds through the near-surface water phase. Both ionic conduction and pro-
ton transfer have been suggested. Conductivity diminishes with increasing cation
charge, suggesting that the conducting entities are actually protons [36], because
the greater Coulomb repulsion impedes the charge transport more. This argument
would be qualitatively similar even if the moving charges were the ions, but the
coupling of the charge and the applied field would have the opposite tendency be-
cause larger charges lead to larger changes in electric field potential energy, and thus
larger currents. Nevertheless, the increase in conductivity due to the coupling with
the field is linear in the charge, whereas the linear increase in Coulomb repulsion
energy appears in an exponential (as an activation energy), so it is not a priori obvi-
ous whether ionic transport should yield a conductivity which increases with ionic
charge.

The electrical conductivity of clay minerals is frequency-dependent down to
rather low frequencies. This frequency dependence suggests the important role of
disorder: the electrical conductivity of an ordered system is frequency-independent
at frequencies as high as 1012 Hz and as low as 10−2 Hz or lower. The subject of
the ac conductivity of noncrystalline materials, however, is part of a much broader
discussion, in which critical path analysis is also represented.

In the 1970s Andrew Jonscher wrote several articles (e.g., Jonscher [39]) pointing
out the quasi-universal behavior of the ac electrical conductivity σ(ω) of noncrys-
talline solids. The substances included β -alumina, amorphous semiconductors, cel-
lulose, humidified clays, and many others. In most of these systems, σ(ω) appeared
to follow a sublinear power law σ(ω) ∝ ωs (with 0 < s < 1) over many decades
of frequency. The existence of so many such similar power laws triggered many in-
vestigations. Some key questions were asked: Is the behavior truly universal? If so,
how is it best described? What could cause the same behavior to be observed in so
many different systems? If the behavior is not universal, what underlying physical
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tendencies producing similar behavior could be found in so many systems? The
discussion continues today with no sign of a consensus emerging.

For convenience, we separate physical treatments of ac conduction in noncrys-
talline solids into three classes: (1) effects of energy and spatial disorder on hopping
conduction, (2) effects of “dynamic” Coulomb interactions on hopping conduction,
and (3) hopping conduction on fractal structures. The first class is treated using
critical path analysis or effective medium theories, and the third is often related to
percolation scaling ideas. The second class will not be treated here, as its integration
into the present discussion would require considerable background not yet presented
here. We will concentrate on the first class, because it seems implausible that fractal
structures are causative in so many cases, especially as most systems do not appear
to be near a structural percolation threshold. Moreover, in Chap. 4 we showed how
to calculate the dc conductivity of disordered systems using critical path analysis,
and calculations of the ac conductivity have an analogous basis. Finally, one of us
(AGH) has recently published on the ac conductivity of clay minerals, including a
rather detailed analysis in terms of percolation theory in the form of critical path
analysis [36].

Even within the first class (effects of energy and spatial disorder on hopping con-
duction), there is still uncertainty. The effects of Coulomb interactions between hop-
ping charges cannot be completely neglected in the model we developed. Although
theory is relatively mature for “noninteracting” systems, controversy remains in
cases where the hopping motions of the individual charge carriers are strongly cor-
related [39, 40]. In Hunt et al. [36], indeed, such interactions were treated in a some-
what heuristic way. Also, while the dependence of σ(ω) on frequency ω is classical
percolation [41, 42], the amplitude of the variability is only about 2 orders of mag-
nitude. This smaller amplitude means that analysis in terms of effective medium
theories or even mixing theories could also be useful, at least for the typical temper-
atures investigated.

The ac conductivity is related to the time dependence of the time derivative of
the electrical polarization of a system. This is because a temporally changing dipole
moment (such as produced by a spatial rotation) is equivalent to charge transport.
However, charge transport in a capacitive medium (hopping conduction) over suf-
ficiently small time and space intervals is considerably enhanced over steady-state
current: thus ac conductivity is distinct from dc. The polarizability of a medium is
described using the frequency-dependent dielectric permittivity ε(ω). As a conse-
quence of the physical relationship between a time-changing polarization and the
electrical current, σ(ω) in Fourier space is given by the sum of iωε(ω) (where
i =

√−1) and the dc conductivity σ(0). Thus the ac conductivity relates to a quan-
tity, the polarization, which may be nonzero even in the absence of mobile charges.
This explains the claim of many researchers (e.g., Sposito and Prost [43]) that the
only process which can produce a nonvanishing ac conductivity is the rotation of a
molecular dipole. But this is not the only such physical process! In fact, charges hop-
ping through a disordered landscape (either r-percolation, E-percolation, or r−E-
percolation, discussed in Chap. 4) produce a time-dependent polarization, yielding
the kind of σ(ω) behavior that is actually observed.
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Before addressing the physics, we caution the reader that many phenomenolog-
ical approaches have been used to fit the data, and arguments continue over which
is the most nearly appropriate. The most commonly used phenomenology for ac
conductivity is a power law. For dielectric relaxation one finds a large number
of phenomenologies (Cole–Cole, Cole–Davidson, Havriliak–Negami, Kohlrausch–
Williams–Watts, see references at Cole [44]; Davidson [45]; Havriliak [46];
Kohlrausch [47]; Williams [48]), but none of these works for the entire frequency
range (as wide as 10−2–1012 Hz) in any material (e.g., Dixon et al. [49]), so perhaps
it is not productive to try to derive such a “universal” result anyway. We suggest
that it is more important to derive a result which produces something similar to the
apparent power-law behavior observed [39] as well as the dc conductivity and a
characteristic time scale.

6.4.1 r-Percolation and E-Percolation

Hunt [50] derived a result for the ac conductivity of disordered materials, using what
could be called E-percolation in analogy with the terminology of Chap. 4. Here the
energy barriers between sites are random variables, but there is no relevant disorder
in site separation: either the sites have equal separation or the equivalent resistances
between sites have insignificant dependence on that variable:

σ (ω)−σ (0) ≈ σ (0)
[
ω
ωc

]s

ω > ωc (6.12)

where

σ (0) ∝ ωc ∝ exp

[
− Ea

kBT

]
and 1− s ∝

kBT
Ea

(6.13)

In these equations kB is the Boltzmann constant, T is the absolute tempera-
ture, σ(0) is the electrical conductivity at zero frequency (i.e., the dc conductivity),
ωc = νph exp(−Ea/kBT ) is the critical frequency, (where νph, called the phonon fre-
quency, is a vibrational frequency), and Ea is an activation energy. Specifically, Ea

is the smallest possible value of the largest activation energy on the transport path,
the highest unavoidable activation energy barrier [51]; it thus plays the part of a bot-
tleneck resistance. General features of Eqs. (6.12) and (6.13) have been verified in
a wide variety of systems.

The dc conductivity given by Eq. (6.13) varies widely with T. According to
theory, as T diminishes the dc conductivity diminishes exponentially, but the high-
frequency ac conductivity scarcely changes. The relationship 1–s ∝ kBT/Ea

(Eq. (6.13)) arises from the requirement that in the high-frequency limit, the re-
sults for different temperatures must approach the same limiting conductivity value
(Fig. 6.13). The same results are obtained for increasing Ea at a constant temperature,
which is compatible with the physical experiments on smectite clays that were
performed on systems with diminishing water content. Such curves are shown
for Mg-otay smectite clay in Fig. 6.14 [52, 53]. Similar frequency-dependent
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Fig. 6.13 Percolation theoretical calculations of ac electrical conductivity for disordered media at
9 different temperatures. Note that (1) the dc conductivity is a strong function of temperature, (2)
the high frequency ac conductivity is nearly independent of temperature, (3) the ac conductivity is
approximately a sublinear power of the frequency

conductivity was also seen in Ca-, Mg-, K-, and Na-saturated hectorite, otay, SPV,
and IMV smectites [52, 53], and also in Na- and Li-saturated smectites [54], so the
results of Fig. 6.14 are rather general. Notice the strong similarity between Figs. 6.13
and 6.14.

Here we discuss the general physics behind Eqs. (6.12) and (6.13), though with-
out deriving them. We also present experimental data supporting the validity of these
equations. We see that Ea calculated from critical path analysis appears reasonable
for most of the systems investigated.

To better understand ac conduction, consider the r-percolation system described
in Sect. 4.1. This r-percolation is analogous to the E-percolation described above.
Electrons sit at sites which all have the same energy, but are separated by varying
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Fig. 6.14 AC conductivity of Mg-otay smectite. In this figure, the dc conductivity increases more
rapidly with increasing water content than does the high-frequency ac conductivity [Data from
Logsdon and Laird [52, 53]]
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distances. Even in the absence of an electric field, electrons occasionally hop from
one site to another. The rate at which an electron may hop from site i to site j is
Γi j = νph exp[−2ri j/a] ≈ τ−1

i j , where the relaxation time representation, τi j, makes
explicit contact with Chap. 4 notation, and a is the size of the wave function. Here
the phonon frequency, νph, is often around 1012 Hz, but closer to 108 Hz in smectites;
this rate expression is a chief input into the resistance value Ri j given in Chaps. 2 and
4. Now impose an electric field in (say) the positive x direction. Electrons will now
tend to hop more frequently in the negative x direction than in any other direction,
because that reduces their electrical potential energy. As long as the electric field is
small, that tendency is slight, and the system is said to be in the Ohmic regime: the
response to the field is linearly proportional to the strength of the field. But suppose
that the electric field has been in this orientation only a very short time t ∝ ν−1

ph =
ω−1: Which electrons will respond? Clearly those for which the typical hopping
time (the inverse of the transition rate) is not greater than the time that the electric
field has been in its new orientation (making ri j ≈ a). Causality (the fundamental
precept that causes precede effects) allows a proof that in fact the electrons that
contribute to the in phase (real part of the complex conductivity) have response
times approximately equal to the inverse of the frequency of the applied field, while
those that respond much more rapidly contribute chiefly to the imaginary part. The
electrons responding in phase with the field will have a velocity v = a/t, or v =
aνph. This velocity value is independent of the temperature, and because electrical
conductivity is nqev/Ξ (for n the volume concentration of mobile charges, qe their
charge, v their velocity, and Ξ the electric field), this velocity tends to fix the ac
conductivity in the high-frequency limit.

Now consider the ac conductivity as a function of frequency, ω . A direct analogy
exists between ω and the percolation probability p; there is also a critical frequency
ωc analogous to pc. In particular, changing the frequency can effectively sweep a
system through a percolation transition.

Since electron jumps with characteristic times t approximately equal to the time
the electrical field has been in place dominate, however, t ≈ ω−1 and v ≈ ri jω .
The exponential dependence of Γi j on ri j makes the dependence of ri j on ω loga-
rithmic, justifying the statement that the typical distance ri j only increases slightly
with diminishing frequency. Thus the velocity of the hopping charges becomes, in r-
percolation, a sublinear function of the frequency. While the hopping distances vary
only slightly with frequency in r-percolation they do not vary at all in E-percolation,
and in this case v =< r > ω , where < r > is a typical hopping distance. However,
the number of electrons that can respond in time with the field is almost always a
diminishing function of frequency, making the conductivity a sublinear function of
the frequency. Meanwhile, because it is based on dividing the complex conductivity
by i, it is the imaginary (out of phase) part of the dielectric permittivity at frequency
ω which is dominantly influenced by hopping transitions with that characteristic
rate. This completes an understanding that is based on the treatment of individual
electrons, independent of each other [55, 56].

For high frequencies, only the fastest responding electrons can adjust their posi-
tions (and thus their potential energies with respect to the external field) fast enough
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to hop. As the frequency decreases, more electrons can respond, and the responding
electrons begin to cover overlapping paths. When the frequency is dropped suf-
ficiently that the overlapping paths percolate, the ac conductivity is dominated
by the same resistive process that controls the dc conductivity: no connections
are through pairs with slower rates than this particular Γ. The critical frequency,
ωc = νph exp[−Eac/kBT ], is proportional to the critical rate Γc, and the critical re-
sistance is proportional to the inverse of this critical rate. As a result, the ac con-
ductivity at a frequency proportional to the dc conductivity is approximately equal
to the dc conductivity. This argument is based on the relevance of critical path anal-
ysis to hopping conduction in a disordered system. If the ac conductivity can be
approximated by a power law in frequency, Eqs. (6.12) and (6.13) must follow. In
the case of hopping conduction in clay minerals, critical path analysis implies that
both the dc and the ac conductivities should be controlled by the same rate-limiting
process; thus σ(0) ∝ ωc and both these quantities have the same activation energy
Ea. In fact this is what is observed, and it is incompatible with conduction via ro-
tating dipoles: there is no reason why the hopping conduction energy barriers (if
they were associated with rotational motion) would have the same value as those
encountered by particles in translational motion.

6.4.2 Percolation Calculation of Ea

Here we show that a percolation calculation of Ea leads to realistic results without
use of adjustable parameters.

Hunt et al. [36] used percolation theory at the molecular level to find the principal
energy barrier limiting charge transport, and hence the dc conductivity in humified
monoionic smectite clays. The activation energy was assumed due to Coulomb en-
ergy barriers from counterions in the vicinity of the path of the hopping charges,
themselves believed to be protons. The measured electrical conductivities were
consistent with proton hopping in a maximum interlayer spacing above a thresh-
old water content, plus a constant term apparently due to hopping along external
clay surfaces. The basic physical interpretations were that (1) a minimum water
layer thickness is required for protons hopping along internal surfaces to effec-
tively avoid the vicinity of such counterions, and (2) it takes considerably less water
along external surfaces than along internal surfaces for protons to avoid the clay
counterions. This interpretation is consistent with previous conclusions of Laird
[57] that water along external surfaces tends to be concentrated in the vicinity of
counterions.

Consider the possible charge pathways through the humified smectite clay
(Fig. 6.15). Assume that proton hopping is the mechanism by which water transfers
charge. This may initially seem implausible, because in neutral water at chemical
equilibrium the concentration of protons (H+ ions) is 10−7 M, too small to produce
the conductivity observed. But chemical equilibrium can be compatible with a high
conductivity if individual proton hops are highly correlated, such that as one pro-
ton vacates a given site, another proton moves into the now-vacant position. This
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Fig. 6.15 Possible pathways for charge transport in smectite clay minerals [from Hunt et al. [36]]

interpretation allows transport to involve more protons than are actually free at any
given moment, and applies equally to water in smectite clays. In such an interpreta-
tion the reduction in conductivity with decreasing number of the water layers relates
to the presence of Coulombic energy barriers produced by counterions near the in-
terior clay surfaces. These counterions produce a rough electrical potential with
fluctuations that diminish with increasing distance from the surface. Closer to the
surface, the higher potential energy barriers generate a greater resistance to proton
hopping.
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We thus have a problem of correlated proton hopping in a relatively slowly vary-
ing Coulombic potential (because the typical charge separation is greater than the
separation of the water molecules). But the rate-limiting location on any given path
is the one which is slowest (i.e., has the highest energy barrier [58]), while the most
important pathways are those with the fastest effective hopping rate – that is, the
pathways along which the greatest energy barrier is small.

Dyre [58] expressed the idea of a limiting barrier height in terms of an effective-
medium theoretical description, but the concept was formulated in the context of
percolation theory. Start with the activation energy of the dc conductivity. Assume
that the negative charge on the basal surfaces of 2:1 phyllosilicates (e.g., smectite) is
located in basal oxygen atoms that are proximal to sites of isomorphic substitution.
The counter-positive charges are associated with the exchangeable cations in the
interlayers. Although these exchangeable cations are mobile, at any given instant
they tend to be located as close as possible to the negative surface charge sites, and
as far as possible from each other. Thus the spatial distribution of the interlayer
cations is determined by the distribution of negative surface charge. The charge of
the cations is qe (for q the valance of an individual cation, and e the protonic charge).
The charge sites due to interlayer cations are separated on the clay layer surface by
some typical distance, denoted l (see Fig. 6.15). Within the water, the potential due
to a single cation is not a “naked” potential; it is reduced through the dielectric
properties of the water. The energy of interaction of a charge e (the protonic charge)
and a single cation charge qe, separated by a distance r, is then

E =
e2q

4πε0εwr
(6.14)

where εo is the permittivity of free space, and εw is the permittivity of water.
This energy of interaction is related to the activation energy of the hopping con-

duction, Ea, as will be shown. Consider a problem in two dimensions (2D) with no
significant water thickness (Fig. 6.15a). A hopping charge must normally be brought
within a distance d = l/2 of a cation of charge qe in order to find a path through
the system. In three dimensions (represented in cross-sections in Fig. 6.15a, b), with
water thickness wr0 (w is the number of water layers, and r0 ≈ 0.25 nm is the thick-
ness of one water layer), this distance becomes d = [(l/2)2 +w2r2

0]
1/2. However, for

smectites dominated by octahedral charges at high water contents, the distance may
become d = [(l/2)2 +1/4(w2r2

0)]
1/2, especially around divalent cations. We ignore

this alternative, which would result in an increasing (rather than decreasing) activa-
tion energy with increasing water content. In a neutral medium with some disorder
in the position of the charges, the average interaction energy of a charge is zero. If,
on average, a proton starts at zero energy, then at its closest approach to a counterion
its total energy has increased by an amount

Eac =
qe2

4πε0εw

√
(l2/4)+w2r2

0

(6.15)
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At this point we must consider how l depends on the concentration of cation
charges, N. In a 3D system we have l ∝ N−1/3; the 2D result (l ∝ N−1/2) may be
more appropriate in platy systems, but it turns out that the choice does not matter.
Here we ignore orientation of the clay plates, which introduces a numerical factor
1/3 for random orientations. Now,

Eac =
2qe2N

1
3

4πε0εw

√
1+4N

2
3 w2r2

0

(6.16)

This Eac was our first estimate of the activation energy for the dc conductivity due
to the Coulombic repulsion of the counterions. Comparison with experimental data
(not shown), which show a strong dependence of charge mobility on water layer
thickness, indicated that Eq. (6.16) was incorrect. A Taylor series expansion in the
quantity N2/3r2

0w2 of Eq. (6.16) shows why the calculated Eac is almost independent
of r0w for r0w < l, producing a conductivity independent of water content. For
agreement with experiment it was necessary to modify Eq. (6.16) by dropping the
first term in the square root. Apparently (if the proposed mechanism of transport
is correct) the hopping protons cannot avoid the counterions in the plate parallel
direction, but they can in the perpendicular direction. Then we have

exp

[
−Eac

kBT

]
= exp

[
−qe2

4πε0εwwr0kBT

]
= exp

[
−0.707q

w

]
(6.17)

This last expression was written in anticipation of comparison with experiments
conducted at T = 298 K. Although using εw = 80 may underestimate Eac, consider
the case for w = 1. The proposed mechanism of highly correlated hopping motions
would be unlikely, during any individual hop, to change the number of protons on
the water molecule nearest the counterion. One proton would simply replace an-
other at a given location. But the conduction process would require a proton to jump
between that site and a neighboring site. This means that, for the purpose of calcu-
lating a barrier height, the nearest distance of approach would be somewhat larger
than wr0, and the energy somewhat smaller. To estimate this effect, consider that
the highest energy that the proton experiences (including the Coulombic attraction
to the water molecules) is likely to occur at about half the water molecule spacing.
At this distance, the Coulombic effects due to the counterion will be reduced to
somewhere between (4/5)1/2 and 2/3 (by 11–33%) depending on orientation. This
numerical uncertainty is the same magnitude that would arise from using a dielectric
permittivity of (say) 50 rather than 80, which would increase the Coulomb interac-
tion strength by 38%. As a consequence we ignore these complications and use the
numerical factor of Eq. (6.17).

The preexponential for the conductivity was estimated from the perspective of a
3D random resistor network (disordered medium). In such a network, the dc con-
ductivity σ(0) is given by [41, 42, 59]
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σ (0) =
l0

L2Rc
(6.18)

where Rc = [(e2/kBT )νph exp(−Eac/kBT )]−1, l0 is the linear separation of criti-
cal (bottleneck) resistances on a critical path, and L is the linear separation of
such paths. This makes L−2 the number of current-carrying paths per given cross-
sectional area; in d dimensions L−2 is replaced by L−(d−1). Right at critical perco-
lation L → ∞ [60], but when critical path analysis [59] is used to develop σdc, the
bottleneck resistance value is slightly larger than the critical value, and the value of
L is more nearly the molecular separation, as found by the optimization procedure
discussed in detail in Chap. 4. Thus L can be taken to be r0 times some numerical
constant; Hunt [42] found values between 5 and 15. In our problem, however, these

Fig. 6.16 Comparison of predicted and observed dc conductivity of smectite clay minerals. The
various data correspond to 4 different mineralogies, 4 different cations, and 4 different moisture
contents [from Hunt et al. [36]]
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considerations do not strictly apply. The L2 is related to the dimensionality of the
optimization procedure, and would be replaced by L if the optimization were per-
formed in 2D. This is consistent with structural constraints for the 3D in the clay,
for example, a distance between proton-carrying paths of (4 + w)r0, where 4 + w
is the thickness (in units of water molecule size) of a simple clay sheet. It may be
that in the plate parallel direction (Fig. 6.15) the path separation is structurally con-
trolled, and is approximately equal to l. The largest resistance values, however, will
be separated by l0 = l, when protons come into the vicinity of a counterion. Thus
the length scales in the preexponential are all multiples of r0 with numerical values
greater than 1. Altogether we have

σdc =
e2lvph

kBT Lr0 (4+w)
exp

[
−Eac

kBT

]
∝

e2vph

kBTr0 (4+w)
exp

[
−Eac

kBT

]
(6.19)

The factor exp[−Eac/(kBT )] is given in Eq. (6.18). The predicted dc conductivity
is compared with experimental values in Fig. 6.16.

In predicting the dc conductivity σ(0), we did not assume a continuous increase
in water thickness w with θ . Rather, we assumed that the equivalent thickness of
the water layer increased by r0 every time the water content increased by a given
fraction. This is in the spirit of continuum percolation theory: until there is sufficient
water in a given layer, it does not form a continuous layer. This discretized thickness
means that protons in a given water layer cannot avoid the layer below (with its
greater proximity to counterions) until the given water layer is continuous. Since
the water tends to collect preferentially in the vicinity of counterions, the apparent
inability of protons to avoid counterions in a given water layer seems reasonable.

A major subject of the analysis in Hunt et al. [36] relates to ac conductivity
σ(ω) measurements performed by Logsdon and Laird. The advantage here is that
the frequency-dependent analysis provides a second means to check that the pre-

Fig. 6.17 Comparison of dc conductivity and critical frequency for the same systems as in Fig. 6.14
[from Hunt et al. [36]]
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dicted exponential dependence of σ(0) on temperature is obeyed. We tried fitting
Eqs. (6.12) and (6.13) to the experimental data by using s, ωc, and σ(0) as fitting
parameters. Figure 6.17 shows a comparison of σ(0) and ωc, with the result that
these two quantities appear to have the same temperature dependence. Further anal-
ysis also allowed a better check on the actual value of the phonon frequency, νph.
We found that νph ≈ 108 Hz in contrast to the usual assumption of 1012 Hz. Since
νph ≈ (k/m)1/2, with k an atomic (or molecular) spring constant and m a correspond-
ing mass, this result implies that the binding in hydrated clay minerals is about 8 or-
ders of magnitude weaker than in, say, quartz, which seems to be too large a contrast.

6.5 Geophysical Applications

We now address two geophysical applications relating to seismic precursors in seis-
moelectric phenomena. These applications do not address whether seismic precur-
sors could be used to predict earthquakes. Rather, our incursion into the realm of
geophysics examines the implications that specific processes could explain data
which has been argued to be related to seismic processes. In each case, the ulti-
mate question is whether the magnitude of the apparent precursors can be explained
in a manner consistent with theory. These examples thus hint at further possible
ramifications of the present work.

Merzer and Klemperer [61] examine the sudden increase in the low-frequency
contribution to the magnetic field 7 km from the Loma Prieta epicenter, three hours
before the earthquake. This increase was superimposed upon other changes in the
low-frequency magnetic field during the previous weeks. The authors suggest that
a plausible explanation for the increase in the magnetic field strength could be a
15-fold increase in the electrical conductivity under saturated conditions. They give
three possible mechanisms for such an increase: (1) an increase in the salinity of the
fluids occupying the fault zone, (2) an increase in the porosity, and (3) the exponent
m of Archie’s law (σ (φ) ∝ φm [62]) changing from 2 to 1. In the context of perco-
lation theory, it may be possible to find a physical basis for the third mechanism. In
fact, a change in Archie’s exponent from 2 to 1.3 would be expected if the random
connectivity of the pore space were to change from 3D to 2D [63]. Such a change
would be consistent with the development of an interconnected network of micro-
fractures along or parallel to the fault plane. It is difficult to say by how long the
development of such an interconnected network could precede an actual earthquake,
but one would expect that an earthquake would follow relatively quickly thereafter
(e.g., Gao and Crampin [64]). The general mechanism proposed (Merzer and Klem-
perer) has been criticized on the basis that the mutual inductance between the fault
zone and the crust may mitigate the effects of the increased conductivity [65].

Another potential application regards the ability of the electrokinetic effect to
generate sufficient charge separation to produce a measurable electric field. The
question ultimately relates to the ability of the separated charge to recombine under
the influence of the induced electric field. In a homogeneous medium the means
to generate an electric field are not present, but the earth’s crust is extremely
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heterogeneous. Here we consider partially saturated conditions. It is relatively easy
to show that any electric field produced will be on the order of Jek/Je, where Je is
the electric current (proportional to the electrical conductivity). Note that (as shown
in Sect. 5.1) Je and Jek are expected to have the same dependence on the moisture
content (universal scaling), meaning that no electric field can be generated when
both the electrokinetic and the return current are generated in the same medium,
even if it is not homogeneous. However, if the electrokinetic current is generated in
the vicinity of a fault, a large portion of the return current, which generally requires
the entire medium, might need to flow in a different medium – for example, on the
opposite side of the fault plane. The first medium had a moisture content above the
percolation threshold but the second was below the threshold; the possibility may
exist to generate a large electric field.

The question of whether charges can percolate before crack networks do, which
may be relevant for the possible existence of electromagnetic precursors to earth-
quakes [66, 67], has been addressed as long ago as 1983 [68]. In that article
“Microcrack connectivity in rocks: a renormalization group approach to the criti-
cal phenomena of conduction and failure in crystalline rocks,” Madden argues that
percolation of charge is easier in general than of cracks. This argument was made
independently in the context of the glass transition by Hunt [69], who explained,
using critical path analysis-type arguments, that the macroscopic transport of charge
was easier (lower activation energy and smaller pc) in viscous liquids than mechan-
ical response. This argument was based on the dimensionality of the transport pro-
cess: steady-state electrical transport requires only the connection of a quasi-1D
path, whereas viscosity experiments measure the transport of one entire surface rel-
ative to another. Miyazima [70] and Miyazima and Yamamoto [71] are currently
putting this concept on a sounder footing. In any case (from Freund and Sornette
[66]), “We conjecture that the intermittent and erratic occurrences of EM signals
are a consequence of the progressive build-up of the battery charges (from plastic
deformations of peroxy bonds in silicates) in the Earth crust and of their release
when crack networks percolate through the stressed rock volumes.”

Note that the relative ease of percolation of charge carriers relative to that of
cracks is cited in both the change of Archie’s law exponent from 2 to 1.3 (when
the crack network finally percolates, a higher degree of continuity of charge path-
ways increases the electrical conductivity) and the explicit arguments quoted in the
previous paragraph, although the detailed arguments are distinct in the two cases.

The point of this discussion is less to address the question of whether earthquake
precursors may or may not exist, but rather to show that a solid theoretical devel-
opment of the fundamental conduction processes may inform the discussion of the
potential relevance of earthquake precursors.

6.6 Summary

This summary incorporates results from both Chaps. 5 and 6.
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Combining percolation theory with a random fractal model of porous media, we
can assess which transport properties are predominantly governed by the pore-size
distribution, and which are more tied to topology. We find that the saturation depen-
dence of the air permeability is influenced only by topological effects described in
percolation theory. However, we note that both the air permeability of dry soils and
the hydraulic conductivity of saturated soils must be calculated by essentially the
same optimization procedure that combines effects of topology (percolation scaling)
and pore-size distribution (using critical path analysis from percolation theory). We
find that K(θ ) is determined primarily by the pore-size distribution, while σ(θ)
may be partially influenced by the pore-size distribution. In each of these proper-
ties, however, the influence of pore sizes increases as one moves away from the
percolation threshold. In the case of the hydraulic conductivity, in particular, it is
advantageous to separate out pore-size distribution contributions (using critical path
analysis) from topological influences described in percolation scaling, and thus di-
vide possible saturations into two separate regimes. A similar division is useful for
the electrical conductivity, though in the case that the pore-size distribution is not too
wide, the critical path analysis is never needed and the percolation scaling extends
through the entire range of saturations, justifying the application of a restricted form
of Archie’s law. If there is virtually no distribution of pore sizes (in artificial media),
one may see effects of film flow, and if the solid phase also has a large conductivity,
those of pendular structures. In the case of the thermal conductivity, the pore-size
distribution is not particularly relevant, as the thermal conductivity of each fluid in
the pore space is typically much less than that of the solid portion of the medium.
In the thermal conductivity it is more useful to combine topological effects from
percolation scaling with the geometrical effects from the conductances of pendu-
lar structures between the grains. The percolation scaling leads to an analogue to
Archie’s law in the thermal conductivity, λ , of dry soils, namely that λ ∝ ρ2, where
ρ is the bulk density of the soil. In the absence of soil structure, the saturation de-
pendence of diffusion in both liquid and gas phases, as well as air permeability, are
essentially unaffected by pore-size distribution.

Table 6.3 Dominant influences on various conduction or flow properties, describable using perco-
lation theory, depending on saturation. Topology means that universal percolation scaling applies,
geometry means that a bottleneck pore (or pendular structure) radius is relevant as found in critical
path analysis, and competition implies that a combined method, in which both influences are im-
portant, is required (described in Chap. 4). The difference between “small” and “large” values of
S depends on the property considered, so is not quantitatively defined. No entry means either that
the property cannot realistically be calculated using percolation theory, or that it is zero

Property S = 0 Small S Large S S = 1

K Topology Geometry Competition
ka Competition Topology Topology
σe Topology Topology Competition
σek Topology Topology Topology
λ Topology Geometry
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These and related results are summarized above in Table 6.3. Evaluations in the
Table were made using specific models and circumstances. For the first four prop-
erties, the random fractal model was used; for thermal conductivity it is assumed
that solid and liquid phases have similar thermal conductivities. Under other condi-
tions not all the table entries need be identical, but the general tendencies should be
observed.
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9. Géminard, J.-C., and H. Gayvallet, 2001, Thermal conductivity of a partially wet granular

material. Phys. Rev. E 64. DOI: 10.1103/PhysRevE.64.041301. 174
10. Chaudhary, D. R., and R. C. Bhandari, 1969, Thermal conductivity of two-phase porous ma-

terials: dry soils, Brit. J. Appl. Phys. (J. Phys. D) 2: 609–610. 175
11. Farouki, O. T., 1986, Thermal properties of soils (Series on Rock and Soil Mechanics vol. 11)

Trans Tech Publications, Clausthal-Zellerfeld, Germany. 175
12. Campbell, G.S., 1985, Soil physics with BASIC. Elsevier, New York, NY 175
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76. Werner, D., and P. Höhener, 2003, In situ method to measure effective and sorption-affected
gas-phase diffusion coefficients in soils, Environ. Sec. Technol. 37(11): 2502–2510. 160, 187

77. Hers, I., J. Atwater, L. Li, and R. Zapf-Gilje, 2000, Evaluation of vadose zone biodegradation
of BTX vapors. J. Contam. Hydrol. 46: 233–264. 187

78. Nicot, J. P., and P. C. Bennett, 1998, Shallow subsurface characterization of gas transport in a
Playa wetland. J. Environ. Eng. 124: 1038–1046. 187

79. Patil, A. S., K. M. King, and M. H. Miller, 1963, Self-diffusion of rubidium as influenced by
soil moisture tension, Can. Soil Sci., 43: 44. 184

80. Graham-Bryce, I. J., 1963, Effect of moisture content and soil type on self diffusion of
86Rubidium in soils, J. Agric. Sci. 60: 239. 184

81. Romkens, M. J. M, and R. R. Bruce, 1964, Nitrate diffusivity in relation to moisture content
of non-adsorbing porous media, Soil Sci. 98: 332. 184

82. Warncke, D. D., and S. A. Barber, 1972, Diffusion of zinc in soil I. The influence of soil
moisture, Soil Sci. Soc. Am. J. 36: 39. 184

83. Sadeghi, A. M., D. E. Kissel, and M. L. Cabrerra, 1989, Esitmating molecular diffusion co-
efficients of urea in unsaturated soil, Soil Sci. Soc. Am. J. 53: 15. 184

84. Barraclough, D., and P. H. Nye, 1979, The effect of molecular size on diffusion characteristics
in soil, J. Soil Sci. 30: 29. 184

85. Mehta, B. K., S. Shiozawa, and M. Nakano, 1995, Measurement of molecular diffusion of salt
in unsaturated soils, Soil Sci. 159: 115. 184

86. Barraclough, D., and P. B. Tinker, 1981, The determination of ionic diffusion coefficients in
field soils. I. Diffusion coefficients in sieved soils in relation to water content and bulk density,
J. Soil Sci. 32: 225. 184

87. Porter, L. K., W. D, Kemper, R. D. Jackson, and B. A. Stewart, 1960, Chloride diffusion in
soils as influenced by moisture content, Soil Sci. Soc. Am. Proc. 24: 460. 184

88. Jurinak, J. J., S. S. Sandhu, and L. M. Dudley, 1987, Ionic diffusion coefficients as predicted
by conductometric techniques, Soil Sci. Soc. Am. Proc. 51: 626. 184

89. Rowell, D. L., M. W. Martin, and P. H. Nye, 1967, The measurement and mechanism of ion
diffusion in soil, III. The effect of moisture content and soil solution concentration on the
self-diffusion of ions in soils, J. Soil Sci. 18: 204. 184

90. So, H. B., and P. H. Nye, 1989, The effect of bulk density, water content and soil type on the
diffusion of chloride in soil, J. Soil Sci. 40: 743. 184

91. Olesen, S. R., and W. D. Kemper, 1968, Movement of nutrients to plant roots, Advances in
Agronomy, Academic Press, Inc., San Diego CA, Vol. 30, pp. 91. 184

92. Moldrup, P., T.G. Poulsen, P. Schjønning, T. Olesen, and T. Yamaguchi, 1998, Gas permeabi-
lity in undisturbed soils: Measurements and predictive models, Soil Sci. 163(3): 180–189. 184

93. Schaefer, C. E., R. R. Arands, H. A. van der Sloot, and D. S. Kosson, 1995, Prediction and
experimental validation of liquid-phase diffusion resistance in unsaturated soils, J. Contam.
Hydrol. 20: 145. 184

94. Klute, A., and J. Letey, 1958, The dependence of ionic diffusion on the moisture content of
nonsorbing porous media, Soil Sci. Soc. Am. Proc., 22: 213. 184



Chapter 7
Pressure–Saturation Curves and the Critical
Volume Fraction for Percolation: Accessibility
Function of Percolation Theory

The pressure–saturation (h(θ)) curves of porous media give fundamental informa-
tion about the pore space. In equilibrium, ignoring effects due to hysteresis and pore
accessibility, it should be possible to extract a pore-size distribution from (h(θ))
data, as described in Chap. 3. However, a number of percolation effects complicate
the analysis and make such a simple inference impossible. The pressure–saturation
relation is affected by both the lack of continuity of the air phase near saturation
and by a similar lack of continuity of the water phase near the dry end. Given that
these effects are due to phase transitions (in the percolation sense), small changes
in experimental conditions can produce major (and sometimes puzzling) changes
in the results. Further, since the correlation length diverges near these transitions,
numerical simulations under both wet and dry conditions are amenable to finite-
size scaling analysis. Since the critical volume fractions for percolation of air and
water are central to the discussion, experimental evidence regarding these values is
presented toward the end of this chapter.

When a porous medium is dried from near saturation, the wetting phase becomes
discontinuous below the percolation transition. While the soil science community
has only rarely adopted percolation theoretical methods, they have used some of its
core concepts in their own language. For example, “The use of residual saturations
is [...] appropriate when a fluid phase becomes incoherently distributed, in which
case the fluid does not move anymore as a connected phase” (Luckner et al., 1989).
When the water phase is disconnected, water can move only by film flow or as
a vapor. These new modes of transport could be safely ignored at high moisture
contents, because they involve coefficients that are orders of magnitude lower than
typical hydraulic conductivities from capillary flow. But if these new modes are not
effective in a given situation, it will prove difficult to reduce θ to values less than the
critical volume fraction θt for percolation. In fact, just reducing θ to θt is difficult
because the hydraulic conductivity value for capillary flow vanishes rapidly as θt

is approached. A related possibility, that even above the critical moisture content
some water-filled pores could lose access to the infinite cluster and fail to drain, was
discussed qualitatively in Chap. 3. This scenario will not be further discussed here,
particularly since it seems to be relevant only in a fairly small subset of experiments
involving rapid drainage.

Hunt, A., Ewing, R.: Pressure Saturation Curves and the Critical Volume Fraction for Percolation:
Accessibility Function of Percolation Theory. Lect. Notes Phys. 771, 207–231 (2009)
DOI 10.1007/978-3-540-89790-3 7 c© Springer-Verlag Berlin Heidelberg 2009
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7.1 Structural Hysteresis

The role of percolation in hysteresis in wetting and drying of porous media has
been appreciated in the physics community for over two decades [1], but much less
so in the porous media community. A basic consideration of hysteresis in wetting
and drying should suggest that changes in the water content will be limited by the
continuity of the air phase near saturation, and by continuity of the water phase
at the dry end. That is, a porous medium that wets and dries will typically pass
through two distinct percolation transitions. What this means is that, neglecting edge
effects, water (air) may be trapped in isolated clusters during drying (wetting), while
water (air) cannot enter in arbitrarily small quantities [less than the critical volume
fraction] during wetting (drying). In a 2D medium these two phase transitions would
occur at the same moisture content, but in 3D media they are generally separated by
a wide range of moisture contents where both phases percolate. As Gist et al. [2]
point out: “The subset of pores occupied by mercury at the [percolation] threshold
diameter has been directly visualized by injecting a porous medium with molten
metal, then solidifying the metal. Examined optically, the resulting structure has the
fractal dimension expected from percolation theory” [3].

A second important contributor to hysteresis, the so-called ink-bottle effect, is
well known to the porous media community [4, 5]. According to the Young–Laplace
relationship, when an air–water–solid system is at equilibrium, a given pore can
be filled with water only if its radius is less than some value proportional to the
air/water interfacial tension γ and inversely proportional to the pressure: r < Aγ/h.
Water is “allowed” in these pores. But according to the pore-body, pore-throat pic-
ture of porous media, the tension required to remove water from such a pore is
higher than that which allows water in: in the removal process (drainage) the menis-
cus must “fit” through a pore throat, while in the filling process (imbibition) the
meniscus must span the pore body. This fundamental asymmetry in the wetting and
drying processes means that, at a given water content, the pressure in a drying curve
should be higher than in a wetting curve. This factor relates to the geometry of an
individual pore, but in a system with self-similar properties it relates to every pore.

Consider imbibition under a high tension (negative water pressure) into an ini-
tially dry medium. Water cannot access most pores that are allowed, because the
paths to those pores pass through other pores that are not small enough to allow wa-
ter [6]. This problem is obviously related to percolation theory, but it was originally
thought that traditional percolation theory was not adequate to treat this problem. In
the 1980s considerable literature arose in the physics community regarding a special
form of percolation theory called “invasion” percolation [7]. From our standpoint,
invasion percolation deals with the movement of the wetting or drying front, and
therefore (in principle) with spatial gradients of percolation quantities. By the end
of the 1980s it was accepted that, at least with respect to hysteresis, the difference
between traditional percolation theory (discussed here) and invasion percolation was
minimal [8] – though at least one key investigation [1] had a significant inconsis-
tency which will be revisited below.

In traditional percolation theory, the fraction of accessible sites is that fraction P
that is part of the infinite cluster. During drying, if we allow for drainage by water
films, then all of the water-allowed sites are accessible to water. But in wetting the
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fraction of water-allowed sites that are also accessible to water is reduced by P. P is
known to behave in 3D as

P ∝ (p− pc)
β = (θ −θt)

0.4 (7.1)

where the equality follows from the application to continuum percolation with the
moisture content playing the role of p. An obvious problem in applying this concept
is that our expression for P is a proportionality, not an equality. Clearly P should be
constrained to equal 1 at or above some moisture content; a reasonable choice is to
require P = 1 at θ = φ . For this case we can write [9]

P =
(
θ −θt

φ −θt

)0.4

(7.2)

The implication of this particular normalization factor is that, during wetting, it
is certain only at saturation that all water-allowable pores are also water-accessible.
For practical purposes the condition P = 1 is likely reached at somewhat lower water
contents.

It is possible to express the actual moisture content as the product θ ·P(θ), as
long as θ in this product refers to the equilibrium moisture content, that is, the
volume of the allowable pore space. This notational complication can be easily re-
moved by expressing both factors in terms of the tension h. Referring water content
to pressure requires reference of the critical water content to a critical pressure hc,
which can be defined via [9]

θt =
[

3−D

r3−D
m

] A/hc∫
r0

r2−Ddr (7.3)

Thus, starting from dry conditions with a very large value of h ≥ A/r0, reduction
of h produces an increasing fraction of water-allowable pore space (but, ignoring
edge effects, no increase in water-accessible pores or water content) until, at the
value h = hc, the water-allowable pore space percolates. Proceeding from this point
we have [9]

θ (h) =
3−D

r3−D
m

[
(A/h)3−D − (A/hc)

3−D

(A/hA)3−D − (A/hc)
3−D

]0.4 A/h∫
r0

r2−Ddr (7.4)

where (as discussed in Chap. 3) hA is the air entry pressure.
We emphasize again that this approach neglects the effects of finite clusters of

water-allowed pores which are accessible from the edges of the system. The ef-
fects of such pores can be incorporated into the treatment via finite-size scaling, but
we will not do that here. The present approach also neglects water that would fill
“pores” on rough (fractal) surfaces of individual grains, at least insofar as this con-
tribution to the pore space is described by a separate surface fractal dimensionality.
Such a contribution could theoretically lead to a change in slope of the pressure–
saturation curves at low moisture contents.
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Fig. 7.1 Drainage data from Bauters et al. [10] for a collection of sands with differing fractions (the
smaller diamonds) of hydrophobic particles, with the fraction being zero for the large diamonds.
The theoretical curve (open squares) was obtained by using the particle-size data to find the fractal
dimensionality of the pore space while the air entry pressure, hA, was used as an adjustable pa-
rameter. The critical moisture content for percolation (0.048) is designated by the arrows; in a soil
with only sand particles these values are assumed identical for air and water

With these caveats we compare Eq. (7.4) with experimental measurements
(Fig. 7.1) of the drying of blasting sand with various fractions of particles treated
to be water-repellent [10]. Each different fraction of water-repellent particles gave
a different curve, but displaying them all together shows that the critical moisture
content for percolation is the same in each case. As in earlier chapters, particle-size
data were used to find the ratio r0/rm, after which φ and the ratio r0/rm are com-
bined to give D. A single air-entry pressure hA was adjusted to produce the best fit
with experiment over the range of intermediate saturations. The value of the critical
volume fraction for percolation, θt = 0.048, was chosen as the point below which
theory and experiment deviated (due to nonequilibrium, discussed below).

It is clear from the data that the appropriate value of the characteristic pressure
for imbibition could not be the same as for drainage. This is due to the “ink-bottle”
effect mentioned earlier in this chapter. Lenhard [5] and coworkers [4] investigated
this effect for a number of soils and found that the typical ratio of characteristic
pressures for drainage and imbibition is 2, indicating that pore bodies characteristi-
cally have radii twice that of pore throats. Using Eq. (3.22) (derived for drainage) for
imbibition, but with the characteristic pressure reduced by a factor 2 as per Lenhard
et al. [4], does not suffice to transform a drainage curve into an imbibition curve
[9]: the curve intersects reality only near saturation (Fig. 7.2). But when the acces-
sibility effects of percolation are included by using Eq. (7.4) (without additional
unknown parameters), the match between experiment and theory is quite good.
Figure 7.2 provides an additional check on the estimate of the critical volume
fraction: deviations from prediction set in at a moisture content φ − θt (still with
θt = 0.048). These deviations arise from “entrapped” air, and become apparent as
the volume of air-filled pore space reaches the percolation threshold.
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Fig. 7.2 The imbibition curve for the hydrophilic sand of Fig. 7.1. “Theory” uses Eq. (3.22) with
a characteristic pressure half of hA in Fig. 7.1. “Hysteresis” uses the prediction of Eq. (7.4). There
are no other adjustable parameters here; the critical volume fraction comes from Fig. 7.1, and the
fractal dimensionality from the particle size distribution. Here the critical air content for percolation
is clearly also very close to 0.05

The general idea of allowable vs. accessible pores in the context of percolation
theory was introduced by Heiba et al. [6] in a publication treating a Bethe lattice
model. Publications of Wilkinson (e.g., 1986) later in the 1980s developed this
framework further, accounting for the connectivity of water films during drying, and
their absence during wetting. This led to different treatments for air entrapment dur-
ing wetting (residual air) and residual water during drying. In that respect his treat-
ment was more careful and general than the present treatment. However, Wilkinson
treated the pressure as the fundamental percolation variable – which was reasonable
for the bond percolation problem he was addressing with a network model – and
then expressed the moisture content in terms of a sublinear power of h, rather than
using the moisture content as the fundamental variable (in continuum percolation)
and expressing the pressure as a superlinear power of θ . This reversal of the roles of
the variables calls his conclusions into question, because those conclusions depend
on the sublinearity of the powers.1 In addition, his comparison with experiment was
schematic, without specific data; a detailed comparison between his analysis and
experimental data (for example, the results given here) has yet to be made. Wilkin-
son also did not consider various experimental difficulties, which include lack of
equilibration due to low values of the hydraulic conductivity (or rapid drainage),
nor the differences in media, some of which may be structured. Any one of these
factors can influence the shape of the drainage and imbibition curves. The first of
these questions will be treated next; effects of the structure of a medium will be
addressed in the final chapter.

1 In particular, Wilkinson addressed the curvature of the pressure saturation curve, log[−h] vs.
θ , at large moisture contents and determined that the typically observed negative curvature was
appropriate from percolation theory. However, we find that a positive curvature is appropriate (and
indeed observed for sandy media), while we are forced to attribute a negative curvature, commonly
observed in finer media, to the existence of structural pores. See Sect. 7.4 for additional quantitative
evidence supporting our interpretation.
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7.2 Hydraulic Conductivity-Limited Equilibration,
and Dry-End Deviations from Fractal Scaling

Chapter 5 discussed the limits of validity of an equation for hydraulic conductivity,

Kf (θ) = KS [1−φ +(θ −θt)]
3

3−Dp (7.5)

and the fact that it must be replaced by

Kp (θ) ∝ (θ −θt)
2 (7.6)

in the vicinity of θt. For the sake of clarity, K calculated by Eq. (7.5) is fractal
scaling, denoted Kf, while K according to Eq. (7.6) is percolation scaling, denoted
Kp.

Standard methods of producing pressure–saturation curves use drainage across
a porous ceramic plate. A positive air pressure is applied to the sample, and its
effect on pore water allowability is assumed equivalent to that of an equivalent ten-
sion applied to the water phase. These measurements typically require long equi-
libration times, because at low water contents, hydraulic conductivity values can
be extremely low. For example, suppose we have a partially drained 10-cm high
column of soil with porosity φ = 0.5, and we subject it to a pressure h = 1 m.
If K(θ) = 10−8 cm s−1 (a reasonable value), then removing water equivalent to a
1-mm thick layer, i.e., decreasing θ by 0.02, will take over 500 days. As long as
measured values of K diminish in a regular way according to Eq. (7.5), one can
extrapolate the equilibration time for the next step of an experiment. But the two
relationships for K (Kp in Eq. (7.5) and Kf in Eq. (7.6)) raise a new complication:
if θ drops below the crossover moisture content θKx, then K decreases much more
rapidly (see Fig. 7.3)). The equilibration times required by Eq. (7.6) are therefore
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Fig. 7.3 A generic hydraulic conductivity as a function of saturation, but similar to that of the
McGee Ranch soil (Fig. 5.1). This figure shows the deviation from fractal scaling of the conduc-
tivity at low moisture contents associated with the crossover to percolation scaling
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much greater [11]. If this marked increase in equilibration time is not anticipated,
then the ratio of the allowed time to the required time would equal the ratio Kp/Kf;
the observed reduction in water content would likewise be too small on the order of
Kp/Kf. Specifically, on a fractal soil which at pressure hi equilibrates to a moisture
content θ = θxK, then when the pressure is increased to hi+1 the water content will
be reduced by only

Δθ =
Kp

Kf
φ

[(
hA

hi+1

)3−D

−
(

hA

hi

)3−D
]

(7.7)

within the allowed time: with too little drainage time, the moisture content will not
drop as rapidly as predicted by the fractal model.

We have developed an algorithm for predicting the nonequilibrium moisture con-
tent of a medium. The algorithm is based on Eq. (7.7); that is, it assumes that the al-
lowed drainage time at any given tension is calculated by extrapolating Kf (Eq. (7.5))
to ever-drier conditions. The algorithm assumes differentially small changes in ten-
sion and relates a geometrical water loss to an actual water loss:

dθa =
[

Kp (θa)
Kf (θa)

]
dθ (7.8)

where the subscript a denotes actual. Now integrate (over the dummy variable, θ ′)
to obtain

θ∫
θxK

dθ ′ =
θa∫

θxK

dθ ′ Kf (θ ′)
Kp (θ ′)

(7.9)

The right-hand integral is given in terms of the Gauss hypergeometric function
2F1. By defining

G(x) ≡ KS

(1− t)K0

[
1−φ
1−θt

] 3
3−D

(x−θt)
1−t

2F1

[
1− t,

3
3−D

,2− t,
θt − x
1−φ

]
(7.10)

we can write an implicit relationship for θa:

θ −θxK = G(θa)−G(θxK) (7.11)

that maps θt ≤ θa ≤ θxK to 0 ≤ θ ≤ θxK. The original, or presumed water-retention
function, h(θ), is then mapped to h(G(θa)). Note that since K vanishes at θt, the
moisture content θt is never reached with this procedure. Figure 7.4 shows the ef-
fects of incomplete equilibration on the apparent water-retention curve, as predicted
by this algorithm, for the same system shown in Fig. 7.3. Although the algorithm
is simple, the results are robust. The procedure was also performed algorithmically
for finite pressure steps Δh. Over the relatively wide range of Δh values investi-
gated, the resulting nonequilibrium portion of the water-retention curve (not shown)
was identical to that predicted by Eq. (7.11), generated by changing the pressure in
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Fig. 7.4 The nonequilibrium water-retention curve expected for the medium with K represented
in Fig. 7.3. Here the threshold water content is given as θt, while the crossover moisture content
is given as θxK [changed from Hunt and Skinner [11]]. Equations (7.10) and (7.11) were used to
make this figure

infinitesimal steps. An interesting aspect of these results is the quasi-universality of
the shape of the water-retention curve in the vicinity of θt.

The above is a somewhat oversimplified picture as well as an oversimplified cal-
culation: both the actual value of K and its extrapolated value change over the time
the water is draining. Nonetheless, it gives accurate predictions of experimental data,
as shown in Figs. 7.5, 7.6, 7.7, 7.8, 7.9, 7.10 and 7.11 (from Hunt and Skinner [11]).
To generate these predictions, particle-size data were used to find the ratio r0/rm,
the porosity φ and ratio r0/rm were combined to give Dp, then hA was used as an
adjustable parameter to generate the equilibrium moisture contents. θt was taken as
the lowest water content obtained in the experiment, and θxK was calculated from
Eq. (5.21); then for all values of h corresponding to θ < θxK, the magnitude of Δθ
was reduced by the ratio Kp/Kf as in Eq. (7.7). However, this procedure still yielded
a predicted moisture content lower than the observed value. In order to match the
observed moisture contents, it was necessary to take the ratio of the actual value
of K and the value of K assumed to be accurate for a moisture content two time
steps prior. This suggests that the value of K from a previous measurement was
used as a guide for a subsequent measurement, which would imply that the authors
of the study were not anticipating any reduction in K, even according to a result
compatible with Eq. (7.5). Applying this connection to K two measurements earlier
is equivalent to using an adjustable parameter; on the other hand the same value of
this parameter was used for all seven of the cases investigated and presented here.
Given this restriction on flexibility, the predictions appear to be quite accurate.

The results presented here suggest that widely observed deviations from fractal
scaling of pressure–saturation curves at low saturations are not a defect of the frac-
tal model itself. On the contrary, because parameters derived from the use of fractal
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Fig. 7.5 A reevaluation of the deviation of experimental water-retention curves from the fractal
scaling (Eq. (3.22) at low moisture contents. The solid diamonds are experimental data for the
USMW 10-45 soil from the Hanford site [29], while the open squares are the predictions from
Eq. (3.22). The open circles are obtained from the algorithm described in the text, which reduces
the actual moisture lost by the ratio of Eqs. (7.6) to (7.5). This algorithm is only appropriate for
θ < θx, which was obtained using Eq. (7.12) and the lowest moisture content attained by experi-
ment for θt

models (in particular, θt) can then be used to predict hysteresis in drainage and im-
bibition, or the shape of the water-retention curve in the vicinity of the percolation
threshold, the case for fractal treatments is actually strengthened. It is not unreason-
able to speculate that a large number of natural soils may be best described by the
Rieu and Sposito [12] fractal model.

In addition to the 12 soils analyzed for dry-end deviations caused by nonequi-
libration (of which 7 are shown in this chapter), we have also analyzed soils for
which neither the particle-size data nor the water-retention curves is consistent with
the relatively simple Rieu and Sposito model [13]. Rather, in these soils there is con-
siderable complexity at relatively high water contents. These results are described
in Chap. 11 in another context.
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Fig. 7.6 Deviation of experimental water-retention curves from the fractal scaling (Eq. 3.22) at low
water contents. Solid diamonds are experimental data from Hanford site soils [29], open squares
are predictions from Eq. 3.22, and open circles are from the deviation algorithm [11].
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We (Dr. Skinner and Dr. Hunt) are currently engaged in a project (NSF Grant No.
EAR-0609884) which reverses the procedure described here. Rather than predicting
the (nonequilibrium) water-retention curve from a given pore-size distribution, we
estimate the actual pore size distribution from the (nonequilibrium) water-retention
curve. The procedure involves inverting Eq. (7.8), solving for 0 < θ < θxK in terms
of θt < θa < θxK. For a fractal model then, the equilibrium water loss would be given
by multiplying the nonequilibrium water loss by Kf/Kp. In the general case, Kf is
replaced by a general result from critical path analysis. The inverse problem is made
more complex as a consequence of the lack of sufficient pore-size data to apply crit-
ical path analysis for all values of θ < θxK + θt. Any solution must then be tested
for self-consistency. We estimated first θt as the lowest moisture content reached.
We estimated θxK as the point where the water-retention curve appears to develop
a positive deviation (in h). If θt was chosen to be too large, we generated negative
moisture contents and chose a smaller value for θt. In order to constrain the val-
ues of θxK we required the ratio of conductivities to be a monotonically increasing
function.
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We found that using critical path analysis to generate an extrapolation of the
numerical results for K to moisture contents θ < θxK + θt gives a good trial solu-
tion; when K(θ) so obtained is substituted in Eq. (5.35), we found that, for the case
shown, our initial estimate of θxK was within 1% of the solution from Eq. (5.35),
which we considered to be acceptable. The results of our procedure are shown in
Fig. 7.12. Such final results could then be used to recalculate any properties that
were estimated originally from the pore-size distribution implied by the water-
retention curve. If the results of Fig. 7.12 prove reliable, they will indicate that a
much larger fraction than is typically assumed is contained in water-filled pores
and that the amount of water on surfaces or in pits of grains is relatively small
(<5%). Note that this conclusion is generally compatible with other results that
imply small critical moisture contents for percolation, and small water contents in
pendular structures (thermal conductivity). But for the present this transformation
to an equilibrium pore-size distribution is still mostly untested.

This discussion ultimately leads to the question: which is more useful in deter-
mining the pore size distribution: the water-retention curve, or the particle-size dis-
tribution? The reader will have to answer that question for him- or herself, but our
contention is that, due to complications from phase continuity of the fluids (residual
water, air entrapment, inaccessible allowed pores) and from fluid flow properties
(nonequilibration), the water-retention curve is quite inadequate by itself. Of course
the particle-size distribution is also inadequate, lacking direct information on pore

Fig. 7.12 The crosses and the associated curve show initial water-retention data [from Schaap
et al. (2003)]. The critical moisture content for percolation, θt, and the point at which the water-
retention curve begins to deviate from the equilibrium pore-size statistics, θd = θxK, are clearly
indicated. Our procedure generated the curve without crosses as the equilibrium water-retention
curve, implying that a pore-size distribution extracted from the raw data would put a great deal
more water into smaller pores than is justified. This result, if verified generally, would imply that
many conclusions based on the importance of surface water and water in pits or fractures of indi-
vidual particles have been overstated
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sizes as well as pore structure. From a pragmatic perspective, one uses the infor-
mation that is available, and particle-size data are far more widely available than
water-retention data. We hope that future work will allow us to make use of both
together, such that each can overcome deficiencies in the other.

7.3 Analysis of Water-Retention Curves in Terms of the Critical
Moisture Content for Percolation

The possibility that the dry-end percolation transition might somehow produce de-
viations from the fractal scaling prediction motivated an earlier investigation into
dry-end deviations in water-retention curves [14]. While it was suspected that the
lack of phase continuity could interfere with the removal of water, we did not think
that the small magnitude of the hydraulic conductivity would produce the effect di-
rectly. Thus the values that were compiled were simply the moisture contents,2 θd,
at which the deviation from scaling set on. These moisture contents were then com-
pared with the critical volume fractions for percolation from the solute diffusion
experiments of Moldrup et al. [15].

The procedure followed was to use the particle size information from each of
Freeman’s soils [29] to find r0/rm, and thus determine the fractal dimensionality
of the pore space from Eq. (3.16). Particle size data from seven of the soils are
shown in Fig. 7.13. hA was then adjusted to produce the best visual fit with the

Fig. 7.13 Particle-size data for 7 Hanford site soils, all different from Figs. 7.3, 7.4, 7.5, 7.6, 7.7,
7.8 and 7.9 (from Hunt and Gee [19]). The flat portions of the curve intersect the fractal scaling
region at the radii r0 and rm

2 Although it became clear that the experimentally determined θd could be identified with the
theoretical θxK, it is useful to continue referring to θd in the context of these experiments.
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Fig. 7.14 The predicted and observed water-retention curves for the same 7 Hanford site soils as
in Fig. 7.13 [from Hunt and Gee [19]]. hA was again used as an adjustable parameter. In each case
the arrow shows the value chosen for θd

experimental data for the water-retention relationship (Eq. (3.22)), concentrating on
the middle range of saturations. The value of θd was then determined by inspection
(Fig. 7.14). Meanwhile, θt was also predicted using the relationship of Moldrup
et al. [15], θt = 0.039(A/V )0.52, where A/V is the specific surface area. Application
of this relationship normally relies on experimentally determined values of A/V,
but that information was not available for Hanford site soils. The alternative was
to calculate the dependence of the surface area on such quantities as r0/rm, and
the fractal dimensionality of the solid medium, Ds, obtained from Eq. (3.17). We
estimated A/V using the ratio implied by the RS model,

A
V

∝
∫ rm

r0
r2
(
r−1−Ds

)
dr∫ rm

r0
r3 (r−1−Ds)dr

(7.12)

implicitly assuming that the geometrical factors relating particle volume and particle
surface area were both scale-invariant, and also the same for all of our soils. This
last (necessary) assumption is clearly incorrect, and introduced some random error
into the comparison.

We could now compare the measured θd with the value of θt from the Moldrup
relationship. There was clearly a proportionality constant that we had not estimated,
but the important result [14] was that θd = Cθt +0.06 for some numerical constant
C [Fig. 7.15; meanings of the abbreviations for the various soils are given in Hunt
and Gee [14]]. The value of R2 for the regression was 0.83. At the time of the
study the result that there was a positive intercept was not understood since the
further development of the theoretical description [16] to include the crossover from
Eqs. (7.5) to (7.6) had not been made. Thus several attempts were made to try to find
some complicating factor in the analysis.

In the most important analysis, a subset of soils was excluded from consideration
because in these soils the hydraulic conductivity could be deduced to fall to very low
values at moisture contents well above θt on account of either small KS values or
Dp values near 3. For values of the hydraulic conductivity less than approximately
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Fig. 7.15 Regression of θd on calculated θt, using the Moldrup relation for θt. in terms of the
specific surface area and using the Moldrup notation, SAvol for A/V [from Hunt and Gee [19]]

5×10−8 cms−1, the experimental procedure described at the end of Chap. 3 (which
was the one used to gather the data, Khaleel and Relyea [17]) could be shown using
Eq. (7.15) to be inadequate to drain the soils to equilibrium on account of their ex-
perimental time limit of six weeks. The prediction was based on the use of Eq. (7.5)
to calculate K(θ ) from porosity, fractal dimensionality, and the saturated value of the
hydraulic conductivity [18]. Figure 7.16 shows the values of K at θd from this cal-
culation for soils of various areas on the Hanford site. Note that the lowest K values
were obtained for the volatile organic carbon (VOC) soils, and it is apparent from

Fig. 7.16 From Hunt and Gee [19]. Representation of log(K) at θd vs. θd for 40 Hanford site soils.
The horizontal line depicts the minimum value of K = 5× 10−8 cms−1 (Hunt and Gee [19]), for
which equilibrium moisture contents were measurable under the stated experimental conditions
[17]. The 15 soils with K(θd) < 5×10−8 cms−1 were excluded from subsequent analysis in terms
of percolation theory; their deviation from fractal scaling was determined by other factors (see text)
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Fig. 7.15 that these soils also exhibited the largest values of θd relative to the regres-
sion equation. Although R2 for the correlation between θd and θt rose to 0.94 after
soils with low K values were excluded from the analysis, for reasons other than the
proximity to the percolation transition, the intercept remained unchanged at 0.06.
After the development of Eq. (5.21) for the relationship between θxK and θt [9] we
could interpret θd as θxK. Indeed it turns out that if the mean values Dp = 2.857
and φ = 0.394 for the Hanford site soils are inserted into Eq. (5.21), one finds
θxK − θt = 0.06 [16]. The equivalence of these two numerical values implies that
the conclusions for the subset of soils investigated in Sect. 7.2 would likely apply to
most of the data set of 43 soils.

The implication of the study as a whole was that all of the deviations from fractal
scaling of the water-retention curve could be attributed to lack of equilibration, i.e.,
values of K(θ ) which were too low to allow the equilibrium change in water content
actually to occur. Not all soils had low values of K(θ ) for the same reason, but for
a large number of the soils the cause was the approach to the percolation transition.
This question is further discussed in the last portion of this chapter.

The development of this regression of θd on θt had an added benefit. It was
now possible to calculate A/V from Eq. (7.12) for the McGee Ranch soil and North
Caisson soils [16], and to use the same regression to predict their values of θt. Using
the values of θt it became possible to predict the hydraulic properties of those two
soils without use of adjustable parameters (Figs. 5.1 and 5.2). Of course the same
regression could have been used for any of the individual soils in this study for the
same purpose (and was), but there was a limited use for those predictions since the
data for the hydraulic conductivity as a function of saturation for the remaining 43
soils was not made available to us. Nevertheless, those calculations were then used
to predict K(θd) as shown above, and to exclude from analysis those soils for which
K(θd) < 5×10−8 cms−1.

Some important additional comments need to be made. The fact that the critical
moisture content for percolation of the Hanford site soils (usually small clay con-
tents) correlated quite well with the value from the Danish soils [15], and their often
rather high clay contents will have several consequences for further analysis of the
predictability of θt. It may be important, however, that the Hanford site soils often
had 3–5% clay-sized particles and only in rare cases up to 10% or so.

7.4 Wet-End Deviations from Fractal Scaling
of Water-Retention Curves, and Discussion of the Critical
Volume Fraction for Percolation

In most cases the fractal predictions of water-retention curves also deviate from ex-
periment at water contents near saturation. These deviations involve predictions of
the water content that can be either too high (Fig. 7.17) or too low (Fig. 7.18). Un-
derstanding of these deviations is at present inferior to that of the deviations at low
moisture contents, although it appears that on the whole such discrepancies relate
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Fig. 7.17 An example of a wet-end deviation to higher moisture contents than predicted from
fractal scaling. The solid diamonds are again data from Freeman [29], while the open squares are
from Eq. (3.22). This deviation is predicted by percolation theory from the inability of air to enter
the system until the air-allowable pore space percolates

to lack of percolation of the air phase. In Fig. 7.19 the determination of the wet-end
moisture contents, θw, at which deviations from fractal scaling occurred, is shown.
Hunt and Gee [19] showed that, for a suite of approximately 40 Hanford site soils
θt was the same as, or slightly larger than, φ − θw, though perhaps slightly larger
(Fig. 7.20). The case where a higher tension must be reached than hA before air
actually begins to enter the soil, with consequent upward curvature of the water-
retention curve exceeding the prediction from fractal scaling, could be reasonably
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Fig. 7.18 An example of a wet-end deviation to lower moisture contents than predicted from fractal
scaling. This deviation could be explained by the existence of soil structure, since it would allow
air into the air-allowable textural pores and since some of the pore space would be structural pores,
not accounted for by the particle size data. But the Hanford site soils, with low clay content and
extremely low organic content, are not known for exhibiting structure
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Fig. 7.19 From Hunt and Gee [19]. Determinations of wet-end moisture contents θw at which
deviation from fractal scaling of water retention occurs for four soils. The open circles are theory
(from Eq. (3.22)), the solid circles experiment. The fractal dimensionality for the pore space was
determined in Hunt and Gee [14] from the particle-size distribution and the porosity, and the air-
entry head (hA) was used as an adjustable parameter. The wet-end deviations from fractal scaling
are indicated with arrows. Two soils from Hunt and Gee [14] are used for which the wet-end
deviation could clearly be seen, FLTF D11-06 (Fig. 7.19a) and VOC 3-0652 (Fig. 7.19b). For a
number of the ITS soils, such as 2-2227 shown here, θw was better determined from the bubbling
pressure by the method of problem 1.1

Fig. 7.20 Comparison for the Hanford site soils of θt, determined from θd using Eq. (5.21) with
φ −θw, the wet end deviation from fractal scaling. θw determined as in Fig. 5.16
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interpreted using percolation concepts. In some of these soils the actual value of
θw could not be determined directly but was calculated by the method presented in
problem 1.1. But the case where air entered at lower tensions than expected was
less easy to interpret. Finite size effects allow some air to enter from the sides of the
system, but this merely reduces the excess upward curvature described above. Soil
structure, i.e., the existence of large pores unrelated to the particle dimensions, is
frequently considered to be a cause of air entering at lower tensions than expected,
and the logic is correct. However, such structure is normally associated with agri-
cultural soils, which contain higher clay contents than the typical Hanford site soils,
and almost certainly higher organic contents. Arid land soils like the Hanford site
soils are not normally considered good candidates for soil structure, and this ex-
planation may not be applicable. As mentioned above, a reanalysis of Wilkinson’s
arguments using continuum percolation theory and in the context of the possibility
of the existence of structural pores would be advantageous here.

The result that φ − θw for the Hanford site soils is very nearly the same as θt

raises the question of whether one should actually expect the critical volume frac-
tion to have the same value for air as for water. If the effects of wetting of surfaces
are neglected then it is possible for the two critical volume fractions to be the same.
But this is not a sufficient condition for equality. One must also have that the criti-
cal moisture content for percolation be independent of the moisture content. While
this is not by any means guaranteed by theory, experiment appears to confirm that
θt is a constant, independent of moisture content (see the results for solute diffu-
sion in Chap. 6). The effects of water adsorbed to surfaces would be minimized
when the surface area to volume ratio of the soil is minimized, which would be
the case for porous media composed mainly of large particles. Clay minerals, due
to their lack of charge neutrality, are known to adsorb an especially large amount
of water. Practically speaking, media with very low or zero clay content (sand and
silt only) have relatively small surface area to volume ratios, and in these media
the fraction of the water adsorbed on surfaces can be neglected. So the result that
θw for the Hanford site soils is very nearly the same as φ − θt is consistent for
media with low clay content, but the results of Moldrup et al. [15] for θt are in-
terpreted in terms of the adsorption of water on clay mineral surfaces, providing
an apparent conflict. An explanation for this puzzle may be given by a combina-
tion of the following argument for θt and the results that R2 varied between 0.6
and 0.8 for the various correlations (and the fact that the Hanford sites do contain
some clay).

How would one estimate the critical volume fraction for percolation in a porous
medium with insignificant adsorption of water to solid surfaces? Consider first a
network of tubes of uniform diameter and length placed on a lattice. The space
between the tubes can be considered the solid portion of the medium. In such a
case one can immediately deduce that the critical volume fraction for percolation
must be

Vc = pcφ (7.13)
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and the critical volume fraction for percolation is a fraction of the porosity.
Experimentally obtained values for very coarse soils [20] suggest that pc in three
dimensions is typically on the order of 0.1, and one finds Vc = θt ≈ 0.1φ . For the
proportionality constant to be so small requires a rather large coordination number
for the pores, and it is also important that the pore space itself be well connected.
There is some evidence of this; Manwart et al. [21] report that 97.2% of the pore
space in the Berea sandstone and 99.4% in the Fountainebleau sandstone belong
to the percolating cluster. In soils we expect these values to be higher. With in-
creasing clay content, however, a simple proportionality between Vc and φ becomes
inadequate [20]; either the proportionality constant pc tends to increase, or another
contribution to Vc must exist. Continued use of Eq. (7.13) with an increasing value
of Vc is not preferred for several reasons [20]. A second contribution to Vc comes
from water adsorbed on the surface of particles; this is a water content, which will
be present, but which does not contribute to capillary flow. It is this contribution
to Vc(= θt), which appears to have been detected in the diffusion experiments that
established the relationship Dpm/(Dw(θ)) = 1.1(θ − θt). Analysis of the experi-
mental relationship θt = 0.039(A/V )0.52 showed [20] that this could be interpreted
as a surface water contribution on clay minerals as long as 3−D ≈ 0.5. D = 2.5 is a
rather small value from the present perspective, although it has been stated [22] that
D values for clayey soils are typically in the range 2.5−2.6 (in contrast to coarser
soils).

On the basis of the above analysis it was concluded that a general expression for
θt should probably contain both contributions and look something like

θt −0.1φ ∝
(

A
V

)3−D

(7.14)

Theoretical development does not really permit an accurate estimation of the pro-
portionality constant at present; one can also not use the experimental value from
Moldrup et al. [15] since that experimental regression did not include a term in-
dependent of surface area. Thus it is best to leave the result (7.14) in terms of a
proportionality. It is worthy of note that it is common in the porous media com-
munity to speak of a “residual” water content, present after normal drainage of a
soil. Quoting Luckner et al. [23] by way of van Genuchten et al. (1991), based on
Luckner et al., 1989, stated “The residual water content, θr, specifies the maximum
amount of water in a soil that will not contribute to liquid flow because of blockage
from the flow paths or strong adsorption onto the solid phase.” Equation (7.14), with
further developing and testing to clarify the values of the constants, should prove a
general means to estimate both contributions to θt. It is very important, however,
that only the term pcφ would contribute to the critical air fraction for percolation,
since air is not wetting and does not adsorb to the surface of any particles. Thus,
except for very coarse soils, one should expect that the critical air fraction for per-
colation should be much smaller than the critical moisture content. But for coarse
soils these two values should usually be very similar if not identical, as appears to
be the case in Fig. 7.20.
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Such a small value of pc ≈ 0.1 for a lattice model in three dimensions would
imply that the effective coordination number, Z, is 15 [using Zpc = d/(d − 1);
Vyssotsky et al., 1961]. Even a face-centered cubic system has a value of Z of only
12, so this large value of Z suggests either that the typical coordination number is
unexpectedly large or that there is a variation in coordination number with pore size.
The latter possibility certainly seems logical; the largest pores must connect to more
small pores than do small pores with large pores. Such a picture, however, has some
defects. If the local Z value were a decreasing function of pore size, then θt might
be expected to develop a dependence on moisture content. Also, it is not really con-
sistent with a fractal picture. If one takes the fractal picture seriously, then Z should
be independent of pore size, and we will present an argument in the final chapter as
to why a self-similar medium should produce Vc independent of scale, but it is not
clear that this argument also applies to the present case.

7.5 General Formulation for Equilibrium and Analogy
to Ideal Glass Transition

Sections 7.2 and 7.3 demonstrate that reduction of the moisture content to values
near the threshold moisture content for percolation can easily cause experiments
involving changes in moisture content in porous media to fall out of equilibrium.
This process can also be called a kinetic transition, because on one side of the tran-
sition, the system obeys the ergodic hypothesis, but on the other side it does not,
whereas the transition point is not precisely defined on account of its dependence
on the rate of change of system parameters, and thus on experimental conditions.
A similar situation exists in the case of the glass transition in viscous liquids. As
the temperature of viscous liquids is reduced, the temperature-dependent transport
properties slow down so much that it may be impossible for the liquids to attain
equilibrium with further reduction in temperature (on experimental time scales). All
geologists are probably familiar with the argument that window glass will flow if
given enough time (although the examples cited may not actually be evidence of
this). Many investigators have sought to relate the glass transition in viscous liquids
to a phase transition. What can be gained from a comparison between these systems
and concepts?

In an ideal glass transition a kinetic transition is underlain by a structural phase
transition, but the structural phase transition is never directly observed because the
system falls out of equilibrium first. Since the result is never directly observed, one
cannot measure directly a transport quantity that is approaching zero. Thus people
look for some length scale, which seems to be diverging in the vicinity (but slightly
below) the kinetic transition. Exactly this kind of result (Sect. 2.2) and the accom-
panying physics of a diverging correlation length, has now been obtained for porous
media, and the accompanying predictions regarding lack of equilibration apparently
verified. Although similar evidence has been sought regarding the glass transition
in viscous liquids, it has never been found, and so it must be concluded that the
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glass transition in viscous liquids is not an example of an ideal glass transition [24].
Nevertheless there is some benefit in a comparison, particularly in the matter of the
calculation of such a kinetic transition point. The transition point corresponds to a
temperature in the case of the glass transition, and a moisture content for porous
media.

The “kinetic” transition in viscous liquids is basically a case where the system
falls out of equilibrium and the ergodic hypothesis fails. The kinetic transition has
been defined to result when the time for mechanical relaxation exceeds 100 s [24].
This is an imprecise definition and cannot be appropriate for all experiments. The
mechanical relaxation time is an exponential function of the temperature, and relax-
ation times can thus increase very rapidly when the temperature is lowered, if it is
low relative to the fundamental scale of the exponential function to begin with. In
fact such an exponential dependence of the mechanical relaxation time on tempera-
ture allows for a definition of the transition temperature.

In experiments on the glass transition the system is cooled at a constant rate,
and at a given temperature, called the glass transition temperature, Tg, there is a
sudden drop in the heat capacity of the system. For the calculation of Tg [25–27]
a constant cooling rate was represented as a staircase function with finite changes
in temperature ΔT in times Δt. The average slope ΔT/Δt was constrained to equal
the actual dT/dt. The glass temperature was found by relating the temperature steps
ΔT to the time steps Δt through the condition that the relaxation time of the sys-
tem increases by Δt over the temperature range ΔT . The solution of this equation
could be obtained by numerical methods if the dependence of the relaxation time
(α-relaxation peak) on the temperature was known. The result could be verified to
give the correct dependence of Tg on the cooling rate, even though this dependence
was very weak (logarithmic). Thus, even in the absence of an assumption of a spe-
cial value of T, for which motion was essentially frozen, the rapid slowing down of
systems represented by the exponential function was sufficient to define a kinetic
transition temperature, Tg.

In the actual calculation of the transition moisture content we approximate a
discontinuous function, the discrete changes, Δh, in tension over discrete time in-
tervals, Δt, by a continuous function [9], exactly the reverse of the situation for
the glass transition. This approximation allows a simple application of the chain
rule to relate theoretical and experimental quantities. Consider an experiment on
a column of height z. If the required value of dθ/dt is larger than the ratio of
K(h) to z ((cm/s)/cm), the column moisture content cannot change rapidly enough
to adjust. But the required value of dθ/dt is related to experimental quantities as
follows [9]:

dθ
dt

=
dh/dt
dh/dθ

≡ Δh/Δt
dh/dθ

=
K (h)

z
(7.15)

If, through a procedure during which the tension h is increased episodically by
Δh and a subsequent time interval Δt is allowed for drainage, K(h) has finally di-
minished to the extent that the right-hand side can no longer exceed the left-hand
side of Eq. (7.15), then the time scale of the experiment must be increased, or the
system will fall out of equilibrium. Equation (7.15) can easily be solved for the time
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interval, Δt, as a function of K(h), z, and the derivative dh/dθ while dh/dθ can be
obtained from the appropriate equilibrium water-retention function.

It may be of interest that while the glass transition in viscous liquids is apparently
not an example of an ideal glass transition, the drying of porous media is.

7.6 Oil Residuals

In the early 1980s Chandler et al. [28] produced a very nice analysis of 2D sim-
ulations of residual oil ganglia remaining after flooding with water. The total oil
remaining was a function of the width, y, of the channel flooded. We believe that it
is a valuable exercise to bring up these results again and discuss them from a differ-
ent perspective. The total oil remaining must, in two dimensions, be present only in
finite clusters of sites, since it is not possible for both the water and the oil phase to
percolate simultaneously. If one sums all the finite cluster contributions (of size less
than y = rs = sσν ) to the oil volume one finds

Voil ∝
y

1
σν∫

1

s1s−τds = 1− y
2−τ
σν (7.16)

Using Eq. (1.25), (τ − 2)/σ = β one finds that the remaining oil volume must
scale as Vc−y−β/ν , in agreement with the scaling results of Chandler et al. [28] and
with finite-size scaling. Consider that the fraction of sites connected to the infinite
cluster is (p− pc)β , which implies a scaling with system size, y−β/ν . But the sites
not connected to the infinite cluster are those (oil-filled) sites left, ∝Vc − y−β/ν .

Problems

7.1. Calculate the “bubbling pressure” for a fractal model. Assume that air does not
begin to enter (bubble) until the air-allowable volume is a large-enough fraction of
the porosity to percolate.

7.2. It is a common practice in the porous media community to assume that the in-
terfacial tension is a more fundamental variable than the moisture content. Find a
reason why people might assume this. Hint: use the bubbling pressure result from
problem 1.1 and then calculate the pressure at which the water phase would become
discontinuous. Assume that both critical volume fractions are 0.1φ . You should ob-
tain a ratio for the two pressures of [(1−0.9φ)/(1−0.1φ)]1(/3−D) ≈ (1−φ)1/(3−D).
For typical soils (D = 2.8,φ = 0.4) this ratio is 1/7.6 (the approximation yields
1/12.9). Of course this ratio is smaller than the ratio of the smallest to the largest
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pore size, and thus typical pressure saturation curves do not, in the intermediate
saturation regime, contain the full range of pore sizes present.

7.3. Reevaluate the Wilkinson [1] treatment of hysteresis using moisture content as
the fundamental percolation variable rather than the pressure. Do his conclusions
still hold? What physics could be responsible for the discrepancies between the
modified theory and the experiment?

7.4. Compare the present derivation of oil residuals with the treatment of Chandler
et al. [28]. What does the comparison say about scaling arguments from percolation
theory?
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Chapter 8
Applications of the Correlation Length: Scale
Effects on Flow

Even in the absence of geologic correlations, sedimentary deposits near the per-
colation threshold will exhibit correlations in medium type. One of the important
arguments of the works that this chapter is based on has been that, under common
circumstances, a relevant correlation length may be constructed as the product of a
geologic factor and a statistical factor from percolation theory. In particular, the cor-
relation length in percolation theory is proportional to a (negative) power of |p− pc|
and a prefactor which, in a bond percolation problem, is proportional to the length
of a bond. In a geologic medium described in continuum percolation theory, how-
ever, this quantity corresponding to a bond length is actually a geologic correlation
length. How these two factors can be separated is discussed below.

The correlation length is the system-dependent parameter, which defines the
structure of the dominant current-carrying (electric or fluid) paths. Refer back to
Fig. 1.3. The typical separation of the nodes is represented in this figure, and this
separation is equal to the correlation length, χ . The physical reason for this is that χ
describes the size of the largest holes above the percolation threshold. Furthermore,
the tortuosity of the backbone of the largest clusters below the percolation thresh-
old is the same as the tortuosity of the links above the percolation threshold. The
influence of the blobs in calculating the conductivity is rather secondary since the
most resistive elements that cannot be avoided tend to be found in the portions of
links without blobs – by definition there is no alternative to the paths through these
(except, in the case of critical path analysis, to go to more resistive elements). In
fact, as just suggested, χ can be used to describe the structure of such paths in two
different contexts: (1) near the percolation transition it gives a characteristic sepa-
ration of the only possible paths of interconnected medium, which can be used to
transport, e.g., air, water, or electrical current, (2) far from the percolation threshold,
application of critical path analysis involves an optimization which leads to a calcu-
lation of the separation of the paths along which the dominant transport occurs. In
either case, χ3 is effectively the REV, because in each case χ defines the length scale
of the heterogeneity relevant for transport. In earlier chapters critical path analysis
was used to generate explicit expressions for the correlation length. As long as the
numerical coefficient in the proportionality from percolation theory is not available,
however, calculations using the correlation length cannot reliably yield precise nu-
merical coefficients for specific systems so the results are given only in terms of
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system parameters. In this chapter some systems are treated for which there is little
or no information regarding “microscopic” variability, and the expressions derived
contain further unknown constants. Thus the development here is only diagnostic
and not predictive. In Chap. 4 an example of this type of argument (originally due to
Shklovskii and Efros [1]) is given in the problems with an at least semiquantitative
prediction.

8.1 Isolation of Geologic and Percolation Effects
on a Correlation Length

We propose that the percolation and geologic effects on a correlation length can be
isolated as follows. The research ideas presented in this section have been developed
in parallel with Dr. Robert Ritzi and coworkers, and citations to their relevant articles
are given.

Consider first a medium which contains a small fraction of sands (< 25%, say)
and for which the remainder is composed of finer materials, such as muds. Even
though p < 0.25 it is nevertheless not unlikely that the sand fraction of the medium is
near the percolation threshold. Percolation thresholds tend to be lowered in strongly
correlated systems [2, 3]. Geologically correlated systems are typically character-
ized by anisotropy while local correlations tend to make the system smaller in a
statistical sense. Both anisotropy [4] and small system size [5, 6] tend to reduce pc.

Discretize a representation of a natural medium in cubic grid blocks. Choose
each grid as sand or mud, associating the label chosen with the dominant volume
fraction in each block. In one dimension, the percolation probability is one so that
in a 1D transect the sand fraction is far below the percolation threshold, and even
the mud fraction is not close. Suppose then that one considers the statistics of 1D
transects through such a medium. The correlations of the individual grid cells will be
at most minimally affected by the percolation variables, so that any correlations are
geologic in nature. If the geologic correlation structure is appropriate (for example,
exponential rather than power law in form), these correlations will be described by
a typical length scale [7, 8], which we can call here, χ0, and which has insignificant
influence from percolation. The composite correlation length in the 3D medium will
then be given by the product of a geological factor, χ0, and a percolation function,
|p− pc|−ν .

8.2 Effects of Dimensional Crossovers on Conductivity

A great deal of debate surrounds the issue of whether the hydraulic conductivity
can increase with the scale of the measurement. Given the fact that experiment
has repeatedly given such results, it seems obvious that the answer is yes. But
this does not seem to be the answer from percolation theory. To some this is the
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major unsolved problem in subsurface hydrology. A few of the examples often
quoted are Bradbury and Muldoon [9], Schad and Teutsch [10]; Shouse et al. [11];
Rovey and Cherkauer [12]; Sanchez-Villa et al. [13]; Schulze-Makuch [14]; Tid-
well and Wilson [15, 16]; Schulze Makuch and Cherkauer [17]; Samper-Calvete
and Garcia-Vera [18]; Schulze-Makuch et al. [19]; Davy et al. [20], Paleologos et al.
[21]; Di Federico and Neuman [22, 23], Di Federico et al. [24]; Hunt [25, 26]; Chen
et al. [27], Martinez-Landa et al. [28]; Zhang et al. [29]; Zlotnik et al. [30]; Hyun
et al. [31]; Neuman and Di Federico [32]. Of the above, all publications except that
of Shouse et al. [11] deal with geologic scales. Some authors have contested some
of the individual experiments (e.g., Butler and Healey [33]) and some authors have
certainly reported theoretical descriptions for which K diminishes with increasing
scale [21]. In Chap. 9 it is shown that the cluster statistics of percolation theory are
clearly compatible only with a diminishing value of K with increasing measurement
scale. Nevertheless we feel that it is necessary to discover why measurements of the
hydraulic conductivity can increase with increasing scale.

Of the above works, Davy et al. [20] and Neuman and coworkers look for the-
oretical reasons to generate an increase in K with the scale of measurement. The
works of Neuman and coworkers are largely based on information from variograms,
considered in Chapter 9, and a concrete comparison between those works and per-
colation theoretical works does not yet exist. Davy et al. [20] propose an increase
in connectivity with increasing scale, but their model appears to generate a porosity
which increases according to a power of the measurement scale x. There is nothing
wrong per se with a porosity which increases with scale; the Rieu and Sposito [34]
fractal model would allow an increase of the form 1−(r0/x)3−Dp , if the largest pore
radius, rm, could be proportional to the system size, x. However, a power-law form
for the porosity can exceed 1, while the Rieu and Sposito [34] model is limited by
φ = 1. This matter becomes partly semantic; it makes some sense to declare that
a sample which falls entirely within a given pore (or fracture) does not belong to
the medium when the property of interest is the porosity. But it makes no sense to
exclude such a region from the hydraulic conductivity. Why? A region of air that
surrounded an instrument would not be considered part of a solid medium, but the
hydraulic properties of that medium are defined exclusively by the pore space and
to leave out the largest pores at the smallest scales is to introduce a scale-dependent
bias into the measurement.

There are other reasons for an apparent increase in K with scale x that can be
easily discovered within the framework of percolation theory (and one example is
given below), but it turns out that such results are not indicative of a scale effect
per se. Although the relevance of percolation theory to geologic scales has some-
times been called into question, the same general difficulties to describe the flow
and transport in such media exist, e.g., flow channeling [35], which Shah and Yort-
sos [36] demonstrate is also best treatable in a framework such as that of Katz and
Thompson’s [37] critical path analysis.

The fact that critical values of the percolation probability, pc, are such strong
functions of dimensionality, together with the fact that for strongly disordered media
the “upscaled” value of a conduction or flow property depends so sensitively on pc

means that a crossover in the dimensionality of conduction can produce a very large
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effect in the effective transport (or flow) parameter. Thus it is of great importance
to be able to identify what physical constraints on conduction lead to dimensional
constraints. The important quantity to determine relates, as one might expect, to an
REV, or in the language of percolation theory, to the correlation length.

When conduction is isotropic, the analysis is relatively simple and unsurprising.
Consider first a cylindrical system, such as a heterogeneous wire. How thick can
such a wire be before conduction along it is not 1D? The maximum thickness can
be obtained by considering an infinitely large and equidimensional system of such
material, calculating the correlation length (according to either problem above) and
comparing χ with the diameter of the wire, d. If d > χ , the system is not strictly
1D and increasing d values will eventually make the conduction of the system 3D.
If d < χ , however, for large lengths, the cylinder exhibits strictly 1D conduction.
As an alternative, consider an infiltration experiment, in which a grid is mapped
out and metallic plates each some specific length, such as 1 m, are inserted into the
soil to divide it into a simple square grid [11]. How small can the separation of these
plates be made while maintaining 3D conduction in the vertical direction? Again the
answer is based on the comparison of the separation of the dividing plates with the
correlation length. However, the depth of insertion of the plates is also an important
input. Even if the separation of the plates is smaller than the correlation length,
if the depth is equally small (for isotropic conduction), the problem involves only
finite-size effects, not dimensionality effects. Such a simple picture is complicated
by anisotropy, but it is nevertheless possible to take a number of anisotropic systems
and transform the medium to isotropic form [38]. Such a coordinate transformation
affects the volumes of existing or proposed experiments as well, however, and then
the problem is to analyze the transformed experimental volumes in terms of the
correlation length.

In fact, any of the sort of problems dealt with in this chapter in terms of the
correlation length can also be treated in greater depth using the cluster statistics
of percolation in subsequent chapters. Nevertheless, when it is possible to make
a simple calculation based on the correlation length, the labor saved may be well
worth the choice.

For conduction through a rectangular solid to be truly 3D, all dimensions of the
solid must be larger than the correlation length, χ . For solid-state physics treatments
of the dimensionality of conduction in terms of the correlation length see Shklovskii
and Efros [1] and Raikh and Ruzin [39]. In three dimensions χ behaves as

χ = χ0 (p− pc)
−ν (8.1)

where ν = 0.88 [40]. Here χ0 is a fundamental length, which we take here as being
a typical length of a single resistor. An appropriately shaped volume, which is in
principle compatible with experiments for treating upscaling in isotropic 3D sys-
tems, is a cube. As Tartakovsky and Neuman [38] point out, the axes of anisotropic
systems can be rescaled to give equal conductances in each direction. The appropri-
ately shaped upscaling volume for an anisotropic system with, e.g., K values 1000
times larger in the horizontal directions is a rectangular solid with equal horizontal
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dimensions, but a vertical dimension 10001/2 ≈ 31 smaller [41]. The cross-sectional
area on the sides is diminished by a factor 10001/2, reducing its conductance accord-
ingly, while the length of the vertical dimension is diminished by the same factor,
increasing its conductance by the same factor. This leaves equal conductances in
each dimension. The reason why such a “flattened cube” is the appropriate system
shape for upscaling is that the fundamental relationships of the system dimensions
to the details of the conduction process cannot change differently in different direc-
tions as the scale of the problem is increased. Use of, e.g., a cubic volume for the
purposes of scaling up the hydraulic conductivity in the presence of such anisotropy
would be equivalent, in the isotropic case, to using a prism with long (vertical) axis
31 times as long as the horizontal axes (Fig. 8.1 from Hunt [41]). In such a case it
is easily possible for the correlation length to be shorter than the vertical dimension
and larger than the horizontal dimensions. This means that for vertical transport, the
optimal flow would not be constrained to narrow volume. Constraining the flow to
remain within the volume is a dimensional constraint. If all axes are subsequently
lengthened by, say, a factor 31, certainly all dimensions will be larger than the cor-
relation length, whereupon the flow would be 3D, with K as calculated for a 3D
medium. This constitutes a change in dimensionality, from 1 to 3, that occurs as
a result of the increase in scale, but is not a scale effect per se, since it could be
eliminated by choosing the appropriate experimental volume shape.

z

x

Lx

Lz

Lx
Lz

Fig. 8.1 A schematic depiction of a medium with much higher horizontal connectivity than verti-
cal connectivity and the correlation lengths in each direction. A rescaling of length in the horizontal
coordinates transforms the system to an isotropic system, but also shrinks the horizontal dimen-
sions of the experimental volume. Now the correlation length is the same in each direction, but it
is larger than the horizontal dimension of the experimental volume and smaller than the vertical
dimension, providing for 1D conduction
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Instead of considering the equidimensional anisotropic case, consider for clarity
the transformed medium with elongated volume and isotropic K (Fig. 8.1). Rather
than considering flow along the vertical axis to go through a qualitatively defined
crossover from 1D flow to 3D, the method constructed here for solution of this
problem is to choose a maximum R, such that the value of the correlation length, χ ,
is always constrained to be smaller than or equal to the horizontal dimensions of the
system. If χ is smaller than the horizontal dimensions, it is certainly smaller than the
vertical dimension. This gives a continuous dependence of the effective value of the
critical volume fraction and thus of the value of the limiting resistance on the size of
the system. In the limit that the system size goes to infinity, this constraint becomes
inconsequential and the result must conform to the 3D value of K. In the limit of
small system size, pc must approach 1 and the result for K must conform to the
value for 1D flow. χ is constrained to be smaller than the dimensions of the system
by the simple matter of making an effective pc larger than the 3D value, exactly as
expected from restricted dimensionality. In such a case the flow paths may appear
to be 3D at all scales, but the changing value of pc is a result of the dimensional
crossover. So now let χ = x = V 1/3, the original system size, and calculate how
much larger p would have to be than pc for a given x. The result is [41].

p = pc +
(χ0

x

) 1
ν

; V = Vc +
(χ0

x

) 1
ν

(8.2)

where the second form of the equation is the equivalent form for a continuum with
volume fraction, V, replacing p (and Vc replacing pc). The reason why the second
form of the equality can be used by analogy is that the correlation length, χ , is
expressed in terms of V and Vc for continuum percolation in the same way that it is
expressed in terms of p and pc for bond percolation. Equation (8.2) obviously gives
V =Vc for a system of infinite size, x→∞. For calculations of finite size corrections,
Eq. (8.2) implies p > 1 in the limit of x < χ0, an unphysical limit, which can be
approximately corrected by a small change in Eq. (8.2) to [41]

V = Vc +
(

χ0

χx + x

) 1
ν

(8.3)

The basis for this modification is the physical requirement that χ be less than
x + χ0, rather than merely x, compensating for the finite separation of resistances
arising from their own intrinsic length, χ0. Such a modification is clearly unneces-
sary for large x, but, in order for the formulation to make sense at small x it must be
added. Equation (8.3), while still approximate, leads to no significant problem with
p exceeding 1 as long as pc(αc) is very small, as can be the case in highly correlated
systems [2, 3], and is assumed to hold here. The limiting value, pc = 1, for small
system sizes is a characteristic of strictly 1D conduction, and means that the most
resistive element in the system can no longer be avoided. Use of a formulation such
as Eq. (8.3) to find the change in Vc for small system sizes has the potential defect
that the proportionality for the correlation length is being used in a range where it
need not be accurate, far from percolation.
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We can apply Eq. (8.3) to the continuum percolation calculation of Rieu and
Sposito [34]. The Rieu and Sposito [34] model has been variously applied to soil
porosity and to fracture systems. The Rieu and Sposito [34] fractal fragmentation
model for soils expresses the total porosity as φ = 1− (r0/rm)3−D in terms of the
fractal dimensionality, D, and the minimum and maximum radii, r0 and rm, over
which the fractal description holds. This model can also be used for fracture net-
works, but in this case r0 and rm refer to the smallest and largest fracture apertures,
respectively. To calculate the rate-limiting resistance on the critical path one needs
an expression for the fractional pore (or fracture) volume, W(r), with pore radius
(or fracture aperture) between r and r + dr, i.e., the pore volume probability den-
sity function. This expression is W (r) = ((3−D)/r3−D

m )r2−D [42], which yields the
known porosity, assumed to be the same for the fracture application. In the fully 3D
case, under saturated conditions, the Rieu and Sposito model yields for the smallest
aperture, rc, on the optimal system-traversing path,

Vc =
3−D

r3−D
m

rm∫
rc

drr2−D; rc = rm (1−Vc)
1/(3−D) (8.4)

Note that in the limit Vc → 0, rc → rm, meaning that with a critical volume frac-
tion of zero, percolation is possible just using the largest fractures. Applied to frac-
ture networks, in which the solid medium is ignored, Eq. (8.4) is best rewritten [41],

Vc =

[
1

1−
(
r0
/

rm
)3−D

][
3−D

r3−D
m

] rm∫
rc

drr2−D (8.5)

where a fraction Vc of the total fracture volume, 1− (r0/rm)3−D (rather than a frac-
tion of the total system volume), is sufficient to guarantee percolation through the
fractures.

In order to find out how the smallest pore size changes as the critical volume
fraction approaches 1 (the fully 1D limit), substitute Eq. (8.3) in Eq. (8.5) with the
new V > Vc taking the place of Vc, and letting (for convenience and simplicity) the
original Vc → 0 for infinite system size,

(
1

1−
(
r0
/

rm
)3−D

)(
3−D

r3−D
m

) rm∫
rc

drr2−D =
(

χ0

χ0 + x

) 1
ν

(8.6)

Eq. (8.6) yields

rc = rm

[
1−
(

1−
[

1
R

]3−D
)(

χ0

χ0 + x

)1/v
] 1

3−D

(8.7)

with R ≡ rm/r0. Using (for 3D saturated media) K ∝ r2
c , consistent with Hunt and

Gee [42] (and Katz and Thompson [37], and in fact all the methods summarized by
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Bernabe and Bruderer [43]), and expressing K(x) in terms of the value K(3D) for
x → ∞, valid in 3D one finds [41],

K (x)
K (3D)

=

[
1−
(

1−
[

1
R

]3−D
)(

χ0

χx + x

)1/ν
] 2

3−D

(8.8)

Because Eq. (8.8) is expressed as a ratio of K(x)/K(3D), the complications aris-
ing from the fact that even in an infinite system p is slightly larger than pc can be
neglected, just as these same complications were neglected in the calculation of the
ratio of the unsaturated to the saturated hydraulic conductivity.

It should be noted that the general framework of the calculation given here would
not change if the values of the hydraulic conductivity in the vertical and horizontal
dimensions were the same, but the correlations of the hydraulic conductivity in the
horizontal direction were much larger than the vertical direction. Use of a correla-
tion length-based treatment of a dimensional crossover would still be appropriate.
Now the correlation length from percolation theory would be larger in the horizontal
direction than in the vertical because the random selection of a highly conductive el-
ement in the horizontal direction would more likely (in comparison with the vertical
direction) be associated with other highly conductive elements in the same direc-
tion too, not simply because most connections in that direction were larger. Such
conditions could be consistent with horizontal layering of sedimentary facies.

Field data from Schulze-Makuch and Cherkauer [17] as well as some other
sources [12] are nominally consistent with hydraulic conductivity proportional to
power laws of the support volume, K ∝ V m, over 5–6 orders of magnitude of vol-
ume V and 3–5 orders of magnitude of K. Reported powers, m, range from 0.5
to nearly 1. Represented as log(K) vs. log(V), the data appear to curve toward the
horizontal at very small V, and also flatten at large V. Fits with data have simply
employed power laws with the above values of m for small V and a horizontal line
representing a constant K at large V.

8.3 Comparison with Field Data

In Fig. 8.2 all scale-dependent data for K from Schulze-Makuch [14] are plotted as
log K vs. log V, where V is a water volume, assumed here to be proportional to the
solid volume. The data from Schulze-Makuch [14] certainly incorporated fracture
flow, at least at larger support volumes. To fit these data, R = 2500, D = 2.98, and
K(3D) = 0.007ms−1 were chosen. This combination of R and D is consistent with
a “fracture” porosity of φ = 0.14. However, the result is quite insensitive to the cho-
sen D, and values of 2.97 and 2.95 fit the data equally well. These are consistent
with fracture porosity values of φ = 0.21 and 0.32, respectively, meaning that the
theory is not particularly sensitive to the value of the porosity chosen. The values of
“vuggy” porosity for small cores quoted in Schulze-Makuch [14] are 9% or lower,
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Fig. 8.2 Comparison of the prediction of Eq. (8.8) with the experimental data of Schulze-Makuch
[14] for fracture networks in a carbonate aquifer. The experimental data are given by the open
triangles. The parameters are D = 2.98 and rm/r0 = 2,500

though these values may account for 90% of the total core porosity in some cases.
A “fracture” porosity is mentioned, but no values are given. The selected value of
R implies that if the smallest fracture has an aperture of, e.g., 40μm, the largest has
an aperture of 10 cm. While this is certainly a large range, dissolution of fractured
carbonates can produce fractures over a wide size range. Although most of the data
do appear to fit the same trend, the comparison made here, which uses all the data si-
multaneously, may not be appropriate. If individual facies were analyzed separately,
the range of K values, and thus ratios of rm to r0, would be smaller, consistent with
smaller porosities.

The horizontal asymptotes in these graphs correspond to ensemble averages for
pure 1D (αc = 1) and 3D (with vanishing critical volume fraction) conduction, res-
pectively. The ratio of the values of K in these two asymptotes is, by construction,
R2. If a more realistic finite, but small, value of αc were chosen, the ratio of the
values of K at the asymptotes would be reduced somewhat, since rc(3D) < rm in
that case.

It is also possible to compare the values of these parameters with parameters from
soils, to which the Rieu and Sposito [34] has been applied. Note that while D = 2.95
is larger than typical values quoted (closer to 2.8 for soils, Bittelli et al., 1999) [44],
values as high as 2.95 have been reported in Hanford soils [45]. The associated
porosity (with one exception) of the 45 Hanford soils ranged from φ = 0.24 to
φ = 0.54, with the smaller φ values associated with the larger D values. Further,
although R = 5000 is large, ratios of maximum to minimum pore sizes as high
as 250 were described within centimeter-sized core samples for Hanford soils. A
related implication is that the same physical mechanism as described here could
generate a scale effect on K of over 4 orders of magnitude (up to 250× 250) in
Hanford soils with significant clay layers as well. See Sect. 11.4 for a treatment of
such anisotropy in the Hanford subsurface.
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If the present theoretical description forms the basis for the observed scale de-
pendence of K in anisotropic porous media, then it is possible, in principle, to con-
duct experiments in the same media, which do not show a scale effect. The means
to do this is to use experimental volumes with shapes elongated appropriately (by
the square root of the ratio of K values) in the direction(s) of highest K values.
Such experimental constructions are mathematically equivalent to isotropic media
investigated with equidimensional support volumes, for which K diminishes with
increasing size. The reason why K diminishes in that case is that the dimensional
crossover with increasing system size described here is eliminated. This is a funda-
mental argument for associating the increase in K with the dimensional crossover
rather than the increase in scale [41].

8.4 Effects of Hydrophobicity on Water Uptake of Porous Media

It has been regarded as puzzling that the existence of a few hydrophobic particles
(ca. 5%) in a porous medium could prevent water uptake at negative pressures (thus
preventing spontaneous uptake of water). The puzzle likely arises from an incorrect
perspective. It is true that it does not seem reasonable that a fraction of hydropho-
bic particles as small as 3–5% could make an entire medium hydrophobic, but this
perspective ignores the need to get the water into the medium. The water follows
flow paths, whose separations are governed by the correlation length from perco-
lation theory. The fact that the pressure at which water normally enters the porous
medium corresponds to the percolation transition means that it is possible that a
very small change in conditions can have a large effect on the flow paths.

Consider the following experimental arrangement [46]. From a large quantity of
blasting sand a fraction was treated with cyclo-octanol, a chemical with extreme
hydrophobic tendencies. This portion was then mixed in at various fractions from 1
to 8%. If the concentration of hydrophobic particles is N, and the typical diameter of
the particles is d, then the typical separation of such particles must be approximately
(d)N−1/3. When water enters the medium the separation of the paths of water flow
is equal to χ , which must be proportional to d(θ − θt)−0.88. Use of the factor d
acknowledges that a fundamental length scale proportional to the particle sizes must
exist. Clearly water cannot access the major portion of the medium unless χ <
(d)N−1/3, because otherwise it would be impossible to get the water between the
hydrophobic particles. But such a small value of the correlation length can only
be obtained when the moisture content (or allowed moisture content in the present
case) is much larger than the critical moisture content for percolation.

Consider the following thought experiment. Start with a dry medium without hy-
drophobic particles and begin to decrease the tension, h. When h reaches hc, defined
in the previous chapter, water will begin to enter the medium. However, at this ten-
sion the infiltration paths are infinitely far apart. With a slight reduction in h, the
path separation drops to, say, somewhere between one and ten per sample. If even a
small fraction of the normal sand grains had been replaced by hydrophobic grains,
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then these paths would have been interrupted and it would not be possible to bring
water to the interior of the medium without running into hydrophobic grains. Water
can be forced past hydrophobic grains at sufficiently large positive pressures, but in
our case the pressure is still negative. So a further slight reduction in the magnitude
of the pressure has little or no effect on the interaction of water with the hydropho-
bic grains, but it has a large effect on the separation of the infiltration paths, which
becomes much smaller. This effect is very large because the value hc corresponds
to the percolation phase transition. If the value for the correlation length is equated
to the separation of the hydrophobic particles one can calculate the smallest value
of the effective moisture content, for which the infiltration path separation is small
enough to wet the interior. If the value of the moisture content needed is as large as
the porosity, then it would be impossible to wet the interior of the system without
forcing water past individual hydrophobic grains, which requires a positive pressure.
Thus

N− 1
3 d ≈ d (φ −θt)

−0.88 (8.9)

Solution of Eq. (8.9) for N (and using θt ≈ φ/10) yields

N = (0.9φ)2.64 (8.10)

[47], which for typical porosities of about 0.4 yields about 0.067. In fact the Bauters
et al. [46] sand from the previous section has porosity 0.4 and critical volume frac-
tion 0.048, which would yield a slightly smaller value for N (0.063). Nevertheless
one would expect that at a concentration of roughly 6% hydrophobic particles a typ-
ical soil would already become water repellent. Experiment shows that water repel-
lency for the relevant soil from Bauters et al. [46] already sets on at a concentration
of about 5.5% in a soil with porosity 0.4 and critical volume fraction approximately
0.04. Such a close agreement with experiment may be at this stage merely fortu-
itous, since all numerical constants in Eq. (8.9) have been suppressed. However, it
is important that the predicted result, because of the 2.64 power, is much smaller
than 1, and is more nearly on the order of 1–10%. Solution of the problem below
should help to convince students that the theoretical description is indeed accurate.

Problem

8.1. Suppose you know experimentally the water imbibition curve for a hydrophilic
medium (0% hydrophobic particles). Using the calculation above for the modifica-
tion to the effective critical moisture content for percolation (and water uptake) due
to the presence of hydrophobic particles, describe a technique, which would allow
you to predict the imbibition curve for your system (with a prescribed fraction of
hydrophobic particles). Use the results from Chap. 7 to predict the imbibition curve
of any arbitrary medium (without hydrophobic particles) and then apply the proce-
dure you just described to get a family of imbibition curves with varying fractions
of hydrophobic particles. Compare your results with Fig. 7.2.
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Chapter 9
Applications of the Cluster Statistics

9.1 Spatial Statistics and Variability of K from Cluster Statistics
of Percolation Theory

This chapter presents a conceptually straightforward treatment of spatial correla-
tions of “random” heterogeneous media, but does not intend to capture at this point
even a majority of the actual behavior. A great deal of work still needs to be done
since what has been accomplished so far neglects the expected geological complica-
tions due to patterns of deposition (on a wide range of scales), dewatering, alteration,
deformation, and fracture. A fundamental point of this chapter will be that, even if a
medium itself does not exhibit correlations, the transport properties of this medium
will be correlated over distances which can be very large. In fact a simple physical
result emerges, namely that the length scale of correlations in the measurement of
a conduction process is directly proportional to the size of the volume of measure-
ment (Hunt [1], given in Sect. 9.3 here), known in the hydrologic community as the
“support” volume. This result is observed over 3–4 orders of magnitude of length,
i.e., over 10+ orders of magnitude of the volume [2]. Although there is no proof yet
that the percolation theoretical prediction is at the root of this experimental result, it
is certainly a viable candidate.

The concepts here will be developed first, however, for simple models of solid-
state problems, for which initial calculations have already been presented, and for
which relatively reliable microscopic models exist. The general approach will com-
bine cluster statistics of percolation theory with critical path analysis. However, the
results, which are given in terms of certain length scales (whose calculations were
described in Chap. 4), can be easily generalized to hydrologic systems. The pur-
pose of the first section will be to calculate the distribution of electrical conductivity
values for a system of cubic shape and linear dimension x.

The critical subnetwork, which just percolates, is defined by the association of
all resistors with resistance values less than or equal to Rc. If another subnetwork is
picked by choice of an arbitrary maximum R value such that the maximum R < Rc,
the largest cluster of interconnected resistors cannot reach infinite size. But it can
be large if R is not much less than Rc. Cluster statistics of percolation theory give
the occurrence of such clusters. It is necessary for us only to use these statistics to

Hunt, A., Ewing, R.: Applications of the Cluster Statistics. Lect. Notes Phys. 771, 247–264 (2009)
DOI 10.1007/978-3-540-89790-3 9 c© Springer-Verlag Berlin Heidelberg 2009
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calculate how often such clusters with a given governing R value can occur, and thus
how often a finite measurement device or technique will measure the conductivity
from a finite cluster with R different from Rc. But in converting the cluster statistics
to a form useful for these calculations it is necessary to review some basic scaling
arguments and to recall some definitions and values of several length scales.

Take r−E-percolation. In Chap. 4, Eq. (4.28) shows that rm, proportional to the
typical hopping distance, is

rm = a

(
α2

c

9π

) 1
d+1
[

1
kBT N (Ef)a3

] 1
d+1

= a

[
T0

T

] 1
d+1

(9.1)

while Eq. (4.25)
Em

kT
=

2rm

a
(9.2)

demonstrates that the range of available hopping energies is proportional to

Em ∝ kT

[
T0

T

] 1
d+1

(9.3)

Note that the numerical factors of these quantities are not reliable, since impor-
tant correlations have been excluded from the calculations. In Chap. 4 the bulk sep-
aration of maximally valued resistances for r−E-percolation was calculated to be

l = a

(
T0

T

) 1
d

(9.4)

Below it will be shown how this calculation can be improved in steps. The corre-
lation length evaluated at the optimal resistance for conduction, which will now be
denoted as L, was found to be

L = a

(
T0

T

) 1+ν
d+1

(9.5)

Consider a cluster of s elements (volume s) at bond probability p. The purpose
here is to relate s to a system length, x, and to relate p to R. Then it will be possible
to find the probability that in a system of length x a continuous path can be found
with no resistance greater than R, which connects both sides of the system.

It is known [3] that the radius of (distance across) such a cluster is rs ∝
sσνh(z), where z = sσ (p− pc). The proportionality constant must include the fac-
tor a(T0/T )1/4, because both the resistance length and the resistance separation are
equal to this value. Therefore the relationship must have the following form:

rs = a

(
T0

T

) 1
d+1

sσνh(z) (9.6)
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The function h(z) is not well known, so that it will be neglected henceforth.
Consider the Euclidean distance between maximally valued resistances on such a
cluster to be l, then the distance across such a cluster, ignoring tortuosity, can be
written as Nl, where N is the number of such resistances in a Euclidean length rs.
Therefore,

Nl = a

(
T
T0

) 1
4

sσν (9.7)

The total distance across the cluster is thus the product of a grid scale factor
and a percolation function. The following ratio expresses the assumption that the
statistical occurrence of critical resistance values on the backbone of the cluster is
the same as in the bulk,

N
1
σν

s
=
(

T0

T

) 1
d+1

(9.8)

since N1/σν = Ndf is proportional to the number of critical bonds on the cluster. In
accord with the discussion in Chap. 4, the factor on the right-hand side of Eq. (9.8)
represents ξ 3

c /ξ 4
c ∝ ξ−1

c , which is the ratio of a 3D surface area to its enclosed 4D
volume, where ξc gives the linear dimension of the volume. Simultaneous solution
of Eqs. (9.7) and (9.8) yields

l = a

(
T0

T

) 1+σν
1+d

(9.9)

While the ratio above seems quite different from that in Eq. (9.4), note that σν =
1/df; replacement of 1/df by 1/d would lead to the same result as in Eq. (9.4). One
can as a final measure account for the tortuosity of the backbone cluster as well.
Remember that the length, Λ, of the tortuous path along the backbone is described
by a different exponent than that of the correlation length, Λ ∝ (p− pc)−η , with
η = νDmin. This modification includes substituting (sσν)Dmin for sσν on the right-
hand side of Eq. (9.7)

Nl = a

(
T0

T

) 1
d+1

(sσν)Dmin (9.10)

where N is no longer the Euclidean separation between critical resistances, but the
actual number of such resistances along the percolation backbone and l is now their
separation in steps along the backbone. One must then also make a corresponding
change to Eq. (9.8) so as to make the left-hand side the ratio of Ndf/Dmin . The result
that one obtains is

l = a

(
T0

T

) 1+Dmin/df
1+d

(9.11)

This result was also found in Hunt [4], though it was expressed as

l = a

(
T0

T

) 1+1/νdf
1+d

(9.12)
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as a result of using the exponent η = 1 (from Stauffer [3]) without taking advantage
of the intervening advances in knowledge of tortuosity (see Sect. 2.1). Numerically
the values of the exponent on (T0/T ) for l do not differ greatly, with Eq. (9.4)
yielding 0.33, Eq. (9.9) 0.35, and Eq. (9.11) 0.388, although Eq. (9.12) was used
[4] to produce an exponent of 0.365. All four of these values would scarcely be
distinguishable in experiment. Note, however, that Eq. (9.5) for L yields an exponent
of 0.47, and experiment might distinguish between any of the above values of l and
the choice l = L. Further, the larger the value of the exponent, owing to the large
value of (T0/T ), the larger is the length scale. This makes L > l.

Now turn to the cluster statistics

ns = Ks−τ exp
{
− [sσ |(p− pc) |]q

}
(9.13)

K is a (dimensionally-dependent) constant, but the value is of no consequence,
since the result will ultimately have to be normalized. Here the absolute value signs
are meant to allow the cluster statistics to be applicable on either side of pc. For the
Gaussian form, q = 2, such a manipulation is not necessary. No solid conclusions
with respect to the value of the exponent p are given in Stauffer [3]. The Fisher
droplet model gave q = 1, but large numerical simulations were very well approx-
imated by q = 2 (for which the result was correct on both sides of the percolation
threshold), even though theory indicated that the Gaussian form could not be cor-
rect (Stauffer). Since the Gaussian form works extremely well, we will use it when
making predictions, but when we wish to generate analytic results we use q = 1 on
account of its simpler manipulation. It is understood, however, that those calcula-
tions could probably be modified to yield more accurate results by choice of the
Gaussian form. Later in this chapter we show that it is also possible to approximate
the cluster statistics by a simple power law with an abrupt cut off.

Although it is possible that ultimately predictions of distributions of the values of
the conductivity will require a more precise form for the cluster statistics than either
choice mentioned, another aspect of the calculation, which has been left out entirely
is that the cluster statistics of Eq. (9.13) do not really apply far from percolation.
Thus one ought to combine treatments near and far from percolation. The use of
any cross over in functional form would greatly complicate normalization. Here, our
development is meant mainly to demonstrate concepts and can use more simplified
cluster statistics; nevertheless the calculations of ensemble means appear to generate
verifiable results.

Equation (9.8) implies that sσν ∝ N, but Eq. (9.10), including tortuosity, gives
sDmin/df ∝ N. Generating two such expressions derives from two different neces-
sities. In Chap. 4 we spent considerable time treating the optimization of the dc
conductivity in an infinite system. In such a case the actual values of the lengths l
and L could play key roles, and in that context we needed a separation of resistances
on the tortuous path. The decisive point is that if one should find by the argument of
Eq. (9.10) that l > L, one would better use percolation scaling concepts to replace l
with L. It is probably a contradiction to declare that the correlation length determines
the structure of the dc current-carrying cluster and then to allow the separation of
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the critical resistances to exceed that of the nodes. In such a case, the links are made
similar to blobs. However, we found that l < L by virtue of its smaller exponent
on the temperature-dependent factor. Thus our derivation here provides additional
support for our arguments of Chap. 4 that l is not a critical function of (p− pc).
However, in the context of application of cluster statistics, we are more interested in
an expression regarding the Euclidean dimension of a cluster. This interest comes
from the necessity to compare the actual size of a cluster with a finite system; Is
the cluster large enough to span the system in question? Thus for transformations of
the cluster statistics to useful forms we need the kind of procedure associated with
Eq. (9.8).

Now transform s−τ using Eq. (9.7), nsds = nNdN, and the dimensionally depen-
dent scaling relationship (Eq. (1.21)) to N−d+1. Then use sσ = N1/ν(T0/T )σ/(d+1)

(from Eq. (9.8)) and the relationship for p− pc = kBT (ξ d+1
c −ξ d+1)≈ (T/T0)1/(d+1)

(from Eq. (4.31)) to transform the argument of the exponent in Eq. (9.13) and ob-
tain [4],

nN ∝
1

Nd+1ld exp

⎧⎨
⎩−

[(
N

1
ν
)(T0

T

) σν−ν
(d+1)ν

ln

(
R
Rc

)]2
⎫⎬
⎭

=
1

Nd+1ld exp

⎧⎨
⎩−

[(
Nl
L

) 1
ν

ln

(
R
Rc

)]2
⎫⎬
⎭ (9.14)

The combination of exponents on the ratio of the temperatures is also generated
by the ratio l/L, if we use the value for l referred to the Euclidean distance, as
argued above. Note that χ is given as proportional to χ0(p− pc)−ν , making it always
possible to replace Nl/L with Nl/χ0 and some numerical constant which, in the case
of porous media with their largely unknown distributions, is not likely to be known
anyway.

If one expresses R = Rc exp( j), i.e., one quantizes resistance values in steps of
e = 2.718 . . ., the following form for W (N, j) results [4],

W (N, j) =
1

Nd+1ld exp

{
−
[(

Nl
L

) 1
ν

j

]q}
(9.15)

In the form of Eq. (9.15) contributions to the conductivity may be summed over
the index j. Later representation in the form of an integral over R requires the
transformation d j → dR/R. Using the cluster statistics in a form like Eq. (9.14)
or Eq. (9.15) it is possible to answer a large number of problems.

A cubic volume, x3 > L3, selected at random, will include some clusters of re-
sistors with, e.g., maximal resistance values less than the critical resistance, which
extend from one side of that cube to the other. Such clusters can be defined at all
resistance values. Some cubes will contain additional paths [compared with the ex-
pected value, (x/L)2] with maximal resistors of the critical resistance value. Other
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cubes will not contain paths with maximal resistance value R less than or equal
to Rc at all. Such cubes will have a finite probability of being spanned by clusters
with R > Rc, which are not connected to the critical cluster. The cluster statistics
near critical percolation can be used to describe the statistical occurrence of such
clusters defined by R > Rc as well.

The calculation of the distribution of resistance values for a given cube of di-
mension x requires summing the statistical occurrence of all cluster sizes, for a given
R value, whose lengths exceed x according to the probability that such clusters “fall”
on the volume x3. The condition

Nml = x (9.16)

states explicitly that Nml is the minimal cluster length which can contribute. The
probability that a given cube has conductivity l/Rx2, where l is the separation of the
resistances with the particular value of R chosen, and x2 is the area normal to the
current, is equal to the probability that a cluster with N > x/l is found at the volume
x3. In the following it will be necessary to assume that x > L, otherwise the desired
statistics for resistance distributions are strongly dependent on the distribution of
individual resistances, and thus unrelated to universal cluster statistics. In fact, one
way to recognize the value of L from simulations is that the skewness of a distribu-
tion of system conductivity values, which is a very rapidly falling function of x for
x < L, becomes nearly constant for x > L.

The probability that a given volume x3 will intersect a cluster with linear dimen-
sion larger than x (providing the current carrying path) is proportional to the volume,
(Nl)3, because it does not matter whether the center of the volume x3 actually falls
on the backbone cluster. It is sufficient that the volume “cut” the cluster. Thus the
probability that a given cubical volume, x3, is characterized by a maximal resistance,
R, is proportional to

J =
∞∫

x/l

dN
N

exp

{
−
[(

Nl
L

) 1
ν

ln

(
R
Rc

)]q}
(9.17)

The factor dN/N arises from (Nl)3/N4l3, the numerator resulting from the vol-
ume argument above and the denominator from the cluster statistics. In Hunt [4] an
additional factor 1−K was included to represent the probability that there was no
cluster with a smaller R value, which also spanned the volume, but this factor was
later argued to be negligible.

Integral (9.17) could be performed relatively easily only in the case that q = 1.
Since the purposes here are still largely illustrative, this case will be used. Then
integral (9.17) yields

J = −Ei

{
−
[(

Nl
L

) 1
ν

ln

(
Rc

R

)]}
(9.18)
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where Ei(x) is the exponential integral of x. Equation (9.18) is in a form, which is
not particularly illustrative. But for relatively large values of its argument, −Ei(x)→
exp(−x)/x and [4]

J =
(L/x)1/ν (R/Rc

)(x/L)1/v

ln
(
Rc
/

R
) , R < Rc (9.19a)

J =
(L/x)1/ν (Rc

/
R
)(x/L)1/v

ln
(
R
/

Rc
) , R > Rc (9.19b)

J(R) represents an unnormalized distribution of resistance values, but it is pos-
sible to find the variance from Eq. (9.19) to be R2

c(L/x)2 (under the condition that
x > 3L, and approximating 1/ν as 1). Using this unnormalized distribution it is also
possible to calculate approximately the mean value of the conductivity of cubes of
dimension x. The conductivity of a cube of dimension x with a dominant conducting
path of length Nl and resistance NR is

σ =
Nl
NR

1
x2 (9.20)

The mean conductivity of an ensemble of such cubes is an integral over all cubes
according to the frequency of their occurrence. The integral over R was split into
two parts, R ≤ Rc/e and R ≥ eRc because of the difference in form of the cluster
statistics across R = Rc; the case R = Rc was treated separately. The contribution
from R �= Rc was shown to yield a contribution to the dc conductivity, Δσdc,

< Δσdc (x) >∝ σdc (∞)
[

L
x

]2
[

1+
(

L
x

) 1
ν
]

(9.21)

upon ignoring two numerical constants of order unity. The contribution from R = Rc

was argued to be of the same form as the first term. The mean conductivity thus
diminishes asymptotically with increasing size to its value in the thermodynamic
limit, σdc(∞). The result from Eq. (9.21) is identical to a result for the electrical
conductivity of a thin film of thickness x, which can easily be shown to be equivalent
to the ensemble mean of the conductivity of a collection of such cubes. The results
of Eq. (9.21) were found to be in accord with numerical simulations in Hunt [5],
though there was some question as to whether both terms were appropriate.

It was found in Hunt [5] that assuming R = R0 expξ , as above together with
the Gaussian form for the cluster statistics, which is more accurate than assum-
ing q = 1 leads to the result that the distribution of conductivity values is approx-
imately log-normal, at least in the case where L ≈ x. Clearly, replacing ln(R/Rc)
by (R−Rc) for the case R = R0ξ k (k = 4 for Poiseuille flow) will make the result
more nearly compatible with Gaussian statistics than with a log-normal distribution.
At the time of the original publication on conductivity distributions the coincidence
that the log-normal distribution appeared to be consistent with Nielsen’s results [6]
for the distribution of the steady-state unsaturated hydraulic conductivity values in
field soils was considered to be significant, especially since the assumed exponential
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dependence of R on a random variable ξ was consistent with Nielsen’s [6] observa-
tion that K was exponentially dependent on the moisture content. In the meantime
we recognize that the exponential dependence on a moisture content is not an obvi-
ous result, and this question is rather involved. But this topic is discussed further in
Chap. 11 in which heterogeneity on more than one scale is treated.

9.2 Cluster Statistics Treatment of Nonequidimensional
Volumes and Anisotropy

An easier means to treat the cluster statistics can be developed, and this treatment
is independent of the exact form of the function f (z). Instead of using a particular
form for the exponential cut off, replace f (z) by a sharp cut off at sσ ∝ (p− pc)−1.
While such an approximation may seem quite rough, it should capture the scaling
behavior properly when resulting distributions are normalized, and it should also
lead to accurate results for ensemble means. Treating the exponential cut off as a
sharp cut off,

nN =
1

N4l3 N <
L
l

lnν
(

gc

g

)
(9.22)

for the case g < gc and

nN =
1

N4l3 N <
L
l

lnν
(

g
gc

)
(9.23)

for the case g > gc. Both Eqs. (9.23) and (9.24) were written here for the case
R = R0 exp(ξ ) again. One can also write the cluster statistics for the case R = R0ξ k,
with the results

nN =
1

N4l3 N <
L
l
|V −Vc|−ν (9.24)

Linearize V −Vc for the Rieu and Sposito model (done in Eq. (4.42)) to get

|V −Vc| =
3−D

3

(
gc

gm

) 3−D
3 |g−gc|

gc
(9.25)

using the additional substitution of (gc/gm)(3−D)/3 for (rc/rm)3−D. Note that in
Chap. 8 the same problem was considered, but with the assumption that the crit-
ical volume fraction Vc ≈ 0. Under such circumstances, gc ≈ gm, and Eq. (9.24)
simplifies to

N <
L
l
|V −Vc|−ν =

L
l

{
gc

|g−gc|
[
1−
(
D
/

3
)]
}ν

(9.26)

It will turn out (in Chap. 10, for example) that a procedure not based on lineariza-
tion produces much better results. To some degree we continued the linearization
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here as a tradition, to some degree we were perhaps lulled by the theoretical ar-
guments that percolation functions and exponents describe behavior precisely only
in the asymptotic limit. In any case we present here also an analogous result to
Eq. (9.26) that is not based on linearization.

N <
L
l

∣∣∣∣∣
1

1−
(
g
/

gc
)1−(D/3)

∣∣∣∣∣
ν

(9.27)

Equation (9.27) performs better apparently because, under typical conditions in
porous media with D on the order of 2.8 or larger, the very small power 1−D/3 =
0.067 or smaller, makes much wider ranges of g fit close to the percolation threshold.

Consider a system with horizontal dimension x and vertical dimension ε1/2x. The
factor, ε1/2, can be regarded as arising from a coordinate transformation correspond-
ing to the transformation from an equidimensional volume in an anisotropic medium
to a nonequidimensional volume in an isotropic medium (the discussion of the cor-
respondence of ε1/2 to values of K in the anisotropic case will be discussed after the
derivation). Systems with characteristic g < gc can result from clusters of size x or
larger, which serve to block the entire volume, but systems with characteristic g > gc

must be cut from clusters of linear dimension ε1/2x or larger (see Fig. 9.1). Using
these results one can now follow an analogous procedure to Eq. (9.20) to find W (g)
by integrating the product of (Nl)3 and an integrand of the form of the right-hand
side of Eq. (9.25). The result is the integral

Fig. 9.1 Demonstration that a cluster (filled) of g < gc (not connected to the infinite cluster) of
linear dimension equal to the shortest dimension can force a current to flow through a region of
lower conductance, while a cluster (unfilled) with g > gc must be as long as the largest dimension
of the system
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W (g) ∝
∫

dN
N

(9.28)

The question is what are the limits of such an integral? For either case, g > gc

or g < gc the upper limit is given by Eq. (9.27). For g < gc, the lower limit is
(x + l)/l, while for g > gc, the lower limit is (xε1/2 + l)/l. The reason for adding
the term l in both cases is to be consistent with the derivation in Chap. 8 which
noted that in the limit of small system size x the discretization of the system through
the dimensions of the individual resistors could not be neglected. We cannot have
cluster sizes smaller than an individual bond length. The results of these integrations
are the (unnormalized) expressions for W (g) below,

W (g) ∝ ln

[(
L

l + xε1/2

) 1
ν 1(

g
/

gc
)1−(D/3) −1

]
g > gc (9.29)

and

W (g) ∝ ln

[(
L

l + x

) 1
ν 1(

g
/

gc
)1−(D/3) −1

]
g < gc (9.30)

It is possible to use linearized versions of Eqs. (9.29) and (9.30) to calculate a
mean value of the distribution as well as a distribution width in terms of the funda-
mental formula in terms of the difference of the mean value squared and the square
of the mean value. Let

A =
(

L

l + ε1/2x

) 1
ν 1

1−
(
D
/

3
) (9.31)

and

A′ =
(

L
x+ l

) 1
ν 1

1−
(
D
/

3
) (9.32)

Then it is possible using the linearized versions of Eqs. (9.29) and (9.30) to ex-
press an ensemble mean < g > as

< g >= lim (δ → 0)

∫ gc+Agc

gc+δ gdg ln
[
Agc
/
(g−gc)

]
+
∫ gc−δ

gc−A′gc
gdg ln

[
A′gc

/
(gc −g)

]
∫ gc+Agc

gc+δ dg ln
[
Agc
/
(g−gc)

]
+
∫ gc−δ

gc−A′gc
dg ln

[
A′gc

/
(gc −g)

]
(9.33)

The upper (lower) limit of the first (second) integral is determined by the condi-
tion that the upper limit of integral (9.28) be larger than the lower limit. The results
were obtained without accounting for any special contribution from g = gc. Evalu-
ation of the integrals leads to
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< g >= gc
A+A′ +(1/4)A2 − (1/4)A′2

A+A′ = gc

⎡
⎢⎣1+

[
L
/(

ε1/2x+ l
)] 1

ν −
[
L
/
(x+ l)

] 1
ν

4
[
1−
(
D
/

3
)]

⎤
⎥⎦

(9.34)

For large values of x it is possible to rewrite this expression as

< gv >=

[
1+
(

L

ε1/2x+ l

) 1
ν
−
(

L
x+ l

) 1
ν
] 3/4

3−D

(9.35)

where the subscript v has been added to denote vertical flow. The logic of this
particular recombination is that it is, in a sense, an inverse of the expansion of

g1−D/3 −g1−D/3
c ; thus it is plausible that a more detailed treatment that did not uti-

lize the linearization in the first place would lead to precisely the same result as
Eq. (9.35). Of course this recombination is not unique, but this is a particular case
where the recombination is a direct reversal of the linearization of Eq. (4.42). In any
case, Eqs. (9.34) and (9.35) are equivalent to the lowest order. Further, the results
from Eq. (9.35) are very nearly identical to the results from Chap. 8 over a wide
range of system sizes x. The only purpose is to compare with the calculations of
Chap. 8, for which such a linearization was not necessary. Now Eq. (9.35) can be
rewritten in the form

< gv >= gc

{
1−
[

1−
(

1+ x/L

1+ ε1/2x/L

)] 1
ν
[

1
1+ x/L

] 1
ν
} 3/4

3−D

(9.36)

which clarifies the scaling of < gv > with length x as a ratio of x/L.
A similar calculation can be made for an ensemble mean bottleneck conductance

for horizontal flow through the system. In this case, however, a cluster of size x
is large enough to facilitate flow with a larger g than gc, but it takes a cluster of
size ε1/2x with maximum g < gc to block flow. The result is easily deduced from
Eq. (9.33) to be

< gh >= gc
A+A′ +(1/4)A′2 − (1/4)A2

A+A′ = gc

⎧⎪⎨
⎪⎩1+

[
L
/
(x+ l)

] 1
ν −
[
L
/(

ε1/2x+ l
)] 1

ν

4
[
1−
(
D
/

3
)]

⎫⎪⎬
⎪⎭

(9.37)
where now the subscript h denotes horizontal flow. Equation (9.37) can then also
be rewritten in the following form (by the same reversal of linearization as in
Eq. (9.34))

< gh >= gc

{
1+
[

1−
(

1+ x/L

1+ ε1/2x/L

)] 1
ν
[

1
1+ x/L

] 1
ν
} 3/4

3−D

(9.38)
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Note that < gh > / < gv > is 1 in both the limits of x → ∞ and x → 0. In the
limit of an infinite system a critical path may be found equally easily in either the
horizontal or the vertical direction and < gh > / < gv > should be 1. However the
fact that the ratio of gh (and gv) in the limit x → ∞ is equal to its value in the limit
x → 0 is also 1 is an artifact of the assumption that, Vc ≈ 0. In the limit x → 0 the
present calculation is consistent with the fact that an ensemble mean of systems so
small that they are composed of a single element must give the arithmetic mean in
either the horizontal or the vertical direction but the effective hydraulic conductivity
of an infinite system is only the arithmetic mean if Vc can be argued or chosen to
be zero.

Now how do we actually relate ε to the horizontal and vertical measurements of
K? ε is assumed to give a ratio of the characteristic values of horizontal and vertical
K measurements. If Vc = 0, then it must often be possible to find horizontal paths
that connect a system from one side to the other that never have to use any smaller
pore (or fracture) radii than rm. So Kh ∝ r2

m (by the results for the saturated hydraulic
conductivity, Chap. 4). On the other hand, vertical paths in a system small enough
to be 1D must sample every r value. Thus, effectively, a vertical path has Vc = 1 and
Kv = r2

0. This means that ε1/2 ∝ (rm/r0), which is identical to the ratio, R, in Chap. 8.
As a consequence, since Kv was shown in Chap. 8 to sweep out the values from r2

0
through r2

m, the result for Kh cannot involve a very large enhancement, being at most
related to the density of flow path inputs rather than maximally valued resistances
to flow. And indeed the maximum enhancement is only about an order of magnitude
rather than the 6 orders of magnitude reduction in Kv at the same x value.

After this discussion it is now appropriate to consider how well our results fare
in comparison with experiment. We choose the same anisotropic fracture system in
a carbonate aquifer [7] as was chosen in Chap. 8. In Fig. 9.2 the result (Eq. (9.36))
for Kv(x) is compared with experiment and found to reproduce experiment approx-
imately equally well as the results from Chap. 8 (and using the same parameters)
over a wide range of system sizes. This equivalence was also intended, once again,
to demonstrate the redundancy of percolation theory, which allows more than one
starting point to calculate the same quantity. Additionally we show the results of
Eq. (9.38) for Kh(x). Note that, while Kv is an increasing function of x, Kh is a de-
creasing function. In these representations L was set equal to 1, making the units of
the horizontal scale arbitrary.

In Fig. 9.3 we show a 3D plot of the results of Eqs. (9.29) and (9.30) for the pdf
for measuring conductance value g as function of size, x.

We have [8] developed a scheme to generate a width of a distribution of conduc-
tance values that is highly asymmetric, as in Eqs. (9.29) and (9.30). This scheme
can be described most easily in geometric terms. Emplace a horizontal line of vari-
able height on the graph of W (g). This line will normally intersect W (g) in two
points. Choose the height so that the area under W (g) between the two intersection
points is 68% of the total area under W (g), equal to the fractional area within one
standard deviation of the mean of a Gaussian distribution. The range of g values
between these two intersection points can then serve as a measure of the distribu-
tion width. When we calculate this distribution width again for the same parameters
as found in Chap. 8, the results can be represented graphically in Fig. 9.4. While
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Fig. 9.2 Comparison of the result of Eq. (9.36) for Kv obtained by cluster statistics of percolation
with experimental data obtained by Schulze-Makuch [7]. The same values of the parameters, D =
2.98, and rm/r0 = ε1/2 = 2,500 were used as in Eq. (8.8) from Chap. 8. Here we show Kh > Kv
from Eq. (9.38) for comparison
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Fig. 9.3 Family of curves describing the distribution of conductance values, W (g,x) as given by
the approximation in Eqs. (9.29) and (9.30)
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Fig. 9.4 Comparison of the width of the distribution of W (g) values as a function of x with ex-
perimental data from Schulze-Makuch [7]. The geometric procedure to calculate the width of the
distribution from the approximation given in Eqs. (9.29) and (9.30) is given in the text. The pa-
rameters, D = 2.98, and rm/r0 = ε1/2 = 2,500 used were again the same values as those chosen in
Chap. 8, though in Chap. 9 only the expected value of the conductivity was treated

the comparisons in Chap. 8 were essentially fits, since the parameters were chosen
to fit the data, use of the same parameters here gives Fig. 9.4 at least some of the
characteristics of a prediction.

It should be mentioned that the results of this chapter have a potential relevance
also to a radioactive waste problem at the Hanford site. Technetium in solution was
discharged at the BC Crib site and was expected to drain straight down to the water
table. The evidence is that it did not, having encountered a horizontal layer with a
large anisotropy in K and spread laterally instead. With increasing time, however,
the effective experimental scale will increase, producing an increase in the expected
value of Kv and a decrease in the expected value of Kh. Using the application of the
cluster statistics that led to Eqs. (9.36) and (9.38) it should be possible to make a
prediction of the length, and thus the time scale, before the probabilities of vertical
and horizontal advection are similar and thus evaluate the potential danger of con-
tamination of the water supply in a quantitative way. This question is now addressed
in Chap. 11 as it is effectively a problem of multiple scales of heterogeneity.
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9.3 Semivariograms and Cross-Covariance

The semivariogram for the hydraulic conductivity is defined as

ΓK (h) =
1

2N(h)

N(h)

∑
j=1

[K (x j)−K (x j +h)]2 (9.39)

K(x j) is the value of the hydraulic conductivity at x = x j, K(x j +h) is its value at
distance h from x j, and N(h) is the number of pairs of points at which measurements
are made a distance h apart. For stationary random functions, the semivariogram is
related to the covariance, CK(h), by ΓK(h) = CK(0)−CK(h). In practice the semi-
variogram (often simply called the variogram) is the product of the variance of K
and the difference between 1 and the correlation function of K. The range of the
variogram is defined in terms of the length scale which governs the decay of the
correlation function.

There are many possible reasons why a random field, such as the hydraulic con-
ductivity, can be correlated from point to point in a geologic porous medium. These
include depositional correlations, fractures, folding, etc. There are also reasons that
relate to the random combination of highly conducting elements into a larger region
of high conductivity. In particular, given the context of this chapter, suppose that a
large cluster of resistances of maximum value R < Rc is present in a system of size
x. Then a measurement of K in a region of space that covers one part of the cluster
will be correlated with a measurement that is made over another part of the clus-
ter. Otherwise, there is no discernible correlation. We can define that probability in
terms of conditional probabilities as follows: start from Eq. (9.17) and write [1],

J =
∞∫

x/l

KdN (9.40)

where K is the integrand of Eq. (9.17). Equation (9.40) once again gives a (rela-
tive) probability that a system of size x has controlling resistance R. The probability
that the same cluster determines the resistance after translation at distance h is the
(conditional) probability that the cluster that is known to be of minimum size x is
actually of size at least x+h. This probability is easy to write as [1]

P(h) =

∫ ∞
(x+h)/l KdN∫ ∞

x/l KdN
(9.41)

The variogram, since it measures the lack of correlation, is proportional to the
complementary probability, 1−P(h). Using Eq. (9.19a and 9.19b) the quantity 1−
P(h) can be expressed as [1]

1−P(h) = 1−
(

x
x+h

)
exp

[
−
(x

l

)
| ln
(

R
Rc

)
|
]

(9.42)
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Note that Eq. (9.42) is approximate in three respects: one, the cluster statistics of
percolation theory are not accurately described by the exponential “Fisher droplet”
form used, and two, the approximation for the exponential integral used is an asymp-
totic limit, and three, cluster statistics far from percolation should be used for R
values far from Rc. Again, the main purpose here is instructive. Now the variogram
must be obtained by an integral of Eq. (9.42) over the probability density for the
cluster resistance, R, since clusters of all resistances can occur. Thus [1],

ΓK (h) ∝ 1−
∞∫

0

x
x+h

exp

[
−
(x

l

)
| ln
(

R
Rc

)
|
]

W (R,x)dR (9.43)

where

W (R,x) =

(
L
/

x
)(

R
/

Rc
) x

L /| ln(R/Rc)∫ ∞
0 dR

(
L
/

x
)(

R
/

Rc
) x

L /| ln(R/Rc)
(9.44)

The first term in Eq. (9.43) integrates easily to 1, while the second integrates to
[x/(x+h)]2. Thus,

ΓK (h) ∝ 1−
(

x
x+h

)2

(9.45)

Using the representation of the variogram as the product of a spatial dependence
and the variance of R yields thus [1],

ΓK (h) = R2
c

(
L
x

)2 [
1−
(

x
x+h

)]2

(9.46)

It is easily determined [5] that Eq. (9.46) for the variogram cannot be precisely
correct because its Fourier transform can take on negative values, as can thus the
Fourier transform of the correlation function, or the characteristic function. The
wiggles in the Fourier transform arise from the lack of continuity of the slope of
ΓK(h) in the limit h → 0. Owing to the various approximations, including using an
asymptotic expansion for large h in the limit of h → 0, the defect of the derived
function in this limit is not really unexpected. Nevertheless Eq. (9.45) clearly shows
that the range of the variogram is proportional to x, the linear dimension of the mea-
surement. In strongly heterogeneous media, “a quantitative measure of the range of
correlation of a random spatial structure may be calculated from the autocorrelation
function. In general the integral scale [this range] is not an intrinsic property of the
field, but depends on the scale over which it is measured.” In other words, the range
is a function only of x. Moreover, Neuman and di Federico [2] present experimental
results that demonstrate that the range of the variogram for the hydraulic conduc-
tivity is linearly proportional to the measurement length scale over many orders of
magnitude of x. So, even in the present approximation, this aspect of experiment is
achieved. Further, it was shown in Hunt [1] that Eq. (9.45) resembles the spherical
approximation for the variogram.
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The cross-covariance is given in terms of the probability that a second volume x at
a distance h from a first volume has R≥R2 if volume 1 has R≥R1. To write down an
expression in terms of cluster statistics, one must make some assumptions regarding
the magnitudes of R1 and R2. In Hunt [1] it is shown that the cross-covariance is
given by

∫ ∞
R1

W (R,x)dR
∫ ∞

x+h
l

K (R,N)dN∫ ∞
R1

W (R,x)dR
∫ ∞

x
l

K (R,N)dN
+

⎡
⎢⎣
∫ R1

R2
W (R,x)dR

∫ x+h
l

x
l

K (R,N)dN

∫ ∞
0 W (R,x)dR

∫ x+h
l

x
l

K (R,N)dN

⎤
⎥⎦

×
[

1−
∫ ∞

R1
W (R,x)dR

∫ ∞
x+h

l
K (R,N)dN∫ ∞

0 W (R,x)dR
∫ ∞

x+h
l

K (R,N)dN

]
(9.47)

in the case that R1 > R2 > Rc. The first term gives, as in the calculation of the
variogram above, the probability that the second volume is located on the same
cluster of linear dimension x+h. In that case R > R1 in the second volume certainly
guarantees R > R2. But it is also possible that the second volume is not located
on the same cluster (the second factor of the second term); then, however, it may
still be located on a cluster of size between x and x + h with controlling resistance
somewhere between R2 and R1. The cluster must be at least size x in order to control
the measurement of volume 2, but cannot be as large as x + h, or it will control the
measurement of volume 1 as well. If it controlled the measurement of volume 1 as
well, then volume 1 would have R < R1. Since the choice of volume 1 and volume
2 is arbitrary, this expression can always serve for cases when both R1 and R2 are
greater than Rc. The other two cases may be written down analogously (when both
resistances are smaller than the critical resistance and when one is larger and one is
smaller).

Note that in Hunt [1] the expression corresponding to Eq. (9.47) has several ty-
pos, but more importantly the limits on the interior integrals of the first factor of the
second term are incorrect.

Problems

9.1. Write analogous expressions for the cross-covariance when both controlling
resistance values are smaller than Rc and for the case when they are on opposite
sides of Rc.
9.2. Use the cluster statistics of percolation theory to predict the variance of the
distribution of Kh and Kv as functions of system size. There are two ways to do this
calculation. One is to use the full cluster statistics distribution (with its attendant
unknowns). The second way, recommended here, is to use the approximation in
the text.
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Chapter 10
Properties Based on Tortuosity

10.1 Longitudinal Dispersion of Solutes in Porous Media

Dispersion in porous media is a phenomenon, which is incompletely understood.
Dispersion is a term which describes the spatial spreading of solutes in porous me-
dia under the action of flowing water. This dispersion can be either in the direction of
flow (longitudinal) or perpendicular to it (transverse). We focus our attention here on
longitudinal dispersion. Solutes treated can be adsorbed on to surfaces or nonsorb-
ing. We do not address the problem of sorbing solutes here. Compounds dissolved
in water in the subsurface are transported by molecular diffusion and advection (mo-
tion of the fluid). We address the effects on dispersion from advective flow but omit
effects of diffusion. Effects on dispersion from a single capillary tube velocity dis-
tribution, known to produce long-tailed arrival time distributions, are also neglected.
Solutes treated can be contaminant plumes from any source or radioactive tracers
both experimentally and naturally generated.

In order to generate predictive relationships for longitudinal dispersion of so-
lutes we calculate first the distribution of arrival times, W(t), of solute transported in
steady flow. This calculation has a close relationship to that of finding the distribu-
tion of hydraulic conductivity values in finite-sized systems [1]. In particular, both
are based on the relevance of the cluster statistics of percolation theory to a distri-
bution of water fluxes in terms of the critical flow from critical path analysis. Since
the critical flow paths are also tortuous, we must also appeal to scaling arguments of
percolation regarding the fractal characteristics of such paths. Such an application
leads directly to a formulation of solute transport in terms of both critical path anal-
ysis and percolation scaling. We calculate a distribution of arrival times, W(t), for a
specific random fractal model of the pore space [2]. The present calculations yield
asymmetric peaks of W(t) with a long tail. It was possible to compare the results
of the present calculations with numerical simulations (Liu et al., [3]) that omit the
process of diffusion. The results are in quantitative agreement with the simulations
and generally in accord with experiment. Accordingly it appears that the structure of
our calculations, limited as they are, may be able to describe many of the properties
of experiment that have been considered puzzling. In fact, we believe that we have
the first ever reliable calculations of the entire distribution of arrival times, W(t), in
advective flow in strongly disordered porous media.

Hunt, A., Ewing, R.: Properties Based on Tortuosity. Lect. Notes Phys. 771, 265–285 (2009)
DOI 10.1007/978-3-540-89790-3 10 c© Springer-Verlag Berlin Heidelberg 2009
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10.1.1 Quantifying Limitations of the Neglect of Diffusion

It is important first to define the conditions under which we can expect that it is
acceptable to neglect molecular diffusion. Under the action of advection, the effects
of diffusion appear to be enhanced. The resulting phenomenon is termed hydrody-
namic dispersion, but is typically treated mathematically simply as diffusion with
a velocity-dependent diffusion constant. In natural settings it may be legitimate to
neglect the effects of either advection or of molecular diffusion. The relevance of
advection relative to diffusion may be estimated [4] by use of the Peclet number,
Pe = Lu/Ds, where L is a relevant spatial scale, u is the fluid velocity, and Ds is the
diffusion constant of the solute. Typically it is assumed that for Pe > 100 diffusion
may be neglected, while for Pe < 1 advection may be neglected. In a study related
to the present work, Sahimi and Imdakm [5] gave Pe = 300 as a lower bound.

10.1.2 Conventional Modeling

A differential equation, commonly called the advection-diffusion equation (or
convection-diffusion equation) describing effects of both advection and diffusive
processes on the spatio-temporal behavior of dissolved solutes is (e.g., Bear [6])

∂C
∂ t

= ∇ ·Dh∇C−uuu ·∇C (10.1)

Here, C(x,t) is the concentration of the solute, Dh is the hydrodynamic dispersion
coefficient, and u is the velocity of the flow. In case uuu = 0, the only influence on
C(x,t) is molecular diffusion, and Dh = Ds. Usually, however, Dh is found to exceed
Ds. Further, results of experiments typically require that Dh be dependent on spa-
tial and time scales. This suggests that description of the relationship between the
microscopic process of advection and the macroscopic description of dispersion as
simply analogous to microscopic diffusion is not adequate.

The velocity u is a random field, generated by solution of

∇ ·uuu ∝ ∇ ·K∇P = 0 (10.2)

Here K is the hydraulic conductivity (a random scalar field in isotropic media)
and P is the pressure. Dh may also be assumed to vary from point to point. Thus,
one means to investigate the behavior of solutes in natural porous media is sim-
ply to solve numerically Eqs. (10.1) and (10.2) using assumed stochastic variability
of the coefficients [7, 8]. A reason for using critical path analysis and percolation
theory rather than a stochastic approach to model fluid flow (and thus ultimately
particle transport) is the conclusion of Bernabe and Bruderer [9] regarding pore-
scale upscaling of the hydraulic conductivity: “At high [relative variance], owing
to flow localization, extreme values of [pressure drop squared] occurred at deter-
ministic positions. The flow pattern is so strongly controlled by these huge values
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[at bottleneck conductances quantified by percolation theory] that a stochastic de-
scription becomes inadequate.” So, if the flow itself cannot be described by stochas-
tic methods, it would not be possible to describe the distribution of particle velocities
and path lengths either. The conclusion of Bernabe and Bruderer [9] at pore scales is
consistent also with Shah and Yortsos’ [10] conclusion that the critical path analysis
framework was best suited to explain flow channeling in heterogeneous media at
geologic scales such as observed by Moreno and Tsang [11]. Our basic method can
be applied at either scale.

10.1.3 Experimental Overview

Solution of Eq. (10.1) for steady flow in a homogeneous medium leads to Gaussian
spreading superimposed in the direction of flow. Natural porous media of interest
(rocks, soils, fracture networks) are never homogeneous and, in fact, such Gaussian
behavior of C is seldom inferred or observed [12–22]. A quantity developed, in the
Lagrangian representation, to quantify the discrepancy between experiment and the
Gaussian solution, is the longitudinal dispersion coefficient [23, 24]

Dl(t) =
1
2

d
dt

σ2(t) ∝
σ2(t)

t
(10.3)

where the proportionality follows if σ2(t), the variance of the spatial solute distri-
bution, is a power of the time, t. For Gaussian dispersion, the linear proportionality
σ2(t) ∝ t makes Dl(t) time independent. Since field experiments are pinned to an
Eulerian representation, Dl(t) may also be reported as the ratio of the variance to the
mean travel length, l. The two representations of Dl(t) are not always equivalent,
since the mean solute velocity, vs ≡ l/t is not, in general, scale-independent (e.g.,
Margolin and Berkowitz [21]; Lee et al. [25]). In fact, Dl typically increases as a
power of system size [16, 17, 20],

Dl(t) ∝ tα (10.4)

with 0 < α < 1.
Such behavior is often considered to be a difficult point to explain.
Other experiments also reveal discrepancies with Gaussian spreading. In par-

ticular Cortis and Berkowitz [22] point out that several “classical” experiments
[12, 26–28] in solute dispersion show breakthrough curves (BTC), for which Gaus-
sian spreading overestimates the arriving solute flux at both short and long times. A
long-tailed arrival time distribution (for which the variance or even the mean arrival
time may not exist) such as predicted here will produce a longitudinal dispersion
coefficient which increases with system size and is consistent with the deviations
from Gaussian scaling of the BTCs listed by Cortis and Berkowitz [22]. Both kinds
of experimental results point to the importance of being able to predict the entire
arrival time distribution, or a spatial distribution of solutes at a given time.
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10.1.4 Theoretical Descriptions

There are several avenues of approach to such problems. One can seek a mathe-
matical framework, which produces solutions of the type observed. To this class of
approaches belong the Continuous-Time Random Walk (CTRW) formulation and
fractional differential equations. Thus such power-law tails may be described accu-
rately with a fractional advection-dispersion equation, in which integer order deriva-
tives in Eq. (10.1) may be replaced by fractional derivatives [29–37]. While such a
formulation can model the long-time behavior, it cannot be used to predict it, unless
the order of the derivative can be determined in advance. Further, a fractional dif-
ferential equation does not necessarily generate the appropriate short-time behavior
[21]. Additionally if, as derived here, the long-time tail is not a true power law, then
such a method will not quite describe the asymptotic behavior either.

CTRW [38–40] appears to generate the entire arrival time distribution (e.g.,
Margolin and Berkowitz [21], Cortis and Berkowitz [22], Bijeljic and Blunt [41],
Berkowitz et al. [42]) in agreement with experiment (except perhaps at very long
times), but is also only descriptive. Nevertheless, the CTRW can provide guidance
on how to predict large-scale behavior from small-scale observations. But we wish
to predict the entire behavior of C(x,t). We believe that this restricts the available
options to percolation theory.

Percolation theory has been used before to calculate dispersion-related quantities
in porous media [5, 25, 43–49]. While we are not the first to propose a percolation-
based approach, our framework is quite distinct from those already in existence be-
cause we disentangle the influences of pore-size distributions from the topological
complications of the flow paths described in percolation theory. In contrast to, e.g.,
the saturation dependence of K, for which different aspects of percolation theory
dominate at different saturations, here we will show that these different aspects dom-
inate in distinct time periods. In particular, the pore-size distribution, as expressed
through a combination of critical path analysis and cluster statistics of percolation, is
important near the peak in the arrival time distribution, while the tortuosity becomes
relevant to the long-time asymptotic behavior, and thus to the spatial structure of the
dispersion coefficient. Even our conclusion regarding the relevance of tortuosity to
dispersion on account of the dominance of the critical paths has been anticipated
in past discussions, at least qualitatively; consider the following quote from Rivard
and Delay [50]:

Moreover, the critical path analysis [51] indicates that transport in a well-
connected system in which the hydraulic conductivity distribution is broad, is ac-
tually dominated by a small subset of the system in which the magnitude of the
conductivities is larger than a certain threshold. Heterogeneous porous media can
therefore be mapped onto equivalent percolation networks.

This evaluation of Rivard and Delay [50] is consistent with decades of publica-
tions by Sahimi, including Sahimi [52–54]. However, we do not quite agree with the
quantitative implications of this statement, that a direct mapping is sufficient. In par-
ticular, if the most permeable portion of the system that just percolates is chosen, the
paths of flow are infinitely tortuous; following paths with slightly lower hydraulic
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conductances would allow solutes to arrive at a much earlier time. Nevertheless, we
agree with the general message of Rivard and Delay [50].

10.1.5 General Comments Regarding Experiments

Consider experiments with wetting fronts in natural media. When the medium it-
self is not too inhomogeneous (such as relatively uniform sand in a sand dune),
such wetting fronts are often relatively regular. An interesting result from a partic-
ular experiment is that, even though the wetting front was fairly regular, paths of
solutes following the fluid could be very irregular [55] (Fig. 10.1). Thus, experi-
ments already suggest that it is appropriate, as in critical path-based calculations of
the saturated hydraulic conductivity, K, to find K by an optimization between fluid
connectivity and pore-size variability, while solute dispersion may better be deter-
mined through an enumeration of all the paths including effects of both pore-size
distributions and the connectivity of percolation theory. It is suggested here, more-
over, that it is the tendency for flow to emphasize the paths of least resistance which
makes the cluster statistics of percolation near the percolation threshold relevant
to both the distribution of measured K values and dispersion of solutes. We have
found [56, 57] that indeed the distribution of K values in anisotropic fracture net-
works [58, 59] can be predicted using the cluster statistics of percolation. We now
apply the same results to find the distribution of global fluxes. We do not seek a
distribution of streamline velocities. Note that, in the simplified version of the prob-
lem we are considering, solutes are released at one instant in time, even though in
experiments solutes are typically released with equal concentration starting at one
particular time. We can relate these two procedures using a simple integral, while
in our picture, the concentration, C, arriving at any position can be normalized to

Fig. 10.1 Field experiments [55] reveal a wetting front that is much more regular than solute paths,
broadly consistent with calculations of solute transport in terms of an enumeration of all paths, but
of the hydraulic conductivity in terms of an optimal path (figure reprinted with permission from the
authors). As pointed out by the authors, these characteristics can be identified much more easily
with a color image. The two photographs are taken at different vertical slices in the medium
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its original value, making C equivalent to a probability, W. This furthers use of the
basic probabilistic transformations, on which the derivation is based.

The cluster statistics of percolation theory have been applied [1, 57] to the prob-
lem of deriving the distribution of controlling resistances (expressed as conduc-
tances, g = R−1), of clusters of arbitrary length, N. Here N is a number (equal to
the number of controlling resistances along one dimension of the cluster); the linear
extent of the cluster must be expressed as the product of N and a typical spatial sep-
aration, l, of controlling resistances. The volume concentration of clusters of length
Nl is then derived from ns by using nsds = nNdN, and the scaling relationship [60]
(τ − 1)/σν = d, where d is the dimensionality of the space. The result is [1] (and
using the above result for p− pc).

nN =
1

Nd+1 exp

⎧⎨
⎩−

[(
Nl
L

) 1
v

∣∣∣∣∣1−
(

g
gc

) 3−D
3
]2
⎫⎬
⎭ (10.5)

The probability that a given system of Euclidean length, Nl, is spanned by a
cluster with controlling conductance g is then proportional to the integral of NdnN

over clusters of all sizes larger than or equal to the volume in question. The result
may be expressed in terms of the exponential integral,

Ei [z] =
∞∫

z

exp [−y]dy (10.6)

as

W (g) ∝
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β
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[
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)β]
(10.7)

where the parameters α and β are given by
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2
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(10.8)

Here x is the linear dimension of the system concerned, L3 is a REV, which repre-
sents the smallest volume for which statistical arguments, such as percolation theory,
apply, and l is a typical distance between critical resistances, which can be taken to
be approximately equal to L. One can then set L = 1, meaning that x = 1 corre-
sponds to the REV scale. In the limit that the pore-size distribution approaches a
delta function (no width), the REV scale reduces to the separation of the pores. The
result, Eq. (10.7), for W(g) is shown graphically in Fig. 10.2.

An approximation to W(g) is given by

W (g) ∝ ln

⎧⎨
⎩
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L
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) 1
v 1∣∣∣[1− (g/gc

)1−(D/3)
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⎫⎬
⎭ (10.9)
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Fig. 10.2 An example of the pdf, W(g), that the controlling (bottleneck) conductance in a system
of size x has value g. Horizontal axis is in units of gc. Fractal dimensionality of the pore space is
given

Note that W(g) is a function of system size, and thus W(g) can be explicitly
represented as W(g, x). Equation (10.9) shows that the asymptotic behavior of the
exponential integral involves a logarithmic divergence in W(g) at g = gc = 1 as
can be seen in Fig. 10.2. Such a logarithmic divergence is integrable, meaning that
W(g) is normalizable. This same result may be obtained (as in Hunt et al. [57]) by
replacing the exponential cut off (of the power-law decay) in Eq. (10.5) by a sharp
cut off obtained by setting the argument of the exponential function equal to an
arbitrary constant (as implied in Stauffer [60]).

The solute concentration of the water can be assumed to be uniform. Thus,
although the probability that a given isotropic system is spanned by a cluster of
minimum conductance g is given by Eqs. (10.7) and (10.8), the mass of solute
transported through such clusters characterized by minimum conductance g must
be proportional to the water flux, thus proportional to gW(g). Since W(g) is such a
sharply peaked function, the effects on a distribution of arrival times, W(t), due to
the difference between W(g) and gW(g) is, in most cases, undetectable. Neverthe-
less, the probability that solute reaches the other end of a system at time t is clearly
proportional to the volume of advecting fluid arriving at that time, and the solute
arrival time distribution, W(t), is thus proportional to gW(g). The proportionality
constant is defined next.

In order to use W(g) to give information on arrival times, we must be able to
relate the controlling conductance, g, of a path to the time, t, solute takes to travel
along that path, t(g). Here, x may be regarded simply as a parameter, independent of
t. Thus the notation suppresses the x-dependence. Then one may use the result
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gW (g)dg = W (t)dt or W (t) =
gW (g(t))

dt/dg
(10.10)

In the absence of diffusion, the solution for t(g) is deterministic. Note, however,
that since gW(g) is not directly normalized, W(t) must be normalized separately.
First we consider the effects of the distribution of pore sizes on t(g), then the effects
of connectivity and tortuosity.

In the following, the treatment of a percolation path as quasi-1D is not in con-
tradiction to the tortuosity-based arguments; it is merely a first step in finding the
influence of the pore-size distribution on the time of transit of a large cluster. Thus
we decouple the effects of pore sizes and connectivity. As in an effective resistance,
which is the sum of individual resistances along the path, the total time of travel is
equal to the sum of the travel times through the individual pores along such a quasi-
1D path. This means that it is necessary to find the transit times of individual pores
on a path for which the mass flux is defined through the largest resistance on that
path.

The time that a solute requires to traverse one pore is proportional to 1/v, where
v is the typical velocity in that pore. Then vA, where A is the cross-sectional area
of the pore, must (aside from numerical factors) be proportional to Q, where Q
is the volume flux of water through the pore. Thus t ∝ r/v ∝ rA/Q, where rA is
proportional to r3, or the volume of the pore. Q for all pores along a quasi-1D critical
percolation path is identical and equal to Qc, which is proportional to gc. Similarly
Q for all pores along a quasi-1D path near critical percolation is proportional to g,
where g is the controlling (smallest) conductance on such a path. The probability
that a given pore has radius r is proportional to [61] r−D−1 (though the fractional
volume in such pores is proportional to r3r−D−1 = r2−D). Q is a volume per unit
time, but the time factor is explicitly removed (and called t0) below so that Q is
effectively only a volume. Under those stipulations, Q is r3 and t0 is a fundamental
pore time scale. The value of t0 is not required as only functional dependences are
relevant below. Using these inputs it is possible to write the following expression of
proportionality,

t (r) ∝ t0
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⎤
⎦ (10.11)

The division of the integral into two terms is useful for expressing the time
in terms of the critical time for percolation. The input into Eq. (10.11) is consis-
tent with the assumption that the paths followed by the solute are straight. Clearly
Eq. (10.11) must now be modified to account for the effects of the tortuosity on the
transit time. The tortuosity was noted to follow

Λ
χ

∝ |V −Vc|−(η−v) = |V −Vc|−(vDopt−v) (10.12)
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But we cite Lee et al. [25] to support our substitution of the exponent Db for Dopt

in Eq. (10.12). In Eq. (10.12) V is an arbitrary volume fraction and Vc its critical
value for percolation. In the present context V and Vc may be considered to corre-
spond to the volumetric moisture content, θ , and its critical value for percolation,
θt, even though the specific problem to be addressed here involves saturated con-
ditions. The effect due to the tortuosity is to lengthen each individual time by the
factor represented in Eq. (10.12); thus the combined effects of streamline fluxes and
tortuosity are given by the product of Eqs. (10.11) and (10.12). An additional factor
of
(
x
/

L0
)Db enters to give the explicit dependence on the Euclidean measure of

the system size, x, in terms of the correlation length, L. Evaluating the integrals in
Eq. (10.11) and combining with Eq. (10.12) then yields

t =
( x

L

)Db t0
3−D

[
1
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][(
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)
+
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](Db−1)v

(10.13)
Equation (10.13) may be further manipulated to yield
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where tg, a cluster transit time, is defined by Eq. (10.14). We have performed an
analogous derivation for t(S) as a function of saturation, S, but the results may be
expressed in the same form as in Eq. (10.14), as long as none of the required condi-
tions are violated. One condition that should be further addressed is the lower limit
on g values allowed; as the saturation is reduced the range of possible r-values in
r3−D

c − r3−D is reduced since r cannot be less than r0. Note that, for example, the
smallest value of (rc/r)3−D possible, if the moisture content is the critical moisture
content, is (r0/rm)3−D = 1− φ . In this case Eq. (10.14) can be shown to yield a
negative value of t if θt is not large enough. However, larger values of θt also tend
to depress rc toward r0. Thus we might anticipate that comparison of results for
W(t) based on Eq. (10.14) with experiment for unsaturated conditions could lead to
unreliable values of θt as a fitting parameter, and this is indeed what we observe.

The dependence of t(g) in Eq. (10.14), which contains a power-law divergence
at g = gc, is depicted in Fig. 10.3. Note that the vicinity of the percolation thresh-
old occurs here in the limit of infinite time. For g near gc, but somewhat less than
gc, there occurs a minimum in t(g). This minimum, broadly speaking, corresponds
to the optimal conductance which defines the hydraulic conductivity of an infinite
system. How can this be understood?

A nonvanishing K cannot be calculated from a subnetwork of the system, which
is just at the percolation threshold. Even though this condition certainly defines
the most conductive pathways in the system, their spatial separation is equal to χ ,
which diverges at the percolation threshold, producing an effective conductivity of
zero. Thus the network for calculating K must also include a few g < gc reducing
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Fig. 10.3 An example of the time, t, of transit through a cluster of minimum conductance, g,
for specific values of the fractal dimensionality of the pore space and critical volume fraction for
percolation. Horizontal axis is in units of gc

the conductance of each path but greatly increasing the number of effective paths.
The conductivity is then calculated using an optimization procedure [62–64]. This
optimization procedure winds up pinning the controlling g near gc, similarly to the
way the minimum in t(g) is tied to gc.

Under extreme circumstances of very high disorder in very small systems, this
minimum can create a spike in W(t); however we do not expect that such a spike
(which is a result of dt/dg = 0, i.e., many paths with the same arrival time, t) would
survive if our calculations would take into account the spreading in W(t) due to
the varying velocities in, e.g., a single cylindrical pore. Note as well that in the
immediate vicinity of the peak in t(g) the contribution from the variability of the flux
(the first factor in square brackets) is negligible in comparison with the tortuosity
(the second factor in square brackets), except in the limit of vanishing θt. As a
consequence one may quickly find the effects of t(g) on the asymptotic, large time
behavior of W(t) to be,

W (t) ∝
[

A
t

] 1+(η−v)
η−v

(10.15)

with A is a constant. Note, however, that in the cases we have checked heretofore
the absolute value of the power predicted by Eq. (10.15) has, in each case, exceeded
by ca. 0.5 the result generated by numerical analysis of the full distribution.

A full numerical solution for W(t) from Eq. (10.10) using Eq. (10.14) for t(g)
gives the results shown in Figs. 10.4a and 10.4b, for various combinations of fractal
dimensionality and critical values of the moisture content in a 2D random percola-
tion system.
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Fig. 10.4 Comparison of the results for the arrival time distribution, W(t), for two different values
of the fractal dimensionality of the pore space (10.4a) and two different values of the critical
volume fraction for percolation (10.4b)

10.1.6 Spatial Distribution at an Instant in Time

The calculation of the spatial distribution, W(x), of solutes at a given time clearly has
some relationship with the calculation of the distribution of arrival times at a given
point in space. However, we cannot simply integrate over all g holding x constant,
since each g value is associated with its own particular velocity, and only one value
of g produces a given value of x. On account of the logarithmic dependence of W(g,
x), it is not possible to use simple relationships between spatial and temporal scales
as implied in the publication by Margolin and Berkowitz (2004) and the references
cited therein.
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Consider again the statistics, W(g, x), of clusters of size at least x dominated
by minimum conductances, g. W(g, x) represents once again the probability that
an arbitrary particle will initiate its motion on such a cluster and can also travel a
Euclidean distance at least x on that cluster. If the solute is on a cluster described by
W(g, x), its distance of travel, x, and mean velocity, < v >, will be related by x =<
v > t, where t is the time since the solute was initially introduced, and < v > is de-
pendent on scale x as well as g. For consistency we require this distance x to be iden-
tical to x in W(g, x). The pore-size dependence of the mean velocity is independent
of the distance of travel, and can be roughly estimated using the framework already
introduced above as being inversely proportional to t(g) [in particular as t0/t(g)].
Now, x ∝ t1/Db , so that < v >= x/t ∝ t(1/Db−1) ∝ x1−Db . Using these inputs we
find that

〈v〉 ∝
(

t0
tg

)(
L
x

)Db−1

v0 (10.16)

where v0 is a pore scale velocity. Then one can write for the distance traveled,

x = 〈v〉 t =
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)Db−1

t (10.17)

where L ≈ v0t0. Solution of this equation for x/L0 gives

x = L

(
t
tg

)( 1
Db

)
(10.18)

Note that Eq. (10.18) could have been obtained more easily by solving Eq. (10.14)
for x, but now we have an expression (Eq. (10.16)) for an average solute velocity
too, useful for calculation of the dispersivity. The probability that the particle has
actually gone this distance x (at time t) is then given by the probability distribution
W(g, x) given in Eqs. (10.7) and (10.8), but with the value of x(t) inserted from
Eq. (10.18). Then the logarithmic approximation of W(g, x) (Eq. (10.9)) would look
like

W (g) ∝ ln
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⎤
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Now that W(g) is developed in a form in which both factors are expressed consis-
tently in terms of the same g value, it is possible to make a direct translation between
W(g) and W(x) in the same fashion as in Eq. (10.10)

W (x) =
W (g,x(t,g))

dx/dg
(10.20)
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where dx/dg is obtained from Eq. (10.18) in terms of dtg/dg from Eq. (10.14), and
where the final step involves solving for g in terms of x and t using Eq. (10.17).
Thus the results will include the value of the time as a parameter, just as Eq. (10.10)
included the value of the spatial coordinate as a parameter. Using Eq. (10.20) it will
be possible to calculate the second moment of the spatial solute distribution σ2(x)
with the time as a parameter, and the dispersivity as the ratio of σ2(x(t))/v(t) using
Eq. (10.16).

10.1.7 Hydraulic Conductivity

While prior calculations have generated the hydraulic conductivity, K, through an
optimization of the effects of pore-size distributions and the connectivity/tortuosity
factor, it should also be possible to find K directly by summing the contributions
over all g of gW (g)t0/t(g). The fact that there is a local minimum in the arrival
time at a g near gc and that the distribution of g values is sharply peaked at g = gc

should clearly lead to a hydraulic conductivity whose value is controlled by gc, in
accord with the optimization procedure. This is an important project that needs to
be addressed in the future.

10.2 Comparison with Simulations

Liu et al. [65] report on simulations of flow and transport on a 2D percolation struc-
ture (at the percolation threshold). They do not incorporate any effects of diffusion,
nor do they include any effects that would be equivalent to a pore-size variabil-
ity. The solve the Navier–Stokes equations for flow, and then use particle-tracking
methods to determine W(t) (Fig. 10.5). Such a model lends itself to comparison with
our predictions. In order to fit the curve with our result for W(t) we employed three
parameters: an absolute time scale, t0, the critical volume fraction for percolation,
and the fractal dimensionality of the pore space. These parameters were found by
comparison with the curve for L = 10, and then our prediction for L = 50 was com-
pared with simulation. The parameters Db = 1.6432 and ν = 4/3 were dictated by
percolation theoretical arguments made above, and could not be adjusted.

Above we demonstrated that the variability of W(t) with parameters such as D
and Vc for the pore space is relatively modest; nevertheless larger values of D ap-
propriate for disordered natural media do produce a noticeable downward curvature
at larger times, distinct from the numerical simulations. We find that D = 1, which,
for φ = 0.5, would be consistent with r0 = rm/

√
2, i.e., a very narrow pore-size

distribution gives a reasonably good shape fit with simulations. Note that in the ab-
sence of disorder, the REV length scale is a single pore length, so that a simulation
length scale of 1 [65] corresponds exactly to our system length of 1. Finally, larger
values of Vc tended to produce a narrower peak; we found that a rather large value
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Fig. 10.5 Comparison of the predicted distribution of arrival times with results of numerical sim-
ulations by Lee et al. [25]. Both calculation and simulation were done in two dimensions and
without accounting for diffusion. Note that three adjustable parameters were used to generate the
agreement with spatial system size 10, but the same parameters were used for system size 50. Fur-
ther, the fractal dimensionality of the pore space used, D = 1, corresponds to a system with almost
no range of pore sizes, generally consistent with the constraints of the simulations, which include
no such range

Vc = 0.25 produced the closest fit. In retrospect, we may have preferred to see an
even larger value (such as 0.5, pc for a square lattice in 2D), but we have left out
numerical constants throughout the derivation, so we find that for an effectively
two-parameter fit (the chosen D at very nearly the “ordered” limit of the Rieu and
Sposito model) we have relatively good results. More impressive is that, for exactly
the same parameters generated by comparing the L = 10 curve with our functional
form, we generate almost precisely the correct form for W(t) at L = 50, including
the appropriate narrowing of the peak on the short-time side.

We emphasize that no publications in the ISI Web of Science to date have given
any theoretical explanation for the results of the simulations of Liu et al. [65].

10.3 Comparison with Experiment

Comparison with experiment brings in additional uncertainties. These are (1) ex-
perimenters typically report a quantity different from W(t), (2) experimental results
include the effects of experimental error, and (3) experiments cannot turn off the
effects of molecular diffusion, though they may be small enough to be negligible.
Experimentalists typically measure what is called a breakthrough curve (BTC). An
experiment, in which solute is transported through a medium by flowing water, can
be performed in a column of centimeter scale radius and decimeter scale height (in
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other words 103 − 105 pore separation). Water flow through a system is allowed to
reach steady state, i.e., it is uniform in time and nominally uniform in space. Then,
starting at time t = 0, solute is released at a steady rate into the water flux. The ex-
perimenter then measures 1−C as a function of time at the bottom of the column.
Note the difference between the typical experimental procedure and a delta-function
introduction of solute, for which the measured C(t) at some particular x value corre-
sponds to W(t). The result of the experimental procedure described is a solute flux,
which steadily rises to a value of 1. Since rate of solute release is typically constant,
the functional form of the release corresponds to a Heaviside step function, and the
temporal dependence of the measured C represents the indefinite integral of W(t).
The negative of the time derivative of the measured 1−C thus corresponds to our
W(t).

Cortis and Berkowitz [22] summarize results of three “classic” experiments in
solute transport [12, 26–28]. We will use two means to check whether our theoret-
ical procedure is compatible with these experiments. First we calculate a predicted
local power, α(t) = d(log[W (t)])/d(log[t]) for all times subsequent to the peak. In
Fig. 10.6 we see that α at first drops rapidly from zero, then it tends to level off,
although it continues to diminish slowly. This slope can be compared with values
of β + 1 [Margolin and Berkowitz [21] refer to Shlesinger [38] who showed that
if the asymptotic behavior of W(t) is a power law with power α , the power β that
appears in the CTRW is given by β = α − 1]. In Fig. 10.6 we see that the slopes
of the two most distinct predictions in three dimensions, random percolation and
invasion percolation (on account of the significantly different values of Db = 1.87
and 1.46, respectively), enclose the values of β + 1 reported. The smaller value of
Db [and steeper slope of W(t)] results when there is residual water, which cannot
easily be removed from a medium on account of the lack of continuously connected
paths through water-filled pores. Such a moisture configuration corresponds to that

Fig. 10.6 Prediction of local slope of log[W(t)] vs. log[t] compared with experimental values for an
average slope reported by Cortis and Berkowitz [22]. Predictions are for both random percolation
and for bond invasion percolation with trapping (relevant to an approach to the critical moisture
content for percolation in unsaturated soils) and in 3D systems
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in invasion, bond, percolation with trapping (bond TIP). For θ ≈ θt and 3D systems
this value (1.46) is likely the relevant choice of Db.

Our second check was to determine whether the predicted curve has a shape,
which is generally compatible with experiment. For this purpose we digitized the
data from Cortis and Berkowitz’ [22] Fig. 5 [an Oakley Sand, with data originally
from Nielsen and Biggar [27]]. This comparison is shown in Fig. 10.7. Note that
the medium considered is not saturated (θ = 0.27), but we have shown that our
results, derived for saturated conditions, are relevant also for unsaturated conditions
(as long as certain inequalities are not violated). The experimental quantity reported
is 1−

∫
W (t)dt, so in order to observe the tail of W(t) at large values of the time, the

normalization constant of W(t) must be very accurately known. The reason is that the
magnitudes of both terms, 1 and the integral, are nearly equal. We do not yet have
such accuracy, so we chose instead to compare our expression for W(t) with the
negative of the time derivative of 1−

∫
W (t)dt. Differentiating experimental data,

however, introduces its own complications, in particular rather large fluctuations in
the value of the experimentally inferred W(t). We used a 9-point running average to
smooth out these fluctuations, though some fluctuations remain, and this excludes
the first and last five experimental points from our figure. Our results from this
process still contain some fluctuations. Then we sought values of D and θt, which
would provide the best fit to the data. We had to use such a large value of θt =
0.75 that it was not consistent to use a random percolation value for Db, forcing us
to use Db = 1.46 for bond Trapping Invasion Percolation (TIP). Then we rescaled

Fig. 10.7 Comparison of an arrival time distribution digitized from Fig. 5 in Cortis and Berkowitz
[22] with our prediction of W(t). Since the arrival time distribution in Cortis and Berkowitz [22]
clearly rises discontinuously from zero, in contrast to the theoretical result here (which rises
through more than 100 orders of magnitude over a short time scale), it was necessary to shift
our arrival time distribution as well as to use t0 as a fit parameter. On the other hand, it is here
only our intention to demonstrate that our formulation produces generally the right shape of the
experimental arrival time distribution. Note that the linear scale shows that neither experiment nor
prediction resembles a Gaussian distribution
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the time in the theory by a constant factor. This made the curves almost identical,
but it was necessary also to require a uniform translation of our points to smaller
times, in order to produce the close agreement that seems to result (Fig. 10.7). We
consider that this result should be approached with some caution, on account of
the translation in time, whose physical significance we are not sure of, but whose
mathematical effect is to narrow the peak. A second uncertainty results from the
fact that we used results derived for a saturated medium, presumably leading to the
unlikely value of θt.

10.4 Discussion

The first point that is important in our discussion is that, on account of the asymp-
totic logarithmic behavior of the exponential integral in W(g) (Eq. (10.9)), the true
behavior of W(t) at long times is not strictly a power law, though it may appear to be
so. This logarithmic correction factor involves the system length as well, meaning
that it may be important for a wide range of comparisons. Although this may have
significant consequences, we could only speculate as to their specific implications,
since we do not yet have numerical results for the spatial distribution of solute at a
particular time.

While the comparison of our predicted W(t) with simulation was fairly straight-
forward, the corresponding comparison with experiment was less so. We find cer-
tainly that a qualitative description of experimental results is possible, but are less
certain regarding the use of the theory at this point to make quantitative predictions.
Further, there are several points that may hinder prediction, including (1) predicted
peak widths are frequently a little too large, even though the wings of the distribu-
tion are well predicted, (2) we do not know, a priori, what pore-size distribution may
be most applicable, and the pore size distribution does have an effect on W(t) near
the peak, and (3) we are not yet sure whether the variability in experiment will be
appropriately accounted for by the variability in theory.

With only our limited perspective at this time it does seem that the narrow width
of the peaks may require unrealistic choices of parameters (θt = 0.75) to fit ex-
periment. Although we have shown that Eqs. (10.8) and (10.14) apply equally to
unsaturated as well as to saturated media, using these equations for unsaturated me-
dia is only valid for narrower ranges of parameter values and it is possible that we
tried to force these equations into a parameter regime in which the full variability of
W(t) cannot logically be invoked when we generated θt = 0.75. The answer to this
question is not yet known.

Since the peak region is model dependent and not universal, it may be impor-
tant to add flexibility in choosing different pore-scale models. In order to make a
comparison with simulations we had to choose a pore-size distribution which was
practically a delta function in form. In that case such a choice was not too worrisome
since we knew that the simulations included no variation in pore sizes, although a
true delta function pore-size distribution cannot be obtained from the Rieu and Spos-
ito [2] model. In general, however, we do not know a priori what the appropriate soil
models for a given experiment may be.
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Our theoretical powers in three dimensions for random percolation and invasion
percolation with trapping (bond percolation) have values that contain the range of
values of β + 1 reported by Cortis and Berkowitz, but two questions arise in that
context. Is the variability of these values accounted for by a reasonable combination
of variation in parameters and relevant spatial scale? At first glance it appears so,
since the Oakley sand which we actually compared in detail produced a value of
β = 1.05 [22], which should have corresponded more closely to random percolation
with a slope near −2 (see Fig. 10.6), but which was apparently adequately accounted
for by invasion percolation, with a slope nearer −3. The second related question that
comes up refers to other experiments. Will we be able to account for them as well,
possibly by including also the 2D parameters (if appropriate)? We have only directly
considered models which exclude correlations in the local bond probabilities. It is
known (e.g., Araujo et al. [46]) that such correlations can affect Db, the principal
influence on the long-time asymptotic behavior of W(t). Will it be necessary, or even
appropriate, to try to account for the potential influences of correlations between
pores on experimental results?

Finally, can we also expect Gaussian dispersion from the present theory? Mar-
golin and Berkowitz [21] note that Gaussian dispersion should result when the first
and second moments of the arrival distribution time exist (β > 2) The slope of
W(t) for Db = 1.46 is already very nearly −3 = −(β + 1); for smaller values of
Dopt = 1.217, such as appropriate for the chemical path length, we should then ex-
pect Gaussian dispersion. However, the conditions for which such a choice of fractal
dimensionality might be appropriate are not known. We hypothesize that Dopt may
be appropriate under conditions when the medium is fairly homogeneous both from
the standpoint of the pore-size distribution and from the relevance of any percolation
structures. This hypothesis is somewhat aligned with the arguments of Bruderer-
Weng et al. [66], who argue that flow channeling is relevant to long-tailed arrival
time distributions, though in our case the actual cause of the long-tailed distributions
remains the relevance of the tortuosity of the pathways and the fractal dimensional-
ity of the backbone cluster, while the flow-channeling along such structures arises
from a wide range of pore sizes.
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Chapter 11
Effects of Multiscale Heterogeneity

It is generally agreed that problems with multiscale heterogeneity present the
biggest challenge to computation and understanding. A few such problems may
be easily understood using percolation theory. It is not clear at this time whether
such treatments will prove particularly useful in the general case; however, as al-
ways, they will be superior to simple averaging techniques. Four problems will be
dealt with, one at the pore scale, in which the effects of soil structure on hydraulic
properties are discussed, the second treats a two-scale upscaling problem, where the
percolation variable is different at the two scales, the third was only meant to be a
schematic treatment of a geologic scale hierarchical problem, but appears to have
captured the essence of a “scale effect” on the hydraulic conductivity. The fourth
is an attempt to address a problem of saturation-dependent anisotropy at the US
Department of Energy Hanford site in Richland, WA.

11.1 Soil Structure

To a physicist without agricultural background the easiest way to imagine a soil with
structure is to call back memories of throwing dirt clods. The relatively large spaces
between the dirt clods would represent the “structural” pores, while the interior
of the dirt clod contains “textural” pores. The soil structure refers to the existence
of clods, called “aggregates,” and the space between them, and knowledge of the
structure implies knowledge of the statistics of the occurrence of aggregates of a
given size, structural pores as a function of size, and any spatial correlations in their
location. Realistically, however, one is fortunate indeed if one has a measurement
of the distribution of structural pore sizes, even though soil structure has been a
consistent subject of agricultural and soil physics research for at least 40 years (e.g.,
Sharma [1]).

In any discussion of transport properties of such media one runs immediately into
a conceptual problem. Imagine that the structural pores are relatively ordered and
that they may be connected on a multicentimeter gridlike random resistors. Clearly
one can represent the textural pores as shorter resistors (with larger resistance val-
ues) inside each grid cell and allow them to connect to the structural resistances at
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the boundaries of each grid cell. But can one allow the resistances representing the
textural pores in one grid cell to connect to those representing the textural pores
in a neighboring grid cell without connecting to the structural pores that divide the
cells? This is a critical conceptual problem, and to our knowledge there is no gen-
eral answer. If one allows such connections, one has what is called a “dual porosity”
model [2, 3], if one does not, one has a hierarchical model. Since both types of
model are used, there is clearly no general consensus as to what is physically al-
lowed. The difference in transport is as follows: In the hierarchical model, when the
saturation drops to the extent that water no longer occupies the structural pores, all
processes which require a continuous water phase cease. Since this is clearly not the
case in agricultural soils, dual porosity models are more common in the soil science
literature. However, in geological applications with different contexts hierarchical
models tend to be the rule.

When a dual porosity model is used for soil structure Nimmo [2, 4, 5], the perco-
lation treatment is relatively easy; the two contributions to the pore space are simply
treated as though they exist in parallel to each other, and there are no additional
limitations considered to transferring water between the structural and the textural
pores. As a consequence the total porosity of the medium is obtained using a sum
of the contributions from the structural and textural pores. If both can be treated as
fractals, for example, one has

φs =
3−Ds

r3−Ds
sm

rsm∫
rs0

r2−Ds
s drs; φt =

3−Dt

r3−Dt
tm

rtm∫
rt0

r2−Dt
t drt (11.1)

and
φ = φs +φt (11.2)

Here the subscripts s and t stand for structural and textural respectively. As long
as the smallest structural pore radius is larger than the largest textural pore, a gen-
eral procedure can be formulated, which does not make any particular distinction
between the two types of pores, except as regards critical volume fractions for per-
colation. Such values must be treated separately.

For simplicity it will be assumed here that the largest textural pore is smaller
than the smallest structural pore. The data, with which the theoretical predictions are
compared, will conform to that constraint. Then, as water drains from the medium,
it will drain first from the structural pores, before it can begin to drain from the
interior of the aggregates; this is simply another consequence of the Young–Laplace
relationship between the tension and the pore radius. It is typical for researchers in
the field of soil physics to assume that the effects of soil structure are limited to large
moisture contents (e.g., Nimmo [2]). Since we will use the same type model for the
structural pores as for the textural pores, we will assume that the critical volume
fraction for percolation of the structural pores is approximately φ s/10, exactly as
assumed for textural pores when the specific surface area is small. For structural
pores, with radii much larger than textural pores, this assumption is realistic. Since
structural pores typically account for only about 10% of the total porosity, φ s/10 is
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actually only about φ/100, and can probably be set to zero without serious difficulty.
Furthermore, setting the critical volume fraction for the structural pores equal to
zero is consistent with the assumption that they do not provide a barrier to water
flow at any water content (dual porosity) and with the assumption that they can
drain completely. These characteristics also appear to be in accord with experiments
generally.

Under the above conditions, the derivation of water-retention curves is also brief.
For θ > φ t, one has

θ =
3−Dt

r3−Dt
tm

rtm∫
rt0

drtr
2−Dt
t +

3−Ds

r3−Ds
sm

rs>∫
rt0

drsr
2−Ds
s (11.3)

In Eq. (11.3) rs> refers to the largest structural pore that contains water, and it is
given through the usual constraint, rs> = A/h, where A is, also as usual, unknown
in value. For θ < φ t, the result of Chap. 3 applies, using the subscript t for textural
pores. The fractal dimensionality of the textural pores is found exactly as already
shown in Chap. 3. The fractal dimensionality of the structural pores is found by an
analogous procedure, although in this case one often has direct data for the pores
themselves, and not for a surrogate, such as the particle size. Since the ratio of small-
est to largest particle size is typically assumed to be the same as that for the smallest
to the largest pore size, there is no difference in the calculations. However, the scal-
ing formulation for water retention will require the use of a parameter inversely
proportional to the largest pore size, hA, and knowledge of the largest structural
pore size.

The hydraulic conductivity is calculated as follows: For moisture contents θ ≤
φ t, such that the structural pores are empty, the result for K is exactly as in Chap. 4,
but with all quantities (fractal dimensionality, critical moisture content, and poros-
ity) referred to the textural pore space. For moisture contents θ > φ t, such that some
fraction of the structural pores is also wetted, the result for K is a sum of a constant
term, corresponding to full saturation of the textural pores, and again a term of
the same form as in Chap. 4, but written in terms of the structural quantities. In
principle, the hydraulic conductivity for the structural pores should also undergo a
crossover from pore size dominated to connectivity-dominated forms, but in actual
comparison with experiment such a crossover is not included for five reasons: (1) the
porosity associated with structural pores is so small (in the case to be considered,
0.04) that division into multiple ranges appears overambitious, (2) the crossover
moisture content depends on the critical volume fraction for percolation, which,
though likely very small, is merely assumed to be zero, (3) the connectivity may not
be completely percolation dominated, since plant roots (particularly in agricultural
soils) may introduce a spatial scale (some regularity in separation), (4) in the range
of lowest saturations of the structural pores, where the discrepancy between theory
and experiment will be largest, the hydraulic conductivity due to the textural pores
will dominate in many cases, and (5) in most cases measurements of the hydraulic
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Fig. 11.1 Particle size data for the Monona soil (data unpublished, S. Logsdon)

conductivity will never be accurate and detailed enough to discover the precise form
of K in this range of moisture contents.

The particular case considered for comparison with experiment has φ s = 0.04,
φ t = 0.376. The particle size data (given in Fig. 11.1) yield Dt = 2.81. The optical
pore-size data (given in Fig. 11.2) yield Ds = 2.979. The particle size data is nearly
identical to the McGee Ranch soil, with D = 2.81, rm = 54μm, and r0 = 4.3μm,
so we use the same θt value, 0.11. Figure 11.3 shows the comparison between the-
ory and experiment for the water-retention curve. In order to obtain the agreement
shown, the air entry pressures for the textural and structural pores had to be chosen

Optical Measurements of Structural Pores
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Fig. 11.2 Optical data for structural pores of a soil adjacent to the Monona soil
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Fig. 11.3 Experimental data for the water-retention function of the Monona soil together with the
predictions of Eq. (3.22) for both the structural and the textural pores separately. Two adjustable
parameters, the equivalent air entry pressures for each pore size range, are used

to be 340 and 26 cm, respectively. Thus the ratio of saturated hydraulic conductiv-
ities for the structural and textural pores must be assumed to be (from eq. (4.40),
(4.41), and (4.46))

KSs

KSt

=
(

340
26

)2 (1−0)
3

3−2.979

(1−0.11)
3

3−2.81

= 1077 (11.4)

Using these parameters, the hydraulic conductivity may be predicted using one
adjustable parameter, Kss , and the comparison of that prediction with experiment
is given in Fig. 11.4. This comparison appears reasonable for a one-parameter
prediction
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Fig. 11.4 Data for the hydraulic conductivity for several depths of the Monona soil. The predicted
hydraulic conductivity from Eq. (5.14) using two parallel contributions, one from the textural pores
and one from the structural pores. The porosities and fractal dimensionalities of each are known,
and the ratio of the values of KS is given by Eq. (11.4), so there is only one adjustable parameter in
the comparison, the value of KS for the structural pores. For the soil at the surface the theoretical
prediction agrees. However, the experimental data at one depth drop more rapidly than predicted
with declining moisture content and then remain constant, even though the moisture content con-
tinues to drop
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Fig. 11.5 Predictions of the air permeability for the Monona soil. The open diamonds describe the
result of using Eq. (6.1) for the textural pores only. The open squares give the additional contribu-
tion from the structural pores

In another exercise consider the effects of the structural pores on the air perme-
ability. In this case, the dual porosity treatment leads to a constant contribution to
the air permeability from the structural pores for all water contents less than, φ t.
This contribution masks the singular behavior of the contribution of the air perme-
ability from the textural pores, and the air permeability appears nearly flat over most
of the range of air-filled porosities. Then, for θ > φ t, the singular behavior of the
air permeability due to the structural pores causes a very rapid drop in air perme-
ability as saturation is approached. The general effects of soil structure on the air
permeability and hydraulic conductivity (as functions of saturation) are shown in
Fig. 11.5. This result explains the general tendency for the minimal dependence of
the air permeability on air-filled porosity for highly structured soils, as well as the
perception that the air permeability may be nonzero at full saturation (since it is so
difficult to achieve 100% saturation, particularly with the large hydraulic conductiv-
ity associated with such large structural pores).

Note that, as expected with a small range of porosity associated with much larger
pores, drainage of these larger pores causes the hydraulic conductivity to fall pre-
cipitously over a very small range of moisture contents before it drops more slowly
over a wider range of moisture contents associated with the textural pores. This fea-
ture is very common among soils; in fact it is so common that the van Genuchten
parameterization introduced in Chap. 3 was developed to predict such a change in
curvature from positive to negative with diminishing moisture content. However, the
van Genuchten parameterization attempts to unite all the ranges of moisture content
into one function. It seems obvious that the structural pores need have no specific
relationship with the textural pores, while at the dry end complications from in-
complete equilibration may be introduced. This leads to major difficulties with the
identification of the parameters of the van Genuchten function (see Hunt [6] for
further comparisons).

Thus it is seen that when two scales of heterogeneity exists, one possible avenue
of approach is to use a dual porosity model and apply critical path analysis and
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percolation scaling to both components of the porosity separately. While this sort of
approach may be applicable to three or more scales of heterogeneity as well, the ap-
peal of an approach, which is, (a) simple, (b) physically based, and (c) parsimonious,
diminishes with increasing complexity because of the diminution in parsimony. On
the other hand, use of a van Genuchten-type argument, which tacitly assumes a cor-
respondence between the parameters of two different types of pores, also becomes
less appealing with increasing levels of complexity, because its performance tends
to worsen. Clearly any approach to problems with such an increase in complexity is
going to suffer from some defect.

11.2 Variable Moisture Content

A significant problem in the soil science community arises from the understanding
of the distributions of the saturated and unsaturated hydraulic conductivity. It is
frequently assumed that the distribution of the saturated hydraulic conductivity is
log-normal, but that the distribution of the unsaturated hydraulic conductivity values
is normal. However, we have seen in Chap. 7 that narrow distributions of measured
K values (Khaleel and Relyea [7], for example) at low saturations may be more
a product of the time limits of the experimenter than of the medium.1 The often
quoted results of Nielsen [8] appear to show that the values of K for steady flow
under unsaturated conditions are log-normally distributed, but doubt has been cast
on his results for the distribution of K values in the context of the doubt generated by
his result that K is exponentially dependent on the moisture content. Most people in
the soil science community believe that K is more nearly a power of saturation than
an exponential function [as indeed expected from the Rieu and Sposito [9] model
considered here in depth]. So the question of how K is distributed for saturated and
unsaturated conditions is of considerable interest to the soil sciences community.

Since hydraulic conductivity values in geologic media are typically spread out
over many orders of magnitude, one of the goals of that community for a long
time has been to try to “derive” a log-normal distribution for K. Formulations using
separation of variables in the macroscopic equations (Laplace’s equation), though
simple, are clearly unfounded, since such equations tell us nothing about the mi-
croscopic details of conduction. We will consider only the soil science problems
here.

The results of Chap. 9 appear to imply that, because KS is determined through
Poiseuille flow, it should be (approximately) normally distributed. We believe that
the large spread in experimental results for “saturated” conditions is tied to the lack
of control over the saturated moisture content (which, as noted, can generate mea-
surements of the saturated water content of the same sample at different US De-
partment of Energy laboratories which differ by as much as 20%). Given the huge

1 The fact that these authors tended to replace equilibrium K values less than 5×10−8 cms−1 with
approximately this value (which represented a maximum experimental time) narrowed the widths
of their K distributions drastically in the limit of small θ .
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effect of structural pores (with only 10% of the porosity) on K discussed in the pre-
vious section, it is easy to comprehend that failure to saturate these pores could lead
to huge underestimations of KS. But, although we believe that complications due
to saturation are very likely the cause of these results, first consider the following
potential explanation for Nielsen’s experiments.

Below is presented a brief description of a compound upscaling procedure, which
yields a distribution of unsaturated K values which is (approximately) log-normal
for local values of the K(S), which are exponential functions of the moisture content
[10]. This result would then be compatible with the conditions of Nielsen’s experi-
ments [8].

Rewrite Eq. (5.14) as

K(S) = KS

[
1−φ

1−S
1−θt

] 3
3−Dp

(11.5)

In the limit Dp → 3 (with the consequent condition that φ → 0, Eq. (11.5) yields

K (S) = KS exp

[
−3

(
1−S
1−θt

)
ln

(
rm

r0

)]
(11.6)

Although Rieu and Sposito [9] state explicitly that Dp < 3 for their discrete fractal
model, there is no reason in a continuum model why r3W (r) = r2−Dp cannot be
proportional to r−1. In fact using Dp = 3 explicitly leads precisely to the result that
K(S) is an exponential function of saturation [11], though of not quite the same form
as Eq. (11.6).

If one considers the possibility that the moisture content can vary over length
scales much smaller than a field measurement (such as Nielsen’s), then Eq. (11.6)
could describe the local variability of K due to variable saturation. In the case of
steady flow, the local moisture contents would not be changed by definition, and
one could apply an upscaling procedure to Eq. (11.6). If the local saturations were
normally distributed with mean Sm and standard deviation σS, then applying critical
path analysis [10] to Eq. (11.6) would yield

K (S) = KS exp

[
−3

(
1−Sm − cσs

1−θt

)
ln

(
rm

r0

)]
(11.7)

where c is a numerical constant [σS was mistakenly referred to in Hunt [10] as
the variance of S]. The value of c would be larger for smaller critical volume frac-
tions. Such values of the critical volume fraction for percolation would not be cor-
related with θt for the critical moisture content at the pore scale. Thus Nielsen’s
[8] measurements of an (approximately) exponential form for K(S) on a large scale
(Eq. (11.7)) could be consistent with an exponential form on a smaller scale as well,
and application of cluster statistics of percolation theory to Eq. (11.6) would yield
a distribution of K values that was approximately log-normal (an approximation for
at least two reasons, clearly).
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But actually Eq. (11.5) can be approximated (to first order) by an exponential
dependence of K on S in another limit as well, namely that S → 1 for arbitrary Dp.
If the soil is not structured, the fractal dimensionality is likely to be more nearly
2.8 (occasionally as high as 2.9). For the case D = 2.9, a variation of the moisture
content of 20%, for φ = 0.4 and θt = 0.04, would produce a variation in K of only a
factor 50. But in the case of structural pores we found that the fractal dimensionality
can be very near 3 (2.98) on account of the small associated porosities. With D
so near 3 the exponential approximation is quite accurate. Further, variation of the
moisture content of only 10% (0.04 for a total porosity of 0.4) can cause a variability
in K over a factor 500 because of the large power [3/(3−D) = 150]. This range
of variability in K is also roughly compatible with a log-normal distribution, and
ultimately for much the same reasons as might explain the Nielsen [8] experiments.

Thus it is suggested that measurements of both the saturated and the unsaturated
hydraulic conductivity distributions can be strongly affected by experimental error:
In the first case a relatively narrow distribution can be perceived to be very wide if
the moisture content is not controlled carefully, and in the second case a very wide
distribution can be perceived as very narrow because of the influence of the time
constraints of the experiment.

11.3 A Schematic Hierarchical Problem

Media with geological complexity are difficult even to describe. If the description
of a medium is too complex, an analytical application of concepts from percolation
theory is not likely to exist. The purpose here is not to address such complications
seriously; in fact, we would claim that attributing what seem to be exotic behav-
iors of the hydraulic conductivity to exotic descriptions of porous media may be
misleading. If these “exotic” media appear to produce an increase in K with in-
creasing scale of the medium, then there appears to be a problem of conceptualiza-
tion. Thus we seek for simpler causes of such apparent scale effects using known
physics and idealized, but easily verifiable, models. In Chaps. 8 and 9 the exam-
ples of nonequidimensional support volumes and anisotropic hydraulic conductiv-
ity fields were treated, and shown to lead to apparent scale effects. In this chapter
it will be shown that multiple scales of heterogeneity can also lead to a (mistaken)
conclusion that hydraulic conduction becomes easier with increasing length scales.

Consider the following idealized medium [12] composed of seven different types
of material, each of which has seven subunits. Let the hydraulic conductivity have a
log-uniform distribution in each of the 49 subunits. Make these individual distribu-
tions overlap in the following way: The most highly conductive unit has hydraulic
conductivities from 20 to 2−6, in equal proportions, while the next most conductive
unit has hydraulic conductivities from 2−3 to 2−9, the third from 2−6 to 2−12, etc.,
as shown in Fig. 11.6. No assumption is made regarding the shapes of the individual
volumes, which means that this problem is best treated using continuum percolation
theory. If one approaches the upscaling of this medium with a “coarse graining”
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procedure, then the effective conductivity of each subunit is first found, and then the
heterogeneous subunits are replaced with a homogeneous material characterized by
the effective subunit conductivity. Since the critical volume fraction for percolation
in 3D will be less than 0.5, if repeated often, such a procedure will tend to overes-
timate the hydraulic conductivity at the largest scales, since most of the volume of
any given subunit will have a smaller conductivity than the effective value.

A common value of the critical volume fraction for such continuum problems is
ca. 15% (see Chap. 2 as well), though, as has been seen for problems at the pore
scale, even much smaller values can occur. A point of the coarse-graining of such a
self-similar medium is that Vc must remain the same at every scale. Applying con-
tinuum percolation theory to each of the subunits individually leads to effective K
values of 2−1, 2−4, 2−7, 2−10, 2−13, 2−16, and 2−19, as indicated in Fig. 11.6. In
each case the quoted value of K is the second largest in the subunit because the
volume associated with the largest value of K is only 1/7 ≈ 0.143 < 0.15, and is
thus insufficient to “percolate.” The median (geometric mean) values of K in each
of these units are, however, 2−3, 2−6, 2−9, 2−12, 2−15, 2−18, and 2−21, each a factor
22 smaller than the effective K value. If continuum percolation is again applied to
the seven units with the above seven K values, the effective K value for the entire
medium is 10−4, again the second largest of seven values. Further, if continuum
percolation theory is applied to the composite distribution of all 49 subunits simul-
taneously, the effective K value obtained for the entire medium is also 2−4, provided
that the same value, 0.15, is used for Vc. The median or geometric mean value of
the geometric means of the subunits is 2−12, which is too small by a factor of 28.
Clearly the value of Vc in the latter case may not be quite 0.15. On the other hand, the

Fig. 11.6 Discrete hydraulic conductivity distributions for two-scale medium as described in text.
The open bars are the composite distribution of the seven overlapping subunits, each with log-
uniform distributions. The solid bars are the effective conductivities of each of the subunits, each
of which has an equal chance of being encountered. The arrows point to the effective conductivity
of the system, upscaled from the subunit scale and from the unit scale. The two values are identical
(from Hunt [12])
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coarse-graining procedure is also slightly inaccurate. Nevertheless each of these un-
certainties is small compared with the error incurred by assuming that the upscaled
value of K is closely related to the geometric mean value of K. Further, relating the
effective K to the geometric mean value tends to produce an underestimation of K,
which grows with increasing scales. The point of this exercise, however, is that the
existence of multiple scales of heterogeneity does not lead to an increase in an ef-
fective K value with increasing scale, even though certain quantities often taken as
predictors of the effective K value do increase with increasing scale.

To make this exercise a little more quantitative we make a specific comparison of
the predicted upscaled values of K with the Matheron [13] conjecture, often regarded
as a standard means of upscaling K. It was derived specifically for Gaussian random
fields in one and two dimensions, and has been generalized to three dimensions,
although it has been proved that it cannot be general in 3D. In any case the Matheron
conjecture is expressed as follows:

Keff = Kg exp

[
σ2
(

1
2
− 1

d

)]
(11.8)

In this expression Kg is the geometric mean, d is the dimensionality of the
medium, and σ2 is the variance of the (log) conductivity distribution. Note that for
d = 2 the Matheron result yields Keff = Kg, which itself cannot be general as already
seen in Chap. 3, as the effective conductivity depends very sensitively on the local
connectivity. One can calculate the variance of the conductivity distributions given
here very easily and then compare the results of an “enhancement factor,” Keff/Kg

for both the Matheron conjecture and the continuum percolation. This comparison is
given in Table 11.1, where the variance in the distribution was calculated in Excel.
This calculation for the Matheron conjecture is not strictly valid, of course, since
the distributions chosen were log-uniform rather than log-normal. The result is that
the Matheron conjecture also tends to underestimate the value of Keff, especially in
media with multiple scales of heterogeneity. Furthermore, these underestimations
already become noticeable in the case of Vc = 0.15. As has been seen, however, at
the pore scale Vc can be much smaller than 0.15, and this is likely the case in some
geological problems as well, though for some, Vc may also be larger than 0.15. In
fact, the point of a small, but growing body of literature is to answer the question
of why critical site percolation probabilities are so low in geologic media (most of

Table 11.1 Factors representing enhancement of K relative to geometric mean value. Percolation
values are calculated using assumed Vc of 0.15. Values in parentheses calculated from Vc = 0.06.
Subunit scale is upscaled from the subunit values. Unit scale is upscaled from the unit values.
Composite means the entire distribution. Product is the product of the enhancements at the subunit
and the unit scales

Method Subunit scale Unit scale Composite Product

Percolation 22(23) 26 (29) 28 (211) 28 (212)
Stochastic 20.53 27 26.8 27.53
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Fig. 11.7 For the system of Fig. 11.6 the distribution of K values as a function of linear scale

these works, e.g., Silliman [14]; Shah and Yortsos [15]; Proce et al. [16], divide
the medium up into blocks of uniform size and look to correlations in the block
conductivities to explain critical percolation probabilities much lower than 0.3116
for a cubic lattice, rather than comparing such probabilities with continuum values,
starting from Scher and Zallen [17]). For Vc = 0.06, the Matheron conjecture un-
derestimates the hydraulic conductivity by more than four orders of 2, or more than
two-thirds the width of an individual subunit distribution.

Fig. 11.8 Effect of scale on permeability of rocks in 3 different sedimentary basins in the United
States including the Uinta Basin of Utah [35], the Powder River Basin, Wyoming, and the Pierre
shale in South Dakota [36]. Dashed line at 10−14 m2 indicates average crustal permeability inferred
by Brace [37]. Error bars associated with Uinta Basin data reflect the full range of permeability
evaluated at each scale (reprinted by permission from McPherson, 2003)
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Note that the value of K at any scale is contained within the distribution of K
values at all smaller scales. However, especially for Vc very small, it may be located
well into the tail of the distribution. Under such circumstances (if Vc = 0.05) limita-
tions in sampling (significantly less than 20 = 1/0.05 samples) might suggest that
the value of K at a larger scale was not represented at all at the smaller scale. So
the general implications of continuum percolation theory are that inference of an
increase in K with increasing scale may be due to inadequate sampling (in the case
of very small Vc) as well as inappropriate inferences due to established methods of
inferring Keff.

Figure 11.7 gives a schematic representation of the predicted dependence of mea-
sured values of K as a function of scale. This representation is schematic because the
representation in terms of system size does not follow automatically from the rep-
resentation in terms of hierarchical rank (Fig. 11.6). Figure 11.8, from McPherson
[18], gives actual K measurements as a function of scale. Note the general similarity.

11.4 A More Realistic Hierarchical Problem

This subsection combines pore scale modeling with geologic scale modeling. In
particular, results of pore scale predictions are then used as inputs into geologic
scale predictions. The results may have practical relevance.

The effective hydraulic conductivity in the subsurface at the US Department of
Energy Hanford site under unsaturated conditions shows evidence of anisotropy
[19–21]. This anisotropy is expressed in the predominantly horizontal transport of
moisture. Underlying the predominantly horizontal is its dependence on anisotropic
sedimentary structures on many spatial scales [22, 23]. Any tendency to lateral flow
can be logically assumed to lead to predominantly lateral of contaminants, which
appears to have been observed in the case of Technetium [24].

43Tc99 is spreading mostly laterally through the US Department of Energy Han-
ford site sediments. An important question to try to answer is: over what length scale
can the transport remain horizontal before the 43Tc99 is likely to be transported verti-
cally to the water table. In a medium with sufficient randomness to be treated within
the framework of percolation theory, even if anisotropy exists, it must be possible
mathematically to transform the medium so as to make it isotropic. In that case, per-
colation in the vertical and horizontal dimensions must coexist. Practically speaking
this means that at some large-enough length scale, vertical flow must be as easy as
horizontal flow and the Technetium will be transported vertically to the water table.
Of course there are many potential vertical transport paths, which might not be treat-
able in percolation theory, such as vertical conduits known as clastic dikes [25]. If
the Technetium transport is controlled by such features (because it occurs at smaller
horizontal length scales than what we would predict), our proposed procedure will
not be relevant.

An area of the US Department of Energy Hanford called the Vadose Zone Trans-
port Field Study (VZTFS) (Ward et al., 2000) [26] was selected for study based
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partly on its earlier study by Sisson and Lu [27] and partly on its potential rel-
evance to the subsurface of the BC Crib area, where the cited Technetium dis-
charge was located. The sediments in the vicinity of the VZTFS consist principally
of sand with interstitial silt and silt beds [22, 23]. The hydraulic conductivity is a
strongly varying function of moisture content, as we have seen. The Hanford sub-
surface, located in a semiarid region, typically has fairly high tensions, h. Thus, at
higher tensions in the unsaturated zone, the hydraulic conductivity may be strongly
anisotropic as a consequence of the tendency of finer soils to retain more water than
coarser ones, and for these soils to have been deposited primarily in horizontal struc-
tures. This apparent anisotropy may have some important consequences for the Tc
transport.

We proposed the following procedure to address this question:
(1) Use critical path analysis from percolation theory [28, 29] to predict the un-

saturated hydraulic conductivity [30, 31] at the sample scale using soil physical
information [32] from relevant soils at the US Department of Energy Hanford site,
(2) find the relevant parameters regarding the statistical occurrence and physical ex-
tent of such soils [25, 32], (3) use critical path analysis again together with cluster
statistics of percolation theory to predict the distribution of hydraulic conductivity,
K, values at geologic scales and with geologic complications such as anisotropy
[33, 34], (4) use sample scale information to generate the appropriate input param-
eters for the geologic scale treatment, and (5) use the predicted K distribution at
geologic scales to estimate the risk involved in a particular solute spill.

Since all the theoretical work is already described in this book, the present dis-
cussion can be restricted to finding the necessary input parameters to develop the
appropriate output for analysis.

One important input that should be mentioned is that of a quasiequilibrium as-
sumption; namely that the tension h is constant at a given elevation across soils of
different type. This does not mean that we assume no lateral gradients in h, rather
that we can calculate a relevant distribution of K values without taking local vari-
ablity in h into account.

We hypothesized that one could find a distribution of hydraulic conductivity val-
ues at a given tension and force that distribution of conductivity values into the form
of the Rieu and Sposito [9] distribution.

Specifically we used Eqs. (10.7) and (10.8) to predict the distribution of vertical
K values (referenced to the typical horizontal hydraulic conductivity) that one would
expect to find at a given spatial scale. These equations require several parameters as
input, namely an effective porosity, and effective fractal dimensionality, a ratio of a
maximum to minimum K, and a relevant length scale. The first three parameters are,
as noted previously, not independent as formulated in the Rieu and Sposito model.
The next paragraphs will explain how we estimated appropriate parameters, and
then we will present the results.

Schaap et al. [32] give particle size data, water-retention curves, and the saturated
hydraulic conductivity for 53 of 60 soils investigated at the VZTFS site. We took
our methods from Chap. 5 [31] to predict the hydraulic conductivity as a function of
tension for 39 of these soils. The soils discarded were eliminated due to data prob-
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lems (cumulative mass fractions with negative slopes, missing saturated values of
the hydraulic conductivity, etc.). The reader will note that the following discussion
is very practically based, partly because we force data to be compatible with a given
subsurface model. Yet we know that the universal aspects of percolation theory tend
to make most model characteristics nearly irrelevant, except for the magnitude of
rm/ro in the Rieu and Sposito model.

We predicted K(θ) in terms of KS using the particle size data as a proxy for the
pore-size data. We matched predicted and observed water-retention curves in order
to extract hA, the air entry pressure, and then used the predicted θ(h) curve together
with the predicted K(θ) and the observed KS in order to generate K as a function of
h without any unknown parameters. We then used summaries of the data to generate
our distributions of K values. In fact, we used parameters from these data in order
to generate parameters for the K distributions.

Specifically, we produced regressions of K(h) on total silt + clay content for each
of three values of h (50, 100, and 200 cm, the latter two in Figs. 11.9 and 11.10).
We used the regression equation to generate typical values of K for relatively fine-
rich, Kloam, and fine-poor, Ksand, soils (at two specific values of fine content, 7.6 and
20.1%. These two values were identified by taking (arbitrarily) half the maximum
fine content (26.8%) as the value (13.4%), which distinguishes between fine-rich
and fine-poor soils, and then taking the average values of fine content in each range
separately. When fine-rich soils had appreciably higher K than fine-poor soils (at
h = 100 and h = 200 cm) we used the ratio Kloam/Ksand in each case to represent the
square of the ratio of largest to smallest pore size in the Rieu and Sposito model.
The results were Kloam/Ksand = 54,800 at h = 200 cm, and Kloam/Ksand = 25.8 at
h = 100 cm. Clearly the anisotropy at h = 100 cm was too small to be relevant.
While h = 200 cm is too large a tension to be relevant in the field (Rockhold, per-
sonal communication, 2008), we also know [30] that the procedures associated with
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Fig. 11.9 Predicted K(h = 100cm) for 39 VZTFS soils (source, Schaap et al. [32]) as a function of
fine content percentage (silt + clay). Note that the relationship is very similar if plotted against silt
content (not shown). Note also that the R2 value is lower than if K(h = 100cm/KS) is correlated
with fine content since the absolute K(h = 100cm) depends on KS as well, and KS has a slight
negative correlation with fine content
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Fig. 11.10 Predicted K(h = 200cm) for 39 VZTFS soils (source, Schaap et al. [32]) as a function
of fine content percentage (silt + clay)

laboratory measurements produce hA values about twice what is usually found in the
field. This means that, in fact, the anisotropy that we found for h = 200 cm should
be relevant for field conditions with h = 100 cm. Then we took the fraction of the
fine-rich soils as an analogue to the porosity, completing the analogy. In our case 14
out of 39 of these soils had fine content greater than 13.4%, so we had an effective
porosity of 14/39. We then used the relationship φ = 1− (r0/rm)3−D to find the ef-
fective fractal dimensionality, D. From this we could use Eqs. (10.7) and (10.8) to
produce the final two Figs. 11.11 and 11.12. Note that there is a volume scale in this
figure, and that volume scale is relevant. Nevertheless, the amount of work needed

Fig. 11.11 Predicted distribution of Kv values as a function of plume volume for the case that
typical conditions favor h = 100 cm. In this case D = 2.72 and R = 5.08. Note that the expected
Kv/Kh is ca. 1/5 at a volume of about 43m3 = 6×6×1.2 m, whereas the expected ratio is ca. 1/3
at a volume of about 1,000m3. Both of these values would be too small to account for significant
anisotropy in spreading
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Fig. 11.12 Predicted distribution of Kv values as a function of plume volume for the case that
typical conditions favor h = 200 cm. In this case D = 2.918 and R = 234. Note that the expected
Kv/Kh is ca. 1/200 at a volume of about 43m3 = 6× 6× 1.2 m, whereas the expected ratio is ca.
1/2 at a volume of about 10,000m3. At volumes 10,000m3 it is thus relatively common to find Kv
values as high as 1/2 the expected Kh. This implies that a plume spreading through individual soil
units of volume 43m3 (and length 6 m) can spread to a distance of roughly (10,000/43)1/26m ≈
100 m in length before it is likely to begin spreading vertically

to fix that scale using semivariograms for the hydraulic conductivity (given in Ward
[25]) is too great to reproduce here. However, there were at least three distinct spa-
tial scales present in those variograms. We related the smallest scale to the support
volume, rather than to relevant structures in the subsurface. When we chose the in-
termediate volume scale of ca. 40m3 as potentially most suitable to a compound
upscaling based on pore-scale results we generated a prediction [38] that when the
Tc plume spreads to about 10,000m3, we should expect vertical transport to become
about a factor 10−1/2 ≈ 1/3 as rapid as horizontal transport. The horizontal scale
that we deduced from this was about 70 m. This value appears to be two orders
of magnitude too small when compared with field data [24] which appear to show
nearly 10 km of predominantly horizontal migration. When we used the largest spa-
tial scale present in the variograms, we found that a transition to vertical transport
should occur at closer to 1 km.

In addition to the uncertainty of which spatial scale to use as the input scale
(or even a compound process), we had two additional uncertainties: (1) Our only
information presently is a 2D map from Cole et al. [24], so although we know that
transport has been primarily horizontal, we do not know if it has a relevant vertical
component, and (2) we do not know whether the VZTFS site is truly appropriate to
develop accurate parameters for application to another location. For these reasons
we wish to close with the following remark: We have been able to demonstrate
how one could use our theoretical framework to address realistic transport problems
with a hierarchy of scales, but we do not know how successful the application to the
anisotropy of the Tc transport at the US DOE Hanford site will ultimately turn out
to be.
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Problems

11.1. Repeat the calculations of K for nested heterogeneity that led to the entries of
Table 11.1, but using a critical volume fraction of 0.10.

11.2. Allow K to follow a log-uniform distribution with a prescribed width equal to
that of the example in Sect. 11.3, and discretize the distribution as in the procedure
there. Find the upscaled K as a function of an arbitrary critical volume fraction.
Find the value of the critical volume fraction which yields the Matheron conjecture
(Eq. (2.25)). How does this critical volume fraction compare with the typical value
of about 0.16 quoted in the literature? Is it possible for the Matheron conjecture
to be accurate for all values of the width parameter using the same critical volume
fraction?

11.3. Consider problem 11.2 again, but allow nested heterogeneity analogously to
the procedure of this chapter. Thus the critical volume fraction is, to a good approx-
imation, independent of scale. Investigate the performance of the Matheron conjec-
ture for the upscaling at both scales; does choice of the critical volume fraction of
problem 11.2, which guarantees equivalence to the Matheron conjecture at the low-
est length scale, also guarantee equivalence to the Matheron conjecture at the next
higher length scale?
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Summary

It seems a useful addition to include a table summarizing the uses of percolation
variables in calculating the transport properties of porous media. This table is con-
structed with the purpose of describing media with continuous distributions of local
properties, rather than for media which have only two local conditions, conduct-
ing vs. nonconducting. But it is likely that there is considerable overlap in the two;
remember that the Representative Elementary Volume is given by the cube of the
correlation length in both cases. This table is taken from Hunt [1].

Percolation
variable

Pore-scale
K

Geologic
scale K

Dispersion/solute
transport

pc Effective K,
residual
moisture,
solute
diffusion,
dc electrical
conductivity

Effective K Most likely
arrival time

Cluster statistics K distributions K distributions,
spatial statistics
(variograms),
finite-size
corrections,
anisotropy,
residuals

Distribution of
times

P (accessibility) Hysteresis Oil or DNAPL
residuals

Fate of
contaminants
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Percolation
variable

Pore-scale
K

Geologic
scale K

Dispersion/solute
transport

Correlation
length

Interruptions
in water
entry, such
as produced
by
hydrophobic
particles,
REV

Dimensionality of
conduction,
anisotropy, REV

Cluster density
profile

Fate of
contaminants

Tortuosity Effective K Distribution of
times

Fractal
dimensionality

Distribution of
times
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kagomé, 32–33
random, 100
regular, 32–33, 68
square, 2, 4, 5, 13, 29–31, 48–50, 278
triangular, 26–29, 30–31, 48

Layer, 33, 61–62, 74–75, 116, 137, 170,
194–197, 199–200, 212–213, 240,
241, 260

Limit, 7, 8, 13, 18, 21, 26, 33, 38, 41, 43–47,
74, 77, 86, 104, 114–117, 124,
129–131, 133–134, 142, 145,

153–154, 175–176, 179, 182,
191–193, 221, 238–239, 253,
255–256, 258, 262, 270, 273–274,
278, 293–295

Limiting, 13, 33, 43, 45, 46, 48–49, 51–52, 67,
103–104, 114–115, 191, 194, 196,
238, 239

Linear, 7, 13, 16–18, 29, 38, 43, 46, 90, 110,
114, 143, 154, 160, 171–172, 174,
177–180, 189, 198, 247, 249, 252,
255, 262–263, 267, 270, 280, 298

Link-node-blob, 4, 103
Liquid, 57, 100, 143–144, 148, 149, 162, 182,

201–203, 226, 227–229
Logarithm, 28, 48, 50, 72, 87, 100, 104, 112,

134, 143–145, 147, 148, 175, 193,
228, 271, 275, 276, 281

Log-normal, 50, 68, 76, 78–79, 163, 253–254,
293–295, 297

See also Probability density function,
log-normal

Loop, 4, 5, 6, 21, 81, 104

McGee Ranch, 131, 132, 141, 156, 212, 222,
290

Magnetic, 19, 61, 200–201
Mandelbrot, 38
Mapping, 2, 68, 213, 236, 268–269, 303
Mass, 4–6, 7, 16, 17, 19, 20–21, 22–23,

37–39, 60–61, 65–66, 72–74, 200,
271–272, 290, 300–301

Matheron, (conjecture)50, 297–298, 304
Mean

arithmetic, 53, 58, 84–85, 118, 258
cluster size, 21
-field, 20, 23–26
geometric, 48, 49–50, 66, 296–297
harmonic, 45–46, 53, 69, 85, 116, 118
See also Ensemble

Median, 48, 50, 296
Meniscus, 63, 76, 81, 174, 176, 208
Mercury (injection), 137
Minimal path, 208
Model

capillary tube, 67, 84, 117, 265
fractal, 58, 67–68, 69, 73, 76–79, 97, 110,

124, 139, 155–157, 163, 202–203,
213–215, 217, 235, 265, 294

network, 63, 67–68, 97, 105, 126, 180, 211
Rieu and Sposito, 69–70, 73–74, 77, 86,

124, 134, 215, 235, 239, 241, 254,
278, 281, 293, 294, 300, 301

Moisture, 53, 59–61, 74, 76, 78–82, 87–89,
114–115, 125, 128–132, 134–135,



Index 315

142–143, 155, 157–158, 160,
176–183, 201, 203, 207–230,
242–243, 254, 273–274, 279,
288–300

See also Water
Moldrup, 132, 170, 181, 184–185, 188,

219–221, 225, 226
Molecule, 170, 181, 183, 190, 194, 196–200,

265–266, 278–279
Moment

first, 23
second, 19–20, 22, 277, 282

Monodisperse, 157

Navier–Stokes, 59, 64, 82, 83, 110, 277
Neighbor

nearest, 4, 6, 23, 26, 31–33, 46–48, 100
See also Hierarchical

Network, 1–3, 6, 45, 49, 51–52, 63–64,
67–68, 89–90, 97, 99, 101–105,
126–127, 135, 176, 180, 197, 200,
201, 211, 225, 239, 241, 247, 267,
268–269, 273

See also Model
Neutron, 61, 64
Newton, 58
Noncrystalline, 189–190
Nonequilibrium, 114, 210, 213, 214, 217
Nonuniversal, 3, 41–42, 57, 110, 123–124,

125–142, 145, 158, 159, 161
Nonwetting, 210, 242–243

fluid, 63
phase, 80, 170, 171, 179–180

Normalize, 7, 9, 11–13, 17, 21, 26–29, 46,
48, 71, 118, 128, 153, 155, 184,
201, 209, 250, 253–254, 256, 269,
271–272, 280

Normal, see Probability density function,
normal

Notation, 13, 69, 71, 193, 209, 221, 271–272
Number, 1, 4, 6, 7, 10–13, 16–25, 29–33, 37,

38, 40, 42, 45, 46–47, 50, 58–59,
64, 69, 77, 82–84, 88, 100–102,
110, 116, 130, 143–144, 147,
148, 161, 191, 193, 195–198, 207,
210, 215, 222, 224, 226–227, 236,
249–251, 261, 266, 270, 274

Numerical solution, 79, 274

Octahedron, 62, 161
Ohm, 40, 193
Oil, 229

See also Petroleum
One dimensional, see Dimensional, one- (1D)

Optimal
conductance, 273
length, 6, 162
path, 38–39, 118, 162, 269

Optimize, 49, 51–53, 65, 78, 103–104, 107,
111–112, 144, 148, 150, 198–199,
202, 233, 250, 269, 274, 277

Order of magnitude, 68, 110, 174, 258
Organic (matter), 58, 65
Osmotic, 75
Overlap, 33, 98, 99, 102, 123, 194, 295, 296
Oxygen, 89, 91

Packing
close, 61–63, 157, 160

Parallel, 41, 51–53, 67–68, 84, 86, 115–118,
144, 147, 153, 158–161, 181, 197,
199, 200, 234, 288, 291

Parsimony, 293
Particle

density, 60
radius, 72
size

distribution, 57, 65, 72, 132, 155–156,
211, 218, 224

Particulate, 59, 123
Path

chemical, 4, 37, 38, 39, 282
minimal, 208
optimal, 6, 38–39, 118, 162, 269

pc, see Critical, probability; Percolation,
threshold

pdf, see Probability density function
Peclet number, 266
Pendular

ring, 64, 174, 176
structure, 174–176, 178–179, 202–203,

218
water, 178, 179

Percolation
cluster, 12, 16, 26, 37, 39
continuum, 2–3, 6, 33, 57–58, 82, 97, 110,

123, 135, 158, 180, 199, 209, 211,
225, 233, 238, 239, 295–297, 299

E-, 105–109, 190
invasion, 1, 39, 208, 279, 282
probability, 10, 18, 22, 26–29, 30, 31, 45,

49, 53, 85, 97, 161, 234–235
properties, 7
r-, 46, 98–109, 120, 190, 191–194
r–E, 99, 101, 108, 120, 145, 190, 210, 248
site, , 2, 3, 6, 10, 26–29, 32–33, 39–40, 97,

99, 102, 297
theory, 1–33, 87, 202, 207–229, 247–263



316 Index

threshold, 3–5, 7–9, 11–13, 16, 24, 33,
38, 40, 42–44, 48–49, 51, 53, 67,
81–82, 97, 100–101, 105, 114–115,
118–119, 123–124, 132, 134,
142–143, 148, 158–160, 162, 170,
172, 173, 175–176, 179, 190, 201,
202, 210, 215, 233, 234, 250, 255,
269, 273, 277

transition, 3, 12, 13, 45, 193, 207, 208,
219, 222, 233, 242

See also Critical; Trap
Perimeter, 4, 24–25
Permeability, 83–86, 123, 169–173, 184–185,

202, 292, 298
See also Conductivity

Permittivity, see Dielectric
Petroleum, 57, 68, 143
Phase

air, 78, 171, 207, 208, 223
liquid, 143–144, 148–149, 162, 183
multi, 57
nonwetting, 80, 170
solid, 125, 143–144, 146, 148, 150, 153,

170, 173, 202, 226
transition, 12, 80, 207, 208, 227, 243
vapor, 157, 207
wetting, 80, 170, 171, 179, 207

Phenomenology, 58, 76–77, 79, 87–89, 124,
130, 135, 143, 176, 177, 180, 185,
188, 191

Phonon, 98, 106, 191, 193, 200
Phyllosilicate, see Clay
Physics

condensed matter, 61
soil, see Soil, physics
solid state, 1, 97, 236

Poiseuille, 83, 110, 253, 293
Polar, 190
Pore

body, 61, 62, 63, 68, 81, 208
pressure, 126
radius, 68, 69, 71–72, 76, 81, 83–87, 110,

112, 125–126, 133, 135, 155, 170,
185, 235, 239, 288

-scale, 63, 83, 110, 113, 117, 123, 126,
281, 303

size
distribution, 58, 65–66, 68, 71–72, 76,

78, 84, 87–88, 124, 127, 131–133,
135, 138, 140, 154–157, 161, 170,
172, 202, 207, 217–218, 268–270,
272, 277, 281

space, 1, 3, 58–61, 64, 65, 66, 69, 71,
73–75, 80, 89, 90, 110, 113–114,

124–126, 129, 134, 137, 139, 143,
147, 156–157, 161–162, 169, 189,
200, 202, 207, 209–210, 223–224,
226, 235, 265, 271, 274, 275, 277,
278, 288–289

structural, 66, 76, 78, 79, 223, 225,
287–295

textural, 223, 287–289, 291–292
throat, 61, 63, 67, 68, 81, 97, 114, 208, 210

Porosity, 59–61, 69–74, 134–136, 137, 139,
145, 154

Porous, 57–91, 169–202, 242–243, 265–282,
295

Power
function

-law, 181
See also Probability density function,

power-law
Precipitation, 135
Predict, 78, 79, 132, 149, 150, 151, 152, 153,

171, 172, 173, 175, 177, 184, 198,
211, 215, 220, 223, 241, 278, 279,
280, 291, 292, 301, 302, 303

Preferential (flow), 199
Pressure

hydraulic, 75–78
-saturation, 69, 80–82, 84, 88, 207–229

Probability
critical, 49
See also Probability density function

Probability density function
exponential, 8, 14, 21, 47, 52, 98–100, 103,

107, 109–110, 112, 119, 228, 271,
293, 294

Gaussian, 13, 250, 253
See also normal

log-normal, 50, 253–254, 293–295
normal, 71

See also Gaussian
power-law, 14, 46, 68, 163
uniform, 48, 49, 50, 120, 295, 296

Property
geometrical, 33, 102, 110, 116–117, 119,

124, 135, 170, 174–176, 179, 202,
213, 220

global, 1–2, 173
hydraulic, 57, 59, 64–65, 67, 82–88, 222,

235, 287
local, 45, 86, 110, 119
mechanical, 59, 67, 74, 98, 100, 201, 228
percolation, see Percolation, properties
physical, 15, 59, 69, 89
topological, 1, 45, 52, 53, 68, 114–115,

119, 127, 170, 176, 179, 202, 268



Index 317

transport, 3, 9, 37, 57–59, 62, 65, 69, 79,
82–88, 115, 169–203, 227, 247, 287

Proton, 97, 189, 194–197, 199
Pruning, 4, 68, 180

Quantum, 98, 100

Radiation, 64, 89
Radius

of a cluster, 4
of curvature, 76, 81
pore, see Pore, radius
of a tube, 52

Random
field, 50, 261, 266, 297
walk, 22, 26, 180, 268,

Range of validity, 145
Rate-limiting, see Limiting
Redundancy, 7, 18, 258
Region of applicability, 139–142
Regression, 132, 154, 171–172, 220–222, 226,

301
Relaxation, 79, 98, 191, 193, 228
Renormalization

group, 11, 26, 73, 163, 201
scaling, 11–12, 21, 26

Representative elementary volume
and correlation length, 69, 105, 233, 236,

270, 277
Rescaling, see Scaling
Residual

conductivity, 142, 151
oil, 229
salinity, 149–150, 152–154
water, 211, 218, 226, 279

Resistor, 49, 53, 84–85, 100, 102–104, 107,
117–118, 130, 197, 236, 247, 251,
256, 287–288

REV, see Representative elementary volume
Reynolds number, 59, 82–83, 110
Rieu and Sposito, 69–70, 73–74, 77, 86, 124,

134, 215, 235, 239, 241, 254, 278,
281, 293, 294, 300, 301

Rock
crystalline, 59, 201
fractured, 69, 247, 267
granite, 59
pumice, 59, 74
sandstone, 57, 59, 65, 123, 137, 140,

146–147, 153
sedimentary, 145–146
tuff, 182

Root mean square (rms), 8, 184
Rotate, 190, 194

Rough, 16, 29, 64, 195, 209, 254
RS, see Rieu andSposito

Samplespanning, 39
Sampling, 60, 299
Sand, 65–66, 68, 118, 135, 141, 146–153, 162,

177–178, 182, 187, 209–210, 211,
225, 234, 242–243, 269, 280, 282,
300

Saturate, 60, 139, 294
Saturation, 64, 69, 77, 80, 81–84, 87–88,

110–111, 114–115, 119, 123–124,
127–129, 132–135, 138–140,
142–143, 146–147, 153–154,
156–160, 169–171, 173–182, 202,
203, 207–229, 268, 273, 287–289,
292–294

Scale
dependent, 44, 83, 235, 240, 242
independent, 8, 69, 267
multi- (multiple), 287–304

Scaling
cluster, 18

number, 83
radius, 83–87

exponent, 16–19
finite size, 43–44, 180, 207, 209, 229
fractal, 78, 131, 134, 212–219, 221,

222–227
function, 25
law, 16–19, 21
percolation, 44, 124–125, 130–134, 138,

139, 142–143, 145, 147, 157, 161,
170, 172–174, 176, 179, 180, 190,
202–203, 212, 250, 265, 293

relationship, 14–15, 17–20, 25–26, 29,
180, 251, 270

spatio-temporal, 266
See also Upscaling

Scanning curve, see Hysteresis
Scher, 33, 63, 158, 298
Seismic, see Electroseismic
Semivariogram, see Variogram
Separation

of charges, 196, 200–201
of paths, 114–115, 119, 160, 199, 242–243

Series
resistors in, 85
Taylor, see Taylor series

Shape, 3, 8, 33, 64, 65, 67–69, 71, 76, 83, 110,
112–113, 116–118, 126, 135, 155,
158, 211, 214, 215, 236–237, 242,
247, 277, 280, 295

Shrink, see Swelling



318 Index

Silica, (Silicon)146, 148, 149, 150, 169, 182,
196, 201

Silt, 66, 68, 133, 141, 177–179, 187, 225, 300,
301, 302

Similar
self–, 7, 9, 17, 70, 126, 140, 142,

208, 296
Simulation, 13, 38, 40, 43–44, 53, 59, 68, 100,

103–105, 109–110, 117, 126, 136,
180, 183, 207, 229, 250, 252, 253,
277–278, 281

Singly-connected, see Dead end
Site

percolation, 2, 3, 6, 10, 26–29, 32–33,
39–40, 97, 99, 102, 297

problem, 297–300
See also Percolation, site

Smectite, 169, 191–198
See also Clay

Soil
community, see Community, soil science
physics, 37, 57, 59–91, 128, 142, 161, 287,

288
science, 58–60, 143, 189, 288, 293
texture, see Texture

Solute
dispersion, 9, 37, 267, 269
distribution, 267, 277

arrival time, 265, 267–268, 271, 275,
280, 282

See also Breakthrough curve
Sorption, 170
Spanning, see Samplespanning
Spatial

statistics, 247–254
variability, 3, 28, 247–254

Sphere, 2, 6, 21, 26, 33, 39–40, 61–63, 67,
75–76, 83, 85–86, 99, 102, 120,
123, 142, 147, 157, 160, 174,
179, 262

Sposito, 69–70, 73–74, 77, 86, 124, 134, 215,
235, 239, 241, 254, 278, 281, 293,
294, 300, 301

Square, 2, 4–5, 8, 13, 29–32, 48–52, 66, 78,
83–87, 98, 112, 177, 179, 184, 188,
197, 215, 223, 236, 242, 256, 266,
274, 278, 283, 292, 301

See also Lattice
Stauffer, D., 3, 8, 10, 12–15, 26, 32, 37, 43,

103, 104, 111, 203, 250, 271
Steady-state, 190, 201, 253–254
Stochastic, 87, 99, 113, 266–267, 297
Stokes, 59, 64, 66, 82–83, 85–86, 110, 277
Streaming, 127

Streamline, 269, 273
Strength, see Cluster, infinite
Structure, 1–33, 37–39, 62, 63, 64, 66–67, 76,

202, 208–211, 223, 287–293
Sublinear, 174, 179–180, 189, 192, 193, 211
Superlinear, 211
Surface

area, 4, 21, 66, 74, 85, 129, 169, 220–221,
225–226, 249, 288

Swelling
shrink, 237

Swiss cheese, 123, 135
See also Cannonball

Taylor series, 21, 24, 25, 28, 102, 197
TDR, see Time, -domain reflectometry
Temperature, 98, 99, 106–109, 190–193,

199–200, 227–228, 251
See also Heat; Thermal

Tensiometer, 88
Tetrahedron, 61, 62
Texture, 64–66, 141, 150, 223, 287–292
Thermal, 59, 61, 98, 100, 119, 123, 125, 135,

169, 173–180, 185, 202, 218
See also Heat; Temperature

Thompson, 73, 84, 86, 111–113, 235, 239–240
Three dimensional, see Dimensional, three-

(3D)
Threshold, 5, 7–9, 11–13, 16, 24, 33, 38,

40, 42–44, 48–49, 51, 53, 67,
81–82, 97, 100–101, 105, 114–115,
118–119, 123–124, 132, 134,
142–143, 148, 158–160, 162, 170,
172, 173, 175–176, 179, 190, 201,
202, 210, 215, 233, 234, 250, 255,
269, 273, 277

See also Probability, critical
Throat, see Pore, throat
Time

-domain reflectometry, 61
Topology, 1–33, 37, 45, 49, 52, 53, 68, 97,

114–115, 117, 119, 124, 127,
131, 148, 169–170, 176, 179,
202–203, 268

Tortuosity, 21, 37–38, 40–41, 58, 84, 85,
88, 138, 142, 144, 146–147, 153,
154, 174, 180, 181, 233, 249–251,
265–282

See also Chemical, path
Tracer, 265
Transport, 37–53, 82–88, 169–202
Trap, 39, 210–211, 279–280, 282
Tree, 2, 21
Triangular, see Lattice, triangular



Index 319

Trivial, 12, 28
Tube, see Capillary; Poiseuille
Tunnel, 98, 99, 100
Two dimensional, see Dimensional, two- (2D)

Universal, 136–139, 153, 158, 160, 191, 201
Unsaturated

diffusion, 110
electrical conductivity, 149
flow, 293, 299
hydraulic conductivity, 84, 87, 113–115,

128, 300
Upscale, 48, 50–51, 53, 69, 83–85, 110,

115–116, 119, 176, 235–237, 287,
294–297, 303

See also Scaling

Vadose zone, 79, 147, 299–300
Van Genuchten, 76, 79–80, 87–88, 226,

292–293
Vanish, 4, 9, 14, 40, 43, 47, 74, 86, 114–115,

117, 129, 182, 184, 190, 207, 213,
241, 274

Vapor, 157, 207
Variability, 3, 28, 53, 58, 69, 110, 123,

132–133, 136, 138, 142, 157, 161,
185, 190, 234, 247–263, 266, 269,
274, 277, 281–282, 294–295

Variogram, 235, 261–263, 303, 303
Velocity, 38, 82, 83, 98, 193, 265–267, 272,

275–276
Vertical, 53, 75, 76, 78, 87, 116, 132, 236–238,

240, 255, 257–258, 260, 269,
299–300, 303

Viscosity, 57, 83, 85, 110, 125, 169, 201
Vug, 240
Vyssotsky, 31, 32, 117, 160

Water
-repellent, see Nonwetting
retention, see Pressure, -saturation
See also Moisture; Wetting

Wave function, 98–99
Wet end, 76, 78, 222–227
Wetting

fluid, 1, 63, 169–170
front, 1, 89, 269
phase, 80, 170–171, 179, 207
See also Nonwetting

Width
of a distribution, 45, 258

Young–Laplace, see Capillary

Zallen, 33, 63, 158, 298


	Foreword to the Second Edition
	Preface to the Second Edition
	Foreword to the First Edition
	Preface to the First Edition
	Contents
	Percolation Theory: Topology and Structure
	What is Percolation?
	Some Examples
	Qualitative Descriptions
	What are the Basic Variables?
	What Is Scale Invariance and Why Is It So Important?
	The Correlation Length in One Dimension
	The Relationship of Scale Invariance and Renormalization, and the Relationship of the Renormalization Group to Percolation Theory
	Cluster Statistics of Percolation Theory
	Derivation of 1D Cluster Statistics and Discussion of Fractal Dimensionality
	Argument for Dimensionally Dependent Scaling Law
	Explicit Calculations of the Second Moment of Cluster Statistics in One Dimension
	Calculation of the Correlation Length on a Bethe Lattice
	Explicit Calculations of the Second Moment of Cluster Statistics on a Bethe Lattice
	Mean-Field Treatment of the Probability of Being Connected to the Infinite Cluster
	Cluster Statistics on a Bethe Lattice
	Summary of Relationships Between Exponents
	Calculation of the Critical Site Percolation Probability
	Value of pc for Bond Percolation on the Square Lattice
	Estimations of pc for Bond Percolation on the Triangular and Honeycomb Lattices
	Summary of Values of pc
	More General Relationships for pc
	Problems
	References

	Properties Relevant for Transport and Transport Applications
	Exponents Describing Backbone Structure
	Exponents for Conduction Properties
	Summary of Derived Values of Critical Exponents
	Finite-Size Scaling and Fractal Characteristics
	Critical Path Analysis
	Relation of CPA to Extreme Value Statistics in 1D Systems
	CPA in Two Dimensions
	CPA in 3D
	Dimensional Dependence and Similarity to Matheron Conjecture
	Optimization of the Percolation Network: Contrast Between 2D and 3D

	Problems
	References

	Porous Media Primer for Physicists
	Introduction and Background
	Relevant Soil Physics
	Porosity and Moisture Content
	Classification of the Pore Space
	Particle Sizes and Pore Sizes
	Parallel Tube, Network, and Fractal Models
	Representative Elementary Volume and the Concept of ``Upscaling''
	Porosity and Fractal Media

	Soil Water Potential and Water Retention
	Hysteresis and Time Dependence in Pressure--Saturation Relationships
	Hydraulic and Transport Properties
	Some Notes on Experimental Procedures
	One Example from Living Organisms
	Problems
	References

	Specific Examples of Critical Path Analysis
	r-Percolation
	r -- E-Percolation (Variable-Range Hopping)
	Saturated Hydraulic Conductivity
	Unsaturated Hydraulic Conductivity
	Hydraulic Conductivity for Geologic Media: Parallel vs. Series
	Summary
	Problems
	References

	Hydraulic and Electrical Conductivity: Conductivity Exponents and Critical Path Analysis
	Hydraulic and Electrical Conductivities, and Electrokinetic Coupling: Universal and Nonuniversal Exponents
	Balberg Nonuniversality
	Transition from Critical Path Analysis to PercolationScaling
	Return to Balberg Nonuniversality
	Inferences on Porosity Dependences at Full Saturation: Archie's Law
	Universal Exponents Masquerading as Nonuniversal
	Regions of Applicability

	Electrical Conductivity as a Function of Saturation: Trends and Potential Complications in Experimental Data
	Comparison with Experiment

	Effects of Arbitrary Pore-Size Distributions
	Water Film Issues
	Electrical Conductivity for < t
	Problems
	References

	Other Transport Properties of Porous Media
	Air Permeability
	Thermal Conductivity
	General Comments on the Saturation Dependence of the Thermal Conductivity
	Theoretical Construction

	Solute and Gas Diffusion
	Electrical Conductivity of Hydrated Clay Minerals
	r-Percolation and E-Percolation
	Percolation Calculation of Ea

	Geophysical Applications
	Summary
	References

	Pressure--Saturation Curves and the Critical Volume Fraction for Percolation: Accessibility Function of Percolation Theory
	Structural Hysteresis
	Hydraulic Conductivity-Limited Equilibration, and Dry-End Deviations from Fractal Scaling
	Analysis of Water-Retention Curves in Terms of the Critical Moisture Content for Percolation
	Wet-End Deviations from Fractal Scaling of Water-Retention Curves, and Discussion of the Critical Volume Fraction for Percolation
	General Formulation for Equilibrium and Analogy to Ideal Glass Transition
	Oil Residuals
	Problems
	References

	Applications of the Correlation Length: Scale Effects on Flow
	Isolation of Geologic and Percolation Effects on a Correlation Length
	Effects of Dimensional Crossovers on Conductivity
	Comparison with Field Data
	Effects of Hydrophobicity on Water Uptake of Porous Media
	Problems
	References

	Applications of the Cluster Statistics
	Spatial Statistics and Variability of K from Cluster Statistics of Percolation Theory
	Cluster Statistics Treatment of Nonequidimensional Volumes and Anisotropy
	Semivariograms and Cross-Covariance
	Problems
	References

	Properties Based on Tortuosity
	Longitudinal Dispersion of Solutes in Porous Media
	Quantifying Limitations of the Neglect of Diffusion
	Conventional Modeling
	Experimental Overview
	Theoretical Descriptions
	General Comments Regarding Experiments
	Spatial Distribution at an Instant in Time
	Hydraulic Conductivity

	Comparison with Simulations
	Comparison with Experiment
	Discussion
	References

	Effects of Multiscale Heterogeneity
	Soil Structure
	Variable Moisture Content
	A Schematic Hierarchical Problem
	A More Realistic Hierarchical Problem
	Problems
	References

	Summary
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




